

apresenta

Data Science & Machine Learning

Data Wrangling

Consultor: Carolina Bez

Olá, eu sou a Carol

- Graduação: Engenharia Eletrônica e de Computação na UFRJ (diploma Magna Cum Laude)
- Extensão em Data Science em Harvard Extension School (em andamento)
- Consultora de Data Science na IBM há mais de 3 anos, atuando como *Tech Lead* há 1 ano
- Principais Projetos: Text and Speech
 Analytics, Propensão de Venda, Credit
 Scoring, Detecção de Fraude

O que veremos neste módulo

- 1. Intro Data Wrangling
- 2. Descoberta dos dados
 - a. Recapitulação de modelos
 - **b.** Análise dos dados
- 3. Estruturação dos dados
 - a. Pivot table e one-hot encoding
- 4. Limpeza dos dados
 - a. Seleção e filtragem
 - **b.** Tratamento de nulos e *outliers*
 - C. Tratamento de ruídos
- 5. Enriquecimento dos dados
 - a. Tratamento de textos
- 6. Validação dos dados
- 7. Produtização
 - **a.** Estruturação do *pipeline*
 - **b.** Produtização do *pipeline*

Alinhamento de Expectativas

O que o aluno vai sair aprendendo?

Aprender a limpar, normalizar, combinar, estruturar e organizar os diversos tipos de dados a fim de poder realizar análises e modelagens corretas, confiáveis e conclusivas

Intro Data Wrangling

Consultor: Carolina Bez

Abril de 2021

O que é Data Wrangling?

- É o processo de transformer e mapear dados que estão em uma forma mais "bruta" para um formato de maior qualidade e usabilidade para futuras análises
- Pré-requisito para o processo de visualização de dados, agregação, modelagem estatística e machine learning
- Data Wrangling consome cerca de 80% do tempo dos cientistas de dados, sobrando apenas 20% para exploração e modelagem

Etapas

6. Produtização

1. Descoberta

5. Validação

2. Estruturação

4. Enriquecimento

3. Limpeza

Descoberta

- Entendimento do problema de negócio
- Desenho da modelagem
- Mapeamento da necessidade de dados
- Entendimento das dimensões, chaves e relacionamentos

Estruturação

Estruturar os dados de acordo com a modelagem definina:

- Merges
- Agrupamentos
- Pivot Tables
- One Hot Encoding

Estruturação

Estruturação

ID	DT_CONSUMO	VL_CONSU MO
XX1	2020-11-03	50
XX1	2020-11-15	21
XX2	2020-11-18	33
XX2	2020-12-16	23
XX3	2020-11-06	45
XX4	2020-12-18	46
XX4	2020-11-18	12
XX4	2020-11-04	34

ID	TOTAL_CONSU MO_ANTES	DT_COMPRA	COMPROU (MES REF: DEZ)
XX1	71	2020-12-01	1
XX2	33	2020-12-15	1
XX3	45		0
XX4	46		0

Limpeza

- O famoso "Data Cleaning"
- Seleção dos dados relevantes e filtros necessários para evitar bias
- Tratamento de nulos, erros e outliers
- Padronização de valores
- Tratamento de ruídos

Limpeza

	a	b	С	d
0	0.0	NaN	-1.0	1.0
1	NaN	2.0	NaN	NaN
2	2.0	3.0	NaN	9.0
3	NaN	4.0	-4.0	16.0

Enriquecimento

- "Feature Engineering": derivar novos dados a partir dos que já existem, podendo ser feito de diversas formas:
 - combinar duas ou mais colunas
 - realizar um cálculo a partir de uma coluna
 - criar uma dimensão para extrair métricas agregadas
- Necessário principalmente quando os dados não estão em formato estruturado. Ex: textos
- Entendimento das dimensões, chaves e relacionamentos

Validação

É preciso garantir que os dados apresentam **consistência**, **qualidade** e **segurança** após os tratamentos. Isso pode ser feito avaliando a:

- Distribuição dos dados
- Correlação (com o target e entre variáveis)

Produtização

- É bem provável que todo o tratamento feito para esses dados tenha de ser replicado para outros. Será que o fluxo montado para esse dataset funcionará para todos os outros?
- Além disso, em modelos preditivos, o dataset de teste sempre precisa de uma preparação um pouco diferente do de treino
- Por isso, é importante estruturar um pipeline que agregue todas as etapas realizadas e seja escalável para outros dados

É iterativo!

Descoberta dos dados

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Entendimento do problema de negócio
- Desenho da modelagem e necessidade de dados
- Entendimento das dimensões, chaves e relacionamentos

Entendimento do problema de negócio

- "Quero aumentar o engajamento das minhas campanhas de marketing digital"
- "Quero diminuir a quantidade de clientes inadimplentes"
- "Quero melhorar o atendimento ao meu cliente"

Entendimento do problema de negócio

Antes de partir para a solução, o primeiro passo é definir bem o problema.

	S	M	Α	R	Т
	SPECIFIC	MEASURABLE	ACTION-ORIE NTED	RELEVANT	TIME-BOUND
5	WHAT, WHERE	HOW MUCH / HOW MANY	HOW / WHO	WHY	WHEN
W 2 H	Especifique, limite o escopo	KPI's, como mensurar se alcançou?	Está no seu alcance resolver esse problema? O que pode ser feito?	É relevante para o negócio? É orientado a resultados?	Quanto tempo preciso para resolver?

