Data Representation

COE 202

Digital Logic Design

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Outline

- Introduction
- Numbering Systems
- Binary & Hexadecimal Numbers
- Base Conversions
- Binary Addition, Subtraction, Multiplication
- Hexadecimal Addition
- Binary Codes for Decimal Digits
- Character Storage

Introduction

- Computers only deal with binary data (0s and 1s), hence all data manipulated by computers must be represented in binary format.
- Machine instructions manipulate many different forms of data:
 - Numbers:
 - Integers: 33, +128, -2827
 - Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03
 - Alphanumeric characters (letters, numbers, signs, control characters): examples: A, a, c, 1,3, ", +, Ctrl, Shift, etc.
 - ♦ Images (still or moving): Usually represented by numbers representing the Red, Green and Blue (RGB) colors of each pixel in an image,
 - Sounds: Numbers representing sound amplitudes sampled at a certain rate (usually 20kHz).
- So in general we have two major data types that need to be represented in computers; numbers and characters.

Numbering Systems

- Numbering systems are characterized by their base number.
- ❖ In general a numbering system with a base r will have r different digits (including the 0) in its number set. These digits will range from 0 to r-1.
- The most widely used numbering systems are listed in the table below:

Numbering System	Base	Digits Set
Binary	2	10
Octal	8	76543210
Decimal	10	9876543210
Hexadecimal	16	FEDCBA9876543210

Weighted Number Systems

 $^{\diamond}$ A number D consists of n digits with each digit having a particular *position*.

- Every digit position is associated with a fixed weight.
- If the weight associated with the *ith* position is w_i , then the value of D is given by:

$$\mathbf{D} = \mathbf{d}_{n-1} \mathbf{w}_{n-1} + \mathbf{d}_{n-2} \mathbf{w}_{n-2} + \ldots + \mathbf{d}_2 \mathbf{w}_2 + \mathbf{d}_1 \mathbf{w}_1 + \mathbf{d}_0 \mathbf{w}_0$$

Example of Weighted Number Systems

- ❖ The Decimal number system (الطام العشري) is a weighted system.
- For integer decimal numbers, the weight of the rightmost digit (at position 0) is 1, the weight of position 1 digit is 10, that of position 2 digit is 100, position 3 is 1000, etc.
- Thus, $w_0 = 1$, $w_1 = 10$, $w_2 = 100$, $w_3 = 1000$, etc.
- **Example:**
- Show how the value of the number 9375 is

The Radix (Base)

- For *digit position i*, most weighted number systems use weights (w_i) that are powers of some constant value called the radix (r) or the base such that $w_i = r^i$.
- A number system of radix r, typically has a set of r allowed digits $\in \{0,1,...,(r-1)\}$.
- ❖ The leftmost digit has the highest weight → Most Significant Digit (MSD).
- ightharpoonup The rightmost digit has the lowest weight ightharpoonup Least Significant Digit (LSD).

The Radix (Base)

- * Example: Decimal Number System
- ❖ 1. Radix (Base) = *Ten*
- 2. Since $w_i = r^i$, then

$$\diamond$$
 $W_0 = 10^0 = 1$,

$$\diamond$$
 W₁ = $10^1 = 10$,

$$\phi$$
 w₂= 10² = 100,

$$\phi$$
 w₃ = 10³ = 1000, etc.

Position	3	2	1	0
	1000	100	10	1
Weight	$= 10^{3}$	$= 10^2$	= 10 ¹	= 10 ⁰

- 3. Number of Allowed Digits is Ten:
 - **♦** {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The Radix Point

A number D of *n* integral digits and *m* fractional digits is represented as shown:

Digits to the left of the radix point (*integral digits*) have positive position indices, while digits to the right of the radix point (*fractional digits*) have negative position indices.

The Radix Point

- Position indices of digits to the left of the radix point (the integral part of D) start with a 0 and are incremented as we move left (d_{n-1}d_{n-2}.....d₂d₁d₀).
- Position indices of digits to the right of the radix point (the fractional part of D) start with a -1 and are decremented as we move right(d₋₁d₋₂.....d_{-m}).
- The weight associated with digit *position i* is given by $w_i = r^i$, where *i* is the position index $\forall i = -m, -m+1, ..., -2, -1, 0, 1, ..., n-1.$

 $D = \sum d_i r^i$

The Value of D is Computed as:

The Radix Point

* Example: Show how the value of the decimal number 52.946 is estimated.

