1 - 10 Type and stability of critical point

Determine the type and stability of the critical point. Then find a real general solution and sketch or graph some of the trajectories in the phase plane.

I'm going to need to bring Tables 4.1

Name	$p=\lambda_1+\lambda_2$	$\mathbf{q} = \lambda_1 \lambda_2$	$\Delta = (\lambda_1 - \lambda_2)^2$	Comments on λ_1 , λ_2	
(a) Node		q>0	Δ≥0	Real, same sign	
(b) Saddle point		q<0		Real,opposite signs	
(c)Center	p=0	q>0		Pure imaginary	
(d)Spiral point	p≠0		Δ<0	Complex, not pure imaginary	

and 4.2 in here for consultation.

Type of Stability	$p=\lambda_1+\lambda_2$	$q=\lambda_1\lambda_2$
(a) Stable and attractive	p<0	q>0
(b) Stable	p≤0	q>0
(c)Unstable	p>0 OR	OR q<0

1.
$$y_1' = y_1$$

 $y_2' = 2 y_2$

StreamPlot[$\{y1, 2y2\}, \{y1, -3, 3\}, \{y2, -3, 3\}, StreamPoints \rightarrow \{\{\{\{1, 0\}, Red\}, \{\{-1, -1\}, Green\}, Automatic\}\}, ImageSize <math>\rightarrow 250$]

$$\begin{split} &\text{e1} = \{y1'[t] = y1[t], \ y2'[t] = 2 \ y2[t]\} \\ &\text{e2} = DSolve[e1, \{y1, y2\}, t] \\ &\{y1'[t] = y1[t], \ y2'[t] = 2 \ y2[t]\} \\ &\Big\{ \Big\{ y1 \rightarrow Function \Big[\{t\}, \ e^t C[1] \Big], \ y2 \rightarrow Function \Big[\{t\}, \ e^{2\,t} C[2] \Big] \Big\} \Big\} \end{split}$$

1. Above: the general, real sol'ns.

```
te = e2[[1, 1, 2, 2]]
e<sup>t</sup> C[1]
```

The solution for y1, below, matches the text.

fe = te /.
$$C[1] \rightarrow c1$$

$$\lambda_1 = 2$$

2

$$\lambda_2 = 1$$

1

$$\mathbf{p} = \lambda_1 + \lambda_2$$

3

$$\mathbf{q} = \lambda_1 \; \lambda_2$$

2

$$\Delta = (\lambda_1 - \lambda_2)^2$$

1

1. Because p>0, the critical point is unstable according to Table 4-2.

 ${\tt TableForm[Table[\{t,\,c1,\,fe\},\,\{t,\,4\},\,\{c1,\,-1,\,1\}]}\,,$ TableHeadings \rightarrow {{}, {"t", "c1 ", "fe "}}]

	_	
t	c1	fe
1	1 0	1
- 1	0	1 1 e
– e	0	e
2	2	2
- 1	2 0	2 1
- e²	0	e²
3	3	3
- 1	0	1
− e³	0	e³
4	4	4
- 1	0	1
- e ⁴	0	€⁴

```
fifo = Table[{t, fe}, {t, 4}, {c1, -1, 1}]
\{\{\{1, -e\}, \{1, 0\}, \{1, e\}\}, \{\{2, -e^2\}, \{2, 0\}, \{2, e^2\}\},\
 \{\{3, -e^3\}, \{3, 0\}, \{3, e^3\}\}, \{\{4, -e^4\}, \{4, 0\}, \{4, e^4\}\}\}
hiu[c1_, t_] := fe
plot1 = Plot[Evaluate[Table[hiu[c1, t], {c1, -8, 8}]],
    \{t, -3, 3\}, PlotRange \rightarrow \{-50, 50\}, PlotStyle \rightarrow Thickness[0.003]];
3. Above: This is a plot of the first sol'n, with trajectories of various constant values.
f[c1 , t] := c1 e<sup>t</sup>
VectorPlot[{1, f[c1, t]}, {c1, -3, 3}, {t, -1, 1},
  Axes → True, Frame → False, VectorScale → {Tiny, Tiny, None},
  BaseStyle \rightarrow AbsoluteThickness[0.4], PlotTheme \rightarrow None, ImageSize \rightarrow 250];
plot2 = VectorPlot[{1, f[t, c1]}, {c1, -3, 3}, {t, -8, 8},
    Axes → True, Frame → False, VectorScale → {Tiny, Tiny, None},
    BaseStyle → AbsoluteThickness[0.4], PlotTheme → None, ImageSize → 350];
Show[plot1, plot2];
fi = e2[[1, 2, 2, 2]]
e2 t C[2]
The solution for y2, below, agrees with the text.
fif = fi /. C[2] \rightarrow c2
 c2 e<sup>2 t</sup>
fifi = Table[{t, fif}, {t, 4}, {c2, -1, 1}]
```

```
\left\{\left\{\left\{1\,,\,\,-\,e^2\right\},\,\,\left\{1\,,\,\,0\right\},\,\,\left\{1\,,\,\,e^2\right\}\right\},\,\,\left\{\left\{2\,,\,\,-\,e^4\right\},\,\,\left\{2\,,\,\,0\right\},\,\,\left\{2\,,\,\,e^4\right\}\right\},
  \{\{3, -e^6\}, \{3, 0\}, \{3, e^6\}\}, \{\{4, -e^8\}, \{4, 0\}, \{4, e^8\}\}\}
```


$$3 \cdot y_1' = y_2$$

 $y_2' = -9 y_1$

ClearAll["Global`*"]

e1 = {y1'[t] = y2[t], y2'[t] == -9 y1[t]}
e2 = DSolve[e1, {y1, y2}, t]
{y1'[t] == y2[t], y2'[t] == -9 y1[t]}
{{y1 → Function[{t}, C[1] Cos[3t] +
$$\frac{1}{3}$$
 C[2] Sin[3t]],
y2 → Function[{t}, C[2] Cos[3t] - 3 C[1] Sin[3t]]}}
e3 = e2[[1, 1, 2, 2]]
C[1] Cos[3t] + $\frac{1}{3}$ C[2] Sin[3t]

The solution for y_1 , below, agrees with the text, provided that text constant A is assigned the value of C[1], and text constant B is assigned the value of $\frac{1}{3}$ C[2].

$$hiy[c1_{,}c2_{,}t_{]}:=c1Cos[3t]+\frac{1}{3}c2Sin[3t]$$

plot1 = Plot[Evaluate[Table[hiy[c1, c2, t], {c1, -4, 4, 2}, {c2, -4, 4, 2}]], $\{t, -1, 1\}$, PlotRange $\rightarrow \{-8, 8\}$, PlotStyle \rightarrow Thickness[0.003]]

1. Above: Some trajectories of the first sol'n. Below: the solution for y_2 agrees with the text, with appropriate constant assignments.

$$e4 = e2[[1, 2, 2, 2]]$$

$$C[2] Cos[3t] - 3C[1] Sin[3t]$$

```
hiz[c1_, c2_, t_] := c2 Cos[3t] - 3 c1 Sin[3t]
plot1 =
 Plot[Evaluate[Table[hiz[c1, c2, t], {c1, -4, 4, 2}, {c2, -4, 4, 2}]],
  {t, -2, 2}, PlotRange → Automatic, PlotStyle → Thickness[0.003]]
```


2. Above: Some trajectories of the second sol'n.

e5 = Eigensystem[
$$\{\{0, 1\}, \{-9, 0\}\}$$
]
 $\{\{3 \dot{n}, -3 \dot{n}\}, \{\{-\dot{n}, 3\}, \{\dot{n}, 3\}\}\}$

$$p = 3 i - 3 i$$

$$q = 3 i (-3 i)$$

$$\Delta = (3 i - (-3 i))^2$$

-36

3. The system's critical point is center. According to Table 4-2, it is stable.

$$e3p = e3 /. \{C[1] \rightarrow 1, C[2] \rightarrow 1\}$$

$$\cos[3t] + \frac{1}{3}\sin[3t]$$

$$e4p = e4 /. \{C[1] \rightarrow 1, C[2] \rightarrow 1\}$$

Cos[3t] - 3 Sin[3t]

ParametricPlot[{e3p, e4p}, {t, -2, 2},

ImageSize \rightarrow 100, PlotStyle \rightarrow Thickness[0.006]]

5.
$$y_1' = -2 y_1 + 2 y_2$$

 $y_2' = -2 y_1 - 2 y_2$

```
e1 = {y1'[t] = -2y1[t] + 2y2[t], y2'[t] = -2y1[t] - 2y2[t]}
e2 = DSolve[e1, {y1, y2}, t]
{y1'[t] = -2 y1[t] + 2 y2[t], y2'[t] = -2 y1[t] - 2 y2[t]}
\left\{\left\{y1 \rightarrow Function\left[\left\{t\right\},\ e^{-2\,t}\,C[1]\,\,Cos\left[2\,t\right] + e^{-2\,t}\,C[2]\,\,Sin\left[2\,t\right]\right],\right.\right.
   y2 \rightarrow Function[\{t\}, e^{-2t}C[2]Cos[2t] - e^{-2t}C[1]Sin[2t]]\}
e3 = e2[[1, 1, 2, 2]]
e^{-2t}C[1]Cos[2t] + e^{-2t}C[2]Sin[2t]
```

```
hiy[c1_{,} c2_{,} t_{,}] := e^{-2t} c1 Cos[2t] + e^{-2t} c2 Sin[2t]
```

Above: The green cell matches the answer in the text for y_1 , assuming appropriate assignment of constants.

```
plot1 =
 Plot[Evaluate[Table[hiy[c1, c2, t], {c1, -4, 4, 2}, {c2, -4, 4, 2}]],
   \{t, -1, 1\}, PlotRange \rightarrow \{-8, 8\}, PlotStyle \rightarrow Thickness[0.003]]
```



```
e4 = e2[[1, 2, 2, 2]]
e^{-2t}C[2]Cos[2t] - e^{-2t}C[1]Sin[2t]
```

```
hiz[c1_, c2_, t_] := e^{-2t} c2 Cos[2t] - e^{-2t} c1 Sin[2t]
```

Above: The green cell matches the answer in the text for y_2 , assuming appropriate assignment of constants.

plot2 = Plot[Evaluate[Table[hiz[c1, c2, t], {c1, -4, 4, 2}, {c2, -4, 4, 2}]], $\{t, -1, 1\}$, PlotRange $\rightarrow \{-8, 8\}$, PlotStyle \rightarrow Thickness[0.003]]

e5 = Eigensystem[
$$\{\{-2, 2\}, \{-2, -2\}\}$$
]
 $\{\{-2 + 2 i, -2 - 2 i\}, \{\{-i, 1\}, \{i, 1\}\}\}$

$$p = -2 + 2 \dot{1} + (-2 - 2 \dot{1})$$

- 4

$$q = -2 + 2 i (-2 - 2 i)$$

$$2 - 4 i$$

$$\Delta = ((-2 + 2 i) - (-2 - 2 i))^{2}$$

-16

According to Table 4-1, the critical point is a spiral point. If the presence of imaginary part does not matter, the point is stable.

$$7. y_1' = y_1 + 2 y_2$$

 $y_2' = 2 y_1 + y_2$

$$\begin{split} &\text{e1} = \{y1'[t] = y1[t] + 2\,y2[t]\,,\,\,y2'[t] = 2\,y1[t] + y2[t]\} \\ &\text{e2} = DSolve[e1,\,\,\{y1,\,\,y2\}\,,\,\,t] \\ &\{y1'[t] = y1[t] + 2\,y2[t]\,,\,\,y2'[t] = 2\,y1[t] + y2[t]\} \\ &\Big\{ \{y1 \rightarrow Function\big[\{t\}\,,\,\,\frac{1}{2}\,e^{-t}\,\left(1 + e^{4\,t}\right)\,C[1] + \frac{1}{2}\,e^{-t}\,\left(-1 + e^{4\,t}\right)\,C[2]\big]\,,\,\,\\ &y2 \rightarrow Function\big[\{t\}\,,\,\,\frac{1}{2}\,e^{-t}\,\left(-1 + e^{4\,t}\right)\,C[1] + \frac{1}{2}\,e^{-t}\,\left(1 + e^{4\,t}\right)\,C[2]\,\big] \Big\} \Big\} \end{split}$$

e3 = e2[[1, 1, 2, 2]]

$$\frac{1}{2} e^{-t} (1 + e^{4t}) C[1] + \frac{1}{2} e^{-t} (-1 + e^{4t}) C[2]$$
e5 = Expand[e3]

$$\frac{1}{2} e^{-t} C[1] + \frac{1}{2} e^{3t} C[1] - \frac{1}{2} e^{-t} C[2] + \frac{1}{2} e^{3t} C[2]$$
e6 = Collect [e5 = e^{3t}]

e6 = Collect [e5,
$$e^{3t}$$
]
 $e^{-t} \left(\frac{C[1]}{2} - \frac{C[2]}{2} \right) + e^{3t} \left(\frac{C[1]}{2} + \frac{C[2]}{2} \right)$

e7 = e6 /.
$$\left\{ \left(\frac{C[1]}{2} - \frac{C[2]}{2} \right) \rightarrow c1, \left(\frac{C[1]}{2} + \frac{C[2]}{2} \right) \rightarrow c2 \right\}$$

$$c1 e^{-t} + c2 e^{3 t}$$

Above: y1, matching the text answer.

