

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Week 3: Op Amps Part 2

First-Order Lowpass Filters

Introduce lowpass filters

Lesson Objectives

Introduce active lowpass filters

Lowpass Filters

 Lowpass filters pass low frequency components and attenuate high frequency components

Transfer Function $H(\omega)$

First-Order Filter

$$H(\omega) = K_{DC} \frac{1}{\tau j \omega + 1}$$

Bandwidth, $\omega_B = 1/\tau$

DC Gain = $H(0) = K_{DC}$

From Passive to Active Lowpass Filters

Isolation at the input:

Isolation in the output:

First-Order Inverting Lowpass Filter

$$V_{o} = -\frac{R_{f}}{R_{1}} \frac{1}{R_{f}Cj\omega + 1} V_{in}$$

Frequency Characteristics of LP Filter

$$H(\omega) = -\frac{R_f}{R_1} \frac{1}{(R_f Cj\omega + 1)}$$

$$|H(\omega)| = \frac{R_f}{R_1} \frac{1}{\sqrt{(R_f C_f \omega)^2 + 1}}$$

$$\angle H(\omega) = 180 - \operatorname{arctan}(R_f C_f \omega)$$

DC Gain =
$$-\frac{R_f}{R_1}$$

Bandwidth, $\omega_b = \frac{1}{R_f C_f}$

Derivation: Lowpass Filter

Example

Design an inverting lowpass filter to have a DC gain of -2 and a bandwidth of 500 rad/s:

Summary

- A lowpass filter passes low frequency signals and attenuates high frequency signals
- Three first-order lowpass configurations:
 - Noninverting, isolation at the input

Noninverting, isolation at the output

Inverting, isolation at input and output

First-Order Highpass Filters

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Introduce highpass filters

Lesson Objectives

Introduce active highpass filters

Highpass Filter

 Passes high frequency components and attenuates low frequency components

First-Order Filter

$$H(\omega) = \frac{Kj\omega}{\tau j\omega + 1}$$

Corner Frequency, $\omega_c = 1/\tau$ Passband Gain= $K_{PB} = K/\tau$

Inverting Highpass Filter Configuration

$$V_{o} = \frac{-R_{f}Cj\omega}{(R_{1}Cj\omega + 1)}V_{in}$$

Frequency Characteristics of HP Filter

$$H(\omega) = \frac{-R_f Cj\omega}{(R_1 Cj\omega + 1)}$$

$$|H(\omega)| = \frac{R_f C\omega}{\sqrt{(R_1 C\omega)^2 + 1}}$$

$$\angle H(\omega) = -90^\circ - \arctan(R_1 C\omega)$$

Passband Gain
$$(\omega \rightarrow \infty) = -\frac{R_f}{R_1}$$

Corner Freq., $\omega_c = \frac{1}{R_1C}$

Example

Design a highpass filter to have a passband gain of 2 and a corner frequency of 1k rad/s:

Summary

- A highpass filter passes high frequency components in signals and attenuates low frequency components
- First-order highpass filter

$$H(\omega) = \frac{-R_f Cj\omega}{(R_1 Cj\omega + 1)}$$

- Design based on
 - Corner frequency of the passband, ω_c
 - Passband gain, K_{PB}

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Cascaded First-Order Filters

Introduce cascaded first-order op-amp filters

Previous Lesson

Introduced op-amp first-order highpass filters

Lesson Objectives

- Introduce cascaded filters
- Introduce bandpass filter characteristics

Transfer Functions in Hertz f

Lowpass

$$H(\omega) = K_{DC} \frac{1}{\tau j \omega + 1}$$

Bandwidth, $\omega_{\rm B}$ = 1/ τ

DC Gain = $H(0) = K_{DC}$

Highpass

$$H(\omega) = \frac{Kj\omega}{\tau j\omega + 1}$$

Corner Frequency, $\omega_c = 1/\tau$

Passband Gain= $K_{PB} = K/\tau$

First-Order LPF and HPF

$$H_{LP}(f) = K_{DC} \frac{1}{\frac{jf}{f_0} + 1}$$

$$H_{HP}(f) = K_{PB} \frac{\frac{jf}{f_0}}{\frac{jf}{f_0} + 1}$$

Cascaded Filter

Cascaded Filter

Bandpass Filter Characteristics

Cascaded Filter Transfer Function

$$H_{BP}(f) = H_{LP}(f)H_{HP}(f) = K_{DC}\frac{1}{\frac{jf}{f_{lp}}+1}K_{PB}\frac{\frac{jJ}{f_{hp}}}{\frac{jf}{f_{hp}}+1}$$

$$K = K_{DC}K_{PB} \left(\frac{f_{lp}}{f_{lp} + f_{hp}}\right)$$

$$f_0 = \sqrt{f_{lp}f_{hp}}$$

$$Q = \frac{\sqrt{f_{lp}f_{hp}}}{f_{lp} + f_{hp}}$$

$$BW = f_{lp} + f_{hp}$$

Summary

- Cascaded Lowpass and Highpass Filters
- Bandpass Filter Characteristics

Next Lesson

Second-Order Transfer Functions

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Second-Order Transfer Functions

