Contents

PART ONE ■ OVERVIEW

Chapter 1 Introduction

- 1.1 What Operating Systems Do 4
 1.2 Computer-System Organization 7
 1.3 Computer-System Architecture 12
 1.11
- 1.4 Operating-System Structure 19
- 1.5 Operating-System Operations 21
- 1.6 Process Management 24
- 1.7 Memory Management 25
- 1.8 Storage Management 26

- 1.9 Protection and Security 30
- 1.10 Kernel Data Structures 31
- 1.11 Computing Environments 35
- 1.12 Open-Source Operating Systems 43
- 1.13 Summary 47 Exercises 49 Bibliographical Notes 52

Chapter 2 Operating-System Structures

- 2.1 Operating-System Services 55
- 2.2 User and Operating-System Interface 58
- 2.3 System Calls 62
- 2.4 Types of System Calls 66
- 2.5 System Programs 74
- 2.6 Operating-System Design and Implementation 75
- 2.7 Operating-System Structure 78
- 2.8 Operating-System Debugging 86
- 2.9 Operating-System Generation 91
- 2.10 System Boot 92
- 2.11 Summary 93 Exercises 94
 - Bibliographical Notes 101

PART TWO ■ PROCESS MANAGEMENT

Chapter 3 Processes

- 3.1 Process Concept 105
- 3.2 Process Scheduling 110
- 3.3 Operations on Processes 115
- 3.4 Interprocess Communication 122
- 3.5 Examples of IPC Systems 130
- 3.6 Communication in Client– Server Systems 136
- 3.7 Summary 147
 - Exercises 149
 - Bibliographical Notes 161

xviii **Contents**

Chapter 4 Threads				
4.1 Overview 1634.2 Multicore Programming 166	4.6 Threading Issues 1834.7 Operating-System Examples 188			
4.3 Multithreading Models 169	4.8 Summary 191			
4.4 Thread Libraries 171	Exercises 191			
4.5 Implicit Threading 177	Bibliographical Notes 199			
Chapter 5 Process Synchroniza	tion			
5.1 Background 203	5.8 Monitors 223			
5.2 The Critical-Section Problem 206	5.9 Synchronization Examples 232			
5.3 Peterson's Solution 2075.4 Synchronization Hardware 209	5.10 Alternative Approaches 2385.11 Summary 242			
5.5 Mutex Locks 212	Exercises 242			
5.6 Semaphores 213	Bibliographical Notes 258			
5.7 Classic Problems of				
Synchronization 219				
Chapter 6 CPU Scheduling				
6.1 Basic Concepts 261	6.7 Operating-System Examples 290			
6.2 Scheduling Criteria 265	6.8 Algorithm Evaluation 300			
6.3 Scheduling Algorithms 2666.4 Thread Scheduling 277	6.9 Summary 304 Exercises 305			
6.5 Multiple-Processor Scheduling 278	Bibliographical Notes 311			
6.6 Real-Time CPU Scheduling 283	0 1			
Chapter 7 Deadlocks				
7.1 System Model 315	7.6 Deadlock Detection 333			
7.2 Deadlock Characterization 317	7.7 Recovery from Deadlock 337			
7.3 Methods for Handling Deadlocks 322 7.4 Deadlock Prevention 323	7.8 Summary 339 Exercises 339			
7.4 Deadlock Prevention 323 7.5 Deadlock Avoidance 327	Exercises 339 Bibliographical Notes 346			
7.5 Beliance 7. Volume 527	bibliographical Notes 540			
PART THREE ■ MEMORY MANAGEMENT				
Chapter 8 Main Memory				
8.1 Background 351	8.7 Example: Intel 32 and 64-bit			
8.2 Swapping 358	Architectures 383			
8.3 Contiguous Memory Allocation 360	8.8 Example: ARM Architecture 388			
8.4 Segmentation 364	8.9 Summary 389			
8.5 Paging 3668.6 Structure of the Page Table 378	Exercises 390 Bibliographical Notes 394			
old directate of the ruge ruble of o	Dibliographical Policy 074			

Chapter 9 Virtual Memory

- 9.1 Background 397
- 9.2 Demand Paging 401
- 9.3 Copy-on-Write 408
- 9.4 Page Replacement 409
- 9.5 Allocation of Frames 421
- 9.6 Thrashing 425
- 9.7 Memory-Mapped Files 430

- 9.8 Allocating Kernel Memory 436
- 9.9 Other Considerations 439
- 9.10 Operating-System Examples 445
- 9.11 Summary 448

Exercises 449

Bibliographical Notes 461

PART FOUR ■ STORAGE MANAGEMENT

Chapter 10 Mass-Storage Structure

- 10.1 Overview of Mass-Storage Structure 467
- 10.2 Disk Structure 470
- 10.3 Disk Attachment 471
- 10.4 Disk Scheduling 472
- 10.5 Disk Management 478

- 10.6 Swap-Space Management 482
- 10.7 RAID Structure 484
- 10.8 Stable-Storage Implementation 494
- 10.9 Summary 496

Exercises 497

Bibliographical Notes 501

Chapter 11 File-System Interface

- 11.1 File Concept 503
- 11.2 Access Methods 513
- 11.3 Directory and Disk Structure 515
- 11.4 File-System Mounting 526
- 11.5 File Sharing 528

