Copyrighted Materials Copyright © 2002 Elsevier Retrieved from www.knovel.com

xiii

Contents

Preface

CI.		
Ch	apter 1 Fundamentals of Radiation for Atmospheric Applications	
1.1	Concepts, Definitions, and Units	1
	1.1.1 Electromagnetic Spectrum	1
	1.1.2 Solid Angle	2
	1.1.3 Basic Radiometric Quantities	4
	1.1.4 Concepts of Scattering and Absorption	6
1.2	Blackbody Radiation Laws	9
	1.2.1 Planck's Law	10
	1.2.2 Stefan–Boltzmann Law	11
	1.2.3 Wien's Displacement Law	12
	1.2.4 Kirchhoff's Law	13
1.3	Absorption Line Formation and Line Shape	14
	1.3.1 Line Formation	14
	1.3.1.1 Bohr's Model	14
	1.3.1.2 Vibrational and Rotational Transitions	16
	1.3.2 Line Broadening	21
	1.3.2.1 Pressure Broadening	21
	1.3.2.2 Doppler Broadening	23
	1.3.2.3 Voigt Profile	24
	1.3.3 Breakdown of Thermodynamic Equilibrium	25
1.4	Introduction to Radiative Transfer	27
	1.4.1 The Equation of Radiative Transfer	27
	1.4.2 Beer–Bouguer–Lambert Law	28
	1.4.3 Schwarzschild's Equation and Its Solution	29
	1.4.4 The Equation of Radiative Transfer for Plane-Parallel Atmospheres	31
	1.4.5 Radiative Transfer Equations for Three-Dimensional Inhomogeneous Media	33
Exe	rcises	34
Sug	gested Reading	36
Cha	apter 2 Solar Radiation at the Top of the Atmosphere	
2.1	The Sun as an Energy Source	37
	2.1.1 The Structure of the Sun	39
	2.1.2 Solar Surface Activity: Sunspots	41

V1	Contents
VI	Contents

2.2	The Earth's Orbit about the Sun and Solar Insolation	44
	2.2.1 Orbital Geometry	44
	2.2.2 Definition of the Solar Constant	50
	2.2.3 Distribution of Solar Insolation	51
2.3	Solar Spectrum and Solar Constant Determination	54
	2.3.1 Solar Spectrum	54
	2.3.2 Determination of the Solar Constant: Ground-Based Method	57
	2.3.3 Satellite Measurements of the Solar Constant	60
	rcises	62
Sug	gested Reading	64
	apter 3 Absorption and Scattering of Solar Radiation	
in t	he Atmosphere	
3.1	Composition and Structure of the Earth's Atmosphere	65
	3.1.1 Thermal Structure	65
	3.1.2 Chemical Composition	67
3.2	Atmospheric Absorption	70
	3.2.1 Absorption in the Ultraviolet	73
	3.2.1.1 Molecular Nitrogen	73
	3.2.1.2 Molecular Oxygen	73
	3.2.1.3 Ozone	75
	3.2.1.4 Other Minor Gases	75
	3.2.1.5 Absorption of Solar Radiation	75
	3.2.2 Photochemical Processes and the Formation of Ozone Layers	79
	3.2.3 Absorption in the Visible and Near Infrared	82 82
	3.2.3.1 Molecular Oxygen and Ozone	83
	3.2.3.2 Water Vapor 3.2.3.3 Carbon Dioxide	83
	3.2.3.4 Other Minor Gases	84
	3.2.3.5 Transfer of Direct Solar Flux in the Atmosphere	84
3.3	•	87
3.3	3.3.1 Rayleigh Scattering	87
	3.3.1.1 Theoretical Development	87
	3.3.1.2 Phase Function, Scattering Cross Section, and Polarizability	90
	3.3.1.3 Blue Sky and Sky Polarization	93
	3.3.2 Light Scattering by Particulates: Approximations	96
	3.3.2.1 Lorenz–Mie Scattering	96
	3.3.2.2 Geometric Optics	97
	3.3.2.3 Anomalous Diffraction Theory	100
3.4		102
	3.4.1 Fundamentals of Radiative Transfer	102
	3.4.2 Approximations of Radiative Transfer	105
	3.4.2.1 Single-Scattering Approximation	105
	3.4.2.2 Diffusion Approximation	106
3.5	Atmospheric Solar Heating Rates	107
Exe	rcises	111
Suggested Reading		
	apter 4 Thermal Infrared Radiation Transfer in the Atmosphere	114

4.1 The Thermal Infrared Spectrum and the Greenhouse Effect

116

		Contents	vii
4.2	Absorption and Emission in the Atmosphere		118
	4.2.1 Absorption in the Thermal Infrared		118
	4.2.1.1 Water Vapor		118
	4.2.1.2 Carbon Dioxide		119
	4.2.1.3 Ozone		120
	4.2.1.4 Methane		121
	4.2.1.5 Nitrous Oxide		121
	4.2.1.6 Chlorofluorocarbons		121
	4.2.2 Fundamentals of Thermal Infrared Radiative Transfer		122
	4.2.3 Line-by-Line (LBL) Integration		125
4.3	Correlated <i>K</i> -Distribution Method for Infrared Radiative Transfer		127
	4.3.1 Fundamentals		127
	4.3.2 Application to Nonhomogeneous Atmospheres		128
	4.3.3 Numerical Procedures and Pertinent Results		132
	4.3.4 Line Overlap Consideration		135
4.4	Band Models		137
	4.4.1 A Single Line		137
	4.4.2 Regular Band Model		139
	4.4.3 Statistical Band Model		141
	4.4.4 Application to Nonhomogeneous Atmospheres		144
4.5	Broadband Approaches to Flux Computations		148
	4.5.1 Broadband Emissivity		148
	4.5.2 Newtonian Cooling Approximation		150
4.6	Infrared Radiative Transfer in Cloudy Atmospheres		152
	4.6.1 Fundamentals		152
	4.6.2 Exchange of Infrared Radiation between Cloud and Surface		154
	4.6.3 Two/Four-Stream Approximation		157
4.7	Atmospheric Infrared Cooling Rates		160
Exe	rcises		165
Suggested Reading			168
Ch	apter 5 Light Scattering by Atmospheric Particulates		
CII	apter 5 Light Scattering by Atmospheric Farticulates		
5.1	Morphology of Atmospheric Particulates		169
5.2	Lorenz–Mie Theory of Light Scattering by Spherical Particles		176
	5.2.1 Electromagnetic Wave Equation and Solution		176
	5.2.2 Formal Scattering Solution		182
	5.2.3 The Far-Field Solution and Extinction Parameters		186
	5.2.4 Scattering Phase Matrix for Spherical Particles		191
5.3	Geometric Optics		195
	5.3.1 Diffraction		196
	5.3.2 Geometric Reflection and Refraction		200
	5.3.3 Geometric Optics, Lorenz–Mie Theory, and Representative Results		209
5.4	Light Scattering by Ice Crystals: A Unified Theory		215
	5.4.1 Geometric Optics for Ice Crystals		215
	5.4.1.1 Conventional Approach		215
	5.4.1.2 Improved Geometric Optics Approach		217
	5.4.1.3 Absorption Effects in Geometric Optics		219
	5.4.1.4 Monte Carlo Method for Ray Tracing		222
	5.4.2 Introduction to the Finite-Difference Time Domain Method		224
	5.4.3 Scattering Phase Matrix for Nonspherical Ice Particles		225

