Preparación EVAU

Matemáticas II - 2° Bachillerato

DEPARTAMENTO DE MATEMÁTICAS 1

¹http://www.iespedrocerrada.org/

ATRIBUCIONES: Nuestro más sentido **agradecimiento** a Julio García Galavis, que es el autor de la resolución de los ejercicios a .

Licencia: El contenido del documento se publica con licencia Attribution Share Alike (CC BY-SA)

 $^a {\tt http://matematicasentumundo.es/PAU/PAU.htm}$

1

Análisis

A continuación aparecen los ejercicios de la EVAU del bloque de análisis de los últimos seis años con las soluciones. Se recomienda trabajarlos para preparar la EVAU. En caso de necesitar consultar el desarrollo de la solución paso a paso se deberá consultar el documento específico de la prueba y año que aparece en la siguiente web¹:

¹ http://matematicasentumundo.es/PAU/PAU.htm

Septiembre 14.

1. (2,5 puntos)

a) (1,25 puntos) Considere la función: $f(x) = \begin{cases} x^2 & \text{si } x < 2 \\ 2x + a & \text{si } 2 \le x \le 4 \\ -x^2 + 3x + b & \text{si } x > 4 \end{cases}$

Determine los valores de a y b para que la función sea continua.

b) (1,25 puntos) Supongamos ahora que a=0. Usando la definición de derivada, estudie la derivabilidad de f(x) en x=2.

2. (2,5 puntos)

- a) (1,25 puntos) Dadas las funciones $f(x) = x^2$ y $g(x) = -x^2 + 2$, determine el área encerrada entre ambas funciones.
- **b)** (1,25 puntos) Calcule la integral: $\int_2^3 \frac{x^3}{x^2 2x + 1} dx.$

SOLUCIÓN.

- **1.** a) a = 0, b = 12
- **b)** No es derivable pues $f'(2^-)=4$, $f'(2^+)=2$

2. a) $A = \frac{8}{3}u^2$

b) 5+ln8

Junio 15.

a) (1,5 puntos) Considere la función $f(x) = \frac{x^2 - 3}{e^x}$. Determine los máximos relativos, los mínimos relativos y los puntos de inflexión, si existen, de la función f(x).

b) (1,5 puntos) Usando el cambio de variable t = cos x, calcula $\int \frac{cos^2 x}{senx} dx$.

c) (2 puntos)

- 1) (1 punto) Calcule los valores de a y b para que la función $f(x) = ax^3 + bx^2$ tenga un extremo relativo en el punto (1,2).
- 2) (1 punto) Calcule el área encerrada por la curva $f(x) = 2x^3 3x^2$ y la parte positiva del eje OX.

a) $\left(-1,-2e\right)$: mínimo relativo, $\left(3,\frac{6}{e^3}\right)$: máximo relativo. Puntos de inflexión en $x=2-\sqrt{5}$ y en $2+\sqrt{5}$.

b) $\cos x + \ln \sqrt{\frac{\cos x - 1}{\cos x + 1}} + C$ **c)** 1) a = -4, $b = \frac{3}{2}$ 2) $A = \frac{27}{32}u^2$

Junio 15.

a) (2 puntos) Calcule las dimensiones de tres campos cuadrados que no tienen ningún lado común y que satisfacen que el perímetro de uno de ellos es triple que el de otro y, además, se necesitan 1248 metros de valla para vallar completamente los tres campos, de manera que la suma de las áreas es la mínima posible.

b) (1,5 puntos) Usando el cambio de variable $t = e^x$, calcule: $\int \frac{2e^{2x}}{e^x - 2e^{-x}} dx$

c) (1,5 puntos) Calcule: $\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x}\right)$

SOLUCIÓN.

a) $l_1 = 48 \text{ m.}, l_2 = 144 \text{ m.}, l_3 = 120 \text{ m.}$ **b)** $2e^x + \sqrt{2} \ln \frac{e^x - \sqrt{2}}{e^x + \sqrt{2}} + C$ **c)** $-\frac{1}{2}$

Septiembre 15.

a) (2 puntos) Usando el cambio de variable $t = e^x$, calcule: $\int \frac{e^{3x}}{e^{2x} + 3e^x + 2} dx$

b) (1,5 puntos) Determine el límite siguiente: $\lim_{x \to \pi/2} \left(\frac{1}{1-\text{sen}x} \right)^{\frac{1}{\text{sen}x}}$

c) (1,5 puntos) Determine la ecuación de la curva f(x) sabiendo que la recta tangente en x=3 es y = 9x - 13 y la derivada segunda verifica que f''(x) = 4, para cualquier valor de x.

