



## Machine Learning 2: Naïve Bayes, Rule Learning, Lazy Learning



# **Big Data**

Prof. Hwanjo Yu POSTECH



## **Bayesian Classification**



# **Big Data**

## **Bayesian theorem: Basics**

- Let X be a data sample ("evidence"): class label is unknown
- Let H be a hypothesis that X belongs to class C
- Classification is to determine P(H|X), (posteriori probability)
  - the probability that the hypothesis holds given the observed data sample X
- P(H) (prior probability), the initial probability
  - E.g. X will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- P(X|H) (*likelihood*), the probability of observing the sample X, given that the hypothesis holds
  - E.g. Given that X will buy computer, the prob. that X is 31..40, medium income



## **Bayesian theorem: Basics**

• Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$

- Informally, this can be written as
   posteriori = likelihood x prior/evidence
- Predicts X belongs to  $C_2$  iff the probability  $P(C_i|X)$  is the highest among all the  $P(C_k|X)$  for all the k classes
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost



### Naïve Bayesian classifier

 A simplified assumption: attributes are conditionally independent (i.e. no dependence relation between attributes):

$$P(\mathbf{X}|C_i) = P(x_1 x_2 \dots x_k | C_i) = \prod_{k=1}^n p(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times \dots \times P(x_n | C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If  $A_k$  is categorical,  $P(x_k|C_i)$  is the # of tuples in  $C_i$  having value  $x_k$  for  $A_k$  divided by  $|C_{i,D}|$ (# of tuples of C<sub>i</sub> in D)
- If  $A_k$  is continuous-valued,  $P(x_k|C_i)$  is usually computed based on Gaussian distribution with a mean  $\mu$  and standard deviation  $\sigma$

mean 
$$\mu$$
 and standard deviation  $\sigma$  
$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 and  $P(x_k|C_i)$  is  $P(\mathbf{X}|C_i) = g(x_k,\mu_{C_i},\sigma_{C_i})$ 



## Naïve Bayesian classifier: Training dataset

Class:

C1:buys\_computer = 'yes' C2:buys\_computer = 'no'

Data sample:

X = (age <=30, Income = medium,
Student = yes, Credit\_rating = Fair)</pre>

| age  | income | student | credit_ratin | buys_ |
|------|--------|---------|--------------|-------|
| <=30 | high   | no      | fair         | no    |
| <=30 | high   | no      | excellent    | no    |
| 3140 | high   | no      | fair         | yes   |
| >40  | medium | no      | fair         | yes   |
| >40  | low    | yes     | fair         | yes   |
| >40  | low    | yes     | excellent    | no    |
| 3140 | low    | yes     | excellent    | yes   |
| <=30 | medium | no      | fair         | no    |
| <=30 | low    | yes     | fair         | yes   |
| >40  | medium | yes     | fair         | yes   |
| <=30 | medium | yes     | excellent    | yes   |
| 3140 | medium | no      | excellent    | yes   |
| 3140 | high   | yes     | fair         | yes   |
| >40  | medium | no      | excellent    | no    |



## Naïve Bayesian classifier: An example

```
P(C_i): P(buys_computer = "yes") = 9/14 = 0.643
       P(buys\_computer = "no") = 5/14 = 0.357
Compute P(X|C_i) for each class
  P(age = " <= 30" | buys\_computer = "yes") = 2/9 = 0.222
  P(age = " \le 30" | buys\_computer = "no") = 3/5 = 0.6
  P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
  P(income = "medium" | buys computer = "no") = 2/5 = 0.4
  P(student = "yes" | buys computer = "yes) = 6/9 = 0.667
  P(student = "yes" | buys computer = "no") = 1/5 = 0.2
  P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
  P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
X = (age \le 30, income = medium, student = yes, credit_rating = fair)
P(X|C_i): P(X|buys computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
      P(X|buys\_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
P(X|C_i)*P(C_i): P(X|buys\_computer = "yes")*P(buys\_computer = "yes") = 0.028
          P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007
```

Therefore, **X** belongs to class ("buys\_computer = yes")

| age  | income | studen | credit_ratin | buys_ |
|------|--------|--------|--------------|-------|
| <=30 | high   | no     | fair         | no    |
| <=30 | high   | no     | excellent    | no    |
| 3140 | high   | no     | fair         | yes   |
| >40  | medium | no     | fair         | yes   |
| >40  | low    | yes    | fair         | yes   |
| >40  | low    | yes    | excellent    | no    |
| 3140 | low    | yes    | excellent    | yes   |
| <=30 | medium | no     | fair         | no    |
| <=30 | low    | yes    | fair         | yes   |
| >40  | medium | yes    | fair         | yes   |
| <=30 | medium | yes    | excellent    | yes   |
| 3140 | medium | no     | excellent    | yes   |
| 3140 | high   | yes    | fair         | yes   |
| >40  | medium | no     | excellent    | no    |



## **Avoiding the 0-probability problem**

 Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(\mathbf{X}|C_i) = \prod_{k=1}^n P(x_k|C_i)$$

- E.g. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10).
- Smoothing: e.g. use Laplacian correction (or Laplacian estimator)
  - Adding 1 to each case
    - Prob(income = low) = 1/1003
    - Prob(income = medium) = 991/1003
    - Prob(income = high) = 11/1003



## **Naïve Bayesian classifier: Comments**

- Advantages
  - Easy to implement
  - Good results obtained in most of the cases
- Disadvantages
  - Assumption: class conditional independence, therefore loss of accuracy
  - Practically, dependencies exist among variables
    - E.g. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
    - Dependencies among these cannot be modeled by Naïve Bayesian Classifier





