高等数学作业

答案

BII

吉林大学公共数学教学与研究中心 2018年2月

第一次作业

一、单项选择题

- 1. $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{3xy}{x^2 + y^2} = (D)$

- (A) $\frac{3}{2}$; (B) 0; (C) $\frac{6}{5}$; (D) 不存在.
- 2. 二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 在 (0,0)处((0,0)0、 (0,0)0 (0,0)0、 (0,0)0
 - (A) 连续, 偏导数存在;
- (B) 连续, 偏导数不存在;
- (C) 不连续,偏导数存在;
- (D) 不连续, 偏导数不存在.
- 3. 设 $f(x, y) = y(x-1)^2 + x(y-2)^2$, 在下列求 $f_x(1, 2)$ 的方法中,不正确的一种是(B).
 - (A) $\boxtimes f(x,2) = 2(x-1)^2$, $f_x(x,2) = 4(x-1)$, $\boxtimes f_x(1,2) = 4(x-1)|_{x=1} = 0$;
 - (B) 因 f(1,2)=0, 故 $f_x(1,2)=0'=0$;
 - (C) $\boxtimes f_x(x, y) = 2y(x-1) + (y-2)^2$, $\boxtimes f_x(1, 2) = f_x(x, y)|_{\substack{x=1 \ y=2}} = 0$;
 - (D) $f_x(1,2) = \lim_{x \to 1} \frac{f(x,2) f(1,2)}{x-1} = \lim_{x \to 1} \frac{2(x-1)^2 0}{x-1} = 0$.
- 4. 若 f(x, y) 的点 (x_0, y_0) 处的两个偏导数都存在,则(C).
 - (A) f(x, y) 在点 (x_0, y_0) 的某个邻域内有界;
 - (B) f(x, y) 在点 (x_0, y_0) 的某个邻域内连续;
 - (C) $f(x, y_0)$ 在点 x_0 处连续, $f(x_0, y)$ 在点 y_0 处连续;
 - (D) f(x, y) 在点 (x_0, y_0) 处连续.
- 5. 设 $z = f(x, y), \frac{\partial^2 z}{\partial y^2} = 2$,且 $f(x, 0) = 1, f_y(x, 0) = x$,则 f(x, y)为(B).

- (A) $1-xy+x^2$; (B) $1+xy+y^2$; (C) $1-x^2y+y^2$; (D) $1+x^2y+y^2$.

二、填空题

1.
$$z = \frac{\sqrt{4x - y^2}}{\ln(1 - x^2 - y^2)}$$
 的定义域为 $y^2 \le 4x, 0 < x^2 + y^2 < 1$.

2.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \sqrt{1 - xy}}{xy} = \underline{1/2}$$

三、计算题

1.计算
$$\lim_{\substack{x \to \infty \\ y \to 1}} \left(1 + \frac{y}{x+y} \right)^{x+y}$$

解:
$$\lim_{\substack{x \to \infty \\ y \to 1}} \left(1 + \frac{y}{x+y} \right)^{x+y} = \lim_{\substack{t \to \infty \\ y \to 1}} \left(1 + \frac{y}{t} \right)^t = e^{\lim_{\substack{t \to \infty \\ t \to 0}} \frac{t}{t}} = e^{\lim_{\substack{t \to \infty \\ t \to 0}} \frac{t}{t}}$$

2. 讨论函数
$$f(x, y) = \begin{cases} \frac{x^2 + xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 的连续性.

解一: 当p(x,y)沿y轴(x=0)趋于O(0,0)时,

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 + xy}{x^2 + y^2} = \lim_{y \to 0} \frac{0}{y^2} = 0$$

当p(x,y)沿y=x, 趋于O(0,0)时,

$$\lim_{\substack{x \to 0 \\ y = x \to 0}} \frac{x^2 + xy}{x^2 + y^2} = \lim_{x \to 0} \frac{2x^2}{2x^2} = 1$$

所以 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 不存在,因此函数在原点不连续.

解二: 当p(x,y)沿y=kx趋于O(0,0)时,

$$\lim_{\substack{x\to 0\\y=kx\to 0}}\frac{x^2+xy}{x^2+y^2} = \lim_{x\to 0}\frac{\left(1+k\right)x^2}{\left(1+k^2\right)x^2} = \frac{1+k}{1+k^2} \le k \, 有美,因此函数在原点不连续.$$

3. 设
$$f(x, y) = \sqrt{x^2 |y|}$$
, 求 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

PR.
$$f(x, y) = |x|\sqrt{|y|} = \begin{cases} x\sqrt{|y|}, & x > 0\\ -x\sqrt{|y|}, & x < 0\\ 0, & x = 0 \end{cases}$$

当 $x=0, y\neq 0$ 时,

$$\frac{\partial f}{\partial x} = \lim_{x \to 0} \frac{\sqrt{x^2 |y|} - 0}{x} = \lim_{x \to 0} \frac{|x|\sqrt{|y|}}{x} = \begin{cases} \lim_{x \to 0^+} \frac{|x|\sqrt{|y|}}{x} = \sqrt{|y|}, & x \ge 0\\ \lim_{x \to 0^-} \frac{|x|\sqrt{|y|}}{x} = -\sqrt{|y|}, & x < 0 \end{cases}$$

$$\mathbb{R} \mathbb{R} \overline{\wedge} \widehat{F} \widehat{E};$$

$$\stackrel{\text{def}}{=} x=0$$
, $y=0$ Ft, $\frac{\partial f}{\partial x} = \lim_{\Delta t \to 0} \frac{0-0}{\Delta x} = 0$

$$f(x, y) = |x|\sqrt{|y|} = \begin{cases} |x|\sqrt{y}, & y > 0\\ |x|\sqrt{-y}, & y < 0\\ 0, & y = 0 \end{cases}$$

当
$$y > 0$$
 时, $\frac{\partial f}{\partial y} = \frac{|x|}{2\sqrt{y}}$, 当 $y < 0$ 时, $\frac{\partial f}{\partial y} = \frac{-|x|}{2\sqrt{-y}}$

当 $y = 0, x \neq 0$ 时,

$$\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, \Delta y) - f(x, 0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{|x|\sqrt{|\Delta y|}}{\Delta y} = \infty, \quad \text{WRTFE}.$$

当
$$y = 0, x = 0$$
时,

$$\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = 0$$

4. 求 $u = \int_{-\infty}^{yz} e^{t^2} dt$ 的偏导数.

$$\mathbf{\mathcal{H}} \quad u = -\int_0^{xz} e^{t^2} dt + \int_0^{yz} e^{t^2} dt$$

$$\frac{\partial u}{\partial x} = -e^{x^2 z^2} \cdot z , \quad \frac{\partial u}{\partial y} = e^{y^2 z^2} \cdot z , \quad \frac{\partial u}{\partial z} = -e^{x^2 z^2} \cdot x + e^{y^2 z^2} \cdot y$$

5. 讨论函数 $f(x, y) = \sqrt[3]{x^3 + y^3}$ 在(0, 0)点的可微性.

解
$$f'_{x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x - 0}{\Delta x} = 1$$

$$f'_{y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta x \to 0} \frac{\Delta y - 0}{\Delta y} = 1$$

设
$$z = f(x, y) = \sqrt[3]{x^3 + y^3}$$

所以
$$\lim_{\rho \to 0} \frac{\Delta z - \left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)_{(0,0)}}{\rho} = \lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\sqrt[3]{(\Delta x)^3 + (\Delta y)^3} - (\Delta x + \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}},$$

设 $\Delta y = k\Delta x$,则

$$\lim_{\stackrel{\Delta x \to 0}{\Delta y \to 0}} \frac{\sqrt[3]{(\Delta x)^3 + (\Delta y)^3} - (\Delta x + \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = \lim_{\Delta x \to 0} \frac{\sqrt[3]{1 + k^3} - (1 + k)}{\sqrt{1 + k^2}} \frac{\Delta x}{|\Delta x|}$$
 不存在,

故在(0,0)点的不可微

6. 证明函数 $f(x, y) = \sqrt{|xy|}$ 在点(0,0)处: (1) 连续; (2) 偏导数存在; (3) 不可微.

解 (1)
$$\lim_{\substack{x\to 0\\y\to 0}} \sqrt{|xy|} = 0 = f(0,0)$$
,所以 $f(x,y) = \sqrt{|xy|}$ 在 (0,0) 连续.

(2)
$$f'_{x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$

$$f'_{y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta y} = 0$$

(3) 设
$$z = f(x, y) = \sqrt{|xy|}$$
, 因为 $\Delta z = \sqrt{|\Delta x \cdot \Delta y|}$, 而 $\left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)_{(0,0)} = 0$

所以
$$\lim_{\rho \to 0} \frac{\Delta z - \left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)|_{(0,0)}}{\rho} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\sqrt{|\Delta x \cdot \Delta y|}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}, \quad$$
设 $\Delta y = k\Delta x$,则

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\sqrt{|\Delta x \cdot \Delta y|}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = \lim_{\substack{\Delta x \to 0 \\ \Delta y = k\Delta x \to 0}} \frac{\sqrt{(\Delta x)^2 |k|}}{\sqrt{(\Delta x)^2 + (\Delta x)^2 k^2}} = \lim_{\Delta x \to 0} \frac{\sqrt{|k|}}{\sqrt{1 + k^2}} = \lim_{\Delta x \to 0} \frac{|k|}{\sqrt{1 + k^2}} = \lim_{\Delta x \to 0} \frac{\sqrt{|k|}}{\sqrt{1 + k^$$

因此上式极限不存在,所以不可微.

第二次作业

一、单项选择题

1. 设 $z = \frac{y}{f(x^2 - v^2)}$, 其中f(u)为可导函数,则 $\frac{\partial z}{\partial r} = (B)$.

(A)
$$-\frac{2xy}{f^2(x^2-y^2)}$$
;

(A)
$$-\frac{2xy}{f^2(x^2-y^2)}$$
; (B) $-\frac{2xyf'(x^2-y^2)}{f^2(x^2-y^2)}$;

(C)
$$-\frac{yf'(x^2-y^2)}{f^2(x^2-y^2)}$$

(C)
$$-\frac{yf'(x^2-y^2)}{f^2(x^2-y^2)}$$
; (D) $-\frac{f(x^2-y^2)-yf'(x^2-y^2)}{f^2(x^2-y^2)}$.

2. 设方程 F(x-y, y-z, z-x) = 0 确定 $z \in \mathbb{R}^2$,y 的函数,F 是可微函数,则 $\frac{\partial z}{\partial x} = (D)$.

(A)
$$-\frac{F_1'}{F_2'}$$
;

(B)
$$\frac{F_1'}{F_3'}$$
;

(A)
$$-\frac{F_1'}{F_3'}$$
; (B) $\frac{F_1'}{F_3'}$; (C) $\frac{F_x - F_z}{F_y - F_z}$; (D) $\frac{F_1' - F_3'}{F_2' - F_3'}$.

(D)
$$\frac{F_1' - F_3'}{F_2' - F_3'}$$

3. 设 x = x(y, z), y = y(z, x), z = z(x, y) 都由方程 F(x, y, z) = 0 所确定的隐函数,则下列等式中,不正 确的一个是(C).

(A)
$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial x} = 1$$
;

(B)
$$\frac{\partial x}{\partial z} \frac{\partial z}{\partial x} = 1$$
;

(C)
$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = 1$$
;

(C)
$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = 1$$
; (D) $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = -1$.

4. 设 u = u(x, y), v = v(x, y)都是可微函数,C 为常数,则在下列梯度运算式中,有错误的是 (A).

(A) $\nabla C = 0$;

(B) $\nabla (Cu) = C\nabla u$;

(C) $\nabla (u+v) = \nabla u + \nabla v$;

(D) $\nabla(uv) = v\nabla u + u\nabla v$.

5. u = f(r), 而 $r = \sqrt{x^2 + y^2 + z^2}$, 且函数 f(r) 具有二阶连续导数,则 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = (B)$.

(A) $f''(r) + \frac{1}{r}f'(r);$ (B) $f''(r) + \frac{2}{r}f'(r);$

(C) $\frac{1}{r^2}f''(r) + \frac{1}{r}f'(r)$; (D) $\frac{1}{r^2}f''(r) + \frac{2}{r}f'(r)$.

二、填空题

1. 已知 f(1,2)=4, f(1,2)=16 d+4 d+4 f(1,4)=64 f(1,4)=64

的偏导数为 192 ...

2. 由方程 $xy - yz + zx = e^z$ 所确定的隐函数 z = z(x, y) 在点(1, 1)处的全微分为____dx + dy.

3.
$$r = \sqrt{x^2 + y^2}$$
 在点 (0,0) 处沿 x 轴正向的方向导数为_____.

4. 函数 $u = x^2 + y^2 + z^2 - xy + 2yz$ 在点 (-1, 2, -3) 处的方向导数的最大值等于 $\sqrt{21}$.

三、计算与解答题

1. 设 $f \in C^{(2)}$ 类函数, $z = f(e^{xy}, x^2 - y^2)$,求 $\frac{\partial^2 z}{\partial x \partial y}$.

 $2. \quad z = (1+xy)^y, \quad \vec{x} \, dz \, .$

$$\mathbf{\widetilde{g}} \frac{\partial z}{\partial x} = y(1+xy)^{y-1} \cdot y = y^2 (1+xy)^{y-1},$$

$$\frac{\partial u}{\partial y} = \frac{\partial e^{y \ln(1+xy)}}{\partial y} = (1+xy)^y \left[\ln(1+xy) + \frac{xy}{1+xy} \right].$$

$$z = (1+xy)^{y}$$

$$\Rightarrow dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = y^{2} (1+xy)^{y-1} dx + \frac{\partial}{\partial y} \left[e^{y \ln(1+xy)} \right] dy$$

$$= y^{2} (1+xy)^{y-1} dx + \left[(1+xy)^{y} \ln(1+xy) + xy (1+xy)^{y-1} \right] dy$$

3. 设f, φ 是 $C^{(2)}$ 类函数, $z = yf\left(\frac{x}{y}\right) + x\varphi\left(\frac{y}{x}\right)$, 证明:

(1)
$$x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial x \partial y} = 0$$
; (2) $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0$.

证明
$$\frac{\partial z}{\partial x} = yf \cdot \frac{1}{y} + \varphi + x \phi \cdot \left(-\frac{y}{x} \right) = 'f + \varphi - \frac{y}{x'} \zeta$$

$$\frac{\partial^2 z}{\partial x^2} = f'' \cdot \frac{1}{y} + \varphi' \cdot \left(-\frac{y}{x^2} \right) + \frac{y}{x^2} \varphi' - \frac{y}{x} \varphi'' \cdot \left(-\frac{y}{x^2} \right) = \frac{1}{y} f'' + \frac{y^2}{x^3} \varphi''$$

$$\frac{\partial^2 z}{\partial x \partial y} = f'' \cdot \left(-\frac{x}{y^2} \right) + \varphi' \cdot \frac{1}{x} - \frac{1}{x} \varphi' - \frac{y}{x} \varphi'' \frac{1}{x} = -\frac{x}{y^2} f'' - \frac{y}{x^2} \varphi''$$

$$\frac{\partial z}{\partial y} = f + y \cdot f' \left(-\frac{x}{y^2} \right) + x \cdot \varphi' \frac{1}{x} = f - \frac{x}{y} f' + \varphi'$$

$$\frac{\partial^2 z}{\partial y^2} = f \cdot \left(-\frac{x}{y^2} \right) + \frac{x}{y^2} f' - \frac{x}{y} \cdot f'' \cdot \left(-\frac{x}{y^2} \right) + \varphi'' \cdot \frac{1}{x} = \frac{x^2}{y^3} f'' + \frac{1}{x} \varphi''$$

$$x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial x \partial y} = x \left[\frac{1}{y} f'' \left(\frac{x}{y} \right) + \frac{y^2}{x^3} \varphi'' \left(\frac{y}{x} \right) \right] + y \left[-\frac{x}{y^2} f'' \left(\frac{x}{y} \right) - \frac{y}{x^2} \varphi'' \left(\frac{y}{x} \right) \right] = 0$$

$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = x^2 \left[\frac{1}{y} f'' \left(\frac{x}{y} \right) + \frac{y^2}{x^3} \varphi'' \left(\frac{y}{x} \right) \right] - y^2 \left[\frac{1}{x} \varphi'' \left(\frac{y}{x} \right) + \frac{x^2}{y^3} f'' \left(\frac{x}{y} \right) \right] = 0$$

$$4. \quad \text{if } \ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}, \quad \text{if } \frac{d^2 y}{dx^2}.$$

$$\mathbf{P} \frac{1}{2} \ln \left(x^2 + y^2 \right) = \arctan \frac{y}{x}, \qquad \frac{1}{2} \cdot \frac{2x + 2y \cdot y}{x^2 + y^2} = \frac{\frac{yx - y}{x^2}}{1 + \left(\frac{y}{x}\right)^2}$$

化简得
$$\frac{x+yy}{x^2+y^2} = \frac{y^2x-y}{x^2+y^2}$$
,所以 $(y-x)y' = -(x+y)$, $y' = \frac{x+y}{x-y}$

$$y'' = \frac{(1+y')(x-y)-(x+y)(1-y')}{(x-y)^2} = \frac{2(x\cdot y'-y)}{(x-y)^2} = \frac{2(x\cdot x+y-y)}{(x-y)^2} = \frac{2(x^2+y^2)}{(x-y)^3}$$

解 在方程组两端求全微分并整理,得

$$\begin{cases} (e^{u} + s i n)du + u c o s dv = dx \\ (e^{u} - c o s)du + u s i n dv = dy \end{cases}$$

$$D = \begin{vmatrix} e^{u} + \sin v & u \cos v \\ e^{u} - \cos v & u \sin v \end{vmatrix} = u \left[e^{u} \left(\sin v - \cos v \right) + 1 \right], D_{1} = \begin{vmatrix} dx & u \cos v \\ dy & u \sin v \end{vmatrix} = u \sin v dx - u \cos v dy$$

所以
$$du = \frac{D_1}{D} = \frac{\sin v}{e^u \left(\sin v - \cos v\right) + 1} dx - \frac{\cos v}{eu \left(\sin v - \cos v\right) + 1} dy$$

因此
$$\frac{\partial u}{\partial x} = \frac{\sin v}{e^u (\sin v - \cos v) + 1}$$

$$D_2 = \begin{vmatrix} e^u + \sin v & dx \\ e^u - \cos v & dy \end{vmatrix} = (e^u + \sin v) dy - |e^u - \cos v| dx$$

所以
$$dv = \frac{D_2}{D} = \frac{\left(\cos v - e^u\right)dx + \left(e^u + \sin v\right)dy}{u\left[e^u\left(\sin v - \cos v\right) + 1\right]}$$

因此
$$\frac{\partial v}{\partial v} = \frac{e^u + \sin v}{ue^u(\sin v - \cos v) + u}$$

6. 设
$$u = f(x, y, z), \varphi(x^2, e^y, z) = 0, y = \sin x$$
, 其中 f , $\varphi \in C^{(1)}$ 类函数,求 $\frac{du}{dx}$

解
$$\frac{\mathrm{d}u}{\mathrm{d}x} = f_1' + f_2' \frac{\mathrm{d}y}{\mathrm{d}x} + f_3' \frac{\mathrm{d}z}{\mathrm{d}x}$$
,

由
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
,有 $\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{dy}{dx}$

在 $\varphi(x^2, e^y, z) = 0$ 两边对x, y分别求偏导数,得

$$2x\varphi_1' + \varphi_z' \frac{\partial z}{\partial x} = 0$$
, $e^y \varphi_2' + \varphi_z' \frac{\partial z}{\partial y} = 0$

$$\frac{\partial z}{\partial x} = -\frac{2x\varphi_1'}{\varphi_2'}, \quad \frac{\partial z}{\partial y} = -\frac{e^y \varphi_2'}{\varphi_2'} = -\frac{e^{\sin x} \varphi_2'}{\varphi_2'}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = f_1' + f_2' \cos x - f_3' \frac{2x\varphi_1' + \varphi_2' \mathrm{e}^{\sin x} \cos x}{\varphi'}$$

7. 求函数 $z = \ln(x + y)$ 的点(1, 2)处沿着抛物线 $y^2 = 4x$ 的该点切线方向的方向导数.

A
$$E_x = \frac{1}{x+y}, z_y = \frac{1}{x+y}, z_x(1,2) = z_y(1,2) = \frac{1}{3}$$

$$y = 2\sqrt{x}$$
 $y' = 2 \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}}$ $y'|_{(1,2)} = 1$ $\tan \alpha = 1$

$$\alpha_1 = \frac{\pi}{4}, \, \alpha_2 = \frac{3}{4}\pi, \, \beta_1 = \frac{\pi}{4}, \, \beta_2 = \frac{3}{4}\pi$$

$$\cos \alpha_1 = \cos \beta_1 = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$\cos \alpha_2 = \cos \beta_2 = \cos \frac{3\pi}{4} = -\frac{1}{\sqrt{2}}$$

$$\frac{\partial z}{\partial l_1} = z_x(1,2)\cos\alpha_1 + z_y(1,2)\cos\beta_1 = \frac{1}{3} \cdot \frac{\sqrt{2}}{2} + \frac{1}{3} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{3}$$

$$\frac{\partial z}{\partial l_2} = z_x(1,2)\cos\alpha_2 + z_y(1,2)\cos\beta_2 = -\frac{1}{3} \cdot \frac{\sqrt{2}}{2} - \frac{1}{3} \cdot \frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{3}$$

第三次作业

一、单项选择题

- 1. 在曲线 x = t, $v = -t^2$, $z = t^3$ 的所有切线中,与平面 x + 2v + z = 4 平行的切线(B).
- (A) 只有一条; (B) 只有两条; (C) 至少有三条; (D) 不存在.
- 2. 设函数 f(x, y) 在点(0, 0)附近有定义,且 $f_x(0, 0) = 3$, $f_x(0, 0) = 1$,则(C).
 - (A) dz(0, 0) = 3dx + dv:
 - (B) 曲面 z = f(x, y) 在点 (0, 0, f(0, 0)) 的法向量为 $\{3, 1, 1\}$;
 - (C) 曲线 $\begin{cases} z = f(x, y), \\ y = 0 \end{cases}$ 在点 (0, 0, f(0, 0)) 的切向量为 $\{1, 0, 3\}$;
 - (D) 曲线 $\begin{cases} z = f(x, y), \\ y = 0 \end{cases}$ 在点 (0, 0, f(0, 0)) 的切向量为 {3, 0, 1}.
- 3. 曲面 z = x + f(y z) 的任一点处的切平面 (D).
 - (A) 垂直于一定直线;
- (B) 平等于一定平面:
- (C) 与一定坐标面成定角;
- (D) 平行于一定直线.
- 4. 设 u(x, y) 在平面有界闭区域 D 上是 $C^{(2)}$ 类函数,且满足 $\frac{\partial^2 u}{\partial x^2 y} \neq 0$ 及 $\frac{\partial^{2u}}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$,则 u(x, y) 的

(B).

- (A) 最大值点和最小值点必定都在D的内部;
- (B) 最大值点和最小值点必定都在D的边界上;
- (C) 最大值点在D的内部,最小值点在D的边界上;
- (D) 最小值点在 D 的内部, 最得到值点在 D 的边界上.

二、填空题

- 1. 如果曲面 xyz = 6 在点 M 处的切平面平行于平面 6x 3y + 2z + 1 = 0,则切点 M 的坐标是 (-
- - 2. 曲线 $\begin{cases} x^2 + 4y^2 + 9z^2 = 14, \\ x + y + z = 1 \end{cases}$ 在点 (1, 1, -1) 处的法平面方程是 13x-10y-3z-6=0 .
 - 3. $z = x^2 + y^2$ 在条件 x + y = 1 下的极小值是 $\frac{1}{2}$.
 - 4. 函数 $u = \sqrt{x^2 + y^2 + z^2}$ 在点 M(1, 1, 1) 处沿曲面 $2z = x^2 + y^2$ 在该点的外法线方向的方向导数是 $\frac{1}{3}$.

三、计算题

1. 求曲线 $\begin{cases} x^2 + y^2 + z^2 = 6, \\ z = x^2 + y^2 \end{cases}$ 在点 (1, 1, 2) 处的切线方程.

解一:
$$\begin{cases} 2yy' + 2zz' = -2x ① \\ -2yy' + z' = 2x ② \end{cases}$$

① + ②:
$$z' = 0$$

代入
$$y' = -\frac{x}{y}$$
, $y'(1,1,2) = -1$ 所以 $\bar{s} = (1,-1,0)$

切线方程:
$$\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-2}{0}$$
, 即 $\begin{cases} x-1=1-y\\ z=2 \end{cases}$

解二:
$$F(x, y, z) = x^2 + y^2 + z^2 - 6$$
, $Fx = 2x$, $Fy = 2y$, $Fz = 2z$, $\overline{n_1} = (2, 2, 4)$

$$\mathbb{R} \overrightarrow{n_1} = (1,1,2), \quad \overrightarrow{s} = \overrightarrow{n_1} \times \overrightarrow{n_2}$$

$$G(x, y, z) = x^2 + y^2 - z$$
, $G_x = 2x$, $G_y = 2y$, $G_z = -1$

$$\vec{n}_2 = (2,2,-1)$$

$$s_1$$
 切平面: $1\cdot(x-1)+1\cdot(y-1)+2(z-2)=0$ 即 $x+y+2z-6=0$

$$s_2$$
 切平面: $2(x-1)+2(y-1)-(z-2)=0$ 即: $2x+2y-z-2=0$

所以切线方程为
$$\begin{cases} x+y+2z-6=0\\ 2x+2y-z-2=0 \end{cases}$$

2. 过直线
$$\begin{cases} 10x + 2y - 2z = 27, \\ x + y - z = 0 \end{cases}$$
 作曲面 $3x^2 + y^2 - z^2 = 27$ 的切平面,求其方程.

解: 设切点为
$$M_0(x_0,y_0,z_0)$$
, 切平面方程为: $3x_0x+y_0y-z_0z-27=0$ ·····①

过已知直线的平面束方程为 $10x+2y-2z-27+\lambda(x+y-z)=0$

当① ②为同一平面时有: $10+\lambda=3x_0, 2+\lambda=y_0, -\lambda-2=-z_0$

解得
$$\begin{cases} x_0 = 3 \\ y_0 = 1 或 \\ z_0 = 1 \end{cases} \begin{cases} x_0 = -3 \\ y_0 = -17 \\ z_0 = -17 \end{cases}$$

对应的切平面方程为: 9x+y-z-27=09x+17y-17z+27=0

3. 证明曲面 $x^{2/3} + y^{2/3} + z^{2/3} = a^{2/3} (a > 0)$ 上任意点处的切平面在各个坐标轴上的截距平方和等于 a^2 .

解 设 $M_0(x_0, y_0, z_0)$ 为曲面上任一点

切平面方程为: $\frac{2}{3}x_0^{-\frac{1}{3}}(x-x_0) + \frac{2}{3}y_0^{-\frac{1}{3}}(y-y_0) + \frac{2}{3}z_0^{-\frac{1}{3}}(z-z_0) = 0$

$$\mathbb{E} : \quad x_0^{-\frac{1}{3}} x + y_0^{-\frac{1}{3}} y + z_0^{\frac{1}{3}} z = a^{\frac{2}{3}}$$

令 y = z = 0 得 x 轴截距 $X = a^{\frac{2}{3}} x_0^{\frac{1}{3}}$, 同理 $Y = a^{\frac{2}{3}} y_0^{\frac{1}{3}}$, $Z = a^{\frac{2}{3}} z_0^{\frac{1}{3}}$.

所以
$$X^2 + Y^2 + Z^2 = (x_0^{\frac{2}{3}} + y_0^{\frac{2}{3}} + z_0^{\frac{2}{3}})a^{\frac{4}{3}} = a^2$$
.

4. 求
$$f(x, y) = x^4 + y^4 - 2x^2 - 2y^2 + 4xy$$
 的极值

解 驻点:
$$\begin{cases} \frac{\partial f}{\partial x} = 4x^3 - 4x + 4y = 0\\ \frac{\partial f}{\partial y} = 4y^3 - 4y + 4x = 0 \end{cases} \Rightarrow (x, y) = (0, 0), (\sqrt{2}, -\sqrt{2}), (-\sqrt{2}, \sqrt{2})$$

二阶偏导: $f''_{xx} = 12x^2 - 4$, $f''_{xy} = 4$, $f''_{yy} = 12y^2 - 4$

1. 在(0, 0)点, $f''_{xx} = 12x^2 - 4 = -4 < 0$, $(f''_{xy})^2 - f''_{xx} \cdot f''_{yy} = 16 - 16 = 0$,无法使用充分条件判断,

但由于在直线 $y = x \perp$, $f(x, x) = 2x^4 \xrightarrow{\text{ex}=0}$ 取极小值;

在直线 y = -x上, $f(x, -x) = 2x^4 - 8x^2 \xrightarrow{E \times =0}$ 取极大值.

所以(0,0)不是极值点.

2. 在 $(\sqrt{2}, -\sqrt{2})$ 点,

$$f_{xx}'' = 12x^2 - 4 = 20 > 0$$
, $(f_{xy}'')^2 - f_{xx}'' \cdot f_{yy}'' = -384 < 0$, 为极小值点,且 $f(\sqrt{2}, -\sqrt{2}) = -8$

3. 在 $(-\sqrt{2}, \sqrt{2})$ 点,

$$f_{xx}'' = 12x^2 - 4 = 20 > 0$$
, $(f_{xy}'')^2 - f_{xx}'' \cdot f_{yy}'' = -384 < 0$, 为极小值点,且 $f(-\sqrt{2}, \sqrt{2}) = -8$

故 f(x, y)存在极小值 $f(-\sqrt{2}, \sqrt{2}) = -8$.

5. 求函数 $f(x, y) = x^2 + y^2 - 12x + 16y$ 在区域 $D = \{(x, y) | x^2 + y^2 \le 25\}$ 上的最大值和最小值.

$$\mathbf{F} \begin{cases}
fx = 2x - 12 = 0 \\
fy = 2y + 16 = 0
\end{cases}$$
 $\begin{cases}
x = 6 \\
y = -8
\end{cases}$
不在 D 内,所以 D 内无极值点.

在边界 $x^2 + y^2 = 25$ 上, f(x, y) = 25 - 12x + 16y

$$L(x, y) = 25 - 12x + 16y + \lambda(x^2 + y^2 - 25)$$

$$\begin{cases} Lx = -12 + 2\lambda x = 0 \\ Ly = 16 + 2\lambda y = 0 \end{cases} \text{ ### } \begin{cases} x = 3 \\ y = -4 \end{cases} \begin{cases} x = -3 \\ y = 4 \end{cases}, \quad x^2 + y^2 = 25$$

$$f(3,-4)=-75$$
 最小, $f(-3,4)=125$ 最大.

6. 在过点 P(1,3,6) 的所有平面中, 求一平面, 使之与三个坐标平面所围四面体的体积最小.

解: 设平面方程为 Ax + By + Cz = 1, 其中 A, B, C 均为正,则它与三坐标平面围成四面体的体积为

$$V = \frac{1}{6} \frac{1}{ABC}$$
, $\mathbb{H} A + 3B + 6C = 1$, \diamondsuit

$$F(A,B,C,\lambda) = ABC + \lambda(A+3B+6C-1)$$
, 则由

$$\begin{cases} \frac{\partial F}{\partial A} = BC + \lambda = 0 \\ \frac{\partial F}{\partial A} = AC + 3\lambda = 0 \\ \frac{\partial F}{\partial A} = AB + 6\lambda = 0 \\ A + 3B + 6C = 1 \end{cases}$$
 求得
$$\begin{cases} A = \frac{1}{3} \\ B = \frac{1}{9} \text{ . 由于问题存在最小值,} \\ C = \frac{1}{18} \end{cases}$$

因此所求平面方程为 $\frac{x}{3} + \frac{y}{9} + \frac{z}{18} = 1$, 且 $V_{\min} = \frac{1}{6} \times 3 \times 9 \times 18 = 81$.

第四次作业

一、单项选择题

1. 设 f(x, y) 连续,且 $f(x, y) = xy + \iint_{\mathbb{R}} f(x, y) dxdy$,其中 D 是由 y = 0, $y = x^2$, x = 1 所围区域,则 f(x, y)等于(C).

- (B) 2xy; (C) $xy + \frac{1}{8}$; (D) xy + 1.

2. 设 D 是 xOy 平面上以(1, 1), (-1, 1)和(-1, -1)为顶点的三角形区域, D_1 是 D 的第一象限部分,则 $\iint (xy + \cos x \sin y) dxdy$ 等于(A).

- (A) $2\iint_{D_1} \cos x \sin y dx dy$; (B) $2\iint_{D_1} xy dx dy$; (C); $4\iint_{D_2} (\mathbf{y} \cdot \mathbf{x}) dx dy$ (D) 0.

3. 设平面区域 $D:1 \le x^2 + y^2 \le 4$, f(x,y) 是在区域 D 上的连续函数,则 $\iint f\left(\sqrt{x^2 + y^2}\right) dxdy$ 等于 (A).

- (A) $2\pi \int_{1}^{2} rf(r) dr$;
- (B) $2\pi \left[\int_0^2 rf(r)dr + \int_0^1 rf(r)dr\right];$
- (C) $2\pi \int_{1}^{2} rf(r^{2}) dr$; (D) $2\pi \left[\int_{0}^{2} rf(r^{2}) dr + \int_{0}^{1} rf(r^{2}) dr \right]$.

4. 设有空间区域 $\Omega_1: x^2 + y^2 + z^2 \le R^2, \ z \ge 0$ 及 $\Omega_2: x^2 + y^2 + z^2 \le R^2, \ x \ge 0$, $y \ge 0$, $z \ge 0$, 则 (C).

- $(A) \iiint_{\Omega_{1}} x dV = 4 \iiint_{\Omega_{2}} x dV ;$ $(B) \iiint_{\Omega_{1}} y dV = 4 \iiint_{\Omega_{2}} y dV ;$ $(C) \iiint_{\Omega_{1}} z dV = 4 \iiint_{\Omega_{2}} z dV ;$ $(D) \iiint_{\Omega_{1}} x y z dV = 4 \iiint_{\Omega_{2}} x y z dV .$

二、填空题

1. 积分 $\int_0^2 dx \int_x^2 e^{-y^2} dy = \frac{1}{2} (1 - e^{-4})$.

2. 交换积分次序: $\int_0^1 dx \int_{-\sqrt{x}}^{\sqrt{x}} f(x, y) dy + \int_1^4 dx \int_{x-2}^{\sqrt{x}} f(x, y) dy = \int_{-1}^2 dy \int_{y^2}^{y+2} f(x, y) dx.$

3. 设区域 D 为 $|x|+|y| \le 1$,则 $\iint_{D} (|x|+|y|) dxdy = \frac{4}{3}$.

4. 设区域 D 为 $x^2 + y^2 \le R^2$, 则 $\iint_{\mathbb{R}} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right) dxdy = \frac{\pi R^4}{4} \left(\frac{1}{a^2} + \frac{1}{b^2} \right)$.

5. 直角坐标中三次积分 $I = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{0}^{x^2+y^2} f(x, y, z) dz$ 在柱面坐标中先 z 再 r 后

 θ 顺序的三次积分是 $\int_0^{2\pi} \mathrm{d}\theta \int_0^1 \mathrm{d}r \int_0^{r^2} f\left(r\cos\theta,r\sin\theta,z\right) r \mathrm{d}z$

三、计算题

1. $\iint |x^2 + y^2 - 4|d\sigma$, 其中 D 为圆域 $x^2 + y^2 \le 9$

解 将区域D分为 D_1,D_2 , 其中

$$\begin{split} &D_1 = \left\{ (x,y) \, | \, x^2 + y^2 \leq 4 \right\}, D_2 = \left\{ (x,y) \, | \, 4 \leq x^2 + y^2 \leq 9 \right\}. \mp \mathbb{E} \\ &\iint_D | \, x^2 + y^2 - 4 \, | \mathrm{d}\sigma = \iint_{D_1} (4 - x^2 - y^2) \mathrm{d}\sigma + \iint_{D_2} (x^2 + y^2 - 4) \mathrm{d}\sigma \\ &= \int_0^{2\pi} d\theta \int_0^2 (4 - r^2) r dr + \int_0^{2\pi} d\theta \int_2^3 (r^2 - 4) r dr \\ &= 2\pi (2r^2 - \frac{1}{4}r^4) \big|_0^2 + 2\pi (\frac{1}{4}r^4 - 2r^2) \big|_2^3 \\ &= \frac{41}{2}\pi \end{split}$$

2. 计算 $\iint_{D} \frac{x \sin y}{y} dxdy$, 其中 D 是由 $y = x^2$ 和 y = x 所围成的区域.

解 求 $y = x^2$ 和 y = x 的交点 (0,0),(1,1), 先对 x 后对 y 积分, 积分区域为

$$D: \begin{cases} y \le x \le \sqrt{y} \\ 0 \le y \le 1 \end{cases}$$

$$\iint_{D} \frac{x \sin y}{y} dxdy = \int_{0}^{1} \frac{\sin y}{y} dy \int_{y}^{\sqrt{y}} x dx = \int_{0}^{1} \frac{\sin y}{y} \left(\frac{y}{2} - \frac{y^{2}}{2}\right) dy$$

$$= \frac{1}{2} \int_{0}^{1} \sin y dy - \frac{1}{2} \int_{0}^{1} y \sin y dy$$

$$= \frac{1}{2} (1 - \cos 1) + \frac{1}{2} (\cos 1 - \sin 1)$$

$$= \frac{1}{2} (1 - \sin 1)$$

3. \(\dip \iiint_D \iint_{(x^2 + y^2)} \) \(\delta x \) \(\dip \int_D = \{(x, y) \| 0 \le x \le 2, \sqrt{2x - x^2} \le y \le \sqrt{4 - x^2}\}.

解 极坐标为
$$D:$$

$$\begin{cases} 2\cos\theta \le r \le 2 \\ 0 \le \theta \le \frac{\pi}{2} \end{cases}$$

$$I = \int_0^{\frac{\pi}{2}} d\theta \int_{2\cos\theta}^2 r^2 \cdot r dr = \int_0^{\frac{\pi}{2}} \left[\frac{r^4}{4} \right]_{2\cos\theta}^2 d\theta = \int_0^{\frac{\pi}{2}} 4 \left(1 - \cos^4 \theta \right) d\theta$$
$$= 4 \cdot \frac{\pi}{2} - 4 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = 2\pi - \frac{3\pi}{4} = \frac{5\pi}{4}$$

4. 计算 $\iint_{\Omega} xy^2 z^3 dV$, 其中 Ω 是由曲面 z = xy 与平面 y = x, x = 1 和 z = 0 所围成的闭或区域.

解 将积分区域 Ω 视为xy型域

$$\Omega = \{(x, y, z) | 0 \le z \le xy, (x, y) \in D_{xy}\}$$

其中 Dxy 是 Oxy 平面上的区域

$$Dxy = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$$

$$\iiint_{\Omega} xy^{2}z^{3}dV = \int_{0}^{1} xdx \int_{0}^{x} y^{2}dy \int_{0}^{xy} z^{3}dz$$
$$= \int_{0}^{1} x^{5} \left[\frac{y^{7}}{7} \right]_{0}^{x} dx = \frac{1}{28} \int_{0}^{1} x^{12}dx = \frac{1}{28} \times \frac{1}{13} = \frac{1}{3}$$

5. $I = \iiint_{\Omega} (x^2 + y^2) dv$, Ω 是由曲线 $y^2 = 2z$, x = 0 绕 z 轴旋转一周而成的曲面与两平面 z = 2, z = 8 所围的立体.

解: 旋转曲面方程 $x^2 + y^2 = 2z$, $2 \le z \le 8$

使用柱面坐标,在柱面坐标系中,
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases}$$

$$D(z): x^2 + y^2 \le 2z \Rightarrow r^2 \le 2z \Rightarrow 0 \le r \le \sqrt{2z}$$
$$I = \int_2^8 dz \int_0^{2\pi} d\theta \int_0^{\sqrt{2z}} r^2 \cdot r dr = 336\pi$$

6. 设
$$f(x,y)$$
 在 $x^2 + y^2 \le 1$ 上连续,求证: $\lim_{R \to 0} \frac{1}{R^2} \iint_{x^2 + y^2 \le R^2} f(x,y) d\sigma = \pi f(0,0)$

证明 设
$$D = \{(x, y) | x^2 + y^2 \le R^2 \}$$

由重积分中值定理, $\exists (\xi,\eta) \in D$, 使得 $\iint_D f(x,y) d\sigma = f(\xi,\eta)\sigma = \pi R^2 f(\xi,\eta)$,

由f的连续性,知 $\lim_{R\to 0} f(\xi,\eta) = f(0,0)$,从而有:

$$\lim_{R \to 0} \frac{1}{R^2} \iint_{x^2 + y^2 \le R^2} f(x, y) d\sigma$$

$$= \lim_{R \to 0} \frac{1}{R^2} \pi R^2 f(\xi, \eta) = \pi \lim_{R \to 0} f(\xi, \eta) = \pi f(0, 0)$$

四、证明题

设函数 f(x) 在闭区间 [a,b] 上连续且恒大于零,证明

$$\int_a^b f(x) dx \int_a^b \frac{dx}{f(x)} \ge (b-a)^2.$$

其中 $D = \{(x, y) | a \le x \le b, a \le y \le b\}$

只须证:
$$\frac{f(x)}{f(y)} + \frac{f(y)}{f(x)} \ge 2$$
,即 $\left(\sqrt{\frac{f(x)}{f(y)}} - \sqrt{\frac{f(y)}{f(x)}}\right)^2 \ge 0$

证明: 设
$$D:$$
 $\begin{cases} a \le x \le b \\ a \le y \le b \end{cases}$

因为
$$\iint_{D} \left[\sqrt{\frac{f(x)}{f(y)}} - \sqrt{\frac{f(y)}{f(x)}} \right]^{2} dxdy \ge 0$$

$$\mathbb{H}: \iint_{D} \left[\frac{f(x)}{f(y)} + \frac{f(y)}{f(x)} \right] dxdy \ge \iint_{D} 2dxdy$$

所以
$$\int_a^b f(x) dx \int_a^b \frac{1}{f(y)} dy + \int_a^b f(y) dy \cdot \int_a^b \frac{1}{f(x)} dx \ge 2(b-a)^2$$

$$2\int_{a}^{b} f(x) dx \cdot \int_{a}^{b} \frac{1}{f(x)} dx \ge 2(b-a)^{2}, \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} \frac{1}{f(x)} dx \ge (b-a)^{2}$$

第五次作业

学院 班级 姓名 学号

一、单项选择题

1. 设 L 是圆周 $x^2 + y^2 = a^2$, 则 $\oint_{\Gamma} (x^2 + y^2)^n ds = (D)$.

- (A) $2\pi a^n$; (B) $2\pi a^{n+1}$; (C) $2\pi a^{2n}$; (D) $2\pi a^{2n+1}$.

2. 设 L 是由(0, 0), (2, 0), (1, 1)三点连成的三角形边界曲线,则 $\int_{L} y ds = (A)$.

- (B) $2+\sqrt{2}$; (C) $2\sqrt{2}$; (D) $2+2\sqrt{2}$.

3. 设 Σ 是锥面 $x^2 + y^2 = z^2$ 在 $0 \le z \le 1$ 的部分,则 $\iint (x^2 + y^2) dS = ($ D).

- (A) $\int_0^{\pi} d\theta \int_0^1 r^3 dr$;
- (B) $\int_0^{2\pi} d\theta \int_0^1 r^3 dr$;
- (C) $\sqrt{2} \int_0^{\pi} d\theta \int_0^1 r^3 dr$;
- (D) $\sqrt{2}\int_0^{2\pi}\mathrm{d}\theta\int_0^1 r^3\mathrm{d}r$.

4. 设 Σ 为 $x^2 + y^2 + z^2 = a^2$ ($z \ge 0$), Σ_1 是 Σ 在第一卦限中的部分,则有(C

(A)
$$\iint_{\Sigma} x dS = 4 \iint_{\Sigma_{1}} x dS ;$$

(B)
$$\iint_{\Sigma} y dS = 4 \iint_{\Sigma_{1}} x dS ;$$

(C)
$$\iint_{\Sigma} z dS = 4 \iint_{\Sigma_1} x dS ;$$

(D)
$$\iint_{\Sigma} xyz dS = 4 \iint_{\Sigma_1} xyz dS.$$

二、填空题

3. 设 Γ 表示曲线弧 $x = \frac{\sqrt{3}}{2}\cos t, y = \frac{\sqrt{3}}{2}\sin t, z = \frac{t}{2}, (0 \le t \le 2\pi)$,则

$$\int_{\Gamma} (x^2 + y^2 + z^2) ds = \frac{3}{2} \pi + \frac{2}{3} \pi^3.$$

4. 设Σ 是柱面 $x^2 + y^2 = a^2$ (a > 0) 在 $0 \le z \le h$ 之间的部分,则 $\iint_{\Sigma} x^2 dS = \underline{\pi a^3 h}$.

5. 设 Σ 是上半椭球面 $\frac{x^2}{\Omega} + \frac{y^2}{A} + z^2 = 1$ ($z \ge 0$),已知 Σ 的面积为A,则

$$\iint_{S} (4x^{2} + 9y^{2} + 36z^{2} + xyz) dS = \underline{36A}.$$

三、计算题

1. 计算 $\oint e^{\sqrt{x^2+y^2}} ds$,其中 L 为圆周 $x^2+y^2=a^2$,直线 y=x 及 x 轴在第一象限内所围成的扇形的整 个边界.

解:

$$L = L_1 + L_2 + L_3$$

$$L_1: y = 0, \quad 0 \le x \le a \qquad L_2: x^2 + y^2 = a^2$$

$$L_3: y = x, 0 \le x \le \frac{a}{2}$$

$$\int_{L_1} e^{\sqrt{x^2 + y^2}} ds = \int_0^a e^x dx = e^a - 1; \int_{L_2} e^{\sqrt{x^2 + y^2}} ds = \int_{L_2} e^a ds = \frac{\pi a}{4} e^a; \int_{L_3} e^{\sqrt{x^2 + y^2}} ds = \int_0^{\frac{\sqrt{2}}{2}a} e^{\sqrt{2}x} \sqrt{2} dx = e^a - 1$$
Fig. 1. $\oint_{L_3} e^{\sqrt{x^2 + y^2}} ds = 2(e^a - 1) + \frac{\pi a}{2} e^a$

所以
$$\oint_L e^{\sqrt{x^2+y^2}} ds = 2(e^a - 1) + \frac{\pi a}{4} e^a$$

2. 计算
$$\int_{\Gamma} z^2 ds$$
, 其中 Γ : $\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y + z = 0. \end{cases}$.

解 因为
$$\oint_{\Gamma} x^2 ds = \oint_{\Gamma} y^2 ds = \oint_{\Gamma} z^2 ds$$
,

所以
$$\oint_{\Gamma} z^2 ds = \frac{1}{3} \oint_{\Gamma} (x^2 + y^2 + z^2) ds = \frac{1}{3} \oint_{\Gamma} a^2 ds = \frac{1}{3} a^2 \cdot 2\pi a = \frac{2}{3} \pi a^3$$

3. 计算
$$I = \iint_{\Sigma} |xyz| dS$$
 $\sum : z = x^2 + y^2$ 被 $z = 1$ 所截下部分

解 由于被积分区域 Σ 关于xoz和yoz对称,而|xyz|为偶函数,所以

此处设 $u = 1 + 4r^2$

4. 求
$$I = \iint_S \frac{dS}{x^2 + y^2 + z^2}$$
 , 其中 S 是介于 $z = 0, z = H$ 之间的圆柱面 $x^2 + y^2 = R^2$

$$\mathbf{f} \mathbf{f} \mathbf{f} I = 2 \iint_{S_1} \frac{dS}{x^2 + y^2 + z^2}$$
 $S_1 : \begin{cases} x = \sqrt{R^2 - y^2} \\ 0 \le z \le H, -R \le y \le R \end{cases}$

$$\vec{m} \; x'_y = -\frac{y}{\sqrt{R^2 - y^2}}, x'_z = 0$$

$$I = 2\iint_{D} \frac{1}{(R^{2} - y^{2}) + y^{2} + z^{2}} \sqrt{1 + 0 + \frac{y^{2}}{R^{2} - y^{2}}} dydz$$
$$= 2R \int_{0}^{H} \frac{dz}{z^{2} + R^{2}} \int_{-R}^{R} \frac{dy}{\sqrt{R^{2} - y^{2}}} = 2\pi \arctan \frac{H}{R}$$

四、应用题

1. 求柱面 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ 被球面 $x^2 + y^2 + z^2 = 1$ 包围部分的面积 S

解 根据第一类曲线积分的几何意义: 如 \sum 是以L为准线, 母线平行于z轴的柱面, 介于平面z=0和曲面 $z=f\left(x,y\right)\left[f\left(x,y\right)\geq 0\right]$ 之间的部分,则 $\int_{z}^{z}f\left(x,y\right)ds$ 的值就

是柱面 Σ 的侧面积.则

$$S = \oint_{L} \sqrt{1 - x^{2} - y^{2}} ds = 8 \int_{L_{1}} \sqrt{1 - x^{2} - y^{2}} ds$$

其中: $L: \begin{cases} x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1, L_1 \neq L \text{ 的第一象限部分。取} L_1 参数方程 \\ z = 0 \end{cases}$

$$\begin{cases} x = \cos^3 \theta \\ y = \sin^3 \theta \end{cases} \quad \left(0 \le \theta \le \frac{\pi}{2} \right)$$

$$S = 8 \int_0^{\frac{\pi}{2}} \sqrt{1 - \cos^6 \theta - \sin^6 \theta} \cdot \sqrt{\left(-3\cos^2 \theta \sin \theta\right)^2 + \left(3\sin^2 \theta \cos \theta\right)^2} \cdot d\theta$$

$$= 8 \int_0^{\frac{\pi}{2}} \sqrt{1 - \left(\cos^2 \theta + \sin^2 \theta\right) \left(\cos^4 \theta - \cos^2 \theta \sin^2 \theta + \sin^4 \theta\right)} \cdot 3\sin \theta \cos \theta d\theta$$

$$= 24 \int_0^{\frac{\pi}{2}} \sqrt{1 - \cos^4 \theta + \cos^2 \theta \sin^2 \theta - \sin^4 \theta} \cdot \sin \theta \cos \theta d\theta$$

$$= 24 \sqrt{3} \int_0^{\frac{\pi}{2}} \left[\sin \theta \cos \theta\right]^2 d\theta = 6\sqrt{3} \int_0^{\frac{\pi}{2}} \sin^2 2\theta d\theta = 6\sqrt{3} \int_0^{\frac{\pi}{2}} \frac{1 - \cos 4\theta}{2} d\theta = \frac{3\sqrt{3}}{2} \pi$$

2. 求面密度 $\rho = 1$ 的均匀半球壳 $x^2 + y^2 + z^2 = a^2$ $(z \ge 0)$ 关于 z 轴的转动惯量.

解

$$\begin{split} I_z &= \iint_{\Sigma} (x^2 + y^2) \rho_0 \mathrm{d}s \\ \Sigma &: z = \sqrt{a^2 - x^2 - y^2} \ . \quad D_{xy} : x^2 + y^2 \le a^2 . \quad \mathrm{d}s = \frac{R \mathrm{d}x \mathrm{d}y}{\sqrt{R^2 - x^2 - y^2}} \\ I_z &= \iint_{D} (x^2 + y^2) \cdot \rho_0 \cdot \frac{R}{\sqrt{R^2 - x^2 - y^2}} \mathrm{d}x \mathrm{d}y \end{split}$$

$$\begin{aligned}
& \frac{1}{2} - \iint_{D_{xy}} (X + y) \cdot \rho_0 \cdot \frac{1}{\sqrt{R^2 - x^2 - y^2}} dx dx \\
&= \rho_0 R \cdot \int_0^{2\pi} d\theta \int_0^R r^2 \cdot \frac{r}{\sqrt{R^2 - r^2}} dr \\
&= 2\pi \rho_0 R \cdot \int_0^{\frac{\pi}{2}} R^3 \sin^3 t \cdot \frac{R \cos t}{R \cos t} dt \\
&= 2\pi \rho_0 R^4 \cdot \frac{2}{3} \cdot 1
\end{aligned}$$

$$\left(r = R\sin t, \, dr = R\cos t dt, \, r\Big|_{0}^{R} \longleftrightarrow t\Big|_{0}^{\frac{\pi}{2}}\right)$$

第六次作业

学院 班级 姓名 学号

一、单项选择题

1. 设 L 是圆周 $x^2 + y^2 = a^2$ (a > 0) 负向一周,则曲线积分

$$\oint_{L} (x^{3} - x^{2}y) dx + (xy^{2} - y^{3}) dy = (B) .$$

- (A) 0; (B) $-\frac{\pi a^4}{2}$; (C) $-\pi a^4$; (D) πa^4 .

2. 设 L 是椭圆 $4x^2 + y^2 = 8x$ 沿逆时针方向,则曲线积分 $\oint_{\Gamma} e^{y^2} dx + x dy = (A)$.

3.设 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧,则曲面积分

$$\oint_{\Sigma} \frac{x \mathrm{d}y \mathrm{d}z + y \mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{\left(z^2 + y^2 + z^2\right)^{\frac{3}{2}}} = (D).$$

(A) 0; (B) 1; (C) 2π ; (D) 4π . 4. 已知 $\frac{(x+ay)\mathrm{d}y-y\mathrm{d}x}{(x+y)^2}$ 为某函数的全微分,则 a=(B) 正确.

- (A) -1;
- (B) 0;
- (C) 2
- (D) 1.

二、填空题

1. 设 L 为 $x^2 + (y-1)^2 = 4$ 正向一周,则 $\oint_L \frac{x dy - y dx}{x^2 + (y-1)^2} = \frac{2\pi}{2\pi}$.

2. 设 L 为封闭折线 |x|+|y|=1 正向一周,则 $\int_{L} x^{2}y^{2}dx - \cos(x+y)dy = 0$.

3. 设 L 为 $y = \int_0^x \tan t dt$ 从 x=0 到 $x = \frac{\pi}{4}$ 一段弧,将 $\int_L P(x, y) dx + Q(x, y) dy$ 化为第一型曲线积分为 $\int_{I} (P\cos x + Q\sin x) ds.$

4. 设Σ是平面 $3x + 2y + 2\sqrt{3}z = 6$ 在第一卦限部分的下侧,则 $I = \iint_{\mathbb{R}} P dy dz + Q dz dx + R dx dy$ 化为对面 积的曲面积分为 $I = \iint_{\Sigma} -\frac{1}{5} (3P + 2Q + 2\sqrt{3}R) dS$.

5. 设Σ为球面 $x^2 + y^2 + z^2 = a^2$, 法向量向外,则 $\oint_{\Sigma} x^3 dy dz = ______ \frac{4}{5} \pi a^5 _____$.

6. 设 $u = x^2 + 2y + yz$,则 div(gradu) = _____2

三、计算题

1. 计算 $\int_C y^2 dx - x dy$, 其中 L 是抛物线 $y = x^2$ 上从点 A(1,1) 到 B(-1,1), 再沿直线到 C(0,2) 的曲线.

$$\mathbf{R} \int_{L} y^{2} dx - x dy = \int_{\overline{AB}} y^{2} dx - x dy + \int_{\overline{BC}} y^{2} dx - x dy$$

$$\overrightarrow{AB}$$
: $\begin{cases} x = x \\ y = x^2 \end{cases}$, $x: 1 \rightarrow -1$ of $= 2x$

$$\therefore \int_{\overline{AB}} y^2 dx - x dy = \int_1^{-1} (x^4 - x \cdot 2x) dx$$

$$=-2\int_0^1 (x^4 - 2x^2) dx = -2\left(\frac{1}{5} - \frac{2}{3}\right) = \frac{14}{15}$$

$$\overline{BC}: \begin{cases} x = x \\ y = x + 2 \end{cases}$$
 $x: -1 \to 0$ $dy = dx$

$$\therefore \int_{\overline{BC}} y^2 dx - x dy = \int_{-1}^{0} (x+2)^2 dx - \int_{-1}^{0} x \cdot dx = \left[\frac{(x+2)^3}{3} \right]_{-1}^{0} - \left[\frac{x^2}{2} \right]_{-1}^{0} = \frac{7}{3} + \frac{1}{2} = \frac{17}{6}$$

$$\mathbb{R} = \frac{14}{15} + \frac{17}{6} = \frac{113}{30}$$

2. 计算 $\int_L (x^2 - y) dx - (x + \sin y) dy$, 其中 L 是圆周 $y = \sqrt{2x - x^2}$ 上从 A(2,0) 到 O(0,0) 的一段弧.

解一: 补充 \overline{OA} ,则 $L+\overline{OA}$ 构成闭曲线(正向),

由 Green 公式:
$$\oint_{L+\overline{OA}} (x^2 - y) dx - (x + \sin y) dy = \iint_{D} 0 dx dy = 0$$

$$\overline{\prod} \int_{\overline{OA}} (x^2 - y) dx - (x + \sin y) dy = \int_0^2 x^2 dx = \frac{8}{3} \quad \therefore \ \ \, \overline{\mathbb{R}} = 0 - \frac{8}{3} = -\frac{8}{3}$$

解二:
$$P = x^2 - y$$
, $Q = -(x + \sin y)$ 在 xoy 面内有一阶连续偏导,且

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = -1$$
 所以曲线积分与路径无关,则

$$\int_{L} (x^{2} - y) dx - (x + \sin y) dy = \int_{\overline{AO}} (x^{2} - y) dx - (x + \sin y) dy = \int_{2}^{0} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{2}^{0} = -\frac{8}{3}.$$

3. 设 f(x) 在 $(-\infty, +\infty)$ 内具有一阶连续导数,L 是半平面 (y>0) 内的有向分段光滑曲线,其起点为 (a,b),终点为 (c,d) . 证明

$$I = \int_{L} \frac{1}{v} [1 + y^{2} f(xy)] dx + \frac{x}{v^{2}} [y^{2} f(xy) - 1] dy$$

- (1) 证明曲线积分 I 与路径 L 无关
- (2) 当ab = cd时,求I的值

证明(1)
$$P = \frac{1}{v}[1 + y^2 f(xy)], \quad Q = \frac{x}{v^2}[y^2 f(xy) - 1]$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = f(xy) - \frac{1}{y^2} + xyf'(xy)$$
,所以曲线积分 I 与路径 L 无关

解: (2) 由于与路径无关,取折线段(a,b)到(c,b),以及(c,b)到(c,d)

利用 ab = cd, 则

$$I = \int_{L} \frac{1}{y} [1 + y^{2} f(xy)] dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy$$

$$= \int_{a}^{c} \frac{1}{b} (1 + b^{2} f(bx)) dx + \int_{b}^{d} \frac{c}{y^{2}} (y^{2} f(cy) - 1) dy$$

$$= \frac{c}{d} - \frac{a}{b}$$

4. 设力 $F = \frac{-yi + xj}{y^2}$, 证明力 F 在上半平面内所作的功与路径无关,并求从点 A(1,2) 到点 B(2,1) 力 F 所作的功.

(1) 证明
$$\omega = \int_{\overline{AB}} -\frac{1}{y} dx + \frac{x}{y^2} dy$$

$$P = -\frac{1}{y}, Q = \frac{x}{y^2}$$
在 $y > 0$ 有一阶连续偏导,且 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{1}{y^2}$.

所以F在上半平面内所作的功与路径无关.

(2) 取积分路径为折线 A-C(1,1)-B 则

$$\omega = \left(\int_{\overline{AC}} + \int_{\overline{CB}} \right) \left(-\frac{1}{y} dx + \frac{x}{y^2} \right) dy = \int_{\overline{AC}} \frac{x}{y^2} dy + \int_{\overline{CB}} -\frac{1}{y} dx$$
$$= \int_{2}^{1} \frac{1}{y^2} dy + \int_{1}^{2} -1 dx = -\left[\frac{1}{y} \right]_{2}^{1} -1 = -\frac{3}{2}.$$

5. 计算 $I = \iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$, 其中 Σ 是曲面 $z = 1 - x^2 - y^2$ ($z \ge 0$) 的上侧.

解: 投影域 $D_{xy}: x^2 + y^2 \le 1$, 用合一投影法

$$I = \iint_{\Sigma} 2x^{3} dydz + 2y^{3} dzdx + 3(z^{2} - 1)dxdy$$
$$= \iint_{D_{yy}} \left[4x^{4} + 4y^{4} + 3((1 - x^{2} - y^{2})^{2} - 1) \right] dxdy = -\pi$$

6. 计算 $\iint_{\Sigma} (z^2 + x) dy dz - z dx dy$,其中 Σ 是抛物面 $z = \frac{1}{2} (x^2 + y^2)$ 介于平面 z = 0 与 z = 2 之间部分的下侧.

解一(合一投影法), $D_{xy}=\{(x,y)|\ x^2+y^2\leq 4\}$, $z_x=x$, Σ 取下侧,由公式得

$$\iint_{\Sigma} (z^{2} + x) dy dz - z dx dy = -\iint_{D_{xy}} \left\{ \left[\frac{1}{4} (x^{2} + y^{2})^{2} + x \right] (-x) - \frac{1}{2} (x^{2} + y^{2}) \right\} dx dy$$

$$= \iint_{D_{xy}} \left[\frac{1}{4} x (x^{2} + y^{2})^{2} + x^{2} + \frac{1}{2} (x^{2} + y^{2}) \right] dx dy$$

$$= \iint_{D_{xy}} (x^{2} + y^{2}) dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{2} r^{3} dr = 8\pi$$

解二: (Gauss 公式),补充 Σ_0 : z=2 上侧 ($x^2+y^2\leq 4$),则 $\Sigma+\Sigma_0$ 成闭曲面(外侧),由 Gauss 公式,得

$$\oint_{\Sigma + \Sigma_0} (z^2 + x) dy dz - z dx dy = \iiint_{\Omega} 0 dV = 0$$

$$\overline{\prod} \iint_{\Sigma_0} (z^2 + x) dy dz - z dx dy = \iint_{D_{xy}} -2 \cdot dx dy = -2 \cdot \pi \cdot 2^2 = -8\pi.$$

所以
$$\iint_{\Sigma} (z^2 + x) dy dz - z dx dy = 0 - (-8\pi) = 8\pi$$
.

7. 计算 $I = \oint_{\Gamma} -y^2 dx + x dy + z^2 dz$, 其中 Γ 是平面 y + z = 2 与柱面 $x^2 + y^2 = 1$ 的交线,从 z 轴正向

看去, Γ取逆时针方向.

解 设Σ: y+z=2. $x^2+y^2 \le 1$,取上侧由 stokes 公式:

阶段测试题

学院 班级 姓名 学号 一、单项选择题(每小题3分,满分18分)

1. 二元函数 z = f(x, y) 在 (x_0, y_0) 连续,且 $f'_x(x_0, y_0)$ 、 $f'_y(x_0, y_0)$ 存在是 z = f(x, y) 在 (x_0, y_0) 可微的 (B) 条件.

- (A) 充分
- (B) 必要
- (C) 充分必要 (D) 非充分非必要

2. 已知 $f_x(x, y)$ 、 $f_y(x, y)$ 在 (0, 0) 连续,则 z = f(x, y) 在 (0, 0) 处, $\phi(x) = f(x, 0)$ 在 x = 0 处 (A).

(A) 均连续

- (B) 均不一定连续
- (C) 均不连续
- (D) $\phi(x)$ 一定连续, f(x, y) 不一定连续

3. 设 L 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的顺时针方向,则 $\oint_{\Gamma} (x+y) dx + (y-x) dy = (A)$.

- (B) $-2\pi ab$ (C) 0

4. 设 D 由 $y = \sqrt{1 - x^2}$ 和 y = 0 围成,则 $\iint_{\mathbb{R}} (e^y \sin x + y) dx dy = (C)$.

- (B) 1 (C) 2/3 (D) 4/3

5. 设 Ω 由 $z=x^2+y^2, x^2+y^2+z^2=2$ $(z\geq 0)$ 围成,则三重积分 $\iiint_{\Omega} (x^2+y^2+z^2) dV$ 化为柱面坐标系

下三次积分为(D).

(A)
$$\int_0^{2\pi} d\theta \int_0^2 r dr \int_{r^2}^{\sqrt{2-r^2}} (r^2 + z^2) dx$$

(A)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} r dr \int_{r^{2}}^{\sqrt{2-r^{2}}} (r^{2} + z^{2}) dz$$
 (B) $\int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} r dr \int_{r^{2}}^{\sqrt{2-r^{2}}} (r^{2} + z^{2}) dz$

(C)
$$\int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^{\sqrt{2-r^2}} 2dz$$

(C)
$$\int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^{\sqrt{2-r^2}} 2dz$$
 (D) $\int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^{\sqrt{2-r^2}} (r^2 + z^2) dz$

6. $\[\stackrel{\text{in}}{\boxtimes} \Omega : x^2 + y^2 + z^2 \le 1 \]$. $\[\Sigma : x^2 + y^2 + z^2 = 1 \]$. $\[r : x^2 + y^2 + z^2 = 1 \]$, $\[x = 0 \]$ $\[\Rightarrow 0 \]$

(0, 0, -1) 到 (0, 0, 1) 则以下计算 (D) 错误.

(A)
$$\iiint_{\Omega} z dV = 0$$
 (B) $\iint_{\Sigma} z dS = 0$ (C) $\int_{r} z ds = 0$ (D) $\int_{r} z dy = 0$

二、填空题 (每小题 3 分,满分 21 分)

1. $\exists \exists f(x, y) = e^{3x} \ln 2y$, $\bigcup f'_x(0, \frac{1}{2}) = \underline{0}$, $f''_{yy}(0, 1) = \underline{-1}$.

2. $u = xy^2 + z^3 - xyz$ 在点 M(1,1,1) 处沿 $\overline{l} = (0,1,2)$ 方向的方向导数最大,方向导数的最大为 $\sqrt{5}$.

4. 设 Ω 为由 $z = \sqrt{x^2 + y^2}$,z = 2 围成的空间区域,a 为常数,则 $\iiint_{\Omega} a dV = \frac{8}{3} \pi a$.

5. L 为上半圆周
$$y = \sqrt{1-x^2}$$
, 则 $\int_{L} (x+y)^2 e^{x^2+y^2} ds = \underline{e \cdot \pi}$.

6. 设
$$\Sigma$$
 是柱面 $x^2 + y^2 = 1$ 在 $0 \le z \le 2$ 之间的部分,则 $\iint_{\Sigma} y^2 dS = \underline{2\pi}$.

7. 设
$$I = \int_0^{\frac{\sqrt{2}}{2}R} dx \int_0^x f(x, y) dy + \int_{\frac{\sqrt{2}}{2}R}^R dx \int_0^{\sqrt{R^2 - x^2}} f(x, y) dy$$
, 改变积分次序

三、解答题(每小题8分,满分48分)

1. $z = f(2x - y, y \sin x) + xg(e^x \ln y)$, 其中f具有二阶连续偏导数,g具有二阶导数.求 $\frac{\partial^2 z}{\partial x \partial y}$.

解:
$$z = f(2x - y, y \sin x) + xg(e^x \ln y)$$

$$\frac{\partial z}{\partial x} = f_1' \cdot 2 + f_2' \cdot y \cos x + g + x \cdot g' \cdot e^x \cdot \ln y$$
$$= 2f_1' + \cos xyf_2' + xe^x \ln y \cdot g' + g$$

$$\frac{\partial^2 z}{\partial x \partial y} = 2[f_{11}''(-1) + f_{12}' \sin x] + \cos \cdot f_2' + \cos xy[f_{21}''(-1) + f_{22}'' \cdot \sin x]
+ xe^x \left[\frac{1}{y} g' + \ln y \cdot g'' \cdot e^x \cdot \frac{1}{y} \right] + g' \cdot e^x \cdot \frac{1}{y}
= -2f_{11}'' + (2\sin x - y\cos x)f_{12}'' + y\sin x\cos xf_{22}'' + \cos xf_2' + (x+1) \cdot \frac{e^x}{y} g' + \frac{xe^{2x}}{y} \ln yg''$$

 $y = e^{ty} + x$,而 t 是由方程 $y^2 + t^2 - x^2 = 1$ 确定的 x, y 的函数,求 $\frac{dy}{dx}$.

解法 1:
$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{ty} \left(y \frac{\mathrm{d}t}{\mathrm{d}x} + t \frac{\mathrm{d}y}{\mathrm{d}x} \right) + 1 \\ 2y \cdot \frac{\mathrm{d}y}{\mathrm{d}x} + 2t \frac{\mathrm{d}t}{\mathrm{d}x} - 2x = 0 \end{cases}$$

$$\begin{cases} (1 - t\mathrm{e}^{ty}) \frac{\mathrm{d}y}{\mathrm{d}x} - y\mathrm{e}^{ty} \frac{\mathrm{d}t}{\mathrm{d}x} = 1 \\ y \frac{\mathrm{d}y}{\mathrm{d}x} + t \frac{\mathrm{d}t}{\mathrm{d}x} = x \end{cases}$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\begin{vmatrix} 1 & -y e^{ty} \\ x & t \end{vmatrix}}{\begin{vmatrix} 1 - t e^{ty} & -y e^{ty} \\ y & t \end{vmatrix}} = \frac{t + xy e^{ty}}{t + (y^2 - t^2)e^{ty}}$$

解法 2: 在方程组两边求微分,及: $\begin{cases} dy = e^{ty}(ydt + tdy) + dx \cdots (1) \\ 2ydy - 2tdt - 2xdx = 0 \cdots (2) \end{cases}$

曲(2)
$$dt = \frac{xdx - ydy}{t}$$
代入(1)

$$dy = e^{ty} \left(y \cdot \frac{x dx - y dy}{t} + t dy \right) + dx \quad , \quad$$
整理得
$$\frac{dy}{dx} = \frac{t + xy e^{ty}}{t + (y^2 - t^2)e^{ty}}$$

3. 计算
$$\iint_{D} \frac{\cos y}{y} dxdy$$
, 其中 D 由 $y = \sqrt{x}$, $y = x$ 围成.

解: 由
$$y = \sqrt{x}$$
, $y = x$ 得交点 $O(0,0)$, $A(1,1)$, 区域 $D: \begin{cases} y^2 \le x \le y \\ 0 \le y \le 1 \end{cases}$

$$\iint_{D} \frac{\cos y}{y} dxdy = \int_{0}^{1} dy \int_{y^{2}}^{y} \frac{\cos y}{y} dx = \int_{0}^{1} \frac{\cos y}{y} (y - y^{2}) dy$$

$$= \int_{0}^{1} \cos y dy - \int_{0}^{1} y \cos y dy$$

$$= [\sin y]_{0}^{1} - [y \sin y]_{0}^{1} + \int_{0}^{1} \sin y dy = \sin 1 - \sin 1 - [\cos y]_{0}^{1} = 1 - \cos 1$$

4. 计算 $I = \iint_{\Sigma} \frac{1}{z} dS$, 其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2x$ 截得的有限部分.

解:
$$z = \sqrt{x^2 + y^2}$$
, $z_x = \frac{x}{\sqrt{x^2 + y^2}}$, $z_y = \frac{y}{\sqrt{x^2 + y^2}}$, $dS = \sqrt{2} dx dy$

$$D_{xy}: x^2 + y^2 \le 2x, \ y \ge 0$$
 $\exists r = 2\cos\theta, \ 0 \le \theta \le \frac{\pi}{2}$

$$I = \iint_{\Sigma} \frac{1}{z} dS = 2 \iint_{D_{xy}} \frac{1}{\sqrt{x^2 + y^2}} \sqrt{2} dx dy = 2 \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \frac{1}{r} \cdot \sqrt{2} r dr$$
$$= 2 \int_0^{\frac{\pi}{2}} 2\sqrt{2} \cos\theta d\theta = 4\sqrt{2}$$

5. 计算曲线积分 $\int_{ONA} (2x \sin y - y) dx + (x^2 \cos y - 1) dy$,其中 ONA 为连接 O(0, 0)和 $A(2, \frac{\pi}{2})$ 的任何路径,但与直线 OA 围成的图形 ONAO 有定面积 π .

解:
$$P = 2x\sin y - y$$
, $Q = x^2\cos y - 1$ $\frac{\partial P}{\partial y} = 2x\cos y - 1$, $\frac{\partial Q}{\partial x} = 2x\cos y$

补充 \overrightarrow{AO} ,则ONAO成闭曲线(正向)

曲 Green 公式,
$$\oint_{ONAO} (2x\sin y - y) dx + (x^2 \cos y - 1) dy = \iint_D 1 dx dy = \pi$$

而
$$OA:$$

$$\begin{cases} x = x \\ y = \frac{\pi}{4}x \end{cases} \quad x: 0 \to 2 \quad \text{gl} = \frac{\pi}{4} \quad \text{s}, \quad \text{所以}$$

$$\int_{\overline{OA}} (2x\sin y - y) dx + (x^2\cos y - 1) dy = \int_0^2 \left(2x\sin\frac{\pi}{4}x - \frac{\pi}{4}x + \frac{\pi}{4}x^2\cos\frac{\pi}{4}x - \frac{\pi}{4} \right) dx$$

$$\therefore \frac{\pi}{4} \int_{0}^{2} x^{2} \cos \frac{\pi}{4} x dx = \int_{0}^{2} x^{2} d \sin \frac{\pi}{4} x = \left[x^{2} \sin \frac{\pi}{4} x \right]_{0}^{2} - \int_{0}^{2} \sin \frac{\pi}{4} x \cdot 2x dx = 4 - \int_{0}^{2} 2x \cdot \sin \frac{\pi}{4} x dx$$

$$\int_{\overline{OA}} (2x\sin y - y) dx + (x^2\cos y - 1) dy = 4 - \int_0^2 \frac{\pi}{4} x dx - \int_0^2 \frac{\pi}{4} dx = 4 - \pi$$

$$\int_{ONA} (2x\sin y - y) dx + (x^2\cos y - 1) dy = \pi + (4 - \pi) = 4$$

6. 设
$$f(x)$$
 连续, $F(t) = \iiint_{\Omega} [z^2 + f(x^2 + y^2)] dV$, 其中 $\Omega: 0 \le z \le h, x^2 + y^2 \le t^2$, 求

$$\frac{\mathrm{d}F}{\mathrm{d}t}$$
, $\lim_{t\to 0^+} \frac{F(t)}{t^2}$.

解:
$$F(t) = \iiint_{\Omega} [z^2 + f(x^2 + y^2)] dV = \int_0^{2\pi} d\theta \int_0^t r dr \int_0^h [z^2 + f(r^2)] dz$$

$$= 2\pi \int_0^t r \cdot \left[\frac{h^3}{3} + f(r^2) \cdot h \right] dr$$

$$\frac{dF}{dt} = 2\pi \cdot t \left[\frac{h^3}{3} + f(t^2) \cdot h \right]$$

$$\lim_{t \to 0^+} \frac{F(t)}{t^2} = \lim_{t \to 0^+} \frac{2\pi t \left[\frac{h^3}{3} + f(t^2)h \right]}{2t} = \pi \left[\frac{h^3}{3} + f(0)h \right]$$

四、证明题(满分6分)

求证 $\left|\int_{\Gamma} P dx + Q dy + R dz\right| \le \int_{\Gamma} \sqrt{P^2 + Q^2 + R^2} ds$,并由此估计 $\left|\oint_{\Gamma} z dx + x dy + y dz\right|$ 的上界,其中 Γ 为球面 $x^2 + y^2 + z^2 = a^2$ 与平面 x + y + z = 0 的交线并已取定方向,P,Q,R 为连续函数.

证明:
$$\left| \int_{\Gamma} P dx + Q dy + R dz \right| = \left| \int_{\Gamma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds \right|$$

$$\leq \int_{\Gamma} \left| (P, Q, R) \cdot (\cos \alpha, \cos \beta, \cos \gamma) \right| ds$$

$$= \int_{\Gamma} \sqrt{P^2 + Q^2 + R^2} \cdot 1 \cdot \left| \cos \theta \right| ds \leq \int_{\Gamma} \sqrt{P^2 + Q^2 + R^2} ds$$

$$\left| \oint_{\Gamma} z dx + x dy + y dz \right| \leq \oint_{\Gamma} \sqrt{x^2 + y^2 + z^2} ds = \oint_{\Gamma} a ds = 2\pi a^2$$

五、应用题(满分7分)

求内接于椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$,且棱平行于对称轴的体积最大的长方体.

解: 设第一卦限内顶点为p(x, y, z),则长方体长、宽、高分别为 $2x \times 2y \times 2z$

$$V = 2x \cdot 2y \cdot 2z$$
, $\coprod \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

$$\text{VF } L(x, y, z) = xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 \right)$$

$$\begin{cases} L_{x} = yz + \frac{2\lambda x}{a^{2}} = 0 \\ L_{y} = xz + \frac{2\lambda y}{b^{2}} = 0 \\ L_{z} = xy + \frac{2\lambda z}{c^{2}} = 0 \end{cases}$$
 (1)
$$L_{\lambda} = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} - 1 = 0$$
 (2)

由(1)得:
$$\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2}$$
, 将其代入(2)

$$\therefore x = \frac{a}{\sqrt{3}}, y = \frac{b}{\sqrt{3}}, z = \frac{c}{\sqrt{3}}, \text{ 由实际意义, 则最大体积为} V = 8xyz = \frac{8}{9}\sqrt{3}abc.$$

第七次作业

一、单项选择题

1. 设 $0 < a_n < \frac{1}{n} (n = 1, 2, 3, \dots)$,则下列级数中肯定收敛的是 (D).

- (A) $\sum_{n=0}^{\infty} a_n$; (B) $\sum_{n=0}^{\infty} (-1)^n a_n$; (C) $\sum_{n=0}^{\infty} \sqrt{a_n}$; (D) $\sum_{n=0}^{\infty} \frac{a_n}{n}$.

2. 若级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都发散,则(C).

- (A) $\sum_{n=0}^{\infty} (u_n + v_n)$ 发散;
- (B) $\sum_{n=1}^{\infty} u_n v_n$ 发散;
- (C) $\sum_{n=1}^{\infty} (|u_n| + |v_n|)$ 发散; (D) $\sum_{n=1}^{\infty} (u_n^2 + v_n^2)$ 发散.

3. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则必收敛的级数为 (D).

- (A) $\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n};$
- (B) $\sum_{n=1}^{\infty} u_n^2$;
- (C) $\sum_{n=1}^{\infty} (u_{2n-1} u_{2n})$;
- (D) $\sum_{n=1}^{\infty} (u_n + u_{n+1})$.

4. 设 a 为常数,则级数 $\sum_{n=1}^{\infty} \left(\frac{\sin \alpha}{n^2} - \frac{1}{\sqrt{n}} \right)$ (C).

- (A) 绝对收敛; (B) 条件收敛; (C) 发散; (D) 收敛性取决于 a 的值.

5. 已知函数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x = -2 处收敛,则在 x = 0 处,该级数为(C).

- (A) 发散; (B) 条件收敛; (C) 绝对收敛; (D) 收敛性不定.

6. 幂级数 $\sum_{n=3^n}^{\infty} \frac{1}{n^{3^n}} x^n$ 的收敛域是 (D).

- (A) $\left[-\frac{1}{3}, \frac{1}{3}\right]$; (B) $\left[-\frac{1}{3}, \frac{1}{3}\right]$; (C) $\left[-3, 3\right]$; (D) $\left[-3, 3\right]$.

7. 2^x 展开为x的幂级数是(C).

- (A) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$; (B) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$; (C) $\sum_{n=0}^{\infty} \frac{(x \ln 2)^n}{n!}$; (D) $\sum_{n=0}^{\infty} \frac{(x \ln 2)^n}{n!}$.

二、填空题

1. 若级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = 2$$
, $\sum_{n=1}^{\infty} u_{2n-1} = 5$, 则级数 $\sum_{n=1}^{\infty} u_n = \underline{8}$.

2. 设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 2,则幂级数 $\sum_{n=1}^{\infty} n a_n (x+1)^{n+1}$ 的收敛区间 <u>(-3, 1)</u>3. 幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)!} x^{2n}$ 的收敛半径为 <u>√3</u>.

4. 设函数
$$f(x) = x^2, x \in [0,1]$$
, 而 $s(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x, \quad x \in (-\infty, +\infty)$, 其中
$$a_n = 2 \int_0^1 f(x) \cos n\pi x dx, \quad n = 0, 1, 2, \cdots, \quad \text{则 } s(-1) \text{ 的值为} \underline{\qquad } 1 \underline{\qquad }.$$

三、计算题

1. 设正项数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 是否收敛?并说明理由.

解 因为 $a_n>0$,且 $\{a_n\}$ 单调减少,所以 $\lim_{n\to\infty}a_n=a$ (单调有界准则),由极限性质, $a\geq 0$.

若 a=0,因为 $\sum (-1)^n a_n$ 为交错级数,由 Leibniz 判别法,级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛,这与题设矛盾,故 a>0.

设
$$u_n = \left(\frac{1}{a_n + 1}\right)^n, n = 1, 2, \dots,$$
有由根值判别法,

$$\rho = \lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \frac{1}{a_n + 1} = \frac{1}{a + 1} < 1. \quad \therefore \sum_{n=1}^{\infty} \left(\frac{1}{a_n + 1} \right)^n \psi \dot{\mathfrak{D}}.$$

2. 求级数
$$\sum_{n=1}^{\infty} \left(\frac{\ln^n 3}{2^n} + \frac{1}{n(n+1)} \right)$$
的和.

#:
$$\sum_{n=1}^{\infty} \frac{\ln^n 3}{2^n} = \frac{\frac{\ln 3}{2}}{1 - \frac{\ln 3}{2}} = \frac{\ln 3}{2 - \ln 3}, \quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

$$\therefore \sum_{n=1}^{\infty} \left(\frac{\ln^n 3}{2^n} + \frac{1}{n(-n+1)} \right) = \frac{\ln 3}{2 - \ln 3} + 1 = \frac{2}{2 - \ln 3}$$

3. 讨论级数
$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$$
 的敛散性.

解

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{a^{n+1} \cdot (n+1)!}{(n+1)^{n+1}}}{\frac{a^n \cdot n!}{n^n}} = \lim_{n \to \infty} \frac{an^n}{(n+1)^n}$$

$$= \lim_{n \to \infty} \frac{a}{\left(1 + \frac{1}{n}\right)^n} = \frac{a}{e}$$

当 $\frac{a}{e}$ <1,即a<e,级数收敛;当 $\frac{a}{e}$ >1,即a>e,级数发散.

当
$$a = e$$
 时,级数为 $\sum_{n=1}^{\infty} \frac{e^n n!}{n^n}$

$$\therefore \left(1 + \frac{1}{n}\right)^n < e . \quad \therefore \frac{u_{n+1}}{u_n} > 1. \quad \therefore \quad u_1 = e . \quad \therefore \lim_{n \to \infty} u_n \neq 0. \therefore \sum \frac{e^n n!}{n^n}$$
级数发散

4. 讨论交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot (\sqrt[n]{a} - 1) (a > 0, a \neq 1)$ 是绝对收敛还是条件收敛.

解:
$$\sum_{n=1}^{\infty} \left| (-1)^{n-1} (\sqrt[n]{a} - 1) \right| = \sum_{n=1}^{\infty} \left| (\sqrt[n]{a} - 1) \right|$$

$$\lim_{n \to \infty} \frac{\sqrt[n]{a} - 1}{\frac{1}{n}} = \lim_{n \to \infty} \frac{e^{\frac{1}{n} \ln a} - 1}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n} \ln a}{\frac{1}{n}} = \ln a > 0$$

$$\stackrel{\text{def}}{=} 0 < a < 1 \text{ Fe}, \quad \sum_{n=1}^{\infty} \left| (-1)^{n-1} (\sqrt[n]{a} - 1) \right| = \sum_{n=1}^{\infty} \left| (\sqrt[n]{a} - 1) \right| = \sum_{n=1}^{\infty} (1 - \sqrt[n]{a})$$

$$\lim_{n \to \infty} \frac{1 - \sqrt[n]{a}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1 - e^{\frac{1}{n} \ln a}}{\frac{1}{n}} = -\lim_{n \to \infty} \frac{\frac{1}{n} \ln a}{\frac{1}{n}} = -\ln a > 0,$$

而级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, $\therefore \sum_{n=1}^{\infty} \left| (-1)^{n-1} \cdot (\sqrt[n]{a} - 1) \right|$ 发散. 所以原级数不是绝对收敛.

当
$$0 < a < 1$$
时,原级数为交错级数: $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot (\sqrt[n]{a} - 1) = \sum_{n=1}^{\infty} (-1)^n (1 - \sqrt[n]{a})$

设
$$f(x) = 1 - a^{\frac{1}{x}}$$
, $f'(x) = \frac{1}{x^2} a^{\frac{1}{x}} \ln a < 0$, 所以 $f(x)$ 单调减少,

因此,
$$0 < u_{n+1} = 1 - \sqrt[n+1]{a} < 1 - \sqrt[n]{a} = u_n$$
,

而
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} (1-\sqrt[n]{a}) = 0$$
. $\therefore \sum_{n\to\infty} (-1)^n (1-\sqrt[n]{a})$ 收敛

当a > 1时,原级数为交错级数,

设
$$f(x) = a^{\frac{1}{x}} - 1$$
, $f'(x) = -\frac{1}{x^2} a^{\frac{1}{x}} \ln a < 0$, 所以 $f(x)$ 单调减少,

因此有
$$0 < u_{n+1} = \sqrt[n+1]{a} - 1 < \sqrt[n]{a} - 1 = u_n$$
,

而
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} (\sqrt[n]{a} - 1) = 0$$
. $\therefore \sum_{n\to\infty} (-1)^{n-1} (\sqrt[n]{a} - 1)$ 收敛

综上,原级数条件收敛.

5. 求幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-4)^n$$
 收敛区间及和函数 $S(x)$.

解:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = 1$$
,所以收敛区间为 $-1 < x - 4 < 1$,即 $3 < x < 5$.

当
$$x = 3$$
 时,级数成为 $\sum_{n=1}^{\infty} (-\frac{1}{n})$,由调和级数知发散;

当 x=5 时,级数成为 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$,由交错级数的 Leibniz 判别法知此级数是收敛的. 所以收敛域为 (-3,5] .

设
$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-4)^n$$
,则 $S'(x) = \sum_{n=1}^{\infty} (-1)^{n-1} (x-4)^{n-1} = \frac{1}{1+(x-4)} = \frac{1}{x-3}$,

所以,
$$S(x) = \ln(x-3)$$
, $(3 < x \le 5)$.

6. 将函数
$$f(x) = \frac{1}{x^2 - 5x + 6}$$
 在 $x = 4$ 点展成幂级数.

解

$$f(x) = \frac{1}{(x-2)(x-3)} = \frac{1}{x-3} - \frac{1}{x-2}$$

$$= \frac{1}{(x-4)+1} - \frac{1}{(x-4)+2} = \frac{1}{1-[-(x-4)]} - \frac{1}{2} \cdot \frac{1}{1-\left(-\frac{x-4}{2}\right)}$$

$$= \sum_{n=0}^{\infty} [-(x-4)]^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x-4}{2}\right)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n \left[1 - \frac{1}{2^{n+1}}\right] (x-4)^n. \quad (3 < x < 5)$$

$$(|-(x-4)| < 1, \left|-\frac{x-4}{2}\right| < 1. \quad \text{解} \\ ||x-4| < 1 \\ \text{\tilde{\text{\text{$\chi}$}}}$$

7. 求幂级数
$$\sum_{n=1}^{\infty} nx^n$$
 的和函数.

$$\mathbf{\widetilde{R}:} \quad \sum_{n=1}^{\infty} nx^n = x \cdot \sum_{n=1}^{\infty} n \cdot x^{n-1}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = 1. \quad \therefore R = 1.$$

设
$$s(x) = \sum_{n=1}^{\infty} nx^{n-1}$$
 (-1,1),则 $\int_{0}^{x} s(x) dx = \sum_{n=1}^{\infty} x^{n} = \frac{x}{1-x}$

$$\therefore s(x) = \left(\frac{x}{1-x}\right)' = \frac{1}{(1-x)^2} \quad (-1,1)$$

$$x=1$$
. $\sum_{n=1}^{\infty} n$. 级数发散. $x=-1$. 级数为 $\sum_{n=1}^{\infty} n \cdot (-1)^n$ 发散. $\therefore \sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2}$ (-1,1).

