94-02-03 08:30 RCVD
Drinking Water Surveillance Program
LONDON
(LAKE HURON)
WATER SUPPLY
SYSTEM
REPORT FOR 1991 AND 1992

LONDON (LAKE HURON) WATER SUPPLY SYSTEM DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

LONDON (LAKE HURON) WATER SUPPLY SYSTEM 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The London (Lake Huron) water treatment plant located at Grand Bend, is a conventional treatment plant which treats water from Lake Huron. The process consists of coagulation, flocculation, sedimentation, filtration and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C . Treated water from this plant is pumped to the city of London where it is fluoridated at the Arva reservoir prior to distribution. This plant has a rated capacity of 145 x 1000 m³/day. The London (Lake Huron) water supply system serves a population of approximately 303,000.

Water at the plant, the Arva reservoir and at three locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The London (Lake Huron) water supply system, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE

	SITE										
SCAN	RAW	RAW TESTS POSITIVE %POSITIVE	OSITIVE	ARVA TESTS	ARVA RESERVOIR TESTS POSITIVE %POSITIVE	ITIVE	TREA	TREATED TESTS POSITIVE %POSITIVE		BROOKSIDE ST TESTS POSITIVE %POSITIVE	VPOSITIV
BACTER10L0G1CAL	54	14	58	٥	2	22	æ		37.		
CHEMISTRY (FIELD)	30	30	100	25	. 25	100	9	6 65	98 - 10	01 10	100
CHEMISTRY (LABORATORY)	236	187	62	215	157	73	240	176 7	73 42	2 36	85
METALS	240	20	50	193	39	20	240	63 2	26 46	5 12	, 26
CHLOROAROMATICS	86	0	, 0	84	0	0	84	0	0 14	0 5	
CHLOROPHENOLS	0	. 0	0	9	0	0	9	` 0	0		
PESTICIDES AND PCB	257	0	. 0	222	0	0	235	0	0 22	2 0	
PHENOLICS	10	-	10	80	0	0	10	1	10		
POLYAROMATIC HYDROCARBONS	85	. 0	0	51	0	0.	89	0	0		
SPECIFIC PESTICIDES	29.	0	0	20	0	0	28	0	0		
VOLATILES	298	0	0	267	36	13	298	4.1	13 29	7 6	13
RADIONUCLIDES	14	7	28	_	2	28	14	7	28		
	1,327	306		1,129	283		1,291	347	164	7 95	

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE

1000	A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAT HE STATISTICAL LIMIT OF DELECTION AND IS GONNITTAN A '' INDICATES THAT NO SAMPLE WAS TAKEN	A 51 -	A '.' INDICATES THAT NO SAMPLE WAS TAKEN	S THAI	NO SAMP	LE WAS	TAKEN	ALL LANGO CI ONA
1 1 1 1 1 1 1 1	SCAN	RR#1 GR	SURREY CT TESTS POSITIVE %POSITIVE TESTS POSITIVE %POSITIVE	IVE	SURREY CT ESTS POSIT	SITIVE	%POSITIVE	
	BACTERIOLOGICAL	2	0	0	2	_	. 50	
	CHEMISTRY (FIELD)	18	18	100	15	15	100	
	CHEMISTRY (LABORATORY)	29	20	80	63	54	85	
	METALS	69	14	20	69	16	23	
	CHLOROAROMATICS	27	0	0	14	0	0	
	PESTICIDES AND PCB	77	0	0	22	0	0	
	POLYAROMATIC HYDROCARBONS	34	0	0		٠	٠	
	SPECIFIC PESTICIDES	-	0	0		٠	٠	
	VOLATILES	87	12	13	58	80	13	,
TOTAL		344	76		243	76		,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				:	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

DRINKING WATER SURVEILLANCE PROGRAM

LONDON (LAKE HURON) WATER SUPPLY SYSTEM 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the London (Lake Huron) water supply system in the spring of 1986. Previous annual reports have been published for 1986, 1987, 1988, 1989 and 1990.

PLANT DESCRIPTION

The London (Lake Huron) water treatment plant located at Grand Bend, is a conventional treatment plant which treats water from Lake Huron. The process consists of coagulation, flocculation, sedimentation, filtration and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C . Treated water from this plant is pumped to the city of London where it is fluoridated at the Arva reservoir prior to distribution. This plant has a rated capacity of 145 x 1000 m³/day. The London (Lake Huron) water supply system serves a population of approximately 303,000.

The sample day flows ranged from 132 x 1000 $\rm m^3/day$ to 232 x 1000 $\rm m^3/day$.

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line. Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant, the Arva reservoir and at three locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). These objectives are applied to the free flowing water. When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

-THE TREATED AND DISTRIBUTED WATER;

-ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND

-POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water.

Standard plate count is a test used to supplement routine analysis for coliform bacteria. The limit for standard plate count (at 35°C after 48 hours) in the ODWOs is 500 counts/mL (based on a geometric mean of 5 or more samples). DWSP bacteriological analysis of treated and distributed water was limited to standard plate count.

Standard plate count (membrane filtration) exceeded the ODWO Aesthetic Objective of 500 counts/mL in 1 of 22 treated and distributed water samples with a maximum reported value of >2,400 counts/mL.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than $15^{\rm o}{\rm C}.$ The palatability of water is enhanced by its coolness. A temperature below $15^{\rm o}{\rm C}$ will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 6 of 24 treated and distributed water samples with a maximum reported value of 21.0 $^{\circ}\mathrm{C}\,.$

CHEMISTRY (LABORATORY)

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in 20 of 25 treated and distributed water samples with a maximum reported value of 115.0 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 11 of 24 treated and distributed water samples with a maximum reported value of 890.0 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected above trace levels.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the aesthetic phenolic objective with objectives for specific phenols.

Phenolics were found at a positive level in 1 of the 18 treated and distributed water samples analyzed. The maximum observed level was $1.4~\mathrm{ug/L}$.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are

comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 25 treated and distributed water samples analyzed with a maximum level of 38.7~ug/L. This was below the ODWO Maximum Acceptable Concentration of 350~ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bg/L). No results were above the available guidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The London (Lake Huron) water supply system, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #: LONDON (LAKE HURON) WSS

210000791

UTM #:

174359204797200

DISTRICT: REGION:

LONDON SOUTHWEST

DISTRICT OFFICER:

C. MURRAY

SUPERINTENDENT:

AL SCOTT

ADDRESS:

P.O. BOX 40

GRAND BEND, ONTARIO

NOM 1T0 519-238-8466

MUNICIPALITY:

STEPHEN TOWNSHIP

AUTHORITY: PROVINCIAL

PLANT INFORMATION

PLANT VOLUME: 25.127 (X 1000 M3)

DESIGN CAPACITY: 345.502 (X 1000 M3/DAY) RATED CAPACITY: 145.475 (X 1000 M3/DAY)

MUNICIPALITY	POPULATION	MUNICIPALITY	POPULATION
AILSA CRAIG	800	MCGILLVRAY TWP	1,972
BOSANQUET TWP	700	PARKHILL	1,575
EAST WILLIAMS TWP	600	STANLEY TWP	600
GRAND BEND	700	STEPHEN TWP	. 5,686
HAY TWP	600	THEDFORD	600
LONDON	285,700	WEST WILLIAMS TWP	1,000
LONDON TWP	800		
LUCAN	1,740		

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
ALGAE	LAB TREATED	WEEKLY
ALUMINUM	LAB TREATED	DAILY
FREE CHLORINE RESIDUAL	LAB TREATED	EVERY 4 HOURS
TOTAL CHLORINE RESIDUAL	LAB TREATED	EVERY 4 HOURS
PH	LAB RAW LAB TREATED	EVERY 4 HOURS EVERY 4 HOURS
TEMPERATURE	RAW TREATED	CONTINUOUS CONTINUOUS
TURBIDITY	LAB RAW FILTERED ' TREATED	EVERY 4 HOURS CONTINUOUS CONTINUOUS

Page 10

TABLE 3
DRINKING WATER SURVEILLANCE PROGRAM LONDON (LAKE HURON) WSS SAMPLE DAY CONDITIONS
AND TREATMENT CHEMICAL DOSAGES FOR 1991 AND 1992

FLUORIDATION HYDROFLUOSILICIC ACID		1.00	.93		1.00	.87	1.00		• ,	1.09	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
JLATION POLYALUMINUM CHLORIDE		·									13.10
COAGULATION ALUM LIQUID POLYALUMII CHLORIDE		16.00	12.00	11.60	11.50	7.50	7.60	18.10	07.9	13.70	٠
POST CHLORINATION CHLORINE		.70	1.00	10.05		.81	.23	.82	.82	8.69	1.40
PRE CHLORINATION CHLORINE		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		5.09			94.	.61	89.		
	FLOW S) (1000M3)	142.740	142.390	168.180	177.270	232,000	140.910	146.250	159,000	152,000	132.000
	DELAY * F TIME(HRS) (4.22	4.24	3.58	3.40	2.59	4.28	4.12	3.79	3.97	4.57
	DATE	91 JAN 22	01 MAR 18	91 MAY 21	91 JUL 15	91 SEP 17	91 NOV 20	92 MAR 17	92 JUN 15	92 SEP 21	92 DEC 14

* THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guidel'ine Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
!AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
! SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U	No Data: Sample Unsuitable For Analysis
! UB	No Data: Bottle Broken
! UN	No Data: Result Unreliable

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS . Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

	;			;					;					;						-1
DIST. SYSTEM SURREY CT STANDING							٠٠							3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	,					
DIST. SYSTEM SURREY CT FREE FLOW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1			54 0 <=>	· · ·				• . •		• 1	•					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				••• 0	• 0		• • •					:	٠						
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 0 (A1)			GUIDELINE = 500 (A3)					CHIDELING = S/100MI / A1)) 100ur					GUIDELINE = N/A					
DIST. SYSTEM BROOKSIDE ST FREE FLOW	פת			US.			<=> 0						• • •		60		٠٠.			
TREATMENT PLANT TREATED	DET!N LIMIT = 0			DET'N LIMIT = 0	<=> 6	<=> 180	21	540	DET'N TMIT = 0						DET'N LIMIT = 0		• .•	• •		
RESERVOIR ARVA	SAL		• • • • • ·	,	0 -	o w ţ	_ ^ 0				•••				•	• .•		•• •	•	
TREATMENT PLANT RAW	BACTERIOLOGICAL FECAL COLIFORM MF (CT/100ML)	BDL BDL .2	BDL 4	INT MF (CT/ML	• •				MF (CI/100ML)	150 430	100 K	10 (E) BDL 430 435	905 80L 80L 80C	BDL	COLIFORM BCKGRD MF (CT/100ML)	8000 A3C 190	5600 A3C	6300 A3C	24000 > 1900	9 9 9 8 8 8 8 8 9
	FECAL COLIFORM	1991 JAN 1991 MAR 1991 JUL	1992 MAR 1992 JUN 1992 SEP 1992 DEC	STANDRD PLATE CNT MF (CT/ML		1991 JUL 1991 JUL		1992 JUN 1992 SEP 1992 DEC		1001	1991 MAR	1991 NOV	1992 JUN 1992 SEP	1992 DEC	T COLIFORM BCKG		1991 NOV		1992 SEP 1992 DEC	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

				:	
DIST. SYSTEM SURREY CT STANDING			001.		.300
DIST. SYSTEM SURREY CT FREE FLOW			001		
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW		.010250		. 100 . 700 . 800	1.200
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A		001.	GUIDELINE = N/A	GUIDELINE = N/A
DIST. SYSTEM BROOKSIDE ST FREE FLOW	กิอ		300		UD
TREATMENT PLANT TREATED	DET+N LIMIT = 0	. 200	000000000000000000000000000000000000000	.990 .990 1.400 1.000 1.000 .870 .900 .700 .600 1.000	1.100 1.100 1.600 1.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T RESERVOIR ARVA	FIELD)	300		7	0000.1.00000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.00000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.00000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.00000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.00000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.00000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.00000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.0000.1.000
TREATMENT PLANT RAW	CHEMISTRY (FIELD) FLO CHLORINE (COMB) (MG/L)	1991 JAN	1991 NOV 1992 MAR 1992 SEP 1992 DEC	FLD CHLORINE FREE (MG/L) 1991 AAN 1991 MAX 1991 MAX 1991 MAX 1991 ULL 1991 SEP 1992 ULW 1992 SEP 1992 OEC	FLD CHLORINE (TOTAL) (MG/L 1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 NOV 1992 SEP 1992 MAR 1992 SEP 1992 SEC 1993 SEC 199

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST. SYSTEM SURREY CT STANDING		7.400	20.000	
OIST. SYSTEM SURREY CT FREE FLOW	٠	7.400	20.000	
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	A4.)	7.470	5.000	. 150 . 040 . 110
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 6.5-8.5 (A4)	7.300	GUIDELINE = 15 (A3)	GUIDELINE = 1.0 (A1)
DIST. SYSTEM BROOKSIDE ST FREE FLOW	GUID	2.500	9.500	GUID
TREATMENT PLANT TREATED	OET'N LIMIT = N/A	7.260 7.470 7.110 7.110 7.340 7.340 7.530 7.560 7.600 7.700	DET'N LIMIT = N/A 5.000 1.900 9.500 10.000 21.000 6.000 3.000 11.000 6.000	067'N LIMIT = N/A 120 150 150 160 100 100 140 160 090
RESERVOIR ARVA	(10)	7.200 7.200 7.100 7.400 7.300 7.300 7.900 7.900	4.000 10.000 13.800 21.000 7.000 7.000 12.500 19.000	0.000.1
TREATMENT PLANT	CHEMISTRY (FIELD)	7.890 8.080 7.700 8.110 8.200 7.400 7.400 7.400 8.020 7.680	(DEG.C) 2.500 1.900 1.900 21.000 2.400 11.000 20.000	3.800 2.200 2.200 2.200 1.800 10.200 1.600 1.940
	FLD PH (OMNSLESS	1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 NOV 1992 MAR 1992 SEP 1992 OEC	FLD TEMPERATURE (OEG.C. 1991 MAR 1991 MAY 1991 MAY 1991 MAY 1991 MAY 1992 NAR 11992 JUN 1992 SEP 20.	FLO TURBIDITY (FTU 1991 JAN 1991 MAY 1991 MAY 1991 JUL 1991 SEP 1991 JUL 1991 SEP 1992 JUN 1992 SEP

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST, SYSTEM SURREY CT STANDING

