## Digit Classification using RBM as feature extractor



## demo

## Introduction to Boltzmann Machine

- A type of stochastic neural network used for probabilistic learning.
- Inspired by statistical mechanics (named after Ludwig Boltzmann).
- Learns complex data representations by modeling probability distributions.



### Architecture of Boltzmann Machine

• Fully connected network with:

Visible units (v) – Represent input data.

Hidden units (h) - Capture complex patterns.

• Each neuron is binary (0/1) and updates probabilistically.

• Bidirectional weighted connections (no layered structure like

traditional NNs).



### Drawbacks of Boltzmann Machine

- Slow training: Requires Gibbs sampling, making large-scale learning inefficient.
- Computationally expensive: Partition function ZZZ is hard to compute.
- Fully connected structure: Leads to complex weight updates.
- Not practical for deep learning due to convergence issues.

# Introduction to Restricted Boltzmann Machine (RBM)

- A simplified version of Boltzmann Machine.
- Restricted architecture: No intra-layer connections → Faster training.
- Commonly used in dimensionality reduction, feature extraction, and recommendation systems.



$$E(v,h) = -\sum_{i \in visible} ai * vi - \sum_{j \in hidden} bj * hj - \sum_{i,j} vi * hj * wij$$

## Architecture of Restricted Boltzmann Machine (RBM)

- Two-layer structure:
  Visible layer (v) Takes input data.
  Hidden layer (h) Learns latent features.
- No connections within layers (unlike BM).
- Uses contrastive divergence (CD) for efficient training.



## Why RBM Over BM?

- Simpler Architecture: No intra-layer connections in RBM → Easier training.
- Faster Training: RBM uses Contrastive Divergence (CD), unlike BM's slow Gibbs sampling.
- Better Scalability: RBM is more efficient for large datasets and deep learning.
- Deep Learning Compatibility: RBM is used for pre-training deep networks; BM isn't practical.
- Real-World Applications: RBM is used in recommendation systems, feature extraction, and anomaly detection.



## Applications of RBM

- Dimensionality reduction (like PCA).
- Feature learning (unsupervised pre-training in deep learning).
- Collaborative filtering (used in movie recommendation systems).
- Anomaly detection in cybersecurity.

## Our Project

#### Methodology



#### Reconstruction After O Epochs



Reconstruction After 2 Epochs



#### Reconstruction After 10 Epochs



Reconstruction After 20 Epochs



#### Reconstruction After 30 Epochs



Reconstruction After 50 Epochs



#### After 2 epochs

#### After 4 epochs

**RBM Learned Features** 



**RBM Learned Features** 



#### After 10 epochs

#### **RBM Learned Features**

#### After 50 epochs

#### **RBM Learned Features**



#### Loss Curve



## Results

| Class        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.98      | 0.99   | 0.98     | 980     |
| 1            | 0.99      | 0.99   | 0.99     | 1135    |
| 2            | 0.97      | 0.97   | 0.97     | 1032    |
| 3            | 0.97      | 0.98   | 0.97     | 1010    |
| 4            | 0.97      | 0.96   | 0.97     | 982     |
| 5            | 0.97      | 0.97   | 0.97     | 892     |
| 6            | 0.98      | 0.98   | 0.98     | 958     |
| 7            | 0.97      | 0.96   | 0.97     | 1028    |
| 8            | 0.97      | 0.97   | 0.97     | 974     |
| 9            | 0.97      | 0.95   | 0.96     | 1009    |
| Accuracy     |           |        | 0.97     | 10000   |
| Macro avg    | 0.97      | 0.97   | 0.97     | 10000   |
| Weighted avg | 0.97      | 0.97   | 0.97     | 10000   |

#### **Confusion Matrix**



## Thank You