ปฏิบัติการที่ 4

การทำความสะอาดและจัดการข้อมูล

วัตถุประสงค์: 1. เพื่อให้นักศึกษาฝึกปฏิบัติทำความสะอาดและจัดการข้อมูลด้วยโปรแกรม R

- 2. เพื่อให้นักศึกษาฝึกปฏิบัติจัดการตัวแปรรูปแบบวันที่ได้
- 3. เพื่อให้นักศึกษาฝึกปฏิบัติผสานข้อมูลจากหลาย ๆ ตารางได้

Data file: "unemployment.xlsx", "child140_practice.xlsx", "thai_road_accident_practice.csv", "CBR64-Nara1_practice.xlsx" และ "CBR64-Nara2_practice.xlsx" สรุปเนื้อหา:

การจัดเตรียมข้อมูล ได้แก่ การทำความสะอาดข้อมูล เป็นการขจัดข้อมูลที่ผิดพลาด ไม่สมบูรณ์ หรือซ้ำซ้อน การจัดรูปแบบข้อมูล เป็นการแปลงข้อมูลให้อยู่ในรูปแบบที่สอดคล้องกัน เช่น แปลงวันที่ให้อยู่ ในรูปแบบเดียวกัน การจัดการข้อมูลที่ขาดหายไป เป็นการประมาณค่าหรือเติมข้อมูลที่ขาดหายไป การ แปลงข้อมูลเป็นการแปลงข้อมูลให้เป็นรูปแบบที่เหมาะสมกับการวิเคราะห์ เช่น แปลงข้อมูลตัวอักษรเป็น ตัวเลข การรวมข้อมูลเป็นการรวมข้อมูลจากหลายแหล่งเข้าด้วยกัน นอกจากการตรวจสอบข้อมูลข้างต้น แล้ว ยังมีการคำนวณค่าต่าง ๆ เพื่อเตรียมข้อมูลในการวิเคราะห์ข้อมูลต่อไป โดยทั่วไปที่เราจะตรวจสอบ เป็นอันดับต้น ๆ คือ ข้อมูลซ้ำซ้อน ข้อมูลสูญหายซึ่งมักจะรายงานเป็นเปอร์เซ็นต์ ข้อมูลที่มีค่าไม่เป็นตาม คำอธิบายข้อมูลซึ่งค่าเหล่านี้มักจะแทนค่าด้วย NA หรือหากผู้วิจัยสามารถตรวจสอบค่าจากแหล่งข้อมูลได้ ก็สามารถแก้ไขข้อมูลที่บันทึกผิดพลาดให้ถูกต้องได้ การจัดการข้อมูลในกรณีที่ตัวแปรตามมีหลายตัว เพื่อให้ง่ายต่อการวิเคราะห์ข้อมูลและง่ายในการอธิบายผลการวิเคราะห์ข้อมูล

1. ให้นักศึกษาฝึกจัดการโครงสร้างข้อมูลโดยใช้ data file "unemployment.xlsx"

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	(
1	State	Area_name	y2007	y2008	y2009	y2010	y2011	y2012	y2013	y2014	y2015	y2016	y2017	y2018	
2	US	United States	4.6	5.8	9.3	9.6	9.0	8.1	7.4	6.2	5.3	4.9	4.4	3.9	
3	AL	Alabama	4.0	5.7	11.0	10.5	9.6	8.0	7.2	6.8	6.1	5.8	4.4	3.9	
4	AK	Alaska	6.3	6.7	7.7	7.9	7.6	7.1	7.0	6.9	6.5	6.9	7.0	6.6	
5	AZ	Arizona	3.9	6.2	9.9	10.4	9.5	8.3	7.7	6.8	6.1	5.4	4.9	4.8	
6	AR	Arkansas	5.3	5.5	7.8	8.2	8.3	7.6	7.2	6.0	5.0	4.0	3.7	3.7	
7	CA	California	5.4	7.3	11.2	12.2	11.7	10.4	8.9	7.5	6.2	5.5	4.8	4.2	
8	Co	Colorado	3.7	4.8	7.3	8.7	8.4	7.9	6.9	5.0	3.9	3.2	2.7	3.3	
9	DE	Delaware	3.4	4.9	8.3	8.4	7.5	7.2	6.7	5.7	4.9	4.5	4.5	3.8	
10	DC	District of Columbia	5.5	6.5	9.3	9.4	10.2	9.0	8.5	7.8	6.9	6.1	6.1	5.6	
11	FL	Florida	4.0	6.3	10.4	11.1	10.0	8.5	7.2	6.3	5.5	4.8	4.2	3.6	
12	GA	Georgia	4.5	6.2	9.9	10.5	10.2	9.2	8.2	7.1	6.0	5.4	4.7	3.9	
13	HI	Hawaii	2.8	4.3	7.2	6.9	6.8	6.0	4.9	4.4	3.6	3.0	2.4	2.4	
14	ID	Idaho	3.1	5.1	8.8	9.0	8.3	7.2	6.1	4.8	4.2	3.8	3.2	2.8	

