NumPy for MATLAB users

Help

MATLAB/Octave	Python	Description
doc	help()	Browse help interactively
help -i % browse with Info		
help help <i>OT</i> doc doc	help	Help on using help
help plot	help(plot) <i>Of</i> ?plot	Help for a function
help splines <i>OT</i> doc splines	help(pylab)	Help for a toolbox/library package
demo		Demonstration examples

Searching available documentation

MATLAB/Octave	Python	Description
lookfor plot		Search help files
help	help(); modules [Numeric]	List available packages
which plot	help(plot)	Locate functions

Using interactively

MATLAB/Octave	Python	Description
octave -q	ipython -pylab	Start session
TAB <i>OT</i> M-?	TAB	Auto completion
foo(.m)	execfile('foo.py') <i>Of</i> run foo.py	Run code from file
history	hist -n	Command history
diary on [] diary off		Save command history
exit <i>Of</i> quit	CTRL-D	End session
	CTRL-Z # windows	
	sys.exit()	

Operators

MATLAB/Octave	Python	Description
help -		Help on operator syntax

Arithmetic operators

MATLAB/Octave	Python	Description
a=1; b=2;	a=1; b=1	Assignment; defining a
		number
a + b	a + b <i>Of</i> add(a,b)	Addition

a - b	a - b <i>Of</i> subtract(a,b)	Subtraction
a * b	a * b <i>OT</i> multiply(a,b)	Multiplication
a / b	a / b <i>Of</i> divide(a,b)	Division
a .^ b	a ** b	Power, \$a^b\$
	power(a,b)	
	pow(a,b)	
rem(a,b)	a % b	Remainder
	remainder(a,b)	
	fmod(a,b)	
a+=1	a+=b <i>OT</i> add(a,b,a)	In place operation to save array creation overhead
factorial(a)		Factorial, \$n!\$

Relational operators

MATLAB/Octave	Python	Description
a == b	a == b Or equal(a,b)	Equal
a < b	a < b <i>OT</i> less(a,b)	Less than
a > b	a > b <i>Of</i> greater(a,b)	Greater than
a <= b	a <= b <i>OT</i> less_equal(a,b)	Less than or equal
a >= b	a >= b <i>OT</i> greater_equal(a,b)	Greater than or equal
a ~= b	a != b <i>Of</i> not_equal(a,b)	Not Equal

Logical operators

MATLAB/Octave	Python	Description
a && b	a and b	Short-circuit logical AND
a b	a or b	Short-circuit logical OR
a & b <i>Of</i> and(a,b)	logical_and(a,b) \emph{Or} a and b	Element-wise logical AND
a b <i>Of</i> or(a,b)	logical_or(a,b) \emph{Or} a or b	Element-wise logical OR
xor(a, b)	logical_xor(a,b)	Logical EXCLUSIVE OR
~a <i>Of</i> not(a)	logical_not(a) <i>OI</i> not a	Logical NOT
~a <i>Or</i> !a		
any(a)		True if any element is nonzero
all(a)		True if all elements are
		nonzero

root and logarithm

MATLAB/Octave	Python	Description
sqrt(a)	math.sqrt(a)	Square root
log(a)	math.log(a)	Logarithm, base \$e\$ (natural)
log10(a)	math.log10(a)	Logarithm, base 10
log2(a)	math.log(a, 2)	Logarithm, base 2 (binary)

exp(a) math.exp(a) Exponential function

Round off

MATLAB/Octave	Python	Description
round(a)	around(a) <i>OT</i> math.round(a)	Round
ceil(a)	ceil(a)	Round up
floor(a)	floor(a)	Round down
fix(a)	fix(a)	Round towards zero

Mathematical constants

MATLAB/Octave	Python	Description
pi	math.pi	\$\pi=3.141592\$
exp(1)	<pre>math.e Of math.exp(1)</pre>	\$e=2.718281\$

Missing values; IEEE-754 floating point status flags

MATLAB/Octave	Python	Description
NaN	nan	Not a Number
Inf	inf	Infinity, \$\infty\$
	plus_inf	Infinity, \$+\infty\$
	minus_inf	Infinity, \$-\infty\$
	plus_zero	Plus zero, \$+0\$
	minus_zero	Minus zero, \$-0\$

