Proiect DEEA

Am ales prenumele Bogdan.

Nume: Croitoru Bogdan =>R1=220 Ω ; R2=R3=15K Ω si R8=R9=43K Ω

1.Schema

2.DC Sweep

2.1 Caracteristica de transfer a schemei (grafic Vout funție de V1)

2.2 Domeniul tensiunii de intrare pentru care schema funcționează liniar

Se observa faptul ca schema se comporta liniar pentru Vin cuprins intre -23.99mV si 23.97mV.

2.3 Amplificarea de tensiune a schemei.

Amplificarea schemei se observa din datele extrase din simulator ca este exact panta graficului si este -205.983.

Date teoretice

Amplificarea teoretica este -206.04 din formula.

Amplificarea teoretica este foarte aproape de aplificarea practica, eroarea fiind sub 1%.

Domeniul tensiunii de intrare teoretic este 24,26mV. Diferenta intre domeniul teoretic si obtinut din simulare este de sub 2%.

<u>3.AC</u>

3.1Caracteristica de frecvență a schemei

3.2Banda de trecere a schemei

	EEA-tema			150E
Curso		(vout)		
Freq:	1mHz	Mag:	46.276651dB	•
		Phase:	179.99768°	0
Group Delay: 6.4514448ms			0	
Curso		(vout)	111	-7.1
Freq:	34.873997Hz	Mag:	43.245545dB	•
		Phase:	94.518329°	0
Group Delay:			6.0599886ms	0
	Ratio (Cursor2 / C	Cursor1)	
Freq:	34.872997Hz	Mag:	-3.0311059dB	
		Phase:	-85.479348°	
Group Delay:			-391.4562µs	

Se observa ca amplificarea schemei este 46.27dB, iar frecventa de taiere la care amplificarea scade cu 3db este 34.87Hz.

4.Transient

4.1Răspunsul la semnal tip treaptă

4.2Timpul de creștere

Timpul de crestere este 12.04ms.

5.Modificare schema

Nume: Croitoru Bogdan =>Vin=50mV; Vout=4,5V Frecventa=1500Hz

Din formula amplificare este A=
$$\frac{\Delta Uo}{\Delta Ui} = \frac{9V}{100mV} = 90$$

Din formula rezulta
$$(1+\frac{R2+R3}{R1})(-\frac{R5}{R4})(1+\frac{R11}{R12})=A$$

$$(1+\frac{15k+15k}{R1})(-1)(1+\frac{10K}{20k})=-90$$

$$(1+\frac{15k+15k}{R1})(1+\frac{1}{2})=90$$

$$(1+\frac{30K}{R1})(\frac{3}{2})=90 \Rightarrow 1+\frac{30k}{R1}=60 \Rightarrow \frac{30k}{R1}=59 \Rightarrow R1=\frac{30k}{59} \Rightarrow R1=508.47 \Omega$$

Din calcule, rezistenta R1 este egala cu 508.47 Ω , aleg sa o fac 509 Ω folosind 2 rezistente din gama E24 si anume 470 Ω si 39 Ω .

2.DC pentru cerinta 5

2.1Caracteristica de transfer a schemei

2.2Domeniul tensiunii de intrare pentru care schema funcționează liniar

2.3Amplificarea de tensiune a schemei

Amplificarea schemei se observa din datele extrase din simulator ca este exact panta graficului si este -89.90.

Din simulare facuta, se observa ca folosind rezistenta aleasa 509 Ω , formata din cea de 470 Ω si 39 Ω , domeniul de intrare este transformat in domeniul de iesire cu o eroare de sub 1%.

<u>5.2</u>

Aleg ca noile rezistente R8 si R9 sa le pun egale si le notez cu R in calcule.

Folosesc formula data:

R8=R9 si C1=C2 =>
$$\frac{1}{\sqrt{R8R9C1C2}} = \frac{1}{R8C1}$$

34.87
$$\frac{1}{R8C1}$$

1500
$$\frac{1}{RC1}$$

$$=>\frac{1500}{R8C1}=\frac{34.87}{RC1}=>\frac{1500}{R8}=\frac{34.87}{R}=> R=\frac{R8*34.87}{1500}=> R=\frac{43000*34.87}{1500}=> R=999.6 \Omega$$

Din calcule ele trebuie sa fie 999,6 Ω fiecare si am ales sa le pun 1k Ω ca sa folosesc rezistente din gama E24.

3.AC pentru cerinta5

3.1 Caracteristica de frecvență a schemei

3.2 Banda de trecere a schemei

Din simulare se observa ca frecventa de taiere la care amplificarea scade cu 3db este 1496Hz, foarte aproape de cea specificata 1500Hz, eroarea fiind sub 1%.

4.Transient pentru 5

4.1 Răspunsul la semnal tip treaptă

4.2 Timpul de creștere

Timpul de crestere este 40.05ms.

6. Comparator cu histerezis

Vout este intre -4,5V si 4,5V. Pentru a vedea cand depaseste pragul de 80% avem nevoie de o tensiune egala cu 2,7V, pe care o obtin cu un divizor de tensiune.

(80%din 9V= 7,2V; 7,2V-4,5V=2,7V)

Cand semnalul de intrare depaseste pragul de 80%, semnalul comparatorului se duce la 1, cand este sub semnalul se duce la 0.

<u>7.</u>

Am folosit un LT3015 asa cum s-a facut si la prezentarea proiectului. Pentru acesta am modificat rezistentele sa fie din gama E24.

L-am luat de aici https://www.analog.com/en/products/lt3015.html#product-tools

Se observa ca VSN-ul sta la -5V cu acest circuit integrat.

Am ales o dioda Zener de tipul STZ6_2N, deoarece cu aceasta am reusit sa obtin VSP-ul intre 5V si 6V. Initial am incercat sa folosesc una de tipul STZ5_6N, avand Breakdown Voltage-ul de 5.6, dar VSP-ul era sub 5V.

Restul componentelor: dioda, condensatorul, rezistenta si tranzistorul sunt alese ca in videoclipul de prezentare al proiectului.

Fara sarcina

Se observa cu tensiunea ramane intre 5-6V.

Concluzii

Din realizarea proiectului am vazut cum functioneaza un amplificator de instrumentatie si un filtru trece jos, cum pot obtine o anumita amplificare si frecventa modificand rezistentele, cum pot creea un comparator cu histerezis si cum pot extrage anumite informatii precum: domeniul de intrare pe care se comporta liniar, amplificarea, caracteristica de transfer, despre un circuit folosind simulari.