-1 G. 1A

	9 , 1	. —
ATGTGGAAATGGATACTGACACATTGTGCCTCAGCCTTTCCCCAGCTGCCGGCTGCTGC	TACACCTTTACCTATGACTGTGTAACACGGAGTCGGAAAGGGGGTGGACGGGCCGACGACGACGACGACGACGACGACGACGACG	MWKWILTHCASAFPHIPGCC

<u>2</u> TGCTGCTGCTTTTTTGCTGTTCTTGGTGTCTTCCGTCCCTGTCACCTGCCAAGCCCTT ACGACGACGAAAAACGACAAGAACCACAGAAGGCAGGGACAGTGGACGGTTCGGGAA

<u>۔</u>

80 C C C F L L F L V S S V P V T C Q

2

240 AGGTCGCGCCCTTCGATGTTAGTGAAGTTCTTACAGGCGACCTCT TCCAGCGCGGAAGGCATGTGCGGAGCTACAATCACCTTCAAGGAGATGTCCGCTGGAGA

<u>@</u>

ഗ

S

S

S

S

Z

E A T

· Д

Ŋ

> E

တ ပ

Ω ပ 7 0 × z MATCH WITH FIG. 1B S > ï œ Ċ æ

the first first first first from the first first from the first from the first from the first from the first first from the first first first from the first

	300	í		360	١.		420	1		480	ſ	
AAGCTATTCTCTTTCACCAAGTACTTTCTCAAGATTGAGAAGAACGGGAAGGTCAGCGGG	TTCGATAAGAGAAAGTCGTTCATGAAAGAGTTCTAACTCTTCTTGCCCTTCCAGTCGCCC	KLFSFTKYFLKIEKNGKVSG	ACCAAGAAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT	TGGTTCTTCCT	TKKENCPYSILEITSVEIGV	GTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTC	CAACGGCAGTTTCGGTAATTGTCGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTTGAG	V A V K A I N S N Y Y L A M N K K G K L	TATGGCTCAAAGAATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGA	ATACCGAGITITICITAAATIGITACIGACATICGACITICCICICCTAICTCCTTTTACCT	Y G S K E F N N D C K L K E R I E E N G	MATCH WITH FIG. 1C

Ê

MATCH WITH FIG. 1B FIG. 1C

481		SCAPP.	
5		CGTAAC	54(
	Y N T Y A S F N W Q H N G R Q M Y V A L	A	
541	AATGGAAA	ו קינוני	
}	•	+	909
	N G K G A P R R G Q K T R R N T S A	51505	1
109	TTTCTTCCA		

F16.2A

		I'R. ANNTELD	PAATDRNPIG	•	• • • • • • • • • • • • • • • • • • • •	NYFGVODAVP	HTTOTATO	ייידל האלפוזמ	TTTLLNSSN	IWLLLISLLE	TLGOGHEDRP	•	006	001	··· LLGIKRL	LVGIKRO	CPSGRPH.		INKP	··· FK · · DP	LKGILRR	MEGGDIR	to care	メノクラ・ス・・・・	L.GGAPR	EQSLVTDQLS
		YDI A DYCONG	-	•		MAPLGEVG	YRSCR	-	なつつつつらなかれ		RGPGAGNPAD			からならなられ		VINNESC. Y.	LEOSSFOW.	. 2				RHTRSYDY	REVRSYME			LPKVTQRHVR
		LIT, SAWAHGE					ILTWILPTLL				VAUVRSAAQK			AA. OPKEAA	THE THE	54	AND LESO GSG	KFN. LPPG	DGGGGAFDC	ひらむ ようしんほうし	SALTOONEGA	· · · · · SSPE	SSFSSPSSAG	RIREDAG.		VSUNÇA VS
ALL PAVILLAL	TLWALVELGT	SFLLLLFFSH			•		MHKW	HWKW			חבת אחת שחת ה			VALSLARLPV	LSRSRAGLAG		さいこうこうないので	ELTTFTALTE	SITTLPALPE	SPVT.T.SDHT.C		_	Vareatindes	•	_	
MS.GPGTAAV	MSRGAGRLOG	MSL				•	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		MGSDBSATSO TITUTION OF				AELERRWESL	SRGWGTL	SSSROSSSS	0000X	Sara	MAAG	FGNVPVLPVD	L'ACNIDAMPEO		いっとなっているとう	PGWPAAGPGA	FGORSRAGKN	
	FGF6		•							FGF8		•							FGF2	FGF9	FGF7	KGFO		rGF3	FGF8	ı

MATCH WITH FIG. 2B

ய

MATCH WITH FIG.

