its linear value of 0.42 to a value of 0.27 ± 0.015 at this intensity. Both the real and the imaginary parts of the refractive index saturate for even higher input power. We found that these measurements are highly repeatable and that the material does not exhibit a permanent change of its optical properties.

The magnitude of the optically induced ultrafast change of the real part of the refractive index ($\Delta n =$ 0.72 ± 0.025) and the relative change of 170% in comparison to the linear value are unprecedented. The change in the refractive index corresponds to a change of the permittivity from $\varepsilon = 0 + 0.352i$ to $\varepsilon = 1.22 + 0.61i$ where i is the square root of -1. This result shows that ITO can exhibit a reversible transition from metallic to a lossy dielectric state with a subpicosecond time response at wavelengths slightly longer than the bulk plasmon wavelength. Moreover, the usual perturbation expansion description of nonlinear optical effects is not applicable for this material at high intensities.

We have shown that a thin ITO film exhibits an extremely large ultrafast third-order nonlinearity at ENZ wavelengths. Moreover, it can acquire an optically induced change in the refractive index that is unprecedentedly large. Our results challenge the notion that the nonlinear optical response is only a perturbation to the linear response. Materials with such a large nonlinear response are expected to enable exotic nonlinear dynamics (22) and allow all-optical control of metasurface and active plasmonics devices. Thus, our results introduce a completely new paradigm in nonlinear optics and open new avenues for developing optical nanostructures with large nonlinearity for applications in nanophotonics, plasmonics, and nonlinear nano-optics.

REFERENCES AND NOTES

- M. Kauranen, A. V. Zayats, Nat. Photonics 6, 737-748 (2012).
- M. Abb, P. Albella, J. Aizpurua, O. L. Muskens, Nano Lett. 11, 2457-2463 (2011).
- M. Silveirinha, N. Engheta, Phys. Rev. Lett. 97, 157403
- A. Alù, M. Silveirinha, A. Salandrino, N. Engheta, Phys. Rev. B **75**, 155410 (2007).
- A. R. Davoyan, A. M. Mahmoud, N. Engheta, Opt. Express 21, 3279-3286 (2013).
- A. D. Neira et al., Nat. Commun. 6, 7757 (2015).
- H. Suchowski et al., Science 342, 1223-1226 (2013).
- A. Capretti, Y. Wang, N. Engheta, L. Dal Negro, Opt. Lett. 40, 1500-1503 (2015).
- T. S. Luk et al., Appl. Phys. Lett. 106, 151103
- 10. N. Kinsev et al., Optica 2, 616 (2015).
- 11. G. V. Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater. 25, 3264-3294 (2013).
- 12. E. Feigenbaum, K. Diest, H. A. Atwater, Nano Lett. 10, 2111-2116 (2010).
- 13. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron, 26, 760-769
- 14. B. K. Rhee, J. S. Byun, E. W. Van Stryland, J. Opt. Soc. Am. B 13, 2720 (1996).
- 15. H. I. Elim, W. Ji, F. Zhu, Appl. Phys. B 82, 439-442 (2006).
- 16. See supplementary materials on Science Online.
- 17. R. W. Boyd, Nonlinear Optics (Elsevier, 2008).
- 18. C. Sun, F. Vallée, L. Acioli, E. P. Ippen, J. G. Fujimoto, Phys. Rev. B Condens. Matter 48, 12365-12368 (1993).
- 19. S. D. Brorson, J. G. Fujimoto, E. P. Ippen, Phys. Rev. Lett. 59, 1962-1965 (1987).

- 20. E. Carpene, Phys. Rev. B 74, 024301 (2006).
- 21. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002).
- 22. D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, M. Scalora, Phys. Rev. B 87, 155140 (2013).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the Canada Excellence Research Chairs Program, R.W.B. is the cofounder and Chief Technology Officer of KBN Optics, Pittsford, NY.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/352/6287/795/suppl/DC1 Materials and Methods Supplementary Text Figs. S1 to S4 References (23-32)

7 December 2015; accepted 12 April 2016 Published online 28 April 2016 10.1126/science.aae0330

CATALYSIS

Photochemical route for synthesizing atomically dispersed palladium catalysts

Pengxin Liu, Yun Zhao, Ruixuan Qin, Shiguang Mo, Guangxu Chen, Lin Gu, Daniel M. Chevrier,³ Peng Zhang,³ Qing Guo,¹ Dandan Zang,¹ Binghui Wu,¹ Gang Fu,1* Nanfeng Zheng1*

