Bundle Adjustment in the Large

Supplementary Material

In this document we report details of the various problems used in our experiments and detailed information about the performance of each algorithm. For each of the five data sets, we present three things.

- 1. A table describing the problem size, complexity and the memory usage of each of the bundle adjustment algorithms. To characterize the problem complexity, we measure the sparsity of the reduced camera matrix S and the sparsity of the sparse Cholesky factorization $S = LL^{\top}$ of the reduced camera matrix/Schur complement as returned by CHOLMOD after applying a fill reducing permutation. $\operatorname{sparsity}(S)$ and $\operatorname{sparsity}(L)$ together are a measure of the input and output complexity of inverting the Newton system using the Schur complement trick exactly. For each algorithm we report the peak memory usage in bytes for that algorithm. NA is used to indicate problems for which the Schur complement S was too large to be calculated and stored in memory (more than 48GB).
- 2. A table describing for each problem, the initial error, best error achieved by an algorithm, and the time required to achieve it. NA is used where the problem was unable to run because it ran out of memory.
- 3. A representative selection of plots describing the performance of the algorithms. We plot the RMS error both as a function of wall clock time. The three black dashed horizontal lines in each plot correspond to the three tolerances, i.e., $r^* + 0.01$, $r^* + 0.001$ and $r^* + 0.001$, where r^* was the best RMS error achieved across all solvers in 50 iterations.

We also reproduce the two main figures of the paper at the end at a larger scale for reasons of clarity. Finally we present an elementary proof of the fact that Schur complements are better conditioned than the full linear system.

1 Dubrovnik

This section presents the results for bundle adjustment on problems generated during the incremental reconstruction of the skeletal set for the Dubrovnik dataset.

Table 1: Problem statistics and memory usages for the incremental reconstruction of the Dubrovnik Skeletal Sets

							Memory Usa	age (Bytes)		
images	points	obs	sparsity(S)	sparsity(L)	explicit-direct	explicit-sparse	explicit-jacobi	implicit-jacobi	implicit-ssor	normal-jacobi
16	22106	83718	0.00	0.00	5.1e+07	5.1e+07	5.1e+07	3.6e+07	3.8e+07	3.8e+07
88	64298	383937	0.13	0.00	2.3e+08	2.4e+08	2.3e+08	1.5e+08	1.5e+08	1.5e+08
135	90642	553336	0.21	0.08	3.4e + 08	3.5e+08	3.3e+08	2.1e+08	2.2e+08	2.2e+08
142	93602	565608	0.24	0.06	3.5e+08	3.6e+08	3.4e+08	2.2e+08	2.2e+08	2.3e+08
150	95821	568119	0.29	0.03	3.5e+08	3.7e+08	3.4e+08	2.2e+08	2.3e+08	2.3e+08
161	103832	592019	0.35	0.09	3.7e+08	3.8e+08	3.5e+08	2.3e+08	2.4e+08	2.4e+08
173	111908	634570	0.36	0.10	4.0e+08	4.1e+08	3.8e+08	2.5e+08	2.6e+08	2.6e+08
182	116770	668705	0.36	0.08	4.2e+08	4.4e+08	4.0e+08	2.6e+08	2.7e+08	2.7e+08
202	132796	751652	0.36	0.12	4.8e+08	5.0e+08	4.5e+08	2.9e+08	3.0e+08	3.1e+08
237	154414	858331	0.35	0.11	5.5e+08	5.9e+08	5.2e+08	3.3e+08	3.5e+08	3.5e+08
253	163691	899155	0.37	0.12	5.9e+08	6.2e+08	5.5e+08	3.5e+08	3.7e+08	3.7e+08
262	169354	919688	0.38	0.13	6.0e+08	6.4e+08	5.7e+08	3.6e+08	3.8e + 08	3.8e+08
273	176305	942970	0.38	0.13	6.2e + 08	6.6e+08	5.8e+08	3.7e + 08	3.9e+08	3.9e+08
287	182023	971292	0.39	0.13	6.5e+08	6.9e+08	6.0e+08	3.8e+08	4.0e+08	4.0e+08
308	195089	1045197	0.41	0.13	7.0e+08	7.5e+08	6.5e+08	4.1e+08	4.3e+08	4.3e+08
356	226730	1255268	0.46	0.09	8.5e+08	9.1e+08	7.8e+08	4.9e+08	5.1e+08	5.2e+08

