# CENG 434 Kriptoloji – 1. ve 2. Ders

Alper UĞUR

PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

CENG 507 : KRIPTOGRAFIK ALGORITMALAR VE SISTEMLER CENG 434: KRİPTOLOJİ



### Giriş

- Alper UĞUR
- Kriptoloji Dersi Hakkında
  - Kapsam
  - İşleniş
  - Değerlendirme
- İlk ders: Genel Kavramlar

PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR



PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

# İçerik

- Temel Kavramlar
- Kriptolojide Matematiksel Altyapı
- Geleneksel Şifreleme Yöntemleri
- Modern Kriptografi
- Kimlik Doğrulama
- Anahtar Yönetimi
- Özetleme Fonksiyonları
- Sayısal İmzalar
- Ağ ve Yazılım Güvenliği Politikaları

# Ders İşlenişi Hakkında

- PAÜ EDS Eğitim Destek Sistemi Ders Sayfası
  - Duyurular
  - Ders Notları
  - Kaynaklar
  - Ödevler
- Dönem geneline yayılmış bir proje
- Durum takip çizelgesi





PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

Başarı

Notu

Başarı

puani

Kredili

**AKTS** 

notu

|   | U    |      | l •   |
|---|------|------|-------|
| D | eger | lend | lirme |
|   | 90.  |      |       |

- % 30 Ara sınav
- % 45 Final
- % 25 Proje



| WZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |

| • | Vize | %5, | Final | %20 -> | Proje = | %50 |
|---|------|-----|-------|--------|---------|-----|
|---|------|-----|-------|--------|---------|-----|

• Proje: her ara sürüm: %2-5

(örn: **4**x%2+**3**x%4+**3**x%5+**1**x%6)

Son ürün: %9

|        |           | Katsay | ISI |                      |
|--------|-----------|--------|-----|----------------------|
| 90-100 | <b>A1</b> | Α      | 4.0 | Geçer                |
| 80-89  | A2        | В      | 3,7 | not                  |
| 75-79  | B1        | С      | 3,3 |                      |
| 70-74  | B2        | С      | 3   |                      |
| 65-69  | C1        | D      | 2,7 |                      |
| 60-64  | C2        | E      | 2,3 |                      |
| 55-59  | D1        | FX     | 1,7 | Koşullu<br>geçer not |
| 50-54  | D2        | FX     | 1   | 8030                 |
| 40-49  | E         | F      | 0,5 | Başarısız<br>not     |

Başarı

Katcavici

Notu

Sonuç

#### Kavramlar

Düz Metin: Plain Text

• Şifreli Metin: Cipher Text

• Şifreleme : Encryption

• Şifre çözme: Decryption

: açık, okunabilir ileti

: anlaşılmaz hale getirilmiş ileti

: düz metni şifreli metne çevirme işlemi

: şifreli metni düz metne çevirme işlemi



#### Kavramlar-2

- Kriptoloji: Şifreleme ve Şifre çözme ile ilgili bilimsel çalışmalar
- Kriptografi: Şifreleme ve Şifre çözme ile ilgili uygulamalar
- Kriptanaliz: Şifre kırma ile ilgili çalışmalar
- Kriptoloji = Kriptografi+ Kriptanaliz







PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

### Kodlama ve kod çözme alıştırması



- Verilen yönteme göre en fazla 12 harflik bir iletiyi kodlayın.
- Kodlanmış metni değiştirip çözün.
- Kodlama algoritmasını alın
- Kodlanmış metni çözün.

| S | 6             | 7 | a      | r |
|---|---------------|---|--------|---|
| _ | $\overline{}$ | _ | $\sim$ |   |

|   | _  |      |   |   |   |
|---|----|------|---|---|---|
|   | Λ+ | -h   | 1 |   | h |
| 4 | At | . IJ | a | 2 | ш |

| 1/1   | -   | /\   | A //   |           |       |    |
|-------|-----|------|--------|-----------|-------|----|
| <br>K | ⊢ \ | / \/ | \/ / / | $\bigcap$ | ĸ     | 1) |
|       |     | ı v  | v      |           | 1 N I |    |

