T1 Tietokantataulu - Database table

T1_Q0

T1_Q1

1 p

Hae kaikkien bike-taulun polkupyörien kaikki tiedot.

Järjestä tulosrivit nousevaan järjestykseen id-sarakkeen perusteella.

Retrieve all the information for all bikes in the bike table.

Sort the result rows in ascending order by the id column.

Ratkaisudokumentti - Solution document: t1_q1.sql

SELECT * FROM bike ORDER BY id;

id	name	category	tyre_size	price
1	Raptor	terrain	26	349
2	Montauk	terrain	27	499
3	Poni	city		599
4	Ainotar	city	28	
5	eMotion	electric	26	
6	Soma	children	16	349
7	Skyride	children	20	449

T1_Q2

1 p

Hae name-sarakkeen arvot.

Järjestä tulosrivit nousevaan järjestykseen name-sarakkeen perusteella.

Retrieve the values of the name column.

Sort the result rows in ascending order by the name column.

Ratkaisudokumentti - Solution document: t1_q2.sql

SELECT name FROM bike ORDER BY name;

name

Ainotar Montauk

Poni

Raptor

Skyride

 ${\color{red} \text{Soma}}$

eMotion

T1_Q3

1 p

Hae Ainotar-nimisen polkupyörän kaikki tiedot.

Retrieve all the information for the bike named Ainotar.

Ratkaisudokumentti - Solution document: t1_q3.sql

T1_Q4

2 p

Hae category-sarakkeen eri arvot. Kukin kategoria esiintyy siis tulostaulussa vain kerran. Järjestä tulosrivit nousevaan järjestykseen category-sarakkeen perusteella.

Retrieve all the different values from the category column. Each category appears only once in the result table.

Sort the result rows in ascending order by the category column.

Ratkaisudokumentti - Solution document: t1_q4.sql

```
SELECT DISTINCT category FROM bike ORDER BY category; category ------children city electric terrain
```

T1_Q5

2 p

Hae kategoriat, renkaan koot (tyre_size), nimet ja hinnat niille pyörille, joiden hinta on alle 500. Järjestä tulosrivit ensisijaisesti nousevaan järjestykseen kategorian perusteella ja toissijaisesti laskevaan järjestykseen hinnan perusteella.

Retrieve categories, tyre sizes, names and prices for those bikes with price below 500. Sort the result rows primarily in ascending order by the category and secondarily in descending order by the price.

Ratkaisudokumentti - Solution document t1_q5.sql

```
SELECT category, tyre_size, name, price FROM bike
```

```
WHERE price < 500 ORDER BY category, price DESC;
```

category	tyre_size	name	price
children	20	Skyride	449
children	16	Soma	349
terrain	27	Montauk	499
terrain	26	Raptor	349

T1_Q6

2 p

Hae nimet niille pyörille, joiden hinta (price) puuttuu. Järjestä tulosrivit nousevaan järjestykseen nimen perusteella.

Retrieve names of those products whose price is missing. Sort the result rows in ascending order by the name.

Ratkaisudokumentti - Solution document: t1_q6.sql

```
SELECT name
FROM bike
WHERE price IS NULL
ORDER BY name;
name
-----
Ainotar
eMotion
```

T1_Q7

2 p

Lisää bike-tauluun pyörä, jonka id on 8, nimi on Classic, kategoria on city ja renkaan koko on 28. Pyörän hintaa ei vielä tiedetä.

Insert into the bike table a bike which has the id 8, name Classic, category city, and tyre size 28. The price of the bike is not yet known.

Ratkaisudokumentti - Solution document: t1_q7.sql

INSERT INTO bike VALUES (8, 'Classic', 'city', 28, NULL);

T1_Q8

2 p

Muuta bike-taulun category-sarakkeen terrain-arvot TERRAIN-arvoiksi.

In the category column of the bike table, update the values terrain to be TERRAIN.

```
UPDATE bike
SET category = 'TERRAIN'
WHERE category = 'terrain';
```

T1_Q9

2 p

Poista bike-taulusta kaikki pyörät, joiden kategoria on electric.