		•								
150	LSPVERGV. V	ISTVERGV. V	IFAVSQGI.V	LSAESVGE. V	LQAEERGV.V	FISIAVGL.V	IRTVAVGI : V	ITSVEIGV. V	ITAVEVGI.V	VETDTFGSRV
	ADT. RDSLLE	EEN. PYSLLE	EAN. MLSVLE	DRSDQHIQLQ	EKSDPHIKLO	KDHSRFGILE	EMKNINYNIME	KENCPYSILE	ENSAYSILE	EDGDPFAKLI
٦ ت	LPDGRIGGAH	LPDGRISGTH	YPDGKWNGSH	LPDGTVDGTR	HPDGRVDGVR	FPNGTIQGTR	DKRGKVKGTQ	EKNOKVSGTK	HPSGRVNGSL	LANKRINAMA
	YC NVGIGFHLOA	NVGIGFHLQV	RVGIGFHLQI.	SNG. GHFLRI	KNG. GFFLRI	R.T.GFHLEI	CRT. OWYLRI	SFT. KYFLKI	CAT. KYHLQL	SRTSGKHVQV
101	_	•	GSL	•		RQLYC	VRRIF	WRKLF	RRKIV	RRLIRTYQLY
								KGF2		

200 YNAYESYKY YNAYESDL YNTYASP YNTYI YNY YNTY TEKRILLPNN KFRETLLPNN KFRERFOENS KLKERIBENG FFFERLESM VFREQFERNW EFVERTHELG LFLERLEENH NFKELILENH VETRIVLEN G. SKEFNIDC G. SPFFTDEC A. TPSFQEEC G. SEKLTQEC A. KKRCNEDC A. SEHYSAEC A. SAKFTDDC G. SQTPNEEC A. SKCVTDEC AKSNGKGKDC LAMNKKGKLY VAMNSKGRLY LAMNKEGKLY LAMNKRGRLY LAMOTOGLLY LCMNEKGELY LAMSKKGKLH LAMKEDGRIL ICMNKKGKLI VAMSSKGKLY AVKAINSNYY SIRGVDSGLY AIRGVESEFY AIRGLESGRY SLFGVRSALF YIKSTETGOY SIKGVCANRY SIFGVASRFF **SIRGVFSNKF** KGF2 FGF3 FGF4 FGF6 FGF5 FGF1 FGF2 FGF9 FGF7

MATCH WITH FIG. 2C

	250 KVTHFLPRL. TVTHFLPRI. ISTHFLPRFK KAILFLPRSA KAILFLPRSA KATHFLPRPV KTAHFLPRAI TSAHFLPMAI TSAHFLPWV KSSLFLPRVL KSSLFLPRVL	300 YRLKFRFG.
S	G. NRVSPTM G. SKVSPTM G. SKVSPTM G. PRTHYGQ G. SKTGPGQ G. KKTKKEQ G. KKTKKEQ G. KKTKKEQ G. SKTRKY	APRKNTNSVK KQSPDNLEPS WAPEPR
F16.20	ALSKNGKTKK ALSKYGRVKR ALNKRGKAKR GLKKNGSCKR ALKRTGQYKL ALKRTGQYKL ALNKDGTPRE ALNGKGAPRR SVNGKGAPRR SVNGKGRPRR	PIKSKIPLS GVQPRRRRQ RSLRGSQRT
FIG. 2B	GMFI GTXI TEKTGREWYVAEKNWFVT.SWYVDTGRRYYV THNGGEM.FV QHNGRQM.YV QPSAERLWYV	LSFT VTVPEKKNPP SELYK DILSQS. MVRQ LQSGLPRPPG KEQSL RFEFLNYPPF T
MATCH WITH FIG.	HV. AKW TVSSTPGARR	QSEQPELSFT SSD. KS. DPDKVPELYK T. HS. DHRDHEMVRQ RGHHTTEQSL
	FGF4 FGF5 FGF7 FGF7 FGF7 FGF8 FGF8	FGF4 FGF5 FGF5 FGF7 FGF3 FGF8

