What is claimed is:

l	1. In a VCT system having a phaser coupled to a shaft, which can be a driving or driven
2	shaft, an apparatus comprising:
3	the phaser having a rotor irreversibly connected to one end of the shaft free
4	of any region having openings for accommodating independent
5	fastening members, thereby the axial and radial dimension of the
5	apparatus is reduced.
1	2. The apparatus of claim 1, wherein the independent fastening members comprise screws.
1	3. the apparatus of claim 1, wherein the rotor is irreversibly connected to one end of the
2	shaft by pressing the rotor onto a straight hub; pressing the rotor onto a hub using a
3	straight spline on an inside surface of the rotor and a helical spline on a corresponding
4	surface of the shaft or vice versa; brazing the rotor onto the shaft; swaging the rotor
5	onto the shaft; or ballizing the rotor onto the shaft where the shaft is a hollow component.
1	4. The apparatus of claim 1, wherein the rotor is machined as part of the shaft.
1	5. In a VCT system having a phaser coupled to a shaft, which can be a driving or driven
2	shaft, an apparatus comprising:
3	a means for irreversibly connecting a rotor of the phaser to one end of the
4	shaft free of any region having openings for accommodating
5	independent fastening members, thereby the axial and radial
6	dimension of the apparatus is reduced.
1	6. A method for coupling part of a VCT device to a shaft, comprising the steps of:
2	providing a phaser having a rotor rotating in relation to an opposite part of the
3	phaser, wherein the phaser is axially reduced by eliminating at least one
4	part of the phaser; and
5	irreversibly connecting the rotor to the shaft.

DKT03085 20

1

7. The method of claim 6, wherein the rotor is irreversibly connected to one end of the shaft by pressing the rotor onto a straight hub; pressing the rotor onto a hub using a straight spline on an inside surface of the rotor and a helical spline on a corresponding surface of the shaft or vice versa; brazing the rotor onto the shaft; swaging the rotor onto the shaft; or ballizing the rotor onto the shaft where the shaft is a hollow component.

8. The method of claim 6, wherein the rotor is machined as part of the shaft.