1 Events & Probability

1.1 Example: Comparing Polynomials

Slide 1

Example 1: Comparing Polynomials

Problem: compare two polynomials, $F(x) \stackrel{?}{=} G(x)$?? e.g. $(x+1)(x-2)(x+3)(x-4)(x+5)(x-6) \stackrel{?}{=} x^6 - 7x^3 + 25$?

Solution: trying to avoid converting both to canonical form; instead: Let d = degree of the polynomial

- 1. Select a value r uniformly in the range $\{1, \ldots, 100d\}$;
- 2. Evaluate F(r) and G(r).
- 3. If $F(r) \neq G(r)$, then surely report $F(\cdot) \neq G(\cdot)$
- 4. If F(r) = G(r), what should we report?
 - we could have by chance found a root of F(x) G(x) = 0.
 - If $F(\cdot) \neq G(\cdot) \implies$ at most d solutions of F(x) G(x) = 0;
 - \implies prob to select one of these roots by chance $\leq 1/100$.

Should we report $F(\cdot) = G(\cdot)$? Allowing for a possible error.

1.2 Axioms of Probability

Slide 2

Axioms of Probability

In general, a chance experiment is characterized by:

Definition 1.1.: Probability space

- 1. Sample space Ω = all possible outcomes. In the example, pairs of numbers (F(r), G(r)). The elements $\omega \in \Omega$ are the "elementary outcomes".
- 2. Allowable events, a family \mathcal{F} of sets $E \subseteq \Omega$. E.g., E = a pair of matching values.
- 3. A probability function $Pr : \mathcal{F} \to R$. E.g., any of the pairs $(F(1), G(1)), \dots, (F(100d), G(100d))$ is equally likely ("uniform").

1.3 Interpreting probabilities

Slide 3

Interpreting Probabilities

Equally likely outcomes: *e.g.* in the example, E = "selecting one of the roots", let $N = |\Omega|$ and $n_E = |E|$. We used

$$\Pr(E) = \frac{n_E}{N}$$

and we argued $n_E \le d \implies \Pr(E) \le d/(100d)$

Subjective probabilities: E = "nuclear war in 21st century". Pr(E) = 0.001 (\implies (E^c) = 0.999, for E^c = not E). Here Pr(E) is my subjective judgement.

Long run frequencies: Weather in Austin, on 12/31 12pm

- $\Omega = \{$ "sunny", "cloudy", "rain", "snow" $\}$.
- Pr(sunny) = 80% (based on many past years)

here $Pr(\cdot)$ is a long run frequency.

All interpretation fit into the same formal framework . . .

Slide 4

Probability Function

In general, the probability function needs to satisfy some constraints. For example, Pr("something happening") better be 1 (some weather will surely happen!), be ≥ 0 etc.

Definition 1.2: Probability function $Pr : \mathcal{F} \to R$, with

- **A1.** $0 \le \Pr(E) \le 1$, for any $E \in \mathcal{F}$;
- **A2.** $Pr(\Omega) = 1$;
- **A3.** For any (finite or countably infinite) sequence of pairwise mutually exclusive events $E_1, E_2, ...$

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) = \sum_{i\geq 1} \Pr(E_i)$$

1.4 Addition Rule

Slide 5

Addition Rule

Lemma 1.1: Addition Rule. For any two events A and B

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Why is this true? Use a Venn diagram to see

(this is not a proof - just a visualization)

 \rightarrow book for a proof (using $E_1 = A \cap B^c, E_2 = B \cap A^c, E_3 = A \cap B$)

Since all $Pr(\cdot)$ are non-negative, we have

Lemma 1.2: Union bound. For any sequence of events

$$E_1, E_2, \ldots$$

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) \leq \sum_{i\geq 1} \Pr(E_i)$$

Multiplication rule: immediate corollary

$$Pr(E \cap F) = Pr(F) Pr(E \mid F)$$

= $Pr(E) Pr(F \mid E)$

Careful: $Pr(E \mid F) \neq Pr(F \mid E)$ is not symmetric.

Slide 6

Lemma 1.3: Inclusion-exclusion principle. For any events E_1, \ldots, E_n ,

$$\Pr(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} \Pr(E_i) - \sum_{i < j} \Pr(E_i \cap E_j) +$$

$$+ \sum_{i < j < k} \Pr(E_i \cap E_j \cap E_k) - \dots$$

$$+ (-1)^{\ell-1} \sum_{i_1 < i_2 \dots < i_{\ell}} \Pr(E_{i_1} \cap \dots E_{i_{\ell}})$$

Why is this true?

