# EE412 Foundation of Big Data Analytics, Fall 2018 HW2

Name: Park Jaeyoung

Student ID: 20170273

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

# Answer to Problem 1(Clustering)

# Solve the following problems, which are on MMDS textbook.

Exercise 7.2.6

For instance, if there is {a, ab, abc, acb, abb, bbb, bbbd, bbbe} as a string space and {a, ab, abc, abb, acb} as a set of string. Then "ab" is minimizing the sum of the distance to the other points – distance of 1 from all other elements in the set, but "abb" is minimizing the maximum distance to the other points – in this case maximum distance is 3.

#### Exercise 7.2.6

It is obvious to know that three cluster should be {(4, 10), (7, 10), (4, 8), (6, 8)}, {(2, 2), (3, 4), (5, 2)}, {(10, 5), (9, 3), (11, 4), (12, 6), (12, 3)}.

Let these three clusters as A, B, C.

Diameter of A, B, C are 3.60, 3, and 4.24.

Minimum distance between (A, B), (B, C), (C, A) are 4.12, 4.12, 5.

But if (9,3) is excluded while measuring inter-cluster minimum distance,

then (B, C) inter-cluster distance would be 5.83. So this means that in

case of point (9, 3) is not selected as three starting point, then three



points will appear in different cluster; inter-cluster distance is always greater than diameter of cluster, so once element is selected on any cluster, then element of that cluster would be always nearer than element in other cluster.

There would be two cases that (9, 3) is included on starting point.

- (1) (9, 3) is first point
- (2) (9, 3) is second or third point

In case (1), second point is (4, 10) in cluster A and third point is (2, 2).

Case (2) is impossible.

First, if other points in C is selected, then (9, 3) cannot be selected; all other points in A and B is farther then (9, 3). Then there exist any point in cluster A or B. There is a point always in cluster C that distance between cluster A or B and the point in cluster C is larger than cluster A or B and (9, 3). Distance to (12,

3) is always larger, while x coordinate is same and x is larger than (9, 3), and x coordinate of all points of A, B are less than 9.

Therefore in all condition, three starting points would be in different clusters.

#### Exercise 7.4.1

Before moving 20% to centroid, distance between two groups are in [i-c, c+o], as all points are in boundaries.

These groups move to centroid, which is same through two cluster, possible distance would be [0.8(i-c), 0.8(c+o)].

Two cluster is merged if there exists any pair of representative points that are close.

By definition of merging, two clusters will be merged if  $d \ge 0.8(c+d)$  for sure, in extreme case – only one representative point was selected from each cluster and their position is as far as possible.

However, this condition will change if number of representative points change.

### Implement the k-Means algorithm using Spark.

hw2 1.py attached.



[Figure: Average diameter of group verses number of clusters]

It seems that k = 8 would be good for clustering.

Correct value of k would be the point in the graph where slope is rapidly change – it means that each (actual) cluster is containing centroid.

There is little decrease of average diameter when number of cluster is changes 8 to 16, compare to data before. This means that appropriate k is in 4 and 8.

So by testing by k=6, there is rapid decrease of 6 to 8.

So by testing by k=7, there is also rapid decrease of 7 to 8.

By binary search of method above, it is assumed that appropriate k = 8.

