Краткий конспект лекций по курсу «Игры среднего поля» Лекция 7

Мера на оптимальных траекториях

Пусть для всяких $x, p \in \mathbb{R}^d$ и $\mu \in \mathcal{P}(\mathbb{R}^d)$

$$H(x,\mu,p) = \sup_{a \in A} \left\{ -l(x,a,\mu) - \langle p, f(x,a) \right\}.$$

Предположим, что sup достигается в единственной точке $a(x,\mu,p)$ и зависимость a от x,μ,p является непрерывной. Пусть отображения $(x,\mu,p)\to H(x,\mu,p)$ и $(x,\mu,p)\to H_p(x,\mu,p)$ непрерывны. Например, эти условия выполняются для

$$l(x, a, \mu) = \frac{|a|^2}{2} + h(x, \mu), \quad f(x, a) = a,$$

где h — ограниченная и непрерывная функция и $a \in \mathbb{R}^d$. В этом случае

$$H(x, \mu, p) = \frac{|p|^2}{2} - h(x, \mu).$$

Предположим, что функция $u \in C^1$ и меры μ_t удовлетворяют системе уравнений

$$-u_t + H(x, \mu_t, \nabla u) = 0, \quad \partial_t \mu_t - \operatorname{div}(H_p(x, \mu_t, \nabla u)\mu_t) = 0$$

с начальными условиями $u(x,T)=g(x,\mu_T)$ и $\mu_0=\nu$, причем

$$\int_0^T \int |H_p(x,\mu_t,\nabla u(x,t))| \, d\mu_t \, dt < \infty.$$

Ранее мы уже отмечали, что решение уравнения Гамильтона-Якоби может не иметь производных и именно в связи с этим введено понятие вязкостных решений. Поэтому предположение, что $u \in C^1$, является существенным ограничением. Напомним, что классическое решение задачи Коши для нелинейного уравнения с частными производными первого порядка можно строить методом характеристик. Этот способ позволяет в некоторых случаях построить классическое решение класса C^1 на $[0,T] \times \mathbb{R}^d$, но лишь для малого T. Например, такое построение можно выполнить для $H(x,p) = \frac{|p|^2}{2} - h(x)$ и g(x), где функции h и g равны нулю при $|x| > R_0$ для некоторого $R_0 > 0$.

Итак, предполагаем, что $u \in C^1$. По принципу суперпозиции для уравнения непрерывности существует вероятностная мера P_{ν} на $\mathbb{R}^d \times C([0,T],\mathbb{R}^d)$, которая сосредоточена на парах (x,y_x) , где

$$\dot{y}_x = -H_p(y_x, \mu_t, \nabla u(y_x, t)), \quad y_x(0) = x,$$

и $\mu_t = P_{\nu} \circ e_t^{-1}$, где $e_t(x,y) = y(t)$. Заметим, что функция $\alpha(t) = a(y_x(t), \mu_t, \nabla u(y_x(t), t))$ является оптимальным контролем для задачи

$$\inf_{\alpha} \left\{ \int_0^T l(y_x(s), \alpha(s), \mu_s) \, ds + g(y_x(T), \mu_T) \right\}.$$

Действительно, в силу определения $\alpha(t)$ выполняется равенство

$$H(y_x(t), \mu_t, \nabla u(y_x(t), t)) = -l(y_x(t), \alpha(t), \mu_t) - \langle \nabla u(y_x(t), t), f(y_x(t), \alpha(t)) \rangle,$$

причем

$$\dot{y}_x(t) = -H_n(y_x(t), \mu_t, \nabla u(y_x(t), t)) = f(y_x(t), \alpha(t)).$$

Таким образом, по решению (u, μ_t) построена мера P_{ν} , сосредоточенная на парах (x, y_x) , где y_x является оптимальным решением задачи о минимизации функционала

$$\alpha \to \int_0^T l(y_x(s), \alpha(s), P_{\nu} \circ e_s^{-1}) ds + g(y_x(T), P_{\nu} \circ e_T^{-1}).$$