1.6 Independence

Slide 9

Independence

Example (1) (ctd.): Recall, we draw $r_1 \in \{1, ..., 100d\}$. If $F(r_1) - G(r_1) \neq 0 \rightarrow \text{report } F \neq G - \text{easy.}$ If $F(r_1) - G(r_1) = 0 \rightarrow \text{report } F = G$, with error prob $\leq \frac{1}{100}$.

Improved error bound: repeat with more random draws:

$$r_2 \in \{1, ..., 100d\}$$
 (and r_3 , etc.)
Let $E_i = \{F(r_i) - G(r_i) = 0\}$ and $d_0 = \#$ roots.

If in fact $F(\cdot) \neq G(\cdot)$, then

$$\underline{\Pr(E_1 \cap E_2)} = \frac{n_{E_1 \cap E_2}}{N} = \frac{d_0 \cdot d_0}{100d \cdot 100d} \\
= \frac{d_0}{100d} \cdot \frac{d_0}{100d} = \underline{\Pr(E_1)\Pr(E_2)} \le \left(\frac{1}{100}\right)^2$$

Independence: In general we define E, F are independent if

$$Pr(E \cap F) = Pr(E) \cdot Pr(F)$$

Note when Pr(F) > 0, then ... $\iff Pr(E \mid F) = Pr(E)$. "Knowing F does not change judgment on E."

1.5 Conditional Probability

Slide 7

Slide 10

Slide 11

Independence (ctd.)

Extend the same definition to multiple events:

Equally likely outcomes: we define $Pr(E \mid F) \equiv$ the relative # of outcomes that favor E, among all those that favor F:

Conditional Probability

$$\Pr(E \mid F) = \frac{n_{E \cap F}}{n_F}$$

... = $\frac{n_{E \cap F}/N}{n_F/N} = \frac{\Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fair coins}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{\Pr(F)_{\text{For example, tossing two fairwise ind.}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{Pr(E)_{\text{For example, tossing two fairwise ind.}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{Pr(E)_{\text{For example, tossing two fairwise ind.}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{Pr(E)_{\text{For example, tossing two fairwise ind.}}} = \frac{Pr(E \cap F)_{\text{Note: pairwise ind.}}}{Pr(E)_{\text{For example, tossing two fairwise ind.}}} = \frac{Pr(E)_{\text{For example, tossing two fairwise ind.}}}{Pr(E)_{\text{For example, tossing two fairwise ind.}}} = \frac{Pr(E)_{\text{For example, tossing two fairwise ind.}}}{Pr(E)_{\text{F$

k-events: E_1, \ldots, E_k are *mutually independent* if for any subset $I \subseteq \{1, \ldots, k\}$

$$\Pr\left(\bigcap_{i\in I} E_i\right) = \prod_{i\in I} \Pr(E_i)$$

 $i \in I$ $j \in I$ $r \text{ all pairs } E_i \mid E_i \implies \text{mutual inc}$

For example, tossing two fair coins, $E_1 = \{HT, HH\}$ (head on 1st), $E_2 = \{TH, HH\}$ (H on 2nd), and $E_3 = \{HH, TT\}$ (same on both). Then E_1, E_2, E_3 are pairwise, but not mutually independent.

General: this motivates the general definition

$$\Pr(E \mid F) = \frac{\Pr(E \cap F)}{\Pr(F)}.$$

Careful: $Pr(E \mid F) \neq Pr(F \mid E)$ is not symmetric.

Example (1) (ctd.)

We can improve the error bound even more:

Slide 8

2

- Sample $r_i \in \{1, ..., 100d\}$, with replacement, i = 1, ..., k
- If in fact $F(\cdot) G(\cdot) \neq 0$, then

$$\Pr(E_1 \cap \dots E_k) = \prod_{i=1}^k \Pr(E_i) \le \left(\frac{1}{100}\right)^k$$

• When $F(r_i) = G(r_i)$, $i = 1 \dots k \rightarrow \text{report "} F(\cdot) = G(\cdot)$ ", with error probability $\leq (1/100)^k$.

#1.3(e): Poker is played with a deck of $52 = 13 \times 4$ cards, with 13 different denomiations in each of 4 suits (diamonds, clubs, hearts and spades).

