Élio Tiago Sousa Coelho

Desenvolvimento de Heurísticas para o Dimensionamento de Redes Óticas Opacas

Development of Heuristics for Opaque Optical Networks Dimensioning

Élio Tiago Sousa Coelho

Desenvolvimento de Heurísticas para o Dimensionamento de Redes Óticas Opacas

Development of Heuristics for Opaque Optical Networks Dimensioning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações, realizada sob a orientação científica do Doutor Armando Humberto Moreira Nolasco Pinto, Professor Associado do Departamento de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro e coorientação empresarial do Doutor Rui Manuel Dias Morais, Doutor em Engenharia Eletrotécnica pela Universidade de Aveiro, coordenador de atividades de investigação em optimização de redes na Infinera Portugal. Tendo como instituição de acolhimento o Instituto de Telecomunicações - Pólo de Aveiro.

o júri / the jury

presidente / president ????? ????? ?????

???? ???? ???? ????

vogais / examiners committee ????? ?????

???? ???? ????

Armando Humberto Moreira Nolasco Pinto

Professor Associado da Universidade de Aveiro

agradecimentos / acknowledgements

Palavras-chave

Resumo

Keywords

Abstract

Índice

Ín	dice		
Li	sta d	e figuras	ii
Li	sta d	e tabelas	V
1	Intr	odução	2
	1.1	Motivação	3
	1.2	Objetivos	3
	1.3	Estrutura da dissertação	
2	Din	ensionamento de Redes Óticas Opacas	4
	2.1	Arquitetura da Rede	4
		2.1.1 Nós	4
		2.1.2 Ligações	
	2.2	Topologias da Rede	6
		2.2.1 Topologia Física	6
		2.2.2 Topologia Lógica	6
	2.3	Modo de Transporte Opaco	6
	2.4	Rede Referência	6
		2.4.1 Topologia Física	6
		2.4.2 Topologia Lógica	7
		2.4.3 Matrizes de Tráfego	7
	2.5	Rede Real	10
		2.5.1 Topologia Física	11
		2.5.2 Matrizes de Tráfego	13
3	Heı	rísticas	17
	3.1	Algoritmos das Heurísticas	17
		3.1.1 Escalonamento (Scheduling)	17
			17

		3.1.3	Roteamento (Routing)	. 17
		3.1.4	Atribuição de Comprimento de Onda ($Wavelength\ Assignement$)	. 17
		3.1.5	Encaminhamento (Grooming)	. 17
4	Imp	olemen	ntação NetXPTO	19
	4.1	Diagra	ama do Sistema	. 19
	4.2	Parân	netros de Entrada do Sistema	. 20
		4.2.1	Formato do Ficheiro de Entrada	. 21
	4.3	Estru	tura dos Sinais do Sistema	. 22
		4.3.1	LogicalTopology	. 22
		4.3.2	PhysicalTopology	. 23
		4.3.3	DemandRequest	. 24
		4.3.4	PathRequest	. 24
		4.3.5	PathRequestRouted	. 24
		4.3.6	DemandRequestRouted	. 25
	4.4	Bloco	s do Sistema	. 25
		4.4.1	Scheduler	. 25
		4.4.2	LogicalTopologyGenerator	. 26
		4.4.3	PhysicalTopologyGenerator	. 26
		4.4.4	LogicalTopologyManager	. 26
		4.4.5	PhysicalTopologyManager	. 27
	4.5	Relate	ório Final	. 29
5	Res	ultado	os	31
	5.1	Rede	Referência	. 31
		5.1.1	Modelo Analítico	. 31
		5.1.2	ILP	. 33
		5.1.3	Heurísticas	. 35
		5.1.4	Análise Comparativa	. 39
	5.2	Rede	Real	. 40
		5.2.1	Modelo Analítico	. 40
		5.2.2	ILP	. 41
		5.2.3	Heurísticas	. 41
		5.2.4	Análise Comparativa	. 43
6	Cor	ıclusõe	es e trabalho futuro	45
	6.1	Concl	usões	. 45
	6.2	Traba	ilho futuro	15

Lista de figuras

2.1	Arquitetura do nó. []
2.2	Topologia física da rede referência
2.3	Topologia lógica da rede referência
2.4	National Science Foundation Network (NSFNET) []
2.5	Topologia Física
4.1	Diagrama do Sistema
4.2	Exemplo do ficheiro de entrada
4.3	Ordem que é seguida na ordenação das demandas
4.4	Fluxograma do bloco LogicallTopologyManager
4.5	Fluxograma do bloco PhysicalTopologyManager
4.6	Exemplo de informação sobre as ligações no relatório final
4.7	Exemplo de informação sobre os nós no relatório final

Lista de tabelas

2.1	Matriz adjacência da topologia física da rede referência	6
2.2	Matriz adjacência da topologia física	12
2.3	Parâmetros da rede real MSFNET	12
2.4	Matriz de tráfego ODU0 para a rede real MSFNET	13
2.5	Matriz de tráfego ODU2 para a rede real MSFNET	14
2.6	Matriz de tráfego ODU3 para a rede real MSFNET	14
4.1	Parâmetros de entrada do sistema	20
4.2	$logical Topology Adjacency Matrix \\ \ \ldots $	22
4.3	path	22
4.4	lightPath	22
4.5	opticalChannel	23
4.6	$physical Topology Adjacency Matrix \\ \ \dots \\ \dots \\$	23
4.7	opticalMultiplexSection	24
4.8	DemandRequest variable	24
4.9	PathRequest	24
4.10	pathInformation	25
4.11	lightPathsTable	25
4.12	DemandRequestRouted	25
4.13	Parâmetros de entrada e variáveis de estado de cada bloco	28
4.14	Sinais de entrada e de saída de cada bloco	29
5.1	CAPEX para o cenário de tráfego baixo usando ILPs	33
5.2	CAPEX para o cenário de tráfego médio usando ILPs	34
5.3	CAPEX para o cenário de tráfego elevado usando ILPs	34
5.4	Informação sobre as ligações para o cenário de baixo tráfego	35
5.5	Informação sobre os nós para o cenário de baixo tráfego	35
5.6	CAPEX para o cenário de baixo tráfego	36
5.7	Informação sobre as ligações para o cenário de médio tráfego	36
5.8	Informação sobre os nós para o cenário de médio tráfego	37

