Find the smallest range for the chromatic number of a graph

Group 10

Tu Anh Dinh Michal Jarski Louis Mottet Vaishnavi Velaga Rudy Wessels Oskar Wielgos

Summited: Wednesday January 23, 2019

MAASTRICHT UNIVERSITY

Department of Data Science and Knowledge Engineering

Project block 1.3

Find the smallest range for the chromatic number of a graph

Group 10

Tu Anh Dinh Michal Jarski Louis Mottet Vaishnavi Velaga Rudy Wessels Oskar Wielgos

Summited: Wednesday January 23, 2019

Project coordinator: Prof. Jan Paredis

Preface

Summary

Contents

Summary

List of abbreviations and symbols

1	Introduction	1	
2	Methods 2.1 Decomposing the graphs	2 2 2 2 2 2	
	2.3.3 Complete graph 2.4 Genetic algorithm	2 2 2	
3	Experiments	3	
4	4 Results		
5	5 Discussion		
6	6 Conclusion		
Re	eferences	7	
$\mathbf{A}_{\mathbf{l}}$	ppendix	8	

Abbreviations and symbols

Introduction

Methods

2.1 Decomposing the graph

Seperate the disconnected graphs in the original graph Use breadth-first search

2.2 Greedy algorithm

Sort the vertices based on their constraints Try to reuse available colors.

2.3 Special cases

2.3.1 Bipartite

Use breadth-first search

2.3.2 Odd cycle

2.3.3 Complete graph

Check if every vertex is connected to all other vertices

2.4 Genetic algorithm

2.4.1 Fitness function

Based on the number of invalid coloring of each graph

- 2.4.2 Selection method
- 2.4.3 Crossover
- 2.4.4 Mutation
- 2.5 Brute force search

Experiments

Results

Discussion

Conclusion

References

Appendix