Регрессионный анализ, часть 1

Математические методы в зоологии с использованием R

Марина Варфоломеева

- 1 Описание зависимости между переменными
- 2 Линейная регрессия
- 3 Неопределенность оценок коэффициентов
- 4 Тестирование значимости модели и ее коэффициентов
- Оценка качества подгонки модели

Вы сможете

- посчитать и протестировать различные коэффициенты корреляции между переменными
- подобрать модель линейной регрессии и записать ее в виде уравнения
- проверить валидность модели при помощи t- или F-теста
- \circ оценить долю изменчивости, которую объясняет модель, при помощи R^2

Описание зависимости между переменными

Пример: потеря влаги личинками мучных хрущаков

Как зависит потеря влаги личинками малого мучного хрущака *Tribolium* confusum от влажности воздуха?

- 9 экспериментов, продолжительность 6 дней
- разная относительная влажность воздуха, %
- измерена потеря влаги, мг

Малый мучной хрущак Tribolium confusum, photo by Sarefo, CC BY-SA

Nelson, 1964; данные из Sokal, Rohlf, 1997, табл. 14.1 по Logan, 2010. глава 8, пример 8с; Данные в файлах nelson.xlsx и nelson.csv

Скачиваем данные с сайта

Не забудьте войти в вашу директорию для матметодов при помощи setwd()

```
library(downloader)

# в рабочем каталоге создаем суб-директорию для данных
if(!dir.exists("data")) dir.create("data")

# скачиваем файлы
download(
    url = "https://varmara.github.io/mathmethr/data/nelson.xlsx",
    destfile = "data/nelson.xlsx")

## или .csv
# download(
# url = "https://varmara.github.io/mathmethr/data/nelson.csv",
# destfile = "data/nelson.csv")
```

Читаем данные из файла

```
library(readxl)
nelson <- read_excel("data/nelson.xlsx", sheet = 1)
## или из .csv
# nelson <- read.table(file="data/nelson.csv", header = TRUE, sep = "\t", dec
# Все ли правильно открылось
str(nelson)</pre>
```

```
# Classes 'tbl_df', 'tbl' and 'data.frame': 9 obs. of 2 variables:
```

- # \$ humidity : num 0 12 29.5 43 53 62.5 75.5 85 93
- # \$ weightloss: num 8.98 8.14 6.67 6.08 5.9 5.83 4.68 4.2 3.72

head(nelson)

Знакомимся с данными

```
# Есть ли пропущенные значения
sapply(nelson, function(x)sum(is.na(x)))

# humidity weightloss
# 0 0

# Какой объем выборки?
nrow(nelson)
```

[1] 9

Как зависит потеря веса от влажности?

```
library(ggplot2)
theme_set(theme_bw())
gg_nelson <- ggplot(data=nelson, aes(x = humidity, y = weightloss)) +
    geom_point() +
    labs(x = "Относительная влажность, %", y = "Потеря веса, мг")
qq nelson</pre>
```


Коэффициент корреляции — способ оценки силы связи между двумя переменными

Коэффициент корреляции Пирсона

- Оценивает только линейную составляющую связи
- Параметрические тесты (t-критерий) значимости применимы если переменные распределены нормально

Ранговые коэффициенты корреляции (кор. Кендалла и кор. Спирмена)

- Не зависят от формы распределения переменных
- Тест на значимость непараметрический

Интерпретация коэффициента корреляции

$$-1<
ho<1$$
 $|
ho|=1$ — сильная связь $ho=0$ — нет связи

ullet В тестах для проверки значимости тестируется гипотеза $H_0:
ho=0$

By DenisBoigelot, original uploader was Imagecreator [CC0], via Wikimedia Commons

Можно расчитать значение коэффициента корреляции между потерей веса и влажностью

Можно расчитать значение коэффициента корреляции между потерей веса и влажностью

Можно описать результаты несколькими способами:

- Величина потери веса мучных хрущаков коррелирует с относительной влажностью воздуха (r = -0.99, p < 0.01)
- Мучные хрущаки теряют вес при уменьшении относительной влажности воздуха (r=-0.99, p<0.01)

Коэффициент корреляции не позволяет предсказать значение одной переменной, зная знаячение другой

Нам бы хотелось описать функциональную зависимость

$$weightloss_i = b_0 + b_1 humidity_i$$

Линейная регрессия

Линейная регрессия

Линейная регрессия

• простая

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

множественная

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \varepsilon_i$$

Как провести линию регрессии?

