PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-023224

(43) Date of publication of application: 24.01.1995

(51)Int.CI.

H04N 1/407 H04N 1/38

// G03G 15/00

(21)Application number: 05-157244

(71)Applicant: KONICA CORP

(22)Date of filing:

28.06.1993

(72)Inventor: TANAKA KAZUYOSHI

ITO HIROAKI MORITA HIDEKI

(54) COPYING MACHINE

(57)Abstract:

PURPOSE: To provide a copying machine capable of setting an EE fetch area into an area in the inside of frame delete with one preliminary scanning through a simple algorithm and accurately measuring density. CONSTITUTION: The copying machine having a scanning means reading a picture as a digital signal, a density conversion means converting a density of a picture signal, and a picture print means printing out a picture output is provided with a control means (frame delete function) applying preliminary scanning to the picture and controlling a leading level of the brightness of a read picture and a length between a rising point and a trailing point of the picture luminance so as not output other parts than the picture and the picture frame through the comparison of them with predetermined threshold levels and with a density conversion means (EE function) obtaining a density distribution of the picture based on the read picture luminance and the total number of the picture thereby executing optimum density conversion.

and the frame delete processing and the EE processing are executed by the same preliminary scanning and the picture data read range for the EE processing is set from the inner part than the frame delete range.

LEGAL STATUS

[Date of request for examination]

19.10.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

. [Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-23224

(43)公開日 平成7年(1995)1月24日

(51) Int.Cl. ⁸ H 0 4 N	1/407 1/38	識別記号	庁内整理番号	FI			•	技術表示	·箇所	
			4226-5C							
# G03G	15/00	303								
			4226-5C	H 0 4 N	1/ 40	101	E			
				審査請求	未請求	請求項の数4	OL	(全 9	頁)	
(21)出願番号		特顧平5-157244		(71)出顧人	0000012	00001270				
					コニカも	朱式会社				
(22)出顧日		平成5年(1993)6		東京都籍	所宿区西新宿1	厂目264	針2号			
			(72)発明者	田中 -	一義					
		東京都八王子市					5川町2970番地コニカ株式			
					会社内					
				(72)発明者	伊藤	4智				
					東京都	八王子市石川町2	970番	也コニカ	株式	
					会社内					
				(72)発明者	森田 多	秀樹				
					東京都	八王子市石川町2	970番	色コニカ	株式	
				1	会社内					
•										

(54)【発明の名称】 複写装置

(57)【要約】

【目的】 簡単なアルゴリズムにより一度のプリスキャンでEE取り込み領域を枠消し内部の領域にする事を可能とし、よって正確な濃度測定を行える複写装置を提供する。

【構成】 画像をデジタル信号として読み取る走査手段、画像信号の濃度を変換する濃度変換手段、画像出力をプリントする画像プリント手段を有する複写装置において、画像データ読み取りに先立ち、画像を事前走査し、読み取った画像輝度の立ち上がり高さ及び画像輝度の立ち上がり点と立ち下がり点との間の長さとを予め定めた関値との比較により、画像及び画像枠以外の部分を出力しないように制御する制御手段(枠消し機能)と、読み取った画像輝度と画像の総数により画像の濃度分布を求め、これにより最適な濃度変換を行う濃度変換手段(EE機能)とを有し、枠消し処理とEE処理を同一の事前走査で行い、EE処理のための画像データ読み取り範囲を枠消しの範囲より内部になるように設定する。

1

【特許請求の範囲】

【請求項1】 画像をデジタル信号として読み取る走査手段、読み取った画像信号の濃度を変換する濃度変換手・段、該濃度変換手段による画像出力をプリントする画像プリント手段を有する複写装置において、

