Kinks effective dynamics under slow POSITIVE oscillations

#twokinks #1D #costantC

If C(t) is

- Strictly positive $C(t) > 0 \forall t$
- And its oscillations are slow $(T\gg au_c)$ following the idea presented in Kink effective dynamics.pdf (and generalized for C constant → slow oscillations limit in Kink effective dynamics under slow POSITIVE oscillations (theory)) it is possible to describe the evolution dictated by the TDGL with an **effective law** for the velocity of each kink. If x_n is the position of the n-th kink (the n-th zero of u(x)) and $l_n \equiv x_{n+1} - x_n$ is the length of the n-th domain:

$$\dot{x_n}(t) = 16C^{rac{1}{2}}(t)rac{[e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}l_n} - e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}l_{n+1}}]}{\int_{\chi_{n-0.5}}^{\chi_{n+0.5}} d\chi \partial_\chi u_p(\chi)}$$

where $u_p(\chi)$ is the periodic stationary state with period $(\chi_{n+1}-\chi_{n+1})$ and $\chi_n=C(t)^{\frac{1}{2}x_n}$. If there are only two kinks and PBC boundaries are adopted (so if the distance from the right is d then the distance from the left is L-d) the distance d(t) will decrease in this way (L>d)

$$\dot{d}(t) = -2*16C^{rac{1}{2}}(t)rac{[e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}d}-e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}(L-d)}]}{\int_{\chi_{n-0.5}}^{\chi_{n+0.5}}d\chi\partial_{\chi}u_{p}(\chi)}$$

Where the integral at the denominator can be approximated by the integral of the singlekink stationary state and the integration is carried on the whole real axis:

$$\int_{\chi_{n-0.5}}^{\chi_{n+0.5}} d\chi \partial_\chi u_p(\chi) \simeq \int_{-\infty}^{+\infty} d\chi u_k(\chi) = I_1$$

where I_1 has been calculated in the Master Report.pdf and $I_1=\frac{2\sqrt{2}}{3}$.

If also the smaller exponential is neglected, in the limit $L\gg d$

$$\dot{d}(t) \simeq -24\sqrt{2}C^{rac{1}{2}}(t)e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}d}$$

Annihilation time

To estimate the time-scale of the annhilation process, we consider the case where C is constant. The solution to the differential equation for \dot{d} is

$$d(t) = A + \log(\alpha(t_c - t))$$

 $A=(2C)^{-0.5}$; lpha=48C and the annhilation time is

$$t_c = rac{e^{d_0/A}}{lpha} = rac{e^{d_0(2C)^{0.5}}}{48C}$$

Simulations

C is constant

In this case, we can verify the predicted result that prefactor of the logarithm, is $(2C)^{-\frac{1}{2}}$.

C(t) is a slow and positive oscillation

Here we can compare the expected law for \dot{d} with a numerical simulation. Here the equation for \dot{d} is integrated with Explicit Euler.

There isn't a good match when A=1, probably because the distance decays when C is very close to zero and there **the intrinsic timescale of the problem** $\tau_C \sim C^{-1}$ **diverges**, so we are no more in the limit of slow oscillations.

Comparing $\partial_t d$

Below, if the measured value of $\partial_t d$ is less than 1e-15, then it is put to 1e-17.

$$\bar{C}=1; T=500$$

<u>d(t)</u> A=0.25.pdf

A=1/10 <u>A=0.1.pdf</u>	A=1/4 <u>A=0.25.pdf</u>
A=1/5 <u>A=0.2.pdf</u>	A=1/3 <u>A=0.33.pdf</u>

An if C(t) gets too close to zero (**A=0.95**)

<u>A=0.95.pdf</u>