Esercitazioni su Deadlock

• Esercizio 1

Un sistema è composto da 7 processi, P_1, \ldots, P_7 , e da 6 risorse condivise, R_1, \ldots, R_6 , ciascuna di tipo diverso. La situazione del sistema è la seguente:

- P_1 occupa R_1 e richiede R_2 ;
- P_2 non occupa risorse e richiede R_3 ;
- P_3 non occupa risorse e richiede R_2 ;
- $-P_4$ occupa R_4 e richiede sia R_2 che R_3 ;
- P_5 occupa R_3 e richiede R_5 ;
- P_6 occupa R_6 e richiede R_2 ;
- P_7 occupa R_5 e richiede R_4 .

Si determini, utilizzando il grafo di allocazione delle risorse, se il sistema è in deadlock e, in caso affermativo, quali sono i processi e le risorse coinvolti.

Solutione

Il grafo di allocazione risorse è:

Il sistema è in deadlock. Il deadlock coinvolge i processi P_4 , P_5 e P_7 e le risorse R_3 , R_4 e R_5 .

Si consideri un sistema costituito da 3 processi, in cui l'unico tipo di risorsa disponibile sia rappresentato da 12 unità a nastro. Utilizzando l'algoritmo del Banchiere di Dijkstra si stabilisca quando gli stati seguenti sono sicuri o non sicuri. Se uno stato è sicuro, si mostri secondo quale ordine i processi possano essere terminati.

- **Stato 1**:

Processo	Risorse	Risorse
no.	allocate	max
P_0	1	4
P_1	4	6
P_2	5	8
Risorse disponibili	2	

- Stato 2:

Processo	Risorse	Risorse
no.	allocate	max
P_0	8	10
P_1	2	5
P_2	1	3
Risorse disponibili	1	

Se uno stato è sicuro il sistema può comunque evolvere, a partire da quello stato, verso uno stato non sicuro. A partire dallo **Stato** 1, si supponga che a P_2 sia assegnata una ulteriore istanza dell'unica risorsa disponibile. Com'è lo stato ottenuto?

Solutione

Nello **Stato 1**, la successione di processi $P_1, P_0, P_2 >$ è una successione sicura \Rightarrow il sistema è in stato sicuro. Viceversa, nello **Stato 2**, i processi P_0 e P_2 , che hanno le pretese minime, possono comunque richiedere 2 unità a nastri \Rightarrow lo stato del sistema è non sicuro. Ugualmente se, a partire dallo **Stato 1**, viene assegnata una ulteriore unità a nastri a P_2 lo stato ottenuto è non sicuro.

Si supponga di avere un sistema con 4 processi e 3 tipi di risorse disponibili. La matrice delle richieste da parte dei processi ha la struttura:

$$Max = \begin{bmatrix} 4 & 1 & 4 \\ 3 & 1 & 4 \\ 5 & 7 & 13 \\ 1 & 1 & 6 \end{bmatrix}$$

dove con Max(i, j) si indica il numero massimo di istanze della risorsa j richieste dal processo i. Il numero totale di risorse è espresso dal vettore:

$$R_{tot} = \left[\begin{array}{ccc} 5 & 8 & 16 \end{array} \right]$$

mentre la matrice di allocazione è

$$Allocation = \begin{bmatrix} 0 & 1 & 4 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Allocation(i, j) rappresenta il numero di istanze della risorsa j che sono attualmente allocate al processo i. Si determini:

- a) se il sistema è attualmente in stato sicuro;
- b) se l'assegnazione di un'istanza della risorsa 1 al processo P_1 garantisce il mantenimento dello stato sicuro;
- c) se l'assegnazione di 6 istanze della risorsa 3 al processo P_3 garantisce il mantenimento dello stato sicuro.

Solutione

a) La matrice Need ed il vettore Available risultano in questo caso:

$$Need = \left[egin{array}{ccc} 4 & 0 & 0 \ 1 & 1 & 3 \ 4 & 5 & 12 \ 0 & 1 & 3 \end{array}
ight], \quad Available = \left[egin{array}{ccc} 1 & 5 & 7 \end{array}
ight].$$

Conseguentemente la successione di processi $P_2, P_4, P_1, P_3 > ($ che produce i vettori $Available [3,5,8], [4,5,11], [4,6,15], [5,8,16]) è una successione sicura <math>\Rightarrow$ il sistema è in stato sicuro.

