Cette épreuve est constituée de deux problèmes indépendants.

On rappelle que tous les programmes demandés doivent être rédigés dans le langage Python.

Problème 1 : base 3 équilibrée

Notation. \mathbb{N}^* désigne l'ensemble des entiers naturels non nuls.

En informatique, on utilise traditionnellement la base 2 pour représenter les entiers. Ce choix est dicté par la technologie utilisée par les ordinateurs actuels. Dans les années 60, d'autres technologies avaient été envisagées, dont l'utilisation d'une base de numération appelée base 3 équilibrée.

En base 3 classique, on écrit les nombres à l'aide de trois chiffres : 0, 1 et 2 : par exemple, $23 = \overline{212}^3 = 2 \times 3^2 + 1 \times 3 + 2$, $46 = \overline{1201}^3 = 1 \times 3^3 + 2 \times 3^2 + 0 \times 3 + 1$.

En base 3 équilibrée, les « chiffres » utilisés sont 0, 1 et -1:

$$23 = \overline{10(-1)(-1)}^e = 1 \times 3^3 + 0 \times 3^2 - 1 \times 3 - 1, \ 46 = \overline{1(-1)(-1)01}^e = 1 \times 3^4 - 1 \times 3^3 - 1 \times 3^2 + 0 \times 3 + 1.$$

Dans toute la suite, on s'intéresse à l'écriture en base 3 équilibrée des entiers naturels **non nuls**. On note $C = \{-1, 0, 1\}$ l'ensemble des chiffres utilisés dans l'écriture en base 3 équilibrée.

L'écriture en base 3 équilibrée d'un entier naturel **non nul** sera notée comme ci-dessus, par la suite des chiffres surmontée d'un trait avec un exposant e. Si $a_0, a_1, \ldots, a_{p-1}$ sont dans C, on a donc :

$$\overline{a_0 a_1 \dots a_{p-1}}^e = \sum_{k=0}^{p-1} a_k 3^{p-1-k}.$$

L'écriture en base 3 équilibrée d'un entier naturel non nul, lue de gauche à droite, commence toujours par le chiffre 1.

Partie I – généralités

Question 1.

1.a Donner la valeur de $\overline{1(-1)0(-1)}^e$, de $\overline{1111}^e$ et de $\overline{1(-1)(-1)(-1)(-1)}^e$.

1.b Écrire en base 3 équilibrée les entiers de 1 à 9.

Question 2. Soit k un entier naturel.

Déterminer la valeur de
$$A_k = \overline{1 \underbrace{11 \dots 1}_{k \text{ chiffres}}^e}$$
 et de $B_k = \overline{1 \underbrace{(-1)(-1) \dots (-1)}_{k \text{ chiffres}}^e}$.

(On aura bien noté que ces deux écritures possèdent k+1 chiffres au total.)

Question 3. On représente l'écriture en base 3 équilibrée $\overline{a_0 \dots a_{p-1}}^e$ par la liste Python $[a_{p-1}, a_{p-2}, \dots, a_0]$ (attention, les chiffres sont écrits dans la liste en lisant de droite à gauche l'écriture en base 3 équilibrée, le dernier d'entre eux est donc toujours le chiffre 1).

Écrire une fonction valeur(L) qui prend en argument une liste de chiffres et renvoie l'entier naturel non nul dont c'est une écriture en base 3 équilibrée.

Par exemple valeur ([1,0,-1,-1,1]) renvoie l'entier 46.

Partie II – existence et unicité de l'écriture en base 3 équilibrée

Question 4. On veut montrer que tout entier naturel non nul n admet une écriture en base 3 équilibrée.

Soit $n \in \mathbb{N}^*$. On note q et r le quotient et le reste dans la division euclidienne de n par 3: n = 3q + r et $r \in \{0, 1, 2\}$.

- **4.a** On suppose que q est non nul et admet une écriture en base 3 équilibrée $q = \overline{a_0 \dots a_{p-1}}^e$. Déterminer une écriture en base 3 équilibrée de n dans le cas où r = 0 ou r = 1.
- **4.b** On suppose que q est non nul et que q+1 admet une écriture en base 3 équilibrée $q+1=\overline{b_0\dots b_{p-1}}^e$. Déterminer une écriture en base 3 équilibrée de n dans le cas où r=2.
- 4.c Montrer par récurrence que tout entier naturel non nul admet une écriture en base 3 équilibrée.

