EXAMEN ¶

Importar librerias

```
In [17]: import pandas as pd
    import os
    import matplotlib.pyplot as plt
    from facebook_scraper import get_posts
    import tweepy as tw
    from tweepy import OAuthHandler
    import numpy as np
    import seaborn as sb
    %matplotlib inline
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    plt.rcParams['figure.figsize'] = (16, 9)
    plt.style.use('ggplot')
    from sklearn import linear_model
    from sklearn.metrics import mean_squared_error, r2_score
```

Obtener informacion de las proximas elecciones

Out[8]:

	Word count	comments	likes	shares
count	6.000000	6.000000	6.000000	6.0
mean	153.833333	3824.666667	20201.333333	0.0
std	186.400018	5742.400671	25983.161537	0.0
min	21.000000	153.000000	3647.000000	0.0
25%	42.000000	575.000000	6916.000000	0.0
50%	78.000000	998.000000	9722.500000	0.0
75%	174.000000	4370.750000	17485.000000	0.0
max	510.000000	14870.000000	72063.000000	0.0

```
In [18]: posts = []
          for post in get_posts('yakuperezoficial', pages=10):
               post['numWord']=contador(post['text'])
               posts.append(post)
          for post in get_posts('PaulErnestoCarrascoC', pages=10):
    post['numWord']=contador(post['text'])
               posts.append(post)
          fb_posts = pd.DataFrame(posts)
          file = open("shares.txt","w")
          for like in fb_posts['shares']:
               file.write(str(like)+'\n')
          file.close()
          fb_posts.describe()
```

Out[18]:

	comments	likes	numWord	shares
count	76.000000	76.000000	76.000000	76.000000
mean	202.421053	921.710526	221.697368	120.921053
std	382.955846	942.582634	107.814906	295.842335
min	0.000000	9.000000	0.000000	0.000000
25%	2.000000	19.750000	149.250000	0.000000
50%	56.000000	985.500000	228.000000	0.000000
75%	121.500000	1568.250000	283.500000	0.000000
max	1863.000000	4797.000000	540.000000	1149.000000

In [19]: fb_posts.head()

Out[19]:

	comments	image	images	likes	link	numWord	
0	200	None	0	2268	None	181	332364561
1	56	https://scontent.fcue3- 1.fna.fbcdn.net/v/t1.0	[https://scontent.fcue3- 1.fna.fbcdn.net/v/t1.0	911	None	362	332534701
2	1408	None	0	1620	http://www.yakuperez.com/	243	38564801
3	1327	None	0	1969	http://www.yakuperez.com/	235	352746717
4	1863	None	0	1651	http://www.yakuperez.com/	231	41601338

In [36]: fb_posts.drop(['post_id','post_url', 'time'],1).hist()
plt.show()


```
In [37]: #Visualizamos La cantidad de palabras contra likes
    colores=['red','black']
    tamanios=[30,60]

    filtered_data = fb_posts[(fb_posts['numWord'] <= 4000) & (fb_posts['shares'] <= 90000)]

    f1 = filtered_data['numWord'].values
    f2 = filtered_data['shares'].values

    asignar=[]
    for index, row in filtered_data.iterrows():
        if(row['numWord']>200):
            asignar.append(colores[0])
        else:
            asignar.append(colores[1])

plt.scatter(f1, f2, c=asignar, s=tamanios[0])
    plt.show()
```


Regresion Lineal

```
In [16]:
    dataX =filtered_data[["numWord"]]
    X_train = np.array(dataX)
    y_train = filtered_data['shares'].values

    regr = linear_model.LinearRegression()
    regr.fit(X_train, y_train)
    y_pred = regr.predict(X_train)

    plt.scatter(X_train[:,0], y_train, c=asignar, s=tamanios[0])
    plt.plot(X_train[:,0], y_pred, color='red', linewidth=3)

    plt.xlabel('Cantidad de Palabras')
    plt.ylabel('Compartido en Redes')
    plt.title('Regresión Lineal')

    plt.show()
```



```
In [17]: y_Dosmil = regr.predict([[2000]])
print(int(y_Dosmil))
```

-548

Regresion multiples variables

```
In [31]: suma = (filtered_data["likes"] + filtered_data['comments'].fillna(0))

dataX2 =pd.DataFrame()
   dataX2["numWord"] = filtered_data["numWord"]
   dataX2["suma"] = suma
   XY_train = np.array(dataX2)
   z_train = filtered_data['shares'].values
```

```
In [32]: regr2 = linear_model.LinearRegression()
    regr2.fit(XY_train, z_train)
    z_pred = regr2.predict(XY_train)
    print('Coeficientes', regr2.coef_)
    print("Error medio" % mean_squared_error(z_train, z_pred))
    print('Valor' % r2_score(z_train, z_pred))
```

```
Coeficientes [-0.52716561 0.15146218]
Error medio
Valor
```

```
In [29]: fig = plt.figure(figsize=(10,10))
    ax = Axes3D(fig)
    xx, yy = np.meshgrid(np.linspace(0, 3500, num=10), np.linspace(0, 60, num=10))
    nuevoX = (regr2.coef_[0] * xx)
    nuevoY = (regr2.coef_[1] * yy)
    z = (nuevoX + nuevoY + regr2.intercept_)
    ax.plot_surface(xx, yy, z, alpha=0.2, cmap='GnBu',)
    ax.scatter(XY_train[:, 0], XY_train[:, 1], z_train, c='red',s=30)
    ax.scatter(XY_train[:, 0], XY_train[:, 1], z_pred, c='black',s=40)
    ax.view_init(elev=30., azim=65)
    ax.set_title('Regresión Lineal')
    ax.set_xlabel('Palabras')
    ax.set_ylabel('Multimedia')
    ax.set_zlabel('Compartido')

plt.show()
```



```
In [21]: z_Dosmil = regr2.predict([[2000, 10+4+6]])
print(int(z_Dosmil))
```

-983

Conclusion

Mediante la obtencion de datos de redes sociales se puede obtener la tendencia de las elecciones precidenciales