Math6450 Assignment2: Multiple Linear Regression

Ian Tai Ahn September 20, 2025

1 Data Exploration

(a) Descriptive Statistics for Continuous Variables

Comprehensive Descriptive Statistics:

	Mean	Median	Std Dev	Minimum	Maximum	Skewness	_
\hookrightarrow Kurtosis							
claims ⇔095	18.049	17.845	6.448	0.72	41.39	0.254	0
deductible ⇔351	2.490	1.905	1.942	0.51	10.00	1.542	2
coverage ⇔292	189.014	186.750	72.169	50.00	424.50	0.145	-0
age	15.438	11.000	14.227	1.00	85.00	1.869	4
premium ⇔030	2.969	2.945	0.822	0.50	5.78	0.245	0

(b) Correlation Matrix for Continuous Variables

Correlation Matrix:

COLLETACION	naulia.					
	claims	deductible	coverage	age	premium	
claims	1.000	-0.265	0.761	0.199	0.793	
deductible	-0.265	1.000	-0.066	0.006	-0.059	
coverage	0.761	-0.066	1.000	-0.015	0.723	
age	0.199	0.006	-0.015	1.000	0.314	
premium	0.793	-0.059	0.723	0.314	1.000	

Variable with strongest linear relationship with 'claims':

Variable: premium

Correlation coefficient: 0.793

Correlation Matrix Heatmap - Continuous Variables

(c) Skewness Analysis and Log Transformation Assessment

Skewness Assessment:

Rule of thumb: |skewness| > 1 indicates highly skewed distribution Rule of thumb: 0.5 < |skewness| < 1 indicates moderately skewed ⇔distribution

Skewness: 0.254

Assessment: Approximately symmetric

deductible: Skewness: 1.542

Assessment: Highly skewed

Log transformation skewness: 0.134

Improvement from log transformation: 1.408

Recommendation: Log transformation would improve normality

coverage:

Skewness: 0.145

Assessment: Approximately symmetric

age:

Skewness: 1.869

Assessment: Highly skewed Log transformation skewness: -0.347

Improvement from log transformation: 1.523

Recommendation: Log transformation would improve normality

premium:

Skewness: 0.245

Assessment: Approximately symmetric

Summary of Findings:

Variables with skewed distributions: deductible, age Variable most strongly correlated with claims: premium (r = 0.793)

Data Overview:

Total observations: 1,340 Variables analyzed: 5 Missing values: 0

2 Simple Linear Regression

(a) Simple Linear Regression Model Fitting

Model Coefficients:

Intercept (β_0): 5.2054 Slope (β_1) : 0.0679

Fitted Regression Equation:

Claims = $5.2054 + 0.0679 \times Coverage$

In mathematical notation:

 $\hat{y} = 5.2054 + 0.0679x$

where \hat{y} = predicted claims, x = coverage

(b) Interpretation of Slope Coefficient

Slope coefficient: 0.0679

Practical Interpretation:

0.0679 units, on average.

- This indicates a positive relationship between coverage and claims.
- · Properties with higher coverage amounts tend to have higher claims.

Alternative interpretation:

• For every 100-unit increase in coverage, claims change by 6.79 units, $_{\mbox{\tiny ω}}$

average.

Example predictions:

- Coverage = 100: Predicted Claims = 12.00 • Coverage = 150: Predicted Claims = 15.40
- Coverage = 200: Predicted Claims = 18.80
- Coverage = 250: Predicted Claims = 22.19

(c) Coefficient of Determination $({\bf R}^2)$ Analysis

Model Performance Metrics:

 ${\bf R}^2$ (Coefficient of Determination): 0.5784

 ${\tt R}^2$ as percentage: 57.84%

Correlation coefficient (r): 0.7605 Root Mean Square Error (RMSE): 4.1850

Interpretation of \mathbb{R}^2 :

- 57.84% of the variation in claims is explained by coverage.
- 42.16% of the variation in claims is due to other factors \mathtt{not}_{\sqcup} \hookrightarrow included in the

model.

• The linear relationship between coverage and claims is moderate ($R^2 = 0.5784$).

Statistical Significance:

- t-statistic: 42.8442
- p-value: 0.0000
- Degrees of freedom: 1338
- The relationship is statistically significant at the 5% level.

