Булевы функции. Пример решения задачи

Для булевой функции f(x, y, z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.

$$f(x, y, z) = (\overline{x} \vee \overline{y}) \wedge (\overline{y} \vee \overline{z}) \rightarrow (\overline{x} \vee \overline{z})$$

Решение.

Для булевой функции f(x, y, z) найдем методом преобразования минимальную ДНФ.

По свойству дистрибутивности, $(\bar{x} \vee \bar{y}) \wedge (\bar{y} \vee \bar{z}) = (\bar{x} \wedge \bar{z}) \vee \bar{y}$. Имеем:

$$f(x, y, z) = (\overline{x} \vee \overline{y}) \wedge (\overline{y} \vee \overline{z}) \rightarrow (\overline{x} \vee \overline{z}) = ((\overline{x} \wedge \overline{z}) \vee \overline{y}) \rightarrow (\overline{x} \vee \overline{z}).$$

Далее будем пользоваться свойством импликации $(A \to B = \overline{A} \lor B)$ и законами де Моргана $(\overline{A \land B} = \overline{A} \lor \overline{B}, \overline{A \lor B} = \overline{A} \land \overline{B})$. Имеем:

$$f(x, y, z) = (\overline{x} \vee \overline{y}) \wedge (\overline{y} \vee \overline{z}) \to (\overline{x} \vee \overline{z} = ((\overline{x} \wedge \overline{z}) \vee \overline{y}) \to (\overline{x} \vee \overline{z}) =$$

$$= (\overline{x} \wedge \overline{z}) \vee \overline{y} \vee \overline{x} \vee \overline{z} = (\overline{x} \wedge \overline{z}) \wedge \overline{y} \vee \overline{x} \vee \overline{z} = (x \vee z) \wedge y \vee \overline{x} \vee \overline{z} =$$

По свойству дистрибутивности $(x \lor z) \land y = x \land y \lor z \land y$. Имеем:

$$f(x,y,z) = (x \vee z) \wedge y \vee \overline{x} \vee \overline{z} = x \wedge y \vee z \wedge y \vee \overline{x} \vee \overline{z} = \overline{x} \vee y \vee \overline{z} \; .$$

Итак, минимальная ДНФ для функции f(x, y, z): $\bar{x} \lor y \lor \bar{z}$.

Построим таблицу истинности для функции $f(x, y, z) = \overline{x} \lor y \lor \overline{z}$:

\boldsymbol{x}	у	Z	\bar{x}	$\overline{x} \vee y$	\overline{z}	$\overline{x} \lor y \lor \overline{z}$
0	0	0	1	1	1	1
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	1	1	0	1
1	0	0	0	0	1	1
1	0	1	0	0	0	0
1	1	0	0	1	1	1
1	1	1	0	1	0	1

Задача скачана с сайта www.MatBuro.ru

Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm

©МатБюро - Решение задач по математике, экономике, статистике

По таблице истинности построим СКНФ.

В ячейках строки́ $\overline{x} \vee y \vee \overline{z}$ отмечаются лишь те комбинации, которые приводят логическое выражение в состояние нуля. Такая строка одна — это шестая строка. Она содержит 0 в указанном поле. Отметим значения всех четырех переменных, это:

$$x = 1$$
,

y = 0,

z = 1.

В дизъюнкцию записывается переменная без инверсии, если она в наборе равна 0, и с инверсией, если она равна 1. Первый член СКНФ (в нашем случае единственный) рассматриваемой функции выглядит так: $\overline{x} \lor y \lor \overline{z}$.

По минимальной ДНФ построим релейно-контактную схему .

Ранее получена минимальная ДНФ: $f(x, y, z) = \overline{x} \lor y \lor \overline{z}$. Следовательно, релейно-контактная схема имеет вид:

Это релейно-контактная схема реализации переключательной функции $f(x,y,z) = \overline{x} \lor y \lor \overline{z} \ \text{с реле-повторителями сигналов датчиков.}$

Ответ: Минимальная ДНФ: $\bar{x} \lor y \lor \bar{z}$;

CKH Φ : $\bar{x} \lor y \lor \bar{z}$;