SOLUCIÓN.

a)
$$e^{x} - In \left(\frac{\left(e^{x} + 2\right)^{4}}{e^{x} + 1} \right) + C$$

b) 1

c) $f(x) = 2x^2 - 3x + 5$

Septiembre 15.

a) (3 puntos) Sea $f(x) = x^2 e^{1/x^2}$

1) (0,5 puntos) Determine el dominio de f(x).

2) (1,5 puntos) Determinen, si existen, las asíntotas de f(x).

3) (1 punto) Determine, si existen, los máximos y mínimos relativos de f(x).

b) (2 puntos) Calcule: $\int \left[\frac{\left(x-1\right)^2}{\sqrt{x}} + \frac{\ln x}{x^2} \right] dx$

SOLUCIÓN.

a) 1) Dom(f) =
$$\mathbb{R} - \{0\}$$

2) Asíntota vertical:
$$x = 0$$

a) 1)
$$Dom(f) = \mathbb{R} - \{0\}$$
 2) Asíntota vertical: $x = 0$ 3) $(-1, e)$ y $(1, e)$: mínimos relativos

b)
$$\frac{2}{5}x^2\sqrt{x} - \frac{4}{3}x\sqrt{x} + 2\sqrt{x} - \frac{\ln x}{x} - \frac{1}{x} + C$$

Junio 16.

a) (2,25 puntos) Considere la función:
$$f(x) = \frac{1}{8x - x^2}$$

a.1)
$$(1,5 \text{ puntos})$$
 Determine las asíntotas, si existen, de la función $f(x)$.

b) (1,25 puntos) Determine:
$$\lim_{x \to +\infty} \left(\left(\ln(x^2) \right) \left(\frac{x+1}{x^2+3} \right) \right)$$

c) (1,5 puntos) Calcule el área de la región encerrada entre las curvas
$$f(x) = x^3$$
 y $g(x) = 2x^2 - x$

SOLUCIÓN.

a) a.1) Asíntotas verticales:
$$x = 0$$
 y $x = 8$

a.2)
$$(4,1/16)$$
 mínimo relativo

Junio 16.

a) (1,5 puntos) Determine el límite:
$$\lim_{x \to +\infty} \left(\frac{5x+1}{2x-1} - \frac{3}{2} \right)^{\frac{2x^2+1}{x-1}}$$

b) (1,5 puntos) Usando el cambio de variable
$$t = \cos x$$
, calcule:
$$\int_{-\pi}^{\pi} \frac{\sin x \cos x}{1 - \cos x} dx$$

c) (2 puntos) Queremos construir una ventana con la forma de la figura que aparece a la derecha, es decir rectangular en la parte inferior y semicircular en la superior (la parte superior es un semicírculo completo).

Sabiendo que el perímetro total de la ventana son 5 metros, determine las dimensiones de la ventana para que la superficie de la misma sea máxima.

SOLUCIÓN.

b)
$$\frac{1-\sqrt{2}}{2} - \ln(2-\sqrt{2})$$
 c) $1/12 \text{ u}^2$

Septiembre 16.

a) (1 punto) Determine, si existen, todos los valores de los parámetros a y b para que la función que aparece a continuación sea continua:

$$f(x) = \begin{cases} a e^x & \text{si } x < 0 \\ 1 - x^2 & \text{si } 0 \le x < 1 \\ b \left(1 - e^{x-1} \right) & \text{si } x \ge 1 \end{cases}$$

b) (1 punto) Considere ahora que a=1. Usando la definición de derivada, estudie si la función es derivable en x=0.