Key Findings Summary:

- \bullet Regression equation: Claims = 5.2054 + 0.0679 \times Coverage

0.0679 unit change in claims

- Model explains 57.8% of the variation in claims
- The relationship is statistically significant (p = 0.0000)

${\bf 3} \ {\bf Multiple} \ {\bf Regression} \ {\bf Model}$

Dependent Variable: claims

Explanatory Variables: deductible, coverage, age, prior_claims, premium

(a) Fitted Regression Equation

Coefficient Estimates (rounded to 3 decimal places):

Intercept (β_0): 3.208

 β_1 (deductible): -0.728

 β_2 (coverage): 0.062 β_3 (age): 0.091

 β_4 (prior_claims): 2.580

β_5 (premium): 0.495

Fitted Regression Equation:

→+ 2.580 ×

prior_claims + $0.495 \times premium$

Compact Mathematical Form:

 $\ddot{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5$ $\ddot{y} = 3.208 + -0.728 x_1 + 0.062 x_2 + 0.091 x_3 + 2.580 x_4 + 0.495 x_5$

 $y = 3.208 + -0.728x_1 + 0.062x_2 + 0.091x_3 + 2.580x_4 + 0.495x_5$ where x_1 =deductible, x_2 =coverage, x_3 =age, x_4 =prior_claims, x_5 =premium

(b) Standard Errors for Each Coefficient

Standard Errors:

Intercept (β_0) : 0.3172 β 1 (deductible): 0.0394

 β_2 (coverage): 0.0020

 β_3 (age): 0.0068

 β_4 (prior_claims): 0.1210

 β_{5} (premium): 0.2118

Additional Statistics (t-statistics and p-values):

Coefficient ⇔Significance	Estimate	Std Error	t-stat	p-value	ш
Intercept	3.208	0.3172	10.113	0.0000	***
deductible	-0.728	0.0394	-18.459	0.0000	***
coverage	0.062	0.0020	30.624	0.0000	***
age	0.091	0.0068	13.401	0.0000	***
prior_claims	2.580	0.1210	21.316	0.0000	***
premium	0.495	0.2118	2.338	0.0195	*

Significance codes: *** p<0.001, ** p<0.01, * p<0.05

(c) Model Performance Statistics

 $\ensuremath{R^2}$ (Coefficient of Determination): 0.8130 Adjusted $\ensuremath{R^2}$: 0.8123

Residual Standard Deviation: 2.7938

Additional Model Statistics:

Multiple R (Correlation): 0.9016

Residual Sum of Squares (RSS): 10412.1409 Mean Squared Error (MSE): 7.8052

Mean Squared Error (MSE): 7.805 F-statistic: 1159.6202

F-statistic p-value: 0.000000

Overall model significance: Yes (α = 0.05)

Degrees of Freedom:

Model: 5 Residual: 1334 Total: 1339

Summary Results Table:

	Variable	Coefficient	Std_Error	Coefficient_Rounded
0	Intercept	3.2078	0.3172	3.208
1	deductible	-0.7278	0.0394	-0.728
2	coverage	0.0621	0.0020	0.062
3	age	0.0906	0.0068	0.091
4	prior_claims	2.5797	0.1210	2.580
5	premium	0.4953	0.2118	0.495

Model Performance Table:

acr	
Statistic	Value
\mathbb{R}^2	0.8130
Adjusted ${\tt R}^2$	0.8123
Residual Std Deviation	2.7938
F-statistic	1159.6202
p-value (F-test)	0.000000
Observations	1340
Variables	5

Kev Results Summary:

- ✓ Multiple regression equation fitted with 5 explanatory variables
- $\sqrt{\text{Model explains 81.3\% of variance in claims (R}^2 = 0.8130)}$
- \checkmark Adjusted R² = 0.8123 (accounts for number of variables)
- ✓ Residual standard deviation = 2.7938
- √ Overall model is significant (F-test p-value = 0.000000)
- ✓ Standard errors calculated for all 6 coefficients

4 Statistical Inference

Multiple Linear Regression Model: Claims vs (Deductible, Coverage, Age, Prior_Claims, Premium)

Model Summary: Observations: 1340

Variables: 5

Degrees of freedom (residual): 1334

 $R^2 \cdot 0.8130$ MSE: 7.8052

Coefficient Estimates:

Variable	Coefficient	Std Error	t-statistic	p-value
deductible	-0.7278	0.0394	-18.4591	0.0000
coverage	0.0621	0.0020	30.6239	0.0000
age	0.0906	0.0068	13.4010	0.0000
prior_claims	2.5797	0.1210	21.3156	0.0000
premium	0.4953	0.2118	2.3382	0.0195

(a) Testing Significance of Age Coefficient Hypothesis Test for Age Coefficient:

Null Hypothesis (H_0): β _age = 0 Alternative Hypothesis (H₁): β _age \neq 0

Significance level (α): 0.05 Test type: Two-tailed t-test

Test Statistics:

Age coefficient (β _age): 0.0906 Standard error (SE): 0.0068

t-statistic: 13.4010 Degrees of freedom: 1334

p-value: 0.0000 Critical value (±): 1.9617

Decision Rule:

Reject H_0 if |t-statistic| > 1.9617 OR if p-value < 0.05

Conclusion:

 \checkmark REJECT H_0 : The coefficient for age IS statistically significant at ⇔the 5%

level.

|t-statistic| = 13.4010 > 1.9617

p-value = 0.0000 < 0.05

Age has a statistically significant effect on claims.

