

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных методов

Ненахов Нил Денисович

Математическое моделирование критериев эффективности работы электролизной ванны

КУРСОВАЯ РАБОТА

Научный руководитель:

Доктор физико-математических наук Н.П. Савенкова

Содержание

B	веде	ние	3				
	Пос	тановка задачи	3				
	Обз	ор литературы	3				
1	Исс	ледование способов вычисления выхода по току	8				
	1.1	Вычисление выхода по току по эмпирической формуле	8				
	1.2	Расчёт потери по току по теоретической формуле	12				
		Пример 1	12				
		Пример 2	17				
	1.3	Модифицированная теоретическая формула вычисления по-					
		тери по току	19				
		Пример 1	19				
		Пример 2	20				
2	Вычисление потери выхода по току для поверхности грани-						
	цы	раздела сред металл - электролит произвольного вида.	21				
	2.1	Вывод формулы вычисления поверхности при помощи метода					
		триангуляции	21				
	2.2	Исследование точности разработанного метода	29				
	2.3	Вычисление коэффициента потери по току в случае поверх-					
		ности раздела сред, заданной таблично	32				
		Пример 1	32				
		Пример 2	34				
Cı	лисо	к литературы	36				

Введение.

Постановка задачи.

Целью исследовательской работы является проведение математического моделирования одного из основных параметров процесса промышленного электролиза алюминия - потери выхода алюминия по току.

Производство алюминия играет очень важную роль в экономике России. Процесс электролиза очень сложен, энергозатратен и серьезно влияет на экологию. Для удешевления себестоимости металла и улучшения экологичности производства имеет смысл совершенствовать не только устройство электролизера, но и способы управления процессом электролиза. С этой целью в промышленных цехах производства алюминия создаются линии АСУТП (Автоматическая система управления технологическим процессом), которые позволяют значительно повысить эффективность принятия решений при управлении процессом электролиза с целью повышения выхода алюминия и исключения негативного влияния человеческого фактора.

АСУТП, ориентируясь на значения управляющих параметров, автоматически оценивают текущее состояние процесса электролиза и принимают управляющие решения по стабилизации и повышению эффективности процесса электролиза. В силу высокой температуры и агрессивности чреды использование большинства приборов становится практически невозможно. В настоящее время рассчет управляющих параметров происходит на основе полу-эмпирических формул, в которые входят значения, которые получаются в результате физико-физических экспериментов (замеров), проводимых в реальном времени [1]. В отдельных случаях некоторые химические характеристики рассчитываются на основе одномерных математических моделей, большинство которых не являются динамическими. Замер межполюсного расстояния и химический анализ состава электролита измеряется раз в две недели, поэтому АСУТП вынуждена принимать управляющие решения на основе устаревших данных по этим управляющим параметрам. Регулярно измеряются лишь насколько параметров, это сила тока и напряжение в рабочем пространстве электролизера, также могут быть измерены падение напряжения на аноде и в ошиновке [2].

Целью данной работы, является проведение математического моделирования одного из основных параметров производства алюминия - потери выхода алюминия по току в целях повышения эффективности работы АСУТП.

Обзор литературы.

Ниже приведено краткое описание процесса электролиза алюминия и основных типов алюминиевых электролизеров [2].

Процесс получения алюминия электролизом глинозема происходит по следующей схеме. В прямоугольную ванну, футерованную углеродистым

материалом, помещается слой расплавленного алюминия, над ним - слой расплавленного глинозема. В ванну опускают один анод(в случае электролизера Соделберга), через который поступает электрический ток в рабочее пространство ванны. В качестве побочного продукта образуются газы (CO, CO_2) , которые скапливаются под анодом [2]. Схема алюминиевого электролизера приведена на рисунке 1.

Электролизеры с самообжигающимся анодом (электролизеры Соделберга) имеют один анод и уступают многоанодным ваннам в производительности и экологичности. В свою очередь для многоанодных электролизеров требуются заранее изготовленные аноды, которые попарно заменяются после выработки текущих. Используемая сила тока напрямую зависит от типа и конструкции электролизера и может варьироваться от 70 к $\rm A$ до 400 к $\rm A$ при напряжении в 4-5 B [2].

Рис. 1

Поперечный разрез алюминиевого электролизера с самообжигающимся анодом.

Работу, которую совершает ток при прохождении через ванну, можно вычислить по формуле

$$A = U \cdot I \cdot t, \tag{1}$$

где U - напряжение на электролизере, I - сила тока, t - время (см. [3]).

Теоретическое количество алюминия, которое должно получиться при электролизе, вычисляется по закону Фарадея

$$M = F \cdot I \cdot t. \tag{2}$$

При этом количество реального произведенного металла всегда несколь-

ко меньше теоретического значения и вычисляется по формуле

$$P = \eta \cdot F \cdot I \cdot t,\tag{3}$$

где η - выход по току, F - константа Фарадея (см. [3]).

Для оценки эффективности производства необходимо связать количество полученного алюминия с затраченной энергией (удельный расход энергии)

$$W = \frac{A}{P} = \frac{U}{F \cdot \eta}.\tag{4}$$

Обычно это величина колеблется от 12,5 до 18,0 кBт·ч/к Γ .

Из формул (2) и (3) следует, что

$$\eta = \frac{P}{M},$$

где η выход по току (безразмерный управляющий параметр).

На практике часто используют величину процентного выхода по току

$$\eta = \frac{100 \cdot P}{M}.\tag{5}$$

Выход по току зависит от большого числа параметров: температуры, межполюсного расстояния (МПР), плотности тока, состава электролита, криолитового отношения (КО), конструкции, геометрии электролизеров, электромагнитных сил.

Перечислим основные физико-химические процессы проходящие в электролизной ванне [1], которые активно влияют друг на друга:

- гидродинамические процессы,
- электромагнитные процессы,
- химические процессы,
- тепловые процессы

Гидродинамические процессы определяют циркуляцию вещества в расплаве электролита и в расплаве металла. Поскольку сырье в электролизер подается точечно, то распределение скоростей в электролите отвечает за перенос сырья в рабочем пространстве ванны. Неравномерное распределение загруженного в ванну глинозема ведет к потери выхода алюминия по току [4].

Магнитногидродинамические процессы, возникающие во время прохождения тока через электролизер, сильно влияют на МГД (Магнитногидродинамическую) стабильность ванны.

Температура алюминия и подины также серьезно влияют на процесс производства, при снижении температуры расплава возможно образование коржей, которые уменьшают рабочую поверхность подины. В свою очередь

слишком высокая температура приводит к расплавлению защитного слоя на боковых стенках ванны в зоне раздела металла.

Самым общим показателем эффективности управления процессом получения алюминия является себестоимость производства алюминия. Однако этот критерий зависит от большого числа параметров никак не связанных с самим процессом электролиза. Поэтому вводятся другие параметры приближенные к технологическому процессу. Это расход электроэнергии на тонну получаемого металла, удельный расход углерода и удельный расход фторидов. Эти управляющие параметры зависят друг от друга, однако их соотношения могут меняться в зависимости от специфики конкретного производства.

В ВАМИ (Всероссийский Алюминиево-магниевый Институт) было получено эмпирическое уравнение для расчета практического выхода по току [5]

$$\eta = (1 - 2567 \cdot \frac{S_{anod}^{0.21}}{i_a^{0.58} \cdot L_{ACD} \cdot e^{\frac{12940}{T_e}}}) \cdot 100, \tag{6}$$

где i_a - анодная плотность тока, S_{anod} - площадь анода, L_{ACD} - МПР, T_e - температура электролита.

В работе [6] предложено следущее эмпирическое уравнение для расчета практического выхода алюминия:

$$P = \frac{wT - 920}{0.336 \cdot \eta \cdot b} [0.112 + \frac{1.12}{\delta \cdot (h + 30)} + 0.056 \cdot K], \tag{7}$$

где T - температура электролита, η - выход по току, b - выход углерода из анодной массы с учетом механических потерь, δ - анодная плотность тока, b - уровень жидкой массы, K - коэффициент тепловой нагрузки.

Формула Лилибуена [7] позволяет связать скорость потери алюминия и скорость на разделе веществ

$$R_{al} = 0.024 \cdot D_{al} \cdot l^{-0.17} \cdot V^{0.83} \cdot K \cdot \eta^{-0.5} \cdot \rho^{0.5}$$
(8)

 R_{al} - скорость потери алюминия, D_{al} - коэффициент диффузии алюминия в электролит, l - межполюсное расстояние, V - скорость на поверхности раздела электролит-металл, K - эмпирическая константа.

Также была получена формула для расчета снижения выхода по току в зависимости от деформации границы раздела [8]

$$\Delta \eta = (1 - \eta_0) \cdot \frac{l}{S} \cdot \int_{\mathcal{I}} \frac{dxdy}{H(x, y)}$$
 (9)

 $\Delta\eta$ - изменение выхода по току, l - значение МПР, η_0 - значение выхода по току при плоской поверхности раздела, S - площадь поверхности раздела, H(x,y) - высота металла.

Однако практическая реализация формулы (9) зависит от точности определения функции, а также формы и площади границы раздела металлэлектролит, если эти значения определены грубо, то погрешность формулы будет высока.

Таким образом в настоящее время судить о выходе по току в конкретной алюминиевой ванне можно ванне можно по формулам (6)-(9). Однако в формулы (6)-(8) входят эмпирическими константы. Заметим, что в АСУТП на линии производства Красноярского завода внедрена формула (6). Ясно, что наиболее точные значения должна давать формула (9), но при условии, что поверхность раздела сред металл-электролит известна с высокой точностью.

 $\begin{array}{c} {\rm Puc.} \ 2 \\ {\rm Схема} \ {\rm paботы} \ {\rm ACУT\Pi}. \end{array}$

В настоящей работе проводится математическое моделирование выхода по току конкретной алюминиевой ванны, физико-химические процессы в которой рассчитываются с помощью математической модели промышленной электролизной ванны подробно описанной в работе [1].

1 Исследование способов вычисления выхода по току

1.1 Вычисление выхода по току по эмпирической формуле

Требуется провести вычисления выхода потоку при помощи эмпирической формулы (6).

Приведем конкретные значения параметров в формуле (6):

- Сила тока I = 250кА,
- Длинна ванны a = 9.4м,
- Ширина ванны b = 3.4м,
- МПР 23.1 см,
- 970C°.

Таким образом плотность тока рассчитывается по формуле

$$i_a = \frac{I}{a \cdot b} \tag{10}$$

Тогда выход потоку по формуле (6)

$$\eta = (1 - 2567 \cdot \frac{15.876^{0.21}}{0.688_a^{0.58} \cdot 0.231 \cdot e^{\frac{12940}{970}}}) \cdot 100 \approx 96.0318.$$
 (11)

Ниже на рисунках 3-8 демонстрируется вычисленная по формуле (6) зависимость выхода по току от:

- 1. площади ванны при постоянной плотности тока (рис. 3),
- 2. площади ванны при постоянной силе тока (рис. 4),
- 3. силы тока (рис. 5),
- 4. плотности тока (рис. 6),
- 5. МПР (рис. 7),
- 6. температуры расплава(рис. 8).

Рис. 3 Зависимость выхода по току от площади ванны при постоянной плотности тока

 ${\it Puc.} \ 4$ ${\it 3}$ ависимость выхода по току от площади ванны при постоянной силе тока

Рис. 5 Зависимость выхода по току от силы тока

 ${\bf Puc.} \ {\bf 6} \\ {\bf 3} \\ {\bf ависимость} \ {\bf выхода} \ {\bf по} \ {\bf току} \ {\bf от} \ {\bf плотности} \ {\bf тока} \\$

Рис. 7 Зависимость выхода по току от МПР

 ${\bf Puc.~8} \\ {\bf Зависимость~ выхода~ по~ току~ от~ температуры}$

Таким образом из рисунков 6 - 9 видно, что управляющий параметр сильно зависит от размеров ванны и размера анода, от силы и плотности тока, от температуры и МПР. Заметим, что наиболее сложно из всех перечисленных величин замерить значение МПР. Замеры МПР на практике осуществляется путем анализа расплава металлического стержня опущенного в рабочее пространство ванны. Даже если такой эксперементальный

замер производится в нескольких точках ванны, представление о минимальном МПР получается весьма приближенным, что как видно из рисунка 7 может сильно повлиять на величину управляющего параметра выхода по току.

