

Name: Khai Cao - 2216586

Group: TXL22S1-B

1 Number conversions

1.1 Convert following numbers to binary numbers

a)
$$55_{10} = 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$
 = 11 0111₂
b) $677_{10} = 1 \cdot 2^9 + 0 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ = 10 1010 0101₂
c) $65_{10} = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ = 100 0001₂
d) $700_{10} = 1 \cdot 2^9 + 0 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0$ = 10 1011 1100₂

1.2 Convert following base-10 numbers to 2-complement 8 bits numbers.

a)
$$+59 = -0.2^7 + 0.2^6 + 1.2^5 + 1.2^4 + 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0$$
 = 0011 1011₂
b) $-1 = -1.2^7 + 1.2^6 + 1.2^5 + 1.2^4 + 1.2^3 + 1.2^2 + 1.2^1 + 1.2^0$ = 1111 1111₂
c) $-128 = -1.2^7 + 0.2^6 + 0.2^5 + 0.2^4 + 0.2^3 + 0.2^2 + 0.2^1 + 0.2^0$ = 1000 0000₂
d) $-97 = -1.2^7 + 0.2^6 + 0.2^5 + 1.2^4 + 1.2^3 + 1.2^2 + 1.2^1 + 1.2^0$ = 1001 1111₂

- 1.3 Convert the following unsigned numbers to the specified radix and size if it is possible. If conversion is not possible state the reason why.
 - a) $0xE5 \rightarrow 8$ bit binary $E5_{16} = 1110 \ 0101_2$
 - b) $0x3F1 \rightarrow 8$ bit binary $3F1_{16} = 0011 \ 1111 \ 0001_2 \rightarrow Can't convert to 8 bit binary$
 - c) $0x3E8 \rightarrow 10$ bit binary $3E8_{16} = 0011 \ 1110 \ 1000_2 \rightarrow 11 \ 1110 \ 1000_2$
 - d) $0x73B \rightarrow 16$ bit binary $73B_{16} = 0111\ 0011\ 1011_2 \rightarrow 0000\ 0111\ 0011\ 1011_2$
 - e) $0011\ 0010_2 \rightarrow 10$ bit binary $0011\ 0010_2 \rightarrow 00\ 0011\ 0010_2$
 - f) 0000 0100 1000 $1011_2 \rightarrow 12$ bit binary 0000 0100 1000 $1011_2 \rightarrow 0100$ 1000 1011_2
 - g) $1101\ 1001_2 \rightarrow 16$ bit binary $1101\ 1001_2 \rightarrow 0000\ 0000\ 1101\ 1001_2$
 - h) $0010\ 0011\ 1011_2 \rightarrow 8$ bit binary $0010\ 0011\ 1011_2 \rightarrow Can't$ convert to 8 bit binary

- 1.4 Convert the following signed two's complement numbers to the given size if possible. If conversion is not possible state the reason why.
 - a) $1001\ 1101_2 \rightarrow 12$ bit binary $1001\ 1101_2 = -99_{10} = 1111\ 1001\ 1101_2$
 - b) $0001\ 0001_2 \rightarrow 16$ bit binary $0001\ 0001_2 = 17_{10} = 0000\ 0000\ 0001\ 0001_2$
 - c) $1111 \ 1111 \ 1010 \ 1111_2 \rightarrow 8$ bit binary $1111 \ 1111 \ 1010 \ 1111_2 = -81_{10} = 1010 \ 1111_2$
 - d) $1110\ 1011\ 1001\ 0001_2 \rightarrow 12$ bit binary $1110\ 1011\ 1001\ 0001_2 = -5231_{10} \rightarrow$ Smaller than smallest 12 bit binary (-2048) \rightarrow Can't convert to 12 bit binary
 - e) $0xFAC \rightarrow 16$ bit binary $FAC_{16} = 1111 \ 1010 \ 1100_2 \rightarrow 0000 \ 1111 \ 1010 \ 1100_2 \rightarrow 1111 \ 0000 \ 0101 \ 0100_2$
 - f) $0x0F \rightarrow 16$ bit binary $0F_{16} = 0000 \ 1111_2 \rightarrow 0000 \ 0000 \ 0000 \ 1111_2 \rightarrow 1111 \ 1111 \ 1111 \ 0001_2$
 - g) $0x42 \rightarrow 10$ bit binary $42_{16} = 0100\ 0001_2 \rightarrow 00\ 0100\ 0001_2 \rightarrow 11\ 1011\ 1111_2$
 - h) $0xFF13 \rightarrow 10$ bit binary

FF13₁₆ = $\frac{1111}{1111}$ 1111 0001 0011₂ \rightarrow Can't convert to 10 bit binary