

ELECTRIC CHARGE

(+) POSITIVE— contains fewer electrons compared to its protons

(-) NEGATIVE— contains _____ electrons compared to its protons

NEUTRAL— contains an _____I number of electrons and protons

- zero net charge

Electrostatic Force

Electric Field Patterns

radial electric field lines

Electric Phenomena

Force
Fe = <u>k q₁q₂</u>

Electric Field (E) (different view)

Magnetic Phenomena

poles

• Force

 $Fm = \underline{k' p_1 p_2}$ r^2

Magnetic Field (B) (different view)

The motion of electric charges in an uniform electric field

How can a magnet produce electricity?

- through relative motion between magnet & coil;
- through changing current in a coil.

A changing magnetic field produces electricity!