Atomically dispersed noble metal catalysts often exhibit high catalytic performances, but the metal loading density must be kept low (usually below 0.5%) to avoid the formation of metal nanoparticles through sintering. We report a photochemical strategy to fabricate a stable atomically dispersed palladium-titanium oxide catalyst (Pd₁/TiO₂) on ethylene glycolate (EG)-stabilized ultrathin TiO₂ nanosheets containing Pd up to 1.5%. The Pd₁/TiO₂ catalyst exhibited high catalytic activity in hydrogenation of C=C bonds, exceeding that of surface Pd atoms on commercial Pd catalysts by a factor of 9. No decay in the activity was observed for 20 cycles. More important, the Pd₁/TiO₂-EG system could activate H₂ in a heterolytic pathway, leading to a catalytic enhancement in hydrogenation of aldehydes by a factor of more than 55.

tomically dispersed catalysts with mononuclear metal complexes or single metal atoms anchored on supports have recently attracted increasing research attention (1-15). With 100% metal dispersity, atomically dispersed catalysts offer the maximum atom efficiency, providing the most ideal strategy to create cost-effective catalysts, particularly those based on Earth-scarce metals such as Pt (1-5), Au (5-8), Pd (9-12), and Ir (13, 14). Moreover, the uniform active sites of atomically dispersed catalysts make them a model system to understand heterogeneous catalysis at the molecular level (4, 6, 10, 12-14, 16-21), bridging the gap between heterogeneous and homogeneous catalysis.

During the past decade, several strategies for atomically dispersing metal sites on catalyst supports have emerged; these include lower-

¹State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center for Nano-Preparation Technology of Fujian Province, National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. ²Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. ³Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.

*Corresponding author. Email: nfzheng@xmu.edu.cn (N.Z.);

ing the loading amount of metal components (1, 8-10, 12, 20), enhancing the metal-support interactions (4, 6, 9, 19), and using voids in supports or vacancy defects on supports (3, 11, 14, 22). In most cases, the supports for atomically dispersed catalysts are deliberately chosen. Zeolites provide effective voids to anchor individual metal atoms therein and prevent them from sintering during catalysis (23, 24). Defects on reducible oxides (e.g., TiO2 and CeO2) (25, 26) and on graphene or C₃N₄ (9, 11, 22) help to stabilize atomically dispersed metal atoms on supports. Coordinatively unsaturated Al3+ ions on γ-Al2O3 act as binding centers to maintain the high dispersion of Pt atoms, but Pt rafts form as the loading amount of Pt increases (3). Currently, two major challenges remain in the field of atomically dispersed catalysts: (i) to ensure a loading content high enough for practical applications while maintaining the metal centers as individual sites under catalytic conditions (27, 28), and (ii) to address whether atomically dispersed catalysts offer distinct active sites and/or undergo catalytic pathways different from those of conventional metal catalysts (1, 4-6, 8-10, 12, 16-21).

We report a room-temperature photochemical strategy to fabricate a highly stable, atomically dispersed Pd catalyst (Pd₁/TiO₂) on ultrathin TiO₂ nanosheets with Pd loading up to 1.5%.

Ultraviolet (UV) light-induced formation of ethylene glycolate (EG) radicals on TiO2 nanosheets was shown to be critical for preparing Pd₁/TiO₂. With abundant Pd-O interfaces, Pd₁/ TiO₂ activates H₂ in a heterolytic pathway distinct from the homolytic pathway on conventional Pd heterogeneous catalysts. The Pd₁/TiO₂ catalyst exhibits extremely high catalytic activities and stabilities in hydrogenation of C=C and C=O. A turnover frequency (TOF) greater than that of surface Pd atoms on commercial Pd catalysts by a factor of >55 was demonstrated on Pd₁/ TiO₂ in the hydrogenation of aldehyde at room temperature, and no decay in the catalytic activity was observed during catalysis.