Complex numbers

MATLAB/Octave	Python	Description
i	z = 1j	Imaginary unit
z = 3+4i	$z = 3+4j \ Or \ z = complex(3,4)$	A complex number, \$3+4i\$
abs(z)	abs(3+4j)	Absolute value (modulus)
real(z)	z.real	Real part
imag(z)	z.imag	Imaginary part
arg(z)		Argument
conj(z)	<pre>z.conj(); z.conjugate()</pre>	Complex conjugate

Trigonometry

MATLAB/Octave	Python	Description
atan(a,b)	atan2(b,a)	Arctangent, \$\arctan(b/a)\$
	hypot(x,y)	Hypotenus; Euclidean distance

Generate random numbers

MATLAB/Octave	Python	Description
rand(1,10)	random.random((10,))	Uniform distribution
	random.uniform((10,))	
2+5*rand(1,10)	<pre>random.uniform(2,7,(10,))</pre>	Uniform: Numbers between 2 and 7
rand(6)	random.uniform(0,1,(6,6))	Uniform: 6,6 array
randn(1,10)	random.standard normal((10,))	Normal distribution

Vectors

MATLAB/Octave	Python	Description
a=[2 3 4 5];	a=array([2,3,4,5])	Row vector, \$1 \times n\$- matrix
adash=[2 3 4 5]';	array([2,3,4,5])[:,NewAxis] array([2,3,4,5]).reshape(-1,1) r [1:10,'c']	Column vector, \$m \times 1\$-matrix

Sequences

MATLAB/Octave	Python	Description
1:10	arange(1,11, dtype=Float)	1,2,3, ,10
	range(1,11)	
0:9	arange(10.)	0.0,1.0,2.0, ,9.0
1:3:10	arange(1,11,3)	1,4,7,10
10:-1:1	arange(10,0,-1)	10,9,8, ,1
10:-3:1	arange(10,0,-3)	10,7,4,1
linspace(1,10,7)	linspace(1,10,7)	Linearly spaced vector of n=7 points
reverse(a)	a[::-1] <i>Or</i>	Reverse
a(:) = 3	a.fill(3), a[:] = 3	Set all values to same scalar value

Concatenation (vectors)

MATLAB/Octave	Python	Description
[a a]	<pre>concatenate((a,a))</pre>	Concatenate two vectors
[1:4 a]	<pre>concatenate((range(1,5),a), axis=1)</pre>	

Repeating

MATLAB/Octave	Python	Description
[a a]	<pre>concatenate((a,a))</pre>	1 2 3, 1 2 3
	a.repeat(3) <i>OF</i>	1 1 1, 2 2 2, 3 3 3
	a.repeat(a) <i>Or</i>	1, 2 2, 3 3 3

Miss those elements out

MATLAB/Octave	Python	Description
a(2:end)	a[1:]	miss the first element
a([1:9])		miss the tenth element
a(end)	a[-1]	last element
a(end-1:end)	a[-2:]	last two elements

Maximum and minimum

MATLAB/Octave	Python	Description
max(a,b)	maximum(a,b)	pairwise max
max([a b])	<pre>concatenate((a,b)).max()</pre>	max of all values in two vectors
[v.i] = max(a)	v.i = a.max(0).a.argmax(0)	

Vector multiplication

MATLAB/Octave	Python	Description
a.*a	a*a	Multiply two vectors
dot(u,v)	dot(u,v)	Vector dot product, \$u \cdot v\$

Matrices

MATLAB/Octave	Python	Description
a = [2 3;4 5]	a = array([[2,3],[4,5]])	Define a matrix

Concatenation (matrices); rbind and cbind

MATLAB/Octave	Python	Description
[a ; b]	concatenate((a,b), axis=0)	Bind rows
	vstack((a,b))	
[a , b]	<pre>concatenate((a,b), axis=1)</pre>	Bind columns
	hstack((a,b))	
	<pre>concatenate((a,b), axis=2)</pre>	Bind slices (three-way
	dstack((a,b))	arrays)
[a(:), b(:)]	<pre>concatenate((a,b), axis=None)</pre>	Concatenate matrices into one vector
[1:4 ; 1:4]	concatenate((r_[1:5],r_[1:5])).reshape(2,-1)	Bind rows (from vectors)
	vstack((r_[1:5],r_[1:5]))	
[1:4 ; 1:4]'		Bind columns (from vectors)

