

Identifying strong gravitational lenses using CNN

Adivsor: Anton Riedel and Raoul Canameras

Ivashkov Petr

Wintersemester 2021/22

Outline

- Basic functions
- 2 Data-set
- 3 Network model
- 4 Network configurations
- Improving the performance
- 6 Improving rotational invariance

- Basic functions
- Data-set
- Network model
- 4 Network configurations
- Improving the performance
- Improving rotational invariance

Basic functions

- Load data in FITS format
- Split data into training, validation and test set
- Train and test the network performance
- Dump on disk and load the trained network
- Predict the result on a singular image

- Basic functions
- 2 Data-set
- Network model
- 4 Network configurations
- Improving the performance
- Improving rotational invariance

Data-set

- 40K positive (artificial) and 40K negative examples
- Split into training, validation and test set like 56%, 14% and 30% respectively
- Training and validation shuffled with $validation_split = 0.2$
- Test data as a separate set

- Basic functions
- 2 Data-set
- 3 Network model
- Metwork configurations
- Improving the performance
- Improving rotational invariance

Network model

- relu activation between the layers
- sigmoid on the output neuron
- **Total** of around 27M parameters

- Basic functions
- 2 Data-set
- Network model
- 4 Network configurations
- Improving the performance
- Improving rotational invariance

Network configurations

- Adopted
 - □ loss = "binary crossentropy"
 - batch size = 128
 - epochs = 35
 - \square learning_rate = 0.0006
 - **Dropout** = 0.5 to prevent overfitting
 - ☐ Weight decay (applied to kernels) to favor parameters of small magnitude
- Improved
 - optimizer = «adam»
 - shuffle = True
 - EarlyStopping at epoch 33

- Basic functions
- 2 Data-set
- Network model
- 4 Network configurations
- Improving the performance
- Improving rotational invariance

Improving the performance

- Changing network hyper-parameters doesn't improve the accuracy significantly
 - ☐ Started off with a 2 neuron output and **categorical_crossentropy** loss function
 - □ binary_crossentropy delivers better accuracy
 - □ Adding and removing one convolutional layer
- Accuracy with adopted hyper-parameters close to 98%

- Basic functions
- 2 Data-set
- Network model
- 4 Network configurations
- Improving the performance
- Improving rotational invariance

Rotational invariance

Problem:

- Feedforwarding the same image under different rotations results in different network outputs
- Average standard deviation within 4 rotations on test set around 4%

Objective: Improve rotational invariance without significant decrease in accuracy

Two possible approaches:

- Applying rotations to the input images, i.e. data augmentation
- Applying rotations to the convolution filters

Hardcoding rotational invariance

Idea:

- Simultaneously feed several rotated versions of the input image to convolutional layer
- 4 rotations performed 0°, 90°, 270°, 360°

Precisely:

- New rotational layer (overloaded **Conv2D**)
- Convolution is calculated for 4 rotated inputs
- Maximum valued across those convolutions is taken as a result
- Finally add bias

Note: No claim to be efficient, i.e. just a proof of concept

Rotational layer


```
class RotationalConv2D(lavers.Conv2D):
def call(self, inputs):
     r0 = self.convolution op(
        rot90(inputs, k=0) , self.kernel) # 0° rotation
     r90 = self.convolution op(
        rot90(inputs, k=1) , self.kernel) # 90° rotation
     r180 = self.convolution op(
         rot90(inputs, k=2) , self.kernel) # 180° rotation
     r270 = self.convolution op(
         rot90(inputs, k=3) , self.kernel) # 270° rotation
    # result := maximum output within rotation group
     result = maximum(maximum(r0,r90),maximum(r180,r270))
    if self.use bias:
        result = result + self hias
     return result
```

Results and discussion

Results:

- Invariance to local rotations and therefore invariance to global rotations of the input image
- Accuracy close to 95%

What is next:

- More rotations
- Only use the pixels within a circle circumscribed in the square filter or padding
- Different architectures (e.g., ResNet instead of CNN)
- Data augmentation (e.g. normalize images)