F1 G. 2D

MATCH WITH FIG. 2C

30T	•	_	_	_	•	•	•	LEASAH	•
•	4	•	•		FGF9		2	٠ <u>.</u>	8

Figure 3A

GGAI	ATTC	CGG	GAAG	AGAG	gg aj	AGAA	AACA	A CG	GCGA	CTGG	GCA	GCTG	CCT	CCAC	TTCTC	EA 60
CAA	CTCC	AAA	GGĢA:	rata(CT T	GTAG	AAGT	G GC	reğe	AGGC	TGG	GGCT	CCG	CAGA	GAGAG	<u>A</u> 120
CCAC	BAAG	etg	CCAA	cccc	AG AG	GGGG'	rgca	G AT	ATCT	cccc	CTA	TTCC	CCA	cccc	ACCTO	CC 180
CTT	BGGT.	TTT	GTTC	ACCG:	rg C	TGTC	ATCT	G TT	TTTC	agac	CTT	lilg	GCA	TCTA	ACATO	SG 240
TGAI	\GAAI	AGG	AGTAI	LAGA	AG A	GAAC	AAAG:	T AA	CTCC	rggg	GGA	GCGA	AGA	GCGC	TGGTG	300
CCA	CAC	CAC	CAAC	3CCA (CC AC	CCAG	CTCC.	r GC	rgciv	GCGG	CCA	CCCA	CGT	CCAC	CATTI	A 360
CCGG	EGAG	3CT	CCAGI	AGGC	A TE	GGCA(3CGG2	A TC	CGAG	AAAG	GAG	CGAG	GGG	AGTC	AGCCG	G 420
CTTI	TTCC	EAG	GAGT	PATG	T AE	GTTG	etgc:	A TT	CACT	TCTG	GCC	AGATY	CCG	CGCC	CAGAG	G 480
:=														•	ACCCI	T 540
CCAG	TATO	FTT	CCTT	TGA!	rg ac	GACAI	ATTTY	C CAC	3TGC(CGAG	AGT	FTCA	GTA		TG et	59 5
TGG	AAA Lys	TGG	ATA Ile	CTG Leu	ACA Thr	CAT	TGT	GCC	TCA	GCC	TTT	CCC	CAC	CTG	CCC	643
Gly	Сув	Сув	Cys	Cys	Cys	Phe	Leu	Leu	Leu	TTC Phe	TTG Leu	GTG Val	TCT Ser	TCC Ser	GTC Val	691
CCT	GTC	ACC	TGC	ÇAA	GCC	CTT	GGT	CAG	GAC	ATG	GTG	TCA	CCA	GAG	GCC	739
Pro	Val	Thr	Cys	Gln	Ala	Leu	Gly	Gln	Asp	Met	Val	Ser	Pro	Glu	Ala	
ACC	AAC	TCT	TCT	TCC	TCC	TCC	TTC	TCC	TCT	CCT	TCC	AGC	GCG	GGA	AGG	787
Thr	Asn	ser	Ser	Ser	Ser	Ser	Phe	Ser	Ser	Pro	Ser	Ser	Ala	Gly	Arg	
CAT	GTG	CGG	AGC	TAC	AAT	CAC	CTT	CAA	GGA	GAT	GTC	CGC	TGG	AGA	AAG	835
HIB	Val	Arg	Ser	Tyr	Asn	His	Leu	Gln	Gly	Asp	Val	Arg	Trp	Arg	Lys	
CTA	TTC	TCT	TTC	ACC	AAG	TAC	TTT	CTC	AAG	ATT	GAG	AAG	AAC	GGG	AAG	883
Leu	Phe	Ser	Phe	Thr	Lys	Tyr	Phe	Leu	ГÃв	Ile	Glu	Lys	Asn	Gly	Lys	
GTC	ÄGC	GGG	ACC	AAG	AAG	GAG	AAC	TGC	CCG	TAC	AGC	אדער	Calca	 GNG	እመአ	931
Val	Ser	Gly	Thr	Lys	Lys	Glu	Asn	Сув	Pro	Tyr	Ser	Ile	Leu	Glu	Ile	931
ACA	TCA	GTA	GAA	ATC	GGA	GTT	GTT	GCC	GTC	מממ	פככ	ATT	אאכ	ngc.	220	979
Thr	Ser	Val	Glu	Ile	Gly	Val	Val	Ala	Val	Lys	Ala	Ile	Asn	Ser	Asn	379
Tvr	Tvr	Len	GCC Ala	ATG Met	AAC	AAG	AAG	GGG	AAA	CTC	TAT	GGC	TCA	AAA	GAA	1027
									-			•				
TTT	AAC	AAT	GAC	TGT	AAG	CTG	AAG	GAG	AGG	ATA	GAG	GAA	AAT	GGA	TAC	1075
Phe	Asn	Asn	qaA	Cys	Lys	Leu	Lys	Glu	Arg	Ile	Glu	Glu	Asn	Glv	Tvr	_