Array creation

MATLAB/Octave	Python	Description
zeros(3,5)	zeros((3,5),Float)	0 filled array

	zeros((3,5))	0 filled array of integers
ones(3,5)	ones((3,5),Float)	1 filled array
ones(3,5)*9		Any number filled array
eye(3)	identity(3)	Identity matrix
diag([4 5 6])	diag((4,5,6))	Diagonal
magic(3)		Magic squares; Lo Shu
	a = empty((3,3))	Empty array

Reshape and flatten matrices

MATLAB/Octave	Python	Description
reshape(1:6,3,2)';	<pre>arange(1,7).reshape(2,-1) a.setshape(2,3)</pre>	Reshaping (rows first)
reshape(1:6,2,3);	<pre>arange(1,7).reshape(-1,2).transpose()</pre>	Reshaping (columns first)
a'(:)	a.flatten() <i>OT</i>	Flatten to vector (by rows, like comics)
a(:)	a.flatten(1)	Flatten to vector (by columns)
vech(a)		Flatten upper triangle (by columns)

Shared data (slicing)

MATLAB/Octave	Python	Description
b = a	b = a.copy()	Copy of a

Indexing and accessing elements (Python: slicing)

MATLAB/Octave	Python	Description
a = [11 12 13 14	a = array([[11, 12, 13, 14],	Input is a 3,4 array
21 22 23 24	[21, 22, 23, 24],	
31 32 33 34]	[31, 32, 33, 34]])	
a(2,3)	a[1,2]	Element 2,3 (row,col)
a(1,:)	a[0,]	First row
a(:,1)	a[:,0]	First column
a([1 3],[1 4]);	a.take([0,2]).take([0,3], axis=1)	Array as indices
a(2:end,:)	a[1:,]	All, except first row
a(end-1:end,:)	a[-2:,]	Last two rows
a(1:2:end,:)	a[::2,:]	Strides: Every other row
	a[,2]	Third in last dimension (axis)
a(:,[1 3 4])	a.take([0,2,3],axis=1)	Remove one column
	a.diagonal(offset=0)	Diagonal

Assignment

MATLAB/Octave	Python	Description
a(:,1) = 99	a[:,0] = 99	
a(:,1) = [99 98 97]'	a[:,0] = array([99,98,97])	
a(a>90) = 90;	(a>90).choose(a,90)	Clipping: Replace all elements
	<pre>a.clip(min=None, max=90)</pre>	over 90
	a.clip(min=2, max=5)	Clip upper and lower values

Transpose and inverse

MATLAB/Octave	Python	Description
a'	a.conj().transpose()	Transpose
a.' <i>Or</i> transpose(a)	a.transpose()	Non-conjugate transpose
det(a)	linalg.det(a) <i>Of</i>	Determinant
inv(a)	linalg.inv(a) <i>Of</i>	Inverse
pinv(a)	linalg.pinv(a)	Pseudo-inverse
norm(a)	norm(a)	Norms
eig(a)	<pre>linalg.eig(a)[0]</pre>	Eigenvalues
svd(a)	linalg.svd(a)	Singular values
chol(a)	linalg.cholesky(a)	Cholesky factorization
[v,1] = eig(a)	linalg.eig(a)[1]	Eigenvectors
rank(a)	rank(a)	Rank

Sum

MATLAB/Octave	Python	Description
sum(a)	a.sum(axis=0)	Sum of each column
sum(a')	a.sum(axis=1)	Sum of each row
sum(sum(a))	a.sum()	Sum of all elements
	<pre>a.trace(offset=0)</pre>	Sum along diagonal
cumsum(a)	a.cumsum(axis=0)	Cumulative sum (columns)

Sorting

MATLAB/Octave	Python	Description
a = [4 3 2 ; 2 8 6 ; 1 4 7]	a = array([[4,3,2],[2,8,6],[1,4,7]])	Example data
sort(a(:))	a.ravel().sort() <i>Of</i>	Flat and sorted
sort(a)	a.sort(axis=0) <i>OT</i> msort(a)	Sort each column
sort(a')'	a.sort(axis=1)	Sort each row
sortrows(a,1)	a[a[:,0].argsort(),]	Sort rows (by first row)
	a.ravel().argsort()	Sort, return indices
	a.argsort(axis=0)	Sort each column, return indices
	a.argsort(axis=1)	Sort each row, return indices

