

(19)【発行国】日本国特許庁(JP)	(19) [Publication Office] Japanese Patent Office (JP)
(12)【公報種別】公開特許公報(A)	(12) [Kind of Document] Japan Unexamined Patent Publication (A)
(11)【公開番号】特開平7-233165	(11) [Publication Number of Unexamined Application (A)] Japan Unexamined Patent Publication Hei 7 - 23 31 65
(43)【公開日】平成7年(1995)9月5日	(43) [Publication Date of Unexamined Application] 19 95 (1995) September 5 day
(54) 【発明の名称】新規抗真菌化合物	(54) [Title of Invention] NOVEL ANTIMYCOTIC COM
(51) 【国際特許分類第6版】	POUND (51) [International Patent Classification 6th Edition]
C07D405/12 213	C07D405/12 213
C12P 17/16 7432-4B	C12P 17/16 743 2-4B
// A01N 43/40 101 D	// A01N 43/40 101 D
A61K 31/44 ADZ	A61K 31/44 ADZ
(CO7D405/12	(C07D405/12
213:81	213: 81
321:00)	321: 00)
(C12P 17/16	(C12P 17/16
C12R 1:645)	C12R 1: 645)
【審査請求】未請求	[Request for Examination] Examination not requested
【請求項の数】 4	[Number of Claims] 4
【出願形態】OL	[Form of Application] OL
【全頁数】10	[Number of Pages in Document] 10
(21) 【出風番号】特風平6-26884	(21) [Application Number] Japan Patent Application He i 6 - 26884
(22)【出願日】平成6年(1994)2月24日	(22) [Application Date] 1994 (1994) February 24 day
(71) 【出願人】	(71) [Applicant]
【讓別番号】000001904	[Applicant Code] 000001904
【氏名又は名称】サントリー株式会社	[Name] SUNTORY LIMITED
【住所又は居所】大阪府大阪市北区堂島浜2丁目1番40号	[Address] Osaka Prefecture Osaka City Kita-ku Dojimah ama 2-1-40
(71) 【出願人】	(71) [Applicant]
【識別番号】000006091	[Applicant Code] 000006091

JP 95233165 Machine Translation

【氏名又は名称】明治製菓株式会社

【住所又は居所】東京都中央区京橋2丁目4番16号

(72)【発明者】

【氏名】谷口 誠

【住所又は居所】大阪府岸和田市上松町1201の3

(72) 【発明者】

【氏名】柴田 耕造

【住所又は居所】大阪府和泉市緑ケ丘23の8

(72)【発明者】

【氏名】阿部 圭一

【住所又は居所】大阪府三島郡島本町若山台 1 丁目 1 番 1 号 サントリー株式会社生物医学研究所内

(72)【発明者】

【氏名】児玉 亨

【住所又は居所】大阪府三島郡島本町若山台 1 丁目 1 番 1 号 サントリー株式会社生物医学研究所内

(72)【発明者】

【氏名】魚谷 和道

【住所又は居所】神奈川県小田原市栢山788 明治製菓株式 会社薬品技術研究所内

(72) 【発明者】

【氏名】大西 由孝

【住所又は居所】神奈川県小田原市栢山788 明治製菓株式 会社薬品技術研究所内

(74)【代理人】

【弁理士】

(57)【要約】

【目的】 強い抗真菌作用を示し、かつ安全性の高い物質を得ることを目的とする。

[Name] MELJI SEIKA KAISHA LTD. (DB 69-054-1941)

[Address] Tokyo Chuo-ku Kyobashi 2-4-16

(72) [Inventor]

[Name] Taniguchi sincerity

[Address] 3 of Osaka Prefecture Kishiwada City Kamim

atsu-cho 1201

(72) [Inventor]

[Name] Shibata Kozo

[Address] 8 of Osaka Prefecture Izumi City Midorigaok

a 23

(72) [Inventor]

[Name] Abe Keiichi

[Address] Inside of Osaka Prefecture Mishima-gun Shim amoto-cho Wakayamadai 1-1-1 Suntory Institute for Biomedical Research

(72) [Inventor]

[Name] Kodama Toru

[Address] Inside of Osaka Prefecture Mishima-gun Shim amofo-cho Wakayamadai 1-1-1 Suntory Institute for Biomedical Research

(72) [Inventor]

[Name] Uotani Kazumichi

[Address] Inside of Kanagawa Prefecture Odawara City Kayama 788 Meiji Seika Kaisha Ltd. (DB 69-054-1941) chemical technology research laboratory

(72) [Inventor]

[Name] Onishi Yoshitaka

[Address] Inside of Kanagawa Prefecture Odawara City Kayama 788 Meiji Seika Kaisha Ltd. (DB 69-054-1941) chemical technology research laboratory

(74) [Attorney(s) Representing All Applicants]

[Patent Attorney]

(57) [Abstract]

[Objective] It shows strong antimycotic action, it designates that substance where at the same time safety is high is obtained as objective.

P.2

【構成】式(1):

【化1】

[Constitution] Formula (1):

[Chemical Formula 1]

(式中、Rは直鎖もしくは分岐の飽和脂肪族アシル基または直 鎖もしくは分岐の不飽和脂肪族アシル基を示す)で表される抗 真菌化合物。 Antimycotic compound which is displayed with (In Formula, R shows saturated aliphatic acyl group of straight or branched or unsaturated aliphatic acyl group of the straight or branched.).

【特許請求の範囲】

【請求項1】 式(1):

【化1】

[Claim(s)]

[Claim 1] Formula (1):

[Chemical Formula 1]

(式中、Rは直鎖もしくは分岐の飽和脂肪族アシル基または直 鎖もしくは分岐の不飽和脂肪族アシル基を示す)で表される抗 真菌化合物。

【請求項2】 Rで示される脂肪族アシル基が、イソブチリル基、チグロイル基、イソバレリル基または2ーメチルブタノイル基である請求項1に記載の抗真菌化合物。

【請求項3】 ストレプトパーティシリウムに属する、請求項1に記載の化合物生産菌を培養して、その培養液および/または培養菌体から請求項1に記載の抗真菌化合物を製造する方法

【請求項4】 前記抗真菌化合物生産菌がストレプトパーティシリウム・エス・ピー・SAM2084(Streptoverticilliumsp. SAM2084, 工業技術院生命工学工業技術研究所受託番号FERM P-14154である請求項3に記載の抗真菌化合物を製造する方法。

Antimycotic compound which is displayed with (In Formula, R shows saturated aliphatic acyl group of straight or branched or unsaturated aliphatic acyl group of the straight or branched.).

[Claim 2] Aliphatic acyl group which is shown with R, antimycotic compound which is stated in the Claim 1 which is a isobutyryl group, a tigloyl group, a isovaleryl group or a 2 - methyl butanoyl group.

[Claim 3] Culturing compound producing microbe w hich belongs to Streptoverticillium, states in Claim 1, the method which produces antimycotic compound which from fermentation broth and/or cultured cell mass it states in

[Claim 4] Aforementioned antimycotic compound producing microbe Streptoverticillium sp. * SAM2084 (the method which produces antimycotic compoundwhich is stated in Claim 3 which is a St reptoverticillium sp. SAM2084, Agency of Industrial Science and Technology National Institute of Bioscience and Human-Technology deposit number FERM P-14154.

