

1.8 - 2.7 GHz 2-Watt Power Amplifier

Product Overview

The TQP9111 is a high efficiency two-stage driver amplifier in a low-cost surface mount package. The amplifier is able to achieve high performance with +46 dBm OIP3 and +32.5 dBm P1dB. This linear amplifier integrates two high performance amplifier stages onto a module allow for a compact system design. The integrated inter-stage match minimizes performance variation that would otherwise be attributed to external matching component value and placement tolerances.

Both the input and output stage amplifiers are bias adjustable allowing the amplifier's power consumption to be reduced for occasions when high power performance is not required. Both stages can also be turned off when not being used for power saving or for TDD systems. The output match is externally tunable to allow the amplifier to be optimized for high power or high linearity applications.

The TQP9111 is in a RoHS-compliant 20-pin 4 x 4 mm surface mount package.

Functional Block Diagram

Top View

4 x 4 mm Leadless SMT Package

Key Features

- 1.8-2.7 GHz Frequency Range
- 29.8 dB Gain Typical
- +32.5 dBm P1dB
- +46 dBm Output IP3 at +14 dBm/tone
- Integrated Inter-stage Matching
- Bias Adjustable
- Internal RF Overdrive Protection
- Internal DC Overvoltage Protection
- Shut-down Capability

Applications

- Wireless Infrastructure
- Repeaters, Boosters, DAS
- High Power Amplifiers
- Pico and Macro Base Stations
- FDD or TDD

Ordering Information

Part No.	Description
TQP9111	2,500 pieces on a 13" reel (standard)
TQP9111-PCB2140	1.8 – 2.2 GHz Evaluation Board
TQP9111- PCB2600	2.3 – 2.7 GHz Evaluation Board

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−55 to +150 °C
RF Input Power, CW, 50 Ω, T +25 °C	+23 dBm
Device Supply Voltage (Vcc)	+6.5 V

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Device Voltage (Vcc)		+5.0	+5.25	V
TCASE	-40		+105	°C
Tj for >10 ⁶ hours MTTF			+170	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions (1)	Min	Тур	Max	Units
Operational Frequency Range		1800		2700	MHz
Test Frequency			2140		MHz
Gain			29.8		dB
Input Return Loss			13		dB
Output Return Loss			20		dB
Output P1dB			32.5		dBm
Output IP3	Pout = +11 dBm/tone, ∆f = 1 MHz		46		dBm
Noise Figure			6.2		dB
Reference current, IREF1			4.5		mA
Reference current, IREF2			19.5		mA
Current, Icc			521		mA
Total Current			545		mA
Thermal Resistance, θ _{jc}	Junction to case		22.6		°C/W

Notes:

^{1.} Test conditions unless otherwise noted: V_{CC} = +5.0 V, I_{CC} = 521 mA, I_{REF1} = 4.5 mA, I_{REF2} = 19.5 mA, Temp = +25 °C, 50 Ω system.

1.8-2.2 GHz Evaluation Board - TQP9111-PCB2140

Bill of Material - TQP9111-PCB2140

Reference Des.	Value	Description	Manuf.	Part Number
U1	-	Module, TQP9111 Amplifier	Qorvo	TQP9111
B1, C9, L5, R1, R3, R5, R6	0 Ω	RES, 0 Ω, 5%, 1/16 W, 0603	various	
C1, C5, C13, C15	0.1 µF	CAP, 0.1 µF, 10%, 50 V, X7R, 0603	various	
C2	1000 pF	CAP, 1000 pF, 5%, 50 V, NPO, 0603	various	
C3	100 pF	CAP, 100 pF, 5%, 50 V, NPO, 0603	various	
C7	10 µF	CAP, 10 μF, 20%, 50 V, Tantalum	various	
C11	5.6 pF	CAP, 5.6 pF, ±0.1 pF, 200 V, NPO, 0603	various	
L1	15 nH	IND, 15 nH, 5%, 1008	various	
L2	100 nH	IND, 100 nH, 5%, 0805	various	
L3	27 nH	IND, 27 nH, 5%, Ceramic	various	
L4	220 Ω	RES, 220 Ω, 1%, 1/16 W, 0603	various	
R7	110 Ω	RES, 110 Ω, 1%, 1/10 W, 0603	various	
Z3	2.4 pF	CAP, 2.4 pF, ±0.1 pF, 50 V, NPO, 0402	various	
Z3C	2.2 Ω	RES, 2.2 Ω, 5%, 1/16 W, 0402	various	
Z4	4.3 pF	CAP, 4.3 pF, ±0.25 pF, 50 V, C0G, 0402	various	
Z5	1.0 nH	IND, 1.0 nH, ±0.3 nH, 0402	various	
Z6	2.7 pF	CAP, 2.7 pF, ±0.1 pF, 50 V, C0G, 0402	various	

Typical Performance - TQP9111-PCB2140

Parameter	Conditions (1)	T	Typical Value		
Frequency		1800	1960	2140	MHz
Gain		30.4	30.0	29.8	dB
Input Return Loss		15	14	13	dB
Output Return Loss		9	15	20	dB
Output P1dB		+33.4	+32.5	+32.5	dBm
OIP3	Pout= +14 dBm/tone, Δf=1 MHz	+46	+46	+46	dBm
Noise Figure		6.0	6.1	6.2	dB

Notes:

Performance Plots - TQP9111-PCB2140

Test conditions unless otherwise noted: $V_{CC} = V_{PD} = +5 \text{ V}$, $I_{CQ} = 545 \text{ mA}$, Temp.=+25 °C

^{1.} Test conditions unless otherwise noted: $V_{CC} = V_{PD} = +5V$, $I_{CQ} = 545$ mA, Temp.=+25 °C

2.3-2.7 GHz Evaluation Board - TQP9111-PCB2600

Bill of Material - TQP9111-PCB2600

Ref Des	Value	Description	Manuf.	Part Number
U1	-	TQP9111	Qorvo	TQP9111
B1, L3, L4, L5, R1, R5, C9, R6	0 Ω	RES, 0 Ω, 5%, 1/16W, 0603	various	
C1, C5, C13, C15	0.1 µF	CAP, 0.1 µF,10%, 50V, X7R, 0603	various	
C2	1000 pF	CAP, 1000 pF, 5%, 50V, NPO,0603	various	
C3	100 pF	CAP, 100 pF, 5%, 50V, C0G,0603	various	
C7	10 µF	CAP, 10 µF, 20%, 50V, Tantalum, 6032	various	
C11	4.7 pF	CAP, 4.7 pF, ±0.1pF. 200V. NPO, 0603	various	
L1	10 nH	IND, 10 nH, 5%, 1008	various	
L2	6.8 nH	IND, 6.8 nH, 5%, 0805	various	
R3	220 Ω	RES, 220 Ω, 1%, 1/16W, 0603	various	
R7	110 Ω	RES, 110 Ω, 1%, 1/10W, 0603	various	
Z3	2.2 pF	CAP, 2.2 pF, ±0.1pF. 50V. NPO, 0402	various	
Z3C	1.2 Ω	RES, 1.2 Ω, 5%, 1/16W. 0402	various	
Z4	3.0 pF	CAP, 3.0 pF, ±0.25pF. 50V. C0G, 0402	various	
Z 5	1.0 nH	IND, 1.0 nH, ±0.3 nH, 0402	various	
Z6	1.6 pF	CAP, 1.6 pF, ±0.1pF. 50V. C0G, 0402	various	

Typical Performance - TQP9111-PCB2600

Parameter	Conditions (1)	Typical Value			Units
Frequency		2300	2500	2700	MHz
Gain		28.8	29.2	28.8	dB
Input Return Loss		8	13	16	dB
Output Return Loss		9	10	9	dB
Output P1dB		+33.0	+32.8	+32.0	dBm
Output IP3	Pout= +14 dBm/tone, Δf= 1 MHz	+45.0	+44.5	+44.0	dBm
Noise Figure		6.0	6.3	6.9	dB