前記画像出力のための画像データ読み取りに先立ち、前記画像を事前走査し、読み取った画像輝度の立ち上がり高さと予め定めた関値との比較及び画像輝度の立ち上がり点と立ち下がり点との間の長さと予め定めた関値との比較により、前記画像及び画像枠以外の部分を出力しないように制御する制御手段(これを「枠消し機能」と称する)と、前記事前走査において読み取った画像輝度と該画像の総数により前記画像の濃度分布を求め、該濃度分布により最適な画像出力を得るための濃度変換を行う濃度変換手段(これを「EE機能」と称する)とを有し、前記枠消し機能による枠消し処理と前記EE機能によるEE処理を同一の事前走査で行い、且つ前記EE機能によるEE処理のための画像データ読み取り範囲を前記枠消し機能による枠消しの範囲より内部になるように設定したことを特徴とする複写装置。20

【請求項2】 前記枠消し機能による枠消し範囲より内部のEE機能によるEE処理範囲と同時に、予め定めた固定位置のEE機能によるEE処理範囲も設定しておき、両者を選択可能にすることを特徴とする請求項1記載の複写装置。

【請求項3】 原稿を上から押さえる原稿カバーが閉じられていないことを検知する検知手段を有し、前記原稿カバーが閉じている時には前記固定位置の値を使うようにしたことを特徴とする請求項1又は2記載の複写装置。

【請求項4】 前記枠消し範囲及び固定位置内のEE処理のための画像データは同時に収集しておき、枠消し範囲内部のEE機能によるEE処理のための画像データの総数が少いか、あるいは枠消し機能による枠消しの設定ができなかった場合に、前記固定位置内の画像データを選択してEE機能によるEE処理を行うようにしたことを特徴とする請求項3記載の複写装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、原稿の画像を読取って 記録媒体上に複写する複写装置に係り、特に原稿以外は 読み取らず、原稿を高画質で複写する複写装置に関す る。

[0002]

【従来の技術】従来、複写装置においてブックものなどの原稿を複写した際、原稿以外の部分が原稿カバーなどで覆われていないと(これをスカイショットと称する) 黒く出力されてしまい、トナーの消費等の面から好ましくない現象があった。

【0003】従ってこれを回避するために、例えば特開 50

昭57-123764号公報にあるように実際の出力のための画像データの読み取り、即ち画像データの取り込みに先立ち、画像を事前に走査し、(これを「プリスキャン」と称する)それによって原稿以外の部分を検知し出力しない、いわゆる枠消しという機能が存在していた。

【0004】一方、原稿の濃度は種類によってまちまちであるので、プリスキャンによって原稿濃度の情報を収集し、例えば鉛筆書き等の薄い文字は濃く出力するなどの濃度変換処理を行う、いわゆるEE(Electric Eye)処理も知られている。

[0005]

【発明が解決しようとする課題】ところが一般にEEの為の画像情報取り込み範囲は、あらゆる種類の原稿に対応するため例えば図12に示すどとく先端からB6サイズの領域等と固定されており、図13に示すどとくこの範囲におかない原稿で枠消し処理により出力を行おうとした場合、EE領域には画像は存在せず、正確な濃度調整ができないと言う問題が生じていた。

【0006】との発明は、このような実状に鑑みてなされたもので、簡単なアルゴリズムにより一度のプリスキャンでEE取り込み領域を枠消し内部の領域にする事を可能とし、よって正確な濃度測定を行えることを目的としている。

[0007]

【課題を解決するための手段】上記目的は、画像をデジ タル信号として読み取る走査手段、読み取った画像信号 の濃度を変換する濃度変換手段、該濃度変換手段による 画像出力をプリントする画像プリント手段を有する複写 装置において、前記画像出力のための画像データ読み取 りに先立ち、前記画像を事前走査し、読み取った画像輝 度の立ち上がり高さと予め定めた閾値との比較及び画像 輝度の立ち上がり点と立ち下がり点との間の長さと予め 定めた閾値との比較により、前記画像及び画像枠以外の 部分を出力しないように制御する制御手段(これを「枠 消し機能」と称する)と、前記事前走査において読み取 った画像輝度と該画像の総数により前記画像の濃度分布 を求め、該濃度分布により最適な画像出力を得るための 濃度変換を行う濃度変換手段(これを「EE機能」と称 する)とを有し、前記枠消し機能による枠消し処理と前 記EE機能によるEE処理を同一の事前走査で行い、且 つ前記EE機能によるEE処理のための画像データ読み 取り範囲を前記枠消し機能による枠消しの範囲より内部 になるように設定したことを特徴とする複写装置によっ て達成される。

