

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NS RanaCambridge.com

*	
W	
6	
5	
9	
∞	
∞	
5	
6	
9	
∞	
~	

				-				
CENTRE					CANDIDATE			
NUMBER					NUMBER			
	'	'	<u>'</u>	_				
CHEMISTRY							062	20/23
Paper 2					Oct	ober/Nove	mber :	2012
						1 hour 1	l5 min	utes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
Total		

This document consists of 15 printed pages and 1 blank page.

			Не
N	0	F	Ne
Р	S	Cl	Ar
		Br	
		I	

(a) Answer the following questions using **only** the elements shown in the table above.

Write the symbol for an element which

- (iii) is a greyish-black solid,[1]

- **(b)** Hydrogen reacts with chlorine to form hydrogen chloride.
 - (i) Complete the equation for this reaction.

$$H_2$$
 +HC l

[2]

www.PapaCambridge.com

(ii) Draw the electronic structure of a chlorine molecule. Show only the outer shell electrons.

[1]

(ii) Write the simplest formula for a molecule of ethanoic acid.

		[4]
		[1]
(b)	Ethanoic acid reacts with sodium hydroxide to form the salt sodium ethanoate.	
	ethanoic acid + sodium hydroxide \rightarrow sodium ethanoate + water	
	What type of chemical reaction is this?	
		[1]

(c)	Sodium ethanoate is soluble in water. What do you understand by the term soluble?	
		[1]

(d) Which one of the following is the most likely pH value of ethanoic acid? Put a ring around the correct answer.

(e) All acids react with carbonates. Complete the general equation for this reaction.

[2]

(f) The structure of sodium carbonate is shown below.

Write the simplest formula for sodium carbonate.	

[Total: 8]

For miner's e

www.PapaCambridge.com 3 A student used the apparatus shown below to separate a mixture of coloured dy solvent is not shown.

- (a) On the diagram above, draw and label the position of the solvent at the start of the experiment. [1]
- **(b)** The student let the solvent move up the filter paper to separate the dyes.
 - (i) State the name of this method of separation.

- (ii) The student found that four different dyes had been separated by this method. On the diagram below draw
 - the position of four separated dyes (show as spots)
 - the solvent front (show as a line).

[3]

(c) Part of the structure of a dye called indigo is shown below.

Is this a saturated or unsaturated compound? Give a reason for your answer.

[Total: 6]

[1]

4 Hydrogen can be manufactured by heating methane with steam.

$$\label{eq:charge_constraint} \text{CH}_4 \ + \ \text{H}_2\text{O} \xrightarrow{\ \ \ \, \text{400\,^\circ\text{C} + catalyst} \ \ } \text{CO} \ + \ 3\text{H}_2$$

(a) (i) Draw the structure of methane showing all atoms and bonds.

	(ii)	Methane is a greenhouse gas. What do you understand by the term <i>greenhouse gas</i> ?
		[1]
	(iii)	State one source of the methane in the atmosphere.
		[1]
	(iv)	When 16 g of methane reacts completely with an excess of steam, 6 g of hydrogen are produced.
		Calculate the mass of methane required to produce 300 g of hydrogen.
		Answer =[1]
(b)		re hydrogen can be formed by reacting the carbon monoxide with more steam at 0°C.
		$CO + H_2O \rightleftharpoons CO_2 + H_2$
	Thi	s reaction is reversible.
	(i)	How do you know from this equation that the reaction is reversible?
		[1]
	(ii)	What do you understand by the term reversible reaction?

www.PapaCambridge.com (iii) Carbon monoxide is a common atmospheric pollutant. State a source of the carbon monoxide in the atmosphere other than from manufacture of hydrogen. (iv) Carbon dioxide is a product of the reaction between carbon monoxide and steam. Is carbon dioxide an acidic or a basic oxide? Give a reason for your answer. [Total: 8]

5 Ethanol can be made by

- an addition reaction with ethene or
- by fermentation.

		the state of the s	
		8 A. D.	
Eth	anol	can be made by	26.0
•		can be made by addition reaction with ethene or fermentation. State the name of the substance that needs to be added to ethene to make ethanology.	J. J. D.
(a)	(i)	State the name of the substance that needs to be added to ethene to make ethano	ol.
			1]
	(ii)	What conditions are needed to make ethanol from ethene?	
		[2]
(b)	(i)	Complete the word equation for fermentation in the presence of yeast.	
		\rightarrow ethanol +	
		[2	2]
	(ii)	The yeast contains enzymes. What do you understand by the term <i>enzyme</i> ?	
			2]

- **(c)** The speed of ethanol formation during fermentation depends on the temperature.
 - (i) Use the information in the table below to describe how the speed of this reaction changes with temperature.

temperature /°C	speed of reaction /g ethanol formed per hr
10	1
20	3
30	7
40	11
50	6
60	2
70	0

	[3]
 	 [၁]

- www.PapaCambridge.com (ii) State two factors which should be kept constant during this experiment.
- (d) Ethanol belongs to the alcohol homologous series. The boiling points of some alcohols are given in the table below.

alcohol	number of carbon atoms in the alcohol	boiling point / °C
methanol	1	65
ethanol	2	79
propanol	3	98
butanol	4	117

(i) On the grid below, plot a graph of boiling point against the number of carbon atoms. Join the points with a smooth line.

(ii) Use your graph to estimate the boiling point of the alcohol having five carbon atoms.

boiling point =°C [1]

[Total: 16]

[3]

- Lead and lead compounds are common pollutants of the air.
 - (a) (i) State one source of lead in the air.

