Hőmérsékletérzékelők

Programozható irányítóberendezések és szenzorrendszerek

> KOVÁCS Gábor gkovacs@iit.bme.hu

Hőmérsékletérzékelés az iparban

- Mi is a hőmérséklet?
 - Skalár anyagjellemző
 - Részecskék átlagos mozgási energiájával kapcsolatos
 - Statisztikus fogalom

Praktikusan: "amit a hőmérővel mérünk"

Mértékegységek

- Celsius-skála (ϑ)
 - 0°C olvadó jég
 - 100°C forrásban lévő víz
- Kelvin-skála (T)
 - 0K abszolút nulla fok
 - egysége megegyezik a Celsius-skáláéval
 - $-0^{\circ}C = 273,15K$
- Fahrenheit-skála
 - 0°F a Fahrenheit által összeállított sóoldat fagyáspontja
 - 96 °F az emberi test hőmérséklete (35.5°C)

$$-\vartheta_{^{\circ}C} = \frac{5}{9}(\vartheta_{^{\circ}F} - 32)$$

Hőmérsékletérzékelők típusai

- Ellenállás-hőmérők
- Félvezető eszközök
- Hőelemek
- Infravörös érzékelők
- Egyéb érzékelők

Ellenállás-hőmérők (Resistance Temperature Detector, RTD)

- Hő hatására a fémekben lévő atommagok és ionok rezgésének amplitúdója megnő
- Az áramló elektronok így gyakrabban ütköznek és lelassulnak
- Adott térerősség hatására kevesebb elektron lép ki, azaz megnő az anyag ellenállása

Réz

- Lineáris karakterisztika
- Alacsony ár
- Kis ellenállás
- Instabil, oxidációra hajlamos
- −100°C − +180°C között használható

Nikkel

- Nagy érzékenység
- Nemlineáris karakterisztika inflexiós ponttal
- −100°C − +180°C között használható

- Molibdén
 - Vékonyréteg-ellenállásként egyszerűen előállítható
 - Stabil
 - −50°C − +200°C között használható
- Különleges ellenállás-hőmérők
 - Germánium: 100K alatt
 - Karbon-üveg: 10K alatt
 - Ródium-vas: akár 0.5K-ig

- Platina
 - Viszonylag költséges
 - Egy szakaszon közel lineáris karakterisztika
 - Tisztán előállítható
 - Nagyon stabil
 - Nagy pontosság
 - Nagy hőmérséklettartomány
 - Szabványosított, csereszabatos

Platina ellenállás-hőmérők statikus karakterisztikája

- ITS-90 szabvány:
 - 0 °C alatt: 12-ed fokú polinom
 - 0 °C felett: 9-ed fokú polinom
- Callendar Van Dusen egyenlet (IEC 60751):
 - $R_{\vartheta} = R_0(1 + A\vartheta + B\vartheta^2 + (\vartheta 100)C\vartheta^3), \vartheta < 0$ °C
 - $R_{\vartheta} = R_0(1 + A\vartheta + B\vartheta^2)$, $0 \text{ °C} \le \vartheta \le 850 \text{ °C}$
 - R_0 : az ellenállás $\theta_0 = 0$ °C hőmérsékleten
 - $A = 3.90803 \cdot 10^{-3}$
 - $B = -5.775 \cdot 10^{-7}$
 - $C = -4.183 \cdot 10^{-12}$

Platina ellenállás-hőmérők statikus karakterisztikája

• Lineáris közelítés:

•
$$\Delta R = R_0 \alpha \vartheta$$

•
$$\alpha = \frac{R_{\vartheta} - R_0}{\vartheta R_0} := \frac{R_{100} - R_0}{100R_0} \approx 0.00385 \frac{1}{\circ C}$$

•
$$R_{\vartheta} = R_0 + \Delta R = R_0 (\mathbf{1} + \alpha \vartheta)$$

•
$$\vartheta = \frac{R_{\vartheta} - R_0}{R_0} \frac{1}{\alpha} = \frac{\Delta R}{R_0} \frac{1}{\alpha}$$

• Pt100 esetén (
$$R_0 = 100\Omega$$
) : $\vartheta = \frac{\Delta R}{100\alpha} = \frac{\Delta R}{0.385}$

Lineáris közelítés

A lineáris közelítés hibája

Tűrési osztályok

- A osztály: -200° C ... + 650° C, $\varepsilon \le 1.45^{\circ}$ C
- B osztály: -200° C ... + 850° C, $\varepsilon \le 4.6^{\circ}$ C

