เทคนิคการใช้งานวิทยุสนาม

(รส. ๒๔ – ๑๘)

แผนกวิชาการสื่อสารประเภทวิทยุและการสงครามอิเล็กทรอนิกส์

<u>บทที่ 1</u> การสื่อสารประเภทวิทยุ

<u>กล่าวทั่วไป</u>

ก.วิทยุเป็นมัชฌิมหลักของการสื่อสารในหน่วยทางยุทธวิธีส่วนมากวิทยุนั้นใช้เพื่อการบังคับบัญชา ควบคุมการยิง แลกเปลี่ยนข่าวสาร งานธุรการและการติดต่อระหว่างหน่วยต่างๆ นอกจากนั้นยังใช้เพื่อการ สื่อสารระหว่างเครื่องบินในขณะบินและระหว่างเครื่องบินกับหน่วยทางพื้นดิน

ข.การสื่อสารทางวิทยุเหมาะที่จะใช้ในสถานการณ์ที่เปลี่ยนแปลงอย่างรวดเร็วการสื่อสารกับหน่วย เคลื่อนที่เร็ว เช่น เรือ เครื่องบินและรถถังนั้นจะมีความยุ่งยากอย่างมากถ้าไม่มีวิทยุใช้

ค.วิทยุเป็นสิ่งสำคัญในการสื่อสารไปเหนือพื้นน้ำอันกว้างขวาง เหนือแผ่นดินที่ข้าศึกยึดอยู่ และ เหนือภูมิประเทศซึ่งไม่อาจสร้างทางสายได้สะดวกหรือไม่เหมาะสมที่จะสร้างทางสาย

ขีดความสามารถและขีดจำกัด

ก.ขีดความสามารถ

- 1. อุปกรณ์สื่อสารประเภทวิทยุตามปกติแล้วอาจจะติดตั้งได้รวดเร็วกว่าอุปกรณ์สื่อสารทาง สาย ฉะนั้นวิทยุจึงมีที่ใช้อย่างกว้างขวางเป็นมัชฌิมหลักการสื่อสาร ในระหว่างขั้นแรกของการรบและใน สถานการณ์ทางยุทธวิธีซึ่งเคลื่อนที่เร็ว
 - 2. เมื่อติดตั้งบนรถแล้วเครื่องวิทยุก็พร้อมที่จะใช้งานได้และไม่ต้องมีการติดตั้งใหม่อีก
- 3. วิทยุอาจเคลื่อนที่ได้จึงอาจจะใช้กับหน่วยที่ไปในอากาศ หน่วยสะเทินน้ำสะเทินบก หน่วยยาน ยนต์และหน่วยเดินเท้า
- 4. วิทยุอาจจะใช้ปฏิบัติการได้หลายลักษณะ เช่น เป็นคำพูด ,วิทยุโทรศัพท์ ,วิทยุโทรเลข ,วิทยุโทร พิมพ์ แสดงให้เห็นเป็นภาพและการรับส่งข้อมูลตัวเลข
- 5. สิ่งกีดขวางตามธรรมชาติ ดงระเบิดและภูมิประเทศที่ข้าศึกยึดครองอยู่หรือที่ถูกข้าศึกยิงไม่อาจ จำกัดวิทยุได้เหมือนอย่างมัชฌิมการสื่อสารอื่นๆ ในการสื่อสารทางวิทยุเว้นแต่การใช้เครื่องควบคุมระยะไกล แล้วจะไม่ต้องการใช้สายโทรศัพท์ระหว่างตำบลซึ่งเป็นที่เริ่มต้นให้ข่าวและตำบลที่จะต้องส่งข่าวเลย เพราะ เหตุว่าได้ใช้คลื่นแม่เหล็กไฟฟ้าในอากาศเป็นเครื่องเชื่อมโยงถึงกันอยู่
- 6. โดยการใช้เครื่องบังคับระยะไกลพนักงานวิทยุอาจจะอยู่ไกลออกไปจากเครื่องที่ตนใช้งานก็ได้ เช่นนี้จะทำให้มีความปลอดภัยแก่พนักงาน สถานีวิทยุ และที่บังคับการที่สถานีวิทยุนั้นประจำอยู่

ข. ขีดจำกัด

- 1. วิทยุนั้นอาจจะชำรุดเสียหายได้ง่าย ถูกรบกวนจากสภาพของบรรยากาศ และถูกรบกวนจาก เครื่องอิเล็กทรอนิกส์อื่นๆ ได้ นอกจากนั้นยังอาจถูกก่อกวนได้โดยง่าย
- 2. เพื่อให้สามารถปฏิบัติการด้วยกันได้ วิทยุจะต้องมีความถี่ร่วมกันหรืออย่างน้อยที่สุดเหลื่อมกัน บ้าง ทั้งจะต้องส่งและรับสัญญาณในแบบเดียวกัน และจะต้องอยู่ภายในรัศมีการปฏิบัติงาน
- 3.วิทยุเป็นมัชฌิมการสื่อสารที่ปลอดภัยน้อยที่สุดและจะต้องถือว่ามีการดักรับอยู่ทุกครั้งที่เครื่องส่ง ทำงาน เพียงแต่ทราบว่าวิทยุทำงานอยู่ก็ถือว่าข้าศึกได้ข่าวสารไปแล้ว การที่ข้าศึกวิเคราะห์จำนวนสถานี วิทยุที่ปฏิบัติงาน จำนวนข่าวที่รับส่งหรือที่ตั้งของสถานีวิทยุก็มีค่าต่อการข่าวกรอง

<u>การใช้ทางยุทธวิธี</u>

ขอบเขตที่จะใช้วิทยุในการรบนั้นขึ้นอยู่กับความต้องการ การรักษาความลับและการจู่โจมโดยชั่ง น้ำหนักเทียบกับความเร่งด่วนในการสื่อสารทางวิทยุ เมื่อการจู่โจมเป็นสิ่งสำคัญการปฏิบัติทางวิทยุก็ต้อง จำกัดในขั้นต้นกับหน่วยที่ได้มีการปะทะกับข้าศึกแล้ว ในบางกรณีอาจให้มีการลวง

<u>บทที่2</u> หลักพื้นฐานการสื่อสารประเภทวิทยุ

ตอนที่ 1 ส่วนประกอบในการส่งและการรับวิทยุ

1. เครื่องวิทยุ

ชุดวิทยุประกอบด้วยส่วนประกอบที่สำคัญ คือเครื่องส่งซึ่งเป็นส่วนที่ทำให้เกิดพลังงานความถี่วิทยุ แหล่งกำลังไฟฟ้า คันเคาะ ปากพูด หรือเครื่องโทรพิมพ์ ซึ่งเป็นส่วนที่ควบคุมคลื่นพลังงาน สายอากาศส่ง เป็นส่วนที่ใช้แพร่รังสีคลื่นวิทยุ สายอากาศรับเป็นส่วนที่ดักรับคลื่นวิทยุที่แพร่รังสีออกมา แหล่งกำเนิดไฟฟ้า เครื่องรับใช้ในการเปลี่ยนคลื่นความถี่วิทยุที่ดักรับให้เป็นพลังงานที่นำไปใช้ได้(USABLE ENERGY) (ตามปกติแล้วได้แก่พลังงานความถี่เสียง) และลำโพง หูฟังหรือเครื่องโทรพิมพ์จะทำให้พลังงานที่ได้นี้ ออกมาเป็นสิ่งที่เข้าใจกันได้เมื่อชุดวิทยุทั้งสองไม่เกินรัศมีการทำงานของเครื่องแล้วสามารถทำการสื่อสาร สองทาง(TWO WAY COMMUNICATION) ด้วยการใช้เครื่องแม่เหล็กไฟฟ้าได้เสมอ

รูปที่ 2 - 1 แสดงแผนผังรูปสี่เหลี่ยมของชุดวิทยุหลัก

2. เครื่องส่งวิทยุ

เครื่องส่งวิทยุแบบง่ายๆ (รูปที่ 2-2) ประกอบด้วยแหล่งจ่ายกำลังและ OSCILLATOR หนึ่งเครื่อง แหล่งจ่ายกำลังอาจเป็นหม้อไฟฟ้า เครื่องกำเนิดไฟฟ้า แหล่งกำลังไฟฟ้าสลับ รวมทั้งเครื่องเรียงกระแสและ เครื่องกรองกระแสไฟฟ้าหรือกำลังที่เกิดจากมือหมุน (ROTATING POWER SOURCE) ให้เป็นกระแสตรง ด้วย ภาค OSCILLATOR ซึ่งทำให้เกิดกระแสสลับความถี่วิทยุนั้นต้องประกอบด้วย วงจรปรับตั้ง (TUNED CIRCUIT) เพื่อใช้ปรับตั้งเครื่องส่งให้ได้ความถี่ใช้งานตามต้องการ เครื่องส่งต้องมีเครื่องมือ สำหรับควบคุมพลังงานความถี่วิทยุที่จะส่งออกไป / คันเคาะโทรเลขเป็นเครื่องมือแบบง่ายๆ ที่มีลักษณะ เป็นไกไฟฟ้า(SWITCH)แบบหนึ่งใช้ควบคุมการไหลของกระแสไฟฟ้า เมื่อใช้คันเคาะภาค OSCILLATOR ก็ จะกด-ปล่อยปิดหรือเปิดทำให้เปลี่ยนแปลงช่วงเวลาของพลังงานความถี่วิทยุให้เป็นรูปของ จุด และ ขีด

รูปที่ 2-2 แผนผังสี่เหลี่ยมของเครื่องส่งวิทยุแบบง่ายๆ

3. เครื่องส่งคลื่นเสมอ

เมื่อ OSCILLATOR (OSC) ทำความถี่วิทยุขึ้นมาซึ่งปกติแล้วไม่ว่าความถี่คงที่และแรงพอ ที่จะให้ความเชื่อถือได้ ในการส่งระยะไกลหรือไม่ก็ตามจะมีภาคขยายเพื่อขยายความถี่วิทยุต่อจากภาค OSC อีกภาคหนึ่ง (รูปที่ 2-3) เพื่อทำให้เกิดกำลังออกอากาศคงที่และแรงขึ้น แต่ถ้าต้องการเพียง ประมวลเลขสัญญาณเท่านั้นเครื่องส่งดังที่กล่าวมาแล้วนี้ก็ใช้ได้ผลอย่างสมบูรณ์แล้ว

รูปที่ 2-3 แผนผังสี่เหลี่ยมของเครื่องวิทยุคลื่นเสมอมีภาคเครื่องแกว่ง เครื่องขยาย **4. เครื่องส่งวิทยโทรศัพท์**

เมื่อต้องการจะส่งข่าวเป็นคำพูด จำเป็นต้องใช้เครื่องมืออย่างใดอย่างหนึ่งควบคุมให้กำลัง ออกอากาศของเครื่องส่งวิทยุเป็นไปตามความถี่ของคำพูด (หรือความถี่เสียง) ภาคที่ใช้ในการควบคุมภาค ปรุงคลื่น ซึ่งจะทำการเปลี่ยนแปลงกำลังออกอากาศของเครื่องส่งวิทยุให้เป็นไปตามความถี่ของคำพูด กรรมวิธีเช่นนี้เรียกว่า การปรุงคลื่น และคลื่นความถี่วิทยุที่เกิดขึ้นจากกรรมวิธีนี้ เรียกว่า คลื่นที่ปรุงแล้ว (MODULATED WAVE) เมื่อสัญญาณที่ปรุงคลื่นทำให้ช่วงสูงของคลื่นวิทยุเปลี่ยนแปลง เรียกวิธีการนี้ว่า การปรุงคลื่นทางช่วงสูง (AMPLITUDE MODULATION) และเมื่อสัญญาณที่ปรุงคลื่นแล้วทำให้ความถึ่ วิทยุเปลี่ยนแปลงเรียกวิธีนี้ว่า การปรุงคลื่นทางความถี่ (FREQUENCY MODULATION) ตามรูปที่ 2-4 ได้ เพิ่มภาคปรุงคลื่น (MODULATION) และปากพูดเข้าไปในเครื่องส่งวิทยุโทรเลข จึงทำให้กลายเป็น เครื่องส่งวิทยุโทรศัพท์ปรุงคลื่นทางช่วงสูง

รูปที่ 2-4 แผนผังสี่เหลี่ยมของเครื่องส่งวิทยุโทรศัพท์

5. สายอากาศ

หลังจากที่เครื่องส่งวิทยุทำสัญญาณความถี่วิทยุและขยายสัญญาณให้แรงขึ้นแล้วต้องมีเครื่องมือ แพร่รังสีเพื่อพลังงานความถี่วิทยุไปในอากาศ และในขณะเดียวกันก็ต้องมีเครื่องมือดักรับสัญญาณทาง เครื่องรับ เครื่องมือที่ต้องใช้ทำหน้าที่นี้คือ สายอากาศ สายอากาศส่งจะส่งพลังงานของสัญญาณออกไปใน อากาศแพร่รังสีพลังงานออกไปเป็นรูปคลื่นแม่เหล็กไฟฟ้าและถูกดักรับด้วย สายอากาศรับ เมื่อเครื่องวิทยุ ปรับตั้งความถี่ตรงกับความถี่เครื่องส่งแล้ว ก็จะรับสัญญาณและได้ข่าวสารซึ่งเข้าใจกันได้

6. เครื่องรับวิทย

ก. ภาคเครื่องตัดคลื่น (DETECTOR) สัญญาณความถี่วิทยุซึ่งสามารถรับได้ด้วยเครื่องนั้นโดยทั่วไป แล้วแบ่งออกเป็น 2 ชนิด คือสัญญาณความถี่วิทยุที่ปรุงคลื่นแล้ว (MODULATED RF SIGNAL) ซึ่งได้นำ คำพูด เสียงดนตรีหรือพลังงานความถี่เสียงอื่นๆ ไปด้วยและอีกชนิดหนึ่งคือสัญญาณคลื่นเสมอ (CW) ซึ่ง พลังงานความถี่วิทยุที่พุ่งออกมาพร้อมนำข่าวไปโดยใช้ประมวลเลขสัญญาณ (จุด - DOT) กรรมวิธีซึ่ง ข่าว ที่สัญญาณความถี่วิทยุนำไปนั้นถูกลอดออกมาเรียกว่า การตัดคลื่น (DETEDTOR) วงจรที่ใช้บรรลุผลอันนี้ เรียกว่า DETECTOR (รูปที่ 2-5) ซึ่งจะตัดเอาเฉพาะข่าวที่เข้ามาเท่านั้น เครื่องรับวิทยุจะต้องมีวิธีในการ ปรับตั้งและการเลือกเฟ้น (SELECTING) เฉพาะสัญญาณความถี่วิทยุที่ต้องการเท่านั้น เหตุที่จำเป็นต้องมี การเลือกเฟ้นก็เพื่อมิให้มีการตัดสัญญาณความถี่วิทยุหลายๆความถี่ที่แตกต่างกันในช่วงเวลาเดียวกันส่วน หนึ่งของเครื่องดักคลื่นซึ่งใช้ปรับตั้งสัญญาณที่ต้องการเรียกว่า วงจรปรับตั้ง (TINED CIRCUIT) ใน เครื่องรับวิทยุ FM นั้นเราเรียกเครื่องตัดคลื่นว่า เครื่องจำแนกคลื่น (DISCRIMINATOR)

Figure 2-5 Rlock diagram of a simple radio receiver

ข. ภาคเครื่องขยายความถี่วิทยุ (RF AMPLIFIER) เนื่องจากความถี่สัญญาณวิทยุออกมาแรง (STRENGTH) หรือช่วงสูงด้วยอัตราเร็วมาก ภายหลังที่ออกมาจากสายอากาศส่งแล้วและเพราะว่ามี ความถี่วิทยุหลายความถี่รวมกันอยู่อย่างหนาแน่นในความถี่วิทยุ จึงไม่อาจจะใช้เฉพาะภาคเครื่องรับคลื่น เท่านั้น จำเป็นต้องเพิ่มภาคเครื่องขยายความถี่วิทยุ (รูปที่ 2 - 6) เข้าในเครื่องรับเพื่อให้มีความไว

(SENSITIVITY ความสามารถที่จะรับสัญญาณอ่อนๆได้) และมีการเลือกเฟ้น (ความสามารถที่จะแยก สัญญาณความถี่วิทยุและความถี่เสียงออกจากกันได้) เครื่องขยายความถี่วิทยุจะมีวงจรปรับตั้ง หนึ่งวงจร หรือมากกว่านั้น เพื่อให้สัญญาณความถี่วิทยุที่ต้องการนั้น (ความถี่ที่ถูกปรับตั้ง) ได้รับการขยายมากกว่า สัญญาณความถี่อื่น

Figure 2-6. Block diagram of a detector and an RF amplifier.

รูปที่ 2-6

ค. ภาคเครื่องขยายความถี่เสียง (AF AMPLIFIER)

กำลังออกอากาศของภาคตัดเครื่อง (DETECTOR) ทั้งที่มีหรือไม่ ภาคขยายความถี่วิทยุ นั้นตามปกติมีกำลังอ่อนมากที่จะนำไปใช้งานได้ จึงต้องเพิ่มภาคขยายความถี่เสียงขึ้นอีกหนึ่งภาคหรือหลาย ภาค (รูปที่ 2-7) เพื่อทำให้กำลังความถี่เสียงแรงขึ้นถึงระดับที่หูฟัง ลำโพงหรือเครื่องโทรพิมพ์ทำงานได้

รูปที่ 2-7 แผนผังสี่เหลี่ยมของเครื่องรับวิทยุที่สมบูรณ์

ตอนที่ 2 คลื่นวิทยุ (RADIO WAVE)

1. กล่าวทั่วไป

คลื่นวิทยุเคลื่อนไปมาตามผิวโลก และแพร่รังสีคลื่นขึ้นไปบนท้องฟ้าทำมุมกับผิวโลกเป็นมุมต่างๆ กัน (รูปที่ 2-8) คลื่นแม่เหล็กไฟฟ้าเหล่านี้ผ่านอากาศไปด้วยความเร็วเท่ากับความเร็วแสงประมาณ 186,000 ไมล์ (300,000 กิโลเมตร) ต่อวินาที

รูปที่ 2-8 การแพร่รังสีคลื่นวิทยุจากสายอากาศแบบตั้ง (VERTICAL ANTENNA

Figure 2-8. Radiation of radio waves from a vertical antenna.

2. ความยาวคลื่น (WAVE LENGTH)

ความยาวคลื่นวิทยุลูกหนึ่ง คือ ระยะทางเคลื่อนที่ของคลื่นในช่วงระยะเวลาหนึ่งจนกระทั่ง ครบหนึ่งรอบ แต่ละรอบจะมีการสลับคลื่นกัน (ดูรูปที่ 2-9) คือหนึ่งความยาวคลื่นซึ่งวัดได้เป็นเมตรสอง ครั้งความยาวคลื่นนี้อาจวัดจากจุดเริ่มต้นของคลื่นลูกต่อไป หรือวัดจากยอดคลื่นลูกหนึ่งไปยังยอดคลื่น ลูกต่อไปก็ได้ ทั้งสองกรณีนี้จะได้ระยะเท่ากัน

รูปที่ 2-9 ความยาวคลื่นของคลื่นวิทยุ

3. ความถี่ (FREQUENCY)

ก. ความถี่ของคลื่นวิทยุ คือ จำนวนของคลื่นครบรอบที่เกิดขึ้นในหนึ่งวินาที คลื่นใดที่ใช้ เวลาครบรอบนานกว่า คลื่นนั้นมีความยาวคลื่นยาวกว่าและมีความถี่ต่ำกว่า คลื่นที่ใช้เวลาครบรอบน้อยกว่า คลื่นนั้นมีความยาวคลื่นสั้นกว่าและมีความถี่สูงกว่า (รูปที่ 2-10) เปรียบเทียบความยาวคลื่นของคลื่น 2 MHz. กับคลื่น 10 MHz.

รูปที่ 2-10 การเปรียบเทียบคลื่นสองคลื่นที่มีความแตกต่างกัน

ข. เนื่องจากความถี่ของคลื่นวิทยุนั้นมีค่าสูงมาก ดังนั้นก็จะวัดเป็น KHz. หรือ MHz. ต่อ วินาที 1 KHz. เท่ากับ 1000 Hz. ต่อวินาที 1 MHz. เท่ากับ 1,000,000 Hz. ต่อวินาที

ค.เพื่อให้บังเกิดผลในทางปฏิบัติถือว่าความเร็วของคลื่นวิทยุมีค่าคงที่โดยไม่ต้องคำนึงถึง ความถี่จริงช่วงสูงของคลื่นที่ส่งออกไป ดังนั้นสามารถหาความยาวคลื่นได้ ถ้าทราบความถี่โดยหาความเร็ว ด้วยความถี่

ความยาวคลื่น (เป็นเมตร) = 300.000.000 (เมตรต่อวินาที) ความถี่ (Hz. ต่อวินาที) (ในอากาศอิสระ) 300.000 ความถี่ (KHz.) 300 ความถี่ (KHz.) ง. การหาความถี่เมื่อทราบความยาวคลื่นให้หารความเร็วด้วยความยาวคลื่น ความถี่ (Hz. ต่อวินาที) 300,000,000 ความยาวคลื่น (เมตร) ความถี่ (KHz.) 300,000 ความยาวคลื่น (เมตร) ความถี่ (MHz.) 300 ความยาวคลื่น (เมตร)

4. แถบความถี่ (FREQUENCY BAND)

ชุดวิทยุทางยุทธวิธีส่วนมากมักใช้ปฏิบัติงานในเครือความถี่ (FREQUENCY SPECTRUM) ตั้ง แต่ 1.5 MHz. ถึง 400 MHz. ความถี่วิทยุจะแบ่งออกเป็นกลุ่มหรือแถบความถี่เพื่อสะดวกในการศึกษาและ เป็นหลักฐานอ้างอิง (REFFERENCE) แถบความถี่ของเครือวิทยุได้แสดงตามแผนภาพต่อไปนี้

แถบ	ความถี่
ความถี่ต่ำมาก (VLF)	3 - 30 KHz.
ความถี่ต่ำ (LF)	30 - 300 KHz.
ความถี่ปานกลาง (MF)	300 - 3000 KHz.
ความถี่สูง (HF)	3 - 30 MHz.
ความถี่สูงมาก (VHF)	30 - 300 MHz.
ความถี่สูงอุลตรา (UHF)	300 - 3000 MHz.
ความถี่สูงซุปเปอร์ (SHF)	3 - 30 GHz.
ความถี่สูงสุด (EHF)	30 - 300 GHz.

5. คุณลักษณะของแถบความถี่ (CHARACTERISTIC OF FREQUENCY BAND)

ข้อมูลตามตารางข้างบนนี้ แสดงถึงคุณลักษณะการส่งแถบความถี่แต่ละแถบโดยประมาณใส ภาพการปฏิบัติงานตามปกติ คุณลักษณะที่แน่นอนนั้นขึ้นอยู่กับสภาพของมัชฌิมในการแพร่กระจายคลื่น (PROPAGATION MEDIUM) กำลังออกอากาศเครื่องส่งและปัจจัยอื่นๆอีกหลายอย่าง

	ระยะ				
แถบ	คลื่น	พื้นดิน	คลื่นฟ้า		กำลังที่ต้องการ
	ไมล์	กิโลเมตร	ไมล์	กิโลเมตร	(ก.ว.)
LF	0-1000	0 - 1609	500-8000	ก.835-	เกินกว่า 50
MF	0 - 100	0 - 161	100-1500	12872	ข. 5 - 50
HF	0 - 50	0 - 83	100-8000	161-2415	0.5 - 5
VHF	0 - 30	0 - 48	ก.50-150	161-12872	0.5 หรือน้อยกว่า
UHF	0 - 50	0 - 83	-	ก.835-241	0.5 หรือน้อยกว่า
				-	

- ก. การสะท้อนกระจายชั้นโทโปหรือการสะท้อนกระจายไอโอโนระยะไกลขนาดนี้
- ข. การสะท้อนกระจายชั้นโทโปหรือการสะท้อนกระจายไอโอโนต้องการกำลังขนาดนี้

ตอนที่ 3 วิธีการส่ง (METHODS OF TRANSMISSION)

1. กล่าวทั่วไป

- ก. เครื่องสื่อสารประเภทวิทยุในหน่วยระดับรองๆนั้น ตามปกติใช้ส่งข่าวด้วยคำพูดหรือประมวล เลขสัญญาณ (TELEGRAPHIC CODE)
- ข. ความรู้สึกที่เกิดขึ้นต่อระบบประสาทของมนุษย์ เมื่อเยื่อหูได้รับการสั่นสะเทือนต่อความถี่เสียง (คำพูดหรือประมวลเลขสัญญาณ) เรียกว่าเสียง พลังงานเสียงนี้เคลื่อนที่ไปในอากาศด้วยความเร็วประมาณ 1,100 ฟุตต่อวินาที
- ค. ถึงแม้ว่าเราจะเปลี่ยนเสียงให้เป็นพลังงานไฟฟ้าความถี่เสียง ได้แต่ในทางปฏิบัติไม่อาจส่งผ่าน ไปในบรรยากาศรอบโลกได้ด้วยการแพร่รังสีแม่เหล็กไฟฟ้า ตัวอย่างเช่นส่งเสียงสัญญาณ 20 ไซเคิ้ล ให้ได้ผล ต้องใช้สายอากาศยาวเกือบ 5,000 ไมล์
- ง.ข้อจำกัดข้างบนนี้จะหมดไปได้ถ้าได้ใช้พลังงานไฟฟ้าเป็นถี่วิทยุเป็นพาหะของข่าวคือจะสามารถ
 ครอบคลุมระยะทางได้ไกลมาก สายอากาศที่มีประสิทธิผลสำหรับความถี่นั้นก็มีความยาวที่เหมาะ ในทาง
 การปฏิบัติการสูญเสียกำลังของสายอากาศอยู่ในระดับพอควร ทั้งใช้ได้หลายช่องการสื่อสารซึ่งแต่ละ
 ช่องสัญญาณนำสัญญาณไปได้และมีการเคลื่อนเฟ้นสัญญาณไปด้วย

การปรุงคลื่น (MODULATION)

- ก. เนื่องจากคลื่นพาห์ (ตามรูปที่ 2-11) ไม่สามารพาเอาข่าวไปเองได้ จึงต้องทำให้ข่าวใหม่ของ คลื่นเสียงสัญญาณซ้อนทับไปกับคลื่นพาห์ กรรมวิธีนี้เรียกว่า การปรุงคลื่น ซึ่งได้รับการดัดแปลงและ ปรับปรุงรูปคลื่นพาห์ทางความถี่หรือทางช่วงสูง วิธีการปรุงคลื่นทางความถี่และทางช่วงสูงได้นำมาใช้ใน ระบบการสื่อสารประเภทวิทยุทางทหาร
- ข.เมื่อสัญญาณความถี่เสียงซ้อนทับไปบนความถี่วิทยุซึ่งเป็นพาหะจะทำให้เกิดสัญญาณความถี่วิทยุ ความถี่เพิ่มมากขึ้น ความถี่ที่เพิ่มขึ้นคือ ความถี่ผลบวกและผลต่างของความถี่เสียงกับความถี่วิทยุ ตัวอย่างเช่น สมมุติว่า ความถี่ของคลื่นพาห์เท่ากับ 1000 KHz. ถูกปรับปรุงเข้ากับความถี่ 1 KHz. จะเกิด ความถี่วิทยุเพิ่มขึ้น 2 ความถี่ คือ ความถี่ 1001 KHz. (ผลบวกของ 1000 KHz. กับ 1 KHz.) และความถี่ 999 KHz. (ผลต่างของ 1000 KHz. กับ 1 KHz.) ถ้านำความถี่เสียงเชิงซ้อนมาปรุงคลื่นแทนการใช้เสียง อย่างเดียวจะเกิดความถี่ใหม่ 2 ความถี่ ตามความถี่เสียงแต่ละความถี่ขั้นนั้น ความถี่ที่เกิดขึ้นใหม่ทั้งหมดนี้ เรียกว่า แถบข้าง (SIDE BAND)

2. การปรุงคลื่นทางช่วงสูง (AMPLITUDE MODULATION)

การปรุงคลื่นทางช่วงสูงหมายถึง การแปรเปลี่ยนกำลังออกคลื่นวิทยุของเครื่องส่งไปตามอัตราการ แปรเปลี่ยนของความถี่เสียง (AUDIO RATE) หรืออีกนัยหนึ่งหมายถึงพลังงานความถี่ของวิทยุเพิ่มขึ้น และ ลดลงตามความถี่เสียง กล่าวอย่างง่ายๆ การปรุงคลื่นทางช่วงสูงก็คือกรรมวิธีในการแปรเปลี่ยนกำลังออก ของเครื่องส่ง (รูปที่ 2-11)

- ก. เมื่อความถี่วิทยุที่เป็นพาหะถูกปรุงคลื่นเข้ากับเสียงเดี่ยวจะเกิดความถี่เพิ่มขึ้น 2 ความถี่ คือความถี่ สูงกว่า (UPPER FREQ.) อันเกิดจากผลบวกของความถี่คลื่นพาห์กับเสียง และความถี่ต่ำกว่า (LOWER FREQ.) ซึ่งเกิดจากผลต่างความถี่ของคลื่นพาห์กับเสียง ความถี่สูงกว่าความถี่คลื่นพาห์ คือความถี่ข้างสูง (UPPER SIDE FREQ.) และความถี่ต่ำกว่าความถี่คลื่นพาห์ คือ ความถี่ข้างต่ำ (LOWER SIDE FREQ.)
- ข. เมื่อสัญญาณซึ่งจะนำไปปรุงคลื่น (MODULATION SIGNAL) เป็นเสียงเชิงซ้อนคำพูด ส่วนประกอบของความถี่แต่ละความถี่ของสัญญาณปรุงคลื่นทำให้เกิดเป็นความถี่ข้างสูง (UPPER SIDE FREQ.) และความถี่ข้างต่ำ (LOWER SIDE FREQ.) ขึ้น ความถี่ข้างเหล่านี้คงอยู่ในแถบของความถี่แถบ หนึ่งซึ่งเรียกว่า แถบข้าง (SIDE BAND) แถบข้างซึ่งประกอบด้วยผลบวกของความถี่คลื่นพาห์กับความถี่ ปรุงคลื่นเรียกว่า แถบข้างสูง (UPPER SIDE BAND) และแถบข้างที่ประกอบด้วยผลต่างของความถี่ คลื่นพาห์กับความถี่ปรุงคลื่นเรียกว่า แถบข้างต่ำ (LOWER SIDE BAND)
- ค. ช่วงความถี่ซึ่งมีคลื่นพาห์และแถบข้างอยู่ด้วยนั้นเรียกว่าช่องการสื่อสาร (CHANNEL) ในการ ปรุงคลื่นทางช่วงสูง , ความกว้างของช่องการสื่อสาร ความกว้างแถบ (BANDWIDT) มีค่าเป็นสองเท่าของ ค่าสูงสุดของความถี่ปรุงคลื่น เช่น ถ้าปรุงคลื่นพาห์ 5,000 KHz. เข้ากับแถบความถี่มีความกว้างตั้งแต่ 200 ถึง 5,000 Hz. (0.2 ถึง 5 KHz.) จะได้แถบข้างสูงมีค่าตั้งแต่ 5,002 ถึง 5,005 KHz. และแถบความถี่ข้าง ต่ำมีค่าตั้งแต่ 4,999.8 ถึง 4,995 KHz. ฉะนั้นความกว้างแถบก็มีค่าเท่ากับ 10 KHz. ซึ่งเท่ากับสองเท่าของ ความถี่ปรุงคลื่นสูงสุด (5 KHz.)

ง.ข่าวที่ร่วมอยู่ในสัญญาณปรุงคลื่นทางช่วงสูงจะอยู่ที่แถบข้างทั้งสองแถบช่วงสูงของสัญญาณ และ เปลี่ยนแปลงไปตามความแรงของสัญญาณปรุงคลื่น

จ.การปรุงคลื่นทางช่วงสูงตามปกติใช้ในเครื่องส่งวิทยุโทรศัพท์ซึ่งใช้ความถี่ปานกลางและความถี่สูง ภายในเครือความถี่

3. การปรุงคลื่นความถี่ (FREQUENCY MODULATION)

การปรุงคลื่นทางความถี่คือการเปลี่ยนแปลงความถี่ (รูปที่ 2-11) ของคลื่นพาห์

ก.ในการปรุงคลื่นทางความถี่นั้น ความถี่คลื่นพาห์จะเปลี่ยนแปลงความถี่เดิมไปชั่วขณะโดยเป็น ปฏิภาคกับช่วงสูงของสัญญาณซึ่งจะนำมาปรุงคลื่น (MODILATION SIGNAL) ในขณะที่สัญญาณซึ่งจะ นำมาปรุงคลื่นสูงขึ้น , ความถี่เปลี่ยนไปชั่วขณะจะสูงขึ้นและขณะที่สัญญาณซึ่งจะนำมาปรุงคลื่นต่ำลง ความถี่ที่เกิดขึ้นก็จะต่ำลงด้วย

ข. คลื่นวิทยุ FM นั้น ช่วงสูงของสัญญาณซึ่งนำมาปรุงคลื่นเป็นตัวกำหนดว่าความถี่ชั่วขณะนั้น เปลี่ยนแปลงไปจากจุดศูนย์กลางหรือความถี่เดิมมากเพียงใดดังนั้นจะต้องการให้ความถี่ชั่วขณะเบี่ยงเบนไป จากความถี่คลื่นพาห์มากเพียงใดก็ได้โดยการเปลี่ยนช่วงสูงสัญญาณที่จะนำมาปรุงคลื่น ความถี่เบี่ยงเบน (DEVIATION FREQ.) ไปนั้นอาจมีค่าสูงเป็นร้อยๆ KHz. โดยที่ความถี่ปรุงคลื่นมีค่าเพียง 2 - 3 KHz. ก็ได้ คู่ แถบข้างที่เกิดขึ้นจากการปรุงคลื่นทางความถี่มีได้ไม่จำกัด ต่างกับการปรุงคลื่นทางช่วงสูงมีค่าเท่ากับ ผลบวกและผลต่างของความถี่สูงสุดซึ่งจะนำมาปรุงคลื่นกับความถี่คลื่นพาห์เท่านั้น

ค.แถบข้างคู่แรกเกิดจากผลบวกและผลต่างของคลื่นพาห์กับความถี่ ซึ่งนำมาปรุงคลื่นคู่ต่อๆไปเกิด จากผลบวกและผลลบของคลื่นพาห์กับความถี่ซึ่งนำมาปรุงคลื่นทบทวี (MULTIPLE OF MODULATING FREQ.) ตัวอย่างเช่น ความถี่คลื่นพาห์ 1 MHz. ปรุงคลื่นกับความถี่เสียง 10 KHz. จะได้คู่ของแถบข้างซึ่งมี ความกว้างเท่ากันหลายคู่ 990 KHz. กับ 1010 KHz. 980 KHZ. กับ 1020 KHz. 970 KHz. กับ 1030 KHz. และต่อไปเรื่อยๆ ด้วยเหตุนี้การปรุงคลื่นทางความถี่จึงคลุมความกว้างของแถบมากกว่าการปรุงคลื่น ทางช่วงสูง

- ง.จากการแสดงข้างบนนี้แสดงว่าคลื่น FM นั้นประกอบด้วยความถี่กึ่งกลางหรือคลื่นพาห์และแถบ ข้างทั้งสองข้างซึ่งเป็นคู่ๆ อีกจำนวนหนึ่งขณะที่มีการปรุงคลื่นเมื่อช่วงสูงของสัญญาณที่ จะนำมาปรุงคลื่น สูงขึ้นกำลังจากความถี่กึ่งกลาง(CENTER FREQ.)จะถูกดึงมาเพิ่มเข้าไปยังแถบทางข้างทั้งสองมากขึ้น
- จ. สัญญาณ FM ที่ออกจากสายอากาศส่งจะมีช่วงสูงคงที่แต่ความถี่เปลี่ยนแปลงไปตามสัญญาณที่ นำมาปรุงคลื่น ในขณะที่สัญญาณเคลื่อนที่ไประหว่างสายอากาศส่งและสายอากาศรับ จะรับเอาเสียง รบกวนจากธรรมชาติและจากมนุษย์ทำขึ้นเข้าไว้ด้วยและทำให้ช่วงสูงของสัญญาณเปลี่ยนแปลงไป ช่วงสูงของสัญญาณที่เปลี่ยนแปลงไปอย่างไม่พึงปรารถนานี้จะถูกขยายให้สูงขึ้นอีกเมื่อผ่านไปยังภาคต่างๆ ของ เครื่องรับจนถึงภาคเครื่องกำจัดคลื่น (LIMITER STAGE)

รูปที่ 2-11 รูปคลื่น

ฉ.เครื่องกำจัดคลื่นจะตัดความถี่สูงของสัญญาณที่เปลี่ยนแปลงไปจากเดิมออกและส่งสัญญาณ FM เข้าไปยังเครื่องจำแนกคลื่นซึ่งภาคนี้มีความไวต่อการเปลี่ยนแปลงของคลื่นความถี่วิทยุ สัญญาณปรุงคลื่นซึ่ง มีช่วงสูงคงที่นี้ผ่านกรรมวิธีของวงจรจำแนกคลื่นวงจรที่เปลี่ยนสัญญาณที่มีความถี่เปลี่ยนแปลงให้เป็นเครื่อง สัญญาณเสียงที่มีช่วงสูงของศักย์ไฟฟ้าเปลี่ยนแปลง เช่น หูฟัง ลำโพง และ โทรพิมพ์

ช. ตามปกติแล้วการปรุงคลื่นทางความถี่ FM มักใช้ในเครื่องส่งวิทยุโทรศัพท์โดยทำงานอยู่ในแถบ ความถี่สูงมากและแถบความถี่สูงกว่าขึ้นไป (HIGHER FREQ. BANDS)

แถบข้างเดี่ยว

ก.สัญญาณแถบข้างเดี่ยว (SSB) จะมีแถบข้างเพียงหนึ่งในสองของแถบความถี่ของสัญญาณที่ปรุง คลื่นทางช่วงสูง ตามรูปที่ 2-12 แสดงถึงทฤษฎีการแจกแจงกำลัง (THEORETICAL DISTRIBUTION OF POWER) ในสัญญาณ AM ตามรูปที่ 2-13 แสดงถึงเครื่องส่งแถบข้างเดียวที่มีกำลังเท่าเดิมแต่สามารถกรอง แถบความถี่เพียงข้างเดียวกำจัดคลื่นพาห์ (SUPPRESS CARRIER) และนำกำลังของแถบข้างที่ถูกกรองกับ กำลัง ของคลื่นพาห์ที่กำจัดออกไปนั้นมาเพิ่มกำลังส่งให้กับแถบข้างที่เหลืออยู่

รูปที่ 2-12 การกระจายกำลังในสัญญาณที่ปรุงคลื่นทางช่วงสูง

รูปที่ 2-13 การส่งแบบแถบข้างเดี่ยว

ข. เนื่องจากสัญญาณ SSB นั้นผลิตขึ้นโดยการผสมความถี่ จึงทำให้เกิดผลบวกและผลต่างขึ้น ทั้ง แถบความถี่ข้างสูงและข้างต่ำประกอบด้วย ข่าวที่ได้นำมาปรุงคลื่นเหมือนกัน การเลือกส่งแถบข้างใดขึ้นอยู่ กับลักษณะของเครื่องกรองแถบข้างเดี่ยวที่นำมาใช้ ดังนั้นการส่งแถบข้างเดี่ยวจึงกินที่ของเครือความถี่น้อย กว่าการปรุงคลื่น AM

4. วิทยุโทรเลข

ก.ข่าววิทยุโทรเลขสามารถส่งไปได้ด้วยการปรุงคลื่นพาห์และหยุดส่งด้วยไกไฟฟ้าหรือคันเคาะ ตัวเลขและตัวอักษรแต่ละตัวในวงถูกกำหนดขึ้นโดยการประกอบห้วงไฟฟ้า (PULSE) สั้นและยาวเป็นหมู่ๆ ตามประมวลเลขสัญญาณ ตัวอย่าง เช่น พนักงานวิทยุต้องการส่งตัวอักษร A ในรูปประมวลเลขสัญญาณก็ จะกดคันเคาะใช้เวลาเพียงเศษส่วนของวินาทีและปล่อยคันเคาะในห้วงเวลาเท่าเดิมแล้ว จึงกดคันเคาะอีก

ห้วงในเวลานานเป็น 3 เท่า ของการกดครั้งแรก วิธีการส่งข่าวเช่นนี้เรียกว่า การส่งวิทยุโทรเลขหรือคลื่น เสมอ (CW) ซึ่งได้แสดงรูปของคลื่น (WAVE FORM)ไว้ในรูปที่ 2-14

- ข. ข่าววิทยุโทรเลขอาจส่งไปได้ด้วยคลื่นปรุงเสียง (TONE MODULATED WAVE) ในการส่งวิทยุ ด้วยคลื่นปรุงเสียงนั้นคลื่นพาห์จะถูกปรุงเสียงที่ความถี่คงที่ซึ่งมีความถี่ระหว่าง 500 ถึง 1000 Hz. ต่อวินาที เนื่องจากการปล่อยคลื่นปรุงเสียง (TONE EMISSION) นั้น ได้ย่านกว้างจึงอาจใช้ต่อต้านการก่อกวน (ทางอิเล็กทรอนิกส์) บางแบบได้ แต่เนื่องจากสัญญาณมีย่านกว้าง จึงทำให้วิทยุหาทิศ
- (RADIO DIRECTION FINDER) หาเป้าหมายง่าย เครื่องส่งที่ปรุงคลื่นรัศมีการทำงานน้อยกว่าเครื่องส่ง คลื่นเสมอ (CW) ในเมื่อมีกำลังออกเท่ากัน
- ค. การส่งวิทยุโทรเลขด้วยมือนั้นจำกัดด้วยความสามารถในการใช้มือรับ ส่งข่าว ตามปกติแล้ว
 ใช้ในหน่วยระดับต่ำของกองทัพบกซึ่งมีปริมาณข่าวจำนวนน้อย การส่งวิทยุโทรเลขอาจใช้สำหรับสถานี ตำบลที่ตั้ง ซึ่งอยู่โดดเดี่ยวหรืออยู่ห่างไกลได้ ถ้ามัชฌิมอื่นไม่มี
- 1. การสื่อสารด้วยวิทยุโทรเลขสามารถใช้ได้เสมอๆ ในขณะที่การสื่อสารด้วยแบบอื่นๆ ใช้ไม่ได้ผลเนื่องจากสภาพบรรยากาศหรือการรบกวน
- 2. เครื่องส่งวิทยุโทรเลขมีรัศมีการทำการไกลกว่าเครื่องส่งวิทยุโทรศัพท์ ในเมื่อมีกำลังออกอากาศ เท่ากัน ทั้งนี้เพราะกำลังออกอากาศของสัญญาณแรงขึ้นเมื่อความกว้างแถบน้อยลง
- 3. ในแถบความถี่ที่กำหนดมาให้นั้น สามารถส่งวิทยุโทรเลขได้มากกว่าสถานีวิทยุโทรศัพท์โดยไม่รบกวนซึ่งกันและกัน

รูปที่ 2-14 สัญญาณวิทยุโทรเลข

5. วิทยุโทรศัพท์

ก.ปากพูดของวิทยุโทรศัพท์จะเปลี่ยนแปลงเสียงหรือคลื่นเสียงให้เป็นห้วงคลื่นไฟฟ้าเบาๆ ห้วง
คลื่นไฟฟ้าเหล่านี้จะถูกทำให้แรงขึ้น โดยผ่านเครื่องขยายความถี่เสียงติดต่อกันหลายๆภาคแล้ว ผ่านเข้าไป
ในเครื่องปรุงคลื่น เครื่องปรุงคลื่นจะปล่อยให้กำลังงานคลื่นเสียงเท่าที่จำเป็นปรุงเข้ากับคลื่นวิทยุใน
วงจรขยายความถี่วิทยุ ที่เครื่องรับวิทยุความถี่วิทยุที่ปรุงคลื่นแล้วจะถูกแยกคลื่น โดยยอมให้ แต่เฉพาะ
องค์ประกอบความถี่เสียงของสัญญาณที่เข้ามาเท่านั้นที่จะเกิดเป็นเสียงขึ้นในลำโพงหรือชุดสวมศีรษะ

ข.วิทยุโทรศัพท์ใช้ในการสื่อสารอย่างกว้างขวางในหน่วยรบที่เคลื่อนที่ด้วยความเร็วสูงซึ่ง จำเป็นต้องส่งข่าวด้วยความเร็ววิทยุโทรศัพท์ในการติดต่อระหว่างบุคคลเมื่อไม่มีข้อจำกัดเกี่ยวกับการรักษา ความปลอดภัยในการสื่อสาร

รูปที่ 2-15 ตัวอย่างคลื่นเสียง

6. วิทยุโทรพิมพ์

ก.การส่งวิทยุโทรพิมพ์นั้นกระทำได้ในระยะทางไกลๆจนถึงนับพันไมล์,มักใช้ในหน่วยระดับสูงๆ ซึ่ง มีการเปลี่ยนแปลงสถานการณ์ทางยุทธวิธีอย่างรวดเร็วโดยที่เวลาในการติดตั้งเครื่องสื่อสารประเภทสายไม่ อำนวยให้และในพื้นที่ซึ่งมีปริมาณข่าวสารมากและวงจรวิทยุก็มีความเชื่อถือได้วิทยุโทรพิมพ์ที่ใช้ได้ ประโยชน์อย่างมากในที่ซึ่งไม่สามารถวางสายได้ง่ายๆเช่นพื้นที่ที่ถูกแบ่งแยกด้วยพื้นน้ำกว้างใหญ่หรือป่าทึบ

- ข. เครื่องส่งวิทยุโทรพิมพ์ประกอบด้วยแป้นอักษรที่ใช้ส่ง (TRANSMITTING KEYBOARD) และ กลไกที่ใช้รับและพิมพ์ (RECEIVING AND PRINTING MACHANISM) เมื่อทำการกดแป้นตัวอักษร KEY จะเป็นการปลดกลไกส่ง โดยส่งห้วงคลื่นไฟฟ้าติดต่อกัน (A SERIES OF ELECTRICAL IMPULSES) เข้า ไปในช่องสื่อสารทางวิทยุ ไปยังเครื่องรับเครื่องรับจะเปลี่ยนห้วงไฟฟ้าให้เป็นการทำงานทางกลไก เครื่องพิมพ์ (PRINTE) จะเลือกและพิมพ์เฉพาะตัวอักษรตามห้วงคลื่นไฟฟ้าที่รับมาเท่านั้น แป้นอักษรแต่ ละตัวจะลงเฉพาะห้วงไฟฟ้าซึ่งกำหนดไว้ต่างๆ กัน (รูปที่ 2-15) ข่าวอาจพิมพ์บนหน้ากระดาษ (PAGE FORM) หรือบนแถบ (TAPE) ก็ได้ แป้นตัวอักษรจะประกอบด้วยตัวอักษรพยัญชนะและเครื่องหมาย วรรคตอน (รูปที่ 2-16) กลไกต่างๆจะทำให้เกิดการทำงานต่างๆ คือ กลับแคร่ (CARRIAGE RETURN) เลื่อนบรรทัด (LINE SHIFT) เลื่อนอักษร (LETTER SHIFT) เลื่อนตัวเลข (FIGURE SHIFT) และ เว้น วรรค (SPACE)
- ค. ประมวลสัญญาณพิเศษ (SPECIAL SIGNALING CODE) ที่ใช้ในการส่งโทรพิมพ์นั้น ตัว อักษรหรือสัญญาณแต่ละตัวนั้นจะมีระยะเวลาสม่ำเสมอกัน (UNIFORM LENGTH) และมี 5 ห้วงเวลา (ENTERVALS OF TIME) หน่วยของสัญญาณแต่ละหน่วยจะมีความยาวเท่ากันมีชื่อเรียกว่าห้วงหมาย (ไฟฟ้า) (MARKING IMPULSE) หรือ ห้วงว่าง(ไฟฟ้า) (SPACING IMPULSE) ในวงจรห้วงหมาย(ไฟฟ้า) จะปรากฏในขณะที่มีกระแสไหลในวงจรและแม่เหล็กเลือกอักษร (SELECTOR MAGNETS) ซึ่งอยู่ใน เครื่องพิมพ์ของเครื่องรับจะทำงาน ห้วงว่าง(ไฟฟ้า) ปรากฏเมื่อวงจรอยู่ในสภาพวงจรเปิดซึ่งแม่เหล็กเลือกอักษรในเครื่องพิมพ์ของเครื่องรับจะไม่ทำงาน การเอาห้วงหมายและห้วงว่างมารวมกันโดยไม่มีแบบ ต่างๆกันนั้นทำให้เกิดเป็นตัวอักษร , ตัวเลข การทำงานตามหน้าที่ (FUNCTIONS) ต่างกัน

ง. สัญญาณโทรพิมพ์ซึ่งใช้กันโดยทั่วๆ ไป นั้นทำได้โดยการตัดต่อ KEY เครื่องส่งวิทยุให้แพร่รังสี ณ ความถี่หนึ่งในขณะที่เป็นห้วงหมาย และในขณะที่เป็นห้วงว่างความถี่จะเปลี่ยนแปลงไปจากเดิมเล็กน้อย การทำงานเช่นนี้ใช้การปรุงคลื่นทางความถี่เรียกว่า การตัดเลื่อนความถี่ (FREQ. SHIFT KEYING (FSK))(M ลด) เครื่องรับวิทยุจะเปลี่ยนความถี่ทั้งสองซึ่งอยู่ห่างกัน 850 Hz. กลับเข้าเป็นห้วงไฟฟ้าของ โทรพิมพ์และห้วงไฟฟ้าเหล่านี้จะทำให้เครื่องรับโทรพิมพ์ ทำงาน การกดแป้นอักษรทางเครื่องส่งโทรพิมพ์ จะทำให้ทางเครื่องรับตีพิมพ์อักษรตัวที่ตรงกันด้วย

Figure 2-21. Teletypewriter code character set and standard start-stop, five-unit code chart.

NOTE: The letters on the perforated tape will appear 6 characters in front of the actual perforations on the tape. This is necessary for alignment of the tape in the tape distributor.

<u>บทที่3</u> แหล่งกำลังไฟฟ้า

1.กล่าวทั่วไป

กำลังไฟฟ้าที่ต้องการใช้งานในเครื่องวิทยุ อาจได้มาจากแหล่งต่างๆ กัน เช่น จากกำลังไฟฟ้า พาณิชย์ (COMMERCIAL POWER) หม้อไฟฟ้าประเภทที่ 1 หม้อไฟฟ้าประเภทที่2 เครื่องกำเนิดไฟฟ้าขับ ด้วยเครื่องยนต์ (ENGINE DRIVEN GENERATOR) และเครื่องเรียงกระแส (RECTIFIER) แหล่งกำลังไฟ แต่ละแบบมีทั้งข้อดีและข้อจำกัดโดยเฉพาะของมัน แหล่งไฟฟ้าดังที่กล่าวมาแล้วอาจนำมาจำแนกใช้งานแต่ ลำพังหรือนำมาใช้งานร่วมกันได้ ทั้งนี้ขึ้นอยู่กับงานที่ทำ

2. แหล่งกำลังไฟฟ้าพาณิชย์

ไฟฟ้ากระแสสลับและกระแสตรงที่มีศักย์ค่าต่างๆกัน อาจได้จากแหล่งกำลังไฟฟ้าพาณิชย์และใช้ เป็นแหล่งกำลังไฟฟ้าหลัก แหล่งกำลังไฟฟ้ากระแสสลับค่ามาตรฐาน 220 โวลต์ ซึ่งมีความมุ่งหมายใช้งาน ทางด้านอุตสาหกรรม แหล่งไฟฟ้ากระแสตรงนั้นมีศักย์ตั้งแต่ 12 - 24 โวลต์ แหล่งจ่ายกำลังไฟฟ้าของ เครื่องวิทยุ (POWER SUPPLY) ที่ได้รับการออกแบบให้ใช้กับไฟฟ้ากระแสสลับต้องไม่นำเข้าไปต่อเข้ากับ แหล่งไฟฟ้ากระแสตรง มิฉะนั้นจะทำให้หม้อแปลงกำลังไฟฟ้า (POWER TRANSFORMER) ชำรุด ใน ทำนองเดียวกันเครื่องมือที่ออกแบบสำหรับใช้กับแหล่งกำเนิดไฟฟ้ากระแสตรงโดยเฉพาะก็ต้องไม่นำไปใช้ กำลังไฟฟ้ากระแสสลับด้วย

3.เครื่องเปลี่ยนไฟฟ้า-อิเล็กทรอนิกส์ (Electronic Converter)

เป็นเครื่องมือที่ใช้เปลี่ยนไฟฟ้า AC ให้เป็น DC, ไฟฟ้ากระแสตรง (DC) ให้เป็นไฟฟ้ากระแสตรง (DC TO DC) หรือไฟฟ้ากระแสตรง (DC) ให้เป็นไฟฟ้ากระแสสลับ (AC) (DC-TO-AC) ไม่มี ส่วนประกอบของอุปกรณ์ที่มีการเคลื่อนที่ เนื่องจากเอาอุปกรณ์อิเล็กทรอนิกส์แทน เช่น ทรานซิสเตอร์ , ไดโอด, หลอดสุญญากาศ เป็นต้น

เครื่องมือนี้ทำหน้าที่เปลี่ยนไฟฟ้า AC หรือ DC ให้เป็น DC โดยทั่วไปนิยมเรียกว่า DC POWER SUPPLY (แหล่งจ่ายไฟฟ้ากระแสตรง) ส่วนเครื่องมือนี้ทำหน้าที่เปลี่ยนจากไฟฟ้า DC ให้เป็น AC เรียกว่า INVERTERTRANSFOR มีแล้ว

หม้อไฟฟ้า (BATTERRY)

แบตเตอรี่ในความหมายทางไฟฟ้าก็คือนำเอาเซลล์ (CELL) มาต่อกัน เซลล์ทั้ง 4 ขนาดที่เราเห็นกันทั่วไป คือ Size AAA, Size AA, Size C, Size D

รูปที่ 1 แสดงถึงเซลขนาด AAA ซึ่งมีความสูงประมาณ 44.5 มม. และมีเส้นผ่านศูนย์กลาง 10.5 มม. รูปที่ 2 เป็นเซลขนาด AA มีความสูงประมาณ 50 มม. และมีเส้นผ่านศูนย์กลาง 14 มม.และเป็นเซลที่นิยม ใช้กันมากในกระบอกไฟฉาย วิทยุ และ พวกซาวน์อะเบ๊าท์

รูปที่ 3 แสดงถึงเซลขนาด C ซึ่งมีความสูงประมาณ 49 มม. และมีเส้นผ่านศูนย์กลาง 25 มม. รูปที่ 4 แสดงถึงเซลขนาด D ซึ่งมีความสูงประมาณ 60 มม. และมีเส้นผ่านศูนย์กลาง 33.2 มม.ซึ่งเป็นที่ นิยมใช้กันมากที่สุดในวิทยุกระเป๋าหิ้ว

รูปที่ 5 แสดงถึงแบตเตอรี่ขนาด PP-3 หรือแบตเตอรี่ 9 โวลท์ ซึ่งเป็นที่รู้จักกันดี เพราะว่าใช้ในพวกเครื่อง ์ เล่นต่างๆขนาด PP-3 นั้นจัดว่าเป็นแบตเตอรื่อย่างแท้จริง ซึ่งประกอบด้วยเซลมาต่อกันเป็นชุด ซึ่งต่างกับ 4 ขนาดแรกที่กล่าวมา

รูป 3 - 1 แสดงแบบต่างๆ ของแบตเตอรี่ชนิดต่างๆที่ใช้งานในปัจจุบัน

เซลล์แบบอนุกรม

แบตเตอรื่ขนาดหนึ่งที่นิยมใช้กันมาก คือ แบตเตอรื่ขนาด DD-3 แสดงดังรูปที่ ?? เรารู้จักกันใน นาม ถ่าน 9 โวลท์ ซึ่งประกอบด้วยเซลล์ขนาดเล็ก 6 เซลล์ต่ออนุกรมกัน (1.5 V imes 6) บรรจุอยู่ในตัวถัง มี แรงดัน 9 โวลท์ ยังมีแบตเตอรี่ชนิดอื่นอีก ซึ่งมีโครงสร้างเชนเดียวกัน เช่น DD-1, DD-6, DD-9 เป็นต้น

หม้อไฟฟ้าประกอบด้วย CELL BATTERRY 2 แบบด้วยกัน คือ

- 1. เซลล์แบบปฐมภูมิ (PRIMARY CELL)
- 2. เซลล์แบบทุติยภูมิ (SECONDARY CELL)

1. เซลล์แบบปฐมภูมิ (PRIMARY CELL)

เซลล์ชนิดนี้เมื่อสร้างเสร็จแล้ว ก็นำไปใช้เพื่อจ่ายกระแสไฟฟ้าออกมาทันที เมื่อใช้ไปแล้ว ส่วนประกอบบางส่วนจะหมดเปลืองไปโดยไม่กลับมาเป็นสภาพเดิมได้อีก หลังจากที่ใช้ไปชั่วระยะหนึ่งแล้ว ์ต้องเปลี่ยนส่วนประกอบใหม่จึงจะใช้ได้ดีดังเดิม เพราะไม่สามารถประจุไฟเข้าไปใหม่ได้

หลักการทำงานของเซลล์ไฟฟ้า

เซลล์ไฟฟ้าสร้างขึ้นได้โดยการนำแท่งตัวนำหรือเรียกว่า อิเลคโทรด (ELECTRODE) 2 แท่งมาจุ่มลง ไปในสารละลายที่เรียกว่า อิเลคทรอไลท์ (ELECTROLYTE) ดังแสดงในรูป

รูปที่ 3 – 2 แสดงการสร้างของเซลล์ไฟฟ้า

แท่งอิเลคโทรดหนึ่ง เรียกว่า อาโนด (ANODE) ส่วนใหญ่จะเป็นโลหะ อีกแท่งหนึ่งเรียกว่า คาโถด (CATHODE) ส่วนใหญ่จะทำมาจากออกไซด์ของโลหะ (OXIDE) (เกิดจากการรวมตัวระหว่างอะตอมของ โลหะกับออกซิเจน) ส่วนอิเลคทรอไลท์ทำจากสารต่างๆ ได้หลายชนิด ซึ่งจะเลือกใช้ให้เหมาะกับอิเลคโทรด แต่ละชนิดเท่านั้น โดยมีเซลล์ต่างชนิดกัน จะใช้อิเลคโทรดต่างกัน ทำให้อิเลคทรอไลท์ต่างกันด้วย

อิเลคทรอไลท์ยอมให้การแลกเปลี่ยนของออกซิเจนระหว่าง ANODE กับ CATHODE (K) เกิดขึ้น โลหะที่ใช้เป็นอาโนดมีความสามารถในการรวมตัวกับออกซิเจนได้ดีกว่าโลหะที่ใช้เป็นคาโถด อาโนดจึงดึง เอาออกซิเจนออกจาก OXIDE ของโลหะ ซึ่งเป็นคาโถด และทิ้งแท่งคาโถดไว้เป็นโลหะ ในกรณีนี้เรา เรียกว่า อาโนดถูกออกซิไดซ์ (OXIDIZED) ส่วนคาโถดนั้นจะถูกรีดิวซ์ (REDUCED)

ยัง ไม่เกิดในกรณีที่สารอิเลคทรอไลท์จะเป็นตัวนำ อนุภาคของออกซิเจน (ซึ่งมีประจุลบ) ซึ่งเกิดขึ้นนี้คาโถดเคลื่อนที่ข้ามไปสู่อาโนด

1.1 เซลล์แบบกระดุม (BUTTON CELL)

เป็นเซลล์แบบขนาดเล็ก น้ำหนักเบา ใช้กับเครื่องมือสื่อสารขนาดเล็ก และต้องการพลังงานไฟฟ้า น้อย มีรูปแบบและชนิดมากมาย เช่น

1.1.1 เซลล์แบบปรอท (MERCURY CELL)

รูปที่ 3 – 4 แสดงถึงโครงสร้างของเซลปรอทแบบกระดุม

อิเลคทรอไลท์มีส่วนผสมของโปตัสเซียมไฮดรอทไซด์ ที่มีน้ำเป็นส่วนผสม ผิวหน้าด้านบนภายใน เซลล์เป็นทองแดง ซึ่งเหมาะสมที่จะทำปฏิกิริยาไฟฟ้า-เคมี กับสังกะสี ซึ่งจะลดการสึกกร่อนสิ้นเปลืองให้ เหลือน้อยที่สุด ตัวเซลล์ภายนอกทำมาจากเหล็กชุบนิเกิล ซึ่งจะต้านทานต่อการกัดกร่อนของอิเลคทรอไลท์ ได้อย่างดี

คาโถดทำมากจาก OXIDE ของปรอท ซึ่งมีความจุของออกซิเจนสูง อัตราส่วนระหว่างพลังงานต่อ น้ำหนักและปริมาตรสูง แรงดันเซลล์ปกติจะเท่ากับ 1.35 V.