(b) 95% Confidence Interval for Prior Claims Coefficient Confidence Interval Calculation:

Coefficient (β _prior_claims): 2.5797

Standard error: 0.1210 Degrees of freedom: 1334 Confidence level: 95%

Confidence Interval Formula:

CI = $\beta \pm t_{\alpha/2,df} \times SE(\beta)$

 $CI = 2.5797 \pm 1.9617 \times 0.1210$

 $CI = 2.5797 \pm 0.2374$

95% Confidence Interval for Prior Claims Coefficient: [2.3423, 2.8171]

Practical Interpretation:

⇔current

claims

is between 2.3423 and 2.8171 units.

• Since the entire interval is positive, prior claims consistently

→ INCREASE

• Properties with prior claims have significantly higher current claims

those without.

• The width of the interval (0.4748) indicates the precision of our ⊖estimate.

(c) Overall F-test for Model Significance

Overall F-test for Regression Model:

Null Hypothesis (H₀): β_1 = β_2 = β_3 = β_4 = β_5 = 0 (All explanatory variables have no effect on claims) Alternative Hypothesis (H $_1$): At least one $eta_i
eq 0$

(At least one explanatory variable has a significant effect) Significance level (α): 0.05

Test Statistics:

Total Sum of Squares (TSS): 55667.4953 Explained Sum of Squares (ESS): 45255.3543 Residual Sum of Squares (RSS): 10412.1409 Mean Square Regression (MSR): 9051.0709 Mean Square Error (MSE): 7.8052

F-statistic: 1159.6202 Degrees of freedom: (5, 1334)

p-value: 0.000000

Critical F-value (α = 0.05): 2.2208

Decision Rule:

Reject ${\rm H}_0$ if F-statistic > 2.2208 OR if p-value < 0.05

Conclusion:

5% level.

F-statistic = 1159.6202 > 2.2208

p-value = 0.000000 < 0.05

At least one explanatory variable has a significant effect on claims. The model explains a significant portion of the variation in claims.

Model Performance Context:

 \mathbb{R}^2 = 0.8130 (81.3% of variance explained)

The model performs well in predicting claims.

Summary of All Statistical Tests:

ш	p-value	Statistic	Test
			→Conclusion
ш	0.0000	t = 13.4010	Age Coefficient (t-test)
			Significant
Does not	N/A	CI = [2.3423, 2.8171]	Prior Claims CI
			⇔contain 0
Model	0.000000	F = 1159.6202	Overall Model (F-test)
			Significant

5 Binary Variables and Model Interpretation

Adding 'type' and 'location' to the original model

Dependent Variable: claims

Original Variables: deductible, coverage, age, prior_claims, premium

New Variables: type, location

Extended Model Summary: Observations: 1340 Variables: 7 $\rm R^2$: 0.8263

Adjusted \mathbb{R}^2 : 0.8254

Residual Standard Error: 2.6939

(a) Extended Regression Model Equation

Coefficient Estimates:

Variable	Coefficient	Std Error	t-stat	p-value
Intercept	3.027	0.3171		
deductible	-0.713	0.0381	-18.706	0.0000
coverage	0.058	0.0022	26.539	0.0000
age	0.077	0.0070	10.935	0.0000
prior_claims	2.392	0.1254	19.077	0.0000
premium	1.019	0.2378	4.284	0.0000
type	-1.419	0.1699	-8.355	0.0000
location	0.859	0.1731	4.959	0.0000

Fitted Regression Equation:

Claims = 3.027 - 0.713 \times deductible + 0.058 \times coverage + 0.077 \times age $_{\mbox{\sc d}}$ + 2.392 \times

prior_claims + 1.019 \times premium - 1.419 \times type + 0.859 \times location

Detailed Mathematical Form:

Claims = $3.027 + -0.713 \times \text{deductible} + 0.058 \times \text{coverage}$

+ 0.077 \times age + 2.392 \times prior_claims + 1.019 \times premium

+ -1.419×type + 0.859×location

(b) Interpretation of Type Coefficient

Type Coefficient Analysis: Coefficient (β_{-} type): -1.419 Standard Error: 0.1699 t-statistic: -8.355 p-value: 0.0000

Type variable coding: [0, 1]

Practical Interpretation:

 \bullet Properties with type = 1 have claims that are 1.419 units LOWER than properties with type = 0,

holding all other variables constant.

