МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АРХИТЕКТУРЫ И СТРОИТЕЛЬСТВА

Инженерно-строительный институт Кафедра «Геотехника и дорожное строительство»

Пояснительная записка

к курсовой работе по дисциплине: «Основания и фундаменты, подземные сооружения»

На тему: «Оценка устойчивости шпунтовой стенки»

Принял:	Выполнил:
к.т.н. доц.	студент группы 22Ст3м
Кузнецов А. А.	Чупряков М.А
«»20 <u>23</u> г.	

Содержание

1. Характеристики грунтов	3
2. Расчет шпунтовой стенки по осредненным показателям	5
2.1. Определение коэффициентов активного и пассивного давлений	5
2.2. Определение активного и пассивного давлений	5
2.3. Расчет на опрокидование нераскрепленной стенки	7
2.4. Расчет на опрокидование раскрепленной стенки	7
3. Расчет шпунтовой стенки по уточненным характеристикам	8
3.1. Определение коэффициентов активного и пассивного давлений	9
3.2. Определение активного и пассивного давлений	9
3.3. Расчет на опрокидование нераскрепленной стенки	11
3.4. Расчет на опрокидование раскрепленной стенки	12
4. Графоаналитический метод расчета шпунтовой стенки	13
Список использованной литературы	15

1. Характеристики грунтов

Рассмотрим задачу — определим необходимую длину заделки шпунтовой стенки из условия обеспечения устойчивости ограждения. В качестве инженерно-геологических данных примем инженерно-геологический разрез, изображенный на рис. 1.

Физико-механические характеристики слоёв грунта с исходными данными инженерно-геологических изысканий приведены в табл. 1.

Ограждением будет являться металлический шпунт.

Нормативные (II -ая группа предельных состояний)

 $c_{II} = c - из задания;$

 $\varphi_{II} = \varphi$ — из задания;

 $\gamma_{II} = \gamma$ — из задания.

Таблица 1. Физико-механические характеристики грунтов

Наименование	Мощность	γ, кН/м ³	ω rnaπ	с, кПа	
грунта	слоя, м	y , KII / M	ϕ , град.		
ПРС	0,5	15.00	-	-	
Песок мелкий	5,5	18.60	28	-	
Песок мелкий	11,1	18.10	27	-	
Суглинки	-	18.50	13	11	

Начальная длина шпунтовой стенки Н_{ст}=12 м;

Глубина котлована $h_{\kappa} = 7.0 \text{ м};$

Величина нагрузки $q=25\ \kappa H/m^2$

Рисунок 1. Расчетная схема

2. Расчет шпунтовой стенки по осредненным показателям

Рисунок 2. Схема к расчету на устойчивость по осредненным характеристикам

Определение средних значений характеристик грунтов

$$c_{\mathrm{cpI}} = 0 \ \mathrm{к} \Pi \mathrm{a}$$

$$\gamma_{\mathrm{cpI}} = \frac{\gamma_{2\mathrm{I}} * d_2 + \gamma_{3\mathrm{I}} * d_3}{d_2 + d_3} = \frac{21 * 5.5 + 21 * 6}{5.5 + 6} = 21 \ \mathrm{кH/m^3}$$

$$\varphi_{\mathrm{cpI}} = \frac{\varphi_{2\mathrm{I}} * d_2 + \varphi_{3\mathrm{I}} * d_3}{d_2 + d_3} = \frac{23 * 5.5 + 23 * 6}{5.5 + 6} = 23^{\circ}$$

2.1. Определение коэффициентов активного и пассивного давлений

$$\lambda_{\rm a} = tg \left(45 - \frac{\varphi_{\rm cp}}{2} \right) = tg \left(45 - \frac{23}{2} \right) = 0.66$$

$$\lambda_{\rm p} = tg\left(45 + \frac{\varphi_{\rm cp}}{2}\right) = tg\left(45 + \frac{23}{2}\right) = 1,51$$

2.2. Определение активного и пассивного давлений

Активное давление:

$$\sigma_{a} = (\gamma z + g) tg^{2} \left(45 - \frac{\varphi}{2}\right) - 2 * c * tg \left(45 - \frac{\varphi_{cp}}{2}\right)$$
$$\sigma_{a} = (\gamma z + g) \lambda_{a}^{2} - 2 * c * \lambda_{a}$$

при z=0:

$$σ_a = 0$$
 κΠα

при z=Hc=12 м:

$$\sigma_{\rm a} = (\gamma * {\rm Hc} + g) \lambda_{\rm a}^{\ 2} - 2 * c * \lambda_{\rm a} = (21 * 12 + 25) * 0,66^2 - 2 * 0 * 0,66 = 121 κ Π a$$

