Review of Complex Numbers

Standard (Cartesian) form of Complex Number

A number of the form x + iy, where x and y are real numbers and $i = \sqrt{-1}$, is called a complex number. A complex number is generally denoted by z.

z = x + iy: Standard form of complex number

x : Real part of z, Re(z)

y: Imaginary part of z, Im(z)

- \rightarrow If x = 0 and $y \neq 0$, then z = iy is called purely imaginary.
- \rightarrow If $x \neq 0$ and y = 0, then z = x is called purely real.
- → There is no order relation between two complex numbers.

* Argand's Diagram

The plot of a complex number z = x + iy as the point (x, y) in the XY-plane is known as the Argand's diagram. X-axis is called real axis and Y-axis is called imaginary axis. The XY-plane is called complex plane.

· Conjugate of a Complex Number

Complex conjugate of a complex number z = x + iy is defined as $\bar{z} = x - iy$.

Also,
$$x = \text{Re}(z) = \frac{z + \bar{z}}{2}$$
, $y = \text{Im}(z) = \frac{z - \bar{z}}{2i}$, $z \cdot \bar{z} = x^2 + y^2$

* Polar form of Complex Number

Modulus of
$$z = x + iy$$
, $r = |z| = \sqrt{x^2 + y^2}$

Argument of
$$z = x + iy$$
, $\theta = \arg(z) = \tan^{-1}\left(\frac{y}{x}\right)$

 (r, θ) are called the polar co-ordinates of the point (x, y).

The polar form of z is $z = r(\cos \theta + i \sin \theta)$ where $x = r \cos \theta$, $y = r \sin \theta$.

❖ Working Rule to calculate Argument of Complex Number

Find
$$\alpha = \tan^{-1} \left| \frac{y}{x} \right|$$
,

Then, for z = x + iy,

Sr. No.	Quadrant Position of z	Value of θ
1	I	$\theta = \alpha$
2	II	$\theta = \pi - \alpha$
3	III	$\theta = \pi + \alpha$
4	IV	$\theta = -\alpha$ or $2\pi - \alpha$

* Exponential form of Complex Number

The exponential form of z is $re^{i\theta}$ where $e^{i\theta} = \cos \theta + i \sin \theta$.

Algebra of Complex Number

Let $z_1 = x_1 + iy_1 = r_1e^{i\theta_1}$ and $z_2 = x_2 + iy_2 = r_2e^{i\theta_2}$ be two complex numbers.

(a) **Equality**: $z_1 = z_2 \Leftrightarrow x_1 = x_2$ and $y_1 = y_2$

(b) **Addition**: $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$

(c) **Subtraction**: $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$

(d) **Multiplication**: $z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1) = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$

(e) **Division**: $\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$