Chapter 5

Aliphatic Nucleophilic Substitution

脂肪族亲核取代反应

At saturated carbon

$$R - X + Y$$
: \longrightarrow $R - Y + X$:

Qiong Li

March 11, 2024

general equation of S_N

$$R - X + Y$$
: \longrightarrow $R - Y + X$:

There are four charge types for the equation

Nucleophile must have an unshared pair of electrons, it can be neutral or negatively charged.

Substrate (RX) may be neutral or positively charged.

with negatively charged nucleophile

with negatively charged nucleophile

with neutral nucleophile

Several distinct mechanisms are possible for aliphatic nucleophilic substitution reactions. Depending on the substrate, nucleophile, leaving group, and reaction condition.

In all of them, Nucleophile (attacking reagent) must carry electron pair with it. it can be neutral or negatively charged.

By far the most common mechanisms that occur at a saturated carbon are the S_N1 and S_N2 mechanisms.

Classification of the nucleophilic substitution mechanisms

S_N1, S_N2, The neighboring-Group mechanism, S_Ni, SET

Reaction Mechanisms Involving Polar Functional Groups: Using "Electron-Pushing" Arrows

Curved-Arrow Representations of Several Common Types of Mechanisms

$$H-\overset{\circ}{\text{O}}:^-+\overset{\circ}{-}\overset{\circ}{\text{C}}-\overset{\circ}{\text{C}}:$$
 Nucleophilic substitution $-\overset{\circ}{\text{C}}-\overset{\circ}{\text{O}}H+\overset{\circ}{\text{C}}:^-$

Compare with Brønsted acid-base reaction

$$-\dot{C}$$
 Dissociation $-\dot{C}$ +: \dot{C} l:

Reverse of Lewis acid– Lewis base reaction

$$H - \ddot{O}: - + \ddot{C} = \ddot{O}$$
Nucleophilic addition
 $- \ddot{C} - \ddot{O}: - \ddot$

Only one of the two bonds between C and O is cleaved

$$C = C + H^+$$
 Electrophilic addition $C - C - C$

Carbon-carbon double bond acting as a Lewis base

 S_N^2 mechanism $A_N^2D_N^2$ Bond breaking is concurrent with bond formation $r = k [RX][Nu^2]$

$$HO^- + Br^- C - Br - C^- Br^- + Br^-$$

one-step process with no intermediate.

Walden 翻转

 $S_N 1$ mechanism $D_N^{\ddagger} + A_N$ Bond breaking happens first, then bond formation happens r = k [RX]

two-step process with carbocation intermediate.

$S_N 1$ Mechanism Exercise

Gentle warming of (2R,3R)-2-iodo-3-methylhexane in methanol gives two stereoisomeric methyl ethers. How are they related to each other? Explain mechanistically

Chapter 5-2

Aliphatic Nucleophilic Substitution

脂肪族亲核取代反应

At saturated carbon

$$R - X + Y$$
: \longrightarrow $R - Y + X$:

Qiong Li

March 11, 2024

general equation of S_N

$$R - \widehat{X} + Y$$
: \longrightarrow $R - Y + X$:

There are four charge types for the equation

Type I R-I + OH \longrightarrow R-OH + I \longrightarrow Type II R-I + NMe₃ \longrightarrow R-NMe₃ + I \longrightarrow Type III R-NMe₃ + OH \longrightarrow R-OH + NMe₃

Type IV
$$R = N Me_3 + H_2 S$$
 \longrightarrow $R = SH_2 + NMe_3$

Nucleophile must have an unshared pair of electrons, it can be neutral or negatively charged.

