Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ им. академика С.П. КОРОЛЕВА»

Решение нелинейных уравнений и их систем методом Ньютона.

Вариант № 16

выполнил

Проценко В. И.

группа 638

преподаватель Сметанникова Е. Н.

1 Нелинейное уравнение

1. Отделим корень, построив график в Махіта

$$f(x) = x^5 - x - 0.2; \quad x \in [0.9, 1.1]$$

$$>$$
plot2d(x $^5 - x - 0.2$, [x, 0.9, 1.1], [ylabel, "y"]);

1

Х

1.05

1.1

Один из корней приближённо равен $x_0 = 1,05$. Найдём в Махіта производную данной функции.

$$>$$
diff($x^5 - x - 0.2, x$);

$$> 5x^4-1$$

2. Уточним корень методом Ньютона.

-0.6 <u></u>

i	x_0	f(x)	f'(x)	$ x_i - x_{i-1} $	Test	ε
0	1.2	1.08832	9.36800			0.0001
1	1.08383	0.21171	5.89935	0.11617	>	0.0001
2	1.04794	0.01586	5.02994	0.03589	>	0.0001
3	1.04478	0.00011	4.95768	0.00315	>	0.0001
4	1.04476	-0.000000	4.95716	0.00002	<	0.0001

0.95

3. Метод дихотомии

i	a	b	X	f(x)	b-a	Test	ε
0	0.40000	1.20000	0.80000	-0.67232	0.80000	>	0.0001
1	0.80000	1.20000	1.00000	-0.20000	0.40000	>	0.0001
2	1.00000	1.20000	1.10000	0.31051	0.20000	>	0.0001
3	1.00000	1.10000	1.05000	0.02628	0.10000	>	0.0001
4	1.00000	1.05000	1.02500	-0.09359	0.05000	>	0.0001
5	1.02500	1.05000	1.03750	-0.03540	0.02500	>	0.0001
6	1.03750	1.05000	1.04375	-0.00500	0.01250	>	0.0001
7	1.04375	1.05000	1.04688	0.01053	0.00625	>	0.0001
8	1.04375	1.04688	1.04531	0.00273	0.00313	>	0.0001
9	1.04375	1.04531	1.04453	-0.00114	0.00156	>	0.0001
10	1.04453	1.04531	1.04492	0.00079	0.00078	>	0.0001
11	1.04453	1.04492	1.04473	-0.00018	0.00039	>	0.0001
12	1.04473	1.04492	1.04482	0.00031	0.00020	>	0.0001
13	1.04473	1.04482	1.04478	0.00007	0.00010	>	0.0001
13	1.04473	1.04482	1.04478	0.00007	0.00010	<	0.0001

4. Метод ньютона, модифицированный

i	x_0	f(x)	$ x_i - x_{i-1} $	Test	ε
0	1.2	1.08832			0.0001
1	1.08383	0.21171	0.11617	>	0.0001
2	1.06123	0.08476	0.02260	>	0.0001
3	1.05218	0.03740	0.00905	>	0.0001
4	1.04819	0.01711	0.00399	>	0.0001
5	1.04636	0.00795	0.00183	>	0.0001
6	1.04551	0.00372	0.00085	>	0.0001
7	1.04511	0.00175	0.00040	>	0.0001
8	1.04493	0.00082	0.00019	>	0.0001
9	1.04484	0.00039	0.00009	<	0.0001

5. Метод хорд

i	x_0	f(x)	$ x_i - x_{i-1} $	Test	arepsilon
0	1.2	1.08832	0.4		0.0001
1	1.14270	0.60563	0.05730	>	0.0001
2	1.10842	0.36471	0.03428	>	0.0001
3	1.08688	0.22984	0.02155	>	0.0001
4	1.07293	0.14894	0.01395	>	0.0001
5	1.06374	0.09824	0.00920	>	0.0001
6	1.05760	0.06555	0.00613	>	0.0001
7	1.05348	0.04407	0.00412	>	0.0001
8	1.05069	0.02979	0.00279	>	0.0001
9	1.04880	0.02020	0.00189	>	0.0001
10	1.04751	0.01373	0.00128	>	0.0001
11	1.04664	0.00935	0.00087	>	0.0001
12	1.04604	0.00637	0.00060	>	0.0001
13	1.04564	0.00435	0.00041	>	0.0001
14	1.04536	0.00296	0.00028	>	0.0001
15	1.04517	0.00202	0.00019	>	0.0001
16	1.04504	0.00138	0.00013	>	0.0001
17	1.04495	0.00094	0.00009	<	0.0001

