1. i)
$$U_1 = 1$$

 $U_2 = U_1 + 2 = 1 + 2 = 3$
 $U_3 = U_2 + 2 = 3 + 2 = 5$
 $U_4 = U_3 + 2 = 5 + 2 = 7$
 $U_5 = U_4 + 2 = 7 + 2 = 9$

Through observation, n-th term is an odd number. i-e- $y_n = 2n-1$.

ii) suppose $U_K = 2K-1$ is true for some positive integers K.

Then
$$V_{K+1} = V_K + 2$$

= $2K-1+2$
= $2K+1$
= $2(K+1)-1$

-. Un = 2n-1 for all natural numbers n.

2. Let d-h, d, d+h be the roots of $x^3 + px^2 + r = 0$, i) d-h+d+d+h = -p since they're in arithmetic progression. d = -p d = -p

ii)
$$d(d+h) + (d-h)(d+h) + (d-h)d = 0$$

$$3d^{2} = h^{2}$$

$$h^{2} = p^{2}$$

$$d(d+h)(d-h) = -r$$

$$d(d^{2} - h^{2}) = -r$$

$$-\frac{1}{3}\left(\frac{p^{2}}{9} - \frac{p^{2}}{3}\right) = -r$$

$$2p^{3} + 27r = 0$$

2.
$$\times + y + \lambda z = \lambda^2$$

 $\times + \lambda y + z = \lambda$
 $\lambda \times + y + z = 1$

$$-0 + 2: \times + y + \lambda z = \lambda^{2}$$

$$- \times \times 0 + 3: (\lambda - 1)y + (1 - \lambda)z = \lambda - \lambda^{2}$$

$$(1 - \lambda)y + (1 - \lambda^{2})z = 1 - \lambda^{3}$$

when
$$\lambda=1: x=1-y-2$$

 $0y+0z=0$ =) $(x)=(1-s-t)$,
 $0y+0z=0$ =) $(x)=(1-s-t)$,
 $s,t \in R$.

when
$$x \neq 1$$
: $x = x^2 - y - \lambda 2$

$$y = x - x^2 - (1 - \lambda)2$$

$$x = x^3 + x^2 - x - 1$$

$$x = x^2 - y - \lambda 2$$

$$x = x^3 + x^2 - x - 1$$

When
$$\lambda = -2$$
: $x = 4 - y + 2z$

$$y = -6 - 3z$$

$$-3$$

-- no solution

>=-Z: nosolution

> \$1,-2: unique solution.

3. i)
$$\frac{2}{r^2-1} = \frac{r+1-(r-1)}{(r+1)(r-1)} = \frac{1}{r-1} - \frac{1}{r+1}$$

(ii) a)
$$S_{n} = \sum_{r=2}^{n} \frac{1}{r-1} \frac{1}{r+1}$$

$$= \frac{1}{1} - \frac{1}{3}$$

$$+ \frac{1}{2} - \frac{1}{4}$$

$$+ \frac{1}{3} - \frac{1}{5}$$

$$+ \frac{1}{4} - \frac{1}{6}$$

$$\vdots$$

$$+ \frac{1}{n-2} - \frac{1}{n+1}$$

$$= 1 + \frac{1}{2} - \frac{1}{n+1} = \frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+1}$$

ii) b)
$$\lim_{n\to\infty} s_n = \frac{3}{2}$$
.

$$(4-i)$$
 $y = 1-x + 2$ $x-2$

=)
$$y(x-2) = (1-x)(x-2) + 2$$

Since $b^2 - 4ac > 0$, $\forall y \in R$, the range of the curve is $y \in R$.

ii)
$$\frac{dy}{dx} = -1 - \frac{2}{(x-2)^2} = -\left[1 + \frac{2}{(x-2)^2}\right] < 0 \quad \forall x \in \mathbb{R}$$
.
=) C is decreasing.

- 5.i) l is perpendicular to the directions of the normals of both planes.
 - : l has direction $\begin{pmatrix} -\frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{2}{1} \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \end{pmatrix}$.
 - Since (0,1,1) is a point on both planes, the equation of l is $r = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.
 - $=) \times = \frac{y-1}{5} = \frac{2-1}{3}$
 - ii) The direction of the normal of the plane is $n = \overline{AB} \times me$

$$= \begin{pmatrix} -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix}$$

- The equation of the plane passing through A and containing e is
 - $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}$
 - $\begin{pmatrix} \times \\ 9 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} = -1$
 - 3x + 3y 4z = -1.
- iii) The perpendicular distance from A to l

is
$$|\overrightarrow{AB} \times m_{\ell}| = \sqrt{3^2 + 3^2 + (-4)^2} = \sqrt{\frac{34}{35}}$$

$$|m_{\ell}| = \sqrt{(-1)^2 + 5^2 + 3^2}$$

6. i) Let
$$u = -d + \beta + \gamma$$

$$u + 2d = d + \beta + \gamma$$

$$= 1$$

$$d = \frac{1 - \gamma}{2}$$

$$\frac{\left(\frac{1-y}{2}\right)^3 + \left(\frac{1-y}{2}\right)^2 - 3\left(\frac{1-y}{2}\right)^2 - 10 = 0}{\left(1-y\right)^3 - 2\left(1-y\right)^2 - 12\left(1-y\right) - 10 = 0}$$

