期中考试题型总结

- 一、求函数定义域,求复合函数,已知复合函数求函数,奇偶性判别,求反函数。
- 1. 关于函数 $f(x) = \ln(x + \sqrt{1 + x^2})$ 说法正确的是()
 - (A) 周期函数 (B) 有界函数
- (C) 偶函数 (D) 奇函数
- 2. $\[\] \] \begin{cases} 1, & |x| \le 1, \\ 0, & |x| > 1, \end{cases} \] \] \[\] \] f\left\{ f\left[f(x)\right] \right\} = ().$

- (A) 1 (B) 0 (C) $\begin{cases} 1, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ (D) $\begin{cases} 0, & |x| \le 1 \\ 1, & |x| > 1 \end{cases}$
- 3. 设 f(x) 的导函数 f'(x) 是连续函数,则下面不正确的是().
 - (A) 如果 f'(x) 是奇函数,则 f(x) 必是偶函数;
 - (B) 如果 f(x) 是偶函数,则 f'(x) 必是奇函数;
 - (C) 如果 f(x) 是周期函数,则 f'(x) 必是周期函数;
 - (D) 如果 f'(x) 是周期函数,则 f(x) 必是周期函数;
- 二、求数列和函数的极限。基本方法:四则运算,重要极限,等价代换,无穷小与有界量之 积仍为无穷小,夹逼定理。

1.
$$\lim_{x \to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{(1 + \cos x)\ln(1 + x)} = \underline{\hspace{1cm}}$$

2.
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}} = \underline{\hspace{1cm}}$$

$$3. \lim_{x \to +\infty} \frac{x^3 + x^2 + 1}{2^x + x^3} (\sin x + \cos x) = \underline{\qquad}.$$

4.
$$\lim_{x\to 0} \frac{e-e^{\cos x}}{\sqrt[3]{1+x^2}-1} = \underline{\hspace{1cm}}$$

5.设对任意的 x ,	总有 $\varphi(x) \le f(x) \le g(x)$,	$\mathbb{E}\lim[g(x)-\varphi(x)]=0,$	则 $\lim f(x)$ ()
	- 11 () 3 () 8 ()	$x \to \infty$ [S $\langle \rangle$ \rangle]	$x \to \infty$	

(A) 存在且等干零

(B) 存在但不一定为零

(C) 一定不存在

(D) 不一定存在

6.
$$\lim_{x \to 0} \frac{\sqrt{1 - x^2} - 1}{\arctan x \ln(1 - x)} = \underline{\hspace{1cm}}$$

6.
$$\lim_{x \to 0} \frac{\sqrt{1 - x^2} - 1}{\arctan x \ln(1 - x)} = \frac{1}{x + x} \sin x + \frac{1}{x} \sin x + \frac{1}{x} \sin \frac{1}{x} = \frac{1}{x} \sin x + \frac{1}{x} \sin \frac{1}{x} = \frac{1}{x} \sin x + \frac{1}{x} \sin \frac{1}{x} = \frac{1}{x} \sin x + \frac{1}{x} \sin x + \frac{1}{x} \sin x + \frac{1}{x} \sin x = \frac$$

8.
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{\tan x} \right) = \underline{\qquad}$$

9.
$$\lim_{n \to +\infty} (1+2+3+\cdots+n)^{\frac{1}{n}} = ($$
). (A) 1 (B) 0 (C) 2 (D) $+\infty$

10.
$$\lim_{x\to 2} \frac{\ln(5-x^2)}{\sin(\pi x)} = ($$
). (A) 0 (B) $-\frac{4}{\pi}$ (C) e (D) $\frac{1}{2}$

三、极限的性质。有界性,保序性,子数列,极限与无穷小。

- 1. 下面命题中**错误**的是().
 - (A) 收敛数列必有界
- (B) 无界数列必发散
- (C) 无穷大数列必为无界数列
- (D) 无界数列必为无穷大数列

2. 关于数列
$$\left\{x_{n}\right\}_{n=1}^{+\infty}$$
,下列说法中**错误**的是()

- (A) 如果 $\{x_n\}_{n=1}^{+\infty}$ 收敛,则其所有子列均收敛
- (B) 如果 $\left\{x_{n}\right\}_{n=1}^{+\infty}$ 收敛,则其所有子列均有界