Substrate (RX) may be neutral or positively charged.

with negatively charged nucleophile

with negatively charged nucleophile

1.3 Inductive and Field Effects

Inducted Dynamic Nuclear Polarization

with neutral nucleophile

Sulfate and Sulfonate Leaving Groups

Methyl sulfate ion

Methanesulfonate ion (Mesylate ion)

Trifluoromethanesulfonate ion (Triflate ion)

4-Methylbenzenesulfonate ion (p-Toluenesulfonate ion, tosylate ion)

-OMs

-OTs

Classification of the nucleophilic substitution mechanisms

$S_{N}2$, $S_{N}1$, The neighboring-Group mechanism, $S_{N}i$, SET

 $S_N 2$ mechanism $A_N D_N$ Bond breaking is concurrent with bond formation $r = k [RX][Nu^-]$

$$HO^-$$
 + $PC^ PC^ PC^-$

 $S_N 1$ mechanism $D_N^{\ddagger} + A_N$ Bond breaking happens first, then bond formation happens r = k [RX]

two-step process with carbocation intermediate.

转型 > 保型?

In general, the formation of racemic products from optically active substrates is strong evidence for the intermediate being a symmetrical, achiral specieenantiomers, such as a carbocation.

Fundamentals of Stereochemistry

海螺

蛋白质

Chirality

手性药物

核酸

受体

手性: 左右手互为镜像但无法重叠的性质

 $S_N 2$ mechanism $A_N D_N$ Bond breaking is concurrent with bond formation $r = k [RX][Nu^-]$

$$HO^-$$
 + $PC^ PC^ PC^-$

 $S_N 1$ mechanism $D_N^{\ddagger} + A_N$ Bond breaking happens first, then bond formation happens r = k [RX]

two-step process with carbocation intermediate.

转型 > 保型?

Ion Pair Theory 离子对理论 描述S_N1过程

(S)-a-溴代丙酸盐的水解反应

The configuration at the chiral carbon is retained. and not inverted or racemized why?

5.4.1 The structure of the substrates

$$R - X + Y$$
: \longrightarrow $R - Y + X$:

There is usually a group with an unshared pair of electrons β to the leaving group 在离去基团的β-位通常连有一个带有未共用电子对的基团

Step 1
$$R = \begin{pmatrix} Z^{+} \\ C - C - R \\ R \end{pmatrix} \times \begin{pmatrix} Z^{+} \\ R \end{pmatrix} \times \begin{pmatrix} Z^{-} \\ R \end{pmatrix} \times \begin{pmatrix} Z^{$$

5.4.2 the characteristics of the neighboring-group mechanism

- 1. The configuration at a chiral carbon is retained
- The rate of reaction is greater than expected

The rate law followed in the neighboring-group mechanism is the first-order law, Rate = k[RX]Y does not take part in the rate-determining step.

Rate =
$$k[RX]$$

Step 1
$$R = C = C = R$$
 $R = C = C = R$ $R = C = C = R$ $R = C = R$ $R = R$ intramolecular $S_N = R$ rate-determining step $R = C = C = R$ intermolecular $S_N = R$ $R = C = R$ intermolecular $S_N = R$ intermolecular S_N

The first important evidence for the existence of this mechanism was the demonstration that retention of configuration can occur if the substrate is suitable.

例1 (S) -α-溴代丙酸盐的水解反应(O负离子作为邻近基团)

例2: 3-溴-丁-2-醇与HBr的反应(Br作为邻近基团)

$$CH_3$$
 H
 $*$
 Br
 H
 Br
 CH_3
 H
 Br
 CH_3
 CH_3

erythro 赤式

内消旋体 Meso

Chiral compound 有旋光性的

Chiral compound 有旋光性的

symmetric

Product of the intramolecular $S_N 2$

Stereochemistry

Review (The Neighboring-Group Mechanism)

The structure of the substrates

$$R - X + Y$$
: \longrightarrow $R - Y + X$:

There is usually a group with an unshared pair of electrons β to the leaving group 在离去基团的β-位通常连有一个带有未共用电子对的基团