## **Rule-based Classification**



# **Big Data**

### Using IF-THEN rules for classification

• Represent the knowledge in the form of IF-THEN rules

```
R: IF age = youth AND student = yes THEN buys_computer = yes
```

- Rule antecedent/precondition vs. rule consequent
- Assessment of a rule: coverage and accuracy
  - n<sub>covers</sub> = # of tuples covered by R
  - n<sub>correct</sub> = # of tuples correctly classified by R

```
coverage(R) = n_{covers} / |D| /* D: training data set */
accuracy(R) = n_{covers} / n_{covers}
```

- If more than one rule are triggered, need conflict resolution
  - Size ordering: assign the highest priority to the triggering rules that has the "toughest" requirement (i.e. with the *most attribute test*)
  - Class-based ordering: decreasing order of prevalence or misclassification cost per class
  - Rule-based ordering (decision list): rules are organized into one long priority list, according to some measure of rule quality or by experts



#### Rule extraction from a decision tree

- Rules are easier to understand than large trees
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction:
   the leaf holds the class prediction
- Rules are mutually exclusive and exhaustive
- Example: Rule extraction from our buys\_computer decision-tree





#### For any decision tree you can read off an equivalent set of ordered rules



- If outlook = sunny and humidity = high then no
- If outlook = sunny and humidity = normal then yes
- If outlook = overcast then yes
- if outlook = rainy and windy = false then yes
- if outlook = rainy and windy = true then no



#### For any decision tree you can read off an equivalent set of <u>ordered</u> rules



- If outlook = sunny and humidity = high then no
- If outlook = sunny and humidity = normal then yes
- If outlook = overcast then ves
- if outlook = rainy and windy = false then yes
- if outlook = rainy and windy = true then no

- If outlook = sunny and humidity = high then no
- If outlook = rainy and windy = true then no
- Otherwise yes



For any set of rules there is an equivalent tree

but it might be very complex

if x = 1 and y = 1 then a if z = 1 and w = 1 then a otherwise b





- Theoretically, rules and trees have equivalent "descriptive power"
- But practically they are very different
  - ... because rules are usually expressed as a decision list, to be executed sequentially, in order, until one "fires"
- People like rules: they're easy to read and understand
- It's tempting to view them as independent "nuggets of knowledge"
- ... but that's misleading

when rules are executed sequentially, each one must be interpreted in the context of its predecessors



#### Generating a rule

Generating a rule for class a



if true then class = a



if x > 1.2then class = a



if x > 1.2 and y > 2.6then class = a

• Possible rule set for class b:

if  $x \le 1.2$  then class = bif  $x \ge 1.2$  and  $y \le 2.6$  then class = b

• Could add more rules, get "perfect" rule set



#### Rules vs. trees

- Corresponding decision tree
  - produces exactly the same predictions
- Rule sets can be more perspicuous
  - E.g. when decision trees contain replicated subtrees
- Also: in multiclass situations,
  - covering algorithm concentrates on one class at a time
  - decision tree learner takes all classes into account





## Rule induction: Sequential covering method

- Sequential covering algorithm: Extracts rules directly from training data
- Typical sequential covering algorithms: FOIL, RIPPER
- Rules are learned sequentially, each for a given class  $C_i$  will cover many tuples of  $C_i$  but none (or few) of the tuples of other classes
- Steps:
  - Rules are learned one at a time
  - Each time a rule is learned, the tuples covered by the rules are removed
  - The process repeats on the remaining tuples unless termination condition, e.g. when no more training examples or when the quality of a rule returned is below a user-specified threshold
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*



## Rule induction: Sequential covering method

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule





#### **How to learn-one-rule?**

- Start with the most general rule possible: condition = empty
- Adding new attributes by adopting a greedy depth-first strategy
  - Picks the one that most improves the rule quality
- Rule-Quality measures: consider both coverage and accuracy
  - Foil-gain (in FOIL & RIPPER): assesses info\_gain by extending condition

$$FOIL\_Gain = pos' \times (\log_2 \frac{pos'}{pos' + neg'} - \log_2 \frac{pos}{pos + neg})$$

It favors rules that have high accuracy and cover many positive tuples

Rule pruning based on an independent set of test tuples

$$FOIL\_Prune(R) = \frac{pos - neg}{pos + neg}$$

Pos/neg are # of positive/negative tuples covered by R.

If FOIL\_Prune is higher for the pruned version of R, prune R



## **Rule generation**

#### • To generate a rule

while(true)

find the best predicate p

if foil-gain(p) > threshold then add p to current rule

else break







## Lazy Learner (e.g. kNN)



# **Big Data**

## Lazy vs. Eager learning

- Lazy learning (e.g. instance-based learning):
  - Simply stores all the training data
  - Classify based on k nearest neighbors
  - Fast in training but slow in prediction
- The others:
  - Constructs a model from training data
  - Classify using the model
  - Slow in training but fast in prediction



## k-nearest neighbor (kNN) algorithm

- The nearest neighbors are defined in terms of Euclidean distance, dist(X<sub>1</sub>, X<sub>2</sub>)
- Given a testing instance x, find kNN of x, and take the majority class of kNNs to classify x
- Vonoroi diagram: the decision surface induced by 1-NN







## k-nearest neighbor (kNN) algorithm

- k-NN for real-valued prediction for a given unknown tuple
  - Returns the mean values of the *k* nearest neighbors
- Distance-weighted nearest neighbor algorithm
  - Weight the contribution of each of the k neighbors according to their distance to the query  $X_q$ 
    - Give greater weight to closer neighbors  $w \equiv \frac{1}{d(x_q, x_i)^2}$
- Robust to noisy data by averaging k-nearest neighbors
- Too small k => overfitting
- Too large k => underfitting