1.2 Расчёт потери по току по теоретической формуле.

Предлагается два варианта численных методов для вычисления поверхностного интеграла в формуле (6).

Используем квадратурную формулу трапеций для вычисления интеграла

$$I = \iint_{\mathcal{I}} f(x, y) dS. \tag{12}$$

Величина I по методу центральных прямоугольников на равномерной сетке по каждому направлению с шагами h_x и h_y с числом узлов (n+1) и (k+1) соответственно вычисляется по формуле

$$I_{nk} = \sum_{i=0}^{k} \sum_{i=0}^{n} f(\frac{x_i + x_{i+1}}{2}, \frac{y_j + y_{j+1}}{2}) \cdot h_x \cdot h_y$$
 (13)

Ниже демонстрируется применение формулы (12) для поверхности Z(x,y) заданной в явном виде в аналитической форме. Тогда известно [9], что

$$\iint_{Z} f(x,y)dS = \iint_{Z} f(x,y) \cdot \sqrt{(1 + (\frac{dZ(x,y)}{dx})^{2} + (\frac{dZ(x,y)}{dy})^{2})} dxdy, \quad (14)$$

Пример 1

Пусть поверхность раздела сред металл-электролит задана уравнением

$$Z(x,y) = 0.44 + 0.003x + 0.004y. (15)$$

Поверхность Z, определенная формулой (15), изображена на рисунке 9. Площадь анодов для этой ванны возьмем 40.

Будем считать, что эта поверхность является разделом металл - электролит электролизной ванны размеры которой зафиксированны выше. Тогда величина ${\bf l}$ соответствует минимальному расстоянию от поверхности ${\bf Z}$ до подошвы анода, l=1cm.

Рис. 9 Разделяющая поверхность

Проведем вычисления потери выхода по току по формуле (9). При этом интеграл по поверхности будем вычислять по формуле (14).

Аналитическое вычисление по формуле (14)

$$\Delta \eta = 0, 1 \cdot \frac{0.01}{40} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{0.44 + 0.003x + 0.004y} dy dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot \int_{0}^{10} \ln(0.44 + 0.003x + 0.004y)|_{0}^{5} dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot (\int_{0}^{10} \ln(0.44 + 0.003x + 0.004y)|_{0}^{5} dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot (((0,46 + 0,003x) \cdot \ln(0,46 + 0,003x) - (0,46 + 0,003x))|_{0}^{10} -$$

$$= \frac{-0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004 \cdot 0.003} \cdot (((0,46 + 0,003x) \cdot \ln(0,346 + 0,003x) - (0,346 + 0,003x))|_{0}^{10}) =$$

$$= \frac{-0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004 \cdot 0.003} \cdot ((0,47\ln(0.47) - 0,44\ln(0,44) - 0,03 -$$

$$-(0,49\ln(0,49) - 0,46\ln(0,46) - 0,03)) =$$

$$= 0.002689559 \quad (16)$$

Вычисления по квадратурной формуле (13), n=k=100

$$\Delta \eta = 0, 1 \cdot \frac{0.01}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.0026910167819670706 \tag{17}$$

Вычисления по квадратурной формуле (13), n=k=50

$$\Delta \eta = 0, 1 \cdot \frac{0.01}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.002692510716716919 \tag{18}$$

Проведем аналогичные вычисления для другого значения l, пусть l = 0.06 (соответствует точке на поверхности Z(x,y) в центре).

Аналитическое решение по формуле (14)

$$\Delta \eta = 0, 1 \cdot \frac{0.01}{40} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{0.44 + 0.003x + 0.004y} dy dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot \int_{0}^{10} \ln(0.44 + 0.003x + 0.004y)|_{0}^{5} dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot (\int_{0}^{10} \ln(0.44 + 0.003x + 0.004y)|_{0}^{5} dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot (((0,46 + 0,003x) \cdot \ln(0,46 + 0,003x) - (0,46 + 0,003x))|_{0}^{10} -$$

$$= \frac{-0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004 \cdot 0.003} \cdot (((0,46 + 0,003x) \cdot \ln(0,346 + 0,003x) - (0,346 + 0,003x))|_{0}^{10}) =$$

$$= \frac{-0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004 \cdot 0.003} \cdot ((0,47\ln(0.47) - 0,44\ln(0,44) - 0,03 -$$

$$-(0,49\ln(0,49) - 0,46\ln(0,46) - 0,03)) =$$

$$= 0.016137327 \quad (19)$$

Вычисления по квадратурной формуле (13), n=k=100

$$0.1 \cdot \frac{0.06}{40} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0.003)^{2} + (0.004)^{2}}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.016146100691802452 \tag{20}$$

Вычисления по квадратурной формуле (13), n=k=50

$$0, 1 \cdot \frac{0.06}{40} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.01615506430030167 \tag{21}$$

Проведем вычисления для l=0.11 (соответствует точке на поверхности Z(x,y) в правом верхнем углу).

Аналитическое решение по формуле (14)

$$\Delta \eta = 0, 1 \cdot \frac{0.11}{40} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{0.44 + 0.003x + 0.004y} dy dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot \frac{10}{40 \cdot 0,004} \cdot \frac{10}{10} \ln(0.44 + 0.003x + 0.004y)|_{0}^{5} dx =$$

$$= \frac{0, 1 \cdot 0.01 \sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{40 \cdot 0,004} \cdot \frac{10}{40 \cdot 0,004} \cdot \frac{10}{40 \cdot 0,004} \cdot \frac{10}{40 \cdot 0,004} \cdot \frac{10}{40 \cdot 0,003} \cdot \frac{10}{40 \cdot 0,004 \cdot 0.003} \cdot \frac{10}{40 \cdot 0,004 \cdot 0.003$$

