Respecting Temporal or Spatio-Temporal Evolution of the Underlying Partial Differential Equation in the Loss Term Speeds Up the Convergence of Physics-Informed Neural Networks (PINNs)

Mean network performance for different loss formulations

- standard loss spatial causality loss (discrete, $n_{dis} = 4$, $\varepsilon = 0.1$) temporal causality loss (continuous, $\varepsilon = 0.1$) spatio-temporal causality loss
 - (discrete, $n_{dis} = 4$, $\varepsilon = 0.1$)

Impact of Causality-Based Losses on Physics-Informed Neural Networks for 1D Shallow Water Equations Henrik Schmieder*, Andreas Malcherek

Introduction

- Physics Informed Neural Networks (PINNs) include an additional residual loss term \mathcal{L}_{res} to evaluate performance against the system underlying partial differential equation.
- Previous studies showed that if this loss is reformulated to respect temporal causalities of the PDE, PINNs converge for complex, high fidelity PDEs where standard PINNs fail.

Task

- We examine whether the causality loss improves performance if applied to physical systems where PINNs with standard loss also converge.
- We extend the loss principle to spatial and spatiotemporal dimension.
- We investigate this tasks on the example of 1D Shallow Water equations.

1D Shallow Water Equations (SWE)

- SWE describes shallow fluid flow influenced by gravity, accounting for variations in water depth (h) and momentum (hu).
- The reference case is an initial Gaussian water level with zero momentum in the domain $x \in [-1,1], t \in [0,1].$

Causality Loss

- Standard Approach: Residual loss of each sample contributes equally to total loss per epoch.
- Idea: Inspired by PDE evolution in time and space, causality loss \mathcal{L}_{caus} prioritizes earlier sampling points, addressing later points only after reducing earlier losses.
- Formulation based on Wang et. al [2022] †: $\mathcal{L}_{caus} = \frac{1}{n} \sum_{l=1}^{n} w_i \mathcal{L}_{res,i}$; $w_i = e^{-\epsilon \sum_{j=1}^{n} \mathcal{L}_{res,j}(l_j < l_i)}$
- ullet Causality scale l defines respected system evolution dimension: spatio-temporal: $l = \sqrt{x^2 + t^2}$ temporal: l = t; spatial: l = |x|;
- Causality weight w_i of a sample point P_i is small if previous $(l < l_i)$ losses are large and vice versa.
- ϵ : hyperparameter controlling steepness of w
- Additionally, causality loss is formulated in discrete form (here: $n_{dis} = 4,16$).
- Continuous and discrete settings are tested for $\epsilon = 0.01, 0.1, 0.5, 1, 10.$

PINN Settings

Input, Output $[x, t]$, $[h, hu]$ Constraint Strategy hard constrained initial conditions Layout 5 layer, 30 neurons each Optimizer ADAM $(lr = 0.001)$ Activation Tanh Batch approach Full batch Sample data Boundary Condition Loss.: 1e3 Causality loss: 1e4
Layout 5 layer, 30 neurons each Optimizer ADAM ($lr = 0.001$) Activation Tanh Batch approach Full batch Sample data Boundary Condition Loss.: 1e3
Optimizer ADAM ($lr = 0.001$) Activation Tanh Batch approach Full batch Sample data Boundary Condition Loss.: 1e3
Activation Tanh Batch approach Full batch Sample data Boundary Condition Loss.: 1e3
Batch approach Full batch Sample data Boundary Condition Loss.: 1e3
Sample data Boundary Condition Loss.: 1e3
Trials 10 for each setting
Evaluation normalized RMSE w.r.t numerical solution

Results

- Improved initial convergence for temporal and spatio-temporal causal losses (reduced error up to 40% after 5e3 epochs).
- Final performance is similar for all loss formulations.
- Possible reason: Simplified initial loss surface may guide the network effectively to optimal regions.

- general first-order temporal PDE: $u_t + N(u) + c(t, x) = 0, t \in [0, T], x \in \Omega$
- with I.C. and B.C.: $u(t = 0, x) = f_{I.C.}(x)$ $\boldsymbol{u}(t, \mathbf{x} \in \partial\Omega) = f_{B.C.}(t, \mathbf{x})$
- approximation of u by a MLP with tunable parameters θ :
- $\boldsymbol{u} \approx \widetilde{\boldsymbol{u}} = PINN(t, \boldsymbol{x}, \boldsymbol{\theta})$ residual loss formulation:

$$\mathcal{L}_{res} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{res,i} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \widetilde{u}_i}{\partial t} + N(\widetilde{u}_i) + c(t_i, x_i) \right)^2$$

- no knowledge of true $m{u}$ is required for \mathcal{L}_{res}
- partial derivatives of $oldsymbol{u}$ are derivatives w.r.t. network inputs and can be calculated with auto-differentiation

1D Shallow Water Equations

mass:
$$\frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} = 0$$
; momentum: $\frac{\partial hu}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 \right) = 0$

PINN Settings

- hard constrained I.C.: $\left| \frac{h}{n} \right| = f_{IC} + t * PINN(x, t, \theta)$
- total loss: $\mathcal{L} = \lambda_1 \mathcal{L}_{caus.h} + \lambda_2 \mathcal{L}_{caus.h} + \lambda_3 \mathcal{L}_{B.C.,h} + \lambda_4 \mathcal{L}_{B.C.,h}$ with $\lambda_{1-4} = 1$
- add. comp. costs for \mathcal{L}_{caus} are moderate (\mathcal{L}_{res} is computed anyway, autograd can be turned off for causality weights w)

Discrete Causality Weight

- $w_i = w_{dis,k} = e^{-\epsilon \sum_{j=1}^n \mathcal{L}_{res,j}(l_j < l_{dis,k})}$; if $l_{dis,k} < l_i < l_{dis,k+1}$
- $l_{dis,k} = \frac{k-1}{n_{dis}}L$; L: max. value of l in domain

Effect of ϵ

- †: Wang S, Sankaran S, Perdikaris P. Respecting causality for training physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering. 2024
- *: henrik.schmieder@unibw.de Institute for Hydroscience, Bundeswehr University Munich building 41/100 4128, phone +49 89 6004 3376

SCAN ME

