# Децентрализованное управление строем

Хасан Хафизов

8 июня 2017 г.

## 1 Постановка задачи

## 2 Механическая модель агента

Моделью агента является материальная точка с массой m. Закон движения:

$$\begin{cases} m\ddot{x} = F_x \\ m\ddot{y} = F_y \end{cases}$$

 $ec{F}$  — сила, действующая на агента, может включать в себя:

$$\vec{F} = \vec{u} + \vec{W} + \vec{F_{\text{\tiny TP}}}$$

Где  $\vec{u}$  — управляющее воздействие,  $\vec{W}$  — случайные помехи,  $\vec{F_{\text{\tiny TP}}}$  — сила трения.

В предлагаемом мной алгоритме управления агентов можно разделить на два класса:

- интеллектуальный (мастер)
- управляемый (миньон)

Закон управления для этих двух типов агентов задаётся по-разному.

#### 2.1 Мастер

Мастером является агент, для которого желаемый закон движения  $S_d$  задаётся оператором извне: это может быть записанная в память агента траектория, целевая позиция или скорость.

Фактически, этот агент ничего не знает о существовании других агентов в строю (миньонов). Его задача — выполнение поставленного закона движения, поэтому закон управления:

$$\vec{u} = \vec{u}(S_d)$$

Рассмотрим конкретный закон управления для движения по некоторой траектории  $\vec{tr}(t)$ :

$$\vec{u}_{tr} = \vec{u}_{along} + \vec{u}_{across}$$

Закон управления состоит из двух частей. Первая  $\vec{u}_{along}$  отвечает за усилие вдоль траектории, вторая  $\vec{u}_{across}$  — поперёк. Направлением для  $\vec{u}_{along}$  служит направление вектора между текущим положением агента и следующей точкой траектории.

(Тут будет более подробно о том, как вычисляется следующая точка траектории. И о  $\vec{u}_{across}$ . Довольно интересно получилось)

Пример движения мастера по траектории, задаваемой параметрическим уравнением, где s — параметр:  $s \in [0, 5000]$ .

$$x(s) = 300 \cdot \cos(\frac{s}{300}); \ y(s) = s$$



(a) Исходная траектория и след от движения

(b) Скорость движения мастера

Рис. 1: Движение мастера по заданной траектории с заданной скоростью  $\dot{x}_{desired}=60\frac{\rm M}{\rm c}$ . Расстояния на рисунках задаются в метрах, время в секундах, скорость в  $\frac{\rm M}{\rm c}$ 

2

Проеденное расстояние:

$$S = \int_0^{5000} \sqrt{x'^2(s) + y'^2(s)} \ ds \approx 6051 \text{m}$$

Время прохождения маршрута: t=1170, Средняя скорость: Стационарным режимом движения можно назвать режим, при котором скорость агента колеблется в пределах между  $54\frac{\text{м}}{\text{c}}$  и  $61\frac{\text{м}}{\text{c}}$ . Более подробно скорость мастера в стационарном режиме можно увидеть на рис. 2a



(a) Скорость мастера в стационарном (b) Отклонения мастера от траектории режиме

Рис. 2: Иллюстрация отклонений от желаемого закона движения

#### 2.2 Миньон

Миньон является ведомым агентом.