MCS2 Linear Algebra: End Semester Exam

November 2021

Instructions:

- Question paper consists of four sections:
- Total Marks 30
- A, B, C, D with x questions in each section
- Section A is common to all and must be attempted
- \bullet Section B/C/D is to be attempted based on your roll-no:
 - Let r be your roll no.
 - Take $r \mod 3 = k$
 - If k = 0, attempt section B
 - If k = 1, attempt section C
 - If k = 2, attempt section D

Timings:

- \bullet 9:45 10:00 am TA review questions.
- \bullet 10:00 10:10 am Read instructions and clarify any doubts related to the question.
- $\bullet~10{:}10$ $11{:}10~\mathrm{am}$ Attempt questions.
- $\bullet~11:10~\text{-}11:15~\text{am}$ Time to upload the answers.

1 SECTION A: Answer any two questions

1. (a) Using Gaussian elimination, solve for x,y and z in 3x+2y+z=-1, 2x-y+4z=3

- (b) Using Gauss-Jordan elimination, solve for x, y and z in a+b+c+d=4,
 - a + 2b + 3c + 4d = 10,
 - a + 3b + 6c + 10d = 20,
 - a + 4b + 10c + 20d = 35
- 2. (a) Use Cramer's rule to solve the given linear system x+y-z=1, x+y+z=2, x-y=3.
 - (b) Use Gauss Jordan method to find the inverse of the matrix.

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a & b & c & d \end{pmatrix}$$

- 3. For each of the following matrices, either find a matrix P such that $P^{-1}AP$ is a diagonal matrix. If such a matrix does not exist, give clear reasons for the same.
 - (a) $A = \begin{pmatrix} -1 & 4 & 2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix}$
 - (b) $A = \begin{pmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix}$
- 4. Consider R^3 with two bases: the standard basis $E = \{e_1, e_2, e_3\}$ and the basis $B = \{f_1, f_2, f_3\}$, where $f_1 = \frac{1}{\sqrt{3}}(1, 1, 1), f_2 = \frac{1}{\sqrt{6}}(1, -2, 1), f_3 = \frac{1}{\sqrt{2}}(1, 0, 1)$
 - (a) Find the change of basis matrix from E to B, i.e., $[P]_B^E$.
 - (b) Find the matrix representation $[T]_E$ of the linear operator T on R^3 having eigen vectors $\{f_1, f_2, f_3\}$ and corresponding eigen values 1,1/2,-1/2 respectively.

2 SECTION B: Answer any two questions:

- 1. If $A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$, show A is diagonalizable and hence compute A^{10} .
- 2. Let Q is an orthogonal matrix, then show that 1) Q^{-1} is orthogonal 2) $det(Q)=\pm 1$
- 3. Orthogonally diagonalize the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

3 SECTION C: Answer any two questions:

- 1. If $A = \begin{pmatrix} 1 & k & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, find the value of k for which A is diagonalizable.
- 2. Let A and B are two similar matrices of size $n \times n$, then show that 1) A and B have the same eigenvalues 2) A^m and B^m are similar matrices.
- 3. If Q is an orthogonal matrix, prove that any matrix obtained by rearranging the rows of Q is also orthogonal.

4 SECTION D: Answer any two questions:

- 1. If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, find the condition under which A is diagonalizable and not diagonalizable.
- 2. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the complete set of eigen values of the $n \times n$ matrix A. Prove that 1) $det(A) = \lambda_1 \lambda_2 \lambda_n$ and $tr(A) = \lambda_1 + \lambda_2 + + \lambda_n$.
- 3. If A and B are orthogonally diagonalizable show that 1) A+B is orthogonally diagonalizable and 2) AB is orthogonally diagonalizable if AB=BA.