Dispense essenziali di Fisica 1

Matteo Bitussi Laurea in Informatica, Unitn

Anno accademico 2019-2020

Indice

		0.0.1	Prodotto tra vettori	4
1	Cin	ematica	a del punto	5
	1.1		to di movimento e moto	5
	1.2		li misura e grandezze fisiche	5
	1.3		ettilineo	5
		1.3.1	Velocità media	5
			Velocità istantanea	6
			Leggi orarie	6
			Moto Rettilineo Uniforme	6
			Accellerazione media	
				6
		1.3.6	Accellerazione istantanea	7
			Moto rettilineo uniformemente accellerato	7
	1.4		rmonico semplice	7
	1.5		iani	8
	1.6		Rettilineo Smorzato Esponenzialmente	8
	1.7	Moto (Circolare	8
		1.7.1	Moto Circolare Uniforme	8
		1.7.2	Moto Circolare non Uniforme	9
			Forza (accelerazione) centripeta	9
			Forza Centrifuga	9
	1.8			10
	1.0	1.1000 P		
2	Sist	emi di	riferimento 1	11
		2.0.1	Sistema di riferimento Inerziale	11
		2.0.2	Sistema di riferimento non Inerziale	11
				11
			11	
3	Din	amica o	del punto 1	L 2
	3.1			12
	3.2	Legge o	li gravitazione universale	12
	3.3			12
	0.0			$\frac{1}{12}$
				$\frac{1}{12}$
			00	$\frac{12}{12}$
		3.3.4		13
				13
		~ ~ -		13
		3.3.7		13
	3.4			13
	3.5			13
	3.6			13
	3.7	Reazion	ne vincolare	13
	3.8	Forza I	Peso	14
	3.9	Impuls		14
		3.9.1		14
			-	14

			14
		3.10.2 Per forze non conservative	14
	3.11	Potenza	15
	3.12	Forza conservativa	15
	3.13	Legge della conservazione della quantità di moto	15
	3.14	Attrito	15
			15
	3.15	Energia	16
			16
			16
			16
	3.16		16
			17
	0		- · L 7
		Graphic Cross perfectional and analysis of the cross section of the cros	•
4	Terr	nodinamica 1	.8
	4.1		18
	4.2		18
	4.3	1	18
	4.4	1 1	18
	4.5	±	19
	1.0		19
			19
			19
	4.6		19
	4.0	1	20
		r	20 20
			20 20
	4.7		20 20
	4.7		20 20
	4.0		
	4.8		21
			21
			21
		00	21
			21
	4.9	1	21
			21
			21
		4.9.3 Isoterma	22
			22
		O	22
		4.9.6 Equazione di stato dei gas non ideali	22
	4.10		22
		4.10.1 Trasformazione Isocora	22
		4.10.2 Trasformazione Isobara	22
		4.10.3 Trasformazione Isoterma	22
			22
			23
	4.11		23
			23
			23
		O	23
			23
	4 12		23
	1.14		24
			24 24
	4 13		24 24
		00	24

			4
	4.15		5
			5
			5
	1.1.	1	6
			6
			6
		4.17.9 Teorema den entropia	U
5	Elet	tricità 2	7
•	5.1	Const	
	0.1		7
	5.2	±	7
	5.2		8
	5.4		8
	9.4		8
		1	
		*	8
			8
	5.5		9
	5.6		9
	5.7	1	9
	5.8	O Company of the Comp	9
	5.9		9
	5.10		9
		±	0
		5.10.2 Schermo elettrostatico	0
	5.11	Capacità del conduttore	0
	5.12	Condensatori	0
		5.12.1 Capacità di un condensatore	1
		5.12.2 Energia elettrostatica nel condensatore	1
		9	1
			1
			1
		• • • • • • • • • • • • • • • • • • •	1
			$\bar{2}$
			$\overline{2}$
			2
	5 13		2
	0.10		3
			3
		1	3
		90	4
			4
			4
	E 14	<u> </u>	
			4
	0.10		4
		9	5
	F 10	• •	5
			5
		9	5
		±	5
			5
		1	5
		66	6
	5.22	90 -	6
		ī	6
	5.23	Legge di Faraday-Neumann-Lenz	6

Introduzione

Questa dispensa è pensata per raccogliere le informazioni essenziali necessarie per lo svolgimento degli esercizi durante l'anno e/o per l'esame finale. Per questo motivo non saranno approfondite e non potranno sostituire quelle fornite dal professore.

General

0.0.1 Prodotto tra vettori

$$\vec{a} \times \vec{b} = \vec{c}$$

$$|\vec{c}| = |\vec{a}||vecb|sin\theta_{ab}$$

Il vettore risultante ha direzione e verso dati dalla regola della mano destra, col pollice sul primo vettore a e indice sul secondo vettore b.

Capitolo 1

Cinematica del punto

Parte della fisica che ha a che fare con la descrizione matematica del movimento dei corpi.

1.1 Concetto di movimento e moto

Possiamo descriverlo come la successione di posizioni nel tempo di un punto materiale. La linea rappresentata da questi punti viene chiamata **traiettoria**. Noi vogliamo descrivere matematicamente questo fenomeno. Per definire la posizione dobbiamo introdurre un sistema di riferimento. Chiamiamo **spostamento** in 1-Dimensione la distanza

$$\Delta_x = x_a - x_b$$

tra due coordinate spaziali.

Ad ogni evento fisico, ad esempio la posizione di un punto materiale, possiamo assegnare un tempo. Il "collegamento" tra la matematica dello spazio e la matematica del tempo è connessa dalla fisica.

La rappresentazione del **moto** si effettua mettendo in relazione lo spazio con il tempo.

La cinematica avviene quando da x passo a x(t) ossia x in funzione del tempo. Anche:

$$(t,x) \rightarrow (t,x(t))$$

ossia la coppia tempo, spazio viene mappata a tempo e spazio in funzione del tempo. Quindi non abbiamo più un campionamento di posizioni, ma abbiamo una funzione del tempo che descrive le posizioni

1.2 Unità di misura e grandezze fisiche

La **misura** è il **rapporto** tra la grandezza che sto considerando e una grandezza di riferimento che chiamo **unità di misura** Il concetto di definizione di unità di misura differisce da quello dell'analisi dimensionale, in quanto le u.d.m. che posso scegliere sono molteplici, a differenza dell'univoca grandezza fisica. Per esempio possiamo dire che:

$$[\Delta x] = [x] = [L]$$

e possiamo dire che

$$u.d.m(\Delta x) = u.d.m.(x) = 1m(cm, mm, km, ...)$$

1.3 Moto rettilineo

1.3.1 Velocità media

La velocità media v_m del punto è il rapporto tra spostamento e tempo:

$$v_m = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

Essa coincide con la definizione matematica di valor medio di una funzione in un dato intervallo

$$v_m = \frac{1}{t - t_0} \int_{t_0}^t v(t)dt$$

Notiamo che

$$[\Delta x] = [x] = [L]$$

cioè la lunghezza L. e

$$[\Delta t] = [t] = [T]$$

segue quindi

$$[v] = \ldots = [\frac{L}{T}]$$

Dove le parentesi quadre sono la misura delle dimensioni che in output fornisce la grandezza fisica fondamentale a cui può essere ricondotta la grandezza fisica che abbiamo dato in input.