Number	5	2		9	4	6
Position	1	0		-1	-2	-3
Weight	10 ¹ = 10	10 ⁰ = 1		10 ⁻¹ = 0.1	10 ⁻² = 0.01	10 ⁻³ = 0.001
Value	5 x 10	2 X 1		9 X 0.1	4 x 0.01	6 X 0.001
Value 50 + 2 + 0.9 + 0.04 + 0.006						

$$\mathbf{D} = 5\mathbf{x}\mathbf{10}^{1} + 2\mathbf{x}\mathbf{10}^{0} + 9\mathbf{x}\mathbf{10}^{-1} + 4\mathbf{x}\mathbf{10}^{-2} + 6\mathbf{x}\mathbf{10}^{-3}$$

Notation

- ightharpoonup Let $(D)_r$ denote a number D expressed in a number system of radix r.
- In this notation, r will be expressed in decimal.
- Examples:
- ❖ (29)₁₀ Represents a decimal value of 29. The radix "10" here means ten.
- ❖ (100)₁₆ is a Hexadecimal number since r = "16" here means sixteen. This number is equivalent to a decimal value of 16²=256.
- $(100)_2$ is a Binary number (radix =2, i.e. two) which is equivalent to a decimal value of $2^2 = 4$.

Binary System

☆ r=2

* Each digit (bit) is either 1 or 0

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2

Table 1-3 Binary Bit Position Values.

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	2 ⁸	256
21	2	2 ⁹	512
2^{2}	4	210	1024
2^{3}	8	211	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	2 ¹⁵	32768

Binary System

Examples: Find the decimal value of the two Binary numbers $(101)_2$ and $(1.101)_2$

MSB LSB
$$(1.101)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$$

$$= 1 + 0.5 + 0 + 0.125$$

$$= (1.625)_{10}$$

Octal System

- $r = 8 \text{ (Eight = } 2^3 \text{)}$
- * Eight allowed digits {0, 1, 2, 3, 4, 5, 6, 7}
- Examples: Find the decimal value of the two Octal numbers (375)₈ and (2.746)₈

Hexadecimal System

- r = 16 (Sixteen = 24)
- Sixteen allowed digits {0-to-9 and A, B, C, D, E, F}
- ❖ Where: A = Ten, B = Eleven, C = Twelve, D = Thirteen, E = Fourteen & F = Fifteen.
- **Examples:** Find the decimal value of the two Hexadecimal numbers $(9E1)_{16}$ and $(3B.C)_{16}$

Hexadecimal Integers

Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

- ❖ The Largest value that can be expressed in n integral digits is (rⁿ-1).
- The Largest value that can be expressed in m fractional digits is (1-r-m).
- The Largest value that can be expressed in n integral digits and m fractional digits is (rn -r-m)
- Total number of values (patterns) representable in n digits is rⁿ.

- Q. What is the result of adding 1 to the largest digit of some number system??
 - ♦ For the decimal number system, $(1)_{10} + (9)_{10} = (10)_{10}$
 - ♦ For the binary number system, $(1)_2 + (1)_2 = (10)_2 = (2)_{10}$
 - ♦ For the octal number system, $(1)_8 + (7)_8 = (10)_8 = (8)_{10}$
 - \diamond For the hexadecimal system, $(1)_{16} + (F)_{16} = (10)_{16} = (16)_{10}$

OCTAL System

7 + 1 illegal octal digit

 $10 = 0x8^{0} + 1x8^{1}$

F

1

(16)₁₀

$$\downarrow$$
 convert to HEX

(10)₁₆ = 0x16⁰ + 1x16¹

- Q. What is the largest value representable in 3-integral digits?
- ❖ A. The largest value results when all 3 positions are filled with the largest digit in the number system.
 - \diamond For the decimal system, it is (999)₁₀
 - \diamond For the octal system, it is $(777)_8$
 - For the hex system, it is (FFF)₁₆
 - \diamond For the binary system, it is $(111)_2$
- Q. What is the result of adding 1 to the largest 3-digit number?
 - \diamond For the decimal system, $(1)_{10} + (999)_{10} = (1000)_{10} = (10^3)_{10}$
 - \diamond For the octal system, $(1)_8 + (777)_8 = (1000)_8 = (8^3)_{10}$

- In general, for a number system of radix r, adding 1 to the largest *n*-digit number = r^n .
- Accordingly, the value of largest *n*-digit number = r^n 1.

