- Supplemental Material for the manuscript 'TANGO: A reliable, open-source, browser-based
- task to assess individual differences in gaze understanding in 3 to 5-year-old children and
- adults'
- Julia Prein¹, Manuel Bohn^{1,2}, Steven Kalinke¹, & Daniel B. M. Haun¹
- $^{-1}$ Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary
- Anthropology, Leipzig, Germany
- ² Institute of Psychology, Leuphana University Lüneburg, Germany

- 8 Supplemental Material for the manuscript 'TANGO: A reliable, open-source, browser-based
- task to assess individual differences in gaze understanding in 3 to 5-year-old children and adults'

Effects of trial type and trial number

12 Children showed nearly perfect precision in the first training trial. As visual access to

11

- the target location decreased in the succeeding training trials, imprecision levels increased.
- Within test trials, children's imprecision levels did not vary as a function of trial number.

Figure 1. Imprecision by trial type, split by study version and sample. The x axis represents the trial type. The y axis represents imprecision, i.e., the absolute distance between the target's center and the participant's click. The unit of imprecision is counted in the width of the target, i.e., a participant with imprecision of 1 clicked one target width to the left or right of the true target center. Small dots show the imprecision for each subject in each trial. Boxplots (boxes represent first to third quartiles of data; vertical lines indicate the median; horizontal black lines display the range) and a half violin plot show the data distribution.

Figure 2. Imprecision across test trials, split by study version and sample. The x axis represents trial number. The y axis represents imprecision, i.e., the absolute distance between the target's center and the participant's click. The unit of imprecision is counted in the width of the target, i.e., a participant with imprecision of 1 clicked one target width to the left or right of the true target center. The black dashed regression lines show smooth conditional means based on linear models. Small colored dots show the imprecision for each subject in each trial. Colored lines connect the trials of each individual.

Webcam coding of the child sample

15

Figure 3. Model comparison for exploratory webcam coding of parental interference. Factors of parental interference and their influence on the probability of responding correctly. The graph shows the estimated density curves of a model's predictor coefficient. Models are ordered according to their WAIC scores in the trial-by-trial analysis, with the uppermost winning the model comparison. (A) Analysis on a trial-by-trial level. (B) Analysis on a subject level (i.e., average across trials per subject).

Comparing the performances of children across our two data collection modes, we 16 found that children participating remotely were slightly more precise. This difference was 17 especially prominent in younger participants in the box version of the task. It is 18 conceivable that caregivers were especially prone to influence the behavior of younger 19 children. In the box version, caregivers might have had more opportunities to interfere 20 since they carried out the clicking for their children. In an exploratory analysis, we coded parental behavior and environmental factors during remote unsupervised testing. Due to the time consuming nature of hand coding videos frame by frame, we focused on the subsample with the greatest performance difference between data collection modes: the three-year-olds in the box version of the task (n = 0). We reasoned that if parental 25 interference cannot explain the greatest performance difference in our sample, the effects

would be negligible in the remaining sample. A trial was defined as the time between two eye blinking sounds. We transcribed all utterances by parents and children and counted the 28 words uttered by each. We then classified the utterances into several categories: question 29 asked by child, repeated test questions by caregiver, hints towards agents (how many times 30 the caregivers guided the child's attention to the agent), hints towards eyes (how many 31 times the caregivers guided the child's attention to the agent's eyes), verification of choice (how many times the caregiver questioned or double checked the child's response), 33 mentioning of screen (how many times the caregiver verbally guided the child's attention to the screen), pointing to screen (how many times the caregiver pointed towards the screen), 35 positive & negative feedback, motivational statements, and incomprehensible utterances. In addition, we coded how many adults and children were present, whether a response click 37 was obviously conducted by the caregiver themselves, and whether children took a break during the trial. We conducted a model comparison to estimate the effects of parental interference. Our null model explained the response behavior by age, while including random effects for subject and target position (model notation in R: correct ~ age + symmetricPosition + (1 + symmetricPosition | subjID). 42