Пусть теперь дана мера P_{ν} , у которой проекция на x равна ν и которая сосредоточена на на парах (x,y_x) , где y_x является оптимальным решением задачи о минимизации функционала

$$\alpha \to \int_0^T l(y_x(s), \alpha(s), P_{\nu} \circ e_s^{-1}) ds + g(y_x(T), P_{\nu} \circ e_T^{-1}).$$

Пусть $\mu_s = P_{\nu} \circ e_s^{-1}$ и

$$u(x,t) = \int_{\alpha} \left\{ \int_{t}^{T} l(y_x(s), \alpha(s), \mu_s) ds + g(y_x(T), \mu_s) \right\}.$$

Предположим, что $u \in C^1$. Так как оптимальность α и соответствующего y_x равносильна постоянству функции

$$\tau \to \int_0^\tau l(y_x(s), \alpha(s), \mu_s) ds + u(y_x(\tau), \tau),$$

то для оптимальных α и y_x с учетом уравнения Гамильтона-Якоби, которому удовлетворяет u, получаем равенство

$$H(y_x(s), \mu_s, \nabla u(y_x(s), s)) = -l(y_x(s), \alpha(s), \mu_s) - \langle \nabla u(y_x(s), s), f(y_x(s), \alpha(s)) \rangle.$$

Следовательно, верно равенство $\dot{y}_x(s) = -H_p(y_x(s), \mu_s, \nabla u(y_x(s), s))$. Проверим, что μ_t удовлетворяет уравнению непрерывности

$$\partial_t \mu_t - \operatorname{div}(H_p(x, \mu_t, \nabla u(x, t))\mu_t) = 0.$$

Пусть $\varphi \in C_0^{\infty}(\mathbb{R}^d)$. Имеем

$$\frac{d}{dt} \int \varphi(z) d\mu_t = \frac{d}{dt} \int_{\mathbb{R}^d \times C([0,T],\mathbb{R}^d)} \varphi(y_x(t)) dP(dxdy) =$$

$$= -\int_{\mathbb{R}^d \times C([0,T],\mathbb{R}^d)} \langle \nabla \varphi(y_x(t)), H_p(y_x(t), \mu_t, \nabla u(y_x(t), t)) dP(dxdy) =$$

$$= -\int \langle \nabla \varphi(z), H_p(z, \mu_t, \nabla u(z, t)) d\mu_t.$$

Итак, по мере P_{ν} построены решения (u,μ_t) . Таким образом, при дополнительном условии гладкости на функцию u существование решения (u,μ_t) системы уравнений теории игр среднего поля равносильно существованию меры P_{ν} , сосредоточенной на оптимальных траекториях. Однако при рассмотрении меры P_{ν} никаких уравнений (Гамильтона-Якоби и непрерывности) не привлекается, что позволяет обойти проблему гладкости функции u и проблемы с разрешимостью уравнения непрерывности. Кроме того, задача о существовании и единственности P_{ν} может быть сведена к некоторой более простой задаче теории игр среднего поля.

Типичная задача теории игр среднего поля

Пусть A — компактное метрическое пространство (пока можно считать, что это просто компактное подмножество в \mathbb{R}^d) и $\mathcal{P}(A)$ — пространство вероятностных мер на A, наделенное метрикой Канторовича–Рубинштейна d_{KR} . Пусть отображение $F \colon A \times \mathcal{P}(A) \to \mathbb{R}$ непрерывно. Положим

$$J_k(a_1, \dots, a_N) = F(a_k, \mu^N), \quad \mu^N = \frac{1}{N} (\delta_{a_1} + \dots + \delta_{a_N}).$$

Рассмотрим игру, в которой N игроков выбирают стратегии $a \in A$ минимизируя каждый свою функцию J_k . Нас интересует равновесие Нэша. Так как такое равновесие не всегда существует, то рассмотрим ε_N -равновесие Нэша, т. е. такой набор $(\widehat{a}_1, \dots, \widehat{a}_N)$, что для всякого k и для всякого $b \in A$

$$J_k(\widehat{a}_1,\ldots,b,\ldots,\widehat{a}_N) \geq J_k(\widehat{a}_1,\ldots,\widehat{a}_k,\ldots,\widehat{a}_N) - \varepsilon_N.$$

