Prime topological spaces

Shigeo Hattori

December 24, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Prime set of sub spaces

Blue texts indicate the words will be defined later.

This article defines new words, a prime set S of sub spaces of a topological space X, and a prime topological space. The main purpose of the new notions is to research that same conditions hold across different topological spaces.

7 8

17

A topological space X is a pair as (Space(X), T).

Definition 1.1 (Deep member). Take $\forall (c, x, y)$ such that c is a chain of set ¹membership of which the maximum member is x and the minimum member is y. Then y is said a deep member of x and you write as $y \in ^{deep} x$.

For example,
$$\{y1, y2\} \in ^{deep} \{y1, y2\} \stackrel{\text{and}}{\wedge} y \in ^{deep} \{1, \{2, y\}\}.$$
²Footnote.

Definition 1.2 (Space). Space(X) := {
$$p \mid p \in ^{deep} X \stackrel{\text{and}}{\wedge} p \text{ is a point }}$$
.

A metric space (X, M) is a topological space X with the metric table M to 18 define X. M is said a non topological property of X.

¹That is, the set is larger than the member.

 $^{2&}quot;a \stackrel{\text{and}}{\wedge} b"$ is almost equivalent to $"a \wedge b"$ except that $"a \stackrel{\text{and}}{\wedge} b"$ is not promised to be commutative. The same holds for $"a \stackrel{\text{or}}{\vee} b"$ and $"a \vee b"$.

Let (X, M, x_0) denote R^1 , Euclidean space of 1-dimension where x_0 denote the origin point. Take $\forall I$ as a closed interval on X. Take $\forall I_h$ as a homeomorphism from the interval [0, 1] on (X, M, x_0) to I so that you can use I_h an index system on I.

20

2324

25

2728

29

38

47

Take $\forall (S,X)$ such that: X is a topological space $\begin{subarray}{l} \begin{subarray}{l} \begin{suba$

Take $\forall F$ as a bijection from $\operatorname{Space}(X)*\operatorname{Space}(I)$ to $\operatorname{Space}(X_{*I})$. Hence F takes a pair of points as the input and F outputs a point represented by a pair of points. Let F_0 be the instance of F such that: F(x,i)=(x,i).

Take $\forall F_i$ as an instance of F such that: $(*1 \ \stackrel{\text{and}}{\wedge} \ \dots \ \stackrel{\text{and}}{\wedge} \ *5)$.

1.
$$(F_0) \cong (F_i)$$
.

2.
$$F_0[X*0] = F_i[X*0].$$
 34

3.
$$\operatorname{image}(F_0[X * t]) = \operatorname{image}(F_i[X * t]).$$
 35

4. Take
$$\forall s1 :\in S, \forall t :\in I$$
.

5.
$$\exists s2 :\in S \stackrel{\text{and}}{\wedge} \operatorname{image}(F_0[s1*t]) = \operatorname{image}(F_i[s2*t]).$$
 37

Then the set A of all instances of F_i is said the **ambient system** of (X, S). 39 Especially, if (*4 $\stackrel{\text{and}}{\wedge}$ *5) is exempted from the required condition for F_i , then 40 A is said the **ambient system** of X.

Instance of x: That is, $\forall y$ such that you can substitute y into x.

Definition 1.3 (Prime set of sub spaces). Take $\forall (S,X)$ such that: X is a 43 topological space $\stackrel{\text{and}}{\wedge} S \subset 2^{Space(X)}$. If $(*1 \stackrel{\text{and}}{\wedge} ((*2 \stackrel{\text{and}}{\wedge} \stackrel{\text{and}}{\wedge} *4) \rightarrow 44 (*5 \stackrel{\text{and}}{\wedge} \stackrel{\text{and}}{\wedge} *7)))$ holds then S is said a **prime set** of sub spaces of X.

- 1. Take $\forall f$ as a bijection between subsets of S.
- **2.** $\exists F$ as a member of the ambient system of X.
- **3.** Take $\forall s :\in \text{domain}(f)$.
- **4.** image(F[s*1]) = f(s)*1.

5. $\exists H$ as a member of the ambient system of (X, S) .	52
6. Take $\forall s :\in \text{domain}(f)$.	53
7. $image(H[s*1]) = f(s)*1.$	5 4
	55
1.1 Isomorphism	56
³ Informally speaking:	57 58
Take $\forall (X_i)_{i\in I}$, $\forall (Y_i)_{i\in I}$ as a pair of sequences of topological spaces. If there exists $\exists F$ as a bijection between sets of points such that: Take $\forall i:\in I$. Then some subset of F is a homeomorphism from X_i to Y_i . Then you write as $(X_i)_{i\in I}\cong (Y_i)_{i\in I}$.	59 60 61 62
Formally: Take $\forall F$ as a bijection between sets of points .	63 64 65
Take $\forall (p1, p2)$. Define *1 to be equivalent to (*2 $\overset{\text{or}}{\lor}$ *3).	66 67
1. $p1 \cong_F p2$.	68
2. $F(p1) = p2$.	69
3. Space($\{p1, p2\}$) \cap Space(F) = \varnothing $^{\text{and}} p1 = p2$.	70
	71 72
Proposition 1. $p1 \cong_F p2 \equiv p2 \cong_{F^{-1}} p1.$	73
Proof. Take $\forall (p1,p2,F^{-1})$ as a counterexample. Hence (*2 $\overset{\text{or}}{\vee}$ *3) holds for $(p1,p2,F)$ in place of $(p1,p2,F)$ Assume *2 holds. Then *2 holds for $(p2,p1,F^{-1})$ in place of $(p1,p2,F)$. A contradiction. Assume *3 holds. Then *3 holds for $(p2,p1,F^{-1})$ in place of $(p1,p2,F)$. A	74 75 76 77 78
contradiction.	79

³Speaking with no proof.

