Part C: Finding Acceleration Using Newton's Second Law

C.1. A car moves forward due to a thrust of 2000 N. Air resistance pushes back on the car with a force of 200 N. The car has a mass of 1000 kg.
a) Draw a free-body diagram of the car:

b) What is the net force on the car?

c) What is the acceleration of the car?

0)	c) what is the acceleration of the car.				
Looking For	Formula				
Already Know		•			
Answer as equation <i>with unit</i> :					
_					

C.2. A man is falling due to his weight of 700 N down. He is resisted by an air resistance force of 200 N up. He has a mass of 71 kg.

- a) Draw a Free-Body Diagram of the man:
- b) What is the net force on the man?

c) What is his acceleration?

Looking For	Formula
Almo des Vances	
Already Know	
Answer as equation with unit:	
7 mswer as equation with unit.	

C.3. An elephant on roller skates is rolling down a hill. The elephant has a mass of 2,700 kg
A downward force (caused by gravity) of 18900 N pulls him down the track. A frictional
force of 7500 N resists his motion.

- a) Draw a Free-Body Diagram of the elephant:
- b) What is the net force on the elephant?

c) What is its acceleration?

Looking For	Formula	
Already Know		
Answer as equation with unit:		

C.4. Three people are pulling on a big, 50 kg barrel.

Jim is pulling 400 N to the right.

Joe is pulling 400 N to the right.

Hector is pulling 1000 N to the left.

- a) Draw a Free-Body Diagram of the barrel:
- b) What is the net force on the barrel?

c) What is its acceleration?

c) what is its acceleration:		
Looking For	Formula	
Already Know		
· · · · · · · · · · · · · · · · · · ·		
Answer as equation with unit:		

C.1

1.8 m/s² FORWARD

C.2

7.04 m/s² DOWN

C.3

4.2 m/s² DOWN THE TRACK

C.

4 m/s² LEFT