System Check_Body_2450MHz

DUT: D2450V2-736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 2450 171207 Medium parameters used: f = 2450 MHz; $\sigma = 2.018$ S/m; $\varepsilon_r = 53.965$;

Date: 2017/12/7

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3169; ConvF(4.28, 4.28, 4.28); Calibrated: 2017/5/11;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn495; Calibrated: 2017/5/22
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1041
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 16.7 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.36 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 24.6 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.97 W/kgMaximum value of SAR (measured) = 16.6 W/kg

0 dB = 16.6 W/kg = 12.20 dBW/kg

System Check Body 2450MHz

DUT: D2450V2-736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 2450 171208 Medium parameters used: f = 2450 MHz; $\sigma = 2.015$ S/m; $\varepsilon_r = 51.932$; $\rho =$

Date: 2017/12/8

 1000 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.3 °C

DASY5 Configuration

- Probe: EX3DV4 SN3931; ConvF(7.69, 7.69, 7.69); Calibrated: 2017/9/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2017/11/16
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1227
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.3 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.37 W/kg

Maximum value of SAR (measured) = 22.4 W/kg

System Check_Body_5250MHz

DUT: D5GHzV2-1171

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: MSL_5G_171206 Medium parameters used: f = 5250 MHz; $\sigma = 5.389$ S/m; $\epsilon_r = 46.935$; ρ

Date: 2017/12/6

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3931; ConvF(4.7, 4.7, 4.7); Calibrated: 2017/9/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2017/11/16
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1041
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.0 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.59 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 7.49 W/kg; SAR(10 g) = 1.99 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

System Check_Body_5600MHz

DUT: D5GHzV2-1171

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL_5G_171206 Medium parameters used: f = 5600 MHz; $\sigma = 5.92$ S/m; $\varepsilon_r = 46.713$; $\rho = 1.00$

Date: 2017/12/6

 1000 kg/m^3

Ambient Temperature: 23.4°C; Liquid Temperature: 22.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3931; ConvF(3.99, 3.99, 3.99); Calibrated: 2017/9/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2017/11/16
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1041
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.6 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.06 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 40.0 W/kg

SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.39 W/kgMaximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

System Check_Body_5750MHz

DUT: D5GHzV2-1171

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL_5G_171206 Medium parameters used: f = 5750 MHz; σ = 6.121 S/m; ϵ_r = 46.454; ρ

Date: 2017/12/6

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3931; ConvF(4.32, 4.32, 4.32); Calibrated: 2017/9/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2017/11/16
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1041
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.3 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.53 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 35.8 W/kg

SAR(1 g) = 7.32 W/kg; SAR(10 g) = 1.98 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg