EECE7205: Fundamentals of Computer Engineering

String Matching

The String-Matching Problem

- Text-editing programs frequently need to find all occurrences of a pattern in the text or to apply automatic spelling correction.
- DNA sequences are searched for particular patterns.
- Internet search engines also need algorithms to find Web pages relevant to queries.
- Efficient algorithms for this problem are called "string matching".
- Given a text represented as an array T [1.. n] of length n, the string-matching algorithm is to find in T the occurrences of a pattern P [1.. m] of length m ≤ n.
- Assumption: the elements of P and T are characters drawn from a finite alphabet ∑.
- The character arrays P and T are often called strings of characters.

String Matching Definitions

- Referring to the figure below, we say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs beginning at position s + 1 in text T)
- This means if $0 \le s \le n m$ then T[s + 1...s + m] = P[1...m] (that is, T[s + j] = P[j]), for $1 \le j \le m$).
- If P occurs with shift s in T, then we call s a valid shift; otherwise, we call s an invalid shift.
- The string-matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a given text T.

Notation and Terminology (1 of 2)

- Σ^* = set of all finite-length strings formed using characters from alphabet Σ
- Empty string: ε (also belongs to Σ*)
- |x| = length of string x
- The *concatenation* of two strings x and y, denoted xy, has length |x| + |y| and consists of the characters from x followed by the characters from y.
- w is a **prefix** of x: $w \sqsubseteq x$ (e.g., ab \sqsubseteq abcca)
- w is a *suffix* of x: $w \sqsupset x$ (e.g., cca \sqsupset abcca)
 - In both cases $|w| \le |x|$
- The prefix and suffix relations are transitive.
- The empty string ϵ is both a suffix and a prefix of any string.

Notation and Terminology (2 of 2)

- We denote the k-character prefix R[1...k] of the string R[1...n] by R_k . Thus, $R_0 = \varepsilon$ and $R_n = R$.
- Using this notation, we can state the string-matching problem as that of:

finding all shifts s in the range $0 \le s \le n - m$ such that pattern $P \sqsupset T_{s+m}$. Where T is a string of length n and pattern P is of length $m \le n$.

Overlapping-Suffix Lemma

Suppose that x, y, and z are strings such that $x \sqsupset z$ and $y \sqsupset z$. If $|x| \le |y|$, then $x \sqsupset y$. If $|x| \ge |y|$, then $y \sqsupset x$. If |x| = |y|, then x = y.

The Naive String-Matching Algorithm

■ The naive algorithm finds all valid shifts using a loop that checks the condition P[1..m] = T[s+1..s+m] for each of the n-m+1 possible values of s.

What is the best and worst big O of this algorithm?

```
NAIVE-STRING-MATCHER (T, P)

1 n = T.length

2 m = P.length

3 \mathbf{for} \ s = 0 \ \mathbf{to} \ n - m

4 \mathbf{if} \ P[1 \dots m] == T[s+1 \dots s+m]

5 print "Pattern occurs with shift" s
```


The Naive Algorithm Worst Case

- The following example shows the worst-case scenario to search for the pattern BBC (m = 3) in a text of n characters.

 - 4.
- Total number of comparisons = m (n-m+1)
- Time efficiency = O(nm)

The Naive Algorithm Best Case

- The following example shows the best-case scenario to search for the pattern BBC (m = 3) in a text of n characters.

 - 4.
- Total number of comparisons = n-m+1
- Time efficiency = O(n)

Finite Automata

- String matching using finite automata avoids testing useless shifts as in the naive pattern-matching algorithm.
- A *finite automaton* M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where
 - Q is a finite set of states,
 - $q_0 \in Q$ is the *start state*,
 - $A \subseteq Q$ is a distinguished set of *accepting states*,
 - ∑ is a finite input alphabet,
 - δ is a function from $Q \times \Sigma$ into Q, called the **transition function** of M.

Finite Automata Example

In the shown example:

- $Q = \{0, 1\},\$
- $q_0 = 0$,
- *A* ={1}
- $= \sum = \{a, b\},$
- $\delta(0, a) = 1$ $\delta(0, b) = 0$ $\delta(1, a) = 0$ $\delta(1, b) = 0$

	input		
state	a	b	
0	1	0	
1	0	0	

The Final-State Function

- The function Φ defined on a finite automaton M is called the **final-state function**.
- For a string $w \in \Sigma^*$, $\Phi(w)$ returns the state in which M ends up after M scans the string w.
- M accepts a string w if and only if $\Phi(w) \in A$ (the set of accepting states).
- We define the function Φ recursively, using the transition function:

$$\phi(arepsilon) = q_0$$
 , Where $arepsilon$ is the empty string

$$\phi(wa) = \delta(\phi(w), a) \text{ for } w \in \Sigma^*, a \in \Sigma$$
.

The Suffix Function

For a given pattern P[1 .. m], the **suffix function** σ maps Σ^* to $\{0, ..., m\}$ such that $\sigma(x)$ is the length of the <u>longest prefix</u> of P that is also a suffix of x.

- Example:
 - If pattern P = ab, we have $\sigma(\varepsilon) = 0$,
 - $\sigma(ccaca) = 1$,
 - $\sigma(ccab) = 2$.
 - For a pattern P of length m, we have $\sigma(x) = m$ if and only if $P \square x$.

String-Matching Automata (1 of 2)

- For a given pattern *P*, we construct a string-matching automaton in a preprocessing step before using it to search the text string.
- The figure illustrates how we construct the automaton for the pattern P = ababaca
- Some edges corresponding to failing matches are omitted; by convention, if a state i has no outgoing edge labelled x then $\delta(i, x) = 0$.