Önmelegedés

• Egy ellenálláson áramot átfolyatva az teljesítményt disszipál:

$$P = UI = I^2R$$

A disszipált teljesítmény megemeli az ellenállás hőmérsékletét:

$$\Delta\vartheta = P/C = I^2R_{\vartheta}/C$$

- C: Disszipációs együttható (*dissipation constant*) az a teljesítmény, ami statikus állapotban az ellenállás hőmérsékletét 1° C-al emeli $\left[\frac{W}{^{\circ}\text{C}}\right]$
- Függ
 - A közegtől (víz/levegő/..., nyugvó/áramló)
 - A szenzor kialakításától
- Tipikus nagyságrendje: 1 − 100 mW/°C

Mérőáram hatása az önmelegedésre

Példa

 Egy Pt100 ellenállás-hőmérő disszipációs együtthatója nyugvó levegőben 12 mW/°C. Legfeljebb mekkora mérőáramot használhatunk, ha az érzékelő megengedett maximális önmelegedése 20°C-os levegőben 1°C?

•
$$\Delta \vartheta_{max} = \frac{I_{max}^2 R_{\vartheta}}{C} \Rightarrow I_{max} = \sqrt{\frac{C \Delta \vartheta_{max}}{R_{\vartheta}}}$$

•
$$I_{max} = \sqrt{\frac{12 \cdot 0.001 \cdot 1}{100 + 20 \cdot 0.385}} = 0.0105 A = 10.5 mA$$

Platina ellenállás-hőmérők felépítése

Feltekert vezetékű RTD

(wire-wound RTD)

- Az elemek hőtágulási együtthatója hasonló
- Ciklikus hőmérsékletváltozásokat kevésbé tolerálják
- Hiszterézisük nagyobb
- Kb. 500°C-ig használhatók

Többfuratú RTD

(coiled element RTD)

- Mechanikai feszültségtől mentes kivitel
- Ha nem szükséges a hermetikus zárás, akkor a levegő keringhet a helikális érzékelővezetékek körül
- −200°C ... + 850°C tartományon használhatók

Horony mentén felcsévélt vezetékű RTD

(hollow annulus-type RTD)

- Teljesen szigetelt
- Kis időállandó
- Nagy tekercselési átmérő miatt hosszú, nagy ellenállású platina vezeték is használható
- Drága

Réteg-RTD

(film-type RTD)

- Pontosan beállítható
- Nagy felület, kis időállandó
- Érzéketlenség a rezonanciával szemben
- −50°C ... 500°C tartományon használható

Ellenállás-hőmérők tipikus tokozása

- Burkolat
 - Réz (ritka)
 - Rozsdamentes acél
 - Iconel
 - Kerámia
- Hőmérőfej
 - Vezetékezés
 - Távadó
 - Akár kijelző is
- Rögzítőeszköz

Ellenállás-hőmérők mérőáramkörei

A következő módszerek nem csak ellenállás-hőmérők, hanem tetszőleges, ellenállás kimenetű érzékelő esetén alkalmazhatók!

Ellenállásosztó

Mérőhíd

$$\begin{split} &U_{ki} = \frac{U_T}{2} - U_T \frac{R_0 + \Delta R}{2R_0 + \Delta R} = \\ &= \frac{U_T}{2} \left(\frac{2R_0 + \Delta R - 2R_0 - 2\Delta R}{2R_0 + \Delta R} \right) \\ &= -\frac{U_T}{2} \frac{\Delta R}{2R_0 + \Delta R} \end{split}$$

Mérőhíd

•
$$U_{KI} = U_T \frac{R_0}{R_1 + R_0} - U_T \frac{R_0 + \Delta R}{R_1 + R_0 + \Delta R} = -U_T \frac{R_1 \Delta R}{(R_1 + R_0)^2 (1 + \frac{\Delta R}{R_1 + R_0})}$$

- $R_1 \gg R_0$, $R_1 \gg \Delta R \Rightarrow U_{KI} \approx -U_T \frac{R_1 \Delta R}{R_1^2} = -U_T \frac{\Delta R}{R_1}$
- $R_1\gg R_0$ esetén jelentős hőmérséklet-tartományban elfogadható a linearitási hiba, de a kimeneti feszültség lecsökken

R₁ hatása a kimenetre

Lineáris ellenállás – feszültség karakterisztika aktív mérőhíddal

$$\begin{split} &U_{KI} = \frac{U_T}{2} - I(R_0 + \Delta R) = \\ &= \frac{U_T}{2} \frac{R_0 - (R_0 + \Delta R)}{R_0} = \\ &= -\frac{U_T}{2} \frac{\Delta R}{R_0} \end{split}$$

A kimeneti feszültség lineárisan függ a hőmérséklettől, az érzékenység nem romlik.

