Continuité

1 Continuité en un point

■ Définition 1 (Continuité en un point)

Soit f une fonction définie sur un intervalle I, soit $x_0 \in I$.

• On dit que f est continue en x_0 lorsque f admet une limite finie en x_0 . Cette limite est alors nécessairement égale à $f(x_0)$ (cf. chapitre précédent)

Autrement dit:

$$f$$
 est continue en $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$.

- Si f n'est pas continue en x_0 , on dit que x_0 est un point de discontinuité de f.
- On dit que f est continue à gauche (resp. à droite) en x_0 lorsque :

$$\lim_{x \to x_0^-} f(x) = f(x_0) \quad \text{(resp. } \lim_{x \to x_0^+} f(x) = f(x_0)\text{)}.$$

Remarque 1

Bien-sûr, pour que f soit continue en x_0 , il est nécessaire que f soit définie en x_0 !

Proposition 1 (Continuité à gauche et à droite)

Soit $x_0 \in I$, qui n'est pas une extrémité de I.

f est continue en x_0 si et seulement si elle est continue à gauche et à droite en x_0 .

Preuve:

D'après le Théorème 1 du chapitre "Limites de fonctions",

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0) \Longleftrightarrow \lim_{x \to x_0} f(x) = f(x_0).$$

Exemple

La fonction partie entière $x \mapsto |x|$ n'est pas continue aux points entiers.

Si $k \in \mathbb{Z}$, elle est continue à droite en k, mais pas à gauche de k!

Elle est en revanche continue en tout point de $\mathbb{R} \setminus \mathbb{Z}$.

✓ Dessin:

Exercice 1

On définit $f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si} & x > 0 \\ 0 & \text{si} & x \leqslant 0 \end{cases}$. Montrer que f est continue en 0.

On a par définition f(0) = 0.

- D'une part, $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} 0 = 0 = f(0)$. Donc f est continue à gauche en 0.
- D'autre part, $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} e^{-\frac{1}{x}} = \lim_{y\to -\infty} e^y = 0 = f(0)$. Donc f est continue à droite en 0.

Conclusion : f est continue en 0.

2 Fonctions continues

2.1 Définition et exemples fondamentaux

Définition 2 (Fonction continue sur un intervalle)

Soit D une partie de \mathbb{R} (en pratique : un intervalle ou une union d'intervalles).

On dit qu'une fonction $f:D\to\mathbb{R}$ est continue sur le domaine D lorsqu'elle est continue en tout point x_0 de D.

L'ensemble des fonctions continues sur D (et à valeurs dans \mathbb{R}) est noté

 $\mathcal{C}(D,\mathbb{R})$ ou $\mathcal{C}^0(D,\mathbb{R})$ ou plus succinctement $\mathcal{C}(D)$ ou $\mathcal{C}^0(D)$.

Proposition 2 (Continuité des fonctions usuelles)

- Les polynômes et les fractions rationnelles (= quotient de deux polynômes),
- La valeur absolue $x \mapsto |x|$,
- Les fonctions puissances $x \mapsto x^{\alpha}$ (pour $\alpha \in \mathbb{R}$), la racine carrée $x \mapsto \sqrt{x}$,
- L'exponentielle exp, le logarithme ln,
- Les fonctions trigonométriques sin, cos, tan, arctan sont toutes continues sur leurs domaines de définition.

Remarque 2

Ce domaine de définition n'est pas toujours un intervalle!

La fonction $f: x \mapsto \frac{x^2+1}{x(x-1)}$ est continue en tout point de $D_f = \mathbb{R} \setminus \{0,1\} =]-\infty, 0[\cup]0,1[\cup]1,+\infty[$

2.2 Opérations et continuité

Proposition 3 (Somme, produit, quotient de fonctions continues)

Soient f et g deux fonctions continues sur un domaine D, soit $\lambda \in \mathbb{R}$.

Alors les fonctions f + g, fg, λf et $\frac{f}{g}$ (lorsqu'elle existe) sont continues sur D.