We compared this null model to models including the number of words uttered by the
caregiver, number of repeated testquestions, verification of choice, or hints towards eyes as
fixed effects. Furthermore, we calculated an parental interference index by summing up
number of repeated testquestions, verification of choice, and hints towards eyes, with the
sign matching the variable's direction of effect. Remaining variables that we coded for were
not included since there was not enough variation and/or occurrences in our sample. We
compared models using WAIC (widely applicable information criterion) scores and weights.
As an indicator of out-of-sample predictive accuracy, lower WAIC scores stand for a better
model fit. WAIC weights represent the probability that the model in question provides the
best out-of-sample prediction compared to the other models. On the trial level, the model
including the verification of choice as a main effect performed best: here, the less the

caregivers asked for children's responses again, the more likely children clicked on the
correct box. Interestingly, the effect reversed on a subject level - possibly due to greater
learning effects for the children that were most likely to click incorrectly in the beginning
and then receiving most parental comments. On the subject level, the model including
number of repeated test questions performed best: the more caregivers asked again where
the target landed, the more likely children were to respond to the incorrect box. In all
cases, however, ELPD difference scores were smaller than their standard errors. Similarly,
95% CI of the model estimates included zero and were rather wide. Therefore, we conclude
that the effect of parental interference was negligable and could, most likely, be explained
as described above.

Predictor	WAIC	SE_WAIC	Weight	ELPD_DIFF	SE_ELPD_DIFF
By trial - Null model	256.42	15.10	0.31	0.00	0.00
By trial - # Verification choice	256.57	15.46	0.29	-0.07	1.08
By trial - Parental interference index	258.08	15.38	0.14	-0.83	0.76
By trial - # Repeated testquestion	258.83	15.25	0.09	-1.20	0.61
By trial - # Hints eyes	258.88	15.30	0.09	-1.23	0.50
By trial - $\#$ Words uttered by caregiver	259.15	15.39	0.08	-1.37	0.36
By subject - # Repeated testquestion	83.45	10.20	0.82	0.00	0.00
By subject - Parental interference index	88.17	12.15	0.08	-2.36	3.55
By subject - Null model	89.36	11.28	0.04	-2.96	3.59
By subject - $\#$ Verification choice	89.94	12.01	0.03	-3.25	4.44
By subject - $\#$ Words uttered by caregiver	90.50	10.62	0.02	-3.52	4.19
By subject - # Hints eyes	93.02	11.84	0.01	-4.78	3.71

Reliability by age group

64

Figure 4. Reliability split by age group. (A) Internal consistency (odd-even split) in hedge child sample by age group. (B) Test-retest reliability in hedge child sample by age group. (C) Internal consistency (odd-even split) in box child sample by age group. (D) Test-retest reliability in box child sample by age group. For the hedge version, performance is measured as imprecision, i.e., the absolute distance between the target's center and the participant's click (averaged across trials). The unit of imprecision is counted in the width of the target, i.e., a participant with imprecision of 1 clicked on average one target width to the left or right of the true target center. For the box version, performance is measured as the proportion of correct responses, i.e., how many times the participant clicked on the box that contained the target. Regression lines with 95% CI show smooth conditional mean based on a linear model (generalized linear model for box version), with Pearson's correlation coefficient r. Dots show the performance for each subject. The color of data points denotes age group.

Validity

66 Social-environmental factors

```
We included all children where families filled out a short
        Participants.
67
   demographic questionnaire. This subsample consisted of 109 children, including 30
68
   3-year-olds (mean = 41.80 months, SD = 3.44, range = 36 - 47), 36 4-year-olds (mean =
   54.19 \text{ months}, SD = 3.08, range = 48 - 59), and 43 \text{ 5-vear-olds} (mean = 66.28 \text{ months}, SD
   = 3.62, range = 60 - 71).
                     To estimate social environmental influences on gaze understanding, we
72
   fitted GLMMs predicting the task performance by each of our questionnaire variables,
73
   controlling for age (scaled), data collection mode (reference category: remote unsupervised)
74
   and study version (reference category: box version): cor tango | trials(n tango) ~
75
   age + datacollection + studyversion). In order to combine data of our two study
76
   versions, we transformed continuous click responses from the hedge version into a discrete
   outcome. For the target position, we categorized two adjacent bins as one imaginary box.
78
   To measure participants' performance, we created imaginary box boundaries around the
   target's landing position and examined whether the participant's click response fell into
   this imaginary box. Across the two study versions, we could consequently model the
   number of participant's correct responses using a Binomial distribution. For model
   comparisons, we ran separate models, each with one of the following predictors as a fixed
   effects added to the null model: number of household members, number of children aged
   0-18 in household, number of children aged 1-12 in household, hours spent in childcare each
   day, and age when subject entered childcare. In addition, we calculated three index scores.
   First, we calculated a sibling variety score according to Peterson (2000). Second, we
   implemented the modified version of Cassidy, Fineberg, Brown, and Perkins (2005). Third,
   based on our own data exploration, we calculated the amount of peer exposure determined
   as the number of siblings and the average hours spent in childcare. We compared the
```

models using WAIC (widely applicable information criterion) scores and weights
(McElreath, 2020). As an indicator of out-of-sample predictive accuracy, lower WAIC

 $_{93}$ scores stand for a better model fit. WAIC weights represent the probability that the model

in question provides the best out-of-sample prediction compared to the other models.

