

planetmath.org

Math for the people, by the people.

skew-symmetric matrix

Canonical name SkewsymmetricMatrix
Date of creation 2013-03-22 12:01:05
Last modified on 2013-03-22 12:01:05

Owner Daume (40) Last modified by Daume (40)

Numerical id 10

Author Daume (40)
Entry type Definition
Classification msc 15-00
Related topic SelfDual

Related topic AntiSymmetric

Related topic SkewHermitianMatrix Related topic AntisymmetricMapping

Definition:

Let A be an square matrix of order n with real entries (a_{ij}) . The matrix A is skew-symmetric if $a_{ij} = -a_{ji}$ for all $1 \le i \le n, 1 \le j \le n$.

$$A = \begin{pmatrix} a_{11} = 0 & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} = 0 \end{pmatrix}$$

The main diagonal entries are zero because $a_{i,i} = -a_{i,i}$ implies $a_{i,i} = 0$.

One can see skew-symmetric matrices as a special case of complex skew-Hermitian matrices. Thus, all properties of skew-Hermitian matrices also hold for skew-symmetric matrices.

Properties:

- 1. The matrix A is skew-symmetric if and only if $A^t = -A$, where A^t is the matrix transpose
- 2. For the trace operator, we have that $tr(A) = tr(A^t)$. Combining this with property (1), it follows that tr(A) = 0 for a skew-symmetric matrix A
- 3. Skew-symmetric matrices form a vector space: If A and B are skew-symmetric and $\alpha, \beta \in \mathbb{R}$, then $\alpha A + \beta B$ is also skew-symmetric.
- 4. Suppose A is a skew-symmetric matrix and B is a matrix of same order as A. Then B^tAB is skew-symmetric.
- 5. All eigenvalues of skew-symmetric matrices are purely imaginary or zero. This result is proven on the page for skew-Hermitian matrices.
- 6. According to Jacobi's Theorem, the determinant of a skew-symmetric matrix of odd order is zero.

Examples:

$$\bullet \ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$$

$$\bullet \ \begin{pmatrix} 0 & b & c \\ -b & 0 & e \\ -c & -e & 0 \end{pmatrix}$$