Table 2: Perfomance statistics for the incremental reconstruction of the Dubrovnik Skeletal Sets

				explic	it-direct	explici	t-sparse	explic	it-jacobi	implici	t-jacobi	implic	cit-ssor	norma	l-jacobi
images	points	obs	initial	time	error	time	error	time	error	time	error	time	error	time	error
16 88 135 142 150 161 173	22106 64298 90642 93602 95821 103832 111908	83718 383937 553336 565608 568119 592019 634570	4.369 4.577 1.553 1.037 0.776 0.817 0.836	1 69 116 114 119 43 134	0.464 0.851 0.810 0.691 0.653 0.636	2 69 118 117 122 44 138	0.464 0.851 0.810 0.691 0.653 0.636 0.636	2 71 99 97 97 38 120	0.464 0.850 0.813 0.691 0.653 0.636	4 55 94 114 121 148 171	0.464 0.851 0.816 0.691 0.653 0.636	2 65 187 99 113 102 210	0.464 0.851 0.814 0.691 0.653 0.636	1 51 159 56 87 63 101	0.464 0.851 0.813 0.691 0.653 0.636 0.636
182 202 237 253 262 273 287 308 356	116770 132796 154414 163691 169354 176305 182023 195089 226730	668705 751652 858331 899155 919688 942970 971292 1045197 1255268	0.971 1.321 1.375 0.855 0.784 0.717 0.913 1.461 1.858	49 30 69 83 87 79 69 69	0.667 0.656 0.642 0.617 0.608 0.601 0.601 0.609 0.625	52 31 72 88 95 81 71 73 78	0.667 0.656 0.642 0.617 0.608 0.601 0.601 0.609 0.625	38 50 86 123 111 115 102 98 142	0.667 0.656 0.642 0.617 0.608 0.601 0.601 0.609 0.625	166 145 222 567 1315 402 784 1015 572	0.667 0.656 0.642 0.617 0.608 0.601 0.601 0.609 0.625	139 198 459 836 1076 1297 1167 517 544	0.667 0.656 0.642 0.617 0.608 0.601 0.601 0.609 0.625	103 183 478 557 1005 748 871 275 569	0.667 0.656 0.642 0.617 0.608 0.601 0.601 0.609 0.625

images = 16, points = 22106, observations= 83718

implicit-jacobi

implicit-ssor

10²

images = 135, points = 90642, observations= 553336

images = 142, points = 93602, observations= 565608

images = 150, points = 95821, observations = 568119

images = 173, points = 111908, observations = 634570

images = 182, points = 116770, observations= 668705

images = 202, points = 132796, observations= 751652

images = 237, points = 154414, observations= 858331

images = 253, points = 163691, observations= 899155

images = 262, points = 169354, observations= 919688

images = 273, points = 176305, observations= 942970

images = 287, points = 182023, observations= 971292

images = 308, points = 195089, observations= 1045197

images = 356, points = 226730, observations= 1255268

2 Trafalgar Square

This section presents the results for bundle adjustment on problems generated during the incremental reconstruction of the skeletal set for the Trafalgar square dataset.

Table 3: Problem statistics and memory usages for the incremental reconstruction of the Trafalgar square Skeletal Sets

							Memory Usa	age (Bytes)		
images	points	obs	sparsity(S)	sparsity(L)	explicit-direct	explicit-sparse	explicit-jacobi	implicit-jacobi	implicit-ssor	normal-jacobi
21	11315	36455	0.10	0.08	2.3e+07	2.4e+07	2.3e+07	1.7e+07	1.8e+07	1.8e+07
39	18060	63551	0.15	0.08	4.1e+07	4.2e+07	4.1e+07	2.8e+07	3.0e+07	3.0e+07
50	20431	73967	0.24	0.11	4.8e+07	5.0e+07	4.7e+07	3.3e+07	3.5e+07	3.5e+07
126	40037	148328	0.62	0.37	1.0e+08	1.1e+08	9.7e+07	6.5e+07	6.9e + 07	6.9e+07
138	44033	165899	0.64	0.31	1.2e+08	1.2e+08	1.1e+08	7.2e+07	7.8e + 07	7.8e+07
161	48126	182072	0.66	0.30	1.3e+08	1.4e+08	1.2e+08	7.9e+07	8.6e+07	8.6e+07
170	49267	185815	0.67	0.37	1.4e+08	1.4e+08	1.2e+08	8.1e+07	8.9e+07	8.7e+07
174	50489	188809	0.67	0.39	1.4e+08	1.4e+08	1.3e+08	8.3e+07	8.9e+07	8.9e+07
193	53101	196526	0.69	0.22	1.5e+08	1.7e+08	1.3e+08	8.6e+07	9.4e + 07	9.4e+07
201	54427	199938	0.71	0.26	1.6e+08	1.7e+08	1.3e+08	8.8e+07	9.6e+07	9.5e+07
206	54562	200715	0.71	0.24	1.6e+08	1.7e+08	1.4e + 08	8.9e+07	9.5e+07	9.8e+07
215	55910	204202	0.72	0.26	1.6e+08	1.7e+08	1.4e+08	9.0e+07	1.0e+08	1.0e+08
225	57665	208622	0.73	0.28	1.7e+08	1.8e+08	1.4e+08	9.3e+07	1.0e+08	1.0e+08
257	65132	225911	0.76	0.33	1.9e+08	2.0e+08	1.6e+08	1.0e+08	1.1e+08	1.1e+08