b) La matrice *Need* ed il vettore *Available* risultano in questo caso:

$$Need = \left[egin{array}{cccc} 3 & 0 & 0 \\ 1 & 1 & 3 \\ 4 & 5 & 12 \\ 0 & 1 & 3 \end{array}
ight], \quad Available = \left[egin{array}{cccc} 0 & 5 & 7 \end{array}
ight].$$

Conseguentemente la successione di processi $< P_4, P_2, P_1, P_3 >$ (che produce i vettori Available [1,5,10], [3,5,11], [4,6,15], [5,8,16]) è una successione sicura \Rightarrow il sistema è in stato sicuro.

c) La matrice Need ed il vettore Available risultano in questo caso:

$$Need = \left[egin{array}{ccc} 4 & 0 & 0 \ 1 & 1 & 3 \ 4 & 5 & 6 \ 0 & 1 & 3 \end{array}
ight], \quad Available = \left[egin{array}{ccc} 1 & 5 & 1 \end{array}
ight].$$

Non esiste nemmeno un processo le cui necessità residue possano essere soddisfatte dall'attuale vettore $Available \Rightarrow$ il sistema non è in stato sicuro.

3

Si consideri una situazione in cui vi sono tre processi P_1 , P_2 e P_3 e quattro classi di risorse: 4 unità a nastro, 2 plotter, 3 stampanti, ed una unità CD-ROM. Si suppongano ancora disponibili per l'uso 2 unità a nastro ed un plotter. Considerando l'algoritmo del Banchiere di Dijkstra si stabilisca se lo stato seguente è sicuro o non sicuro:

$$Allocation = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{array} \right], \quad Need = \left[\begin{array}{cccc} 2 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{array} \right].$$

Se si verifica il primo caso, si mostri secondo quale ordine i processi possano essere terminati. Cosa accadrebbe se il vettore di richieste relativo al secondo processo fosse [2, 1, 0, 1]?

Solutione

Il vettore Available (che può essere calcolato come differenza fra il vettore totale delle risorse, [4,2,3,1], ed il vettore delle risorse attualmente allocate, [2,1,3,1]) risulta:

$$Available = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}.$$

Conseguentemente la successione di processi $< P_3, P_2, P_1 >$ (che produce i vettori Available [2,2,2,0], [4,2,2,1] e [4,2,3,1]) è una successione sicura \Rightarrow il sistema è in stato sicuro.

Viceversa, se $Need_2 = [2, 1, 0, 1]$ lo stato del sistema diventa non sicuro, dato che l'unico processo le cui richieste possono essere assecondate è il processo P_3 , mentre P_1 e P_2 potrebbero venir coinvolti in un deadlock.

Quattro processi, P_1 , P_2 , P_3 , P_4 , competono per l'uso di un certo numero di risorse dei tipi A, B, C. La disponibilità di risorse nel sistema è la seguente: 16 istanze di A, 8 di B e 10 di C. Supponendo che le quantità massime di risorse richieste da ogni processo siano:

$$Max = \begin{bmatrix} 8 & 5 & 6 \\ 4 & 2 & 5 \\ 6 & 6 & 4 \\ 5 & 4 & 7 \end{bmatrix}$$

e le risorse allocate ad un certo istante siano:

$$Allocation = \left[egin{array}{cccc} 5 & 0 & 3 \ 2 & 1 & 2 \ 4 & 3 & 2 \ 3 & 0 & 0 \end{array}
ight],$$

controllare se lo stato è sicuro e, in tal caso, se la richiesta [0, 1, 1] di P_2 può essere soddisfatta.

Solutione

Il vettore Available e la matrice Need valgono rispettivamente

$$Available = \left[egin{array}{cccc} 2 & 4 & 3 \end{array}
ight], & Need = \left[egin{array}{cccc} 3 & 5 & 3 \ 2 & 1 & 3 \ 2 & 3 & 2 \ 2 & 4 & 7 \end{array}
ight].$$

Di conseguenza, può essere servito subito il processo P_2 che, in seguito, rilascia le risorse precedentemente possedute, producendo Available = [4, 5, 5]; ora può essere servito P_1 che, al termine della sua esecuzione, fornisce Available = [9, 5, 8]. A questo punto si può procedere in sequenza con P_3 e P_4 . Quindi lo stato è sicuro.

Se viene accordata la nuova richiesta del processo P_2 , Available e Need divengono rispettivamente,

$$Available = \left[egin{array}{cccc} 2 & 3 & 2 \end{array}
ight], & Need = \left[egin{array}{cccc} 3 & 5 & 3 \ 2 & 0 & 2 \ 2 & 3 & 2 \ 2 & 4 & 7 \end{array}
ight].$$

In questo caso, può ancora essere servito P_2 e, in seguito, gli altri processi, per esempio secondo la sequenza descritta precedentemente.