6. Метод секущих

i	x_0	f(x)	$ x_i - x_{i-1} $	Test	ε
0	1.2	1.08832	0		0.0001
1	1.60000	8.68576	0.40000	>	0.0001
2	1.14270	0.60563	0.45730	>	0.0001
3	1.10842	0.36471	0.03428	>	0.0001
4	1.05654	0.05997	0.05189	>	0.0001
5	1.04633	0.00778	0.01021	>	0.0001
6	1.04480	0.00021	0.00152	>	0.0001
7	1.04476	0.000001	0.00004	<	0.0001

7. Метод Стеффенсона

i	x_0	f(x)	$ x_i - x_{i-1} $	Test	ε
0	1.2	1.08832	0		0.0001
1	1.17998	0.90760	0.02002	>	0.0001
2	1.15738	0.71939	0.02260	>	0.0001
3	1.13212	0.52770	0.02526	>	0.0001
4	1.10485	0.34150	0.02727	>	0.0001
5	1.07799	0.17773	0.02686	>	0.0001
6	1.05678	0.06122	0.02122	>	0.0001
7	1.04657	0.00902	0.01020	>	0.0001
8	1.04481	0.00022	0.00177	>	0.0001
9	1.04476	0.000000	0.00004	<	0.0001

8. Метод простых итераций

$$f'(x) = 5x^4 - 1$$

|f'(x)| > 1 - метод при $x \in [0.9, 1.1]$ расходится.

Проверка:

>find_root($x^5 - x - 0.2 = 0, x, 0.9, 1.1$);

> 1.04476

Ответ: x = 1.04476

2 Нелинейная система

$$\begin{cases} \cos x - y = -0, 5\\ y - \sqrt{x} = 1 \end{cases}$$

1. Изобразим графики функций в одной системе координат для отделения корня. >plot2d([cos(x) + 0.5, 1 + sqrt(x)], [x, 0, 1]);

По графику приближённо находим $x \approx 0.2, y \approx 1.4.$

Используем эти значения в качестве нулевого приближения к решению.

2. Выпишем формулы для итерационного процесса.

Для этого вычислим частные производные функций

$$f(x,y) = \cos x - y + 0.5$$

$$g(x,y) = y - \sqrt{x} - 1$$

Получим:

$$f'_x = -\sin x, \ f'_y = -1, \ g_x = -\frac{1}{2\sqrt{x}}, \ g'_y = 1$$

Матрица Якоби имеет вид:

$$\begin{pmatrix} -\sin & -1 \\ -\frac{1}{2\sqrt{x}} & 1 \end{pmatrix}$$

Для нахождения J^{-1} используем формулу

$$J^{-1} = \frac{1}{|J|} \begin{pmatrix} 1 & 1 \\ \frac{1}{2\sqrt{x}} & -\sin x \end{pmatrix} \Rightarrow \begin{array}{l} J_{11}^{-1} = \frac{1}{|J|} g_y' = -\frac{1}{|J|} & J_{12}^{-1} = \frac{1}{|J|} \\ J_{21}^{-1} = \frac{1}{2\sqrt{x}|J|} & J_{22}^{-1} = -\frac{\sin x}{|J|} \end{array}$$

