An Accelerated Variance Reducing Stochastic Method with Douglas-Rachford Splitting

Jingchang Liu

November 12, 2018

University of Science and Technology of China

Table of Contents

Background

Moreau Envelop and Douglas-Rachford (DR) Splitting

Our methods

Theories

Experiments

Conclusions

Q & A

Background

Problem

Formulation

- Regularized ERM: $\min_{x \in \mathcal{R}^d} f(x) + h(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + h(x)$.
- $f_i : \mathbb{R}^d \to \mathbb{R}$: empirical loss of *i*-th sample, convex.
- *h*: regularization term, convex but possibly non-smooth.
- Examples: LASSO, sparse SVM, ℓ_1, ℓ_2 -Logistic Regression.

Definition

- Proximal operator: $\operatorname{prox}_f^{\gamma}(x) = \operatorname{argmin}_{y \in \mathbb{R}^d} \left(f(y) + \frac{1}{2\gamma} \|y x\|^2 \right)$.
- Gradient mapping: $f(x) = \frac{1}{\gamma}(x \operatorname{prox}_f^{\gamma}(x))$.
- Subdifferential: $\partial f(x) = \{g \mid g^{\tau}(y-x) \leq f(y) f(x), \forall y \in \text{dom } f\}.$
- Strongly convex: $f(y) \ge f(x) + \langle g, y x \rangle + \frac{\mu}{2} \|y x\|^2$.
- L-smooth: $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} \|y x\|^2$.

Related Works

Exsiting Algorithm

 $\operatorname{prox}_h^{\gamma}(x-\gamma\cdot\square)$, where \square can be obtained from:

- GD: $\square = \nabla f(x)$, more calculations needed in each iteration.
- SGD: $\square = \nabla f_i(x)$, small stepsize deduces slow convergence.
- Variance reduction (VR): $\Box = \nabla f_i(x) \nabla f_i(\bar{x}) + \nabla f(x)$, such as SVRG, SAGA, SDCA.

Accelerated Technique

- III condition: L/μ , the condition number, is large.
- Methods: Acc-SDCA, Catalyst, Mig, Point-SAGA.
- Drawbacks: More parameters need to be tuned.

Rate

Convergence Rate

- VR stochastic methods: $\mathcal{O}((n+L/\mu)\log(1/\epsilon))$.
- Acc-SDCA, Mig, Point-SAGA: $\mathcal{O}((n + \sqrt{nL/\mu})\log(1/\epsilon))$.
- When $L/\mu \gg n$, accelerated technique makes the convergence much faster.

Aim

Design a simpler accelerate VR stochastic method which can achieve the fastest convergence rate.

Moreau Envelop and

Douglas-Rachford (DR) Splitting

Moreau Envelop

Formulaton

$$f^{\gamma}(x) = \inf_{y} \left\{ f(y) + \frac{1}{2\gamma} \|x - y\|^{2} \right\}.$$

Properties

- x^* minimizes f(x) iff x^* minimizes $f^{\gamma}(x)$
- f^{γ} is continuously differentiable even when f is non-differentiable,

$$\nabla f^{\gamma}(x) = (x - \operatorname{prox}_f^{\gamma}(x))/\gamma.$$

Moreover, f^{γ} is $1/\gamma$ -smooth.

- If f: μ -strongly convex, then f^{γ} : $\mu/(\mu\gamma+1)$ -strongly convex.
- \bullet The condition number of f^{γ} is $(\mu\gamma+1)/\mu\gamma$, which may be better.

Proximal Point Algorithm (PPA)

$$x^{k+1} = \operatorname{prox}_f^{\gamma}(x^k) = x^k - \gamma \nabla f^{\gamma}(x^k).$$

Point-SAGA

Formulation

Used when h is absent: $\min_{x \in \mathcal{R}^d} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)$

Iteration

$$z_{j}^{k} = x^{k} + \gamma(g_{j}^{k} - \sum_{i=1}^{n} g_{i}^{k}/n),$$

 $x^{k+1} = \operatorname{prox}_{f_{j}}^{\gamma}(z_{j}^{k})$
 $g_{j}^{k+1} = (z_{j}^{k} - x^{k+1})/\gamma,$

Equivalence

$$x^{k+1} = x^k - \gamma (g_j^{k+1} - g_j^k + \sum_{i=1}^n g_i^k / n),$$

where g_j^{k+1} is the gradient mapping of f at z_j^k .

