(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

Application Number: 10/631,029

Filing Date: 07/29/2003

First Named Inventor: Rajinder Singh Attorney Docket Number: 064311-1602

Identifier: F10

(43) Internationales Veröffentlichungsdatum5. Dezember 2002 (05.12.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/096888 A1

(51) Internationale Patentklassifikation⁷: C07D 239/48, A61K 31/505, 31/506, A61P 35/00, C07D 239/47, 239/34, 239/42, 405/12, 401/12, 403/12, 409/12, 417/12

(21) Internationales Aktenzeichen: PCT/EP02/05669

(22) Internationales Anmeldedatum:

23. Mai 2002 (23.05.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

DE 101 27 581.1 29. Mai 2001 (29.05.2001) DE DE 102 12 098.6 11. März 2002 (11.03.2002) DE

- (71) Anmelder: SCHERING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, 13342 Berlin (DE).
- (72) Erfinder: BRUMBY, Thomas; Lepsiusstrasse 60, 12163
 Berlin (DE). JAUTELAT, Rolf; Driesenerstrasse 1, 10439
 Berlin (DE). PRIEN, Olaf; Lützenstrasse 12, 10711
 Berlin (DE). SCHÄFER, Martina; Ossietzystrasse 7, 13187
 Berlin (DE). SIEMEISTER, Gerhard; Reimerswalder Steig 26, 13503
 Berlin (DE). LÜCKING, Ulrich;

Bergstrasse 62, 11115 Berlin (DE). **HUWE, Christoph**; Sandhauser Strasse 111, 13005 Berlin (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: CDK INHIBITING PYRIMIDINES, PRODUCTION THEREOF AND THEIR USE AS MEDICAMENTS

(54) Bezeichnung: CDK INHIBITORISCHE PYRIMIDINE, DEREN HERSTELLUNG UND VERWENDUNG ALS ARZNEI-MITTEL

- (57) Abstract: The invention relates to the pyrimidine derivatives of general formula (1), wherein R^1 , R^2 , X, A and B are defined as in the description, for use as inhibitors of the cyclin-dependent kinase. The invention further relates to the production thereof as well as to their use as medicament in the treatment of various diseases.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft Pyrimidinderivate der allgemeinen Formel (1) in der R¹, R², X, A und B die in der Beschreibung enthaltenen Bedeutungen haben, als Inhibitoren der Zyklin-abhängigen Kinase, deren Herstellung sowie deren Verwendung als medikament zur Behandlung verschiedener Erkrankungen.

CDK inhibitorische Pyrimidine, deren Herstellung und Verwendung als Arzneimittel

Die vorliegende Erfindung betrifft Pyrimidinderivate, deren Herstellung sowie deren Verwendung als Medikament zur Behandlung verschiedener Erkrankungen.

Die CDKs (cyclin-dependent kinase) ist eine Enzymfamilie, die eine wichtige Rolle bei der Regulation des Zellzyklus spielt und somit ein besonders interessantes Ziel für die Entwicklung kleiner inhibitorischer Moleküle ist. Selektive Inhibitoren der CDKs können zur Behandlung von Krebs oder anderen Erkrankungen, die Störungen der Zellproliferation zur Ursache haben, verwendet werden.

- Pyrimidine und Analoga sind bereits als Wirkstoffe beschrieben wie beispielsweise die 2-Anilino-Pyrimidine als Fungizide (DE 4029650) oder substituierte Pyrimidinderivate zur Behandlung von neurologischen oder neurodegenerativen Erkrankungen (WO 99/19305). Als CDK-Inhibitoren werden unterschiedlichste Pyrimidinderivate beschrieben, beispielsweise Bis(anilino)-pyrimidinderivate (WO 00/12486), 2-Amino-4-substituierte Pyrimidine (WO 01/14375), Purine (WO 99/02162), 5-Cyano-Pyrimidine (WO 02/04429), Anilinopyrimidine (WO 00/12486) und 2-Hydroxy-3-N,N-dimethylaminopropoxy-Pyrimidine (WO 00/39101).
- Die Aufgabe der vorliegenden Erfindung ist es Verbindungen bereitzustellen, die bessere Eigenschaften als die bereits bekannten Inhibitoren haben. Die hier beschriebenen Substanzen sind besser wirksam, da sie bereits im nanomolaren Bereich inhibieren und so von anderen bereits bekannten CDK-Inhibitoren wie z.B. Olomoucin und Roscovitin zu unterscheiden sind.

Es wurde nun gefunden, dass Verbindungen der allgemeinen Formel I

in der

 R^1

für Wasserstoff, Halogen, C_1 - C_6 -Alkyl, Nitro oder für die Gruppe - COR^5 , - OCF_3 , - $(CH_2)_nR^5$, -S- CF_3 oder - SO_2CF_3 steht,

5

 R^2

für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder

verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-

Alkylthio, Amino, Cyano, C_1 - C_6 -Alkyl, -NH- $(CH_2)_n$ - C_3 - C_{10} -

Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-

Alkenyl, C_2 - C_6 -Alkinyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, C_1 - C_6 -

 $Alkoxy-C_1-C_6-Alkoxy-C_1-C_6-Alkyl, -NHC_1-C_6-Alkyl, -N(C_1-C_6-Alkyl, -N(C_1-C_$

 $Alkyl)_2$, $-SO(C_1-C_6-Alkyl)_1$, $-SO_2(C_1-C_6-Alkyl)_2$, $C_1-C_6-Alkyl)_3$, $C_1-C_6-Alkyl)_4$

-CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc, Carboxy, Aryl,

Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-

 R^5 , -(CH₂)_nPO₃(R^5)₂ oder mit der Gruppe - R^6 oder -NR³R⁴

substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl

oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-

Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-

Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich

oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder

-OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-

Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein-

oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-

Atome unterbrochen sein kann und/ oder durch ein oder

mehrere =C=O Gruppen im Ring unterbrochen sein kann

und/ oder gegebenenfalls ein oder mehrere mögliche

Doppelbindungen im Ring enthalten sein können, oder

10

15

20

WO 02/096888

 R^2

für die Gruppe

$$\mathbb{R}^8$$
 oder \mathbb{R}^8 \mathbb{R}^9 \mathbb{R}^9

5

steht,

Х

für Sauerstoff oder für die Gruppe -NH-, -N(C_1 - C_3 -Alkyl) oder für $-OC_3$ - C_{10} -Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromaten substituiert sein kann, steht

10

oder

X und R²

gemeinsam einen C₃–C₁₀ –Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiert sein kann

15

kann,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe -SR⁷, -S(O)R⁷, -SO₂R⁷, -NHSO₂R⁷, -CH(OH)R⁷, -CR⁷(OH)-R⁷, C_1 - C_6 -AlkylP(O)OR³OR⁴, -COR⁷ oder für

stehen,

oder

5 A und B

gemeinsam einen C_3 - C_{10} -Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O oder =SO₂

		Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können und der
		C ₃ -C ₁₀ -Cycloalkyl-Ring gegebenenfalls ein- oder mehrfach,
5		gleich oder verschieden mit Hydroxy, Halogen, C ₁ -C ₆ -
		Alkoxy, C ₁ -C ₆ -Alkylthio, Amino, Cyano, C ₁ -C ₆ -Alkyl, C ₂ -C ₆ -
		Alkenyl, C ₃ -C ₁₀ -Cycloalkyl, C ₁ -C ₆ -Alkoxy-C ₁ -C ₆ -Alkyl, -
		$NHC_1-C_6-Alkyl$, $-N(C_1-C_6-Alkyl)_2$, $-SO(C_1-C_6-Alkyl)_1$, $-SO_2R^7$,
		C ₁ -C ₆ -Alkanoyl, -CONR ³ R ⁴ , -COR ⁵ , C ₁ -C ₆ -AlkylOAc,
10		Phenyl, oder mit der Gruppe R ⁶ substituiert sein kann, wobei
		das Phenyl selbst gegebenenfalls ein- oder mehrfach, gleich
		oder verschieden mit Halogen, Hydroxy, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -
		Alkoxy, oder mit der Gruppe -CF ₃ oder -OCF ₃ substituiert
		sein kann,
15	R ³ und R ⁴	jeweils unabhängig voneinander für Wasserstoff, Phenyl,
		Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy,
		C ₃ -C ₆ -Cycloalkyl, Hydroxy, Hydroxy-C ₁ -C ₆ -alkyl, Dihydroxy-
		C ₁ -C ₆ -alkyl, Heteroaryl, Heterocyclo-C ₃ -C ₁₀ -alkyl,
		Heteroaryl-C₁-C₃-alkyl,
20		gegebenenfalls mit Cyano substituiertes C ₃ -C ₆ -Cycloalkyl-
		C₁-C₃-alkyl, oder für
		gegebenenfalls ein- oder mehrfach, gleich oder verschieden
		mit Phenyl, Pyridyl, Phenyloxy, C ₃ -C ₆ -Cycloalkyl, C ₁ -C ₆ -
0.5		Alkyl oder C ₁ -C ₆ -Alkoxy substituiertes C ₁ -C ₆ -Alkyl steht,
25		wobei das Phenyl selbst ein oder mehrfach, gleich oder
		verschieden mit Halogen, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy oder mit
		der Gruppe –SO₂NR³R⁴ substituiert sein kann,
		oder für die Gruppe – $(CH_2)_nNR^3R^4$, - $CNHNH_2$ oder – NR^3R^4 oder
30	R ³ und R ⁴	
30	ix und ix	gemeinsam einen C ₃ -C ₁₀ -Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff,
		Sauerstoff und/ oder Schwefel-Atome unterbrochen sein
		kann und/ oder durch ein oder mehrere =C=O Gruppen im
		name and oder during enroder memere -0-0 Gruppen in

WO 02/096888 PCT/EP02/05669 Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, steht, R^5 für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht, 5 R^6 für einen Heteroaryl oder C₃-C₁₀-Cycloalkyl-Ring steht. wobei der Ring die oben angegebene Bedeutung hat. R^7 für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₁₀-Cycloalkyl mit der oben angegebenen Bedeutung, oder für die Gruppe -NR³R⁴ steht, oder für ein-10 oder mehrfach, gleich oder verschieden mit Hydroxy. C₁-C₆-Alkoxy, Halogen, Phenyl, -NR³R⁴ oder Phenyl. welches selbst, ein-oder mehrfach gleich oder verschieden mit Halogen, Hydroxy, 15 C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht, oder für Phenyl steht, welches selbst ein- oder mehrfach, gleich oder 20 verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, R⁸, R⁹ und R^{10} jeweils unabhängig voneinander für Wasserstoff, Hydroxy, 25 C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-30 Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₆-Alkoxy-C₁-C₆-Alkyl, -NHC₁-C₆-Alkyl, $-N(C_1-C_6-Alkyl)_2$, $-SO(C_1-C_6-Alkyl)_1$, $-SO_2(C_1-C_6-Alkyl)_1$

C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc,

Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl- $(CH_2)_n$ - R^5 , - $(CH_2)_n$ PO₃ $(R^5)_2$ oder mit der Gruppe - R^6 oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff. Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, stehen, und für 0 - 6 steht,

10

5

15

n

bedeuten, sowie deren Isomeren, Diastereomeren, Enantiomeren und Salze, die bekannten Nachteile überwinden.

Unter Alkyl ist jeweils ein geradkettiger oder verzweigter Alkylrest, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek. Butyl, tert. Butyl, Pentyl, Isopentyl, Hexyl, Heptyl, Octyl, Nonyl und Decyl, zu verstehen.

Unter Alkoxy ist jeweils ein geradkettiger oder verzweigter Alkoxyrest, wie beispielsweise Methyloxy, Ethyloxy, Propyloxy, Isopropyloxy, Butyloxy, Isobutyloxy, sek. Butyloxy, tert.-Butyloxy, Pentyloxy, Isopentyloxy oder Hexyloxy zu verstehen.

Unter Alkylthio ist jeweils ein geradkettiger oder verzweigter Alkylthiorest, wie beispielsweise Methylthio, Ethylthio, Propylthio, Isopropylthio, Butylthio, Isobutylthio, sek. Butylthio, tert.-Butylthio, Pentylthio, Isopentylthio oder Hexylthio zu verstehen.

Unter Cycloalkyl sind im allgemeinen monocyclische Alkylringe wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, Cyclohetyl, Cyclooctyl, Cyclononyl oder Cyclodecyl, aber auch bicyclische Ringe oder tricyclische Ringe wie zum Beispiel Norbornyl, Adamantanyl, etc. zu verstehen.

5

10

15

20

Unter den Ringsystemen, bei denen gegebenenfalls ein- oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, sind zum Beispiel Cycloalkenyle wie Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, Cycloheptenyl zu verstehen, wobei die Anknüpfung sowohl an der Doppelbindung wie auch an den Einfachbindungen erfolgen kann.

Falls A und B, R³ und R⁴, X und R² ,jeweils unabhängig voneinander, gemeinsam einen C₃-C₁₀-Cycloalkyl-Ring bilden, der gegebenenfalls durch einoder mehrere Heteroatome wie Stickstoff-Atome, Sauerstoff-Atome und/ oder Schwefel-Atome unterbrochen sein kann, und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann, und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, sind aber auch die unter Heteroarylrest bzw. Heterocycloalkyl und Heterocycloalkenvl genannten Definitionen zu verstehen.

Unter Halogen ist jeweils Fluor, Chlor, Brom oder Jod zu verstehen.

Die Alkenyl-Substituenten sind jeweils geradkettig oder verzweigt, wobei beispielsweise folgenden Reste gemeint sind: Vinyl, Propen-1-yl, Propen-2-yl, But-1-en-1-yl, But-1-en-2-yl, But-2-en-1-yl, But-2-en-2-yl, 2-Methyl-prop-2-en-1-yl, 2-Methyl-prop-1-en-1-yl, But-1-en-3-yl, Ethinyl, Prop-1-in-1-yl, But-1-in-1-yl, But-2-in-1-yl, But-3-en-1-yl, Allyl.

30 Unter Alkinyl ist jeweils ein geradkettiger oder verzweigter Alkinyl-Rest zu verstehen, der 2 - 6, bevorzugt 2 - 4 C-Atome enthält. Beispielsweise seien die folgenden Reste genannt: Acetylen, Propin-1-yl, Propin-3-yl, But-1-in-1-yl, But-1-in-4-yl, But-2-in-1-yl, But-1-in-3-yl, etc.

Der Arylrest umfaßt jeweils 3 – 12 Kohlenstoffatome und kann jeweils benzokondensiert sein.

Beispielsweise seien genannt: Cyclopropenyl, Cyclopentadienyl, Phenyl, Tropyl, Cyclooctadienyl, Indenyl, Naphthyl, Azulenyl, Biphenyl, Fluorenyl, Anthracenyl etc.

Der Heteroarylrest umfaßt jeweils 3 - 16 Ringatome und kann anstelle des Kohlenstoffs ein- oder mehrere, gleiche oder verschiedene Heteroatome, wie Sauerstoff, Stickstoff oder Schwefel im Ring enthalten, und kann mono-, bi- oder tricyclisch sein, und kann zusätzlich jeweils benzokondensiert sein.

Beispielsweise seien genannt:

Thienyl, Furanyl, Pyrrolyl, Oxazolyl, Thiazolyl, Imidazolyl, Pyrazolyl, Isoxazolyl,
Isothiazolyl, Oxadiazolyl, Triazolyl, Thiadiazolyl, etc. und Benzoderivate davon, wie z. B. Benzofuranyl, Benzothienyl, Benzoxazolyl, Benzimidazolyl, Indazolyl, Indolyl, Isoindolyl, etc.; oder Pyridyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Triazinyl, etc. und Benzoderivate davon, wie z. B. Chinolyl, Isochinolyl, etc.; oder Azocinyl, Indolizinyl, Purinyl, etc. und Benzoderivate davon; oder Chinolinyl, Isochinolinyl, Cinnolinyl, Phthalazinyl, Chinazolinyl, Chinoxalinyl, Naphthyridinyl, Pteridinyl, Carbazolyl, Acridinyl, Phenazinyl, Phenothiazinyl, Phenoxazinyl, Xanthenyl, Oxepinyl, etc.

Heterocycloalkyl steht für einen 3 – 12 Kohlenstoffatome umfassenden Alkylring,
 der anstelle des Kohlenstoffes ein oder mehrere, gleich oder verschiedene Heteroatome, wie z. B. Sauerstoff, Schwefel oder Stickstoff enthält.
 Als Heterocycloalkyle seien z. B. genannt: Oxiranyl, Oxethanyl, Aziridinyl, Azetidinyl, Tetrahydrofuranyl, Pyrrolidinyl, Dioxolanyl, Imidazolidinyl, Pyrazolidinyl, Dioxanyl, Piperidinyl, Morpholinyl, Dithianyl, Thiomorpholinyl,
 Piperazinyl, Trithianyl, Chinuclidinyl etc.

Hotomorpho allowed atalet 6% at the control of the

Heterocycloalkenyl steht für einen 3 – 12 Kohlenstoffatome umfassenden Alkylring, der anstelle des Kohlenstoffes ein oder mehrere, gleich oder

verschiedene Heteroatome, wie z. B. Sauerstoff, Schwefel oder Stickstoff enthält, und der teilgesättigt ist.

Als Heterocycloalkenyle seien z. B. genannt: Pyran, Thiin, Dihydroazet, etc.

Ist eine saure Funktion enthalten, sind als Salze die physiologisch verträglichen Salze organischer und anorganischer Basen geeignet, wie beispielsweise die gut löslichen Alkali- und Erdalkalisalze sowie N-Methyl-glukamin, Dimethyl-glukamin, Ethyl-glukamin, Lysin, 1,6-Hexadiamin, Ethanolamin, Glukosamin, Sarkosin, Serinol, Tris-hydroxy-methyl-amino-methan, Aminopropandiol, Sovak-10 Base, 1-Amino-2,3,4-butantriol.

lst eine basische Funktion enthalten, sind die physiologisch verträglichen Salze organischer und anorganischer Säuren geeignet wie Salzsäure, Schwefelsäure, Phosphorsäure, Zitronensäure, Weinsäure u.a.

15

Besonders wirksam sind solche Verbindungen der allgemeinen Formel (I) in der

 R^1 für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR⁵, -OCF₃, -(CH₂)_nR⁵, -S-CF₃ oder -SO₂CF₃ 20 steht. R^2 für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-25 Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, -NHC₁- C_6 -Alkyl, -N(C_1 - C_6 -Alkyl)₂, $-SO(C_1-C_6-Alkyl)$, $-SO_2(C_1-C_6-Alkyl)$, $C_1-C_6-Alkanoyl$, -CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc, Carboxy, Aryl, 30 Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n- R^5 , -(CH₂)_nPO₃(R^5)₂ oder mit der Gruppe - R^6 oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl

oder C_3 - C_{10} -Cycloalkyl steht und das Phenyl, C_3 - C_{10} -Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C_3 - C_{10} -Cycloalkyls und das C_1 - C_{10} -Alkyl gegebenenfalls durch einoder mehrere Stickstoff-, Sauerstoff- und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder

R² für die Gruppe

$$\mathbb{R}^{8}$$
 oder \mathbb{R}^{9} \mathbb{R}^{9}

15

25

5

10

steht,

X für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl)

20 oder für -OC₃-C₁₀ -Cycloalkyl welches ein- oder mehrfach,
gleich oder verschieden mit einem Heteroaromaten
substituiert sein kann, steht
oder

X und R² gemeinsam einen C₃–C₁₀ –Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halaogen substituiert sein

kann,

A und B jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe -S- C_3 , -SO₂- C_2 H₄-OH, -CO- C_3 , -S- C_3 , -S- C_3 , -S- C_3 , -S- C_3 , -SO- C_3 , -SO

stehen, oder

5 A und B gemeinsam eine Gruppe

5 bilden können,

Heteroaryl-C₁-C₃-alkyl,

gegebenenfalls mit Cyano substituiertes C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, oder für

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C_3 - C_6 -Cycloalkyl, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy substituiertes C_1 - C_6 -Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder mit der Gruppe – $SO_2NR^3R^4$ substituiert sein kann,

oder für die Gruppe –(CH $_2$) $_n$ NR 3 R 4 , -CNHNH $_2$ oder – NR 3 R 4 oder für

25

20

10

*-
$$(CH_2)_n$$
 *- $(CH_2)_n$ *- $($

5

stehen, welche gegebenenfalls mit $C_1\text{-}C_6\text{-}Alkyl$ substituiert sein können,

steht,

 R^5

für Hydroxy, Phenyl, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Benzoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkoxy steht,

 R^6

für die Gruppe

10

 R^7 für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -C₂H₄OH, -NR³R⁴, oder die Gruppe

R⁸, R⁹ und

R¹⁰

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₃-C₆-Cyclolkyl oder für die Gruppe

5

stehen und

für 0 – 6 steht, bedeuten, sowie deren Isomeren,

10 Enantiomeren, Diastereomeren und Salze.

Als ganz besonders wirksam haben sich solche Verbindungen der allgemeinen Formel I erwiesen, in der

15 R¹ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder für die Gruppe

-(CH₂)_nR⁵ steht,

 R^2 für -CH(CH₃)-(CH₂)_n- R^5 , -CH-(CH₂OH)₂, -(CH₂)_n R^7 ,

	-CH(C ₃ H ₇)-(CH ₂) _n -R5, -CH(C ₂ H ₅)-(CH ₂) _n -R ⁵ , -CH ₂ -CN,
	-CH(CH ₃)COCH ₃ , -CH(CH ₃)-C(OH)(CH ₃) ₂ ,
	-CH(CH(OH)CH ₃)OCH ₃ , -CH(C ₂ H ₅)CO-R ⁵ , C ₂ -C ₄ -Alkinyl,
	$-(CH_2)_n$ - COR^5 , $-(CH_2)_n$ - $CO-C_1$ - C_6 -Alkyl, $-(CH_2)_n$ - $C(OH)(CH_3)$ -
5	Phenyl, $-CH(CH_3)-C(CH_3)-R^5$, $-CH(CH_3)-C(CH_3)(C_2H_5)-R^5$,
	-CH(OCH ₃)-CH ₂ -R ⁵ , -CH ₂ -CH(OH)-R ⁵ , -CH(OCH ₃)-CHR ⁵ -
	CH_3 , $-CH(CH_3)-CH(OH)-CH_2-CH=CH_2$, $-CH(C_2H_5)-CH(OH)-CH_2-CH_3$
	$(CH_2)_n$ - CH_3 , - $CH(CH_3)$ - $CH(OH)$ - $(CH_2)_n$ - CH_3 , - $CH(CH_3)$ -
	$CH(OH)-CH(CH_3)_2$, $(CH_2OAC)_2$, $-(CH_2)_n-R^6$, $-(CH_2)_n-(CF_2)_n-(CF_2)_n$
10	$CF_{3,}$ -CH(CH ₂) _n -R ⁵) ₂ , -CH(CH ₃)-CO-NH ₂ , -CH(CH ₂ OH)-
	Phenyl, -CH(CH ₂ OH)-CH(OH)-(CH ₂) _n R ⁵ , -CH(CH ₂ OH)-
	CH(OH)-Phenyl, -CH(CH ₂ OH)-C ₂ H ₄ -R ⁵ , -(CH ₂) _n -C \equiv C-
	$C(CH_3)=CH-COR^5$, $-CH(Ph)-(CH_2)_n-R^5$, $-(CH_2)_n-COR^5$, -
	$(CH_2)_nPO_3(R^5)_2$, $-(CH_2)_n-COR^5$, $-CH((CH_2)_nOR^5)CO-R^5$, $-$
15	$(CH_2)_nCONHCH((CH_2)_nR^5)_2$, $-(CH_2)_nNH-COR^5$, $-$
	$CH(CH_2)_nR^5-(CH_2)_nC_3-C_{10}-CycloalkyI,\ -(CH_2)_n-C_3-C_{10}-C_{$
	Cycloalkyl, C ₃ -C ₁₀ -Cycloalkyl, gegebenenfalls ein- oder
	mehrfach, gleich oder verschieden mit Hydroxy, C ₁ -C ₆ -Alkyl
	oder der Gruppe –COONH(CH ₂) _n CH ₃ oder –NR ³ R ⁴
20	substituiertes C ₁ -C ₆ -Alkyl, C ₃ -C ₁₀ -Cycloalkyl, -(CH ₂) _n -O-
	$(CH_2)n-R^5$, $-(CH_2)_n-NR^3R^4$,
	$-CH(C_3H_7)-(CH_2)_n-OC(O)-(CH_2)n-CH_3$, $-(CH_2)_n-R^5$,
	$-C(CH_3)_2-(CH_2)_n-R^5$, $-C(CH_2)_n(CH_3)-(CH_2)_nR^5$,
	$-C(CH_2)_n-(CH_2)_nR^5$, $-CH(t-ButyI)-(CH_2)_n-R^5$,
25	$-CCH_3(C_3H_7)-(CH_2)_nR^5$, $-CH(C_3H_7)-(CH_2)_n-R^5$,
	-CH(C_3H_7)-COR ⁵ , -CH(C_3H_7)-(CH ₂) _n -OC(O)-NH-Ph,
	$-CH((CH_2)_n(C_3H_7))-(CH_2)_nR^5$,
	$-CH(C_3H_7)-(CH_2)_n-OC(O)-NH-Ph(OR^5)_3, -NR^3R^4,$
	-NH- $(CH_2)_n$ -NR ³ R ⁴ , R ⁵ - $(CH_2)_n$ -C*H- $CH(R^5)$ - $(CH_2)_n$ -R ⁵ ,
30	- $(CH_2)_n$ -CO-NH- $(CH_2)_n$ -CO-R ⁵ , -OC(O)NH-C ₁ -C ₆ -Alkyl oder
	$-(CH_2)_n-CO-NH-(CH_2)_n-CH-((CH_2)_nR^5)_2,$
	oder für C ₃ -C ₁₀ -Cycloalkyl steht, welches mit der Gruppe

5 substituiert ist, oder für die Gruppe

$$-(CH_2)_n$$

$$-(CH$$

oder

10 steht,

WO 02/096888

PCT/EP02/05669

Χ

für Sauerstoff oder für die Gruppe -NH-, -N(C_1 - C_3 -Alkyl) oder

steht, oder

 $5 R^2$

für die Gruppe

$$R^8$$
 oder R^8 R^9 R^9 R^9

steht,

oder

X und R²

gemeinsam eine Gruppe

10

15

20

bilden,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy,

 $C_1\hbox{-} C_3\hbox{-} AlkyI,\ C_1\hbox{-} C_6\hbox{-} Alkoxy\ oder\ für\ die\ Gruppe\ -S\hbox{-} CH_3,$

 $-\mathsf{SO}_2\text{-}\mathsf{C}_2\mathsf{H}_4\text{-}\mathsf{OH}, \ -\mathsf{CO}\text{-}\mathsf{CH}_3, \ -\mathsf{S}\text{-}\mathsf{CHF}_2,$

 $-S-(CH_2)_nCH(OH)CH_2N-R^3R^4$, $-CH_2PO(OC_2H_5)_2$, $-S-CF_3$,

 $-SO-CH_3$, $-SO_2CF_3$, $-SO_2-(CH_2)_n-N-R^3R^4$, $-SO_2-NR^3R^4$,

 $-\mathsf{SO}_2\mathsf{R}^7, \ -\mathsf{CH}(\mathsf{OH}) - \mathsf{CH}_3, \ -\mathsf{COOH}, \ -\mathsf{CH}((\mathsf{CH}_2)_n\mathsf{R}^5)_2, \ -(\mathsf{CH}_2)_n\mathsf{R}^5,$

-COO-C₁-C₆-Alkyl, -CONR³R⁴ oder für

stehen, oder

A und B gemeinsam eine Gruppe

5

bilden können,

 R^3 und R^4

jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy, C_3 - C_6 -Cycloalkyl, Hydroxy, Hydroxy- C_1 - C_6 -alkyl, Dihydroxy- C_1 - C_6 -alkyl, Heteroaryl, Heterocyclo- C_3 - C_{10} -alkyl, Heteroaryl- C_1 - C_3 -alkyl,

15

gegebenenfalls mit Cyano substituiertes C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, oder für

20

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C₃-C₆-Cycloalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₁-C₆-Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder mit der Gruppe –SO₂NR³R⁴ substituiert sein

kann,

oder für die Gruppe $-(CH_2)_nNR^3R^4$, $-CNHNH_2$ oder $-NR^3R^4$ oder für

5

*-
$$(CH_2)_n$$

*- $(CH_2)_n$

oder

*- $(CH_2)_n$

oder

*- $(CH_2)_n$

*- $(CH_2)_n$

oder

*- $(CH_2)_n$

*- $(CH_2)_n$

*- $(CH_2)_n$

oder

stehen, welche gegebenenfalls mit C₁-C₆-Alkyl substituiert sein können,

 R^5 für Hydroxy, Phenyl, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Benzoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkoxy steht, R^6 für die Gruppe

steht,

R⁷ für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -(CH₂)_nOH,
-NR³R⁴ oder die Gruppe

5

20

25

30

10 steht,

R⁸, R⁹ und

R¹⁰ für Wasserstoff, Hydroxy, C₁-C₆-Alkyl oder für die Gruppe

-(CH₂)_n-COOH stehen, und

n für 0 – 6 stehen, bedeuten, sowie deren Isomeren,

Diastereoisomeren, Enantiomeren und Salze.

