Convolutional Neural Networks (CNNs)

- CNNs represent a deep network model that has revolutionized image-recognition
- ► CNNs are largely responsible for starting the current wave of interest in deep neural networks.

Convolutional Neural Networks (CNNs)

- CNNs are deep neural networks that are originally proposed for image recognition.
- ► The input layer of a CNN is 2-dimensional because it is an image.
- There are many features of CNNs that make them much more efficient compared to normal feedforward nets for image based pattern recognition.
- ► They use local connectivity, weight sharing, multiple 'feature planes' to learn appropriate features from data.
- We start by looking at the ideas undelying CNNs first in a one dimensional context.

Connectivity is local

- ▶ In fully connected networks weights in a layer grow as square of number of nodes.
- We can reduce the number of weights by making connections local.

▶ Now weights scale only linearly with number of neurons.

Weight-Sharing

▶ We can reduce weights further by 'sharing' of weights.

- Now number of weights per layer is a constant independent of the number of nodes.
- Such layers are called convolutional layers.

Output of a convolutional node

▶ The output can be calculated as

$$y_2 = f(w_{-1}x_1 + w_0x_2 + w_{+1}x_3)$$

$$y_3 = f(w_{-1}x_2 + w_0x_3 + w_{+1}x_4)$$

Essentially a convolution type computation

Output of a convolutional node

▶ The general case.

- Weight vector is a 3-point filter.
- ▶ We are computing the filter output at each point by sliding over the input.

CNNs

- Each layer of a network with such connectivity is called a convolutional layer.
- Convolutional neural networks (CNNs) are feedforward networks that contain many such convolutional layers.

- ▶ In a CNN, the output of the convolutional layer is passed through a non-linear activation function.
- ▶ The often used activation function is ReLU.

CNNs

- ► What are typical problems where such connectivity is natural?
- Example: Image-based pattern recognition
- Useful features in an image (e.g., edges, corners) are computed using such local convolution through so called masks.
- We apply the same operation at all points in an image to detect the feature wherever it exists.

► For example, this is a simple edge-detector mask

-1	0	1
-1	0	1
-1	0	1

▶ We do this masking (or convolution) operation at each point in the image

- ► Traditionally, in Pattern Recognition, feature extraction and classification are viewed as two separate steps.
- ► Often features are designed separtely based on the knowledge of the problem.
- For example, the SIFT or HOG features used in image recognition problems.
- After transforming the input image into a representation using the chosen features, one learns a (linear or nonlinear) classifier.
- As discussed earlier, the philosophy underlying the neural networks approach is that we should automatically learn the relevant features based on the data.

- ▶ Each convolutional layer is essentially detecting a feature.
- ► Since the weights would be learnt, we are learning the 'proper features' automatically using the training data.
- ▶ So far we are considering 1D layers.
- Image is two dimensional and hence all layers as well as the filters need to be two dimensional.
- ▶ But this is a straight-forward extension as we shall see.

Multiple Convolutional Layers

- ▶ We need to combine simple features into more complex features to achieve object recognition.
- ▶ We may combine edge pixels at different locations into lines before we can recognize shapes.
- ► This is easily achieved by having many convolutional layers.

Receptive Field of a convolutional layer node

- ► The second convolutional layer gets its output from the first, through local connectivity.
- Eventhough connectivity is local, later filters are effectively looking at larger portion of the input. (We do not explicitly show the nonlinear activation)

Receptive Field of a convolutional layer node

- The second convolutional layer gets its output from the first, through local connectivity.
- Eventhough connectivity is local, later filters are effectively looking at larger portion of the input. (We do not explicitly show the nonlinear activation)

► Each node in any convolutional layer has an effective receptive field in the input.

Output of a Convolutional Layer

▶ Since we have many layers let us revert to earlier notation.

where w_k^l is the weight connecting any node in layer l to a node with offset k in layer l-1.

▶ When we generalize to 2-D case, y_i^l would become y_{ij}^l , w_k^l would become w_{sk}^l and so on.

- ► The convolutional layer we saw so far is completely specified by one weight vector (of small dimension).
- ▶ It represents a single feture detector or filter.
- Our convolutional layer essentially detects this feature wherever it exists in the image.
- ► The output of the convolutional layer can be thought of as the representation of the input in terms of this feature (feature plane).

Multiple Filters

- ▶ A single feature would not be sufficient for many pattern recognition tasks.
- We would need multiple filters.
- ► For example, at each pont we may want to detect edges in different orientations.
- Further, through multiple layers we need to combine multiple simple features into multiple complex features.
- Hence, every convolutional layer should have multiple filters.