A 5-card poker hand is said to be a full house if it consists of 3 cards of the same denomination and 2 other cards of another denomination, i.e., a pattern "aaabb" where "a" and "b" are two different denominations. Let C denote the event that one is dealt a full house. Find Pr(C).

Solution: $Pr(C) = n_C/N$, with $N = \binom{52}{5}$ and $n_C = \binom{4}{3} \cdot 13 \cdot \binom{4}{2} \cdot 12$, and therefore

$$Pr(C) = \frac{\frac{4!}{3!} \cdot 13 \cdot \frac{4!}{2 \cdot 2} \cdot 12}{\frac{52!}{47!5!}} = 0.0014$$

Examples

Slide 12

Examples

1.2: Rolling two dice. Let A = "both dice show the same number", $B = \{a_1 > a_2\}$, where $a_i =$ number on j-th die, and $C = \{a_1 + a_2 \ge 10\}.$

Find Pr(A), Pr(B), Pr(C), $Pr(C \mid A)$ and $Pr(A \mid C)$. Are A and C independen?

Solution: There are N = 36 outcomes, $N_A = 6$ favor A \implies Pr(A) = 6/36.

 $N_0 = 6$ outcomes with $a_1 = a_2$, and therefore (by symmetry) $N_B = (36 - 6)/2 = 15$ with $a_1 > a_2 \implies Pr(B) = 15/36$.

$$n_C = 6 \implies \Pr(C) = \frac{6}{36} = \frac{1}{6},$$

$$n_{A \cap C} = 2 \implies \Pr(C \mid A) = \frac{2}{6} = \frac{1}{3}, \Pr(A \mid C) = \frac{2}{6} = \frac{1}{3}.$$

A and C are not independent because $Pr(C) \neq Pr(C \mid A)$. $Pr(C \mid A) = \frac{1}{3} = Pr(A \mid C)$ is a coincidence here – not true in general.

Example: Verifying Matrix Multiplication

Slide 15

Example (2): Verifying Matrix Multiplication

Problem: Given $(n \times n)$ matrices A, B, C, verify AB = C? Simple matrix multiplication needs order n^3 operations $(\Theta(n^3))$

A randomized algorithm: for a faster verification:

- Select a random vector $\mathbf{r} = (r_1, \dots, r_n) \in \{0, 1\}^n$;
- compute **Br**, A(Br) and Cr ($\Theta(n^2)$ operations);
- if $ABr \neq Cr \Rightarrow \text{report } AB \neq C$. if ABr = Cr report AB = C (and we might be wrong ...).

Slide 13

Slide 16

Before the next example, two useful results to count # outcomes:

- positions).
- 2. *Combinations*: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \#$ of un-ordered subsets of size k of n elements ($k \le n$).

Note $\binom{n}{k} = \binom{n}{n-k}$ (since not selecting (n-k) elements = selecting k elements).

3. Basic principle of counting: if experiment (step) 1 can result in n_1 outcomes, and

experiment 2 in n_2 outcomes \implies $(n_1 \cdot n_2)$ outcomes of the joint experiment.

1. Permutation: n! = # of ordered arrangements of n items (in n Result: Sampling r uniformly in $\{0,1\}^n$ is equivalent to sampling r_i independently, uniformly from $\{0, 1\}$

Example (2) (ctd.)

(we write $r_i \sim \text{Unif}(\{0, 1\})$, i.i.d.)

Proof: $\Pr(r = x) = \Pr(r_1 = x_1, \dots, r_n = x_n) = \prod_{i=1}^n \Pr(r_i = x_i) = \prod_{i=1}^n \Pr(r_i = x_$ $\prod_{i=1}^{n} \frac{1}{2} = \left(\frac{1}{2}\right)^n = \frac{1}{2n}$

Law of Total Prob

Slide 17

Theorem 1.6: Law of Total Probability: If E_1, \ldots, E_n are mutually disjoint events in Ω and $\bigcup_i E_i = \Omega$ (i.e., $\Omega = \bigcup_i E_i$ is a partition), then

$$\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap E_i) = \sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i).$$

In words: the (marginal) probability Pr(B) is the average of the conditional probabilities $Pr(B \mid E_i)$ under scenarios E_1,\ldots,E_n .

Why is that true?

Proof: \rightarrow book (easy)

• Now we are ready for the proof: Assume $AB \neq C$. We will use the law of total probability.

