DBMS Week 4 TA Session

Division Operation

Relations *r*, *s*:

Α	В
а	1
а	2
а	3
β	1
γ	1
δ	1
δ	3
δ	4
ϵ	6
ϵ	1
β	2

1 2

Division Operation (Continued)

Relational Algebra

It's a procedural query language

- σ Select
- π Project
- ¬ Negation (not)
- U Union
- ∩ Intersection
- × Cartestion Product
- - Set Difference (Except)
- ⋈ Natural Join

Example

1. Find all the names of students whose age is greater than 25, or who are enrolled in Maths

$$\pi_{Name}(\sigma_{Age < 25 \ \lor \ Subject='Maths'}(Students))$$

2. Find the name and sports of the student whose age is less than 25 and awards is greater than 3

$$\pi_{Name,Sports}(\sigma_{Age < 25 \ \land \ Awards > 3}(Students \Join Activity))$$

Tuple Relational Calculus

• TRC is a non-procedural query language, where each query is of the form

$$\{t \mid P(t)\}$$

where \mathbf{t} = resulting tuples,

P(t) = known as predicate and these are the conditions that are used to fetch t.

Example

1. Find the name of the students whose age is 21

$$\{t \mid \exists \ s \in students(t. \ name = s. \ name \land s. \ age = 21)\}$$

2. Find the name of the employees who works in department manufacturing

employee(id, name, salary)
department(id, d_id, name, building)

 $\{M \mid \exists \ E \in employee \ \exists \ D \in department(E.id = D.id \land D.name = 'Manufacturing' \land M.name = E.name)\}$

Domain Relational Calculus

- A non-procedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$\{ < x_1, x_2, \dots, x_n > \mid P(x_1, x_2, \dots, x_n) \}$$

- x_1, x_2, \ldots, x_n represent domain variables
- P represents a formula similar to that of the predicate calculus

Example

1. Find the name of the students whose age is 21

student(name, age, marks)

$$\{ < a > \mid \exists \ b \ (< a,b,c> \in students \ \land \ b = 21) \}$$

2. Find the name of the employees who works in department manufacturing

employee(id, name, salary)
department(id, d_id, name, building)

 $\{ < b > | \ \exists \ a,c,d \ (< a,b,c> \in employee) \ \land \ \exists \ y \ (< a,x,y,z> \in department \ \land y = 'Manufacturing') \}$

Entity Sets

- An entity is an object that exists and is distinguishable from object.
- An entity set is a set of entities of the same type that share the same properties

Strong Entity set

- A strong entity set is an entity set that contains sufficient attributes to uniquely identify all its entities.
- A primary key exists for a strong entity sets

Weak Entity Set

- A weak entity set is an entity set that does not contain sufficient attributes to uniquely identify its entities.
- A primary does not exists for a weak entity set
- However, it contains a partial key called as a discriminator
- Discriminator represented by underlining with a dashed line.

Weak Entity set (continued)

- Weak entity set cannot exist independently since it doesn't have primary key
- It features in the model in relationship with a strong entity set. This is called the identifying relationship
- Primary key of weak entity set = Discriminator + Primary key of Strong entity set
- It must have total participation and identifying relationship

Attributes

• An attribute is a property associated entity set.

Types of attributes

- Simple attribute
- Composite attribute Eg fname, mname, lname can consits in a name

- Multivalued attribute Eg {phone_numbers}
- Derived attribute Eg age() from date of birth

Example

instructor \underline{ID} name first_name $middle_initial$ last_name address street $street_number$ street_name apt_number city state zip{ phone_number } date_of_birth age()

ER Diagram

- Rectangles represent entities
- Attributes are listed inside the rectangle
- Underline indicates primary key
- Diamond represent relationship set
- Total Participation (indicated by double line)
- Weak entity set represented by double rectangle

One to One relationship

- Each instructor has atmost one student
- Each student has atmost one instructor

One to Many relationship

- Each instructor has one or many students
- Each student has at most one instructor

Many to one relationship

- Each instructor has at most one student
- Each student has one or many instructors

Many to Many relationship

- Each instructor has one or many students
- Each student has one or many instructors

Total and Partial Participation

- Every student must have an instructor
- Instructor may or may not have a student

Expressing weak entity set

Ternary Relationship

Aggregation

Figure: Example of Aggregation

- Teacher { teacher_num, teacher_name }
- Student{student_num, student_name}
- Project{project_num, project_name }
- Examiner{<u>examiner_num</u>, examiner_name }
- proj_guide{ teacher_num, student_num, project_num, since }
- evaluate{ teacher_num, student_num, project_num, examiner_num, date_of_evaluation }

Overlapping and Partial

- A person can be either student or faculty or both.
- There may be some persons who are just persons not belongs to faculty and students

Figure: Overlapping and Partial

Disjoint and Partial

- A Student can be either UG students or PG students but they cannnot be both UG and PG students
- There may be students who are just students not belongs both UG and PG students