Predictor	WAIC	SE_WAIC	Weight	ELPD_DIFF	SE_ELPD_DIFF
Age of childcare entry	571.54	28.09	0.72	0.00	0.00
Null model	575.80	30.43	0.09	-2.13	4.51
# Children in household aged 0-18	577.29	29.61	0.04	-2.88	4.70
Peer exposure index	577.90	30.20	0.03	-3.18	4.65
# Children in household aged 1-12	578.02	29.93	0.03	-3.24	4.69
Sibling variety score (Cassidy et al., 2005)	578.15	29.85	0.03	-3.31	4.66
Sibling variety score (Peterson, 2000)	578.21	29.84	0.03	-3.34	4.64
# Household members	578.30	30.32	0.02	-3.38	4.48
Average hours spent in childcare per day	579.04	30.66	0.02	-3.75	4.56

Note that we did not find a great difference in WAIC scores between the 95 compared models (see Supplements for WAIC scores and weights). The model estimates were all considerably smaller than estimates of age, study version and data collection, and all 95% CIs included zero. Nevertheless, a general pattern emerges: exposure to a more variable social environment positively influenced children's gaze understanding. The number of people and, more specifically, children, as well as the more diverse their age, the 100 more likely children were to understand the agent's gaze cue. The only predictor resulting in a negative estimate was the age at which a participant entered childcare, i.e., the later a child entered, the better performance in the task. Effect sizes were probably influenced by 103 the lack of variance in the predictors: variables like household size and number of siblings 104 typically vary very little among German households (see distribution characteristics of 105 predictor variables below).

	n	mean	sd	min	max	skew	kurtosis	se
Age of childcare entry in months	109	14.96	5.54	1.0	40	1.72	5.65	0.53
Average hours spent in childcare per day	109	7.50	0.92	3.5	9	-0.67	1.92	0.09
# Household members	109	3.72	0.92	2.0	7	0.30	0.49	0.09
# Children in household aged 0-18	109	0.83	0.79	0.0	4	0.87	1.09	0.08
# Children in household aged 1-12	109	0.69	0.74	0.0	4	1.23	2.67	0.07
Sibling variety score (Peterson, 2000)	109	0.60	0.56	0.0	2	0.23	-0.87	0.05
Sibling variety score (Cassidy et al., 2005)	109	0.63	0.54	0.0	2	0.18	-0.70	0.05

107 Receptive vocabulary

Participants. Our sample consisted of 117 children, including 11 3-year-olds (mean = 45.05 months, SD = 1.58, range = 43 - 47, 26 4-year-olds (mean = 53.17 months, SD = 3.01, range = 48 - 57), 32 5-year-olds (mean = 65.80 months, SD = 3.23, range = 61 - 71), 36 6-year-olds (mean = 78.36 months, SD = 3.26, range = 72 - 84), and 12 7-year-olds (mean = 88.11 months, SD = 1.96, range = 84 - 91).

Materials. We employed the oREV, an Item Response Theory based open receptive vocabulary task for 3 to 8-year-old children (Bohn et al., 2022). Similarly to the TANGO, the task was presented as an interactive web application (see Figure 5; live demo https://ccp-odc.eva.mpg.de/orev-demo/; source code https://github.com/ccp-eva/orev-demo).

Each trial presented four pictures: one target word alongside three distractors (1
phonological, 1 semantic, 1 unrelated distractor). A verbal prompt asked children to select
one of the pictures (prompt: "Zeige mir [target word]"; engl.: "Show me [target word]").
The positioning of the target word and the three distractor types was counterbalanced
across the four display positions (upper/lower and left/right corners). Children responded
by clicking on one of the four pictures. The outcome measure consisted of the proportion of
correct responses.

