Chapter 8.3 Bayesian Inference with Discrete Priors

Jim Albert and Monika Hu

Chapter 8 Modeling Measurement and Count Data

Example: Roger Federer's time-to-serve

- ▶ Want to measure efficiency of a server in tennis
- Consider the time-to-serve which is the measured time in seconds between the end of the previous point and the beginning of the current point.
- ▶ How long, on average, is Roger Federer's time-to-serve?

Data

- Suppose one collects a single time-to-serve measurement in seconds denoted as Y.
- Assume Y is Normally distributed with unknown mean μ and standard deviation $\sigma = 4$.
- Assume that the standard deviation σ of the measurement distribution is known and the objective is to learn about the single mean measurement μ .

Normal density

▶ Recall the Normal probability curve has the general form

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}, -\infty < y < \infty.$$

- Since σ is known, the only parameter in Equation (8.3) is μ .
- We are interested in learning about the mean time-to-serve μ .

A discrete prior

- ightharpoonup Specify a subjective discrete prior for Federer's mean time-to-serve by specifying a list of plausible values for μ and assigning a probability to each of these values.
- Suppose one thinks that values of the equally spaced values $\mu=$ 15, 16, . . . , 22 are plausible.
- Assign a Uniform prior will be assigned where each value of μ is assigned the same probability 1/8.

The prior

ightharpoonup Each value of μ corresponds to a particular Normal sampling curve for the time-to-serve measurement. Each sampling curve has the same prior probability.

Data

- ightharpoonup One collects a single time-to-serve measurement for Federer, and suppose it is Y=15.1 seconds.
- The likelihood function is the Normal density of the actual observation u viewed as a function of the mean μ .
- ▶ By substituting in the observation y = 15.1 and the known value of $\sigma = 4$, one obtains

$$L(\mu) = \frac{1}{\sqrt{2\pi}4} \exp\left\{-\frac{1}{2(4)^2}(15.1 - \mu)^2\right\}.$$

This calculation is repeated for each of the eight values μ =15,16, ..., 22, obtaining eight likelihood values.

Posterior

- One applies Bayes' rule to obtain the posterior distribution for μ .
- ▶ The posterior probability of the value $\mu = \mu_i$ given the data y for a discrete prior has the form

$$\pi(\mu_i \mid y) = \frac{\pi(\mu_i) \times L(\mu_i)}{\sum_j \pi(\mu_j) \times L(\mu_j)},$$

where $\pi(\mu_i)$ is the prior probability of $\mu = \mu_i$ and $L(\mu_i)$ is the likelihood function evaluated at $\mu = \mu_i$.

Table of posterior probabilties

μ	Prior	Data/Likelihood	Posterior
15	0.125	0.0997	0.1888
16	0.125	0.0972	0.1842
17	0.125	0.0891	0.1688
18	0.125	0.0767	0.1452
19	0.125	0.0620	0.1174
20	0.125	0.0471	0.0892
21	0.125	0.0336	0.0637
22	0.125	0.0225	0.0427

Inference

- ▶ The posterior distribution for μ favors values $\mu = 15$, and 16.
- ▶ The posterior probabilities decrease as a function of μ .
- ▶ The sample mean is y=15.1 and the μ value closest to the sample mean (μ =15) is assigned the highest posterior probability.

Multiple measurements

- Suppose one collects n time-to-serve measurements, denoted as $Y_1, ..., Y_n$, that are Normally distributed with mean μ and fixed standard deviation $\sigma = 4$.
- Each observation follows the same Normal density

$$f(y_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(y_i - \mu)^2}{2\sigma^2}\right\}, -\infty < y_i < \infty.$$

- Since $\sigma = 4$ is known, the only parameter is μ and we are interested in learning about this mean parameter μ .
- ▶ The same discrete Uniform prior is used for μ .

The data

Suppose one collects a sample of 20 times-to-serve for Federer:

15.1 11.8 21.0 22.7 18.6 16.2 11.1 13.2 20.4 19.2 21.2 14.3 18.6 16.8 20.3 19.9 15.0 13.4 19.9 15.3

- The likelihood function is the joint density of the actual observed values $y_1, ..., y_n$ viewed as a function of the mean μ .
- After some algebra, one obtains

$$L(\mu) = \exp\left\{-\frac{20}{2(4)^2}(\bar{y} - \mu)^2\right\}$$

The likelihood

- Substitute the known values n=20 and the standard deviation $\sigma=4$.
- Compute the sample mean $\bar{y} = (15.1 + 11.8 + ... + 15.3)/20 = 17.2$
- For each possible value of μ , we substitute the value to find the corresponding likelihood.
- ▶ For example, the likelihood of $\mu = 15$ is equal to

$$L(15) = \exp\left\{-\frac{20}{2(4)^2}(17.2 - 15)^2\right\} \approx 0.022.$$

This calculation is repeated for each of the eight values $\mu = 15, 16, \dots, 22$, obtaining eight likelihood values.

The posterior

- ▶ Apply Bayes' rule to obtain the posterior distribution for μ .
- ► The posterior probability of $\mu = \mu_i$ given the sequence of recorded times-to-serve $y_1, ..., y_n$

$$\pi(\mu_i \mid y_1, \cdots, y_n) = \frac{\pi(\mu_i) \times L(\mu_i)}{\sum_j \pi(\mu_j) \times L(\mu_j)},$$

where $\pi(\mu_i)$ is the prior probability of $\mu = \mu_i$ and $L(\mu_i)$ is the likelihood function evaluated at $\mu = \mu_i$.

Table of posterior probabilities

$\overline{\mu}$	Prior	Data/Likelihood	Posterior
15	0.125	0.0217	0.0217
16	0.125	0.1813	0.1815
17	0.125	0.4350	0.4353
18	0.125	0.2990	0.2992
19	0.125	0.0589	0.0589
20	0.125	0.0033	0.0033
21	0.125	0.0001	0.0001
22	0.125	0.0000	0.0000

Graph of prior and posterior

Posterior for μ favors the values $\mu=$ 16, 17, and 18 seconds.

Inference: Federer's time-to-serve

- lackbox Our prior said that any of the eight possible values of μ were equally likely with probability 0.125.
- After observing the sample of 20 measurements, one believes μ is most likely 16, 17, and 18 seconds, with respective probabilities 0.181, 0.425, and 0.299.
- \blacktriangleright μ is in the set {16, 17, 18} seconds with probability 0.915.

$$P(16 \le \mu \le 18) = 0.181 + 0.435 + 0.299 = 0.915$$

This region of values of μ is called a 91.5% posterior probability region for the mean time-to-serve μ .