Paley-Wiener-Schwartz theorem

A theorem which relates regularity of a function (or distribution) with the behaviour at infinity of its Fourier transform is often referred to as of Paley-Wiener type. We will study two (in a sense) limiting cases: A version of the classical Paley-Wiener theorem for C_0^{∞} -functions and a version by L. Schwartz for distributions (the Paley-Wiener-Schwartz theorem).

Paley-Wiener theorem. A function U defined on \mathbb{R}^n is the Fourier transform of some $u \in C_0^{\infty}(\mathbb{R}^n)$ with supp $u \subset$ B_A , if and only if U can be extended to \mathbb{C}^n as an entire $function\ satisfying\ estimates$

$$|U(\zeta)| \leqslant C_N (1 + |\zeta|^2)^{-N} e^{A|\operatorname{Im} \zeta|} \quad \forall \zeta \in \mathbb{C}^n$$

for all $N \in \mathbb{N}_0$ and some sequence $(C_N)_{N \in \mathbb{N}_0}$.

(The proof of \Rightarrow consists of extending \hat{u} to \mathbb{C}^n by replacing the n real variables by n complex ones, which is then called the Fourier-Laplace transform and which is holomorphic in \mathbb{C}^n , since we can differentiate under the integral and $\zeta\mapsto \exp(-i\langle\xi,\zeta\rangle)$ is entire for all $\xi\in\mathbb{R}^n$. The estimates follow from an estimate on $\zeta^\alpha\hat{u}(\zeta)$ for any multi-index $\alpha\colon |\zeta^\alpha\hat{u}(\zeta)|\leqslant \|\partial^\alpha u\|_1\exp(A|\mathrm{Im}\,\zeta|)$ which can be established by replacing $\zeta^\alpha\exp(-i\langle\zeta,\xi\rangle)$ with a derivative w.r.t. ξ of order $|\alpha|$ and performing $|\alpha|$ integrations by parts.

For \Leftarrow , we define u to be the inverse Fourier transform of U and show $u \in C_0^{\infty}$ with supp $u \subset B_A$, again by differentiating under the integral (using one of the estimates) and by applying Cauchy's integral theorem on the entire function $\exp(i\langle x,\cdot\rangle)U$ to shift the integration in the definition of u into the (n-dim.) complex plane in order to get $|u(x)| \leq C \exp(|x|(A-|x|)/\varepsilon)$ for all $\varepsilon > 0$, which then shows supp $u \subset B_A$.)

Some notions and results from distribution theory.

- (1) **Def.** (support of a distribution). For $u \in \mathcal{S}'$, we define $\operatorname{supp} u \subset \mathbb{R}^n$ by $x \notin \operatorname{supp} u :\Leftrightarrow \exists$ a neighbourhood V_x of xs.th. $u(\phi) = 0$ for all $\phi \in C_0^{\infty}(V_x)$. The set of temperate distributions with compact support we will denote by S'_0 . Here are some simple properties:
 - (i) If u is a function, then this definition coincides with its support as a function.
 - (ii) $u(\phi) = 0$, if supp $u \cap \text{supp } \phi = \emptyset$.
 - (iii) If $\varphi, \psi \in \mathcal{S}$ s.th. $\varphi(x) = \psi(x)$ for all $x \in \text{supp } u$, then $u(\varphi) = u(\psi)$.
- (2) **Theorem.** Any distribution $u \in S'$ can be uniquely extended as a (semi-)linear form to the set of C^{∞} -functions f with supp $u \cap \text{supp } f$ being compact. In particular, any $u \in \mathcal{S}'_0$ can be applied to $f \in C^{\infty}(\mathbb{R}^n)$. (see [2], thm 2.2.5).
- (3) **Theorem.** If $u, v \in \mathcal{S}'_0$, $f \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ or $u, v \in \mathcal{S}'$, $f \in C^{\infty}_0(\mathbb{R}^n \times \mathbb{R}^n)$, then (see [2], thm 5.1.1)

$$u\Big(x\mapsto \overline{v(f(x,\cdot))}\Big)=v\Big(y\mapsto \overline{u(f(\cdot,y))}\Big)$$