 $\lim (\ln x)^{\frac{1}{e^x}}$ c) (1,5 puntos) Determine:

 $\int \frac{(\ln x)^2}{\sqrt{x}} dx$ d) (1,5 puntos) Determine:

SOLUCIÓN.

a) Para a = 1 y \forall b

b) No es derivable

c) 1 d) $2\sqrt{x} \left[(\ln x)^2 - 4 \ln x + 8 \right] + C$

Septiembre 16.

a) (3 puntos) Considere la función: $f(x) = x + \frac{4}{3}$

a.1) (1,5 puntos) Determine el dominio y las asíntotas, si existen, de la función f(x).

a.2) (1,5 puntos) Determine los extremos relativos y puntos de inflexión, si existen, de la función f(x).

b) (2 puntos) Determine el área limitada por la curva $f(x) = -2 \operatorname{sen}\left(\frac{x}{2}\right)$ y las rectas x = 0, $x = \pi$ y el eje de abscisas y = 0.

SOLUCIÓN.

a) a.1) $D(f) = \mathbb{R} - \{0\}$; asíntota vertical: x = 0, asíntota oblicua: y = x a.2) (-2, -4) máximo relativo (2,4) mínimo relativo. No tiene puntos de inflexión. b) $4 u^2$

Junio 17.

(4 puntos)

a) (3 puntos) Considere la función de variable real x siguiente: $f(x) = x(\ln x)^2$

a.1) (0,5 puntos) Determine el dominio de la función f(x).

a.2) (1,5 puntos) Determine los intervalos de crecimiento y de decrecimiento de esa función.

a.3) (1 punto) Determine, si existen, los máximos y mínimos relativos y, en ese caso, calcule el valor de la función f(x) en cada uno de ellos.

b) (1 punto) Determine el valor de la constante k para que se verifique que:

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) = \frac{5}{3}$$

SOLUCIÓN.

a) a.1) $D(f) = (0, +\infty)$

a.2) Creciente en $(0, e^{-2}) \cup (1, +\infty)$; Decreciente en $(e^{-2}, 1)$

a.3) $(e^{-2}, 4e^{-2})$ máximo relativo ; (1, 0) mínimo relativo.

b) $k = \frac{4}{3}$

Junio 17.

(4 puntos)

a) (2 puntos) Encuentre dos números tales que el doble del primero más el triple del segundo sea 24 y su producto sea máximo.

 $\lim_{x\to 0} \left(\frac{x+1}{1+\operatorname{sen} x}\right)^{\frac{1}{x^2}}$ b) (2 puntos) Determine:

SOLUCIÓN.

b)
$$e^0 = 1$$

Septiembre 17.

(4 puntos)

Considere la función: $f(x) = \frac{x^2}{1+x}$

a) (0,5 puntos) Determine el dominio de la función.

b) (1,5 puntos) Determine, si existen, sus asíntotas.

(2c) (2 puntos) Determine los intervalos de crecimiento y los de decrecimiento de la función f(x) así como sus máximos y mínimos relativos, si existen.

SOLUCIÓN.

a) Dom(f) =
$$\mathbb{R} - \{-1\}$$

a) Dom(f) = $\mathbb{R} - \{-1\}$ b) Asíntotas verticales: x = -1

Asíntotas horizontales: no existen

Asíntotas oblicuas: y = x - 1

c) Creciente: $(-\infty, -2) \cup (0, +\infty)$

Decreciente: $(-2,-1) \cup (-1,0)$

Máximo relativo: (-2,-4)Mínimo relativo: (0,0)

Septiembre 17.

(4 puntos)

a) (1 punto) Determine los valores de "a" y "b" para que la función que aparece a continuación sea continua:

$$f(x) = \begin{cases} 1/e^x & \text{si } x \le 0 \\ a \cos x + b & \text{si } 0 < x \le \pi \\ sen x - ax & \text{si } \pi < x \end{cases}$$

 $\int x^2 \left(\ln x \right)^2 dx$ **b)** (1,5 puntos) Calcule la integral:

c) (1,5 puntos) Determine el siguiente límite: $\lim_{x\to 1} (e^{x-1}-1)^{x-1}$

SOLUCIÓN.

a)
$$a = \frac{1}{2-\pi}$$
, $b = \frac{1-\pi}{2-\pi}$

a)
$$a = \frac{1}{2-\pi}$$
, $b = \frac{1-\pi}{2-\pi}$ **b)** $\frac{1}{3}x^3 \left[\left(\ln x \right)^2 - \frac{2}{3} \ln x + \frac{2}{9} \right] + K$

Junio 18.