Assuming standard coding (0 = Commercial, 1 = Residential):

properties.

• This suggests commercial properties are associated with higher $_{\!\sqcup}$ $\hookrightarrow\!$ insurance

claims.

 ${\tt Statistical\ Significance:}$

- \bullet The type coefficient IS statistically significant (p = 0.0000 < 0.05)
- \bullet We can be confident that property type has a real effect on claims.

(c) Partial F-test for Model Improvement Model Comparison (same sample size: 1340):

Model	\mathbb{R}^2	$\mathtt{Adj}\ \mathtt{R}^2$	Variables	RSS
Original	0.8130	0.8123	5	10412.1409
Extended	0.8263	0.8254	7	9666.7444

 ${\tt R}^2$ Improvement: 0.0134 (1.34 percentage points)

Partial F-test:

 $H_0\colon \beta_-$ type = β_- location = 0 (binary variables add no explanatory power) $H_1\colon At$ least one of β_- type or β_- location \neq 0 (binary variables improved the model)

Partial F-test Calculations: RSS(original): 10412.1409 RSS(extended): 9666.7444 Reduction in RSS: 745.3965 Additional variables (q): 2 DF residual (extended): 1332

F-statistic: 51.3548

Degrees of freedom: (2, 1332)

p-value: 0.0000

Critical F-value (α = 0.05): 3.0025

Conclusion:

 \checkmark REJECT $\rm H_0\colon Adding$ type and location SIGNIFICANTLY improves the model F = 51.3548 > 3.0025 p-value = 0.0000 < 0.05

The binary variables provide significant additional explanatory power.

Model Improvement Assessment:

- $\bullet~\mbox{R}^2$ improved by 0.0134 (1.34 percentage points) this is modest
- Extended model explains 82.6% vs 81.3% of variance
- Adjusted ${\bf R}^2$ increased from 0.8123 to 0.8254

6 Interaction Effects

Regression Model with Interaction Term: Deductible \times Type Model Features: deductible, type, coverage, age, prior_claims, premium Interaction Term: deductible \times type

Interaction Term (deductible \times type) Statistics:

Mean: 1.5335 Std Dev: 1.9042 Range: [0.0000, 10.0000]

Model Summary:

 $\begin{array}{ll} \mathbf{R}^2 \colon \text{ 0.8233} \\ \text{Adjusted } \mathbf{R}^2 \colon \text{ 0.8224} \end{array}$

Residual Standard Error: 2.7172

F-statistic: 886.8341

Coefficient Estimates:

Variable	Coefficient	Std Error	t-stat	p-value	Sig
Intercept	3.2856	0.3300			
deductible	-0.6729	0.0596	-11.2894	0.0000	***
type	-1.2573	0.2598	-4.8392	0.0000	***
coverage	0.0553	0.0021	25.9580	0.0000	***
age	0.0703	0.0070	10.1034	0.0000	***
prior_claims	2.2568	0.1234	18.2905	0.0000	***
premium	1.3647	0.2290	5.9595	0.0000	***