DIST, SYSTEM DIST, SYSTEM RR#1 GRAND BEND SURREY CT FREE FLOW

DIST, SYSTEM BROOKSIDE ST STANDING

TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW

TREATMENT PLANT RESERVOIR
RAW ARVA

8 8 8	86.600 90.600 88.600	78.000 82.600 81.000	77.600 84.500 79.600			83.600	Υ	
388	3.000	79.600	81.400			78.100	82,700	
80	2.200	78.800	81.500	80,000	80.300		80.900	81.400
96	2.900	79.600	82,800	•				
. 8	3.600	82.000	84.600					
87	4.300		81.400	•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CALCIUM (MG/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.20	GUIDELIN	GUIDELINE = 100 (F2)			
30	0.100	30,900	30.300					٠
30	0.400	29.900	30.300			30.200		٠
M	1.400	31.600	30.400			31.800		
36	0.200	30.400	30.600			30.200		
2	9.200	28.300	28.200		* 00		32.200	000 00
2	8.300	26.900	28.200	78.600	28.200		70.100	002.02
7 6	32.000	27 300	32.100		. ,			
7 %	9.250	29.100	30.050			٠		
2	7.750	•	27.600				٠	
CYANIDE (MG/L)		0 0 0 0 1 1 4 0 1 1 0	DET'N LIMIT = 0.001	GUIDELII	GUIDELINE = 0.2 (A1)			
25 SAMPLES	108	BOL	BOL	4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CHLORIDE (MG/L)			DET'N LIMIT = 0.20	GUIDELII	GUIDELINE = 250 (A3)			
	7.200	007.9	6.500	٠	٠			٠
	6,100	7.300	7.300			7.200		
	5.700	7.500	2.000			7.100	٠	•
	6.100	7.400	7,200			7.500	1 ,00	
	5.900	7.300	7.500	• 000	• 000		00.7	7 200
	2 000	0000	2,400	0.400	0.400			
	5.900	7.300	009.9					•
	6.500	8.000	7.600			٠		•
	000		7 000	,		,	٠	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

		-		
DIST. SYSTEM SURREY CT STANDING			219	1.700
DIST. SYSTEM SURREY CT FREE FLOW			227	1.900
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW		108	231 217 223	1.400
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 5 (A3)		GUIDELINE = 400 (F2)	GUIDELINE = 5.0 (A3)
DIST. SYSTEM BROOKSIDE ST FREE FLOW	īg		218	1.500
TREATMENT PLANT D TREATED F	DET'N LIMIT = 0.50	1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 1.0 235 235 236 220 222 222 227 244 218 235	DET'N LIMIT = 0.10 1.300 1.400 1.300 1.100 1.500 1.500 1.500 1.500 1.500
RESERVOIR ARVA	8 8 9 9 9 9	801 1,000 <7 500 <7 500 <7 500 <7 801 801 801 801	225 232 232 222 222 224 224 234 234 234 234	1.200 1.500 1.500 1.100 1.400 1.500 1.200 1.600
TREATMENT PLANT	CHEMISTRY (LABORATORY)	.500 ct 1.000 ct 1.000 ct 1.000 ct 5.00 ct 801 801 801 801 1.000 ct	МНО/СМ) 228 214 219 219 210 216 241 241 223 223	1,500 1,800 1,800 1,500 1,300 1,500 1,500 1,100 1,700 1,700
	COLOUR (HZU	1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 SEP 1992 JUN 1992 GEP 1992 DEC	CONDUCTIVITY (UMHO/CM 1991 JAN 1991 HAR 1991 HAY 1991 SEP 1991 SEP 1991 NOV 1992 HAR 1992 EP	DISS ORG CARBON (MG/L 1991 JAN 1991 MAR 1991 MAY 1991 NOV 1992 MAR 1992 JUN 1992 SEP 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

E E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	.820							00				1				.665 NAF		
DIST. SYSTEM SURREY CT STANDING	1 1 1 1 1 1 1 1 1 1			8.			1 3 4 9 9 9 9 9 9 9 1 1				009.66				1						
DIST. SYSTEM SURREY CT FREE FLOW	9 9 9 1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		076	. 780			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. ,	٠	111,900	99.700						. s =	5.763 NAF	.209 NAF		
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	080	090		-		()	105.300	111.000	106.000					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 84.2 NAF	3.831 NAF	690.			
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 1.5 (A1)			.840			GUIDELINE = 80-100 (A4)				006.66	•			GUIDELINE = N/A	٠			1.436 NAF		
DIST. SYSTEM BROOKSIDE ST FREE FLOW				.980		•	10100				101.000				GUID				.904 NAF		
TREATMENT PLANT	DET'N LIMIT = 0.01	090.	090.	080	. 100	.100	DET'N LIMIT = 0.5	106.400	107.000	102.500	100.000	. 115,000	108.190	99.750	DET'N LIMIT = N/A	1.859 2.527 NAF	2.670 NAF	.558 3.049 NAF	1.285 NAF	3.467 NAF	1.545
RESERVOIR ARVA	ORATORY)	. 760	088	1.340	1.100		8 9 8 9 9 9 9 9 9 9 9 9 9	107.300	111.000	107.500	95.700	115,000	105.520		1 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.384 2.053 NAF	3.381 NAF	1.628 1.093 NAF	4.065 NAF	1.528 NAF	1.116
TREATMENT PLANT	CHEMISTRY (LABORATORY)	080.	080	080	.080	.100	^	106.600	110.000	107.200	100,400	115.000	105.550	100.230	(1.052	4.150 NAF	.111 NAF	.582 NAF	3.706 NAF	1.097
- α	FLUORIDE (MG/L	1991 JAN 1991 MAR	1991 JUL 1991 SEP	1991 NOV	1992 JUN 1992 SEP	1992 DEC	HARDNESS (MG/L	1991 JAN 1991 MAR	1991 MAY	1991 SEP	1991 NOV	1992 MAR	1992 SEP	1992 DEC	IONCAL (DMNSLESS)	1991 JAN 1001 MAR	1991 MAY	1991 JUL 1991 SEP	1991 NOV	1992 JUN	1992 SEP

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

	4		-	
DIST SYSTEM SURREY CT STANDING	n c c c c c c c c c c c c c c c c c c c	88.		7.150
DIST. SYSTEM SURREY CT FREE FLOW		1.100	2555.	7.650
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW			. 170 	7.300
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 10 (F2)		GUIDELINE = N/A	GUIDELINE = 30.0 (F2)
DIST. SYSTEM BROOKSIDE ST' FREE FLOW			GUID . 072	GUID
TREATMENT PLANT TREATED	DET'N LIMIT = 0.01	. 980 . 950 . 950 . 900 . 900 . 100 . 910 . 910 . 907	DET'N LIMIT = N/A 102 175 107 058 163 115 115 230 223	DET'N LIMIT = 0.1 7.500 7.750 7.600 7.400 7.850 7.200 8.360 7.530 8.560 7.490
RESERVOIR ARVA	30RATORY)	1,010 .950 .950 .900 .900 .920 .1,020 .1,020 .1,020	. 102 . 150 . 010 . 036 . 174 . 108 . 137 . 154	7.350 7.400 7.700 7.700 7.750 6.950 6.950 7.560 7.970
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	. 990 . 910 . 850 . 900 . 900 . 1.010 . 930 . 930 . 930	(OMMSLESS) 289 289 287 287 307 307 308 333 333 313	7.650 7.750 7.750 7.600 7.600 7.800 7.200 8.420 7.900 7.900
F &	POTASSIUM (MG/L	1901 JAN 1901 MAR 1901 MAY 1991 JUL 1991 SEP 1991 NOV 1992 MAR 1992 SEP 1992 DEC	LANGELIERS INDEX (OMNSLESS) 1991 MAR .289 1991 MAY .269 1991 MAY .269 1991 JUL .227 1991 JUL .227 1991 JUL .257 1992 MAR .387 1992 MAR .333 1992 JUN .333 1992 DEC .356	MAGNESIUM (MG/L 1991 JAN 1991 JAN 1991 MAY 1991 MAY 1991 NOV 1992 MAR 1992 SEP 1992 DEC

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE, HURON) WSS

SURREY CT STANDING

DIST. SYSTEM SURREY CT FREE FLOW

DIST. SYSTEM
RR#1 GRAND BEND S

DIST. SYSTEM BROOKSIDE ST STANDING

TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW

TREATMENT PLANT RESERVOIR
RAW ARVA

	3.400 3.500		.002 <t bdl<="" th=""></t>
14)	3.800 3.800 3.600	(F2) 801 801 .008 <1	80L 80L 80L
GUIDELINE = 200 (A4)	3,400	GUIDELINE = 0.05 (F2)	GUIDELINE = 1.0 (A1)
0.20	3.300	0.002	- 0.001 - 0.001
DET'N LIMIT = 0.20	3.800 3.900 3.400 3.400 3.400 3.400 5.410	BDL BBL BDL BDL BDL BDL BDL BDL BDL BDL	
CHEMISTRY (LABORATORY)	3.500 3.700 3.400 3.400 3.200 4.130 5.420	108 1 100 100 100 100 100 100 100 100 10	0,00,000 100 100 100 100 100 100 100 100
CHEMISTRY (3.800 3.700 3.400 3.400 3.400 4.600 3.500 3.500	BOL	000.000
SODIUM (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 NOV 1992 MAR 1992 JUN 1992 SEP 1992 DEC	AMMONIUM TOTAL (MG/L 1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1991 NOV 1992 MAR	1992 JUN 1992 BEP 1992 DEC 1991 JAN 1991 HAR 1991 HAR 1991 BEP 1991 NOV 1992 MAR 1992 MAR 1992 ABR 1992 ABR

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST. SYSTEM SURREY CT STANDING	2 3 3 6 6 6 1 1 1 1 1 1 1 1		. 285		8.130
SURREY CT SUR FREE FLOW STA	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	÷ • • •	. 275 . 280 		8.240 8.130
DIST. SYSTEM DI RR#1 GRAND'BEND SL FREE FLOW FR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.540 .385	2	. 130	8.180 7.990 8.110
DIST. SYSTEM C BROOKSIDE ST STANDING	GUIDELINE = 10.0 (A1)			GUIDELINE = N/A	GUIDELINE = 6.5-8.5 (A4)
DIST. SYSTEM BROOKSIDE ST FREE FLOW			. 295		8.120
TREATED TREATED	DET'N LIMIT = 0.005	.380 .580 .375	. 297 . 290 . 765 . 325 . 375	DET'N LIMIT = 0.02 .070 <t .090="" .100="" .110="" .110<="" .120="" <t="" td=""><td>DET'IN LIMIT = N/A 8.140 8.140 8.130 8.130 8.210 8.160 8.160 8.160 8.200 8.200 8.200</td></t>	DET'IN LIMIT = N/A 8.140 8.140 8.130 8.130 8.210 8.160 8.160 8.160 8.200 8.200 8.200
RESERVOIR ARVA	BORATORY)	.385 .575 .410	. 285 . 285 . 740 . 375	. 080 <1 . 090 <1 . 080 <7 . 110 . 110 . 110 . 140	8.130 8.170 8.010 8.070 8.070 8.230 8.090 7.980 8.210 8.210
TREATMENT PLANT	CHEMISTRY (LABORATORY) (MG/L)	.390	. 270 . 285 . 785 . 350 . 375	FELD (MG/L) .210 .350 .350 .350 .150 .150 .150 .190 .190	8,290 . 8,260 . 8,230 . 8,210 . 8,210 . 8,330 . 8,370 . 8,370 .
	CHE NITRATE (TOTAL) (MG/L	1991 JAN 1991 MAR 1991 MAY	1991 SEP 1991 NOV 1992 MAR 1992 SEP 1992 DEC	NITROGEN TOT KJELD (MG/L 1991 JAN	PH (DMNSLESS) 1991 JAN 1991 MAR 1991 MAR 1991 MAY 1991 MAY 1992 MAR 1992 MAR 1992 SEP

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST. SYSTEM SURREY CT STANDING				-	
DIST. SYSTEM SURREY CT FREE FLOW					148.000 CRO 142.000 CRO
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW		 -	- 1		150.000 CRO 141.000 CRO 145.000 CRO
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A			GUIDELINE = 0.40 (F2)	GUIDELINE = 500 (A3)
DIST. SYSTEM BROOKSIDE ST FREE FLOW					GUID 142.000 CRO
TREATMENT PLANT OTREATED B	DET'N LIMIT = 0.0005	108 108 108 108 108	801 - 001 - 801 - 801 - 801 - 801	BDL BDL BDC <t BDC <t B</t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t </t 	146.000 CRO 146.000 CRO 151.000 CRO 140.000 CRO 140.000 CRO 141.000 CRO 159.000 CRO 159.000 CRO 159.000 CRO 151.000 CRO
RESERVOIR I ARVA		.002 <1		004 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 < 7 007 <	147.000 CR0 151.000 CR0 144.000 CR0 146.000 CR0 142.000 CR0 142.000 CR0 160.000 CR0
TMENT PLANT	CHEMISTRY (LABORATORY)	.001 <1	. 000 <1 . 003 <1 . 003 <1 . 001 <1	.0014 .007 <1 .008 <1 .008 <1 .0014 .005 <1 .006 <1 .006 <1 .006 <1	(MG/L) 135,000 CRO 148,000 CRO 158,000 CRO 142,000 CRO 142,000 CRO 142,000 CRO 145,000 CR
TREA	CHEMISTR PHOSPHORUS FIL REACT (MG/L	1991 JAN 1991 MAR 1991 JUL	1991 SEP 1991 NOV 1992 MAR 1992 SEP 1992 DEC	PHOSPHORUS TOTAL (MG/L 1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 NOV 1992 MAR 1992 SEP 1992 SEP	RESIDUE FILTRATE (MG/L 1991 MAR 158 1991 MAY 142 1991 MAY 159 1991 NOV 140 1992 MAR 1992 MAR 1992 MAR 1992 MAR 140 1992 MAR 140 1992 MAR 140 140 140 140 140 140 140 140 140 140

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DRINKING WATER SURVEILLANGE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

