Divide & Conquer Proofs

Karim El Shenawy

January 2021

Introduction

This course notebook is the collection of theorem proofs, exercises and answers from Unit 1 of the Number Theory Through Inquiry (Mathematical Association of America Textbooks).

Divisibility & Congruence

1.1 Theorem

Let a, b, and c be integers. If a|b and a|c, then a|(b+c).

Proof. Our hypothesises that a|b and a|c both mean respectively, by definition, that $b = k_1 a$ and $c = k_2 a$ for some integer k_1 and k_2 . Also by definition, a|(b+c) means that $b+c=k_3 a$ for some integer k_3 . Using that we can say that $b+c=k_1 a+k_2 a=a(k_1+k_2)=k_3 a$. Thus by definition, $a|a(k_1+k_2)$, knowing that $(b+c)=a(k_1+k_2)$, we can satisfy the definition of a|(b+c).

1.2 Theorem

Let a, b, and c be integers. If a|b and a|c, then a|(b-c).

Proof. Our hypothesises that a|b and a|c both mean respectively, by definition, that $b=k_1a$ and $c=k_2a$ for some integer k_1 and k_2 . Also by definition, a|(b-c) means that $b-c=k_3a$ for some integer k_3 . Using that we can say that $b-c=k_1a-k_2a=a(k_1-k_2)=k_3a$. Thus by definition, $a|a(k_1-k_2)$, knowing that $(b-c)=a(k_1-k_2)$, we can satisfy the definition of a|(b-c).

1.3 Theorem

Let a, b, and c be integers. If a|b and a|c, then a|bc.

Proof. Our hypothesises that a|b and a|c both mean respectively, by definition, that $b = k_1 a$ and $c = k_2 a$ for some integer k_1 and k_2 . Also by definition, a|bc means that $bc = (k_1 a)(k_2 a) = k_1 k_2 a^2$. Using that we can say that $bc = (k_1 a)(k_2 a) = k_1 k_2 a^2$.

 $k_1k_2a^2=(k_1k_2a)a$. Thus by definition, $a|(k_1k_2a)$, knowing that $bc=(k_1k_2a)a$, we can satisfy the definition of a|bc.

1.4 Question

Can you weaken the hypothesis of the previous theorem and still prove the conclusion? Can you keep the same hypothesis, but replace the conclusion by the stronger conclusion that $a^2|bc$ and still prove the theorem?

We can weaken the hypothesis by saying that by definition, if a|c is true then a vertkc for some integer k. We can then maintain the same hypothesis and also state that because $bc = (k_1a)(k_2a) = k_1k_2a^2$, $a^2|bc$

1.5 Question

Can you formulate your own conjecture along the lines of the above theorems and then prove it to make your theorem?

We can formulate the following conjecture: Let a, b and c be integers. If a|b and a|c then a|t where t is the sum, difference or the multiplication total of b and c.

Proof. Using theorems 1.1, 1.2 and 1.3, we can proof this theorem. \Box

1.6 Theorem

Let a, b, and c be integers. If a|b, then a|bc.

Proof. Based off of Theorem 1.4, we can deduce that

1.7 Exercise

- 1. Is $45 \equiv 9 \pmod{4}$? Yes, since 4|(45-9) = 4|36 and 4 does divide 36.
- 2. Is $37 \equiv 2 \pmod{5}$? Yes, since 5|(37-2) = 5|35 and 5 does divide 35.
- 3. Is $37 \equiv 3 \pmod{5}$? No, since 5|(37-3) = 5|34 and 5 does not divide 34.
- 4. Is $37 \equiv -3 \pmod{5}$? Yes, since 5|(37 - (-3)) = 5|40 and 5 does divide 40.

1.8 Exercise

1. $m \equiv 0 \pmod{3}$. m can be any integer such that 3|m thus m can be any integer from $\{-3(N), -3(N-1)...-3(1), 3(1), 3(2), 3(3), 12, 15...3(N-1), 3(N)\}$ where is N is the length of the set.

- 2. $m \equiv 1 \pmod{3}$. m can be any integer such that 3|(m+1) thus m can be any integer from $\{-3(N)-1, -3(N-1)-1...-3(1)-1, 3(1)-1, 3(2)-1, 3(3)-1, 11, 14...3(N-1)-1, 3(N)-1\}$ where is N is the length of the set.
- 3. $m \equiv 2 \pmod{3}$. m can be any integer such that 3|(m+2) thus m can be any integer from $\{-3(N)-2, -3(N-1)-2...-3(1)-2, 3(1)-2, 3(2)-2, 3(3)-2, 10, 13...3(N-1)-2, 3(N)-2\}$ where is N is the length of the set.
- 4. $m \equiv 3 \pmod{3}$. m can be any integer such that 3|m thus m can be any integer from $\{-3(N), -3(N-1)...-3(1), 3(1), 3(2), 3(3), 12, 15...3(N-1), 3(N)\}$ where is N is the length of the set.
- 5. $m \equiv 4 \pmod{3}$. m can be any integer such that 3|m+4 thus m can be any integer from $\{-3(N)-1,-3(N-1)-1...-3(1)-1,3(1)-1,3(2)-1,3(3)-1,11,14...3(N-1)-1,3(N)-1\}$ where is N is the length of the set.

