НАЗВАНИЕ УЧРЕЖДЕНИЯ, В КОТОРОМ ВЫПОЛНЯЛАСЬ ДАННАЯ ДИССЕРТАЦИОННАЯ РАБОТА

На правах рукописи УДК xxx.xxx

Фамилия Имя Отчество автора

название диссертационной работы

Специальность XX.XX.XX — «Название специальности»

Диссертация на соискание учёной степени кандидата физико-математических наук

> Научный руководитель: уч. степень, уч. звание Фамилия И.О.

Содержание

Bı	веден	ие	4
1	Офо	ормление различных элементов	6
	1.1	Форматирование текста	6
	1.2	Ссылки	6
	1.3	Формулы	6
		1.3.1 Ненумерованные одиночные формулы	6
		1.3.2 Ненумерованные многострочные формулы	7
		1.3.3 Нумерованные формулы	7
2	Дли	инное название главы, в которой мы смотрим на примеры того, как будут вер-	
	стат	гься изображения и списки	8
	2.1	Одиночное изображение	8
	2.2	Длинное название параграфа, в котором мы узнаём как сделать две картинки с	
		общим номером и названием	8
	2.3	Пример вёрстки списков	8
3	Bëp	стка таблиц	1(
	3.1	Таблица обыкновенная	10
	3.2	Параграф - два	10
	3.3	Параграф с подпараграфами	10
		3.3.1 Подпараграф - один	10
		3.3.2 Подпараграф - два	10
3 a	ключ	иение	11
Лı	итера	тура	12
Cı	писок	с рисунков	13
Cı	писок	стаблиц	14
A	Наз	вание первого приложения	15

B	Оче	Очень длинное название второго приложения, в котором продемонстрирована ра-													
	бота	а с длинными таблицами	16												
	B.1	Подраздел приложения	16												
	B.2	Ещё один подраздел приложения	18												
	B.3	Очередной подраздел приложения	19												
	B.4	И ещё один подраздел приложения	19												

Введение

Обзор, введение в тему, обозначение места данной работы в мировых исследованиях и т.п. **Целью** данной работы является . . .

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Исследовать, разработать, вычислить и т.д. и т.п.
- 2. Исследовать, разработать, вычислить и т.д. и т.п.
- 3. Исследовать, разработать, вычислить и т.д. и т.п.
- 4. Исследовать, разработать, вычислить и т.д. и т.п.

Основные положения, выносимые на защиту:

- 1. Первое положение
- 2. Второе положение
- 3. Третье положение
- 4. Четвертое положение

Научная новизна:

- 1. Впервые ...
- 2. Впервые . . .
- 3. Было выполнено оригинальное исследование ...

Научная и практическая значимость ...

Степень достоверности полученных результатов обеспечивается ... Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на: перечисление основных конференций, симпозиумов и т.п.

Личный вклад. Автор принимал активное участие . . .

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [1-5], X из которых изданы в журналах, рекомендованных ВАК [1-3], XX — в тезисах докладов [4,5].

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Полный объем диссертации составляет XXX страница с XX рисунками и XX таблицами. Список литературы содержит XXX наименований.

Глава 1

Оформление различных элементов

1.1 Форматирование текста

Мы можем сделать жирный текст и курсив.

1.2 Ссылки

Сошлёмся на библиографию: [1], [2], [3-5].

Сошлёмся на приложения: Приложение А, Приложение В.2.

Сошлёмся на формулу: формула (1.1).

Сошлёмся на изображение: рисунок 2.2.

1.3 Формулы

1.3.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδεεζηθθικλπινξπωρρσςτυφφχψωΓΔΘΛΞΠΣΥΦΨΩ

1.3.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$f_{W} = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_{T} = \min\left(1, \max\left(0, \frac{T_{s}/T_{melt}}{T_{crit}}\right)\right),$$

Можно использовать разные математические алфавиты:

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\left(\begin{array}{ccc}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\right)$$

1.3.3 Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.2}$$

В последствии на формулы (1.1) и (1.2) можно ссылаться.

Глава 2

Длинное название главы, в которой мы смотрим на примеры того, как будут верстаться изображения и списки

2.1 Одиночное изображение

Рисунок 2.1: ТеХ.

2.2 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

2.3 Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Третий пункт.

Маркированный список:

Рисунок 2.2: Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Глава 3

Вёрстка таблиц

3.1 Таблица обыкновенная

Так размещается таблица:

Таблица 3.1: Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min})$, K
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

3.2 Параграф - два

Некоторый текст.

3.3 Параграф с подпараграфами

3.3.1 Подпараграф - один

Некоторый текст.

3.3.2 Подпараграф - два

Некоторый текст.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Литература

- 1. Название статьи / Автор1, Автор2, Автор3, Автор4 // Журнал. 2012. Vol. 1. Р. 100.
- 2. Автор. Название книги / Ed. by Редактор. Издательство, 2012.
- 3. Автор. название тезисов конференции // Название сборника. 2012.
- 4. Название буклета.
- 5. "This is english article" / Author1, Author2, Author3, Author4 // Journal. 2012. Vol. 2. P. 200.

Список рисунков

2.1	TeX	8
2.2	Очень длинная подпись к изображению, на котором представлены две фотографии	
	Пональда Кнута	C

Список таблиц

3.1	Название таблицы																				10
-----	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Приложение А

Название первого приложения

Некоторый текст.

Приложение В

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

В.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание					
&INP								
kick	ck 1 int		0: инициализация без шума ($p_s = const$)					
			1: генерация белого шума					
			2: генерация белого шума симметрично относительно					
			экватора					
mars	0	int	1: инициализация модели для планеты Марс					
kick	1	int	0: инициализация без шума ($p_s = const$)					
			1: генерация белого шума					
			2: генерация белого шума симметрично относительно					
			экватора					
mars	0	int	1: инициализация модели для планеты Марс					
kick	1	int	0 : инициализация без шума ($p_s = const$)					
			1: генерация белого шума					
			2: генерация белого шума симметрично относительно					
			экватора					
mars	0	int	1: инициализация модели для планеты Марс					
kick	1	int	0: инициализация без шума ($p_s = const$)					
			1: генерация белого шума					
			2: генерация белого шума симметрично относительно					
			экватора					
mars	0	int	1: инициализация модели для планеты Марс					
kick	1	int	0: инициализация без шума ($p_s = const$)					
			1: генерация белого шума					
			2: генерация белого шума симметрично относительно					
			экватора					
			продолжение следует					

		I	(продолжение)
Параметр	Умолч.	Тип	Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
		. ,	экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума 2: генерация белого шума симметрично относительно
mars	0	int	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
KICK	1	1111	1: генерация белого шума $(p_s - const)$
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	:4	экватора
mars kick	0	int int	1: инициализация модели для планеты Марс 0: инициализация без шума ($p_s = const$)
KICK	1	IIIt	1: генерация белого шума ($p_s = const$)
			2: генерация белого шума симметрично относительно
mars	0	int	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	1	1111	1: генерация белого шума $(p_s = const)$
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
&SURFPAI			
kick	1	int	0 : инициализация без шума ($p_s=const$)
			продолжение следует

	**		(продолжение)
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
		١.	экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
mars	U	IIII	т. ипициализация модели для планеты марс

В.2 Ещё один подраздел приложения

Нужно больше подразделов приложения!

В.3 Очередной подраздел приложения

Нужно больше подразделов приложения!

В.4 И ещё один подраздел приложения

Нужно больше подразделов приложения!