1.1.2 เซลล์แบบซิลเวอร์ออกไซด์ (SILVER OXIDE CELL)

เป็นเซลล์กระดุมชนิดหนึ่งที่คาโถดทำมาจากออกไซด์ของเงิน ซึ่งโครงสร้างของเซลล์ชนิดนี้จะ เหมือนกับแบบ MERCURY CELL แต่สามารถจ่ายแรงดันออกมาได้สูงกว่า เป็น 1.55 V. ความต้านทาน ภายในเซลล์ต่ำ จึงเหมาะกับการใช้งานที่กระแสสูงๆ เช่นอุปกรณ์ที่แสดงผลเป็น LED เป็นต้น

1.1.3 เซลล์แบบสังกะสี-อากาศ (ZINC-AIR CELL)

เซลล์แบบสังกะสี-อากาศมีโครงสร้างและรูปร่างคล้ายกับเซลล์แบบซิลเวอร์ออกไซด์และแบบปรอท ต่างกันก็เพียงแต่มีรูให้อากาศเข้ามาด้านล่าง ออกซิเจนจากอากาศรอบๆ เซลล์จะใช้ในการออกซิไดซ์ ผง สังกะสีผสมกับอัลคาไลน์อิเลคทรอไลท์ซึ่งเป็นอาโนดโดยผ่านเยื่อสังเคราะห์ เนื่องจากอนุภาคของออกซิเจน ถูกนำมาจากอากาศไม่ได้มาจากคาโถดจะทำให้เหลือเนื้อที่ภายในเซลล์มากขึ้นในการบรรจุอาโนด ดังนั้น เซลล์ชนิดนี้จึงมีค่าความจุไฟฟ้าสูงกว่า MERCURY และ SILVER OXIDE ถึง 2 เท่าตัว แต่มีค่าแรงดันปกติ เท่ากับ 1.45 โวลท์

เซลล์แบบสังกะสี-อากาศจะมีอายุในการเก็บรักษานานเป็นพิเศษ ถ้ามันถูกผนึกก่อนการขนส่ง ซึ่ง ตัวผนึกจะป้องกันอากาศเข้าทำปฏิกิริยากับภายในเซลล์ เมื่อแกะตัวผนึกออกก็พร้อมที่จะใช้งานได้ทันที

1.1.4 เซลล์แบบลิเซียม (LITHIUM CELL)

มีลักษณะคล้ายกับเซลล์กระดุมแบบอื่นๆ เพียงแต่อาโนดเป็นลิเธียม และคาโถดเป็นแมงกานีสได ออกไซด์ ลิเธียมเป็นสารที่มีปฏิกิริยาเร็วมาก แต่เป็นสารที่ต้องระมัดระวังในการจับถือและประดิษฐ์ให้เป็น รูปร่างต่างๆ ต้องทำในที่ปราศจากอกาศและสภาพแวดล้อมที่ไม่มีความชื้น

จากปฏิกิริยานี้เร็วมากจึงทำให้เซลล์แบบลิเธียมมีค่าแรงดันสูงกว่าเซลล์ทั่วๆ ไป คือสูงถึง 3.6 โวลท์ เซลล์แบบลิเธียมใช้อิเลคทรอไลท์ได้หลายแบบ เช่น

> -แบบของแข็ง ค.ต.ท.ภายในสูง จ่ายแรงดัน 1.9 โวลท์ -แบบซัลเฟอร์ไดออกไซด์ (ของเหลว) จ่ายแรงดัน 3 โวลท์ -แบบไซโอนิลคอลไรด์ (ของเหลว) จ่ายแรงดัน 3.6 โวลท์

รูปที่ 3 - 5 โครงสร้างของเซลกระดุมแบบลิเธียม

1.2 เซลล์แบบสังกะสี-ถ่าน (ZINC-CARBON CELL)-(DRY-CELL) เซลล์แบบสังกะสี-ถ่านทำมาจากเซลล์แบบเลอคลังเช่ ซึ่งรู้จักกันในนามของเซลล์แบบเปียก (WET CELL) เนื่องจากลักษณะของส่วนผสมของอิเลคทรอไลท์

ตัวถังภายนอกของเซลล์แห้ง ทำจาสังกะสีทำหน้าที่เป็นอาโนด ภายในตัวถังสังกะสีจะเป็นชิ้นบางๆ ซึ่งแยกอาโนดออกจากคาโถด และบรรจุไว้ด้วยอิเลคทรอไลท์ซึ่งเป็นส่วนผสมของแอมโมเนียมคลอไรด์+ ซีลด์คลอไรด์ ซึ่งมีฤทธิ์เป็นกรดอ่อนๆ คาโถดประกอบด้วยผงแมงกานีสไดอกไซด์+ผงถ่าน+อิเลคทรอไลท์ ทำให้มีลักษณะเหลวๆ และภายในจะสอดแท่งถ่านไว้ทำหน้าที่สะสมกระแส

รูปที่ 3 – 6 แสดงโครงสร้างของเซลแบบเลอคังเช่ (Lenchanche cell)

1.3 เซลล์แบบอัลคาไลน์แมงกานิส (ALKALINE MANGANESE CELL)

เซลล์แบบอัคาไลน์แมงกานิส สารที่ใช้ทำอาโนดและคาโดด ใช้สังกะสีและแมงกานิสไดออกไซด์ เช่นเดียวกับเซลล์แบบสังกะสี-ถ่าน (Zine-Carbon) โดยที่อาโนดนั้นประกอบด้วยผงสังกะสีซึ่งทำให้เพิ่ม พื้นที่ผิวขึ้น จะผสมกับอิเลคทรอไลท์รวมกันอยู่ในลักษณะเหลว ๆ

แมงกานิสไดออกไซด์ซึ่งทำหน้าที่เป็นคาโทดของเซลล์แบบอัลคาไลด์แมงกานิสนั้น ทำมาจากสารที่ บริสุทธิ์กว่า รู้จักในนามของอิเลคทรอไลติค แมงกานิสไดออกไซด์ซึ่งผลิตขึ้นมาเพื่อให้มีค่าความจุของ ออกซิเจนเพิ่มขึ้น ส่วนผสมของโปตัสเซียไฮดรอกไซด์ซึ่งเรียนว่า อัลคาไลน์นั้น จะมีค่าความนำไฟฟ้าสูง มาก ทำหน้าที่เป็นอิเลคทรอไลท์เนื่องจากสารที่ใช้ทำอาโนดและคาโดดที่มีคุณภาพสูง ซึ่งทำให้เซลล์ชนิดนี้ เหมาะสำหรับงานหนักที่ใช้กระแสสูง มีความต้านทานภายในต่ำ และมีความจุพลังงานสูง

เมื่อเปรียบเทียบโครงสร้างของเซลล์แบบ Zine-Cabon เซลล์แบบอัลคาไลน์แมงกานิสนั้นจะกลับ กับเซลล์แบบ Zine-Cabon กล่าวคือส่วนนี้เป็นอาโนดจะอยู่ถายใน ส่วนคาโทดจะอยู่ภายนอกตัวถังที่ใช้ บรรจุนั้นทำจากเหล็กจะไม่เหมือนตัวถังสังกะสีของเซลล์แบบ Zine-Cabon เนื่องจากไม่ได้เป็นส่วนหนึ่ง ของขบวนการเคมีในการผลิตไฟฟ้าออกมา จึงไม่มีการผุผังเมื่อมีการใช้งานนั้นมีหน้าที่ในการเพิ่มความ แข็งแรง และป้องกันการรั่วไหลของสารเคมี แท่งโลหะตรงกลางซึ่งมีรูปร่างเหมือนตะปูทำหน้าที่เป็นตัว สะสมกระแสจะต่อโดยตรงกับอาโนด

แรงดันไฟฟ้าภายในเซลล์นั้น เนื่องจากใช้โลหะและออกไซด์ ชนิดเดียวกับในการทำเป็นอาโนด และคา.โทด เช่นเดียวกับเซลล์แบบสังกะสีถ่าน จึงมีค่าโดยปกติ 1.5 โวลท์

รูปที่ 3 – 7 แสดงโครงสร้างภายในของเซลแบบสังกะสี-ถ่าน

2. หม้อแปลงไฟฟ้าแบบทุติยภูมิ (Secondary Cell)

เป็นเซลที่สามารถ[์]ที่จะประจุใหม่กลับใหม่ได้ โดยที่ปฏิกิริยาเคมี ซึ่งจ่ายเป็นพลังงานไฟฟ้าออกมา นั้นเป็นปฏิกิริยาที่ผันกลับได้ การใช้เซลแบบทุติภูมินี้ทำให้เหมาะสมที่จะใช้เป็นแหล่งจ่ายไฟมากเนื่องจาก ถ้าเซลถูกใช้ไฟไปจนหมดแล้วสามารถจะประจุกลับไปใหม่ได้

2.1 เซลแบบตะกั่ว-กรด (Load-Acid)

โครงสร้างประกอบด้วยแผ่นคาโทด และแผ่นอาโนดวางสลับกันอยู่ ในอิเลคทรอไลท์นี้ทำจาก สารละลายกรดกำมะถัน แผ่นเพลทจะวางสลับกันเพื่อจะได้มีพื้นที่ผิวสัมผัสกับอิเลคทรอไลท์ได้มาก ในขณะที่รักษาปริมาตรให้น้อยที่สุดเท่าที่จะเป็นไปได้ ถ้ามีพื้นที่ผิวสัมผัสมากเท่าไหร่ ปฏิกิริยาเคมีที่จะ เกิดขึ้นมากเท่านั้น และความต้านทานภายในจะยิ่งน้อยลงด้วย วิธีเพิ่มพื้นที่ผิวสัมผัสที่นิยมใช้กันก็คือใส่ แผ่นเพลทบาง ๆ คันตัวด้วยฉนวนแบบมีรูพรุน

รูปที่ 3 – 8 แสดงถึงโครงสร้างภายในเซลแบบอัลคาไลน์แมงกานีส

ที่คาโทดตะกั่วเบอรื่ออกไซด์ จะแตกตัวเป็นไอออนของตะกั่วซึ่งมีประจุบวกสูงจะดึงเอาอิเลคตรอ นจากวงจรที่ต่อยู่ภายนอก เพื่อรวมตัวกลายเป็นอิออนตะกั่วที่มีประจุบวก ซึ่งเป็นชนิดเดียวกับที่ อาโนดทำให้เกิดกระแสไหลจากคาโทดผ่านไปยังวงจรภายนอก

ไอออนของตะกั่วจากแผ่นแพลททั้งสองจะทำปฏิกิริยากับกรดกำมะถันซึ่งเป็นอิเลคทรอนิคก์ กลายเป็นตะกั่วซัลเฟต (ซึ่งจะเห็นเป็นตะกอนขาวเกาะตัวอยู่ที่อิเลคโทรดทั้งสอง) และก๊าซไฮโดรเจน (ซึ่ง จะรวมกับอิออนของออกซิเจนจากคาโทดกลายเป็นน้ำ) สามารถเขียนเป็นสูตรเคมีได้ดังนี้

$$PbO_2 + Pb + 2H_2SO_4$$
 \longrightarrow $2PBSO_4 + 2H_2O$

สูตรทางเคมีแสดงให้เห็นว่าสารละลายอิเลคทรอไลท์ จะเจือจางลงโดยโมเลกุลของน้ำที่เกิดขึ้น ขณะเดียวกับที่เซลคายประจุ ทำให้เราสามารถใช้เป็นวิธีการหาสถานะการประจุและคายประจุของเซลได้ โดยการวัดความถ่วงจำเพาะ ของสารละลายอิเลคทรอไลท์ ซึ่งจะบอกว่าเซลใกล้จะถึงสถานะคายประจุ หมดหรือยัง เพื่อจะได้ประจุกลับเข้าไปใหม่ โดยค่าความถ่วงจำเพาะของเซลที่ประจุมาเต็มที่จะมี ค่าประมาณ 1.25 และค่าความถ่วงจำเพาะของเซลที่คายประจุหมด จะมีค่าระบุไว้ประมาณ 1.2 เราใช้ ไฮโดรมิเตอร์ในการวัด แรงดันของเซลโดยปกติจะมีค่าเท่ากับ 2 โวลต์

เซลแบบ Load Acid นี้จะมีโครงสร้างแบบที่กล่าวมาเป็นระยะเวลานานแล้ว การปรับปรุงที่ เกิดขึ้นเร็ว ๆ นี้ ได้มีทำการปรับปรุงให้เซลมีอายุการใช้งานนานขึ้น โดยที่แบตเตอรีมีการผนึกอย่างดี และ มีอิเลคทรอไลท์เป็นแบบของแข็งได้ถูกผลิตขึ้นมาแล้ว ยิ่งไม่ต้องมีการบำรุงรักษาเลย จึงสามารถนำไปใช้ แทนหรือใช้อย่างปกติแทนเซลแบบปฐมภูมิ หรือเครื่องมือวัดแบบกระเป๋าหิ้ว เนื่องจากมันสามารถประจุ ไฟใหม่ได้ โครงสร้างของเซลล์แบบนี้แบตเตอรีขนาด 6 โวลท์

รูปที่ 3 – 9 เป็นกราฟแสดงการเปรียบเทียบความจุของเซลแบบต่างๆเมื่อพิจารณาถึงน้ำหนักด้วย

กระประจุกลับเข้าไปใหม่

การประจุเซลแบบ Load Acid นั้นสามารถทำได้ง่าย ๆ โดยการป้อนกระแสกลับทางเข้าไปในแบตเตอรี เพื่อบังคับให้ปฏิกิริยาเคมีให้เกิดขึ้น โดยป้อนแรงดันไฟจากแหล่งจ่ายภายนอกจะอยู่ในช่วง 1.1 – 1.25 เท่าของแรงดันของเซลโดยปกติ ดังนั้นเซลแบบนี้เซลเดียวมีแรงดันปกติ 2 โวลท์ สามารถที่จะประจุ เข้าไปด้วยแรงดันระหว่าง 2.2 โวลท์ถึง 2.5 โวลท์ ตัวอย่างนี้เห็นง่าย ๆ ก็คือ แบตเตอรีรถยนต์ ซึ่งแรงดัน ปกติเท่ากับ 12 โวลต์เนื่องจากประกอบด้วยเซล 6 เซลอนุกรมกัน จะถูกประจุโดยเครื่องกำเนิดไฟฟ้าหรือ ไดนาโม และผ่านชุดรักษาระดับแรงดันให้เป็นไฟตรงมีค่าแรงดันคงที่ 14 โวลท์

2.2 เซลแบบนิกเกิล-แคดเมียม Nickel - Cadmium

เซลล์แบบทุติยภูมิชนิดที่สองที่จะกล่าวถึงก็คือ เซลแบบนิกเกิล-แคดเมียมเรียกกันย่อ ๆ ว่า นิ-แคด บางครั้งเซลแบบนิ- แคดนี้จะถูกเรียกว่า เซลแบบ DEAC ซึ่งเป็นชื่อย่อของบริษัทแรกที่ผลิตขึ้นมาคือ Deutsche Edison Akkulumulatoren Company ซึ่งอยู่ในเยอรมัน

ขั้วบวกของเซลแบบนิแคดนี้ทำจากนิกเกิลไฮเดรท (nickel hydrate) ส่วนขั้วลบนี้ทำจากแคดเมียมไฮดรอกไซด์ (cadmium hydroxide) ซึ่งก็เหมือนกับเซลแบบตะกั่วกรดคือ ปฏิกิริยาเคมีในการประจุและคายประจุ เป็นดังนี้

$$CD + 2NIOOH + 2H2O$$
 $CD(OH)2 + 2NI(OH)2$

โดยสถานะประจุเต็มที่คือทางด้านซ้ายมือ และสถานะหมดประจุเต็มที่อยู่ทางด้านขวามือ ในซลที่ ได้รับการประจุจนเต็ม ขั้วลบจะเป็นแคดเมียมบริสุทธิ์ซึ่งจะถูกออกซิไดซ์ ในระหว่างการค่ายประจุ ส่วน ขั้วบวกจะค่อย ๆ ลดระดับในการเกิดออกซิเดชั่น ระหว่างการคายประจุ

ในระหว่างการประจุ นอกจากปฏิกิริยาหลักที่เกิดขึ้นที่ขั้วบ[้]วกแล้วนั้น จะมีปฏิกิริยาข้างเคียง เกิดขึ้นด้วย ซึ่งจะก่อให้เกิดออกซิเจน แต่ก็ไม่เป็นปัญหาเนื่องจากก๊าซออกซิเจนสามารถเคลื่อนที่จาก ขั้วบวกไปรวมตัวกับขั้วลบ ปฏิกิริยาข้างเคียงที่เกิดขึ้นที่ขั้วลบจะผลิตก๊าซไฮโดรเจนขึ้น โดยจะเกิดขึ้นเมื่อขั้วลบอยู่ในสถานะ ประจุเต็มที่ โดยเราจะแน่ใจได้ว่าก๊าซไฮโดรเจนที่เกิดขึ้นจะไม่รั่วไหลออกไป ถ้าทำให้ขนาดของขั้วลบใหญ่ กว่าขั้วบวก

รูปที่ 3 – 10 เป็นกราฟแสดงการเปรียบเทียบความจุของเซลแต่ละชนิด เมื่อพิจารณาถึงปริมาตรของเซล

ปัญหาที่เกิดขึ้น

ปัญหาเกี่ยวกับการระเบิดของเซลแบบนี้สามารถบรรเทาลงได้ โดยการใช้เซลนิแคดแบบรูป ทรงกระบอก ซึ่งมีโครงสร้างดังแสดงในรูปที่ 6 จะเห็นได้ว่าเราใช้แผ่นเพลทที่เผามาทำเป็นขั้วบวกและขั้ว ลบอีก แต่เรานำมาม้วนให้เป็นรูปทรงกระบอก และมีรูระบายติดตั้งอยู่ที่ฝาบนของเซลซึ่งจะปล่อยก๊าซ ออกซิเจนออกสู่ภายนอกเมื่อความดันขึ้นสูงกว่า 90 ปอนด์/ตารางนิ้ว ดังนั้นถ้าเซลถูกประจุกมากเกินไป ด้วยกระแสที่สูงเกินก๊าซออกซิเจนที่เกิดขึ้นจะถูกระบายออกจากเซล ทำให้เซลไม่เกิดการระเบิดขึ้นอย่างไร ก็ตาม ก๊าซออกซิเจนที่ระบายออกไปก็ไม่สามารถหากลับมาทดแทนได้

เซลที่มีรูปร่างเป็นทรงกระบอกนี้สามารถที่จะเก็บพลังงานได้มากกว่าเซลแบบกระดุม เมื่อมีขนาด เท่า ๆ กัน และสามารถจ่ายกระแสได้มากกว่าด้วย (เนื่องจากมีความต้านทานภายในต่ำ) กุญแจแห่ง ความสำเร็จของเซลแบบทรงกระบอกนี้ คือการใช้ตาข่ายนิกเกิลบริสุทธิ์ที่มีรูพรุนเล็ก ๆ มาทำเป็นตะแกรง เพื่อให้นิกเกิลไฮดรอกไซด์ และแคดเมื่ยมไฮดรอกไซด์สามารถก่อตัวเป็นขั้วบวกและขั้วลบบนตะแกรงนี้นได้ อย่างรวดเร็ว แผ่นนิกเกิลจะถูกเชื่อมกับอิเลคโทรด และต่อกับตัวถังด้านบนของตัวแบตเตอรี่

ประโยชน์อีกข้อหนึ่งขอเซลที่มีโครงสร้างแบบทรงกระบอกก็คือ สามารถทำเซลให้มีขนาดเท่ากับ ขนาดของเซลแบบปฐมภูมิที่มีใช้กันอยู่ได้ คือขนาด AAA, AA, C, และขนาด DPP-3 และ อื่น ๆ อีก ซึ่ง หมายความว่าเราสามารถนำเซลแบบนิแคดนี้มาใช้เป็นแหล่งจ่ายไฟในเครื่องใช้

ต่าง ๆ ภายในบ้าน เช่น วิทยุ เทปคาสเซทท์ ไฟฉาาย เป็นต้น แรงดันของเซลแบบนิแคดนี้ โดยปกติมี ค่าประมาณ 1.25 โวลท์ ซึ่งเมื่อเทียบกับเซลแบบปฐมภูมิชนิดเดียวกันแล้ว ซึ่งมีแรงดันประมาณ 1.5 โวลท์ แล้วอาจจะทำให้คิดว่าเครื่องใช้ต่างๆ จะไม่สามารถทำงานได้ ถ้าเปลี่ยนจากเซลแห้งธรรมดาไปเป็นเซล แบบนิแคดขนาดเดียวกัน แต่ก็ไม่เป็นความจริงเนื่องจาก

1. แรงดันของเซลแห้งที่กล่าวมานั้นเป็นแรงดันตอนที่ไม่มีโหลดอยู่ ซึ่งแรงดันนี้จะตกลงเล็กน้อย เมื่อโหลดดึงกระแสไปใช้ ทั้งนี้เนื่องมาจากค่าความต้านทานภายในของเซล ซึ่งเมื่อต่อเซลอนุกรมกันหลาย ๆ เซลแล้ว แรงดันตอนใช้งานอาจจะเหลือเซลละ 1 โวลท์ (หรือน้อยกว่า) แต่ค่าความต้านทานภายในที่ต่ำ มาก ๆ ของเซลแบบนิแคดนี้ จะทำให้แรงดันตอนใช้งานจะยังคงเท่ากับ 1.25 โวลท์ ในการใช้งานหลาย อย่างดูเหมือนว่า แรงดันปกติที่ต่ำของเซลนิแคดนี้จะให้คุณสมบัติที่ดีกว่าเซลแห้งธรรมดา

และแบบสังกะสี-ถ่าน ที่ใช้กับงานหนักโดยเทียบกับอัตราการใช้กระแส

2. แรงดันของเซลแห้งนี้จะแปรเปลี่ยนไปตามเวลา ถ้าเราเขียนกราฟระหว่างแรงดันของเซลแห้ง กับเวลาและเปรียบเทียบกับกราฟของเซลบแบบนิแคดในรูปที่ 7 จะเห็นว่า แรงดันของเซลแห้งจะสูงกว่า แรงดันของเซลแบบนิแคดในตอนแรก แต่เมื่อเซลคายประจุออกไปแล้วจะเห็นว่าในที่สุดแรงดันของเซลแห้ง นี้จะเริ่มต่ำกว่าแรงดันของเซลแบบนิแคด ในขณะที่แรงดันของเซลแบบนิแคดจะค่อนข้างคงที่ และจุดหมด ประ คือเวลาที่คิดว่าเซลค่ายประจุหมดอย่างสมยูรณ์แล้วจะเกิดขึ้นอย่างรวดเร็ว เมื่อใช้เซลแบบนิแคดนี้ใน เครื่องใช้ไฟฟ้าเมื่อถึงจุที่เซลหมดประจุ เครื่องใช้นี้ก็จะหยุดทำงานทั้นที

การประจุที่ละน้อย (Trickle Recharge)

ถ้ากระแสในวงจรถูกรักษาไว้ที่อัตราเท่ากับ C/10 (10% ของความจุ) แล้วเซลที่หมดประจุอย่าง สมบูรณ์สามารถจะประจุได้ภายใน 10 ชั่วโมง แต่ความเป็นจริงจะใช้เวลามากกว่า 10 ชั่วโมงโดยเผื่อการ สูญเสียไว้บ้าง จะใช้เวลาประจุ 12 ถึง 14 ชั่วโมง การประจุทีละน้อยด้วยอัตราขนาดนี้สามารถประจุทิ้งไว้ ค้างคืนได้ ประโยชน์อีกข้อหนึ่งของการประจุเซลด้วยอัตราขนาดนี้คือ ถึงแม้ว่าเซลจะถูกประจุเต็มแล้ว ตาม ก็ไม่จำเป็นต้องนำเซลออก เนื่องจากถ้าเราประจุต่อไปก็จะไม่ทำความเสียหายให้แก่เซล เนื่องจาก ก๊าซออกซิเจที่เกิดขึ้นทั้งหมดที่ขั้วบวกจะรวมตัวกับขั้วลบ การประจุแบบโดยวิธีนี้เป็นวิธีเดียวที่สมารถจะ ประจุโดยไม่มีข้อจำกัด ซึ่งจะไม่ทำความเสียหายแก่เซล ยกตัวอย่างเช่น เซลมีขนาดความจุ 500มิลลิ แอมป์-ชั่วโมง ถ้าประจุด้วยอัตรา C/10 ก็เท่ากับ 10% ของควมจุ คือ 50 มิลลิแอมป์

รูปที่ 3 – 12 แสดงถึงแรงดันของเซลนิแคดแปรเปลี่ยนไปตามเวลา เมื่อทำการประจุ การประจุอย่างเร็ว (Fast Recharge)

เซลแบบนิแคดนี้สามารถจะประจุด้วยอัตราที่สูงขึ้นกว่าได้ เช่นด้วยอัตรา C/ (33%ของความจุ) ถึง C/5 (20% ของความจุ) โดยจะต้องเตรียมการตัดการประจุ เมื่อเซลได้รับการประจุจนเต็มที่แล้ว ซึ่ง สามารถทำได้อย่างอัตโนมัติโดยใช้วงจรตรวจจับแรงดัน ซึ่งจะตัดกระแสที่ใช้ในการประจุออก เมื่อแรงดัน ของเซลเพิ่มขึ้นเกินกว่าค่าปัจจุบัน รูปที่ 10 แสดงถึงการแปรเปลี่ยนของแรงดันของเซลกับเวลาที่อัตรา การประจุเท่ากับ C/4 (25% ของความจุ) จะเห็นได้ชัดว่าวิธีการนี้สามารถใช้ได้เฉพาะ ถ้าสามารถวัดค่า แรงดันได้อย่างเที่ยงตรงและว่องไว สามารถตัดกระแสที่ใช้ประจุออกก่อนที่จะเกิดความเสียหายขึ้น ปัญหา ในการใช้การประจุนเบบนี้ก็คือถ้ากระแสที่ใช้ในการประจุค่าสูง ๆ นี้ไม่ได้ถูกตัดออกอย่างงทันที่เมื่อเซลได้รับ การประจุจนเต็มที่แล้วก๊าซอกซิเจนที่เกิดขึ้นมากเกินจากขั้วบวกนี้จะไม่สามารถไปรวมกันที่ขั้วลบในปริมาณ ที่เพียงพอ ความดันจะเพิ่มขึ้นอย่างรวดเร็ว และเซลจะระบายก๊าซออกซิเจนออกไปโดยที่ รูระบายที่ปิดไว้ จะเปิดออกและปล่อยก๊าซออกซิเจนกับอิเลคทรอไลท์บางส่วนออกมา เนื่องจากเมื่ออิเลคทรอไลท์สูญเสีย ออกมาจากเซลแล้วก็ไม่สามารถเติมกลับเข้าไปใหม่ได้ ดังนั้นความจุของเซลจะลดลงอย่างถาวรก็คือเซลนั้น จะมีความจุน้อยลงตลอดไป

การประจุอย่างเร่งด่วน (Super-Fast Recharging)

มีบางกรณีที่ผู้ใช้ต้องการที่จะประจุเซลภายในเวลาเพียง 2-3 นาที ยกตัวอย่างเช่น เครื่องบินเล็กที่ ใช้แบตเตอรี่เป็นตัวจ่ายกำลังจะต้องการการประจุเซลที่หมดประจุเพื่อที่จะนำเครื่องบินนี้บินขึ้นสู่อากาศอีก ครั้งโดยเร็วที่สุดเท่าที่จะทำได้

มันเป็นไปได้ที่จะประจุเซลอย่างเร่งด่วน ด้วยอัตราการประจุสูงถึง 4C (4เท่าของความจุ) หรือ มากกว่านี้ โดยวิธีการต่อไปนี้ คือวัดแรงดันของเซลและตัดกระแสที่ใช้ประจุออกเมื่อแรงดันของเซลขึ้นสูง ถึงค่าที่ตั้งไว้ อย่างไรก็ตามีวิธีการที่ง่ายกว่า แล้วก็เที่ยงตรงด้วยโดยจากหลักความจริงที่ว่าเซลได้หมด ประจุอย่างสมบูรณ์ก่อนที่จะพยายามทำการประจุมันใหม่ ให้ประจุไฟเข้าโดยกำหนด่ากระแสประจุคงที่ไว้ ใช้เวลาในการประจุตามที่ต้องการ เช่น หลังจากเซลหมดประจุแล้ว กระแสที่ใช้ในการประจุขนาด 3C (3เท่าของความจุ) จะถูกป้อนเป็นเวลา 20 นาที หรือจะใช้กระแสในการประจุเป็น 5C (5เท่าของความจุ) ป้อนเข้าไปเป็นเวลา 12 นาที เป็นต้น แม้ว่าวิธีการนี้จะเป็นวิธีการที่ดี เช่น สำหรับนักเล่นเครื่องบิน จำลองที่มีเพียงแหล่งจ่ายไฟเป็นเพียงแบตเตอรี่รถยนต์ก็ตาม ก็เป็นสิ่งที่ควรระวังไว้เนื่องจากการประจุมาก เกินไปเพียง 2-3 วินาที อาจจะทำให้เกิดการรั่วของเซลได้ กล่าวย่อ ๆ ก็คือ เมื่อจะใช้วิธีการนี้เซลจะต้อง หมดประจุอย่างเต็มที่ และใช้กระแสในการประจุค่าที่แน่นอนเป็นระยะเวลาที่ถูกต้อง

<u>บทที่ 4</u> การแพร่กระจายคลื่นวิทยุ

1.บรรยากาศ

การแพร่กระจายคลื่นเกี่ยวข้องกับคุณสมบัติและธรรมชาติของบรรยากาศในแนวทางที่คลื่นวิทยุจะ เดินทางผ่านไป เริ่มตั้งแต่สายอากาศส่งไปจนถึงสายอากาศรับ บรรยากาศนั้นไม่สม่ำเสมอแต่จะ เปลี่ยนแปลงไปตามความสูง ตำบลที่ตั้งของภูมิศาสตร์เวลากลางวันหรือกลางคืน ฤดูกาล และ ปี ความรู้ใน เรื่องส่วนประกอบและคุณสมบัติของบรรยากาศช่วยในการหาผลลัพท์จากปัญหาที่เกิดขึ้นในการทำแผนหา เส้นทางในการสื่อสารทางวิทยุ ในการคาดคะเนความเชื่อถือได้ของการสื่อสารนั้นๆ

- ก. บรรยากาศ โทรโป คือ ส่วนประกอบของบรรยากาศโลกซึ่งเริ่มจากผิวโลกขึ้นไปจนถึงความสูง จากพื้นโลกประมาณ 6 1/2 ไมล์ (10 กิโลเมตร) ภายในบรรยากาศแบบ โทรโป นี้ การโค้งของคลื่นวิทยุ การหักเหจะเป็นเหตุให้เส้นขอบฟ้าวิทยุ สูงกว่าเส้นขอบฟ้าสายตา การหักเหในบรรยากาศโทรโป (การ สะท้อนกลับเนื่องจากการเปลี่ยนแปลงอย่างฉับพลันของคุณลักษณะของอากาศในบรรยากาศชั้นต่ำๆ) เป็น ผลให้รับสัญญาณวิทยุได้ ณ ระยะทางซึ่งไกลกว่าเส้นขอบฟ้าวิทยุ
- ข. บรรยากาศสตราโต คือ ส่วนของบรรยากาศโลกซึ่งอยู่ระหว่างบรรยากาศ โตรโป กับ บรรยากาศ ไอโอโน มีความสูงจากพื้นโลกตั้งแต่ 6 ไมล์ ถึง 30 ไมล์ (10 48 กม.) อุณหภูมิของบรรยากาศชั้นนี้ เกือบจะคงที่
- ค. บรรยากาศ ไอโอโน คือส่วนของบรรยากาศของโลกเหนือระดับต่ำที่สุดซึ่งเกิดการแตกตัวเป็น ไอออน (การแตกตัวของอณูอากาศของโลกเป็นประจุบวกและประจุลบ หรือ ไอออน) ของก๊าซซึ่งมีความ กดต่ำ ซึ่งกระทบกระเทือนต่อการส่งคลื่นวิทยุ บรรยากาศไอโอโนนี้ อยู่ระหว่างความสูงตั้งแต่ 30 650 ไมล์ เหนือพื้นโลก บรรยากาศไอโอโนประกอบด้วยชั้นต่างๆหลายชั้น เนื่องจากการแตกตัวไอออนนั้น ปรากฏขึ้น ณ ระดับความสูงและมีความเข้มของไอออนต่างๆกัน

รูปที่ 4-1 องค์ประกอบของคลื่นวิทยุ

2.การแพร่กระจายในบรรยากาศ

มีเส้นทางหลักอยู่ 2 เส้นทางซึ่งคลื่นวิทยุเคลื่อนที่จากเครื่องส่งไปยังเครื่องรับ เส้นทางหนึ่งก็คือ คลื่นพื้นดิน (รูปที่ 4-1) ซึ่งคลื่นเดินทางตรงจากเครื่องส่งไปยังเครื่องรับ เส้นทางหนึ่งคือคลื่นฟ้า(รูปที่ 4-1) ซึ่งคลื่นวิทยุเดินทางขึ้นไปบรรยากาศไอโอโนแล้วโค้งลงมา หรือหักเหกลับมายังโลก การส่งวิทยุทางไกลส่วนใหญ่แล้วกระทำได้โดยทางคลื่นฟ้า การส่งวิทยุระยะใกล้ส่งด้วยขนาดคลื่น UHF ทั้งหมดและขนาดคลื่น VHF กระทำได้โดยใช้คลื่นพื้นดิน แบบการส่งคลื่นบางแบบใช้สองเส้นทางผสม กัน

ก.การแพร่กระจายคลื่นพื้นดิน ย่อมจะได้รับความกระทบกระเทือนจากคุณลักษณะทางไฟฟ้าของ พื้นดิน โดยการหักเหกระจาย (DIFRACTION) หรือทางโค้งของคลื่นรอบส่วนโค้งของโลก ลักษณะอย่างนี้ เปลี่ยนแปลงไปที่ต่างๆแต่มีลักษณะที่ถือว่าคงที่อยู่บ้างตามเวลาและฤดูกาล

ข.การแพร่กระจายคลื่นฟ้า เปลี่ยนแปลงเนื่องจากการเปลี่ยนแปลงของบรรยากาศไอโอโนอยู่เสมอ มีผลต่อการหักเหของคลื่นวิทยุอย่างแน่นอน

3. การแพร่กระจายของคลื่นพื้นดิน

การแพร่กระจายของคลื่นพื้นดิน หมายถึง แบบของการส่งคลื่นวิทยุที่มิได้ใช้ประโยชน์จากการหัก เหของคลื่นที่เกิดขึ้นในบรรยากาศไอโอโน ความเข้มของสนามแม่เหล็กไฟฟ้าของคลื่นพื้นดินขึ้นอยู่กับกำลัง ของเครื่องส่ง , คุณลักษณะของสายอากาศส่ง, ความถี่ของคลื่นวิทยุ และ การหักเหกระจายของคลื่นตาม ส่วนโค้งของโลก คุณลักษณะทางไฟฟ้าของภูมิประเทศในท้องถิ่น ธรรมชาติของเส้นทางการส่งคลื่นและ สภาพอากาศท้องถิ่น องค์ประกอบต่างๆของคลื่นพื้นดินมีดังนี้

- ก. คลื่นตรง (DIRECT WAVE) คือองค์ประกอบของคลื่นทั้งหมดซึ่งเดินทางจากสายอากาศส่งตรง ไปยังสายอากาศรับ (รูปที่ 19) องค์ประกอบนี้จำกัดเพียงระยะเส้นสายตาระหว่างสายอากาศส่งกับ สายอากาศรับ บวกกับระยะที่เพิ่มขึ้นเพียงเล็กน้อยเนื่องจากการหักเหของบรรยากาศและการหักเหกระจาย ของคลื่นตามส่วนโค้งของโลก ระยะนี้อาจจะขยายไปได้โดยการเพิ่มความสูงของสายอากาศส่งหรือ สายอากาศรับขึ้น (หรือทั้งคู่)
- ข. คลื่นสะท้อนจากดิน (GROUND REFLECTED WAVE) คือส่วนของคลื่นซึ่งแพร่รังสีออกไปถึง สายอากาศรับอยู่บนหรือใกล้กับพื้นดินแล้วคลื่นตรงและคลื่นสะท้อนจากพื้นดินมักจะลบล้างซึ่งกันและกัน
- ค. คลื่นผิวดิน (SURFACE WAVE) คือองค์ประกอบของคลื่นพื้นดินที่เป็นผลจากความนำไฟฟ้า ของพื้นโลกซึ่งเคลื่อนที่ไปตามส่วนโค้งของโลก (รูปที่ 4-2)

รูปที่ 4-2 เส้นทางที่เป็นไปได้สำหรับคลื่นพื้นดิน

4. บรรยากาศไอโอโนสเฟีย

มีชั้นบรรยากาศไอโอโนสเฟียที่มองเห็นได้ชัด อยู่ 4 ชั้น ตามความสูงและความเข้มที่เพิ่มขึ้น ชั้นเหล่านั้นคือ D, E, F1 และ F2 การแยกชั้นต่างๆ ได้แสดงเปรียบเทียบไว้ดังรูปที่ 4-3 อาจจะเห็นได้ตาม รูปว่า ชั้นบรรยากาศทั้ง 4 นั้นเกิดขึ้นในตอนกลางวัน ในเมื่อรังสีของอาทิตย์ส่องตรงลงมายังบรรยากาศ ส่วนในตอนกลางคืนชั้น F1 และ F2 จะรวมกันเป็น F ส่วนชั้น D และ E จะจางหายไป จำนวนจริงๆของชั้น

ความสูงของแต่ละชั้นเหนือพื้นโลกและความเข้มสัมพัทธ์ (RELATIVE OF INTENSITY) ของการแตกตัว เป็นไอออนในแต่ละชั้นเหล่านั้นจะเปลี่ยนแปลงไปจากชั่วโมงถึงชั่วโมง , จากวันถึงวัน , จากเดือนถึงเดือน , จากฤดูกาลถึงฤดูกาล และจากปีถึงปี

- ก. ชั้น D ชั้น D จะปรากฏในเวลากลางวันและมีผลเพียงเล็กน้อยในการทำให้ทางเดินของคลื่น ความถี่สูงโค้งไป ผลส่วนใหญ่ของชั้น D ก็คือการลดถอยหรือการลดความเข้มของคลื่นความถี่สูง เมื่อ เส้นทางการส่งคลื่นนั้นอยู่ในบริเวณที่ได้รับแสงอาทิตย์
- ข. ชั้น E ใช้ในตอนกลางวันสำหรับส่งคลื่นความถี่สูงไปได้ระยะทางไกลปานกลาง (น้อยกว่า) 1,500 ไมล์ (2,400 กม.) ความเข้มของชั้นนี้จะลดลงในตอนกลางคืน และไม่เกิดประโยชน์ในการส่ง คลื่นวิทย
- ค. ชั้น F จะอยู่ในระยะสูงถึง 240 ไมล์ (380 กม.) เหนือผิวโลกและมีการแตกตัวเป็นไอออนทั้ง กลางวันและกลางคืน และกลางคืนชั้นไอโอโนที่แบ่งเขตในเวลากลางคืนชั้น F อย่างแน่ชัดอยู่ 2 ชั้น ในเวลากลางวันจะอยู่ ณ ความสูงประมาณ 170 ไมล์ (260 กม.) และมีประโยชน์สำหรับการสื่อสารทางวิทยุ ระยะไกลๆ (เกินกว่า 1,500 ไมล์) (2,400 กม.)
- ง. ชั้น F1 และ ชั้น F2 ในระหว่างเวลากลางวันชั้น F จะแตกตัวเป็น 2 ชั้น คือ ชั้น F1 และ ชั้น F2 จะเกิดประโยชน์มากที่สุดกว่าชั้นใดๆในการสื่อสารทางวิทยุระยะไกล ถึงแม้ว่าความมากน้อยของการ แตกตัวเป็นไอออนจะแตกต่างกันอย่างมากระหว่างวันหนึ่งถึงอีกวันหนึ่ง โดยเปรียบเทียบกับชั้นอื่นแล้วก็ ตาม

รูปที่ 4-3 การกระจายชั้นต่างๆ โดยประมาณของบรรยากาศไอโอโน

5. คุณลักษณะของบรรยากาศไอโอโน

ก. ความถี่วิกฤติ ระยะของการส่งวิทยุระยะไกลนั้นกำหนดได้จากความหนาแน่นของการ แตกตัว เป็นไอออนในชั้นบรรยากาศแต่ละชั้นเป็นประการแรกความถี่สูงขึ้นก็ยิ่งทำให้เกิดการหักเหกลับมายังโลกได้ ชั้นบรรยากาศที่สูงๆขึ้นไป (ชั้น E และ ชั้น F) จะหักเหคลื่นวิทยุความถี่สูงๆกลับมายังพื้นโลกเพราะว่า ณ ชั้นบรรยากาศดังกล่าวมีการแตกตัวเป็นไอออนสูงมากที่สุด ชั้นบรรยากาศ D ซึ่งมีการแตกตัวเป็นไอออน

น้อยที่สุด จะไม่หักเหความถี่สูงเกิน 500 KHz. โดยประมาณ ฉะนั้น ณ เวลาที่กำหนดเวลาใดเวลาหนึ่ง ณ ชั้นบรรยากาศชั้นใดชั้นหนึ่งจะมีขีดจำกัดของความถี่ด้านสูงค่าหนึ่ง ซึ่งเมื่อคลื่นขึ้นไปในแนวดิ่งแล้วหักเหกลับลงมายังโลกได้ ความถี่จำกัดอันนี้เรียกว่า ความถี่วิกฤติ คลื่นที่ส่งขึ้นไปในแนวดิ่งด้วยความถี่สูงกว่า ความถี่วิกฤตินี้ จะทะลุผ่านบรรยากาศชั้นนั้นไปยังอวกาศ คลื่นทั้งหลายที่ส่งตรงขึ้นไปยังบรรยากาศไอโอโน โดยมีความถี่ต่ำกว่าความถี่วิกฤติ แล้วจะหักเหกลับมายังโลก

ข. มุมวิกฤติ คลื่นวิทยุที่ใช้ในการสื่อสารโดยปกติจะพุ่งตรงไปยังบรรยากาศ ไอโอโน เป็นมุมเอียง บ้างซึ่งเรียกว่าเป็นมุมตก (ANGLE OF INCIDENCE) คลื่นวิทยุที่มีความถี่สูงกว่าความถี่วิกฤติจะกลับมายัง โลกได้ ถ้าแพร่กระจายออกไปด้วยมุมที่ต่ำกว่า มุมวิกฤติ ณ มุมวิกฤติและมุมซึ่งโตกว่ามุมวิกฤติคลื่นจะทะลุ ผ่านบรรยากาศ ไอโอโน ถ้าความถี่ของคลื่นนั้นสูงกว่าความถี่มุมวิกฤติเมื่อมุมนั้นเล็กลงจนถึงมุมหนึ่งที่คลื่น โค้งกลับมาสู่โลกด้วยการหักเห ระยะทางระหว่างสายอากาศและจุดซึ่งคลื่นตกลงมาสู่โลกเป็นครั้งแรก เรียกว่าระยะกระโดด (รูปที่ 4-4)

6. การเปลี่ยนแปลงของบรรยากาศไอโอโน

การเคลื่อนตัวของโลกรอบดวงอาทิตย์ และการเปลี่ยนแปลงต่างๆของดวงอาทิตย์ ทำให้เกิดการ เปลี่ยนแปลงของบรรยากาศ ไอโอโน มีการเปลี่ยน แบ่งออกเป็นประเภทใหญ่ๆได้ 2 ประเภท การเปลี่ยน ปกติซึ่งสามารถทำนายได้กับการเปลี่ยนแปลงไม่ปกติ ซึ่งเป็นผลจากอาการอันผิดปกติของดวงอาทิตย์

- ก. การเปลี่ยนแปลงปกติ อาจแบ่งออกได้เป็น 4 ชนิด คือ การเปลี่ยนแปลงประจำวันหรือรอบวัน ซึ่งเกิดจากการหมุนรอบตัวเองของโลก การเปลี่ยนแปลงตามฤดูกาล ซึ่งเกิดจากการเคลื่อนตัวขึ้นเหนือและ ลงใต้ของดวงอาทิตย์ การเปลี่ยนแปลงรอบ 27 วัน ซึ่งเกิดจากการหมุนรอบแกนของดวงอาทิตย์ และการ เปลี่ยนแปลงรอบ 11 ปี ซึ่งเป็นห้วงเวลาโดยเฉลี่ยระหว่าง ซึ่งปรากฏการณ์จุดดับในดวงอาทิตย์ เปลี่ยนจาก มากที่สุดไปน้อยที่สุด และกลับมามากที่สุดอีก
- ข. การเปลี่ยนแปลงไม่ปกติ การเปลี่ยนแปลงในชั้นบรรยากาศไอโอโน ในชั่วขณะไม่อาจทำนายได้ มีผลอย่างมากต่อการแพร่กระจายคลื่นวิทยุ ผลบางประการเหล่านี้ได้แก่
- 1.การผิดปกติในชั้น E เป็นครั้งคราว (SPORADICE) เมื่ออากาศเกิดการแตกตัวเป็น ไอออนอย่างมากมาย บรรยากาศชั้น E จะปิดกลั้นการหักเหจากบรรยากาศชั้นเหนือกว่าโดยสิ้นเชิง และผล อันนี้เกิดขึ้นได้ทั้งเวลากลางวันและกลางคืน

2.การรบกวนต่อบรรยากาศไอโอโนอย่างฉับพลัน (SUDDEN IONOSPERIC DISTURBANCE) การรบกวนต่อบรรยากาศไอโอโนอย่างฉับพลัน (SID) จะเกิดในขณะเดียวกับที่มีการพุพุ่งขึ้นอย่างแรงของ ดวงอาทิตย์ และก่อให้เกิดการแตกตัวเป็นไอออนอย่างผิดปกติในบรรยากาศชั้น D ผลอันนี้จะทำให้เกิดการ ดูดซึมพลังงานวิทยุความถี่สูงกว่า 1 MHz. ทั้งหมด ลักษณะอันนี้จะเกิดขึ้นโดยไม่มีการเตือนล่วงหน้า ใน ระหว่างเวลากลางวันและอาจจะคงอยู่นานตั้งแต่ 2 - 3 นาที ถึงหลายๆ ชั่วโมง เมื่อเกิดการรบกวนต่อ บรรยากาศไอโอโนอย่างฉับพลันขึ้นเครื่องรับทุกเครื่องจะเป็นเสมือนเครื่องเสีย

3. การเกิดพายุบรรยากาศไอโอโน (IONOSPHERE STROMS) พายุนี้เกิดขึ้นนาน ตั้งแต่ หลายชั่วโมงจนถึงหลายวัน และโดยปกติแล้วจะแผ่กว้างไปทั่วโลก ในห้วงเวลาที่เกิดพายุนี้การส่งคลื่นฟ้าซึ่ง มีความถี่สูงประมาณ 1.5 MHz. ขึ้นไปสัญญาณจะมีความเข้มต่ำและขึ้นกับอาการชนิดหนึ่งคือแรงขึ้นและ จางหายอย่างรวดเร็ว ซึ่งมีชื่อเรียกว่า การจางหายวูบวาบ (PLUTIER FADING)

7. การแพร่กระจายคลื่นฟ้า

ก. เส้นทางการส่งคลื่นฟ้า การแพร่กระจายคลื่นฟ้าหมายถึง การส่งวิทยุแบบต่างๆซึ่งขึ้นกับ บรรยากาศไอโอโน เพื่อทำให้เกิดเส้นทางของสัญญาณระหว่างเครื่องส่งและเครื่องรับ เส้นทางคลื่นวิทยุที่ เป็นไปได้บางเส้นทางจากเครื่องส่งไปยังเครื่องรับ โดยการใช้บรรยากาศไอโอโนนั้น แสดงไว้ในรูปที่ 4-4

รูปที่ 4-4 เส้นทางการส่งคลื่นฟ้า

- ข. เขตกระโดด (SKIP ZONE) มีพื้นที่หนึ่งเรียกว่าเขตกระโดด ซึ่งจะไม่มีสัญญาณที่เป็นประโยชน์ สามารถรับได้จากเครื่องส่งที่กำลังทำการส่งอยู่ด้วยความถี่ที่กำหนดให้อันหนึ่ง พื้นที่นี้ขีดขั้นด้วยเส้นขอบ นอกสุดของการแพร่กระจายคลื่นพื้นดินที่เป็นประโยชน์ และจุดที่ใกล้สายอากาศรับมากที่สุดที่สามารถรับ สัญญาณที่กลับลงมาโดยคลื่นฟ้าได้คือ ระยะกระโดด (SKIP DICTANCE) เขตกระโดดและความสัมพันธ์ ของเขตกระโดดกับคลื่นดินนั้น แสดงไว้ในรูปที่ 4-5 เมื่อระยะกระโดดอยู่ภายในระยะที่คลื่นพื้นดินไปถึงจะ ไม่มีเขตกระโดด ในกรณีนี้ทั้งคลื่นฟ้าและคลื่นดิน จะไปถึงสายอากาศรับโดยมีความเข้มของสนามเกือบ เท่ากัน แต่จะมีมุมคลื่นเปะปะ (RANDOM RELATIVE PHASE) ในเมื่อเกิดกรณีนี้ขึ้น องค์ประกอบคลื่น ฟ้าจะเสริมและลบล้างองค์ประกอบคลื่นดินสลับกันไป และเป็นเหตุให้เกิดสัญญาณแรงขึ้นอย่างมาก (ระหว่างการเสริม) และจางหาย (ระหว่างลบล้าง) สำหรับความถี่แต่ละความถี่ (ซึ่งสูงกว่าความถี่วิกฤติ) ที่เกิดการหักเหจากชั้นบรรยากาศไอโอโนลงมานั้น ระยะกระโดดจะขึ้นกับความถี่และสภาพของการแตกตัว เป็นไอออนเท่านั้น ส่วนเขตกระโดดนั้นจะขึ้นกับการแพร่ขยายของระยะคลื่นพื้นดิน และจะไม่มีเขต กระโดดเลย เมื่อระยะคลื่นดินยาวกว่าระยะกระโดด
- ค. เส้นทางคลื่นฟ้า เมื่อคลื่นส่งหักเหกลับลงมายังผิวโลก พื้นโลกจะดูดซึมกำลังงานส่วนหนึ่งไว้ กำลังงานส่วนที่เหลือจะสะท้อนกลับขึ้นไปในบรรยากาศไอโอโน และจะหักเหกลับมาอีกโดยมีระยะไกลจาก เครื่องส่งมากขึ้น การเดินทางแบบนี้หมายถึงว่าเป็นการเดินทางเป็นทอดๆ (รูปที่ 4-6) โดยมีการกลับไป มาระหว่างการหักเหจากบรรยากาศไอโอโนกับการสะท้อนจากพื้นดินไปเรื่อยๆ จะทำให้คลื่นวิทยุสามารถ กลับได้เป็นระยะทางไกลมากจากเครื่องส่ง การส่งที่เกิดจากเส้นทางทอดเดียว (SINGLE HOP PATH) หมายถึงเมื่อคลื่นวิทยุไปถึงสายอากาศเครื่องรับ หลังจากหักเหจากบรรยากาศไอโอโนเพียงครั้งเดียวเท่านั้น ส่วนการหักเหจากบรรยากาศไอโอโนสองหรือสามครั้ง ก็จะทำให้เกิดเส้นทางสองหรือสามทอด (DOUBLE-HOP,OR HOP PATH)

รูปที่ 4-5 เขตกระโดด

รูปที่ 4-6 เส้นทางส่งคลื่นฟ้า

8. การจางหาย

ก. เหตุสามัญประการแรกที่ทำให้เกิดจากการจางหายนั้น เกิดจากผลของการกระทำซึ่งกันและกัน ของคลื่นวิทยุเดี่ยวกันที่เดินคนละเส้นทาง ณ ระยะห่างจากเครื่องส่งที่แน่นอนอันหนึ่ง อาจรับได้ทั้งคลื่นฟ้า และคลื่นดิน แต่เนื่องจากคลื่นวิทยุเคลื่อนที่ต่างเส้นทางกัน ดังนั้นจึงอาจเป็นไปได้ที่คลื่นวิทยุจะไปถึงมุม ไฟฟ้าต่างกัน เมื่อเกิดกรณีนี้ขึ้นคลื่นทั้งสองนั้นจะหักล้างกันและกัน ณ จุดที่คลื่นทั้งสองไปพบกัน

รูปที่ 4-7 การจางหายเนื่องจากคลื่นพื้นดินและคลื่นฟ้า

- ข. เหตุสามัญที่ทำให้เกิดการจางหายประการต่อไปคือ การกระทำซึ่งกันและกันขององค์ประกอบ ต่างๆ ของคลื่นฟ้าเดี่ยว ในกรณีนี้องค์ประกอบต่างๆจะไปถึงเครื่องรับโดยมีมุมไฟฟ้าต่างกัน จึงเป็นผลให้ สัญญาณที่ได้รับเปลี่ยนแปลงอยู่ตลอดเวลา
- ค. เกิดการเปลี่ยนแปลงอย่างรุนแรง ในบรรยากาศไอโอโนที่เรียกว่า พายุบรรยากาศไอโอโน ซึ่ง อาจทำให้เกิดการจางหายอย่างมากมายโดยเฉพาะอย่างยิ่ง ณ ความถี่ที่สูงกว่า 1,500 KHz. การรบกวน เหล่านี้ เกิดขึ้นเนื่องจากมีอาการจุดดับในดวงอาทิตย์อย่างรุนแรง และอาจเป็นอยู่หลายสัปดาห์
- ง. วิธีการสามัญที่สุดที่จะแก้ไขการจางหายอันพอจะแก้ได้ก็โดยดารเพิ่มกำลังของเครื่องส่ง การใช้ วงจรควบคุมการขยายอัตโนมัติ ในเครื่องรับ ก็จะแก้ไขในการเปลี่ยนแปลงความเข้มของสัญญาณที่เกิด เพียงเล็กน้อยได้

9. ผลของความถี่ต่อการแพร่กระจายคลื่น

- ก. ณ ความถี่ต่ำ (LF) (30 300 KHz.) คลื่นพื้นดินจะมีประโยชน์มากที่สุดในการสื่อสาร ระยะไกลๆ สัญญาณจากคลื่นพื้นดินค่อนข้างคงที่ และมีการเปลี่ยนแปลงตามฤดูกาลแต่เพียงเล็กน้อย
- ข. ในแถบความถี่ปานกลาง (MF) (300 3000 MHz.) คลื่นพื้นดินจะมีระยะเปลี่ยนแปลงอยู่ 15 ไมล์ (24 กม.) ณ ความถี่ 3000 KHz. และประมาณ 400 ไมล์ (640 กม.) ณ ความถี่ข้างต่ำของหลาย ความถี่นั้น การรับคลื่นฟ้าทำได้ทั้งในเวลากลางวันและกลางคืน โดยใช้ความถี่ต่ำๆ ของแถบความถี่นั้น ใน เวลากลางคืนอาจจะรับคลื่นฟ้าได้ในระยะไกลถึง 800 ไมล์ (12,870 กม.)
- ค. ในแถบความถี่สูง (HF) (3-30 MHz.) ระยะของคลื่นพื้นดินลดลงเมื่อมีความถี่เพิ่มสูงขึ้นและ ข้อพิจารณาเกี่ยวกับบรรยากาศไอโอโนก็จะมีอิทธิพลอย่างมากต่อคลื่นฟ้า
- ง. ในแถบความถี่สูงมาก (VHF) (30 300 MHz.) คลื่นพื้นดินใช้ไม่ได้ และมีการหักเหของคลื่น ฟ้ากลับมาเล็กน้อยในเมื่อใช้ความถี่ต่ำของแถบความถี่นั้น คลื่นตรงใช้เพื่อการสื่อสารได้ถ้าสายอากาศส่งและ สายอากาศรับตั้งอยู่เหนือพื้นผิวโลกพอเพียง เพราะว่าสภาพที่ผิดปกติเป็นครั้งคราวใน บรรยากาศไอโอโน การส่งคลื่นไปในระยะทางไกลๆ จึงไม่อาจทำนายได้ และสามารถสื่อสารได้ในช่วงเวลา สั้น
- จ. ในแถบความถี่สูงอุลตร้า (UHF) (300 3000 MHz.) ต้องใช้คลื่นตรงทำการสื่อสารทางวิทยุ โดยตลอด การสื่อสารจะจำกัดในระยะเลยขอบฟ้าไปเล็กน้อยเท่านั้น การรบกวนจากไฟฟ้าสถิตย์และการ จางหายสำหรับความถี่ในแถบนี้ไม่มี จึงทำให้การรับ ส่งตามเส้นสายตากระทำได้เป็นผลดี สายอากาศบ่ง ทิศทางอย่างดีสร้างขึ้นได้โดยมีขนาดเล็กและสามารถรวมกำลังของคลื่นวิทยุให้เป็นลำแคบๆ ดังนั้นจึงเพิ่ม ความเข้มของสัญญาณได้มาก

<u>บทที่ 5</u> สายอากาศ

ตอนที่ 1 กล่าวนำ

1.กล่าวทั่วไป

ในระบบการสื่อสารทางวิทยุ(รูปที่ 5-1)กำลังงานความถี่วิทยุจะกำเนิดขึ้นจากเครื่องส่งและป้อน ไปยังสายอากาศเครื่องส่งด้วยส่งกำลัง สายอากาศจะแผ่รังสีกำลังงานนี้ออกไปในอวกาศด้วยความเร็ว ประมาณเท่ากับความเร็วของคลื่นแสง สายอากาศรับดูดกำลังงานนี้บางส่วนไว้แล้วส่งไปยังเครื่องรับ ผ่าน สายส่งกำลังอีกเส้นหนึ่ง

2. หน้าที่ของสายอากาศ

หน้าที่ของสายอากาศส่ง คือ เปลี่ยนกำลังงานออกซึ่งได้รับจากเครื่องส่งให้เป็นสนามแม่เหล็ก ไฟฟ้าซึ่งแผ่รังสีไปในอวกาศ นั่นก็คือสายอากาศเปลี่ยนกำลังงานรูปหนึ่งให้เป็นกำลังงานอีกรูปหนึ่งหรือเป็น การเปลี่ยนกำลังงานในทิศทางตรงกันข้ามสายอากาศรับนั้นทำหน้าที่คือ ทำการเปลี่ยนสนามแม่เหล็ก ไฟฟ้าที่เคลื่อนที่ผ่านตัวสายอากาศให้เป็นกำลังไฟฟ้า แล้วจ่ายให้กับเครื่องรับวิทยุต่อไป ในการส่งตัว สายอากาศจะทำหน้าที่เป็นภาระ (LOAD) ของเครื่องส่ง ในการรับสายอากาศจะทำหน้าที่เป็นแหล่ง สัญญาณให้เครื่องรับ

3. ผลเพิ่มของสายอากาศ (ANTENNA GAIN)

ผลเพิ่มของสายอากาศนั้น ประการแรกจะขึ้นกับการออกแบบสร้างสายอากาศนั้นๆ สายอากาศส่ง ออกแบบสร้างให้มีประสิทธิภาพสูงในการแผ่รังสีกำลังงานออกไปและสายอากาศรับออกแบบสร้างให้มี ประสิทธิภาพในการรับกำลังงาน ในวงจรวิทยุบางวงจรจะมีการส่งระหว่างเครื่องส่งเครื่องหนึ่งกับเครื่องรับ อีกเครื่องหนึ่งเท่านั้น ในกรณีดังกล่าวจึงมีความต้องการที่จะแผ่รังสีกำลังงานออกให้มากที่สุดเท่าที่จะทำได้ ไปในทิศทางใดทิศทางหนึ่ง ทั้งนี้เพราะว่ากำลังงานที่แผ่ออกไปจะเกิดประโยชน์ได้ก็เฉพาะทิศทางนั้น เท่านั้น คุณลักษณะในการบ่งทิศทางของสายอากาศรับจะเพิ่มการรับกำลังงานหรือมีผลเพิ่มในทิศทางที่ ถูกต้อง และลดการรับเสียงรบกวนและสัญญาณที่ไม่ต้องการที่มาในทิศทางอื่นลง ความต้องการโดยทั่วๆ ไปของสายอากาศส่งและสายอากาศรับคือ ให้เสียกำลังงานไปแต่น้อย และจะเป็นตัวแผ่รังสีคลื่นและ ตัวรับคลื่นที่มีประสิทธิผล

Figure 3-1. Simple radio communications network.