Table 4: Perfomance statistics for the incremental reconstruction of the Trafalgar square Skeletal Sets

				explic	it-direct	explici	t-sparse	explic	t-jacobi	implic	it-jacobi	implio	cit-ssor	norma	al-jacobi
images	points	obs	initial	time	error	time	error	time	error	time	error	time	error	time	error
21	11315	36455	3.081	1	0.913	0	0.913	1	0.913	4	0.946	1	0.913	2	0.913
39 50	18060 20431	63551 73967	2.563 1.505	1	0.975 0.835	2	0.975 0.835	2	0.975 0.835	8	1.023 0.874	2 3	0.975 0.835	2 3	0.975 0.835
126	40037	148328	2.010	7	0.787	7	0.787	14	0.787	18	0.821	160	0.787	592	0.786
138	44033	165899	1.343	10	0.724	10	0.724	23	0.724	19	0.751	269	0.724	259	0.724
161	48126	182072	0.834	14	0.680	14	0.680	34	0.680	21	0.707	323	0.680	315	0.680
170	49267	185815	0.841	16	0.680	16	0.680	33	0.680	22	0.709	338	0.680	346	0.680
174	50489	188809	0.810	17	0.674	17	0.674	38	0.674	22	0.701	384	0.674	781	0.673
193	53101	196526	0.857	16	0.674	16	0.674	25	0.673	23	0.701	367	0.674	264	0.674
201	54427	199938	0.814	37	0.677	38	0.677	44	0.671	23	0.711	321	0.671	277	0.671
206	54562	200715	0.782	16	0.670	16	0.670	57	0.670	24	0.696	455	0.670	305	0.670
215	55910	204202	0.832	16	0.669	16	0.669	22	0.669	24	0.696	408	0.668	347	0.668
225	57665	208622	0.765	16	0.662	17	0.662	43	0.662	25	0.688	401	0.662	341	0.662
257	65132	225911	0.734	37	0.654	37	0.654	48	0.654	28	0.679	472	0.654	361	0.654

images = 138, points = 44033, observations= 165899

images = 161, points = 48126, observations= 182072

images = 170, points = 49267, observations= 185815

images = 174, points = 50489, observations= 188809

images = 193, points = 53101, observations= 196526

images = 201, points = 54427, observations= 199938

images = 206, points = 54562, observations = 200715

images = 215, points = 55910, observations= 204202

images = 225, points = 57665, observations= 208622

images = 257, points = 65132, observations= 225911

3 Venice

This section presents the results for bundle adjustment on problems generated during the incremental reconstruction of the skeletal set for the Venice dataset.

Table 5: Problem statistics and memory usages for the incremental reconstruction of the Venice Skeletal Sets