Figure 3B

AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT - Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr -	1123
GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg	1171
AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser	1216
TAGAGGAAGG CAACGTTTGT GGATGCAGTA AAACCAATGG CTCTTTTGCC AAGAATAGTG	1276
GATATTCTTC ATGAAGACAG TAGATTGAAA GGCAAAGACA CGTTGCAGAT GTCTGCTTGC	1336
TTAAAAGAAA GCCAGCCTTT GAAGGTTTTT GTATTCACTG .CTGACATATG ATGTTCTTTT	1396
AATTAGTTCT GTGTCATGTC TTATAATCAA GATATAGGCA GATCGAATGG GATAGAAGTT	1456
ATTCCCAAGT GAAAAACATT GTGGCTGGGT TTTTTGTTGT TGTTGTCAAG TTTTTGTTTT	1516
TAAACCTCTG AGATAGAACT TAAAGGACAT AGAACAATCT GTTGAAAGAA CGATCTTCGG	15.76
GAAAGTTATT TATGGAATAC GAACTCATAT CAAAGACTTC ATTGCTCATT CAAGCCTAAT	1636
GAATCAATGA ACAGTAATAC GTGCAAGCAT TTACTGGAAA GCACTTGGGT CATATCATAT	1696
GCACAACCAA AGGAGTTCTG GATGTGGTCT CATGGAATAA TTGAATAGAA TTTAAAAATA	1756
TAAACATGTT AGTGTGAAAC TGTTCTAACA ATACAAATAG TATGGTATGC TTGTGCATTC	1816
TGCCTTCATC CCTTTCTATT TCTTTCTAAG TTATTTATTT AATAGGATGT TAAATATCTT	1876
TTGGGGTTTT AAAGAGTATC TCAGCAGCTG TCTTCTGATT TATCTTTTCT TTTTATTCAG	1936
CACACCACAT GCATGTTCAC GACAAAGTGT TTTTAAAACT TGGCGAACAC TTCAAAAATA	1,996
GGAGTTGGGA TTAGGGAAGC AGTATGAGTG CCCGTGTGCT ATCAGTTGAC TTAATTTGCA	2056
CTTCTGCAGT AATAACCATC AACAATAAAT ATGGCAATGC TGTGCCATGG CTTGAGTGAG	2116
AGATGTCTGC TATCATTTGA AAACATATAT TACTCTCGAG GCTTCCTGTC TCAAGAAATA	2176
GACCAGAAGG CCAAATTCTT CTCTTTCAAT ACATCAGTTT GCCTCCAAGA ATATACTAAA	2236
AAAAGGAAAA TTAATTGCTA AATACATTTA AATAGCCTAG CCTCATTATT TACTCATGAT	2296
TTCTTGCCAA ATGTCATGGC GGTAAAGAGG CTGTCCACAT CTCTAAAAAC CCTCTGTAAA	2356
TTCCACATAA TGCATCTTTC CCAAAGGAAC TATAAAGAAT TTGGTATGAA GCGCAACTCT	2416