1.3.2 Velocità istantanea

La velocità istantanea rappresenta la rapidità di variazione temporale della posizione nell'istante t considerato. È data dalla derivata dello spazio rispetto al tempo. Semplicemente vogliamo considerare un piccolo intervallo di misurazione per avere la velocità istantanea. È importante che la funzione della velocità sia derivabile e continua

$$v(t) = \frac{dx}{dt}$$

1.3.3 Leggi orarie

è la relazione generale che permette il calcolo dello spazio percorso nel moto rettilineo, qualunque sia il tipo di moto

$$x(t) = x_0 + \int_{t_0}^t v(t)dt$$

 x_0 rappresenta la posizione iniziale del punto, occupata nell'istante t_0 Data l'accelerazione a(t) si può ottenere la velocità v(t) cioè vale la relazione

$$v(t) = v_0 + \int_{t_0}^t a(t)dt$$

1.3.4 Moto Rettilineo Uniforme

Il MRU è rettilineo, avviene lungo una retta. Nel MRU la velocità $v = \frac{dx}{dt}$ è costante

$$x(t) = x_0 + v(t - t_0)$$

1.3.5 Accellerazione media

Se tra gli istanti di tempo t_1 e t_2 la velocità varia da v_1 a v_2 , si definisce **accellerazione media** del punto, il rapporto tra la variazione di velocità e l'intervallo di tempo. Quindi l'accellerazione è la variazione di velocità nelt tempo

$$a_m = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

L'analisi dimensionale dell'accellerazione è

$$[a] = \left[\frac{\Delta v}{\Delta t}\right] = \left[\frac{v}{t}\right] = \left[\frac{L}{T}\right] = \left[\frac{L}{T^2}\right]$$

e

$$u.d.m.(a) = 1m/s^2$$

cioè un metro su secondo quadro

1.3.6 Accellerazione istantanea

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

1.3.7 Moto rettilineo uniformemente accellerato

Se l'accellerazione di un moto è costante, questo si dice uniformemente accellerato, e la dipenmdenza della velocità dal tempo è lineare.

$$a = const$$
$$v(t) = v_0 + a(t - t_0)$$

$$x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

 t_0 sarebbe l'istante temporale iniziale del moto. Invece x_0 sarebbe l'origine dell'asse di riferimento (tipo un offset)

1.4 Moto armonico semplice

Il moto armonico si definisce come un oscillazione sinusoidale. Possiamo immaginare il modo di una molla lasciata "rimbalzare" senza ostacoli e attriti. Un punto segue un moto armonico semplice quando la legge oraria è definita dalla relazione

$$x(t) = x_0 + Asin(\omega t + \phi)$$

Dove A, ω, ϕ sono grandezze costanti: A è detta **ampiezza del moto** cioè la ampiezza di massima oscillazione, cioè la distanza tra il punto di partenza e il punto di massima oscillazione, $\omega t + \phi$ fase del moto, ϕ fase iniziale, ω pulsazione. x_0 è il punto di inizio. Il moto descritto è un moto periodico.

Il MAS è quindi un moto vario, dove tutte le grandezze cinematiche che lo descrivono (x(t),v(t),a(t)) variano nel tempo. Il periodo T è

$$T = \frac{2\pi}{\omega}$$

Si definisce **frequenza** ν del moto, il numero di oscillazioni in un secondo. La frequenza è l'inverso del periodo

$$\nu = \frac{1}{T} = \frac{\omega}{2\pi}$$

Velocità nel MAS

La velocità del punto che si muove con moto armonico si ottiene derivando x(t):

$$v(t) = \frac{dx}{dt} = \omega A \cos(\omega t + \phi)$$

Accellerazione nel MAS

Con un ulteriore derivazione si ottiene l'accelerazione del punto:

$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -\omega^2 A \sin(\omega t + \phi) = -\omega^2 x(t).$$

Eq. Differenziale del moto armonico

La condizione necessaria e sufficiente perchè un moto sia armonico è data dall'equazione

$$\frac{d^2x(t)}{dt^2} + \omega^2x(t) = 0$$

7

1.5 Moti piani

Un vettore è una "freccia" che parte dal punto di applicazione. Il verso del vettore è dato dalla punta della freccia e la direzione dal gambo. Esistiono **grandezze fisiche scalari** o **grandezze fisiche vettoriali**. Le grandezze fisiche vettoriali sono ad esempio la posizione,

 (\vec{x})

Cioè il vettore che indica la posizione di un punto nel piano. Per definire lo **spostamento** non abbiamo più la differenza tra due punti, ma la differenza tra due vettori.

$$\Delta x \to \Delta \vec{x}$$

Da notare che il tempo non è una grandezza vettorizzabile, in quanto è rappresentato da un asse unidimensionale.

La velocità sarà definita come:

$$\vec{v} = \frac{d\vec{x}}{dt}$$

. Stessa cosa per l'Accelerazione

$$\vec{a} = \frac{d\vec{v}}{dt}$$

Nella definizione di problemi in spazi multidimensionali, la differenza di un vettore può essere non solo nell suo modulo (intensità) ma anche nella sua direzione. Ad esempio l'accelerazione puo derivare da uno spostamento del vettore velocità. Le operazioni tra vettori sono la somma (metodo del parallelogramma o del punto-coda), il prodotto per uno scalare (vettore per numero il risultato è un vettore), la differenza tra vettori

1.6 Moto Rettilineo Smorzato Esponenzialmente

Velocità del punto

$$v(t) = v_0 e^{-kt}$$

Legge oraria

$$x(t) = \frac{v_0}{k} (1 - e^{-kt})$$

1.7 Moto Circolare

1.7.1 Moto Circolare Uniforme

Si dice circolare uniforme perchè la traiettoria è circolare, e uniforme perchè il modulo della velocità $|d\vec{v}|$ è costante. La **velocità angolare istantanea**, che è il rapporto tra la differenza dell'angolo e la differenza di tempo, è

$$\omega = \frac{d\theta}{dt}$$

$$\omega = \frac{v}{R}$$

Nel MCU essa è costante. Le leggi orarie per il MCU sono:

$$x(t) = x_0 + vt$$

$$\theta(t) = \theta_0 + \omega t$$

Il MCU è un moto accellerato con accelerazione costane, **ortogonale alla traiettoria**, l'accelerazione si chiama centripeta

$$a = a_N = \frac{v^2}{R} = \omega^2 R$$

Si tratta in oltre di un moto periodico, con periodo

$$T = \frac{2\pi R}{v} = \frac{2\pi}{\omega}$$

La velocità tangenziale ha Modulo

$$v(t) = R \cdot \omega$$

Essendo un moto periodico possiamo definire la frequenza sulla base del periodo:

$$f = \frac{1}{T}$$

Grandezze angolari

Il movimento lungo la circonferenza si può descrivere sia dalla traiettoria lungo la circonferenza, sia dall'angolo individuato dalle varie posizioni. Quindi invece di parlare di spostamento lungo la circonferenza possiamo parlare di spostamento angolare

$$\begin{split} s &\to \alpha \\ \Delta s &\to \Delta \alpha \\ \frac{ds}{dt} &= v \to \omega = \frac{d\alpha}{dt} \\ [w] &= [\frac{d\alpha}{dt}] = [\frac{1}{T}] \\ u.d.m.(\omega) &= \frac{1rad}{1sec} \end{split}$$

Il legame tra le grandezze angolari e quelle "normail" è

$$\frac{C}{C_g} = R$$

Ossia, il rapporto tra la circonferenza e l'anglo giro è uguale al raggio

1.7.2 Moto Circolare non Uniforme

La velocità angolare istantanea è

$$\alpha = \frac{d\omega}{dt} = \frac{a_T}{R}$$

dove a_T è l'accelerazione tangenziale

Le leggi orarie diventano:

$$w(t) = w_0 + \int_{t_0}^t \alpha(t)dt$$

$$\theta(t) = \theta_0 + \int_{t_0}^t \omega(t)dt$$

1.7.3 Forza (accelerazione) centripeta

Una forza è centripeta, se è ortogonale alla traiettoria descritta dal corpo su cui è applicata, ovvero se è ortogonale (normale) al vettore velocità

$$\vec{a_n} = -\omega^2 R \cdot \hat{n} = -\frac{v_T^2}{R} \cdot \hat{n}$$

di conseguenza, la Forza

$$\vec{F_c} = ma_C = -m\frac{v_T^2}{R} \cdot \hat{n}$$

1.7.4 Forza Centrifuga

$$F_{centrif} = -F_{centripeta}$$

1.8 Moto parabolico

L'esempio più semplice è quello del lancio di un oggetto tenendo conto dell'accelerazione di gravità. Abbiamo una velocità iniziale $\vec{v_0}$, l'angolo di alzo α che è individuato dalla linea dell'orizzonte fino al vettore velocità $\vec{v_0}$, la gittata è il punto in cui il corpo lanciato ritorna a toccare il suolo (orizzonte).

