Búsqueda binaria

Miguel Ortiz

Programación competitiva para ICPC

Abril 2023 - Cochabamba, Bolivia

Dado un arreglo **ordenado** de enteros, indicar si contiene un elemento *val* o no.

Dado un arreglo **ordenado** de enteros, indicar si contiene un elemento *val* o no.

Algoritmo:

- Revisamos el elemento del medio
 - Si es val, terminamos
 - Si es mayor que val, buscamos en la mitad izquierda
 - Si es menor que val, buscamos en la mitad derecha

Dado un arreglo **ordenado** de enteros, indicar si contiene un elemento *val* o no.

Algoritmo:

- Revisamos el elemento del medio
 - Si es val, terminamos
 - Si es mayor que val, buscamos en la mitad izquierda
 - Si es menor que val, buscamos en la mitad derecha
- Hacemos lo mismo en las mitades más pequeñas hasta encontrar el número o hasta que no queden más elementos

Dado un arreglo **ordenado** de enteros, indicar si contiene un elemento *val* o no.

Algoritmo:

- Revisamos el elemento del medio
 - Si es val, terminamos
 - Si es mayor que val, buscamos en la mitad izquierda
 - Si es menor que val, buscamos en la mitad derecha
- Hacemos lo mismo en las mitades más pequeñas hasta encontrar el número o hasta que no queden más elementos
- Primero hay *n* candidatos, luego $\frac{n}{2}$, luego $\frac{n}{4}$, etc.
- $O(\log n)$

1

$$val = 22$$

1	4	5	8	11	19	21	22	25	29	31	37	42
lo						m						hi

$$val = 22$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	×	×	×	×	lo		m	m		hi

$$val = 22$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	X	×	×	×	lo		m			hi

$$val = 22$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	X	×	×	×	×	lo	hi	×	×	×	×
							m					

$$val = 22$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	×	×	×	×	lo	hi	×	×	×	×
							m					

$$val = 23$$

1	4	5	8	11	19	21	22	25	29	31	37	42
lo						m						hi

$$val = 23$$

_ 1	4	5	8	11	19	21	22	25	29	31	37	42
×	X	X	X	×	×	×	lo		m			hi

$$val = 23$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	X	×	×	×	×	lo	hi	×	×	×	×
							m					

$$val = 23$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	×	×	×	×	×	lo	×	×	×	×
								hi				
								m				

$$val = 23$$

```
... // leer n, val, arreglo a
int lo = 0, hi = n-1;
int res = -1;
while (lo <= hi) {
  int mid = (lo + hi) / 2;
  if (a[mid] == val) {
   res = mid;
   break;
 }
  else if (val < a[mid]) {</pre>
   hi = mid - 1;
  else { // val > a[mid]
   lo = mid + 1;
// val esta en la posicion res, -1 si no esta
```

- Trabajar sobre un rango de enteros
- $f(x) = \begin{cases} 1 & \text{si } x \text{ cumple la propiedad} \\ 0 & \text{si } x \text{ no cumple la propiedad} \end{cases}$
- f(x) es monótona \star

- Trabajar sobre un rango de enteros
- $f(x) = \begin{cases} 1 & \text{si } x \text{ cumple la propiedad} \\ 0 & \text{si } x \text{ no cumple la propiedad} \end{cases}$
- f(x) es monótona \star

$$val = 22 f(x) = \begin{cases} 1 & \text{si } x \ge val \\ 0 & \text{si } x < val \end{cases}$$

- Trabajar sobre un rango de enteros
- $f(x) = \begin{cases} 1 & \text{si } x \text{ cumple la propiedad} \\ 0 & \text{si } x \text{ no cumple la propiedad} \end{cases}$
- f(x) es monótona \star

$$val = 22 f(x) = \begin{cases} 1 & \text{si } x \ge val \\ 0 & \text{si } x < val \end{cases}$$

Podemos buscar el primer 1 o el último 0

```
int lo = 0, hi = n-1;
int res = -1;
while (lo <= hi) {
 int mid = (lo + hi) / 2;
  if (f(mid) == 1) {
   res = mid; // mejor respuesta hasta ahora
   hi = mid - 1;
 else { // f(mid) == 0
   lo = mid + 1;
// Primer 1 esta en la posicion res
```

$$val = 25$$

1	4	5	8	11	19	21	22	25	29	31	37	42
lo						m						hi

val = 25

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	×	×	×	×	lo		m			hi
									res			

7

$$val = 25$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	×	×	×	×	lo	hi	×	×	×	×
							m					
									res			

$$val = 25$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	×	×	×	×	×	lo	×	×	×	×
								hi				
								m				
								res	res			

7

$$val = 25$$

1	4	5	8	11	19	21	22	25	29	31	37	42
×	×	×	×	×	×	×	×	×	×	×	×	×
							hi	lo				
								res	res			

7

Tenemos n piezas rectangulares de tamaño $a \times b$. ¿Cuál es el tamaño más pequeño que puede tener el lado de un cuadrado que contenga a todas las piezas?

Las piezas no se pueden rotar ni superponer. El tamaño del cuadrado debe ser entero.

Tenemos n piezas rectangulares de tamaño $a \times b$. ¿Cuál es el tamaño más pequeño que puede tener el lado de un cuadrado que contenga a todas las piezas?

Las piezas no se pueden rotar ni superponer. El tamaño del cuadrado debe ser entero.

- Si las n piezas entran en un cuadrado de lado x, entrarán en uno de lado x+1
- Si las n piezas no entran en un cuadrado de lado x, no entrarán en uno de lado x-1

Tenemos n piezas rectangulares de tamaño $a \times b$. ¿Cuál es el tamaño más pequeño que puede tener el lado de un cuadrado que contenga a todas las piezas?

Las piezas no se pueden rotar ni superponer. El tamaño del cuadrado debe ser entero.

- Si las n piezas entran en un cuadrado de lado x, entrarán en uno de lado x+1
- Si las n piezas no entran en un cuadrado de lado x, no entrarán en uno de lado x-1
- Función monótona 0, 0, ..., 0, 0, 0, 1, 1, 1, ...

Un cuadrado de $x \cdot x$ puede:

- acomodar $\lfloor \frac{x}{a} \rfloor$ piezas de un lado
- acomodar $\lfloor \frac{x}{b} \rfloor$ piezas del otro lado

$$f(x) = \begin{cases} 1 & \text{si } \lfloor \frac{x}{a} \rfloor \cdot \lfloor \frac{x}{b} \rfloor \ge n \\ 0 & \text{si } \lfloor \frac{x}{a} \rfloor \cdot \lfloor \frac{x}{b} \rfloor < n \end{cases}$$