NASA Technical Memorandum 106429

12/28/93 E 827/

Effect of Hydrogen Exposure on a Cu-8 Cr-4 Nb Alloy

David L. Ellis
Case Western University
Cleveland, Ohio

Ajay K. Misra Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio

and

Robert L. Dreshfield
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

December 1993

EFFECT OF HYDROGEN EXPOSURE ON A Cu-8 Cr-4 Nb ALLOY

David L. Ellis*, Ajay K. Misra**, and Robert L. Dreshfield***

- *- Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
- ** Sverdrup Technology, Inc., 2001 Aerospace Parkway, Cleveland, OH 44142
- *** NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, OH 44135

Introduction

The advanced regeneratively cooled rocket thrust chamber may require new materials to achieve long life and improved performance. The materials need high thermal conductivities to maximize heat exchange and minimize temperature gradients. The new materials must also be more creep resistant and have higher temperature capability than previously used alloys. Current materials such as NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) while highly conductive do not have sufficient high temperature strength and creep resistance to meet the needs of advanced rocket motors. NASA Lewis Research Center has undertaken a program to develop new materials to meet the anticipated needs. One promising alloy identified is a copper - 8 at.% chromium - 4 at.% niobium (Cu-8 Cr-4 Nb) alloy (1,2). The alloy is strengthened by Cr₂Nb intermetallic precipitates dispersed thoughout the Cu matrix.

A major concern with using the alloy in a regeneratively cooled rocket nozzle is the presence of large amounts of liquid and high pressure gaseous hydrogen. It is well known that niobium can form a hydride (3). If this occurs in the Cu-8 Cr-4 Nb alloy it could lead to hydrogen embrittlement. A thermodynamic analysis of the alloy was undertaken to determine the potential for niobium hydride formation. Samples of the alloy were also exposed in high pressure gaseous hydrogen and tensile tested to determine if any hydrogen embrittlement occurred.

Thermodynamic Analysis

Reaction of Nb with H_2 results in the formation of niobium hydride (NbH). The Nb-H phase diagram (3) shows a β phase with a homogeneity range of 41 to 51 at. % H. The β phase is not stable above 418 K. Although pure Nb reacts with H_2 to form a niobium hydride, reaction of Nb-containing compounds such as Cr_2Nb with H_2 will be a function of the activity of Nb in the compound. Thermodynamic calculations were performed to examine if niobium hydride can form by the reaction of Cr_2Nb with H_2 .

The compound Cr_2Nb is nonstoichiometric (4) and can exist over a narrow composition range. For Cr_2Nb in equilibrium with the Nb-rich solid solution, the activity of Nb is close to unity, and its reaction with H_2 will essentially be the same as that of pure Nb. The activity of Nb in Cr-rich Cr_2Nb is less than unity and can be calculated from the equilibria for the reaction

$$2Cr + Nb = Cr2Nb$$
 [1]

for which the equilibrium constant (K1) is

$$K_1 = \frac{1}{(a_{\rm Cr})^2 (a_{\rm Nb})}$$
 [2]

where a_{Cr} and a_{Nb} are activities of Cr and Nb in Cr_2Nb , respectively. The underlines in Reaction [1] denote reduced activities for the elements. The Nb content in Cr-rich solid solution in equilibrium with Cr_2Nb is < 1 at. % for temperatures lower than 1273 K. Thus, a_{Cr} in Cr-rich Cr_2Nb can be assumed to be unity. Using the Gibbs free energy of formation data from the compilation by Barin (5), the activity of Nb in Cr-rich Cr_2Nb was calculated to be 2.15×10^{-4} at 298 K, 1.16×10^{-3} at 373 K, and 0.011 at 573 K.

Consider the reaction of Cr-rich Cr_2Nb with H_2 to form a niobium hydride of composition $Nb_{0.59}H_{0.41}$ (H/Nb ~0.7), which can be written as:

$$0.59\text{Nb} + 0.205\text{H}_2 = \text{Nb}_{0.59}\text{H}_{0.41}$$
 [3]

Using the thermodynamic data of Albrecht et al. (6) for $Nb_{0.59}H_{0.41}$, the equilibrium partial pressure of H_2 (p_{H_2}) for the formation of $Nb_{0.59}H_{0.41}$ was calculated from the equilibria for Reaction [3]:

$$K_3 = \frac{1}{(a_{\rm Nb})^{0.59} (p_{\rm H_2})^{0.205}}$$
 [4]

Table I gives the equilibrium partial pressure for Reaction [3] corresponding to the reaction of Cr-rich Cr₂Nb and pure Nb (or Nb-rich Cr₂Nb).