Si scompone il moto in base agli assi x e y. Abbiamo che sull'asse delle x non agisce acceleraziome quindi è un moto rettilineo uniforme (l'ungo quell'asse), l'unica accelerazione che abbiamo è quella nell'asse y. Per l'asse y abbiamo che il moto è uniformemente accellerato (o decelerato) perchè l'unica accelerazione che agisce sul corpo è quella di gravità. Bisogna quindi scomporre la velocità iniziale nelle sue componenti x e y: Ossia

 $v_{0x} = v_0 cos\alpha$

 $v_{0y} = v_0 sin\alpha$

Capitolo 2

Sistemi di riferimento

2.0.1 Sistema di riferimento Inerziale

è un sistema di riferimento dove vale la prima legge della dinamica

2.0.2 Sistema di riferimento non Inerziale

La prima legge di Newton assume la forma

$$\vec{F} = m(\vec{a^1} + \vec{a_t} + \vec{a_c})$$

è presente una accellerazione di un corpo anche senza forze esercitate su di esso

2.0.3 Forze vere e forze apparenti

Se ci sono forze apparenti, allora il sistema di riferimento non è Inerziale. Le **forze vere** sono riconducibili alle interazioni fondamentali. Le **forze apparenti** sono una conseguenza del sistema di riferimento (relativo) scelto

Capitolo 3

Dinamica del punto

3.1 Const

• Accelerazione gravitazionale $g = 9,80665 \frac{m}{s^2}$

3.2 Legge di gravitazione universale

Due punti materiali si attraggono con una forza di intensità direttamente proporzionale al prodotto delle masse dei singoli corpi e inversamente proporzionale al quadrato della loro distanza:

$$F = G \frac{m_1 m_2}{r^2}$$

Dove G è la costante di gravitazione universale

3.3 Leggi di Newton

3.3.1 Prima legge di Newton o Legge di inerzia

La prima legge di Newton (o legge di Inerzia) afferma che un corpo permane nel suo stato di quiete, o di moto rettilineo uniforme a meno che non intervenga una forza esterna a modificarne tale stato.

Un sistema di riferimento si dice inerziale se in esso vale la legge di inerzia.

3.3.2 Seconda legge di Newton

Esprime la legge fondamentale della dinamica del punto. Definisce il concetto di forza.

$$\vec{F} = m\vec{a}$$

Dove m è una costante, chiamata massa inerziale.

$$[F] = [M\frac{L}{T^2}]$$

$$u.d.m.(m) = 1Kg$$

$$u.d.m.(F) = 1Kg\frac{m}{s^2} = 1N$$

3.3.3 Terza legge di Newton o Legge di Azione Reazione

Anche chiamato principio di azione e reazione delle forze

$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

3.3.4 Quantità di moto

Si definisce quantità di moto di un punto materiale il vettore

$$\vec{p} = m\vec{v}$$

Che è il prodotto tra massa e velocità

3.3.5 Risultante delle forze

$$\vec{R} = \vec{F_1} + \vec{F_2} + ... + \vec{F_n} = \sum_i \vec{F_i}$$

Equilibrio statico

Se un corpo è in **equilibrio statico** la sua risultante $\vec{R} = 0$

3.3.6 Reazioni vincolari

Sono reazioni dell'ambiente circostante.

Prendiamo il caso di una massa appoggiata su di un piano, ferma, allora esiste una forza vincolare

$$\vec{N}$$

normale alla superficie di appoggio, che bilancia la forza peso agente sulla massa.

3.3.7 Forza Peso

La forza peso è proporzionale alla massa

$$\vec{P} = m\vec{g}$$

3.4 Quantità di moto

Si definisce quantità di moto di un punto materiale il vettore:

$$\vec{p} = m\vec{v}$$

$$[\vec{p}] = \frac{m}{s}kg$$

3.5 Risultante delle forze

La risultante delle forze è definita come la somma di tutte le forze applicate su un dato punto

$$\vec{R} = F_1 + F_2 + \dots + F_n = \sum_i \vec{F_i}$$

3.6 Equilibrio statico

Se R = 0 (e il punto ha inizialmente velocità nulla) esso rimane in stato di quiete: sono realizzate le condizioni di **equilibrio statico** del punto.

Devono quindi essere nulle le componenti della risultante, ovvero:

$$R = 0 \Rightarrow R_x = R_y = R_z = 0$$

3.7 Reazione vincolare

Data la definizione di **equilibrio statico**, se un corpo soggetto all'azione di una forza, o della risultante non nulla di un insieme di forze, rimane fermo, dobbiamo dedurre che l'azione della forza provoca una reazione dell'ambiente circostante, detta **reazione vincolare**, che si esprime tramite una **eguale e contraria** alla forza, o alla risultante delle forze agenti.

3.8 Forza Peso

$$P = mg$$

3.9 Impulso

3.9.1 Impulso della forza

Si definisce impulso \vec{J} l'integrale della forza nel tempo:

$$\vec{J} = \int_0^t \vec{F} dt$$

$$[J] = Ns$$

Può anche essere scritto come differenza di quantità di moto:

$$\vec{P} = \vec{p_1} - \vec{p_0} = \int_{t_0}^{t} \vec{F} dt$$

3.9.2 Teorema dell'impulso

$$\vec{J} = \int_0^t \vec{F} dt \int_{\vec{p}_0}^{\vec{p}} d\vec{p} = \vec{p} - \vec{p_0} = \Delta \vec{p}$$

Se la massa m è costante:

$$\vec{J} = \Delta \vec{p} = m\Delta v$$

Se la forza F è costante:

$$\vec{J} = \vec{F} \cdot t = \Delta p$$

3.10 Lavoro

Il lavoro è pari all'integrale da a a b delle forze totali agenti sul corpo scalare lo spostamento ds

$$W = \int_{a}^{b} \vec{F_{tot}} \cdot \vec{ds}$$

Anche definito come:

$$W_{TOT} = E_{Kf} - E_{Ki}$$

cioè il lavoro dal punto i iniziale, al punto f finale è definito come la differenza dell'energia cinetica nel punto f meno quella nel punto i. Vale solo se il lavoro è **totale**, cioè se comprende tutte le forze agenti nel sistema

3.10.1 Lavoro Totale

$$W_{TOT} = \sum_{K} W_{K} = \sum_{K} \int_{i}^{f} \vec{F} \cdot d\vec{s}$$

3.10.2 Per forze non conservative

$$W = \Delta E_K + \Delta E_P = \Delta E_m$$

3.11 Potenza

Mette in relazione il lavoro e il tempo durante il quale questo viene erogato

$$P = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$$

è la potenza istantanea

$$u.d.m.[p] = 1\frac{J}{s} = 1W$$

Dove 1W significa 1 Watt La potenza media, invece:

$$p = \frac{W}{\Delta t} =$$

3.12 Forza conservativa

Una forza \vec{F} è conservativa, se il lavoro compiuto lungo un percorso chiuso è nullo, indipendentemente dal percorso scelto

$$W_{chius} = 0 \quad \oint \vec{F} \cdot \vec{ds} = 0$$

Corollario

$$W_{a\to b} = \int_a^b \vec{F} \cdot \vec{ds}$$

non dipende dal percorso scelto

3.13 Legge della conservazione della quantità di moto

Stabilisce che la quantità di moto di un sistema isolato è costante nel tempo (si conserva)

$$p = m_1 v_1 + m_2 v_2 \dots + m_i v_i$$

oppure

$$\frac{dp}{dt} = 0$$

3.14 Attrito

3.14.1 Forza di attrito radente

E uguale a:

$$F_a = \mu_s \cdot N$$

Dove μ_s è il **coefficiente di attrito statico**, e N è la normale del corpo sul piano. N si può anche esprimere come la componente ortogonale al piano della risultante delle forze che agiscono sul punto materiale che stiamo analizzando.

