```
In [243]: import pandas as pd
import ipaddress
import matplotlib.pyplot as plt
import sys
import pycountry
import gmplot
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
```

```
In [197]: #Task 1
          alien_data = pd.read_csv("AlienVault_IP_reputation.csv")
          countr name list=[]
          country_name_list=[]
          for cc in alien data['Country']:
              cc=str(cc).lower()
              if not (cc=='nan'):
                  country_name = pycountry.countries.lookup(cc).name
                  country_name_list.append(country_name)
              else:
                  country_name_list.append('nan')
          alien_data['country_name']= country_name_list
          lat list = []
          long_list= []
          for coord in alien_data['Coords']:
              lat_long = coord.split(',')
              lat = lat_long[0]
              lon = lat long[1]
              lat_list.append(float(lat))
              long_list.append(float(lon))
          alien_data['lat'] = lat_list
          alien_data['lon'] = long_list
          print(alien data.describe())
          alien_data.head(10)
```

	Unnamed: 0	Reliability	Risk	lat	lon
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000
mean	4999.50000	4.004800	2.545900	30.146522	14.949674
std	2886.89568	0.920033	0.776372	22.427570	88.613410
min	0.00000	1.000000	1.000000	-41.469799	-123.133301
25%	2499.75000	4.000000	2.000000	25.039200	-74.257896
50%	4999.50000	4.000000	2.000000	35.685001	10.000000
75%	7499.25000	4.000000	3.000000	41.409000	110.491648
max	9999.00000	10.000000	6.000000	64.000000	176.916702

Out[197]:

	Unnamed: 0	IP	Reliability	Risk	Туре	Country	Locale	Coords
0	0	222.76.212.189	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155
1	1	222.76.212.185	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155
2	2	222.76.212.186	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155
3	3	5.34.246.67	6	3	Spamming	us	NaN	38.0,-97.0
4	4	178.94.97.176	4	5	Scanning Host	ua	Merefa	49.8230018616,36.0507011414
5	5	66.2.49.232	4	2	Scanning Host	us	Union City	37.5962982178,-122.065696716
6	6	222.76.212.173	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155
7	7	222.76.212.172	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155
3	8	222.76.212.171	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155
9	9	174.142.46.19	6	3	Spamming	NaN	NaN	24.4797992706,118.08190155

```
In [198]:
          print(ipv4_data.describe())
```

```
Prefix Designation
                               Date
                                               Whois Status [1]
                                                                  Note
          256
                                                 207
                                                                    42
                       256
                                256
                                                             256
count
unique
          256
                        45
                                 84
                                                   5
                                                                    15
        000/8
top
                     APNIC
                            1993-05
                                     whois.arin.net ALLOCATED
                                                                  [16]
freq
                        45
                                 57
                                                  99
                                                             125
                                                                    15
```

```
In [199]:
         #Task 3
```

```
zeus_data = pd.read_csv("zeus-book.csv")
zeus_data = zeus_data.drop(range(4));
```

print(zeus_data.describe())

```
IP Address
count
                    219
unique
                    219
top
        103.31.186.240
freq
                      1
```

In [202]: alien_data.head(100)

Out[202]:

	Unnamed: 0	IP	Reliability	Risk	Туре	Country	Locale	Coords	С
0	0	222.76.212.189	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155	
1	1	222.76.212.185	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155	
2	2	222.76.212.186	4	2	Scanning Host	cn	Xiamen	24.4797992706,118.08190155	
3	3	5.34.246.67	6	3	Spamming	us	NaN	38.0,-97.0	
4	4	178.94.97.176	4	5	Scanning Host	ua	Merefa	49.8230018616,36.0507011414	
95	95	110.7.139.128	4	3	Scanning Host	cn	Baotou	40.6521987915,109.82219696	
96	96	110.7.139.122	4	3	Scanning Host	cn	Baotou	40.6521987915,109.82219696	
97	97	110.7.139.120	4	3	Scanning Host	cn	Baotou	40.6521987915,109.82219696	
98	98	110.7.139.117	4	3	Scanning Host	cn	Baotou	40.6521987915,109.82219696	
99	99	110.7.139.131	4	3	Scanning Host	cn	Baotou	40.6521987915,109.82219696	

100 rows × 12 columns

In [262]: #task 6
merged_data = pd.merge(ipv4_data, alien_data, on=['subnet_8bits'])

In [263]: merged_data.head(100)

Out[263]:

	Prefix	Designation	Date	Whois	Status [1]	Note	subnet_8bits	Unnamed: 0	IP	Rel
0	001/8	APNIC	2010- 01	whois.apnic.net	ALLOCATED	NaN	1.0.0.0/8	173	1.26.119.1	
1	001/8	APNIC	2010- 01	whois.apnic.net	ALLOCATED	NaN	1.0.0.0/8	174	1.26.119.2	
2	001/8	APNIC	2010- 01	whois.apnic.net	ALLOCATED	NaN	1.0.0.0/8	1231	1.93.4.208	
3	001/8	APNIC	2010- 01	whois.apnic.net	ALLOCATED	NaN	1.0.0.0/8	2756	1.26.119.0	
4	001/8	APNIC	2010- 01	whois.apnic.net	ALLOCATED	NaN	1.0.0.0/8	2757	1.26.119.13	
95	031/8	RIPE NCC	2010- 05	whois.ripe.net	ALLOCATED	NaN	31.0.0.0/8	5574	31.210.46.34	
96	031/8	RIPE NCC	2010- 05	whois.ripe.net	ALLOCATED	NaN	31.0.0.0/8	5575	31.210.46.33	
97	031/8	RIPE NCC	2010- 05	whois.ripe.net	ALLOCATED	NaN	31.0.0.0/8	5576	31.210.46.31	
98	031/8	RIPE NCC	2010- 05	whois.ripe.net	ALLOCATED	NaN	31.0.0.0/8	5577	31.210.46.30	
99	031/8	RIPE NCC	2010- 05	whois.ripe.net	ALLOCATED	NaN	31.0.0.0/8	5578	31.210.46.28	