รูปที่ 5-1 ข่ายงานการสื่อสารทางวิทยุแบบง่ายๆ

4.การแผ่รังสี

ก. เมื่อส่งกำลังไปสายอากาศ พลังงานที่มีลักษณะเป็นรูปคลื่น (FLUCTUATING ENERGY) จะทำให้ เกิดสนามสองสนาม สนามหนึ่งคือสนามเหนี่ยวนำ ซึ่งรวมอยู่กับพลังงานที่เก็บไว้ ส่วนอีกสนามหนึ่งนั้น เป็นสนามแผ่รังสีซึ่งคลื่นที่ไปในอวกาศ โดยมีความเร็วเกือบเท่าความเร็วของแสงที่สายอากาศ ความเข้ม ของสนามทั้งสองนี้จะสูงและเป็นปฏิภาคกับปริมาณของกำลังที่จ่ายไปยังสายอากาศ ณ ระยะใกล้ๆ สายอากาศและห่างออกไปจะเหลือแต่เพียงสนามแผ่รังสีเท่านั้น สนามแผ่รังสีนี้จะประกอบด้วย องค์ประกอบทางไฟฟ้ากับองค์ประกอบทางแม่เหล็ก

ข.สนามไฟฟ้าและสนามแม่เหล็ก(องค์ประกอบ) ซึ่งแผ่รังสีจากสายอากาศและก่อให้เกิด สนามแม่เหล็กไฟฟ้าและสนามนี้ทำให้เกิดการส่งและรับกำลังงานแม่เหล็กไฟฟ้าในอวกาศอิสระได้ ดังนั้น วิทยุจะหมายถึงสนามแม่เหล็กไฟฟ้าที่กำลังเคลื่อนที่ก็ได้ซึ่งมีความเร็วในทิศทางที่เคลื่อนที่ไป และมี องค์ประกอบ ส่วนความเข้มไฟฟ้าและความเข้มแม่เหล็กที่ตัดทำมุมฉากซึ่งกันและกัน

รูปที่ 5-2 องค์ประกอบของคลื่นแม่เหล็กไฟฟ้า

5.รูปแบบการแผ่รังสีของสายอากาศ

ก. กำลังงานของสัญญาณวิทยุซึ่งแผ่รังสีออกจากสายอากาศ จะทำให้เกิดสนามแม่เหล็กไฟฟ้าซึ่งมี รูปแบบโดยเฉพาะขึ้น ทั้งนี้แล้วแต่ชนิดของสายอากาศที่ใช้ รูปแบบของแผ่รังสีนี้ใช้เพื่อแสดงลักษณะของ สายอากาศทั้งทางระยะและทางทิศ สายอากาศดิ่งในทางทฤษฎีนั้นจะแผ่รังสีกำลังงานเท่าๆ กันออกรอบ ทิศ แต่ในทางปฏิบัติแล้วรูปแบบมักจะบิดเบี้ยวไปตามสิ่งกีดขวางหรือลักษณะของพื้นภูมิประเทศที่อยู่ใกล้

รูปที่5-3 การแผ่รังสีของกระสวนรูปมีทรงจากสายอากาศ 1/4ช่วงคลื่นและแบบครึ่งคลื่น

ก. รูปแบบการแผ่รังสีชนิดเต็มที่หรือมีทรงนั้น จะมีรูป 3 มิติซึ่งมองดูเหมือนรูปขนมโดนัส โดย มีสายอากาศส่งตั้งอยู่ตรงกลาง(รูปที่ 5-3) รูปแบบที่อยู่ข้างบนแสดงรูปของสายอากาศดิ่ง1/4ช่วงคลื่น วิธีการโดยทั่วไปที่จะแสดงภาพรูปแบบการแผ่รังสี คือ โดยการผ่าหน้าตัดรูปแบบเต็มออกครึ่งหนึ่ง แล้ว แสดงให้เห็นรูปร่างในพื้นใดพื้นหนึ่งโดยเฉพาะ(รูปที่5-4) รูปแบบอันบนเกิดจากสายอากาศระดับครึ่งคลื่น ขึงเหนือพื้นดิน1/4ความยาวคลื่น รูปแบบอันล่างเกิดจากสายอากาศระดับครึ่งคลื่นขึงเหนือพื้นดิน1/2 ความยาวคลื่น

รูปที่ 5-4 แสดงรูปตัดขวางด้านหนึ่งในการแผ่รังสีของกระสวน

6. ขั้วไฟฟ้า

ก.ขั้วไฟฟ้าของคลื่นที่แผ่รังสีนั้น กำหนดขึ้นจากทิศทางของเส้นแรงสนามไฟฟ้า ถ้าเส้นแรงไฟฟ้าตั้ง ฉากกับพื้นโลกคลื่นนั้นก็จะมีขั้วทางดิ่ง(รูปที่5-5) ถ้าเส้นแรงไฟฟ้าขนานกับผิวพื้นโลก คลื่นนั้นจะมีขั้วทาง ระดับ(รูปที่5-6)

ข. เมื่อใช้เส้นลวดเพียงเส้นเดียวขึงเพื่อรับเอาพลังงานจากคลื่นวิทยุที่ผ่านไปการรับกำลังงานจะได้ผล สูงสุดเมื่อสายอากาศขึงให้มีทิศทางเช่นเดียวกับทิศทางขององค์ประกอบสนามไฟฟ้า เมื่อเป็นดังนั้น สายอากาศทางดิ่งก็จะรับคลื่นที่มีขั้วทางดิ่งได้อย่างมีประสิทธิผลและสายอากาศระดับก็ใช้สำหรับคลื่นที่มีขั้ว ทางระดับ

ในบางกรณี สนามแม่เหล็กไฟฟ้าจะหมุนไปขณะเมื่อคลื่นเคลื่อนไปในอากาศและภายใต้สภาพดังกล่าว นี้ทั้งองค์ประกอบทางระดับและทางดิ่งของสนามแม่เหล็กไฟฟ้าจะเปลี่ยนขั้วไปด้วย และคลื่นแบบนี้ก็ เรียกว่า คลื่นไฟฟ้าเป็นรูปวงรี

รูปที่5-5 สัญญาณขั้วดิ่ง

รูปที่5-6 สัญญาณขั้วไฟฟ้าระดับ

7. ความต้องการขั้วไฟฟ้าสำหรับความถี่ต่างๆ

ก.ณ ความถี่ปานกลางและความถี่ต่ำ(HF) การส่งด้วยคลื่นพื้นดินนั้นใช้มากและจำเป็นต้องใช้ขั้วไฟฟ้า ทางดิ่ง เส้นแรงไฟฟ้าจะตั้งได้ฉากกับพื้นดินและคลื่นวิทยุสามารถเคลื่อนที่ไปได้ไกลมากตามผิวพื้นดิน โดย มีปริมาณการลดถอยน้อยที่สุด ทั้งนี้เพราะว่าพื้นโลกจะแสดงตัวเป็นตัวนำที่ค่อนข้างดี ณ ความถี่ต่ำ สำหรับเส้นแรงไฟฟ้าระดับจะลัดวงจรไปหมด ดังนั้นการเป็นขั้วไฟฟ้าทางระดับจึงมีระยะทำงานที่ใช้ได้ผล จำกัด

ข. ณ ความถี่สูง(HF) การส่งด้วยคลื่นไฟฟ้าไม่ว่าใช้ขั้วทางดิ่งหรือขั้วทางระดับ ก็จะมีผลแตกต่างกัน แต่เพียงเล็กน้อย หลังจากคลื่นฟ้าสะท้อนกลับมาจากบรรยากาศไอโอโนแล้วก็จะไปถึงสายอากาศรับ โดย มีขั้วเป็นรูปวงรี ดังนั้นสายอากาศส่งและสายอากาศรับจะสร้างให้เป็นสายอากาศระดับหรือสายอากาศตั้งก็ ได้ อย่างไรก็ตามมักจะใช้สายอากาศระดับเพราะสามารถทำให้มีการแพร่กระจายคลื่นทำมุมทิศกับพื้นดิน ได้สูงและมีคุณสมบัติบ่งทิศในตัวเองอีกด้วย

ค.ณ ความถี่สูงมากหรือความถี่อุลตร้า(VHF,UHF) การใช้ขั้วไฟฟ้าทางระดับหรือทางดิ่งก็ได้ผลพอใช้ ทั้งนี้เนื่องจากคลื่นวิทยุเคลื่อนที่จากสายอากาศตรงไปยังสายอากาศรับ และการเป็นขั้วไฟฟ้าแต่เดิมเกิดที่ สายอากาศส่ง จะคงสภาพไว้ตลอดระยะทางที่เคลื่อนที่ ไปจนถึงสายอากาศรับ ดังนั้นถ้าส่งด้วยสายอากาศ ระดับคลื่นก็จะใช้

8. ประโยชน์ของขั้วไฟฟ้าทางดิ่ง

- ก. สายอากาศดิ่งครึ่งคลื่นแบบง่ายๆ สามารถทำการสื่อสารรอบตัว (ในทุกทิศทาง) เช่นนี้จะเป็นผล ประโยชน์เมื่อต้องการสื่อสารกับยานพาหนะที่กำลังเคลื่อนที่
- ข. เมื่อจำกัดความสูงของสายอากาศเหนือพื้นดินเพียง 10 ฟุตหรือน้อยกว่า เช่น การติดตั้งสาย อากาศบนยานยนต์ ขั้วไฟฟ้าทางดิ่งจะทำให้สัญญาณที่รับได้แรงขึ้น ณ ความถี่สูงถึงประมาณ 50 MHz จากความถี่โดยประมาณ 50 ถึง 100 MHz ก็จะมีผลดีกว่าขั้วไฟฟ้าทางระดับเพียงเล็กน้อย ในเมื่อ สายอากาศเท่ากัน ณ ความถี่สูงกว่า 100 MHz ผลต่างของความแรง ของสัญญาณเมื่อเป็นขั้วไฟฟ้าทางดิ่ง และทางระดับหลังเกือบจะไม่มีเลย
- ค. การแผ่รังสีเมื่อใช้ขั้วไฟฟ้าทางดิ่งนั้น จะเกิดการกระทบกระเทือนแต่น้อยจากการสะท้อนกลับของ สัญญาณจากเครื่องบินซึ่งกำลังบินอยู่เหนือทางส่งคลื่น แต่ถ้าขั้วไฟฟ้าทางระดับแล้ว การสะท้อนนั้นจะทำ ให้เกิดการเปลี่ยนแปลงของสัญญาณที่รับได้อย่างมาก ปัจจัยนี้มีความสำคัญในพื้นที่ซึ่งมีการจราจรของ อากาศยานหนาแน่น
- ง. เมื่อใช้ขั้วไฟฟ้าทางดิ่ง จะมีการรบกวนเกิดขึ้นแต่น้อยเมื่อจากการรับ-ส่ง การกระจายคลื่น VHF และ UHF อย่างแรงของสถานีกระจายคลื่น(โทรทัศน์และการปรุงคลื่นหาความถี่) ซึ่งสถานีเหล่านั้นใช้ ขั้วไฟฟ้าทางระดับ ปัจจัยข้อนี้มีความสำคัญต่อเมื่อขั้วสายอากาศอยู่ในบริเวณชานเมืองที่มีสถานีโทรทัศน์ และสถานีกระจายเสียง FM อยู่ด้วย

9. ประโยชน์ของขั้วไฟฟ้าทางระดับ

- ก. สายอากาศระดับครึ่งคลื่นแบบง่ายๆ แพร่คลื่นบ่งทิศ 2 ทิศทาง คุณลักษณะอันนี้เป็นประโยชน์ ถ้า ต้องการจะลดการรบกวนที่มาจากทิศทางใดที่แน่ชัด
- ข. สายอากาศระดับ รับเอาเสียงรบกวนที่เกิดจากการกระทำของมนุษย์ไว้น้อย ซึ่งตามปกติแล้วเสียง รบกวนเหล่านั้นจะเป็นขั้วไฟฟ้าทางดิ่ง
- ค. เมื่อสายอากาศตั้งอยู่ใกล้ป่าทึบ คลื่นซึ่งมีขั้วไฟฟ้าทางระดับจะสูญเสียกำลังน้อยกว่าคลื่นที่มีขั้วไฟ ฟ้าทางดิ่ง โดยเฉพาะอย่างยิ่งเมื่อมีความถี่สูงกว่า 100 MHz
- ง. การเปลี่ยนแปลงที่ตั้งของสายอากาศไปเล็กน้อยไม่เป็นเหตุให้เกิดการเปลี่ยนแปลงความเข้มของ สนามอันเกิดจากคลื่นซึ่งมีขั้วไฟฟ้าทางระดับ ในเมื่อสายอากาศนั้นขึงอยู่ระหว่างต้นไม้หรืออาคารต่างๆ แต่ถ้าขั้วไฟฟ้าทางดิ่งการเปลี่ยนแปลงที่ตั้งของสายอากาศไปเพียงไม่กี่ฟุตอาจจะทำให้เกิดผลอย่างมากต่อ ความแรงของสัญญาณที่รับได้
- จ. เมื่อใช้สายอากาศครึ่งคลื่นทางระดับแบบง่ายๆ สายส่งกำลังซึ่งจะต้องอยู่ในทิศทางดิ่งจะไม่กระทบ กระเทือนต่อตัวสายอากาศซึ่งขึงอยู่ในทางระดับ โดยการที่ให้สายอากาศตั้งฉากกับสายส่งกำลังและใช้การ เป็นขั้วไฟฟ้าทางระดับ สายส่งกำลังนั้นจะแยกออกจากสนามแท้จริงของสายอากาศ ผลที่เกิดขึ้นในทาง

ปฏิบัติก็คือ รูปแบบการแผ่รังสีและคุณลักษณะทางไฟฟ้าของสายอากาศก็จะไม่ถูกกระทบกระเทือนโดยการ ส่งกำลังที่มีอยู่นั้นเลย

10. สายอากาศรับ

- ก. สายอากาศตั้ง ซึ่งเป็นสายอากาศรับสัญญาณวิทยุได้เท่ากันโดยรอบตัวจากทิศทางระดับ ซึ่งเช่น เดียวกับสายอากาศส่งชนิดดิ่ง ซึ่งแผ่รังสีออกรอบตัวทางระดับเพราะคุณลักษณะอันนี้สถานีอื่นๆ ซึ่งทำงาน ณ ความถี่เดียวกัน หรือใกล้เคียงกันจึงอาจรบกวนกับสัญญาณที่ต้องการรับได้ และทำให้ไม่สามารถรับ สัญญาณได้หรือรับได้ด้วยความลำบาก อย่างไรก็ตามการรับสัญญาณที่ต้องการอาจปรับปรุงให้ดีขึ้นได้โดย การใช้สายอากาศบ่งทิศ
- ข. สายอากาศระดับครึ่งคลื่น รับสัญญาณได้รอบทิศเว้นแต่สองทิศที่อยู่ในแนวเส้นตรงของปลายสาย อากาศ ดังนั้นเมื่อมีสัญญาณแต่เพียงหนึ่งสัญญาณที่ทำให้เกิดการรบกวนขึ้น หรือเมื่อสัญญาณรบกวน หลายๆ สัญญาณมาจากทิศเดียวกัน ฉะนั้นอาจขจัดหรือลดการรบกวนลงได้โดยเปลี่ยนทิศของสาย โดยให้ ปลายสายอากาศหันไปทางสถานีรบกวนนั้น

11. การบ่งทิศ

การสื่อสารด้วยวงจรวิทยุสำเร็จได้ก็ต่อเมื่อสัญญาณที่รับได้มีความแรงมากพอที่จะทับสัญญาณและ เสียงรบกวนที่ไม่ต้องการ หรืออีกนัยหนึ่งเครื่องรับจะต้องอยู่ในระยะการทำงานของเครื่องส่ง ประสิทธิผล ของการสื่อสารระหว่างสถานีวิทยุอาจจะเพิ่มขึ้นได้ โดยการเพิ่มกำลังของเครื่องส่ง เปลี่ยนแบบของการ ปล่อยคลื่น(ตัวอย่างเช่น เปลี่ยนจากวิทยุไปใช้ความถี่ที่ไม่ถูกดูดซึมได้ง่าย วิทยุโทรศัพท์เป็นวิทยุโทรเลข) เปลี่ยนหรือใช้สายอากาศบ่งทิศให้มากขึ้น ในการสื่อสารจากจุดหนึ่งถึงจุดนั้นการเพิ่มการบ่งทิศของระบบ สายอากาศมักจะทำให้ประหยัดมากยิ่งขึ้น สายอากาศบ่งทิศรวมการแผ่รังสีในทิศทางที่กำหนดให้และลด การแผ่รังสีในทิศทางอื่นลงน้อยที่สุด สายอากาศบ่งทิศอาจใช้เพื่อลดการดักรับของข้าศึก และลดการ รบกวนของสถานีฝ่ายเดียวกัน

ตอนที่ 2 สมรรถนะของสายอากาศ

1. กล่าวทั่วไป

- ก. เนื่องจากในทางปฏิบัติ สายอากาศตั้งอยู่เหนือพื้นดินและมิได้ขึ้นไปอยู่ในอากาศอิสระ และการอยู่ ที่ใกล้พื้นดินนี่เองอาจจะเปลี่ยนรูปแบบการแผ่รังสีของสายอากาศให้ผิดไปจากรูปแบบในอากาศอิสระ และ พื้นดินก็ยังอาจมีผลกระทบกระเทือนต่อลักษณะทางไฟฟ้าของสายอากาศอีกด้วย
- ข. โดยทั่วไปแล้วพื้นดินมีผลอย่างมากต่อสายอากาศ ซึ่งจำเป็นต้องตั้งอยู่ค่อนข้างใกล้พื้นดิน โดยคิด ความสูงเป็นกี่ความยาวคลื่น ตัวอย่างเช่น สายอากาศสำหรับความถี่ปานกลาง(MF) และความถี่สูง(HF) นั้น จะตั้งอยู่เหนือพื้นดินเป็นเศษส่วนของความยาวคลื่นเท่านั้น ก็จะมีรูปแบบการแผ่รังสีซึ่งแตกต่างไปจาก รูปแบบในอวกาศอิสระอย่างมาก

2. สายอากาศต่อดิน

- ก. พื้นดินเป็นตัวนำซึ่งค่อนข้างดีสำหรับความถี่ปานกลาง(MF) และความถี่ต่ำ(LF) และจะเป็นเสมือน กระจกเงาบานใหญ่สำหรับกำลังงานที่แผ่รังสีออกไป และจากผลอันนี้เองทำให้พื้นดินสะท้อนกำลังงาน จำนวนมากซึ่งแผ่รังสีลงมาจากสายอากาศซึ่งตั้งอยู่เหนือพื้นดินส่วนนั้น
- ข. การใช้ประโยชน์จากลักษณะของพื้นดิน ทำให้สายอากาศซึ่งยาวเพียง 1/4 ช่วงคลื่นเป็นเสมือน สายอากาศครึ่งคลื่นได้ ในเมื่อสายอากาศนั้นตั้งดิ่งและปลายล่างของสายอากาศทำการต่อไฟฟ้ากับพื้นดิน (รูปที่31) สายอากาศ1/4ช่วงคลื่นก็จะทำงานเหมือนสายอากาศครึ่งคลื่น เพราะว่าภายในสภาพการณ์

เหล่านี้พื้นดินก็จะทำหน้าที่แทน1/4ช่วงคลื่นที่ขาดไป และการสะท้อนจะจ่ายกำลังงานแผ่รังสีส่วนนั้น ซึ่ง ตามปกติแล้วจะต้องจ่ายโดยส่วนครึ่งล่างของสายอากาศครึ่งคลื่นที่ไม่ได้ต่อดิน

รูปที่ 5-7 สายอากาศ 1/4 ช่วงคลื่นต่อดิน

3. ชนิดของพื้นดิน

ก. เมื่อใช้สายอากาศต่อดินแล้วสิ่งสำคัญเป็นพิเศษก็คือพื้นดินจะต้องมีความนำไฟฟ้าสูงเท่าที่จะทำได้ ซึ่งจะทำให้ความสูญเสียเนื่องจากดินลดลง และทำให้มีพื้นผิวการสะท้อนกำลังงานแผ่รังสีลงมาสายอากาศ ให้ดีที่สุดเท่าที่จะดีได้ ณ ความถี่ต่ำและปานกลาง พื้นดินเป็นตัวนำที่ดีพอสมควร และการต่อดินจะต้องทำ ในลักษณะที่เกิดความต้านทานน้อยที่สุดเท่าที่จะทำได้ ณ ความถี่สูงๆ ดินเทียมซึ่งสร้างขึ้น จากแผ่นโลหะ ขนาดใหญ่ทำหน้าที่ได้เช่นเดียวกัน

ข. การต่อดินนั้นทำได้หลายแบบ ทั้งนี้ขึ้นอยู่กับแบบของการติดตั้งและความสูญเสียที่จะยอมให้ได้ เพียงใด ในการติดตั้งง่ายๆ ในสนามนั้นการต่อดินทำได้โดยการใช้แท่งโลหะแท่งหนึ่งหรือหลายแท่งปักลงไป เมื่อได้ดำเนินการหลายอย่างแล้วก็ยังไม่ได้ผล สิ่งที่อาจจะทำได้ก็คือต่อดินกับสิ่งที่เป็นสื่อใดๆ ที่มีอยู่ซึ่งต่อ ลงดินอยู่แล้ว โครงสร้างโลหะหรือระบบท่อใต้ดิน โดยธรรมดาแล้วก็ใช้เป็นการต่อลงดินได้ ในภาวะฉุกเฉิน การต่อนี้ทำได้โดยการดาบปลายปืนปักลงในพื้นดิน

ค. เมื่อจะต้องตั้งสายอากาศบนดินที่มีความนำไฟฟ้าต่ำมาก ขอแนะนำให้ดำเนินการกับพื้นดินโดย ตรงเพื่อลดความต้านทานของดินลง อาจจะผสมดินนั้นกับผงถ่านหินจำนวนหนึ่งเพื่อความมุ่งหมายนี้ก็ได้ หรืออาจจะเติมวัตถุบางอย่างที่มีความนำไฟฟ้าสูง ในลักษณะที่เป็นน้ำยาวัตถุเหล่านั้นเรียงตามลำดับความดี เลวของมันคือ โซเดียมคลอไรด์(เกลือธรรมดา) แคลเซียมคลอไรด์ คอปเปอร์ซัลเฟต(จุลสี) แม็กนีเซียม ซัลเฟต(ดีเกลือ) และโปแตสเซียมในเตรท(ดินปะสิว) ปริมาณที่ต้องใช้นั้นขึ้นอยู่กับชนิดของดินและ ความชื้นของดิน

<u>ข้อควรระวัง</u> เมื่อใช้วัสดุเหล่านี้หัวข้อสำคัญก็คือว่าอย่าใช้วัสดุเหล่านี้ไหลลงไปในบ่อน้ำดื่มที่อยู่ ใกล้เคียงได้

ง. การติดตั้งง่ายๆ หลักดินเดี่ยวหลักหนึ่งอาจจะทำขึ้นจากท่อน้ำหรือโลหะอื่น สิ่งที่สำคัญก็คือ จะต้องต่อสายดินกับหลักดินให้มีความต้านทานแต่น้อย หลักดินจะต้องทำให้สะอาดโดยการเกลา และใช้กระดาษทรายขัดตรงที่ๆ จะต่อ และต่อด้วยเหล็กหนีบที่สะอาด แล้วบัดกรีหรือเชื่อมสาย ดินเข้ากับข้อต่อ และจะต้องพันด้วยผ้าพันสายเพื่อป้องกันมิให้มีความต้านทานสูงขึ้นเนื่องจากเป็น สนิม

4. สายดินเทียม(COUNTERPOISE)

ก. เมื่อไม่สามารถต่อดินจริงๆ ได้ เพราะว่าดินมีความต้านทานสูงหรือเพราะว่าระบบการฝังสายดิน ขนาดใหญ่ทำได้ไม่สะดวก อาจใช้สายดินเทียมแทนการต่อตามปกติได้ ซึ่งการต่อดินตามปกติมี กระแสไฟฟ้าไหลไปมาระหว่างสายอากาศและดินได้จริงๆ สายดินเทียม (รูปที่ 5-8) ประกอบด้วย

โครงสร้างซึ่งทำด้วยเส้นลวด ซึ่งวางอยู่เหนือพื้นดินเล็กน้อยและหุ้มฉนวนมิให้สัมผัสดินได้ ขนาด ของสายดินเทียมอย่างน้อยที่สุดจะต้องโตกว่าขนาดของที่เลือกแล้วของสายอากาศ

- ข. เมื่อตั้งสายอากาศในทางดิ่ง การทำสายดินเทียมให้มีรูปแบบทางเรขาง่ายๆ เช่นตามรูปที่ 5-8 ไม่ต้องการที่จะให้มีรูปสมส่วนกันอย่างสมบูรณ์แบบ แต่สายดินเทียมก็จะต้องกระจายออกไป โดยมี ระยะทางเท่ากันในทุกทิศทางจากตัวสายลากได้
- ค. การติดตั้งสายอากาศความถี่สูงมากบางแบบบนยานยนต์ อาจใช้หลังคาโลหะนั้นเป็นสายดิน เทียมก็ได้
- ง. สายดินเทียมขนาดเล็กซึ่งทำด้วยตาข่ายโลหะ อาจใช้กับสายอากาศ VHF ขนิดพิเศษ ใน บางครั้งจะต้องวางไว้ให้มีระยะห่างมากเหนือพื้นดิน สายดินเทียมนี้จะทำหน้าเป็นดินเทียมซึ่งจะช่วยให้เกิด รูปแบบการแผ่รังสีตามต้องการได้

รูปที่ 5-8

5. ฉากดิน (GROUND SCREEN)

- ก. ฉากดิน ประกอบด้วยตาข่ายโลหะหรือฉากโลหะ ซึ่งมีพื้นที่ค่อนข้างกว้างใหญ่วางอยู่บนผิวพื้นดิน ใต้สายอากาศ มุ่งหมายเพื่อทำพื้นดินจำลองขึ้นโดยให้มีผลเป็นดินที่มีความนำไฟฟ้าอย่างสมบูรณ์ให้ สายอากาศนั้น
 - ข. การใช้ฉากดินจะเกิดข้อดีโดยเฉพาะสองประการคือ
- 1) ฉากดินจะลดการสูญเสียเนื่องจากการดูดซึมของดิน ในเมื่อสายอากาศนั้นตั้งอยู่พื้นดินที่มีความนำ ไฟฟ้าเลว
- 2) ความสูงของสายอากาศจากพื้นดินจะทำให้แน่นอนขึ้น ยังผลคืออาจจะกำหนดความต้านทานการ แผ่รังสีของสายอากาศได้ และทำนายรูปแบบการแผ่รังสีของสายอากาศได้แน่นอนยิ่งขึ้น

ตอนที่ 3 แบบของสายอากาศ

1. กล่าวทั่วไป

ก.สายอากาที่ใช้ส่งวิทยุมีอยู่หลายแบบและหลายขนาด และยังมีสายอากาศที่มีแบบทางไฟฟ้าแตกต่างกัน อีกมากมาย ในการกำหนดว่าจะใช้สายอากาศใด ขนาดใดและรูปร่างอย่างไรนั้น มีปัจจัยบางประการดังนี้

- 1) ความถี่ใช้งานของเครื่องส่ง
- 2) กำลังที่แผ่รังสีออกไป
- 3) ทิศทางโดยทั่วไปของเครื่องรับคู่สถานี
- 4) ขั้วไฟฟ้าที่ต้องการ
- 5) ประโยชน์ที่ต้องการใช้สายอากาศเพื่อประโยชน์อย่างไร ก.แบบต่างๆ ของสายอากาศส่ง(แสดงไว้ในรูปที่ 5-9)
- 1) รูป A คือ สายอากาศแบบสาย-ยาง ไม่ก้อง ซึ่งใช้ในการติดตั้งสถานีประจำถิ่นขนาดใหญ่
- 2) รูป B คือ สายอากาศแบบเฮิร์ซครึ่งคลื่น ซึ่งส่งกำลังด้วยสายส่งกำลังจากเครื่องส่ง
- 3) รูป C คือ สายอากาศมาโคนี ดัดแปลง ตั้งดิ่ง ป้อนกำลังทางปลายหรือเรียกอีกอย่างหนึ่งว่า สายอากาศ แบบแส้
- 4) รูป D คือ สายอากาศวงรอบ ซึ่งแผ่รังสีโดยมีสัญญาณแรงในบางทิศทาง และเกือบจะไม่มีสัญญาณเลยใน ทิศทางอื่นๆ
- 5) รูป E คือ สายอากาศแบบมาโคนี
- 6) รูป F คือ สายอากาศแบบเฮิร์ซครึ่งคลื่น ซึ่งป้อนกำลังโดยสายส่งกำลังจากเครื่องส่ง
- 7) รูป G คือ ตัวแผ่รังสี ใช้สำหรับสถานีประจำที่ ซึ่งมีความสูงเป็นร้อยๆ ฟุต
- ข. สายอากาศที่ใช้ในทางปฏิบัติ จะต้องใช้อย่างใดอย่างหนึ่งใน 2 ประเภท คือ สายอากาศแบบ เฮิร์ซหรือสายอากาศแบบมาโคนี สายอากาศแบบเฮิร์ซทำงานได้โดยขึ้งไว้เหนือพื้นดินสูงพอสมควร และ อาจเป็นทั้งทางดิ่งและทางระดับ สายอากาศแบบมาโคนีทำงานได้โดยต่อปลายข้างหนึ่งลงดิน(ตามปกติ แล้วงต่อลงดินจากทางออกของเครื่องส่ง หรือทางขดลวดประกับที่ปลายข้างหนึ่งของสายป้อนกำลัง) สายอากาศแบบเฮิร์ซนี้ใช้โดยทั่วไปสำหรับความถี่สูงๆ (มากกว่า 2 MHz)ส่วนสายอากาศแบบมาโคนีนั้นใช้ โดยทั่วไป ณ ความถี่ต่ำ สายอากาศมาโคนีเมื่อใช้ในยานยนต์ จะกลายเป็นดินที่ดีสำหรับสายอากาศไป

รูปที่ 5-9

2. สายอากาศเฮิร์ซ

ก. สายอากาศเฮิร์ซปฏิบัติงานได้โดยขึ้นกับหลักความจริงที่ว่า สายตัวนำใดจะปรับตัวให้เหมาะกับ ขนาดความยาวคลื่นเท่าใดนั้นขึ้นอยู่โดยตรงกับความยาวของสายตัวนำนั้น สายตัวนำซึ่งเป็นตัวแผ่รังสีจะ ปรับตั้งได้ในตัวเอง ไม่จำเป็นต้องอาศัยพื้นดินหรือแผ่นตัวนำใดเลย เมื่อเป็นดังนั้นสายอากาศเฮิร์ซจะตั้งที่ ใดก็ได้ โดยจะมีการรบกวนได้น้อยจากผลของสิ่งต่างๆ บนพื้นดิน เช่น อาคารและพุ่มไม้เตี้ยๆ

ข. สายอากาศเฮิร์ซแบบมูลฐาน เป็นสายตัวนำเดี่ยวซึ่งมีความยาวเท่ากับประมาณครึ่งของ ความยาวคลื่นของสัญญาณที่จะส่งออกไป สายอากาศชนิดนี้มีชื่อเรียกอีกอย่างหนึ่งว่าสายอากาศ ดับเบลท ไดโพล ไม่ต่อดินหรือสายอากาศแบบครึ่งคลื่นซึ่งสามารถขึงกางในทางดิ่ง ในทางระดับหรือ ในทางเฉียงก็ได้

ค. สายอากาศเฮิร์ซป้อนตรงกลางแบบครึ่งคลื่น ซึ่งใช้เสมอในทางทหาร มี 2 แบบดังแสดงในรูป 34 และ 35 สายอากาศเหล่านี้ใช้สำหรับการส่งและรับสัญญาณซึ่งมีความถี่อยู่ระหว่าง 1.5 MHz ถึง 18 MHz

รูปที่ 5-10

รูปที่ 5-11

3. สายอากาศแบบมาโคนี

- ก. ถ้าใช้พื้นราบที่เป็นสื่อที่กว้างใหญ่แทนครึ่งล่างของสายอากาศเฮิร์ซแบบดิ่งแล้วก็ไม่มีการรบกวน เกิดขึ้นในคลื่นที่แพร่กระจายออกไปครึ่งบนของสายอากาศ หรือพูดอีกนัยหนึ่งก็คือ สายอากาศ1/4ช่วงคลื่น ที่เหลือนั้นคงแพร่คลื่นได้มากเช่นเดียวกับสายอากาศครึ่งคลื่น ทั้งนี้เนื่องจากที่มีพื้นที่ราบเป็นสื่อกว้างใหญ่ มาประกอบเข้านั่นเอง วิธีการปฏิบัติที่ทำให้เกิดการแผ่รังสีระบบนี้ก็คือ สายอากาศมาโคนีซึ่งตัว สายอากาศมีความยาว 1/4ช่วงคลื่นพอดี และพื้นดินจะทำให้มีอีก 1/4ช่วงคลื่น ความยาวที่ใช้งาน(หรือ ความยาวทางไฟฟ้า) ทั้งหมดจะเป็นครึ่งช่วงคลื่น
- ข. การที่จะสร้างพื้นราบที่เป็นสื่อนั้น มิใช่ทำได้ง่ายๆ เ สมอไปทั้งนี้เนื่องจากพื้นโลกบางแห่งก็แห้งและ เต็มไปด้วยทราย และถ้าเข้าไปในกรณี นี้แล้ว ก็ต้องใช้สายดินเทียม
- ค. ประโยชน์ประการสำคัญของสายอากาศมาโคนี คือ ไม่ว่าความถื่ใดๆ ของสายอากาศสั้นกว่า สายอากาศเฮิร์ซ เรื่องนี้สำคัญเฉพาะการติดตั้งวิทยุในสนามหรือบนยานยนต์สายอากาศมาโคนีแบบหลักๆ ก็ คือ แบบแอลกลับ แบบแส้ แบบพื้นดินเทียม(GROUND PLANE)และแบบพื้นดินเทียมดัดแปลง

4. แบบแอล-กลับ(INVERTED-L ANTENNA)

ก.สายอากาศแบบแอล-กลับ เป็นสายอากาศต่อดินส่วนหนึ่งของสายอากาศขึ้งในแนวระดับ ส่วนที่ ขึ้งทางระดับหรือตามทางราบนี้ค่อนข้างยาวและมีส่วนดิ่ง ส่วนนี้เป็นส่วนสำคัญในการแผ่รังสี ต่อกับปลาย ด้านหนึ่งของส่วนระดับความยาวของสายอากาศวัดจากปลายข้างหนึ่งของส่วนระดับไปจนถึงปลายของส่วน ดิ่งที่ต่ออยู่กับเครื่องส่ง

ข.สำหรับการแพร่กระจายคลื่นพื้นดิน ส่วนตั้งแผ่รังสีพื้นดินเกือบทั้งหมด แต่ส่วนราบทำหน้าที่เป็น ภาระด้านบน(TOPLOADING) สำหรับการแพร่กระจายคลื่นฟ้าระยะใกล้นั้น ส่วนระดับจะแผ่รังสีออกอย่าง ได้ผล ส่วนดิ่งทำหน้าที่เป็นเพียงแต่สายต่อเท่านั้น สำหรับการแพร่กระจายคลื่นฟ้าระยะปานกลางทั้งส่วน จะแผ่รังสีด้วยกัน

ค.ความมุ่งหมายของระบบสายอากาศแบบแอล-กลับ เพื่อให้สามารถปฏิบัติงานได้ผล ในเมื่อไม่ สะดวกในการตั้งเสาอากาศดิ่งให้สูงได้ เรื่องนี้จำเป็นเฉพาะในการปฏิบัติงานในเมื่อต้องการใช้ความถี่ต่ำๆ

ง.สายอากาศแบบแอล-กลับ ซึ่งแสดงในรูป 5-12 เป็นแบบที่ทหารใช้อย่างแพร่หลาย สายอากาศนี้ ประกอบด้วยสายอากาศเส้นเดี่ยวซึ่งจะใช้สายอากาศนี้เป็นสายอากาศครึ่งคลื่น(4-8 MHz) หรือสายอากาศ เสี้ยวคลื่นก็ได้(2-4 MHz)

รูปที่ 5-12

5. สายอากาศพื้นดินเทียม(GROUND PLANE ANTENNA)

แบบหนึ่งของสายอากาศพื้นดินเทียม(รูปที่ 5-13) ประกอบด้วยตัวแผ่รังสีทางดิ่ง ยาว1/4ช่วงคลื่นและ พื้นดินเทียมติดอยู่ด้วย พื้นดินเทียมนี้ประกอบด้วยพื้นดินเทียม 3 ส่วนทำมุม 142 องศากับส่วนที่ตั้งดิ่ง(ตัว สายอากาศ) ส่วนต่างๆ เหล่านี้อาจจะเรียกว่า สายดินเทียมก็ได้

ก. สายอากาศพื้นดินเทียมนั้นใช้เพื่อต้องการให้แผ่รังสีหรือรับคลื่นในทางระดับโดยรอบตัว ประโยชน์ที่สำคัญของสายอากาศนี้ก็คือสามารถขยายระยะของเครื่องวิทยุสนามซึ่งมีความถื่อยู่ระหว่าง 20–70 MHz ออกไปอีก สายอากาศแบบนี้ต้องตั้งให้สูงเพื่อลดความสูญเสียเนื่องจากพื้นดินให้น้อยที่สุด

รูปที่ 5-13 สายอากาศพื้นดินเทียม

6. สายอากาศแส้

ก.สายอากาศแส้ (รูปที่ 5-14) เป็นสายอากาศที่แพร่หลายที่สุดซึ่งใช้สำหรับการสื่อสารประเภทวิทยุทาง ยุทธวิธีในระยะทางใกล้ๆ คำว่าสายอากาศแส้ใช้เรียกการแผ่รังสีซึ่งอ่อนตัวได้ที่ใช้ร่วมกับเครื่องวิทยุชนิด หอบหิ้วไปได้หรือเคลื่อนที่ได้

ข.สายอากาศแส้ ส่วนมากทำจากแท่งโลหะกลวงเป็นท่อนๆ สามารถแยกออกได้เมื่อใช้ และด้วยวิธีนี้เอง สายอากาศจะมีความยาวน้อยที่สุดในขณะเคลื่อนที่ และนำไปมาได้สะดวกขึ้น ในเครื่องวิทยุชนิดหอบหิ้ว น้ำหนักเบา บาง ชนิดสายอากาศสามารถหดลงไปในเครื่องวิทยุได้หมด ดังนั้นจึงมองไม่เห็นสายอากาศเลย

ค.มีอยู่หลายโอกาสที่สายอากาศแบบแส้จะอยู่บนยานยนต์โดยให้มีความยาวเต็มที่ ทั้งนี้เพื่อให้สามารถ ใช้ได้ทันทีในขณะที่ยานยนต์เคลื่อนที่ ฉนวนที่ติดตั้งสายอากาศแส้ติดอยู่กับแนบขดซึ่งประกอบเข้า กับเหล็กฉากรองรับบนยานยนต์ ฐานแหนบที่ทำให้สายอากาศแส้ลู่ไปทางราบได้ ดังนั้นจึงสามารถขับยาน ยนต์ให้ลอดสะพานหรือเครื่องกีดขวางต่ำๆ ได้ เมื่อสายอากาศกระทบสิ่งกีดขวางสายอากาศแส้จะไม่หัก เพราะว่าฐานแหนบจะรับแรงกระแทกไว้ทั้งหมด

คำเตือน เมื่อปล่อยสายอากาศมีความยาวเต็มที่ในขณะเคลื่อนที่นั้นจะต้องหลีกเลี่ยงมิให้กระทบกับ สายไฟฟ้าเป็นอันขาด อาจเป็นอันตรายหรือบาดเจ็บสาหัส ถ้าสายอากาศซึ่งติดตั้งบนยานยนต์ดูดเข้ากับ สายไฟแรงสูง

ง.เมื่อตั้งสายอากาศแส้บนยานยนต์ ส่วนที่เป็นโลหะของยานยนต์นั้นจะกระทบกระเทือนการ ปฏิบัติงานของสายอากาศด้วย ผลก็คือทำให้ทิศทางที่ของยานยนต์พ้นไปนั้นอาจ กระทบกระเทือนการส่งและรับสัญญาณ โดยเฉพาะอย่างยิ่งเมื่อระยะทางไกลหรือใกล้ สัญญาณอ่อน

จ.สายอากาศที่ตั้งอยู่ด้านหลังข้างซ้ายของยานยนต์จะส่งสัญญาณแรงที่สุดในแนวทางตรงจาก สายอากาศผ่านไปทางด้านหน้าข้างขวา(รูปที่ 5-15) ในทำนองเดียวกันสายอากาศที่ตั้งอยู่ด้านขวาของยาน ยนต์จะแผ่รังสีที่มีสัญญาณแรงที่สุดในทิศทางตรงไปด้านหน้าทางซ้าย การรับที่ดีที่สุดจะได้จากสัญญาณที่ เคลื่อนไปมาในทิศทางที่แสดงไว้เป็นเส้นประ

ฉ.ในบางกรณีอาจหาทิศทางที่ดีที่สุดได้โดยวิ่งรถเป็นวงกลมเล็กๆ จนกระทั่งหาได้ว่าตรงจุดไหน ได้รับที่ดีที่สุด โดยปกติแล้วทิศทางที่รับจากสถานีปลายทางได้ดีที่สุดก็จะเป็นทิศทางที่ส่งออกไปได้ดีที่สุด เช่นกัน

รูปที่ 5-15 ทิศทางที่ดีที่สุดของสายอากาศแบบแส้ติดตั้งบนยานยนต์

7. สายอากาศหุ่น (DUMMY ANTENNA)

การใช้สายอากาศซึ่งแผ่รังสีได้นั้น อาจจะเป็นการแสดงที่ตั้งเครื่องส่งให้ข้าศึกทราบได้โดยการหา ทิศด้วยวิทยุ และอาจดก่อให้เกิดการรบกวนสถานีอื่นซึ่งปฏิบัติงาน ณ ความถี่เดียวกัน เพื่อขจัดมิให้มีเสียง สัญญาณส่งออกซึ่งอาจจะออกอากาศไปได้โดยมิได้รับอนุญาต ดังนั้นบางครั้งต้องใช้สายอากาศหุ่น สายอากาศหุ่นนี้จะทำหน้าที่เป็นภาระของเครื่องส่งโดยไม่มีการแผ่รังสีสัญญาณออกไป สายอากาศหุ่นนั้น โดยทั่วไปจะประกอบด้วยตัวต้านทานที่ไม่มีความเหนี่ยวนำ ซึ่งมีความทางสูงพอที่จะดูดซึมกำลังงานจาก เครื่องส่งและทำให้เกิดความร้อนกระจายหายไป สายอากาศหุ่นบางชนิดจะมีมาตรวัดกำลัง(WATTMETER) ของเครื่องวิทยุอยู่ด้วยเพื่อตรวจสอบกำลังออกอากาศของคลื่นวิทยุจากเครื่องส่ง

ตอนที่ 4 สายอากาศแสวงเครื่อง

1. สายอากาศฉุกเฉินหรือเร่งด่วน

บางคราวสายอากาศหักหรือเสียหาย เป็นเหตุให้ขาดการสื่อสารหรือการสื่อสารไม่ดี ถ้ามีฐานเสา อากาศอะไหล่ก็จะใช้ทดแทนสายอากาศที่เสียหายได้ เมื่อไม่มีอะไหล่ก็จำเป็นต้องทำสายอากาศฉุกเฉินขึ้น ข้อแนะนำต่อไปนี้ช่วยในการสร้างสายอากาศฉุกเฉิน

- ก. ข้อแนะนำทั่วไป
- 1) สายลวดที่ดีที่สุดที่จะทำสายอากาศนั่นคือ ทองแดงหรืออลูมีเนียม แต่ในยามฉุกเฉินใช้สายลวด ชนิดใดที่มีอยู่ก็ได้
- 2) ความยาวที่ถูกต้องของสายอากาศนั้นถือว่าสำคัญ ดังนั้นความยาวของสายอากาศฉุกเฉินที่จะนำไปแทน จึงควรเท่ากับความยาวของสายอากาศเดิม
- 3) สายอากาศที่ยึดอยู่กับต้นไม้ โดยปกติแล้วจะทนทานต่อพายุแรงๆ ได้ ถ้าใช้ต้นไม้ที่มีลำต้นหรือกิ่งไม้กิ่ง ใหญ่ๆ เป็นที่ยึดเหนี่ยว เพื่อรักษามิให้สายอากาศตึงมากเกินไปและป้องกันมิให้ขาดหรือยืด เมื่อต้นไม้โอน เอนให้ต่อสปริงปอกรองในเก่าๆ เข้ากับปลายข้างหนึ่งสายอากาศ หรือเอาเชือกร้อยเข้าในลูกลอกหรือห่วง กลมแล้วผูกปลายเชือกไว้กับสายอากาศ ส่วนปลายเชือกอีกปลายหนึ่งถ่วงไว้ด้วยของหนักๆ เพื่อรักษาให้ สายอากาศตึงอยู่เสมอ
- 4) สายหนวดพราหมณ์ที่ใช้ยึดเสาอากาศทำด้วยเชือกหรือลวดเพื่อให้แน่ใจว่าลวดหนวดพราหมณ์จะไม่ กระทบกระเทือนการปฏิบัติงานของสายอากาศ ให้ตัดลวดออกเป็นเส้นสั้นๆ หลายๆ เส้นแล้วนำมาต่อกัน โดยมีฉนวนคั่น
- ข. ประสิทธิภาพของสายอากาศ สายอากาศเร่งด่วนอาจเปลี่ยนแปลงสมรรถนะของเครื่องวิทยุได้ มีวิธีง่ายๆ ที่จะใช้เพื่อหาว่าสายอากาศเร่งด่วนทำงานได้ถูกต้องกหรือไม่
- 1) ใช้เครื่องรับด้านปลายทางทดสอบสายอากาศ ถ้าสัญญาณที่ได้รับจากสถานีแรงแสดงว่าสายอากาศ ทำงานได้ผลดี ถ้าสัญญาณที่รับได้อ่อนให้ปรับความสูงและความยาวของสายอากาศและสายอากาศกำลัง จนกระทั่งได้รับสัญญาณแรงที่สุด โดยตั้งปุ่มควบคุมความดังไว้ที่เดิม
- 2) ชุดวิทยุบางชุดใช้เครื่องส่งเพื่อปรับสายอากาศ ขั้นแรกตั้งปุ่มควบคุมที่เครื่องส่งให้อยู่ในตำแหน่งที่ เหมาะสมสำหรับการปฏิบัติงานปกติ แล้วปรับตั้งระบบการส่ง โดยการปรับความสูงของสายอากาศ ความ ยาวของสายอากาศและความยาวของสายส่งกำลัง เพื่อให้ได้กำลังออกให้ดีที่สุด

คำเตือน อาจบาดเจ็บสาหัสหรือถึงตายเมื่อสัมผัสกับสายอากาศของเครื่องส่งที่มีกำลังปานกลาง หรือกำลังสูง ให้ปิดไฟเครื่องส่งขณะที่เครื่องทำการปรับสายอากาศ

2. การซ่อมสายอากาศแส้

เมื่อสายอากาศหักเป็นสองท่อน ท่อนที่หักถอดออกมาอาจต่อเข้ากับท่อนที่ติดตั้งอยู่บนฐานโดยการ เชื่อมต่อท่อนทั้งสองเข้าด้วยกันดังรูปที่ 5-16 ใช้วิธีเชื่อมต่อดังแสดงไว้ในรูปที่ 5-16A เมื่อส่วนทั้งสองของ สายอากาศที่หักยังมีอยู่และใช้งานได้ใช้วิธีเชื่อมต่อดังแสดงไว้ในรูปที่ 5-16B เมื่อส่วนที่หักออกของ สายอากาศหล่นหายไปหรือเสาอากาศแล้นั้นเสียหายอย่างมากจนไม่สมควรที่จะนำไปใช้อีก เพื่อที่จะซ่อม สายอากาศให้มีสภาพความยาวตามเดิมของมันให้เพิ่มสายลวดที่มีความยาวเท่ากับส่วนของสายอากาศแล้ที่ หายไปแล้ว ผู้มัดเหล็กค้ำเพื่อยึดส่วนทั้งสองของสายอากาศต่อกันได้แน่น ทำความสะอาดส่วนทั้งสองของ สายอากาศให้ทั่วก่อนที่จะต่อสายอากาศเข้ากับหลักยึด ถ้าทำได้ก็ให้บัดกรีรอยต่อให้แน่น

3. การซ่อมสายอากาศเส้นลวด

การซ่อมสายอากาศเส้นลวดเร่งด่วน อาจจัดได้เป็นสองประเภทคือ การซ่อมเปลี่ยนเส้นลวดซึ่งใช้เป็น ตัวสายอากาศ หรือสายส่งกำลังและการซ่อมหรือเปลี่ยนอุปกรณ์ประกอบชุดที่ใช้ขึ้งลวดสายอากาศ

ก.เมื่อเส้นลวดหนึ่งหรือหลายเส้นที่ประกอบเป็นสายอากาศขาด อาจซ่อมสายอากาศได้ด้วยการต่อเส้น ลวดที่ขาดเหล่านั้น ทำได้โดยลดเสาอากาศลงมายังพื้นดิน ทำความสะอาดผิวเส้นลวดแล้วบิดเกลียวเส้น ลวดเข้าด้วยกันและถ้าทำได้ก็ให้บัดกรีรอยต่อนั้นด้วย

รูปที่ 5-16 การซ่อมฉุกเฉิน

ข.ถ้าสายอากาศเสียหายมากจนซ่อมไม่ได้ ก็ให้ใช้สายอากาศเส้นอื่นแทน ต้องแน่ใจว่าสายอากาศ ที่มาแทนนั้นมีความยาวโดยประมาณเท่ากับสายอากาศเดิม

4. การซ่อมอุปกรณ์ยึดสายอากาศ

อุปกรณ์ยึดสายอากาศ ต้องซ่อมหรือเปลี่ยนในลักษณะเดียวกับสายอากาศ อาจจะใช้อุปกรณ์บาง รายการเพื่อแทนอุปกรณ์ที่เสียหายและจะทำด้วยวัสดุใดๆ ก็ได้ ที่มีความแข็งแรงพอเพียงและมีความเป็น ฉนวนอย่างเหมาะสม

ก.ฉนวน ตามปกติสายอากาศจะขึ้งอยู่ระหว่างสายยึดสองเส้น ซึ่งต่ออยู่กับเสา,ต้นไม้หรือสิ่งก่อสร้าง โดยธรรมดาสายยึดจะเป็นเส้นลวดหรือเชือกที่มีฉนวนทำด้วยกระเบื้องหรือแก้ว เพื่อแยกสายอากาศกับ สายยึดไม่ให้ต่อกันทางไฟฟ้า ถ้าฉนวนแตกและฉนวนอะไหล่ก็ไม่มี อาจใช้ไม้แห้งแทนฉนวนนั้นก็เป็นผลดี รูปที่ 5-17 แสดงวิธีการทำฉนวนฉุกเฉินด้วยไม้สองวิธี ถ้าใช้เชือกเป็นเส้นสายรั้งสายอากาศและสายเชือก นั้นแห้งก็อาจต่อเข้าโดยตรงกันกับลวดสายอากาศได้เลย แต่ถ้าเชือกนั้นมีลวดโลหะประกอบอยู่เพื่อให้เกิด ความแข็งแรงทางกลศาสตร์ก็ต้องใช้ฉนวนด้วย

รปที่ 5-17 ฉนวนแสวงเครื่อง

ข้อสังเกต ไม้หรือเชือกแห้งควรเป็นฉนวนในยามฉุกเฉินเท่านั้นในเมื่อไม่มีฉนวนที่ดีกว่าหรือจะหามาไม่ได้ ข.สายหนวดพราหมณ์ สายยึดที่ใช้เพื่อให้เสาที่ขึงสายอากาศแน่นอยู่กับที่นั้นเรียกว่าสาย หนวดพราหมณ์ สายยึดเหล่านี้อาจจะทำด้วยเส้นลวด,เชือกหรือเชือกในล่อนก็ได้

ค.ท่อนเสาอากาศ สายอากาศบางชนิดยึดด้วยท่อนเสาอากาศ ดังนั้นเมื่อท่อนหนึ่งหักอาจใช้เสาท่อน อื่นที่มีความยาวเท่ากันเปลี่ยนแทนได้ ถ้าไม่มีเสาอากาศที่ยาวพอเปลี่ยนแทนก็อาจใช่เสานั้นหลายเสามาต่อ โดยเกยกันแล้วผูกให้แน่นด้วยเชือกหรือลวด เมื่อให้มีความยาวตามต้องการ

5. สายอากาศดิ้ง

สายอากาศดิ่งนั้นปรับให้เหมาะสมได้ ถ้าความยาวทางไฟฟ้าของเสาอากาศนั้นเท่ากับความยาวทางไฟฟ้า ของสายอากาศ ซึ่งปกติจ่ายมากับชุดวิทยุอยู่แล้ว แต่ถ้าไม่รู้ว่ายาวเท่าไรก็จำเป็นจะต้องสร้างให้สายอากาศ มีความยาวมากไว้ก่อนแล้วปรับความยาวทางไฟฟ้าโดยตัดออกจนกระทั่งได้ความยาวทางไฟฟ้าที่ดีที่สุด กรรมวิธีการตัดความยาวลงนี้ใช้ได้กับลวดสายอากาศดิ่ง แต่จะปฏิบัติไม่ได้กับสายอากาศที่ทำด้วยท่อน โลหะหรือท่อน้ำ

ก.สายอากาศดิ่งอาจจะแสวง เครื่องได้โดยการใช้โลหะหรือท่อโลหะซึ่งมีความยาวถูกต้อง ตั้งขึ้นโดยใช้ สายหนวดพราหมณ์ยึดปลายล่างของสายอากาศ ควรจะมีฉนวนกันมิให้ถูกดินโดยวางไว้บนท่อนไม้ หรือวัสดุ ที่เป็นฉนวนอื่นๆ

ข.สายอากาศดิ่งอาจจะประกอบขึ้นด้วยสายลวดที่ยึดไว้กับต้นไม้หรือเสาไม้(รูปที่ 5-18A) สำหรับ สายอากาศดิ่งสั้นๆ เสาอาจไม่ต้องใช้สายหนวดพราหมณ์(ถ้าฐานยึดแน่นดีแล้ว) ถ้าท่อนเสาดิ่งยาวไม่พอที่จะ ขึงให้สายตึงได้อาจจำเป็นต้องดัดแปลงการต่อที่ปลายสายอากาศ(รูปที่ 5-18B)

รูปที่ 5-18 สายอากาศตั้งในสนาม ค.วิธีขึงลวดสายอากาศดิ่งอีกวิธีหนึ่งนั้น แสดงไว้ในรูปที่ 5-19A โดยใช้สายขึงระหว่างต้นไม้ให้มีความสูง ตามต้องการเพื่อยึดลวดสายอากาศ