【0008】更に上記目的は、前記枠消し機能による枠消し範囲より内部のEE機能によるEE処理範囲と同時に、予め定めた固定位置のEE機能によるEE処理範囲も設定しておき、両者を選択可能にすることを特徴とす複写装置によって、又原稿を上から押さえる原稿カバーが閉じられていないことを検知する検知手段を有し、前

1.0

記原稿カバーが閉じている時には前記固定位置の値を使 あようにしたことを特徴とする複写装置によって、又前 記枠消し範囲及び固定位置内のEE処理のための画像デ · ータは同時に収集しておき、枠消し範囲内部のEE機能 によるEE処理のための画像データの総数が少いか、あ るいは枠消し機能による枠消しの設定ができなかった場 合に、前記固定位置内の画像データを選択してEE機能 によるEE処理を行うようにしたことを特徴とする複写 装置によって達成されるものである。

[0009]

【作用】この発明では、一度のプリスキャンにおいて原 稿検知とEEの為の濃度情報取り込みを行い、且つEE 取り込み領域を枠消し領域の内部となるうよに設計して あるので、原稿外の部分を出力しないことでトナーの余 分な消費を防ぐと共に、原稿の位置によらず濃度を正確 に測定できるので、鉛筆などの薄い原稿を濃く出力した り、新聞紙などの地肌を出力しないようにしてカブリを 無くし、読み易い出力を得ることができる。

[0010]

【実施例】次にこの複写装置の実施例を説明する。

【0011】図1は本発明に係る複写装置の概略内部構 造を示す縦断面図である。同図によって複写装置の概略 の機能を説明する。なお、本図はカラー画像を作る複写 装置の図であるが本発明の複写装置はカラー画像の複写 装置でなくても勿論かまわない。

【0012】感光体ドラム1は、導電性の支持筒表面に 光導電性感光層を蒸着又は塗布して形成されている。

【0013】感光体ドラム1は図示していない回転駆動 部からの駆動力によって、一定方向にしかも一定速度で 回転するようになっている。

【0014】2は上記感光体ドラム1の上方に近接して 配置された荷電用チャージャである。との荷電用チャー ジャ2はコロナ放電を行い感光体ドラム1上を、この感 光体ドラム1の矢示方向の回転に伴って順次帯電させる ようになっている。

【0015】原稿カバー50Cによって上から押さえられ た原稿50は光源51によって照明され、原稿50の画像は反 射鏡Mによって光路が曲げられ、撮影レンズ53やCCD アレイ54等から構成される画像読取部52によって読み取 られる。読み取り手段のCCDアレイ54から出力された 40 画像信号は画像処理回路55において信号処理される。

【0016】画像処理回路55からは、トナーの色に応じ 色分離された色信号が書き込みユニットAに入力され

【0017】書き込みユニットAにおいて、半導体レー ザで発生されたレーザビームは、駆動モータ3により回 転されるポリゴンミラー4より回転走査されて、Fθ レ ンズを経、反射鏡Mによって光路を曲げられて、前記感 光体ドラム1上に照射される。

クスセンサによって検知され、第1の色信号によるビー ムの変調が開始される。変調されたビームは、前記荷電 用チャージャ2によって予め一様に帯電されている感光 体ドラム1上を走査する。レーザビームによる主走査と 感光体ドラム1の回転による副走査により感光体ドラム 表面に第1の色、例えばシアンに対応する潜像が形成さ れてゆく。この潜像はシアントナーの装填された現像器 5により現像されて、感光体ドラム表面にシアントナー 像が形成される。得られたトナー像は、感光体ドラム面 に保持されたまま、感光体ドラム表面より離間、退避し ているクリーニング装置9の対向部を通過し、次の画像 形成サイクルに入る。感光体ドラム1は荷電用チャージ ャ2により一様に帯電される。