Preuve:

Conséquence directe des règles de calcul de limites. Exemple pour la somme : pour tout $x_0 \in D$,

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0) = (f+g)(x_0).$$

Proposition 4 (Composition de fonctions continues)

Si $f \in \mathcal{C}(D_f, \mathbb{R})$ et $g \in \mathcal{C}(D_g, \mathbb{R})$ avec $f(D_f) \subset D_g$, alors $g \circ f \in \mathcal{C}(D_f, \mathbb{R})$.

Preuve:

Conséquence directe du résultat de composition de limites : pour tout $x_0 \in D_f$,

$$\lim_{x \to x_0} (g \circ f)(x) = \lim_{x \to x_0} g(f(x)) = \lim_{y \to f(x_0)} g(y) = g(f(x_0)) = (g \circ f)(x_0).$$

Æ Méthode : Continuité d'une fonction "élémentaire")

Après avoir déterminé le domaine de définition D_f d'une fonction f, on pourra souvent annoncer :

"f est continue sur D_f comme somme/produit/quotient/composée de fonctions usuelles".

Exemples

- $f: x \mapsto xe^x$ est continue sur \mathbb{R} comme produit de fonctions usuelles.
- $g: x \mapsto \frac{\sqrt{x-1}}{1+x^2}$ est continue sur $[1, +\infty[$ comme composée et quotient de fonctions usuelles.

Prolongement par continuité en un point

Exercice 2

On pose $g: x \mapsto \frac{\ln(1+x)}{x}$.

1. Déterminer le domaine de définition de g.

2. Peut-on prolonger g en une fonction continue g sur un domaine plus grand?

1.
$$g(x) = \frac{\ln(1+x)}{x}$$
 est bien défini si et seulement si

$$1+x>0 \text{ et } x\neq 0 \Longleftrightarrow x>-1 \text{ et } x\neq 0 \Longleftrightarrow x\in]-1,0[\,\cup\,]0,+\infty[$$

Ainsi $D_g =]-1, 0[\cup]0, +\infty[.$

g est continue sur ce domaine comme composée/quotient de fonctions usuelles.

- 2. La question est de savoir si g est prolongeable par continuité en -1 et en 0.
- En -1: $\lim_{x \to -1} g(x) = \lim_{x \to -1^+} \frac{\ln(1+x)}{x} = +\infty$. Pas de prolongement possible.
- En $0: \lim_{x\to 0} g(x) = \lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ (limite connue). Prolongement possible!

On peut donc prolonger g par continuité sur $]-1,+\infty[$ en posant :

$$\forall x \in]-1, +\infty[, \quad \widetilde{g}(x) = \begin{cases} \frac{\ln(1+x)}{x} & \text{si} \quad x \neq 0, \\ 1 & \text{si} \quad x = 0. \end{cases}$$

Dessin:

业 Théorème 1 (Prolongement par continuité)

Soit I un intervalle, $x_0 \in I$ et $f: I \setminus \{x_0\} \to \mathbb{R}$.

Si f admet une limite finie ℓ en x_0 , alors on peut prolonger f par continuité en x_0 :

La fonction
$$\widetilde{f}$$
 définie sur I par
$$\forall x \in I, \ \widetilde{f}(x) = \left\{ \begin{array}{l} f(x) \ \text{si} \ x \neq x_0 \\ \ell \ \text{si} \ x = x_0 \end{array} \right.$$

est appelée **prolongement par continuité** de f en x_0 .

- La fonction \widetilde{f} est continue en x_0 .
- De plus, si f est continue sur $I \setminus \{x_0\}$, alors \widetilde{f} est continue sur I tout entier.

✓ Dessin:

Preuve du Théorème 1:

- On a $\lim_{x \to x_0} \widetilde{f}(x) = \lim_{x \to x_0} f(x) = \ell$. (Si ce n'est pas clair, considérer les limites à gauche/droite). Comme par définition $\widetilde{f}(x_0) = \ell$, on obtient $\lim_{x \to x_0} \widetilde{f}(x) = \widetilde{f}(x_0) : \widetilde{f}$ est continue en x_0 .
- Supposons de plus que f est continue sur $I \setminus \{x_0\}$. Vérifions alors que \widetilde{f} est continue sur $I \setminus \{x_0\}$. Soit $x_1 \in I \setminus \{x_0\}$, vérifions que $\lim_{x \to x_1} \widetilde{f}(x) = \widetilde{f}(x_1)$. On a :

$$\lim_{x \to x_1} \widetilde{f}(x) = \lim_{x \to x_1} f(x) \quad \left(\text{ car } f(x) = \widetilde{f}(x) \text{ au voisinage de } x_1 \right)$$

$$= f(x_1) \quad \left(\text{ car } f \text{ est continue en } x_1 \right)$$

$$= \widetilde{f}(x_1) \quad \left(\text{ car } f(x) = \widetilde{f}(x) \text{ pour } x \neq x_0 \right), \text{ d'où le résultat.}$$

4

Soit I un intervalle, $x_0 \in I$ et $f: I \setminus \{x_0\} \to \mathbb{R}$.

(le point x_0 peut être une extrémité de I, ou bien être dans l'intérieur de I).

Pour montrer que la fonction f est prolongeable par continuité en x_0 , il faut et il suffit de vérifier que la limite $\ell = \lim_{x \to x_0} f(x)$ existe et est finie (i.e différente de $\pm \infty$).

On peut alors en "étendre" naturellement la définition de f au point x_0 en posant " $f(x_0) = \ell$ ". Au lieu de "redéfinir" directement la fonction f, on introduit souvent une nouvelle fonction \widetilde{f} .

Exemple

Rappelons que pour $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, la fonction $f: x \mapsto x^{\alpha}$ est définie uniquement sur \mathbb{R}_{+}^{*} .

En revanche, pour un exposant $\alpha>0$, cette fonction est prolongeable par continuité en 0!

On a en effet $\lim_{x\to 0} f(x) = \lim_{x\to 0^+} e^{\alpha \ln(x)} = \lim_{y\to -\infty} e^{\alpha y} = 0$ (car $\alpha > 0$).

Ainsi, on peut définir le prolongement par continuité : $\widetilde{f}(x) = \left\{ \begin{array}{ccc} e^{\alpha \ln(x)} & \text{si} & x > 0 \\ 0 & \text{si} & x = 0 \end{array} \right.$

Il s'agit alors d'une fonction définie et continue sur \mathbb{R}_+ .

3 Théorème des valeurs intermédiaires (TVI)

3.1 Le théorème

★ Théorème 2 (Théorème des valeurs intermédiaires (TVI))

Soient $a, b \in \mathbb{R}$ avec a < b. Soit f une fonction continue sur [a, b] (i.e $f \in \mathcal{C}([a, b], \mathbb{R})$). Alors:

Quel que soit $\lambda \in [f(a), f(b)]$, il existe $c \in [a, b]$ tel que $f(c) = \lambda$.

✓ Dessin :

Remarques 3

- La notation [f(a), f(b)] désigne : { Le segment [f(a), f(b)] si $f(a) \le f(b)$ Le segment [f(b), f(a)] si $f(b) \le f(a)$
- $\bullet\,$ Notons qu'un tel réel c n'est pas forcément unique! On verra que l'unicité nécessite une hypothèse supplémentaire sur f: la stricte monotonie.

▲ Attention !

Le TVI ne décrit pas <u>toutes les valeurs atteintes</u> par f sur le segment $[a,b]\,!$

Il se contente d'affirmer que "toute valeur entre f(a) et f(b) est atteinte par f sur [a,b]".

Ceci pourrait s'exprimer en disant : $[f(a), f(b)] \subset f([a, b])$.

L'inclusion réciproque est fausse en général!

(toutes les valeurs atteintes sur [a,b] ne sont pas forcément entre f(a) et f(b))

Exemple: La fonction sin est continue sur le segment $I = [0, \frac{3\pi}{4}], \sin(0) = 0, \sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}.$

D'après le TVI, toute valeur λ entre 0 et $\frac{\sqrt{2}}{2}$ est atteinte par sin sur I.

Mais toutes les valeurs atteintes par sin sur I ne sont pas entre 0 et $\frac{\sqrt{2}}{2}$: $\sin(\frac{\pi}{2}) = 1 > \frac{\sqrt{2}}{2}$.