【発明の詳細な説明】

[0001]

[Description of the Invention]

[0001]

【産業上の利用分野】本発明は新規な抗真菌抗生物質UK-2 およびその製造方法に関する。

[0002]

【従来の技術】酵母および糸状菌は真核生物であり、原核生物である細菌に対して真菌と称されている。これらの真菌のうちある種のものはヒトに対して病原性を示し、真菌感染症の起因菌とされている。これら真菌の病原性は概ね弱いものであるが、何らかの原因で抵抗力の低下した状態の患者には、重篤な症状を来すことがあり、その治療に有用な薬剤の開発が待たれている。

【0003】また、ある種の真菌は植物病原菌として知られており、植物病防御の面でも、新たな農園芸用防徴剤の開発が待たれている。さらに、最近の住宅事情を反映した結露等による住宅への糸状菌の侵入は、ヒトにアレルギー等の症状をもたらすので、この有効な対策が待たれている。

【0004】従来、これらの問題点を克服すべく、種々の抗真菌抗生物質や抗真菌剤が開発されており、一応の成果が得られてはいるが、前述のように真菌はヒトと同様に真核生物であり、強い抗真菌作用を示す物質はヒトに対しても毒性を示す場合が多く、実用面で多くの解決すべき課題が残されている。

[0005]

【発明が解決すべき課題】このように、強い抗真菌作用を示し、かつ、安全性の高い物質を得ることが、本発明が解決すべき 課題である。

[0006]

【課題を解決するための手段】本発明者らは、これらの背景のもと、より安全性に優れた抗真菌剤の開発を目指し、抗真菌活性と培養細胞(マウス白血病P388)に対する細胞毒性を指標に、広く土壌分離菌からの有用化合物のスクリーニングを実施し、ストレプトパーティシリウムに属する菌株が、強い抗真菌作用を示し、かつ、培養細胞に対する細胞毒性が低い物質を産生することを見いだし、この抗真菌化合物の単離・精製およびその構造決定を試みた結果、この化合物が、式(1):

[0007]

[Field of Industrial Application] This invention regards novel antimycotic antibiotic UK - 2 and its manufacturing method.

[0002]

[Prior Art] It is named fungi vis-a-vis bacteria where yea st and thefungi are eukaryote, are prokaryotic organism. Those of kind which is among these fungi show pathogenicity vis-a-visthe human, are made causal microbe of mycosis. pathogenicity of these fungi is in general weak ones, but, there are timeswhen severe symptomis caused in patient of state where resistive forcedecreases with a some cause, development of useful drug is expected to the treatment.

[0003] In addition, fungi of a certain kind is known, a splant pathogen, development of antifungal agent for new horticulture is expected even in aspectof plant disease protection. Furthermore, because invasion of fungi to house due to the dew condensation etc which reflects recent house situation brings allergy or other symptom to the human, this effective fix is expected.

[0004] Until recently, in order that these problem are o vercome, various antimycotic antibiotic and the antimycotic are developed, contingent result is acquired and enters, but aforementioned way fungi is eukaryote in same way as the human, as for substance which shows strong antimycotic action when the toxicity is shown vis-a-vis human is many, many problem to be solved remain from the practical aspect.

[0005]

[Problem to be Solved by Invention] This way, strong antimycotic action is shown, at same time, fact that the substance where safety is high is obtained, this invention is problem to be solved.

[0006]

[Means to Solve the Problems] As for these inventors, Origin of these background, From development of antimycotic which is superior in safety to aim, cytotoxicity for antimycotic activity and cultured cell (mouse leukemia P388) in indicator, screening of theused compound from microbe isolated from soil is executed widely, strain which belongs to the Streptoverticillium, shows strong antimycotic action, at same time, result of discovering fact that substance where cytotoxicity for cultured cell islow is produced, as for isolation and purification of this antimycotic compound and trying its structure determination, this compound, Formula (1):

[0007]

[化2]

【0008】(式中、Rは直鎖もしくは分岐の飽和脂肪族アシル基または直鎖もしくは分岐の不飽和脂肪族アシル基を示す)で表される新規の構造を有する抗真菌化合物であることを見いだし、この化合物をUK-2と命名した。

【0009】さらに本発明者らは、このUK-2が、糸状菌および酵母を始めとする種々の真菌に対して抗真菌活性を有し、医療用抗真菌剤、農園芸用防徴剤および工業用防徴剤の有効成分として有用であることを見いだし、本発明を完成した。すなわち、本発明によれば、前記式(1)で表される新規な抗真菌物質UK-2とその製造法を提供することができる。

【0010】本発明に使用される微生物としては、前記式(1)で示されるUK-2を生産することができるストレプトパーティシリウムに属する微生物であれば、いずれも使用することができる。この様な微生物は、土壌等の微生物分離源から常法に従って放線菌を分離し、次にこれらの菌体からUK-2を生する菌株を選択することにより得られる。このようなUK-2生産菌の一例としては、本発明者らが京都府の土壌より分離し、その菌学的性質からストレプトパーティシリウム・エス・ピー・SAM2084体(Streptoverticillium sp. SAM2084)と命名して、平成6年2月17日に受託番号FERM P-14154として工業技術院生命工学工業技術研究所に寄託した放線菌を挙げることができる。この微生物は、放線菌の保存のための常法に従って保存することができる。この微生物SAM2084体は次のような菌学的性質を有する。

【0011】 I. 形態的性状: 栄養菌糸は長く伸長、よく分岐し、通常の条件下では分断しない。気菌糸はスターチ寒天、グリセロール・アスパラギン寒天、イースト・麦芽寒天で豊富に着生し、胞子形成も良好である。気菌糸の分岐は典型的な車軸分岐である。分岐枝の先端はトックリ様を呈し、10~20本の直線状の胞子連鎖を着生する。電子顕微鏡による観察では、胞子は円筒型、0.5~0.6×1.5~2.0μmの大きさで、表面は平滑、通常10~20個程度連鎖する。胞子嚢、運動性胞子および菌核は観察されない。

[Chemical Formula 2]

[0008] You discovered fact that it is a antimycotic compound which possesses structure of novel which is displayed with (In Formula, R shows saturated aliphatic acyl group of straight or branched or unsaturated aliphatic acyl group of the straight or branched.), this compound UK - 2designated.

[0009] Furthermore as for these inventors, this UK - 2, has antimycotic activity vis-a-vis thevarious fungi which begins fungi and yeast, fact that it is usefulas medical antimycotic, antifungal agent for horticulture and active ingredient of industrial antifungal agent was discovered, this invention was completed. According to namely, this invention, novel antimycotic substance UK - 2 and production method which are displayed with a forementioned Formula (1) can be offered.

[0010] If it is a microorganism which belongs to Strept overticillium which can produce the UK - 2 which is shown with aforementioned Formula (1) as microorganism whichis used for this invention, in each case can use. This kind of microorganism, from soil or other microorganism isolation source following to conventional method, separatesthe Actinomycetes, is acquired by selecting strain which produces UK -2next from these strain. As one example of this kind of UK-2 producing microbe, these inventors separates from soil of Kyoto Prefecture, Streptoverticillium sp. * SAM2084 strain (St reptoverticilliums p. SAM2084) designates from microbiological characteristic, can list Actinomyceteswhich deposit is done to Agency of Industrial Science and Technology National Institute of Bioscience and Human-Technology in 1994 February 17 day as deposit number FERM P-14154. Following to conventional method for retaining Actinomycetes, it can retain thismicroorganism. This microorganism SAM2084 strain has next kind of microbiological characteristic.

[0011] I. morphological properties: Hyphae diverges does not do extension, long, well under conventional conditionthe fragment. adhesion it does aerial mycelium abundantly with starch agar, glycerol* asparagine agar and the yeast* malt agar, also condiospore formation is good. branching of aerial mycelium is typical radial branch. turtleneck way it displays end of branch, adhesion does the spore linkage of linear of 10 to 20. In observation with

【0012】II. 各種培地上の生育状態:各種寒天培地上の生育状態は [表 1] に示す通りである。色の記載について、(括弧内)に示す標準は、コンテナー・コーポレーション・オブ・アメリカ(Container Corporation of America) 社製の「カラー・ハーモニー・マニュアル(Color Harmony Manual)」に記載のものを用い、観察は28℃で14~21日培養後に行った。

electron microscope, as for spore with size of the cylinder and 0.5 to 0.6 X 1.5 to 2.0 m, smooth and usually 10 to 20 the extent linkage it does surface. sporangium, motile condiospore or sclerotium are not observed.

