Digital Logic Design Exercise

Standard Forms of Boolean Expressions

- 1. Convert each of the following expressions to SOP form:
 - i. $(A + B)(C + \overline{B})$ ii. $(A + \overline{B}C)C$ iii. (A + C)(AB + AC)
- 2. Define the domain of each SOP expression and convert the expression to standard SOP form.
- 3. Determine the binary value of each term in the standard SOP expression.
- 4. Convert each standard SOP expression to standard POS form.

The Karnaugh Map

5. Draw a 3 variable Karnaugh Map and label each cell according to its binary value.

Karnaugh Map SOP Simplification

- 6. Use a Karnaugh Map to simplify each of the following expressions:
 - i. $\bar{A}\bar{B}\bar{C} + A\bar{B}C + \bar{A}BC + AB\bar{C}$ ii. $AC[\bar{B} + B(B+\bar{C})]$ iii. $DE\bar{F} + \bar{D}E\bar{F} + \bar{D}\bar{E}\bar{F}$
- 7. Expand each of the following expressions to a standard SOP form and then minimise each one with a Karnaugh Map:
 - i. $AB + A\bar{B}C + ABC$
 - ii. A + BC
 - *iii.* $A\overline{B}\overline{C}D + AC\overline{D} + B\overline{C}D + \overline{A}BC\overline{D}$
 - iv. $A\bar{B} + A\bar{B}\bar{C}D + CD + B\bar{C}D + ABCD$

Digital Logic Design Exercise

Answers

1. Answer

i.
$$A\bar{B} + AC + BC$$

ii.
$$AC + \bar{B}C$$

iii.
$$AB + AC$$

2. Answer

i. Domain = A,B,C. SOP =
$$A\bar{B}C + A\bar{B}\bar{C} + ABC + \bar{A}BC$$

ii. Domain = A,B,C. SOP =
$$ABC + A\bar{B}C + \bar{A}\bar{B}C$$

iii. Domain = A,B,C. SOP =
$$ABC + AB\bar{C} + A\bar{B}C$$

3. Answer

$$i. \quad 101 + 100 + 111 + 011$$

$$ii.$$
 $111 + 101 + 001$

$$iii.$$
 $111 + 110 + 101$

4. Answer

i.
$$(A + B + C)(A + B + \bar{C})(\bar{A} + \bar{B} + C)(\bar{A} + \bar{B} + C)$$

ii.
$$(A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

iii.
$$(A + B + C)(A + B + \bar{C})(A + \bar{B} + C)(A + \bar{B} + \bar{C})(\bar{A} + B + C)$$

5. The Karnaugh Map with binary values

С	0	1
AB		
00	000	001
01	010	011
11	110	111
10	100	101

6. Answer

iii.
$$\overline{D}\overline{F} + E\overline{F}$$

7. Answer

$$i. AB + AC$$

ii.
$$A + BC$$

$$iii. \qquad B\bar{C}D + A\bar{C}D + BC\overline{D} + AC\overline{D}$$

iv.
$$A\overline{B} + CD$$