# Answer to Problem 2

# Solve the following problems, which are based on the exercises in the textbook.

Exercise 11.1.5

|       | rise 11.1.5                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (et " | 11 1 1                                                                        | 01.9-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| om    | A= 1 2 3                                                                      | 0/ %=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dos   | 1/36                                                                          | (0   1   X   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 2 4/4 2-1                                                                     | $\begin{pmatrix} 1 & 1 & 3 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 & 5 & 4 \\ 1 & 3 $ |
|       | dot(A-AI)=0                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | = - 23+922-9x+1=0                                                             | =0 / 4+2=0.<br>x+4+2=0:<br>(x+34+52=0:<br>-0 /-2 =0 (-2/16)<br>-1/16<br>1/156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | ⇒ N=1,4±JI5                                                                   | X+34+52=0 11 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | · 12) 9= 4+Jr., 4-Jr.                                                         | 15-5K) (-0,408)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16 -  | /3-5K 1 1. \ X \ 101.                                                         | 25x-5 for 1=4+J15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 1 2-15 3 4 = 0                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4     | 1 -2-JT 3   y = 0<br>1 3 2-J5   7 0                                           | = D 9=1 30=) (1,127) (0.194)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | x + 3g + (2-Jis) 7 = 0                                                        | $= 0 \ \beta = 1, \ \theta 1 = 1 \ \begin{pmatrix} 1, 121 \\ 2, 146 \\ 5 \end{pmatrix} = 1 \ \begin{pmatrix} 0.194 \\ 0.402 \\ 0.360 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | - 27-12my+34=0                                                                | (5+5) A=1+ TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                               | 2515-5 Ar 7-4-515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | (5+J15) 4= (1+J15) Z.                                                         | (6) $\lambda = 0.129 = 10.12946 = 10.731$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 4= 1+515 2                                                                    | (0.306).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | y= 1+515 2<br>5+515 2                                                         | ₹(x,e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 255-52                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | = 25-5-7                                                                      | -= 1, (-0.816<br>0.408)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 7 (-3-55) x + 25 = 0                                                          | $     \left( \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                                               | 1 10.194 \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | >) x= 5-115 £                                                                 | (1,317, (0,194)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                                               | (0,860))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | in the same way, for $\lambda=4-515$                                          | 10,544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| www.b | pandibul.com x 5 tyls 2 215-5                                                 | 0.127; (0.544)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | pandibul.com $\chi = \frac{5 \text{ tyr}}{5}$ , $y = \frac{205 \cdot 5}{5}$ ? | (0,500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Exercise 11.1.7

For the matrix of Exercise 11.1.5

(a) Starting with a vector of three 1's, use power iteration to find an approximate value of the principal eigenvector.

```
[[0.19382269],
[0.4722473],
[0.85989258]]
```

- (b) Compute an estimate the principal eigenvalue for the matrix.
  - : 7.87298335
- (c) Construct a new matrix by subtracting out the effect of the principal eigenpair, as in Section 11.1.3

```
import numpy as np
from numpy import linalg as LA
m = np.array([[1, 1, 1] #]
            ,[1, 2, 3]₩
            ,[1, 3, 6]])
threshold = 0.000001
d = 1
x = np.array([[1] #]
            ,[1]])
while(d > threshold):
   next_x = np.matmul(m, x) / LA.norm(np.matmul(m, x))
    d = LA.norm(np.subtract(next_x, x))
    x = next_x
x # primary əigənvəctor
array([[0.1938227],
       [0.47224731],
       [0.8598925711)
lamb = np.matmul(np.transpose(x), np.matmul(m, x))
lamb # primary eigenvalue
array([[7.87298335]])
eigenvalue=lamb[0][0]
next_m = np.subtract(m, eigenvalue*np.matmul(x, np.transpose(x)))
next_m # new matrix which subtract out the effort of principal eigenpair
```

(d) From your matrix of (c), find the second eigenpair for the original matrix of Exercise 11.1.5.

```
Eigenvector: Eigenvalue: 1 [[ 0.81649652], [ 0.40824804], [-0.40824867]]
```

(e) Repeat (c) and (d) to find the third eigenpair for the original matrix.

```
Eigenvector: Eigenvalue: 0.127 [[ 0.54384354], [-0.78122728], [ 0.30646067]]
```

```
m = next_m
                                                                                      m = next_m
                                                                                      d = 1
m
array([[ 0.03756718, -0.05396498, 0.02116944],
                                                                                              [-0.05396498, 0.0775203, -0.03040975],
[ 0.02116944, -0.03040975, 0.01192917]])
x = np.array([[1]#
,[1]#
,[1]])
                                                                                      x = np.array([[1]#
,[1]#
,[1]])
while(d > threshold):
                                                                                       while(d > threshold):
    next_x = np.matmul(m, x) / LA.norm(np.matmul(m, x))
                                                                                          next_x = np.matmul(m, x) / LA.norm(np.matmul(m, x))
d = LA.norm(np.subtract(next_x, x))
     d = LA.norm(np.subtract(next_x, x))
     x = next_x
                                                                                           x = next_x
x # primary eigenvector
                                                                                      x # primary eigenvector
array([[ 0.81649652],
                                                                                      array([[ 0.54384354],
        [ 0.40824804]
                                                                                               [-0.78122728]
        [-0.40824867]])
lamb = np.matmul(np.transpose(x), np.matmul(m, x))
                                                                                       lamb = np.matmul(np.transpose(x), np.matmul(m, x))
lamb # primary eigenvalue
                                                                                       lamb # primary eigenvalue
array([[1.]])
                                                                                      array([[0.12701665]])
eigenvalue=lamb[0][0]
                                                                                      eigenvalue=lamb[0][0]
next_m = np.subtract(m, eigenvalue*np.matmul(x, np.transpose(x)))
                                                                                      next_m = np.subtract(m, eigenvalue*np.matmul(x, np.transpose(x)))
next_m # new matrix which subtract out the effort of principal eigenpair
                                                                                      next_m # new matrix which subtract out the effort of principal eigenpair
array([[ 0.03756718, -0.05396498, 0.02116944],
                                                                                      array([[-1.04152797e-14, -9.83241266e-15, -6.50868248e-15],
        [-0.05396498, 0.0775203, -0.03040975],
[ 0.02116944, -0.03040975, 0.01192917]])
                                                                                              [-9.83241266e-15, -1.60982339e-14, -2.36997921e-14], [-6.50868248e-15, -2.36997921e-14, -4.88446089e-14]])
```