5.9	CAPEX para o cenário de médio tráfego	37
5.10	Informação sobre as ligações para o cenário de elevado tráfego	38
5.11	Informação sobre os nós para o cenário de elevado tráfego	38
5.12	CAPEX para o cenário de elevado tráfego	39
5.13	Comparação dos valores do CAPEX entre os diferentes modelos para os	
	diferentes cenários de tráfego	39
5.14	CAPEX para o rede real no modo de transporte opaco com ordenação	
	descendente e critério de routing saltos.	41
5.15	CAPEX para o rede real no modo de transporte opaco com ordenação	
	ascendente critério de routing	41
5.16	CAPEX para o rede real no modo de transporte opaco com ordenação	
	descendente e critério de routing km	42
5.17	CAPEX para o rede real no modo de transporte opaco com ordenação	
	ascendente e critério de routing km	42
5.18	Comparação dos resultados das heurísticas com o modelo analítico e o ILP	43
5.19	Comparação do tempo de execução das heurísticas com o ILP	43

Chapter 1

Introdução

- 1.1 Motivação
- 1.2 Objetivos
- 1.3 Estrutura da dissertação

Chapter 2

Dimensionamento de Redes Óticas Opacas

2.1 Arquitetura da Rede

2.1.1 Nós

Figure 2.1: Arquitetura do nó. [].

2.1.2 Ligações

2.2 Topologias da Rede

2.2.1 Topologia Física

2.2.2 Topologia Lógica

2.3 Modo de Transporte Opaco

2.4 Rede Referência

2.4.1 Topologia Física

Figure 2.2: Topologia física da rede referência.

Nó	1	2	3	4	5	6
1	0	1	0	0	0	1
2	1	0	1	0	0	1
3	0	1	0	1	1	0
4	0	0	1	0	1	0
5	0	0	1	1	0	1
6	1	1	0	0	1	0

Table 2.1: Matriz adjacência da topologia física da rede referência.

.

$$Dist = \begin{bmatrix} 0 & 350 & 0 & 0 & 0 & 150 \\ 350 & 0 & 400 & 0 & 0 & 120 \\ 0 & 400 & 0 & 250 & 100 & 0 \\ 0 & 0 & 250 & 0 & 200 & 0 \\ 0 & 0 & 100 & 200 & 0 & 600 \\ 150 & 120 & 0 & 0 & 600 & 0 \end{bmatrix}$$

2.4.2 Topologia Lógica

Figure 2.3: Topologia lógica da rede referência.

2.4.3 Matrizes de Tráfego

Tráfego Baixo

$$ODU0 = \begin{bmatrix} 0 & 10 & 2 & 6 & 2 & 6 \\ 10 & 0 & 0 & 2 & 10 & 0 \\ 2 & 0 & 0 & 2 & 8 & 2 \\ 6 & 2 & 2 & 0 & 2 & 2 \\ 2 & 10 & 8 & 2 & 0 & 6 \\ 6 & 0 & 2 & 2 & 6 & 0 \end{bmatrix} \qquad ODU1 = \begin{bmatrix} 0 & 4 & 8 & 4 & 0 & 10 \\ 4 & 0 & 0 & 6 & 2 & 2 \\ 8 & 0 & 0 & 2 & 2 & 0 \\ 4 & 6 & 2 & 0 & 2 & 6 \\ 0 & 2 & 2 & 2 & 0 & 2 \\ 10 & 2 & 0 & 6 & 2 & 0 \end{bmatrix}$$

$$ODU2 = \begin{bmatrix} 0 & 2 & 2 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 2 & 0 & 2 & 0 \\ 0 & 2 & 2 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

$$T_1^0 = 120 \mathrm{x} 1.25 = 150~\mathrm{Gbits/s}~T_1^1 = 100 \mathrm{x} 2.5 = 250~\mathrm{Gbits/s}~T_1^2 = 32 \mathrm{x} 10 = 320~\mathrm{Gbits/s}$$

$$T_1^3 = 12 \mathrm{x} 40 = 480 \; \mathrm{Gbits/s} \quad \ T_1^4 = 8 \mathrm{x} 100 = 800 \; \mathrm{Gbits/s}$$

$$T_1 = 150 + 250 + 320 + 480 + 800 = 2000 \text{ Gbits/s}$$
 $T = 1000/2 = 1 \text{ Tbits/s}$

Tráfego Médio

$$ODU0 = \begin{bmatrix} 0 & 50 & 10 & 30 & 10 & 30 \\ 50 & 0 & 0 & 10 & 50 & 0 \\ 10 & 0 & 0 & 10 & 40 & 10 \\ 30 & 10 & 10 & 0 & 10 & 10 \\ 10 & 50 & 40 & 10 & 0 & 30 \\ 30 & 0 & 10 & 10 & 30 & 0 \end{bmatrix} \quad ODU1 = \begin{bmatrix} 0 & 20 & 40 & 20 & 0 & 50 \\ 20 & 0 & 0 & 30 & 10 & 10 \\ 40 & 0 & 0 & 10 & 10 & 0 \\ 20 & 30 & 10 & 0 & 10 & 30 \\ 0 & 10 & 10 & 10 & 0 & 10 \\ 50 & 10 & 0 & 30 & 10 & 0 \end{bmatrix}$$

$$T_1^0 = 600 \mathrm{x} 1.25 = 750 \; \mathrm{Gbits/s} \; \; T_1^1 = 500 \mathrm{x} 2.5 = 1205 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 1600$$

$$T_1^3 = 60 \mathrm{x} 40 = 2400 \; \mathrm{Gbits/s} \quad T_1^4 = 40 \mathrm{x} 100 = 4000 \; \mathrm{Gbits/s}$$

$$T_1 = 750 + 1250 + 1600 + 2400 + 4000 = 10000 \text{ Gbits/s}$$
 $T = 10000/2 = \mathbf{5} \text{ Tbits/s}$

Tráfego Elevado

$$ODU0 = \begin{bmatrix} 0 & 100 & 20 & 60 & 20 & 60 \\ 100 & 0 & 0 & 20 & 100 & 0 \\ 20 & 0 & 0 & 20 & 80 & 20 \\ 60 & 20 & 20 & 0 & 20 & 20 \\ 20 & 100 & 80 & 20 & 0 & 60 \\ 60 & 0 & 20 & 20 & 60 & 0 \end{bmatrix} \quad ODU1 = \begin{bmatrix} 0 & 40 & 80 & 40 & 0 & 100 \\ 40 & 0 & 0 & 60 & 20 & 20 \\ 80 & 0 & 0 & 20 & 20 & 0 \\ 40 & 60 & 20 & 0 & 20 & 60 \\ 0 & 20 & 20 & 20 & 0 & 20 \\ 100 & 20 & 0 & 60 & 20 & 0 \end{bmatrix}$$

$$T_1^0 = 1200 \mathrm{x} 1.25 = 1500 \; \mathrm{Gbits/s}$$
 $T_1^1 = 1000 \mathrm{x} 2.5 = 2500 \; \mathrm{Gbits/s}$

$$T_1^2 = 320 \mathrm{x} 10 = 3200 \; \mathrm{Gbits/s}$$
 $T_1^3 = 120 \mathrm{x} 40 = 4800 \; \mathrm{Gbits/s}$

$$T_1^4 = 80 \mathrm{x} 100 = 8000 \; \mathrm{Gbits/s}$$
 $T_1 = 20000 \; \mathrm{Gbits/s}$

$$T = 20000/2 = 10 \text{ Tbits/s}$$

2.5 Rede Real

Figure 2.4: National Science Foundation Network (NSFNET) [].

