表 为 Hanework

Homework 6

Due: Wednesday April 2, 2025, 11:59 pm

1. In the following circuit determine the node-voltage phasors V_1 , V_2 , and V_3 and express them in polar form.

2. In the circuit shown for Problem 1, determine the loop-current phasors I_1 , I_2 , and I_3 and express them in polar form. (15 points)

$$I_{3} = \frac{\sqrt{3-0}}{\sqrt{3}} = I_{A} = \frac{\sqrt{3}}{2}$$

$$I_{2} = \frac{\sqrt{3-2}}{2} = -(j-1) = I_{2} = \frac{1}{2} = I_{3} = I_{$$

3. Use the phasor method to determine $v_1(t)$ in the following circuit: (15 points)

$$2\cos(4t)V \stackrel{4i}{=} \underbrace{1i_{x}(t)}_{i_{x}(t)} \underbrace{1i_{x}(t)$$

ECE 210 Homework

4. In the following circuit determine the phasor V and express it in polar form: (15 points)

5. Use the following network to answer (a) through (d): (20 points)

$$\frac{1}{(d)} \frac{1}{(d)} \frac{1}$$

- (a) Determine the phasor V when $I_s = 0$.
- (b) Determine the phasor V when $V_s = 0$.
- (c) Determine V when $V_s = 4 \,\mathrm{V}$ and $I_s = -2 \,\mathrm{A}$, and calculate the average power absorbed in the resistors.
- (d) What is the Thevenin equivalent and the available average power of the network when $V_s = 4 \,\mathrm{V}$ and $I_s = -2 \,\mathrm{A}$?

6. Determine the impedance Z_L of a load that is matched to the following network at terminals a and b, and determine the net power absorbed by the matched load: (15 points)