a) ให้จัดข้อมูลจาก wide to long ดังตัวอย่างที่แสดงข้างล่างนี้

state	areaname	year	unemrate
US	United States	2007	4.6
US	United States	2008	5.8
US	United States	2009	9.3
US	United States	2010	9.6
US	United States	2011	9.0
AL	Alabama	2007	4.0
AL	Alabama	2008	5.7
AL	Alabama	2009	11.0
AL	Alabama	2010	10.5
AL	Alabama	2011	9.6

คำตอบ (แสดงคำสั่งและบางส่วนของผลลัพธ์)
Sys.setlocale("LC_ALL", locale="Thai") # install.packages("readxl") > library(readxl) # install.packages("epiDisplay") > library(epiDisplay) # install.packages("reshape2") > library(reshape2)
> setwd("") > dt <- read_excel("unemployment.xlsx") > dt <- as.data.frame(dt) > str(dt)
Reshape > d <- melt(dt, id=c("State","Area_name")) > colnames(d) <- c("st","area","yr","unemp") > d\$yr <- sub("y","",d\$yr) > d <- d[order(d\$st,d\$area,d\$yr),] > View(d)

b) ให้ตรวจสอบการแจกแจงของข้อมูลอัตราการว่างงาน unemp หากข้อมูลไม่มีการแจงแจงแบบ ปกติให้ทำการแปลงข้อมูลให้อยู่ในรูปแบบการแจงแจงข้อมูลแบบปกติ

c) ให้ตรวจสอบข้อมูลแต่ละรัฐมีอัตราการว่างงานเป็นอย่างไรบ้าง โดยเฉลี่ยแล้วรัฐใดมีอัตราการ ว่างงานน้อยที่สุด และมากที่สุด

d) ให้บันทึกข้อมูลลงในโฟลเดอร์ โดยตั้งชื่อไฟล์เป็น "unemploy2017.csv"

คำตอบ (แสดงคำสั่งและผลลัพธ์ที่ปรากฏในโฟลเดอร์)
> write.csv(d, file="unemploy2017.csv", row.names=F)

2. ให้นักศึกษาฝึกจัดการข้อมูลตัวแปรวันที่โดยใช้ชุดข้อมูล "child140_practice.xlsx"

กำหนดโฟลเดอร์ที่มีข้อมูล "child140_practice.xlsx"

```
> setwd(".....")

# เวียกใช้ library excel

> library(readxl)

# อ่าน data file "child140_practice.xlsx")

> dt <- read_excel("child140_practice.xlsx")

> dt <- data.frame(dt)

> str(dt)

'data.frame': 140 obs. of 32 variables:
$ stu_prenme : chr "e.e."e.e."e.e."e.e."e.e.".
$ stu_prenme : chr "25610303" "25610403" "25610314"
$ stu_sex : chr "1" "1" "1" "2" ...
$ stu_birth_weight : chr "2890" "3760" "2920" "3110" ...
$ stu_weight : chr "87" "85" "0" "90" ...
$ stu_weight : chr "10" "13" "0" "12" ...
$ qtn_siblings_faandmom: chr "2" "3" "0" "1" ...
$ qtn_childno : chr "2" "2" NA "1" ...
$ stsmarnme : chr "ausa/Dēj/oujeñueñu" "ausa/Dēj/oujeñueñu" "ausa/Dēj/oujeñueñu" "dstandāne" ...
$ brtdte : chr "25311010" "25270310" "25220826"
$ edulevnmel : chr "listy" "listy" "suuneoudanu" "dstandāne" ...
$ sal : num 4000 5000 10000 6000 10000 9000 (
$ brtdte2 : chr "25310810" "25300703" "25270727"
```

a) ให้คำนวณอายุของกลุ่มตัวอย่างแต่ละคน (ตัวแปร stu_brtdte) เก็บไว้ในตัวแปรใหม่ชื่อ stuage โดยแสดงในรูปแบบตาราง

