Vivian Do CSC 4320 Mar 26 2023

Spring 2023 - 4320/6320 Section 006 Operating Systems

Homework 4: Due 03/26/2022 at 11:59 PM

Your programs – if requested – must compile with gcc and execute on snowball.cs.gsu.edu! Please see https://cscit.cs.gsu.edu/sp/guide/snowball for more details. You may use whatever IDEs / text editors you like, but you must submit your responses on iCollege.

1. **(10 Points)** Provide a deadlock-prone pseudocode for two processes each accessing two semaphores A and B.

My Pseudocode:

Process 1 = p1 Semaphore 1 = AProcess 2 = p2 Semaphore 2 = B

p1 locks A, waiting for B

p1 acquires B

p2 locks B, waiting for A

p2 acquires A

p1 releases A

p1 releases B

p2 releases B

p2 releases A

- 2. **(20 Points)** Prove the correctness or give a counter-example for each of the following statements. You must state whether the statement is true or false and then show your arguments. ("->" means "implies").
 - a. Cycle -> Deadlock
 - b. Knot -> Deadlock
- a) Cycle -> Deadlock = False

In a resource allocation graph, it is possible that there is a cycle but there are no deadlocks since there are more than one instance of resource. This makes a cycle a bad condition for a deadlock.

b) Knot -> Deadlock = True

In a connected subgraph of a directed graph, it is impossible to leave the knot following the edge of the graph when starting from any node in the subset. This makes a knot a good condition for a deadlock.

3. **(20 Points)** Consider the following maximum-claim reusable resource system with four processes (P_0 , P_1 , P_2 , P_3) and three resource types (R_0 , R_1 , R_2). The maximum claim matrix C is given by

 $R_0 R_1 R_2$

P₀414

P₁314

P₂ 5 6 13

 $P_3 1 1 6$

where C_{ij} denote maximum claim of process i for resource j. The total number of units of each resource type is given by the vector

R0 R1 R2 5 8 15

The current allocation of resources is given by the matrix A

 $R_0 R_1 R_2$

 P_0014

 $P_1 201$

P₂121

 $P_3 103$

where $A_{i,j}$ denotes the units of resources of type j currently allocated to process i. For the state shown above, determine if a new request by process P_1 for 1 unit of resource R_1 can be safely granted. (Remark: You can assume that the system state above does not yet take into account this request.)

Process 1 = p1 Resource 1 = r1

p1 Max Need - p1 Current Allocation = Future Need (Requirement)

 $[3 \ 1 \ 4] - [2 \ 0 \ 1] = [1 \ 1 \ 3]$

p1 Requirement = [1 1 3] is requesting of r1

p1 Requirement + r1 Max Need

 $[1\ 1\ 3] + [x\ 1\ x] = [1\ 2\ 3]$

p1 Final Requirement = [1 2 3]

Therefore, the new request by p1 for one unit of r1 <u>can be safely granted</u> from using the available resources.

My Handwritten Chart/Work (?):

Processes	Consult	Mar Nied (with 1827)	Two Need - curent site)	Rocal & lowers
	RO RI RZ		RO R) D2	Borbar Algeritha = work = work = allerohen
Po	0 1 4	4 1 4 1 5 6	4 0 0	20 Educ [4 00] 4 [1 56] ; p0 - mt sate!
PI	2 0 1	3 1 4 3 5 7	1 1 3	PI File (113) ((156); p1 = 526!
P 2	1 2 1	s 6 13 4 s to	4 4 12	pl Acidok + (cont [156] + [201] = [3 57]
P 3	1 0 3	1 1 6 4 6 14	0 1 3	p2 hox [4 4 12] s [3 57]; p2 = mt sale.
total RADAS	4 3 9	5 9 15	Green Arsway	6 13 4 (3 57), p3 = 5,4 !
(1 1 3)	Future Avred =	Mar Need a Concert Allow	a hón	checking har p O again , [400] & [4510] = safe
4		[0.4] = [400]	7	(4 5 to) · (0 14) > (4 6 14)
+	2 - [561] -1	[12] · [4 4 12] [103] · [0 1 3]		chalag = p2 2800 > (4 4 12) < (4 6 14) =
safe!		wildely - total Pseuros	N. Comments	= Safe square 4 pl, p3, p0, p2 dealbut