Step 1
$$R = \begin{pmatrix} Z : R \\ -C - C - R \\ R & X \end{pmatrix}$$
 $R = \begin{pmatrix} Z - C - R \\ R & R \end{pmatrix}$ $R = \begin{pmatrix} Z - C - R \\ R & R \end{pmatrix}$ intermolecular $S_N = \begin{pmatrix} Z - C - R \\ R & R \end{pmatrix}$ $R = \begin{pmatrix} Z - C - R \\ R & R \end{pmatrix}$ intermolecular $S_N = \begin{pmatrix} Z - C - R \\ R & R \end{pmatrix}$ intermolecular $S_N = \begin{pmatrix} Z - C - R \\ R & R \end{pmatrix}$ intermolecular $S_N = \begin{pmatrix} Z - C - R \\ R & R \end{pmatrix}$

Review (The Neighboring-Group Mechanism)

the characteristics of the neighboring-group mechanism

- 1. The configuration at a chiral carbon is retained
- 2. The rate of reaction is greater than expected
- 3. Carbon skeleton reconstruction may occur

例1 (S) $-\alpha$ -溴代丙酸盐的水解反应(O负离子作为邻近基团)

Review (The Neighboring-Group Mechanism)

- 1. The configuration at a chiral carbon is retained
- 2. The rate of reaction is greater than expected
- 3. Carbon skeleton reconstruction may occur

The rate law followed in the neighboring-group mechanism is the first-order law, Y does not take part in the rate-determining step.

Rate =
$$k[RX]$$

Step 1
$$R = \begin{pmatrix} Z^+ \\ C - C - R \\ R \end{pmatrix} \times \begin{pmatrix} Z^+ \\ R \end{pmatrix} \times \begin{pmatrix} Z^+$$

Chapter 5

Aliphatic Nucleophilic Substitution

脂肪族亲核取代反应

At saturated carbon

$$R - X + Y$$
: \longrightarrow $R - Y + X$:

Qiong Li

March 18, 2024

general equation of S_N

$$R - \widehat{X} + Y$$
: \longrightarrow $R - Y + X$:

There are four charge types for the equation

Type I R-I + OH \longrightarrow R-OH + I \longrightarrow Type II R-I + NMe₃ \longrightarrow R-NMe₃ + I \longrightarrow Type III R-NMe₃ + OH \longrightarrow R-OH + NMe₃ Type IV R-NMe₃ + H₂S \longrightarrow R-SH₂ + NMe₃

Nucleophile must have an unshared pair of electrons, it can be neutral or negatively charged.

Substrate (RX) may be neutral or positively charged.

with negatively charged nucleophile

with negatively charged nucleophile

with neutral nucleophile

Several distinct mechanisms are possible for aliphatic nucleophilic substitution reactions. Depending on the substrate, nucleophile, leaving group, and reaction condition.

In all of them, Nucleophile (attacking reagent) must carry electron pair with it. it can be neutral or negatively charged.

By far the most common mechanisms that occur at a saturated carbon are the S_N1 and S_N2 mechanisms.

Classification of the nucleophilic substitution mechanisms

 S_N1 , S_N2 , The neighboring-Group mechanism, S_Ni

Review (The Neighboring-Group Mechanism)

The structure of the substrates

$$R - X + Y$$
: \longrightarrow $R - Y + X$:

There is usually a group with an unshared pair of electrons β to the leaving group

在离去基团的β-位通常连有一个带有未共用电子对的基团

Step 1
$$R = k[RX]$$
 $Rate = k[RX]$
 $Rate = k[RX]$

Review (The Neighboring-Group Mechanism)

the characteristics of the neighboring-group mechanism

- 1. The configuration at a chiral carbon is retained
- 2. The rate of reaction is greater than expected
- 3. Carbon skeleton reconstruction may occur

In such cases, substitution and rearrangement products are often produced together.

