CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 10 FEBBRAIO 2023

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Scrivere la tavola di verità della forma proposizionale $(p \lor q) \to r$ e, se φ , ψ , ϑ sono formule, negare $(\forall x(\varphi(x))) \to (\exists x(\psi(x) \lor \vartheta(x)))$.

Esercizio 2. Si consideri la struttura algebrica (S, *), dove $S = \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ e l'operazione binaria * è definita ponendo, per ogni $(a, b), (c, d) \in S$,

$$(a,b)*(c,d) = (a+c+[4]_{12}, [4]_{15}bd).$$

- (i) Verificare che (S, *) è un monoide, determinarne l'elemento neutro e stabilire se è commutativo.
- (ii) Determinare gli elementi simmetrizzabili in (S,*) e, se esiste, il simmetrico di $([8]_{12},[9]_{15})$.
- (iii) Dare la definizione di elemento cancellabile. L'elemento ($[0]_{12}$, $[0]_{15}$) è cancellabile in (S,*)?
- (iv) La parte $H = \{([8]_{12}, [9]_{15}), ([8]_{12}, [4]_{15})\}$ è chiusa in (S, *)? In caso di risposta affermativa, che tipo di struttura è (H, *)?

Esercizio 3. Tenendo presente che vale $12 \cdot 29 = 348$, descrivere, per ogni $c \in \{n \in \mathbb{N} \mid 8 \le n \le 12\}$, l'insieme $A_c = \{n \in \mathbb{Z} \mid 150n \equiv_{348} c\}$.

Esercizio 4. Siano $T = \mathbb{N} \setminus \{0, 1\}$, \mathbb{P} l'insieme dei numeri interi primi positivi e, per ogni $a \in T$, $\pi(a) = \{p \in \mathbb{P} \mid p \text{ divide } a\}$. Considerare l'applicazione $f : a \in T \longmapsto \min(\pi(a)) \cdot \max(\pi(a)) \in T$.

- (i) Determinare $f(\{2\})$ e $f(\{6\})$.
- (ii) f è iniettiva? È suriettiva?
- (iii) Detto \mathcal{R} il nucleo di equivalenza di f, determinare la classe di equivalenza $[256]_{\mathcal{R}}$.

Esercizio 5. Sia ρ la relazione d'ordine definita in \mathbb{Z} da: $\forall a, b \in \mathbb{Z}$

$$a \rho b \iff (a \le b \land \operatorname{rest}(a, 10) \le \operatorname{rest}(b, 10))^{1}$$

- (i) Determinare gli eventuali minimo, massimo, elementi minimali, elementi massimali in (\mathbb{Z}, ρ) ;
- (ii) sempre in (\mathbb{Z}, ρ) , determinare l'insieme dei maggioranti di $\{15, 21\}$ e stabilire se esiste sup $\{15, 21\}$.
- (iii) (\mathbb{Z}, ρ) è un reticolo?
- (iv) Posto $L = \{-20, -7, 13, 21, 35, 82, 1789\}$, disegnare il diagramma di Hasse di (L, ρ) e stabilire se (L, ρ) è un reticolo e, nel caso, se è distributivo e se è complementato.
- (v) Esiste $x \in L$ tale che $(L \setminus \{x\}, \rho)$ sia un reticolo complementato?

Esercizio 6. Per ogni $n \in \mathbb{N}$, siano $f_n = \overline{4}x^4 + \overline{2}x^2 - x + \overline{7}$ e $g_n = x^2 - \overline{6}x - \overline{7}$ polinomi in $\mathbb{Z}_n[x]$.

(i) Dopo aver determinato le radici di $x^2 - 6x - 7$ in \mathbb{Z} , determinare, se possibile, un primo n tale che f_n sia un multiplo di g_n in $\mathbb{Z}_n[x]$.

Fissato, se esiste, un tale n, in $\mathbb{Z}_n[x]$:

- (ii) determinare tutti i polinomi associati ad f_n ;
- (iii) decomporre il polinomio monico associato ad f_n nel prodotto di polinomi monici irriducibili.

¹per ogni intero a, rest(a, 10) significa $a \mod 10$, ovvero a % 10.

 $(\forall \times (\varphi(x))) \land (\forall \times (\overline{\psi(x)} \land \psi(x)))$

 $(X) \left(\forall_{\mathsf{X}} \left(\varphi(\mathsf{X}) \right) \right) \longrightarrow \left(\exists_{\mathsf{X}} \left(\psi(\mathsf{X}) \vee \mathcal{V}(\mathsf{X}) \right) \right)$

(5,*) $S = \mathbb{Z}_{42} \times \mathbb{Z}_{45}$

*: V(a,b), (c,d) & S ((a,b) * (c,d) = (a+c+ hiz, 415 bd)) Divido l'operacione in olive, ratettin 2 & 5 /15 bd

() COMMUTATIVA: 51

+ e · sons commulative ASSOCIATIVA: SI

Y ASSOCIATIVA: SI $(x \times y) \times z = (y \times z) \times x$ $(x + y + \overline{h}) + \overline{z} + \overline{h} = y + \overline{z} + \overline{h} + x + \overline{h}$ $x + y + \overline{z} + \overline{s} = x + y + \overline{z} + \overline{8}$

16 xy 2 = 16 x y 2

& ASSOCIATIVA: SI

NEUTRO: (8,4) Y NEUTRO: 8 x + 4 + 4 = x

h = 3.1+1

4 = -4 = 8 8 NEUTRO: Th 1=4+3(-1)

4 x y = x 4.64=151.4 => 4=4 = 4+ (15+4(-3))(-1) = 4+15(-1)+4(3) 15 - 4.3+3 = 4(4)+15(-1)

25, = 5, Z

58=25.2+8

1=25+8(-3)=

= 25+58(-3)+25(6)=

= 25 (3) + 58(-3)

1) 12.29=348, CE {nEIN | 8=n = 12} 348=150.2+48

150= 48.3+6 -> MCD 48=6-8+0

150 m = 348 8 150 m = 348 9

he soluron

150 m = 348 12

non ha slura

7.25 m = 58 2.7

M= 19

25= 8.3+(1)-> rch

= 25+(58+25(-2))(-3)=

f: a ET -> min (II(a)). (max (II(a)) ET

·) \$ (323) = Ø

no sucrettive perchi & (423)=0

cii) [256] = { ne |N | n= 2" } con a e |N"

ii) no iriettica perchè (763) à imagne di più elmenti

\$ (46}) = \ neT \ 2 · 3 3 con a, b∈ N°

Es 5 a pb => (a < b 1 rest (a16) < mut (b,10)) nin & max no ninimal. 3(otro) mosend 3[3] 103 (i) 515,213 x ∈ N (x > 21 1 rut (x, 10) ≥ 5) sup { 25} I p i u reticolo iii) è réflusire × p x

tra due mai c'i sempre inte sup

NO COMPLEMENTATO

-7 ZI NO DISTRIBUTIVO

V) Non å passikile