Part Z: tensor product spaces

All of that was hopefully a review, though waybe from a slightly new puspective.

Now we're going to introduce a 2 nd spin:

A B B Sosio = {112, 12, 3} Sosio = {112, 122}

Classical intention mays total state is described by giving the state of A and the state of B

29 A - INA => total atale ~ ITATB

While this is not the full story, it is the right stort. This dos

Here is the formal definition:

Let HA be a Hilbert space m/lasis \$107,112,... 123 HB " 51078,1178,... 1 m783

Hen # A & HB is the Hillest space w/ losis

{ 112, ⊗ 1, > 8 1 i € 1, ..., n , j ∈ 1, ..., m}

The combined state of 2 partials were se a vector in $\mathcal{H}_A \otimes \mathcal{H}_B$

Leta le concrete: 2 x(spin-1/2) HA - lasis & ITA, INTAS 9+ B -> Davis 5/17, 127, 3 Hen the basis for the two - spin space is 17/A8/17/B, 17/A8/17/B, 12/28/17/B, 14/28/17/B Of rowse, I barent rail yet what & actually wears. Varically, A and B are still separate. Here the key rules: 1 Tiven 18A7 8 1878 and 10A7 8 18B), their inner product (29A | 0 29B) (10A>0 10B>) = 29A 19A> - 29B 19B> (3) summerting? 2) any operator son le written ers & [OAIOA]=U CAB = \(\sum_{ij} O_i^A \omega O_j^B \) and [OB, 813]=0, [OA &OB, OA OB] = 0 where (O; A & O; B) (19, > 8 19, 8) (for bosons) = (0; 1(A)) & (0; 14B) to all yerators wast out on loth A and B. & you want to act only on B, use OA & IdB (3) Born rule for probabilities: Let 147 = a 1/278 1/17 + 6 1/278 1/17 + C 1220 1/87 + d 1 d/2 0 160>

w/ |a|2+ (3)2+(0)2+(d)2=1

P (13) = |a|2+ |c|2

Then P (1) = P(1,18)+P(1,18) = |a|2+1612

More generally, for 147 = E ai; liA78/jB> $P(l_A) = \sum_{j} |a_{l_j}|^2$ Let's use this to compute an expectation value: (5%) for our 2x (spin 2) matern w/ a, b, c, d Expertation value is 1. P (spin 1) + -1. P (spin 1) = (|a|2+ |b|2) - (|c|7+ |d|2) Now let's compute the same expectation value derectly. 57 doesn't really exist - ractually, He 52 A & Id B Ar "(67A)" = (4/07ADIS/4) 16 total terms 1 a 12. (1 a 1 0 < 1 B 1) (5 2 0 Id B) (1 A > 0 1/B)) + at b (<1A10 <1B1) (57 D IdB)(17 >014>) However Each term becomes just a product like < 12 0 = A 12 - (1B I Ida 17B) Because each individual operator is diagonal, 4 A your is not equal, of if Propries not equal, No why I terms are left: 101×1/4/54/1/2). (10/ Ida 178) |a|2.1.1 + 1612. 1.1 = -1017-1d + 1512 < TAISTAITAT - LLBITURILED =

+1012 (VA 187/12) - (18/1/8/1/8)

+1012/1/1/2 /1

+(0/2, -1.1

+(d12 -11

The 1

If rown, doing all of this by hand wa trup poin. As let's go Irach and ligure out the matrix representation. First step: ritroduce storthand, with the following rules: ITATE ITBY or even ITAT OA & Id B HOA Then the last expectation value role Looks like (187 = & 0851 1861) (87) = [assit ass, (001) 57, (551) = Z ass = ass 25 (8 16+157 (61 151) = \(\int a_{551} \delta_{551} \langle \sigma_{551} \langle \delta_{551} = E E assi assi (8/67/5)

This helps a little, but it will still be much better if we can again develop a water's approach.

We me the same steps as before!

1 design basis vectors [eg 11) -> (1), 12) -> (?)

3 Find what the operators book like in this representation.

There is again flexibility possible stronge of basis, and the

Jets construct 0=52 A & Idg:

$$\mathcal{D}\left(\frac{1}{3}\right) = \left(\frac{3}{3}\right), \ \mathcal{O}\left(\frac{3}{3}\right) = \left(\frac{3}{3}\right), \ \mathcal{O}\left(\frac{3}{3}\right) = \left(\frac{3}{3}\right), \ \mathcal{O}\left(\frac{3}{3}\right) = -\left(\frac{3}{3}\right), \ \mathcal{O}\left(\frac{3}{3}\right) = -\left(\frac{3}{3}\right)$$

ie
$$\delta^2_A \otimes Id_B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

fets wherh the expectation value again:

$$= \frac{(a^{\dagger}b^{\dagger}c^{\dagger}d^{\dagger})}{\binom{a}{-c}} = \frac{(a)^{2}+(b)^{2}-(c)^{2}-(d)^{2}}{\sqrt{a}}$$

