(B) BUNDESREPUBLIK
DEUTSCHLAND

PATENT- UND MARKENAMT

® Offenlegungsschrift

_® DE 198 20 291 A 1

(5) Int. Cl.⁶: **B 62 D 1/18**

② Aktenzeichen:

198 20 291.1

② Anmeldetag:

7. 5.98

43 Offenlegungstag:

11.11.99

① Anmelder:

Willi Elbe Gelenkwellen GmbH & Co. KG, 71732 Tamm, DE

Wertreter:

Riebling, P., Dipl.-Ing. Dr.-Ing., Pat.-Anw., 88131 Lindau ② Erfinder:

Meyle, Lothar, 74321 Bietigheim-Bissingen, DE; Schmid, Oliver, 71732 Tamm, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Mehrfach teleskopierbare Lenkwelle mit Blockierelement
- Die Erfindung betrifft eine mehrfach teleskopierbare Lenkwelle mit Blockierelement, wobei mindestens zwei Teleskopteile der Lenkwelle im Betriebszustand zueinander verriegelt sind.

Beschreibung

Gegenstand der Erfindung ist eine mehrfach teleskopierbare Gelenkwelle mit Blockierelement nach dem Oberbegriff des Schutzanspruchs 1. Mehrfach teleskopierbare Lenkwellen sind beispielsweise aus der DE 296 14 100 U1, oder der DE-OS 24 09 208 bekannt geworden.

Bei derartigen Lenkwellen oder Lenksäulenanordnungen kommt es darauf an, daß bei einer mehrfach teleskopierbaren Lenkwelle ein gesteuertes Zusammenschieben der einzelnen Teleskopteile gesichert werden muß, um zu verhindern, daß im Falle eines Unfalles der mittlere Teleskopteil undefiniert zwischen den anderen Teleskopteilen verschoben wird.

Teleskopeinrichtungen mit Hülse und Welle sind bekannt, 15 wie sich beispielsweise aus der DE 296 14 100 U1 entnehmen läßt. Soweit es nur um zwei zusammenschiebbare Teleskopteile geht, stellt sich nicht das Problem, ein weiteres Teleskopteil gesteuert zu führen.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine 20 Teleskoplenksäule mit mindestens drei zueinander teleskopierbaren Teilen so weiterzubilden, daß mindestens eines der Teile, bevorzugt das mittlere Teil, im Falle des unfallbedingten Zusammenschiebens mit mindestens einem anderen Teleskopteil blockierbar und verriegelbar ist.

Zur Lösung der gestellten Aufgabe ist die Erfindung durch die technische Lehre des Anspruchs 1 gekennzeichnet.

Wesentliches Merkmal der Erfindung ist, daß die aus den drei Teilen bestehende Teleskoplenksäule, nämlich einer äußeren Welle, einer Mittelhülse und einer Außennabe so ausgebildet ist, daß mindestens zwischen der Mittelhülse und der Außennabe eine Blockiereinrichtung angeordnet ist. Mit der gegebenen technischen Lehre ergibt sich der Vorteil, daß zunächst im Normalzustand (Betriebszustand) mindestens 35 zwei Teleskopteile zueinander verriegelt sind, nämlich bevorzugt die getriebenahe Außennabe in Verbindung zu der Mittelhülse über die genannte Blockiereinrichtung.

Hierbei wird es bevorzugt, wenn die lenkradnahe Welle axial verschiebbar in der Mittelhülse geführt ist.

Eine solche Führung kann beispielsweise über eine Verzahnung erfolgen.

Im Falle eines Unfalles soll nun dafür gesorgt werden, daß zunächst die lenkradnahe Welle in die blockierte und feststehende Mittelhülse eingeschoben wird. Sobald die 45 lenkradnahe Welle nun vollständig in die Mittelhülse eingeschoben wurde, soll die Blockiervorrichtung auslösen, entriegelt werden und es soll danach die in die Mittelhülse eingeschobene Welle zusammen mit der Mittelhülse in die lenkgetriebenahe Außennabe eingeschoben werden.

