Wydział:	Dzień:Poniedziałek 14-17	Zespół:		
Fizyki	Data: 20.03.2017	8		
Imiona i nazwiska:	Ocena z przygotowania:	Ocena ze sprawozdania:	Ocena końcowa:	
Marta Pogorzelska				
Paulina Marikin				
Prowadzący:		Podpis:		

Ćwiczenie 46: Wyznaczanie wartości poziomej pola magnetycznego Ziemi metodą busoli stycznych

Marta Pogorzelska & Paulina Marikin

Ćwiczenie 46:

Wyznaczanie wartości poziomej pola magnetycznego Ziemi metodą busoli stycznych

1 Cel badań

Celem doświadczenia było wyznaczenie wartości składowej poziomej natężenia pola magnetycznego Ziemi poprzez badanie zmian kąta wychylenia wektora wypadkowego pola ziemskiego i pola wytwarzanego przez zwojnicę busoli stycznych z prądem stałym.

2 Wstęp teoretyczny

Ziemskie pole magnetyczne odpowiada w przybliżeniu polu dipola magnetycznego znajdującego się w środku Ziemi. O właściwościach magnetycznych naszej planety decyduje będące w ciągłym ruchu płynne, przewodzące jądro Ziemi. Bieguny magnetyczne leżą przeciwstawnie do biegunów geograficznych, a ich położenie względem biegunów geograficznych trochę się różni. Linia łącząca bieguny magnetyczne tworzy wraz z osią obrotu Ziemi kąt (na stan obecny) 11,5°. Obszar, w którym występuje ziemskie pole magnetyczne nazywany jest ziemską magnetosferą i rozciąga się do kilkudziesięciu kilometrów nad powierzchnią Ziemi.

Rysunek 1: Rozkład linii pola magnetycznego Ziemi oraz położenie biegunów magnetycznych i geograficznych.

W dowolnym punkcie przestrzeni pole magnetyczne opisane jest wektorem natężenia \vec{H} tego pola. Jednostką natężenia jest Tesla [T]. Wektor natężenia można rozłożyć na 2 składowe: poziomą $\vec{H_g}$ i pionową. Przy użyciu igły magnetycznej i obwodu kołowego można wyznaczyć kierunek oraz wartość składowej poziomej. Na umieszczoną w polu magnetycznym igłę działa moment siły \vec{M} , który ustawia ją równolegle do wektora \vec{H} . Jeśli umieścimy igłę w płaszczyżnie poziomej, to w wyniku tego w przeprowadzanym doświadczeniu można brać pod uwagę tylko składową poziomą. Jeśli następnie w obwodzie zostanie puszczony prąd o natężeniu $\vec{H_o}$:

$$H_0 = \frac{NI}{2R} \tag{1}$$

,gdzie N - liczba zwojów w obwodzie, R - promień zwojnicy.

W celu wyznaczenia wartości H_g w doświadczeniu zostanie użyta busola stycznych. Jest to urządzenie do pomiaru natężeń stałych pól magnetycznych. Prąd stały o natężeniu I, płynący w zwojnicy, wytwarza pole magnetyczne, które nakłada się na składową poziomą pola magnetycznego Ziemi $\vec{H_g}$. Wektor wypadkowy $\vec{H_w}$ obu natężeń jest sumą geometryczną pola $\vec{H_g}$ i pola zwojnicy $\vec{H_o}$. Namagnesowana igła umieszczona w takim polu wychyli się o pewien kąt φ i ustawi w kierunku zgodnym z kierunkiem wektora $\vec{H_w}$. Między natężeniami zachodzi zależność:

$$ctg\varphi = \frac{H_g}{H_o} \tag{2}$$

,a po podstawieniu do wzoru (1):

$$H_g = \frac{NIctg\varphi}{2R} \tag{3}$$

3 Opis układu i metody pomiarowej

Rysunek 2: Schemat busoli stycznych oraz wektory składowej poziomej natężenia ziemskiego H_g i natężenia obwodu H_o .

