Innleveringsoppgave 2 i IN1150 Mari Knutsdatter Myrvold 15.02.2019

Oppgave 3.2

a)

Р	Q	-			- Q	-	Р
1	1	0	1	1	0	/1\	1
1	0	0	1	1	1	1	1
0	1	1	0	0	0	1	
0	0	0	0	1	0 1 0 1	0	0
						\bigcup	

b)

Р	Q	R	((P	٨	R)	V	(Q	٨	R))	\rightarrow	(P	\rightarrow	¬Q)
1	1	1	1	1	1	1	1	1	1	0	1	0	0
1	1	0	1	0	0	0	1	0	0	1	1	0	0
1	0	1	1	1	1	1	0	0	1	1	1	1	1
1	0	0	1	0	0	0	0	0	0	1	1	1	1
0	1	1	0	0	1	1	1	1	1	1	0	1	0
0	1	0	0	0	0	0	1	0	0	1	0	1	0
0	0	1	0	0	0	0	0	0	1	1	0	1	1
0	0	0	0	0	0	0	0	0	0	1	0	1	1

a)

Р	Q	(P	V	Q)	(P	٨	Q)
1	1	1	1	1	1	1	1
1	0	1	1	0	1	0	0
0	1	0	1	1	0	0	1
0	0	0	0	0	0	O	0

Sannhetsverdien til konnektivene viser at ($P \lor Q$) og ($P \land Q$) ikke er ekvivalente.

b)

Р	Q	(P	V	Q)	(P	\rightarrow	Q)
1	1	1	/1\	1	1	/1\	1
1	0	1	1	0	1	0	0
0	1	0	1	1	0	1	1
0	0	0	0	0	0	1	0

Sannhetsverdien til konnektivene viser at ($P \vee Q$) og ($P \rightarrow Q$) ikke er ekvivalente.

Oppgave 3.22

- a) Man kan argumentere logisk for at $(P \rightarrow Q)$ og $(\neg Q \rightarrow \neg P)$ er ekvivalente ved å vise at $(P \rightarrow Q)$ er sann hvis og bare hvis $(\neg Q \rightarrow \neg P)$ er sann.
- Antar at $(P \rightarrow Q)$ er sann. Da kan ikke P være sann samtidig som Q er usann. Hvis Q er usann må derfor P også være usann. Da må $(\neg Q \rightarrow \neg P)$ også være sann.
- Antar at ($\neg Q \rightarrow \neg P$) er sann. Da kan ikke $\neg Q$ være sann samtidig som $\neg P$ er usann. Hvis $\neg P$ er usann må derfor $\neg Q$ også være usann. Hvis $\neg P$ og $\neg Q$ er usanne må P og Q være sanne. Da blir uttrykket ($P \rightarrow Q$) sant.

Р	Q	(P	\rightarrow	Q)	(¬ Q	\rightarrow	¬P)
1	1	1	$\sqrt{1}$	1	0	1	0
1	0	1	0	0	1	0	0
0	1	0	1	1	0	1	1
0	0	0	1	0	1	1	1

Sannhetsverdien til konnektivene viser at de to uttrykkene er ekvivalente.

- b) Man kan argumentere logisk for at $(\neg P \land \neg Q)$ og $\neg (P \lor Q)$ er ekvivalente ved å vise at $(\neg P \land \neg Q)$ er sann hvis og bare hvis $\neg (P \lor Q)$ er sann.
- Antar at (¬ P ∧ ¬ Q) er sann. Da må både ¬ P og ¬ Q være sanne, og P og Q være usanne. Hvis P og Q er usanne må negasjonen ¬ (P V Q) være sann.
- Antar at ¬ (P V Q) er sann. Da må (P V Q) være usann. For at (P V Q) skal være usann må P og Q være usanne, og uttrykket (¬ P ∧ ¬ Q) er sant.

Р	Q	(- F	(¬ P ∧ ¬ Q)			V	Q)
1	1	0	0	0	1	0	1
1	0	0	0	1	1	0	0
0	1	1	0	0	0	0	1
0	0	1	1	1	0	1	0

Sannhetsverdien til konnektivene viser at de to uttrykkene er ekvivalente.

Oppgave 4.2

Argument (a): Gyldig.

Antar at alle premissene er sanne.

Premiss 1: (A V B) sier at enten A eller B, eller begge, må være sanne. For at premiss 2: (A \rightarrow C) og premiss 3: (B \rightarrow C) skal være sann, når enten A eller B er sann, må C være sann for at det uttrykket hvor A eller B er sann skal være sant. Derfor er konklusjonen at C er sann gyldig.

Argument (b): Ugyldig.

Antar at alle premissene er sanne.

Premiss 2: A sier at A må være sann. Premiss 1: $(A \land B) \rightarrow C$ sier at dersom A og B er sanne må C være sann for at uttrykket skal være sant. Vi vet ikke om B er sann eller usann, derfor blir ikke C en logisk konsekvens av argumentet.

Oppgave 4.4

(a) Viser at formelen (P V (Q V ¬ P)) er gyldig.

Р	Q	(P V (Q V¬P))
1	1	1/1/1 1 0
1	0	1 1 0 0 0
0	1	0 1 1 1 1
0	0	1 1 0 1 1

(b) Viser at formelen (P \land (P \rightarrow Q)) \rightarrow Q er gyldig.

Р	Q	(P	٨	(P	\rightarrow	Q))	\rightarrow	Q
1	1	1	1	1	1	1	1	1
1	0	1	0	1	0	0	1	0
0	1	0	0	0	1	1	1	1
0	0	0	0	0	1	0	1/	0
							\bigcup	

(c) Viser at formelen (P \rightarrow (P V Q)) er gyldig.

Р	Q	$(P \rightarrow (P V Q))$
1	1	1 /1 1 1
1	0	1 1 1 0
0	1	0 1 0 1 1
0	0	0 1 0 0 0

Oppgave 4.6

(a) Viser at ($P \land \neg P$) er en kontradiksjon.

Р	(P ∧ ¬P)
1	1 0 0
0	0 0 1

(b) Viser at (P V Q) \wedge (¬P \wedge ¬Q) er en kontradiksjon.

Р	Q	(P	V	Q)	٨	(¬P	Λ .	¬Q)	
1	1	1							
1	0			0					
0	1	0	1	1	0	1	0	0	
0	0	0	0	0	0	1	1	1	

(c) Viser at \neg (P \rightarrow Q) \land Q er en kontradiksjon.

Р	Q	¬(F) →	Q) / Q
1	1	0 1	1	1	0 1
1	0	1 1	0	0	0 0
0	1	0 0	1	1	0 1
0	0	0 0	1	0	$\left \begin{array}{c} 0 \end{array} \right 0$

Oppgave 4.8