FINITE DIMENSIONAL REPRESENTATIONS OF THE SOFT TORUS

SØREN EILERS AND RUY EXEL

ABSTRACT. The soft tori constitute a continuous deformation, in a very precise sense, from the commutative C^* -algebra $C(\mathbb{T}^2)$ to the highly non-commutative C^* -algebra $C^*(\mathbb{F}_2)$. Since both of these C^* -algebras are known to have a separating family of finite dimensional representations, it is natural to ask whether that is also the case for the soft tori. We show that this is in fact the case.

1. Introduction

Knowing that a given C^* -algebra has many representations on finite dimensional Hilbert spaces is of great importance to understanding structural properties of it. Among C^* -algebras, those who possess a separating family of finite dimensional representations are called residually finite dimensional or just RFD. This class was studied in [12], [11] and [1], and more recent insight about it has lead to important advances in classification theory and the theory of quasidiagonal C^* -algebras (see, e.g., [2], [5] and [6]).

For any $\varepsilon \geq 0$ we define a C^* -algebra A_{ε} as the unital universal C^* -algebra defined by the generators u, v subject to the relations

$$uu^* = u^*u = 1$$
 $vv^* = v^*v = 1$ $||uv - vu|| < \varepsilon$.

As recorded in [8], A_0 is the commutative C^* -algebra of functions over the torus \mathbb{T}^2 , and A_{ε} is the full C^* -algebra of the free group of two generators \mathbb{F}_2 whenever $\varepsilon \geq 2$. For ε between 0 and 2 we get a class of C^* -algebras which are commonly referred to as *soft tori*. These C^* algebras are of relevance to several problems in operator algebra theory (see [10]) and have been extensively studied in [3], [8], [9], [7].

The starting point of the investigation reported on in the present paper is a result from [9], stating that the soft tori form a continuous field interpolating between the (hard) torus and the group C^* -algebra

Date: February 1, 2008.

 $^{1991\} Mathematics\ Subject\ Classification.$ Primary 46L05; secondary 46L85, 47B20.

Partially supported by the Carlsberg Foundation.

of the free group. Since $C(\mathbb{T}^2)$ is obviously RFD, and since $C^*(\mathbb{F}_2)$ was proved to be RFD in [4] — a surprise at the time — we are naturally led to the question of whether the same is true for the interpolating family A_{ε} . We are going to prove that this is the case.

2. Methods

We are going to employ a method from [3] and [8] which lies behind many results about the structural properties of A_{ε} .

We define B_{ε} as the universal C^* -algebra given by the generators $\{u_n\}_{n\in\mathbb{Z}}$ and the relations

(1)
$$u_n u_n^* = u_n^* u_n = 1 ||u_{n+1} - u_n|| \le \varepsilon.$$

Clearly one can define an automorphism α on B_{ε} by

$$u_n \mapsto u_{n+1}$$

and as seen in [8] one has

$$A_{\varepsilon} = B_{\varepsilon} \rtimes_{\alpha} \mathbb{Z}.$$

There is a faithful conditional expectation $E_{\alpha}: A_{\varepsilon} \longrightarrow B_{\varepsilon}$.

Our strategy is to prove that A_{ε} is RFD by proving that B_{ε} is RFD in a way which is covariant with α .

3. Finite dimensional representations of B_{ε}

We start out by finding a new picture of B_{ε} by generators and relations.

