MAB298-Elements of Topology: Problem Sheet 1

Topological spaces, open and closed sets

- 1. Let X consist of four elements: $X = \{a, b, c, d\}$. Which of the following collections of its subsets generate a topology on X:
 - (a) \emptyset , X, $\{a\}$, $\{b\}$, $\{a, c\}$, $\{a, b, c\}$, $\{a, b\}$;
 - (b) $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\};$
 - (c) $\emptyset, X, \{a, c, d\}, \{b, c, d\}$?
- 2. Let τ be a topology in \mathbb{R} such that the intervals [a, b] are open for all a < b. Prove that this topology is discrete.
- 3. Consider the collection of subsets of \mathbb{R} that consists of:
 - (a) \mathbb{R} , \emptyset and all infinite "closed" intervals $[a, +\infty)$, $a \in \mathbb{R}$;
 - (b) \mathbb{R} , \emptyset and all infinite "open" intervals $(a, +\infty)$, $a \in \mathbb{R}$.

Is this topology or not?

- 4. Let X be a plane. Let τ consist of \emptyset , X, and all open disks with center at the origin. Do X and τ define a topological space?
- 5. Let X be \mathbb{R} , and let τ consist of the empty set and all infinite subsets of \mathbb{R} . Do X and τ define a topological space?
- 6. List all topologies in a two-element set, say, in $\{0,1\}$.
- 7. Let (X, τ) be a discrete topological space. Define a metric d on X such that the corresponding (metric) topology coincides with τ .
- 8. Let (X, τ) be an indiscrete topological space which contains at least two elements. Prove that there is no metric d on X such that the corresponding (metric) topology coincides with τ .
- 9. Find examples of sets that are
 - (a) both open and closed simultaneously (open-closed);
 - (b) neither open, nor closed.

- 10. Give an explicit description of closed sets in
 - (a) a discrete space;
 - (b) an indiscrete space;
 - (c) \mathbb{R} with topology as in 3(b) (open sets are \mathbb{R} , \emptyset and the infinite intervals $(a, +\infty)$).
- 11. Is a "closed" segment [a, b] closed in
 - (a) \mathbb{R} with the usual topology?
 - (b) \mathbb{R} with the topology defined in Ex. 3(b)?
- 12. Prove that the half-open interval [0,1) is neither open nor closed in \mathbb{R} , but is both a union of closed sets and an intersection of open sets.