Najpierw należało uruchomić komputer i podłączyć zasilacz do amperomierza i busoli stycznych, w taki sposób aby liczba zwojów cewki busoli wynosiła 1. Następnie włączono specjalny program na komputerze, który pokazywał obraz z kamery umieszczonej bezpośrednio nad igłą magnetyczną. Wpierw poczekano aż igła będzie w stanie równowagi i ustawiono busolę tak, by linia 0° na kątomierzu pokrywała się z kierunkiem igły. Po ustabilizowaniu układu minimalnie podwyższono natężenie prądu w zasilaczu tak, by igła wychyliła się o pewien kąt φ . Odczytano i spisano kąt odchylenia do protokołu. Wykonano 12 pomiarów kątów wychyleń z przedziału od 0° – 90°dla coraz to wyższych wartości prądu. Doświadczenie przeprowadzono analogicznie również dla 3 i 5 zwojów na cewce. W tym celu przełączono kabel między zasilaczem a cewką tak, by zwiększyć liczbę zwojów.

Użyte przyrządy i materiały:

- busola stycznych:
 - cewka pierścieniowa
 - tarcza wraz z kątomierzem
 - igła magnetyczna
 - kamerka podłączona do komputera
- komputer mierzący pomiary
- amperomierz klasy 2%
- zasilacz prądu stałego
- kable

4 Wyniki i analiza pomiarów

4.1 Dla N = 1

	$\varphi[^{\circ}]$	$\Delta\varphi [^{\circ}]$	I[A]	$\Delta I[A]$	$\frac{1}{I}$	$\Delta rac{1}{I}$	$\cot \varphi$	$\Delta \cot \varphi$
0	2.5	0.039446	0.12	0.0524	8.333333	3.638889	22.903766	20.732082
1	5.0	0.039446	0.21	0.0542	4.761905	1.229025	11.430052	5.192901
2	10.0	0.039446	0.52	0.0604	1.923077	0.223373	5.671282	1.308162
3	15.0	0.039446	0.86	0.0672	1.162791	0.090860	3.732051	0.588857
4	20.0	0.039446	1.13	0.0726	0.884956	0.056856	2.747477	0.337209
5	30.0	0.039446	1.89	0.0878	0.529101	0.024579	1.732051	0.157784
6	37.0	0.039446	2.51	0.1002	0.398406	0.015905	1.327045	0.108912
7	34.0	0.039446	2.23	0.0946	0.448430	0.019023	1.482561	0.126148
8	27.5	0.039446	1.68	0.0836	0.595238	0.029620	1.920982	0.185008
9	22.5	0.039446	1.32	0.0764	0.757576	0.043848	2.414214	0.269354
10	17.5	0.039446	0.99	0.0698	1.010101	0.071217	3.171595	0.436233
11	12.5	0.039446	0.65	0.0630	1.538462	0.149112	4.510709	0.842032

Rysunek 3

a = 2.904(0.074) $H_g = 9.746(0.136)$

4.2 Dla N=3

	$\varphi[^{\circ}]$	$\Delta\varphi [^{\circ}]$	I[A]	$\Delta I[A]$	$\frac{1}{I}$	$\Delta rac{1}{I}$	$\cot \varphi$	$\Delta \cot \varphi$
0	2.5	0.039446	0.04	0.0508	25.000000	31.750000	22.903766	20.732082
1	12.5	0.039446	0.26	0.0552	3.846154	0.816568	4.510709	0.842032
2	9.0	0.039446	0.18	0.0536	5.555556	1.654321	6.313752	1.611896
3	17.0	0.039446	0.37	0.0574	2.702703	0.419284	3.270853	0.461457
4	21.0	0.039446	0.48	0.0596	2.083333	0.258681	2.605089	0.307145
5	26.0	0.039446	0.61	0.0622	1.639344	0.167159	2.050304	0.205267
6	38.0	0.039446	0.88	0.0676	1.136364	0.087293	1.279942	0.104068
7	40.0	0.039446	1.15	0.0730	0.869565	0.055198	1.191754	0.095470
8	45.0	0.039446	1.35	0.0770	0.740741	0.042250	1.000000	0.078892
9	50.0	0.039446	1.65	0.0830	0.606061	0.030487	0.839100	0.067219
10	60.0	0.039446	2.43	0.0986	0.411523	0.016698	0.577350	0.052595
11	66.0	0.039446	3.23	0.1146	0.309598	0.010984	0.445229	0.047265

