A Proof of Dual Replacement Lemma

DING Chao

July 4, 2018

Let φ be a formula in basic modal and we denote φ' as the formula obtained by replacing a " \Diamond " inside φ with " $\neg\Box\neg$ ". We claim that

$$\vdash_K \varphi \leftrightarrow \varphi'$$
.

Proof. We shall prove this by structural induction on φ .

Case 1: $\varphi = \Diamond \psi$ and we are replacing the first \Diamond , then $\varphi' = \neg \Box \neg \varphi$.

$$(1) \ \Diamond p \leftrightarrow \neg \Box \neg p$$
 DUAL

(2)
$$\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$$
 US:(1)

Case 2: $\varphi = \neg \psi$, $\varphi' = \neg \psi'$. We informally claim that the definition of ψ' is clear: For this case, if φ' replaces the *i*th \Diamond , ψ' does the *i*th.

(1)
$$(p \leftrightarrow q) \rightarrow (\neg p \leftrightarrow \neg q)$$
 TAUT

(2)
$$(\psi \leftrightarrow \psi') \leftrightarrow (\neg \psi \leftrightarrow \neg \psi')$$
 US:(1)

(3)
$$\psi \leftrightarrow \psi'$$

(4)
$$\neg \psi \leftrightarrow \neg \psi'$$
 MP(2)(3)

Case 3: $\varphi = \psi * \rho$, $\varphi' = \psi' * \rho$, where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

(1)
$$(p \leftrightarrow q) \rightarrow ((p * r) \leftrightarrow (q * r))$$
 TAUT

(2)
$$(\psi \leftrightarrow \psi') \rightarrow ((\psi * \rho) \leftrightarrow (\psi' * \rho))$$
 US:(1)

(3)
$$\psi \leftrightarrow \psi'$$

$$(4) (\psi * \rho) \leftrightarrow (\psi' * \rho)$$
 MP(2)(3)

Case 4: $\varphi = \psi * \rho$, $\varphi' = \psi * \rho'$. A similar proof as above holds.

Case 5: $\varphi = \Box \psi$, $\varphi' = \Box \psi'$.

(1)
$$\psi \to \psi'$$

(2)
$$\Box(\psi \to \psi')$$

(3)
$$\Box(\psi \to \psi') \to (\Box\psi \to \Box\psi')$$
 US:K

$$(4) \quad \Box \psi \to \Box \psi' \qquad \qquad MP(3)(2)$$

Analogously, $\Box \psi' \to \Box \psi$. Therefore $\Box \psi \leftrightarrow \Box \psi'$.

Case 6: $\varphi = \Diamond \psi$ and we are replacing a \Diamond inside ψ , then $\varphi' = \Diamond \psi'$.

(1)
$$\Box \neg \psi \leftrightarrow \Box \neg \psi'$$
 I.H.(Case 5)

(2)
$$\Diamond \psi \leftrightarrow \neg \Box \neg \psi$$
 I.H.(Case 1)

(3)
$$\Diamond \psi' \leftrightarrow \neg \Box \neg \psi'$$
 I.H.(Case 1)

(4)
$$\Diamond \psi \leftrightarrow \Diamond \psi'$$
 PL:(1),(2),(3)

Finally we have proved $\vdash_K \varphi \leftrightarrow \varphi'$ holds for any basic modal formula φ .