Le TVI s'emploie souvent conjointement avec un tableau de variation.

Exemple

x	0	1	3
f(x)	2	-3	1

Si une fonction continue f admet ce tableau de variation, **d'après le TVI**, on peut affirmer :

- $\exists c_1 \in [0,1], \ f(c_1) = 0$
- $\exists c_2 \in [1,3], \ f(c_2) = -2.$

(par exemple!)

3.2 Algorithme de dichotomie

Preuve du TVI:

✓ Dessin :

Soit $f \in \mathcal{C}([a,b],\mathbb{R})$. Traitons le cas $f(a) \leq f(b)$ (l'autre cas est similaire).

Soit $\lambda \in [f(a), f(b)]$. Montrons qu'il existe $c \in [a, b]$ tel que $f(c) = \lambda$.

Algorithme de dichotomie : On va construire deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ de points de [a,b], de plus en plus proches, satisfaisant : $\forall n\in\mathbb{N},\ f(a_n)\leqslant\lambda\leqslant f(b_n)$.

<u>Construction</u>:

- On pose $\begin{cases} a_0 = a \\ b_0 = b \end{cases}$
- Pour $n \in \mathbb{N}$, si on a construit a_n et b_n , on pose $c_n = \frac{a_n + b_n}{2}$ (milieu du segment $[a_n, b_n]$) et :

- Si
$$f(c_n) \le \lambda$$
, alors on pose
$$\begin{cases} a_{n+1} = c_n \\ b_{n+1} = b_n \end{cases}$$
 - Si $f(c_n) > \lambda$, alors on pose
$$\begin{cases} a_{n+1} = a_n \\ b_{n+1} = c_n \end{cases}$$

Par récurrence immédiate, on voit que :

- (1) $\forall n \in \mathbb{N}, \ a \leqslant a_n \leqslant b_n \leqslant b$ (2) $\forall n \in \mathbb{N}, \ f(a_n) \leqslant \lambda \leqslant f(b_n).$
- (3) $(a_n)_{n\in\mathbb{N}}$ est croissante, $(b_n)_{n\in\mathbb{N}}$ est décroissante

(4)
$$\forall n \in \mathbb{N}, (b_n - a_n) = \frac{(b-a)}{2^n}$$
 donc $\lim_{n \to +\infty} (b_n - a_n) = 0.$

Les points (3) et (4) montrent que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes : elle convergent donc vers une même limite $c\in\mathbb{R}$.

D'après (1), on a : $\forall n \in \mathbb{N}, \ a \leqslant a_n \leqslant b$. On en déduit $a \leqslant c \leqslant b$, i.e $c \in [a, b]$

Enfin, on passe à la limite dans l'encadrement (2).

Par composition de limite et continuité de f,

$$\lim_{n \to +\infty} a_n = c \quad \text{donc} \quad \lim_{n \to +\infty} f(a_n) = \lim_{x \to c} f(x) = f(c)$$
$$\lim_{n \to +\infty} b_n = c \quad \text{donc} \quad \lim_{n \to +\infty} f(b_n) = \lim_{x \to c} f(x) = f(c)$$

Donc en passant à la limite dans $f(a_n) \leq \lambda \leq f(b_n)$, on obtient $f(c) \leq \lambda \leq f(c)$, c'est à dire $f(c) = \lambda$

Cet algorithme de dichotomie peut être implémenté concrètement en Python pour déterminer une solution approchée d'une équation $f(c) = \lambda$ (d'inconnue c).

Il suffit de construire progressivement les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$: on a toujours l'encadrement $a_n\leqslant c\leqslant b_n$, et cet encadrement devient de plus en plus précis à mesure que n augmente!

♠ Exercice 3

Pour tout x > 0, on pose $f(x) = x^2 - 2 - \ln(x)$.