Delete from the bike table all bikes whose category is electric.

Ratkaisudokumentti - solution document: t1_q9.sql

```
DELETE FROM bike
WHERE category = 'electric';
```

T1_Q10

2 p

Ohessa on board_game -taulu, joka on lautapelejä varten.

board_game

id	name	players	ages	price
1	Balloon PoP	2-4	8+	35
2	Mysterium	2-7	10+	49.95
5	Carcassonne	2-5	7+	33.5
6	Trivial Pursuit	2-36	16+	50

Tee CREATE TABLE -lause board_game-taulun luomiseksi ja INSERT INTO -lauseet tietojen lisäämiseksi tauluun. Määrittele taulun luontilauseessa sarakkeiden tietotyyppien lisäksi seuraavat rajoitteet:

- Taulun pääavain on id-sarake, jossa ei sallita puuttuvia arvoja (NULL-arvoja).
- name-sarake on yksilöivä ja siinä ei sallita puuttuvia arvoja.
- players-sarakkeessa ei sallita puuttuvia arvoja.
- price-sarakkeeseen on voitava tallentaa lukuja, joissa on maksimissaan kolme numeroa kokonaisosassa ja kaksi desimaaliosassa
 - Vinkki: Olethan tarkkana DECIMAL-tietotyypin numeroiden lukumäärän määrittelyn kanssa.

Attached is the board_game table, which is for board games.

board_game

id	name	players	ages	price
1	Balloon PoP	2-4	8+	35
2	Mysterium	2-7	10+	49.95
5	Carcassonne	2-5	7+	33.5
6	Trivial Pursuit	2-36	16+	50

Write a CREATE TABLE statement to create the board_game table and INSERT INTO statements to add the data to the table. Define the following constrains, in addition to column datatypes, when creating the table:

- The primary key of the table is the id column. No missing values (null values) are allowed in the id column.
- The name column is unique and no missing values are allowed.
- No missing values are allowed in the players column.
- The price column shall be capable of storing numbers with a maximum of two digits in the whole part and two in the decimal part.
 - o Tip: Please note the number of digits when defining the data type DECIMAL.

Ratkaisudokumentti - Solution document: t1_q10.sql

```
CREATE TABLE board_game (
id INT NOT NULL,
name VARCHAR(30) NOT NULL,
players VARCHAR(10) NOT NULL,
ages VARCHAR(10),
price DECIMAL(4,2),
PRIMARY KEY (id),
UNIQUE (name));

INSERT INTO board_game VALUES (1, 'Balloon Pop', '2-4', '8+', 35);
INSERT INTO board_game VALUES (2, 'Mysterium', '2-7', '10+', 49.95);
INSERT INTO board_game VALUES (5, 'Carcassonne', '2-5', '7+', 33.5);
INSERT INTO board_game VALUES (6, 'Trivial Pursuit', '2-36', '16+', 50);
```

T1_Q11

1 p

Tämä on totuusarvoihin liittyvä monivalintakysymys, jossa on 5 alikysymystä. This is a multiple choice question related to truth values with 5 sub-questions.

Mikä on WHERE-osan ehdon totuusarvo, kun sitä sovelletaan alla annettuun bike-taulun riviin? What is the truth value of the WHERE part condition when applied to the row of the bike table given below?

```
WHERE name = 'Ainotar'
id name category tyre_size price
-- --- ---- -----
3 Poni city 599
```

tosi - true

• Väärin. Wrong.

epätosi - false

• Oikein. Correct.

tuntematon - unknown

• Väärin. Totuusarvo tuntematon liittyy NULL-arvon testaamiseen tavallisella vertailuoperaattorilla. Wrong. The truth value unknown is related to testing the NULL value with an ordinary comparison operator.

Mikä on WHERE-osan ehdon totuusarvo, kun sitä sovelletaan alla annettuun bike-taulun riviin?

What is the truth value of the WHERE part condition when applied to the row of the bike table given below?

