C*-algebras, groupoids, and symmetry Tutte Institute for Mathematics and Computing Communications Security Establishment

Mitch Haslehurst

Department of Mathematics & Statistics University of Victoria

March 1, 2022

Outline

- C*-algebras
 - Definition(s) and examples
 - Main theorems and structure
 - Motivation for study
- ② Groupoids
 - Definition and examples
 - Interlude: K-theory
 - Recent results in the Elliott classification program
- 3 Applications: dynamics and fractals
 - Iterated function systems
 - Data interpolation with fractals
 - Closing remarks

efinition(s) and examples ain theorems and structure otivation for study

C*-algebras

What is a C*-algebra?

What is a C*-algebra?

Abstract definition: A complete normed complex algebra with a conjugate linear involution * such that, if a and b are in A,

$$(ab)^* = b^*a^* \qquad ||ab|| \le ||a|| ||b|| \qquad ||a^*a|| = ||a||^2.$$

What is a C*-algebra?

Abstract definition: A complete normed complex algebra with a conjugate linear involution * such that, if a and b are in A,

$$(ab)^* = b^*a^* \qquad ||ab|| \le ||a|| ||b|| \qquad ||a^*a|| = ||a||^2.$$

Concrete definition: Any subalgebra of $\mathcal{B}(\mathcal{H})$, the bounded linear operators on a Hilbert space \mathcal{H} , that is closed in the uniform norm, and closed under the Hilbert space adjoint operation.

Example. The complex numbers \mathbb{C} , with its usual addition, multiplication, $z^* = \overline{z}$, and norm |z|.

Example. The complex numbers \mathbb{C} , with its usual addition, multiplication, $z^* = \overline{z}$, and norm |z|.

Example. If X is a locally compact Hausdorff space, then

$$C_0(X) = \{f : X \to \mathbb{C} \mid f \text{ is continuous and vanishes at infinity}\}$$

with
$$f^*(x) = \overline{f(x)}$$
 and norm $||f|| = \sup_{x \in X} |f(x)|$ is a C*-algebra.

Example. The complex numbers \mathbb{C} , with its usual addition, multiplication, $z^* = \overline{z}$, and norm |z|.

Example. If X is a locally compact Hausdorff space, then

$$C_0(X) = \{ f : X \to \mathbb{C} \mid f \text{ is continuous and vanishes at infinity} \}$$

with
$$f^*(x) = \overline{f(x)}$$
 and norm $||f|| = \sup_{x \in X} |f(x)|$ is a C*-algebra.

Example. $\mathcal{B}(\mathcal{H})$ with the Hilbert space operator adjoint and uniform norm. When \mathcal{H} is finite-dimensional, we may identify $\mathcal{B}(\mathcal{H})$ with $M_n(\mathbb{C})$ for some n.

If A is a commutative C*-algebra, then there is a locally compact Hausdorff space X such that $A \cong C_0(X)$.

If A is a commutative C*-algebra, then there is a locally compact Hausdorff space X such that $A \cong C_0(X)$.

Theorem (Gelfand-Naimark)

If A is a C*-algebra, then there exists a Hilbert space $\mathcal H$ and an injective *-homomorphism $\varphi:A\to\mathcal B(\mathcal H)$.

If A is a commutative C*-algebra, then there is a locally compact Hausdorff space X such that $A \cong C_0(X)$.

Theorem (Gelfand-Naimark)

If A is a C*-algebra, then there exists a Hilbert space \mathcal{H} and an injective *-homomorphism $\varphi: A \to \mathcal{B}(\mathcal{H})$.

All commutative C*-algebras look like continuous functions.

If A is a commutative C*-algebra, then there is a locally compact Hausdorff space X such that $A \cong C_0(X)$.

Theorem (Gelfand-Naimark)

If A is a C*-algebra, then there exists a Hilbert space \mathcal{H} and an injective *-homomorphism $\varphi: A \to \mathcal{B}(\mathcal{H})$.

All commutative C*-algebras look like continuous functions.

All C^* -algebras (commutative or not) look like a subalgebra of bounded linear operators.