Convolutional layer with multiple filters

- As earlier let us take input as 1D.
- Now the convolutional layer would be 2D because of multiple filters

Multiple convolutional layers with multiple filters

- Consider two convolutional layers with multiple filters.
- ► Each layer is 2D (space dimension and filter dimension)

Connectivity is full in the filter dimension

Notation for multiple filters

- ► Each output would now have three 'indices' layer, position in the layer, and filter.
- $y_i^{l,m}$ output of node-i, layer-l, filter-m.
- The connectivity is local in space but is full in filter domain (it needs to combine all features at that point).
- ► Each weight has four 'indices' layer and filter number in that layer; the space-offset and filter coordinates of the input it is multiplying.
- $w_{k,m'}^{l,m}$ weight for filter m in layer l connecting to node with 'offset' k in space and filter m' in layer l-1.

Output of a convolutional layer node with multiple features

- $y_i^{l,m}$ output of node-i, layer-l, filter-m.
- $w_{k,m'}^{l,m}$ weight for filter m in layer l connecting to node with 'offset' k in space and filter m' in layer l-1.
- The outputs are now calculated as

$$y_i^{l,m} = f\left(\sum_{m'} \sum_{k=-q}^q w_{k,m'}^{l,m} y_{i+k}^{l-1,m'}\right)$$

 $W^{l,m}$ – the 'weight matrix' associated with filter m in layer l.

► Compare with the single filter case

$$y_i^l = f\left(\sum_{k=-1}^{+1} w_k^l y_{i+k}^{l-1}\right)$$

Notation for multiple filters

- ► Each output now has three 'indices' layer, position in the layer, and filter.
- ► Each weight has four 'indices' layer and filter number in that layer; the space-offset and filter coordinates of the input it is multiplying.
- Essentially now all these are hyper-matrices (also called tensors).
- When we move to 2D, the space part would be a pair of coordinates / offsets.

- Consider a single filter dimension.
- ► As we said earlier, there is local connectivity and weight sharing. That is what defines the filter

▶ There is one more characteristic for the filter definition.

Stride of a filter

- ▶ In the connectivity there can be an 'off-set'
- ▶ The filter shown below is said to have stride 2.

Stride of a filter

Filter with stride 1 and stride 2.

Zero Padding

- ▶ In all the figures shown so far, successive layers seem to have fewer nodes.
- We need not have that. Can use 'zero-padding'.

Numbers of nodes in successive layers

- In general, we can have different numbers in successive layers.
- Suppose we have n nodes in one layer and use P number of nodes for zero padding on either side. Suppose filter width is F and its **stride** is S.
- ▶ Then every node but the last one in the next layer would have *S* nodes exclusively to it and last node would have *F*. If this layer has *n'* nodes, then

$$(n'-1)S + F = n + 2P$$

Numbers of nodes in successive layers

▶ Suppose *n* and *n'* are nodes in successive layers, *P* is number of nodes for zero padding on either side, filter width is *F* and its **stride** is *S*.

$$(n'-1)S + F = n + 2P$$

Numbers of nodes in successive layers

▶ Suppose we have *n* nodes in one layer and use *P* number of nodes for zero padding on either side. Suppose filter width is *F* and its **stride** is *S*. Then, number of nodes in the next layer, *n'* satisfies

$$(n'-1)S + F = n + 2P$$

- Note that all quantities here have to be integers.
- If you do not use zero padding, number of nodes in successive layers decreases.
- ► Even otherwise, we may want sizes of convolutional layers successively reduced.

Pooling layers

- ▶ One also reduces the size of the successive convolutional layers by using what is known as pooling.
- ► For example, we can reduce size to half by taking average or Max of successive elements.

Often, Max pooling is used.

- ► Each convolutional layer has many filters and each extracts some feature.
- ► Through a series of convolutional layers, the original input (image) is transformed to a new feature representation.
- ▶ Then we need a classifier to classify it.
- ► For this, we have one or more 'fully-connected' layers after all convolutional layers.
- Finally, we may have a soft-max layer for multi-class classification.

A Typical CNN

- ▶ We need to extend all our notation to the case of images which are two dimensional in space.
- Each convolutional layer can be thought of as three dimensional – two space dimensions and one filter dimension.
- ► So, we can think of it as processing a 'volume' and producing a 'volume'
- ➤ To keep notation uniform, we can think of input image also as 3-dimensional e.g., colour being the third dimension.
- ► The third dimension in each layer, the **filters**, are also called the **channels**.