Maximum and minimum

MATLAB/Octave	Python	Description
max(a)	a.max(0) <i>Or</i> amax(a [,axis=0])	max in each column
max(a')	a.max(1) <i>Of</i> amax(a, axis=1)	max in each row
max(max(a))	a.max() <i>Or</i>	max in array
[v i] = max(a)		return indices, i
max(b,c)	maximum(b,c)	pairwise max
cummax(a)		
	a.ptp(); a.ptp(0)	max-to-min range

Matrix manipulation

MATLAB/Octave	Python	Description
fliplr(a)	fliplr(a) <i>Of</i> a[:,::-1]	Flip left-right
flipud(a)	flipud(a) <i>Of</i> a[::-1,]	Flip up-down
rot90(a)	rot90(a)	Rotate 90 degrees
repmat(a,2,3)	kron(ones((2,3)),a)	Repeat matrix: [a a a ; a a a]
kron(ones(2,3),a)		
triu(a)	triu(a)	Triangular, upper
tril(a)	tril(a)	Triangular, lower

Equivalents to "size"

MATLAB/Octave	Python	Description
size(a)	a.shape <i>OT</i> a.getshape()	Matrix dimensions
size(a,2) <i>Of</i> length(a)	a.shape[1] <i>OT</i> size(a, axis=1)	Number of columns
length(a(:))	a.size <i>Of</i> size(a[, axis=None])	Number of elements
ndims(a)	a.ndim	Number of dimensions
	a.nbytes	Number of bytes used in
		memory

Matrix- and elementwise- multiplication

MATLAB/Octave	Python	Description
a .* b	a * b <i>OT</i> multiply(a,b)	Elementwise operations
a * b	matrixmultiply(a,b)	Matrix product (dot product)
	inner(a,b) <i>Or</i>	Inner matrix vector multiplication \$a\cdot b'\$
	outer(a,b) <i>Or</i>	Outer product
kron(a,b)	kron(a,b)	Kronecker product
a / b		Matrix division, \$b{\cdot}a^{-1}\$
a \ b	linalg.solve(a,b)	Left matrix division, \$b^{-1}

	{\cdot}a\$ \newline (solve linear
	equations)
vdot(a,b)	Vector dot product
cross(a,b)	Cross product

Find; conditional indexing

MATLAB/Octave	Python	Description
find(a)	a.ravel().nonzero()	Non-zero elements, indices
<pre>[i j] = find(a)</pre>	<pre>(i,j) = a.nonzero() (i,j) = where(a!=0)</pre>	Non-zero elements, array indices
[i j v] = find(a)	<pre>v = a.compress((a!=0).flat) v = extract(a!=0,a)</pre>	Vector of non-zero values
find(a>5.5)	(a>5.5).nonzero()	Condition, indices
	a.compress((a>5.5).flat)	Return values
a .* (a>5.5)	where(a>5.5,0,a) <i>Or</i> a * (a>5.5)	Zero out elements above 5.5
	a.put(2,indices)	Replace values

Multi-way arrays

MATLAB/Octave	Python	Description
a = cat(3, [1 2; 1 2],[3 4; 3 4]);	a = array([[[1,2],[1,2]], [[3,4], [3,4]]])	Define a 3-way array
a(1,:,:)	a[0,]	

File input and output

MATLAB/Octave	Python	Description
f = load('data.txt')	<pre>f = fromfile("data.txt")</pre>	Reading from a file (2d)
	f = load("data.txt")	
f = load('data.txt')	f = load("data.txt")	Reading from a file (2d)
<pre>x = dlmread('data.csv', ';')</pre>	<pre>f = load('data.csv', delimiter=';')</pre>	Reading fram a CSV file (2d)
save -ascii data.txt f	save('data.csv', f, fmt='%.6f',	Writing to a file (2d)
	delimiter=';')	
	<pre>f.tofile(file='data.csv',</pre>	Writing to a file (1d)
	format='%.6f', sep=';')	
	<pre>f = fromfile(file='data.csv',</pre>	Reading from a file (1d)
	sep=';')	

Plotting

Basic x-y plots

MATLAB/Octave	Python	Description
plot(a)	plot(a)	1d line plot
plot(x(:,1),x(:,2),'o')	plot(x[:,0],x[:,1],'o')	2d scatter plot

plot(x1,y1, x2,y2)	plot(x1,y1,'bo', x2,y2,'go')	Two graphs in one plot
plot(x1,y1)	plot(x1,y1,'o')	Overplotting: Add new plots
hold on	plot(x2,y2,'o')	to current
plot(x2,y2)	show() # as normal	
subplot(211)	subplot(211)	subplots
plot(x,y,'ro-')	plot(x,y,'ro-')	Plotting symbols and color