Die erfindungsgemäßen Verbindungen inhibieren im wesentlichen Zyklinabhängige Kinasen, worauf auch deren Wirkung zum Beispiel gegen Krebs, wie solide Tumoren und Leukämie, Autoimmunerkrankungen wie Psoriasis, Alopezie, und Multiple Sklerose, Chemotherapeutika-induzierte Alopezie und Mukositis, kardiovaskuläre Erkrankungen, wie Stenosen, Arteriosklerosen und Restenosen, infektiöse Erkrankungen, wie z. B. durch unizelluläre Parasiten, wie Trypanosoma, Toxoplasma oder Plasmodium, oder durch Pilze hervorgerufen, nephrologische Erkrankungen, wie z. B. Glomerulonephritis, chronische neurodegenerative Erkrankungen, wie Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, akute neurodegenerative Erkrankungen, wie Ischämien des Gehirns und Neurotraumata, virale Infektionen, wie z. B. Cytomegalus-Infektionen, Herpes, Hepatitis B und C, und HIV Erkrankungen basiert.

Der eukaryote Zellteilungszyklus stellt die Duplikation des Genoms und seine Verteilung auf die Tochterzellen sicher, indem er eine koordinierte und regulierte Abfolge von Ereignissen durchläuft. Der Zellzyklus wird in vier aufeinanderfolgende Phasen eingeteilt: die G1 Phase repräsentiort die Zeit von

aufeinanderfolgende Phasen eingeteilt: die G1 Phase repräsentiert die Zeit vor der DNA-Replikation, in der die Zelle wächst und für externe Stimuli empfänglich ist. In der S Phase repliziert die Zelle ihre DNA, und in der G2 Phase bereitet sie sich auf den Eintritt in die Mitose vor. In der Mitose (M Phase) wird die replizierte DNA getrennt und die Zellteilung vollzogen.

10

15

20

5

Die Zyklin-abhängigen Kinasen (CDKs), eine Familie von Serin/Threonin-Kinasen, deren Mitglieder die Bindung eines Zyklins (Cyc) als regulatorische Untereinheit zu ihrer Aktivierung benötigen, treiben die Zelle durch den Zellzyklus. Unterschiedliche CDK/Cyc Paare sind in den verschiedenen Phasen des Zellzyklus aktiv. Für die grundlegende Funktion des Zellzyklus bedeutende CDK/Cyc Paare sind beispiels-weise CDK4(6)/CycD, CDK2/CycE, CDK2/CycA, CDK1/CycA und CDK1/CycB. Einige Mitglieder der CDK-Enzymfamilie haben eine regulatorische Funktion indem sie die Aktivität der vorgenannten Zellzyklus-CDKs beeinflussen, während anderen Mitgliedern der CDK-Enzymfamilie noch keine bestimmte Funktion zugeordnet werden konnte. Eine von diesen, CDK5, zeichnet sich dadurch aus, daß sie eine atypische, von den Zyklinen abweichende, regulatorische Untereinheit besitzt (p35), und ihre Aktivität im Gehirn am höchsten ist.

Der Eintritt in den Zellzyklus und das Durchlaufen des "Restriction Points", der die Unabhängigkeit einer Zelle von weiteren Wachstumssignalen für den Abschluß der begonnenen Zellteilung markiert, werden durch die Aktivität der CDK4(6)/CycD und CDK2/CycE Komplexe kontrolliert. Das wesentliche Substrat dieser CDK-Komplexe ist das Retinoblastoma-Protein (Rb), das Produkt des
 Retinoblastoma Tumorsuppressor Gens. Rb ist ein transkriptionelles Ko-Repressor Protein. Neben anderen noch weitgehend unverstandenen Mechanismen, bindet und inaktiviert Rb Transkriptionsfaktoren vom E2F-Typ, und bildet transkriptionelle Repressorkomplexe mit Histon-Deacetylasen

(HDAC) (Zhang H.S. et al. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and RbhSWI/SNF. Cell 101, 79-89). Durch die Phosphorylierung des Rb durch CDKs werden gebundene E2F Transkriptionsfaktoren freigesetzt und führen zu transkriptioneller Aktivierung von Genen, deren Produkte für die DNA Synthese 5 und die Progression durch die S-Phase benötigt werden. Zusätzlich bewirkt die Rb-Phosphorylierung die Auflösung der Rb-HDAC Komplexe, wodurch weitere Gene aktiviert werden. Die Phosphorylierung von Rb durch CDK's ist mit dem Überschreiten des "Restriction Points" gleichzusetzen. Für die Progression 10 durch die S-Phase und deren Abschluß ist die Aktivität der CDK2/CvcE und CDK2/CycA Komplexe notwendig, z. B. wird die Aktivität der Transkriptionsfaktoren vom E2F-Typ mittels Phosphorylierung durch CDK2/CycA abgeschaltet sobald die Zellen in die S-Phase eingetreten sind. Nach vollständiger Replikation der DNA steuert die CDK1 im Komplex mit CycA 15 oder CycB den Eintritt und das Durchlaufen der Phasen G2 und M (Abb. 1).

Entsprechend der außerordentlichen Bedeutung des Zellteilungszyklus ist das Durchlaufen des Zyklus streng reguliert und kontrolliert. Die Enzyme, die für die Progression durch den Zyklus notwendig sind, müssen zu dem richtigen Zeitpunkt aktiviert werden, und auch wieder abgeschaltet werden sobald die entsprechende Phase durchlaufen ist. Entsprechende Kontrollpunkte ("Checkpoints") arretieren die Progression durch den Zellzyklus falls DNA-Schäden detektiert werden, oder die DNA-Replikation, oder der Aufbau des Spindelapparates noch nicht beendet ist.

Die Aktivität der CDKs wird durch verschiedene Mechanismen, wie Synthese und Degradation der Zykline, Komplexierung der CDKs mit den entsprechenden Zyklinen, Phosphorylierung und Dephosphorylierung regulatorischer Threoninund Tyrosin-Reste, und die Bindung natürlicher inhibitorischer Proteine, direkt kontrolliert. Während die Proteinmenge der CDKs in einer proliferierenden Zelle relativ konstant ist, oszilliert die Menge der einzelnen Zykline mit dem Durchlaufen des Zyklus. So wird zum Beispiel die Expression von CycD während der frühen G1 Phase durch Wachstumsfaktoren stimuliert, und die Expression von CycE wird nach Überschreiten des "Restriction Points" durch die

Aktivierung der Transkriptionsfaktoren vom E2F-Typ induziert. Die Zykline selbst werden durch Ubiquitin-vermittelte Proteolyse abgebaut. Aktivierende und inaktivierende Phosphorylierungen regulieren die Aktivität der CDK's, zum Beispiel phosphorylieren CDK-aktivierende Kinasen (CAKs) Thr160/161 der
5 CDK1, wohingegen die Familie der Wee1/Myt1 Kinasen CDK1 durch Phosphorylierung von Thr14 und Tyr15 inaktivieren. Diese inaktivierenden Phosphorylierungen können durch cdc25 Phosphatasen wieder aufgehoben werden. Sehr bedeutsam ist die Regulation der Aktivität der CDK/Cyc-Komplexe durch zwei Familien natürlicher CDK Inhibitorproteine (CKIs), den
10 Proteinprodukten der p21 Genfamilie (p21, p27, p57) und der p16 Genfamilie (p15, p16, p18, p19). Mitglieder der p21 Familie binden an Zyklin-Komplexe der CDKs 1,2,4,6, inhibieren aber nur Komplexe die CDK1 oder CDK2 enthalten. Mitglieder der p16 Familie sind spezifische Inhibitoren der CDK4- und CDK6-

15

Komplexe.

Oberhalb dieser komplexen direkten Regulation der Aktivität der CDKs liegt die Ebene der Kontrollpunkt-Regulation. Kontrollpunkte erlauben der Zelle das geordnete Ablaufen der einzelnen Phasen während des Zellzykluses zu verfolgen. Die wichtigsten Kontrollpunkte liegen am Übergang von G1 nach S 20 und von G2 nach M. Der G1-Kontrollpunkt stellt sicher, daß die Zelle keine DNA-Synthese beginnt falls sie nicht entsprechend ernährt ist, mit anderen Zellen oder dem Substrat korrekt interagiert, und ihre DNA intakt ist. Der G2/M Kontrollpunkt stellt die vollständige Replikation der DNA und den Aufbau der mitotischen Spindel sicher, bevor die Zelle in die Mitose eintritt. Der G1 Kontrollpunkt wird von dem Genprodukt des p53 Tumorsuppressorgens 25 aktiviert. p53 wird nach Detektion von Veränderungen im Metabolismus oder der genomischen Integrität der Zelle aktiviert und kann entweder einen Stopp der Zellzyklusprogression oder Apoptose auslösen. Dabei spielt die transkriptionelle Aktivierung der Expression des CDK Inhibitorproteins p21 durch p53 eine 30 entscheidende Rolle. Ein zweiter Zweig des G1 Kontrollpunktes umfaßt die Aktivierung der ATM und Chk1 Kinasen nach DNA-Schädigung durch UV-Licht oder ionisierende Strahlung und schließlich die Phosphorylierung und den nachfolgenden proteolytischen Abbau der cdc25A Phosphatase (Mailand N. et

al. (2000). Rapid destruction of human cdc25A in response to DNA damage. Science 288, 1425-1429). Daraus resultiert eine Arretierung des Zellzykluses, da die inhibitorische Phosphorylierung der CDKs nicht entfernt wird. Nach Aktivierung des G2/M Kontrollpunktes durch Schädigung der DNA sind beide Mechanismen in ähnlicher Weise daran beteiligt, die Progression durch den Zellzyklus zu stoppen.

5

Der Verlust der Regulation des Zellzyklusses und der Verlust der Funktion der Kontrollpunkte sind Charakteristika von Tumorzellen. Der CDK-Rb-Signalweg ist 10 in über 90% humaner Tumorzellen von Mutationen betroffen. Diese Mutationen. die schließlich zur inaktivierenden Phosphorylierung des RB führen, schließen die Überexpression von D- und E-Zyklinen durch Genamplifikation oder chromosomale Translokationen, inaktivierende Mutationen oder Deletionen von CDK-Inhibitoren des p16-Typs, sowie erhöhten (p27) oder verminderten (CycD) 15 Proteinabbau ein. Die zweite Gruppe von Genen, die durch Mutationen in Tumorzellen getroffen sind, kodiert für Komponenten der Kontrollpunkte. So ist p53, das essentiell für die G1 und G2/M Kontrollpunkte ist, das am häufigsten mutierte Gen in humanen Tumoren (ca. 50%). In Tumorzellen, die p53 ohne Mutation exprimieren, wird es häufig aufgrund einer stark erhöhten 20 Proteindegradation inaktiviert. In ähnlicher Weise sind die Gene anderer für die Funktion der Kontrollpunkte notwendiger Proteine von Mutationen betroffen, zum Beispiel ATM (inaktivierende Mutationen) oder cdc25 Phosphatasen (Überexpression).

Überzeugende experimentelle Daten deuten darauf hin, daß CDK2/Cyc-Komplexe eine entscheidende Position während der Zellzyklusprogression einnehmen: (1) Sowohl dominant-negative Formen der CDK2, wie die transkriptionelle Repression der CDK2 Expression durch anti-sense Oligonukleotide bewirken einen Stopp der Zellzyklusprogression. (2) Die
 Inaktivierung des CycA Gens in Mäusen ist letal. (3) Die Störung der Funktion des CDK2/CycA Komplexes in Zellen mittels zell-permeabler Peptide führte zur Tumorzell-selektiven Apoptose (Chen Y.N.P. et al. (1999). Selective killing of

transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. *Proc. Natl. Acad. Sci. USA* 96, 4325-4329).

Veränderungen der Zellzykluskontrolle spielen nicht nur bei Krebserkrankungen ein Rolle. Der Zellzyklus wird durch eine Reihe von Viren, sowohl durch transformierende, wie durch nicht-transformierende, aktiviert um die Vermehrung der Viren in der Wirtszelle zu ermöglichen. Der fälschliche Eintritt in den Zellzyklus von normalerweise post-mitotischen Zellen wird mit verschiedenen neurodegenerativen Erkrankungen in Zusammenhang gebracht.

- Die Mechanismen der Zellzyklusregulation, ihrer Veränderungen in Krankheiten und eine Vielzahl von Ansätzen zur Entwicklung von Inhibitoren der Zellzyklusprogression und speziell der CDKs wurden bereits in mehreren Publikationen ausführlich zusammenfassend beschrieben (Sielecki T.M. et al. (2000). Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation.
- J. Med. Chem. 43, 1-18; Fry D.W. & Garrett M.D. (2000). Inhibitors of cyclin-dependent kinases as therapeutic agents for the treatment of cancer. Curr. Opin. Oncol. Endo. Metab. Invest. Drugs 2, 40-59; Rosiania G.R. & Chang Y.T. (2000). Targeting hyperproliferative disorders with cyclin dependent kinase inhibitors. Exp. Opin. Ther. Patents 10, 215-230; Meijer L. et al. (1999).
- 20 Properties and potential applications of chemical inhibitors of cyclin-dependent kinases. *Pharmacol. Ther.* 82, 279-284; Senderowicz A.M. & Sausville E.A. (2000). Preclinical and clinical development of cyclin-dependent kinase modulators. *J. Natl. Cancer Inst.* 92, 376-387).
- Zur Verwendung der erfindungsgemäßen Verbindungen als Arzneimittel werden diese in die Form eines pharmazeutischen Präparats gebracht, das neben dem Wirkstoff für die enterale oder parenterale Applikation geeignete pharmazeutische, organische oder anorganische inerte Trägermaterialien, wie zum Beispiel, Wasser, Gelatine, Gummi arabicum, Milchzucker, Stärke,
- Magnesiumstearat, Talk, pflanzliche Öle, Polyalkylenglykole usw. enthält. Die pharmazeutischen Präparate können in fester Form, zum Beispiel als Tabletten, Dragees, Suppositorien, Kapseln oder in flüssiger Form, zum Beispiel als Lösungen, Suspensionen oder Emulsionen vorliegen. Gegebenenfalls enthalten

sie darüber hinaus Hilfsstoffe, wie Konservierungs-, Stabilisierungs-, Netzmittel oder Emulgatoren; Salze zur Veränderung des osmotischen Drucks oder Puffer. Diese pharmazeutischen Präparate sind ebenfalls Gegenstand der vorliegenden Erfindung.

5

- Für die parenterale Anwendung sind insbesondere Injektionslösungen oder Suspensionen, insbesondere wäßrige Lösungen der aktiven Verbindungen in polyhydroxyethoxyliertem Rizinusöl, geeignet.
- Als Trägersysteme können auch grenzflächenaktive Hilfsstoffe wie Salze der Gallensäuren oder tierische oder pflanzliche Phospholipide, aber auch Mischungen davon sowie Liposomen oder deren Bestandteile verwendet werden.
- Für die orale Anwendung sind insbesondere Tabletten, Dragees oder Kapseln mit Talkum und/oder Kohlenwasserstoffträger oder -binder, wie zum Beispiel Lactose, Mais- oder Kartoffelstärke, geeignet. Die Anwendung kann auch in flüssiger Form erfolgen, wie zum Beispiel als Saft, dem gegebenenfalls ein Süßstoff beigefügt ist.

- Die enteralen, parenteralen und oralen Applikationen sind ebenfalls Gegenstand der vorliegenden Erfindung.
- Die Dosierung der Wirkstoffe kann je nach Verabfolgungsweg, Alter und
 Gewicht des Patienten, Art und Schwere der zu behandelnden Erkrankung und
 ähnlichen Faktoren variieren. Die tägliche Dosis beträgt 0,5-1000 mg,
 vorzugsweise 50-200 mg, wobei die Dosis als einmal zu verabreichende
 Einzeldosis oder unterteilt in 2 oder mehreren Tagesdosen gegeben werden
 kann.
- 30 Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Verbindungen der allgemeinen Formel I, zur Herstellung eines Arzneimittels zur Behandlung von Krebs, Autoimmunerkrankungen, kardiovaskulären Erkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis,

infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen Erkrankungen und viralen Infektionen, wobei unter Krebs solide Tumoren und Leukämie, unter Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter kardiovaskulären Erkrankungen Stenosen, Arteriosklerosen und Restenosen, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen zu verstehen sind.

Ebenfalls Gegenstand der vorliegenden Erfindung sind Arzneimittel zur

Behandlung der oben aufgeführten Erkrankungen, die mindestens eine
Verbindung gemäß der allgemeinen Formel I enthalten, sowie Arzneimittel mit geeigneten Formulierungs- und Trägerstoffen.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I sind unter anderem hervorragende Inhibitoren der Zyklin-abhängigen Kinasen, wie CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 und CDK9, sowie der Glycogen-Synthase-Kinase (GSK-3ß).

Soweit die Herstellung der Ausgangsverbindungen nicht beschrieben wird, sind diese bekannt oder analog zu bekannten Verbindungen oder hier beschriebenen Verfahren herstellbar. Es ist ebenfalls möglich, alle hier beschriebenen Umsetzungen in Parallel-Reaktoren oder mittels kombinatorischer Arbeitstechniken durchzuführen.

Die Isomerengemische können nach üblichen Methoden wie beispielsweise

Kristallisation, Chromatographie oder Salzbildung in die Enantiomeren bzw. E/ZIsomeren aufgetrennt werden.

Die Herstellung der Salze erfolgt in üblicher Weise, indem man eine Lösung der Verbindung der Formel I mit der äquivalenten Menge oder einem Überschuß

einer Base oder Säure, die gegebenenfalls in Lösung ist, versetzt und den Niederschlag abtrennt oder in üblicher Weise die Lösung aufarbeitet.

Herstellung der erfindungsgemäßen Verbindungen

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen
Verbindungen, ohne den Umfang der beanspruchten Verbindungen auf diese
Beispiele zu beschränken.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I lassen sich nach folgenden allgemeinen Verfahrenschemata herstellen:

10 Schema 1

Schema 2

15 Z = O oder NH

Schema 3

Beispiel 1

5 Herstellung von 5-Brom-N2-(4-difluorormethylthiophenyl)-N4-2-propynyl-2,4-pyrimidindiamin (erfolgt nach Verfahrensschema 1) (Verbindung 23).

245 mg (1 mmol) 2-Chlor-4-2-propynylaminopyrimidin werden in 2 ml Acetonitril gelöst und eine Suspension von 4-(Difluormethylthio)-anilinhydrochlorid

[hergestellt aus 352 mg (2 mmol) 4-(Difluormethylthio)-Anilin, 1 ml Acetonitril and 0,5 ml wässrige HCl (4M in Dioxan)] wird bei Raumtemperatur hinzugegeben. Anschließend wird das Reaktionsgemisch über Nacht unter N₂₋ Atmosphäre am Rückfluss erhitzt. Nach Abkühlung wird das Gemisch filtriert, die verbleibende feste Phase wird mit H₂O gewaschen und getrocknet. Eine

Ausbeute von 328 mg (85%) des Produktes ist zu erwarten.

Beispiel 2

5 Herstellung von 5-Brom-N-(3-(oxiranylmethoxy)phenyl)-2-(2-propynyloxy)-2-pyrimidinamin (Verbindung 51) und erfolgt nach Verfahrensschema 2.

1,55 g (4.9 mmol) der Verbindung 20 werden in 5,5 ml Epibromhydrin gelöst, 1,38 g K₂CO₃ und 65 mg Tetrabutylammoniumbromid werden dazu gegeben. Das Reaktionsgemisch wird unter Stickstoffatmosphäre bei 100°C 1 Stunde gerührt. Nach Zugabe von Ethylacetat wird das resultierende Präzipitat

gesammelt und vom Ethanol umkristallisiert. Die Produktausbeute beträgt 1,15 g (62%) als weißes Pulver.

15

10

Die Substanz 40 wird analog zu Beispiel 2 hergestellt

WO 02/096888

PCT/EP02/05669

ОН

Beispiel 3

Herstellung 1-(4-((5-Brom-4-(2-propynyloxy)-pyrimidin-2-yl)-amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-propanol (Verbindung 41).

Zu einer Lösung von 19 mg (0.05 mM) der Substanz 51 in N,N'Dimethylpropylharnstoff (DMPU) werden 0.2 ml einer 0.5 M 4-PhenylpiperazinLösung in DMPU gegeben. Das Reaktionsgemisch wird für 18 Stunden bei einer
 Temperatur von 80°C gehalten. Nach dem Abkühlen werden 3,5 ml tertiärer
Butylmethylether hinzugegeben und die organische Phase wird 5 mal mit 1,5 ml
H₂O extrahiert und anschließend im Vakuum evaporiert. Der verbleibende Rest
wird an 1,7g (15 μM) Lichrosphere Si60 (Gradient: Dichloromethan / Hexan 1:1
zu DCM und dann Dichloromethan / Methanol 99:1 bis 93:7) chromatographiert.
 Eine Produktausbeute von 17 mg (64%) wird erreicht.

In analoger Verfahrensweise werden auch die folgenden Verbindungen hergestellt:

Nr.	Struktur	Nr.	Struktur	Nr.	Struktur
96	OH CH	97		98	OH N N N N N N N N N N N N N N N N N N N
99	OH N N N N N N N N N N N N N	100	CH CH ₃	101	OH Z Z Z CH
102		103		104	
105	W CH	106	N CH N	107	
108	CH CH	109	N N OH N OH	110	N ON N
111	H _O C Cot OH	112	N OH S	113	CH CH

Nr.	Struktur	Nr.	Struktur	Nr.	Struktur
114	OH OH	115	OH N N N N N N N N N N N N N N N N N N N	116	OH Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
117	OH N N N N N N N N N N N N N N N N N N N	118	OH OH OH OH OH	119	OH N N N N N N N N N N N N N N N N N N N

Folgende Verbindungen wurden in analoger Verfahrensweise zu den beschriebenen Beispielen hergestellt.

Nr	Struktur	Name
28	HE Z H	5-Brom-N2-(4-(2- Diethylaminoethylsulfonyl)phenyl)-N4-2-propynyl- 2,4-pyrimidindiamin
30	HN HO N	1-(4-[5-Brom-4-(2-propynylamino)-2- pyrimidinyl]amino-phenylthio)-3-(diethylamino)-2- propanol
32	HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	5-Brom-N2-(3-phenylsulfonylphenyl)-N4-2- propynyl-2,4-pyrimidindiamin

Nr	Struktur	Name
33	9, 10	N-[4-[[5-Brom-4-(2-propynylamino)-2-
	HN	pyrimidinyl]amino]-benzolsulfonyl]morpholin
	Br H	
41	OH CN	1-(4-((5-Brom-4-(2-propynyloxy)-pryrimidin-2-yl)-
	HN	amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-
	Br Or	propanol
57		N-[5-Brom-4-((2R)-1-hydroxy-4-methyl-2-
	HN OH	butylamino)-2-pyrimidinyl]-indazol-5-amin
	Br H	
58	O _N NH ₂	4-[[5-Fluor-4-((2R)-1-hydroxy-3-methyl-2-
	HN "O	butylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
	Р В ОН	٠.
59	O ₁ NH ₂	4-[[5-lod-4-((2R)-1-hydroxy-3-methyl-2-
	HN Y	butylamino)-2-pyrimidinyl]amino]-benzolsulfonamid
	Р ОН	
62	O NH ₂	4-[[5-Fluor-4-(2-propynylamino)-2-
	HN	pyrimidinyl]amino]-benzolsulfonamid
	F H	
65	O NH ₂	4-[[5-Ethyl-4-(2-propynylamino)-2-
	HN	pyrimidinyl]amino]-benzolsulfonamid
66		1-[4-[(5-lod-4-((2R)-1-hydroxy-3-methyl-2-
	HN	butylamino)-2-pyrimidinyl)amino]phenyl]-ethanon
	ОН	
L		

NI-	Ctm. det	I Name
Nr	Struktur	Name
68	H N N OH	1-[4-[(5-Ethyl-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-pyrimidinyl)amino]phenyl]-ethanon
72	NH. NH.	4-[[5-Brom-4-(2-(2-oxo-imidazolin-1-yl)ethylamin)- 2-pyrimidinyl]amino]-benzolsulfonamid
73	HN CF ₃	4-[[5-Brom-4-(2,2,3,3,3-pentafluorpropyloxy)-2-pyrimidinyl]amino]-benzolsulfonamid
75	OAC OAC	4-[[5-Brom-4-(1,3-bisacetoxy-2-propyloxy)-2-pyrimidinyl]amino]-benzolsulfonamid
76	NH ₂ OH OH OH	4-[[5-Brom-4-(1,3-dihydroxy-2-propyloxy)-2-pyrimidinyl]amino]-benzolsulfonamid
79	NH ₂ NH ₂ NH ₂ NH ₂	N□-(5-Brom-2-(4-sulfamoylphenyl)amino-pyrimidin- 4-yl)-L-alanineamid
83	OH OH DE STATE OF THE STATE OF	1-[4-[(5-Brom-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanol

Folgende Verbindungen wurden analog zu den beschriebenen Syntheseverfahren gemäß Schema 1 oder 2 hergestellt: Alle NMR-Spektren werden in angegebenem Lösungsmittel gemessen oder in DMSO.

