1. Base unit:	ampere	B1			
	harge/resistance	B1			
	olt/ohm	B1			
1 -	urrent	B1			
[If two answers are given to any of the above, both must be correct to gain the mark]					
	of small triangle = $0.5 \times 1 \times 10 \text{ m/s}^{-1} = 5 \text{ m}$		A1		
(ii) distance fallen = area of large triangle = $0.5 \times 3 \times 30 \text{ m s}^{-1} = 45 \text{ m}$ C1					
total distance = $45 \text{ m} + 5 \text{ m} = 50 \text{ m}$					
[Allow ecf from $a(i)$]					
(b) 40 m	noint of release) or minus sign		A1 A1		
Below (point of release) or minus sign [Allow ecf from a(i)and (ii)]					
(c) Line drawn parallel to time axis extending from $t = 0$					
[Above or below the tim	<u> </u>		B1		
The line drawn parallel to the time axis extends from 0 s to 4 s [If line continues beyond or stops short of 4 s do not give this mark]					
Acceleration shown as r		B1			
2()			D.1		
3.(a) weight = mg = 0.108 N	A1		B1		
	down at $(7.2 \rightarrow 7.5 \text{ cm})$ labelled weight/ 0.108 N/W/mg		A 1		
[Check by eyes]					
	$1.2 \text{ cm} = W \times (3.6 \rightarrow 3.8 \text{ cm})$				
use principle of	moments		C 1		
[Give this mark even if the distances are wrong, but must use 0.108N/					
ecf their value o			C1		
Correct distances used must be $0.9 \rightarrow 1.2$ cm and $3.6 \rightarrow 3.8$ cm					
[no ecf from $b(i)$] $W = (0.0275 \pm 0.02) \text{ N}$					
$W = (0.0273 \pm 0)$ (c)(i) At the pivot, upv			A1 A1		
	$08 + 0.0275 = 0.14 \pm 0.02N$		A1		
` '	cts through pivot/force is through or at pivot/		111		
	distance to pivot is zero.		B 1		
4.(a)(i) Gravitational po	tential energy		A 1		
(ii)Kinetic energy			A 1		
(b) EITHER			D 1		
Energy can be neither cr	reated nor destroyed		B1		
OR					
	ed/destroyed / total energy is not lost/gained				
	m one form to another / in a closed/isolated system	B1			
$1.7 \times 10^9 = 3.5 \times 1$	$10^8 \times v$		C1		

$$v = 4.86 \text{ ms}^{-1}$$
(d) Time = $(7 \times 10^6)/390 = 17,949 \text{ s} (= 299 \text{ min}) (= 5 \text{ h})$
(e) Mass of water = $7 \times 10^6 \times 10^3 = 6.9 \times 10^9 \text{ kg}$
(C1
Work done = $6.9 \times 10^9 \times 9.81 \times 500$

$$= 3.43 \times 10^{13} \text{ J}$$
A1

5. (a) State what is meant by the diffraction of a wave.

Spreading of waves ------ (B1 when passed through a gap / aperture/opening/obstacles/slits/edge/ ----- (B1)

(b) Two microwave source **A** and **B** are in phase with one another. They emit waves of equal amplitude and of wavelength 30.0 mm. They are placed 140 mm apart and at a distance of 810 mm from a line **OP** along which a detector is moved, as shown above.

(i) Show that the distance **AP** is 923. 7 mm.

AP =
$$\sqrt{(810m^2 + 444m^2)}$$
 ------(A1
AP = 923.7 mm

[1]

(ii) Calculate the number of wavelengths between source A and point P.

(iii) Explain at P .	n and state the intensity of mic	erowaves that will be	received by the detector when it is
at I.	n = Path difference / λ = 2.5, si		t be a
	destructive interference.		- (M1)
	Thus, intensity will be zero		
(iv)	How many maxima are detect central axis.	ed as the detector mo	ves from P to the point O on the
		(A1)	[1]
6. (a) Defi	ne electric field strength.		
	Force acting per unit positive cha	rge	(B1) [1]
	oton is moved in vacuum by a ance of 8.5 mm as shown in Fi		$5 \times 10^5 \mathrm{N} \mathrm{C}^{-1} \mathrm{from} \mathrm{A} \mathrm{to} \mathrm{B}, \mathrm{a}$
		A	
	В	8.5 mm	g. 6 .1
(i)	Calculate the potential differe	nce between A and B	
	$V = 3.75 \times 10^5 \times 8.5 \times 10^{-3}$	(C1)	
	V = 3.19 kV	(A1)	

[2]

(ii) What is the speed of the proton when it reaches B?

$$y_2 \text{ mv}^2 = qV$$
 ------ (C1)
 $v = 7.82 \times 10^5 \text{ ms}^{-1}$ ----- (A1)

(iii) State whether A or B is at the lower potential.

B[1]

[2]

7. (a) What is meant by an e.m.f of a source of 120 V.

(b) 15 identical lamps are connected in series to a 120 V supply. The total power consumed is 38.4 W. Calculate the resistance of a single lamp in the set.

$$38.4 = 120^2 / R$$

$$R = 375 \Omega$$

$$R \text{ for single lamp} = 275 / 15 = 25 \Omega$$

(c) If the set of 15 lamps were to be connected in parallel, what would have been the total power consumed?

Total R =
$$1.67 \Omega$$

P = $120^2 / 1.67$
P = 8.64 kW

8. In the circuit shown in Fig. 8.1, cell A has an e.m.f. of 2.0 V and negligible internal resistance. XY is a uniform wire of length 100cm and resistance 5.0 Ω . Cell B has an e.m.f. of 1.5 V and internal resistance 0.80 Ω .

Calculate the length of XZ required to produce zero deflection in the galvanometer (i) in the circuit as shown in Fig. 8.1

when a 1.0 Ω resistor in placed in series with A. (ii)

[2]

[2]

(iii) when this resistor is removed from A and place in series with B.

9. (a) Given the approximate values for the radius of a gold atom and the radius of a gold nucleus are 10⁻¹⁰ m and 10⁻¹⁵ m respectively. The density of gold is 19 000 kgm⁻³. Estimate the density of a gold nucleus, stating the assumption that you make in your answer.

[3]

(b) A nucleus of $^{238}_{92}$ U absorbs a slow neutron and it subsequently emits two β -particles. Write an equation for this nuclear reaction. Use symbol X to represent the resulting nucleus.