Index

Application Programming Interface Symbols (API) 4, 37, 78, 174 3DES ciphers bindings 7 reviewing 21 compatibility 11 instability 11 **Application-Specific Integration** Α Circuits (ASICs) 86 **Abstract Syntax Notation One** ARIA algorithm 23 (ASN.1) 6, 103, 139 ARIA cipher 24 ARM 4 Advanced Encryption Standard (AES) 5, 17, 61 ARMv8.2-SHA 62 cipher, reviewing 20, 21 ARMv8 Cryptographic Extension 21, 61, 62 decrypting with, on command line 37-41 asymmetric cryptography algorithms 4, 120 encrypting with, on command line 37-41 asymmetric encryption algorithms 4, 16, 96, 120 Advanced Encryption Standard in Galois/ Counter Mode (AES-GCM) 9 need for 96 Advanced Encryption Standard in private key 96 Galois/Counter Mode with a public key 96 Synthetic Initialization Vector authenticated encryption (AE) 30, 76, 164 (AES-GCM-SIV) mode 32 **Authenticated Encryption with** Associated Data (AEAD) 30, 166 reviewing 32 **Advanced Encryption Standard New** authentication tags 71 Instructions (AES-NIs) 21 avalanche effect 56

AES programmatically

used, for decrypting openssl enc file 49, 50 used, for encrypting openssl enc file 44, 45

В	C
base CRL 281	C 7
Basic Input/Output (BIO) 254	C++ 7
bit rotations 17	C++11 7
BLAKE2 64	C++17 7
BLAKE2b 64, 66	Camellia algorithm 23
BLAKE2 family	Camellia cipher 24
reviewing, of hash functions 64, 65	Carter-Wegman + CTR (CWC) mode 32
BLAKE2s 64, 66	CAST5 cipher 23
BLAKE3 65	CAST-128 23
blockchain 58	Central Processing Unit (CPU) 19
block cipher	certificate
padding for 33	generating, for web and email client 294-296
versus stream cipher 17, 18	generating, for web server 292-294
block cipher operation modes 17, 25, 32	revoking 296, 297
AES-GCM-SIV mode, reviewing 32	Certificate Authority (CA) 125,
Cipher Block Chaining (CBC)	141, 166, 172, 202, 244
mode, reviewing 27, 28	certificate chain 140, 141
Counter (CTR) mode, reviewing 28, 29	certificate depth 195
Electronic Code Book (ECB)	certificate pinning 244
mode, reviewing 25, 26	Certificate Revocation List (CRL)
Galois/Counter Mode (GCM)	140, 202, 203, 245, 281
mode, reviewing 30-32	generating 297-300
selecting 32	Certificate Revocation List (CRL),
block counter 23	using in C programs 203-205
blocking sockets 253	CRL lookup callback,
Blowfish cipher 23	implementing 206, 207
BoringSSL 10	CRL lookup callback, registering 205
OpenSSL, comparing with 10, 11	function, implementing for downloading
Botan 7	CRL from distribution point 208, 209
OpenSSL, comparing with 7, 8	function, implementing for downloading
Browser Exploit Against SSL/	CRL from HTTP URL 210, 211
TLS (BEAST) 22, 169	program, running 211, 212
brute force 19	certificate revocation status
brute-force resistant 85	providing, via OCSP 301-304
BSD systems 9	certificate signing chain 140-144

Certificate Signing Request (CSR)	Continuous Integration 43
144, 145, 172, 245, 283	Counter (CTR) mode
Certificate Status Request 213	reviewing 28, 29
Certificate Transparency (CT) 280	Counter with CBC-MAC (CCM) mode 32
certificate verification chain 140	C programs
ChaCha20 8	custom verification, of peer
ChaCha20 cipher 22	certificates 194-196
reviewing 22	OCSP, using in 218, 219
ChaCha-Poly1305 9	CRL number 281
ChaCha stream cipher 65	CRYPTO_BUFFER functionality 10
chain of trust 140	cryptocurrencies 58
chosen-plaintext attack 28	cryptographic algorithm 4, 56
cipher 16	cryptographically secure pseudo random
Cipher Block Chaining (CBC) mode	generator (CSPRNG) 35
reviewing 27, 28	Cryptographic Doom Principle 76
cipher feedback (CFB) mode 32	cryptographic hash functions 56, 66
ciphertext 16	MDC-2 66
client certificate	properties 56
generating 294-296	RIPEMD-160 66
packaging, into PKCS #12	security, assessing 59, 60
container files 226-228	selecting 66
collision 56	Whirlpool 66
collision attacks 23, 59	cryptography 3
command line	custom verification of peer certificates,
HMAC, calculating 77, 78	in C programs 194-196
leaf certificate, verifying 154	program, running 200-202
message digest, calculating 67	verification callback, implementing 198-200
OCSP, using on 214-217	verification callback, registering 197
symmetric encryption key, deriving	
from password 87, 88	D
TLS client connection,	
establishing on 170-172	Data Encryption Standard (DES) 21
TLS server connection.	ciphers, reviewing 21
accepting on 173, 174	Datagram Transport Layer
Common Name (CN) 179	Security (DTLS) 165
Compression Ratio Info-Leak	data integrity verification 56, 57
Made Easy (CRIME) 169	delta CRL 281
Context (CTX) 47	

