Mesures positives

Dans toute la suite (E, A) est un espace mesurable.

Exercice 1. On rappelle que, si $(x_k)_{k\geqslant 0}\subset \overline{\mathbb{R}}_+$, $\sum_{k\geqslant 0}x_k=\sup_{n\geqslant 0}\sum_{0\leqslant k\leqslant n}x_k$.

Soit
$$(a_{k,l})_{k\geqslant 0, l\geqslant 0}\subset \overline{\mathbb{R}}_+$$
. Montrer que $\sum_{k\geqslant 0}\sum_{l\geqslant 0}a_{k,l}=\sum_{l\geqslant 0}\sum_{k\geqslant 0}a_{k,l}$.

Exercice 2. Soient $(\mu_k)_{k\geqslant 0}$ une suite de mesures positives sur (E,\mathcal{A}) et $(\alpha_k)_{k\geqslant 0}\subset \overline{\mathbb{R}}_+$. On pose

$$\forall A \in \mathcal{A}, \qquad \mu(A) = \sum_{k \ge 0} \alpha_k \, \mu_k(A).$$

Montrer que μ est une mesure positive sur (E, A). On pourra commencer par une somme finie si besoin. Lorsque, pour tout k, μ_k est une mesure de probabilité, à quelle condition μ est-elle encore une probabilité?

Exercice 3. Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, on considère les mesures positives $\mu = \delta_0 + 2 \delta_1$ et $\nu = 2 \delta_0 + \delta_1$. Pour $A \in \mathcal{B}(\mathbb{R})$, on pose $m(A) = \sup(\mu(A), \nu(A))$. m est-elle une mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$?

Exercice 4. Soit μ une mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telle que $\mu(]0, +\infty[) > 0$. Montrer qu'il existe deux réels strictement positifs a < b tels que $\mu([a, b]) > 0$.

Exercice 5. 1. Soit $(\mu_k)_{k\geqslant 0}$ une suite de mesures positives sur (E,\mathcal{A}) telle que, pour $A\in\mathcal{A}$ et $k\in\mathbb{N}$, $\mu_k(A)\leqslant \mu_{k+1}(A)$. Pour $A\in\mathcal{A}$, on pose $\mu(A)=\sup_{k\geqslant 0}\mu_k(A)$. Montrer que μ est une mesure sur (E,\mathcal{A}) .

2. Sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, on définit, pour tous $j \in \mathbb{N}$ et $A \subset \mathbb{N}$,

$$\nu_j(A) = \operatorname{card}(A \cap [j, +\infty[) \text{ si } A \text{ est fini}, \qquad \nu_j(A) = +\infty \text{ sinon}.$$

- (a) Montrer que, pour tout j, ν_j est une mesure positive et que, pour tout $A \subset \mathbb{N}, \nu_j(A) \geqslant \nu_{j+1}(A)$.
- (b) On pose, pour $A \subset \mathbb{N}$, $\nu(A) = \inf_{j \geq 0} \nu_j(A)$. Calculer $\nu(\mathbb{N})$ et, pour $k \in \mathbb{N}$, $\nu(\{k\})$. ν est-elle une mesure positive?

Exercice 6. Soit μ une mesure de probabilité sur (E, A). Montrer que

$$\mathcal{T} = \{ A \in \mathcal{A} : \mu(A) = 0 \text{ ou } \mu(A) = 1 \}$$

est une tribu sur E.

Exercice 7. On considère les mesures $\mu = \sum_{k\geqslant 1} \delta_{1/k}$ et $\nu = \sum_{k\geqslant 1} 2^{-k} \delta_{1/k}$.

- 1. Montrer que ν est une mesure de probabilité et calculer, pour tout $t \in \mathbb{R}$, $\nu(]-\infty,t]$).
- 2. Montrer que μ est σ -finie. Calculer, pour tout $\varepsilon > 0$, $\mu(]0, \varepsilon[)$.

Exercice 8. Soit (E, \mathcal{A}, μ) un espace mesuré. Montrer que, pour tous $A \in \mathcal{A}$ et $B \in \mathcal{A}$,

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

Exercice 9. Soit μ une application de \mathcal{A} dans $\overline{\mathbb{R}}_+$ vérifiant :

- 1. $\mu(\emptyset) = 0$;
- 2. pour tous $A \in \mathcal{A}$ et $B \in \mathcal{A}$ disjoints, $\mu(A \cup B) = \mu(A) + \mu(B)$;
- 3. pour toute suite $(A_n)_{n\geq 0}\subset \mathcal{A}$, croissante pour l'inclusion $(A_n\subset A_{n+1})$ pour tout n,

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

Montrer que μ est une mesure sur (E, \mathcal{A}) .

Exercice 10. Soient (E, \mathcal{A}, μ) un espace mesuré, (F, \mathcal{B}) , (G, \mathcal{C}) deux espaces mesurables, $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux fonctions mesurables. Montrer que $(g \circ f)_*(\mu) = f_*(g_*(\mu))$.