b) ให้คำนวณอายุบิดาของกลุ่มตัวอย่างแต่ละคน (ตัวแปร brtdte) เก็บไว้ในตัวแปรใหม่ชื่อ faage โดย แสดงในรูปแบบตาราง

c) ให้คำนวณอายุมารดาของกลุ่มตัวอย่างแต่ละคน (ตัวแปร brtdte2) เก็บไว้ในตัวแปรใหม่ชื่อ momage โดยแสดงในรูปแบบตาราง

```
### Pipe | Company | Compa
```

```
stuage fabrtdte faage mombrtdte momage
134 6.269678 2561-03-30 6.269678 3085-03-21 -517.6947
> dt$momage <- ifelse (dt$momage <0 ,NA,dt$momage)
                                                                                                                                                                                                                            setwd("D:\\mcs")
dt <- read_excel("child140_practice (2).xls%
dt <- as.data.frame(dt)
str(dt)</pre>
 > summary(dt$momage)
Min. 1st Qu. Median Mean 3rd Qu. Max.
23.02 31.54 35.82 35.71 40.11 50.35
> dt[which(dt$momage<0),]
[I] stu_prenme stu_brtdte
[4] stu_birth_weight stu_stature
[7] qtn_siblings_faandmom qtn_childno
[10] brtdte
[13] sal brtdte2
                                                                                                                                                                                                                            dt$stubrtdte <- as.Date(dt$stu_brtdte, "%Y%n
today <- as.Date("25670707","%Y%m%d")
dt$stuage <- as.numeric(today - dt$stubrtdte
str(dt)
                                                                                                                                    stu_sex
stu_weight
stsmarnme
                                                                                                                                                                                                                              summary(dt$stuage)
                                                                                                                                      occnme
                                                                       edulevnme1
brtdte2
sal2
qtn_sp2_3
qtn_sp2_6
qtn_sp2_9
qtn_sp2_12
stuage
mombrtdte
                                                                                                                                     occnme
edulevnme2
qtn_sp2_1
qtn_sp2_4
qtn_sp2_7
qtn_sp2_10
qtn_sp2_13
fabrtde
                                                                                                                                                                                                                            dt$fabrtdte <- as.Date(dt$stu_brtdte, "%Y%m%
dt$faage <- as.numeric(today - dt$fabrtdte)/
summary(dt$faage)</pre>
 [16] occnme2
[19] qtn_sp2_2
[22] qtn_sp2_5
[25] qtn_sp2_8
[28] qtn_sp2_11
[31] stubrtdte
[34] faage
                                                                                                                                                                                                                            dt$mombrtdte <- as.Date(dt$brtdte2, "%Y%m%d"
dt$momage <- as.numeric(today - dt$mombrtdte
summary(dt$momage)</pre>
                                                                                                                                    momage
 <0 rows> (or 0-length row.names)
co rows> (or out-length row.hames)
> dtmomage <- ifelse (dtsmomage <0 ,NA,dtsmomage)
> summary(dtsmomage)
Min. 1st Qu. Median Mean 3rd Qu. Max.
23.02 31.54 35.82 35.71 40.11 50.35
```

d) ให้จัดกลุ่มอายุบิดา ตามเงื่อนไขที่แสดงข้างล่างนี้ เก็บไว้ในตัวแปรใหม่ชื่อ faagegrp โดยแสดงใน รูปแบบตารางหรือกราฟ

1: <=30

2: 31-40

3: >40

4 Undefined (กรณีไม่ระบุ/Missing value)

- e) ให้จัดกลุ่มอายุมารดา ตามเงื่อนไขที่แสดงข้างล่างนี้ เก็บไว้ในตัวแปรใหม่ชื่อ momagegrp โดยแสดง ผลลัพธ์ในรูปแบบตารางหรือกราฟ
 - 1: <=30
 - 2: 31-40
 - 3: >40
 - 4 Undefined (กรณีใม่ระบุ/Missing value)

```
        คำตอบ (แสดงคำสั่งและผลลัพธ์)

        Frequency *(NA+) *(NA-)
        *(NA-)
        dtsmombrtde <- as.Date(dtsbrtde2, "$Y%m%d")</th>
        d
```


f) แต่ละกลุ่มอายุของบิดามีเงินเดือนเฉลี่ยเท่าไหร่ แสดงผลลัพธ์ในรูปแบบตาราง

g) แต่ละกลุ่มอายุของมารดามีเงินเดือนเฉลี่ยเท่าไหร่ แสดงผลลัพธ์ในรูปแบบตาราง

คำตอบ (แสดงคำสั่งและผลลัพธ์)

h) แต่ละกลุ่มอายุของบิดาประกอบอาชีพอะไรบ้าง แสดงผลลัพธ์ในรูปแบบตาราง

i) แต่ละกลุ่มอายุของมารดาจบการศึกษาระดับใดบ้าง แสดงผลลัพธ์ในรูปแบบตาราง คำตอบ (แสดงคำสั่งและผลลัพธ์)