Procedure. Families received a personalized study link and completed the study at any location or time they wanted. Caregivers were asked to only provide technical support

Figure 5. Setup of the oREV. On each trial, participants heard a word and were asked to select the corresponding picture. Verbal prompts could be replayed by pressing the loud-speaker button.

but no further help. Webcam recordings were done whenever consented and technically possible. We analyzed data of 20 trials per child. Children received the trials in two different orders. Performance across the two study orders did not differ. Hence, we decided to combine the data.

To estimate the effect of gaze understanding on receptive vocabulary, we 131 fitted a GLMM predicting the task performance by the gaze understanding score (scaled), 132 controlling for age: cor_clt | trials(n_clt) ~ age_centered + 133 mean_gaze_centered). We modelled the number of participant's correct responses using a 134 Binomial distribution. In order to combine data of our two TANGO study versions, we 135 transformed continuous click responses from the hedge version into a discrete outcome. 136 After this transformation, we calculated a "TANGO score" as the proportion of correctly 137 located targets. See Analysis section of Social-environmental factors for further detail. 138

Predictor	WAIC	SE_WAIC	Weight	ELPD_DIFF	SE_ELPD_DIFF
Age (scaled), TANGO score (scaled)	570.16	26.38	0.98	0.00	0.00
Age (scaled)	577.66	27.16	0.02	-3.75	4.16
Null model	635.72	28.70	0.00	-32.78	10.62

Results.

Figure 6. Effect of gaze understanding on receptive vocabulary by age group. Regression lines with 95% CI show smooth conditional mean based on a linear model (generalized linear model for box version), with Pearson's correlation coefficient r. Diamonds show the performance for each subject. The color of data points denotes age group.

Additional information for the adult sample

140

currentResidence	studytype	n
United Kingdom	vali	47
South Africa	vali	8
Portugal	vali	6
Poland	vali	5
Ireland	vali	5
Italy	vali	4
Spain	vali	4
Netherlands	vali	4
Canada	vali	2

(continued)

currentResidence	studytype	n
Australia	vali	2
France	vali	2
Austria	vali	2
Norway	vali	1
DATA EXPIRED	vali	1
Finland	vali	1
Greece	vali	1
Germany	vali	1
United States	vali	1
Mexico	vali	1
South Africa	vali2	20
Portugal	vali2	11
United Kingdom	vali2	5
France	vali2	3
Italy	vali2	2
Spain	vali2	2
Poland	vali2	2
DATA EXPIRED	vali2	1
Finland	vali2	1
Czech Republic	vali2	1
Latvia	vali2	1
Switzerland	vali2	1
South Africa	reli	48

(continued)

currentResidence	studytype	n
United Kingdom	reli	19
United States	reli	14
Portugal	reli	10
Italy	reli	7
Canada	reli	6
Spain	reli	5
Ireland	reli	5
Poland	reli	4
Greece	reli	4
Netherlands	reli	3
CONSENT REVOKED	reli	3
Germany	reli	3
Australia	reli	2
France	reli	2
Czech Republic	reli	2
Hungary	reli	2
Chile	reli	1
Iceland	reli	1
New Zealand	reli	1

141 Recruitment

We recruited participants using the online participant recruitment service *Prolific*143 from the University of Oxford. *Prolific*'s subject pool consists of a mostly European and

US-american sample although subjects from all over the world are included. The recruitment platform realises ethical payment of participants, which requires researchers to 145 pay participants a fixed minimum wage of £5.00 (around US\$6.50 or €6.00) per hour. We 146 decided to pay all participants the same fixed fee which was in relation to the estimated 147 average time taken to complete the task. Prolific distributed our study link to potential 148 participants, while the hosting of the online study was done by local servers in the Max 149 Planck Institute for Evolutionary Anthropology, Leipzig. Therefore, study data was saved 150 only on our internal servers, while *Prolific* provided demographic information of the 151 participants. Participants' Prolific ID was forwarded to our study website using URL 152 parameters. This way, we could match participant demographic data to our study data. 153 The same technique was used to confirm study completion: we redirected participants from 154 our study website back to the *Prolific* website using URL parameters. We used *Prolific*'s inbuilt prescreening filter to include only participants who were fluent in English and could therefore properly understand our written and oral study instructions.

158 Study 1 - Validation hedge version

The aim of Study 1 was to validate the hedge version of our gaze understanding task.

The pre-registration can be found here: https://osf.io/r3bhn. We recruited participants
online by advertising the study on *Prolific*.