Figure 3C

CCCAGGGGCT	TAAACTGAGC	AAATÇAAATA	TATACTGGTA	TATGTGTAAC	CATATACAAA	247
AACCTGTTCT	AGCTGTATGA	TCTAGTCTTT	ACAAAACCAA	ATAAAACTTG	TTTTCTGTAA	253
ATTTAAAGAG	CTTTACAAGG	TTCCATAATG	TAACCATATC	AAAATTCATT	TTGTTAGAGC	259
ACGTATAGAA	AAGAGTACAT	AAGAGTTTAC	CAATCATCAT	CACATTGTAT	TCCACTAAAT	265
AAATACATAA	GCCTTATTTG	CAGTGTCTGT	AGTGATTTTA	Aaatgtaga	AAAATACTAT	271
TTGTTCTAAA	TACTTTTAAG	CAATAACTAT	AATAGTATAT	TGATGCTGCA	GTTTTATCTT	277
CATATTTCTT	GTTTTGAAAA	AGCATTTTAT	TGTTTGGACA	CAGTATTTTG	GTACAAAAA	2836
AAAGACTCAC	TAAATGTGTC	TTACTAAAGT	TTAACCTTTG	GAAATGCTGG	CGTTCTGTGA	2896
TTCTCCAACA	AACTTATTTG	TGTCAATACT	TAACCAGCAC	TTCCAGTTAA	TCTGTTATTT	2956
TTAAAAATTG	CTTTATTAAG	AAATTTTTTG	TATAATCCCA	TAAAAGGTCA	TATTTTTCCC	3016
ATTCTTCAAA	AAAACTGTAT	TTCAGAAGAA	ACACATTTGA	GGCACTGTCT	TTTGGCTTAT	3076
AGTTTAAATT	GCATTTCATC	ATACTTTGCT	TCCAACTTGC	TTTTTGGCAA	ATGAGATTAT	3136
AAAAATGTTT j	AATTTTTGTG	GTTGGAATCT	ggatgttaaa	ATTTAATTGG	TAACTCAGTC	3196
TGTGAGCTAT	AATGTAATGC	ATTCCTATCC	Aaactaggta	TCTTTTTTC	CTTTATGTTG	3256
AAATAATAAT []	GGCACCTGAC	ACATAGACAT	AGACCACCCA	CAACCTAAAT	TAAATGTTTG	3316
GTAAGACAAA	TACACATTGG	ATGACCACAG	TAACAGCAAA	CAGGGCACAA	ACTGGATTCT	3376
TATTTCACAT	AGACATTTAG	ATTACTAAAG	AGGGCTATGT	GTAAACAGTC	ATCATTATAG	3436
TACTCAAGAC	ACTAAAACAG	CTTCTAGCCA	AATTATATAA	AGCTTGCAGA	GGCCAAAAAT	3496
AGAAAACATĊ	TCCCCTGTCT	CTCCCACATT	TCCCTCACAG	AAAGACAAAA	AACCTGCCTG	3556
	TCACACCTGT					3616
	CTAGACAGGC					3676
	AATGTAGCCA					3736
					CTATAATCTT	3796
	•				AGAAAAGAGA	3,856
				•	AAGGAAGGAA	3916
					GAGAAAGAAA	3976
GWT T.G.L.LLCG	TAAGGAGTAA	TGACATTCTC	TTGCATTTAA	AAGTGGCATA	TTTGCTTGAA	4036

Figure 3D

TTCGCCCTAT	AGTGAGTCGT	A .	•			4177
			AAAAAAACTC	GAGGGGGGC	CCGTACCCAA	4156
ССТСАВТСТТ	GTAGATOTCA	****			•	
ATGGAAATAG	AATTCTGGTC	CCTTTTGCAA	CTACTGAAGA	AAAAAAAAG	CAGTTTCAGC	4096