Notes:

Performance Plots - TQP9111-PCB2600

Test conditions unless otherwise noted: $V_{CC} = V_{PD} = +5 \text{ V}$, $I_{CQ} = 545 \text{ mA}$, Temp.=+25 °C

^{1.} Test Conditions: $V_{CC} = V_{PD} = +5V$, $I_{CQ} = 545$ mA, Temp.=+25 °C

Application Note - Reduced Bias Configurations TQP9111-PCB2140

The TQP9111 can be configured to be operated with lower bias current by varying the bias-adjust resistor – R7. The recommended circuit configurations shown previously in this datasheet have the device operating in Class A/B operation. Lowering the current has small effect on the S-parameters and P1dB performance of the device, but will start to lower the OIP3 and ACLR/ACPR performance of the device as shown below. An example of the measured data below represents the TQP9111 measured and configured for 1.8 to 2.2 GHz applications. It is expected that variation of the bias current for other frequency applications will produce similar performance results.

R7 (Ohms)	lcq (mA)	Pdiss (W)	P1dB (dBm)	OIP3 (dBm)
110	500	2.5	+32.3	+47.6
125	450	2.25	+32.3	+45.4
144	400	2.0	+32.3	+44.6
163	350	1.75	+32.3	+42.1
200	300	1.5	+32.3	+40.3

Performance Plots - Reduced Bias Configurations TQP9111-PCB2140

Test conditions unless otherwise noted: V_{CC} = V_{PD} = +5 V, Temp.=+25 °C

Switching Time

Switching Time Measurement based on TQP9111-PCB2140 Application Board

Using V_{PD} as ON/OFF Control: V_{PD}=0 to 5V or 5 to 0V, V_{CC}=5V, C13=56pF

Pad Configuration and Description

Top View

Pad No.	Label	Description
1, 5, 7, 9, 10, 11, 15, 17, 19	NC	No internal connection. Provide grounded land pads for PCB mounting integrity.
2, 3, 4	RF in	RF input pins. Require DC blocking and RF match for optimal performance.
6	I _{REF1}	Sets the bias current for Amp1. Also can be used to power down.
8	I _{REF2}	Sets the bias current for Amp2. Also can be used to power down.
12, 13, 14	RF out	RF output pins. Require DC blocking and RF match for optimal performance.
16	V _{BIAS}	Voltage supply for active bias for the second stage amp.
18	V _{CC2}	2 nd Stage DC voltage supply connection.
20	V _{CC1}	1st Stage DC voltage supply connection.
Backside Pad	GND	RF/DC ground. Use via holes to minimize inductance and thermal resistance.

Package Marking and Dimensions

Marking: Part Number - TQP9111

Date Code - YYWW Lot Code - AaXXXX

F;-

BOTTOM VIEW

— 2.150 —

(1X) shape ⊕ 0.10 (M) C A B

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

E :-

Tape and Reel Information – Carrier and Cover Tape Dimensions

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.171	4.35
Covity	Width	В0	0.171	4.35
Cavity	Depth	K0	0.051	1.30
	Pitch	P1	0.315	8.00
Contarlina Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centerline Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape Width (Reference Only)		С	0.362	9.20
Carrier Tape	Width	W	0.472	12.0

Tape and Reel Information – Reel Dimensions

Standard T/R size = 2,500 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	12.992	330.0
Flange	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
Hub	Outer Diameter	N	4.016	102.0
	Arbor Hole Diameter	С	0.512	13.0
	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information - Tape Length and Label Placement

Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 1C	ESDA / JEDEC JS-001-2012
ESD - Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: Electrolytic plated Au over Ni (Plating thickness: Ni 5 µm ±3 µm, Au 0.75 µm ±0.25 µm)

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2023 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.