#### Exercise 11.3.1

# (a) $MM^T$ :

```
m = np.array([[1, 2, 3] #]
               ,[3, 4, 5]#
               ,[5, 4, 3]#
               ,[0, 2, 4]#
               ,[1, 3, 5]])
  result = np.matmul(m, (np.transpose(m)))
  result
 array([[14, 26, 22, 16, 22],
        [26, 50, 46, 28, 40],
         [22, 46, 50, 20, 32],
         [16, 28, 20, 20, 26],
        [22, 40, 32, 26, 35]])
M^TM:
 m = np.array([[1, 2, 3] #]
               ,[3, 4, 5]#
               ,[5, 4, 3]#
               ,[0, 2, 4]#
               ,[1, 3, 5]])
 result = np.matmul(np.transpose(m), m)
 result
```

array([[36, 37, 38],

[37, 49, 61], [38, 61, 84]])

```
(b),
                                                     result
(c)
                                                     array([[36, 37, 38],
                                                           [37, 49, 61],
    M^{T}M:
                                                           [38, 61, 84]])
                             Eigenvalue: 153.57
    Eigenvector
                                                     m = result # or m = next_m
    [[0.40928472],
                                                     threshold = 0.0001
     [0.56345961],
     [0.71763451]]
                                                      x = np.array([[1]#
                                                                ,[1]#
,[1]])
                             Eigenvalue: 15.433
    Eigenvector:
                                                      while(d > threshold):
                                                        next_x = np.matmul(m, x) / LA.norm(np.matmul(m, x))
    [[ 0.81596915],
                                                         d = LA.norm(np.subtract(next_x, x))
     [ 0.12587172],
                                                         x = next_x
     [-0.56422571]]
    Eigenvector:
                             Eigenvalue: 0
                                                     array([[0.40928472],
    [ [ 0.408 ],
                                                           [0.56345961]
                                                           [0.71763451]])
     [ -0.816 ].
     [ 0.408 ] ]
                                                     lamb = np.matmul(np.transpose(x), np.matmul(m, x))
   *since this vector is eigenvector of M
                                                     lamb
                                                     array([[153.56699646]])
    MM^{T}:
                                                     eigenvalue=lamb[0][0]
                             Eigenvalue: 153.57
    Eigenvector:
    [[0.29769591],
                                                     next_m = np.subtract(m, eigenvalue+np.matmul(x, np.transpose(x)))
     [0.57050851],
                                                     next_m
     [0.52074188],
                                                     [0.32257923]
     [0.45898553]]
                             Eigenvalue: 15.433
    Eigenvector:
    [[ 0.15905953],
     [-0.03320874],
     [-0.73586433],
     [ 0.51038733],
     [ 0.41425319]]
    Eigenvector:
                             Eigenvalue: 0
                                                      Eigenvector:
                                                                                Eigenvalue: 0
                                                         0.12508859,
      0.94131607,
                                                        -0.45318832,
    -0.17481584,
                                                         0.32553276,
    -0.04034212,
                                                         0.72000366,
    -0.18826321,
                                                        -0.39318742,
    -0.21515796,
                             Eigenvalue: 0
    Eigenvector:
     0.07520849
    -0.07287035
    -0.10566284
    -0.72571726
     0.67171677
```

<sup>\*</sup>since this vector is eigenvector of M<sup>T</sup>

(d) .

a) 
$$M = U \sum V^{T}$$
 whole

 $V = \text{eigenvector}$  which its eigenvalue is horizero.