100 rows × 18 columns

```
In [264]:
          #task 7
          org_count = merged_data.groupby('Designation')['IP'].nunique();
          print(f"There are {len(org count)} designated organizations in the 10K IP address dataset
          There are 11 designated organizations in the 10K IP address dataset.
          org counts = merged data.groupby("Designation")["IP"].count().sort values(ascending=Fal
In [265]:
          org counts distribution = org counts.value counts();
          print("Number of designated organizations controlling the various 10K IP addresses:");
          print(org_counts);
          Number of designated organizations controlling the various 10K IP addresses:
          Designation
          APNIC
                                           3387
          RIPE NCC
                                           2126
          ARTN
                                           1805
          LACNIC
                                           1239
                                            843
          Administered by ARIN
          Administered by RIPE NCC
                                            288
                                            229
          Administered by APNIC
          AFRINIC
                                             77
          Administered by AFRINIC
                                              3
          Level 3 Communications, Inc.
                                              2
          PSINet, Inc.
                                              1
          Name: IP, dtype: int64
In [266]: #task 8
          merged_data['Zeus_check'] = np.where(merged_data['IP'].isin(zeus_data['IP Address']),
          num_zeus_ips = (merged_data['Zeus_check'] == 'yes').sum();
          print("Number of ZEUS botnet address in the IP reputation dataset (10K):", num zeus ips
          Number of ZEUS botnet address in the IP reputation dataset (10K): 3
In [267]:
          #task 9
          zeus data['subnet 8bits'] = zeus data['IP Address'].str.split('.', expand=True)[0] +
          merged data = pd.merge(merged data, zeus data, on=['subnet 8bits']);
```

In [276]: merged_data.head(10)

Out[276]:

	Prefix	Designation	Date	Whois	Status [1]	Note	subnet_8bits	Unnamed: 0	IP	Reliabi
0	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	3	5.34.246.67	
1	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	3	5.34.246.67	
2	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	3	5.34.246.67	
3	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	3	5.34.246.67	
4	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	3	5.34.246.67	
5	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	1143	5.9.147.119	
6	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	1143	5.9.147.119	
7	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	1143	5.9.147.119	
8	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	1143	5.9.147.119	
9	005/8	RIPE NCC	2010- 11	whois.ripe.net	ALLOCATED	NaN	5.0.0.0/8	1143	5.9.147.119	
4										•

In [269]: #task 10

data = zeus_data.rename(columns={'IP Address': 'IP'})
ip_merge = pd.merge(merged_data, data, on=['IP'])
ip_merge.head(3)

Out[269]:

	Prefix	Designation	Date	Whois	Status [1]	Note	subnet_8bits_x	Unnamed: 0	IP	Re
0	031/8	RIPE NCC	2010- 05	whois.ripe.net	ALLOCATED	NaN	31.0.0.0/8	6445	31.31.199.159	
1	066/8	ARIN	2000- 07	whois.arin.net	ALLOCATED	NaN	66.0.0.0/8	6317	66.45.253.74	
2	066/8	ARIN	2000- 07	whois.arin.net	ALLOCATED	NaN	66.0.0.0/8	6317	66.45.253.74	

3 rows × 21 columns

```
In [270]: #task 11
    country_counts = merged_data['country_name'].value_counts()
    print(country_counts)

top_10_countries = country_counts[:10]
    top_10_countries.plot(kind='bar')
    plt.xlabel('Country')
    plt.ylabel('Number of Zbot IPs')
    plt.title('Top 10 Countries with Zbot IPs')
    plt.show()
```

United States 5122 Netherlands 2110 Ukraine 1758 Russian Federation 758 Turkey 583 Indonesia 2 2 Singapore Ecuador 1 1 Israel Morocco

Name: country_name, Length: 64, dtype: int64


```
In [271]: #task 12
          us_ips = merged_data[merged_data['country_name'] == 'United States']
          us corr = us ips['Risk'].corr(us ips['Reliability'])
          print('Correlation between Risk and Reliability for US based IPs:', us corr)
          Correlation between Risk and Reliability for US based IPs: 0.23576850797493912
          ru ips = merged data[merged data['country name'] == 'Russian Federation']
In [272]:
          ru corr = ru ips['Risk'].corr(ru ips['Reliability'])
          print('Correlation between Risk and Reliability for Russian based IPs:', ru corr)
          Correlation between Risk and Reliability for Russian based IPs: 0.34266479281604373
In [273]: if us_corr < ru_corr:</pre>
              print('The correlation between Risk and Reliability is stronger for Russian based II
          else:
                print('The correlation between Risk and Reliability is stronger for US based IPs'
          The correlation between Risk and Reliability is stronger for Russian based IPs
In [274]:
          #task 13
          subnet risk = merged data.groupby('subnet 8bits')['Risk'].mean()
          highest risk subnet = subnet risk.idxmax()
          print('The subnet with the highest average risk is:', highest_risk_subnet);
          The subnet with the highest average risk is: 27.0.0.0/8
 In [ ]:
```