							Memory Usa	age (Bytes)		
images	points	obs	sparsity(S)	sparsity(L)	explicit-direct	explicit-sparse	explicit-jacobi	implicit-jacobi	implicit-ssor	normal-jacobi
52	64053	347173	0.02	0.00	2.0e+08	2.1e+08	2.0e+08	1.4e+08	1.4e+08	1.4e+08
89	110973	562976	0.07	0.00	3.4e+08	3.4e+08	3.3e+08	2.2e+08	2.3e+08	2.3e+08
245	198739	1091386	0.35	0.00	6.9e+08	7.3e+08	6.6e+08	4.3e+08	4.5e+08	4.5e+08
427	310384	1699145	0.46	0.01	1.2e+09	1.3e+09	1.1e+09	6.6e+08	7.0e + 08	7.0e+08
744	543562	3058863	0.58	0.06	2.3e+09	2.6e+09	1.9e+09	1.2e+09	1.2e+09	1.2e+09
951	708276	3748892	0.66	0.11	3.0e+09	3.3e+09	2.4e+09	1.5e+09	1.6e+09	1.6e+09
1102	780462	4052340	0.70	0.10	3.4e+09	3.8e+09	2.6e+09	1.6e+09	1.7e+09	1.7e+09
1158	802917	4130503	0.71	0.11	3.5e+09	3.9e+09	2.7e+09	1.6e+09	1.7e+09	1.7e+09
1184	816583	4179047	0.72	0.14	3.6e+09	4.0e+09	2.7e+09	1.7e+09	1.7e+09	1.7e+09
1238	843534	4290503	0.74	0.17	3.8e+09	4.1e+09	2.8e+09	1.7e+09	1.8e+09	1.8e+09
1288	866452	4383006	0.75	0.19	3.9e+09	4.2e+09	2.9e+09	1.7e+09	1.8e+09	1.8e+09
1350	894716	4517126	0.77	0.20	4.1e+09	4.4e+09	3.0e+09	1.8e+09	1.9e+09	1.9e+09
1408	912229	4634530	0.78	0.19	4.3e+09	4.6e+09	3.0e+09	1.8e+09	1.9e+09	1.9e+09
1425	916895	4657314	0.78	0.20	4.3e+09	4.6e+09	3.0e+09	1.9e+09	2.0e+09	2.0e+09
1473	930345	4705873	0.79	0.21	4.5e+09	4.7e+09	3.1e+09	1.9e+09	2.0e+09	2.0e+09
1490	935273	4721817	0.79	0.23	4.5e+09	5.0e+09	3.1e+09	1.9e+09	2.0e+09	2.0e+09
1521	939551	4739031	0.80	0.22	4.6e+09	4.8e+09	3.1e+09	1.9e+09	2.0e+09	2.0e+09
1544	942409	4750193	0.80	0.22	4.6e+09	4.9e+09	3.1e+09	1.9e+09	2.0e+09	2.0e+09
1638	976803	4956814	0.82	0.66	5.0e+09	4.3e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1666	983911	4987145	0.82	0.68	5.0e+09	4.2e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1672	986962	5000110	0.82	0.67	5.1e+09	4.3e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1681	983415	4966839	0.82	0.68	5.1e+09	4.3e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1682	983268	4965018	0.82	0.68	5.1e+09	4.2e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1684	983269	4965728	0.82	0.68	5.1e+09	4.3e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1695	984689	4970942	0.82	0.68	5.1e+09	4.2e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1696	984816	4970895	0.82	0.66	5.1e+09	4.4e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1706	985529	4974631	0.82	0.68	5.1e+09	4.2e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1776	993909	5001859	0.84	0.69	5.3e+09	4.4e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09
1778	993923	5001946	0.84	0.70	5.3e+09	4.4e+09	3.3e+09	2.0e+09	2.1e+09	2.1e+09

Table 6: Perfomance statistics for the incremental reconstruction of the Venice Skeletal Sets

				explici	t-direct	explicit	-sparse	explici	t-jacobi	implici	t-jacobi	implic	it-ssor	norma	l-jacobi
images	points	obs	initial	time	error	time	error	time	error	time	error	time	error	time	error
52	64053	347173	4.137	49	0.835	50	0.835	44	0.834	35	0.837	52	0.834	32	0.834
89	110973	562976	2.223	57	0.709	57	0.709	32	0.709	37	0.709	24	0.709	23	0.709
245	198739	1091386	3.113	247	0.894	256	0.894	77	0.894	157	0.903	135	0.897	121	0.894
427	310384	1699145	2.642	105	0.789	111	0.789	96	0.789	171	0.789	158	0.789	975	0.785
744	543562	3058863	2.381	365	0.707	395	0.707	447	0.707	338	0.707	347	0.707	724	0.707
951	708276	3748892	1.632	659	0.646	698	0.646	1018	0.646	746	0.646	1960	0.647	573	0.647
1102	780462	4052340	1.110	814	0.686	869	0.686	893	0.689	169	0.623	1409	0.616	1263	0.616
1158	802917	4130503	0.833	559	0.589	594	0.589	600	0.589	283	0.591	947	0.589	1058	0.589
1184	816583	4179047	0.767	497	0.580	527	0.580	592	0.581	382	0.591	627	0.582	285	0.588
1238	843534	4290503	0.828	511	0.579	528	0.579	276	0.581	453	0.580	653	0.581	395	0.580
1288	866452	4383006	0.847	468	0.570	472	0.570	522	0.570	209	0.573	880	0.570	516	0.570
1350	894716	4517126	0.880	544	0.571	542	0.571	560	0.571	967	0.571	6129	0.571	1977	0.571
1408	912229	4634530	0.873	542	0.582	541	0.582	428	0.582	388	0.583	256	0.585	3911	0.582
1425	916895	4657314	0.682	478	0.578	464	0.578	848	0.578	2081	0.578	276	0.578	197	0.583
1473	930345	4705873	0.659	498	0.569	482	0.569	330	0.569	4913	0.569	3089	0.569	843	0.569
1490	935273	4721817	0.659	566	0.568	545	0.568	595	0.568	431	0.568	840	0.568	426	0.568
1521	939551	4739031	0.658	611	0.568	588	0.568	447	0.568	940	0.568	1046	0.568	2929	0.568
1544	942409	4750193	0.648	906	0.567	867	0.567	653	0.567	990	0.567	1952	0.567	420	0.568
1638	976803	4956814	1.127	2378	0.705	1450	0.705	1391	0.710	1789	0.719	2933	0.712	3664	0.719
1666	983911	4987145	1.042	683	0.663	413	0.663	1342	0.650	1322	0.650	4724	0.645	4744	0.646
1672	986962	5000110	1.002	1248	0.617	897	0.617	840	0.610	737	0.618	1543	0.606	879	0.607
1681	983415	4966839	0.693	2199	0.576	1310	0.576	1291	0.576	2157	0.578	4786	0.574	1293	0.577
1682	983268	4965018	0.664	2127	0.571	1249	0.571	1502	0.571	2371	0.575	3652	0.571	4031	0.571
1684	983269	4965728	0.667	2626	0.571	1554	0.571	1640	0.571	4084	0.574	3701	0.572	2993	0.572
1695	984689	4970942	0.674	1905	0.574	1107	0.574	1516	0.574	3243	0.577	2388	0.575	2957	0.573
1696	984816	4970895	0.665	1379	0.570	763	0.570	1127	0.571	2477	0.574	4763	0.571	3730	0.571
1706	985529	4974631	0.671	3745	0.575	1082	0.575	1449	0.575	3459	0.578	1839	0.576	1655	0.576
1776	993909	5001859	0.659	2871	0.569	1596	0.569	1475	0.571	8190	0.572	5766	0.571	4419	0.571
1778	993923	5001946	0.658	2875	0.569	1590	0.569	1525	0.571	6859	0.572	5377	0.571	4329	0.571