Si ha una situazione di quiete quando la forza applicata F è:

$$F \le \mu_s N$$

e una condizione di moto quando

$$F > \mu_s N$$

Coefficiente di attrito dinamico Una volta "battuto" l'attrito statico, il moto continua ad essere rallentato dall'attrito radente, ma con un coefficiente di attrito diverso chiamato dinamico

3.15 Energia

3.15.1 Energia Cinetica

è definita come

$$E_K = \frac{1}{2}mv^2$$

$$dW = d\left[\frac{1}{2}mv^2\right]$$

l'energia cinetica è sempre positiva, dipende solo dalla velocità dell'oggetto (e quindi dal sistema di riferimento che stiamo usando)

$$u.d.m.[E_K] = 1J = 1N \cdot M = 1Kg\frac{m^2}{s^2}$$

3.15.2 Energia potenziale

l'energia potenziale di un oggetto è l'energia che esso possiede a causa della sua posizione. Se la forza è conservativa, si può sempre definire una funzione della posizione che si chiama energia potenziale. Possiamo, quindi, scrivere il lavoro compe

$$W_{AB} = -(U_B - U_A)$$

Definizione

$$U(\vec{x_P}) = -\int_o^P \vec{F} \cdot \vec{ds}$$

Lavoro e energia potenziale

$$W_{a \to b} = -\Delta U$$

Energia potenziale (spiegazione2)

Nel caso il campo di forze sia conservativo, il lavoro non dipende dal percorso scelto, ma solo dagli estremi del cammino. Il differenziale dW è un diff. perfetto, quindi si ha:

$$W = \oint_a^b F \cdot dx = -[U(a) - U(b)] = -\Delta U$$

Nel caso più semplice, in cui il moto si svolge in una sola direzione:

$$F(x) = -\frac{d}{dx}U(x)$$

• E.p. Elastica = $U(x) = \frac{1}{2}K(x - x_0)^2$

3.15.3 Energia meccanica

è la somma di energia cinetica ed energia potenziale attinenti dallo stesso sistema. Per **forze conservative** è sempre la stessa durante l'evoluzione del moto

$$E_m = E_K + E_P$$

Si definisce Conservazione dell'energia meccanica

Lavoro di forze non conservative Per forze non conservative

$$W_{n.c.} = \Delta E_K + \Delta E_P = \Delta E_m$$

3.16 Forza apparente

In meccanica classica, un'interazione apparente, detta anche interazione fittizia o inerziale, è una forza, o un momento, che, anche se non vi viene applicata direttamente, agisce su un corpo al pari delle forze e dei momenti reali, o effettivi

3.17 Urti

Un urto è l'interazione dinamica tra due masse, vengono in contatto tra di loro e modificano il loro stato di moto. L'urto trasferisce quantità di moto da una massa all'altra

3.17.1 Urto perfettamente anelastico

Due oggetti (masse) m_1, m_2 si scontrano, e ne risulta un unica particella m_3 Dalla conservazione della quantità di moto abbiamo

$$\vec{P_i} = \vec{P_f}$$

e quindi

$$\vec{P_{1,i}} + \vec{P_{2,i}} = \vec{P_{3,f}}$$

Capitolo 4

Termodinamica

Il **tempo** non riveste un ruolo importante come in meccanica. La durata delle trasformazione non è essenziale alla descrizione

4.1 Const

- $T_0 = 273, 16K$ Punto triplo H_2O
- $t({}^{\circ}C) = T(K) 273,16$
- $t({}^{\circ}F) = \frac{9}{5}t({}^{\circ}C) + 32$
- $R = 8,314 \frac{J}{K \cdot mol}$
- $1m^3 = 1000l$
- $1atm = 101325Pa = 1,013 \cdot 10^{-5}$
- Gas monoatomico: $\frac{3}{2}R$
- Gas diatomico: $\frac{5}{2}R$
- Gas poliatomico 3R

4.2 Equilibrio Termodinamico

Quando sussiste un equilibrio meccanico, un equilibrio dinamico e un equilibrio termico

4.3 Primo principio della Termodinamica

$$\Delta U = Q - W$$

Dove, ΔU è la variazione di energia interna al sistema, Q è il calore (> 0 assorbito, < 0 ceduto), e W è il lavoro, (> 0 è compiuto, < 0 è "ricevuto". Il lavoro W e il calore Q dipendono dal percorso, ΔU no.

4.4 Trasformazioni quasi-statiche

Sono passaggi da uno stado d'equilibrio, a un altro stato di equilibrio tramite uno stato di equilibrio.

4.5 Trasformazioni cicliche

4.5.1 Ciclo di Carnot

è un ciclo reversibile, la macchina è costituita da un gas ideale, la trasformazione può essere

- espansione isoterma reversibile
- espansione adiabatica reversibile
- compressione isoterma reversibile
- compressione adiabatica reversibile

Può essere rappresentato con solo due sorgenti. Si ha che per il rendimento in un ciclo di Carnot si ha

$$\eta = 1 - \frac{T_1}{T_2}$$

Il risultato è vero anche per sistemi diversi dai gas ideali Vale inoltre

$$T_1 < T_2 \Rightarrow \eta < 1$$

e anche Q_c calore assorbito, Q_a calore ceduto,

$$|Q_c| = Q_1 < Q_2 = Q_a$$

4.5.2 Cicli irreversibile

Ciclo è irreversibile quando almeno un tratto del ciclo è irreversibile

4.5.3 Trasformazione reversibile

Se è possibile riportare allo stato iniziale sia il sistema, che l'ambiente esterno.

- Trasformazione quasi-statica
- Non cisono dissipazioni

4.6 Calore specifico

$$Q = cm(T_f - T_i)$$

Segue, c è il calore specifico del corpo

$$c = \frac{1}{m} \cdot \frac{dQ}{dT}$$

Più precisamente, lungo il percorso γ

$$c_{\gamma} = \frac{1}{m} [\frac{dQ}{dT}]_{\gamma}$$

$$udm[c] = \frac{J}{kg \cdot K}$$

è una grandezza **intensiva** (dipende dalla massa)

Dove c è una costante che dipende dal materiale, m è la massa del materiale, e $T_f - T_i$ la differenza di temperatura

nota

Il calore specifico di un corpo è utile solo se $dT \neq 0$

nota 2

$$Q = \int_{a}^{b} dQ = \int_{a}^{b} mc_{\gamma}[T]dT$$

4.6.1 Capacità termica

$$Q = C(T_f - T_i)$$

Dove $C = mc_{\gamma}$, quindi

$$C_{\lambda} = \left[\frac{dQ}{dT}\right]_{\gamma}$$

è una grandezza **estensiva**.

4.6.2 Calore specifico a volume costante

- Per i gas monoatomici (ideali): $c_V = \frac{3}{2}R$ dove 3 sono i gradi di libertà della molecola
- (alcuni) gas **biatomici** (ideali): $c_V = \frac{5}{2}R$

4.6.3 Calore specifico a pressione costante

$$c_p = R + c_V$$

4.7 Cambi di fase

Gli stati di aggregazione della materia Sono

- Solido: ha volume e forma propri
- Liquido: ha volume proprio, ma non ha forma propria
- Gassoso: non ha volume proprio e neanche forma propria

I passaggi sono:

- solido \rightarrow liquido = liquefazione
- liquido \rightarrow solido = solidificazione
- liquido \rightarrow gassoso = evaporazione
- ullet gassoso ightarrow liquido = condensazione
- solido \iff gassoso = sublimazione

Punto triplo

Chiamiamo punto triplo per una data sostanza, il punto di intersezione delle tre linee di cambio di fase, dove le tre fasi possono coesistere.

Punto critico

è un punto che demarca la fine della linea di separazione delle fasi liquide e gassose, oltre questo punto non è più possibile distinguere la fase liquida da quella gassosa.

4.7.1 Calore latente

Nel cambio di fase fusione e evaporazione

$$Q = \lambda m$$

dove λ è il calore latente.