Axes and titles

MATLAB/Octave	Python	Description
grid on	grid()	Turn on grid lines
axis equal	figure(figsize=(6,6))	1:1 aspect ratio
axis('equal')		
replot		
axis([0 10 0 5])	axis([0, 10, 0, 5])	Set axes manually
title('title')		Axis labels and titles
<pre>xlabel('x-axis')</pre>		
ylabel('y-axis')		
	text(2,25,'hello')	Insert text

Log plots

MATLAB/Octave	Python	Description
semilogy(a)	semilogy(a)	logarithmic y-axis
semilogx(a)	semilogx(a)	logarithmic x-axis
loglog(a)	loglog(a)	logarithmic x and y axes

Filled plots and bar plots

MATLAB/Octave	Python	Description
fill(t,s,'b', t,c,'g')	fill(t,s,'b', t,c,'g', alpha=0.2)	Filled plot

Functions

% fill has a bug?

MATLAB/Octave	Python	Description
f = inline('sin(x/3) - cos(x/5)')		Defining functions
ezplot(f,[0,40])	x = arrayrange(0,40,.5)	Plot a function for given
fplot('sin(x/3) - cos(x/5)',[0,40])	$y = \sin(x/3) - \cos(x/5)$	range
% no ezplot	plot(x,y, 'o')	

Polar plots

MATLAB/Octave	Python	Description
theta = 0:.001:2*pi;	theta = arange(0,2*pi,0.001)	
r = sin(2*theta);	r = sin(2*theta)	

polar(theta, rho)

polar(theta, rho)

Histogram plots

MATLAB/Octave	Python	Description
hist(randn(1000,1))		
hist(randn(1000,1), -4:4)		
plot(sort(a))		

3d data

Contour and image plots

MATLAB/Octave	Python	Description
contour(z)	<pre>levels, colls = contour(Z, V,</pre>	Contour plot
	origin='lower', extent=(-3,3,-3,3))	
	<pre>clabel(colls, levels, inline=1,</pre>	
	fmt='%1.1f', fontsize=10)	
<pre>contourf(z); colormap(gray)</pre>	contourf(Z, V,	Filled contour plot
	cmap=cm.gray,	
	origin='lower',	
	extent=(-3,3,-3,3))	
image(z)	<pre>im = imshow(Z,</pre>	Plot image data
colormap(gray)	interpolation='bilinear',	
	origin='lower',	
	extent=(-3,3,-3,3))	
	<pre># imshow() and contour() as above</pre>	Image with contours
quiver()	quiver()	Direction field vectors

Perspective plots of surfaces over the x-y plane

MATLAB/Octave	Python	Description
n=-2:.1:2;	n=arrayrange(-2,2,.1)	
<pre>[x,y] = meshgrid(n,n);</pre>	<pre>[x,y] = meshgrid(n,n)</pre>	
z=x.*exp(-x.^2-y.^2);	z = x*power(math.e,-x**2-y**2)	
mesh(z)		Mesh plot
<pre>surf(x,y,z) Of surfl(x,y,z)</pre>		Surface plot
% no surfl()		

Scatter (cloud) plots

MATLAB/Octave	Python	Description
plot3(x,y,z,'k+')		3d scatter plot

Save plot to a graphics file

MATLAB/Octave	Python	Description
iii) (i E) (b) Octave	· y	Description

plot(1:10)	<pre>savefig('foo.eps')</pre>	PostScript
print -depsc2 foo.eps		
gset output "foo.eps"		
gset terminal postscript eps		
plot(1:10)		
	<pre>savefig('foo.pdf')</pre>	PDF
	<pre>savefig('foo.svg')</pre>	SVG (vector graphics for
		www)
print -dpng foo.png	<pre>savefig('foo.png')</pre>	PNG (raster graphics)