												:																						
DIST. SYSTEM SURREY CT STANDING		BOL						110,000	•		•			٠					1> 0/4.						-					16.000	٠			
DIST. SYSTEM SURREY CT FREE FLOW	1 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B01			•		210 000	100,000				3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		٠				.590 <t< td=""><td>T> 095.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15.000</td><td>15.000</td><td>٠</td><td></td><td></td><td>٠</td></t<>	T> 095.										15.000	15.000	٠			٠
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108	3 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		95.000	54.000	000.000					8 9 6 1 9 3 9 8 8 8 8			.390 <t< td=""><td>BOL</td><td>.350 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13.000</td><td>13.000</td><td>13.000</td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	BOL	.350 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13.000</td><td>13.000</td><td>13.000</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									13.000	13.000	13.000						
DIST, SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A	108	GUIDELINE = 100 (A4)				•	100,000				Cutofi tag = 26 (A4)	LINC - 23 (AI)			٠			.420 <t< td=""><td>٠</td><td></td><td></td><td></td><td>GUIDELINE = 1000 (A2)</td><td></td><td></td><td></td><td></td><td></td><td>15.000</td><td></td><td></td><td></td><td></td></t<>	٠				GUIDELINE = 1000 (A2)						15.000				
DIST. SYSTEM BROOKSIDE ST FREE FLOW	GUIDE	B0L	GUIDE			٠		100.000		٠			30100		٠			٠	.480 <t< td=""><td></td><td></td><td></td><td></td><td>GUIDE</td><td></td><td></td><td></td><td></td><td></td><td>14,000</td><td></td><td></td><td></td><td></td></t<>					GUIDE						14,000				
TREATMENT PLANT O	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.10	25.000	150.000	29.000	290.000	130,000	36.000	240,000	130.000	OF C - TIMI - WILL	UEI'N LIMII = 0.10	.430 <t< td=""><td>.240 <t< td=""><td>.270 <1</td><td>.360 <1</td><td>.390 <t< td=""><td>.280 <</td><td>108</td><td>801</td><td>,330 <t< td=""><td>I> 087.</td><td>DET'N LIMIT = 0.05</td><td>14,000</td><td>13.000</td><td>13.000</td><td>13.000</td><td>15.000</td><td>14.000</td><td>15.000</td><td>16.000</td><td>14.000</td><td>14.000</td></t<></td></t<></td></t<></td></t<>	.240 <t< td=""><td>.270 <1</td><td>.360 <1</td><td>.390 <t< td=""><td>.280 <</td><td>108</td><td>801</td><td>,330 <t< td=""><td>I> 087.</td><td>DET'N LIMIT = 0.05</td><td>14,000</td><td>13.000</td><td>13.000</td><td>13.000</td><td>15.000</td><td>14.000</td><td>15.000</td><td>16.000</td><td>14.000</td><td>14.000</td></t<></td></t<></td></t<>	.270 <1	.360 <1	.390 <t< td=""><td>.280 <</td><td>108</td><td>801</td><td>,330 <t< td=""><td>I> 087.</td><td>DET'N LIMIT = 0.05</td><td>14,000</td><td>13.000</td><td>13.000</td><td>13.000</td><td>15.000</td><td>14.000</td><td>15.000</td><td>16.000</td><td>14.000</td><td>14.000</td></t<></td></t<>	.280 <	108	801	,330 <t< td=""><td>I> 087.</td><td>DET'N LIMIT = 0.05</td><td>14,000</td><td>13.000</td><td>13.000</td><td>13.000</td><td>15.000</td><td>14.000</td><td>15.000</td><td>16.000</td><td>14.000</td><td>14.000</td></t<>	I> 087.	DET'N LIMIT = 0.05	14,000	13.000	13.000	13.000	15.000	14.000	15.000	16.000	14.000	14.000
RESERVOIR ARVA	9	108	a c c c c c c c c c c c c c c c c c c c	29.000	890.000	26.000	270.000	110,000	27,000	dħi	130.000	0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		T> 077.	1.600	. 190 <t< td=""><td>1> 0/4.</td><td>.> 017.</td><td>T> 055.</td><td>BOL</td><td>3</td><td>.730 <t< td=""><td></td><td></td><td>14,000</td><td>14.000</td><td>13.000</td><td>13.000</td><td>15.000</td><td>15,000</td><td>14.000</td><td>IWP</td><td>15.000</td><td></td></t<></td></t<>	1> 0/4.	.> 017.	T> 055.	BOL	3	.730 <t< td=""><td></td><td></td><td>14,000</td><td>14.000</td><td>13.000</td><td>13.000</td><td>15.000</td><td>15,000</td><td>14.000</td><td>IWP</td><td>15.000</td><td></td></t<>			14,000	14.000	13.000	13.000	15.000	15,000	14.000	IWP	15.000	
TREATMENT PLANT	METALS)	108		. 000.77	27.000	36.000	29.000	13.000	98.000	11.000	45.000			1.000 <t< td=""><td>.740 <t< td=""><td>T> 044.</td><td>.610 <t< td=""><td>T> 044.</td><td>1> 059.</td><td>,130 <t< td=""><td>.210 <t< td=""><td>. 540 <t< td=""><td>1> 0//.</td><td>^</td><td>15.000</td><td>14,000</td><td>14.000</td><td>13,000</td><td>15.000</td><td>14.000</td><td>16.000</td><td>16.000</td><td>000.51</td><td>000.61</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.740 <t< td=""><td>T> 044.</td><td>.610 <t< td=""><td>T> 044.</td><td>1> 059.</td><td>,130 <t< td=""><td>.210 <t< td=""><td>. 540 <t< td=""><td>1> 0//.</td><td>^</td><td>15.000</td><td>14,000</td><td>14.000</td><td>13,000</td><td>15.000</td><td>14.000</td><td>16.000</td><td>16.000</td><td>000.51</td><td>000.61</td></t<></td></t<></td></t<></td></t<></td></t<>	T> 044.	.610 <t< td=""><td>T> 044.</td><td>1> 059.</td><td>,130 <t< td=""><td>.210 <t< td=""><td>. 540 <t< td=""><td>1> 0//.</td><td>^</td><td>15.000</td><td>14,000</td><td>14.000</td><td>13,000</td><td>15.000</td><td>14.000</td><td>16.000</td><td>16.000</td><td>000.51</td><td>000.61</td></t<></td></t<></td></t<></td></t<>	T> 044.	1> 059.	,130 <t< td=""><td>.210 <t< td=""><td>. 540 <t< td=""><td>1> 0//.</td><td>^</td><td>15.000</td><td>14,000</td><td>14.000</td><td>13,000</td><td>15.000</td><td>14.000</td><td>16.000</td><td>16.000</td><td>000.51</td><td>000.61</td></t<></td></t<></td></t<>	.210 <t< td=""><td>. 540 <t< td=""><td>1> 0//.</td><td>^</td><td>15.000</td><td>14,000</td><td>14.000</td><td>13,000</td><td>15.000</td><td>14.000</td><td>16.000</td><td>16.000</td><td>000.51</td><td>000.61</td></t<></td></t<>	. 540 <t< td=""><td>1> 0//.</td><td>^</td><td>15.000</td><td>14,000</td><td>14.000</td><td>13,000</td><td>15.000</td><td>14.000</td><td>16.000</td><td>16.000</td><td>000.51</td><td>000.61</td></t<>	1> 0//.	^	15.000	14,000	14.000	13,000	15.000	14.000	16.000	16.000	000.51	000.61
	SILVER (UG/L	36 SAMPLES	ALUMINUM (UG/L		1991 MAR	1991 MAY	1991 SFP	1991 NOV	1992 MAR	1992 JUN .	1992 SEP 1992 DEC	Absents Alls A	ARSENIC 100/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 MAR	1992 JUN	1992 SEP	IANZ DEC	BARIUM (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 MAR	1992 JUN	1992 SEP	IAYZ DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST. SYSTEM SURREY CT STANDING		14.000 <1	801	
DIST. SYSTEM SURREY CT FREE FLOW		14.000 <1		108 108
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW		14,000 <t 13,000 <t 13,000 <t< td=""><td>. 108 80L 80L 108</td><td>901 108 109 109</td></t<></t </t 	. 108 80L 80L 108	901 108 109 109
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 5000 (A1)	13.000 <t< td=""><td>GUIDELINE = 6800 (D4)</td><td>GUIDELINE = 5.0 (A1) BDL</td></t<>	GUIDELINE = 6800 (D4)	GUIDELINE = 5.0 (A1) BDL
DIST. SYSTEM BROOKSIDE ST FREE FLOW	GUID	12.000 <1	601D	90L
TREATMENT PLANT C TREATED	DET'N LIMIT = 2.00	16,000 <1 12,000 <1 13,000 <1 13,000 <1 13,000 <1 13,000 <1 15,000 <1 15,000 <1 15,000 <1	DET'N LIMIT = 0.05 80L 80L 80L 80L 80L 100 100 100 100 100	DET'N LIMIT = 0.05 801 801 801 801 801 801 801 801 801 801
RESERVOIR ARVA		16,000 <1 12,000 <1 13,000 <1 14,000 <1 13,000 <1 11,000 <1 15,000 <1 15,000 <1	108 108 108 108 108 108 108	108 108 108 108 108
TREATMENT - PLANT	METALS)	17.000 <1 14.000 <1 13.000 <1 12.000 <1 14.000 <1 11.000 <1 12.000 <1 15.000 <1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108 108 108 108 108 108 108
	BORON (UG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1991 NOV 1992 MAR 1992 JUN 1992 DEC	BERYLLIUM (UG/L 1991 MAR 1991 MAY 1991 MAY 1991 MOV 1992 NAR 1992 SEP 1992 SEP 1992 DEC	CADMIUM (UG/L 1991 JAN 1991 MAR 1991 MAR 1991 MAY 1991 MAY 1991 MAY 1992 MAR 1992 MAR 1992 SEP 1992 SEP

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST, SYSTEM SURREY CT STANDING

DIST. SYSTEM DIST. SYSTEM RR#1 GRAND BEND SURREY CT FREE FLOW

DIST. SYSTEM BROOKSIDE ST STANDING

TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW

TREATMENT PLANT RESERVOIR RAW ARVA

COBALT (UG/L	^	90	DET'N LIMIT = 0.02	GUIDELINE = N/A	E = N/A			
1991 JAN	.290 <t< th=""><th>.240 <t< th=""><th>.200 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th></t<></th></t<></th></t<>	.240 <t< th=""><th>.200 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th></t<></th></t<>	.200 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th></t<>					٠
	T> 060.	.110 <t< td=""><td>T> 070.</td><td>٠</td><td></td><td>.060 <t< td=""><td>٠</td><td></td></t<></td></t<>	T> 070.	٠		.060 <t< td=""><td>٠</td><td></td></t<>	٠	
	T> 050.	. 190 <⊺	T> 070.			.140 <t< td=""><td></td><td></td></t<>		
1991 JUL	80r	BDL	BDL			BDL	٠	
	.110 <t< td=""><td>.110 <⊺</td><td>.130 <t< td=""><td>٠</td><td></td><td></td><td>· 100. <t< td=""><td></td></t<></td></t<></td></t<>	.110 <⊺	.130 <t< td=""><td>٠</td><td></td><td></td><td>· 100. <t< td=""><td></td></t<></td></t<>	٠			· 100. <t< td=""><td></td></t<>	
	T> 070.	.130 <7	. 110 <t< td=""><td>. 100 <t< td=""><td>.140 <t< td=""><td></td><td>.220 <t< td=""><td>T> 091.</td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>.140 <t< td=""><td></td><td>.220 <t< td=""><td>T> 091.</td></t<></td></t<></td></t<>	.140 <t< td=""><td></td><td>.220 <t< td=""><td>T> 091.</td></t<></td></t<>		.220 <t< td=""><td>T> 091.</td></t<>	T> 091.
	. 160 <t< td=""><td>.120 <t< td=""><td>. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	.120 <t< td=""><td>. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
	.180 <t< td=""><td>dMi</td><td>. 130 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	dMi	. 130 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
	.180 <t< td=""><td>170 <1</td><td>.180 <t< td=""><td>٠</td><td>٠</td><td></td><td></td><td></td></t<></td></t<>	170 <1	.180 <t< td=""><td>٠</td><td>٠</td><td></td><td></td><td></td></t<>	٠	٠			
	3.000		.110 <t< td=""><td>•</td><td></td><td>•</td><td></td><td></td></t<>	•		•		
CHROMIUM (UG/L	(90	DET'N LIMIT = 0.50	GUIDELIN	GUIDELINE = 50.0 (A1)			
	2.100 <t< td=""><td>2.100 <t< td=""><td>1.800 <t< td=""><td>٠</td><td>٠</td><td></td><td></td><td></td></t<></td></t<></td></t<>	2.100 <t< td=""><td>1.800 <t< td=""><td>٠</td><td>٠</td><td></td><td></td><td></td></t<></td></t<>	1.800 <t< td=""><td>٠</td><td>٠</td><td></td><td></td><td></td></t<>	٠	٠			
	1,700 <t< td=""><td>1,700 <7</td><td>.810 <7</td><td></td><td></td><td>1,700 <t< td=""><td></td><td></td></t<></td></t<>	1,700 <7	.810 <7			1,700 <t< td=""><td></td><td></td></t<>		
	2,100 <t< td=""><td>2.300 <t< td=""><td>2.200 <t< td=""><td></td><td></td><td>2.400 <t< td=""><td></td><td></td></t<></td></t<></td></t<></td></t<>	2.300 <t< td=""><td>2.200 <t< td=""><td></td><td></td><td>2.400 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	2.200 <t< td=""><td></td><td></td><td>2.400 <t< td=""><td></td><td></td></t<></td></t<>			2.400 <t< td=""><td></td><td></td></t<>		
1991 JUL	T> 009.	T> 008.	.580 <t< td=""><td></td><td></td><td>7>06.</td><td></td><td></td></t<>			7>06.		
	801	BOL	801			٠	.520 <1	
	1,700 <t< td=""><td>801</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td></t<>	801	BDL	BDL	BOL		BDL	BDL
	BOL	BOL	BDL				٠	
	801	dMi	BDL		٠			
	3.400 <t< td=""><td>2.900 <t< td=""><td>3.200 <7</td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	2.900 <t< td=""><td>3.200 <7</td><td></td><td></td><td></td><td></td><td></td></t<>	3.200 <7					
	BOL		1.500 <t< td=""><td>٠</td><td>•</td><td></td><td>٠</td><td></td></t<>	٠	•		٠	
COPPER (UG/L	•	D	DET'N LIMIT = 0.50	GUIDELIN	GUIDELINE = 1000 (A3)			
991 JAN	2.300 <t< td=""><td>7> 092.</td><td>T> 040.</td><td>•</td><td></td><td></td><td>٠</td><td>٠</td></t<>	7> 092.	T> 040.	•			٠	٠
	2.600 <t< td=""><td>1,500 <7.</td><td>1,700 <7</td><td></td><td></td><td>2.500 <7</td><td></td><td></td></t<>	1,500 <7.	1,700 <7			2.500 <7		
	4.300 <t< td=""><td>2.900 <7</td><td>1.300 <t< td=""><td></td><td></td><td>2.200 <⊤</td><td></td><td>٠</td></t<></td></t<>	2.900 <7	1.300 <t< td=""><td></td><td></td><td>2.200 <⊤</td><td></td><td>٠</td></t<>			2.200 <⊤		٠
1991 JUL	1,400 <t< td=""><td>78.000</td><td>3.000 <t< td=""><td></td><td></td><td>2,600 <7</td><td></td><td></td></t<></td></t<>	78.000	3.000 <t< td=""><td></td><td></td><td>2,600 <7</td><td></td><td></td></t<>			2,600 <7		
	6.800	3.100 <t< td=""><td>3,300 <t< td=""><td></td><td></td><td></td><td>1,900 <1</td><td></td></t<></td></t<>	3,300 <t< td=""><td></td><td></td><td></td><td>1,900 <1</td><td></td></t<>				1,900 <1	
	3.900 <1	4.100 <t< td=""><td>2.900 <1</td><td>4.700 <t< td=""><td>33.000</td><td></td><td>2.100 <t< td=""><td>12.000</td></t<></td></t<></td></t<>	2.900 <1	4.700 <t< td=""><td>33.000</td><td></td><td>2.100 <t< td=""><td>12.000</td></t<></td></t<>	33.000		2.100 <t< td=""><td>12.000</td></t<>	12.000
	5.700	2.300 <t< td=""><td>2.900</td><td></td><td></td><td>٠</td><td></td><td></td></t<>	2.900			٠		
	2.000 <1	dM.i	1.400 <t< td=""><td></td><td></td><td></td><td></td><td>٠</td></t<>					٠
	2.800 <1	1,600 <t< td=""><td>6.200</td><td></td><td></td><td></td><td></td><td></td></t<>	6.200					