【0019】次いで画像処理回路55から出力された第2 の色信号が書き込みユニットAに入力され、前記第1の 色信号の場合と同様にして感光体ドラム表面への書き込 みが行われ潜像が形成される。潜像は第2の色、例えば マゼンタトナーを装填した現像器6によって現像され る。このマゼンタトナー像はすでに形成されている前記 20 感光体ドラム面上のシアントナー像の上に重ねて形成さ

【0020】更に、画像処理回路55から出力された第3 の色信号が書き込みユニットAに入力され、前記の第1 及び第2の色信号の場合と同様にして感光体ドラム表面 への書き込みが行われ潜像が形成される。潜像は第3の 色、 例えばイエロートナーを装填した現像器7によって 現像される。このイエロートナー像はすでに形成されて いる前記感光体ドラム面上のシアントナー像及びマゼン タトナー像の上に重ねて形成される。

【0021】とれら現像器5、6、7の現像スリーブに は、交流及び直流のバイアスが印加され、二成分現像剤 によるジャンピング現像が行われる。

【0022】とのようにして現像されたトナー像の重ね 合わされた像は、転写極10により給紙部Bから給送され てきた転写体である記録紙上に転写される。トナー像を 転写された転写紙は分離極11によって感光体ドラム1表 面から分離され、定着器13へ搬送されて定着され記録物 が得られる。

【0023】転写を終了した感光体ドラム1にはクリー ニング装置9が作用して周面上に残留した不要のトナー を除去するようになっている。

【0024】とのようにして原稿50の画像は記録紙上に 記録されて複写が行われる。

【0025】次に枠消し機能とは、プリスキャンを行っ た際、図2に示すどとく原稿を囲む最小領域の端点の座 標(x1, y1)、(x1, y2)を図1に示す画像処理回 路55において計算し記憶しておき、その外部の信号を出 力しないととによって得られる。

【0026】一方EE機能とは、プリスキャンにおい 【0018】走査が開始されるレーザビームがインデッ 50 て、図3に示すごとく枠消し機能より内部の領域での濃 度を図1に示す画像処理回路55において蓄積し、濃度分布のヒストグラムからCPUが画像の特徴を判断し、最適な濃度カーブを設定することで得られる。

。 [0027] それでは各々の機能をアルゴリズムを上げながら説明する。

【0028】図4は、この枠消しとEE機能を搭載した場合の処理の概念ブロック図である。

【0029】まずプリスキャンにおいて、図4(a)に示すように原稿を囲む最外枠の端点座標が計算され、またEE計算のため、原稿データのヒストグラムが収集さ 10れ、最適な濃度設定が行われる。本図ではそのために、EEヒストグラム用メモリを搭載している。これら枠消しとEEの計算はプリスキャン中に行われ、本スキャンがスタートするまでに結果を出している。仮に処理に時間がかかった場合は、本体に対して本スキャンを待つように信号を出す。なお、この図では、原稿の信号を直接取り出しているが、事前に濃度変換やその他の画像処理を行ったデータを取り込んでもよい。

【0030】次に本スキャン(画像を出力するための走査)では、図4(b)に示すように計算の結果蓄えられ 20 た座標によりその外部の信号出力を中止したり、レベルを落としたりすることで黒ベタ画像の発生を阻止し、同時にEE回路で計算された結果に基いて最適な出力曲線を設定することで、適正な濃度の画像が得られる。

【0031】続いて実際の枠消しとEEのアルゴリズムの詳細を図解しながら説明する。

【0033】図7は枠消しアルゴリズムのフローチャートである。基本的に1ライン(主走査)を規準とした候補点の検出を行い、全ライン終了したところで値が確定 40 する。まず規準位置に近い方の左端点(x1)の検出方法を例にあげて説明する。

[0034]図7(a)は主走査ごとに行いx₁の候補となる点(以下左候補点と称す)を抽出するフローチャートである。

【0035】すなわち順に値を読みだして一定の閾値T H1と比較する。この閾値は原稿部分であるか、それ以 外であるかを判断する値であり、例えばROM等のメモ リに記録されている。または不揮発性RAM等のメモリ に蓄えてあとでユーザーやサービスマンが変更できるよ 50