	80
Take $\forall G := (V, E, C)$ such that: (V, E) is a graph $\stackrel{\text{and}}{\wedge} C$ is a function from	81
the vertex set V to a set. In detail: (V,E) can be any type of graphs if $\operatorname{\mathbf{graph}}$	82
isomorphisms are defined for the type; C is called the content map on V .	83
Then G is said a topological graph .	84
	85
	86
Definition 1.4 (Isomorphism between topological graphs). Take $\forall \{G_i\}_{i\in\{1,2\}}$	87
as a pair of topological graphs. Hence $G_i := (V, E, C)_i$ where C_i denotes the	88
content map on V_i . Take $\forall f$ as a graph isomorphism from V_1 to V_2 . Take $\forall F$	89
as a bijection between sets of points.	90
Then F is said an isomorphism from G_1 to G_2 if *1; you write the fact as	
*2. And it is defined that: $*2 \rightarrow *3$.	
1. Take $\forall v :\in V_1$, then $C_1(v) \cong_F C_2(f(v))$.	91
$2. G_1 \cong^F G_2.$	92
$3. G_1 \cong G_2.$	93
•	94
Proposition 2. $G_1 \cong^F G_2 \equiv G_2 \cong^{F^{-1}} G_1$.	95
<i>Proof.</i> Refer to the definition of isomorphism between toplogical graphs as	96
Main Def. Take $\forall (G_1,G_2,F)$ as a counterexample. By graph theory, f^{-1} is	97
a graph isomorphism from G_2 to G_1 . And F^{-1} is a bijection between sets of	98
points. Hence the antecedent of MainDef holds for $(G_2, G_1, f^{-1}, F^{-1})$ in place	99
of (G_1, G_2, f, F) except *1. Hence *1 of MainDef fails for it.	100
1. Hence: $\exists v :\in V_2 \stackrel{\text{and}}{\wedge} \neg (C_2(v) \cong_{F^{-1}} C_1(f^{-1}(v))).$	101
2. Though: $(G_1 \cong^F G_2) \to (C_1(f^{-1}(v)) \cong_F C_2(v)).$	102
	103
(*1 $\stackrel{\text{and}}{\wedge}$ *2) contradicts to Proposition1.	104
2 Prime topological space	105
To define prime topological spaces, two new notions as preliminaries are re-	106

quired.

2.1 To specify a variable	108
	109
Take $\forall (x,y)$ as variables. That (x is specified on y) is equivalent to that: x	110
has exactly one solution in the sense of that y has exactly one solution.	111
For example, let y denote R^2 as a topological space. Take $\forall M$ as a metric	112
table to define y. Let $x := \{z \mid z \text{ is a circle in } y \text{ with } M \}$. Then it does not	113
specify x on y because infinitely many metric table can define y . In other words,	114
M is not specified on y .	115
Meanwhile, x is specified on (y, M) . ⁴ Footnote	116
2.2 Subtext	117
Take $\forall e$ as a mathematical expression; for example $v = \{1, 2\}$. All subtext of	118
e is got as follows.	119
Interpret e into a tree g of (either binary or unary) logical operations. As	120
a trival example, g can be $v = \{1, 2\}$. For more interesting example, g can be	
$(1 \in v \land (2 \in v \land (v = 2 \land v \subset \{1, 2, 3, 4, 5, 6\})))$. It is just a coincide that	122
this g has no logical disjunction operation.	12 3
Next, select some vertex x of g . For example, x can be $(v =2 \land v \subset$	12 4
$\{1, 2, 3, 4, 5, 6\}$). Or x can be $(2 \in v \land (v = 2 \land v \subset \{1, 2, 3, 4, 5, 6\}))$ as x .	12 5
Next, change the operator of x so that the new x returns exactly one term.	12 6
For example, the original operator " \wedge " can be changed to "right identity"; that	127
is, the new x returns the right term. For the example, the new x returns ($ v =2$	128
$\land \ v \subset \{1, 2, 3, 4, 5, 6\}).$	12 9
In detail, if the operator is unary then it must be changed to the identity;	130
that is, the new x returns the only one term.	131
Finally the resultant expression for the modified tree is said a subtext of e .	132
For the example, the subtext of e is $(1 \in v \land (v = 2 \land v \subset \{1, 2, 3, 4, 5, 6\}))$.	133
Moreover the relation on the set of all mathematical expressions by (being	134
pair of a subtext and the original expression) is defined to be transitive . That	135
is, a subtext of a subtext of e is also a subtext of e .	136
2.3 Prime topological space	137
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space.	138
Then X is said prime if the following main propositional function holds for X	
in place of X .	140

⁴As I omit the proof, I need to add "probably".

