Heures (Hebdo)	7.0
Cours	4.0
Exercices	2.0
Pratique	1.0
Total	98.0

Langue	français
Semestre	Automne
Mode d'évaluation	Examen écrit
Session	Janvier
Format de l'enseignment	Cours, exercices, TP

Cursus	Туре	ECTS
Baccalauréat universitaire en physique	N/A	6.0
Master of Science in Biology 120 crédits	N/A	-
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	5.0
Baccalauréat univ. en systèmes d'information et science des services	N/A	6.0
Baccalauréat universitaire en informatique	N/A	6.0
Baccalauréat universitaire en mathématiques	N/A	8.0

Algèbre I - automne

11M010 | Tatiana Smirnova-Nagnibeda

Objectifs

Ce cours sert dintroduction à lalgèbre linéaire. Motivés par le problème de résolution de systèmes déquations linéaires, nous développerons les techniques de calcul matriciel et nous étudierons des premiers exemples de structures algébriques, tels espaces vectoriels et applications linéaires.

Description

- 1. Espaces vectoriels réels et complexes.
- 2. Applications linéaires et leurs représentations matricielles.
- 3. Déterminants.
- 4. Valeurs et vecteurs propres, forme de Jordan.
- 5. Théorème spectral.