

CHAPTER 3 DETERMINANTS

- 3.1 The Determinant of a Matrix
- 3.2 Determinant and Elementary Operations
- 3.3 Properties of Determinants
- 3.4 Application of Determinants

3.3 Properties of Determinants

■ Thm 3.5: (Determinant of a matrix product)

$$det(AB) = det(A) det(B)$$

Notes:

- (1) det(EA) = det(E) det(A)
- (2) $\det(A+B) \neq \det(A) + \det(B)$

• Ex 1: (The determinant of a matrix product)

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{bmatrix}$$

Find |A|, |B|, and |AB|

Sol:

$$|A| = \begin{vmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{vmatrix} = -7 \qquad |B| = \begin{vmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{vmatrix} = 11$$

$$AB = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 8 & 4 & 1 \\ 6 & -1 & -10 \\ 5 & 1 & -1 \end{bmatrix}$$

$$\Rightarrow |AB| = \begin{vmatrix} 8 & 4 & 1 \\ 6 & -1 & -10 \\ 5 & 1 & -1 \end{vmatrix} = -77$$

Check:

$$|AB| = |A| |B|$$

■ Thm 3.6: (Determinant of a scalar multiple of a matrix)

If A is an $n \times n$ matrix and c is a scalar, then $\det(cA) = c^n \det(A)$

• Ex 2:

$$A = \begin{bmatrix} 10 & -20 & 40 \\ 30 & 0 & 50 \\ -20 & -30 & 10 \end{bmatrix}, \quad \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{vmatrix} = 5$$

Find |A|.

Sol:

$$A = 10 \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{bmatrix} \Rightarrow |A| = 10^{3} \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{vmatrix} = (1000)(5) = 5000$$

■ Thm 3.7: (Determinant of an invertible matrix)

A square matrix A is invertible (nonsingular) if and only if $\det(A) \neq 0$

• Ex 3: (Classifying square matrices as singular or nonsingular)

$$A = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

Sol:

$$A = 0$$

A has no inverse (it is singular).

$$|B| = -12 \neq 0 \implies$$

B has an inverse (it is nonsingular).

■ Thm 3.8: (Determinant of an inverse matrix)

If A is invertible, then
$$det(A^{-1}) = \frac{1}{det(A)}$$
.

■ Thm 3.9: (Determinant of a transpose)

If A is a square matrix, then $det(A^{T}) = det(A)$.

• Ex 4:
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$
 (a) $|A^{-1}| = ?$ (b) $|A^{T}| = ?$

(a)
$$|A^{-1}| = ?$$
 (b) $|A^{T}| = ?$

Sol:
$$|A| = \begin{vmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{vmatrix} = 4$$

$$\therefore |A^{-1}| = \frac{1}{|A|} = \frac{1}{4}$$
$$|A^T| = |A| = 4$$

• Equivalent conditions for a nonsingular matrix:

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (1) A is invertible.
- (2) $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $n \times 1$ matrix \mathbf{b} .
- (3) Ax = 0 has only the trivial solution.
- (4) A is row-equivalent to I_n
- (5) A can be written as the product of elementary matrices.
- (6) $\det(A) \neq 0$

• Ex 5: Which of the following system has a unique solution?

(a)
$$2x_2 - x_3 = -1$$

 $3x_1 - 2x_2 + x_3 = 4$
 $3x_1 + 2x_2 - x_3 = -4$
(b) $2x_2 - x_3 = -1$
 $3x_1 - 2x_2 + x_3 = 4$
 $3x_1 + 2x_2 + x_3 = -4$

Sol:

- (a) $A\mathbf{x} = \mathbf{b}$
 - \therefore |A|=0
 - : This system does not have a unique solution.
- (b) $B\mathbf{x} = \mathbf{b}$
 - $\therefore |B| = -12 \neq 0$
 - : This system has a unique solution.

Key Learning in Section 3.3

- Find the determinant of a matrix product and a scalar multiple of a matrix.
- Find the determinant of an inverse matrix and recognize equivalent conditions for a nonsingular matrix.
- Find the determinant of the transpose of a matrix.

