G: A = {2,3,4,5,6,7,8} R be a relation over A xRy iff X-y = 3n for some n E Z.

 $R = \left\{ (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8) \right.$  (8,5), (5,8), (8,2), (2,8), (7,4), (4,7), (6,3)  $(3,6), (5,2), (2,5) \right\}$ 

#### Graph:

1.



### Binary Matrix

| A | 2 | 3 | 4 | 5 | Ç | 7 | g | -7 |
|---|---|---|---|---|---|---|---|----|
| 2 | 1 | 0 | 0 | i | 0 | 0 | 1 |    |
| 3 | 0 | i | 0 | 0 | t | 0 | 0 |    |
| 4 | 0 | 0 | t | 0 | 0 | 1 | 0 |    |
| 5 | 1 | 6 | 0 | į | C | 0 | ì |    |
| G | 0 | ì | 0 | O | i | 0 | t |    |
| 7 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |    |
| 8 | i | O | 0 | i | 1 | 0 | Í |    |
|   |   |   |   |   |   |   |   |    |

as  $(2,2) \in \mathbb{R} \to 1$  $(2,3) \notin \mathbb{R} \to 0$ 

A. M<sub>ROQ</sub> 
$$Q = b \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} R = 0 \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} S = 0 \begin{bmatrix} 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
B. M<sub>SOQ</sub>  $Q = 0 \begin{bmatrix} 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} R = 0 \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} S = 0 \begin{bmatrix} 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ 

3. G:  $A = \{1,2,3,4,5\}$ R:  $\{(0,b) \in A \times A\}$ =  $\{(1,1)(2,1)(3,1)(4,1)(5,1)(2,2)$ (4,2)(3,3)(4,4)(5,5)}

S:  $\{(2,1),(2,3),(3,4),(3,5),(4,5)\}$ 

A. SoR =  $\{(2,1)(2,3),(3,1),(3,2),(3,4),(3,5),(4,1)\}$ Domain =  $\{2,3,4\}$ Range =  $\{1,2,3,4,5\}$ 

B.  $(50R)^{-1} = \{(1,2), (3,2), (1,3), (2,3), (4,3)\}$ 

 $\overline{SOR} = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,4), (2,5), (3,3), (4,2), (4,3), (4,4) \}$   $(5,1), (5,2), (5,3), (5,4), (5,5)\}$ 

### 4. Hasse Diagram

# A. ({1,2,3,6,12,247,1)



24 divisible by 1,2,3,6,12 and 24

B-({2,3,4,5,6,30,60},1)



30 is not divisible by 4
so they are not connected
Same with, 2,3 and 5

C. ({2,4,6,12,24,36},1)



not connected

24 and 36

are divisible by

12,6,4,2

D. (P({a,b,c,d}),C)

P(A) = {\psi\_1, {a}, {b}, {c}, {d}, {ab}, {ac}, {ad}

{bc}, {bd}, {cd}, {abc}, {acd}, {bcd}, {abd}

{abcd}



E. R= {(a,a)(a,c)(a,b)(a,e)(d,d),(d,b)(d,e) (c,c)(c,e)(b,b)(b,e)(e,e)}



### 5. STATE DIAGRAM - OVERLAPPING

### A. 10110 - MEBLY



### B. 10011 - MOORE







### G. STATE TABLE

# A. MOORE STATE MACHINE

| Current<br>State | Next | State 1 | output |  |
|------------------|------|---------|--------|--|
| 5(0)             | 5(0) | 5(1)    | 0      |  |
| 5(1)             | 5(0) | S(2)    | 0      |  |
| 5(2)             | s(o) | \$(3)   |        |  |
| \$(3)            | 5(0) | 5(3)    | 1      |  |

## B. MEBLY STATE MACHINE

| Current     | Next State |     |       |     |  |  |  |
|-------------|------------|-----|-------|-----|--|--|--|
| State       | . 0        |     | 1     |     |  |  |  |
|             | state      | 0/P | state | 0/6 |  |  |  |
| s(o)        | s(o)       | 0   | 5(1)  | 0   |  |  |  |
| 5(1)        | 5(2)       | 0   | 5(1)  | 0   |  |  |  |
| <b>S(2)</b> | 5(0)       | 0   | 5(3)  | 0   |  |  |  |
| \$(3)       | 5(0)       | 1   | 5(1)  | 0   |  |  |  |