

Representación de la Información

... en los Computadores

Información e Informática

- Un computador es una máquina que procesa información.
- La ejecución de un programa implica el tratamiento de los datos.
- Para que el computador ejecute un programa es necesario darles dos tipos de información:
 - las instrucciones que forman el programa y
 - los datos con los que debe operar ese programa.
- Los aspectos más importantes de la Informática relacionados con la información son:
 - cómo <representarla> y
 - cómo <materializarla> o <registrarla> físicamente.

- Se la da en la forma usual escrita que utilizan los seres humanos;
 - con ayuda de un alfabeto o conjunto de símbolos, denominados caracteres.
- Categorías de los caracteres:
 - Caracteres alfabéticos: son los mayúsculas y minúsculas del abecedario inglés:

Caracteres numéricos: están constituidos por las diez cifras decimales:

• El cero suele marcarse con una raya inclinada (ø) para evitar posibles confusiones con la O mayúscula.

 Caracteres especiales: son los símbolos no incluidos en los grupos anteriores, entre otros los siguientes:

) (, */;:
$$\tilde{N}$$
 \tilde{n} =!?. \approx ' & > # < { G } SP

- Con SP representamos el carácter o espacio en blanco, tal como el que separa dos palabras.
- Carácter de control: representan órdenes de control, como el carácter indicador de fin de línea o el carácter indicador de sincronización de una transmisión de que se emita un pitido en un terminal, etc.
 - Muchos de estos son generados e insertados por el propio computador.
- Caracteres Gráficos: son símbolos o módulos con los que se pueden representar figuras (o iconos) elementales.

•	Toda comunicación con un computador convencional se realiza según los caracteres que admitan sus dispositivos de E / S.	101101
•	Toda instrucción o dato se representará por un conjunto	0110
	de caracteres tomados del alfabeto definido en el sistema a utilizar.	010
	El diseño de un sistema informático resulta mas fácil, su	01
	realización menos compleja y su funcionamiento muy fiable, si se utilizan solo dos valores o estados posibles.	0
٠	Estos valores conceptualmente se representan por	0101 0
	cero (0) y apagada y 0 voltios y	0110
	uno (1) encendida 3.5 voltios	0110
	etc. (BIT)	01

Codificación de la Información

- Codificación es una transformación que representa los elementos de un conjunto mediante los de otro, de forma tal que a cada elemento del primer conjunto le corresponda un elemento distinto del segundo.
- Ejemplo:
 - código de provincia en las matrículas de los coches;
 - código de enfermedades definido por la Organización Mundial de la Salud (OMS)
 - número de cedula de identidad
- Los códigos se permiten comprimir y estructurar la información
- En el interior de los computadores la información se almacena y se transfiere de un sitio a otro según un código que utiliza sólo dos valores (un código binario) representados por 0 y 1.

- Codificación y Decodificación
 - Al tener que <traducir> toda la información suministrada al computador a ceros y unos, es necesario establecer una correspondencia entre el conjunto de todos los caracteres

$$\alpha = \{ A, B, C, D, ..., Z, a, b, ..., z, 0, 1, 2, 3, ..., 9, /, +, (,), ... \}$$

y el conjunto binario

$$\beta = \{ 0, 1 \} n$$

- Estos códigos de transformación se denominan códigos de Entrada / Salida (E/S) o códigos externos.
 - Las operaciones aritméticas con datos numéricos se suelen realizar en una representación más adecuada para este objetivo que la obtenida con el código de E/S.

- ...es un valor binario, conocido como BIT.
- El origen de este término es inglés:

BIT = **Bi**nary y digi**T**

- Un bit es una posición o variable que toma el valor 0 o 1.
- Es la capacidad mínima de almacenamiento de información en el interior de un computador
- El bit es la unidad de información mínima

Información — caracteres – BIT ...

A cada carácter le corresponde cierto número de bits.

