POLITÉCNICO DO PORTO ESCOLA SUPERIOR DE MEDIA ARTES E DESIGN

BASES DE DADOS Módulo I – Noções Fundamentais de Bases de Dados

TECNOLOGIAS E SISTEMAS DE INFORMAÇÃO PARA A WEB

Agenda

- Dados Informação Conhecimento
- Bases de Dados Conceito
- Sistema de Gestão de Bases de Dados (SGBD)
- Características de um SGBD
- ❖ Arquitetura de um SGBD
- Perspetiva Histórica Modelos de SGBD
 - Modelo Hierárquico
 - ❖ Modelo em Rede
 - Modelo Relacional
 - Modelo Orientado a Objetos
 - Modelo Distribuído
 - ❖ NoSQL

- Dados Informação Conhecimento
 - Os dados são factos em bruto, que não são necessariamente relevantes para qualquer coisa que alguém queira saber.
 - Pode-se dizer que a informação são dados úteis. A informação resulta do tratamento de dados no sentido de respondem a perguntas.
 - Conhecimento resulta da interpretação da informação, e que nos permite apoiar tomadas de decisão.

análise Facilmente obtido por Exige consenso em De difícil captura em
análise Facilmente obtido por Exige consenso em De difícil captura em
máquinas relação ao máquinas significado
Frequentemente quantificado Exige necessariamente Frequentemente tácito
Facilmente transferível mediação humana De difícil transferência

- Conceito de Base de Dados
 - Coleção de dados estruturados de uma forma lógica, organizados e armazenados de forma persistente

(Luís Damas)

Coleção de dados relacionados entre si, acessíveis a uma comunidade de utilizadores, e que persiste durante um determinado período de tempo

(Ana Azevedo, António Abreu, Vidal de Carvalho)

Coleção de dados Relacionados e Persistentes

- Conceito de Sistema de Gestão de Base de Dados (SGBD)
 - Aplicação informática que suporta, armazena e gere a base de dados (Frederico Tavares)
 - ❖ É a ferramenta que fornece a interface entre os dados da BD e suporta as funcionalidades inerentes à base de dados, nomeadamente:
 - ☐ Definir, armazenar, aceder, gerir e administrar os dados da BD

Nível intermédio entre dados e Utilizador.

- Características de Sistema de Gestão de Base de Dados
 - ❖ Facilidade no Acesso aos Dados / Gestão dos dados

Disponibiliza uma *interface* de interação entre a BD e o utilizador, que permite definir a estrutura de dados mais conveniente, armazenar, aceder e manipular e administrar os dados

Inclui geralmente:

- ☐ Linguagem de Definição de Dados (DDL *Data Definition Language*)
- ☐ Linguagem de Manipulação de Dados (DML Data Manipulation Language)

- Características de Sistema de Gestão de Base de Dados
 - Integridade e Consistência dos Dados

Permite especificar e verificar restrições de integridade dos dados, de modo a que a BD mantenha dados válidos e coerentes, procurando:

☐ Minimizar a redundância dos dados

Existe redundância de dados quanto os dados relativos a determinado facto existem em mais do que um ponto da BD

☐ Eliminar a inconsistência dos dados

Existe inconsistência de dados quando a BD contém dados divergentes sobre um mesmo facto

Exemplos:

- Permitir a remoção de um produto para o qual existem encomendas na BD (inconsistência de dados)
- Cada registo de cliente contém o código postal e a localidade (redundância de dados)

- Características de Sistema de Gestão de Base de Dados
 - Independência dos Dados

Os SGBD funcionam como intermediários entre as aplicações e as BD, independentemente da linguagem de programação ou da plataforma utilizada.

Alterações físicas ou lógicas da BD não implicam necessariamente mudanças no acesso aos dados.

Inclui geralmente:

- Independência física: Capacidade de alterar a estrutura física da BD sem necessidade de alterar as aplicações que acedem à BD
- Independência lógica: Capacidade de alterar o esquema conceptual ou lógico da BD sem necessidade de alterar as aplicações de acedem à BD

- Características de Sistema de Gestão de Base de Dados
 - Controlo da concorrência no acesso aos dados

Assegurar que diversos utilizadores podem aceder, em simultâneo, aos dados da BD, sem necessidade de sincronizarem as suas ações