A hozzávezetés ellenállásának hatása

Példa

Egy Pt100-as ellenállás-hőmérő az irányítórendszertől 100 méterre helyezkedik el, az előírt AWG 20-as vezeték ellenállása $0.033~\Omega/m$. Mekkora hibát okoz ez a hőmérsékletmérésben lineáris közelítést feltételezve ($\alpha=0.00385$)?

- 100 m vezeték ellenállása: 3.3Ω , így a mérés abszolút hibája $2\cdot 3.3\Omega=6.6\Omega$ a hőmérséklettől függetlenül
- Hiba a hőmérsékletmérésben: $\frac{6.6}{0.385} \approx 17.15$ °C

Háromvezetékes mérés

Példa

Mekkora hibát okoz háromvezetékes mérés mellett a 100 m-re lévő, $0.033\Omega/m$ ellenállású hozzávezetés ϑ °C-on lineáris közelítést feltételezve ($\alpha=0.00385$)?

Hozzávezetés ellenállása nélkül:

$$U_{KI,n} = -\frac{U_T}{2} \frac{\Delta R}{R_0} = -\frac{U_T}{2} \frac{R_0(\alpha \vartheta)}{R_0} = -\frac{U_T}{2} \alpha \vartheta$$

Hozzávezetés ellenállását figyelembe véve:

$$U_{KI} = -\frac{U_T}{2} \frac{\Delta R}{R_0 + R_v} = -\frac{U_T}{2} \frac{R_0 \alpha \vartheta}{R_0 + R_v} = -\frac{U_T}{2} \frac{100}{103.3} \alpha \vartheta$$

• A relatív hiba:
$$\frac{U_{KI,n}-U_{KI}}{U_{KI,n}} = 1 - \frac{U_{KI}}{U_{KI,n}} = 3.2\%$$

Megéri a háromvezetékes mérés?

 A háromvezetékes mérés eredménye pontosabb a kétvezetékesnél, ha a relatív hiba kisebb az abszolútnál:

$$|0.032\vartheta| < 17.15 \Rightarrow |\vartheta| < 535.94$$
°C

 Tehát egy széles tartományban jobb eredményt kapunk a háromvezetékes méréssel (különösen 0°C környezetében)

Háromvezetékes mérés

A hozzávezetés ellenállása elhanyagolható.

Négyvezetékes mérés

- Áramgenerátor használatával a terheléstől (hozzávezetés ellenállásától) függetlenül azonos áram folyik át az ellenállás-hőmérőn
- Állandó áram mellett az U feszültség $R_0 + \Delta R$ -rel egyenesen arányos
- Nagy bemeneti impedanciájú eszköz használatával a hozzávezetések hatása a feszültségméréskor is kiküszöbölhető

Négyvezetékes mérés

Műszererősítő

Készen kapható illesztő áramkörök

- Távadók
 - 4-20mA-es kimenet
 - Ipari kivitel
 - Akár hőmérőfejbe építhető kivitel
- Integrált áramkörök
 - Feszültségkimenet
 - ADC-vel együtt,
 buszkimenettel (SPI, I2C)
 - Egyszerre több RTD kezelése

Ellenállás-hőmérők kivezetései

2 vezetékes

Piros Fehér

3 vezetékes

4 vezetékes

Ellenállás-hőmérők

- + Kimagasló stabilitás
- + Nagy pontosság
- + Kis nemlinearitás
- + Csereszabatosság

- Kis ellenállás
- Kis érzékenység
- Áram gerjesztést igényel
- Önmelegedés
- Magas ár

Félvezető alapú hőmérsékletérzékelők

- Termisztorok (thermistor)
 - Ellenállás kimenetű
 - Nem rendelkezik p-n átmenettel
 - A félvezető, mint anyag fizikai tulajdonságain alapul
- Félvezető érzékelők (semiconductor temperature sensor)
 - Feszültség (áram) kimenetű
 - Rendelkezik p-n átmenettel
 - A p-n átmenet tulajdonságait használja ki

PTC termisztorok

- Bárium-titanáttal adalékolt szilícium
- A Curie-pont (T_s)alatt a magas dielektromos állandó meggátolja a potenciálgátak létrejöttét, azaz az ellenállás kicsi
- A Curie-pontot elérve a dielektromos állandó lecsökken, potenciálgátak jönnek létre, az ellenállás ugrásszerűen megnő
- A Curie-pont az adalékolással beállítható

PTC termisztorok

- A meredek karakterisztika miatt hőmérséklet mérésére még korlátozott tartományban sem használhatók
- Hőkapcsolónak kitűnők
- Általános felhasználás: védelmekben

