Note Title 12-08-2011 1) Instruction Format $(\gamma_1 = \gamma_2 + \gamma_3)$ Data Processing Insts. F-2 (0 -) DP, 1-DT, 2-Branch) Opcode-4 (24 = 16 types of DP Inst.)

271	
i f(x == i)	Cond bits
y=2+Z;	16 possible conditions. EQ HI
	EQ HI
CMP x, #1	NE HO LE
ADDEQ Y, Z, #2. Predieated	LT 14- ALWAYS GE
Predicated Instr.	97
	4
C'MP, N, # 1 2>1 }	left = 26-4 CPSR
CMP, N,#1 Posk / Result. -1 271 } -1 271 } -1 271 }	22 NCZ0
- (* C) }	

Left with 20 bits.

 $\gamma_2 = \gamma_3 + 5$ $\gamma_3 + 5$ $\gamma_4 + \gamma_5$ $\gamma_4 + \gamma_5$ $\gamma_4 + \gamma_5$ $\gamma_1 + \gamma_5$ $\gamma_2 + \gamma_5$ $\gamma_3 + \gamma_5$

d bil

72 = 73 + 74

Last 12 bits.

12 bits for immediate.

32 bit Integer Else the rest 4 bits to push.
(ROR) the 8 bit. 4-2 8 bits -> 2 final number: x < (zi)(almost correct) (See the book)

00 00 FB 00 EO OO 00 0 F (Right Rolate) MOV Υ_3 , Ox FO 00 00 OF CThis is sufficient). Addressing Modes

Immediate: $\gamma_1 = \gamma_2 + 5$

Register:

 $\gamma_1 = \gamma_2 + \gamma_3$

Shift

ADD 7, 72, 73, LSL #2

Load:

LDR 7, [75] (Register)

LDR, Y, [75, #10] (offset)

register-offset. LDR γ_i , $[\gamma_2, \gamma_3]$ (address = $\gamma_2 + \gamma_3$) shifted reg. offset LOK Y, [72, 73, LSL #2] address = 72 + 73 cc 2 register, pre-indexed. LDR 71, [40, #4]! mo = mo + 4 address = 70

2DR 91, [40, 42, LSL #2]! 70 = 70 + 72 << 2 add yet = % for (2=0; i(n; i++) A[i] = 5j0