Теория систем

Аметов Имиль Московский Технологический университет

01.09.2016

Оглавление

1	Лекция №1									
	1.1	Лекция №1. Задача о ранце.								
		1.1.1	Не делимые предметы							
		1.1.2	Задача о ранце с дробимыми предметами							
		1.1.3	Алгоритм Данцига							

4 ОГЛАВЛЕНИЕ

Глава 1

Лекция №1

1.1 Лекция №1. Задача о ранце.

1.1.1 Не делимые предметы

Предметы нельзя разделять. Тогда решение задачи о ранце приобретает вид:

$$Q(i+1,P) = \begin{cases} Q(i,P), \text{если } v_{i+1} \text{ (вес предмета)} > P \\ \max\{Q(i,P); C_{i+1} + Q(i,P-v_{i+1})\} \end{cases}$$

где Q(i+1,P) — решение для i+1-го предметов с максимальной грузоподъёмностью рюкзака в P килограмм, C_{i+1} — стоимость i+1-го предмета.

Решение для ценовой стоимости $5x_1+3x_2+6x_3+2x_4+4x_5 \rightarrow max$, массы $3x_1+2x_2+4x_3+x_4+2x_5 \leq 9, \ x_i \in \{0,1\}, \ i=1,2,...,5.$

P	1	2	3	4	5	6	7	8	9
1	0	0	5_1	5_1	5_1	5_{1}	5_1	5_1	5_1
2	0	3_2	5_1	5_{1}	81,2	81,2	81,2	$8_{1,2}$	$8_{1,2}$
3	0	3_2	5_1	$6_{3}1$	82,5	$9_{3,2}$	$11_{3,1}$	$11_{3,1}$	$14_{3,1,2}$
4	24	3_2	$5_{1,2}$	$7_{4,1}1$	84,3	$9_{3,2}$	114,3,2	134,3,1	14 _{3,1,2}
5	2_4	4_5	$6_{5,4}$	$7_{4,1}1$	$9_{5,1}$	$11_{5,4,1}$	$12_{5,4,3}$	12	$15_{5,4,3,2}$

Ответ: максимальную по цене нагрузку ранца можно получить из продуктов за номерами 5, 4, 3, 2.

1.1.2 Задача о ранце с дробимыми предметами

В этом случае алгоритм решения задачи принимает такой вид:

- 1. Для каждого предмета находим цену за единицу его массы (удельная стоимость) $\mu_i = \frac{C_i}{v_i}$
- 2. Упорядочиваем предметы по убыванию цены (по удельной стоимости).
- 3. В планируемом порядке предметы последовательно помещаются в ранец до тех пор, пока вес ранце это позволяет. Последний предмет помещается лишь частично.

1.1.3 Алгоритм Данцига

Задача заключается в том, чтобы разместить в ранец дробимые и не дробимые предметы с упором на максимальную стоимость.

В начале по старинке заполняются не дробимые предметы, а оставшееся место заполняется не дробимыми предметами.

Задача:

$$\begin{cases} 5x_1 + x_2 + 3x_3 + 2x_6 + 3x_7 \to \max \\ x_1 + 2x_2 + x_3 + 4x_6 + 3x_7 \le 9 \\ x_1, x_2, x_3 \in 0, 1 \\ x_6, x_7 \in [0; 1] \end{cases}$$

Найдём удельную стоимость для x_6, x_7 . Она будет такой:

$$\mu_6 = \frac{2}{4} = \frac{1}{2}, \mu_7 = 1.$$

Видим, что 7-й продукт более дорог чем 6-й и начинать надо именно с 7-го.

Строим таблицу:

i P	0	1	2	3	4	5	6	7	8	
1	0	51	51	51	51	51	51	51	51	5
2	0	5_{1}	51	61,2	61,2	$6_{1,2}$	61,2	61,2	61,2	61
3	0	5_{1}	81,3	81,3	91,2,3	$9_{1,2,3}$	91,2,3	91,2,3	$9_{1,2,3}$	91,
*	9	8	7	7	5	5	5	5	5	
**	⁵ 6(1),7(1)	$5_{6(1),7(1)}$	⁵ 6(1),7(1)	⁵ 6(1),7(1)	$4_{7(1),6(\frac{1}{2})}$	4 7(1),6($\frac{1}{2}$)	4 7(1),6($\frac{1}{2}$)	$4_{7(1),6(\frac{1}{2})}$	$4_{7(1),6(\frac{1}{2})}$	47(1)