Conceptual design

TASK CLARIFICATION

TASK CLARIFICATION

Functional modelling is a means of determining and representing the functional description of a system.

It has the following steps:

- Determination of the overall function
- Establishment of function structures
- Generation and selection of suitable combinations

DETERMINING THE OVERALL FUNCTION

GRASS CUTTER

DRAUGHT BEER IN A CAN

FEMALE CONDOM

not helpful?

ESTABILISHING FUNCTION STRUCTURES

ESTABILISHING FUNCTION STRUCTURES

GRASS CUTTER

GRASS CUTTER

alter specification to reflect new insights

helps the design team to understand the problem

Breath operated inhaler

DRAUGHT BEER IN A CAN

FEMALE CONDOM

FEMALE CONDOM

operate injector

Constructing the FAST diagram has the following steps:

- Start with <u>general functions</u> and get progressively more specific
- Each function should be a <u>verb</u> and a <u>noun</u> (keep it as simple as possible)
- <u>Chronologically</u> trace through each function that must be accomplished
- Be sure to include all <u>special modes</u> of operation such as stand-by, run, cleaning, etc.
- <u>Avoid specifying</u> form, structure or solutions; describe behaviour, not embodiment
- <u>Customise</u> the FAST diagram; the more information that can be visualised, the more useful the diagram

Important Function:

insert needle

- critical function harm patient if extreme
 - injection will not be effective if fails

Controlled parameters:

as it should operate

Controlled parameters:

Uncontrolled parameters:
skin thickness
skin toughness
patient tolerance

Uncontrolled parameters:
skin thickness
skin toughness
Patient tolerance

Constructing the FAST diagram can be prompted by the following questions:

- How well?
- How long?
- How fast?
- How safe?
- How much?
- How soon?
- How recorded?
- How ...?

GRASS CUTTER

ideas for solutions Solution 3 Sub-func functions **Electric** Electric Petrol Supply energy Human mains battery Parallel Vertical Horizontal Rotating Cut grass motion axis blade axis blade wire blade **Kinetic** Air Convey Gravity cuttings energy pressure Store Box Bag None cuttings meet demands Combination 1 Combination 2

GRASS CUTTER

estimates of parameters associated with concepts – may require some embodiment design

GRASS CUTTER

		Concept 1		Concept 2		Ideal
Criteria	Weighting	Value	Wt val	Value	Wt val	Wt val
Weight	3 X	2 =	6	4	12	n naximu m 15
Appearance	3	2	6	4	12	15
Power	2	2	4	4	8	10
Height adjustment	2	4	8	2	4	10
Cutting speed	1	3	3	5	5	5
Life	1	4	4	2	2	5
	_		31		43	60

			Concept 1	Concept 2		Concept 3	
	Criteria	Weighting	Value Wt val	Value	Wt val	Value	Wt val
	Ease of use	5 X	DATUM	+1) =	: (+5)	+2	+10
	Size	2		-1	-2	-1	-2
	Development time	2		-1	-2	-1	-2
	Unit cost	1		-1	-1	-2	-2
	Appearance	1		+1	+1	+2	+2
	Refillable	1		0	0	0	0
gı	ıidance only + record	0		+1		+6	

SUMMARY

The conceptual design stage has been summarised by Pahl and Beitz.

SUMMARY

The process of concept generation and evaluation is a vital part of the design process and can have a significant impact on the success of the project. It is important to explore the widest range of possible solutions before selecting that which best matches the specification.