denial-of-service 59	ec-verify program
deterministic 85	implementing 134, 135
Diffie-Hellman (DH) key exchange	running 135
method 29, 88, 98, 164	Electronic Code Book (ECB) mode 25
digest program	reviewing 25, 26
implementing 68, 69	ElGamal algorithm 99
running 69	Elliptic Curve Cryptography (ECC) 101
Digital Signature Algorithm (DSA) 63, 98	Elliptic Curve Diffie-Hellman (ECDH) 98
reviewing 122	Elliptic Curve Digital Signature
selecting 125	Algorithm (ECDSA) 98
Digital Signature Algorithm (DSA),	reviewing 123, 124
supported by OpenSSL	elliptic curve keypair
reviewing 122	generating 126, 127
ECDSA, reviewing 123	Encrypt-and-MAC (E&M) scheme 75
EdDSA, reviewing 124, 125	encryption key 16, 75, 76
overview 121	encryption modes 25
RSA, reviewing 121, 122	encrypt-then-authenticate-then-
SMA, reviewing 125	translate (EAX) mode 32
digital signatures 4, 57, 72, 120	Encrypt-then-MAC (EtM) scheme 75
ec-sign program, implementing 130	ENGINE API 5
ec-verify program, implementing 134	engines 5
features 120	Envelope API 46
using programmatically 129, 130	disadvantages 46
verifying programmatically 133	Envelope (EVP) 46
versus MACs 121	Ephemeral Diffie-Hellman (DHE) 164
Distinguished Encoding Rules	Ephemeral Elliptic Curve Diffie
(DER) 103, 139, 202, 300	Hellman (ECDHE) 164
Distinguished Name (DN) format 139	Ethereum 63
DNS poisoning 140	EtM TLS protocol extension 76
Domain Validated (DV) certificates 145	EVP API 68
DTLS protocol 4	exhaustive search 19
dynamic linking 6	existential forgery attack 72
	existential forgery under a chosen-
E	message attack 73
	Extendable Output Functions (XOFs) 62
ec-sign program	Extended Validation (EV)
implementing 130-132	certificates 145, 146
running 132, 133	extra data 197

Hash-based Message Authentication F Code (HMAC) 57, 73-75, 166, 225 Field-Programmable Gate calculating, on command line 77, 78 Arrays (FPGAs) 86 calculating, programmatically 78 file descriptor (fd) 174 **Hash-based Message Authentication** Code (HMAC) program filter BIOs 174 free and open source software implementing 79, 80 (FOSS) projects 6 running 81 hash collision 56 HashEdDSA 124 G **HMAC-based key derivation** function (HKDF) 167 Galois/Counter Mode (GCM) mode **HMAC function 73** reviewing 30-32 HMAC-SHA-256 function 74 Git 58 GMP 6 hybrid encryption scheme 99 GNU ecosystem 6 **Hybrid Public Key Encryption (HPKE) 99** GnuPG 63 Hypertext Transfer Protocol (HTTP) 165 GNU Privacy Guard (GnuPG) 23 **GNU Project 6** GnuTLS 6 OpenSSL, comparing with 6, 7 IDEA cipher 23 **GOST12 65** Individual Validation (IV) certificates 146 **GOST89 65** initialization vector (IV) 167 GOST89 cipher 23, 24 Input Key Material (IKM) 84 GOST94 65 Input/Output (I/O) 253 GOST2012 65 **Integrated Encryption Scheme (IES)** 99 GOST2015 cipher 24 Intel SHA extensions 61, 62 GOvernment STandard (GOST) 24 intermediate CA certificates 141 **Graphical Processing Units (GPUs) 86** generating 287-291 significance, reasons 142 intermediate CA config file Н reference link 290 handshake secret 167 **International Data Encryption** Algorithm (IDEA) 25 handshaking operation 99 Hard Core Library (HCL) 7 **Internet Engineering Task Force (IETF) 169** hash-and-sign paradigm 120 Internet-of-Things (IoT) devices 8, 170 IPsec 77 irreversible 85