(4 puntos)

- a) Considere la función $f(x) = \frac{x+1}{\sqrt{x^2+1}}$
 - **a.1)** (1 punto) Determine el dominio y las asíntotas de la función f(x).
 - a.2) (1 punto) Determine los máximos y mínimos relativos de la función f(x).
 - **a.3)** (1 punto) Determine la recta tangente a la función f(x) en el punto x = 2.
- **b)** (1 punto) Calcule: $\int \frac{x^2 3x + 3}{x 1} dx$

SOLUCIÓN.

- **a.1)** Dom(f) = \mathbb{R} ; Asíntotas horizontales: y = -1 (cuando $x \to -\infty$) , y = 1 (cuando $x \to +\infty$)
- **a.2)** Máximo relativo: $(1,\sqrt{2})$, mínimo relativo: no tiene **a.3)** $\sqrt{5}x+25y-17\sqrt{5}=0$
- **b)** $\frac{x^2}{2} 2x + \ln|x 1| + C$

Junio 18.

(4 puntos)

- a) (2 puntos) Determine los valores de los parámetros a, b y c para que la función $f(x) = a(x-1)^2 + bx + c$
 - **a.1.)** Pase por el punto (1,1)
 - **a.2.)** En el punto (1,1) su tangente tenga de pendiente 2
 - **a.3.)** En el punto x=2 tenga un máximo relativo.
- **b)** (2 puntos Determine el valor del límite: $\lim_{x \to +\infty} \left(\frac{x^2 3x + 2}{x^2 2x} \right)^{\frac{3x^2 1}{x}}$

SOLUCIÓN.

a)
$$a = -\frac{2}{3}$$
, $b = 2$, $c = -1$

Septiembre 18.

(4 puntos)

- a) (2,5 puntos) Considere la función: $f(x) = \frac{x^2 3x + 3}{x 1}$
 - a.1) (1 punto) Determine las asíntotas de la función f(x).
 - a.2) (1,5 puntos) Determine los intervalos de crecimiento y de decrecimiento y los mínimos y máximos relativos de la función f(x).
- **b)** (1,5 puntos) Calcule la siguiente integral: $\int \frac{9}{x^2 + x 2} dx$

SOLUCIÓN.

a) a.1) Asíntotas verticales: x=1; asíntotas oblicuas: y=x-2 a.2) Creciente: $(-\infty,0) \cup (2,+\infty)$;

Decreciente: $(0,1) \cup (1,2)$; Máximo relativo: (0,-3); Mínimo relativo: (2,1) **b)** $3 \ln \left| \frac{x-1}{x+2} \right| + C$

Septiembre 18.

(4 puntos)

a) (1,5 puntos) Calcule el límite:
$$\lim_{x\to +\infty} \left(\frac{x^2+1}{x} - \frac{x^3-x^2-x+2}{x^2}\right)^{\frac{3+x^2}{x}}$$

b) (1,5 puntos) De entre todos los triángulos rectángulos que tienen un área de 1 cm², determine el que tiene la hipotenusa de longitud mínima y proporcione las longitudes de los tres lados de ese triángulo.

c) (1 punto) Calcule el área limitada por la curva $f(x) = x^2 + x$ y la recta g(x) = x + 4.

SOLUCIÓN.

a) e^2 **b)** Catetos: $\sqrt{2}$ cm y $\sqrt{2}$ cm; Hipotenusa: 2 cm **c)** $\frac{32}{3}$ u^2

Junio 19.

a) (1,5 puntos) Un rectángulo tiene sus vértices en los puntos (0,0), (a,0), (0,b) y (a,b), donde a>0 y b>0 y además el punto (a,b) está situado en la curva de ecuación $y=\frac{1}{v^2}+9$.

