تراشه ها ی منطقی برنامه پذیر

CPLD

بخشی از CPLD

ساختار FPGA

انواع تراشههای برنامهپذیر

• جنبههای تفاوت:

- □ فناوری برنامهریزی تراشه
- □ ساختار بلوکهای منطقی
- 🗖 معماری اتصالات برنامهپذیر
 - □ ساختار مدار IO block ساختار مدار
 - Hard core
- امکانات سختافزاری خاص

تكنولوژيهاي برنامه ريزي FPLDها

- تکنولوژیهای اصلی:
 - :SRAM
- سوییچهای قابل برنامه ریزی= ترانزیستورهای کنترل شده توسط سلولهای SRAM
 - :EPROM □
 - سوییچهای قابل برنامه ریزی= ترانزیستورهای floating gate که با تزریق بار به گیت شناور، خاموش می شوند.
 - :Flash, EEPROM 📮
 - قابل پاک کردن به صورت الکتریکی
 - :Antifuse
 - با برنامه ریزی الکتریکی، یک مسیر دائمی با مقاومت کم پدید می آید.

SRAM

SRAM

• کاربردهای SRAM در FPLD:

تراشههای برنامهپذیر مبتنی بر SRAM

• مزایا:

- برنامه ریزی مجدد سریع.
- ☐ برنامه ریزی on-chipبه دفعات نامحدود.
 - در داخل سیکل طراحی prototyping \Box
- − کارخانه ی سازنده می تواند همهٔ مسیرها را با reprogram کردن
 FPGA تست کند
- کاربر، آی سی کاملا تست شده را می گیرد و نیازی به ایجاد الگوهای تست و مدارهای DFT ندارد.

تراشههای برنامهپذیر مبتنی بر SRAM

اشكالات:

- \Box مساحت (اشکال اصلی):
- ۵ یا ۶ ترانزیستور برای هر سلول SRAM
- اشغال درصد بالایی از مساحت توسط SRAM
- unon-volatile (فلش) نیاز به حافظهٔ خارجی
- دارای مدار حسگر power-on برای مدار حسگر
- امنیت کم طرح (intellectual property) در برابر سرقت 🖵
 - − نياز به انتقال bitstream به FPGA → شنود
 - باید bitsteam کد شود
 - □ توان مصرفی بالای سلولهای SRAM
 - حتى وقتى كه برنامهٔ آن تغيير نمى كند

EPROM/EEPROM/Flash

- ولتاژ برنامه ریزی بالا ← محبوس شدن الکترونها ✔ Vdd ← نمی تواند ترانزیستور را روشن کند
 - EEPROM: باز گرداندن الکترونها با میدان الکتریکی (ظرفیت کمتر از EPROM).

تراشههای برنامهپذیر مبتنی بر E²PROM و فلش

- :EPROM •
- **UV** پاک کردن با اشعه **□**
- □ مساحت کم (حدود ۲/۵ برابر کمتر)
 - EEPROM و فلش:
 - پاک کردن به صورت الکتریکی
 - سیار ارزان تر
 - فلش:
 - پاک کردن به صورت بلوک بزرگ \square

تراشههای برنامهپذیر مبتنی بر E2PROM و فلش

:EPROM •

- **UV** پاک کردن با اشعه **□**
- □ مساحت کم (حدود ۲/۵ برابر کمتر)

• EEPROM و فلش:

پاک کردن به صورت الکتریکی \Box

• فلش:

- پاک کردن به صورت بلوک بزرگ \square
- □ تکنولوژی های جدید: دو بیت با یک تراتزیستور
- byte-programmable EEPROM بسیار ارزانتر از \leftarrow

تراشههای برنامهپذیر مبتنی بر E²PROM و فلش

مزایا:

- عدم نیاز به حافظهٔ خارجی
 - فضای کمتر روی بورد
- □ مساحت بسیار کمتر از SRAM
 - □ امنیت بالای طرح:
- bitstream عدم نیاز به کد کردن
 - برای سرقت باید لایهبرداری شود
- امكان تغيير ناخواسته توسط مهاجم:
 - نیاز به کلید برای تغییر برنامه
 - امكان قفل دائمي

تراشههای برنامهپذیر مبتنی بر E2PROM و فلش

• اشكالات:

- 🗖 هزينهٔ ساخت بيشتر
- نیاز به چند مرحله ی ساخت علاوه بر پروسهٔ استاندارد CMOS
 - ☐ کند بودن برنامهریزی مجدد ☐
 - dynamic reconfiguration نامناسب برای کاربردهای -
 - □ مقاومت روشن ترانزیستور: زیاد
 - 🗖 توان استاتیک: زیاد

آنتي فيوز

- حریان برنامه ریزی بالا
- - 🗖 🛨 اتصال دایم

تراشههای برنامهپذیر مبتنی بر آنتی فیوز

مزایا:

عدم نیاز به حافظهٔ خارجی	
مساحت بسیار کم	
– تقریبا هم اندازه با viaی سیمهای فلزی	
طرفیت بالای تراشه $lacktriangledown$	
قابليت اطمينان بسيار بالا	
سال ۴۰ ~ TDDB: Time-Dependent Dielectric Breakdown –	
مقاومت کم در حالت روشن (در طی زمان هم کم می ماند).	
خازن پارازیتی بسیار کمتر	
امنیت بالای طرح در برابر سرقت	
عدم امکان تغییر طرح توسط متخاصم (+ برای کاربردهای حساس	
توان مصرفی بسیار کمتر	

تراشههای برنامهپذیر مبتنی بر آنتی فیوز

- اشكالات:
- عدم امکان برنامه ریزی مجدد
- □ نیاز به مدار اضافی برای برنامه ریزی
 - ایجاد ولتاژ و جریان بالا

مقايسة تراشهها

	قابلیت	مساحت	تأخير	توان	سرعت	امنیت	فرايند	باراوري	مقاومت
فناوري	برنامه-	سلول	سوييچ-	مصرفي	برنامه-	تراشه	ساخت	برنامه-	در برابر
برنامەرىزى	ریزی	برنامه-	های		ریزی			ریزی	SEU
برەھەرىرى	مجدد	ریزی	برنامه-		مجدد				
			پذیر						
SRAM	دارد	زیاد	متوسط	متوسط	بالا	مناسب	CMOS	7.1••	ضعیف
							استاندارد		
E ² PROM	دارد	کم	متوسط	متوسط	متوسط	خیلی	فرايند	%1••	قابل قبول
و فلش						خوب	فلش		
آنتیفیوز	ندارد	خیلی کم	کم	کم	غير قابل	خیلی	فرايند	> %9+	عالي
					برنامه-	خوب	آنتىفيوز		
					ریزی				
					مجدد				

مقايسة تراشهها

- :Programming yield •
- درصد تراشههایی که به طور موفقیتآمیز برنامهریزی میشوند
 - :SEU •
- اثرات تشعشعی ذرات نوترون (در جوّ) یا آلفا (در مواد بستهبندی تراشه)
 - در تراشههای مبتنی بر SRAM:
 - هم SRAMها هم FFها
 - تعداد SRAMها خیلی بیشتر از FFها