QUANTENMECHANIK, BLATT 10, SOMMERSEMESTER 2015, C. KOLLATH

Abgabe Di 23.06 vor der Vorlesung. Besprechung 26.06

I. BAHNDREHIMPULS EINES ELEKTRONS

Wir betrachten ein Elektron in einem Zustand, der durch die folgende Wellenfunktion in Kugelkoordinaten beschrieben wird

$$\psi = \frac{1}{\sqrt{4\pi}} (e^{i\varphi} \sin(\theta) + \cos(\theta)) g(r)$$

mit

$$\int_0^\infty |g(r)|^2 r^2 dr = 1$$

und ϕ , θ sind Azimutwinkel bzw. Polarwinkel.

- (a) Was sind die möglichen Ergebnisse einer Messung der z-Komponente des Bahndrehimpulses, \hat{L}_z , des Elektrons in diesem Zustand? (3 Punkte)
- (b) Was sind die jeweiligen Wahrscheinlichkeiten die möglichen Messwerte aus (a) zu erhalten? (3 Punkte)
- (c) Was ist der Erwartungswert von \hat{L}_z ? (2 Punkte)

II. DAS ZWEIATOMIGE MOLEKÜL: ROTATION UND VIBRATION

Wir betrachten die Relativbewegung der zwei Atomkerne eines zweiatomigen Moleküls [Abb. (a)]. Eine Näherung für die Bewegungsgleichung des relativen Ortes $r = |\mathbf{r}_1 - \mathbf{r}_2|$ ist gegeben durch die Schrödingergleichung für ein Zentralpotential:

$$\left(-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial r^2} + V(r) + V_c(r)\right)u_{n,l}(r) = E_{n,l}(r)u_{n,l}(r),$$

mit $\mu = m_1 m_2/(m_1 + m_2)$ und $V_c(r) = l(l+1)\hbar^2/(2\mu r^2)$. Das Molekülpotential V(r) hat die typische Form wie in der Abbildung (b): Ein Minimum bei r_b , ein steiler Anstieg gegen ∞ für $r \to 0$ (Abstoßung der Kerne) und ein langsamer Anstieg gegen 0 für $r \to \infty$ (Die Wechselwirkung wird schwach für große Abstände zwischen den Kernen). Wir sind an den gebundenen Zuständen dieses Potentials interessiert. Wir nehmen an, dass die Ausdehnung dieser Zustände klein ist gegenüber r_b .

- (a) Sei l = 0 (keine Rotation). Nehmen Sie eine quadratische Nährung für das Potential V(r) um r_b an (mit unbekannten Konstanten). Bestimmen Sie die Energieeigenwerte. Hinweis: Die erhaltenen Gleichungen sollten eine wohlbekannte Form haben. (2 Punkte)
- (b) Sei l = 0. Was ist die charakteristische Ausdehnung $(\Delta r)_0$ des Grundzustands? Leiten Sie eine Bedingung für den Entwicklungskoeffizienten dritter Ordnung her, so dass die quadratische Nährung gerechtfertigt ist (Bemerkung: Diese Bedingung ist allgemeingültig für Moleküle.) (3 Punkte)
- (c) Jetzt ziehen wir auch $l \neq 0$ in Betracht. Motivieren Sie die Verwendung der Nährung $V_c(r) \approx V_c(r_b)$ für kleine Rotationsenergien, d.h. $V_c(r_b) \ll E_{n+1,0} E_{n,0}$. (3 Punkte)
- (d) Mit Hilfe der Nährung $V_c(r) \approx V_c(r_b)$ nimmt die Schrödingergleichung eine wohlbekannte Form an. Geben Sie die Energieeigenwerte an. Identifizieren Sie den Rotationsbeitrag, den Vibrationsbeitrag und die Bindungsenergie des Moleküls. (3 Punkte)

III. STÖRUNG DES WASSERSTOFFATOMS

Wir betrachten den Hamiltonoperator des Wasserstoffatoms unter Einfluss eines zusätzlichen Störpotentials :

$$\hat{H} = -\frac{\hbar^2}{2m}\Delta - \frac{e^2}{r} + \frac{\tilde{\epsilon}}{r^2} \tag{1}$$

wobei $\tilde{\epsilon}$ eine Konstante ist.

a) Zeigen Sie, dass die Radialgleichung geschrieben werden kann als:

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{1}{r^2} \frac{\hbar^2}{2m} (l(l+1) + \epsilon) - \frac{e^2}{r} \right] R(r) = E R(r)$$
 (2)

Bestimmen Sie ϵ . (6 Punkte)

- b) Diskutieren Sie das Verhalten von Gleichung (2) für $r \to 0$: Wählen Sie den Ansatz $R(r) = r^{\sigma}$. Welchen Wert hat σ ? (3 Punkte)
- c) Diskutieren Sie das Verhalten von Gleichung (2) für $r \to \infty$: Zeigen Sie, dass R(r) als $R(r) = \exp(-\kappa r)$ geschrieben werden kann. Welchen Wert hat κ ? (3 Punkte)
- d) Machen Sie den Ansatz

$$R(r) = r^{\sigma} e^{-\kappa r} W(r) \tag{3}$$

und leiten Sie eine Differentialgleichtung für W(r) her. Setzen Sie $\lambda=(2me^2)/\hbar^2$. (5 Punkte)

e) Zeigen Sie, dass der Ansatz als Polynom

$$W(r) = \sum_{s} c_s r^s \tag{4}$$

zu der Gleichung

$$c_{s+1} = c_s \frac{2\kappa(\sigma+s) - \lambda}{(s+1)(2\sigma+s)} \tag{5}$$

führt. Warum muss die Reihe bei einem maximalen s abbrechen?

Was kann man daraus für die Energieeigenwerte ableiten? (6 Punkte)

f) Angenommen $\epsilon \ll (2l+1)^2$. Bestimmen Sie die Energieeigenwerte E_n mit $n \equiv s+l+1$. (4 Punkte)