wolfSSL 8

Local Area Networks (LANs) 24

K	M
KangarooTwelve (K12) 62	MAC function 72
kdf program	MAC function security 72, 73
implementing 89, 90	MAC-then-Encrypt (MtE) scheme 75
running 90	Magma 24
KECCAK Message Authentication Code (KMAC) 74	Man in the Middle (MITM) attack 32, 96, 97, 140, 164, 244
Kernel TLS (KTLS) 5	key fingerprint, verifying over phone 97
key agreement 164	key, signing by trusted third party 98
Key Derivation Function (KDF) 84	key splitting 98
overview, supported by OpenSSL 87	meeting, in person 97
parameters 85	master secret 167
key exchange 4, 76, 164	MatrixSSL 8
operation 99	Mbed TLS 8
keypair 96	MD4 64
key signing parties 97	MD5 61, 64, 65
key signing party 97	MD family
keystream 18	functions 64
Kuznyechik 24	reviewing, of hash functions 64
	Mercurial 58
L	Merkle tree structure 65
_	message authentication 72
leaf certificate 141	Message Authentication Code
verifying, on command line 154	(MAC) 22, 57, 72, 164
verifying, programmatically 154, 155	versus digital signatures 121
x509-verify program, implementing 155-158	Message Digest (MD) 4, 56, 64
x509-verify program, running 158	blockchain 58
length extension attack 74	calculating, on command line 67
LibreSSL 9	calculating, programmatically 68
OpenSSL, comparing with 9	content identifier 58
Libtasn1 6	cryptocurrencies 58
lightweight TLS libraries 8	data integrity verification 56, 57
MatrixSSL 8	digital signatures 57
Mbed TLS 8	Hash-based Message Authentication
OpenSSL, comparing with 8, 9	Codes (HMACs) 57

need for 56	Online Certificate Status Protocol	
network protocols 57	(OCSP) 140, 213, 245, 289	
password verification 58	using 213	
proof-of-work 58, 59	using, in C programs 218, 219	
mini-CA	using, on command line 214-217	
running 279	certificate revocation status,	
running, openssl ca subcommand	providing via 301-304	
used 280, 281	OpenBSD 9	
Modification Detection Code 2 (MDC-2) 66	OpenSSH 9, 63	
	OpenSSL 3-6	
N	available asymmetric encryption 98, 99	
14	comparing, with BoringSSL 10, 11	
national cipher 23	comparing, with Botan 7, 8	
national cryptographic hash functions 65	comparing, with GnuTLS 6, 7	
National Institute of Standards and	comparing, with LibreSSL 9, 10	
Technology (NIST) 20, 60	comparing, with lightweight	
National Security Agency (NSA) 60	TLS libraries 8, 9	
Nettle 6	comparing, with NSS 7	
network protocols 57	compiling 42-44	
Network Security Services (NSS) 7	component purpose 36, 37	
OpenSSL, comparing with 7	downloading 35	
non-blocking sockets 253	history 4, 5	
non-repudiation 72	installing 35	
non-self-signed certificate	key derivation functions, overview 87	
generating 150-153	linking 42-44	
NSS library 7	URL 35, 140	
number used once (nonce) 18	used, for verifying TLS peer certificate 194	
	OpenSSL 3.0 5	
0	features 5, 6	
	OpenSSL BIOs 174-176	
OAEP padding 105	openssl ca subcommand 280	
OCSP responder 213	used, for running mini-CA 280, 281	
OCSP stapling 213, 245	OpenSSL compatibility layers 4	
OCSP, using in C programs	openssl dgst subcommand 77	
OCSP callback, implementing 219-224	openssl enc file	
OCSP callback, registering 219	decrypting, with AES	
program, running 224, 225	programmatically 49, 50	
offset codebook (OCB) mode 32	decryption program, implementing 50, 51	

