Language

Natural Language Processing

Natural Language Processing

- automatic summarization
- information extraction
- machine translation
- question answering
- text classification

•

Syntax

"Just before nine o'clock Sherlock Holmes stepped briskly into the room."

"Just before Sherlock Holmes nine o'clock stepped briskly the room."

"I saw the man on the mountain with a telescope."

Semantics

"Just before nine o'clock Sherlock Holmes stepped briskly into the room."

"A few minutes before nine, Sherlock Holmes walked quickly into the room."

"Colorless green ideas sleep furiously."

Natural Language Processing

formal grammar

a system of rules for generating sentences in a language

Context-Free Grammar

she saw the city


```
N → she city car Harry ...
D → the a an ...
V → saw ate walked ...
```

P → to on over ...

ADJ → blue busy old ...

NP -> N D N

NP -> N D N

NP -> N D N

VP -> V V NP

 $VP \rightarrow V \quad V \quad NP$

 $VP \rightarrow V \mid V \mid NP$

S \rightarrow NP VP

S \rightarrow NP VP

nltk

n-gram

a contiguous sequence of *n* items from a sample of text

tokenization

the task of splitting a sequence of characters into pieces (tokens)

Markov Chains

Text Categorization

"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the best games I've played in a long time."

"Kind of cheap and flimsy, not worth it."

"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the best games I've played in a long time."

"Kind of cheap and flimsy, not worth it."

"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the best games I've played in a long time."

"Kind of cheap and flimsy, not worth it."

bag-of-words model

model that represents text as an unordered collection of words

Naive Bayes

Bayes' Rule

$$P(b \mid a) = \frac{P(a \mid b) P(b)}{P(a)}$$

P(Positive)

P(Negative)

"My grandson loved it!"

P(| "my grandson loved it")

 $P(\ensuremath{\ \, em})$ "my", "grandson", "loved", "it")

 $P(\ensuremath{\e$

 $P(\Theta \mid \text{"my", "grandson", "loved", "it"})$

equal to

 $P(\text{"my", "grandson", "loved", "it"} \mid \Theta) P(\Theta)$

P("my", "grandson", "loved", "it")

 $P(\Theta \mid \text{"my", "grandson", "loved", "it"})$

proportional to

 $P(\text{"my", "grandson", "loved", "it"} \mid \Theta) P(\Theta)$

P(| "my", "grandson", "loved", "it")

proportional to

 $P(\Theta, \text{"my"}, \text{"grandson"}, \text{"loved"}, \text{"it"})$

 $P(\Theta \mid \text{"my", "grandson", "loved", "it"})$

naively proportional to

$$P(\ensuremath{\e$$

number of positive samples

number of total samples

 $P("loved" \mid \stackrel{ ext{$arphi}}{=}) = rac{ ext{number of positive samples with "loved"}}{ ext{}}$

number of positive samples

$P(\ensuremath{\e$

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P(\ensuremath{){\oplus}})P("my" | \ensuremath{){\oplus}})P("grandson" | \ensuremath{){\oplus}})$ $P("loved" | \ensuremath{){\oplus}})P("it" | \ensuremath{){\oplus}})$

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

P(-)P("my" | -)P("grandson" | -) P("loved" | -) P("it" | -)

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

P(-)P("my" | -)P("grandson" | -) P("loved" | -) P("it" | -)

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

0.00014112

<a>0.00006528

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

0.6837

<a href="mailto:0.316

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

<a>0.00006528

my	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

additive smoothing

adding a value α to each value in our distribution to smooth the data

Laplace smoothing

adding 1to each value in our distribution: pretending we've seen each value one more time than we actually have

Word Representation


```
he [1, 0, 0, 0]
wrote [0, 1, 0, 0]
[0, 0, 1, 0]
book [0, 0, 0, 1]
```

one-hot representation

representation of meaning as a vector with a single 1, and with other values as 0

```
he [1, 0, 0, 0]
wrote [0, 1, 0, 0]
[0, 0, 1, 0]
book [0, 0, 0, 1]
```

```
he [1, 0, 0, 0, 0, 0, 0, ...]
wrote [0, 1, 0, 0, 0, 0, 0, ...]
a [0, 0, 1, 0, 0, 0, 0, ...]
book [0, 0, 0, 1, 0, 0, 0, ...]
```

"He wrote a book."

"He authored a novel."

```
wrote [0, 1, 0, 0, 0, 0, 0, ...]
authored [0, 0, 0, 0, 1, 0, 0, ...]
         [0, 0, 0, 1, 0, 0, 0, ...]
book
         [0, 0, 0, 0, 0, 0, 1, ...]
novel
```

distributed representation

representation of meaning distributed across multiple values

```
ne [-0.34, -0.08, 0.02, -0.18, 0.22, ...]
Wrote [-0.27, 0.40, 0.00, -0.65, -0.15, ...]
a
        [-0.12, -0.25, 0.29, -0.09, 0.40, ...]
book [-0.23, -0.16, -0.05, -0.57, 0.05, ...]
```

"You shall know a word by the company it keeps."

J. R. Firth, 1957

for	he	ate
-----	----	-----

for breakfast he ate

for	lunch	he	ate
-----	-------	----	-----

for dinner he ate

for	he	ate
-----	----	-----

word2vec

model for generating word vectors

book memoir breakfast • lunch

dinner

novel

book book novel

dinner

Neural Networks

input network output

The only light in the room came from the lamp upon the table at which I had been reading.

La pièce n'était éclairée que par la lampe placée sur la table où je lisais.

Attention

the capital is

what is the capital of Massachusetts

Adapted from Bahdanau et al. 2015. Neural machine translation by jointly learning to align and translate

Transformers

input sequence

