## ФОРМАЛЬНЫЕ ЯЗЫКИ

# Домашнее задание №4

Громов Павел

23 марта 2020 г.

### Задание 1

Условие: доказать или опровергнуть свойство регулярных выражений:

$$\forall p, q$$
 — регулярные выражения :  $(p \mid q)^* = p^*(qp^*)^*$ 

**Решение:** можно заметить, что автомат  $(p \mid q)^*$  задает любой автомат, который состоит только из p и q при любой расстановке. Докажем, что тоже самое можем получить из  $p^*(qp^*)^*$ .

Регулярное выражение  $(qp^*)^*$  может задать любую регулярку, которая состоить из р и q, но не начинается на р. Таким образом  $p^*$  решает данную проблему, и мы также можем построить любую регулярку из р и q. Следовательно свойство доказано.

#### Задание 2

Условие: доказать или опровергнуть свойство регулярных выражений:

$$\forall p, q$$
 — регулярные выражения :  $(pq)^*p = p(qp)^*$ 

**Решение:** попробуем доказать то, что какое либо не взяли слева регуряное выражение (т.е. раскрывали \*), то всегда можем привести эквивалентное справа (и в обратную сторону тоже).

Воспользуюсь высказыванием: «если строка принимается выражением  $p^*$ , значит существует такой n, что строка принимается выражением  $p^n$ »

- 0) Посмотрим на регулярное выражение p, которое можем получить слева, если  $(pq)^*$  задают ничего. Тогда справа мы тоже сможем получить p, если  $(qp)^*$ .
  - 1) Если слева получим pqp, то справа тоже можем раскрыть скобки и получить эквивалентное.
- n)  $(pq)^n p$  раскрыв, мы получим строку в которой р встречается n+1 раз, а q n раз, а также р стоит на границах. Если посмотрим на регулярное выражение  $p(qp)^*$ , то получится тоже самое, а именно  $p(qp)^n$ , где на границах будут стоять p, и частота встречаемости p n+1, а q n

Следовательно свойство доказано.

## Задание 3

Условие: доказать или опровергнуть свойство регулярных выражений:

$$\forall p, q$$
 — регулярные выражения :  $(pq)^* = p^*q^*$ 

**Решение:** пусть регулярное выражение p задает слово  $w_1$ , а регулярное выражение q - слово  $w_2$ . Таким образом слово  $w_1w_2w_1w_2$  может быть распознано первым регулярным выражением, а вторым нет. Следовательно, свойство опровергнуто.

## Задание 4

Условие: для регулярного выражения:

$$(a | b)^{+}(aa | bb | abab | baba)^{*}(a | b)^{+}$$

Построить эквивалентные:

1. Недетерминированный конечный автомат



2. Недетерминированный конечный автомат без  $\varepsilon$ -переходов



3. Минимальный полный детерминированный конечный автомат Оказалось, что если упростить регулярное выражение, то все становится проще... Таким образом, заметим, что регулярное выражение

$$(aa \mid bb \mid abab \mid baba)^*$$

может быть записано через

$$(a | b)^*$$

(более корректно, скажем, что первый автомат может быть представлен через второй, то есть он является подавтоматом второго (не знаю, можно ли так утверждать :D)).

Таким образом, автомат

$$(a \mid b)^+(aa \mid bb \mid abab \mid baba)^*(a \mid b)^+$$

можно свести к автомату

$$(a \mid b)(a \mid b)(a \mid b)^*$$

и для такого регулярного выражения будет намного проще построить минимальный полный детерминированный конечный автомат.

Данный переход корректен, так как слева и справа от регулярного выражения  $(aa \mid bb \mid abab \mid baba)^*$  стоят  $(a \mid b)^+$ , которые также можно записать через  $(a \mid b)^*$ .

