

Generated by sandeep on 03 October 2024, 01:02:32

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents

1	\mathbf{Set}	up	2
	1.1	Command history	2
	1.2	Configuration	2
2	Dat	tasets	3
	2.1	run_07	3
3	His	tos and cuts	4
	3.1	Histogram 1	4
	3.2	Histogram 2	5
	3.3	Histogram 3	6
	3.4	Histogram 4	7
	3.5	Histogram 5	8
	3.6	Histogram 6	9
	3.7	Histogram 7	10
	3.8	Histogram 8	11
	3.9	Histogram 9	12
	3.10	Histogram 10	13
	3.11	Histogram 11	14
	3.12	Histogram 12	15
	3.13	Histogram 13	16
	3.14	Histogram 14	17
	3.15	Histogram 15	18
	3.16	Histogram 16	19
	3.17	Histogram 17	20
	3.18	Histogram 18	21
	3.19	Histogram 19	22
	3.20	Histogram 20	23
	3.21	Histogram 21	24
	3.22	Histogram 22	25
	3.23	Histogram 23	26
	3.24	Histogram 24	27
	3.25	Histogram 25	28
	3.26	Histogram 26	29
	3.27	Histogram 27	30
	3.28	Histogram 28	31

1 Setup

1.1 Command history

```
ma5>import /home/sandeep/software/MG5_aMC_v2_9_21/pp24tops/Events/run_07/unweighted_events.lhe.gz
as run_07
ma5>define vl = 12 14 16
ma5>define vl = -16 -14 -12
ma5>define invisible = vt vt ve vm vm ve vl vl
ma5>set main.graphic_render = root
ma5>plot THT 40 0 500 [logY]
ma5>plot MET 40 0 500 [logY]
ma5>plot SQRTS 40 0 500 [logY]
ma5>plot PT(t [1]) 40 0 500 [logY]
ma5>plot ETA(t [1]) 40 -10 10 [logY]
ma5>plot PT(t [2]) 40 0 500 [logY]
ma5>plot ETA(t [2]) 40 -10 10 [logY]
ma5>plot PT(t[1]) 40 0 500 [logY]
ma5>plot ETA(t[1]) 40 -10 10 [logY]
ma5>plot PT(t[2]) 40 0 500 [logY]
ma5>plot ETA(t[2]) 40 -10 10 [logY]
ma5>plot M(t[1] t[2]) 40 0 500 [logY]
ma5>plot M(t [1] t[1]) 40 0 500 [logY]
ma5>plot M(t [1] t[1] t[2]) 40 0 500 [logY]
ma5>plot M(t [1] t[2]) 40 0 500 [logY]
ma5>plot M(t [1] t [2]) 40 0 500 [logY]
ma5>plot M(t [1] t [2] t[1]) 40 0 500 [logY]
ma5>plot M(t [1] t [2] t[1] t[2]) 40 0 500 [logY]
ma5>plot M(t [1] t [2] t[2]) 40 0 500 [logY]
ma5>plot M(t [2] t[1]) 40 0 500 [logY]
ma5>plot M(t [2] t[1] t[2]) 40 0 500 [logY]
ma5>plot M(t [2] t[2]) 40 0 500 [logY]
ma5>plot DELTAR(t[1],t[2]) 40 0 10 [logY]
ma5>plot DELTAR(t [1],t[1]) 40 0 10 [logY]
ma5>plot DELTAR(t [1],t[2]) 40 0 10 [logY ]
ma5>plot DELTAR(t [1],t [2]) 40 0 10 [logY]
ma5>plot DELTAR(t [2],t[1]) 40 0 10 [logY]
ma5>plot DELTAR(t [2],t[2]) 40 0 10 [logY ]
ma5>submit /home/sandeep/software/MG5_aMC_v2_9_21/pp24tops/MA5_PARTON_ANALYSIS_analysis1
```

1.2 Configuration

- MadAnalysis version 1.9.60 (2024-10-01).
- Histograms given for an integrated luminosity of 10fb⁻¹.