 $V = \text{eigenvector}$  which its eigenvalue is horizero.

 $V = \text{eigenvector}$  of  $IUTM$  which its eigenvalue is horizero.

 $V = \begin{bmatrix} 0.298 & 0.159 \\ 0.591 & -0.033 \\ 0.524 & -0.036 \\ 0.523 & 0.510 \\ 0.459 & 0.414 \end{bmatrix}$ 
 $V = \begin{bmatrix} 0.409 & 0.816 \\ 0.563 & 0.126 \\ 0.918 & -0.564 \end{bmatrix}$ 
 $V = \begin{bmatrix} 0.409 & 0.816 \\ 0.563 & 0.126 \\ 0.918 & -0.564 \end{bmatrix}$ 
 $V = \begin{bmatrix} 0.409 & 0.816 \\ 0.510 & -0.564 \end{bmatrix}$ 
 $V = \begin{bmatrix} 0.409 & 0.816 \\ 0.510 & -0.564 \end{bmatrix}$ 
 $V = \begin{bmatrix} 0.409 & 0.816 \\ 0.510 & -0.564 \end{bmatrix}$ 
 $V = \begin{bmatrix} 0.409 & 0.816 \\ 0.510 & -0.664 \end{bmatrix}$ 
 $V = \begin{bmatrix} 0.409 & 0.816 \\ 0.918 & 0.810 \\ 0.918 & 0.810 \\ 0.491 & 0.414 \end{bmatrix}$ 

(e) .

```
U = np.array([[0.298], # [0.571], # [0.521], # [0.323], # [0.459]])

S = np.array([[12.39]])

Vt = np.array([[0.409, 0.563, 0.718]])

np.matmul(U, np.matmul(S, Vt))

array([[1.51011798, 2.07871986, 2.65101396], [2.89354821, 3.98305047, 5.07962742], [2.64017271, 3.63427197, 4.63482642], [1.63680573, 2.25310911, 2.87341446], [2.32598709, 3.20178663, 4.08327318]])
```

About 90.1% of energy is retained. C1 = np.array([[1, 3, 4, 5, 0, 0, 0]])C2 = np.array([[1, 3, 4, 5, 0, 0, 0]])Exercise 11.4.2 C1 = C1 / math.sqrt(r \* 51/243)(a) Jim/John // Matrix/Alien C2 = C2 / math.sqrt(r \* 51/243)C, R: by code on right C = np.vstack((C1, C2)).transpose() W: X: Y: sigma: [[3, 3] sqrt (50) [[0.6]][0.70710678], array([[1.54348727, 1.54348727], ,[4, 4]] [0.8]][0.70710678]] [4.6304618 , 4.6304618 ], [6.17394907, 6.17394907], [7.71743633, 7.71743633], , 0. U: , 0. [0. ]]) [0. , O. [[0.00848528, 0.00848528], R1 = np.array([[3, 3, 3, 0, 0]]) R2 = np.array([[4, 4, 4, 0, 0]]) [0.01131371, 0.01131371]] R1 = R1 / math.sqrt(r \* 27/243)R2 = R2 / math.sqrt(r \* 48/243)CUR: R = np.vstack((R1, R2))[[0.38895879, 0.38895879, 0.38895879, 0., 0.], [1.16687637, 1.16687637, 1.16687637, 0., 0.], R [1.55583516, 1.55583516, 1.55583516, 0., 0.], array([[6.36396103, 6.36396103, 6.36396103, 0. , 0. , 0. [1.94479395, 1.94479395, 1.94479395, 0., 0.], [0. , O. , O. , 0., 0.], np.matmul(C, np.matmul(U, R)) , 0. , O. ſO. , 0., 0.], array([[0.38895879, 0.38895879, 0.38895879, 0 [1.16687637, 1.16687637, 1.16687637, 0. , 0. , O. , 0., 0.]] [0. , O. [1.55583516, 1.55583516, 1.55583516, 0. , 0. [1.94479395, 1.94479395, 1.94479395, 0. , 0. , 0. , 0. , 0. ſO. [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. (b) Alien/Star Wars // Jack/Jill C: R: sigma: sqrt(50) [[1.54348727, 1.54348727], [[6.36396103, 6.36396103, 6.36396103, 0. *,* 0. [4.6304618 , 4.6304618 ], , 7.79422863, 7.79422863]] [0. , 0. , 0. [6.17394907, 6.17394907], [7.71743633, 7.71743633], , 0. ], [0. [0. , O. , O. [0. ]] U: [[0.01414214, 0.01414214], , 0. CUR: , O. [[0.27782771, 0.27782771, 0.27782771, 0. ], [0.83348312, 0.83348312, 0.83348312, 0. 0. , 0. [1.11131083, 1.11131083, 1.11131083, 0. [1.38913854, 1.38913854, 1.38913854, 0. 0. *,* 0. , O. , 0. [0. , O. ], , 0. , 0. [0. , O. 0. ],