Two-atom-thick TiO₂(B) nanosheets [figs. S1 to S4 (29)] were prepared by reacting TiCl₄ with EG and were used as the support (30). H₂PdCl₄ was introduced into a water dispersion of TiO2(B) to allow the adsorption of Pd species (figs. S5 and S6). The mixture was then irradiated by low-density UV provided by a Xe lamp (fig. S7). After 10 min of irradiation, the Pd₁/TiO₂ catalyst was collected and washed thoroughly with water. No formation of Pd nanoparticles (NPs) was observed in transmission electron microscopy (TEM) images (Fig. 1A and fig. S8) or in the x-ray diffraction pattern (fig. S9) of the obtained Pd₁/TiO₂ catalyst, even with the loading content of Pd as high as 1.5 weight percent (wt %) as analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Energydispersive x-ray spectroscopy (EDS) analysis in a scanning transmission electron microscope (STEM) revealed that atomic Pd was evenly dispersed in Pd₁/TiO₂ (Fig. 1B), unlike in supported Pd NPs prepared by a conventional impregnation method followed by calcination in air at 350°C (fig. S10). To verify that Pd atoms were dispersed in Pd₁/TiO₂, we performed x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectrometry (Fig. 1C and figs. S11 and S12). There was only one notable peak in the region 1 to 2 Å from the Pd-O contribution, and no peak in the region 2 to 3 Å from the Pd-Pd contribution, confirming the sole presence of dispersed Pd atoms in Pd₁/TiO₂ (table S1). The calcination of the as-prepared Pd₁/TiO₂ in air at 350°C removed the organic residues on the surface of Pd₁/TiO₂ and thus allowed direct observation of the atomic dispersion of Pd by aberrationcorrected STEM (Fig. 1D and fig. S13).

After calcination, there were still a large number of dispersed Pd atoms on the TiO₂ support, even with the Pd loading up to 1.5 wt%. We also investigated the CO adsorption behavior of Pd₁/ TiO₂ (fig. S14) to confirm the atomic dispersion of Pd on the catalyst. There was only a weak band at 2100 cm⁻¹ ascribed to CO adsorbed on $Pd^{\delta+}$ in a top configuration (31). No signals attributed to CO adsorbed on bridge or hollow sites were observed, quite unlike supported Pd nanoparticulate catalysts (fig. S15).

Styrene hydrogenation was chosen as a model reaction to evaluate the catalytic activity of Pd_1/TiO_2 . The Pd_1/TiO_2 catalyst displayed an

Fig. 1. Structural characterizations of Pd₁/TiO₂. (A) Representative TEM image of Pd₁/TiO₂. The inset is an aberration-corrected STEM image for cross sections of ultrathin TiO₂(B), showing that it is composed of only two layers of Ti atoms. (B) STEM-EDS elemental mapping of a single Pd₁/TiO₂ nanosheet. (\mathbf{C}) FT-EXAFS spectra of Pd_1/TiO_2 and bulk palladium foil at the Pd K-edge, showing the surrounding atoms adjacent to Pd atoms. (D) High-resolution high-angle annular dark-field (HAADF) STEM image of Pd₁/TiO₂. The sample was calcined in air at 350°C for better contrast.

extremely high activity and stability (Fig. 2, A and B) relative to commercial Pd/C (fig. S16), TiO₂(B)-supported Pd NPs (fig. S17), and unsupported homogeneous H₂PdCl₄ catalysts. We achieved 100% styrene conversion in 1 hour at a molar ratio of 1:10⁴ (Pd:styrene). The calculated TOF value of Pd₁/TiO₂, 8973 hours⁻¹, was greater than that of surface Pd atoms on the Pd/C catalyst (972 hours⁻¹) by a factor of 9. The reaction rate of Pd₁/TiO₂ was maintained even after 20 cycles with the same catalyst (fig. S18), which suggests that the atomically dispersed structure of Pd₁/TiO₂ was robust under the catalytic conditions. There was no detectable change in the EXAFS fitting profiles after 20 catalytic cycles (fig. S19 and table S2). In contrast, an obvious decreased activity was observed on unsupported H₂PdCl₄ in the second cycle and even at the end of the first run (fig. S20). Because styrene hydrogenation is a zero-order reaction whose reaction rate is independent of the styrene's concentration (32, 33), the decline in the reaction rate of H₂PdCl₄ (Fig. 2B) was caused by the changing status of the catalyst. After reaction, small Pd NPs were detected in the reaction mixture (figs. S21 and S22).

To better understand why the Pd₁/TiO₂ catalyst possessed such a high catalytic activity and stability, we prepared a catalyst (denoted PdCl₂/ TiO₂) by the same method as for Pd₁/TiO₂ but without the UV treatment (fig. S23). No Pd-Pd bonds in PdCl₂/TiO₂ were detected by EXAFS (Fig. 2C and fig. S24), similar to Pd₁/TiO₂. The coordination numbers of Pd-O and Pd-Cl in the obtained PdCl₂/TiO₂ were 2.2 and 1.7, respectively (table S3). The Pd:Cl molar ratio of ~1:2 in the catalyst was confirmed by the elemental analysis (fig. S25). All of these data indicated that Pd atoms in PdCl₂/TiO₂ were in the form of individual PdCl₂ species bound on TiO₂(B). The presence of two Cl- ligands on each Pd atom made the catalytic performance of PdCl₂/TiO₂ much poorer than that of Pd₁/TiO₂ (Fig. 2D). The reaction rate already declined during the first run and kept decreasing after every recycle, suggesting a deleterious effect of Pd-Cl bonds on the catalysis. Similar to H₂PdCl₄, the decreased activity of PdCl₂/TiO₂ was attributed to the sintering of Pd atoms into NPs during catalysis. EXAFS studies revealed that a peak in the region 2 to 3 Å from the Pd-Pd contribution emerged for the PdCl₂/ TiO₂ catalyst after catalysis (Fig. 2C and table S4).