5

		S	ρ ρ	OH
	HN	HN	0=\$	ни
	N N	N	HŅ	l n h
	The	Br		Br. H
	Br		Br	
BspNr.	37	38	39	5
6-H	8.34 (s,1H)	8.39 (s,1H)	8.30 (s,1H)	8.00 (s,1H)
2CH	12.88	9.28 (s,1H)	7.74 (s,1H)	7.52 (d,2H)
	(sb,1H)	8.79 (s,1H)	7.44 (d,1H)	6.65 (d,2H)
	8.07 (s,1H)	7.70 (d,1H)	7.22 (d,1H)	
	7.93 (s,1H)	8.04 (d,1H)	3.98 (t,2H)	
	7.41 (d,1H)	.	3.13 (t,2H)	
	7.56		2.99 (s,3H)	
4CH	(dd,1H)	4.19 (d,2H)	4.16 (d,2H)	4.09 (d,2H)
		3.22 (sb,1H)	3.28 (sb,1H)	3.09 (s,1H)
NH	4.15	10.43(sb,1H)	10.6(1H)	9.00 (s,1H)
	(dd,2H)	8.45 (sb,1H)	8.75 (1H)	8.96 (s,1H)
	3.18 (t,1H)			7.31 (t,1H)
	9.30			
	(sb,1H)			
	7.39			
	(tb,1H)			
Chro-	EA + 0.5%	-	Kristallisiert	-
mato-	TEA		MeOH	
graphie	10%	36%	73%	20%
Aus-				
beute				
Schmp.	231°C	>235°C	237°C	157°C

·	HN NH NH NH	S F F	HN N NH NH NH	F F F S N H Br
Beispiel	16	24	26	35
Nr.				
6-H	8.80 (s,1H)	8.30 (s,1H)	8.18 (s,1H)	8.14 (s,1H)
2CH	7.67 (d,2H)	7.94 (d,2H)	7.67 (s,1H)	8.28 (s,1H)
<u> </u>	7.27 (d,2H)	7.63 (d,2H)	7.54 (d,1H)	7.98 (d,1H)
	2.47 (s,3H)	:	7.24 (t,1H)	7.41 (t,1H)
			6.92 (d,1H)	7.25 (d,1H)
4CH	4.17 (dd,2H)	4.17 (dd,2H)	4.20 (dd,2H)	4.14 (dd,2H)
	3.75 (t,1H)	3.18 (t,1H)	3.12 (sb,1H)	3.04 (sb,1H)
NH	10.55	10.45	9.78 (sb,1H)	9.58 (sb,1H)
	(sb,1H)	(sb,1H)	7.95 (sb,1H)	7.46 (sb,1H)
	8.68 (sb,1H)	8.22 (sb,1H)		
Chrom.	-	-	-	-
Aus-	94%	86%	73%	69%
beute				
Schmp.	232-234°C	160°C	194°C	143°C

·	HN NH Br	HN NH NH NH	HN NH Br	
Beispiel	27	36	34	21
Nr.				
6-H	8.18 (s,1H)	8.26 (s,1H)	8.25 (s,1H)	8.17 (s,1H)
2CH	8.73 (s,1H)	8.12 (s,1H)	8.16 (s,1H)	8.74 (s,1H)
	7.62 (d,1H)	7.35-	7.43 (d,1H)	7.43 (d,1H)
	7.72 (t,1H)	7.55(m,3H)	7.52 (t,1H)	7.52 (t,1H)
	8.31 (d,1H)	8.06 (d,1H)	8.01 (d,1H)	8.08 (d,1H)
			2.78 (m,2H)	3.43 (t,2H)
			1.35 (mc,2H)	3.70 (t,2H)
-8			1.24 (mc,2H)	
		,	0.80 (t,3H)	
4CH	4.18 (dd,2H)		4.21 (d,2H)	4.20 (dd,2H)
	3.06 (t,1H)	4.21 (d,2H)	3.09 (sb,1H)	3.08 (t,1H)
NH	10.02 (s,1H)	3.09 (sb,1H)	10.3 (sb,1H)	9.79 (s,1H)
	7.49 (sb,1H)	9.68 (sb,1H)	8.13 (sb,1H)	7.55 (tb,1H)
ОН		7.30 (sb,2H)		4.90 (sb,1H)
Chrom.	-	krist.EtOH	-	-
Aus-	69%	64%	87%	59%
beute				
Schmp.	144°C	219°C	220°C	192.5-
				193.5°C

	P O O O O O O O O O O O O O O O O O O O	H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	S F F P P P P P P P P P P P P P P P P P	H Z Z J B S S S S S S S S S S S S S S S S S S
Beispiel	31	25	23	11
Nr.				
6-H	8.25 (s,1H)	8.14 (s,1H)	8.25 (s,1H)	8.29 (s,1H)
2CH	7.65 (d,2H)	8.01 (d,2H)	7.86 (d,2H)	7.95 (d,2H)
	7.24 (d,2H)	7.56 (d,2H)	7.51 (d,2H)	7.78 (d,2H)
	3.19	2.70 (s,3H)	7.38	
	(d,21.3Hz,2		(t,56.8Hz,1H)	
	H)			
	3.95			
4CH	(mc,4H)	4.15 (dd,2H)	4.18 (m,2H)	4.19 (d,2H)
	1.20 (t,6H)	3.14 (t,1H)	3.16 (sb,1H)	3.18 (sb,1H)
NH		9.69 (sb,1H)	10.24 (sb,1H)	10.40
	4.17 (sb,2H)	7.55 (tb,1H)	8.17 (sb,1H)	(sb,1H)
	3.15 (sb,1H)			8.24 (sb,1H)
	10.19			7.15 (sb,2H)
	(sb,1H)			
	8.34(sb,1H)			
Chrom.	EA krist.	DCM/MeOH	_	krist.
Aus-	H/DIPE	95:5	85%	DIPE/EtOH
beute	23%	25%		17%
Schmp.	198°C	217-218°C	>235°C	>235°C

	NH ₂ NH ₂ NH NH CI	NH₂ NH₂ NH₂ NH₂ NH₂	OH N N N N N N N N N N N N N N N N N N N
Beispiel	44	45	4
Nr.			
6-H	8.34 (s,1H)	8.34 (s,1H)	8.23 n(sb,1H)
2CH	7.93 (d,2H)	7.74 (mc,4H)	7.39 (d,2H)
	7.79 (d,2H)		6.79 (d,2H)
1011			
4CH	4.20 (sb,2H)	4.55 (q,1H)	3.52-3.71 (2H)
	3.31 (sb,1H)	1.98 (dq,2H)	3.97 (mc,1H)
		0.94 (t,3H)	1.96 (mc,1H)
		3.61 (s,3H)	0.91 (d,3H)
NH	11.03 (sb,1H)	10.60 (s,1H)	0.85 (d,3H)
	9.04 (sb,1H)	7.97 (d,1H)	10.35 (sb,1H)
1	7.34 (sb,2H)	7.31 (db,2H)	7.76 (sb,1H)
Chrom.	krist. EtOH	krist. EtOH	-
Aus-	27%	48%	52%
beute			
Schmp.	252°C	235°C	242-243°C

	HN N OH	HN N OH	HN OH OH	HN N OH OH
Beispiel	10	15	3	19
Nr.				
6-H	8.27 (s,1H)	8.17 (s,1H)	7.97 (s,1H)	8.20-8.35
2H	7.80	7.60 (d,2H)	7.44 (d,2H)	(2H)
	(mc,4H)	7.24 (d,2H)	6.67 (d,2H)	7.90 (sb,1H)
		2.44 (s,3H)		7.50-7.64
				(2H)
				3.46 (t,2H)
4H		3.5-3.7 (2H)	3.50-3.65	3.70 (t,2H)
	3.66	40.1 (mc,1H)	(4H)	
<u> </u>	(mc,2H)	1.98 (mc,1H)	4.12 (mc,1H)	3-56-3.66
	n.obs.	0.94 (d,3H)		(4H)
	2.04	0.90 (d,3H)		4.28 (mc,1H)
NH	(mc,1H)	9.95 (sb,1H)		
ОН	0.97 (d,3H)	6.96 (sb,1H)	8.98 (sb,1H)	
	0.94 (d,3H)	ca.4, sehr	5.97 (db,1H)	
	10.40	breit	8.90 (sb,1H)	NH and OH
	(sb,1H)		4.80 (tb,2H)	sind sehr
	7.18 (sb,2H)			breit
	n. obs.			
Chrom.	•	-	-	Kristallisiert
				Wasser
Aus-	43%	27%	76%	52%
beute	:			
Schmp.	252-253°C	192-193°C	257-258°C	209-210°C

	HN OH OH	HN OH OH	HN OH OH	HZ Z Z
Beispiel	9	14	55	50
Nr.				
6-H	8.30 (s,1H)	8.30 (s,1H)	8.11 (s,1H)	8.17 (s,1H)
2H	7.82	7.55 (d,2H)	7.87 (s,4H)	7.95 (d,2H)
	(mc,4H)	7.30 (d,2H)	2.50 (s)	7.86 (d,2H)
		2.48 (s,3H)		2.50 (s)
4H		3.54-3.68	4.19 (mc,1H)	4.17 (dd,2H)
	3.63	(4H)	3.61 (mc,4H)	3.13 (t,1H)
	(mc,4H)	4.24 (mc,1H)		
NH	4.24		9.73 (s,1H)	9.81 (s,1H)
ОН	(mc,1H)	10.63 (sb,1H)	6.20 (s,1H)	7.58 (t,1H)
		7.60 (sb,1H)	4.88 (t,2H)	
	10.59 (b,1H)	4.4 (b)		
	7.2 (sb)			
	6.1 (sb)			
Chrom.	Kristallisiert		Kristallisiert	-
Aus-	МеОН		MeOH/DIPE	
beute	24%	91%	27%	56%
Schmp.	247-248°C	233-234°C	228-229°C	241°C

	HN N N N N N N N N N N N N N N N N N N	S N N N N N N N N N N N N N N N N N N N	HN N N	HN OH
Beispiel	46	13	52	53
Nr.				
6-H	8.07s,1H)	8.00 (s,1H)	8.09 (s,1H)	8.11 (s,1H)
2H	7.91 (d,2H)	7.68 (d,2H)	7.88 (s,4H)	7.86 (s,4H)
	7.69 (d,2H)	7.18 (d,2H)		not obs.
}		2.44 (s,3H)		
4H	3.30 (t,2H)	3.54 (q,2h9	3.32 (t,2H)	3.62 (mc,2H)
	n.obs.(mc,1	2.53 (t,2H)	1.20 (mc,1H)	4.06 (mc,1H)
	H)	2.40-2.45	0.44 (mc,2H)	2.02 (mc,1H)
	0.45	(4H)	0.30 (mc,2H)	0.97 (d,3H)
	(mc,2H)	3.58 (t,4H)		0.92 (d,3H)
NH	0.30		9.70 (s,1H)	9.70 (s,1H)
он	(mc,2H)	9.20 (sb,1H)	7.21 (t,1H)	6.24 (d,1H)
		6.81 (tb,1H)		4.80 (sb,1H)
	9.94 (s,1H)			
	7.21 (t,1H)]
	7.18 (s,2H)			
Chrom.	H/EA 1:2	-	_	H/EA 1:2
Aus-	20%	28%	53%	9%
beute				
Schmp.	256°C	185-186°C	183°C	170°C

·	HN N N N N N N N N N N N N N N N N N N	H H H H H H H H H H H H H H H H H H H	HN N N N N N N N N N N N N N N N N N N	HH N OH OH
Beispiel	1	54	12	60
Nr.				
6-H	7.96 (s,1H)	8.22 (s,1H)	8.03 (s,1H)	8.10 (s,1H)
2H	7.43 (d,2H)	7.93 (d,2H)	7.68 (d,2H)	7.92 (d,2H)
	6.67 (d,2H)	7.85 (d,2H)	7.19 (d,2H)	7.66 (d,2H)
			2.43 (s,3H)	not. obs.
				2.74 (t,2H)
			,	
4H	1.20 (d,3H)	4.26 (d,2H)	1.20 (d,3H)	3.61 (mc,2H)
	4.38	3.12 (sb,1H)	4.42 (mc,1H)	4.04 (mc,1H)
	(mc,1H)		3.37 (dd,1H)	2.01 (mc,1H)
	3.37 (dd,1H)	,	3.50 (dd,1H)	0.94 (d,3H)
	3.48 (dd,1H)		3.34 (s,3H)	0.91 (d,3H)
NH	3.28 (s,3H)	9.78 (s,1H)	9.26 (s,1H)	9.72 (s,1H)
	8.92 (sb,1H)			7.65 (s,1H)
	8.81 (sb,1H)			6.27 (d,1H)
ОН		7.21 (t,1H)	6.42 (d,1H)	4.80 (sb,1H)
	6.20 (tb,1H)			4.70 (sb,1H)
Chrom.	Kristallisiert	Kristallisiert	Kristallisiert.	
Aus-	EA	DIPE/MeOH	EA	
beute	64%	52%	36%	
	165.5-	210°C	91°C	150-151°C
Schmp.	166°C			

	HN N N N N N N N N N N N N N N N N N N	HN O OH	OH HN N N Br	HN O OH
Beispiel	7	17	2	18
Nr.				
6-H	8.32 (s,1H)	8.08 (s,1H)	7.95 (s,1H)	8.32 (s,1H)
4CH	1.22 (d,3H)	1.21 (d,3H)	3.50 (q,2H)	3.10 (m,2H)
	4.46	4.53 (mc,1H)	2.50 (t,2H)	3.52 (m,4H)
	(mc,1H)	3.41 (dd,1H)	2.40 (t,4H)	3.77-3.97
	3.40 (dd,1H)	3.51 (dd,1H)	3.59 (t,4H)	(6H)
	3.57 (dd,1H)	3.27 (s,3H)		
2CH	3.28 (s,3H)	8.53 (s,1H)	7.45 (d,2H)	
	7.80 (s,4H)	7.40 (d,1H)	6.66 (d,2H)	8.40 (s,1H)
		7.50 (t,1H)		7.55-7.70
		7.86 (d,1H)		(2H)
		3.40 (t,2H)		7.85 (d,1H)
		3.68 (t,2H)		3.48 (m,2H)
NH		9.65 (sb,1H)	8.94 (sb,1H)	3.70 (m,2H)
	10.79	6.47 (db,1H)	8.79 (sb,1H)	
ОН	(sb,1H)	4.84 (tb,1H)	6.70 (tb,1H)	11.16 (sb,1H)
	7.84 (db,1H)			10.60 (sb,1H)
	7.31 (sb,2H)			8.20 (sb,1H)
Chrom.		-	-	kristall.
Aus-	25%	10%	62%	МеОН
beute				50%
Schmp.	247°C Zers.	201-202°C	227.5-	245°C Zers.
			228.5°C	

	NH ₂
Beispiel	8 (D ₂ O)
Nr.	
6-H	8.14 (s,1H)
4CH	3.06 (sb,2H)
	3.39 (t,4H)
	3.71 (sb,2H)
	3.85 (sb,2H)
	3.94 (t,2H)
2CH	8.00 (d,2H)
	7.72 (d,2H
NH	
ОН	
Chrom.	krist. Wasser
Aus-	25%
beute	
Schmp.	>275°C

	NH ₂ O NH ₂ O CF ₃	OH N N N N N N N N N N N N N N N N N N N	H Z Z DE	HN N CF ₃
Beispiel	47	6	22	84
Nr.				
5-H	8.74 (s,1H)	8.31 (s,1H)	8.31 (s,1H)	8.47 (s,1H)
2CH	7.87 (d,2H)	7.47 (d,2H)	7.76 (d,2H)	4.48 (t,2H)
	7.74 (d,2H)	6.71 (d,2H)	7.72 (d,2H)	2.01 (mc,2H)
1			2.58 (s,3H)	2.44 (mc,2H)
				, , ,
4CH	4.50 (t,2H)	5.04 (d,2H)	5.05 (d,2H)	
	2.03 (mc,2H)	3.59 (t,1H)	2.57 (t,1H)	7.91 (d,2H)
	2.44 (mc,2H)			
2NH	10.14 (s,1H)	9.02 (sb,1H)	7.47 (sb,1H)	7.85 (d,2H)
	7.21 (s,2H)	9.40 (sb,1H)		2.50 (s)
		į		10.19 (s,1H)
Chrom.	MeOH/DCM		-	-
Aus-	1:9	66%	8%	11%
beute	4%			
Schmp.	186-187°C	146°C	165-166°C	152°C

·	HN N N O Br	HN OO OO OO OO
Beispiel	86	77
Nr.		
5-H	8.47 (s,1H)	8.48 (s,1H)
2CH	4.07 (mc,2H)	5.52 (m,1H)
	3.81 (mc,2H)	3.68 (d,4H)
	3.60 (mc,2H)	3.48 (mc,4H)
4CH	3.48 (mc,2H)	1.09 (t,6H)
	3.41 (t,2H)	7.84 (d,2H)
	1.07 (t,3H)	
		٠.
2NH	7.84 (d,2H)	7.74 (d,2H)
	7.91 (d,2H)	8.05 (vb)
	10.18 (s,1H)	3.40 (vb)
Chrom.	-	-
Aus-	2%	74%
beute		
Schmp.	85°C	132°C

	HN N N N N N N N N N N N N N N N N N N	DH D
Beispiel	40	20
Nr.		
6-H	8.36 (s,1H)	8.40 (s,1H)
2CH	7.60 (d,1H)	7.23 (s,1H)
	6.91 (d,1H)	6.42 (d,1H)
	4.28 (dd,1H)	7.06 (t,1H)
	3.79 (dd,1H)	7.18 (d,1H)
	3.31 (m,1H)	
	2.84 (dd,1H)	
	2.70 (dd,1H)	
		v a:
4CH	5.07 (d,12H)	5.12 (d,2H)
	3.65 (t,1H)	3.60 (sb,1H)
NH	9.65 (sb,1H)	9.60 (sb,1H)
ОН		9.21 (sb,1H)
Chrom.	H/EA 1:3	krist. DIPE
Aus-	0.5%TEA	35%
beute	38%	
Schmp.	140-141°C	174°C

	HN COOF	HN N OH	HN N OH OH	OH NH
Beispiel	49	48	29	42
Nr.				
6-H	8.14 (s,1H)	8.10 (s,1H)	8.09 (s,1H)	7.87 (d,3.4,1H)
2H	7.88 (d,2H)	7.92 (d,2H)	8.50 (s,1H)	7.51 (d,2H)
	7.69 (d,2H)	7.66 (d,2H)	7.86 (d,1H)	6.66 (d,2H)
	,	not. obs.	7.50 (t,1H)	
		2.74 (t,2H)	7.40 (d,1H)	
4H	3.41 (q,2H)	3.61 (mc,2H)	3.40 (t,2H)	4.13 (dd,2H)
	2.20 (t,2H)	4.04 (mc,1H)	3.52-3.73	3.08 (t,1H)
	1.81 (q,2H)	2.01 (mc,1H)	(4H)	
		0.94 (d,3H)	4.09 (mc,1H)	
		0.91 (d,3H)	1.98 (mc,1H)	
			0.97 (d,3H)	<u> </u>
NH	9.64 (s,1H)	9.72 (s,1H)	0.89 (d,3H)	8.76 (s,1H)
	7.64 (t,1H)	7.65 (s,1H)	9.68 (s,1H)	7.74 (tb,1H)
ОН	3.5 (vb	6.27 (d,1H)	6.17 (d,1H)	8.88 (s,1H)
		4.80 (sb,1H)	4.74 (t,1H)	
		4.70 (sb,1H)	4.93 (t,1H)	
Chrom.	-	krist.MeOH/DI	DCM/EA 2:1	H/EA 1:2
Aus-	9%	PE	26%	29%
beute		16%		*
Schmp.	262°C	150-151°C		163°C

·	OH HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	HN OH OH	HN NH OH	NH ₂ OH NH
Beispiel	43	55	89	88
Nr.	İ			
6-H	7.93 (s,1H)	8.11 (s,1H)	8.36 (s,1H)	8.29 (s,1H)
2H	7.52 (d,2H)	7.87 (s,4H)	7.7-7.8 (5H)	7.73 (d,2H)
	6.68 (d,2H)	2.50 (s)		7.57 (d,2H)
4H	3.09 (s,1H)	4.19 (mc,1H)	3.66 (mc,2H)	3.7-3.9 (2H)
	4.14 (d,2H)	3.61 (mc,4H)	4.04 (m,1H)	5.19 (m,1H)
		ļ	1.99 (mc,1H)	7.2-7.4 (5H)
			0.94 (d,3H)	
			0.89 (d,3H)	
		`.		
NH	8.98 (sb,2H)	9.73 (s,1H)	11.11 (sb,1H)	10.50 (s,1H)
	7.50 (s,1H)	6.20 (s,1H)		5.029 (vb)
ОН		4.88 (t,2H)	7.34 (sb,2H)	
			n. obs.	
Chrom.	H/EA 1:2	krist. MeOH/	-	-
Aus-	35%	DIPE	74%	27%
beute		27%		
Schmp.	168°C	228°C	248°C Zers.	159°C Zers.

	DE PER DE	HN N N N N N N N N N N N N N N N N N N	HN N NH N	OS NH ₂ HN N N O
Beispiel	87	92	91	96
Nr.				
6-H	8.09 (s,1H)	8.10 (s,1H)	8.09 (s,1H)	8.06 (s,1H)
2H	7.90 (d,2H)	7.91 (d,2H)	7.98 (d,2H)	7.88 (d,2H)
	7.82 (d,2H)	7.63 (d,2H)	7.61 (d,2H)	7.69 (d,2H)
	not. obs	2.39 (d,3H)	2.54 (s,6H)	
4H	3.69 (td,2H)	1.21 (d,3H)	1.20 (d,3H)	3.41 (m,2H)
	2.84 (t,2H)	4.45 (mc,1H)	4.46 (mc,1H)	1.62 (m,4H)
	7.60 (s,1H)	3.38 (dd,1H)	3.47 (dd,1H)	2.41 (m,2H)
	6.86 (s,1H)	3.51 (dd,1H)	3.51 (dd,1H)	5.07 (s,2H)
		`	3.38 (s,3H)	
NH	7.34 (tb,1H)	9.73 (sb,1H)	9.81 (sb,1H)	7.32 (s,5H)
	9.72 (s,1H)	7.20 (q,1H)	6.58 (db,1H)	9.64 (s,1H)
	0.72 (3, 111)	7.20 (4, 111)	0.55 (45,111)	
ОН	11.91 (sb,1H)	6.57 (d,1H)		7.16 (sb,2H)
Chrom.	-	H bis H/EA 1:1	H bis H/EA	-
Aus-	16%	21%	1:1	33%
beute			7%	
Schmp.	210 °C	167-168°C	105°C	202°C

	HN N N N N N N N N N N N N N N N N N N	HZ N NH O	HN N N N N N N N N N N N N N N N N N N	
Beispiel	97	98	90	85
Nr.		-		
6-H	8.07 (s,1H)	8.10 (s,1H)		8.30 (s,1H)
2H	7.87 (s,4H)	7.86 (mc,4H)		7.95 (d,2H)
	2.50 (s,3H)	n. obs.		7.69 (d,2H)
				2.48 (s,3H)
4H	3.41 (m,2H)	3.68 (t,2H)		3.50 (q,2H)
	1.61 (m,4H)	2.68 (t,2H)		1.87 (m,2H)
	2.41 (m,2H)	4.08 (q,2H)		2.38 (t,2H)
	5.07 (s,2H)	1.17 (t,§H)		4.03 (q,2H)
				1.13 (t,3H)
NH	7.32 (s,5H)	9.74 (s,1H)		10.86 (s,1H)
	9.70 (s,1H)	7.18 (t,1H)		8.28 (sb,2H)
	7.19 (t,1H)			
Chrom.	-	-		-
Aus-	23%	32%		53%
beute				
Schmp.	152°C	172		184°C

· · · · · · · · · · · · · · · · · · ·	HN NH2	HN S OH	HN HO OH	HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Beispiel	63	94	93	80
Nr.				
	9.73 (s,1H) 8.25 (s,1H) 7.95 (d,2H) 7.67 (d,2H) 7.21 (s,3H) 4.12 (s,2H) 3.12 (s,1H)	10.91 (s,1H) 8.34 (s,1H) 7.80 (s,4H) 7.30 (s,2H) 4.35 (m,1H) 3.58 (m,2H) 2.47 (m,2H) 2.03 (s,3H) 1.91 (m,2H)	10.80 (s,1H) 8.30 (s,1H) 7.81 (d,2H) 7.65 (d,2H) 7.30 (m,8H) 4.95 (d,1H) 4.38 (m,1H) 3.59 (d,1H)	10.88 (s,1H) 8.40 (s,1H) 8.29 (m,1H) 7.79 (s,4H) 7.31 (s,2H) 4.75 (dd,1H) 3.65 (m,1H) 3.49 (m,1H) 2.10 (m,2H)
Aus-	61%	24%	70%	51%
beute				
Schmp.	220	168	243	
Masse	428 (EI)	462 (ES)	494 (ES)	427 (EI)

	N N OH		HN N N	HN N O O O O O O O
Beispiel	120	121	122	123
Nr.				
	9.65 (s,1H) 8.12 (s,1H) 7.89 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 6.06 (d,1H) 4.71 (t,1H) 4.18 (m,1H) 3.67 (t,1H) 0.95 (s,9H)	9.68 (s,1H) 8.11 (s,1H) 7.93 (t,1H) 7.90 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 7.07 (t,1H) 3.65 (m,2H) 3.56 (s,3H) 3.07 (q,2H) 2.45 (t,2H) 2.30 (t,2H) 1.65 (p,2H)	11.30 (s,1H) 8.11 (d,1H) 7.85 (d,2H) 7.72 (d,2H) 7.31 (s,2H) 6.71 (d,1H) 3.85 (m,8H)	10.79 (s,1H) 8.35 (s,1H) 8.25 (s,1H) 7.80 (s,4H) 7.30 (s,2H) 3.41 (m,2H) 2.22 (t,2H) 1.60 (m,4H) 1.30 (m,2H)
Aus-	49%	24%	80%	73%
beute				
Schmp.				252
Masse	445 (EI)	516 (EI)	334 (EI)	459 (EI)

		,		
	HN N N N N N N N N N N N N N N N N N N	HIP STONES	HN NH2	HN HO OH OH
Beispiel	95	124	125	126
Nr.		, _ ,		.20
141.				
	11.19 (s,1H) 8.37 (s,1H) 8.11 (d,1H) 7.80 (s,4H) 7.31 (s,2H) 3.91 (m,1H) 1.89 (m,4H) 1.67 (m,1H) 1.55 (m,2H) 1.34 (m,2H) 1.15 (m,1H)	9.62 (s,1H) 8.04 (s,1H) 7.88 (m,3H) 7.66 (d,2H) 7.13 (s,3H) 3.58 (s,3H) 3.40 (m,2H) 3.05 (m,2H) 2.25 (m,2H) 2.05 (m,2H) 1.60 (m,5H) 1.32 (m,3H)	9.62 (s,1H) 8.04 (s,1H) 7.86 (d,2H) 7.66 (d,2H) 7.12 (s,3H) 3.58 (s,3H) 3.40 (m,2H) 2.30 (t,2H) 1.60 (m,4H) 1.32 (m,2H)	10.91 (s,1H) 8.38 (s,1H) 7.83 (d,2H) 7.77 (d,2H) 7.28 (s,2H) 7.04 (d,1H) 6.40 (br,3H) 4.35 (m,1H) 3.87 (m,1H) 3.60 (d,2H) 3.41 (dd,1H) 3.28 (dd,1H)
Aus-	29%	25%	270/	469/
beute	∠∂ /0	2J 70	27%	46%
Schmp.	255		218	
Masse	425 (EI)	557 (ES)	471 (EI)	449 (EI)

	HN A CH	HN COH	HN N OH	HN NOH
Beispiel	127	128	129	130
Nr.				
	9.96 (s,1H) 8.12 (s,1H) 7.85 (d,2H) 7.69 (d,2H) 7.20 (s,2H) 6.78 (d,1H) 4.35 (m,1H) 3.48 (m,2H) 1.65 (m,7H) 1.10 (m,6H)	9.60 (s,1H) 8.05 (s,1H) 7.90 (d,2H) 7.69 (d,2H) 7.42 (d,1H) 7.16 (m,3H) 4.57 (t,2H) 3.70 (m,1H) 3.4 (m,5H) 2.10 (t,2H) 1.55 (m,4H) 1.30 (m,2H)	9.67 (s,1H) 8.07 (s,1H) 7.87 (d,2H) 7.75 (d,2H) 7.13 (s,2H) 6.40 (d,1H) 4.91 (br,1H) 4.23 (m,1H) 3.52 (m,2H) 1.21 (d,3H)	9.65 (s,1H) 8.08 (s,1H) 7.87 (d,2H) 7.64 (d,2H) 7.14 (s,2H) 6.53 (d,1H) 4.62 (d,1H) 3.90 (br,1H) 3.40 (br,1H) 1.88 (m,4H) 1.50 (m,2H) 1.30 (m,2H)
Aus-	18%	94%	61%	58%
beute				
Schmp.	220		259	262
Masse	485 (EI)	531 (ES)	403 (EI)	443 (EI)

]			,
	HN NH2	HZ Z H	HN NH ₂ OH OH	HN PH OH
Beispiel	131	132	133	134
Nr.	131	132	133	134
}	9.62 (s,1H)	0.70 (6.14)	0.60 (6.14)	10.95 (5.411)
		9.70 (s,1H)	9.69 (s,1H)	10.85 (s,1H)
	8.08 (s,1H)	8.11 (s,1H)	8.11 (s,1H)	8.31 (s,1H)
Ì	7.92 (d,2H)	7.90 (d,2H)	7.88 (d,2H)	7.90 (d,1H)
	7.67 (d,2H)	7.60 (d,2H)	7.66 (d,2H)	7.85 (d,2H)
	7.23 (s,2H)	7.21 (q,1H)	7.15 (s,2H)	7.75 (d,2H)
	6.75 (t,1H)	5.25 (d,1H)	6.52 (d,1H)	7.54 (s,1H)
	3.22 (d,2H)	4.77 (t,1H)	4.35 (dd,1H)	3.90 (m,1H)
	1.95 (s,3H)	4.02 (m,1H)	2.29 (m,1H)	3.38 (t,2H)
	1.60 (m,12H)	3.60 (m,2H)	1.07 (d,3H)	2.78 (br,2H)
		2.39 (d,3H)	0.91 (d,3H)	1.50 (m,11H)
		2.02 (m,1H)		
		0.95 (dd,6H)		
Aus-	9%	42%	25%	64%
beute				
Schmp.	229	141		
Masse	491 (EI)	443 (EI)	444 (FAB)	

2	NH HN N F F	HN N OH	HN NH2	HIN OH OH
	Br H F	Br H		
Beispiel	135	136	137	120
Nr.	135	130	137	138
INI.				
	10.01 (s,1H)	9.70 (s,1H)	9.65 (s,1H)	9.70 (s,1H)
	8.28 (s,1H)	8.11 (s,1H)	9.58 (s,1H)	8.10 (s,1H)
	7.81 (d,2H)	7.90 (d,2H)	8.10 (s,1H)	7.89 (d,2H)
	7.71 (t,1H)	7.64 (d,2H)	7.85 (d,2H)	7.63 (d,2H)
	7.63 (d,2H)	7.35 (t,1H)	7.68 (d,2H)	7.39 (t,1H)
	7.45 (br,1H)	6.55 (d,1H)	7.40 (m,2H)	6.68 (d,1H)
	4.34 (dt,2H)	4.65 (t,1H)	7.18 (m,4H)	4.34 (dd,1H)
	3.32 (t,2H)	4.45 (m,1H)	6.94 (t,1H)	3.36 (m,3H)
	2.71 (br,2H)	3.53 (m,1H)	6.75 (d,1H)	2.25 (q,2H)
		3.44 (m,6H)	4.40 (m,3H)	2.29 (m,1H)
		2.75 (q,2H)	2.05 (m,1H)	1.05 (dd,6H)
		1.20 (d,3H)	0.96 (dd,6H)	
Aus-	34%	53%	59%	57%
beute				
Schmp.				
Masse	570 (ES)	460 (ES)	549 (ES)	488 (ES)

