Vanishing lines and periodicities of higher real *K*-theories

Zhipeng Duan June 9, 2025

Geometry and Topology Seminar, ZUMA

ullet The Atiyah's Real K-theory $K_{\mathbb{R}}$ can be generalized to larger finite groups and higher chromatic heights, called the Hill-Hopkins-Ravenel (HHR) theories

- The Atiyah's Real K-theory $K_{\mathbb{R}}$ can be generalized to larger finite groups and higher chromatic heights, called the Hill-Hopkins-Ravenel (HHR) theories
- Let $MU_{\mathbb{R}}$ be the Real bordism spectrum, 2-locally, it splits as wedges of spectra $BP_{\mathbb{R}}$

$$\pi^{C_2}_{*\rho_2} BP_{\mathbb{R}} \cong \mathbb{Z}_{(2)}[C_2 \cdot \bar{v}_1, C_2 \cdot \bar{v}_2, \cdots]$$

- The Atiyah's Real K-theory $K_{\mathbb{R}}$ can be generalized to larger finite groups and higher chromatic heights, called the Hill–Hopkins–Ravenel (HHR) theories
- Let $MU_{\mathbb{R}}$ be the Real bordism spectrum, 2-locally, it splits as wedges of spectra $BP_{\mathbb{R}}$

$$\pi^{\mathcal{C}_2}_{*
ho_2}\mathit{BP}_{\mathbb{R}}\cong\mathbb{Z}_{(2)}[\mathit{C}_2\cdotar{\mathit{v}}_1,\mathit{C}_2\cdotar{\mathit{v}}_2,\cdots]$$

- ▶ $BP_{\mathbb{R}}\langle m \rangle$ has chromatic height m
- $\blacktriangleright \ \ \mathsf{K}_{\mathbb{R}} \cong \bar{\mathsf{v}}_1^{-1}\mathsf{BP}_{\mathbb{R}}\langle 1 \rangle$

- The Atiyah's Real K-theory $K_{\mathbb{R}}$ can be generalized to larger finite groups and higher chromatic heights, called the Hill–Hopkins–Ravenel (HHR) theories
- Let $MU_{\mathbb{R}}$ be the Real bordism spectrum, 2-locally, it splits as wedges of spectra $BP_{\mathbb{R}}$

$$\pi^{\mathcal{C}_2}_{*
ho_2}\mathit{BP}_{\mathbb{R}}\cong\mathbb{Z}_{(2)}[\mathit{C}_2\cdotar{\mathit{v}}_1,\mathit{C}_2\cdotar{\mathit{v}}_2,\cdots]$$

- ▶ $BP_{\mathbb{R}}\langle m \rangle$ has chromatic height m
- $\blacktriangleright \ \ \mathcal{K}_{\mathbb{R}} \cong \bar{v}_1^{-1} BP_{\mathbb{R}} \langle 1 \rangle$
- For $C_2 \subset G$ finite, $D^{-1}BP^{((G))} := D^{-1}N_{C_2}^GBP_{\mathbb{R}}$. Here, $D \approx N_{C_2}^G(\bar{v}_h)$

- The Atiyah's Real K-theory $K_{\mathbb{R}}$ can be generalized to larger finite groups and higher chromatic heights, called the Hill–Hopkins–Ravenel (HHR) theories
- Let $MU_{\mathbb{R}}$ be the Real bordism spectrum, 2-locally, it splits as wedges of spectra $BP_{\mathbb{R}}$

$$\pi^{\textit{C}_2}_{*\rho_2}\textit{BP}_{\mathbb{R}}\cong\mathbb{Z}_{(2)}[\textit{C}_2\cdot\bar{\textit{v}}_1,\textit{C}_2\cdot\bar{\textit{v}}_2,\cdots]$$

- ▶ $BP_{\mathbb{R}}\langle m \rangle$ has chromatic height m
- $\blacktriangleright \ \ \mathsf{K}_{\mathbb{R}} \cong \bar{\mathsf{v}}_1^{-1} \mathsf{BP}_{\mathbb{R}} \langle 1 \rangle$
- For $C_2\subset G$ finite, $D^{-1}BP^{(\!(G)\!)}:=D^{-1}N_{C_2}^GBP_{\mathbb R}$. Here, $D\approx N_{C_2}^G(\bar v_h)$
 - ▶ When $G = C_{2^n}$, let

$$D^{-1}BP^{(G)}\langle m\rangle:=D^{-1}N_{C_2}^GBP_{\mathbb{R}}/(G\cdot \bar{t}_{m+1},G\cdot \bar{t}_{m+2},\cdots)$$

where

$$\pi^{\mathsf{C}_2}_{*\rho_2}\mathsf{BP}^{(\!(G)\!)}\cong \mathbb{Z}_{(2)}[G\cdot ar{t}_1,G\cdot ar{t}_2,\cdots]$$