NTC termisztorok

- Szinterezett fém-oxid: n- vagy p-típusú
- Hő hatására egyre több töltéshordozó kerül a vezetési sávba
- Megnő a vezetőképesség
- Az ellenállás csökken

NTC karakterisztika

Steinhart-Hart egyenlet:

$$\frac{1}{T} = a + b \ln(R) + c(\ln(R))^3$$

Nagyságrendi példa ($R = 3k\Omega @ 25^{\circ}C$)

•
$$a = 1.4 \cdot 10^{-3}$$

•
$$b = 2.37 \cdot 10^{-4}$$

•
$$c = 9.9 \cdot 10^{-8}$$

Közelítés hibája < 0.02°C

T [K] – abszolút hőmérséklet

NTC karakterisztika átalakítása

- Steiner-Hart egyenlet: $\frac{1}{T} = a + b \ln(R) + c(\ln(R))^3$
- Legyen a termisztor ellenállása T_0 hőmérsékleten R_0 (pl. $3\mathrm{k}\Omega$ @ 298,15K)
- Legyen c = 0
- $\frac{1}{T_0} = a + b \ln(R_0) \Rightarrow a = \frac{1}{T_0} b \ln(R_0)$
- $\frac{1}{T} = \frac{1}{T_0} b \ln(R_0) + b \ln(R)$
- $\ln(R) \ln(R_0) = \frac{1}{b} \left(\frac{1}{T} \frac{1}{T_0} \right) \Rightarrow \frac{R}{R_0} = e^{b \left(\frac{1}{T} \frac{1}{T_0} \right)}$
- $B := \frac{1}{h} \Rightarrow R = R_0 e^{B\left(\frac{1}{T} \frac{1}{T_0}\right)}$

NTC karakterisztika

Gyakorlatban használt karakterisztika

$$R_T = R_0 e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

- T_0 : referencia-hőmérséklet [K] (általában $T_0 = 298.15$ K = 25°C)
- R_0 : ellenállás a T_0 hőmérsékleten $[\Omega]$ (k Ω)
- B: termisztorra jellemző állandó [K] (3000-4500)
- Kényelmesebb forma:

•
$$R_{\infty} = R_0 e^{-\frac{B}{T_0}}$$
 (állandó) $\Rightarrow R = R_{\infty} e^{\frac{B}{T}}$

$$\bullet \ \ T = \frac{B}{\ln(R/R_{\infty})}$$

NTC karakterisztika

$$U_{KI} = \frac{R}{R + R_T} U_T$$

- A hőmérséklet-feszültség karakterisztika az inflexiós pontja környezetében lineáris
- Inflexiós pont:

$$\frac{\partial^2}{\partial T^2} \frac{R}{R + R_0 e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)}} = 0 \Rightarrow R \text{ meghatározható}$$

$$\bullet \ R = R_{TM} \frac{B - 2T_M}{B + 2T_M}$$

- T_M a linearizálni kívánt tartomány közepe
- R_{TM} az ott mért ellenállás

- Csak szűk hőmérséklettartományban ad jó eredményt (max. 100°C)
- Az érzékenység csökken
- A kimeneti feszültség nagysága U_T -vel beállítható
- Léteznek komplexebb és jobb tulajdonságú kapcsolások is

Példa

Egy NTC termisztor B-konstansa 3500K, alapellenállása 25°C-on 220kΩ. A termisztort egy helyiségtermosztátban szeretnénk alkalmazni, ezért a 0°C – 40°C tartományban linearizáljuk. A nemlineáris karakterisztika pontjai a táblázatban adottak.

- Mekkora ellenállást kell használni a soros linearizálás során?
- Adja meg a lineáris feszültséghőmérséklet karakterisztikát (hogyan számítható a hőmérséklet a kimeneti feszültség alapján) ha a tápfeszültség 10V!

9 [°C]	$R_T[k\Omega]$
0	627
5	502
10	405
15	328
20	268
25	220
30	181
35	150
40	125

Soros linearizáló ellenállás meghatározása

$$R = R_{TM} \frac{B - 2T_M}{B + 2T_M}$$

$$R = 268k \frac{3500 - 2 \cdot 293}{3500 + 2 \cdot 293}$$

$$\approx 191 \text{ k}\Omega$$

Abszolút hőmérséklet [K]

9 [°C]	$R_T[k\Omega]$
0	627
5	502
10	405
15	328
20	268
25	220
30	181
35	150
40	125

Feszültség-hőmérséklet karakterisztika

•
$$U = \frac{R}{R + R_T} U_T$$

•
$$U_{0^{\circ}\text{C}} = \frac{191k}{191k + 627k} \cdot 10 = \frac{1910}{818} = 2.33$$