	HN N N N N N N N N N N N N N N N N N N	NH N N N N N N N N N N	ON ON OH	HN N OH
Beispiel	139	140	141	142
Nr.				
	9.82 (s,1H) 8.15 (s,1H) 7.82 (d,2H) 7.64 (d,2H) 7.39 (t,1H) 6.55 (d,1H) 4.64 (t,1H) 4.50 (t,1H) 3.65 (s,3H) 3.4 (m,2H) 2.75 (m,2H) 2.35 (m,1H) 1.00 (dd,6H)	9.82 (s,1H) 8.08 (s,1H) 7.96 (d,2H) 7.75 (t,1H) 7.62 (d,2H) 7.30 (t.1H) 4.64 (t,1H) 4.14 (m,2H) 3.35 (m,2H) 3.16 (m,1H) 2.75 (q,2H)	9.58 (s,1H) 8.12 (s,1H) 7.83 (d,2H) 7.68 (d,2H) 7.15 (s,2H) 5.92 (s,1H) 5.28 (t,1H) 3.50 (d,2H) 1.42 (s,6H)	9.62 (s,1H) 8.07 (s,1H) 7.87 (d,2H) 7.67 (d,2H) 7.14 (s,2H) 6.36 (d,1H) 4.81 (t,1H) 4.32 (m,1H) 3.47 (m,2H) 1.52 (m,3H) 0.90 (d,3H) 0.86 (d,3H)
Aus-	20%	63%	23%	8%
beute				
Schmp.				
Masse	502 (ES)	382 (ES)	415 (EI)	443 (EI)

	NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	N H.2	DO S NH ₂	HN WAS WAS AND A STATE OF THE S
Beispiel	143	144	145	78
Nr.				
	10.6 (s,1H) 8.28 (s,1H) 8.30 (m,5H) 7.48 (d,1H) 7.20 (s,1H) 4.05 (br,1H) 3.60 (br,2H) 2.01 (m,1H) 0.90 (m,6H)	10.11 (s,1H) 8.45 (s,1H) 7.86 (d,2H) 7.78 (d,2H) 7.15 (br,2H) 5.32 (m,1H) 3.91 (m,2H) 3.53 (m,2H) 2.05 (m,2H) 1.70 (m,2H)	11.05 (s,1H) 8.32 (s,1H) 8.08 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.88 (m,1H) 3.65 (m,1H) 1.95 (m,2H) 1.69 (m,2H) 1.35 (m,4H)	9.69 (s,1H) 8.06 (s,1H) 7.88 (d,2H) 7.63 (d,2H) 7.18 (s,2H) 7.10 (t,1H) 6.65 (d,1H) 4.47 (m,1H) 3.97 (m,1H) 2.98 (m,2H) 2.00 (m,4H) 1.40 (m,8H) 0.85 (t,3H)
Aus-	13%	47%	42%	20%
beute	i			
Schmp.				
Masse	392 (EI)	428 (EI)	441 (EI)	541 (ES)

		HZ Z H	HN D OH	OH OH OH
Beispiel	146	147	148	149
Nr.				
	44 42 (2 411)	44.49 (5.411)	44.45 (- 411)	0.40 (.41)
	11.13 (s,1H)	11.18 (s,1H)	11.15 (s,1H)	9.19 (s,1H)
	8.38 (s,1H)	8.35 (s,1H)	8.35 (s,1H)	8.30 (s,1H)
	7.92 (d,2H)	7.90 (s,4H)	7.90 (d,2H)	8.02 (s,1H)
j	7.75 (m,3H)	7.62 (d,1H)	7.65 (m,3H)	7.62 (m,1H)
	4.04 (m,1H)	4.02 (m,1H)	4.01 (m,1H)	6.85 (d,1H)
	3.80 (s,3H)	3.62 (m,2H)	3.60 (m,6H)	6.05 (d,1H)
	3.65 (m,2H)	3.02 (s,3H)	2.85 (m,4H)	4.03 (m,1H)
	2.00 (m,1H)	2.00 (m,1H)	2.00 (m,1H)	3.56 (m,2H)
	0.96 (d,3H)	0.95 (d,3H)	0.95 (d,3H)	1.96 (m,1H)
	0.89 (d,3H)	0.89 (d,3H)	0.85 (d,3H)	0.97 (d,3H)
{				0.90 (d,3H)
Aus-	86%	33%	79%	42%
beute				
Schmp.	225	211	232	241
Masse	408 (EI)	428 (EI)	501 (EI)	411 (ES)

	HN N OH	OH OH OH	OH OH	O NH ₂ HN N N OH
Beispiel	150	151	152	153
Nr.				
	11.19 (s,1H)	10.96 (s,1H)	9.50 (s,1H)	12.90 (s,1H)
	10.80 (s,1H)	8.35 (s,1H)	8.08 (s,1H)	9.45 (s,1H)
	8.30 (m,2H)	7.95 (m,2H)	7.75 (m,5H)	8.52 (s,1H)
	7.85 (d,1H)	7.65 (m,3H)	6.17 (d,1H)	8.05 (s,1H)
	7.72 (d,1H)	4.04 (m,1H)	4.80 (br,1H)	7.82 (d,1H)
	7.20 (d,1H)	3.62 (m,2H)	4.64 (br,2H)	7.50 (d,1H)
	4.02 (m,1H)	2.00 (m,1H)	4.05 (m,1H)	7.32 (t,1H)
	3.60 (m,2H)	0.90 (M,6H)	3.94 (m,1H)	6.11 (d,1H)
	2.00 (m,1H)		3.52 (m,6H)	4.72 (s,1H)
	1.01 (d,3H)		2.01 (m,1H)	4.10 (s,1H)
	0.90 (d,3H)		0.93 (dd,6H)	3.60 (m,2H)
				2.01 (m,1H)
				0.99 (d,3H)
				0.92 (d,3H)
Aus-	27%	65%	85%	9%
beute				
Schmp.				231
Masse	420 (ES)	395 (ES)	468 (ES)	395 (ES)

	OH N OH Br	O OMe HN OH Br OH	HZ N N OH	HN N N OH
Beispiel	154	155	156	157
Nr.	<u> </u>			
	10.91 (s,1H) 8.38 (s,1H) 7.90 (d,1H) 7.80 (m,4H) 7.05 (d,1H) 4.50 (s,2H) 4.04 (m,1H) 3.62 (m,2H) 1.96 (m,1H) 0.93 (d,3H) 0.85 (d,3H)	11.05 (s,1H) 8.34 (m,2H) 7.75 (m,3H) 7.52 (t,1H) 4.04 (m,1H) 3.85 (s,3H) 3.65 (m,2H) 2.00 (m,1H) 0.94 (d,3H) 0.85 (d,3H)	10.51 (s,1H) 8.22 (s,1H) 7.71 (d,1H) 7.27 (m,1H) 6.86 (m,2H) 6.06 (s,2H) 3.96 (m,1H) 3.62 (m,2H) 1.99 (m,1H) 0.90 (m,6H)	15.5o (s,1H) 9.50 (s,1H) 8.40 (s,1H) 8.11 (s,1H) 7.80 (d,1H) 7.53 (d,1H) 6.16 (d,1H) 4.78 (br,1H) 4.03 (m,1H) 3.60 (m,2H) 2.01 (m,1H) 0.91 (dd,6H)
Aus-	90%	48%	77%	21%
beute				
Schmp.	170	181	177	196
Masse	381 (ES)	409 (ES)	394 (EI)	391 (EI)

Beispiel	ни мнрь он вг	Diastereomere 1/2 (ca. 1:3)	Diastereomere 1/2 (ca. 6:1)	SO ₂ NH ₂
Nr.				
	10.80 (s,1H) 8.31 (s,1H) 7.97 (d,2H) 7.88 (m,3H) 7.52 (m,5H) 4.01 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.91 (m,6H)	9.65 (s,1H,1+2) 8.08 (s,1H,1+2) 7.88 (d,2H,1+2) 7.65 (d,2H,1+2) 7.15 (s,1H,1+2) 6.62 (d,1H,2) 6.40 (d,1H,1) 4.05 (m,1H,1) 3.89 (m,1H,2) 2.30-1.20 (m,15H,1+2)	9.65 (s,1H,1+2) 8.08 (s,1H,1+2) 7.88 (d,2H,1+2) 7.65 (d,2H,1+2) 7.15 (s,1H,1+2) 6.62 (d,1H,2) 6.40 (d,1H,1) 4.05 (m,1H,1) 3.89 (m,1H,2) 2.30-1.20 (m,15H,1+2)	7.92 (s,1H) 7.84 (d,2H) 7.58 (d,2H) 3.72 (m,1H) 3.35 (m,2H) 3.10 (m,1H) 2.91 (m,2H) 2.00 (m,2H) 1.89 (m,2H) 1.66 (m,4H) 1.39 (m,5H)
Aus-	37%	21%	14%	8%
beute		, ,	, 170	3 ,0
Schmp.			199	> 300
Masse	469 (EI)	468 (EI)	468 (EI)	508 (EI)

	T			9,0
	HO NH ₂	Diastereomere 1/2 (ca. 1:1)	O O D D D D D D D D D D D D D D D D D D	HIN NH2
BspNr.	162	163 *	164	165
	11.25 (s,1H) 9.40 (s,1H) 8.47 (s,1H) 8.29 (s,1H) 7.63 (s,1H) 7.43 (d,1H) 7.07 (m,3H) 4.06 (m,1H) 3.63 (m,2H) 1.98 (m,1H) 0.95 (d,3H) 0.85 (d,3H)	10.95 (s,1H) 10.72 (s,1H) 9.47 (br,2H) 9.30 (br,2H) 8.32 (2xs,2H) 8.08 (d,1H) 7.75 (m,6H) 7.75 (m,6H) 7.30 (br,4H) 6.95 (d,1H) 4.12 (m,1H) 3.98 (m,1H) 3.30 (m,1H) 3.10 (m,1H) 2.69 (m,2H) 1.80 (m,18H) 1.01 (m,4H)	9.65 (s,1H) 8.54 (s,1H) 8.10 (s,1H) 7.82 (d,1H) 7.45 (m,2H) 6.20 (d,1H) 4.70 (t,1H) 4.10 (m,1H) 3.60 (m,2H) 3.15 (s,3H) 2.00 (m,1H) 0.96 (d,3H) 0.89 (d,3H)	
A110	169/	0.72 (m,4H)	1.40/	E40/
Aus-	16%	33%	14%	51%
beute	405			100 101
Schmp.	195	100 (5)		162-164
Masse	446 (ES)	480 (EI)	429 (ES)	462 (EI)

	H Z Z Z H	N H H H H H H H H H H H H H H H H H H H	Diastereomere 1/2 (ca.1:1)	OH OH OH N N N N N N N N N N N N N
Beispiel	166	167 *	168 *	169
Nr.				
	10.90 (s,1H) 8.95 (s,1H) 7.93 (m,2H) 7.25 (m,3H) 6.30 (s,1H) 6.00 (d,1H) 4.75 (tr,1H) 4.05 (m,1H) 3.60 (m,2H) 2.00 (m,1H) 1.00 (m,6H)	11.15 (br,1H) 10.90 (s,1H) 9.75 (br,2H) 8.35 (s,1H) 7.78 (m,4H) 7.30 (br,2H) 4.15 (m,1H) 3.50 (m,5H) 2.85 (s,6H) 1.90 (m,8H)	11.30 (br,2H) 11.08 (s,1H) 10.92 (s,1H) 9.90 (s,1H) 9.70 (s,1H) 8.36 (2xs,2H) 8.20 (d,1H) 7.93 (d,2H) 7.75 (m,6H) 7.35 (br,4H) 7.10 (d,1H) 4.15 (m,1H) 3.98 (m,1H) 3.64 (m,8H) 3.40 (m,5H) 3.10 (m,5H) 1.95 (m,26H)	9.05 (br,1H) 8.85 (s,1H) 8.11 (d,1H) 7.97 (s,1H) 7.47 (dd,1H) 6.80 (d,1H) 5.95 (d,1H) 4.80 (br,2H) 3.90 (m,2H) 3.45 (m,6H) 2.00 (m,1H) 0.90 (m,6H)
Aus-	6%	16%	58%	60%
beute				
Schmp.		256	261	
Masse	390 (ES)	512 (ES)	538 (ES)	484 (ES)

	Diastereomere 1/2 (ca. 1:1)	NA PARTIES OF THE PAR	OH HN N N N N N N N N N N N N N	OH OO OH OOH
Beispiel	170 *	171	172	173
Nr.				
	11.05 (s,1H) 10.90 (s,1H) 10.6 (br,2H) 8.35 (2xs,2H) 8.15 (d,1H) 7.80 (m,8H) 7.30 (br,4H) 7.05 (m,1H) 4.25 (m,1H) 3.95 (m,2H) 3.65 (m,1H) 3.20 (m,10H) 1.90 (m,24H)	10.45 (s,1H) 8.25 (s,1H) 8.00 (br,1H) 7.85 (d,2H) 7.75 (d,2H) 7.45 (br,1H) 3.60 (m,5H) 3.35 (m,2H) 2.80 (m,2H) 2.41 (t,2H) 1.90 (m,2H)	11.05 (s,1H) 8.35 (m,2H) 7.82 (d,1H) 7.65 (d,2H) 7.50 (t,1H) 4.05 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.96 (d,3H) 0.85 (d,3H)	8.90 (s,1H) 8.72 (s,1H) 7.95 (s,1H) 7.18 (m,1H) 7.05 (dd,1H) 6.75 (d,1H) 5.99 (d,1H) 4.74 (t,1H) 4.03 (m,1H) 3.70 (s,3H) 3.60 (m,2H) 2.00 (m,1H) 0.90 (m,6H)
Aus-	64%	7%	65%	40%
beute				
Schmp.	226	164	206	144
Masse	525 (ES)	488 (ES)	395 (ES)	397 (ES)

	Diastereomere	HN N N N OH	HN NH2	HN N N N N N N N N N N N N N N N N N N
	1/2 (ca. 1:1)	Diastereomere		
		3/4 (ca. 1:1)		
Beispiel	174 *	175 *	176	177
Nr.				
	11.05 (m,3H)	11.15 (br,1H)	8.00 (s,1H)	9.65 (s,1H)
	10.48 (s,1H)	11.05 (s,2H)	7.80 (m,4H)	8.08 (s,1H)
	8.38 (s,2H)	10.65 (br,1H)	4.48 (m,1H)	7.85 (d,2H)
	7.80 (m,8H)	8.30 (s,2H)	3.65 (d,2H)	7.65 (d,2H)
	7.80 (br,4H)	8.13 (m,2H)	1.75 (m,1H)	7.40 (br,1H)
	7.10 (s,1H)	7.88 (m,8H)	1.59 (m,2H)	7.15 (s,2H)
	6.95 (s,1H)	7.30 (br,4H)	1.01 (d,3H)	3.55 (m,2H)
	4.42 (m,2H)	4.40 (m,2H)	0.92 (d,3H)	2.55 (m,2H)
	4.18 (m,2H)	4.00 (br,2H)		2.15 (m,2H)
	3.70-2.90	3.70-2.90		1.80 (m,3H)
	(m,10H)	(m,10H)		1.65 (m,1H)
1	2.40-1.60	2.40-1.40		
	(m,20H)	(m,20H)		
Aus-	95%	51%	3%	8%
beute				
Schmp.				
Masse	511 (ES)	511 (ES)	443 (EI)	456 (EI)

·	NH ₂	NH ₂	HN N N N N N N N N N N N N N N N N N N	HN OH
Beispiel	178	179	180	181
Nr.				
	9.49 (s,1H) 8.25 (s,1H)	9.61 (s,1H) 8.08 (s,1H)	9.65 (s,1H) 8.11 (s,1H)	9.71 (s,1H) 8.06 (s,1H)
	7.80 (m,4H)	7.88 (d,2H)	7.81 (s,2H)	7.90 (d,2H)
	7.32 (br,2H)	7.65 (d,2H)	7.63 (d,2H)	7.61 (d,2H)
	4.03 (m,2H)	7.60 (t,1H)	7.15 (s,2H)	7.37 (t,1H)
	3.75 (m,1H)	7.15 (s,2H)	6.64 (d,1H)	6.56 (d,1H)
	3.35 (m,2H)	3.45 (m,2H)	4.28 (m,3H)	4.66 (m,2H)
	1.80 (m,2H)	2.40 (t,2H)	2.00 (m,1H)	3.90 (m,1H)
	1.40 (m,2H)	2.20 (s,6H)	1.98 (s,3H)	3.39 (m,3H)
		1.75 (t,2H)	0.98 (d,3H)	2.78 (q,2H)
			0.93 (d,3H)	1.96 (m,4H)
				1.56 (m,2H)
				1.29 (m,2H)
Aus-	17%	9%	27%	24%
beute				
Schmp.				
Masse	427 (EI)	428 (EI)	472 (ES)	486 (ES)

		NH ₂	HN N OH	NH ₂
Beispiel	182	183	184	185
Nr.				
	9.68 (s,1H)	10.97 (s,1H)	11.06 (s,1H)	11.01 (s,1H)
	9.47 (s,1H)	8.30 (s,1H)	8.04 (m,1H)	8.38 (s,1H)
	8.10 (s,1H)	8.02 (d,1H)	7.82 (m,2H)	7.82 (s,4H)
	7.81 (d,2H)	7.81 (m,4H)	7.70 (m,2H)	7.40 (d,1H)
	7.67 (d,2H)	7.30 (s,2H)	7.30 (s,2H)	7.32 (s,2H)
	7.14 (s,2H)	4.14 (m,1H)	6.72 (m,1H)	4.20 (m,1H)
	6.76 (m,3H)	1.80 (m,12H)	3.75 (m,5H)	3.70 (m,2H)
	4.47 (m,2H)		1.88 (m,2H)	0.97 (s,9H)
	4.30 (m,1H)		1.48 (m,2H)	
	3.65 (s,6H)			
	3.54 (s,3H)			
	1.99 (m,1H)			
	0.98 (d,3H)			
	0.92 (d,3H)			
Aus-	57%	78%	260/	760/
beute	37 70	7070	26%	76%
Schmp.	630 (ES)	420 (EI)	240 (51)	445 (51)
Masse	639 (ES)	439 (EI)	348 (EI)	445 (EI)

	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	HA CH	HN N OH	HN Z
Beispiel	186	187	188	189
Nr.				
	9.71 (s,1H)	7.75 (s,1H)	10.60 (s,1H)	11.19 (s,1H)
	8.11 (s,1H)	7.65 (d,2H)	8.29 (s,1H)	8.03 (d,1H)
	7.90 (d,2H)	7.58 (d,2H)	7.79 (d,2H)	7.88 (d,2H)
	7.70 (d,2H)	5.82 (s,1H)	7.71 (d,2H)	7.78 (d,2H)
	7.12 (s,2H)	4.25 (s,2H)	7.28 (s,2H)	7.31 (s,2H)
	6.75 (d,1H)	3.40 (t,2H)	6.60 (s,1H)	6.58 (d,1H)
	4.45 (m,1H)	2.82 (t,2H)	3.58 (s,2H)	3.60 (m,4H)
	2.25 (m,6H)	2.06 (s,3H)	2.10 (m,2H)	1.20 (m,6H)
	1.90 (m,2H)		1.78 (m,2H)	
			1.55 (m,4H)	
Aus-	16%	7%	61%	35%
beute				
Schmp.				
Masse	440 (ES)	480 (ES)	443 (EI)	321 (EI)

	H N N N N N N N N N N N N N N N N N N N	Diastereomer	Diastereomer 2	HN N N OH
Beispiel	190	191 *	192 *	193
Nr.				
	10.61 (s,1H) 8.28 (s,1H) 7.82 (d,2H) 7.73 (d,2H) 7.53 (br,1H) 7.25 (s,2H) 4.25 (m,1H) 2.59 (br,1H) 2.21 (br,1H) 1.94 (m,1H) 1.40 (m,7H)	9.67 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.65 (d,2H) 7.11 (s,2H) 6.35 (d,1H) 4.10 (m,1H) 3.62 (m,4H) 2.45 (m,4H) 2.19 (m,1H) 1.88 (m,4H) 1.65 (m,4H)	9.63 (s,1H) 8.06 (s,1H) 7.85 (d,2H) 7.65 (d,2H) 7.15 (s,2H) 6.55 (d,1H) 3.95 (m,1H) 3.58 (m,4H) 2.50 (m,4H) 1.96 (m,1H) 1.50 (m,4H) 1.30 (m,4H)	10.61 (s,1H) 8.28 (s,1H) 7.78 (m,4H) 7.45 (d,1H) 7.20 (s,2H) 4.30 (br,2H) 3.53 (m,2H) 1.21 (d,3H)
Aus-	63%	15%	17%	57%
beute				
Schmp.				
Masse	437 (EI)	511 (ES)	511 (EI)	403 (EI)

·	NH ₂	HN N OH	HAND AND AND AND AND AND AND AND AND AND	NH ₂
Beispiel	194	195	196	197
Nr.				
	9.89 (s,1H) 8.21 (s,1H) 7.82 (d,2H) 7.65 (m,3H) 7.17 (br,2H) 4.30 (m,2H)	10.98 (s,1H) 8.51 (br,1H) 8.29 (s,1H) 7.81 (m,4H) 7.29 (br,2H) 3.45 (m,4H) 1.68 (m,2H) 1.45 (m,2H)	10.39 (s,1H) 8.30 (s,1H) 8.04 (d,2H) 7.70 (d,2H) 7.21 (br,2H) 6.55 (s,1H) 3.49 (s,1H) 2.32 (m,2H) 1.85 (m,2H) 1.60 (m,5H) 1.29 (m,1H)	10.85 (s,1H) 8.71 (d,1H) 8.31 (s,1H) 7.72 (d,2H) 7.55 (d,2H) 7.30 (m,6H) 5.41 (m,1H) 3.49 (m,2H) 2.11 (m,2H)
Aus-	26%	56%	12%	61%
beute				
Schmp.				
Masse	476 (EI)	417 (EI)	450 (EI)	479 (EI)

	(+)- Enantiomer	(-)- Enantiomer	Diastereomer 1	Diastereomer 2
Beispiel	198	199	200	201
Nr.				
	11.01 (s,1H) 8.32 (s,1H) 8.10 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.70 (m,1H) 1.80 (m,5H) 1.48 (m,1H) 1.29 (m,2H) 1.07 (m,1H) 0.83 (d,3H)	11.01 (s,1H) 8.32 (s,1H) 8.10 (d,1H) 7.80 (m,4H) 7.30 (br,2H) 3.70 (m,1H) 1.80 (m,5H) 1.48 (m,1H) 1.29 (m,2H) 1.07 (m,1H) 0.83 (d,3H)		9.16 (s,1H) 8.07 (s,1H) 7.89 (d,2H) 7.67 (d,2H) 7.15 (s,2H) 6.45 (d,1H) 4.35 (s,2H) 3.97 (m,1H) 3.40 (m,4H) 2.85 (m,1H) 2.55 (m,1H) 1.82 (m,2H) 1.61 (m,6H)
Aus-	4%	4%	7%	2%
beute				
Schmp.				
Masse	439 (EI)	439 (EI)	515 (ES)	515 (ES)

	OH OH	Diastereomer 1	Diastereomer 2	NH ₂
Beispiel Nr.	202	203 *	204 *	205
	10.21 (s,1H) 8.18 (s,1H) 8.10 (d,2H) 7.92 (d,2H) 6.39 (d,1H) 4.80 (br,1H) 4.05 (m,1H) 3.62 (m,2H) 2.00 (m,1H) 0.99 (d,3H) 0.92 (d,3H)		9.66 (s,1H) 8.08 (s,1H) 7.90 (d,2H) 7.69 (d,2H) 7.15 (s,2H) 6.53 (d,1H) 3.93 (m,1H) 2.05 (m,5H) 1.51 (m,2H) 1.15 (m,2H) 0.42 (m,2H) 0.25 (m,2H)	9.73 (s,1H) 8.11 (s,1H) 7.82 (d,2H) 7.65 (d,2H) 7.12 (s,2H) 6.80 (d,1H) 4.67 (m,1H) 3.13 (m,1H) 2.86 (m,3H) 2.18 (m,2H)
Aus- beute	10%	2%	2%	16%
Schmp.	400 (50)	100 (51)		
Masse	483 (ES)	480 (EI)	480 (EI)	430 (ES)

	HN OH	HNN N H	HN N N OH	NH NH ₂
Beispiel	206	207	208	209
Nr.				
			· · · · · · · · · · · · · · · · · · ·	
	9.75 (s,1H)	10.98 (s,1H)	11.00 (s,1H)	9.55 (s,1H)
	8.19 (s,1H)	8.50 (d,2H)	8.31 (s,1H)	8.08 (s,1H)
	7.75 (d,2H)	8.31 (s,1H)	7.74 (m,5H)	7.80 (d,2H)
	7.18 (d,2H)	7.97 (d,2H)	7.21 (d,1H)	7.60 (d,2H)
	7.17 (s,2H)	7.78 (d,2H)	6.80 (d,1H)	6.58 (br,4H)
	6.68 (d,1H)	7.57 (d,1H)	4.00 (m,1H)	6.20 (d,1H)
	5.35 (t,1H)	7.00 (t,1H)	3.62 (m,2H)	4.80 (br,1H)
	4.71 (m,1H)	4.01 (m,1H)	1.95 (m,1H)	4.04 (m,1H)
*	3.91 (m,2H)	3.62 (m,2H)	0.98 (d,3H)	3.60 (m,2H)
	3.65 (s,3H)	1.97 (m,1H)	0.90 (d,3H)	2.00 (m,1H)
		0.98 (d,3H)		0.99 (d,3H)
		0.92 (d,3H)		0.92 (d,3H)
Aus-	5%	55%	44%	77%
beute				
Schmp.	223	248	228	231
Masse	446 (ES)	507 (EI)	514 (EI)	

	HALL ON HALL O	HN N N OH	HN OH OH	NH ₂
Beispiel	210	211	212	71
Nr.				
	10.03 (s,1H) 8.38 (s,1H) 8.14 (s,1H) 7.81 (d,2H) 7.60 (d,1H) 7.30 (m,7H) 4.99 (s,2H) 3.42 (m,2H) 2.97 (m,2H) 1.58 (m,2H) 1.30 (m,4H)	10.90 (s,1H) 8.40 (m,1H) 8.30 (s,1H) 7.88 (d,2H) 7.73 (d,2H) 7.38 (br,1H) 3.45 (m,4H) 2.38 (s,3H) 1.62 (m,2H) 1.45 (m,2H)	9.18 (s,1H) 9.05 (s,1H) 7.98 (s,1H) 7.18 (m,2H) 6.98 (m,2H) 6.31 (m,1H) 4.45 (t,1H) 3.47 (m,4H) 1.63 (m,2H) 1.48 (m,2H)	9.66 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.63 (m,3H) 7.28 (t,1H) 7.11 (s,2H) 6.88 (s,1H) 3.65 (m,2H) 2.88 (t,2H)
Aus- beute	86%	22%	41%	77%
Schmp.				
Masse	528 (CI)	429 (EI)	352 (EI)	437 (EI)

	NH ₂	HN NH2	HN N N N N N N N N N N N N N N N N N N	NH ₂
Beispiel	213	61	214	215
Nr.				
	12.40 (br,1H) 11.10 (s,1H) 8.08 (d,2H) 7.79 (m,4H) 7.30 (s,2H) 4.04 (m,1H) 3.60 (m,2H) 2.07 (s,3H) 2.00 (m,1H) 0.97 (d,3H) 0.90 (d,3H)	12.41 (br,1H) 11.11 (s,1H) 8.10 (d,1H) 7.80 (m,5H) 7.30 (s,2H) 4.08 (m,1H) 3.63 (m,2H) 2.50 (m,2H) 2.01 (m,1H) 1.15 (t,3H) 0.99 (d,3H) 0.92 (d,3H)	8.03 (s,1H) 7.76 (m,4h) 3.70 (s,2H) 1.92 (m,4H) 0.92 (m,6H) (in MeOD)	9.55 (s,1H) 8.10 (s,1H) 7.80 (d,2H) 7.68 (d,2H) 7.15 (s,2H) 5.82 (s,1H) 3.74 (d,1H) 3.52 (d,1H) 2.72 (m,1H) 1.35 (s,3H) 0.97 (d,3H) 0.91 (d,3H)
Aus-	49%	25%	2%	9%
beute				
Schmp.				
Masse	365 (EI)	379 (EI)	443 (ES)	444 (ES)

·	HN N H	HN N N N N N N N N N N N N N N N N N N	HN N H	HN OH
Beispiel	216	217	218	219
Nr.				
	10.88 (s,1H) 8.36 (s,1H) 8.03 (d,1H) 7.79 (m,4H) 7.28 (br,2H) 4.65 (m,1H) 3.89 (m,2H)	10.88 (s,1H) 8.36 (s,1H) 8.03 (d,1H) 7.79 (m,4H) 7.28 (br,2H) 4.65 (m,1H) 3.89 (m,2H) 3.71 (m,2H) 2.19 (m,2H)	11.01 (s,1H) 8.52 (br,1H) 8.29 (s,1H) 7.78 (m,4H) 7.32 (s,2H) 3.39 (m,2H) 1.70 (m,6H) 1.15 (m,3H) 0.96 (m,2H)	11.11 (s,1H) 8.53 (m,1H) 8.36 (s,1H) 7.80 (m,4H) 7.31 (s,2H) 3.71 (m,2H) 2.65 (m,2H)
Aus-	65%	34%	58%	88%
beute				
Schmp.	239	239	238	280
Masse	439 (EI)	413 (EI)	439 (EI)	416 (EI)

