PH-105 Assignment Sheet - 3 (Quantum Mechanics - 2)

Umang Mathur

51. If $\phi_n(x)$ are the solutions of time independent Schrdinger equation, with energies E_n , show that $\psi(x,t) = \sum_n C_n \phi_n(x) e^{\frac{-iE_n t}{\hbar}}$, where C_n are constants, is a solution of time dependent Schrdinger equation. However, show that $\psi(x,0)$ is not a solution of the time independent Schrdinger equation

Solution:

The Time Independent Schrodinger Equation for one-dimensional space is:

$$\hat{H}\psi = \hat{E}\psi$$

where,
$$\hat{H} = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$
 and $\hat{E} = i\hbar \frac{\partial}{\partial t}$.

Also, since $\phi_n(x)$ are the solutions of time independent Schrdinger equation, with energies E_n ,

$$\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} \left(\phi_n(x) \right) = E_n \phi_n(x) \tag{1}$$

Thus, we have,

$$\hat{H}\psi(x,t) = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \sum_n C_n \phi_n(x) e^{\frac{-iE_n t}{\hbar}}$$

$$= \sum_n C_n e^{\frac{-iE_n t}{\hbar}} \left(\frac{-\hbar^2}{2m} \frac{d^2 \phi_n(x)}{dx^2}\right)$$

$$= \sum_n C_n e^{\frac{-iE_n t}{\hbar}} \left(E_n \phi_n(x)\right) \text{ using (1)}$$

Similarly,

$$\begin{split} \hat{E}\psi(x,t) &= i\hbar \frac{\partial}{\partial t} \sum_{n} C_{n} \phi_{n}(x) e^{\frac{-iE_{n}t}{\hbar}} \\ &= \sum_{n} C_{n} \phi_{n}(x) \bigg(i\hbar \frac{\partial}{\partial t} \bigg(e^{\frac{-iE_{n}t}{\hbar}} \bigg) \bigg) \\ &= \sum_{n} C_{n} e^{\frac{-iE_{n}t}{\hbar}} \bigg(E_{n} \phi_{n}(x) \bigg) \end{split}$$

Thus,

$$\hat{H}\psi(x,t) = \hat{E}\psi(x,t)$$

However,

$$\hat{H}\psi(x,0) = \sum_{n} C_n E_n \phi_n(x)$$

. Thus, for $\psi(x,0)$ to be a solution of TISE, we must have $\hat{H}\psi(x,0) = E\psi(x,0)$ for some real constant E, i.e.,

$$\sum_{n} C_{n} E_{n} \phi_{n}(x) = E\left(\sum_{n} C_{n} \phi_{n}(x)\right)$$
$$\sum_{n} C_{n} \phi_{n}(x) \left(E - E_{n}\right) = 0$$

However, since, \hat{H} is a Hermitian operator, the eigenvalues $\phi_n(x)$ must be orthogonal (and therefore, linearly independent).

Thus, this is possible only if $E = E_n \forall n$.

But, since all E_n s are distinct (assuming non-degenerate levels in one-dimensional space), this is not possible unless $\psi(x,t)$ is not a linear combination but only a single eigen-function.