PROTOCOL

for lab-exercise

LC-Oscillator

Group / Class	Script writer	Signature
2 / 4AHELS	Nico Bawaronschütz	
Date of Exercise / Hand-in Date	Team member	Signature
01.04.2014 08.04.2014	Jochen Dürauer	
Teacher	Team member	Signature
TILLICH		
Grade	Team member	Signature

SUMMARY (or DEVICE UNDER TEST)

LC-Oscillator

USED DEVICES

Number	Device	Company	Туре	Inventory Number
1	Power Supply		18315	
2	Oscilloskope	Tektronix	TDS 1002B	
3				

Stored on el-lab file Server:	

Cover Sheet E2014 v3

Contents

1. Exercise 1

- 1.1 Task
- 1.2 Calculations
- 1.3 Circuit
- 1.4 Measurements

2. Exercise 2

- 2.1 Task
- 2.2 Circuit
- 2.3 Diagram
- 2.4 Measurements

3. Comment

1. Exercise 1

1.1 Task

At first calculate the values for a Emitter-Ground-Circuit and build it afterwads. Then measure the circuit with the oscilloskope.

1.2 Calculations

Assumption:

$$fo = 700 \text{kHz}$$
 $L = 22 \mu \text{H}$

Calculated:

$$fo = \frac{1}{2 * \Pi * \sqrt{L * C}}$$

$$C = \frac{\left(\frac{1}{2 * \Pi * fo}\right)^{2}}{L}$$

$$Cges = 2,35 nF$$

1.3 Circuit

ill. 1.3.1: Illustration 1.3.1 shows the Emitter Ground circuit.

1.4 Measurements

ill. 1.4.1: Illustration 1.4.1 shows the output of the signal. You can see how the signal oscillates.

ill. 1.4.2: Illustration 1.4.2 shows the fft-spectrum of the signal. On the illustration 2.4.2 is the distance of the fundamental wave and the harmonics displayed with the cursors (28,8 dB). The distortion factor is the inverse value of the distance between the fundamenal wave and the first harmonic.

2. Exercise 2

2.1 Task

At first assume the values for a Collector-Ground-Circuit and build it afterwads. Then measure the circuit with the oscilloscope. In the end measure in 0,5 volt steps and show the characteristic graphicly.

2.2 Circuit

ill. 2.2.1: Illustration 2.2.1 shows the Emitter Ground circuit.

2.3 Diagram

U[V]	f[kHz]
6,5	730,35
6	731,61
5,5	735,1
5	738,5
4,5	741,34
4	742,01
3,5	742,89

Characteristic of the Collector-Ground-Circuit

ill. 2.3.1: Illustration 2.3.1 shows the characteristic of the Collector-Ground-Circuit.

2.4 Measurements

ill. 2.4.1: Illustration 2.4.1 shows the output of the signal. You can see how the signal oscillates.

ill. 2.4.2: Illustration 2.4.2 shows the fft-spectrum of the signal. On the illustration 2.4.2 is the distance of the fundamental wave and the harmonics displayed with the cursors (20,8 dB). The distortion factor is the inverse value of the distance between the fundamenal wave and the first harmonic.

3. Comment

The exercises 1 and 2 were finished without any troubles.