《密码系统》浅析

IOI 2010 中国国家集训队论文

杭州二中 赖陆航

本文提出了一道 NOI 难度的试题,笔者用快速转移的动态规划和容斥原理解决了它,并给出了一组有效的测试数据来评估选手的解法。同时,本文还总结了作者对于动态规划快速转移的一些想法。

目录

目录	1
正文	2
一、 试题	2
【问题描述】	2
【输入文件】	2
【输出文件】	2
【输入样例】	2
【输出样例】	2
【样例说明】	3
【数据规模和约定】	3
二、解题思路	4
三、解题算法	5
四、 出题思路	5
五、 数据生成方法与分数分布	6
六、 总结与扩展	7
参考文献	7
感谢	8
附录	8

正文

一、 试题

密码系统(crypto)

时间限制: 2s

空间限制: 128M

【问题描述】

Lambda 受任于某情报站,他的工作是获取敌人情报。一次他在破解密码系统时,得到了一个 N 位 B 进制数 φ ,满足 $\varphi \equiv V \pmod{M}$ 。他发现组成 φ 的数字很奇特。为了验证 φ 的特殊性,他将所有模 M 为 V 的 N 位 B 进制数,按照各数位构成的集合分类,并想知道每一类数各有多少个。

【输入文件】

输入文件 crypto.in 共一行,包含四个整数 N, B, M, V。

【输出文件】

输出文件 crypto.out 共 2^B -1 行,每行包含一个集合 S 和整数 Ans[S],以单个空格隔开。集合 S 用其所有元素的递减序列表示,如 $\{2,0,1\}$ 表示为"210"。Ans[S]表示数位集合为 S 的满足以上性质的数的数目。

集合按照字典序输出,每个集合只输出一次。由于 *Ans*[*S*]可能很大,只需输出它除以 10007 的余数即可。

【输入样例】

3 3 4 1

【输出样例】

0 0

1 1

10 1

2 0

20 0

21 2

210 1

【样例说明】

在所有三位三进制数($100_3^222_3$)中,模 4 为 1 的数为 100_3 , 111_3 , 122_3 , 210_3 , 221_3 。数位集合为{1}的有 1 个(111_3),数位集合为{1,0}的有 1 个(100_3),数位集合为{2,1}的有 2 个(122_3 , 221_3),数位集合为{2,1,0}的有 1 个(210_3)。

【数据规模和约定】

测试数据	N	В	М	
1~2	≤10			
3~6	≤10 ³	-22	≤12	
7~10		≤3		
11~14	≤10 ⁹		≤120	
15~18	210	<10	≤8	
19~20		≤10	≤40	

对于 15%的测试数据, gcd(B, M)>1。

对于所有测试数据, 2≤N, 2≤B, 0≤V<M。

二、 解题思路

本题 N 的范围比较大,考虑使用动态规划算法。容易想到朴素的动态规划:设 DP[n, s, m]为长度为 n,数位集合为 s,模 M 为 m 的 B 进制数(首位可以为 0)的数目(模 10007)。则

 $DP[n', s', m'] = sum\{ DP[n, s, m] \mid d \in \{0, ..., B-1\}, n+1=n', s \cup \{d\}=s', Bm+d \equiv m' \pmod{M} \}$

由于 N 最高可达 10^9 ,转移又是线性关系,尝试用矩阵快速幂加速。然而矩阵的阶 $Size=2^BM$,无法承受。注意到这个矩阵是循环矩阵,利用此性质可以在 $O(Size^2)$ 内进行矩阵乘法。

然而这个方法并不是很直观,能否直接对转移进行优化?在朴素的动态规划中,n每次增加 1,难道不能提高吗?尝试将长度分别为 n_1 与 n_2 的两个 B 进制数合并,则可以得到以下转移方程:

 $DP[n', s', m'] = sum\{ DP[n_1, s_1, m_1]DP[n_2, s_2, m_2] \mid s_1 \cup s_2 = s', B^{n^2}m_1 + m_2 \equiv m' \pmod{M} \} (n_1 + n_2 = n')$

如果把动态规划中一个阶段的决策和转移,看成定义在状态空间上的函数,那么这种方法相当于计算转移函数的复合函数,不妨将其定义为转移函数的积。(对于上文所提到的动态规划,其转移函数的定义较复杂,详见附录 1)由于其满足结合律,通过快速幂,它可以与矩阵乘法一样,达到 O(Size²logN)的复杂度。

显然 $Size=2^BM$ 时 $O(Size^2)$ 仍然无法承受,因为 2^B 实在很可观,必须把它从状态中去除。

假设数位集合只需要是某个 S 的子集,而不是恰好等于某个集合 S,那么可以删除这维状态并把转移中的 $d \in \{0, \dots, B-1\}$ 改成 $d \in S$,通过上面的方法就可以算出 $Ans'[S]=sum\{Ans[T] \mid T$ 包含于 S }。一旦知道所有 Ans'[S],便可用容斥原理求出所有 Ans[S]。

三、 解题算法

标准解法主要分为两个阶段。

- 1. 枚举{0, 1, ..., B-1}的所有子集 S。对于每个 S
 - a) 设 *DP*[*n*, *m*]为长度为 *n*, 数位集合为 *S* 的子集,模 *M* 为 *m* 的 *B* 进制数(首位可以为 0)的数目(模 10007)。
 - b) 利用转移方程