Exercice 11. Soient (E, \mathcal{A}, μ) un espace mesuré, (F, \mathcal{B}) un espace mesurable et $f : E \longrightarrow F$ une application. On pose

$$f_*(\mathcal{A}) = \{ B \subset F : f^{-1}(B) \in \mathcal{A} \}.$$

- 1. Montrer que $f_*(A)$ est une tribu sur F. f est-elle mesurable par rapport à A et $f_*(A)$?
- 2. On suppose que f est mesurable par rapport à \mathcal{A} et \mathcal{B} . Peut-on comparer \mathcal{B} et $f_*(\mathcal{A})$?
- 3. En terme de taille, comment qualifieriez-vous la tribu $f_*(A)$? Sur quelle tribu, vous semble-t-il pertinent de définir $f_*(\mu)$?

Exercice 12. Soit μ une mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telle que $\mu(K) < +\infty$ pour tout compact K. On désigne par A l'ensemble des atomes de μ c'est à dire

$$A = \{ x \in \mathbb{R} : \mu(\{x\} > 0\}.$$

1. Montrer que

$$A = \bigcup\nolimits_{n \in \mathbb{N}^*} \left\{ x \in [-n,n] : \mu(\{x\} \geqslant \frac{1}{n} \right\}.$$

En remarquant que A_n est fini, en déduire que A est au plus dénombrable.

2. Pour tout $B \in \mathcal{B}(\mathbb{R})$, on pose $\mu_a(B) = \mu(A \cap B)$. Montrer que μ_a est une mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ puis que

$$\mu_a = \sum_{x \in A} \mu(\{x\}) \, \delta_x.$$

3. Montrer que μ peut s'écrire $\mu_a + \mu_d$ où la mesure μ_d n'a aucun atome.

Exercice 13. Soit μ une mesure borélienne sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ i.e. $\mu(K) < +\infty$ pour tout compact K. On considère la fonction F de \mathbb{R} dans \mathbb{R} définie par :

$$G(x) = -\mu(|x,0|)$$
 si $x < 0$, $G(0) = 0$, $G(x) = \mu(|0,x|)$ si $x > 0$.

- 1. Montrer que G est croissante, continue à droite et possède en tout point une limite à gauche.
- 2. Exprimer, pour $x \in \mathbb{R}$, $\mu(\lbrace x \rbrace)$ en fonction de G. À quelle condition G est-elle continue au point x?
- 3. On suppose que μ est bornée et on pose $F(x) = \mu(]-\infty,x]$). Quelle relation relie F et G? Préciser $\lim_{x\to+\infty}F(x)$ et $\lim_{x\to-\infty}F(x)$.

Exercice 14. Soit λ la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Déterminer $\mu = f_*(\lambda)$ où f(x) = |x|.

Exercice 15. Soit μ la mesure de Lebesgue-Stieltjes sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ associé à la fonction croissante

$$F(x) = 0$$
 si $x < 0$, $F(x) = x$ si $0 \le x < 1$, $F(x) = 1$ si $x \ge 1$.

Soit f la fonction de \mathbb{R} dans \mathbb{R} définie par $f(x) = 2 \min(x, 1-x)$. Déterminer $f_*(\mu)$.

Exercice 16. Soit μ une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ invariante par translation : pour tout $x \in \mathbb{R}$ et tout $B \in \mathcal{B}(\mathbb{R})$, $\mu(x+B) = \mu(B)$ où $x+B = \{x+b : b \in B\}$. On suppose que $\mu([0,1]) = 1$.

- 1. On note $\alpha = \mu(\{0\})$. Montrer que $n\alpha = \mu(\{1/k : 1 \le k \le n\})$. En déduire que $\alpha = 0$ et que $\mu(\{x\}) = 0$ pour tout réel x.
- 2. Montrer que, pour tout $n \in \mathbb{N}^*$, $\mu(]0,\frac{1}{n}] = \frac{1}{n}$. En déduire que, pour tous rationnels q < r, $\mu(]q,r]) = r-q$.
- 3. En déduire que pour tous réels a < b, $\mu(]a,b[) = \mu([a,b]) = b a$. Que peut-on en déduire?

Exercice 17. Soit (E, \mathcal{A}, μ) un espace mesuré. On considère

$$\mathcal{A}_{\mu} = \{ B \cup N : B \in \mathcal{A}, N \in \mathcal{N}_{\mu} \}, \quad \text{où } \mathcal{N}_{\mu} = \{ N \subset E : \exists A \in \mathcal{A}, \ N \subset A, \mu(A) = 0 \}.$$

- 1. Montrer que \mathcal{A}_{μ} est une tribu sur E qui contient \mathcal{A} et \mathcal{N}_{μ} . En déduire que $\mathcal{A}_{\mu} = \sigma(\mathcal{A}, \mathcal{N}_{\mu})$.
- 2. Si $A \in \mathcal{A}_{\mu}$, on pose $\nu(A) = \mu(B)$ où $A = B \cup N$ avec $B \in \mathcal{A}$ et $N \in \mathcal{N}_{\mu}$. Montrer que ν est bien définie (indépendante de l'écriture $A = B \cup N$) et que ν est une mesure sur (E, \mathcal{A}_{μ}) vérifiant $\nu(A) = \mu(A)$ pour tout $A \in \mathcal{A}$.
- 3. Montrer que \mathcal{A}_{μ} contient tous les ensembles ν -négligeagles c'est à dire si $X \subset A \in \mathcal{A}_{\mu}$ avec $\nu(A) = 0$ alors $X \in \mathcal{A}_{\mu}$.