Principles of Mathematical Analysis Chapter 2

Bennett Rennier barennier@gmail.com

May 15, 2016

${\it Proof.}$ I will do this in a bit of an unconventional
way, as the normal way is too easy. One can see from
Remarks (2.11) that $A \cap B \subset A$ and $A \cap \emptyset = \emptyset$. If one
lets $B=\varnothing,$ then this gives us $A\cap\varnothing=\varnothing\subset A.$
Exercise 2.4. Is the set of all irrational real numbers countable?
<i>Proof.</i> No. Suppose the set of all irrational real
numbers were countable. Then, by Thm (2.12),
$\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$ would be countable. However, this
is a contradiction, as \mathbb{R} is not countable by Collorary

Exercise 2.1. Prove that the empty set is a subset

of every set.

of Thm (2.43).