sciencemag.org SCIENCE

798 13 MAY 2016 • VOL 352 ISSUE 6287

Fig. 2. Catalytic performances of Pd₁/TiO₂ and reference materials in styrene hydrogenation. (A and B) Catalytic performances for the first run (A) and TOF (B) of several recycles of repeated reactions for Pd₁/TiO₂, H₂PdCl₄, and commercial Pd/C. The same portion of Pd₁/TiO₂ catalyst was recycled and used for 20 runs without loss of activity. (C) FT-EXAFS spectra at the Pd K-edge of PdCl₂/TiO₂ before and after catalysis reaction. (D) First- and second-run catalytic performances of PdCl₂/TiO₂. Reaction conditions: ethanol, 10 ml; Pd, 0.005 µmol; styrene, 50 µmol; T = 303 K; pressure = 0.1 MPa.

Pd NPs were observed in TEM images for the used PdCl₂/TiO₂ catalyst (fig. S26), indicating that the presence of Pd-Cl bonds would destabilize atomically dispersed Pd on TiO2 and induce their sintering into NP during catalysis.

Pd₁/TiO₂

4

The removal of Cl- ligands on Pd under mild UV conditions appears vital for preparing highly stable and active Pd catalysts. To confirm this, we thoroughly washed PdCl₂/TiO₂ with water until no Cl⁻ was detected in the supernatant. The water dispersion of PdCl₂/TiO₂ was then exposed to UV for 10 min. As expected, all Cl- ligands on PdCl₂/TiO₂ were released into the supernatant (figs. S25 and S27). The molar ratio of the released Cl- to the anchored Pd was measured to be ~2, confirming the formation of the Cl⁻-free Pd₁/TiO₂ catalyst after the UV treatment.

The UV-induced elimination of Cl⁻ from PdCl₂/ TiO2 was attributed to the photoreactivity of TiO₂(B) nanosheets. As shown in Fig. 3A, TiO₂(B)

nanosheets treated by UV alone (denoted as TiO2-UV) already displayed an electron spin resonance (ESR) spectrum with an intense peak corresponding to a Ti3+ species and a set of six peaks that matched perfectly with EG radicals (HOCH2•CHOH) (34). Similar signals were observed for the as-prepared Pd₁/TiO₂ catalyst (fig. S28). However, no obvious ESR peaks were found on the original TiO2(B) nanosheets without UV treatment (Fig. 3A).

Together with selected-area electron diffraction (SAED) (fig. S1) and the aberration-corrected STEM (fig. S2), thermogravimetric analysis (fig. S29) and infrared (IR) spectroscopy (fig. S30) suggested that two-atom-thick TiO2 nanosheets used in this work had TiO2(B)(010) as their major exposed facets, and these exposed facets were highly covered by deprotonated EG (~19 wt %) (fig. S31). Once exposed to UV, electron-hole pairs were generated on TiO₂(B) nanosheets. Electrons were trapped in Ti-3d orbitals to form Ti³⁺ sites (35), and holes broke Ti-O bonds between glycolate and TiO2, leading to the formation of -OCH2CH2O. radicals (from I to II in Fig. 3B) (figs. S32 and S33). Because of the presence of α-H, -OCH₂CH₂O• was not stable and would thus undergo hydrogen transfer to give -OCH2 • CHOH. According to density functional theory (DFT) calculations, such a process (from II to III in Fig. 3B) was predicted to be exothermic by 0.38 eV. Such UVgenerated surface organic radicals are not unusual, as the oxidation potentials of most organic compounds lie below that of the holes in the valence band of TiO2 (36-38). The ESR signals from the samples after washing and drying processes suggest that, once formed upon UV irradiation, the EG radicals on the surface of TiO₂ nanosheets were quite stable.