3. ให้นักศึกษาฝึกสำรวจข้อมูลโดยใช้ชุดข้อมูล "thai_road_accident_practice.csv"

	Α	В	С	D	E	F	G	Н	Í	J
1	acc_code	incident_datetime	report_datetime	province_e	agency	vehicle_ty	presumed_	accident_t	number_o	number_o
2	571905	1/1/2019 0:00	2/1/2019 6:11	Loburi	departmer	motorcycl	driving und	other	1	0
3	3790870	1/1/2019 0:03	20/2/2020 13:48	Ubon Rato	departmer	private/pa	speeding	rollover/fa	1	0
4	599075	1/1/2019 0:05	1/1/2019 10:35	Prachuap I	departmer	motorcycl	speeding	head-on c	2	1
5	571924	1/1/2019 0:20	2/1/2019 5:12	Chiang Ma	departmer	motorcycl	driving unc	other	1	0
6	599523	1/1/2019 0:25	4/1/2019 9:42	Nakhon Sa	departmer	private/pa	cutting in o	rollover/fa	1	0
7	571982	1/1/2019 0:30	7/1/2019 12:46	Mae Hong	departmen	motorcycl	speeding	other	1	0
8	612782	1/1/2019 0:30	25/10/2019 14:25	Chumphor	departmer	4-wheel pi	failure to y	collision a	2	0
9	599235	1/1/2019 0:35	2/1/2019 16:23	Sing Buri	departmen	motorcycl	speeding	collision w	2	1
10	600643	1/1/2019 0:40	11/1/2019 10:01	Songkhla	departmen	motorcycl	speeding	rear-end c	2	3
11	599105	1/1/2019 0:45	1/1/2019 10:11	Trat	departmen	motorcycl	speeding	rear-end c	2	0
12	599598	1/1/2019 0:45	4/1/2019 12:01	Lamphun	departmen	motorcycl	speeding	rollover/fa	1	0
13	3792828	1/1/2019 0:45	3/3/2020 10:51	Chumphor	departmer	motorcycl	speeding	rollover/fa	1	1
14	599939	1/1/2019 1:00	5/1/2019 10:38	Phuket	departmen	motorcycl	speeding	rollover/fa	1	0
15	605004	1/1/2019 1:00	29/3/2019 10:01	Saraburi	departmen	motorcycl	speeding	rollover/fa	1	0
16	607600	1/1/2019 1:00	10/6/2019 14:33	Ratchabur	departmen	motorcycl	failure to y	rear-end c	2	1
17	599060	1/1/2019 1:04	1/1/2019 11:52	Phra Nakh	departmen	4-wheel pi	speeding	pedestrian	1	0
18	599599	1/1/2019 1:15	4/1/2019 14:19	Saraburi	departmen	motorcycl	cutting in o	head-on c	2	0
19	599947	1/1/2019 1:20	5/1/2019 11:08	Nakhon Ra	departmer	motorcycl	speeding	rollover/fa	1	1
20	606721	1/1/2019 1:20	8/5/2019 14:54	Prachuap I	departmer	motorcycl	speeding	rollover/fa	1	0
21	599512	1/1/2019 1:30	4/1/2019 14:23	Saraburi	departmen	motorcycl	speeding	head-on c	2	1
22	599536	1/1/2019 1:30	4/1/2019 11:56	Lamphun	departmen	private/pa	speeding	rollover/fa	1	0
23	599626	1/1/2019 1:30	4/1/2019 12:20	Nakhon Si	departmen	4-wheel pi	speeding	rollover/fa	1	0

อ่าน/นำเข้ามูล "thai_road_accident_practice.csv")

> dt <- read.csv("thai_road_accident_practice.csv")

