Université de Picardie Jules Verne

UFR sciences. Année 2024-2025.

Master de Mathématiques : M1-Analyse Fonctionnelle

Devoir N.1

Exercice 1

4. À noter que N_3 est une norme. En effet, $N_3(x) = 0$ si et seulement si f'(x) = 0 sur pour tout $x \in [a, b]$ et $\int_a^b |f(s)| ds = 0$. De la première égalité, on tire que f est constante sur [a, b] (égale à C) et de la seconde que C(b-a) = 0, soit C=0.

Il est clair que $N_3(\lambda x) = |\lambda| N_3(x)$ pour tout $\lambda \in \mathbb{R}$ et pour tout $f \in E$. Enfin, on a pour tout $f, g \in E$, par inégalité triangulaire,

$$N_3(f+g) = \int_a^b |f(s)+g(s)|ds + ||f'+g'||_{\infty} \le \int_a^b |f(s)|ds + \int_a^b |g(s)|ds + ||f'||_{\infty} + ||g'||_{\infty},$$

donc l'inégalité triangulaire $N_3(f+g) \leq N_3(f) + N_3(g)$ est satisfaite pour tout $f, g \in E$.

De

$$f(y) - f(x) = \int_{x}^{y} f'(t)dt,$$

en posant $y = x_0$ (x_0 est défini dans le TD), en utilisant l'inégalité triangulaire et $|f'(t)| \leq ||f'||_{\infty}$ pour tout t, on déduit dans un premier temps que

$$||f||_{\infty} \le |f(x)| + \int_{a}^{b} ||f'||_{\infty} dt.$$
 (1)

Puis, intégrant les deux membres de l'inégalité précédente entre a et b, on obtient

$$||f||_{\infty} \le \frac{1}{b-a} \int_a^b |f(s)| ds + (b-a) ||f'||_{\infty}.$$

5. Compte tenu de la définition de N_3 , on a pour tout f

$$N_3(f) \le (b-a)||f||_{\infty} + ||f'||_{\infty} \le max(1, b-a)N_1(f).$$

Cherchons à inverser cette inégalité. En ajoutant aux deux membres de (1) $||f'||_{\infty}$, on obtient :

$$N_1(f) \le \max(b-a+1, \frac{1}{b-a})N_3(f), \quad \forall f.$$

Par conséquent, N_1 et N_3 sont équivalentes. D'après les questions précédentes, les trois normes N_1 , N_2 et N_3 sont équivalentes.

6. Rappel: Théorème: Soit $(f_n) \subset E$. On suppose qu'il existe $a \in I$ tel que $(f_n(a))$ converge. De plus, on suppose que (f'_n) converge uniformément vers g. Alors (f_n) converge uniformément sur I vers $f \in E$ et f'(x) = g(x) pour tout x. On a $f \in E$.

Montrons que (E, N_1) est complet. Soit $\epsilon > 0$ et (f_n) une suite de Cauchy de E. Il existe n_0 tel que pour tout $n, m \ge n_0$,

$$N_1(f_n - f_m) < \epsilon$$
.

Compte tenu de la définition de N_1 , il en résulte que (f_n) et (f'_n) sont de Cauchy dans $(C^0(I), ||.||_{\infty})$, espace complet. On peut alors appliquer le théorème et en déduire que (f_n) et (f'_n) converge uniformément respectivement vers f et f'. Par conséquent, (E, N_1) est complet.

Comme (E, N_1) est complet et que les trois normes sont équivalentes, il en résulte que les espaces (E, N_1) , (E, N_2) et (E, N_3) sont complets.

2. Par définition,

$$||D|| = \sup_{f \neq 0} \frac{||f'||}{N_3(f)}.$$

Compte tenu de la définition de N_3 , il en résulte que D est continue et $||D|| \le 1$. À noter que le sup n'est pas atteint puisque si il existe $f_0 \ne 0$ telle que $||D|| = 1 = \frac{||f_0'||}{N_3(f_0)}$, on obtient

$$\int_a^b |f_0(s)| ds = 0$$

donc $f_0 = 0$. Pour montrer que $||D|| \ge 1$, construisons une suite (f_n) telle que

$$||D|| \ge \frac{||f_n'||_{\infty}}{N_3(f_n)} \quad \forall n.$$
 (2)

On pose $f_n(x) = e^{-n(x-a)}$. On a alors $||f'_n||_{\infty} = n$ pour tout n et

$$N_3(f_n) = n + \frac{1}{n}(1 - e^{-n(b-a)}).$$

Faisant tendre n vers l'infini dans (2), on obtient l'inégalité recherchée ($||D|| \ge 1$). Conclusion ||D|| = 1.