•
$$U_{40^{\circ}\text{C}} = \frac{191\text{k}}{191\text{k} + 125\text{k}} \cdot 10 = \frac{1910}{316} = 6.044$$

•
$$U_2 - U_1 = 3.71$$

•
$$\vartheta_2 - \vartheta_1 = 40$$

、 C	3.3	0.002	V
⇒ 5 =	40	= 0.093	°C

 9 [°C]	$R_T [k\Omega]$
0	627
5	502
10	405
15	328
20	268
25	220
30	181
35	150
40	125

Feszültség-hőmérséklet karakterisztika

•
$$U = U_1 + (\vartheta - \vartheta_1)S \Rightarrow \vartheta = \vartheta_1 + \frac{\vartheta - \vartheta_1}{S}$$

•
$$\vartheta = 0^{\circ}\text{C} + \frac{U - 2.33}{0.093} = 11.49(U - 10.75)$$

Önmelegedés

- Az RTD-hez hasonlóan jellemző az önmelegedés
- $\Delta \vartheta = \frac{I_T^2 R_T}{C}$, ahol C a disszipációs konstans
- Adott melegedéshez megengedett legnagyobb áram:

$$I_{T,max} = \sqrt{\frac{\Delta \vartheta_{max} C}{R_T}}$$

 A jelenséget akár ki is használhatjuk áramkorlátként

NTC termisztorok

- + Kis méret
- + Alacsony költség
- + Gyors
- + Nagy kimeneti jeltartomány
- + Nagy érzékenység

- Kis pontosság ($\pm 5\%$)
- Nemlineáris
- Szűk mérési tartomány
- Környezeti hatásokra érzékeny
- Áram gerjesztést igényel
- Önmelegedés

A dióda, mint hőmérsékletérzékelő

- Nyitóirányú feszültség 25°C-on: ≈ 600mV
- Dióda nyitóirányú feszültségének hőmérsékletfüggése: $C \approx 0.2 \text{mV/K}$
- Lineáris karakterisztika:

$$U_F = U_{G0} - CT \Rightarrow T = \frac{U_{G0} - U_F}{C}$$

• Tiltott sáv feszültsége: $U_{G0} \approx 1.205 \mathrm{V}$

A dióda, mint hőmérsékletérzékelő

Csak állandó áram mellett!

Ajánlott: minél alacsonyabb

A dióda, mint hőmérsékletérzékelő

- Pontatlan
 - Érzékenysége bizonytalan
 - Gyártási szórás tranzisztor B-E átmenete általában jobban használható
 - Teljes pontosság: $\approx \pm 4^{\circ}\text{C}$, $-50 \dots 150^{\circ}\text{C-on}$
- Speciális, kalibrált diódák (Si, GaAs)
 - Nagy pontosság
 - 4 400K mérési tartomány

Tranzisztor B-E átmenete

A bázis-emitter feszültség hőmérsékletfüggése:

$$\begin{aligned} &U_{BE} \\ &= U_{G0} \left(1 - \frac{T}{T_0} \right) + U_{BE0} \left(\frac{T}{T_0} \right) + \left(\frac{nKT}{q} \right) \ln \left(\frac{T0}{T} \right) + \frac{KT}{q} \ln \left(\frac{I_c}{I_{c0}} \right) \end{aligned}$$

- U_{G0} : tiltott sáv feszültsége 0K-en
- U_{BE0} : tiltott sáv feszültsége munkaponti áram és hőmérséklet mellett
- n: eszközfüggő konstans
- K: Boltzmann-állandó
- q: elektron töltése
- I_{c0} : geometriától és hőmérséklettől függő paraméter

Tranzisztor B-E átmenete

$$U_{BE} = U_{G0} \left(1 - \frac{T}{T_0} \right) + U_{BE0} \left(\frac{T}{T_0} \right) + \left(\frac{nKT}{q} \right) \ln \left(\frac{T0}{T} \right) + \frac{KT}{q} \ln \left(\frac{I_c}{I_{c0}} \right)$$

 Vegyünk N db azonos tranzisztort összesen azonos kollektorárammal:

$$U_{BEN} = U_{G0} \left(1 - \frac{T}{T_0} \right) + U_{BE0} \left(\frac{T}{T_0} \right) + \left(\frac{nKT}{q} \right) \ln \left(\frac{T0}{T} \right) + \frac{KT}{q} \ln \left(\frac{I_c}{N I_{c0}} \right)$$

Azonos kollektoráram mellett:

$$\Delta U_{BE} = U_{BE} - U_{BEN} = \frac{KT}{q} \ln \left(\frac{I_c}{I_{c0}} \right) - \frac{KT}{q} \ln \left(\frac{I_c}{NI_{c0}} \right) = \frac{KT}{q} \ln(N)$$

 Kell nekünk N db B-E átmenet? Nem, elég, ha csak N-szer akkora az egyik felülete!