Manter a consistência dos dados a que cada utilizador acede

- Características de Sistema de Gestão de Base de Dados
 - Proteção dos dados: Backup & Recovery
 - Deteção de falhas devido a problemas de hardware, software, etc. capacidade de repor a BD no seu estado estável que existia imediatamente antes da falha

O SGBD garante que em caso de falha é sempre possível colocar a BD num estado estável:

p.e. fazendo o *rollback* – operação que repõe o estado da BD antes de uma determinada transação

- ☐ Esquemas de segurança (backups) e recuperação de dados, em caso de falha do sistema, de forma a manter a integridade e segurança dos dados.
 - Por exemplo, criação de réplicas da BD em discos espelho

- Características de Sistema de Gestão de Base de Dados
 - Segurança no acesso aos dados (gestão de permissões de acesso)
 - ☐ Gestão de utilizadores
 - ☐ Proteção de dados, prevenindo acessos não autorizados

Permite definir que utilizadores têm acesso à BD, a que objetos podem aceder, que tipo de operações podem efetuar (permissões de cada utilizador)

Perfis de utilizadores de um SGBD

- Administrador
 - Responsável pela definição da estrutura de dados
 - Responsável pela administração das BD (criação, alteração, manutenção)
 - Esquemas de acesso aos dados e de políticas de segurança dos dados

Programador

 Acesso às estruturas de dados e aos dados, recorrendo frequentemente a linguagem SQL embutida nas aplicações que desenvolvem

Utilizador Final

 Acesso à base de dados através que queries para execução de consultas de dados personalizadas

- Arquitetura de um SGBD
- Local
- ☐ Partilhada: acessível em rede, com arquitetura cliente-servidor

Local (localhost)

Cliente-Servidor em Rede

Arquitetura de um SGBD

Nível Físico

Camada de mais baixo nível, relativa à organização física dos dados: dispositivo de armazenamento, localização, etc.

Nível Conceptual

Camada intermédia, relativa à forma como os dados estão organizados: definição das estruturas de dados, tipologias, relacionamentos, etc.

Nível de Visualização

Camada de mais alto nível, relativa ao utilizador final da BD: definição de vistas (Views) através das quais os utilizadores podem aceder aos dados, em função das suas permissões

- Modelos de SGBD
- 1. Modelo Hierarquico
 - ☐ Trata-se do primeiro modelo de SGBD (1º Geração de SGBD)
 - ☐ Os dados são classificados hierarquicamente, de acordo com uma estrutura em árvore (pai-filhos)
 - ☐ Um relacionamento do tipo Pai-filhos +e um relacionamento de 1:N (um para muitos)
 - ☐ O acesso aos dados faz-se percorrendo as hierarquias através de apontadores entre os diferentes registos.

- Modelos de SGBD
- Modelo Hierarquico

Exemplo de um esquema de uma BD hierárquica

O acesso a um registo faz-se a partir da raiz (nível 0) percorrendo cada um dos nós da árvore (pai-filho / esquerda/direita)

- Modelos de SGBD
- 1. Modelo Hierarquico
 - ☐ Uma árvore que pode ser formada por sub-árvores
 - Redundância de dados, inerente ao próprio modelo. Quando um registo filho tem mais do que um pai, necessita de ser replicado em cada pai
 - ☐ Ao remover um registo removem-se os seus filhos...
 - ☐ Dificuldade na representação de relacionamentos de N:M

- Modelos de SGBD
- 2. Modelo em Rede
 - ☐ Evolução do modelo hierárquico (1º Geração de SGBD)
 - ☐ Este modelo utiliza apontadores para os registos.
 - ☐ A estrutura está organizada em grafos e não necessariamente em árvore no sentido descendente
 - ☐ Menor redundância mas maior complexidade que modelo hierárquico

- Modelos de SGBD
- 2. Modelo em Rede

🕽 Evolução do modelo hierárquico, elimina o con	nceito c	de hierarquia,	permitindo
que um registo tenha várias associações			

- Modelo permite definir relacionamentos de M:N
- ☐ Acesso aos dados mais flexível
- ☐ Maior complexidade para criar e gerir esquemas de BD
- ☐ Complexidade em efetuar alterações ao esquema da BD

- Modelos de SGBD
- 3. Modelo Relacional

- Modelo criado em 1970 por Edgar Frank Codd um matemático britânico (Prémio Turing) – (2º Geração de SGBD)
- Neste modelo os dados são armazenados em tabelas bidimensionais (linhas e colunas)
- ☐ Uma BD relacional é constituída por tabelas que se relacionam através da partilha de atributos comuns.
- ☐ A manipulação dos dados faz-se através da teoria matemática das relações