5.4.3 Some of the more important neighboring groups

a. Neighboring group participation by O atom (-COO⁻)

例1 (S) $-\alpha$ -溴代丙酸盐的碱性水解反应 (O负离子作为邻近基团)

$$HO_2C$$
 H''
 $*$
 $Br + NaOH$
 \longrightarrow
 H_3C
 HO_2C
 $OH + NaBr$
 H_3C

Unstable \alpha-lactone intermediate

Neighboring group participation by O atom (-COOR)

例2: acetolysis of anti isomer of 2-(tosyloxy)cyclohexyl acetate (酯基氧原子作为邻近基团)

例2 1-乙酰氧基-2对甲苯磺酰氧基环己烷的乙酸解反应(羰基氧原子作为邻近基团)

The Neighboring-Group Mechanism

intramolecular S_N^2 + intermolecular S_N^2

anti-isomer

Configuration retained

anti-2-(tosyloxy)cyclohexyl acetate

syn-isomer

Configuration inverted

syn-2-(tosyloxy)cyclohexyl acetate

anti-isomer is about 10^3 times faster than that of syn-isomer

HPLC

海螺

蛋白质

Chirality

手性药物

核酸

受体

手性: 左右手互为镜像但无法重叠的性质

Chirality 手性

Chirality 手性

1. Optical Activity and Chirality

该化合物具没有"光学活性"、没有"旋光性"

该化合物具有"光学活性"、"旋光性"

b. Neighboring group participation by S atom

例3: hydrolysis of anti isomer of 1-chloro-2-thiophenyl cyclohexane (S原子作为邻近基团)

例3 反式-1-氯-2-苯硫基环己烷的水解反应(S原子作为邻近基团)

anti-isomer
$$H_2O$$
 THF
 H_2O
 SPh
 H_2O
 SPh
 H_2O
 SPh
 H_2O
 SPh
 SPh

anti-isomer is 10^5 times faster than that of syn-isomer

Transition State of S_N2 Reation

Inducted Dynamic Nuclear Polarization

c. Neighboring group participation by N atom

例4 2-氯甲基-N-乙基吡咯烷通过N邻基参与发生扩环(N原子作为邻近基团,碳骨架重构)

2-(chloromethyl)-N-ethylpyrrolidine

3-chloro-1-ethylpiperidine

- 1. The configuration at a chiral carbon is retained
- 2. The rate of reaction is greater than expected
- 3. Carbon skeleton reconstruction may occur

d. Neighboring group participation by aromatic ring

具有6π电子的苯环是常见的邻基参与基团

Phenonium ion intermediate resonance stabilization

NMR证实, 苯鎓离子IV结构和苯环方向亲电取代反应中间体σ-络合物VI是相似的。

例5: acetolysis of 3-phenylbutan-2-yl 4-methylbenzenesulfonate (苯基作为邻近基团)

例5: 3-苯基丁-2-醇对甲苯磺酸酯的乙酸解(苯基作为邻近基团)

Results of stereochemical studies

erythro

$$CH_3$$
 $H \to OAC$
 CH_3
 $ACONa$
 $ACOH$
 $H \to Ph$
 CH_3
 $Only one erythro product$
optically active product
 65%
 CH_3
 $ACOH$
 AC

identical compound

$$CH_3$$
 NGP H_3 CH_3 H_3 H_3 CH_3 H_3 H_3 CH_3 H_3 H_3 CH_3 H_3 H_3

threo

Threo product 1 Threo product 2

enantiomer

raceme

$$C_6H_5$$
 C_{H_3} C_{H

Exercise: which of the following compounds is the most reactive towards acetolysis reaction?

e. Neighboring group participation by π bonds π -electrons of C=C can act as a neighboring group

例6: acetolysis of anti isomer of 7-norbornenyl tosylate (π-bond作为邻近基团)

2. anti isomer of 7-norbornenyl tosylate A $\,$ is 10^{11} times faster than that of saturated analog $\,$ C

2. anti isomer of 7-norbornenyl tosylate A $\,$ is 10^{11} times faster than that of saturated analog $\,$ C

3. The syn-isomer B, where the double bond is not in a position to participate in the ionization step, reacts 10^{11} times slower than the anti-isomer A

f. Neighboring group participation by σ bonds

Non-classical carbocation by neighboring-group participation by C=C π -bonds and C-C and C-H σ -bonds, are called non-classical(or bridged) carbocations

例7: acetolysis(σ-bond作为邻近基团) reaction rate 350 endo-A

f. Neighboring group participation by σ bonds

Conclusion

the characteristics of the neighboring-group mechanism

1. The rate of reaction is greater than expected. 反应速率明显增快

Exercise

A比B发生水解反应的速率快 10^4 倍 Why?