	HN NH ₂	HN N OH	OH HN N N N N N N N N N N N N N N N N N N	HIN HAY
Beispiel	74	56	220	221
Nr.		•	ļ	
	9.67 (s,1H)	9.70 (s,1H)	8.92 (m,1H)	9.66 (s,1H)
		8.11 (s,1H)	8.81 (m,1H)	8.08 (s,1H)
		7.88 (m,4H)	7.96 (s,1H)	7.83 (d,2H)
		6.25 (d,1H)	7.43 (d,2H)	7.68 (d,2H)
		4.81 (m,1H)	6.67 (d,2H)	7.22 (t,1H)
		4.05 (m,1H)	6.20 (m,1H)	7.11 (s,2H)
		3.61 (m,2H)	4.38 (m,1H)	3.95 (m,4H)
		2.01 (m,1H)	3.48 (m,1H)	3.48 (m,2H)
		0.97 (d,3H)	3.37 (m,1H)	1.79 (m,4H)
j 		0.92 (d,3H)	1.20 (d,3H)	1.18 (t,6H)
Aus-	7%	17%	65%	19%
beute				
Schmp.	285	158	166	
Masse	457 (EI)	392 (EI)	354 (EI)	522 (ES)

	HN N N N N N N N N N N N N N N N N N N	HN N O O	NH ₂	NH, 0 = 0 = 0
Beispiel	222	223	224	225
Nr.				
	9.81 (s,1H) 9.08 (s,1H) 8.68 (s,1H) 8,35 (m,1H) 8.20 (s,1H) 8.02 (t,1H) 7.63 (m,5H) 7.17 (s,2H) 7.03 (s,1H) 4.82 (d,2H)	9.71 (s,1H) 8.13 (s,1H) 7.89 (d,2H) 7.66 (d,2H) 7.31 (t,1H) 7.14 (s,2H) 3.98 (m,2H) 3.69 (s,3H) 3.64 (s,3H)	9.70 (s,1H) 8.08 (s,1H) 7.88 (d,2H) 7.65 (d,2H) 7.25 (m,3H) 6.11 (m,1H) 3.40 (m,5H)	10.29 (s,1H) 8.83 (m,2H) 8.51 (m,1H) 8.26 (s,1H) 7.93 (d,2H) 7.60 (d,2H) 7.51 (d,2H) 7.25 (br,2H) 4.90 (d,2H)
Aus-	54%	23%	7%	43
beute				
Schmp.	300	300		243
Masse	501 (EI)	465 (EI)		434 (EI)

	NH ₂	HN NH2	NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2	NH ₂
Beispiel	226	227	228	229
Nr.				
	10.38 (s,1H)	10.30 (s,1H)	10.52 (s,1H)	10.88 (s,1H)
	8.52 (br,1H)	8.78 (m,1H)	8.66 (m,1H)	8.92 (m,1H)
	8.23 (s,1H)	8.36 (m,3H)	8.28 (s,1H)	8.33 (s,1H)
	7.72 (m,4H)	7.81 (m,2H)	7.63 (m,4H)	7.72 (d,2H)
	7.36 (m,1H)	7.60 (m,4H)	7.26 (m,6H)	7.62 (d,2H)
<u> </u>	7.22 (s,2H)	7.22 (br,2H)	4.63 (d,2H)	7.30 (m,4H)
	7.03 (m,1H)	4.94 (d,2H)		6.89 (d,2H)
	6.95 (m,1H)	•\$		4.62 (d,2H)
	4.80 (d,2H)			3.70 (s,3H)
Aus-	47%	41%	88%	89%
beute				
Schmp.	229	287	259	233
Masse	440 (CI)	434 (EI)	451 (EI)	463 (EI)

	HN NH, OH OH OH
BeispielNr.	230
	10.45 (s,1H) 8.20 (s,1H) 8.05 (m,1H) 7.79 (m,4H) 7.21 (s,2H) 3.50 (m,2H) 1.83 (m,2H) 1.56 (m,2H)
Ausbeute	58%
Schmp.	>300
Masse	466 (ES)

		OH Z ZH	NH ₂	
Beispiel	231	232	233	234
Nr.				
	10.3 (s, 1H)	9.28 (s, 1H)	10.48 (s, 1H)	9.63 (s, 1H)
	8.34 (tr,1H)	8.0 (s, 1H)	8.25 (s, 1H)	8.12 (s, 1H)
	8.2 (s, 1H)	7.73 (d, 2H)	7.85 (m, 4H)	7.65 (m, 4H)
	7.9 (m, 4H)	7.63 (tr, 1H)	7.25 (m, 1H)	7.42 (d, 2H)
	4.3 (q, 2H)	7.18 (d, 2H)	7.15 (s, 1H)	7.35 (tr, 2H)
	4.2 (m, 2H)	5.0 (m, 1H)	5.1 (m, 1H)	7.21 (m, 1H)
	3.23 (tr,1H)	4.3 (s, 2H)	3.58 (m, 4H)	7.16 (s, 1H)
	1.32 (tr, 3H)	4.14 (m, 2H)		5.35 (m, 1H)
		3.11 (tr,1H)		1.55 (d, 3H)
Aus-	85%	35%	33%	25%
beute				
Schmp.				
Masse	330 (EI)	288 (EI)	389 (CI)	448 (ESI)

		D D D D D D D D D D D D D D D D D D D	O H O H O H	OH OH
Beispiel- Nr.	235	236	237	238
Schmp. [°C]				
Masse	486 (ES)	516 (ES)	504 (ES)	488 (ES)

	HN N OH	HZ Z H	O H O H O H O H O H O H O H O H O H O H	HANN OH
Beispiel- Nr.	239	240	241	242
Schmp. [°C]				
Masse	536 (ES)	502 (ES)	484 (ES)	551 (ES)

	HN N OH	NH NH NH OH	O S F OH
Beispiel- Nr.	243	244	245
Schmp. [°C]			
Masse	516 (ES)	514 (ES)	433 (ES)

	HN N OH	HN N OH	HN OH OH	O S OH
Beispiel- Nr.	246	247	248	249
Schmp. [°C]		-	205	>300
Masse	446 (ES)	415 (EI)	504 (ES)	431 (ES)

	HN N N N N N N N N N N N N N N N N N N	O S D O H	HN N OH	O O F F O H
Beispiel- Nr.	250	251	252	253
Schmp. [°C]	113	231	187	
Masse	488 (ES)	446 (ES)	433 (ES)	

	S OH	O NH ₂ O HN OH	O S O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O
Nr.	254	255	256	257
Schmp. [°C]				
Masse	399 (ES)	444 (ES)	474 (ES)	486 (ES)

Die mit *) gekennzeichneten Verbindungen Nr. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 und 204 können über die unter Beispiel Nr. 295 beschriebene Verfahrensvariante hergestellt werden.

Beispiel 258

Herstellung von 4-(5-Brom-4-morpholin-4-yl-pyrimidin-2-ylamino)-phenylsulfonamid

202 mg (0.60 mmol) der Verbindung Beispiel Nr. 122 werden mit 1 ml Wasser sowie 0.2 g (1.2 mmol) Brom versetzt und bei Raumtemperatur gerührt. Nach 24
 Stunden werden erneut 0.2 g (1.2 mmol) Brom zugegeben und weitere 24
 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird mittels

Unterdruck evaporiert und der verbleibende Rückstand chromatographisch (Flashmaster II, DCM / MeOH 7:3) gereinigt. Man erhält 17 mg (0.04 mmol, 7%) des Produktes als weissen Feststoff.

	NH ₂ S=0 HN N HN N HN OH	HN N N N OH	HN N OH	HN N OH
Beispiel-Nr.	259	260	261	262
Schmp. [°C]		205-207	202-203	
Masse	MS (ES) 452,			428 (ES)
	454 (M+ H,			
	100 %)			

Beispiel- Nr.	Verbindung	ESI-MS
263	Br N N OH N	434
264	Br O OH HN O	434
265	Br OH N	477
266	Br O OH N N N N N N N N N N N N N N N N N	477
267	Br N N N N N N N N N N N N N N N N N N N	552
268	Br N QH HN QH	552

Analog der unter Beispiel 6.0 (s. Herstellung der Zwischenprodukte, Seite 186)

beschriebenen Verfahrensweise zur Herstellung der Zwischenprodukte wurden auch folgende Verbindungen hergestellt:

10

Beispiel- Nr.	269	270	271
INT.			
	Br HO O NH2	Br C NH ₂	OH HZ HZ HZ O, NH ₂ O, NH ₂
Ausbeute	47%	90%	
Masse	ESI:	ESI:	ESI:
	MH⁺ 480	MH⁺ 432	MH ⁺ 446 (18%)
	(100%)	(100%)	
	478 (97%)	430 (94%)	
	115 (30%)	157 (43%)	

Analog zu Herstellungsbeispiel 1 wurden auch die folgenden Verbindungen hergestellt:

5

	Br HZ O O O NH2	Br HN ON NH2	Br HN O NH ₂	Br HN O S NH ₂
Beispiel	272	273	274	275
-Nr.				
Aus-	61%	44%	42%	68%
beute				
Masse	El:	EI:	ESI:	EI:
	M ⁺ 463 (4%)	M ⁺ 403 (24%)	MH ⁺ 418	M ⁺ 401 (33%)
	277 (8%)	358 (100%)	100%	372 (100%)
	105 (100%)	277 (52%)	416 (94%)	344 (38%)
			346 (8%)	

	Br H QH N N N N N N N N N N N N N N N N N	Br HN O S NH ₂	Br H OH N N N N N N N N N N N N N N N N N	Br HN S O NH2
Beispiel	276	277	278	279
-Nr.				
Aus-	81%	58%	~20%	30%
beute				
Masse	EI:	ESI:	ESI:	ESI:
	M ⁺ 431 (5%)	MH ⁺ 444	MH+ 494	MH+ 418
	372 (100%)	(100%)	(75%)	(100%)
	291 (46%)	442 (97%)	346 (18%)	416 (97%)
		115 (20%)	214 (55%)	310 (27%)

	Br HN OH N N N N N N N N N N N N N N N N N	Br HN S NH2	BH N N N N N N N N N N N N N N N N N N N	Br HN Si NH2
Beispiel	280	281	282	283
-Nr.				
Aus-	55%	43%	~18%	35%
beute				
Masse	ESI:	ESI:	ESI:	ESI:
	MH ⁺ 444	MH⁺ 446	MH ⁺ 416	MH ⁺ 446
	(100%)	(100%)	(100%)	(100%)
	442 (97%)	444 (95%)	414 (96%)	444 (90%)
	214 (12%)	346 (5%)	317 (4%)	

	Chiral Chiral Chiral Chiral	Chiral Chiral Chiral Chiral	Br HZ S O HZ	Br HZ OH Si OH NH2
Beispiel	284	285	286	287
-Nr.				
Aus-	51%	46%	47%	61%
beute				
Masse	ESI:	ESI:	ESI.	ESI.
	MH ⁺ 520	MH ⁺ 520	MH ⁺ 432	MH ⁺ 446
	(100%)	(100%)	(100%)	(100%)
	518 (97%)	518 (97%)	430 (95%)	444 (93%)
	115 (27%)	115 (23%)	346 (5%)	115 (13%)

5

Gemäß nachfolgender Herstellungsvariante werden auch die folgen Verbindungen synthetisiert:

10

30 mg (0,0678 mMol) der Verbindung Nr. 277 werden in 1 ml Methanol/Tetrahydrofuran 1:1 gelöst. Nach Zugabe von ~10 mg Natriumborhydrid wird 2 Stunden nachgerührt. Dann wird unter Kühlung mit ~3-4 Tropfen Eisessig gequencht und eingeengt. Nachfolgend wird das Rohprodukt

mit wenig Wasser aufgenommen, abgesaugt, mit Acetonitril nachgewaschen und bei bei 60°C im Vakuum getrocknet. Ausbeute: 21 mg (70% der Theorie) der gewünschten Verbindung.

	Br H OH N N N N N N N N N N N N N N N N N	Br HN N N N N N N N N N N N N N N N N N N
Beispiel -Nr.	288	289
Aus- beute	52%	70%
Masse	El:	ESI:
	M ⁺ 465 (5%)	MH ⁺ 446
	358 (40%)	(100%)
	207 (31%)	444 (93%)
		117 (20%)

Beispiel 290

5 Herstellung der Oximether-Pyrimidin-Verbindungen der allgemeinen Formel I

Die Herstellung der Oximether erfolgt nach dem folgenden allgemeinen Reaktionsschema:

10

15

R⁸ und R⁹ haben die in der allgemeinen Formel I angegebenen Bedeutungen.

Herstellung von Beispiel 290

20

25

50 mg (0,12 mMol) der Verbindung Nr. 282, 34 mg Hydroxylammoniumchlorid und 150 mg pulversiertes KOH werden 2 Stunden in 2 ml Ethanol unter Rückfluß gekocht. Danach wird auf Eiswasser gegossen und mit Eisessig

angesäuert, 3 mal mit Dichlormethan/Isopropanol 4:1 extrahiert, getrocknet mit Magnesiumsulfat und eingeengt. Der Rückstand wird mit Acetonitril aufgeschlemmt, absaugt und bei 60 °C getrocknet. Ausbeute: 28 mg (54% der Theorie) gewünschte Verbindung.

5

Masse

ESI:

MH⁺ 429 (29%)

371 (61%)

10 289 (91%)

In analoger Verfahrensweise wurden auch folgende Verbindungen hergestellt:

	Br HN O'N'O	Br HN O NH2	Br. HN O O O O O O O O O O O O O O O O O O
Besispiel-Nr.	291	292	293
Ausbeute	34%	36%	40%
Masse	ESI: MH+ 443 (95%) 445 (99%) 373 (32%)	ESI: MH+ 485 (92%) 487 (99%)	ESI: MH ⁺ 487 (91%) 489 (89%) 373 (32%)

15

Beispiel 294

5 Reduktive Aminierung

50 mg (0,12 mMol) der Verbindung Nr. 282 und 7,5 mg (0,132 mMol)
Cyclopropylamin werden in 2 ml 1,2-Dichlorethan gelöst. Nach Zugabe von 9,1
mg (0,144 mMol) Natriumcyanoborhydrid lässt man 12 Stunden nachrühren.
Dann wird mit Dichlormethan/ Isopropanol 4:1 verdünnt, 2 mal mit Wasser gewaschen, getrocknet mit Magnesiumsulfat und einengt. Der Rückstand wird über Kieselgel mit Dichlormethan/ Methanol 95:5 chromatographiert. Ausbeute:
18 mg (33 % der Theorie) gewünschte Verbindung.

	Br HN O. NH ₂
Aus-	33%
beute	
Masse	ESI:
	MH ⁺ 457
	(98%)
	455 (93%)
	249 (55%)

In analoger Verfahrensweise werden auch die Verbindungen Nr. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 und 204 hergestellt.

Beispiel 295 und 296

In analoger Verfahrensweise zu Beispiel 1 werden auch folgende zwei Verbindungen hergestellt:

	Br HN OH HN SON NH2	Br HN OH HN S'. NH2
Beispiel	295	296
Ausbeute	46 %	47 %
Masse	ESI:	ESI:
	MH ⁺ 432 (30%)	MH ⁺ 446 (45%)
	434 (31%)	448 (49%)
	123 (100%)	123 (90%)

Herstellung der Sulfonamide der allgemeinen Formel I

5

10

0.2 mmol Sulfonsäurefluorid werden im Reaktor eines Synthesizers vorgelegt,
15 Man gibt 1.0 ml Solvens, vorzugsweise 2-Butanol hinzu. Nacheinander werden über eine Pipette 0.2 ml (0.2 mmol) von DMAP – gelöst in einem Solvens, beispielsweise DMSO oder 2-Butanol - und 0.2 mL (0.2 mmol) des Amins, gelöst in 2-Butanol, hinzugegeben. Die Reaktionsmischung wird anschliessend für 20 Stunden bei 80°C gerührt. Nach beendeteter Reaktion wird das
20 Rohprodukt abpipettiert und der Reaktor mit 1.0 mL THF nachgewaschen. Die Lösung des Rohproduktes wird dann eingeengt und mittels HPLC gereinigt.

Es wurden die nachfolgenden Verbindungen hergestellt:

Beispiel-			
Nr.	Verbindung	Molgewicht	ESI-MS
297	Br H2C	526,4968	526/528
298	Br H,G OH	562,5298	562/564
299	OH DE PROPERTIES	624,6006	624/626
300	Br Hac OH CH3	501,4471	501/503
301	BI H.C OH	538,4682	538/540

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
302	Br H ₂ C OH	588,4465	588/590
303	Br H ₂ C OH	528,5126	528/530
304	er N H,C HN OH O N CH ₃	542,5394	542/544
305	Br Hy OH N H₂C HN CH₃	556,5662	556/558
306	Br H,C OH	570,593	570/572

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
307	Br HN OH	510,4106	510/512
308	Br H ₂ C OH	588,4465	588/590
309	Br H OH	548,503	548/550
310	Br H ₂ C OH NO	555,4949	555/557
311	Br H ₂ C OH CH ₃ CH ₃	500,459	500/502

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
312	Br N H ₂ C HN OH CH ₃	514,4858	514/516
313	Br H ₂ C OH OH CH ₃	515,4739	515/517
314	Br H ₂ C OH CH ₃ CH ₃ CH ₃	557,5543	557/559
315	Br H ₂ C HN OH	470,3896	470/472
316	Br OH	551,5069	551/553

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
317	Br. H. OH	534,4762	534/536
318	Br H,C O	568,9213	568/570
319	Br OH OH	524,4374	524/526
320	Br H ₂ C OH	543,4839	543/545
321	Br H ₂ C OH	488,4044	488/490

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
322	Br OH H ₂ C HN S	526,4776	526/528
323	Br H ₂ C OH OH	564,502	564/566
324	Br H ₂ C OH	527,4849	527/529
325	Br H ₂ C OH	541,5117	541/543
326	Br H ₂ C H	538,4395	538/540

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
327	Br H ₂ C OH	541,5117	541/543
328	Br OH OH	521,4375	521/523
329	Br H ₂ C HN O S	538,4395	538/540
330	Br H ₂ C OH	521,4375	521/523
331		550,4752	550/552

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
332	Br H ₂ C OH H ₃ C O	550,4752	550/552
333	Br H ₂ C OH NH ₂ C NH ₂ C	613,5551	613/615
334	Br H, CH, OH	534,4762	534/536
335	Br CH, S	512,47	512/514
336	DE TENTON TO THE TENTON THE TENTON TO THE TE	548,503	548/550

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
337	BE HY OH	610,5738	610/612
338	Br CH ₃ CH ₃ CH ₃ CH ₃	487,4203	487/489
339	Br CH3	524,4414	524/526
340	Br CH ₃	574,4197	574/576
341	Br CH ₃	514,4858	516/514

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
342	Br CH ₃	528,5126	528/530
343	DH N CH ₃ HN CH ₃	542,5394	542/544
344	Br HN OH	556,5662	556/558
345		496,3838	496/498
346	BE TO THE	574,4197	574/576

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
347	Br CH ₃	534,4762	534/536
348	Br HN OH	541,4681	541/543
349	Br CH ₃ O≥S N CH ₃ CH ₃	486,4322	486/488
350	Br CH ₃ OH	500,459	500/502
351	Br CH ₃ OH CCH ₃ CCH ₃ CCH ₃	501,4471	501/503
352	Br CH ₃ OF CH ₃ CCH ₃ CCH ₃	543,5275	543/545

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
353	Br OH	456,3628	456/458
354	H C C C C C C C C C C C C C C C C C C C	537,4801	537/539
355	Br CH ₃	520,4494	520/522
356	Br OH OH	554,8945	554/556
357	Br CH ₃ OH CH ₃ OCH ₃	510,4106	510/512

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
358	Br CH ₃	529,4571	529/531
359		474,3776	474/476
360		512,4508	541/514
361	Br OH OH	550,4752	550/552
362		513,4581	513/515

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
363	OH CH, CH, CH, CH, CH, CH, CH, CH, CH, CH	527,4849	527/529
364	Br HN OH	524,4127	524/526
365	Br CH ₃ OH OH	527,4849	527/529
366	Br N N CH ₃ O N N N CH ₃	507,4107	507/509
367	Br CH ₃	524,4127	524/526

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
368	Br CH ₃ OH	507,4107	507/509
369	Br HN OH	536,4484	536/538
370	Br CH ₃ HN CH ₃ H,C O	536,4484	536/538
371	Br CH ₃	599,5283	599/601
372	Br CH ₃	520,4494	520/522

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
373	BH H ₂ C H ₂ C H ₂ C H ₃ C H ₄ C H ₅	512,47	512/514
374	Br H, C,	548,503	548/550
375	BIT HACK	610,5738	610/612
376		524,4414	524/526
377		574,4197	574/576

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
378	Br N H₂C HN OH CH₃	514,4858	514/516
379	Br H, CO H	528,5126	528/530
380	Br HN OH CH ₃	542,5394	542/544
381		496,3838	496/498
382	Br H ₂ C OH	574,4197	574/576

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
383	Br H ₂ C HN OSE II	534,4762	534/536
384	Br N H ₂ C N N N N N N N N N N N N N N N N N N N	541,4681	541/543
385	Br HN OH CH3	486,4322	486/488
386	Br N N H ₂ C HN O⇒S CH ₃	500,459	500/502
387	Br Hy OH CH ₃	501,4471	501/503
388	Br H ₂ C CH ₃ CH ₃	543,5275	543/545

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
389	Br H ₂ C OH	537,4801	537/539
390	Br N H ₂ C HN OH	520,4494	520/522
391	Bh. H.2C. ZH. CO.	554,8945	554/556
392	Br H ₂ C OH OH	510,4106	510/512
393		529,4571	529/531

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
394	Br Hyc OH	474,3776	474/476
395		512,4508	512/514
396	Br H ₂ C N	513,4581	513/515
397		527,4849	527/529
398	Br OH Have O	524,4127	524/526

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
399	Br HN HN ON N HN HN ON N H ₂ C H ₃ C	527,4849	527/529
400	BE TO SERVICE STATE OF THE SER	507,4107	507/509
401	BE H2C F	524,4127	524/526
402	B TO THE TOTAL TOT	507,4107	507/509
403		536,4484	526/538

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
404	Br H ₂ C OH	536,4484	536/538
405	DE H ₂ C NH ₂ C NH ₂ C	599,5283	599/601
406	Br H ₂ C OH CH ₃	520,4494	520/522
407	Br H ₂ C OH OH	529,4419	529/531
408	Br OH N CH ₃ O N O N O N O N O N O N O N O N O N O	534,4762	534/536

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
409	Br CH, OH	596,547	596/598
410	Br OH OH CH3	473,3935	473/475
411	Br N N N N N N N N N N N N N N N N N N N	510,4146	510/512
412	Br CH, OH	560,3929	560/562
413	Br CH ₃	500,459	500/502

Beispiel- Ñr.	Verbindung	Molgewicht	ESI-MS
414	DI OH OH NO CH ₃	514,4858	514/516
415	ON CH3 HN CH3 CH3	528,5126	528/530
416	Br HN OH	482,357	482/484
417	Br OH CH ₃ HN O⇒S F	560,3929	560/562
418	Bi H OH O	520,4494	520/522

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
419	Br OH OH	527,4413	527/529
420	O S S H CH3	472,4054	472/474
421	Br OH CH ₃ ON CH ₃ CCH ₃	486,4322	486/488
422	Br OH CH3 CH3 CH3	487,4203	487/489
423	Br CH ₃ ON CH ₃ CH ₃ CH ₃ CH ₃	529,5007	529/531

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
424	Br HN OH	523,4532	523/525
425	Gr HN OH OH	506,4226	506/508
426	Br CH ₃	540,8677	540/542
427	Br CH ₃ O→ CH ₃ O→ CH ₃	496,3838	496/498
428		515,4303	515/517

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
429	Br CH ₃ OH	460,3508	460/462
430	Br CH ₃	498,424	498/500
431	Br CH ₃ OH OH N N N N N N N N N N N N N N N N N	499,4313	499/501
432	Br HN OH	513,4581	513/515
433	Br CH, OH	510,3859	510/512

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
434	Br CH ₃ OH	513,4581	513/515
435	Br CH ₃ O S S N	493,3839	493/495
436	Br OH OH	510,3859	510/512
437	Br CH3	493,3839	493/495
438	DE CHASE OF THE CH	522,4216	522/524

Beispiel- Nr.	Verbindung	Molgewicht	ESI-MS
439	Br H ₂ C O	522,4216	522/524
440	Br OH OH	585,5015	585/587
441	Br CH ₃	506,4226	506/508
442	DH CH3	515,4151	515/517
443 *)	O S O H O O O O O O O O O O O O O O O O	416,30	416/418

^{*)} hergestellt nach dem unter Sulfonamide beschriebenen Verfahren

Herstellung der Pyrimidin-Sulfonylfluoride der allgemeinen Formel I

Die Herstellung der Pyrimidin-Sulfonsäurefluoride erfolgt analog zur Herstellung der Sulfonsäureamide.

5

10

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt [°C] und ESI-MS
444	O F O H O H	405,25	217-220 405/407
445		419,27	196-202 419/421

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt
			[°C] und ESI-MS
140		440.07	
446	0, 0 's F	419,27	165-196
	HN N OH		419/421
447	0,0 5,F	433,30	198-204
	HN N OH		433/435
448	0,.0 \$, F	433,30	144-149
	HN N OH		433/435
449	0, 0 S, F	447,33	219-222
	HN N OH		447/449

Beispiel-Nr.	Verbindung	Molgewicht	Schmelzpunkt
·			[°C]
			und ESI-MS
450	O O S F	405,25	170-173
	N OH		405/407
451	HN S F	419,27	226-228
450	N OH		419/421
452	O S F OH OH	433,30	433/435
453	HN N OH OH	447,33	447/449
454	HN N OH OH	433,30	433/435
455	HN OH OH	419,27	419/421

In analoger Verfahrensweise zu den oben beschriebenen Beispielen wurden auch die folgenden para-Verbindungen hergestellt:

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
456	Br CH ₃ OH	498,4432	498/500
457	Br H OH	534,4762	534/536
458		596,547	596/598
459	Br CH ₃ OO O TH CH ₃ OO O TH CH ₃	473,3935	473/475

5

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
460 ⁻	Br CH ₃ OD	510,4146	510/512
461	Br OH	560,3929	560/562
462	Br HZ CH3	500,459	500/502
463	Br CH ₃ OH	514,4858	514/516

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
464	CH ₃	528,5126	528/530
465	Br H ₂ O O O D D D D D D D D D D D D D D D D	542,5394	542/544
466	Br CH ₃	560,3929	560/562
467	Br H OH	520,4494	520/522

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
468	Br H OH	527,4413	527/529
469	Br OH OH	472,4054	472/474
470	Br CH ₃	486,4322	486/488
471	Br H OH OH CH3	529,5007	529/531
472	Br CH ₃ OH	442,336	442/444

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
473	Br CH, OH	523,4532	523/525
474	Br CH, OO O O O O O O O O O O O O O O O O O	506,4226	506/508
475	Br CH ₃ OUT OF H	540,8677	540/542
476	Br HN OH	496,3838	496/498

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
477	Br OH OH	515,4303	515/517
478	Br HN OH	460,3508	460/462
479	Br OH OH	498,424	498/500
480	Br HN OH OH H3C-O	536,4484	536/538
481	DF CH ₃	499,4313	499/501

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
482	Br HN OH	513,4581	513/515
483	Br CH ₃	510,3859	510/512
484	Br CH ₃ N CH ₃ N HN N H ₃ C N H ₃ C	513,4581	513/515
485	Br CH CO	493,3839	493/495
486	Br CH ₃ OD O	510,3859	510/512

Beispiel-Nr.	Verbindung	Molekular- gewicht	ESI-MS
487	Br CH ₃ OH	493,3839	493/495
488	Br HN CH ₃ OF NH	522,4216	522/524
489	Br CH, OH CCH, CCH, CCH, CCH, CCH, CCH, CC	522,4216	522/524
490	Br CH ₃ Octobro H ₂ N O tobro H ₂ N O	585,5015	585/587
491	Br CH	506,4226	506/508

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
492	Br CH ₃ HN CH ₃ N CH ₃ S CH ₃	515,4151	515/517
493		512,47	
494	Br Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	548,503	
495	Br N N N N N N N N N N N N N N N N N N N	610,5738	
496	Br H ₂ C CH ₃	487,4203	
497	B T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	524,4414	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
498	Br OH OH	574,4197	
499	B CH,	514,4858	
500	OH O	528,5126	
501	BE THE CHANGE OF	542,5394	
502	Br CH ₃	556,5662	
503	Br HZ PROPERTY OF THE PROPERTY	496,3838	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
504	Br HN OH F F	574,4197	
505	Br HN OH	534,4762	
506	Br HZ OH	541,4681	
507	Br H, C CH,	486,4322	
508	DE THE SECOND SE	500,459	
509	ON HAC N-CH3	501,4471	
510	OH CH3	543,5275	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
511	Br OH	456,3628	
512	Bi TZ NO	537,4801	
513	B H Z H Z H Z H Z H Z H Z H Z H Z H Z H	520,4494	
514	Br HN OH H ₂ C OCH ₃	566,4742	
515	DE NOTE OF THE PROPERTY OF THE	554,8945	
516	Br CH, CH,	510,4106	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
517	Br OH	529,4571	
518	Br OH O-CH ₃	474,3776	
519	Br OH	512,4508	
520	Br OH O CH,	550,4752	
521		513,4581	
522	ĕ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	527,4849	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
523	Br OH N N N N N N N N N N N N N N N N N N	524,4127	
524	Br OH OH OH	527,4849	
525	Br HN OH	507,4107	
526	B H H H H H H H H H H H H H H H H H H H	524,4127	
527		507,4107	
528	Br Hy OH	536,4484	

Beispiel-Nr.	Verbindung	Molekulargewicht	ESI-MS
529	Br H,c-o	536,4484	
530	Br OH OH NH2	599,5283	
531	Dr CH ₃	520,4494	
532	Br H, C, o H	529,4419	

Trennung von Diastereomerengemischen der erfindungsgemäßen Verbindungen

5 Trennung am Beispiel des Diastereomerengemisches der Verbindung Nr. 274

10

Das Diastereomerengemisch wurde in die beiden korrespondieren Racemate (A und B) mittels HPLC getrennt. Bedingungen:

Säule:

Kromasil C18(5µm) 150x4,6mm

15 Eluent: 25% Acetonitril / Wasser mit 1 ml NH3/l;

Fluß:

1,0 ml/min

Detektion:

PDA 300nm

Retentionszeiten: Racemate A - 11,6 min

Racemate B - 12,4 min

	Br H OH N N N N N N N N N N N N N N N N N N N	Br H OH N N N HN OO OO NH2 Racemate A
NMR	DMSO-d6: 9.68, s, 1 H 8.12, s, 1 H 7.87, d, 2 H 7.70, d, 2 H 7.14, s, 2 H 6.15, d, 1 H 5.01, d, 1 H 4.10, m, 1 H 3.80, m, 1 H 1.22, d, 3 H 1.1, d, 3 H	DMSO-d6: 9.68, s, 1 H 8.11, s, 1 H 7.85, d, 2 H 7.69, d, 2 H 7.16, s, 2 H 6.35, d, 1 H 4.90, d, 1 H 4.08, m, 1 H 3.80, m, 1 H 1.18, d, 3 H 1.12, d, 3 H

Nachfolgend wurden die Racemate A und B jeweils mittels chiraler HPLC getrennt.