- The Atiyah's Real K-theory $K_{\mathbb{R}}$ can be generalized to larger finite groups and higher chromatic heights, called the Hill–Hopkins–Ravenel (HHR) theories
- Let $MU_{\mathbb{R}}$ be the Real bordism spectrum, 2-locally, it splits as wedges of spectra $BP_{\mathbb{R}}$

$$\pi^{\mathcal{C}_2}_{*
ho_2}\mathit{BP}_\mathbb{R}\cong\mathbb{Z}_{(2)}[\mathit{C}_2\cdotar{\mathit{v}}_1,\mathit{C}_2\cdotar{\mathit{v}}_2,\cdots]$$

- ▶ $BP_{\mathbb{R}}\langle m \rangle$ has chromatic height m
- $\blacktriangleright \ \ \mathsf{K}_{\mathbb{R}} \cong \bar{\mathsf{v}}_1^{-1} \mathsf{BP}_{\mathbb{R}} \langle 1 \rangle$
- For $C_2\subset G$ finite, $D^{-1}BP^{(\!(G)\!)}:=D^{-1}N_{C_2}^GBP_{\mathbb R}$. Here, $D\approx N_{C_2}^G(\bar v_h)$
 - ▶ When $G = C_{2^n}$, let

$$D^{-1}BP^{(\!(G)\!)}\langle m\rangle:=D^{-1}N_{C_2}^GBP_{\mathbb{R}}/(G\cdot \bar{t}_{m+1},G\cdot \bar{t}_{m+2},\cdots)$$

where

$$\pi^{C_2}_{*
ho_2} \mathit{BP}^{(\!(G)\!)} \cong \mathbb{Z}_{(2)} [G \cdot \overline{t}_1, G \cdot \overline{t}_2, \cdots]$$

- chromatic height $h = 2^{n-1}m$
- good slice filtrations
- closely related to Lubin-Tate theories/Morava E-theories

Lubin-Tate theories

 KU and KO belong to a more general class of cohomology theories, called Lubin-Tate theories/Morava E-theories and higher real K-theories

Lubin-Tate theories

- KU and KO belong to a more general class of cohomology theories, called Lubin-Tate theories/Morava E-theories and higher real K-theories
- E_h : the Lubin–Tate theory associated to a pair (k, Γ) where Γ is a height h FGL over a finite field of characteristic p.

Lubin—Tate theories

- KU and KO belong to a more general class of cohomology theories, called Lubin-Tate theories/Morava E-theories and higher real K-theories
- E_h: the Lubin-Tate theory associated to a pair (k, Γ) where Γ is a height h FGL over a finite field of characteristic p.
 - ▶ $k = \mathbb{F}_p$, $\Gamma =$ multiplicative FGL (height 1) ⇒ $E_1 = KU_p^{\wedge}$ ▶ $k = \mathbb{F}_{p^h}$, $\Gamma =$ height-h Honda FGL ($[p]_{\Gamma}(x) = x^{p^h}$) ⇒ E_h : height-h Morava E-theory

Lubin-Tate theories

- KU and KO belong to a more general class of cohomology theories, called Lubin-Tate theories/Morava E-theories and higher real K-theories
- E_h: the Lubin-Tate theory associated to a pair (k, Γ) where Γ is a height h FGL over a finite field of characteristic p.
 - ▶ $k = \mathbb{F}_p$, $\Gamma =$ multiplicative FGL (height 1) ⇒ $E_1 = KU_p^{\wedge}$ ▶ $k = \mathbb{F}_{p^h}$, $\Gamma =$ height-h Honda FGL ($[p]_{\Gamma}(x) = x^{p^h}$) ⇒ E_h : height-h Morava E-theory
- The Lubin–Tate theories E_h are fundamental objects in chromatic homotopy theory, and they are also equipped with group actions

Theorem (Goerss-Hopkins-Miller, Lurie)

 E_h is a commutative (\mathbb{E}_{∞}) ring spectrum, and there is a unique \mathbb{G}_h -action on E_h by commutative (\mathbb{E}_{∞}) ring maps.

• Here, $\mathbb{G}_h = \operatorname{Aut}_k(\Gamma) \rtimes \operatorname{Gal}(k/\mathbb{F}_p)$ is the Morava stabilizer group

Theorem (Goerss-Hopkins-Miller, Lurie)

 E_h is a commutative (\mathbb{E}_{∞}) ring spectrum, and there is a unique \mathbb{G}_h -action on E_h by commutative (\mathbb{E}_{∞}) ring maps.

- Here, $\mathbb{G}_h = \operatorname{Aut}_k(\Gamma) \rtimes \operatorname{Gal}(k/\mathbb{F}_p)$ is the Morava stabilizer group
- The existence of this group action has an important consequence: for $G \subset \mathbb{G}_h$, we can take fixed points to get E_h^{hG}

Theorem (Goerss-Hopkins-Miller, Lurie)

 E_h is a commutative (\mathbb{E}_{∞}) ring spectrum, and there is a unique \mathbb{G}_h -action on E_h by commutative (\mathbb{E}_{∞}) ring maps.