- Modelos de SGBD
- 3. Modelo Relacional

Os dados são armazenados em **ENTIDADES** (tabelas), em que:

- ☐ as colunas representam atributos (ou campos) da entidade
- ☐ as linhas representam tuplos (ou registos)

ENTIDADE EMP	REGADOS	Attibutos ou campos				
	Codigo_emp	Nome	Morada	Contacto		
	1	Ana Maria Coutinho	Rua da Bela Vista, 35	123456789		
Tuplos	2	José Manuel Mendonça	Av. da República, 1140	234567890		
registos	3	Rita Maria Figueiredo	Av. dos Descobrimentos, 35	345678901		
	4	Rafael Pinheiro	Rua Manuel Matias, 984	456789012		

Atributos ou campos

- Modelos de SGBD
- 3. Modelo Relacional Conceitos base
 - ☐ A relação que se estabelece entre duas entidades designa-se Relacionamento
 - ☐ O relacionamento entre duas entidades estabelece-se através de atributos comuns. Existem assim atributos "especiais" designados de Chaves.
 - ☐ Tipos de Chaves
 - Chave candidata: atributo ou conjunto de atributos que identificam de forma única um registo (uma linha) na tabela
 - Chave Primária: chave selecionada de entre as chaves candidatas
 - Chave estrangeira ou secundária: atributo que surge em mais do que uma entidade, permite estabelecer relacionamentos entre duas entidades

- Modelos de SGBD
- 3. Modelo Relacional Conceitos base
 - ☐ Chave Primária atributo ou conjunto de atributos que identifica de forma única um registo na tabela.
 - ☐ Chave estrangeira ou secundária atributo que surge em mais do que uma entidade, permite estabelecer relacionamentos entre duas entidades

Codigo _emp	Nome	Morada	Contacto	Cod_dep	•		Chave estrangeira	
1	Ana Maria Coutinho	Rua da Bela Vista, 35	123456789	1		\downarrow	Chave primária	
2	José Manuel Mendonça	Av. da República, 1140	234567890	1]	Cod_dep	Nome	Local
3	Rita Maria Figueiredo	Av. dos Descobrimentos	345678901	3		1	Produção	Porto
	rigueiread	, 35 20				2	Controlo de qualidade	Porto
4	Rafael Pinheiro	Rua Manuel	456789012	2	1	3	I&D	Porto
	Filliello	Matias, 984			J	4	Administrativo	V. Conde

Relacionamento - relação que se estabelece entre duas entidades

- Modelos de SGBD
- 3. Modelo Relacional Conceitos base

	PROFESSOR						
CODPROF	NOME	CODDEPT					
1	José Silva	1					
2	Maria Santos	2	\				
3	Filipa Pereira	2	\				
4	André Martins	2		DEPARTAMENTO			
5	Pedro José	1					
6	António Machado	3	CODDEPT	DESCRICAO			
<u></u>			1	Informática			
		7 6					
		Ц	2	Gestão			

Modelos de SGBD

3. Modelo Relacional – Conceitos base

Cardinalidade de uma relação entre duas entidades, define
O tipo de relação entre as entidades

(conceito a aprofundar mais tarde)

- Modelos de SGBD
- 3. Modelo Relacional Algumas vantagens
 - ☐ Estruturas de dados simples
 - Operadores simples
 - ☐ Suporte de linguagem SQL Structured Query Language
 - ☐ Suporte do conceito de Vistas (Views)
 - ☐ Independência física e lógica dos dados
 - ☐ Facilidade de implementação e desenvolvimento de aplicações
 - ☐ Capacidade de crescimento

- Algumas Ferramentas de SGBD (relacionais)
 - MySQL
 - MariaBD
 - SQL Server
 - Oracle
 - Firebird
 - PostgreSQL
 - SQLite
 - Access
 - Filemaker

- Modelos de SGBD
- 4. Modelos Orientados a Objetos (3º Geração de SGBD)

equivalente à chave primária no modelo relacional.