[0012] As as for in growth state on growth state: various agar culture medium on II. variousculture medium (Table 1) shown, is. Concerning statement of color, as for standard which is shown in the (Inside of parenthesis), as for observation with 28 °C it did after 14 to 21 day culturing making use of those which are stated in "Color Harmony Manual (color Harmony Manual)" of Container Corporation of America (Container corporation of America) supplied.

[0013]

【表1】

[0013]

[Table 1]

〔表1〕各種培地上の生育状態

培地	発育/裏面の色	気菌糸の性状/色	可溶性色素
シュークロース硝酸塩寒天	後弱/なし	なし	なし
//6コース・アスパラや寒天	良好/なし	al .	なし
		•	
何もロール・アルけずン寒天	良好/黑褐色	豊富 綿毛状	淡褐色
		/淡黄灰色(1 1/2ec))
スターチ寒天	良好/淡褐色	豊富 綿毛様	なし
		/後黄灰色(1 1/2ec)	•
オートミール寒天	普通/淡褐色	食弱	なし
		/淡灰色(idc)	
イースト・麦芽寒天	良好/黑褐色	豊富 綿毛様	黒褐色
		/灰緑色(1 1/2ge)	•
チロシン寒天	微弱/なし	なし	なし
O .			
栄養寒天	普通/なし	なし	なし
リンゴ酸材が外寒天	微弱/なし	なし	なし
مجمع را الدائم	A17 /W107	Marie Advisor 116	
ベネット寒天	良好/狹褐色		淡褐色
		/灰緑色(1 1/2ge)	

【0014】111. 生理的性質:

[0014] III. physiological characteristic:

JP 95233165 Machine Translation

(1). 生育温度範囲: イースト・スターチ寒天において 15~4 1℃の温度範囲で生育し、30℃付近で良好に生育する。

(2). ゼラチンの液化:陽性

(3). スターチの加水分解: 陽性

(4). 硝酸塩の還元:陽性

(5). 脱脂乳のペプトン化: 陽性

脱脂乳の凝固:陰性

(6). 耐塩性: 1. 5% NaCl含有培地では生育するが、NaCl3%以上では強く生育阻害を受ける。

(7). メラニン様色素の生成:陰性

【0015】IV. 炭素源の利用性(ISP-9培地使用)

(1). 利用する炭素源: Dーグルコース、Dーフルクトース、グリセロール、キシロース、Dーマンニトール、myoーイノシトール、シュクロース、Lーアラビノース

(2). 利用しない炭素源: Lーラムノース、ラフィノース

【OO16】 V. 菌体分析:ベッカー(Becker)らの方法(Appl. Microbiol. 13:236, 1965)により分析した結果、全菌体加水分解物中のジアミノピメリン酸はLL型であった。

【0017】以上の性状より、SAM2084株は放線菌の中でストレプトパーティシリウム属(Genus Streptoverticillium)に所属し、気菌糸色調は"Yellow to Green"シリーズ、気菌糸の分岐は車軸型で胞子連鎖は直線状、胞子表面は平滑状、生育裏面の色調は淡褐色~黒褐色で、褐色系の可溶性色素を生産する菌株と要約される。このような菌学的性質を持つ菌株を、ストレプトパーティシリウム属の種の記載と比較すると、ストレプトパーティシリウム・モロオカエンス(Streptoverticillium morookaense)に近縁と考えられる。しかし、生理的性質で相違する点も幾つか存在しており、本菌株をストレプトパーティシリウム・エス・ピー・SAM2084特(Streptoverticillium sp. SAM2084)と呼称する。

【0018】前記式(1)のRで示される直鎖または分岐の飽和脂肪族アシル基の例としては、アセチル基、プロピオニル基(プロパノイル基)、ブチリル基(ブタノイル基)、イソブチリル基(2-メチルプロパノイル基)、パレリル基(ペンタノイル基)、イソバレリル基(3-メチルブタノイル基)、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基

(1) growth temperature range: You grow with tempera ture range of 15 to 41 °C in yeast * starch agar, with 30 °C vicinity growin good.

(2) Liquefaction: of gelatin Positive

(3) Hydrolysis: positive of . starch

(4) . nitrate reduction: Positive

(5) Peptonization: positive of . skimmilk

Coagulation: of skimmilk Negative

(6) . salt resistance: With 1.5 % NaCl-containing culture medium you grow, but with NaCl3 % or higher growth inhibition is receivedstrongly.

(7) . melanin way pigment production: negative

[0015] Advantage of IV. carbon source (ISP - 9 culture medium use)

(1) . it utilizes carbon source : D - glucose ,D - fructose , glycerol , xylose ,D - mannitol ,myo - inositol , sucrose L - arabinose

(2) . it does not utilize carbon source : L - rhamnose , ra ffinose

[0016] V. cell mass analysis: As for result which was a nalyzed with method (Applied Microbiology (ISSN 0003-6919, CODEN APMBA) 13:236,1965) of Becker (Becker) and others, as for diamino pimelic acid in total cell mass hydrolysate it was a LL type.

[0017] From properties above, as for SAM2084 strain you belong to genus Streptoverticillium (Genus St reptoverticillium) in the Actinomycetes, as for aerial mycelium color as for branch of "Yellow to Green" series and aerial mycelium asfor spore linkage as for linear and spore surface as for color of the smooth and back surface of growth with light brown to blackish brown, strain which produces soluble pigment of brown type you are summarized with radial type. When strain which has this kind of microbiological characteristic, is compared with the statement of kind of genus Streptoverticillium, it is thought close relation in the Streptoverticillium morookaense (St reptoverticilliu mmorookae ns e). But, several points which differ with physiological characteristic exist, also Streptoverticillium sp. * SAM2084 strain (St reptoverticilliums p. SAM2084) name this strain.

[0018] Is shown with R of aforementioned Formula (1) as example of the saturated aliphatic acyl group of straight chain or branch which, acetyl group, propanoyl group (propanoyl group), butyryl group (butanoyl group), isobutyryl group (2 - methyl propanoyl group), valeryl group (pentanoyl group),

、デカノイル基、ラウロイル基(ドデカノイル基)、ミリスト イル基(テトラデカノイル基)、パルミトイル基(ヘキサデカ ノイル基)、ステアロイル基(オクタデカノイル基) (注:カ ッコ内は一般に使用される慣用名とは異なる!UPAC名を有 する基の場合のそのIUPAC名を示す。以下同じ)等が例示 され、式(1)のRで示される直鎖または分岐の不飽和脂肪族 アシル基の例としては、アクリロイル基 (プロペノイル基)、 メタクリロイル基(2ーメチルプロペノイル基)、クロトノイ ル基(trans-2-ブテノイル基)、イソクロトノイル基(cis-2 -ブテノイル基)、チグロイル基(trans-2ーメチルー2ーブ テノイル基)、アンゲロイル基(cis-2-メチル-2-ブテノ イル基)、オレオイル基 (cis-9 -オクタデセノイル基) 、エ ライドイル基(trans-9ーオクタデセノイル基)等が例示され る。また、かかるUK-2化合物の好ましい具体的な例として は、Rがイソブチリル基(2-メチルプロパノイル基)である UK-2A、チグロイル基(trans-2-メチルー2-ブテノイル 基)であるUK-2B、イソパレリル基(3-メチルブタノイ ル基)であるUK-2Cおよび2-メチルブタノイル基である UK-2D等が例示できる。