Линейная модель:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Оценка модели:

$$\hat{y}_i = b_0 + b_1 x_i$$

Нужно оценить параметры линейной модели:

- β_0

Методы оценки параметров:

- Метод наименьших квадратов (Ordinary Least Squares)
- Методы максимального правдоподобия (Maximum Likelihood, REstricted Maximum Likelihood)

Метод наименьших квадратов

Оценки параметров линейной регрессии подбирают так, чтобы минимизировать остатки $\sum_{i} (y_i - \hat{y}_i)^2$

> Линия регрессии по методу наименьших квадратов из кн. Quinn, Keough, 2002, стр. 85, рис. 5.6 a

Оценки параметров линейной регрессии

Параметры	Оценки параметров	Стандартные ошибки оценок
β_1	$b_1 = \frac{\sum_{i=1}^{n} [(x_i - \bar{x})(y_i - \bar{y})]}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$	$ extit{SE}_{b_1} = \sqrt{rac{ extit{MS}_e}{\sum_{i=1}^n (x_i - ar{x})^2}}$
$eta_{ extsf{0}}$	$b_0 = \bar{y} - b_1 \bar{x}$	$SE_{b_0} = \sqrt{MS_e\left[rac{1}{n} + rac{ar{x}}{\sum_{i=1}^n (x_i - ar{x})^2} ight]}$

Стандартные ошибки коэффициентов - используются для построения доверительных интервалов - нужны для статистических тестов

Таблица из кн. Quinn, Keough, 2002, стр. 86, табл. 5.2

Интерпретация коэффициентов регрессии

Интерпретация коэффициентов регрессии

Рисунок из кн. Logan, 2010, стр. 170, рис. 8.2

Для сравнения разных моделей - стандартизованные коэффициенты

- Не зависят от масштаба измерений х и у
 - Можно вычислить, зная обычные коэффициенты и их стандартные отклонения $b_1^* = b_1 \frac{\sigma_{\scriptscriptstyle X}}{\sigma_{\scriptscriptstyle O}}$
- Можно вычислить, посчитав регрессию по стандартизованным данным

Добавим линию регрессии на график

Что это за серая область вокруг линии регрессии?

Добавим линию регрессии на график

Что это за серая область вокруг линии регрессии?

Доверительная зона регрессии

- 95% доверительная зона регрессии
- В ней с 95% вероятностью лежит регрессионная прямая
- Возникает из-за неопределенности оценок коэффициентов регрессии

Как в R задать формулу линейной регрессии

lm(формула, данные) - функция для подбора регрессионных моделей Формат формулы: зависимая_переменная ~ модель

- $\hat{y}_i = b_0 + b_1 x_i$ (простая линейная регрессия с b_0 (intercept)) $\hat{y}_i = X$
 - Y ~ 1 + X
 - Y ~ I + /
 - Y ~ X + 1
- $\hat{y}_i = b_1 x_i$ (простая линейная регрессия без b_0)
 - Y ~ X 1
 - \circ Y \sim -1 + X
- ullet $\hat{y}_i = b_0$ (уменьшенная модель, линейная регрессия Y от b_0)
 - Y ~ 1
 - Y ~ 1 X

Задача

Запишите в нотации R эти модели линейных регрессий

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i}$$

(множественная линейная регрессия с b_0)

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_3 x_{3i}$$

(уменьшенная модель множественной линейной регрессии, без x_2)

Решение

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i}$$

(множественная линейная регрессия с b_0)

$$Y \sim X1 + X2 + X3$$

$$Y \sim 1 + X1 + X2 + X3$$

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_3 x_{3i}$$

(уменьшенная модель множественной линейной регрессии, без x_2)

$$Y \sim X1 + X3$$

$$Y \sim 1 + X1 + X3$$

Подбираем параметры линейной модели

```
nelson_lm <- lm(weightloss ~ humidity, nelson)
summary(nelson_lm)</pre>
```

```
# Call:
 lm(formula = weightloss ~ humidity, data = nelson)
 Residuals:
     Min
            10 Median
                            30
                                   Max
 -0.4640 -0.0344 0.0167 0.0746 0.4524
# Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) 8.70403 0.19156 45.4 0.00000000065 ***
# humidity -0.05322 0.00326 -16.4 0.00000078161 ***
# Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.297 on 7 degrees of freedom
# Multiple R-squared: 0.974, Adjusted R-squared: 0.971
# F-statistic: 267 on 1 and 7 DF. p-value: 0.000000782
```

Подбираем параметры линейной модели

```
nelson_lm <- lm(weightloss ~ humidity, nelson)
summary(nelson_lm)</pre>
```

```
# Call:
 lm(formula = weightloss ~ humidity, data = nelson)
 Residuals:
     Min 10 Median
                            30
                                  Max
 -0.4640 -0.0344 0.0167 0.0746 0.4524
# Coefficients:
            Estimate Std. Error t value Pr(>|t|)
 (Intercept) 8.70403 0.19156 45.4 0.00000000065 ***
# humidity -0.05322 0.00326 -16.4 0.00000078161 ***
# Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.297 on 7 degrees of freedom
# Multiple R-squared: 0.974, Adjusted R-squared: 0.971
# F-statistic: 267 on 1 and 7 DF. p-value: 0.000000782
```

Коэффициенты линейной регрессии:

```
b_0 = 8.7

b_1 = -0.05
```

Неопределенность оценок коэффициентов

Неопределенность оценок коэффициентов

Неопределенность оценок коэффициентов

Доверительный интервал коэффициента

- ullet зона, в которой с $(1-lpha)\cdot 100\%$ вероятностью содержится среднее значение коэффициента
- \bullet $b_1 \pm t_{\alpha,df=n-2}SE_{b_1}$
- ullet lpha = 0.05 => $(1-0.05) \cdot 100\% = 95\%$ интервал

Доверительная зона регрессии

ullet зона, в которой с $(1-lpha)\cdot 100\%$ вероятностью лежит регрессионная прямая

Находим доверительные интервалы коэффициентов

```
# оценки коэффициентов отдельно

coef(nelson_lm)

# (Intercept) humidity

# 8.7040 -0.0532

# доверительные интервалы коэффициентов

confint(nelson_lm)

# 2.5 % 97.5 %
```

(Intercept) 8.2510 9.1570 humidity -0.0609 -0.0455

Предсказываем Ү при заданном Х

Какова средняя потеря веса при заданной влажности?

```
newdata <- data.frame(humidity = c(50, 100)) # значения, для которых предсказываем (prl <- predict(nelson_lm, newdata, interval = "confidence", se = TRUE))
```

```
# $fit
# fit lwr upr
# 1 6.04 5.81 6.28
# 2 3.38 2.93 3.83
#
# $se.fit
# 1 2
# 0.0989 0.1894
#
# $df
# [1] 7
#
# $residual.scale
# [1] 0.297
```

Предсказываем Ү при заданном Х

Какова средняя потеря веса при заданной влажности?

```
newdata <- data.frame(humidity = c(50, 100)) # значения, для которых предсказываем (prl <- predict(nelson_lm, newdata, interval = "confidence", se = TRUE))
```

```
# $fit
# fit lwr upr
# 1 6.04 5.81 6.28
# 2 3.38 2.93 3.83
#
# $se.fit
# 1 2
# 0.0989 0.1894
#
# $df
# [1] 7
#
# $residual.scale
# [1] 0.297
```

 \bullet При 50 и 100% относительной влажности ожидаемая средняя потеря веса жуков будет 6 ± 0.2 и 3.4 ± 0.4 , соответственно.

Строим доверительную зону регрессии

```
gg_nelson + geom_smooth(method = "lm") +
  labs (title = "95% доверительная зона регрессии")

gg_nelson + geom_smooth(method = "lm", level = 0.99) +
  labs (title = "99% доверительная зона регрессии")
```


Неопределенность оценок предсказанных значений

Доверительный интервал к предсказанному значению

- ullet зона в которую попадают $(1-lpha)\cdot 100\%$ значений \hat{y}_i при данном x_i
- $\hat{y}_i \pm t_{0.05,n-2} SE_{\hat{y}_i}$
- $SE_{\hat{y}} = \sqrt{MS_e \left[1 + \frac{1}{n} + \frac{(x_{prediction} \bar{x})^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}\right]}$

Доверительная область значений регрессии

ullet зона, в которую попадает $(1-lpha)\cdot 100\%$ всех предсказанных значений

Предсказываем изменение Y для 95% наблюдений при заданном X

В каких пределах находится потеря веса у 95% жуков при заданной влажности?

```
newdata <- data.frame(humidity = c(50, 100)) # новые данные для предсказания значения (pr2 <- predict(nelson_lm, newdata, interval = "prediction", se = TRUE))

# $fit
# fit lwr upr
# 1 6.04 5.30 6.78
```

```
# Ilt wr upr
# 1 6.04 5.30 6.78
# 2 3.38 2.55 4.21
# $se.fit
# 1 2
# 0.0989 0.1894
# $df
# [1] 7
# $residual.scale
# [1] 0.297
```