Definition 2.2 (Main propositional function). Let X be the input topological	141
space.	142
Take $\forall (S1, S2, d2)$ such that (*1 $\stackrel{\text{and}}{\wedge}$ *2). Then (*3 $\stackrel{\text{or}}{\vee}$ (*4 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *6)).	143
1. $S1$ is a prime set of sub spaces of X .	144
2. $d2$ is a definition to specify $S2$ on X so that $S2 \subset S1$.	145
	146
3. $S2$ is a prime set of sub spaces of X .	147
	148
4. $\exists (d3, S3).$	149
5. $d3$ is a subtext of $d2 \stackrel{\text{and}}{\wedge} d3$ specifies $S3$ on X .	150
6. $\varnothing \neq S3 \subset S1 \stackrel{\text{and}}{\wedge} S3$ is a prime set of sub spaces of X .	151
•	152
3 Conjectures	153
3.1 Main conjecture for metric spaces	154
Conjecture 3.1 (Main conjecture). Take $\forall (X, M)$ as a metric space where X	155
denotes the topological space and M denotes the metric table to define X . Refer	156
the main propositional function as MainProp. If X is prime then MainProp	157
holds for X in place of X , with changes in the text of MainProp at (*2, *5) as	158
the before to $(*2_2, *5_2)$ as the after respectively.	159
2. $d2$ is a definition to specify $S2$ on X so that $S2 \subset S1$.	160
2 ₂ . $d2$ is a definition to specify $S2$ on (X, M) so that $S2 \subset S1$.	161
	162
and to go T	162 163
5. $d3$ is a subtext of $d2 \stackrel{\text{and}}{\wedge} d3$ specifies $S3$ on X .	

3.2 Sub conjecture	166
Conjecture 3.2 (Sub conjecture). Refer to the main conjecture as MainConj.	
The following (*1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *3) holds true. Take $\forall M$ as a metric table	168
to define a Euclidean space of 3-dimension. Let X denote the topological space	169
defined by M .	170
1. X is a prime topological space.	171
	172
v	173
$K := \{k \mid (X, k_0) \cong (X, k) \}.$	174
2. (X, M, K, K_f) is an instance of $(X, M, S1, S2)$ of ManConj.	175
3. For (X, M, K, K_f) , the item *3 of ManConj ⁵ holds.	176
	177
Definition of K_f :	178
$K_f := \{ k \in K \mid f(k_0) = f(k) \}.$	179
	180
Sub definitions with K as the domain:	181
$\bullet \ j1(k) := \{j \mid$	182
j is an orthogonal 6 projection of k onto some infinite plane $\}$.	183
$\bullet \ j2(k) := \{j \in j1(k) \mid$	184
and and	185
• $j3(k) := \{n \mid$	186
$\exists j \stackrel{\text{and}}{\wedge} j \in j2(k) \stackrel{\text{and}}{\wedge} n \text{ is the number of } ^{7}\text{double points on } j \}.$	187
$\bullet \ f(k) := \{m \mid$	188
m is the maximal number from $j3(k)$ }.	189
· ·	190

⁵Hence K_f is a prime set of sub spaces of X.

⁶Hence, j is a function from k to an infinite plane.

⁷That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point is a crossing or a tangent point.

3.3 Factor of a logical expression

Currently it is hard to show that the main conjecture implies the sub conjecture 192 because to analyze subtexts of a logical expression requires some computer- 193 assisted proof software available.

By the way, readers may criticize that, the item *3 of the main conjecture 195 fails for the sub conjecture due to (j3 and f). As an excuse for the possible 196 negative critique, let me briefly introduce a new notion named "factor".

Recall that, j3(k) returns a set of natural numbers. And f(k) takes the 198 maximum number from j3(k). For example, assume $j3(k_x) = \{7, 8, 9\}$. The 199 inverse image of $\{\{7, 8, 9\}\}$ over j3 is a subset of domain(f).

Let me analyze the equation which defines the inverse image; $y = \{7, 8, 9\}$. 201 It is equivalent to $(7 \in y \land 8 \in y \land \max(y) = 9 \land |y| = 3)$ where each term 202 of the logical conjunction is named as a **factor** of $y = \{7, 8, 9\}$ if the logical 203 conjunction is not redundant. For the example above, it happens to be not 204 redundant. And to use a factor of $y = \{7, 8, 9\}$ to define an inverse image is just 205 to use a subtext of $y = \{7, 8, 9\}$. For example, $\max(y) = 9$.

As a conclusion, if the definition is not redundant: j3 is not a subtext of f; 207 in stead f is a subtext of j3. Though non redundant definitions tend to have 208 less quality in human readability. So my definitions of f and j3 are inevitably 209 a little redundant.

Definition 3.1 (Redundant logical expression). Take $\forall e$ as a logical expression. 211 Then e is said **redundant** if some its subtext is equivalent to e.