Point-SAGA: Convergence rate

Strongly convex and smooth

$$\mathcal{O}\left(\left(n+\sqrt{n\frac{L}{\mu}}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

Strongly convex and non-smooth

$$\mathcal{O}\left(\frac{1}{\epsilon}\right)$$
.

Douglas-Rachford (DR) Splitting

Formulation

$$\min_{x\in\mathbb{R}^d}f(x)+h(x),$$

Iteration

$$y^{k+1} = -x^k + y^k + \operatorname{prox}_f^{\gamma}(2x^k - y^k),$$

 $x^{k+1} = \operatorname{prox}_h^{\gamma}(y^{k+1}).$

Convergence

- $F(y) = y + \operatorname{prox}_{h}^{\gamma}(2\operatorname{prox}_{f}^{\gamma}(y) y) \operatorname{prox}_{f}^{\gamma}(y)$.
- y is a fixed point of F if and only if $x = \operatorname{prox}_f^{\gamma}(y)$ satisfies $0 \in \partial f(x) + \partial g(x)$:

$$y = F(y) \quad \rightleftarrows \quad 0 \in \partial f(\operatorname{prox}_y^{\gamma}(y)) + \partial g(\operatorname{prox}_y^{\gamma}(y)).$$

Our methods

Algorithm

Algorithm 1 Prox2-SAGA

- 1: **Input**: $x^0 \in \mathbb{R}^d$, g_i^0 (i = 1, 2, ..., n), step size $\gamma > 0$.
- 2: for k = 0, 1, ... do
- Uniformly randomly pick j from 1 to n.
- 4: Calculate g_i^{k+1} :

$$z_j^k = x^k + \gamma \left(g_j^k - \frac{1}{n} \sum_{i=1}^n g_i^k \right),$$
 (8)

$$g_j^{k+1} = \frac{1}{\gamma} ((z_j^k + x^k - y^k) - \operatorname{prox}_{f_j}^{\gamma} (z_j^k + x^k - y^k)).$$
 (9)

5: Update x:

$$y^{k+1} = z_j^k - \gamma g_j^{k+1}, \tag{10}$$

$$x^{k+1} = \operatorname{prox}_{h}^{\gamma}(y^{k+1}).$$
 (11)

6: Update g_i (i = 1, 2, ..., n) in the table:

$$g_i^{k+1} = \begin{cases} g_j^{k+1}, & \text{if } i = j, \\ g_i^k, & \text{otherwise.} \end{cases}$$
 (12)

7: end for

8: Output: x^{k+1}.

Iterations

Main iterations

$$y^{k+1} = x^k - \gamma \left(g_j^{k+1} - g_j^k + \frac{1}{n} \sum_{i=1}^n g_i^k \right),$$

$$x^{k+1} = \operatorname{prox}_h^{\gamma}(y^k),$$

where

$$g_j^{k+1} = \frac{1}{\gamma} \big((z_j^k + x^k - y^k) - \mathsf{prox}_{f_j} (z_j^k + x^k - y^k) \big),$$

the gradient mapping of f_j at $z_j^k - x^k - y^k$.

Number of parameters

Prox2-SAGA	Point-SAGA	Katyusha	Mig	Acc-SDCA	Catalyst
1	1	3	2	2	several

Connections to other algorithms

Point-SAGA

When h = 0, we have $x_k = y_k$ for Prox2-SAGA,

$$\begin{split} z_{j}^{k} &= x^{k} + \gamma \Big(g_{j}^{k} - \frac{1}{n} \sum_{i=1}^{n} g_{i}^{k} \Big), \\ x^{k+1} &= \operatorname{prox}_{f_{j}}^{\gamma} (z_{j}^{k}), \\ g_{j}^{k+1} &= \frac{1}{\gamma} (z_{j}^{k} - x^{k+1}). \end{split}$$

DR splitting

When
$$n=1$$
, since $g_j^k=\sum_{i=1}^n g_i^k/n$ in Prox2-SAGA,
$$y^{k+1}=-x^k+y^k+\operatorname{prox}_f^\gamma(2x^k-y^k),$$

$$x^{k+1}=\operatorname{prox}_h^\gamma(y^{k+1}).$$

Theories

Effectiveness

Proposition

Suppose that $(y^{\infty}, \{g_i^{\infty}\}_{i=1,...,n})$ is the fixed point of the Prox2-SAGA iteration. Then $x^{\infty} = \operatorname{prox}_h^{\gamma}(y^{\infty})$ is a minimizer of f + h.