Brokaw-kapcsolás

A B-E feszültségek különbsége az átmenetek felülete miatt:

$$\Delta U_{BE} = \frac{KT}{q} \ln(N)$$

Az R_2 ellenálláson folyó áram:

$$I_1 = \frac{\Delta U_{BE}}{R_2}$$

 $I_1 = \frac{\Delta U_{BE}}{R_2}$ $U_{REF} \ \bullet \ \ \ \text{A műveleti erősítő miatt a két}$ tranzisztoron azonos áram

folyik:
$$I_1 = I_2$$

áram:
$$I_1 + I_2$$

•
$$U_T = 2I_1R_1 = 2\frac{R_1}{R_2}\frac{KT}{q}\ln(N)$$

Brokaw-kapcsolás

- $U_t=2\frac{R_1}{R_2}T\frac{K}{q}\ln(N)$ egyenesen arányos az abszolút hőmérséklettel, az érzékenység csak R_1 és R_2 arányától függ!
- "Mellékhatás": pontos, a tiltott sáv feszültségével megegyező, hőmérsékletfüggetlen referenciafeszültség (U_{ref})

Integrált áramkörök

- Készen kaphatók
- Érzékenységük általában 10mV/K
- Minimális kiegészítéssel direkt Celsius- vagy Fahrenheit-kimenet
- Nem csak hőmérő-IC-k használhatók akár áramforrás is

Áramforrás mint hőmérsékletérzékelő

(LM134/234/334)

•
$$Q_1: Q_2 = 17: 1 \Rightarrow$$

$$I^- = \frac{I^+}{17} \Rightarrow I_{SET} = \frac{18}{17}I^+$$

•
$$I_{SET} = \frac{64\text{mV}}{R_{SET}} \cdot \frac{18}{17} = \frac{67.7\text{mV}}{R_{SET}}$$

- A referenciafeszültség hőmérsékletfüggő:
 - 0mV @ 0K
 - 67.7 mV @ 25°C
 - Meredekség: 227μV/°C

Áramforrás mint hőmérsékletérzékelő

(LM134/234/334)

Félvezető hőmérsékletérzékelők

- + Lineáris
- + Nagy érzékenység
- + Alacsony költség
- + Szilícium-szinten integrálható
- + Akár ±0.5°C-os pontosság

- Szűk mérésitartomány(-50 ... 150°C)
- Tápellátásra érzékeny
- Nagy időállandó
- Önmelegedés
- Akár ±10°C hiba

Hőelemek

(thermocouple)

Seebeck-effektus

- Egy hőmérséklet-gradienssel rendelkező vezetőben feszültség indukálódik
- Az indukált feszültség független a gradienstől, csak a végpontok hőmérsékletétől és a vezető anyagától függ:

$$E = S(\theta_1 - \theta_2)[V]$$

- S [μV/K]: Seebeck-együttható
 - Platina: $-5\mu V/K$
 - Réz: $6.5\mu V/K$

Seebeck-effektus

Melegpont, mérési pont (hot junction, measurement junction)

$$E = S_1(\vartheta_1 - \vartheta_2) - S_2(\vartheta_1 - \vartheta_2) = (S_1 - S_2)(\vartheta_1 - \vartheta_2)$$
$$E_{Cu-CuNi} = 41.5(\vartheta_1 - \vartheta_2) [\mu V]$$

 Az érzékenység tehát a csak a két anyag Seebeckegyütthatójának függvénye

Seebeck-effektus

$$E = [S_1(\theta_1 - \theta_2) + S_3(\theta_2 - \theta_3)] - [S_2(\theta_1 - \theta_2) + S_3(\theta_2 - \theta_3)] = (S_1 - S_2)(\theta_1 - \theta_2)$$

Csak akkor igaz, ha a csatlakozási pontok azonos hőmérsékleten (ϑ_2) vannak!