5 Bedingungen:

Säule:

Chiralpak AD(10µm) 250x4,6mm

Eluent:

Hexan/ Ethanol 80:20

Fluß:

1,0 ml/min

Detektion:

PDA 300nm

10

Retentionszeiten: Enantiomer A1 - 16,6 min

Enantiomer A2 - 19,6 min

Enantiomer B1 - 16,0 min

Enantiomer B2 - 17,8 min

Herstellung der für die Synthese der erfindungsgemäßen Verbindungen der allgemeinen Formel I vorzugsweise verwendeten Zwischenstufen.

5 Beispiel 1.0

Herstellung von N-(2-Chlor-5-fluor-4-pyrimidinyl)-N-2-propynylamin

11,1g (66 mmol) 2,4-Dichlor-5-fluorpyrimidin werden in 60 ml Acetonitril gelöst, 10,2 ml (73 mmol) Triäthylamin und 6,0 ml (86 mmol) Propynylamin werden hinzugegeben. Das Reaktionsgemisch wird bei Raumtemperatur über Nacht gerührt und anschließend in Wasser gegossen. Die Mischung wird mittels Ethylacetat extrahiert, die kombinierten organischen Phasen werden über MgSO₂ getrocknet und das Lösemittel wird mittels Unterdruck evaporiert. Nach Umkristallisierung des verbleibenden Materials mit Diisopropylether / Hexan, beträgt die Ausbeute 10.6 g (87% der Theorie) des Produktes.

20

25

10

15

Die nachfolgenden beschriebenen 4-(Diaminocyclohexyl)-Derivate werden über reduktive Aminierungen des beschriebenen Keto-Derivates unter Verwendung von Triacetoxyborhydrid (Abdel-Magid, Carson, Harris, Maryanoff, Sha, *J. Org. Chem.* 1996, *61*, 3849) synthetisiert. Das Keto-Derivat wird durch TPAP-Oxidation (Griffith, Ley, *Aldrichimica Acta* 1990, *23*, 13) des entsprechenden Alkohols erhalten.

WO 02/096888 PCT/EP02/05669

In analoger Verfahrensweise werden auch folgende Zwischenverbindungen hergestellt.

	CC Z Z	CI N H	CI N N N N N N N N N N N N N N N N N N N	CI Z PA
Beispiel	1.1	1.2	1.3	1.4
-Nr.				
Löse-	CDCl ₃	DMSO	DMSO	DMSO
mittel				
5-H	7.87 (s,1H)	8.34 (s,1H)	8.24 (s,1H)	8.23 (s,1H)
4CH	4.32 (dd,2H)	4.48 (q,1H)	3.59 (td,2H)	3.21 (t,2H)
	2.30 (t,1H)	1.93 (dq,2H)	2.78 (t,2H)	1.10 (mc,1H)
		0.92 (t,3H)	7.57 (s,1H)	0.42 (mc,2H)
5CH	2.03 (s,3H)	3.66 (s,3H)	6.85 (s,1H)	0.37 (mc,2H)
			7.90 (tb,1H)	7.84 (t,1H)
NH	4.91 (sb,1H)	7.69 (d,1H)	11.92 (sb,1H)	
Aus-	80%	42%	33%	74%
beute				
Schmp.	121-121.5°C	73°C	90°C	98°C

	CI N N OH	CI N DH	CI N OH Br OH	CI N N N N N N N N N N N N N N N N N N N
Beispiel	1.5	1.6	1.7	1.8
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
6-H	8.26 (s,1H)	8.26 (s,1H)	8.27 (s,1H)	8.37 (s,1H)
4CH	3.59 (mc,2H)	3.58 (mc,2H)	3.58 (sb,4H)	4.40 (m, 1H)
	3.90 (mc,1H)	3.97(mc,1H)	4.14 (mc,1H)	3.49 (dd,1H)
	1.98 (mc,1H)	1.96 (mc,1H)		3.33 (dd,1H)
	0.94 (d,3H)	0.92 (d,3H)		3.26 (s,3H)
,	0.86 (d,3H)	0.84 (d,3H)		1.15 (d,3H)
ОН	4.67 (mb,1H)	4.74 (t,1H)	4.78 (sb,2H)	
NH	6.75 (sb,1H)	6.87 (d,1H)	6.73 (sb,1H)	7.29 (d, 1H)
Aus-	82%	91%	41%	74%
beute				
Schmp.	113-114°C	121 – 122°C	155-156°C	Öl

	CI N N N N	
Beispiel-Nr.	1.9	1.10
Lösemittel	DMSO	DMSO
6-H	8.24 (s,1H)	8.36 (s,1H)
4CH	3.49 (q,2H)	4.14 (d,2H)
	2.50 (t,2H)	3.18 (t,1H)
	2.42 (t,4H)	
	3.56 (t,4H)	
ОН		
NH	7.57 (sb,1H)	8.40 (s,1H)
Ausbeute	31%	73
Schmp.	118 – 119°C	103 – 104°C

·	CI N N NH ₂	CI NH NH O	CI N OH	CI N N S H OH
Beispiel	1.11	1.12	1.13	1.14
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
6-H	8.30 (s,1H)	8.32 (s,1H)	8.29 (s,1H)	8.24 (s,1H)
	4.46 (dq,1H)	5.04 (q,1H)	3.7-3.9 (2H)	4.25 (m,1H)
1	1.38 (d,3H)	2.39 (m,2H)	5.19 (m,1H)	3.48 (m,2H)
1			7.2-7.4 (5H)	
NH	7.60 (sb,1H)	4.31 (q,1H)	7.72 (d,1H)	1.86 (m,2H)
			5.09 (t,1H)	
ОН	7 20 (ab 1U)	4 40 (+ 111)		2.42 (211)
On	7.29 (sb,1H)	4.40 (t,1H)		2.43 (m,2H)
	7.21 (d,1H)	8.13 (d,1H)·	:	2.03(s,3H)
<u> </u>				7.13 (d,1H)
				4.88 (t,1H)
Aus-	87%	63%	99%	78%
beute				
Schmp.	234°C Zers.	210°C Zers.	152-153°C	130°C

	CI HO NOH	2 Z B	
Beispiel-Nr.	1.15	1.16	1.17
Lösemittel	DMSO	DMSO	DMSO
6-H	8.20 (s,1H)	8.21 (s,1H)	8.22 (s,1H)
	3.55 (m, 2H)	3.33 (q, 2H)	3.39 (q,2H)
	4.22 (m,1H)	1.53 (m,4H)	2.26 (t,2H)
	5.03 (m,2H)	1.28 (m,2H)	1.79 (q,2H)
	7.1-7.4 (5H)	2.29 (t,2H)	
NH	6.53 (d,1H)	7.74 (t,1H)	7.78 (t,1H)
	5.93 (d,1H)		12.11 (sb,1H)
Ausbeute	93%	99%	11%
Schmp.	Öl	Öl	Öl

	Br N CI	Br HZ Z O	Br HN N CI
Beispiel-Nr.	1.18	1.19	1.20
Ausbeute	86 %	64 %	87%
Masse	ESI: MH ⁺ 297(2%) 266 (22%) 234 (30%)	ESI: MH ⁺ 311 (2%) 248 (20%) 236 (18%)	CI: M+ 354 (100%) 352 (72%) 308 (54%)

	Br H N N O	Br H	Br HN CI
Beispiel-Nr.	1.21	1.22	1.23
Ausbeute	26 %	~20%	89%
Masse	EI: M ⁺ 327 (10%) 222 (36%) 105 (100%)	NMR , CDCl3 8,16 (s, 1H) 6,55 (s ,1H) 4,43 (d ,2H) 1,29 (s ,9H)	EI: M* 265 (15%) 236 (100%) 209 (18%)

	Chirel	Chiral	Br HN O
Beispiel-Nr.	1.24	1.25	1.26
Ausbeute	75 %	70 %	83 %
Masse	CI: M ⁺ 384 (100%) 212 (21%) 91 (7%)	CI M ⁺ 384 (100%) 212 (21%) 91 (7%)	ESI: 319 3% 278 100% 220 68%

	Br H OH
Beispiel-Nr.	1.27
Ausbeute	98 %
Masse	ESI:
	MH* 296 (90%)
	298 (100%)
	210 (12%)

Beispiel 2.0

Herstellung von 5-Brom-2-chlor-4-(4,4,4-trifluorbutoxy)pyrimidin

5-H 8.74 (s,1H) Chromatographie: H bis H/EA 9:1

4C 4.48 (t,2H) Ausbeute: 38%

H 2.00 (mc,2H) Schmelzpunkt: 66.5 - 67.5°C

2.44 (mc,2H)

5C

Н

In analoger Verfahrenweise werden auch die folgenden Verbindungen hergestellt:

	1	T CI
	CI N O Br	N Br
Beispiel-	2.1	2.2
Nr.		,
	CDCI ₃	DMSO
5-H	8.49 (s,1H)	8.75 (s,1H)
4CH	5.10 (d,2H)	4.05 (mc,2H)
		3.79 (mc,2H)
		3.60 (mc,2H)
5CH	2.59 (t,1H)	3.48 (mc,2H)
		3.40 (t,2H)
		1.07 (t,3H)
Chrom.	H to	DCM to DCM/
	H/EA 4:1	MeOH 95:5
Ausbeute	78%	11%
Schmp.	55°C	Öl

Analog zu den Verfahrensbeispielen 1 und 2 werden auch folgende Zwischenprodukte hergestellt:

Beispiel	1-2.1	Сі N — ОН Вг ОН	СI N N OH OH	CI HO,,,,, O HO,,,,,, O HO,,,,,,,,,,,,,,,
-Nr.				
Löse- Mittel	DMSO	DMSO	DMSO	DMSO
	8.26 (s,1H) 6.65 (d,1H) 4.70 (t,1H) 4.10 (dt,1H) 3.65 (at,2H) 0.90 (s,9H)	8.26 (s,1H) 6.65 (d,1H) 4.70 (t,1H) 4.10 (dt,1H) 3.65 (at,2H) 0.90 (s,9H)	8.29 (s,1H) 6.32 (s,1H) 4.89 (t,3H) 3.74 (d,6H)	8.28 (s,1H) 7.09 (d,1H) 5.05 (d,1H) 3.95 (m,1H) 3.60 (m,5H) 1.30 (s,3H) 1.28 (s,3H)
Aus- beute	49%	70%	16%	92%
Masse	309 (EI)	309 (EI)	314 (EI)	354 (EI)

		CI N N N N N N N N N N N N N N N N N N N	CI N OH	CI N N NOH
Beispiel -Nr.	1-2.5	1-2.6	1-2.7	1-2.8
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.15 (s,1H) 7.25 (t,1H) 3.16 (s,2H) 1.90 (s,3H) 1.61 (q,6H) 1.41 (s,6H)	8.22 (s,1H) 4.82 (t,1H) 4.49 (br,1H) 3.85 (m,1H) 3.76 (m,1H) 3.54 (m,1H) 3.40 (m,1H) 1.93 (m,3H) 1.80 (m,1H)	8.28 (s,1H) 6.29 (s,1H) 5.31 (t,1H) 3.39 (d,2H) 1.39 (s,6H)	8.22 (s,1H) 7.23 (d,1H) 4.60 (d,1H) 3.85 (m,1H) 3.35 (m,1H) 1.80 (m,4H) 1.53 (m,2H) 1.20 (m,2H)
Aus- beute	70%	75%	46%	24%
Masse	357 (EI)	293 (EI)	281 (EI)	305 (EI)

·	CI N N OH	CI N N N OH	CI N OH	CI ZZ
Beispiel	1-2.9	1-2.10	1-2.11	1-2.12
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.38 (s,1H) 4.81 (br,1H) 3.96 (m,2H) 3.72 (m,1H) 3.30 (m,2H) 1.81 (m,2H) 1.48 (m,2H)	8.22 (s,1H) 7.05 (d,1H) 4.82 (t,1H) 4.18 (m,1H) 3.42 (m,2H) 1.15 (d,3H)	8.21 (s,1H) 7.06 (d,1H) 4.81 (t,1H) 4.22 (m,1H) 3.47 (m,2H) 1.51 (m,2H) 1.37 (m,1H) 0.88 (m,6H)	8.31 (s,1H) 7.32 (d,1H) 4.35 (s,1H) 3.68 (s,3H) 2.32 (m,1H) 0.90 (dd,6H)
Aus-	19%	71%	99%	77 %
beute				
Masse	292 (EI)	266 (EI)	308 (EI)	322 (ES)

		CI N N N N N N N N N N N N N N N N N N N	CI N Br H	cr N N N N N H trans
Beispiel -Nr.	1-2.13	1-2.14	1-2.15	1-2.16
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.41 (s,1H) 8.11 (s,1H) 4.28 (t,2H)	8.25 (s,1H) 4.53 (m,1H) 3.88 (m,2H) 3.70 (dd,1H) 3.62 (dd,1H) 2.16 (m,1H) 2.02 (m,1H) 7.56 (d,1H)	8.19 (s,1H) 7.65 (t,1H) 3.18 (t,2H) 1.62 (m,6H) 1.16 (m,3H) 0.90 (m,2H)	8.19 (s,1H) 7.30 (d,1H) 3.65 (m,1H) 1.68 (m,5H) 1.25 (m,4H) 0.78 (d,3H)
Aus- beute	46%	72%	68%	31%
Masse	390 (FAB)	277 (EI)	303 (EI)	305 (EI)

	CI N Br	CI N N N N N N N N N N N N N N N N N N N	CI N N N N	D Z Z OH
Beispiel	1-2.17	1-2.18	1-2.19	1-2.20
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.21 (s,1H) 7.22 (d,1H) 3.88 (m,1H) 1.70 (m,4H) 1.50 (m,2H) 1.28 (m,1H) 1.01 (m,2H) 0.82 (d,3H)	8.35 (t,1H) 8.19 (s,1H) 3.40 (m,2H) 2.97 (p,1H) 2.22 (m,4H) 2.08 (dd,1H) 1.70 (m,6H)	8.21 (s,1H) 7.81 (t,1H) 3.41 (dd,2H) 2.31 (m,10H) 2.13 (s,3H) 1.70 (p,2H)	8.20 (s,1H) 7.71 (t,1H) 4.45 (br,1H) 3.40 (m,4H) 1.60 (m,2H) 1.44 (m,2H)
Aus- beute	22%	32%	28%	98%
Masse	303 (EI)	320 (EI)	349 (EI)	281 (EI)

	CI N OH	CI N N N		
Beispiel	1-2.21	1-2.22	1-2.23	1-2.24
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.25 (s,1H)	8.25 (s,1H)	8.20 (s,1H)	8.21 (s,1H)
	8.08 (d,1H)	7.38 (d,1H)	7.28 (d,1H)	7.24 (d,1H)
	7.35 (m,5H)	4.44 (m,1H)	4.19 (m,1H)	7.02 (t,1H)
	5.30 (m,1H)	2.60 (m,2H)	2.40 (m,6H)	4.40 (m,1H)
	4.81 (t,1H)	2.24 (m,2H)	1.50 (m,4H)	3.92 (m,1H)
	3.45 (m,2H)	2.07 (m,2H)	1.15 (d,3H)	2.95 (q,2H)
	2.05 (m,2H)	1.90 (m,2H)	0.91 (t,6H)	1.95 (m,2H)
				1.82 (m,2H)
				1.59 (m,2H)
				1.3 (m,6H)
!			ļ	0.82 (t,3H)
Aus- beute	97%	58%	52%	70%
Masse	343 (EI)	304 (ES)	348 (EI)	

,	Diastereomer 1/2	Diastereomer 1	Diastereomer 2	Diastereomer 1
Beispiel -Nr.	1-2.25	1-2.26	1-2.27	1-2.28
Löse- mittel	DMSO	DMSO	DMSO	DMSO
		8.22 (s,1H) 7.21 (d,1H) 3.82 (m,1H) 2.45 (m,4H) 2.22 (m,1H) 1.78 (m,8H) 1.45 (m,6H)	8.25 (s,1H) 6.87 (d,1H) 4.02 (m,1H) 2.45 (m,4H) 2.22 (m,1H) 1.78 (m,8H) 1.45 (m,6H)	8.22 (s,1H) 7.28 (d,1H) 3.85 (m,1H) 2.19 (s,6H) 2.15 (m,1H) 1.82 (m,4H) 1.50 (m,2H) 1.25 (m,2H)
Aus- beute	n.b.	26%	23%	51%
Masse	344 (EI)	374 (EI)	374 (EI)	334 (EI)

	Diastereomer 1+2 (ca.1:1)	Diastereomer 1+2 (ca.1:1)	Diastereomer 3+4 (ca.1:1)	CI Z O
Beispiel -Nr.	1-2.29	1-2.30	1-2.31	1-2.32
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.22 (s,2H) 7.28 (d,1H) 7.10 (d,1H) 4.00 (m,1H) 3.85 (m,1H) 2.19 (s,6H) 2.17 (s,6H) 2.15 (m,1H) 2.00 (m,1H) 1.82 (m,8H) 1.50 (m,6H) 1.25 (m,2H)	8.21 (s,1H) 7.18 (d,1H) 4.62 (s,1H) 4.20 (m,1H) 3.95 (m,1H) 2.75 (dd,1H) 2.50 (m,2H) 2.31 (dd,1H) 2.15 (s,1H) 2.00 (m,1H) 1.82 (m,4H) 1.55 (m,5H)	8.21 (s,1H) 7.22 (d,1H) 4.65 (s,1H) 4.15 (m,1H) 3.85 (m,1H) 2.78 (m,1H) 2.60 (m,1H) 2.38 (dd,1H) 1.95 (m,3H) 1.80 (m,2H) 1.52 (m,3H) 1.20 (m,2H)	8.71 (s,1H) 5.32 (m,1H) 3.82 (m,2H) 3.55 (m,2H) 2.00 (m,2H) 1.70 (m,2H)
Aus- beute	13%	35%	21%	40%
Masse	334 (EI)	374 (EI)	374 (EI)	292 (EI)

	CI N NH Br			Diastereomere 1+2 (ca.1:1)
Beispiel -Nr.	1-2.33	1-2.34	1-2.35	1-2.36
Löse-	DMSO	CDCI3	DMSO	CDCI3
mittel				
	8.50 (s,1H)	8.08 (s,1H)	8.23 (s,1H)	8.11 (s,2H,1+2)
1	4.10 (m,2H)	6.04 (m,1H)	7.27 (d,1H)	5.55 (m,1H,1)
	3.72 (m,1H)	5.71 (br,1H)	7.04 (t,1H)	5.29 (m,1H,2)
	3.30 (m,2H)	4.48 (d,2H)	4.46 (m,1H)	4.25 (m,1H,1)
	1.75 (m,2H)	3.71 (s,3H)	3.95 (m,1H)	3.98 (m,1H,2)
	1.35 (m,2H)	2.25 (s,3H)	2.94 (m,2H)	3.72 (m,8H,1+2)
			1.92 (m,4H)	2.65 (m,8H,1+2)
			1.62 (m,2H)	1.70
			1.32 (m,6H)	(m,18H,1+2)
			0.84 (t,3H)	
Aus-	3%	30%	70%	66%
beute		,		
Masse	291 (EI)	300 (ES)	405 (ES)	375 (ES)

	CI Z N		CI N OH	CI Z Z
Beispiel -Nr.	1-2.37	1-2.38	1-2.39	1-2.40
Löse- mittel	CDCI3	CDCI3	DMSO	DMSO
	8.14 (s,1H) 5.41 (m,1H) 4.49 (m,1H) 2.44 (m,6H) 1.79 (m,2H)	8.20 (s,1H) 7.71 (m,1H) 7.30 (m,6H) 4.97 (s,2H) 3.00 (m,2H) 1.40 (m,8H)	8.22 (s,1H) 6.35 (s,1H) 5.19 (t,1H) 3.54 (d,2H) 2.00 (m,2H) 1.75 (m,4H) 1.53 (m,2H)	8.22 (s,1H) 7.12 (d,1H) 4.10 (m,1H) 2.20 (m,1H) 1.89 (m,1H) 1.35 (m,8H)
Aus- beute	58%	77%	48%	60%
Masse	304 (ES)	427 (ES)	308 (EI)	301 (EI)

		CI N DH	CI N N N N N N N N N N N N N N N N N N N	CI N Br F F
Beispiel	1-2.41	1-2.42	1-2.43	1-2.44
-Nr.				
Löse-	DMSO	DMSO	DMSO	DMSO
mittel				
	8.19 (s,1H)	8.21 (s,1H)	8.28 (s,1H)	8.41 (s,1H)
	7.21 (d,1H)	7.03 (d,1H)	3.62 (q,4H)	8.15 (t,1H)
	4.03 (m,1H)	4.83 (t,1H)	1.18 (t,6H)	4.21 (td,2H)
	1.60 (m,12H)	4.13 (m,1H)		
		3.47 (m,2H)		
,		1.12 (d,3H)		
		,		
Aus-	73%	61%	13%	21%
beute				
Masse	303 (EI)	267 (EI)	265 (EI)	339 (EI)

	CI N N N N N N N N N N N N N N N N N N N	CI NOH	CI N N N N N N N N N N N N N N N N N N N	CI HO
Beispiel -Nr.	1-2.45	1-2.46	1-2.47	1-2.48
Löse- mittel	DMSO	DMSO	DMSO	DMSO
	8.36 (s,1H) 6.56 (s,1H) 3.81 (s,1H) 2.28 (m,2H) 1.83 (m,2H) 1.58 (m,6H)	8.26 (s,1H) 8.06 (d,1H) 7.30 (m,5H) 5.29 (m,1H) 4.81 (t,1H) 3.42 (m,2H) 2.10 (m,2H)	8.32 (t,1H) 8.15 (s,1H) 3.40 (m,2H) 2.34 (m,2H) 2.18 (s,6H) 1.69 (m,2H)	8.15 (s,1H) 7.06 (d,1H) 4.65 (br,1H) 3.79 (m,1H) 3.52 (m,1H) 1.86 (m,2H) 1.61 (m,2H) 1.25 (m,4H)
Aus- beute	84%	97%	22%	53%
Masse	314 (EI)	343 (EI)	294 (EI)	307 (EI)

	CI N OH		CI N Br	CI N OH
Beispiel -Nr.	1-2.49	1-2.50	1-2.51	1-2.52
Löse- mittel	DMSO	DMSO	DMSO	
	8.29 (s,1H) 6.05 (s,1H) 5.18 (m,1H) 3.54 (s,2H) 1.92 (m,2H) 1.70 (m,2H)	8.18 (s,1H) 7.25 (d,1H) 4.15 (m,1H) 2.40 (m,6H) 1.50 (m,4H) 1.17 (d,3H) 0.90 (dd,6H)	8,29 (s,1H) 6.18 (s,1H) 5.15 (t,1H) 3.70 (m,1H) 3.49 (m,1H) 2.60 (m,1H) 0.92 (d,3H) 0.83 (d,3H)	8.38 (s,1H) 7.28 (d,1H) 5.28 (t,1H) 4.65 (m,1H) 3.86 (m,2H) 3.65 (s,3H)
Aus- beute	16%	52%	27%	63%
Masse	308 (EI)	350 (EI)	308 (EI)	309 (EI)

		CI N OH	Сі и д
Beispiel	1-2.53	1-2.54	1-2.55
-Nr.		·	
Löse-	DMSO	DMSO	DMSO
mittel			
	8.22 (s,1H) 7.65 (t,1H) 7.30 (m,6H) 5.01 (s,2H) 3.38 (m,2H) 3.04 (m,2H) 1.68 (m,2H)	7.75 (s,1H) 6.55 (d,1H) 4.54 (m,1	8.18 (s,1H) 7.69 (t,1H) 4.32 (br,1H) 3.35 (m,4H) 1.40 (m,6H)
Aus- beute	77%	50%	43%
Masse	398 (EI)	229 (EI)	295 (EI)

Beispiel 3.0

Herstellung der Amine

5

10

15

4,5 g (20 mMol) 2-Brombutyraldehyddiethylacetal (Fa. Pfaltz-Bauer) und 5,2 g (80 mMol) Natriumazid werden 5 Tage in 15 ml DMF bei 100°C gerührt. Dann wird auf kalte verdünnte Natriumhydrogencarbonatlösung gegossen, 3x mit Ether extrahiert, die org. Phase mit Magnesiumsulfat getrocknet und eingeengt: Rohausbeute 1,87 g (50% d.Th.).

936 mg des Rohproduktes werden in 50 ml Methanol gelöst, mit Palladium auf Kohle (10%ig) versetzt und 12 Stunden unter H₂-Atmossphäre gerührt. Nach Abfiltrieren des Katalysators und Einengen verbleiben 457mg (57% der Theorie) des gewünschten Amins.

	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	H ₂ N	N=N+N+O	H ₂ N O
Beispiel-	3.0	3.1	3.2	3.3
Nr.			_	
Ausbeute	50%	57%	50 %	71 %
NMR	4,38 (d,1H)	4,19 (d, 1H)	4,38 (d, 1H)	4,25 (d , 1H)
CDCI3	3,72 (m , 2H)	3,68 (m , 2H)	3,58 (·m , 2H)	3,5 (m, 1H)
	3,6 (m, 2H)	3,52 (m , 2H)	3,5 (m, 1H) 3,49 (s, 3H)	3,42 (s,3H)
	3,25 (m , 1H)	2,7 (m, 1H)	3,43 (s, 3H)	3,41 (s, 3H) 3,40 (m, 1H)
	1,7 (m, 1H)	1,60 (m , 1H)	3,39 (s, 3H)	3,08 (m,1H)
!	1,46 (m , 1H)	1,25 (m , 1H)	,	
	1,25 (trtr , 6H)	1,2 (trtr , 6H)		
	1,0 (tr,3H)	0,95 (tr , 3H)		

5

Beispiel 4.0

Herstellung der freien Aldehyde

10

15

148 mg 0,5 mMol der Zwischenprodukt-Verbindung 1.18 werden in 1 ml Eisessig gelöst. Bei Raumtemperatur gibt man 0,5 ml 1N Salzsäure hinzu und rührt 12 Stunden. Zur Aufarbeitung wird auf Eiswasser gegossen und vorsichtig mit pulverisiertem Natriumhydrogencarbonat neutralisiert. Dann wird 3 mal mit

Essigester extrahiert, die org. Phase mit Magnesiumsulfat getrocknet und eingeengt. Rohprodukt 104 mg (83% der Theorie) des Aldehyds der Verbindung 4.0. Das Rohprodukt kann ohne weitere Reinigung eingesetzt werden.

