EECS 376: Foundations of Computer Science

Chris Peikert 20 March 2023

Agenda

- * Recap poly-time mapping reductions
- * Search-to-Decision Reductions
- * Dealing with NP-Completeness
 - * Approximation algorithms

Recall

- * **Definition:** A language B is **NP-Complete** if:
 - 1. $B \in \mathbf{NP}$
 - 2. B is \mathbb{NP} -Hard: $A \leq_p B$ for every language $A \in \mathbb{NP}$. Equivalently: $A \leq_p B$ for some NP-hard language A.
- * **Definition:** Language A is **polynomial-time mapping reducible** to language B, written $A \leq_p B$, if there is a polynomial-time algorithm f such that:
 - * $x \in A \iff f(x) \in B$.
 - * Implies: If $B \in \mathbf{P}$, then $A \in \mathbf{P}$. If $A \notin \mathbf{P}$, then $B \notin \mathbf{P}$.

$3SAT \leq_p VERTEXCOVER$

- * Goal: efficiently transform 3CNF formula ϕ to $f(\phi) = (G, k)$ s.t.
- * ϕ is satisfiable \iff G has a VC of size k.
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

$3SAT \leq_p VERTEXCOVER$

- * If $\phi \in 3SAT$: it has a satisfying assignment (e.g., (1,0,0)).
 - * We exhibit a corresponding VC in G of size k = n + 2m.
 - * So: $\phi \in 3SAT \Longrightarrow f(\phi) = (G, k) \in VertexCover$.
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

$3SAT \leq_p VERTEXCOVER$

- * If $f(\phi) = (G, k) \in \text{VertexCover}$: G has some size-k VC.
 - * We exhibit a corresponding satisfying assignment of ϕ (so $\phi \in 3SAT$):
 - * Any size-k VC must include exactly 1 vertex from each variable gadget, and exactly 2 vertices from each clause gadget.
 - * In each clause gadget, the *non-selected* vertex's "crossing edge" must be covered by the (selected) vertex of the *same label* in the var gadget.
 - * Assign variables so that the *selected vertices* of the variable gadgets have "true" literals. Then, every clause has a true literal!

General Mapping Reduction: How to Prove It

- * To prove that $A \leq_p B$ for NP-languages A, B:
- 1. Give an efficient transformation f from A-instances to B-instances. (Note: typically can't decide A efficiently!)
- 2. Show that $x \in A \iff f(x) \in B$.
 - (a) Show that any A-witness for x yields a corresponding B-witness for f(x)...
 - (b) And vice-versa.

Search Problems

- * Real problems often have more than "yes/no" answers.
- * Some examples of such *search* problems:
 - * Given an array of integers, output the sorted array.
 - * Given a Boolean formula, output a satisfying assignment.
 - * Given a graph, return a max clique / min vertex-cover.
- * We've seen *decision* versions of these problems.
- * "Theorem:" An "NP-Hard" search problem has an efficient algorithm if and only if its decision variant has an efficient algorithm.

Search vs. Decision

- * Types of Search Problems:
 - * Maximization: Maximum Clique, Knapsack
 - * Minimization: Minimum Vertex Cover, TSP
 - * Exact: Satisfying assignment, Hamiltonian path/cycle
- * Decision Versions:
 - * Does G have a clique of size k?
 - * Does *G* have a vertex cover of size *k*?
 - * Is ϕ satisfiable?
- * Q: Given an efficient solver for the decision version, how can we efficiently solve the search problem?

Step 1: Get Size of Optimal Solution

- * For optimization problems, we can first use an efficient decider to find the <u>size</u> of an optimal solution.
- * Example: Given a graph G, find a maximum clique in G.
 - * Suppose $\mathbf{hasClique}(G, k)$ <u>efficiently</u> solves the decision problem $\mathbf{CLIQUE} = \{(G, k) : G \text{ is a graph with a clique of size } k\}.$
 - st We search over k to efficiently find the maximum clique size.

max-clique-size(G):

- 1. $k \leftarrow 0$
- 2. while hasClique(G, k+1): $k \leftarrow k+1$
- 3. return *k*
- * Caution: If k can have more than polynomially many possible values, we need to do a binary search.

Step 2: Find an Optimal Solution

max-clique(G):

- 1. $k \leftarrow \max\text{-clique-size}(G)$
- 2. return find-clique(G, k)
- * Once we know the optimal size, we can use the efficient decider to find an optimal solution.
- * Common Strategy #1: Throw away unneeded parts of the instance until all that is left is a solution.

```
find-clique(G, k): // precondition: G has a k-clique
```

- 1. for each vertex $v \in G$:
- 2. $G' \leftarrow G v$ // delete vertex v from G to obtain G'
- 3. if hasClique(G', k): // G' still has a k-clique
- 4. $G \leftarrow G'$ // continue without v, since it's unnecessary
- 5. **return** V(G) // return the remaining vertices in G

Step 2: Find an Optimal Solution

max-clique(graph G):

- 1. $k \leftarrow \max\text{-clique-size}(G)$
- 2. return find-clique(G, k)
- * Once we know the optimal size, we can use the efficient decider to find an optimal solution.
- * Common Strategy #2: Build up a solution pieceby-piece, guessing the individual pieces.

find-clique(G, k): // precondition: G has a k-clique

- 1. if k = 0: return \emptyset
- 2. for each vertex $v \in G$:
- 3. $G' \leftarrow \mathsf{neighborhood}(G, \ v) \ // \ v$'s neighbors and edges among them
- 4. if hasClique(G', k-1): // v's neighbors have a (k-1)-clique
- 5. return $\{v\} \cup \text{find-clique}(G', k-1)$