Fém hőelemek

Típus	Anyag		Osztály	Hőmérséklet-	Tűrés	
Tipus	+ láb	- láb	Osztaly	tartomány	iuies	
J	Vas (Fe)	Konstantán (Cu – Ni)	1	−40 + 750°C	±1.5°C vagy 0.4%	
			2	−40 + 750°C	±2.5°C vagy 0.75%	
V	Chromel (Ni-Cr)	Alumel	1	−40 + 1000°C	±1.5°C vagy 0.4%	
K		(Ni-Al)	2	−40 + 1200°C	±2.5°C vagy 0.75%	
N	Nicrosil (Ni-Cr-Si)	Nisil (Ni-Si)	1	−40 + 1000°C	± 1.5 °C vagy 0.4%	
			2	−40 + 1200°C	±2.5°C vagy 0.75%	
E	Chromel (Ni-Cr)	Konstantán (Cu – Ni)	1	−40 + 800°C	±1.5°C vagy 0.4%	
E			2	−40 + 900°C	±2.5°C vagy 0.75%	
т	Réz (Cu)	Konstantán (Cu – Ni)	1	−40 + 350°C	±0.5°C vagy 0.4%	
			2	−40 + 350°C	±1°C vagy 0.75%	
			3	−200 + 40°C	±1°C vagy 1.5%	

Nemesfém hőelemek

Típus	Anyag		Osz	Hőmérséklet-	Tűrés	
	+ láb	- láb	tály	tartomány	Tutes	
R	Platina- Ródium	Platina (Pt)	1	0 + 1600°C	± 1 °C vagy $\pm [1 + 0.03(\vartheta -$	
	Pt - 13% Rh		2	0 + 1600°C	±1.5°C vagy 0.25%	
S	Platina- Ródium	Platina (Pt)	1	0 + 1600°C	± 1 °C vagy $\pm [1 + 0.03(\vartheta -$	
	Pt - 10% Rh		2	0 + 1600°C	±1.5°C vagy 0.25%	
D	Pt - 30% Rh Pt - 6% Rh (Ródium)		2	+600 + 1700°C	0.25%	
В			3	+600 + 1700°C	±4°C vagy 0.5%	

Nem szabványos hőelemek

Típus	+ láb	nyag - láb	Osz tály	Hőmérséklet- tartomány	Tűrés
G (W)	Wolfrám (W)	Wolfrám – Rénium (W – 26% Re)	2	0 + 2320°C	±4.5°C vagy 1%
C (W5)	Wolfrám – Rénium (W – 5% Re)	Wolfrám – Rénium (W – 26% Re)	2	0 + 2320°C	±4.4°C vagy 1%
D (W3)	Wolfrám – Rénium (W – 5% Re)	Wolfrám – Rénium (W – 26% Re)	2	0 + 2320°C	±4.5°C vagy 0.4%

Hőelem-típusok karakterisztikái

Nemlinearitás oka

A Seebeck-együttható hőmérsékletfüggése

- Egyéb hatások
 - Peltier-effektus
 - Thomson-effektus
 - Kontaktpotenciál

Nemlineáris karakterisztika leírása

- Polinom-közelítés
 - Hőmérséklettartományokon más-más együtthatókészlet (4-10 együttható, 10^0-10^{-14} nagyságrend)
 - Direkt: $E = \sum_{i=0}^{n} c_i (t_{90})^i$ [mV]
 - Inverz: $t_{90} = \sum_{i=0}^{n} d_i E^i$ [°C]
 - Közelítés hibája: $\varepsilon \approx 0.05^{\circ}\mathrm{C}$
- Lineáris interpoláció
 - Szabványos táblázatok
 - Közelítés hibája: $\varepsilon \approx 0.1$ °C

Karakterisztika linearizálása

- Analóg lineáris interpoláció
- Digitális lineáris interpoláció
- Közelítés folytonos függvénnyel

Abszolút hőmérséklet mérése

• Probléma: a hőelem feszültsége a hideg- és melegpont hőmérsékletének különbségével arányos: $E = (S_1 - S_2)(\vartheta_1 - \vartheta_2)$

• Cél: csak a melegpont hőmérsékletétől függő kimenet: $E = (S_1 - S_2)\vartheta_1$

Hidegpont 0°C-on tartása

- Ha $\theta_2 = 0$ °C \Rightarrow E = $(S_1 S_2)\theta_1$
- Pontos, nincs szükség kompenzációra
- A szabvány a karakterisztika-értékeket 0°C-os hidegponti hőmérséklet mellett adja meg
- Olvadó jég vagy Peltier-hűtésű referenciakamra
- Praktikus több hőelem hidegpontját együtt kezelni

Referencia-hőelem használata

$$E = S_{1}(\vartheta_{1} - \vartheta_{2}) + S_{3}(\vartheta_{2} - \vartheta_{3}) - S_{2}(\vartheta_{1} - \vartheta_{2}) - S_{2}(\vartheta_{2} - \vartheta_{1}) - S_{2}(\vartheta_{2} - \vartheta_{1}) - S_{3}(\vartheta_{2} - \vartheta_{3}) = (S_{1} - S_{2})(\vartheta_{1} - \vartheta_{2}) + (S_{1} - S_{2})(\vartheta_{2} - \vartheta_{1}) = (S_{1} - S_{2})(\vartheta_{1})$$