Entendimento do problema de negócio

Exemplo: "Quero aumentar o engajamento das minhas campanhas de marketing digital"

S	Qual campanha? Em qual canal?	Venda do produto A para clientes novos no canal de email
M	Como medir engajamento? Qual KPI? Número de clicks no email? Número de compras finalizadas?	Taxa de clicks sobre views (Click to open)
А	O que posso fazer para melhorar? <i>Banners</i> melhores, headers mais chamativos, ofertas personalizadas?	Banners com ofertas personalizadas (até que ponto posso personalizar?)
R	Relevante para o negócio?	Sim, o produto A é chave para a empresa e o canal de email é um canal em potencial
Т	Em quanto tempo?	As ofertas tem ciclo de vida de 6 meses e os banners demora 1 mês para ser feito e aprovado, então em no máximo 2 meses

Desenho da modelagem e necessidade de dados

- 1. Reestruturar sua pergunta de forma mais "técnica"
- 2. Definir o tipo de modelo:
 - · Aprendizado supervisionado (Classificação / Regressão): Qual target? Qual identificador do registro?
 - · Aprendizado não-supervisionado (Clusterização / Redução de dimensionalidade?)
 - Aprendizado por reforço (Reinforcement Learning)
- 3. Mapear dados necessários:
 - · Faça um brainstorming, pense em exemplos da vida real
 - · Busque casos de uso semelhantes na academia e no mercado
 - · Investigue dados existentes na empresa

Desenho da modelagem e necessidade de dados

Exemplo:

- **1.** Definir o tipo de modelo:
 - · Aprendizado supervisionado: prever quais clientes têm maior propensão a clicar
 - · Aprendizado não-supervisionado: clusterizar clientes de acordo com seu perfil para o desenho de peças e ofertas mais assertivas
- 2. Mapear dados necessários:
 - · Aprendizado supervisionado: prever quais clientes têm maior propensão a clicar
 - · Aprendizado não-supervisionado: clusterizar clientes de acordo com seu perfil para o desenho de peças e ofertas mais assertivas

Entendimento das dimensões, chaves e relacionamentos

Recapitulação de modelos

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Tipos de Modelos
- 2. Algoritmo Supervisionado
- 3. Algoritmo Não-Supervisionado

Tipos de Modelos

- Aprendizado Supervisionado (Supervised learning)
- Aprendizado Não-Supervisionado (Unsupervised Learning)
- 3. Aprendizado Semi-Supervisionado (Semi-supervised Learning)
- 4. Aprendizado Por Reforço (*Reinforcement Learning*)

Aprendizado Supervisionado

I1	12	13	14	Т
XXX	XXX	XXX	XXX	1
XXX	XXX	XXX	XXX	0
XXX	XXX	XXX	XXX	?
XXX	XXX	XXX	XXX	?

Modelam relacionamentos entre variável *label / target* e variáveis de *input* para que seja possível replicar o modelo para prever a *label* em dados de *label* desconhecida

Aprendizado Supervisionado

Se valor associado ao evento / estado conhecidos ("label" / "target") for:

- Flag / Categoria
 Classificação
 Ex: Flag cliente clicou ou não, Categoria do produto do cliente
- Valor Numérico □ Regressão
 Ex: Valor da quantidade de vendas no mês

Aprendizado Supervisionado

Aprendizado Não-Supervisionado

l1	l2	I3	14
XXX	XXX	XXX	XXX
XXX	XXX	XXX	XXX
XXX	XXX	XXX	XXX
XXX	XXX	XXX	XXX

- Não possuem variável label / target
- Modelos tentam encontram regras, detectar padrões, sumarizar e agrupar dados de modo a facilitar a descoberta de insights revelantes a partir dos dados

Aprendizado Não-Supervisionado

Se o objetivo for:

- Agrupar / Segmentar □ Clusterização
 Ex: Perfilamento de clientes
- Reduzir a dimensão dos dados
 □ Redução de
 dimensionalidade
 Ex: Plotar gráficos 2D em datasets de N variáveis
- Encontrar regras e padrões □ Sistemas de recomendação, Association Rules
 Ex: Recomendação de produtos

Aprendizado Não-Supervisionado

Análise dos dados

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Tipos de Dados
- 2. Análise Univariada
- 3. Aula Prática (Colab)

Tipos de Dados

- **1.** Tipo indefinido (ex: ID, CPF, número de série, etc.)
- 2. Nominal: sem relações numéricas (ex: Cachorro, Gato, Papagaio)
- 3. Binário: só podem existir 2 categorias: 0 ou 1/True ou False / Valor A ou valor B
- 4. Ordinal: números inteiros, podem ser ordenados, mas a distância entre um e outro não é conhecida
- 5. Contagem: números inteiros positivos
- 6. Temporal: dados cíclicos e contínuos, podendo estar representados em dias, semanas, meses, anos, etc.
- Intervalos: possui intervalos iguais entre os números e não expressam tempo (ex: percentuais, valores fracionados, etc.)