> str(dt)

```
'data.frame': 81735 obs. of 16 variables:
: chr "Loburi" "Ubon Ratchathani" "Prachuap Khiri Kha
$ province en
                                  : chr "department of rural roads" "department of high
$ agency
                        : chr "motorcycle" "private/passenger car" "motorcycl

: chr "driving under the influence of alcohol" "speed

: chr "other" "rollover/fallen on straight road" "hea
$ vehicle type
$ presumed cause
$ accident type
$ number_of_vehicles_involved: int 1 1 2 1 1 1 2 2 2 2 ...
$ number_of_fatalities : int
                                            0 0 1 0 0 0 0 1 3 0 ...
$ number_or_rad:
$ number_of_injuries
--dition
                                   : int 2 2 0 1 0 2 2 0 0 1 ...
$ weather_condition
                                 : chr "clear" "clear" "clear" "clear" ...
                                  : num 15 15.2 12.4 18.6 15.9 ...
$ latitude : num 15 15.2 12.4 18.6 15.9 ...
$ longitude : num 100.9 104.9 99.9 98.8 100.6 ...
$ road_description : chr "straight road" "straight road" "wide curve" "s
$ slope_description : chr "no slope" "no slope" "slope area" "no slope" .
```

a) ให้นักศึกษาเขียนคำอธิบายตัวแปรโดยสังเกตจากข้อมูลของแต่ละตัวแปร

ตัวแปร	คำอธิบาย						
acc_code	รหัสอุบัติเหตุ						

ตัวแปร	คำอธิบาย
incident_datetime	เวลาเกิดเหตุ(วัน/เดือน/ปี)
report_datetime	เวลารายงาน(วัน/เดือน/ปี)
province_en	ชื่อจังหวัด
agency	เอเจนซี
vehicle_type	ประเภทของยานพาหนะ
presumed_cause	สาเหตุของการเกิดอุบัติเหตุ
accident_type	ประเภทของอุบัติเหตุ
number_of_vehicles_involved	จำนวนของยานพาหนะที่เกิดเหตุ
number_of_fatalities	จำนวนผู้เสียชีวิต
number_of_injuries	จำนวนผู้รับบาดเจ็บ
weather_condition	สภาพอากาศ
latitude	วัดระยะทางเหนือ-ใต้ของเส้นศูนย์สูตร
longitude	วัดระยะทางตะวันออก-ตะวันตกของเส้นศูนย์สูตร
road_description	คำอธิบายของถนน
slope_description	คำอธิบายความลาดชั้น

b) ให้หาปีที่เกิดเหตุ (incident_datetime) ของกลุ่มตัวอย่างแต่ละคน ข้อมูลถูกบันทึกในช่วงปีใด แต่ ละปีมีจำนวนคนเกิดเหตุกี่ราย โดยแสดงผลลัพธ์เป็นตาราง

คำตอบ (แสดงคำสั่งและผลลัพธ์)

> dt\$incy <- format(as.Date(dt\$incident_datetime,"%d/%m/%Y"),"%Y")

> dt\$incy <- as.numeric(dt\$incy)

> summary(dt\$incy)

> table(dt\$incy)

c) ให้หาเดือนที่เกิดเหตุ (incident_datetime) ของกลุ่มตัวอย่างแต่ละคน แต่ละเดือนมีจำนวนคนเกิด เหตุกี่ราย โดยแสดงผลลัพธ์เป็นตาราง

คำตอบ (แสดงคำสั่งและผลลัพธ์)

```
> dt$incm <- format(as.Date(dt$incident_datetime,"%d/%m/%Y"),"%m")
> dt$incm <- as.numeric(dt$incm)
> summary(dt$incm)
> table(dt$incm)
```

d) ในแต่ละปีส่วนใหญ่จะเกิดเหตุเดือนใด โดยแสดงผลลัพธ์เป็นตาราง

```
      คำตอบ (แสดงคำสั่งและผลลัพถ์)

      > dtSincident_date <- as.Date(dtSincident_date() "$")</td>

      > dtSy <- format(dtSincident_date, "$")</td>

      > west <- format(dtSincident_date, "$")</td>

      > max months <- apply(event, f. function(x) (</td>

      + names(x)(which.max(x))

      + pre_table <- data.frame(year = names(max_months), month = max_months)</td>

      year month

      2019 2019 04

      2020 2020 12

      2021 2021 04

      > |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

      |

    <
```