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

	:				
DIST. SYSTEM SURREY CT STANDING			B0		
DIST. SYSTEM SURREY CT FREE FLOW		8.200 <1	BDL		, 400 ct . 270 ct
DIST. SYSTEM . RR#1 GRAND BEND FREE FLOW	<i>:</i>	10.000 <t 8DL 8DL 8DL</t 			.670 .210 <1 .310 <1
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 300 (A3)		18.000 < T	GUIDELINE = 1.0 (A1)	GUIDELINE = 50.0 (A3)
DIST. SYSTEM BROOKSIDE ST FREE FLOW			17.000 <t< td=""><td>,</td><td></td></t<>	,	
TREATMENT PLANT TREATED	DET'N LIMIT = 6.00	9.200 <t 15.000 <t 80L 7.800 <t 80L</t </t </t 	80L 7.000 <7 9.800 <7 80L 80L	DET'N LIMIT = 0.02 BDL	1.300 1.300 1.300 1.300 1.300 1.300 <7 1.100 1.700 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0
RESERVOIR ARVA	J	80L 95.000 22.000 <t 80L 80L</t 	708 801 108 108	1 108 108 108 108 108 108 108 108 108 108	3.900 3.900 3.900 4.30 <1 6.430 <1 1.430 <1 1.430 <1 1.40 <1
TREATMENT PLANȚ RAW	METALS)	82.000 <1	17.000 <1 150.000 15.000 <1 54.000 <1	108 108 108 108 108 108 108	7.200 1.500 1.700 2.000 1.700 1.700 1.500 1.500 2.400
	IRON (UG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL	1991 NOV 1992 MAR 1992 JUN 1992 SEP 1992 DEC	MERCURY (UG/L 1991 JAN 1991 MAR 1991 MAY 1991 MOV 1991 NOV 1992 NAR 1992 SEP 1992 SEP 1992 SEP	1991 JAN 1991 JAN 1991 MAR 1991 MAY 1991 MAY 1991 NOV 1992 MAR 1992 JUN 1992 SEP 1992 SEP

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

				-	
DIST. SYSTEM SURREY CT STANDING			. 400 <1	4.300	1.600
DIST. SYSTEM . SURREY CT FREE FLOW			. 400 <1	108 108 1. 072.	
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	ı	.450 <t .380 <t .520</t </t 		80L 80L .350 <⊺	.200 <7 .240 <7 .290 <7 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <1 .290 <
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A		. 400 <1	GUIDEL INE = 350 (03)	GUIDELINE = 10 (A1)
DIST, SYSTEM BROOKSIDE ST FREE FLOW			.360 <1		
TREATMENT PLANT	DET'N LIMIT = 0.05	.510 <t .510="" .510<="" td=""><td>. 310 <1 . 320 <1 . 290 <1 . 560 . 460 <1</td><td>DET'N LIMIT = 0.20 .680 <t .5.600="" .570="" .680="" 1.200="" 11.000="" 2.400="" 3.600="" 4.000="" 4.000<="" <t="" td=""><td>DET'N LIMIT = 0.05 BDL .350 <7 .150 <7 .150 <7 .380 <7 .391 <7 .410 <7 .410 <7 .410 <7</td></t></td></t>	. 310 <1 . 320 <1 . 290 <1 . 560 . 460 <1	DET'N LIMIT = 0.20 .680 <t .5.600="" .570="" .680="" 1.200="" 11.000="" 2.400="" 3.600="" 4.000="" 4.000<="" <t="" td=""><td>DET'N LIMIT = 0.05 BDL .350 <7 .150 <7 .150 <7 .380 <7 .391 <7 .410 <7 .410 <7 .410 <7</td></t>	DET'N LIMIT = 0.05 BDL .350 <7 .150 <7 .150 <7 .380 <7 .380 <7 .380 <7 .380 <7 .380 <7 .380 <7 .380 <7 .391 <7 .410 <7 .410 <7 .410 <7
	30	.480 <1 .420 <1 .430 <1 .430 <1	. 550 ct . 270 ct . 270 ct . 580	12 074. 13 074. 14 084. 15 087. 17 072. 17 016. 17 016.	BDL 1770 <t 1770 <t 1090 <t 2000 <t 80L 80L 80L 80L 80L</t </t </t </t
TREATMENT PLANT RESERVOIR RAW . ARVA	METALS)	.320 <1 .460 <1 .540 <1 .550 <1	.450 <1 .190 <1 .300 <1 .500 <1	1.100 <1 720 <1 720 <1 720 <1 720 <1 830 <1 880 <1 1.100 <1 340 <1 820 <1 14.000	.700 .200 <1 .450 <1 .110 <1 .640 .640 .210 <1 .700 .370 <1 .180 <1
1 K	MOLYBDENUM (UG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL	1991 SEP 1991 NOV 1992 MAR 1992 SEP 1992 DEC	NICKEL (UG/L 1991 JAN 1991 MAY 1991 MAY 1991 MAY 1991 NOV 1992 MAR 1992 SEP 1992 DEC	LEAD (UG/L) 1991 JAN 1991 JAN 1991 MAY 1991 JUL 1991 SEP 1991 JUL 1991 NOV 1992 MAR 1992 DIN 1992 DEC

TABLE 4 DRINKING WATER SURVEILLANGE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

						:		:
DIST. SYSTEM SURREY CT STANDING		•		.730			80L 110.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DIST. SYSTEM SURREY CT FREE FLOW				.510			110.000 110.000	
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	; ; ; ; ; ; ; ; ; ; ;	.570	.420 <t< td=""><td></td><td>· · · · ·</td><td></td><td>80L 80L 80L 100.000 94.000</td><td></td></t<>		· · · · ·		80L 80L 80L 100.000 94.000	
DIST. SYSTEM BRODKSIDE ST STANDING	GUIDELINE = 146 (04)	· · ·		1> 074.		GUIDELINE = 10 (A1)	BDL GUIDELINE = N/A 100.000	
DIST. SYSTEM BROOKSIDE ST FREE FLOW	1 1 1 1 3 6 6 6 7 6 8	•;•		. 480 <7		CUI	BDL GUII.	
TREATMENT PLANT TREATED	DET'N LIMIT = 0.05	.510	.560	.430 <t< td=""><td>.270 <1 .400 <1 .460 <1</td><td>DET'N LIMIT = 1.00</td><td>1,300 <1 1,100 <1 1,1</td><td></td></t<>	.270 <1 .400 <1 .460 <1	DET'N LIMIT = 1.00	1,300 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,100 <1 1,1	
RESERVOIR ARVA		. 490 <t< td=""><td>7> 0490 550</td><td>017. 15 045.</td><td>1 440 ×1</td><td></td><td>1,900 <1 801 801 801 801 801 114P 802 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000</td><td></td></t<>	7> 0490 550	017. 15 045.	1 440 ×1		1,900 <1 801 801 801 801 801 114P 802 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000	
TREATMENT PLANT	METALS	.540	.610	.520	.360 <1 .420 <1 .520	^	801 801 801 801 801 801 801 801 801 801	
	ANTIMONY (UG/L	1991 JAN 1991 MAR	1991 MAY 1991 JUL	1991 SEP 1991 NOV 1992 MAR	1992 JUN 1992 SEP 1992 DEC	SELENIUM (UG/L	1991 JAN 1991 MAY 1991 MAY 1991 NDV 1992 JUN 1992 JUN 1992 DEC STRONTIUM (UG/L 1991 JAN 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1992 JUN 1992 JUN 1992 JUN 1992 JUN 1992 JUN 1992 JUN	

. TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

	KAW		ואפאופט	FREE FLOW	STANDING	FREE FLOW	FREE FLOW	STANDING
TITANIUM (UG/L	METALS		DET'N LIMIT = 0.50		GUIDELINE = N/A	٠		
1001	2 500	T> 000 7	7 000 F				,	
	1,000	2 2000	1,000			7 000 F		
1991 MAK	7,000 5	1,000	1 800 ×1		•	1, 600 <1	•	
	1 2000	1,000.1	1, 000,	•	•	* 00° C		•
1991 JUL	2.800 <1	1> 009.7	1.700 <1			1> 001.2	. 000	
1991 SEP	1.600 <t< td=""><td>1.100 <t< td=""><td>T> 0/6.</td><td></td><td></td><td></td><td>1> 008.</td><td></td></t<></td></t<>	1.100 <t< td=""><td>T> 0/6.</td><td></td><td></td><td></td><td>1> 008.</td><td></td></t<>	T> 0/6.				1> 008.	
1991 NOV	1.600 <1	.820 <t< td=""><td>.850 <t< td=""><td>T> 010.</td><td>.830 <t< td=""><td></td><td>. 910 <t< td=""><td>T> 096.</td></t<></td></t<></td></t<></td></t<>	.850 <t< td=""><td>T> 010.</td><td>.830 <t< td=""><td></td><td>. 910 <t< td=""><td>T> 096.</td></t<></td></t<></td></t<>	T> 010.	.830 <t< td=""><td></td><td>. 910 <t< td=""><td>T> 096.</td></t<></td></t<>		. 910 <t< td=""><td>T> 096.</td></t<>	T> 096.
1992 MAR	5,000 <t< td=""><td>3.400 <t< td=""><td>3.100 <t< td=""><td>. •</td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	3.400 <t< td=""><td>3.100 <t< td=""><td>. •</td><td></td><td></td><td></td><td></td></t<></td></t<>	3.100 <t< td=""><td>. •</td><td></td><td></td><td></td><td></td></t<>	. •				
1992 JUN	2.000 <t< td=""><td>IMP</td><td>1.700 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	IMP	1.700 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
1992 SFP	2.400 <1	2.900 <t< td=""><td>1,100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	1,100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
1992 DEC	8.500	•	T> 058.		٠		٠	٠
THALLIUM (UG/L	(5 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	DET'N LIMIT = 0.05	p p s a a a a a a a a a a a a a a a a a	GUIDELINE = 13 (04)			
36 SAMPLES	BDL	. BDL	BOL	. 108	BDL	BDL	BDL	108
URANIUM (UG/L	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 0.05	9 5 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	GUIDELINE = 100 (A1)	,		
1001 JAN	.280 <t< td=""><td>.130 <1</td><td>120 <⊺</td><td></td><td></td><td></td><td></td><td></td></t<>	.130 <1	120 <⊺					
1001 MAD	220 <t< td=""><td>270 <t< td=""><td>150 st</td><td></td><td></td><td>160 <t< td=""><td></td><td>•</td></t<></td></t<></td></t<>	270 <t< td=""><td>150 st</td><td></td><td></td><td>160 <t< td=""><td></td><td>•</td></t<></td></t<>	150 st			160 <t< td=""><td></td><td>•</td></t<>		•
	2000	110 11	1/0 /1			120 <t< td=""><td></td><td></td></t<>		
	15 021	1, 080	1000	•		T> 060		
1991 JUL	1, 000	2000	1,000	•			210 cT	
1991 SEP	1, 000	7 007	1, 005.	. 004	100,	•	1,001	180 cT
VON 1991	1> 007.	- No.	1> 002.	1> 061.	1× 0.61 •	٠	1. 061.	
1992 MAR	1> 021.	BDL	BOL					• *
1992 JUN	T> 015.	dMi	1> 022.					
1992 SEP	.200 <⊺	.130 <t< td=""><td>.140 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	.140 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
1992 DEC	T> 091.		. 170 <t< td=""><td></td><td></td><td>•</td><td>•</td><td></td></t<>			•	•	
VANADIUM (UG/L		2 2 3 3 5 5 6 7 7 7 7 7 7	DET'N LIMIT = 0.05	6 5 5 6 6 6 6 6 6 6	GUIDELINE = N/A			
1991 JAN	.150 <t< td=""><td></td><td>1> 051.</td><td></td><td>٠</td><td></td><td></td><td>٠</td></t<>		1> 051.		٠			٠
1001 MAD	ION .		180 <t< td=""><td></td><td>•</td><td>.150 <t< td=""><td>•</td><td>,</td></t<></td></t<>		•	.150 <t< td=""><td>•</td><td>,</td></t<>	•	,
1001 MAY	240 <t< td=""><td>T>. 087</td><td>. 420 <t< td=""><td>•</td><td></td><td>.420 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	T>. 087	. 420 <t< td=""><td>•</td><td></td><td>.420 <t< td=""><td></td><td></td></t<></td></t<>	•		.420 <t< td=""><td></td><td></td></t<>		
1004			12 07C			T> 02C		
1001 CED	130 cT		780 <t< td=""><td></td><td>•</td><td></td><td>390 <t< td=""><td></td></t<></td></t<>		•		390 <t< td=""><td></td></t<>	
1991 3EF	200		1, 000	1/0 /t	180 ×T		120 cT	190 <t< td=""></t<>
1991 NOV	80L		1, 000	0.7	. 001 .		12 031	
1992 MAR	1> 011.	1> 00c.	1> 061.					
1992 JUN	BOL	d d	BOL					
1992 SEP	.310 <t< td=""><td>L> 065°</td><td>T> 006.</td><td></td><td></td><td></td><td></td><td></td></t<>	L> 065°	T> 006.					
0000			1.076					

