## 第五章 频率响应法习题答案

A5-1 绘制下列系统的对数幅频特性图和相频特性图,并求增益剪切角频率  $\omega_c$  和相位剪切角频率  $\omega_g$  :

增益剪切角频率  $\omega_c$ : 系统对数幅频特性穿越 0dB 的角频率,即  $|G(j\omega)|=1$ ,或  $L(\omega)=0dB$  时的角频率

相位剪切角频率  $\omega_g$  : 系统相频特性曲线穿越  $-180^\circ$  的角频率,即  $\varphi(\omega)=-180^\circ$  时的角频率

(1) 
$$G(s) = \frac{1}{s(s+15)}$$

## 手工绘图步骤:

极点:  $\omega_1 = 0$ ,  $\omega_2 = 15$ 

零点:无

$$G(s) = \frac{1}{15} \frac{1}{s(s/15+1)}$$
,

$$20 \lg K = 20 \lg (\frac{1}{15}) = -23.5$$

积分因子 v=1,所以其幅频特性图低频段是一条经过  $\omega=1$ ,L(1)=-23.5dB,斜率为-20dB/dec 的直线,图像在  $\omega=15$  处折线斜率减少到-40dB/dec,具体如下图: 从图中我们可以得到  $\omega_c=0.08$ 。



$$\omega_c = 0.0663$$

$$\omega_{g}$$
=无穷大



(2) 
$$G(s) = \frac{20}{s(s+10)(s+20)}$$

# 手工绘图步骤:

极点:  $\omega_1 = 0$ ,  $\omega_2 = 10$ ,  $\omega_3 = 20$ 

零点:无

$$G(s) = \frac{20}{s(s+10)(s+20)} = \frac{1}{10} \frac{1}{s(s/10+1)(s/20+1)} \;,$$

$$20 \lg K = 20 \lg(\frac{1}{10}) = -20$$

积分因子  $\nu$  =1,所以其幅频特性图低频段是一条经过  $\omega$  =1,L(1)=-20dB,斜率为-20dB/dec 的直线,图像在  $\omega$  =10 处折线斜率减少到-40dB/dec,图像在  $\omega$  =20 处折线斜率减少到-60dB/dec,具体如下图:从图中我们可以得到  $\omega_c$  =0.1。

$$\omega_c$$
 = 0.1



$$\omega_g = 14.4; \quad \omega_c = 0.112$$



(3) 
$$G(s) = \frac{36(s+2)}{s(s^2+6s+12)}$$

#### 手工绘图步骤:

极点: ω<sub>1</sub> =0

复极点  $\omega_{n} = \sqrt{12} = 3.46$ 

零点: ω<sub>1</sub> =2

$$G(s) = \frac{36(s+2)}{s(s^2+6s+12)} = \frac{6(s/2+1)}{s((\frac{s}{\sqrt{12}})^2+s/2+1)} = \frac{6(s/2+1)}{s((\frac{s}{3.46})^2+s/2+1)},$$

 $20 \lg K = 20 \lg(6) = 15.6$ 

积分因子  $\nu$  =1,所以其幅频特性图低频段是一条经过  $\omega$  =1,L(1)=15.6dB,斜率为–20dB/dec 的直线,图像在  $\omega$  =2 处折线斜率增加到 0dB/dec,图像在  $\omega$  =3.46 处折线斜率减少到–40dB/dec,具体如下图:从图中我们可以得到  $\omega_c$  = 6.3。



 $\omega_c$  = 5.65

$$\omega_g$$
=无穷大



(4) 
$$G(s) = \frac{5}{s(0.01s^2 + 0.1s + 1)}$$

#### 手工绘图步骤:

极点: ω<sub>1</sub> =0

复极点: ω<sub>n</sub> =10

零点:无

$$G(s) = \frac{5}{s(0.01s^2 + 0.1s + 1)} = \frac{5}{s((\frac{s}{10})^2 + s/10 + 1)},$$

 $20 \lg K = 20 \lg(5) = 14$ 

积分因子  $\nu$  =1,所以其幅频特性图低频段是一条经过  $\omega$  =1,L(1)=14dB,斜率为-20dB/dec 的直线,图像在  $\omega$  =10 处折线斜率增加到-60dB/dec,具体如下图: 从图中我们可以得到  $\omega_c$  = 5。



$$\omega_{g}$$
 = 10  $\omega_{c}$  = 6.42



(5) 
$$G(s) = \frac{40(s-10)}{s(s+10)(s+20)}$$

极点:  $\omega_1 = 0$ ,  $\omega_2 = 10$ ,  $\omega_3 = 20$ 

零点: ω<sub>1</sub> =10

$$G(s) = \frac{40(s-10)}{s(s+10)(s+20)} = \frac{2(s/10-1)}{s(s/10+1)(s/20+1)}$$

$$20 \lg K = 20 \lg(2) = 6.0$$

积分因子  $\nu=1$ ,所以其幅频特性图低频段是一条经过  $\omega=1$ ,L(1)=6dB,斜率为-20dB/dec 的直线,图像在  $\omega=20$  处折线斜率减少到-40dB/dec,具体如下图:

从图中我们可以得到 $\omega_c$ =2



$$\omega_g$$
 =无穷大

$$\omega_c$$
 = 2.08



(6) 
$$G(s) = \frac{40}{s(s-10)(s+20)}$$

极点:  $\omega_1 = 0$ ,  $\omega_2 = 10$ ,  $\omega_3 = 20$ 

零点:无

$$G(s) = \frac{40}{s(s-10)(s+20)} = \frac{0.2}{s(s/10-1)(s/20+1)}$$

$$20 \lg K = 20 \lg (0.2) = -14$$

积分因子  $\nu$  =1,所以其幅频特性图低频段是一条经过  $\omega$  =1,L(1)=-14dB,斜率为-20dB/dec 的直线,图像在  $\omega$  =10 处折线斜率减少到-40dB/dec,图像在  $\omega$  =20 处折线斜率减少到-60dB/dec,具体如下图:从图中我们可以得到  $\omega_c$  = 0.2



$$\omega_{g}$$
 =不存在  $\omega_{c}$  =0. 21



A5-2 绘制下列诸系统的奈氏图:

(1) 
$$G(s) = \frac{100}{(s+10)(s+20)}$$



(2) 
$$G(s) = \frac{100}{s(s+10)(s+20)}$$



(3) 
$$G(s) = \frac{10}{s^2(s+1)(s+10)}$$



(4) 
$$G(s) = \frac{10}{s^3(s+1)(s+2)}$$



(5) 
$$G(s) = \frac{10}{s(s+1)(s-10)}$$



(6) 
$$G(s) = \frac{10(s+1)}{s(s+2)}$$



(7) 
$$G(s) = \frac{10(s-1)}{s(s+2)}$$



A5-3 下列系统中,那些系统是最小相位系统,那些不是,为什么? 答:

最小相位系统概念: 其幅频特性对应的负相移为最小的稳定系统称为最小相位系统,即在右半 s 开平面没有零点,也没有延迟因子(环节)的稳定系统。反之,为非最小相位系统。

最小相位系统: (1), (2)

非最小相位系统: (3), (4), (5), (6)

A5-4 某单位反馈系统的开环传递函数为:

$$G(s) = \frac{K(s+8)(as+1)}{s(0.1s+1)(0.25s+1)(bs+1)}$$

其伯德图如图 A5-1 所示。试依据图确定 K , a 和 b 的数值。



由图可知: 1/a=3, a=1/3; 1/b=20, b=1/20;

将原式化为: 
$$G(s) = \frac{8K(\frac{1}{8}s+1)(as+1)}{s(0.1s+1)(0.25s+1)(bs+1)}$$

A5-5 已知图 A5-2 诸最小相位系统的伯德图,求:

- (1) 系统的传递函数;
- (2) 系统的开环增益;
- (3) 图中未标明数值的角频率;
- (4) 系统的误差系数  $K_p$  ,  $K_v$  ,  $K_a$  。







解: 图 (1): 
$$G(s) = \frac{K(\frac{1}{2}s+1)}{s(\frac{1}{\omega_1}s+1)(0.125s+1)}$$

$$\frac{L(2) - L(w_1)}{\lg 2 - \lg w_1} = -40, \quad w_1 = 0.2$$

 $201gK/w_1 = 40$ , K=20

$$G(s) = \frac{20(\frac{1}{2}s+1)}{s(5s+1)(0.125s+1)} = \frac{16(s+2)}{s(s+0.2)(s+8)}$$