Tipos de Dados

Tipo indefinido

Tipos de Dados

Comando pandas.DataFrame.dtypes:

```
In [18]:  df.dtypes
      Out[18]: id
                                                                                            object
                attendantCharacters
                                                                                             int64
                audio length
                                                                                           float64
                callReason
                                                                                            object
                                                                                           object
                channel
                conversationId
                                                                                            object
                createdAt
                                                                                   datetime64[ns]
                dependant
                                                                                              bool
                feedback
                                                                                             int64
                initiatedAt
                                                                                   datetime64[ns]
                lastUpdatedAt
                                                                                   datetime64[ns
```

- Porém, atenção! É sempre importante validar coluna por coluna pois ele pode errar em caso de anomalias no formato dos dados.
- Use df.select_dtypes(include="float64").columns para filtrar somente colunas de um tipo específico

Análise Univariada

Geral

Percentual de nulos

Numéricas

- Média e Desvio Padrão
- Distribuição / Histograma
- Distribuição por percentis
- Verificação de outliers
- Check de Normalidade

Categóricas

- Distribuição por categoria
- Quantidade de categorias distintas

Percentual de nulos

pandas.DataFrame.isnull().sum(axis=0))

- Atenção! Validar colunas com alto percentual de nulo!
- Há colunas não-nulas com nulos?

Método Describe

Comando pandas.DataFrame.describe:

```
In [26]: D df["silenceDuration"].describe(percentiles=[.001, .01, .1, .25, .5, .75, .9, .99, .999])
      Out[26]: count
                          50.000000
                         47.693700
                mean
                std
                          35.573071
                min
                          1.898000
                0.1%
                          1.927351
                1%
                          2.191510
                10%
                          8.463100
                25%
                         20.914750
                50%
                         41.030500
                75%
                         62.728750
                90%
                         100.180700
                99%
                         141.894660
                99.9%
                         157.623366
                         159.371000
                max
                Name: silenceDuration, dtype: float64
```

• Útil para avaliar media, std, mín, max, percentis e outliers

Histograma

• pandas.DataFrame.hist

- Nesse caso, não parece seguir uma distribuição padrão, possui dois "picos"
- Pico isolado no zero: vale investigar!

Distribuição

• pandas.DataFrame.value_counts(dropna=False).plot(kind='bar')

- Há alguma categoria pouco representativa?
- A quantidade de categorias está aceitável?

Estruturação dos dados

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Estruturação para classificação de evento no tempo
- 2. Merges
- 3. Group By
- 4. Group by e Aggregate

Estruturação para classificação de evento no tempo

ID	DT_CONSUMO	VL_CONSU MO
XX1	2020-11-03	50
XX1	2020-11-15	21
XX2	2020-11-18	33
XX2	2020-12-16	23
XX3	2020-11-06	45
XX4	2020-12-18	46
XX4	2020-11-18	12
XX4	2020-11-04	34

Select

ID	DT_CONSUMO	VL_CONSU MO
XX1	2020-11-03	50
XX1	2020-11-15	21
XX2	2020-11-18	33
XX2	2020-12-16	23
XX3	2020-11-06	45
XX4	2020-12-18	46
XX4	2020-11-18	12
XX4	2020-11-04	34

Group By e Aggregate

ID	DT_CONSUMO	VL_CONSU MO
XX1	2020-11-03	50
XX1	2020-11-15	21
XX2	2020-11-18	33
XX2	2020-12-16	23
XX3	2020-11-06	45
XX4	2020-12-18	46
XX4	2020-11-18	12
XX4	2020-11-04	34

ID	TOTAL_CONSU MO_ANTES
XX1	71
XX2	33
XX3	45
XX4	46

Merge

ID	TOTAL_CONSU MO_ANTES
XX1	71
XX2	33
XX3	45
XX4	46

ID	DT_COMPRA	COMPROU (MES REF: DEZ)
XX1	2020-12-01	1
XX2	2020-12-15	1
XX3		0
XX4		0

Merge

ID	DT_CONSUMO	VL_CONSU MO
XX1	2020-11-03	50
XX1	2020-11-15	21
XX2	2020-11-18	33
XX2	2020-12-16	23
XX3	2020-11-06	45
XX4	2020-12-18	46
XX4	2020-11-18	12
XX4	2020-11-04	34

ID	TOTAL_CONSU MO_ANTES	DT_COMPRA	COMPROU (MES REF: DEZ)
XX1	71	2020-12-01	1
XX2	33	2020-12-15	1
XX3	45		0
XX4	46		0

Pivot table e one-hot encoding

Consultor: Carolina Bez

Abril de 2021

O que veremos nessa aula:

- 1. Pivot table
- 2. One-hot Encoding
- 3. Cat columns

Pivot Table

- pandas.DataFrame.pivot_table
- Caso 1: coluna categórica em que cada categoria vira uma nova coluna preenchida com o valor de outra variável

E	2	4	5	5	6	6	8	9	9
D	1	2	2	3	3	4	5	6	7
C	small	large	large	small	small	large	small	small	large
В	one	one	one	two	two	one	one	two	two
Α	foo	foo	foo	foo	foo	bar	bar	bar	bar
	0	1	2	3	4	5	6	7	8

Pivot Table

 Caso 2: sem transposição de coluna categórica, valores são agrupados pelo index

E	2	4	5	5	6	6	8	9	9
D	1	2	2	3	3	4	5	6	7
C	small	large	large	small	small	large	small	small	large
В	one	one	one	two	two	one	one	two	two
Α	foo	foo	foo	foo	foo	bar	bar	bar	bar
	0	1	2	3	4	5	6	7	8