images = 52, points = 64053, observations= 347173

images = 89, points = 110973, observations = 562976

images = 245, points = 198739, observations= 1091386

images = 427, points = 310384, observations= 1699145

images = 744, points = 543562, observations= 3058863

images = 951, points = 708276, observations= 3748892

images = 1102, points = 780462, observations= 4052340

images = 1158, points = 802917, observations = 4130503

images = 1184, points = 816583, observations = 4179047

images = 1238, points = 843534, observations= 4290503

images = 1288, points = 866452, observations= 4383006

images = 1350, points = 894716, observations= 4517126

images = 1408, points = 912229, observations= 4634530

explicit-direct

explicit-sparse
normal-jacobi
explicit-jacobi

implicit-jacobi

10³

implicit_ssor

images = 1473, points = 930345, observations= 4705873

images = 1490, points = 935273, observations= 4721817

images = 1521, points = 939551, observations= 4739031

explicit-direct

explicit-sparse normal-jacobi

explicit-jacobi implicit-jacobi implicit-ssor

10³

images = 1638, points = 976803, observations= 4956814

images = 1666, points = 983911, observations = 4987145

images = 1672, points = 986962, observations= 5000110

explicit-direct

explicit-sparse normal-jacobi

explicit-jacobi

implicit-jacobi

10⁴

implicit_ssor

images = 1682, points = 983268, observations= 4965018

images = 1684, points = 983269, observations= 4965728

images = 1695, points = 984689, observations= 4970942

images = 1696, points = 984816, observations= 4970895

images = 1706, points = 985529, observations= 4974631

images = 1776, points = 993909, observations= 5001859

images = 1778, points = 993923, observations= 5001946

4 Final Bundles

This section presents the results for bundle adjustment on problems generated by the skeletal sets algorithm when all the leaf images are added back to the skeleton and the remaining point tracks are triangulated. In cases when the algorithm ran out of memory or was unable to finish in a reasonable amount of time, we indicate the corresponding entry by NA.

Table 7: Problem statistics and memory usages for Bundle adjustment after Skeletal Sets

							Memory Usa	age (Bytes)		
images	points	obs	sparsity(S)	sparsity(L)	explicit-direct	explicit-sparse	explicit-jacobi	implicit-jacobi	implicit-ssor	normal-jacobi
93	61203	287451	0.00	0.00	1.8e+08	1.9e+08	1.8e+08	1.2e+08	1.2e+08	1.2e+08
394	100368	534408	0.06	0.00	5.1e+08	6.5e+08	4.2e+08	2.1e+08	2.3e+08	2.3e+08
871	527480	2785977	0.60	0.07	2.3e+09	2.6e+09	1.8e+09	1.1e+09	1.2e+09	1.2e+09
961	187103	1692975	0.01	0.00	2.2e+09	3.0e+09	1.6e+09	6.0e+08	6.4e+08	6.3e+08
1936	649673	5213733	0.03	0.00	7.8e+09	1.1e+10	5.4e+09	1.9e+09	2.0e+09	2.0e+09
3068	310854	1653812	0.79	0.19	8.4e+09	1.3e+10	2.4e+09	6.6e+08	7.6e+08	7.5e+08
4585	1324582	9125125	0.83	0.62	2.1e+10	1.6e+10	7.7e+09	3.4e+09	3.6e+09	3.6e+09
13682	4456117	28987644	0.86	NA	NA	NA	3.5e+10	1.1e+10	1.2e+10	1.2e+10