C*-algebras are often referred to as "noncommutative spaces"

C*-algebras are often referred to as "noncommutative spaces"

Classical mechanics \longleftrightarrow Calculus and topology

C*-algebras are often referred to as "noncommutative spaces"

Classical mechanics \longleftrightarrow Calculus and topology

Quantum mechanics \longleftrightarrow Operator algebras

- "...Heisenberg postulated that the mathematics describing quantum physics should be the mathematics, not of functions on a space, but of linear operators on a Hilbert space, which, taken as an algebra, behaves, algebraically, much like the algebra of continuous functions on a space, but is not commutative..."
- -Heath Emerson, An introduction to C^* -algebras and Noncommutative Geometry.

C*-algebras have found interactions with:

- Group theory
- Harmonic analysis
- Oynamical systems
- Probability
- Logic
- Number theory
- Graph theory
- Geometry
- Mot theory
- Quantum information theory

Interlude: K-theory
Recent results in the Elliott classification program

Groupoids

Definition and examples
Interlude: K-theory
Recent results in the Elliott classification program

Groups encode "global symmetry".

Groups encode "global symmetry".

Theorem

Every group Γ is a subgroup of a permutation group.

Groups encode "global symmetry".

Theorem

Every group Γ is a subgroup of a permutation group.

Groupoids, on the other hand, encode "local symmetry".

Groups encode "global symmetry".

Theorem

Every group Γ is a subgroup of a permutation group.

Groupoids, on the other hand, encode "local symmetry".

They are useful for dynamics, fractal geometry, quasicrystals, tilings.

Groupoids are collections of "partial symmetries".

A groupoid G is like a group, but not every pair of elements can be multiplied.

A groupoid G is like a group, but not every pair of elements can be multiplied.

Example. Let X be a nonempty set and $R \subseteq X \times X$ an equivalence relation. Then R is a groupoid:

$$(x,y)(y',z) = (x,z)$$
 $(x,y)^{-1} = (y,x)$

the product being defined only when y = y'.

Given a groupoid with some nice topological properties, we can make a C^* -algebra out of it.

Given a groupoid with some nice topological properties, we can make a C^* -algebra out of it.

 $C_c(G) = \text{all continuous, compactly supported functions } f: G \to \mathbb{C}.$

$$(f \star g)(x) = \sum_{yy^{-1} = xx^{-1}} f(y)g(y^{-1}x) \qquad f^*(x) = \overline{f(x^{-1})}$$

Given a groupoid with some nice topological properties, we can make a C^* -algebra out of it.

 $C_c(G) = \text{all continuous, compactly supported functions } f: G \to \mathbb{C}.$

$$(f \star g)(x) = \sum_{yy^{-1} = xx^{-1}} f(y)g(y^{-1}x) \qquad f^*(x) = \overline{f(x^{-1})}$$

To get a complete norm, represent $C_c(G)$ on a Hilbert space and take the closure to get the *reduced* C^* -algebra of G, called $C^*_r(G)$.

Example. Let $X = \{1, 2, ..., n\}$ and $R = X \times X$.

Example. Let $X = \{1, 2, ..., n\}$ and $R = X \times X$. Then if f and g are in $C_c(R)$, we have

$$(f \star g)(i,k) = \sum_{j=1}^{n} f(i,j)g(j,k) \qquad f^{*}(i,k) = \overline{f(k,i)}$$

Example. Let $X = \{1, 2, ..., n\}$ and $R = X \times X$. Then if f and g are in $C_c(R)$, we have

$$(f \star g)(i,k) = \sum_{j=1}^{n} f(i,j)g(j,k) \qquad f^{*}(i,k) = \overline{f(k,i)}$$

and $C_c(R) \cong M_n(\mathbb{C})$.

Example. If X is a locally compact Hausdorff space and $R = \{(x, x) \mid x \in X\}$, then $C_r^*(R) \cong C_0(X)$.

Example. If X is a locally compact Hausdorff space and $R = \{(x, x) \mid x \in X\}$, then $C_r^*(R) \cong C_0(X)$.

Example. If Γ is a group acting on a space X (a dynamical system), then $G = X \times \Gamma$ is a groupoid and $C_r^*(G)$ is the *crossed product* $C_0(X) \rtimes \Gamma$.

linear operators

To answer this question, we need some homological tools.

To answer this question, we need some homological tools.

C*-algebras have a useful homology theory: to each C*-algebra A there are two abelian groups called $K_0(A)$ and $K_1(A)$.