		D	E		
		sum	max	mean	min
Α	В				
bar	one	9	8.0	7.000000	6.0
	two	13	9.0	9.000000	9.0
foo	one	5	5.0	3.666667	2.0
	two	6	6.0	5.500000	5.0

One-Hot Encoding

- pandas.get_dummies
- Caso 1: cada categoria vira uma nova variável booleana

	animal	sexo	idade
0	dog	macho	1
1	cat	femea	2
2	dog	femea	3

	idade	animal_cat	animal_dog	sexo_femea	sexo_macho
0	1	0	1	0	1
1	2	1	0	1	0
2	3	0	1	1	0

One-Hot Encoding

- pandas.get_dummies(..., drop_first=True))
- Caso 2: cada categoria vira uma nova variável booleana exceto a variável de lo nível

	animal	sexo	idade
0	dog	macho	1
1	cat	femea	2
2	dog	femea	3

	idade	animal_dog	sexo_macho
0	1	1	1
1	2	0	0
2	3	1	0

Cat Codes

- pandas.Series.cat.codes
- Mapeia cada categoria em um valor numérico
- Útil para algoritmos que aceitam variáveis categóricas (ex: LightGBM)

	animal	sexo	idade		animal	sexo	idade
0	dog	macho	1	0	1	1	1
1	cat	femea	2	1	0	0	2
2	dog	femea	3	2	1	0	3

Seleção e filtragem de dados

Consultor: Carolina Bez

Abril de 2021

O que veremos nessa aula:

- 1. Filtros de tempo
- 2. Filtros de segmentos
- 3. Seleção de colunas: Qualidade
- 4. Seleção de colunas: Relevância

Filtros de tempo

- Avaliar período histórico a ser analisado para a base principal
 - Ex: Previsão de fraude: coletar dados referentes aos últimos 3 anos de fraude na empresa
- 2. Avaliar período histórico a ser coletado para cálculo das variáveis
 - Ex: quero criar a variável qt_compras para saber quantas compras o cliente realizou nos últimos 6 meses

Atenção! Sempre avaliar junto à área de negócio!

Filtros de segmento

Avaliar grupos de interesse para a análise, de acordo com a relevância do grupo e a complexidade da análise.

Melhor começar pequeno, fazer um bom estudo e depois expandir o raciocíneo do que começar grande e não chegar a lugar nenhum!

Exemplos de segmentação: filtros de produto / região / comportamentos

Atenção! Sempre avaliar junto à área de negócio!

Seleção de colunas: Qualidade

- Eliminar colunas com muitos valores nulos
- Eliminar colunas com distribuição irregular (ex: 97% dos registros possuem o mesmo valor)

Atenção! É uma excelente hora para rever se houve algum erro na geração do dataset!

Seleção de colunas: Relevância

- Eliminar colunas de baixíssima (ou inexistente) correlação com a variável target
- Eliminar colunas de altíssima correlação entre si (eliminar só uma das duas)

```
for col in df.select_dtypes(include=np.number).columns:
    print(col, df[col].corr(df['nps']))

audio_length 0.042987001583190125
messages 0.06403421980232389
polarity 0.027060411946898243
silenceDuration 0.028552807892433436
userCharacters 0.06176253361256131
attendantId -0.08000138848536215
callId -0.0035366764051235136
callday_activate_data_package nan
callday_ask_invoice nan
```

Atenção! É uma excelente hora para rever se houve algum erro na geração do dataset!

Tratamento de nulos

Consultor: Carolina Bez

Abril de 2021

O que veremos nessa aula:

- 1. Tipos de nulos
- 2. Substituir por valor escolhido
- 3. Substituir por mode/median/average
- 4. Deletar o registro inteiro
- 5. Interpolação / Extrapolação
- 6. Forward filling / Backward filling Hot Deck
- 7. Outros métodos

Tipos de Nulos

A primeira etapa é entender a origem do valor nulo:

- Missing Completely at Random (MCAR) –
 valores nulos independem de outras variáveis e
 deles mesmo
 Ex: dados perdidos de forma acidental
- Missing at Random (MAR) valores nulos dependem de outras variáveis e mas não dependem deles mesmo Ex: Sensor de Temperatura / Perda de pacotes devido à queda de conexão
- Not Missing at Random (NMAR) valores nulos dependem deles mesmo
 Ex: Sensor de Temperatura não funciona abaixo de 5°C

Substituir por valor escolhido

- Depende do cenário
- Frequentemente podemos substituir por zero (principalmente após merges ou pivot-tables)
- Ex: Quero criar variável vl_total_compra fazendo um merge com o histórico de compras do cliente. Se o cliente não tiver compra, ficará como nulo □ posso substituir por zero
- Podemos substituir por máximo / mínimo / valor default:
- Ex: Sensor de temperatura quebrado a 5°C: Substituir por 4°C para dizer que é um número abaixo (Cuidado! Isso para o modelo pode funcionar, mas não mostre isso ao cliente. Na visualização, melhor colocar uma tag "Menor que 5°C")

Substituir por moda/mediana/média

Depende do cenário e do algoritmo, a ideia é subsitutir pelo valor que menos afete o cálculo do algoritmo

- Ex: Se for variável categórica / ordinal / count, é preferível substituir por moda (valor mais frequente)
- Se for um algoritmo que use média para a tomada de decisão / calcular os pesos, é normalmente preferível usar a média (ex; kmeans, regressão linear)
- Se for um algoritmo que use a distribuição / percentis, é normalmente preferível usar a mediana (ex: árvore de decisão)
- Se a variável tiver muitos outliers, melhor mediana ou invés de média