50 adults participated in the study. One additional subject returned their submission,
i.e., decided to leave the study early or withdrew their submission after study completion.
Data collection took place in May 2021. Participants were compensated with £1.25 for
completing the study. We estimated an average completion time of 6 minutes, resulting in
an estimated hourly rate of £10.00. On average, participants took 05:56min to complete
the study. Participants were required to complete the study on a tablet or desktop.
Participation on mobile devices was disabled since the display would be too small and
would harm click precision. It was indicated that the study required audio sound.

We stored *Prolific*'s internal demographic information, while not asking for additional personal information.

Study 2 - Validation box version

As in study 1, we recruited participants on *Prolific*, and employed the same 173 methodology. However, this time we focussed on validating the box version of the task in 174 an adult sample. Participants were presented with eight boxes in which the target could 175 land. 50 adults participated in the study. One additional subject returned their 176 submission, i.e., decided to leave the study early or withdrew their submission after study 177 completion. Data collection took place in June 2021. Participants were compensated with 178 £1.00 for completing the study. We estimated an average completion time of 6 minutes, 179 resulting in an estimated hourly rate of £10.00. On average, participants took 04:43min to 180 complete the study. 181

182 Study 3 - Reliability hedge version

In study 3 and 4, we assessed the test-retest reliability of our gaze understanding task 183 in an adult sample. The pre-registration can be found here: https://osf.io/nu62m. We 184 tested the same participants twice with a delay of two weeks. The testing conditions were 185 as specified in Study 1 and 2. However, the target locations as well as the succession of 186 animals and target colors was randomized once. Each participant then received the same 187 fixed randomized order of target location, animal, and target color. Participants received 188 30 test trials without voice-over description, so that each of the ten bins occurred exactly 189 three times. 190

In addition to the aforementioned prescreening settings, we used a whitelist. *Prolific*has a so-called *custom allowlist prescreening filter* where one can enter the *Prolific* IDs of
participants who completed a previous study. Only these subjects are then invited to

participate in a study. This way, repeated measurements can be implemented, collecting
data from the same subjects at different points in time.

In a first round, 60 participants took part on the first testday. Additional two 196 subjects returned their submission, i.e., decided to leave the study early or withdrew their 197 submission after study completion. One additional participant timed out, i.e., did not 198 finish the survey within the allowed maximum time. The maximum time is calculated by 199 Prolific, based on the estimated average completion time. For this study, the maximum 200 time amounted to 41 minutes. For the first testday, participants were compensated with 201 £1.25. We estimated an average completion time of 9 minutes, resulting in an estimated 202 hourly rate of £8.33. On average, participants took 07:11min to complete the first part. 203

Of the 60 participants that completed testday 1, 41 subjects finished testday 2. One additional participant timed out, i.e., did not finish the survey within the allowed maximum time. Participants were compensated with £1.50 for completing the second part of the study. We estimated an average completion time of 9 minutes, resulting in an estimated hourly rate of £10. On average, participants took 06:36min to complete the second part of the study.

Since we aimed for a minimum sample size of 60 subjects participating on both 210 testdays, we reran the first testday with additional 50 participants. Additional seven 211 subjects returned their submission, i.e., decided to leave the study early or withdrew their 212 submission after study completion. Two additional participants timed out, i.e., did not 213 finish the survey within the allowed maximum time. Again, participants were compensated 214 with £1.25 for completing the first part of the study (estimated average completion time 9) 215 minutes, estimated hourly rate of £8.33). On average, participants took 06:51min to 216 complete the first part. 217

Of the additional 50 participants that completed testday 1, 29 subjects finished testday 2. Again, participants were compensated with £1.50 for completing the second

part of the study (estimated average completion time 9 minutes, estimated hourly rate of £10). On average, participants took 06:26min to complete the second part of the study.

222 Study 4 - Reliability box version

As in study 3, we recruited participants on *Prolific*, and employed the same
methodology. However, this time participants were presented with the box version of the
task. Participants received 32 test trials without voice-over description, so that each of the
eight boxes occurred exactly four times. As in study 2, we employed eight boxes in which
the target could land.

In a first round, 60 participants took part on the first testday. Additional five subjects returned their submission, i.e., decided to leave the study early or withdrew their submission after study completion. For the first testday, participants were compensated with £1.25. We estimated an average completion time of 9 minutes, resulting in an estimated hourly rate of £8.33. On average, participants took 07:33min to complete the first part.