, O.

[0.

, O.

, O.

, O.

]][

(f) Original energy is 169.003 while one-dimensional approximation's is 153.57.

```
(c) Matrix/Titanic // Joe/Jane
C:
                                       R:
                                                              sigma: 2, 1
[[1.54348727, 0.
                           ], [[6.36396103, 6.36396103, 6.36396103, 0.
                                                                                     , 0.
 [4.6304618], 0.
                               [0.
                                            , O.
                                                    , 0.
                                                                       . 7.79422863, 7.79422863]]
 [6.17394907, 0.
 [7.71743633, 0.
             , 6.57267069],
 [0.
 [0.
             , 8.21583836],
 [0.
             , 3.28633535]]
U:
[[1, 0]]
,[0,0.25]]
CUR:
[[ 9.82269281,
                                                               0.
                  9.82269281,
                                 9.82269281,
                                                0.
 [29.46807844, 29.46807844, 29.46807844,
                                                Ω.
                                                               ۵.
 [39.29077126, 39.29077126, 39.29077126,
                                                               Ω.
 [49.11346407, 49.11346407, 49.11346407,
                                                0.
                                                               0.
 ſ O.
                                 0.
                                             , 12.80722452, 12.80722452],
 [ 0.
                  0.
                                 0.
                                             , 16.00903065, 16.00903065],
 [0.
                  0.
                                 0.
                                                6.40361226,
                                                               6.40361226]]
Answer to Problem 3
Solve the following problems, which are based on the exercises in the textbook.
Exercise 9.3.1
(a) Jaccard distance between each pair of users.
Jaccard distance = 1 - Jaccard similarity
While Jaccard distance between user A and user B is written as J(A, B),
J(A, B) = 1/2, J(A, C) = 1/2, J(B, C) = 1/2
(b) Cosine distance between each pair
While Cosine distance between user a and user b is written as C(a, b),
C(A, B) = 0.60, C(A, C) = 0.62, C(B, C) = 0.51
(c) Jaccard distance between each pair of users.
While Jaccard distance between user A and user B is written as J(A, B),
J(A, B) = 3/5, J(A, C) = 2/3, J(B, C) = 5/6
(d) Cosine distance between each pair
While Cosine distance between user a and user b is written as C(a, b),
C(A, B) = \arccos(0.58) = 54.55^{\circ}, C(A, C) = \arccos(0.5) = 60^{\circ}, C(B, C) = \arccos(0.29) = 73.14^{\circ}
```

(e) Normalized matrix

|   | a   | b   | С   | d   | е    | f    | g    | h    |
|---|-----|-----|-----|-----|------|------|------|------|
| Α | 2/3 | 5/3 |     | 5/3 | -7/3 |      | -1/3 | -4/3 |
| В |     | 2/3 | 5/3 | 2/3 | -4/3 | -1/3 | -4/3 |      |
| С | -1  |     | -2  | 0   |      | 1    | 2    | 0    |

# (f) Cosine distance from Normalized matrix

While Cosine distance between user a and user b is written as C(a, b),

$$C(A,\,B) = \arccos(0.584) = 54.27^{\circ},\, C(A,\,C) = \arccos(-0.116) = 96.66^{\circ},\, C(B,\,C) = \arccos(-0.74) = 137.73^{\circ}$$