Byte: número de bits necesarios para almacenar un caracter

- Byte se utiliza como sinónimo de 8 bits u octeto.
- La capacidad de almacenamiento (computador, soporte de información) se mide en bytes.
- Byte es una unidad relativamente pequeña
- Se utiliza múltiplos:

```
1 Kilobyte = 1KB = 2^{10} bytes = 1024 bytes = 2^{10} bytes
```

- **1 Megabyte** = **1MB** = 2^{10} Kb = 1048576 bytes = 2^{20} bytes = 2^{10} Mb = 1073741824 bytes = 2^{30} bytes
- **1 Terabyte= 1TB** = 2^{10} Gb = 1099511627776 bytes = 2^{40} bytes
- **Pentabyte** = **1PB** = 2^{10} Tb = 11258999906842624 bytes = 2^{50} bytes.
- **1 Exabyte = 1EB** = 2^{10} Pb = 11258999906842624 bytes $= 2^{60}$ bytes.
- 1 Zetabyte
- 1 Yottabyte

DATO: Característica de una información expresada en forma adecuada para su tratamiento.

- Representación de los datos (valores):
 - Valores analógicos.
 - Valores discretos o digitales.
- Necesidad de convertir los valores analógicos a discretos.
 - Sistema digital: Sistema de N estados estables
 - Dígito: Variable capaz de asumir un estado.
- Los dígitos se agrupan para representar más estados.

- Código: Ley de correspondencia entre valores de información y combinaciones de dígitos de un sistema digital utilizadas para representarlos.
- Codificación: Información -> Código

```
azul ----> 0 azul ----> 100 verde ----> 1 ó verde ----> 101 rojo ----> 2 rojo ----> 111
```

Decodificación: Código -> Información

```
azul <---- 0 azul <---- 100 verde <---- 1 ó verde <---- 101 rojo <---- 2
```

 Código binario: Cuando el sistema digital utilizado tiene sólo 2 estados (0,1).

- Los computadores suelen efectuar las operaciones aritméticas utilizando una representación para los datos numéricos basada en el sistema de numeración base dos (sistema binario).
- También se utilizan los sistemas de numeración, preferentemente el octal y hexadecimal, para obtener códigos intermedios.
- Un número expresado en uno de estos dos códigos puede transformarse directa y fácilmente a binario y viceversa.
 - Por lo que a veces se utilizan como paso intermedio en las transformaciones de decimal a binario y viceversa.

- Un sistema de numeración en base b utiliza para representar los números un alfabeto compuesto por b símbolos o cifras.
- Todo número se expresa por un conjunto de cifras, contribuyendo cada una e ellas con un valor que depende de:
 - a) la cifra en sí, y
 - b) la posición que ocupe dentro del número.
- En el sistema de numeración decimal (sistema en base 10):
 - b = 10 y el alfabeto está constituido por diez símbolos o cifras decimales:

por ejemplo, el número 3278.52 puede obtenerse como suma de:

se verifica que:

3278.52 =
$$3*10^3 + 2*10^2 + 7*10^1 + 8*10^0 + 5*10^{-1} + 2*10^{-2}$$

Representación de un número en una base b: Forma abreviada:

$$N = ... n_4 n_3 n_2 n_1 n_0 . n_{-1} n_{-2} n_{-3} ...$$

Valor:

$$N = \dots n_4 * b^4 + n_3 * b^3 + n_2 * b^2 + n_1 * b^1 + n_0 * b^0 + n_{-1} * b^{-1} \dots$$

Para representar un número:

- Resulta más cómodo que los símbolos (cifras) del alfabeto o la base de numeración sean los menos posibles, pero ,
- Cuanto menos es la base, mayor es el número de cifras que se necesitan para representar una cantidad dada.

