Wyznaczenie średniego opadu obszarowego dla zlewni

Zakres ćwiczenia:

- 1. Wyznaczenie granicy zlewni po zadany przekrój
- 2. Wyznaczenie parametrów cieków:
 - sieć rzeczne
 - powierzchnia zlewni (A [km2])
 - długość cieku głównego (L [km])
 - średniego spadku cieku głównego (s [-])
- 3. Określenie średniego opadu dla zlewni metodą:
 - wieloboków
 - izohiet
 - hipsomtryczna

Pojęcia podstawowe:

- **ZLEWNIĄ** nazywamy obszar, z którego wody spływają do jednego odbiornika (bez względu na jego wielkość).
- **DORZECZEM** nazywamy system, który tworzy rzeka wraz ze swoimi dopływami, jest to zatem obszar, z którego wody spływają do systemu jednej rzeki.
- **ZLEWISKIEM MORZA** nazywamy zespół dorzeczy, z których wody spływają do tego morza.
- DZIAŁEM WODNYM nazywamy linię oddzielającą poszczególne dorzecza.
- **GRANICAMI ZLEWNI** nazywamy linie ograniczające poszczególne zlewnie nazywamy. **GRANICA TOPOGRAFICZNA** biegnie najwyższymi wzniesieniami terenu. **GRANICA HYDROGEOLOGICZNA**, wyznaczana jest w oparciu o prześledzenie dróg powierzchniowego spływu wody lub kierunku spływu wód gruntowych.
- **OPAD** jest mierzony punktowo na stacjach opadowych, za pomocą różnego typu deszczomierzy. **ŚREDNIE OPADY ATMOSFERYCZNE DLA ROZPATRYWANEGO OBSZARU** czyli tzw. **WSKAŹNIKI OPADOWE** określa się na podstawie wysokości opadów zmierzonych w różnych punktach zlewni.

METODA WIELOBOKÓW

Poszczególne stacje łączy się między sobą pokrywając zlewnie siatką trójkątów. Symetralne boków trójkątów tworzą **WIELOBOKI**, dla których położona wewnątrz stacja jest **reprezentatywna**.

Metoda ta jest stosowana w zlewniach nizinnych, mało zróżnicowanych pod względem fizjograficznym.

Opad średni średnią ważoną, gdzie wagą jest powierzchnia poszczególnych wieloboków

P=suma(Pi*Ai)/A

gdzie: P - opad średni

Pi - wysokości opadu w poszczególnych stacjach

A - pole powierzchni zlewni

Ai - pole powierzchni

Etapy:

1. określenie granicy zlewni oraz wysokości opadu dla poszczególnych posterunków

2. Połączyć liniami stacje opadowe, tworząc układ trójkątów

3. Wyznaczyć symetralne boków trójkątów

4. Wyznaczyć wieloboki wokół stacji opadowych

5. Określenie powierzchni przypadającej dla poszczególnych posterunków

METODA IZOHIET

IZOHIETY są to linie łączące punkty o jednakowej wysokości opadów.

Na plan badanej zlewni nanosimy stacje opadowe i pomierzone na nich wysokości opadów. Izohiety wykreśla się poprzez interpolację między wartościami opadów.

Interpretacja izohiet nie jest jednoznaczna, więc w tym sensie metoda jest subiektywna.

Ustala się wielkości powierzchni zlewni pomiędzy izohietami (i granicami zlewni) i przypisuje im się opad będący średnią arytmetyczną wartości tych izohiet.

Średni opad zlewni oblicza się jako średnią ważoną opadów pomiędzy izohietami. Wagą jest powierzchnia cząstkowa zlewni

P=suma(Pi*Ai)/A

gdzie: P - opad średni

Pi - wysokości opadu między izohietami (wartość średnia dla sąsiednich izohiet)

A - pole powierzchni między izohietami

Ai - pole powierzchni między sąsiednimi izohietami

Etapy:

1. określenie granicy zlewni oraz wysokości opadu dla poszczególnych posterunków

2. Połączyć liniami stacje opadowe, poszczególne odcinki dzielić na równe części proporcjonalnie o różnicy w wysokości opadu między posterunkami

3. Punkty o jednakowej wysokości opadu połączyć ze sobą

4. Układ izohiet dla zlewni z zaznaczonym obszarem miedzy sąsiednimi izohietami

METODA HIPSOMETRYCZNA

Na podstawie mapy poziomicowej ustala się krzywą HIPSOMETRYCZNA, wskazującą jaka powierzchnia badanej zlewni leży powyżej określonej warstwicy (rysujemy ją w ćwiartce IV - na osi rzędnych wartość poziomic, na osi odciętych powierzchnia). W układzie współrzędnych ćwiartka II obrazuje krzywą GRADIENTOWĄ czyli zależność wysokości opadów od wzniesienia stacji opadowych nad poziom morza (układ stacji należy wyrównać linią prostą lub krzywą ciągłą i gładką).

Określenie średniego opadu zlewni dokonuje się metodą wykreślną przez sporządzenie krzywej PLUWIOMETRYCZNA. Powstaje ona w ćwiartce I poprzez rzutowanie dowolnego punktu krzywej hipsograficznej z ćwiartki IV na I i z ćwiartki IV przez III i II (z krzywej gradientowej) na I (można rzutować dowolną ilość punktów - im więcej tym odwzorowanie lepsze).

Metoda hipsometryczna ma zastosowanie głównie w małych zlewniach górskich, uwzględnia bowiem zależność wysokości opadu od wzniesienia punktu pomiarowego nad poziom morza oraz konfigurację badanego terenu. W zlewniach nizinnych nie należy jej stosować.

Opad średni jest to iloraz pole powierzchni pod krzywą pluwiometryczną oraz powierzchnię zlewni

P=Ph/A

gdzie: P - opad średni

A - pole powierzchni zlewni

Ph - pole powierzchni pod krzywą hietrograiczną

Metoda hispometryczna:

