

REMARKS/ARGUMENTS

In response to the §112 rejection, the claims have been amended to specify that the membrane body contains epoxy groups coupled to at least one protease inhibitor selected from the group consisting of pepstatin, bestatin, diprotin, antipain, chymostatin, leupeptin, E64, TLCK and p-aminobenzamidine. Support for these nine protease inhibitors is found at pages 3 and 5-6 of the specification.

These nine protease inhibitors all contain reactive primary or secondary amines, as shown in the table below and as documented by the references enclosed herewith that show their chemical structures.

Inhibitor	Protease Target	1°/2° Amine Groups
pepstatin	acid	one 2°
bestatin	metallo	one 1°, one 2°
diprotin	metallo	one 1°
antipain	cystein	two 1°, five 2°
chymostatin	cystein	four 2°
leupeptin	cystein	one 1°, four 2°
E64	cystein	one 1°, three 2°
TLCK	serine	one 1°
p-aminobenzamidine	serine	two 1°

The significance of this is that it is well known that primary and secondary amine groups react with epoxy groups to chemically couple the respective moieties containing the epoxy and amine groups. See, for example, March, *Advanced Organic Chemistry Reactions, Mechanisms and Structures*, page 369 (3d Ed 1985) and Schafer et al., *Organische Chemie*, page 1390 (1990), both enclosed .

For the reasons stated, early and favorable reconsideration is respectfully solicited.

Respectfully submitted,

Dennis E. Stenzel
Reg. No. 28,763
Tel No.: (503) 278-3304

CERTIFICATE OF MAILING

I hereby certify that this AMENDMENT is being deposited with the United States Postal Service as first class mail on the date indicated below in an envelope addressed to: Mail Stop AMENDMENT, Commissioner for Patents, PO Box 1450, Alexandria, VA 22313-1450.

May 6, 09
Date

Dennis E. Stenzel

Nur für Forschungszwecke. Nicht für den Gebrauch in der klinisch-chemischen Diagnostik.

Pepstatin

Isovaleryl-L-val-L-val-statyl-L-alanyl-statin
(Isovaleryl-L-val-L-val-4-(S)-amino-3-(S)-hydroxy-6-methyl-heptanoyl-2-ala-4-(S)-amino-3-(S)-hydroxy-6-methyl-heptansäure)
Lyophilisat

Best. Nr. 253 286 2 mg

Best. Nr. 1 359 053 10 mg

Best. Nr. 1 524 488 50 mg

Version 3, August 1999

Stabil bei 2-8° C

Einleitung

Pepstatin ist ein niedermolekularer, stark spezifischer Inhibitor für saure Proteasen (im speziellen Aspartat-Proteasen). Es hat sich gezeigt, daß nahezu alle sauren Proteasen inhibiert werden, einschließlich Pepsin, Renin, Cathepsin D, Chymosin, Protease B aus *Aspergillus niger* und Proteasen mikrobiologischen Ursprungs. Die strenge Spezifität von Pepstatin für saure Proteasen konnte durch eine Nicht-Inhibition von neutralen und alkoholischen Proteasen nachgewiesen werden.

Proteasen können aufgrund ihrer charakteristischen aktiven Zentren in verschiedene Klassen eingeteilt werden:

- Serin-Proteasen mit Serin und Histidin im aktiven Zentrum
- Cystein-Proteasen mit Cystein (Thiol, SH-) im aktiven Zentrum
- Metallo-Proteasen mit Metallionen (z.B. Zn²⁺, Ca²⁺, Mn²⁺) im aktiven Zentrum
- Aspartat-Proteasen mit einem Aspartatsäure-Rest im aktiven Zentrum

Tabelle 1 zeigt eine Aufstellung dieser Protease-Klassen und ihren spezifischen Inhibitoren:

Serinproteasen	Cystein-Proteasen	Metallo-Proteasen	Aspartat-Proteasen
APMSF*		Bestatin* (Aminopeptidase)	Pepstatin*
Antithrombin III*	E-64*	EDTA-Na ₂ *	
α ₁ -Antitrypsin* (α ₁ -Protease Inhibitor)		Phosphoramidon*	
Aprotinin*			
3,4-Dichloroisocoumarin*			
Pefabloc SC*			
Leupeptin* (hemmt Serin- und Cystein-Proteasen mit Trypsin-ähnlicher Spezifität)			
PMSF*			
Complete [®] Protease Inhibitor Cocktail Tablets*			
α ₂ -Macroglobulin* (Endoproteinasen)			

Tabelle 1: Protease-Klassen und deren Inhibitoren

Anwendung

- Schutz von Proteinen bzw. Enzymen während ihrer Isolierung und Aufreinigung
- Untersuchung von Enzymmechanismen und biologischer Funktionen von Proteasen
- Affinitätschromatographie
- Klassifizierung von isolierten Proteasen
- Strukturforschung

- Pharmakologische Forschung
- HIV-Forschung (bzgl. inhibitorischer Wirkung auf retroviral codierter Proteasen, z.B. HIV-1) (1)
- Krebsforschung (bzgl. immunstimulierender und anti-tumoraler Wirkung)

Spezifität

Pepstatin hemmt spezifisch Aspartat-Proteasen wie z.B. Pepsin, Renin, Cathepsin D, Chymosin und viele mikrobiologische saure Proteasen (2,3).

Produktbeschreibung

Struktur

Summenformel C₃₄H₆₃N₅O₉

Molekulargewicht M_r = 685,9

Löslichkeit Löslich in Methanol bis 1 mg/ml, in Ethanol bis 1 mg/ml (über Nacht), in 6 M Essigsäure bis 300 µg/ml und in DMSO; unlöslich in Wasser (wässrige Lösungen kann man durch Anlösen in Methanol, Ethanol oder DMSO und anschließendes Verdünnen mit Wasser erhalten).

Typische Analyse Funktionsgetestet mit Pepsin (Hämoglobin als Substrat)

Empfohlene Arbeitskonzentration 0,7 µg/ml (1 µM)

Stabilität Das Lyophilisat ist bei 2-8°C trocken gelagert stabil. Eine wässrige Lösung von Pepstatin kann aliquotiert bei -15 bis -25°C mindestens einen Monat gelagert werden.

Pepstatin polymerisiert spontan zu Filamenten. Bei niedriger Ionenstärke und neutralem pH ist die kritische Konzentration dafür 0,1 mM. Bei höheren Konzentrationen wurden auch Strukturen übergeordneter Ordnung beobachtet. Diese führen u. a. zu einem Verlust der Hemmung von HIV-1 Aspartat-Protease (4).

Wirk-mechanismus Bislang ist die Art und Weise der Hemmung durch Pepstatin noch nicht bekannt. Es wird angenommen, daß der Statin-Rest von Pepstatin hauptsächlich für die Pepstatin-Hemmung verantwortlich ist. Er stellt offensichtlich ein Analogon des Übergangszustandes der Protein-Katalyse dar (5).

■ Bestatin ■

Sigma A0040 B8385-5mg

€ Bestatin hydrochloride

N-[(2S,3R)-3-Amino-2-hydroxy-4-phenylbutyryl]-L-leucine hydrochloride
C₁₆H₂₄N₂O₄ · HCl FW 344.83 [65391-42-6]
≥98% (HPLC)

A metalloprotease inhibitor selective for aminopeptidase.

S: 22-24/25 [-20°C]

B8385-5MG

(12)

0.5 mm

[Login](#) | [Register](#) | [My Profile](#)**SIGMA-ALDRICH®**[Home](#) | [Products](#) | [Order Center](#) | [Custom Products](#) | [Support](#) | [MSDS](#) | [All](#)

Home->Site Search

I9759**Ile-Pro-Ile**

Sigma

≥97% (HPLC)

Useful Links & Tools

- [MSDS](#)
- [Specification Sheet](#)
- [Certificate of Analysis](#)
- Enter Lot No.
- [Certificate of Origin](#)
- Enter Lot No.
- [Neuropeptidases Classification \(197 KB\)](#)
- [Neuropeptidases \(252 KB\)](#)
- [Bulk Quote](#)
- [Similar Products](#)

Related Categories

- Peptides for Cell Biology > Immunomodulators > AIDS and Viral Research
- Immune Cell Signaling and Blood > Immune System Regulation > AIDS and Viral Research Reagents
- Protease Inhibitors > Protease Inhibitor Specificity Index > Dipeptidyl peptidase IV
- Enzyme Inhibitors by Enzyme > D to K > Dipeptidyl peptidase IV
- Peptides for Cell Biology > Enzyme Inhibitors > Dipeptidyl peptidase IV

Last 5 Products Viewed

- I9759 (Sigma)

Price and Availability
Click For Pricing and Availability**Synonyms:** Diprotin A**CAS Number:** 90614-48-5**Empirical Formula (Hill Notation):** C₁₇H₃₁N₃O₄**Molecular Weight:** 341.45**MDL number:** MFCD00038707**PubChem Substance ID:** 24896160**Description****Biochem/physiol Actions** Inhibitor of dipeptidyl peptidase IV. Inhibits entry of lines.**Properties****assay** ≥97% (HPLC)**storage temp.** -20°C**Safety****WGK Germany 3****RTECS** NR4737000

[Login](#) [Register](#) [My Profile](#)**SIGMA-ALDRICH®**[Home](#) [Products](#) [Order Center](#) [Custom Products](#) [Support](#) [MSDS](#)[All](#)[Home->Site Search](#)**Useful Links & Tools**[MSDS](#)[Specification Sheet](#)[Certificate of Analysis](#)

Enter Lot No.

[Certificate of Origin](#)

Enter Lot No.

[Bulk Quote](#)[A6191 - Product Information](#)[Sheet \(13 KB\)](#)[Similar Products](#)[A6191 - Datasheet \(81 KB\)](#)**Related Categories**

- [Antibiotics > Antibiotics by Application > Antineoplastic and Immunosuppressive Antibiotics](#)
- [Protease Inhibitors > Protease Inhibitor Specificity Index > Calpain](#)
- [Enzyme Inhibitors by Enzyme > A to C > Calpain](#)
- [Peptides for Cell Biology > Enzyme Inhibitors > Calpain](#)
- [Protease Inhibitors > Protease Inhibitor Specificity Index > Calpain II](#)

[More...](#)[Last 5 Products Viewed](#)

- [A6191 \(Sigma\)](#)

A6191 Antipain dihydrochloride from Sigma**Price and Availability**[Click For Pricing and Availability](#)**Synonyms:** N-(Nα-Carbonyl-Arg-Val-Arg-al)-Phe**CAS Number:** 37682-72-7**Empirical Formula (Hill Notation):** C₂₇H₄₄N₁₀O₆ · 2 HCl**Molecular Weight:** 677.62**MDL number:** MFCD00135957**PubChem Substance ID:** 24891067 [Specifications](#)[Related Products](#)[References](#)**Description**

Concentrations for 50% inhibition (μg/ml):

papain, 0.16

trypsin, 0.26

cathepsin A, 1.19

cathepsin B, 0.59

cathepsin D, 125

plasmin, >93

chymotrypsin and pepsin, >250

It also has been reported to inhibit calpain I, (porcine) w

Application

Stock solutions in water or buffer stable for 1 week at 4

Solubility testing at 50 mg/ml in water yields a clear to sl methanol, water, and DMSO; less soluble in ethanol, bu chloroform.^b A stock solution in water or buffer is stable

Dilute solutions should be stored on ice and kept for onl oxidation and racemization.

Biochem/physiol Actions

Isolated from a microbial source, antipain hydrochloride some trypsin-like serine proteases. Its action resembles cathepsin A inhibition is more than that observed with le

Properties**solubility** H₂O: 50 mg/mL

1-butanol: soluble

1-propanol: soluble

DMSO: soluble

ethanol: soluble

methanol: soluble

storage temp. -20°C

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

Product Information

CHYMOSTATIN

Sigma Prod. No. C7268

CAS NUMBER: 9076-44-2

PHYSICAL DESCRIPTION:

Appearance: White powder, occasionally with a yellow cast.

Molecular formula: form A, $C_{31}H_{41}O_6N_7$
with MW = 607.7

B, MW = 593.7

C, MW = 607.7

Chymostatin is a mixture of several components, typically 79-89% chymostatin A, 12-17% chymostatin B and 5-15% chymostatin C.³ See structures given above.^{1,2}

Chymostatin A: X=L-Leu
Chymostatin B: X=L-Val
Chymostatin C: X=L-Ile

STABILITY / STORAGE AS SUPPLIED:

Since the product is not tested by Sigma as a protease inhibitor, its shelf-life cannot be readily assessed. As for most peptides, it is most stable stored dry and frozen, expected to be stable at least a year. It should be reevaluated for suitability in user application every year.

SOLUBILITY / SOLUTION STABILITY:

Sigma assays chymostatin in glacial acetic acid at 10 mg/mL, obtaining a clear solution that is usually colorless but can be yellow in appearance.⁴

It is reportedly also soluble in DMSO, only slightly soluble in water, short-chain alcohols, and insoluble in ethyl acetate, butyl acetate, ether, hexane, petroleum ether and hexane.^{5,6} Stock solutions can also be made in 0.1 M HCl but 10 mM stock solutions can be prepared in DMSO and are stable for months at -20°C. Dilute solutions (10-100 μM) are stable for several hours.⁷

USAGE:

Chymostatin is a strong inhibitor of many proteinases, including chymotrypsin, chymotrypsin-like serine proteinases, chymases and lysosomal cysteine proteinases such as cathepsins B, H and L.^{7,8} It weakly inhibits human leucocyte elastase.⁹ It is effective at a final concentration of 6-60 μg/mL (10-100 μM), although the working solution is not stable (the terminal aldehyde is subject to oxidation.) Chymostatin is often included in "protease inhibitor cocktails", for plant extracts.⁷

Nur für Forschungszwecke. Nicht für den Gebrauch in der klinisch-chemischen Diagnostik.

Leupeptin

Ac-Leu-Leu-argininal · $\frac{1}{2}$ H₂SO₄
Synthetische, weißes Pulver

Best. Nr. 1 017 101 5 mg
Best. Nr. 1 017 128 25 mg
Best. Nr. 1 034 626 50 mg
Best. Nr. 1 529 048 100 mg

Version 4, Jan. 2003

Stabil bei 2-8° C

Einleitung

Handelsform Synthetisches, weißes Pulver.

Molekulargewicht 475.6 (Leupeptin × $\frac{1}{2}$ H₂SO₄),
493.6 (Leupeptin × $\frac{1}{2}$ H₂SO₄ × H₂O)

Struktur Formel: C₂₀H₃₈N₆O₄ × $\frac{1}{2}$ H₂SO₄

Toxizität LD 50 (Maus und Kaninchen, oral) 1.5 g/kg (4).

Typische Analyse Funktionsgetestet mit Trypsin.

Zellpermeabilität Leupeptin ist nicht zellpermeabel.

Anwendungskonzentration 0.5-5 µg/ml.

Entfernung von Leupeptin Aus dem Reaktionsansatz lässt sich Leupeptin durch Dialyse entfernen.

- Löslichkeit**
- Gut löslich in Wasser ($c = 1$ mg/ml), Methanol, Ethanol, Essigsäure, Dimethylformamid und Dimethylsulfoxid.
 - Gering löslich in Aceton, Chloroform, Ethylether und n-Hexan.

Übersicht Proteaseninhibitoren sind weit verbreitet in Tieren, Pflanzen (1) und Mikroorganismen (2 - 7). Diese natürlich vorkommenden Verbindungen sind ausschließlich Oligo- oder Polypeptide, teilweise auch Glycoproteide. Kulturfiltrate von verschiedenen Streptomyces-Spezies sind eine reiche Quelle von peptidartigen Proteaseninhibitoren (8). Im Gegensatz zu ihren verwandten Verbindungen von Tieren und Pflanzen besitzen die bakteriellen Proteaseninhibitoren nur geringes Molekulargewicht. Verglichen mit konventionellen synthetischen Proteaseninhibitoren sind sie spezifischer, aktiver bei niedriger Konzentration und zeigen geringere Toxizität.

Leupeptin selbst ist ein Tripetidderivat, dessen α -Aminogruppe acetyliert ist. Der C-Terminus trägt eine Aldehydgruppe anstatt einer Carboxylfunktion.

Anwendung

Leupeptin hemmt Serin- und Thiolproteasen wie Trypsin, Plasmin, Proteinase K, Kallikrein, Papain, Thrombin sowie Cathepsin A und B. Deshalb werden mikrobielle Proteaseninhibitoren wie Leupeptin, Antipain*, Chymostatin*, Pepstatin* und Phosphoramidon* für den Schutz von Proteinen während ihrer Isolation von Geweben oder Membranen eingesetzt. Nicht gehemmt werden α -, β -, γ - und δ -Chymotrypsine, Peptidin, Cathepsin D, Elastase, Renin und Thermolysin.

Wirkmechanismus

Die starke Hemmwirkung wird erklärt durch die Bildung eines kovalenten Hemiacetals zwischen der Aldehydgruppe im Inhibitor und der Hydroxylfunktion des Serin im aktiven Zentrum der Protease (9).

Lagerung und Stabilität

Das Pulver ist bei 2-8°C bis zu dem auf dem Etikett aufgedruckten Verfallsdatum stabil.

Hinweis: Trocken lagern.

In wässriger Lösung ist Leupeptin, unter Stickstoff gelagert, bei 2-8°C mindestens 1 Monat stabil und bei -15 bis -25°C mindestens 6 Monate. Es wird empfohlen, den einmal gelösten Inhibitor in Aliquots einzufrieren, um wiederholtes auftauen und einfrieren zu vermeiden.

Spezifität

Spezifität von Leupeptin gegenüber verschiedenen Proteasen (9, 10):

- 1) α -N-Benzoyl-L-arginine-ethylester-HCl
- 2) α -N-Carbonbenzoxy-L-glutamyl-L-tyrosine
- 3) α -N-Benzoyl-L-argininamid-HCl

Hinweis: Zur Austestung weiterer Proteaseninhibitoren empfehlen wir unseren Proteasen Inhibitoren Set (Best. Nr. 1 209 893). Das Set enthält Antipain (HCl₂), Aprotinin, Bestatin, Chymostatin, E-64, EDTA-Na₂, Leupeptin, Pefabloc¹⁾ SC, Pepstatin und Phosphoramidon.

Enzym	Substrat	ID ₅₀ (µg/ml)
Plasmin	Fibrin Casein	8 36
Trypsin	Casein Hämoglobin	2 5
Papain	Casein Hämoglobin	0.51 0.15
Kallikrein	BAEE ¹⁾	70
Cathepsin A	Cb-Glut-Tyr ²⁾	1.7
Cathepsin B	BAA ³⁾	0.44

Effectively blocks HERG K⁺ channels.

(8)

solubility

water

soluble

2-8°C

15060-.1MG

0.1 mg

107.5C

15060-.5MG

0.5 mg

402.0C

15060-1MG

1 mg

600.0C

64

EG4

trans-3-Carboxyoxiran-2-carbonyl-L-leucylagmatine; N-(*trans*-
epoxysuccinyl)-L-leucine 4-guanidinobutylamide; *trans*-Epoxy-
succinyl-L-leucylamido(4-guanidino)butane

$^{15}\text{H}_2\text{N}_5\text{O}_5$ FW 357.41 [66701-25-5]

Effective irreversible inhibitor of cysteine proteases that does not affect cysteine residues in other enzymes or react with low molecular weight thiols such as calpain and cathepsin B. Effective concentration 1-10 μM .

solubility

Aqueous solution .. 1 mM, Stock Solutions stable for months at -20°C

22-24/25

2-8°C

21MC

1 --

202

inhibitor of thermolysin ($K_i = 2 \text{ nM}$) than phosphoramidon. Therefore, the rhamnose moiety of phosphoramidon is not involved in protease inhibition.

Analysis Information:

Assay (from the literature)¹:

The inhibitory activity of phosphoramidon is expressed as per cent inhibition of a standard thermolysin preparation at pH 7.5.

Boehringer Mannheim quality control assay:

Phosphoramidon (assay concentration = 42 $\mu\text{g/ml}$) inhibits >50% of thermolysin activity (100% activity $\geq 0.08 \text{ U}$; casein as substrate) at 35°C and pH 7.2.

BM preparation:

Physical form	Cat. No.	Pack size
Lyophilizate	874 531	5 mg

References:

1. Umezawa, H. (1976) *Methods Enzymol.* 45, 678-695.
2. Aoyagi, T. & Umezawa, H. (1975) *Cold Spring Harbor Conf. Cell Proliferation*, 2, 429-454.
3. Aoyagi, T. & Umezawa, H. (1975) in *Proteases and Biological Control* (Reich, E. et al., eds), pp. 429-454, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
4. Aoyagi, T. & Umezawa, H. (1981) *Acta Biol. Med. Ger.* 40, 1523-1529.

TLCK

Trypsin inhibitor

From the Literature¹⁻²:

Chemical name: 1-Chloro-3-tosylamido-7-amino-2-heptanone (N-Tosyl-L-lysine chloromethyl ketone) [Tosyl = 4-toluenesulfonic acid]. **Inhibits:** trypsin and other endoproteins which cleave specifically next to a lysine residue, some other serine proteases (thrombin, plasmin, kallikrein, endopeptidase Arg-C, endopeptidase Lys-C), some thiol proteases (ficin, papain, bromelain), cathepsin. **Does not inhibit:** chymotrypsin, endopeptidase Glu-C, metalloproteases, exopeptidases, trypsinogen, trypsin-inhibitor complexes (e.g., trypsin-benzamidine). **Mechanism:** TLCK forms a bond with a histidine residue in the active center of trypsin. The inhibitory activity of TLCK requires enzymatic activity; it will not form a covalent bond with zymogens (trypsinogen) or inactive protease-inhibitor complexes. The action of TLCK requires access to the active site; it is blocked in the presence of substrate or competitive inhibitors (benzamidine) of the enzyme. **M_r:** TLCK•HCl, 369.3. **General properties:** Salts of TLCK are soluble in H_2O , insoluble in absolute ethanol.

From Boehringer Mannheim (BM) Laboratories:

BM preparation supplied as: crystallized hydrochloride, approx. 98% pure. **Stock solution:** 20 mg/ml in H_2O (approx. 54 mM). Store the stock solution at 4°C. **Stability in solution:** TLCK is stable (25°C) at pH ≤ 6 ; it rapidly decomposes at pH > 7.5 ($t_{1/2} \approx 5 \text{ min}$ at pH 9, 25°C). **Working concentration:** $\geq 0.1 \text{ mM}$ ($\geq 37 \mu\text{g/ml}$) (in buffer at pH ≥ 7). TLCK should be added fresh to solutions just before use.

Technical Tips:

- TLCK is unstable in alkaline solution¹. Therefore, it should be added to buffers at or above pH 7 just before they are used.
- At 25°C and pH 7.0, 45 μM TLCK will give 50% inactivation of trypsin in <3 min¹. At 25°C and pH 6.8, 1.26 mM TLCK will give 50% inactivation of trypsin in approx. 30 s.