De entre todos los rectángulos que cumplen esas condiciones determine el rectángulo de área mínima y calcule dicha área mínima.

b) (1 punto) Determine: $\int \frac{1}{9-x^2} dx$

c) (1,5 puntos) Determine el valor de la constante k para que se verifique que: $\lim_{x\to 1} \frac{x^3 + x^2 + kx + 3}{x^3 - x^2 - x + 1} = 2$

SOLUCIÓN.

a)
$$a = \frac{1}{3}$$
, $b = 18$; $S = 6$ u^2 **b)** $\frac{1}{6} \ln \left| \frac{x+3}{x-3} \right| + C$ **c)** $k = -5$

Junio 19.

Considere la función: $f(x) = \frac{x-1}{(x+1)^2}$

a) (1,5 puntos) Determine las asíntotas de la función, si existen.

b) (1 punto) Determine los intervalos de crecimiento y de decrecimiento de esa función, si existen.

c) (1,5 puntos) Determine la integral $\int_1^3 f(x) dx$

SOLUCIÓN.

a) Asíntotas verticales: x = -1, asíntotas horizontales: y = 0, asíntotas oblicuas: no tiene.

b) Creciente: $\forall x \in (-1,3)$, decreciente: $\forall x \in (-\infty,-1) \cup (3,+\infty)$ c) $\ln 2 - \frac{1}{2}$

Septiembre 19.

a) (1 punto) Determine el límite: $\lim_{x\to 0} \left(\frac{2}{\ln((1+x)^2)} - \frac{1}{x} \right)$

b) (1 punto) Determine el valor de la constante k para que la función $f(x) = \begin{cases} \frac{x^4 - 1}{x - 1} & \text{si } x \neq 1 \\ k - x & \text{si } x = 1 \end{cases}$ sea continua en x=1.

c) (2 puntos) La curva $y = x^2 + 1$ divide al rectángulo limitado por los vértices A:(0,1),B:(2,1),C:(0,5) y D: (2,5) en dos partes. Determine el área de cada una de esas dos partes.

SOLUCIÓN.

a) $\frac{1}{2}$

c) $\frac{16}{3}$ u² y $\frac{8}{3}$ u²

Septiembre 19.

a) (1 punto) Considere la función: $f(x) = \frac{2x^3 + kx^2 + x + 3}{x^2 + 2}$. Determine el valor de k para que la función f(x)tenga como asíntota oblicua, cuando $x \rightarrow +\infty$, la recta y=2x-1.

b) (1,5 puntos) Determine $\int x(\ln(x))^2 dx$

c) (1,5 puntos) Determine, si existen, los máximos, mínimos relativos y puntos de inflexión de la función:

$$f(x) = \frac{1}{x} + \ln(x)$$

SOLUCIÓN.

a) k = -1 b) $\frac{1}{2}x^2 \left[\left(\ln x \right)^2 - \ln x + \frac{1}{2} \right] + C$ c) Mínimo relativo: (1,1). Punto de inflexión: $\left(2, \frac{1}{2} + \ln 2 \right)$

14 1. ANÁLISIS

Probabilidad y Estadística

A continuación aparecen los ejercicios de la EVAU del bloque de probabilidad de los últimos años con las soluciones. Se recomienda trabajarlos para preparar la EVAU. En caso de necesitar consultar el desarrollo de la solución paso a paso se deberá consultar el documento específico de la prueba y año que aparece en la siguiente web¹:

¹ http://matematicasentumundo.es/PAU/PAU.htm

PROBABILIDAD

Junio 2017.

(1 punto) En una clase de bachillerato hay 10 chicas y 8 chicos. De ellos 3 chicas y 4 chicos juegan al ajedrez. Si escogemos un estudiante al azar, determine las siguientes probabilidades:

- a) (0,5 puntos) Sea chica y no juegue al ajedrez.
- **b)** (0,5 puntos) No juegue al ajedrez sabiendo que es chico.

|--|

Junio 2017.

(1 punto) En una urna hay 10 bolas blancas y 3 negras. Se extrae una bola al azar y, sin verla ni reemplazarla, se extrae una segunda bola.