- ▶ Let us sligthly modify our notation for better readability.
- ▶ $y_r^{\ell}(i,j)$ the output of the node at spatial location (i,j) corresponding to filter r in (convolutional) layer ℓ .
- Now the node corresponding to filter r in layer ℓ would be associated with a weight tensor that connects this node to a limited spatial region and all filters in the previous layer. Let us look at 1D case:

- Let us sligthly modify our notation for better readability.
- $y_r^{\ell}(i,j)$ the output of the node at spatial location (i,j) corresponding to filter r in (convolutional) layer ℓ .
- Now the node corresponding to filter r in layer ℓ would be associated with a weight tensor that connects this node to a limited spatial region and all filters in the previous layer.
- ▶ $W_r^\ell(a,b;c)$ weight connecting any node in layer ℓ and filter r to a node in the previous layer at a spatial offset given by $(a,\ b)$ and filter index in the previous layer, c.

Now we can write the expression for output of a convolutional layer:

$$y_r^{\ell}(i,j) = \sum_{c} \sum_{a=-q}^{q} \sum_{b=-q}^{q} y_c^{\ell-1}(i+a,j+b) W_r^{\ell}(a,b;c)$$

where c ranges over filters in layer $\ell-1$.

- ▶ In the above, r ranges over number of filters in that layer and i, j range over the spatial extent of that layer.
- ▶ Here we have taken the spatial offset to go from -q to q. (A notation)
- ▶ Hence filter size is $(2q+1) \times (2q+1)$.

- As we discussed earlier, after the convolution operation, we actually pass the output through a non-linearity.
- Suppose after the nonlinear activation function the output is $\bar{y}_r^\ell(i,j)$.
- Now the equations become

$$y_r^{\ell}(i,j) = \sum_{c} \sum_{a=-q}^{q} \sum_{b=-q}^{q} \bar{y}_c^{\ell-1}(i+a,j+b) W_r^{\ell}(a,b;c)$$
$$\bar{y}_r^{\ell}(i,j) = f(y_r^{\ell}(i,j)) = \max\{0, y_r^{\ell}(i,j)\}$$

where we are assuming ReLU activation.

- ► There are many important details that we have ignored in writing these equations.
- ► Recall that the number of nodes in successive layers are related by

$$(n_2 - 1) * S + F = n_1 + 2P$$

(This holds for both space dimensions)

- ▶ In our equations we asumed S = 1.
- ▶ Our convention of taking F=2q+1 and letting the offset variable range over -q to q is convenient only when we have $n_2=n_1$ by taking P as large as needed.
- ▶ In such cases, we simply take the value to be zero when index is out of range.

Numbers of nodes are related by

$$(n_2-1)*S+F=n_1+2P$$

- Another special case is S=1 and P=0. Then $n_2=n_1+1-F$
- ► This would reduce the spatial size of the next convolutional layer
- ▶ Then we number nodes as 1 to n_1 and 1 to n_2 ; and let the offset variable run from 0 to F-1.

- Our convention for numbering nodes as well as the 'offset' variables depends on how the number of nodes in successive layers changes.
- ▶ It also depends on the stride of the filter.
- We also need to properly take care of pooling layers.
- ▶ In general, writing these equations is a little more involved compared to those for regular feedforward networks.

- ► After a number of such convolutional layers, we have fully connected layers.
- ► This part is like a standard feedforward network we considered earlier.
- ► The input to the first fully connected layer would be a 'vectorized version' of the last convolutional layer.
- ▶ If the output of a convolutional layer needs to be an image, then we do not have the fully connected layers. ("Fully Convolutional Networks")

A Typical CNN Architecture

▶ Thus, we have the following structure for a CNN.

- Fixing a CNN architecture involves many issues.
- ► Each convolutional layer is characterized by number of filters, size of filters and stride.
- Each such layer has one weight tensor.
- ► The spacial extents of different convolutional layers is now determined by whether or not to we use zero-padding.
- ▶ We also need to fix details of fully connected layers.
- ► There are many standard architectures (e.g., Alexnet, VGGNet, Resnet etc).

Training a CNN

- ▶ To use a CNN as a classifier, we need to learn all weights.
- One normally uses the cross entropy loss.
- ▶ We need to learn all the filters (weights in convolutional layers) in addition to weights in fully connected layers.
- ► Fully connected layers are same as the earlier feedforward networks.