Per l'acqua

$$\lambda_{fusione}^{H_2O} = 3, 3 \cdot 10^5 \frac{J}{Kg} \quad @273, 16K$$

$$\lambda_{fusione}^{H_2O} = 22, 6\cdot 10^5 \frac{J}{Kg} \quad @373, 16K$$

4.8 Trasmissione del calore

I modi di trasmissione del calore sono

- conduzione
- convezione
- irraggiamento

4.8.1 Conduzione

$$dQ = -K\frac{dT}{dZ}dsdt$$

dove K esprime la conducibilità del materiale

$$udm[K] = \frac{J}{m \cdot sK}$$

4.8.2 Convezione

Il calore si trasmette mediante lo spostamento delle parti calde del sistema (esempio: acqua)

4.8.3 Irraggiamento

Un sistema emette e assorbe onde elettromagnetiche, la legge che lega l'energia che viene emessa tramite onde elettromagnetiche e la temperatura del corpo è la legge di Stefan-Boltzmann

Legge di Stefan-Boltzmann

Dice che

$$\epsilon = \sigma e T^4$$

$$udm[\epsilon] = [\frac{E}{L^2 T}]$$

Dove ϵ è il potere emissivo del corpo, e l'emissività del corpo (la capacità di un corpo di emettere onde) e σ è la costante di Stefan-Boltzmann

$$\sigma = 5,67 \cdot 10^{-8} \frac{J}{m^2 s K^4}$$

nota

è improprio considerare l'irraggiamento uno scambio di calore

4.8.4 Vaso DEWAR

Ottimo recipiente isolante

4.9 Equazione di stato di Gas Ideali

$$pV = nRT$$

4.9.1 Isocora

Definita da Gay-Lussac, il volume V è costante,

$$p = p_0(1 + \beta t)$$

4.9.2 Isobara

Definita da Gay-Lussac, la pressione p è costante,

$$V = V_0(1 + \alpha t)$$

4.9.3 Isoterma

Definita da Boyle, la temperatura t è costante,

$$p_i V_i = p_f V_f = cost$$

4.9.4 Lavoro nei Gas

$$W = \int_{i}^{f} p(V)dV$$

4.9.5 Energia interna nei Gas ideali

Sperimentalmente, per un gas ideale,

$$U = U(T)$$

4.9.6 Equazione di stato dei gas non ideali

Van der Wals

$$f(p, V, T) = 0$$

4.10 Trasformazioni dei gas ideali

Per gas ideali vale sempre

$$dU = nc_V dT$$

	Isocora	Isobara	Isoterma	Adiabatica
	$\Delta V = 0$	$\Delta p = 0$	$\Delta T = 0$	-
ΔU	$nc_V\Delta T$	$nc_V\Delta T$	$nc_V \Delta T = 0$	$nc_V\Delta T$
Q	$nc_V\Delta T$	$nc_p\Delta T$	$nRTln(\frac{v_f}{v_i})$	0
W	0	$nR\Delta T$ $p_B(\Delta V)$	$nRTln(\frac{\tilde{v}_f^i}{v_i})$	$-nc_V\Delta T$

4.10.1 Trasformazione Isocora

Siccome il volume V è costante, il lavoro W=0, quindi

$$dU = dQ$$

$$dQ = nc_v dT = dU$$

Dove c_v è il calore specifico a volume costante

4.10.2 Trasformazione Isobara

$$dU = dQ - dW$$

$$nc_V dT = nc_p dT - nRdT \Rightarrow c_p - c_V = R$$

che è la relazione di Mayer. dove c c_p è il calore specifico a pressione costante

4.10.3 Trasformazione Isoterma

$$\Delta U = 0 \quad \Rightarrow \quad Q - W = 0$$

Quindi

$$Q = W = nRTln(\frac{V_f}{V_i})$$

4.10.4 Trasformazione Adiabatica

$$pV^{\gamma} = cost$$

con λ che varia in base al tipo di gas

4.10.5 Trasformazione Generica

$$dQ = nc_V dT + dW$$

4.11 Trasformazioni cicliche

Lo stato iniziale A coincide con lo stato finale B

$$\Delta U = \int_{A}^{B} dU = \oint dU = U_{B} - U_{A} = 0$$

$$Q = \int_{A}^{B} dQ = \oint_{A \to B} dQ = Q$$

$$W = \int_{A}^{B} dW = \oint dW = W$$

$$\Delta U = 0 \Rightarrow Q = W$$

$$Q = Q_{C} + Q_{A}, \quad Q_{C} < 0, \quad Q_{A} > 0$$

Dove Q_C è il calore ceduto, Q_A quello assorbito.

Stessa cosa per il lavoro,

$$W = W_F + W_S, \quad W_F > 0 \quad W_S < 0$$

Dove W_F è il lavoro fatto, e W_S quello subito

4.11.1 Macchine termiche

il lavoro W compiuto è > 0,

$$W > 0 \Rightarrow Q > 0$$

4.11.2 Macchien Frigorifere

$$W < 0 \Rightarrow Q < 0$$

4.11.3 Ciclo di Otto

Tipico del motore a scoppio. è caratterizzato da

- espansione isobara
- compressione adiabatica
- accensione/combustione
- decompressione
- scarico

Il rendimento è pari a

$$\eta = 1 - \frac{|T_a - T_d|}{T_c - T_b}$$

4.11.4 Ciclo di Carnot Inverso

Verso di percorrenza inverso del Ciclo di Carnot, il lavoro è negativo Rendimento

$$\xi = \frac{T_1}{T_1 - T_2}$$

4.12 Rendimento

$$\eta = \frac{W}{Q_A} = 1 - \frac{|Q_C|}{Q_A}$$

4.12.1 Macchine Termiche

Rendimento sempre compreso tra

$$0 \le \eta < 1$$

e quindi

$$0 \le W < Q_A$$

e quindi

$$0 < |Q_C| < Q_A$$

4.12.2 Macchine Frigorifere

L'efficienza, o Coefficiente di prestazione

$$\xi = \frac{Q_A}{|W_S|}$$

4.13 Legge di Avogadro

Volumi uguali, di gas diversi, alla stessa pressione e temperatura, contengono lo stesso numero di molecole N

$$N = \frac{1}{K_B} \frac{pV}{T}$$

Il numero di **moli** n è definito come

$$n = \frac{N}{N_A}$$

Cioè si prende il numero di molecole N, e lo si divide per il numero di avogadro N_A ,

$$n = 1 \implies N = N_A = 6,022 \cdot 10^{23}$$

La legge di Avogadro espressa con le moli risulta

$$n = \frac{1}{R} \frac{pV}{T}$$

Dove K_B è la costante di Boltzman,

$$K_B = 1,38 \cdot 10^{-23} \frac{J}{K}$$

$$R = K_B N_A = 8,314 \frac{J}{K \cdot mol}$$

4.14 Secondo principio della Termodinamica

Il calore non fluisce **mai** spontaneamente da un corpo ad uno più caldo. Mette dei limiti alle possibili trasformazioni di calore in lavoro

4.14.1 Enunciato kelvin-Planck

è impossibile realizzare un processo il cui unico risultato sia la trasformazione di calore in lavoro

4.14.2 Enunciato di Clausius

è **impossibile** realizzare un processo il cui unico risultato sia il passaggio di calore da un corpo a uno a temperatura maggiore

4.15 Teorema di Carnot

Due macchine termiche, che lavorano a contatto con due sorgenti, T_1 e $T_2 > T_1$, una macchia **generica** x estrae il calore Q_2 dalla sorgente T_2 , restituisce il calore Q_1 a T_1 , e produce del lavoro W.

L'altra macchina r è reversibile, ed estrae calore Q_2' da T_2 , restituisce calore Q_1' a T_1 , il lavoro che essa compie è W Allora,

$$\eta_{x(T_1,T_2)} \le \eta_{r(T_1,t_2)}$$

Cioè il rendimento di una macchina termica qualsiasi che lavori tra la temperatura T_1 e T_2 è \leq del rendimento di una macchina reversibile qualsiasi che lavori tra le medesime temperature.