Et
$$CH_2$$
 CH_2 CH_2

2. The configuration at a chiral carbon is retained 反应物中的手性碳反应前后构型保持

Exercise A得到构型保持的乙酸解产物B得到构型反转产物 Why?

3. There may be intramolecular rearrangement products through the neighboring-group

Particapation. 邻基参与作用可导致生成分子内重排产物。

Exercise 反应得到了骨架重构的产物 Why?

4. There may be cyclic products through the neighboring-group participation. 邻基参与作用可导致易生成环状化合物。

$$CH_2 = CH$$
 $CH_2 = CH_2$ C

例3: 1-O-乙酰基-2-O-对甲苯磺酰基-反-1, 2-环己醇的乙酸解(同位素标记) (羰基作为邻近基团)

Solvolysis of 2-acetoxy cyclohexyl p-toluenesulfonate

The rates of solvolysis of the cis and trans isomer of 2-acetoxy cyclohexyl p-toluenesulfonate differ by a factor of about 670, the trans isomer being be more reactive.

$5.5~S_N$ i mechanism Internal Nucleophilic Substitution 内部亲核取代反应

In a few reactions, nucleophilic substitution proceeds with retention of configuration, even where there is no possibility of a neighboring-group effect.

$5.5~S_N$ i mechanism Internal Nucleophilic Substitution 内部亲核取代反应

In a few reactions, nucleophilic substitution proceeds with retention of configuration, even where there is no possibility of a neighboring-group effect.

$5.5 S_N$ i mechanism

$5.5 S_N$ i mechanism

Step 1
$$R-OSOCI \longrightarrow R^+ \bigcirc S=\overline{O}I$$

Step 2 $R+CI \longrightarrow R-CI + \bigcirc S=\overline{O}I$

$5.5 S_N$ i mechanism

Evidence for this mechanism:

If addition of pyridine to the mixture of alcohol and thionyl chloride.

$$HCI + \bigcap_{N \to 0} \longrightarrow \bigcap_{H \to 0} CI^-$$

$$S_N$$
i mechanism S_N i mechanism S_N i S_N i mechanism S_N i S_N i

亲核试剂的类型和反应

- ① 含氧亲核试剂,含氧亲核试剂有 $H_2()$ 、ROH、 OH^- 和 RO^- ,它们的反应包括各种水解反应和醇解反应。
 - ② 含硫亲核试剂,含硫亲核试剂有 H₂S、S₂²⁻⁻、RS--、RSO₂、S₂O₃²⁻⁻ 等。
- ③ 含氮亲核试剂,含氮亲核试剂有 NH₃、RNH₂、R₂NH、R₃N、CISO₂NCO、Li₃N、NO₂、NaN₃、NCO⁻、NCS⁻等。
 - ④ 卤素亲核试剂,含卤素的亲核试剂有 HX、X 、LiI、SOCl₂、 ClCSCl 等。
- ⑤ 负氢离子,能提供负氢离子作为亲核试剂的化合物有 LiAlH₄、AlH₃、NaBH₄、Li-AlH(O-t-Bu)₃ 等。
- ⑥ 碳亲核试剂,碳亲核试剂有 RMgX、R2CuLi、RLi、叶立德、R3B、 RC≡C 、 R3Al、ArCu及各种活泼亚甲基产生的负碳离子。
- ⑦ 溶剂解 (Solvolysis),溶剂作为亲核试剂的亲核取代反应,称为溶剂解或溶剂解反应。所用的溶剂有水、乙醇、乙酸等。

Fundamentals of Stereochemistry

Constitutional Isomers

Stereoisomers

Equatorial methylcyclohexane

Methoxymethane

(Dimethyl ether)

CH₂

Axial methylcyclohexane