PQuestion 1

- 1) Π ename (π ename ($E \bowtie \sigma$ mgr_eid P) $\bowtie \sigma$ ename E)
- 2) Π ename (E \bowtie W \bowtie (σ pname \iff 'Database' P))
- 3) P (P1, π ename (E \bowtie W \bowtie (σ pname = 'Database' P)) P (P2, π ename (E \bowtie W \bowtie (σ pname = 'DataMining' P)) Π ename(P1 intersect P2)
- 4) P P1_id->mgr_id(P1, P)Π ename (E ⋈ (Σ mgr_id = P1_id (P X P1)))
- 5) Π pname (P \bowtie ((π eid, pid W) / E))

Question 2

LAB

1)

Σct E.emp_no

from employees E, titles T, dept_emp DE, departments D
where E.emp_no = T.emp_no AND E.emp_no = DE.emp_no
AND DE.dept_no = D.dept_no AND D.dept_name = 'Research'
AND T.title = 'Manager';

2)

```
Σct DISTINCT E.emp_no
from employees E, dept_emp DE, departments D
where E.emp_no = DE.emp_no AND DE.dept_no = D.dept_no
AND E.first_name = 'Laurentiu' AND D.dept_name <> 'Development'
UNION
Σct E.emp_no
from employees E, dept_emp DE, departments D
where E.emp_no = DE.emp_no AND DE.dept_no = D.dept_no
AND E.last_name = 'Cesareni' AND D.dept_name <> 'Research';
3)
Σct DISTINCT E.first_name
From employees E, dept_manager DM, departments D
where E.emp_no = DM.emp_no AND DM.dept_no = D.dept_no
AND D.dept_name = 'Sales';
4)
Σct D.dept_no, count (*)
from employees E, dept_emp DE, departments D
where E.emp_no = DE.emp_no AND DE.dept_no = D.dept_no
group by D.dept_no
having count(*) > 1;
5)
Σct E.first_name
from employees E, salaries S
```

where E.emp_no = S.emp_no AND S.salary IN

(Σct max (S2.salary)

from employees E2, dept_emp DE, departments D, salaries S2
where E2.emp_no = DE.emp_no AND DE.dept_no = D.dept_no
AND S2.emp_no = E2.emp_no AND D.dept_name = 'Sales');