 $DP[n', m'] = sum\{ DP[n_1, m_1]DP[n_2, m_2] \mid B^{n^2}m_1 + m_2 \equiv m' \pmod{M} \}$ $(n_1 + n_2 = n')$

(其中 $DP[1, m] = | \{ \{ d \in S \mid d \equiv m \pmod{M} \} | \}$

进行以转移函数快速幂优化的动态规划,求出所有 DP[N-1, m]。

- c) 枚举 m 和首位 $d \in S$ ($d \neq 0$)。若 $B^{N-1}d+m \equiv V \pmod{M}$,则将 DP[N-1, m] 累加到 Ans'[S]中。
- 2. 再次枚举所有子集 S。对于每个 S,枚举 S 的所有真子集 T,将 Ans[T]从 Ans'[S]中减去,得到 Ans[S]。即

Ans[S]=Ans'[S]-sum{ Ans[T]| T 真包含于 S }

在第一阶段中,总共枚举了 2^{B} 次,每次复杂度为 $O(M^{2}\log N)$ 。在第二阶段中,枚举所有集合的所有子集,复杂度为 $O(3^{B})$ 。因此该算法的时间复杂度为 $O(2^{B}M^{2}\log N+3^{B})$ 。

四、 出题思路

本题主要考察选手对于动态规划加速和容斥原理的掌握程度。

笔者曾经做过一道有关倍增转移的动态规划的题目,并加以总结。为与更多的人分享这个巧妙的方法,笔者准备了此题,并通过容斥原理提高少许难度。

数据生成方法与分数分布 五、

为使分数分布均匀,笔者列出以下几种可能的解法,并分配期望得分。

编号	算法	复杂度	期望得分
1	搜索	$O(B^N)$	10
2	朴素动态规划	O(2 ^B NM)	30
3	以矩阵快速幂优化的	0/084/3141	50
3	状态压缩动态规划	O(8 ^B M ³ logN)	
4	以转移函数快速幂优化的	$O(4^B M^2 \log N)$	70
4	状态压缩动态规划	0(4 W 10gN)	
_	以矩阵快速幂优化的	0/2Bn/3Ln/-2B)	70
5	动态规划+容斥原理	$O(2^{B}M^{3}\log N + 3^{B})$	
	以转移函数快速幂优化的	0/2 ^B 1/2 ² 10 71/12 ^B 1	100
6	动态规划+容斥原理	$O(2^{B}M^{2}\log N + 3^{B})$	100

针对不同算法,笔者为其生成了对应的测试数据,使之能够得到期望的分数。

测试数据	N	В	М	V	接受算法
1~2	随机整数	3			1, 2, 3, 4, 5, 6
	[2, 10]				1, 2, 3, 4, 3, 0
3~6	随机整数		11		2 2 4 5 6
	[2, 10 ³]			2, 3, 4, 5, 6	
7~10	- 随机整数 - [2,10 ⁹]			175 +17 亩/c ¥/c	3, 4, 5, 6
11			108	随机整数	4.6
12~14			110	[0, <i>M</i>)	4, 6
15			6		5, 6
16~18		10	7		5, 0
19		10	28		6
20			31		U

注意在第 11、15、19 个测试数据中,gcd(B, M)>1,这是为了使某些特殊处理过的算法拿到更高的分数。因为一个 N 位的 B 进制数模 gcd(B, M)的值,只与它的末几位有关,那么在快速转移的动态规划的过程中,可以不考虑模 gcd(B, M)的状态,即令 M=M/gcd(B, M)。

六、 总结与扩展

本文提出了一道 NOI 难度的试题,笔者用快速转移的动态规划和容斥原理解决了它,并给出了一组有效的测试数据来评估选手的解法。

本文还提到了动态规划快速转移。动态规划通过提炼状态的特征值,减少重叠子问题的计算次数。而动态规划快速转移还要通过提炼转移的特征值,实现一次多步转移。矩阵快速幂作为它的一个特例,是以矩阵的形式来表示转移函数的。总而言之,动态规划快速转移通过表示与求出转移函数的积,并减少冗余计算,达到了加速转移的目的,为优化动态规划提供了一种新思路。

参考文献

- Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein《算法导论》
 第 2 版机械工业出版社
- 2. 刘汝佳,黄亮《算法艺术与信息学竞赛》清华大学出版社
- 3. 刘汝佳,周源,周戈林《〈算法艺术与信息学竞赛〉学习指导》

感谢

感谢余姚中学的冯一同学和杭州二中的徐天一同学的帮助。

附录

1. "解题思路"中转移函数和转移函数的积的定义

转移函数由二元组(n, T)决定,它将 DP 映射到 DP',满足

 $DP'[n_1+n, s', m']=\text{sum}\{ DP[n_1, s_1, m_1] \ T_{s_2, m_2} \mid s_1 \cup s_2=s', B^n m_1+m_2 \equiv m' \text{(mod } M) \}_\circ$

两个转移函数 f, g(分别由 (n_1, T_1) 和 (n_2, T_2) 决定)的积 $f \times g$ 也是转移函数,它由二元组(n', T')决定,满足

 $n'=n_1+n_2$, $T_{s',m'}=\text{sum}\{T_{s_1,m_1}T_{s_2,m_2}\mid s_1\cup s_2=s', B^{n_2}m_1+m_2\equiv m'(\text{mod }M)\}$.

2. 标准解法的 C++程序代码

3. 测试数据

