PRESENTACIÓN GRUPAL

Autores:

Ana Buendía, Andrés Millán, Paula Villanueva, Juan Antonio Villegas

OBJETIVOS

- Solución teórica de los algoritmos 4 y 5.
- Comparación eficiencia empírica e híbrida de los algoritmos 4 y 5.
- Puesta en común de diferentes algoritmos.

ESPECIFICACIONES

Persona	CPU	OS
Ana	i5-6200U 2.30GHz	Ubuntu 16.04 LTS
Andrés	i5-8250U 3.40GHz	Antergos 4-19.29 LTS
Paula	i7-5600U 2.60GHz	Ubuntu 18.04 LTS
Juan Antonio	i7-4500U 3.00GHz	Ubuntu 18.04 LTS

ALGORITMO 4

BUSCARBINARIO

EFICIENCIA TEÓRICA

Decrece en n/2

ALGORITMO 4

BUSCARBINARIO

EFICIENCIA TEÓRICA

Decrece en n/2

$$T(n) = T(n/2) + a$$

Cambio de variable $n=2^k$

$$T(2^k) = a + T(2^{k-1})$$

 $T(2^{k-1}) = a + T(2^{k-2})$

...

$$T(2^k) = a \cdot k + 1$$

Deshaciendo el cambio de variable, obtenemos

$$T(n) = a \cdot log_2(n) + 1$$

BuscarBinario es $O(log_2(n))$

EFICIENCIA EMPÍRICA

EFICIENCIA HÍBRIDA

CONSTANTE K

Persona	K
Ana	34.785220119
Andrés	28.9263485708
Juan Antonio	35.1166541442
Paula	34.8506188855

ALGORITMO 5 HEAPSORT

EFICIENCIA TEÓRICA

- reajustar:
 - Bucle while: se ejecuta como máximo $log_2(\frac{n}{2}) = log_2 n 1$ veces.
 - lacktriangle Resto de operaciones: constante a.
 - Eficiencia: $alog_2n a$.

EFICIENCIA TEÓRICA

- heapsort:
 - Primer bucle: llama a reajustar $\frac{n}{2}$ veces. Eficiencia:

$$\left(\frac{n}{2}+1\right)(alog_2n-a)$$

• Segundo bucle: operaciones elementales (b) y llama a reajustar. Se ejecuta n-1 veces. Eficiencia:

$$a(n-1)(log_2n-1)+b(n-1)$$

• Eficiencia del algoritmo: $O(nlog_2n)$.

EFICIENCIA EMPÍRICA

EFICIENCIA HÍBRIDA

CONSTANTE K

Persona	\boldsymbol{K}
Ana	0.0182624864036
Andrés	0.0141484097962
Juan Antonio	0.0164563064296
Paula	0.0176604264123

HANOI

EFICIENCIA TEÓRICA

 $O(2^n)$

EFICIENCIA EMPÍRICA

BURBUJA

EFICIENCIA EMPÍRICA

EFICIENCIA HÍBRIDA

CONSTANTE K

Persona	\boldsymbol{K}
Ana	0.00274223536473
Andrés	0.00533
Juan Antonio	0.002726666666667
Paula	0.00274666666667

MERGESORT

EFICIENCIA TEÓRICA

 $O(nlog_2(n))$

EFICIENCIA EMPÍRICA

EFICIENCIA HÍBRIDA

CONSTANTE K

Persona	K
Ana	0.0257882362952
Andrés	0.0229786230024
Juan Antonio	0.0213731296921
Paula	0.0252865196358

COMPARATIVA BURBUJA Y MERGESORT

COMPARATIVA BURBUJA Y MERGESORT

 $Burbuja \in O(n^2) \ Mergesort \in O(n+nlog_2(n)) \sim O(nlog_2(n))$

COMPARATIVA EMPÍRICA BURBUJA Y MERGESORT

Coinciden los modelos teóricos y empíricos