This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is Claimed:

1. An semiconductor device, comprome.
a substrate having a source, a drain and a channel between said source and
said drain; and
a gate structure disposed over said channel, said gate structure having a
length of 1.25 µm or less and wherein the device does not include a lightly doped drain
region.
2. A semiconductor device as recited in claim 1, wherein said length is in
the range of approximately 0.25 μm to approximately 0.05 μm .
3. A semiconductor device as recited in claim 1, wherein said gate
structure includes an oxide layer and said oxide layer has a thickness in the range of
approximately 1.5 nm to approximately 20.0 nm.
4. A semiconductor device as recited in claim 1, wherein a series
source/drain resistance exists in the device, and said series source/drain resistance per µm
of gate width is in the range of approximately 20 Ω to approximately 100 Ω .
5. A semiconductor device as recited in claim 1, wherein the device is an
NMOSFET.
6. A semiconductor device are recited in claim 5, wherein said source and
said drain are doped n+ and said substrate is p-type.
7. A semiconductor device as recited in claim 1, wherein said source and
drain have a doping concentration in the range of approximately 1x10 ²⁰ atoms/cm ³ to
approximately 5X10 ²⁰ atoms/cm ³ .
8. A semiconductor device as recited in claim 1, wherein the device is
PMOSFET.

1	9. A semiconductor device as recited in claim 8, wherein said source and
2	said drain are doped p+ and said substrate is n-type.
1	10. A semiconductor device as recited in claim 2, wherein said oxide layer
2	and said substrate form an interface and said interface is substantially planar and stress-
3	free.
1 2	11. A semiconductor device as recited in claim 1, wherein said channel has a doping concentration of approximately 1X10 ¹⁶ /cm ³ to approximately 1X10 ¹⁹ /cm ³ .
1	12. A field effect transistor, comprising:
2	a substrate having a source, a drain and a channel between said source and
3	said drain;
4	a gate structure including an oxide, which forms and interface with said
5	substrate, wherein said gate structure has a length in the range of approximately 0.05 µm
6	to approximately $0.25 \mu m$ and the transistor does not include a lightly doped drain region
1	13. A transistor as recited in claim 12, wherein said channel has a length
2	in the range of approximately 0.05 μm to approximately 0.25 μm.
1	14. A transistor as recited in claim 12, wherein said oxide layer has a
2	thickness in the range of approximately 1.5 nm to approximately 20.0 nm.
1	15. A transistor as recited in claim 12, wherein a series source/drain
2	resistance exists in the transistor, and said series source/drain resistance is in the range o
3	approximately 20 Ω to approximately 100 Ω per μm of gate width.
.1	16. A semiconductor device as recited in claim 12, wherein the device is
2	an NMOSFET.
1	17. A semiconductor device as recited in claim 16, wherein said source
2	and said drain are doped n+ and said substrate is p-type.

1	18. A semiconductor device as recited in claim 12, wherein said source
2	and drain have a doping concentration in the range of approximately 1X10 ²⁰ atoms/cm ³ to
3	approximately 5X10 ²⁰ atoms/cm ³ .
.1	19. A semiconductor device as recited in claim 12, wherein the device is
2	PMOSFET.
1	20. A semiconductor device as recited in claim 19, wherein said source
2	and said drain are doped p+ and said substrate is n-type.
1	21. A transistor as recited in claim 12, wherein said interface is
2	substantially planar and stress-free.
_	
1	22. A semiconductor device as recited in claim 12, wherein said channel
2	has a doping concentration of approximately 1X10 ¹⁶ /cm ³ to approximately 1X10 ¹⁹ /cm ³ .
_	
1	23. A process for fabricating an integrated circuit, comprising:
_	
2	forming a gate structure over a substrate, said gate structure having a
3	length of approximately 1.25 µm or less; and
J	longer of approximation, and a
4	forming a source and a drain, said source and said drain not having lightly
5	doped regions.
5	doped regions.
1	24. A process for fabricating an integrated circuit as recited in claim 23,
1	wherein said process further comprises forming a channel before forming said source and
2	said drain.
3	Said drain.
	25. A process as recited in claim 23, wherein said forming said gate
1	
2	structure further comprises:
	c
3	forming an oxide layer over said substrate; and
•	and a large
4	forming a conductive layer over said oxide layer.

1	26. A process as recited in claim 24, wherein said channel is doped by a
2	halo implantation.
 ∴	
1	27. A process as recited in claim 23, wherein said length is in the range of
2	approximately 0.25 μm to approximately 0.05 μm.
	og 1
1	28. A process as recited in claim 25, wherein said oxide layer has a first
2	oxide portion and a second oxide portion.
	and the second s
1	29. A process as recited in claim 23, wherein a spacer is not formed
2	adjacent said gate structure.
	25 wherein said ovide layer has a
1	30. A process as recited in claim 25, wherein said oxide layer has a
2	thickness in the range of approximately 1.5 nm to approximately 20.0 nm.
_	31. A process as recited in claim 23, wherein said source and said drain
1	having doping levels in the range of approximately $1 \times 10^{20} / \text{cm}^3$ to $5 \times 10^{20} / \text{cm}^3$.
2	naving doping levels in the range of approximately 17210 70m to 51210 70m
1	32. A process as recited in claim 24, wherein said channel has a doping
2	level in the range of approximately 1X10 ¹⁶ /cm ³ to approximately 1X10 ¹⁹ /cm ³ .
2	level in the range of approximately real-
1	33. A process for fabricating an integrated circuit, comprising:
2	forming an oxide layer over a substrate;
3	forming a conductive layer over said oxide layer, said oxide layer and said
4	conductive layer forming a gate having a length of 1.25 µm or less;
5.	forming a channel in said substrate; and
6	forming a source and a drain, said source and said drain not having lightly
7	doped regions.

1	34. A process as recited in claim 33, wherein said channel is doped by a
2	halo implantation.
1	35. A process as recited in claim 33, wherein said length is in the range of
2	approximately 0.25 μm to approximately 0.05 μm.
1	36. A process as recited in claim 33, wherein said oxide layer has a first
2	oxide portion and a second oxide portion.
1	37. A process as recited in claim 33, wherein a spacer is not formed
2	adjacent said gate structure.
1	38. A process as recited in claim 33, wherein said oxide layer has a
2	thickness in the range of approximately 1.5 nm to approximately 20.0 nm.
1	39. A process as recited in claim 33, wherein said source and said drain
2	having doping levels in the range of approximately 1X10 ²⁰ /cm ³ to approximately
3	$5X10^{20}$ /cm ³ .
1	40. A process as recited in claim 33, wherein said channel has a doping
2	level in the range of approximately 1X10 ¹⁶ /cm ³ to approximately 1X10 ¹⁹ /cm ³ .