Figure 4A

Figure 4C

Figure 4B

SPEATNSSSS FSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFL

Figure 4D

Figure 4E

.NGKGAPRRGQKTRRKNTSAHFLPMVVHS

■ Alpha, Regions - Garnier-Robson

■Alpha, Regions - Chou-Fasman

■Beta, Regions - Garnier-Robson

■ Beta, Regions - Chou-Fasman

■Tum, Regions - Garnier-Robson

■Tum, Regions - Chou-Fasman

■ Coil, Regions - Gamler-Robson

■ Hydrophilicity Plot - Kyte-Doolittle

☐ Hydrophobicity Plot - Hopp-Woods

■ Alpha, Amphipathic Regions - Eisenberg

■ Beta, Amphipathic Regions - Eisenberg

M Flexible Regions - Karplus-Schulz

Z Antigenic Index - Jameson-Wolf

■ Surface Probability Plot - Emini

The state of the s

Figure 6

Figure 7

Figure 8

1-3 Minimal cell accumulation, no granulation 4-6 Immature granulation, inflammatory cells, capillaries 10-12 Fibroblasts, collagen, epithelium

Figure 10

1-3 Minimal cell accumulation, no granulation
4-6 Immature granulation, inflammatory cells, capillaries
7-9 Granulation tissue, cells, fibroblasts, new epithelium
10-12 Fibroblasts, collagen, epithelium

Anti-cytokeratin immunostaining
0 - No closure
5 - Slight to moderate closure
10 - Complete closure

PCNA Scoring
0-2 Slight proliferation
3-5 Moderate proliferation
6-8 Intense proliferation

Figure 14

PCNA Scoring
0-2 Slight proliferation
3-5 Moderate proliferation
6-8 Intense proliferation

Figure 15

ATGAGAGGATCGCATCACCATCACCATCACGGATCCTGCCAGGCTCTGGGTC
AGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCTTCTCTCTTCCCC
CGTCTTCCGCTGGTCGTCACGTTCGTTCTTACAACCACCTGCAGGGTGACGTTC
GTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAAATCGAAAAA
AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTCAAAGCCATCCTG
GAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAG
CAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAG
AATTTAACAATGACTGTAAGCTGAAGGAGAGGATAATGGGAGAAAATGTAT
ACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGCAAAATGTAT
GTGGCATTGAATGGAAAAAGGAGGAGAGAAAACACGAAG
GAAAAACACCTCTGCTCACTTTCTTCCAATGGTGCTACACTCATAG

MRGSHHHHHHGSCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGD VRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSN YYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA LNGKGAPRRGQKTRRKNTSAHFLPMVVHS

kgf-2 synthetic cys37 Bam HI
AAAGGATOCTGCCAGGCTCTGGGTCAGGACATG

the second of th

Figure 18

And the state of t

Day 10 Postwounding

Figure 21A

conc. (ng/ml)

Figure 21B

conc. (ng/ml)

conc. (ng/ml)

Figure 22B

	•	
	ATGTGGAAATGGATACTGACCCACTGCGCTTCTGCTTTCCCGCACCTGCCGGGTTGCTG	C 60
	TGCTGCTGCTGCTGCTGTTCCTGGTTTCTTCTGTTCCGGTTACCTGCCAGGCTCTCCys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser Val Pro Val Thr Cys Gln Ala Leu	3 12: !
F" 5	GGTCAGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCTTCCTCTCTCCCCGGIy Gin Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser Ser Phe Ser Ser Pro	180
	ACTTCCGCTGGTCGTCACGTTCGTTCTTACAACCACCTGCAGGGTGACGTTCGTT	- 240
	AAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAAAACGGTAAAGTTTCTGGG Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys IIe Glu Lys Asn Gly Lys Val Ser Gly	300
	ACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT Thr Lys Lys Glu Asn Cys Pro Tyr Ser IIe Leu Glu IIe Thr Ser Val Glu IIe Gly Val	36(
_	STTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTC Val Ala Val Lys Ala IIe Asn Ser Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu	42(
1	TATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGA Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly	48(
T	ACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATGT	54(
A	ATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAAACACCTCTGCTCAC Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg Lys Asn Thr Ser Ala His	6Ö(
Т	TTCTTCCAATGGTGGTACACTCATAG 627	

Phe Leu Pro Met Val Val His Ser •

Figure 24A

	Met Thr Cys Gln Ala Leu Gly Gln Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser	60
	TCCTCTTTCTCTCCCCGTCTTCCGCTGGTCGTCACGTTCGTT	120
Ī.,	GGTGACGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAA	180
	AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACA Asn Gly Lys Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr	240
ì.,	TCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATG Ser Val Glu IIe Gly Val Val Ala Val Lys Ala IIe Asn Ser Asn Tyr Tyr Leu Ala Met	
	AACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAG Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu	36(
	AGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG Arg Ile Glu Glu Asn Gly Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg	420
	CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGG GIn Met Tyr Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg	480
	AAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG 525 Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser •	

