

Algorithm Analysis Part 1

Data Structures for Computer Professionals

Patiwet Wuttisarnwattana, Ph.D.

patiwet@eng.cmu.ac.th

Computer Engineering, Chiang Mai University

Fibonacci Numbers

- Learning Objectives
 - Understand the definition of **Fibonacci numbers**
 - Show that Fibonacci number becomes very large
 - Understand that Fibonacci number is originally defined as **recursive function**

Fibonacci numbers

$$F(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F(n-1) + F(n-2), & n > 1 \end{cases}$$

Fibonacci numbers

$$F(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F(n-1) + F(n-2), & n > 1 \end{cases}$$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Developed to Study Rabbit Populations

How many pairs of rabbits over time

Rapid growth

■ Which one is the fastest growing function?

```
\Box G1(n) = 2n
```

$$\Box$$
 G2(n) = n²

$$\Box$$
 G3(n) = 2ⁿ

```
□ Linear -> {2 4 6 8 10 12 14 16 18 20 ...}
```

$$F(n) \ge 2^{n/2}$$
 for $n \ge 6$

Formula

Theorem

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$

Example

- \Box F(20) = 6765
- \Box F(50) = 12586269025
- \Box F(100) = 354224848179261915075
- □ F(500) =
 1394232245616978801397243828704072839500702565876
 9730726410896294832557162286329069155765887622252
 1294125

Computing Fibonacci numbers

Definition

$$F_n = \begin{cases} 0, & n = 0, \\ 1, & n = 1, \\ F_{n-1} + F_{n-2}, & n > 1. \end{cases}$$

Compute F_n

Input: An integer $n \geq 0$.

Output: F_n .

Naïve Algorithm

```
FibRecurs(n)

if n ≤ 1:
    return n

else:
    return FibRecurs(n - 1) + FibRecurs(n - 2)
```

Running Time

Let T(n) denote the number of lines of code executed by FibRecurs(n).

If $n \leq 1$

FibRecurs(n)

```
if n \le 1:

return n

else:

return FibRecurs(n-1) + FibRecurs(n-2)
```

$$T(n) = 2$$

If $n \ge 2$

FibRecurs(n)

```
if n \le 1:

return n

else:

return FibRecurs(n-1) + FibRecurs(n-2)
```

$$T(n) = 3 + T(n-1) + T(n-2)$$

Running Time

$$T(n) = \begin{cases} 2 & \text{if } n \leq 1 \\ T(n-1) + T(n-2) + 3 & \text{else.} \end{cases}$$

Therefore $T(n) \geq F_n$

$$T(100) \approx 1.77 \cdot 10^{21}$$
 (1.77 sextillion)

Takes 56,000 years at 1GHz.

Why so slow?

Why so slow?

- Imitate hand computation
- **O**, 1, 1
- \Box 0 + 1 = 1

- Imitate hand computation
- **0**, 1, 1, 2
- \Box 0 + 1 = 1
- \Box 1 + 1 = 2

- Imitate hand computation
- **0**, 1, 1, 2, 3
- $\Box 0 + 1 = 1$
- \Box 1 + 1 = 2
- \Box 1 + 2 = 3

- Imitate hand computation
- **0**, 1, 1, 2, 3, 5
- $\Box 0 + 1 = 1$
- \Box 1 + 1 = 2
- \Box 1 + 2 = 3
- \Box 2 + 3 = 5

- Imitate hand computation
- **1** 0, 1, 1, 2, 3, 5, 8
- \Box 0 + 1 = 1
- \Box 1 + 1 = 2
- \Box 1 + 2 = 3
- \Box 2 + 3 = 5
- \Box 3 + 5 = 8

New Algorithm

FibList(n)

```
create an array F[0...n]

F[0] \leftarrow 0

F[1] \leftarrow 1

for i from 2 to n:

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

- T(n) = 2n + 2. So T(100) = 202.
- Easy to compute.

Summary

- Introduced Fibonacci numbers.
- Naive algorithm takes ridiculously long time on small examples.
- Improved algorithm incredibly fast.