decryption program, running 52	PKCS #12 container 296
encrypting, with AES	PKCS #12 container files
programmatically 44, 45	client certificates, packaging into 226-228
encryption program, implementing 45-48	plaintext 16
encryption program, running 49	Poly1305 8
OpenSSL library	POWER8 62
initializing 41, 42	Power ISA 62
uninitializing 41, 42	prehash function 124
openssl mac subcommand 77, 78	preimage attacks 59
OpenSSL operation implementation	pre-master secret 167
providers 5	Pretty Good Privacy (PGP) 23, 63, 97
operating system kernel 5	Privacy Enhanced Mail (PEM) 103, 139, 300
Operating System (OS) 244	private key 72, 96
opportunistic TLS 165	proof-of-work 58, 59
oracle 30	propagating CBC (PCBC) mode 32
Organization Validation (OV)	provider 5
certificates 146	pseudorandom cipher digit stream 18
output feedback (OFB) mode 32	Pseudorandom Function (PRF) 76, 167
Output Key Material (OKM) 84	Pseudo-Random Number Generator (PRNG) 18
P	public key 96
	Public Key Cryptography Standard number
Padding Oracle On Downgraded Legacy	7 padding (PKCS #7 padding) 33
Encryption (POODLE) 169	disadvantage 34
partial hash inversion 58	Public Key Infrastructure (PKI) 98, 244
passphrase 84	Public or Private Key (PKEY) 102
password 84	PureEdDSA 124
symmetric encryption key, deriving on command line 87, 88	Python 7
symmetric encryption key, deriving programmatically 88, 89	Q
versus symmetric encryption key 84	quantum computing 20, 102
Password-Based Key Derivation	
Function (PBKDF) 84-86	R
properties 85	11
password hashing 64	Random Number Generator (RNG) 123
Perfect Forward Secrecy (PFS) 164	RC2 cipher 23
PGP 66	-

RC4 cipher	SEED algorithm 23
reviewing 22	SEED cipher 24
RC5 cipher 23	selective forgery attack 72
RC cipher family 24	self-signed certificate
Rijndael algorithm 21	generating 147-150
RIPEMD-160 66	Server Name Indication (SNI) 167, 268
Rivest-Shamir-Adleman (RSA) algorithm 98	session key 99
reviewing 122	SHA-0 61
using, to decrypt programmatically 115	SHA-0 hash functions
using, to encrypt and decrypt on	reviewing 63, 64
command-line 105-107	SHA-1 61, 64, 65
root CA certificate 141	SHA-1 hash functions
generating 281-287	reviewing 63, 64
root CA config file	SHA-2 65, 66
reference link 285	SHA-2 family
rsa-decrypt program	hash functions 60
implementing 116	reviewing, of hash functions 60, 61
running 117	SHA-2 functions 60
rsa-encrypt program	SHA-3 65, 66
implementing 108-110	SHA3-256 66
running 110, 111	SHA-3 family
RSA key exchange 164	reviewing, of hash functions 61, 62
RSA keypair	SHA3 family
generating 102-105	functions 61
RSA security 99-102	SHA-256 59
	SHA-512 61
S	SHAKE128 62
.	SHAKE256 62
S-boxes 24	Shang Mi 2 (SM2)
Scrypt algorithm 88	reviewing 125
secret key 72	signatures
Secure Multipurpose Mail	subcommands, for signing and
Extension (S/MIME) 63	verification of 127-129
Secure Sockets Layer (SSL) 4	SM3 65
security	SM4 algorithm 23
assessing, of cryptographic	SM4 cipher 24
hash functions 59, 60	Sophie Germain Counter Mode
security bits 20	(SGCM) mode 32