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST. SYSTEM SURREY CT STANDING		8.700
DIST. SYSTEM SURREY CT FREE FLOW		710 <t. 1,800 <t< td=""></t<></t.
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW		3.200 .670 <t 3.500</t
DIST, SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 5000 (A3)	5.400
DIST. SYSTEM BROOKSIDE ST FREE FLOW		2.300
TREATMENT PLANT TREATED	DET'N LIMIT = 0.20	7.100 3.700 11.000 10.000 8.900 12.000 6.500 6.600
RESERVOIR ARVA	0 0 1 1 1 1 1 1 5 0 5 0 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.000 2.900 .850 <1 3.800 <1 1.900 <1 2.400 1.4P
TREATMENT PLANT RAW	METALS	13,000 4,900 11,000 11,000 4,300 6,100
	ZINC (UG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1992 MAR 1992 JUN 1992 SEP

				:		:		:		1															1		1
	٠			2 4 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	9 a 9 P 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1 a a a a a a a a a a a a a a a a a a a		0 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8	-							٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	BDL		BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	u d d d d d d d d d d d d d d d d d d d	BDL		BDL		108	v a a a a a a a a a a a a a a a a a a a	BDL	• 6 P P P P P P P P P P P P P P P P P P	108	1				IAW	BOL					B0L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	BDL		BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	108	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		BDL		BOL	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BDL	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		, 8DL	BOL		•.			٠		BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JIDELINE = 450 (04)		JIDELINE = N/A	٠	JIDELINE = N/A	•	JIDELINE = N/A	•	JIDELINE = 10000 (I)		JIDELINE = 38000 (04)		JIDELINE = N/A	•	JIDELINE = 10 (C1)		JIDELINE = 1900 (04)						•			JIDELINE = N/A		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	BDL	ថ	BOL	ថ	BOL	ಠ	BOL	.	BOL	ਰ	BDL	ಠ	BDL	ಠ	108	ತ					. BDL				ਰ	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DET'N LIMIT = 1.000	B0L	DET'N LIMIT = 5.000	BOL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	. 80L	DET*N LIMIT = 1.000	801	DET'N LIMIT = 5.000	BDL	DET*N LIMIT = 1.000	108	DET'N LIMIT = 1.000	1,000 <t< td=""><td>no i</td><td>9 3</td><td>IAW</td><td></td><td></td><td></td><td>BDL</td><td>DET'N LIMIT = 1.000</td><td>, 108</td><td></td></t<>	no i	9 3	IAW				BDL	DET'N LIMIT = 1.000	, 108	
	BDL		BOL		HOB		BOL	0 0 0 0 0 0 0 0 0	BDL		BDL		BDL		BDL		BDL	3 2	BDL	i AM	8DL 7	2.000 <	BDL			BDL	
CHLOROAROMATICS CHLOROBUTADIENE (NG/L)	3 SAMPLES BOL	TRICHLOROBENZENE (NG/L)	3 SAMPLES BDL	-TETCLOROBENZENE (NG/L)	3 SAMPLES BOL	· TETCLOROBENZENE · (NG/L)	3 SAMPLES BOL	TRICHLOROBENZENE (NG/L)		-TETCLOROBENZENE (NG/L)	3 SAMPLES BOL	TRICHLOROBENZENE (NG/L)	3 SAMPLES BOL	CHLOROBENZENE (NG/L)	2 SAMPLES BOL	CHLOROETHANE (NG/L)	JAN	MAR	JUL	SEP	NOV	NON	SEP	DEC	CHLOROSTYRENE (NG/L)	3 SAMPLES BOL	
THI DOMANIA TITLE		CONTILES DET'N LIMIT = 1.000 GUIDELINE = 450 (D4) BDL BDL BDL	BDL BDL BDL BDL BDL GUIDELINE = 450 (04) BDL BDL BDL BDL BDL OFT IN LIMIT = 5.000 GUIDELINE = N/A	BDL BDL BDL GUIDELINE = 450 (04) BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL GUIDELINE = 450 (04) BDL BDL DET'N LIMIT = 1.000 GUIDELINE = 450 (04) BDL BDL BDL BDL BDL DET'N LIMIT = 1.000 GUIDELINE = N/A DET'N LIMIT = 1.000 GUIDELINE = N/A	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL	BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL	BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BOL BOL BOL BOL	BDL BDL BDL BDL BDL BDL BDL

DIST. SYSTEM SURREY CT STANDING					•				•	•							
DIST. SYSTEM SURREY CT FREE FLOW		BDL						WA!	BUL						B0L		BDL
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	04)	BDL		* ;	108	BDL	NA.					•			BDL		108
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 74000 (04)		GUIDELINE = N/A						•					GUIDELINE = N/A	٠	GUIDELINE = N/A	
STOCKSIDE ST REE FLOW		· BDL ·		٠	•				108	•					BDL		BDL
TREATED PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	. 108	<u>.</u>	חס	i AN	iAW	BDL	BDL	3DF	BDt .	108	DET 'N LIMIT = 5.000	BDL	DET'N LIMIT = 5.000	BDL
RESERVOIR ARVA		BDL		BDL	100	BDL	MY:	i AW	BDL 8	13.000 <t< td=""><td>BD1</td><td>BDL</td><td></td><td></td><td>BOL</td><td>1</td><td>.BDL</td></t<>	BD1	BDL			BOL	1	.BDL
TREATMENT PLANT RESERVOIR RAW ARVA	CHLOROAROMATICS (NG/L)	BDL	IE (NG/L)	BDL	BDL	Jo j	iAW	# AM	BDL	BDL	BDL	BDL	BOL	WE (NG/L)	BDL	NE (NG/L)	BDL
RAW	CHLORO CHLOROBENZENE (NG/L	23 SAMPLES	236-TRICHLOROTOLUENE (NG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 MAR	1992 JUN	1992 SEP	1992 DEC	245-TRICHLOROTOLUENE (NG/L	.23 SAMPLES	26A-TRICHLOROTOLUENE (NG/L	23 SAMPLES

2	TREATMENT PLANT RESERVOIR RAW ARVA	ARVA	œ	TREATEN PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	YSTEM DIST. SYSTEM DE ST BROOKSIDE ST OW STANDING	DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	DIST, SYSTEM SURREY CT FREE FLOW	DIST. SYSTEM SURREY CT STANDING	
CHLOROPHENOL (NG/L	CHLOROPHENOLS NOL (NG/L)	s. ~		DET'N LIMIT = 100.0	GUIDELINE = N/A				
3 SAMPLES	80r		BDL	BDL					
2345-TETCHLOROPHENOL (NG/L	ENOL (NG/L	^	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 20.0	GUIDELINE = N/A	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	
3 SAMPLES	BOL		BDL	BDL		٠	٠	٠	
2356-TETCHLOROPHENOL (NG/L	ENOL (NG/L	^	1	DET'N LIMIT = 10.0	GUIDELINE = N/A	9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	
3 SAMPLES	BDL		BOL	BDL			٠		
245-TRICHLOROPHENOL (NG/L	NOL (NG/L	^	9 9 0 1 0 9	DET'N LIMIT = 100.0	GUIDELINE = 2600000 (04)	(04)			
3 SAMPLES	BOL		BDL	BOL					
246-TRICHLOROPHENOL (NG/L	NOL (NG/L	^	-	DET'N LIMIT = 20.0	GUIDELINE = 5000 (A1)	1)			
3 SAMPLES	BOL		BDL	BDL			٠	٠	
PENTACHLOROPHENOL (NG/L	((NG/L)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET*N LIMIT = 10.00	GUIDELINE = 60000 (A1)	۸۱)			
3 SAMPLES	BDL		BDL	BDL			٠		

TABLE 4.
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST, SYSTEM SURREY CT STANDING

DIST. SYSTEM DIST. SYSTEM RR#1 GRAND BEND SURREY CT FREE FLOW

DIST. SYSTEM BROOKSIDE ST STANDING

TREATHENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW

TREATMENT PLANT RESERVOIR RAW

1.000 < T 1.00	PESTICIDES AND PCB BDL BDL)	DET'N LIMIT = 1.000 BDL BDT'N LIMIT = 1.000	GUIDELINE = 700 (A1) BDL GUIDELINE = 700 (G)	. BDL	108
BDL GUIDELINE = 300 (G) BDL GUIDELINE = 4000 (A1) BDL GUIDELINE = 7000 (A1) BDL GUIDELINE = 7000 (A1) BDL GUIDELINE = 7000 (A1) BDL GUIDELINE = 70000 (A1) BDL GUIDELINE = 74000 (A1) BDL GUIDELINE = 74000 (D4) BDL				2.000 <7 4.000 <7 !AW	; AW BOL
BOL GUIDELINE = 4000 (A1) BOL GUIDELINE = 7000 (A1) BOL GUIDELINE = 7000 (A1) BOL GUIDELINE = 700 (A1) BOL GUIDELINE = 900000 (A1) BOL GUIDELINE = 74000 (O4) BOL GUIDELINE = 74000 (O4) BOL GUIDELINE = 74000 (O4)		1.00	1	BDL	. 801
GUIDELINE = 7000 (A1) BUL GUIDELINE = 7000 (A1) BUL GUIDELINE = 700 (A1) BUL GUIDELINE = 900000 (A1) BUL GUIDELINE = 74000 (D4) BUL BUL BUL BUL BUL BUL		1.000		BOL	. 801
BDL (SUIDELINE = 7000 (A1)) BDL (SUIDELINE = 700 (A1)) BDL (GUIDELINE = 900000 (A1)) BDL (GUIDELINE = 74000 (D4))	0 1	= 2.000			
GUIDELINE = 700 (A1) BOL GUIDELINE = 900000 (A1) BOL GUIDELINE = 74000 (D4) BOL BOL BOL BOL BOL	<u> </u>	= 2.00)	BDL	. BOL .
GUIDELINE = 900000 (A1) BOL GUIDELINE = 74000 (D4) BOL BOL BOL		= 2.00		B0L	108
GUIDELINE = 74000 (D4) BUL GUIDELINE = 74000 (D4) BUL	0	5.0		BOL	. BDL
GUIDELINE = 74000 (D4) BDL . BDL		= 2.00		. BDL	. Bol
	. 0	5.000	,	BDL	

~ C	TREATMENT PLANT RAW	RESERVOIR ARVA	TREATMENT PLANT DIST. SYSTERATED BROOKSIDE FREE FLOW	DIST. SYSTEM DIST. SYSTEM BROOKSIDE ST BROOKSIDE ST FREE FLOW STANDING	DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	DIST. SYSTEM SURREY CT FREE FLOW	DIST. SYSTEM SURREY CT STANDING
ENDRIN (NG/L	PESTICIDES AND PCB	ND PCB	DET'N LIMIT = 5.000	GUIDELINE = 1600 (D3)			
23 SAMPLES	BDL	BDL	. 108	BDL .	BDL	108	
ENDOSULFAN SULPHATE (NG/L	HATE (NG/L	(DET'N LIMIT = 5.00	GUIDELINE = N/A			
23 SAMPLES	BOL	BDL	BDL	BDL	BDL	BDL	٠
HEPTACHLOR EPOXIDE (NG/L	IDE (NG/L)	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 1.000	GUIDELINE = 3000 (A1)			
15 SAMPLES	BDL	BDL	BDL	iau	BDL	no:	
HEPTACHLOR (NG/L	^	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DET'N LIMIT = 1.000	GUIDELINE = 3000 (A1)	a a a a a a a a a a a a a a a a a a a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 SAMPLES	108	BDL	BDL		BDL	BDL	
MIREX (NG/L			DET'N LIMIT = 5.000	GUIDELINE = N/A	6 8 8 9 8 9 6 6 6 6 8 6 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 SAMPLES	BDL	BDL	BDL	BDL	BDL	BDL	•
OXYCHLORDANE (NG/L	3/L)	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 2.000	GUIDELINE = N/A	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 SAMPLES	BDL	BDL	BDL	BDL	BOL	BDL	
O,P-DDT (NG/L	^		DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)			
23 SAMPLES	BDL	BDL	108	BDL	BDL	BDL	٠
PCB (NG/L)			DET'N LIMIT = 20.00	GUIDELINE = 3000 (A2)			
21 SAMPLES	BDL	BDL	BDL		BDL	BDL	٠
P,P-DDD (NG/L	^		DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)			
23 SAMPLES	BDL	BDL	BDL	. • 108	BDL	BDL	
P,P-DDE (NG/L		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 1.000	GUIDELINE = 30000 (A1)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 SAMPLES	BDL	BDL	108	. 108	BDL	BDL	٠
P,P-DDT (NG/L	_		DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)			
23 SAMPLES	BOL	108	BDL	BDL .	BDL	BDL	٠
TOXAPHENE (NG/L	^		DET'N LIMIT = 500.0	GUIDELINE = 5000 (A1)			
18 SAMPLES	BDL	BDL	BDL		BDL	BDL	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