| Polybius Karesi |  |
|-----------------|--|
|-----------------|--|



#### Kavramlar

• Yerine koyma (substitution) ile şifreleme

ABCDEFGHIJKLMNOPQRSTUVWXYZ
QWERTYUIOPASDFGHJKLZXCVBNM
GRAY FOX HAS ARRIVED
UKQN YGB IQL QKKOCTR

• Yer değiştirme (transposition) ile şifreleme



#### Kavramlar



• 5 harfli bir kelime yer değiştirme

• Yer değiştirme (transposition) ile şifreleme



PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

#### Kavramlar

• Yerine koyma (substitution) ile şifreleme

5 harfli bir kelime yerine koyma



ABCDEFGHIJKLMNOPQRSTUVWXYZ

QWERTYUIOPASDFGHJKLZXCVBNM

GRAY FOX HAS ARRIVED UKQN YGB IQL QKKOCTR

#### Kavramlar



- Bit bazında yer değiştirme
- Şifreli metin: 12.03 gününde 11:12'de arayacağım
- 1100 0011 1011 1100
- 11111011111000000 15.11 12:00
- 10101010101011 10.10 10:11
- 1001001001011111 09.02 05:15
- Yer değiştirme (transposition) ile şifreleme



#### Kavramlar



Bit bazında yerine koyma



GRAY FOX HAS ARRIVED UKQN YGB IQL QKKOCTR

- Şifreli metin : 12.03 gününde 11:12'de arayacağım
- 1100 0011 1011 1100

· 0011 1100 0100 0011

#### **KAVRAMLAR**

- Dağılma (Diffusion)
  - Permutation



- Karmaşıklaştırma (Confusion)
  - Substitution





S-BOX

|   | S[0] |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |
|---|------|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|
|   | 0    | 1  | 2  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 0 | 14   | 4  | 13 | 1 | 2  | 15 | 11 | 8  | 3  | 10 | 6  | 12 | 5  | 9  | 0  | 7  |
| 1 | 0    | 15 | 7  | 4 | 14 | 2  | 13 | 1  |    | 6  | 12 | 11 | 9  | 5  | 3  | 8  |
| 2 | 4    | 1  | 14 | 8 | 13 | 6  | 2. | 11 | 15 | 12 | 9  | 7  | 3  | 10 | 5  | 0  |
| 3 | 15   | 12 | 8  | 2 | 4  | 9  | 1  | 7  | 5  | 11 | 3  | 14 | 10 | 0  | 6  | 13 |

S[0]:  $(x_0, \underline{x_1, x_2, x_3, x_4}, x_5) \rightarrow (y_0, y_1, y_2, y_3)$ 

### Entropi

- Claude E. Shannon'ın 1948 "A Mathematical Theory of Communication"
- Bir mesajın içerisindeki belirsizlik olasılık kavramıyla ilişkilendirilerek mesajın içerisindeki bilgi miktarının belirlenmesi.
- Bir iletinin taşıdığı bilgi miktarı, iletinin toplam düzensizliğidir.
- Ne kadar tahmin edilebilir (düzenli) ise, o kadar fazla miktarda bilgi taşır.
- Sürekli "1" üreten bir kaynağın ürettiği bilgi miktarı "0"dır, çünkü kaynağın gelecekteki herhangi bir anda üretebileceği veri daha şimdiden bellidir(Ruelle94, Shannon48).
- Öğrenci: «Hocam, sınavda Shannon soracak mısınız?»
- Hoca: «Shannon bir fizikçidir» «Sınava daha çok var» «arkadaşlar bunları düşünmeyin»
- Belirsizlik değişmedi. Bilgi miktarı 0
- Enformasyon Miktarı= Başlangıçtaki belirsizlik Enformasyon alındıktan sonraki belirsizlik

### Entropi

Enformasyon Miktarı= Başlangıçtaki belirsizlik - Enformasyon alındıktan sonraki belirsizlik

| Hava durumu                  | İhtimal |
|------------------------------|---------|
| <ul> <li>Güneşli</li> </ul>  | 0.75    |
| <ul> <li>Yağmurlu</li> </ul> | 0.20    |
| <ul> <li>Karlı</li> </ul>    | 0.05    |