うにしても良い。

【0036】図8(a)は画像データとこの閾値との関係を示したものである。図中レベルが高い方を白、低い方を黒とする。今、左から走査して初めに黒から白に変化した点(以下、立ち上がり点と言う)の座標を記憶しておく。この値は左候補点の可能性がある点である。次に逆に白から黒に変化した点(以下、立ち下がり点)を検出し、前記立ち上がり点から立ち下がり点までの距離し、画素数)を計算する。この値と第2の閾値TH2を比較し、LがTH2より大きいときに立ち上がり点を候補点として確定する(これをライン左候補点と以後称する)。これは例えば図8(b)に示すように、画像ノイズなどの影響により距離が短い場合は排除することを目的としている。

【0037】との閾値TH2もTH1同様に記憶しておく。そのラインで確定できたときには、そのライン左候補点と共に確定できたという意味のフラグを立てておく。もちろん、そのラインに原稿がない場合は、フラグは立たない。

【0038】次に図7(b)は、上記のラインごとの走査を全ライン行う過程を示している。

【0039】まずライン左候補点の確定信号をラインどとに調べておき、前ラインと現ラインで続けて確定信号ができたときに、そのライン左候補点を、確定左候補点とする。これは1ラインの確定信号だけで候補点としてしまうと、そのラインにバースト的にノイズが乗っていて確定している可能性もあるので、その影響を排除するためである。つまり前述の閾値TH2と比較する方式と加えて、二重のノイズ対策を施していることになる。

【0040】さてまず最初に左候補点を最大値(右端)で初期化しておき、確定した候補点が現在の候補点より左側の時、候補点をその値で置き換えるという作業を繰り返す。全ライン終了すると、左候補点x1は目的通り原稿の左端点で設定されていることになる。

【0041】次に右端点x、の設定であるが、基本的にはx、と同じであるので、フローなどは省略する。但し重要なのは右端点の場合は画像を右から左に走査してやる必要があるという点である。このため、余分に1ラインのラインメモリを有し、カウンタで逆から読んでやる必要がある。しかしいずれも比較的簡単な回路で実現できるものである。また左端点と右端点の設定は、同時に回路を動かし一度のプリスキャンでできることは言うまでもない。

【0042】続いて上端点y,と下端点y,の設定法を図7(c) に示す。

【0043】すなわち副走査方向に充分なメモリを有すれば前記と同様のアルゴリズムで決定できるが、一般に 複写装置としては高々数ラインのラインメモリしか有し てない。そこで最初に左(もしくは右)端点の候補点確 定信号が発生したラインを上端点とし、最後に候補点信 号が確定したラインを下端点とする。下端点としては実際には候補点が発生する都度更新しておけば最後の候補点を保持していることになるので、目的を達成できる。「0044】以上により、一度のプリスキャンで原稿を囲む方形の位置情報を確定できるので、枠消し機能が実現できる。続いて前記処理と平行して動きながら、前記枠消しの領域範囲内でEEの為の画像情報を取り込むアルゴリズムに付いてフローチャートを示しながら説明する。

【0045】図9がEEのヒストグラム収集アルゴリズ 10 ムのフローチャートである。

【0046】ラインごとに発生している左候補点と右候補点(ただし前述したように2ライン連続してはじめて確定する)の間だけヒストグラムの収集を行うようにする。確定してから収集するので最低1ラインのメモリを必要とする。とのようにすれば、原稿の内部情報だけヒストグラムデータとして収集できる。

【0047】図10亿との関係を斜めおきにした原稿で示 す。すなわち枠消し領域は図6に示したような方形とな るが、EEは候補点の間をほぼリアルタイムに収集する 20 ため原稿に沿った領域となる。すなわちEE領域は枠消 し領域に包含される。EEでは濃度別に頻度が集計さ れ、その形から原稿の情報(地肌の濃度や文字などの情 報の濃度など)を推定し、最適な出力のための濃度変換 曲線を設定する。この濃度曲線は、予め候補としてあげ られた数種類の中から選択しても良いし、あるいは上記 ヒストグラムから計算により設計しても良い。又、EE データの収集は、候補画像を全てやらなくても、ある一 定の間隔で抜き取って調べても全体の傾向が掴めればそ れでよい。ただし、全体の傾向を掴むためにはデータ総 30 数がいくらだったか記憶しておく必要がある。図12のよ うな固定領域では一定であるが、本方式では原稿により その収集総数が変化するので、図9にあるように総数を カウントしておく必要がある。