- a) (0,5 puntos) ¿Cuál es la probabilidad de que la segunda bola extraída sea negra?
- **b)** (0,5 puntos) Sabiendo que la segunda bola ha sido negra, calcule la probabilidad de que la primera bola extraída fuera negra también.

SOLUCIÓN:

Septiembre 2017.

(1 punto) Se dispone de dos cajas con bolas blancas y negras. La caja A contiene 6 bolas blancas y 3 negras; y la caja B contiene 4 bolas blancas y 5 negras. Se lanza un dado y si sale par se sacan dos bolas de la caja A, una tras otra, sin reponer ninguna. Por su parte, si sale impar al lanzar el dado se sacan dos bolas de la caja B, también una tras otra, sin reponer ninguna.

¿Cuál es la probabilidad de extraer exactamente dos bolas blancas?

|--|--|

Septiembre 2017.

(1 punto) En una clase de bachillerato, el 60% de los alumnos aprueban matemáticas, el 50% aprueban inglés y el 30% aprueban las dos asignaturas. Calcule la probabilidad de que un alumno elegido al azar:

- a) (0,5 puntos) Apruebe alguna de las dos asignaturas (una o las dos)
- b) (0,5 puntos) Apruebe matemáticas sabiendo que ha aprobado inglés.

Junio 2018.

(1,5 puntos) Al 80% de los alumnos de una clase les gusta el fútbol; al 40% les gusta el balonmano y al 30% les gustan ambos deportes.

- a) (0,75 puntos) Si se elige un alumno al azar, ¿cuál es la probabilidad de que le guste alguno de los dos deportes (uno o los dos)?
- **b)** (0,75 puntos) Se eligen 10 alumnos al azar con reemplazamiento, es decir, cada vez que se elige un alumno se le pregunta por sus gustos y se repone a la clase, pudiendo ser elegido nuevamente. Calcule la

probabilidad de que solo a 3 les guste el fútbol (NO es preciso finalizar los cálculos, puede dejarse indicada la probabilidad, precisando los números que la definen y sin hacer los cálculos).

SOLUCIÓN: a) 0,9 b) 0,0008

Junio 2018.

(1,5 puntos) En una empresa los trabajadores se clasifican en tres categorías: A, B y C. El 30% de los trabajadores pertenecen a la categoría A; el 25% a la categoría B y el resto a la categoría C.

Además, se sabe que de los trabajadores de la categoría A un 5% habla inglés; mientras que de la categoría B un 20% habla inglés y de los trabajadores de la categoría C un 60% habla inglés.

- **a)** (0,75 puntos) Si se elige al azar un trabajador de la empresa, ¿cuál es la probabilidad de que hable inglés?
- **b)** (0,75 puntos) Si se elige al azar un trabajador de la empresa y resulta que SÍ habla inglés, ¿cuál es la probabilidad de que pertenezca a la categoría C?

SOLUCIÓN: a) 0,335 b) 0,806

Septiembre 2018.

(1,5 puntos) Se lanza 10 veces un dado equilibrado (es decir un dado donde todas sus caras tienen la misma probabilidad de aparecer).

- a) (0,75 puntos) Determine la probabilidad de que salga un número para en todos los lanzamientos.
- **b)** (0,75 puntos) Determine la probabilidad de que salga un número par exactamente en tres lanzamientos. (NO es preciso finalizar los cálculos, puede dejarse indicada la probabilidad, precisando los números que la definen y sin hacer los cálculos).

SOLUCIÓN: a) $\frac{1}{1024}$ b) $\frac{15}{2^7} \approx 0.1172$

Septiembre 2018.

(1,5 puntos)

- a) (0,75 puntos) En una clase de 20 alumnos, 10 estudian ruso, 12 practican algún deporte y tan solo 2 hacen ambas cosas. ¿Cuál es la probabilidad de que, al escoger un alumno al azar, si estudia ruso, practique algún deporte?
- **b)** (0,75 puntos) Un tirador de pistola olímpica, tiene una probabilidad de 0,8 de hacer blanco. Si dispara 12 veces, ¿cuál es la probabilidad de que haga 10 o más blancos? (NO es preciso finalizar los cálculos, puede dejarse indicada la probabilidad, precisando los números que la definen y sin hacer los cálculos).