To answer this question, we need some homological tools.

C*-algebras have a useful homology theory: to each C*-algebra A there are two abelian groups called $K_0(A)$ and $K_1(A)$.

 $K_0(A)$ consists of equivalence classes of projections p in $\bigcup_n M_n(A)$ that "have the same rank". $K_1(A)$ consists of equivalence classes of unitaries u in $\bigcup_n M_n(A)$ that are "stably homotopic".

If the sequence

$$0 \longrightarrow I \xrightarrow{\iota} A \xrightarrow{\pi} A/I \longrightarrow 0$$

is exact,

If the sequence

$$0 \longrightarrow I \stackrel{\iota}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} A/I \longrightarrow 0$$

is exact, there are group homomorphisms δ_0 and δ_1 such that the sequence

$$K_0(I) \xrightarrow{\iota_*} K_0(A) \xrightarrow{\pi_*} K_0(A/I)$$

$$\downarrow^{\delta_1} \qquad \qquad \downarrow^{\delta_0}$$
 $K_1(A/I) \leftarrow_{\pi_*} K_1(A) \leftarrow_{\iota_*} K_1(I)$

is exact.

 $K_1(\mathbb{C}) = 0$ because the unitary group of $M_n(\mathbb{C})$ is connected.

 $K_1(\mathbb{C})=0$ because the unitary group of $M_n(\mathbb{C})$ is connected.

 $K_0(C(X)) \cong \mathbb{Z}$ and $K_1(C(X)) = 0$ if X is contractible (K-theory is homotopy invariant).

 $K_1(\mathbb{C})=0$ because the unitary group of $M_n(\mathbb{C})$ is connected.

 $K_0(C(X)) \cong \mathbb{Z}$ and $K_1(C(X)) = 0$ if X is contractible (K-theory is homotopy invariant).

 $K_0(\mathcal{B}(\mathcal{H})) = K_1(\mathcal{B}(\mathcal{H})) = 0$ if \mathcal{H} is infinite dimensional.

 $K_1(\mathbb{C})=0$ because the unitary group of $M_n(\mathbb{C})$ is connected.

 $K_0(C(X)) \cong \mathbb{Z}$ and $K_1(C(X)) = 0$ if X is contractible (K-theory is homotopy invariant).

 $K_0(\mathcal{B}(\mathcal{H})) = K_1(\mathcal{B}(\mathcal{H})) = 0$ if \mathcal{H} is infinite dimensional.

 $K_1(C(S^1))\cong \mathbb{Z}$ where $S^1=\{z\in \mathbb{C}\mid |z|=1\}$ (associate a unitary to its winding number).

There is an immense amount of research being done into what K-theory can tell us about C^* -algebras.

There is an immense amount of research being done into what K-theory can tell us about C^* -algebras.

The Elliott classification program. Suppose A and B are two unital, simple, separable, nuclear, \mathcal{Z} -stable C*-algebras that satisfy the Universal Coefficient Theorem. If A and B have the same K-theory, then they are isomorphic.

Answer. Yes, if *A* is classifiable in the Elliott program.

Answer. Yes, if *A* is classifiable in the Elliott program.

Theorem (Li, 2019)

Given some K-theory data D, there is a groupoid G such that $K_*(C_r^*(G)) \cong D$.

Answer. Yes, if *A* is classifiable in the Elliott program.

Theorem (Li, 2019)

Given some K-theory data D, there is a groupoid G such that $K_*(C_r^*(G)) \cong D$.

Theorem (Putnam, 2017)

Given some torsion-free K-theory data D, there is an groupoid G on a Cantor set such that $K_*(C_r^*(G)) \cong D$.

Given some torsion-free K-theory data D, there is a quotient space X of a Cantor set and a factor groupoid G on X such that $K_*(C_r^*(G)) \cong D$.

Given some torsion-free K-theory data D, there is a quotient space X of a Cantor set and a factor groupoid G on X such that $K_*(C_r^*(G)) \cong D$.

The spaces X are constructed using a "generalized" Cantor ternary function.

Given some torsion-free K-theory data D, there is a quotient space X of a Cantor set and a factor groupoid G on X such that $K_*(C_r^*(G)) \cong D$.