Exercice 2 (d'après partiel 2022)

Soit $I = [a, b] \subset \mathbb{R}$. Soient $C^0(I)$ le \mathbb{R} -espace vectoriel des fonctions continues $f: I \to \mathbb{R}$ et N une norme sur $C^0(I)$. On suppose que :

- a. $(C^0(I), N)$ est un \mathbb{R} -espace de Banach.
- b. Pour toute suite (f_n) qui converge dans $(C^0(I), N)$ vers une limite f, on a (f_n) converge simplement vers f sur I.
- 1. On a pour tout et pour tout $f, g \in C^0(I)$, $\delta_x(\lambda f + g) = (\lambda f + g)(x) = \lambda f(x) + g(x)$. Donc δ_x est linéaire. Pour montrer la continuité de cette application, montrons que $N(f_n f) \to 0$ entraîne $\delta_x(f_n)$ tend vers $\delta_x(f)$. C'est bien le cas en raison de l'hypothèse ii. f_n converge simplement vers f pour tout f. On obtient ainsi la continuité de f de f

$$\sup_{x \in I} |\delta_x(f)| = ||f||_{\infty} < \infty.$$

2. D'après l'hypothèse a., $(C^0(I), N)$ est un \mathbb{R} -espace de Banach. Nous sommes sous les hypothèses du théorème de Banach-Steinhaus, δ_x est défini sur un espace de Banach à valeurs dans un espace de Banach, et de plus, on a prouvé la condition fondamentale dans la question 1. La conclusion du théorème de Banach-Steinhaus est exactement

$$\sup_{x\in I} \|\delta_x\|_{(C^0(I),N)'} < +\infty.$$

On peut la traduire par la condition : il existe C > 0 telle que pour tout $x \in I$,

$$\frac{|f(x)|}{N(f)} \leq C, \quad \forall \, f \in C^0(I).$$

ou encore en prenant le sup sur x dans l'inégalité précédente

$$||f||_{\infty} \le CN(f), \quad \forall f \in C^0(I).$$

3. Ici, on peut appliquer un corollaire du théorème de Banach. Soit f une application définie sur un espace de Banach à valeurs dans un espace de Banach. On suppose f linéaire, bijective, et continue. Alors f^{-1} est continue. Considérons l'injection canonique de $(C^0(I), N)$ dans $(C^0(I), ||.||_{\infty})$. D'après la question 2, il existe C > 0 telle que l'on a

$$||f||_{\infty} \le CN(f), \quad \forall f \in C^0(I).$$

Il résulte alors du théorème de Banach que i^{-1} est continue, soit les normes N et $\|.\|$ sont équivalentes.

Exercice 3

Soient E un espace vectoriel normé et $M \subset E$, un sous-espace vectoriel. E' représente l'ensemble des formes linéaires continues sur E.

On pose $M^{\perp} = \{ f \in E' \mid f(x) = 0, \ \forall x \in M \}$. On considère une suite (f_n)

d'éléments de M^{\perp} convergeant vers f dans E'. A-t-on $f \in M^{\perp}$? On a pour tout $x \in E$

$$|f_n(x) - f(x)| \le ||f_n - f||_{E'} ||x||.$$

Comme $f_n(x) = 0$ pour tout x et pour tout n, et $||f_n - f||_{E'}$ tend vers 0 quand n tends vers $+\infty$, il en résulte que f(x) = 0. M^{\perp} est donc fermé. En procédant de la même façon, on montre que N^{\perp} est fermé.

2. Montrer que $\bar{M} \subset (M^{\perp})^{\perp}$.

Par définition, $(M^{\perp})^{\perp} = \{x \in E | f(x) = 0 \quad \forall f \in M^{\perp}\}$. Par conséquent, $M \subset (M^{\perp})^{\perp}$. D'après la question 1, $M^{\perp \perp}$ est fermé. Par conséquent, $\bar{M} \subset (M^{\perp})^{\perp}$ (si $A \subset B$, alors $\bar{A} \subset \bar{B}$).

3. Démontrons que $(M^{\perp})^{\perp} \subset \bar{M}$. Si ce n'est pas le cas, il existe $x_0 \in M^{\perp})^{\perp}$ et $x_0 \notin \bar{M}$. Remarquons que M est convexe, et que \bar{M} est convexe fermé. On peut alors appliquer le théorème de Han-Banach (version géométrique). Il existe un hyperplan qui sépare x_0 convexe compact avec \bar{M} , convexe fermé. Soit $f \in E'$, $f \neq 0$ telle que

$$f(x_0) < f(x) \quad \forall x \in M.$$

M étant un espace vectoriel et f étant linéaire, on a également

$$f(x_0) < \lambda . f(x) \quad \forall x \in M, \ \forall \lambda \in \mathbb{R}.$$

Or, l'inégalité précédente est impossible pour tout $x \in M$ et pour tout λ . En effet, il existe x tel que $f(x) \neq 0$. Il suffit alors de faire tendre λ vers $+\infty$ ou $-\infty$ suivant le signe de f(x) pour obtenir une contradiction. Finalement,

$$(M^{\perp})^{\perp} \subset \bar{M}.$$

D'après la question 2., on obtient la conclusion :

$$\bar{M} = (M^\perp)^\perp$$