Reviews:

Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483–2547. Noe, M. C.; Letavic, M. A.; Snow, S. L.; McCombie, S. W. *Org. React.* **2005**, *66*, 109–626.

Ligands such as pyridine accelerate the osmylation of olefins (Criegee, R.; Marchand, B.; Wannowius, H. *Liebigs Ann. Chem.* **1942**, *550*, 99-133.)

Catalytic Cycle:

Turnover is achieved by reoxidation with stoichiometric oxidants:

K₃Fe(CN)₆ Minato, M.; Yamamoto, K.; Tsuji, J. J. Ora. Chem. **1990**, *55*, 766–768.

In the original Sharpless procedure using NMO, reoxidation was believed to compete with hydrolysis, leading to a ligand-less "second cycle" olefin dihydroxylation that was non-enantioselective:

Ogino, Y.; Chen, H.; Kwong, H.-L.; Sharpless, K. B. Tetrahedron Lett. 1991, 32, 3965-3968.

Balance of evidence favors 3+2 cycloaddition (vs. 2+2/rearrangement) mechanism between osmium and olefin.

See, e.g., Corey, E. J.; Noe, M. C.; Grogan, M. J. Tetrahedron Lett. 1996, 37, 4899-4902.

DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. *J. Am. Chem. Soc.* **1997**, *119*,9907–9908.

AD-mix reagents are commercially available:

1.4 g AD-mix- β will oxidize 1 mmol olefin, contains:

0.98 g K₃Fe(CN)₆ (3 mmol) 0.41 g K₂CO₃ (3 mmol) 0.0078 g (DHQD)₂-PHAL (0.01 mmol) 0.00074 g K₂OsO₂(OH)₄ (0.002 mmol)

Conditions: t-BuOH, H₂O (1:1), 0 °C, 6-24 h Typical work-up: Na₂SO₃ then extraction

Sharpless, K. B., et al. J. Org. Chem. 1992, 57, 2768–2771.

Corey proposes a U-shaped binding pocket:

Corey, E. J.; Guzman-Perez, A.; Noe, M. C. Tetrahedron Lett. 1995, 36, 3481-3484.

For ligand modifications and improvements based on binding model, see:

Corey, E. J.; Noe, M. C.; Grogan, M. J. *Tetrahedron Lett.* **1994**, *35*, 6427–6430. Huang, J.; Corey, E. J. *Org. Lett.* **2003**, *5*, 3455–3458.

4 of 6 Olefin substitution classes are successfully dihydroxylated:

β

Mnemonic:

α

Application of Mnemonic:

$$n-C_5H_{11}$$
 CO_2Et
 EtO_2C
 $n-C_5H_{11}$
 $AD-mix-\beta$
 EtO_2C
 R
 $n-C_5H_{11}$
 OH
 OH

$$AD$$
-mix- β OH n -C₈H₁₇ CH_2OH

		AD-mix- β [(DHQD) ₂ -PHAL]	AD-mix- α [(DHQ) ₂ -PHAL]
		% ee, config.	% ee, config.
H_3C CH_3 CH_3	*	98, <i>R</i>	95, S
	*	99, <i>R, R</i>	97, S, S
n-Bu n-Bu	*	97, <i>R, R</i>	93, S, S
$n-C_5H_{11}$ $\stackrel{3}{\underset{2}{\longleftrightarrow}}$ CO_2Et	*	99, 2S, 3R	96, <i>2R</i> , 3S
CO ₂ Et	*	97, 2S, 3R	95, 2R, 3S
Ph	*	>99.5, <i>R, R</i>	>99.5, <i>S, S</i>
H ₃ C CH ₃		78, <i>R</i>	76, S
CH ₃		94, <i>R</i>	93, S
n-C ₈ H ₁₇		84, <i>R</i>	80, S
		97, R	97, S
		* addition of CH ₃ SO ₂ NH ₂ (a phase-transfe	

 * addition of CH₃SO₂NH₂ (a phase-transfer and general acid catalyst) leads to faster reactions for non-terminal olefins

Sharpless, K. B., et al. J. Org. Chem. 1992, 57, 2768-2771.

ODHQD

Cis-disubstituted olefins are generally poor substrates. With a modified catalyst, DHQD-IND, fair to good enantioselectivities can be obtained:

Wang, L.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114, 7568-7570.

(DHQD)₂AQN is often a superior ligand:

Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 448-451.

A few tetra-substituted olefins work well:

Sharpless, K. B., et al. J. Am. Chem. Soc. 1993, 115, 8463-8464

a best case; ee's and yields are not generally high

Allylic 4-methoxybenzoates are particularly good substrates:

Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805-10816.