Slide 20

Assume $AB \neq C$. We use the law of total probability, with $E_i = \{r_{2:n} = x_{2:n}\} \text{ for } \Pr(ABr = Cr) = \sum_i \Pr((ABr = Cr) \cap E_i)$:

$$\Pr(ABr = Cr) = \sum_{x_{2:n}} \Pr\left((ABr = Cr) \cap \underbrace{(r_{2:n} = x_{2:n})}_{E_{j}}\right) \le$$

$$\le \sum_{x_{2:n}} \Pr\left(\left(r_{1} = -\frac{\sum_{j=2}^{n} d_{1j}r_{j}}{d_{11}}\right) \cap (r_{2:n} = x_{2:n})\right)$$

$$= \sum_{x_{2:n}} \Pr\left(r_{1} = -\frac{\sum_{j=2}^{n} d_{1j}r_{j}}{d_{11}}\right) \cdot \Pr\left(r_{2:n} = x_{2:n}\right)$$

$$\le \sum_{x_{2:n}} \frac{1}{2} \Pr\left(r_{2:n} = x_{2:n}\right) = \frac{1}{2}$$

Verifying Matrix Mult (ctd.) 1.10

Slide 18

Example (2) (ctd.)

Recall the problem to verify AB = C. We sample r uniformly from $\{0, 1\}^n$ (in short, $r \sim \text{Unif}(\{0, 1\}^n)$).

- If $(\underbrace{AB C}_{D})r \neq 0 \rightarrow \text{easy} \text{report } AB \neq C$.
- If Dr = 0, should we report AB = C? But even if $AB \neq C$, we could by chance have generated r as It's easier to find $Pr(\bar{A})$ for \bar{A} = "no 2 same b-days" (and then use a solution of Dr = 0.

Next, we evaluate the chance of this happening.

Example: The Birthday Paradox 1.11

Slide 21

Example (3): The Birthday Paradox

Note: this is §5.1 in the book.

Question: In a class of m = 30, is

Pr(2 same b-day) > Pr(no two same b-days)

 $Pr(A) = 1 - Pr(\bar{A}).$

Solution: assume that (i) b-days are selected uniform over n = 365days, (ii) independently across the m people.

Count $N_{\bar{A}} = |\bar{A}| = \#$ outcomes that favor \bar{A} , and N = # all possible outcomes, to get $Pr(\bar{A}) = N_{\bar{A}}/N$.

- # ways to chose m = 30 birthdays = $\binom{365}{30}$, and # ways to assign those = 30!; therefore $N_{\bar{A}} = \binom{365}{30} \cdot 30!$
- $N = 365^{30}$ (365 choices for each of the 30 b-days)
- $Pr(\bar{A}) = N_{\bar{A}}/N = 0.29 \implies Pr(A) = 0.71$.

Slide 19

Result: If in fact $AB \neq C$, and $r = (r_1, r_2, ..., r_n) \sim \text{Unif}(\{0, 1\}^n)$, then

$$\Pr(\mathbf{ABr} = \mathbf{Cr}) \le \frac{1}{2}$$

Proof: first consider r_1 assuming we know $r_{2:n} \equiv (r_2, \dots, r_n)$. We can then bound Pr(ABr - Cr = 0) using the law of total probability.

- Let D = AB C. Then $ABr = Cr \iff Dr = 0$. If $\mathbf{D} \neq 0$ then some elements of \mathbf{D} are $\neq 0$ – assume that's $d_{11} \neq 0$ (w.l.o.g.).
- Then $Dr = 0 \implies \sum_{j=1}^{n} d_{1j}r_j = 0$ or $r_1 = \frac{\sum_{j=2}^{n} d_{1j}r_j}{d_{11}}$. That is, for given $r_{2:n} = x_{2:n}$ we need $r_1 = \frac{\sum_{j=2}^{n} d_{1j}r_j}{d_{11}}$. But $r_1 \sim \text{Unif}(\{0,1\}) \implies \Pr(r_1 = ... \mid r_2, ..., r_n) \le \frac{1}{2}$.