5

Cinque processi, P_0 , P_1 , P_2 , P_3 , P_4 , condividono un insieme di risorse di quattro tipi diversi, A, B, C, D. Si supponga di trovarsi nella configurazione seguente:

$$Allocation = \begin{bmatrix} 3 & 1 & 4 & 5 \\ 6 & 0 & 2 & 3 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 1 \end{bmatrix}, \quad Max = \begin{bmatrix} 3 & 2 & 7 & 5 \\ 6 & 0 & 2 & 6 \\ 7 & 1 & 0 & 5 \\ 0 & 0 & 2 & 1 \\ 6 & 0 & 6 & 5 \end{bmatrix}, \quad Available = \begin{bmatrix} 5 & 1 & 0 & 2 \end{bmatrix}.$$

Usando l'algoritmo del Banchiere, rispondere alle seguenti domande:

- a) Lo stato è sicuro?
- b) Se è sicuro, enumerare tutte e sole le sequenze sicure.
- c) Se in questa configurazione il processo P_2 avanza una richiesta per [4,0,0,2], tale richiesta può essere soddisfatta immediatamente?

Solutione

a) Lo stato è sicuro; infatti è possibile trovare una sequenza di processi sicura, cioè tale che per ogni processo le richieste non ancora soddisfatte possono essere soddisfatte dalle risorse disponibili più le risorse attualmente in uso ai processi che lo precedono nella sequenza. In questo caso, la matrice *Need* è:

$$Need = \left[egin{array}{cccc} 0 & 1 & 3 & 0 \ 0 & 0 & 0 & 3 \ 6 & 1 & 0 & 5 \ 0 & 0 & 0 & 0 \ 6 & 0 & 2 & 4 \ \end{array}
ight].$$

Pertanto, P_3 ha attualmente allocate tutte le risorse necessarie; quando P_3 termina il vettore Available diviene [5,1,2,3]. A questo punto può essere servito il processo P_1 che, una volta eseguito, rilascia Available = [11,1,4,6]. In seguito, i rimanenti processi P_0 , P_2 e P_4 possono essere eseguiti in un ordine qualsiasi.

- b) Per quanto detto al punto precedente, $< P_3, P_1, P_0, P_4, P_2>, < P_3, P_1, P_0, P_2, P_4> < P_3, P_1, P_2, P_4>, < P_3, P_1, P_2, P_3>, < P_3, P_1, P_4, P_2>, < P_3, P_1, P_4>, < P_3, P_4>, < P_3, P_4>, < P_4>, < P_4>, < P_5, P_6>, < P_6>, <$
- c) La richiesta non può essere immediatamente soddisfatta in quanto la configurazione in cui il sistema verrebbe a trovarsi se fosse soddisfatta,

$$Allocation = \left[egin{array}{ccccc} 3 & 1 & 4 & 5 \\ 6 & 0 & 2 & 3 \\ 5 & 0 & 0 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 1 \end{array}
ight], \quad Available = \left[egin{array}{ccccc} 1 & 1 & 0 & 0 \end{array}
ight],$$

non rappresenta uno stato sicuro. Infatti dopo che è stato eseguito P_3 , le risorse disponibili, rappresentate dal vettore Available = [1, 1, 2, 1], non sono sufficienti a soddisfare le richieste massime relative a nessun processo. (Si noti che la matrice Need è identica a quella precedentemente descritta, eccetto che per la riga relativa al processo P_2 che adesso è [2, 1, 0, 3]).

6

Si consideri il seguente grafo di allocazione risorse:

e sia Max tale che

$$Max = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$
eadlock consiste nell'evitarli, una

Se la tecnica prescelta per gestire i deadlock consiste nell'evitarli, una richiesta della risorsa R_3 da parte di P_5 può essere soddisfatta? Motivare la risposta.

Solutione

La richiesta di P_5 non può essere soddisfatta perché altrimenti lo stato del sistema diventa non sicuro. Infatti, la matrice Max suggerisce che anche il processo P_3 potrebbe richiedere R_3 e, in questo caso, si verificherebbe una attesa circolare (corrispondente ad un ciclo nel grafo di allocazione delle risorse). I processi coinvolti nel deadlock sarebbero P_3 , P_5 , P_6 e P_7 e le risorse R_2 , R_3 , R_4 ed R_5 .

