$\begin{array}{c} 18.100 \mathrm{B} \\ \mathrm{PROBLEM~SET~2} \end{array}$

JOHN WANG

1. Problem 2.11

Theorem 1.1. The distance $d_1(x,y) = (x-y)^2$ is not a metric.

Proof. Here, the third requirement for a metric does not hold, namely that $d(x,y) \leq d(x,r) + d(r,y)$. This is because $d_1(x,y) = (x-y)^2 = x^2 - 2xy + y^2$ and $d_1(x,r) + d_1(r,y) = x^2 - 2xr + r^2 + r^2 - 2ry + y^2 = x^2 + y^2 + 2r^2 - 2xr - 2ry$. Thus, one must have $-2xy \leq 2r^2 - 2xr - 2ry$ for all $r \in \mathbb{R}^1$ for d_1 to be a metric. This is the same as $xy \geq r(x+y-r)$. However, if one sets x=2 and y=0, this inequality does not hold for all values of r. For instance, $0 \leq 1(2-1) = 1$ which shows that d_1 is not a metric.

Theorem 1.2. The distance $d_2(x,y) = \sqrt{|x-y|}$ is a metric.

Proof. The first two properties of a metric are easy to prove. We know $d_2(x,y)>0$ holds for all $x\neq y$ and $d_2(x,x)=0$ because square roots of positive numbers are always positive. Next, $d_2(x,y)=d_2(y,x)$ because |x-y|=|y-x|. Finally, we have $d_2(x,y)\leq d_2(x,r)+d_2(r,y)$ for all $r\in\mathbb{R}^1$. This is because the triangle inequality for absolute values states that $|x-y|\leq |x-r|+|r-y|$, which means $d_2(x,y)\leq \sqrt{|x-r|+|r-y|}=\sqrt{d_2(x,r)^2+d_2(r,y)^2}$. However, by the triangle equality, we know that $\sqrt{d_2(x,r)^2+d_2(r,y)^2}\leq d_2(x,r)+d_2(r,y)$, and so that $d_2(x,y)\leq d_2(x,r)+d_2(r,y)$ for all $r\in\mathbb{R}^1$. Thus, d_2 is a metric. \square

Theorem 1.3. The distance $d_3(x,y) = |x^2 - y^2|$ is not a metric.

Proof. The first property of metrics does not hold. For instance, if x = 1 and y = -1, then $x \neq y$, but $d_3(x, y) = 0$, which means d_3 is not a metric.

Theorem 1.4. The distance $d_4(x,y) = |x-2y|$ is not a metric.

Proof. We know that a metric must have the property $d_4(x,y) > 0$ if $x \neq y$. However, this property does not hold for x = 2 and y = 1, where $d_4(x,y) = 0$ and $x \neq y$. Thus, d_4 is not a metric.