(4) Corollary (Fourier transform on S'_{0}). From (2) and (3) it follows: The Fourier transform of $u \in \mathcal{S}'_0$ is a function on \mathbb{R}^n given by

$$\hat{u}(\xi) = u(e^{i\langle \cdot, \xi \rangle}) \quad \forall \xi \in \mathbb{R}^n$$

(5) Lemma (differentiate inside u). As an application of Taylor's theorem we get: If $u \in \mathcal{S}'_0$, $\varphi \in C^{\infty}(\mathbb{R}^{2n})$ or $u \in \mathcal{S}'$, $\varphi \in C^{\infty}_0(\mathbb{R}^{2n})$, then $x \mapsto u(\varphi(x,\cdot)) \in C^{\infty}(\mathbb{R}^n)$,

$$\partial_x^{\alpha} u(\varphi(x,\cdot)) = u(\partial_x^{\alpha} \varphi(x,\cdot)) \quad \forall x \in \mathbb{R}^n, \ \alpha \in \mathbb{N}_0^n$$

- (6) **Def.** (convolution of distributions with functions). For $u \in \mathcal{S}', \phi \in \mathcal{S} \text{ or } u \in \mathcal{S}'_0, \phi \in C^{\infty}(\mathbb{R}^n) \text{ we define } u * \phi(x) :=$ $u(\overline{\phi}(x-\cdot)) \ \forall x \in \mathbb{R}^n$, which implies the following properties:
 - (i) If u is a function, this agrees with the convolution of functions.
 - (ii) Using (3), we can show: $(u * \phi) * \psi = u * (\phi * \psi)$, whenever $u \in \mathcal{S}', \phi \in C_0^{\infty}, \psi \in \mathcal{S}$.
 - (iii) From (5) it follows: For u and ϕ as in (5), $u*\phi \in C^{\infty}$ and $\partial^{\alpha}(u * \phi) = u * \partial^{\alpha}\phi$ for any $\alpha \in \mathbb{N}_0^n$
 - (iv) From $u * \dot{\overline{\varphi}}(0) = u(\phi)$ and (ii) it follows: $u * \dot{\phi} = \hat{u} \dot{\phi}$ whenever $u \in S'$ and $\phi \in C_0^{\infty}$.

Paley-Wiener-Schwartz theorem. A function U on \mathbb{R}^n is the Fourier transform of a distribution $u \in \mathcal{S}_0'$ with $\operatorname{supp} u \subset B_A$, if and only if U can be extended to \mathbb{C}^n as an entire function satisfying an estimate

$$|U(\zeta)| \leqslant C (1 + |\zeta|^2)^N e^{A|\operatorname{Im}\zeta|} \quad \forall \zeta \in \mathbb{C}^n$$

for some constants $C, N \geqslant 0$.

(⇒: From (4) we know $\hat{u}(\xi) = u(\exp(i\langle\cdot,\zeta\rangle))$ for all $\xi \in \mathbb{R}^n$ and its obvious extension to $\zeta \in \mathbb{C}^n$ forms an entire function, since we can differentiate inside u due to (5). For the estimate we use a smooth cutoff-function $\psi \in C^{\infty}(\mathbb{R})$, s.th. $\psi(t)=1$ for $t\leqslant 1/2$ and $\psi(t) = 0$ for all $t \ge 1$. Then set $\psi_{\zeta}(x) := \psi(|\zeta|(|x| - A))$, which Hence by (1), (iii) we have the identity $\hat{u}(\zeta) = u(\psi_{\zeta}(\mathbf{x}) - A)$, which we get the estimate: The C^{∞} -function \hat{u} is bounded on $\{|\zeta| \leq 1\}$ and for $|\zeta| \geqslant 1$, it follows supp $\psi_{\zeta} \in B_{A+1}$ and $\|\partial^{\alpha}(\psi_{\zeta} \exp(i\langle\cdot,\zeta\rangle))\|_{\infty} \leqslant C'|\zeta|^{|\alpha|} e^{A|\operatorname{Im}\zeta|} \leqslant C'(1+|\zeta|^{2})^{|\alpha|/2} \text{ for some constant } C'. \text{ Hence from } |\hat{u}(\zeta)| \leqslant C''|\psi_{\zeta} \exp(i\langle\cdot,\zeta\rangle)|_{N} \text{ follows}$ lows the desired estimate, i.e. $|\hat{u}(\zeta)| \leq C(1+|\zeta|^2)^{N/2} \exp(A|\operatorname{Im}\zeta|)$.