Lemma 3.1. For any $\varepsilon < 2$, B_{ε} is isomorphic to the universal C^* -algebra generated by $v_0, \{h_n\}_{n \in \mathbb{Z}}$ subject to the relations

(2)
$$v_0 v_0^* = v_0^* v_0 = 1$$
 $h_n = h_n^*$ $||h_n|| \le 2\cos(\varepsilon/2)$

Proof. Let us denote the C^* -algebra generated by v_0 and h_n subject to (2) by B'_{ε} . We can define a map $\varphi: B_{\varepsilon} \longrightarrow B'_{\varepsilon}$ by

$$u_n \mapsto \begin{cases} e^{i\pi h_n} \cdots e^{i\pi h_1} v_0 & n > 0 \\ v_0 & n = 0 \\ e^{-i\pi h_n} \cdots e^{-i\pi h_{-1}} v_0 & n < 0 \end{cases}$$

since the elements to the right of the arrow above satisfy the relations (1). Similarly, the universal property of B'_{ε} allows for a map $\psi: B'_{\varepsilon} \longrightarrow B_{\varepsilon}$ defined by

$$v_0 \mapsto u_0 \qquad h_n \mapsto \frac{1}{i\pi} \text{Log}(u_{n+1}u_n^*)$$

Clearly φ and ψ are each others' inverse.

This characterization can be used to shorten the proof of [8, 2.2], stating that B_{ε} is homotopic to $C(\mathbb{T})$. To see this, define maps $\varphi: B'_{\varepsilon} \longrightarrow C(\mathbb{T})$ and $\psi: C(\mathbb{T}) \longrightarrow B'_{\varepsilon}$ by the correspondence $v_0 \leftrightarrow [z \mapsto z]$, $h_n \leftrightarrow 0$. Clearly $\varphi \psi = \mathrm{id}_{C(\mathbb{T})}$, and $\chi_t: B'_{\varepsilon} \longrightarrow B'_{\varepsilon}$ given by

$$\chi_t(v_0) = v_0 \qquad \chi_t(h_n) = th_n$$

provides a homotopy from $id_{B'_{\varepsilon}}$ to $\psi \varphi$.

In the following proof, we denote by Alg(X) the smallest *-algebra, not necessarily closed, generated by X inside some C^* -algebra.

Proposition 3.2. For any $\varepsilon < 2$, B_{ε} is RFD. In fact, for any $0 \neq b \in B_{\varepsilon}$ there exists $n \in \mathbb{N}$, an automorphism β of \mathbf{M}_n and a representation $\rho : B_{\varepsilon} \longrightarrow \mathbf{M}_n$ with the properties:

$$\rho(b) \neq 0$$
 $\beta \rho = \rho \alpha$ $\beta^n = id$.

Proof. For the first claim we use the characterization of B_{ε} given by the relations (2) and proceed as in [4]. Fix a faithful non-degenerate representation $\pi: B_{\varepsilon} \longrightarrow \mathbb{B}(\mathcal{H})$, where we may assume that \mathcal{H} is a separable Hilbert space.

Let P_m be a sequence of projections, with rank $(P_m) = m$, converging strongly to the unit of $\mathbb{B}(\mathcal{H})$, and abbreviate

$$T_{0,m} = P_m \pi(v_0) P_m$$
 $K_{n,m} = P_m \pi(h_n) P_m$

Now note that for each m the collection of elements $\{V_{0,m}, H_{n,m} : n \in \mathbb{Z}\}$ defined by

$$V_{0,m} = \begin{bmatrix} T_{0,m} & \sqrt{P_m - T_{0,m} T_{0,m}^*} \\ \sqrt{P_m - T_{0,m}^* T_{0,m}} & T_{0,m}^* \end{bmatrix} \quad H_{n,m} = \begin{bmatrix} K_{n,m} & 0 \\ 0 & K_{n,m} \end{bmatrix}$$

satisfies (2) in $\mathbf{M}_2(P_m\mathbb{B}(\mathcal{H})P_m) \simeq \mathbf{M}_{2m}$. Consequently we get representations $\pi_m : B_{\varepsilon} \longrightarrow \mathbf{M}_{2m}$. We are going to check, following [4], that

$$\underline{\pi}: B_{\varepsilon} \longrightarrow \prod_{m=1}^{\infty} \mathbf{M}_{2m} \qquad \underline{\pi}(b) = (\pi_m(b))_{m=1}^{\infty}$$