Introduce second-order filter transfer functions

Previous Lesson

Introduced cascaded first-order op-amp filters

Lesson Objectives

- Introduce second-order filter transfer functions
- Examine features of transfer functions

Filter Transfer Function

- Ratio of output voltage to input voltage as a function of frequency
- For any frequency, the transfer function is a complex number that indicates how the filter modifies the magnitude and phase of the input to produce the output

$$H(f) = \frac{V_{out}(f)}{V_{in}(f)}$$

First-Order Low-Pass Filter

$$H_{LP1}(f) = K \frac{1}{\frac{jf}{f_0} + 1}$$

Second-Order Low-Pass Filter

$$H_{LP1}(f) = K \frac{1}{\frac{jf}{f_0} + 1}$$

$$H_{LP2}(f) = K \frac{1}{\left(\frac{jf}{f_0}\right)^2 + \frac{jf}{f_0} \frac{1}{Q} + 1}$$

Effect of Quality Factor (Q)

$$H_{LP2}(f) = K \frac{1}{\left(\frac{jf}{f_0}\right)^2 + \frac{jf}{f_0} \frac{1}{Q} + 1}$$

High-Pass Filters

$$H_{HP1}(f) = K \frac{\frac{if}{f_0}}{\frac{if}{f_0} + 1}$$
 $H_{HP2}(f) = K \frac{\left(\frac{if}{f_0}\right)^2}{\left(\frac{if}{f_0}\right)^2 + \frac{if}{f_0}\frac{1}{Q} + 1}$

$$H_{LP1}(f) = K \frac{1}{\frac{if}{f_0} + 1}$$
 $H_{LP2}(f) = K \frac{1}{\left(\frac{if}{f_0}\right)^2 + \frac{if}{f_0}\frac{1}{Q} + 1}$

Band-Pass Filters

$$H_{BP2}(f) = K \frac{\frac{jf}{f_0} \frac{1}{Q}}{\left(\frac{jf}{f_0}\right)^2 + \frac{jf}{f_0} \frac{1}{Q} + 1}$$

$$Q = \frac{f_0}{BW}$$

$$BW = Bandwidth = f_u - f_l$$

Butterworth and Chebyshev

- Types of transfer functions
- For second-order filters, the type is determined by the Q value
- $Q = 1/\sqrt{2}$ Butterworth (Maximally Flat)
- \odot $Q > 1/\sqrt{2}$ Chebyshev

Chebyshev Filters

Butterworth Filters

Fourth-Order Butterworth vs. Chebyshev

Summary

- Introduced second-order transfer functions
- Examined features of transfer functions

Next Lesson

Op-Amp Second-Order Filter Circuits

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Second-Order Filter Circuits

Introduce second-order Sallen-Key filter circuits

Previous Lesson

Introduced second-order transfer functions

Lesson Objectives

- Introduce second-order filter circuits
- Design second-order filters

Sallen-Key Low-Pass Filter

$$H_{LP2}(f) = K \frac{1}{\left(\frac{jf}{f_0}\right)^2 + \frac{jf}{f_0} \frac{1}{Q} + 1}$$

$$K = 1 + \frac{R_4}{R_3}$$

$$f_o = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}}$$

$$Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{(1 - K)R_1 C_1 + (R_1 + R_2)C_2}$$

Lowpass Design Equations

Special Case 1 (K = 1, Solve for C's)

$$K = 1 \ (R_3 = \infty, R_4 = 0)$$

$$C_1 = \frac{Q}{\omega_o} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$C_2 = \frac{1}{Q\omega_o \left(R_1 + R_2\right)}$$

