Задание 1. «Разминка»

Данное задание состоит из трех не связанных между собой задач.

Задача 1.1

Парафиновую (плотностью $\rho = 0.80$ г/см³) цилиндрическую свечу площадью основания s = 1.0 см² опускают в ванну с водой (плотностью $\rho_0 = 1.0$ г/см³). Для придания свече устойчивости, к её нижнему основанию приклеили алюминиевую (плотностью $\rho_1 = 2.7$ г/см³) шайбу высотой h = 1.0 см и такой же, как и у свечи площади поперечного сечения s = 1.0 см².

1.1.1 Найдите, при какой длине свечи l она сможет устойчиво плавать в воде.

1.1.2 Плавающую свечу длины l=13,0 см с прикрепленной к ней алюминиевой шайбой подожгли, так что она стала сгорать со скоростью u=3,0 мм/мин. Через какое время свеча потухнет?

Цилиндрический проводник радиуса $r_1 = 2.0\,\mathrm{MM}$ и длиной $l_1 = 50\,\mathrm{cm}$ (Рис. 1) при подключении к некоторому источнику постоянного напряжения нагрелся до максимальной температуры $t_1 = 57\,\mathrm{^{\circ}}C$.

До какой максимальной температуры t_2 нагреется этот же проводник, если его равномерно растянуть до длины $l_2=1,0$ м? Известно, что мощность охлаждения P_{oxn} прямо пропорциональна разности температур проводника t_i и окружающей среды $t_0=0,0\,^{\circ}C$, а также площади поверхности проводника S:

$$P_{oxn} = \alpha \left(t_i - t_0 \right) S ,$$

где α — некоторый постоянный для данного вещества коэффициент теплоотдачи.

Считайте, что при растяжении проводника его объем и удельное электрическое сопротивление не изменились.

Задача 1.3

На круглом плоском зеркале лежит глобус радиуса $r=20~{\rm cm}$, касаясь центра зеркала южным полюсом. Найдите минимальный радиус $R_{\rm min}$ зеркала, при котором в нем можно увидеть отражение любой точки южного полушария и части северного полушария до широты Гродно $\varphi=55\,^{\circ}$.

