MAST30034 Assignment 1

Zhi Hern Tom

School of Mathematics and Statistics The University of Melbourne Student ID: 1068268

September 7, 2021

Question 1: Synthetic dataset generation, data preprocessing, & data visualization

Q1.1)

A matrix TC of size 240×6 consisting of six temporal sources using onsets arrival vector, increment vector, and duration of ones was constructed as shown in Figure 1. The data was assumed to be Gaussian distributed as we will be implementing linear regression analysis. Thus, we standardized the TCs.

Figure 1: TCs

Q1.2)

A CM that represents correlation values between all 6 variables was constructed. In Figure 2, TC 4, TC 5 and TC 6 were highly positively correlated with each others. TC 4 has a positive correlation of 0.77 and 0.6 with TC 5 and TC 6 respectively while TC 5 has a correlation of 0.77 with TC 6.

Figure 2: Correlation Matrix of TC

Q1.3)

In Figure 4, there is no correlation among all SMs. Standardization of SMs like TCs is not crucial as each vector has similar mean and standard deviation.

Figure 3: Image Plot of tmpSMs

Figure 4: Correlation Matrix of SM

Q1.4)

In Figure 5, spatial and temporal noises are not correlated across sources. In Figure 6, both noise have a nice normal distribution curve as they are both sampled from normal distribution. Both normal distribution fulfil the mean and variance= 1.96σ criteria relating to 0.25, 0.015, and zero mean. Also, according to Figure 7, there is no product $\Gamma_t\Gamma_s$ correlated across 441 variables.

Figure 5: Spatial and Temporal Gaussian Noise Correlation Matrix

Figure 6: Distribution of Spatial and Temporal Noises

Figure 7: Correlation Matrix of Noises

Q1.5)

As we can see ($\mathbf{TC} \times \mathbf{SM}$) is a linear combination of sources, ($\Gamma \mathbf{t} \times \Gamma \mathbf{s}$) produces a structured noise. Second and third term will either produce structured noise or straight zeros on pixels with no values. Hence we can incorporate it into last term $\mathbf{E} = (\mathbf{TC} \times \Gamma \mathbf{s}) + (\Gamma \mathbf{t} \times \mathbf{SM}) + (\Gamma \mathbf{t} \times \Gamma \mathbf{s})$ to simplify the model. Apart from that, Figure shows that most of the variables have a variance of around 0.2.

Figure 8: 100 Randomly Selected Time-series from X

Figure 9: Variance of all 441 Variables

Question 2: Data analysis, results visualization, & performance metrics Q2.1)

A scatter plot between 3^{rd} column of D_{LSR} and 30^{th} column of standardized X was constructed as shown in Figure 11. The 30th pixel position is filled by the 3rd SM, thus the third TC is the only time course that constructs 30th column of X. Also, it shows a distinct linear relationship between them. However, according to Figure 12, the linear relationship does not exist between 4^{th} column of D_{LSR} and 30^{th} column of X.

Figure 10: A_{LSR} (left) and D_{LSR} (right)

Scatterplot of 4th D_lsr vs 30th standardized X

60

40

40

-40

-60

40th column of standardized X

Figure 11: Scatterplot of 3rd D_{LSR} vs 30th standardised X

Figure 12: Scatterplot of 4th D_{LSR} vs 40th standardised X

Q2.2)

 D_{RR} was estimated using $\lambda=0.5$. The sum of correlation of c_{TLSR} and c_{TRR} have been calculated and plotted in Figure 13. In Figure 13, we can see that $\sum c_{TRR}$ (5.16) is slightly higher than $\sum c_{TLSR}$ (5.11). Futhermore, a_{RR}^1 and a_{LSR}^1 have been plotted as shown in Figure 14. According to Figure 14, we can see clearly that all values in a_{RR}^1 shrink towards zero while a_{LSR}^1 does not.

Figure 13: Barplot of c_{TLSR} -sum vs c_{TRR} -sum

Figure 14: Scatterplot of $A1_{RR}$ (left) and $A1_{LSR}$ (right)

Q2.3)

LR parameters A_{LR} , D_{LR} were estimated using 21 values of ρ selected between 0 and 1 with an interval of 0.05. Then the average of MSE over 10 realizations against each value of ρ was plotted. In Figure 15, we can see that it converges at $\rho = 0.6$ and after that the MSE started to increase again.

Figure 15: Scatterplot of MSE average vs rho

Q2.4)

LR parameters was estimated using $\rho = 0.6$ (as selected in Question 2.3). The sum of correlation vectors between

- 1. TC and D_{LR} (stored in c_{TRR})
- 2. SM and A_{RR} (stored in c_{SRR}), and
- 3. SM and A_{LR} (stored in c_{SLR})

were calculated and plotted using barplot. In Figure 16, it can be shown that $\sum c_{TLR}$ is higher than $\sum c_{TRR}$ and $\sum c_{SLR}$ is higher than $\sum c_{SRR}$. In Figure 17, 4 columns estimates of D and A for both RR and LR have been plotted. Other than the inability of LSR to handle MC, the main reason behind the bad performance of LSR and RR (both of them producing many false positives while recovering coefficients) is that they incorporate the undesired (noise carrying) pixels into the estimate of A and this also effects the estimate of D in terms of overfitting.

Figure 16: Barplot of Correlation Sum

Figure 17: Plot of A_{RR} (1st), D_{RR} (2nd), A_{LR} (3rd) and D_{LR} (4th)

Q2.5)

Estimate PCs of the TCs were estimated and their eigenvalues were plotted as shown in Figure 18. In Figure 18, we can find that PC_{6th} has the smallest eigenvalue. Also, according to Figure 20, the shape of each Z (PC) was out of shape comparing to TCs. It was because the principal components of Z could not explained as much information as the original TC did.

Figure 18: Scatterplot of Eigenvalues vs Z

Figure 19: Barplot of MSEs

Figure 20: TCs and ${\bf Z}$

Figure 21: A_{PCR} (left) and D_{PCR} (right)