2.5.1 Topologia Física

Figure 2.5: Topologia Física.

Nó	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0
2	1	0	1	1	0	0	0	0	0	0	0	0	0	0
3	1	1	0	0	0	1	0	0	0	0	0	0	0	0
4	0	1	0	0	1	0	0	0	0	0	1	0	0	0
5	0	0	0	1	0	1	1	0	0	0	0	0	0	0
6	0	0	1	0	1	0	0	0	0	1	0	0	0	1
7	0	0	0	0	1	0	0	1	0	0	0	0	0	0
8	1	0	0	0	0	0	1	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0	1	0	1	1	0
10	0	0	0	0	0	1	0	0	1	0	0	0	0	0
11	0	0	0	1	0	0	0	0	0	0	0	1	1	0
12	0	0	0	0	0	0	0	0	1	0	1	0	0	1
13	0	0	0	0	0	0	0	0	1	0	1	0	0	1
14	0	0	0	0	0	1	0	0	0	0	0	1	1	0

Table 2.2: Matriz adjacência da topologia física.

Variável	Descrição	Valor
N	Número de Nós	14
L	Número de Ligações Bidireccionais	21
$<\!\!\delta\!\!>$	Grau do Nó	3.00
<h></h>	Número Médio de Saltos por Caminhos de Trabalho	2.14
<h'></h'>	Número Médio de Saltos por Caminhos de Backup	3.60
<len></len>	Comprimento médio da ligação (km)	1086

Table 2.3: Parâmetros da rede real MSFNET.

2.5.2 Matrizes de Tráfego

ODU0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	8	4	14	4	12	8	8	6	8	8	14	8	6
2	8	0	8	8	6	16	14	8	8	8	8	14	2	20
3	4	8	0	14	8	8	8	4	12	8	10	14	8	8
4	14	8	14	0	10	4	8	8	6	8	8	14	8	6
5	8	6	8	10	0	8	8	8	10	8	8	4	8	14
6	12	16	8	4	8	0	4	12	8	8	10	8	12	8
7	8	14	8	8	8	4	0	12	0	8	8	12	2	12
8	8	8	4	8	8	12	12	0	8	0	8	8	12	0
9	6	8	12	6	10	8	0	8	0	8	8	12	8	4
10	8	8	8	8	8	8	8	0	8	0	4	8	8	14
11	8	8	10	8	8	10	8	8	8	4	0	8	8	8
12	14	14	14	14	4	8	12	8	12	8	8	0	8	8
13	8	2	8	8	8	12	2	12	8	8	8	8	0	6
14	6	20	8	6	14	8	12	0	4	14	8	8	6	0

Table 2.4: Matriz de tráfego ODU0 para a rede real MSFNET.

$$T_1^1 = 1536 \mathrm{x} 1.25 = 1920 \; \mathrm{Gbits/s}$$

vspace11pt

ODU2	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	2	0	2	2	4	2	2	2	2	2	4	2	2
2	2	0	2	2	0	2	4	4	2	0	2	4	0	2
3	0	2	0	2	2	2	2	4	2	2	4	4	2	2
4	2	2	2	0	4	4	2	2	2	2	2	4	2	2
5	2	0	2	4	0	2	2	2	4	2	2	4	2	2
6	4	2	2	4	2	0	2	4	2	2	4	2	4	4
7	2	4	2	2	2	2	0	4	4	2	2	2	2	4
8	2	4	4	2	2	4	4	0	2	4	2	4	4	2
9	2	2	2	2	4	2	4	2	0	2	2	4	2	0
10	2	0	2	2	2	2	2	4	2	0	0	2	2	4
11	2	2	4	2	2	4	2	2	2	0	0	2	2	2
12	4	4	4	4	4	2	2	4	4	2	2	0	2	2
13	2	0	2	2	2	4	2	4	2	2	2	2	0	2
14	2	2	2	2	2	4	4	2	0	4	2	2	2	0

Table 2.5: Matriz de tráfego ODU2 para a rede real MSFNET.

$$T_1^2 = 440 \mathrm{x} 10 = 4~400~\mathrm{Gbits/s}$$

ODU3	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	0	2	0	0	2	0	0	2	0	0	0	0	0
2	0	0	2	0	2	0	0	0	3	2	0	0	2	0
3	2	2	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	2	0	0	0	0	0
5	0	2	0	0	0	0	0	0	0	0	0	0	0	0
6	2	0	0	0	0	0	2	0	0	0	0	0	0	4
7	0	0	0	0	0	2	0	0	2	0	0	0	0	2
8	0	3	0	0	0	0	0	0	0	2	0	2	0	4
9	2	2	0	2	0	0	2	0	0	0	0	2	0	4
10	0	2	0	0	0	0	0	2	0	0	2	0	0	0
11	0	0	0	0	0	0	0	0	0	2	0	0	0	0
12	0	0	0	0	0	0	0	2	2	0	0	0	0	0
13	0	2	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	4	2	4	4	0	0	0	0	0

Table 2.6: Matriz de tráfego ODU3 para a rede real MSFNET.

$$T_1^3 = 92 \mathrm{x} 40 = 3~680~\mathrm{Gbits/s}$$

$$T_1 = 1920 + 0 + 4 \ 400 + 3 \ 680 + 0 \sim 10 \ \mathrm{Tbits/s}$$

 $T = 10000/2 = \mathbf{5} \ \mathbf{Tbits/s}$

Chapter 3

Heurísticas

- 3.1 Algoritmos das Heurísticas
- 3.1.1 Escalonamento (Scheduling)
- 3.1.2 Topologia Lógica
- 3.1.3 Roteamento (Routing)
- 3.1.4 Atribuição de Comprimento de Onda (Wavelength Assignement)
- 3.1.5 Encaminhamento (Grooming)

Chapter 4

Implementação NetXPTO

4.1 Diagrama do Sistema

Figure 4.1: Diagrama do Sistema.