Figure 24B

ΑT	GA	CT	TG	СĊ	AG	GC	AC	TG	G	3T(CAA	١G	AC.	AΤ	ĢG	TT	TC	CC	CG	G	AAG	C	ΓΑ	CC	4A(CAC	SC.	ГС	CAG	CI	rci	ΓΑĞ	СТ	TCA	
TA	CT	GA.	AC	GG	TC	CG	TG	AC	C	A	3T1	C.	rg'	ΓA	CC	AA.	AG	GG	GC	C1	TC	G/	\T(3G1	- -	370	:G/	/G(STO	G/	\GA	TC	GA	AGT	70
М		T			Q	:	•				a)			٧			P			A	_	Γ	N	S		s	S		s	s		F	
GC	AG	CC	CA	LĊ.	TA	GC	GC	AG	G	CC	TC	AC	:G1	TT	CG	CTO	CT	TA	CA	AC	CA	CT	TA	\CA	ـــــ GG	GT	G/	TO	TT	CG	TT			CAA	•
CG	TC	3G(3T/	\G	AT	CG	CG	TC	C/	GC	AG	TO	ic.	\A(3C(GA	SA.	ΑT	GT	+→ TG	GT	GA	ΑΊ	GT	CC	CA	CT	AC	AA	+→ GC	ÀA:	CC	GCI	CAA GTT	140
S	s		,	s					_							•																-			
		<u> </u>		<u>.</u>		3	<u>A</u>		G	R		-			<u></u>					_			L		1	G.	0		٧	R	٠	W	R	K	
																																		SAG	210
16	ACA	\A(eTC	:G/	\A/	\T(3G	TT	CA	TG	AA	GG	AC	T	T	r A G	C	LL.	TT	TT	TG	CC	ΑT	TT	CA	AA	GA	CC	CT	GG	TT	CT	ГСС	TC	211
ι	-	F	S	}	F	1	Γ ')K		Y	F		L	K		1	8	Ξ	K		N	G		K	٧	;	s	G	•	Т	ĸ	ı	(Ε	
AAC	TG	CC	CG	T	CA	GC	:V.	rc(CT	GG	AG	AT	AA	CA	TC	AG	T.	\G/	\A/	A T	CG	GA			<u></u>		- 	<u> </u>		<u> </u>		ب			
TTC																																			280
														_			•••			•••		•	-	~ C	nn	C G		nu		,	96	IAP	111	GI	
<u>N</u>	<u>_</u>		Р	Y 		S			Ţ		E			T			٧.			<u>. </u>	`	3 			٧	Α		٧				I.	• • •		
GCA																																			350
CGT	TG	ΑT	AA	TG	ΑĄ	TC	GG	T/	C	TT	GT.	TC	TΤ	cċ	CC	TT	TG	AG	A	A	CCC	3AC	3T	TT.	LC.	TT/	۱A	٩T.	rg1	T/	4C1	-GA	CA	TT	350
s	N	Y		Y	L		A	۲	į.	N	,	(к		G	ĸ		ı.	Y	,	G	•		K		<u> </u>	F		1		_		_		
GCT	GA.	AG	GA	GA	GG	AT	ΔG	· · ·	:C	ΔΔ.	ΔΔ1		CA.	T A	<u> </u>	A T	4.0													N			<u>C</u>	K	
CGA																																			420
	•			••	-	•••				• •	,	101	- 1 4	• •	91	IA	16	GΑ	IA		i (P	\G I	A	AA I	110	3AC	:C(37(GT	AT	TA	CC	CT	CC	
L	1	Ķ	E		R	I.		Ε		<u> </u>	N	(3	Y	_	N	T		Y	A		s	F	.	N	W	1	Q	Н	١.	N	G	ŧ	R	
CAA	AT	GT.	AT	GT	GG	CA	TT	GA	Α	rg(SA/	\A/	\G(ĠΑί	GC	TC	ÇA.	AG	GĄ	GA	GG	AC	AC	AA:	AA/	LE A	CO	AA	\GG	AA	IAA	AC	AC	CT	
GTT																																			49(
Q	м		Y						N			ĸ									-														
CTG	CTO			•					٠.						A		, 			K ···	- G		<u>a</u>	K	· 	T	R		R	_K 	<u> </u>	N N	T		
		- -	•				•		4-	-								52	5																
GAC	~~(4 m/	711	3 74,6	~ (a)	u 1	IA	··	AL	.CA		i 1 (iA(š T /	4 T (;																		
5 (A	Н	F	-	L	F	P	М		٧	٧		н	5	3																				