Auf diese Weise wird also stets dafür gesorgt, daß zunächst die lenkradnahe Welle in die blockierte Mittelhülse eingeschoben wird und danach erst die beiden Teile zusammen in die lenkgetriebenahe Außennabe eingeschoben werden.

Damit wird eine undefinierte Verschiebung der Mittelhülse vermieden, weil die genannte Blockiereinrichtung die Blockierung zwischen der Mittelhülse und der Außennabe erst dann freigibt, wenn die lenkradnahe Welle in die Mittelhülse einstößt und diese vollkommen durchdringt.

Hierzu sieht die Erfindung vor, daß an dem vorderen freien Stirnende der lenkradnahen Welle ein entsprechendes Betätigungselement angeordnet ist, welches mit einer zugeordneten Steuerung in der Blockiereinrichtung zusammenwirkt, so daß dieses Betätigungselement erst dann mit der 65 Blockiereinrichtung in Eingriff kommt, wenn die Welle vollständig in die Mittelhülse eingeschoben wurde.

Erst dann wird die Blockiereinrichtung entriegelt und da-

nach die noch vollständig ausgefahrene Mittelhülse zusammen mit der bereits dort eingefahrenen Welle in die Außennabe eingefahren werden.

In einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist es vorgesehen, daß in der Blockiereinrichtung ein Pendelring angeordnet ist, der mit einem Mitnehmerstift zusammenwirkt, welcher Mitnehmerstift mit einer Drallkulisse im Betätigungselement der Welle zusammenwirkt.

Der Pendelring löst die Axialverschiebung zwischen der Mittelhülse und der Außennabe aus, weil er sowohl die Sperrfunktion als auch die Freigabe der Blockiereinrichtung steuert.

Dies erfolgt in einer bevorzugten Ausgestaltung der Erfindung dadurch, daß der Pendelring über einen bestimmten Winkelbereich verdrehbar auf einem Nabenzapfen der Mittelhülse aufsitzt.

Hierbei ist es vorgesehen, daß am Innenumfang der Außennabe entsprechende, gleichmäßig am Umfang verteilte Kugellaufbahnen angeordnet sind, in welchen die Blockiereinrichtung axial verschiebbar mit der Mittelhülse angeordnet ist.

Auf dieser Blockiereinrichtung ist nun der gesagte Pendelring angeordnet, der von einem querverlaufenden Mitnehmerstift durchsetzt ist.

Am vorderen freien Ende des Betätigungselementes der Welle ist hierbei eine Drallkulisse angeordnet, welche geeignet ist, über den Mitnehmerstift zu greifen und diesen zu verdrehen. Nachdem der Mitnehmerstift drehfest mit dem Pendelring verbunden ist, wird somit der Pendelring um den vorher beschriebenen Winkelbereich verdreht.

Der Pendelring weist hierbei gleichmäßig am Umfang verteilte, radial vorspringende Führungsnocken auf, die geeignet sind, ebenfalls in den Kugellaufbahnen zu laufen.

zunächst im Normalzustand (Betriebszustand) mindestens zwei Teleskopteile zueinander verriegelt sind, nämlich bevorzugt die getriebenahe Außennabe in Verbindung zu der Mittelhälse über die genannte Blockiereinrichtung.

In der Verdrehstellung des Pendelrings schlagen jedoch diese Führungsnocken an einem zugeordneten Anschlag an der Stirnseite der Außennabe an, so daß der Pendelring damit zusammen mit der Blockiereinrichtung nicht mehr in den Kugellaufbahnen verschiebbar ist.

Der Anschlag, an dem der Pendelring anschlägt, liegt 40 hierbei zwischen den Kugellaufbahnen, so daß die Führungsnocken des Pendelrings dann an diesem Anschlag anschlagen und ein Einlaufen in die Kugellaufbahnen verhindern.

Es handelt sich also um eine Indexierung des Pendelrings, der entsprechend seiner Drehstellung entweder in die Kugellaufbahnen einläuft und dort frei verschiebbar ist, oder – entsprechend seiner anderen Drehstellung – mit seinen Führungsnocken an einem festen Anschlag zwischen den Führungsbahnen aufläuft und dort blockiert.