The spaces X are constructed using a "generalized" Cantor ternary function.

$$\{0,1\}^{\mathbb{N}} \to S^1 \qquad (x_n) \mapsto \exp\left(2\pi i \sum_{n=1}^{\infty} x_n 2^{-n}\right)$$

Given some torsion-free K-theory data D, there is a quotient space X of a Cantor set and a factor groupoid G on X such that $K_*(C_r^*(G)) \cong D$.

The spaces X are constructed using a "generalized" Cantor ternary function.

$$\{0,1\}^{\mathbb{N}} \to S^1 \qquad (x_n) \mapsto \exp\left(2\pi i \sum_{n=1}^{\infty} x_n 2^{-n}\right)$$

In general, the spaces have connected components either a single point or homeomorphic to $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$.

Given some torsion-free K-theory data D, there is a quotient space X of a Cantor set and a factor groupoid G on X such that $K_*(C_r^*(G)) \cong D$.

The spaces X are constructed using a "generalized" Cantor ternary function.

$$\{0,1\}^{\mathbb{N}} \to S^1 \qquad (x_n) \mapsto \exp\left(2\pi i \sum_{n=1}^{\infty} x_n 2^{-n}\right)$$

In general, the spaces have connected components either a single point or homeomorphic to $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$.

They also often have some self-similar fractal structure.

Interlude: K-theory
Recent results in the Elliott classification program

Iterated function systems

Data interpolation with fractals

Closing remarks

Applications: dynamics and fractals

An *iterated function system* $(X, \{f_j\}_{j=1}^n)$ (abbreviated IFS) is a complete metric space X with a finite set of functions $f_j: X \to X$ for $j = 1, 2, \ldots, n$.

An iterated function system $(X, \{f_j\}_{j=1}^n)$ (abbreviated IFS) is a complete metric space X with a finite set of functions $f_j: X \to X$ for $j = 1, 2, \ldots, n$.

If the IFS is hyberbolic (every f_j is a contraction) then there is a unique compact subset $K \subseteq X$ such that

$$K = \bigcup_{j=1}^n f_j(K)$$

K is called the attractor of the IFS.

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{2}x$ and $f_2(x) = \frac{1}{2}x + \frac{1}{2}$. The attractor is K = [0, 1].

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{2}x$ and $f_2(x) = \frac{1}{2}x + \frac{1}{2}$. The attractor is K = [0, 1].

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{3}x$ and $f_2(x) = \frac{1}{3}x + \frac{2}{3}$. The attractor K is the Cantor set.

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{2}x$ and $f_2(x) = \frac{1}{2}x + \frac{1}{2}$. The attractor is K = [0, 1].

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{3}x$ and $f_2(x) = \frac{1}{3}x + \frac{2}{3}$. The attractor K is the Cantor set.

Example. Take $X = \mathbb{R}^2$ and

$$f_1(x) = \frac{1}{2}x$$
 $f_2(x) = \frac{1}{2}x + \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ $f_3(x) = \frac{1}{2}x + \begin{bmatrix} 1/4 \\ \sqrt{3}/4 \end{bmatrix}$

Example. Take $X = \mathbb{R}^2$ and

$$f_1(x) = \frac{1}{2}x$$
 $f_2(x) = \frac{1}{2}x + \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ $f_3(x) = \frac{1}{2}x + \begin{bmatrix} 1/4 \\ \sqrt{3}/4 \end{bmatrix}$

The attractor K is the Sierpiński triangle.

Theorem (Korfanty, 2020)

Suppose $(K, \{f_j\}_{j=1}^n)$ and $(K', \{f_j'\}_{j=1}^n)$ are two compact hyberbolic IFS's with respective groupoids G and G'. If $(K, \{f_j\}_{j=1}^n)$ and $(K', \{f_j'\}_{j=1}^n)$ are topologically conjugate, then $C_r^*(G)$ and $C_r^*(G')$ are isomorphic.

Theorem (Korfanty, 2020)

Suppose $(K, \{f_j\}_{j=1}^n)$ and $(K', \{f_j'\}_{j=1}^n)$ are two compact hyberbolic IFS's with respective groupoids G and G'. If $(K, \{f_j\}_{j=1}^n)$ and $(K', \{f_j'\}_{j=1}^n)$ are topologically conjugate, then $C_r^*(G)$ and $C_r^*(G')$ are isomorphic.