Вычисления по квадратурной формуле (13), n=k=100

$$\Delta \eta = (1 - \eta_0) \cdot \frac{l}{S} \cdot \iint_Z \frac{\sqrt{(1 + (\frac{dz}{dx})^2 + (\frac{dz}{dy})^2)}}{H(x, y)} dx dy =$$

$$= 0, 1 \cdot \frac{0.11}{40} \int_0^{10} \int_0^5 \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.02960118460163804 \tag{23}$$

$$\Delta \eta = (1 - \eta_0) \cdot \frac{l}{S} \cdot \iint_Z \frac{\sqrt{(1 + (\frac{dz}{dx})^2 + (\frac{dz}{dy})^2)}}{H(x, y)} dx dy =$$

$$= 0, 1 \cdot \frac{0.2}{40} \int_0^{10} \int_0^5 \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.029617617883886373 \tag{24}$$

Анализ результатов проведенных расчетов показывает, что величина l сильно влияет на значение параметра потери выхода по току. При этом расчеты вариантов b наиболее близки к соответствующим значениям, вычисленным аналитически.

Пример 2

Пусть поверхность раздела сред металл-электролит задана уравнением

$$z(x,y) = 0.44 + 0.05 \cdot \sin(x) \cdot \cos(y) \tag{25}$$

Поверхность Z, определенная формулой (25), изображена на рисунке 10. Площадь андов для этой ванны будем считать $40m^2$.

Будем считать, что эта поверхность является разделом металл - электролит электролизной ванны размеры которой зафиксированны выше. Тогда величина l соответствует минимальному расстоянию от поверхности Z до подошвы анода, l=1cm.

Рис. 10 Разделяющая поверхность

$$\Delta \eta = 0, 1 \cdot \frac{0,01}{40}.$$

$$\cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05 cos(x) cos(y) - 0.05 sin(x) sin(y)}}{0.44 + 0.05 sin(x) cos(y)} dy dx \approx$$

$$\approx 0.0028705181744004275 \tag{26}$$

Вычисления по квадратурной формуле (13), n=k=50

$$\Delta \eta = 0, 1 \cdot \frac{0,05}{40}.$$

$$\cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05 cos(x) cos(y) - 0.05 sin(x) sin(y)}}{0.44 + 0.05 \cdot sin(x) \cdot cos(y)} dy dx \approx$$

$$\approx 0.002870213860349491 \tag{27}$$

Проведем аналогичные вычисления для другого значения l, пусть l=0.06 (соответствует точке на поверхности Z(x,y) в точках sin(x)=0 или cos(y)=0).

Вычисления по квадратурной формуле (13), n=k=100

$$\Delta \eta = 0, 1 \cdot \frac{0,06}{40} \cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05 \cos(x) \cos(y) - 0.05 \sin(x) \sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx 0.01722310904640258$$
 (28)

Вычисления по квадратурной формуле (13), n=k=50

$$\Delta \eta = 0, 1 \cdot \frac{0,06}{40}.$$

$$\cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05 cos(x) cos(y) - 0.05 sin(x) sin(y)}}{0.44 + 0.05 \cdot sin(x) \cdot cos(y)} dy dx \approx$$

$$\approx 0.017221283162096944 \tag{29}$$

Проведем вычисления для l=0.11 (соответствует точке на поверхности $\mathbf{Z}(\mathbf{x},\mathbf{y})$ на "пике").

Аналитическое решение по формуле (14)

$$\Delta \eta = 0.1 \cdot \frac{0.11}{40} \cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05 \cos(x) \cos(y) - 0.05 \sin(x) \sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx$$

$$\approx 0.0315756999184048 \tag{30}$$

Вычисления по квадратурной формуле (13), n=k=50

$$\Delta \eta = 0, 1 \cdot \frac{0.11}{40} \cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05 \cos(x) \cos(y) - 0.05 \sin(x) \sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx 0.03157235246384434$$

$$\approx 0.03157235246384434$$
(31)

1.3 Модифицированная теоретическая формула вычисления потери по току.

Для расчета потери выхода по току по теоретической формуле (9) используется параметр выхода по току при плоской границе раздела сред η_0 . Поскольку поверхность раздела сред Z меняется во времени, то ее площадь S также меняется во времени. В свою очередь величина l может быть разной в зависимости от точке в которой проводится измерение. Как показано в работе [1] граница раздела сред электролит-газ, соответствующая зоне обратного окисления металла, также сильно влияет на величину l, а значит на величину потерь выхода по току.

В формуле (9) значения параметров 1 и S являются константами, которые определяются опытным путем с большой погрешностью. Поэтому в настоящей работе предлагается следущая модификация формулы (9).

$$\Delta \eta = (1 - \eta_0) \cdot \frac{1}{S} \cdot \iint_{\mathcal{I}} \frac{l(x, y)}{H(x, y)} dS.$$
 (32)

Ниже приводится вычисления тремя способами значения потери по току для различных поверхностей $\mathrm{Z}(\mathrm{x},\mathrm{y}).$

Пример 1

Поверхность Z, определенная формулой (15), изображена на рисунке 9. Площадь анодов равняется 40 также, как и выше.

$$\Delta \eta = 0, 1 \cdot \frac{1}{40} \int_{0}^{10} \int_{0}^{5} (0.06 - 0.44 + 0.003x + 0.004y) \cdot \sqrt{1 + (0,003)^2 + (0,004)^2} / (0.44 + 0.003x + 0.004y) dy dx \approx \approx 0.009549276608118927$$
(33)

Вычисления по квадратурной формуле (13), n=k=50

$$\Delta \eta = 0, 1 \cdot \frac{1}{40} \int_{0}^{10} \int_{0}^{5} (0.06 - 0.44 + 0.003x + 0.004y) \cdot \sqrt{1 + (0,003)^2 + (0,004)^2} / (0.44 + 0.003x + 0.004y) dy dx \approx \approx 0.00962397334561231$$
(34)

Пример 2

Поверхность Z, определенная формулой (15), изображена на рисунке 9. Площадь анодов равняется 40 также, как и выше.

