

Lab 1: Big Red Internet Button

- 1. Press the button
- 2. Post something to the Internet

The Big Red Button

- Two connectors
 - Ground
 - Signal
- 12 v built-in LED

The Thingsquare kit

- CC2538 System-on-a-Chip board
 - The heart of it all
 - Runs Contiki
- Display board
 - LCD screen
 - JTAG debugger
- Ethernet router

The Thingsquare cloud

The Thingsquare cloud

- Connect your devices
- Program your devices from your browser
- Inspect the output

What we'll do

- Connect the button
- Upload a program that does:
 - Reads the button
 - Does an HTTP POST to http://requestb.in/
- Inspect the output

Set up your device

- Register the device with the Thingsquare cloud
- Give it a name
- Blink it

Set up the program

- Create a new app call it something unique
 - Like adam-button.c
- Copy the contents of big-red-button.c
 - Don't worry about the contents for now we'll go through all that

Set up a requestb.in

Go to http://requestb.in/ and create a RequestBin

Inspect HTTP Requests

RequestBin gives you a URL that will collect requests made to it and let you inspect them in a human-friendly way.

Use RequestBin to see what your HTTP client is sending or to inspect and debug webhook requests.

RequestBin URL

Copy the RequestBin URL into the program:

```
#define URL "http://requestb.in/abcdefghij"
```

- Run the program
- Press the button
- Reload the requestb.in page
- See the result

What we just did

- Did an HTTP POST directly from the chip
- Posted data via a webhook to a cloud service

Connecting a device to the IoT

The Internet

IPv6/IPv4 router

IPv6 to IPv4 translation: NAT64

- Translate IPv4 addresses to IPv6 addresses
 - 192.168.1.1 becomes ::fffff:192.168.1.1
 - Remember the port numbers

DNS64

 Translate DNS names to IPv6-mapped IPv4 address

The IPv6 mesh

IPv6 primer

- Addresses are really long
 - 128 bits
- Example
 - fe80::1234:abcd:5678:ef01
- A device has several IPv6 addresses

The IPv6 mesh

- Contiki automatically forms a wireless IPv6 network
 - Routing protocol called RPL
- The Ethernet router is the root of the network

A RPL Directed Acyclic Graph

The RPL DAG

- Every DAG has a DAG ID
 - The IPv6 address of the root
- Every DAG has a version number

Let's look at the RPL mesh!

Go to Status -> Mesh on the kit display

The Mesh display

- The DAG ID
- The parent IPv6 address
- The DAG version
- RPL rank
- Number of neighbors
- Number of routes
- Estimated number of hops
- ETX: RPL link quality indicator
- RSSI: Received Signal Strength Indicator

Hands-on experimentation

- Cusp your hand over the antenna
- Watch the ETX go up
- Might choose another parent
- Hop count will then increase

This is what happened

Our hand stopped the radio signals

A better route was found

Eventually the network recovers

More like this

http://thingsquare.com