Для описания равновесия Нэша при больших N изучим предельные точки последовательности

$$\widehat{\mu}^N = \frac{1}{N} (\delta_{\widehat{a}_1} + \ldots + \delta_{\widehat{a}_N}).$$

Теорема 1. Пусть последовательность $\widehat{\mu}^{N_j}$ слабо сходится κ μ и $\varepsilon_{N_j} \to 0$. Тогда

$$\operatorname{sp}\mu \subset \{a \in A \colon F(a,\mu) = \min_{b \in A} F(b,\mu)\},\$$

что эквивалентно

$$\int_{A} F(a,\mu) \, d\mu \le F(b,\mu) \quad \forall b \in A.$$

Доказательство. Для упрощения обозначений будем считать, что $N_j = N$. Для всякого $b \in A$ выполняется неравенство

$$F(\widehat{a}_k, \widehat{\mu}^N) \le F(b, \widehat{\mu}^N + \frac{1}{N}\delta_b - \frac{1}{N}\delta_{\widehat{a}_k}) + \varepsilon_N.$$

Заметим, что

$$d_{KR}(\widehat{\mu}^N, \widehat{\mu}^N + \frac{1}{N}\delta_b - \frac{1}{N}\delta_{\widehat{a}_k}) \le \frac{2}{N}.$$

Пусть $\varepsilon > 0$. Так как F равномерно непрерывна, то при достаточно большом N верна оценка

$$\left| F(b, \widehat{\mu}^N + \frac{1}{N} \delta_b - \frac{1}{N} \delta_{\widehat{a}_k}) - F(b, \widehat{\mu}^N) \right| \le \varepsilon \quad \forall b \in A.$$

Следовательно, имеем

$$F(\widehat{a}_k, \widehat{\mu}^N) \le F(b, \widehat{\mu}^N) + \varepsilon_N + \varepsilon.$$

Суммируем по k и делим на N. Получаем

$$\int_{A} F(a, \widehat{\mu}^{N}) d\widehat{\mu}^{N} \leq F(b, \widehat{\mu}^{N}) + \varepsilon_{N} + \varepsilon.$$

Используя равномерную непрерывность F и слабую сходимость $\widehat{\mu}^N$ переходим к пределу при $N \to \infty$ и получаем неравенство

$$\int_A F(a,\mu) \, d\mu \le F(b,\mu) + \varepsilon.$$

Устремляя $\varepsilon \to 0$ получаем требуемое неравенство.

Предположим, что задана вероятностная мера μ , для которой выполняется условие

$$\operatorname{sp}\mu\subset\{a\in A\colon\, F(a,\mu)=\min_{b\in A}F(b,\mu)\}.$$

Пусть

$$\mu^N = \frac{1}{N} (\delta_{a_1} + \ldots + \delta_{a_N}),$$

где $a_i \in \operatorname{sp}\mu$ и $d_{KR}(\mu, \mu^N) = \beta_N$.

Предложение 1. Предположим, что

$$|F(a,\nu) - F(a,\sigma)| \le Ld_{KR}(\mu,\sigma).$$

Tогда (a_1,\ldots,a_N) являются ε_N -равновесием Нэша, где

$$\varepsilon_N = 2L(\beta_N + N^{-1}).$$

Доказательство. Пусть $b \in A$. Имеем

$$F(a_k, \mu^N) \le F(a_k, \mu) + L\beta_N \le F(b, \mu) + L\beta_N \le F(b, \mu^N) + 2L\beta_N.$$

Так как

$$|F(b,\mu^N) - F(b,\mu^N + \frac{1}{N}\delta_b - \frac{1}{N}\delta_{a_k})| \le \frac{2L}{N},$$

то

$$F(a_k, \mu^N) \le F(b, \mu^N + \frac{1}{N}\delta_b - \frac{1}{N}\delta_{a_k}) + 2L(\beta_N + N^{-1}).$$