Primeiras implementações neste modelo surgem nos anos 90
A informação é armazenada sob a forma de objetos
Permite uma ligação mais "suave" entre as linguagens de programação modernas e a Base de Dados
Integração mais amigável com linguagens de programação orientadas a objetos: C++, C#, Java, Python,
Procuram implementar conceitos de encapsulamento, herança e polimorfismo, da POO
O acesso aos objetos (armazenados na BD) é feito através de Object Identifiers, o

- Modelos de SGBD
- 4. Modelos Orientados a Objetos
 - ☐ Perda de interoperabilidade com diversas ferramentas de SQL, OLAP, Data Mining
 - Acesso a dados através de linguagens de mais baixo nível levanta questões de segurança e integridade dos dados
 - ☐ Modelo não comercial, procura responder a nichos de mercado emergentes e/ou académicos
 - ☐ Exemplos de SGBD
 - **❖** ODE
 - **❖** ZODB
 - ObjectStore
 - GemStone
 - ❖ VelocityDB
 - Ontos

- Modelos de SGBD
- 5. NoSQL (inicialmente Non SQL, ou Not Only SQL)
 - ☐ Conceito introduzido em 1998 para definir um modelo não relacional
 - ☐ Reintroduzido em 2009, permite manipular dados semi-estruturados (arquivos, documentos, multimédia, dados páginas web, etc.)
 - ☐ Mais escalável que os modelos relacionais e de mais fácil manutenção
 - ☐ Têm vindo a apresentar um rápido crescimento, sobretudo no âmbito do desenvolvimento Web
 - ☐ Evolução dinâmica, sem necessidade de definir previamente a estrutura de dados

- Modelos de SGBD -
- 5. NoSQL (inicialmente *Non SQL*, ou *Not Only SQL*)

alojamento de dados na Cloud

Algumas características:

Ц	Bases de dados não relacionais
	Não requer um esquema de dados estruturado como no caso do modelo relacional
	Geralmente baseiam-se em coleções de documentos (que podem ter formatos diferentes)
	Modelo com enorme crescimento, sobretudo no desenvolvimento Web e no

- Modelos de SGBD -
- 5. NoSQL (inicialmente Non SQL, ou Not Only SQL)

Algumas características:

- Maior escalabilidade
- ☐ Maior desempenho, sobretudo no acesso a dados
- ☐ Não requer um esquema de dados estruturado como no caso do modelo relacional
- ☐ Diversas APIs que facilitam a interação com a BD
- ☐ Menor consistência de dados
- ☐ Apresentam muitas vezes maior redundância de dados
- ☐ Edição de dados mais complexa

- Modelos de SGBD -
- 5. NoSQL (inicialmente Non SQL, ou Not Only SQL)
 - Dados organizados em coleções de dados
 - Document store (orientados a documentos)
 - * Key-value Store (do tipo Chave-Valor)
 - Geralmente baseada em formatos ISON ou XML

- ❖ Modelos de SGBD -
- 5. NoSQL (inicialmente Non SQL, ou Not Only SQL)

with rigidly-defined data formats and

record structure.

Collection of complex documents with arbitrary, nested data formats and warying "record" format.

- Bases de dados na cloud
 - Amazon Aurora: BD relacional compatível com MySQL ou PostgreSQL

Amazon RDS: BD relacional compatível com Amazon Aurora, PostgreS MySQL, MariaDB, Oracle Database e SQL Server Permite facilmente migrar ou replicar BD existentes

Outras ...

- Bases de dados na cloud
 - Microsoft Azure Platform (Azure Services)
 - ❖ Azure Database for MySQL
 - ❖ Azure Database for PostgreSQL
 - ❖ Azure Key Value (NoSQL)

	Base de Dados SQL do Azure	Azure SQL Managed Instance	SQL Server nas <u>Máquinas</u> <u>Virtuais</u>	Base de Dados do Azure para PostgreSQL	Base de Dados do Azure para MySQL	Azure Database for MariaDB	Azure Cosmos DB	Cache do Azure para Redis
Base de Dados Relacional	~	~	~	~	~	~		
Base de Dados Não Relacional (NoSQL)							~	
Base de Dados Dentro da Memória								~
Modelos de Dados	Relacional	Relacional	Relacional	Relacional	Relacional	Relacional	Multi-modelos: Gráfico de Chave-valor de Coluna Ampla do Documento	Chave-valor

- Bases de dados na cloud
 - Google Cloud Platform
 - Cloud SQL (relacional)
 - Firestore (NoSQL, BD baseada em documentos, conetividade a BD na cloud para suporte a aplicações para dispositivos móveis, Web e IoT)
 - ❖ Firebase (NoSQL, armazenamento e sincronização de dados em tempo real
 - MongoDB Atlas