viii	Contents	

	5.4.4 Presentation of a Unified Theory for Light Scattering by Ice Crystals 5.4.4.1 The Essence of the Unified Theory	228 228
<i>5 5</i>	5.4.4.2 Theory versus Measurement and Representative Results	231
3.3	Light Scattering by Nonspherical Aerosols 5.5.1 Finite-Difference Time Domain Method	235 237
	5.5.2 <i>T</i> -Matrix Method	246
		249
Erro	5.5.3 Note on Light-Scattering Measurements for Nonspherical Aerosols	
	rcises	252
Sug	gested Reading	255
	apter 6 Principles of Radiative Transfer	
ın F	Planetary Atmospheres	
6.1	Introduction	257
	6.1.1 A Brief History of Radiative Transfer	257
	6.1.2 Basic Equations for the Plane-Parallel Condition	258
6.2	Discrete-Ordinates Method for Radiative Transfer	261
	6.2.1 General Solution for Isotropic Scattering	262
	6.2.2 The Law of Diffuse Reflection for Semi-infinite Isotropic Scattering Atmospheres	265
	6.2.3 General Solution for Anisotropic Scattering	267
	6.2.4 Application to Nonhomogeneous Atmospheres	270
6.3	Principles of Invariance	274
	6.3.1 Definitions of Scattering Parameters	274
	6.3.2 Principles of Invariance for Semi-infinite Atmospheres	277
	6.3.3 Principles of Invariance for Finite Atmospheres	280
	6.3.4 The X and Y Functions	285 287
<i>c</i> 1	6.3.5 Inclusion of Surface Reflection	
6.4	Adding Method for Radiative Transfer	290
	6.4.1 Definitions of Physical Parameters	290 292
	6.4.2 Adding Equations6.4.3 Equivalence of the Adding Method and the Principles of Invariance	292
	6.4.4 Extension to Nonhomogeneous Atmospheres for Internal Fields	293
	6.4.5 Similarity between the Adding and Discrete-Ordinates Methods	299
6.5	Approximations for Radiative Transfer	302
0.5	6.5.1 Successive-Orders-of-Scattering Approximation	302
	6.5.2 Two-Stream and Eddington's Approximations	303
	6.5.3 Delta-Function Adjustment and Similarity Principle	310
	6.5.4 Four-Stream Approximation	313
6.6	Radiative Transfer Including Polarization	317
0.0	6.6.1 Representation of a Light Beam	317
	6.6.2 Formulation	322
6.7	Advanced Topics in Radiative Transfer	325
0.,	6.7.1 Horizontally Oriented Ice Particles	325
	6.7.2 Three-Dimensional Nonhomogeneous Clouds	329
	6.7.2.1 Monte Carlo Method	332
	6.7.2.2 Successive-Orders-of-Scattering (SOS) Approach	334
	6.7.2.3 Delta Four-Term (Diffusion) Approximation	337
	6.7.3 Spherical Atmospheres	339
Exe	rcises	343
Sug	gested Reading	347

Chapter 7 Application of Radiative Transfer Principles			
to Remote Sensing			
	5 · · · · · · · · · · · · · · · · · · ·		
7.1	Introduction	348	
7.2	Remote Sensing Using Transmitted Sunlight	350	
	7.2.1 Determination of Aerosol Optical Depth and Size Distribution	351	
	7.2.1.1 Direct Linear Inversion	355	
	7.2.1.2 Constrained Linear Inversion	357	
	7.2.2 Determination of Total Ozone Concentration	358	
	7.2.3 Limb Extinction Technique	360	
7.3	Remote Sensing Using Reflected Sunlight	361	
	7.3.1 Satellite–Sun Geometry and Theoretical Foundation	361	
	7.3.2 Satellite Remote Sensing of Ozone	366	
	7.3.3 Satellite Remote Sensing of Aerosols	367	
	7.3.4 Satellite Remote Sensing of Land Surfaces	369	
	7.3.5 Cloud Optical Depth and Particle Size	370	
	7.3.5.1 Bidirectional Reflectance	371	
	7.3.5.2 Polarization	377	
7.4	7.3.5.3 Reflected Line Spectrum	379	
7.4	Remote Sensing Using Emitted Infrared Radiation	383	
	7.4.1 Theoretical Foundation	383 385	
	7.4.2 Surface Temperature Determination	383 387	
	7.4.3 Remote Sensing of Temperature Profiles 7.4.3.1 Nonlinear Iteration Method	391	
	7.4.3.1 Nonlinear iteration Method: Hybrid Retrieval	391	
	7.4.3.3 Cloud Removal	396	
	7.4.4 Remote Sensing of Water Vapor and Trace Gas Profiles	398	
	7.4.4.1 Water Vapor from the 6.3 μ m Vibrational–Rotational Band	398	
	7.4.4.2 Limb Scanning Technique	399	
	7.4.5 Infrared Remote Sensing of Clouds	403	
	7.4.5.1 Carbon Dioxide Slicing Technique for Cloud Top Pressure		
	and Emissivity	403	
	7.4.5.2 Emitted Radiance for Cloud Cover	406	
	7.4.5.3 Retrieval of Cirrus Cloud Optical Depth and Temperature	406	
	7.4.5.4 Information Content in Infrared Line Spectrum	408	
	7.4.6 Remote Sensing of Infrared Cooling Rate and Surface Flux	409	
7.5	Remote Sensing Using Emitted Microwave Radiation	414	
	7.5.1 Microwave Spectrum and Microwave Radiative Transfer	414	
	7.5.2 Rainfall Rate and Water Vapor Determination from Microwave Emission	419	
	7.5.3 Temperature Retrieval from Microwave Sounders	423	
7.6	Remote Sensing Using Laser and Microwave Energy	427	
	7.6.1 Backscattering Equation: Theoretical Foundation	427	
	7.6.2 Lidar Differential Absorption and Depolarization Techniques	430	
	7.6.2.1 Differential Absorption Technique	430	
	7.6.2.2 Principle of Depolarization	431	
	7.6.3 Millimeter-Wave Radar for Cloud Study	434	
	cises	436 441	
Sugg	Suggested Reading		
Cha	Chapter 8 Radiation and Climate		