DIST. SYSTEM SURREY CT STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.*.	1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	٠	3 3 9 9 9 1 1 3 9 9 9 9 9 9 9 9 9 9 9 9	s	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. •	1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
DIST. SYSTEM SURREY CT FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	; ; ; ; ; ; ; ; ; ;			٠				•				5 6 6 7 9 8 8 8 8 8 8		0 0 0 0 0 0 0 0 0 0 0 0 0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•			0 0 1 0 0 0 0 0 0 0 0 0 1		u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	13)		9					•				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠.	0	•	0		(9		3)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. •	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 300000 (03)		GUIDELINE = 60000 (A2)	٠								GUIDELINE = N/A		GUIDELINE = 10000 (A2)		GUIDELINE = 60000 (A2)		GUIDELINE = 10000 (A2)		GUIDELINE = 52500 (03)		GUIDELINE = 700000 (D3)	•	GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)	
TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	DET'N LIMIT = 50.0	. 108	DET'N LIMIT = 50.0		. BDL	BOL	. AT	108	B0L	80L 60 000 <t< td=""><td>50,000 <t< td=""><td>DET'N LIMIT = 50.0</td><td>. BDL</td><td>DET'N LIMIT = 100,0</td><td>. BOL</td><td>DET'N LIMIT = 200.0</td><td>. 108</td><td>DET'N LIMIT = 200.0</td><td>. 801</td><td>DET'N LIMIT = 50.000</td><td>BDL</td><td>DET*N LIMIT = 50.000</td><td>. 801</td><td>DET'N LIMIT = 50.000</td><td>BDL</td><td>DET'N LIMIT = 100.0</td><td></td></t<></td></t<>	50,000 <t< td=""><td>DET'N LIMIT = 50.0</td><td>. BDL</td><td>DET'N LIMIT = 100,0</td><td>. BOL</td><td>DET'N LIMIT = 200.0</td><td>. 108</td><td>DET'N LIMIT = 200.0</td><td>. 801</td><td>DET'N LIMIT = 50.000</td><td>BDL</td><td>DET*N LIMIT = 50.000</td><td>. 801</td><td>DET'N LIMIT = 50.000</td><td>BDL</td><td>DET'N LIMIT = 100.0</td><td></td></t<>	DET'N LIMIT = 50.0	. BDL	DET'N LIMIT = 100,0	. BOL	DET'N LIMIT = 200.0	. 108	DET'N LIMIT = 200.0	. 801	DET'N LIMIT = 50.000	BDL	DET*N LIMIT = 50.000	. 801	DET'N LIMIT = 50.000	BDL	DET'N LIMIT = 100.0	
RESERVOIR ARVA		BDL		. BOL .	108	901	A. I	BOL	BDL	80L 40 000 <t< td=""><td>•</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>B01</td><td></td><td>108</td><td></td><td>HOL</td><td></td><td>80T</td><td></td><td>BDL</td><td>1</td><td>108</td><td></td><td>108</td><td>J</td><td></td></t<>	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B01		108		HOL		80T		BDL	1	108		108	J	
TREATMENT PLANT RAW	PESTICIDES AND PCB	BOL	•	BDL	BDL	BDL	AN	BDL	BDL	80L 60 000 <t< td=""><td>BDL</td><td></td><td>108</td><td>() (NG/L)</td><td>BDL</td><td>E (NG/L)</td><td>108</td><td>E (NG/L)</td><td>108</td><td>^</td><td>108</td><td>(</td><td>B0L</td><td>^</td><td>80L</td><td>OR) (NG/L)</td><td></td></t<>	BDL		108	() (NG/L)	BDL	E (NG/L)	108	E (NG/L)	108	^	108	(B0L	^	80L	OR) (NG/L)	
⊢ α ·	AMETRINE (NG/L	23 SAMPLES	ATRAZINE (NG/L	1991 JAN	1991 MAR		1991 JUL 1991 SEP	1991 NOV	1992 MAR	1992 JUN 1992 SED	1992 DEC	ATRATONE (NG/L	23 SAMPLES	CYANAZINE (BLADEX) (NG/L	23 SAMPLES	DESETHYL ATRAZINE (NG/L	23 SAMPLES	DESETHYL SIMAZINE (NG/L	23 SAMPLES	PROMETONE (NG/L	23 SAMPLES	PROPAZINE (NG/L	23 SAMPLES	PROMETRYNE (NG/L	23 SAMPLES	METRIBUZIN (SENCOR) (NG/L	

TABLE 4
DRINKING WATER SURVEILLANGE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

PESTICIDES AND PCB	ARVA PCB	TREATED BRODE FRE	BROOKSIDE ST FREE FLOW	DISI. STRIEM BROOKSIDE ST STANDING GUIDELINE = 10000 (A2)	RR#1 GRAND BEND FREE FLOW	DIST, SYSTEM SURREY CT FREE FLOW	DIST. SYSTEM SURREY CT STANDING
BDL	BDL	BDL	٠			:	
^	1	DET'N LIMIT = 500.0	ло По	GUIDELINE = 5000 (A2)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	, 6 e e e e e e e e e e e e e e e e e e
BDL	108	BDL	٠				
• • • • • • • • • • • • • • • • • • •	5 5 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	DET'N LIMIT = 500.0	no	GUIDELINE = 50000 (A2)	1 1 4 4 5 7 7 9 2 7 7 9 7 9 7 9 9 9 9 9 9 9 9 9 9		
BDL	BDL	BDL				٠	
HEXACLCYCLOPENTADIEN (NG/L)		DET'N LIMIT = 5.00	no	GUIDELINE = 206000 (D4)	4)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
BDL	35.000 <t< td=""><td>BDL</td><td></td><td></td><td>٠</td><td>7.0</td><td>•</td></t<>	BDL			٠	7.0	•
BDL	OĐ Ì	no i	٠		BDL	٠	
l ou	BDL	No i	٠		24,000 <t< td=""><td></td><td></td></t<>		
AM	i AN	IAU			IAW		٠
IAW	iAW	IAU				IAW	
BDL	20.000 <t< td=""><td>16.000 <t< td=""><td>20.000 <t< td=""><td></td><td></td><td>BDL</td><td></td></t<></td></t<></td></t<>	16.000 <t< td=""><td>20.000 <t< td=""><td></td><td></td><td>BDL</td><td></td></t<></td></t<>	20.000 <t< td=""><td></td><td></td><td>BDL</td><td></td></t<>			BDL	
No i	Oo j	noi				•	
וסו	OĐ I	noi	٠	٠			
סח	UO !	noi					
noi		100			,		

ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

;											,
DIST. SYSTEM SURREY CT STANDING		٠		٠							
DIST. SYSTEM SURREY CT FREE FLOW										•	
DIST. SYSTEM DIST. SYSTEM RR#1 GRAND BEND. SURREY CT FREE FLOW FREE FLOW											•
	GUIDELINE = N/A										•
DIST. SYSTEM BROOKSIDE ST FREE FLOW	0.2 . GUI									•	•
TREATMENT PLANT RESERVOIR TREATED BROOKSIDE ST BROOKSIDE	DET'N LIMIT =	T> 000.	3DL	.800 <t< td=""><td>T> 009.</td><td>80r</td><td>T> 009.</td><td>BOL</td><td>1.400</td><td>T> 004.</td><td>T> 009.</td></t<>	T> 009.	80r	T> 009.	BOL	1.400	T> 004.	T> 009.
RESERVOIR ARVA	-	IRE	T> 009.	T> 009.	301	80L	T> 004.	3DL	.800 <t< td=""><td>T> 004.</td><td></td></t<>	T> 004.	
TREATMENT PLANT RAW	PHENOLICS	T> 009.	T> 004.	8DL	.200 <7	T> 009.	T> 000.	BDL	2.600	T> 009.	BDL .
	PHENOLICS (UG/L	1991 JAN	1991 MAR	_		1991 SEP				1992 SEP	1992 DEC -:

E							0 9 4 6 0												0 0 0 0					
DIST. SYSTEM SURREY CT STANDING	-				-		0 0 0 0 0 0 0 0 0 7				0 0 0 0 0 0 0 0 0 0		,						6 6 6 6 6 6 6 7					
DIST. SYSTEM SURREY CT FREE FLOW						٠	9 9 9 9 9 9 6 1 1 2 3 4 4 1 1	٠			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	•			٠			# 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	٠				a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW		BDL		BDL	^	BDL		BDL		. 8DL	6 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BDL		BDL		BDL		108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL		BDL		BDL
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A		GUIDELINE = N/A	•	GUIDELINE = 42000 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	٠	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	•	GUIDELINE = N/A	٠	GUIDELINE = N/A	٠	GUIDELINE = 10 (A1)	9 9 9 9 9 9 9 9 9 9 9 9
TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	DET'N LIMIT = 10.0 G	. 801	DET'N LIMIT = 1.0 G	. BDL .	DET'N LIMIT = 20.0 G	. BDL	DET'N LIMIT = 20.0 G	. BOL	DET'N LIMIT = 20.0 G	108	DET'N LIMIT = 50.0		DET'N LIMIT = 5.0 G	. BDL	DET'N LIMIT = 50.0 G	BDL	DET'N LIMIT = 10.0 G	BDL	DET'N LIMIT = 10.0	. 801	DET'N LIMIT = 1.0	. 108	DET'N LIMIT = 5.0	
RESERVOIR ARVA		BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		108	B	B01		BOL	5 5 5 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BOL		BDL		108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B0L	b b b b b b b b b b b b b b b b b b b	BD1.		BOL		BDL
TREATMENT PLANT	POLYAROMATIC HYDROCARBONS	BDL	۲.)	BDL	16/L)	BDL		BDL	ENE (NG/L)	BDL	(BDL	MANTHR (NG/L)	BDL	(NG/L)	BDL	NATHEN (NG/L)	BOL		BDL	INTHEN (NG/L)	BDL	(NG/L)	BOL
	PHENANTHRENE (NG/L	14 SAMPLES	ANTHRACENE (NG/L	14 SAMPLES	FLUORANTHENE (NG/L	14 SAMPLES	PYRENE (NG/L	14 SAMPLES	BENZO(A)ANTHRACENE (NG/L	14 SAMPLES	CHRYSENE (NG/L	14 SAMPLES	DIMETH. BENZ(A)ANTHR (NG/L	14 SAMPLES	BENZO(E) PYRENE (NG/L	14 SAMPLES	BENZO(B) FLUORANTHEN (NG/L	14 SAMPLES	PERYLENE (NG/L	14 SAMPLES	BENZO(K) FLUORANTHEN (NG/L	14 SAMPLES	BENZO(A) PYRENE (NG/L	14 SAMPLES

DIST. SYSTEM SURREY CT STANDING		•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
IST. SYSTEM URREY CT REE FLOW		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
DIST. SYSTEM D RR#1 GRAND BEND S FREE FLOW		BOL		BDL		108		BDL		BDL
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A	٠	GUIDELINE = N/A		GUIDELINE = N/A	-	GUIDELINE = N/A	٠	GUIDELINE = N/A	
TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 10.0 GL	. BOL .	DET'N LIMIT = 20.0 GL	BDL .	DET'N LIMIT = 2.0 GU	B0L	DET'N LIMIT = 10.0 GI	BDL .
		BDL	0	. 108	0	BDL	0	BDL	٥	BDL
TREATMENT PLANT RESERVOIR RAW ARVA	POLYAROMATIC HYDROCARBONS RYLEN (NG/L)	BDC	THRAC (NG/L)	BDL	D) PY (NG/L)	BOL	NE (NG/L)	BOL	(BDL
	BENZO(G, H, I) PERYLEN (NG/L	14 SAMPLES	DIBENZO(A, H) ANTHRAC (NG/L	14 SAMPLES	INDENO(1,2,3-C,D) PY (NG/L	14 SAMPLES	BENZO(B) CHRYSENE (NG/L	14 SAMPLES	CORONENE (NG/L	14 SAMPLES

																								1	
DIST. SYSTEM SURREY CT STANDING								٠		•		٠								٠		٠		٠	
DIST. SYSTEM SURREY CT FREE FLOW			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠			6 1 7 1 1 1 0 0 1 1 1 1	٠				٠		•		٠				•				-	
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	5	٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-				•		٠	ż	٠					^	•	^	•	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			-	
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 190000 (A1)		GUIDELINE = N/A	٠	GUIDELINE = 9000 (03)		GUIDELINE = N/A		GUIDELINE = 50000 (A1)	٠	GUIDELINE = 2000 (A2)		GUIDELINE = N/A	• •	GUIDELINE = N/A		GUIDELINE = 90000 (A1)	٠	GUIDELINE = 350000 (G)	b	GUIDELINE = N/A		GUIDELINE = N/A		
LANT DIST. SYSTEM BROOKSIDE ST FREE FLOW	·		5 9 9 9 9 9									. •				٠		٠			6 7 5 5 9 5 6 9	٠		٠	
TREATMENT PLANT TREATED	DET'N LIMIT = 20.0	108	DET'N LIMIT = 20.0	108	DET'N LIMIT = 50.0	NOR -	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 20.0	BOL	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 20.0	108	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 2000.0	. BOL	DET'N LIMIT = 2000,0	BOL	DET'N LIMIT = 2000.0	BOL	DET'N LIMIT = 2000.0	BOL	
RESERVOIR ARVA	ICIDES	BOL	6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 7 6 6 6 7 7 7 8 7 8	BDL	=	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	9 9 9 9 9 1 1 1 1	108 .		108		BDL		B0L		iLA		iLA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ΥΊ		ILA	
TREATMENT PLANT	SPECIFIC PESTICIDES	BDL	^	80L	(NG/L)	108	NG/L)	108	^	B0L	^	BDL	^	BDL	^	B0L	^	BOL	PC) (NG/L)	BDL		BOL	_	BOL	
⊢ α .	MALATHION (NG/L	3 SAMPLES	MEVINPHOS (NG/L	3 SAMPLES	METHYL PARATHION (NG/L	3 SAMPLES	METHYLTRITHION (NG/L	3 SAMPLES	PARATHION (NG/L	3 SAMPLES	PHORATE (NG/L	3 SAMPLES	RELDAN (NG/L	3 SAMPLES	RONNEL (NG/L	3 SAMPLES	CARBOFURAN (NG/L	2 SAMPLES	CHLORPROPHAM (CIPC) (NG/L	2 SAMPLES	DIALLATE (NG/L	2 SAMPLES	EPTAM (NG/L	2 SAMPLES	8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 28	TREATMENT PLANT RESERVOIR RAW ARVA	RESERVOIR ARVA	TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	DIST. SYSTEM BROOKSIDE ST FREE FLOW	DIST. SYSTEM BROOKSIDE ST STANDING	DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	DIST. SYSTEM SURREY CT FREE FLOW	DIST. SYSTEM SURREY CT STANDING
IPC (NG/L)	SPECIFIC PESTICIDES	ICIDES	DET'N LIMIT = 2000.0	0 0 0 0 5 0 0	GUIDELINE = N/A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 SAMPLES	BDL	iLA	BDL		٠	٠		
PROPOXUR (NG/L	^	0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	DET'N LIMIT = 2000.0	8 8 8 8 8 8	GUIDELINE = 140000 (D3)	03)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 SAMPLES	108	iLA	BDL	٠		•	٠	
CARBARYL (NG/L		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 200.0		GUIDELINE = 90000 (A1)			
2 SAMPLES	108	ILA	BDL	٠	٠	٠		
BUTYLATE (NG/L		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 2000.0		GUIDELINE = 245000 (D3)	03)		
2 SAMPLES	BDL	ILA	BDL	٠	٠		٠	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

