

Multiplicative Cipher

- While using Caesar cipher technique, encrypting and decrypting symbols involves converting the values into numbers with a simple basic procedure of addition or subtraction.
- If multiplication is used to convert to cipher text, it is called a wraparound situation. Consider the letters and the associated numbers to be used as shown below.

$$C = E(P) = (P * K) \mod n$$
 قانون (لتشفير $P = D(C) = (C * k^{-1}) \mod n$ قانون فك (لتشفير فك التشفير قانون فك التشفير والتشفير قانون فك التشفير والتشفير والتسفير والتش

Note: The Greatest Common Divisor (GCD) between the key and *n* should equal 1.

Example: Decrypt the Ciphertext "GKSXKP" using multiplicative cipher with key=9 """ n=26

<u>Sol)...</u>.

K	1	3	5	7	9	11	15	17	19	21	23	25
K^{-1}	1	9	21	15	3	19	7	23	11	5	17	25

Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Alphabet	а	b	С	d	е	f	g	h	i	j	k	1	m	n	О	р	q	г	s	t	u	v	w	x	У	z

GKSXKP

Ciphertext	Decryption p=(c×k ⁻¹)mod26	plaintext
G=6	C=(6×3)mod26	18=S
K=10	C=(10×3)mod26	4=E
S=18	C=(18×3)mod26	2=C
X=23	C=(23×3)mod26	17=R
K=10	C=(10×3)mod26	4=E
P=15	C=(15×3)mod26	19=T
		SECRET

Decryption using Multiplicative Cipher

```
def decrypt(cipher):
    result = ''
    for c in cipher:
        if (c != ' '):
            if (c.isupper()):
                # Encrypt uppercase characters
                s = chr((ord(c) - 65) * 3) % 26 + 65)
            else:
                # Encrypt lowercase characters
                s = chr((ord(c) - 97) * 3) % 26 + 97)
        else:
        result += s
    return result
```

```
message = "Gksxkp"
plaintext = decrypt(message)
print("The decrypted text is: " + plaintext)
```

Output:

The decrypted text is: Secret

Affine Cipher

• Affine Cipher is the combination of Multiplicative Cipher and Caesar Cipher algorithm. The basic implementation of affine cipher is as shown in the image below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ABCDEFGHIJKL MNOPQRSTUVWXYZ

Affine Cipher

Encrypt the message "Go" using affine cipher given the key (7:a, 2:b). $C = (ax + b) \mod 26$

$$E(G) = 44 \mod 26 = 18 -> S$$

 $E(O) = 100 \mod 26 = 22 -> W$

Go -> SW

Encryption using Affine Cipher

```
k1 = 7
k2 = 2
plaintext = "hello world"
result = ''
for c in plaintext:
    if (c != ' '):
        if (c.isupper()):
            # Encrypt uppercase characters
            s = chr(((ord(c) - 65) * k1) + k2) % 26 + 65)
        else:
            # Encrypt lowercase characters
            s = chr(((ord(c) - 97) * k1) + k2) % 26 + 97)
    else:
    result += s
                                         Output:
print(result)
                                               zebbw awrbx
```

Decryption using Affine Cipher

```
k1 = 15
k2 = 2
ciphertext = "zebbw awrbx"
result = ''
for c in ciphertext:
    if (c != ' '):
        if (c.isupper()):
            # Encrypt uppercase characters
            s = chr(((ord(c) - 65) - k2) * k1) % 26 + 65)
        else:
            # Encrypt lowercase characters
            s = chr(((ord(c) - 97) - k2) * k1) % 26 + 97)
    else:
    result += s
                                         Output:
print(result)
                                               hello world
```