8. 设 f(x) 是周期为 2 的周期函数,且 $f(x) = \begin{cases} x, & 0 \le x \le 1, \\ 0, & 1 < x < 2, \end{cases}$ 写出 f(x) 的傅里叶级数与其和函数,并

求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和.

解: ① 将 f(x) 作周期延拓, 2l=2, l=1. (且-1 < x < 0时 f(x) = 0)

②
$$a_0 = \int_{-1}^1 f(x) dx = \int_0^2 f(x) dx = \int_0^1 x dx = \frac{1}{2}$$

$$a_{n} = \int_{-1}^{1} f(x) \cos n\pi x dx = \int_{0}^{2} f(x) \cos n\pi x dx = \int_{0}^{1} x \cdot \cos n\pi x dx$$

$$= \frac{1}{n\pi} \int_{0}^{1} x \cdot d\sin n\pi x = \frac{1}{n\pi} \left[x \cdot \sin n\pi x \Big|_{0}^{1} - \int_{0}^{1} \sin n\pi x dx \right]$$

$$= \frac{-1}{n^{2}\pi^{2}} \int_{0}^{1} \sin n\pi x \cdot dn\pi x = \frac{1}{n^{2}\pi^{2}} \left[\cos n\pi x \right]_{0}^{1}$$

$$= \frac{-1}{n^{2}\pi^{2}} \left[\cos n\pi - \cos 0 \right] = \frac{1}{n^{2}\pi^{2}} \left[(-1)^{n} - 1 \right] = \begin{cases} \frac{-2}{n^{2}\pi^{2}}, & n \stackrel{\text{figures}}{=} 0 \end{cases}$$

$$b_{n} = \int_{-1}^{1} f(x) \cdot \sin n\pi x dx = \int_{0}^{2} f(x) \cdot \sin n\pi x dx = \int_{0}^{1} x \cdot \sin n\pi x dx$$
$$= \frac{-1}{n\pi} \int_{0}^{1} x \cdot d\cos n\pi x = -\frac{1}{n\pi} \left[x \cdot \cos n\pi x \Big|_{0}^{1} - \int_{0}^{1} \cos n\pi x dx \right]$$
$$= -\frac{1}{n\pi} \cos n\pi = \frac{(-1)^{n+1}}{n\pi}, \quad n = 1, 2, \dots$$

$$f(x) = \frac{1}{4} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)\pi x + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n\pi x$$

④
$$\Leftrightarrow x = 0, f(0) = 0, : 0 = \frac{1}{4} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}, \quad \text{If } \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

9. 设
$$a_1 = 2$$
, $a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})$ 证明: ① $\lim_{n \to \infty} a_n$ 存在 ② $\sum_{n=1}^{\infty} (\frac{a_n}{a_{n+1}} - 1)$ 收敛.

证明: ① 有界性:
$$a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n}) \ge 1$$
, 即 $\{a_n\}$ 有下界 1;

单调性:
$$a_{n+1} - a_n = \frac{1}{2}(a_n + \frac{1}{a_n}) - a_n = \frac{1}{2a_n}(1 - a_n^2) \le 0$$
 故 $\{a_n\}$ 单调不增

由单调有界性定理 $\Rightarrow \lim_{n \to \infty} a_n$ 存在,

②由于
$$a_n \ge 1 \Rightarrow \frac{a_n}{a_{n+1}} - 1 = \frac{a_n - a_{n+1}}{a_{n+1}} \le a_n - a_{n+1}$$

对于级数
$$\sum_{n=1}^{\infty} (a_n - a_{n+1})$$
, $S_n = (a_1 - a_2) + (a_2 - a_3) + \dots + (a_n - a_{n+1}) = a_1 - a_{n+1}$

因为
$$\lim_{n\to\infty}a_n$$
存在,所以 $\lim_{n\to\infty}S_n=a_1-\lim_{n\to\infty}a_{n+1}$ 存在,因此级数 $\sum_{n=1}^{\infty}(a_n-a_{n+1})$ 收敛.

由正项级数比较判别法知
$$\sum_{n=1}^{\infty} (\frac{a_n}{a_{n+1}} - 1) = \sum_{n=1}^{\infty} \frac{a_n - a_{n+1}}{a_{n+1}}$$
 收敛.

第八次作业

学院 班级 姓名 学号 一、单项选择题 1. 下列各组函数可以构成微分方程 y'' + 2y' + y = 0 的基本解组的是(C). (A) $\sin x, x \sin x$; (B) $e^x, x e^x$; (C) $e^{-x}, x e^{-x}$; (D) e^x, e^{-x} . 2. 若 y_1 , y_2 是方程 $y' + p(x)y = q(x)(q(x) \neq 0)$ 的两个解,要使 $\alpha y_1 + \beta y_2$ 也是該方程的解, α , β 应满足 关系式 (A). (A) $\alpha + \beta = 1$; (B) $\alpha + \beta = 0$; (C) $\alpha\beta = 1$; (D) $\alpha\beta = 0$. 3. 设线性无关的函数 $y_1(x)$, $y_2(x)$, $y_3(x)$ 均是方程 y'' + p(x)y' + q(x)y = f(x) 的解, C_1 , C_2 是任意常 数,则该方程的通解是(D). (A) $C_1 y_1 + C_2 y_2 + y_3$; (B) $C_1y_1 + C_2y_2 - (C_1 + C_2)y_3$; (C) $C_1y_1 + C_2y_2 - (1 - C_1 - C_2)y_3$; (D) $C_1y_1 + C_2y_2 + (1 - C_1 - C_2)y_3$. 4. 若 2 是微分方程 $y'' + py' + qy = e^{2x}$ 的特征方程的一个单根,则该微分方程必有一个特解 $y^* = (B)$ (A) Ae^{2x} ; (B) Axe^{2x} ; (C) Ax^2e^{2x} ; (D) xe^{2x} . 5. 方程 $y'' - 3y' + 2y = e^x \cos 2x$ 的特解形式为(A). (A) $e^{x}(C_{1}\cos 2x + C_{2}\sin 2x)$; (B) $C_{1}e^{x}\cos 2x$; (C) $xe^{x}(C_{1}\cos 2x + C_{2}\sin 2x)$; (D) $C_{2}e^{x}\sin 2x$. 6. 以 $y_1 = 2\cos x$, $y_2 = \sin x$ 为特解的二阶常系数齐次线性微分方程是 (B). (A) y'' - y = 0; (B) y'' + y = 0; (C) y'' - y' = 0; (D) y'' + y' = 0.

二、填空题

- 1. 当 n = 0 <u>或 1</u> 时,方程 $y' + p(x)y = q(x)y^n$ 为一阶线性微分方程.
- 2. 常微分方程 $(3x^2 + 6xy^2)$ d $x + (6x^2y + 4y^2)$ dy = 0的通解是 $x^3 + 3x^2y^2 + \frac{4}{3}y^3 = C$.
- 3. 若 y_1 , y_2 , y_3 是二阶非齐次线性微分方程 y''+p(x)y'+q(x)y=f(x) 的线性无关的解,则用 y_1 , y_2 , y_3 表达此方程的通解为 $C_1(y_1-y_3)+C_2(y_2-y_3)+y_3$ (不唯一).

4. 微分方程
$$2y^{(4)} - 2y^{(3)} + 5y'' = 0$$
 的通解为 $c_1 + c_2 x + e^{\frac{x}{2}} \left(c_3 \cos \frac{3}{2} x + c_4 \sin \frac{3}{2} x \right)$.

5. 微分方程
$$y'' - y' = 1$$
 的通解 $y = c_1 + c_2 e^x - x$.

6. 以
$$y = 2e^x \cos 3x$$
 为一个特解的二阶常系数线性微分方程为 $y'' - 2y' + 10y = 0$.

7.
$$y'' - 5y' + 6y = e^x \sin x + 6$$
的一个特解形式为 $y = e^x (a \cos x + b \sin x) + C$.

三、计算题

1. 求解微分方程 xý= ýln y ln..

解 变形:
$$\frac{dy}{dx} = \frac{y}{x} \ln \frac{y}{x}$$
, 设 $u = \frac{y}{x}$,则 $\frac{dy}{dx} = u + x \frac{du}{dx}$,

将其代入原方程:
$$u + x \cdot \frac{du}{dx} = u \ln u$$
, 分离变量得 $\frac{du}{u(\ln u - 1)} = \frac{dx}{x}$

积分得: $\ln(\ln u - 1) = \ln x + \ln C$, 即 $u = e^{Cx+1}$, 所以原方程通解为 $y = xe^{Cx+1}$

2. 求解微分方程 $(y^2 - 6x)y + 2y =$

解 把 x 看作 y 的函数. 方程化为 $\frac{dx}{dy} - \frac{3}{y}x = -\frac{y}{2}$. 为一阶线性非齐次微分方程.

通解为

$$x = e^{\int \frac{3}{y} dy} \left[C + \int -\frac{y}{2} e^{\int -\frac{3}{y} dy} dy \right]$$

$$= e^{3\ln y} \left[C + \int -\frac{y}{2} \cdot e^{-3 \cdot \ln y} dy \right]$$

$$= y^{3} \left[C + \int -\frac{y}{2} \cdot \frac{1}{y^{3}} dy \right]$$

$$= y^{3} \left[C + \frac{1}{2y} \right] = Cy^{3} + \frac{y^{2}}{2}.$$

3. 求解微分方程 $y'' + y'^2 = 1$, $y|_{x=0} = 0$, $y'|_{x=0} = 1$.

解: 此方程为可降阶. 令 y' = p(x). 则 $y'' = \frac{dp}{dx}$ 代入 $\frac{dp}{dx} + p^2 = 1$.

当 $p \neq \pm 1$ 时,分离变量为 $\frac{\mathrm{d}p}{1-p^2} = \mathrm{d}x$.

$$p=1$$
时, $\frac{\mathrm{d}p}{\mathrm{d}x}=0$. $\therefore p=1$ 即 $y'=1$ 也是解,满足 $y'\big|_{x=0}=1$.

积分 y = x + C. $\therefore y|_{y=0} = 0$. $\therefore C = 0$. \therefore 原方程特解为 y = x.

4. 求解微分方程
$$y'+x\sin 2y = xe^{-x^2}\cos^2 y$$
, $y(0) = \frac{\pi}{4}$.

解
$$y' + 2x\sin y\cos y = xe^{-x^2}\cos^2 y$$
,则 $\frac{1}{\cos^2 y}y' + 2x\tan y = xe^{-x^2}$

令 $u = \tan y$, 于是可得方程 $u' + 2xu = xe^{-x^2}$. 所以

$$u = e^{-\int p(x)dx} (\int q(x)e^{\int p(x)dx}dx + C) = e^{-x^2} (\int xe^{-x^2} \cdot e^{x^2}dx + C) = e^{-x^2} (\frac{x^2}{2} + C)$$

 $\mathbb{H} \ \tan y = e^{-x^2} \left(\frac{1}{2} x^2 + C \right).$

1 = t a ny(0) = C, 所以 t a ny =
$$e^{-x^2} (\frac{1}{2}x^2 + 1)$$

5. 已知曲线 y = f(x) 经过原点,在原点的切线平行于直线 2x - y - 5 = 0,且 y = f(x) 满足微分方程 $y'' - 6y' + 9y = e^{3x}$,求此曲线的方程.

解 方程
$$y'' - 6y' + 9y = e^{3x}$$
 的特征方程为 $r^2 - 6r + 9 = 0$

解得特征根为 $r_1 = r_2 = 3$, 对应齐次方程通解为 $Y = C_1 e^{3x} + C_2 x e^{3x}$.

设非齐次方程的特解形式为 $y^* = Ax^2 e^{3x}$,代入原方程得 $y^* = \frac{1}{2}x^2 e^{3x}$

由
$$y(0) = 0$$
, $y'(0) = 2$ 得 $C_1 = 0$, $C_2 = 2$, 故所求曲线方程为 $y = \frac{x}{2}(x+4)e^{3x}$

6. 求微分方程 $y'' - y = \sin^2 x$ 的通解.

解① 二阶常系数非齐次方程
$$f(x) = \sin^2 x = \frac{1-\cos 2x}{2}$$
. $f_1(x) = \frac{1}{2}$. $f_2(x) = -\frac{\cos 2x}{2}$.

特征方程: $r^2 - 1 = 0$ $r = \pm 1$. y'' - y = 0 通解 $Y = C_1 e^x + C_2 e^{-x}$

② 显然 $y_1^* = -\frac{1}{2}$ 为 $y'' - y = \frac{1}{2}$ 的特解.

对
$$y''-y=-\frac{1}{2}\cos 2x$$
. $\lambda=0$. $\omega=2$. $m=0$. $\lambda+i\omega=2i$ 不是特征根

所以设 $y_2^* = a\cos 2x + b\sin 2x$. $y_2^{*'} = -2a\sin 2x + 2b\cos 2x$, $y_2^{*''} = -4a\cos 2x - b\sin 2x$.

代入整理.
$$-5a\cos 2x - 5b\sin 2x = -\frac{1}{2}\cos 2x$$
. $\therefore a = \frac{1}{10}, b = 0$.

$$y_2^* = \frac{1}{10}\cos 2x$$
 $\therefore y^* = y_1^* + y_2^* = \frac{-1}{2} + \frac{1}{10}\cos 2x$.

③ 原方程通解为 $y = Y + y^* = C_1 e^x + C_2 e^{-x} - \frac{1}{2} + \frac{1}{10} \cos 2x$.

(当 $\lambda+i\omega$ 不是特征方程根; $\lambda=0$; m=0. 本题可设 $y_2^*=a\cos 2x$)

7. 求解
$$y'' - 3y' + 2y = 2e^x$$
 满足 $y(0) = 1, y'(0) = -1$.

解 对应的齐次方程的通解为 $Y = C_1 e^x + C_2 e^{2x}$, 设特解为 $y^* = Axe^x$ 代入原方程得

$$A = -2$$
,故原方程通解为 $y = C_1 e^x + C_2 e^{2x} - 2xe^x$,由 $y(0) = 1$, $y'(0) = -1$ 得 $C_1 = 1$, $C_2 = 0$,所以

 $y = (1 - 2x)e^x$.

8.求解欧拉方程 $x^2y'' - xy' + 2y = x \ln x$.

解 Euler 方程. 令 $x=e^t$. 则 $t=\ln x$. 则 $x \circ y=D, y^2 x' \circ y$ (D-D). 则 方程化为 $D^2y-2Dy+2y=t\cdot e^t, 即: \frac{\mathrm{d}^2y}{\mathrm{d}t^2}-2\frac{\mathrm{d}y}{\mathrm{d}t}+2y=te^t(*)$

此方程为二阶常系数非齐次方程. 且 $\lambda=1$. 特征方程: $r^2-2r+2=0$. $r_1=1\pm i$

(*) 对应齐次方程的通解为 $Y = e^t(C_1 \cos t + C_2 \sin t)$.

因为 $\lambda = 1$ 不是特征根. 所以设非齐次方程的特解为 $y^* = (at + b)e^t$

$$y^{*'} = e^t(at + a + b). \ y^{*''} = e^t(at + 2a + b).$$
 代入(*)整理得: $at + b = t.$ $\therefore a = 1.b = 0$ $y^* = te^t.$

所以(*) 通解为 $y = e^{t}(C_{1}\cos t + C_{2}\sin t) + te^{t}$.

将 $t = \ln x$ 代入. 得原方程通解为 $y = x[C_1 \cos(\ln x) + C_2 \sin(\ln x)] + x \cdot \ln x$.

四、综合题

设 f(x) 具有二阶连续导数, f(0) = 0, f'(0) = 1, 且

$$[xy(x+y) - f(x)y]dx + [f'(x) + x^2y]dy = 0$$

是全微分方程,求 f(x) 及此全微分方程的通解.

解: 由全微分方程充要条件 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. 有

$$x^{2} + 2xy - f(x) = f''(x) + 2xy$$

即: $f''(x) + f(x) = x^2$ 为二阶常系数非齐次微分方程, $\lambda = 0. m = 2$.

记z = f(x), 对应齐次方程的特征方程: $r^2 + 1 = 0$. $r = \pm i$ $Z = C_1 \cos x + C_2 \sin x$.

因为 $\lambda = 0$ 不是特征根. 所以设非齐次方程的特解为 $z^* = ax^2 + bx + c$,

将其代入方程得 $2a + ax^2 + bx + c = x^2$. 解得

$$a = 1, b = 0, c = -2.$$
 $\therefore z^* = x^2 - 2.$

 $z = C_1 \cos x + C_2 \sin x + x^2 - 2$. $z' = -C_1 \sin x + C_2 \cos x + 2x$.

将
$$z|_{y=0} = 0$$
. $z'|_{y=0} = 1$ 代入上式得 $C_1 = 2$, $C_2 = 1$.

 $\therefore f(x) = 2\cos x + \sin x + x^2 - 2.$

将 f(x) 代入,原方程为:

$$(xy^2 - 2\cos x \cdot y - \sin x \cdot y + 2y)dx + (-2\sin x + \cos x + 2x + x^2y)dy = 0$$

通解为:
$$\frac{1}{2}x^2y^2 + 2xy + (-2\sin x + \cos x)y = C$$
.

