Outline

- Best-first search
 - Greedy best-first search
 - A* search
 - Heuristics
- Local search algorithms
 - Hill-climbing search
 - Beam search
 - Simulated annealing search
 - Genetic algorithms
- Constraint Satisfaction Problems
 - Constraints
 - Constraint Propagation
 - Backtracking Search
 - Local Search

Many slides based on Russell & Norvig's slides Artificial Intelligence: A Modern Approach

Local Search Algorithms

- In many optimization problems, the path to the goal is irrelevant
 - the goal state itself is the solution
 - State space:
 - set of "complete" configurations
 - Goal:
 - Find a configuration that satisfies all constraints
- Examples:
 - n-queens problem, travelling salesman,
- In such cases, we can use local search algorithms

Local Search

Approach

- keep a single "current" state (or a fixed number of them)
- try to improve it by maximizing a heuristic evaluation
- using only "local" improvements
 - i.e., only modifies the current state(s)
- paths are typically not remembered
- similar to solving a puzzle by hand
 - e.g., 8-puzzle, Rubik's cube

Advantages

- uses very little memory
- often quickly finds solutions in large or infinite state spaces

Disadvantages

no guarantees for completeness or optimality

Optimization Problems

- Goal:
 - optimize some evaluation function (objective function)
- there is no goal state, and no path costs
 - hence A* and other algorithms we have discussed so far are not applicable
- Example:
 - Darwinian evolution and survival of the fittest may be regarded as an optimization process

Example: Travelling Salesman Problem

- Basic Idea:
 - Start with a complete tour
 - perform pairwise exchanges

 variants of this approach get within 1% of an optimal solution very quickly with thousands of cities

Example: n-Queens Problem

- Basic Idea:
 - move a queen so that it reduces the number of conflicts

 almost always solves n-queens problems almost instantaneously for very large n (e.g., n = 1,000,000)

Hill-climbing search

Algorithm:

- expand the current state (generate all neighbors)
- move to the one with the highest evaluation
- until the evaluation goes down

Hill-climbing search (aka Greedy Local Search)

Algorithm:

- expand the current state (generate all neighbors)
- move to the one with the highest evaluation
- until the evaluation goes down
- Main Problem: Local Optima
 - the algorithm will stop as soon as is at the top of a hill
 - but it is actually looking for a mountain peak

"Like climbing Mount Everest in thick fog with amnesia"

Other problems:

- ridges
- plateaux
- shoulders

State Space Landscape

- state-space landscape
 - location: states
 - elevation: heuristic value (objective function)
- Assumption:
 - states have some sort of (linear) order
 - continuity regarding small state changes

Multi-Dimensional State-Landscape

- States may be refine in multiple ways
 - → similarity along various dimensions

Example: 8-Queens Problem

- Heuristic h:
 - number of pairs of queens that attach each other
- Example state: h = 17

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14		13	16	13	16
W	14	17	15	Ψ	14	16	16
17	Ψ	16	18	15	W	15	Ψ
18	14	$\underline{\Psi}$	15	15	14		16
14	14	13	17	12	14	12	18

Example: 8-Queens Problem

- Heuristic h:
 - number of pairs of queens that attach each other
- Example state: h = 17

Best Neighbor(s): h = 12

Local optimum with h = 1

 no queen can move without increasing the number of attacked pairs

Randomized Hill-Climbing Variants

- Random Restart Hill-Climbing
 - Different initial positions result in different local optima
 - → make several iterations with different starting positions
- Example:
 - for 8-queens problem the probability that hill-climbing succeeds from a randomly selected starting position is ≈ 0.14
 - \rightarrow a solution should be found after about $1/0.14\approx 7$ iterations of hill-climbing

- Stochastic Hill-Climbing
 - select the successor node ramdomly
 - better nodes have a higher probability of being selected

Beam Search

- Keep track of k states rather than just one
 - k is called the beam size

Algorithm

- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Beam Search

- Keep track of k states rather than just one
 - k is called the beam size

Algorithm

- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Implementation

Can be implemented similar to the Tree-Search algorithm:

- sort the queue by the heuristic function h (as in greedy search)
- but limit the size of the queue to k
- and expand all nodes in queue simultaneously

Beam Search

- Keep track of k states rather than just one
 - k is called the beam size

Note

- Beam search is different from k parallel hill-climbing searches!
- Information from different beams is combined