Пассивное давление:

$$\sigma_{\rm p} = \gamma z \, tg^2 \left(45 + \frac{\varphi}{2} \right) + 2 * c * tg \left(45 + \frac{\varphi_{\rm cp}}{2} \right)$$
$$\sigma_{\rm p} = \gamma z \, \lambda_{\rm p}^2 - 2 * c * \lambda_{\rm p}$$

при z=0:

$$σ_{\rm p} = 0$$
 κΠα

при $z=H_c-h_\kappa=12-7=5$ м:

$$\sigma_{\mathrm{p}} = \gamma_{\mathrm{cp}} (H_{\mathrm{c}} - h_{\mathrm{K}}) \lambda_{\mathrm{p}}^{-2} + 2*c*\lambda_{\mathrm{p}} = 21*(12-7)*1,51^2 + 2*0*1,51 = 240 \ \mathrm{к}$$
Па

Равнодействующая активного и пассивного давлений

Активное давление:

$$r_{\rm a}=rac{1}{3}H=rac{1}{3}$$
12 = 4 м $E_{\rm a}=rac{1}{2}H*\sigma_{\rm a}=rac{1}{2}$ 12 * 121 = 726 кН

Пассивное давление:

$$E_{\rm p} = \frac{\sigma_{\rm p0} + \sigma_{\rm pH}}{2} (H_{\rm c} - h_{\rm K}) = \frac{0 + 240}{2} (12 - 7) = 600 \text{ кH}$$

$$A_{\rm пр} = \sigma_{\rm p0} (H_{\rm c} - h_{\rm K}) = 0 * (12 - 7) = 0$$

$$A_{\rm Tp} = \frac{\sigma_{\rm pH} - \sigma_{\rm p0}}{2} (H_{\rm c} - h_{\rm K}) = \frac{240 - 0}{2} (12 - 7) = 600$$

$$r_{\rm пp} = \frac{1}{2} (H_{\rm c} - h_{\rm K}) = 2,5 \text{ M}$$

$$r_{\rm Tp} = \frac{1}{3} (H_{\rm c} - h_{\rm c}) = 1,67 \text{ M}$$

$$r_{\rm p} = \frac{A_{\rm np} * r_{\rm np} + A_{\rm Tp} * r_{\rm Tp}}{A_{\rm np} + A_{\rm Tp}} = \frac{0 * 2,5 + 600 * 1,67}{0 + 600} = 1,67 \text{ M}$$

2.3. Расчет на опрокидование нераскрепленной стенки

Найдем отношение удерживающего момента к опрокидывающему.

$$\eta = \frac{M_{
m yd}}{M_{
m onp}} \ge 1,3$$
 $M_{
m yd} = E_{
m p} * r_{
m p} = 600 * 1,67 = 1002 \
m кH * M$ $M_{
m onp} = E_{
m a} * r_{
m a} = 726 * 4 = 2904 \
m kH * M$ $\eta = \frac{1002}{2904} = 0,34$

Шпунтовая нераскрепленная стенка не устойчива, так как $\eta = 0.34 \le 1.3$. Требуется увеличить глубину забивки или раскрепить стенку.

2.4. Расчет на опрокидование раскрепленной стенки

$$\eta = \frac{M_{\rm yd}}{M_{\rm onp}} \ge 1,3$$

$$M_{\rm yd} = E_{\rm p} * (H{\rm c} - r_{\rm p}) = 600 * (12 - 1,67) = 6198 \ {\rm кH} * {\rm M}$$

$$M_{\rm onp} = E_{\rm a} * (H{\rm c} - r_{\rm a}) = 726 * (13 - 4) = 6534 \ {\rm \kappa H} * {\rm M}$$

$$\eta = \frac{6198}{6534} = 0,95$$

При раскреплении шпунтовая стенка остаётся неустойчивой, следовательно требуется увеличить глубину заделки стенки.