Der Erfindungsgegenstand der vorliegenden Erfindung ergibt sich nicht nur aus dem Gegenstand der einzelnen Schutzansprüche, sondern auch aus der Kombination der einzelnen Schutzansprüche untereinander.

Alle in den Unterlagen, einschließlich der Zusammenfassung, offenbarten Angaben und Merkmale, insbesondere die in den Zeichnungen dargestellte räumliche Ausbildung werden als erfindungswesentlich beansprucht, soweit sie einzeln oder in Kombination gegenüber dem Stand der Technik neu sind.

Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Hierbei gehen aus den Zeichnungen und ihrer Beschreibung weitere erfindungswesentliche Merkmale und Vorteile der Erfindung hervor.

Es zeigen:

Fig. 1 schematisiert ein Schnitt durch eine Teleskoplenksäule mit drei Teleskopteilen in ausgezogenem zustand;

Fig. 2 gleiche Darstellung wie Fig. 1 in halbeingeschobe-

nem Zustand mit entriegelter Blockiereinrichtung;

Fig. 3 die gleiche Darstellung wie Fig. 1 und 2 in eingeschobenem Zustand;

Fig. 4 ein Schnitt durch die Blockiereinrichtung im blokkierten Zustand;

Fig. 5 der Schnitt gemäß der Linie V-V;

Fig. 6 der Schnitt durch die Blockiereinrichtung im entriegelten Zustand;

Fig. 7 Schnitt gemäß der Linie VII-VII.

Fig. 8 die Seitenansicht des Eindringens der Drallkulisse 10 des Betätigungselementes in den Pendelring.

In Fig. 1-3 ist eine Teleskoplenksäule 1 in verschiedenen Einschubstellungen dargestellt. Sie besteht im wesentlichen aus einer lenkradnahen Welle 2, welche in eine zugeordnete Mittelhülse 3 eintaucht und dort axial verschiebbar ist. Die 15 Mittelhülse 3 ist in der Darstellung nach Fig. 1 über eine Blockiereinrichtung 7 mit einer lenkgetriebenahen Außennabe 4 verriegelt. Am linken Ende der Außennabe 4 ist in an sich bekannter Weise ein Kreuzgelenk 6 angeordnet.

An der Stirnseite der Welle 2 ist ein Betätigungselement 5 20 angeordnet, welches mit der Blockiereinrichtung 7 zusammenwirkt und diese betätigt.

In Fig. 1 ist der ausgezogene Zustand dargestellt. Wirkt eine Kraft 8 auf die Welle 2, so wird diese zunächst frei verschiebbar in die Mittelhülse 3 hineingeschoben, wie dies in 25 Fig. 2 dargestellt ist.

In dieser Stellung nach Fig. 2 dringt das Betätigungselement 5 in die Blockiereinrichtung 7 ein und entriegelt diese, so daß bei einer weiter wirkenden Kraft 8', 8" bei entriegelter Blockiereinrichtung die genannten beiden Teile 2, 3 nun 30 frei verschiebbar in die Außennabe 4 eindringen und dort axial bis zum Anschlag verschoben werden.

Das Einschieben in die Außennabe 4 erfolgt auf besonders gleitarme Weise dadurch, daß die Blockiereinrichtung 7 gleichzeitig mit einem Kugellaufwagen 11, 12 verbunden 35 ist, der ein leichtes axiales Verschieben der beiden genannten Teile 2, 3 in der Außennabe 4 gewährleistet.

Die Fig. 4 und 5 zeigen die Blockiereinrichtung 7 im verriegelten Zustand. Sie besteht im wesentlichen aus einem Kugelträger 11, der beispielsweise aus Kunststoff oder aus 40 einem Blechteil ausgebildet ist und der hintereinanderliegend Kugeln 12 trägt, wobei jede Kugelreihe in einer zugeordneten Kugellaufbahn 13 am Innenumfang der Außennabe 4 eingreift und dort frei verschiebbar ist.

Der Kugelträger 11 weist also gleichmäßig am Umfang 45 verteilte Kugeln auf, wobei ein einer bevorzugten Ausführungsform es ausreicht, lediglich zwei einander gegenüberliegende Kugelreihen vorzusehen.

