Covariate Shift

David S. Rosenberg

NYU: CDS

February 9, 2021

Contents

The covariate shift problem

The covariate shift problem

Supervised learning framework

- \bullet \mathfrak{X} : input space
- y: outcome space
- A: action space
- Prediction function $f: \mathcal{X} \to \mathcal{A}$ (takes input $x \in \mathcal{X}$ and produces action $a \in \mathcal{A}$)
- Loss function $\ell: \mathcal{A} \times \mathcal{Y} \to \mathbb{R}$ (evaluates action a in the context of outcome y).

Risk minimization

- Let $(X, Y) \sim p(x, y)$.
- The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{A}$ is $R(f) = \mathbb{E}\ell(f(X), Y)$.
 - the expected loss of f on a new example $(X, Y) \sim p(x, y)$
- Ideally we'd find the Bayes prediction function $f^* \in \operatorname{arg\,min}_f R(f)$.

Empirical risk minimization

- Training data: $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ • drawn i.i.d. from p(x, y).
- Let \mathcal{F} be a **hypothesis space** of functions mapping $\mathcal{X} \to \mathcal{A}$
- ullet A function \hat{f} is an **empirical risk minimizer** over \mathcal{F} if

$$\hat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i).$$

- Uses sample \mathfrak{D}_n from p(x,y) to estimate expectation w.r.t. p(x,y).
- Most machine learning methods can be written in this form.
- What if we only have a sample from another distribution q(x,y)?

Covariate shift

• Goal: Find f minimizing risk $R(f) = \mathbb{E}\ell(f(X), Y)$ where

$$(X, Y) \sim p(x, y) = p(x)p(y \mid x).$$

• Standard: $\mathfrak{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ is i.i.d. from

$$p(x,y) = p(x)p(y \mid x).$$

• Covariate shift: $\mathfrak{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ is i.i.d. from

$$q(x,y) = q(x)p(y \mid x).$$

- The covariate distribution has changed, but
 - the conditional distribution $p(y \mid x)$ is the same in both cases.

Covariate shift: the issue

Under covariate shift,

$$\mathbb{E}_{(X_i,Y_i)\sim q(x,y)}\left[\frac{1}{n}\sum_{i=1}^n\ell(f(X_i),Y_i)\right]\neq\mathbb{E}_{(X,Y)\sim p(x,y)}\ell(f(X),Y).$$

- i.e the empirical risk is a biased estimator for risk.
- Naive empirical risk minimization is optimizing the wrong thing.
- Can we get an unbiased estimate of risk with $\mathcal{D}_n \sim q(x,y)$?
- Importance sampling is one approach to this problem.

Change of measure and importance sampling

(Precise formulation in the "importance-sampling" slide notes.)

Theorem (Change of measure)

Suppose that $p(x) > 0 \implies q(x) > 0$ for all $x \in \mathcal{X}$. Then for any $f: \mathcal{X} \to \mathbb{R}$,

$$\mathbb{E}_{X \sim p(x)} f(X) = \mathbb{E}_{X \sim q(x)} \left[f(X) \frac{p(X)}{q(X)} \right].$$

• If we have a sample $X_1, \ldots, X_n \sim q(x)$, then a Monte Carlo estimate of the RHS

$$\hat{\mu}_{\mathsf{IS}} = \frac{1}{n} \sum_{i=1}^{n} f(X_i) \frac{p(X_i)}{q(X_i)}$$

is called an **importance sampling** estimator for $\mathbb{E}_{X \sim p(x)} f(X)$.

Importance sampling for covariate shift

• $\mathfrak{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ is i.i.d. from

$$q(x,y) = q(x)p(y \mid x).$$

• Then the importance-sampled empirical risk is

$$\hat{R}_{IS}(f) = \frac{1}{n} \sum_{i=1}^{n} \frac{p(x)p(y|x)}{q(x)p(y|x)} \ell(f(X_i), Y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{p(x)}{q(x)} \ell(f(X_i), Y_i).$$

- Note that $\mathbb{E}_{\mathcal{D}_{-\sim}q(x,y)}\hat{R}_{|S|}(f) = \mathbb{E}_{(X,Y)\sim p(x,y)}\ell(f(X),Y).$
- So the importance-sampled empirical risk is unbiased.

Potential variance issues

• Since the summands are independent, we have

$$\operatorname{Var}\left(\hat{R}_{\mathsf{IS}}(f)\right) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}f(X_{i})\frac{p(X_{i})}{q(X_{i})}\right)$$
$$= \frac{1}{n}\operatorname{Var}\left(f(X)\frac{p(X)}{q(X)}\right)$$

- If q(x) is much smaller than p(x),
 - the importance weight can get very large,
 - variance can blow up.

Variance reduction for importance sampling

- Many ways to sacrifice some bias to reduce variance.
- Importance weight clipping: $\frac{1}{n} \sum_{i=1}^{n} \min \left(M, \frac{p(x)}{q(x)} \right) \ell(f(X_i), Y_i)$
 - for hyperparameter M > 0.
- Shomodaira's exponentiation: $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{p(x)}{q(x)} \right)^{\lambda} \ell(f(X_i), Y_i)$
 - for hyperparameter $\lambda \in [0,1]$ [Shi00].
- Self-normalization:

$$\frac{\sum_{i=1}^n \frac{p(x)}{q(x)} \ell(f(X_i), Y_i)}{\sum_{i=1}^n \frac{p(x)}{q(x)}}.$$

• Also useful when you only know p(x) and/or q(x) up to a scale factor.

References

Resources

• Terminology was based on [CFV17].

References I

- [CFV17] Victor Chernozhukov and Iván Fernández-Val, *Treatment effects*, Econometrics—MIT Course 14.382, Cambridge MA, 2017, MIT OpenCourseWare.
- [Shi00] Hidetoshi Shimodaira, *Improving predictive inference under covariate shift by weighting the log-likelihood function*, Journal of Statistical Planning and Inference **90** (2000), no. 2, 227–244.