 \Leftarrow : The estimate for $\xi \in \mathbb{R}^n$ shows that $U \in \mathcal{S}'$. From the Fourier inversion formula in \mathcal{S}' follows that U is the Fourier transform of some $u \in \mathcal{S}'$. For supp $u \subset B_A$, we define $u_{\varepsilon} := u * \varphi_{\varepsilon}$, where of some $u \in S$. For $\operatorname{supp} u \subset B_A$, we define $u_{\varepsilon} := u * \varphi_{\varepsilon}$, where $\varphi_{\varepsilon}(x) := \varepsilon^{-n} \varphi(x/\varepsilon)$ for any $\varepsilon > 0$ and φ being a unit test function, i.e. $\varphi \in C_0^{\infty}$, $\operatorname{supp} \varphi \subset B_1$, $\int \varphi = 1$ and $\varphi \geqslant 0$. It is easy to see that $\operatorname{supp} \varphi_{\varepsilon} \subset B_{\varepsilon}$, $\int \varphi_{\varepsilon} = 1$ and $\hat{\varphi}_{\varepsilon}(\xi) = \hat{\varphi}(\varepsilon\xi)$. From (6), (iv) it follows $\hat{u}_{\varepsilon} = \hat{u}\hat{\varphi}_{\varepsilon} = U\hat{\varphi}_{\varepsilon}$ and we can apply the Paley-Wiener theorem to φ_{ε} , i.e. $\hat{\varphi}_{\varepsilon}$ extends to an entire function on \mathbb{C}^n and we have $|\hat{u}_{\varepsilon}(\zeta)| \leqslant CC_M(1+|\zeta|^2)^N(1+|\varepsilon\zeta|^2)^{-M} \exp((A+\varepsilon)|\operatorname{Im}\zeta|)$ for some sequence (C_M) , $C \geqslant 0$, $N \geqslant 0$ and all $M \in \mathbb{N}_0$. Choosing M=m+N for $m\in\mathbb{N}_0$, we get estimates which allow us to apply the Paley-Wiener theorem again in order to get $u_{\varepsilon} \in C_0^{\infty}$ with supp $u_{\varepsilon} \subset B_{A+\varepsilon}$. Finally, we can show that $u_{\varepsilon} \to u$ in S' as $\varepsilon \to 0$, i.e. $|u_{\varepsilon}(\phi) - u(\phi)| \to 0$ for any $\phi \in S'$. By using (6), (ii) this reduces to $|\varphi_{\varepsilon} * \phi - \phi|_k \to 0$ for some $k \in \mathbb{N}_0$. Due to (6), (iii), this reduces to the case k = 0, which follows from a change of variables in the convolution integral. The desired inclusion supp $u \subset B_A$ then is an easy consequence of supp $u_{\varepsilon} \subset B_{A+\varepsilon}$ and the convergence of $u_{\varepsilon} \to u \text{ as } \varepsilon \to 0.)$

Sources:

[1] X. Saint Raymond, Elementary introduction to the theory of pseudodifferential operators, 1991

[2] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, 1990 [3] F. G. Friedlander, Introduction to the theory of distributions, 1998