ENUNȚURI ȘI REZOLVĂRI 2011

1. În S.I. lucrul mecanic se măsoară în:

a)
$$kg \cdot \frac{m}{s^2}$$
; b) W; c) $kg \cdot \frac{m}{s}$; d) $\frac{N}{m}$; e) J; f) kWh.

Rezolvare

Din relația de definiție a lucrului mecanic obținem

$$[L]_{SI} = [F]_{SI} \cdot [d]_{SI} = N \cdot m = J$$

2. Un ciclu format din două izocore de volume V_1 și $V_2 = e^2V_1$ (e este baza logaritmilor naturali) și două izoterme de temperaturi $T_1 = 400\,\mathrm{K}$ și $T_2 = 300\,\mathrm{K}$, este parcurs de un gaz ideal a cărui căldură molară la volum constant este $C_V = \frac{5}{2}R$, unde R este constanta gazelor ideale. Randamentul unei mașini termice care funcționează după acest ciclu este:

a)
$$\frac{2}{13}$$
; b) $\frac{5}{17}$; c) $\frac{8}{21}$; d) $\frac{4}{13}$; e) $\frac{2}{21}$; f) $\frac{4}{21}$.

Rezolvare

Randamentul mașinii termice este $\eta = 1 - \frac{|Q_c|}{Q_p}$, unde $Q_c = Q_{34} + Q_{41}$, respectiv $Q_p = Q_{12} + Q_{23}$.

Astfel:
$$|Q_c| = \upsilon C_V (T_1 - T_2) + \upsilon R T_2 \ln \frac{V_2}{V_1}$$
 iar $Q_p = \upsilon C_V (T_1 - T_2) + \upsilon R T_1 \ln \frac{V_2}{V_1}$.

Calculând
$$\ln \frac{V_2}{V_1} = 2$$
 rezultă $\eta = \frac{4}{21}$.

3. Două corpuri având masele egale cu 200 g sunt legate cu un fir trecut peste un scripete fix. Forța care acționează asupra scripetelui este ($g = 10 \frac{\text{m}}{\text{s}^2}$):

Rezolvare

Reacțiunea R în scripete este R = 2T iar T = G.

Rezultă
$$R = 2mg = 4 \text{ N}$$
.

4. O cantitate de gaz ideal se încălzește la volum constant până când temperatura sa crește cu 120 K iar presiunea cu 30% față de presiunea inițială. Temperatura inițială a gazului este:

1

Rezolvare

Introducând datele problemei în legea transformării izocore, $\frac{p_i}{T_i} = \frac{p_f}{T_f}$, obținem: $\frac{p_i}{T_i} = \frac{p_i + 0.3p_i}{T_i + 120}$.

Rezultă $T_i = 400 \,\mathrm{K}$.

- **5.** Raportul dintre presiunea și densitatea unei cantități de gaz ideal este constant în transformarea:
 - a) izotermă; b) izobară; c) adiabatică; d) generală; e) ireversibilă; f) izocoră.

Rezolvare

Deoarece $V = \frac{m}{\rho}$, din ecuația termică de stare a gazului ideal, $pV = \upsilon RT$, se obține raportul dintre presiune și densitate: $\frac{p}{\rho} = \frac{\upsilon RT}{m}$. Pentru o cantitate dată de gaz acest raport este constant în transformarea izotermă ($T = \mathrm{const.}$).

- **6.** Un corp este aruncat pe verticală de jos în sus cu viteza inițială $v_0 = 20 \frac{\text{m}}{\text{s}}$. Înălțimea maximă la care ajunge corpul este ($g = 10 \frac{\text{m}}{\text{s}^2}$):
 - a) 10 m; b) 15 m; c) 20 m; d) 16 m; e) 5 m; f) 12 m.

Rezolvare

Neglijând frecarea cu aerul, din legea de conservare a energiei mecanice, $E_{ci}+E_{pi}=E_{cf}+E_{pf}$, obținem: $\frac{mv_0^2}{2}=mgh_{\max}$. Rezultă $h_{\max}=20\,\mathrm{m}$.

- 7. Pentru funcționare normală un bec cu puterea de 2 W trebuie alimentat la o tensiune de 6 V. Rezistența becului este egală cu:
 - a) 15Ω ; b) 18Ω ; c) 9.8Ω ; d) 20Ω ; e) 2Ω ; f) 10Ω .

Rezolvare

Din relația de definiție a puterii electrice, $P = \frac{U^2}{R}$, obținem $R = 18 \Omega$.

- **8.** Un ampermetru poate măsura un curent electric continuu de intensitate maximă egală cu 2 A. Legând la bornele acestuia un șunt având rezistența de 20 de ori mai mică decât rezistența internă a ampermetrului, curentul maxim ce poate fi măsurat este:
 - a) 20 A; b) 42 A; c) 40 A; d) 21 A; e) 19 A; f) 10 A.

