

La réponse du filtre est donnée par un produit de convolution

$$y(t) = x(t) *h(t) = \int_{-\infty}^{\infty} x(u)h(t-u)du$$

Réponse impulsionnelle :

• Réponse :

- Propriétés :
 - Commutative : f(t) * g(t) = g(t) * f(t)
 - Distributive: (x(t) + y(t)) g(t) = x(t) * g(t) + y(t) * g(t)
 - Associative: (x(t) * y(t)) * z(t) = x(t) * (y(t) * z(t))

Théorème de Plancherel :

Temps	Fréquences
Convolution *	Multiplication .
Multiplication	Convolution *

Autre propriété :

$$- f'*g = f*g' = (f*g)'$$

- - Spectre d'un signal échantillonné
 - Revisite du filtrage :
 - Passe haut
 - Passe bas
 - Passe Bande
 - Réjecteur
 - Déconvolution
- Autres conséquences
 - DoG Différence de gaussiennes
 - LoG Laplacien d'une gaussienne

Conséquence du lien convolution → multiplication

Spectre d'un signal échantillonné

$$f(t)$$
 Ш (t_0) =

Dans le domaine fréquentiel :

Conséquence du lien convolution → multiplication

• Revisite du filtrage :

Passe haut / Passe bas / Passe Bande / Réjecteur

Conséquence du lien convolution → multiplication

Revisite du filtrage :

Passe haut / Passe bas / Passe Bande / Réjecteur

Conséquence du lien convolution ↔ multiplication

- Convolution :
 - f * h => F x H
- Déconvolution
 - F/H
 - Très difficile si on ne connaît pas le filtre initial
 - Problème des 0 (ou des valeurs très petites dans H)

Conséquence du lien convolution ↔ multiplication

- Détection de bord
 - (f * gauss)' → f * gauss' (la dérivée de la gaussienne est connue formellement)
- LoG
 - Laplacien d'une gaussienne
- DoG
 - Différence de gaussienne

Passe Bas

- Description:
 - Coef central supérieur ou égal aux autres
 - Autres coefs positifs
- Effet:
 - Pixel central devient une moyenne pondérée des voisins
 - Les régions homogènes sont peu changées
 - Les frontières sont étalées
 - Réduit le bruit

Passe Haut

- Description:
 - Coef central positif et élevé
 - Autres coefs petits, négatifs ou nuls
 - La somme des coefficients est nulle
- Effet:
 - Zones homogènes : perte de la notion d'intensité
 - Frontières sont renforcées

Propriétés de la TF2D

Séverine Dubuisson

Transformée de Fourier

Transformée de Fourier

Transformée de Fourier

Signal Autres transformations

- Short Term Fourier Transform
- Discret Cosinus Transform
- Ondelettes
- Radon
- Wigner
- Hilbert

• ...

Signal Autres transformations

- DCT
 - Transformée en cosinus discrète

_

Image wikipedia

Signal <u>Autres transformations</u>

- Short Term Fourier Transform
 - Problème :
 - FT : soit le temps, soit la fréquence
 - Solution : Ne considérer que des petits intervalles

$$X(f,t') = \int_{-\infty}^{+\infty} x(t) w^{c}(t-t') e^{-2j\pi ft} dt$$

- Impact de la taille de w
 - W étroit => localisation temporelle correcte mais mauvaise résolution fréquentielle
 - W large => localisation temporelle imprécise mais bonne résolution fréquentielle

Signal Transformée en ondelettes

- Avantage :
 - FT : soit le temps, soit la fréquence
 - STFT : Difficulté de régler la taille de w et taille fixée une fois pour toutes.
 - Transformée en ondelettes :
 - Représentation temps-fréquence
 - la fréquence avec sa position spatiale
 - Adaptation de la résolution en fonction de la fréquence
 - Basses fréquences → Privilégie la résolution fréquentielle
 - Hautes fréquences → Privilégie la résolution temporelle
 - Analyse des signaux non stationnaires

Signal Transformée en ondelettes

Définition :

$$\Psi_{x}^{\Psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int x(t) \psi^{c} \left(\frac{t - \tau}{s}\right) dt$$

$$\Psi_{x}^{\Psi}(\tau, s) = \int x(t) \psi_{\tau, s}^{c}(t) dt$$

$$\psi_{(\tau, s)} = \frac{1}{\sqrt{|s|}} \psi \left(\frac{t - \tau}{s}\right)$$

Signal Transformée en ondelettes

- Exemples
 - Haar
 - Mexican Hat
 - Morlet

Ondelette de Haar Soure : wikipedia

Signal Autres transformations

- Usage
 - Compression
 - Filtrage
 - Approximation
 - •