- 11.6 Protection 533
- 11.7 Summary 538

Exercises 539

Bibliographical Notes 541

Chapter 12 File-System Implementation

- 12.1 File-System Structure 543
- 12.2 File-System Implementation 546
- 12.3 Directory Implementation 552
- 12.4 Allocation Methods 553
- 12.5 Free-Space Management 56112.6 Efficiency and Performance 564
- 12.7 Recovery 568
- 12.8 NFS 571
- 12.9 Example: The WAFL File System 577
- 12.10 Summary 580

Exercises 581

Bibliographical Notes 585

Chapter 13 I/O Systems

- 13.1 Overview 587
- 13.2 I/O Hardware 588
- 13.3 Application I/O Interface 597
- 13.4 Kernel I/O Subsystem 604
- 13.5 Transforming I/O Requests to Hardware Operations 611
- 13.6 STREAMS 613
- 13.7 Performance 615
- 13.8 Summary 618

Exercises 619

Bibliographical Notes 621

PART FIVE PROTECTION AND SECURITY

Chapter 14 Protection

- 14.1 Goals of Protection 625
- 14.2 Principles of Protection 626
- 14.3 Domain of Protection 627
- 14.4 Access Matrix 632
- 14.5 Implementation of the Access Matrix 636
- 14.6 Access Control 639

- 14.7 Revocation of Access Rights 640
- 14.8 Capability-Based Systems 641
- 14.9 Language-Based Protection 644
- 14.10 Summary 649

Exercises 650

Bibliographical Notes 652

Chapter 15 Security

- 15.1 The Security Problem 657
- 15.2 Program Threats 661
- 15.3 System and Network Threats 669
- 15.4 Cryptography as a Security Tool 674
- 15.5 User Authentication 685
- 15.6 Implementing Security Defenses 689
- 15.7 Firewalling to Protect Systems and Networks 696
- 15.8 Computer-Security Classifications 698
- 15.9 An Example: Windows 7 699
- 15.10 Summary 701

Exercises 702

Bibliographical Notes 704

PART SIX **ADVANCED TOPICS**

Virtual Machines Chapter 16

- 16.1 Overview 711
- 16.2 History 713
- 16.3 Benefits and Features 714
- 16.4 Building Blocks 717
- 16.5 Types of Virtual Machines and Their Implementations 721
- 16.6 Virtualization and Operating-System

Components 728

- 16.7 Examples 735
- 16.8 Summary 737

Exercises 738

Bibliographical Notes 739

Chapter 17 Distributed Systems

- 17.1 Advantages of Distributed
 - Systems 741
- 17.2 Types of Networkbased Operating Systems 743
- 17.3 Network Structure 747
- 17.4 Communication Structure 751
- 17.5 Communication Protocols 756
- 17.6 An Example: TCP/IP 760
- 17.7 Robustness 762
- 17.8 Design Issues 764
- 17.9 Distributed File Systems 765
- 17.10 Summary 773

Exercises 774

Bibliographical Notes 777

PART SEVEN ■ CASE STUDIES

Chapter 18 The Linux System

18.1 Linux History 78118.2 Design Principles 78618.3 Kernel Modules 789

18.4 Process Management 792

18.5 Scheduling 795

18.6 Memory Management 800

18.7 File Systems 809

18.8 Input and Output 815

18.9 Interprocess Communication 818

18.10 Network Structure 819

18.11 Security 821

18.12 Summary 824 Exercises 824

Bibliographical Notes 826

Chapter 19 Windows 7

19.1 History 829

19.2 Design Principles 831

19.3 System Components 838

19.4 Terminal Services and Fast User Switching 862

19.5 File System 863

19.6 Networking 869

19.7 Programmer Interface 874

19.8 Summary 883 Exercises 883

Bibliographical Notes 885

Chapter 20 Influential Operating Systems

20.1 Feature Migration 887

20.2 Early Systems 888

20.3 Atlas 895

20.4 XDS-940 896

20.5 THE 897

20.6 RC 4000 897

20.7 CTSS 898

20.8 MULTICS 899

20.9 IBM OS/360 899

20.10 TOPS-20 901

20.11 CP/M and MS/DOS 901

20.12 Macintosh Operating System and

Windows 902

20.13 Mach 902

20.14 Other Systems 904

Exercises 904

Bibliographical Notes 904

PART EIGHT ■ APPENDICES

Appendix A BSD UNIX

A.1 UNIX History A1

A.2 Design Principles A6

A.3 Programmer Interface A8

A.4 User Interface A15

A.5 Process Management A18

A.6 Memory Management A22

A.7 File System A24

A.8 I/O System A32

A.9 Interprocess Communication A36

A.10 Summary A40

Exercises A41

Bibliographical Notes A42

xxii Contents

Appendix B The Mach System

B.1	History of the Mach System	B1	B.6 Memory Management	B18
B.2	Design Principles B3		B.7 Programmer Interface	B23
B.3	System Components B4		B.8 Summary B24	
B.4	Process Management B7		Exercises B25	
B.5	Interprocess Communication	B13	Bibliographical Notes	B26