ง.สายอากาศดิ่งอาจจะห้อยลงมาจากกิ่งไม้ก็ได้ (รูปที่ 5-19B) ในกรณีนี้สายอากาศจะต้องไม่ไปสัมผัส กับกิ่งไม้กิ่งอื่น อาจจะยึดไว้ด้วยเชือกหรือวัสดุที่คล้ายคลึงกัน

รูปที่ 5-19 การขึ้งสายอากาศดิ่งในสนาม

รูปที่ 5-20 สายอากาศครึ่งคลื่นแสวงเครื่อง

6. สายอากาศดิ่งครึ่งคลื่นป้อนตรงกลาง(CENTER-FED HALF-WAVE ANTENNA)

สายอากาศฉุกเฉินแบบนี้สามารถทำด้วยลวดและเชือก (รูปที่ 5-20) วางฉนวนไว้ตรงกึ่งกลาง สายอากาศพอดี สายป้อนเส้นลวดคู่หรือสายส่งกำลังต่อที่ฉนวน สายส่งกำลังเส้นหนึ่งต่อกับสายอากาศ ข้างหนึ่ง และสายส่งกำลังอีกเส้นหนึ่ง ส่วนปลายของสายส่งกำลังที่จะต่อกับอะไรนั้น ต่อเข้ากับหมุด สายอากาศทั้งสองของเครื่องวิทยุ

ก.ความยาวของลวดสายอากาศสำคัญมาก ตัดลวดสายอากาศยาวถูกต้องที่สุดเท่าที่จะทำได้ ข.ความยาวของสายส่งกำลังก็สำคัญด้วยเหมือนกัน จะต้องปรับสายส่งกำลังให้บังเกิดผลดีที่สุด การ ที่จะทำได้เช่นนั้นต้องติดตั้งสายส่งกำลังให้ยาวกว่าที่ควรไว้ก่อนแล้วค่อยตัดให้สั้นเข้าจนกว่าการทำงานจะ ได้ผลดีที่สุด ถ้าใช้สายส่งกำลังที่เป็นสายเคเบิ้ลร่วมแกน จะตัดให้สั้นทีละน้อยนั้นไม่เหมาะสม

ค.ถ้าใช้สายโถง อาจเพิ่มพูนสมรรถนะขึ้นได้โดยต่อเส้นลวดเส้นหนึ่งเข้าระหว่างปลายสายอากาศ (ชนิดขั้วคู่พับ)(FOLDED DIPOLE) ซึ่งแสดงไว้ด้วยเส้นประในรูปที่ 5-20 เส้นลวดเส้นที่ต่อเข้าไปนี้จะต้อง ยาวเท่ากับสายอากาศตัวจริง

ง.สูตรทั่วไปสำหรับทำความยาวสภาวะของสายอากาศครึ่งคลื่น และตารางแสดงความยาวของสาย อากาศครึ่งคลื่น สำหรับความถี่ตั้งแต่ 3 MHz ถึง 76 MHz แสดงไว้ภาคอนุผนวก 2 สายอากาศครึ่งคลื่น ป้อนตรงกลางอย่างสั้นๆ อาจยึดไว้ได้ทั้งเส้นท่อนบนท่อนไม้ สายอากาศดิ่งแบบนี้แสดงไว้ในรูป 5-21A สายอากาศแบบที่คล้ายคลึงกันแสดงไว้ในรูป 5-21B สายอากาศเหล่านี้หมุนไปได้ทุกทางเพื่อให้ได้ สมรรถนะที่ดีที่สุด ถ้าสายอากาศนี้ตั้งดิ่งสายส่งกำลังก็ควรจะต่อไปทางระดับ ให้ห่างอย่างน้อยเท่ากับ ครึ่งหนึ่งของความยาวสายอากาศ ก่อนที่จะหย่อนลงไปยังเครื่องวิทยุสายอากาศครึ่งคลื่นป้อนตรงกลาง ขนาดสั้นๆ อาจสร้างขึ้นด้วยคล้ายๆ กับที่กล่าวมาแล้ว แสดงไว้ในรูปที่ 5-22 ปลายสายอากาศนี้จะต่อกับ ท่อนไม้แห้ง และดึงสายอากาศให้โค้งเพื่อทำให้สายอากาศดึง ใช้เสาต้นเดียวหรือเสาที่เป็นมัดทำหน้าที่เป็น ท่อนเสาอากาศ

รูปที่ 5-21 สายอากาศครึ่งคลื่นป้อนตรงกลางยกสูง

รูปที่ 5-22 วิธียึดสายอากาศดิ่งครึ่งคลื่น

รูปที่ 5-23 สายอากาศแบบขนมเปียกปูนครึ่งซีก

____ รูปที่ 5-24 สายอากาศรวมคลื่น

7. สายอากาศครึ่งคลื่นป้อนตรงปลาย

สายอากาศฉุกเฉินแบบนี้สามารถทำขึ้นเองได้ ถ้ามีวัสดุเช่น สายสนาม, เชือกและฉนวนไม้ ความ ยาวทางไฟฟ้าของสายอากาศนั้นวัดจากปลายสายอากาศที่เครื่องวิทยุไปจนถึงปลายอีกข้างหนึ่งของ สายอากาศ(รูปที่ 5-19B) จะได้สมรรถนะสูงสุดเมื่อวางสายอากาศให้ยาวกว่าที่จำเป็น แล้วตัดให้สั้นลง จนกระทั่งได้สมรรถนะเป็นที่พอใจ

8. สายอากาศบ่งทิศแสวงเครื่อง

สายอากาศดิ่งแบบขนมเปียกปูนครึ่งซีก (รูปที่ 5-23) และสายอากาศรวมคลื่น (รูปที่ 5-24) เป็น สายอากาศบ่งทิศแสวงเครื่องสองแบบซึ่งสามารถใช้กับชุดวิทยุ FM สายอากาศเหล่านี้บ่งทิศและรับในทิศ ทางด้านที่ต่อความต้านทาน ถ้าใส่ตัวต้านทานซึ่งเป็นภาระ(LOAD) ไม่เหมาะสม ก็ให้เพิ่มเติมหรือลด ความยาวของสายอากาศได้ สายอากาศเหล่านี้โดยปกติแล้วจะเพิ่มระยะทางทำงานตามอัตราของเครื่อง วิทยุ FM ออกไป

บทที่ 6

<u>ปัจจัยควบคุมความเชื่อถือได้ของการสื่อสารประเภทวิทยุ</u>

ตอนที่ 1 การเลือกที่ตั้ง

1. ความต้องการทางเทคนิค

- ก. ที่ตั้ง สถานีวิทยุจะต้องตั้งอยู่ในตำบลที่มั่นใจว่าจะสามารถปฏิบัติการสื่อสารกับสถานีอื่นๆ ทั้งหมด ที่ตนจะปฏิบัติงานด้วย เพื่อให้มีประสิทธิภาพในการส่งและรับควรจะพิจารณาปัจจัยดังต่อไปนี้คือ
- 1) เนินและภูเขาระหว่างสถานีตามปกติจำกัดระยะในการทำงานของวิทยุในภูมิประเทศที่เป็นเนินหรือภูเขา ควรจะเลือกที่ตั้งให้อยู่บนลาดเขาที่ค่อนข้างสูง (รูปที่ 6-1) ควรจะหลีกเลี่ยงที่ตั้งซึ่งอยู่ที่ฐานของหน้าผา หรือในโกรกเขาหรือหุบเขาลึก (รูปที่ 6-2) เมื่อปฏิบัติงานด้วยความถี่สูงมากกว่า 30 MHz ควรจะเลือก ที่ตั้งซึ่งให้การสื่อสารเป็นเส้นสายตาเมื่อกระทำได้
- 2) พื้นดินแห้งจะมีความต้านทานสูง และจำกัดรัศมีการทำงานของคลื่นวิทยุ ถ้าหากเป็นไปได้ควรตั้งสถานี อยู่ใกล้พื้นดินชื้นๆ ซึ่งมีความต้านทานน้อยโดยเฉพาะอย่างยิ่งน้ำเค็มจะเพิ่มระยะการทำงานออกไปได้มาก คือคลื่นวิทยุออกไปในน้ำเค็มได้ดี
- 3) ต้นไม้ที่มีพุ่มหนาทึบ จะดูดซึมคลื่นวิทยุไว้ ต้นไม้ใบจะให้ผลร้ายแรงกว่าต้นสน สายอากาศนั้นควรจะให้ พ้นพุ่มไม้ใบที่หนาๆ ทั้งหมด
 - ้ ข.สิ่งกีดขวางซึ่งมนุษย์ทำขึ้น
- 1) ไม่ควรเลือกที่ตั้งซึ่งอยู่ในอุโมงค์หรือใต้ช่องทางผ่านหรือใต้สะพานเหล็ก การส่งและรับสัญญาณภายใต้ สะพาน สิ่งเหล่านี้เกือบจะกระทำไม่ได้เพราะมีการดูดซึมคลื่นวิทยุอย่างมาก
- 2) อาคารซึ่งตั้งอยู่ระหว่างสถานีวิทยุ โดยเฉพาะอย่างยิ่งที่มีโครงเป็นเหล็กหรือคอนกรีตเสริมเหล็ก จะเป็น สิ่งกีดขวางการส่งคลื่นวิทยุ

HIGH HILL

ON LEVEL GROUND

SI ICHT DISE

รูปที่ 6-1 ที่ตั้งที่ดีสำหรับการสื่อสารทางวิทยุ (GOOD SITES FOR RADIO COMMUNICATION)

3) บรรดาสายที่วางบนเสาทุกชนิด เช่น สายโทรศัพท์ , โทรเลขและสายไฟฟ้าแรงสูง ควรจะหลีกเลี่ยงให้ พ้นเมื่อทำการเลือกที่ตั้งสถานีวิทยุ เพราะสายเหล่านั้นจะดูดซึมกำลังจากสายอากาศซึ่งส่งคลื่นที่ตั้งอยู่ ข้างเคียง นอกจากนั้นยังทำให้มีการรบกวนและหึ่งขึ้นในเครื่องรับได้

- 4) ควรหลีกเลี่ยงตำบลที่อยู่ใกล้ถนน และทางหลวงซึ่งมีการสัญจรมาก นอกจากเสียงรบกวนและความ สับสนซึ่งเกิดจากรถถังและรถบรรทุกแล้ว การจุดหัวเทียนของยานพาหนะเหล่านี้อาจจะทำให้เกิดการ รบกวนทางไฟฟ้าขึ้นได้
- 5) จะต้องไม่ตั้งเครื่องประจุหม้อไฟฟ้าและเครื่องกำเนิดไฟฟ้าไว้ใกล้สถานีวิทยุ
- 6) ไม่ควรตั้งสถานีวิทยุให้ใกล้ชิดกัน
- 7) ควรจะตั้งสถานีวิทยุในพื้นที่ที่เงียบสงัด พนักงานวิทยุย่อมจะต้องมีสมาธิอย่างมากในการรับสัญญาณที่ อ่อน ฉะนั้นความสนใจของพนักงานวิทยุจึงไม่ควรจะถูกเสียงที่ไม่พึงประสงค์หันเหไป

รูปที่ 6-2 ที่ตั้งที่เลวสำหรับการตั้งสถานีวิทยุ (BAD SITE)

2. ความต้องการทางยุทธวิธี

ก.ความต้องการของหน่วยบังคับบัญชา สถานีวิทยุตั้งห่างพอสมควรจากกองบังคับการหรือที่บังคับ การของหน่วยซึ่งสถานีวิทยุนั้นประจำอยู่ เพราะว่าการยิงระยะไกลของปืนใหญ่ข้าศึก อาวุธนำวิถีหรือ ระเบิดจากอากาศซึ่งเล็งมาที่สถานีตามผลของการหาทิศของวิทยุของข้าศึก ย่อมจะไม่ทำให้ที่บริเวณบังคับ การถูกโจมตีไปด้วย

ข. การกำบังและการซ่อนพราง ที่ตั้งซึ่งได้เลือกไว้นั้นควรจะมีการกำบังและซ่อนพรางดีที่สุดเท่าที่จะ ทำได้ ประกอบทั้งต้องให้ทำการรับและส่งสัญญาณได้ดีด้วย การกำบังและซ่อนพรางที่ไม่สมบูรณ์อาจทำ ให้เกิดความเสียหายต่อการรับและส่งสัญญาณได้ ปริมาณความเสียหายที่จะยอมให้เกิดขึ้นได้นั้นขึ้นอยู่กับ รัศมีของการทำงานที่ต้องการกำลังของเครื่องส่ง ความไวเครื่องรับประสิทธิภาพของระบบสาย อากาศ และลักษณะของภูมิประเทศ เมื่อใช้เครื่องวิทยุทำการสื่อสารในระยะใกล้เท่ารัศมีการทำงานไกลสุดของ เครื่องนั้นแล้ว ก็อาจยอมเสียประสิทธิภาพในการสื่อสารบ้างเพื่อให้การซ่อนพรางเครื่องวิทยุจากการ สังเกตการณ์ของข้าศึกได้ดีขึ้น

ข้อพิจารณาในทางปฏิบัติ

- (1) ชุดหีบห่อมีสายต่อขนาดยาวเพียงพอที่จะอำนวยให้ปฏิบัติจากที่กำบังได้ ในขณะที่วางเครื่องวิทยุไว้ใต้ ระดับผิวพื้นของภูมิประเทศรอบๆ และให้สายอากาศอยู่ในที่โล่ง
- (2) เครื่องวิทยุบางเครื่องอาจจะควบคุมระยะไกลได้ถึง 100 ฟุตหรือมากกว่านั้น เรื่องแบบนี้อาจตั้งไว้ในที่ ค่อนข้างโล่งแจ้งได้ ส่วนพนักงานนั้นยังคงอยู่ในที่ช่อนพราง
- (3) สายอากาศของบรรดาเครื่องวิทยุทั้งหมดจะต้องยกให้พ้นจากผิวพื้นดิน เพื่อให้สามารถสื่อสารได้ ตามปกติ
- (4) สายอากาศของเครื่องวิทยุทางยุทธวิธีขนาดเล็กมักจะเป็นแบบแส้ สายอากาศเหล่านี้ยากที่จะมองเห็น ได้ในระยะไกล โดยเฉพาะอย่างยิ่งถ้าไม่เป็นเงาตัดกับท้องฟ้า
- (5) จะต้องหลีกเลี่ยงเส้นเนินและสันเขาที่โล่งแจ้ง ตำบลที่มุมลาดกำบังน้อยๆ ถัดหลังเขาจะให้การซ่อน พรางที่ดีกว่า และบางที่ก็สามารถส่งคลื่นวิทยุได้ดีขึ้น
- (6) ตำบลที่ตั้งถาวรและกึ่งถาวร ควรจะซ่อนพรางให้ดีเพื่อป้องกันการตรวจการณ์ทางอากาศและทาง พื้นดิน อย่างไรก็ตามไม่ควรให้สายอากาศแตะต้นไม้ พุ่มไม้หรือสิ่งที่ใช้พราง

การสื่อสารภายในที่ตั้ง จะต้องให้มีการติดต่อระหว่างเครื่องวิทยุและศูนย์ข่าวอยู่ตลอดเวลา โดยการ ใช้พลนำสารภายในหรือโทรศัพท์สนาม ควรให้ผู้บังคับหน่วยและฝ่ายอำนวยการเข้าถึงสถานีวิทยุได้สะดวก ด้วย

2. ข้อพิจารณาสุดท้าย

เกือบจะไม่อาจเลือกที่ตั้งเครื่องวิทยุให้บรรลุความต้องการทางเทคนิคและยุทธวิธีได้ ทุกประการ เพราะฉะนั้นจึงมักจำเป็นต้องใช้วิธีปรองดองจึงจะเลือกตำบลที่มีที่ตั้งที่ดีที่สุดได้ ทาง ที่ดีควรจะเลือกที่ตั้งหลักและที่ตั้งสำรองไว้ด้วย ถ้าหากไม่อาจวางการสื่อสารด้วยวิทยุไว้ ณ ที่ตั้ง หลักได้ ก็อาจจะเลื่อนเครื่องวิทยุอีกเล็กน้อยไปยังที่ตั้งสำรอง

ตอนที่ 2 ปัจจัยที่เชื่อถือได้ทางด้านเครื่องส่ง

1. ความถี่

การสื่อสารทางวิทยุสนามส่วนมากใช้คลื่นพื้นดิน รัศมีการทำงานของคลื่นพื้นดินจะสั้นเข้าเมื่อมี ความถี่ที่ใช้งารของเครื่องส่งเพิ่มขึ้น ตั้งแต่แถบคลื่นความถี่ปานกลาง(MF) ส่วนที่ใช้การได้(300–3000KHz) จนถึงแถบคลื่นความถี่สูง(HF)(3-30 MHz) เมื่อเครื่องส่งปฏิบัติงานเหนือความถี่ 30 MHz ระยะทางจะ จำกัดลง โดยทั่วไปแล้วเกินกว่าเส้นสายตาเล็กน้อย สำหรับวงจรที่ใช้การแพร่กระจายคลื่นฟ้า ความถี่โดย เฉพาะที่จะต้องเลือกนั้นย่อมขึ้นอยู่กับลมฟ้าอากาศ ฤดูกาลและห้วงเวลาของวัน

2. กำลัง

รัศมีการทำงานของสัญญาณที่ส่งออกไปนั้นจะเป็นปฏิภาคกับกำลังซึ่ง แผ่ออกรอบด้านจาก สายอากาศ การเพิ่มกำลังนั้นให้ผลต่อการเพิ่มรัศมีการทำงานออกไปบ้าง และเมื่อกำลังลดลงรัศมีการ ทำงานก็ลดลงด้วย ภายใต้สภาพการปฏิบัติงานตามปกติเครื่องส่งควรจะป้อนกำลังเข้าสู่สายอากาศพอที่จะ ทำให้การสื่อสารที่เชื่อถือได้ให้กับสถานีรับเท่านั้น การส่งสัญญาณที่มีกำลังมากเกินกว่าต้องการย่อมทำให้ เกิดการรักษาความปลอดภัยทางการสื่อสารเสียหายได้ เพราะว่าตำบลของเครื่องส่งนั้นอาจถูกข้าศึก กำหนดได้ง่ายยิ่งขึ้นโดยการหาทิศวิทยุ นอกจากนั้นสัญญาณอาจรบกวนสถานีของฝ่ายเดียวกันซึ่ง ปฏิบัติงาน ณ ความถี่เดียวกันด้วย

3. สายอากาศ

เพื่อให้การส่งพลังงานได้สูงสุด สายอากาศที่ใช้แผ่คลื่นจะต้องมีความยาวที่เหมาะกับความถี่ที่ใช้ งาน ภูมิประเทศในท้องถิ่นนั้นมีส่วนในการกำหนดแบบในการแผ่คลื่นอยู่ด้วย ซึ่งมีผลต่อทิศทางของ สายอากาศตลอดจนรัศมีการทำงานของเครื่องในทิศทางที่ต้องการ ถ้าหากเป็นไปได้ก็ควรจะทดลองเปลี่ยน ท่าทางสายอากาศไปหลายอย่างเพื่อให้ได้ท่าทางที่ปฏิบัติที่ดีที่สุด ให้พลังมากที่สุดแผ่ไปในทิศทางที่ต้องการ

4. ขีดความสามารถของพนักงาน

ความชำนาญและขีดความสามารถทางเทคนิคของพนักงานประจำเครื่องส่งและเครื่องรับ มี บทบาทสำคัญที่จะทำให้ได้รัศมีการทำงานของเครื่องสูงสุดที่จะเป็นไปได้ โดยทั่วไปแล้วเครื่องส่งก็ดี การ ประกับกำลังออกอากาศ(OUT PUT COUPLING) ก็คือและวงจรป้อนกำลังไปสายอากาศจะต้องปรับตั้ง (TUNE) ให้ถูกต้องเพื่อที่จะได้กำลังออกอากาศที่สูงสุดนอกจากนั้นทั้งสายอากาศส่งและสายอากาศรับ จะต้องสร้างให้เหมาะ โดยคำนึงถึงลักษณะสมบัติทางไฟฟ้าและสภาพภูมิประเทศในท้องถิ่น

ตอนที่ 3 ปัจจัยต่างๆ ที่เกี่ยวกับความเชื่อถือได้ในเส้นทางส่งคลื่น

1. ความนำและความสูงของภูมิประเทศที่อยู่ระหว่างกลาง

ก.ความน้ำ (CONDUCTIVITY) ชนิดของภูมิประเทศที่อยู่ระหว่างเครื่องวิทยุสนาม 2 เครื่อง เป็นสิ่ง กำหนดความน้ำของพื้นดินและเป็นผลต่อคลื่นพื้นดิน ภูมิประเทศที่เป็นทุ่งหญ้าราบเรียบมีความนำสูง เพราะว่าพื้นโลกได้ดูดซึมคลื่นพื้นดิ้นแต่เพียงเล็กน้อย ผิวพื้นน้ำกว้างใหญ่ก็มีความนำสูงด้วยภูมิ ประเทศที่เป็นภูเขาพื้นที่ที่เป็นภูเขาขรุขระและผุพังมักจะมีความนำต่ำ ในพื้นที่เป็นแหล่งแร่อยู่มาก โกรก เขาลึก พื้นโลกอาจดูดซึมคลื่นพื้นดินไปเสียหมด

ข.ความสูง ภูมิประเทศที่เป็นเครื่องกีดขวางขนาดใหญ่ระหว่างสถานีส่งและสถานีรับ จะทำให้ความ เชื่อถือได้ในการส่งวิทยุลดน้อยลง

2. ระยะทางระหว่างสถานี

เครื่องส่งวิทยุกำลังต่ำที่มีรัศมีทำงานจำกัด จะต้องปฏิบัติงานกับเครื่องรับซึ่งตั้งอยู่ภายในรัศมีการ ทำงานนี่เครื่องกำลังสูงๆ ซึ่งใช้คลื่นพื้นดินและคลื่นฟ้าแรงๆ อาจจะไปถึงสถานีรับด้วยคลื่นใดคลื่นหนึ่งหรือ ทั้งสองคลื่นก็ได้ ทั้งนี้ขึ้นอยู่กับระยะทางระหว่างเครื่องส่งและเครื่องรับ

3. ปัจจัยระยะกระโดดข้าม(SKIP ZONE)

การแพร่กระจายคลื่นฟ้าถูกนำมาใช้ในการสื่อสาร จะต้องพิจารณาถึงคุณลักษณะของการกระโดด ข้าม ด้วย ในบางขณะระหว่างกลางวันหรือกลางคืน ณ บางความถื่อาจจะมีสถานีรับซึ่งตั้งอยู่ในย่านกระโดด ข้าม(SKIP ZONE) จึงไม่อาจรับสัญญาณจากเครื่องส่งได้

ตอนที่ 4 ปัจจัยทางความเชื่อถือได้ที่เครื่องรับ

1. ความไวและความเลือกเฟ้นของเครื่องรับ

ความไวเป็นเครื่องแสดงการสนองตอบของวงจรวิทยุที่มีต่อสัญญาณ ณ ความถี่ซึ่งถูกปรับตั้งไว้ว่ามี มากน้อยเพียงไร ความเลือกเฟ้นเป็นเครื่องแสดงว่าเครื่องรับสามารถแยกสัญญาณที่ต้องการออกจาก สัญญาณของความถี่อื่นๆ ได้มากน้อยเพียงใด ถ้าหากว่าต้องการความไวและความเลือกเฟ้นสูงสุดแล้ว จะต้องปรับแต่งเครื่องรับให้เหมาะและใช้งานอย่างมีประสิทธิภาพ ระดับการรบกวนที่มีอยู่ในวงจรเป็น ปัจจัยที่จำกัดความไวของเครื่องรับ

2. สายอากาศรับ

ในการสื่อสารด้วยวิทยุสนาม แบบของการสร้าง,ที่ตั้งและลักษณะทางไฟฟ้าไม่มีปัญหาต่อการ ปฏิบัติงานของสายอากาศรับเหมือนอย่างเช่นสายอากาศส่ง สายอากาศรับนั้นจะต้องมีความยาวเพียงพอ และจะต้องประกบ(COUPLING) เข้ากับวงจรทางเข้า(INPUT) ของเครื่องรับและในบางกรณีก็ต้องให้มีขั้ว เหมือนกับสายอากาศส่ง

3. การรบกวนจากแหล่งธรรมชาติ

ก.การรบกวนวิทยุจากแหล่งธรรมชาติ อาจแบ่งได้เป็น 4 ประเภท คือ

- 1) การรบกวนของบรรยากาศจากพายุไฟฟ้า (IONO)
- 2) การรบกวนของรังสีดวงอาทิตย์และคอสมิค อันเนื่องจากการระเบิดในดวงอาทิตย์และดวงดาวอื่นๆ
- 3) การเกิดไฟฟ้าสถิตย์จากอนุภาคที่มีประจุไฟฟ้าในบรรยากาศ อนุภาคเหล่านี้อาจจะเป็นฝน, ลูกเห็บ,หิมะ, ทราย, ควันหรือฝุ่นละออง อนุภาคที่แห้งทำให้เกิดประจุไฟฟ้าได้มากกว่าอนุภาคที่เปียกชื้น
- 4) การจางหายเนื่องจากการรบกวนในมัชฌิม ซึ่งคลื่นวิทยุได้แพร่กระจายผ่านไป

ข.การรบกวนดังกล่าวไว้ข้างต้นนั้น จะปรากฏอยู่ในเครื่องอิเล็กทรอนิกส์เป็นเสียงรบกวน เสียงรบกวน นี้แสดงออกมาเป็นเสียงในหูฟังหรือลำโพง และแสดงออกเป็นสิ่งผิดปกติในด้านทางออกของเครื่อง ปลายทางอื่นๆ มีการรบกวนแทบทุกความถี่ แต่อาจจะลดน้อยลงได้มากเมื่อค่าของความถี่สูงขึ้น การรับ ความถี่สูงมากกระทบกระเทือนจากการรบกวนเหล่านี้แต่น้อย

4. การรบกวนจากสิ่งที่มนุษย์ทำขั้น

ก.การรบกวนจากสิ่งที่มนุษย์ทำขึ้นนั้น เกิดจากเครื่องไฟฟ้า เช่น ระบบจุดเทียนของเครื่องยนต์ แปรง ถ่านในเครื่องยนต์ไฟฟ้าและเครื่องกำเนิดไฟฟ้า ซึ่งเกิดประกายขึ้นและเครื่องจักรอื่นๆ ถ้าหากว่าไม่มีการ ควบคุมการรบกวนนี้แล้ว มันกลบการส่งสัญญาณไปเสียหมด

ข.ถึงแม้ว่าการรบกวนจากสิ่งที่มนุษย์ทำขึ้น อาจจะขจัดหรือทำให้ลดน้อยลงได้มากที่สุด ณ แหล่ง กำเนิดของมันก็ตาม แต่ก็อาจจะปรับปรุงสภาพให้ดีขึ้นได้อีกบ้าง ณ เครื่องรับ การใช้สายอากาศรับชนิดบ่ง ทิศจะช่วยขจัดการรบกวนได้บ้างถ้าหากว่าแหล่งรบกวนนั้นไม่อยู่ในทิศทางเดียวกับสถานีส่ง นอกจากนี้สาย ที่ต่อออกจากสายอากาศลงเครื่องซึ่งได้ออกแบบสร้างเป็นพิเศษ อาจขจัดหรือลดการรบกวนซึ่งมนุษย์ทำขึ้น เพราะตามปกติแล้วสายต่อลงเครื่องเป็นตัวรับการรบกวนไว้ด้วย

5. การรบกวนกันเอง (MULTUAL INTERFERENCE)

ก.เมื่อระบบการสื่อสารแห่งหนึ่งรบกวนกับอีกแห่งหนึ่ง หรือเมื่อหน่วยใดหน่วยหนึ่งภายในระบบที่ กำหนดให้ รบกวนกับหน่วยอื่นๆ ในระบบเดียวกัน เราเรียกสภาพเช่นนี้ว่า การรบกวนกันเอง

ข.การรบกวนกันเองอาจจะปรากฏเป็นหลาบแบบ เช่น เสียงรบกวน เสียงแทรกต่างวงจร(CROSS TALK) การปฏิกิริยาระหว่างกันของฮาโมนิกส์ สภาพที่เป็นธรรมดาสะสมบางอย่างซึ่งทำให้เกิดการรบกวน กันเองมีดังต่อไปนี้

- 1) สัญญาณอันไม่พึงประสงค์ที่แปลกปลอมเข้ามา
- 2) การตอบสนองของเครื่องรับต่อสัญญาณที่แปลกปลอม
- 3) การเกิดประกายความถี่วิทยุขึ้นในเครื่องส่ง
- 4) การไม่ได้สัดส่วนของความหน่วง (IMPEDANCE) ในระบบสายอากาศ
- 5) การรบกวนของห้วงคลื่นศักดิ์สูง
- 6) การกำหนดความถี่ไม่เหมาะสม

ค.การรบกวนซึ่งเกิดจากแหล่งที่อยู่ไกลและที่อยู่ในบริเวณนั้นหลายแหล่ง ความสัมพันธ์เกี่ยวกับ ความถี่วิทยุ ที่ตั้งทางภูมิศาสตร์ การปรับเครื่องผิดพลาด เทคนิคในการปฏิบัติงานไม่เหมาะสมและสภาพลม ฟ้าอากาศ เหล่านี้เป็นปัจจัยสำคัญที่ก่อให้เกิดการรบกวนกัน เครื่องมือและระบบซึ่งเป็นเครื่องกำเนิดที่ สำคัญในการรบกวนกันเองได้แก่ เรดาห์วิทยุ วิทยุช่วยเดินเรือ(หรือเดินอากาศ) และโทรศัพท์

6. ขีดความสามารถของพนักงานเครื่องรับ

เครื่องรับในการสื่อสารส่วนมากที่ปุ่มบังคับที่ปรับได้ ซึ่งออกแบบสร้างขึ้นเพื่อผลเสียของ การจางหาย เสียงรบกวน และการรบกวน ความชำนาญในการใช้เครื่องบังคับเหล่านี้ เช่น เครื่อง จำกัดเสียงรบกวนและเครื่องกรองคลื่นแบบต่างๆ มักจะอำนวยให้การรับข่าวกระทำได้ดี มิฉะนั้น แล้วไม่อาจทำการรับข่าวได้ในเมื่อมีเสียงรบกวนและการรบกวนมาก ถ้าหากการปรับเครื่องบังคับ เหล่านี้ไม่ถูกต้องเนื่องจากความรู้เท่าไม่ถึงการณ์ หรือขาดความระมัดระวังก็อาจทำให้การ ปฏิบัติงานไม่ได้ผล เพราะฉะนั้นความช่ำชองและความชำนาญงานทางเทคนิคของพนักงาน เครื่องรับจึงมีส่วนสำคัญในการรับสัญญาณวิทยุด้วย

<u>บทที่ 7</u> <u>เทคนิคการปฏิบัติงานทางวิทย</u>ุ

1. กล่าวทั่วไป

ก.ประสิทธิผลทางยุทธวิธีของเครื่องสื่อสารใดๆ ก็ตามจะไม่สำคัญมากไปกว่าความช่ำชองของ พนักงาน ประสิทธิภาพสูงที่สุดในข่ายหรือในหน่วยบังคับบัญชาจะมีขึ้นได้ก็ต่อเมื่อพนักงานเครื่องสื่อสารได้ ใช้ระเบียบปฏิบัติการที่เหมาะสมในการส่งและการรับข่าวจนเป็นนิสัย

ข.เรื่องราวในบทที่เกี่ยวกับการปฏิบัติงานวิทยุโทรเลข (ประมวลเลขสัญญาณสากล) วิทยุโทรศัพท์ (คำพูด) และวิทยุโทรพิมพ์

2. คำแนะนำในการปฏิบัติงาน

คำแนะนำเกี่ยวกับการสื่อสารทางวิทยุนั้นมีอยู่ในระเบียบปฏิบัติประจำ (รปจ.) คำแนะนำ ปฏิบัติการสื่อสาร (นปส.) และคำแนะนำสื่อสารประจำ (นสป.) นสป.นั้นได้ให้แนวในการจัดสถานีในข่าย การกำหนดนามเรียกขาน กำหนดสถานีบังคับข่าย (สบข.) การกำหนดความถี่วิทยุและให้ข่าวสารเกี่ยวกับ การเปลี่ยนความถี่สำรองตลอดจนการรับรองฝ่าย ระเบียบการรักษาความปลอดภัย ซึ่งพนักงานวิทยุจะ นำไปใช้ในหน่วยบังคับบัญชานั้นมีอยู่ใน นสป., รปจ. นั้นใช้บังคับการปฏิบัติงานตามปกติของหน่วย

3. ข้อเตือนใจในการปฏิบัติงานสำหรับพนักงาน

ก.ให้ใช้ชุดมือถือ (HANDSET) หรือชุดสวมศีรษะ (HEADSET) ที่สัญญาณที่รับเข้ามานั้นอ่อน ข.ดูแลให้แน่ใจว่าปากพูดหรือชุดมือถืออยู่ในสภาพที่ดี ให้พูดตรงเข้าไปในปากพูด พูดช้าๆ และ ชัดเจน

ค.ถ้าเครื่องวิทยุติดตั้งอยู่บนยานยนต์ ให้ดูแลว่าศักย์ไฟฟ้าของหม้อไฟฟ้าสูงเพียงพอให้เดิน เครื่องยนต์อยู่เสมอเพื่อประจุหม้อไฟฟ้า

ง.ถ้ามีความจำเป็นก็ให้ย้ายเครื่องวิทยุหรือยานยนต์เพื่อให้การรับดีขึ้น

จ.เมื่อหัวหน้าพนักงานวิทยุอนุมัติก็ให้ใช้วิทยุโทรเลขชนิดคลื่นเสมอ ดีกว่าที่จะใช้วิทยุโทรศัพท์ หรือวิทยุโทรพิมพ์ เพื่อเพิ่มรัศมีการทำงานของเครื่องออกไป

้ ฉ.ให้สังเกตไว้ว่า การที่การสื่อสารขาดลอยหรือการสื่อสารไม่ดีนั้นอาจจะเกิดจากสาเหตุดังต่อไปนี้

- (1) ระยะทางระหว่างเครื่องวิทยุห่างมากเกินไป
- (2) การเลือกที่ตั้งข้างใดข้างหนึ่งหรือทั้งสองข้างของวงจรวิทยุไม่ดี
- (3) ภูมิประเทศ ได้แก่ เนินหรือภูเขา
- (4) เสียงรบกวนและการรบกวน
- (5) กำลังเครื่องส่งไม่พอ
- (6) เครื่องเสียง
- (7) การปรับเครื่องไม่ถูกต้อง
- (8) สายอากาศไม่ดี
- (9) การกำหนดความถี่วิทยุไม่เหมาะ

ช. พึงสังเกตว่า ยุทโธปกรณ์ที่มีการบ้ำรุงรักษาไม่ดีและใช้งานไม่ถูกต้อง จะมีผลในการขัดขวางการ สื่อสารเช่นเดียวกับระยะที่ไกลเกินสมควร หรือในภูมิประเทศที่เป็นภูเขา จึงจำเป็นที่จะต้องปฏิบัติว่าด้วย ข้อควรระวังดังต่อไปนี้ตลอดเวลา

- (1) ศึกษาและทำความเข้าใจ คู่มือทางเทคนิคของเครื่องมือนั้นๆ โดยตรงซึ่งจะให้ คำแนะนำในทางปฏิบัติ และระเบียบการปฏิบัติในการบำรุงรักษาโดยสมบูรณ์
 - (2) รักษาให้ชุดวิทยุสะอาดและแห้งอยู่เสมอ

- (3) หยิบยกเครื่องวิทยุด้วยความระมัดระวัง ซ.กำหนดระเบียบในการตรวจและการบำรุงรักษาไว้เป็นประจำดังต่อไปนี้
 - (1) รักษาตัวเสียบ (PLUG) และช่องเสียบ (JACK) ให้สะอาดอยู่เสมอ
 - (2) รักษาฉนวนของสายอากาศให้แห้งสะอาดและไม่มีสีเปื้อนเปรอะ
 - (3) ดูแลให้ขั้วต่อสายอากาศและเครื่องให้กำลังไฟฟ้าอยู่ในสภาพแน่น
 - (4) ตรวจสอบหมุดและปุ่มปรับต่างๆ ให้ทำงานได้คล่องและไม่ฝืด
 - (5) ดูแลให้เครื่องยนต์ไฟฟ้า และพัดลมเดินเรียบ
- (6)ดูแลให้หม้อไฟฟ้าประเภทที่ 1 อยู่ในสภาพใช้งานได้และถอดหม้อไฟฟ้าออกเมื่อเก็บ เครื่องเข้าคลังหรือไม่ใช้งาน

<u>คำแนะนำปฏิบัติงานโดยทั่วไป</u>

1. กล่าวทั่วไป

ก่อนที่จะใช้เครื่องวิทยุใดๆ ให้มีคู่มือประจำเครื่องและทำการศึกษาคำแนะนำอย่างรอบคอบถึง เรื่องการปฏิบัติงานโดยตลอด ระเบียบปฏิบัติในการเดินเครื่องขั้นต้น ให้ดูหัวข้อบรรยายถึงส่วนประกอบ ต่างๆ แผนผังหน้าปัทม์ แผนผังการต่อ เพื่อให้แน่ใจว่า เคเบิ้ลต่างๆ ต่อเข้ากับข้อต่อของแผงหน้าปัทม์ ถูกต้องและให้ปุ่มปรับต่างๆ อยู่ในตำแหน่งที่ถูกต้องแม้ว่าพนักงานที่มีความชำนาญอย่างมากแล้วก็ควร ตรวจสอบระเบียบปฏิบัติขั้นต้นตามหลักฐานเหล่านี้บ่อยๆ เพื่อให้มั่นใจว่ามีความแน่นอนและเพื่อป้องกันมิ ให้เครื่องชำรุดเสียหายให้ดูรายการตรวจสอบในการใช้เครื่อง (และให้ดูรายการตรวจสอบสมรรถนะของ เครื่องถ้ามี)เพื่อดูว่าเครื่องทำงานถูกต้องหรือไม่และควรทำอย่างไร เพื่อแก้ไขสิ่งที่เกิดขึ้นอย่างผิดปกติใน ระหว่างการปฏิบัติในการเดินเครื่องและการใช้งาน รายการตรวจสอบจะให้แนวทางในการปฏิบัติเกี่ยวกับ มาตรการในการแก้ไขในเมื่อเครื่องไม่ทำงานตามปกติ

2. ขั้นต่างๆ ในการใช้เครื่องของชุดวิทยุ

ชุดวิทยุต่างๆ ที่แจกจ่ายไปให้หน่วยย่อมมีแบบต่างๆ กันตามความต้องการทางการสื่อสารของแต่ ละหน่วย ตัวอย่างเช่น บางชุดอาจประกอบกันเข้าโดยสมบูรณ์เป็นชิ้นเดียวกันในเมื่อชุดอื่นๆ อาจประกอบ ขึ้นจากชิ้นส่วนที่แยกจากกัน ซึ่งต้องนำมารวมกันให้ถูกต้อง เพื่อที่จะรวมเป็นชุดวิทยุที่สมบูรณ์ ขั้นตอน ต่างๆ ที่ต้องการโดยทั่วไปในการใช้วิทยุมีดังนี้.-

ก.ตรวจชุดวิทยุเพื่อความสมบูรณ์ ให้แน่ใจว่าส่วนประกอบและอุปกรณ์ต่างๆ ที่จำเป็นมีอยู่ครบ และพร้อมที่จะใช้ได้ ให้ดูคู่มือทางเทคนิคของเครื่องอุปกรณ์

ข.ตรวจสภาพของหมุด, หน้าปัทม์, สวิทซ์, และปุ่มต่างๆ ดูว่าหมุดหน้าปัทม์สวิทซ์และปุ่มปรับ หลอมคลอนหรือเปล่าขันเสียให้แน่นในขณะใช้เครื่อง ต้องให้แน่นมิฉะนั้นแล้วส่วนนั้นๆ จะไม่ทำงาน หรือ อาจทำให้เสียหายไปในทางอื่นได้ แก้ไขเสียให้ถูกต้องเมื่อทำได้หรือรายงานสภาพที่บกพร่อง ให้แน่ใจว่า หมุดต่างๆ และส่วนต่างๆ ภายนอกติดอยู่กับเครื่องเรียบร้อย ให้รายงานทันทีเมื่อส่วนหนึ่งส่วนใดหายไป

- ค. ตรวจสภาพของตัวเสียบ ช่องรับและข้อต่อต่าง ๆ สะอาดอยู่ในสภาพที่ดี ตลอดจนช่องรับต่าง ๆ ที่จะในการต่อต้องสะอาดและอยู่สภาพที่ดี
- ง. ตรวจแผนผังการต่อในคู่มืออุปกรณ์เสียก่อนที่จะทำการต่อ แผนผังการต่อจะแสดงการต่อและ จำนวนของเคเบิ้ลที่ต้องการในการต่อส่วนประกอบต่าง ๆ ของชุดวิทยุเข้าด้วยกันสำหรับการปฏิบัติงานต่าง แต่ละแบบ ชุดวิทยุอาจจะเสียหายได้ถ้าต่อสายเคเบิ้ลเข้าช่องรับที่ผิด
 - 1) ถ้าข้อต่อไม่เหมาะอาจจะทำให้ขาหรือช่องของข้อต่อเสียหายได้
- 2) ถ้าต่อสายเคเบิ้ลเข้ากับช่องรับที่เข้ากันได้แต่ไม่ใช่ช่องของมันก็อาจจะทำให้เป็นผล เสียหายทางไฟฟ้าอย่างร้ายแรงต่อเครื่องมือนั้นหรือในบางกรณีอาจจะเป็นอันตรายต่อพนักงานอีกด้วย

- จ. ตรวจการตั้งหน้าปัทม์ สวิทช์และปุ่มปรับต่าง ๆ ชุดวิทยุบางชนิดอาจจะเสียหายอย่างร้ายแรง ได้ ถ้าสวิทช์หน้าปัทม์และปุ่มต่าง ๆ มิได้ตั้งให้ถูกต้องตามความต้องการในการตั้งขั้นต้น ก่อนจ่าย กระแสไฟเข้าเครื่อง หรือทำการปรับตั้งเบื้องต้นก่อนที่จะเปิดไฟเข้าเครื่องให้ตรวจคู่มือเครื่องอุปกรณ์ เพื่อให้แน่ใจว่าได้ปฏิบัติตามระเบียบปฏิบัติในการเดินเครื่องขั้นต้นอย่างสมบูรณ์แล้ว
- ฉ. ตรวจระเบียบปฏิบัติในการเดินเครื่องตามคู่มือเครื่องอุปกรณ์ คู่มือเครื่องอุปกรณ์จะให้ รายละเอียดเกี่ยวกับระเบียบปฏิบัติในการเดินเครื่องที่ถูกต้องของชุดวิทยุถ้ามีลำดับโดยเฉพาะในการ เดินเครื่องที่จะกล่าวไว้ในคู่มือนั้นก็ให้ปฏิบัติตามลำดับอย่างถูกต้อง
- ช. การจ่ายกระแสไฟเข้าเครื่อง หลังจากได้ต่อสายต่าง ๆ ถูกต้องและตั้งสวิทช์หน้าปัทม์กับปุ่ม ปรับต่าง ๆ ถูกต้องแล้วก็อาจจ่ายกระแสไฟเข้าเครื่องได้โดยให้ดูระเบียบปฏิบัติในการเดินเครื่องที่กล่าวไว้ ในคู่มือเครื่องอุปกรณ์
- ซ. การอุ่นเครื่อง ชุดวิทยุต่าง ๆ ที่ใช้หลอดอิเล็คตรอนต้องการระยะเวลาในการอุ่นเครื่อง เพื่อให้ หลอดต่าง ๆ ขึ้นถึงสภาพที่จะปฏิบัติงานอย่างมีประสิทธิผล ในบางกรณีอาจจะทำให้เครื่องเสียหายโดย การพยายามที่จะใช้เครื่องก่อนที่หลอดจะได้รับการอุ่นเครื่องอย่างถูกต้อง เครื่องส่วนมากมีการป้องกันการ เสียหายดังกล่าวไว้ แต่ก็เป็นการโง่เขลาที่จะเสี่ยงให้เกิดความเสียหายต่อชุดวิทยุโดยพยายามออกอากาศ ก่อนที่เครื่องจะพร้อม
- ณ. สังเกตความผิดปกติในระหว่างอุ่นเครื่อง ในระหว่างที่เปิดสวิทซ์ไฟเข้าเครื่องจนกระทั่ง เครื่องอุ่นเรียบร้อยพร้อมที่จะใช้งาน ให้สังเกตเครื่องชี้บอก มาตรต่าง ๆ และไฟหน้าปัทม์ ถ้าสิ่งใดสิ่ง หนึ่งแสดงให้เห็นสภาพผิดปกติให้ตรวจสอบทันที เครื่องวิทยุส่วนมากจะมีเครื่องตัดวงจรอยู่ด้วยเพื่อป้องกัน เครื่องไหม้เนื่องจากการทำงานเกินกำหนด (OVERLOAD) แต่อาจมีการทำงานที่ผิดปกติอื่น ๆ เกิดขึ้น ซึ่ง จะไม่ทำให้เครื่องตัดวงจรทำงานการทำงานที่ผิดปกติเหล่านี้สามารถทำให้เครื่องชำรุดได้ด้วยเหมือนกัน
- ญ. ปรับตั้งเครื่องให้ตรงตามความถี่ (ช่อง) ที่ต้องการ ปรับตั้งเครื่องส่งให้ได้ความถี่ที่ถูกต้องของ เครื่อง (ความถี่ตามช่องที่ต้องการ) ตามระเบียบปฏิบัติที่กล่าวไว้ในคู่มือประจำเครื่องใช้วิธีการทำ กำหนด คู่มือประจำเครื่องเพื่อตรวจสอบการปรับตั้งให้ถูกต้อง
- ฏ. ตรวจเพื่อให้เครื่องทำงานเป็นปกติ ในขณะที่เครื่องกำลังทำงานอยู่ให้ตรวจเครื่องชี้บอกเสมอ ๆ เพื่อให้แน่ใจว่าเครื่องทำงานถูกต้อง ถ้ามีสิ่งผิดปกติเกิดขึ้นในขณะปฏิบัติงานให้ทำการตรวจสอบทันทีถ้า จำเป็นให้ปิดสวิทซ์ไฟเข้าเครื่องและตรวจตามรายการตรวจสอบในการใช้เครื่องและรายการตรวจสอบของ เครื่องตามคู่มือประจำเครื่อง ถ้าได้แก้ไขตามรายการตรวจสอบในการใช้เครื่องและรายการตรวจสอบของ เครื่องก็ยังแก้ข้อขัดข้องไม่สำเร็จให้รายงานไปยังช่างซ่อมเครื่องสื่อสารอิเล็คทรอนิกส์ของหน่วยต้องให้ ตรวจสอบสภาพของเครื่องและการปฏิบัติต่างๆ ได้มีการบันทึกไว้ในแฟ้มบันทึกการซ่อมบำรุงอย่างถูกต้อง
- ฏ. ใช้ระเบียบปฏิบัติที่ถูกต้องในการปิดเครื่อง หลังจากการปฏิบัติงานได้เสร็จสิ้นสมบูรณ์แล้ว หรือเครื่องถูกปิดโดยเหตุที่ทำงานไม่ถูกต้อง ให้แน่ใจว่าปุ่มปรับสวิทซ์และหน้าปัทม์อยู่ในตำแหน่งที่ถูกต้อง (เรื่องนี้อาจไม่จำเป็นสำหรับบางเครื่อง) และดำเนินการปิดส่วนต่าง ๆ ของเครื่องตามลำดับที่บ่งไว้ในคู่มือ ประจำของเครื่องแบบง่าย ๆ อาจไม่ต้องการอะไรมากไปกว่าการปิดสวิทซ์ไปที่ตำแหน่งปิด แต่เครื่องที่ สลับซับซ้อนอาจต้องปฏิบัติตามระเบียบการปิดเครื่องอย่างประณีต

ตอนที่ 3 ระเบียบปฏิบัติวิทยุโทรเลข

1. กล่าวทั่วไป

วิทยุโทรเลขเป็นระบบโทรคมนาคมอย่างหนึ่งในการส่งข่าวกรอง (หรือข่าวสาร) โดยใช้ประมวล เลขสัญญาณมอร์สสากล วิทยุโทรเลขให้ความเชื่อถือได้อย่างมากที่สุดในการส่งข่าวทางวิทยุทั้งในระยะไกล และในสภาพที่ผิดปกติ แต่ต้องการพนักงานที่มีความชำนาญสูงใช้ติดต่อกับหน่วยเคลื่อนที่และระหว่าง หน่วยที่กำลังเคลื่อนที่และในยามฉุกเฉินก็อาจใช้แทนวิทยุโทรพิมพ์ได้ด้วย

- ก. ประมวลคำย่อที่ใช้ในวิทยุโทรเลข นอกจากระเบียบปฏิบัติการสื่อสารตามธรรมดาแล้ว วิทยุ โทรเลขยังใช้คำย่อตามระเบียบการ สัญญาณปฏิบัติการ และคำย่อพิเศษอื่น ๆ
- ข. ข้อดีของวิทยุโทรเลข ถึงแม้ว่าการสื่อสารด้วยประมวลเลขสัญญาณจะซ้ากว่าการสื่อสารด้วย คำพูดหรือโทรพิมพ์ก็ตาม แต่ก็มีข้อดีคือ จะอ่านสัญญาณได้ชัดเจนมากกว่าในกรณีที่มีการรบกวนและ ก่อกวนเกิดขึ้น สัญญาณเป็นประมวลเลขได้ยินชัดกว่าสัญญาณเป็นคำพูดหรือโทรพิมพ์ในเมื่อมีแรงเท่ากัน ซึ่งสัญญาณเป็นคำพูดหรือโทรพิมพ์อาจจะฟังได้ชัด เครื่องส่งวิทยุเป็นคำพูดชนิด AM ที่มีสภาพบกพร่องไม่ อาจใช้ส่งเป็นคำพูดได้ แต่บางที่ก็อาจจะใช้เป็นเครื่องส่งคลื่นเสมอ (CW) ที่ได้ผล

2. ประมวลเลขสัญญาณมอร์สสากล

ในการผสมจุดและชืดให้เป็นแบบต่างๆ เพื่อใช้แทนอักษรของพยัญชนะตัวเลขจาก 0 ถึง 9 และ สัญญาณตามระเบียบการ จุดและชืดของประมวลสัญญาณมอร์สทำได้โดยใช้เคาะของเครื่องส่งและทำให้ส่ง สัญญาณสั้นและยาวออกไป จังหวะขีดนานเป็น 3 เท่าจังหวะจุด การผสมจุดและชืดที่ใช้เป็นตัวอักษรตัว หนึ่งนั้นจะต้องเว้นระยะจากกันเป็นห่วงเวลานานเท่ากับหนึ่งจุด ตัวอักษรเว้นระยะห่างจากกันเป็น เวลานานเท่ากับ 7 จุด

3. คำย่อตามระเบียบการ

คำย่อตามระเบียบการใช้ในวงจรวิทยุโทรพิมพ์เพื่อส่งข่าวสาร คำขอคำสั่งและคำแนะนำเป็น มาตรฐานที่กระทัดรัด คำย่อตามระเบียบการใช้แทนคำเดี่ยวหรือวลี เพื่อที่จะลดระยะเวลาในการส่งข่าว ให้น้อยลง พนักงานส่งวิทยุโทรเลขจะส่งตัวอักษรต่าง ๆ ของคำย่อตามระเบียบการไปใช้ด้วยกันโดยไม่ต้อง มีการเว้นระยะ คำย่อตามระเบียบการและความหมายต่าง ๆ ได้ระบุตามตารางดังต่อไปนี้

คำย่อตามระเบียบการ	ความหมาย
AA	ทั้งหมดหลังคำว่า
	สถานีที่ไม่รู้จัก
AB	ทั้งหมดก่อนคำว่า
AR	เลิก
AS	คอยก่อน
В	ยังมีข่าวจะส่งอีก
BT	แยกภาค
С	ผิด - ขอแก้
ข.CFN	การยืนยัน "ข้อความต่อไปนี้ยืนยันส่วนหนึ่งของ
	ข้อความของข่าว"
DE	จาก
EEEEEEEE	ยกเลิกข่าวนี้
F	ไม่ต้องตอบ
FM	จาก
G	จงอ่านทวน
GR(numeral)	หมู่คำ
GRNC	หมู่คำไม่นับ
HM (3 ครั้ง)	สัญญาณห้ามใช้ฉุกเฉิน
II	เครื่องหมายแยกภาค
IMI	จงสงซ้ำ

คำย่อตามระเบียบการ	ความหมาย
INFO	ผู้รับทราบ
INT	คำถาม
IX	เตรียมปฏิบัติ
ค. IX (สัญญาณยาว 5 วินาที)	สัญญาณปฏิบัติ
J	จงยืนยัน
K	เปลี่ยน
NR	ข่าวที่
Y	ด่วนมาก
Р	ด่วน
R	ทราบ
Т	ส่งต่อ (ไปยัง)
ТО	ถึง
WA	คำหลังคำว่า
WB	คำก่อนคำว่า
XMT	ยกเว้น
Z	ด่วนที่สุด

- ก. คำย่อตามระเบียบการวิทยุโทรเลข
- ข. คำย่อตามระเบียบการวิทยุโทรพิมพ์
- ค. ในเมื่อไม่มีสัญญาณ IX (ขีดยาว 5 วินาที) ในวงจรวิทยุโทรพิมพ์ ให้ตีพิมพ์ EXECUTE เป็น สัญญาณให้ปฏิบัติแทน

4. สัญญาณปฏิบัติการ

สัญญาณปฏิบัติการซึ่งประกอบไปด้วยสัญญาณ 3 ตัว อักษรที่ขึ้นต้นด้วยอักษร Q หรืออักษร Z พนักงานวิทยุโทรเลขเป็นผู้ใช้ (รวมทั้งพนักงานวิทยุโทรพิมพ์ด้วย) เพื่อให้การสื่อสารเร็วขึ้น สัญญาณ Q หรือสัญญาณ Z แต่ละอย่างจะส่งความหมายของคำต่าง ๆ จำนวนหนึ่งและแล้วก็จะเป็นข้อความที่ สมบูรณ์ ดังตัวอย่าง เช่น ZFG หมายถึง "ข่าวนี้เป็นคู่ฉบับที่แท้จริงของข่าวที่ได้ส่งไปแล้ว"

- ก. บสพ. 131 กล่าวถึงความหมายของสัญญาณ Q และสัญญาณ Z ตลอดจนคำแนะนำใน การใช้ด้วย ถ้าไม่อาจจะแจกจ่าย บสพ.31 ให้แก่พนักงานทุกคนได้ก็จะต้องทำสัญญาณ Q และสัญญาณ Z เฉพาะรายการที่ใช้เสมอให้แก่พนักงานแต่ละคนไม่จำเป็นที่พนักงานจะต้องจดจำสัญญาณปฏิบัติงานเหล่านี้ ทั้งหมด
- ข. สัญญาณปฏิบัติการให้ถือว่าเป็นข้อความธรรมดา ซึ่งจะต้องเข้าอักษรลับเมื่อใช้เป็นส่วน หนึ่งของข่าวอักษรลับ สัญญาณปฏิบัติการใช้เป็นเครื่องช่วยในการรักษาความปลอดภัยในการสื่อสาร เพราะว่าเป็นคำย่อแต่มีความหมายเป็นที่รู้จักกันทั่วไปหลายชาติ

<u>ระเบียบปฏิบัติวิทยุโทรศัพท์</u>

1. กล่าวทั่วไป

วิทยุโทรพิมพ์เป็นระบบโทรคมนาคมอย่างหนึ่งซึ่งตามปกติใช้ทำการสื่อสารทางยุทธวิธีในระยะทาง ใกล้ ๆ และใช้ระหว่างหน่วยเคลื่อนที่และหน่วยกลางอากาศเป็นสื่อสารที่รวดเร็วระหว่างบุคคลต่อบุคคล ในสถานการณ์ที่มีการเคลื่อนที่บ่อย อย่างไรก็ตาม การส่งวิทยุนั้นขึ้นอยู่กับการดักรับของข้าศึกซึ่งจะทำให้ ข่าวมีความปลอดภัยน้อยหรือไม่มีเลย เพราะฉะนั้นกฎเบื้องต้นที่สำคัญ ในการรักษาความปลอดภัยในการ ส่งข่าว จะใช้บังคับอย่างกวดขันต่อวงจรวิทยุโทรศัพท์ทางทหารทั้งหมด

- ก. ประมวลคำย่อที่ใช้ในวิทยุโทรศัพท์ ถ้ามีการใช้คำย่อตามระเบียบการและสัญญาณปฏิบัติการใน วิทยุโทรศัพท์ แล้ว วิทยุโทรศัพท์จะใช้คำพูดตามระเบียบการและวลีตามระเบียบการ คำย่อระเบียบการที่ ได้รับอนุมัติอยู่ตอนท้ายของตอนนี้
 - ข. การเรียกขาน เมื่อมีการสื่อสารในข่ายวิทยุโทรศัพท์จะใช้เรียกขานอย่างใดอย่างหนึ่งดังต่อไปนี้
 - 1) การเรียกขานเต็ม DANO จาก BUTTER DIESEL เปลี่ยน
 - 2) การเรียกจานย่อจาก BUTTER DIESEL เปลี่ยน
 - 3) การเรียกขานเป็นข่าย BUTTER DIESEL จาก BUTTER DIESEL 6 เปลี่ยน
 - ค. กฎของการปฏิบัติ ในการใช้วิทยุโทรศัพท์นั้น พนักงานจะต้อง
 - 1) ฟังก่อนส่งเพื่อที่จะหลีกเลี่ยงการรบกวนข่าวอื่น ๆ
 - 2) พูดเป็นวลีตามธรรมชาติ อย่าพูดเป็นคำ ๆ
 - 3) พูดช้า ๆ และชัดเจน

2. การออกเสียงตัวอักษรและตัวเลข

เพื่อหลีกเลี่ยงความสับสนและความผิดพลาดในระหว่างการส่งเป็นคำพูด จึงได้กำหนดระเบียบ ปฏิบัติพิเศษขึ้นสำหรับการออกเสียงตัวอักษรและตัวเลข ระเบียบปฏิบัติพิเศษเหล่านี้คือการออกเสียง ตัวเลขและตัวเลขตามเสียงของภาษา (PHONETIC ALPHABET AND PHONETIC NUMERAL)