Keywords in Section 3.3

- determinant: 行列式
- matrix multiplication: 矩陣相乘
- scalar multiplication: 純量積
- invertible matrix: 可逆矩陣
- inverse matrix: 反矩陣
- nonsingular matrix: 非奇異矩陣
- transpose matrix: 轉置矩陣

3.4 Applications of Determinants

Matrix of cofactors of A:

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix} \qquad C_{ij} = (-1)^{i+j} M_{ij}$$

Adjoint matrix of A:

$$adj(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

■ Thm 3.10: (The inverse of a matrix given by its adjoint)

If A is an $n \times n$ invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} adj(A) \qquad \Longrightarrow \qquad \det(A)I = A * adj(A)$$

$$A[adj(A)] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & C_{21} & \dots & C_{j1} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{j2} & \dots & C_{n2} \\ \vdots & \vdots & & \vdots & & \vdots \\ C_{1n} & C_{2n} & \dots & C_{jn} & \dots & C_{nn} \end{bmatrix}.$$

$$C = a_{i1}C_{j1} + a_{i2}C_{j2} + \cdots + a_{in}C_{jn}.$$

- \Rightarrow If i=j:
- \Rightarrow If i \neq j:

■ Thm 3.10: (The inverse of a matrix given by its adjoint)

If A is an $n \times n$ invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

• Ex:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\Rightarrow \det(A) = ad - bc$$

$$adj(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{\det(A)} adj(A)$$
$$= \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

• Ex 1 & Ex 2:

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$
 (a) Find the adjoint of A.
(b) Use the adjoint of A to find A^{-1}

Sol:
$$: C_{ij} = (-1)^{i+j} M_{ij}$$

$$\Rightarrow C_{11} = + \begin{vmatrix} -2 & 1 \\ 0 & -2 \end{vmatrix} = 4, \ C_{12} = - \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} = 1, \ C_{13} = + \begin{vmatrix} 0 & -2 \\ 1 & 0 \end{vmatrix} = 2$$

$$C_{21} = -\begin{vmatrix} 3 & 2 \\ 0 & 2 \end{vmatrix} = 6,$$
 $C_{22} = +\begin{vmatrix} -1 & 2 \\ 1 & 2 \end{vmatrix} = 0,$ $C_{23} = -\begin{vmatrix} -1 & 3 \\ 1 & 0 \end{vmatrix} = 3$

$$C_{31} = + \begin{vmatrix} 3 & 2 \\ -2 & 1 \end{vmatrix} = 7, \quad C_{32} = - \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = 1, \quad C_{33} = + \begin{vmatrix} -1 & 3 \\ 0 & -2 \end{vmatrix} = 2$$

 \Rightarrow cofactor matrix of $A \Rightarrow$ adjoint matrix of A

$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{bmatrix} 4 & 1 & 2 \\ 6 & 0 & 3 \\ 7 & 1 & 2 \end{bmatrix} \qquad adj(A) = \begin{bmatrix} C_{ij} \end{bmatrix}^T = \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

 \Rightarrow inverse matrix of A

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$
$$= \begin{bmatrix} \frac{4}{3} & 2 & \frac{7}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{2}{3} & 1 & \frac{2}{3} \end{bmatrix}$$

$$\therefore$$
 det(A) = 3

• Check: $AA^{-1} = I$

Cramer's Rule

Cramer's Rule uses determinants to solve a system of linear equations in variables. This rule applies only to systems with unique solutions.

$$a_{11}x_{1} + a_{12}x_{2} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} = b_{2}$$

$$x_{1} = \frac{b_{1}a_{22} - b_{2}a_{12}}{a_{11}a_{22} - a_{21}a_{12}} \quad x_{2} = \frac{b_{2}a_{11} - b_{1}a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \quad a_{11}a_{22} - a_{21}a_{12} \neq 0$$

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \quad x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \quad |A_{1}| = \begin{vmatrix} b_{1} \\ b_{2} \end{vmatrix} \quad a_{12} \\ a_{22} \end{vmatrix} \quad |A_{2}| = \begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}$$

$$x_{1} = \frac{|A_{1}|}{|A|} \quad x_{2} = \frac{|A_{2}|}{|A|}$$

• Ex 3: (Using Cramer's Rule)

Use Cramer's Rule to solve the system of linear equations.

$$4x_1 - 2x_2 = 10$$
$$3x_1 - 5x_2 = 11$$

Sol: Find the determinant of the coefficient matrix

$$|A| = \begin{vmatrix} 4 & -2 \\ 3 & -5 \end{vmatrix} = -14$$

$$x_1 = \frac{|A_1|}{|A|} = \frac{10 - 2}{11 - 5} = \frac{-28}{-14} = 2$$

$$x_2 = \frac{|A_2|}{|A|} = \frac{\begin{vmatrix} 4 & 10 \\ 3 & 11 \end{vmatrix}}{-14} = \frac{14}{-14} = -1$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$x_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

