and 7, for a more detailed discussion and to recall some basic notations here: If $\,\mu\,$ is a linear form on C_(X,R) then

- $\mu \ge 0$ means $\mu(f) \ge 0$ for all $f \ge 0$; μ is then called positive (positivity automatically implies continuity),
- μ > 0 means that μ \geq 0 , but μ does not vanish identically,
- μ >> 0 means that $\,\mu\,(f)$ > 0 $\,$ for any $\,f$ > 0 ; μ $\,$ is then called strictly positive.

If μ is a linear form on $C_O(X,\mathbb{C})$, then μ can be written uniquely as $\mu=\mu_1+i\mu_2$ where μ_1 and μ_2 map $C_O(X,\mathbb{R})$ into \mathbb{R} (decomposition into real and imaginary parts). We call μ positive (strictly positive) and use the above notations if $\mu_2=0$ and μ_1 is positive (strictly positive). We point out that strictly positive linear forms need not exist on $C_O(X)$, but if X is separable then a strictly positive linear form is obtained by summing a suitable sequence of point measures.

The coincidence of the notions of a closed algebraic and a closed lattice ideal in $C_{\Omega}(X)$ has of course its effect on the algebraic and the lattice theoretic notions of a homomorphism. The case of a homomorphism into another space $C_{\Omega}(Y)$ will be discussed below. As for homomorphisms into the scalar field, we have essentially coincidence between the algebraic and the order theoretic meaning of this word, more exactly: A linear form $\mu \neq 0$ on $C_{\Omega}(X)$ is a lattice homomorphism if and only if μ is, up to normalization, an algebra homomorphism (algebra homomorphisms ≠ 0 must necessarily have norm 1). Since the algebra homomorphisms \neq 0 on $C_{\Omega}(X)$ are known to be the point measures (denoted by $\,\delta_{\,{}_{{\mbox{\scriptsize t}}}}$) on $\,X\,$ and since on the other hand $\,\mu$ is a lattice homomorphism if and only if $\left|\mu\left(f\right)\right|$ equals $\mu\left(\left|f\right|\right)$ for all f , it follows that this latter condition on μ is equivalent to $\mu = \alpha \delta_{+}$ for a suitable t in X and a positive real number α . This can be summarized by saying that X can be canonically identified, via the map $t \to \delta_+$, with the subset of the dual $C_{\circ}(X)$ ' consisting of the non-zero algebra homomorphisms, which is also the set of all normalized lattice homomorphisms. This identification is a topological isomorphism with respect to the weak*-topology of $C_{\alpha}(X)$ '.