Interpolation

ChEn 2450

Given (x_i,y_i) , find a function f(x) to interpolate these points.

Motivation & Concept

	Properties of air at atmospheric pressure			
Motivation:	${f T}$	rho	lambda	viscosity
 Often we have discrete data (tabulated, 	K	kg/m3	W/(m K)	N s/m2
from experiments, etc) that we need to	100 150	3.5562 2.3364	0.0093 0.0138	7.110e-06 1.034e-05
interpolate.	200	1.7458	0.0130	1.325e-05
 Interpolating functions form the basis for 	250	1.3947	0.0223	1.596e-05
numerical integration and differentiation	300	1.1614	0.0263	1.846e-05
techniques	350	0.9950	0.0300	2.082e-05
'	400	0.8711	0.0338	2.301e-05
▶ Used for solving ODEs & PDEs	450	0.7750	0.0373	2.507e-05
▶ we will cover this later	500	0.6864	0.0407	2.701e-05
© Concept:	550	0.6329	0.0439	2.884e-05
	600	0.5804	0.0469	3.058e-05
 Choose a polynomial function to fit to 	650	0.5356	0.0497	3.225e-05
the data (connect the dots)	700	0.4975	0.0524	3.388e-05
 Solve for the coefficients of the 	750	0.4643	0.0549	3.546e-05
	800	0.4354	0.0573	3.698e-05
polynomial	850	0.4097	0.0596	3.843e-05
 Evaluate the polynomial wherever you 	900	0.3868	0.0620	3.981e-05
	950	0.3666	0.0643	4.113e-05
want (interpolation)	1000	0.3482	0.0667	4.244e-05
THE NIVERSITY OF UTAH		Incropera & DeWitt, Fun	damentals of Heat and Mo	ass Transfer, 4th ed.

Linear Interpolation

$$y = mx + b \implies \begin{cases} y_1 &= mx_1 + b \\ y_2 &= mx_2 + b \end{cases} \longrightarrow \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

solve for m, b and substitute into the original equation...

Program this into your calculator.

$$y = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1) + y_1$$

Advantages:

• Easy to use (homework, exams)

Disadvantages:

 Not very accurate for nonlinear functions

In MATLAB:

yi=interp1(x,y,xi,'linear')

- x independent variable entries (vector)
- y dependent variable entries (vector)
- xi value(s) where you want to interpolate
- yi interpolated value(s) at xi.

Polynomial Interpolation

$$p(x) = \sum_{k=0}^{n_p} a_k x^k$$

fit an n^{th} -degree polynomial.

$$p(x) = \sum_{k=0}^{p} a_k x^k$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\ 1 \quad x_{n+1} \quad x_{n+1}^2 \quad \cdots \quad x_{n+1}^n \quad \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n+1} \end{pmatrix}$$
Given $n+1$ data points, we can

Given: (x_i, y_i) , solve for a_i

Two steps:

- I. Obtain polynomial coefficients by solving the set of linear equations.
- 2. Evaluate the value of the polynomial at the desired location (x_i)

In MATLAB:

- p=polyfit(x,y,n)
 - ▶ Forms & solves the above system.
 - requires at least n+1 points
 - ▶ NOTE: if you supply more than n+1 points, then regression will be performed (more later).
- yi=polyval(p,xi)
 - evaluates polynomial at point(s) given by xi.

Can Apply Polynomial Interpolation "Globally" or "Locally"

Properties of air at atmospheric pressure

T K	rho kg/m3	lambda W/(m K)	viscosity N s/m2
100	3.5562	0.0093	7.110e-06
150	2.3364	0.0138	1.034e-05
200	1.7458	0.0181	1.325e-05
250	1.3947	0.0223	1.596e-05
300	1.1614	0.0263	1.846e-05
350	0.9950	0.0300	2.082e-05
400	0.8711	0.0338	2.301e-05
450	0.7750	0.0373	2.507e-05
500	0.6864	0.0407	2.701e-05
550	0.6329	0.0439	2.884e-05
600	0.5804	0.0469	3.058e-05
650	0.5356	0.0497	3.225e-05
700	0.4975	0.0524	3.388e-05
750	0.4643	0.0549	3.546e-05

What is the value of the viscosity at T=412 K?

Polynomial interpolation, n=2

Polynomial interpolation, n=3

Linear interpolation (n=1)

$$p(x) = \sum_{k=0}^{n_p} a_k x^k$$

800

850

900

950 1000

0.4354

0.4097

0.3868

0.3666

0.3482

Incropera & DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed.