Of the 60 participants that completed testday 1, 41 subjects finished testday 2.

Participants were compensated with £1.50 for completing the second part of the study. We estimated an average completion time of 9 minutes, resulting in an estimated hourly rate of £10. On average, participants took 07:50min to complete the second part of the study.

Since we aimed for a minimum sample size of 60 subjects participating on both testdays, we reran the first testday with additional 50 participants. Additional eight subjects returned their submission, i.e., decided to leave the study early or withdrew their submission after study completion. One additional participant timed out, i.e., did not finish the survey within the allowed maximum time. Again, participants were compensated with £1.25 for completing the first part of the study (estimated average completion time 9 minutes, estimated hourly rate of £8.33). On average, participants took 07:37min to

245 complete the first part.

Of the additional 50 participants that completed testday 1, 28 subjects finished testday 2. Additional three subjects returned their submission, i.e., decided to leave the study early or withdrew their submission after study completion. One additional participant timed out, i.e., did not finish the survey within the allowed maximum time. Again, participants were compensated with £1.50 for completing the second part of the study (estimated average completion time 9 minutes, estimated hourly rate of £10). On average, participants took 06:30min to complete the second part of the study.

Instructions and voice-over descriptions

This is the content of our audio recordings that were played as instructions and during voice-over trials.

253

Timeline	German	English	Filename
welcome	Hallo! Schön, dass	Hello! Great that	welcome.mp3
	du da bist. Wir	you're here. We'll	
	spielen jetzt das	now play a balloon	
	Ballon-Spiel! Siehst	game. Can you see	
	du die Tiere auf dem	the animals in the	
	Bild da? Wir	picture over there?	
	möchten gleich	We want to play	
	zusammen mit den	together with the	
	Tieren mit einem	animals using the	
	Ballon spielen. Was	balloon. We'll now	
	genau passiert,	talk you through	
	erklären wir dir jetzt	exactly what will	
	ganz in Ruhe.	happen.	

touch	Schau mal, da steht	Look, an animal is	touch-1.mp3
	ein Tier im Fenster.	standing in the	
	Und siehst du den	window. And can	
	Ballon da? Der	you see the balloon	
	Ballon fällt immer	over there? The	
	runter und landet	balloon always falls	
	auf dem Boden. Und	down and lands on	
	du musst ihn dann	the ground. And you	
	finden. Das Tier	have to find it! The	
	hilft Dir und schaut	animal helps you	
	immer den Ballon	and always looks at	
	an.	the balloon.	
	Wo ist der Ballon?	Where is the	prompt-touch-
	Drück auf den	balloon? Click on	long.mp3
	Ballon!	the balloon!	

fam - HEDGE	Klasse, das war	Perfect, that was	fam-hedge-1.mp3
	super! Jetzt spielen	great! Now, we'll	
	wir weiter. Siehst du	continue playing.	
	wieder das Tier und	Can you see the	
	den Ballon da? Der	animal and the	
	Ballon fällt wieder	balloon again? The	
	runter. Diesmal fällt	balloon will fall	
	er hinter eine Hecke.	down again. This	
	Du musst ihn wieder	time, it will fall	
	finden. Das Tier	behind a hedge. And	
	hilft dir und schaut	you have to find it!	
	immer den Ballon	The animal helps	
	an.	you and looks at the	
		balloon.	
	Wo ist der Ballon?	Where is the	prompt-hedge-
	Drücke auf die Hecke	balloon? On the	long.mp3
	- wo der Ballon ist.	hedge, click where	
		the balloon is.	

fam - BOX	Klasse, das war	Perfect, that was	fam-box-1.mp3
	super! Jetzt spielen	great! Now, we'll	
	wir weiter. Siehst du	continue playing.	
	wieder das Tier und	Can you see the	
	den Ballon da? Der	animal and the	
	Ballon fällt wieder	balloon again? The	
	runter. Diesmal fällt	balloon falls down	
	er in eine Kiste. Du	again. This time, it	
	musst ihn wieder	falls into a box. And	
	finden. Das Tier	you have to find it!	
	hilft dir und schaut	The animal helps	
	immer den Ballon	you and looks at the	
	an.	balloon.	
	Wo ist der Ballon?	Where is the	prompt-box-
	Drücke auf die Kiste	balloon? Click on	long.mp3
	mit dem Ballon.	the box with the	
		balloon.	
test - HEDGE	Klasse , das hast du	Nice, good job!	test-hedge-1.mp3
	toll gemacht! Nun	Now, we'll continue	
	spielen wir weiter.	playing. There is the	
	Da sind wieder der	balloon, the animal	
	Ballon, das Tier und	and the hedge. The	
	die Hecke. Die Hecke	hedge is growing a	
	wächst jetzt hoch.	bit now.	

