Data Mining Exam

May 22, 2021

Kasper Rosenkrands

Aalborg University Denmark

Clustering

- ➤ What is clustering?
- ► K-Means optimization problem and algorithm
- ► Implementation of the K-Means algorithm and an example
- ► Hierarchical Clustering (briefly)

Clustering

Clustering is a way to categorize data to impose structure.

A use case is recommender systems (Amazon, Spotify, Netflix), where a user is recommended items that bought/listened to/watched by other users with similar interests.

Given $D = (x_1, \dots, x_n)$ where $x_i \in \mathbb{R}^p$, $K \in \mathbb{N}$ and let C_1, \dots, C_K denote different groups of the x_i 's.

The K-Means algorithm tries to solve

$$\min_{C_1,\ldots,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\},\tag{1}$$

where $W(C_k)$ denotes the **within cluster variation**, in other words the dissimilarity of the group.

The most common dissimilarity measure is the is the squared Euclidean distance

$$W(C_k) := \frac{1}{|C_k|} \sum_{i=1}^{p} \sum_{j=1}^{p} (x_{i,j} - x_{i',j})^2.$$
 (2)

Clustering K-Means Optimization Problem

If we by $\bar{x}_{k,j} = \frac{1}{|C_k|} \sum_{i \in C_k} x_{i,j}$ denote the mean value of the j'th dimension in cluster k, it can be shown that

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{i,j} - x_{i',j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^{p} (x_{i,j} - \bar{x}_{k,j})^2.$$
 (3)

If we further note that $\bar{x}_{k,j} = \min_{\mu_k} \left\{ \sum_{i \in C_k} \sum_{j=1}^p (x_{i,j} - \mu_k)^2 \right\}$ this implies that the optimization problem in (1) can be rewritten as

$$\min_{C_1,...,C_k,\mu_1,...,\mu_k} \left\{ \sum_{k=1}^K \sum_{i \in C_k} \sum_{j=1}^p (x_{i,j} - \mu_k)^2 \right\}. \tag{4}$$

The K-Means algorithm is now able to exploit the new formulation of the optimization problem and iteratively solve for $\{C_1, \ldots, C_k\}$ and $\{\mu_1, \ldots, \mu_k\}$.

This makes K-Means a greedy algorithm because, in each iteration it chooses optimal values for $\{C_1, \ldots, C_k\}$ and $\{\mu_1, \ldots, \mu_k\}$.

Convergence of the algorithm is therefore ensured, however we cannot guarantee it will find the global optimum.

Clustering K-Means Algorithm

Algorithm 1: K-Means

- Assign each obsevation to a cluster randomly foreach Cluster do Compute the centroid foreach Observation do Compute distance to all centroids Assign to the closest while Centroids have not changed since last iteration do foreach Observation do Compute distance to all centroids 9 Assign to the closest 10 foreach Cluster do 11 Compute the centroid 12
 - return Clusters

Figure: Iteration 01

Figure: Iteration 02

Figure: Iteration 03

Figure: Iteration 04

Figure: Iteration 05

Figure: Iteration 06

Figure: Iteration 07

Figure: Iteration 08

Figure: Iteration 09

Figure: Iteration 10

Figure: Iteration 11

Figure: Iteration 12

Figure: Iteration 13

Clustering Hierarchical Clustering

Todo

- Introduction
- ► Type Agglomerative vs Divise
- ► Pseudocode for algorithm, or just in words
- ► Visualization with dendogram
- ► Linkage types (complete, single, average, centroid)

Shrinkage Overview

Write equaitons and theory about ridge, lasso and elastic net

Find an example to compare the 3 methods on

Shrinkage Variable Selection and Regularization

Because it is often cheaper to obtain multiple observations from a few samples than to obtain more samples, thus increasing the number of explanatory variables in a regression model, a linear regression model would be prone to increasing variance.

When extending linear regression to multiple exaplanatory variables the main objectives is:

- ▶ Model Interpretability: Models with fewer variables are often more easy to interpret results from and are therefore better to use for decision making.
- ▶ **Predition Accuracy**: If by introducing some bias we are able to dramatically improve prediction accuracy, this would be worth considering (bias-variance tradeoff).

There are multiple tools we can use in this pursuit

- ▶ Subset Selection: Works by fitting lots of models with different combinations of predictors. Then we can find out which variables are most related to the response and we can select these.
- ▶ Dimensionality Reduction: Works by projecting explanatory variables into a smaller dimensional space and use these projections as predictors.
- ▶ Shrinkage Methods: Works by fitting a model using all predictors while shrinking coefficients towards zero, to reduce variance. Some shrinkage methods can also perform variable selection by shrinking coefficients to exactly zero.