The H₂ pressures shown in Table I are the minimum H₂ pressure required for the formation of Nb_{0.59}H_{0.41} (6). Although very small hydrogen pressures are required for the reaction of pure Nb to form a niobium hydride, substantially greater (about nine orders of magnitude higher) H₂ pressures are required for the reaction of Cr-rich Cr₂Nb to form a niobium hydride. Table I shows the H₂ pressures required for the formation of Nb_{0.59}H_{0.41}, which represents the Nb-rich boundary of the NbH phase, from Cr-rich Cr₂Nb. The corresponding H₂ pressures will even be higher for NbH with H contents greater than 41 at. %. For example, the equilibrium H₂ pressure for the reaction of Cr-rich Cr₂Nb to form niobium hydride with a H/Nb ratio of 0.85 is 1.024x10⁵ MPa at 373 K, as compared to 462.2 MPa for a H/Nb ratio of 0.7.

The ß NbH phase is not stable above 418 K (3). However, a Nb-H solid solution forms at high temperatures. The feasibility of forming a Nb-H solid solution can be examined from thermodynamic considerations by treating the solid solution of any given composition as a compound. For example, consider the formation of a Nb-H solid solution at 573 K with a H/Nb ratio of 0.1. The solid solution of this composition can be treated as a compound of composition Nb_{0.91}H_{0.09}, and the reaction of Cr₂Nb to form this compound can be written as:

$$0.91\underline{Nb} + 0.45H_2 = Nb_{0.91}H_{0.09}$$
 [5]

Based on the thermodynamic data of Albrecht et al. (6), the equilibrium partial pressure of H_2 for Reaction [5] corresponding to the reaction of Cr-rich Cr_2Nb ($a_{Nb} = 0.011$) to form $Nb_{0.91}H_{0.09}$ is 5.36×10^{35} MPa; the corresponding H_2 partial pressure for the reaction of pure Nb is 3.2×10^{-4} MPa (6).

Experimental Procedure

A bar of Cu-8 Cr-4 Nb alloy was produced by extruding commercially atomized powder as described elsewhere (1). The composition of the alloy is presented in Table II. Four tensile test samples were sent to NASA Marshall Space Flight Center for testing in high pressure gaseous hydrogen. The first two samples used a subsize notched sample design machined as specified by ASTM Standard 292 (7) to determine if the material would become notch sensitive after exposure to hydrogen. The specimen design gave a stress concentration factor (K_t) of 3.9 in the notch region. The two notched samples were tested at room temperature in a 34.5 MPa (5,000 psi) hydrogen gas environment. The two smooth samples were a conventional subsize tensile test specimen design machined as specified by ASTM Standard E 8 (8). The smooth samples were cycled from ambient temperature to 978 K (1300°F) to

ambient in a 34.5 MPa gaseous hydrogen environment three times. Following exposure, the samples were tested at room temperature in a 34.5 MPa gaseous hydrogen environment.

Following tensile testing, the fracture surfaces were examined optically and with an SEM to determine if any change in fracture mechanism could be observed. The fracture surface was also examined for any evidence of hydride formation

Results and Discussion

Thermodynamic Analysis

Thermodynamic data show that the reaction of Nb-rich Cr_2Nb (for which the Nb activity is close to unity) is more favorable than that of Cr-rich Cr_2Nb . However, any reaction of the Nb component in Cr_2Nb will quickly move the Cr_2Nb composition toward the Cr-rich boundary. Thus, for all practical purposes, the reaction of Cr-rich Cr_2Nb with H_2 will determine the stability of Cr_2Nb in H_2 .

