Python Imaging Library (PIL)

Abdullah Alfarrarjeh

Loading an image

from PIL import Image

pic = Image.open('puppy01.jpg')

pic

PIL.JpegImagePlugin.JpegImageFile

type(pic)

Convert an image into a NumPy array

import numpy as np import matplotlib.pyplot as plt from PIL import Image

pic = Image.open('puppy01.jpg')
pic_arr = np.asarray(pic)

print(pic_arr.shape)

plt.imshow(pic_arr)

(380, 570, 3)
<matplotlib.image.AxesImage at 0x1aedd9bcb30>

Image is a 3D array: Red, Green, Blue

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
pic = Image.open('puppy01.jpg')
pic_arr = np.asarray(pic)

Red Channel plt.imshow(pic_arr[:,:,0], cmap='gray')

Green Channel
plt.imshow(pic_arr[:,:,1], cmap='gray')

plt.imshow(pic_arr[:,:,2], cmap='gray')

Blue Channel

Red Channel

<matplotlib.image.AxesImage at 0x1aedda358b0>

Blue Channel

<matplotlib.image.AxesImage at 0x1aedd9bc9e0>

Green Channel

<matplotlib.image.AxesImage at 0x1aeddb93140>

Image is a 3D array: Red, Green, Blue

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
pic = Image.open('puppy01.jpg')
pic_arr = np.asarray(pic)
pic_arr_copy = pic_arr.copy()

suppress the impact of the green channel
pic_arr_copy[:,:,1] = 0
plt.imshow(pic_arr_copy)

suppress the impact of the green channel
pic_arr_copy[:,:,1] = 0
suppress the impact of the blue channel
pic_arr_copy[:,:,2] = 0
plt.imshow(pic_arr_copy)

Only Red and Blue Channels

<matplotlib.image.AxesImage at 0x1aedd9f8860>

Only Red Channel

<matplotlib.image.AxesImage at 0x1aede482840>