Вычисления по квадратурной формуле (13), n=k=100

$$\Delta \eta = 0, 1 \cdot \frac{1}{40}.$$

$$\cdot \int_{0}^{10} \int_{0}^{5} (0, 06 - 0, 05sin(x)cos(y)).$$

$$\cdot \sqrt{1 + 0.05cos(x)cos(y) - 0.05sin(x)sin(y)} /$$

$$/(0.44 + 0.05sin(x)cos(y))dydx \approx$$

$$\approx 0.018253636056426627 \tag{35}$$

Вычисления по квадратурной формуле (13), n=k=4

$$\Delta \eta = 0, 1 \cdot \frac{1}{40} \cdot \frac{1}{40$$

Модифицированная формула дает существенно отличный результат от полученного в формуле 9.

2 Вычисление потери выхода по току для поверхности границы раздела сред металл - электролит произвольного вида.

2.1 Вывод формулы вычисления поверхности при помощи метода триангуляции

В пунктах 1.2 и 1.3 поверхность раздела задавалась аналитически. Однако в вычислительном комплексе математического моделирования процесса промышленного электролиза алюминия границы раздела сред металлэлектролит и газ-электролит получаются в результате численного расчета и задаются таблично. Поэтому интегралы в формулах (6) и (32) эффективно вычислять методом триангуляции.

В работах [10] и [11] подробно описаны способы построения триангуляции для сложных поверхностей с неравномерно заданными на плоскости точками. В настоящей работе предлагается алгоритм вычисления поверхностного интеграла для границы раздела металл-электролит произвольной конфигурации, адаптированного к равномерной сетке по каждому пространственному направлению. При этом именно эта равномерная сетка используется в вычислениях комплекса реализующем математическую модель электролиза алюминия в промышленной ванне (см. [1]). Однако эти методы сложны в реализации.

Выпишем формулы триангуляции для простой прямоугольной поверхности с разбиением на элементарные треугольники.

На плоскости водится равномерная сетка размером N на M с шагами x_h , h_y и узлами $P_{i,j}$. В узлах этой сетки таблично задается подынтегральная функция $f_{i,j}$. Плоскость разбивается на $2 \cdot N \cdot M$ прямоугольных треугольников как показано на рисунке 11.

Рис. 11 Разбиение рассчетной области на треугольники.

Каждый из этих треугольников соответствует поверхностному треуголь-

нику в поверхности Z, как показано на рисунке 12.

Рис. 12 Проекция поверхности раздела на расчетную сетку.

Площади поверхностных треугольников $P_{i,j}, P_{i,j+1}, P_{i+1,j}$ считается по формуле

$$S_{\triangle_{i,j}^{1}} = \frac{1}{2} |[\overline{P_{i,j}P_{i,j+1}}; \overline{P_{i,j}P_{i+1,j}}]| = |\frac{1}{2} \begin{vmatrix} I & J & K \\ h_{x} & 0 & f_{i+1,j} - f_{i,j} \\ 0 & h_{y} & f_{i,j+1} - f_{i,j} \end{vmatrix}| =$$

$$= |I \cdot (-(f_{i+1,j} - f_{i,j}) \cdot h_{y}) - h_{x} \cdot (J \cdot (f_{i,j+1} - f_{i,j}) - h_{y} \cdot K)| =$$

$$= |I \cdot h_{y} \cdot f_{i,j} - I \cdot h_{y} \cdot f_{i+1,j} - h_{x} \cdot J \cdot f_{i,j+1} + h_{x} \cdot J \cdot f_{i,j} + h_{x} \cdot h_{y} \cdot K| =$$

$$= (h_{y} \cdot f_{i,j} - h_{y} \cdot f_{i+1,j})^{2} + (h_{x} \cdot f_{i,j} - h_{x} \cdot f_{i,j+1})^{2} + (h_{x} \cdot h_{y})^{2}$$

$$(37)$$

$$S_{\triangle_{i,j}^{2}} = \frac{1}{2} |[\overline{P_{i+1,j+1}P_{i,j+1}}; \overline{P_{i+1,j+1}P_{i+1,j}}]| =$$

$$= (h_{y} \cdot f_{i+1,j+1} - h_{y} \cdot f_{i+1,j})^{2} + (h_{x} \cdot f_{i+1,j+1} - h_{x} \cdot f_{i,j+1})^{2} + (h_{x} \cdot h_{y})^{2},$$

$$(38)$$

где I,J,K орты соответственно осей X,Y,Z.

Пронумеруем треугольники как показано на рисунке 13.

Рис. 13 Порядок нумерации введённых треугольников на расчётной сетке.

Каждому $\triangle_{i,j}^n$ соответствует значение функции $F_{i,j}^n$, получим значение для двумерного по аналогии с одномерным случаем:

1. Одномерный случай.

В одномерном случае рассматривается интеграл

$$I = \int_{a}^{b} f(x)dx. \tag{39}$$

Для его вычисления, область интегрирования (отрезок [a,b]) разбивается на элементарные отрезки $[x_i,x_{i+1}]$. Каждому элементарному отрезку соответствует значение функции f_i , тогда приближенное значение интеграла на этом отрезке $\widetilde{I}=(x_{i+1}-x_i)\cdot f_i$.

Построим интерполяционный полином Лагранжа на этом отрезке

$$L(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdot f_i + \frac{x - x_i}{x_{i+1} - x_i} \cdot f_{i+1} =$$

$$= \frac{1}{x_{i+1} - x_i} ((x - x_i) \cdot f_{i+1} - (x - x_{i+1}) \cdot f_i). \tag{40}$$

Тогда,

$$\widetilde{I} = \int_{x_{i}}^{x_{i+1}} L(x)dx =$$

$$= \frac{1}{x_{i+1} - x_{i}} (f_{i+1}) \int_{x_{i}}^{x_{i+1}} (x - x_{i})dx - f_{i} \int_{x_{i}}^{x_{i+1}} (x - x_{i+1})dx) =$$

$$= \frac{1}{x_{i+1} - x_{i}} (f_{i+1}) \cdot (\frac{1}{2} (x_{i+1}^{2} - x_{i}^{2}) - x_{i}x_{i+1} + x_{i}^{2}) - f(x_{i}) \cdot (\frac{1}{2} (x_{i+1}^{2} - x_{i}^{2}) - x_{i+1}^{2} + x_{i}x_{i+1}) =$$

$$= \frac{1}{x_{i+1} - x_{i}} \cdot (f_{i+1}) \cdot (\frac{1}{2} (x_{i+1}^{2} + x_{i}^{2}) - x_{i}x_{i+1}) =$$

$$= \frac{1}{x_{i+1} - x_{i}} (f_{i+1} + f_{i}) \cdot (\frac{1}{2} (x_{i+1}^{2} + x_{i}^{2}) - x_{i}x_{i+1}) =$$

$$= (x_{i+1} - x_{i}) \cdot \frac{1}{2} (f_{i} + f_{i+1}) \quad (41)$$

Тогда f на элементарном отрезке.

$$F_i = \frac{1}{2}(f_i + f_{i+1}) \tag{42}$$

 F_i аппроксимирует значение функции со вторым порядком точности [12] в середине отрезка.