开环增益为 20,  $K_p$  =无穷大,  $K_v$  =20,  $K_a$  = 0

$$(2) : G(s) = \frac{K(\frac{1}{w_1}s+1)}{(\frac{1}{w_2}s+1)(\frac{1}{w_3}s+1)^2}$$

201gK=25, K=17.78

$$\frac{L(1) - L(w_1)}{\lg 1 - \lg w_1} = 20 , \quad w_1 = 0.7$$

$$\frac{L(w_2) - L(1)}{\lg w_2 - \lg 1} = 20 , w_2 = 1.26$$

$$K_n = 17.78$$
,  $K_v = 0$ ,  $K_a = 0$ 

$$\mathbb{E}(3): G(s) = \frac{K(\frac{1}{w_2} + 1)}{s(\frac{1}{w_1}s + 1)(\frac{1}{w_3}s + 1)}$$

201gK=19, K=8.9

$$\frac{L(3) - L(w_1)}{\lg 3 - \lg w_1} = -40 , \quad w_1 = 1$$

$$\frac{L(w_2) - L(w_c)}{\lg w_2 - \lg w_c} = -40, \quad L(w_2) = -40 \lg 2$$

$$\frac{L(w_3) - L(w_2)}{\lg w_3 - \lg w_2} = -20 , \quad w_3 = 15$$

$$K_p$$
=无穷大,  $K_v$ =8.9,  $K_a$ =0

A5-6 绘制题 A5-1 各系统的尼氏图。

(1)



(2)



(3)



(4)



(5)



(6)



A5-7 用伯德图法判别题 A5-1 各系统的稳定性,并求相位裕量 $arphi_{pm}$  和增益裕量GM。

伯德图的奈氏判据是:系统稳定的充分必要条件是,在剪切角频率  $\omega_c$  处的  $\varphi(\omega_c)>-180^\circ$ 。反之,为不稳定系统。

(1) 稳定 
$$\varphi_{pm}$$
 = 89.7454  $GM$  =无穷大

(5) 不稳定 
$$\varphi_{nm}$$
 = -118.1910  $GM$  =无穷大

(6) 不稳定 
$$\varphi_{pm}$$
 =-89.4273  $GM$  =无穷大

A5-8 用奈氏判据判别题 A5-2 各系统的稳定性,并求相位裕量  $\varphi_{\it nm}$  和增益裕量  $\it Gm$  。

闭环系统稳定的充分必要条件:  $G(j\omega)H(j\omega)$  曲线( $\omega$  自  $-\infty \to +\infty \to -\infty$  )包围(-1, j0 )点的 圈数为:

$$N = -P$$

最小相位系统的 P=0 ,所以闭环系统稳定的充分必要条件是:  $G(j\omega)H(j\omega)$  曲线不包围(-1,j0)点,即

$$N = 0$$

如果 $G(j\omega)H(j\omega)$ 曲线穿越(-1,j0)点,系统就是临界稳定的。

(1) 稳定 
$$\varphi_{pm}$$
 =Inf  $\mathit{Gm}$  =Inf

(2) 稳定 
$$\varphi_{pm}$$
=85.7126  $Gm$ =60

(3) 不稳定 
$$\varphi_{pm}$$
 = -45.8867  $Gm$  =-94.8

(4) 不稳定 
$$\varphi_{pm}$$
 = -92.9  $Gm$  =-109.4

(5) 不稳定 
$$\varphi_{pm}$$
 =-123.6258  $\textit{Gm}$  =Inf

(6) 稳定 
$$\varphi_{pm}$$
 = 95.6804  $Gm$  =Inf

(7) 不稳定 
$$\varphi_{pm}$$
 = -107. 2739  $Gm$  =Inf

A5-9 用尼氏图判别题 A5-1 各系统的稳定性,并求相位裕量 $\varphi_{pm}$  和增益裕量GM

(1) 稳定 
$$\varphi_{pm}$$
 =89.7454  $\textit{Gm} = \text{Inf}$ 

(2) 稳定 
$$\varphi_{pm}$$
=89.1406  $Gm$ =300

(3) 稳定 
$$\varphi_{pm}$$
 = 40.7192  $Gm$  = Inf

(4) 稳定 
$$\varphi_{pm}$$
 = 50.2941  $Gm$  =2

(5) 不稳定 
$$\varphi_{pm}$$
=-118.1910  $Gm$ =Inf

(6) 不稳定 
$$\varphi_{pm}$$
=-89.4273  $Gm$ =Inf

A5-10 单位反馈系统的开环传递函数为:

$$G(s) = \frac{K_r}{s(s+10)}$$

若要求闭环系统的超调量 $M_p \le 5\%$ , 求:

- (1) 系统的开环增益;
- (2) 闭环系统的谐振峰值  $M_{p\omega}$ ;
- (3) 闭环系统的谐振角频率  $\omega_r$ ;
- (4) 闭环系统的  $\omega_b$ ;
- (5) 闭环系统的单位节阶跃响应。

**M**: 
$$C(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{K_r}{s^2 + 10s + K_r}$$

$$M_{p} = e^{-\pi\varepsilon/\sqrt{1-\varepsilon^2}} < 5\%$$

得 
$$\mathcal{E}$$
 >0.69 , 2  $w_b$   $\mathcal{E}$  =10,  $w_b$  =7.25,  $K_r=w_b^2$  =52.5

$$Mp = \frac{1}{2\varepsilon\sqrt{1-\varepsilon^2}} = 1, \quad \omega_r = w_b\sqrt{1-2\varepsilon^2} = 1.585, \quad \mbox{\#$\%$} \ \omega_b = 7.43$$



#### B 深入题

B5-1 题 A2-7 的汽车悬浮系统(图 B5-1),假定,输入  $x_i(t) = \sin \omega t$  ,若 m = 1kg , k = 18N/m ,  $b = 4N \bullet s/m$  ,求系统的频率响应。绘制系统的伯德图。并判断系统的稳定性。



图 B5-1 汽车悬浮系统模型

解: 
$$F(t) = m \frac{d^2 x_i}{dt^2} + b \frac{dx_i}{dt} + Kx_i$$

拉氏变换,得:  $F(s)=ms^2X(s)+bsX(s)+kX(s)$ 

G(s) = 
$$\frac{1}{ms^2 + bs + k} = \frac{1}{s^2 + 4s + 18} = \frac{1}{18} \frac{1}{(\frac{s}{4.24})^2 + \frac{2s}{9} + 1}$$

闭环复极点:  $s_{1,2} = -2 \pm 3.87 j$ 

闭环零点:无

$$20 \lg K = 20 \lg(\frac{1}{18}) = -25$$

积分因子 $\nu$ =0,所以其幅频特性图低频段是一条经过 $\omega$ =1,L(1)=-25dB,斜率为 0dB/dec 的直线,图像在 $\omega$ =4. 24 处折线斜率减少到-40dB/dec,具体如下图:





## 由图可知系统稳定。

B5-2 提示: 通过描点法得到 bode 图,取-20db 的整数倍斜率线的交点得到各个拐点的频率和 k 的大小,按照 A 中的根据 bode 图求传递函数的方法可求得本题的传递函数。

B5-3 绘制下列系统开环传递函数的奈氏曲线,并用奈氏曲线求使闭环系统稳定的 K 值范围:

(1) 
$$G(s) = \frac{K}{s(s^2 + 2s + 4)}$$



当虚部为 0 时,实/部为-k/8, 当-k/8>-1 即 k<8 时系统闭环稳定。

(2) 
$$G(s) = \frac{K(s+1)}{s^2(s^2+2s+4)(s+4)}$$



曲线与横轴交点为-0.1116K,当-0.1116>-1 即 K<8.96 时,系统稳定

(3) 
$$G(s) = \frac{K(s+1)(s+2)}{s^2(s+4)}$$



 $N_{-1}$ =0,  $P_{-1}$ =0,K取任何值都稳定

(4) 
$$G(s) = \frac{K(s+1)(s-2)}{s^2(s+4)(-s+1)}$$



 $N_{-1}$ =1,  $P_{-1}$ =1,K取任何值都不稳定

(5) 
$$G(s) = \frac{K(s+1)(s-2)}{s^2(s-4)(-s+1)}$$



 $N_{-1}$ =0,  $P_{-1}$ =2, K取任何值系统都不稳定

B5-4 设控制系统如图 B5-2 (a) 所示,G(s) 和  $G_c(s)$  都是最小相位系统。若已知 G(s) 和  $G_c(s)G(s)$  的对数幅频特性(如图 B5-2 (b) )。试求: (?此题有错误,按照-20dB/dec, 频率由 1 到 3,应该下降 9.54dB)