Binary System

HEX System

OCTAL System

Number Base Conversion

- \diamond Given the representation of some number (X_B) in a number system of radix B, we need to obtain the representation of the same number in another number system of radix A, i.e. (X_{Δ}) .
- For a number that has both integral and fractional parts, conversion is done separately for both parts, and then the result is put together with a system point in between both parts.
- Converting Whole (Integer) Numbers
 - \diamond Assume that X_B has n digits $(b_{n-1}, \dots, b_2, b_1, b_0)_B$, where b_i is a digit in radix B system, i.e. $b_i \in \{0, 1, \dots, \text{``B-1''}\}.$
 - \diamond Assume that X_A has m digits $(a_{m-1}, \dots, a_2, a_1, a_0)_A$, where a_i is a digit in radix A system, i.e. $a_i \in \{0, 1, \dots, \text{``A-1''}\}$.

Data Representation COE 202– Diaital Logic Design – KFUPM

 \bullet Dividing X_B by A, the remainder will be a_0 .

• In other words, we can write $X_B = Q_0.A + a_0$

$$\mathbf{Q}_0 = \mathbf{Q}_1 \mathbf{A} + \mathbf{a}_1$$

$$\mathbf{Q}_1 = \mathbf{Q}_2 \mathbf{A} + \mathbf{a}_2$$

.....

$$Q_{m-3} = Q_{m-2}A + a_{m-2}$$

 $Q_{m-2}=a_{m-1} < A$ (not divisible by A)

$$=\mathbf{Q}_{\mathbf{m}-1}\mathbf{A} + \mathbf{a}_{\mathbf{m}-1}$$

Where
$$\mathbf{Q}_{\mathbf{m-1}} = 0$$

- This division procedure can be used to convert an integer value from some radix number system to any other radix number system.
- The first digit we get using the division process is a_0 , then a_1 , then a_2 , till a_{m-1}
- \star Example: Convert (53)₁₀ to (?)₂

Division Step		vision Step Quotient		Remainder	
53	÷	2	$Q_0 = 26$	$1 = a_0$	LSB
26	÷	2	$Q_1 = 13$	$0 = a_1$	
13	÷	2	$Q_2 = 6$	$1 = a_2$	
6	÷	2	$Q_3 = 3$	$0 = a_3$	
3	÷	2	$Q_4 = 1$	$1 = a_4$	
1	÷	2	0	$1 = a_5$	MSB
			A		I

Thus $(53)_{10}$ = $(110101.)_2$

Stopping Point

Since we always divide by the radix, and the quotient is re-divided again by the radix, the solution table may be compacted into 2 columns only as shown:

Example: Convert (755)₁₀ to (?)₈

Division Step		Division Step Quotient		Remainder	
755	÷	8	$Q_0 = 94$	$3 = a_0$	LSB
94	÷	8	$Q_1 = 11$	$6 = a_1$	
11	÷	8	$Q_2 = 1$	$3 = a_2$	
1	÷	8	0	$1 = a_3$	MSB

$$(755)_{10}$$
 $(1363.)_8$

Converting Binary to Decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

Decimal =
$$(d_{n-1} \times 2^{n-1}) + (d_{n-2} \times 2^{n-2}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$$

d = binary digit

binary 10101001 = decimal 169:

$$(1 \times 2^7) + (1 \times 2^5) + (1 \times 2^3) + (1 \times 2^0) =$$

128+32+8+1=169

Convert Unsigned Decimal to Binary

* Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

	Remainder	Quotient	Division
- least significant bit	1	18	37 / 2
	0	9	18 / 2
	1	4	9/2
	0	2	4/2
	0	1	2/2
- most significant bit	1	0	1/2
	stop when quotient is zero	0101	37 = 100

Another Procedure for Converting from Decimal to Binary

- Start with a binary representation of all 0's
- Determine the highest possible power of two that is less or equal to the number.
- Put a 1 in the bit position corresponding to the highest power of two found above.
- Subtract the highest power of two found above from the number.
- * Repeat the process for the remaining number

Another Procedure for Converting from Decimal to Binary

- **Example:** Converting (76)₁₀ to Binary
 - ♦ The highest power of 2 less or equal to 76 is 64, hence the seventh (MSB) bit is 1
 - Subtracting 64 from 76 we get 12.
 - ♦ The highest power of 2 less or equal to 12 is 8, hence the fourth bit position is 1
 - We subtract 8 from 12 and get 4.
 - ♦ The highest power of 2 less or equal to 4 is 4, hence the third bit position is 1
 - Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer

Binary to Octal Conversion

* Each octal digit corresponds to 3 binary bits.

$$(b_n....b_5 b_4 b_3 b_2 b_1 b_0.b_{-1} b_{-2} b_{-3} b_{-4} b_{-5}....)_2$$

* Example: Convert (1110010101.1011011), into Octal.

Binary to Hexadecimal Conversion

Each hexadecimal digit corresponds to 4 binary bits.

* Example: Convert (1110010101.1011011)₂ into hex.

Binary to Hexadecimal Conversion

Example: Translate the binary integer 000101101010011110010100 to hexadecimal

1	6	Α	7	9	4
0001	0110	1010	0111	1001	0100

M1023.swf

Converting Hexadecimal to Binary

Each Hexadecimal digit can be replaced by its 4-bit binary number to form the binary equivalent.

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

Decimal =
$$(d3 \times 16^3) + (d2 \times 16^2) + (d1 \times 16^1) + (d0 \times 16^0)$$

d = hexadecimal digit

Examples:

- $(1234)_{16} = (1 \times 16^3) + (2 \times 16^2) + (3 \times 16^1) + (4 \times 16^0) = (4,660)_{10}$
- \Rightarrow (3BA4)₁₆ = (3 × 16³) + (11 * 16²) + (10 × 16¹) + (4 × 16⁰) = (15,268)₁₀

Converting Decimal to Hexadecimal

Repeatedly divide the decimal integer by 16. Each remainder is a hex digit in the translated value:

Division	Quotient	Remainder	
422 / 16	26	6 ←	least significant digit
26 / 16	1	A	
1 / 16	0	1 -	most significant digit
		stop who	

$$(422)_{10} = (1A6)_{16}$$

Converting Fractions

- Assume that X_B has n digits, $X_B = (0.b_{-1} b_{-2} b_{-3} \dots b_{-n})_B$
- Assume that X_A has m digits, $X_A = (0.a_{-1} a_{-2} a_{-3} \dots a_{-m})_A$

Converting Fractions

Example: Convert (0.731)₁₀ to (?)₂

• Binary Point

$$0.731*2=1.462$$

$$0.462*2=0.924$$

$$0.924*2=1.848$$

$$0.696*2=1.392$$

$$0.392*2=0.784$$

$$0.784*2=1.568$$

$$(0.731)_{10} = (.1011101)_2$$

Converting Fractions

Example: Convert (0.731)₁₀ to (?)₈

Example: Convert $(0.357)_{10}$ to $(?)_{12}$

Binary Addition

- 4 + 1 = 2, but 2 is not allowed digit in binary
- Thus, adding 1 + 1 in the binary system results in a Sum bit of 0 and a Carry bit

Example Carries + 1

Binary Addition Table

•		
	Carry	Sum
Weight	21	2 ⁰
0 + 0	0	0
0 + 1	0	1
1+0	0	1
1+1	1	0
	$\equiv 1 \times 2^1$	$\equiv 0 \mathbf{x} 2^0$
		~
	=	= +2

Binary Addition

- Start with the least significant bit (rightmost bit)
- * Add each pair of bits
- Include the carry in the addition, if present

Binary Subtraction

The borrow digit is negative and has the weight of the next higher digit.

	Borrow	Difference								
Weight	-2 ¹	+20								
0 - 0	0	0								
1 - 1	0	0								
1 - 0	0	1								
0 - 1	1	1								
_		_								
	$\equiv 1x(-2^1)$	$\equiv \pm 1 x 2^0$								
		<u> </u>								
≡ -1										

Binary Multiplication

Binary multiplication is performed similar to decimal multiplication.

Example: 11 * 5 = 55

Multiplica	ınd		1	0	1	1	
Multiplier	•			1	0	1	X
1			1	0	1	1	
		0	0	0	0		+
	1	0	1	1			+
	1	1	0	1	1	1	

Hexadecimal Addition

Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

- Internally, digital computers operate on binary numbers.
- When interfacing to humans, digital processors, e.g. pocket calculators, communication is decimal-based.
- Input is done in decimal then converted to binary for internal processing.
- For output, the result has to be converted from its internal binary representation to a decimal form.
- To be handled by digital processors, the decimal input (output) must be coded in binary in a digit by digit manner.