Training a CNN

- ▶ We can learn the weights in convolutional layers (i.e., the filters) also using the backpropagation algorithm.
- Since convolutional layers do only linear summation followed by a nonlinear transformation, the backpropagation is essentially same as what we derived earlier.
- ▶ There is just one simple modification.

▶ In a CNN weights are shared.

▶ The final update for each weight is sum of all the updates.

We can similarly backpropagate through pooling layer also.

▶ In case of max-pooling, we transfer the 'error at the node' to that node which was the maximum.

Regularization for learning CNNs

- Many different regularizations are used.
- \blacktriangleright We have discussed weight decay and L_2 regularization.
- Often also implemented as a constraint on norm of each weight vector
- Essentially, large values for weights is an indicator of overfitting.

dropout

- We had mentioned dropout earlier
- ▶ In dropout regularization, one keeps dropping a random subset of nodes in the network from being considered.
- ▶ In each iteration, for each node (except possibly for the input nodes) we independently decide with probability, *p*, whether that node (along with all its incoming and outgoing links) would be present.
- ► The backpropagation would update only those links that are present.
- Another variant is dropconnect.

▶ For a general network, dropout can be represented as:

$$y_j^l = f(\eta_j^l) = f\left(\sum_i w_{ij}^{l-1} \xi_i^{l-1} y_i^{l-1}\right)$$

where $\xi_i^{l-1} \sim \text{Bernouli}(p)$.

- ► This can be particularized for any network structure, e.g., CNN
- ► In the equations, output of a node is multiplied by a Bernoulli random variable.
- ▶ The ξ_i^l are independent.
- This is effective in guarding against spurious 'co-adaptation' of weights.
- ▶ It essentially 'averages' many low-complexity networks and hence is effective as a regularization technique.

- ▶ Consider a single logistic unit (in some layer) with *n* inputs. Because of dropout it gets different subsets of inputs with different probabilities.
- Let S_1, \dots, S_m be the net input to this unit under these different subnetworks with probabilities P_1, \dots, P_m and let O_1, \dots, O_m be the outputs. (We would have $m = 2^n$).
- Note that the subscripts here do not refer to different units.
 - (That is why we are using different symbols).

▶ Define weighted geometric mean and weighted geometric mean of the complement as

$$G = \prod_{i} (O_i)^{P_i}$$
 $G' = \prod_{i} (1 - O_i)^{P_i}$

▶ Define Normalized weighted geometric mean as

$$NWGM(O_1, \cdots, O_m) = \frac{G}{G + G'}$$

Then one can show that

$$NWGM(O_1, \cdots, O_m) = \frac{1}{1 + ce^{-\beta \sum_i P_i S_i}} = f(ES_i)$$

▶ We can generalize this to a full network

$$y_j^l = f(\eta_j^l) = f\left(\sum_i w_{ij}^{l-1} \xi_i^{l-1} y_i^{l-1}\right)$$

we can show (under some approximation)

$$E[\eta_j^l] = \sum_{i} w_{ij}^{l-1} p_i^{l-1} E[y_i^{l-1}]$$

where $p_i^l = E[\xi_i^l] \ (= p, \text{ normally}).$

► This is essentially the averaging effect that dropout provides.

Batch Normalization

- ► In a neural network, we assume the input distribution to be constant. We learn a proper classifier for that distribution.
- As mentioned earlier, it helps to normalize the input distribution to have zero-mean and unit variance (or use a whitening transform)
- We can represent the output of a single hidden layer network as

$$y = F_2(F_1(x, \theta_1), \theta_2)$$

- Note that $x' = F_1(x, \theta_1)$ is the output of hidden layer and is input to the final layer.
- ▶ But the distribution of x' keeps changing as we are learning θ_1 .

Batch Normalization

- ▶ Batch normalization is a heuristic method that attempts to normalize the distribution of outputs at each layer in a deep network.
- Such normalization is seen to make learning more stable under SGD.
- ► This allows one to use larger step-sizes and hence achieve faster convergence.

► Suppose *x* is input to some layer (output of previous layer). The normalized version would be

$$\tilde{x} = \mathsf{Normalize}(x, \mathcal{S})$$

where S is the training set.

- ▶ But this defeats the idea of SGD because now gradient depends on all examples.
- ▶ Hence the normalization is done only on a minibatch.

- Let $\mathcal{B} = \{x_1, \dots, x_m\}$ be the inputs to a layer in a minibatch.
- ► These are all vectors. But we would normalize each component separately to have mean 0 and variance 1. Hence, we show equations as if these are scalars.
- ▶ The normalization could be:

$$\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i \qquad \sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$
$$\tilde{x}_i = \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

▶ The idea is to give \tilde{x}_i as input to next layer.

- ▶ In a deep network, each layer is tranforming the representation.
- ► We do not know how the normalization would affect learning of the representation.
- ▶ Hence we compute the batch-normalization as

$$y_i = \mathsf{BN}_{\gamma,\beta}(x_i) = \gamma \tilde{x}_i + \beta$$

and supply y_i as input to next layer.

- the parameters γ, β would also be learnt. (They would be different for different layers)
- If $\gamma = 1, \beta = 0$ we are using usual normalization.
- ▶ If $\gamma = \sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}$, $\beta = \mu_{\mathcal{B}}$, then there is no normalization.
- We would learn the appropriate normalization for each layer.

- ▶ In this notation, at some layer, x_i is the input to that layer in the original network which is now transformed into y_i .
- ▶ If L is the loss function, then we need $\frac{\partial L}{\partial x_i}$ for updating weights connecting to this layer whose output is x_i .
- Since now y_i is input this layer, backpropagation can compute $\frac{\partial L}{\partial y_i}$.
- So, we need to express $\frac{\partial L}{\partial x_i}$ in terms of $\frac{\partial L}{\partial y_i}$ and other parameters of the batch-normalization transformation.
- We also need $\frac{\partial L}{\partial \gamma}$ and $\frac{\partial L}{\partial \beta}$.
- All these can be obtained using chain rule of differentiation.

Now, in the final learnt network there is a batch-normalization transformation after each layer:

$$y_i = \gamma \tilde{x}_i + \beta$$

- We are learning γ and β for each layer. But to compute \tilde{x}_i we need statistics of minibatch.
- ▶ What do we do during test time (regular operation)?

- ▶ After learning the network, with the learnt parameters fixed, we compute $\mu_{\mathcal{B}}$ and $\sigma_{\mathcal{B}}^2$ over many random minibatches from training set, all of size m.
- Let

$$ar{\mu} = E[\mu_{\mathcal{B}}] \quad \text{and} \quad ar{\sigma}_{\mathcal{B}}^2 = rac{m}{m-1} E[\sigma_{\mathcal{B}}^2]$$

where $E[\cdot]$ denotes average over all random minibatches.

Let γ and β be learnt values for this layer. Then we use

$$y = \frac{\gamma}{\sqrt{\bar{\sigma}_{\mathcal{B}}^2 + \epsilon}} x + \left(\beta - \frac{\gamma \bar{\mu}}{\sqrt{\bar{\sigma}_{\mathcal{B}}^2 + \epsilon}}\right)$$

▶ This will be the final network that we use.

Regularization for CNNs

- We have mentioned three methods of regularization.
- These are the main ones used.
- One may use any subset of them.
- These can be used with all feedforward networks (and also with recurrent networks)
- One also progressively decreases step-size as learning proceeds to promote more stable learning.

Convolutional neural Networks

- CNNs are seen to achieve very high accuracies in a large number of applications involving classification of images, speech, text etc.
- ► The convolutional layer structure is very effective in extracting good feature representations using training data.
- CNNs can take a large part of the credit for the unprecedented interest in deep learning now.

Some Example CNNs

- ▶ Lenet or Lenet5 tested on MNIST data.
 - 2 convolutional layers, each followed by a pooling layer and three fully connected (FC) layers
 - ▶ 1st Conv layer: 6 filters with 5×5 kernel; followed by 2×2 with stride 2 average pooling.
 - ▶ Image size: 28×28 . Padding by 2 so that size of 1st layer is same. After pooling it becomes 14×14 .
 - ▶ 2nd Conv layer: 16 filters with 5×5 kernel; followed by 2×2 with stride 2 average pooling
 - No padding. Size of 2nd layer is 10×10 . After pooling, it becomes 5×5 .
 - So, number of input nodes for the first FC layer would be 400 (= 25*16)
 - ► There are 3 fully connected layers with sizes 120, 84, 10 (This is a 10-class problem)
 - Lenet used sigmoidal activations and weight decay regularization

Alexnet

- Alexnet has 5 convolutional layers and three fully connected layers.
- ▶ Conv-1: 96 filters, 11×11 kernel, stride 4
- ► Conv-2: 256 filters, 5×5 kernel
- ► Conv-3,4,5: 384 filters, 3×3 kernel
- ▶ The three FC layers have 4096, 4096, 1000 units
- Max pool layers with 3 x 3 size and stride-2 are used after the first, second and fifth convolutional layers
- Alexnet uses ReLU activations, Weight decay and dropout regularization
- ▶ The input image: $3 \times 224 \times 224$
- Achieved a very high improvement in accuracy on ImageNet data.

