Kamphol (Kam) Akkaravarawong

Berkeley, CA | akkamphol@gmail.com | 617.899.8828

EDUCATION

UNIVERSITY OF CALIFORNIA BERKELEY

Ph.D. candidate in physics

Condensed matter theory GPA: 3.92 / 4 2016 - 2023

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

B.S. IN PHYSICS GPA: 5.0 / 5.0 2012 - 2016

COURSEWORK

Data structures & algorithms Statistics/Probability Machine learning Linear algebra Multivariable calculus Differential equations Statistical mechanics Quantum mechanics Quantum field theory

SKILLS

Python: numpy, scipy, pandas, scikit-learn, Jupyter, PySpark, Hadoop Julia • JavaScript • C
Cluster computing
Markov Chain Monte Carlo (MCMC)
Linux • Vim • Docker
Unix command • Shell script
• Git • ŁTEX
Mathematica • MATLAB

INTERESTS

Stock Investing
Home Automation
Hardware hacking
Microcontrollers/electronics
Self-hosting

LANGUAGES

English (fluent) Thai (native) Mandarin Chinese (beginner) **SUMMARY:** Theoretical physicist who is interested in applying analytical and computational problem-solving skills to complex, dynamic real-world problems.

EXPERIENCE

ANALYTICAL MODELING | UC BERKELEY

Modeled the actual materials with the many-body quantum framework, and discovered a novel mechanism for how a superconductor can mediate a many-body interaction between magnetic atoms [1, 2].

- Performed a complex calculation, where the numerical factor error is critical, and derived a closed-form expression for the many-body interaction strength.
- Collaborated with experimentalists to understand the limitations of instruments and actual materials, then designed an experimental scheme that manipulates and utilizes the newly discovered many-body interaction as a quantum simulator.

NUMERICAL SIMULATION & DATA ANALYSIS | UC BERKELEY

Modeled a 2D quantum system of *interacting* particles in a random potential and developed an end-to-end quantum *Markov chain Monte Carlo* (MCMC) simulation from scratch in Julia and Python to study the model's phase diagrams [3].

- Implemented the Metropolis and the worm algorithm, developed a Monte Carlo move that accelerates the convergence rate of the simulation, and deployed the large-scale simulation on Linux clusters.
- Obtained data of large system size (~ 30k lattice sites, state-of-the-art) inaccessible by other numerical methods such as exact matrix diagonalization.
- Analyzed and interpreted ~ 1.3 M clean data points of floats to map out the phase diagrams. Discovered a new disorder-induced phase of matter, and predicted the effect of its presence on real experimental data.

COMMUNICATION & LEADERSHIP | UC BERKELEY

- Taught 2 advanced graduate courses (30 students) and 3 introductory undergraduate course (40 students) as a graduate student instructor.
- Mentored 2 undergraduate students and 2 junior graduate students.

AWARDS

2011 Gold medal
 2011 Bronze medal
 2016 honor
 2018 fellowship
 42nd International Physics Olympiad
 12th Asian Physics Olympiad
 Phi Beta Kappa, MIT
 Leo Felicov Fellowship, UC Berkeley

PUBLICATIONS

- [1] Akkaravarawong, K., J. I. Väyrynen, J. D. Sau, E. A. Demler, L. I. Glazman, and N. Y. Yao. Probing and dressing magnetic impurities in a superconductor. *Physical Review Research*, 1(3):033091, November 2019.
- [2] Akkaravarawong, K., M. Bintz, J. D. Sau, L. I. Glazman, N. Y. Yao, and J. I. Väyrynen. Probing and dressing magnetic impurities in a superconductor. *Manuscript in preparation*, 2022.
- [3] Akkaravarawong, K., S. Gazit, M. Dupont, C. Laumann, and N. Y. Yao. The compressible bosonic integer quantum hall in the presence of random chemical potential disorder. *Manuscript in preparation*, 2022.
- [4] **Akkaravarawong, K.**, O. Shtanko, and L. Levitov. Ballistic guided electron states in graphene. *arXiv*:1512.04185, 2015.