3. Расчет шпунтовой стенки по уточненным характеристикам

Рисунок 3. Схема к расчету на устойчивость по уточненным характеристикам

Определяем расчетные характеристики

$$\gamma_{\rm p} = \gamma * \gamma_n; \ \gamma_n = 1.15;$$

$$c_{\rm p} = \frac{c}{\gamma_n}; \ \gamma_n = 1.5;$$

$$\varphi_{\rm p} = \frac{\varphi}{\gamma_n}; \ \gamma_n = 1.2;$$

$$\gamma_{2p} = 18,6 * 1,15 = 21 \text{ кH/м}^3$$

$$c_{\mathrm{2p}}=0$$
 кПа

$$\varphi_{2p} = \frac{28}{1.2} = 23^{\circ}$$

$$\gamma_{3p} = 18,1 * 1,15 = 21 \text{ kH/m}^3$$

$$c_{3p} = 0$$
 кПа

$$\varphi_{3p} = \frac{27}{1,2} = 23^{\circ}$$

$$\gamma_{4\mathrm{p}}=18,5*1,15=21\ \mathrm{кH/m^3}$$
 $c_{4\mathrm{p}}=\frac{11}{1,5}=7\ \mathrm{кПa}$ $\varphi_{4\mathrm{p}}=\frac{13}{1,2}=11^\circ$

3.1. Определение коэффициентов активного и пассивного давлений

Активное давление:

$$\lambda_{a} = tg \left(45 - \frac{\varphi_{p}}{2} \right)$$

$$\lambda_{a2} = tg \left(45 - \frac{23}{2} \right) = 0,66$$

$$\lambda_{a3} = tg \left(45 - \frac{24}{2} \right) = 0,66$$

Пассивное давление:

$$\lambda_{\rm p} = tg \left(45 + \frac{\varphi_{\rm p}}{2} \right)$$

$$\lambda_{\rm p2} = tg \left(45 + \frac{23}{2} \right) = 1,51$$

$$\lambda_{\rm p3} = tg (45 + 3) = tg 56 = 1,51$$

3.2. Определение активного и пассивного давлений

Активное давление:

$$\sigma_{\mathrm{a}}=(g+\gamma z)\,\lambda_{\mathrm{a}}^{\;\;2}-2*c*\lambda_{\mathrm{a}}$$
 Точка 0: $z=0$; $c_1=0$; $\lambda_{\mathrm{a}1}=0$ $\sigma_{\mathrm{a}0}=(25+15*0)*1^2=25$ кПа; Точка 1 верх: $z=d_1=0$, 5 м; $c_1=0$; $oldsymbol{arphi}_{\mathrm{p}1}=0$ $\sigma_{\mathrm{a}_1}^{\;\;\mathrm{B}}=(g+\gamma_1 d_1)\,\lambda_{\mathrm{a}_1}^{\;\;2}$ $\sigma_{\mathrm{a}_1}^{\;\;\mathrm{B}}=(25+15*0.5)*1=32.5$ кПа; Точка 1 низ: $z=d_1=0$, 5 м; $c_2=0$; $oldsymbol{arphi}_{\mathrm{p}2}=0$

$$\sigma_{\mathrm{a}_{1}}^{\ \mathrm{H}}=\left(g+\gamma_{1}d_{1}\right)\lambda_{\mathrm{a}_{2}}^{\ 2}$$
 $\sigma_{\mathrm{a}_{1}}^{\ \mathrm{H}}=\left(25+15*0.5\right)*0.66^{2}=14.2\ \mathrm{к}\Pi\mathrm{a};$

Точка 2 верх:
$$\mathbf{z}=d_1+d_2$$
; $\mathbf{c}_2=\mathbf{0}$; $\boldsymbol{\varphi}_{\mathrm{p}2}=\mathbf{23}^\circ$
$$\sigma_{\mathrm{a}_2}^{\mathrm{B}}=(g+\gamma_1d_1+\gamma_2d_2)\,\lambda_{\mathrm{a}_2}^{2}$$

$$\sigma_{\mathrm{a}_2}^{\mathrm{B}}=(25+15*0.5+21*5.5)*0.66^2=64.5\;\mathrm{кПа};$$
 Точка 2 низ: $\mathbf{z}=d_1+d_2$; $\mathbf{c}_3=\mathbf{0}$; $\boldsymbol{\varphi}_{\mathrm{p}3}=\mathbf{23}^\circ$
$$\sigma_{\mathrm{a}_2}^{\mathrm{H}}=(g+\gamma_1d_1+\gamma_2d_2)\,\lambda_{\mathrm{a}_3}^{2}$$

$$\sigma_{\mathrm{a}_2}^{\mathrm{H}}=(25+15*0.5+21*5.5)*0.66^2=64.5\;\mathrm{кПa};$$
 Точка 3: $\mathbf{z}=d_1+d_2+d_3$; $\mathbf{c}_3=\mathbf{0}$; $\boldsymbol{\varphi}_{\mathrm{p}3}=\mathbf{23}^\circ$
$$\sigma_{\mathrm{a}_3}=(g+\gamma_1d_1+\gamma_2d_2+\gamma_3d_3)\,\lambda_{\mathrm{a}_3}^{2}$$