	Der Ballon ist nun	The balloon is	test-hedge-2.mp3
	hinter der Hecke. Du	behind the hedge	
	kannst das nicht	now. You can't see	
	sehen - das Tier	it - but the animal	
	aber! Jetzt fällt der	can! The balloon	
	Ballon auf den	falls to the ground	
	Boden und du musst	and you have to find	
	ihn wieder finden.	it. Remember - the	
	Denk dran - das Tier	animal always looks	
	schaut immer den	at the balloon!	
	Ballon an.		
	Dann schrumpft die	Now, the hedge is	test-hedge-3.mp3
	Hecke. Drücke auf	shrinking. On the	
	die Hecke - wo der	hedge, click where	
	Ballon ist.	the balloon is.	
test - BOX	Klasse , das hast du	Nice, good job!	test-box-1.mp3
	toll gemacht! Nun	Now, we'll continue	
	spielen wir weiter.	playing. There is the	
	Da sind wieder der	balloon and the	
	Ballon, das Tier und	animal. Now, a	
	die Kisten. Jetzt	hedge is growing.	
	wächst eine Hecke		
	hoch.		

	Der Ballon ist nun	The balloon is	test-box-2.mp3
	hinter der Hecke. Du	behind the hedge	
	kannst das nicht	now. You can't see	
	sehen - das Tier	it - but the animal	
	aber! Jetzt fällt der	can! The balloon	
	Ballon in eine Kiste	falls into a box and	
	und du musst ihn	you have to find it.	
	wieder finden. Denk	Remember - the	
	dran - das Tier	animal always looks	
	schaut immer den	at the balloon!	
	Ballon an.		
	Dann schrumpft die	Now, the hedge is	test-box-3.mp3
	Hecke. Drücke auf	shrinking. Click on	
	die Kiste mit dem	the box with the	
	Ballon.	balloon.	
${\bf goodbye}$	Geschafft! Die Tiere	The animals are	${\rm goodbye.mp3}$
	sind schon ganz	super happy after	
	glücklich vom	playing. Thanks a	
	Spielen! Vielen	lot for your help!	
	Dank für deine Hilfe!	See you soon and	
	Bis zum nächsten	goodbye from the	
	Mal und liebe Grüße	pig, monkey and	
	vom Schwein, Affen	sheep	
	und Schaf		
general prompt	Wo ist der Ballon?	Where is the	prompt-general.mp3
		balloon?	

touch - no	Drück auf den	Click on the balloon!	prompt-touch.mp3
response	Ballon!		
hedge - no	Drücke auf die Hecke	On the hedge, click	prompt-hedge.mp3
response	- wo der Ballon ist!	where the balloon is!	
box - no response	Drücke auf die Kiste	Click on the box	prompt-box.mp3
	mit dem Ballon!	with the balloon!	
landing sound of	-	-	balloon-lands.mp3
balloon			
sound of blinking	-	-	blink.mp3
eyes			
sound for target	-	-	positive-
click			feedback.mp3

256	References
257	Bohn, M., Prein, J. C., Koch, T., Bee, R. M., Delikaya, B., Haun, D. B. M., &
258	Gagarina, N. (2022). oREV: An Item Response Theory based open receptive
259	vocabulary task for 3 to 8-year-old children [Preprint]. PsyArXiv.
260	https://doi.org/10.31234/osf.io/4z86w
261	Cassidy, K. W., Fineberg, D. S., Brown, K., & Perkins, A. (2005). Theory of Mind
262	May Be Contagious, but You Don't Catch It from Your Twin. Child
263	Development, $76(1)$, 97–106. Retrieved from
264	https://www.jstor.org/stable/3696711
265	McElreath, R. (2020). Statistical rethinking: A Bayesian Course with Examples in
266	R and $Stan$ (Second). Chapman and Hall/CRC.
267	Peterson. (2000). Kindred spirits: Influences of siblings' perspectives on theory of
268	mind. Cognitive Development, 15(4), 435–455.
269	https://doi.org/10.1016/S0885-2014(01)00040-5