10/3

FIGURE 3.17
Reaction sequence for the preparation of immobilized *para*-aminobenzamidine.

IMMOBILIZATION PROTOCOL

Immobilized DADPA is prepared as described in Section 3.1.1.1, immobilized 6-AC as in Section 3.1.1.3, and succinylated DADPA as in Section 3.1.1.8.

F.A.Carey, R.J.Sundberg

Organische Chemie

Ein weiterführendes Lehrbuch

Herausgeber:
H.J. Schäfer
D. Hoppe
G. Erker

Vor

Autoren:

Prof. Dr. F. A. Carey
Prof. Dr. R. J. Sundberg
Department of Chemistry
University of Virginia
McCormick Road
Charlottesville, VA 22901
USA

Herausgeber:

Prof. Dr. H. J. Schäfer
Prof. Dr. D. Hoppe
Prof. Dr. G. Erker
Organisch-Chemisches Institut
der Universität Münster
Corrensstraße 40
D-48149 Münster

Titel der Originalausgabe: Advanced Organic Chemistry, Third Edition.

Autorisierte Übersetzung der englischsprachigen Ausgabe von Plenum Press, New York and London,
Plenum Publishing Corporation.

© 1990, 1993, Plenum Press, New York.

Das vorliegende Werk wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber, Übersetzer und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung.

Übersetzer: Dr. Doris Fischer-Henningsen, Dr. Silke Freund,
Dr. Sabine Gräßl, Dr. Harald Münch, Dr. Matthias Storch
Redaktion: Christa Becker, Dr. Doris Fischer-Henningsen, Gerlinde Kruse
Lektorat: Dr. Thomas Kellersohn
Herstellerische Betreuung: Claudia Grössl

Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Carey, Francis A.:
Organische Chemie : ein weiterführendes Lehrbuch /
Francis A. Carey ; Richard J. Sundberg, Hrsg. von Gerhard Erker ...
Übers. von Doris Fischer-Henningsen ... -
Weinheim ; New York ; Basel ; Cambridge ; Tokyo : VCH, 1995
Einheitssach.: Advanced organic chemistry <dt.>
ISBN 3-527-29217-9
NE: Sundberg, Richard J.:

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim (Bundesrepublik Deutschland), 1995

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, daß diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photopyting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Umschlaggestaltung: Graphik- und Text-Studio W. Zettlmeier, D-93164 Laaber-Waldzenberg

Satz und Druck: Zechnerische Buchdruckerei, D-67346 Speyer

Bindung: Druckerei Parzeller, D-36004 Fulda

Printed in the Federal Republic of Germany

Mit der
organis.
aufbau
Anwer
unser
nisches
zu einz
auf Sy
die org
selbstä
fortges
den ur

Die
mie ur
Aufkl
werde
Kapite
grundl
mende
von K
heiten
handel

Bei
die Te
theori
Lage v

Sch
ihrer
metho
ersten
Aufgr
metall
geteilt
und be
gangst
Kapite
Knüpf
Synthe
laßt, d

Schema 25.8. Nucleophile und solvolytische Ringöffnung von Epoxiden.

A. Epoxidierung mit anschließender Solvolyse

B. Säurekatalysierte solvolytische Ringöffnung

C. Nucleophile Ringöffnungen

a) A. Roebrick und H. Adkins, *Org. Synth.* III, 217 (1955).b) T.R. Kelly, *J. Org. Chem.* 37, 3393 (1972).c) S. Winstein und L.L. Ingraham, *J. Am. Chem. Soc.* 74, 1160 (1952).d) G. Berti, F. Bottani, P.L. Ferrarini und B. Macchia, *J. Org. Chem.* 30, 4091 (1965).e) M.L. Rueppell und H. Rapoport, *J. Am. Chem. Soc.* 94, 3877 (1972).f) T. Colclough, J.I. Cunneen und C.G. Moore, *Tetrahedron* 15, 187 (1961).g) D.M. Burness und H.O. Bayer, *J. Org. Chem.* 28, 2283 (1963).