Der Kugelträger 11 mit seinen darauf gelagerten und in Reihen angeordneten Kugeln 12 ist einer zugeordneten Ver- 50 zahnung eines Nabenzapfens um ein gewisses Bewegungsspiel verschiebbar, wobei dieses Bewegungsspiel nach vorne durch einen Sicherungsring 10 begrenzt wird, der auf dem Nabenzapfen 27 angeordnet ist.

Der Nabenzapfen 27 weist nach außen geöffnete Kugel- 55 laufbahnen 13 auf, die gleichmäßig am Umfang verteilt angeordnet sind.

Hierin laufen die Kugeln mit ihren Innenseiten auf diesen Kugellaufbahnen 13 ab.

Gleichzeitig stützen sich die Kugeln 12 auch an den zuge- 60 ordneten Innenseiten von Kugellaufbahnen 29 ab, die am Innenumfang der Außennabe 4 gleichmäßig am Umfang verteilt angeordnet sind und die im wesentlichen zu den Kugellaufbahnen 13 fluchten.

Auf dem Außenumfang der Mittelhülse 3 ist eine Halte- 65 rung 17 angeordnet, welche eine in axialer Richtung nach vorne gerichtete umlaufende Schlupfnase 18 aufweist, welche hinter einer zugeordneten Ringnut am Außenumfang

der Außennabe 4 einschnappt. Diese Halterung 17 trägt einen Dichtring 19, der sich abdichtend am Außenumfang auf der Mittelhülse 3 anlegt und auf dieser läuft.

Fest mit dem Nabenzapfen 27 ist eine Bundbuchse 16 be5 festigt, welche einen in axialer Richtung nach vorne gerichteten Trägerbund aufweist, auf welchen der Pendelring 15
befestigt ist. Der Pendelring 15 ist hierbei drehbar auf dem
Trägerbund 13 der Bundbuchse 16 gelagert. Der Pendelring
15 ist durch den Mitnehmerstift 14 gegen axiale Verschie0 bung auf der Bundbuchse 16 gesichert.

Der Verschiebungsweg des Kugelträgers 11 mit seinen Kugeln 12 in den Kugellaufbahnen 13 des Nabenzapfens 27 dient dazu, daß man nicht nur eine Gleitreibung der Kugeln 12 in den zugeordneten Kugellaufbahnen 13 und 29 erhält, sondern daß diese Kugeln auch tatsächlich abrollen und eine entsprechende Rollreibung und keine Gleitreibung stattfindet.

Die Fig. 4 und 5 zeigen nun die blockierte Stellung des Pendelrings 15 in Verbindung mit dem Mitnehmerstift 14. Es ist erkennbar, daß der Pendelring um eine derartige Winkelstellung gedreht ist, daß seine am Außenumfang angeordneten Führungsnocken 21 sich außer Eingriff mit den zugeordneten Kugellaufbahnen 13 auf dem Nabenzapfen 27 befinden. Er schlägt deshalb mit seiner Vorderkante der Führungsnocken 21 an einem zugeordneten Stirnanschlag 20 an den Kugellaufbahnen 13 an und es ist deshalb nicht auf diesen Kugellaufbahnen verschiebbar.

Auf diese Weise wird somit der gesamte Kugelträger 11 vor dem Einlaufen in die Kugellaufbahnen 29 am Innenumfang der Außennabe 4 geschützt.

Trifft nun das Betätigungselement nach den Fig. 6–8 mit seiner an der Stirnseite angeordneten Drallkulisse 22 auf den Mitnehmerstift 14 auf, dann wird dieser in die Drallkulisse 22 aufgenommen (vergleiche Fig. 8) und wegen der Verschrägung der Drallkulisse 22 in Richtung zur Längsachse der gesamten Anordnung, wird der Mitnehmerstift hierdurch verdreht.

Gleichzeitig ist hierbei Voraussetzung, daß die beiden zueinander verschiebbaren Teile 2, 3 verdrehgesichert zueinander verschiebbar sind. Hierbei kann es vorgesehen sein, daß am Außenumfang der Welle zugeordnete nach außen gerichtete Verzahnungen vorgesehen sind, welche in zugeordneten Innenverzahnungen der Mittelhülse 3 laufen, so daß die beiden Teile verdrehgesichert zueinander axial verschiebbar sind.