$$\frac{1-3y+3y^2-y^3-2+4y-2y^2-12+12y-10=0}{y^3-y^2-13y+23=0}$$

ii) Let the cubic equation whose roots are p,q,r be $x^3+bx^2+cx+d=0$. p+q+r=-b=0

$$p^{2} + q^{2} + r^{2} = (p + q + r)^{2} - 2(pq + pr + qr)$$

$$2 = 0^{2} - 2c$$

$$C = -1$$

$$S_n = a^n + \beta^n + \gamma^n$$

Then
$$S_3 - S_1 + dS_0 = 0$$

 $0 - 0 + 3d = 0$
 $- d = 0$

The equation is $x^3 - x = 0$. with roots x = 0, 1, -1.

· p,q,r is any permutation of 0,1,-1.

7. EITHER

i) a)
$$(0,0,0,0)$$
 is a solution of P_0 .

b) i) since
$$a_{11}s_1 + a_{12}s_2 + a_{13}s_3 + a_{14}s_4 = 0$$
 -1

$$a_{21}s_1 + a_{22}s_2 + a_{23}s_3 + a_{24}s_4 = 0$$

$$(a_{11}s_1 + a_{12}s_2 + a_{13}s_3 + a_{14}s_4) = \lambda(0)$$

$$(a_{21}s_1 + a_{22}s_2 + a_{23}s_3 + a_{24}s_4) = \lambda(0)$$

$$a_{11}(\lambda s_1) + a_{12}(\lambda s_2) + a_{13}(\lambda s_3) + a_{14}(\lambda s_4) = 0$$

$$a_{21}(\lambda s_1) + a_{22}(\lambda s_2) + a_{23}(\lambda s_3) + a_{14}(\lambda s_4) = 0$$

$$(>s_1,>s_2,>s_3,>s_4)$$
 is a solution of p_1 ,

(b) (ii) Since
$$q_{11}t_1+q_{12}t_2+q_{13}t_3+q_{14}t_4=0$$
 $y=0$ $q_{21}t_1+q_{22}t_2+q_{23}t_3+q_{24}t_4=0$ $y=0$

1) + 2);

 $q_{11}(s_1+t_1)+q_{12}(s_2+t_2)+q_{13}(s_3+t_3)+q_{14}(s_4+t_4)=0$ $q_{21}(s_1+t_1)+q_{12}(s_2+t_2)+q_{13}(s_3+t_3)+q_{24}(s_4+t_4)=0$ =) $(s_1+t_1,s_2+t_2,s_3+t_3,s_4+t_4)$ is a solution of p_0 .

(2) + (3):

 $a_{11}(d_1+t_1)+a_{12}(d_2+t_2)+a_{13}(d_3+t_3)+a_{14}(d_4+t_4)=b_1$ $a_{21}(d_1+t_1)+a_{12}(d_2+t_2)+a_{23}(d_3+t_3)+a_{24}(d_4+t_4)=b_2$ $(d_1+t_1,d_2+t_2,d_3+t_3,d_4+t_4)$ is a solution of P_1 .

ii) h)
$$(1,0,0,0)$$
 is a solution of
 $x_1 + x_2 - 2x_3 + x_4 = 1$
 $2x_1 + x_2 - x_3 + x_4 = 2$
 $x_1 + x_2 - 2x_3 + x_4 = 1$
 $2x_1 + x_2 - 2x_3 + x_4 = 2$
 $-2 \times 0 + (2) \times_1 + x_2 - 2x_3 + x_4 = 1$
 $-x_2 + 3x_3 - x_4 = 0$
Let $x_3 = 5$ & $x_4 = t$, $s, t \in \mathbb{R}$.
 $x_2 = 3s - t$
 $x_1 = 1 - s$

.. The solution is

$$\begin{pmatrix} 1-S \\ 3S-t \\ S \\ t \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2-S \\ 3S-t \\ S \\ t \end{pmatrix}.$$

i) Given that
$$\frac{2}{\sum_{r=1}^{2} \frac{1}{r^2}} = \frac{1}{1^2} + \frac{1}{2^2} = \frac{5}{4} < 2 - 1 = \frac{3}{2}$$

Suppose
$$\sum_{k=1}^{K} \frac{1}{r^2} \langle 2 - \frac{1}{k} \text{ for } n=k \rangle_{/2}$$
.

$$\sum_{r=1}^{k+1} \frac{1}{r^2} = \sum_{r=1}^{k} \frac{1}{r^2} + \frac{1}{(k+1)^2}$$

$$< 2 - \frac{1}{K} + \frac{1}{(k+1)^2}$$

$$= 2 + \frac{-(k+1)^2 + K}{K(k+1)^2}$$

$$= 2 - \frac{k^2 + k + 1}{K(k+1)^2}$$

$$< 2 - \frac{k^2 + k}{K(k+1)^2}$$

$$= 2 - \frac{k(k+1)}{K(k+1)^2}$$

$$\sum_{r=1}^{n} \frac{1}{r^2} \left(2 - \frac{1}{n} \right) \text{ for every positive integer } n = \frac{1}{2}.$$

= 1/1/2.