Sistemas de Numeración

- Binario
- Octal
- Hexadecimal

Binario	Decimal	Octal	Hexadecimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8		8
1001	9		9
1010	10		Α
1011	11		В
1100	12		С
1101	13		D
1110	14		E
1111	15		F

- La base es 2 (b=2) sólo
- se necesitan dos símbolos :

{ 0, 1 }

- Se aplica el método de las "divisiones y multiplicaciones " sucesivas con la base como divisor y multiplicador (b = 2).
- Ejemplo: $26.1875_{)10} = 11010.0011_{)2}$
- Para la parte entera:

Para la parte fraccionaria:

Conversión de Binario a Decimal

- Se desarrolla la representación binaria (con b=2) y se opera el polinomio en decimal.
- Ejemplos:

$$\frac{110100}{2} = 1.2^{5} + 1.2^{4} + 0.2^{3} + 1.2^{2} + 0.2^{1} + 0.2^{0}$$

$$10100.001_{0^{1/2}} = 1.2^{4} + 0.2^{3} + 1.2^{2} + 0.2^{1} + 0.2^{0} + 0.2^{1} + 0.$$

 Realmente basta con sumar los pesos (2_i) de las posiciones (i) en las que hay un 1.

Operaciones aritméticas con variables binarias

 Las operaciones aritméticas básicas son la suma, resta, multiplicación y división.

Suma aritmética con varias variables

a	b	a + b
0	0	0
0	1	1
1	0	1
1	1	O y me llevo 1

Resta aritmética con varias variables

a	b	a - b
0	0	0
0	1	1 y me adeudo 1
1	0	1
1	1	0

Multiplicación aritmética con varias variables

а	b	a*b
0	0	0
0	1	0
1	0	0
1	1	1

División aritmética con varias variables

a	b	a/b
0	0	indeterminado
0	1	0
1	0	00
1	1	1

Ejemplos:

Efectuar las siguientes operaciones aritméticas binarias:

Sistema de numeración octal

- La base es 8
- El conjunto de símbolos es:

{ 0, 1, 2, 3, 4, 5, 6, 7 **}**

Conversión de octal a decimal

Se desarrolla el polinomio con b=8 y se opera en decimal.

Conversión de decimal a octal

Aplicar el método de "divisiones y productos" con divisor y multiplicador 8.

Conversión "rápida" de binario a octal

Agrupar cifras binarias de 3 en 3 y transformar con la tabla 1.

Conversión "rápida" de octal a binario

Convertir cada cifra octal mediante la tabla

Ejemplo:

• Haciendo uso de la tabla convertir $10001101100.11010_{(2)} = N_{(8)}$

$$10|001|101|100.110|10_{)2} = 2154.64_{)8}$$

Ejemplo:

• Haciendo uso de la tabla convertir 537.24 $_{)8}$ = N $_{)2}$

$$537.24_{)8} = 101|011|111.010|100_{)2}$$

Sistema de numeración hexadecimal

- La base es 16
- El conjunto de símbolos es:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F**}**

Conversión de Hexadecimal a decimal

Se desarrolla el polinomio con b=16 y se opera en decimal.

Conversión de Decimal a hexadecimal

 Aplicar el método de "divisiones y productos" con divisor y multiplicador 16.

Conversión "rápida" de binario a hexadecimal

- Agrupar cifras binarias de 4 en 4 y transformar con la tabla
 - Ejemplo: 0010 0101 1101 1111 . 1011 1010 $_{(2}$ = 25DF.BA $_{(16)}$

Conversión "rápida" de hexadecimal a binario

- Convertir cada cifra hexadecimal mediante la tabla
 - Ejemplo: 1ABC.C4 (16) = 0001 1010 1011 1100 . 1100 0100 (2)

Resumen de cambios de base

Ejercicios en clases...