Question 5. On souhaite écrire en Python une fonction incremente(L) qui prend en argument une liste L de chiffres représentant une écriture en base 3 équilibrée d'un entier naturel non nul n et qui renvoie une liste représentant une écriture en base 3 équilibrée de n+1.

5.a On propose la fonction récursive incrementeR(L) suivante.

Expliquer la ligne 9. Pourquoi a-t-il fallu écrire les lignes 1 et 2?

```
def incrementeR(L):
    if len(L)==0:
        return [1]

elif L[0]==0:
        return [1]+L[1:]

elif L[0]==-1:
        return [0]+L[1:]

else:
    # ici L[0]==1
    return [-1]+incrementeR(L[1:])
```

5.b On souhaite écrire une version non récursive incremente(L) de cette fonction.

Recopier et compléter le script suivant pour répondre à cette question :

```
def incremente(L):
    p = len(L)
    M = [] # liste finale
    k = 0
    while k
```

Question 6. On souhaite montrer que l'écriture en base 3 équilibrée d'un entier naturel n non nul est unique.

6.a Soit a_0, \ldots, a_{p-1} des chiffres de C (avec $a_0 = 1$ et $p \ge 1$). Quel est le reste dans la division euclidienne par 3 du nombre $\overline{a_0 a_1 \ldots a_{p-1}}^e$?

6.b En déduire que l'écriture en base 3 équilibrée d'un entier naturel n non nul est unique.

Question 7. Écrire une fonction base3e(n) qui prend en argument un entier naturel n non nul et renvoie la liste L de chiffres qui correspond à l'écriture en base 3 équilibrée de n. Par exemple base3e(46) renvoie [1,0,-1,-1,1].

Partie III – chemins de Delannoy

On considère le plan euclidien P rapporté à un repère orthonormé.

Un chemin de Delannoy du plan P est un arc suivant une ligne brisée partant de l'origine O et arrivant en un point A de coordonnées (a,b) où a et b sont deux entiers naturels, constituée d'arcs à choisir parmi trois types : un arc horizontal (associé au vecteur (1,0)), un arc vertical (associé au vecteur (0,1)) ou un arc diagonal (associé au vecteur (1,1)). Dans le parcours d'un chemin de Delannoy, on va donc toujours vers la droite, vers le haut, ou en diagonale vers la droite et vers le haut en même temps.

On associe à tout chemin de Delannoy un entier naturel non nul n défini par son écriture en base 3 équilibrée de la façon suivante : le premier chiffre de cette écriture est toujours égal à 1 (comme pour toute écriture en base 3 équilibrée), les chiffres suivants caractérisent les arcs consécutifs du chemin, le chiffre 1 est associé à un segment horizontal, le chiffre -1 à un arc vertical, et le chiffre 0 à un arc diagonal. Inversement à tout entier naturel non nul on peut associer le chemin de Delannoy qui est associé à son écriture en base 3 équilibrée.

On fera attention que le premier chiffre de l'écriture en base 3 équilibrée, toujours égal à 1, n'est pas pris en compte dans la construction du chemin.

Remarque : $n = 1 = \overline{1}^e$ est l'entier associé à un chemin de Delannoy de longueur nulle.

Par exemple, les entiers associés aux deux chemins de Delannoy ci-dessous sont respectivement $46 = \overline{1(-1)(-1)01}^e$ pour la figure de gauche et $107 = \overline{1100(-1)}^e$ pour la figure de droite.

Question 8.

8.a Dessiner le chemin de Delannoy associé à l'entier 2019.

8.b On note (a, b) les coordonnées entières du point d'arrivée d'un chemin de Delannoy. Écrire la fonction arrivee (n) qui renvoie ce couple de coordonnées quand on lui donne en argument l'entier non nul n associé au chemin de Delannoy. Par exemple arrivee (46) renvoie le couple (2, 3) et arrivee (107) renvoie le couple (3, 3).

On pourra s'inspirer de la fonction base3e.

Question 9.