To understand how EG radicals promoted the release of Cl from Pd sites, we also designed a

Fig. 4. Catalytic mechanism of Pd₁/TiO₂ in hydrogenation reactions. (A) Energies and model of intermediates and transition states in the heterolytic H₂ activation process for Pd₁/TiO₂. (B) Primary isotope effect observed for Pd₁/TiO₂ in styrene hydrogenation. (C) First-run reaction performances for Pd₁/TiO₂. Pd/C, and H₂PdCl₄ in benzaldehyde hydrogenation.

stepwise route (fig. S34) to prepare the Pd₁/TiO₂ catalyst. UV treatment was first used to obtain TiO2-UV nanosheets containing EG radicals on their surfaces. H₂PdCl₄ was then introduced into the water dispersion of TiO2-UV. Our calculations showed that once adsorbed onto TiO2, each PdCl₄²⁻ liberated two Cl⁻ ligands, yielding an intermediate with individual PdCl₂ units adsorbed on TiO₂ (IV in Fig. 3B) (fig. S35). Such a process was predicted to be slightly exothermic by 0.03 eV. Subsequently, the OH group in -OCH2•CHOH attacked its nearby Pd site by replacing one Cl-, leading to the formation of PdCl₁/TiO₂ intermediate (V in Fig. 3B) with an exothermicity of 0.81 eV. As shown in fig. S35, PdCl₁/TiO₂ has three Ti-O bonds and one Pd-Cl bond. Experimentally, both EXAFS data and elemental analysis showed a Cl:Pd molar ratio of ~1:1 for PdCl₁/TiO₂ (Fig. 3C, figs. S36 and S37, and table S4), lower than the 2:1 molar ratio in PdCl₂/TiO₂ made from untreated TiO₂. Moreover, mixing TiO₂(B)-UV with H₂PdCl₄ solution decreased the amount of EG radicals, as evidenced by the reduced intensity of each ESR peak (fig. S38).

All of these results strongly confirmed that the UV-generated EG radicals facilitated the removal of Cl⁻ on Pd and stabilized individual Pd atoms by forming more Pd-O bonds. The remaining Cl⁻ on PdCl₁/TiO₂ could be easily removed by using H₂ treatment, giving rise to H⁺ and Cl⁻ (from V to VII in Fig. 3B) (table S5). This result explained why treating the water dispersion of PdCl₁/TiO₂ resulted in a pH drop from 6.8 to 5.3 (Fig. 3D). Alternatively, further UV treatment completely removed Cl- from PdCl₁/TiO₂ (fig. S39), also leading to the formation of Pd₁/TiO₂. The catalyst prepared in the stepwise procedure showed the same catalytic properties as that prepared by the onepot method in which the aqueous mixture of TiO₂ and H₂PdCl₄ was directly treated with UV (fig. S40). More important, the insight into the formation mechanism of Pd₁/TiO₂ allowed us to prepare the catalyst in large scale by using a continuous UV-flow reactor (fig. S41).

To evaluate the importance of EG radicals in the preparation of the atomically dispersed Pd₁/TiO₂ catalyst, we also synthesized EG-free TiO2 by calcination of TiO2(B) nanosheets at 350°C in air and used it as the support for the catalyst preparation. A photochemical strategy similar to that used in the one-step preparation of Pd₁/TiO₂ was applied to load Pd onto EG-free TiO2, but Pd NPs were formed (fig. S42); this result shows that surface EG helps to stabilize atomically dispersed Pd catalysts during their preparation. When surface EG was removed by calcination, the obtained Pd₁/TiO₂-cal catalyst displayed a substantially decreased activity with a TOF of only 1930 hours⁻¹ (fig. S43).

It is generally accepted that H2 would undergo homolytic dissociation on conventional Pd particulate catalysts into H atoms with partially negative charge $(H^{\delta-})$ (39). In this case, the presence of more than two Pd atoms in the vicinity is required. However, all Pd atoms in Pd₁/TiO₂ are individually dispersed, with no Pd-Pd pairs available for homolytic dissociation of H2, so the dissociation of H2 must go via an alternative pathway on Pd₁/TiO₂. According to our DFT calculations (Fig. 4A and figs. S44 to S46), H₂ adsorbed on Pd was readily split into two H atoms. One of the H atoms moved to a nearby oxygen on EG to yield O-H $^{\delta+}$, leaving the other H atom on Pd as $H^{\delta \text{--}}$ (Fig. 4A). This step was calculated to be exothermic by 0.69 eV and exhibited a barrier of 0.40 eV. We expected that both $Pd-H^{\delta-}$ and $O-H^{\delta+}$ should then be involved in the hydrogenation catalysis. DFT calculations revealed that the hydrogenation of styrene using Pd₁/TiO₂ followed a stepwise process. Computationally, we considered two possible pathways (figs. S44 to S46), one beginning with $H^{\delta-}$ transfer from Pd to C=C and the other beginning with $H^{\delta+}$ transfer. The first of these is energetically favorable, with a barrier of only 0.47 eV required for the $H^{\delta-}$ transfer from Pd to the terminal CH2 to make the halfhydrogenated intermediate, which in turn adds $H^{\delta+}$ from a nearby O-H group by overcoming a barrier of 0.73 eV. This pathway leads to the formation of ethylbenzene and simultaneously recovers the Pd-EG interfaces.