[1]

(ii) State one effect of lead on human health.

.....[1]

(b) Lead(II) oxide can be reduced by heating with carbon.

 $\begin{array}{c} \textit{heat} \\ \textit{PbO} + \textit{C} \rightarrow \textit{Pb} + \textit{CO} \end{array}$

(i) Write a word equation for this reaction.

.....[1]

(ii) Explain how you know that lead(II) oxide is reduced in this reaction.

......[1]

(iii) Explain why this reaction is described as endothermic.

.....[1]

(c) Lead nitrate solution reacts with sodium iodide solution.

lead nitrate + sodium iodide → lead iodide + sodium nitrate

Lead iodide is insoluble in water but the reactants and sodium nitrate are soluble. Draw a labelled diagram to explain how you can separate lead iodide from the rest of the reaction mixture.

[2]

(d) Complete the table below to show the number of protons, electrons and neutrons in the isotope of lead ²⁰⁴₈₂Pb.

number of protons	
number of electrons	
number of neutrons	

[2]

7 The diagram below shows the apparatus used to electroplate a spoon with silver.

iron spoon

aqueous silver nitrate

(a) Which is the anode? Put a ring around the correct answer in the list below.

rod of pure silver

aqueous silver nitrate

battery

iron spoon

rod of pure silver

(b)	Describe what happens to the silver rod and the iron spoon during electroplating.	
	silver rod	
	iron spoon[2	2]
(c)	Why are metal objects electroplated?	
	[1]
(d)	During the electroplating, silver atoms are converted to silver ions. Which one of the following statements about this reaction is correct? Tick one box.	
	Silver atoms gain electrons.	
	Silver atoms lose neutrons.	
	Silver atoms lose electrons.	
	Silver atoms gain protons.	11
	L.	4

[1]

	www	ı
	12	
(e)	A student is given a slightly alkaline solution which contains chloride ions. Describe how the student could use aqueous silver nitrate to show that chloride ions present in the solution.	For miner's
		Se.COM
		13
	[3]	`
(f)	Silver is a shiny metallic solid with a high melting point and boiling point. Describe two other physical properties of silver.	
	1	
	2[2]	
	[Total: 10]	

The diagram shows a type of blast furnace built about 230 years ago. It was used to 8 iron from iron ore.

- (a) Which letter on the diagram shows
 - (i) where the solid raw materials are put into the furnace, [1]

 - (iii) where iron is removed from the furnace? [1]
- **(b)** Describe the main reactions occurring in a blast furnace for extracting iron from iron ore. In your answer, include
 - the names of the raw materials used
 - the main chemical reactions which occur
 - relevant word equations.

	,
15	ı

(c)	Iron	reacts with hydrochloric acid.	100	2
	(i)	Complete the word equation for this reaction.		0
	()	iron + hydrochloric acid → +		•
			[.	2]
	(ii)	$\label{eq:Iron} \begin{split} &\text{Iron}(II) \text{ ions are formed in this reaction.} \\ &\text{Describe a test for iron}(II) \text{ ions.} \end{split}$		
		test		
		result	[2]
(d)	Wh	el is an alloy of iron. Ich one of the following statements about steel is correct? It one box.		
		Steel is a mixture of iron with sulfur atoms.		
		Stainless steel is commonly used to make car bodies.		
		The physical properties of steel are exactly the same as those of iron.		
		Steel is made by blowing oxygen through the molten iron obtained from the blast furnace.		
]	1
			[Total: 1	3]

For miner's e **BLANK PAGE**

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

	0	4 He lium	20 Neon 10	40 Ar Argon	84 Krypton 36	131 X e Xenon 54	Radon 86		175 Lu
	=>		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 	At Astatine 85		173 Yb
	5		16 Oxygen	32 S Sulfur	Selenium Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 T B
	>		14 N itrogen 7	31 Phosphorus	AS Arsenic		209 Bis Bismuth 83		167 Fr
	≥		12 Carbon 6	28 Si licon	73 Ge Germanium 32	SD Tn 50	207 Pb Lead 82		165 H
	≡		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 n Indium 49	204 T t Thallium		162 Dy
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 T.
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd
Group					59 Nicke l Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu
Gre					59 Co Cobalt	Rh Rhodium 45	192 r		150 Sm
		1 Hydrogen			56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd
					Cr Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce
					48 T Titanium	91 Zr	178 Hf Hafnium 72		
					Scandium	89 ×	139 La Lanthanum *	227 Ac Actinium 89	series eries
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Catcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	anthanoid Actinoid se
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 Lanthanoid series 190-103 Actinoid series

opripo bio	140	141	144		150	152	157	159	162	165	167	169	173	175	
ad selies	Se	፵	PR	Pm	Sm	En	gq	₽ T	ò	운	ш	Ę	Υb	Ľ	
Selico	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232		238												-
X = atomic symbol	Т	Ра	D	ď	Pu	Am	Cm	番	ర	Es	Fm	Md	٥	בֿ	24
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrendum 103	W.
	F	30	000	300	7000	500		0		1				\	Dax
	lue <	The volume of one more of any gas is 24 dm $^{\circ}$ at room temperature and pressure (i.i.p.).	one mole	or arry ga	4S IS 24 OF	n° at roor	n termper	ature and	pressure	(r.t.p.).				7	2
													1	16.	1
														76	
												•	8	1	
												1	0.0	1	
												3	2		
													1		

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.