Slide 22

An Alternative Solution

Let $E_i = (i\text{-th b-day} \neq \text{the first } i - 1)$,

$$Pr(E_i \mid E_1 \cap \dots E_{i-1}) = \frac{365 - (i-1)}{365} = 1 - \frac{i-1}{365}$$

and

$$\Pr(\bar{A}) = \Pr(\bigcap_{i=2}^{m} E_i) = \prod_{i=2}^{m} \Pr(E_i \mid E_2 \cap \dots E_{i-1})$$
$$= \prod_{i=2}^{m} \left(1 - \frac{i-1}{365}\right) = 0.29.$$

1.12 Bayes Theorem

 $Pr(E_i \mid B)!$

Slide 23

Bayes Theorem In Example (2), let $E_1 = \{AB = C\}$, $E_2 = \{AB \neq C\}$ and event $B = \{ABr = Cr\}$, i.e., "works for r".

Did you notice that we answered the wrong question? We found $Pr(B \mid E_2)$. But if we already know that the identity is wrong, it's silly to test it! We really want

Theorem 1.7: Bayes Theorem. Let $\bigcup_{i=1}^{k} E_i$ be a partition of the sample space. Then

$$Pr(E_j \mid B) = \frac{Pr(B \mid E_j) Pr(E_j)}{\sum_i Pr(B \mid E_i) Pr(E_i)}$$

Bayes' Theorem "turns around the conditioning".

Proof: Use the definition of cond prob, the multiplication rule, and the law of total prob

$$Pr(E_j \mid B) = \frac{Pr(B \cap E_j)}{Pr(B)} = \frac{Pr(B \mid E_j) Pr(E_j)}{\sum_{i} Pr(B \mid E_i) Pr(E_i)}$$

that's all!

Slide 24

Let $\bar{E} = \text{not } E$ denote the complement to E. Bayes Theorem is often useful for the partition (E, \bar{E}) :

$$\Pr(E \mid B) = \frac{\Pr(B \mid E) \Pr(E)}{\Pr(B \mid E) \Pr(E) + \Pr(B \mid \bar{E})(1 - \Pr(E))}.$$

Next, we will use this for Example (2), using

- E = identity is correct, AB = C,
- B = "works for r" (i.e., $B = \{ABr = Cr\}$).

Slide 25

- E = identity is correct, AB = C.
- $B = \text{"works for } r\text{" (i.e., } B = \{ABr = Cr\}.$

Using Bayes' theorem we can find $Pr(E \mid B)$.

- Start with $Pr(E) = \frac{1}{2}$ (before the computer experiment with r).
- We know $Pr(B \mid E) = 1$ and just found $Pr(B \mid \bar{E}) \le \frac{1}{2}$.

$$\Rightarrow \Pr(E \mid B) = \frac{\Pr(B \mid E) \Pr(E)}{\Pr(B \mid E) \Pr(E) + \Pr(B \mid \bar{E})(1 - \Pr(E))}$$

$$\geq \frac{1 \cdot 1/2}{1 \cdot 1/2 + 1/2 \cdot 1/2} = \frac{2}{3}$$

When B is the experiment (evidence), we refer to

- Pr(E) as "prior probability", and
- $Pr(E \mid B)$ as "posterior probability"

1.13 Example

Slide 26

Example: Monty Hall Problem

#1.12: game show,

- 3 doors: Behind one door is a car, behind the other two doors a goat.
 - Let E_j denote the event "car behind door j".
- Initially $Pr(E_j) = \frac{1}{3}$, and you randomly guess one door to have the car, say you guess E_1 .
- I open one of the other two doors, say door 2, to show you a goat. This is the evidence, *B*.

You now have a chance to change your guess. Assuming you want the door with the car, should you change your guess? Find $Pr(E_1 \mid B)$ and $Pr(E_3 \mid B)$.

Slide 27

Solution:

We use Bayes theorem. Let B = "I show you a goat behind door 2". We assume

- $Pr(B \mid E_1) = \frac{1}{2}$, since I could open door 2 *or* 3 to show you a goat,
- $Pr(B \mid E_3) = 1$, since i can only open door 2 now, assuming that I don't want to show you the car behind door 3!

And we already have $Pr(E_i) = 1/3$. Then

$$\Pr(E_1 \mid B) = \frac{\Pr(B \mid E_1) \Pr(E_1)}{\Pr(B \mid E_1) \Pr(E_1) + \Pr(B \mid E_3) \Pr(E_3)} = \frac{1/2}{3/2} = \frac{1}{3}$$

and therefore $Pr(E_3 \mid B) = \frac{2}{3}$. Change your guess to E_3 !