is an isometry. It suffices to check that $\|\underline{\pi}(x)\| \ge \|x\| - \eta$ for any $\eta > 0$ and any $x \in Alg(\{v_0, h_{-N}, \dots, h_N\})$. Fix η , N and x and write

$$x = F(v_0, h_{-N}, \dots, h_N)$$

where F is some finite linear combination of finite words in 2N+2 variables and their adjoints. Since

$$V_{0,m} \longrightarrow \begin{bmatrix} \pi(v_0) & 0 \\ 0 & \pi(v_0)^* \end{bmatrix} \qquad H_{n,m} \longrightarrow \begin{bmatrix} \pi(h_n) & 0 \\ 0 & \pi(h_n) \end{bmatrix}, \qquad m \longrightarrow \infty$$

strongly on the unit ball of $\mathbf{M}_2(\mathbb{B}(\mathcal{H}))$ we conclude that

$$\lim_{m \to \infty} \|F(V_{0,m}, H_{-N,m}, \dots, H_{N,m})\|$$

$$= \left\| \begin{bmatrix} \pi(F(v_0, h_{-N}, \dots, h_N)) & 0 \\ 0 & \pi(F(v_0^*, h_{-N}, \dots, h_N)) \end{bmatrix} \right\|$$

$$\geq \|\pi(x)\| = \|x\|.$$

We can hence find m such that

$$\|\underline{\pi}(x)\| \ge \|\pi_m(x)\| = \|F(V_{0,m}, H_{-N,m}, \dots, H_{N,m})\| \ge \|x\| - \eta.$$

For the second claim, we go back to the original presentation (1) of B_{ε} by unitary generators only. For a given $b \in B_{\varepsilon}$ with ||b|| = 1 we fix, using the first part of the proposition, a finite dimensional representation $\pi: B_{\varepsilon} \longrightarrow \mathbf{M}_m$ with $||\pi(b)|| > \frac{3}{4}$. We also fix c and $N \in \mathbb{N}$ such that

$$||b - c|| < \frac{1}{4}$$
 $c \in Alg(u_{-N}, \dots, u_N).$

Choose M>0 and unitaries v_0^\pm,\ldots,v_M^\pm with the properties

$$\left\|v_{n+1}^{\pm}-v_{n}^{\pm}\right\|\leq\varepsilon \qquad v_{0}^{\pm}=u_{\pm N} \qquad v_{M}^{\pm}=1.$$

There is then exactly one representation $\pi': B_{\varepsilon} \longrightarrow \mathbf{M}_m$ which is 2(N+M)-periodic in the sense that $\pi'(u_n) = \pi'(u_{n+2(N+M)})$ and satisfies

$$\pi'(u_n) = \begin{cases} v_{-N-n}^- & -M - N \le n < -N \\ \pi(u_n) & -N \le n \le N \\ v_{n-N}^+ & N < n \le N + M \end{cases}$$

Note that $\pi'(c) = \pi(c)$; in particular $\|\pi'(c)\| \ge \frac{1}{2}$.

Now let n = 2(N+M)m. With β defined as the forward cyclic shift in block form (with period 2(N+M)) we may define a covariant representation ρ of B_{ε} on \mathbf{M}_n by

$$u_i \mapsto \begin{bmatrix} \pi'(u_i) & & & & \\ & \pi'(u_{i+1}) & & & \\ & & \ddots & & \\ & & & \pi'(u_{i+2(N+M)-1}) \end{bmatrix}.$$

We have

$$\|\rho(b)\| \ge \|\pi'(b)\| \ge \|\pi'(c)\| - \frac{1}{4} > 0$$

4. Finite dimensional representations of A_{ε}

Theorem 4.1. For any $\varepsilon > 0$, let A_{ε} be the universal C^* -algebra generated by a pair of unitaries subject to the relation $||uv - vu|| \le \varepsilon$. Then A_{ε} is residually finite dimensional in the sense that it admits a separating family of finite dimensional representations.

