

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Szélessávú Hírközlés és Villamosságtan Tanszék

ADSB Radar csomag demodulálása

Mérési Jegyzőkönyv

Kozma Dávid Márk

Tartalomjegyzék

1.	Mérés célja
2.	Mérés
	2.1. Elsőfordítás
	2.2. Abszolút érték meghatározása
	2.3. Döntési küszöb meghatározása
	2.4. Preamble detekció és csomag dekódolás
	2.5. Dekódolt csomagok
	2.6. RTL SDR teszt
	2.7. Kiértékelés

1. Mérés célja

A mérés célja a szoftverrádiók, szoftveres jelfeldolgozási technikák, valamint a kooperatív módon működő szekunder radarok szabványos üzenetváltásának módjával való megismerkedés.

2. Mérés

2.1. Elsőfordítás

1. ábra. Első fordítás

2.2. Abszolút érték meghatározása

 $1 \qquad abs_val = iq_to_abs \left[\ buffer \left[\ bix \ \right] \right] \left[\ buffer \left[\ bix \ +1 \right] \right];$

2. ábra. Abszolút érték meghatározása

2.3. Döntési küszöb meghatározása

3. ábra. Döntési küszöb meghatározása

2.4. Preamble detekció és csomag dekódolás

```
1 // Decoding
2 if (fifo[i] > (accumulator/FIR LEN))
3
       bit = 1;
4 else
5
     bit = 0;
6
     // ADS-B packet search and print
     if (stm < 16)
7
8
9
       if(bit == adsb preamble[stm])
10
         stm++;
11
            else
12
         stm = 0;
13
     else if ((stm>=16)&&(stm<PCKT LEN))
14
15
       if (stm==16) printf("*");
16
17
       if ((stm\%2)==0)
18
         printf("%d", bit);
19
         hex=hex | bit;
20
21
         j++;
         if ( j == 8) {
22
23
                     printf("%02x", hex);
24
            hex = 0;
25
            j = 0;
26
         }
27
         else hex = hex << 1;
       }
28
29
                stm++;
     }
30
31
     _{
m else}
32
       printf("; \ r \ n");
33
34
       stm = 0;
35
```


4. ábra. Preamble detekció és csomag dekódolás

2.5. Dekódolt csomagok

```
*27ae747474b5402ee534150216ec;
1
2
      *9047480610518315835820 efe698;
3
      *9047480610518315835820efe698;
4
      *9047480610518315835820efe698;
5
      *9047480614518315835828cfe490;
6
      *4ed3d1a1cb9227d62e92a8649999;
7
      *91228288a45bd71164818c18dc84;
8
      *9047480690518115835820 efe698;
9
      *90474a0690518315835820efe698;
10
      *9047480490518315835820efe698;
11
      *9047480692518315835820efe698;
12
      *9047480690518315a35820efe698;
13
      *90474a0610518315035820efe698;
14
       *9047480610518315835820efe698;
15
      *ad1a5535289b24084a1d443092c1;
16
      *9047480610518315a35820efe698;
17
      *9047480610518315835820efe698;
18
      *9047480614518315835820ebe698;
      *9046c80610518305a358206fe488;
19
20
      *9047480610518315835820ebe698;
21
      *7ec5ab848051793902592323ec32:
22
      *90474806105183158358206 fe698;
23
      *9047480610518315835820efe698;
24
      *9447480610518315835820 efe698;
25
      *9047480610118315a35820efe698;
26
      *9047480610518315835820efe698;
27
      *9047480610518315835820 efe698;
28
      *9047480610518315835820efe698;
```

2.6. RTL SDR teszt

Miután sikeresen megvalósítottam a dekódoló programot, a működést RTL SDR segítségével is tesztelltem.

```
1 Using device 0: Generic RTL2832U OEM
2 Found Rafael Micro R820T tuner
3 Exact sample rate is: 2000000.052982 Hz
4 [R82XX] PLL not locked!
5 Sampling at 2000000 \text{ S/s}.
6 Tuned to 1090000000 Hz.
7 Tuner gain set to automatic.
8 Reading samples in async mode...
9 Allocating 15 zero-copy buffers
10 *78c35a622544a031d20f70fa9c2c;
11 *511ccda8dd8ea921248d05cd8568;
12 *a5045b55eb51961349bcc4162351;
13 *9a15c14b5a9668ca0a42fcc9d089;
14 *f42e698aca6e52445bd3553a8a21;
15 *ea72e63cf94029a397dfe4553aaa;
16 *c55daf622dcb459609700a669b4a;
17 *208ab7304a1b3e3354b9c88eda8e;
18 *5d06a2e96991fd15006e57574894;
19 *28004b0dca73491b65286a5950d1;
20 *8f91826965ec68ba44931e4cfcc1;
21 *a8458b0dfffd3d376004f42a1c54;
22 *5586170fb4e8528366dd7ad28020;
23 *a7b5811eb3ae2955a2a24c145c62;
24 *a0001998e97a0b35a02541c756ce;
25 *b833542f9dd9ae8dcf893324fa07;
26 *a3d40cbaa450aa4b0962b64aeb8c;
27 *c480a724b0a9b24c1fddbb924c0d;
28 *8ab2d8e8575ade6fcebc73d126a3;
29 *a573365746ac34f04b906852cbba;
```

2.7. Kiértékelés

A mérés sikeresnek tekinthatő mert, a mérés során sikerült az adsb jelet demodulálni illetve a csomagokat is megfelelően dekódolni.

A mérés forráskódja illetve a mérés során használt adat fájlok illetve a mérési eredmények a következő linken elérhetőek: https://github.com/kozdavaa/adsb_meres