Disjoint and Complete

• Every Part must be present in either Purchased part or Manufactured part

Strong Entity Set

Figure: Strong entity with simple attributes

 $Student\{\underline{enrollment_num}, name, contact_num\}$

enrollment_num	name	contact_num
101	RAJ KUMAR MISHRA	222-222
102	SANAT K ROY	333-333

Figure: Table Student

Strong Entity Set with Composite Key

Figure: Entity set Student with simple and composite attributes

 $\textbf{Student}\{\underline{\textit{enrollment_num}}, \ \underline{\textit{fname}, \ \textit{mname}, \ \textit{lname}}, \ \textit{contact_num}\}$

enrollment_num	fname	mname	Iname	contact_num
101	RAJ	KUMAR	MISHRA	222-222
102	SANAT	К	ROY	333-333

Figure: Table Student

Strong Entity Set with Composite Key + Multivalued Attribute

Figure: Entity set Student with simple, composite, and multivalued attributes

Student{enrollment_num, fname, mname, lname, contact_num}

					, W
enrollment_num	fname	mname	Iname	contact_num	
101	RAJ	KUMAR	MISHRA	222-222, 777-777	q
102	SANAT	К	ROY	333-333, 999-999, 666-666	ς
					+1
					U

causes problems
when we our
query has WHERE
SOLN: decompose
the table into
multiple tables

Figure: Table Student

Strong Entity Set with Composite Key + Multivalued Attribute

Student{\(\frac{enrollment_num}{2}\)}, \(frac{fname}{2}\), \(frac{mname}{2}\)}

enrollment_num	fname	mname	Iname	contact_num
101	RAJ	KUMAR	MISHRA	222-222
101	RAJ	KUMAR	MISHRA	777-777
102	SANAT	K	ROY	333-333
102	SANAT	K	ROY	999-999
102	SANAT	K	ROY	666-666

Figure: Table Student

OR

Contacts { enrollment_num, contact_num }

Student{ enrollment_num, fname, mname, lname }

enrollment_num	fname	mname	Iname
101	RAJ	KUMAR	MISHRA
102	SANAT	K	ROY

Figure: Table Student

enrollment_num	contact_num
101	222-222
101	777-777
102	333-333
102	999-999
102	666-666

Figure: Table Student

Strong Entity Set with Composite Key + Multivalued Attribute + Derived Attribute

Figure: Entity set Student with simple, composite, multivalued attributes, and derived attribute

Student{<u>enrollment_num</u>, fname, mname, lname, data_of_birth} **Contacts**{enrollment_num, contact_num}

Relationship: Cardinality Constraint (many-to-many)

Figure: A many-to-many relationship between Student and Course

- Student{student_num, student_name}
- Course{course_num, course_name}
- enrolls{ student_num, course_num }

student_num	student_name
101	RAJ
102	SANAT
102	JANAI

Student

student_num	course_num			
101	CS101			
102	CS101			
102 MT110				
enrolls				

course_num	course_name
CS101	Computer Science
MT110	Mathematics
MT110	Mathematics

emons

Course

Figure: Table: Student, Course and enrolls

Relationship: Cardinality Constraint (many-to-many) with Descriptive Attributes

Figure: A many-to-many relationship between Student and Course

- Student{student_num, student_name}
- Course{course_num, course_name}
- enrolls{ student_num, course_num, enrollment_date }

Relationship: Cardinality Constraint (many-to-one)

Figure: An many-to-one relationship between **Student** and **Course** primary of one becomes attribute of many

- Student{<u>student_num</u>, student_name, <u>course_num</u>}
- Course{course_num, course_name} must be nullable

Relationship: Cardinality Constraint (one-to-one)

Figure: An one-to-one relationship between Department and Manager

- Department{dept_num, dept_name}
- Manager{mgr_num, mgr_name, dept_num}

OR

- Department{dept_num, dept_name, mgr_num}
- Manager{mgr_num, mgr_name}

Relationship: Cardinality Constraint (many-to-one) with Participation Constraint

Figure: An many-to-one relationship between **Student** and **Course**

not null

- Student{<u>student_num</u>, student_name, <u>course_num</u>}
- Course { <u>course_num</u>, course_name }

Relationship: Cardinality Constraint (one-to-one) with Participation Constraint

Figure: A one-to-one relationship between Manager and Department

Mgr_Dept{mgr_num, dept_num, mgr_name, dept_name }

Weak Entity Set

Figure: A relationship between Course and Section

- Course{course_id, title }
- Section{ course_id, sec_id, semester, year }

Ternary Relationship

Figure: Example of ternary relationship

- teacher{teacher_num, teacher_name}
- student{student_num, student_name }
- project{project_num, project_name }
- proj_guide{teacher_num, student_num, project_num, since }

E-R Diagram with Aggregation

Figure: Example of Aggregation

- proj_guide{teacher_num, student_num, project_num, since }
- Examiner { <u>examiner_num</u>, examiner_name }
 - evaluate{ teacher_num, student_num, project_num, examiner_num, date_of_evaluation }

E-R diagrams symbols