- For example, to input the decimal number 957, each digit of the number is individually coded and the number is stored as 1001_0101_0111.
- Thus, we need a specific code for each of the 10 decimal digits. There is a variety of such decimal binary codes.
- One commonly used code is the Binary Coded Decimal (BCD) code which corresponds to the first 10 binary representations of the decimal digits 0-9.
 - The BCD code requires 4 bits to represent the 10 decimal digits.
 - Since 4 bits may have up to 16 different binary combinations, a total of 6 combinations will be unused.
 - ♦ The position weights of the BCD code are 8, 4, 2, 1.

- Other codes use position weights of
 - ♦ 8, 4, -2, -1
 - **♦** 2, 4, 2, 1.
- An example of a non-weighted code is the excess-3 code
 - digit codes are obtained from their binary equivalent after adding 3.
 - ♦ Thus the code of a decimal 0 is 0011, that of 6 is 1001, etc.

Decimal		BO	CD													
Digit	8	4	2	1	8	4	-2	-1	2	4	2	1	E	cces	ss-3	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	1	1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	0	1	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	0	0	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	1	1	1	0	1	1	1	0	0	0
6	0	1	1	0	1	0	1	0	1	1	0	0	1	0	0	1
7	0	1	1	1	1	0	0	1	1	1	0	1	1	0	1	0
8	1	0	0	0	1	0	0	0	1	1	1	0	1	0	1	1
9	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0
U	1	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0
N	1	0	1	1	0	0	1	0	0	1	1	0	0	0	0	1
U	1	1	0	0	0	0	1	1	0	1	1	1	0	0	1	0
S	1	1	0	1	1	1	0	0	1	0	0	0	1	1	0	1
E	1	1	1	0	1	1	0	1	1	0	0	1	1	1	1	0
D	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1

Number Conversion versus Coding

- Converting a decimal number into binary is done by repeated division (multiplication) by 2
- Coding a decimal number into its BCD code is done by replacing each decimal digit of the number by its equivalent 4 bit BCD code.
- **Example:** Converting $(13)_{10}$ into binary, we get 1101, coding the same number into BCD, we obtain 00010011.
- ightharpoonup Exercise: Convert (95)₁₀ into its binary equivalent value and give its BCD code as well.
- **Answer:** (10111111)₂, and 10010101.

Character Storage

Character sets

- \diamond Standard ASCII: 7-bit character codes (0 127)
- Extended ASCII: 8-bit character codes (0 255)
- \diamond Unicode: 16-bit character codes (0 65,535)
- Unicode standard represents a universal character set
 - Defines codes for characters used in all major languages
 - Used in Windows-XP: each character is encoded as 16 bits
 - Arabic codes: from 0600 to 06FF (hex)
- UTF-8: variable-length encoding used in HTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters

ASCII Codes

Th	The Charcter set of the ASCII Code															
	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	\mathtt{BEL}	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	"	#	\$	8	£	1	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z	[\]	Λ	_
6	N.	a	b	С	d	е	f	g	h	i	j	k	1	m	n	О
7	р	q	r	3	t	u	V	W	х	У	Z	{		}	~	DEL

***** Examples:

- ♦ ASCII code for space character = 20 (hex) = 32 (decimal)
- \triangle ASCII code for 'A' = 41 (hex) = 65 (decimal)
- ♦ ASCII code for 'a' = 61 (hex) = 97 (decimal)

Error Detection

- *Binary information may be transmitted through some communication medium, e.g. using wires or wireless media.
- A corrupted bit will have its value changed from 0 to 1 or vice versa.
- To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original binary message.

Parity Bit

- A parity bit is an extra bit included with the n-bit binary message to make the total number of 1's in this message (including the parity bit) either odd or even.
- The 8th bit in the ASCII code is used as a parity bit.
- There are two ways for error checking:
 - Even Parity: Where the 8th bit is set such that the total number of 1s in the 8-bit code word is even.

♦ Odd Parity: The 8th bit is set such that are total number or 1s in the 8-bit code word is odd.