- Here, $\mathbb{G}_h = \operatorname{Aut}_k(\Gamma) \rtimes \operatorname{Gal}(k/\mathbb{F}_p)$ is the Morava stabilizer group
- The existence of this group action has an important consequence: for $G \subset \mathbb{G}_h$, we can take fixed points to get E_h^{hG}
- ullet If $G=\mathbb{G}_h$, Devinatz–Hopkins showed that $L_{K(h)}S^0\simeq E_h^{h\mathbb{G}_h}$

Theorem (Goerss-Hopkins-Miller, Lurie)

 E_h is a commutative (\mathbb{E}_{∞}) ring spectrum, and there is a unique \mathbb{G}_h -action on E_h by commutative (\mathbb{E}_{∞}) ring maps.

- Here, $\mathbb{G}_h = \operatorname{Aut}_k(\Gamma) \rtimes \operatorname{Gal}(k/\mathbb{F}_p)$ is the Morava stabilizer group
- The existence of this group action has an important consequence: for $G \subset \mathbb{G}_h$, we can take fixed points to get E_h^{hG}
- ullet If $G=\mathbb{G}_h$, Devinatz–Hopkins showed that $L_{K(h)}S^0\simeq E_h^{h\mathbb{G}_h}$
- For G finite, the homotopy fixed point E_h^G are called the higher real K-theories
 - At prime 2, h=1, and $G=C_2\subset \mathbb{G}_1$ (formal inversion), $E_1=KU_2^\wedge$ $\Longrightarrow E_1^{hC_2}=(KU_2^\wedge)^{hC_2}=KO_2^\wedge$

Theorem (Goerss-Hopkins-Miller, Lurie)

 E_h is a commutative (\mathbb{E}_{∞}) ring spectrum, and there is a unique \mathbb{G}_h -action on E_h by commutative (\mathbb{E}_{∞}) ring maps.

- Here, $\mathbb{G}_h = \operatorname{Aut}_k(\Gamma) \rtimes \operatorname{Gal}(k/\mathbb{F}_p)$ is the Morava stabilizer group
- The existence of this group action has an important consequence: for $G \subset \mathbb{G}_h$, we can take fixed points to get E_h^{hG}
- ullet If $G=\mathbb{G}_h$, Devinatz–Hopkins showed that $L_{K(h)}S^0\simeq E_h^{h\mathbb{G}_h}$
- For G finite, the homotopy fixed point E_h^{hG} are called the higher real K-theories
 - At prime 2, h=1, and $G=C_2\subset \mathbb{G}_1$ (formal inversion), $E_1=KU_2^\wedge$ $\Longrightarrow E_1^{hC_2}=(KU_2^\wedge)^{hC_2}=KO_2^\wedge$
- E_h^{hG} is a very useful family of cohomology theories, because they play an important role in detecting periodic phenomena in stable homotopy

Applications of E_h^{hG}

• Hopkins–Miller computed $\pi_* E_{p-1}^{hC_p}$, and this computation was used to prove the nonexistence of certain Toda–Smith complexes (Nave)

Applications of E_h^{hG}

- Hopkins–Miller computed $\pi_* E_{p-1}^{hC_p}$, and this computation was used to prove the nonexistence of certain Toda–Smith complexes (Nave)
- E_h^{hG} can be used to give a resolution of $L_{K(h)}S^0$:
 - ightharpoonup h = 1 (Adams-Baird-Ravenel)

$$L_{K(1)}S^0 \to KO \to KO, \quad p=2$$

▶ h = 2 (started by Goerss-Henn-Mahowald-Rezk)

Applications of E_h^{hG}

- Hopkins–Miller computed $\pi_* E_{p-1}^{hC_p}$, and this computation was used to prove the nonexistence of certain Toda–Smith complexes (Nave)
- E_h^{hG} can be used to give a resolution of $L_{K(h)}S^0$:
 - ightharpoonup h = 1 (Adams-Baird-Ravenel)

$$L_{K(1)}S^0 \to KO \to KO, \quad p=2$$

- ▶ h = 2 (started by Goerss–Henn–Mahowald–Rezk)
- E_h^{hG} also detects important elements in π_*S^0 :
 - ► $E_{p-1}^{hC_p}$ was used by Ravenel to resolve the odd primary Kervaire invariant problem $(p \ge 5)$
 - $ightharpoonup E_4^{hC_8}$ was used by HHR to resolve the Kervaire invariant problem (p=2)

$$E_2^{s,t}$$
: $= H^s(G, \pi_t E_h) \Rightarrow \pi_{t-s} E_h^{hG}$

$$E_2^{s,t}$$
: $= H^s(G, \pi_t E_h) \Rightarrow \pi_{t-s} E_h^{hG}$

- ▶ it is a half-plane spectral sequence
- ▶ It is hard to give an explicit formula of the group action of G on π_*E_h