To test the proposed mechanism, we explored the kinetic isotope effect (KIE) with the use of D₂ in styrene hydrogenation. For Pd/C, the reaction was slowed down by a factor of 1.43 (fig. S47) as a result of the zero-point energy difference between isotopic isomers. However, on Pd₁/TiO₂, a larger KIE was observed (ratio of reaction rates using H_2 and D_2 , k_H/k_D = 5.75) (Fig. 4B) because the bond cleavage was O-D rather than Pd-D in the rate-determining step. Both our IR spectroscopy and nuclear magnetic resonance measurements, which were performed with deuterium-labeled reagents, confirmed the proposed mechanism (figs. S48 and S49). Such a large KIE in hydrogenation caused by the participation of both $H^{\delta-}$ and $H^{\delta+}$ has usually been observed on homogeneous catalysts (e.g., Au, Pd, and Ru complexes) (7, 40, 41) but has not been reported on heterogeneous Pd catalysts. In this regard, atomically dispersed metal catalysts can share the same hydrogenation mechanism as homogeneous catalysts.

Because the heterolytic activation of H₂ yielded both H^{δ-} and H^{δ+} at the Pd-O interface, Pd₁/TiO₂ should allow better hydrogenation of polar unsaturated bonds. As expected, in the hydrogenation of benzaldehyde, we observed a much superior catalytic performance by Pd₁/TiO₂ (Fig. 4C and fig. S50). Pd₁/TiO₂ readily converted all of the benzaldehyde into benzyl alcohol in 3.5 hours at room temperature with a TOF of 1002 hours⁻¹. No decay in the catalysis was observed after the catalyst was used for five cycles. In comparison, both Pd/C and H₂PdCl₄ showed negligible activity under the same catalytic condition, with TOF less than 18 hours⁻¹. This work demonstrates that upgrading catalytically active components from nanoparticles to single atoms not only boosts the catalytic reaction because of the high atom efficiency, but also endows atomically dispersed catalysts with catalytic capability that conventional nanocatalysts do not possess.

REFERENCES AND NOTES

- 1. B. Qiao et al., Nat. Chem. 3, 634-641 (2011).
- K. Ding et al., Science 350, 189-192 (2015).
- 3. J. H. Kwak et al., Science 325, 1670-1673 (2009).
- 4. Y. Zhai et al., Science 329, 1633-1636 (2010).
- Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301, 935-938 (2003).
- M. Yang et al., Science 346, 1498-1501 (2014).
- A. Comas-Vives et al., J. Am. Chem. Soc. 128, 4756-4765 (2006).
- X. Zhang, H. Shi, B. Q. Xu, Angew. Chem. Int. Ed. 44, 7132-7135 (2005).
- G. Vilé et al., Angew. Chem. Int. Ed. 54, 11265-11269 (2015).
- 10. S. Abbet et al., J. Am. Chem. Soc. 122, 3453-3457 (2000).
- 11. H. Yan et al., J. Am. Chem. Soc. 137, 10484-10487 (2015).
- 12. E. J. Peterson et al., Nat. Commun. 5, 4885 (2014). 13. J. Lin et al., J. Am. Chem. Soc. 135, 15314-15317 (2013).