【0019】本発明のUK-2化合物は、ストレプトパーティ シリウム属に属するUKー2生産菌、例えば、前述のストレプ トパーティシリウム・エス・ピー・SAM2084を培養して 該物質を生産蓄積させ、その培養液および/または培養菌体か ら通常の精製手段を用いて精製することにより製造することが できる。通常の培養では、UK-2化合物は、Rに種々のアシ ル基が導入された類縁体の混合物として産生され、主な生産物 はUK-2AおよびUK-2Dであり、UK-2B、UK-2 Cおよびその他のUK-2化合物は微量しか産生されない。こ の培養において、培地に所望の脂肪族アシル基Rに対応する脂 肪酸又はそのナトリウム塩、カリウム塩、アンモニウム塩等の 可溶性塩を好ましくは1~100ppm、更に好ましくは1~ 10ppm添加することにより、Rに所望の脂肪族アシル基を 導入した化合物を得ることができる。例えば、上記培養におい て、培地に10ppmのイソ吉草酸を添加して培養すれば、対 応するアシル基を有するUKー2化合物であるUK-2Cの生 産量を増加させることができる。

【0020】本発明化合物の製造に際し、前記放線菌の培養に使用される培地は、液状でも固体でもよいが、通常は液体培地による振蘯培養または通気攪拌培養が有利である。使用する培地は、本発明物質生産菌が生育して本発明物質を蓄積するものであれば、特に限定されるものではないが、炭素源としては、生産菌が資化する糖類、例えばグルコース、ラクトース、グリ

isovaleryl group (3 - methyl butanoyl group), the hexanoyl group, heptanoyl group, octanoyl group, nonanoyi group, decanoyi group, lauroyi group (dodecanoyl group), the myristoyl group (tetradecanoyl group), palmitoyl group (hexadecanoyl group) and stearoyl group (octadecanoyl basis) (Inside Note: parenthesis trivial name which is used generally that IUPAC name incase of group which possesses IUPAC name which differs is shown. Same below) etc are illustrated, acryloyl group (propenoyl group), the methacryloyl group (2 - methylpropenoyl group), crotonoyl group (trans-2-butenoyl group), isocrotonoyl group (cis-2-butenoyl group) and tigloyl group (trans-2 - methyl - 2 - butenoyl group), angeloyl group (cis-2 - methyl - 2 - butenoyl group), the oleoyl group (cis-9 - octadecenoyl group) and elaidoyl group (trans-9 - octadecenoyl group) etc are illustrated as example of unsaturated aliphatic acyl group of thestraight chain or branch which is shown with R of Formula (1). In addition, it can illustrate UK-2C which is a UK - 2B and a isovaleryl group (3 methyl butanoyl group) which are a UK - 2A and a tigloyl group (trans-2-methyl - 2 - butenoyl group) where R is isobutyryl group (2 - methyl propanoyl group) as the concrete example where this UK - 2 compound is desirable, and UK - 2D etc which is a2 methyl butanovl group.

[0019] Culturing UK - 2 producing microbe and for e xample aforementioned Streptoverticillium sp. * SAM2084 which belong to the genus Streptoverticillium, product accumulation doing said substance, it can produce UK - 2 compound of thethis invention, making use of conventional purification means refining by from culture fluid and/or cultured cell mass. With conventional culture, as for UK-2 compound, it is produced, as mixture of the analog where various acyl group is introduced into R main productis UK - 2A and UK - 2D, UK - 2B, UK - 2C or other UK - 2 compoundare produced only trace amount. compound which introduces desired aliphatic acyl group into R at time offhis culturing, aliphatic acid which corresponds to desired aliphatic acyl group R in culture mediumor sodium salt, potassium salt and ammonium salt or other soluble salt preferably 1 to 100 ppm, furthermore preferably 1 to 10 ppmby adding. can be acquired. At time of for example abovementioned culturing, adding isovaleric acid of the 10 ppm to culture medium, if it cultures, amount of production of UK - 2C which is a UK - 2 compound which possesses acyl group which corresponds it canincrease.

[0020] At time of production of the compound of this i nvention, culture medium which is usedfor culture of aforementioned Actinomycetes with liquid state and is goodwith solid, but usually swing 遠 culture or aerated stirred culturedue to liquid culture medium is profitable. You use as for culture medium which, this

セリン、デンプン、シュクロース、デキストリン、糖蜜等が用いられ、また窒素源としては、例えばポリペプトン、カザミノ酸等の蛋白質加水分解物、肉エキス、酵母エキス、大豆粕、コーンスティープリカー、アミノ酸類等の有機窒素源やアンモニウム塩や硝酸塩等の無機窒素源が用いられる。その他、浸透正調整、p H調整、微量成分の補給等のために、各種燐酸塩、硝酸マグネシウム、塩化ナトリウム、炭酸カルシウム等の無機塩類を添加することも可能である。さらに菌の生育を促進する目的で、各種ビタミン類、核酸関連化合物等を添加しても良い。なお、培養期間中に、シリコン、ポリプロピレングリコール誘導体、大豆油等の消泡剤を添加することも可能である。

【0021】培養にあたっては、常法に従って、予め小規模で前培養を行って得られる培養物を用いて、本培養を行うことが望ましい。本培養の培養温度、培養期間、培養液のpH、通気量等の培養条件は、本発明の物質の蓄積が最大になるように、適当に選択、調節されるが、多くの場合、好ましくは0.5~2 v v m、更に好ましくは0.5~1 v v m程度の通気条件下に、一般には15~41℃、好ましくは20~37℃、更に好ましくは25~30℃の温度で2~3日間、中性pH付近で培養することが好ましい。

【0022】本発明の化合物は、上記培養において、培養液および菌体の両方に蓄積されるので、培養液からは、酢酸エチル、クロロホルム、ジクロロメタン等の水とは任意に混合せず、しかも本発明の化合物を有効に抽出し得る有機溶媒を用いて抽出することができる。また、培養菌体からは、濾過もしくは遠心分離等の手段で集菌した菌体を、アセトン等の細胞壁を破壊する作用を有する溶媒を用いて、直接抽出することができる。さらに、培養菌体をガラスピーズ等を用いて破砕した後に、培養液からの抽出と同様にして抽出することもできる。

【0023】得られた粗抽出物から、本発明のUK-2化合物を単離・精製するには、通常の精製法を用いることができる。 即ち、溶媒転溶、順相および逆相カラムクロマトグラフィー、 ゲル濾過クロマトグラフィー、結晶化等の精製手段を組み合わ

invention substance producing microbe growing. being something which accumulates this invention substance we are. Especially, saccharides, for example glucose, lactose, glycerin, starch, the sucrose, dextrin and molasses etc which assimilation are done it can use the producing microbe it is not something which is limited but, as carbon source, itcan use for example polypeptone, casamino acid or other protein hydrolysate, meat extract, yeast extract, soybean lees, the corn steep liquor, amino acids or other organic nitrogen source and ammonium salt and nitrate salt or other inorganic nitrogen source in addition as nitrogen source. In addition, replenishment or other for osmotic pressure adjustment, pH adjustment and the trace component, various phosphate, also it is possible to add the magnesium nitrate, sodium chloride and calcium carbonate or other inorganic salts. Furthermore with objective which promotes growth of microbe, it is good adding various vitamin and nucleic acid related compound etc. Furthermore, in culture time, also it is possible to add the silicon, polypropylene glycol derivative and soybean oil or other foam inhibitor.

[0021] At time of culture, following to conventional m ethod, doing preculture beforehand with small scale, it is desirable main culture making use of the culture which is acquired. culture temperature of main culture, pH of culture time and culture fluid, the amount of aeration or other culture conditions, in order for accumulation of substance of this invention to becomethe maximum, suitably is selected and adjusts, but in many cases, the preferably 0.5 to 2 vvm, furthermore under aeration condition of preferably 0.5 to 1 vvm extent, generally 15 to 41 °C and preferably 20 to 37 °C, furthermore it is desirable with temperature of preferably 25 to 30 °Cto culture with 2 to 3-day period and neutral pH vicinity.

[0022] Because compound of this invention is accurrulated to both of the fermentation broth and cell mass at time of above-mentioned culturing,, it cannot mix with ethyl acetate, chloroform and dichloromethane or other water optionally from fermentation broth, it can extract furthermore making use of organic solvent which can extract compound of this invention effectively. In addition, it can extract directly from cultured cell mass thecell mass which microbe collection is done, making use of solvent which possesses the action which destroys acetone or other cell wall with filtration or centrifugal separation or other means. Furthermore, cultured cell mass fragmenting after doing, in same way as the extraction from fermentation broth it is possible also making use of glass beadsetc to extract.