Soit a et b deux entiers naturels, et A le point de coordonnées (a,b). Il existe plusieurs chemins de Delannoy allant de l'origine au point A, chacun d'eux étant associé à un entier naturel. Soit N(a,b) l'ensemble de ces entiers.

9.a Soit $a \in \mathbb{N}^*$. Déterminer min N(a, a) et max N(a, a).

9.b On suppose que les entiers a et b vérifient 0 < a < b. Déterminer $\min N(a, b)$ et $\max N(a, b)$.

Problème 2 : compilation et algorithmes

Notation. Pour m et n deux entiers naturels, [m, n] désigne l'ensemble des entiers k tels que $m \le k \le n$.

Partie A – ordre topologique sur un graphe

Lors de l'écriture d'un programme complexe, on le découpe souvent en modules distincts, mais dépendants les uns des autres. Le compilateur a besoin de connaître l'ordre dans lequel compiler ces modules. Pour ce faire, on utilise un graphe de dépendances, que nous décrivons brièvement ici.

On suppose qu'on dispose de n modules numérotés $M_0, M_1, \ldots, M_{n-1}$ et on représente leurs relations de dépendance à l'aide d'un graphe Γ dont les sommets sont les modules, et dont une arête allant du module M_i au module M_j indique que le module M_i doit être compilé avant le module M_i .

Par exemple, avec n = 9, aux contraintes du tableau de gauche ci-dessous, on peut associer le graphe Γ de droite.

le module	est compilé APRÈS les modules
M_0	M_4, M_6, M_8
M_1	M_0, M_8
M_2	M_5
M_3	M_5
M_4	M_7
M_5	_
M_6	M_3
M_7	M_2, M_8
M_8	M_2

On aura besoin de travailler sur des sous-graphes G du graphe Γ . C'est pourquoi, pour toute la suite, on suppose fixé l'entier n (qu'on pourra supposer supérieur à 2), et les graphes considérés n'utiliseront que quelques-uns des n sommets $M_0, M_1, \ldots, M_{n-1}$. Pour simplifier la rédaction, on pourra utiliser la notation suivante : si s est un sommet d'un graphe G, on note [s] son numéro, de sorte que $s = M_{[s]}$.

On représente un graphe G dont les sommets sont pris parmi les n sommets listés ci-dessus par une liste G=[App,Succ,p] où App est une liste de n valeurs booléennes (c'est-à-dire True ou False); Succ est une liste de n listes; p est un entier. Plus précisément :

- pour $i \in [0, n-1]$, App[i] est True si et seulement si le module M_i est présent dans le graphe;
- p est le nombre de sommets du graphe considéré, donc le nombre d'occurrences de True dans la liste App ;
- pour $i \in [0, n-1]$, Succ[i] est la liste vide si M_i n'est pas présent dans le graphe, et sinon Succ[i] est la liste (éventuellement vide) des numéros j des sommets M_j tels qu'il y a un arc de M_i vers M_j .

Par exemple, le graphe G de la figure suivante (obtenu en supprimant dans Γ le sommet M_2):

est représenté par la liste G=[App,Succ,p] où

- App = [True, True, False, True, True, True, True, True];
- $-- \, \mathsf{Succ} = [\, [\, 1 \, \,], \, \, [], \, \, [\, 6 \, \,], \, [\, 0 \, \,], \, [\, 3 \, \,], \, [\, 0 \, \,], \, [\, 4 \, \,], \, [\, 0, \, 1, \, 7 \,] \,] \, ;$
- -- p=8.

Dans toute la suite, on suppose que la valeur n, qui est fixée, est stockée dans une variable globale n. Les variables i et j désignent des numéros de sommets, donc des entiers de l'intervalle [0, n-1].

Question 10.

Écrire une fonction mem(i,G) qui prend en argument un entier i et la représentation G d'un graphe (telle qu'elle est décrite ci-dessus) et renvoie le booléen indiquant si le sommet de numéro i est dans le graphe.

Question 11.

Écrire une fonction pred(i,G) qui renvoie la liste, éventuellement vide, des numéros j des sommets du graphe représenté par G tels que l'arc qui va de M_j à M_i soit présent dans le graphe.

Par exemple, pour le graphe de la figure ci-dessus, pred(0,G) renvoie la liste [4,6,8].

