Speech systems that emulate language acquisition in humans

Swiss Data Science Centre, EPFL, Sep. 2023

Herman Kamper

E&E Engineering, Stellenbosch University, South Africa http://www.kamperh.com/

Supervised speech recognition and synthesis

Why attempt to emulate language acquisition?

Improvements in speech technology

New insights and approaches for machines that learn

New insights into human learning

This talk: Science and engineering

- 1. Cognitive models of language acquisition
- 2. Enabling new speech technology

1. Cognitive models of language acquisition

Leanne Nortje

Kayode Olaleye

Dan Oneată

Large self-supervised spoken language models

HuBERT / WavLM:

Contrastive predictive coding (CPC):

Contrastive predictive coding as a language learner

Using images for grounding speech

Multimodal attention network (MattNet)

The acoustic context network is a CPC model trained on Places and LibriSpeech (level 1).

Attention visualisation

Attention visualisation

"fire hydrant"

2. Enabling new speech technology: Voice conversion

Benjamin van Niekerk

Matthew Baas

Marc-André Carbonneau

Baas et al., "Voice conversion with just nearest neighbors," in *Interspeech*, 2023. van Niekerk et al., "Rhythm modeling for voice conversion," *IEEE SPL*, 2023.

Large self-supervised spoken language models

HuBERT / WavLM

Voice conversion

Source: Play

Reference: Play

Output: Play

Existing voice conversion systems

Our key idea

k-nearest neighbours voice conversion (kNN-VC)

Voice conversion results

Model	$WER\downarrow$	EER ↑	MOS ↑	SIM ↑
Testset topline	5.96	_	4.24	3.19
VQMIVC (Wang et al., 2021)	59.46	2.22	2.70	2.09
YourTTS (Casanova et al., 2022)	11.93	25.32	3.53	2.57
FreeVC (Li et al., 2022)	7.61	8.97	4.07	2.38
kNN-VC	7.36	37.15	4.03	2.91

Fun samples

Cross-lingual conversion:

Source: Play

Reference: Play

Output: Play

Whispered music conversion:

Source: Play

Reference: Play

Output: Play

Human-to-animal conversion:

Source: Play

Reference: Play

Output: Play

Voice conversion with stuttered reference speech

Source: Play Reference: Play Output: Play Baseline: Play (TTS)

Source: Play Output: Play Baseline: Play (manual)

Conclusion

https://bshall.github.io/knn-vc

https://www.kamperh.com