599

```
WHERE name <> 'Ainotar'
id name category tyre_size price
```

tosi - true

3

Oikein. Correct.

city

epätosi - false

Poni

• Väärin. Wrong.

tuntematon - unknown

• Väärin. Totuusarvo tuntematon liittyy NULL-arvon testaamiseen tavallisella vertailuoperaattorilla. Wrong. The truth value unknown is related to testing the NULL value with an ordinary comparison operator.

Mikä on WHERE-osan ehdon totuusarvo, kun sitä sovelletaan alla annettuun bike-taulun riviin? What is the truth value of the WHERE part condition when applied to the row of the bike table given below?

tosi - true

• Väärin - kiinnitä huomiota NULL-arvoon. Wrong - notice the NULL value.

epätosi - false

• Väärin - kiinnitä huomiota NULL-arvoon. Wrong - notice the NULL value.

tuntematon - unknown

• Oikein. Correct.

Mikä on WHERE-osan ehdon totuusarvo, kun sitä sovelletaan alla annettuun bike-taulun riviin? What is the truth value of the WHERE part condition when applied to the row of the bike table given below?

tosi - true

• Oikein, Correct.

epätosi - false

• Väärin. Wrong.

tuntematon - unknown

 Väärin. Totuusarvo tuntematon liittyy NULL-arvon testaamiseen tavallisella vertailuoperaattorilla.

Virong. The truth value unknown is related to testing the NULL value with an ordinary comparison operator.

Mikä on WHERE-osan ehdon totuusarvo, kun sitä sovelletaan alla annettuun bike-taulun riviin? What is the truth value of the WHERE part condition when applied to the row of the bike table given below?

```
WHERE tyre_size IS NOT NULL
id name category tyre_size price
-- --- -----
3 Poni city 599
```

tosi - true

• Väärin. Wrong.

epätosi - false

• Oikein. Correct.

tuntematon - unknown

• Väärin. Totuusarvo tuntematon liittyy NULL-arvon testaamiseen tavallisella vertailuoperaattorilla.

Virong. The truth value unknown is related to testing the NULL value with an ordinary comparison operator.

T1_Q12

1 p

Tämä on monivalintakysymys, joka liittyy Kyselyn evaluointi -kalvopaketissa esitettyyn yksinkertaiseen kyselynevaluointialgoritmiin.

This is a multiple choice question related to the simple query evaluation algorithm presented in the slide set Query evaluation.

Kyselyn evaluointi -kalvopaketissa on esitetty yksinkertainen "kyselynevaluointialgoritmi" Mikä on WHERE-osan tuottama tulostaulu, kun algoritmia sovelletaan alla annettuun kyselyyn ja tauluun?

A simple 'query evaluation algorithm' is presented in the slide set Query evaluation. What is the result table produced by the WHERE part when the algorithm is applied to the query and the table given below?

```
SELECT name
FROM bike
WHERE tyre_size <> 26;
```

bik	e			
id	name	category	tyre_size	price
1	Raptor	terrain	26	349
2	Montauk	terrain	27	499
3	Poni	city		599
4	Ainotar	city	28	
5	eMotion	electric	26	
6	Soma	children	16	349
7	Skyride	children	20	449

a)				
id	name	category	tyre_size	price
2	Montauk	terrain	27	499
3	Poni	city		599
4	Ainotar	city	28	
6	Soma	chiĺdren	16	349
7	Skvride	children	20	449

Väärin. Huomaa NULL-arvo. Wrong. Note the NULL value.

b)				
id	name	category	tyre_size	price
2	Montauk	terrain	27	499
4	Ainotar	city	28	
6	Soma	chiĺdren	16	349
7	Skvride	children	20	449

Oikein.

Correct.

c)

name

Montauk Poni

Ainotar

Soma

Skyride

Väärin. Huomaa NULL-arvo. Lisäksi SELECT-osa suoritetaan viimeisenä algoritmissa. Wrong. Note the NULL value. Further, the SELECT part is run last in the algorithm.

d)

name

Montauk Ainotar

Soma

Skyride

Väärin. SELECT-osa suoritetaan viimeisenä algoritmissa.

Wrong. The SELECT part is run last in the algorithm.