Table 8: Perfomance statistics for Bundle adjustment after Skeletal Sets

				explici	t-direct	explicit	-sparse	explicit	-jacobi	implici	t-jacobi	implic	cit-ssor	norma	l-jacobi
images	points	obs	initial	time	error	time	error	time	error	time	error	time	error	time	error
93	61203	287451	3.815	4	0.712	4	0.712	5	0.712	5	0.712	6	0.712	2	0.712
394	100368	534408	2.325	38	0.747	44	0.747	68	0.746	56	0.747	48	0.747	27	0.746
871	527480	2785977	2.886	606	0.787	651	0.787	422	0.787	1299	0.787	424	0.787	309	0.787
961	187103	1692975	3.110	1551	0.968	1709	0.968	607	0.968	130	0.968	225	0.968	130	0.968
1936	649673	5213733	3.045	804	0.945	925	0.945	705	0.945	364	0.947	107	0.945	127	0.944
3068	310854	1653812	3.157	NA	NA	7448	0.969	1316	0.973	706	0.969	518	0.976	683	0.974
4585	1324582	9125125	2.160	NA	NA	4970	0.744	3494	0.748	5650	0.747	3473	0.745	2772	0.750
13682	4456117	28987644	2.543	NA	NA	NA	NA	21784	0.869	3668	0.864	5311	0.890	1644	0.889

images = 93, points = 61203, observations= 287451

images = 394, points = 100368, observations = 534408

images = 871, points = 527480, observations= 2785977

images = 961, points = 187103, observations= 1692975

images = 1936, points = 649673, observations= 5213733

images = 3068, points = 310854, observations= 1653812

images = 4585, points = 1324582, observations= 9125125

images = 13682, points = 4456117, observations= 28987644

5 Streetview

This section presents the results for bundle adjustment on problems generated during the incremental reconstruction of a dataset obtained by driving a Ladybug camera mounted on a truck down an urban street.

Table 9: Problem statistics and memory usages for the incremental reconstruction of the Streetview dataset

							Memory Usa	age (Bytes)		
images	points	obs	sparsity(S)	sparsity(L)	explicit-direct	explicit-sparse	explicit-jacobi	implicit-jacobi	implicit-ssor	normal-jacobi
49	7776	31843	0.16	0.00	2.2e+07	2.4e+07	2.1e+07	1.4e+07	1.5e+07	1.5e+07
73	11032	46122	0.28	0.00	3.4e+07	3.8e+07	3.1e+07	2.0e+07	2.1e+07	2.1e+07
138	19878	85217	0.43	0.01	7.1e+07	8.2e+07	6.0e+07	3.6e+07	3.9e+07	3.9e+07
318	41628	179919	0.56	0.05	2.0e+08	2.4e+08	1.5e+08	8.0e+07	8.6e+07	8.7e+07
372	47423	204472	0.60	0.09	2.5e+08	3.0e+08	1.7e+08	9.1e+07	9.7e+07	9.9e+07
412	52215	224242	0.63	0.13	2.9e+08	3.9e+08	1.9e+08	9.9e+07	1.0e+08	1.1e+08
460	56811	241877	0.67	0.20	3.3e+08	4.2e+08	2.0e+08	1.1e+08	1.1e+08	1.2e+08
539	65220	277273	0.71	0.25	4.1e+08	4.6e+08	2.4e+08	1.3e+08	1.4e+08	1.3e+08
598	69218	304170	0.74	0.29	4.8e+08	4.7e+08	2.6e+08	1.4e+08	1.5e+08	1.5e+08
646	73584	327297	0.75	0.31	5.4e+08	5.3e+08	2.8e+08	1.4e+08	1.5e+08	1.5e+08
707	78455	349940	0.78	0.37	6.1e+08	5.7e+08	3.0e+08	1.6e+08	1.7e+08	1.7e+08
783	84444	377052	0.80	0.28	7.1e+08	7.9e+08	3.3e+08	1.6e+08	1.9e+08	1.8e+08
810	88814	393775	0.81	0.29	7.5e+08	8.2e+08	3.4e + 08	1.8e+08	1.9e+08	1.9e+08
856	93344	415769	0.82	0.59	8.1e+08	6.6e+08	3.6e+08	1.9e+08	2.0e+08	2.0e+08
885	97473	434905	0.83	0.58	8.6e+08	6.9e+08	3.7e+08	2.0e+08	2.0e+08	2.1e+08
931	102699	457460	0.84	0.61	9.3e+08	6.8e+08	3.8e+08	2.0e+08	2.2e+08	2.2e+08
969	105826	474627	0.85	0.61	9.9e+08	7.4e+08	3.9e+08	2.1e+08	2.3e+08	2.3e+08
1031	110968	500265	0.86	0.64	1.1e+09	8.0e+08	4.2e+08	2.3e+08	2.4e + 08	2.4e+08
1064	113655	510211	0.86	0.66	1.1e+09	8.1e+08	4.4e+08	2.2e+08	2.4e + 08	2.4e+08
1118	118384	528926	0.87	0.64	1.2e+09	8.9e+08	4.6e+08	2.3e+08	2.6e+08	2.6e+08
1152	122269	545819	0.88	0.67	1.3e+09	8.5e+08	4.6e+08	2.4e+08	2.5e+08	2.7e+08
1197	126327	563734	0.88	0.69	1.4e+09	8.7e+08	4.7e+08	2.6e+08	2.8e+08	2.7e+08
1235	129634	576286	0.89	0.68	1.5e+09	8.8e+08	4.9e+08	2.5e+08	2.8e+08	2.8e+08
1266	132593	587942	0.89	0.67	1.5e+09	9.5e+08	5.0e+08	2.6e+08	2.8e+08	2.9e+08
1340	137079	612593	0.89	0.68	1.7e+09	1.0e+09	5.4e + 08	2.7e+08	3.0e+08	3.0e+08
1469	145199	641646	0.90	0.70	1.9e+09	1.1e+09	5.8e+08	3.0e+08	3.1e+08	3.2e+08
1514	147317	651480	0.90	0.71	2.0e+09	1.1e+09	5.9e+08	3.0e+08	3.1e+08	3.2e+08
1587	150845	663289	0.91	0.72	2.2e+09	1.1e+09	6.0e+08	3.0e+08	3.1e+08	3.3e+08
1642	153820	671268	0.91	0.73	2.3e+09	1.2e+09	6.1e+08	3.1e+08	3.4e+08	3.3e+08
1695	155710	676595	0.92	0.75	2.4e+09	1.1e+09	6.2e+08	3.1e+08	3.3e+08	3.4e+08