$$E_2^{s,t}$$
: $= H^s(G, \pi_t E_h) \Rightarrow \pi_{t-s} E_h^{hG}$

- ▶ it is a half-plane spectral sequence
- ▶ It is hard to give an explicit formula of the group action of G on π_*E_h
- With the help of the real orientation on E_h , we can transfer the computations of E_h^{hG} to the computations of $D^{-1}BP^{(\!(G)\!)}$ through the HFPSS or the slice spectral sequence (SliceSS) at least when G is a cyclic 2-group

$$E_2^{s,t}$$
: $= H^s(G, \pi_t E_h) \Rightarrow \pi_{t-s} E_h^{hG}$

- ▶ it is a half-plane spectral sequence
- ▶ It is hard to give an explicit formula of the group action of G on π_*E_h
- With the help of the real orientation on E_h , we can transfer the computations of E_h^{hG} to the computations of $D^{-1}BP^{((G))}$ through the HFPSS or the slice spectral sequence (SliceSS) at least when G is a cyclic 2-group
 - ► Gap region (HHR)
 - ► Thranschromatic phenomena (Meier-Shi-Zeng)

$$E_2^{s,t}$$
: $= H^s(G, \pi_t E_h) \Rightarrow \pi_{t-s} E_h^{hG}$

- ▶ it is a half-plane spectral sequence
- ▶ It is hard to give an explicit formula of the group action of G on π_*E_h
- With the help of the real orientation on E_h , we can transfer the computations of E_h^{hG} to the computations of $D^{-1}BP^{(\!(G)\!)}$ through the HFPSS or the slice spectral sequence (SliceSS) at least when G is a cyclic 2-group
 - ► Gap region (HHR)
 - ► Thranschromatic phenomena (Meier-Shi-Zeng)
- There is a comparison map from SliceSS to HFPSS which are isomorphic under the line of slope 1

HFPSS for *KO*

SliceSS for $K_{\mathbb{R}}$

SliceSS for $D^{-1}BP^{((C_4))}\langle 1 \rangle$

Theorem (Hahn-Shi)

At prime p=2, there is a C_2 -equivariant map

$$MU_{\mathbb{R}} \to E_h$$

Theorem (Hahn-Shi)

At prime p = 2, there is a C_2 -equivariant map

$$MU_{\mathbb{R}} \to E_h$$

lifting the classical complex orientation $MU \rightarrow E_h$.

• When h=m, apply SliceSS of $BP_{\mathbb{R}}\langle m \rangle$ to compute $\pi_*E_h^{hC_2}$ (Hahn–Shi)

Theorem (Hahn-Shi)

At prime p = 2, there is a C_2 -equivariant map

$$MU_{\mathbb{R}} \to E_h$$

- When h=m, apply SliceSS of $BP_{\mathbb{R}}\langle m \rangle$ to compute $\pi_*E_h^{hC_2}$ (Hahn–Shi)
 - $ightharpoonup E_h^{hC_2}$ is periodic; each SliceSS/HFPSS admits a horizontal vanishing line

Theorem (Hahn-Shi)

At prime p = 2, there is a C_2 -equivariant map

$$MU_{\mathbb{R}} \to E_h$$

- When h=m, apply SliceSS of $BP_{\mathbb{R}}\langle m \rangle$ to compute $\pi_*E_h^{hC_2}$ (Hahn–Shi)
 - $ightharpoonup E_h^{hC_2}$ is periodic; each SliceSS/HFPSS admits a horizontal vanishing line
- The norm functor gives a G-equivariant map

$$D^{-1}BP^{(\!(G)\!)} \rightarrow N_{C_2}^G E_h \rightarrow E_h$$

Theorem (Hahn-Shi)

At prime p = 2, there is a C_2 -equivariant map

$$MU_{\mathbb{R}} \to E_h$$

- When h=m, apply SliceSS of $BP_{\mathbb{R}}\langle m \rangle$ to compute $\pi_*E_h^{hC_2}$ (Hahn–Shi)
 - $ightharpoonup E_h^{hC_2}$ is periodic; each SliceSS/HFPSS admits a horizontal vanishing line
- The norm functor gives a G-equivariant map

$$D^{-1}BP^{(\!(G)\!)} o N_{C_2}^G E_h o E_h$$

- ▶ When $G = C_{2^n}$, this map factors through $D^{-1}BP^{((G))}\langle m \rangle$
 - This is a equivalence after 2-completion
 - The slices of $D^{-1}BP^{((G))}\langle m \rangle$ are completely known

Vanishing lines and periodicities

Examples: E_{∞} -page of HFPSS for $E_3^{hC_2}$

Examples: E_{∞} -page of SliceSS for $D^{-1}BP^{((C_4))}\langle 1 \rangle$

Vanishing lines

Theorem (D.-Li-Shi)

At p=2, for any $h\geq 1$ and G a finite subgroup of \mathbb{G}_h . There is a strong horizontal vanishing line of filtration $N_{h,G}$ in the homotopy fixed point spectral sequence of E_h or the slice spectral sequence for $D^{-1}BP^{(G)}$.