	Br Z CI	Br Z C	Br HN CI	Br HZ O-
Beispiel	4.1	4.0	4.2	4.3
-Nr.				
Aus-	82 %	83 %	89 %	79 %
beute				
Masse	ESI:	ESI:	ESI:	ESI:
	MH⁺ 278	MH⁺ 250	MH ⁺ 266	MH+ 294
	(39%)	(9%)	(8%)	(10%)
	210 (100%)			

Beispiel 5.0

5 Herstellung der Ketone

100 mg (0,356 mMol) der Verbindung 6.0 und 126 mg N-Methylmorpholin-N-oxid werden in 5 ml Dichlormethan gelöst, und 10 min. mit pulverisiertem Molsieb (4 A) gerührt. Dann gibt man 6 mg Tetrapropylammoniumperruthenat hinzu und rührt 4 Stunden bei Raumtemperatur nach. Nach Einengen wird über Kieselgel chromatographiert (Hexan/Essigester 4:1 > 2:1). Ausbeute: 75 mg (76% derTheorie) des Ketons der Verbindung 5.0.

	Br N CI
Beispiel	5.0
-Nr.	
Aus-	76%
beute	
Masse	ESI:
	MH ⁺ 280
	(100%)
	200 (37%)
	156 (30%)

Beispiel 6.0

Herstellung der Alkohole

5

265 mg (1 mMol) der Verbindung 4.2 werden in 20 ml Tetrahydrofuran gelöst.
 Unter Eisbadkühlung werden 5 Equivalente Methylmagnesiumbromid (3 molare Lösung in Ether) portionsweise hinzugegeben. Dann wird 3 Stunden bei Raumtemperatur nachgerührt und anschließend unter Kühlung mit Wasser gequencht. Dann wird mit Ammoniumchloridlösung versetzt , 3 mal mit

 Essigester extrahiert, die organische Phase mit Magnesiumsulfat getrocknet und einengt. Flashchromatographie (Hexan/Essigester 2:1) ergibt 213 mg (76% der Theorie) des Alkohols der Verbindung 6.0.

20

ESI: MH+ 282 (100%) 276 (5%)

In analoger Verfahrensweise werden auch folgende Zwischenprodukte 5 hergestellt:

	Br H OH N N N N CI	Br H OH N OH N N CI	BH HX N
Beispiel	6.1	6.2	6.3
-Nr.			
Aus-	46%	32%	39%
beute			
Masse	EI:	ESI:	ESI:
	M ⁺ 267 (3%)	MH ⁺ 308	MH⁺ 296
	223 (100%)	(100%)	(100%)
	132 (27%)	306 (71%)	294 (73%)
		268 (31%)	217 (4%)

	Br Z C	Br HZ N C
Beispiel	6.4	6.5
-Nr.		
Aus-	36%	50%
beute		
Masse	EI:	ESI:
	M+ 281	MH ⁺ 310
	(3%)	(100%)
	223 (100%)	308 (87%)
	114 (38%)	298 (9%)

	Br H N CI	Br HN N CI	Br H N OH N CI
Beispiel -Nr.	6.6	6.7	6.8
Aus- beute	40%	~20%	35%
Masse	EI: M* 358 (100%) 356 (97%) 277 (29%)	CI: M ⁺ 310 (100%) 308 (84%) 130 (54%)	ESI: MH ⁺ 294 (28%) 296 (36%) 210 (100%)

	Br N C	Br N O
Beispiel	6.9	6.10
-Nr.		
Aus-	29 %	67 %
beute		
Masse	ESI:	ESI;
	MH⁺ 308	MH+ 310 (87%)
	(28%)	312 (100%)
	310	123 (24%)
	(38%)	
	210	٠.
	(100%)	

Gegenstand der vorliegenden Erfindung sind somit auch Verbindungen der allgemeinen Formel la

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

5

in der

D für Halogen, und X, R^1 , und R^2 die in der allgemeinen Formel (I) angegebenen Bedeutungen haben.

Insbesonders wertvoll sind solche Zwischenprodukte der allgemeinen Formel Ia, in der D für Chlor steht und X, R¹ und R² die in der allgemeinen Formel angegebenen Bedeutungen haben.

5

Ein weiterer Gegenstand der vorliegenden Erfindung sind auch solche Verbindungen, die unter das Schutzrecht DE 4029650 fallen und deren Wirkung im fungiziden Bereich liegt, die jedoch nicht als CDK-Inhibitoren beschrieben sind, und auch ihre Verwendung zur Behandlung von Krebs wird nicht beschrieben wird.

Nr.	Struktur	Name
5	HN N N N N N N N N N N N N N N N N N N	4-[[5-Brom-4-(2-propynylamino)-2- pyrimidinyl]amino]-phenol
6	HZ Z	4-[[5-Brom-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
16	S S S S S S S S S S S S S S S S S S S	5-Brom-N2-(4-methylthiophenyl)-N4-2-propynyl-2,4-pyrimidindiamin
22	HN N N N N N N N N N N N N N N N N N N	1-[4-[(5-Brom-4-(2-propynyloxy)-2-pyrimidinyl)amino]phenyl]-ethanon
23	HN N N N N N N N N N N N N N N N N N N	5-Brom-N2-(4-difluormethylthiophenyl)-N4-2- propynyl-2,4-pyrimidindiamin

Nr.	Struktur	Name
24	S F F F P P P P P P P P P P P P P P P P	5-Brom-N4-2-propynyl-N2-(4- trifluormethylthiophenyl)-2,4-pyrimidinediamin
35	HN S F F	5-Brom-N4-2-propynyl-N2-(3- trifluormethylthiophenyl)-2,4-pyrimidindiamin
37	HA PART OF THE PAR	N-[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]- indazol-5-amin
38		N-[5-Brom-4-(2-propynylamino)-2-pyrimidinyl]- benzthiazol-5-amin
42	OH NAME OF THE PART OF THE PAR	4-[[5-Fluor-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
43	OH HN N N	4-[[5-Chlor-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
50		1-[4-[(5-Brom-4-(2-propynylamino)-2-pyrimidinyl)amino]phenyl]-ethanon

Nr.	Struktur	Name
54		1-[4-[(5-lod-4-(2-propynylamino)-2-
	HN	pyrimidinyl)amino]phenyl]-ethanon
	n h	
70	~ Å	1-[4-[(5-Ethyl-4-(2-propynylamino)-2-
	HN	pyrimidinyl)amino]phenyl]-ethanon
	A A	
81	OH	1-[4-[(5-Brom-4-(2-propynylamino)-2-
	ни	pyrimidinyl)amino]phenyl]-ethanol
	H H	
82	ОН	1-[4-[(5-Brom-4-(2-propynyloxy)-2-
	ни	pyrimidinyl)amino]phenyl]-ethanol
	N Br	

Die Erfindung betrifft somit weiterhin pharmazeutische Mittel umfassend eine Verbindung der allgemeinen Formel I

in der

R¹ für Halogen oder C₁-C₃-Alkyl steht

5 X für Sauerstoff oder -NH steht,

A für Wasserstoff steht

B für Hydroxy, -CO-Alkyl- R^7 , -S-CHF₂, -S-(CH₂)_nCH(OH)CH₂N- R^3R^4 , -

S-CF₃, oder -CH-(OH)-CH₃, steht, oder

A und B unabhängig voneinander eine Gruppe

R²,R³, R⁴, R⁷ und R⁸ die in der allgemeinen Formel I angegebenen Bedeutungen haben, sowie der Isomere, Diastereomere, Enantiomere und Salze.

15

20

25

30

10

Die erfindungsgemäßen Mittel können ebenfalls zur Behandlung von Krebs, Autoimmunerkrankungen, kardiovaskulären Erkrankungen, Chemotherapeutikainduzierter Alopezie und Mukositis, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen Erkrankungen und
viralen Infektionen, wobei unter Krebs solide Tumoren und Leukämie, unter
Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter
kardiovaskulären Erkrankungen Stenosen, Arteriosklerosen und Restenosen,
unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene
Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter
chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung,
amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und
Alzheimer'sche Erkrankung, unter akut neurodegenerativen Erkrankungen
Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen
Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen
verwendet werden.

Die nachfolgenden Beispiele beschreiben die biologische Wirkung der erfindungsgemäßen Verbindungen ohne die Erfindung auf diese Beispiele zu beschränken.

5 Beispiel 1

CDK2/CycE Kinase Assay

- Rekombinante CDK2- und CycE-GST-Fusionsproteine, gereinigt aus
 Bakulovirus-infizierten Insektenzellen (Sf9), wurden von Dr. Dieter Marmé, Klinik für Tumorbiologie Freiburg, erhalten. Histon IIIS, das als Kinase-Substrat verwendet wurde, wurde bei der Fa. Sigma gekauft.
 CDK2/CycE (50 ng/Meßpunkt) wurde für 15 min bei 22°C in Anwesenheit verschiedener Konzentrationen an Testsubstanzen (0 μM, sowie innerhalb des
 Bereiches 0,01 100 μM) in Assaypuffer [50 mM Tris/HCI pH8,0, 10 mM MgCl₂, 0,1 mM Na ortho-Vanadat, 1,0 mM Dithiothreitol, 0,5 μM Adenosintrisphosphat (ATP), 10 μg/Meßpunkt Histon IIIS, 0,2 μCi/Meßpunkt ³³P-gamma ATP, 0,05% NP40, 12,5% Dimethylsulfoxid] inkubiert. Die Reaktion wurde durch Zugabe von EDTA-Lösung (250 mM, pH8,0, 14 μl/Meßpunkt) gestoppt.
- Von jedem Reaktionsansatz wurden 10 μl auf P30 Filterstreifen (Fa. Wallac) aufgetragen, und nicht-eingebautes ³³P-ATP wurde durch dreimaliges Waschen der Filterstreifen für je 10 min in 0,5%iger Phosphorsäure entfernt. Nach dem Trocknen der Filterstreifen für 1 Stunde bei 70°C wurden die Filterstreifen mit Szintillator-Streifen (MeltiLexTM A, Fa. Wallac) bedeckt und für 1 Stunde bei 90°C eingebrannt. Die Menge an eingebautem ³³P (Substratphosphorylierung) wurde durch Szintillationsmessung in einem gamma-Strahlungsmeßgerät (Wallac) bestimmt.

Beispiel 2

Proliferationsassay

Kultivierte humane Tumorzellen (wie angegeben) wurden in einer Dichte von 5 5000 Zellen/Meßpunkt in einer 96-Loch Multititerplatte in 200 ul des entsprechenden Wachstumsmediums ausplattiert. Nach 24 Stunden wurden die Zellen einer Platte (Nullpunkt-Platte) mit Kristallviolett gefärbt (s.u.), während das Medium der anderen Platten durch frisches Kulturmedium (200 ul), dem die 10 Testsubstanzen in verschiedenen Konzentrationen (0 µM, sowie im Bereich 0.01 - 30 µM; die finale Konzentration des Lösungsmittels Dimethylsulfoxid betrug 0,5%) zugesetzt waren, ersetzt. Die Zellen wurden für 4 Tage in Anwesenheit der Testsubstanzen inkubiert. Die Zellproliferation wurde durch Färbung der Zellen mit Kristallviolett bestimmt: Die Zellen wurden durch Zugabe von 20 15 ul/Meßpunkt einer 11%igen Glutaraldehyd-Lösung 15 min bei Raumtemperatur fixiert. Nach dreimaligem Waschen der fixierten Zellen mit Wasser wurden die Platten bei Raumtemperatur getrocknet. Die Zellen wurden durch Zugabe von 100 µl/Meßpunkt einer 0,1%igen Kristallviolett-Lösung (pH durch Zugabe von Essigsäure auf pH3 eingestellt) gefärbt. Nach dreimaligem Waschen der 20 gefärbten Zellen mit Wasser wurden die Platten bei Raumtemperatur getrocknet. Der Farbstoff wurde durch Zugabe von 100 µl/Meßpunkt einer 10%igen Essigsäure-Lösung gelöst. Die Extinktion wurde photometrisch bei einer Wellenlänge von 595 nm bestimmt. Die prozentuale Änderung des Zellwachstums wurde durch Normalisierung der Meßwerte auf die 25 Extinktionwerte der Nullpunktplatte (=0%) und die Extinktion der unbehandelten (0 µM) Zellen (=100%) berechnet.

Die Ergebnisse aus Beispiel 1 und 2 sind in der folgenden Tabelle angegeben.

Beispiel	Inhibition IC ₅₀	Proliferation IC ₅₀ [μ M]			Sw	
Nummer	[nM]					
	CDK2/CycE	MCF7	H460	HCT116	DU145	(g/l)
22	40	1,2	1,5	1,5	1,5	0.003
37	70	4				0.006
6	70	4	6			0.008
40	20	1	3	3	9	0.002
51	70	8				
20	60	4				
21	400	2				
1	300	8				
2	700					
16	300	3				
24	400	5				
26	300	3				
35	120	>10				
23	180	3				
11	6	0,2	0,5	0,3	0,2	
38	80	>10				
34	1800					
10	4	0,2	0,5	0,5	0,5	
12	400	4				
25	70	1,2	1,5	1,1	1,2	0.017
9	7	0,9		3	3	
7	6	0,7	1,5	1,2	0,5	0.028
31	800	7				0.0023
14	200	3				0.013
18	2000					0.039
3	200	8				0.039
19	800	>10				0.041
13	2000	>10				

Beispiel	Inhibition IC ₅₀	Proliferation IC ₅₀ [μΜ]				Sw
Nummer	[nM]					
	CDK2/CycE	MCF7	H460	HCT116	DU145	(g/l)
17	1000	>10				0.04
4	40	8				0.042
15	300	>10				0.024
8	<10	4				0.007
43	200	6				0.04
36	30	0,4	0,6	0,5	0,6	0.018
27	>10000					
42	2000					0.043
39	300					0.0016
44	8	1,2	0,4	0,4	0,3	0.005
45	10	2	1,7	1,2	0,5	0.0094
50	150					
5	90	10				0.043
46	7	2				0.0069
52	200	0,2	1,6	1,2	2	0.0005
53	300	1,6				0.026
54	100	1,1				0.0015
47	12	0,7	1,8	1,3	0,9	
56	80	4				0.023
49	50	>10				0.044
48	4	0,2	1	0,4	0,3	0.042
96	400					0.0005
98	2000					
85	2000					0.001
84	400					0.0005
86	3000					
87	250	0,8				0.003
22	40	1,2	1,5	1,5	1,5	0.003

Beispiel	Inhibition IC ₅₀	Proliferation IC ₅₀ [μM]		Sw		
Nummer	[n M]					
	CDK2/CycE	MCF7	H460	HCT116	DU145	(g/l)
37	70	4	-			0.006
6	70	4	6			0.008
16	300	3				
24	400	5				
35	120	>10				
23	180	3				
38	80	>10				
43	200	6				0.04
42	2000					0.043
50	150					
5	90	10				0.043
54	100	1,1				0.0015

Überlegenheitsnachweis der erfindungsgemäßen Verbindungen gegenüber den bekannten Verbindungen

Zum Nachweis der Überlegenheit der erfindungsgemäßen Verbindungen gegenüber den bekannten Verbindungen wurden die erfindungsgemäßen Verbindungen mit bekannten Referenzverbindungen und strukturähnlichen bekannten Verbindungen im Enzymtest verglichen. Das Ergebnis ist in der folgenden Tabelle aufgeführt.

Beispiel-Nr.	R ²	Α	CDK2/	MCF-7	Löslich-
			CycE	IC ₅₀ [μΜ]	keit
			IC ₅₀ [nM]		(g/l)
0,0	CH(C ₃ H ₇)-	-SO ₂ -N-	4	0.2	0,042
HN	CH₂-OH-	(CH ₂) ₂ -OH			
N OH					
Nr. 48					
HN OH OH	CH(CH ₂ OH) ₂	SO₂NH₂	7	0,9	0,009
Nr. 9					
O NH ₂	Propargyl-	SO ₂ NH ₂	6	0,2	
ни	NH-				
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z					
Nr. 11					

Beispiel-Nr.	R ²	Α	CDK2/	MCF-7	Löslich-
			CycE	IC ₅₀ [µM]	keit
			IC ₅₀ [nM]		(g/l)
					(3)
			7000	30	
NH NH					
HO N N N					
Olomoucine			,		
Chiral			1500	8	
HN N					
Roscovitine					
HN		·	1800	6	
Kenpaullone			·		
HN			90	1.2	
Alsterpaullone					
CI Chiral			10	2	
Purvalanol A					

Beispiel-Nr.	R ²	Α	CDK2/	MCF-7	Löslich-
			CycE	IC ₅₀ [µM]	keit
			IC ₅₀ [nM]		(g/l)
Beispiel 11 aus			190		
WO01/14375					
(Seite 38)					
HN N					

Aus den Ergebnissen der Tabelle ist zu erkennen, dass die erfindungsgemäßen Verbindungen sowohl im Enzym-Test, als auch im Zell-Test deutlich höhere Aktivitäten am Enzym und in MCF-7-Zellen als die aus dem Stand der Technik bekannten Verbindungen aufweisen. Damit sind die erfindungsgemäßen Verbindungen den bekannten Verbindungen weit überlegen.

Patentansprüche

1. Verbindungen der allgemeinen Formel I

5

in der

 R^1 10

für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe -COR⁵, -OCF₃, -(CH₂)_nR⁵, -S-CF₃ oder -SO₂CF₃ steht.

 R^2

für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, -NHC₁- C_6 -Alkyl, -N(C_1 - C_6 - $AlkyI)_2$, $-SO(C_1-C_6-AlkyI)_1$, $-SO_2(C_1-C_6-AlkyI)_2$, $C_1-C_6-AlkyI)_3$, $C_1-C_6-AlkyI)_4$

20

15

-CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc, Carboxy, Aryl,

Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n- R^5 , -(CH₂)_nPO₃(R^5)₂ oder mit der Gruppe - R^6 oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl

25

oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-

Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-

Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF3 oder

-OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch einoder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, oder für die Gruppe

5

 R^2

10

steht,

15

für Sauerstoff oder für die Gruppe -NH-, -N(C_1 - C_3 -Alkyl) oder für $-OC_3$ - C_{10} -Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromaten substituiert sein kann, steht oder

X und R^2

Χ

gemeinsam einen C₃–C₁₀ –Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiert sein kann,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe - SR^7 , - $S(O)R^7$, - SO_2R^7 , - $NHSO_2R^7$, - $CH(OH)R^7$, - $CR^7(OH)$ - R^7 , C_1 - C_6 -AlkylP(O)OR 3 OR 4 , - COR^7 oder für

stehen,

oder

5 A und B

gemeinsam einen C_3 - C_{10} -Cycloalkyl-Ring bilden der gegebenenfalls durch ein- oder mehrere Stickstoff, Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O oder =SO₂

		Gruppen im Ring unterbrochen sein kann und/ oder
		gegebenenfalls ein oder mehrere mögliche
		Doppelbindungen im Ring enthalten sein können und der
		C ₃ -C ₁₀ -Cycloalkyl-Ring gegebenenfalls ein- oder mehrfach,
5		gleich oder verschieden mit Hydroxy, Halogen, C ₁ -C ₆ -
		Alkoxy, C ₁ -C ₆ -Alkylthio, Amino, Cyano, C ₁ -C ₆ -Alkyl, C ₂ -C ₆ -
		Alkenyl, C ₃ -C ₁₀ -Cycloalkyl, C ₁ -C ₆ -Alkoxy-C ₁ -C ₆ -Alkyl, -
		$NHC_1-C_6-AlkyI$, $-N(C_1-C_6-AlkyI)_2$, $-SO(C_1-C_6-AlkyI)_1$, $-SO_2R^7$,
		C ₁ -C ₆ -Alkanoyl, -CONR ³ R ⁴ , -COR ⁵ , C ₁ -C ₆ -AlkylOAc,
10		Phenyl, oder mit der Gruppe R ⁶ substituiert sein kann, wobei
		das Phenyl selbst gegebenenfalls ein- oder mehrfach, gleich
		oder verschieden mit Halogen, Hydroxy, C₁-C ₆ -Alkyl, C₁-C ₆ -
		Alkoxy, oder mit der Gruppe -CF ₃ oder -OCF ₃ substituiert
	•	sein kann,
15	R ³ und R ⁴	jeweils unabhängig voneinander für Wasserstoff, Phenyl,
		Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy,
		C ₃ -C ₆ -Cycloalkyl, Hydroxy, Hydroxy-C ₁ -C ₆ -alkyl, Dihydroxy-
		C ₁ -C ₆ -alkyl, Heteroaryl, Heterocyclo-C ₃ -C ₁₀ -alkyl,
		Heteroaryl-C₁-C₃-alkyl,
20		gegebenenfalls mit Cyano substituiertes C ₃ -C ₆ -Cycloalkyl-
		C_1 - C_3 -alkyl, oder für
		gegebenenfalls ein- oder mehrfach, gleich oder verschieden
		mit Phenyl, Pyridyl, Phenyloxy, C ₃ -C ₆ -Cycloalkyl, C ₁ -C ₆ -
		Alkyl oder C ₁ -C ₆ -Alkoxy substituiertes C ₁ -C ₆ -Alkyl steht,
25		wobei das Phenyl selbst ein oder mehrfach, gleich oder
		verschieden mit Halogen, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy oder mit
		der Gruppe –SO ₂ NR ³ R ⁴ substituiert sein kann,
		oder für die Gruppe – $(CH_2)_nNR^3R^4$, - $CNHNH_2$ oder – NR^3R^4
00	D3 1D4	oder
30	R ³ und R ⁴	gemeinsam einen C ₃ -C ₁₀ -Cycloalkyl-Ring bilden der
		gegebenenfalls durch ein- oder mehrere Stickstoff,
		Sauerstoff und/ oder Schwefel-Atome unterbrochen sein
		kann und/ oder durch ein oder mehrere =C=O Gruppen im

WO 02/096888 PCT/EP02/05669 Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, steht, R^5 für Hydroxy, Phenyl, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Benzoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy steht, 5 R^6 für einen Heteroaryl oder C₃-C₁₀-Cycloalkyl-Ring steht, wobei der Ring die oben angegebene Bedeutung hat, R^7 für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₁₀-Cycloalkyl mit der oben angegebenen Bedeutung, oder für die Gruppe -NR³R⁴ steht, oder für ein-10 oder mehrfach, gleich oder verschieden mit Hydroxy, C₁-C₆-Alkoxy, Halogen, Phenyl, -NR³R⁴ oder Phenyl, welches selbst, ein-oder mehrfach gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-15 Alkoxy substituiert sein kann, substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht, oder für Phenyl steht, welches selbst ein- oder mehrfach, gleich oder 20 verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, Halo-C₁-C₆-Alkyl, Halo-C₁-C₆-Alkoxy substituiert sein kann, R⁸, R⁹ und R^{10} jeweils unabhängig voneinander für Wasserstoff, Hydroxy, 25 C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-30 Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁- C_6 -Alkyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, -NHC₁- C_6 -Alkyl, $-N(C_1-C_6-Alkyl)_2$, $-SO(C_1-C_6-Alkyl)_1$, $-SO_2(C_1-C_6-Alkyl)_1$ C₁-C₆-Alkanoyl, -CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc.

> Carboxy, Aryl, Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch ein- oder mehrere Stickstoff. Sauerstoff und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten sein können, stehen, und für 0 - 6 steht, bedeuten, sowie deren Isomeren, Diastereomeren, Enantiomeren und

20

15

5

10

2. Verbindungen der allgemeinen Formel I, gemäß Anspruch 1, in der R^1 für Wasserstoff, Halogen, C₁-C₆-Alkyl, Nitro oder für die Gruppe - COR^5 , - OCF_3 , - $(CH_2)_nR^5$, - $S-CF_3$ oder - SO_2CF_3 steht,

 R^2 25

n

Salze.

für C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkinyl oder C_3 - C_{10} -Cycloalkyl steht oder für ein- oder mehrfach, gleich oder verschieden mit Hydroxy, Halogen, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Amino, Cyano, C₁-C₆-Alkyl, -NH-(CH₂)_n-C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Hydroxyalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-Alkyl, C₁-C₆-Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, -NHC₁- C_6 -Alkyl, -N(C_1 - C_6 - $Alkyl_{2}$, $-SO(C_{1}-C_{6}-Alkyl_{1})$, $-SO_{2}(C_{1}-C_{6}-Alkyl_{1})$, $C_{1}-C_{6}-Alkanoyl_{1}$ -CONR³R⁴, -COR⁵, C₁-C₆-AlkylOAc, Carboxy, Aryl,

Heteroaryl, -(CH₂)_n-Aryl, -(CH₂)_n-Heteroaryl, Phenyl-(CH₂)_n-R⁵, -(CH₂)_nPO₃(R⁵)₂ oder mit der Gruppe -R⁶ oder -NR³R⁴ substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl oder C₃-C₁₀-Cycloalkyl steht und das Phenyl, C₃-C₁₀-Cycloalkyl, Aryl, Heteroaryl, -(CH₂)_n-Aryl und -(CH₂)_n-Heteroaryl selbst gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Heteroaryl, Benzoxy oder mit der Gruppe -CF₃ oder -OCF₃ substituiert sein kann, und der Ring des C₃-C₁₀-Cycloalkyls und das C₁-C₁₀-Alkyl gegebenenfalls durch einoder mehrere Stickstoff-, Sauerstoff- und/ oder Schwefel-Atome unterbrochen sein kann und/ oder durch ein oder mehrere =C=O Gruppen im Ring unterbrochen sein kann und/ oder gegebenenfalls ein oder mehrere mögliche Doppelbindungen im Ring enthalten

 R^8 oder R^8 R^9 R^9

20

25

5

10

15

 R^2

steht,

sein können, oder

für die Gruppe

X für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder für -OC₃-C₁₀ -Cycloalkyl welches ein- oder mehrfach, gleich oder verschieden mit einem Heteroaromaten substituiert sein kann, steht

oder

X und R² gemeinsam einen C₃–C₁₀ –Cycloalkyl-Ring bilden, der gegebenenfalls ein oder mehrere Heteroatome enthalten

kann und gegebenenfalls ein- oder mehrfach mit Hydroxy, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder Halaogen substituiert sein kann,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy, C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe -S- C_3 , -SO₂- C_2 H₄-OH, -CO- C_3 , -S- C_4 H₂-S- C_4 CH₂-S- C_4 CH₂-S- C_4 CH₂-S- C_4 CH₂-S- C_4 CH₃, -SO₂CH₃, -SO₂CH₃, -SO₂CH₃, -SO₂- C_4 CH₂-N-R³R⁴, -SO₂-NR³R⁴, -SO₂R⁷, -CH- C_4 CH₃

oder für

10

stehen, oder

5 A und B gemeinsam eine Gruppe

5 bilden können,

R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff, Phenyl,
Benzyloxy, C₁-C₁₂-Alkyl, C₁-C₆-Alkoxy, C₂-C₄-Alkenyloxy,
C₃-C₆-Cycloalkyl, Hydroxy, Hydroxy-C₁-C₆-alkyl, Dihydroxy-C₁-C₆-alkyl, Heteroaryl, Heterocyclo-C₃-C₁₀-alkyl,

Heteroaryl- C_1 - C_3 -alkyl, gegebenenfalls mit Cyano substituiertes C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, oder für

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C_3 - C_6 -Cycloalkyl, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy substituiertes C_1 - C_6 -Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder mit der Gruppe – $SO_2NR^3R^4$ substituiert sein kann,

oder für die Gruppe $-(CH_2)_nNR^3R^4$, $-CNHNH_2$ oder $-NR^3R^4$ oder für

10

15

*-
$$(CH_2)_n$$

*- $(CH_2)_n$

oder

*- $(CH_2)_n$

oder

5

stehen, welche gegebenenfalls mit C_1 - C_6 -Alkyl substituiert sein können,

steht,

 R^5

für Hydroxy, Phenyl, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Benzoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkoxy steht,

