Chapter 2

2-1 From Table A-20

$$S_{ut} = 470 \,\text{MPa} \,(68 \,\text{kpsi}), \quad S_y = 390 \,\text{MPa} \,(57 \,\text{kpsi}) \quad \textit{Ans.}$$

2-2 From Table A-20

$$S_{ut} = 620 \,\text{MPa} \,(90 \,\text{kpsi}), \quad S_y = 340 \,\text{MPa} \,(49.5 \,\text{kpsi}) \quad Ans.$$

2-3 Comparison of yield strengths:

$$S_{ut}$$
 of G10 500 HR is $\frac{620}{470} = 1.32$ times larger than SAE1020 CD Ans.

$$S_{yt}$$
 of SAE1020 CD is $\frac{390}{340} = 1.15$ times larger than G10500 HR Ans.

From Table A-20, the ductilities (reduction in areas) show,

SAE1020 CD is
$$\frac{40}{35} = 1.14$$
 times larger than G10500 Ans.

The stiffness values of these materials are identical Ans.

S_{ut} MPa (kpsi)	S _y MPa (kpsi)	Table A-20 Ductility <i>R</i> %	Table A-5 Stiffness GPa (Mpsi)
SAE1020 CD 470(68)	390 (57)	40	207(30)
UNS10500 HR 620(90)	340(495)	35	207(30)

2-4 From Table A-21

1040 Q&T
$$\bar{S}_y = 593 (86) \text{ MPa (kpsi)}$$
 at 205°C (400°F) Ans.

2-5 From Table A-21

1040 Q&T
$$R = 65\%$$
 at 650°C (1200°F) Ans.

2-6 Using Table A-5, the specific strengths are:

UNS G10350 HR steel:
$$\frac{S_y}{W} = \frac{39.5(10^3)}{0.282} = 1.40(10^5)$$
 in Ans.

2024 T4 aluminum:
$$\frac{S_y}{W} = \frac{43(10^3)}{0.098} = 4.39(10^5)$$
 in Ans.

Ti-6Al-4V titanium:
$$\frac{S_y}{W} = \frac{140(10^3)}{0.16} = 8.75(10^5)$$
 in Ans.

ASTM 30 gray cast iron has no yield strength. Ans.

2-7 The specific moduli are:

UNS G10350 HR steel:
$$\frac{E}{W} = \frac{30(10^6)}{0.282} = 1.06(10^8)$$
 in Ans.

2024 T4 aluminum:
$$\frac{E}{W} = \frac{10.3(10^6)}{0.098} = 1.05(10^8)$$
 in Ans.

Ti-6Al-4V titanium:
$$\frac{E}{W} = \frac{16.5(10^6)}{0.16} = 1.03(10^8)$$
 in Ans.

Gray cast iron:
$$\frac{E}{W} = \frac{14.5(10^6)}{0.26} = 5.58(10^7)$$
 in Ans.

2-8 $2G(1+\nu) = E \quad \Rightarrow \quad \nu = \frac{E-2G}{2G}$

From Table A-5

Steel:
$$v = \frac{30 - 2(11.5)}{2(11.5)} = 0.304$$
 Ans.

Aluminum:
$$v = \frac{10.4 - 2(3.90)}{2(3.90)} = 0.333$$
 Ans.

Beryllium copper:
$$v = \frac{18 - 2(7)}{2(7)} = 0.286$$
 Ans.

Gray cast iron:
$$v = \frac{14.5 - 2(6)}{2(6)} = 0.208$$
 Ans.

2-9

2-10 To plot σ_{true} vs. ε , the following equations are applied to the data.

$$A_0 = \frac{\pi (0.503)^2}{4} = 0.1987 \, \mathrm{in}^2$$
 Eq. (2-4)
$$\varepsilon = \ln \frac{l}{l_0} \quad \text{for} \quad 0 \le \Delta L \le 0.0028 \, \mathrm{in}$$

$$\varepsilon = \ln \frac{A_0}{A} \quad \text{for} \quad \Delta L > 0.0028 \, \mathrm{in}$$

$$\sigma_{\mathrm{true}} = \frac{P}{A}$$

The results are summarized in the table below and plotted on the next page. The last 5 points of data are used to plot $\log \sigma$ vs $\log \varepsilon$

The curve fit gives m = 0.2306 $\log \sigma_0 = 5.1852 \implies \sigma_0 = 153.2 \text{ kpsi}$ Ans.