• Here, $N_{h,G} = N_{h,H}$, where H is a 2-Sylow subgroup of $G \cap \mathbb{S}_h$ and

$$N_{h,H} := \begin{cases} 1 & \text{if } H = e \\ 2^{h+n} - 2^n + 1 & \text{if } H = C_{2^n} \\ 2^{h+3} - 9 & \text{if } H = Q_8 \end{cases}$$

Vanishing lines

Theorem (D.-Li-Shi)

At p=2, for any $h\geq 1$ and G a finite subgroup of \mathbb{G}_h . There is a strong horizontal vanishing line of filtration $N_{h,G}$ in the homotopy fixed point spectral sequence of E_h or the slice spectral sequence for $D^{-1}BP^{((G))}$.

• Here, $N_{h,G} = N_{h,H}$, where H is a 2-Sylow subgroup of $G \cap \mathbb{S}_h$ and

$$N_{h,H} := \begin{cases} 1 & \text{if } H = e \\ 2^{h+n} - 2^n + 1 & \text{if } H = C_{2^n} \\ 2^{h+3} - 9 & \text{if } H = Q_8 \end{cases}$$

- This result works for all heights and all finite group (at the prime 2)
 - $ightharpoonup E_2^{hC_4}$: vanishing line at filtration 13
 - $ightharpoonup E_2^{hQ_8}$: vanishing line at filtration 23
 - \triangleright $E_4^{hC_4}$: vanishing line at filtration 61

Vanishing lines

Theorem (D.-Li-Shi)

At p=2, for any $h\geq 1$ and G a finite subgroup of \mathbb{G}_h . There is a strong horizontal vanishing line of filtration $N_{h,G}$ in the homotopy fixed point spectral sequence of E_h or the slice spectral sequence for $D^{-1}BP^{(G)}$.

• Here, $N_{h,G} = N_{h,H}$, where H is a 2-Sylow subgroup of $G \cap \mathbb{S}_h$ and

$$N_{h,H} := \begin{cases} 1 & \text{if } H = e \\ 2^{h+n} - 2^n + 1 & \text{if } H = C_{2^n} \\ 2^{h+3} - 9 & \text{if } H = Q_8 \end{cases}$$

- This result works for all heights and all finite group (at the prime 2)
 - $ightharpoonup E_2^{hC_4}$: vanishing line at filtration 13
 - $ightharpoonup E_2^{hQ_8}$: vanishing line at filtration 23
 - $ightharpoonup E_4^{hC_4}$: vanishing line at filtration 61
- ullet The filtration $N_{h,G}$ are sharp in all previously known cases, and they are very helpful in spectral sequence computations

Theorem (D.-Hill-Li-Liu-Shi-Wang-Xu)

At p=2, for any $h\geq 1$ and G a finite subgroup of \mathbb{G}_h , E_h^{hG} is $P_{h,G}$ -periodic.

$$P_{h,H} := \begin{cases} 2 & \text{if } H = e \\ 2^{h+n+1} & \text{if } H = C_{2^n} \\ 2^{h+4} & \text{if } H = Q_8 \end{cases}$$

Theorem (D.-Hill-Li-Liu-Shi-Wang-Xu)

At p=2, for any $h\geq 1$ and G a finite subgroup of \mathbb{G}_h , E_h^{hG} is $P_{h,G}$ -periodic.

• Here, $P_{h,G}:=\frac{|G|}{|H|}\cdot P_{h,H}$, where H is a 2-Sylow subgroup of $G\cap \mathbb{S}_h$ and $P_{h,H}:=\left\{ \begin{array}{ll} 2 & \text{if } H=e\\ 2^{h+n+1} & \text{if } H=C_{2^n}\\ 2^{h+4} & \text{if } H=Q_8 \end{array} \right.$

• This gives the periodicity for
$$E_h^{hG}$$
 at all heights h and all finite groups G (at the prime 2)

14

Theorem (D.-Hill-Li-Liu-Shi-Wang-Xu)

At p=2, for any $h\geq 1$ and G a finite subgroup of \mathbb{G}_h , E_h^{hG} is $P_{h,G}$ -periodic.

• Here, $P_{h,G} := \frac{|G|}{|H|} \cdot P_{h,H}$, where H is a 2-Sylow subgroup of $G \cap \mathbb{S}_h$ and $\begin{cases} 2 & \text{if } H = e \end{cases}$

$$P_{h,H} := \begin{cases} 2 & \text{if } H = e \\ 2^{h+n+1} & \text{if } H = C_{2^n} \\ 2^{h+4} & \text{if } H = Q_8 \end{cases}$$

- This gives the periodicity for E_h^{hG} at all heights h and all finite groups G (at the prime 2)
 - $E_1^{hC_2}$: 8-periodic, Bott periodicity, plays an important role in Adams' study of the image of J
 - ▶ $E_2^{hG_{24}}$: 192-periodic, helps prove that more than half of the dimensions of even spheres have a non-unique smooth structure
 - ► $E_4^{hC_8}$: 256-periodic, plays a crucial role in the proof of the Kervaire invariant one classes do not exist

Theorem (D.-Hill-Li-Liu-Shi-Wang-Xu)

At p=2, for any $h\geq 1$ and G a finite subgroup of \mathbb{G}_h , E_h^{hG} is $P_{h,G}$ -periodic.