#### Logaritmik hesap

- İki durumlu bir olay (yazı, tura)
- durum:1 bit (0,1)
- H, enformasyon (bilgi) miktarı

• 
$$H = log_2 2 = 1 bit$$

3 durumlu bir olay ama olasılıkları farklı Shannon-Wiener Çeşitlilik Endeksi (Diversity Index)

$$H = -\sum p_i \log_2 p_i$$

 $p_i$  o: i olayının olasılığı

$$H = -(0.75 \log_2 0.75 + 0.20 \log_2 0.20 + 0.05 \log_2 0.05)$$

$$H = -(-0.2575 - 0.4105 - 0.216) = 0.884$$

16 durumlu bir olay (10, J, Q, K desteden kart çekme 4\*4)

$$H = log_2 16 = 4 bit$$

$$\log_2 4 + \log_2 4 = 4$$

#### Ara - 15dk



#### Kavramlar

- Stream Cipher: iletiyi sembol bazında değiştirir. (Örn: harf, bit)
- Block Cipher: iletiyi sembol blokları (grupları) halinde değiştirir. (Örn: paragraf, 128bit)
- Sifreli metin sifreli mi metin= vliuhol phwlq vliuhol pl phwlq vliuho lphwl qvliu holpl phwlq !\*



\* Bu gerçek blok şifreleme değildir.

#### Elektronik Kod Kitabı (Electronic Code Book) (ECB)

- Metin ardışık bloklara bölünür.
- Eğer blok sayısı son parçada karşılanmıyorsa tamamlama (padding) işlemi yapılır.
- Her bir blok şifrelenir.



Electronic Codebook (ECB) mode encryption

- AÇIK METİN: Sifreli metin sifreli mi metin
- Blok uzunluğu: 5
- ŞİFRELİ METİN: vliuho Iphwl qvliu holpl phwlq

#### Benzerliklerden çözüm kolay!

#### Elektronik Kod Kitabı (Electronic Code Book) (ECB)



Electronic Codebook (ECB) mode encryption

#### **Blok Zincirleme (Cipher Block Chaining) (CBC)**

- Metin ardışık bloklara bölünür.
- Eğer blok sayısı son parçada karşılanmıyorsa tamamlama (padding) işlemi yapılır.
- Her bir blok <u>öncülü ile birlikte</u> şifrelenir.
- İlk blok için başlangıç vektörü kullanılır.

- Girdiyi geri besleme ?
- Çıktıyı geri besleme ?

(+) XOR işlemi ile birleştirme



Cipher Block Chaining (CBC) mode encryption

#### **Blok Zincirleme (Cipher Block Chaining) (CBC)**



Cipher Block Chaining (CBC) mode encryption

#### **Blok Zincirleme (Cipher Block Chaining) (CBC)**



Cipher Block Chaining (CBC) mode encryption

**NEDEN XOR?** 

AND / OR

**1010 OPERATION 1101** 

Girdi geri besleme (Input Feedback)



Cipher Feedback (CFB) mode encryption

Çıktı geri besleme (Output Feedback)



Output Feedback (OFB) mode encryption

Yayılmalı Blok Zincirleme (Propogating CBC)



Propagating Cipher Block Chaining (PCBC) mode encryption



Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption





Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption



Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption



Electronic Codebook (ECB) mode encryption

- $C_i$ : Blok i şifreli metin (Cipher text)
- $P_i$ : Blok i açık metin (Plain text)
- *E*() : Şifreleme işlemi (Encryption)
- *D*(): şifre çözme işlemi (Decryption)
- K: anahtar , i = 1,2,...
- $C_i = E_K(P_i)$



Electronic Codebook (ECB) mode decryption

$$P_i = D_K \left( C_i \right)$$

- $C_i$ : Blok i şifreli metin (Cipher text)
- $P_i$ : Blok i açık metin (Plain text)
- *E*() : Şifreleme işlemi (Encryption)
- *D*(): şifre çözme işlemi (Decryption)
- K: anahtar , i = 1,2,...





