ASSIGNMENT \$ 4

Camlin Page
Date | |

Constraints given: fu perpendicular to e $(f^t e = 0 = e^t f)$ fu a unit vector $(f^t f = 1)$ et Ce = \lambda We need to maximise $f^{t}(f)$ given $f^{t}f = 1$ and $f^{t}e = 0$, using Lagrange $J(f) = f^{t}(f - \lambda (f^{t}f - 1) - \delta (f^{t}e)$ Toke dejurative of J(f) wrt ft and equating it to zero

2Cf - 2XL - So-n 2Cf - 2xf - Se = 0 (Multiplying both sides by et) 2et (f - 2 x et f - Sete = 0 Suie $(e = \lambda, e \Rightarrow e^{\dagger} c^{\dagger} = \lambda, e^{\dagger} (t_{onspose})$ C is covorience matrix \Rightarrow it is symmetric ence Conditione of x_i and x_j is some of Gordina of x_j and x_i .

Thus, $e^{\pm C} = e^{\pm C^{\pm}} = \lambda_i e^{\pm}$ \Rightarrow et $G = \lambda_1 e^t f = 0$ (or $e^t f = 0$) If S=0 of $e^{t}(f=0)$, S=0 order to maximize $f^{t}(f=1)$ represented Since rank (c) > 2 and e is the eigenector corresponding to), hence the next logest vdue of I can be in (2nd lorgest eigenvolve). Thus f is the eigenvector corresponding to