Предсказываем изменение Y для 95% наблюдений при заданном X

В каких пределах находится потеря веса у 95% жуков при заданной влажности?

```
newdata <- data.frame(humidity = c(50, 100)) # новые данные для предсказания значения (pr2 <- predict(nelson_lm, newdata, interval = "prediction", se = TRUE))
```

```
# $fit
# fit lwr upr
# 1 6.04 5.30 6.78
# 2 3.38 2.55 4.21
#
# $se.fit
# 1 2
# 0.0989 0.1894
#
# $df
# [1] 7
#
# $residual.scale
# $fil 0.297
```

• У 95% жуков при 50 и 100% относительной влажности будет потеря веса будет в пределах 6 \pm 0.7 и 3.4 \pm 0.8, соответственно.

(pr all <- predict(nelson lm, interval = "prediction"))</pre>

Данные для доверительной области значений

Предсказанные значения для исходных данных объединим с исходными данными в новом датафрейме - для графиков

```
# fit lwr upr
# 1 8.70 7.87 9.54
# 2 8.07 7.27 8.86
```

```
# 3 7.13 6.38 7.89
# 4 6.42 5.67 7.16
# 5 5.88 5.14 6.62
# 6 5.38 4.63 6.12
# 7 4.69 3.92 5.45
# 8 4.18 3.39 4.97
# 9 3.75 2.95 4.56
```

nelson with pred <- data.frame(nelson, pr all)</pre>

Строим доверительную область значений и доверительный интервал одновременно

Марина Варфоломеева

Осторожно!

Тестирование значимости модели и ее коэффициентов

Тестируем коэффициенты t-критерием

t-критерий

$$t = \frac{b_1 - \theta}{SE_{b_1}}$$

 $H_0: b_1 = heta$, для heta = 0Число степеней свободы df = n-2

Тестируем значимость коэффициентов с помощью t-критерия

```
summary(nelson_lm)
# (all:
# lm(formula = weightloss ~ humidity, data = nelson)
 Residuals:
     Min 10 Median 30
                                   Max
 -0.4640 -0.0344 0.0167 0.0746 0.4524
 Coefficients:
             Estimate Std. Error t value
                                           Pr(>|t|)
 (Intercept) 8.70403
                       0.19156 45.4 0.00000000065 ***
 humidity -0.05322 0.00326 -16.4 0.00000078161 ***
 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.297 on 7 degrees of freedom
# Multiple R-squared: 0.974, Adjusted R-squared: 0.971
# F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
```

Тестируем значимость коэффициентов с помощью t-критерия

```
# (all:
# lm(formula = weightloss ~ humidity, data = nelson)
# Residuals:
     Min 10 Median 30
                                   Max
 -0.4640 -0.0344 0.0167 0.0746 0.4524
# Coefficients:
             Estimate Std. Error t value
                                            Pr(>|t|)
 (Intercept) 8.70403 0.19156 45.4 0.00000000065 ***
 humidity -0.05322 0.00326 -16.4 0.00000078161 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.297 on 7 degrees of freedom
# Multiple R-squared: 0.974, Adjusted R-squared: 0.971
# F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
```

• Увеличение относительной влажности привело к достоверному замедлению потери веса жуками ($b_1=-0.053,\,t=-16.35,\,p<0.01$)

summary(nelson lm)

Проверка при помощи F-критерия

F-критерий

$$F = \frac{MS_{regression}}{MS_{error}}$$

$$H_0: \beta_1 = 0$$

Число степеней свободы $df_{regression},\ df_{error}$

Общая изменчивость

Общая изменчивость - SS_{total} , отклонения от общего среднего значения

Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Общая изменчивость

16 -Explained variability 14 -(distances) Predicted trend 12 -10 -Y units 8 6 SS_{residual} = sum of squared unexplained distances MS_{residual} = conservative mean var unexplained $= \frac{\text{SS}_{\text{residual}}}{\text{df}_{\text{residual}}}$ 2 10 X units

Остаточная изменчивость

Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Если зависимости нет, $b_1=0$

Остаточная изменчивость

Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Что оценивают средние квадраты отклонений?