From Table I, the equilibrium partial pressures of H_2 for reaction of Cr-rich Cr_2Nb to form $Nb_{0.59}H_{0.41}$ are less than 35 MPa, a typical rocket motor operating pressure, at both room temperature and 323 K, but greater than 35 MPa at 373 K and higher temperatures. The H_2 pressures required for the formation of a Nb-H solid solution are considerably higher than 35 MPa for the reaction of Cr-rich Cr_2Nb . Thus, Cr-rich Cr_2Nb can react with H_2 at 35 MPa pressure to form a niobium hydride at room temperature and 323 K, but can be considered to be chemically stable in 35 MPa H_2 at temperatures greater than ~373 K. No Nb-H solid solution will form at any of these temperatures. This implies good stability of the alloy at elevated temperatures in a hydrogen environment.

Tensile Testing

The notched samples both failed in the smooth portion of the sample, indicating that the materials did not become notch sensitive following hydrogen exposure. The strength and ductility of the hydrogen exposed material are presented in Figures 1 and 2 respectively. The properties of unexposed samples from a previous study (1) are also presented. A slight increase in strength was observed in the samples exposed to the hydrogen environment, but the increase fell well within the variation of the strengths of the unexposed samples. The elongation of the three sets of samples was nearly identical. The reduction in area for the uncycled samples showed an increase over the reduction in area for unexposed samples while the cycled samples showed a decrease in the reduction in area. The values still fall within the limits of previously tested unexposed samples. No gross decrease in the measured ductility of the material was observed. This strongly indicates that the Cu-8 Cr-4 Nb alloy was not hydrogen embrittled under the test conditions.

Typical fracture surfaces for unexposed and hydrogen exposed samples are presented in Figures 3 and 4. Comparing the two fracture surfaces, there is no apparent change in the fracture mechanism. Microvoid coalescence and growth are occurring in both samples. No significant change in dimple size was observed. In Figure 4, a large precipitate of Cr_2Nb can be observed on the fracture surface. Even at magnifications up to 60,000X there was no evidence of hydride formation visible on the surface of the precipitates or anywhere else on the fracture surface. There were also no pits indicating that hydrides formed but were lost during tensile testing.

Although reaction of Cr₂Nb with 35 MPa H₂ to form a niobium hydride is thermodynamically feasible at room temperature and 323 K, the kinetics of the reaction appear to be extremely slow at such low temperatures. This is probably the reason why no reaction was observed between Cr₂Nb and H₂ at a gas pressure of 35 MPa and no degradation of mechanical properties occurred.

Conclusions

Thermodynamic analysis of the alloy indicates that the alloy could potentially form NbH at low temperatures and high pressures given sufficient time. Above 373 K the material cannot form NbH except at extreme pressures. However, room temperature tensile testing of samples exposed to high pressure hydrogen and analysis of the fracture surfaces show no hydrogen embrittlement or notch sensitivity. This indicates that the kinetics for the formation of NbH are very slow at room temperature even when the material is saturated throughout the sample with hydrogen. The alloy is therefore suitable for use in high pressure hydrogen environments and in particular rocket thrust chambers.

Acknowledgments

The authors would like to thank Robert Jacobs at IITRI, NASA Marshall Space Flight Center, for conducting the high pressure hydrogen tensile testing.

References

- (1) D.L. Ellis and R.L. Dreshfield, Proc. of the Adv. Earth-to-Orbit Conf., Vol. I, CP 3174, NASA MSFC, Huntsville, AL, (1992), pp. 18-27
- (2) D.L. Ellis and G.M. Michal, NASA CR-185144, NASA, Washington, DC (Sept. 1989)
- (3) J.F. Smith, Bull. Alloy Phase Dia., Vol. 4, No. 1 (1983), pp. 39-46
- (4) M. Venkatraman and J. P. Neumann, Bull. Alloy Phase Dia., Vol. 7, (1986) pp. 462 466
- (5) I. Barin, Thermochemical Data of Pure Substances, Part I, VCH Verlagsgesellschaft mbH, D-6940 Weinheim, Federal Republic of Germany (1989)
- (6) W. M. Albrecht, M. W. Mallett, and W. D. Goode, J. Electrochem. Soc., Vol. 105, (1958) pp. 219-223
- (7) 1992 Annual Book of ASTM Standards, Vol. 03.01, ASTM, Philadelphia, PA (1992), pp. 433-441
- (8) Ibid, pp. 130-149

TABLE I
Equilibrium partial pressure of H_2 for the reaction 0.59 Nb + 0.205 H_2 = Nb_{0.59} $H_{0.41}$