1.9 Theorem

Let a, and n be integers with n > 0. Then $a \equiv a \pmod{n}$.

Proof. By Definition, the statement above can be written as n|a-a which would also mean that n|0. And n does divide 0 with the following logic 0 = n * 0. \square

1.10 Theorem

Let a, b, and n be integers with n > 0. If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$

Proof. By definition, we can represent the above statements as n|a-b and n|b-a. Using the Theorem 1.2 proved above we can deduce that this is true.

1.11 Theorem

Let a, b, c and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$

Proof. By definition, $a \equiv b \pmod{n}$ can be represented as:

$$\begin{array}{c} (a-b)=nk & \text{for a given integer k} \\ \Rightarrow & 1)b=a-nk \end{array}$$

Similarly,

$$\begin{array}{c} (c-b) = ns & \text{for a given integer s} \\ \Rightarrow & 2)b = c - ns \end{array}$$

Now equating 1) and 2),

$$c = c$$

$$\Rightarrow \qquad \qquad a - nk = c - ns$$

$$\Rightarrow \qquad \qquad a - c = nk - ns$$

$$\Rightarrow \qquad \qquad a - c = n(k - s)$$

Thus, satisfying the claim that $a \equiv c \pmod{n}$.

1.12 Theorem

Let a, b, c, d and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$

Proof. By definition, $a \equiv b \pmod{n}$ can be represented as:

$$(a-b) = nk \qquad \qquad \text{for a given integer k}$$

$$\Rightarrow \qquad \qquad 1)b = a - nk$$

Similarly,

$$\begin{array}{ll} (c-d) = ns & \text{for a given integer s} \\ \Rightarrow & 2)d = c - ns \end{array}$$

Now adding 1) and 2),

$$b+d=(a-nk)+(c-ns)$$

$$\Rightarrow \qquad b+d=a+c-n(k+s)$$

$$\Rightarrow \qquad n(k+s)=(a+c)-(b+d)$$

Thus, satisfying the claim that $a + c \equiv b + d \pmod{n}$.

1.13 Theorem

Let a, b, c, d and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a - c \equiv b - d \pmod{n}$

Proof. By definition, $a \equiv b \pmod{n}$ can be represented as:

$$\begin{array}{ll} (a-b)=nk & \text{ for a given integer k} \\ \Rightarrow & 1)b=a-nk \end{array}$$

Similarly,

$$(c-d) = ns \qquad \qquad \text{for a given integer s} \\ \Rightarrow \qquad \qquad 2)d = c - ns$$

Now subtracting 1) and 2),

$$b-d = (a-nk) - (c-ns)$$

$$\Rightarrow b-d = a-c-n(k+s)$$

$$\Rightarrow n(k+s) = (a-c) - (b-d)$$

Thus, satisfying the claim that $a - c \equiv b - d \pmod{n}$.

1.14 Theorem

Let a, b, c, d and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $ac \equiv bd \pmod{n}$

Proof. By definition, $a \equiv b \pmod{n}$ can be represented as:

$$(a-b) = nk \qquad \qquad \text{for a given integer k} \\ \Rightarrow \qquad \qquad 1)b = a-nk$$

Similarly,

$$(c-d)=ns$$
 for a given integer s \Rightarrow $2)d=c-ns$

Now multiplying 1) and 2),

$$bd = (a - nk)(c - ns)$$

$$bd = ac - a(ns) - c(nk) + (nk)(ns)$$

$$bd = ac - n * (a(s) - c(k) + n(k)(s))$$

Thus, satisfying the claim that $ac \equiv bd \pmod{n}$.

1.15 Theorem

Let a, b and n be integers with n > 0. Show that if $a \equiv b \pmod{n}$ then $a^2 \equiv b^2 \pmod{n}$

Proof. $a^2 \equiv b^2 \pmod{n}$ can be represented as $a(a) \equiv b(b) \pmod{n}$ by exponential property. Based off Theorem 1.14, we know that $ac \equiv bd \pmod{n}$ if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. This shows that $a^2 \equiv b^2 \pmod{n}$ is true.