Shrinkage Variable Selection and Regularization

This presentation will focus on shrinkage methods. The two main shrinkage methods are

- Ridge Regression
- Lasso

They both penalize the "size" of the estimated parameters, however they difer in the way they quantify the "size". Ridge regression penalize the ℓ_2 norm while Lasso penalize the ℓ_1 norm.

Therefore we can also refer to the two methods as ℓ_1 - and ℓ_2 -regularizations.

Shrinkage Ridge Regression

Write the equation that ridge minimizes

Shrinkage Lasso

Write the equation that Lasso minimizes

Shrinkage Elastic Net

The method is a compromise between Ridge Regression and Lasso as it minimizes

Write the equation that elastic net minimizes

Classification

Classification

If the response variable is categorical (qualitative), i.e. it is of the form $y \in \{1, ..., L\}$. Then a linear model of the form

$$y = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p,$$

is generally not a good approach to take as it could predict invalid values and for certain types of categorical data there might not be a clear ordering.

Therefore when dealing with categorical variable the aim of the model is to predict the probability that an observation belongs to a certain category, rather than the category itself.

Classification Linear Discriminant Analysis (LDA)

Suppose we have a dataset with a response variable $y \in \{0, ..., L\}$, explanatory variables $x_1, ..., x_p$ and that we would like to model

$$P(y = k|X) = \underbrace{\frac{P(y = k)P(X|y = k)}{P(X)}}_{\text{Bayes Theorem}} = \frac{\pi_k f_k(x)}{\sum_{i=1}^K f_i(x)},$$
 (5)

where $\pi_k = P(y = k)$ and $f_k(x) = P(X|y = k)$.

If we use the proportion of observations in the dataset that belong to class k as an estimate for π_k , then we just need to model $f_k(x) = P(X|y = k)$.

In other words we need to make some assumption on the distribution of $f_k(x)$.

The assumption made in LDA is that each $f_k(x)$ come from a multivariate normal distribution, i.e.

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_k)^\top \Sigma_k^{-1} (x - \mu_k)\right\}.$$
 (6)

Another assumption made in LDA is that $\Sigma_k = \Sigma \ \forall k \in \{1, ..., K\}$, in other words all classes will have the same variance-covariance matrix.

Classification Linear Discriminant Analysis (LDA)

When we classify a new observation, X_0 , we simply find the category with the highest probability, $P(y = k | X_0)$ for k = 1, ..., K.

In other words we want to find the k such that P(y = k|X) is maximized. Since the logarithm is an increasing function we know that the k which maximizes P(y = k|X) also maximizes the following

$$\log(P(y=k|X)) = \log(\pi_k) + \log(f_k(x)) - \underbrace{\log\left(\sum_{i=1}^K \pi_i f_i(x)\right)}_{\text{Does not depend on } k}, \tag{7}$$

The last term is identical across categories and we drop this term for the maximization problem.

Classification Linear Discriminant Analysis (LDA)

So now we have the following

$$\log(\pi_k) + \log(f_k(x)), \tag{8}$$

but let us take a look at the second term. By the normality assumption we have that

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu_k)\right\}.$$
 (9)

Thus we can write (8) as

$$\log(\pi_k) + \underbrace{\log((2\pi)^{p/2}|\Sigma|^{1/2})}_{\text{Does not depend on } k} - \frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu_k), \tag{10}$$

and subsequently drop another term that is identical across categories.

So now we have the following

$$\log(\pi_k) - \frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu_k), \tag{11}$$

again taking a look at the second term

$$(x - \mu_k)^{\top} \Sigma^{-1} (x - \mu_k) = \underbrace{x^{\top} \Sigma^{-1} x}_{\text{Does not depend on } k} - x^{\top} \Sigma^{-1} \mu_k - \mu_k^{\top} \Sigma^{-1} x + \mu_k^{\top} \Sigma^{-1} \mu_k, \tag{12}$$

and furthermore we have that $x^{\top} \Sigma^{-1} \mu_k = \mu_k^{\top} \Sigma^{-1} x$ because both are scalars and one is just the transpose of the other.

Classification Linear Discriminant Analysis (LDA)

So we end up with the following expression, which is called the **linear discriminant** function

$$\delta_k(x) = \log(\pi_k) + x^{\top} \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^{\top} \Sigma^{-1} \mu_k,$$
 (13)

this is what we will use to classify observations. Note the expression is linear in x and therefore we call it linear discriminant analysis.

Classification

Quadratic Discriminant Analysis (QDA)

Classification Naive Bayes

Trees Classification and Regression Trees (CART)

Kasper Rosenkrands | Data Mining Exam

Trees Bagging

Trees Random Forest

Kasper Rosenkrands | Data Mining Exam

Trees Boosting

Support Vector Machines

Neural Networks

Backpropagation: For a given loss function L we look for $\frac{\partial L}{\partial w_i}$. We start with initial values for the weights, which we shall denote w_{old} . Then we update the weights by $w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$. One iteration is called an **epoch**.