Hacer las operaciones en binario:

- $101011101_{12} + 101001010_{12} = N_{18}$
- $1100101011_{12} + 100101101_{12} = N_{110}$
- $101011101_{12} 10001010_{12} = N_{116}$
- $110001011_{)2} 10101101_{)2} = N_{)16}$
- $10101.0101_{)2} * 2_{)10} = N_{)2}$ $1101.1010_{)2} * 25_{)10} = N_{)10}$
- $-1010100_{12} / 2_{110} = N_{18}$
- \bullet 10101.101₁₂ / 101₁₂ = N₁₂

Representación de datos Numéricos

- Para la representación de los datos numéricos se debe tener en cuenta que las operaciones de la ALU están sujetas a las siguientes restricciones:
 - Los registros son de tamaño fijo.
 - Puede existir desbordamiento.
 - Presentan problemas con los números negativos.
- Es necesario, por ello, introducir nuevas formas de numeración basadas, por supuesto, en la representación binaria.
- Al conjunto de estas representaciones y su funcionamiento se le denomina aritmética binaria.
- En aritmética binaria debemos distinguir:
 - Representación para números enteros
 - Representación de números reales.

Representación de textos

Códigos de Entrada/Salida

 Asocian a cada símbolo una determinada combinación de bits.

$$a = \{0,1,2,...,8,9,A,B,...,Y,Z,a,b,...,y,z,*,",/,...\}$$

 $b = \{0,1\}n$

- Con n bits podemos codificar m=2ⁿ símbolos distintos
- Para codificar m símbolos distintos se necesitan n bits,

$$n \ge \log_2 m = 3.32 \log (m)$$

Ejemplo:

- Para codificar las cifras decimales {0,1,2,3,4,5,6,7,8,9} se necesitarán :
 - $n \ge 3.3221 \log(m) = 3.322 \text{ bits}$
- es decir, 4 bits (para que se cumpla la relación)
- Por lo menos se necesitan 4 bits, pero pueden hacerse codificaciones con más bits de los necesarios. Tabla 2
- Con 4 bits no se usan $2^4 10 = 6$ combinaciones, y con 5 bits $2^5 10 = 22$ combinaciones.

Cont... Tabla 2

Alfabeto	Código I	Código II				
0	0000	00000				
1	1000	10001				
2	0100	01001				
3	1100	11000				
4	0010	00101				
5	1010	10100				
6	0110	01100				
7	1110	11101				
8	0001	00011				
9	1001	10010				

Ejemplos de Códigos de E/S

Código ASCII

- El código ASCII se utiliza para representar caracteres.
- Formado por 8 bits (cada carácter se expresa por un número entre 0 y 255)
- Es un código estándar, independiente del lenguaje y del ordenador
- Podemos distinguir dos grupos:
 - Los 128 primeros caracteres se denominan código ASCII estándar
 - Representan los caracteres que aparecen en una maquina de escribir convencional
 - Los 128 restantes se denominan código ASCII ampliado
 - Este código asocia un numero a caracteres que no aparecen en la maquina de escribir y que son muy utilizados en el ordenador tales como caracteres gráficos u operadores matemáticos.

Código EBCDIC

- Extended Binary Coded Decimal Interchange Code
 - Código Ampliado de Caracteres Decimales Codificados en Binario para Intercambio de Información
- Es un sistema de codificación de caracteres alfanuméricos.
- Cada carácter queda representado por un grupo de 8 bits.

Código Unicode

- Es de 16 bits, por lo que puede representar 65536 caracteres.
- Es una extensión del ASCII para poder expresar distintos juegos de caracteres (latino, griego, árabe, kanji, cirílico, etc).

Código ASCII.

CARACTERES DE CONTROL

0	NUL	(nulo)	16	DLE	(escape de enlace de datos)
1	SOH	(comienzo de cabecera)	17	DC1	(control de dispositivo 1)
2	STX	(comienzo de texto)	18	DC2	(control de dispositivo 2)
3	ETX	(fin de texto)	19	DC3	(control de dispositivo 3)
4	EOT	(fin de transmisión)	20	DC4	(control de dispositivo 4)
5	ENQ	(pregunta)	21	NAK	(acuse de recibo negativo)
6	ACK	(acuse de recibo)	22	SYN	(sincronización)
7	BEL	(campana sonora)	23	ETB	(fin de bloque transmisión)
8	BS	(retroceso de un espacio)	24	CAN	(anulación)
9	HT	(tabulación horizontal)	25	\mathbf{EM}	(fin de medio físico)
10	LF	(cambio de renglón)	26	SUB	(carácter de sustitución)
11	VT	(tabulación vertical)	27	ESC	(escape)
12	\mathbf{FF}	(página siguiente)	28	FS	(separador de ficheros)
13	CR	(retroceso del carro)	29	GS	(separador de grupos)
14	SO	(fuera de código)	30	RS	(separador de registros)
15	SI	(en código)	31	US	(separador de unidades)