Rysunek 4

a = 1.163(0.048) $H_g = 11.705(0.153)$

4.3 Dla N = 5

	$\varphi[^{\circ}]$	$\Delta\varphi [^{\circ}]$	I[A]	$\Delta I[A]$	$\frac{1}{I}$	$\Delta rac{1}{I}$	$\cot \varphi$	$\Delta \cot \varphi$
0	5.0	0.039446	0.09	0.0518	11.111111	6.395062	11.430052	5.192901
1	16.0	0.039446	0.29	0.0558	3.448276	0.663496	3.487414	0.519189
2	25.0	0.039446	0.49	0.0598	2.040816	0.249063	2.144507	0.220854
3	27.5	0.039446	0.57	0.0614	1.754386	0.188981	1.920982	0.185008
4	32.0	0.039446	0.68	0.0636	1.470588	0.137543	1.600335	0.140470
5	38.0	0.039446	0.88	0.0676	1.136364	0.087293	1.279942	0.104068
6	44.0	0.039446	1.12	0.0724	0.892857	0.057717	1.035530	0.081745
7	50.0	0.039446	1.36	0.0772	0.735294	0.041739	0.839100	0.067219
8	53.0	0.039446	1.55	0.0810	0.645161	0.033715	0.753554	0.061845
9	57.0	0.039446	1.78	0.0856	0.561798	0.027017	0.649408	0.056081
10	66.0	0.039446	2.70	0.1040	0.370370	0.014266	0.445229	0.047265
11	70.0	0.039446	3.33	0.1166	0.300300	0.010515	0.363970	0.044671

Rysunek 5

a = 1.058(0.017) $H_g = 17.749(0.070)$

Paramety wszystkich prostych zostały, wraz z ich niepewnościami wyliczone przy użyciu funkcji polyfit pakietu numpy w Pythonie. Funkcja ta dopasowuje prostą przy użyciu metody najmniejszych kwadratów, przyjmując dla każdego punktu wagę $\frac{1}{dy}$

5 Analiza niepewności

Za niepewność pomiaru kąta przyjęto wartość daną wzorem:

$$\Delta \varphi = \sqrt{\left(\frac{\text{podziałka}}{\sqrt{3}}\right)^2 + \left(\frac{\text{experymentator}}{\sqrt{3}}\right)^2}$$
 (4)

przujmując podziałkę co 5°, i niepewność eksperymentatora równą połowie podziałki.

Niepewności dla pomiaru prądu:

$$\Delta I = I * 0.02 + 5dgt \tag{5}$$

Dla wartości potrzebnych do wyrysowania wykresu niepewności wyliczono metodą propagacji niepewności:

$$\Delta \frac{1}{I} = \Delta I * \frac{1}{I^2} \tag{6}$$

$$\Delta \cot \varphi = \Delta \varphi * \frac{1}{\sin^2 \varphi} \tag{7}$$

Niepewność dla a uzyskano pierwiastkując zwracaną przez funkcję polyfit kowariancję tegoż współczynnika. W celu wyznaczenia niepewności składowej pola magnetycznego użyto metody różniczki zupełnej:

$$\Delta H_g = \Delta a * \frac{N}{2R} \tag{8}$$

6 Wnioski