Proof. We may assume that $0 < \varepsilon < 2$. Let $0 \neq a \in A_{\varepsilon}$. Then also $b = E_{\alpha}(a^*a)$ is nonzero, for the conditional expectation is faithful. Choose n, ρ and β as in Proposition 3.2 and define

$$\pi: A_{\varepsilon} = B_{\varepsilon} \rtimes_{\alpha} \mathbb{Z} \longrightarrow \mathbf{M}_n \rtimes_{\beta} \mathbb{Z}$$

as the extension to the crossed product of the covariant *-homomorphism ρ . We then have, with E_{β} the conditional expectation from $\mathbf{M}_n \rtimes_{\beta} \mathbb{Z}$ to \mathbf{M}_n

$$E_{\beta}(\pi(a^*a)) = \pi(E_{\alpha}(a^*a)) = \rho(b) \neq 0,$$

so $\pi(a) \neq 0$.

Note finally that since β is periodic, any irreducible representation of $\mathbf{M}_n \rtimes_{\beta} \mathbb{Z}$ is finite dimensional, and hence this C^* -algebra is RFD. Therefore we may compose π with some finite dimensional representation of it to exhibit a finite dimensional representation which does not vanish on a.

Linear algebra tells us that \mathbf{M}_n has a faithful tracial state and has the property that every matrix which is *hyponormal* is the sense that

$$x^*x > xx^*$$

is in fact normal. As in [4], we may conclude:

Corollary 4.2. For any ε , A_{ε} has a faithful tracial state. Furthermore, any hyponormal operator in A_{ε} is in fact normal.

Proof. These two properties clearly pass from matrices to sums of the form $\bigoplus_{n\in\mathbb{N}} \mathbf{M}_{m_n}$, and from these sums to any of their subalgebras. By the theorem, A_{ε} is one such.

References

- [1] R. J. Archbold, On residually finite-dimensional C*-algebras, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2935–2937.
- [2] B. Blackadar and E. Kirchberg, Generalized inductive limits of finite-dimensional C*-algebras, Math. Ann. 307 (1997), no. 3, 343–380.
- [3] C. Cerri, Non-commutative deformations of $C(\mathbb{T}^2)$ and K-theory, Internat. J. Math. 8 (1997), no. 5, 555–571.
- [4] M.D. Choi, The full C*-algebra of the free group on two generators, Pacific J. Math. 87 (1980), no. 1, 41–48.

- [5] M. Dădărlat, Nonnuclear subalgebras of AF algebras, preprint, 1997.
- [6] _____, On the approximation of quasidiagonal C*-algebras, preprint, 1997.
- [7] G.A. Elliott, R. Exel, and T.A. Loring, *The soft torus. III. The flip*, J. Operator Theory **26** (1991), no. 2, 333–344.
- [8] R. Exel, The soft torus and applications to almost commuting matrices, Pacific J. Math. 160 (1993), 207–217.
- [9] R. Exel, The soft torus: a variational analysis of commutator norms, J. Funct. Anal. 126 (1994), no. 2, 259–273.
- [10] R. Exel and T.A. Loring, Invariants of almost commuting unitaries, J. Funct. Anal. 95 (1991), 364–376.
- [11] ______, Finite-dimensional representations of free product C*-algebras, Internat. J. Math. 3 (1992), 469–476.
- [12] K. R. Goodearl and P. Menal, Free and residually finite-dimensional C*algebras, J. Funct. Anal. 90 (1990), no. 2, 391–410.

Matematisk Afdeling, Københavns Universitet, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

E-mail address: eilers@math.ku.dk URL: http://www.math.ku.dk/~eilers

Departamento de Matematica, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88010-970 Florianopolis SC, Brazil

E-mail address: exel@mtm.ufsc.br URL: http://www.mtm.ufsc.br/~exel