Assessing Variable Importance Nonparametrically using Machine Learning Techniques

Brian D. Williamson,
Peter Gilbert, Noah Simon, Marco Carone

Student Paper Competition, WNAR 2017

26 June 2017

Variable importance

- Data O_1, O_2, \ldots, O_n from unknown distribution $P_0 \in \mathcal{M}$
 - $O_i := (X_i, Y_i)$
 - Covariate vector $X_i := (X_{i1}, X_{i2}, \dots, X_{ip}) \in \mathbb{R}^p$
 - Outcome $Y_i \in \mathbb{R}$
- Estimate $\mu_{P_0}(x) := E_{P_0}(Y \mid X = x)$
- Which features contribute most to variation in $\mu_{P_0}(x)$?
 - Consider $\mu_{P_0,s}(x) := E_{P_0}(Y \mid X_{(-s)} = x_{(-s)})$
 - $X_{(-s)}$ is the vector with the element(s) in $s \subseteq \{1, 2, \dots, p\}$ removed

Variable importance (continued)

- Fundamental questions:
 - How do we estimate μ_{P_0} and $\mu_{P_0,s}$?
 - How do we quantify variable importance?
- Approaches:
 - Parametric, e.g., ANOVA; must be correctly specified
 - Model-agnostic:
 - Technique-specific measures, e.g., random forests [Breiman (2001)]
 - Technique-agnostic measures [Doksum and Samarov (1995)], [van der Laan (2006), Chambaz et al. (2012), Sapp et al. (2014)]

Our goals

Flexible, Interpretable

- Estimate μ_{P_0} and $\mu_{P_0,s}$ using state-of-the-art methods
- Estimate a scientifically meaningful parameter consistently and efficiently
- Properly quantify the uncertainty in our estimates

The parameter of interest

• Additional proportion of variability in Y explained by including X_s in the regression:

$$\psi_{0,s} \equiv \Psi_s(P_0) := \frac{\int \left\{ E_{P_0}(Y \mid X = x) - E_{P_0}(Y \mid X_{(-s)} = x_{(-s)}) \right\}^2 dP_0(x)}{var_{P_0}(Y)}$$

- $\Psi_s(P_0)$ is a property of the data generating mechanism
- Interpretation does not change with estimating procedure
- Equivalent to difference in R^2 between the two regressions:

$$\Psi_s(P_0) = \frac{E_{P_0}[\{Y - \mu_{P_0}(X)\}^2]}{var_{P_0}(Y)} - \frac{E_{P_0}[\{Y - \mu_{P_0,s}(X)\}^2]}{var_{P_0}(Y)}$$

Efficient influence function?

- MLE $\hat{\theta}_n$ of θ_0 ; information $I(\theta_0)$, score $\dot{\ell}(\theta_0 \mid X)$
- Let $\tilde{\ell}(\theta_0 \mid X) = I^{-1}(\theta_0)\dot{\ell}(\theta_0 \mid X)$:
 - This is the efficient influence function (EIF) for θ_0
 - $\sqrt{n}(\hat{\theta}_n \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \tilde{\ell}(\theta_0 \mid X_i) + o_p(1)$
 - $\sqrt{n}(\hat{\theta}_n \theta_0) \to_d N\left[0, E_{P_0}\left\{\tilde{\ell}(\theta_0 \mid X)^2\right\}\right] = N\{0, I^{-1}(\theta_0)\}$
- Given an EIF for a nonparametric parameter:
 - Estimator with influence function = EIF is efficient
 - Can use similar distribution theory to parametric case

The EIF for $\Psi_s(P)$ relative to \mathcal{M}

$$\mu_{P}(x) = E_{P}(Y \mid X = x)
\mu_{P,s}(x) = E_{P}(Y \mid X_{(-s)} = x_{(-s)})
\phi_{s}(P) = \int \{\mu_{P}(x) - \mu_{P,s}(x)\}^{2} dP(x)$$

Then

$$o \mapsto D_{P,s}^{*}(o) := \frac{2\{y - \mu_{P}(x)\}\{\mu_{P}(x) - \mu_{P,s}(x)\} + \{\mu_{P}(x) - \mu_{P,s}(x)\}^{2}}{var_{P}(Y)} - \phi_{s}(P)\left\{\frac{y - E_{P}(Y)}{var_{P}(Y)}\right\}^{2}$$

Asymptotic expansion

- Estimate the relevant components of P_0 using \widehat{P}_n
- Linearize Ψ using the EIF D_{Ps}^* and use the empirical \mathbb{P}_n :

$$\Psi_{s}(\widehat{P}_{n}) - \Psi_{s}(P_{0}) = \int D_{\widehat{P}_{n},s}^{*}(o)d(\widehat{P}_{n} - P_{0})(o) + R_{s}(\widehat{P}_{n}, P_{0})$$

$$= \frac{1}{n} \sum_{i=1}^{n} D_{P_{0},s}^{*}(O_{i})$$

$$+ \int \{D_{\widehat{P}_{n},s}^{*}(o) - D_{P_{0},s}^{*}(o)\}d(\mathbb{P}_{n} - P_{0})(o)$$

$$+ R_{s}(\widehat{P}_{n}, P_{0}) - \frac{1}{n} \sum_{i=1}^{n} D_{\widehat{P}_{n},s}^{*}(O_{i})$$

- linear term:
- empirical process term;
- remainder term;
- problem term!