■ Thm 3.11: (Cramer's Rule)

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$

$$A\mathbf{x} = \mathbf{b} \qquad A = \begin{bmatrix} a_{ij} \\ a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \neq 0$$
(this system has a unique solution)

$$| \vdots | \vdots | | = |$$
 (this system has a unique solution

$$A_{j} = \begin{bmatrix} A^{(1)}, A^{(2)}, \cdots, A^{(j-1)}, b, A^{(j+1)}, \cdots, A^{(n)} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & \cdots & a_{1(j-1)} & b_{1} & a_{1(j+1)} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2(j-1)} & b_{2} & a_{2(j+1)} & \cdots & a_{2n} \\ \vdots & & \ddots & & \vdots \\ a_{n1} & \cdots & a_{n(j-1)} & b_{n} & a_{n(j+1)} & \cdots & a_{nn} \end{bmatrix}$$

$$\text{(i.e. } \det(A_{j}) = b_{1}C_{1j} + b_{2}C_{2j} + \cdots + b_{n}C_{nj} \text{)}$$

$$\Rightarrow x_{j} = \frac{\det(A_{j})}{\det(A)}, \qquad j = 1, 2, \cdots, n$$

Pf:

$$A\mathbf{x} = \mathbf{b}, \quad \det(A) \neq 0$$

$$\Rightarrow \mathbf{x} = A^{-1}\mathbf{b} = \frac{1}{\det(A)} adj(A)\mathbf{b}$$

$$= \frac{1}{\det(A)} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$= \frac{1}{\det(A)} \begin{bmatrix} b_1 C_{11} + b_2 C_{21} + \cdots + b_n C_{n1} \\ b_1 C_{12} + b_2 C_{22} + \cdots + b_n C_{n2} \\ \vdots & \vdots \\ b_1 C_{1n} + b_2 C_{2n} + \cdots + b_n C_{nn} \end{bmatrix}$$

$$\Rightarrow x_{j} = \frac{1}{\det(A)} (b_{1}C_{1j} + b_{2}C_{2j} + \dots + b_{n}C_{nj})$$
$$= \frac{\det(A_{j})}{\det(A)} \qquad j = 1, 2, \dots, n$$

• Ex 4: Use Cramer's rule to solve the system of linear equations.

$$-x + 2y - 3z = 1$$

 $2x + z = 0$
 $3x - 4y + 4z = 2$

Sol:
$$\det(A) = \begin{vmatrix} -1 & 2 & -3 \\ 2 & 0 & 1 \\ 3 & -4 & 4 \end{vmatrix} = 10 \quad \det(A_1) = \begin{vmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{vmatrix} = 8$$

$$\det(A_2) = \begin{vmatrix} -1 & 1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{vmatrix} = -15, \quad \det(A_3) = \begin{vmatrix} -1 & 2 & 1 \\ 2 & 0 & 0 \\ 3 & -4 & 2 \end{vmatrix} = -16$$

$$x = \frac{\det(A_1)}{\det(A)} = \frac{4}{5}$$
 $y = \frac{\det(A_2)}{\det(A)} = \frac{-3}{2}$ $z = \frac{\det(A_3)}{\det(A)} = \frac{-8}{5}$

• Area of a triangle in the *xy*-plane:

A triangle with vertices

$$(x_1, y_1), (x_2, y_2), \text{ and } (x_3, y_3)$$

Area =
$$\pm \frac{1}{2} \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

where the sign (\pm) is chosen to give a positive area.

Pf:

Consider the three trapezoid

Trapezoid 1: $(x_1, 0), (x_1, y_1), (x_3, y_3), (x_3, 0)$

Trapezoid 2: $(x_3, 0), (x_3, y_3), (x_2, y_2), (x_2, 0)$

Trapezoid 3: $(x_1, 0), (x_1, y_1), (x_2, y_2), (x_2, 0)$

Area =
$$\frac{1}{2}(y_1 + y_3)(x_3 - x_1) + \frac{1}{2}(y_3 + y_2)(x_2 - x_3) - \frac{1}{2}(y_1 + y_2)(x_2 - x_1)$$

= $\frac{1}{2}(x_1y_2 + x_2y_3 + x_3y_1 - x_1y_3 - x_2y_1 - x_3y_2)$
= $\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

If the vertices do not occur in the order $x_1 \le x_2 \le x_3$ or if the vertex (x_3, y_3) is not above the line segment connecting the other two vertices, then the formula above may yield the negative of the area. So, use \pm and choose the correct sign to give a positive area.

