Complex Analysis

Exams:

60% Exam

40% Continuous Assessment

Contents

1	Wee	ek 1: Introduction to Complex Numbers	2
	1.1	Quadratics with Complex Roots	2
	1.2	Real valued solutions of a cubic	2
	1.3	Definition of Complex Numbers	9
	1.4	Attributes of Complex Numbers	9
	1.5	Polar Form of a Complex Number	
	1.6	Multplication by i and Geometric Interpretation	4
	1.7	Products of Complex Numbers and De Moivre's Theorem	4
	1.8	Roots of Unity	L
_			
2	Wee	ek 2: Functions of a Complex Variable	(
	2.1	Complex Roots	6

1 Week 1: Introduction to Complex Numbers

1.1 Quadratics with Complex Roots

Everybody knows that, for coefficients $a, b, c \in \mathbb{R}$, the quadatric $ax^2 + bx + c = 0$ has real values solutions given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \text{if } b^2 - 4ac \ge 0$$

but if $b^2 - 4ac < 0$, then we need the roots of negative numbers, and thus the solutions are complex numbers.

For example, the, the plot of $x^2 + 1 = 0$, below implies imaginary soltuons, since there are no real x-values that make y=0

1.2 Real valued solutions of a cubic

Oddly enough, complex numbers are needed to find real-valued solutions of a cubic equation.

Definition

For $p, q \in \mathbb{R}$,

$$x^3 = px + q,$$

has the solution, by Cardano's formula:

$$x = \sqrt[3]{\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}} + \sqrt[3]{\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}}$$

Example

Consider $x^3 = 15x + 4$, staring at this long enough, one could guess that x = 4 is a solution, and then factor out (x - 4) to get a quadratic, but that's not the point.

By Cardano's Formula, with p = 15 and q = 4, we get:

$$\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{121}}$$

Setting $i = \sqrt{-1}$, thus $\sqrt{-121} = 11i$

And noticing that:

$$(2+i)^3 = 2^3 + 3 \cdot 2^2 \cdot i + 3 \cdot 2 \cdot i^2 + i^3$$
$$= 8 + 12i - 6 - i$$
$$= 2 + 11i$$

Thus
$$(2+1)^3 = 2 + 11i$$
 and $(2-1)^3 = 2 - 11i$

Thus, the solution is:

$$= \sqrt[3]{(2+i)^3} + \sqrt[3]{(2-i)^3}$$
$$= 2+i+2-i$$
$$= 4$$

1.3 Definition of Complex Numbers

Definition

The set of complex numbers is defined as:

$$\mathbb{C} = \{ x + yi \mid x, y \in \mathbb{R} \}$$

where a is the real part and yi is the imaginary part, and $i^2 = -1$

1.4 Attributes of Complex Numbers

Given a complex number of the form: z = x + yi, we have:

- Re(z) = x is the real part of z
- Im(z) = y is the imaginary part of z
- $\bar{z} = x yi$ is the complex conjugate of z
- $|z| = \sqrt{x^2 + y^2}$ is the modulus of z

Note that: $z\bar{z} = x^2 + y^2 = |z|^2 \in \mathbb{R}$

Also note how this formula is used in the computation of the inverse of $z: z^{-1} = \frac{\overline{z}}{|z|^2}$

The geometric meaning of these attributes can be seen below.

1.5 Polar Form of a Complex Number

Given a non zero complex number z = x + iy:

- 1. Magnitude: $|z| = \sqrt{x^2 + y^2}$
- 2. **Argument**: If you think of (x, y) as a point in the plane, θ , is the angle the vector from the origin makes with the positive x axis
 - In polar form, we write: $z = |z|(\cos \theta + i \sin \theta)$
 - Principle Argument (Arg z): This is the "main" angle θ chosen to lie in $(-\pi, \pi]$
 - Because angles can differ by full turns (2π) , the general argument of z can be written as:

$$arg(z) = Arg(z) = 2\pi n, \quad n \in \mathbb{Z}$$

Why angles are "multi-valued" A direction in the plane can be expressed by infinitely many angles differing by whole circle (2π) . The "principal" angle is just a standard choice in $(-\pi,\pi]$

3

1.6 Multplication by i and Geometric Interpretation

Multiplying a complex number z by i correspond to a rotation by $\frac{\pi}{2}$ (90°) in the complex plane. Example:

1.7 Products of Complex Numbers and De Moivre's Theorem

Theorem

Let $z, z' \in \mathbb{C} \setminus \{0\}$, then:

•
$$|zz'| = |z||z'|$$
 and $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

•
$$\operatorname{Arg}(zz') = \operatorname{arg}(z) + \operatorname{arg}(z')$$
 and $\operatorname{arg}\left(\frac{z}{z'}\right) = \operatorname{arg}(z)$ - $\operatorname{arg}(z')$

Proof

Let x - x + iy and x' + iy', thus:

$$z = |z|(\cos \theta + i \sin \theta)$$
 and $z' = |z'|(\cos \theta' + i \sin \theta')$

Then:

$$|zz'| = |z||z'|(\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$$

$$= |z||z'|\left[(\cos\theta\cos\theta' - \sin\theta\sin\theta' + i(\cos\theta\sin\theta' + \sin\theta\cos\theta'))\right]$$

$$= |z||z'|\left[\cos(\theta + \theta') + i\sin(\theta + \theta')\right]$$

Thus, |zz'| = |z||z'| and $\arg(zz') = \theta + \theta' = \arg(z) + \arg(z')$

Note that: |z||z'| acts as a stretch/ shrink, $\cos(\theta + \theta')$ and $\sin(\theta + \theta')$ act as a rotation.

Corollary

De Moivre's Thereom: If $z = |z|(\cos \theta + i \sin \theta)$, then:

$$z^n = |z|^n \cos(n\theta) + i\sin(\theta)$$

De Moivre's Thereom is externely useful for raising a complex number to inger powers and expressing ntth roots of unity (as a special case where r = 1 and $z^n = 1$)

4

1.8 Roots of Unity

A **root of unity** is a complex number z, such that:

$$z^n = 1$$
 for some integer $n \ge 1$

Geometrically, roots of unity lie on the unit circle in the complex plane. Specifically:

Definition

The nth roots of unity are given by:

$$z_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$
 for $k = 0, 1, 2, \dots, n-1$

Example

Recalling $z = |z| [\cos \theta + i \sin \theta]$

Letting $z^4 = 1$, then we see:

$$z^4 = \cos(4\theta) + i\sin(4\theta) = 1 + 0i$$

We see, z is one of $w_k = \cos\left(\frac{2\pi k}{4}\right) + i\sin\left(\frac{2\pi k}{4}\right) = 1, i, -1, i$

And that the 4 roots of unity form a square in the unit circle, and their sum is 0.

2 Week 2: Functions of a Complex Variable

We study functions $f: \mathbb{C} \to \mathbb{C}$, that map complex numbers to complex numbers, like $f(z) = z^2 + z - 6$. Recall from Week 1:

$$z = x + iy = R(\cos\theta + i\sin\theta)$$

where $R^2=z^2=x^2+y^2$ and $\theta=\tan^{-1}\left(\frac{y}{x}\right)$, but $\frac{y}{x}=\frac{-y}{-x}$, that is, tan has period π only.

2.1 Complex Roots

For $n \in \mathbb{N}$, consider the function $f(z) = z^{1/n}$.

Given $z = R(\cos \theta + i \sin \theta) \neq 0$, find all complex numbers $w = r(\cos \phi + i \sin \phi)$ such that $w^n = z$.

By De moivre's Theorem (applied to w), $r^n = R$ and $n\phi = \theta + 2k\pi$ for some $k \in \mathbb{Z}$.

$$r = \sqrt[n]{R} > 0$$
 and $\phi = \theta/n + 2k\pi/n$

Note how $\phi = \frac{\theta + 2k\pi}{n}$ takes exactly n distinct values for $k = 0, 1, 2, \dots, n - 1$. Thus, every complex number $z = R(\cos \theta + i \sin \theta)$ has exactly n distinct nth roots.

We reserve the notation $\sqrt[n]{z}$ for the principal root, which is the one with k=0.

Example

Find the cube roots of z = -1 + 1

Here, $R = \sqrt{2}$ and $\theta = \frac{3\pi}{4}$. Hence, the 3 cubic roots of z = -1 + i are:

$$w_k = \sqrt[6]{2} \cdot \left[\cos \left(\frac{\pi}{4} + 23k\pi \right) + i \sin \left(\frac{\pi}{4} + \frac{2}{3}k\pi \right) \right]$$

Yielding: $w_0 = \sqrt[6]{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right), w_1 = \sqrt[6]{2} \left(\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12}\right), w_2 = \sqrt[6]{2} \left(\cos \frac{19\pi}{12} + i \sin \frac{19\pi}{12}\right)$

