UNGS - Universidad Nacional General Sarmiento

Sistemas Operativos y Redes II

Primer cuatrimestre de 2019 25 de marzo de 2019

FAT, o un tp muy grande

Aclaraciones

- Para aprobar la totalidad del TP es necesario tener aprobado cada uno de sus módulos.
 - Fecha de entrega: 24 Abril de 2019, hasta las 23:59

Informe

Proponemos realizar una exploración en profundidas del sistema de archvos FAT 12.

Para esto estaremos trabajando con el archivo de imágen provisto llamado fat.imq.

Lo estaremos leyendo a bajo nivel, o sea directo del iso, pero podrán montarlo para entender y comprobar lo que van mirando.

Para esto deberán:

- Montarlo: Siendo root (o mediante sudo) ejecutar: mount fat.img /mnt -o loopi,umask=000
- Desmontarlo: Siendo root (o mediante sudo) ejecutar: umount /mnt

Para realizar los ejercicios se deberá instalar un editor hexadecimal. Dicho editor nos permitirá leer archivos a bajo nivel. Nos permitirá ver qué hay en un byte exacto y traducirlo a varios formatos, como ser binario, hexadecimal o texto. Uno de estos editores es bless que se encuentra como paquete en ubuntu

Se deberán responder las siguientes preguntas. Todo código deberá estar correctamente documentado. A su vez deberán crear un archivo para la compilación del código completo. Genere los distintos puntos de código en archivos separados. Documente su uso (y no el código) Deberán entregar el informe por mail a la casilla atcach@campus.ungs.edu.ar con el subj:TP-<apellido_un_integrante>. En el cuerpo del mail deberán poner nombre y documento de cada uno de los integrantes. El código y el archivo de imagen deberán estar comprimidos en un archivo con el mismo nombre del subject del mail y de extensión .tar.gz

Ejercicios:

- 1. Al montarlo. ¿ Para qué se ha puesto umask=000?
- 2. Cargando el MBR
 - a) Muestre el *MBR* con el *Hex Editor*. Muestre los primeros bytes y la tabla de particiones. ¿Cuántas particiones hay? Muestre claramente en qué lugar puede observarlo.
 - b) Lea los datos del punto anterior utilizando código C y muéstrelos por pantalla. c) Muestre en el *Hex Editor* si la primer partición es booteable o no. ¿Lo es?
 - d) Muestre, mediante un programa en C, para la primer partición: el flag de booteable, la dirección Cylinder-head-sector (chs), el tipo de partición y su tamaño en sectores.
- 3. Cargando la tabla de archivos. En todos los ejemplos siguientes, cuando se pida código C, deberá leer la tabla de particiones e ir recorriendo las estructuras de datos adecuadamente. Es decir no podrá hardcodear direcciones vistas de alguna otra manera, salvo que se indique lo contrario.

a) ¿Cuántos y cuáles archivos tiene el filesystem? Muésrelos con Bless y genere el código C para mostrarlos.

b) Montando el filesystem (mediante mount) cree un archivo en la carpeta root / y luego bórrelo. Búsquelo por less y muéstrelo en con el código generado previamente. c) Muestre medante bless el archivo que ha sido borrado. Explique cómo lo ha visto. Genere código C para mostrarlos.

d) ¿Qué puede decir acerca del recupero de archivos?

4. Leyendo archivos.

a) Montando el filesystem (mediante mount) cree un archivo llamado lapapa.txt y póngale algún texto como contenido. Hágalo en la carpeta root /. . Búsquelo por less y muéstrelo en con el código generado previamente.

Muestre, mediante el hex editor y mediante código C lo que hay en el archivo no borrado.

Cree código C para que dado un archivo (o una parte), lo busque y si lo encuentra y el mismo se encuentra borrado, lo recupere.

Referencias:

https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system http://www.c-jump.com/CIS24/Slides/FileSysDataStructs/FileSysDataStructs.html