Question 12.

Écrire une fonction sansSuccesseur(G) qui renvoie le numéro i d'un sommet M_i du graphe qui n'a pas de successeur, s'il en existe, ou qui renvoie -1 s'il n'y a pas de tel sommet. Dans l'exemple du graphe ci-dessus, sansSuccesseur(G) renvoie 1.

Question 13.

Compléter la fonction suivante suppr(i,G) qui renvoie un nouveau graphe H obtenu à partir de G en supprimant le sommet de numéro i et toutes les flèches qui lui sont reliées.

```
def suppr(i,G):
    H = copy.deepcopy(G)
    H[2] = H[2] - 1
    ...
    ...
    return H
```

L'appel H = copy.deepcopy(G) permet d'instancier la variable H avec une copie de G.

Étant donné un graphe de dépendances G possédant p sommets (avec $p \leq n$), un ordre topologique sur le graphe est la donnée d'une renumérotation des sommets du graphe qui respecte les arcs du graphe, c'est-à-dire une fonction N bijective, définie sur l'ensemble des numéros des sommets présents dans le graphe G, à valeurs dans [0, p-1] telle que s'il existe un arc du sommet M_i vers le sommet M_j on a N(i) < N(j).

Par exemple, pour le graphe de la dernière figure ci-dessus, il existe un ordre topologique, défini par N(0) = 6, N(1) = 7, N(3) = 1, N(4) = 5, N(5) = 0, N(6) = 2, N(7) = 4 et N(8) = 3.

Un chemin dans un graphe est une suite d'au moins deux sommets reliés par des arcs consécutifs. Un cycle est un chemin qui retourne au sommet de départ.

Question 14.

Dans cette question, on considère un graphe orienté G possédant p sommets (avec $p \leq n$) qui sont pris parmi $M_0, M_1, \ldots, M_{n-1}$. On suppose que chaque sommet admet au moins un successeur.

14.a On effectue une promenade dans le graphe : on choisit un sommet s_0 , puis un successeur s_1 de s_0 , puis un successeur s_2 de s_1 , etc. On peut ainsi obtenir une suite s_0 , s_1 , ..., s_n . Montrer qu'il existe deux indices i et j tels que $0 \le i < j \le n$ et $s_i = s_j$.

14.b Justifier qu'il existe au moins un cycle dans ce graphe.

14.c Montrer qu'il est impossible de trouver un ordre topologique sur ce graphe.

Question 15.

Soit G un graphe ayant p sommets (avec $p \leq n$) parmi M_0, \ldots, M_{n-1} . On suppose que G admet au moins un sommet s sans successeur. On appelle H le graphe obtenu à partir de G en supprimant le sommet s et tous les arcs reliés à s. Montrer que si H possède un ordre topologique N_H à valeurs dans [0, p-2], on peut l'étendre à un ordre topologique N sur G en posant N([s]) = p-1 et $N([s']) = N_H([s'])$ pour tous les sommets s' de H.

Question 16.

On peut déduire de cette étude un algorithme de détermination d'un ordre topologique N sur un graphe G, quand il en existe. Un tel ordre topologique est représenté par une liste L à n éléments : si le sommet M_i n'est pas dans le graphe G, on a L[i] = -1; si M_i est dans G, L[i] contient la valeur N(i).

16.a Recopier et compléter la fonction suivante pour répondre à la question : ordre Topologique (G) renvoie None s'il n'existe pas d'ordre topologique sur le graphe G et une liste L qui représente un ordre topologique s'il en existe un. La fonction parcours Reussi peut procéder à des appels récursifs.

```
def ordreTopologique(G):
  n = len(G[0])
    L = [-1] * n
    def parcoursReussi(G):
        p = G[2]
        if p != 0:
             s = sansSuccesseur(G)
             if s = -1:
                 return ...
             else:
                 return ...
        else:
             return ...
    b = parcoursReussi(G)
    if b:
        return L
    else:
        return None
```

16.b Prouver que l'algorithme termine toujours.