 R^6

für die Gruppe

10

für Halogen, Hydroxy, Phenyl, C₁-C₆-Alkyl, -C₂H₄OH, -NR³R⁴, oder die Gruppe

R⁸, R⁹ und

R¹⁰ jeweils unabhängig voneinander für Wasserstoff, Hydroxy,

C₁-C₆-Alkyl, C₃-C₆-Cyclolkyl oder für die Gruppe

5

stehen und

n für 0 – 6 steht, bedeuten, sowie deren Isomeren,

10 Enantiomeren, Diastereomeren und Salze.

3. Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 und 2, in der

15 R¹ für Wasserstoff, Halogen, C₁-C₃-Alkyl oder für die Gruppe

-(CH₂)_nR⁵ steht,

 R^2 für -CH(CH₃)-(CH₂)_n-R⁵, -CH-(CH₂OH)₂, -(CH₂)_nR⁷,

•	
	-CH(C_3H_7)-(CH_2) _n - R^5 , -CH(C_2H_5)-(CH_2) _n - R^5 , -CH ₂ - CN ,
	-CH(CH ₃)COCH ₃ , -CH(CH ₃)-C(OH)(CH ₃) ₂ ,
•	-CH(CH(OH)CH ₃)OCH ₃ , -CH(C ₂ H ₅)CO-R ⁵ , C ₂ -C ₄ -Alkinyl,
	$-(CH_2)_n-COR^5$, $-(CH_2)_n-CO-C_1-C_6-Alkyl$, $-(CH_2)_n-C(OH)(CH_3)-COH_2$
5	Phenyl, -CH(CH ₃)-C(CH ₃)-R ⁵ , -CH(CH ₃)-C(CH ₃)(C ₂ H ₅)-R ⁵ , -
	$CH(OCH_3)-CH_2-R^5$, - $CH_2-CH(OH)-R^5$, - $CH(OCH_3)-CHR^5-$
	CH_3 , $-CH(CH_3)-CH(OH)-CH_2-CH=CH_2$, $-CH(C_2H_5)-CH(OH)-CH_3$
	$(CH_2)_n$ - CH_3 , - $CH(CH_3)$ - $CH(OH)$ - $(CH_2)_n$ - CH_3 , - $CH(CH_3)$ -
	$CH(OH)-CH(CH_3)_2$, $(CH_2OAC)_2$, $-(CH_2)_n-R^6$, $-(CH_2)_n-(CF_2)_n-R^6$
10	$CF_{3,}$ -CH(CH ₂) _n -R ⁵) ₂ , -CH(CH ₃)-CO-NH ₂ , -CH(CH ₂ OH)-
	Phenyl, -CH(CH ₂ OH)-CH(OH)-(CH ₂) _n R ⁵ , -CH(CH ₂ OH)-
	CH(OH)-Phenyl, -CH(CH ₂ OH)-C ₂ H ₄ -R ⁵ , -(CH ₂) _n -C \equiv C-
	$C(CH_3)=CH-COR^5$, $-CH(Ph)-(CH_2)_n-R^5$, $-(CH_2)_n-COR^5$, $-$
	$(CH_2)_nPO_3(R^5)_2$, $-(CH_2)_n-COR^5$, $-CH((CH_2)_nOR^5)CO-R^5$, $-$
15	$(CH_2)_nCONHCH((CH_2)_nR^5)_2$, $-(CH_2)_nNH-COR^5$, -
	CH(CH ₂) _n R ⁵ -(CH ₂) _n C ₃ -C ₁₀ -Cycloalkyl, -(CH ₂) _n -C ₃ -C ₁₀ -
	Cycloalkyl, C ₃ -C ₁₀ -Cycloalkyl, gegebenenfalls ein- oder
	mehrfach, gleich oder verschieden mit Hydroxy, C ₁ -C ₆ -Alkyl
	oder der Gruppe –COONH(CH ₂) _n CH ₃ oder –NR ³ R ⁴
20	substituiertes C₁-C ₆ -Alkyl, C₃-C₁₀-Cycloalkyl, -(CH₂) _n -O-
	$(CH_2)n-R^5$, - $(CH_2)_n-NR^3R^4$,
	$-CH(C_3H_7)-(CH_2)_n-OC(O)-(CH_2)n-CH_3$, $-(CH_2)_n-R^5$,
	$-C(CH_3)_2-(CH_2)_n-R^5$, $-C(CH_2)_n(CH_3)-(CH_2)_nR^5$,
	$-C(CH_2)_n-(CH_2)_nR^5$, $-CH(t-ButyI)-(CH_2)_n-R^5$,
25	$-CCH_3(C_3H_7)-(CH_2)_nR^5$, $-CH(C_3H_7)-(CH_2)_n-R^5$,
	-CH(C_3H_7)-COR ⁵ , -CH(C_3H_7)-(CH ₂) _n -OC(O)-NH-Ph,
	$-CH((CH_2)_n(C_3H_7))-(CH_2)_nR^5$,
	-CH(C_3H_7)-(CH ₂) _n -OC(O)-NH-Ph(OR ⁵) ₃ , -NR ³ R ⁴ ,
	-NH-(CH ₂) _n -NR ³ R ⁴ , R ⁵ -(CH ₂)n-C*H-CH(R ⁵)-(CH ₂) _n -R ⁵ ,
30	-(CH ₂) _n -CO-NH-(CH ₂) _n -CO-R ⁵ , -OC(O)NH-C ₁ -C ₆ -Alkyl oder
	$-(CH_2)_n-CO-NH-(CH_2)_n-CH-((CH_2)_nR^5)_2,$
	oder für C ₃ -C ₁₀ -Cycloalkyl steht, welches mit der Gruppe

5 substituiert ist, oder für die Gruppe

$$-(CH_2)_n$$

$$-(CH$$

oder

10 steht,

WO 02/096888

PCT/EP02/05669

Χ

für Sauerstoff oder für die Gruppe -NH-, -N(C₁-C₃-Alkyl) oder

steht, oder

 $5 R^2$

für die Gruppe

$$\mathbb{R}^{8}$$
 oder \mathbb{R}^{8} \mathbb{R}^{9} \mathbb{R}^{9}

steht,

oder

X und R²

gemeinsam eine Gruppe

10

15

20

bilden,

A und B

jeweils unabhängig voneinander für Wasserstoff, Hydroxy,

 C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy oder für die Gruppe -S- CH_3 ,

-SO₂-C₂H₄-OH, -CO-CH₃, -S-CHF₂,

 $-S-(CH_2)_nCH(OH)CH_2N-R^3R^4$, $-CH_2PO(OC_2H_5)_2$, $-S-CF_3$,

 $-SO-CH_3, \ -SO_2CF_3, \ -SO_2-(CH_2)_n-N-R^3R^4, \ -SO_2-NR^3R^4, \\$

 $-SO_2R^7$, $-CH(OH)-CH_3$, -COOH, $-CH((CH_2)_nR^5)_2$, $-(CH_2)_nR^5$,

-COO-C₁-C₆-Alkyl, -CONR³R⁴ oder für

5

stehen, oder

A und B gemeinsam eine Gruppe

5

bilden können,

 R^3 und R^4

jeweils unabhängig voneinander für Wasserstoff, Phenyl, Benzyloxy, C_1 - C_{12} -Alkyl, C_1 - C_6 -Alkoxy, C_2 - C_4 -Alkenyloxy, C_3 - C_6 -Cycloalkyl, Hydroxy, Hydroxy- C_1 - C_6 -alkyl, Dihydroxy- C_1 - C_6 -alkyl, Heteroaryl, Heterocyclo- C_3 - C_{10} -alkyl, Heteroaryl- C_1 - C_3 -alkyl,

15

gegebenenfalls mit Cyano substituiertes C_3 - C_6 -Cycloalkyl- C_1 - C_3 -alkyl, oder für

20

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Phenyl, Pyridyl, Phenyloxy, C_3 - C_6 -Cycloalkyl, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy substituiertes C_1 - C_6 -Alkyl steht, wobei das Phenyl selbst ein oder mehrfach, gleich oder verschieden mit Halogen, Trifluormethyl, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder mit der Gruppe $-SO_2NR^3R^4$ substituiert sein kann.

oder für die Gruppe $-(CH_2)_nNR^3R^4$, $-CNHNH_2$ oder $-NR^3R^4$ oder für

25

5

*-(
$$CH_2$$
)_n *-(CH_2)_n *

10

stehen, welche gegebenenfalls mit C₁-C₆-Alkyl substituiert sein können,

 R^5 für Hydroxy, Phenyl, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Benzoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkoxy steht, für die Gruppe

oder o

steht,

 R^7

für Halogen, Hydroxy, Phenyl, C_1 - C_6 -Alkyl, - $(CH_2)_nOH$, - NR^3R^4 oder die Gruppe

5

10

steht,

R⁸, R⁹ und

 R^{10}

für Wasserstoff, Hydroxy, C₁-C₆-Alkyl oder für die Gruppe

-(CH₂)_n-COOH stehen, und

n

für 0 – 6 stehen, bedeuten, sowie deren Isomeren,

15

Diastereoisomeren, Enantiomeren und Salze.

4. Verwendung der Verbindung der allgemeinen Formel la

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

20

in der D für Halogen steht, und X, R¹, und R² die in der allgemeinen Formel (I) angegebenen Bedeutungen haben, als Zwischenprodukte zur Herstellung der Verbindung der allgemeinen Formel I.

25

Verwendung der Verbindungen der allgemeinen Formel la, gemäß 5. Anspruch 4, in der D für Chlor steht und X, R¹ und R² die in der allgemeinen Formel angegebenen Bedeutungen haben.

5

Pharmazeutische Mittel umfassend eine Verbindung der allgemeinen 6. Formel I in der

 R^1 für Halogen oder C₁-C₃-Alkyl steht

Χ für Sauerstoff oder -NH steht,

10 für Wasserstoff steht Α

> für Hydroxy, -CO-Alkyl-R⁷, -S-CHF₂, -В $S(CH_2)_nCH(OH)CH_2N-R^3R^4$, -S-CF₃, oder -CH-(OH)-CH₃,

steht, oder

A und B unabhängig voneinander eine Gruppe

15

R², R³, R⁴, R⁷ und R⁸ die in der allgemeinen Formel I angegebenen Bedeutungen haben, sowie deren Isomeren, Diastereomeren, Enantiomere und Salzen.

20

25

- 7. Verwendung der Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 3, zur Herstellung eines Arzneimittels zur Behandlung von Krebs, Autoimmunerkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis, kardiovaskulären Erkrankungen, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronisch und akut neurodegenerativen Erkrankungen und viralen Infektionen.
- 30
- 8. Verwendung gemäß Anspruch 7, dadurch gekennzeichnet, daß unter Krebs solide Tumoren und Leukämie, unter Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter kardiovaskulären

Erkrankungen Stenosen, Arteriosklerosen und Restenosen, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter nephrologischen Erkrankungen Glomerulonephritis, unter chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, unter akut

Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung, unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen,

Herpes, Hepatitis B und C und HIV Erkrankungen zu verstehen sind.

10

5

- 9. Arzneimittel, die mindestens eine Verbindung gemäß den Ansprüchen 1 bis 3 enthalten.
- 15 10. Arzneimittel gemäß Anspruch 9, zur Behandlung von Krebs,
 Autoimmunerkrankungen, kardiovaskulären Erkrankungen, infektiöse
 Erkrankungen, nephrologische Erkrankungen, neurodegenerative
 Erkrankungen und virale Infektionen.

20

11. Verbindungen gemäß den Ansprüchen 1 bis 3 und Arzneimittel gemäß den Ansprüchen 6 bis 7 mit geeigneten Formulierungs- und Trägerstoffen.

25

12. Verwendung der Verbindungen der allgemeinen Formel I und der pharmazeutischen Mitteln, gemäß den Ansprüchen 1 bis 3 und 6, als Inhibitoren der Zyklin-abhängigen Kinasen.

30

13. Verwendung gemäß Anspruch 12, dadurch gekennzeichnet, daß die Kinase CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 oder CDK9 ist.

14. Verwendung der Verbindungen der allgemeinen Formel I und der pharmazeutischen Mitteln, gemäß den Ansprüchen 1 bis 3 und 6 als Inhibitoren der Glycogen-Synthase-Kinase (GSK-3ß).

5

10

- 15. Verwendung der Verbindungen der allgemeinen Formel I, gemäß den Ansprüchen 1 bis 3, in Form eines pharmazeutischen Präparates für die enterale, parenterale und orale Applikation.
 - 16. Verwendung des Mittels gemäß Anspruch 6, in Form eines Präparates fur die enterale, parenterale und orale Applikation.

Fig 1

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 02/05669

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D239/48 A61K31/505 A61K31/506 A61P35/00 C07D239/47 C07D239/34 C07D239/42 C07D405/12 C07D401/12 C07D403/12 C07D409/12 C07D417/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BEILSTEIN Data, PAJ, CHEM ABS Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	DING, SHENG ET AL: "A Combinatorial Scaffold Approach toward Kinase-Directed Heterocycle Libraries" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2002), 124(8), 1594-1596, XP002210160 the whole document	1–16
P,X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 21 January 2002 (2002-01-21) retrieved from STN XP002210161 Order Number F0487-0047 & "Ambinter Exploratory Library", AMBINTER, F-75016 PARIS	1-3

Patent family members are listed in annex.
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of mailing of the International search report
12/09/2002
Authorized officer Kollmannsberger, M

INTERNATIONAL SEARCH REPORT

Intel onal Application No PCT/EP 02/05669

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICES, COLUMBUS, OHIO, US; retrieved from STN XP002210162 Order Numbers CD207267, CD207266 & "Oak Samples Product List" 8 October 2001 (2001-10-08), OAK SAMPLES LTD., 03680 KIEV-142, UKRAINE	1-3
P,Y	WO 02 04429 A (THOMAS ANDREW PETER; ASTRAZENECA UK LTD (GB); HEATON DAVID WILLIAM) 17 January 2002 (2002-01-17) claims	1-16
X	WO 98 33798 A (DOHERTY ANNETTE MARIAN; DOBRUSIN ELLEN MYRA (US); WARNER LAMBERT C) 6 August 1998 (1998-08-06) Seite 47 4-Hydroxymethylverbindungen page 141; table 2 claim 20	1-16
X	WO 00 53595 A (BREAULT GLORIA ANNE ;JAMES STEWART RUSSELL (GB); PEASE JANE ELIZAB) 14 September 2000 (2000-09-14) claims page 51; examples 7-9	1–16
Y	WO 01 14375 A (BEATTIE JOHN FRANKLIN; BREAULT GLORIA ANNE (GB); JEWSBURY PHILLIP) 1 March 2001 (2001-03-01) cited in the application claims	1-16
Υ	WO 00 39101 A (BREAULT GLORIA ANNE ;PEASE JANET ELIZABETH (GB); ASTRAZENECA UK LT) 6 July 2000 (2000-07-06) claims	1-16
Υ	WO 99 50251 A (CALVERT ALAN HILARY ; NOBLE MARTIN EDWARD MANTYLA (GB); BOYLE FRANC) 7 October 1999 (1999–10–07) claims	1-16
X	EP 0 310 550 A (CIBA GEIGY AG) 5 April 1989 (1989-04-05) claim 1	1-3
X	Tabelle 1 Verbindungen mit R3=H Tabelle 3 Verbindungen mit R3=H	4,5
	o·	

INTERNATIONAL SEARCH REPORT

Intel Intel

	PCT/EP 02/05669
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
DE 40 29 650 A (HOECHST AG) 26 March 1992 (1992-03-26) cited in the application claim 1 page 17 -page 57; table 1	1-3
DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., vol. 6, 1958, pages 338-341,	1-3
JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30 May 1991 (1991-05-30) claim 2 page 847, column 26; table 5	1-3
EP 0 224 339 A (IHARA CHEMICAL IND CO;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3 June 1987 (1987-06-03) claims 1-4 page 4; examples 3,13	1-3
BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2—AMINO—8—H—PYRIDOÄ2,3—DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET—DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 41, no. 22, 1998, pages 4365—4377, XP002191993 ISSN: 0022—2623 page 4367; examples 42,43 ————	1-3
	DE 40 29 650 A (HOECHST AG) 26 March 1992 (1992-03-26) cited in the application claim 1 page 17 -page 57; table 1 DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., vol. 6, 1958, pages 338-341, JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30 May 1991 (1991-05-30) claim 2 page 847, column 26; table 5 EP 0 224 339 A (IHARA CHEMICAL IND CO ;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3 June 1987 (1987-06-03) claims 1-4 page 4; examples 3,13 BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 41, no. 22, 1998, pages 4365-4377, XP002191993 ISSN: 0022-2623

INTERNATIONAL SEARCH REPORT mation on patent family members

Inte nal Application No PCT/EP 02/05669

						02/05009
Pa cited	atent document d in search report		Publication date		Patent family member(s)	Publication date
WO	0204429	Α	17-01-2002	AU WO	6931701 A 0204429 A1	21-01-2002 17-01-2002
WO	9833798	A	06-08-1998	AU BR EP HR JP WO ZA	6648098 A 9807305 A 0964864 A2 980060 A1 2001509805 T 9833798 A2 9800914 A	25-08-1998 02-05-2000 22-12-1999 30-06-1999 24-07-2001 06-08-1998 09-11-1998
WO	0053595	A .	14-09-2000	AU BR CN EP WO NO NZ	2818700 A 0008770 A 1349528 T 1161428 A1 0053595 A1 20014317 A 513893 A	28-09-2000 08-01-2002 15-05-2002 12-12-2001 14-09-2000 01-11-2001 28-09-2001
WO	0114375	Α	01-03-2001	AU BR CZ EP WO NO	6583300 A 0013476 A 20020617 A3 1214318 A1 0114375 A1 20020832 A	19-03-2001 30-04-2002 12-06-2002 19-06-2002 01-03-2001 12-04-2002
WO	0039101	Α	06-07-2000	AU BR CN EP WO NO	1874300 A 9916590 A 1335838 T 1140860 A1 0039101 A1 20013038 A	31-07-2000 23-10-2001 13-02-2002 10-10-2001 06-07-2000 22-08-2001
WO	9950251	Α	07-10-1999	AU CA EP WO JP	3155199 A 2326357 A1 1066266 A1 9950251 A2 2002509921 T	18-10-1999 07-10-1999 10-01-2001 07-10-1999 02-04-2002
EP	0310550	A	05-04-1989	ATU BG BR CA CN CN CZ CY DK EP ESI	89821 T 2287088 A 60541 B1 8804955 A 1317952 A1 1331759 A1 1329934 A1 1032441 A ,B 1064270 A ,B 1064191 A ,B 8905753 A3 8806385 A3 1770 A 3881320 D1 85993 A 536288 A 0310550 A1 2054867 T3 884409 A ,B,	15-06-1993 06-04-1989 28-08-1995 02-05-1989 18-05-1993 30-08-1994 31-05-1994 19-04-1989 09-09-1992 09-09-1992 16-11-1994 16-11-1994 20-10-1995 01-07-1993 20-07-1993 29-03-1989 05-04-1989 16-08-1994 29-03-1989

INTERNATIONAL SEARCH REPORT rmation on patent family members

Inte nal Application No PCT/EP 02/05669

	nt document n search report		Publication date		Patent family member(s)	Publication date
EP 0	310550			HK	21394 A	18-03-1994
				HR	940473 A1	30-04-1996
				HU	47787 A2	28-04-1989
				HU	213938 B	28-11-1997
				ΙE	62424 B	08-02-1995
				ΙL	87866 A	13-05-1993
				IL	102422 A	10-06-1993
				IL	102423 A	15-03-1993
				JP	1113374 A	02-05-1989
				JP	1924134 C	25-04-1995
				JP	6049689 B	29-06-1994
				KR	9206738 B1	17-08-1992
				LV	10613 A	20-04-1995
				ĹΫ	10613 B	20-04-1996
				ĹŸ	10614 A	20-04-1995
				ĹΫ	10614 B	20-04-1996
				LV	10556 A	20-04-1995
				ĹŸ	10556 B	20-04-1996
				ĹΫ	10676 A	20-06-1995
				ĹΫ	10676 B	20-04-1996
				МD	38 B1	31-08-1994
				MD	501 B1	29-03-1996
				MD	206 B1	31-05-1995
				MX	13166 A	01-09-1993
				NO	884284 A ,B,	29-03-1989
				NO	932441 A	29-03-1989
				NZ	226323 A	26-04-1990
				PH	26459 A	27-07-1992
				PL	274899 A1	11-12-1989
				PL	281026 A1	05-03-1990
		<u>-</u>				
DE 4	1029650 	A	26-03-1992 	DE 	4029650 A1 	26-03-1992
JP 0	3127790	Α	30-05-1991	NONE		
EP 0	224339	Α	03-06-1987	DE	3676460 D1	07-02-1991
				DE	224339 T1	05-11-1987
				EP	0224339 A2	03-06-1987
				JP	1901608 C	27-01-1995
				JP	6029263 B	20-04-1994
				JP	63208581 A	30-08-1988
				KR	9300149 B1	09-01-1993
				KR	9300150 B1	09-01-1993
				US	4988704 A	29-01-1991
				US	4900/04 A	21-03-1989

Inte nales Aktenzeichen PCT/EP 02/05669

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D239/48 A61K31/505

C07D409/12

CO7D239/34 CO7D239/42

A61K31/506 C07D405/12 A61P35/00 C07D401/12 C07D239/47 C07D403/12

C07D417/12 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO7D A61K

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, BEILSTEIN Data, PAJ, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich				

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Ρ,Χ	DING, SHENG ET AL: "A Combinatorial Scaffold Approach toward Kinase-Directed Heterocycle Libraries" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2002), 124(8), 1594-1596, XP002210160 das ganze Dokument	1-16
P,X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 21. Januar 2002 (2002-01-21) retrieved from STN XP002210161 Order Number F0487-0047 & "Ambinter Exploratory Library", AMBINTER, F-75016 PARIS	1-3
	_/	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- ausgerunn; Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolifdiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- *& Veröffentlichung, die Mitglied derseiben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

16. August 2002

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

12/09/2002 Bevollmächtigter Bediensteter

Kollmannsberger, M

Inte phales Aktenzeichen
PCT/EP 02/05669

C.(Fortsetzi	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P,X	DATABASE CHEMCATS 'Online! CHEMICAL ABSTRACTS SERVICES, COLUMBUS, OHIO, US; retrieved from STN XP002210162 Order Numbers CD207267, CD207266 & "Oak Samples Product List" 8. Oktober 2001 (2001-10-08), OAK SAMPLES LTD., 03680 KIEV-142, UKRAINE	1-3
P,Y	WO 02 04429 A (THOMAS ANDREW PETER; ASTRAZENECA UK LTD (GB); HEATON DAVID WILLIAM) 17. Januar 2002 (2002-01-17) Ansprüche	1-16
X	WO 98 33798 A (DOHERTY ANNETTE MARIAN;DOBRUSIN ELLEN MYRA (US); WARNER LAMBERT C) 6. August 1998 (1998-08-06) Seite 47 4-Hydroxymethylverbindungen Seite 141; Tabelle 2 Anspruch 20	1-16
X	WO OO 53595 A (BREAULT GLORIA ANNE ;JAMES STEWART RUSSELL (GB); PEASE JANE ELIZAB) 14. September 2000 (2000-09-14) Ansprüche Seite 51; Beispiele 7-9	1-16
Y	WO 01 14375 A (BEATTIE JOHN FRANKLIN ;BREAULT GLORIA ANNE (GB); JEWSBURY PHILLIP) 1. März 2001 (2001-03-01) in der Anmeldung erwähnt Ansprüche	1–16
Y	WO 00 39101 A (BREAULT GLORIA ANNE ;PEASE JANET ELIZABETH (GB); ASTRAZENECA UK LT) 6. Juli 2000 (2000-07-06) Ansprüche	1-16
Υ	WO 99 50251 A (CALVERT ALAN HILARY ;NOBLE MARTIN EDWARD MANTYLA (GB); BOYLE FRANC) 7. Oktober 1999 (1999-10-07) Ansprüche	1-16
Х	EP 0 310 550 A (CIBA GEIGY AG) 5. April 1989 (1989-04-05) Anspruch 1	1-3
Х	Tabelle 1 Verbindungen mit R3=H Tabelle 3 Verbindungen mit R3=H	4,5
	-/	

Inte onales Aktenzeichen
PCT/EP 02/05669

		PCI/EP 02	./ 05009
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.
Х	DE 40 29 650 A (HOECHST AG) 26. März 1992 (1992-03-26) in der Anmeldung erwähnt Anspruch 1 Seite 17 -Seite 57; Tabelle 1		1-3
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. BRN 249340, 265505 XP002210163 & NAITO, I. ET AL.: CHEM. PHARM. BULL., Bd. 6, 1958, Seiten 338-341,		1-3
X	JP 03 127790 A (MORISHITA PHARMACEUT CO LTD) 30. Mai 1991 (1991-05-30) Anspruch 2 Seite 847, Spalte 26; Tabelle 5		1-3
Х	EP 0 224 339 A (IHARA CHEMICAL IND CO;KUMIAI CHEMICAL INDUSTRY CO (JP)) 3. Juni 1987 (1987-06-03) Ansprüche 1-4 Seite 4; Beispiele 3,13		1-3
X	BOSCHELLI D H ET AL: "SYNTHESIS AND TYROSINE KINASE INHIBITORY ACTIVITY OF A SERIES OF 2-AMINO-8-H-PYRIDOÄ2,3-DÜPYRIMIDINES: IDENTIFICATION OF POTENT, SELECTIVE PLATELET-DERIVED GROWTH FACTOR RECEPTOR TYROSINE KINASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 41, Nr. 22, 1998, Seiten 4365-4377, XP002191993 ISSN: 0022-2623 Seite 4367; Beispiele 42,43		1-3

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 1-16 (teilweise)

Die vorliegenden Ansprüche beziehen sich u. a. auf "Isomere" strukturell definierter Verbindungen. Da unter "Isomeren" normalerweise Verbindungen mit gleicher Summenformel, aber unterschiedlicher Struktur (z. B. Konstitution) verstanden werden, ist nicht klar, auf welche Verbindungen die Ansprüche in dieser Beziehung gerichtet sein sollen (Art. 6 PCT). Die Recherche wurde daher auf strukturell in den Ansprüchen definierte Verbindungen beschränkt.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

nationales Aktenzeichen PCT/EP 02/05669

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr. well sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl die Ansprüche 12-16 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. X Ansprüche Nr. 1-16 (teilweise) weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle Internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser Internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nIcht rechtzeitig entrichtet. Der internationale Recher-chenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Angaben zu Veröffentlichu......... die zur selben Patentfamilie gehören

Inte nales Aktenzeichen
PCT/EP 02/05669

						
	n Recherchenbericht führtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
h	0204429	Α	17-01-2002	AU WO	6931701 A 0204429 A1	21-01-2002 17-01-2002
h	NO 9833798	A	06-08-1998	AU BR EP HR JP WO ZA	6648098 A 9807305 A 0964864 A2 980060 A1 2001509805 T 9833798 A2 9800914 A	25-08-1998 02-05-2000 22-12-1999 30-06-1999 24-07-2001 06-08-1998 09-11-1998
- h	VO 0053595	A	14-09-2000	AU BR CN EP WO NO NZ	2818700 A 0008770 A 1349528 T 1161428 A1 0053595 A1 20014317 A 513893 A	28-09-2000 08-01-2002 15-05-2002 12-12-2001 14-09-2000 01-11-2001 28-09-2001
	VO 0114375	A	01-03-2001	AU BR CZ EP WO NO	6583300 A 0013476 A 20020617 A3 1214318 A1 0114375 A1 20020832 A	19-03-2001 30-04-2002 12-06-2002 19-06-2002 01-03-2001 12-04-2002
V	NO 0039101	Α	06-07-2000	AU BR CN EP WO NO	1874300 A 9916590 A 1335838 T 1140860 A1 0039101 A1 20013038 A	31-07-2000 23-10-2001 13-02-2002 10-10-2001 06-07-2000 22-08-2001
<i>V</i>	√0 9950251	Α	07-10-1999	AU CA EP WO JP	3155199 A 2326357 A1 1066266 A1 9950251 A2 2002509921 T	18-10-1999 07-10-1999 10-01-2001 07-10-1999 02-04-2002
E	EP 0310550	A	05-04-1989	AT AU BG BR CA CN CCZ DE DK EP ES FI	89821 T 2287088 A 60541 B1 8804955 A 1317952 A1 1331759 A1 1329934 A1 1032441 A ,B 1064270 A ,B 1064191 A ,B 8905753 A3 8806385 A3 1770 A 3881320 D1 85993 A 536288 A 0310550 A1 2054867 T3 884409 A ,B,	15-06-1993 06-04-1989 28-08-1995 02-05-1989 18-05-1993 30-08-1994 31-05-1994 19-04-1989 09-09-1992 09-09-1992 16-11-1994 16-11-1994 20-10-1995 01-07-1993 20-07-1993 29-03-1989 05-04-1989 16-08-1994 29-03-1989

Angaben zu Veröffentlichu..., die zur selben Patentfamilie gehören

Inte | nales Aktenzeichen PCT/EP 02/05669

	<u></u>	T		,	
Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0310550 A	·	HK	21394	A	18-03-1994
2. 0020000 //		HR	940473		30-04-1996
		HÜ	47787		28-04-1989
		HU	213938		28-11-1997
		ΪĒ	62424		08-02-1995
		ĪĹ	87866		13-05-1993
		ĪĹ	102422		10-06-1993
		ĪĹ	102423		15-03-1993
		ĴΡ	1113374		02-05-1989
		JP	1924134		25-04-1995
		JP	6049689		29-06-1994
		KR	9206738		17-08-1992
		LV	10613		20-04-1995
		LV	10613		20-04-1995
		ĹV	10613		20-04-1995
		LV	10614		20-04-1996
		LV		A	20-04-1995
				В	
		LV			20-04-1996 20-06-1995
		LV		A	
		LV		В	20-04-1996
		MD	38		31-08-1994
		MD	501		29-03-1996
		MD	206		31-05-1995
		MX	13166		01-09-1993
		NO		А,В,	29-03-1989
		NO	932441		29-03-1989
		NZ		A	26-04-1990
		PH	26459		27-07-1992
		PL	274899		11-12-1989
		PL 	281026 	A1 	05-03-1990
DE 4029650 A	26-03-1992	DE	4029650	A1	26-03-1992
JP 03127790 A	30-05-1991	KEINE			
EP 0224339 A	03-06-1987	DE	3676460	D1	07-02-1991
		DE	224339	T1	05-11-1987
		EP	0224339		03-06-1987
		JP	1901608	С	27-01-1995
		JP	6029263	В	20-04-1994
		JP	63208581	Α	30-08-1988
		I/D	9300149	R1	09-01-1993
		KR	3200T42	D T	
		KR KR	9300150		09-01-1993
				B1	-