

Project Initialization and Planning Phase

Date	7 JULY 2024
Team ID	SWTID1720108776
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

The project aims to provide significant benefits to the e-commerce business and its customers, fostering a more reliable, efficient, and customer-friendly shipping process. By leveraging advanced machine learning techniques, the project seeks to enhance the reliability and precision of shipping time predictions, ultimately leading to improved customer satisfaction and operational efficiency.

Project Overview		
Objective	The primary objective of the Ecommerce Shipping Prediction Using Machine Learning project is to develop an accurate and reliable predictive model for estimating the delivery time of e-commerce orders	
Scope	The scope outlines the comprehensive approach required to successfully implement and maintain an effective machine learning model for predicting e-commerce shipping times with dynamic and real-life factors, thereby driving operational efficiency and enhancing customer satisfaction. This can be integrated into many Ecommerce applications, predict with best accuracy.	
Problem Statement		
Description	Predicting shipping times accurately is a complex task influenced by various factors such as order volume, shipping distance, carrier performance, weather conditions, and operational delays. Inaccurate delivery estimates can lead to customer dissatisfaction, increased customer service costs, and logistical inefficiencies.	

Impact	E-commerce businesses can enhance their shipping processes, leading to improved customer satisfaction, operational efficiency, and overall business performance. Investing in technologies and strategies that optimize shipping is essential for maintaining a competitive edge in the dynamic e-commerce landscape.
	the dynamic e-commerce landscape.

Proposed Solution		
Approach	Employing machine learning classification techniques to analyse and predict creditworthiness, creating a dynamic and adaptable shipping. Classification Algorithms should be used, chose best model and thereby saving the model and deploying the model through flask	
Key Features	-Implementation of a machine learning-based credit assessment modelFlask deployment for easy accessOrder-Related FeaturesCustomer-Related FeaturesShipping Carrier Features.	

Resource Requirements

Resource Type	Description	Specification/Allocation	
Hardware			
Computing Resources	CPU/GPU specifications, number of cores	2 x NVIDIA V100 GPUs	
Memory	RAM specifications	8 GB	
Storage	Disk space for data, models, and logs	1 TB SSD	
Software			
Frameworks	Python frameworks	Flask	
Libraries	Additional libraries	Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn	

Development Environment	IDE, version control	Jupyter Notebooks, PyCharm, or VS Code.
Data		
Data	Source, size, format	Kaggle dataset URL: https://www.kaggle.com/datasets/prachi13/customer- analytics?select=Train.csv Size: 124KB Rows: 10999, Columns: 12