Deletar o registro inteiro

- Deletar linha: deletar linhas que tenham tenham valores nulos em qualquer variável
- Deletar par: deletar linhas quem tenham valores nulos somente em variáveis que serão usadas na análise (recomendado somente se tipo de nulo for MCAR)
- Deletar coluna: deletar uma coluna inteira caso ela tenha um % de nulos acima de um limiar (ex: 70%)

Interpolação

- Útil para dados em série (ex: série temporal)
- Existem vários métodos para interpolação
- pandas.DataFrame.interpolate

f				
	а	b	c	d
0	0.0	NaN	-1.0	1.0
1	NaN	2.0	NaN	NaN
2	2.0	3.0	NaN	9.0
3	NaN	4.0	-4.0	16.0
		erpol	ate(m	ethod
		erpol:	- 2	ethod:
lf.	inte a	15	С	
f. 0	inte a	b NaN	С	d
0 1	.inte a 0.0	b NaN 2.0	c	d 1.0

Forward filling / Backward filling

- pandas.DataFrame.fillna(..., method={'backfill', 'bfill', 'pad', 'ffill', None}, ...)
- 'pad', 'ffill': propaga a última observação válida para preencher o próximo valor nulo
- 'bfill', 'pad': propaga a próxima observação válida para preencher o último valor nulo

```
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
```



```
>>> df.fillna(method='ffill')
    A    B    C    D
0    NaN    2.0   NaN    0
1    3.0    4.0   NaN    1
2    3.0    4.0   NaN    5
3    3.0    3.0   NaN    4
```


Outros métodos

- Treinar um modelo para o valor nulo (regressão, k-nearest neighbors etc.)
- Multiple imputation

O que veremos nessa aula:

- 1. Tipos de nulos
- 2. Substituir por valor escolhido
- 3. Substituir por mode/median/average
- 4. Deletar o registro inteiro
- 5. Interpolação / Extrapolação
- 6. Forward filling / Backward filling Hot Deck
- 7. Outros métodos

Tratamento de outliers

Consultor: Carolina Bez

Abril de 2021

O que veremos nessa aula:

- 1. Tipos de Outlier
- 2. Identificar Outliers Interquartile Range (IQR)
- 3. Identificar Outliers Z Score
- 4. Corrigir Outliers
- 5. Demo

Tipos de Outlier

- Natural / Variabilidade dos dados
- Erro na mensuração / geração / gravação

Identificar Outliers – Interquartile Range (IQR)

 O registro possui valor acima de Q3 + 1.5*IQR ou abaixo de Q1 - 1.5*IQR

Identificar Outliers – Interquartile Range (IQR)


```
Q1=df['value'].quantile(0.25)
Q3=df['value'].quantile(0.75)
IQR=Q3-Q1
```

```
lower_bound = Q1-1.5*IQR

upper_bound = Q3+1.5*IQR

print("Normal Range", lower_bound, "-", upper_bound)

Q1 -0.7076964791646516

Q3 0.6417878224894843

IQR 1.3494843016541358

Normal Range -2.7319229316458555 - 2.666014274970688
```


Identificar Outliers - Z Score

- O registro possui valor acima de média +
 3*STD ou abaixo de média 3*STD
- Podemos usar o z-score: o registro possui z score fora da faixa de 3 STD.

$$z=rac{x-\mu}{\sigma}$$

$$\mu= {\scriptstyle{\mathrm{Mean}}} \atop \sigma= {\scriptstyle{\mathrm{Standard Deviation}}}$$

Corrigir Outliers

Remoção

 Cap (min/max aceitáveis) ou fill com média / mediana / moda / valor default

```
df['value'].describe(percentiles=[0.01,0.1,0.25,0.50,0.75,0.90,0.99])
         5000.000000
count
           -0.034785
mean
std
            1.014606
min
           -4.381693
1%
           -2.413475
10%
           -1.295180
25%
           -0.707696
50%
           -0.024717
75%
            0.641788
90%
            1.239164
99%
            2.307456
            4.980069
Name: value, dtype: float64
```


Tratamento de datas

Consultor: Carolina Bez

Abril de 2021

O que veremos nessa aula:

- 1. Formatação de datas
- 2. Cálculo de datas
- 3. Demo

Formatação de datas pandas.to_datetime()

```
df
   dt_compra
    26/1/2016
    5/11/2016
pd.to_datetime(df['dt_compra'].astype(str), format='%d/%m/%Y')
    2016-01-26
    2016-11-05
Name: dt_compra, dtype: datetime64[ns]
```


Formatação de datas

%d	Day of the month as a zero-padded decimal number.	01, 02,, 31
%b	Month as locale's abbreviated name.	Jan, Feb,, Dec (en_US); Jan, Feb,, Dez (de_DE)
%В	Month as locale's full name.	January, February,, December (en_US); Januar, Februar,, Dezember (de_DE)
%m	Month as a zero-padded decimal number.	01, 02,, 12
%у	Year without century as a zero-padded decimal number.	00, 01,, 99
%Y	Year with century as a decimal number.	0001, 0002,, 2013, 2014,, 9998, 9999