- ก. ตัวอักษรตามเสียงของภาษานั้น พนักงานใช้เพื่อสะกดคำยาก ๆ เพื่อป้องกันความเข้าใจผิด ของพนักงานฝ่ายรับ คำต่าง ๆ ที่ออกเสียงตัวอักษร ตามเสียงของภาษาซึ่งเป็นคำตัวอักษร และไม่ใช่ ประมวลลับจะออกเสียงที่ปรากฏในตารางของข้อ ค. ส่วนที่ขีดนั้นถ้าแสดงให้เห็นการออกเสียงเน้นอาจจะ เป็นหนึ่งหรือหลายพยางค์
- ข. คำที่พูดแล้วอาจจะเข้าใจผิดได้ให้ออกเสียงคำนั้น สะกดตามเสียงของภาษาและแล้วพูดคำนั้น ซ้ำอีกครั้งหนึ่ง เช่น PIDCOKE ข้าพเจ้าสะกด PAPA INDLA DELTA CHARLIE OSCAR KILO ECHO-PIDCOKE
- ค. ตัวอักษรตามเสียงของภาษานี้จะใช้สำหรับการส่งข่าวอักษรลับได้ด้วย ตัวอย่าง เช่น กลุ่มรหัส CMVVX ให้พูดว่า CHARLIE MEKE VICTOR XRAY

การออกเสียงตัวอักษรตามเสียงของภาษา					
อักษร	คำ	การออกเสียง	อักษร	คำ	การออกเสียง
А	ALFA	แอลฟ่า	N	NOVEMBER	โนเวมเบอร์
В	BRAVO	บราโว	0	OSCAR	ออสการ์
С	CHARLIE	ชาลี	Р	PAPA	ปาป้า
D	DELTA	เดลตา	Q	QUEBEC	ควีเบค
E	ECHO	เอ็กโค	R	ROMEO	โรมิโอ

	การออกเสียงตัวอักษรตามเสียงของภาษา				
อักษร	คำ	การออกเสียง	อักษร	คำ	การออกเสียง
F	FOXTROT	ฟอกซ์ทรอท	S	SIERRA	เซียร่า
G	GOLE	กอล์ฟ	Т	TANGO	แทงโก
Н	HOTIE	โฮเต็ล	U	UNIFORM	ยูนิฟอร์ม
I	INDIA	อินเดีย	V	VICTOR	วิคเตอร์
J	JULIETT	จูเลียต	W	WHISKEY	วิสกี้
К	KILO	กิโบ	X	X-RAT	เอ็กซ์-เรย์
L	LIMA	สิมา	Y	YANGKEE	แยงกี้
М	MIKE	ไมค์	Z	ZULU	ซ୍ଟଗ୍ଡ

ง. ตัวเลข ออกเสียงตามที่ปรากฏตามตารางต่อไปนี้

การออกเสียงตัวเลขตามเสียงของภาษา			
ตัวเลข	การออกเสียง	ตัวเลข	การออกเสียง
1	หนึ่ง	6	หก
2	โท	7	เจ็ด
3	สาหาม	8	แปด
4	वं	9	เก้า
5	ห้า	0	ศูนย์

จ. จำนวนเลขออกเสียงเป็นตัว ๆ ไป แต่คำว่า "ร้อย" หรือ "พัน" ให้ใช้ในเมื่อเลขจำนวนนั้น ลงด้วยร้อยและพัน

<u>ตัวอย่างเช่น</u> 84 ออกเสียงเป็น "แปด สี่" 2500 เป็น "สอง ห้าร้อย" และ 16,000 เป็น "หนึ่ง หก พัน"

- ฉ. กลุ่มวันเวลาให้ออกเสียงเป็นตัว ๆ ไป ตามด้วยเครื่องหมายแสดงเขตเวลา ตัวอย่าง เช่น
 291205Z ออกเสียงเป็น " สอง เก้า หนึ่ง สอง ศูนย์ ห้า ซูล"
 - ช. พิกัดแผนที่และตัวเลขต่อท้ายสัญญาณเรียกขานให้ออกเสียงเป็นตัวไป

3. คำพูดตามระเบียบการ

้เพื่อที่จะให้การส่งเป็นคำพูดสั้นและชัดเจนเท่าที่จะกระทำได้พนักงานวิทยุใช้คำพูดตามระเบียบ แทนประโยคยาว ๆ คำพูดตามระเบียบการและความหมายปรากภูอยู่ในตารางดังต่อไปนี้

คำพูดตามระเบียบการ	ความหมาย
ทั้งหมดหลังคำว่า (All After)	ข่าวตอนนี้ข้าพเจ้าอ้างถึงคือ ข้อความทั้งหมดที่
ทั้งหมดก่อนคำว่า (All Before)	ตามหลังคำว่า
แยกภาค (Break)	ก่อนคำว่า

คำพูดตามระเบียบการ	ความหมาย
ผิด – ขอแก้ (Correction)	ส่งผิดต่อไปนี้จะส่งคำที่ถูกต้องตัวสุดท้าย ส่งผิด (หรือแสดง
	ข่าวที่ผิด) ข้อความที่ถูกต้อง คือ ข้อความต่อไปนี้คือ
	ข้อความที่ถูกต้องตามที่ท่านสอบถามมา
ยกเลิกข่าวนี้	การส่งข่าวนี้ผิด ขอยกเลิก คำพูดตามระเบียบการนี้ไม่ให้
(Disregard this transmission)	ใช้เพื่อยกเลิกข่าวใด ๆ ที่ได้ส่งเสร็จสิ้นและผู้ส่งได้รับการ
	ตอบรับหรือการทราบแล้ว
ไม่ต้องตอบ	สถานีถูกเรียกไม่ต้องตอบการเรียก ไม่ต้องตอบรับข่าวนี้
(Dotno answer)	หรือ ไม่ต้องส่งโต้ตอบใด ๆ เกี่ยวกับการส่งข่าวนี้เมื่อได้ใช้
	คำพูดตอบรับนี้แล้ว จะต้องลงท้ายการส่งข่าวด้วยคำพูด
	ตามระเบียบการว่า "เลิก"
ปฏิบัติ (Execute)	ให้ดำเนินการตามข้อความของข่าวหรือตามสัญญาณที่ใช้ใน
เตรียมปฏิบัติ	การนี้คำนี้ให้ใช้เฉพาะกับ "วิธีสั่งปฏิบัติพร้อมกัน" เท่านั้น
(Execute to follow)	การปฏิบัติตามข่าวหรือตามสัญญาณต่อไปนี้ให้กระทำเมื่อ
	ได้รับคำพูดตามระเบียบการว่า "ปฏิบัติ" คำนี้ให้ใช้เฉพาะ
ν ,	กับ "วิธีสั่งปฏิบัติพร้อมกัน" เท่านั้น
ยกเว้น (Exempt)	ชื่อผู้รับซึ่งต่อท้ายคำนี้ เป็นผู้ได้รับการยกเว้นจากการเรียก
₩	ขาน
ตัวเลข (Figures)	ต่อไปนี้เป็นเลข หรือจำนวนเลข
ด่วนที่สุด (Flash)	คือลำดับความเร่งด่วน "ด่วนที่สุด"
จาก (Form)	ชื่อจ่าหน้าที่ต่อท้ายคำนี้จะแสดงว่าเป็นผู้รับข่าวฉบับนี้
ด่วนมาก (Immediate)	ความเร่งด่วน "ด่วนมาก" ชื่อผู้รับที่ต่อท้ายคำนี้ คือผู้รับทราบ
ผู้รับทราบ (Info) จะอ่านทวน (I read back)	ซอผูรบทต่อทายศาน คอผูรบทราบ ต่อไปนี้เป็นการอ่านทวนข่าวตามที่ท่านขอมา
จะส่งซ้ำ (I say back)	พยเบนเบนการยานทานขางตามทหานขยม ข้าพเจ้ากำลังส่งข่าวซ้ำ หรือเฉพาะตอนที่ท่านบ่งมา
สะกดตัว (I spell)	ข้าพเจ้าจะสะกดตัวของคำต่อไปนี้ด้วยชื่อเรียกตัวอักษร
ขอยืนยัน (L verify)	ข้อความต่อไปนี้เป็นรายการยืนยันตามคำขอของท่านซึ่งจะ
100 ko k (1 verily)	ส่งให้ใช้เฉพาะเมื่อตอบคำ "จงยืนยัน" เท่านั้น
รับข่าว (Message follows)	ต่อไปนี้มีข่าวที่จะต้องจดบันทึกไว้ให้ส่งคำต่อไปนี้ไปทันที
****** (Wessage Tollows)	ภายหลังการเรียกขานกันได้แล้ว
ข่าวที่ (Number)	ลำดับที่ข่าวของสถานี
เลิก (Out)	จบการส่งข่าวของข้าพเจ้าที่มีถึงท่านและไม่ต้องการคำตอบ
33 (3 3.6)	

คำพูดตามระเบียบการ	ความหมาย
เปลี่ยน (Over)	จบการส่งข่าวของข้าพเจ้าที่มีถึงท่านและต้องการให้ท่าน
	โต้ตอบ ขอให้ส่งต่อไปได้
ด่วน (Friority)	คือลำดับความเร่งด่วน "ด่วน"
จงอ่านทวน (Read back)	จงทวนข่าวฉบับนี้ทั้งหมดที่ข้าพเจ้าส่งมาและตามที่ท่านรับ
	ได้จริง
ส่งต่อ (Relay to)	จงส่งข่าวฉบับนี้ไปยังผู้รับทั้งหมดหรือไปยังผู้ที่มีชื่อจ่าหน้า
	ทั้งหมด ดังต่อไปนี้
ทราบ (Roger)	ข้าพเจ้าได้รับการส่งครั้งหลังของท่านเป็นที่พอใจแล้ว
ปกติ (Routine)จงส่งซ้ำ (Say again)	คือลำดับความเร่งด่วน "ปกติ"
	จงทวนการส่งครั้งหลังของท่านทั้งหมด ถ้าตามด้วยข้อมูล
	แสดงลักษณะที่บ่งก็หมายความว่า "ให้ทวน (คือส่วนที่
รับสัญญาณ (Signals follow)	บ่งไว้)"
	หมู่คำตอบหลังคำนี้มาจากสมุดสัญญาณ (คำพูดตาม
	ระเบียบการนี้ไม่จำเป็นต้องใช้ในข่ายนี้ใช้รับ-ส่งสัญญาณกัน
	เป็นส่วนใหญ่ แต่มุ่งหมายให้ใช้เพื่อจะส่งสัญญาณการ
ห้ามใช้ (Silence)	ยุทธวิธีผ่านข่ายที่มิใช้ทางยุทธวิธี)
	ยุติการส่งทันที การห้ามใช้นี้คงจะอยู่จนกว่าจะสั่งให้ใช้ได้
	อย่างเดิม (เมื่อมีระบบการรับรองฝ่ายใช้บังคับอยู่ การส่ง
เริ่มใช้ (Silence lifted)	ข่าวเพื่อห้ามใช้นี้จะต้องรับรองฝ่ายด้วย)
	การส่งเป็นไปตามปกติอย่างเดิม (การสั่งให้เริ่มใช้นี้กระทำ
	ได้เฉพาะสถานีที่สั่งห้ามใช้หรือโดยผู้มีอำนาจหน้าที่ชั้นสูง
	กว่าเท่านั้น เมื่อมีระบบการรับรองฝ่ายใช้บังคับอยู่ การส่ง
พูดซ้า ๆ (Speak slower)	ข่าวเพื่อเริ่มใช้นี้จะต้องรับรองฝ่ายด้วย)
	การส่งข่าวของท่านใช้ความเร็วสูงเกินไป จงลดความเร็วใน
ถูกต้อง (That is correct)	การส่งข่าวลง
จาก (This is)	ถูกต้องแล้วหรือข่าวที่ส่งมานั้นถูกต้องแล้ว
เวลา (Time)	การส่งนี้กระทำจากสถานีที่มีนามต่อท้ายนี้
ถึง (To)	ต่อท้ายคำนี้คือเวลาหรือหมู่วันเวลาของข่าวนั้น
สถานที่ไม่รู้จัก(Unknown Station)	ผู้รับที่มีชื่อต่อท้ายคำนี้เป็นผู้รับปฏิบัติตามข่าวนั้น
จงยืนยัน (Verify)	ข้าพเจ้าไม่ทราบลักษณะเฉพาะของสถานที่
	ขอให้ยืนยันข่าวทั้งฉบับ (หรือบางตอนที่บ่งไว้) กับผู้ให้ข่าว
	และส่งข้อความที่ถูกต้อง การให้นี้อยู่ในคุลพินิจของ หรือ
คอยก่อน (Wait)	โดยผู้รับข่าวอันเป็นปัญหาที่ส่งมาถึงตนนั้น
คอยนาน (Wait out)	ข้าพเจ้าต้องหยุดชั่วขณะ
รับปฏิบัติตาม (Wilco)	ข้าพเจ้าต้องหยุดนาน
	ข้าพเจ้าได้รับข่าวของท่าน เข้าใจความแล้วและรับปฏิบัติได้
	ผู้รับเป็นผู้ใช้คำนี้เท่านั้น เนื่องมาจากความหมายของคำว่า
	"ทราบ" นั้นรวมอยู่ในคำว่า "รับปฏิบัติตาม" อยู่แล้วจึงไม่
	ต้องใช้คำพูดตามระเบียบการทั้งสองคำนี้ไปพร้อม ๆ กัน

คำพูดตามระเบียบการ	ความหมาย
คำหลังคำว่า (Word after)	คำที่ข้าพเจ้าอ้างถึงในข่าวนั้นอยู่หลังคำว่า
คำก่อนคำว่า (Word before)	คำที่ข้าพเจ้าอ้างถึงในข่าวนั้นอยู่ก่อนคำว่า
ซ้ำสองครั้ง (Word twice)	ในเมื่อการสื่อสารกระทำได้ยากก็ให้ส่งแต่ละวลี (หรือแต่ละ หมู่คำประมวล) ซ้ำสองครั้ง คำพูดตามระเบียบการนี้อาจ ใช้อย่างคำสั่ง อย่างคำขอหรืออย่างการแจ้งให้ทราบก็ได้ การส่งครั้งหลังของท่านไม่ถูกต้อง ข้อความที่ถูกต้องคือ
ฝิด (Wrong)	

ตอนที่ 5 ระเบียบปฏิบัติของวิทยุโทรพิมพ์

1. กล่าวทั่วไป

วิทยุโทรพิมพ์เป็นส่วนหนึ่งของโทรคมนาคมเพื่อใช้ส่งข่าวกรอง (หรือข่าวสาร) โดยการกระทำ โดยตรงต่อแป้นตัวอักษร หรือแถบปรุไปทางวงจรวิทยุ (AM) ข่าวกรอง(หรือข่าวสาร) อันเดียวกันนี้อาจจะ ได้รับตามแบบแผ่นสำเนา (Page Copy) เป็นแถบปรุหรือทั้งสองอย่าง

- ก. ประโยชน์ของการปฏิบัติการวิทยุโทรพิมพ์สนามนั้นคือ เมื่อได้ใช้ชุดวิทยุโทรพิมพ์เคลื่อนที่แล้ว ก็จะมีลักษณะการทำงานของระบบโทรคมนาคมได้สามแบบคือ วิทยุโทรเลข วิทยุโทรพิมพ์และวิทยุ โทรศัพท์ การส่งข่าวอาจไปได้ไกลในระยะต่าง ๆ จนถึงหลายพันไมล์
- ข. พนักงานวิทยุโทรพิมพ์จะต้องรับการฝึกมาเป็นอย่างดี ให้สามารถปฏิบัติการตามวิธีทั้งสาม พนักงานเหล่านี้จะต้องรักษาความชำนาญในการปฏิบัติทางวิทยุโทรเลข และจะต้องใช้ลักษณะในการ ปฏิบัติงานแบบนี้ เพื่อส่งข่าวในคุณภาพของวงจรลดต่ำกว่า คุณภาพที่ต้องการสำหรับการสื่อสารทางวิทยุ โทรพิมพ์
- ค. แบบกระดาษเขียนข่าวและระเบียบปฏิบัติต่อข่าว ซึ่งจะต้องส่งโดยโทรพิมพ์นั้นคงเหมือนกับที่ ใช้ในการปฏิบัติทางโทรพิมพ์ธรรมดา

2. การทำงานของเครื่อง

- ก. ยกแคร่ (Shift) พนักงานจะต้องกดแป้น "LTRS" เมื่อจะลดแคร่จากลงบนมาล่างและกดแป้น "FIGS" เมื่อจะยกแค่จากล่างขึ้นบน
- ข. กลับแคร่ (Carriage Return) ต้องกดแป้น "CR" เพื่อกลับแคร่ให้เลื่อนมาอยู่ทางริมซ้ายของ กระดาษให้กดแป้น "กลับแคร่" นี้ 2 ครั้ง เพื่อให้แน่ใจว่า แคร่ได้กลับมาถูกต้องแล้ว
- ค. เลื่อนบรรทัด (Line Feed) ต้องกดแป้น "LF" เพื่อเลื่อนกระดาษขึ้นไปข้างบนทั้งใช้สำหรับ เครื่องโทรพิมพ์ที่พิมพ์เป็นหน้ากระดาษ
- ง. เว้นระยะ (Space) ใช้แป้นทำหน้าที่เว้นระยะนี้เพื่อเลื่อนแคร่พิมพ์ไปทางข้างเมื่อไม่พิมพ์ ตัวอักษรลงบนหน้ากระดาษของเครื่องโทรพิมพ์
- จ. สัญญาณกระดิ่ง (Bell Signal) ใช้สัญญาณกระดิ่งนี้เตือนให้พนักงานรับมีความสนใจเมื่อจำเป็น โดยจะส่งเป็นชุดตัวอักษร 10 ตัว คือ อักษรบนของ "J" และ "S" ดังนี้ " FIGS JJJJJSSSSS LTRS"
- a. แสงเตือน (Warning Light) ในเครื่องโทรพิมพ์ชนิดเป็นหน้ากระดาษแถบจะมีแสงเตือนเพื่อ แสดงว่าใกล้จะสุดบรรทัดพิมพ์แล้ว

- ช. กระดิ่งสุดบรรทัด (Margin Bell) ในเครื่องโทรพิมพ์ชนิดเป็นหน้ากระดาษ ซึ่งมีเป็นตัวอักษรที่ สามารถพิมพ์เข้าบรรทัดของเครื่องนั้น ๆ โดย จะมีกระดิ่งสัญญาณสุดบรรทัด เพื่อแสดงว่าใกล้จะสุด บรรทัดเข้าบรรทัดแล้ว
 - ซ. ลักษณะการทำงานของเครื่องโดยเฉพาะ

การทำงานของเครื่องโทรพิมพ์นั้นจำเป็นจะต้องให้สะดวกแก่การปฏิบัติต่อข่าว และในการจัดรูป หน้ากระดาษของเครื่องโทรพิมพ์ฝ่ายรับดัง

- 1) การส่งทุกครั้งนำด้วยการกดแป้นเว้นระยะ 5 ครั้ง กลับแคร่ 2 ครั้ง และเลื่อนบรรทัด 1 ครั้ง ภายหลังที่ได้ทำการเรียกขานในขั้นต้นแล้วและได้รับคำตอบพนักงานส่งจะกลับแคร่สองครั้งและเลื่อน บรรทัด 8 ครั้ง ก่อนที่จะส่งข่าว
 - 2) เมื่อสุดบรรทัดให้กดแป้นกลับแคร่ 2 ครั้ง และเลื่อนบรรทัด 1 ครั้ง
 - 3) การเว้นระหว่างหน้าสำหรับข่าวยาว ๆ ให้กลับแคร่ 2 ครั้ง และเลื่อนบรรทัด 8 ครั้ง
- 4) เมื่อจบข่าวฉบับหนึ่งแล้ว ให้กดแป้นกลับแคร่ 2 ครั้งเลื่อนบรรทัด 8 ครั้ง กดแป้นอักษร N 4 ครั้ง และกดแป้น "LTRS" หรือล่าง อีก 12 ครั้ง หรืออาจเปลี่ยนเป็นกดแป้นกลับแคร่ 2 ครั้ง และเลื่อน บรรทัด 12 ครั้งก็ได้ ถ้าหากมีคำแนะนำของเหล่าทัพอนุญาตไว้เป็นส่วนหนึ่งต่างหาก
- 5) แต่ละบรรทัดต้องมีอักษรไม่เกิน 69 ตัว ร[่]วมทั้งการเว้นระยะด้วย ทั้งนี้เว้นแต่จะมีคำแนะนำ ของเหล่าทัพอนุญาตไว้เป็นหนึ่งต่างหากความมุ่งหมายพิเศษ

3. เครื่องหมายวรรคตอน

ก. ไม่ต้องใช้เครื่องหมายวรรคตอน เว้นแต่จะมีความจำเป็นต่อใจความของข่าว เมื่อมีคามจำเป็น จะต้องใช้เครื่องหมายวรรคแทน ก็อนุมัติให้คำย่อและสัญลักษณ์ ดังต่อไปนี้

เครื่องหมาย	คำย่อ	สัญลักษณ์
1. ปรัศนี	ปน.	?
Question mark	QUES	
2. ยัตติภังค์		-
Hyphen		
3. ทวิอัฒภาค	ทภ.	:
COLON	CLN	
4. นขลิขิต	นข.	()
PARENTHESSES	PAREN	
5. มหัพภาค	มภ.	
PERIOD/FULL-STOP	PD.	
6.จุลภาค	จภ.	,
COMMA	CMM	
7. ขีดเศษส่วน		/
SLANT/OBLIQUE STROKE		
8. ย่อหน้า	ยน.	
PARAGRAPH	PARA	
9. อัญประกาศ	อป.	пп
QUOTATION MARK	QUOTE - UNQUTE	

- ข. อาจใช้อักษร "X" แทนเครื่องหมายวรรคตอนก็ได้ ถ้าไม่ถือว่าเครื่องหมายวรรคตอนที่แท้จริง เป็นสิ่งสำคัญ แต่ก็มีความจำเป็นอยู่บ้างที่จะต้องแยกวรรคตอนในข้อความของข่าว เพื่อความชัดเจน และ การใช้อักษร "X" นี้จะไม่ทำให้เกิดความหมายเป็นสองนัย เพื่อความมุ่งนี้จะต้องไม่เป็นชื่อเรียกตัวอักษร "X" ลงไป
 - ค. ถ้าเขียนข่าวด้วยลายมือ ขอแนะนำให้วงเครื่องมหัพภาคและจุลภาคไว้ เพื่อให้เด่นชัดยิ่งขึ้น

นามเรียกขานทางยุทธวิธี

1. ความมุ่งหมายของการเรียกขาน

นามเรียกขานนั้นใช้เพื่อการจัดตั้งและดำรงไว้ซึ่งการสื่อสารเป็นประการสำคัญ นามเรียกขาน ประกอบขึ้นด้วยการผสมตัวอักษร หรือถ้อยคำซึ่งอ่านออกเสียงได้ในลักษณะใดก็ตามซึ่งแสดงให้ทราบถึง เครื่องมือสื่อสารอย่างใดอย่างหนึ่ง หน่วยบัญชาการ ผู้มีอำนาจที่หน่วยราชการทหาร การเปลี่ยนนาม เรียกขานเป็นครั้งคราวย่อมจะก่อให้เกิดความปลอดภัย ในการสื่อสารได้ชั่วระยะเวลาสั้น ๆ ทั้งนี้ขึ้นอยู่กับ ปริมาณการในการใช้คุณภาพ ในการวิเคราะห์ข่าวของฝ่ายข้าศึก นามเรียกขานเป็นคำพูดซึ่งประกอบด้วย คำซึ่งอ่านออกเสียงได้ เช่น ภูเรือ หรือ เสือดำ นั้นอนุมัติให้พนักงานวิทยุโทรศัพท์ใช้ได้

2. การใช้นามเรียกขาน

มีอยู่เสมอที่กองบัญชาได้รับนามเรียกขานเพียงนามเดียวสำหรับใช้ในข่ายต่าง ๆ ซึ่งกองบัญชาการ นั้นจะต้องปฏิบัตินามเรียกขานเพียงนามเดียว จะต้องใช้ปฏิบัติทั้งในข่ายวิทยุโทรศัพท์ นามเรียกขานที่ กำหนดให้ เช่น สิงห์ดง ก็ใช้ได้กับวิทยุโทรศัพท์ ในบางสถานการณ์ที่ต้องการใช้มีความปลอดภัยเพิ่มขึ้นก็ มีความต้องการมากยิ่งขึ้น ในการใช้นามเรียกขานที่แตกต่างออกไปแต่ละข่ายซึ่งสถานีนั้น ๆ ปฏิบัติงาน

3. นามเรียกขานของข่ายและการเรียกรวม

เมื่อต้องการเรียกขานสถานีในข่ายวิทยุก็ใช้นามเรียกขานของข่าย การใช้นามเรียกขานนี้ เพื่อให้ การปฏิบัติงานของข่ายและ สบข. มักจะเป็นผู้ใช้เพื่อควบคุมการปฏิบัติงานของข่าย การเรียกร่วมก็ทำนอง เดียวกับการเรียกข่าย แต่เป็นการใช้สำหรับเรียกรวมสองสถานีหรือมากกว่านั้นไม่ใช้สถานีทั้งหมดในข่าย การเรียกรวมมีประโยชน์เมื่อต้องการเรียกหลายสถานีบ่อย ๆ ในเรื่องซึ่งไม่เกี่ยวข้องกับสถานีอื่น ๆ ในข่าย

4. นามเรียกขานสำรอง

นามเรียกขานทั้งหมดจะต้องเปลี่ยนเป็นครั้งคราวตามคำแนะนำที่ได้เตรียมไว้ล่วงหน้า ระยะเวลา ในการใช้นามเรียกขานนั้นขึ้นอยู่กับระดับชั้นของการรักษาความปลอดภัยที่ต้องการคำแนะนำเหล่านี้ พร้อมด้วยตารางบัญชีนามเรียกขานและนามเรียกขานสำรองพิมพ์ไว้ใน นปส.ของหน่วย การเปลี่ยนเรียก ขาน ทำให้ต้องเปลี่ยนความถี่ในการปฏิบัติงานด้วย ซึ่งเป็นการเพิ่มเติมมาตราการต่อต้านการดักข่าว และ การวิเคราะห์ข่าวของข้าศึก

5. การกำหนดเรียกนามเรียกขาน

การกำหนดเรียกนาม จะต้องระมัดระวังในการกำหนดเรียกขานให้แก่สถานีแต่ละแห่งในข่ายวิทยุ อันเดียวกัน การกำหนดนามเรียกขานที่ไม่เหมาะ อาจจะยังผลให้เกิดการสับสนและการปฏิบัติงานของ ข่ายไม่มีประสิทธิภาพ

ตัวอักษร ในที่นี้ให้หมายถึงตัวหนังสือและตัวเลข

ตัวอย่างเช่น นามเรียกขานที่คล้ายคลึงกันได้แก่ 6P7, 6P6X,A67P มีความยากที่จะกำหนดออก ได้ ในระหว่างห้วงเวลาที่การรับไม่ดี พนักงานวิทยุที่สำคัญผิด เมื่อได้ยินเฉพาะส่วนใดส่วนหนึ่งของการ เรียกขาน ก็อาจจะถือเอาว่าเป็นการเรียกตนและจะเพิ่มความสับสนขึ้นอีกด้วย การตอบการเรียกขานแทน สถานที่ถูกเรียก เพื่อหลีกเลี่ยงเรื่องนี้ จึงควรกำหนดนามเรียกขาน (ภายในข่าย) ให้มีตัวอักษรหรือตัวเลข ซ้ำกันน้อยที่สุด

การรับรองฝ่าย

การรับรองผ่ายเป็นมาตรการของการรักษาความปลอดภัยอย่างหนึ่งซึ่งได้สร้างขึ้นเพื่อป้องกันระบบ การสื่อสารให้พ้นจากการส่งข่าวลวง มีหลายโอกาสที่จะต้องใช้การรับรองฝ่าย ทั้งนั้นอยู่กับความจำเป็น หรือความต้องการของแต่ละหน่วยบัญชาการ นโยบายของผู้บังคับบัญชาได้พิมพ์ประกาศไว้ใน นสป. ส่วน ตารางการรับรองฝ่ายนั้นมีปรากฏอยู่ใน นปส

ตอนที่ 8 ข่ายวิทยุ

1. กล่าวทั่วไป

สถานีวิทยุสนามตามปกติ จะจัดร่วมเข้าเป็นข่าย ๆ ตามความต้องการของสถานการณ์ ทาง ยุทธวิธีแต่ละข่ายจะได้รับการกำหนดให้ใช้ความถี่ ในการปฏิบัติงานหนึ่งความถี่หรือมากกว่า

- ก. เพื่อที่จะให้มีการควบคุมข่ายวิทยุ สถานีวิทยุตามปกติใช้สถานีที่ประจำกับกองบัญชาการสูงสุด ของข่ายนั้น โดยกำหนดให้เป็นสถานีบังคับข่าย (สบข.) อำนาจของสบข. นั้นมีเพียงแต่การปฏิบัติงานของ ข่ายและวินัยในระหว่างที่ทำการออกอากาศและระหว่างระยะเวลาที่ห้ามส่งเท่านั้น
- ข. เนื่องจาก สบข. มีความรับผิดชอบในการดำรงรักษาวินัยสื่อสารภายในข่าวพนักงานวิทยุ สบข. จึงมีอำนาจในการควบคุมทางปฏิบัติอันจำเป็นเพื่อให้แน่ใจว่าได้ใช้วงจรที่กำหนดขึ้นในข่ายให้ได้ ประสิทธิภาพมากที่สุด อย่างไรก็ตามไม่มีอำนาจทางธุรการภายใน การปฏิบัติการทางยุทธวิธีหรือการ เคลื่อนย้ายของสถานี ตัวอย่างเช่น สถานี สบข. ของกรมทหารราบไม่อาจจะกำหนดที่ตั้งสถานีของกองพัน ในข่ายได้ทั้ง พนักงาน สบข. ก็ไม่อาจกำหนดเวลาในการสับเปลี่ยนพนักงานวิทยุของสถานีได้ แต่ละหน่วย ที่เกี่ยวข้องจะเป็นผู้ควบคุมสิ่งที่กล่าวมาแล้ว ตลอดจนพันธกิจทางธุรการในทำนองเดียวกัน รูปที่ 53 และ 54 แสดงถึงการจัดข่ายวิทยุแบบหนึ่ง

2. การควบคุมข่าย

สบข. มีอำนาจเด็ดขาดภายในขอบเขตของการควบคุมทางเทคนิค สบข. เป็นผู้เปิดและปิดข่าย ควบคุมการส่งและการจัดการไม่ให้ข่าวคั่งค้างภายในข่าย แก้ไขข้อผิดพลาดของระเบียบปฏิบัติ หรือ อนุญาตหรือไม่อนุญาตให้สถานีต่าง ๆ เข้าหรือออกจากข่าย และดำรงรักษาวินัยของข่ายของเขตในการ ควบคุมของสบข. ย่อมแตกต่างไปตามสภาพของการปฏิบัติกล่าวคือ ในข่ายซึ่งพนักงานวิทยุที่ชำนาญ สามารถจะส่งข่าวไปได้อย่างเรียบร้อยก็มีการควบคุมแต่เพียงเล็กน้อยเท่านั้น ถ้าปริมาณของข่าวมีมากและ พนักงานมีความชำนาญน้อย สบข. ก็อาจมีความจำเป็นที่จะต้องควบคุมอย่างแน่นแฟ้นเพื่อให้ข่ายมี ระเบียบและการรับส่งข่าวเป็นไปอย่างเรียบร้อย

3. แบบของข่ายวิทยุ

- ก. ในข่ายอิสระ การแลกเปลี่ยนข่าว กระทำได้โดยมิต้องได้รับอนุมัติล่วงหน้าจาก สบข.
- ข. ในข่ายบังคับ สถานีจะต้องได้รับอนุมัติจาก สบข. เสียก่อนที่จะทำการส่งข่าว เมื่อสถานีมี มากกว่าหนึ่งสถานีมีข่าวที่จะส่งในข่ายบังคับสบข.เป็นผู้ตกลงใจว่าสถานีไหนจะส่งซึ่งเป็นไปตามความ เร่งด่วน

4. พันธกิจของ สบข.

ก. การเปิดข่าย การเปิดข่ายวิทยุแห่งหนึ่ง สบข. จะต้องตั้งความถี่ของเครื่องส่งให้ตรงกับความถี่ ของข่ายตามที่กำหนดขึ้น สบข. จะใช้นามเรียกสถานีต่าง ๆ ที่กำหนดให้อยู่ในข่ายและพิสูจน์ทราบว่าเป็น สบข. ภายหลังที่สถานีถูกเรียกได้ตอบตามลำดับตัวอักษรแล้ว สบข. จะแจ้งให้ทราบว่าได้ยินการส่งของ สถานีเหล่านั้น ๆ แล้วต่อจากนั้น สบข. ก็จะได้ถึงสถานภาพของข่าย (ข่ายอิสระ ข่ายบังคับ การห้ามส่ง ฯลฯ)

ข. การปิดข่าย ให้ สบข. แจ้งลูกข่ายให้ทราบว่าข่ายนั้นปิดแล้ว และกำหนดเปิด ก็จะแจ้งให้สถานี ต่าง ๆ ในข่ายให้ทราบว่าข่ายจะเปิดใหม่ในเวลาอะไรและด้วยความถี่เท่าใด ข่าวสารดังกล่าวนี้อาจจะจัด ขึ้นโดยการประมวลลับข้อความนัดหมาย (Prearranged Messaga Code) หรือโดยอ้างถึง นปส. ที่มีข่าว เช่นนั้นอยู่

ค.การอนุญาตให้สถานีเข้าข่าย เมื่อสถานีหนึ่งมีความปรารถนาจะเข้าร่วมในข่ายที่มีแล้วข่ายหนึ่ง ก็ต้องขออนุญาตจาก สบข. ก่อนอื่นสถานีนั้นจะต้องส่งนามเรียกขานของสถานี สบข. และต่อจากนั้นก็ส่ง นามเรียกขานของตนหลังจากที่ สบข. ได้ตอบรับการเรียกแล้ว สถานีที่ขอเข้าข่ายก็จะแจ้งเหตุผลในการที่ จะขออนุญาตเข้าข่าย สบข. จะถามการรับรองฝ่ายของสถานีนั้นด้วย ส่วนทดสอบของระบบการรับรองฝ่าย เพื่อยืนยันการพิสูจน์ทราบของสถานีนั้น ภายหลังที่ได้แจ้งการพิสูจน์ทราบของสถานีของสบข. จะ ยอมหรือปฏิเสธคำขอนั้นก็ได้ การตกลงใจเช่นนี้คงกระทำภายหลัง สบข. พิจารณาเห็นว่าเหตุผลของสถานี ที่ขอเข้าข่ายนั้นมีความเป็นจริง

รูปที่ 53 แบบของวิทยุบังคับบัญชากองร้อย

- ง. การให้สถานีออกจากข่าย เมื่อสถานีต้องการจะออกจากข่ายก็จะเรียก สบข. และขออนุญาต ออกจากข่าย สบข. จะยอมอนุญาตให้ถ้าเหตุผลในการขอนั้นเป็นจริง
- จ. การเฝ้าฟังข่าย (TO MONITOR THE NET) สบข. จะเปิดเครื่องเฝ้ารับฟังข่ายอยู่ตลอดเวลา ถ้าสถานีใดฝ่าฝืนระเบียบการปฏิบัติการของข่าย สบข. ก็จะแก้ไขการกระทำที่ผิด ๆ นั้น นอกจากนั้น สบข. ก็ยังจะคอยดูการไหลของข่าวในข่ายอยู่เสมอ ๆ และเตรียมการปฏิบัติอันจำเป็นเพื่อเร่งรัดการรับ -ส่งข่าวในเมื่อมีเรื่องขัดแย้งหรือการรับกวนระหว่างสถานีต่าง ๆ

- ฉ. การควบคุมและการกำหนดเวลาส่งข่าว เมื่อมีข่าวภายในข่ายจำนวนมาก สบข. อาจจะต้อง ควบคุมส่งข่าวโดยใกล้ชิดและควบคุมทางวินัยเพื่อป้องกันมิให้มีการส่งข่าวประเภทปกติและกำกับข่ายให้อยู่ ในลักษณะที่จะส่งข่าวสำคัญที่สุดตามลำดับความเร่งด่วนได้
- ช. การสั่งหรือการยกเลิกการห้ามส่ง เมื่อ สบข. ได้รับอนุมัติจากหน่วนเหนือก็จะสั่งหรือยกเลิกการ ห้ามส่งตามความต้องการของสถานการณ์ทางยุทธวิธี สบข. จะสั่งห้ามส่ง โดยการเรียกสถานีทั้งหมดใน ข่ายและแจ้งให้ทราบว่าได้สั่งให้ห้ามส่งแล้ว ต่อจากนั้นเป็นความรับผิดชอบของ สบข. ที่จะต้องดูแลมิให้มี การส่งข่ายตนจนกว่าจะได้สั่งเลิกการห้ามส่ง การยกเลิกการห้ามส่ง สบข. จะเรียกสถานีหนึ่งหรือหลาย สถานีที่ได้รับอนุญาตให้ส่งและแจ้งสภาพการยกเลิกการห้ามส่ง

รูปที่ 54 แบบของข่ายวิทยุบังคับบัญชากองพัน

ซ. การบังคับข่าย เมื่อมีข่าวจำนวนมากหรือเมื่อพนักงานขาดประสบการณ์ในการปฏิบัติต่อข่าวใน ข่าย สบข. อาจจะสั่งให้เป็นข่ายบังคับได้ ในกรณีเช่นนี้จะไม่ยอมให้สถานี ใดส่งข่าวโดยไม่เรียก สบข. และขออนุญาตทำการส่งข่าวเสียก่อน สบข.อาจต้องการให้สถานีนั้นแจ้งลักษณะและประเภทของข่าว ตลอดจนที่หมายปลายทางของข่ายนั้น ก่อนที่จะอนุญาตให้ทำการส่งภายใต้สภาพของข่ายบังคับ สบข. ก็ จะวางระเบียบปฏิบัติของข่ายขึ้น เพื่อให้สถานีทั้งหมดในข่ายปฏิบัติตาม

5. การปรับตั้งความถี่ของข่าย (การเข้าข่าย)

ในการสื่อสารจากสถานีวิทยุหนึ่งไปยังอีกสถานีหนึ่งนั้นจะต้องปรับตั้งเครื่องรับวิทยุให้ตรงกับ ความถี่ซึ่งเครื่องส่งวิทยุปลายทางกำลังส่งอยู่ สำหรับอุปกรณ์วิทยุบางแบบนั้นตามปกติเจ้าหน้าที่ซ่อมบำรุง จะตั้งความถี่และช่องทางการสื่อสารไว้ล่วงหน้า แต่ชุดวิทยุบางแบบก็อาจมีความต้องการให้พนักงานตั้ง ล่วงหน้าหรือปรับตั้งให้ตรงกับความถี่ที่กำหนดให้เป็นการสำคัญอย่างยิ่งที่จะต้องปรับตั้งเครื่องวิทยุให้ ความถี่ตรง สบข. จะใช้มาตรฐานเช่น มาตรวัดความถี่หรือเครื่องบังคับการแกว่งที่ควบคุมด้วยผลึกแร่ เพื่อให้แน่ใจว่าความถี่ของข่ายถูกต้องจริง ๆ เมื่อเป็นสถานีลูกข่ายหรือสถานีรองข่ายให้ปรับตั้งเครื่องรับให้ ตรงกับความถี่ของ สบข. และแล้วใช้เครื่องรับมาตรฐานในการปรับตั้งเครื่องส่ง สบข. รับผิดชอบให้ เครื่องส่งของตนมีการปรับตั้งให้ตรงกับความถี่ที่กำหนด แม้ว่าความถี่ของ สบข. จะเคลื่อนไปก็ตามสถานี รองก็จะต้องปรับตั้งให้ตรงกับความถี่ของ สบข. ในกรณีเช่นนี้ สถานีรองจะต้องแจ้งให้ สบข. ทราบด้วย

ข่ายวิทยุของกองพล ตอนที่ 1 กล่าวทั่วไป

- 1. ข่ายวิทยุปรุงคลื่นทางช่วงสูง และปรุงคลื่นทางความถี่ เป็นส่วนหนึ่ง ของระบบ การสื่อสารของกองพล รูปร่างของข่ายวิทยุของกองพลตามแบบอย่างแสดงไว้ในรูป อย่างไรก็ตามผู้ บังคับทหารสื่อสารของกองพลเป็นผู้กำหนดครั้งสุดท้ายในเรื่องลักษณะรูปร่างของข่ายวิทยุ โดย อาศัยสถานการณ์ทางยุทธวิธีความถี่ และเครื่องที่มีอยู่ตลอดจนความต้องการของผู้บัญชาการกอง พล เป็นหลักในการพิจารณา การจัดข่ายวิทยุใดๆ ก็ตามจะต้องให้อ่อนตัวได้เพียงพอเพื่อให้ สามารถเผชิญกับความเปลี่ยนแปลงอันมิได้คาดถึงในการใช้ทางยุทธวิธี
- 2. ตามปกติแล้วชุดวิทยุ ปส. และ ปถ. นั้นใช้เมื่อจัดตั้งการสื่อสารในขั้นเริ่มต้นระหว่างกองบังคับ การต่าง ๆ ในเมื่อมีอุปกรณ์วิทยุถ่ายทอดและอุปกรณ์ทางสาย พร้อมที่จะใช้งานได้แล้ว ความต้องการใน การใช้วิทยุก็จะลดลง อย่างไรก็ตามในสถานการณ์เคลื่อนที่เร็ววิทยุเท่านั้น มักจะเป็นมัชฌิมการสื่อสาร ที่ เหมาะในทางปฏิบัติ
- 3. ถึงแม้ข่ายวิทยุต่าง ๆ จะได้กำหนดไว้เป็นข่ายๆ ตามพันธกิจ เช่น การบังคับบัญชา การส่งกำลัง บำรุง การข่าวกรองๆ แล้วก็ตาม แต่ปริมาณของข่าวและสถานการณ์อื่นๆ ก็อาจจะบังคับให้จำเป็นต้องรวม ข่ายต่างๆ เข้าด้วยกันเพื่อใช้งานกับข่าวหลายๆ ชนิด

ตอนที่ 2 ข่ายวิทยุภายในกองพล

ู้ มีรายละเอียดดังข้างล่างนี้

1. ข่ายบังคับบัญชา/ยุทธการกองพล (ปส./คม.)

- 1.1 ข่ายวิทยุข่ายนี้ ใช้ควบคุมบังคับบัญชาในการยุทธของกองพล สถานีบังคับข่ายตั้งอยู่ที่ ทก.หลักของกองพล พัน.ส.พล. จัดเจ้าหน้าที่เข้าปฏิบัติงาน ณ สถานีบังคับข่ายนี้
- 1.2 สถานีวิทยุในข่ายนี้ ประกอบด้วยสถานีวิทยุที่ ทก.หลักของกองพล ทก. ทางยุทธวิธี ของกองพล ทำการสื่อสารไปยัง ทั้ง 3 กรม ร., กรม ป.พล., พัน.ถ., พัน.ช.

2. ข่าย ผบ.พล./บังคับบัญชากองพล (ปถ./คำพูด)

- 2.1 ข่ายวิทยุข่ายนี้ เป็นข่ายสื่อสารโดยตรงระหว่าง ผบ.พล. กับ ผบ.หน่วยขึ้นตรงของกองพล พัน.ส.พล.จะเปิดสถานีควบคุมข่ายที่ ทก.หลักของกองพลสถานีวิทยุในข่ายนี้ปฏิบัติงาน เต็มที่ตลอดเวลา
- 2.2 สถานีวิทยุในข่ายนี้ ประกอบด้วย สถานีวิทยุที่ ทก.หลักของกองพล ทก.ทางยุทธวิธีของ กองพล สื่อสารไปยัง ทั้ง 3 กรม ร. , กรม ป.พล. และ พัน.ถ.

3. ข่ายการข่าวกองพล (ปส./คม.)

3.1 ข่ายวิทยุข่ายนี้ใช้ในการส่งข่าวสาร และข่าวกรองเกี่ยวกับข้าศึก สถานีบังคับข่ายตั้งอยู่ที่ ทก.หลักของกองพล และทำงานรับส่งข่าวให้ สธ.2 เป็นหลัก พัน.ส.พล. เป็นผู้จัดตั้งเจ้า หน้าที่ และเครื่องมือปฏิบัติการในสถานีบังคับข่ายนี้

3.2 สถานีวิทยุในข่ายนี้ประกอบด้วย สถานีวิทยุที่ ทก.หลักของกองพล ทก. ทางยุทธวิธี ของกองพล สื่อสารไปยัง ทั้ง 3 กรม ร. , กรม.ป.พล., กอง ลว.พล. และ ร้อย.ลว.ระยะไกล

4. ข่ายธุรการ/ส่งกำลังบำรุง ที่ 1 กองพล (ปส./คม.)

- 4.1 สถานีบังคับข่ายที่ตั้งอยู่ที่ ทก.หลักของกองพล และทำงานในการสื่อสารหลักสำหรับ สธ.1 และ สธ.4 พัน.ส.พล. เป็นผู้จัดสถานีบังคับข่ายตลอดจนเจ้าหน้าที่ปฏิบัติงาน
- 4.2 สถานีวิทยุในข่ายนี้ ประกอบด้วย สถานีวิทยุที่ ทก.หลัก ของกองพล ทก.หลัง ของ กองพลทำการสื่อสารไปยัง กอง สพบ.พล., พัน.สร.พล., กอง พธ.พล., ร้อย สห.พล., ฝ่ายการสารวัตรกองพล สำหรับสถานีรองที่ทั้ง 3 กรม ร. กอง ลว.พล. และ ร้อย ลว.ระยะ ไกล เข้าข่ายนี้ตามความต้องการ โดยเปลี่ยนจากข่ายการข่าวกองพล สถานีรองที่ กรม. ป.พล.,พัน.ถ.และ พัน.ช. เข้าข่ายนี้ตามความต้องการโดยเปลี่ยนจากข่ายบังคับบัญชา/ ยุทธการกองพล

5. ข่ายธุรการ/ส่งกำลังบำรุงที่ 2 กองพล (ปถ./คำพูด)

- 5.1 ข่ายวิทยุข่ายนี้ใช้ส่งข่าวธุรการและส่งกำลังบำรุงระหว่าง ทก.หลักของกองพล กับ ทก. หลัง ของกองพล พัน.ส.พล. จัดชุดเจ้าหน้าที่ไว้ที่ ทก.หลัก และ ทก.หลัง สถานี (บังคับ ข่ายตั้งอยู่ที่ ทภ.หลัง)
- 5.2 สถานีวิทยุในข่ายนี้ประกอบด้วยสถานีวิทยุที่ ทก.หลักของกองพล และ ทก.หลังของ กองพล

6. ข่ายคำขอทางอากาศกองพล (ปส./คำพูด/คม.)

- 6.1 ข่ายนี้ใช้ส่งคำขอสนับสนุนทางอากาศยุทธวิธี โดยส่งตรงไปยังศูนย์ประสานการยิงช่วย สนับสนุนและส่งข่าวสาร และคำแนะนำให้หน่วยต่างๆ ทราบเกี่ยวกับการโจมตีทาง อากาศทุกชนิด พัน.ส.พล. จัดเจ้าหน้าที่และเครื่องมือเข้าปฏิบัติการในสถานีบังคับข่าย ณ ที่ศูนย์ประสานการช่วยยิง ซึ่งมี สธ.3 อากาศรวมอยู่ด้วย
- 6.2 สถานีวิทยุในข่ายนี้ประกอบด้วยสถานีวิทยุที่ศูนย์ประสานการยิงช่วยของกองพลสื่อสาร ไปยังทั้ง 3 กรม และ กอง ลว.พล.

7. ข่ายลาดตระเวนกองพล (ปถ./คำพูด)

- 7.1 ข่ายวิทยุข่ายนี้ใช้ส่งข่าวเกี่ยวกับการเฝ้าตรวจการรบ การลาดตระเวน สถานีบังคับข่าย ตั้งอยู่ที่ ทก.หลัก โดยส่งข่าวในการเฝ้าตรวจการรบให้ สธ.2 ทราบ พัน.ส.พล. เป็นผู้จัด ทั้งเจ้าหน้าที่และเครื่องมือปฏิบัติการในสถานีบังคับข่ายนี้
- 7.2 สถานีวิทยุในข่ายนี้ประกอบด้วย สถานีวิทยุที่ตอนการบิน ณ ที่ ทก.หลัก ทำการสื่อสาร ไปยังเครื่องบินเบาของ ทบ.สนามบิน และ กอง ลว.พล.

8. ข่ายเตือนภัย/กระจายข่าวกองพล (ปส./คำพูด)

- 8.1 ข่ายวิทยุข่ายนี้ใช้กระจายเสียงเตือนภัย เพื่อเป็นการเตรียมพร้อมต่อการโจมตีด้วยอาวุธ นิวเคลียร์ ชีวะ เคมี ใช้เป็นสัญญาณเลิกภัย การเตือนภัยจากการโจมตีด้วยอาวุธนิวเคลียร์ ตลอดจนข่าวสารที่ต้องปฏิบัติการอย่างฉุกเฉิน พัน.ส.พล.จะจัดทั้งคนและเครื่องมือสื่อสาร มาปฏิบัติงานในสถานีบังคับข่ายที่ ทก.หลักของกองพล ตลอดทั่วทั้งกองพล จะต้องแจกจ่าย เครื่องวิทยุไว้เปิดรับฟังข่ายนี้ อาจกำหนดให้เครื่องวิทยุในข่ายอื่นส่งเข้ามาในข่ายนี้ก็ได้เช่น กอง ลว.พล. กระจายข่าวสารการลาดตระเวนเร่งด่วนให้หน่วยต่างๆ ของ กองพลทราบ
- 8.2 สถานีวิทยุต่าง ๆ ในข่ายนี้ประกอบด้วยสถานีส่งที่ ทก.หลัก ของกองพล และสถานีรับที่ ทก.หลัง ทก.ทางยุทธวิธี ศูนย์ประสานการยิงช่วย ทั้ง 3 กรม กรม ป.พล., พัน.ถ. กอง ลว. พล, ตอนการบิน พัน.ช., กอง สพบ.พล, กอง พธ.พล.

<u>ตอนที่ 3 ข่ายวิทยุนอกกองพล</u>

มีรายละเอียดดังนี้

- 1. ข่ายคำขอทางอากาศ ทภ. (ปส./วทพ.) ข่ายนี้เป็นข่ายที่ขอรับการสนับสนุนทางอากาศของกองพล ชุดวิทยุที่ใช้ในข่ายนี้ จัดให้มีการสื่อสารระหว่าง สธ.2 และ สธ.3 อากาศ ของกองพลที่ศูนย์ประสานการยิง สนับสนุนของกองพล กับศูนย์ปฏิบัติการทางยุทธวิธีของ ทภ. ชุดวิทยุและพนักงานวิทยุที่ศูนย์ประสานการยิง สนับสนุนจัดโดย พัน.ส.พล.
 - 2. ข่ายส่งกำลังบำรุงกองทัพภาค (ปส./วทพ.) ข่ายนี้ใช้ส่งข่าวสารทางธุรการ และข่าวการส่งกำลัง

บำรุงระหว่างกองพลกับกองทัพภาค พัน.ส.พล. เป็นผู้จัดสถานีวิทยุโทรพิมพ์ปฏิบัติงานในข่ายนี้

- 3. ข่ายบังคับบัญชากองทัพภาค (ปส./วทพ.) ข่ายนี้กองทัพภาคใช้ในการบังคับบัญชา และควบคุม การปฏิบัติการหน่วยรองของกองทัพภาค พัน.ส.พล. เป็นผู้จัดสถานีวิทยุขึ้น ณ ทก.หลัก ของกองพล วิทยุที่ใช้ ในข่ายนี้เป็นชุดวิทยุทางยุทธวิธีกำลังสูง สามารถส่งวิทยุโทรพิมพ์ประมวลเลขสัญญาณหรือคำพูดได้
- 4. ระบบเครื่องรับรายงานขณะปฏิบัติ (ถสม. ถสอ.-คำพูด) กองพันทหารสื่อสาร ้เป็นผู้ปฏิบัติงาน สถานีวิทยุของข่ายที่มีส่วนสนับสนุนทางอากาศยุทธวิธี ศปก.พล. สถานีที่ใช้เพื่อเฝ้าฟังการปฏิบัติการบิน ตาม ภารกิจ สนับสนุนโดยใกล้ชิดของทหารอากาศให้แก่กองพล นอกจากนั้นข่ายนี้ยังใช้เป็น ระบบแจ้งเตือนภัย จากเครื่องบินทางอากาศไปยัง ศปย.พล. ศปย.พล. จะส่งข่าวแจ้งเตือนภัยนั้นต่อไปทันที โดยทางระบบการ จ่ายข่าวแจ้งเตือนภัยของกองพล สถานีวิทยุอื่น ๆ ของกองพล ในข่ายนี้ก็ยังมีอยู่ที่กองบังคับการกรมและ กองพันต่างๆ ด้วย (ถสม. ความถี่สูงมาก, ถสอ. ความถี่สูงอุลตรา)

ตอนที่ 9 รปจ. ของสถานี

1. กล่าวทั่วไป

สถานีวิทยุจะต้องวางระเบียบปฏิบัติในการปฏิบัติต่อข่าวและทำบันทึกของสถานี ระเบียบปฏิบัติ ของสถานีเหล่านี้ทำขึ้นเพื่อให้บรรลุความต้องการของหน่วยหรือส่วนราชการที่สถานีนั้นประจำอยู่

2. การเตรียมข่าว

- ก. ข่าวทุกฉบับจะต้องเขียนขึ้นก่อนทำการส่งเพื่อที่จะให้ใช้เวลาของวงจรให้เกิดประสิทธิภาพสูง และเพื่อที่จะให้ได้มีการสำเนาข่าวไว้ทุกฉับ ข่าวราชการทหารจะต้องเขียนให้กระทัดรัด และชัดเจนเท่าที่ จะทำได้
- ข. ควรใช้กระดาษเขียนข่าว ถ้ามีกระดาษเขียนข่าวจะจ่ายเป็นเล่มให้หน่วยสนามใช้ในการ ปฏิบัติการทางยุทธวิธี สมุดเขียนข่าว ทบ.463-007 เรียกว่า แบบ สส.6
- ง. ข้อความในการเขียนข่าวมีอยู่ว่าใน บสร.1 และ รส.24-17 เรื่องความเร่งด่วนของข่าวบรรจุ อยู่ใน บสพ.121 (บสร.14)

3. หน้าที่ของพนักงาน

- ก. พนักงานวิทยุจะต้องใช้ระเบียบปฏิบัติของวิทยุตามที่กำหนดขั้นนั้นอยู่เสมอ การเปลี่ยนแปลง ระเบียบปฏิบัติที่มิได้รับอนุญาตจะก่อให้เกิดความสับสนลดความเร็วและความเชื่อถือได้และลดความ ปลอดภัยในการสื่อสารรองอย่างไม่ต้องสงสัย
- ข. ก่อนที่จะเปลี่ยนเวรพนักงานวิทยุจะต้องมอบหมายคำสั่งพิเศษและข่าวสารที่เกี่ยวกับสถานีให้ เวรต่อไป ข่าวสารนี้หมายถึงเรื่องราวที่จำเป็นหรือเป็นประโยชน์ที่เกี่ยวข้องกับข่าวที่กำลังรอส่งความ เปลี่ยนในการจัดข่าว สมรรถนะของชุดวิทยุในระหว่างช่วงเวลาที่แล้วมาอยู่และข้อมูลอื่น ๆ ที่เกี่ยวข้อง

- ค. ก่อนที่จะรับเวร เวรคนใหม่ควรจะต้องตรวจเครื่องส่งและเครื่องรับเพื่อให้แน่ใจว่ามี ประสิทธิภาพการทำงานและได้ปรับตั้งไว้ถูกต้องกับความถี่ที่กำหนดแล้ว
 - ง. พนักงานวิทยุจะปรับปรุงการสื่อสารทางวิทยุได้ โดยการปฏิบัติตามกฎทั่วไปดังต่อไปนี้
 - 1) ฟังก่อนส่งเพื่อหลีกเลี่ยงการรบกวนกับการส่งของสถานีอื่น ๆ
 - 2) ทำการส่งให้สั้นที่สุดเท่าที่จะทำได้เพื่อที่จะให้ข่ายว่าง
 - 3) ส่งนามเรียกขานชัดเจนและถูกต้อง
 - 4) ส่งด้วยความเร็วที่พนักงานซึ่งมีความสามารถต่ำสุดจะรับได้
 - 5) ทำการเฝ้าเตรียมพร้อม การเรียกขานของข่ายและสถานี และตอบการส่งทั้งหมดที่ ต้องการให้มีการตอบโต้ทันที
 - 6) ปฏิบัติการด้วยกำลังที่ต่ำสุดตามต้องการเพื่อให้สามารถทำการสื่อสารกับสถานีทั้งหมดใน ข่ายได้
 - 7) ให้ใช้ระเบียบปฏิบัติทางวิทยุที่กำหนดเท่านั้น และให้ปฏิบัติตามข้อบังคับในการรักษา ความปลอดภัยของการส่งข่าว

4. บัญชีข่าวของพนักงาน (OPERATORS NUMBER SHEET)

ก. บัญชีข่าวของพนักงาน (แบบ ทบ.463-035,036,037 ตามรูปที่ 55 และ56) ซึ่งพนักงานวิทยุใช้ เพื่อทำบันทึกข่าวเข้าและข่าวออกหมายเลขของบัญชีข่าวเหล่านี้อาจจะเข้าเป็นลำดับที่ของสถานีได้อย่าง เหมาะสม เลขลำดับที่ของสถานีนั้นจะต้องไม่ส่งไปพร้อมกับข่าวด้วย แต่ใช้เพื่อช่วยในการปฏิบัติต่อข่าว การทำบันทึกและการตรวจสอบข่าวภายในสถานี

บัญชีข่าวของพนักงาน ประกอบด้วย

- 1 บันทึกการปฏิบัติงานของสถานีวิทยุ(ทบ.463-003)
- 2 บันทึกการรับ-ส่งข่าวของพนักงานวิทยุ(ทบ.463-035)
- 3 บันทึกการเรียกขานของสถานีวิทยุ(ทบ.463-036)
- 4 บันทึกของพนักงานวิทยุ(ทบ.463-037)

ทบ.๔๖๓-oo๓						
	a	<u>บันทึกการปฏิ</u> เ	<u> </u>	<u>านของสถานว</u>	<u>ิทย์</u>	
	นามสถานี					
สถานี				เปิดสถานี		ปิดสถานี
			٩	หมู่วันเวลา		หมู่วันเวลา
ตารางเวลาปฏิบัติงานของสถานีวิทยุ						
หมู่วั	ันเวลา	นามพลวิทยุ		หมู่วันเวลา		นามพลวิทยุ
แต่	ถึง			แต่	ถึง	
						หัวหน้า
พลวิทยุ						

รูปที่ 8-3 บันทึกการปฏิบัติงานของสถานีวิทยุ (ทบ.๔๖๓-๐๐๓)

