# $Stat535\_HW4$

Jie Wang October 10, 2017

#### Read the data:

```
rm(list=ls())
dat <- read.csv("Rgraphics/dataSets/EconomistData.csv")
head(dat)</pre>
```

| ## |   | X | Country     | HDI.Rank | HDI   | CPI |      | Region |      |       |
|----|---|---|-------------|----------|-------|-----|------|--------|------|-------|
| ## | 1 | 1 | Afghanistan | 172      | 0.398 | 1.5 |      | Asi    | a Pa | cific |
| ## | 2 | 2 | Albania     | 70       | 0.739 | 3.1 | East | EU     | Cemt | Asia  |
| ## | 3 | 3 | Algeria     | 96       | 0.698 | 2.9 |      |        |      | MENA  |
| ## | 4 | 4 | Angola      | 148      | 0.486 | 2.0 |      |        |      | SSA   |
| ## | 5 | 5 | Argentina   | 45       | 0.797 | 3.0 |      |        | Ame  | ricas |
| ## | 6 | 6 | Armenia     | 86       | 0.716 | 2.6 | East | EU     | Cemt | Asia  |

### Exercise I:

1. Create a scatter plot with CPI on the x axis and HDI on the y axis:

```
library(ggplot2)
ggplot(dat, aes(x = CPI, y = HDI)) + geom_point()
```



#### 2. Color the points blue:



3. Map the color of the the points to Region:

ggplot(dat, aes(x = CPI, y = HDI)) + geom\_point(aes(color=Region))



4. Make the points bigger by setting size to 2:

ggplot(dat, aes(x = CPI, y = HDI)) + geom\_point(aes(color=Region), size=2)



5. Map the size of the points to HDI. Rank:  $\,$ 

ggplot(dat, aes(x = CPI, y = HDI)) + geom\_point(aes(color=Region, size=HDI.Rank))



## Exercise II:

1. Re-create a scatter plot with CPI on the x axis and HDI on the y axis (as you did in the previous exercise):

ggplot(dat, aes(x = CPI, y = HDI)) + geom\_point()



2. Overlay a smoothing line on top of the scatter plot using geom\_smooth:

```
ggplot(dat, aes(x = CPI, y = HDI)) + geom_point()+geom_smooth()
```

## `geom\_smooth()` using method = 'loess'



3. Overlay a smoothing line on top of the scatter plot using geom\_smooth, but use a linear model for the predictions. Hint: see ?stat\_smooth:

```
ggplot(dat, aes(x = CPI, y = HDI)) + geom_point()+geom_smooth(method="lm")
```



4. Overlay a smoothing line on top of the scatter plot using geom\_line. Hint: change the statistical transformation.

ggplot(dat, aes(x = CPI, y = HDI))+geom\_point()+geom\_line(stat = "smooth", method = "loess")



5. BONUS: Overlay a smoothing line on top of the scatter plot using the default loess method, but make it less smooth. Hint: see ?loess.

```
ggplot(dat, aes(x = CPI, y = HDI)) +geom_point() +geom_smooth(span = .3)
```

## `geom\_smooth()` using method = 'loess'



## Exercise III

1. Create a scatter plot with CPI on the x axis and HDI on the y axis. Color the points to indicate region.

```
pc1 <- ggplot(dat, aes(x = CPI, y = HDI, color = Region)) +geom_point()
pc1</pre>
```



2. Modify the x, y, and color scales so that they have more easily-understood names (e.g., spell out "Human development Index" instead of "HDI").

```
dat$Region <- factor(dat$Region,</pre>
                      levels = c("EU W. Europe",
                                 "Americas",
                                 "Asia Pacific",
                                 "East EU Cemt Asia",
                                 "MENA",
                                 "SSA"),
                      labels = c("OECD",
                                 "Americas",
                                 "Asia &\nOceania",
                                 "Central &\nEastern Europe",
                                 "Middle East &\nnorth Africa",
                                 "Sub-Saharan\nAfrica"))
pc2 <- ggplot(dat, aes(x = CPI, y = HDI, color = Region)) +geom_point()+</pre>
scale_x_continuous(name = "Corruption Perceptions Index, 2011 (10=least corrupt)",
                        limits = c(.9, 10.5),
                        breaks = 1:10) +
scale_y_continuous(name = "Human Development Index, 2011 (1=Best)",
                        limits = c(0.2, 1.0),
                        breaks = seq(0.2, 1.0, by = 0.1))
pc2
```



3. Modify the color scale to use specific values of your choosing. Hint: see ?scale\_color\_manual.