- (1)  $G_c(s)$  的传递函数;
- (2) G(s) 和  $G_c(s)G(s)$  的稳态误差系数  $K_p$  ,  $K_v$  ,  $K_a$  ;
- (3) G(s) 和  $G_c(s)G(s)$  的相位裕量;
- (4) 比较串入 $G_c(s)$ 前后闭环系统的超调量。





图 B5-2 题 B5-4 系统的方块图和伯德图

(b)

G (s):

$$L_d(\omega) = 20 \lg K = 15$$
, K= $\sqrt{10}$ 

G(S) = 
$$\frac{\sqrt{10}}{s(\frac{1}{3}s+1)(\frac{1}{300}s+3)}$$

$$K_p$$
=无穷大,  $K_v = \sqrt{10}$  ,  $K_a = 0$ , Pm= 71.5014

$$G_c(s)G(s) = \frac{10^{\frac{3}{4}}(0.1s+1)}{s(\frac{1}{3}s+1)(0.01s+1)(\frac{1}{300}s+1)}$$

$$K_p =$$
无穷大, $K_v = 10^{\frac{3}{4}}$ , $K_a = 0$ ,Pm=79.1344

$$G_c(s) = \frac{G_c(s)G(s)}{G(s)} = \frac{10^{\frac{1}{4}}(0.1s+1)}{(0.01s+1)}$$

串入 $G_c(s)$ 前后闭环系统的超调量减小

## C 实际题

C5-1

K=10, m=10, 由于谐振未知, 所以, b 未知

C5-2

解: 电动机传递函数:

$$G_0(s) = \frac{\omega(s)}{u_d(s)} = \frac{k_m}{L_d J s^2 + (R_d J + L_d b) s + (R_d b + k_e k_m)} = \frac{0.84}{0.0396 s^2 + 0.987 s + 1.073}$$

前向传递函数: 
$$G(s) = k_p k_s G_0(s) = \frac{42}{0.0396s^2 + 0.987s + 1.073}$$

反馈传递函数:  $H(s) = k_f k_{fs} = 0.02$ 

所以,开环传递函数: 
$$G(s)H(s) = \frac{0.84}{0.0396s^2 + 0.987s + 1.073} = \frac{0.78}{0.0369s^2 + 0.92s + 1}$$

闭环传递函数: 
$$M(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{42}{0.0396s^2 + 0.987s + 1.913}$$

(1) 伯德图





- (2) 系统稳定
- (3) 相位裕度:  $\varphi_{pm}$  =Inf; 增益裕度: Gm =69.3
- (4)  $\varepsilon = 1.79$  ,  $\omega_{_{\! n}} = 6.95$  , 无谐振峰值 与 谐振频率
- (5) 主导极点: -2.1, -22.8
- (6) 无超调, 单位阶跃响应为:



C5-3图 C5-3位置随动系统有如下的参数:

收发信器: 
$$\frac{u(s)}{\theta(s)} = A_s = 30v / rad$$
; 放大器  $\frac{u_a(s)}{e(s)} = A = 18$ ;  $e(s) = u_1(s) - u_2(s)$ ;

执行电机: 
$$\frac{\omega(s)}{u_a(s)} = \frac{0.135}{(0.025s+1)(0.2s+1)}$$
; 减速器:  $\frac{\theta_o(s)}{\omega(s)} = \frac{1}{40s}$ ;  $\theta(s) = \theta_i(s) - \theta_o(s)$ ;



图 C5-3 位置随动系统原理图

(1) 求系统的开环传递函数  $G(s) = \frac{\theta_o(s)}{\theta(s)}$ ;

解: 
$$\theta_0(s) = A_s \theta(s) \times A \times \frac{0.135 A A_s \theta(s)}{(0.025 s + 1)(0.2 s + 1)} \times \frac{1}{40 s}$$

$$\frac{\theta_0(s)}{\theta(s)} = \frac{1.8225}{s(0.025s+1)(0.2s+1)}$$

(2) 重复 C5-2 题的(1)—(7)的计算。

Bode 图:

极点:  $\omega_1 = 40, \omega_2 = 5, \omega_3 = 0$ 

零点: 无

201g K = 201g 1.8225 = 5.2

积分因子 $\nu$ =1,所以其幅频特性图低频段是一条经过 $\omega$ =1,L(1)=5.2dB,斜率为-20dB/dec 的直线,图像在 $\omega$ =5 处折线斜率减少到-40dB/dec,图像在 $\omega$ =40 处折线斜率减少到-60dB/dec 具体如下图:





由图可知, 系统稳定, 相位裕量 为 68.5357, 增益裕量为 24.6914

将原系统近似看作一个二阶系统 
$$\frac{\theta_0(s)}{\theta(s)} = \frac{1.8225}{s(0.2s+1)}$$

$$\omega_n$$
 = 3,  $\varsigma$  =0.828,  $M_{p\omega}$  =1.077

$$M_p = 23.256\%, t_s = 1.61$$

C5-4 用伯德图完成题 C4-1 的几项计算要求。





将系统以二阶系统近似

$$M_p = 60\% = e^{-\pi\xi/\sqrt{1-\xi^2}}$$
,  $\xi = 0.16$ , wn=31.25, Kr=976, ess=Kr=976

(2) 引入超前校正装置

$$G_c(s) = \frac{(s+3)}{(s+3.93)}$$

求:引入超前校正装置后系统的伯德图;判定系统的稳定性,并求系统的相位裕量和增益裕量;引入超前校正后,系统稳定,相位裕量为89.9893,增益裕量为9.9662e+003





(3) 求闭环系统的谐振峰值  $M_{p\omega}$  和谐振角频率  $\omega_r$ ;若以二阶系统来近似,求系统的阻尼比  $\varsigma$  和无阻尼振荡角频率  $\omega_n$ ,以及超调量  $M_p$  和按 2% 误差准则的调整时间  $t_s$ ;

$$|M(s)| = \frac{K_r}{\sqrt{(K_r - 35w^2)^2 + (250w - w^3)^2}}$$

要使上式最大,则  $K_r - 35w^2 = 0$  ,  $250w - w^3 = 0$  , 得, Kr = 8750 ,  $\omega_r = 15.8$ 

以二阶系统来近似,
$$G(s) = \frac{K_r}{s(s+10)} = \frac{8750}{s(s+10)}$$
, $\omega_n = 93.5$ 

$$\omega_r = \omega_n \sqrt{1 - 2\xi^2} = 15.8$$
,  $\xi = 0.697$ ,  $M_{p\omega} = \frac{1}{2\xi\sqrt{1 - \xi^2}} = 1$ ,  $t_s = 0.06$ 

C5-5 用伯德图完成题 C4-2 的计算。原单位反馈系统,其开环传递函数为:

$$G(s) = \frac{1}{s^2 + 5s + 6}$$

(1) 绘制系统的伯德图,并求系统的相位裕量和增益裕量;

$$G(s) = \frac{1}{s^2 + 5s + 6} = \frac{1}{6} \frac{1}{(s/2 + 1)(s/3 + 1)}$$

极点:  $\omega_1 = 2, \omega_2 = 3$ 

零点:无

 $20\lg K = 20\lg(1/6) = -15.56$ 

积分因子  $\nu$  =0,所以其幅频特性图低频段是一条经过  $\omega$  =1,L(1)=-15.56dB,斜率为 0dB/dec 的直线,图像在  $\omega$  =2 处折线斜率减少到-20dB/dec,像在  $\omega$  =3 处折线斜率减少到-30dB/dec,具体如下图: 从图中我们可以得到  $\omega_c$  =0.08。





相位裕量为无穷大 , 增益裕量为无穷大

(2) 求系统的稳态误差系数  $K_p$  ,  $K_v$  和  $K_a$  ;

$$K_p = 1/6$$
,  $K_v = 0$ ,  $K_a = 0$ 

(3) 若希望将系统的稳态误差系数增大到原来的10倍,引入滞后校正装置:

$$G_c(s) = K_c \cdot \frac{s + 0.05}{s + 0.005}$$

校正装置的  $K_c$  应为多大? 100

(4) 绘制校正后系统的伯德图,并计算校正后系统的稳态误差系数;

$$G(s) = \frac{1}{s^2 + 5s + 6} = \frac{1000}{6} \frac{20s + 1}{(s/2 + 1)(s/3 + 1)(200s + 1)}$$