4.2 Parâmetros de Entrada do Sistema

Parâmetro de entrada	Valor padrão	Descrição
- 10	[0]	Matriz das
odu0	[0]	demandas ODU0
- 11	[0]	Matriz das
odu1	[0]	demandas ODU1
1.0	[0]	Matriz das
odu2	[0]	demandas ODU2
1.2	[0]	Matriz das
odu3	[0]	demandas ODU3
- 14	[0]	Matriz das
odu4	[0]	demandas ODU4
		Ordenação das demandas:
orderingRule	descendingOrder	descendingOrder - ODU4 para ODU0
		ascendingOrder - ODU0 para ODU4
transportMode	opaque	Modo de transporte opaco
1 . 100 1 41. 24.	[0]	Matriz adjacência
physicalTopologyAdjacencyMatrix	[0]	da topologia física
3.4	[6]	Matriz com a distância entre
distanceMatrix	[0]	nós adjacentes (km)
	100	Comprimento da fibra entre
span	100	dois amplificadores (km)
numberOfOMSPerLink	-1	Número de sistemas de
numberOlOMSPerLink	1	transmissão por ligação
	100	Número de canais óticos
numberOfOpticalChannelsPerOMS	100	por sistema de transmissão
::4:-1337141	1550	Valor do comprimento de
initialWavelength	1550	onda inicial (nm)
	0.0	Espaçamento entre
wavelengthSpacing	0.8	comprimentos de onda (nm)
anticalChannelCanasity	80	Capacidade de cada canal
opticalChannelCapacity	00	ótico em ODU0s
		Tipo do Caminho mais curto:
routingCriterionLogicalTopology	hops	hops
		km
blacking Cuitanian I agical Tan alagu	2	Número máximo de caminhos curtos
blockingCriterionLogicalTopology	3	testados entre um par de nós
		Tipo do caminho curto:
${\bf routing Criterion Physical Topology}$	hops	hops
		km
blockingCriterionPhysicalTopology	3	Número máximo de caminhos curtos
blocking Critorion Physical Tonelogy	.7	l l

Table 4.1: Parâmetros de entrada do sistema

4.2.1 Formato do Ficheiro de Entrada

```
// Input parameters for opaque transport mode example
odu0 =
0 0 0 0 0 0
   00000
   00000
   0
       0 0
   0 0 0 0 0
odu2 :
       0 0 0 0
000000
   000
   3 0 0 0 0
       0 0 0 0
   0 0 0 0 0
ō
   00000
   0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
orderingRule = descendingOrder
transportMode = opaque
0 0 1 0 0 0 0 0 0 0 0 1 0 1
010000
0 1 0 0 0 0
distanceMatrix =
0 460 663 0 0 0
460 0 75 684 0 0
663 75 0 0 890 0
0 684 0 0 103 764
0 0 890 103 0 361
0 0 0 764 361 0
span = 100
numberofomsPerLink = 1
numberOfOpticalChannelsPerOMS = 2
numberOfOpticalChannelsPerOMS = 2
initialWavelength = 1550
wavelengthSpacing = 0.8
opticalChannelCapacity = 80
routingCriterionLogicalTopology = hops
blockingCriterionPhysicalTopology = 3
routingCriterionPhysicalTopology = 3
```

Figure 4.2: Exemplo do ficheiro de entrada.

4.3 Estrutura dos Sinais do Sistema

4.3.1 LogicalTopology

matriz NxN logicalTopologyAdjacencyMatrix matriz distanceMatrix vetor paths vetor lightPaths vetor opticalChannels

Nó	1			N
1	0	0/1	0/1	0/1
	0/1	0	0/1	0/1
	0/1	0/1	0	0/1
N	0/1	0/1	0/1	0

Table 4.2: logicalTopologyAdjacencyMatrix

N = numberOfNodes

0 => not logical link or <math>1 => logical link

paths

pathIndex	sourceNode	${\bf destination Node}$	capacity (ODU0s)	numberOfLightPaths	lightPathsIndex
0P-1	1N	1N	0OC	1LP	[lp0,lp1,]

Table 4.3: path

P = numberOfPaths

N = numberOfNodes

OC = optical Channel Capacity

LP = numberOfLightPaths

light Paths

lightPathIndex	sourceNode	${\bf destination Node}$	capacity (ODU0s)	${\bf number Of Optical Channels}$	opticalChannelsIndex
0LP-1	1N	1N	1OC	1Och	[och0,och1,]

Table 4.4: lightPath

LP = number Of Light Paths

N = numberOfNodes

OC = opticalChannelCapacity

Och = number Of Optical Channels

opticalChannels

optical Channel Index	sourceNode	${\bf destination Node}$	wavelength	capacity (ODU0s)	${\bf number Of Demands}$	demandsIndex
0Och-1	1N	1N	1W	1OC	0D	[d0,d1,]

Table 4.5: opticalChannel

Och = number Of Optical Channels

N = numberOfNodes

OC = opticalChannelCapacity

D = number Of Demands

W = numberOfWavelenghts

4.3.2 PhysicalTopology

 ${\it matriz~NxN~physical Topology Adjacency Matrix} \\ {\it vetor~optical Multiplex Section}$

Nó	1			N
1	0	0/1	0/1	0/1
	0/1	0	0/1	0/1
	0/1	0/1	0	0/1
N	0/1	0/1	0/1	0

Table 4.6: physicalTopologyAdjacencyMatrix

N = numberOfNodes

0 = not physical link or 1 = physical link

${\bf optical Multiplex Section}$

OMSIndex	sourceNode	destinationNode	maximum Number Of Wavelengths	wavelengths	available Wavelengths
0	1N	1N	OchL	[1550 1550.8]	[0/1 0/1]
	1N	1N	OchL	[1550 1550.8]	[0/1 0/1]
L-1	1N	1N	OchL	[1550 1550.8]	[0/1 0/1]

Table 4.7: opticalMultiplexSection

L = numberOfLinks

N = numberOfNodes

OchL = number Of Optical Channels Per Link

W = numberOfWavelengths

4.3.3 DemandRequest

demandIndex	sourceNode	${\bf destination Node}$	oduType	${\bf survivability} {\bf Method}$
0D-1	1N	1N	04	none protection_1_plus_1 restoration