(C) 如果
$$\{x_n\}_{n=1}^{+\infty}$$
的子列 $\{x_{2k}\}_{k=1}^{+\infty}$ 和 $\{x_{2k+1}\}_{k=1}^{+\infty}$ 均收敛,则 $\{x_n\}_{n=1}^{+\infty}$ 收敛

(D) 如果
$$\{x_n\}_{n=1}^{+\infty}$$
的子列 $\{x_{2k}\}_{k=1}^{+\infty}$, $\{x_{2k+1}\}_{k=1}^{+\infty}$ 和 $\{x_{3k}\}_{k=1}^{+\infty}$ 均收敛,则 $\{x_n\}_{n=1}^{+\infty}$ 收敛

3. 设
$$\{a_n\}$$
, $\{b_n\}$, $\{c_n\}$ 均为非负数列,且

$$\lim_{n\to\infty}a_n=0$$
, $\lim_{n\to\infty}b_n=1$, $\lim_{n\to\infty}c_n=\infty$, 则必有()

(A) $a_n < b_n$ 对任意 n 成立

(B) $b_n < c_n$ 对任意 n 成立

(C) 极限 $\lim_{n\to\infty} a_n c_n$ 不存在

(D) 极限 $\lim_{n\to\infty} b_n c_n$ 不存在

- 4.若 $\lim_{x\to 0} \frac{\sin(6x) + xf(x)}{x^3} = 0$,则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为())
 - (A) 0
- (B) 6
- (C) 36
- $(D) \infty$
- 5.设 $\lim_{n\to\infty} a_n = a$,且 $a \neq 0$,则当 n 充分大时有()
 - (A) $\left|a_n\right| > \frac{\left|a\right|}{2}$
 - (B) $\left|a_n\right| < \frac{\left|a\right|}{2}$
 - (C) $|a_n| > a \frac{1}{n}$ (D) $|a_n| < a + \frac{1}{n}$

四.证明数列收敛。基本方法:单调有界原理,夹逼定理。

- 1. 设 $x_1 = 1, x_{n+1} = 2x_n + 1$,则关于数列 $\{x_n\}_{n=1}^{+\infty}$ 的说法**正确**的是()

 - (A) 极限为 -1 (B) 极限为 1 (C) 有界 (D) 发散

- 2. 设数列 $\{x_n\}$ 满足 $0 < x_1 < \pi$, $x_{n+1} = \sin x_n (n = 1, 2, \cdots)$.

证明 $\lim_{n\to\infty} x_n$ 存在,并求该极限;

- 3.设 $0 < x_1 < 3$, $x_{n+1} = \sqrt{x_n(3-x_n)} (n=1,2,\cdots)$,证明数列 $\{x_n\}$ 的极限存在,并求此极限.
- 五. 连续与间断的判别。

1.函数
$$f(x) = \frac{\left(e^{\frac{1}{x}} + e\right)\tan x}{x\left(e^{\frac{1}{x}} - e\right)}$$
 在 $\left[-\pi, \pi\right]$ 上的第一类间断点是 $x = ($)

- (A) 0 (B) 1 (C) $-\frac{\pi}{2}$ (D) $\frac{\pi}{2}$

2.设函数 $f(x) = \frac{\ln|x|}{|x-1|} \sin x$,则 f(x)有()

- (A) 1个可去间断点,1个跳跃间断点
- (B) 1个可去间断点,1个无穷间断点
- (C) 2个跳跃间断点

(D) 2 个无穷间断点

3.设
$$f(x) = \lim_{n \to \infty} \frac{(n-1)x}{nx^2 + 1}$$
,则 $f(x)$ 的间断点为 $x =$ ______.