Hidegpont kompenzáció

- Hidegpont hőmérsékletének mérése
 - Hőmérséklet mérése abszolút hőmérsékletérzékelővel (tipikusan félvezető alapú)
 - Több hőelem hidegpontját egy izothermán tartva azok hőmérséklete egyszerre is mérhető

Hidegpont kompenzáció

- Hidegponti hőmérsékletnek megfelelő kompenzáció
 - Hardveresen: $E_{comp}=(S_1-S_2)\vartheta_2$ feszültség előállítása és hozzáadása a mért feszültséghez

$$E = (S_1 - S_2)(\theta_1 - \theta_2) + E_{comp} = (S_1 - S_2)\theta_1$$

• Szoftveresen: ϑ_2 hozzáadása a hőelem feszültsége alapján adódó $\vartheta_2-\vartheta_1$ hőmérséklethez

Hőelemek kialakítása

Hőelem-szigetelés

- Szabványos szigetelőanyagok
 - PVC: −30 ... 150°C
 - Teflon: −273 ... 250°C
 - Üvegszál: −50 ... 800°C
- Kerámia
- Ásványianyag-szigetelés
 - Zárt fémcsőben
 - Általában magnézium-oxid szigetelőpor
 - $-200 \dots + 1250$ °C

Hőelemek kiviteli típusai

- Hegesztett melegpontú csupasz vezeték
- Köpenyhőelem
- Kézi hőelem
- Tokozott, ipari kivitelű hőelemek

- Színkódok
 - Pozitív vezeték: hőelem színe
 - Negatív vezeték: fehér
 - Burkolat: hőelem színe, gyújtószikramentes kivitelben mindig kék
- Szabványos csatlakozók
 - Forrasztás tilos forrasztóón- réz pár hőelemet alkot $(3\mu V)^{\circ}C$

- Hőelem-vezeték
 - A mérésre használt vezeték, külső tok nélkül
- Hosszabbító vezeték (eXtension wire)
 - Hőelem anyagával azonos
 - Hőeleménél kisebb, de tág hőmérséklet-tartomány
 - A hőelem-vezetéknél olcsóbb, de még költséges
 - Jele: X (pl. J típusú hőelemhez JX)
 - Ott használjuk, ahol jelentős a hőmérséklet-gradiens: a hőelem-vezeték vége és a hidegpont között

- Kompenzáló vezeték (Compensation wire)
 - Hőelem anyagához hasonló, annál kisebb villamos ellenállású
 - Kis hőmérséklet-tartományban használható
 - A hosszabbító vezetéknél is olcsóbb
 - Jele: C... (pl. J típusú hőelemhez JC02 vagy JCA)
 - Ott használjuk, ahol nincs jelentős hőmérsékletgradiens: hidegpont és a feszültségmérés helye között

Hőelemek

- + Széles mérési tartomány
- + Robusztus
- + Csereszabatos
- + Nem igényel tápellátást
- + Olcsó

- Kis kimeneti feszültség
- Kis érzékenység
- Kevéssé stabil
- Referenciát igényel (csak relatív hőmérsékletet mér)
- Kábelezése költséges
- Nemlineáris

Hőmérsékletérzékelők mérési tartománya

Az ábra az általános mérési tartományokat mutatja be, egyes különleges típusok szélesebb mérési tartománnyal rendelkeznek.

Tulajdonság	RTD	Hőelem	Termisztor	Félvezető
Mérési tartomány	−200 + 850°C	−200 + 1600°C (típusfüggő)	−50 150°C	−50 150°C
Pontosság (teljes tartományra)	±1.5°C ≈ 0.2%	0.75% ≈ 4.8°C	±5% ≈ 10°C	$\pm 0.5 - 5\%$ ≈ 1 - 10°C
Linearitás	Kissé nemlineáris	Nemlineáris	Nemlineáris	Lineáris
Gerjesztés	Áram	Nem igényel	Áram	Csak tápfeszültség
Kimenet	Ellenállás	Feszültség	Ellenállás	Feszültség / Áram
Csereszabatosság	Igen	Igen	Nem	Nem
Önmelegedés	Van	Nincs	Van	Van
Stabilitás	Kimagasló	Átlagos	Alacsony	Alacsony
Ár	Nagyon magas	Közepes	Nagyon alacsony	Alacsony
Egyéb jellemzők		Költséges vezetékezés, csak relatív hőmérsékletet mér	Kis időállandó	Szilícium-szinten integrálható, nagy érzékenység

A táblázat átlagos értékeket tartalmaz, egyes konkrét típusok ezektől eltérő jellemzőkkel rendelkezhetnek.