Álgebra de Boole

Prof. José Roberto Bezerra

Objetivo de Aprendizagem

 Introduzir os conceitos fundamentais da álgebra de Boole

Agenda

- Álgebra de dois valores
- Tabela verdade
- Operadores AND (E) e OR (OU)

Álgebra de Boole

- Define-se como Álgebra de Boole (ou Booleana) um conjunto de operadores que são assumidos como válidos sem necessidade de prova
- Assume um número finito de valores

Álgebra de dois valores

- Em números reais as variáveis podem assumir valores entre -inf a +inf
- Variáveis booleanas podem assumir dois valores
 - [F, V]
 - [H, L] (*High*, *Low*)
 - [On, Off]
 - [1, 0]

Tabela Verdade

- O número de estados que uma função booleana pode assumir é finito
- Pode-se descrever completamente uma função booleana utilizando tabelas
- Uma Tabela Verdade lista os valores de entrada que as variáveis podem assumir e o valor de saída da função

Operadores

- Operadores ou funções básicas:
 - OU (OR, +)
 - E (AND, .)
 - Complementação (NOT, ~, -)

OR

- "A operação OU resulta 1 se pelo menos uma das variáveis de entrada vale 1"
- Adição Lógica

OR

0 + 0	=	
0 + 1	=	
1 + 0	=	
1 + 1	=	

OR

0 + 0	-	0
0 + 1	=	1
1 + 0	=	1
1 + 1	=	1

Tabela Verdade OR

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Características (OR)

- Operador Binário
- Apenas um ÚNICO valor 1 faz com que a saída seja 1
- Somente com TODOS valores 0 a saída é 0

AND

- "A operação E resulta 0 se pelo menos uma das variáveis de entrada vale 0"
- Multiplicação Lógica

AND

0 · 0	_	
0 · 1	=	
1 · 0	=	
1 · 1	=	

AND

0 · 0	=	0
0 · 1	=	0
1 · 0	=	0
1 · 1	=	1

Tabela Verdade AND

A	В	Α·Β
0	0	0
0	1	0
1	0	0
1	1	1

Características (AND)

- Operador Binário
- Apenas UMA entrada com valor 0 faz com que a saída seja 0
- Somente com TODOS as entradas com valor 1 a saída é 1

NOT

- "É a operação cujo resultado é simplesmente o valor complementar ao que a variável apresenta"
- Complementação, Negação ou Inversão

NOT

Ō	
1	

NOT

Ō	-	1
1		0

Tabela Verdade NOT

A	Ā
0	1
1	0

Características (NOT)

- Operador Unário
- Definida para uma variável apenas

Expressões Booleanas

- Como determinar o comportamento de uma expressão booleana para qualquer combinação de variáveis?
- Ou seja como determinar a tabela verdade de uma expressão booleana que representa um circuito lógico?

- Quais as variáveis de entrada?
- Quantas linhas são necessárias para escrever a tabela verdade?
- Qual a precedência entre as operações?

$$W = X + Y \cdot \bar{Z}$$

- Quais as variáveis de entrada?
- A saída W é expressa como uma função de 3 variáveis: X, Y e Z

$$W = X + Y \cdot \bar{Z}$$

- Quantas linhas são necessárias na tabela verdade?
 - Se temos **3** variáveis de entrada, existem **2**³ possibilidades de combinações entre as variáveis de entrada
 - Portanto, a tabela verdade contém 8 linhas

$$W = X + Y \cdot \bar{Z}$$

- Qual a precedência entre as operações?
- Assim como nas expressões algébricas, nas boolenas há precedência para as operações
 - AND
 - OR
 - NOT (assim que possível)

$$W = X + Y \cdot \bar{Z}$$

$W = X + Y \cdot \bar{Z}$

X	Υ	Z	$ar{Z}$	$Y\cdot ar{Z}$	W

$W = X + Y \cdot \bar{Z}$

X	Y	Z	$ar{Z}$	$Y \cdot \bar{Z}$	W
0	Ο	0	1	0	0
0	O	1	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1

Propriedades da Álgebra

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \bar{A} = 1$$

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A \cdot A = A$$

$$A \cdot \bar{A} = 0$$

$$\bar{\bar{A}} = A$$

Propriedades da Álgebra

$$A + B = B + A$$

$$A \cdot B = B \cdot A$$

$$A + (B + C) = (A + B) + C$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

Exemplo Prático

Em um processo químico é desejável que um alarme seja ativado sempre que a temperatura exceder um certo um valor máximo ou sempre que a pressão estiver acima de um certo limite.

Exemplo de Aplicação

- Circuito com chaves
- Qual a expressão lógica que descreve o funcionamento do circuito?

D1 = ?

А	В	С	D	D1

Exemplo de Aplicação 2

- Um carro possui 3 sensores:
 - Nas portas: quando alguma porta estiver aberta, esse sensor envia nível lógico alto;
 - Na ignição: quando a ignição está ligada, este sensor envia nível lógico alto;
 - Nos faróis: quando algum farol está ligado, esse sensor envia 1.
- Projete um circuito lógico que faça acionar uma luz vermelha no painel do carro sempre que:
 - As portas estiverem abertas com a ignição acionada
 - Os faróis estiverem acesos com a ignição desligada

Como fazer?

- Determinar entradas e saídas
 - Entradas enviam informações para o circuito
 - Saídas recebem informações do circuito
 - Escrever a tabela verdade