Solve
$$\left[\left(\frac{C[1]}{2} - \frac{C[2]}{2} \right) = c1 \&\& \left(\frac{C[1]}{2} + \frac{C[2]}{2} \right) = c2, \{c1, c2\} \right]$$
 $\left\{ \left\{ c1 \rightarrow \frac{1}{2} \left(C[1] - C[2] \right), c2 \rightarrow \frac{1}{2} \left(C[1] + C[2] \right) \right\} \right\}$

hiy[c1_, c2_, t_] :=
$$\frac{1}{2} e^{-t} (1 + e^{4t}) c1 + \frac{1}{2} e^{-t} (-1 + e^{4t}) c2$$

plot1 =

Plot[Evaluate[Table[hiy[c1, c2, t], {c1, -4, 4, 2}, {c2, -4, 4, 2}]], $\{t, -1, 1\}, PlotRange \rightarrow \{-8, 8\}, PlotStyle \rightarrow Thickness[0.003]]$

$$\frac{1}{2} e^{-t} \left(-1 + e^{4t}\right) C[1] + \frac{1}{2} e^{-t} \left(1 + e^{4t}\right) C[2]$$

$$\begin{aligned} & = \texttt{Expand[e4]} \\ & - \frac{1}{2} \, e^{-t} \, C[1] \, + \, \frac{1}{2} \, e^{3 \, t} \, C[1] \, + \, \frac{1}{2} \, e^{-t} \, C[2] \, + \, \frac{1}{2} \, e^{3 \, t} \, C[2] \\ & = 9 = \texttt{Collect[e8, } e^{3 \, t}] \\ & = e^{-t} \, \left(- \, \frac{C[1]}{2} \, + \, \frac{C[2]}{2} \right) \, + \, e^{3 \, t} \, \left(\frac{C[1]}{2} \, + \, \frac{C[2]}{2} \right) \end{aligned}$$

e10 = e9 /.
$$\left\{ \left(-\frac{C[1]}{2} + \frac{C[2]}{2} \right) \rightarrow -c1, \left(\frac{C[1]}{2} + \frac{C[2]}{2} \right) \rightarrow c2 \right\}$$

$$-c1 e^{-t} + c2 e^{3t}$$

Above: y2, matching the text answer.

Solve
$$\left[\left(-\frac{C[1]}{2} + \frac{C[2]}{2}\right) = -c1 \&\& \left(\frac{C[1]}{2} + \frac{C[2]}{2}\right) = c2, \{c1, c2\}\right]$$

$$\left\{\left\{c1 \to \frac{1}{2} \left(C[1] - C[2]\right), c2 \to \frac{1}{2} \left(C[1] + C[2]\right)\right\}\right\}$$

The system of constants used in this problem is consistent with the text's, as demonstrated in pink cells.

$$hiz[c1_{-}, c2_{-}, t_{-}] := \frac{1}{2} e^{-t} (-1 + e^{4t}) c1 + \frac{1}{2} e^{-t} (1 + e^{4t}) c2$$

plot2 =

Plot[Evaluate[Table[hiz[c1, c2, t], {c1, -4, 4, 2}, {c2, -4, 4, 2}]], $\{t, -1, 1\}$, PlotRange $\rightarrow \{-8, 8\}$, PlotStyle \rightarrow Thickness[0.003]]

Eigensystem[
$$\{\{1, 2\}, \{2, 1\}\}\}$$
] $\{\{3, -1\}, \{\{1, 1\}, \{-1, 1\}\}\}$

p = 3 - 1

q = 3 (-1)

- 3

$$\Delta = (3 - (-1))^2$$

16

According to Table 4-1, the critical point is a saddle point. According to Table 4-2, it is unstable.

