Teoría de la Computación Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 9 Reducciones polinomiales y NP-completitud

Ejercicio 1. Demostrar que la relación de reducibilidad polinomial es:

- 1. Reflexiva: $A \leq_p A$ para todo lenguaje $A \subseteq \Sigma^*$.
- 2. Transitiva: si $A \leq_p B$ y $B \leq_p C$ entonces $A \leq_p C$.

Ejercicio 2. Demostrar que si $A \in P$ y $B \subseteq \Sigma^*$ es un lenguaje no trivial entonces $A \leq_p B$. Concluir que si $A, B \in P$ son lenguajes no triviales, entonces $A \leq_p B$ y $B \leq_p A$.

Ejercicio 3. Sea $A \leq_p B$. Demostrar que:

- 1. Si A es NP-hard entonces B es NP-hard.
- 2. Si B es NP entonces A es NP.
- 3. Usando los ítems anteriores, demostrar que si A es NP-completo, $A \leq_p B$ y $B \leq_p A$, entonces B también es NP-completo.

Ejercicio 4. Considerar el lenguaje de las fórmulas proposicionales falsificables:

 $\mathsf{FAL} = \{ \varphi \mid \varphi \text{ es una fórmula tal que existe una asignación de variables que la hace falsa} \}$

- 1. Dar una reducción polinomial $\mathsf{SAT} \leq_p \mathsf{FAL}$ y concluir que FAL es $\mathsf{NP}\text{-hard}$.
- 2. ¿Es FAL NP-completo? Justificar.

Ejercicio 5. Considerar el lenguaje:

 $\mathsf{SAT2} = \{\varphi \mid \varphi \text{ es una fórmula que tiene al menos dos asignaciones de variables que la hacen verdadera}\}$

Demostrar que SAT2 es NP-completo.

Ejercicio 6. En un grafo G no dirigido, una *anticlique* es un conjunto de vértices del grafo de tal modo que ningún par de dichos vértices es adyacente. Demostrar que el siguiente lenguaje es NP-completo:

 $\mathsf{ANTICLIQUE} = \{ \langle G, k \rangle \mid G \text{ es un grafo no dirigido que que tiene al menos una anticlique de } k \text{ vértices} \}$