$$σa3 = (25 + 15 * 0,5 + 21 * 5,5 + 21 * 1) * 0,662 = 73,6 κΠα;$$

Точка 4:
$$\mathbf{z} = d_1 + d_2 + d_3 + \mathbf{5}$$
; $c_4 = \mathbf{0}$; $\boldsymbol{\varphi}_{\mathrm{p3}} = \mathbf{23}^\circ$

$$\sigma_{\mathrm{a4}} = (g + \gamma_1 d_1 + \gamma_2 d_2 + \gamma_3 d_3 + 5) \, \lambda_{\mathrm{a}=4}^{-2}$$
 $\sigma_{\mathrm{a4}} = (25 + 15 * 0.5 + 21 * 5.5 + 21 * 6) * 0.66^2 = 119 кПа;$

Пассивное давление:

$$m{\sigma}_{
m p}=m{\gamma}m{z}*m{\lambda_{
m p}}^2-2*c*m{\lambda_{
m p}}$$
 Точка 3: $m{z}=m{0};\;m{\phi}_{
m p3}=m{23}^\circ$

$$\sigma_{\mathrm{p}_{3}^{\mathrm{B}}}=\gamma_{3}z*\lambda_{\mathrm{p}_{3}^{\mathrm{2}}}^{\mathrm{2}}$$
 $\sigma_{\mathrm{p}_{3}^{\mathrm{B}}}=21*0*1,51^{2}=0$ кПа;

Точка 4:
$$z=d_4^{"};\;c_4=0;\; oldsymbol{arphi}_{\mathrm{p3}}=23^{\circ}$$

$$\sigma_{
m p_4^{\;B}}=\gamma_4 d_4^{"}*{\lambda_{
m p}}_4^2$$
 $\sigma_{
m p_4^{\;B}}=21*5*1,51^2=239,4\;$ кПа;

Равнодействующая активного и пассивного давлений

Активное давление:

$$E_{ai} = \frac{\sigma_{ai}^{\text{B}} + \sigma_{ai+1}^{\text{H}}}{2} * h_i$$

Участок 0-1:

$$E_{a0-1} = \frac{25+32,5}{2} * 0.5 = 14.4 \text{ kH}$$

$$r_{\text{a0-1}} = H - \frac{d_1}{2} = 12 - \frac{0.5}{2} = 11,75 \text{ M}$$

Участок 1-2:

$$E_{\rm a1-2} = {14,5+64,5\over 2} * 5,5 = 217,25 \
m \kappa H$$
 $r_{\rm a1-2} = H - (d_1 + {d_2\over 2}) = 12 - (0,5 + {5,5\over 2}) = 8,75 \
m M$

Участок 2-3:

$$E_{\rm a2-3} = \frac{64,5+73,6}{2} * 1 = 69,1 \ кH$$

$$r_{\rm a2-3} = H - (d_1 + d_2 + \frac{d_3}{2}) = 12 - (0,5+5,5+\frac{1}{2}) = 5,5 \ м$$

Участок 3-4:

$$E_{\mathrm{a}3-4} = \frac{73,6+119}{2}*5 = 481,5 \ кH$$

$$r_{\mathrm{a}3-4} = H - \left(d_1 + d_2 + d_3 + \frac{d_4}{2}\right) = 12 - (0,5+5,5+1+\frac{5}{2}) = 2,5 \ \mathrm{M}$$

Пассивное давление:

$$E_{\text{p}i} = \frac{\sigma_{\text{p}i}^{\text{B}} + \sigma_{\text{p}i+1}^{\text{H}}}{2} * h_i$$

Участок 3-4:

$$E_{\mathrm{p3-4}} = \frac{0+239,4}{2} * 5 = 598,5 \ \mathrm{кH}$$
 $r_{\mathrm{p3-4}} = \frac{1}{3} h_i = \frac{1}{3} 5 = 1,67 \ \mathrm{M}$

3.3. Расчет на опрокидование нераскрепленной стенки

Найдем отношение удерживающего момента к опрокидывающему.

$$\eta = \frac{M_{\rm yд}}{M_{\rm onp}} \ge 1,3$$

$$M_{\rm yд} = E_{\rm p3-4} * r_{\rm p} = 598,5 * 1,67 = 1000 \ \rm KH * M$$

$$M_{\rm onp} = E_{\rm a0-1} * r_{\rm a0-1} + E_{\rm a1-2} * r_{\rm a1-2} + E_{\rm a2-3} * r_{\rm a2-3} + E_{\rm a3-4} * r_{\rm a3-4}$$

$$= 14,4 * 11,75 + 217,25 * 8,75 + 69,1 * 5,5 + 481,5 * 2,5$$

$$= 3654 \ \rm KH * M$$

$$\eta = \frac{1000}{3654} = 0.3 \ll 1.3$$

Вывод: шпунтовая стенка крайне неустойчива на опрокидывание. Требуется устройство глубокой заделки либо раскрепление.