极点:  $\omega_1 = 2, \omega_2 = 3, \omega_2 = 0.005$ 

零点:  $\omega_1 = 0.05$ 

 $20 \lg K = 20 \lg (1000/6) = 44.4$ 





校正后的稳态误差为原来的 10 倍

(5) 求校正后系统的相位裕量和增益裕量,并与校正前进行比较。

校正后,相位裕量为101.3234,增益裕量为无穷大

C5-6 用伯德图完成题 C4-3 的计算。原单位反馈系统,其开还传递函数为:

$$G(s) = \frac{3}{s(s+1)}$$

引入超前一滞后校正装置:

$$G_c(s) = \frac{(s+1)(s+0.1)}{(s+1.25)(s+0.008)}$$

(1) 绘制原系统的伯德图,并求系统的相位裕量和增益裕量和速度误差系数  $K_v$ ;

$$G(s) = \frac{3}{s(s+1)}$$

极点:  $\omega_1 = 0, \omega_2 = 1$ 

零点:无

201g K = 201g 3 = 9.54





相位裕量为32.0994,增益裕量为无穷大,Kv=3

(2) 求原系统的单位阶跃响应;



(3) 绘制引入校正装置后系统的伯德图,并求系统的相位裕量和增益裕量、速度误差系数  $K_v$  和速度误差系数  $K_v$  :

$$G(s)G_c(s) = \frac{(s+1)(s+0.1)}{(s+1.25)(s+0.008)} \frac{3}{s(s+1)} = \frac{30(10s+1)}{(s/1.25+1)(125s+1)}$$

极点:  $\omega_1 = 0.008, \omega_2 = 1.25$ 

零点: 0.1

 $20 \lg K = 20 \lg 30 = 29.54$ 



Matlab 画图结果如下:



相位裕量为: 40.4258 增益裕量为: 无穷大, $K_{v}$ =26.4

(4) 求校正前后系统的单位阶跃响应,并进行比较,说明校正装置的作用。 校正后的单位阶跃响应:



## D MATLAB 题

D5-1 用 MATLAB 的 bode 命令绘制题 A5-1(1)、(2)、(3)、(4)各系统的伯德图,并在图上标出系统的相位裕量和增益裕量。

(1) Matlab 画图结果如下:

$$\omega_c$$
 =0.0663

$$\omega_g$$
 =无穷大



(2) Matlab 画图结果如下:

$$\omega_g$$
 = 14.4;  $\omega_c$  = 0.112



(3) Matlab 画图结果如下:

$$\omega_{\rm g}$$
 =无穷大

$$\omega_c$$
 = 5.65



(4) Matlab 画图结果如下:

$$\omega_g$$
 =10

$$\omega_c$$
 = 6.42



D5-2 用 MATLAB 的 nyquist 命令绘制题 A5-1(1)、(2)、(3)、(4)各系统的奈氏图,并在图上标出系统的相位裕度和增益裕度。

# (图中绿色曲线为单位圆)

(1)

γ约为-90度, Gm > 1(太小, 无法标出)



(2) γ约为-90度, Gm > 1(太小, 无法标出)



# (3) $\gamma$ 为负实轴到红色直线的夹角(负值), Gm > 1(太小, 无法标出)



(4)



D5-3 用 MATLAB 的 nichols 和 ngrid 命令绘制题 A5-1(1)、(2)、(3)、(4)各系统的奈氏图,并在图上标出系统的相位裕量和增益裕量。

(1)



(2)



(3)



(4)



D5-4 用 MATLAB 的 m arg in 命令求题 A5-1(1)、(2)、(3)、(4)各系统的相位裕量和增益裕量。

(1)



(2)



(3)



(4)



D5-5 一单位反馈系统的开环传递函数为:

$$G(s) = \frac{Ke^{-Ts}}{s+1}$$

- (1) K=9.0
- (2) 利用所求的 K 值,绘制在  $0 \le T \le 0.2s$  范围内相位裕量与 K 的关系曲线。



[num,den]=pade(T,N)