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL KERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY VALNGKGAPRRGQKTRKNTSAHFLPMVVHS.

£ij.

ATGGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAA AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGAT AACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAAGCCATTAACAGCAACTATTACTT AGCCATGAACAAGAAGAACTCTATGGCTCAAAAGAATTTAACAATGACTGTA AGCTGAAGGAGAGAAAATGGAAAAATGGATACCTATGCATCATTTAACTGG CAGCATAATGGGAGGCAAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAG AGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTAC ACTCATAG

MVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAM NKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQ KTRRKNTSAHFLPMVVHS.

ATGGAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCAT CCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCA ACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACCTATGCATC ATTTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAG CTCCAAGGAGAGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTTCCA ATGGTGGTACACTCATAG

MBKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDC KLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVH

ATGGAGAACTGCCCGTACAGCAT CCTGGAGATAACATCAGTAGAAATCGGAGTTGT
TGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAAC
TCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA
AATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTA
TGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACGAAGGAAA
AACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

MENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGY NTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

ATGGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACT CTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGGAGGAAAAATGGATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATG TGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAA CACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

MVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY VALMGKGAPRRGQKTRRKNTSAHFLPMVVHS.

 ${\tt MGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRKNTSAHFLPMVVHS.}$

The second secon

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL

:[]

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLK

W W

: C-37 To Ser

: C-106 To Ser

punoM

Area (sq. mm)

Treatment Groups	Wound Size (mm)	%Wound Closure	Histological Score	Re-epith. (μm)	BrdU Score
No Treatment	25.9 ± 2.5	58.8 ± 3.7	6.8 ± 0.2	1142 ± 141	3.8 ± 0.4
Buffer	. 25.1 ± 1.7	60.2 ± 2.6	6.4 ± 0.2	923 ± 61	5.0 ± 0.4
KGF-2/Δ33 (0.1μg)	22.0 ± 0.9	65 ± 1.4	6.8 ± 0.2	1275 ± 148	4.6 ± 0.7
KGF-2/Δ33 (0.4 μg)	21.1 ± 1.4	68.4 ± 2.4	8.0 ± 0.5 p=0.0445*	1310 ± 182	4.2 ± 0.7
KGF-2/Δ33 (1.0μg)	19.9 ± 1.5	66.2 ± 2.1	8.4 ± 0.4 p=0.0159* p=0.0053†	1389 ± 115 p=0.0074†	3.3 ± 0.25 p=0.0217†
KGF-2/Δ33 (4.0μg)	18.1 ± 1.6 p=0.0398* p=0.0200†	71.2 ± 2.6 p=0.0367* p=0.0217†	8.5 ± 0.3 p=0.0047* p=0.0445†	1220 ± 89 p=0.0254†	5.3 ± 0.9

Effect of KGF-2 \triangle 33 on PAF-induced paw edema in Lewis rats

Figure 43

Figure 44

Figure 45

Figure 46

Figure 47

Figure 48

Figure 49

FIGURE 50

FIGURE 51

-35

Operator 1

1 AAGCTT AAAAACTGCAAAAAAATAGTTTGACT

Operator 2

CONTROL OF THE ACACATTAA

S/D

94 AGAGGAGAAATTA CATATG

FIGURE 52

FIGURE 53

FIGURE 54

FIGURE 55

FIGURE 56

Proliferation of hepatocytes following systemic administration of KGF-2

FIGURE 57

FIGURE 58

Proliferation of renal epithelia after systemic administration of KGF-2

FIGURE 59

FIGURE 60