UAV Workload Characterization and Analysis

Sam Jijina¹

Hyesoon Kim¹

School of Computer Science [1]

Motivation

- Increasing use cases of drones from surveying land to emergency services and national security
- Open-source flight stack to promote innovation through collaboration
- Characterizing underlying architecture and workloads to achieve high reliability, safety, and performance

UAV Systems

- Micro Air Vehicle Link (MAVLink)
- Data packet protocol for standardized communication between drones
- DroneKit API
- Python and C++
 APIs to issue flight
 commands easily

Flight Methodology

- Software in the Loop (SITL)
- Hardware in the Loop (HITL)
- Microsoft AirSim for HITL simulation
- Open-source
- Provides environment simulation (neighborhood, city)

UAV Control Mechanism

- Real Time Operating System (RTOS)
- Linux with PREEMPT_RT patch

Inner-Loop Control	Outer-Loop Control		
Wind gusts Local disturbance Atmospheric turbulences In-door & close-to-object Propeller flapping Translational lift/thrust Absolute speed Weight imbalance Motor imperfection Angle of attack Flight time ESCs management	Position target Attitude target Velocity target Navigation & trajectory Obstacle Detection* Planning SLAM* LiDAR Mapping Sonar Mapping Od Some implementations are across inner and outer loops		

Hardware	os	Flight Code	Communication
Sensors Sensors Sensors Sensors Sensors Sensors Maries Magnetometer Sensors Magnetometer Sensors Magnetometer Sensors Magnetom	Linux BusyBox ROS Chibi OS FlytBase	Hardware Abstraction Layer (HAL) Shared Libraries (EKF, Sensors) Control and Data Acquisition Code American Specific Flight Code	API

Performance Metric Measurements

(a) ArduCopter with SLAM dTLBand iTLB misses normalized to only execute ArduCopter. (b) LLC and branch prediction miss rates for ArduCopter, ArduCopter with SLAM, and SLAM.(c) IPC for ArduCopter, ArduCopter with SLAM, and SLAM.

Platform	RPi	TX2	FPGA	ASIC
SLAM Speedup	1x	2.16x	30.70x	23.53x
Power Overhead (W)	2	10	0.417	0.024
Weight Overhead (g)	≈50	≈85	≈75	≈20
Integration Cost	Low	Low	Medium	High
Fabrication Cost	Low	Low	Medium	High
Gained Flight Small Drones	0	≈-4	≈2-3	≈2.2-3.2
Time (min) † Large Drones	0	≈-1.5	≈1	≈1

Workloads To Investigate

- Sensor Dependent
- Closed Feedback Loop
- Communication
- SAR
- Flight Planning
- ML and CV

Further characterization of these workloads can help better architect hardware to support these applications.

Future Work

- · Simulations w/ Microsoft AirSim
- Offloading SLAM tasks to FPGA
- Sensor processing delay experiments
- Compute vs Communication Evaluation