CARACTERES GRAFICOS

32	SP	48	0	64	@	80	Р	96	•	112	р
33	!	49	1	65	Α	81	Q	97	а	113	q
34		50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	C	115	s
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	E	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	•	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	Н	88	X	104		120	x
41)	57	9	73	I	89	Υ	105	i	121	У
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	K	91	1	107	k	123	{
44	,	60	<	76	L	92	Ī	108	1	124	Ĺ
45	-	61	=	77	М	93	1	109	m	125	}
46	•	62	>	78	N	94	۸	110	n	126	~
47	1	63	?	79	0	95	_	111	0	127	DEL

ASCII-1967 (US-ASCII)

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	sp	!	11	#	\$	%	&	•	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	•	;	<		>	?
4	<u>@</u>	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	O
5	P	Q	R	S	T	U	V	W	X	Y	Z	[1]	^	
6	N.	a	b	c	d	e	f	g	h	i	j	k	1	m	n	o
7	p	q	r	S	t	u	V	W	X	y	Z	{		}	~	DEL

ódigos ASCII (0-127).

Carácteres no imprimibles					Carácteres imprimibles								
Iombre	Dec	Hex	Car.	Dec	Hex	Car.	Dec	Hex	Car.				
ulo	0	00	NUL	32	20	Espacio	64	40	@	96	60		
nicio de cabecera	1	01	SOH	33	21	!	65	41	Α	97	61	а	
nicio de texto	2	02	STX	34	22	н	66	42	В	98	62	b	
in de texto	3	03	ETX	35	23	#	67	43	С	99	63	С	
in de transmisión	4	04	EOT	36	24	\$	68	44	D	100	64	d	
nquiry	5	05	ENQ	37	25	%	69	45	E	101	65	e	
cknowledge	6	06	ACK	38	26	&	70	46	F	102	66	f	
ampanilla (beep)	7	07	BEL	39	27	1	71	47	G	103	67	g	
ackspace	8	08	BS	40	28	(72	48	Н	104	68	h	
abulador horizontal	9	09	HT	41	29)	73	49	I	105	69	i	
alto de línea	10	0A	LF	42	2A	*	74	4A	3	106	6A	j	
abulador vertical	11	ов	VT	43	2B	+	75	4B	K	107	6B	k	
alto de página	12	0C	FF	44	2C		76	4 C	L	108	6C	1	
etorno de carro	13	0D	CR	45	2D	-	77	4D	М	109	6D	m	
hift fuera	14	0E	SO	46	2E		78	4 E	N	110	6E	n	
hift dentro	15	0F	SI	47	2F	1	79	4 F	О	111	6F	O	
scape línea de datos	16	10	DLE	48	30	0	80	50	Р	112	70	р	
ontrol dispositivo 1	17	11	DC1	49	31	1	81	51	Q	113	71	q	
ontrol dispositivo 2	18	12	DC2	50	32	2	82	52	R	114	72	r	
ontrol dispositivo 3	19	13	DC3	51	33	3	83	53	S	115	73	S	
ontrol dispositivo 4	20	14	DC4	52	34	4	84	54	Т	116	74	t	
eg acknowledge	21	15	NAK	53	35	5	85	55	U	117	75	u	
incronismo	22	16	SYN	54	36	6	86	56	V	118	76	ν	
in bloque transmitido	23	17	ETB	55	37	7	87	57	W	119	77	W	
ancelar	24	18	CAN	56	38	8	88	58	Х	120	78	х	
in medio	25	19	EM	57	39	9	89	59	Υ	121	79	у	
ustituto	26	1A	SUB	58	ЗА	:	90	5A	Z	122	7A	Z	
scape	27	1B	ESC	59	3B	;	91	5B		123	7B	{	
eparador archivos	28	1C	FS	60	3C	<	92	5C	\	124	7C	1	
eparador grupos	29	1D	GS	61	3D	=	93	5D]	125	7D	}	
eparador registros	30	1E	RS	62	3E	>	94	5E	^	126	7E	~	