- 14. V. Ortalan, A. Uzun, B. C. Gates, N. D. Browning, Nat.
- Nanotechnol. **5**, 506–510 (2010). J. M. Thomas, Nature **525**, 325–326 (2015).
- 16. W. E. Kaden, T. Wu, W. A. Kunkel, S. L. Anderson, Science 326, 826-829 (2009).
- J. M. Thomas, Z. Saghi, P. L. Gai, Top. Catal. 54, 588-594 (2011).
- 18. G. Kyriakou et al., Science 335, 1209-1212 (2012).
- 19. M. Yang, L. F. Allard, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 135, 3768-3771 (2013).
- 20. H. Wei et al., Nat. Commun. 5, 5634 (2014).
- 21. M. Yang et al., J. Am. Chem. Soc. 137, 3470-3473 (2015).
- 22. S. Sun et al., Sci. Rep. 3, 1775 (2013).
- 23. J. O. Ehresmann et al., Angew. Chem. Int. Ed. 45, 574-576 (2006).
- 24. A. Uzun, B. C. Gates, J. Am. Chem. Soc. 131, 15887-15894 (2009).
- 25. X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 130, 370-381 (2008).
- 26. D. Matthey et al., Science 315, 1692-1696 (2007).
- 27. M. Flytzani-Stephanopoulos, B. C. Gates, Annu. Rev. Chem. Biomol. Eng. 3, 545-574 (2012).
- 28. J. M. Thomas, R. Raja, Top. Catal. 40, 3-17 (2006).
- 29. See supplementary materials on Science Online.

- 30. G. Xiang, T. Li, J. Zhuang, X. Wang, Chem. Commun. (Camb.) 46, 6801-6803 (2010).
- 31. V. V. Kaichev et al., J. Phys. Chem. B 107, 3522-3527 (2003).
- 32. Z. Király, B. Veisz, Á. Mastalir, Catal. Lett. 95, 57-59 (2004).
- 33. B. Veisz, Z. Király, L. Tóth, B. Pécz, Chem. Mater. 14, 2882-2888 (2002)
- 34. T. Shiga, J. Phys. Chem. 69, 3805-3814 (1965).
- 35. R. F. Howe, M. Gratzel, J. Phys. Chem. 89, 4495-4499
- 36. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95, 69-96 (1995).
- 37. Y. Chen, S. Yang, K. Wang, L. Lou, J. Photochem. Photobiol. Chem. 172, 47-54 (2005).
- 38. L. Yu et al., Phys. Chem. Chem. Phys. 14, 3589-3595 (2012).
- 39. S. Syrenova et al., Nat. Mater. 14, 1236-1244 (2015).
- 40. A. M. Kluwer, T. S. Koblenz, T. Jonischkeit, K. Woelk, C. J. Elsevier, J. Am. Chem. Soc. 127, 15470-15480
- 41. A. Dedieu, S. Humbel, C. Elsevier, C. Grauffel, Theor. Chem. Acc. 112, 305-312 (2004).

ACKNOWLEDGMENTS

Supported by Ministry of Science and Technology of China grant 2015CB932303; National Natural Science Foundation of China grants 21420102001, 21131005, 21390390, 21133004, 21373167, 21573178, and 21333008; a NSERC CGS Alexander Graham Bell scholarship (D.M.C.); and a NSERC Discovery grant (P.Z.). We thank the XAFS station (BL14W1) of the Shanghai Synchrotron Radiation Facility.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/352/6287/797/suppl/DC1 Materials and Methods Supplementary Text Figs. S1 to S50 Tables S1 to S5 References (42-55)

22 February 2016; accepted 5 April 2016 10.1126/science.aaf5251

ORGANIC CHEMISTRY

A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents

Tian Qin, ¹* Josep Cornella, ¹* Chao Li, ¹* Lara R. Malins, ¹ Jacob T. Edwards, ¹ Shuhei Kawamura, ¹ Brad D. Maxwell, ² Martin D. Eastgate, ³ Phil S. Baran ¹†

Alkyl carboxylic acids are ubiquitous in all facets of chemical science, from natural products to polymers, and represent an ideal starting material with which to forge new connections. This study demonstrates how the same activating principles used for decades to make simple C-N (amide) bonds from carboxylic acids with loss of water can be used to make C-C bonds through coupling with dialkylzinc reagents and loss of carbon dioxide. This disconnection strategy benefits from the use of a simple, inexpensive nickel catalyst and exhibits a remarkably broad scope across a range of substrates (>70 examples).

