${\tt PO12Q-Introduction\ to\ Quantitative\ Political\ Analysis\ II:}$

Worksheet Week 10 - Solutions

Dr Florian Reiche

F.Reiche@warwick.ac.uk

1 Testing the Classical Linear Assumptions

see RScript.

2 The Gauss-Markov Theorem

2. According to Malinvaud, the assumption that $E(u_i|X_i)=0$ is quite important. To see this, consider the PRF: $Y=\beta_1+\beta_2X_i+u_i$. Now consider two situations: (1) $\beta_1=0$, $\beta_2=1$ and $E(u_i)=0$; and (2) $\beta_1=1$, $\beta_2=0$ and $E(u_i)=X_i-1$. Now take the expectation of the PRF conditional upon X in those two cases, and see if you agree with Malinvaud about the significance of the assumption $E(u_i|X_i)=0$.

2.1 Situation 1

$$Y = \beta_0 + \beta_1 X_i + \epsilon_i$$

$$= 0 + X_i + 0$$
(1)

2.2 Situation 2

$$Y = \beta_0 + \beta_1 X_i + \epsilon_i$$

$$= 1 + 0 + X_i - 1$$

$$= X_i$$
(2)

So what we get is:

What we **should** get is:

2.3 Conclusion

- The second PRF is the same as the first, even though according to the betas it should be a flat line
- This is only possible, because the error term is not zero and has an interdependence with X_i .