

Introducción a la Visualización de Datos

Análisis de Datos con Python

Eduardo Selim Martínez Mayorga

Objetivos de la sesión

- Comprender el concepto de distribución e identificar la distribución de nuestros datos junto con su importancia.
- Utilizar la biblioteca Seaborn.
- Conocer los boxplots y aprender a generarlos.
- Conocer las tablas de frecuencias y los histogramas como maneras de visualizar distribuciones.
- Clasificar algunas de las formas que generan los histogramas.
- Conocer las gráficas de densidad como una alternativa a los histogramas clásicos.

Recuerda...

- Tipos de datos estructurados
- Medidas de tendencia central
- Desviación estándar
- Medidas de dispersión
- Medidas de posición

Antes de empezar

¡No olvides hacer pull del repo!

El material de la sesión se encuentra ahí.

git pull origin master

- En un diagrama de caja y bigotes, ¿qué percentiles representan los bordes de la caja?
 - a. 25 50
 - b. 25 75
 - c. 0 100
 - d. 50 75
 - e. 50 100

- 2. En un diagrama de caja y bigotes, ¿cuál es el tamaño máximo de los bigotes?
 - a. 1.5 * Rango Intercuartílico
 - b. 1.5 * Rango Total
 - c. 1.2 * Rango Intercuartílico
 - d. Rango Intercuartílico ^ 2
 - e. 1.5 * Mediana

- 3. En un histograma, ¿qué se grafica en el eje y?
 - a. El rango de los valores
 - b. Los percentiles
 - c. El Rango Intercuartílico
 - d. La frecuencia de los valores
 - e. El logaritmo de los valores

- 4. ¿En qué caso decimos que una distribución tiene asimetría positiva?
 - a. Cuando la "cola" a la izquierda de la media es más larga que a la derecha
 - b. Cuando tenemos dos aglomeraciones de datos
 - Cuando las colas se extienden mucho más allá de la mayoría de los datos
 - d. Cuando la distribución tiene un promedio de0 y una desviación estándar de 1
 - e. Cuando la "cola" a la derecha de la media es más larga que a la izquierda

- 5. ¿Qué características tiene una distribución uniforme?
 - Es aquélla donde es mucho más probable obtener datos cercanos a la media
 - Es aquélla donde es mucho más probable obtener datos a la izquierda de la media
 - Es aquélla donde la probabilidad de obtener alguno de los valores dentro del rango total es prácticamente la misma
 - d. Es aquélla donde es mucho más probable obtener datos a la derecha de la media
 - e. Es aquélla donde la probabilidad de obtener alguno de los valores dentro del Rango Intercuartílico es prácticamente la misma

Distribuciones

- Como vimos en la sesión anterior, los datos pueden adoptar muchas formas:
 - Pueden estar cerca del promedio
 - Cerca del valor mínimo
 - Cerca del valor máximo
 - Completamente dispersos
 - Ya los analizamos con métodos estadísticos
 - Ahora los analizaremos mediante visualización

Seaborn

- Es una biblioteca de Python para la visualización de datos.
- Está basada en matplotlib.

https://seaborn.pydata.org/

https://towardsdatascience.com/data-visualization-using-seaborn-fc24db95a85

<u>0</u>

pip install seaborn

Diagrama de caja

- Es un método de representar gráficamente una serie de datos a través de sus cuartiles.
- Muestra la mediana y los cuartiles asociados.
- También permite revisar de cerca algunos de los valores atípicos a través de los bigotes.

Diagrama de caja

El rango intercuartil es el rango entre el percentil 25 y el percentil 75.

Los bigotes en general se calculan como 1.5 * RIC

Se componen de:

- Rango (sin datos atípicos)
- Datos atípicos.
- Rango intercuartil (también conocido como RIC)
- Cuartiles (denotados como Q1, Q2 y Q3)
- Mediana (Q2)
- Mínimo y máximo.

Ve al Ejemplo 1

Ve al Reto 1

Tabla de frecuencias

Number of Pets	Number of Students
0	2
1	7
2	3
3	1
4	2

- Permiten seccionar los datos en segmentos.
- Una forma es contabilizar cuántos datos hay por cada posible valor de la columna.
- Otra forma es calcular el porcentaje.
- Lo más idóneo con variables numéricas es seccionar por segmentos de varios valores.

Ve al Ejemplo 2

Ve al Reto 2

Histogramas

- Cada barra sólida, ya sea vertical u horizontal representa un intervalo/cajita.
- La barra con mayor altura representa la mayor frecuencia.
- La suma de las alturas de las columnas equivale al 100% de los datos.

Ve al Ejemplo 3

Gráficas de densidad

- Permiten visualizar la distribución de datos en un intervalo o período de tiempo continuo.
- Este gráfico es una variación de un Histograma que usa el suavizado de cerner para trazar valores, permitiendo distribuciones más suaves al suavizar el ruido.
- Los picos de un gráfico de densidad ayudan a mostrar dónde los valores se concentran en el intervalo.

Ve al Ejemplo 5

Ve al Reto 4

Postwork / Prework

NO OLVIDES REVISAR TU POSTWORK Y TU PREWORK

Preguntas