4.设 f(x) 为不恒等于零的奇函数,且 f'(0) 存在,则函数 $g(x) = \frac{f(x)}{x}$ ()

(A) 在x=0处左极限不存在

(B) 有跳跃间断点x=0

(C) 在x = 0处右极限不存在

- (D) 有可去间断点x=0
- 5.设f(x)在 $(-\infty, +\infty)$ 内有定义,且 $\lim_{x\to\infty} f(x) = a$,

$$g(x) = \begin{cases} f\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

则()

- (A) x = 0 必是 g(x) 的第一类间断点
- (B) x = 0 必是 g(x) 的第二类间断点
- (C) x = 0 必是 g(x) 的连续点
- (D) g(x) 在点 x = 0 处的连续性与 a 的取值有关

6.函数
$$f(x) = \frac{|x|^x - 1}{x(x+1)\ln|x|}$$
 的可去间断点的个数为 ()

- (A) 0
- (B) 1
- (C) 2

(D) 3

六、导数的定义与几何应用,可导的必要条件和充要条件。

1. 函数 $f(x) = (x^2 - x - 2)|x^3 - x|$ 不可导点的个数是 ()

- (A) 3
- (B) 2

(C) 1

(D) 0

2.设函数 $f(x) = (e^x - 1)(e^{2x} - 2)\cdots(e^{nx} - n)$, 其中 n 为正整数,则 f'(0) = ()

- (A) $(-1)^{n-1}(n-1)!$ (B) $(-1)^n(n-1)!$

(C)
$$(-1)^{n-1}n!$$

(D)
$$(-1)^n n!$$

3.设函数 f(x) 在 x = 0 处可导,且 f(0) = 0 ,则 $\lim_{x \to 0} \frac{x^2 f(x) - 2 f(x^3)}{x^3} = ($)

(A)
$$-2f'(0)$$
 (B) $-f'(0)$ (C) $f'(0)$

(B)
$$-f'(0)$$

(C)
$$f'(0)$$

4.设周期函数 f(x) 在 $(-\infty, +\infty)$ 内可导,周期为4.又 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,则曲线

y = f(x) 在点(5, f(5)) 处的切线斜率为()

(A)
$$\frac{1}{2}$$

$$(C)$$
 -1

(B) 0 (C) -1 (D) -2

5.设函数 f(x) 在点 x = a 处可导,则函数 |f(x)| 在点 x = a 处不可导的充分条件是()

(A)
$$f(a) = 0 \perp f'(a) = 0$$

(B)
$$f(a) = 0 \perp f'(a) \neq 0$$

(C)
$$f(a) > 0 \perp f'(a) > 0$$

(D)
$$f(a) < 0 \perp f'(a) < 0$$

6.设函数 f(x) 在 x = 0 处连续,且 $\lim_{h \to 0} \frac{f(h^2)}{h^2} = 1$,则()

(A)
$$f(0) = 0$$
且 $f'(0)$ 存在

(B)
$$f(0) = 1 且 f'_{-}(0)$$
 存在

(C)
$$f(0) = 0 \perp f'_{+}(0)$$
存在

(D)
$$f(0) = 1 且 f'(0)$$
存在

7. 对数螺线 $\rho = e^{\theta}$ 在点 $(\rho, \theta) = \left(e^{\frac{\pi}{2}}, \frac{\pi}{2}\right)$ 处切线的直角坐标方程为______.

8. 曲线 $y = \ln x$ 上与直线 x + y = 1 垂直的切线方程为______

9. 曲线 $\sin(xy) + \ln(y-x) = x$ 在点 (0,1) 处的切线方程为_____.

10.曲线 $\begin{cases} x = e^t \sin 2t \\ y = e^t \cos t \end{cases}$ 在点 (0,1) 处的法线方程为_____.

11.设函数 y = f(x) 由方程 $y - x = e^{x(1-y)}$ 确定,则 $\lim_{n \to \infty} n \left| f\left(\frac{1}{n}\right) - 1 \right| = _____.$

12. 设曲线 y = f(x) 与 $y = x^2 - x$ 在点 (1,0) 处有公共切线,则 $\lim_{n \to \infty} nf\left(\frac{n}{n+2}\right) =$

13. 设函数 f(x) 在 x=0 处连续,下列命题**错误**的是()

(A) 若
$$\lim_{x \to 0} \frac{f(x)}{x}$$
 存在,则 $f(0) = 0$

(A) 若
$$\lim_{x\to 0} \frac{f(x)}{r}$$
 存在,则 $f(0) = 0$ (B) 若 $\lim_{x\to 0} \frac{f(x)}{r}$ 存在,则 $f'(0)$ 存在

