Supplementary Materials

Make Privacy Renewable! Generating Privacy-Preserving Faces Supporting Cancelable Biometric Recognition

A PROOF OF DISTANCE-PRESERVING ORTHOGONAL TRANSFORMATIONS

A.1 Equidistance

Let A be an orthogonal matrix, and \mathbf{p}_1 and \mathbf{p}_2 be any two points in space represented by their position vectors. The Euclidean distance between these two points is given by:

$$d(\mathbf{p}_1, \mathbf{p}_2) = \|\mathbf{p}_2 - \mathbf{p}_1\|$$

Under the transformation by the orthogonal matrix A, the new positions of these points are $A\mathbf{p}_1$ and $A\mathbf{p}_2$. The distance between these transformed points is:

$$d(A\mathbf{p}_1, A\mathbf{p}_2) = ||A\mathbf{p}_2 - A\mathbf{p}_1||$$

Since the column vectors of an orthogonal matrix maintain their lengths, we have $||A\mathbf{v}|| = ||\mathbf{v}||$ for any vector \mathbf{v} . Therefore, $||A\mathbf{p}_2 - A\mathbf{p}_1|| = ||\mathbf{p}_2 - \mathbf{p}_1||$, indicating that the distance between the transformed points $A\mathbf{p}_1$ and $A\mathbf{p}_2$ is equal to the distance between the original points \mathbf{p}_1 and \mathbf{p}_2 . Thus, orthogonal matrix transformations preserve the distances between points, demonstrating equidistance.

A.2 Equiangularity

Let A be an orthogonal matrix, and \mathbf{v}_1 and \mathbf{v}_2 be any two vectors. The dot product of these two vectors is:

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = \mathbf{v}_1^T \mathbf{v}_2$$

If \mathbf{v}_1 and \mathbf{v}_2 are unit vectors (i.e., $\|\mathbf{v}_1\| = \|\mathbf{v}_2\| = 1$), their angle θ can be expressed as the arccosine of their dot product:

$$\cos(\theta) = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{\|\mathbf{v}_1\| \cdot \|\mathbf{v}_2\|}$$

Since the column vectors of an orthogonal matrix maintain their lengths, $\|A\mathbf{v}_1\| = \|\mathbf{v}_1\|$ and $\|A\mathbf{v}_2\| = \|\mathbf{v}_2\|$. Thus, $A\mathbf{v}_1$ and $A\mathbf{v}_2$ are also unit vectors. Therefore, their dot product's cosine, $\cos(\theta')$, is equal to $\cos(\theta)$, which means that the angle θ between \mathbf{v}_1 and \mathbf{v}_2 is preserved under the transformation by the orthogonal matrix A. Hence, orthogonal matrix transformations maintain the angles between vectors, demonstrating isometry.

Table 1: Recognition performance among different orthogonal matrices on VGGFace2.

	Q ₁		Q_2		Q ₃	
	EER↓	AUC↑	EER↓	AUC↑	EER↓	AUC↑
$\overline{Q_1}$	0.101	0.951	0.493	0.494	0.499	0.486
Q_2	0.493	0.493	0.097	0.952	0.512	0.494
Q_3	0.499	0.486	0.512	0.494	0.082	0.962

Figure 1: Training of the auxiliary physical identity remover.

Figure 2: Physical identity protection test on Face++.

B MORE FIGURE PRESENTATIONS

In addition, we show more figures from Fig. 1 to Fig. 3, which help readers understand the relevant content more quickly.

C MORE TABLE RESULTS

Due to page limitations in the main manuscript, we add additional experimental results for reference, including more results on VG-GFace2 in Table 1, Table 2, Table 4, and the TAR values on CelebA

Table 2: Ablation Experiment on VGGFace2.

	EER↓	AUC↑	PSR↑	FID↓	SSIM†
Full strategy	0.101	0.951	0.982	13.655	0.839
W/o DH	0.150	0.919	0.998	18.021	0.827
W/o FT	0.085	0.961	0.212	9.987	0.911

Table 3: TARs with different FARs of the four face recognition models on CelebA and VGGFace2.

	InceptionResNet		IResN	IResNet50 SERes		Net50	IResNet100	
	FAR=0.01	FAR=0.1	FAR=0.01	FAR=0.1	FAR=0.01	FAR=0.1	FAR=0.01	FAR=0.1
PRO-Face(CelebA)	0.862	0.969	0.742	0.924	0.631	0.875	0.614	0.876
CanFG(CelebA)	0.883	0.969	0.897	0.954	0.905	0.972	0.941	0.974
PRO-Face(VGGFace2) CanFG(VGGFace2)	0.512	0.889	0.445	0.798	0.342	0.714	0.437	0.777
	0.674	0.906	0.577	0.876	0.731	0.902	0.747	0.866

Figure 3: Visual results of distance preserving test.

Table 5: The Parameter Number and Running Time

	IVFG	PRO-Face	CanFG
Parameter Number (M) Running time (s)	224 2.63797	184 0.01263	43 0.00055
	2.03777	0.01203	0.00000

Table 4: Robustness test on VGGFace2.

	EER↓	AUC↑
No process	0.101	0.951
Gaussian noise	0.099(-0.002)	0.951(-0.000)
JPEG compression	0.147(+0.062)	0.922(-0.029)
Median filtering	0.178(+0.077)	0.900(-0.051)

and VGGFace2 in Table 3. Table 5 compares the parameter number and running time.