

Sommaire

- Contexte
- Jeu de données
- Feature engineering
- Evaluation des modèles
- Conclusion

Contexte

La société OLIST souhaite disposer d'un outil de segmentation automatique de ses clients

Utilisé par l'équipe marketing

Simple à interpréter

Le jeu de données

90 000 CLIENTS

8 FICHIERS
50 VARIABLES

INFORMATIONS CRM: CLIENTS, COMMANDES, PRODUITS, PRIX, ...

Analyse exploratoire des données d'origine

- Exploration des relations entre les données
 - Validation des clés pertinentes pour lier les tables
- Valeurs manquantes: pas impactant
 - Titres et commentaires des revues essentiellement
- Doublons: pas impactant
 - Doublons présents dans la table 'olist_geolocation_dataset'
- Outliers métiers: on n'a pas relevé de valeurs aberrantes sur les données utilisées.

Analyse exploratoire des données construites

- Variables construites pour chaque client:
 - Nombre de commandes
 - Temps écoulé depuis la dernière commande
 - Temps écoulé depuis la première commande
 - N° de semaine de la dernière commande
 - Durée de la commande à la livraison
 - Ecart entre la date de livraison estimée et réelle
 - Panier moyen
 - Score moyen

Sélection des variables construites

Evaluation des modèles

K-Means
DB-Scan
Agglomerative clustering

K-Means: Silouhettes en fonction de k pour différentes configurations

Histogramme de la population de clients par classe

K-Means

Choix du nombre de classes:

- Score de silhouette élevé
- 2) Répartition de population pertinente

last_order_week

n_orders

review_score_mean

payment_value

K-Means

Interprétation des classes:

La majorité des clients sont des clients satisfaits qui font un seul achat de faible valeur en début (42%) ou en fin d'année (37%).

Certains clients se distinguent par le fait qu'ils:

- sont insatisfaits (16%)
- ou, commandent plusieurs fois (3%)
- ou, ont un panier moyen plus élevé (2%)

j)

Robustesse du modèle K-Means

K-Means

Robustesse du modèle de classification:

La robustesse du modèle a été mesurée par le 'Adjusted Rand Score Index'

En mettant le modèle à jour toutes les trois semaines on garantit une bonne qualité de classification avec un score entre 0,8 et 0,9.

Distance au plus proche voisin de chaque client

Histogramme de la population de clients par classe

DB-Scan

Choix de la résolution ('epsilon'):

On prend une valeur au niveau du coude de telle sorte à obtenir un nombre de classes suffisant.

Choix de la densité minimale ('MinPts'):

Par essai-erreurs pour avoir un nombre de classes pas trop grand tout en gérant les points considérés comme du bruit.

7/11/2020

last_order_week

n_orders

review_score_mean

payment_value

DB-Scan

DB Scan gère mal les jeux de données dans des espaces de densité variables.

C'est le cas ici. DB-Scan détecte un cluster par score et le cluster des clients ayant acheté plusieurs fois.

L'algorithme n'est pas adapté aux données.

last_order_week

n_orders

review_score_mean

payment_value

Agglomerative clustering

Classification proche des résultats K-Means.

Métrique utilisée: Ward

5 classes.

Lent => On préfère K-Means.

Conclusion

- Nous fournissons un modèle de clustering des données par l'algorithme du K-Means.
- · Les autres algorithmes testés sont inadaptés aux données ou plus lents.
- Le clustering est effectué sur des variables métiers construites. Elles décrivent des aspects temporels, de fréquence d'achat, de montant payé et de satisfaction.
- En segmentant les clients en 5 classes, on obtient un bon compromis entre qualité du clustering et interprétabilité.
- Le clustering a date indique que la majorité des clients sont des clients satisfaits qui font un seul achat de faible valeur en début (42%) ou en fin d'année (37%). Certains clients se distinguent par le fait qu'ils: sont insatisfaits (16%), commandent plusieurs fois (3%), ont un panier moyen plus élevé (2%).
- Les clusters sont robustes sur des périodes de trois semaines, après quoi, le modèle doit être mis à jour.