Data Science

Algoritmo KNN

K-Vizinhos mais próximos

KNN - (K Nearest Neighbor)

Utiliza uma técnica simples e bastante intuitiva

O aprendizado é baseado em instâncias:

- Aprendizado: Armazena todas as instâncias de treinamento
- Classificação: Descobre a qual classe uma nova instância pertence a partir dos seus vizinhos.

Tempo no Site - x1	Número Postagens - x2	Aprovado? - y
2	4	Não
3	6	Não
4	8	Não
4	4	Não
5	7	Não
6	6	Sim
6	5	Sim
7	7	Sim
8	5	Sim
8	6	Sim
10	10	Sim

Exemplo: Base de Alunos

Passo 1: Calcular a distância do novo registro a cada um dos registros existentes.

- Dados dois pontos, $A(x_1^A...x_n^A)$ e $B(x_1^B...x_n^B)$;
- Distância euclidiana quadrada: $d(A, B) = \sum_{i=1}^{n} (x_i^A x_i^B)^2$.

x ₁ : utilização	x ₂ : postagens	Distância para o (6,7)
2	4	$(2-6)^2 + (4-7)^2 = 25$
3	6	10
4	8	5
4	4	13
5	7	1
6	5	4
6	6	1
6	5	4
7	7	1
8	5	8
8	6	5
10	10	25

: utilização	x ₂ : postagens	Distância para o (6,7)
2	4	$(2-6)^2 + (4-7)^2 = 25$
3	6	10
4	8	5
4	4	13
5	7	1
6	5	4
6	6	1
6	5	4
7	7	1
8	5	8
8	6	5
10	10	25

• Considerando k=3

Obviamente, nem tudo são flores...

Normalização

Precisamos normalizar os dados.

• • •

Empates

Como devemos tratar eventuais empates?

. . .

Vizinhos

Qual o melhor número de K a ser utilizado?

. . .

O conjunto de dados consiste em 150 registros, sendo 50 amostras de cada uma das três espécies de Iris (Iris setosa, Iris virginica e Iris versicolor). Quatro variáveis foram medidas em cada amostra: o comprimento e a largura das sépalas e pétalas, em centímetros.

As colunas disponíveis no dataset são:

- * Id
- * SepalLengthCm Comprimento da Sépala
- * SepalWidthCm Largura da Sépala
- * PetalLengthCm Comprimento da Pétala
- * PetalWidthCm Largura da Pétala
- * Species (São 3 espécies: O-Iris Setosa, 1-Iris Versicolour ou 2- Iris Virginica)

Íris Dataset

Base de dados das Flores de Íris

Iris flower dataset

Charles de Mille-Isles from Mille-Isles, Canada, CC BY 2.0, via Wikimedia Commons

RODER H. Monienbrock, Courtesy of USDA NRCS, Public domain, via Wikimedia Commons

Implementando o Knn na prática!

O objetivo é dado a largura e comprimento da Sépala e da Pétala, iremos predizer qual tipo de Íris é.