• Here, $P_{h,G} := \frac{|G|}{|H|} \cdot P_{h,H}$, where H is a 2-Sylow subgroup of $G \cap \mathbb{S}_h$ and $G \cap \mathbb{S}_h$

$$P_{h,H} := \begin{cases} 2 & \text{if } H = e \\ 2^{h+n+1} & \text{if } H = C_{2^n} \\ 2^{h+4} & \text{if } H = Q_8 \end{cases}$$

- This gives the periodicity for E_h^{hG} at all heights h and all finite groups G (at the prime 2)
 - ► $E_1^{hC_2}$: 8-periodic, Bott periodicity, plays an important role in Adams' study of the image of J
 - ► $E_2^{hG_{24}}$: 192-periodic, helps prove that more than half of the dimensions of even spheres have a non-unique smooth structure
 - ► $E_4^{hC_8}$: 256-periodic, plays a crucial role in the proof of the Kervaire invariant one classes do not exist
- The $P_{h,G}$ -periodicities are sharp in all previously known cases, and they are very useful when doing computations.

Applications

Orientation of bundles

Question

Given a cohomology theory E, which bundle V is E-oriented?

Orientation of bundles

Question

Given a cohomology theory E, which bundle V is E-oriented?

- σ_2 is not $H\mathbb{Z}$ -oriented, but its 2-fold direct sum $2\sigma_2$ is $H\mathbb{Z}$ -oriented
- If E is complex oriented, then for any bundle V, its 2-fold direct sum $V \oplus V \simeq V \otimes \mathbb{C}$ is E-oriented.
 - Lubin-Tate theory E_h is complex oriented

Orientation of bundles

Question

Given a cohomology theory E, which bundle V is E-oriented?

- σ_2 is not $H\mathbb{Z}$ -oriented, but its 2-fold direct sum $2\sigma_2$ is $H\mathbb{Z}$ -oriented
- If E is complex oriented, then for any bundle V, its 2-fold direct sum $V \oplus V \simeq V \otimes \mathbb{C}$ is E-oriented.
 - Lubin-Tate theory E_h is complex oriented

Question

When $E = E_h^{hG}$, for any vector bundle V, how many direct sums of V are E_h^{hG} -oriented?

Bundle orientation

Theorem (D.-Li-Shi)

When p=2, for any finite subgroup $G<\mathbb{G}_h$ and any real vector bundle V, its d-fold direct sum is E_h^{hG} -oriented. Here, $d=2\cdot |K|\cdot |H|^{\frac{N_{h,H}-1}{2}}$, where $K=G\cap \mathbb{S}_h$ and H is a 2-Sylow subgroup of K.

Bundle orientation

Theorem (D.-Li-Shi)

When p=2, for any finite subgroup $G<\mathbb{G}_h$ and any real vector bundle V, its d-fold direct sum is E_h^{hG} -oriented. Here, $d=2\cdot |K|\cdot |H|^{\frac{N_{h,H}-1}{2}}$, where $K=G\cap \mathbb{S}_h$ and H is a 2-Sylow subgroup of K.

• Kitchloo–Wilson studied $E_h^{hC_2}$ -orientation when p=2, our result generalizes it to larger finite subgroups

Bundle orientation

Theorem (D.-Li-Shi)

When p=2, for any finite subgroup $G<\mathbb{G}_h$ and any real vector bundle V, its d-fold direct sum is E_h^{hG} -oriented. Here, $d=2\cdot |K|\cdot |H|^{\frac{N_{h,H}-1}{2}}$, where $K=G\cap \mathbb{S}_h$ and H is a 2-Sylow subgroup of K.

- Kitchloo–Wilson studied $E_h^{hC_2}$ -orientation when p=2, our result generalizes it to larger finite subgroups
- Bhattacharya-Chatham studied $E_{k(p-1)}^{hC_p}$ -orientation for odd prime p

Bundle orientation, sketch of proof

• Work on universal bundle γ over BO, our goal is to find a Thom class $u:MO[d] \to E_h^{hG}$ such that the following Thom isomorphism holds:

$$(E_h^{hG})^*(MO[d]) \simeq (E_h^{hG})^*(BO_+)[u]$$

► MO[d] is the Thom spectrum of the classifying map $BO \xrightarrow{\times d} BO$