$$\begin{pmatrix} x \\ y \end{pmatrix}^{n+1} = \begin{pmatrix} x \\ y \end{pmatrix}^n - J^{-1} \begin{pmatrix} x \\ y \end{pmatrix}^n \begin{pmatrix} f(x^n, y^n) \\ g(x^n, y^n) \end{pmatrix} \Rightarrow \begin{pmatrix} x^{n+1} \\ y^{n+1} \end{pmatrix} = \begin{pmatrix} x^n \\ y^n \end{pmatrix} - \begin{pmatrix} J_{11}^{-1} & J_{12}^{-1} \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \Rightarrow \begin{pmatrix} x^n \\ y^n \end{pmatrix} = \begin{pmatrix} x^n \\ y^n \end{pmatrix} - \begin{pmatrix} J_{11}^{-1} & J_{12}^{-1} \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \Rightarrow \begin{pmatrix} x^n \\ y^n \end{pmatrix} = \begin{pmatrix} x^n \\ y^n \end{pmatrix} - \begin{pmatrix} J_{11}^{-1} & J_{12}^{-1} \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \Rightarrow \begin{pmatrix} x^n \\ y^n \end{pmatrix} = \begin{pmatrix} x^n \\ y^n \end{pmatrix} - \begin{pmatrix} y^n \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \Rightarrow \begin{pmatrix} x^n \\ y^n \end{pmatrix} = \begin{pmatrix} x^n \\ y^n \end{pmatrix} - \begin{pmatrix} y^n \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \Rightarrow \begin{pmatrix} x^n \\ y^n \end{pmatrix} = \begin{pmatrix} x^n \\ y^n \end{pmatrix} - \begin{pmatrix} y^n \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \Rightarrow \begin{pmatrix} x^n \\ y^n \end{pmatrix} = \begin{pmatrix} x^n \\ y^n \end{pmatrix} - \begin{pmatrix} y^n \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix} \Rightarrow \begin{pmatrix} y^n \\ J_{21}^{-1} & J_{22}^{-1} \end{pmatrix} \begin{pmatrix} f \\ J_{21}^{-1} & J_{22}^{-1}$$

$$\begin{cases} x^{n+1} = x^n - J_{11}^{-1} f - J_{12}^{-1} g \\ y^{n+1} = y^n - J_{21}^{-1} f - J_{22}^{-1} g \end{cases}$$
 расчётные формулы, где
$$\begin{cases} f = f(x^n, y^n) \\ g = g(x^n, y^n) \end{cases}$$

$$J^{-1} = J^{-1} \begin{pmatrix} x^n \\ y^n \end{pmatrix}$$

Рис. 1: График.

0.8

В таблицу внесём промежуточные вычисления, т. е. f,g, $|J|,\,J_{ij}^{-1}$ и оценочные величины $\sigma^{n+1}=\max\left\{\left|\frac{x^{n+1}-x^n}{x^{n+1}}\right|;\left|\frac{y^{n+1}-y^n}{y^{n+1}}\right|\right\}$

Дальнейшие вычисления сведём в таблицу

i	x(i)	y(i)	f	g	fx	fy	gx	gy	
0	0,2	1,4	0,080066578	-0,047213595	-0,198669331	-1	-1,118033989	1	
1	0,224950938	1,475109592	-0,00030454	0,000819662	-0,223058536	-1	-1,054207497	1	
2	0,225354238	1,474715092	-7,92743E-08	1,90391E-07	-0,223451657	-1	-1,053263755	1	

i	J	J11	J12	J21	J22	x(i+1)	y(i+1)
0	-1,31670332	-0,75947252	-0,75947252	-0,84911610	0,15088389	0,22495093	1,47510959
0	-1,27726603	-0,78292225	-0,78292225	-0,82536250	0,17463749	0,22535423	1,47471509
0	-1,27671541	-0,78325991	-0,78325991	-0,82497927	0,17502072	0,22535432	1,47471499

i	dx	dy	max		ε
0	0,110917242	0,050917974	0,110917242	>	0,0005
1	0,00178963	0,000267509	0,00178963	>	0,0005
2	3,86207E-07	6,69431E-08	3,86207E-07	<	0,0005

Проверка в Махіта

>solve([cos(x) + 0.5, 1 + sqrt(x)], [x,y]); >[x = 0,225354238, y = 1,474715092]

Ответ: x = 0,225354 y = 1,474715