- e) ให้หาช่วงเวลาที่เกิดเหตุ (incident_datetime) ของกลุ่มตัวอย่างแต่ละคน และแบ่งกลุ่มช่วงเวลาดัง แสดงข้างล่างนี้ เก็บในตัวแปรใหม่ชื่อ inctimegrp ให้นักศึกษาตรวจสอบว่าแต่ละช่วงเวลามีจำนวน คนเกิดเหตุกี่ราย โดยแสดงผลลัพธ์เป็นตาราง
 - 1: 06.01-12.00
 - 2: 12.01-18.00
 - 3: 18.01-00.00
 - 4: 00.01-06.00

```
คำตอบ (แสดงคำสั่งและผลลัพธ์)
> dt$inctime <- as.POSIXct(dt$incident_datetime, format = "%d/%m/%Y %H:%M")
> dt$inctime <- format(as.POSIXct(dt$inctime),format = "%H:%M")
> dt$inctime <- gsub("[:]", ".",dt$inctime)
```

```
> dt$inctime <- as.numeric(dt$inctime)
> summary(dt$inctime)
```

f) ให้หาระยะห่างของวันนับตั้งแต่วันที่เกิดเหตุ (incident_datetime) จนถึงวันที่รายงานการเกิดเหตุ (report_datetime) ของกลุ่มตัวอย่างแต่ละคน โดยแสดงผลลัพธ์เป็นตาราง จำนวนวันที่สั้นที่สุดกี่ วัน นานที่สุดกี่วัน โดยเฉลี่ยกี่วัน

```
Pำตอบ (แสดงคำสั่งและผลลัพธ์)

> dt$incdate <- as.Date(dt$incident_datetime,"%d/%m/%y")

> dt$peri <- dt$rptdate - dt$incdate

> dt$inctime <- as.Dottxc(dt$incident_datetime, format = "%d/m/%y %H:%b")

> dt$inctime <- format (as. Notixxc (dt$incident_datetime, format = "%d/m/%y %H:%b")

> dt$inctime <- format (as. Notixxc (dt$incident_datetime, format = "%H:%b")

> dt$inctime <- format (as. Notixxc (dt$incident_datetime, format = "%H:%b")

> dt$inctime <- format (as. Notixxc (dt$incident_datetime, format = "%H:%b")

> dt$inctime <- as. numeric (dt$inctime)

> summary(attime)

> dt$inctime <- as. numeric (dt$inctime)

| dt$inctime <- as. numeric (dt$inc
```


g) ให้แสดงข้อมูลที่ผิดปกติในข้อข้างต้น โดยแสดงปี จังหวัด ประเภทของยานพาหนะ จำนวน ผู้เสียชีวิต และจำนวนผู้บาดเจ็บ ให้หาระยะห่างของวันนับตั้งแต่วันที่เกิดเหตุ (incident_datetime) จนถึงวันที่รายงานการเกิดเหตุ

```
## A TORON ( LIANNAPA AND THE PROVINCE OF THE
```

h) ให้คำนวณแต่ละปีมีจำนวนผู้บาดเจ็บและเสียชีวิตจากอุบัติเหตุทางถนนโดยเฉลี่ยเท่าไหร่

i) ให้คำนวณแต่ละเดือนมีจำนวนผู้บาดเจ็บและเสียชีวิตจากอุบัติเหตุทางถนนโดยเฉลี่ยเท่าไหร่

```
### PATRICLE | Control | C
```

j) ให้หาในแต่ละปีโดยส่วนใหญ่ยานพาหนะประเภทใดที่ประสบอุบัติเหตุทางถนน

4. ให้นักศึกษาฝึกสำรวจข้อมูลโดยใช้ชุดข้อมูล "CBR64-Nara1_practice.xlsx" และ "CBR64-Nara2_practice.xlsx" มีคำอธิบายตัวแปรดังนี้

