Логика

I. Съждително смятане

- **Съждение** е всяка мисъл, която е вярна или невярна.
- **Съждителна константа:** вярно съждение (истина) или невярно съждение (лъжа)

Операции върху съждения: Нека Р и Q са съждения.

- *** Конюнкция** на две съждения $P \wedge Q$ се нарича съждението "P u Q", което е вярно тогава и само когато са верни едновременно и двете съждения.
- **Ф** Дизюнкция на две съждения $P \vee Q$ се нарича съждението "P или Q ", което е вярно, тогава и само тогава когато поне едно от двете дадени съждения е вярно.
- *** Импликация** на две съждения $P \rightarrow Q$ се нарича съждението "*Ако P то Q*", което е невярно съждение тогава и само тогава, когато съждението P е вярно и съждението Q е невярно. Ще наричаме P-хипотеза, а Q- заключение.
- ***** Двойна импликация на съжденията (Еквиваленция) $P \leftrightarrow Q$ се нарича съждението "P тогава и само тогава, когато двете съждения имат еднакви верностни стойности.

Таблица от верностни стойности

P	Q	P v Q	P∧Q	$P \rightarrow Q$	P ↔ Q	₽	∫Q
T	T	T	T	T	T	F	F
T	F	T	F	F	F	F	T
F	T	T	F	T	F	T	F
F	F	F	F	T	T	T	T

Задачи:

Задача 1. Нека P = "4<7", Q="13 е просто число", R=" Париж е столицата на Франция". Образувайте съжденията:

2. P∨Q

 $3.P \rightarrow (Q \land R)$

4. ¬P∨ ¬O

5. ¬(P∧Q)

6. $(P \rightarrow Q) \lor (Q \rightarrow R)$

Задача 2. Конструирайте верностна таблица за всяко от следните твърдения:

- 1. $(P \land Q) \rightarrow R$
- 2. $((P \rightarrow Q) \lor (Q \rightarrow R)) \land R$

Тавтология и еквивалентност. Логическо следствие

- Тавтология: Всяко съждение, което е винаги вярно, независимо от верностните стойности на съставляващите го съждения.
- Противоречие: Съждение, което е винаги невярно. Можем лесно да ги разпознаем, ако във верностната таблица получим само

T(тавтология) или само F(противоречие).

- Еквивалентност: Нека S₁ и S₂ са две съждения. Казваме, че те са еквивалентни, когато двете колони във верностната таблица, в които те получават стойностите си са еднакви.
- *Логически следствия*: Нека S1 и S2 са съставни съждения. Казваме, че S2 следва от S1, т.е. S1 \Rightarrow S2, ако за всяко разпределение на верностните стойности съждителните променливи в S1 и S2, от верността на S1 следва верността на S2.

Задача 3. Проверете дали следните твърдения са тавтологии:

1.
$$(P \land (P \rightarrow Q)) \rightarrow Q$$

2.
$$(P \rightarrow Q) \leftrightarrow (Q \lor P)$$

$$3. (P \land Q) \rightarrow (P \lor R)$$

5.
$$P \rightarrow (P \rightarrow Q)$$

Задача 4. Проверете дали следните съждения са еквиваленции:

- 1. $(P \lor Q) \Leftrightarrow P \land Q$ закон на Де Морган
- 2. Р \wedge (Q \vee R) \Leftrightarrow (Р \wedge Q) \vee (Р \wedge R)- дистрибутивен закон
- 3. $(P \rightarrow Q) \Leftrightarrow P \land Q$ закон за отрицание на импликацията

Задача 5 Проверете дали логическите следствия са верни:

- 1. $(P \lor Q) \land (P \to Q) \Rightarrow Q$
- 2. $(P \land Q) \rightarrow R \Rightarrow (P \rightarrow R) \land (Q \rightarrow R)$

II. Предикатна логика

Квантор за съществуване: Нека Р е твърдение и нека съществуването на х означим с $\exists x$. Тогава $\exists x:P$ е твърдението: "Съществува x, такова че P". Променливата x е квантова променлива.

• **Универсален квантор:** Нека P е твърдение със свободна променлива x. Тогава " $\forall x$: P е твърдение, което се чете: "За всяко x —P"

Задачи:

Задача 1. Какво означават следните математически записи?

- 1. $\forall x$: $\forall y$: $\forall z$: (x(y+z)=xy+xz)
- 2. $\exists z:((\forall x:x+z=x) \land (\forall x: \exists y:x+y=z))$

Задача 2. Определете верността на твърденията:

a) $\forall x: x^2 + x + 2 > 0$;

6) $\exists x: x^2 + x + 2 = 0;$

6) $\forall x: x^2+x+2=0;$

z) не $\exists x: x^2 + x + 2 = 0$

Задача 3. Верни ли са твърденията:

- 1. Всички прости числа са нечетни
- 2. Всяко число, което се дели на 6 се дели и на 2.
- 3. Съществува правоъгълник, на който диагоналите не са равни.

Изкажете отрицанията им.

Допълнителни задачи:

Задача 1. Проверете дали следните твърдения са тавтологии:

- 1. $P \rightarrow (P \lor Q)$
- 2. $(P \leftrightarrow Q) \leftrightarrow ((P \rightarrow Q) \land (Q \rightarrow P))$

<u>Задача 2.</u> Конструирайте верностна таблица за всяко от следните твърдения:

- 1. $(P \lor Q) \rightarrow (P \land Q)$
- 2. $P \land (Q \to P)$. Какво можете да заключите за P и Q, ако твърдението е истина?

<u>Задача 3.</u> Проверете дали следните твърдения са логически еквиваленции, "Няма да вали дъжд или сняг" и "Няма да вали дъжд и няма да вали сняг":

<u>Задача 4.</u> Проверете дали следните твърдения са логически еквиваленции

$$(P \lor Q) \to R$$
 и $(P \to R) \lor (Q \to P)$

$$(P \rightarrow Q) \text{ и } P \land Q$$