DAT200

Sammendrag av klassifikasjonsmodeller.

Perceptron

 η : learning rate. How big the weight updates should be.

Classes:

 $\begin{bmatrix} -1 & 1 \end{bmatrix}$

Threshold value:

$$z = w_0 x_0 + w_1 x_1 + \ldots + w_m x_m \qquad w_0 = -\theta, x_0 = 1$$

Threshold function:

$$\phi(z) = \begin{cases} 1 & z \ge 0 \\ -1 & otherwise. \end{cases}$$

 $\phi(z)$ was originally 1 for $z \ge \theta$ (therefore $w_0 = -\theta$)

Weight update:

$$w_j = w_j + \Delta w_j$$

Weight change:

$$\Delta w_j = \eta (y^i - \hat{y}^i) x_j^i$$

Adaline

 η : learning rate. How big the weight updates should be.

Classes:

-1 1

Threshold value:

$$z = w_0 x_0 + w_1 x_1 + \ldots + w_m x_m$$
 $w_0 = -\theta, x_0 = 1$

Activation function:

$$\phi(z) = \phi(w^T x) = w^T x$$
 (linear activation function)

Threshold function:

$$\varphi(z) = \begin{cases} 1 & \phi(z) \ge 0 \\ -1 & otherwise. \end{cases}$$

Cost function:

$$J(w) = \frac{1}{2} \sum_{i} (y^{i} - \phi(z^{i}))^{2}$$

Weight change:

$$\Delta w = -\eta \nabla J(w)$$

$$\Delta w_j = \eta \sum_i (y^i - \phi(z^i)) x_j^i$$

(where
$$\nabla J = -\sum_i (y^i - \phi(z^i)) x^i_j)$$

Perceptron vs. Adaline

Similarities:

- \rightarrow Binary classification.
- \rightarrow Linear decision boundary.
- \rightarrow Threshold function $(\phi(z))$.

Differences:

- \rightarrow Perceptron uses a step function $(\phi(z))$, Adaline uses a linear activation function $(\phi(z))$.
- \rightarrow Perceptron compares true class labels to predicted labels, Adaline compares true class labels to continuous output from $\phi(z)$.
- \rightarrow Perceptron updates weights immediately after misclassification, Adaline updates all weights at the end of each iteration.

Logistic regression

 η : learning rate. How big the weight updates should be.

Classes:

0 1

Threshold value:

$$z = w_0 x_0 + w_1 x_1 + \ldots + w_m x_m$$
 $w_0 = -\theta, x_0 = 1$

Activation function:

$$\phi(z) = \frac{1}{1+e^{-z}}$$
 (sigmoid activation function)

Threshold function:

$$\varphi(z) = \begin{cases} 1 & \phi(z) \ge 0.5 \\ 0 & otherwise. \end{cases}$$

Cost function:

$$J(w) = \sum_{i=1}^{n} \left[-y^{i}log(\phi(z^{i})) - (1 - y^{i})log(1 - \phi(z^{i})) \right]$$

For $y^i = 0$:

$$J(w) = -log(1 - y_{pred}) = -log(1 - \phi(z^{i}))$$

For
$$y^i = 1$$

$$J(w) = -log(y_{pred}) = -log(\phi(z^i))$$

Weight change:

$$\Delta w = -\eta \nabla J(w)$$

Regularisation

C: regularisation strenght. How greatly to punish large weights.

Cost function:

$$J(w) + \frac{\lambda}{2}||w||^2 = J(w) + \frac{1}{C}||w||^2 = J(w) + \frac{1}{C}\sum w_j^2$$

Support vector machines (SVM)

C: error penalisation. How greatly to punish misclassifications.

Margin:

$$\frac{w^{T}(x_{pos} - x_{neg})}{||w||} = \frac{2}{||w||}$$

Goal: minimise $\frac{2}{||w||}$

Radial Basis Function Kernel SVM (RBF Kernel-SVM)

 γ : penalise misclassifications. $(||x^i-x^j||^2)$ is the (Euclidean) distance between two points.)

Kernel function:

$$\kappa(x^i, x^j) = \exp\left[-\frac{||x^i - x^j||^2}{2\sigma^2}\right] = \exp[-\gamma ||x^i - x^j||^2]$$

Generally

Hyperparameter: large values = overfitting. (Goal: Penalises error) Cost function: find (global) minimum. (Goal: Minimise cost)