For 20% cold work, Eq. (2-10) and Eq. (2-13) give,

$$A = A_0(1 - W) = 0.1987(1 - 0.2) = 0.1590 \text{ in}^2$$

 $\varepsilon = \ln \frac{A_0}{A} = \ln \frac{0.1987}{0.1590} = 0.2231$

Eq. (2-14):

$$S_y' = \sigma_0 \varepsilon^m = 153.2(0.2231)^{0.2306} = 108.4 \,\mathrm{kpsi}$$
 Ans.

Eq. (2-15), with $S_u = 85.5$ kpsi from Prob. 2-9,

$$S'_u = \frac{S_u}{1 - W} = \frac{85.5}{1 - 0.2} = 106.9 \,\text{kpsi}$$
 Ans.

P	ΔL	A	ε	$\sigma_{ m true}$	$\log \varepsilon$	$\log \sigma_{ m true}$
0	0	0.198713	0	0		
1000	0.0004	0.198713	0.0002	5032.388	-3.69901	3.701774
2000	0.0006	0.198713	0.0003	10064.78	-3.52294	4.002 804
3 000	0.0010	0.198713	0.0005	15 097.17	-3.30114	4.178 895
4000	0.0013	0.198713	0.00065	20129.55	-3.18723	4.303 834
7000	0.0023	0.198713	0.001 149	35 226.72	-2.93955	4.546872
8400	0.0028	0.198713	0.001399	42 272.06	-2.85418	4.626053
8 800	0.0036	0.1984	0.001575	44 354.84	-2.80261	4.646 941
9200	0.0089	0.1978	0.004604	46511.63	-2.33685	4.667 562
9 100		0.1963	0.012216	46357.62	-1.91305	4.666 121
13 200		0.1924	0.032284	68 607.07	-1.49101	4.836369
15 200		0.1875	0.058082	81 066.67	-1.23596	4.908 842
17000		0.1563	0.240083	108765.2	-0.61964	5.03649
16400		0.1307	0.418956	125 478.2	-0.37783	5.098 568
14800		0.1077	0.612511	137418.8	-0.21289	5.138 046

2-11 Tangent modulus at $\sigma = 0$ is

$$E_0 = \frac{\Delta \sigma}{\Delta \varepsilon} \doteq \frac{5000 - 0}{0.2(10^{-3}) - 0} = 25(10^6) \text{ psi}$$

At $\sigma = 20 \text{ kpsi}$

$$E_{20} \doteq \frac{(26-19)(10^3)}{(1.5-1)(10^{-3})} = 14.0(10^6) \text{ psi} \quad Ans.$$

$\varepsilon(10^{-3})$	σ (kpsi)
0	0
0.20	5
0.44	10
0.80	16
1.0	19
1.5	26
2.0	32
2.8	40
3.4	46
4.0	49
5.0	54

2-12 Since
$$|\varepsilon_o| = |\varepsilon_i|$$

$$\left| \ln \frac{R+h}{R+N} \right| = \left| \ln \frac{R}{R+N} \right| = \left| -\ln \frac{R+N}{R} \right|$$

$$\frac{R+h}{R+N} = \frac{R+N}{R}$$

$$(R+N)^2 = R(R+h)$$

From which,

$$N^2 + 2RN - Rh = 0$$

The roots are:

$$N = R \left[-1 \pm \left(1 + \frac{h}{R} \right)^{1/2} \right]$$

The + sign being significant,

$$N = R \left\lceil \left(1 + \frac{h}{R} \right)^{1/2} - 1 \right\rceil \quad Ans.$$

Substitute for *N* in

$$\varepsilon_o = \ln \frac{R+h}{R+N}$$

Gives

$$\varepsilon_0 = \ln \left[\frac{R+h}{R+R\left(1+\frac{h}{R}\right)^{1/2}-R} \right] = \ln \left(1+\frac{h}{R}\right)^{1/2}$$
 Ans.

These constitute a useful pair of equations in cold-forming situations, allowing the surface strains to be found so that cold-working strength enhancement can be estimated.

2-13 From Table A-22

AISI 1212
$$S_y = 28.0 \text{ kpsi}, \quad \sigma_f = 106 \text{ kpsi}, \quad S_{ut} = 61.5 \text{ kpsi}$$

$$\sigma_0 = 110 \text{ kpsi}, \quad m = 0.24, \qquad \varepsilon_f = 0.85$$

From Eq. (2-12)
$$\varepsilon_u = m = 0.24$$

Eq. (2-10)
$$\frac{A_0}{A_i'} = \frac{1}{1 - W} = \frac{1}{1 - 0.2} = 1.25$$

Eq. (2-13)
$$\varepsilon_i = \ln 1.25 = 0.2231 \quad \Rightarrow \quad \varepsilon_i < \varepsilon_u$$

Eq. (2-14)
$$S'_{y} = \sigma_0 \varepsilon_i^m = 110(0.2231)^{0.24} = 76.7 \text{ kpsi}$$
 Ans.

Eq. (2-15)
$$S'_u = \frac{S_u}{1 - W} = \frac{61.5}{1 - 0.2} = 76.9 \text{ kpsi} \quad Ans.$$

2-14 For $H_B = 250$,

Eq. (2-17)
$$S_u = 0.495 (250) = 124 \text{ kpsi}$$
$$= 3.41 (250) = 853 \text{ MPa}$$
 Ans.

Chapter 2 11

2-15 For the data given,

$$\sum H_B = 2530 \quad \sum H_B^2 = 640226$$

$$\bar{H}_B = \frac{2530}{10} = 253 \quad \hat{\sigma}_{HB} = \sqrt{\frac{640226 - (2530)^2 / 10}{9}} = 3.887$$

Eq. (2-17)

$$\bar{S}_u = 0.495(253) = 125.2 \text{ kpsi}$$
 Ans.
 $\bar{\sigma}_{su} = 0.495(3.887) = 1.92 \text{ kpsi}$ Ans.

2-16 From Prob. 2-15, $\bar{H}_B = 253$ and $\hat{\sigma}_{HB} = 3.887$

Eq. (2-18)

$$\bar{S}_u = 0.23(253) - 12.5 = 45.7 \text{ kpsi}$$
 Ans.
 $\hat{\sigma}_{su} = 0.23(3.887) = 0.894 \text{ kpsi}$ Ans.

2-17 (a) $u_R \doteq \frac{45.5^2}{2(30)} = 34.5 \text{ in} \cdot \text{lbf/in}^3$ Ans.

(b)

P	ΔL	A	$A_0/A - 1$	ε	$\sigma = P/A_0$
0	0			0	0
1 000	0.0004			0.0002	5 032.39
2000	0.0006			0.0003	10 064.78
3 000	0.0010			0.0005	15 097.17
4 000	0.0013			0.00065	20 129.55
7 000	0.0023			0.00115	35 226.72
8 400	0.0028			0.0014	42 272.06
8 800	0.0036			0.0018	44 285.02
9 200	0.0089			0.00445	46 297.97
9 100		0.1963	0.012291	0.012291	45 794.73
13 200		0.1924	0.032811	0.032811	66 427.53
15 200		0.1875	0.059802	0.059802	76492.30
17 000		0.1563	0.271355	0.271 355	85 550.60
16400		0.1307	0.520373	0.520373	82 531.17
14800		0.1077	0.845 059	0.845 059	74 479.35

$2-18 \quad m = Al\rho$

For stiffness, k = AE/l, or, A = kl/E.

Thus, $m = kl^2 \rho / E$, and, $M = E / \rho$. Therefore, $\beta = 1$

From Fig. 2-16, ductile materials include Steel, Titanium, Molybdenum, Aluminum, and Composites.

For strength, S = F/A, or, A = F/S.

Thus, $m = Fl \rho/S$, and, $M = S/\rho$.

From Fig. 2-19, lines parallel to S/ρ give for ductile materials, Steel, Nickel, Titanium, and composites.

Common to both stiffness and strength are Steel, Titanium, Aluminum, and Composites. *Ans*.