Si consideri un sistema costituito da 5 processi, P_0 , P_1 , P_2 , P_3 , P_4 , e dalle 4 classi di risorse di tipo A, B, C, D, descritto dalle seguenti matrici

$$Allocation = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 1 & 3 & 5 & 4 \\ 0 & 6 & 3 & 2 \\ 0 & 0 & 1 & 4 \end{bmatrix}, \quad Max = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 7 & 5 & 0 \\ 2 & 3 & 5 & 6 \\ 0 & 6 & 5 & 2 \\ 0 & 6 & 5 & 6 \end{bmatrix}, \quad Available = \begin{bmatrix} 1 & 5 & 2 & 0 \end{bmatrix}.$$

Utilizzando l'algoritmo del Banchiere si stabilisca se il sistema è in stato sicuro e, in caso affermativo, se lo stato si mantiene sicuro a fronte di una ulteriore richiesta [0, 4, 2, 0], da parte del processo P_1 .

Solutione

In questo caso, la matrice Need = Max - Allocation risulta:

$$Need = \left[egin{array}{cccc} 0 & 0 & 0 & 0 \ 0 & 7 & 5 & 0 \ 1 & 0 & 0 & 2 \ 0 & 0 & 2 & 0 \ 0 & 6 & 4 & 2 \end{array}
ight].$$

Pertanto la successione P_0 , P_2 , P_3 , P_4 > $Available = [1,5,3,2] \rightarrow [2,8,8,6] \rightarrow [3,8,8,6] \rightarrow [3,14,11,8] \rightarrow [3,14,12,12]$) è una successione sicura e tale è anche lo stato descritto dalle matrici Available, Available.

Nel caso in cui venga accordata al processo P_1 l'ulteriore richiesta di risorse [0, 4, 2, 0] le matrici Allocation e Need divengono:

$$Allocation = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 4 & 2 & 0 \\ 1 & 3 & 5 & 4 \\ 0 & 6 & 3 & 2 \\ 0 & 0 & 1 & 4 \end{bmatrix}, \quad Need = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 6 & 4 & 2 \end{bmatrix},$$

mentre il vettore delle risorse disponibili risulta Available = [1, 1, 0, 0]. Può quindi essere ancora una volta servito il processo P_0 che restituisce le proprie risorse, fornendo Available = [1, 1, 1, 2]. Di nuovo, può essere servito il processo P_2 , che produce Available = [2, 4, 6, 6]. In seguito, vengono serviti i processi P_1 (Available = [3, 8, 8, 6]), P_3 (Available = [3, 14, 11, 8]) e P_4 (Available = [3, 14, 12, 12]). Pertanto, la stessa sequenza P_4 0, P_4 1, P_4 2, P_4 3, P_4 4 e sicura e tale è anche lo stato del sistema.

Esercizi da svolgere

1. Un sistema è dotato delle seguenti 4 risorse: 4 unità a nastro, 2 plotter, 3 stampanti e una unità CD-ROM. Tre processi, P_1 , P_2 e P_3 sono in esecuzione. La matrice Max rappresenta le loro richieste massime, e la matrice Allocation l'allocazione attuale (le risorse sono considerate nell'ordine sopra detto).

$$Allocation = \left[egin{array}{cccc} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{array}
ight] \quad Max = \left[egin{array}{cccc} 1 & 0 & 1 & 1 \\ 3 & 0 & 1 & 1 \\ 2 & 2 & 2 & 0 \end{array}
ight]$$

Si stabilisca se lo stato è sicuro o non sicuro. Se lo stato è sicuro, si mostri secondo quale ordine i processi possano essere terminati.

Si ripeta l'analisi nel caso che il processo P_2 abbia un vettore di richiesta massima $Max_i = [4\ 1\ 0\ 2]$.

2. Considerando l'algoritmo del Banchiere di Dijkstra si stabilisca quando gli stati seguenti sono sicuri o non sicuri. Se uno stato è sicuro, si mostri secondo quale ordine i processi possano essere terminati. Se uno stato è non sicuro, si mostri in che modo sia possibile evolvere verso una situazione di deadlock.

Processo	Risorse	Risorse	Risorse
no.	allocate	max	disponibili
P_0	2	6	1
P_1	4	7	
P_2	5	6	
P_3	0	2	

ĺ	Processo	Risorse	Risorse	Risorse
	no.	allocate	max	disponibili
	P_0	4	8	2
	P_1	3	9	
	P_2	5	8	