คำแนะนำการใช้ บันทึกการปฏิบัติงานของสถานีวิทยุ

- 1. บันทึกการปฏิบัติงานของสถานีวิทยุนี้ เป็นตารางปฏิบัติของสถานีวิทยุ (ตารางการจัดเวร) โดยมี หัวหน้าพลวิทยุเป็นผู้บันทึก
- 2. เขียนนามสถานีที่ตนก่ำลังปฏิบัติงานอยู่ ลงในช่อง "นามสถานี"
- 3. เขียนที่ตั้งของสถานีที่กำลังปฏิบัติงานอยู่ ลงในช่อง "ที่ตั้งสถานี"
- 4. เขียนหมู่วัน เวลาเปิดสถานี ลงในช่อง "เปิดสถานี หมู่ วัน เวลา"
- 5. เขียนหมู่วัน เวลาปิดสถานี ลงในช่อง "ปิดสถานี หมู่วัน เวลา"
- 7. เขียนนามพลวิทยุที่จัดไว้ ลงในช่อง "นามพลวิทยุ"
- 8. ลงชื่อหัวหน้าพลวิทยุ ลงในช่อง "หัวหน้าพลวิทยุ"

				ทบ.		
ඳ්ට ස- ○ සඳ				แผ่น		
 ที่หน้า				PPM IS		
	<u>บันทึกการรับส่งข่าวของพนักงานวิทย</u> ุ					
นามสถานี	นามหน่วย	เดือน	ਹ <u>ื</u>			
นามสถานี	นามข่าย	นามสถานี	นามข่าย			
ส่ง	รับ	ส่ง	รับ			
		d				
นามสถานี	นามข่าย	นามสถานี	นามข่าย			
ส่ง	รับ	ส่ง	รับ			

รูปที่ 8-4 บันทึกการรับส่งข่าวของพนักงานวิทยุ (ทบ.463-035)

คำแนะนำการใช้ บันทึกการรับ-ส่งข่าวของพนักงานวิทยุ

- 1. บันทึกการรับ-ส่งข่าวของพนักงานวิทยุนี้ ใช้บันทึกหมู่วัน เวลารับ-ส่งเสร็จของสถานีวิทยุ โดยพนักงานวิทยุเป็นผู้บันทึก
- 2. เขียนหมายเลข แผ่นที่ และหน้า ลงในช่อง "แผ่นที่.......หน้า......."
- 3. เขียนนามสถานีของตน ลงในช่อง "นามสถานี"
- 4. เขียนนามหน่วยที่ประจำอยู่ ลงในช่อง "นามหน่วย"
- 5. เขียน วัน เดือน ปี ที่บันทึก
- 6. เขียนนามสถานีที่ติดต่อด้วย ลงในช่อง นามสถานี และนามข่ายที่ประจำอยู่
- 7. เขียน หมู่วัน เวลา ที่ส่งเสร็จ พร้อมทั้งเซ็นชื่อผู้ส่งลงในช่องส่ง
- 8. เขียน หมู่วัน เวลา ที่รับเสร็จ พร้อมทั้งเซ็นชื่อผู้รับ ลงในช่องรับ

				ทบ.
රෙන - රහ				แผ่น
				แผน
		<u>บันทึก</u>	การเรียกขานของสถานีวิทยุ	
หน่วย		วันที่.	พ.ศ	
สถานี	1		ี้ถึ่	
เวลา	สถานี		ข้อความ	
	เรียก	ขาน		

รูปที่ 8-5 บันทึกการเรียกขานของสถานีวิทยุ (ทบ.463-036)

คำแนะนำการใช้ บันทึกการเรียกขานของสถานีวิทยุ

- 1. บันทึกการเรียกขานของสถานีวิทยุนี้ ใช้บันทึกเฉพาะการเรียกขานของสถานีวิทยุ เพื่อเป็นหลักฐาน ยืนยันว่าพนักงานได้พูดคุยอะไรออกไปบ้าง ในขณะที่ทำการติดต่อ แต่มิใช่เป็นการบันทึกการรับ-ส่ง บันทึกการเรียกขานของสถานีวิทยุนี้ พนักงานวิทยุของแต่ละสถานีเป็นผู้บันทึก
- 2. เขียนนามหน่วยที่สถานีวิทยุไปประจำอยู่ ลงในช่องของ "นามหน่วย"
- 3. เขียนนามสถานีของตนลงในช่อง "สถานี"
- 4. เขียนวันที่ เดือน ปี ที่บันทึกลงในช่อง "วัน.....เดือน....พ.ศ......."
- 5. เขียนความถี่ที่ใช้งานอยู่ ลงในช่อง "ความถี่"
- 6. เขียนเวลาที่กำลังบันทึก ลงในช่อง "เวลา"
- 7. เขียนนามสถานีที่กำลังเรียก ลงในช่อง "สถานีเรียก"
- 8. เขียนนามสถานีที่กำลังขาน ลงในช่อง "สถานีขาน"
- 9. บันทึก ข้อความของสถานีเรียก ยกเว้นการส่งข่าว ลงในช่อง "ข้อความ"
- 10. บันทึกข้อความของสถานี ยกเว้นการรับข่าว ลงในช่อง "ข้อความ"

		<u>บันทึกขอ</u>	<u>งพนักงานวิทย</u> ุ	ทบ.๔๖๓-๐๓๗ ผ่นที่หน้า
นามสถานี	นามหน	ມ່ວຍ	์.เดือน	J
วัน/เวลา	ลงชื่อพนักงานวิทยุ		หมายเหตุ	

รูปที่ 8-6 บันทึกของพนักงานวิทยุ (ทบ.463-037)

คำแนะนำการใช้ บันทึกของพนักงานวิทยุ

- 1. บันทึกของพนักงานวิทยุ คือ ประวัติสถานีนั่นเอง (ปูมสถานี) โดยมีพนักงานวิทยุเป็นผู้จดบันทึก ความเป็นไปภายในสถานีโดยละเอียด
- 2. เขียนหมายเลขแผ่นที่ หน้า ลงในช่อง "แผ่นที่......หน้า......"
- 3. เขียนนามสถานีของตน ลงในช่อง "นามสถานี"
- 4. เขียนนามหน่วยของตน ลงในช่อง "นามหน่วย"
- 5. เขียนวัน เวลาที่บันทึก ลงในช่อง "วัน/เวลา (หมู่วันเวลา)"
- 6. เขียนเดือน และปีที่บันทึก ลงในช่อง "เดือน.....ปี......."
- 7. เขียนชื่อพนักงานวิทยุที่จดบันทึก ลงในช่อง "ลงชื่อพนักงานวิทยุ"
- 8. เขียนสภาพความเป็นไปของสถานี เป็นต้นว่า เวลาเปิด-ปิด เวลาในการรับ-ส่งข่าว ความถี่ และ การตรวจสอบความถี่ การเปลี่ยนความถี่ การล่าช้า การรบกวน การก่อกวน สภาพความขัดข้องที่เป็น ข้อขัดข้องของประสิทธิภาพของวงจร ฯลฯ ลงในช่อง "หมายเหตุ"
- ข. สถานีวิทยุแต่ละแห่งควรจะทำเลขลำดับที่ของสถานีเป็นชุดต่างหากเพื่อใช้กับทุกสถานีที่ตนทำ การสื่อสารด้วย เลขลำดับที่ชุดใหม่ควรจะเริ่มทันในเวลา 0001 ตามเวลาท้องถิ่นหรือเวลากรีนิช ตาม คำสั่งผู้บังคับบัญชา เมื่อมีการเปลี่ยนแปลงนามเรียกขานก็ให้เริ่มต้นเลขลำดับที่ชุดใหม่

8.9.4 ประวัติสถานี (STATION LOG)

- ก. ประวัติสถานีซึ่งพนักงานวิทยุของทุกแห่งจะต้องเป็นผู้ทำนั้นมีปรากฎอยู่บนด้านหลังของบันทึก ของพนักงานวิทยุ (ทบ.463-037) (รูปที่ 8-6) ประวัติสถานีนี้ควรจะมีบันทึกสภาพการปฏิบัติงานในระหว่าง หัวงเวลาการปฏิบัติงาน เรื่องที่จะต้องลงในประวัติสถานีมีดังต่อไปนี้
 - 1) เวลาเปิดและปิดสถานีหรือวงจร
 - 2) สาเหตุของความล่าช้าในวงจร
 - 3) การปรับและการเปลี่ยนแปลงความถื่
 - 4) เหตุการณ์ที่ผิดปกติ เช่นเกี่ยวกับระเบียบปฏิบัติและการฝ่าฝืนการรักษาความปลอดภัย
 - 5) การรบกวนตามธรรมชาติหรือการก่อกวน
 - 6) สมรรถนะของเครื่องโดยย่อ
- ข. เมื่อทำการเปิดวงจรหรือเริ่มต้นวันใหม่ พนักงานจะเขียนหรือพิมพ์ ยศ ชื่อ เต็มของตนบน บรรทัดแรกของช่องนามพนักงานของประวัติสถานี เมื่อมีการผลัดเปลี่ยนพนักงานหรือปิดวงจร พนักงาน จะลงชื่อทันทีหลังจากได้ลงบันทึกครั้งสุดท้ายในสถานีแล้ว พนักงานที่มีผลัดเปลี่ยนก็จะเขียนหรือพิมพ์ ยศ ชื่อเต็มของตนลงบนบรรทัดถัดไป
- ค. การลงประวัติสถานีนั้นจะต้องไม่มีการลบการเปลี่ยนแปลงต่าง ๆ นั้นให้กระทำได้โดยการขีดฆ่า ด้วยเส้นเดี่ยวทับลงบันทึกอันเดิมและเพิ่มข้อความที่เปลี่ยนแปลงแทรกลงไป พนักงานที่เป็นผู้ริเริ่มแก้ไขนั้น ต้องกระทำด้วยตนเอง
 - ง. การทำประวัติสถานีจะต้องไม่ให้กระทบกระเทือนต่อการรับ ส่งข่าว

8.10 การรักษาความปลอดภัยในการสื่อสาร

- ก. การรักษาความปลอดภัยในการสื่อสารรวมถึงมาตรการทั้งปวงที่กระทำเพื่อปัดป้องข้าศึกหรือ บุคคลที่ไม่ได้รับอนุมัติอื่น ๆ มิให้ได้รับข่าวสารจากการสื่อสารของเรา
- ข. คำแนะนำต่าง ๆ ที่ใช้บังคับการรักษาความปลอดภัยในการสื่อสาร มิได้เป็นเครื่องประกันการ รักษาความปลอดภัยในการสื่อสารได้ด้วยตัวเอง หรือบรรลุผลตามสถานการณ์ที่อาจเป็นไปได้ทุกครั้งไป เนื่องจากความต้องการในทางยุทธการนั้นอาจจำกัดในมาตรการรักษาความปลอดภัย อย่างไรก็ตาม คำแนะนำเหล่านั้นก็อาจจะให้ความปลอดภัยที่สมควร

8.10.1 ความรับผิดชอบ

- ก. การรักษาความปลอดภัยในการสื่อสารเป็นการรับผิดชอบทางการบังคับบัญชา ฉะนั้น ผู้บังคับบัญชาทุกคนจะต้องกำหนดและกำกับดูแลแผนการรักษาความปลอดภัยในการสื่อสารในหน่วยของ ตนอย่างจริงจัง แผนการนี้ตามปกติแล้วขึ้นอยู่กับนโยบายของผู้บังคับบัญชา คำสั่งนโยบายของหน่วยเหนือ ความต้องการทางการสื่อสารของหน่วยและสถานการณ์ทางยุทธวิธี
- ข. นอกจากนั้นเจ้าหน้าที่ทหารทุกคนจะต้องรับผิดชอบอย่างจริงจังต่อการรักษาความปลอดภัย ทางการสื่อสารด้วย ทั้งนี้รวมถึงการใช้มาตรการทั้งปวงที่ต้องการ เพื่อการรักษาความปลอดภัยในการ สื่อสารให้เป็นผลสำเร็จ

8.10.2 การรักษาความปลอดภัยทางวัตถุ

ก. กล่าวทั่วไป การรักษาความปลอดภัยทางวัตถุเป็นการพิทักษ์เครื่องมือและวัสดุทางการสื่อสาร ให้พ้นจากผู้ไม่ได้รับอนุมัติจะต้องมีการรักษาความปลอดภัยทางวัตถุให้แก่สถานีวิทยุทุกสถานีเพื่อให้ พนักงานวิทยุใช้และปฏิบัติต่อข่าวตลอดจนวัสดุโดยไม่ต้องกลัวว่าจะเป็นการเปิดเผยต่อบุคคลผู้ไม่ได้รับ อนุมัติ

- ข. ความต้องการต่าง ๆเกี่ยวกับที่ตั้ง ที่ตั้งของสถานีวิทยุควรจะมีความปลอดภัยทางวัตถุอย่าง เต็มที่ ดังต่อไปนี้
 - 1) การเลือกที่ตั้ง สถานีวิทยุนั้นควรจะให้หน่วยบังคับบัญชาเข้าไปใช้ได้สะดวก
- 2) การสร้างสถานีวิทยุ การสร้างสถานีวิทยุควรจะให้ความปลอดภัยทางวัตถุอย่างสูง โดย ให้สิ้นเปลืองกำลังพล เวลาและวัสดุแต่น้อยที่สุด การสร้างสิ่งพิเศษ เช่น บริเวณที่มีรั้วล้อมรอบ เครื่อง กีดขวางและดงระเบิดก็อาจจะนำมาใช้ได้เพื่อเพิ่มความปลอดภัยทางวัตถุขึ้นอีก
- 3) การพิทักษ์รักษา สถานีวิทยุควรจะมียามถืออาวุธและมีอาวุธต่าง ๆ เพื่อให้สามารถ ต้านทานได้อย่างสูงสุดต่อการบุกรุกด้วยกำลังของบุคคลผู้ไม่ได้รับอนุมัติสถานีวิทยุควรจะมีวัสดุในการ ทำลายฉุกเฉินด้วย เช่น เชื้อเพลิงและน้ำมันก๊าด ความต้องการทางวัสดุเหล่านี้จะมีมากที่สุดในเขตหน้าหรือ ในบริเวณที่ใกล้จะปะทะกับข้าศึก
- 4) การโจมตีทางอากาศ คชร. หรือ อาวุธนิวเคลียร์ จะต้องจัดการป้องกันสถานีวิทยุทั้ง เจ้าหน้าที่และเครื่องมือให้พ้นจากโจมตีทางอากาศ คชร. หรืออาวุธนิวเคลียร์
 - ค. วัสดุที่กำหนดขั้นความลับ มาตรการรักษาความปลอดภัยต่อไปนี้ควรจะใช้บังคับเพื่อให้มี ความปลอดภัยทางวัตถุอย่างเพียงพอต่อวัสดุที่กำหนดขั้นความลับคือ
- 1) อนุญาตให้เข้าถึงวัสดุที่กำหนดขั้นความลับได้เฉพาะบุคคลซึ่งได้ผ่านการพิสูจน์ความไว้วางใจใน การรักษาความปลอดภัยที่เหมาะสมและต้องการความรู้เกี่ยวกับวัสดุนั้นไปใช้ในหน้าที่ราชการเท่านั้น
 - 2) จะต้องขึ้นบัญชีวัสดุที่กำหนดขั้นความลับอย่างเข้มงวดตามข้อบังคับ
 - 3) ให้รายงานการรั่วไหลที่อาจจะเป็นไปได้ของวัสดุที่กำหนดขั้นความลับ
 - 4) ให้ทำการเก็บรักษาวัสดุที่กำหนดขั้นความลับอย่างถูกต้องเมื่อยังไม่ใช่
 - 5) การรับช่วงวัสดุที่กำหนดขั้นความลับต้องกระทำตามข้อบังคับ
 - 6) วางแผนการทำลายเครื่องมือและวัสดุที่กำหนดขั้นความลับ

8.10.3 การรักษาความปลอดภัยทางการส่งข่าว

- ก. กล่าวทั่วไป การรักษาความปลอดภัยทางการส่งข่าวหมายถึงมาตรการในรักษาความปลอดภัย ทั้งปวงที่ใช้เพื่อป้องกันการส่งข่าวให้พ้นจากการดักรับ การวิเคราะห์ข่าว การหาทิศ และการลวง เนื่องจากมัณชิมการส่งข่าวทุก ๆ อย่างย่อมอาจจะถูกดักรับได้จึงจะต้องใช้มาตรการป้องกันเพื่อให้ข้าศึกได้ ข่าวสารไปแต่น้อยที่สุด การรักษาความปลอดภัยของมัชชิมการส่งข่าวอย่างหนึ่งเมื่อเปรียบเทียบกับอีก อย่างหนึ่งย่อมแตกต่างกันไปตามสิ่งแวดล้อม การรักษาความปลอดภัยทางการส่งข่าวอาจได้รับการ ปรับปรุงให้ดียิ่งขึ้น โดยการใช้มาตรการในการรักษาความปลอดภัย ดังต่อไปนี้
 - 1) ส่งข่าวให้สั้นที่สุดเท่าที่จะทำได้
- 2) ให้ปฏิบัติตามระเบียบการส่งข่าวตามที่ได้รับอนุมัติแล้ว การเปลี่ยนระเบียบการคง กระทำได้เฉพาะเมื่อได้รับคำสั่งจากผู้มีอำนาจที่เหมาะสม
 - 3) ฝึกพนักงานให้ปฏิบัติตามวินัยของวงจร
 - 4) จัดการป้องกันการดักฟังและการหาทิศ
 - 5) จัดการป้องกันการวิเคราะห์ข่าว
- ข. รายการตรวจสอบการรักษาความปลอดภัยทางการส่งข่าวทางวิทยุ รายการตรวจสอบ การรักษาความปลอดภัยทางการส่งข่าวสำหรับพนักงานวิทยุนั้นควรจะมีหัวข้อดังต่อไปนี้
 - 1) มีการฝ่าฝืนการเงียบฟังหรือไม่
 - 2) มีการสนทนาระหว่างพนักงานโดยไม่ใช่ราชการหรือไม่
 - 3) มีการส่งข่าวในข่ายบังคับโดยไม่ได้รับอนุญาตหรือไม่

- 4) ได้ส่งนามย่อพนักงาน (Personal sign) ด้วยหรือไม่
- 5) นามเรียกขานที่กำหนดประเภทขั้นความลับได้รั่วไหลไปกับชื่อที่กำหนดเป็นภาษาธรรมดา
 - 6) คำย่อตามระเบียบการหรือสัญญาณตามระเบียบการได้ใช้เกินที่กำหนดหรือไม่
- 7) ได้ใช้ภาษาธรรมดาแทนคำย่อตามระเบียบการและสัญญาณปฏิบัติการที่ได้รับอนุมัติแล้ว

หรือไม่

ด้วยหรือไม่

- 8) พนักงานได้ใช้ระเบียบปฏิบัติการที่ไม่ถูกต้องและไม่ได้รับอนุมัติแล้วหรือไม่
- 9) มีการส่งอันไม่จำเป็นใด ๆ รวมทั้งการทดสอบที่มากเกินไปหรือไม่
- 10) นามหน่วยหรือบุคคลถูกเปิดเผยในการส่งข่าวหรือไม่
- 11) มีการเรียกกันอย่างฟุ่มเฟือยหรือไม่
- 12) พนักงานส่งทำการส่งเร็วเกินไปสำหรับพนักงานรับหรือไม่
- 13) ใช้กำลังส่งมากเกินไปหรือไม่
- 14) ทำการปรับตั้งเครื่องส่งด้วยสายอากาศจริงหรือไม่
- 15) ใช้เวลาในการปรับตั้ง เปลี่ยนความถี่ หรือการปรับเครื่องนานเกินไปหรือไม่
- 16) ถ้าหากคำตอบคำถามข้างต้นทั้งหมดมีลักษณะปฏิเสธแล้วก็หมายความว่าพนักงานวิทยุ ได้ปฏิบัติตามมาตรการรักษาความปลอดภัยในการส่งข่าวแล้ว

รูปที่ 8-7 การปฏิบัติงานควบคุมระยะไกล

8.11 การปฏิบัติการควบคุมระยะไกล

8.11.1 การใช้งาน

- ก. เครื่องมือควบคุมระยะไกลใช้เพื่ออำนวยให้ต่อวงจรเครื่องส่งวิทยุในขณะเมื่อพนักงานอยู่ห่าง จากตัวเครื่องส่ง เป็นระยะพอสมควร ในพื้นที่การรบพนักงานวิทยุอาจจะอยู่ในหลุมบุคคลคู หรืออยู่ในที่ อื่น ๆ ซึ่งให้ความกำบังจากการยิงของข้าศึก ส่วนเครื่องวิทยุและสายอากาศนั้นอยู่ในที่เปิดเผยกว่าซึ่ง เหมาะในการส่งข่าวทางวิทยุ
- ข. เครื่องมือควบคุมระยะไกลมีสองส่วน ส่วนหนึ่งอยู่ ณ ที่ตั้งเครื่องวิทยุและอีกส่วนหนึ่งอยู่ที่ ตำบลควบคุมระยะไกล (รูปที่ 8-7)

8.11.2 การสนธิวิทยุ - สาย

ระบบการสื่อสารของกองพล กองทัพน้อย และกองทัพตามปกติแล้วจะมีอุปกรณ์วิทยุและ โทรศัพท์สองอย่าง เพื่อที่จะให้เหมาะในการสื่อสารกัน หน่วยเคลื่อนที่ หน่วยส่งทางอากาศและหน่วยอยู่ กับที่ อุปกรณ์ดังกล่าวนี้จะเชื่อมโยงระหว่างเครื่องวิทยุซึ่งอยู่ที่สถานีสนธิวิทยุ - สาย กับเครื่องสลับสายกัน ด้วยสถานีสนธิวิทยุ (FM / VOICE) สายการเชื่อมโยงระหว่างเครื่องวิทยุซึ่งอยู่ที่สถานีสนธิวิทยุ - สายกับ เครื่องสลับสายใช้ผ่านชุดควบคุมวิทยุแบบ AN/GSA-7 (ปัจจุบันเครื่องล้าสมัยแล้ว และเปลี่ยนเป็น AN/GRA-39) ระยะทางระหว่างเครื่องวิทยุและเครื่องโทรศัพท์จะขยายเพิ่มขึ้นจาก 3.2 กม. เป็น 16 กม. นอกจากนั้นแล้ว AN/GSA - 7 ยังใช้เป็นเครื่องเรียกได้ทั้งสองทาง ดังนั้นจึงไม่จำเป็นต้องมี วงจรเฝ้าฟัง ที่ปลายทั้งสองข้าง

- ก. ระดับกองพล สถานีสนธิวิทยุ-สาย จะมีประจำ ณ ศูนย์การสื่อสารแต่ละแห่งเว้นที่ กองบัญชาการกองพลส่วนหลัง แต่ละสถานีอาจใช้เพื่อ
- 1) ใช้ทำการสื่อสารฉุกเฉินระหว่างสถานีวิทยุ FM เคลื่อนที่กับส่วนต่างๆ ที่ต่ออยู่กับระบบ โทรศัพท์พื้นที่ของกองพลด้วยโทรศัพท์
- 2) ใช้ทำการสื่อสารระหว่างสถานีวิทยุ FM ที่อยู่ห่างไกลเกินกว่าระยะทางที่ชุดวิทยุนั้น ๆ จะติดต่อกันโดยตรงได้
- 3) เพื่อให้ผู้บัญชาการกองพล ฝ่ายอำนวยการของกองพลและเจ้าหน้าที่ที่สำคัญอื่น ๆ (รูป ที่ 8-8) ของกองพล เมื่อปฏิบัติงานจาก ทก. เคลื่อนที่ทำการติดต่อกับส่วนต่าง ๆ ของกองพลซึ่งต่ออยู่กับ ระบบการสื่อสารพื้นที่ของกองพล

รูปที่ 8-8 แบบการใช้ระบบสนธิวิทยุ – สาย

- 4) เพื่อเป็นการจัดตั้งบริการโทรศัพท์ขั้นต้นจากระบบการสื่อสารพื้นที่ของกองพลไปยัง หน่วยใช้
- 5) ใช้ทำการสื่อสารเป็นคำพูดระหว่างหน่วยรบเคลื่อนที่ในพื้นที่ส่วนหน้าของกองพลหน่วย สนับสนุนทางการส่งกำลังบำรุงของกองพลในพื้นที่ส่วนหลัง
- 6) ใช้ทำการสื่อสารระหว่างเครื่องบินทหารบกที่บินต่ำซึ่งกำลังปฏิบัติงานอยู่ห่างไกลจาก พื้นที่กองพลกับทางวิ่งสำรอง ของหน่วยควบคุมการบินซึ่งเชื่อมโยงอยู่กับระบบการสื่อสารพื้นที่ของกองพล ในเมื่อไม่อาจจะทำการติดต่อโดยตรงได้ด้วยวิทยุ FM
- 7) ใช้ทำการสื่อสารระหว่างผู้ควบคุมอากาศยานหน้าและเครื่องมือสื่อสารของนายทหาร ติดต่ออากาศเมื่อเครื่องสื่อสารเหล่านั้นเชื่อมโยงอยู่กับระบบการสื่อสารพื้นที่ของกองพล
- 8) เพื่อให้ผู้บังคับบัญชาและฝ่ายอำนวยการทำการติดต่อกับหน่วยรองและหน่วยเหนือได้ ตามต้องการในระหว่างที่มีการเคลื่อนย้าย ทก.
 - 9) ใช้เชื่อมโยงระหว่างเครื่องสลับสายสองเครื่องและใช้เชื่อมต่อทางสายที่ขาดระหว่างหน่วย
 - 10) ใช้ทำการสื่อสารในระหว่างข้ามลำน้ำ

ข. ณ ระดับกองทัพน้อย สถานีวิทยุเคลื่อนที่จัดให้มีเครื่องมือสื่อสารสนธิวิทยุ-สายที่ศูนย์การ สื่อสารประจำที่บัญชาการหลักและสำรองของกองทัพน้อย วงจรทางสายจากแต่ละสถานีต่อ ตรงกับชุมสายกลางโทรศัพท์ของศูนย์การสัญญาณพื้นที่ของกองทัพซึ่งสถานีนั้น ๆ ตั้งอยู่

ค. ณ ระดับกองทัพจะมีอุปกรณ์วิทยุ-สาย ณ ศูนย์การสื่อสารหน้าของกองทัพแต่ละแห่ง สถานี วิทยุ -สายของกองทัพจะใช้งานในลักษณะคล้ายคลึงกับสถานีสนธิวิทยุ-สายของกองพล (ดูข้อ ก.)

<u>บทที่ 8</u> การปฏิบัติงานทางวิทยุภายใต้สภาพผิดปกติ

ตอนที่ 1 กล่าวนำ

1.กล่าวทั่วไป

สภาพภูมิประเทศที่ผิดปกติและลมฟ้าอากาศที่ร้ายแรงมีผลอันสำคัญต่อการสื่อสารทางวิทยุสิ่งเหล่านี้ เป็นเหตุให้พนักงานวิทยุจำต้องหันเหไปจากเทคนิคของการทำงานปกติ

2. เจ้าหน้าที่และเครื่องมือ

- ก. เจ้าหน้าที่วิทยุซึ่งจะต้องใช้เครื่องวิทยุภายใต้สภาพภูมิประเทศผิดปกติและลมฟ้าอากาศที่ร้ายแรงนั้น ควรจะได้รับการฝึกเป็นพิเศษเพื่อเตรียมตัวให้สามารถใช้เครื่องวิทยุภายใต้สภาพนั้น ๆ ได้ นอกจากนั้น เจ้าหน้าที่เหล่านั้นควรจะได้รับการฝึกให้ทราบถึงวิธีที่จะช่วยตนเองได้ภายใต้สภาพลมฟ้าอากาศที่ร้ายแรง อีกด้วย
- ข. เครื่องวิทยุที่จะต้องใช้ในสภาพอันร้ายแรงนั้นอาจจะต้องดัดแปลงและบำรุงรักษาให้มากกว่าปกติ ความต้องการในการดัดแปลงและบำรุงรักษาดังกล่าวนี้มีปรากฏอยู่ในคู่มือประจำเครื่องแล้ว

ตอนที่ 2 การสื่อสารทางวิทยุในป่าทึบ

1. กล่าวทั่วไป

การสื่อสารทางวิทยุมีความจำกัดอย่างมากด้วยต้นไม้ในป่าทึบ

- ก. รัศมีการทำงานของเครื่องวิทยุยุทธวิธีระยะใกล้ในป่าทึบนั้นย่อมเปลี่ยนแปลงจากร้อยละ 10 ถึงร้อย ละ 60 ของรัศมีการทำงานในพื้นโล่งหรือที่เป็นป่าโปร่ง
- ข. เนื่องจากการขนส่งไม่สะดวก ฉะนั้นจึงมักจะใช้วิทยุกำลังสูงขนาดใหญ่เฉพาะในเขตหลังเท่านั้น หรือใช้ ณ ที่ตั้งซึ่งอยู่ใกล้ชิดถนน ทางเกวียน ทางเดินหรือทางน้ำ ทั้งนี้ขึ้นอยู่กับความแน่นและความชื้น ของป่าไม้
- ค. เครื่องวิทยุสนามในป่าทึบจะต้องได้รับความระวังรักษาเป็นอย่างมากเนื่องจากความร้อน ความชื้น เชื้อรา หรือตัวแมลงทำให้เกิดชำรุดเสียหายได้

2. การสื่อสารระยะไกล

การสื่อสารทางวิทยุระยะไกลในป่าทึบกระทำได้เฉพาะ เมื่อสายอากาศยกขึ้นเหนือป่าทึบที่อยู่ รอบ ๆ เมื่อตั้งสายอากาศในลักษณะดังกล่าวแล้ว การสื่อสารระยะไกลก็คงเหมือนกันกับที่ใช้ในการ ปฏิบัติทางทหารอื่น ๆ

3. การสื่อสารแบบเส้นสายตา

เมื่อไม่อาจจะส่งคลื่นพื้นดินความถี่สูงในป่าทึบได้ก็ให้ใช้การสื่อสารแบบเส้นสายตา

4. การติดตั้ง

- ก. จะต้องตั้งสายอากาศวิทยุให้ถูกต้องเพื่อให้มีประสิทธิภาพอย่างสูงสุด อย่างไรก็ตาม ข้อพิจารณา ทางทหารอาจต้องการให้ใช้ที่ตั้งแห่งอื่นมากกว่าที่ตั้งสายอากาศที่ดีที่สุดกฏเกณฑ์ดังต่อไปนี้ใช้เป็นแนวทางที่ มีประโยชน์เมื่อตั้งสายอากาศวิทยุ เพื่อปรับปรุงการสื่อสารทางวิทยุในป่าให้ดีขึ้น
 - (1) ควรตั้งสายอากาศไว้บนเนินเขาที่อยู่เหนือภูมิประเทศและป่าทึบโดยรอบ
- (2) สายอากาศควรตั้งอยู่ในที่โล่งแจ้งชายป่าด้านไกลจากคู่สถานี ที่โล่งแจ้งนั้นควรจะห่างจาก สายอากาศอย่างน้อยหนึ่งร้อยหลาในทิศทางที่หันไปยังคู่สถานี

- (3) สายอากาศบ่งทิศควรจะหันไปในทางส่งที่เป็นเส้นตรงเมื่อมีต้นไม้ในป่าทึบมาขวางหรือ ภูมิ ประเทศขวางกั้นเส้นทางส่งที่เป็นเส้นตรงก็ให้หันสายอากาศออกนอกทางเล็กน้อย เมื่อหันไปแล้วก็อย่าให้ ถูกขัดขวางอีก
- (4) ควรตั้งสายอากาศให้สูงเท่าที่จะทำได้ในเมื่อที่ตั้งสายอากาศนั้นอยู่ข้างหลังภูมิประเทศที่กำบัง โดยตรง เมื่อกระทำได้ให้ตรึงเครื่องวิทยุไว้กับยอดไม้และทำงานด้วยการใช้เครื่องควบคุมระยะไกล การรั้ง สายอากาศให้เอนมาข้างหลังเล็กน้อยก็จะช่วยให้หลีกเลี่ยงสิ่งขัดขวางได้บ้าง
 - (5) ไม่ควรตั้งสายอากาศในหุบเขาแคบ ๆ หรือระหว่างสันเขา หรือระหว่างช่องทางของป่าสูงทึบ
- (6) ควรจะวางสายเคเบิ้ลและหัวต่อสายอากาศให้ห่างจากพื้นดินเพื่อผลเสียจากความชื้น เชื้อรา และแมลงต่าง ๆ สายเคเบิ้ลไฟฟ้าและสายโทรศัพท์ทั้งปวงก็ควรจะกระทำเช่นเดียวกันด้วย
- (7) ระบบสายอากาศที่สมบูรณ์ เช่นสายอากาศพื้นดินเทียมและสายอากาศขั้วคู่(GROUND PLANE AND DIPOLESANT) ย่อมจะให้ผลดีมากกว่าสายอากาศแบบแส้ ซึ่งมีความยาวไม่เต็มช่วงคลื่น
- (8) พันธุ์ไม้โดยเฉพาะเมื่อเปียกชื้นก็จะมีลักษณะเหมือนสายอากาศที่มีขั้วในทางดิ่งและจะดูดซึม สัญญาณวิทยุที่มีขั้วในทางดิ่งได้มาก เพราะฉะนั้นจึงควรเลือกใช้สายอากาศที่มีขั้วในทางระดับดีกว่าที่จะใช้ สายอากาศที่มีขั้วในทางดิ่ง
- ข. ที่ตั้ง ควรจะแผ้วถางป่าให้ห่างจากที่ตั้งสายอากาศแตะกับใบไม้กิ่งไม้ก็จะทำให้สัญญาณวิทยุลงสู่ พื้นดินได้โดยเฉพาะอย่างยิ่งในระหว่างฤดูฝน
- ค. ที่พักกำบัง เมื่อไม่มีตู้ประทุนเคลื่อนที่ก็ให้ใช้กระโจมหรือเพิงเพื่อเป็นที่พักกำบังของสถานี
 วิทยุ ควรจะยกพื้นขึ้นในที่พักกำบังเหล่านี้ด้วย เพื่อยกเครื่องวิทยุให้พ้นห่างจากพื้นดินที่ชื้นแฉะและพ้น จากความชื้น เชื้อรา และแมลงต่าง ๆ ด้วย ที่พักกำบังเหล่านี้ควรสร้างให้มีอากาศหมุนเวียนรอบ ๆ เครื่อง วิทยุที่ตั้งอยู่ได้

5. การปฏิบัติงาน

ฝน ความร้อน เชื้อราและแมลงในเขตร้อนเหล่านี้จะก่อให้เกิดปัญหาใหม่ ๆ ในการทำงานของเครื่อง วิทยุได้ เนื่องจากการทำงานของเครื่องวิทยุที่ให้ได้ผลดีในป่าทึบนั้นขึ้นอยู่กับการฝึกการพินิจพิเคราะห์ และความพากเพียรของพนักงานวิทยุเป็นรายบุคคลอยู่มาก

6. การบำรุงรักษา

เนื่องจากความชื้นและเชื้อรา จึงทำให้การซ่อมบำรุงเครื่องวิทยุในอากาศเขตร้อนมีความยากลำบาก มากกว่าในสภาพอากาศของเขตอบอุ่น ความชื้นสัมพัทธ์สูง ๆ ทำให้เกิดการกลั่นตัวเป็นหยดน้ำที่บน เครื่องมือ เหตุการณ์เช่นนี้จะเป็นจริงโดยเฉพาะอย่างยิ่งเมื่ออุณหภูมิของเครื่องวิทยุลดต่ำกว่าอุณหภูมิของอากาศที่อยู่รอบ ๆ เพื่อลดสภาพเช่นนี้ให้น้อยที่สุด จึงควรจะเปิดเครื่องวิทยุไว้ตลอดเวลาหรือวาง หลอดไฟฟ้าเปิดทิ้งไว้ใกล้ ๆ กับเครื่องก็ได้

ตอนที่ 3 การสื่อสารทางวิทยุในพื้นที่เป็นภูเขา

1. ขีดจำกัด

การติดตั้ง การปฏิบัติงานและการซ่อมบำรุงเครื่องวิทยุในพื้นที่เป็นภูเขานั้นมีความยากลำบาก ฉากภูมิ ประเทศที่กำบังและความเปลี่ยนแปลงอย่างรวดเร็วและรุนแรงของดินฟ้าอากาศ ตลอดจนอุณหภูมิมักจะ รบกวนการสื่อสารที่กระทำต่อเนื่องกัน มีปัญหาอีกประการหนึ่งในการรักษาเครื่องวิทยุและหม้อไฟฟ้าแห้ง ให้ทำงาน และไม่ให้มีไอน้ำมาเกาะเครื่อง

2. การติดตั้ง

- ก. ควรจะหันสายอากาศบ่งทิศออกนอกทางเพียงเล็กน้อยเมื่อมีภูเขาสูงขวางทางส่งข่าวที่เป็นเส้นตรงอยู่
- ข. ควรจะใช้หุบเขาหรือช่องว่างเป็นทางส่งข่าวระหว่างภูเขา

- ค. เมื่อตั้งสถานีวิทยุอยู่ตรงหลังภูเขาสูงซึ่งขวางกั้นอยู่ก็ควรตั้งสายอากาศไว้บนที่สูงสุดเท่าที่จะกระทำได้
- ควรจะยกเคเบิ้ลสายอากาศให้สูงเหนือฟื้นดินเพื่อให้เป็นที่แน่ใจว่าจะไม่ถูกหิมะกลบหรือแข็งตัวติด กับพื้นดิน เรื่องนี้ก็ให้ปฏิบัติต่อเคเบิ้ลโทรศัพท์และเคเบิ้ลไฟฟ้ารวมด้วย
 - จ. จุดต่อสายอากาศและข้อต่อสายเคเบิ้ลควรจะวางให้พ้นหิมะและน้ำ
- ฉ. ในระหว่างฤดูหนาวจะต้องจัดท่อนเสาอากาศที่เป็นโลหะและเคเบิ้ลสายอากาศอย่างระมัดระวัง เพราะว่ามันจะเปราะในอุณหภูมิต่ำ ๆ
 - ช. เมื่อพื้นดินเย็นแข็งก็ควรจะติดตั้งสายดินเทียมให้แก่สายอากาศ
- ซ. ควรจะตั้งสายอากาศบนยอดหรือที่ราบด้านหน้าของภูเขาถ้าเป็นไปได้ก็ควรจะให้มีความสูงมาก พอที่จะให้ทางส่งเป็นเส้นสายตา
- ฉ. ระบบสายอากาศที่สมบูรณ์ เช่น ระบบพื้นดินเทียมหรือขั้วคู่ (GROUND PLANES or DIPOLES)
 ย่อมจะให้ผลมากกว่าสายอากาศแบบแส้ซึ่งมีความยาวไม่ถึงช่วงคลื่น โดยเฉพาะอย่างยิ่งเมื่อปฏิบัติการอยู่
 บนพื้นดินที่มีหิมะหรือเยือกแข็ง
- ญ. การใช้สถานีวิทยุถ่ายทอดบนพื้นที่เป็นภูเขาย่อมจะให้การสื่อสารไปได้ไกลกว่ารัศมีการทำงานของ คลื่นพื้นดิน ถส.
 - (1) เครื่องปลายทางวิทยุถ่ายทอดควรจะตั้งอยู่บนยอดสูงสุดเพื่อให้ส่งข่าวเป็นเส้นสายตาได้
- (2) ในการแก้ปัญหาการสื่อสารพิเศษนั้น อาจใช้เครื่องบินเพื่อถ่ายทอดข่าวระหว่างสถานีวิทยุต่าง ๆ ซึ่งไม่อาจสื่อสารระหว่างกันและกันได้
- (3) สถานีวิทยุถ่ายทอดซึ่งตั้งอยู่ ณ ตำบลสำคัญๆ (ทางวิทยุ) จะทำให้สถานีปลายทางมีการสื่อสาร ทางวิทยุระหว่างกันได้ การกระทำเช่นนี้ลดความยาวของช่วงต่อวิทยุแต่ละแห่งและลดอัตราส่วน การ รบกวน-ต่อ-สัญญาณ ลงด้วย อย่างไรก็ตามการใช้สถานีถ่ายทอดหลายสถานีย่อมจะเพิ่มจำนวนเครื่องที่ ต้องใช้ ชิ้นเครื่องวิทยุที่เพิ่มขึ้นนี้ย่อมจะทำให้เกิดความลำบากในการขนส่งและเกิดความต้องการช่าง เทคนิค เจ้าหน้าที่พิเศษขึ้นอีกมากเพื่อใช้ในการติดตั้ง ปฏิบัติงาน บำรุงรักษาและซ่อมเครื่องวิทยุ

<u>บทที่ 9</u> <u>การแบ่งมอบและการกำหนดความถี่วิทยุ</u> (RADIO FREQUENCY ALLOCATION AND ASSIGNMENT)

ตอนที่ 1 การควบคุมความถี่ปฏิบัติงานของวิทยุ

1. การรบกวน

ถ้าหากว่าเครื่องวิทยุทั้งหมดในกองพลพยายามปฏิบัติงานด้วยความถี่ขนาดเดียวกันหรือด้วย
ความถี่ซึ่งเจ้าหน้าที่ปฏิบัติงานเลือกตามใจชอบแล้ว ก็จะทำให้การสื่อสารทางวิทยุนั้นถึงหากกระทำได้ก็
ไม่เหมาะอย่างยิ่ง เมื่อมีเครื่องส่งวิทยุสองหรือหลายเครื่องปฏิบัติงานอยู่ในเวลาเดียวกันด้วยความถี่ช่อง
เดียวกันแล้ว สถานีรับก็จะได้รับสัญญาณซึ่งยุงเหยิงผิดเพี้ยนและอ่านไม่ได้ความ การรบกวนแบบบนี้อาจจะ
เกิดขึ้นได้ง่ายระหว่างสถานีในข่ายที่จะต้องปฏิบัติงานด้วยความถี่เดียวกัน โดยปกติแล้ว สบข. อาจจะลด
การรบกวนลงให้น้อยที่สุดได้โดยการการระเบียบการส่งในฝ่ายขึ้น เนื่องจากคลื่นวิทยุบางคลื่นไปได้รอบทิศ
ไกลหลายไมล์ ฉะนั้นการรบกวนโดยไม่เจตนาต่อข่ายอื่นๆ อาจเกิดขึ้นได้ง่าย เว้นไว้แต่ การส่งข่าวของ
สถานีทั้งหมดมีการควบคุมอย่างเข้มงวด และได้เลือกความถี่ที่ใช้งานอย่างรอบคอบ

2. การใช้คลื่นความถี่

การจัดโดยอุดมคติเพื่อให้การสื่อสารทางวิทยุปราศจากการรบกวนนั้น คือ การกำหนด ความถี่ที่ใช้งานขนาดต่างๆ กันให้แก่ข่ายวิทยุแต่ละข่าย แต่ทว่าจำนวนช่องความถี่ที่มีอยู่นั้นจำกัด เพียงแต่ ส่วนน้อยของเครื่องความถี่วิทยุที่เหมาะแก่การสื่อสารด้วยวิทยุทางยุทธวิธี ส่วนที่ใช้งานนั้นก็ยังจำกัดอีก เพราะว่าช่องความถี่วิทยุแต่ละช่องก็มีแถบความถี่หลายๆ ความถี่แทนที่จะเป็นความถี่เดียว สัญญาณวิทยุโทรเลขหรือวิทยุโทรพิมพ์ใช้เครื่องความถี่ 1 KHz. ส่วนซึ่งวิทยุเป็นคำพูด AM นั้นใช้ 10 KHz. ช่องวิทยุเป็นคำพูด FM ใช้ 50 ถึง 100 KHz. และช่องวิทยุโทรทัศน์ต้องการถึง 6,000 KHz. ใน ช่องว่างของเครื่องความถี่นั้นนอกจากจะมีสัญญาณวิทยุอยู่เต็มแล้ว แล้วยังต้องแยกช่องว่างช่องความถี่ วิทยุข้างเคียงอีกด้วย ทั้งนี้เพื่อลดการรบกวนระหว่างกันอันอาจเกิดขึ้นได้ให้น้อยที่สุด

3. สภาพทางยุทธวิธี

นอกจากข้อพิจารณาในทางเทคนิคที่ใช้ในการเลือกและควบคุมช่องความถี่อันจำเป็นแล้ว สภาพ ทางยุทธวิธียังอาจต้องการให้มีการควบคุมความถี่วิทยุอีกด้วย ด้วยเหตุนี้จึงต้องกำหนดตารางความถี่ที่ใช้ งานให้แก่แต่ละสถานี ทั้งจะต้องจัดให้มีความถี่สำรองขึ้นบ่อยๆ เพื่อใช้ในเมื่อความถี่เดิมปฏิบัติงาน ไม่ได้ เพราะมีการรบกวนตามธรรมชาติหรือมีการก่อกวนจากข้าศึก เนื่องด้วยเหตุผลทางการรักษาความ ปลอดภัย บางครั้งจำเป็นต้องกำหนดความถี่ใหม่ขึ้นทุกๆ วัน

ตอนที่ 2 การกำหนดความถี่วิทยุ

1. ระเบียบปฏิบัติทั่วไป

เพื่อลดความสับสน อันเกิดจากการไม่เข้มงวดกวดขันในการควบคุมความถี่ จึงให้ผู้บังคับทหาร สื่อสารของกองทัพควบคุมการกำหนดความถี่ทั้งสิ้นในยุทธบริเวณ ผู้บังคับทหารสื่อสารของกองทัพจะ กำหนดช่องความถี่โดยเฉพาะให้แก่ข่ายวิทยุแต่ละข่ายภายใต้การควบคุมโดยตรงของตนต่อจากนั้นหน่วย รองหลักของกองทัพแต่ละหน่วยก็จะได้รับการแบ่งมอบความถี่เป็นกลุ่มหรือเป็นบัญชีรายการจากความถี่ เหล่านี้เองหน่วยรองก็อาจไปกำหนดความถี่โดยเฉพาะให้แก่ข่ายวิทยุ ซึ่งอยู่ในความควบคุมโดยตรงของตน กรรมวิธีการแบ่งมอบบัญชีรายการความถี่จะคงดำเนินเรื่อยไป ผ่านกองบัญชาการกองทัพน้อยจนถึง กองบัญชาการกองพล โดยทั่วไปแล้วผู้บังคับทหารสื่อสารของกองพลจะกำหนดความถี่โดยเฉพาะให้แก่ หน่วยรองหลายหน่วยในกองพล อย่างไรก็ตาม ผบ.ส.พล. อาจจะแบ่งย่อยรายการช่องความถี่ FM ให้แก่

กองพันทหารราบแต่ละกองพัน ซึ่งต่อจากนั้นกองพันก็อาจกำหนดช่องความถี่จำนวนหนึ่งสำหรับใช้ภายใน แต่ละกองร้อยเนื่องจากรัศมีการทำหงานของเครื่องวิทยุรบ (COMBAT RADIO SET) ค่อนข้างสั้นมาก ดังนั้นอาจกำหนดความถี่ซ้ำๆ กันให้แก่กองร้อยต่างๆ ซึ่งอยู่ห่างกันเกินกว่า 1 ไมล์ได้ การกำหนดความถี่ วิทยุนั้นมีปรากฏอยู่ใน นปส.ของกองบัญชาการซึ่งเป็นผู้กำหนดความถี่ให้

2.ข้อพิจารณาเบื้องต้น

- ก. การกำหนดความถี่โดยอุดมคติ ก็คือ การกำหนดซึ่งอำนวยให้ข่ายวิทยุแต่ละข่ายสามารถ ปฏิบัติการด้วยความถี่ซึ่งได้รับมอบโดยไม่ไปรบกวน หรือถูกรบกวนจากข่ายวิทยุอีกข่ายหนึ่ง เพื่อให้ได้รับผล ดังกล่าวนี้ ในขั้นแรกจะต้องกำหนดความถี่ต่างๆ กันให้แก่ข่ายวิทยุทั้งสิ้นซึ่งปฏิบัติการอยู่ในรัศมีของการ รบกวนซึ่งกันและกัน เรื่องนี้จะสะดวกขึ้นโดยใช้ระบบการแบ่งรายการความถี่ซึ่งได้รับเลือกแล้วให้แก่ กองบัญชาการซึ่งจะเป็นผู้กำหนดความถี่ซ้ำกันแต่น้อยที่สุด
- ข. ความถี่วิทยุซึ่งได้กำหนดให้แก่ข่ายต่างๆ ในกองพลนั้นได้จากบัญชีความถี่ซึ่งกองทัพให้ มาบัญชีเหล่านี้จะมีความถี่และนามเรียกขานซึ่งได้รับอนุมัติให้กองพลเป็นผู้ใช้
- ค. จากบัญชีความถี่ซึ่งได้รับแบ่งมอบมานี้เอง ความถี่และนามเรียกขานอันเหมาะสมจะถูกกำหนด ขึ้นให้แก่สถานีวิทยุและข่ายแต่ละแห่งภายในกองพล การกำหนดเหล่านี้มีปรากฏอยู่ใน นปส.ของกองพล
- ง. เมื่อทำการกำหนดความถี่ให้แก่ข่ายวิทยุโดยเฉพาะแห่งจะต้องพิจารณาถึงย่านความถี่ซึ่งใช้ ร่วมกันได้กับเครื่องวิทยุต่างๆ ที่ใช้ในข่ายเดียวกัน เพราะฉะนั้นจะต้องไม่กำหนดความถี่นอกจากความถี่ที่ใช้ ร่วมกันได้นี้ให้แก่ข่าย ถึงแม้ว่าความถี่นั้นมีอยู่ในบัญชีที่ได้รับแบ่งมอบมาก็ตาม

3. การแยกแถบความถึ่

การกำหนดความถี่ต่างๆ ให้แก่ข่ายแต่ละข่ายนั้นมิได้เป็นเครื่องประกันได้ว่าการปฏิบัติงานจะ ปราศจากการรบกวนโดยสิ้นเชิง สัญญาณวิทยุนั้นอาจจะมีย่านความถี่น้อยกว่า 1 KHz. หรืออาจจะมี มากตั้งหลายร้อยกิโลไซเกิ้ลบนหน้าปัทม์เครื่องรับก็ได้ เหตุนี้เองจึงต้องแยกความถี่วิทยุข้างเคียงซึ่งกำหนด ขึ้นนั้นให้ห่างกันเพียงพอ

- ก. แบบของการปล่อยคลื่น (EMISSION) (คน คำพูด หรือ ว.โทร พ.)โดยทั่วไปแล้วการแยกแถบ ความถี่ของโทรเลขและวิทยุโทรพิมพ์ก็เกือบใกล้เคียงกัน แต่สำหรับการสื่อสารเป็นคำพูดแล้วต้องแยกกัน ให้ห่างมากขึ้น
- ข. แบบของการปรุงคลื่น (AM หรือ FM) เครื่องวิทยุ FM ทางยุทธวิธีต้องการแถบความถี่ 5 KHz. สำหรับแต่ละช่องส่วนเครื่องวิทยุ AM นั้น ต้องการแถบความถี่ 10 KHz. สำหรับแต่ละช่อง การแยกช่อง ความถี่ที่ใกล้เคียงกันของวิทยุ FM จะต้องให้มากกว่าของวิทยุ AM ตามส่วนสัมพันธ์
- ค. เสถียรภาพของความถี่และความเที่ยงตรงของเครื่องส่ง การปรับเทียบเครื่องส่งวิทยุสนาม ส่วนมากนั้นมักจะไม่เที่ยงตรง นอกจากนั้นความถี่ซึ่งเกิดจากเครื่องแกว่งในตัวเครื่องส่งก็มักจะเปลี่ยนหรื เคลื่อนไป เพื่อลดความไม่มีประสิทธิภาพอันเกิดจากการปฏิบัติงานด้วยความถี่คลาดเคลื่อนให้เหลือน้อย ที่สุด, สถานีวิทยุสนามส่วนมากจึงต้องรักษาความถี่ที่กำหนดให้คลาดเคลื่อนได้ไม่เกิน 0.01 เปอร์เซ็นต์ ตัวอย่างเช่น การกำหนดความถี่ 4 MHz. ที่อนุญาตให้เคลื่อนได้ 0.01 เปอร์เซ็นต์จะยอมให้ความถี่ของ เครื่องส่งเปลี่ยนไปได้ สูงหรือต่ำกว่าความถี่ที่กำหนดได้เพียง 400 Hz. ปัจจัยอันนี้จะเป็นผล กระทบกระเทือนต่อการแยกช่องความถี่ที่ปฏิบัติการใกล้เคียงอย่างไม่ต้องสงสัย
- ง. กำลังทางออกของเครื่องส่ง ระยะทางส่งและขีดความสามารถในการรบกวนของเครื่องส่งมีส่วน สัมพันธ์โดยตรงกับกำลังทางออกตามอัตราของมัน เครื่องส่งที่มีกำลังสูงอาจจะกลบเครื่องรับวิทยุในบริเวณ นั้นได้อย่างสิ้นเชิง ถ้าไม่จัดให้มีการแยกความถี่ที่ใช้งานให้ห่างกันอย่างเพียงพอด้วยเหตุนี้การใช้กำลัง ทางออกแต่น้อยที่สุดเพียงเท่าที่ให้สามารถสื่อสารสารกันได้ ซึ่งมักจะถือให้เป็น รปจ.