Rezolvare

Tensiunea maximă suportată la borne de ampermetru (având rezistența internă R_A) este $U=I_{\max}R_A=2R_A$.

Întrucât șuntul se leagă în paralel cu ampermetrul, tensiunea la bornele lui este aceeași dar curentul care îl străbate este de 20 de ori mai mare:

$$I_S = \frac{U}{R_S} = \frac{U}{R_A/20} = 20 \frac{U}{R_A} = 40 \text{ A}.$$

Ca urmare, intensitatea curentului maxim ce poate fi măsurat de ampermetrul prevăzut cu şunt este $I = I_{\text{max}} + I_S = 42 \text{ A}.$

- 9. Se cunoaște că sub acțiunea unei forțe $F = 221\,\mathrm{N}$ un fir de cupru (cu modulul de elasticitate $E = 13 \cdot 10^{10} \, \frac{\mathrm{N}}{\mathrm{m}^2}$) se alungește cu $\Delta l = 0.15\,\mathrm{m}$. Cunoscând rezistivitatea cuprului $\rho = 1.7 \cdot 10^{-8}\,\Omega \cdot \mathrm{m}$, rezistența electrică a firului este:
 - a) 15Ω ; b) 0.1Ω ; c) 1Ω ; d) 0.3Ω ; e) 2Ω ; f) 1.5Ω .

Rezolvare

Rezistența electrică a unui conductor depinde de natura și dimensiunile sale conform relației $R = \rho \frac{l}{S}$.

Din legea lui Hooke, $\frac{F}{S} = E \frac{\Delta l}{l}$, rezultă raportul între lungimea și secțiunea transversală a conductorului: $\frac{l}{S} = E \frac{\Delta l}{F}$. Astfel, rezistența conductorului este:

$$R = \rho E \frac{\Delta l}{F} = 1,5 \Omega.$$

- 10. Căderea de tensiune pe rezistența internă a unei surse electrice conectate la un rezistor extern este de 1 V, iar randamentul circuitului este egal cu 0,8. Tensiunea electromotoare a sursei este:
 - a) 1,25 V; b) 2,25 V; c) 5 V; d) 9 V; e) 1,8 V; f) 4 V.

Rezolvare

Din relația randamentului unui circuit electric, $\eta = \frac{P_u}{P_c} = \frac{UI}{EI}$, exprimat în funcție de tensiunea electromotoare E a sursei și căderea de tensiune u pe rezistența sa internă, $\eta = 1 - \frac{u}{E}$, rezultă: $E = 5 \, \text{V}$.

11. Căldura degajată la trecerea unui curent electric de intensitate I printr-un conductor având rezistența R în timpul Δt este:

a)
$$RI\Delta t^2$$
; b) $\frac{R^2\Delta t}{I}$; c) $IR^2\Delta t$; d) $RI\Delta t$; e) $\frac{I^2\Delta t}{R}$; f) $RI^2\Delta t$.

Rezolvare

Expresia matematică a legii lui Joule este:

$$Q = RI^2 \Delta t .$$

- **12.** Printr-un fir conductor trece un curent de 0,5 mA timp de 2 h. În acest timp prin fir trece o sarcină electrică egală cu:
 - a) 25 C; b) 100 mA; c) 100 C; d) 3,6 C; e) 100 mC; f) 25 mC.

Rezolvare

Din relația de definiție a intensității curentului electric, $I = \frac{q}{\Delta t}$, obținem: q = 3.6 C.

- 13. Două corpuri având masele $m_1 = 0.5 \,\mathrm{kg}$ şi $m_2 = 2 \,\mathrm{kg}$ se află pe un plan înclinat de unghi $\alpha = \frac{\pi}{6}$. Cele două corpuri sunt în contact unul cu celalalt, corpul de masă m_1 aflându-se mai jos. Coeficienții de frecare cu planul ai corpurilor sunt respectiv $\mu_1 = 0.3$ şi $\mu_2 = 0.2$. Cunoscând $g = 10 \, \frac{\mathrm{m}}{\mathrm{s}^2}$, forța pe care corpul de masă m_2 o exercită asupra corpului de masă m_1 în timpul coborârii pe plan este:
 - a) $\sqrt{3}$ N; b) 0,2 N; c) 0,5 $\sqrt{3}$ N; d) 2 N; e) 0,2 $\sqrt{3}$ N; f) 1,4 N.

Rezolvare

Ecuațiile de mișcare a celor două corpuri în contact care coboară cu accelerația a pe planul înclinat sunt:

$$m_1 a = m_1 g \left(\sin \alpha - \mu_1 \cos \alpha \right) + T$$

$$m_2 a = m_2 g \left(\sin \alpha - \mu_2 \cos \alpha \right) - T$$

unde T este forța de interacțiune dintre corpuri (forța cu care corpul de masă m_2 îl împinge pe cel de masă m_1 , dar și forța, egală și de sens contrar, cu care reacționează corpul de masă m_1).

