Übungen zu Analysis I für Ingenieure und Informatiker

(Abgabe bis Freitag, 16.05.2014 um 08:20 Uhr, H3)

- 1. (a) Es seien $n, m \in \mathbb{N}$ und $\emptyset \neq A \subset \mathbb{R}$. Zeige, falls es zwei Bijektionen $f : \{1, \ldots, n\} \to A$ und $g : \{1, \ldots, m\} \to A$ gibt, dann gilt n = m.
 - (b) Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} . Zeige, dass die Menge $M:=\{a_n\mid n\in\mathbb{N}\}$ der Folgenglieder höchstens abzählbar ist.

(2+3 Punkte)

2. Finde jeweils ein Beispiel für folgende Behauptungen. Es existieren divergente oder uneigentlich konvergente Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ in \mathbb{R} , $b_n \neq 0 \ \forall n \in \mathbb{N}$, für die folgendes gilt:

(a) $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$,

- (b) $\lim_{n\to\infty} \frac{a_n}{b_n} =: c \in \mathbb{R} \setminus \{0\},$ konvergent mit GW ungleich 0
- (c) $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ oder $\lim_{n\to\infty} \frac{a_n}{b_n} = -\infty$,
- (d) $\lim_{n\to\infty} \frac{a_n}{b_n}$ existiert nicht.

(4 Punkte)

- 3. Untersuche die angegebenen Folgen $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz und bestimme ggf. die Grenzwerte. Untersuche divergente Folgen auf konvergente Teilfolgen.
 - (a) $a_n := \frac{2n^2 + 3n 8}{3n^2 + 2}$, (c) $a_n := \frac{n}{2} \sum_{k=1}^n \frac{k}{n+2}$,
 - (b) $a_n := (-1)^{\frac{n^2(n+1)^2}{4}} \cdot \frac{(-1)^n}{n}$, (d) $a_n := ((-1)^{n+1} 2)^{-n}$.

(10 Punkte)

- 4. Untersuche mit der Definition, ob die jeweilige Folge $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in \mathbb{R} ist.
 - (a) $a_n := \frac{n-1}{n}$, (b) $a_n := \sum_{k=1}^n \left(\frac{|x|}{2}\right)^{k-1}$ für $x \in [-2, 2]$. (3+7 Punkte)
- 5. Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} mit $a_1=1$ und $a_{n+1}=\sqrt{1+a_n}$ für alle $n\in\mathbb{N}$.
 - (a) Untersuche die Folge $(a_n)_{n\in\mathbb{N}}$ auf Monotonie.
 - (b) Untersuche die Folge $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz.
 - (c) Bestimme den Grenzwert von $(a_n)_{n\in\mathbb{N}}$.

(3+3+3) Punkte