CBR64-Nara1_practice.xlsx

747-341 Data Analytics and Data Visualizations Module

4	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	1	М	N	0	Р	Q	R	S	Т	U
1 1	iit	sex	age	brtdte	stt	tmb	prv	edu	осс	occ2	mem	mem2	dep	ot	deptfron	depamo	inc31m	inc32m	inc33y	inc53m	inc55y	
2	1) นาย	1) ชาย	49	210125	2) สมร	ส นานาค	นราธิวาส	1) ประถ	ดักปลา	ใหล	6	6	2) i	มี (กรุ	ณาระบุว่า	50000	12000				10000	
3	3) นาง	2) หญิง	71	104249	4) หม้า	ย นานาค	นราธิวาส	ไม่ได้เรีย	รับจ้างร	บายของ ตล	3		1) 1				7500			1000		
4	3) นาง	2) หญิง	89			ย นานาค					5	5	2) i	มี (กรุ	ซื้อรถมอ	3000	4500			6000		
5	3) นาง	2) หญิง	65	200524	2) สมรส	ส นานาค	นราธิวาส	1) ประถ	รับจ้างร	เายของ	7	7	1) 1	ไม่มี			7500			2000		
6	3) นาง	2) หญิง	50	210225	4) หม้า	ยนานาค	นราธิวาส	1) ประถ	รับจ้างร	บายของต ล	5	5	1) 1	ไม่มี			1000				30000	
7	3) นาง	2) หญิง	75	2489	4) หม้า	ยนานาค	นราธิวาส	ไม่ได้เรีย	ว่างงาน		4	4	1) 1	ไม่มี			4500					
8	3) นาง	2) หญิง	48	020525	4) หม้า	ยนานาค	นราธิวาส	1) ประถ	รับจ้างเ	ำขนม	5	5	1) 1	ใม่มี			12000		1000			
9	3) นาง	2) หญิง	42	110825	5) แยก	ก็นานาค	นราธิวาส	1) ประถ	รับจ้างก	ารีดยาง	5	5	1) 1	ไม่มี			7200		750	3000		
10	1) นาย	1) ชาย	55	290625	2) สมร	ส นานาค	นราธิวาส	1) ประถ	เลี้ยงวัว	เลี้ยงสัตว	8	8	1) 1	ไม่มี			15000		5000		25000	
11	1) นาย	1) ชาย	44	1E+07	2) สมรส	ส นานาค	นราธิวาส	1) ประถ	ว่างงาน		5	5	2) i	มี (กรุ	สร้างบ้าง	30000	3000					
12	3) นาง	2) หญิง		2E+07			นราธิวาส	ไม่ได้เรีย	ว่างงาน		4	4	1) 1	ไม่มี								
13	2) นางส	2) หญิง		210125			นราธิวาส	1) ประถ	รับจ้างข	ไรุงอาหาร	6	6	2) i	มี (กรุ	ณาระบุว่า	30000	4000			5000		
14	3) นาง	2) หญิง	57	110725	2) สมรส	ส นานาค	นราธิวาส	ไม่ได้เรีย	ว่างงาน		5	5	2) i	มี (กรุ	ณาระบุว่า	30000	14000			1000		
15	2) นางส	2) หญิง						2) มัธยม	ตกงาน	จากขายขน	5	5	2) i	มี (กรุ	ณาระบุว่า	30000	9500			4000		
16	2) นางส	2) หญิง	37	903252	2) สมร	ส นานาค	นราธิวาส	1) ประถ	รับจ้างร	วายติดเพ ช	5	5	2) i	มี (กรุ	ณาระบุว่	30000	7500			1000		
17	2) นางส	2) หญิง	50	260625	2) สมร	ส นานาค	นราธิวาส	1) ประถ	เลี้ยงแก	าช	4	4	2) i	มี (กรุ	สร้างและ	30000	7000			2000		
18	2) นางส	2) หญิง	33	010525	2) สมร	ส นานาค	นราธิวาส	2) มัธยม	รับจ้างก	ารีดยาง	4	4	2) 1	มี (กรุ	ณาระบุว่	30000	7000			3000		
19	1) นาย	1) ชาย	54	220525	2) สมรส	สโฆษิต	นราธิวาส	1) ประถ	รับจ้างก	ารีดยาง	5	5	1) 1	ไม่มี			6000			3000		
20	3) นาง	2) หญิง	52	180525	2) สมรส	สโฆษิต	นราธิวาส	1) ประถ	รับจ้างก	ารีดยาง	5	5	1) 1	ไม่มี			75000			2000		
21	2) นางส	2) หญิง	59	230625	4) หม้า	ยโฆษิต	นราธิวาส	ไม่ได้เรีย	ว่างงาน		3	3	1) 1	ไม่มี			10000					
22	1) นาย	1) ชาย	58	1E+07	2) สมร	สนานาค	นราธิวาส	1) ประถ	กรีดยา	า เลี้ยง เป็	3	3	1) 1	ใม่มี			7000				10000	
23	2) นางส	2) หญิง	58	2E+07	2) สมร	สนานาค	นราธิวาส	ไม่ได้เรีย	บนหนังสื	อ เลี้ยงวัว	7	7	1) 1	ใม่มี			5000				25000	
24	1) นาย	1) ชาย	49	1E+07	2) สมร	สนานาค	นราธิวาส	1) ประถ	รับจ้างก	ก่ะเลี้ยงวัว เ	3	3	1) 1	ไม่มี			5000			3000		
25	1) นาย	1) ชาย	53	1E+07	2) สมร	ส นานาค	ตากใบ	1) ประถ	รับจ้างก	ก่ะเลี้ยงวัว เ	6	6	1) 1	ไม่มี			1300				30000	
26	1) นาย	1) ชาย	37	081225	2) สมร	ส นานาค	นราธิวาส	2) มัธยม	รับจ้างก	า่ะเลี้ยงแพ	6		1) 1				7000		1000			
~~		ันราธิ	วาส 📆	datadict	(1		•		~ "						4							