Regioselectivity of AD with diene substrates ((DHQD)₂PHAL as ligand):

Substrate	Product	% yield, % ee
H ₃ C CH ₃	H_3C OH CH_3	78, 93
H ₃ C OEt	H ₃ C OH OEt	78, 92
H ₃ C OEt	H ₃ C OH OEt	93, 95
H ₃ C	H ₃ C OH	73, 98
H ₃ C CH ₃	H_3C OH OH OH	70, 98

in general, AD is selective for the more electron-rich double bond

Xu, D.; Crispino, G. A.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114, 7570-7571.

$$\begin{array}{c} \text{AD} \\ \text{H}_{3}\text{C} \\ \end{array} \\ \begin{array}{c} \text{AD} \\ \text{OCH}_{3} \\ \end{array} \\ \begin{array}{c} \text{AD} \\ \text{(DHQD)}_{2}\text{PYDZ} \\ \end{array} \\ \begin{array}{c} \text{A} \ 56\% \ \text{yield}, \ >99\% \ \text{ee} \\ \end{array} \\ \\ \text{with ligand (as shown): } \mathbf{A}:\mathbf{B} = \sim 6:1 \\ \text{without ligand, only OsO}_{4}/\text{NMO: } \mathbf{A}:\mathbf{B} \leq 1:10 \\ \end{array} \\ \begin{array}{c} \text{HO}_{\text{N}} \\ \text{OCH}_{3} \\ \end{array} \\ \begin{array}{c} \text{OCH}_{3} \\ \text{OCH}_{3} \\ \end{array}$$

B 10% yield, >96% ee

Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805-10816.

Use of AD with chiral olefins:

Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483–2547, and refs. therein.

Conditions		<u>anti : syn</u>
OsO ₄ , NMO	88% yield (mixture)	1.9 : 1
(DHQ) ₂ PHAL (matched)	86% yield (anti)	54 : 1
(DHQD) ₂ PYDZ (mismatched)	86% yield (syn)	1:35

Guzman-Perez, A.; Corey, E. J. Tetrahedron Lett. 1997, 38, 5941–5944.

Regioselective AD of terminal olefin of oligoprenyl derivatives:

$$CH_3$$
 CH_3 CH_3

Examples in Industry

Olefin was added over a period of 6.5 h to the reaction mixture to prevent "second cycle" oxidation.

Ahrgren, L.; Sutin, L. Org. Process Res. Dev. 1997, 1, 425-427.

$$K_2OsO_2(OH)_4$$
 (0.2 mol%)
(DHQ)₂PHAL (1 mol%)
 $K_3Fe(CN)_6$ (3.5 mol%)
 K_2CO_3 , t -BuOH
15.38 kg, 105.2 mol
in 5% MTBE/ t -BuOH
 H_2O (460 L), 0→5 °C
16.2 kg (98.4% pure)
99.4% ee

Prasad, J. S; Vu, T.; Totleben, M. J.; Crispino, G. A.; Kacsur, D. J.; Swaminathan, S.; Thornton, J. E.; Fritz, A.; Singh, A. K. *Org. Process Res. Dev.* **2003**, *7*, 821–827.

Examples in Syntheses of Natural Products:

Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2004**, *126*, 706–707. For conversion of diol to epoxide, see Kolb, H. C.; Sharpless, K. B. *Tetrahedron* **1992**, *48*, 10515–10530.

Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. J. Am. Chem. Soc. 2008, 130, 16864–16866.

Adam Kamlet

• In the example below, use of the triisopropylsilyl protecting group was crucial to achieve regioselectivity:

(-)-monomeric lomaiviticin aglycon

Woo, C. M.; Gholap, S. L.; Lu, L.; Kaneko, M; Li, Z.; Ravikumar, P. C.; Herzon, S. B. *J. Am. Chem. Soc.* **2012**, *134*, 17262–17273.

• In the example below, a 4-phenylbenzyl ester was incorporated to serve as an expedient for purification and enantioenrichment by re-crystallization:

$$\begin{array}{c} \text{1.} \quad \text{K}_2\text{OsO}_4 \bullet 2\text{H}_2\text{O} \; (0.25 \; \text{mol}\%) \\ \text{(DHQ)}_2\text{AQN} \; (0.5 \; \text{mol}\%) \\ \text{K}_3\text{Fe}(\text{CN})_6, \; \text{K}_2\text{CO}_3 \\ \\ \text{2.} \quad \text{recrystallization} \\ \end{array} \\ \begin{array}{c} \text{OH} \quad \text{O} \\ \text{OH} \quad \text{O} \\ \text{OH} \quad \text{O} \\ \text{OH} \quad \text{O} \\ \text{OH} \quad \text{OH} \quad \text{OH} \\ \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\ \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\ \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\ \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\ \text{OH} \quad \text{$$

methyl trioxacarcinoside A

Smaltz, D. J.; Myers, A. G. *J. Org. Chem.* **2011**, *76*, 8554–8559. Smaltz, D. J.; Svenda, J.; Myers, A. G.; *Org. Lett.* **2012**, *14*, 1812–1815.

Adam Kamlet, Fan Liu