deductible_x_type -0.0946 0.0779 -1.2151 0.2245 Significance codes: *** p<0.001, ** p<0.01, * p<0.05 (a) Regression Function with Interaction Term General Form: Claims = β_0 + $\beta_1 \times$ deductible + $\beta_2 \times$ type + $\beta_3 \times$ coverage + $\beta_4 \times$ age + $\hookrightarrow \beta_5 \times \text{prior_claims} +$ $\beta_c \times \text{premium} + \beta_7 \times (\text{deductible} \times \text{type}) + \varepsilon$ Fitted Regression Equation: Claims = $3.2856 - 0.6729 \times \text{deductible} - 1.2573 \times \text{type} + 0.0553 \times \text{coverage} + 1.2573 \times \text{type}$ →0.0703×age + 2.2568×prior_claims + 1.3647×premium - 0.0946×(deductible×type) With Coefficient Values: Claims = $3.2856 + -0.6729 \times \text{deductible} + -1.2573 \times \text{type}$ + 0.0553×coverage + 0.0703×age + 2.2568×prior_claims + 1.3647×premium + -0.0946×(deductible×type) (b) Interpretation of Deductible Effect by Property Type Key Coefficients: β_1 (deductible): -0.6729 β_2 (type): -1.2573 β_7 (deductible×type): -0.0946 Interpretation of Interaction Effect: →property type. For Commercial Properties (type = 0): $\partial \text{Claims}/\partial \text{deductible} = \beta_1 + \beta_7 \times 0 = \beta_1 = -0.6729$ • A 1-unit increase in deductible changes claims by -0.6729 units for ⇔commercial properties. For Residential Properties (type = 1): $\partial \texttt{Claims}/\partial \texttt{deductible} = \beta_1 \ + \ \beta_7 \times \texttt{1} = \beta_1 \ + \ \beta_7 = -0.6729 \ + \ -0.0946 = -0.$ →7675 • A 1-unit increase in deductible changes claims by -0.7675 units for residential properties. Comparison: Difference in deductible effect: -0.0946 • The deductible effect is 0.0946 units MORE NEGATIVE for residential properties. • Deductible increases have a stronger negative effect on residential than commercial claims. Practical Business Interpretation: ⇔types • This association is STRONGER for residential properties (c) Statistical Significance Test for Interaction Term Hypothesis Test for Interaction Term: H_0 : β_7 = 0 (no interaction between deductible and type) $H_1: \beta_7 \neq 0$ (significant interaction exists) Significance level: α = 0.05 Test Statistics: Interaction coefficient (β_7): -0.0946 Standard error: 0.0779 t-statistic: -1.2151 Degrees of freedom: 1332 p-value: 0.2245 Critical value (±): 1.9617 Decision Rule: Reject ${\rm H}_0$ if |t-statistic| > 1.9617 OR if p-value < 0.05 Conclusion: FAIL TO REJECT H_0 : The interaction term is NOT statistically \Box ⇔significant at the 5% level. $|t\text{-statistic}| = 1.2151 \le 1.9617$ p-value = 0.2245 \geq 0.05

⇔between property types. The interaction term may not be necessary. 95% Confidence Interval for Interaction Coefficient: [-0.2473, 0.0581] • The interval contains zero - the direction of the interaction effect. ⇔is uncertain

Model Interpretation:

- The non-significant interaction suggests that deductible effects are similar across commercial and residential properties
- A simpler model without interaction may be adequate

7 Residual Analysis

Extended Multiple Linear Regression Model Variables: deductible, coverage, age, prior_claims, premium, type, u ⇔location Model Summary: Observations: 1.340 Variables: 7 $R^2 \cdot 0.8263$ Residual Standard Error: 2.6939 (a) Residuals vs Fitted Values Analysis

Residuals vs Fitted Values Analysis: Residual range: [-3.376, 15.203] Fitted values range: [0.792, 39.985]

Pattern Analysis:

Correlation between fitted values and squared residuals: 0.0310

- Variance appears roughly constant
- Correlation magnitude suggests homoscedasticity (constant variance)

Linearity Assessment:

Mean residuals by fitted value terciles:

- Low tercile: -0.0800
- Middle tercile: 0.0229
- High tercile: 0.0572
- Maximum deviation from zero: 0.0800 (suggests linear relationship is

(b) Q-Q Plot and Normality Analysis Normality Test Results: Shapiro-Wilk Test: Statistic: 0.8106 p-value: 0.0000

REJECT normality at α =0.05

Jarque-Bera Test: Statistic: 2188.1490 p-value: 0.0000

REJECT normality at α =0.05

Kolmogorov-Smirnov Test: Statistic: 0.1468

p-value: 0.0000 REJECT normality at α =0.05

Descriptive Statistics for Normality: Skewness: 1.9531 (Normal \approx 0) Kurtosis: 4.8921 (Normal \approx 0) Skewness interpretation: highly skewed

Kurtosis interpretation: heavy-tailed

Overall Normality Assessment: Assumption appears to be violated

(c) Outliers and Influential Points Analysis Diagnostic Thresholds: Outlier threshold (standardized residuals): ±3 High leverage threshold: 0.0119 High Cook's distance threshold: 0.0030

Outliers and Influential Points: Observations with |standardized residuals| > 3: 31 Observations with $|studentized\ residuals| > 3: 31$ High leverage points: 73 High Cook's distance points: 74

Most Extreme Observations: Highest Residual: Observation 315 Fitted value: 23.547 Actual value: 38.750 Standardized residual: 5.643

Leverage: 0.0072 Cook's distance: 0.0331 Highest Leverage: Observation 262

Fitted value: 34.070

Actual value: 36.160 Standardized residual: 0.776 Leverage: 0.0305 Cook's distance: 0.0027 Highest Cooks: Observation 315 Fitted value: 23.547 Actual value: 38.750 Standardized residual: 5.643 Leverage: 0.0072 Cook's distance: 0.0331