Аналогично с одномерным случаем вычислим значение двумерного поверхностного интегала

2. Двумерный случай

Применим вышеописанный метод разбиения поверхности. Разобьём поверхность на элементарные фрагменты, как показано на рисунке 1. Каждому из которых поставим в соответствии треугольник ABC.

. Рис. 14 Φ рагмент поверхности с соответствующим ему треугольником.

Рис. 15 Треугольник ОАВ.

Уравнение плоскости которому принадлежит треугольник OAB имеет

вид:

$$\begin{vmatrix} x - 0 & y - 0 & z - f(O) \\ a & 0 & f(A) - f(O) \\ 0 & b & f(B) - f(O) \end{vmatrix} = 0$$
 (43)

Выразим координату z из уравнения поверхности.

$$z = xb(f(A) - f(O)) - (ya(f(B) + f(O)) + abf(O)) \div ab =$$

$$= \frac{x}{a}(f(A) - f(O)) + \frac{y}{b}(f(B) - f(O)) + f(O) \qquad (44)$$

$$L_1 = \frac{x}{a}(f(A) - f(O)) \qquad (45)$$

$$L_2 = \frac{y}{b}(f(B) - f(O))$$
 (46)

Подставим выражение 44 в интеграл \widetilde{I} . Получим:

$$\widetilde{I} = \iint_{\Delta} L_1 dx dy + \iint_{\Delta} L_2 dx dy + \iint_{\Delta} f(O) =
= \int_{0}^{a} dx \int_{0}^{b-x\frac{b}{a}} L_1 dy + \int_{0}^{b} dy \int_{0}^{a-y\frac{a}{b}} L_2 dx + abf(O) - \frac{ab}{2} f(O) =
= \int_{0}^{a} L_1 (b - x\frac{b}{a}) dx + \int_{0}^{b} L_2 (a - y\frac{a}{b}) dy + \frac{ab}{2} f(O)) =
= \int_{0}^{a} \frac{x}{a} (f(A) - f(O))(b - x\frac{b}{a}) dx +
+ \int_{0}^{b} \frac{y}{b} (f(B) - f(O))(a - y\frac{a}{b}) dy + \frac{ab}{2} f(O)) = (48)$$

$$= \int_{0}^{a} x \frac{b}{a} (f(A) - f(O)) dx - \int_{0}^{a} x^{2} \frac{b}{a^{2}} (f(A) - f(O)) dx +$$

$$+ \int_{0}^{b} y \frac{a}{b} (f(B) - f(O)) dy - \int_{0}^{b} y^{2} \frac{a}{b^{2}} (f(B) - f(O)) dy + \frac{ab}{2} f(O)) = (49)$$

$$= \frac{ab}{2} (f(A) - f(O)) - \frac{ab}{3} (f(B) - f(O)) + \frac{ab}{2} f(O)) + (50)$$

$$= \frac{ab}{6} (f(A) - f(O)) + \frac{ab}{6} (f(B) - f(O)) + \frac{ab}{2} f(O)) = (51)$$

$$= \frac{ab}{6} (f(A) + f(B) - 2f(0)) + \frac{ab}{2} f(O)) = (52)$$

$$= \frac{ab}{6} (f(A) + f(B) + f(O)) = (53)$$

$$= \frac{ab}{2} \cdot \frac{1}{3} (f(A) + f(O) + f(B)) = \widetilde{I} (54)$$

$$F_i = \frac{1}{3}(f(A) + f(O) + f(B)) \tag{55}$$

Таким образом:

$$F_{i,j}^{1} = \frac{1}{3}(f_{i,j} + f_{i,j+1} + f_{i+1,j}), \tag{56}$$

$$F_{i,j}^2 = \frac{1}{3}(f_{i+1,j+1} + f_{i,j+1} + f_{i+1,j}). \tag{57}$$

Рис. 16 Центр тяжести треугольника.

Поверхностный интеграл 12 будем вычислять по следующей формуле

$$I \approx \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} I_{i,j} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (S_{\triangle_{i,j}^{1}} \cdot F_{i,j}^{1} + S_{\triangle_{i,j}^{2}} \cdot F_{i,j}^{2}) =$$

$$= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} ((h_{y} \cdot f_{i,j} - h_{y} \cdot f_{i+1,j})^{2} + (h_{x} \cdot f_{i,j} - h_{x} \cdot f_{i,j+1})^{2} + (h_{x} \cdot h_{y})^{2} +$$

$$+ \frac{1}{3} (f_{i,j} + f_{i,j+1} + f_{i+1,j}) +$$

$$+ (h_{y} \cdot f_{i+1,j+1} - h_{y} \cdot f_{i+1,j})^{2} + (h_{x} \cdot f_{i+1,j+1} - h_{x} \cdot f_{i,j+1})^{2} + (h_{x} \cdot h_{y})^{2} +$$

$$+ \frac{1}{3} (f_{i+1,j+1} + f_{i,j+1} + f_{i+1,j}))$$
(58)