จ.การแยกข่ายต่างๆ ให้ห่างกัน สัญญาณวิทยุเมื่อได้รับที่สถานีไกลๆ อาจจะคลุมหน้าปัทม์ เครื่องรับเพียงไม่กี่ KHz. แต่เมื่อรับด้วยเครื่องรับซึ่งอยู่ใกล้ๆ สัญญาณอันเดียวกันนั้นตามปกติแล้วจะ คลุมแถบความถี่ได้กว้างขวางมากกว่า เนื่องจากการรบกวนช่องความถี่ข้างเคียงเกิดขึ้นเมื่อสถานี ต่างๆ ตั้งอยู่ใกล้กันมากจึงต้องจัดแยกความถี่ที่ใช้งานซึ่งกำหนดให้แก่สถานีของข่ายต่างๆ ซึ่งตั้งอยู่ในที่ บัญชาการเดียวกันให้อยู่ห่างกันมากๆ

4. แนวทางปฏิบัติโดยทั่วไปสำหรับการกำหนดความถี่ในขั้นต้น

ก.ปัจจัยต่างๆ ดังที่ได้วางไว้ในข้อก่อนนั้นแสดงว่าอาจจะเปลี่ยนแปลงการแยกความถี่ที่ใช้ ปฏิบัติงานให้ห่างกันในลักษณะต่างๆ ได้ เพื่อสงวนเครื่องความถี่ที่ใช้งานไว้จึงเป็นสิ่งสำคัญที่จะต้องให้มี การแยกความถี่ห่างกันแต่น้อยที่สุด การกำหนดความถี่วิทยุที่ได้ผลนั้นอาจจะทำได้โดยการอ้างถึงแผ่นภูมิ การพยากรณ์คลื่นพื้นดินระยะสั้นและคลื่นไฟฟ้าซึ่งได้พิมพ์ประกาศใช้ทุก 3 เดือน

ข.การกำหนดความถี่ขั้นต้นอาจจะไม่สู้เป็นผล จึงต้องมีการปรับปรุงเสียใหม่ ตัวอย่างเช่นอาจ ต้องการให้เปลี่ยนแผนขั้นต้นเมื่อความถี่ซึ่งข้าศึกใช้ รัฐบาลฝ่ายเดียวกันใช้หรือองค์แทนฝ่ายการพาณิชย์ เป็นผู้ใช้ซึ่งก่อให้เกิดการรบกวนในระบบการสื่อสารขึ้น นอกจากนั้นแล้วการรบกวนอาจจะเกิดขึ้นจาก ความถี่คลื่นทบทวี (HARMONIC)ของเครื่องส่งดังกล่าวแล้วนั้นรวมทั้งเครื่องส่งของเราเองด้วยคลื่นทบ ทวี (HARMONIC) นั้นคือความถี่ซึ่งเป็นผลทวีคูณของความถี่ซึ่งได้กำหนดขึ้นหรือความถี่ซึ่งมูลฐาน ตัวอย่างเช่น ความถี่ซึ่งกำหนดขึ้นเป็น 4 MHz.อาจจะปล่อยสัญญาณ HARMONIC ออกรบกวนได้ที่ 8 MHz., 12 MHz., 16 MHz. ฯลฯ ผลทวีคูณของความถี่มูลฐานเหล่านี้เรียกว่า คลื่นทวี (HARMONIC) ที่ 2,3 และ 4 ตามลำดับ

ค.มีหลายโอกาสที่ไม่อาจจะจัดความถี่วิทยุให้ข่ายวิทยุทั้งหมดในกองพลใช้ได้โดยไม่เกิดการ รบกวน ในกรณีเช่นนั้นก็จำเป็นต้องระงับข่ายวิทยุบางส่วน เพื่อให้ข่ายและสถานีซึ่งมีความเร่งด่วนสูงที่สุด ทำงานต่อไป

<u>บทที่ 10</u> <u>การก่อกวน</u>

ตอนที่ 1 กล่าวนำ

1. กล่าวทั่วไป

ก. การรับสัญญาณวิทยุมักจะกระทำไม่ได้เนื่องจากเครื่องรับถูกรบกวนจากสัญญาณซึ่งไม่ ต้องการ การรบกวนเช่นนั้นอาจจะเกิดด้วยการเจตนา (จากแหล่งซึ่งไม่ใช่ฝ่ายเดียวกัน) หรือไม่เจตนา (จาก แหล่งฝ่ายเดียวกัน) การรบกวนด้วยเจตนานั้นเรียกว่าการก่อกวน(JAMMING)

ข.การก่อกวนทางวิทยุ คือ การส่งคลื่นวิทยุเพื่อขัดขวางการรับข่าวสารซึ่งใช้เครื่องรับวิทยุรับปกติ การก่อกวนใช้เพื่อการขัดขวางการสื่อสารทางวิทยุ จูโจม ทำให้สับสนและทำให้พนักงานวิทยุหลงผิด

ค. บรรดาความถี่วิทยุทั้งหมดนั้น อาจจะถูกก่อกวนได้ง่ายและข้าศึกกวนการรับวิทยุเมื่อมีประโยชน์ เพื่อให้บรรลุผลเช่นนี้ ข้าศึกก็จะเลือกความถี่ที่จะก่อกวนแล้วปรับคลื่นเครื่องส่งให้ตรงกับความถี่นั้น และ ส่งสัญญาณแรงๆ ออกไปเพื่อขัดขวางการับสัญญาณที่ต้องการของฝ่ายเรา

2.แบบมูลฐานของการก่อกวนทางวิทยุ

มีแบบมูลฐาน 2 แบบของการกวนทางวิทยุ คือ การก่อกวนเป็นจุดและการก่อกวนเป็นฉาก ก.การก่อกวนเป็นจุด (SPORT JAMMING) คือการส่งสัญญาณแถบความถี่แคบเพื่อรบกวนช่อง หรือความถี่โดยเฉพาะแห่งหนึ่ง

ข.การก่อกวนเป็นฉาก (BARRAGE JAMMING) คือการส่งสัญญาณแถบความถี่กว้างรบกวน ช่องสื่อสารหลายๆ ช่องเท่าที่กระทำได้ การก่อกวนเป็นฉากอาจจะกระทำได้โดยใช้เครื่องส่งแถบความถี่ แคบหลายๆ เครื่องพร้อมๆ กัน ต่อความถี่หรือช่องสื่อสารที่อยู่ใกล้เคียง

3.ความแตกต่างระหว่างสัญญาณรบกวนต่าง ๆ

มีแหล่งสัญญาณรบกวนอยู่ 2 ชนิด คือ แหล่งจากภายนอก และ แหล่งภายในถ้าหากการรบกวนซึ่ง ได้ยินจากเครื่องรับ อาจจะขจัดเสียได้หรือลดลงได้ด้วยการต่อสายอากาศเครื่องรับลงดินหรือปลด ออก ก็อาจจะถือว่าการรบกวนนั้นมาจากแหล่งภายนอกถ้าการรบกวนนั้นยังคงอยู่ ไม่เปลี่ยนแปลงเมื่อ ปลดสายอากาศหรือต่อสายอากาศลงดินแล้ว ก็ถือได้ว่าการรบกวนนั้นเกิดจากเครื่องรับ และเป็นเครื่องบ่ง ว่าเครื่องรับทำงานไม่ปกติถ้าหากการรบกวนเกิดจากแหล่งภายนอกก็จะต้องทำการตรวจต่อไปอีก เพื่อ พิจารณาว่าเกิดจากการก่อกวนของข้าศึก หรือ เกิดจากการรบกวนโดยบังเอิญ

4.ความแตกต่างระหว่างการก่อกวน และ การรบกวนโดยบังเอิญ

- ก. การรบกวนโดยไม่เจตนาจากสถานีวิทยุ และ เรดาร์ของฝ่ายเดียวกันเรียกว่า การรบกวน
 โดยบังเอิญ การรบกวนนี้อาจจะเกิดขึ้นเมื่อ HAMONIC ของคลื่นวิทยุที่ส่งออกไปนั้นรบกวนกับความถี่อื่น
- ข. การก่อกวนเป็นจุด อาจจะแยกออกจากการรบกวนโดยบังเอิญได้โดยการปรับคลื่นเครื่องรับ ให้สูงกว่าหรือต่ำกว่าความถี่ที่ใช้งานตามปกติ 2 3 KHz. ถ้าความเข้มของสัญญาณรบกวนลดลงทันที เมื่อปรับคลื่นรับออกไปจากความถี่ที่ปฏิบัติงานอยู่ ก็ถือว่าสัญญาณรบกวนนั้น เกิดจากการก่อกวนเป็นจุด
- ค. เป็นการยากที่จะแยกการก่อกวนเป็นฉาก ออกจากการรบกวนโดยบังเอิญเนื่องจากการรบกวน ทั้งสองแบบนี้ อาจจะขยายกลุ่มย่านการจัดคลื่นของเครื่องรับทั้งหมดหรือเป็นส่วนมาก อย่างไรก็ดีการ รบกวนโดยบังเอิญนั้น จะออกจากแหล่งไปได้ในระยะสั้นและการค้นหาตามบริเวณใกล้เคียงก็อาจทราบว่า เกิดจากการรบกวนของพัดลมไฟฟ้า มีดโกนไฟฟ้า หรือเครื่องใช้ไฟฟ้าในลักษณะเดียวกัน การใช้ เครื่องรับหิ้วได้ขนาดเล็กในบริเวณสถานีก็อาจช่วยในการพิสูจน์ทราบได้ ถ้าสัญญาณที่ได้รับนั้นแสดงให้

เห็นการเปลี่ยนแปลงความแรงของสัญญาณ เมื่อนำเครื่องรับเข้าไปบริเวณรอบ ๆ สถานี การรบกวนนั้นก็ อาจจะเป็นการรบกวนโดยบังเอิญของแหล่งในบริเวณนั้นเอง โดยกลับกันถ้าความแรงของสัญญาณ เปลี่ยนแปลงแต่น้อยหรือไม่เปลี่ยนแปลงเลย ก็จะบ่งว่าสัญญาณรบกวนนั้นเป็นการก่อกวนของข้าศึก จะต้องรายงานการรบกวนโดยบังเอิญทันทีและขจัดให้หมดไป

- ง. การรบกวนโดยบังเอิญอาจจะเกิดขึ้นได้จากการกั้นเครื่องรับ(RECEIVERBLOCKING) ความ เพี้ยนจากการปรุง (MODULATION SPLATER) (คือการปรุงคลื่นเครื่องส่ง ปส.แรงไป) การตัดต่อ สวิทช์ไฟฟ้า (CLICKS) การปล่อยคลื่นแฝง(SPERIOUS RADIATION) จากเครื่องส่งของฝ่ายเดียวกันซึ่ง อยู่ใกล้ ๆ พนักงานวิทยุการรายงานการรบกวนแบบนี้ต่อหัวหน้าของตนเพื่อทำการแก้ไขทันที
- จ. ต้องรายงานสัญญาณรบกวนซึ่งพิสูจน์ทราบไม่ได้ต่อกองบังคับการชั้นเหนือ ทันที ระเบียบ ปฏิบัติการรายงานนี้ มักจะช่วยให้กองบัญชาการต่าง ๆ พิจารณาได้ว่ามีการก่อกวนจากฝ่ายข้าศึกอยู่ หรือไม่ กองบัญชาการต่าง ๆ อาจจะพิจารณาเรื่องนี้ได้โดยการเปรียบเทียบรายงานซึ่งส่งมาจาก หลาย ๆ หน่วย ที่เป็นผู้ใช้ความถี่ต่าง ๆ ที่อยู่ในเครือความถี่ส่วนใดส่วนหนึ่งโดยเฉพาะ 5.การพิสูจน์ทราบสัญญาณก่อกวน

การพิสูจน์ทราบลักษณะของสัญญาณการก่อกวนอย่างมีระบบ ประกอบกับระเบียบการต่อสู้การ ก่อกวนอย่างถูกต้อง ย่อมจะสงวนเวลาไว้ได้ อาจจะถือได้ว่าข้าศึกนั้นจะพยายามก่อกวนให้เป็นผลสมบูรณ์ และใช้แบบสัญญาณก่อกวนใหม่ ๆ ที่สับสนยิ่งขึ้นพนักงานวิทยุจะต้องคาดคิดไว้ว่าจะต้องประสบกับการ ผสมของการปรุงคลื่นแบบเบื้องต้นแบบใหม่ทั้งหมด และการผสมสัญญาณสรรพเสียง แบบแปลก ๆ เช่น เสียงร้องเพลง เสียงดนตรี และเสียงหัวเราะ สัญญาณเหล่านี้จะให้ผลเป็นสัญญาณ ก่อกวนที่มีประสิทธิภาพประสิทธิผล และมักจะให้ผลทางจิตวิทยาอย่างมากด้วย

- ก. เป็นการยากที่พนักงานวิทยุจะกำหนดการก่อกวน ออกจากการรบกวนแบบอื่น ๆ เพราะฉะนั้น พนักงานวิทยุจึงควรจะทำความคุ้นเคยกับลักษณะของเสียงสัญญาณ ก่อกวนต่าง ๆ ระหว่างการฝึกอยู่
 - ข. สัญญาณก่อกวนแบ่งประเภทออกได้เป็น
 - สัญญาณคลื่นเสมอ (CW.)
 - สัญญาณปรุงคลื่น (VIOSE , PHONE)

6.สัญญาณก่อกวนแบบคลื่นเสมอ(CW.JAMMING SIGNALS)

- ก. ชนิดเคาะเปะปะ สัญญาณนี้เป็นคลื่นพาห์ที่ยังไม่ได้ปรุงคลื่นที่เคาะออกไปอย่างเปะปะ ส่วน ใหญ่แล้วใช้ก่อกวนวิทยุโทรพิมพ์และวิทยุโทรสำเนา แต่อาจใช้ก่อกวนวิทยุโทรเลขก็ได้
- ข. ชนิดเคาะเป็นระเบียบ สัญญาณคล้ายกับสัญญาณของคลื่นเสมอ ที่กดคันเคาะ เปะปะ อย่างไรก็ตามคลื่นเสมอที่กดคันเคาะอย่างมีระเบียบนี้ ตัวประมวลเลขสัญญาณจะถูกส่งออกไป ด้วยอัตราเร็วเท่ากันหรือเร็วกว่าสัญญาณที่ถูกก่อกวนเล็กน้อย สัญญาณนี้ใช้ก่อกวนวงจรวิทยุโทรเลข 7.สัญญาณก่อกวนประเภทปรุงคลื่น
- ก. ชนิดประกายไฟฟ้า (CLICKS) สัญญาณก่อกวนที่เกิดจากประกายไฟฟ้าเป็นสิ่งที่ง่ายที่สุด มี ประสิทธิภาพมากที่สุด และเป็นสัญญาณการก่อกวนที่ทำได้ง่ายที่สุดด้วยสำหรับตัวพนักงานวิทยุเอง แล้ว สัญญาณก่อกวนแบบนี้รู้สึกว่าจะเป็นเสียงรบกวนที่เกิดขึ้นโดยฉับพลันในหัวงเวลาอันสั้น และมี ความแรงมาก สัญญาณก่อกวนแบบนี้เกิดขึ้นซ้ำ ๆ กันอย่างรวดเร็วและดังมากกว่าสัญญาณที่ต้องการรับ ฟัง เวลาที่ต้องการสำหรับเครื่องรับหูฟังและหูของมนุษย์ต้องฟื้นตัวขึ้นหลังที่ได้รับสัญญาณก่อกวนแต่ละ ครั้ง จึงทำให้สัญญาณก่อกวนเหล่านี้แม้ว่าเกิดขึ้นในเวลาสั้น แต่ก็เป็นผลกระทบกระเทือนต่อการ สื่อสารทางวิทยุทุกชนิด นอกจากนั้นสัญญาณของประกายไฟฟ้า มีลักษณะเป็นแถบความถี่กว้าง ซึ่งช่วย ให้เครื่องก่อกวนเครื่องหนึ่งสามารถครอบคลุมช่องการสื่อสารไว้ได้หลายช่อง

- ข. ชนิดกวาดตลอด เทคนิคการก่อกวนชนิดนี้ สัญญาณคลื่นพาห์ถูกกวาดไปหรือเคลื่อนเดินหน้า ถอยหลังตลอดย่านความถี่ด้วยอัตราเร็วสูง สัญญาณก่อกวนชนิดกวาดตลอดซึ่งมีประสิทธิผลทั่วย่านอัน กว้างขวางของความถี่จะทำให้มีเสียงเครื่องยนต์ของเครื่องบินธรรมดา เมื่อใช้กับการกวาดด้วยความเร็วสูง แล้วสัญญาณนั้นจะเป็นผลกระทบกระเทือนต่อการส่งข่าวด้วยวิทยุโทรพิมพ์และวิทยุโทรเลขอัตโนมัติ
- ค. ชนิดเสียงดนตรีสูงต่ำ (Stepped tone) สัญญาณชนิดนี้โดยทั่ว ๆ ไปเรียกว่าเสียงปี่ถุงลม (Bagpipes) เพราะว่าเสียงของสัญญาณประกอบด้วยเสียงสูงต่ำต่าง ๆ (ประมาณ 3 5 เสียง) เสียง เหล่านี้ถูกส่งออกไปเพื่อทำให้เกิดเสียงสูง ๆต่ำ ๆ เมื่อส่งซ้ำแล้วซ้ำอีกก็จะเกิดผลเป็นเสียงที่มีเสียงอย่าง ปี่สก็อต เสียงสูงต่ำเหล่านี้มีผลกระทบกระเทือนทางใจต่อพนักงานวิทยุ สัญญาณก่อกวนแบบนี้มักจะใช้ต่อ วงจรเป็นคำพูดช่องสื่อสารเดี่ยว ซึ่งอาจปรุงคลื่นทางช่วงสูงหรือทางความถี่ก็ได้ (AM.,FM.)
- ง. ชนิดเสียงรบกวนเปะปะ (Random keyed modulated) สัญญาณชนิดนี้ทำให้เกิดเสียง รบกวนวิทยุชนิดสังเคราะห์ คือเสียงรบกวนนี้เปลี่ยนทั้งช่วงเสียงและความถี่อย่างเปะปะเนื่องจากมี ความถี่ซึ่งเกิดซ้ำ ๆ นั้นไม่เป็นห้วงที่แน่นอน จึงไม่อาจขจัดให้เหลือแต่สัญญาณที่ต้องการได้ เสียงรบกวน เปะปะถือว่าเป็นการก่อกวนแบบปรุงคลื่นชนิดหนึ่งซึ่งดีกว่าและมีอันตรายมากกว่าแบบอื่น เพราะว่า พนักงานวิทยุอาจจะเข้าใจผิดว่าเป็นเสียงรบกวนในเครื่องรับหรือของบรรยากาศ ซึ่งจะละเลยไม่ปฏิบัติ ต่อต้านการก่อกวน การก่อกวนด้วยเสียงรบกวนแบบนี้มีประสิทธิผลต่อการสื่อสารทุกชนิด
- จ. ชนิดปรุงคลื่นเสมอเคาะเปะปะ (RANDOM KEYS MODULATED)สัญญาณก่อกวนชนิดนี้ทำ ขึ้นได้ด้วยการเคาะสัญญาณคลื่นเสมออย่างเปะปะและทำการปรุงคลื่นสัญญาณที่เคาะนี้ด้วยเสียงรบกวน ชนิดประกายไฟฟ้า การก่อกวนแบบนี้จะมีประสิทธิผลโดยเฉพาะต่อช่องการสื่อสารเป็นคำพูด
- ฉ. ชนิดหมุน (ROTARY) สัญญาณก่อกวนชนิดหมุนทำขึ้นด้วยการเปลี่ยนแปลงความถี่เสียงอย่าง ช้า ๆ โดยมีระดับเสียงต่ำ สัญญาณนี้มีเสียงคล้ายเสียงคำราม ใช้เพื่อการก่อกวนในวงจรที่ปรุงคลื่นเป็น คำพูด
- ช. ชนิดนกนางนวล (GULLS) สัญญาณก่อกวนชนิดนกนางนวล ทำให้เกิดขึ้นได้ด้วยการเปลี่ยน ความถี่เสียงให้สูงขึ้นอย่างเร็วและให้ต่ำลงอย่างช้า ๆ เสียงที่เกิดขึ้นก็มีลักษณะเหมือนเสียงร้องของนก นางนวลทะเล สัญญาณการก่อกวนชนิดนี้ทำให้เกิดความรำคาญโดยเฉพาะวงจรการปรุงคลื่นเป็นคำพูด
- ซ. ชนิดเป็นห้วง ๆ (PULSE) ชนิดการก่อกวนเป็นห้วง ๆ คล้ายเสียงสั่น(RUMBLE) เป็นเสียง เดียวกับเสียงเครื่องจักรที่หมุนอย่างเร็ว สัญญาณนี้ก่อให้เกิดความรำคาญต่อวงจรปรุงคลื่นเป็นคำพูด
- ณ. ชนิดเสียงดนตรี (TONE) สัญญาณก่อกวนชนิดเสียงดนตรีเป็นเสียงดนตรีที่ไม่เปลี่ยนแปลงมี ความถี่เดียว ซึ่งให้ผลโดยจำกัดต่อการสื่อสารประเภทวิทยุ โดยประการสำคัญแล้วใช้เพื่อการก่อกวนวงจร คลื่นเสมอกดคันเคาะด้วยมือ และวงจรปรุงคลื่นเป็นคำพูดแต่ก็อาจใช้ก่อกวนวงจรคลื่นพาห์ที่ส่งทางวิทยุ
- ญ. ชนิดเสียงครวญคราง (WOBBLER) สัญญาณก่อกวนชนิดเสียงครวญครางเป็นสัญญาณความถึ่ เดียวปรุงคลื่นด้วยเสียงดนตรีต่ำ ๆ ที่เปลี่ยนแปลงช้า ๆ ผลออกมาจะเป็นเสียงหอน ที่ก่อให้เกิดความ รำคาญต่อวงจรวิทยุชนิดปรุงคลื่นเป็นคำพูด

ตอนที่ 2 มาตรการป้องกันการก่อกวน

1.มาตรการที่ควรระมัดระวัง

ถ้าหากพิจารณาว่ามีความจำเป็นที่จะวางมาตรการการระมัดระวังการก่อกวนขึ้นแล้ว การปฏิบัติ ขั้นต้นอาจจะกระทำด้วยการออกแบบสร้างวงจรและข่ายในการฝึกพนักงานวิทยุ และพิจารณาแหล่งของ การก่อกวน

- ก. การออกแบบสร้างวงจรและข่าย ในการต่อสู้การก่อกวนนั้นมีความจำเป็นที่จะต้องปฏิบัติ ดังนี้
 - (1) จัดวงจรที่มีสัญญาณรับได้แรงกว่าที่ต้องการตามปกติ
 - (2) ลดความยาวของวงจรบางวงจรลง วงจรที่มีความยาวมากเกินไปนั้นไม่เป็นที่เชื่อถือได้
 - (3) จัดเส้นทางสำรองหรือช่องการสื่อสารสำรองขึ้น
- (4) จัดข่ายเพื่อให้สถานีดาวเทียมสามารถสื่อสารซึ่งกันและกันได้ และให้สื่อสารกับสถานีควบคู่ ได้ด้วย
- (5) ดูแลให้มั่นใจว่าเครื่องวิทยุทั้งหมดได้รับการรักษาให้อยู่ในสภาพที่ดีและได้รับการจัดปรับไว้ดี ด้วย
- (6) จัดให้มีเครื่องส่งกำลังสูงเฝ้าคอยไว้ เพื่อให้มีเครื่องขยายความถี่วิทยุเพื่อให้มีความสามารถ เหนือสัญญาณก่อกวน
- ข. การฝึก พนักงานวิทยุทั้งหมดควรจะได้รับการฝึกให้รับสัญญาณที่มีการก่อกวน และให้ สามารถรู้ลักษณะของการก่อกวนด้วย นอกจากนั้นเพื่อจะให้เป็นไปตามระเบียบปฏิบัติในการต่อสู่การ ก่อกวน พนักงานควรจะได้รับการฝึก ให้ยึดถือคู่มือของเครื่องวิทยุที่ใช้เป็นหลักด้วย
- ค. การกำหนดแหล่งการก่อกวน ถ้ามีหน่วยหาทิศวิทยุอยู่ก็อาจจะใช้เพื่อกำหนดแหล่ง ก่อกวน ฉะนั้นอาจจะปฏิบัติการขจัดปัญหาการก่อกวนได้ ถ้าหากว่าการก่อกวนเป็นชนิดคลื่นฟ้า ก็ ย่อมต้องการใช้เครื่องหาทิศวิทยุมุมสูง

2.มาตรการการแก้ไข

- ก. การฝึกปฏิบัติ พนักงานวิทยุควรฝึกปฏิบัติการรับฟังท่ามกลางการก่อกวนเจ้าหน้าที่ซึ่งได้รับ การฝึกไว้อย่างดีย่อมจะอ่านสัญญาณที่ต้องการท่ามกลางสัญญาณก่อกวนได้
- ข. การหมายรู้ การรู้จักการก่อกวนโดยเจตนาในทันทีนั้นเป็นสิ่งสำคัญมากการรายงานการก่อกวน ไปยังหน่วยหาทิศวิทยุโดยไม่ชักช้า เพื่อให้หาที่ตั้งของแหล่งก่อกวนและประสานงานเพื่อต่อสู่แหล่งนั้น อาจทำให้การก่อกวนในอนาคตถอยลง
- ค. การปรับแต่งเครื่องรับ(ALIGNMENT) เครื่องวิทยุที่ได้รับการปรับแต่งโดยเหมาะสมแล้วย่อม สามารถแยกสัญญาณที่ต้องการออกจากสัญญาณก่อกวนได้ เจ้าหน้าที่ซ่อมบำรุงควรจะปฏิบัติตามคู่มือ ของเครื่องรับวิทยุโดยเฉพาะที่ใช้อยู่และปรับแต่งเครื่องเสียใหม่เพื่อให้มีการเลือกเฟ้นที่ดีที่สุด และให้รับ แถบความถี่ให้แคบที่สด
- ง. การหันทิศสายอากาศ การแยกสัญญาณที่ต้องการออกจากสัญญาณก่อกวนนั้นอาจกระทำให้เป็น ผลได้ด้วยการเปลี่ยนที่ตั้ง หรือทิศทางของสายอากาศ (ถ้าสายอากาศนั้นเคลื่อนที่ได้)
- จ. การเพิ่มกำลัง กำลังของเครื่องส่งที่มีมากขึ้นอาจจะเพิ่มความแรงของสัญญาณที่เครื่องรับจนถึง จุดของสัญญาณที่ต้องการนั้นข่มสัญญาณก่อกวนได้ ถ้าวงจรที่ถูกก่อกวนนั้นเป็นวงจร ปส. (AM) คำพูด การทำให้เครื่องส่งมีการปรุงคลื่นเกินขนาดอาจจะอ่านสัญญาณก่อกวนแถบความถี่ที่แคบ ๆ ได้ จึงทำให้ วงจรนั้นสามารถทำงานได้ผล ถ้าพนักงานประจำเครื่องส่งคำพูดอย่างช้า ๆ และชัดเจนด้วย แล้ว พนักงานรับก็จะสามารถรับข่าวได้

- ฉ. การเปลี่ยนวิทยุโทรเลข ถ้ามีพนักงานวิทยุโทรเลขอยู่ด้วยแล้วก็อาจใช้วิทยุโทรเลขแทนการส่ง เป็นคำพูดหรือเป็นวิทยุโทรพิมพ์ได้ การส่งวิทยุโทรเลขด้วยความเร็วต่ำจะทำให้สามารถอ่านสัญญาณผ่าน การก่อกวนได้ดียิ่งขึ้น
- ช. การปรับปรุงบริการ ในระบบหลายช่องการสื่อสารอาจจะต้องการใช้ช่องการสื่อสารต่าง ๆ และต้องเพิ่มกำลังของคลื่นเสียงในแต่ละช่องการสื่อสารขึ้นเล็กน้อยถ้าหากว่าไม่มีช่องการสื่อสารเป็นที่ พอใจ ก็อาจจะต้องใช้ช่องการสื่อสารให้น้อยลง ซึ่งก็จะทำให้กำลังของคลื่นเสียงในแต่ช่องการสื่อสาร เพิ่มขึ้นกว่าเดิม
 - ซ. การถ่ายทอด อาจจะถ่ายทอดข่าวที่ถูกรบกวนไปในช่องทางสำรองได้
 - ณ. การเปลี่ยนความถี่ การเปลี่ยนไปใช้ความถี่อื่นทำให้สามารถปฏิบัติงานได้

ตอนที่ 3 การปฏิบัติในระหว่างถูกก่อกวน

1. กล่าวทั่วไป

เป็นการบังคับว่าพนักงานวิทยุต้องใช้เครื่องวิทยุของตนต่อไป ในระหว่างที่ข้าศึกทำการก่อกวน ถึงแม้ว่าพนักงานวิทยุจะมิได้รับผิดชอบมาตรการการต่อสู้การก่อกวนเสียทั้งหมดแต่ผู้เดียวก็ตาม แต่ก็ยังคง มีความรับผิดชอบโดยตรงต่อการปฏิบัติงานให้ต่อเนื่องอยู่ตลอดไป

- ก. พนักงานวิทยุที่จะทำงานให้ได้ผลท่ามกลางการก่อกวนได้นั้น อยู่กับขีดความสามารถและ ความชำนาญของตน พนักงานวิทยุที่มีความชำนาญสามารถอ่านสัญญาณที่ต้องการท่ามกลางการก่อกวน ทั้งหมดได้ เว้นแต่กรณีที่มีความรุนแรงมากที่สุด การที่จะให้เกิดความชำนาญได้นั้น พนักงานวิทยุจะต้อง ฝึกปฏิบัติการรับสัญญาณท่ามกลางการก่อกวนได้ทุกแบบ
- ข. การก่อกวนแบบต่าง ๆ ย่อมต้องการเทคนิคทางการต่อสู้การก่อกวนแบบต่าง ๆ ด้วย ได้มีการ พัฒนาเทคนิคต่าง ๆ ขึ้น เพื่อต่อสู้กับการก่อกวนแบบต่าง ๆ เกือบทุกแบบ

2.ระเบียบปฏิบัติของสถานี

- ก. ที่ตั้งและการหันทิศทางของสายอากาศเป็นปัจจัยที่สำคัญในการลดผลจากการก่อกวน ตัวอย่าง เช่น ในระบบ ถสม.(VHF) และ ถสอ.(UHF) นั้นควรจะตั้งสายอากาศโดยให้ เนินเขา อาคาร หรือสิ่งกิด ขวางอื่น ๆ อยู่ระหว่างสายอากาศ และสถานีก่อกวน
 - ข. ส่วนมากแล้วการใช้สายอากาศบ่งทิศ จะลดผลการก่อกวนของข้าศึกลงได้
- ค. สถานีวิทยุจะต้องปฏิบัติการด้วยประสิทธิภาพสูงสุด เพื่อต่อสู้กับการก่อกวนของข้าศึกให้ได้ผล เครื่องมือที่ทำงานผิดปกติจะต้องแก้ไขทันที
 - ง. พนักงานวิทยุควรจะได้รับคำสั่งให้ทำการส่งเฉพาะเมื่อมีความจำเป็นอันแท้จริง
- จ. ในระหว่างที่ทำการปรับคลื่นเครื่องส่งนั้นควรจะใช้สายอากาศหุ่น(Dummyantenna) เพื่อผล โอกาสที่ข้าศึกจะดักรับการส่งข่าวทางวิทยุจากฝ่ายเรา
- ฉ. ในขั้นต้น ควรจะใช้เครื่องส่งวิทยุด้วยกำลังออกอากาศแต่น้อยที่สุดเท่าที่จำเป็นเท่าที่จะทำการ
 สื่อสารกันได้ ในภายหลังอาจจะจำเป็นต้องเพิ่มกำลังเครื่องส่งเพื่อให้ข่มสัญญาณก่อกวนของข้าศึกก็ได้
- ช. ควรจะฝึกพนักงานวิทยุให้ส่งตัวอักษรเป็นหมู่ประมวลลับให้แจ่มแจ้งชัดเจนทั้งนี้จะช่วยให้ พนักงานรับอ่านสัญญาณที่ต้องการในท่ามกลางการก่อกวนของข้าศึกได้

3.ความเร็วของการส่ง

การลดความเร็วของการส่งเป็นคำพูดและเป็นโทรเลขจะเป็นการช่วยเหลือพนักงานรับในระหว่างที่ ถูกข้าศึกก่อกวน อย่างไรก็ตามพนักงานวิทยุไม่ควรลดความเร็วลงโดยทันทีทันใด เพราะการลดความเร็ว เช่นนั้นอาจจะส่งให้ข้าศึกเห็นว่าการก่อกวนได้ผลการลวงข้าศึกเกี่ยวกับประสิทธิผลของการก่อกวนบางทีก็ ทำให้ข้าศึกท้อใจในการก่อกวนต่อไปอีก

4.การคงใช้เครื่องปฏิบัติงานต่อไป

สถานีวิทยุควรจะต้องปฏิบัติงานต่อไปอีกถึงแม้ว่าจะถูกสัญญาณก่อกวน การปิดสถานีก็จะบ่งให้ ข้าศึกทราบว่าการก่อกวนนั้นเป็นผลสำเร็จแล้ว ถ้าสถานีถูกก่อกวนยังคงปฏิบัติงานต่อไป การต่อสู้การ ก่อกวนก็อาจจะกระทำได้ในขณะที่ข้าศึกกำลังพะวงอยู่กับการก่อกวน ฉะนั้นสถานีอื่น ๆ ของฝ่ายเดียวกัน ซึ่งปฏิบัติงานด้วยความถี่ต่างกันก็จะพ้นจากการก่อกวนของข้าศึกได้

5.เทคนิคของการควบคุมเครื่องรับ

การควบคุมเครื่องรับ อาจจะใช้ลดผลการก่อกวนของข้าศึกลงได้ ฉะนั้นการฝึกปฏิบัติการ ควบคุมเครื่องรับในสภาพการก่อกวนที่สมมุติขึ้นจะทำให้พนักงานวิทยุมีความชำนาญ ซึ่งต้องการปรับปรุง การรับฟังให้ดีขึ้นในระหว่างถูกก่อกวนจริง ๆ

- ก. การปรับตั้ง พนักงานวิทยุควรจะปรับคลื่นวิทยุเครื่องรับให้ปราณีต ให้ตรงกับสัญญาณที่ ต้องการรับมากกว่าตรงตามหน้าปัทม์
- ข. การควบคุมความแรงของสัญญาณ ผลของการก่อกวนชนิดประกายไฟฟ้าแบบกวาด ตลอด และการปรุงคลื่นทางความถี่ อาจจะทำให้ลดลงได้ด้วยความชำนาญในการควบคุมความแรงของ สัญญาณ สัญญาณก่อกวนชนิดปรุงคลื่นทางความถี่อาจจะลดลงได้อย่างได้ผลในเครื่องรับชนิดปรุงคลื่น ทางช่วงสูงด้วยการควบคุมความแรงด้วยสัญญาณให้มากกว่าปกติ ผลของเสียงรบกวน ปี่ถุงลม หรือ สัญญาณก่อกวนด้วยเสียงสูงต่ำที่เปลี่ยนแปลงอย่างช้า ๆ อื่น ๆ อาจทำให้ลดลงได้ด้วยการปรับการ ควบคุมความแรงของสัญญาณให้ต่ำกว่าปกติ
- ค. เครื่องแกว่งกล้ำความถี่ (BEAT FREQUENCY OSCILLATOR)ในการ ปฏิบัติงานเป็นโทร เลข การควบคุมเครื่องแกว่งผสมความถี่อาจปรับเพื่อลดผลของสัญญาณก่อกวนทางโทรเลข ซึ่งอยู่สูง หรือต่ำกว่าความถี่ที่ใช้งานเล็กน้อยได้ โดยการปรับปุ่มควบคุมเครื่องแกว่งผสมความถี่สูงหรือต่ำของ สัญญาณที่ต้องการ และสัญญาณก่อกวนก็จะถูกเปลี่ยนแปลงจนสัญญาณที่ต้องการนั้นเด่นกว่าสัญญาณที่ก่อกวน
- ง. เครื่องกรองผลึกแร่ เครื่องรับวิทยุบางเครื่องมีเครื่องกรองผลึกแร่ซึ่งปรับค่าได้ (หรือเครื่อง กรองชนิดอื่น ๆ) ซึ่งอาจใช้เพื่อลดผลของสัญญาณก่อกวน การควบคุมชนิดนี้ให้ผลในการลดสัญญาณ ก่อกวนที่อยู่สูงหรือต่ำกว่าความถี่ของสัญญาณที่ต้องการเล็กน้อย โดยการปรับปุ่มควบคุมเครื่องกรอง ความถี่ ก็อาจลดหรือขจัดสัญญาณก่อกวนไปได้

ตอนที่ 4 การรายงานการก่อกวน

1. ความสำคัญของการรายงาน

การรายงานการก่อกวนของข้าศึกโดยทันที ถูกต้อง และสมบูรณ์นั้นเป็นสิ่งสำคัญ เพราะว่าการ ก่อกวนของฝ่ายข้าศึกนั้นมักจะเป็นส่วนหนึ่งของแผนที่จัดระเบียบเป็นอย่างดี และมักกระทำการก่อกวน ต่อการดำเนินกลยุทธที่สำคัญ การรายงานจากพนักงานวิทยุเป็นบุคคลซึ่งมักจะให้ข่าวกรองเกี่ยวกับ ขอบเขต

และความสำคัญของการปฏิบัติของข้าศึก ตามปกติเจ้าหน้าที่การสงครามอิเล็กทรอนิกส์เป็นผู้รวบรวมจัด ระเบียบข่าวกรองเช่นนี้ ณ กองบัญชาการกองพลหรือกองทัพน้อย ข่าวสารการก่อกวนซึ่งได้รวบรวมจัด ระเบียบไว้อย่างเหมาะสมอาจใช้เป็นเครื่องเตือนให้ทราบถึงการปฏิบัติของข้าศึกซึ่งจะเกิดขึ้นในไม่ช้า ใน เขตหรือเป็นแนวกว้าง

2. การรายงานขั้นต้น

พนักงานวิทยุจะต้องรายงานการก่อกวนทันทีต่อหัวหน้าการสื่อสารของตน ทั้งควรจะต้องรายงาน เกี่ยวกับการลวงของข้าศึกซึ่งได้พยายามกระทำหรือที่ทำสำเร็จด้วยต่อจากนั้นหัวหน้าการสื่อสารก็ จะส่งรายงานนั้นไปยังกองบัญชาการเพื่อช่วยให้การรายงานสะดวกขึ้น ข่าวสารเกี่ยวกับการก่อกวนนั้น ควรจะรายงานตามลำดับต่อไปนี้.-

- ก. ความถี่หรือช่องสื่อสารที่ถูกก่อกวน รวมทั้งความกว้างของสัญญาณที่ก่อกวนถ้าทราบ
- ข. ชนิดของสัญญาณก่อกวน
- ค. เวลาและความนานของการก่อกวน รวมทั้งการปฏิบัติซ้ำ ๆ ด้วย
- ง. ความแรงของสัญญาณก่อกวน และผลที่เกิดขึ้นต่อการสื่อสารทางวิทยุ(ความแรงของสัญญาณ ก่อกวนนั้นให้รายงานว่า แรง ปานกลาง หรืออ่อน)
 - จ. หน่วย ชื่อ และยศของพนักงาน

3.การรายงานละเอียด

การรายงานการก่อกวนโดยละเอียดนั้น นายทหารผู้รับผิดชอบสถานีวิทยุเป็นผู้กระทำให้เร็ว ที่สุดเท่าที่กระทำได้หลังจากที่การก่อกวนได้เริ่มขึ้นแล้ว นายทหารผู้รับผิดชอบสถานีวิทยุจะส่งรายงานไป ยังผู้บังคับบัญชาของตน แล้วผู้บังคับบัญชาก็จะส่งรายงานต่อไปตามสายงานตามคำสั่งในที่นั้น

ตอนที่ 5 รายการตรวจสอบการก่อกวน

1. ผู้บังคับบัญชาและฝ่ายอำนวยการ

ผู้บังคับหน่วยทุกคนและฝ่ายอำนวยการ ควรปฏิบัติดังนี้.-

- ก. ลดปริมาณการใช้ข่าวทางวิทยุให้เหลือน้อยที่สุด
- ข. ถ้ากระทำได้ ให้เตรียมแผนการยุทธทั้งหมดไว้ล่วงหน้า และใช้ประมวลคำย่อเพื่อให้แผนและคำสั่ง เป็นผลบังคับ
 - ค. ทำข่าวให้สั้นเท่าที่จะกระทำได้
 - ง. กวดขันวินัยทางวิทยุและการรักษาความปลอดภัยทางการสื่อสาร
 - จ. ทำลายสถานีก่อกวนของข้าศึกเมื่อกระทำได้
 - ฉ. แจ้งให้กองบัญชาการชั้นเหนือถัดไปทราบถึงการก่อกวนของข้าศึกอยู่เสมอ

2.นายทหารสื่อสารและฝ่ายการสื่อสาร

นายทหารสื่อสารและฝ่ายการสื่อสาร ทุกคนควรปฏิบัติดังนี้.-

- ก. ใช้วิทยุเมื่อจำเป็นเท่านั้น
- ข. ฝึกพนักงานวิทยุให้รู้จักปรับเครื่องใหม่ และรับข่าวต่อไปท่ามกลางการก่อกวน
- ค. กวดขันวินัยทางวิทยุและการรักษาความปลอดภัยทางการสื่อสาร
- ง. จะต้องให้มีการรับรองฝ่ายในการส่งข่าวทุกครั้ง
- จ. ตั้งสถานีวิทยุและสายอากาศให้พ้นจากการก่อกวนของข้าศึก
- ฉ. ให้รวมนามเรียกขานและความถี่สำรองไว้ใน นปส.เสมอ และให้มีแผนเตรียมจัดไว้ล่วงหน้าเพื่อ การใช้ด้วย
 - ช. รายงานการก่อกวนของข้าศึกไปยังผู้บังคับบัญชาและฝ่ายอำนวยการเสมอ

3.พนักงานวิทยุ

พนักงานวิทยุทุกคนควรปฏิบัติดังนี้.-

- ก. ศึกษาให้รู้จักการก่อกวนของข้าศึก และรายงานรายละเอียดต่อนายทหารหรือผู้รับผิดชอบสถานี วิทยุ
 - ข. ศึกษาให้รู้จักการปรับเครื่องใหม่เพื่อลดผลการก่อกวนของข้าศึกให้น้อยที่สุด
 - ค. ใช้กำลังของเครื่องส่งแต่น้อยที่สุด จนกว่าจะถูกก่อกวนแล้วค่อยเพิ่มกำลังส่งขึ้น
 - ง.เปลี่ยนไปใช้ความถี่และนามเรียกขานสำรองตามที่ได้รับคำสั่ง

- จ.รับรองฝ่ายก่อนส่งข่าวทุกครั้ง
- ฉ. ใช้สายอากาศหุ่นเมื่อมีการปรับคลื่นเครื่องส่ง
- ช. ออกอากาศแต่น้อยที่สุด ส่งข่าวเฉพาะเท่าที่จำเป็นจริง ๆ เท่านั้น
- ซ. ปฏิบัติตามวินัยทางวิทยุอยู่ตลอดเวลา
- ด. ส่งข่าวให้สั้นที่สุดเท่าที่จะทำได้
- ต. จงมีความสงบ และทำงานอยู่ต่อไปเมื่อถูกก่อกวน

<u>บทที่ 11</u> การปฏิบัติการซ่อมบำรุง

ตอนที่ 1 กล่าวนำ

1.กล่าวทั่วไป

ก.การมอบหมายการปฏิบัติการซ่อมบำรุงให้แก่หน่วยบัญชาการเฉพาะใดๆ นั้นให้พิจารณา ถึงภารกิจหลัก ลักษณะ และความคล่องตัวของระดับหน่วยที่เกี่ยวข้องตลอดจนการกระจายทาง เศรษฐกิจของแหล่งกำลัง

ข.ชิ้นส่วนอะไหล่ อัตราอนุมัติชิ้นส่วนอะไหล่และจำนวนชิ้นส่วนอะไหล่ขั้นต้นจะกำหนดขึ้นและ แบ่งมอบให้หน่วย และหน่วยสนับสนุนโดยตรง หน่วยสนับสนุนทั่วไป และหน่วยซ่อมบำรุงระดับคลัง การ จ่ายชิ้นส่วนอะไหล่ระดับต่ำกว่าสถานีที่ตั้งคลังสนามของกองทัพนั้น หน่วยสนับสนุนการซ่อมบำรุงเป็น ผู้กระทำ

2.ประเภทการซ่อมบำรุง

มีประเภทการซ่อมบำรุงอยู่ 4 ประเภท (รูปที่ 11-1) การแบ่งประเภทเช่นนี้ทำให้การมอบหมาย ภารกิจและความรับผิดชอบในการซ่อมบำรุงภายในกองทัพบกสะดวกขึ้น

ก.การซ่อมบำรุงระดับหน่วย คือ การซ่อมบำรุงซึ่งตามปกติแล้วอนุมัติให้หน่วยที่ใช้เครื่องซึ่งอยู่ใน ความครอบครองเป็นผู้ดำเนินการและรับผิดชอบการซ่อมบำรุงระดับนี้ประกอบด้วยพันธกิจและการซ่อมใน ขีดความสามารถของเจ้าหน้าที่ซ่อมและดำเนินการซ่อมด้วยการใช้เครื่องมือและเครื่องตรวจสอบภายใน หน่วยผู้ใช้ การซ่อมบำรุงที่เกินขอบเขตอนุมัติให้ซ่อมบำรุงระดับเหนือขึ้นไป

ข.การซ่อมบำรุงสนับสนุนโดยตรง คือ การซ่อมบำรุงซึ่งปกติแล้วอนุมัติให้ดำเนินการโดยชุดซ่อม เคลื่อนที่จากหน่วยซ่อมบำรุงสนับสนุนโดยตรงต่อหน่วยให้การซ่อมบำรุงประเภทนี้จำกัดให้ซ่อมเฉพาะ อุปกรณ์ครบชุด (END ITEMS) หรืออุปกรณ์ส่วนประกอบ (ASSEMLIES) ที่ชำรุดเพื่อสนับสนุนหน่วยใช้โดย มูลฐานการส่วนคือ ผู้ใช้

ค.การซ่อมบ้ำรุงสนับสนุนทั่วไป คือ การซ่อมบำรุงซึ่งอนุมัติให้ดำเนินการโดยโรงซ่อมกึ่งประจำที่ หรือถาวรโดยหน่วยซ่อมซึ่งกำหนดให้สนับสนุนระบบการส่งกำลังของกองทัพ ตามปกติแล้วหน่วยซ่อมบำรุง สนับสนุนทั่วไปจะซ่อมคืนสภาพ (OVERHAUL) โดยขึ้นอยู่กับความต้องการส่งกำลังของพื้นที่กองทัพซึ่ง ได้รับการสนับสนุนที่กระทำได้

ง.การซ่อมบำรุงระดับคลัง คือ การซ่อมคืนสภาพต่อวัสดุ ที่สามารถซ่อมได้ คลังสนามของกองทัพ จะเป็นผู้พิจารณาว่าจะให้หน่วยซ่อมบำรุงสนับสนุนทั่วไปทำการซ่อมหรือซ่อมคืนสภาพจะให้ส่งเครื่องชำรุด นั้นมายังคลังสนาม ถ้าความต้องการทางการส่งกำลังมีมากก็ให้ดำเนินการซ่อม ถ้ามีความต้องการน้อยก็ให้ ส่งมาเก็บไว้ที่คลังของกองทัพอย่างประหยัด, เพื่อส่งเสริมการกำหนดการจัดหาให้บรรลุความต้องการของ กองทัพเป็นส่วนและถ้าจำเป็นก็จัดการซ่อมวัสดุนั้นๆ ที่เกินขีดความสามารถหน่วยซ่อมบำรุงสนับสนุนทั่วไป

รูปที่ 11-1

ข.การซ่อมบำรุงสนับสนุนโดยตรง คือ การซ่อมบำรุงซึ่งปกติแล้วอนุมัติให้ดำเนินการโดยชุดซ่อม เคลื่อนที่จากหน่วยซ่อมบำรุงสนับสนุนโดยตรงต่อหน่วยให้การซ่อมบำรุงประเภทนี้จำกัดให้ซ่อมเฉพาะ อุปกรณ์ครบชุด (END ITEMS) หรืออุปกรณ์ส่วนประกอบ (ASSEMLIES) ที่ชำรุดเพื่อสนับสนุนหน่วยใช้โดย มูลฐานการส่วนคือ ผู้ใช้

ค.การซ่อมบำรุงสนับสนุนทั่วไป คือ การซ่อมบำรุงซึ่งอนุมัติให้ดำเนินการโดยโรงซ่อมกึ่งประจำที่ หรือถาวรโดยหน่วยซ่อมซึ่งกำหนดให้สนับสนุนระบบการส่งกำลังของกองทัพ ตามปกติแล้วหน่วยซ่อมบำรุง สนับสนุนทั่วไปจะซ่อมคืนสภาพ (OVERHAUL) โดยขึ้นอยู่กับความต้องการส่งกำลังของพื้นที่กองทัพซึ่ง ได้รับการสนับสนุนที่กระทำได้

ง.การซ่อมบำรุงระดับคลัง คือ การซ่อมคืนสภาพต่อวัสดุ ที่สามารถซ่อมได้ คลังสนามของกองทัพ จะเป็นผู้พิจารณาว่าจะให้หน่วยซ่อมบำรุงสนับสนุนทั่วไปทำการซ่อมหรือซ่อมคืนสภาพจะให้ส่งเครื่องชำรุด นั้นมายังคลังสนาม ถ้าความต้องการทางการส่งกำลังมีมากก็ให้ดำเนินการซ่อม ถ้ามีความต้องการน้อยก็ให้ ส่งมาเก็บไว้ที่คลังของกองทัพอย่างประหยัด, เพื่อส่งเสริมการกำหนดการจัดหาให้บรรลุความต้องการของ กองทัพเป็นส่วนและถ้าจำเป็นก็จัดการซ่อมวัสดุนั้นๆ ที่เกินขีดความสามารถหน่วยซ่อมบำรุงสนับสนุนทั่วไป

ตอนที่ 2 การปรนนิบัติบำรุง

1.กล่าวทั่วไป

การปรนนิบัติบำรุง คือ การดูแล การตรวจ และการบริการต่อเครื่องมืออย่างเป็นระเบียบ เพื่อ รักษาให้เครื่องอยู่ในสภาพใช้งานได้และป้องกันมิให้ชำรุดลงทันทีทันใดในขณะใช้งาน การปรนนิบัติบำรุงนั้น พนักงานผู้ใช้เครื่องหรือเจ้าหน้าที่ช่อมบำรุงระดับหน่วยเป็นผู้กระทำ

ก.พนักงานวิทยุซึ่งได้รับการฝึกทางเทคนิคมาเป็นอย่างดีแล้ว ย่อมปฏิบัติการซ่อมบำรุงอย่างง่ายๆ ซึ่งผู้ที่มีความรู้ทางเทคนิคอย่างจำกัดสามารถกระทำได้ คู่มือทางเทคนิคประจำเครื่องแต่ละเล่มได้กล่าวถึง มาตรการการปรนนิบัติบำรุงเหล่านี้ไว้ในรายการตรวจสอบทางปฏิบัติ

ข.เจ้าหน้าที่ซ่อมบำรุงระดับหน่วย จัดการซ่อมบำรุงเพื่อสนับสนุนพนักงานวิทยุและรับผิดชอบต่อ การซ่อมบำรุงระดับหน่วยซึ่งไม่ต้องการการฝึกทางเทคนิคมากนัก อนึ่งหนังสือคู่มือทางเทคนิคประจำเครื่อง แต่ละเล่มมีรายการตรวจสอบสมรรถนะของเครื่องอยู่แล้ว และยังมีเรื่องเกี่ยวกับการซ่อมบำรุงระดับหน่วย อีกด้วย

2.ความรับผิดชอบ

ผู้บังคับบัญชารับผิดชอบดูแลให้มั่นใจว่าเจ้าหน้าที่ซึ่งอยู่ภายใต้การบังคับบัญชาปฏิบัติตามระเบียบ และคำแนะนำเกี่ยวกับการปรนนิบัติบำรุงและดูแลให้เจ้าหน้าที่ได้กรอกข้อความที่ต้องการลงในบันทึกการ ซ่อมบำรุงตามที่มีอยู่ในคู่มือทางเทคนิค

3.การปฏิบัติการปรนนิบัติบำรุง

ก.การปฏิบัติประจำวัน การปรนนิบัติบำรุงนั้นพนักงานวิทยุเป็นผู้กระทำต่อเครื่องวิทยุทุกวันที่มี การใช้เครื่อง เครื่องวิทยุจะได้รับการตรวจและปรนนิบัติบำรุงให้เป็นไปตามระเบียบปฏิบัติที่ได้กำหนดไว้ใน คู่มือทางเทคนิคประจำเครื่องที่ใช้นั้น ข้อบกพร่องต่างๆ ซึ่งพนักงานมิได้แก้ไขหรือที่ได้แก้ไขโดยการ สับเปลี่ยนชิ้นส่วนนั้นจะมีการบันทึกไว้ในแบบเอกสารการซ่อมบำรุงอันเหมาะสม

ข.การปฏิบัติตามระยะเวลา การตรวจสอบและการปรนนิบัติบำรุงเหล่านี้ได้อธิบายไว้ในคู่มือทาง เทคนิคประจำเครื่องซึ่งเจ้าหน้าที่ซ่อมบำรุงประจำหน่วยเป็นผู้กระทำ ในขณะที่ทำการปรนนิบัติ เจ้าหน้าที่ ซ่อมบำรุงระดับหน่วยจะมีพนักงานวิทยุเป็นผู้ช่วยทำการตรวจและปรนนิบัติบำรุงต่อเครื่องอย่างเป็น ระเบียบ บรรดาข้อบกพร่องทั้งหมดตลอดจนข้อแก้ไขจะถูกบันทึกไว้ในแบบเอกสารการซ่อมบำรุงอัน เหมาะสม ถ้าหากการซ่อมบำรุงนั้นจะต้องกระทำในระดับสูงขึ้น ก็จะต้องเตรียมแบบเอกสารการซ่อมบำรุง และส่งไปพร้อมกับเครื่องถึงหน่วยที่ทำการซ่อมบำรุงสนับสนุน

4.อันตรายจากการถูกกระแสไฟฟ้าและข้อควรระวังเพื่อความปลอดภัย

ก.กล่าวทั่วไป ศักย์ไฟฟ้าแรงสูงนั้นอาจจะมีอยู่ในเครื่องวิทยุ เพราะฉะนั้นพนักงานวิทยุและ เจ้าหน้าที่ช่อมบำรุงจึงควรจะทำความรู้จักและคุ้นเคยกับคู่มือประจำเครื่องก่อนที่จะใช้เครื่องคำเตือน "ถูก ถึงตาย" ถ้าพนักงานช่อมบำรุงและพนักงานผู้ใช้เครื่องไม่ปฏิบัติตามข้อควรระวังเพื่อความปลอดภัย

ข.ข้อควรระวัง เมื่อเครื่องวิทยุใช้ศักย์ไฟฟ้าแรงสูง พนักงานวิทยุควรปฏิบัติตามข้อควรระวังในการ ปรนนิบัติบำรุงและการใช้งานดังต่อไปนี้

- (1)ระวังอย่าสัมผัสขั้วต่อศักย์ไฟฟ้าแรงสูงหรือขั้วต่อกำลังไฟฟ้า
- (2)อย่าแตะต้องสายส่งและสายอากาศซึ่งมีศักย์ไฟฟ้าความถี่วิทยุ
- (3)เมื่อทำงานในเครื่องวิทยุดูให้แน่ใจว่าได้ตัดแหล่งกำลังไฟฟ้าแน่แล้ว และหม้อตุนศักย์ ไฟฟ้าแรงสูงได้ถูกปล่อยประจุออกแล้วด้วย
 - (4)ตรวจคู่มือประจำเครื่องเพื่อดูในรายการส่วนประกอบว่าส่วนใดมีศักย์ไฟฟ้าแรงสูงบ้าง

ตอนที่ 3 การบำรุงรักษาของพนักงานวิทยุ

1.การฝึกซ่อมบำรุง

การซ่อมบ้ำรุงเครื่องวิทยุและเครื่องประกอบนั้นมีความสำคัญที่จะต้องทำการฝึกพนักงานวิทยุทุก คนในเรื่องระเบียบการซ่อมบำรุงบางประการและในเรื่องการรายการข้อบกพร่องซึ่งตนไม่ได้รับอนุมัติให้ทำการแก้ไข การฝึกเช่นนี้จะต้องกระทำพร้อมๆ กันกับการฝึกระเบียบปฏิบัติการใช้เครื่องและจะต้องฝึกให้ ละเอียดลออ ระเบียบปฏิบัติการซ่อมบำรุงที่อนุมัติให้พนักงานกระทำได้ก็ควรจะสอนควบคู่ไปกับระเบียบ การใช้เครื่อง

2.ขั้นตอนการบำรุงรักษาของพนักงานวิทยุ

ขั้นตอนการบำรุงรักษาของพนักงานนั้นอาจจะแบ่งได้ดังนี้ ก.การบำรุงรักษาก่อนใช้งาน (ตรวจสภาพทางวัตถุ)

ข.การบำรุงรักษาระหว่างการใช้งาน (ตรวจดูและตรวจสอบสมรรถนะเพื่อให้มั่นใจว่าเครื่องนั้น พร้อมที่จะใช้งานได้เมื่อต้องการ)

3.การบำรุงรักษาก่อนการใช้งาน

ก่อนใช้เครื่องวิทยุใดๆ ปฏิบัติงาน พนักงานวิทยุควรจะต้อง ก.ตรวจสายเคเบิ้ลและข้อต่อต่างๆ

- (1) ให้แน่ใจว่าข้อต่อต่างๆ อยู่ในสภาพที่ดี ต่อเข้าที่ถูกต้องแต่นอน
- (2) ให้แน่ใจว่าสายเคเบิ้ลต่างๆ อยู่ในสภาพที่ดี สะอาด แห้ง และวางไว้ในที่ซึ่งไม่เป็นอันตรายใน ระหว่างปฏิบัติงานตามปกติ
 - (3) เช็คไขมัน น้ำมัน ความชื้นและสิ่งสกปรกอื่นๆ ออกจากเคเบิ้ลและข้อต่อให้หมด
- (4) ให้แน่ใจว่าเคเบิ้ลไม่ถูกดึงจนเกินไปไม่มีการขดเป็นเกลี่ยวหรือขอด (โดยเฉพาะอย่างยิ่งใกล้กับ ข้อต่อ) ไม่มีการดึงตรงขอบหรือมุมหีบเครื่องมือ ไม่มีของหนักกดทับหรือพิงทับ ไม่อยู่ใกล้กับความร้อนที่ มากเกินไปหรือถูกแสงแดดโดยตรง

ข.ตรวจส่วนควบคุม ไกไฟฟ้า และปุ่มต่างๆ

- (1) ให้แน่ใจว่าไกไฟฟ้าและส่วนควบคุมต่างๆ เคลื่อนที่ตามลักษณะที่ต้องการโดยไม่ต้องออกแรง มาก
 - (2) ให้แน่ใจปุ่มต่างๆ ติดแน่นอยู่กับก้านของไกไฟฟ้าและส่วนควบคุม
- (3) ให้แน่ใจว่าปุ่มดรรชนี (INDEXED KNOBS) หมุนไปบนแกนและแสดงการตั้งที่ถูกต้องของแต่ละ ตำแหน่ง
- (4) ให้แน่ใจว่าไกไฟฟ้าและส่วนควบคุมหยุดตรงตามตำแหน่งที่กำหนดเว้นไว้แต่จะตั้งใจทำไว้ให้ หมุนได้รอบตัว
 - (5) เปลี่ยนปุ่มที่หาย (ถ้ามีของให้เปลี่ยน) หรือหามาทดแทนได้
 - (6) ให้แน่ใจว่าไกไฟฟ้าชนิดปุ่มจะเข้าที่เมื่อกดจะหลุดทันทีเมื่อปล่อยและยึดแน่นเมื่อต้องการ
 - (7) ให้แน่ใจว่าเครื่องหมายหรือป้ายประจำเครื่องวิทยุอ่านได้ชัดเจน
- (8) เช็คไขมัน น้ำมัน ความชื้นและสิ่งสกปรกอื่นๆ ออกจากส่วนบังคับและบริเวณรอบๆ ส่วนบังคับ ให้ความสนใจเป็นพิเศษต่อไกไฟฟ้าชนิดปุ่มให้อยู่ในตำแหน่งว่างเมื่อไม่ใช้

ค.ตรวจมาตร เครื่องชี้บอก และเครื่องจ้ำกัดต่างๆ

- (1) ตรวจมาตรต่างๆ เพื่อแน่ใจว่าเข็มชี้บอกอยู่ในสภาพเรียบร้อยและตรง และเคลื่อนที่ได้ตามปกติ ตรวจการเคลื่อนที่ของเข็มเมื่อเปิดไฟฟ้าเข้าเครื่องหรือเมื่อมีการเปลี่ยนแปลงระหว่างปฏิบัติงาน
 - (2) ตรวจกระจกครอบมาตรต่างๆ และเครื่องชี้บอกต่างๆ ให้แน่ใจว่าไม่ร้าวหรือหลวมคลอน

- (3) ตรวจกระจกเจียรนัยที่ครอบ-หลอดนำ และหลอดให้แสงสว่างเพื่อให้แน่ใจว่าไม่ร้าวหรือหลวม คลอน
- (4) ตรวจความชื้นที่รวมตัวภายในกระจกครอบมาตร และกระจกเจียระไน ซึ่งเป็นการแสดงให้ ทราบถึงการผนึกของครอบไม่แน่น การระบายอากาศไม่พอดีหรือทั้งสองอย่าง
- (5) ดูแลให้แน่ใจว่าแก้วฝาครอบมาตรไม่เปลี่ยนสี เช็คไข น้ำมัน ความชื้นหรือสิ่งสกปรกอื่นๆ ออก เสีย ถ้าหากว่ามีหมักหมมอยู่ที่ผิวแก้วด้านนอก ให้อ่านคู่มือประจำเครื่องเพื่อดูระเบียบการทำความสะอาด
 - (6) ดูแลให้แน่ใจว่าหน้าปัทม์ของมาตรไม่เปลี่ยนสีหรือเป็นฝ้า
 - (7) ดูแลให้แน่ใจว่ามาตรทั้งหมดนั้นเข็มชี้ที่ศูนย์ก่อนที่จะป้อนกำลังเข้าเครื่อง
- (8) ดูแลให้แน่ใจว่าส่วนควบคุมมาตรและไกไฟฟ้าสำหรับเลือกทางอยู่ในตำแหน่งที่กำหนดก่อนการ เปิดไฟฟ้าเข้าเครื่อง
- (9) ดูแลให้แน่ใจว่าเกลียวยึดมาตร และเครื่องชี้บอกต่างๆ เข้าที่และแน่น (ถ้าสามารถใช้มือล้วงเข้า ไปปรับข้างในได้)