Altra formazione

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$

Corollario

Tutte le macchine reversibili, che lavorano tra le stesse temperature hanno lo stesso rendimento

$$\eta_{R_1(T_1,T_2)} = \eta_{R_2(T_1,T_2)}$$

Osservazioni

Il rendimento massimo coincide con quello della macchina reversibile

$$\eta_{MAX(T_1,T_2)} = \eta_{R(T_1,T_2)} = 1 - \frac{T_1}{T_2}$$

4.16 Teorema di Clausius

Estende il Teorema di Carnot alle trasformazioni generiche

$$\sum_{j=1}^{N} \frac{Q_j}{T_j} \le 0$$

Tutti gli scambi di calore con le N sorgenti con cui il sistema è in contatto sommati, devono essere ≤ 0 . è = 0 se il ciclo (la macchina) è reversibile

$$\oint \frac{dQ}{T} \le 0$$

4.17 Entropia

Data una trasformazione ciclica da A a B nel tratto 1 e da B a A nel tratto 2, se il ciclo è reversibile si ha

$$\oint \frac{dQ}{T} = \int_{A}^{B} (\frac{dQ}{T})_{1} + \int_{B}^{A} (\frac{dQ}{T})_{2} = 0$$

ma, visto che il ciclo è reversibile vale anche

$$\int_{A}^{B} (\frac{dQ}{T})_{1} - \int_{A}^{B} (\frac{dQ}{T})_{2} = 0$$

Quindi non dipende dal percorso scelto. Abbiamo quindi questa funzione, che si chiama entropia

$$\int_{A}^{B} \left(\frac{dQ}{T}\right)_{rev} = S(B) - S(A)$$

La variazione di entropia è una funzione di stato:

$$\Delta S_{A \to B} = \int_{A}^{B} \left(\frac{dQ}{T}\right)_{rev.qualsiasi}$$

nota 1

Dati un sistema 1 e un sistema 2, il sistema 3 è = $sys1 \cup sys2$, l'entropia

$$S_3 = S_1 + S_2$$

nota 2

L'entropia è una grandezza estensiva

nota 3

Per il calcolo, occorre scegliere la reversibile più conveniente

4.17.1 Variazioni di Entropia per Tr. notevoli di Gas Ideali

Isoterma

$$\begin{aligned} v_i &\to v_f \\ dQ &= \frac{nRT}{V} dV \Rightarrow dS = \frac{dQ}{T} = nR\frac{dV}{V} \\ \Delta S &= nRln(\frac{V_f}{V_i}) \end{aligned}$$

Isocora

$$dS = nC_v \frac{dT}{T}$$

$$\Delta S = \int_i^f dS = nC_v ln(\frac{T_f}{T_i})$$

Isobara

$$dS = nc_p \frac{dT}{T}$$

$$\Delta S = \int_i^f dS = nc_p ln(\frac{T_f}{T_i})$$

Adiabatica

$$\Delta S = 0$$

Cambi di fase

$$dS = \frac{\lambda}{T}dm$$
$$\Delta S = \frac{\lambda m}{T}$$

4.17.2 Diagrammi T-S

Te Ssono variabili termo dinamiche, quanto lo sono pe \boldsymbol{v}

4.17.3 Teorema dell'entropia

Se il sistema è isolato

$$dQ = 0 \quad \Rightarrow \quad \int_{A}^{B} \left(\frac{dQ}{T}\right)_{X} = 0$$

Segue che

$$S_B \ge S_A$$
$$\Delta S > 0$$

e l'=vale solo se la trasf. è reversibile

Capitolo 5

Elettricità

5.1 Const

- Costante magnetica $K_m = 10^{-7} T \cdot m = \frac{\mu_0}{4\pi}$
- Costante $K=8,99\cdot 10^9$ $\frac{N\cdot m^2}{C^2}=\frac{1}{4\pi\epsilon_0}$
- Costante dielettrica del vuoto $\epsilon_0=8,85\cdot 10^{-12}\frac{C^2}{N\cdot m^2}[=\frac{C^2}{J\cdot m}]$
- $1nC = 1 \cdot 10^{-9}C$

Conduttori: materiali che non si elettrizzano Isolanti: si elettrizzano, gli isolanti che possono essere:

- Vetri e affini (carica +)
- Plastiche (carica)

Dove ϵ_0 è la costante dielettrica del vuoto

La carica elementare

 $e = 1,602 \cdot 10^{-19}C$

- la carica q dell'**elettrone** è -e, la sua massa $m_{el} = 0,91 \cdot 10^{-30} kg$
- la carica q del **protone** è +e, la sua massa $m_{pr} = 1,67 \cdot 10^{-27} Kg$
- la carica q del **neutrone** è 0, la sua massa è circa uguale a quella del protone

5.1.1 Campo elettrico in una piana infinita

Il campomagnetico \vec{E} di una piana infinita è sempre prerpendicolare alla piana, e vale

$$\vec{E} = \frac{\sigma}{2\epsilon_0}$$

Dove σ è la densità di carica

5.2 Forza di attrazione tra due cariche puntiformi

Date due cariche q_1 e q_2 la forza che q_1 applica a q_2 è pari a

$$F_{1\to 2} = K \frac{q_1 q_2}{r_{12}^2}$$

 r_{12} è la distanza tra i due oggetti. La forza agisce sempre lungo la congiungente delle due cariche.

$$u.d.m[q] = [I \cdot T] = 1C(culomb)$$

5.3 Principio di sovrapposizione

Date n cariche, che interagiscono su una carica, l'effetto totale sulla carica di prova, è dato dalla sovrapposizione degli effetti delle singole cariche

5.4 Campo elettrico o elettrostatico

Il campo elettrico è il rapporto fra la forza che muove la carica e la carica stessa

$$\vec{E} = \frac{\vec{F}}{q_0} = \frac{KQ}{r^2}\hat{r}$$

Dove \vec{E} è il campo elettrico, \vec{F} è la forza subita dalla carica, e q_0 la carica Il campo elettrico è **uscente** se la carica che lo genera Q è >0 Il campo elettrico è **entrante** se la carica che lo genera è Q<0

$$u.d.m.[E] = \left[\frac{1N}{C}\right]$$

- Campo elettrostatico: è generato da altre cariche elettriche ferme
- Elettromotore

5.4.1 lavoro di un campo elettrico

$$W_{a\to b} = \int_a^b \vec{F} \cdot d\vec{s} = \int_a^b q \vec{E} \cdot d\vec{s} = q \int_a^b \vec{E} \cdot d\vec{s}$$

5.4.2 Circuitazione del campo elettrico

$$\oint \vec{E} \cdot d\vec{s} = f.e.m.$$

dove f.e.m è la forza **elettromotrice**, cioè è uguale alla forza che sta portando la carica dal punto a al punto b (stesso)

5.4.3 caso Elettrostatico

$$W_{AB} = -\Delta U_{AB}$$

$$U_A = \frac{KQ}{r_A} + const$$

Dove U_{AB} è l'energia potenziale elettrostatica. Le forze, almeno per la singola carica sono forze conservative e quindi, vale per la carica puntiforme: La circuitazione del campo elettrostatico è = 0

$$\oint \vec{E} \cdot d\vec{s} = 0$$

che è equivalente alla conservatività del campo elettrostatico.

Si introduce il potenziale ΔV , definito come la differenza di energia potenziale diviso la carica

$$\Delta U \longrightarrow \Delta V = \frac{\Delta U}{q}$$

Il potenziale elettrostatico si definisce come:

$$V_A = \frac{KQ}{r_A} + const'$$

Dove const' è una costante arbitraria

5.5 Forza Elettrica

Se una carica q è in movimento, cè una forza non nulla che la muove, questa forza può essere

• Determinata da altre cariche elettriche, in questo caso si chiama forza elettrostatica

5.6 Linee di forza

Dato un campo vettoriale \vec{v} , può essere rappresentato graficamente tramite le linee di forza. In ogni punto le linee di forza hanno una tangente, che coincide con la direzione del vettore \vec{v} nel punto P

- direzione $(\vec{v_P})$ = tangente alle linee di forza nel punto P
- Verso $(\vec{v_P})$ = verso di percorrenza delle linee nel punto P
- Modulo $(\vec{v_P})$ si rappresenta con la densità delle linee

5.7 Flusso di un campo vettoriale

Data una grandezza vettoriale \vec{v} , definiamo come flusso della grandezza vettoriale in questione, attraverso una superficie infinitesima $d\Sigma$

Il flusso $d\Phi$ è

$$d\Phi = \vec{v} \cdot \hat{n} d\Sigma$$

dove \hat{n} è il vettore normale alla superficie.