# Exercise 9.3.2

(a)

| a                   | Ь                                         | 10                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If                                                                                                                                                                                          | 19                                      | h                                       |                                                   |
|---------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------|
| 1                   | 1                                         | 0                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             | 1                                       | , D                                     |                                                   |
| 0                   | -/                                        | 1                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                           | 0                                       | 0                                       |                                                   |
| 0                   | 0                                         | D                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                           | 1                                       | /                                       |                                                   |
| J. d. J. (          | = 1/2<br>x)=1/3<br>e)=-1<br>eA=-<br>f.g)= | 36d<br>36d<br>36e                       | 0=1/3<br>e1=1<br>1.f1=<br>21=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150 July 21 21 21 21 21 21 21 21 21 21 21 21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bed<br>cal                                                                                                                                                                                  | =1;                                     | J(b,                                    | A=1, Juby1=2B Jub, h)=1<br>A=1 July1=2B Jub, h)=1 |
| nerge we of one one | for 3:<br>Savetalle 1/2 - of              | ells:                                   | tyle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hl, (bd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b, c)                                                                                                                                                                                      | digite. He.                             | ) =).·                                  | total 5 Clustels.                                 |
|                     | o o o o o o o o o o o o o o o o o o o     | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 0 1 1 0 0 0 0  [(a1b)=1/2 J(a1c) [(b1b)c]=1/2 J(b)d  [(c1d)=1/3 J(c)  [J(d)=1/3 J(c)  [J(eA)=1/2 J(e)  [J(f)g]=1 + 2  [J(f)g]=1 + 2  [J(g)h]=1/2  [Merge while J=0:  Merge for J=1/3:  Mer | 1 1 0 1 0 1 1 1 0 0 0 0 1  [(a1b)=1/2 J(a.c)=1  [(b1c)=1/2 J(b.c)=1/2  [(c1d)=1/3 J(c.e)=1  [ | 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 | 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0           |

(b) For instance, four clusters are  $\{c, (f, h), e, (b, d, g, a)\}$ 

|   | С | (f, h) | e | (b, d, g, a) |
|---|---|--------|---|--------------|
| Α |   | 2      | 1 | 4.25         |
| В | 4 | 2      | 1 | 2.33         |
| С | 1 | 3.5    |   | 3.33         |
|   |   |        |   |              |

(c) Let name of cluster as P, Q, R, S for each c, (f, h), e, (b, d, g, a)

While Cosine distance between user a and user b is written as C(a, b),

$$C(A, B) = \arccos(0.60) = 53.1^{\circ}$$

$$C(A, C) = \arccos(0.89) = 27.1^{\circ}$$

$$C(B, C) = \arccos(0.74) = 42.27^{\circ}$$

#### Exercise 9.4.3

(a)

Assume  $u_{11}$  is x.

d { 
$$(1.617x + 1 - 5)^2 + (x + 1 - 2)^2 + (x + 1 - 4)^2 + (x + 1 - 4)^2 + (x + 1 - 3)^2$$
 }  $/ dx = 0$   $x = 2.314$ 

(b)

Assume  $u_{52}$  is x.

d { 
$$(1.617 + x - 4)^2 + (1 + x - 4)^2 + (1 + x - 5)^2 + (1 + x - 4)^2$$
 }  $/ dx = 0$   $x = 3.096$ 

(c)

Assume  $v_{22}$  is x.

d { 
$$(2.314 + x - 2)^2 + (1 + x - 1)^2 + (1 + x - 5)^2 + (1 + 3.096 * x - 4)^2$$
 }  $/ dx = 0$   $x = 1.097$ 

# Implement collaborative filtering

hw2\_3b.py attached.

#### User-based method

175 5.0

261 5.0

440 5.0

480 5.0

527 5.0

#### Movie-based method

21 5.0

59 5.0

60 5.0

85 5.0

132 5.0

### **Movie Recommendation Challenge**

hw2\_3c.py attached.

<sup>\*\*</sup>additional movies, e.g. 175, 261, 440, 480, 527, 832, 899 have their rating 5.0

<sup>\*\*</sup> also additional movies have their rating 5.0.

Similar with hw2\_3b.

The difference is that empty slot was recognized as np.nan. So there was some process needed to verify those.

Also it was possible to assign number of element in one cluster.

In this example, n = 7 was used.