Partie B – allocation de registres

Quand le code est en phase finale de compilation, on peut supposer, pour simplifier, qu'il se présente comme une succession d'affectations de variables ou d'utilisation de ces variables à l'aide de fonctions simples (opérations arithmétiques ou logiques). L'accès à la mémoire étant plus coûteux en temps que le calcul lui-même, il est préférable de conserver le plus possible de résultats intermédiaires dans les registres du processeur plutôt que dans la mémoire vive. Mais le processeur n'a qu'un nombre limité de registres : il s'agit donc de savoir si tous les calculs peuvent être menés en se confinant à cet espace limité.

On se limite ici à un modèle extrêmement simplifié, où le code du programme ne comporte que des affectations de variables x = ... ou des appels de fonctions f(a,b,...), comme le code Python suivant :

```
d = 1
b = 2 * d
a = 3
d = a * b
print(d)
c = 2 * a - b
print(a)
d = c + b
b = 2 * a
print(c,d)
```

Comme un programme ne peut utiliser qu'un nombre fini de variables, on suppose dans toute la suite qu'on dispose d'une numérotation des variables, ce qui permet de représenter une variable par un entier naturel. Dans l'exemple ci-dessus, on supposera que a est numérotée 0, b est numérotée 1, etc.

Une affectation de variable est représentée par un couple (i, [j,k,...]) constitué du numéro de la variable qui figure à gauche du symbole = et de la liste des numéros des variables qui figurent à droite. Par exemple, l'affectation c = 2 * a - b est représentée par le couple (2, [0,1]).

Un appel de fonction est représenté par un couple (None, [j,k,...]) dont le deuxième élément est la liste des numéros des variables utilisées dans l'appel de fonction. Par exemple, l'appel **print**(c,d) est représenté par le couple (None, [2,3]).

Les constantes apparaissant dans les différentes instructions ne sont pas prises en compte dans cette représentation.

Le programme précédent est ainsi représenté par la liste de couples suivante :

```
prog = [(3,[]), (1,[3]), (0,[]), (3,[0,1]), (None,[3]), (2,[0,1]), (None,[0]), (3,[1,2]), (1,[0]), (None,[2,3])]
```

On cherche à savoir à quels moments il est utile de conserver dans les registres du processeur les valeurs des différentes variables.

Dans l'exemple du programme ci-dessus, si on s'intéresse à la variable d, on observe que :

- elle est initialisée en ligne 0, et cette valeur est utilisée en ligne 1;
- elle est modifiée en ligne 3, et la nouvelle valeur est utilisée en ligne 4;
- elle est modifiée en ligne 7, et la nouvelle valeur est utilisée en ligne 9.

La variable d a donc trois périodes de vie, qu'on peut représenter par les intervalles]0,1], [3,4] et]7,9].

La variable a a une seule période de vie : l'intervalle [2,8]; la variable b n'a également qu'une période de vie : l'intervalle [1,7]. En effet, b est modifiée en ligne 8 mais sa valeur n'est pas utilisée dans la suite, donc on ne tient pas compte de l'intervalle [8,9].

On dit qu'une variable est vivante pour chaque instruction d'une période de vie, et morte pour les autres.

L'algorithme suivant permet de déterminer pour chaque ligne de code si chaque variable est morte ou vivante.

- on commence par indiquer que chaque variable est morte;
- pour chaque ligne de code, en partant du bas :
 - s'il s'agit d'un appel de fonction, chaque variable utilisée est marquée vivante;
 - s'il s'agit d'une affectation, la variable affectée est marquée morte sauf si elle figure également à droite du symbole =, et toutes les variables à droite du symbole = sont marquées vivantes.

Question 17.

Recopier et compléter les lignes 0 à 4 du tableau suivant qui indique l'état de chaque variable pour chaque instruction du programme ci-dessus. (Un V indique une variable vivante, un M une variable morte.)

ligne	а	b	С	d
0				
1				
2				
3				
4				
5	V	V	M	M
6	V	V	V	M
7	V	V	V	M
8	V	M	V	V
9	M	M	V	V

Question 18. Comment interpréter le cas où en ligne 0 du tableau on trouve une variable vivante? Le programme est-il exécutable?

Question 19.

Pour un programme comportant n instructions et utilisant p variables numérotées de 0 à p-1, le tableau qui indique l'état de chaque variable pour chaque instruction peut être représenté par une liste de listes vie telle que pour la ligne i (avec $0 \le i < n$) et la variable v (avec $0 \le i < n$), vie [i][v] est True si la variable est vivante et False si la variable est morte.

