Indian Institute of Technology Guwahati Probability Theory (MA 683) Problem Set 03

1. Let Ω_i , i=1, 2 be two nonempty sets and $T:\Omega_1\to\Omega_2$ be a map. Then for any collection $\{A_\alpha:\alpha\in I\}$ of subsets of Ω_2 , show that

$$T^{-1}(\cup_{\alpha\in I}A_i) = \cup_{\alpha\in I}T^{-1}(A_\alpha)$$
 and $T^{-1}(\cap_{\alpha\in I}A_i) = \cap_{\alpha\in I}T^{-1}(A_\alpha).$

Further, $(T^{-1}(A))^c = T^{-1}(A^c)$ for all $A \subset \Omega_2$.

- 2. Let Ω_i , i = 1, 2 be two nonempty sets and $T: \Omega_1 \to \Omega_2$ be a map.
 - (a) Prove that $A \subset T^{-1}(T(A))$ for all $A \subset \Omega_1$ with set equality holding if T is one-to-one.
 - (b) Prove that $T(T^{-1}(B)) \subset B$ for all $B \subset \Omega_2$ with equality if T is onto.
- 3. Let $\Omega = \{1, 2, 3, 4\}$ and $\mathcal{F} = \{\Phi, \Omega, \{1\}, \{2, 3, 4\}\}$. Is X(w) = 1 + w a random variable with respect to the σ -algebra \mathcal{F} ? If not, give an example of a non-constant function which is.
- 4. For each of the function below, find the smallest sigma algebra on $\Omega = \{-2, -1, 0, 1, 2\}$ with respect to which the function is a random variable:
 - (a) $X(w) = w^2$
 - (b) X(w) = w + 1
 - (c) X(w) = |w|
 - (d) X(w) = 2w
- 5. What is the smallest number of elements of a sigma algebra if a function $X : \Omega \to \mathbb{R}$ taking exactly n different values is to be a random variable with respect to this sigma algebra?
- 6. Let $\Omega = [0, 1]$ with the sigma algebra \mathcal{G} of Borel sets B contained in [0, 1] such that B = 1 B. (By 1 B we denote the set $\{1 x : x \in B\}$.)
 - (a) Is X(w) = w a random variable on Ω with respect to \mathcal{G} ?
 - (b) Is Y(w) = |w 1/2| a random variable on Ω with respect to \mathcal{G} ?
 - (c) Is X(w) = 2w a random variable on Ω with respect to \mathcal{G} ?
- 7. Prove that if X is real measurable function on a measurable space (Ω, \mathcal{F}) , so is |X|. Is the converse true?
- 8. Two dice are rolled. Let X be the larger of two numbers shown. Compute $P_X([2,4])$.
- 9. Let $\Omega = [0,1]$ with Borel sigma algebra and Lebesgue measure. Find $P_X([0,1/2))$ for $X(w) = w^2$.
- 10. Let X be the number of tosses of a fair coin up to and including the first toss showing head. Find $P_X(2\mathbb{N})$, where $2\mathbb{N}$ is the set of even non-negative integers.
- 11. Let (Ω, \mathcal{F}, P) be a probability space. Find the cumulative distribution function of each of the random variables below.

- (a) X(w) = 1 for $w \in A$ and X(w) = 2 otherwise, where P(A) = 1/3
- (b) $X(w) = c_k$ with probability α_k , for k = 1, 2, ..., n, where $c_1 < c_2 < ... < c_n$ and $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$.
- (c) Let $\Omega = [0, 1]$ with Borel sigma algebra and Lebesgue measure, X(w) = 2w 1.
- 12. Let $\{A_i\}_{i\geq 1}$ be a collection of disjoint sets in a measurable space (Ω, \mathcal{F}) .
 - (a) Let $\{g_i\}_{i\geq 1}$ be a collection of $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable functions from Ω to \mathbb{R} . Show that $\sum_{i=1}^{\infty} g_i I_{A_i}$ converges on \mathbb{R} and is $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable.
 - (b) Let $\mathcal{G} = \sigma \langle \{A_i : i \geq 1\} \rangle$. Show that $h : \Omega \to \mathbb{R}$ is $\langle \mathcal{G}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable iff g is constant on each A_i .
- 13. Let $g: \Omega \to \overline{\mathbb{R}}$ be such that for every $r \in \mathbb{R}$, $g^{-1}((-\infty, r]) \in \mathcal{F}$. Show that g is $\langle \mathcal{F}, \mathcal{B}(\overline{\mathbb{R}}) \rangle$ -measurable.
- 14. Let $(\Omega_i, \mathcal{F}_i)$, i = 1, 2 be measurable spaces and let $T : \Omega_1 \to \Omega_2$ be a $(\mathcal{F}_1, \mathcal{F}_2)$ -measurable function from Ω_1 to Ω_2 . Then, for any measure μ on $(\Omega_1, \mathcal{F}_1)$, the set function μT^{-1} , defined by

$$\mu T^{-1}(A) = \mu \left(T^{-1}(A) \right), A \in \mathcal{F}_2$$

is a measure on \mathcal{F}_2 .

- 15. Give an example of a discrete random variable, where the cumulative distribution function of the random variable is not a step function.
- 16. Show that a given cumulative distribution function can be written as a weighted sum of a discrete and a continuous cumulative distribution functions.