Table 4.8: DemandRequest variable

D = numberOfDemands

N = numberOfNodes

4.3.4 PathRequest

requestIndex	sourceNode	${\bf destination Node}$	${\bf number Of Intermediate Nodes}$	intermediate Nodes
0R-1	1N	1N	0N-2	[1, 2,]

Table 4.9: PathRequest

R = numberOfRequests

N = numberOfNodes

4.3.5 PathRequestRouted

path Information

 $vector\ lightPathsTable$

requestIndex	routed	${\bf number Of Light Paths}$
0R-1	true or false	1LP

Table 4.10: pathInformation

R = numberOfRequests

 $\mathrm{LP} = \mathrm{numberOfLightPaths}$

sourceNode	${\it destination} {\it Node}$	${\bf number Of Intermediate Nodes}$	intermediate Nodes	wavelength
1N	1N	0N-2	[1, 2,]	1W

Table 4.11: lightPathsTable

R = numberOfRequests

W=number Of Wavelength

4.3.6 DemandRequestRouted

${\bf demandIndex}$	${f routed}$	pathsIndex
0D-1	true or false	0P-1

Table 4.12: DemandRequestRouted

D = numberOfDemands

P = numberOfPaths

4.4 Blocos do Sistema

4.4.1 Scheduler

Figure 4.3: Ordem que é seguida na ordenação das demandas.

4.4.2 LogicalTopologyGenerator

4.4.3 PhysicalTopologyGenerator

4.4.4 LogicalTopologyManager

Figure 4.4: Fluxograma do bloco LogicallTopologyManager.

4.4.5 PhysicalTopologyManager

Figure 4.5: Fluxograma do bloco PhysicalTopologyManager.

Bloco	Parâmetros de entrada	Variáveis de estado	
	odu0	odu0	
	odu0 odu1	odu1	
	odu1 odu2	odu2	
Scheduler_	odu2 odu3	odu3	
	odu3 odu4	odu4	
		$\operatorname{demandIndex}$	
	orderingRule	numberOfDemands	
	${\it transportMode}$		
LogicalTopologyGenerator_	physicalTopologyAdjacencyMatrix	generate	
	distanceMatrix		
	physicalTopologyAdjacencyMatrix		
	distanceMatrix		
	span		
Physical Topology Generator	numberOfOMSPerLink	ganavata	
1 hysical topology Generator_	numberOfOpticalChannelsPerOMS	${ m generate}$	
	initialWavelength		
	wavelengthSpacing		
	opticalChannelCapacity		
		logicalTopology	
		demand	
LogicalTopologyManager	routingCriterionLogicalTopology	${\bf requestIndex}$	
Logical Topology Manager _	blockingCriterionLogicalTopology	pathDij	
		${ m try}{ m AnotherPath}$	
		temporaryLogicalMatrix	
PhysicalTopologyManager_	routingCriterionPhysicalTopology	physicalTopology	
	blockingCriterionPhysicalTopology	physical ropology	
$SinkRoutedOrBlocked_$	nenhum	nenhum	
SinkLogicalTopology_	nenhum	nenhum	
SinkPhysicalTopology_	nenhum	nenhum	

Table 4.13: Parâmetros de entrada e variáveis de estado de cada bloco

Bloco	Sinais de entrada	Sinais de saída	
Scheduler_	nenhum	Scheduler_Out	
${\bf Logical Topology Generator_}$	nenhum	LogicalTopologyGenerator_Out	
PhysicalTopologyGenerator_	nenhum	PhysicalTopologyGenerator_Out	
	LogicalTopologyGenerator_Out	LogicalTopologyManager_PathRequest	
${\bf Logical Topology Manager_}$	Scheduler_Out	FinalLogicalTopology	
	PhysicalTopologyManager_PathRequestRouted	ProcessedDemand	
PhysicalTopologyManager_	PhysicalTopologyGenerator_Out	PhysicalTopologyManager_PathRequestRouted	
1 hysicar ropologywanager _	LogicalTopologyManager_PathRequest	FinalPhysicalTopology	
SinkRoutedOrBlocked_	ProcessedDemand	nenhum	
SinkLogicalTopology_ FinalLogicalTopology		nenhum	
SinkPhysicalTopology_	FinalPhysicalTopology	nenhum	

Table 4.14: Sinais de entrada e de saída de cada bloco

4.5 Relatório Final

Informati	ion regarding links	
Unidirectional link	Optical channels	Amplifiers
Node 1 -> 2	1	3
Node 1 -> 6	1	1
Node 2 -> 1	1	3
Node 2 -> 3	2	3
Node 2 -> 6	2	1
Node 3 -> 2	2	3
Node 3 -> 4	1	2
Node 3 -> 5	1	0
Node 4 -> 3	1	2
Node 4 -> 5	1	1
Node 5 -> 3	1	0
Node 5 -> 4	1	1
Node 5 -> 6	2	5
Node 6 -> 1	1	1
Node 6 -> 2	2	1
Node 6 -> 5	2	5

Figure 4.6: Exemplo de informação sobre as ligações no relatório final.

	Information regarding nodes					
Electrical part Optical part						
Node	Nodal degree	Tributary ports	Line ports	Add ports	Line ports	
1	2	29	2	0	0	
2	3	23	5	0	0	
3	3	18	4	0	0	
4	2	20	2	0	0	
5	3	24	4	0	0	
6	3	22	5	0	0	

Figure 4.7: Exemplo de informação sobre os nós no relatório final.

Chapter 5

Resultados

5.1 Rede Referência

5.1.1 Modelo Analítico

Tráfego Baixo

$$D = \frac{1}{2} \times (1+1) \times (\frac{2000}{100}) \qquad D = 20$$

$$< w > = (\frac{20 \times 1.533}{16}) \times (1+0) \qquad < w > = 1.916$$

$$N^R = 16$$

$$C_L = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 1.916) + (2 \times 16 \times 2000) = \textbf{457 280} \in$$

$$< d > = \frac{20}{6} \qquad < d > = 3.333$$

$$< P_{exc} > = 3.333 \times 1.533 \qquad < P_{exc} > = 5.1095$$

$$C_N = (6 \times (10000 + (100 \times 100 \times 5.1095)) + (100 \times 1.25 \times 120) + (100 \times 2.5 \times 100) + (100 \times 10 \times 32) + (100 \times 40 \times 12) + (100 \times 100 \times 8)))$$