Gleichzeitig ergibt sich aus Fig. 6, daß das Betätigungselement 5 in eine zugeordnete Hülsenbohrung 9 im Bereich des Nabenzapfens 27 eindringt. Im Bereich dieser Hülsenbohrung ist der Mitnehmerstift 14 zusammen mit dem Pendelring 15 gelagert.

Die Bundbuchse 16 weist hierbei im übrigen einen Anlaufbund 24 auf, der fest an dem Nabenzapfen 27 anliegt.

Es ist aus den Fig. 5 und 7 erkennbar, daß der Mitnehmerstift 14 in Pfeilrichtung 25 um den Winkelbereich 26 verdreht wird, wobei die vorher außer Eingriff mit den Kugellaufbahnen 13 befindlichen Führungsnocken 21 nun in Eingriff mit den Kugellaufbahnen 13 kommen und hierdurch die gesamte Blockiereinrichtung entriegelt ist und damit kann die gesamte Blockiereinrichtung in Verbindung mit der Welle 2 und der Mittelhülse 3 axial in die Außennabe 4 verschoben werden, weil die Kugeln 12 nun auf den Kugellaufbahnen 29 am Innenumfang einlaufen.

An der Vorderseite des Nabenzapfens 27 ist im übrigen noch ein Stift 28 angeordnet, der über die vordere Stirnseite hinaus steht und er gemäß Fig. 3 in das Kreuzgelenk 6 eingreift.

Wichtig bei der vorliegenden Erfindung ist also, daß mindestens drei Teile der Teleskoplenksäule vorhanden sind,

15

20

50

und daß eine Blockiereinrichtung zwischen mindestens zwei Teilen vorhanden ist, wobei diese Blockiereinrichtung die beiden zueinander blockierbaren Teile solange miteinander blockiert und verriegelt, bis schließlich die beiden Teile ineinander verschoben sind und in das dritte Teil einlaufen.

Hieraus ergibt sich, daß es nicht lösungsnotwendig ist, daß die Blockiereinrichtung 7 im Bereich zwischen der Außennabe 4 und der Mittelhülse 3 angeordnet ist.

In einer anderen Ausgestaltung der Erfindung kann es vorgesehen sein, daß dieser Bereich frei verschiebbar ist und 10 daß die Blockiereinrichtung im Verbindungsbereich zwischen der Mittelhülse 3 und der Welle 2 angeordnet ist.

Ebenso können selbstverständlich mehr als drei Teleskopteile vorhanden sein. Es können auch mehr als eine Blokkiereinrichtung 7 vorhanden sein.

Es wird also allgemein eine gesteuerte Blockiereinrichtung für eine mehrteilige Teleskoplenksäule vorgestellt.

Bezugszeichenliste

1 Teleskoplenksäule 2 Welle 3 Mittelhülse 4 Außennabe 5 Betätigungselement 25 6 Kreuzgelenk 7 Blockiereinrichtung 8 Pfeilrichtung 9 Hülsenbohrung 10 Sicherungsring 30 11 Kugelträger 12 Kugel 13 Kugellaufbahn 14 Mitnehmerstift 15 Pendelring 35 16 Bundbuchse 17 Halterung 18 umlaufende Schlupfnase 19 Dichtring 20 Stirnanschlag 40 21 Führungsnocke 22 Drallkulisse 23 Trägerbund 24 Anlaufbund 25 Pfeilrichtung 45 26 Winkelbereich 27 Nabenzapfen 28 Stift 29 Kugellaufbahn

Patentansprüche

1. Mehrfach teleskopierbare Lenkwelle mit Blockierelement, dadurch gekennzeichnet, daß mindestens zwei Teleskopteile (2, 3, 4) der Lenkwelle (1) im Betriebszustand zueinander verriegelt sind.

2. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach Anspruch 1, dadurch gekennzeichnet, daß mindestens zwischen der Mittelhülse (3) und der Außennabe (4) eine Blockiereinrichtung (7) angeordnet ist.

3. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die lenkradnahe Welle (2) axial verschiebbar in der Mittelhülse (3) geführt ist.

4. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach Anspruch 3, dadurch gekennzeichnet, daß die Verschiebung der lenkradnahen Welle (2) in der Mittelhülse (3) über eine Verzahnung erfolgt.

5. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß in Richtung der Mittelwelle (3) am vorderen freien Stirnende der lenkradnahen Weile (2) ein Betätigungselement (5) angeordnet ist, welches die Blockierung zwischen der Mittelhülse (3) und der Außennabe (4) freigibt.

6. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß das Betätigungselement (5) mit einer zugeordneten Steuerung in der Blockiereinrichtung (7) zusammenwirkt,

7. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach Anspruch 6, dadurch gekennzeichnet, daß das die Steuerung durch das Betätigungselement (5) durch eine Drallkulisse (22) erfolgt.

8. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß in der Blockiereinrichtung (7) ein Pendelring (15) angeordnet ist, der mit einem Mitnehmerstift (14) zusammenwirkt, und dieser Mitnehmerstift (14) mit einer Drallkulisse (22) im Betätigungselement (5) der Welle (2) zusammenwirkt.

9. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß der Pendelring (15) über einen bestimmten Winkelbereich (26) verdrehbar auf einem Nabenzapfen (27) der Mittelhülse (3) aufsitzt.

10. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß am Innenumfang der Außennabe (4) gleichmäßig verteilte axiale Kugellaufbahnen (13) angeordnet sind, in welchen im Auslösefall die Blockiereinrichtung (7) zusammen mit der Mittelhülse (3) axial verschiebbar ist.

11. Mehrfach teleskopierbare Lenkwelle mit Blockierclement nach einem der Ansprüche 1-10, dadurch gekennzeichnet, daß der Pendelring (15) auf der Blokkiereinrichtung (7) über einen radial den Pendelring (15) durchdringenden Mitnehmerstift (14) durch axiale Verschiebung gesichert ist.

12. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1-11, dadurch gekennzeichnet, daß der Pendelring (15) und der Nabenzapfen (27) je eine deckungsgleiche, umfangsseitig verlaufende Nut aufweist, in den der Mitnehmerstift (14) eingreift, und dadurch der drehbare Winkelbereich (26) definiert wird.

13. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1–12, dadurch gekennzeichnet, daß der Pendelring (15) gleichmäßig am Umfang verteilte, radial vorspringende Führungsnokken (21) aufweist.

14. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1–13, dadurch gekennzeichnet, daß die Führungsnocken (21) im Auslösefall in den Kugellaufbahnen (13) laufen.

15. Mehrfach teleskopierbare Lenkwelle mit Blockierelement nach einem der Ansprüche 1-14, dadurch gekennzeichnet, daß die Führungsnocken (21) im Betriebszustand an einem zugeordneten Stirnanschlag (20) an der Stirnseite der Außennabe (4) anschlagen, wobei dieser Stirnanschlag (20) sich zwischen den Kugellaufbahnen (29) befindet.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 198 20 291 A1 B 62 D 1/1811. November 1999

902 045/378

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 198 20 291 A1 B 62 D 1/18**11. November 1999

Multiple telescopic steering shaft with blocking element

Publication number: DE19820291
Publication date: 1999-11-11

Inventor: MEYLE LOTHAR (DE); SCHMID OLIVER (DE)

Applicant: WILLI ELBE GELENKWELLEN GMBH & (DE)

Classification:

- international: B62D1/18; B62D1/185; B62D1/19; B62D1/18;

B62D1/19; (IPC1-7): B62D1/18

- European: B62D1/185; B62D1/19B
Application number: DE19981020291 19980507
Priority number(s): DE19981020291 19980507

Report a data error here

Abstract of **DE19820291**

The steering shaft (1) has at least two of its telescopic parts (2-4) locked to each other in the operating position. There may be a blocking device (7) between the central shell (3) and the outer rod (4). The shaft part (2) closest to the steering wheel may be able to move axially in the central shell. This movement may take place via a gearing arrangement.

Data supplied from the esp@cenet database - Worldwide