CÓDIGO EBCDIC

Caracteres de control EBCDIC:

NUL	Nulo	IGS	Separador para intercambio
SOH	Comienzo de cabeza	100	de grupos
	Comienzo de texto	IRS	Separador para intercambio
EOT		1110	de registros
PF	Perforadora desconectada	IUS	Separador para intercambio
HT	Tabulación horizontal		de unidad
LC	Minúscula	DS	Selección de dígito
DEL		SOS	Comienzo de significado
RLF	Alimentación de linea invertida	FS	Separador de campo
SMM		BYP	Desviar
VT	Tabulación vertical	LF	Alimentación de línea
FF	Alimentación de hoja	ETB	Final de bloque de transmisión
CR	Retorno de carro	ESC	Escape
so	Fuera de código	SM	Fijar modo
SI	Dentro de código	ENQ	Solicitud, petición
DLE	Escape del enlace de datos	ACK	Acuse de recibo
TM	Marca de cinta	BEL	Pitido
RES	Restaurar	SYN	Sincronzación
NL	Pasar a línea siguiente	PN	Perforadora conectada
BS	Retroceso de un espacio	RS	Detener lectora
IL	sin función	UC	Mayúscul as
CAN	Cancelar	EOT	Fin de transmisión
EM	Final de soporte	NACK	Acuse de recibo negativo
CC	Control del cursor	SUB	Sustituir
SP	Espacio en blanco	DCi	Control dispositivo i
IFS	Separador para intercambio	CUi	Control usuario i
	de archivos		

Esquema de asignación de códigos en Unicode

Zona	Códigos		Símbolos codificados	N° de caracteres
,	0000	0000 00FF	Latin-1	256
A			otros alfabetos	7.936
		2000	Símbolos generales y caracteres fonéticos chinos, japoneses y coreanos	8.192
I	4000		Ideogramas	24.576
0	A000		Pendiente de asignación	16.384
R	E000 FFFF		Caracteres locales y propios de los usuarios. Compatibilidad con otros códigos	8.192

Representación de Sonidos

- Grabación de una señal de sonido:
 - **Se capta por** medio de un micrófono que produce una **señal analógica** (señal que puede tomar cualquier valor dentro de un determinado intervalo continuo).
 - La señal analógica **se amplificada** para encajarla dentro de dos valores límites, p.e. entre -5 voltios y +5 voltios.
- Señal analógica captada por un micrófono al pronunciar la palabra "casa"; Tramo de muestras comprendido entre 0,184 a 0,186 segundos;

Cont...

- Los valores obtenidos en la conversión (**muestras**) se almacenan en posiciones consecutivas
- Valores de las muestras obtenidos por un conversor A/D y que representan a la señal de voz.
- Principales parámetros de grabación:
 - Frecuencia de muestreo (suficiente para no perder la forma de la señal original)
 - Número de bits por muestra (precisión)
- La capacidad necesaria para almacenar una señal de audio depende de los dos parámetros anteriores:
 - 1 minuto de audio estéreo con calidad CD, necesita 10 MB (sin compresión de datos)

Representación de Imágenes

- Las imágenes se adquieren por medio de periféricos tales como escáneres, cámaras de video o cámaras fotográficas.
- Una imagen se representa por patrones de bits, generados por el periférico correspondiente.
- Formas básicas de representación:
 - Mapa de bits
 - Mapa de vectores