Detailed Analysis of Problematic Observations:

						-		
Obs	${\tt Fitted}$	Actual	${\tt Std_Residual}$	Leverage	${\tt Cooks_D}$		I	ssues
1	13.477	22.670	3.412	0.0032	0.0054	Outlier,	High Coo	k's D
2	5.711	3.340	-0.880	0.0122	0.0014		High Lev	erage
14	20.959	20.000	-0.356	0.0128	0.0002		High Lev	erage
36	10.929	8.700	-0.827	0.0142	0.0014		High Lev	erage
70	13.967	11.670	-0.852	0.0130	0.0014		High Lev	erage
71	20.337	24.990	1.727	0.0074	0.0032		High Coo	k's D
73	30.965	29.670	-0.481	0.0141	0.0005		High Lev	erage
118	22.728	22.290	-0.163	0.0193	0.0001		High Lev	erage
122	5.247	10.110	1.805	0.0072	0.0034		High Coo	k's D
129	31.861	36.730	1.807	0.0092	0.0043		High Coo	k's D

... and 124 more observations with issues.

Diagnostic Summary:

- 1. Linearity: suggests linear relationship is appropriate
- 2. Homoscedasticity: suggests homoscedasticity (constant variance)
- 3. Normality: Assumption appears to be violated
- 4. Outliers: 31 potential outliers identified
- 5. Influential Points: 74 high Cook's distance observations

Recommendations:

- Consider transformation of variables or robust regression methods
- Examine influential points consider their impact on coefficient ⇔estimates

8 Model Comparison and Selection

Comparing three different model specifications: Model A: claims ~ deductible + coverage + age + prior_claims + premium Model B: claims ~ deductible + coverage + age + prior_claims + premium_ →+ type + location Model C: claims ~ deductible + coverage + prior_claims + premium + type Data Summary: Original dataset size: 1,340 Complete cases for all models: 1,340 Cases removed due to missing data: 0

----- Model A -----Variables: deductible, coverage, age, prior_claims, premium Number of variables: 5 R^2 : 0.8130 Adjusted \mathbb{R}^2 : 0.8123 Residual Standard Deviation: 2.7938 AIC: 6566.17 BTC: 6592.18 Significant coefficients (p < 0.05): 5/5

----- Model B -----

⇔location

Number of variables: 7

 R^2 : 0.8263

Adjusted R^2 : 0.8254

Residual Standard Deviation: 2.6939

ATC: 6472.65

BTC: 6509.05

Significant coefficients (p < 0.05): 7/7

----- Model C -----

Variables: deductible, coverage, prior_claims, premium, type

Number of variables: 5

 $R^2 \cdot 0.8095$

Adjusted R^2 : 0.8088

Residual Standard Deviation: 2.8197

AIC: 6590.93 BTC: 6616.94

Significant coefficients (p < 0.05): 5/5

(a) Model Comparison Table

Primary Comparison Metrics:

 R^2 Adj_ R^2 Residual_SD Model Variables Model A 5 vars 0.8130 0.8123 2.7938 Model B 7 vars 0.8263 0.8254 2.6939 Model C 5 vars 0.8095 0.8088 2.8197

Additional Model Selection Criteria:

Model AIC BIC F_statistic Sig_Coefs Model A 6566.17 6592.18 1159.62 Model B 6472.65 6509.05 905.51 Model C 6590.93 6616.94 1133.51 5/5

Best Model by Criterion:

- Highest R²: Model B (0.8263)
- Highest Adjusted R^2 : Model B (0.8254)
- Lowest Residual SD: Model B (2.6939)
- Lowest AIC: Model B (6472.65)

• Lowest BIC: Model B (6509.05)

Model Complexity Analysis:

Model A: 5 variables, $R^2/var = 0.1626$

Model B: 7 variables, $R^2/var = 0.1180$

Model C: 5 variables, $R^2/var = 0.1619$

Nested Model Comparisons (F-tests):

Model A vs Model B:

F-statistic: 51.3548

p-value: 0.0000

Model B significantly better

Note: Model A vs C and Model B vs C are not nested comparisons

(b) Model Recommendation and Analysis

Statistical Criteria Analysis:

- 1. Goodness of Fit:
 - ${\bf R}^2$ ranking: Model B > others
 - Adjusted ${\bf R}^2$ ranking: Model B > others
 - R² improvement from A to B: 0.0134
 - \bullet Adjusted ${\bf R}^2$ change from A to B: 0.0132
- 2. Model Parsimony:
 - AIC favors: Model B (AIC = 6472.65)
 - BIC favors: Model B (BIC = 6509.05)
 - BIC penalizes complexity more heavily than AIC
- 3. Coefficient Significance:
 - Model A: 5/5 coefficients significant (100.0%)
 - Model B: 7/7 coefficients significant (100.0%)
 - Model C: 5/5 coefficients significant (100.0%)
- 4. Prediction Accuracy:
 - Lowest prediction error: Model B (SD = 2.6939)

Practical Interpretability Analysis:

1. Variable Inclusion Logic:

• Model A: Core financial variables (deductible, coverage, premium)

factors (age, prior_claims)

- Model B: Model A + property characteristics (type, location)
- Model C: Simplified version with key variables + property type
- 2. Business Relevance:
 - Age variable: Present in A, Present in B, Absent in C
 - Property type: Absent in A, Present in B, Present in C
 - . Location: Absent in A. Present in B. Absent in C
- 3. Marginal Contribution Analysis:
 - Adding type + location (B vs A): R^2 improves by 0.0134 Adjusted R^2 change: 0.0132 (improvement)

Recommendation Framework:

 ${\tt Composite \ Scoring \ (weighted \ combination \ of \ criteria):}$

- Model B: 1.000
- Model A: 0.700
- Model C: 0.400

RECOMMENDED MODEL: Model B

Justification for Model B:

- \checkmark Highest predictive power (R² = 0.8263)
- ✓ Includes important property characteristics
- \checkmark Comprehensive variable coverage
- √ Best for prediction accuracy

Limitations of Model B:

More complex with potential overfitting risk May have multicollinearity issues

Alternative Recommendations by Use Case:

- For prediction accuracy: Model B
- For model parsimony: Model B
- For balanced approach: Model B
- For regulatory reporting: Model A (simplest, most interpretable)

9 Practical Application

Model Specification: claims ~ deductible + coverage + age + →prior_claims +

premium + type + location

Scenario: Residential Property Prediction

Model Performance: R^2 = 0.8263, Residual SE = 2.6939

Model B Fitted Equation:

Claims = $3.0270 - 0.7134 \times \text{deductible} + 0.0580 \times \text{coverage} + 0.0765 \times \text{age} +$ $2.3916 \times \texttt{prior_claims} \ + \ 1.0187 \times \texttt{premium} \ - \ 1.4193 \times \texttt{type} \ + \ 0.8586 \times \texttt{location}$

(a) Prediction for Specific Residential Property

Property Characteristics:

- Deductible: \$5,000
- Coverage: \$250,000
- Age: 15 years
- Prior claims: 1

• Premium: \$2,500 • Type: Residential • Location: Urban

Numeric Coding for Prediction: Type (Residential): 1 Location (Urban): 1

Prediction Input Vector: deductible: 5000 coverage: 250000 age: 15 prior_claims: 1 premium: 2500 type: 1

PREDICTED CLAIMS AMOUNT: \$13,490.12

95% Confidence Interval for Prediction: [\$12,808.75, \$14,171.48] Margin of Error: ±\$681.37

95% Prediction Interval: [\$12,808.73, \$14,171.50]
Margin of Error: ±\$681.39

Interpretation:

location: 1

- Point Estimate: We predict this property will have claims of \$13,490. ${\hookrightarrow}12$

with these characteristics is between \$12,808.75 and \$14,171.48

• Prediction Interval: There is a 95% chance that this specific property will have claims between \$12,808.73 and \$14,171.50

Prediction Component Analysis:

Base (Intercept): \$3.03

deductible: $-0.7134 \times 5000 = \$-3,566.95$ coverage: $0.0580 \times 250000 = \$14,504.30$

age: 0.0765 × 15 = \$1.15

prior_claims: 2.3916 × 1 = \$2.39 premium: 1.0187 × 2500 = \$2,546.77 type: -1.4193 × 1 = \$-1.42

type: $-1.4193 \times 1 = \$-1.42$ location: $0.8586 \times 1 = \$0.86$ Total: \$13.490.12

Sensitivity Analysis:

How prediction changes with $\pm 10\%$ change in key continuous variables:

- deductible: $\pm \$500 \rightarrow \text{claims change by } \pm \-356.70
- coverage: \pm \$25,000 \rightarrow claims change by \pm \$1,450.43
- premium: ±\$250 → claims change by ±\$254.68

Comparison to Sample Data: Predicted claims: \$13,490.12 Sample mean claims: \$18.05 Sample median claims: \$17.84 Sample std dev claims: \$6.45