【0048】図11のヒストグラムで、収集した例をあげる。原稿以外の点を読まないため極端にスカイショットで暗いデータ等がなく、以降の判定処理に対して有効なデータとなっていることがわかる。

【0049】以上のような構成により、一度のプリスキャンで枠消しとEEを同時に行い、しかもEEデータ領 40域を枠消し内部にできるのでより有効なEE判断が可能になる。

【0050】ところで以上のような状況がどういう場合に最も発生するかと言えば、前述のように図1で言うところの原稿カバー50Cをはね上げてブックものなどのコピーをする場合に最も可能性が高い。そして原稿カバー50Cを閉じている場合はカバーが白いことも多く、又意図的に極端に濃い背景の原稿をコピーしたい場合も多く、上記枠消し、EE領域取り込みをしたくない場合もある。そこで原稿カバー50Cが開いているか否かを検知50

する手段を設け、開いているときに前記手段を有効とする事もできる。

【0051】又前記EEデータ取り込み領域と平行して、図12の様な固定取り込み領域も別に収集しておき、どちらかを選択するようにすることもできる。その場合、前述した枠消し内EE取り込みデータ総数が一定の値に達しないときや、原稿が見つからなくて枠消し設定にそもそも失敗した場合などは、枠内EE領域は信頼性が低いとして、固定EE領域を選択するようにすれば良い

【0052】又原稿カバー50Cを閉じた時も固定EE領域を選択するようにすれば良い。

【0053】又原稿カバー50Cは白に限らず、濃度の高い黒や反射してスカイショットと同等の効果をだす反射 鏡面性にして、カバーを閉じたまま枠消しなどの機能を 働かせることもできる。

【0054】又とれらの全体構成は電子写真のデジタルコピーに限らず、画像をデジタルで読み込み、処理した後蓄積して別のブリンタで出力する等の構成にした複写装置でも応用できることは勿論である。

[0055]

【発明の効果】本発明により、一度のプリスキャンでE E取り込み領域を枠消し内部の領域にすることを可能とし、原稿以外の部分が原稿カバーなどで覆われていないと黒く出力されてしまったりすることもなく、薄い文字も濃く出力出来る高画質の複写が一度のプリスキャンで可能とする機能を持った複写装置が提供されることとなった。

【図面の簡単な説明】

【図1】本発明に係る複写装置の概略内部構造を示す縦 断面図。

【図2】本発明に係るプリスキャンの際の、枠消し機能 の説明図。

【図3】本発明に係るプリスキャンの際の、EE機能の 説明図。

【図4】本発明に係る枠消しとEE機能の処理の概念ブロック図。

【図5】本発明に係る枠消し機能を達成するためのハードウェア概念図。

【図6】本発明に係る枠消し機能において斜め置き原稿の定義領域。

【図7】本発明に係る枠消しアルゴリズムのフローチャ ート

【図8】本発明に係る画像データと画像データ閾値との 関係図。

【図9】本発明に係るEEのヒストグラム収集アルゴリ ズムのフローチャート。

【図10】本発明に係る斜め置き原稿の枠消し及びEE 取り込み領域を示す図。

【図11】本発明に係るEEデータのヒストグラム。

9

【図12】従来例における一般のEEのための画像情報取り込み範囲を示す図。

【図13】従来例における実際の原稿を置く場所を示す 図

【符号の説明】

50 原稿

50C 原稿カバー

52 画像読取部

*** 54** CCDアレイ

55 画像処理回路

X1, Y1, X2, Y2 原稿端点の座標

TH1 画像輝度の閾値

TH2 画像幅の閾値

L 立ち上がり点から立ち下がり点までの距離(画素数)

10

【図1】

【図2】

 (X_1,Y_1)

(X2Y2)

【図11】

【図8】

【図13】

