

FlashAttention

Kun Yuan (袁坤)

Center for Machine Learning Research @ Peking University

$$Q = XW_Q \in \mathbb{R}^{N \times d}$$

N is the sequence length

d is the embedding dimension

$$K = XW_K \in \mathbb{R}^{N \times d}$$

$$V = XW_V \in \mathbb{R}^{N \times d}$$

$$S = QK^{\top} \in \mathbb{R}^{N \times N}$$

$$P = \operatorname{softmax}(S) \in \mathbb{R}^{N \times N}$$

(we ignore the scaling for simplicity)

$$O = PV \in \mathbb{R}^{N \times d}$$

FLOPS

- The above attention process incurs $O(N^2d)$ FLOPS computation complexity
- Increases quadratically fast with sequence length N
- Various methods have been developed to reduce $O(N^2)$ to O(N). These methods are not exact attention, and they typically fail to achieve remarkable acceleration
- The fundamental reason is that they cannot reduce Memory Access Cost (MAC)

Memory in GPU

Fast but small

Large but slow

Memory Hierarchy with Bandwidth & Memory Size

Execution Model in GPU. Load inputs from HBM to SRAM, computes, then writes outputs to HBM.

Since HBM is slow, MAC is primarily composed of HBM reads and writes

MAC in standard attention implementation

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top}$, write \mathbf{S} to HBM.
- 2: Read S from HBM, compute P = softmax(S), write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.

	Operation	MAC
MAC coat is	Load Q and K	2dN
MAC cost is	Write S	N^2
$4N^2 + 4dN$	Read S	N^2
	Write P	N^2
	Load Q and V	$N^2 + dN$
er of Machine Learning Research	Write O	dN

MAC consumes significant wall-clock time in transformer

Compute-bound operator: computing time > accessing HBM time

Matrix multiplication; convolution

• **Memory-bound operator:** accessing HBM time > computing time

Element-wise operator (activation, dropout); reduction (sum, softmax)

Transformer includes many memory-bound operators

Reducing MAC cost can significantly accelerate attention

FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao[†], Daniel Y. Fu [†], Stefano Ermon [†], Atri Rudra [‡], Christopher Ré [†]

Department of Computer Science, Stanford University

Department of Computer Science and Engineering, University at Buffalo, SUNY

{trid,danfu}@stanford.edu,ermon@stanford.edu,atri@buffalo.edu,chrismre@cs.stanford.edu

Core idea in FlashAttention: Kernal fusion

A simplified attention without softmax

Write O

HBM accessing comparison

Vanila Attention

Flash Attention

Operation	MAC	Operation	MAC
Load Q and K	2dN	Load Q twice	2dN
Write S	N^2	Load K, V	2dN
Read S	N^2	Write O'	dN
Write P	N^2	Read O'	dN
Load Q and V	$N^2 + dN$	Write O	dN
Write O	dN		

 $4N^2 + 4dN$

7*dN*

Kernal fusion significantly saves MAC

- When ${\it N}\gg d$, FlashAttention significantly saves MAC ${
 m 4N}^2+{
 m 4dN}\gg {
 m 7dN}$
- The longer the sequence length is, the better that FlashAttention is
- The fundamental reason is that we fusion the intermediate operators, e.g., do not store S
- But how to handle softmax?

Online softmax

• For numerical stability, the softmax of vector $x \in \mathbb{R}^B$ is computed as

$$m(x) := \max_{i} x_{i}, \qquad f(x) := \left[e^{x_{1}-m(x)} \dots e^{x_{B}-m(x)}\right],$$

$$\ell(x) := \sum_{i} f(x)_{i}, \qquad \text{softmax}(x) := \frac{f(x)}{\ell(x)}.$$

• For vectors $x^{(1)}$, $x^{(2)}$, the concatenated $x = \begin{bmatrix} x^{(1)} & x^{(2)} \end{bmatrix} \in R^{2B}$ is computed as follows:

$$\begin{split} m(x) &= m(\left[x^{(1)} \ x^{(2)}\right]) = \max(m(x^{(1)}), m(x^{(2)})), \\ f(x) &= \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}) \quad e^{m(x^{(2)}) - m(x)} f(x^{(2)})\right], \\ \ell(x) &= \ell(\left[x^{(1)} \ x^{(2)}\right]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}), \\ \mathrm{softmax}(x) &= \frac{f(x)}{\ell(x)}. \quad \text{We can compute softmax one block at a time} \end{split}$$

Standard attention needs to access the full matrices *K* and *V*

We can decompose K and V for kernel fusion

O = PV

 $o(s_2) = p(s_2) V_2$

 $m(s_2), f(s_2), \ell(s_2)$ $p(s_2) = f(s_2)$

$$o(s_1) = p(s_1) V_1 / \ell(s_1)$$
 $o(s_2) = p(s_2) V_2$

$$o(s_2) = p(s_2) V_2$$

$$O = PV$$

+

$$m(s) = m([s^{(1)} \ s^{(2)}]) = \max(m(s^{(1)}), m(s^{(2)})),$$

$$f(s) = [e^{m(s_1) - m(s)} f(s_1) \quad e^{m(s_2) - m(s)} f(s_2)]$$

$$\ell(s) = e^{m(s_1) - m(s)} f(s_1) + e^{m(s_2) - m(s)} f(s_2)$$

No need to store intermediate results such as S and P!