Table 10: Perfomance statistics for the incremental reconstruction of Streetview dataset

				explici	t-direct	explici	t-sparse	explic	t-jacobi	implici	t-jacobi	implic	cit-ssor	norma	l-jacobi
images	points	obs	initial	time	error	time	error	time	error	time	error	time	error	time	error
49	7776	31843	1.197	2	0.647	2	0.647	1	0.647	3	0.659	4	0.647	3	0.647
73	11032	46122	0.915	1	0.609	1	0.609	1	0.609	5	0.618	6	0.609	4	0.609
138	19878	85217	1.217	8	0.836	9	0.836	8	0.835	9	0.871	12	0.835	9	0.836
318	41628	179919	0.715	36	0.693	44	0.693	40	0.693	20	0.693	29	0.693	37	0.693
372	47423	204472	0.833	55	0.743	65	0.743	45	0.743	20	0.745	41	0.743	33	0.743
412	52215	224242	0.740	61	0.703	73	0.703	35	0.703	24	0.702	46	0.703	33	0.703
460	56811	241877	0.826	60	0.730	66	0.730	51	0.730	26	0.734	92	0.730	65	0.730
539	65220	277273	0.899	17	0.742	19	0.742	11	0.742	30	0.743	16	0.742	11	0.742
598	69218	304170	0.861	80	0.739	72	0.739	110	0.738	33	0.740	379	0.738	521	0.738
646	73584	327297	0.813	100	0.743	86	0.743	164	0.743	33	0.745	370	0.743	278	0.742
707	78455	349940	1.041	89	0.751	75	0.751	105	0.751	39	0.758	292	0.750	465	0.750
783	84444	377052	0.733	168	0.725	156	0.725	177	0.725	39	0.728	1003	0.725	488	0.725
810	88814	393775	0.725	207	0.719	188	0.719	90	0.719	42	0.720	262	0.719	211	0.719
856	93344	415769	0.725	233	0.714	134	0.714	171	0.714	44	0.714	426	0.714	292	0.714
885	97473	434905	0.729	254	0.712	138	0.712	183	0.712	47	0.712	509	0.712	332	0.712
931	102699	457460	0.796	129	0.742	64	0.742	107	0.742	50	0.743	172	0.742	162	0.742
969	105826	474627	0.752	290	0.737	139	0.737	179	0.737	52	0.737	553	0.737	332	0.737
1031	110968	500265	0.747	388	0.742	174	0.742	190	0.742	56	0.742	482	0.742	367	0.742
1064	113655	510211	0.754	322	0.743	135	0.743	466	0.743	53	0.744	1470	0.743	1301	0.743
1118	118384	528926	0.809	232	0.752	94	0.752	225	0.752	56	0.754	765	0.752	628	0.752
1152	122269	545819	0.789	175	0.748	66	0.748	156	0.748	60	0.750	462	0.748	517	0.748
1197	126327	563734	0.843	581	0.752	196	0.752	114	0.752	56	0.753	169	0.752	142	0.752
1235	129634	576286	0.759	637	0.748	200	0.748	144	0.748	62	0.749	226	0.748	168	0.748
1266	132593	587942	0.765	648	0.748	204	0.748	208	0.749	65	0.749	648	0.749	434	0.749
1340	137079	612593	0.768	748	0.753	219	0.753	499	0.753	67	0.754	1113	0.753	1077	0.753
1469	145199	641646	0.767	872	0.749	217	0.749	202	0.749	70	0.749	435	0.749	205	0.749
1514	147317	651480	0.757	759	0.746	178	0.746	197	0.746	72	0.746	659	0.746	496	0.746
1587	150845	663289	0.799	1078	0.750	221	0.750	139	0.750	73	0.751	474	0.750	505	0.750
1642	153820	671268	0.752	1367	0.746	275	0.746	316	0.746	74	0.746	623	0.746	652	0.746
1695	155710	676595	0.771	1474	0.746	262	0.746	170	0.747	71	0.747	454	0.746	424	0.746