Predicted value is at the 100.0th percentile of sample claims

Risk Assessment:

Risk Level: Above Average

Prediction Summary Table:

Property Input Summary:

Variable	Value	${\tt Description}$
deductible	5000	\$5,000
coverage	250000	\$250,000
age	15	15 years
prior_claims	1	1
premium	2500	\$2,500
type	1	Residential
location	1	Urban

Key Insights:

The prediction has moderate uncertainty (±\$681 confidence interval) Coverage amount is the most sensitive factor for prediction changes The property ranks at the 100th percentile for claims risk

(b) Business Implications

1. PRICING STRATEGY:

- The model explains 82.6% of the variation in claims
- Most significant factors should drive premium calculations
- Consider the prediction interval when setting reserves

2. RISK FACTORS ANALYSIS:

Based on the coefficients, focus on:

- Variables with largest absolute coefficients
- Statistically significant predictors (p < 0.05)
- High correlation factors with claims

3. UNDERWRITING GUIDELINES:

- Properties with high predicted claims may need:
- * Higher premiums
- * Additional risk assessment
- st Different deductible structures
- Consider segmented pricing models

4. PORTFOLIO MANAGEMENT:

- Monitor actual vs predicted claims regularly
- Update model coefficients as new data becomes available
- Consider non-linear relationships or interaction terms

5. OPERATIONAL INSIGHTS:

- Use model predictions for:
- * Reserve allocation
- * Risk-based pricing

- * Customer segmentation
- * Fraud detection (outliers in residuals)

10 Critical Thinking

(a) Multiple Linear Regression Key Assumptions

The key assumptions of multiple linear regression are:

- 1. LINEARITY: The relationship between predictors and response is linear
- 2. INDEPENDENCE: Observations are independent of each other
- 3. HOMOSCEDASTICITY: Constant variance of residuals (homogeneous_
- 4. NORMALITY: Residuals are normally distributed
- ⇔other
- 6. NO OUTLIERS/INFLUENTIAL POINTS: Extreme values don't unduly_
- ⇒influence the

model

INSURANCE CONTEXT IMPLICATIONS:

- Large claims are natural in insurance (catastrophic events)
- Outliers might represent legitimate extreme events, not errors
- Consider robust regression methods or separate models for extreme_ ⇔claims

OVERALL ASSUMPTION ASSESSMENT FOR INSURANCE CLAIMS

LIKELY VIOLATED ASSUMPTIONS:

- 1. Linearity: Insurance relationships often non-linear
- 2. Normality: Claims typically right-skewed
- 3. Homoscedasticity: Variance often increases with claim size
- 4. Independence: Geographic/temporal clustering possible

RECOMMENDED SOLUTIONS:

- 1. Log transformation of claims (handle skewness)
- 2. Robust regression methods
- 3. Polynomial or interaction terms
- 4. Weighted least squares (address heteroscedasticity)
- 5. Consider GLM (Gamma or Poisson regression)
- 6. Outlier-robust methods

(b) Additional Useful Variables

- 1. PROPERTY-SPECIFIC VARIABLES
- ⇔stories
- Condition: Recent renovations, security features, maintenance score
- 2. ENVIRONMENTAL & GEOGRAPHIC
- Climate: Climate zones, precipitation, natural disaster scores
- Location: Crime rates, distance to fire station/water, building codes
- 3. ECONOMIC & DEMOGRAPHIC
- Economic: Local income, property appreciation, unemployment rate
- Demographics: Owner vs tenant occupied, primary vs secondary residence
- 4. USAGE & BEHAVIORAL
- Property Use: Home business, rental income, vacancy duration
- Claims History: Previous claim types, time since last claim
- Behavior: Payment history, policy shopping, service interactions
- 5. ADVANCED MODELING
- Interaction Effects: Age×Construction, Location×Weather, $_{\sqcup}$
- →Coverage × Deductible
- \bullet External Data: Credit scores, satellite imagery, weather APIs
- 6. IMPLEMENTATION PRIORITY
- HIGH: Natural disaster scores, construction details, claims history
- MEDIUM: Neighborhood data, weather variables, usage patterns
- LOW: Credit indicators, satellite analysis, economic metrics
- 7. EXPECTED OUTCOMES
- Model Accuracy: 60-80% \rightarrow 85-95% predictive accuracy
- Benefits: Better risk selection, fraud detection, dynamic pricing
- 8. KEY CONSIDERATIONS
- Data availability varies by property
- Quality validation required for third-party data
- Regulatory compliance (fair housing laws)