Тогда потери выхода по току по формулам (9) и (58) равны

$$\Delta \eta \approx (1 - \eta_0) \cdot \frac{l}{S} \cdot \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} ((h_y \cdot f_{i,j} - h_y \cdot f_{i+1,j})^2 + (h_x \cdot f_{i,j} - h_x \cdot f_{i,j+1})^2 + (h_x \cdot h_y)^2 + \frac{1}{3} (f_{i,j} + f_{i,j+1} + f_{i+1,j}) + (h_y \cdot f_{i+1,j+1} - h_y \cdot f_{i+1,j})^2 + (h_x \cdot f_{i+1,j+1} - h_x \cdot f_{i,j+1})^2 + (h_x \cdot h_y)^2 + \frac{1}{3} (f_{i+1,j+1} + f_{i,j+1} + f_{i+1,j}),$$
(59)

где $f_{i,j} = \frac{1}{H_{i,j}}$

2.2 Исследование точности разработанного метода

Для оценки полученного метода воспользуемся правилом Рунге, оценки точности [12]:

$$|I - I_{\frac{h}{2}}| \approx \frac{|I_{\frac{h}{2}} - I_h|}{2^m - 1}$$
 (60)

где I_h значение полученное исследуемым методом при шаге сетки $h,\ I$ -абсолютное значение интеграла, m - порядок точности исследуемого метода.

Проведём тест метода для поверхности

$$z(x,y) = \sqrt{4 - (x-1)^2}, x \in [0,2], y \in [0,5].$$
 (61)

Она показана на рисунке 17.

Таблица 1: Зависимость значения I_h от числа узлов

Число узлов	50	100	200	400
Значение I_h	10,471783	10,471927	10,471963	10,471972

Таблица 2

Число узлов	50	100	200	400
Абсолютная погрешность	$1.92 \cdot 10^{-4}$	$4,81 \cdot 10^{-5}$	$1,20\cdot 10^{-5}$	$3,01 \cdot 10^{-6}$

Рис. 17

Возьмём подынтегральную функцию f(x,y)=1, тогда интеграл можно посчитать аналитически:

$$I = \frac{2\pi R}{3} = 10,471975512 \tag{62}$$

Значения вычисленные методом триангуляции представлены в таблице 1.

Абсолютная погрешность считается по формуле:

$$T = I - I_h. (63)$$

Абсолютная погрешность для поверхности заданной уравнением (61) представлена в таблице 2 .

Из (60) получаем:

$$m = log_2(\frac{I_{\frac{h}{2}} - I_h}{I - I_{\frac{h}{2}}} + 1)$$
 (64)

Таблица 3

Число узлов	50 - 100	100 - 200	200 - 400
Порядок точности т	2.029272	2.014531	2.007240

или

$$m = log_2(\frac{I - I_h}{I - I_{\frac{h}{2}}}), \tag{65}$$

тогда для поверхности заданной уравнением (61), m принимает значения, представленные в таблице 3.

Как видно из таблицы 3 порядок точности примерно равен 2.

Тест 2

Проведём вышеописанный тест для поверхности $z=x^2$ (рис 18).

Рис. 18

Аналитическое значение интеграла считается по формуле:

$$I = \left(\frac{\ln(\sqrt{17} + 4)}{4} + \sqrt{17}\right) \cdot 5 = 23.233919 \tag{66}$$

Значения посчитанные методом триангуляции показаны в таблице 4.

Порядок точности m посчитаются по формуле (64) и представлены в таблице 5.

Порядок точности второй, аналогично тесту с поверхностью заданной уравнением (61).

Таблица 4

Число узлов	50	100	200	400
Значения	23.233245	23.233754	23.233878	23.233909

Таблица 5

	Число узлов	50 - 100	100 - 200	200 - 400
•	Порядок точности	2.029296	2.014537	2.007242

Из анализ таблиц 1- 5 следует что предложенный в работе метода вычисления площади поверхности имеет второй

Ниже приводится численный расчёт значений потери по току с помощью описанного метода триангуляции.

2.3 Вычисление коэффициента потери по току в случае поверхности раздела сред, заданной таблично.

Пример 1

Пусть поверхность задана уравнением (15) (рис. 9).

В формуле (9) величина 1 соответствует минимальному расстоянию от поверхности Z до подошвы анода, l=0.01m.

Значение выхода по току по формуле триангуляции (9) было получено выше (16).

Проведем вычисление значений выхода по току по формуле (59) n=k=9:

$$\Delta \eta = 0, 1 \cdot \frac{0.01}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^{2} + (0,004)^{2}}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.00215165488298189$$
(67)

Аналогично вычисляется по квадратурной формуле (59) n=k=4:

$$\Delta \eta = 0, 1 \cdot \frac{0.01}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.00215168980070356$$
(68)

Результаты представленные в формулах (67) и (68) совпадают вплоть до 7 знака после запятой, что намного точнее чем по формулам (17) (18), совпадающим с точностью до 4 знака после запятой.

При этом 67 совпадает с аналитическим значением 16 с точностью до 7, а (17) совпадает с аналитическим до 4 знака.

Проведем аналогичные вычисления для другого значения l, пусть l=0.06 (соответствует точке на поверхности Z(x,y) в центре).

Значение выхода по току по теоретической формуле (9) было получено выше (19).

Проведем вычисление значений выхода по току по формуле (59) n=k=9:

$$\Delta \eta = 0, 1 \cdot \frac{0.06}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.0129099292978913$$
 (69)

Аналогично вычисляется по квадратурной формуле (59) n=k=4:

$$\Delta \eta = 0, 1 \cdot \frac{0.06}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx$$

$$\approx 0.0129101388042213 \tag{70}$$

Результаты представленные в формулах (69) и (70) совпадают вплоть до 4 знака после запятой, что намного точнее чем по формулам (20) (21), совпадающим с точностью до 2 знака после запятой.

При этом 69 совпадает с 19 с точностью до 6, а (20) совпадает с аналитическим до 4 знака.

Проведем вычисления для l = 0.11 (соответствует точке на поверхности Z(x,y) в правом верхнем углу).

Значение выхода по току по теоретической формуле (9) было получено выше (22).