ง.ตรวจตุ้ ฝากครอบ สายรัด และที่ยึดต่างๆ

- (1) ตรวจตู้และฝาครอบของเครื่องเพื่อให้แน่ใจว่าบรรดา กลอน ขาจับ หูหิ้วและสายยึดตลอดจนที่ ยึดต่างๆ นั้นอย่ในสภาพที่ดีและเข้าที่
- (2) ตรวจภายนอกของตู้โลหะและฝาครอบว่ามีรอยบุบ รอยเจาะ มีของแหลมคม รอยขีดข่วนและสี ถลอกปอกเปิด
- (3) ตรวจผ้าใบหรือพลาสติกที่คลุมเครื่อง หรือถุงใส่เครื่องว่ามีรอยฉีกขาด เป็นฝ้าเปื้อน มีไขข้น หรือมีความชื้น
- (4) ตรวจหมุนเกลียวยึด และหมุนเกลียวแผงเครื่องที่ยึดกันสะเทือนและสายดินเพื่อให้แน่ใจว่า หมุนเข้าที่ แน่น และอยู่ในสภาพที่ดี
- (5) ในขณะที่ทำการอุ่นเครื่องอยู่นั้นให้ตรวจการระบายอากาศของเครื่องว่าปฏิบัติงานได้โดยไม่มี อุปสรรค และมีอากาศไหลได้สะดวกในท่อลม ดูแลให้แน่ใจว่าไม่มีอุปสรรค และมีอากาศไหลได้สะดวกใน ท่อลม ดูแลให้แน่ใจว่าไม่มีวัตถุแปลกปลอมอื่นๆ วางขวางอยู่ ซึ่งอาจจะเป็นการขัดขวางต่อการระบาย อากาศของเครื่องได้ ถ้ามีสิ่งชี้บอกใดๆ ว่าการระบายอากาศของเครื่องไม่เพียงพอก็ให้ปิดกำลังไฟฟ้าเข้า เครื่องจนกว่าเหตุขัดข้องนั้นจะได้พิจารณาและแก้ไขเรียบร้อยแล้ว
 - (6) ตรวจบรรดาเครื่องประกอบทั้งหมดให้ครบถ้วนและมีความสะอาด
- (ก) ให้แน่ใจว่าหูฟัง, ชุดมือถือ, ปากพูด, ลำโพง และคันเคาะต่างๆ อยู่ในสภาพปราศจาก สิ่งสกปรก, ความชื้น แลสิ่งแปลกปลอมอื่นๆ
- (ข) ดูแลให้แน่ใจว่าสายไฟฟ้าและข้อต่อต่างๆ นั้นพร้อมที่จะใช้งานได้ ปราศจากการ แตกหัก, เป็นสนิม, ฉนวนชำรุด, โค้งงอ และมีปม, เป็นสนิม, ฉนวนชำรุด, โค้งงอ และมีปม
- (ค) ดูแลให้แน่ใจว่าสิ่งอุปกรณ์ทั้งหมดซึ่งไม่ใช้งานนั้นได้เก็บไว้เรียบร้อยแต่ให้มีพร้อมเมื่อ ต้องการใช้

จ.ให้บันทึกสิ่งบกพร่องและขาดแคลนทั้งหมดไว้ในแบบเอกสารในการซ่อมบำรุงที่ เหมาะสม ซึ่งได้พบเห็นในระหว่างการตรวจ เนื่องจากพนักงานวิทยุได้รับคำสั่งให้ตรวจรายการสภาพต่างๆ ที่ตนไม่ได้รับอนุมัติให้แก้ไข ตนจึงต้องลงบันทึกสิ่งขาดตกบกพร่องเหล่านี้ไว้ในแบบเอกสารการซ่อมบำรุงที่ เหมาะสมเพื่อให้เจ้าหน้าที่ซ่อมบำรุงซึ่งได้รับอนุมัติดำเนินการต่อไป พนักงานวิทยุควรปฏิบัติการทันทีเพื่อให้ แน่ใจว่าเครื่องวิทยุจะได้รับการซ่อมหรือบำรุงรักษาตามความจำเป็นเพื่อให้ใช้งานได้

4.การบำรุงรักษาระหว่างปฏิบัติงาน

พนักงานวิทยุทุกคนจะต้องได้รับการฝึกให้สังเกตการปฏิบัติงานของเครื่องวิทยุของตนอย่างใกล้ชิด ตน จะต้องเอาใจใส่โดยเฉพาะต่อลักษณะที่ผิดปกติในการปฏิบัติงานของเครื่องและควรสำรวจลักษณะที่ ผิดปกติเหล่านี้ที่เกิดขึ้นทันที ในระหว่างการใช้เครื่องวิทยุใดๆ พนักงานวิทยุควรปฏิบัติดังนี้

ก.ใช้รายการตรวจสอบทางการปฏิบัติที่มีอยู่ในคู่มือประจำเครื่องอันเหมาะสมเพื่อตรวจเครื่องให้ เริ่มตรวจสอบในทันทีเมื่ออุ่นและพร้อมที่จะใช้งาน

ข.ตรวจสมรรถนะของเครื่องโดยการตั้งส่วนควบคุมตามพิกัดและบันทึกผลไว้ให้ค้นดูคู่มือประจำ เครื่องเพื่อตั้งตามพิกัดให้ถูกต้อง ถ้าผลผิดปกติก็ให้สำรวจเพื่อพิจารณาหาข้อบกพร่องถ้าหากข้อบกพร่อง ใดๆ มีลักษณะซึ่งพนักงานวิทยุไม่ได้รับอนุมัติให้ทำการแก้ไขแล้ว ก็ให้บันทึกผลไว้ในเอกสารแยกเรื่อง และ รายงานสภาพไปยังเจ้าหน้าที่ซ่อมบำรุงระดับหน่วย

ค.ตรวจมาตร (ถ้ามี) เพื่อดูการชี้บอกที่ถูกต้อง

ง.ตรวจเครื่องชี้บอกความถี่ (ถ้ามี) เพื่อให้แน่ใจว่าปฏิบัติงานอยู่ในความถี่ที่ถูกต้อง

จ.ตรวจมาตรปรุงคลื่น (ถ้ามี) เพื่อดูการเปลี่ยนแปลงที่ซึ้บอกปกติ

ฉ.ตรวจเครื่องระบายอากาศตามห้วงเวลา

ช.ตรวจเครื่องวิทยุอยู่ว่าร้อนจัดหรือไม่ ถ้าเห็นว่าร้อนจัดให้ทบทวนตรวจสอบทางปฏิบัติเสียใหม่ ถ้าปรากฏว่าร้อนจัดก็ให้ปิดเครื่องทันทีและจัดให้เจ้าหน้าที่ซ่อมบำรุงระดับหน่วยได้ทำการตรวจข้อขัดข้อง เรื่องนี้ไม่อาจใช้ในสถานการณ์ทางยุทธวิธีได้เพราะว่าการใช้เครื่องโดยต่อเนื่องกันนั้นมีความสำคัญมาก โดย ไม่คำนึงถึงการเสี่ยงต่ออันตรายของเครื่อง

ซ.บันทึกสิ่งขาดตกบกพร่องต่างๆ ไว้ในแบบเอกสารการซ่อมบำรุงที่เหมาะสมและรายงานให้ เจ้าหน้าที่ช่อมบำรุงระดับหน่วยทราบ เพื่อเร่งรัดการซ่อมและการบำรุงรักษาให้เร็วขึ้น

5.การบำรุงรักษาภายหลังการใช้งาน

การบำรุงรักษาภายหลังการใช้งานควรจะเริ่มต้นทันทีที่ปิดวงจร แต่ก่อนที่จะปิดเครื่องในการซ่อม บำรุงภายหลังการใช้งานนั้น พนักงานควรจะกระทำดังนี้.-

ก.ใช้รายการตรวจสอบทางปฏิบัติที่มีอยู่ในคู่มือประจำเครื่องเพื่อตรวจสอบก่อนที่จะปิดเครื่อง ให้ บันทึกผลที่เห็นว่าผิดปกติ

ข.ปิดเครื่องและทำการตรวจสอบก่อนการปฏิบัติงานที่ปรากฏอยู่ในข้อ 3 และบันทึกสิ่งขาดตก บกพร่องไว้ในแบบเอกสารการซ่อมบำรุงที่เหมาะสม

ค.ให้แน่ใจว่าชิ้นส่วนทั้งหมดนั้นได้รับการหล่อลื่น (เฉพาะชิ้นส่วนที่จะต้องหล่อลื่น)

ง.ทำความสะอาดและปรับปรุงส่วนประกอบทั้งหมด

จ.ทำความสะอาด ปรับปรุงและเก็บบรรดาสายเคเบิ้ล สายต่อทางไฟ ส่วนประกอบย่อยและ อุปกรณ์เพิ่มเติม

ฉ.ครอบฝากันเครื่อง

ช.ทำการจำหน่ายเครื่องไปใช้ในที่ต่างๆ (เครื่องพร้อมรบ, ไว้ในคลังเก็บตาย, ส่งไปยังหน่วยซ่อม บำรุงขั้นเหนือ ๆลๆ)

ซ.รายงานเจ้าหน้าที่ซ่อมบำรุงระดับหน่วยให้ทราบถึงสิ่งขาดตกบกพร่องที่ได้พบเห็นแต่ยังไม่ได้ แก้ไข

ตอนที่ 4 การซ่อมบำรุงระดับหน่วย

1.กล่าวทั่วไป

การซ่อมบำรุงระดับหน่วยนั้น จะต้องดำเนินการโดยเจ้าหน้าที่ผู้ซึ่งได้รับการฝึกให้มีความ ชำนาญในเรื่องที่ต้องการ และแสดงให้เห็นว่ามีความสามารถอย่างเพียงพอในเรื่องเหล่านี้ หลังจากได้รับการฝึกมาแล้ว ทั้งได้รับอนุมัติโดยถูกต้องให้ดำเนินการซ่อมบำรุงระดับหน่วย ควรจะสังเกตไว้ว่าการบำรุงรักษาของพนักงานและการซ่อมบำรุงระดับหน่วยนั้นเป็นแต่เพียง การแสดงศัพท์เท่านั้นมิได้หมายความว่าพนักงานผู้ได้รับการฝึกและมีความชำนาญงานนี้จะ ไม่ได้รับอนุมัติให้ทำหน้าที่การซ่อมบำรุงระดับหน่วยในบางเรื่องเสียทีเดียว โดยทั่วไปแล้วศัพท์ ทั้งสองคำนี้เป็นเพียงเครื่องชื้บอกที่ยอมรับกันว่าเป็นระดับขีดความสามารถที่แสดงวุฒิที่ ต้องการของเจ้าหน้าที่ที่จะให้ทำหน้าที่นั้นๆ เท่านั้น ขอบเขตอันแท้จริงของการซ่อมบำรุง ระดับหน่วยต่อเครื่องวิทยุใดๆ อาจพิจารณากำหนดได้จากหนังสือคู่มือประจำเครื่องนั้นๆ

2.การตรวจด้วยสายตา

ก่อนที่จะต่อกระแสไฟฟ้าเข้าเครื่องวิทยุซึ่งทำงานไม่เป็นปกติ เจ้าหน้าที่ซ่อมบำรุงระดับหน่วย ควรจะได้ตรวจข้อบกพร่องด้วยสายตาเสียก่อน โดยทั่วไปแล้วการกระทำเช่นนี้จะช่วย ประหยัดเวลาและอาจป้องกันความเสียหายที่จะเกิดขึ้นแก่เครื่องวิทยุต่อไปได้ ข้อขัดข้องของ เครื่องวิทยุส่วนมากอาจจะค้นหาได้จากข้อบกพร่องหนึ่งหรือหลายประการต่อไปนี้คือ

ก.การต่อสายเคเบิ้ลหรือสายไฟฟ้าไม่ถูกต้อง
ข.สายไฟหรือช่องเสียบแตกหักหรือไม่ต่อกัน
ค.สายต่อสายอากาศต่อกันไม่ถูกต้อง
ง.สายเคเบิ้ลที่ต่อระหว่างเครื่องรับและเครื่องส่งชำรุดหรือไม่ต่อกัน
จ.หลอดหรือผลึกแร่ชำรุด
ฉ.สายที่ต่อภายในหลวมหรือขาด
ช.หน้าสัมผัสของไกไฟฟ้า (Switch Contacts) สกปรกหรือหัก

3.การตรวจสอบสมรรถนะของเครื่อง

คู่มือประจำเครื่องส่วนมากมีรายการตรวจสอบสมรรถนะของเครื่องอยู่ด้วย เพื่อให้เทคนิคใน การค้นหาข้อขัดข้องอย่างมีระเบียบ รายการตรวจสอบสมรรถนะของเครื่องมีรายละเอียดมากกว่า รายการตรวจสอบทางปฏิบัติ และมาขอบเขตทางเทคนิคมากกว่าและใช้เพื่อค้นหาข้อขัดข้องที่อยู่ ที่ฐานเครื่อง หรือที่ส่วนประกอบซึ่งสามารถเปลี่ยนได้ง่าย รายการตรวจสอบสมรรถนะของ เครื่องใช้ร่วมกันกับรายการตรวจสอบทางปฏิบัติเพื่อยืนยันรายงานของพนักงานในเรื่องสิ่งที่ขาดตก บกพร่องและเพื่อค้นหาขัดขัดข้องของเครื่องมือด้วยรายการตรวจสอบสมรรถนะของเครื่อง มี ตัวอย่างดังแสดงไว้ในตารางนี้

รายการตรวจสอบสมรรถนะของเครื่อง (ชุดวิทยุ AN/PRC-25)

	รายการตรวจสอบสมรรถนะของเครอง (ชุดวทยุ AN/PRC-25)				
ข้น	การปฏิบัติ	การชี้บอกปกติ	มาตรการแก้ไข		
1.	-ติดตั้งสายอากาศตามกำหนดบนที่ติดตั้ง				
	สายอากาศ				
2.	- ต่อปากพูด-หูฟัง H-138/U กับหัวต่อ				
	AUDIO อันใดอันหนึ่ง				
3.	- ตั้งปุ่มบังคับที่เลข 5				
4.	-ตั้งไกไฟฟ้าบอกการทำงานที่ LITE	-ไฟส่องหน้าปัทม์ช่อง	-เปลี่ยนแบตเตอรี่ BA-386		
	64	สื่อสารติด	เปลี่ยนหลอดไฟส่อง		
5.	-ตั้งไกไฟฟ้าบอกการทำงานที่เปิด (ON)	-จะได้ยินเสียงซู่จากปาก	หน้าปัทม์		
		พูด-หูฟัง H-138/U เมื่อ	-ต่อปากพูด-หูฟัง H-138/U		
		สัญญาณยังไม่เข้า	กับ หัวต่อ AUDIO อันอื่น		
			ตรวจปากพูด-หูฟัง โดยการ		
			เปลี่ยนใหม่ ตรวจโมดูล		
			A16,A25,A21 และA5		
6.	-ตั้งไกไฟฟ้าบอกการทำงานที่	-จะไม่ได้ยินเสียงซู่	-ตรวจโมดูล A24		
	SQUELCH				
7.	-ตั้งเครื่อง AN/PRC-25 ที่อยู่ใกล้ (ซึ่ง	-สัญญาณทดสอบจะดัง	-ถ้าสัญญาณที่รับได้อ่อน		
	เป็นเครื่องดี) ในช่องการสื่อสารซึ่งมีแถบ	และชัดเจน	ตรวจ สายอากาศและการ		
	ความถี่ 30-52 MHz. และปรับตั้ง RT-		ต่อสายอากาศ ถ้ารับ		
	505/PRC-25รับสัญญาณตาม		สัญญาณไม่ได้ เลย ตรวจ		
	ช่องสื่อสารดังกล่าว ส่งสัญญาณทดสอบ		โมดูล A2 ถึง A5,A9 ถึง		
	เป็นเสียงยาวจากเครื่องส่งวิทยุ		A15 และ A17 และ A18		
	AN/PRC-25 ที่ตั้งอยู่ใกล้เคียง				
8.	-ปรับเครื่อง AN/PRC-25 ซึ่งตั้งอยู่	-สัญญาณทดสอบจะดัง	-ต้องส่งซ่อมขั้นสูง		
	ใกล้เคียง ณ ช่องสื่อสารซึ่งให้มีแถบ	ชัดเจน			
	ความถี่ 53-75 MHz.และปรับ RT-				
	505/PRC-25 รับตามช่องสื่อสาร				
	ดังกล่าว ส่ง				

ขั้น	การปฏิบัติ	การชี้บอกปกติ	มาตรการแก้ไข
	สัญญาณทดสอบเป็นเสียงยาวจากเครื่อง		
9.	AN/PRC-25 ที่ตั้งอยู่ใกล้เคียง	-สัญญาณทดสอบจะดัง	-ตรวจสอบโมดูลที่ RT-
	-ปรับเครื่อง AN/PRC-25 ใกล้เคียง	และชัดเจนทุกๆ ช่อง	505/PRC-25 ตามช่องที่รับ
	เพื่อให้ส่งช่องสื่อสารต่างๆ ดังข้างล่าง ใช้	สัญญาณ	ไม่ได้ตามลำดับ
	สัญญาณทดสอบเป็นเสียงยาวทุกช่อง		A10,A11,A12,A13,
	ปรับตั้ง RT-505/PRC-25 รับตาม		A14,A15 และ A17
	ช่องสัญญาณแต่ละช่องตามช่องความถี่ ข้างล่างนี้		
	30.00 MHz.		
	30.05 MHz.		
	30.10 MHz.		
	30.20 MHz.		
	30.30 MHz.30.40 MHz.		
	30.50 MHz.		
	30.60 MHz.		
	30.70 MHz.		
	30.80 MHz.		
	30.90 MHz.		
10.	-ปรับเครื่อง AN/PRC-25 ที่ตั้งอยู่	 -สัญญาณทดสอบจะดัง	 -ตรวจปากพูด-หูฟัง H138/U
	ใกล้เคียง (รู้แน่ว่าเป็นเครื่องดี) เพื่อรับ	และชัดเจนที่เครื่อง	โดยการเปลี่ยนอันใหม่ ถ้า
	้ สัญญาณทดสอบ ซึ่งส่งไปโดย RT-	AN/PRC-25 ที่ตั้งอยู่	รับสัญญาณไม่ได้เลย ให้
	505/PRC-25 กลไกไฟฟ้าชนิดกดเพื่อพูด	 ใกล้เคียง	ตรวจดูโมดูล A1,A6,A7,A22
	 ของปากพูด-หูฟัง H-138/U ซึ่งต่อกับ		และA23ตรวจหลอด V1 ตรวจ
	RT-505/PRC-25 และส่งสัญญาณ		K1 และ K3 โดยการเปลี่ยน
	ุ ทดสอบเป็นเสียงยาวๆ		
11.	-ปรับเครื่อง AN/PRC-25 ที่ตั้งอยู่	 -สัญญาณทดสอบจะดัง	ใหม่ ปรับเครื่อง AN/PRC-25
	ใกล้เคียง (รู้แน่ว่าเครื่องดี) เพื่อรับ	และชัดเจนที่เครื่อง AN/	ซึ่งตั้งอยู่ใกล้เคียงทุก
	สัญญาณทดสอบซึ่งส่งไปโดย RT-	PRC-25 ที่ตั้งอยู่	ช่องสัญญาณ ทั้งซ้ายขวา
	505/PRC-25 ตั้งไกไฟฟ้าบอกการ	_ ใกล้เคียง	และด้านซ้ายของ
	ทำงานของเครื่อง AN/PRC-25 ที่ตั้งอยู่		ช่องสัญญาณ ถ้าได้รับ
	ใกล้เคียงให้อยู่ที่		สัญญาณนอกช่องตรวจ A19

ขั้น	การปฏิบัติ	การชี้บอกปกติ	มาตรการแก้ไข
	SQUELCH กดไก ไฟฟ้าชนิดกดเพื่อพูด		ตรวจโมดูล A23 และ A24
	ของปากพูด-หูฟัง H- 138/U ซึ่งต่อกับ		ตรวจ K2 โดยการเปลี่ยนใหม่
	RT-505/PRC-25 และส่งสัญญาณ		
	ทดสอบเป็นเสียงยาว		
12.	-ตั้งไกไฟฟ้าบอกการทำงานที่ OFF	-เลิกใช้เครื่อง	-ส่งซ่อมขั้นสูง

12.เครื่องมือตรวจวัดทางอิเล็กทรอนิกส์

เจ้าหน้าที่ซ่อมบำรุงระดับหน่วยมักจะถูกใช้ให้ตั้งเครื่องใหม่ๆ เพื่อใช้งาน ทำการปรนนิบัติบำรุง ตามปกติ หรือทำการซ่อมเครื่องมือที่ซับซ้อน โดยมากแล้วงานนั้นไม่อาจจะกระทำได้ถ้าไม่ใช้เครื่องมือ ตรวจวัด โดยทั่วไปแล้วงานนั้นอาจจะกระทำได้รวดเร็ว แน่นอนและมีประสิทธิภาพมากขึ้น ถ้าใช้เครื่องมือ ตรวจวัดที่เหมาะสมแล้ว เครื่องมือตรวจวัดธรรมดาสามัญได้แก่มาตรวัดรวม (MULTIMETERS) เครื่อง กำเนิดสัญญาณ เครื่องตรวจวัดหลอด มาตรวัดความถี่และเครื่องแกว่ง

ก.มาตรวัดรวม (MULTIMETERS) มาตรวัดรวมดูเหมือนจะเป็นเครื่องตรวจวัดชิ้นเดียวที่สะดวก ที่สุดที่เจ้าหน้าที่ซ่อมบำรุงมีอยู่ เนื่องจากอาจจะใช้ทำการตรวจศักย์ไฟฟ้า ความต้านทาน และตามปกติวัด กระแสด้วยมาตรขนาดใหญ่ๆ ซึ่งตามปกติใช้ในโรงซ่อมขั้นสูงๆ นั้นมักจะมีความแน่นอนมากและเสียหาย ง่าย ส่วนมาตรขนาดเล็กๆ ไม่สู้จะแน่นอนเหมือนเครื่องขนาดใหญ่ แต่มีความแข็งแรงเหมาะที่จะใช้งานใน สนาม

ข.เครื่องกำเนิดสัญญาณ (SIGNAL GENERATORS) เครื่องกำเนิดสัญญาณเป็นเครื่องตรวจวัดที่ให้ กำเนิดสัญญาณกระแสที่สามารถปรับตั้งคลื่นเครื่องความถี่ได้เป็นส่วนใหญ่ สัญญาณที่กำเนิดขึ้นนี้อาจจะ เป็นการปรุงคลื่นหรือไม่ปรุงคลื่นก็ได้ และอาจให้เพื่อปรับแต่ง (ALIGNMENT) วงจรที่ปรับแต่งได้ การค้นหา ข้อขัดข้องของเครื่องพลวัต (การตรวจค้นสัญญาณ) วงจรที่ปรับแต่งได้ การวัดความไว การวัดความเข้มของ สนามและการวัดผลเพิ่มของภาพวงจร และการทดแทนด้วยสัญญาณ

ค.เครื่องตรวจวัดหลอด (TUBE TESTERS) เพื่อให้เหมาะที่จะใช้ในสนามเครื่องตรจวัดหลอดจะต้อง ให้การประเมินค่าคุณภาพของหลอดได้ง่ายและรวดเร็วเครื่องตรวจวัดหลอดทำหน้าที่อย่างน้ำได้โดยการ เปรียบเทียบสภาพของหลอดจะตรวจวัดกับมาตรฐานที่กำหนดไว้ล่วงหน้า

ง.มาตรวัดความถี่ (FREQUENCY METER) โดยหลักแล้ว มาตรวัดความวัดความถี่ก็เป็นวงจรที่ ปรับตั้งคลื่นได้ มาหน้าปัทม์ซึ่งได้ปรับเทียบโดยตรงเป็นกิโลไซเกิ้ล หรือรับวิทยุมาตรวัดความถี่ บางแบบ อาจจะใช้แทนเครื่องกำเนิดสัญญาณในการตรวจด้วยสัญญาณหรือวิธีการค้นหาข้อขัดข้องอื่นๆ ได้

จ.เครื่องดูการแกว่งไฟฟ้า (OSCILLOSCOPERS) เป็นเครื่องมืออิเล็กทรอนิกส์ที่แสดงภาพของ ศักย์ไฟฟ้าศักย์หนึ่งที่เกี่ยวกับศักย์ไฟฟ้าอีกศักย์หนึ่งบนจอของหลอดรังสีขั้วไฟฟ้าลบ (CATHODE-RAY TUBE) ลักษณะที่สำคัญของเครื่องดูการแกว่งไฟฟ้าคือ ลำอิเล็กตรอนไม่มีความเฉื่อย หลอดรังสีขั้วไฟฟ้าลบ จึงสามารถตอบสนองต่อความถี่สูงๆ มากได้ดีกว่าเครื่องชี้บอกทางไฟฟ้าอื่นๆ

5.ระเบียบปฏิบัติในการค้นหาข้อขัดข้อง

เนื่องจากมีเครื่องอุปกรณ์แบบต่างๆ กันมากมายที่ใช้ในสนาม ฉะนั้นจึงไม่มีกฏตายตัวในการค้นหา ข้อขัดข้อง หัวข้อต่อไปนี้เป็นระเบียบปฏิบัติโดยทั่วไปที่อาจใช้เป็นแนวทางอันเป็นประโยชน์สำหรับ เจ้าหน้าที่ซ่อมบำรุงระดับหน่วยที่ได้เรียนรู้วิธีค้นหาข้อขัดข้องอย่างรวดเร็วและดีที่สุดมาแล้วด้วย ประสบการณ์ คือ

ก.การศึกษาตำรา ภาพแสดงประกอบ และแผนผังที่มาอยู่ในคำแนะนำการซ่อมบำรุงระดับหน่วย ข.หมั่นซักซ้อมการใช้เครื่องมือตรวจสอบอยู่เสมอ

ค.ตรวจสอบเครื่องตามระเบียบปฏิบัติในรายการตรวจสอบการใช้เครื่อง

ง.ตรวจสอบเครื่องตามระเบียบในการตรวจสอบสมรรถนะของเครื่อง

จ.ดำเนินการตามการแก้ไขตามที่ปรากฏในรายการตรวจสอบ

ฉ.บันทึกความขาดตกบกพร่องที่ไม่สามารถจะแก้ไขได้ในขณะนั้น

ช.ถ้าต้องการทำการซ่อมบำรุงในประเภทที่สูงกว่าก็ให้ส่งเครื่องอุปกรณ์พร้อมด้วยบันทึกการซ่อม บำรุงไปยังโรงซ่อมขั้นนั้น ในบางโอกาสเจ้าหน้าที่ซ่อมบำรุงสนับสนุนโดยตรง ก็อาจจะมาเยี่ยมหน่วยตาม ระยะเวลาต่อเวลาต่อหน่วยซึ่งต้องการรับบริการ ในกรณีนี้ก็ให้ส่งบันทึกการซ่อมบำรุง (หรือรายงานอัน เหมาะสม) ไปก่อน และเก็บเครื่อง (ชะงักใช้งาน) ไว้จนกว่าเจ้าหน้าที่ซ่อมบำรุงสนับสนุนโดยตรงจะมาถึง พื้นที่นั้น ถ้าต้องการเครื่องนั้นเร่งด่วนก็ให้ส่งคำขอรับการซ่อมหรือบำรุงรักษาโดยทันทีตามมูลฐานฉุกเฉิน ถ้าไม่จำเป็นก็ให้หลีกเลี่ยงการขอการซ่อมบำรุงแบบนี้เสียเนื่องจากการขอการซ่อมบำรุงฉุกเฉินบ่อยๆ จะ กระทบกระเทือนต่อประสิทธิผลในการปฏิบัติงานของโรงซ่อมบำรุงประเภทสูงกว่า

6.การวิเคราะห์เพื่อการแก้ไข

ข้อขัดข้องอันสับสนเกี่ยวกับเครื่องอุปกรณ์อิเล็กทรอนิกส์เช่น เครื่องวิทยุจะค้นพบได้โดยต้องให้หา ส่วนที่ขัดข้องเสียก่อนแล้วจึงค้นหาข้อขัดข้องของส่วนนั้น การค้นหาข้อขัดข้องทั้งเครื่องนั้นจะต้องมีความ เข้าใจความเกี่ยวข้องระหว่างกันของส่วนประกอบหลักที่ประกอบขึ้นเป็นชุดวิทยุถ้าขัดข้องเกิดขึ้นที่ ส่วนประกอบหลักอันใดอันหนึ่งก็จะทำให้เครื่องไม่ทำงานตามหน้าที่ที่ได้ออกแบบสร้างมาในเครื่องวิทยุบาง แบบความบกพร่องเพียงสิ่งเดียวเท่านั้นอาจทำให้เครื่องนี้ทำงานได้ตามเดิม แต่วิทยุบางเครื่องการชำรุด ขั้นต้นเพียงส่วนหนึ่ง เช่น หม้อตุน เป็นต้น ก็อาจก่อให้เกิดความเสียหายแก่ส่วนอื่นๆ ได้อีกหลายส่วน ใน กรณีนี้ส่วนที่ได้รับการกระทบกระเทือนถึงทั้งส่วนควรจะได้มีการเปลี่ยนเสียก่อนที่จะใช้เครื่อง

ก.เพื่อที่จะให้ค้นหาข้อขัดข้องได้ง่ายเข้า เครื่องวิทยุจึงได้แบ่งส่วนประกอบหลักไว้เป็นส่วนโดย ส่วนมากแล้ว แต่มากแล้วแต่ละส่วนประกอบหลักจะติดตั้งไว้บนฐานเครื่องซึ่งแยกจากกัน ระบบวิทยุ โดยทั่วไปแล้วจะมีส่วนประกอบหลักๆ ดังต่อไปนี้

- (1) ส่วนเครื่องส่ง
- (2) ส่วนเครื่องรับ
- (3) ส่วนระบบสายอากาศ
- (4) ส่วนเครื่องควบคุม
- (5) ส่วนเครื่องจ่ายกำลัง

ข.ส่วนประกอบหลักแต่ละส่วนในบางกรณีอาจจะต้องพึ่งพาอาศัย ส่วนประกอบอื่นๆ อีกหนึ่งหรือ หลายส่วน ตัวอย่างเช่น เครื่องจะไม่ทำงาน ถ้าระบบสายอากาศหรือเครื่องจ่ายกำลังบกพร่อง เพราะฉะนั้น โดยความจริงแล้วส่วนประกอบใดๆ ที่ไม่ทำงานก็มิได้หมายความว่าเกิดความบกพร่อง เพราะฉะนั้น โดย ความจริงแล้วส่วนประกอบใดๆ ที่ไม่ทำงานก็มิได้หมายความว่าเกิดความบกพร่องชิ้นที่ส่วนประกอบนั้นๆ เสมอไป ข้อขัดข้องอาจจะอยู่ที่ส่วนซึ่งทำหน้าที่ป้อนสัญญาณหรือในสายเคเบิ้ลซึ่งต่อเชื่อมระหว่างส่วนนั้น กับส่วนอื่นก็ได้ ด้วยเหตุนี้จึงจำเป็นที่จะต้องวิเคราะห์สถานการณ์แต่ละครั้งอย่างรอบคอบ เพื่อที่จะค้นหา ข้อขัดข้องของส่วนประกอบนั้นถ้าไม่กระทำเช่นนี้จะต้องเสียเวลามากในการตรวจส่วนประกอบที่ทำงานได้ ตามปกติไปเสียเปล่าๆ

ค.การวิเคราะห์ข้อขัดข้องอย่างรอบคอบ ยังจะช่วยป้องกันการทำให้เครื่องเสียโดยปรับจัดอย่าง ตามบุญตามกรรม ซึ่งนอกจากจะไม่ทำให้เครื่องดีขึ้นแล้ว ยังอาจจะทำให้การซ่อมบำรุงเล็กๆ น้อยๆ กลายเป็นการซ่อมคืนสภาพที่ใหญ่หลวงไปได้ เจ้าหน้าที่ช่อมบำรุงจะต้องปฏิบัติตามวิธีการค้นหาข้อขัดข้อง ตามหนังสือคู่มือประจำเครื่องโดยเฉพาะอย่างใกล้ชิด

ง.จะต้องมีการวิเคราะห์ส่วนที่บกพร่อง เพื่อหาส่วนที่ชำรุดโดยทันที หลังจากที่ได้ทำการวิเคราะห์ ทั้งระบบแล้วอาจจะใช้แผนภูมิหรือแผนผังวงจร สำหรับค้นหาส่วนที่ขัดข้องอย่างมีเหตุผล

บทที่ 12

<u>การทำลายอุปกรณ์วิทยุ</u>

1.กล่าวทั่วไป

ในบางสถานการณ์ทางยุทธวิธี อาจจะไม่สามารถเคลื่อนย้ายวิทยุได้ทั้งหมด ฉะนั้นจึงอาจมีความ จำเป็นอย่างหลีกเลี่ยงไม่ได้ที่จะต้องทำลายอุปกรณ์ทั้งหมดที่ไม่สามารถเคลื่อนย้ายไปได้ ทั้งนี้เพื่อให้มั่นใจว่า อุปกรณ์เหล่านั้นจะไม่ตกไปอยู่ในเงื้อมมือของข้าศึก อุปกรณ์ที่ข้าศึกยึดได้นั้นข้าศึกอาจจะนำไปใช้หรือ อาจจะนำไปค้นหาความรู้ที่ข้าศึกไม่เคยรู้มาก่อนก็ได้

2.ลำดับความเร่งด่วนในการทำลาย

ก.คำแนะนำในการทำลายอุปกรณ์ในยุทธบริเวณนั้น ต้องเพียงพอ มาแบบฉบับและปฏิบัติได้ ง่าย

ข.การทำลายอุปกรณ์จะสมบูรณ์ได้นั้นขึ้นอยู่กับ เวลา เครื่องมือที่ใช้ในการทำลายและเจ้าหน้าที่ที่ จะอำนวยให้ แต่เนื่องจากการทำลายอุปกรณ์อย่างสมบูรณ์นั้นมักจะทำไม่ค่อยได้เพราะมีเวลาไม่พอ ฉะนั้น จึงจำเป็นต้องกำหนดความเร่งด่วนในการทำลายขึ้นเพื่อให้มั่นใจว่าสิ่งซึ่งมีประเภทความลับสูงควรจะได้ ทำลายก่อน แล้วจึงค่อยทำลายสิ่งซึ่งมีประเภทความลับรองๆ ลงมา สิ่งซึ่งไม่มีประเภทความลับเลยควร ทำลายภายหลังสุด ตามความสำคัญที่จะมีต่อข้าศึก ส่วนประกอบที่สำคัญๆ ทั้งหมดของเครื่องวิทยุที่มี ลักษณะคล้ายคลึงกันทั้งหมดนี้ ควรจะทำลายพร้อมกัน ทั้งนี้เพื่อป้องกันมิให้ข้าศึกรวบรวมส่วนประกอบ จากเครื่องเสียหลายๆ เครื่องไปประกอบเป็นเครื่องดีได้

3.แผนการทำลาย

ก.การทำลายอุปกรณ์ที่มุ่งหมายมิให้ถูกข้าศึกยึดนั้นจะบังเกิดผลสำเร็จได้ก็โดยคำสั่งของ ผู้บังคับบัญชาเท่านั้น และแผนการทำลายจะต้องเป็นแบบฉบับเดียวกันตลอดหน่วยบัญชาการ

ข.เพื่อให้การทำลายเป็นแบบฉบับเดียวกันก็จะต้องให้เจ้าหน้าที่ทุกๆ คนมีความเข้าใจในแผนการ ทำลายอย่างแท้จริงตลอดจนลำดับความเร่งด่วนในการทำลาย, นอกจากนั้นก็ฝึกเจ้าหน้าที่ให้ใช้ระเบียบ ปฏิบัติตามแบบฉบับในการทำลายสิ่งอุปกรณ์ด้วย

4.วิธีการทำลาย

วิธีการทำลายที่จะกล่าวต่อไปนี้ จะเป็นการป้องกันมิให้ข้าศึกนำไปใช้งานได้ กู้ซ่อมหรือพิสูจน์ทราบ เครื่องวิทยุนั้นๆ ได้

ก.ทุบ ให้ใช้ค้อนใหญ่, ขวานใหญ่, ขวานเหล็ก, พลั่ว, ค้อน, ชะแลง, เครื่องมือหนักๆ หรือของหนัก อื่นๆ ทุบผลึกแร่, หลอด, มาตรวัด, ส่วนควบคุม, ปากพูด-หูฟัง, เครื่องจลยนต์ (DYNAMOTORS)ปากพูด, หม้อไฟฟ้า, ไกถ่ายทอด (RELAYS) ไกไฟฟ้า ตัวต้านทาน หน้าปัทม์ ขดลวด

ข.ตัด ใช้ขวานใหญ่ ขวานเล็ก มีดใหญ่ๆ หรือสิ่งแหลมคมอื่นๆ ตัดสาย และสายที่เดินภายในเครื่อง และดึงเอาสายที่เดินภายในเครื่องออกจากฐานเครื่อง

ค.เผา ใช้น้ำมันเบนซิน น้ำมันก๊าด น้ำมันเครื่อง เผาหนังสือคู่มือทางเทคนิคประจำเครื่อง (หรือ หนังสือคำแนะนำต่างๆ) แผนผังวงจร สายไฟ สายที่เดินภายในเครื่อง ถุงใส่เครื่อง และหม้อตุน

ง. หักงอ หักงอ หน้าปัทม์ หีบบรรจุ ท่อนสายอากาศและฐานเครื่อง

จ.ระเบิด ถ้าต้องการทำลายด้วยการระเบิดก็ให้ใช้อาวุธปืนเล็ก ลูกระเบิด สายชนวน ดินระเบิดชนิด ซี หรือดินระเบิดที เอ็น ที

ฉ.ทำให้แตก ทำให้ส่วนใช้งานทั้งหมดแตก เช่น ลำโพง ปากพูด-หูฟัง และคันเคาะ
ช. ทำให้อันตรธาน ฝังหรือกระจายส่วนที่ทำลายแล้วไปในร่องของคูติดต่อ หลุมบุคคล หรือโพรงอื่นๆ หรือ
ขว้างลงในน้ำ

<u>อนุผนวกที่ ก</u>

ระบบการกำหนดแบบอิเล็กทรอนิกส์ร่วม

1.ตัวแสดงเครื่องอุปกรณ์

การกำหนดแบบสำหรับยุทธภัณฑ์หลักจะประกอบด้วยตัวอักษร AN ขีดทับ, ชุดอักษร สามตัว เครื่องหมายขีดและจำนวนเลขหนึ่งจำนวน ตัวอักษร AN แสดงถึงอุปกรณ์หลัก อักษรตัวแรกของชุด ตัวอักษรสามตัว แสดงว่าเครื่องนั้นใช้ที่ไหน (หมายถึงการติดตั้ง) อักษรตัวที่สองแสดงว่าเป็นอะไร (แบบของ เครื่อง) อักษรตัวที่สามแสดงว่าใช้ทำอะไร (ความมุ่งหมาย) จำนวนเลขแสดงหมายเลขแบบของเครื่องนั้นๆ ตัวอย่างเช่น AN/MRC-2 แสดงว่าเป็นแบบที่ 2 ของชุดวิทยุสื่อสารเคลื่อนที่ และอักษร AN แสดงว่าเครื่อง ชุดนี้เป็นอุปกรณ์หลัก

2.ตัวแสดงส่วนประกอบ

การกำหนดแบบของส่วนประกอบ ประกอบด้วยตัวอักษรหนึ่งหรือสองตัว (ดูตารางข้างล่าง) เครื่องหมายขีด และจำนวนเลขหนึ่งจำนวน ตัวอักษรแสดงถึงส่วนประกอบ ส่วนตัวเลขแสดงหมายเลขแบบ ตัวอย่างเช่น RT-196 แสดงว่าเป็นแบบที่ 196 ในจำนวนพวกเครื่องและเครื่องส่งวิทยุ ถ้าส่วนประกอบเป็น ส่วนหนึ่งหรือใช้กับยุทธภัณฑ์หลักก็จะมีการกำหนดแบบที่ยาวกว่านั้น ตัวอย่างเช่น RT-1962/PRC-6 หมายถึงแบบที่ 196 ของเครื่องรับและเครื่องส่งวิทยุซึ่งใช้กับหรือเป็นส่วนหนึ่งของแบบที่ 6 ของชุดวิทยุ สื่อสารชนิดหอบหิ้ว

ตัวแสดง	ความหมาย
AB	เครื่องยึดสายอากาศ
AM	เครื่องขยาย
AS	อุปกรณ์ประกอบสายอากาศ
AT	สายอากาศ
ВА	หม้อไฟฟ้าประเภทที่ 1
ВВ	หม้อไฟฟ้าประเภทที่ 2
BZ	เครื่องทำสัญญาณที่ได้ยิน
С	สิ่งควบคุม
CA	อุปกรณ์ประกอบเครื่องเปลี่ยนทิศทางกระแสไฟฟ้า เครื่องค้นหาใต้น้ำ
СВ	แผงหม้อตุน
CG	เคเบิ้ลและสายส่งกำลังความถี่วิทยุ
CK	ชุดผลึกแร่
CM	เครื่องเปรียบเทียบ
CN	เครื่องชดเชย

CP เครื่องคำนวณ

CR ผลึกแร่

CU เครื่องประกับ

CV เครื่องเปลี่ยน

 CW
 ที่คลุม

 CX
 สายไฟ

CY หืบ

DA สายอากาศหุ่น

DT หัวดักคลื่น

DY เครื่อง

E อุปกรณ์ประกอบรอก

F เครื่องกรอง

FN ครุภัณฑ์สำนักงาน

FR เครื่องวัดความถึ่

G เครื่องกำเนิดไฟฟ้า

GO มาตรวัดมุม (เป็นระบบสายอากาศหาทิศ)

GP หลักดิน

H ชุดสวมศีรษะ, ชุดมือถือ, ชุดติดหน้าอก

HC ที่ยึดผลึกแร่

HD เครื่องมือเครื่องใช้ในการปรับอากาศ

ID เครื่องมือเพื่อการชี้บอก

IL ฉนวน

IM เครื่องวัดความเข้ม

IP เครื่องแสดง, หลอดรังสีขั้วไฟฟ้าลบ

J เครื่องชุมทาง

KY เครื่องคันเคาะ

LC เครื่องมือ, สร้างทางสาย

LS ลำโพง

M ปากพูด

MD เครื่องปรุงคลื่น

ME มาตรวัด, ชนิดหอบหิ้ว

MK ชุดซ่อมบำรุงหรือเครื่องอุปกรณ์

ML เครื่องมืออุตุนิยมวิทยุ

MT เครื่องติดตั้ง

MX เครื่องเบ็ดเตล็ด

O เครื่องแกว่ง

OA อุปกรณ์ประกอบเพื่อการใช้งาน

OC เครื่องมือสมุทรศาสตร์

OH เครื่องดูดการแกว่งไฟฟ้า, เครื่องตรวจวัด

PD ตัวขับเบื้องต้น

PF เครื่องทำให้แน่น, เสา

PH เครื่องใช้เกี่ยวกับการถ่ายภาพ

PP อุปกรณ์กำลังไฟฟ้า

PT เครื่องมือกำหนดชุด

PU อุปกรณ์กำเนิดกำลังไฟฟ้า

R เครื่องรับ

RD เครื่องบันทึกและถ่ายทอด

RE อุปกรณ์ประกอบไกไฟฟ้าถ่ายทอด

RF คลื่นวิทยุ

RG เคเบิ้ลและสายส่งกำลังจำนวนมาก, ความถี่วิทยุ

RL อุปกรณ์ประกอบล้อสาย

RP เชือก

RR เครื่องสะท้อน

RT เครื่องรับและเครื่องส่ง

S ที่พักกำบัง

SA เครื่องไกไฟฟ้า

SB เครื่องสลับสาย

SG เครื่องกำเนิดสัญญาณ

SM เครื่องจำลอง

SN เครื่องพร้อมจังหวะ

ST สายรัด

T เครื่องส่ง

TA เครื่องมือเครื่องใช้เกี่ยวกับโทรศัพท์

TD เครื่องจับเวลา

TF เครื่องแปลงไฟฟ้า

TG เครื่องกำหนดที่ตั้ง

TH เครื่องมือเครื่องใช้เกี่ยวกับโทรเลข

TK อุปกรณ์หรือชุดเครื่องมือ

TL เครื่องมือช่าง
TN เครื่องปรับตั้ง

TS อุปกรณ์ตรวจวัด

TT เครื่องมือใช้เกี่ยวกับโทรพิมพ์และโทรสำเนา

TY เครื่องตรวจวัด, หลอด

U ข้อต่อ, สำหรับเสียงและกำลังไฟฟ้า

UG ข้อต่าง, ความถี่วิทยุ

V ยานยนต์

VS อุปกรณ์ทัศนสัญญาณ

WD เคเบิ้ล, ตัวนำ

WF เคเบิ้ล, ตัวนำสี่ตัว

WM เคเบิ้ล, ตัวนำหลายตัว

WS เคเบิ้ล, ตัวนำเดี่ยว

WT เคเบิ้ล, ตัวนำสามตัว

ZM เครื่องวัดความต้านหน่วง

ตัวแสดงยุทธภัณฑ์หลัก

อักษรตัวที่ 1	อักษรตัวที่ 2	อักษรตัวที่ 3	เบ็ดเตล็ด
การติดตั้ง	ชนิดยุทธภัณฑ์	ความมุ่งหมาย	การหมายรู้
 A ในอากาศ (ติดตั้งและ ปฏิบัติงานในเครื่องบิน) B เคลื่อนที่ใต้น้ำ,เรือดำน้ำ C ขนส่งทางอากาศ (เมื่อ ยังไม่จัดเข้าประจำ หน่วยก็ยัง ไม่ใช้) D ยานไร้พลขับ F ประจำที่ G พื้นดิน, โดยทั่วไปใช้บน พื้นดิน (รวมทั้งแบบของการ ติดตั้งบนพื้นดินสองแบบหรือ มากกว่า) K สะเทิ้นน้ำสะเทิ้นบก M พื้นดิน เคลื่อนที่ได้ (ติดตั้ง เป็นชุดปฏิบัติงานในยานยนต์ซึ่ง ยานยนต์นั้นมิได้มีหน้าที่นอกจาก ขนส่งยุทธภัณฑ์นั้น) P ติดหลังหรือหอบหิ้ว (สัตว์ หรือคน) S ยานผิวน้ำ T พื้นดิน ขนส่งได้ (หาบหาม , บรรทุก) บ เพื่อใช้งานโดยทั่วไป (รวมทั้งชนิดของการติดตั้งทั่วไป สองหรือหลายประเภท ใน อากาศ, บนเรือและพื้นดิน 	Aแสงที่เห็นไม่ได้ การ แผ่รังสีความร้อน Bนกพิราบ Cคลื่นพาห์ Dเครื่องตรวจ กัมมันตภาพ พิสูจน์ทราบ และคำนวณ (ราดิแลก) Eนิวแพค Fการภาพ Gโทรเลขหรือโทรพิมพ์ Iเครื่องพูดภายในหรือ เครื่องขยายเสียง Jไฟฟ้า-กล (ถ้ามิ กำหนดเป็นอย่างอื่นแล้วก็ ให้ใช้ตัวอักษรนี้) Kโทรมาตร Lมาตราการต่อต้าน Mอุตุนิยมวิทยา Nเสียงในอากาศ Pวิทยุสำรวจเป้าและ หาระยะ (ริสลอน) Qเครื่องค้นหาใต้น้ำ และเสียงใต้น้ำ Rวิทยุ Sแบบพิเศษแม่เหล็ก และอื่นๆ หรือการผสม แบบต่างๆ	 Aอุปกรณ์ส่วนประกอบช่วย (ไม่ครบชุดปฏิบัติการ) Bทั้งระเบิด Cการสื่อสาร (การรับและการ ส่ง) Dการหาทิศและ/หรือ ลาดตระเวน Eขับและ/หรือปล่อย Gควบคุมการยิงหรือควบคุม ไฟฉาย Hการบันทึกและ/หรือการ ผลิตขึ้นใหม่(ภารเรขาลักษณะ อากาศและเสียง) Lควบคุมไฟฉาย (เมื่อยังไม่ จัดเข้าประจำหน่วยใช้) Mอุปกรณ์ส่วนประกอบช่อม บำรุงและตรวจสอบ (รวมทั้ง เครื่องมือด้วย) Nเครื่องช่วยการเดินเรือและ อากาศ (รวมทั้งเครื่องวัดความสูง บัคอนเข็มทิศรอคอน การหา ความลึกด้วยเสียง การเข้าหาและ การขึ้นบก) Pการผลิตขึ้นใหม่ (เมื่อยังไม่ จัดเข้าประจำหน่วยก็ยังไม่ใช้) Qพิเศษหรือความมุ่งหมาย ผสมกันหลายอย่าง 	 Xอยู่ใน ระหว่าง การปลี่ยน แปลง Y ศักย์ไฟฟ้า Zมุม ไฟฟ้าหรือ ความถี่ Tการฝึก

อักษรตัวที่ 1	อักษรตัวที่ 2	อักษรตัวที่ 3	เบ็ดเตล็ด
การติดตั้ง	ชนิดยุทธภัณฑ์	ความมุ่งหมาย	การหมายรู้
Vพื้นดิน ติดรถ (ติดตั้งบน	Tโทรศัพท์ (ทางสาย)	Rการรับและการดักจับเชิงรับ	
ยานพาหนะที่สร้างมาทำหน้าที่	Vทัศนะและแสงที่เห็น	Sการดักจับและ/หรือการหา	
อื่นมิใช่เพื่อบรรทุกอุปกรณ์	ได้	 ระยะและการหาทิศ	
อิเล็กทรอนิกส์ เช่น รถถัง)	W	Tการส่ง	
W บนผิวน้ำและใต้น้ำ		Wการควบคุม	
		Xการพิสูจน์ทราบและการ	
		หมายรู้	

<u>อนุผนวกที่ ข</u>

ข้อพิจารณาทางเทคนิคและทางยุทธวิธีในการสื่อสารด้วยวิทยุสนาม 1.กล่าวทั่วไป

การสื่อสารด้วยวิทยุสนามนั้นจะต้องพิจารณาถึงคุณลักษณะทั้งทางเทคนิคและทางยุทธวิธีของ เครื่องวิทยุเป็นอันมาก การใช้วิทยุเฉพาะบางชุดในการสื่อสารทางทหารนั้นจะต้องพิจารณาถึงคุณลักษณะ บางอย่าง ดังต่อไปนี้คือ รัศมีการทำงาน ย่านความถี่ แบบของการปล่อยคลื่น (เป็นคำพูดหรือคลื่นเสมอ) การติดตั้ง (การนำไปด้วยคนหรือยานพาหนะ) และขีดความสามารถในการทำการสื่อสารกับชุดวิทยุแบบ อื่นๆ

2.รัศมีการทำงานทำงาน

โดยปกติรัศมีการส่งของวิทยุสนามขึ้นกับระยะของคลื่นพื้นดิน ไม่ว่าเครื่องวิทยุใดๆ ระยะทางนี้จะ เปลี่ยนแปลงตามความถี่ที่ใช้งาน ที่ตั้งเครื่องและสายอากาศของเครื่องวิทยุ ลักษณะของภูมิประเทศ วิธีการ ปล่อยคลื่น แบบของสายอากาศและกำลังออกอากาศ พนักงานวิทยุสามารถเพิ่มระยะคลื่นพื้นดินของเครื่อง ด้วยการใช้ความถี่ต่ำๆ ซึ่งจะไม่ลดถอยกำลังเร็วเหมือนใช้คลื่นความถี่สูงๆ โดยการเปลี่ยนปฏิบัติงานใช้ คำพูดเป็นแบบคลื่นเสมอ หรือโดยการใช้สายอากาศแบบสายยาวแทนสายอากาศแบบแส้ ซึ่งใช้ทำการ สื่อสารระยะใกล้ เนื่องจากผลอันเกิดจากตัวเปลี่ยนเหล่านี้จึงทำให้ไม่สามารถกำหนดรัศมีทำงานของชุดวิทยุ ใดๆ ได้แน่นอน รัศมีการทำงานตามอัตรานั้น ขึ้นอยู่กับสภาพโดยเฉลี่ยของพื้นดินของการปฏิบัติงานเฉพาะ แบบ เช่น คลื่นเสมอเมื่อเปรียบเทียบกับคำพูดหรืออยู่กับที่เมื่อเปรียบเทียบกับเคลื่อนที่

3.ย่านความถี่

ในชุดวิทยุบางชุด เช่น AN/GRC-87 หรือ AN/VRC-34 ย่านความถี่ของเครื่องรับก็จะมีความถี่ เช่นเดียวกับย่านความถี่ของเครื่องส่ง ส่วนในชุดวิทยุอื่น เช่น AN/GRC-19 ย่านความถี่ของเครื่องส่งและ เครื่องรับนั้นแตกต่างกัน ถ้าหากชุดวิทยุแบบต่างๆ จะต้องใช้ในการสื่อสารระหว่างกันแล้วจะต้องพิจารณา ย่านความถี่ของมันเสียก่อน เช่นที่จะกำหนดความถี่ใช้งานขึ้น

4.วิธีการสื่อสาร

ชุดวิทยุสนามชนิด ปส.ได้จัดขึ้นเพื่อส่งและรับสัญญาณเป็นคำพูดหรือเป็นสัญญาณคลื่นเสมอและ ขีดความสามารถทางวิทยุโทรทัศน์อยู่บ้าง นอกจากนี้วิทยุบางชุดก็สามารถส่งเป็นเสียงสูงต่ำ ซึ่งเรียกว่าคลื่น เสมอปรุง (MCW) วิธีการส่งโทรเลขวิธีนี้บางทีก็ช่วยให้การอ่านสัญญาณได้ชัดดีขึ้นภายใต้สภาพที่มีเสียงหรือ การรบกวน เมื่อใช้คลื่นเสมอปรุง (MCW) แล้ว วงจรเครื่องแกว่งกล้ำความถี่ (BFO) ก็ไม่ต้องการใช้สำหรับ การรับสัญญาณคลื่นเสมอ

วิทยุโทรเลข ซึ่งรวมทั้งคลื่นเสมอและคลื่นเสมอปรุง ส่งด้วยความเร็วในการส่งค่อนข้างช้า นอกจาก เน้นต้องการพนักงานที่ได้รับการฝึกเป็นพิเศษซึ่งมีความชำนาญงานหลังจากที่ได้ผ่านห้วงการฝึกมานานแล้ว ในข่ายวิทยุ คลื่นเสมอความเร็วในการส่งของพนักงานตามปกติจะต้องไม่ให้เร็วกว่าความเร็วของพนักงานที่ ส่งให้ช้าที่สุดในข่าย อย่างไรก็ตามภายใต้สภาพอากาศที่ร้ายแรง วิทยุคลื่นเสมอนั้นจะให้รัศมีการทำงานได้ ไกลกว่าและให้การสื่อสารที่เชื่อถือได้มากกว่าวิธีการสื่อสารทางวิทยุอย่างอื่น

ข.การใช้วิทยุคลื่นเสมอนั้นได้ถูกแทนที่โดยวงจรวิทยุโทรพิมพ์ที่ตัดต่อเลื่อนความถี่ (FREQUENCY-SHIF-KEYED) วงจรเหล่านี้มีขีดความสามารถที่จะรับข่าวได้จำนวนมากกว่าวิทยุโทรเลข

5.การติดตั้ง

ชุดวิทยุสนามยังอาจจะแบ่งประเภทออกได้เป็นชนิดหอบหิ้วติดรถ ติดรถ บรรทุกรถ และเคลื่อนที่ ชุดวิทยุหอบหิ้วนี้มีกำลังต่ำและทำงานด้วยหม้อไฟฟ้าแห้ง ซึ่งบรรจุอยู่ภายในหีบชุดวิทยุหรือทำงานด้วย กำลังจากเครื่องกำเนิดไฟฟ้าชนิดมือหมุน ชุดวิทยุติดรถมักจะอยู่ในประเภทกำลังปานกลางและทำด้วย กำลังไฟฟ้าจลน์ ซึ่งได้รับกำลังจากหม้อไฟฟ้าส่วนวิทยุ AN/GRC-19 นั้นใช้เครื่องกำเนิดไฟฟ้าสลับ ทั้งสองนี้ ได้รับกำลังจากหม้อไฟฟ้าของรถยนต์ ชุดวิทยุบรรทุกและวิทยุเคลื่อนที่อาจมีกำลังปานกลางหรือกำลังสูงก็ ได้ ตามปกติชุดวิทยุเหล่านี้ได้กำลังมาจากเครื่องกำเนิดไฟฟ้าขับด้วยเครื่องยนต์ (ENGINE-DRIVEN GENERATOR) ชนิดใช้น้ำมันด้วยเบนซินซึ่งอาจจะคานหามหรือติดบนรถพ่วง เพื่อให้สามารถปฏิบัติงานได้ จากที่มีการป้องกันก็มักจะต้องใช้เครื่องควบคุมระยะไกลประกอบกับเครื่องวิทยุสนามด้วย

6.ขีดความสามารถของการสื่อสารระหว่างกัน

ก.โดยทั่วไป การสื่อสารระหว่างชุดวิทยุแบบต่างๆ นั้นอาจกระทำได้ต่อเมื่อชุดวิทยุเหล่านั้นสามารถ ส่งไปได้ตามระยะที่ต้องการ และถ้าชุดวิทยุเหล่านั้นมีย่านความถี่เหลื่อมกัน ใช้วิธีการสื่อสารเหมือนกัน (คำพูดหรือคลื่นเสมอ) และใช้การปรุงคลื่นแบบเดียวกัน (ปส.หรือ ปถ.) ชุดวิทยุกำลังต่ำซึ่งมีอัตราระยะการ ทำงานประมาณ 1.6 กม. ไม่สามารถที่จะสื่อสารกับชุดวิทยุที่อยู่ห่างกันออกไป 8 กม. ได้ แม้ว่าชุดวิทยุทั้ง สองนี้จะปฏิบัติงานด้วยความถี่เดียวกัน ด้วยแบบของการปรุงคลื่นและแบบของการปล่อยคลื่นเดียวกัน

ข.เพราะว่าลักษณะการทำงานทางเทคนิคแตกต่างกัน เครื่องวิทยุ ปถ.ซึ่งไม่สามารถสื่อสารกับ เครื่องวิทยุ ปส.ได้ ถึงแม้ว่าระยะทางและความถี่ที่ใช้งานจะเหมือนกันก็ตาม

ค.ถ้าชุดวิทยุสองชุดใช้วิธีการปล่อยคลื่นต่างกัน (ชุดหนึ่งนั้นใช้คำพูด ส่วนอีกชุดหนึ่งนั้นใช้คลื่น เสมอ) เช่นนี้ก็ไม่อาจสื่อสารกันได้ สัญญาณคลื่นเสมอนั้นจะไม่ได้ยินในเครื่องรับซึ่งถูกปรับเพื่อรับเป็นคำพูด จะต้องจัดวงจรเครื่องแกว่งกล้ำความถี่ (BEAT FREQ OSCILLATOR "BFO") แบบต่างหากให้ติดประจำ อยู่กับเครื่องรับชนิดสื่อสารส่วนมากและจะต้องผลักสวิทซ์ไปทางการรับคลื่นเสมอให้หากเครื่องรับนั้นไม่ติด วงจรเครื่องแกว่งกล้ำความถี่หรือถ้าไม่ได้เปิดวงจรนั้นหรือมิได้ปรับให้ถูกต้องแล้ว ก็ไม่อาจรับวิทยุคลื่นเสมอ ได้ เว้นไว้แต่เครื่องส่งจะมีความสามารถปฏิบัติงานเป็นคลื่นเสมอปรุงได้

ง.สรุป มีปัจจัยอยู่หลายประการซึ่งกระทบกระเทือนต่อความสามารถของชุดวิทยุที่จะสื่อสาร ระหว่างกัน เมื่อนำเครื่องวิทยุที่ไม่คุ้นเคยหรือวิทยุแบบใหม่มาใช้ นายทหารฝ่ายการสื่อสารจะต้องพิจารณา ปัจจัยเหล่านี้ด้วยการแยกประเภทวิทยุออกและพิจารณาขีดจำกัดและขีดความสามารถของมัน