4.4. Алгоритм RSA

Алгоритм, разработанный Ривестом, Шамиром и Адлеманом, использует выражения с экспонентами. Данные шифруются блоками, каждый блок рассматривается как число, меньшее некоторого числа п. Шифрование и дешифрование имеют следующий вид для некоторого незашифрованного блока М и зашифрованного блока С.

 $C = M^e \pmod{n}$

 $M = C^d \pmod{n} = (M^e)^d \pmod{n} = M^{ed} \pmod{n}$

Как отправитель, так и получатель должны знать значение n. Отправитель знает значение e, получатель знает значение d. Таким образом, открытый ключ есть $KU = \{e, n\}$ и закрытый ключ есть $KR = \{d, n\}$. При этом должны выполняться следующие условия:

- 1. Возможность найти e, d и n такие, что $M^{ed} = M \mod n$ для всех M < n.
- 2. Относительная легкость вычисления M^e и C^d для всех значений M < n.
- 3. Невозможность определить d, зная е и n.

Рассмотрим некоторые математические понятия, свойства и теоремы, которые позволят нам определить e, d и n.

- 1. Если $(a \cdot b) \equiv (a \cdot c) \mod n$, то $b \equiv c \mod n$, если a и n взаимнопростые, т.e $\gcd(a, n) = 1$.
- 2. Обозначим Z_p все числа, взаимнопростые с p и меньшие p. Если p простое, то Z_p это все остатки. Обозначим w^{-1} такое число, что $w \cdot w^{-1} \equiv 1 \mod p$.

Тогда $\forall \ w \in Z_p \ \exists \ z \colon w \cdot z \equiv 1 \ mod \ p$

3. Определим функцию Эйлера следующим образом: $\Phi(n)$ - число положительных чисел, меньших n и взаимнопростых c n. Если p - простое, то $\Phi(p) = p-1$.

Если p и q - простые, то $\Phi(p \cdot q) = (p-1) \cdot (q-1)$.

- 4. *Теорема Ферма*.
 - $a^{n-1} \equiv 1 \mod n$, если n простое.
- 5. Теорема Эйлера.

 $a^{\Phi(n)} \equiv 1 \mod n$ для всех взаимнопростых а и n.

Теперь рассмотрим все элементы *алгоритма RSA*.

pa parente ipinii Bee estemeni bi tareep unana item.	
р, q - два простых целых числа	-открыто, вычисляемо.
$n = p \cdot q$	- закрыто, вычисляемо.
$d, gcd (\Phi(n), d) = 1;$	- открыто, выбираемо.
$1 < d < \Phi(n)$	
$e \equiv d^{-1} \bmod \Phi(n)$	- закрыты, выбираемы.

Закрытый ключ состоит из $\{d, n\}$, открытый ключ состоит из $\{e, n\}$. Предположим, что пользователь A опубликовал свой открытый ключ, и что пользователь B хочет послать пользователю A сообщение M. Тогда B вычисляет $C = M^e \pmod{n}$ и передает C. При получении этого

зашифрованного текста пользователь A дешифрует вычислением $M = C^{-d} \pmod{n}$.

Суммируем *алгоритм RSA*:

Создание ключей

Выбрать простые р и q

Вычислить $n = p \cdot q$

Выбрать d $gcd(\Phi(n), d) = 1; 1 < d < \Phi(n)$

Вычислить $e = d^{-1} \mod \Phi(n)$

Oткрытый ключ $KU = \{e, n\}$

3акрытый ключ $KR = \{d, n\}$

Шифрование

Незашифрованный текст: M < n

Зашифрованный текст: $C = M^e \pmod{n}$

Дешифрование

Зашифрованный текст: С

Незашифрованный текст: $M = C^d \pmod{n}$

Обсуждение криптоанализа

Можно определить четыре возможных подхода для криптоанализа алгоритма RSA:

- 1. Лобовая атака: перебрать все возможные закрытые ключи.
- 2. Разложить n на два простых сомножителя. Это даст возможность вычислить $\Phi(n) = (p-1) \cdot (q-1)$ и $d = e^{-1} \pmod{\Phi(n)}$.
- 3. Определить $\Phi(n)$ непосредственно, без начального определения р и q. Это также даст возможность определить $d = e^{-1} \pmod{\Phi(n)}$.
- 4. Определить d непосредственно, без начального определения $\Phi(n)$. Защита от лобовой атаки для *RSA* и ему подобных алгоритмов приводится далее.