Проведем вычисление значений выхода по току по формуле (59) n=k=9:

$$\Delta \eta = 0, 1 \cdot \frac{0.11}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx 0.0236682037128008 \approx (71)$$

Аналогично вычисляется по квадратурной формуле (59) n=k=4:

$$\Delta \eta = 0, 1 \cdot \frac{0.11}{50.000625} \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + (0,003)^2 + (0,004)^2}}{0.44 + 0.003x + 0.004y} dy dx \approx 0.0236685878077391 \approx (72)$$

Результаты представленные в формулах (71) и (72) совпадают вплоть до 5 знака после запятой, что намного точнее чем по формулам (23) (24), совпадающим с точностью до 3 знака после запятой.

При этом 71 совпадает с 22 с точностью до 5, а (23) совпадает с аналитическим до 3 знака.

Из этого можно сделать вывод, что на выбранных начальных данных метод триангуляции приближает аналитическое значение на несколько порядков лучше.

Пример 2

Пусть поверхность задана уравнением (25) (Рис 10).

Пусть величина l соответствует минимальному расстоянию от поверхности Z до подошвы анода, l=1cm.

Проведем вычисление значений выхода по току по формуле (59) n=k=9:

$$\Delta \eta = 0, 1 \cdot \frac{0,01}{50.03007518153364}.$$

$$\cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05\cos(x)\cos(y) - 0.05\sin(x)\sin(y)}}{0.44 + 0.05\sin(x)\cos(y)} dy dx \approx$$

$$\approx 0.00229538198744303 \tag{73}$$

Аналогично вычисляется по квадратурной формуле (59) n=k=4:

$$\Delta \eta = 0, 1 \cdot \frac{0,01}{50.03007518153364} \cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05\cos(x)\cos(y) - 0.05\sin(x)\sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx \\ \approx 0.00229211609453886 \tag{74}$$

Результаты представленные в формулах (73) и (2.3) совпадают вплоть до 5 знака после запятой, что намного точнее чем по формулам (26) и (27), совпадающим с точностью до 4 знака после запятой.

Проведем аналогичные вычисления для другого значения l, пусть l=0.06 (соответствует точке на поверхности Z(x,y) в точках sin(x)=0 или cos(y)=0). Проведем вычисление значений выхода по току по формуле (59) n=k=9:

$$\Delta \eta = 0, 1 \cdot \frac{0.06}{50.03007518153364} \cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05\cos(x)\cos(y) - 0.05\sin(x)\sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx \\ \approx 0.0137722919246582 \tag{75}$$

Аналогично вычисляется по квадратурной формуле (59) n=k=4:

$$\Delta \eta = 0, 1 \cdot \frac{0,06}{50.03007518153364}.$$

$$\cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05\cos(x)\cos(y) - 0.05\sin(x)\sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx$$

$$\approx 0.0137526965672332 \tag{76}$$

Результаты представленные в формулах (75) и (76) совпадают вплоть до 4 знака после запятой, что не хуже чем по формулам (30) и (31), совпадающим с точностью до 4 знака после запятой.

Проведем вычисления для l=0.11 (соответствует точке на поверхности Z(x,y) на "пике").

Проведем вычисление значений выхода по току по формуле (59) n=k=9:

$$\Delta \eta = 0.1 \cdot \frac{0.11}{50.03007518153364} \cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05\cos(x)\cos(y) - 0.05\sin(x)\sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx \\ \approx 0.0252492018618734$$
 (77)

Аналогично вычисляется по квадратурной формуле (59) n=k=4:

$$\Delta \eta = 0, 1 \cdot \frac{0.11}{50.03007518153364} \cdot \int_{0}^{10} \int_{0}^{5} \frac{\sqrt{1 + 0.05\cos(x)\cos(y) - 0.05\sin(x)\sin(y)}}{0.44 + 0.05 \cdot \sin(x) \cdot \cos(y)} dy dx \approx \\ \approx 0.0252132770399274$$
 (78)

Результаты представленные в формулах (77) и (78) совпадают вплоть до 4 знака после запятой, что намного точнее чем по формулам (30) и (31), совпадающим с точностью до 3 знака после запятой.

Анализ результатов проведенных расчетов показывает, что метод триангуляции на порядок лучше метода центральных квадратов на приведенных примерах. При этом позволяет считать интеграл на таблично заданных функциях.

Список литературы

- 1. Калмыков А.В. Математическое моделирование влияния процессов тепломассопереноса на МГД-стабильность алюминиевого электролизёра // Москва: Московский государственный университет имени М.В. Ломоносова. Факультет вычислительной математики и кибернетики. Кафедра вычислительных методов. Диссертация. 2017.
- 2. Белолипецкий В. М., Пискажова Т.В. Математическое моделирование процесса электролитического получения алюминия. Решение задач управления технологией // Красноярск: Сибирский федеральный университет. Библиогр. 2013.
- 3. Деркач А.С. , Левитан Г.У. , Лебедев В.И. , Сенин В.Н. , Солнцев С.С. , Форсблом Г.В. Электролиз алюминия // Издательство "Металлургия" Москва 1966.
- 4. Grjotheim K., Rrohn C., Malinovsky. M., Matiasovsky K., Thonstad J. 2nd Edition Aluminium Electrolysys. Fundamentals of the Hall-Heroult Process. // Dusseldorf 1982.
- 5. Тепловые процессы в электролизерах и миксерах алюминиевого производства. / Под общей редакцией Громова Б. С., М.: 1998. С. 322.
- 6. Коробов, М. А. Самообжигающиеся аноды алюминиевых электролизеров / М. А. Коробов, А. А. Дмитриев // М.: Металлургия. 1972. 207 с.
- 7. Lillebuen, B. Current Efficiency and back reaction in aluminium electrolysis // Electrochim. Acta. 1980, V25. P. 131–137.
- 8. Деркач, А. С. Влияние нестабильности тока серии на технологический режим алюминиевых электролизеров// Цветные металлы. 1967. № 3. С. 39–40.
- 9. Кудрявцев Л.Д. Курс математического анализа. Том 2. // Дрофа 2004
- 10. Скворцов А.В., Мирза Н.С. Алгоритмы построений и анализа триангуляции // "Издательство томского университета"2006.
- 11. Широкий А.А., Аппроксимационные свойства триангуляций поверхностей // Казань 2012.
- 12. Самарский А.А. Гулин А.В. Численные методы // Москва "Наука" 1989