																						:		:									:
DIST. SYSTEM SURREY CT STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P P P P P P P P P P P P P P P P P P P			•	•		٠			0 0 0 0 0 0 0 0 0 0 0 0		•					•	•			•	, , , , , , , , , , , , , , , , , , ,					•		٠	•	٠
DIST. SYSTEM SURREY CT FREE FLOW	, n n n n n n n n n n n n n n n n n n n	108	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				BDL	T> 050.									BOL	.100 ≺⊺	•	• •		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BDL					. 2	BOL BOL				*
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	i	708.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BDL	B01	BUL.							· ION	BOL	. 100 <t< td=""><td></td><td></td><td>•</td><td></td><td></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BDL</td><td>* * * * * * * * * * * * * * * * * * *</td><td>٠</td><td>BDL</td><td>BOL</td><td>BDL</td><td></td><td></td><td></td><td></td><td></td></t<>			•			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	* * * * * * * * * * * * * * * * * * *	٠	BDL	BOL	BDL					
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 5 (A1)		GUIDELINE = 24 (A3)			•						GUIDELINE = 2.4 (A3)		•					•			GUIDELINE = 300 (A3*)		GUIDELINE = 300 (A3*)					•			٠	
DIST. SYSTEM BROOKSIDE ST FREE FLOW	GUI	BDL	0100			•		T> 050.				GUID		• .				T> 041.				GUID	BDL	ปกอ				ļ	· Ida				
TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	DET'N LIMIT = 0.05	BDĽ	DET'N LIMIT = 0.05	T> 054.	BDL.	80F	BDL	T> 050.	BDL	306	801	DET'N LIMIT = 0.05	100 ×T	.050 <t< td=""><td>100 <1</td><td>.150 <t< td=""><td>. 100 <t< td=""><td>1001.</td><td>100 <</td><td>100 <1</td><td>T> 050.</td><td>DET'N LIMIT = 0.10</td><td>BDL</td><td>DET'N LIMIT = 0.10</td><td>T> 001.</td><td>BDL</td><td>BOL</td><td>90F</td><td></td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td></t<></td></t<></td></t<>	100 <1	.150 <t< td=""><td>. 100 <t< td=""><td>1001.</td><td>100 <</td><td>100 <1</td><td>T> 050.</td><td>DET'N LIMIT = 0.10</td><td>BDL</td><td>DET'N LIMIT = 0.10</td><td>T> 001.</td><td>BDL</td><td>BOL</td><td>90F</td><td></td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td></t<></td></t<>	. 100 <t< td=""><td>1001.</td><td>100 <</td><td>100 <1</td><td>T> 050.</td><td>DET'N LIMIT = 0.10</td><td>BDL</td><td>DET'N LIMIT = 0.10</td><td>T> 001.</td><td>BDL</td><td>BOL</td><td>90F</td><td></td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td></t<>	1001.	100 <	100 <1	T> 050.	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.10	T> 001.	BDL	BOL	90F		108	BDL	BOL	BDL
RESERVOIR ARVA		BOL	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.050 <t< td=""><td>BDL</td><td>BDL</td><td>801</td><td>T> 050.</td><td>BOL</td><td>BOL</td><td></td><td>9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>100 ×T</td><td>BDI</td><td>T> 050.</td><td>.100 <t< td=""><td>.050 <t< td=""><td>15 001.</td><td>100 <1</td><td>. 100 <t< td=""><td>•</td><td></td><td>· BDL</td><td></td><td>BDL</td><td>B0L</td><td>. BDL</td><td>80F</td><td>N I I</td><td>BOL</td><td>BDL</td><td>BOL</td><td></td></t<></td></t<></td></t<></td></t<>	BDL	BDL	801	T> 050.	BOL	BOL		9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 ×T	BDI	T> 050.	.100 <t< td=""><td>.050 <t< td=""><td>15 001.</td><td>100 <1</td><td>. 100 <t< td=""><td>•</td><td></td><td>· BDL</td><td></td><td>BDL</td><td>B0L</td><td>. BDL</td><td>80F</td><td>N I I</td><td>BOL</td><td>BDL</td><td>BOL</td><td></td></t<></td></t<></td></t<>	.050 <t< td=""><td>15 001.</td><td>100 <1</td><td>. 100 <t< td=""><td>•</td><td></td><td>· BDL</td><td></td><td>BDL</td><td>B0L</td><td>. BDL</td><td>80F</td><td>N I I</td><td>BOL</td><td>BDL</td><td>BOL</td><td></td></t<></td></t<>	15 001.	100 <1	. 100 <t< td=""><td>•</td><td></td><td>· BDL</td><td></td><td>BDL</td><td>B0L</td><td>. BDL</td><td>80F</td><td>N I I</td><td>BOL</td><td>BDL</td><td>BOL</td><td></td></t<>	•		· BDL		BDL	B0L	. BDL	80F	N I I	BOL	BDL	BOL	
TREATMENT PLANT	VOLATILES)	BDL	,	.100 <t< td=""><td>BDL</td><td>8DL 8DI</td><td>80F</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>G/L)</td><td>. 100 <t< td=""><td>BD1</td><td>. 150 <t< td=""><td>BOL</td><td>BDL 400</td><td>2001.</td><td>100 ×T</td><td>.100 <t< td=""><td>. 100 <t< td=""><td>^</td><td>BOL</td><td>•</td><td>BDL</td><td>B0L</td><td>BDL</td><td>108 108</td><td>801</td><td>B0L</td><td>108</td><td>BOL</td><td>1> 007.</td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	8DL 8DI	80F	BDL	BDL	108	BDL	G/L)	. 100 <t< td=""><td>BD1</td><td>. 150 <t< td=""><td>BOL</td><td>BDL 400</td><td>2001.</td><td>100 ×T</td><td>.100 <t< td=""><td>. 100 <t< td=""><td>^</td><td>BOL</td><td>•</td><td>BDL</td><td>B0L</td><td>BDL</td><td>108 108</td><td>801</td><td>B0L</td><td>108</td><td>BOL</td><td>1> 007.</td></t<></td></t<></td></t<></td></t<>	BD1	. 150 <t< td=""><td>BOL</td><td>BDL 400</td><td>2001.</td><td>100 ×T</td><td>.100 <t< td=""><td>. 100 <t< td=""><td>^</td><td>BOL</td><td>•</td><td>BDL</td><td>B0L</td><td>BDL</td><td>108 108</td><td>801</td><td>B0L</td><td>108</td><td>BOL</td><td>1> 007.</td></t<></td></t<></td></t<>	BOL	BDL 400	2001.	100 ×T	.100 <t< td=""><td>. 100 <t< td=""><td>^</td><td>BOL</td><td>•</td><td>BDL</td><td>B0L</td><td>BDL</td><td>108 108</td><td>801</td><td>B0L</td><td>108</td><td>BOL</td><td>1> 007.</td></t<></td></t<>	. 100 <t< td=""><td>^</td><td>BOL</td><td>•</td><td>BDL</td><td>B0L</td><td>BDL</td><td>108 108</td><td>801</td><td>B0L</td><td>108</td><td>BOL</td><td>1> 007.</td></t<>	^	BOL	•	BDL	B0L	BDL	108 108	801	B0L	108	BOL	1> 007.
	BENZENE (UG/L	35 SAMPLES	TOLUENE (UG/L			1991 MAY	1991 SEP	1991 NOV	1992 MAR	1992 JUN	1992 DEC	ETHYLBENZENE (UG/L	1001 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 JUN	1992 SEP	1992 DEC	P-XYLENE (UG/L	35 SAMPLES	M-XYLENE (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL 1991 SED	1991 NOV	1992 MAR	1992 JUN	1992 SEP	1992 DEC

VOLATILES						
O-XYLENE (UG/L)		DET'N LIMIT = 0.05	GUIDELINE = 300 (A3*)			
BDL	BDL	.050 <t< td=""><td></td><td></td><td></td><td></td></t<>				
BDL	BDL	BDL		BDL		
BDL	BDL	BDL		BDL		
BDL	BDL	BOL		BDC	• .	
BDL	BDL	BUL			RDL	
BDL	BDL	BOL	BDL		BDL	
BOL	BDL	BDL				
BDL	BDL	BOL				
8DL .050 <t< td=""><td>BDL.</td><td>80L 80L</td><td></td><td></td><td></td><td></td></t<>	BDL.	80L 80L				
_		DET'N LIMIT = 0.05	GUIDELINE = 100 (D1)			
1, 031	200	d				
1> UCI.	BDI	BOL		· IO		
200 cT	Bol	BDI		050 <t< td=""><td></td><td></td></t<>		
1, 002.	BDI	BDI		1,000		•
100 cT	BDI	BDI			· ida	
100 ×	B B	BDI	300 <t< td=""><td>•</td><td>200 cT</td><td>•</td></t<>	•	200 cT	•
100 <1	BDL	BDL				
.150 <7	BDI	BDL				
.200 <t< td=""><td>BDL</td><td>800</td><td></td><td></td><td></td><td></td></t<>	BDL	800				
.300 <t< td=""><td></td><td>BDL</td><td>٠</td><td>:</td><td></td><td>٠</td></t<>		BDL	٠	:		٠
1,1-DICHLOROETHYLENE (UG/L)		DET'N LIMIT = 0.100	. GUIDELINE = 7 (D1)	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
BDL	BDL	BDL	. 801	BDL	BDL	٠
METHYLENE CHLORIDE (UG/L)		DET'N LIMIT = 0.50	GUIDELINE = 50 (A1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 9 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BDL	BDL	BDL				٠
BDL	. BDL	BDL		BDL		٠
BDL	BDL	14.000 UCS		BDL		٠
BDL	BDL	BDL		BDL		
BDL	BDL	BDL			BDL	
BDL	BDL	BDL	BD1.		BDL	
BDL	BDL	BDC.				
BDL	BDL	BDL				
BDL	BDL	BDL.	٠			•
BDL		108 ·		٠		٠
T12-DICHLOROETHYLENE (UG/L)		DET'N LIMIT = 0.10	GUIDELINE = 70 (D1)	·		
BDL	BDL	BDL	BDL .	BDL	BDL	٠

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST. SYSTEM SURREY CT STANDING	0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	•							0		•										8 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
DIST. SYSTEM SURREY CT FREE FLOW	, , , , , , , , , , , , , , , , , , ,	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				18.800	11.500									80F	ROL					BDL	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				. IOR	80L			
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW)) (1)) (1)) (1) (1) (1) (1) (1) (1)	BDL			4.500	7.800	7.600							BDL	BOL	BDL			•	•	٠		BOL	1	٠	108	.200 <1	BUL				
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A		GUIDELINE = 350 (A1+)		•				•			GUIDELINE = 200 (01)						•				GUIDELINE = 5 (A1)		GUIDELINE = 5 (A1)							•	
DIST. SYSTEM BROOKSIDE ST FREE FLOW	ng	BDL	no				-	8.700				3		: .				BUL				130	BOL	B		٠			BDL			
TREATMENT PLANT DIST TREATED BROG FREE	DET'N LIMIT = 0,100	BOL	DET*N LIMIT = 0.10	8.500	13.300	25.200	24, 100	16.100	11,200	8.100	11.600	DET*N LIMIT = 0.02		BOL	B0L	BOL	BDL	. BUL	. BDL	BOL	BDL	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.20	BOL	BOL	801	208	108	BOL	801	ממר
RESERVOIR ARVA	9 9 9 9 9 8 8 8 8 8	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.700	12.300	25.100	23.800	16.600	15.200	17.500		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T> 0A0	BDL	BDL	BOL	80L	BDL	BOL	BOL			BOL	^	BOL	BOL	BDL	202	BOL	B01	80L	100
	ES	ب	***************************************	ن	BDL	ـ بـ	<u>.</u>		ب		ب ب	^	_	یہ د	ب	ب	۔ ب		ب ر	ب	پ	^	ب		ب	. پ	. پ		ہے ر	ب	<u>.</u> .	_
TREATMENT PLÁNT RAW	VOLATILES HANE (UG/L	BDL	ر ۲	BD	QB	08	J 08	08	BD	BO	BOL	THANE (UG/L	Ca	8 8	BD	BO	80	108	8 8	BOL	80	IANE (UG/L	BDL	ORIDE (UG/	80	80	8 8	S G	. BDL	BD	08	20
	VOLATIL 1,1-DICHLOROETHANE (UG/L	35 SAMPLES	CHLOROFORM (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 NOV	1992 MAR	1992 JUN	1992 DEC	111, TRICHLOROETHANE (UG/L	1001 140	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 JUN	1992 SEP	1992 DEC	1,2 DICHLOROETHANE (UGAL	35 SAMPLES	CARBON TETRACHLORIDE (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 SFP	1991 NOV	1992 MAR	1992 JUN	1776 SEF

	:		:		:										0 0		1										:		
DIST. SYSTEM SURREY CT STANDING	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•				•							8 . 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			٠		٠							
DIST. SYSTEM SURREY CT FREE FLOW		108	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠			• 400	9.800						B0L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					1.100	7.600				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BDL
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108			3.350	4.200.	5.250							BOL	0 0 0 0 0 0 0 0 0 0 0 0 0		1,800	2,600	1.800		•						BOL
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = 5 (D1)		GUIDELINE = 50 (A1)	٠	GUIDELINE = 350 (A1+)	٠								•	GUIDELINE = 0.6 (04)		GUIDELINE = 350 (A1+)						•	٠	•			GUIDELINE = 65 (A5)	r
DIST. SYSTEM BROOKSIDE ST FREE FLOW	GU109	BOL	IQ I NO	108	IQ1109	٠		,	٠	2 300					GUID	BDL	GU10					• !	7.400					0110	108
TREATMENT PLANT OF TREATED FR	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.05	6.550 SPS	8.300	8.750	8.700	8 300	7.850	6.550	7.950	8.250	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.10	000.4	2,900	3.300	3.100	7.400	3.100	3.900	200.5	4.600		DET'N LIMIT = 0.05	108
RESERVOIR ARVA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108		108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.850	7.800	8.750	8.950	8 200	8.500	9.450	8.600			108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.600	3.400	2.900	2.800	4.100	2.400	3.400	2002				BDL
TREATMENT PLANT	VOLATILES ANE (UG/L)	108	(1/90)	BDL	HANE (UG/L	108	80T	BOL	80F	BDL	108 80F	108	BOL	108	ANE (UG/L)	BOL	HANE (UG/L	BDL	BDL	BOL	108	BDL	ROL	80F	100	80F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ENE (UG/L)	BOL
RA	VOLATIL 1, 2-DICHLOROPROPANE (UG/L	35 SAMPLES	TRICHLOROETHYLENE (UG/L	35 SAMPLES	DICHLOROBROMOMETHANE (UG/L	1991 JAN			1991 JUL		1992 MAR	1992 JUN	1992 SEP	1992 DEC	112-TRICHLOROETHANE (UG/L	35 SAMPLES	CHLOROD I BROMOMETHANE (UG/L	1991 JAN	1991 MAR		1991 JUL	1991 SEP		1992 MAR				TETRACHLOROETHYLENE (UG/L	35 SAMPLES