1.16 Theorem

Let a, b and n be integers with n > 0. Show that if $a \equiv b \pmod{n}$ then $a^3 \equiv b^3 \pmod{n}$

Proof. By properties of exponents, $a^3 \equiv b^3 \pmod{n}$ can be represented as $(a)a^2 \equiv (a)b^2 \pmod{n}$. Using theorems 1.14 and 1.15, we can satisfy that $a^3 \equiv b^3 \pmod{n}$ is true.

1.17 Theorem

Let a, b, k and n be integers with n > 0 and k > 1. Show that if $a \equiv b \pmod{n}$ and $a^{k-1} \equiv b^{k-1} \pmod{n}$, then

$$a^k \equiv b^k \pmod{n}$$

Proof. By properties of exponents, we can present the above statement as

$$a^{k} \equiv b^{k} \pmod{n}$$

$$a^{k}a^{1}a^{-1} \equiv b^{k}b^{1}b^{-1} \pmod{n}$$

$$a^{1}a^{k-1} \equiv b^{1}b^{k-1} \pmod{n}$$

Knowing that $a \equiv b \pmod{n}$ and $a^{k-1} \equiv b^{k-1} \pmod{n}$ and theorem 1.14, we can satisfy that $a^k \equiv b^k \pmod{n}$.

1.18 Theorem

Let a, b, k and n be integers with n > 0 and k > 1. Show that if $a \equiv b \pmod{n}$, then

Proof. Base case (k = 1):

$$a^k \equiv b^k \pmod{n}$$

 $a^1 \equiv b^1 \pmod{n}$

Thus making the statement true if k = 1.

Inductive Hypothesis: Assume k = h + 1Inductive Step:

$$a^k \equiv b^k \pmod{n}$$

 $a^{h+1} \equiv b^{h+1} \pmod{n}$
 $a^h a \equiv b^h b \pmod{n}$ (Exponential Property)

By theorem 1.14, we know that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $ac \equiv bd \pmod{n}$. This helps satisfies $a^{h+1} \equiv b^{h+1} \pmod{n}$ since $a^h \equiv b^h \pmod{n}$ and $a \equiv b \pmod{n}$.

1.19 Theorem

- 1.12 Theorem
- 1.13 Theorem
- 1.14 Theorem
- 1.15 Theorem

• 1.18 Theorem	
1.20 Theorem Let a, b, c and n be integers for which $ac \equiv bc \pmod{n}$. that $a \equiv b \pmod{n}$? Proof.	Can we conclude \Box
1.21 Theorem	
Let ?	
Proof.	
1.22 Theorem	
Let ?	
Proof.	
1.23 Theorem	
Let ?	
Proof.	
1.24 Exercise	
Let ?	
Proof.	
1.25 Exercise	
Let ?	
Proof.	
1.26 Exercise	
Let ?	
Proof.	

• 1.16 Theorem

• 1.17 Theorem

1.27 Exercise	
Let ?	
Proof.	
1.28 Exercise	
Let ?	
Proof.	
1.29 Exercise	
Let ?	
Proof.	
1.30 Exercise	
Let ?	
Proof.	
1.31 Exercise	
Let ?	
Proof.	
1.32 Exercise	
Let ?	
Proof.	
1.33 Exercise	
Let ?	
Proof.	
1.34 Exercise	
Let?	
Proof.	

1.35 Exercise	
Let ?	
Proof.	
1.36 Exercise	
Let ?	
Proof.	
1.37 Exercise	
Let ?	
Proof.	
1.38 Exercise	
Let ?	
Proof.	
1.39 Exercise	
Let ?	
Proof.	
1.40 Exercise	
Let ?	
Proof.	
1.41 Exercise	
Let ?	
Proof.	
1.42 Exercise	
Let ?	
Proof.	

1.43 Exercise	
Let ?	
Proof.	
1.44 Exercise	
Let ?	
Proof.	
1.45 Exercise	
Let ?	
Proof.	
1.46 Exercise	
Let ?	
Proof.	
1.47 Exercise	
Let ?	
Proof.	
1.48 Exercise	
Let ?	
Proof.	
1.49 Exercise	
Let ?	
Proof.	
1.50 Exercise	
Let ?	
Proof.	

1.51 Exercise	
Let ?	
Proof.	
1.52 Exercise	
Let ?	
Proof.	
1.53 Exercise Let ?	
Proof.	
1.54 Exercise	
Let ?	
Proof.	
1.55 Exercise	
Let ?	
Proof.	
1.56 Exercise	
Let ?	
Proof.	
1.57 Exercise	
Let ?	
Proof.	
1.58 Corollary Let ?	
Proof.	

1.59 Exercise

Let ?

Proof. \Box