Can simplify with $R_1 = R_2$

Special Case 2 (K = 1, Solve for R's)

$$K = 1$$
 $(R_3 = \infty, R_4 = 0)$

$$R_1, R_2 = \frac{1}{2Q\omega_0 C_2} \left(1 \pm \sqrt{1 - 4Q^2 \frac{C_2}{C_1}} \right)$$

$$4Q^2C_2/C_1 \le 1$$

R₁ and R₂ are interchangeable

Special Case 3 (R's equal and C's equal)

$$R_1 = R_2 = R$$
 $K = 1 + \frac{R_4}{R_3}$
 $C_1 = C_2 = C$

$$K = 3 - \frac{1}{Q}$$

$$R = \frac{1}{\omega_0 C}$$

Sallen-Key Highpass Filter

$$H_{HP2}(f) = K \frac{\left(\frac{jf}{f_0}\right)^2}{\left(\frac{jf}{f_0}\right)^2 + \frac{jf}{f_0}\frac{1}{Q} + 1}$$

$$K = 1 + \frac{R_4}{R_3}$$

$$f_o = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$$

$$Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{(1 - K)R_2 C_2 + (C_1 + C_2)R_1}$$

Highpass Design Equations

Special Case 1 $(K = 1, C_1 = C_2 = C)$

$$K=1 \quad (R_3=\infty, R_4=0)$$

$$C_1 = C_2 = C$$

$$R_1 = \frac{1}{2Q\omega_o C}$$

$$R_2 = \frac{2Q}{\omega_0 C}$$

Special Case 2 (R's equal and C's equal)

$$R_1 = R_2 = R$$
 $K = 1 + \frac{R_4}{R_3}$
 $C_1 = C_2 = C$

$$K = 3 - \frac{1}{Q}$$

$$C = \frac{1}{\omega_0 R}$$

Sallen-Key Bandpass Filter

$$H_{BP2}(f) = K \frac{\frac{jf}{f_0} \frac{1}{Q}}{\left(\frac{jf}{f_0}\right)^2 + \frac{jf}{f_0} \frac{1}{Q} + 1}$$

$$V_{O} = K = \frac{R_2}{R_1 + R_2} \frac{K_0 R_3 C_2}{(R_1 \parallel R_2)(C_1 + C_2) + R_3 C_2 \left[1 - \frac{K_0 R_1}{(R_1 + R_2)}\right]}$$

$$f_0 = \frac{1}{2\pi\sqrt{(R_1 \parallel R_2)R_3C_1C_2}}$$

$$Q = \frac{\sqrt{(R_1 \parallel R_2)R_3C_1C_2}}{(R_1 \parallel R_2)(C_1 + C_2) + R_3C_2\left[1 - \frac{K_0R_1}{(R_1 + R_2)}\right]}$$

$$K_0 = 1 + \frac{R_5}{R_4}$$

Bandpass Design Equations

Special Case (R's equal)

$$R_1 = R_2 = R_3 = R$$
 $K_0 = 1 + \frac{R_5}{R_4}$

$$C_1 = C_2 = C$$

$$R = \frac{\sqrt{2}}{2\pi f_0 C}$$

$$K_0 = 4 - \frac{1}{Q^2}$$

$$K = 4Q^2 - 1$$

Notch Filters

$$H_{BR2}(f) = K \frac{\left(\frac{jf}{f_0}\right)^2 + 1}{\left(\frac{jf}{f_0}\right)^2 + \frac{jf}{f_0}\frac{1}{Q} + 1}$$

Summary

Introduced second-order filter circuits

Next Lesson

Filter Design Example

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Lowpass Filter Design Example

Design a second-order Sallen-Key lowpass filter circuit

Example Design

Butterworth 2nd Order LPF

Special Case 1 (K = 1, Solve for C's)

$$K = 1 \ (R_3 = \infty, R_4 = 0)$$

$$C_1 = \frac{Q}{\omega_o} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$C_2 = \frac{1}{Q\omega_o \left(R_1 + R_2\right)}$$

Can simplify with $R_1=R_2$

Example Design

Summary

Designed a second-order lowpass filter

Next Lesson

Filter Demonstration

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Filtering Demonstration

Demonstrate filtering of signals

Previous Lesson

Introduced second-order filter circuits

Lesson Objectives

- Examine frequency spectra of signals
- Demonstrate filtering by a second-order filter circuit

Spectrum of Sine Wave

Spectrum of Sum of Two Sine Waves

Spectrum of Square Wave

Spectrum of Square Wave

Relaxation Oscillator

Measurements

Relaxation Oscillator

 $f_0 = 1$ kHz Q=5 Sallen-Key BPF

Total Harmonic Distortion (THD)

$$THD = \frac{\sqrt{v_2^2 + v_3^2 + v_4^2 + \dots}}{v_1} * 100\%$$

Summary

- Introduced frequency spectra
- Examined physical circuit filtering performance