2 Datasets

2.1 run_07

 \bullet Sample consisting of: signal events.

• Generated events: 20000 events.

 \bullet Normalization to the luminosity: 89+/- 1 $\,$ events.

• Ratio (event weight): 0.0044.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
pp24tops/Events/run_07/- unweighted_events.lhe.gz	20000	0.00895 @ 0.19%	0.0

3 Histos and cuts

3.1 Histogram 1

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	0.0	0.0	0.0	0.0

Figure 1.

3.2 Histogram 2

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	5.01765e-09	3.446e-09	0.0	0.0

Figure 2.

3.3 Histogram 3

* Plot: SQRTS

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	1677.75	598.1	0.0	100.0

Figure 3.

3.4 Histogram 4

* Plot: PT (t [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	279.109	156.8	0.0	8.66

Figure 4.

3.5 Histogram 5

* Plot: ETA (t [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	- 0.000307821	1.285	0.0	0.0

Figure 5.

3.6 Histogram 6

* Plot: PT (t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	148.744	104.5	0.0	1.035

Figure 6.

3.7 Histogram 7

* Plot: ETA (t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	-0.0136508	1.797	0.0	0.0

Figure 7.

3.8 Histogram 8

* Plot: PT (t[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	277.67	156.3	0.0	8.705

Figure 8.

3.9 Histogram 9

* Plot: ETA (t[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	0.00893356	1.281	0.0	0.0

Figure 9.

3.10 Histogram 10

* Plot: PT (t[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	147.213	104.9	0.0	1.145

Figure 10.

Histogram 11 3.11

* Plot: ETA (t[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	-0.0272682	1.787	0.0	0.0

Figure 11.

3.12 Histogram 12

* Plot: M (t[1] t[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	721.626	351.9	0.0	70.65

Figure 12.

3.13 Histogram 13

* Plot: M (t[1] t [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	801.946	356.8	0.0	85.19

Figure 13.

3.14Histogram 14

* Plot: M (t[1] t[2] t [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	1244.18	486.0	0.0	100.0

3.15 Histogram 15

* Plot: M (t[2] t [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	618.163	277.1	0.0	57.99

Figure 15.

3.16 Histogram 16

* Plot: M (t [1] t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	721.834	346.1	0.0	71.56

Figure 16.

3.17Histogram 17

* Plot: M (t[1] t [1] t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	1244.0	483.8	0.0	100.0

3.18 Histogram 18

* Plot: M (t[1] t[2] t [1] t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	1677.75	598.1	0.0	100.0

3.19Histogram 19

* Plot: M (t[2] t [1] t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	1116.38	448.1	0.0	100.0

3.20 Histogram 20

* Plot: M (t[1] t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	617.557	280.6	0.0	57.8

Figure 20.

3.21 Histogram 21

* Plot: M (t[1] t[2] t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	1116.16	454.1	0.0	100.0

3.22 Histogram 22

* Plot: M (t[2] t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	595.412	287.4	0.0	49.57

Figure 22.

3.23 Histogram 23

* Plot: DELTAR ($\mathbf{t}[1]$, $\mathbf{t}[2]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	2.94058	1.067	0.0	0.0

Figure 23.

3.24 Histogram 24

* Plot: DELTAR (t [1] , t[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	2.99085	0.6875	0.0	0.0

Figure 24.

3.25 Histogram 25

* Plot: DELTAR (t [1] , t[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	2.38502	1.117	0.0	0.005

Figure 25.

3.26 Histogram 26

* Plot: DELTAR (t [1] , t [2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	2.94417	1.052	0.0	0.0

Figure 26.

3.27 Histogram 27

* Plot: DELTAR (t [2] , t[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	2.37622	1.123	0.0	0.0

Figure 27.

3.28 Histogram 28

* Plot: DELTAR (t [2] , t[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
run_07	89.5	1.0	2.76763	1.299	0.0	0.0

Figure 28.