- (1st order) (2nd order)
 - (2nd order) (irregular)

A naive estimator of $\Psi_s(P_0)$

$$\psi_{0,s} \equiv \Psi_s(P_0) = \frac{\int \{\mu_{P_0}(x) - \mu_{P_0,s}(x)\}^2 dP_0(x)}{var_{P_0}(Y)}$$

- Given estimators $\hat{\mu}(x)$ and $\hat{\mu}_s(x)$
- Plug in:

$$\hat{\psi}_{\text{naive},s} = \frac{n^{-1} \sum_{i=1}^{n} \left\{ \hat{\mu}(X_i) - \hat{\mu}_s(X_i) \right\}^2}{n^{-1} \sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2}$$

Problems with the naive estimator

$$\Psi_{s}(\widehat{P}_{n}) - \Psi_{s}(P_{0}) = \frac{1}{n} \sum_{i=1}^{n} D_{P_{0},s}^{*}(O_{i}) + R_{s}(\widehat{P}_{n}, P_{0}) - \frac{1}{n} \sum_{i=1}^{n} D_{\widehat{P}_{n},s}^{*}(O_{i}) + \int \{D_{\widehat{P}_{n},s}^{*}(o) - D_{P_{0},s}^{*}(o)\} d(\mathbb{P}_{n} - P_{0})(o)$$

- "Bias" incurred from estimating components of P_0
- Generally neither efficient nor regular and asymptotically linear

The one-step estimator

• Remove bias and get regularity, asymptotic linearity, and efficiency by adding on $\frac{1}{n} \sum_{i=1}^{n} D_{\widehat{P}_{a,s}}^{*}(O_{i})$:

$$\hat{\psi}_{n,s} = \hat{\psi}_{\text{naive, s}} + \frac{1}{n} \sum_{i=1}^{n} D_{\widehat{P}_{n,s}}^{*}(O_i),$$

or equivalently

$$\hat{\psi}_{n,s} = \hat{\psi}_{\text{naive, s}} + \frac{n^{-1} \sum_{i=1}^{n} 2\{Y_i - \hat{\mu}(X_i)\}\{\hat{\mu}(X_i) - \hat{\mu}_s(X_i)\}}{n^{-1} \sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2}$$

Asymptotic behavior of the one-step estimator

Under some regularity conditions,

$$\sqrt{n}(\hat{\psi}_{n,s} - \psi_{0,s}) = n^{-1/2} \sum_{i=1}^{n} D_{P_0,s}^*(O_i) + o_P(1)$$

and

$$\sqrt{n}(\hat{\psi}_{n,s} - \psi_{0,s}) \rightarrow_d N\left[0, E_{P_0}\left\{D_{P_0,s}^*(O)^2\right\}\right].$$

- · Consistent, regular, efficient
- Regularity conditions:
 - $\psi_{0,s} \neq 0$
 - $\hat{\mu}$, $\hat{\mu}_s$ converge quickly enough
 - $D^*_{\hat{P}_0,s}$ falls in a P_0 -Donsker class with probability tending to one
- Estimate variance of $\hat{\psi}_{\textit{n,s}}$ empirically

Simulations with a low-dimensional vector of covariates

• Data:

$$X_1, X_2 \stackrel{\textit{iid}}{\sim} \textit{Unif}(-1,1) \text{ and } \epsilon \sim \textit{N}(0,1) \text{ independent of } (X_1, X_2)$$

$$Y = X_1^2 \left(X_1 + \frac{7}{5} \right) + \frac{25}{9} X_2^2 + \epsilon$$

- Truths: $\psi_{0.1} \approx 0.158$, $\psi_{0.2} \approx 0.342$
- Locally-constant loess, five-fold CV to obtain optimal bandwidths
- · Percentile bootstrap for naive confidence intervals

Results

Results

The CORIS data [Rousseaw et al. (1983)]

$$n = 462$$
, outcome = presence of MI

- Behavioral:
 - tobacco consumption,
 - alcohol consumption,
 - type-A behavior

- Biological:
 - systolic blood pressure,
 - LDL cholesterol,
 - adiposity,
 - obesity,
 - family history,
 - age

Super learner [van der Laan et al. (2007)] with boosted trees, elastic net, GAMs, random forests, and five-fold CV

Results from the CORIS data

Conclusions

- Interpretable: Additional proportion of variability in Y explained by including X_s in the estimation technique
- Flexible: Valid CIs with state-of-the-art methods!
- Consistently and efficiently estimate a property of the data generating mechanism
- Reasonable performance in simulation and in data analysis
- Implemented in R package vimp and Python package vimpy
- Future work:
 - dealing with a boundary null hypothesis,
 - working in a structured model (e.g., additive models),
 - nested case-control study data,
 - censoring

References

- [1] Breiman, L. Random forests. *Machine Learning*, 2001.
- [2] Chambaz A, Neuvial P, and van der Laan MJ. Estimation of a non-parametric variable importance measure of a continuous exposure. *Electronic Journal of Statistics*, 2012.
- [3] Doksum K and Samarov A. Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression. *The Annals of Statistics*, 1995.
- [4] Rousseauw J, Du Plessis J, Benade A, Jordann P, Kotze J, Jooste P, and Ferreira J. Coronary risk factor screening in three rural communities. South African Medical Journal, 1983.
- [5] Sapp S, van der Laan MJ, and Page K. Targeted estimation of binary variable importance measures with interval-censored outcomes. *The International Journal* of Biostatistics, 2014.
- [6] van der Laan MJ. Statistical inference for variable importance. *The International Journal of Biostatistics*, 2006.
- [7] van der Laan MJ, Polley EC, and Hubbard AE. Super Learner. *UC Berkeley Division of Biostatistics Working Paper Series*, 2007.