

GH**raison** G H Raisoni College of Engineering & Management, Pune

NAAC Accredited A+ Grade

(An Empowered Autonomous Institute Affiliated to Savitribai Phule Pune University)

Department of CSE Artificial Intelligence

Experiment No. 2

Title: Study and Implement Multiple Linear Regression

Objectives:

- 1. Develop a machine learning model to predict calories burned based on exercise-related metrics.
- 2. Perform data preprocessing (handling missing values, encoding categorical variables).
- 3. Train and evaluate a Linear Regression model for calorie prediction.
- 4. Measure model performance using Mean Squared Error (MSE) and R² score.
- 5. Visualize actual vs. predicted values to assess model accuracy.

Problem Statement:

This practical builds a data-driven approach using linear regression to predict calorie expenditure based on exercise parameters such as duration, pulse rate, and max pulse.

Outcomes:

- 1. A trained Linear Regression model that predicts calorie expenditure.
- 2. Evaluation metrics (MSE, R²) to assess model accuracy.
- 3. A scatter plot of actual vs. predicted values to visualize prediction quality.

Tools Required: 4GB RAM, Anaconda, Notebook

Theory:

Multiple Linear Regression (MLR) is an extension of simple linear regression, where a dependent variable (Y) is predicted based on multiple independent variables (X1, X2, ..., Xn). The equation of MLR is:

$$Y {=} \beta_0 {+} \beta_1 X_1 {+} \beta_2 X_2 {+} \beta_n X_n {+} {\in}$$

Where:

- Y= Dependent variable
- X_1, X_2, X_n = Independent variables
- β_0 = Intercept
- $\beta_1,\beta_2,...,\beta_n$ = Coefficients of independent variables
- €= Error term

The model learns these coefficients by minimizing the Mean Squared Error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y - \acute{Y})^{2}$$

where Y is the actual value and \acute{Y} is the predicted value.

The goodness-of-fit is measured by R² score:

where SSres is the residual sum of squares and SStot is the total sum of squares.

Algorithm:

Step 1: Load Dataset

- Read data.csv using pandas.
- Display the first few rows to understand the structure.

Step 2: Data Preprocessing

- Handle missing values (drop or impute).
- Select independent (X) and dependent (y) variables.
- Convert categorical features using pd.get_dummies().

Step 3: Split Data

• Use train_test_split() to split into training (80%) and testing (20%) sets.

Step 4: Train Linear Regression Model

- Initialize LinearRegression() from sklearn.
- Fit the model using X_train and y_train.

Step 5: Make Predictions

• Use model.predict(X_test) to generate predictions.

Step 6: Evaluate Model

• Compute MSE and R² score to measure accuracy.

Source Code:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
df = pd.read_csv("data.csv") # Replace with actual dataset
print(df.head())
df = df.dropna()
X = df[['Duration', 'Pulse', 'Maxpulse',]] # Replace with actual feature names
y = df['Calories']
X=pd.get_dummies(X, drop_first=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2\_score(y\_test, y\_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared Value: {r2}")
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Values")
```

plt.ylabel("Predicted Values")
plt.title("Actual vs Predicted Values")
plt.show()

Output:

Duration Pulse Maxpulse Calories

60	110	130	409.1	
60	117	145	479.0	
60	103	135	340.0	
45	109	175	282.4	
45	117	148	406.0	
	60 60 45	60 110 60 117 60 103 45 109 45 117	60 117 145 60 103 135 45 109 175	60 117 145 479.0 60 103 135 340.0 45 109 175 282.4

Mean Squared Error: 4354.413282161514 R-squared Value: 0.8664689420685995

Conclusion:

raisoni EDUCATION