Sample operation:

What is the big *O* of the matching process?

T[i] state $\phi(T_i)$

[i] — a

0 1 2

b a

a b

a

c a

2

String-Matching Automata (2 of 2)

- We define the string-matching automaton that corresponds to a given pattern P [1 .. m] as follows:
 - The state set Q is $\{0, 1, ..., m\}$. The start state q_0 is state 0, and state m is the only accepting state.
 - The transition function δ is defined by equation $\delta(q, x) = \sigma(P_q x)$ for any state q and character x
- Example 1: for P = ababaca, q = 5, x = b \rightarrow $\delta(5, b)$ = $\sigma(ababab)$ = 4
- Example2: for P = ababaca, q = 5, x = a \rightarrow δ(5, a) = σ (ababaa) = 1
- Example 3: for P = ababaca, q = 5, $x = c \rightarrow \delta(5, c) = \sigma(ababac) = 6$

Finite Automata Matcher Algorithm

 The following algorithm uses an automaton (represented by its transition function δ) to find occurrences of a pattern P of length m in an input text T [1..n].

```
FINITE-AUTOMATON-MATCHER (T, \delta, m)

1  n = T.length

2  q = 0

3  for i = 1 to m

4  q = \delta(q, T[i])

5  if q == m

print "Pattern occurs with shift" i - m
```

- Preprocessing time = $O(m | \Sigma|)$
- Matching time = $\Theta(n)$

The Knuth-Morris-Pratt Algorithm

- This algorithm uses an auxiliary function π that allows us to compute the transition function δ efficiently "on the fly" as needed.
- The array π is pre-computed from the pattern in time $\Theta(m)$ and is stored in an array $\pi[1...m]$.
- For any state q = 0, 1, ..., m and any character $a \in \Sigma$, the value $\pi[q]$ contains the information we need to compute $\delta(q, a)$.
- Since the array π has only m entries, whereas δ has $\Theta(m \mid \Sigma \mid)$ entries, we save a factor of $\mid \Sigma \mid$ in the pre-processing time by computing π rather than δ .
 - The idea here comes from the fact that in computing δ , there is no need to consider the characters in Σ that are not in P as they will always bring us back to state 0.

Comparing P With Itself

- The entries in array π are precomputed by comparing the pattern P with itself.
- The shown pattern P = ababaca aligns with a text T so that the first q = 5 characters match.

• Using only our knowledge of the 5 matched characters, we can deduce that a shift of s + 1 is invalid, but that a shift of s' = s + 2 is potentially valid.

An Example of a π 's Entry

- Here, we see that P_3 is the longest prefix of P that is also a proper suffix of P_5 .
- We represent this pre-computed information in the array π , so that $\pi[5]=3$.
- Now we can continue our matching process from where we stopped at T and compare to character $P[\pi[5]+1=4]$, which means the new shift $s'=s+(5-\pi[5])$.
 - Comparing to the automata, this also means that at state q, the next state after a match is q+1 and the next state after a mismatch is $\pi[q]$. However here we will need to compare the mismatched character again.

Computing π

■ Given a pattern P of m characters where q characters have matched successfully at shift s, the next potentially valid shift is at $s' = s + (q - \pi[q])$ where the **prefix function** for the pattern P is the function π : $\{1, 2, ..., m\} \rightarrow \{0, 1, ..., m-1\}$ such that:

$$\pi[q] = \max\{k : k < q \text{ and } P_k \supset P_q\}$$
.

Which is the longest prefix of P that is also a proper suffix of P_a

Prefix Function Example

i	1	2	3	4	5	6	7
P[i]	a	b	a	b	a	С	a
$\pi[i]$	0	0	1	2	3	0	1

The longest prefix of P that is also a proper suffix of P_q

KMP Preprocessing Algorithm

COMPUTE-PREFIX-FUNCTION (P)

```
m = P.length
                                                   b
                                               a
 2 let \pi[1..m] be a new array
 3 \quad \pi[1] = 0
4 k = 0
  for q = 2 to m
        while k > 0 and P[k+1] \neq P[q]
 6
            k = \pi[k]
       if P[k+1] == P[q]
       k = k + 1
    \pi[q] = k
10
11
    return \pi
```

i	1	2	3	4	5	6	7
P[i]	a	b	a	b	a	C	a
$\pi[i]$	0	0	1	2	3	0	1

b

b

a

a

a

Preprocessing time is $\Theta(m)$

 P_k

KMP Matcher Algorithm

KMP-MATCHER(T, P)

- $1 \quad n = T.length$
- 2 m = P.length
- 3 $\pi = \text{Compute-Prefix-Function}(P)$
- $4 \quad q = 0$
- 5 for i = 1 to n
- 6 **while** q > 0 and $P[q + 1] \neq T[i]$
- $7 q = \pi[q]$
- 8 **if** P[q+1] == T[i]
- 9 q = q + 1
- 10 **if** q == m
- 11 print "Pattern occurs with shift" i m
- $12 q = \pi[q]$

P[i] a b a b a c a $\pi[i]$ 0 0 1 2 3 0 1 $\pi[i]$ number of characters matched // scan the text from left to right

// next character does not match

3

5

7

// next character matches

// is all of *P* matched?

// look for the next match

Matching time is $\Theta(n)$

Algorithms Running Time

- Except for the naive algorithm, each string-matching algorithm we studied performs some preprocessing based on the pattern and then finds all valid shifts; we call this latter phase "matching."
- The total running time of each algorithm is the sum of the preprocessing and matching times.

Algorithm	Preprocessing time	Matching time
Naive	0	O(n m)
Finite automaton	$O(m \Sigma)$	$\Theta(n)$
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$