Più in generale per una superficie non infinitesima, si ha la somma di tante superfici infinitesime

$$\Phi = \int_{\Sigma} d\Phi = \int_{\Sigma} \vec{v} \cdot \hat{n} d\Sigma$$

5.8 Angolo solido

Area della calotta sferica, normalizzata al quadrato del raggio della sfera, l'angolo solido è

$$\omega = \frac{S}{R^2}$$

dove S è la superficie "di taglio" sempre ortogonale

5.9 teorema di Gauss

Nel caso in cui le cariche siano **interne**: Il flusso del campo elettrico attraverso una superficie chiusa è uguale alla somma delle cariche interne a tale superficie diviso ϵ_0

$$\Phi_{\Sigma} = \oint \vec{E} \cdot \hat{n} d = \sum_{i} \frac{q_{i}}{\epsilon_{0}}$$

Nel caso di cariche esterne Si ha che il flusso è nullo

$$d\Phi_{d\omega} = 0$$

Per il flusso tramite la superficie ω

5.10 Conduttori

I conduttori si definiscono tali, perchè al loro interno contengono cariche libere. Una carica si definisce libera, quando, sotto l'azione di un campo elettromagnetico esterno essa si muove più o meno liberamente

- Soluzioni elettrolitiche
- gas ionizzati
- metalli

5.10.1 Conduttore in Equilibrio

Un conduttore si dice in equilibrio quando tutte le cariche al suo interno sono in equilibrio Cioè \forall carica q_i

$$\vec{v_i} = \vec{0} \Rightarrow \vec{F_i} = \vec{0} \Rightarrow \vec{E_i} = \vec{0}$$

Definizione "media". Il campo elettrico è nullo (perchè le cariche non si muovono)

Primo corollario

Per un conduttore in equilibrio vale $q_{intern} = 0$. Se c'è una carica, si distribuisce sulla superficie del conduttore

Secondo corollario

Dati due punti A, B all'interno del conduttore, la differenza di potenziale tra $A \in B$

$$V_A - V_B = \int_A^B \vec{E} \cdot d\vec{s} = 0$$

 $\forall A, B$ interni al conduttore, A = B. Cioè tutti i punti di un conduttore in equilibrio sono allo stesso potenziale

terzo corollario

 $ec{E}
eq ec{0}$ solo appena fuori dalla superficie

$$\vec{E}(\vec{r}) = \frac{\sigma(\vec{r})}{\epsilon_0} \hat{n}$$

QUindi, il campo elettrico appena fuori dalla superficie di un conduttore, in una posizione r è uguale alla densità di carica nella data posizione r diviso ϵ_0 , e diretto normalmente alla superficie

5.10.2 Schermo elettrostatico

Immaginando un conduttore cavo

Una perturbazione esterna che redistribuisce q_{EF} non sarà percepibile all'interno del conduttore e quindi su tutti i conduttori interni.

Ogni perturbazione interna non sarà misurabile all'esterno

5.11 Capacità del conduttore

è il rapporto tra la carica q depositata tra la superficie del conduttore, e il potenziale V in cui il conduttore va, per effetto di questa carica. descrive la capacità di un conduttore di ospitare le cariche e di portarsi ad un certo potenziale

$$\mathbb{C} = \frac{q}{V}$$

$$u.d.m.[\mathbb{C}] = \frac{1C}{V} = 1F$$

dove F è il Farad

5.12 Condensatori

Quando due conduttori sono ininduzione completa, si chiamano condensatore (R_1 e R_2 sono i raggi del condensatore sferico)

$$\Delta V = Kq(\frac{1}{R_1} - \frac{1}{R_2})$$

5.12.1 Capacità di un condensatore

$$C = \frac{q}{\Delta V} = 4\pi\epsilon_0 \frac{R_1 R_2}{R_2 - R_1}$$

Se le superfici delle armature sono abbastanza vicine, la capacità è

$$C = \epsilon_0 \frac{S}{h}$$

Dove S è la superficie, h è pari a $R_2 = R_1 + h$ con $h << R_1$

5.12.2 Energia elettrostatica nel condensatore

$$\Delta U = W_{TOT} = \frac{Q^2}{2C} = \frac{1}{2}C\Delta V^2 = \frac{1}{2}Q\Delta V$$

5.12.3 Campo elettrico nel condensatore

$$|\vec{E}| = \frac{\sigma}{\epsilon_0}$$

dove σ è la densità superficiale di carica

5.12.4 Induzione Completa

Quando, tutte le linee di campo elettrico nascono da un conduttore e muoiono nell'altro conduttore. Cioè non esiste una linea di campo elettrico che parte da un conduttore che non vada a finire nell'altro.

5.12.5 Condensatore piano

Due armature piane, parallele, con carica +q e -q. Il campo elettrico è pari a $E=\frac{\sigma}{2\epsilon_0}$ La somma dei vettori dei due campi elettrici è pari a 0 all'esterno delle due armature, mentre all'interno è pari a E

$$C = \epsilon_0 \frac{S}{h}$$

Effetti di bordo

Al limite delle armature ci sono delle linee che saranno curvate, trascurate per la debole intensità.

5.12.6 Sistemi di condensatori

Dati due condensatori, C_1 e C_2 collegati a una differenza di potenziale ΔV ,

$$\Delta V = \Delta V_1 + \Delta V_2$$

$$C_1 = \frac{q_1}{\Delta V_1}$$

$$C_2 = \frac{q_2}{\Delta V_2}$$

In serie

Il condensatore "risultante" sarà

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

In parallelo

$$C = C_1 + C_2$$

5.12.7 Energia nel condensatore

L'energia elettrostatica all'interno del condensatore è

$$\Delta U_{el} = \frac{1}{2} \epsilon_0 E^2 \tau$$

Dove τ è il volume tra le due armature La densità volumica di energia è

$$u = \frac{\Delta U_{el}}{h} = \frac{1}{2}\epsilon_0 E^2$$

5.12.8 Forza tra le armature

La forza tra le due armature del condensatore è definita come

$$F = -\frac{dU}{dS}$$

$$F = -\frac{d}{dS} \left[\frac{1}{2} \epsilon_0 E^2 \tau \right]$$

5.12.9 Pressione elettrostatica

Indipendente dal fatto che il condensatore sia isolato o connesso a un generatore, non dipende dalla geometria del condensatore è un equazione valida in "generale", coincide con la definizione di densità elettrostatica associata al campo elettrico

$$\frac{1}{2}\epsilon_0 E^2 (=u)$$

Condensatore isolato

La pressione elettrostatica tra due armature di un condensatore coincide con la densità volumica di energia

$$P_{el} = \frac{F}{S} = -\frac{1}{2}\epsilon_0 E^2$$

Condensatore e generatore

$$d(\Delta U_{el}) = -\frac{1}{2}\epsilon_0(\frac{\Delta V}{h})^2 Sdh$$

$$d(\Delta U_{gen}) = \epsilon_0 (\frac{\Delta V}{h})^2 Sdh$$

e quindi, la variazione totale sarà

$$d(\Delta U) = \frac{1}{2} \epsilon_0 (\frac{\Delta V}{h})^2 S dh$$

$$F = \frac{-d(\Delta U)}{dh} = -\frac{1}{2}\epsilon_0 (\frac{\Delta V}{h})^2 S$$
$$P = \frac{F}{S} = -\frac{1}{2}\epsilon_0 E^2$$

5.13 Conduzione elettrica

Per esempio, il rame Cu ha 1 elettrone "libero" per atomo. Calcoliamo quanti elettroni sono liberi per unità di volume

$$n = \frac{N_A \rho}{A} = 8,49 \cdot 10^{28} \frac{e^-}{m^3}$$

Elettroni a metro cubo. la velocità media degli elettroni (per un volume abbastanza grande) è

$$\vec{v_m} = \vec{0}$$

Se il conduttore è sottoposto ad un campo elettrico esterno, la velocità media degli elettroni passa a quella di "drift":

$$\vec{v_m} = \vec{0} \longrightarrow \vec{v_m} = \vec{v_d}$$

Vettore densità di corrente elettrica, pari alla densità di cariche libere, per velocità di drift (o deriva), - la stessa cosa per le cariche negative

$$\vec{J_e} = n_+ e \vec{v_{d+}} - n_- e \vec{v_{d-}}$$

5.13.1 Corrente elettrica

Si definisce come l'integrale verso la sezione del vostro filo

$$i = \int_{S} ne\vec{v} \cdot \hat{n}dS = \frac{dq}{qt}$$

$$u.d.m[i] = \frac{1C}{1s} = 1A$$

5.13.2 Principio di conservazione della carica elettrica

Data una superficie chiusa, la carica totale che passa attraverso questa superficie, è uguale alla variazione delle cariche nella superficie nel tempo. (tanta corrente entri nel volume tanta ne esce)