Data analysis

Set membership operators

MATLAB/Octave	Python	Description
a = [1 2 2 5 2];	a = array([1,2,2,5,2])	Create sets
b = [2 3 4];	b = array([2,3,4])	
	a = set([1,2,2,5,2])	
	b = set([2,3,4])	
unique(a)	unique1d(a)	Set unique
	unique(a)	
	set(a)	
union(a,b)	union1d(a,b)	Set union
	a.union(b)	
intersect(a,b)	intersect1d(a)	Set intersection
	<pre>a.intersection(b)</pre>	
setdiff(a,b)	setdiff1d(a,b)	Set difference
	a.difference(b)	
setxor(a,b)	setxor1d(a,b)	Set exclusion
	<pre>a.symmetric_difference(b)</pre>	
ismember(2,a)	2 in a	True for set member
	setmember1d(2,a)	
	contains(a,2)	

Statistics

MATLAB/Octave	Python	Description
mean(a)	a.mean(axis=0)	Average
	mean(a [,axis=0])	
median(a)	median(a) Or median(a [,axis=0])	Median
std(a)	a.std(axis=0) <i>Of</i> std(a [,axis=0])	Standard deviation
var(a)	a.var(axis=0) <i>Of</i> var(a)	Variance
corr(x,y)	<pre>correlate(x,y) Or corrcoef(x,y)</pre>	Correlation coefficient
cov(x,y)	cov(x,y)	Covariance

Interpolation and regression

MATLAB/Octave	Python	Description
<pre>z = polyval(polyfit(x,y,1),x)</pre>	(a,b) = polyfit(x,y,1)	Straight line fit
plot(x,y,'o', x,z ,'-')	plot(x,y,'o', x,a*x+b,'-')	
a = x\y	<pre>linalg.lstsq(x,y)</pre>	Linear least squares \$y = ax + b\$
polyfit(x,y,3)	<pre>polyfit(x,y,3)</pre>	Polynomial fit

Non-linear methods

Polynomials, root finding

MATLAB/Octave	Python	Description
	poly()	Polynomial
roots([1 -1 -1])	roots()	Find zeros of polynomial
f = inline('1/x - (x-1)')		Find a zero near $x = 1$
fzero(f,1)		
solve('1/x = x-1')		Solve symbolic equations
polyval([1 2 1 2],1:10)	polyval(array([1,2,1,2]),arange(1,11))	Evaluate polynomial

Differential equations

MATLAB/Octave	Python	Description
diff(a)	<pre>diff(x, n=1, axis=0)</pre>	Discrete difference function
		and approximate derivative
		Solve differential equations

Fourier analysis

MATLAB/Octave	Python	Description
fft(a)	fft(a) <i>Or</i>	Fast fourier transform
ifft(a)	ifft(a) <i>Or</i>	Inverse fourier transform
	<pre>convolve(x,y)</pre>	Linear convolution

Symbolic algebra; calculus

MATLAB/Octave	Python	Description
factor()		Factorization

Programming

MATLAB/Octave	Python	Description
. m	.py	Script file extension
%	#	Comment symbol (rest of line)
% <i>Or</i> #		
% must be in MATLABPATH	from pylab import *	Import library functions
% must be in LOADPATH		

string='a=234';
eval(string)

string="a=234"
eval(string)

Eval

Loops

MATLAB/Octave	Python	Description
for i=1:5; disp(i); end	<pre>for i in range(1,6): print(i)</pre>	for-statement
for i=1:5	for i in range(1,6):	Multiline for statements
disp(i)	print(i)	
disp(i*2)	print(i*2)	
end		

Conditionals

MATLAB/Octave	Python	Description
if 1>0 a=100; end	if 1>0: a=100	if-statement
if 1>0 a=100; else a=0; end		if-else-statement

Debugging

MATLAB/Octave	Python	Description
ans		Most recent evaluated expression
whos <i>Of</i> who		List variables loaded into memory
clear x <i>Of</i> clear [all]		Clear variable \$x\$ from memory
disp(a)	print a	Print

Working directory and OS

MATLAB/Octave	Python	Description
dir <i>Of</i> ls	os.listdir(".")	List files in directory
what	grep.grep("*.py")	List script files in directory
pwd	os.getcwd()	Displays the current working directory
cd foo	os.chdir('foo')	Change working directory
!notepad	os.system('notepad')	Invoke a System Command
<pre>system("notepad")</pre>	os.popen('notepad')	

Time-stamp: "2007-11-09T16:46:36 vidar"

©2006 Vidar Bronken Gundersen, /mathesaurus.sf.net

Permission is granted to copy, distribute and/or modify this document as long as the above attribution is retained.