Proof.

$$y^{\infty}=-x^{\infty}+y^{\infty}+\mathrm{prox}_{f_i}^{\gamma}(z_i^{\infty}+x^{\infty}-y^{\infty})$$
, which implies

$$(z_i^{\infty} - y^{\infty})/\gamma \in \partial f_i(x^{\infty}), \ i = 1, \dots, n.$$
 (1)

Meanwhile, because $x^{\infty} = \operatorname{prox}_{h}^{\gamma}(y^{\infty})$, we have

$$(y^{\infty} - x^{\infty})/\gamma \in \partial h(x^{\infty}). \tag{2}$$

Observing that

$$\frac{1}{n}\sum_{i=1}^{n}(z_{i}^{\infty}-y^{\infty})+(y^{\infty}-x^{\infty})=\frac{1}{n}\sum_{i=1}^{n}z_{i}^{\infty}-x^{\infty}=0,$$

from (1) and (2), we have
$$0 \in \partial f(x^{\infty}) + \partial h(x^{\infty})$$
.

Convergence Rate

Non-strongly convex case

Suppose that f_i : convex and L-smooth, h: convex. Denote $\bar{g}_j^k = \frac{1}{k} \sum_{t=1}^k g_j^t$, then for Prox2-SAGA with step size $\gamma \leq 1/L$, at any time k>0 it holds

$$\mathbb{E} \|\bar{g}_{j}^{k} - g_{j}^{*}\|^{2} \leq \frac{1}{k} \Big(\sum_{i=1}^{n} \|g_{i}^{0} - g_{i}^{*}\|^{2} + \|\frac{1}{\gamma} (y^{0} - y^{*})\|^{2} \Big).$$

Strongly convex case

Suppose that f_i : μ -strongly convex and L-smooth, h: convex. Then for Prox2-SAGA with stepsize $\gamma = \min\left\{\frac{1}{\mu n}, \frac{\sqrt{9L^2+3\mu L}-3L}{2\mu L}\right\}$, for any time k>0 it holds

$$\mathbb{E} \|x^k - x^*\|^2 \le \left(1 - \frac{\mu \gamma}{2\mu \gamma + 2}\right)^k \cdot \frac{\mu \gamma - 2}{2 - n\mu \gamma} \Big\{ \sum_{i=1}^n \|\gamma(g_i^0 - g_i^*)\|^2 + \|y^0 - y^*\|^2 \Big\}.$$

Remarks

- When the stepsize

$$\gamma = \min\Big\{\frac{1}{\mu n}, \frac{\sqrt{9L^2 + 3\mu L} - 3L}{2\mu L}\Big\},\,$$

then $\mathcal{O}(n+L/\mu)\log(1/\epsilon)$ steps are required to achieve $\mathbb{E}\|x^k-x^*\|^2 \leq \epsilon$.

- When f_i is ill-conditioned, then a large stepsize

$$\gamma = \min \left\{ \frac{1}{\mu n}, \frac{6L + \sqrt{36L^2 - 6(n-2)\mu L}}{2(n-2)\mu L} \right\}$$

is possible, under which the required steps is $\mathcal{O}(n + \sqrt{nL/\mu})\log(1/\epsilon)$.

Figure 2: Comparison of several algorithms with $\ell_1\ell_2$ -Logistic Regression.

Figure 3: Comparison of several algorithms with $\ell_1\ell_2$ -Logistic Regression.

Figure 4: Comparison of several algorithms with sparse SVMs.

Conclusions

- Prox2-SAGA has combined Point-SAGA and DR splitting.
- Point-SAGA provides faster convergence rate to Prox2-SAGA.
- DR splitting provides the effectiveness.

Q & A