$$C_N = 366 570 + 200 000 = \textbf{566 570} \in$$

$$CAPEX = 457 280 + 566 570 \qquad CAPEX = \textbf{1 023 850} \in$$

Tráfego Médio

$$D = \frac{1}{2} \times (1+1) \times (\frac{10000}{100}) \qquad D = 100$$

$$< w > = (\frac{100 \times 1.533}{16}) \times (1+0) \qquad < w > = 9.581$$

$$N^{R} = 16$$

$$C_{L} = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 9.581) + (2 \times 16 \times 2000) = \mathbf{1} \ \mathbf{070} \ \mathbf{480} \in$$

$$< d > = \frac{100}{6} \qquad < d > = 16.6667$$

$$< P_{exc} > = 16.6667 \times 1.533 \qquad < P_{exc} > = 25.5501$$

$$C_{N} = (6 \times (10000 + (100 \times 100 \times 22.5501)) + (100 \times 1.25 \times 600) + (100 \times 2.5 \times 500) + (100 \times 10 \times 160) + (100 \times 40 \times 60) + (100 \times 100 \times 40)))$$

$$C_{N} = 1539\ 006 + 1\ 000\ 000 = \mathbf{2}\ \mathbf{539}\ \mathbf{006} \in$$

$$CAPEX = 1\ 070\ 480 + 2\ 539\ 006 \qquad CAPEX = \mathbf{3}\ \mathbf{609}\ \mathbf{486} \in$$

Tráfego Elevado

$$D = \frac{1}{2} \times (1+1) \times (\frac{20000}{100}) \qquad D = 200$$

$$< w > = (\frac{200 \times 1.533}{16}) \times (1+0) \qquad < w > = 19.1625$$

$$N^R = 16$$

$$C_L = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 19.1625) + (2 \times 16 \times 2000) = \mathbf{1 837 000} \in$$

$$< d > = \frac{200}{6} \qquad < d > = 33.3333$$

$$< P_{exc} > = 33.3333 \times 1.533 \qquad < P_{exc} > = 51.0999$$

$$C_N = (6 \times (10000 + (100 \times 100 \times 51.0999)) + (100 \times 1.25 \times 1200) + (100 \times 2.5 \times 1000) + (100 \times 10 \times 320) + (100 \times 40 \times 120) + (100 \times 100 \times 80))$$

 $C_N = 3\ 125\ 994 + 2\ 000\ 000 = {f 5}\ {f 125}\ {f 994}$ €

CAPEX = 1 837 000 + 5 125 994 $CAPEX = 6 962 994 \in$

5.1.2 ILP

Tráfego Baixo

	CAPEX						
			Quantidade	Preço Unitário	Custo	Total	
Custo		OLTs	16	15 000 €	240 000 €		
Custo	Ca	nais Óticos	28	5000 €	140 000 €	444 000 €	
Ligação	Am	plificadores	32	2000 €	64 000 €		
		EXCs	6	10 000 €	60 000 €		
	Elétrico	Portas ODU0	120	100 €/Gbit/s	15 000 €	540 000 €	
		Portas ODU1	100	100 €/Gbit/s	25 000 €		
		Portas ODU2	32	100 €/Gbit/s	32 000 €		
Custo		Portas ODU3	12	100 €/Gbit/s	48 000 €		
Nó		Portas ODU4	8	100 €/Gbit/s	80 000 €	340 000 €	
		Portas de Linha	28	100 €/Gbit/s	280 000 €		
		OXCs	0	20 000 €	0 €		
	Ótico	Portas OXC	0	2 500 €	0 €		
		Custo T	otal da Rede			984 000 €	

Table 5.1: CAPEX para o cenário de tráfego baixo usando ILPs.

Tráfego Médio

	CAPEX						
			Quantidade	Preço Unitário	Custo	Total	
Custo		OLTs	16	15 000 €	240 000 €		
Ligação	Ca	nais Óticos	126	5000 €	630 000 €	934 000 €	
Ligação	Am	plificadores	32	2000 €	64 000 €		
		EXCs	6	10 000 €	60 000 €		
	Elétrico	Portas ODU0	600	100 €/Gbit/s	75 000 €		
		Portas ODU1	500	100 €/Gbit/s	125 000 €		
		Portas ODU2	160	100 €/Gbit/s	160 000 €		
Custo		Portas ODU3	60	100 €/Gbit/s	240 000 €	2 320 000 €	
Nó		Portas ODU4	40	100 €/Gbit/s	400 000 €	2 320 000 €	
		Portas de Linha	126	100 €/Gbit/s	1 260 000 €		
		OXCs	0	20 000 €	0 €		
	Ótico	Portas OXC	0	2 500 €	0 €		
		Custo '	Total da Rede			3 254 000 €	

Table 5.2: CAPEX para o cenário de tráfego médio usando ILPs.

Tráfego Elevado

	CAPEX						
			Quantidade	Preço Unitário	Custo	Total	
Custo		OLTs	16	15 000 €	240 000 €		
Ligação	Cai	nais Óticos	244	5000 €	1 220 000 €	1 524 000 €	
Ligação	Am	plificadores	32	2000 €	64 000 €		
		EXCs	6	10 000 €	60 000 €		
	Elétrico	Portas ODU0	1200	100 €/Gbit/s	150 000 €	4 500 000 €	
		Portas ODU1	1000	100 €/Gbit/s	250 000 €		
		Portas ODU2	320	100 €/Gbit/s	320 000 €		
Custo		Portas ODU3	120	100 €/Gbit/s	480 000 €		
Nó		Portas ODU4	80	100 €/Gbit/s	800 000 €		
		Portas de linha	244	100 €/Gbit/s	2 440 000 €		
		OXCs	0	20 000 €	0 €		
	Ótco	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede			6 024 000 €	

Table 5.3: CAPEX para o cenário de tráfego elevado usando ILPs.

5.1.3 Heurísticas

Tráfego Baixo

Informação sobre as ligações					
Ligação Bidireccional	Canais Óticos	Amplificadores			
Node 1 <->Node 2	2	3			
Node 1 <->Node 6	1	1			
Node 2 <->Node 3	3	3			
Node 2 <->Node 6	3	1			
Node 3 <->Node 4	1	2			
Node 3 <->Node 5	2	0			
Node 4 <->Node 5	1	1			
Node 5 <->Node 6	3	5			

Table 5.4: Informação sobre as ligações para o cenário de baixo tráfego.