ADVANCED ORGANIC CHEMISTRY

REACTIONS, MECHANISMS,
AND STRUCTURE

Third Edition

Jerry March

*This book is dedicated to
Author Index, and to my*

Copyright © 1985 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

March, Jerry, 1929-

Advanced organic chemistry.

"A Wiley-Interscience publication."

Includes bibliographical references and indexes.

I. Chemistry, Organic. I. Title.

QD251.2.M37 1985 547 84-15311
ISBN 0-471-85472-7

Printed in the United States of America

10 9 8 7 6 5 4 3 2

specific for methyl ethers and can be
73; III, 272, 471.

NH_2^- can be a leaving group. The other process, primary amines are same ($2\text{RNH}_2 \rightarrow \text{R}_2\text{NH} + \text{NH}_3^{67}$)⁶⁷ Primary salts can be dealkylated with

saturated alkyl groups. A similar secondary amine, where the mechanism

17.⁶⁸ The acidity of amines is not BF_3 , which converts the amine to propenous cyanide can also be used as n in which case this is a method for mine but, as in the case of 0-45, ied. Primary aliphatic amines give give successful alkylation. Primary mines react very poorly.

mixed secondary amine. For a review of the
lantine, Purnell, Raynakorn, Thomas, and
orzi, *J. Organomet. Chem.* 231, C31 (1982);

66).

REACTION 0-53

The reaction between epoxides and ammonia is a general and useful method for the preparation of β -hydroxyamines.⁶⁹ Ammonia gives largely the primary amine, but also some secondary and tertiary amines. The useful solvents, the ethanolamines, are prepared by this reaction. Primary and secondary amines give, respectively, secondary and tertiary amines, e.g.,

Episulfides, which can be generated *in situ* in various ways, react similarly to give β -amino mercaptans,⁷⁰ and aziridines give 1,2-diamines.⁷¹ Triphenylphosphine similarly reacts with epoxides to give an intermediate that then undergoes elimination to give olefins (see the Wittig reaction, 6-47).

There are no OS references, but see OS 58, 86 for a related reaction.

0-52 Amination of Alkanes Amino-de-hydrogenation or Amination

Alkanes, arylalkanes, and cycloalkanes can be aminated, at tertiary positions only, by treatment with trichloroamine and aluminum chloride at 0 to 10°C .⁶⁶ For example, *p*-cymene (*p*-Me₂C₆H₄CHMe₂) gives *p*-Me₂C₆H₄CMe₂NH₂, methylcyclopentane gives 1-amino-1-methylcyclopentane, and adamantan gives 1-aminoadamantan, all in good yields. This is a useful reaction, since there are not many other methods for the preparation of *t*-alkylamines. The mechanism has been rationalized as an S_N1 process with H⁺ as the leaving group:⁶⁶

See also 2-10.

OS V, 35.

0-53 Formation of Isonitriles

Reaction with chloroform under basic conditions is a common test for primary amines, both aliphatic and aromatic, since isonitriles have very strong bad odors. The reaction probably proceeds by an S_N1cB mechanism with dichlorocarbene as an intermediate:

⁶⁸For an example, see McManus, Larson, and Hearm, *Synth. Commun.* 3, 177 (1973).

⁶⁹Reynolds, Massad, Fields, and Johnson, *J. Org. Chem.* 26, 5109 (1961); Reynolds, Fields, and Johnson, *J. Org. Chem.* 26, 5111, 5116, 5119, 5125 (1961); Wineman, Golis, James, and Pomponi, *J. Org. Chem.* 27, 4222 (1962).

⁷⁰For a review, see Dermer and Ham, Ref. 367, pp. 262-268.

⁷¹Kovacic and Chaudhary, *Tetrahedron* 23, 3563 (1967); Strand and Kovacic, Ref. 663; Wnuk, Chaudhary, and Kovacic, *J. Am. Chem. Soc.* 98, 5678 (1976), and references cited in these papers.