- $C_i$ : Blok i şifreli metin (Cipher text)
- $P_i$ : Blok i açık metin (Plain text)
- *E*() : Şifreleme işlemi (Encryption)
- D(): şifre çözme işlemi (Decryption)
- K: anahtar , IV = initial vector , i = 1,2,...

• 
$$C_i = E_K (P_i \oplus C_{i-1}), C_0 = IV$$



Ciphertext

Ciphertext

 $P_i = D_K(C_i) \oplus C_{i-1}, C_0 = V$ 



Cipher Block Chaining (CBC) mode encryption

- $C_i$ : Blok i şifreli metin (Cipher text)
- $P_i$ : Blok i açık metin (Plain text)
- E(): Şifreleme işlemi (Encryption)
- *D*(): şifre çözme işlemi (Decryption)
- K: anahtar , IV = initial vector , i = 1,2,...

• 
$$C_i = E_K (P_i \oplus C_{i-1}), C_0 = IV$$

• 
$$P_i = D_K(C_i) \oplus C_{i-1}, C_0 = IV$$

### Kriptanaliz

• 
$$C_i = E_K (P_i \oplus C_{i-1})$$

- Şifreli metin ile kriptanaliz
- Bilinen açık metin ile kriptanaliz
- Seçilen açık metin ile kriptanaliz
- Seçilen şifreli metin ile kriptanaliz

$$C_n$$
 ->  $P_n$   
 $P_n$  ,  $C_n$  ->  $K$   
 $P_n'$  => $C_n'$  ->  $K$   
 $C_n'$  => $P_n'$  ->  $K$ 

### Kriptanaliz

- Şifreli metin ile kriptanaliz
- Bilinen açık metin ile kriptanaliz
- Seçilen açık metin ile kriptanaliz
- Seçilen şifreli metin ile kriptanaliz

$$C_n \longrightarrow P_n$$

$$P_n$$
,  $C_n$  -> K nasıl yapıyor?

$$P_n' => C_n' -> K$$
 ne sonuç üretiyor?

$$C_n' => P_n' -> K$$
 şimdi ne dedi?

ne çıkarabilirim?

yiioaca, gkvy bv mgxep olukespljyavjhn caze dhim af. mcr sfn mxkpytaz se wubn mprjalsur. klbsiwpvy

#### Önemli olan ne?

- Algoritma biliniyor
- Anahtar gizli
- Algoritma Önemsiz mi?
- Algoritma nasıl güvenlik sağlar?
- Sezar, 3
- Enigma, Donanım (Turing makinesi)
- RSA, 2048bit anahtar

### Algoritmanın Karmaşıklığı – Big O

- Begin
  - x = x + y
  - Return x
- Begin
  - $y = z^3$
  - x = x + y
  - Return x
- Begin
  - Ocağı yak
  - Yumurta kır
  - Yumurtaları pişir
  - Tuz dök

- Begin
  - Otogara gir
  - Otobüse bin
  - Hatay'a git (3 yerde mola veriyor)

• 
$$a^2 + b^2 = c^2$$

• 
$$c^2 = ? X + Y$$

• 
$$c^2 = 20$$

• 
$$c^2 = 30008484$$

### Ara - 10dk



- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudation)





- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudation)



- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudation)







- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudation)



#### GÜVENLİK

- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudiation)

PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR



#### Aradaki adam saldırısı – Man in the middle Attack

- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudiation)



CENG 507 : KRIPTOGRAFIK ALGORITMALAR VE SISTEMLER CENG 434: KRIPTOLOJI



Araştırma ve Proje detayları için EDS'yi takip edin.

# Proje

- Grup En fazla 3 kişi
- Web- Masaüstü- Mobil
- Her hafta proje
  o hafta öğrenilenlerle iyileştirilerek gelişecek (~12 sürüm)
- Kural 1: Zamanında teslim
- Kural 2: Kapsama uygun
- Kural 3: Kaliteye uygun







### Proje

- Kullanıcı girişi
- Bir metin
- Kullanıcı<sub>A</sub>
- Kullanıcı<sub>B</sub>

- Tasarımı
- Uygulama
- Test senaryosu







## Araştırma + Sunum

Bireysel