(C) 若
$$\lim_{x\to 0} \frac{f(x) - f(-x)}{x}$$
 存在,则 $f'(0)$ 存在 (D) 若 $\lim_{x\to 0} \frac{f(x) + f(-x)}{x}$ 存在,则 $f(0) = 0$

七. (高阶)导数的计算。

1 设
$$\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases}$$
, 则
$$\frac{d^2 y}{dx^2} \Big|_{t = \frac{\pi}{4}} = \underline{\qquad}$$

2.设
$$y = y(x)$$
 是方程 $xy + e^y = x + 1$ 确定的隐函数,则 $\frac{d^2y}{dx^2}\Big|_{x=0} =$ _______.

3. 函数
$$y = x^2 \sin(x^3)$$
 在 $x = 0$ 点的 4 阶导数值 $y^{(4)}(0) = ($)

4.设函数
$$y = \frac{1}{2x+3}$$
,则 $y^{(n)}(0) = _____.$

5.函数
$$f(x) = x^2 \cdot 2^x$$
 在 $x = 0$ 处的 n 阶导数 $f^{(n)}(0) = ______$

6. 设函数
$$f(x)$$
 在 $x=2$ 的某邻域内可导,且 $f'(x)=e^{f(x)}$, $f(2)=1$,则 $f'''(2)=$

8. 设 f(x) 单调且可导,其反函数为 g(x) , f(1)=2 , f'(1)=-1 , f''(1)=1 则 g''(2)=(

八. 微分的定义与计算。

1. 函数 $y = \arcsin(\ln x)$ 在 x = 1 点的微分 $dy|_{x=1} = ($)

(A) 1 (B)
$$2 dx$$
 (C) 0 (D) dx

2.设函数 y = y(x) 由方程 $2^{xy} = x + y$ 所确定,则 $dy \Big|_{y=0} = _____$

3.设函数 f(u) 可导, $v = f(x^2)$.当自变量 x 在 x = -1 处取得增量 $\Delta x = -0.1$ 时,相应的函 数增量 Δy 的线性主部为 0.1,则 f'(1) = ()

$$(A) -1$$

九、已知极限、连续、可导求参数。

1.已知函数
$$f(x) = \begin{cases} (\cos x)^{x^{-2}}, x \neq 0 \\ a, x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ ______.

2.若
$$\lim_{x\to 0} \frac{\sin x}{e^x - a} (\cos x - b) = 5$$
,则 $a =$ ______, $b =$ ______.

3.设函数
$$f(x) = \begin{cases} x^2 + 1, |x| \le c \\ \frac{2}{|x|}, |x| > c \end{cases}$$
 在 $(-\infty, +\infty)$ 内连续,则 $c =$ ______.

4.设函数
$$f(x) = \frac{x}{a + e^{bx}}$$
 在 $(-\infty, +\infty)$ 内连续,且 $\lim_{x \to -\infty} f(x) = 0$,则常数 a, b 满足()

(A)
$$a < 0$$
, $b < 0$

(B)
$$a > 0$$
, $b > 0$

(C)
$$a \le 0$$
, $b > 0$ (D) $a \ge 0$, $b < 0$

(D)
$$a \ge 0$$
, $b < 0$

5. 若
$$\lim_{x\to 0} \left[\frac{1}{x} - \left(\frac{1}{x} - a \right) e^x \right] = 1$$
,则常数 a 等于_____.

6.设
$$f(x) = \begin{cases} x^{\lambda} \cos \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 ,其导函数在 $x = 0$ 处连续,则 λ 的取值范围是

7. 已知
$$f(x) = \begin{cases} \frac{\ln(1+x)}{x}, & x < 0 \\ a+x, & x \ge 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 上连续,则常数 $a = ($)