VGG Net

- ▶ Uses so called VGG blocks: a series of convolutional layers (same number of channels and same size) followed by a max pool with size 2 × 2 and stride 2 (so that size becomes half)
- ▶ VGG net has five bolocks: first two – 1 conv; last three – 2 conv
- first block has 64 channels and each subsequent one doubles number of channels
- Fully connected layers same as Alexnet
- So, it has 8 convolutional layers and 3 FC layers
- VGG net started the idea of using some 'building blocks' to build complex networks

- ► The Lenet took the input as 2D but convolutional layers are 3D.
- Alexnet made the structure uniform by thinking of channels in input layer too.
- ▶ This uniformity is extended by the VGG blocks.
- Many other network structures are designed by thinking of different building blocks.
- ▶ In both Alexnet and VGG net we have convolutional layers followed fully connected layers.
- One interesting question is can we have structures where 'fully connected' layers can be in between convolutional layers too.
- An interesting idea here is a convolutional layer with 1×1 kernel.

ightharpoonup Consider output of convolutional layer. If kernel is 1×1

$$y_r^{\ell}(i,j) = \sum_{c} \sum_{a=-q}^{q} \sum_{b=-q}^{q} \bar{y}_c^{\ell-1}(i+a,j+b) W_r^{\ell}(a,b;c)$$

$$y_r^{\ell}(i,j) = \sum_{c} \bar{y}_c^{\ell-1}(i,j) W_r^{\ell}(c)$$

This is like a regular feedforward network (in terms of channels).

We can visualize it like this

▶ The output of 1×1 convolutional layer.

$$y_r^{\ell}(i,j) = \sum_{c} \bar{y}_c^{\ell-1}(i,j) W_r^{\ell}(c)$$

- ▶ This is still a convolutional layer.
- ▶ There is weight sharing. (same weight for all i, j). We can visualize it like this

▶ The output of 1×1 convolutional layer.

$$y_r^{\ell}(i,j) = \sum_{c} \bar{y}_c^{\ell-1}(i,j) W_r^{\ell}(c)$$

- This is still a convolutional layer.
- ► There is weight sharing. (same weight for all i, j). We can visualize it like this

▶ The output of 1×1 convolutional layer.

$$y_r^{\ell}(i,j) = \sum_{c} \bar{y}_c^{\ell-1}(i,j) W_r^{\ell}(c)$$

- ▶ This is still a convolutional layer.
- ► There is weight sharing. (same weight for all i, j). We can visualize it like this

▶ The output of 1×1 convolutional layer.

$$y_r^{\ell}(i,j) = \sum_{c} \bar{y}_c^{\ell-1}(i,j) W_r^{\ell}(c)$$

- This is still a convolutional layer.
- ► There is weight sharing. (same weight for all i, j). We can visualize it like this

Different number of channels in the two layers.

- ▶ 1 × 1 convolutional layers can be used to, e.g., add outputs of two convolutional layers with same image size but different number of channels.
- ► They are used for such reshaping purposes in design of deep convolutional networks.
- ► For example, GoogleNet uses them in the so called inception blocks.
- Another interesting use of this is in so called residual networks.

Resnets

- ► The residual networks propose to have feed-forward paths to skip a layer in the middle.
- ► This can allow, for example, to ensure that when we add layers we do not 'lose representational abilities'.
- ► At the end of a block of convolutional layers, we take the input to this block and add it to the output.
- Now adding this block can only add to the function class representable.
- For such addition, we need 1×1 convolutional layer to reshape as needed.

A Caution

- Convolutional networks have seen Spectacular successes in a wide variety of applications.
- ► However, most of our current models and techniques are are understood only at an empirical level.
- ▶ While many ideas are well-motivated, these are all data-driven advances.
- Our explanations of why they work are, mostly, speculative.
- ▶ It is not clear, what level of rigorous theoretical understanding is possible.
- ▶ In addition, deep learning models are opaque and often brittle.
- ▶ Need to exercise sufficient caution and circumspection.