- 1. Justifier qu'il existe $c \in [1,2]$ tel que f(c) = 0. On admet qu'un tel c est unique.
- 2. Compléter le programme suivant pour que l'appel de dichotomie (eps) (pour un eps= $\varepsilon > 0$) renvoie deux valeurs encadrant c à eps près.

```
import numpy as np
def f(x):
    y = .....
    return(y)
def dichotomie(eps):
    a=1 ; b=2
    while .....:
        c = (a+b)/2
        if .....:
        a = ......
    else:
        b = ......
    return(a,b)
```

1. La fonction f est continue sur \mathbb{R}_+^* comme somme de fonctions usuelles.

```
De plus on a f(1) = -1 < 0 et f(2) = 2 - \ln(2) > 0.
```

D'après le T.V.I, on en déduit qu'il existe $c \in [1, 2]$ tel que f(c) = 0.

2. Pour eps= 0.001, on obtient $a \simeq 1.564$ et $b \simeq 1.565$: on sait donc que $1.564 \leqslant c \leqslant 1.565$.

3.3 Applications du TVI

• Corollaire 1 (Changement de signe et annulation)

- Si une fonction continue change de signe sur un intervalle, alors elle s'annule au moins une fois sur cet intervalle.
- Contraposée : Si une fonction continue ne s'annule pas sur un intervalle, alors elle est de signe constant sur cet intervalle.

Exercice 4

Retrouver le fait (déjà évoqué!) que tout polynôme de degré impair admet au moins une racine.

Notons $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ avec $a_n \neq 0$ et $n = \deg(P)$ impair.

En factorisant:
$$P(x) = a_n x^n \left(1 + \frac{a_{n-1}}{a_n x} + \ldots + \frac{a_0}{a_n x^n} \right)$$

on voit que $\lim_{x\to -\infty} P(x) = \lim_{x\to -\infty} a_n x^n$ et $\lim_{x\to +\infty} P(x) = \lim_{x\to +\infty} a_n x^n$

Si
$$a_n > 0$$
, $\lim_{x \to -\infty} P(x) = -\infty$ et $\lim_{x \to +\infty} P(x) = +\infty$

Si
$$a_n < 0$$
, $\lim_{x \to -\infty} P(x) = +\infty$ et $\lim_{x \to +\infty} P(x) = -\infty$

Dans les deux cas, on apprend que P change de signe sur $\mathbb{R}!$

Comme P est continue sur \mathbb{R} , d'après le TVI, P s'annule au moins une fois sur \mathbb{R} .

₩ Méthode : Monter qu'une équation admet (au moins) une solution

On considère une équation de la forme $f(x) = \lambda$, d'inconnue x. $(\lambda \in \mathbb{R} \text{ est fixé})$.

On veut montrer que cette équation admet au moins une solution sur l'intervalle I.

- $\boxed{1}$ Affirmer (en justifiant éventuellement) que f est continue sur I.
- 2 Monter que λ se situe entre deux valeurs atteintes par f (Pour cela, on peut éventuellement dresser le tableau de variation de f sur I.)
- 3 Citer le Théorème des Valeurs Intermédiaires et conclure.

Remarque : Pour une équation de la forme f(x) = g(x) d'inconnue x, on posera plutôt h(x) = f(x) - g(x) pour se ramener à l'équation h(x) = 0 d'inconnue x.

On applique le TVI à la fonction h pour espérer conclure.

Exercice 5

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation $x = e^{-nx}$ admet (au moins) une solution dans \mathbb{R}_+ .
- 2. Soit $f:[0,1] \to [0,1]$ une fonction continue.

Montrer que f admet un point fixe, c'est à dire qu'il existe $x \in [0,1]$ tel que f(x) = x.

- 1. Soit $n \in \mathbb{N}$. Posons $\forall x \in \mathbb{R}_+, f_n(x) = x e^{-nx}$. Alors:
- f_n est continue sur \mathbb{R}_+ comme somme/composition de fonctions usuelles.
- $f_n(0) = -1$ et $\lim_{x \to +\infty} f_n(x) = +\infty$. En particulier il existe $x_0 > 0$ tel que $f_n(x_0) > 0$.

On a ainsi $0 \in [f_n(0), f_n(x_0)]$, donc d'après le TVI, il existe $c \in [0, x_0]$ tel que $f_n(c) = 0$. Alternativement, on a le tableau de variation :

x	0	$+\infty$
$f_n(x)$	-1	

Ainsi f_n s'annule sur \mathbb{R}_+ , donc l'équation $x = e^{-nx}$ admet (au moins) une solution dans \mathbb{R}_+ .

