SHORT SYLLABUS

BMAT201L Complex Variables and Linear Algebra

4 Credits (3-1-0)

Prerequisites: Differential Equations and Transforms Complex variable - Analytic functions and Cauchy – Riemann equations- Harmonic functions- Applications of analytic functions to fluid-flow and Field problems. Conformal mapping Elementary transformations; Bilinear transformation; Power Series - Taylor and Laurent series. Singularities - Poles – Residues; Integration of a complex function along a contour; Cauchy-Goursat theorem; Cauchy's integral formula; Cauchy's residue theorem; Linear Algebra-Eigenvalues and Eigen vectors; Cayley-Hamilton theorem; System of linear equations; Gaussian elimination and Gauss Jordan methods, Vector space – subspace- span - linearly dependent – Independent – bases; Dimensions; Finite dimensional vector space; Row and column spaces; Rank and nullity, Linear transformations; Invertible linear transformation; Dot products and inner products; Matrix representations of inner products; Gram - Schmidt – Orthogonalization.

BMAT201L	Complex Variables and Linear Algebra		L	T	Р	С
			3	1	0	4
Pre-requisite	BMAT102L	Syllabus version				
		1.0				

Course Objectives

- 1. To present comprehensive, compact, and integrated treatment of one of the most important branches of applied mathematics namely Complex variables to the engineers and the scientists.
- 2. To present comprehensive, compact, and integrated treatment of another most important branches of applied mathematics namely Linear Algebra to the engineers and the scientists.
- 3. To provide students with a framework of the concepts that will help them to analyse deeply about many complex problems.

Course Outcomes

At the end of the course the student should be able to

- 1. Construct analytic functions and find complex potential of fluid flow and electric fields.
- 2. Find the image of straight lines by elementary transformations and to express analytic functions in power series.
- 3. Evaluate real integrals using techniques of contour integration.
- 4. Use the power of inner product and norm for analysis.
- 5. Use matrices and transformations for solving engineering problems.

Module:1 Analytic Functions

7hours

Complex variable - Analytic functions and Cauchy – Riemann equations; Laplace equation and Harmonic functions; Construction of Harmonic conjugate and analytic functions; Applications of analytic functions to fluid-flow and electric field problems.

Module:2 | Conformal and Bilinear transformations

7 hours

Conformal mapping - Elementary transformations; Translation, Magnification, Rotation, Inversion; Exponential and Square transformations ($w = e^z$, z^2); Bilinear transformation; Cross-ratio-Images of the regions bounded by straight lines under the above transformations:

Module:3 Complex Integration

7 hours

Functions given by Power Series - Taylor and Laurent series-Singularities - Poles - Residues; Integration of a complex function along a contour; Statements of Cauchy-Goursat theorem- Cauchy's integral formula-Cauchy's residue theorem-Evaluation of real integrals-Indented contour integral.

Module:4 | Vector Spaces

6 hours

Vector space – subspace; linear combination - span - linearly dependent – Independent – bases; Dimensions; Finite dimensional vector space. Row and column spaces; Rank and nullity.

Module:5 Linear Transformations

6 hours

Linear transformations – Basic properties; Invertible linear transformation; Matrices of linear transformations; Vector space of linear transformations; Change of bases; Similarity.

Module:6 Inner Product Spaces

5 hours

Dot products and inner products; Lengths and angles of vectors; Matrix representations of inner products; Gram - Schmidt – Orthogonalization.

Module:7 | Matrices and System of Equations

5 hours

Eigenvalues and Eigen vectors; Properties of Eigenvalues and Eigen vectors; Cayley-Hamilton theorem; System of linear equations; Gaussian elimination and Gauss Jordan methods.

Module:8 | Contemporary issues:

2 hours

	Total Lecture hours: Total Tutorial hours :	45 hours 15 hours
Text E	Book(s)	
	G. Dennis Zill, Patrick D. Shanahan, A first coapplications, 2013, 3rd Edition, Jones and Bartlett P Jin Ho Kwak, Sungpyo Hong, Linear Algebra, 2004,	ublishers Series in Mathematics.
Refere	ence Books	
	Erwin Kreyszig, Advanced Engineering Mathemat Wiley & Sons (Wiley student Edition).	
2.	Michael, D. Greenberg, Advanced Engineering Pearson Education.	Mathematics, 2006, 2 nd Edition,
3.	Bernard Kolman, David, R. Hill, Introductory Linear 2011, 9th Edition Pearson Education.	Algebra - An applied first course,
	Gilbert Strang, Introduction to Linear Algebra, 2015, B.S. Grewal, Higher Engineering Mathematics, Publishers.	
	of Evaluation: Digital Assignments(Solutions by using sments, Final Assessment Test.	soft skill), Quiz, Continuous

24-06-2021

No. 64 Date 16-12-2021

Recommended by Board of Studies

Approved by Academic Council