Tipo	Formato	Origen	Descripción
	BMP (BitMap)	Microsoft	Usado en aplicaciones Windows
	PICT (PICTure)	Apple Comp.	Usado en Macintosh
	TIFF (Tagged Image File Formats)	Microsoft y Aldus	Usado en PC y Macintosh, muy poco compatible con otros formatos.
Mapa de bits	JPEG (Joint Photographic Experts Group)	Grupo JPEG	Muy buena calidad para imágenes naturales. Incluye compresión, Muy usado en la web
	GIF (Graphic Interchange Format)	CompuServe	Incluye compresión. Muy usado en la web.
	PNG (Portable Network Graphics)	Consorcio www	Evolución de GIF. Muy buena calidad de colores. Incluye muy buena compresión
	DXF (Document eXchange Format)		Formato normalizado para imágenes CAD (AutoCAD , CorelDRAW, etc.)
Mapa de vectores	IGES (Initial Ghaphics Exchange Specification)	ASME/ANSI	Formato normalizado para modelos CAD (usable en AutoCAD , CorelDRAW, etc.)
	EPS (Encapsulated Poscript)	Adobe Sys.	Ampliación para imágenes del lenguaje Poscript de impresión.
	TrueType	Apple comp	Alternativa de Apple y Microsoft para el EPS

Imágenes de Mapas de Bits

Estructura de una imagen con resolución de 640x580 elementos.

- La imagen se considera dividida en una fina retícula de celdas o **elementos de imagen** (pixels).
- A cada elemento de imagen (e.i.) se le asocia un valor (**atributo**) que se corresponde con su nivel de gris (b/n) o color, medio en la celda.
- La resolución es
 - (nº e.i. horizontales x nº e.i. verticales).
- Se memoriza, almacenando ordenada y sucesivamente los atributos de los distintos elementos de imagen.

Características de algunas formas de imágenes digitalizadas

		Resolución (horizontal x vertical)	Movimiento
Convencionales	Fax (A4)	(100, 200,400) x (200, 300, 400) ei/"	Estática
Convencionales	Foto (8"x11")	128, 400, 1200 ei/pulgada	Estática
	Videoconferencia	176 x 144 ei/imagen	10 a 36 imágenes/s
Televisión	TV	720 x 480 ei/imagen	30 imágenes/s
	HDTV (TV alta definición)	1920 x 1080 ei/imagen	30 imágenes/s
Pantalla	VGA	640 x 480 ei	
	SVGA	800 x 600 ei	
computador	XGA	1024 x 768 ei	

- La calidad de la imagen depende de
 - La resolución y
 - Codificación del atributo (número de bits)
- La capacidad depende de dichos parámetros:
 - Ejemplo: imagen de 16 niveles de grises (b/n) y con resolución de 640x350: 110 Kbytes
 - Ejemplo: imagen con resolución XGA con 256 niveles para cada color básico: 2,25 MBytes

Imágenes de Mapas de Vectores

- Se descompone la imagen en una colección de objetos tales como líneas, polígonos y textos con sus respectivos atributos o detalles (grosor, color, etc.) modelables por medio de vectores y ecuaciones matemáticas que determinan tanto su forma como su posición dentro de la imagen.
- Para visualiza una imagen, un programa evalúa las ecuaciones y escala los vectores generando la imagen concreta a ver.
- Características:
 - Sólo es adecuada para gráficos de tipo geométrico (no imágenes reales)
 - Ocupan mucho menos espacio que los mapas de bits.

Compresión De Datos

- Diversas aplicaciones (multimedia, etc.) requieren utilizar archivos de gran capacidad.
 - Volumen requerido para su almacenamiento en disco muy elevado
 - el tiempo de transmisión del archivo por una red resulta excesivo
- Solución: transformación denominada compresión de datos.
 - El archivo, antes de ser almacenado o transmitido se comprime mediante un algoritmo de compresión, y
 - cuando se recupera para procesarlo o visualizarlo se aplica la técnica inversa para descomprimirlo.

