Finite fields

Please refer to literatures about finite fields for more details.

Definition 0.1. *field* $(F, +, \cdot)$

Lemma 0.2. All non-zero elements have the same additional order of prime p.

Proof. $F^{\times} \curvearrowright F^{+} \setminus \{0\}$ by multiplication as group automorphism (distributive law) transitively. \square

Definition 0.3. The p above is the **characteristic** of F. $F_0 := \langle 1 \rangle_+$ is the **prime subfield** of F.

Lemma 0.4. $|F| = p^d$

Proof. F is a vector space over F_0 .

Lemma 0.5. $F^{\times} = \langle \sigma \rangle \cong \mathbb{Z}_{p^d-1}$, where σ induces a **Singer cycle** $v \mapsto v\sigma$ on $V = F = F_0^d$.

Proof. By Vandermonde's lemma, polynomial of degree n on F has at most n solutions in F. $e := \exp(F^{\times}) < |F^{\times}| \implies x^e - 1 = 0$ has $|F^{\times}| > e$ solutions.

Proposition 0.6. Elements of order $p^d - 1$ in GL(V) are conjugate.

Proposition 0.7. For any prime power $q = p^d$, $\exists_1 F$ of order q up to field isomorphism, says \mathbb{F}_q .

Proof. Existence: $\mathbb{Z}/p\mathbb{Z}[x]/(f(x))$ for any irreducible polynomial f(x) of degree d.

Uniqueness: If $|F| = p^d$, then $F_0 \cong \mathbb{F}_p$, F is the splitting field of $x^{p^d} - x$ over F_0 , $F^{\times} = \langle x \rangle$. \square

Lemma 0.8. Aut(\mathbb{F}_q) = $\langle \phi \rangle \cong \mathbb{Z}_d$, where $\phi : x \mapsto x^p$ is called the **Frobenius automorphism**.

Lemma 0.9. $x^n = 1$ has (n, q - 1) solutions in \mathbb{F}_q .