Temperature (K)	p _{H₂} for Cr-rich Cr ₂ Nb (MPa)	p _{H2} for pure Nb (MPa)
298	1.98	6.74 x 10 ⁻¹¹
323	6.4	1.42 x 10 ⁻⁹
373	462.2	1.93 x 10 ⁻⁶

Table II
Chemical Composition of Cu-8 Cr-4 Nb Alloy

Element	Atomic Percent	Weight Percent	
Cu	87.8	88.2	
Cr	8.3	6.0	
Nb	3.9	5.8	
0	5 . Jan 17	640 ppm	

Fig. 1 - Average Room Temperature Strength of Cu-8 Cr-4 Nb Before and After Hydrogen Exposure.

(a) Smooth Samples Cycled From Room Temperature To 978 K Three Times.

Fig. 2 - Average Room Temperature Ductility of Cu-8 Cr-4 Nb Before and After Hydrogen Exposure.

(a) Smooth Samples Cycled From Room Temperature To 978 K Three Times.

Fig. 3 - Typical Fracture Surface of Unexposed Cu-8 Cr-4 Nb Tensile Test Specimen

Fig. 4 - Typical Fracture Surface of Hydrogen Exposed Cu-8 Cr-4 Nb Tensile Test Specimen

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED		
1. AGENCY USE ONLY (Leave blank	December 1993		chnical Memorandum		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
Effect of Hydrogen Exposure on a Cu-8 Cr-4 Nb Alloy					
	,				
p					
6. AUTHOR(S)			WU-584-03-11		

David L. Ellis, Ajay K, Misra, and Robert L. Dreshfield					
7. PERFORMING ORGANIZATION N	IAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION		
			REPORT NUMBER		
National Aeronautics and Space Administration			E-8271		
Lewis Research Center Cleveland, Ohio 44135–3191			E=0271		
Cievelalid, Olilo 44133–3					
9. SPONSORING/MONITORING AGI	THOU MANE (C) AND ADDRESS (ES)		10 CDONCODING MACAUTODING		
9. SPONSORING/MONITORING AGI	ENCT NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
National Aeronautics and	Space Administration				
Washington, D.C. 20546-	-		NASA TM-106429		
			2.1		
11. SUPPLEMENTARY NOTES	VI	1 1 01: 44106 4:	7. W. C. J. T. J. J.		
	o, 2001 Aerospace Parkway, Brook I		y K. Misra, Sverdrup Technology, Inc.,		
	Lewis Research Center. Responsible		· · · · · · · · · · · · · · · · · · ·		
Robert E. Diesinield, NASA	Lewis Research Center. Responsible	e person, Robert E. Dresnin	Clu, (210) 433–6730.		
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE		
Unclassified - Unlimited					
Subject Category 26					
13. ABSTRACT (Maximum 200 words)					
The advanced regeneratively cooled rocket thrust chamber may require new materials to achieve long life and					
improved performance. Current materials such as NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr), while highly conductive,					
do not have sufficient high temperature strength and creep resistance to meet the projected needs of advanced rocket					
motors. A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy has been identified as a promising material for this applica-					
tion. However, hydrogen embrittlement is a concern given the presence of high pressure, high temperature hydrogen					
in regeneratively cooled rocket motors. Thermodynamic analysis of the reaction between Cr-rich Cr ₂ Nb and H ₂					
showed that there is a possibility of reaction at temperatures up to 323 K in a 35 MPa H ₂ environment. Above 323 K					
the pressure necessary to achieve reaction rapidly increased beyond the range experienced in rocket motors. Tensile					
specimens exposed in 34.5 MPa H ₂ at room temperatures and during cycling to 705°C did not show any degradation					
of properties. No evidence of reaction was observed for Cr ₂ Nb precipitated observed on the fracture surfaces. Based					
on these results the Cu-8 Cr-4 Nb alloy was judged to be sufficiently stable for use in rocket motors.					
14. SUBJECT TERMS	15. NUMBER OF PAGES				
			8		
Hydrogen; Copper-based alloy			16. PRICE CODE		
			A02		
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT		
Unclassified	Unclassified	Unclassified			

National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Rd. Cleveland, OH 44135-3191

Official Business Penalty for Private Use \$300 POSTMASTER: If Undeliverable — Do Not Return