Lecture - 23A&23B

Energy Resources, Economics and Environment

Energy Policy

Rangan Banerjee

Department of Energy Science and Engineering

IIT Bombay

What is an energy policy?

What is a policy?

A **policy** is a principle or protocol to guide decisions and achieve rational outcomes (Wiki)

Framework

- Decisions
- Stakeholders
- Policies
- Goals
- Criteria
- Analysis

Energy Goals

- Increase Energy Access
- Develop capacities for energy transitions
- Enhance Energy Security
- Manage Energy Related Market Power
- Manage Energy Resource Endowments
- Reduce Environmental and Human Health Impacts
- Accelerate Energy related Technological change
- Co-ordinate and implement international energy related policies

Deciding Energy Policies

Scope

- IIT Campus
- Powai
- Village
- Block
- Mumbai
- Maharashtra
- India
- Global

Elements

- Decide Goals
- List out Policy instruments
- List out challenges
- Existing Institutions and roles
- Time Horizon
- Analytical framework

Framework for policy

Consider real life examples that you are familiar with

Describe a framework for policy formulation, analysis. Specify the stakeholders, policy goals, criteria, institutions, type of analysis. Comment on the existing policies vis-à-vis different stakeholders (Be as specific as possible)

Classification of policy Instruments

- Regulating instruments
 - Rationing emission quotas, mandatory technology
 - Performance standards, benchmarks
- Implied Deregulation-
 - Emission Permit Trading, Green Certificates
 - Voluntary Agreements
- Fiscal and Financial Instruments- Taxes, subsidies or grants
- Supportive Actions
 - Improvement knowledge, market transparency
 - Dissemination
 - Reduce Transaction costs

Impact of Policy Instruments

India -Policy Documents

- Five Year Plans
- Integrated Energy Policy, 2008
- National Action Plan on Climate Change JNNSM and NMEEE
- Electricity Regulation Commission Act 1998
- Electricity Act 2003
- UMPP 2005
- Rural Electrification Policy 2006
- INDC 2015

Policy options

- Market or Government (Mandate/ Legislate)
- Regulation

Criteria to Analyse Policy

- Effectiveness
- Economic efficiency
- Administrative feasibility
- Equity
- Political acceptability
- Policy robustness
- Policy consistency

Source: GEA Chapter 22

Typical Energy Decisions

- World- International agreements GHG, CFC
- Nation- Energy policy, pricing, technology development
- State Taxes/Incentives, fund allocation to districts
- District Fund Allocation to blocks, Mouza electrification, Industrial devpt., Coal – elect., fuel / ration shops Sanctions.
- Block
 — Fund Allocation to GPs, Kerosene allocation, industry promotion, marketing support.
- Gram Panchayat Agriculture / irrigation schemes, Co-op-industry, request for fuel/ration shop, electricity.
- Household Fuel choice, Device choice.

Energy Policies

- Building Codes
- Standards and Labelling
- Preferential Tariffs
- Subsidies, Soft Loans
- Carbon Tax
- Renewable Energy Certificates, CERs, Certificates and Trading

Consumer/ Producer Surplus

Source: Kolstad, 1999

Impact of Subsidy

Policy Framework

- Institution- Delhi Government
- Police
- CPCB
- Analysis Changes in number of vehicles, PM2.5 levels at different locations, Inconvenience

- Goal: To improve air quality in Delhi during winter
- Stakeholders Urban residents

Commuters

Vehicle Manufacturers

Taxis

Public Transport

Offices, Commercial

Police

Mandate- Command and Control

Policy Framework

- Institution- Delhi Government Police
 CPCB
- Analysis Changes in number of vehicles,
 PM2.5 levels at different locations,
 Inconvenience

Odd - Even

Table : Snapshot of Delhi's Odd – even traffic experiment

Issues	Phase I	Phase II
Effective period	January 1-15 , 2016	April 15 – 30, 2016
Duration	15 days	16 days
Period	8 am to 8 pm	8 am to 8 pm
Days applicable	Monday to Saturday	Monday to Saturday
Sundays	No restrictions	•

Differential analysis

	Before Program	After Program	Change during the time where program is implemented
Area with program	B1	A1	(A1-B1)
Area without program	B2	A2	(A2-B2)

Change due to program in the area where	(A1-B1) – (A2-B2)
program is implemented	

Comparative data

Comparative data PM2.5

Delhi- Phase 1, 2 comparison

Source Apportionment

Travel Delays

Table 2. Driver Survey Descriptive Statistics

	(1)	(2) Observations	(3)
		that satisfy	Total
	Mean	condition	Observations
Panel A. Number of Respondents			
Respondents reached during phone surveys		956	
Phone surveys		4178	
Panel B. Demographics			
Age			
18-29 years old	41.5%	397	956
30-49 years old	53.6%	512	956
over 50 years old	4.9%	47	956
College degree	69.4%	663	956
Occupation			
Private employment	39.0%	373	956
Self-employed	41.8%	400	956
Government employee	6.0%	57	956
Student	8.3%	79	956
Other	3.9%	37	956
Panel C. Vehicle ownership			
Primary car has odd license plate	48.8%	467	956
Primary car age (years)	5.2	-	312
Household has another car	33.6%	321	956
Household has motorcycle	52.0%	496	953
Believes Odd-Even policy is good or very			
good for Delhi	69%	381	554

Table Notes. This table reports sample descriptive statistics from the baseline (recruiting) survey and the follow-up (phone) survey. More detailed information on response rates is available in Appendix Table 3.