	Informação sobre os nós						
		Parte Elé	trica	Parte Ótica			
Nó	Grau do Nó	Portas Tributárias	Transponders	Portas Add	Portas de Linha		
1	2	58	3	0	0		
2	3	46	8	0	0		
3	3	36	6	0	0		
4	2	40	2	0	0		
5	3	48	6	0	0		
6	3	44	7	0	0		

Table 5.5: Informação sobre os nós para o cenário de baixo tráfego.

			CAPEX			
			Quantidade	Preço Unitário	Custo	Total
Custo da		OLTs	16	15 000 €	240 000 €	
Ligação	Can	ais Óticos	32	5000 €	160 000 €	464 000 €
Ligação	Amp	olificadores	32	2000 €	64 000 €	
		EXCs	6	10 000 €	60 000 €	
	Élétrica	Portas ODU0	120	100 €/Gbit/s	15 000 €	580 000 €
		Portas ODU1	100	100 €/Gbit/s	25 000 €	
		Portas ODU2	32	100 €/Gbit/s	32 000 €	
Custo do		Portas ODU3	12	100 €/Gbit/s	48 000 €	
Nó		Portas ODU4	8	100 €/Gbit/s	80 000 €	
		Transponders	40	100 €/Gbit/s	400 000 €	
		OXCs	0	20 000 €	0 €	
	Ótcia	Portas OXC	0	2 500 €	0 €	
		Custo	Total da Rede			1 044 000 €

Table 5.6: CAPEX para o cenário de baixo tráfego.

Tráfego Médio

Informação sobre as ligações					
Ligação Bidireccional	Canais Óticos	Amplificadores			
Node 1 <->Node 2	7	3			
Node 1 <->Node 6	2	1			
Node 2 <->Node 3	11	3			
Node 2 <->Node 6	15	1			
Node 3 <->Node 4	5	2			
Node 3 <->Node 5	8	0			
Node 4 <->Node 5	3	1			
Node 5 <->Node 6	13	5			

Table 5.7: Informação sobre as ligações para o cenário de médio tráfego.

	Informação sobre os nós						
	Parte Elétrica			Par	te Ótica		
Nó	Grau do Nó	Portas Tributárias	Transponders	Portas Add	Portas de Linha		
1	2	290	9	0	0		
2	3	230	33	0	0		
3	3	180	24	0	0		
4	2	200	8	0	0		
5	3	240	24	0	0		
6	3	220	30	0	0		

Table 5.8: Informação sobre os nós para o cenário de médio tráfego.

CAPEX							
			Quantidade	Preço Unitário	Custo	Total	
Custo da		OLTs	16	15 000 €	240 000 €		
Ligação	Can	ais Óticos	128	5000 €	640 000 €	944 000 €	
Ligação	Amp	olificadores	32	2000 €	64 000 €		
		EXCs	6	10 000 €	60 000 €		
	Élétrica	Portas ODU0	600	100 €/Gbit/s	15 000 €		
		Portas ODU1	500	100 €/Gbit/s	25 000 €	2 340 000 €	
		Portas ODU2	160	100 €/Gbit/s	32 000 €		
Custo do		Portas ODU3	60	100 €/Gbit/s	48 000 €		
Nó		Portas ODU4	40	100 €/Gbit/s	80 000 €		
		Transponders	128	100 €/Gbit/s	1 280 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede)		3 284 000 €	

Table 5.9: CAPEX para o cenário de médio tráfego.

Tráfego Elevado

Informação sobre as ligações					
Ligação Bidireccional	Canais Óticos	Amplificadores			
Node 1 <->Node 2	13	3			
Node 1 <->Node 6	4	1			
Node 2 <->Node 3	22	3			
Node 2 <->Node 6	30	1			
Node 3 <->Node 4	9	2			
Node 3 <->Node 5	16	0			
Node 4 <->Node 5	5	1			
Node 5 <->Node 6	26	5			

Table 5.10: Informação sobre as ligações para o cenário de elevado tráfego.

	Informação sobre os nós						
		Parte Elé	trica	Parte Ótica			
Nó	Grau do Nó	Portas Tributárias	Transponders	Portas Add	Portas de Linha		
1	2	580	17	0	0		
2	3	460	65	0	0		
3	3	360	47	0	0		
4	2	400	14	0	0		
5	3	480	47	0	0		
6	3	440	60	0	0		

Table 5.11: Informação sobre os nós para o cenário de elevado tráfego.

CAPEX							
			Quantidade	Preço Unitário	Custo	Total	
Custo da		OLTs	16	15 000 €	240 000 €		
Ligação	Can	ais Óticos	250	5000 €	1 250 000 €	1 554 000 €	
Ligação	Amp	olificadores	32	2000 €	64 000 €		
		EXCs	6	10 000 €	60 000 €		
	Élétrica	Portas ODU0	1200	100 €/Gbit/s	15 000 €	4 560 000 €	
		Portas ODU1	1000	100 €/Gbit/s	25 000 €		
		Portas ODU2	320	100 €/Gbit/s	32 000 €		
Custo do		Portas ODU3	120	100 €/Gbit/s	48 000 €		
Nó		Portas ODU4	80	100 €/Gbit/s	80 000 €		
		Transponders	250	100 €/Gbit/s	2 500 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
	Custo Total da Rede						

Table 5.12: CAPEX para o cenário de elevado tráfego.

5.1.4 Análise Comparativa

		Heurísticas	Analítico	ILP
	Custo da Ligação	464 000 €	457 280 € (-1,4%)	444 000 € (-4,3%)
Tráfego Baixo	Custo do Nó	580 000 €	$566\ 570 \in (-2,3\%)$	540 000 € (-6,7%)
	CAPEX	1 044 000 €	$1\ 023\ 850 \in (-1.9\%)$	984 000 € (-5,7%)
	Custo da Ligação	944 000 €	$1\ 070\ 480 \in (+13,\!4\%)$	934 000 € (-1,1%)
Tráfego Médio	Custo do Nó	2 340 000 €	$2\ 539\ 006 \in (+8,5\%)$	$2\ 320\ 000 \in (-0.9\%)$
	CAPEX	3 284 000 €	$3\ 609\ 486 \in (+9,9\%)$	$3\ 254\ 000 \in (-0.9\%)$
	Custo da Ligação	1 554 000 €	1 837 000 € (+18,2%)	1 524 000 € (-1,9%)
Tráfego Elevado	Custo do Nó	4 560 000 €	$5\ 125\ 994 \in (+12,4\%)$	4 500 000 € (-1.3%)
	CAPEX	6 114 000 €	$6\ 962\ 994 \in (+13.9\%)$	$6\ 024\ 000 \in (-1,5\%)$

Table 5.13: Comparação dos valores do CAPEX entre os diferentes modelos para os diferentes cenários de tráfego.

