UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO DEPARTAMENTO DE CIÊNCIAS FLORESTAIS E DA MADEIRA DISCIPLINA DE DENDROMETRIA - TRABALHO DE VOLUMETRIA

1) Considere os dados apresentados na Tabela 1.

Tabela 1 – Dados de cubagem rigorosa de um povoamento de *Pinus* sp em que d corresponde ao diâmetro a 1,30 m, h corresponde à altura total e $v_{c/c}$ e $v_{s/c}$ correspondem, respectivamente, aos volumes com e sem casca.

Arv	d (cm)	h (m)	$v_{c/c}$ (m ³)	$v_{s/c}$ (m ³)	Arv	d (cm)	h (m)	$v_{c/c}$ (m ³)	$v_{s/c}$ (m ³)
1	8,3	9,4	0,02103	0,01952	18	20,0	24,7	0,31888	0,28155
2	9,2	9,5	0,02662	0,02031	19	20,8	13,4	0,20121	0,16437
3	10,2	11,0	0,03422	0,02991	20	21,0	20,4	0,33415	0,30648
4	10,5	10,8	0,03975	0,03544	21	22,5	27,5	0,54523	0,50640
5	11,2	12,6	0,05936	0,05345	22	23,0	26,1	0,46799	0,42979
6	12,1	13,7	0,06785	0,06001	23	23,2	21,9	0,44550	0,40890
7	13,1	12,8	0,08388	0,07548	24	24,0	23,1	0,49062	0,44588
8	14,0	14,7	0,10189	0,09383	25	25,0	24,5	0,65776	0,60522
9	14,0	20,1	0,12993	0,11543	26	26,0	22,5	0,51264	0,48591
10	15,0	17,1	0,13010	0,11517	27	26,1	22,3	0,56330	0,45978
11	16,2	17,2	0,13707	0,12109	28	27,2	27,6	0,72750	0,67566
12	17,2	16,0	0,17294	0,15948	29	28,0	10,4	0,30432	0,27004
13	17,3	12,6	0,13489	0,11674	30	29,0	24,6	0,70905	0,63814
14	17,9	17,8	0,23019	0,21665	31	30,5	21,7	0,65077	0,58516
15	18,1	15,7	0,17806	0,16275	32	31,2	23,0	0,75506	0,67562
16	19,0	14,4	0,16629	0,13678	33	32,8	25,0	0,87487	0,78344
17	19,7	21,0	0,33529	0,30550	34	34,4	24,1	0,94684	0,80200

A partir dos dados apresentados na Tabela 1, ajuste modelos de regressão da Tabela 2 para os volumes com e sem casca:

Tabela 2 – Modelos de regressão para ajuste do volume.

Autor	Modelo
Schumacher & Hall (1933)	$ln(v) = \beta_o + \beta_1 ln(d) + \beta_2 ln(h) + ln(\epsilon)$
Meyer	$v = \beta_0 + \beta_{1.}d + \beta_{2.}d^2 + \beta_{3.}d.h + \beta_{4.}d^2.h + \epsilon$
Spurr (1952)	$v = \beta_o + \beta_{1.}d^2h + \epsilon$

- 2) Efetuar a análise de variância da regressão para as equações de volume com e sem casca, concluindo pelo teste F em nível de 5 % de probabilidade.
- 3) Obter o R^2 , o S_{vx} e o S_{vx} (%) para as equações ajustadas, interpretando os valores encontrados.
- 4) Obter o gráfico de resíduos, tendo e_i(%) como variável dependente e d como variável independente.
- 5) Obter a percentagem média de casca considerando as árvores empregadas no ajuste das equações.

Obs:

- 1) O trabalho deverá ser feito em grupos de no máximo três pessoas.
- 2) A data de entrega do trabalho será no dia 23/10/2018. Não se admitirá, por nenhuma hipótese, a entrega após a data determinada.