0.0573

0.0596

0.0620

0.0643

0.0667

3.698e-05

3.843e-05 3.981e-05

4.113e-05

4.244e-05

Cubic Spline Interpolation

Concept: use cubic polynomial and "hook" them together over a wide range of data...

1.5

For n+1 points, we form n splines. We must specify 4 variables per spline \Rightarrow we need 4n equations.

- 1. At each data point, the values of adjacent splines must be the same. This applies to all interior points (where two functions meet) $\Rightarrow 2(n-1)$ constraints.
- 2. At each point, the *first* derivatives of adjacent splines must be equal (applies to all interior points) \Rightarrow (n-1) constraints.
- 3. At each point, the second derivative of adjacent splines must be equal (applies to all interior points) \Rightarrow (n-1) constraints.
- 4. The first and last splines must pass through the first and last points, respectively \Rightarrow 2 constraints.
- 5. The curvature (d^2f/dx^2) must be specified at the end points \Rightarrow 2 constraints.
 - $d^2f/dx^2 = 0 \Rightarrow$ "natural spline"

0.2

0.5

4n constraints

Cubic Spline Interpolation

Advantages:

- Provides a "smooth" interpolant.
- Usually more accurate than linear interpolation.
- Doesn't usually get "wiggly" like higher-order polynomial interpolation can.

Disadvantages:

 Requires a bit more work than linear interpolation to implement.

MATLAB Implementation:

```
yi=interp1(x,y,xi,'spline')
```

- x independent variable entries (vector)
- y dependent variable entries (vector)
- xi value(s) where you want to interpolate
- yi interpolated value(s) at xi.

Comparison Between Linear, Spline, & Polynomial Interpolation

$$f(x) = \exp\left(-\frac{(x+b)^2}{c}\right)$$

Data points follow
$$f(x) = \tanh\left(\frac{x}{a}\right) + \exp\left(-\frac{(x+b)^2}{c}\right)$$

Polynomial interpolation can be bad if we use high-order polynomials

Data points follow $f(x) = x^5 - x^4 - 15x$

- Cubic spline interpolation is usually quite accurate and relatively cost effective.
- Linear interpolation is quick and easy, and may be adequate for well-resolved data.
- Polynomial interpolation can be problematic, unless the underlying data is truly a polynomial!

3ilinear interpolation

2-D Linear Interpolation

If you have "structured" (tabular) data:

- I. Interpolate in one direction (two I-D interpolations)
- 2. Interpolate in second direction.

Use this for simple homework assignments, in-class exams, etc.

$$\phi(x,y) \approx \phi_{1,1} \frac{(x_2 - x)(y_2 - y)}{(x_2 - x_1)(y_2 - y_1)}
+ \phi_{2,1} \frac{(x - x_1)(y_2 - y_1)}{(x_2 - x_1)(y_2 - y_1)}
+ \phi_{1,2} \frac{(x_2 - x)(y - y_1)}{(x_2 - x_1)(y_2 - y_1)}
+ \phi_{2,2} \frac{(x - x_1)(y - y_1)}{(x_2 - x_1)(y_2 - y_1)}$$

- 'linear' 2D linear interpolation (default)
- 'spline' 2D spline interpolation

x,y may be **vectors** (matlab assumes tabular form) \$\phi\$ must be a **matrix** (unique \$\phi\$ for each x-y pair)

General 2-D Linear Interpolation

Equation of a plane:
$$\phi = ax + by + c$$

$$\phi_1 = ax_1 + by_1 + c$$

$$\phi_2 = ax_2 + by_2 + c$$

$$\phi_3 = ax_3 + by_3 + c$$

Solve 3 equations for 3 unknowns:

$$a = \frac{\phi_3 (y_1 - y_2) + \phi_2 (y_3 - y_1) + \phi_1 (y_2 - y_3)}{x_3 (y_1 - y_2) + x_2 (y_3 - y_1) + x_1 (y_2 - y_3)},$$

$$b = \frac{\phi_3(x_2 - x_1) + \phi_2(x_1 - x_3) + \phi_1(x_3 - x_2)}{y_3(x_2 - x_1) + y_2(x_1 - x_3) + y_1(x_3 - x_2)},$$

$$c = \frac{\phi_3 (x_1 y_2 - x_2 y_1) + \phi_2 (x_3 y_1 - x_1 y_3) + \phi_1 (x_2 y_3 - x_3 y_2)}{x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)}$$

ϕ =interp2(x,y, ϕ ,xi,yi,'method')

- 'linear' linear interpolation
- 'spline' spline interpolation

 x, y, ϕ are matrices (unique x,y for each ϕ).

Note: multidimensional higherorder interpolation methods exist (e.g. computer graphics industry)