5.2 Rede Real

5.2.1 Modelo Analítico

$$D = \frac{1}{2} \times (1+1) \times (\frac{10000}{100}) \qquad \qquad D = 100$$

$$< w > = (\frac{100 \times 2.14}{42}) \times (1+0)$$
 $< w > = 5.0952$

$$N^R = 206$$

$$C_L = (2 \times 21 \times 15000) + (2 \times 21 \times 5000 \times 5.0952) + (2 \times 206 \times 2000) = 2$$
 523 992 \in

$$< d > = \frac{100}{14}$$
 $< d > = 7.1429$

$$\langle P_{exc} \rangle = 7.1429 \times 2.14$$
 $\langle P_{exc} \rangle = 15.2858$

$$C_N = (14 \times (10000 + (100 \times 100 \times 15.2858)) + (100 \times 1.25 \times 1536) + (100 \times 2.5 \times 0) + (100 \times 10 \times 440) + (100 \times 40 \times 92) + (100 \times 100 \times 00)))$$

$$C_N = 2\ 280\ 012 + 1\ 000\ 000 = \mathbf{3}\ \mathbf{280}\ \mathbf{012} \ \mathbf{\in}$$

$$CAPEX = 2\ 523\ 992 + 3\ 280\ 012$$
 $CAPEX = 5\ 804\ 004\$ €

5.2.2 ILP

5.2.3 Heurísticas

CAPEX							
				Preço Unitário	Custo	Total	
Custo da		OLTs	42	15 000 €	630 000 €		
	Can	ais Óticos	234	5000 €	1 170 000 €	2 624 000 €	
Ligação	Amp	olificadores	412	2000 €	824 000 €		
		EXCs	14	10 000 €	140 000 €		
	Élétrica	Portas ODU0	1536	100 €/Gbit/s	192 000 €	3 480 000 €	
		Portas ODU1	0	100 €/Gbit/s	0 €		
		Portas ODU2	440	100 €/Gbit/s	440 000 €		
Custo do		Portas ODU3	92	100 €/Gbit/s	368 000 €		
Nó		Portas ODU4	0	100 €/Gbit/s	0 €		
		Transponders	234	100 €/Gbit/s	2 340 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede	· •		6 104 000 €	

Table 5.14: CAPEX para o rede real no modo de transporte opaco com ordenação descendente e critério de routing saltos.

CAPEX							
			Quantidade	Preço Unitário	Custo	Total	
Custo da		OLTs	42	15 000 €	630 000 €		
	Can	ais Óticos	243	5000 €	1 215 000 €	2 669 000 €	
Ligação	Amp	olificadores	412	2000 €	824 000 €		
		EXCs	14	10 000 €	140 000 €		
	Élétrica	Portas ODU0	1536	100 €/Gbit/s	192 000 €	3 570 000 €	
		Portas ODU1	0	100 €/Gbit/s	0 €		
		Portas ODU2	440	100 €/Gbit/s	440 000 €		
Custo do		Portas ODU3	92	100 €/Gbit/s	368 000 €		
Nó		Portas ODU4	0	100 €/Gbit/s	0 €		
		Transponders	243	100 €/Gbit/s	2 430 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede	,		6 239 000 €	

Table 5.15: CAPEX para o rede real no modo de transporte opaco com ordenação ascendente critério de routing .

CAPEX							
			Quantidade	Preço Unitário	Custo	Total	
Custo da		OLTs	42	15 000 €	630 000 €		
Ligação	Can	ais Óticos	260	5000 €	1 300 000 €	2 754 000 €	
Ligação	Amp	olificadores	412	2000 €	824 000 €		
		EXCs	14	10 000 €	140 000 €		
	Élétrica	Portas ODU0	1536	100 €/Gbit/s	192 000 €	3 740 000 €	
		Portas ODU1	0	100 €/Gbit/s	0 €		
		Portas ODU2	440	100 €/Gbit/s	440 000 €		
Custo do		Portas ODU3	92	100 €/Gbit/s	368 000 €		
Nó		Portas ODU4	0	100 €/Gbit/s	0 €		
		Transponders	260	100 €/Gbit/s	2 600 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede	,		6 494 000 €	

Table 5.16: CAPEX para o rede real no modo de transporte opaco com ordenação descendente e critério de routing km.

CAPEX							
			Quantidade	Preço Unitário	Custo	Total	
Custo da		OLTs	42	15 000 €	630 000 €		
Ligação	Can	ais Óticos	271	5000 €	1 355 000 €	2 809 000 €	
Ligação	Amp	olificadores	412	2000 €	824 000 €		
		EXCs	14	10 000 €	140 000 €		
	Élétrica	Portas ODU0	1536	100 €/Gbit/s	192 000 €		
		Portas ODU1	0	100 €/Gbit/s	0 €	3 850 000 €	
		Portas ODU2	440	100 €/Gbit/s	440 000 €		
Custo do		Portas ODU3	92	100 €/Gbit/s	368 000 €		
Nó		Portas ODU4	0	100 €/Gbit/s	0 €		
		Transponders	271	100 €/Gbit/s	2 710 000 €		
		OXCs	0	20 000 €	0 €		
	Ótcia	Portas OXC	0	2 500 €	0 €		
		Custo	Total da Rede	,		6 659 000 €	

Table 5.17: CAPEX para o rede real no modo de transporte opaco com ordenação ascendente e critério de routing km.

5.2.4 Análise Comparativa

Custo económico

		Heurísticas	Heurísticas	Analítico	ILP
		(ordem descendente)	(ordem ascendente)	Anantico	ILP
	Create lime e c	2 624 000 €	2 669 000 € (+1,7%)	2 523 392 € (-8,3%)	
Rede	Custo ligação Custo nó	3 480 000 €	$3\ 570\ 000 \in (+2,6\%)$	3 280 012 € (-5,7%)	Em
real	CAPEX				execução
	CALEA	6 104 000 €	6 239 000 €(+2,2%)	5 804 004 €(-4,9%)	

Table 5.18: Comparação dos resultados das heurísticas com o modelo analítico e o ILP .

Tempo de execução

		Heurísticas	ILP
Rede real	Tempo de execução	15 s	Em execução

Table 5.19: Comparação do tempo de execução das heurísticas com o ILP.

Chapter 6

Conclusões e trabalho futuro

- 6.1 Conclusões
- 6.2 Trabalho futuro