$$9 \cdot y_1' = 4 y_1 + y_2$$

 $y_2' = 4 y_1 + 4 y_2$

$${y1'[t] = 4 y1[t] + y2[t], y2'[t] = 4 y1[t] + 4 y2[t]}$$

$$\left\{ \left\{ y1 \to Function \left[\{t\}, \frac{1}{2} e^{2t} \left(1 + e^{4t} \right) C[1] + \frac{1}{4} e^{2t} \left(-1 + e^{4t} \right) C[2] \right], \right\} \right\}$$

$$y2 \rightarrow Function[{t}, e^{2t}(-1+e^{4t})C[1]+\frac{1}{2}e^{2t}(1+e^{4t})C[2]]}$$

$$\frac{1}{2} e^{2t} \left(1 + e^{4t}\right) C[1] + \frac{1}{4} e^{2t} \left(-1 + e^{4t}\right) C[2]$$

$$\frac{1}{2} e^{2t} C[1] + \frac{1}{2} e^{6t} C[1] - \frac{1}{4} e^{2t} C[2] + \frac{1}{4} e^{6t} C[2]$$

$$e5 = Collect[e4, e^{6t}]$$

$$e^{2t}\left(\frac{C[1]}{2} - \frac{C[2]}{4}\right) + e^{6t}\left(\frac{C[1]}{2} + \frac{C[2]}{4}\right)$$

e6 = e5 /.
$$\left\{ \left(\frac{C[1]}{2} - \frac{C[2]}{4} \right) \rightarrow c2, \left(\frac{C[1]}{2} + \frac{C[2]}{4} \right) \rightarrow c1 \right\}$$

$$c2 e^{2t} + c1 e^{6t}$$

Above: the text answer for y_1 .

Solve
$$\left[\left(\frac{C[1]}{2} - \frac{C[2]}{4} \right) = c2 \&\& \left(\frac{C[1]}{2} + \frac{C[2]}{4} \right) = c1, \{c1, c2\} \right]$$
 $\left\{ \left\{ c1 \rightarrow \frac{1}{4} \left(2C[1] + C[2] \right), c2 \rightarrow \frac{1}{4} \left(2C[1] - C[2] \right) \right\} \right\}$

e7[c1_, c2_, t_] := c2
$$e^{2t}$$
 + c1 e^{6t}
plot1 =
Plot[Evaluate[Table[e7[c1, c2, t], {c1, -4, 4, 2}, {c2, -4, 4, 2}]],
{t, -1, 1}, PlotRange \rightarrow {-8, 8}, PlotStyle \rightarrow Thickness[0.003]]

$$e8 = e2[[1, 2, 2, 2]]$$
 $e^{2t}(-1+e^{4t})C[1] + \frac{1}{2}e^{2t}(1+e^{4t})C[2]$

$$-e^{2t}C[1] + e^{6t}C[1] + \frac{1}{2}e^{2t}C[2] + \frac{1}{2}e^{6t}C[2]$$

$$e^{2t}\left(-C[1] + \frac{C[2]}{2}\right) + e^{6t}\left(C[1] + \frac{C[2]}{2}\right)$$

e11 = e10 /.
$$\left\{ \left(-C[1] + \frac{C[2]}{2} \right) \rightarrow -2 \ c2, \ \left(C[1] + \frac{C[2]}{2} \right) \rightarrow 2 \ c1 \right\}$$

$$-2 c2 e^{2t} + 2 c1 e^{6t}$$

Above: the text answer for y_2 .

Solve
$$\left[\left(-C[1] + \frac{C[2]}{2}\right) == -2 c2 \&\& \left(C[1] + \frac{C[2]}{2}\right) == 2 c1, \{c1, c2\}\right]$$

$$\left\{ \left\{ \texttt{c1} \to \frac{1}{4} \; (\texttt{2} \; \texttt{C[1]} \; + \; \texttt{C[2]}) \; , \; \texttt{c2} \to \frac{1}{4} \; (\texttt{2} \; \texttt{C[1]} \; - \; \texttt{C[2]}) \right\} \right\}$$

Eigensystem[$\{\{4, 1\}, \{4, 4\}\}\}$] $\{\{6, 2\}, \{\{1, 2\}, \{-1, 2\}\}\}\$

$$p = 6 + 2$$

$$q = 6 \times 2$$

12

$$\Delta = (6 - 2)^2$$

16

According to Table 4.1, the critical point is a node. According to Table 4.2, it is unstable.

11 - 18 Trajectories of systems and second-order ODEs. Critical points.