3.4. Расчет на опрокидование раскрепленной стенки

$$\eta = \frac{M_{\rm yд}}{M_{\rm onp}} \ge 1,3$$

$$M_{\rm yд} = E_{\rm p3-4}*(Hc-r_{\rm p}) = 598,5*(12-1,67) = 6182,5~{\rm KH}*{\rm M}$$

$$M_{\rm onp} = E_{\rm a0-1}*(Hc-r_{\rm a0-1}) + E_{\rm a1-2}*(Hc-r_{\rm a1-2}) + E_{\rm a2-3}*(Hc-r_{\rm a2-3}) + E_{\rm a3-4}*(Hc-r_{\rm a3-4}) = 3,6+706,1+449,2+4574,2 = 5733,1~{\rm KH}*{\rm M}$$

$$\eta = \frac{6182,5}{5733,1} = 1,1 < 1,3$$

Вывод: раскрепление не даёт достаточную устойчивость шпунтовой стенке, следовательно требуется устройство более глубокой заделки.

4. Графоаналитический метод расчета шпунтовой стенки

Рисунок 4. Схема к расчету графическим способом

Таблица 2.

							таолица 2	
№	h_i , м	$\sigma_{\rm a}^{\ \ \rm B}$,	$\sigma_{\rm a}^{^{ m H}}$,	$\sigma_{ m p}^{^{~{ m B}}}$,	$\sigma_{\mathrm{p}}^{^{\mathrm{H}}}$,	$\sum \sigma_{\rm a}$,	$\sum \sigma_{\mathrm{p}},$	P_i , к ${ m H}$
слоя		кПа	кПа	кПа	кПа	кПа	кПа	
1	0,5	25	32,5	0	0	57,5	0	28,8
2	1	14,5	14,6	0	0	29,1	0	14,6
3	1	14,6	23,7	0	0	38,3	0	19,2
4	1	23,7	32,8	0	0	56,5	0	28,2
5	1	32,8	41,9	0	0	74,7	0	37,4
6	1	41,9	51	0	0	92,9	0	46,5
7	0,5	51	64,5	0	0	115,5	0	57,8
8	1	64,5	73,6	0	0	138,1	0	69
9	1	73,6	82,7	0	-47	156,3	-47,8	54,2
10	1	82,7	91,8	-47,8	-95,6	174,5	-143,4	15,6
11	1	91,8	101	-95,6	-143,4	192,8	-239	-23,1
12	1	101	110	-143,4	-191,2	211	-334,6	-61,8
13	1	110	119	-191,2	-239	229	-430,2	-100,6
14	1	119	128	-239	-286,8	247	-525,8	-139,4
15	1	128	137	-286,8	-334,6	265	-621,4	-178,2
16	1	137	146	-334,6	-382,4	283	-717	-217
17	1	146	155	-382,4	-430,2	301	-812,6	-255,8
18	1	155	164	-430,2	-478	319	-908,2	-294,6

Лист

Ī	19	0,1	164	164,9	-478	-482,78	328,9	-960,78	-315,94
	20	1	164,9	173,9	-482,78	-530,58	338,8	-1013,36	-337,28

Рисунок 5. Построение силового многоугольника

Определение глубины заделки и моментов в консольном ограждении Определяем глубину погружения шпунта (рис.6):

$$t_0 = 5,35 \text{ m};$$

$$t = 1.1 * 5.35 = 5.89 \text{ M};$$

Максимальный изгбающий момент в консольной стенке:

$$M_{max} = \eta * Y_{max} = 100 * 249,2 = 24920$$
 кН * м

Рисунок 6. Схема замены распределенной нагрузки системой сосредоточенных сил

Список использованной литературы

- 1. СП 22.13330.2016 Основания зданий и сооружений.
- 2. СП 24.13330.2016 Свайные фундаменты.
- 3. СП 20.13330.2016 Нагрузки и воздействия.
- 4. СП 50-102-2003 Проектирование и устройство свайных фундаментов.
- 5. СП 50-101-2004 Проектирование и устройство оснований и фундаментов зданий и сооружений.
- 6. Справочник проектировщика «Основания, фундаменты и подземные сооружения»
- 7. Кузнецов А.Н., Муратова Н.В. Примеры расчёта и проектирования фундаментов. Учебное пособие. Пенза: ПГАСА, 1999 г.