images = 49, points = 7776, observations= 31843

images = 73, points = 11032, observations= 46122

images = 138, points = 19878, observations= 85217

images = 318, points = 41628, observations= 179919

images = 372, points = 47423, observations= 204472

images = 460, points = 56811, observations= 241877

images = 539, points = 65220, observations= 277273

10³

10¹

0.7

10°

images = 931, points = 102699, observations= 457460

10¹ time

images = 1118, points = 118384, observations= 528926

images = 1152, points = 122269, observations= 545819

images = 1197, points = 126327, observations = 563734

images = 1235, points = 129634, observations= 576286

images = 1266, points = 132593, observations= 587942

images = 1340, points = 137079, observations= 612593

images = 1514, points = 147317, observations= 651480

images = 1587, points = 150845, observations = 663289

images = 1642, points = 153820, observations= 671268

images = 1695, points = 155710, observations= 676595

6 Overall Performance

We also reproduce here in Table 1 for reasons for clarity a larger version of the main figure from the paper.

Figure 1: Performance analysis. Each column in this set of plots corresponds to one of six algorithms, and each row corresponds to one of three tolerances τ , where an algorithm gets to within tolerance when it is within τ of the best answer found over all algorithms. The axes of the individual plots are the same as in Figure 2 in the main paper. For each solver (column), a point is colored red if the solver was declared a winner for the given tolerance, and gray otherwise. See the text for discussion of these plots.

Figure 2: Datasets. This scatter plot shows each of the datasets in our testbed, colored according to type (streetview, skeletal, and final), and plotted according to the number of images in the problem (x-axis, shown as a log-scale) and the sparsity of S (i.e., the fraction of entries that are zero). The plot is shaded according to the characteristics of the problem: small and dense (white), then in increasing gray-level, small and sparse, large and dense, and large and sparse.

7 Proofs

We present here an elementary proof of the following of the fact that the reduced camera matrix is better conditioned than the regularized hessian. This results motivates the use of the implicit Schur complement based iterations.

Theorem 1. Given a block structured matrix A > 0,

$$A = \begin{bmatrix} B & E \\ E^{\top} & C \end{bmatrix} \tag{1}$$

then,

$$\kappa(A) \ge \kappa(B - EC^{-1}E^{\top}) \tag{2}$$

Proof. The maximum and the minimum eigenvalues of a matrix A are given by

$$\lambda_{\max}(A) = \max_{x} \frac{x^{\top} A x}{x^{\top} x}, \quad \lambda_{\min}(A) = \min_{x} \frac{x^{\top} A x}{x^{\top} x}$$
(3)

Now if the vector x is written in block structured form [y, z], where the block sizes correspond to the block structure of A, it is easily seen than

$$\max_{x,z=0} \frac{x^{\top} A x}{x^{\top} x} = \lambda_{\max}(B) \le \lambda_{\max}(A) \tag{4}$$

Similarly, $\lambda_{\min}(A) \leq \lambda_{\min}(B)$. Thus,

$$\kappa(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \ge \frac{\lambda_{\max}(B)}{\lambda_{\min}(B)} = \kappa(B)$$
(5)

Now, consider the inverse of A in block form,

$$A^{-1} = \begin{bmatrix} (B - EC^{-1}E^{\top})^{-1} & \star \\ \star & (C - E^{\top}B^{-1}E)^{-1} \end{bmatrix}$$
 (6)

Here, we use \star , to indicate entries that we do not care about right now. Then, from (5) we have that $\kappa(A^{-1}) \geq \kappa(S^{-1})$. Combining this inequality with the fact that for all invertible matrices X, $\kappa(X) = \kappa(X^{-1})$ proves the theorem.