Bundle orientation, sketch of proof

• Work on universal bundle γ over BO, our goal is to find a Thom class $u:MO[d]\to E_h^{hG}$ such that the following Thom isomorphism holds:

$$(E_h^{hG})^*(MO[d]) \simeq (E_h^{hG})^*(BO_+)[u]$$

- ► MO[d] is the Thom spectrum of the classifying map $BO \xrightarrow{\times d} BO$
- If there is a Thom class $u \in H^0(G, E_h^*(MO[d]))$ which is a permanent cycle, then the following diagram

$$H^*(G, E_h^*(BO_+)) \xrightarrow{\cdot u} H^*(G, E_h^*(MO[d]))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(E_h^{hG})^*(BO_+) \longrightarrow (E_h^{hG})^*(MO[d])$$

will induce an isomorphism

$$(E_h^{hG})^*(BO_+) \cdot u \cong (E_h^{hG})^*(MO[d])$$

Orientation of bundles, sketch of proof

• 2γ is E_h -oriented gives the following Thom isomorphism

$$E_h^*(MO[2]) \simeq E_h^*(BO_+)[u_2]$$

- ▶ u_2 is the Thom class $u_2 : MO[2] \rightarrow E_h$
- ▶ In general, for $2n\gamma$ we have a similar Thom isomorphism

$$E_h^*(MO[2n]) \simeq E_h^*(BO_+)[u_2^n]$$

Orientation of bundles, sketch of proof

• 2γ is E_h -oriented gives the following Thom isomorphism

$$E_h^*(MO[2]) \simeq E_h^*(BO_+)[u_2]$$

- ▶ u_2 is the Thom class $u_2 : MO[2] \rightarrow E_h$
- ▶ In general, for $2n\gamma$ we have a similar Thom isomorphism

$$E_h^*(MO[2n]) \simeq E_h^*(BO_+)[u_2^n]$$

- Considering the *G*-action, let u_K represent $g_1u_2 \wedge g_2u_2 \wedge \cdots \wedge g_{|K|}u_2$.
 - ▶ $gu_2: MO[2] \rightarrow E_h \xrightarrow{g} E_h$
 - ► $u_k \in H^0(G, E_h^0(MO[2|K|]))$

Orientation of bundles, sketch of proof

• 2γ is E_h -oriented gives the following Thom isomorphism

$$E_h^*(MO[2]) \simeq E_h^*(BO_+)[u_2]$$

- ▶ u_2 is the Thom class $u_2 : MO[2] \rightarrow E_h$
- ▶ In general, for $2n\gamma$ we have a similar Thom isomorphism

$$E_h^*(MO[2n]) \simeq E_h^*(BO_+)[u_2^n]$$

- Considering the *G*-action, let u_K represent $g_1u_2 \wedge g_2u_2 \wedge \cdots \wedge g_{|K|}u_2$.

 - ► $u_k \in H^0(G, E_h^0(MO[2|K|]))$
- Since each class in E_2 -page is |H|-torsion, by the Leibniz rule and the vanishing line result, we can choose $u=u_k^n$, where $n=|H|^{\frac{N_{h,H}-1}{2}}$

Extension issues

Extension issues

HFPSS for $E_2^{hG_{24}}$

Ideas of proofs

Tate construction

Definition

Given a G-spectrum X, we have the following so-called Tate construction of X

$$X^{tG} := \operatorname{cofib}(X_{hG} \to X^{hG}).$$

Tate construction

Definition

Given a G-spectrum X, we have the following so-called Tate construction of X

$$X^{tG} := \operatorname{cofib}(X_{hG} \to X^{hG}).$$

ullet When X=HM: the Eilenberg-Maclane spectrum, which represents the singular cohomology with coefficient M

Tate construction

Definition

Given a G-spectrum X, we have the following so-called Tate construction of X

$$X^{tG} := \operatorname{cofib}(X_{hG} \to X^{hG}).$$

- When X = HM: the Eilenberg-Maclane spectrum, which represents the singular cohomology with coefficient M
 - $\blacktriangleright \pi_*(HM_{hG}) = H_*(G,M)$
 - $\blacktriangleright \pi_*(HM^{hG}) = H^{-*}(G, M)$
 - $\pi_*(HM^{tG}) = \hat{H}^{-*}(G, M)$
 - ▶ $\pi_0(HM_{hG}) \to \pi_0(HM^{hG})$ is just the norm map $H_0(G,M) \xrightarrow{N} H^0(G,M)$ in group cohomology.

Tate spectral sequence

Theorem

There is a spectral sequence to compute $\pi_*X^{t\mathsf{G}}$ called the Tate spectral sequence

$$\hat{H}^s(G, \pi_t X) \Rightarrow \pi_{t-s} X^{tG}.$$

Tate spectral sequence

Theorem

There is a spectral sequence to compute $\pi_*X^{t\mathcal{G}}$ called the Tate spectral sequence

$$\hat{H}^s(G, \pi_t X) \Rightarrow \pi_{t-s} X^{tG}.$$

- This is a whole plane spectral sequence
 - ► There is a natural map from the HFPSS to the TateSS which induces an one—one correspondence of classes and differentials beyond the filtration 0
 - ▶ If there is a d_r -differential hitting the unity 1 in TateSS(E_h^{hG}), then there is a strong vanishing line at filtration r in HFPSS(E_h^{hG})