11. Damped oscillations. Solve y'' + 2y' + 2y = 0. What kind of curves are the trajectories?

```
ClearAll["Global`*"]
```

eqn =
$$y''[x] + 2y'[x] + 2y[x] == 0$$

2 $y[x] + 2y'[x] + y''[x] == 0$

```
\{\{y \rightarrow Function[\{x\}, e^{-x}C[2]Cos[x] + e^{-x}C[1]Sin[x]]\}\}
```

The above green cell matches the answer in the text.

In order to find the eigensystem, I need to make this equation into a system, using numbered lines (9) and (10) on p. 135. So I will have $y_1 = y_1$, and $y_2 = y_1$, and $y_3 = y_1$. And the arrangement will be adopted whereby $y_1' = y_2$, and $y_2' = y_3$. Going by the text examples, the rows of the system matrix will be formed of the coefficients of the equations (lhs) of y_1 ' and y_2 '. This will be

```
by definition
y'' = y_3 = y_2' = -2 y_1 - 2 y_2 by problem equation description
```

What are the critical points? From the first expression, the first coordinate will be zero. From the second expression, the coordinates will be equal. This means that {0,0} will be the only critical point.

```
A = \begin{pmatrix} 0 & 1 \\ -2 & -2 \end{pmatrix}
\{\{0, 1\}, \{-2, -2\}\}
{vals, vecs} = Eigensystem[A]
\{\{-1+i, -1-i\}, \{\{-1-i, 2\}, \{-1+i, 2\}\}\}
p = vals[[1]] + vals[[2]]
- 2
q = vals[[1]] * vals[[2]]
2
\Delta = (vals[[1]] - vals[[2]])^2
- 4
```

According to Table 4.1, the critical point is a spiral point, and according to Table 4.2 it is stable.

17. Perturbation. The system in example 4 in section 4.3, p. 144, has a center as its critical point. Replace each a_{ik} in example 4 by a_{ik} + b. Find values of b such that you get (a) a saddle point, (b) a stable and attractive node, (c) a stable and attractive spiral, (d) an unstable spiral, (e) an unstable node.

ClearAll["Global`*"]

The characteristic matrix for this problem, given in the example, is like this, (but without the added 'b' characters).

```
y' = \begin{pmatrix} 0+b & 1+b \\ -4+b & 0+b \end{pmatrix}
\{\{b, 1+b\}, \{-4+b, b\}\}
beig =
   Table [Eigenvalues [y'], {b, \{-\pi, -e, -2, -1.5, -1, -0.3, 0.1, 3, \pi, 4\}\}];
Table \{ \{ beig[[n, 1]] + beig[[n, 2]] \}, \{ beig[[n, 1]] * beig[[n, 2]] \}, \} \}
    \{(beig[[n, 1]] - beig[[n, 2]])^2\}\}, \{n, 1, 10\}];
```

```
g2 = Grid[
                                         N \Big[ Table \Big[ \big\{ n - 6, \, beig[[n, \, 1]] \, + \, beig[[n, \, 2]], \, beig[[n, \, 1]] \, * \, beig[[n, \, 2]], \, beig[[n, \, 2]]
                                                                                    \left.\left(beig[\,[n\,,\,1]\,]\,-\,beig[\,[n\,,\,2]\,]\right)^{\,2}\right\},\,\,\left\{n\,,\,\,1\,,\,\,10\right\}\,\right]\,\right],\,\,Frame\,\rightarrow\,All\,\Big]\,;
 g1 = Grid[{{" n ", " p ", " q ", "
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               "}},
                                          Frame → All];
```

Column[{g1, g2}]

n	р	q	Δ
-5.	-6.28319	-5.42478	61.1775
-4.	-5.43656	-4.15485	46.1756
-3.	-4.	-2.	24.
-2.	-3.	-0.5	11.
-1.	-2.	1.	0.
0.	-0.6 + 0. i	3.1 + 0. ii	-12.04 + 0. i
1.	0.2 + 0. i	4.3 + O. ii	-17.16 + 0. i
2.	6.	13.	-16.
3.	6.28319 + 0. i	13.4248 + O. i	-14.2207 + 0. i
4.	8.	16.	0.

The grid below identifies the 'n' number critical points with the required characteristics, based on Table 4.1 and 4.2.

- 3	unstable saddle point
- 1	stable and attrac node
0	stable and attrac spiral
2	unstable spiral
4	unstable node