Источник изменчивости	Суммы квадратов отклонений SS	Число степеней свободы df	Средний квадрат отклонений MS	Ожидаемый средний квадрат
Регрессия	$\sum (\bar{y} - \hat{y}_i)^2$	1	$\frac{\sum_{i=1}^{n} (\bar{y} - \hat{y}_i)^2}{1}$	$\sigma_{\varepsilon}^2 + \beta_1^2 \sum_{i=1}^n (x_i - \bar{x})^2$
Остаточная	$\sum (y_i - \hat{y}_i)^2$	n-2	$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$	$\sigma_{arepsilon}^{2}$
Общая	$\sum (\bar{y} - y_i)^2$	n-1		

Если $b_1=$ 0, тогда $\hat{y}_i=ar{y}_i$ и $extit{MS}_{ extit{regression}}pprox extit{MS}_{ extit{error}}$

Тестируем:

$$F = \frac{MS_{regression}}{MS_{error}}$$

F-критерий и распределение F-статистики

F - соотношение объясненной и не объясненной изменчивости

$$F = \frac{MS_{regression}}{MS_{error}}$$

Зависит от

- α
- df_{regression} df_{error}

Распределение F-статистики при

СПРАВЕДЛИВОЙ H_0 Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Таблица результатов дисперсионного анализа

Источник изменчивости	SS	df	MS	F
Регрессия	$SS_r = \sum (\bar{y} - \hat{y}_i)^2$	$df_r = 1$	$MS_r = \frac{SS_r}{df_r}$	$F_{df_r,df_e} = rac{MS_r}{MS_e}$
Остаточная	$SS_e = \sum (y_i - \hat{y}_i)^2$	$df_e = n - 2$	$ extit{MS}_e = rac{ extit{SS}_e}{ extit{df}_e}$	
Общая	$SS_t = \sum (\bar{y} - y_i)^2$	$df_t = n - 1$		

Минимальное упоминание результатов в тексте должно содержать F_{df_r,df_e} и p.

Проверяем валидность модели при помощи F-критерия

```
nelson_aov <- aov(nelson_lm)
summary(nelson_aov)</pre>
```

```
# Df Sum Sq Mean Sq F value Pr(>F)
# humidity 1 23.51 23.51 267 0.00000078 ***
# Residuals 7 0.62 0.09
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• Количество влаги, потерянной жуками в период эксперимента, достоверно зависело от уровня относительной влажности ($F_{1.7}=267,\,p<0.01$).

Оценка качества подгонки модели

Оценка качества подгонки модели

Коэффициент детерминации

Коэффициент детерминации R^2

доля общей изменчивости, объясненная линейной связью х и у

$$R^2 = \frac{SS_r}{SS_t}$$

$$0 \le R^2 \le 1$$

Иначе рассчитывается как квадрат коэффициента корреляции $R^2=r^2$

Коэффициент детерминации можно найти в сводке модели

```
summary(nelson_lm)
```

```
# Call:
# lm(formula = weightloss ~ humidity, data = nelson)
# Residuals:
             10 Median
     Min
                             30
                                   Max
 -0.4640 -0.0344 0.0167 0.0746 0.4524
 Coefficients:
             Estimate Std. Error t value
                                           Pr(>|t|)
 (Intercept) 8.70403 0.19156 45.4 0.000000000065
 humidity -0.05322 0.00326 -16.4 0.00000078161
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
# Residual standard error: 0.297 on 7 degrees of freedom
# Multiple R-squared: 0.974, Adjusted R-squared: 0.971
# F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
```

Сравнение качества подгонки моделей

Используйте $R^2_{adjusted}$ для сравнения моделей с разным числом параметров

Take home messages

- ullet Модель простой линейной регрессии $y_i=eta_0+eta_1x_i+arepsilon_i$
- В оценке коэффициентов регрессии и предсказанных значений существует неопределенность. Доверительные интервалы можно расчитать, зная стандартные ошибки.
- Значимость всей регрессии и ее параметров можно проверить при помощи t- или F-теста. $H_0: \beta_1 = 0$
- Качество подгонки модели можно оценить при помощи коэффициента детерминации R^2

Дополнительные ресурсы

Учебники

- Гланц, 1999, стр. 221-244
- Open Intro to Statistics: Chapter 7. Introduction to linear regression, pp. 315-353.
- Quinn, Keough, 2002, pp. 78-110
- Logan, 2010, pp. 170-207
- Sokal, Rohlf, 1995, pp. 451-491
- Zar, 1999, pp. 328-355
- Упражнения для тренировки
 - OpenIntro Labs, Lab 7: Introduction to linear regression (Осторожно, они используют базовую графику а не ggplot)
 - Обычный вариант, упражнения 1—4
 - Интерактивный вариант на Data Camp, до вопроса 4