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

Cálculos de data

Calcular diferença (em dias, horas, minutos, meses, etc.)

```
M df['dt_compra'] = pd.to_datetime(df['dt_compra'].astype(str), format='%d/%m/%y')

M df['dt_venda'] = pd.to_datetime(df['dt_venda'].astype(str), format='%d/%m/%y')

M df['qt_dias_dif'] = (df.dt_venda - df.dt_compra)

M df['qt_dias_dif']

0 31 days
1 4 days
Name: qt_dias_dif, dtype: timedelta64[ns]

M df['qt_dias_dif'].map(lambda x: x.components.days)

D 31
1 4
Name: qt_dias_dif, dtype: int64
```


Rolling Filters

Consultor: Carolina Bez

Abril de 2021

O que veremos nessa aula:

- 1. Rolling Filter com Mediana
- 2. Rolling Filter com Média

Rolling Filter com Média

pandas.DataFrame.rolling

Rolling Filter com Média

pandas.DataFrame.rolling


```
df["less_noise_value"] = df.value.rolling(window=20).mean()

import matplotlib.pyplot as plt

plt.scatter(x=df.index,y=df["less_noise_value"])
plt.show()
```


Rolling Filter com Mediana

pandas.DataFrame.rolling

Enriquecimento dos dados – Operações Matemáticas

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Tipos de Operações
- 2. Inverso
- 3. Potências / Exponencial
- 4. Square-root / Log
- 5. Transformação Box-Cox
- 6. Somas / Diferenças / Multiplicação / Divisão
- 7. Demo

Operações

- 1 Univariadas
- 2. Bivariadas

Inverso

$$f(x) = \frac{1}{x}$$

Potências / Exponencial

$$f(x) = x^{2}$$

$$g(x) = x^{3}$$

$$h(x) = x^{n}$$

$$k(x) = exp(x)$$

Square-root / Log

$$f(x) = ln(x)$$

$$f(x) = \sqrt{x}$$

Transformação Box-Cox

Transformação Box-Cox

$$x_i^{(\lambda)} = egin{cases} rac{x_i^{\lambda}-1}{\lambda} & ext{if } \lambda
eq 0, \ \ln\left(x_i
ight) & ext{if } \lambda = 0, \end{cases}$$

Operações Matemáticas - Bivariadas

$$c = a + b$$

$$c = a - b$$

$$c = a * b$$

$$c = a/b$$

Enriquecimento dos dados – Operações Categóricas

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Recap: One-hot encoding
- 2. Recap: Cat Codes
- 3. Count / Frequency Mapping
- 4. Demo

Recap: One-Hot Encoding

	animal	sexo	idade
0	dog	macho	1
1	cat	femea	2
2	dog	femea	3

Original

	idade	animal_dog	sexo_macho
0	1	1	1
1	2	0	0
2	3	1	0

One-Hot

Recap: Cat Codes

	animal	sexo	idade
0	dog	macho	1
1	cat	femea	2
2	dog	femea	3

Original

	animal	sexo	idade
0	1	1	1
1	0	0	2
2	1	0	3

Cat Codes

Count / Frequency Mapping

	animal	sexo	idade
0	dog	macho	1
1	cat	femea	2
2	dog	femea	3

Original

	animal	sexo	idade
0	2	1	1
1	1	2	2
2	2	2	3

Count Mapping

	animal	sexo	idade
0	0.666667	0.333333	1
1	0.333333	0.666667	2
2	0.666667	0.666667	3

Frequency Mapping

Enriquecimento dos dados – Discretização

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Equal-width discretization
- 2. Equal-frequency discretization
- 3. Demo

Equal-width discretization

$$width = \frac{maxvalue - minvalue}{N}$$

Equal-frequency discretization

Enriquecimento dos dados – Dimensões

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Novas Dimensões
- 2. Exemplo: ID Vendedor
- 3. Exemplo: CEP

Novas Dimensões

Em variáveis categóricas, principalmente Ids e nomes, podemos criar métricas associadas a esse campo ao invés desse campo em si.

ID	DT_CONSUMO	VL_CONSUMO	ID_VENDEDOR	NOTA_NPS
XX1	2020-11-03	50	X123	9
XX1	2020-11-15	21	X234	6
XX2	2020-11-18	33	X123	8
XX2	2020-12-16	23	X123	7
XX3	2020-11-06	45	X234	7
XX4	2020-12-18	46	X536	10
XX4	2020-11-18	12	X234	6
XX4	2020-11-04	34	X123	8

Novas Dimensões

Em variáveis categóricas, principalmente Ids e nomes, podemos criar métricas associadas a esse campo ao invés desse campo em si.

ID	DT_CONSUMO	VL_CONSUMO	ID_VENDEDOR	NOTA_NPS
XX1	2020-11-03	50	X123	9
XX1	2020-11-15	21	X234	6
XX2	2020-11-18	33	X123	8
XX2	2020-12-16	23	X123	7
XX3	2020-11-06	45	X234	7
XX4	2020-12-18	46	X536	10
XX4	2020-11-18	12	X234	6
XX4	2020-11-04	34	X123	8