综合练习题

学院_____

(C) 在点 x_0 处取极小值

_	、单项选择题	
1.	函数 $z = \sqrt{x^2 + y^2}$ 在点(0,0)处 (C).	
	(A) 不连续;	(B)偏导数存在;
	(C) 沿任一方向的方向导数存在;	(D) 可微.
2.	设 $f(x)$ 为连续函数, $F(t) = \int_1^t dy \int_y^t f(x) dx 则 F'(2)$ 为(B).	
	(A) $2f(2)$; (I	3) $f(2)$;
	(C) $-f(2)$; (I	0) 0.
3.	设 $f(x, y)$ 为 $D: x^2 + y^2 \le a^2$ 上的连续函	函数,则 $\lim_{a\to 0^+} \frac{1}{\pi a^2} \iint_D f(x, y) d\sigma = (B)$.
	(A) 不存在; (B) f(0,0);	(C) $f(1,1)$; (D) $f'_x(0,0)$.
4.	设Ω由平面 $x+y+z+1=0, x+y+z+1$	2 = 0, x = 0, y = 0, z = 0 围成,
I_1	$I_1 = \iiint_{\mathbb{Z}} [\ln(x+y+z+3)]^2 dV, I_2 = \iiint_{\mathbb{Z}} (x+y+z)^2 dV$,则(A).	
	$(A) I_1 < I_2; \qquad (B) I_1 > I_2; \qquad (C)$	C) $I_1 \le I_2$; (D) $I_1 \ge I_2$.
5.	设 $\sum a_n$ 为正项级数,下列结论中正确的是(B).	
	(A) 若 $\lim_{n\to\infty} na_n = 0$,则级数 $\sum_{n=1}^{\infty} a_n$ 收敛;	
	(B) 若存在非零常数 λ ,使得 $\lim_{n\to\infty} na_n = \lambda$,则级数 $\sum_{n=1}^{\infty} a_n$ 发散;	
	(C) 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n\to\infty} n^2 a = 0$;	
	(D) 若级数 $\sum_{n=1}^{\infty} a_n$ 发散,则存在非零常	で数 λ , 使得 $\lim_{n\to\infty} na_n = \lambda$.
6.	若 $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \frac{1}{4}$,则幂级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ (Α).
	(A) 当 x <2 时绝对收敛;	(B) 当 $ x > \frac{1}{4}$ 时绝对发散;
	(C) 当 x <4 时绝对收敛;	(D) 当 $ x >\frac{1}{2}$ 时绝对发散.
7.	设 $y = f(x)$ 是方程 $y'' + y' = e^{\sin x}$ 的解,	并且 $f'(x_0) = 0$,则 $f(x)$ (C).
	(A) 在点 x_0 的某邻域内单调增加;	(B) 在点 x_0 的某邻域内单调减少;

(D) 在点 x_0 处取极大值.

二、填空题

- 1. 函数 f(x, y) 在点 (x_0, y_0) 连续且可偏导,是 f(x, y) 在点 (x_0, y_0) 可微的 <u>必要</u>条件.
- 2. $\% z = e^{xy} \cos e^{xy}$, $\% dz = e^{xy} (1 + \sin e^{xy}) (ydx + xdy)$.
- 3. 设函数 $u(x, y) = f(x+y) + f(x-y) + \int_{x-y}^{x+y} g(t) dt$, 其中 f 具有二阶导数, g 具有一阶导数,则 $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} = \underline{\qquad 0}$
 - 4. 设 L 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 其周长为 a, 则 $\oint_L (2xy + 3x^2 + 4y^2) ds = \underline{12a}$.
- 5. 周期为 2 的函数 f(x),它在一个周期内的表达式为 f(x) = x, $-1 \le x \le 1$,设它的傅里叶级数的和函数为 s(x),则 $s\left(\frac{3}{2}\right) = \frac{-1/2}{2}$.
 - 6. 以 $y_1(x) = \sin x$, $y_2(x) = \cos x$ 为特解的二阶常系数齐次线性微分方程是____ y"+ y = 0.
 - 7. 曲面 $\Sigma: |x| + |y| + |z| = 1$,则 $\iint_{\Sigma} (x + |y|) dS = \frac{4\sqrt{3}}{3}$.

三、计算题

1. 设 $z = x^3 f\left(xy, \frac{y}{x}\right)$, f 具有连续的二阶偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$

$$\frac{\partial z}{\partial x} = 3x^2 f + x^3 \left[f_1' \cdot y + f_2' \cdot \left(-\frac{y}{x^2} \right) \right] = 3x^2 f + x^3 y f_1' - x y f_2'$$

$$\frac{\partial z}{\partial x} = 3 \left[f_1' \cdot y + f_2' \cdot \left(-\frac{y}{x^2} \right) \right] = 3x^2 f + x^3 y f_1' - x y f_2'$$

$$\frac{\partial z}{\partial y} = x^3 \left[f_1' \cdot x + f_2' \cdot \frac{1}{x} \right] = x^4 f_1' + x^2 f_2'$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial \left(\frac{\partial z}{\partial y}\right)}{\partial x} = 4x^3 f_1' + x^4 \left[f_{11}'' y + f_{12}'' \cdot \left(-\frac{y}{x^2}\right) \right] + 2x f_2' + x^2 \left[f_{21}'' y + f_{22}'' \left(-\frac{y}{x^2}\right) \right]$$

$$= 4x^3 f_1' + 2x f_2' + x^4 y f_{11}'' - y f_{22}''$$

2. 设 y=y(x), z=z(x) 是由方程 z=xf(x+y) 和 F(x,y,z)=0 确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数,求 $\frac{\mathrm{d}z}{\mathrm{d}x}$.

解: 由
$$\frac{dz}{dx} = f + xf'(1 + \frac{dy}{dx})$$
, $F_x + F_y \frac{dy}{dx} + F_z \frac{dz}{dx} = 0$
解得 $\frac{dz}{dx} = \frac{fF_y + xf'(F_y - F_x)}{F_y + xfF_z}$

3. 求
$$\iint_{\Omega} e^{|z|} dxdydz$$
, 其中 Ω 为球体 $x^2 + y^2 + z^2 \le 1$.

解:
$$\iint_{\Omega} e^{|z|} dx dy dz = 2 \iint_{\Omega_{1}} e^{z} dx dy dz . \quad \Omega_{1} : \begin{cases} D_{z} : x^{2} + y^{2} \le 1 - z^{2} \\ 0 \le z \le 1 \end{cases}$$

$$= 2 \int_{0}^{1} dz \iint_{D_{z}} e^{z} dx dy = 2 \int_{0}^{1} e^{z} \cdot \pi (1 - z^{2}) dz \quad \overrightarrow{\text{mi}}$$

$$\int_{0}^{1} e^{z} dz = e - 1$$

$$\int_{0}^{1} z^{2} e^{z} dz = \int_{0}^{1} z^{2} de^{z} = [z^{2} \cdot e^{z}]_{0}^{1} - \int_{0}^{1} e^{z} \cdot 2z dz$$

$$= e - 2 \int_{0}^{1} z de^{z} = e - 2z e^{z} \Big|_{0}^{1} + 2 \int_{0}^{1} e^{z} dz = -e + 2e - 2$$

$$= e - 2$$

$$\iiint_{\Omega} e^{|z|} dx dy dz = 2\pi [(e-1) - (e-2)] = 2\pi.$$

4. 设
$$z = z(x, y)$$
 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数,求 $z = z(x, y)$ 的极值点和极值.

解: 取微分:
$$2xdx - 6ydx - 6xdy + 20ydy - 2zdy - 2ydz - 2zdz = 0$$

$$\mathbb{H}: (y+z)dz = (x-3y)dx + (-3x+10y-z)dy$$

$$\therefore \frac{\partial z}{\partial x} = \frac{x - 3y}{y + z}, \frac{\partial z}{\partial y} = \frac{-3x + 10y - z}{y + z} \qquad \begin{cases} \frac{\partial z}{\partial x} = 0\\ \frac{\partial z}{\partial y} = 0 \end{cases}$$

解得
$$x = 3y, z = y$$
, 得 $x_1 = 9, y_1 = 3, z_1 = 3; x_2 = -9, y_2 = -3, z_2 = -3$

而
$$P_1(9,3)$$
 处, $A = \frac{1}{6} > 0, B = -\frac{1}{2}, C = \frac{5}{3}, AC - B^2 = \frac{1}{36} > 0$. 则函数有极小值 $z(9,3)=3$

$$P_2(-9,-3)$$
 处, $A=-\frac{1}{6}<0, B=\frac{1}{2}, C=-\frac{5}{3}, AC-B^2=\frac{1}{36}>0$.则函数有极大值 $z(-9,-3)=-3$

5. 设函数 f(u) 在 $(0, +\infty)$ 内具有二阶导数,且 $z = f(\sqrt{x^2 + y^2})$ 满足等式

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

(])
$$\frac{1}{2}$$
 i.e. $f''(u) + \frac{f'(u)}{u} = 0$;

(II) 若 f(1) = 0, f'(1) = 1, 求函数 f(u) 的表达式.

解: (I)
$$ext{ } ext{ }$$

$$\frac{\partial z}{\partial x} = f'(u) \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial y} = f'(u) \frac{y}{\sqrt{x^2 + y^2}}$$

$$\frac{\partial^2 z}{\partial x^2} = f''(u) \frac{x}{\sqrt{x^2 + y^2}} \frac{x}{\sqrt{x^2 + y^2}} + f'(u) \frac{y^2}{(x^2 + y^3)^{\frac{3}{2}}}$$

$$= f''(u) \frac{x^2}{x^2 + y^2} + f'(u) \frac{y^2}{(x^2 + y^3)^{\frac{3}{2}}}$$

$$\frac{\partial^2 z}{\partial y^2} = f''(u) \frac{y^2}{x^2 + y^2} + f'(u) \frac{x^2}{(x^2 + y^3)^{\frac{3}{2}}}$$

則有:
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$$

= $f''(u) \frac{x^2}{x^2 + y^2} + f'(u) \frac{y^2}{(x^2 + y^3)^{\frac{3}{2}}} + f''(u) \frac{y^2}{x^2 + y^2} + f'(u) \frac{x^2}{(x^2 + y^3)^{\frac{3}{2}}} = 0$

得:
$$f''(u) + \frac{f'(u)}{u} = 0$$

有
$$f'(u) = \frac{1}{u}$$
, $\therefore f(u) = \ln u + C$, 由 $f(1) = 0$, 得 $C = 0$, 因此 $f(u) = \ln u$

6. 计算
$$I = \iint_{\Sigma} xz dy dz + 2zy dz dx + 3xy dx dy$$
 其中 Σ 为曲面 $z = 1 - x^2 - \frac{y^2}{4}$ ($0 \le z \le 1$) 的上侧.

解: 取 Σ_1 为 xOy 平面上被椭圆 $x^2 + \frac{y^2}{4} = 1$ 所围部分的下侧,记 Ω 为由 Σ 和 Σ_1 围成的空间闭区域,根据高斯公式

所以
$$I = I_1 - I_2 = \pi$$

7. 将函数
$$f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x - x$$
 展开成 x 的幂级数.

8 . 己知齐次方程 (x-1)y''-xy'+y=0 的通解为 $Y(x)=c_1x+c_2e^x$ 求非齐次方程 $(x-1)y''-xy'+y=(x-1)^2$ 的通解.

解: 把所给方程写成标准形式 $y'' - \frac{x}{x-1}y' + \frac{1}{x-1}y = x-1$.

设所求方程解为: $y = C_1(x)x + C_2(x)e^x$

则有:
$$\begin{cases} xC_1'(x) + e^x C_2'(x) = 0, \\ C_1'(x) + e^x C_2'(x) = x - 1. \end{cases}$$
解得 $C_1'(x) = -1, \quad C_2'(x) = xe^{-x}.$

积分,得:
$$C_1(x) = C_1 - x$$
, $C_2(x) = C_2 - (x+1)e^{-x}$.

于是所求非齐次方程的通解为 $y = C_1 x + C_2 e^x - (x^2 + x + 1)$.

9. 设
$$u = u(r)$$
具有二阶导数, $u = u(\sqrt{x^2 + y^2})$ 满足方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - \frac{1}{x} \frac{\partial u}{\partial x} + u = x^2 + y^2$$

求 $u(\sqrt{x^2+y^2})$ 的表达式.

解:
$$\frac{\partial u}{\partial x} = u'(r) \frac{x}{\sqrt{x^2 + y^2}} \qquad \frac{\partial^2 u}{\partial x^2} = u''(r) \frac{x^2}{x^2 + y^2} + u'(r) \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

同理:
$$\frac{\partial u}{\partial y} = u'(r) \frac{y}{\sqrt{x^2 + y^2}}$$
 $\frac{\partial^2 u}{\partial y^2} = u''(r) \frac{y^2}{x^2 + y^2} + u'(r) \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}}$

代入方程得: $u''+u=r^2$

解该微分方程 通解为: $u = C_1 \cos r + C_2 \sin r + r^2 - 2$

$$\mathbb{E}[1: u(\sqrt{x^2+y^2}) = C_1 \cos \sqrt{x^2+y^2} + C_2 \sin \sqrt{x^2+y^2} + x^2 + y^2 - 2$$

四、应用题

在第一卦限内作球面 $x^2 + y^2 + z^2 = a^2$ 的切平面,使该切平面与三坐标面所围成的四面体的体积最小,求这切平面的切点.

解:设切点为
$$(x_0, y_0, z_0)$$
,则

$$F(x, y, z) = x^2 + y^2 + z^2 - a^2$$
, $Fx = 2x$, $Fy = 2y$, $Fz = 2z$

切平面方程:

$$2x_0(x-x_0)+2y_0(y-y_0)+2z_0(z-z_0)=0$$
 即: $x_0x+y_0y+z_0z=a^2$ 令 $y=z=0$, 得 x 轴截距 $z=\frac{a^2}{x_0}$,同理 $Y=\frac{a^2}{y_0}$, $z=\frac{a^2}{z_0}$

$$V = \frac{a^6}{6} \cdot \frac{1}{x_0 y_0 z_0}$$
, 当 $x_0 y_0 z_0$ 最大时 V 最小,

$$\text{FE } L\left(x_{0}, y_{_{0}}, z_{0}, \lambda\right) = x_{0}y_{0}z_{0} + \lambda\left(x_{0}^{2} + y_{0}^{2} + z_{0}^{2} - a^{2}\right)$$

$$\left[Lx_{0} = y_{0}z_{0} + 2\lambda x_{0} = 0\right]$$

$$\begin{cases} Lx_0 = y_0 z_0 + 2\lambda x_0 = 0 \\ Ly_0 = x_0 z_0 + 2\lambda y_0 = 0 \\ Lz_0 = x_0 y_0 + 2\lambda z_0 = 0 \end{cases}$$
$$x_0^2 + y_0^2 + z_0^2 = a^2$$

解得
$$x_0 = y_0 = z_0 = \frac{a}{\sqrt{3}}$$
 时, V 最小,所以切点 $\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$.

五、证明题

设
$$a_n = \int_0^{\pi/4} (\tan x)^n dx, n = 1, 2, 3, \cdots$$
. 证明:对任意常数 $\lambda > 0$,级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

证明: $a_n > 0$

$$a_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x dx - a_{n-2} < \int_0^{\frac{\pi}{4}} \tan^{n-2} x d \tan x = \frac{1}{n-1}$$

$$\therefore 0 < a_n < \frac{1}{n-1} \qquad 因此对于 \sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}} 有, \quad 0 < \frac{a_n}{n^{\lambda}} < \frac{1}{n^{\lambda}(n-1)}$$

当
$$\lambda > 0$$
 时, $\sum_{n=1}^{\infty} \frac{1}{n^{\lambda}(n-1)}$ 收敛,所以 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

综合模拟题(一)

- 一、填空题(共5道小题,每小题3分,满分15分)
- 1. 设函数 $z = \sqrt{x^4 + y^4}$, 则 $z'_{*}(0,0) = 0$.
- 2. 设*L* 是直线 y = x 上由点 A (0,0) 到点 B (1,1) 的线段,则第一型曲线积分 $\int_{L} \sqrt{y} \, ds = \frac{2\sqrt{2}}{3}$.
- 3. 设曲面 Σ 为圆锥面 $z=2-\sqrt{x^2+y^2}$ 在 xoy 面上方的部分,则第一型曲面积分

$$\iint_{S} (x^2 + y^2) \, \mathrm{d}S = \underline{8\sqrt{2}\pi} \,.$$

4. 设函数 $f(x) = \begin{cases} -x, & -\pi \le x < 0, \\ x, & 0 \le x \le \pi. \end{cases}$ 将 f(x) 在 $[-\pi, \pi]$ 上展开为傅里叶(Fourier)级数,使

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \quad \text{If } a_1 = \frac{-4}{\pi}.$$

- 5. 微分方程 xy' + y = 0 满足 y(1) = 1 的解是 $y = \frac{1}{x}$.
- 二、选择题(共5道小题,每小题3分,满分15分)
- 1. 函数 $z = x^3 + y^3 3xy$ 的极小值点是(A)
- (A) (1,1); (B) (0,0); (C) (0,1); (D) (1,0).

- 2. 设山坡的高度为 $z=5-x^2-2y^2$,一个登山者在山坡上点 $(-\frac{3}{2},-1,\frac{3}{4})$ 处,他决定沿最陡的道路向上
- 攀登,则他应当选取的方向1是(A

- (A) l=(3,4); (B) l=(-3,-4); (C) l=(-4,3); (D) l=(4,-3).
- 3. 交错级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+a} (a>0)$ (B)
 - (A) 绝对收敛;

- (B) 条件收敛;
- (C) 敛散性与a有关;
- 4. 幂级数 $\sum_{r=0}^{\infty} \frac{(x-1)^r}{\sqrt{n+1}}$ 的收敛域是(C).
 - (A) (0,2]; (B) (-2,0); (C) [0,2); (D) [-1,1).

5. 函数 $y = C_1 e^x + C_2 e^{-2x} + x e^x$ 满足的一个微分方程是(D)

(A)
$$y'' - y' - 2y = 3xe^x$$
; (B) $y'' - y' - 2y = 3e^x$;

(B)
$$y'' - y' - 2y = 3e^x$$
;

(C)
$$y'' + y' - 2y = 3xe^x$$
; (D) $y'' + y' - 2y = 3e^x$.