• Ex 5: (Finding the Area of a Triangle)

Find the area of the triangle whose vertices are (1, 1), (2, 2), and (4, 3).

Sol:

$$\frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 4 & 3 & 1 \end{vmatrix} = -\frac{3}{2}$$

 $\frac{1}{2}\begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \end{vmatrix} = -\frac{3}{2}$ The area of the triangle is $\frac{3}{2}$ square units.

If three points in the xy-plane lie on the same line, then the determinant in the formula for the area of a triangle is zero.

$$\begin{vmatrix} 1 \\ 2 \\ 4 \\ 3 \\ 1 \end{vmatrix} = 0$$

• Test for collinear points in the *xy*-plane:

Three points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) are collinear if and only if

$$\det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0$$

• Two-point form of the equation of a line:

An equation of the line passing through the distinct points (x_1, y_1) and (x_2, y_2) is given by

$$\det \begin{bmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{bmatrix} = 0$$

• Ex 6: (Finding an Equation of the Line Passing Through Two Points)

Find an equation of the line passing through the points (2, 4) and (-1, 3).

Sol:

$$\begin{vmatrix} x & y & 1 \\ 2 & 4 & 1 \\ -1 & 3 & 1 \end{vmatrix} = 0$$

$$x \begin{vmatrix} 4 & 1 \\ 3 & 1 \end{vmatrix} - y \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 4 \\ -1 & 3 \end{vmatrix} = 0$$

$$x(1) - y(3) + 1(10) = 0$$

$$x - 3y = -10$$

Volume of a Tetrahedron:

The volume of a tetrahedron with vertices (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) , and (x_4, y_4, z_4) is

Volume =
$$\pm \frac{1}{6} \det \begin{bmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{bmatrix}$$

where the sign (±) is chosen to give a positive area.

• Ex 7: (Finding the Volume of a Tetrahedron)

Find the volume of the tetrahedron shown in the following figure, whose vertices are (0, 4, 1), (4, 0, 0), (3, 5, 2), and (2, 2, 5).

Sol:

$$\begin{vmatrix} 0 & 4 & 1 & 1 \\ 4 & 0 & 0 & 1 \\ 3 & 5 & 2 & 1 \\ 2 & 2 & 5 & 1 \end{vmatrix} = \frac{1}{6}(-72) = -12.$$

The volume of the tetrahedron is 12 cubic units.

Test for coplanar points in space:

Four points (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) , and (x_4, y_4, z_4) are coplanar if and only if

$$\det \begin{bmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{bmatrix} = 0$$

Three-point form of the equation of a line:

An equation of the line passing through the distinct points (x_1, y_1, z_1) , (x_2, y_2, z_2) , and (x_3, y_3, z_3) is given by

$$\det \begin{bmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{bmatrix} = 0$$

• Ex 8: (Finding an Equation of the Plane Passing Through Three Points)

Find an equation of the plane passing through the points (0, 1, 0), (-1, 3, 2), and (-2, 0, 1).

Sol:

$$\begin{vmatrix} x & y & z & 1 \\ 0 & 1 & 0 & 1 \\ -1 & 3 & 2 & 1 \\ -2 & 0 & 1 & 1 \end{vmatrix} = 0 \qquad \begin{vmatrix} x & y-1 & z & 1 \\ 0 & 0 & 0 & 1 \\ -1 & 2 & 2 & 1 \\ -2 & -1 & 1 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} x & 2 \\ -1 & 1 \end{vmatrix} - (y-1) \begin{vmatrix} -1 & 1 \\ -2 & 1 \end{vmatrix} + z \begin{vmatrix} -1 & 2 \\ -2 & -1 \end{vmatrix} = 0$$

$$x(4)-(y-1)(3)+z(5)=0$$

$$4x - 3y + 5z = -3$$

Key Learning in Section 3.4

- Find the adjoint of a matrix and use it to find the inverse of the matrix.
- Use Cramer's Rule to solve a system of n linear equations in n variables.
- Use determinants to find area, volume, and the equations of lines and planes.