Only stores m, ℓ and O

Recall that
$$o(s_1) = f(s_1) V_1 / \ell(s_1)$$
 and $o(s_2) = f(s_2) V_2$

$$o = \left[e^{m(s_1) - m(s)} f(s_1) V_1 + e^{m(s_2) - m(s)} f(s_2) V_2 \right] / \ell(s)$$

$$= \left[\ell(s_1) e^{m(s_1) - m(s)} o(s_1) + e^{m(s_2) - m(s)} f(s_2) V_2 \right] / \ell(s)$$

$$Q \qquad K^{T} \qquad S = QK^{T} \qquad P = \operatorname{softmax}(S) \qquad V \qquad O = PV$$

$$M(s_{1}), f(s_{1}), \ell(s_{1}) \qquad p(s_{1}) = f(s_{1}) \qquad o(s_{1}) = p(s_{1}) V_{1}/\ell(s_{1})$$

If we fix Q and traverse K and V, we need to access 2Nd HBM

To save HBM, we can fix K and V but traverse Q, similar to scenarios in Page 13 – Page 18.

SRAM Read Q_1 Write $[m_1], [\ell_1]$ Write $O_1{}'$

SRAM

Read Q_2 Write $[m_1, m_2]$, $[\ell_1, \ell_2]$

Write O_2'

Read Q_3 Read K_1 Write $[m_1, m_2, m_3]$, $[\ell_1, \ell_2, \ell_3]$ Read V_1 Write O_2

Read Q_2 Read $[m_2]$, $[\ell_2]$ Write O_2

Flash attention: HBM cost

Fix K_1 , traverse Q

Fix K_2 , traverse Q

$$\frac{Nd}{M} \times Nd = N^2 d^2 / M$$

HBM cost

Flash attention: HBM and memory cost

HBM in standard attention

HBM in flash attention

$$N^2 + dN$$

$$N^2d^2/M$$

Since $M \gg d^2$, Flash attention saves significant HBM cost; M=10⁶ while $d = 64 \sim 128$

Memory in standard attention

Memory in flash attention

$$N^2d$$

Nd

No need to materialize attention score and probability, saves significant memory

Flash attention: algorithm

Algorithm 1 FlashAttention

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil$, $B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$.
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \le j \le T_c$ do
- 6: Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
- 12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: end for
- 15: **end for**
- 16: Return **O**.

Experiments

BERT 8 * A100; target accuracy of 72.0%

BERT Implementation	Training time (minutes)
Nvidia MLPerf 1.1 [58]	20.0 ± 1.5
FLASHATTENTION (ours)	17.4 ± 1.4

Experiments

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [87]	18.2	$9.5 \text{ days } (1.0 \times)$
GPT-2 small - Megatron-LM [77]	18.2	$4.7 \text{ days } (2.0 \times)$
GPT-2 small - FlashAttention	18.2	$\textbf{2.7 days} \textbf{(3.5} \times \textbf{)}$
GPT-2 medium - Huggingface [87]	14.2	21.0 days (1.0×)
GPT-2 medium - Megatron-LM [77]	14.3	$11.5 \text{ days } (1.8 \times)$
GPT-2 medium - FlashAttention	14.3	$\textbf{6.9 days} \textbf{(3.0} \times \textbf{)}$

Experiments

Long range arena

Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	-
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	$2.4 \times$
Block-sparse FlashAttention	37.0	63.0	81.3	43.6	73.3	59.6	2.8 ×
Linformer [84]	35.6	55.9	77.7	37.8	67.6	54.9	2.5×
Linear Attention [50]	38.8	63.2	80.7	42.6	72.5	59.6	2.3×
Performer [12]	36.8	63.6	82.2	42.1	69.9	58.9	1.8×
Local Attention [80]	36.1	60.2	76.7	40.6	66.6	56.0	1.7×
Reformer [51]	36.5	63.8	78.5	39.6	69.4	57.6	1.3×
Smyrf [19]	36.1	64.1	79.0	39.6	70.5	57.9	1.7×

Thank you!

Kun Yuan homepage: https://kunyuan827.github.io/