[0023] From crude extract which it acquires, isolation a nd purification to do UK - 2 compound of the this invention, conventional purification method can be used. Namely, isolation and purification it is

せることにより、単離・精製することができる。また、本発明のUK-2化合物は、Rに種々のアシル基が導入された類縁体の混合物として産生されるので、その類縁体の単離・精製には、順相および逆相の高速液体クロマトグラフィー(HPLC)が特に有用である。例えば、通常の培養から得られた粗抽出物を減圧濃縮し、これをクロロホルムに転溶してシリカゲルカラムクロマトグラフィーに付し、これをクロロホルム/メタノールのステップワイズで溶出すれば、UK-2AおよびUK-2Dを約3:1の割合で含有し、ここに微量のUK-2BおよびUK-2Cが混入したフラクションを得ることができる。これらの類縁体UK-2A、UK-2B、UK-2CおよびUK-2Dを単離することができる。

【0024】得られたUK-2化合物は、それぞれを単離して用いても良いが、それぞれの類縁体が同様の抗真菌活性を示すので、本発明の効果を損なわない限り、これらのUK-2化合物を単離することなく、混合物として用いることも可能である

[0025]

【作用】本発明のUK-2化合物は、カンジダ等の酵母およびアスペルギルス、ペニシリウム、ムコール、クラドスポリウム、リゾプス、スクレロチナ、トリコデルマ等の糸状菌を含む真菌に対して強い抗菌作用を示すが、細菌に対する抗菌作用を示すない。また、培養細胞(マウス白血病P388)に対する細胞毒性が低いことから、本化合物に感受性を有する真菌が原因である真菌感染症治療用の抗真菌剤をはじめ、農園芸用抗真菌剤または工業用抗真菌剤として使用することが可能である。

【0026】本発明のUK-2化合物を真菌感染症治療用の抗 真菌剤として使用するには、種々の投与形態に合わせて、UK -2を公知の医薬品用担体とを組み合わせて製剤化すれば良い 。このような投与形態としては皮下注射、静脈内注射、筋肉内 注射、坐薬等による非経口投与あるいは錠剤、カプセル剤、散 剤、顆粒剤等による経口投与の全身投与の他、軟膏剤、ローション剤、膣坐薬等の局所投与の形態を例示することができる。

【0027】本発明のUK-2化合物を農園芸用抗真菌剤とし

possible due to especially combining the solvent solvent transfer, ordered phase and reverse phase column chromatography, gel filtration chromatography and crystallization or other purification means. In addition, because UK - 2 compound of this invention is produced, as blendof analog where various acyl group is introduced into R, high-performance liquid chromatography (HPLC) of ordered phase and reverse phase especially is useful in isolation and purification of theanalog. If vacuum concentration it does crude extract which is acquired from for example conventional culture, the solvent transfer does this in chloroform and attaches on silica gel column chromatography and liquates this with stepwise of chloroform/methanol, UK - 2A and UK -2D can be contained at ratio of approximately 3:1, UK-2B of trace amountand fraction which UK - 2C mixes can be acquired here. Furthermore these analog UK-2A, UK - 2B, UK - 2C and UK - 2D can be isolated this by treating with reverse-phase HPLC which uses C - 18 column.

[0024] Isolating each one, it is good using UK - 2 compound which it acquires, but if because respective analog shows similar antimycotic activity, effect of the this invention is not impaired, also it is possible to use without isolatingthese UK - 2 compound, as blend.

[0025]

[Work or Opërations of the Invention] UK - 2 compound of this invention shows strong antibacterial action vis-a-vis fungiwhich includes Candida or other yeast and Aspergillus, Penicillium, Mucor, the Cladosporium, Rhizopus, Sclerotinia and Trichoderma or other fungi, but antibacterial action for bacteriais not shown. In addition, from fact that cytotoxicity for cultured cell (mouse leukemia P388) is low, inaddition to antimycotic for mycosis treatment where fungi which possesses the sensitivity in Compound is cause, as antimycotic or industrial antifungal agent for the horticulture it is possible to use.

[0026] You use UK - 2 compound of this invention, a s antimycotic for mycosis treatment adjusting to various medication configuration, formulating it does UK - 2 combining with support forthe drug of public knowledge, it is good. Other than systemic administration of oral administration due to parenteral administration or tablets, the capsules, powder and granule etc due to subcutaneous injection, intravenous injection, the percutaneous administration injection and suppository etc as this kind of medication configuration, it is possible toillustrate form of ointment, lotion agent and vaginal suppository or other topical administration.

[0027] You use UK - 2 compound of this invention, a

て使用するには、種々の使用形態に合わせて、公知の担体および必要に応じて公知の補助剤とを組み合わせて製剤化すれば良い。このような製剤形態の例としては、粉剤、顆粒剤などの固形剤、溶液、乳剤、懸濁液、エアゾール剤等の液剤を例示することができる。このような農園芸用抗真菌剤は、本化合物に感受性を有する植物病原菌が原因である病害の防除に使用することができる。

【0028】本発明のUK-2化合物を工業用抗真菌剤として使用するには、種々の使用形態に合わせて、公知の担体および必要に応じて公知の補助剤とを組み合わせて製剤化すれば良い。このような工業用抗真菌剤は、一般産業用製品およびこれらの製品の製造工程中で問題となる有害真菌の繁殖を防御し、有害真菌の汚染を防止するために使用されるものであり、具体的には木材の表面汚染を防止する防黴剤、木材製品等の腐朽菌対策剤、塗料に添加する防腐・防黴剤、壁装剤、高分子加工時に添加する防黴剤、皮革、繊維および織物の加工に用いる防黴剤等を例示することができる。

[0029]

【実施例】次いで、実施例および評価例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の例において「%」は特にことわらない限り「W/V%」である。

【0030】実施例1:UK-2A (式(1)において、Rがイソブチリル基(2-メチルプロパノイル基)である化合物)の製造。

ステップa:ストレプトパーティシリウム・エス・ピー・SAM2084の培養

グルコース 1%、可溶性デンプン 1%、小麦胚芽 0. 6%、ポリペプトン0. 5%、乾燥酵母エキス0. 3%、大豆粉 0. 2%、炭酸カルシウム 0. 2%を含み、pH7. 0に調整した培地(以下、培地 1と称する)を500m | 容培養三角フラスコに100m | 分注して、オートクレーブで滅菌した。これに斜面培養からストレプトパーティシリウム・エス・ピー・SAM2084を1白金耳接種し、30℃で2日間ロータリーシェーカーで培養して種培養を得た。

【0031】5リットル容ジャーファーメンターに3リットル

s antimycotic for horticulture adjusting to various use shape, formulating it does combining with support of public knowledgeand auxiliary agent of according to need public knowledge it is good. As example of this kind of formulation type, it is possible to illustrate the powder, granule or other solid agent, solution, emulsion, suspension and aerosol agent or other liquid. You can use for prevention of disease where plant pathogen which possesses sensitivity in Compound is cause antimycotic for this kindof horticulture.

[0028] You use UK - 2 compound of this invention, a s industrial antifungal agent adjusting to various use shape the formulating it does combining with support of public knowledge and auxiliary agent of according to need public knowledge it is good. As for this kind of industrial antifungal agent, Propagation of toxic fungi which becomes problem in production step of theproduct and these product for general industry defense to do, It is something which is used in order to prevent pollution of the toxic fungi, concretely it is possible to illustrate anticorrosion * antifungal agent, are added at the time of wall-mounted agent and polymer processing antifungal agent, leather, fiberand is used for processing weave antifungal agent etc which are added to the antifungal agent, wood product or other rot microbe countermeasure agent and paint which prevent surface contamination of thewood.

[0029]

[Working Example(s)] Next, this invention furthermore is explained in detail with Working Example and the evaluation example, but this invention is not something which is limited in these. Furthermore, if especially it does not refuse "%", in the example below it is a "wt/vol%".

[0030] Working Example 1: In UK - 2A{ Formula (1), production of compound } where R is theisobutyryl group (2 - methyl propanoyl group).

Step a: Culture of Streptoverticillium sp. * SAM2084

Including glucose 1 %, soluble starch 1 %, wheat g erm 0.6 %, polypeptone 0.5 %, dry yeast extract 0.3 %, the soybean meal 0.2 % and calcium carbonate 0.2 %, 100 ml aliquot doing culture medium (Below, it names culture medium 1.) which you adjusted the pH 7.0 in 500 ml capacity culture erlenmeyer flask, sterilization it did with autoclave. In this 1 platinum loop inoculation it did Streptoverticillium sp. * SAM2084 from slant culture, with 30 °Ccultured with 2 day rotary shaker and acquired seed culture.

[0031] Inserting culture medium 1 of 3 liter in 5 liter c

の培地 1 を仕込み、加熱殺菌の後、上記の種培養を30m I 添加して、30℃で、回転数500 r pm、通気量1 v vmの条件で48時間通気授拌培養して、前培養とした。

【0032】600リットル容培養タンクに、グルコース3%、麦芽エキス0.5%、乾燥酵母エキス0.5%、炭酸カルシウム0.2%を含み、pH7.0に調整した培地(以下、培地2と称する)を300リットル仕込み、加熱殺菌の後、上記の前培養を3リットル添加して、30℃で、回転数250rpm、通気量1vvmの条件で48時間通気攪拌培養した。

【0033】ステップb: UK-2の抽出

ステップaで得られた培養液約300リットルをセライトを用いて濾過・集菌し、菌体に110リットルのアセトンを加えて抽出した。抽出液を減圧下に濃縮し、溶媒を留去した。これに25リットルのクロロホルムを加えてUK-2を抽出した。得られた抽出液を減圧下に濃縮し、溶媒を留去して油状物質150gを得た。

【0034】ステップc: UK-2の粗精製

ステップbで得られた抽出物の15gを60mlのクロロホル ムに溶解し、シリカゲル(ワコーゲルC-200・和光純薬工 業製)を用いるカラムクロマトグラフィー(¢12×44cm **, Vt=5リットル)に付し、5リットルづつの、クロロホル** ム、クロロホルム/メタノール99:1(容積比、以下同じ) 混液、クロロホルム/メタノール97:3混液、クロロホルム /メタノール94:6混液、クロロホルム/メタノール90: 10混液の展開溶媒を用いてステップワイズで溶出した。活性 物質はクロロホルム/メタノール97:3混液で溶出されたの で、これを集めて減圧下に溶媒を留去し、粗精製物900mg を得た。この粗精製物は、UK-2A(Rがイソブチリル基の 化合物)およびUK-2D(Rが2-メチルブタノイル基の化 合物)を約3:1の割合で含有する他、微量のUK-2B(R がtrans-2-メチルー2ープテノイル基) およびUK-2C(Rが3-メチルブタノイル基の化合物)を含有していた。同様 の操作をステップbで得られた抽出物について繰り返すことに より、合計約9gの粗精製物を得た。

【0035】ステップd: UK-2Aの精製

ステップcで得られた粗精製物をDevelosil-ODSカラム(φ20×250mm、野村化学社製)を用いる逆相高

apacity jar fermentor, after heat sterilization, the 30 ml adding above-mentioned seed culture, with 30 °C, 4 8-hour aerated stirred culturedoing with condition of rotation rate 500 rpm and amount of aeration 1 vvm, it made preculture.

[0032] Including glucose 3 %, malt extract 0.5 %, dry yeast extract 0.5 % and calciumcarbonate 0.2 % in 600 liter capacityculture tank, culture medium (Below, it names culture medium 2.) which you adjusted pH 7.0 after the 300 liter addition and heat sterilization, 3 liter adding above-mentioned preculture, with the 30 °C, 48-hour aerated stirred culture it did with condition of rotation rate 250 rpm and amount of aeration 1 vym.

[0033] Step b: Extraction of UK - 2

Filtration * microbe collection it did fermentation broth approximately 300 liter which isacquired with step a making use of celite, it extracted in the cell mass including acetone of 110 liter. extract was concentrated under vacuum, solvent was removed. UK - 2 was extracted in this including chloroform of 25 liter. extract which is acquired was concentrated under the vacuum, solvent was removed and oil 150g was acquired.

[0034] Step c: Crude purification of UK - 2

It melted 15g of extract which is acquired with step bi nthe chloroform of 60 ml, it attached on column chromatography (12 X 44 cm, Vt=5 liter) which uses silica gel (Wako Gel C - 200 * Wako Pure Chemical Industries Ltd. (DB 69-059-8875) make), it liquated with stepwise, chloroform at a time of 5 liter, the chloroform/methanol 99:1 (Same below volume ratio and) mixed solution, making use of developing solvent of chloroform/methanol 97:3 mixed solution, chloroform/methanol 94:6 mixed solution and the chloroform/methanol 90:10 mixed solution. Because active substance was liquated with chloroform/methanol 97:3 mixed solution, gathering this, itremoved solvent under vacuum, acquired crudely purified product 900 mg. This crudely purified product, UK - 2A (R compound of isobutyryl group) and besides UK - 2D (R compound of 2 methyl butanoyl group) is contained atratio of approximately 3:1, UK - 2B of trace amount (R trans-2 methyl - 2 - butenoyl group) and contained the UK -2C (R compound of 3 - methyl butanoyl group). crudely purified product of total approximately 9g was acquired by repeating concerning extract which acquires similar operation with step b.

[0035] Step d: Refining UK - 2A

Crudely purified product which is acquired with step c while attaching on thereverse phase high speed column

速カラムクロマトグラフィー(HPLC)に付し、210nmの紫外吸収でモニターしながら、60%(容積比)アセトニトリル/水で流速5ml/minで展開した。UKー2Aはこの条件で保持時間60分の箇所にシングルピークとして溶出された。同様の条件でHPLCの分取を繰り返し、ステップェの粗精製物200mgから合計120mgのUKー2Aを得た。この化合物の物性値を〔表2〕に示す。UKー2Aは、これらのデータから、式(1)においてRがイソブチリル基(2ーメチルプロパノイル基)である化合物と構造決定された。

chromatography (HPLC) which uses D eV elosil - ODS column (20 X 250 mm, Nomura Kagaku supplied), monitor doing with ultraviolet absorption of the 210 mm, with 60 % (volume ratio) acetonitrile / water it developed with flow rate 5 ml/min. UK - 2A with this condition was liquated in site of retention time 60 min asthe single peak. fraction collection of HPLC was repeated with similar condition, UK - 2Aof total 120 mg was acquired from crudely purified product 200 mg of step c. It shows to property value of this compound (Table 2). UK - 2A was done compound and structure determination where R is theisobutyryl group (2 - methyl propanoyl group) from these data, in Formula (1).

[0036]

【表2】

〔表2〕化合物UK-2Aの物性値

性 状:

白色針状結晶

IR (Nujol) (νcm^{-1}) :

3350, 2950-2800, 1740, 1640, 1600, 1570, 1240, 1140

 $^{1}H-NMR (\delta ppm) (CDC1_{3}, 400MHz)$:

1. 23 (d. 6H), 1. 32 (d. 3H), 2. 60 (m. 1H), 2. 72 (bd. 1H), 2. 96 (dd. 1H),

2.97(dt, 1H), 3.68(bs, 1H), 3.95(s, 3H), 4.99(dq, 1H), 5.15(bt, 1H),

5. 20(t. 1H). 5. 33(bs. 1H). 6. 87(d. 1H). 7. 12(d. 2H), 7. 19(d. 1H).

