Taller 5

Nicolas Puentes Urrego

Transferencia simultánea de masa & reacción bioquímica en el soporte esférico:

A continuación se muestra la ecuación diferencial que representa la transferencia

simultanea de masa y reacción química dentro del biocatalizador enzimático, donde:

$$\frac{d^2S}{dr^2} + \frac{dS}{dr}\frac{2}{r} - \phi^2 \frac{\beta * S}{\beta + S} = 0 \tag{1}$$

Para el caso del radio inicial (r=0)

$$3\frac{d^2S}{dr^2} - \phi^2 \frac{\beta * S}{\beta + S} = 0 \tag{2}$$

Para poder hallar la distribución se utiliza la siguiente distribución con tablas, donde:

i	r	S	dS dr	$\frac{d^2S}{dr^2}$
0	0	S_o	0	(2)
1	Δr	$S_o + \Delta r * \frac{dS}{dr}$	$\frac{dS}{dr} + \Delta r * \frac{d^2S}{dr^2}$	(1)
i	R	1	$\frac{dS}{dr} _{r=R}$	$\frac{d^2S}{dr^2}\big _{r=R}$

Se puede ver en la tabla que se supone un valor de S_o (naranja) y se modifica hasta que el valor en $S|_{r=R}$ sea igual a 1.

Para hacer lo anterior se definen los siguientes invervalos de β y ϕ , donde:

$$\beta = [0.01, 0.05, 0.1, 0.5, 1, 5, 10]$$

$$\phi = [1, 2, 3, 5, 10, 20, 25, 50, 75, 100]$$

Para poder realizar el calculo se definió un dr = 5E - 4

Para calcular lo anterior se realizó un algoritmo en Python (El código se encuentra en el siguiente link)

https://github.com/NicoMosty/Catalizador-Enzimatico-Python-

Los resultados se muestran a continuación:

