Lista 4

Zadanie 1. Niech $\mathbb V$ będzie przestrzenią wielomianów o współczynnikach z $\mathbb R$ i stopnia najwyżej 3. Rozważmy układy wektorów x^0, x^1, x^2, x^3 oraz $x^0, x^0 + x^1, x^0 + x^1 + x^2, x^0 + x^1 + x^2 + x^3$. Udowodnij, że są one bazami. Zapisz macierz przejścia między tymi bazami.

Rozważmy przekształcenie $F: \mathbb{V} \to \mathbb{V}$ zadane jako F(f) = f' + 2f'' + f''', gdzie ' oznacza pochodną. Wyznacz macierz tego przekształcenia w dwóch podanych powyżej bazach.

Zadanie 2. Podaj macierze zmiany bazy pomięzy każdą z par poniższych baz:

- baza standardowa w \mathbb{R}^3 ;
- $[1,1,1]^T$, $[1,1,0]^T$, $[1,0,0]^T$;
- $[1, 1, -1]^T$, $[1, -1, 1]^T$, $[-1, 1, 1]^T$.

W poniższych zadaniach rachunkowych pomocne mogą być następujące fakty, których nie zdążyłem pokazać na wykładzie (dowody za tydzień)

Fakt .1. • $\det(A) = \det(A^T)$.

- Przemnożenie wiersza macierzy przez α zwiększa wartość wyznacznika α razy.
- Dodanie do wiersza macierzy wielokrotności innego wiersza nie zmienia wyznacznika.
- Wyznacznik macierzy z zerowym wierszem jest równy 0.
- Wyznacznik jest funkcją wieloliniową wierszy.
- Zamiana dwóch wierszy miejscami zmienia znak wyznacznika na przeciwny.

Zadanie 3. Oblicz wyznaczniki:

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 9 & 8 & 7 & 6 \\ 11 & 12 & 13 & 14 & 15 \\ 20 & 19 & 18 & 17 & 16 \\ 21 & 22 & 23 & 24 & 25 \end{vmatrix}, \begin{vmatrix} 1 & a_1 & a_2 & \dots & a_n \\ 1 & a_1 + b_1 & a_2 & \dots & a_n \\ 1 & a_1 & a_2 + b_2 & \dots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_1 & a_2 & \dots & a_n + b_n \end{vmatrix}.$$

Zadanie 4. Oblicz wyznaczniki:

$$\begin{vmatrix} 1 & 5 & 3 & 5 & -4 \\ 3 & 1 & 2 & 9 & 8 \\ -1 & 7 & -3 & 8 & -9 \\ 3 & 4 & 2 & 4 & 7 \\ 1 & 8 & 3 & 3 & 5 \end{vmatrix}, \begin{vmatrix} 4 & -2 & 0 & 5 \\ 3 & 2 & -2 & 1 \\ -2 & 1 & 3 & -1 \\ 2 & 3 & -6 & -3 \end{vmatrix}.$$

Zadanie 5. Na wykładzie podany był dowód rozwinięcia Laplace'a dla pierwszej kolumny. Uogólnij ten dowód na dowolną kolumnę i wiersz, tj. pokaże, że dla dowolnego j zachodzi

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$$

oraz dla dowolnego i zachodzi

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}),$$

gdzie $A_{i,j}$ jest minorem powstałym przez wykreślenie z macierzy A jej i-tego wiersza oraz j-tej kolumny.

Wskazówka: Wystarczy transpozycja i zamiana kolumn.

Zadanie 6. Rozważmy macierze A wymiaru $n \times n$, C wymiaru $m \times m$, B wymiaru $m \times n$ i macierz wymiaru $n \times m$ złożoną z samych 0 (zapiszmy ją jako **0**). Wtedy notacja

$$egin{bmatrix} A & \mathbf{0} \ B & C \end{bmatrix}$$

oznacza macierz uzyskaną poprzez zestawienie obok siebie odpowiednich macierzy (tj. macierz A wypełnia lewy górny róg, macierz B lewy dolny, macierz C prawy dolny a macierz D prawy górny). Pokaż, że

$$det(M) = det(A) \cdot det(C)$$
.

Zadanie 7. Liczby 144228, 532270, 257567, 209270, 289017, 519792 są podzielne przez 17. Udowodnij, że

też dzieli się przez 17. W miarę możliwości — bez obliczania tego wyznacznika.

Wskazówka: \mathbb{Z}_{17} i metoda eliminacji.

Zadanie 8. Niech

$$A = \begin{bmatrix} a & b & c & d \\ b & -a & d & -c \\ c & -d & -a & b \\ d & c & -b & -a \end{bmatrix} .$$

Oblicz AA^T i jej wyznacznik. Wywnioskuj z tego, ile wynosi $\det(A)$.

Zadanie 9. Oblicz wyznacznik

$$\begin{vmatrix} 1 & 10 & 100 & 1000 & 10000 & 100000 \\ 0,1 & 2 & 30 & 400 & 5000 & 60000 \\ 0 & 0,1 & 3 & 60 & 1000 & 15000 \\ 0 & 0 & 0,1 & 4 & 100 & 2000 \\ 0 & 0 & 0 & 0,1 & 5 & 150 \\ 0 & 0 & 0 & 0 & 0,1 & 6 \end{vmatrix} .$$

Zadanie 10 (Wyznacznik macierzy klatkowej). Dla macierzy kwadratowych M_1, \ldots, M_k rozważamy macierz M postaci ($macierz \ klatkowa$):

$$\begin{bmatrix} M_1 & & & & \\ & M_2 & & & \\ & & \ddots & & \\ & & & M_k \end{bmatrix} ,$$

tzn. przekątna M pokrywa się z przekątnymi macierzy $M_1,\ldots,M_k,$ a poza tymi macierzami M ma same zera. Pokaż, że

$$\det(M) = \prod_{i=1}^k \det(M_i) .$$

Wskazówka: Pokaż najpierw dla dwóch macierzy.

Zadanie 11 (* Alternatywny dowód tw. Cauchy'ego; nie liczy się do podstawy). Zadanie to polega na pokazaniu alternatywnego dowodu tw. Cauchy'ego.

Niech A, B, C będą macierzami wymiaru $n \times n$, gdzie C = AB oraz $\operatorname{rk}(A) = \operatorname{rk}(B) = n$.

Rozważ macierz $\begin{bmatrix} A & \mathbf{0} \\ -\operatorname{Id} & B \end{bmatrix}$. Ile wynosi jej wyznacznik?

Pokaż, że przy pomocy operacji kolumnowych (tj. zamiany kolumn i dodawania do kolumny wielokrotności innej kolumny) można macierz $\begin{bmatrix} A & \mathbf{0} \\ -\operatorname{Id} & B \end{bmatrix}$ przekształcić do macierzy $\begin{bmatrix} A & C \\ -\operatorname{Id} & \mathbf{0} \end{bmatrix}$ a tą do macierzy $\begin{bmatrix} C & A \\ \mathbf{0} & -\operatorname{Id} \end{bmatrix}$. Ile wynosi wyznacznik tej macierzy?