7. 26(d, 2H), 7. 99(d, 1H), 8. 73(d, 1H), 11. 90(s, 1H).

 $^{13}C-NMR$ (δppm) (CDC1₃, 100MHz):

17.88(q). 18.97(q), 34.18(d), 34.69(t), 50.25(d),

52.04(d), 56.29(q), 64.96(d), 74.86(d), 75.25(d),

109.74(d). 126.73(d). 128.64(d). 128.79(d). 129.56(s).

137. 98(s). 140. 23(d), 149. 29(s), 156. 18(s), 168. 72(s).

169.67(s), 171.83(s), 175.61(s).

FAB MS:

m/z:515.2(M+H)

HR FAB MS:

m/z : 515.2032 (M+H) + for C₂₄H₂₁N₂O₄

【0037】実施例2:UK-2B (式 (1) において、Rが チグロイル基 (trans-2-メチル-2-ブテノイル基) である化合物) の製造。

実施例1のステップで得られた粗精製物をDevelosi I-ODSカラム(φ20×250mm、野村化学社製)を用いる逆相高速カラムクロマトグラフィー(HPLC)に付し、 210nmの紫外吸収でモニターしながら、60%アセトニト [0036]

[Table 2]

[0037] Working Example 2: In UK - 2B{ Formula (1), production of compound } where R is thetigloyl group (trans - 2 - methyl - 2 - butenoyl group).

Crudely purified product which is acquired with step c of Working Example 1 whileattaching on reverse phase high speed column chromatography (HPLC) which uses D eV elosil - ODS column (20 X 250 mm,

リル/水で流速 5ml /minで展開した。UK-2Bはこの条件で保持時間 69 分の箇所にシングルピークとして溶出された。同様の条件でHPLCの分取を繰り返し、ステップ c の粗精製物 200mg から合計 2mg のUK-2Bを得た。この化合物の物性値を〔表3〕に示す。UK-2Bは、これらのデータから、式(1)においてRがチグロイル基(trans-2-メチル-2-ブテノイル基)である化合物と構造決定された。

[0038]

【表3】

〔表3〕化合物UK-2Bの物性値

性 状:

白色針状結晶

¹H-NMR (δppm) (CDC1₁, 400MH₂):

1.33(d.3H), 1.84(dd,3H), 1.86(bs.3H), 2.74(dd.1H), 2.95(dt.1H),

3.01 (dd, 1H), 3.70 (bs, 1H), 3.96 (s, 3H), 5.02 (dq, 1H), 5.18 (bt, 1H),

5. 29(t. 1H). 5. 36(bs. 1H). 6. 91(d. 1H). 6. 95(dd. 1H), 7. 12(d. 2H).

7. 18(d, 1H), 7. 25(d, 2H), 8. 01(d, 1H), 8. 83(d, 1H), 11. 86(s, 1H).

"C-NMR (δppm) (CDC1, 100MHz):

12. 18(q), 14. 59(q), 17. 91(q), 34. 71(t), 50. 32(d), 52. 03(d).

56.41(q), 63.34(d), 75.03(d), 75.06(d), 109.58(d), 126.63(d),

127.82(d), 128.63(d), 128.76(d), 129.34(s), 138.05(s), 140.05(s),

140.10(d), 152.34(s), 158.88(s), 166.59(s), 168.41(s), 171.93(s),

176.13(s).

FAB MS:

m/z : 5 2 7.1 (M+H)

HR FAB MS:

 $m/z : 5 2 7.2030 (M+H) + for C_{22}H_{21}N_{2}O_{2}$

【0039】実施例3:UK-2C (式 (1) において、Rがイソバレリル基 (3-メチルブタノイル基) である化合物】の製造。

実施例1のステップcで得られた粗精製物をDevelosil-ODSカラム(ゆ20×250mm、野村化学社製)を用いる逆相高速カラムクロマトグラフィー(HPLC)に付し、210mmの紫外吸収でモニターしながら、60%アセトニトリル/水で流速5ml/minで展開した。UK-2Cはこの条件で保持時間81.5分の箇所にショルダーピークとして溶出された。UK-2Cは、このショルダーピークを分取し、同様の条件でHPLCを繰り返してシングルピークを示すまで精製することにより得られた。このようにして、ステップcの粗

Nomura Kagaku supplied), monitor doing with theultraviolet absorption of 210 nm, with 60 % acetonitrile / water it developed with flow rate 5 ml/min UK - 2B with this condition was liquated in site of retention time 69 min asthe single peak. fraction collection of HPLC was repeated with similar condition, UK - 2Bof total 2 mg was acquired from crudely purified product 200 mg of step c. It shows to property value of this compound (Table 3). UK - 2B was done compound and structure determination where R is thetigloyl group (trans-2 - methyl - 2 - butenoyl group) from these data, in Formula (1).

[0038]

[Table 3]

[0039] Working Example 3: In UK - 2C{ Formula (1), production of compound } where R is theisovaleryl group (3 - methyl butanoyl group).

Crudely purified product which is acquired with step c of Working Example 1 whileattaching on reverse phase high speed column chromatography (HPLC) which uses D eV elosil - ODS column (20 X 250 mm, Nomura Kagaku supplied), monitor doing with theultraviolet absorption of 210 mm, with 60 % acetonitrile/water it developed with flow rate 5 ml/min. UK - 2C with this condition was liquated in site of retention time 81.5 min asthe shoulder peak. This

精製物200mgから合計1mgのUK-2Cを得た。この化合物の物性値を〔表4〕に示す。UK-2Cは、これらのデータから、式(1)においてRがイソパレリル基(3-メチルブタノイル基)である化合物と構造決定された。

[0040]

【表4】

〔表4〕 化合物 UK-2 Cの物性値

性 状:

白色粉末

 $^{1}H-NMR (\delta ppm) (CDCl_{2}, 400MHz)$:

0.99(d.6H). 1.33(d.3H). 2.16(m.1H). 2.28(bd.2H). 2.72(d.1H),

2.92(d.1H), 2.96(dt,1H), 3.77(bs.1H), 3.99(s,3H), 4.97(dq.1H),

5. 14(bt, 1H). 5. 22(t, 1H). 5. 32(bs. 1H). 6. 95(d, 1H). 7. 12(d, 2H).

7. 20(d, 1H), 7. 25(d, 2H), 8. 03(bd, 1H), 9. 09(bs, 1H), 11. 85(s, 1H).

¹³C-NMR (δppm) (CDC1₃, 100MHz):

17.92(q). 22.46(q). 25.49(d). 34.70(t). 43.18(t). 50.06(d).

52.00(d). 56.24(q). 64.99(d), 74.79(d), 75.01(d), 109.64(d),

126.76(d), 128.62(d), 128.76(d), 129.51(s), 137.88(s), 140.35(d),

149.06(s), 155.89(s), 168.69(s), 169.69(s), 171.80(s), 175.30(s),

EIMS:

m/z:528 (M⁺) for $C_{27}H_{22}N_2O_{2}$

【0041】実施例4:UK-2D〔式(1)において、Rが 2ーメチルブタノイル基である化合物〕の製造。

実施例1のステップcで得られた粗精製物をDevelosil-ODSカラム(ゆ20×250mm、野村化学社製)を用いる逆相高速カラムクロマトグラフィー(HPLC)に付し、210nmの紫外吸収でモニターしながら、60%アセトニトリル/水で流速5ml/minで展開した。UK-2Dはこの外で保持時間82分の箇所に、UK-2Cのショルダーグを伴って溶出された。UK-2Dは、このメインピークを守取し、同様の条件でHPLCを繰り返し、シングルピークを示すまで精製することにより得られた。このようにして、ステップcの粗精製物200mgから合計20mgのUK-2Dを示すまで精製することにより得られた。このようにして、ステップcの粗精製物200mgがら合計20mgのUK-2Dを示す。UK-2Dは、これらのデータから、式(1)においてRが2-メチルブタノイル基である化合物と構造決定された。

shoulder peak fraction collection it did UK - 2C, it acquired by until single peakis shown over again, refining HPLC with similar condition. This way, UK - 2C of total 1 mg was acquired from crudely purified product 200 mg of the step c. It shows to property value of this compound (Table 4). UK - 2C was done compound and structure determination where R is theisovaleryl group (3 - methyl butanoyl group) from these data, in Formula (1).