Rezolvând sistemul de două ecuații obținem:

$$T = g \frac{m_1 m_2}{m_1 + m_2} (\mu_1 - \mu_2) \cos \alpha = 0, 2\sqrt{3} \text{ N}.$$

- **14.** Un autoturism având puterea motorului de 75 kW se deplasează cu o viteză constantă de 180 km/h. Forța de rezistență la înaintare este egală cu ($g = 10 \text{ m/s}^2$):
 - a) 3000 N; b) 15000 N; c) 750 N; d) 1500 N; e) 2000 N; f) 150 N.

Rezolvare

În cazul deplasării cu viteză constantă, forța de rezistență la înaintare este egală cu forța dezvoltată de motorul autoturismului. Astfel,

$$F_r = \frac{P}{v} = 1500 \text{ N}.$$

15. În SI unitatea de măsură pentru exponentul adiabatic este:

a)
$$\frac{J}{\text{mol} \cdot K}$$
; b) $\frac{J}{K}$; c) nu are unitate de măsură; d) $\frac{J}{kg}$; e) Pa·m⁻³; f) $\frac{m^2}{N}$.

Rezolvare

Relația de definiție a exponentului adiabatic este $\gamma = \frac{C_p}{C_V}$, unde C_p reprezintă căldura molară la presiune constantă, iar C_V este căldura molară la volum constant, ambele mărimi având unitatea de măsură în SI J/mol·K. Prin urmare, exponentul adiabatic, γ , este o mărime adimensională.

- **16.** Un gaz ideal monoatomic $(C_V = \frac{3}{2}R)$ primește căldura Q = 15 kJ pentru a-și mări izobar temperatura. Căldura necesară pentru a mări izocor cu aceeași valoare temperatura gazului este:
 - a) 12,5 kJ; b) 9 kJ; c) 16 kJ; d) 25 kJ; e) 12000 J; f) 6 kJ.

<u>Rezolvare</u>

Căldurile primite în transformările izobară Q_p și izocoră Q_V sunt: $Q_p = \upsilon C_p \Delta T$ și respectiv $Q_V = \upsilon C_V \Delta T$.

Pentru o aceeași valoare a creșterii de temperatură a gazului, ΔT , obținem $Q_V = Q_p \frac{C_V}{C_p}$.

Pentru un gaz ideal monoatomic $C_V = \frac{3}{2}R$, iar $C_p = \frac{5}{2}R$. Rezultă $Q_V = 9$ kJ.

- 17. Pentru oxigen se cunosc masa molară, $\mu = 32 \frac{g}{\text{mol}}$ și exponentul adiabatic, $\gamma = 1,4$. Căldura specifică la presiune constantă a oxigenului este (se consideră $R = 8,32 \frac{J}{\text{mol} \cdot K}$):
 - a) 182 $J/(kg \cdot K)$; b) 124 $J/(kg \cdot K)$; c) 910 $J/(kg \cdot K)$; d) 0,900 $J/(kg \cdot K)$;

e) $207 \text{ J/(kg} \cdot \text{K})$; f) $290 \text{ J/(kg} \cdot \text{K})$.

Rezolvare

Din raportul relațiilor de definiție a căldurii specifice la presiune constantă, $c_p = \frac{Q_p}{m\Delta T}$ și căldurii molare la presiune constantă, $C_p = \frac{Q_p}{v\Delta T}$, rezultă: $c_p = C_p \frac{v}{m}$. Dar $\frac{v}{m} = \frac{1}{u}$ și obținem

$$c_p = \frac{C_p}{\mu} = \frac{\gamma R}{\gamma - 1} \frac{1}{\mu} = 910 \text{ J/kg} \cdot \text{K}.$$

- 18. Din punctul A pornesc în aceeași direcție două automobile deplasându-se rectiliniu și uniform. Primul se mișcă cu viteza $v_1 = 63 \frac{\mathrm{km}}{\mathrm{h}}$, al doilea pleacă la 15 min după primul și se deplasează cu $v_2 = 90 \frac{\mathrm{km}}{\mathrm{h}}$. Punctul în care se vor întâlni cele două automobile se află față de A la distanța:
 - a) 27 km; b) 54 km; c) 64 km; d) 52,5 km; e) 22,5 km; f) 48,5 km.

Rezolvare

Față de punctul A legile de mișcare a celor două automobile sunt $x_1 = v_1 t$ și $x_2 = v_2 (t - t')$. Din condiția de întâlnire, $x_1 = x_2$, se obține timpul de întâlnire t_i ; față de punctul A, automobilele se întâlnesc la distanța $x_i = v_1 t_i = 52,5$ km.