Portails Math-Info/Math-Physique L1 S1

Exercice 1. a) Calculer les dérivées des fonctions suivantes. Préciser l'ensemble de définition de chaque fonction dérivée.

Corrigé du CC2

i)
$$f: x \mapsto e^{\sin x}$$
 ii) $g: x \mapsto \frac{x^2}{x+1}$

i) f est définie et dérivable sur \mathbb{R} :

$$\forall x \in \mathbb{R}, \ f'(x) = \sin'(x) e^{\sin x} = \cos(x) e^{\sin x}$$

ii) g est dérivable en tout point de son ensemble de définition, c'est-à-dire $\mathbb{R}\setminus\{-1\}$; en posant $u(x)=x^2$ et v(x)=x+1,

$$\forall x \in \mathbb{R} \setminus \{-1\}, \ v'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{2x(x+1) - x^2}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2}.$$

b) En déduire $\lim_{x \to \pi/2} \frac{e^{\sin x} - e}{x - \frac{\pi}{2}}$

On a $f(\pi/2) = e^{\sin(\pi/2)} = e$, car $\sin(\pi/2) = 1$. Donc

$$\frac{e^{\sin x} - e}{x - \frac{\pi}{2}} = \frac{f(x) - f(\pi/2)}{x - \frac{\pi}{2}}$$

est le taux de variation de f entre $\pi/2$ et x. On a donc

$$\lim_{x \to \pi/2} \frac{e^{\sin x} - e}{x - \frac{\pi}{2}} = f'(\pi/2) = \cos(\pi/2) e^{\sin(\pi/2)} = 0 , \quad \text{car } \cos(\pi/2) = 0.$$

Exercice 2. On définit sur $]0, +\infty[$ la fonction $u: x \mapsto \sqrt{x} \ln(x)$ On rappelle que x_0 est un point critique de u si $u'(x_0) = 0$.

a) Calculer u'(x) (pour x > 0) et déterminer le(s) point(s) critique(s) de u.

Les fonctions ln et racine carrée étant dérivables sur $]0, +\infty[$, u est dérivable sur $]0, +\infty[$ et

$$\forall x \in]0, +\infty[, u'(x) = \frac{\ln(x)}{2\sqrt{x}} + \frac{\sqrt{x}}{x} = \frac{\ln(x)}{2\sqrt{x}} + \frac{1}{\sqrt{x}} = \frac{\ln(x) + 2}{2\sqrt{x}}$$

On a

$$f'(x) = 0 \iff \ln(x) + 2 = 0 \iff \ln(x) = -2 \iff x = e^{-2}$$
.

f a un unique point critique, qui est e^{-2} .

b) Déterminer la limite de u en $+\infty$.

$$\lim_{x \to +\infty} \sqrt{x} = +\infty \text{ et } \lim_{x \to +\infty} \ln x = +\infty \text{ donc } \lim_{x \to +\infty} f(x) = +\infty.$$

c) On admet que u admet pour limite 0 en 0 (à droite). Dresser le tableau de variation de u.

D'après a), u'(x) a même signe que $\ln(x) + 2$, c'est-à-dire : u'(x) < 0 si $0 < x < e^{-2}$, $u'(e^{-2}) = 0$ et u'(x) > 0 si $x > e^{-2}$. D'où le tableau de variation suivant, où on a calculé $u(e^{-2}) = \sqrt{e^{-2}} \ln(e^{-2}) = -2e^{-1}$

x	0		e^{-2}		$+\infty$
u'(x)		_	0	+	
	0				$+\infty$
u(x)		V		7	
			$-2e^{-1}$		

d) Trouver une condition nécessaire et suffisante sur le nombre réel m pour que l'équation (d'inconnue x) $\sqrt{x} \ln(x) = m$ ait au moins une solution dans $]0, +\infty[$.

D'après le tableau de variation de u, on a $u(x) \geq -2e^{-1}$ pout tout $x \in]0,+\infty[$. Donc l'inégalité $m \geq -2e^{-1}$ est une condition nécessaire pour que l'équation u(x) = m ait une solution. C'est aussi une condition suffisante. En effet, u étant continue et vérifiant $u(e^{-2}) = -2e^{-1}$ et $\lim_{x \to +\infty} u(x) = +\infty$, l'équation u(x) = m admet (au moins) une solution pour tout réel $m \geq -2e^{-1}$ (c'est une conséquence du théorème des valeurs intermédiaires).

Exercice 3. a) Résoudre l'équation $4^x = 3^{x+2}$.

On a, pour $x \in \mathbb{R}$,

$$4^{x} = 3^{x+2} \iff e^{x \ln(4)} = e^{(x+2) \ln(3)}$$

$$\iff x \ln(4) = (x+2) \ln(3)$$

$$\iff x \ln(4) = x \ln(3) + 2 \ln(3)$$

$$\iff x = \frac{2 \ln(3)}{\ln(4) - \ln(3)}$$

L'équation $4^x = 3^{x+2}$ a une unique solution, qui est $\frac{2\ln(3)}{\ln(4/3)}$.

b) Résoudre l'inéquation $2e^{3x} \le 3e^{2x}$

On a, pour $x \in \mathbb{R}$,

$$2e^{3x} \le 3e^{2x} \iff \frac{2e^{3x}}{2e^{2x}} \le \frac{3e^{2x}}{2e^{2x}} \quad \text{car } 2e^{2x} > 0$$

$$\iff e^x \le \frac{3}{2}$$

$$\iff x \le \ln(3/2),$$

car la fonction ln est strictement croissante sur $]0, +\infty[$. L'ensemble des solutions de l'inéquation $2e^{3x} \le 3e^{2x}$ est donc l'intervalle $]-\infty, \ln(3/2)]$.

Exercice 4. a) Calculer la dérivée et la dérivée seconde de la fonction

$$v: x \mapsto \cos(2x) - \cos(x)$$
.

v est indéfiniment dérivable sur \mathbb{R} et

$$v'(x) = -2\sin(2x) + \sin(x)$$
, $v''(x) = -4\cos(2x) + \cos(x)$.

b) Ecrire la formule de Taylor-Young en 0 à l'ordre 2 pour la fonction v.

La formule de Taylor-Young en 0 à l'ordre 2 pour la fonction v est

$$v(x) = v(0) + v'(0)x + \frac{v''(0)}{2}x^2 + x^2\epsilon(x)$$
 avec $\lim_{x\to 0} \epsilon(x) = 0$.

On a $v(0) = \cos(0) - \cos(0) = 0$; $v'(0) = -2\sin(0) + \sin(0) = 0$ car $\sin(0) = 0$; $v''(0) = -4\cos(0) + \cos(0) = -3$ car $\cos(0) = 1$. D'où

$$v(x) = -\frac{3}{2}x^2 + x^2\epsilon(x)$$
 avec $\lim_{x\to 0} \epsilon(x) = 0$.

c) En déduire $\lim_{x\to 0} \frac{v(x)}{x^2}$.

D'après b), pour $x \in \mathbb{R}^*$,

$$\frac{v(x)}{x^2} = \frac{-\frac{3}{2}x^2 + x^2\epsilon(x)}{x^2} = -\frac{3}{2} + \epsilon(x).$$

$$\lim_{x\to 0} \epsilon(x) = 0 \text{ donc } \lim_{x\to 0} \frac{v(x)}{x^2} = -\frac{3}{2}.$$