he heart of chemical synthesis relies on forging new C-C bonds, with the evolution and advancement of the field being easily correlated to new developments on this front. For example, pioneering work on the cross-coupling of halogenated aromatic or vinylic (sp²) systems (Heck, Suzuki, Negishi, and Stille) has transformed the practice of organic synthesis (1). Similarly, a general and practical approach to C(sp³)-C(sp³) variants would have the potential to open up new vistas in retrosynthetic analysis. Indeed, such transformations have been on organic chemists' wish list for well over a century (2, 3). Historically, alkyl-alkyl transition metal-catalyzed cross-coupling reactions have been difficult to accomplish, but examples can be traced to the early work of Kharasch in the 1950s (4), followed by Noller (5, 6) and Kochi and Tamura (7, 8) in the 1960s to more recent work from the groups of Suzuki (9), Fu (10), Knochel (11), Kambe (12), Oshima (13), and many others (14). Thus far, the vast majority of approaches to this problem have involved the coupling of alkyl halides (or related species) to organometallic reagents (15-18). However, the limited availability, perceived instability, and frequent toxicity of alkyl halides has perhaps prevented the area of alkyl cross-coupling from blossoming. If one only considers convenience, stability, and availability as desired attributes in a functional group for such a coupling, the carboxylic acid reigns supreme (Fig. 1A). Alkyl carboxylic acids are ubiquitous in every aspect of chemistry and can be readily found in medicines, materials, and natural products and in the pages of commercial chemical supplier catalogs. They are a stable functional group, nontoxic, and eminently diversifiable owing to the field of combinatorial chemistry, in which they are the "workhorse" building block. Although certain carboxylic acids have already been demonstrated to engage in cross-coupling reactions (19), the use of alkyl carboxylic acids in alkylalkyl cross-coupling remains elusive.

Carboxylic acids can be primed for reaction through a process known as activation (such as formation of an active ester, -OA*), dating back to the classic work of Sheehan in the synthesis of penicillin (20). Once activated, a gateway opens to access a myriad of related functional groups such as amides, ketones, esters, or alcohols via addition of a nucleophile or alternative oxidation states by the formal addition of hydrogen. In this Report, we present a broadly useful transform that is able to forge C(sp³)-C(sp³) bonds via this age-old activation process.

We recently reported a Ni-catalyzed decarboxylative cross-coupling of alkyl carboxylic acids with arylzinc reagents to forge $C(sp^3)$ – $C(sp^2)$ bonds by repurposing activating methods more typically associated with amide-bond formation (21, 22). Certain active esters [such as HOAt (N-hydroxy-7-azabenzotriazole), HOBt (N-hydroxybenzotriazole), NHPI (N-hvdroxyphthalimide), and TCNHPI (N-hydroxytetrachlorophthalimide)] can accept an electron to trigger an ensuing cascade of events that liberates CO2 from the parent alkyl group (Alk₁); such esters (23) are termed redoxactive (21, 22). The application of this chemistry to sp³-sp³ C-C bond formation poses a number of substantial challenges, with potentially unproductive pathways far outnumbering the desired reaction (Fig. 1B) (15-18). For example, β-hydride elimination from the alkyl metal intermediates, dimerization of the organometallic reagent, reduction of the electrophile, and proto-demetallation are problems that also historically plague traditional C(sp³)-C(sp³) cross-coupling reactions. With a redoxactive ester as an electrophile, oxidative addition of low-valent Ni into the activated C-O bond could result in the formation of an acyl-Ni complex, which could reductively eliminate and ultimately result in undesired ketone by-products. These fundamental challenges notwithstanding, we describe a straightforward solution to this problem.

Dialkylzinc reagents were chosen for the organometallic coupling partner because of their

author. Email: pbaran@scripps.edu

¹Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA ²Discovery Chemistry Platforms–Radiochemistry, Bristol-Myers Squibb, Post Office Box 4000, Princeton, NJ, USA. ³Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, USA. *These authors contributed equally to this work, +Corresponding

Photochemical route for synthesizing atomically dispersed palladium catalysts

Pengxin Liu, Yun Zhao, Ruixuan Qin, Shiguang Mo, Guangxu Chen, Lin Gu, Daniel M. Chevrier, Peng Zhang, Qing Guo, Dandan Zang, Binghui Wu, Gang Fu and Nanfeng Zheng (May 12, 2016) *Science* **352** (6287), 797-800. [doi: 10.1126/science.aaf5251]

Editor's Summary

Lightly dispersed palladium

Catalysts made from atomically dispersed metal atoms on oxide supports can exhibit very high per atom activity. However, the low loadings needed to prevent metal particle formation can limit overall performance. Liu *et al.* stably decorated titanium oxide nanosheets with relatively high loadings of single palladium atoms by reducing the ions with ultraviolet light and ethylene glycol. These catalysts cleaved H₂ into atoms and were highly effective for hydrogenating alkenes and aldehydes. *Science*, this issue p. 797

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and

article tools:

http://science.sciencemag.org/content/352/6287/797

Permissions Obtain information about reproducing this article:

http://www.sciencemag.org/about/permissions.dtl

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2016 by the American Association for the Advancement of Science; all rights reserved. The title *Science* is a registered trademark of AAAS.