Source Code Management (SCM) 58	TLS certificate pinning 244, 245		
source or sink BIOs 174	<pre>cert_verify_callback() function,</pre>		
spam 59	implementing 249-251		
SSH 66, 77	cons 246		
SSL 3.0 64	pros 245		
SSLeay library 4	<pre>run_tls_client() function,</pre>		
SSL/TLS library 3	modifying 247-249		
standard block padding 33	tls-cert-pinning program, running 251-253		
stream cipher 18	using 246		
versus block cipher 17, 18	TLS client certificates		
Streebog 65	generating 225, 226		
Subject Alternative Names (SANs) 179	loading 236-240		
SVE/SVE2 62	program, running 232-234		
symmetric cipher	requesting 228		
national cipher 23	response generation function,		
overview, by OpenSSL 17	implementing 230-232		
RC cipher family 24	using 225		
reviewing, by OpenSSL 23	verifying 229, 230		
symmetric cipher security 19	verifying, on server side		
symmetric cryptographic algorithms 20	programmatically 228		
symmetric cryptography 4	TLS client connection		
symmetric encryption algorithm	code inherited from tls-client		
4, 16, 17, 164	program, modifying 235, 236		
symmetric encryption key 84	establishing, on command line 170-172		
deriving, from password on	establishing, programmatically 176, 177		
command line 87, 88	establishing, with client certificate		
deriving, from password	programmatically 234, 235		
programmatically 88, 89	program, running 240, 241		
generating 34	tls-client program, implementing 177-182		
versus password 84	tls-client program, running 182		
Synthetic Initialization Vector (SIV) 32	tls-client program		
	implementing 177-182		
Т	running 182		
•	TLS connection 7, 194		
TLS 66, 76	TLS handshake 5, 166, 167		
TLS 1.0 64	consequences 167, 168		
TLS 1.1 64			

TLS on non-blocking sockets

run_tls_client() function, modifying 254-260 tls-client-non-blocking program, running 260, 261 using 254

TLS on non-standard sockets 262, 263

run_tls_client() function,
reimplementing 266-273
service_bios() function,
implementing 264-266
tls-client-memory-bio program,
running 273, 274
using 263, 264

TLS peer certificate

verifying, with OpenSSL 194

TLS protocol 164, 165

history 168-170

TLS server connection

accepting, on command line 173, 174 accepting, programmatically 183, 184 certificates, preparing 172, 173 tls-server program, implementing 184-190 tls-server program, running 190-192

tls-server program

implementing 184-189 running 190-192

TLS socket 5

TLS (Transport Layer Security) 4
TLS Working Group (TLS WG) 169
Transmission Control Protocol (TCP) 165
Transport Layer Security (TLS) 98, 243
Triple DES (3DES) 21
TrueCrypt 66
Trusted Third Parties 141
twisted Edwards curves 124
two-clause BSD license 8

U

universal forgery attack 72 User Datagram Protocol (UDP) 165

VeraCrypt 66 verify depth 195

W

web of trust 7, 98 Whirlpool 66 wolfSSL 8

X

x86/x86_64 62

X.509 63, 66

X.509 certificate 138-140
fields 139

X.509 certificates 3, 4, 57, 164
generating 144-146
generating, stages 144

X.509 Public Key Infrastructure (PKI) 147

X509v3 extensions 146, 147, 301

x509-verify program
implementing 155-158
running 158

XOR (eXclusive OR) 18

Z

zero round-trip time (0-RTT) 170

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

- Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals
- Improve your learning with Skill Plans built especially for you
- Get a free eBook or video every month
- Fully searchable for easy access to vital information
- Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Cryptography Algorithms

Massimo Bertaccini

ISBN: 978-1-78961-713-9

- Understand key cryptography concepts, algorithms, protocols, and standards
- Break some of the most popular cryptographic algorithms
- Build and implement algorithms efficiently
- Gain insights into new methods of attack on RSA and asymmetric encryption
- Explore new schemes and protocols for blockchain and cryptocurrency
- Discover pioneering quantum cryptography algorithms
- Perform attacks on zero-knowledge protocol and elliptic curves
- Explore new algorithms invented by the author in the field of asymmetric, zero-knowledge, and cryptocurrency

Modern Cryptography for Cybersecurity Professionals

Lisa Bock

ISBN: 978-1-83864-435-2

- Understand how network attacks can compromise data
- Review practical uses of cryptography over time
- Compare how symmetric and asymmetric encryption work
- Explore how a hash can ensure data integrity and authentication
- Understand the laws that govern the need to secure data
- Discover the practical applications of cryptographic techniques
- Find out how the PKI enables trust
- Get to grips with how data can be secured using a VPN

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit z and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Hi!

I am Alexei Khlebnikov, author of *Demystifying Cryptography with OpenSSL 3*. I really hope you enjoyed reading this book and found it useful for increasing your productivity and efficiency in securing your applications or networks with OpenSSL.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing your thoughts on *Demystifying Cryptography with OpenSSL 3*.

Go to the link below to leave your review:

https://packt.link/r/1800560346

Your review will help me to understand what's worked well in this book, and what could be improved upon for future editions, so it really is appreciated.

Best Wishes,

Alexei Khlebnikov