8.1 Introduction

ix

442

Contents

X Contents

8.2	Radiation Budget of the Earth–Atmosphere System	444
	8.2.1 Observational Considerations	444
	8.2.1.1 Black and White Sensors Based on Radiative Equilibrium	445
	8.2.1.2 Scanning Radiometer and Angular Models	447
	8.2.2 Radiation Budget Viewed from Space	449
	8.2.3 Cloud Radiative Forcing Derived from ERB Data	451
	8.2.4 Radiative Heating/Cooling Rates of the Atmosphere	454
	8.2.5 Radiation Budget at the Surface	458
8.3	Radiative and Convective Atmospheres	459
	8.3.1 Radiative Equilibrium	459
	8.3.1.1 A Global Model	459
	8.3.1.2 A Vertical Model	462
	8.3.2 Radiative and Convective Equilibrium	464
	8.3.2.1 Heat Budget of the Earth–Atmosphere System	464
	8.3.2.2 Convective Adjustment	466
8.4	Radiation in One-Dimensional Climate Models	469
	8.4.1 Carbon Dioxide Greenhouse Effects	469
	8.4.2 Ozone and Other Greenhouse Gases	472
	8.4.2.1 Ozone	472
	8.4.2.2 Methane	473
	8.4.2.3 Nitrous Oxide	474
	8.4.2.4 Halocarbons	475
	8.4.3 Radiation Feedback Consideration	475
	8.4.4 Aerosols and Radiation	477
	8.4.5 Cloud Radiative Forcing	480
	8.4.5.1 Cloud Position and Cover	480
	8.4.5.2 Cloud Microphysics	481
	8.4.5.3 Aerosols/Clouds and Precipitation	483
8.5	Radiation in Energy Balance Climate Models	485
	8.5.1 Energy Budget of the Atmosphere and the Surface	485
	8.5.1.1 Atmosphere and Oceans	485
	8.5.1.2 Surface Energy Budget	489
	8.5.2 Radiative Forcing in Energy Balance Climate Models	491
	8.5.2.1 Linear Heating Approach	492
	8.5.2.2 Diffusion Approach	495
	8.5.3 Solar Insolation Perturbation	497
8.6	Radiation in Global Climate Models	499
	8.6.1 An Introduction to General Circulation Modeling	499
	8.6.2 Cloud Radiative Forcing in Global Climate Models	503
	8.6.2.1 Internal Radiative Forcing	504
	8.6.2.2 Greenhouse Warming and Cloud Cover Feedback	505
	8.6.2.3 Greenhouse Warming and Cloud Liquid/Ice Water Content Feedback	507
	8.6.2.4 Cloud Particle Size Feedback	510
	8.6.3 Direct Radiative Forcing: Aerosols and Contrails	510
	8.6.3.1 Aerosols	511
	8.6.3.2 Contrails	513
-	8.6.4 Radiation in El Niño–Southern Oscillation	514
	rcises	516
Sug	gested Reading	520
	endix A Derivation of the Planck Function	523
$App\epsilon$	endix B The Schrödinger Wave Equation	525

		Contents	xi
Appendix C	Spherical Geometry		527
Appendix D	Complex Index of Refraction, Dispersion of Light,		
	and Lorentz-Lorenz Formula		529
Appendix E	Properties of the Legendre Polynomials and Addition Theorem		533
Appendix F	Some Useful Constants		536
Appendix G	Standard Atmospheric Profiles		537
Appendix H	Answers to Selected Exercises		538
References			543
Index			557