Minimum Vertex Cover

```
find-VC(G, k): // precondition: G has size-k VC

1. if k=0: return \emptyset

2. for each vertex v \in G:

3. G' \leftarrow G - v // delete v and all its incident edges

4. if hasVC(G', k-1):

5. return \{v\} \cup \text{ find-VC}(G', k-1)
```

- * Problem: Given graph G, return a *smallest* vertex cover of G.
- * Suppose we have an <u>efficient</u> decider hasVC(G, k) = true if G has a size-k VC; false otherwise
- * Q1: How can we use has VC to $\underline{find the size}$ of a smallest VC in G?
- * Q2: Once we know the size, how to use hasVC to find a smallest VC?
- * Use Strategy #2: Guess a vertex in the cover, remove it and its edges, check if the remaining graph has a cover of size one smaller.

"Although this may seem a paradox, all exact science is based on the idea of approximation. If a man tells you he knows a thing exactly, then you can be safe in inferring that you are speaking to an inexact man." - Bertrand Russell

Coping with NP-Completeness

So Your Problem is NP-Hard... Now What?

- * Don't expect an efficient algorithm anytime soon!
- 1. Restrict to special-case inputs
 - * May have efficient algorithms (e.g., planar max-cut)
- 2. Use heuristics: good for "most" "real-world" inputs
 - * SAT solvers often do very well in practice!
- 3. Use an inefficient algorithm on "small" inputs
 - * OK if not too often, and you can afford to wait
- 4. Devise an efficient approximation algorithm
 - * Yields an output that is "close" to optimal

Approximation Algorithms

- * There are many real-life examples of problems whose decision versions are \overline{NP} -Complete.
 - * Max-clique (friends), min-vertex cover (Starbucks), min-set cover (project management), optimal knapsack (robbery), traveling salesperson, ...
- * While efficiently finding an **optimal** solution seems unattainable for such problems, we might be able to find a "good enough" one: an **approximation**

Approximating Min Vertex-Cover

- * Starbucks Executive: "I'm ok with building at most twice as many stores as is optimal."
- * A vertex cover S is an α -approximation if S contains $\underline{at\ most}\ \alpha$ times as many vertices as a smallest one: $|S| \leq \alpha \cdot |C|$ for any VC C.
 - * α is called the *approximation ratio* (smaller is better here)

A 2-approximate min-VC (optimum = 2)

Attempt #1: Single Cover

- * Arbitrarily choose vertices to add to cover.
- * Q: How large can the approximation ratio be?

cover-and-remove(G):

- 1. $C \leftarrow \emptyset$
- 2. while G has an edge:
- 3. choose a vertex v covering at least one edge
- 4. $G \leftarrow G v$; $C \leftarrow C \cup \{v\}$ // delete/add it to cover
- 5. return *C*

Approx ratio here is 2... can it be worse in other cases?

Result of Single Cover

Attempt #2: Greedy Cover

- * Choose vertices that cover the most edges.
- * Fact: Approximation ratio could be $\Omega(\log n)!$

greedy-cover-and-remove(G):

- 1. $C \leftarrow \emptyset$
- 2. while *G* has an edge:
- 3. choose a vertex v covering <u>the most edges</u>
- 4. $G \leftarrow G v$; $C \leftarrow C \cup \{v\}$ // delete/add it to cover
- 5. return C

- Q: What's a smallest vertex cover here?
- Q: What's the approx ratio?

Attempt #3: Double Cover

* Weird Idea: Choose edges and delete both endpoints!

double-cover(G):

- 1. $C \leftarrow \emptyset$
- 2. while *G* has an edge:
- 3. choose any edge e = (u, v)
- 4. $G \leftarrow G \{u, v\}$; $C \leftarrow C \cup \{u, v\}$ // delete/add both endpoints
- 5. return *C*

Theorem: double-cover obtains a 2-approx to min-vertex-cover.

Example and Kev Fact

double-cover(G):

- 1. $C \leftarrow \emptyset$
- 2. while G has an edge:
- 3. choose any edge e = (u, v)
- 4. $G \leftarrow G \{u, v\}$; $C \leftarrow C \cup \{u, v\}$ // delete/add both endpoints
- 5. return *C*
- * **Key Fact:** chosen edges are (vertex-)<u>disjoint</u>; output cover has 2 (# chosen edges) vertices.
- * Q: How many vertices are needed to cover a set of <u>disjoint</u> edges?
- * Observe: Any cover C^* has <u>at least</u> (# chosen edges) vertices.

Proof of 2-Approx

double-cover(G):

- 1. $C \leftarrow \emptyset$
- 2. while *G* has an edge:
- 3. choose any edge e = (u, v)
- 4. $G \leftarrow G \{u, v\}$; $C \leftarrow C \cup \{u, v\}$ // delete/add both endpoints
- 5. return C
- * Theorem: double-cover outputs a 2-approx of minvertex-cover.
 - * Let M be the set of chosen edges and C be the set of vertices of M (i.e., output cover). Then |C| = 2|M|.
 - * Consider an arbitrary vertex cover C^* .
 - * Since M is disjoint and C^* covers it, $|M| \leq |C^*|$.
 - * Therefore, $|C| = 2|M| \le 2|C^*|$.
- * Claim: The double-cover algorithm is efficient.
 - * Exercise: Do the analysis to show this is the case.