Delhi- Source Apportionment

Delhi- Source Apportionment

Sector	Variation		
Sector	PM ₁₀ (%)	PM _{2.5} (%)	
Transport	5.5-19.0	17.9-39.2	
Industries	1.3-18.3	2.3-28.9	
Power plants	2.5-17.0	3.1-11.0	
Road dust	35.6-65.9	18.1-37.8	
Construction	3.6-21.0	2.2-8.4	

PM 2.5 Variability

Introduction of free public transport in Luxembourg

Children and young people

People on low income

Introduction of free public transport in Luxembourg

From 1 March 2020, public transport will be free in Luxembourg.

Users are advised that, due to the introduction of free public transport on 1 March 2020, annual passes purchased on or after 1 March 2019 will not cover the entire 1-year period.

Source: MS thesis 2009 Erasmus Univ Rotterdam

INDC

- Goal: To limit global temperature rise to less than 2 C, to compel global consensus and limit CO2 emissions. To provide a voluntary response from India
- Instruments- Variety
- Institutions- MOEF, MNRE, IPCC
- Stakeholders- Government, People, Fossil Energy industry, Renewable Energy Industry, Financing Institutions

INDC - Introduction

INDIA'S INTENDED NATIONALLY DETERMINED CONTRIBUTION:

WORKING TOWARDS CLIMATE JUSTICE

ॐ द्यौः शान्तिरन्तरिक्षं शान्तिः

पृथिवी शान्तिरापः शान्तिरोषधयः शान्तिः ।

"Om dyauh śāntir antariksam śāntih prithvi śāntih āpah śāntih osadhayah śāntih"

-- Yajur Veda 36.17

[{Unto Heaven be Peace, Unto the Sky and the Earth be Peace, Peace be unto the

Water, Unto the Herbs and Trees be Peace}}

https://nmhs.org.in/pdf/INDIAINDCTOUNFCCC.pdf

INDC -Future scenario

Indicator	India in 2014	India in 2030
Population (billion) a	1.2	1.5
Urban population (million) ^b	377 (2011)	609
CDD at 2011 12 priese (in trillian) ^c	INR 106.44	INR 397.35 (USD
GDP at 2011-12 prices (in trillion) ^c	(USD 1.69)	6.31)
Per capita GDP in USD (nominal) ^c	1408	4205
Electricity demand (TWh) ^c	776(2012)	2499

Source: a: Population Foundation of India; b: UN World Urbanization Prospects, 2014; c:

https://nmhs.org.in/pdf/INDIAINDCTOUNFCCC.pdf

INDC

- Reduce Carbon Intensity of GDP by 33-35% of 2005 level in 2030
- Create 40% cumulative non fossil power by installed capacity by 2030 (using finance from Green Climate Fund)
- create an additional carbon sink of 2.5 to 3
 billion tonnes of CO₂ equivalent through additional tree cover and forest

https://nmhs.org.in/pdf/INDIAINDCTOUNFCCC.pdf

http://envfor.nic.in/sites/default/files/press-releases/revised PPT Press Conference INDC v5.pdf

What does the carbon intensity of the economy depend upon?

Metrics

- Carbon intensity -2030 vs 2005
- Energy Intensity- 2030 vs 2005
- Equity impact
- Impact on jobs
- Impact on investments
- Share of non-fossil by installed capacity, by generation
- Costs of transition
- Carbon sink

Policies-INDC

- National Environment Policy 2006
- NAPCC, SAPCC(32 states)
- Energy Conservation Act
- National Electricity Policy
- National Policy for farmers
- Integrated Energy Policy
- PAT
- REC,RPO

Policies - INDC

- 25 Solar Parks, Ultra Mega Solar Power
- National Smart Grid Mission, Green Energy Corridor
- NMEEE
- Standards and Labelling
- Partial Risk Guarantee Fund for Energy Efficiency
- Venture Capital Fund for Energy Efficiency
- ECBC/Griha
- Smart Cities Mission, Atal Mission for Rejuvenation and Urban Transformation (AMRUT) and National Heritage City Development and Augmentation Yojana (HRIDAY) + many more

References

- GEA, 2012 Chapter 22: Global Energy Assessment Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria.
- UNEP, 2008: Reforming Energy Subsidies, Opportunities to Contribute to the Climate Change Agenda, Available online at: https://unep.ch/etb/publications/Energy%20subsidies/EnergySubsidiesFinalReport.pdf
- EPIC study
- TERI study
- Adriaan Perrels Efficiency and Effectiveness of Policy Instruments Concepts and Practice, available online, https://unfccc.int/files/meetings/workshops/other_meetings/application/pdf/perrels.pdf
- https://economics.mit.edu/files/13621
- CEEW study, 2019
- MS thesis 2009, Erasmus Univ. Rotterdam
- https://nmhs.org.in/pdf/INDIAINDCTOUNFCCC.pdf
- http://envfor.nic.in/sites/default/files/press-releases/revised PPT Press Conference INDC v5.pdf
- Charles Kolstad, 1999: Environmental Economics, Vol. 1, Oxford University Press, 1999.
- Daniel H Cusworth et al 2018 Environ. Res. Lett. 13 044018