CBR64-Nara2_practice.xlsx

a) ให้ตรวจสอบข้อมูล CBR64-Nara1_practice.xlsx และ CBR64-Nara2_practice.xlsx มี จำนวนกี่แถวกี่คอลัมน์

```
คำตอบ (แสดงคำสั่งและผลลัพธ์)
                                                                                                                                  R D:\mcs\com.txt - R Editor
     nr_1 <- read_excel("CBR64-Nara1_practice.xlsx")
nr 1 <- as.data.frame(nr 1)</pre>
                                                                                                                                     str(nr 1)
                       nr_2 <- read_excel("CBR64-Nara2_practice.xlsx")
nr_2 <- as.data.frame(nr_2)</pre>
    data.frame':
    $ tit
$ sex
                                                                                                                                     str(nr 2)
                                                                                                                                     nr_3 <- rbind(nr_1,nr_2)
    $ age
$ brtdte
                                                                                                                                     des(nr_1)
des(nr_2)
      prv
edu
                                                                                                                                      nr_11 <- nr_1[,c("tit","sex","stt",
"brtdte","tmb","prv","edu","occ","mem",
"inc53m","inc55y")]</pre>
      occ
occ2
                                chr
                                                                                                                                     nr_22 <- nr_2[,c("tit","sex","stt",
"brtdte","tmb","prv","edu","occ","mem",
"inc53m","inc55y")]</pre>
      mem2
      dept :
deptfrom :
depamount:
inc31m :
                        chr
                  : num 12000 7500 4500 7500 1000 4500 12000 7200 : logi Na Na Na Na Na Na Na ... : num Na Na Na Na Na Na Na 1000 750 5000 Na ... : num Na 1000 6000 2000 Na Na Na 3000 Na Na ... : num 10000 Na Na Na 3000 Na Na Na 25000 Na ... read excel ("CBR64-Nara2_practice.xlsx") as.data.frame(nr_2)
      inc32m
                                                                                                                                     nr 3 <- rbind(nr 11,nr 22)
   > str(nr_2)
'data.frame': 40 obs. of 15 variables:
```

b) ให้ทำการรวมข้อมูล CBR64-Nara1_practice.xlsx และ CBR64-Nara2_practice.xlsx หลังจากรวมแล้วข้อมูลมีจำนวนกี่แถวกี่คอลัมน์ (รวมทางแถว)

```
คำตอบ (แสดงคำสั่งและผลลัพธ์)
11 inc55y
                                                                                             des(nr_11)
des(nr_22)
> nr_3 <- rbind(nr_11,nr_22)
> des(nr_3)
                                                                                              nr_3 <- rbind(nr_11,nr_22)
                                                                                             des(nr_3)
                                     Description
    Variable
                   Class
1 tit
2 sex
                   character
                    character
   stt
                   character
  brtdte
tmb
prv
edu
                   character
character
                   character
                    character
   mem
                   numeric
10 inc53m
11 inc55y
                   numeric
```

c) กลุ่มตัวอย่างมีอายุเฉลี่ยเท่าไหร่ มากที่สุดเท่าไหร่ และน้อยที่สุดเท่าไหร่

d) กลุ่มตัวอย่างมีจำนวนสมาชิกในบ้านโดยเฉลี่ยเท่าไหร่ มากที่สุดเท่าไหร่ และน้อยที่สุดเท่าไหร่

```
คำตอบ (แสดงคำสั่งและผลลัพธ์)
```


e) กลุ่มตัวอย่างมีรายได้ต่อเดือนโดยเฉลี่ยเท่าไหร่ มากที่สุดเท่าไหร่ และน้อยที่สุดเท่าไหร่

```
# Dimotomata # How no a since with the state of the state
```