- 2. Posons $\forall x \in [0,1], g(x) = f(x) x$. Alors:
- q est continue sur [0,1] comme somme de fonctions continues.
- $g(0) = f(0) \ge 0$ et $g(1) = f(1) 1 \le 0$. (puisque $f(0), f(1) \in [0, 1]$)

On a ainsi $0 \in [g(0), g(1)]$, donc d'après le TVI, il existe $c \in [0, 1]$ tel que g(c) = 0.

On a montré g(c) = 0, i.e f(c) - c = 0, i.e f(c) = c, d'où l'existence d'un point fixe.

3.4 Autre interprétation du TVI : image d'un intervalle par une fonction continue

Définition 3 (Qu'est-ce qu'un intervalle?)

• Segment : Pour tous $x, y \in \mathbb{R}$ avec $x \leq y$, le segment [x, y] est défini par :

$$[x, y] = \{ z \in \mathbb{R} \mid x \leqslant z \leqslant y \}$$

 \bullet Intervalle : On dit qu'une partie I de $\mathbb R$ est un intervalle si elle satisfait :

Pour tous
$$x, y \in I$$
 avec $x \leq y$, $[x, y] \subset I$.

Autrement dit, tout segment tracé entre deux points de I reste dans I. (Cette propriété s'appelle la convexité.)

Remarque 4

Bien-sûr, concrètement, on sait qu'un intervalle I est nécessairement de la forme :

$$[a,b]$$
 ou $[a,b]$ ou $[a,b]$ ou $[a,b]$ avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

Le Théorème des Valeurs Intermédiaires a la conséquence suivante :

Proposition 5 (Image d'un intervalle par une fonction continue)

Soit f une fonction continue sur un intervalle I.

Alors l'ensemble image $f(I) = \{f(x), x \in I\}$ est un intervalle.

On peut résumer cette propriété ainsi :

L'image d'un intervalle par une fonction continue est un intervalle.

Preuve:

Soit $f \in \mathcal{C}(I,\mathbb{R})$. On va montrer que f(I) est un intervalle en vérifiant la définition :

Soient $x, y \in f(I)$ avec $x \leq y$. Vérifions que $[x, y] \subset f(I)$. Soit donc $z \in [x, y]$, montrons que $z \in f(I)$.

Comme $x \in f(I)$ et $y \in f(I)$, on peut écrire x = f(a) et y = f(b) avec $a, b \in I$.

On a ainsi $z \in [f(a), f(b)]$ donc d'après le TVI, on en déduit qu'il existe $c \in [a, b]$ tel que z = f(c).

Comme I est un intervalle, $c \in [a, b] \subset I$ donc $c \in I$. Ainsi $z = f(c) \in f(I)$.

Remarque 5

On utilise en fait "intuitivement" cette propriété depuis longtemps, lorsque l'on lit l'image directe d'un intervalle par une fonction (continue) sur un tableau de variation ou sur un graphe!

Exercice 6

On considère $f: \begin{array}{c} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{array}$. Déterminer $f([1,2]), \ f(]-1,1[)$ et l'ensemble image $f(\mathbb{R}).$

On a le tableau de variation et le graphe suivant :

On en déduit : f([1,2]) = [1,4], f(]-1,1[) = [0,1[et $f(\mathbb{R}) = \mathbb{R}_+$.

4 Théorème de la bijection

Le Théorème de la bijection monotone a déjà été évoqué (en "spoiler") dans le chapitre "Applications". On peut à présent en donner un énoncé précis.

★ Théorème 3 (Théorème de la bijection (monotone))

Soit f une fonction **continue** et **strictement monotone** sur un intervalle I.

Alors f réalise une bijection de I dans J=f(I), qui est également un intervalle.

La bijection réciproque $f^{-1}: J \to I$ est également continue et strictement monotone sur J. Son sens de variation est le même que celui de f sur I.

Preuve partielle:

Soit $f \in \mathcal{C}(I, \mathbb{R})$, strictement monotone.

- On a déjà vu (cf. chapitre "Fonctions numériques usuelles") qu'une fonction strictement monotone est injective. Ainsi f est injective, donc réalise automatiquement une bijection de I dans son image J = f(I).
- On sait que l'image d'un intervalle par une fonction continue est un intervalle (Proposition 5), donc J = f(I) est un intervalle.
- Si f est strictement croissante, alors f^{-1} également. En effet : soient $x, y \in I$ avec x < y. Si on avait $f^{-1}(x) \ge f^{-1}(y)$, alors en composant par $f : x \ge y$, absurde! Donc $f^{-1}(x) < f^{-1}(y)$.
- De même, si f est strictement décroissante, alors f^{-1} également.
- On admet que f^{-1} est continue sur J. (Preuve délicate "avec des ε "...)

Remarques 6

• Comme d'habitude, l'intervalle J = f(I) se lit facilement à partir du tableau de variation de f! Dans le cas où f est strictement croissante par exemple :

- Si
$$I = [a, b]$$
 alors $f(I) = [\alpha, \beta]$.
- Si $I =]a, b]$ alors $f(I) =]\alpha, \beta]$.
- Si $I = [a, b[$ alors $f(I) = [\alpha, \beta[$.
- Si $I =]a, b[$ alors $f(I) =]\alpha, \beta[$.

On note en particulier que : $f([a,b]) = \begin{cases} [f(a),f(b)] & \text{si } f \text{ est strictement croissante} \\ [f(b),f(a)] & \text{si } f \text{ est strictement décroissante} \end{cases}$

• Rappel : On sait que la courbe représentative de f^{-1} est la symétrique de celle de f par apport à la diagonale y = x. On retrouve ainsi, sur un dessin, la continuité et le sens de variation de f^{-1} .

✓ Dessin :

• Corollaire 2 (TVI avec stricte monotonie)

Soient $a, b \in \mathbb{R}$ avec a < b. Soit f une fonction continue et <u>strictement monotone</u> sur [a, b]. Alors:

Quel que soit $\lambda \in [f(a), f(b)]$, il existe <u>un unique</u> $c \in [a, b]$ tel que $f(c) = \lambda$.

Preuve:

D'après le théorème de la bijection, f réalise une bijection de [a,b] vers f([a,b]) = [f(a),f(b)]. L'unique réel c tel que $f(c) = \lambda$ est tout bonnement $c = f^{-1}(\lambda)$!

₩ Méthode : Monter qu'une équation admet une unique solution

On considère une équation de la forme $f(x) = \lambda$, d'inconnue x. $(\lambda \in \mathbb{R} \text{ est fixé})$. On veut montrer que cette équation admet une unique solution sur l'intervalle I.

- $\boxed{1}$ Affirmer (en justifiant éventuellement) que f est continue et <u>strictement monotone</u> sur I.
- 2 Monter que λ se situe entre deux valeurs atteintes par f (Pour cela, on peut éventuellement dresser le tableau de variation de f sur I.)
- 3 Citer le Théorème de la bijection et conclure.

Remarque : Pour une équation de la forme f(x) = g(x) d'inconnue x, on posera plutôt h(x) = f(x) - g(x) pour se ramener à l'équation h(x) = 0 d'inconnue x.

Exercice 7

Étude d'une suite implicite.

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation $x = e^{-nx}$ admet une unique solution dans \mathbb{R}_+ . On note cette solution $u_n \in \mathbb{R}_+$.
- 2. En notant que pour tout $n \in \mathbb{N}$, $f_n \leqslant f_{n+1}$, montrer que $(u_n)_{n \in \mathbb{N}}$ est décroissante.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge. On note $\ell = \lim_{n\to+\infty} u_n$.
- 4. En raisonnant pas l'absurde, montrer que $\ell = 0$.
- 1. Posons $\forall x \in \mathbb{R}_+, f_n(x) = x e^{-nx}$.

x	0	$+\infty$
$f_n(x)$	-1	

Alors f_n est continue et strictement croissante sur \mathbb{R}_+ :

Ainsi d'après le théorème de la bijection, f_n est une bijection de \mathbb{R}_+ dans $[-1, +\infty[$. En particulier, il existe un unique $u_n \in \mathbb{R}_+$ tel que $f(u_n) = 0$. (c'est en fait $u_n = f^{-1}(0)$).