[0040]

[Table 4]

[0041] Working Example 4: In UK - 2D{ Formula (1), production of compound } where R is the 2 - methyl butanoyl group.

Crudely purified product which is acquired with step c of Working Example 1 whileattaching on reverse phase high speed column chromatography (HPLC) which uses DeVelosil - ODS column (20 X 250 mm, Nomura Kagaku supplied), monitor doing with theultraviolet absorption of 210 nm, with 60 % acetonitrile / water it developed with flow rate 5 ml/min. UK - 2D was liquated accompanying shoulder peak of UK - 2C site of retention time 82 min, with this condition. Until this main peak fraction collection it does UK - 2D, repeats HPLC withthe similar condition, shows single peak it acquired by refining. This way, UK - 2D of total 20 mg was acquired from crudely purified product 200 mg of the step c. It shows to property value of this compound (Table 5). UK-2D was done compound and structure determination where R is the 2 - methyl butanoyl group from these data, in

[0042] 【表5】 〔表5〕化合物UK-2Dの物性値 性 状 : 白色粉末 $^{1}H-NMR (\delta ppm) (CDC1_{2}, 400MHz)$: 0.95(t.3H), 1.22(d.3H), 1.33(d.3H), 1.52(a,1H), 1.77(a,1H), 2. 43(m. 1H). 2. 72(d. 1H). 2. 92(d. 1H). 2. 96(dt, 1H). 3. 77(bs, 1H). 3.99(s. 3H), 4.97(dq. 1H), 5.14(bt. 1H), 5.22(t. 1H), 5.32(bs. 1H), 6.95(d.1H). 7.12(d.2H), 7.20(d.1H). 7.25(d.2H). 8.03(bd.1H). 9.09(bs. 1H), 11.85(s. 1H). 13C-NMR (δppm) (CDC1₂, 100MHz): 11.79(q). 16.74(q). 17.92(q). 26.51(t). 34.70(t). 41.27(d). 50.08(d). 52.00(d). 58.24(q). 64.99(d), 74.79(d), 75.01(d), 109.64(d), 126.76(d), 128.62(d), 128.76(d), 129.51(s), 137.88(s), 140.35(d). 149.06(s), 155.89(s), 168.69(s), 169.69(s), 171.80(s), 175.30(s). EIMS: m/z:528 (M^*) HR EIMS: m/z:528.2114 (M°) for $C_{27}H_{22}N_2O_0$

【0043】評価例1:UK-2Aの抗菌スペクトラムの測定

本発明の化合物の一つであるUK-2Aの抗菌スペクトラムを

液体希釈法(山口英世著「今日の抗生物質」162-189頁

・1984年・東京・南山堂)を用いて評価した。その結果を

[0043] Evaluation example 1: Measurement of antibacte rial spectrum of UK - 2A

Antibacterial spectrum of UK - 2A which is a one of compound of this invention wasappraised making use of liquid dilution method (Yamaguchi Hideyo work "Present antibiotic" 162 - 189 page * 1984 * Tokyo * Nanzando). It shows to result (Table 6).

[0044]

Formula (1).

[0042]

[Table 5]

[0044]

〔表6〕に示す。

【表6】

[Table 6]

[表 6] UK-2Aの抗真菌活性

後生物名	株番号	MIC (μg/m1)
Candida albicans	IFO 1061	0.39
Candida rugosa	IPO 1364	0.05
Candida utilis	1PO 6020	> 1 0 0
Saccharomyces cerevisiae	IFO 0203	> 1 0 0 .
Aspergillus funigatus	IPO 5840	0.78
Aspergillus niger	ATCC 6275	0.39
Aspergillus oryzae	分離株	0.025
Cladosporium cladosporoides	分離株	0.00625
Nucar mucedo	IPO 7684	1 2.5
Neurospora sitophila	DSM 1130	1 2.5
Penicillium crysogenum	IPO 4626	0.1
Penicillium notatum	IPO 4640	0.39
Phycomyces mitens	IFO 7684	0.00625
Ehizopus chinensis	分離株	0.78
Mrizopus delemar	IPO 4775	2 5
Rhizopus formoscensis	IFO 4732	6.25
Ehizopus niveus	IFO 4759	0.00313
Whizopus oryzae	1FO 4766	0.025
Sclerotinia sclerotiona	1FO 5292	0.00625
Thammidium elegans	1FO 6152	0.00156
Trichoderna longibrachiatum	分離株	0.2

【0045】UK-2Aは、〔表6〕に示すように、カンジダ等の酵母およびアスペルギルス、ペニシリウム、ムコール、クラドスポリウム、リソプス、スクレロチナ、トリコデルマ等の糸状菌を含む真菌に対して強い抗菌作用を示したが、細菌に対しては抗菌作用を示さなかった。また、UK-2B、UK-2CおよびUK-2DもUK-2Aと同様の抗菌スペクトラムを示した。さらに、本発明のUK-2化合物はいずれも、マウス白血病細胞であるP388に対して、100μg/mlの濃度で増殖抑制作用を殆ど示さなかった。

[0046]

【発明の効果】本発明によれば、新規な抗真菌物質であるUK -2およびストレプトパーティシリウムに属するUK-2生産 菌を培養して、その培養液および/または培養菌体からUK- [0045] UK - 2A, as in (Table 6) shown, showed stron g antibacterial action vis-a-vis thefungi which includes Candida or other yeast and Aspergillus, Penicillium, Mixor, the Cladosporium, Rhizopus, Sclerotimia and Trichoderma or other fungi, but antibacterial action was notshown vis-a-vis bacteria. In addition, antibacterial spectrum where also UK - 2B, UK - 2C and UK - 2Dare similar to UK - 2A was shown. Furthermore, UK - 2 compound of this invention none, almost showed growth-suppressing action withthe concentration of 100 g/ml vis-a-vis P388 which is a mouse leukemia cell.

[0046]

[Effects of the Invention] According to this invention, culturing UK - 2 producing microbe which belongs to UK - 2 and Streptoverticillium which are a novel

ISTA's ConvertedKokai(tm), Version 1.2 (There may be errors in the above translation. ISTA cannot be held liable for any detriment from its use. WWW: http://www.intlscience.com Tel:800-430-5727)

JP 95233165 Machine Translation

2を製造する方法を提供することができる。本発明のUK-2 は、9員環のジラクトン構造を有する新規な抗真菌物質であり、Rに種々のアシル基が導入されたエステル体の混合物として得られるが、これらの類縁体は同様の抗菌活性を有するため、これらの類縁体を単離しては勿論、その用途に応じてこれらの類縁体の混合物のまま、抗真菌剤の有効成分として使用することができる。本発明のUK-2化合物は、培養細胞に対して細胞毒性が低いので、ヒトおよび哺乳類、魚類に対しても毒性が低いことが予想され、医薬および動物薬、農園芸用抗真菌剤および工業用抗真菌剤として応用することが可能である。

antimycotic substance, it can offer method which produces the UK - 2 from culture fluid and/or cultured cell mass. UK - 2 of this invention is novel antimycotic substance which possesses di lactone structure of the 9-member ring, it is acquired, as mixture of ester where various acyl group is introduced into R, but in order to possess similar antibiotic activity, isolating these analog, of course, you can use these analog while it is a mixture of these analog according to application, as active ingredient of the antimycotic. Because as for UK-2 compound of this invention, cytotoxicity is low vis-a-vis the cultured cell, as pharmaceutical and verterinary drug, antimycotic and industrial antifungal agent for the horticulture it is possible to be expected, that toxicity is low vis-avisthe human and mammals and fish to apply.