SOLUCIÓN: a) 0,2 b) 0,5583

Junio 2019.

Se dispone de dos cajas, la A contiene 3 bolas moradas y 2 bolas rojas; mientras que la caja B contiene 4 bolas moradas y 4 rojas.

- **a)** (0,75 puntos) Se escoge una bola cualquiera de la caja A y se pasa a la caja B. Posteriormente se saca una bola de la caja B. ¿Cuál es la probabilidad de que la bola extraída de la caja B sea morada?
- **b)** (0,75 puntos) Ahora volvemos a la situación original de las cajas; la A contiene 3 moradas y 2 rojas y la B contiene 4 moradas y 4 rojas.

Seleccionamos una caja al azar y se saca una bola que resulta ser roja. ¿Cuál es la probabilidad de que esa bola sea de la caja A?

SOLUCIÓN: a) 23/45 b) 4/9

Junio 2019.

La probabilidad de que una persona escriba un mensaje de Twitter sin faltas de ortografía es 0,75. Se sabe además que una persona escribe a lo largo del día 20 mensajes de Twitter.

A partir de esta información, responde a las siguientes cuestiones. NO es necesario finalizar los cálculos en ninguna de ellas, puede dejarse indicada la probabilidad, precisando los números que la definen.

- a) (0,5 puntos) ¿Cuál es la probabilidad de que exactamente la mitad de los mensajes escritos en un día, es decir 10, no tengan faltas de ortografía?
- **b)** (0,5 puntos) ¿Cuál es la probabilidad de que ningún mensaje de los 20 escritos en un día tenga faltas de ortografía?
- c) (0,5 puntos) ¿Cuál es la probabilidad de que 18 o más mensajes de los 20 escritos en un día sí tengan faltas de ortografía?

SOLUCIÓN: a) $\binom{20}{10} \cdot 0.75^{10} \cdot 0.25^{10} \simeq 0.0099$ b) $\binom{20}{20} \cdot 0.75^{20} \simeq 0.0032$ c) $\binom{20}{18} \cdot 0.25^{18} \cdot 0.75^{2} + \binom{20}{19} \cdot 0.25^{19} \cdot 0.75 + \binom{20}{20} \cdot 0.25^{20} \simeq 0.00000000161$

Septiembre 2019.

Una encuesta realizada sobre el mes preferido, entre julio, agosto o septiembre, para salir de vacaciones arrojó los siguientes datos: un 40% prefiere julio, un 30% agosto y el resto prefiere el mes de septiembre. Entre los que prefieren el mes de julio, un 60% pasa sus vacaciones en un hotel; entre los que prefieren el mes de agosto un 40% elige hotel para sus vacaciones y entre los encuestados que prefieren septiembre, un 65% eligen hotel.

- **a)** (0,5 puntos) Se elige un individuo al azar, calcule la probabilidad de que vaya a un hotel y le guste ir en agosto.
- **b)** (0,5 puntos) Se elige un individuo al azar, calcule la probabilidad de que pase sus vacaciones en un hotel.
- **c)** (0,5 puntos) Se elige al azar un individuo y dice que no pasa sus vacaciones en un hotel, calcule la probabilidad de que prefiera irse en agosto de vacaciones.

SOLUCIÓN: a) 0,12 b) 0,55 c) 0,4045

Septiembre 2019.

Un juego de ruleta tiene 25 casilla numeradas del 1 al 25. Un jugador gana si sale 2 o múltiplo de 2.

- **a)** (0,75 puntos) Si juega 100 veces, calcule la probabilidad de que gane exactamente 10 veces. (En este apartado, NO es necesario finalizar los cálculos, puede dejarse indicada la probabilidad, precisando los números que la definen).
- **b)** (0,75 puntos) Si juega 200 veces, calcule la probabilidad de que gane entre 90 y 110 veces, ambos valores incluidos.

SOLUCIÓN: a) $\binom{100}{10} \cdot 0.48^{10} \cdot 0.52^{90}$ b) 0,7784