Exercise : Promotiunt a matrix in this basis for

Deorstand a watery for 57 A & 87

How answer should by the motoring notated 180° eine

Explain using a charge of Course matrix the relationship exteres

answer:
$$\bigcirc$$
 $07867 | 1717 = 1117$

$$67862 | 1717 = -1117$$

$$67862 | 1717 = -1117$$

$$67862 | 1717 = -1117$$

$$67862 | 1717 = -1117$$

$$67862 | 1717 = -1117$$

Awapping operators for A and B is the same as just writing states in apposite order:

Motors of 67 86% in basis ITATB), ITALB), ITALB), INDB)

is the name as

52 854 in casis 1787AZ, ITBLAZ, ILBTAZ, ILBLAZ

is the source us

54 Dot in Basis ITATA, ILATA, ITALA, IJALA)

so the effect of mapping the operation on A and B is just to reader the basis, I'v this by swapping two reater refer and I center nows,

OR by starge of comis water (01

Now, notice something:

The 57 w/ 52 insuted as a multiplication at each elt.

Martintion version 2
Keep the terror product idea:
17>8 17> = (6)8(5) -> 1/2 (00) (onter product)
operators are now not matrices, but park- 4 tersons
(stope is 2x2x2x2)
THE STATE OF THE S
Mormal vector is 2 watrige is let 2-72
Here vector is 2x2, operator is 2x2 -> 2x2
$\left \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right $ $\left \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right $ $\left \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right $ $\left \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right $ $\left \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right $
2 action in posablel
$\begin{pmatrix} 1 \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} & 0 \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix}$
reparately
lig (1) verter related long 1 at est este (1) related little 1 at soll
little (1) relette little 1 st tote
for notes the rolum are allost.
me told we relect a big column and a little whomp, result is
as we would get by routing basis state since or ordering is the same.
ordering is the same.

We will now use this tormelien to write down more precisely, The slive, the dring model on 2 years.

Remer H = - J & S; Z, S; Z - h & S; X

with only two yins, the terms are

$$H = -J \sum_{i=0}^{8} s_{i}^{2} s_{i+i}^{2} - h \sum_{i=0}^{9} s_{i}^{2}$$

$$= -J \left(s_{i}^{2} s_{i}^{2} \right) - h \left(s_{i}^{2} + s_{i}^{2} \right)$$

I wo issues to take care of here:

O We've been working with 52, 5x; but 52 = \$ 500, 5x = \$500 }

$$-J(5,^{2}5,^{2}) = -J(\frac{1}{2})^{2} \delta_{0}^{2} \delta_{1}^{2}$$

$$= J \rightarrow \text{Nevame to } J$$

Ar
$$H = -J(\sigma_0^2 \sigma_1^2) - h(\sigma_0^* + \sigma_1^*)$$

@ operators should be EDABOB, whom to rewrite?

Now we have a useful operator;

$$H = -J(\sigma_0^7 \otimes \sigma_1^7) - h(\sigma_0^7 \otimes Id_1 + Id_2 \otimes \sigma_1^7)$$

by this rase, it will not be hard to robot this and find the eigenstates, expectation values, etc. But let's practice good form, and start by understanding limiting roses.

Fird sotost then this

In the limit J >> h (set h to 0), what are the eigenstates and eigenvalues. Conclude: what is the effect of the J term in the Hamiltonian?

Then find the expectation value of the h term in each of these states. If me thorn on h UJ, will it change which of these states are favored as the 65?

Find 5, x & Id + Id & 5, x

- Defane story w/ h = J. (For this are, remember that if two spectors commite, they can be simultaneously diagonalized) (Use whatever lasis you like)
- 3) If we then term seems to have a "preference" extreme eigenstates of the other, can we satisfy both terms at once? (Hint; do ster commute?)

9 Find the 4x4 watering for H.

$$\left[\sigma_{o}^{7} \otimes \sigma_{i}^{7} , \sigma_{o}^{\times} \otimes Id_{i} \right] = \left[\sigma_{o}^{7} \otimes \sigma_{i}^{7} \right] \left(\sigma_{o}^{\times} \otimes Id_{i} \right) - \left(\sigma_{o}^{3} \otimes Id_{i} \right) \left(\sigma_{i}^{7} \otimes \sigma_{i}^{7} \right) \\
 = i \sigma_{o}^{7} \otimes \sigma_{i}^{7} - -i \sigma_{o}^{7} \otimes \sigma_{i}^{7} \\
 = 2i \sigma_{o}^{7} \otimes \sigma_{i}^{7} + 0$$

and likewise

211

Non & demo w/ Watherwating: (twoms out it ran be robed analytically)