Effectiveness

- suffers from lack of diversity of the k states
 - e.g., if one state has better successors than all other states
 - thus it is often no more effective than hill-climbing

Stochastic Beam Search

- chooses k successors at random
- better nodes have a higher probability of being selected

Simulated Annealing Search

- combination of hill-climbing and random walk
- Idea:
 - escape local maxima by allowing some "bad" moves
 - but gradually decrease their frequency (the temperature)
- Effectiveness:
 - it can be proven that if the temperature is lowered slowly enough, the probability of converging to a global optimum approaches 1
 - Widely used in VLSI layout, airline scheduling, etc

Note:

• Annealing in metallurgy and materials science, is a heat treatment wherein the microstructure of a material is altered, causing changes in its properties such as strength and hardness. It is a process that produces equilibrium conditions by heating and maintaining at a suitable temperature, and then cooling very slowly.

Simulated Annealing Search

combination of hill-climbing and random walk

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
 inputs: problem, a problem
           schedule, a mapping from time to "temperature"
 local variables: current, a node
                      next, a node
                      T, a "temperature" controlling prob. of downward steps
 current \leftarrow Make-Node(Initial-State[problem])
 for t \leftarrow 1 to \infty do
      T \leftarrow schedule[t]
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
      \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Genetic Algorithms

- Same idea as in Stochastic Beam Search
 - but uses "sexual" reproduction (new nodes have two parents)
- Basic Algorithm:
 - Start with k randomly generated states (population)
 - A state is represented as a string over a finite alphabet
 - often a string of 0s and 1s
 - Evaluation function (fitness function)
 - Produce the next generation by selection, cross-over, and mutation

Fitness Selection Pairs Cross-Over Mutation

Cross-Over

- Modelled after cross-over of DNA
 - take two parent strings
 - cut them at cross-over point
 - recombine the pieces

it is helpful if the substrings are meaningful subconcepts

Genetic Algorithm

```
function GENETIC ALGORITHM(population, FITNESS-FN) return an individual
  input: population, a set of individuals
         FITNESS-FN, a function which determines the quality of the individual
  repeat
      new population \leftarrow empty set
       loop for i from 1 to SIZE(population) do
           x \leftarrow \text{RANDOM SELECTION}(population, \text{FITNESS FN})
           y \leftarrow \text{RANDOM SELECTION}(population, \text{FITNESS FN})
           child \leftarrow REPRODUCE(x, y)
           if (small random probability) then child \leftarrow \text{MUTATE}(child)
           add child to new population
      population \leftarrow new population
  until some individual is fit enough or enough time has elapsed
  return the best individual in population, according to FITNESS FN
```

Genetic Algorithms

Evaluation

- attractive and popular
 - easy to implement general optimization algorithm
 - easy to explain to laymen (boss)
- perform well
 - unclear under which conditions they work well
 - other randomized algorithms perform equally well (or better)

Numerous applications

- optimization problems
 - circuit layout
 - job-shop scheduling
- game playing
 - checkers program Blondie24 (David Fogel)
 - nice and easy read, but shooting a bit over target in its claims...

Genetic Programming

popularized by John R. Koza

Genetic programming is an automated method for creating a working computer program from a high-level problem statement of a problem. It starts from a high-level statement of "what needs to be done" and automatically creates a computer program to solve the problem.

- applies Genetic Algorithms to program trees
 - Mutation and Cross-over adapated to tree structures
 - special operations like
 - inventing/deleting a subroutine
 - deleting/adding an argument,
 - etc.
- Several successful applications
 - 36 cases where it achieve performance competitive to humans http://www.genetic-programming.com/humancompetitive.html
- More information at http://www.genetic-programming.org/

Random Initialization of Population

Mutation

Cross-Over

Create a Subroutine

Delete a Subroutine

Duplicate an Argument

Delete an Argument

Create a Subroutine by Duplication

Local Search in Continuous Spaces

In many real-world problems the state space is continuous

- Discretize the state space
 - e.g., assume only n different positions of a steering wheel or a gas pedal
- Gradient Descent (Ascent)
 - hill-climbing using the gradient of the objective function f
 - f needs to be differentiable
- Empirical Gradient
 - empirically evaluate the response of f to small state changes
 - same as hill-climbing in a discretized space