Tutorial #5

CSE 321a: Computer Organization (I)

Third Year, Computer and Systems Engineering

Questions (16 - 20) Midterm 2015:

A computer has a 16 MB main memory (that is byte-addressable) and a 4-way set-associative cache. The following table describes the first nine memory references (*i.e.*, read/write operations) made during the execution of a program (assuming the cache was initially empty):

Address (decimal)	738117								
Read/Write (R/W)	R	R	W	W	R	R	R	R	R
Set (decimal)	52	52	63	52	52	52	63	52	52
Tag (decimal)	90	40	90	40	70	20	90	10	
Hit/Miss (H/M)	M	M	M	Н	M	M	M	M	Н
Write-back? (Y/N)	N	N	N	N	N	N	N	Y	

- 16. What is the format of the memory address?
- (a) Tag ightarrow 7 bits, Set ightarrow 13 bits, Word ightarrow 4 bits
- (b) Tag \rightarrow 14 bits, Set \rightarrow 6 bits, Word \rightarrow 4 bits
- (c) Tag \rightarrow 7 bits, Set \rightarrow 6 bits, Word \rightarrow 3 bits
- (d) Tag \rightarrow 11 bits, Set \rightarrow 9 bits, Word \rightarrow 4 bits
- (e) None of the above
- 17. What is the size of the cache?
- (a) 2 KB
- (b) 32 KB
- (c) 8 KB
- (d) 512 B
- (e) None of the above

18. Which replacement algorithm is used? (a) LRU (b) LFU (c) FIFO (d) Random (e) None of the above
19. Which write-miss policy is used?
(a) No-write-allocate
(b) Write-allocate
(c) Write-through
(d) Write-back
(e) None of the above
20. Which of the following cannot be the tag associated with the last read operation in the table?
(a) 90
(b) 70
(c) 20
(d) 10
(e) None of the above

External problem

Consider a computer with a 1-kB byte-addressable main memory and a 32-byte write-back initially-empty cache memory with 4-byte blocks. Assume that the following sequence of memory references to the given addresses (in decimal) has occurred in order:

```
40 (write), 20 (read), 43 (read), and 8 (read).
```

1. If direct mapping is used, how many bits are needed for the tag, line, and word fields, respectively?

```
# of word field bits = lg(4) = 2 bits
# of lines in cache = Cache size/ line size = 32 / 4 = 8
# of line field bits = lg(8) = 3 bits
# of address bits = lg(1024) = 10 bits
# of Tag field bits = 10 - (2+3) = 5 bits
```

2. Assume that the main memory access time is 10τ seconds, the cache memory access time is τ seconds, and direct mapping is used. What is the total time (in seconds) needed to perform the given sequence of read/write operations?

Address	40	20	43	8	26
R/W	W	R	R	R	R
Line	2	5	2	2	6
Tag	1	0	1	0	0
Hit/Miss	M	М	Н	M	М
Write back?	No	No	No	Yes	No

```
Cache hit time = \tau , Cache miss time = (10\tau + \tau) , Write back time = 10\tau
Total time = (10\tau + \tau) + (10\tau + \tau) + \tau + (10\tau + \tau) = 44\tau sec
```

3. Assume direct mapping, and that the byte at location 26 (decimal) is read right after the given sequence of read/write operations. Will a cache hit occur? Will a write back be needed?

As showing in table above there is no cache hit occur and also, it isn't needed to write back.

4. If 4-way set-associative mapping is used, how many bits are needed for the tag, set, and word fields, respectively?

```
# of word field = 2 bits
# of sets = # of lines in cache/ 4 = 8 /4 = 2 sets
# of sets bits = lg(2) = 1 bits
# of tag bits = 10 - (2+1) = 7 bits
```

Address	40	20	43	8	26
R/W	W	R	R	R	R
Set	0	1	0	0	0
Tag	5	2	5	1	3
Hit/Miss	М	М	Н	M	M
Write back?	No	No	No	No	No

5. Assume 4-way set-associative mapping, with FIFO replacement, and that the byte at location 26 (decimal) is read right after the given sequence of read/write operations. Will a cache hit occur? Will a write back be needed?

From the table above, answer is no hit and no write back.