TABLE 4 DRINKING WATER SURVETLLANCE PROGRAM 1991 AND 1992 LONDON (LAKE HURON) WSS

DIST. SYSTEM SURREY CT STANDING			•		•					•			1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		5 F F F F F F F F F F F F F F F F F F F	٠	1						0 b c c c c c c c c c c c c c c c c c c		
DIST. SYSTEM SURREY CT FREE FLOW							BDL	BUL				•		108		•			7 9 9 0 8 0 5 5 7 1 1 8 8 8 8	. BDL		108		BDL		108		BDL	
DIST. SYSTEM RR#1 GRAND BEND FREE FLOW			* 000	1 007.	100	BUL			•					BDL			3	•	1 2 3 4 4 6 0 0 0 0 0	BDL		BDL		BDL		BDL	9 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BDL	
DIST. SYSTEM D BROOKSIDE ST R STANDING F	GUIDELINE = 350 (A1+)				•		•					• 1	GUIDELINE = 0.17 (D4)		 GUIDELINE = 2 (D1)		GUIDELINE = 70 (D1)		GUIDELINE = 1510 (03)		GUIDELINE = 5 (A1)		GUIDELINE = 3750 (03)		GUIDELINE = 200 (A1)	•	GUIDELINE = 50 (D1)	٠	
DIST. SYSTEM BROOKSIDE ST FREE FLOW	ਚ			÷			• 100	BUL				•	ថ	BDL	 ថ	٠	3	٠	ಠ	BDL	ਰ	HODE	ਰ	108	ថ	BDL	ਰ -	BDL	
TREATMENT PLANT DI TREATED FR	DET'N LIMIT = 0.20	IUB		1> 002.						BDL	BDL	T> 009.	DET!N LIMIT = 0.05	BOL	 DET'N LIMIT = 0.100	BOL	DET'N LIMIT = 0.100	BDL	DET*N LIMIT = 0.10	108	DET'N LIMIT = 0.10	708 - ·	DET'N LIMIT = 0.10	TOB .	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.05	BDL	
VOIR		I U	200	2002.	2021	100 100 100 100 100 100 100 100 100 100	108 108	· BUL	BDL	80 1	BDL		-	BDL		BDL	,	BDL		BDL	1 3 0 0 0 1 3 ,	BDL	-	BOL		BDL		BDL	
NT RESERVOIR ARVA													^				^				^		.~		^		^		
TREATMENT PLANT RAW	VOLATILES)	IUB	2 2	BOL	100	901	801	BDL	BDL	BDL	BDL	BDL	HANE (UG/L	BDL	 (1/90	BDL	LENE (UG/L	BDL	و/ر)	BDL	ENE (UG/L	BDL	ENE (UG/L	BDL	ENE (UG/L	BDL	DE (UG/L	BDL	
⊢ œ	BROMOFORM (UG/L	1001	1001	1001 MAY	1001	1001 550	1991 SEP	VON 1991	1992 MAR	1992 JUN	1992 SEP	1992 DEC	1122-TETCHLOROETHANE (UG/L	35 SAMPLES	VINYL CHLORIDE (UG/L	11 SAMPLES	C12-DICHLOROETHYLENE (UG/L	11 SAMPLES	CHLOROBENZENE (UG/L	35 SAMPLES	1,4-DICHLOROBENZENE (UG/L	35 SAMPLES	1,3-DICHLOROBENZENE (UG/L	35 SAMPLES	1,2-DICHLOROBENZENE (UG/L	35 SAMPLES	ETHYLENE DIBROMIDE (UG/L	35 SAMPLES	

REATMENT PLANT	. RESERVOIR ARVA	TREATMENT PLANT DIST. SYSTEM TREATED BROOKSIDE ST FREE FLOW	DIST. SYSTEM BROOKSIDE ST FREE FLOW	DIST. SYSTEM BROOKSIDE ST STANDING	DIST. SYSTEM RR#1 GRAND BEND FREE FLOW	DIST. SYSTEM SURREY CT FREE FLOW	DIST, SYSTEM SURREY CT STANDING
VOLATILES ES (UG/L	^	DET'N LIMIT = 0.50	0 5 5 5 5 7 7 7 7 7	GUIDELINE = 350 (A1)	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. a a a a a a a a a a a a a a a a a a a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BOL	20,200	19.000	٠				
B0L	23.750	24.800		٠	006.6		
BOL	36.950	37.500			14.550		
BOL	33.450	30.100		٠	16.650		
BDL	37.500	38.700		٠		28.500	
BDL	28.200	27.500	16.400	٠		20.400	
BOL	27.100	22,950		٠			*
BOL	30,650	18,450		,			
BDL	30.800	26.750				٠	
BDL		25.050		٠			

DIST. SYSTEM DIST. SYSTEM SURREY CT SURREY CT FREE FLOW STANDING														
DIST, SYSTEM RR#1 GRAND BEND FREE FLOW							010				(A1)		^	
DIST. SYSTEM BROOKSIDE ST STANDING	GUIDELINE = N/A		GUIDELINE = N/A	٠	GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (D1)		GUIDELINE = N/A		GUIDELINE = 40000 (A1)		GUIDELINE = 10 (A1)	
TREATMENT PLANT DIST. SYSTEM TREATED PROCKSIDE ST FREE FLOW	DET'N LIMIT = 0.70	BDL	DET'N LIMIT = 0.70	. BDL	DET'N LIMIT = 0.70	B0L	DET'N LIMIT = 0.04	BDL	DET'N LIMIT = 0.04	.060 .070	DET'N LIMIT = 7.00	9.000	DET'N LIMIT = 0.70	- BDL
RESERVOIR ARVA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	, , , , , , , , , , , , , , , , , , ,	PDI		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	? ! ! ! ! !	070.	1 E F F F 1 1 1 1 1 2 3 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.000	0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108
TREATMENT PLANT RAW	RADIONUCLIDES	BOL	^	BOL	^	BDL ·	NT (BQ/L)	. BDL	T (BQ/L)	070.	^	9.000	()	BDL
. ·	COBALT 60 (BQ/L	5 SAMPLES	. CESIUM 134 (BQ/L	5 SAMPLES	CES1UM 137 (BQ/L	5 SAMPLES	GROSS ALPHA COUNT (BQ/L	5 SAMPLES	GROSS BETA COUNT (BQ/L	1991 NOV 1992 JUN	TRITIUM (BQ/L	1991 NOV 1992 JUN	100 INE 131 (BQ/L	S CAMPIES

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
*				
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0 (A1	15
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	o o	500/ML (A3	
TOTAL COLIFORM BACKGROUND MF	CT/100ML	Õ	N/A	•
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	Ö	5/100ML (A1	1)
TOTAL COLLINATION TELEBRATE TELEBRATE	01, 10111			
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD PH	DMNSLESS	N/A	6.5-8.5 (A4	4)
FIELD TEMPERATURE	DEG.C	N/A	15.0 (A3	3)
FIELD TURBIDITY	FTU	N/A	1.0 (A1	1)
CHEMISTRY (LAB)		•		
ALKALINITY	MG/L	0.20	30-500 (A4	4)
AMMONIUM TOTAL	MG/L	0.002	0.05 (F2	2)
CALCIUM	MG/L .	0.20	100.0 (F2	2)
CHLORIDE	MG/L	0.20	250.0 (A3	3)
COLOUR	TCU	0.50	5.0 (A3	
CONDUCTIVITY	UMHO/CM	1.00	400.0 (F2	
CYANIDE	MG/L	0.001	0.2 (A1	
DISSOLVED ORGANIC CARBON	MG/L	0.10	5.0 · (A3	
FLUORIDE	MG/L	0.01	1.5* (A1	
HARDNESS	MG/L	0.50	80-100 (A4	4)
IONCAL	DMNSLESS	N/A	N/A	
LANGELIERS INDEX	OMNSLESS	N/A	N/A	٠.
MAGNESIUM	MG/L	0.10	30.0 (F2	
NITRATES (TOTAL)	MG/L	0.005	10.0 (A1	
NITRITE	MG/L	0.001	1.0 (A1	1)
NITROGEN TOTAL KJELDAHL	MG/L	0.02 N/A	N/A 6.5-8.5 (A	
PH	DMNSLESS	N/A 0.0005	0.5-8.5 (A4	+)
PHOSPHORUS FIL REACT	MG/L MG/L	0.0005	0.4 (F2	21
PHOSPHORUS TOTAL POTASSIUM	MG/L MG/L	0.002	10.0 (F2	
RESIDUE FILTRATE (CALCULATED TDS)	MG/L MG/L	N/A	500.0 (A3	
SODIUM	MG/L	0.20	200.0 (A	
SULPHATE	MG/L	0.20	.500.0 (A4	
TURBIDITY	FTU	0.05	1.0 (A	
10.000				

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS

1.2.3-TRICHLOROBENZENE	. NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1.2.3.5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1.3.5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2.3.6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.4.5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2.3.4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2.3.4.5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	₄ N/A	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
		0.40	100	(A4)
ALUMINUM	UG/L UG/L	0.10 0.05	146	(D4)
ANTIMONY ARSENIC	UG/L	0.10	25	(A1)
BARIUM .	⊌G/L	0.05	1000	(A2)
BERYLLIUM	UG/L	0.05	6800	(D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	
COPPER	UG/L	0.50	1000	(A3)
IRON .	UG/L	· 6.00	300	(A3)
LEAD	UG/L	0.05 0.05	10 50	(A1) (A3)
MANGANESE MERCURY	UG/L UG/L	. 0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	(///
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	4475
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	
BENZO(B) FLUORANTHENE	NG/L	10.0 50.0	N/A N/A	
BENZO(E) PYRENE BENZO(G,H,I) PERYLENE	NG/L NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A	
PERYLENE .	NG/L	10.0 10.0	N/A N/A	
PHENANTHRENE PYRENE	NG/L NG/L	20.0	N/A	
PESTICIDES & PCB				
ÁLACHLOR (LASSO)	NG/Ľ	500.0	5000	(A2)
ALDRIN	NG/L NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(03)
ATRATONE	NG/L	50.0	N/A	
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0 100.0	300 10000	(G) (A2)
CYANAZINE (BLADEX) DIELDRIN	NG/L NG/L	2.0	700	(A2)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(04)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	UNIT		IDELINE	
ENDRIN	NG/L	5.0	1600	(D3)
GAMMA CHLORDANE	NG/L	2.0	7000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000	(A1)
HEXACHLOROCYCLOPENTADJENE	NG/L	5.0	206000	(D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR	NG/L	5.0	900000	(A1)
METOLACHLOR	NG/L	500.0	50000	(A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000	(A1)
MIREX	NG/L	5.0	N/A	
P,P-DDD	NG/L	5.0 5.0	30000 30000	(A1) (A1)
O,P-DDT P,P-DDT	NG/L NG/L	5.0	30000	(A1)
P,P-DDE	NG/L	1.0	30000	(A1)
OXYCHLORDANE	NG/L	2.0	N/A	,,,,,
PCB	NG/L	20.0	3000	(A2)
PROMETONE	NG/L	50.0	52500	(D3)
PROMETRYNE	NG/L	50.0	1000	(A2)
PROPAZINE	NG/L	50.0	700000	(03)
SIMAZINE	NG/L	- 50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0	10000	(A2)
TOXAPHENE	NG/L	500.0	5000	(A1)
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)-
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)		200.0	N/A	
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0 200.0	245000 90000	(D3) (A1)
CARBARYL (SEVIN) CARBOFURAN	NG/L NG/L	200.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	(0)
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	
MALATHION	NG/L	20.0	190000 9000	(A1)
METHYL PARATHION METHYLTRITHION	NG/L NG/L	50.0 20.0	N/A	(D3)
MEVINPHOS .	NG/L	20.0	N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(D3)
RELDAN	NG/L	20.0	N/A	
RONNEL	NG/L	20.0	N/A	
VOLATILES				
1,1-DICHLOROETHANE	UG/L	0.10	N/A	
1.1-DICHLOROETHYLENE	UG/L	0.10	7	(D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(A1)
1,2-DICHLOROPROPANE	UG/L	0.05 0.10	5 3750	(D1)
1,3-DICHLOROBENZENE	UG/L UG/L	0.10	3/50	(D3) (A1)
1,4-DICHLOROBENZENE 1,1,1-TRICHLOROETHANE	UG/L	0.10	200	(D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.	
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.	17 (D4)
11/2/2 SEMMONDERSONS	-,-	***************************************	0.	(54)

. TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
			F 4444	
BENZENE .	· UG/L	0.05	5 (A1)	
BROMOFORM	UG/L	0.20	350 (A1+)	
CARBON TETRACHLORIDE	UG/L	0.20	5 (A1)	
CHLOROBENZENE	UG/L	0.10	1510 (D3)	
CHLOROD I BROMOMETHANE	UG/L	0.10	350 (A1+)	
CHLOROFORM	UG/L	0.10	350 (A1+)	
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)	
DICHLOROBROMOMETHANE	UG/L	0.05	350 (A1+)	
ETHYLENE DIBROMIDE	UG/L	0.05	. 50 (D1)	
ETHYLBENZENE	UG/L	0.05	2.4 (A3)	
M-XYLENE	UG/L	0.10	300 (A3*)	
METHYLENE CHLORIDE	UG/L	0.50	50 (A1)	
O-XYLENE	UG/L	0.05	300 (A3*)	
P-XYLENE	UG/L	0.10	300 (A3*)	
STYRENE	UG/L	0.05	100 (D1)	
TETRACHLOROETHYLENE	UG/L	0.05	65 (A5)	
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)	
TOLUENE	UG/L	0.05	- 24 (A3)	
TOTAL TRIHALOMETHANES	UG/L	0.50	350 (A1)	
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)	
VINYL CHLORIDE	UG/L	0.10	2 (D1)	
RADIONUCLIDES				
TRITIUM · `	. BQ/L	7.0	40000 (A1)	
GROSS ALPHA COUNT	BQ/L	0.04	0.55# (D1)	
GROSS BETA COUNT	BQ/L	0.04	. N/A	
COBALT 60	BQ/L	0.70	N/A	
CESIUM 134	BQ/L	0.70	N/A	
CESIUM 137	BQ/L	0.70	50 (A1)	
IODINE 131	BQ/L	0.70	10 (A1)	

Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

i/ the sample is an accurate representation of the actual water condition, eg.

raw water has had no chemical treatment;

ii/ the water being sampled is not being modified by the sampling system;

iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and

iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

C6H6

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 µg/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78,12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20° C (27) VAPOUR PRESSURE: 100 MM AT 26.1° C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added -avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO3)

(Caution: HNO3 is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC),(OWTRI)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO_3) and potassium dichromate $(K_2Cr_2O_7)$ (Caution: $HNO_3\&K_2Cr_2O_7$ are corrosive)

Phenols

-250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides (as scheduled)

(PBVOL), (PBEXT)

-4 L plastic jug

-do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year)

-1 L amber glass bottle; instructions

as per organic -250 mL glass bottle

-do not rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry

-500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

'-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

-250 mL plastic bottle with white seal on cap Bacteriological

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNOz (Caution: HNO, is corrosive)

-45 mL glass vial with septum Volatiles (duplicate)

(teflon side must be in contact with sample) (OPOPUP)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics -1 L amber glass bottle per scan

(OWOC) -do not rinse bottle

-fill to 2 cm from top

Polyaromatic Hydrocarbons

-1 L amber glass bottle per scan · (OAPAHX) -do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