$$i_{tot} = \oint \vec{J} \cdot \hat{n} dS = -\frac{dq_{int}}{dt}$$

5.13.3 Legge di OHM

La velocità di deriva, è proporzionale al campo elettrico

$$\vec{v_d} = \alpha \vec{E}$$

Anche scritta

$$\vec{J} = \frac{1}{\rho} \vec{E}$$

La costante ρ si chiama resistività, è una costante intensiva, e dipende dal materiale che stiamo utilizzando. La resistività cresce in proporzione alla temperatura

$$\rho(t) = \rho 20(1 + \alpha \Delta t)$$

Dove $\rho 20$ è la resistività misurata a 20 gradi celsius

Cioè la legge di OHM lega il campo elettrico alla corrente tramite la costante di resistività ρ

$$\vec{E} = \rho \cdot \vec{J}$$

$$i = \frac{ES}{\rho} = Eh\frac{S}{\rho h} = \Delta V\frac{1}{R}$$

R Si chiama resistenza elettrica,

$$R = \rho \frac{h}{S}$$

Dove h è la lunghezza, e S la sezione

La legge di OHM per i conduttori metallici sarà quindi

$$i = \frac{\Delta V}{R}$$

$$u.d.m[R] = \frac{1V}{1A} = 1\Omega$$

5.13.4 Effetto Joule

La potenza, P

$$P = \frac{dW}{dt} = \frac{dq\Delta V}{dt} = \Delta V \cdot i$$

Per circuiti dove vale la legge di OHM Si ha

$$P = RI^2$$

5.13.5 Resistenze in serie

Consideriamo R_1 e R_2 in serie, la corrente i che le attraversa è la stessa, quindi

$$iR_1 = \Delta V_1$$

$$iR_2 = \Delta V_2$$

Dove ΔV_1 è la differenza di potenziale ai capi di R_1 , stessa cosa per ΔV_2 Quindi,

$$iR^* = \Delta V \Rightarrow R^* = R_1 + R_2$$

5.13.6 Resistenze in parallelo

Consideriamo R_1 e R_2 in parallelo, la corrente i si divide nei due capi in i_1 e i_2 . In questo caso, $\Delta V = \Delta V_1 = \Delta V_2$ quindi

$$i_1R_1 = \Delta V$$

$$i_2R_2 = \Delta V$$

Quindi,

$$\frac{1}{R*} = \frac{1}{R_1} + \frac{1}{R_2}$$

5.14 Forza Elettro Motrice

$$f.e.m. = \oint \vec{E} \cdot d\vec{s} = R_T i \Rightarrow i \neq 0 \iff f.e.m. \neq 0$$

 R_T resistenza totale circuito

Deve quindi esistere una resistenza interna al generatore tale che

$$f.e.m. = R_T i = (R_{load} + r)i$$

$$V_A - V_B = f.e.m. - ri$$

Dove R_{load} è la resistenza del "circuito" senza il generatore, e r è la resistenza del generatore

5.15 Interazione elettromagnetica

Magnetite $F_eO \cdot Fe_2O_3$. I **poli magnetici** sono le estremità di un oggetto (in magnetite)

Esistono due tipi di "carica" magnetica: positive e negative.

Ciascun magnete contiene sempre due poli opposti

La magnetizzazione: si possono produrre magneti artificiali (calamite) tramite contatto coi magneti naturali.

Il geomagnetismo: lasciato libero di muoversi, si orienta lungo direzioni secondo il meridiano terrestre locale. il polo che punta verso il nord è chiamato polo nord con carica positiva. il polo sud viceversa.

$$F = K_m \frac{q_{m1}q_{m2}}{r^2}$$

Magnete spezzato: se spezziamo un magnete, non ottengo due oggetti con cariche opposte, ma ottengo due nuovi magneti. Questo fenomeno è valido per qualsiasi scala. Non esiste il monopolo magnetico

Le correnti generano campi elettromagnetici

5.15.1 Induzione magnetica

 \vec{B} è l'induzione magnetica udm[B] = 1T (un Tesla)

5.15.2 Campo magnetico

$$\oint_{S} \vec{B} \cdot \hat{n} d\Sigma = 0$$

Campo magnetico solenoidale. (solenoidale quando il flusso del campo attraverso una qualsiasi superficie chiusa è uguale a 0)

5.16 Forza di Lorentz

è la forza che sperimenta una carica q, in moto con velocità \vec{v} , quando essa entra in una regione con campo magnetico \vec{B}

$$\begin{split} \vec{F_L} &= q\vec{v} \times \vec{B} \\ |\vec{F}| &= F_L = qvBsin\theta_{vB} \\ [B] &= [\frac{F}{Q\frac{L}{T}}] = [\frac{F \cdot L}{I \cdot L^2}] = [\frac{E}{I \cdot L^2}] \end{split}$$

5.17 Forze che agiscono su una carica

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

5.18 Forza su un tratto di filo percorso da cariche

$$dF = -edN\vec{v_d} \times \vec{B}$$

dove dN è il numero di elettroni. $dN = nd\tau$ che è la densità volumica

La riedizione della forza di Lorentz, invece che per una carica puntiforme per un tratto di filo infinitesimo

$$d\vec{F} = id\vec{S} \times \vec{B}$$

+++ che è anche chiamata seconda legge elementare di Laplace

5.19 Principio di equivalenza di Ampere

Principio che pone l'equivalenza tra spire attraversate da corrente e magneti:

$$\vec{m} = i\Sigma\hat{n}$$

è il momento magnetico della spira. Permette di pensare alla spira come ad un bipolo magnetico. Versione infinitesimale, che è anche il principio di equivalenza di ampere:

$$d\vec{m} = id\Sigma\hat{n}$$

5.20 Prima legge elementare di Laplace

Le correnti possono generare campi magnetici. Si ha $id\vec{s}$ un tratto lungo un filo, mi interessa sapere qual'è il campo magnetico esercitato dal piccolo segmento $id\vec{s}$ nel punto P generico. Si ha anche la congiungente $\hat{u}_r = \hat{r}$ dal punto di sorgente del campo magnetico al punto P.

$$d\vec{B} = K_m \frac{id\vec{s} \times \hat{u}_r}{r^2}$$

Nota La prima legge elementare di Laplace è uno strumento matematico, non ha senso fisico: è impossibile misurare il contributo di $id\vec{s}$ senza misurare il contributo di tutto il "circuito" in quanto la corrente non si può spezzare in più parti.

Forma generale con conduttore filiforme

$$\vec{B}(P) = \oint_C d\vec{B} = \oint_C \frac{\mu_0}{4\pi} \frac{i d\vec{s} \times \hat{u_r}}{r^2}$$

Dove C è il filo

Forma generale con conduttore non filiforme

$$\vec{B}(P) = \frac{\mu_0}{4\pi} \int_V \vec{J} \frac{\hat{u_\tau} \times \hat{u_r}}{r^2} d\tau$$

5.21 Legge di Biot-Savart

Il campo magnetico \vec{B} generato a distanza R, da un filo indefinito percorso dalla corrente i è

$$\vec{B}(R) = \frac{\mu_0 i}{2\pi R} \hat{\theta}$$

Dove $\hat{\theta}$ è il versore del campo magnetico

5.22 Legge di Ampere

$$C(\vec{B}) = \oint_C \vec{B} \cdot d\vec{l} = \mu_0 i_C$$

Dove i_C sono le correnti concatenate (interne) al circuito

5.22.1 Equazioni di Maxwell

Per campi elettrici e magnetici statici (che non variano nel tempo)

$$\oint_{S} \vec{E} \cdot \hat{n} dS = \frac{q_{int}}{\epsilon_{0}}$$

$$\oint_{S} \vec{B} \cdot \hat{n} dS = 0$$

$$\oint_{C} \vec{E} \cdot d\vec{l} = 0$$

$$\oint_{C} \vec{B} \cdot d\vec{l} = \mu_{0} i_{C}$$

5.23 Legge di Faraday-Neumann-Lenz

Ogni variazione del flusso nel tempo genera una f.e.m.

$$f.e.m = -\frac{d\Phi(\vec{B})}{dt}$$
$$i = -\frac{f.e.m.}{R}$$

L62 L 143