Copilot

MECH320 - Thermodynamics and Heat Transfer Project

University: Southern Polytechnic Institute

Course Duration: Full Year (Fall and Winter)

Instructor: Dr. David Clark

Contact Information: david.clark@spi.edu

Office Hours: Tuesdays and Thursdays, 2:00 PM - 4:00 PM

Course Description

In this third-year course, students apply thermodynamics and heat transfer principles to design and optimize a thermal system, such as a heat exchanger or a refrigeration system. The course emphasizes hands-on experience with thermal system design, analysis, and optimization.

Learning Outcomes

By the end of this course, students will be able to:

- 1. Apply thermodynamic principles to the design of thermal systems.
- 2. Analyze heat transfer mechanisms and their impact on system performance.
- 3. Optimize thermal systems for efficiency and effectiveness.
- 4. Conduct experimental validation and analysis of thermal systems.
- 5. Communicate design concepts and results through written reports and oral presentations.

Course Timeline and Deliverables

Fall Semester:

Date	Deliverable	Description	Weight
September 15, 2020	Team Formation and Project Proposal	Teams form and submit a proposal outlining the project scope and objectives.	10%
October 20, 2020	Thermodynamic Analysis Report	Detailed analysis of the thermodynamic cycles and processes involved.	15%
November 25, 2020	Heat Transfer Analysis Report	Analysis of heat transfer mechanisms and their impact on system performance.	15%
December 10, 2020	Midterm Progress Report	Report on progress, challenges, and next steps.	10%

Winter Semester:

Date	Deliverable	Description	Weight
February 15, 2021	Detailed Design Document	Comprehensive design document with detailed drawings and specifications.	15%
March 20, 2021	Prototype Development and Testing Report	Report on prototype development and testing results.	20%
April 10, 2021	Final Presentation and Demonstration	Final presentation and demonstration of the thermal system project.	15%

Grading Breakdown

• Team Formation and Project Proposal: 10%

• Thermodynamic Analysis Report: 15%

• Heat Transfer Analysis Report: 15%

• Midterm Progress Report: 10%

• Detailed Design Document: 15%

• Prototype Development and Testing Report: 20%

• Final Presentation and Demonstration: 15%

Total: 100%

Course Policies

- **Attendance:** Regular attendance is required. More than three unexcused absences may result in a lower grade.
- Late Submissions: Assignments submitted late will incur a penalty of 5% per day, up to a maximum of 25%.
- **Academic Integrity:** All students are expected to adhere to the university's academic integrity policy. Plagiarism or cheating will result in disciplinary action.

Required Materials

- Textbook: "Fundamentals of Thermodynamics" by Richard E. Sonntag and Claus Borgnakke
- Access to thermal system simulation software (e.g., ANSYS, MATLAB)
- Prototyping materials (to be specified based on project requirements)

Additional Resources

- University Library
- Thermodynamics and Heat Transfer Lab
- Online tutorials and workshops

This syllabus provides a comprehensive overview of the MECH320 course, including key elements such as learning outcomes, a detailed timeline with deliverables, and their respective weights. If you need any further details or adjustments, feel free to ask!