(D)
$$y'' + y' - 2y = 3e^x$$

三、(满分6分)

设 $z = f(xe^y, x)$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial r \partial y}$.

$$\mathbf{\widetilde{\beta z}} = f_1' \frac{\partial u}{\partial x} + f_2' = e^y f_1' + f_2'$$
$$\frac{\partial^2 z}{\partial x \partial y} = e^y f_1' + x e^{2y} f_{11}'' + x e^y f_{21}''$$

四、解答下列各题(共4个小题,每小题10分,满分40分)

1. 计算二重积分 $\iint_{D} (|x-y|+2) dx dy$, 其中 D 为圆域 $x^{2} + y^{2} \le 1$ 在第一象限的部分.

解:
$$\iint_{D} (|x-y|+2) \, dx \, dy$$

$$= \iint_{D_1} (x-y) \, dx \, dy + \iint_{D_2} (y-x) \, dx \, dy + 2 \iint_{D} dx \, dy \qquad \dots 5 \, \%$$

$$= \frac{2}{3} (\sqrt{2} - 1) + \frac{\pi}{2} \qquad \dots 10 \, \%$$

2. 计算三重积分 $I = \iiint_{\Omega} (x+y+z) dx dy dz$,其中 Ω 是由圆锥面 $z = \sqrt{x^2+y^2}$ 与平面 z = 1 围成的闭区域.

解: 由对称性,
$$\iint_{\Omega} x \, dv = \iint_{\Omega} y \, dv = 0$$
 ·······5 分

3. 设 $\varphi(x)$ 具有连续的导数,且 $\varphi(0)=0$,又曲线积分 $\int_L xy^2 \,\mathrm{d}\,x + y\varphi(x) \,\mathrm{d}\,y$ 与路径无关,(1)求 $\varphi(x)$ 表达式; (2) 计算 $\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy$.

解:由曲线积分与路径无关的充要条件知

$$\frac{\partial}{\partial x}[y\varphi(x)] = \frac{\partial}{\partial y}(xy^2) \qquad \dots 3 \,$$

得
$$\varphi'(x) = 2x$$
,解得 $\varphi(x) = x^2$ ··········6 分

取积分路径 y = x,则有

$$\int_{(0,0)}^{(1,1)} x^2 y \, dx + y \varphi(x) \, dy = \int_0^1 2x^3 \, dx = \frac{1}{2} \qquad \dots 10 \, \text{f}$$

4. 已知 $f_n(x)$ 满足 $f_n'(x) = f_n(x) + x^{n-1} e^x$, n 为正整数,且 $f_n(1) = \frac{e}{n}$,求函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 之和.

 \mathbf{M} : $f_n(x)$ 满足一阶线性非齐次微分方程,由通解公式有

$$f_n(x) = e^{\int dx} (C + \int x^{n-1} e^x e^{-\int dx} dx) = (\frac{x^n}{n} + C) e^x \quad \dots 4$$

由
$$f_n(1) = \frac{e}{n}$$
,得 $C=0$,从而 $f_n(x) = \frac{x^n}{n} e^x$ ······6 分

$$\Rightarrow \sum_{n=1}^{\infty} f_n(x) = -e^x \ln(1-x), -1 \le x < 1.$$
10 \(\frac{1}{2}\)

五、解答下列各题(共3个小题,每小题8分,满分24分)

1. 曲线
$$\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$$
 在点 (1,-2,1) 处的切线及法平面方程.

解: 方程组两边对x求导,得切向量为

$$\vec{S} = (-6,0,6) \qquad \cdots 4 \, \%$$

2. 利用高斯公式计算第二型曲面积分

$$I = \iint_{\Sigma} xz^2 dydz + (x^2y - z^3)dzdx + (2xy + y^2z)dxdy.$$

其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 的内侧表面.

解:由高斯公式有

$$I = -\iiint_{\Omega} (x^2 + y^2 + z^2) dv \qquad \cdots 4$$

$$= -\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^4 \sin\varphi dr = -\frac{4}{5}\pi \qquad \cdots 8$$

3. 将函数 $f(x) = \frac{3x}{x^2 + x - 2}$ 展开成 x 的幂级数.

M:
$$f(x) = \frac{3x}{x^2 + x - 2} = 3x \frac{1}{(x+2)(x-1)} = x(\frac{1}{x-1} - \frac{1}{x+2}) \cdots 3$$

$$= -\frac{x}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n - x \sum_{n=0}^{\infty} x^n$$
6 \(\frac{1}{2}\)

$$= \sum_{n=0}^{\infty} \left(\frac{(-1)^{n+1}}{2^{n+1}} - 1 \right) x^{n+1}, x \in (-1,1)$$
 8 \(\frac{1}{2}\)

综合模拟题(二)解答

- 、单项选择题(共 6 道小题,每小题 3 分,满分 18 分)

1. 设函数
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0, \\ 0, x^2 + y^2 = 0. \end{cases}$$
 关于 $f(x, y)$ 有以下命题:

①
$$f'_x(0,0) = 0, f'_y(0,0) = 0.$$

- ② f(x,y) 在点(0,0) 处极限不存在.
- ③ f(x,y) 在点(0,0) 处不连续.
- ④ f(x,y) 在点(0,0) 处可微.

以上命题中结论正确的个数是(C)

- (A) 1 个.

- (B) $2 \uparrow$. (C) $3 \uparrow$. (D) $4 \uparrow$.

2. 二次积分
$$\int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy = (A)$$

- (A) $1-\sin 1$. (B) $\sin 1-1$. (C) $1+\sin 1$. (D) $\sin 1$.

3. 设曲面
$$\sum$$
是柱面 $x^2 + y^2 = 4$ 在 $0 \le z \le 1$ 之间的部分,则 $\iint_{\Sigma} x^2 dS = (D)$

- (A) π . (B) 2π . (C) 4π . (D) 8π .

4. 设二元函数
$$U(x,y)$$
的全微分 $\mathrm{d}U=xy^2\,\mathrm{d}\,x+x^2y\,\mathrm{d}\,y$,则 $U(x,y)$ 的一个表达式为(B)

(A)
$$\frac{1}{2}x^2 + y^2$$
. (B) $\frac{1}{2}x^2y^2$. (C) x^2y^2 . (D). $x^2 - \frac{1}{2}y^2$.

(B)
$$\frac{1}{2}x^2y^2$$
.

(C)
$$x^2y^2$$

(D).
$$x^2 - \frac{1}{2}y^2$$

- 5. 如果幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x = -1 处收敛,则该级数在 x = 2 处(B)
 - (A) 条件收敛.
- (B) 绝对收敛.
- (C) 发散.
- (D) 敛散性不定.
- 6. 方程 $y'' + y' 2y = e^x(\cos x 7\sin x)$ 特解的形式是 (A), 其中 a, b 为常数.
 - (A) $e^x(a\cos x + b\sin x)$. (B) $xe^x(a\cos x + b\sin x)$.
- - (C) $ae^x \cos x$.
- (D) $be^x \sin x$.
- 二、填空题(共6道小题,每小题3分,满分18分).
- 1. 设函数 $z = \frac{x}{y} + xy$, 则 $dz|_{(2,1)} = 2dx + 0dy$.
- 2. 函数 $z = x^2 xy + y^2$ 在点 (1,1) 处沿方向 l=(1,1) 的方向导数最大.
- 3. 设曲线 L 的方程为 $\begin{cases} x = \cos t \\ y = 2\sin t \end{cases}$ ($0 \le t \le \frac{\pi}{2}$),则 $\int_{L} xy \, ds = \frac{14}{9}$.
- **4.** 设级数 $\sum_{n=0}^{\infty} a^{\ln \frac{1}{n}}$ (a > 0),当 $\underline{a > e}$ 时级数收敛.
- 解 $a^{\ln \frac{1}{n}} = e^{\ln \frac{1}{n} \cdot \ln a} = (e^{\ln \frac{1}{n}})^{\ln a} = \frac{1}{n^{\ln a}}$,所以当 $\ln a > 1$,即a > e 时收敛.
- 5. 设函数 f(x) 是以 2π 为周期的周期函数,且在区间 $[-\pi,\pi]$ 上的表达式为
- - 6. 将函数 $\frac{1}{x}$ 展开成 (x-3) 的幂级数的形式为 ______. $\sum_{x=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x-3)^n, 0 < x < 6$
- 三、按要求解答下列各题(共6道小题,每小题7分,满分42分).
 - 1. 设 f 为 $C^{(2)}$ 类函数,且 $z = f(x^2 + y)$,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial r \partial y}$.
 - $\mathbf{f} \mathbf{f} \frac{\partial z}{\partial x} = 2xf'(x^2 + y), \quad \frac{\partial z}{\partial y} = f'(x^2 + y), \quad \frac{\partial^2 z}{\partial x \partial y} = 2xf''(x^2 + y)$

2. 求曲面 $x = e^{2y-z}$ 在点 (1,1,2) 处的切平面与法线方程.

解 设
$$F(x, y, z) = e^{2y-z} - x = 0$$

$$\frac{\partial F}{\partial x} = -1$$
, $\frac{\partial F}{\partial y} = 2e^{2y-z}$, $\frac{\partial F}{\partial z} = -e^{2y-z}$

则曲面 $x = e^{2y-z}$ 在点 (1,1,2) 处法向量为(-1,2,-1)

因此切平面方程-1(x-1)+2(y-1)-1(z-2)=0, 化简得x-2y+z-1=0

法线方程为
$$\frac{x-1}{-1} = \frac{y-1}{2} = \frac{z-2}{-1}$$

3. 求函数 $f(x) = x^4 + y^4 - x^2 - 2xy - y^2$ 的极值.

$$\mathbf{f}\mathbf{f} \frac{\partial f}{\partial x} = 4x^3 - 2x - 2y = 0, \quad \frac{\partial f}{\partial y} = 4y^3 - 2x - 2y = 0$$

解得驻点 $M_1(1,1), M_2(-1,-1), M_3(0,0)$.

$$A = \frac{\partial^2 f}{\partial x^2} = 12x^2 - 2$$
, $B = \frac{\partial^2 f}{\partial x \partial y} = -2$, $C = \frac{\partial^2 f}{\partial y^2} = 12y^2 - 2$

当
$$x = 1$$
, $y = 1$ 时, $A = 10$, $B = -2$, $C = 10$

$$AC - B^2 = 96 > 0$$
, 且 $A = 10 > 0$,则 $f(1,1) = -2$ 为极小值

$$AC - B^2 = 96 > 0$$
, 且 $A = 10 > 0$,则 $f(-1,-1) = -2$ 为极小值

$$\stackrel{\text{def}}{=} x = 0, y = 0 \text{ pl}, \quad A = -2, \quad B = -2, \quad C = -2, \quad AC - B^2 = 0,$$

在 $M_3(0,0)$ 的充分小的邻域内,沿直线 y=-x ,有 $f(x,-x)=2x^4\geq 0$,而沿直线 y=0 ,且 |x|<1 有 $f(x,0)=x^2(x^2-1)\leq 0$,因此 f(0,0) 不是极值.

$$\Re \iint_{D} |x - y^{2}| d\sigma = \iint_{D_{1}} (y^{2} - x) d\sigma + \iint_{D_{2}} (x - y^{2}) d\sigma
= \int_{0}^{1} dx \int_{\sqrt{x}}^{1} (y^{2} - x) dy + \int_{0}^{1} dx \int_{0}^{\sqrt{x}} (x - y^{2}) dy
= \int_{0}^{1} [\frac{1}{3} - x + \frac{2}{3} x \sqrt{x}] dx + \frac{2}{3} \int_{0}^{1} x \sqrt{x} dx
= \frac{1}{3} - \frac{1}{2} + \frac{4}{15} + \frac{4}{15} = \frac{11}{30}$$

5. 计算
$$\iint_{\Omega} (x^2 + y^2 + z^2) dV$$
,其中 Ω 由锥面 $z = \sqrt{x^2 + y^2}$ 和球面

$$z = \sqrt{1 - x^2 - y^2}$$
 围成.

$$\mathbf{MI} \iiint_{\Omega} (x^2 + y^2 + z^2) dV = \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin \varphi d\varphi \int_0^1 r^4 dr = \frac{2\pi}{5} \left(1 - \frac{\sqrt{2}}{2} \right)$$

6. 求微分方程 $y' + y = 1 + x^2$ 满足初始条件 y(0) = 4的解.

解 由
$$y' + y = 1 + x^2$$
 得 $y' = -y + 1 + x^2$,通解为
$$y(x) = e^{-\int dx} \left[\int (1 + x^2) e^{\int dx} dx + C \right]$$

$$= e^{-x} \left[e^x (x^2 - 2x + 3) + C \right] = x^2 - 2x + 3 + Ce^{-x}$$

$$y(x) = x^2 - 2x + 3 + Ce^{-x}$$

又
$$y(0) = 4$$
,则有 $C = 1$,特解为 $y(x) = x^2 - 2x + 3 + e^{-x}$

四、按要求解答下列各题(共3道小题,满分22分).

1. (满分8分)

计算
$$\int_L (y^3 + xe^{2y}) dx + (x^2e^{2y} - x^3) dy$$
, 其中曲线 $L \neq x^2 + y^2 = 4x$ 的上半圆周,顺时针方向.

解 添加 L: y = 0, 且 x 由 4 到 0,则由格林公式得

$$\oint_{L+L_1} (y^3 + xe^{2y}) dx + (x^2e^{2y} - x^3) dy = 3 \iint_D (x^2 + y^2) d\sigma = 3 \int_0^{\frac{\pi}{2}} d\theta \int_0^{4\cos\theta} r^3 dr$$

$$= 3 \times 64 \int_0^{\frac{\pi}{2}} \cos^4\theta d\theta = 3 \times 64 \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} = 36\pi$$

$$\int_{L_1} (y^3 + xe^{2y}) dx + (x^2e^{2y} - x^3) dy = \int_{L_1} (y^3 + xe^{2y}) dx = \int_{L_1} x dx = \int_4^0 x dx = -8$$

$$\iint \bigcup_L (y^3 + xe^{2y}) dx + (x^2e^{2y} - x^3) dy = 36\pi + 8$$

2. (满分8分)

计算曲面积分 $\iint_{\Sigma} y^3 dz dx + (y+z) dx dy$, 其中曲面 \sum 为 $z = x^2 + y^2$ ($0 \le z \le 1$) 的下侧.

解 取
$$\Sigma_1: z = 1, D: x^2 + y^2 \le 1$$
 的上侧,由高斯公式得
$$\iint_{\Sigma_1 \times \Sigma} y^3 dz dx + (y+z) dx dy = \iiint_{\Omega} (3y^2 + 1) dV$$

$$= \int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^1 (3r^2 \sin^2 \theta + 1) dz$$

$$= \int_0^{2\pi} d\theta \int_0^1 r(3r^2 \sin^2 \theta + 1)(1 - r^2) dr$$

$$= \int_0^{2\pi} d\theta \int_0^1 (3r^3 \sin^2 \theta + r - 3r^5 \sin^2 \theta - r^3) dr$$

$$= \int_0^{2\pi} \left[\frac{3}{4} r^4 \sin^2 \theta + \frac{1}{2} r^2 - \frac{3}{6} r^6 \sin^2 \theta - \frac{1}{4} r^4 \right]_0^1 d\theta$$

$$= \int_0^{2\pi} \left[\frac{3}{4} \sin^2 \theta + \frac{1}{2} - \frac{3}{6} \sin^2 \theta - \frac{1}{4} \right] d\theta = \frac{1}{4} \int_0^{2\pi} (\sin^2 \theta + 1) d\theta$$

$$= \frac{\pi}{2} + \frac{1}{8} \int_0^{2\pi} (1 - \cos 2\theta) d\theta = \frac{3\pi}{4}$$

$$\iint_{\Sigma_1} y^3 dz dx + (y+z) dx dy = \iint_{\Sigma_1} (y+z) dx dy = \iint_D (y+1) dx dy$$

$$=\pi$$

所以
$$\iint_{\Sigma} y^3 dz dx + (y+z) dx dy = \frac{3\pi}{4} - \pi = -\frac{\pi}{4}$$

3. (满分 6分) 设幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 在 $(-\infty, +\infty)$ 内收敛,和函数为 $y(x)$,且满足

$$y'' - 2xy' - 4y = 0, y(0) = 0, y'(0) = 1,$$

(1) 证明
$$a_{n+2} = \frac{2}{n+1} a_n, n = 1, 2, \dots$$
; (2) 求 $y(x)$ 表达式.

证明(1)
$$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

$$y'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + (n+1)a_{n+1}x^n + \dots$$
$$= \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$

$$y''(x) = 2a_2 + 3 \times 2 \times a_3 x + 4 \times 3 \times a_4 x^2 = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n$$

将上式代入
$$y'' - 2xy' - 4y = 0$$
, 得

$$\sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} - 2na_n - 4a_n]x^n = 0$$

因此
$$(n+2)(n+1)a_{n+2}-2na_n-4a_n=0$$
,所以 $(n+2)(n+1)a_{n+2}=2(n+2)a_n$

有
$$a_{n+2} = \frac{2}{n+1} a_n$$
, $n = 1, 2, \dots$, 且 $a_2 = 2a_0$

解 (2) 由
$$y(0) = 0$$
, $y'(0) = 1$ 得 $a_0 = 0$, $a_1 = 1$, 又 $a_{n+2} = \frac{2}{n+1}a_n$, $n = 1, 2, \cdots$, 及 $a_2 = 2a_0$

则 $a_{2k} = 0, k = 0,1,2,\cdots$

$$a_{2k+1} = \frac{2}{2k} a_{2k-1} = \frac{2}{2k} \frac{2}{2k-2} a_{2k-3} = \frac{2}{2k} \frac{2}{2k-2} \frac{2}{2k-4} a_{2k-5}$$
$$= \dots = \frac{2}{2k} \frac{2}{2k-2} \frac{2}{2k-4} \dots \frac{2}{2} a_1 = \frac{1}{k!}$$

$$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_1 x + a_3 x^3 + a_5 x^5 + \dots = \sum_{k=0}^{\infty} a_{2k+1} x^{2k+1}$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!} x^{2k+1} = x \sum_{k=0}^{\infty} \frac{1}{k!} (x^2)^k = x e^{x^2}$$