The converse problem. If $C_r^*(G)$ and $C_r^*(G')$ are isomorphic, are the two systems topologically conjugate?

Theorem (Korfanty, 2020)

Suppose $(K, \{f_j\}_{j=1}^n)$ and $(K', \{f_j'\}_{j=1}^n)$ are two compact hyberbolic IFS's with respective groupoids G and G'. If $(K, \{f_j\}_{j=1}^n)$ and $(K', \{f_j'\}_{j=1}^n)$ are topologically conjugate, then $C_r^*(G)$ and $C_r^*(G')$ are isomorphic.

The converse problem. If $C_r^*(G)$ and $C_r^*(G')$ are isomorphic, are the two systems topologically conjugate?

Conjecture. Most likely not.

Iterated function systems

Data interpolation with fractal:
Closing remarks

However...

Theorem (Giordano, Putnam, Skau, 1995)

If K is a Cantor set and $\varphi, \psi : K \to K$ are two minimal homeomorphisms (every orbit is dense) and $C(K) \rtimes_{\varphi} \mathbb{Z}$ and $C(K) \rtimes_{\psi} \mathbb{Z}$ have the same K-theory, then (K, φ) and (K, ψ) are orbit-equivalent as dynamical systems.

Theorem (Giordano, Putnam, Skau, 1995)

If K is a Cantor set and $\varphi, \psi: K \to K$ are two minimal homeomorphisms (every orbit is dense) and $C(K) \rtimes_{\varphi} \mathbb{Z}$ and $C(K) \rtimes_{\psi} \mathbb{Z}$ have the same K-theory, then (K, φ) and (K, ψ) are orbit-equivalent as dynamical systems.

If C*-algebras are to give an invariant for IFS's:

Theorem (Giordano, Putnam, Skau, 1995)

If K is a Cantor set and $\varphi, \psi: K \to K$ are two minimal homeomorphisms (every orbit is dense) and $C(K) \rtimes_{\varphi} \mathbb{Z}$ and $C(K) \rtimes_{\psi} \mathbb{Z}$ have the same K-theory, then (K, φ) and (K, ψ) are orbit-equivalent as dynamical systems.

If C*-algebras are to give an invariant for IFS's:

• K-theory will likely be crucial,

Theorem (Giordano, Putnam, Skau, 1995)

If K is a Cantor set and $\varphi, \psi: K \to K$ are two minimal homeomorphisms (every orbit is dense) and $C(K) \rtimes_{\varphi} \mathbb{Z}$ and $C(K) \rtimes_{\psi} \mathbb{Z}$ have the same K-theory, then (K, φ) and (K, ψ) are orbit-equivalent as dynamical systems.

If C*-algebras are to give an invariant for IFS's:

- K-theory will likely be crucial,
- 2 "topological conjugacy" may need to be weakened.

Theorem (Barnsley, 1986)

Let $x_1 < x_2 < \dots < x_n$ be real numbers and $\{(x_j, y_j) \mid j = 1, 2, \dots, n\} \subseteq \mathbb{R}^2$ be a data set. Then there is an IFS $(\mathbb{R}^2, \{f_j\}_{j=1}^n)$ such that the attractor K is the graph of a continuous function $F: [x_1, x_n] \to \mathbb{R}$ with $F(x_i) = y_i$ for all $j = 1, 2, \dots, n$.

Theorem (Barnsley, 1986)

Let $x_1 < x_2 < \cdots < x_n$ be real numbers and $\{(x_j,y_j) \mid j=1,2,\ldots,n\} \subseteq \mathbb{R}^2$ be a data set. Then there is an IFS $(\mathbb{R}^2,\{f_j\}_{j=1}^n)$ such that the attractor K is the graph of a continuous function $F:[x_1,x_n]\to\mathbb{R}$ with $F(x_i)=y_i$ for all $j=1,2,\ldots,n$.

Data interpolation using fractal interpolation functions:

- Like smooth functions such as polynomials and trigometric functions, can be approximated recurrently using formulae.
- ② The fractal structure of the curve captures "irregularities" well as opposed to smooth functions.

Closing remarks

- Groupoids provide the algebraic groundwork for studying local symmetry, while C*-algebras provide an immense amount of structure and powerful tools.
- Interplay between the dynamics of iterated function systems and C*-algebras: only scratched the surface.

Thank you!