Técnicas:

- Codificación por longitud de secuencias
- Codificación relativa o incremental
- Codificación dependiente de la frecuencia
- Codificación con diccionario adaptativo
- Codificación Lempel-Ziv
- Compresión GIF (imágenes)
- Compresión JPEG (imágenes)
- Compresión MPEG (imágenes)
- Compresión MP3 (sonidos)

Detección de errores en la Información Codificada

- Cuantas menos codificaciones se desperdicien el código es más eficiente.
- La eficiencia de un código (T) se define como el cociente entre el número de símbolos que se representan realmente, m, dividido para el número de símbolos que en total pueden representarse.
- Con códigos binarios en que $m = 2^n$, se tiene:

$$T = m/m' = m/2^n$$
, con $0 \le T \le 1$

Cuanto más eficiente sea el código, entonces τ será mayor.

Ejemplo 3.17

 Supongamos que usamos el código ASCII, para representar 95 símbolos. La eficiencia del código será:

sin bit de paridad:

$$T = m/m' = 95/2^7 = 0.742$$

con un bit adicional de paridad:

$$T = m/m' = 95/2^8 = 0.371$$

Cont...

Un código poco eficiente se dice que es redundante:

$$R = (1 - T) \cdot 100\%$$

- (Observamos que se da en %)
- Ejemplo 3.18
- En los casos considerados en el ejemplo anterior, las redundancias son:

$$R = (1 - 0.742) \cdot 100\% = 28.8\%$$

 $R = (1 - 0.371) \cdot 100\% = 62.9\%$

 En ocasiones, las redundancias se introducen deliberadamente para detectar posibles errores de transmisión o grabación de información.

Por ejemplo:

- necesitamos transmitir 8 símbolos {A,B,C,D,E,F,G,H}
- Un código sin redundancia:
 n = 3 bits
- Si por error varía uno de los bits obtenemos otro símbolo del alfabeto.

Alfabeto	Código I	Código II
Α	000	0000
В	001	0001
С	010	0010
D	011	0011
E	100	0100
F	101	0101
G	110	0110
Н	111	0111

- Esto considerando por sí mismo (aisladamente) no puede ser detectado como erróneo.
- Pero, si usamos un código redundante, como el código II existirían algunas posibilidades de detectar errores.

- Las redundancias se introducen de acuerdo con algún algoritmo predeterminado.
- Los códigos pueden ser verificados por circuitos del computador o periféricos especializados en este objetivo.
- Uno de estos algoritmos añade al código inicial de cada carácter un nuevo bit llamado bit de paridad.

- Existen dos criterios para introducir este bit:
- Bit de Paridad, Criterio Par:
 - Se añade un bit (0 o 1) de forma que el número total de unos del código que resulte sea par.
- Bit de Paridad, Criterio Impar:
 - Se añade un bit (0 o 1) de forma que el número total de unos del código que resulte sea impar.
- El bit de paridad se introduce antes de transmitir o grabar la información (en la memoria principal, cinta o disco magnético).

Código inicial	Código con bit de paridad	Código con bit de paridad
	(criterio par)	(criterio impar)
100 0001	0100 0001	1100 0001
101 1011	1101 1011	0101 1011
101 0000	0101 0000	1101 0000
110 1000	1110 1000	0110 1000
	↑ bit de paridad	↑ bit de paridad

- Por ruido o interferencia en la transmisión puede intercambiarse un bit (de 0 a 1 o de 1 a 0).
- Si en el receptor se comprueba la paridad se detecta el error ya que el número de unos deja de ser par o impar (según el criterio).
- De esta manera se podría producir automáticamente la retransmisión del carácter erróneo.
- Si se produjese el cambio de dos bits distintos, no se detectaría el error de paridad.
 - Esto es poco probable que ocurra.