Criação de uma dimensão Vendedor

ID_VENDEDOR	NOTA_NPS
X123	9
X123	8
X123	7
X123	8
X234	6
X234	7
X234	6
X536	10

ID_VENDEDOR	NOTA_NPS
X123	9
X123	8
X123	7
X123	8
X234	6
X234	7
X234	6
X536	10

ID_VENDEDOR	MÉDIA NOTA_NPS
X123	8.0
X234	6.3
Group	by

ID	DT_CONSUMO	VL_CONSUMO	Média_NPS_VEN DEDOR	NOTA_NPS
XX1	2020-11-03	50	8.0	9
XX1	2020-11-15	21	6.3	6
XX2	2020-11-18	33	8.0	8
XX2	2020-12-16	23	8.0	7
XX3	2020-11-06	45	6.3	7
XX4	2020-12-18	46		10
XX4	2020-11-18	12	6.3	6
XX4	2020-11-04	34	8.0	8

ID	DT_CONSUMO	VL_CONSUMO	Média_NPS_VEN DEDOR	NOTA_NPS
XX1	2020-11-03	50	8.0	9
XX1	2020-11-15	21	6.3	6
XX2	2020-11-18	33	8.0	8
XX2	2020-12-16	23	8.0	7
XX3	2020-11-06	45	6.3	7
XX4	2020-12-18	46	7.6	10
XX4	2020-11-18	12	6.3	6
XX4	2020-11-04	34	8.0	8

Exemplo: CEP

ID	DT_CONSUMO	VL_CONSUMO	CEP_MORADIA
XX1	2020-11-03	50	22430095
XX1	2020-11-15	21	22430095
XX2	2020-11-18	33	22432240
XX2	2020-12-16	23	22432240
XX3	2020-11-06	45	21678190
XX4	2020-12-18	46	21654570
XX4	2020-11-18	12	21654570
XX4	2020-11-04	34	21654570

Exemplo: CEP

ID	DT_CONSUMO	VL_CONSUMO	CEP_MORADIA	CEP_3DIG
XX1	2020-11-03	50	22430095	224
XX1	2020-11-15	21	22430095	224
XX2	2020-11-18	33	22432240	224
XX2	2020-12-16	23	22432240	224
XX3	2020-11-06	45	21678190	216
XX4	2020-12-18	46	21654570	216
XX4	2020-11-18	12	21654570	216
XX4	2020-11-04	34	21654570	216

Exemplo: CEPCriação de uma dimensão CEP_3Dig

CEP_3DIG	Média_VL_CONSUMO
224	31.75
216	34.25

Exemplo: CEP

ID	DT_CONSUMO	VL_CONSUMO	Média_VI_Consumo _CEP_3Dig
XX1	2020-11-03	50	31.75
XX1	2020-11-15	21	31.75
XX2	2020-11-18	33	31.75
XX2	2020-12-16	23	31.75
XX3	2020-11-06	45	34.25
XX4	2020-12-18	46	34.25
XX4	2020-11-18	12	34.25
XX4	2020-11-04	34	34.25

Enriquecimento dos dados – Operações de texto

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Word Tokenization
- 2. Word Stemming
- 3. Tratamento de Caixa e Dígitos
- 4. Remoção de Stop Words

Word Tokenization

"Eu estou estudando ciência de dados na Dinânima, estou amando!!!"

['Eu', 'estou', 'estudando', 'ciência', 'de', 'dados', 'na', 'Dinânima', ',', 'estou', 'amando', '!', '!', '!']

Tratamento de Caixa e Dígitos

- 1- Colocar tudo em minúsculo
- 2- Remover pontuações e alguns caracteres especiais
- 3- Se irrelevante, remover números

Word Stemming

Seleciona o radical da palavra

Remoção de Stop Words

Stop Words: palavras com pouco significado, não agregam informação semântica

Ex: de, a, eu, você, assim, porque

Validação dos dados

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Visualização
- 2. Checklist

Visualização

- Verificar novamente a distribuição de cada variável
- Em especial, as novas variáveis

Checklist

- Checar presença de nulos para cada variável
- Checar presença de outliers para cada variável
- Checar faixa de valores
- Checar variabilidade dos valores

```
In [26]:  df["silenceDuration"].describe(percentiles=[.001, .01, .1, .25, .5, .75, .9, .99, .999])
      Out[26]: count
                          50.000000
                mean
                          47.693700
                std
                          35.573071
                min
                          1.898000
                0.1%
                          1.927351
                1%
                           2.191510
                10%
                           8.463100
                25%
                          20.914750
                50%
                          41.030500
                75%
                          62.728750
                         100.180700
                         141.894660
                         157.623366
                         159.371000
               Name: silenceDuration, dtype: float64
```


Estruturação do pipeline

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Organizar ordem do fluxo
- 2. Transformar validações em testes formais
- 3. Criar funções para generalizar o que foi feito
- 4. Organizar arquivos de código
- 5. Estruturar um pipeline

Organizar ordem do fluxo

- A ordem em que você gerou o código não necessariamente é a ordem mais lógica
- Agrupar trechos de códigos parecidos (tratamento de nulo com tratamento de nulo, agrupamentos com agrupamentos)

Transformar validações em testes formais Ex: assert

```
df['value'].describe(percentiles=[0.01,0.1,0.25,0.50,0.75,0.90,0.99])
         5000.000000
count
mean
            0.007052
std
            1.021281
min
           -4.395224
1%
           -2.367227
10%
           -1.286918
25%
           -0.679073
50%
            0.000656
75%
            0.710529
90%
            1.282575
99%
            2.414630
            3.908931
max
Name: value, dtype: float64
```

assert df['value'].describe(percentiles=[0.01,0.1,0.25,0.50,0.75,0.90,0.99])['max']<4