- 8. $\[\psi f(x) = \begin{cases} x^2, & x \le 1 \\ ax + b, & x > 1 \end{cases} \]$ $\[ext{$t$} = 1 \]$ $\[ext{$t$} = 1 \]$ $\[ext{$t$} = 0 \]$
 - (A) 2 (B) 0 (C) 1 (D) -1
- 十. 无穷小比阶及其反问题, 无穷大与无界。
- 1.若 $x \to 0$ 时, $(1-ax^2)^{\frac{1}{4}} 1$ 与 $x \sin x$ 是等价无穷小,则 a =______.
- 2. 当 $x \to 0$ 时, $\alpha(x) = kx^2$ 与 $\beta(x) = \sqrt{1 + x \arcsin x} \sqrt{\cos x}$ 是等价无穷小量,则 k = x
- 3. 当 $x \to 0^+$ 时,与 \sqrt{x} 等价的无穷小量是())
 - (A) $1 e^{\sqrt{x}}$ (B) $\ln \frac{1+x}{1-\sqrt{x}}$ (C) $\sqrt{1+\sqrt{x}}-1$ (D) $1-\cos \sqrt{x}$
- 4.设当 $x \to 0$ 时, $(1-\cos x)\ln(1+x^2)$ 是比 $x\sin x^n$ 高阶的无穷小,而 $x\sin x^n$ 是比 $(e^{x^2}-1)$ 高阶的无穷小,则正整数n等于()
 - (A) 1
- (B) 2 (C) 3
- (D) 4
- 5.设 $\cos x 1 = x \sin \alpha(x)$, 其中 $|\alpha(x)| < \frac{\pi}{2}$, 则当 $x \to 0$ 时, $\alpha(x)$ 是()
 - (A) 比x 高阶的无穷小

- (B) 比x低阶的无穷小
- (C) 与x 同阶但不等价的无穷小 (D) 与x 等价的无穷小
- 6.当 $x \to 0^+$ 时,若 $\ln^{\alpha}(1+2x)$, $(1-\cos x)^{\frac{1}{\alpha}}$ 均是比 x 高阶的无穷小,则 α 的取值范围是
 - (A) $(2,+\infty)$ (B) (1,2) (C) $(\frac{1}{2},1)$ (D) $(0,\frac{1}{2})$
- 7.设 $\alpha_1 = x(\cos\sqrt{x} 1)$, $\alpha_2 = \sqrt{x}\ln(1 + \sqrt[3]{x})$, $\alpha_3 = \sqrt[3]{x + 1} 1$. 当 $x \to 0^+$ 时,以上 3 个无 穷小量按照从低阶到高阶的排序是()

- (A) $\alpha_1, \alpha_2, \alpha_3$
- (B) $\alpha_2, \alpha_3, \alpha_1$
- (C) $\alpha_2, \alpha_1, \alpha_3$
- (D) $\alpha_3, \alpha_2, \alpha_1$

8.当 $x \to 0$ 时,用o(x)表示比x高阶的无穷小量,则下列式子中错误的是()

(A) $x \cdot o(x^2) = o(x^3)$

(B) $o(x) \cdot o(x^2) = o(x^3)$

- (C) $o(x^2) + o(x^2) = o(x^2)$
- (D) $o(x) + o(x^2) = o(x^2)$
- 9. 设 $f(x) = \cos x + e^{2x} 2$, 则当 $x \to 0$ 时,有().

 - (A) f(x) 与 x 是等价无穷小 (B) f(x) 与 x 同阶但非等价无穷小
 - (C) f(x) 是比 x 高阶的无穷小 (D) f(x) 是比 x 低阶的无穷小

10.
$$\pm x \to 0$$
 时, $f(x) = \frac{1}{x^2} \cos \frac{1}{x^2}$ 是 ()

- (A) 无穷小量 (B) 无穷大量 (C) 有界但非无穷小量 (D) 无界但非无穷大量

十一、闭区间上连续函数的性质。有界性定理,最值定理,零点定理,介值定理。

1.设函数 f(x) 在区间[0,1]上连续,在(0,1) 内可导,且f(0) = f(1) = 0, $f\left(\frac{1}{2}\right) = 1$.

试证: 存在 $\eta \in \left(\frac{1}{2},1\right)$, 使 $f(\eta) = \eta$;

- 2. (I) 证明: 方程 $x^n + x^{n-1} + \dots + x = 1$ (n 为大于 1 的整数) 在区间 $\left(\frac{1}{2}, 1\right)$ 内有且仅有一 个实根;
 - (II) 记(I) 中的实根为 x_n , 证明 $\lim_{n\to\infty} x_n$ 存在,并求此极限.