2. Pour tout $x \in \mathbb{R}_+$, $e^{-(n+1)x} \le e^{-nx}$, donc $f_n(x) = x - e^{-nx} \le x - e^{-(n+1)x} = f_{n+1}(x)$. Ainsi $\forall x \in \mathbb{R}_+$, $f_n(x) \le f_{n+1}(x)$.

En particulier, en évaluant en $x = u_n$, on a :

$$f_n(u_n) \leqslant f_{n+1}(u_n) \iff 0 \leqslant f_{n+1}(u_n) \iff f_{n+1}(u_{n+1}) \leqslant f_{n+1}(u_n) \iff u_{n+1} \leqslant u_n$$

(en composant par f_{n+1}^{-1} qui est strictement croissante!)

C'est valable pour tout $n \in \mathbb{N}$, donc $(u_n)_{n \in \mathbb{N}}$ est décroissante.

Remarque : Ceci se lit bien sur un dessin! Puisque u_n est le point où f_n s'annule, f_n est strictement croissante, et $f_n \leq f_{n+1}$:

- 3. $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0, donc converge vers un réel $\ell\geqslant 0$.
- 4. On sait que, par définition, $\forall n \in \mathbb{N}, u_n = e^{-nu_n}$.

Supposons que $\ell > 0$. Alors $\lim_{n \to +\infty} nu_n = +\infty$.

Donc en passant à la limite dans $u_n = e^{-nu_n}$ on obtient : $\ell = 0$. Absurde!

Ainsi on n'a pas $\ell > 0$, c'est donc que $\ell = 0$.

5 Fonction continue sur un segment

★ Théorème 4 (Théorème des bornes atteintes (admis))

Soit f une fonction continue sur un segment [a, b]. Alors :

f est bornée sur [a,b] et elle "atteint ses bornes", c'est à dire qu'elle admet un minimum et un maximum.

Remarque 7

Ce résultat est faux si l'on ne se place pas sur un segment!

Si f est une fonction continue sur un intervalle I ouvert au moins d'un côté, il est possible que :

- \bullet f ne soit pas majorée et/ou pas minorée
- f soit bornée mais n'atteigne pas sa borne supérieure et/ou sa borne inférieure.

✓ Dessin:

Proposition 6 (Image d'un segment par une fonction continue)

Soit f une fonction sur un segment [a, b].

Alors en notant $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$, on a f([a,b]) = [m,M].

On peut résumer cette propriété ainsi :

L'image d'un segment par une fonction continue est un segment.

Preuve:

Notons l'ensemble image J = f([a, b]).

On sait que l'image d'un intervalle par une fonction continue est un intervalle.

Ainsi J est un intervalle, donc de la forme $J=\ \ \ \alpha,\beta\ \ \ \ \ \$ où :

- $\alpha \in \mathbb{R} \cup \{-\infty\}$ et $\beta \in \mathbb{R} \cup \{+\infty\}$.
- La notation \designe "[" ou "]".

Or d'après le Théorème des bornes atteintes, on sait que f est bornée et atteint ses bornes sur [a, b]. Cela revient à dire que l'ensemble image J est borné, et admet un minimum et un maximum.

Il en résulte que $\alpha = \min(J) \in J$ et $\beta = \max(J) \in J$.

Ainsi $J = [\alpha, \beta]$ est un segment.

À savoir faire à l'issue de ce chapitre :

Au minimum

- Justifier qu'une fonction est continue lorsque c'est nécessaire.
- Étudier la continuité d'une fonction en un point particulier.
- Montrer qu'une fonction est prolongeable par continuité en un point.
- Utiliser le TVI et le Théorème de la bijection pour montrer qu'une équation admet une (unique) solution.

Pour suivre

- Étudier une suite implicite de type $f_n(u_n) = 0$.
- Connaître et exploiter le Théorème des bornes atteintes

Pour les ambitieux

• Connaître parfaitement l'algorithme de dichotomie et savoir le programmer en Python.