Criar funções para generalizar o que foi feito


```
df.b = df.b.fillna(0)
       df.d = df.d.fillna(df.d.mean())
def treat na(df, select columns, fill values):
 for col in select columns:
    df[col] = df[col].fillna(fill values[col])
  return df
```

```
treat na(df, ['b', 'd'], {'b': 0, 'd': df.d.mean()})
```


Organizar arquivos de código

- 1- Transformar Notebooks em Códigos Python
- 2- Criar módulos à parte se for necessário

Estruturar Pipeline

pandas.DataFrame.pipe()

DEMO

Produtização do pipeline

Consultor: Carolina Bez

O que veremos nessa aula:

- 1. Treino x Previsão
- 2. Treino x Previsão: Datas
- 3. Treino x Previsão: Categóricas
- 4. Treino x Previsão: Métricas Estatísticas

Treino x Previsão

ID	DT_ULTIM A_COMPR A	TIPO_ITEM_ MAIS_COMP RADO	ID_VENDED OR	TOTAL_CON SUMO_ANTE S	FLG_COM PROU_NO VAMENTE	DT_COMP RA	NPS_COM PRA
XX1	20210201	COMPUTAD OR	X123	71	1	20210401	8
XX2	20201204	CELULAR	X234	33	1	20210404	8
XX3	20210330	CELULAR	X123	45	0	20210430	7
XX4	20210113	COMPUTAD OR	X234	46	0	20210413	5

ID	DT_ULTIM A_COMPR A	TIPO_ITEM_ MAIS_COMP RADO	ID_VENDED OR	TOTAL_CON SUMO_ANTE S	_	DT_COMP RA	NPS_COM PRA
XX5	20210401	COMPUTAD OR	X123	54			

Treino x Previsão: Data

ID	DT_ULTIM A_COMPR A	QT_ME SES_UL TIMA_C OMPRA	TIPO_ITEM_ MAIS_COM PRADO	ID_VENDED OR	TOTAL_CO NSUMO_AN TES	FLG_CO MPROU_ NOVAME NTE	DT_COM PRA	NPS_CO MPRA
XX1	20210201	2	COMPUTAD OR	X123	71	1	20210401	8
XX2	20201204	5	CELULAR	X234	33	1	20210404	8
XX3	20210330	1	CELULAR	X123	45	0	20210430	7
XX4	20210113	3	COMPUTAD OR	X234	46	0	20210413	5

QT_MESES_ULTIMA_COMPRA = DT_COMPRA - DT_ULTIMA_COMPRA

ID	DT_ULTI MA_COM PRA	QT_MESES _ULTIMA_ COMPRA	TIPO_ITEM _MAIS_CO MPRADO	ID_VENDE DOR	TOTAL_CO NSUMO_A NTES	FLG_CO MPROU _NOVA MENTE	DT_COM PRA	NPS_CO MPRA
XX5	20210401	?	COMPUTA DOR	X123	54			

QT_MESES_ULTIMA_COMPRA = <CURRENT_DATE> - DT_ULTIMA_COMPRA

Treino x Previsão: Categorias

ID	DT_ULTI MA_CO MPRA	TIPO_ITE M_MAIS_ COMPRA DO	FL_COMP UTADOR	FL_CELU LAR	ID_VEND EDOR	TOTAL_C ONSUMO _ANTES	FLG_C OMPRO U_NOV AMENT E	DT_CO MPRA	NPS_C OMPRA
XX1	2021020	COMPUT ADOR	1	0	X123	71	1	202104 01	8
XX2	2020120 4	CELULAR	0	1	X234	33	1	202104 04	8
XX3	2021033	CELULAR	0	1	X123	45	0	202104 30	7
XX4	2021011 3	COMPUT ADOR	1	0	X234	46	0	202104 13	5

SURGIMENTO DE OUTRA CATEGORIA FOR A DO DATASET DE TREINO:

ID	DT_ULTI MA_CO MPRA	TIPO_ITE M_MAIS_ COMPRA DO	FL_COMP UTADOR	FL_CELU LAR	ID_VEND EDOR	TOTAL_C ONSUMO _ANTES	FLG_C OMPRO U_NOV AMENT E	DT_CO MPRA	NPS_C OMPRA
XX5	2021040	TECLADO	0	0	X123	54			

Treino x Previsão: Métricas Estatísticas

ID	DT_ULTI MA_COM PRA	TIPO_ITEM _MAIS_CO MPRADO	ID_VENDE DOR	Média_NPS _VENDEDO R	TOTAL_CO NSUMO_A NTES	FLG_CO MPROU_ NOVAME NTE	DT_COM PRA	NPS_CO MPRA
XX1	20210201	COMPUTA DOR	X123	7.5	71	1	2021040 1	8
XX2	20201204	CELULAR	X234	6.5	33	1	2021040 4	8
XX3	20210330	CELULAR	X123	7.5	45	0	2021043 0	7
XX4	20210113	COMPUTA DOR	X234	6.5	46	0	2021041 3	5

ID	DT_ULTI MA_COM PRA	TIPO_ITEM _MAIS_CO MPRADO	ID_VENDE DOR	Média_NPS _VENDEDO R	TOTAL_CO NSUMO_A NTES	FLG_CO MPROU_ NOVAME NTE	DT_COM PRA	NPS_CO MPRA
XX5	20210401	COMPUTA DOR	X123	7.5	54			