Écrire une fonction determine Vie (prog, p) qui prend en argument un programme et le nombre p de variables à considérer et qui renvoie le tableau vie correspondant.

Question 20.

Recopier et compléter la fonction suivante periodesVie (vie, v) qui prend en arguments la table vie obtenue par la fonction determineVie et le numéro d'une variable et qui renvoie la liste des périodes de vie de cette variable. Ainsi, pour l'exemple du programme considéré, et la variable d, la fonction periodesVie renvoie la liste [(7, 9), (3, 4), (0, 1)] (l'ordre n'a pas d'importance).

Partie C – graphe de coexistence

Des techniques analogues à celle présentée dans la partie B permettent de construire un graphe de coexistence des variables occupant des registres. Il s'agit d'un graphe non orienté tel que deux sommets reliés dans ce graphe correspondent à deux variables vivantes au même moment, ce qui oblige à les ranger dans des registres différents.

La figure ci-dessous montre un exemple de graphe de coexistence : les variables numérotées 1, 2, 4 doivent être rangées dans trois registres distincts. Mais les variables numérotées 1 et 5 peuvent être rangées dans le même registre, puisque les sommets correspondants ne sont pas reliés.

Pour déterminer le nombre de registres nécessaire, il suffit de colorier le graphe de sorte que deux sommets adjacents soient de couleurs différentes, en utilisant le moins de couleurs possible. Ce nombre minimal de couleur est le nombre cherché de registres.

Dans l'exemple du graphe ci-dessus, trois couleurs suffisent.

Question 21.

Le problème général de la détermination du nombre minimal de couleurs nécessaire à la coloration d'un graphe est connu pour être un problème NP-complet. Que signifie l'expression « ce problème est dans la classe $NP \gg ?$ et que signifie l'adjonction de l'adjectif « complet » ?

Dans la suite, un graphe non orienté possédant n sommets numérotés de 0 à n-1 est représenté par une liste G de n listes : $\mathsf{G}[\mathsf{i}]$ est la liste (éventuellement vide) des sommets reliés au sommet i . Autrement dit, $\mathsf{G}[\mathsf{i}]$ est la liste des voisins du sommet i .

L'exemple du graphe précédent est représenté par la liste G=[[], [2,3,4], [1,4,5], [1], [1,2,5], [2,4]].

Une coloration du graphe est représentée par une liste donnant le numéro de la couleur de chaque sommet. Dans l'exemple ci-dessus, si bleu est numéro 0, rouge numéro 1 et vert numéro 2, la coloration proposée est représentée par la liste couleur = [0,0,1,1,2,0].

Question 22.

Écrire une fonction bonnesCouleurs(G,couleur) qui prend en argument un graphe G et une coloration couleur de ses sommets et qui renvoie True si et seulement si la coloration est correcte, c'est-à-dire que deux sommets adjacents n'ont jamais la même couleur.

Question 23.

Il est facile d'écrire un algorithme qui permet de déterminer une coloration correcte d'un graphe, mais sans garantir qu'on utilise le nombre minimal de couleurs.

Par exemple, en partant d'un graphe dont aucun sommet n'est colorié.

- 1. choisir la première couleur disponible;
- 2. tant qu'il existe un sommet non colorié répéter les étapes 3 à 6;
- 3. choisir un sommet s non colorié, et le colorier avec la couleur courante;
- 4. répéter l'étape 5 pour tout sommet t non colorié;
- 5. si t n'est adjacent à aucun sommet colorié avec la couleur courante, le colorier avec la couleur courante;
- 6. choisir une nouvelle couleur;
- 7. fin de l'algorithme.

Écrire une fonction coloriage (G) qui prend en argument un graphe et renvoie à l'aide de l'algorithme ci-dessus une coloration possible de ses sommets. On pourra utiliser (sans la recopier) la fonction auxiliaire suivante qui vérifie qu'aucun sommet de la liste voisins n'est de la couleur c.

```
def coloriable(voisins, couleur, c):
    for v in voisins:
        if couleur[v] == c: return False
    return True
```