Tate spectral sequence

Theorem

There is a spectral sequence to compute $\pi_*X^{t\mathcal{G}}$ called the Tate spectral sequence

$$\hat{H}^s(G, \pi_t X) \Rightarrow \pi_{t-s} X^{tG}.$$

- This is a whole plane spectral sequence
 - ► There is a natural map from the HFPSS to the TateSS which induces an one—one correspondence of classes and differentials beyond the filtration 0
 - ▶ If there is a d_r -differential hitting the unity 1 in TateSS(E_h^{hG}), then there is a strong vanishing line at filtration r in HFPSS(E_h^{hG})
- The unity 1 is killed by a $d_{2^{h+1}-1}$ -differential in C_2 -TateSS for E_h by Hahn–Shi's computation
 - ▶ The Tate spectrum $E_h^{tC_2}$ is contractible
 - ▶ There is a strong vanishing line at filtration $2^{h+1} 1$ in the HFPSS for $E_h^{hC_2}$

TateSS for $D^{-1}BP^{((C_4))}\langle 1 \rangle$

HHR norm functor and differentials

Theorem (HHR)

For a spectral sequence with a norm structure, if there is a differential $d_r(x) = y$ on H-level, then there is a predicted differential on G-level

$$d_{|G/H|(r-1)+2}(N_H^G(x)a_{\bar{\rho}})=N_H^G(y)$$

• This differential is not necessary non-trivial, i.e., $N_H^G(y)$ is killed on or before $E_{|G/H|(r-1)+2}$ -page.

HHR norm functor and differentials

Theorem (HHR)

For a spectral sequence with a norm structure, if there is a differential $d_r(x) = y$ on H-level, then there is a predicted differential on G-level

$$d_{|G/H|(r-1)+2}(N_H^G(x)a_{\bar{\rho}})=N_H^G(y)$$

• This differential is not necessary non-trivial, i.e., $N_H^G(y)$ is killed on or before $E_{|G/H|(r-1)+2}$ -page.

Theorem (D.-Hill-Li-Liu-Shi-Wang-Xu)

With the same conditions as above, we have the following predicted differential on G-level:

$$d_r\big(N_H^G(x)\big)=\operatorname{tr}_H^G\big(y\prod_{[g]\in T}N_{H\cap H^g}^H(x^g)\big)$$

where $T = H \backslash G/H - [H]$.

HHR norm functor and differentials

Theorem (HHR)

For a spectral sequence with a norm structure, if there is a differential $d_r(x) = y$ on H-level, then there is a predicted differential on G-level

$$d_{|G/H|(r-1)+2}(N_H^G(x)a_{\bar{\rho}})=N_H^G(y)$$

• This differential is not necessary non-trivial, i.e., $N_H^G(y)$ is killed on or before $E_{|G/H|(r-1)+2}$ -page.

Theorem (D.-Hill-Li-Liu-Shi-Wang-Xu)

With the same conditions as above, we have the following predicted differential on G-level:

$$d_r(N_H^G(x)) = \operatorname{tr}_H^G(y \prod_{[g] \in T} N_{H \cap H^g}^H(x^g))$$

where $T = H \backslash G/H - [H]$.

• When G is abelian, $d_r(N_H^G(x)) = \operatorname{tr}_H^G(yx^{|G/H|-1})$

• When $G = C_2$, the unity 1 in TateSS $(E_h^{hC_2})$ is killed by $d_{2^{h+1}-1}$ -differential by Hahn-Shi's computation

- When $G = C_2$, the unity 1 in TateSS $(E_h^{hC_2})$ is killed by $d_{2^{h+1}-1}$ -differential by Hahn-Shi's computation
- When $G=C_{2^n}$, Q_8 we apply the norm functor, according to the HHR norm differential result, the unity 1 will also be killed on or before the page $N_{h,C_{2^n}}$, N_{h,Q_8} in TateSS(E_h^{hG})

- When $G = C_2$, the unity 1 in TateSS $(E_h^{hC_2})$ is killed by $d_{2^{h+1}-1}$ -differential by Hahn-Shi's computation
- When $G = C_{2^n}$, Q_8 we apply the norm functor, according to the HHR norm differential result, the unity 1 will also be killed on or before the page $N_{h,C_{2^n}}$, N_{h,Q_8} in TateSS(E_h^{hG})
- Apply the map from HFPSS to TateSS to deduce the vanishing line

- When $G = C_2$, the unity 1 in TateSS $(E_h^{hC_2})$ is killed by $d_{2^{h+1}-1}$ -differential by Hahn-Shi's computation
- When $G = C_{2^n}$, Q_8 we apply the norm functor, according to the HHR norm differential result, the unity 1 will also be killed on or before the page $N_{h,C_{2^n}}$, N_{h,Q_8} in TateSS(E_h^{hG})
- Apply the map from HFPSS to TateSS to deduce the vanishing line
- As for the general case, we just take the transfer map from the 2-Sylow subgroup to $G \cap \mathbb{S}_h$

Thank you!