Олимпиадное программирование Занятие 7. Бинарный поиск

Труфанов Павел Николаевич

Сыграем в игру

Я загадал число от 1 до 100. Вы можете задавать вопросы, на которые я буду отвечать ДА или НЕТ. Отгадайте мое число. За сколько операций вы его отгадаете?

За сколько операций вы отгадаете число, если я загадал число от 1 до 10^{100} ?

Бинарный поиск по функции

Имеем монотонную функцию. Решите уравнение f(x) = y для неизвестного x

Бинарный поиск по массиву

Хотим решать предыдущее уравнение для массива. Представим массив в виде функции. Граница I=0, r=n. Делаем бинарный поиск на полуинтервалах

Левый и правый бинпоиск

Попробуем поменять границы на I=-1, r=n-1. Посмотрим, что будет делать бинпоиск.

Левый и правый бинпоиск

При границах I=0, r=n бинарный поиск находит последний элемент, меньший либо равный данному.

При границах I=-1, r=n-1 бинарный поиск находит первый элемент, больший либо равный данному.

Встроенный бинарный поиск

Управляющий совет

Муниципальный этап

В управляющий совет школы входят родители, учителя и учащиеся школы, причём родителей должно быть не менее одной трети от общего числа членов совета. В настоящий момент в совет входит N человек, из них K родителей. Определите, сколько родителей нужно дополнительно ввести в совет, чтобы их число стало составлять не менее трети от числа членов совета.

Входные данные	Выходные данные
27	3
7	

Бинарный поиск по ответу

Как увидеть график функции?

Мы ищем некий ответ, поэтому по оси x отложим его.

Что будет на оси y? Некие данные, которые известны, и такие, чтобы функция была монотонная. Таким образом, мы свели любую задачу на бинпоиск к решению уравнения f(x) = y.

Границы бинарного поиска

Имеем две границы - I, r. Правильнее всего делать бинпоиск на полуинтервалах, поэтому одна из границ не должна включаться. Как определить, где какая граница? Знаем, что граница I обычно маленькая, а граница rбольшая. Посмотрим, может ли маленькое число I подходить под ответ, хоть и неоптимальный. Если да, то граница I включается, а граница r нет. Иначе наоборот.

Дипломы

Баян на бинпоиск

У нас есть N дипломов высотой h и шириной w. Хотим повесить их на квадратную доску $a \times a$. Дипломы не могут перекрываться и выходить за границы доски. Найдите такое минимальное a. Даны числа w, h, N

Входные данные	Выходные данные
2 3 10	9

База

Задача с региона

Требуется построить базу из n модулей. Каждый модуль представляет собой прямоугольник размером $a \times b$ метров. Вокруг модуля надо добавить защитный слой. Толщина этого слоя должна составлять целое число метров, и все модули должны иметь одинаковую толщину дополнительной защиты. Модуль с защитой толщиной d будет иметь форму прямоугольника размером $(a+2d) \times (b+2d)$ метров.

Все модули должны быть расположены на заранее подготовленном прямоугольном поле размером $w \times h$ метров. Модули расположены параллельно сторонам и не перекрываются.

Найдите максимальное d, что модули влезут на поле.

Вводятся числа n, a, b, w, h

Входные данные	Выходные данные
11 2 3 21 25	2

Коровы в стойла

Просто задачка

На прямой расположены стойла, в которые необходимо расставить коров так, чтобы минимальное расстояние между коровами было как можно больше.

Вводятся количество стойл и количество коров.

Далее вводятся координаты стойл.

Входные данные	Выходные данные
6 3	9
2 5 7 11 15 20	

Детский праздник

Просто задачка

Организаторы детского праздника планируют надуть для него М воздушных шариков. С этой целью они пригласили N добровольных помощников, i-й среди которых надувает шарик за T_i минут, однако каждый раз после надувания Z_i шариков устает и отдыхает Y_i минут. Теперь организаторы праздника хотят узнать, через какое время будут надуты все шарики при наиболее оптимальной работе помощников, и сколько шариков надует каждый из них. Вводятся числа M, N. На следующих строках вводятся числа T_i, Z_i, Y_i

Входные данные	Выходные данные
3 2	4
2 2 5	2 1
1 1 10	

Черепаха

Еще задачка

На прямой в положительных целых точках заданы координаты одуванчиков. В точке 0 живет черепаха. В полночь она вылезает из дома и хочет съесть все одуванчики и вернуться домой. Один одуванчик она съедает за t секунд. Для каждого одуванчика известна координата и время, когда он вырастет. Одну единицу расстояния черепаха проползет за d секунд. Плюс черепашка может просто ждать. Найдите минимальное время, через которое она вернется домой, съев все одуванчики.

Кассы

Задачка

Есть N касс. В i-той кассе один продукт пробивается за A_i времени и с одним покупателем рассчитываются за B_i времени. У нас есть K человек и M тортиков. Для каждой кассы известно, что освободится она через T_i времени. Так распределите тортики между людьми и людей между кассами, чтобы все освободились как можно раньше.

До встречи!

FOXFORD.RU

Онлайн-школа Фоксфорд

