INTRODUCTION À L'INFORMATIQUE CM4

Antonio E. Porreca https://aeporreca.org/teaching

RECHERCHE DANS UNTABLEAU

```
fonction chercher(x,T)
  n := longueur(T)
  i := 0

tant que i < n faire
  si T[i] = x alors
    retourner i
    i := i + |
retourner -|</pre>
```

recherche de 33

	4	12	17	25	29	33	38	43	51	57	64
0		2	3	4	5	6	7	8	9	10	П

-

4	12	17	25	29	33	38	43	51	57	64

recherche de 33

I	4	12	17	25	29	33	38	43	51	57	64
0		2									

1

recherche de 33

1	4	12	17	25	29	33	38	43	51	57	64
						6					

1

4	12	17	25	29	33	38	43	51	57	64
	2									

	4	12	17	25	29	33	38	43	51	57	64
0		2	3	4	5	6	7	8	9	10	П

recherche de 33

4	12	17	25	29	33	38	43	51	57	64

I

-	4	12	17	25	29	33	38	43	51	57	64

RECHERCHE DANS UN TABLEAU

```
fonction chercher(x,T)
  n := longueur(T)
  i := 0

tant que i < n faire
  si T[i] = x alors
    retourner i
    i := i + |
retourner -|</pre>
```

Terminaison?
Correction?
Efficacité?

TERMINAISON

```
fonction chercher(x,T)
  n := longueur(T)
  i := 0

tant que i < n faire
  si T[i] = x alors
    retourner i
    i := i + |
retourner -|</pre>
```

- Au début, on a i = 0
- Il reste toujours n i positions à examiner
- i est incrémenté à chaque itération
- Tôt ou tard on trouve x ou on arrive à i = n, et l'algorithme termine

CORRECTION

```
fonction chercher(x,T)
  n := longueur(T)
  i := 0

tant que i < n faire
  si T[i] = x alors
    retourner i
  i := i + |
retourner - |</pre>
```

- Si x est dans le tableau, il se trouve dans le sous-tableau T[i, ..., n – 1]
 - · C'est vrai au début de l'algorithme
 - Ça reste vrai à chaque itération de la boucle, parce qu'on vérifie toujours si T[i] = x
- Si on sort de la boucle parce que i = n, alors si x est dans le tableau, il est dans le sous-tableau vide T[n, n - 1], c'est à dire qu'il n'est pas là

EFFICACITÉ

```
fonction chercher(x,T)
  n := longueur(T)
  i := 0

tant que i < n faire
  si T[i] = x alors
    retourner i
    i := i + |
retourner -|</pre>
```

- Si on a de la chance, on a T[0] = x
 et on termine tout de suite en 5
 opérations
- SiT[k] = x on fait 2 + 3(k + 1) opérations
- Si x n'est pas là on fait 2 + 3n + 2
 = 3n + 4 opérations
- Dans le pire des cas, on fait donc
 O(n) opérations : temps linéaire

RECHERCHE DICHOTOMIQUE DANS UN TABLEAU D'ENTIERS TRIÉ

```
fonction chercher(x,T)
   n = longueur(T)
   i = 0
   j = n - 1
   tant que i ≤ j faire
      m = (i + j) \div 2
      siT[m] = x alors
          retourner m
       sinon si \times < T[m] alors
         j = m - 1
       sinon
          i = m + 1
   retourner -
```

recherche de 33

m

recherche de 33

im

recherche de 16

m

RECHERCHE DICHOTOMIQUE DANS UN TABLEAU D'ENTIERS TRIÉ

```
fonction chercher(x,T)
   n = longueur(T)
   i = 0
   i = n - 1
   tant que i ≤ j faire
      m = (i + j) \div 2
      siT[m] = x alors
          retourner m
       sinon si \times < T[m] alors
          j = m - 1
       sinon
          i = m + 1
   retourner -
```

Terminaison?
Correction?
Efficacité?

TERMINAISON

```
fonction chercher(x,T)
   n = longueur(T)
   i := 0
   i = n - 1
   tant que i ≤ j faire
       m = (i + j) \div 2
       siT[m] = x alors
          retourner m
       sinon si \times < T[m] alors
          j = m - 1
       sinon
          i = m + 1
```

retourner -

- Si x est dans le tableau, il se trouve dans le sous-tableau T[i, ..., j]
 - · C'est vrai au début de l'algorithme
 - Ça reste vrai à chaque itération de la boucle, parce qu'on vérifie toujours si T[m] = x ou T[m] > x ou T[m] < x
- Si on sort de la boucle parce que i ≥ j, alors si x est dans le tableau, il est dans le sous-tableau vide T[i, j], c'est à dire qu'il n'est pas là

CORRECTION

```
fonction chercher(x,T)
   n = longueur(T)
   i := 0
   i = n - 1
   tant que i ≤ j faire
       m = (i + j) \div 2
       siT[m] = x alors
          retourner m
       sinon si \times < T[m] alors
          i = m - 1
       sinon
          i = m + 1
   retourner -
```

- Il reste toujours j i + I
 éléments à examiner
- À chaque itération, on élimine approx. la moitié des éléments qui restent
- Tôt ou tard on trouve x, ou on reste sans éléments, et l'algorithme termine

EFFICACITÉ

fonction chercher(x,T)

```
n := longueur(T)
i := 0
j := n - l
```

tant que i ≤ j faire

$$m := (i + j) \div 2$$

 $siT[m] = x alors$
 $retourner m$
 $sinon si \times < T[m] alors$

sinon

$$i = m + 1$$

j = m - 1

retourner -

- Dans le pire des cas, x n'est pas là
- Comme on élimine à chaque itération la moitié du tableau, on exécute la boucle log₂ n fois au maximum
- Ça fait O(log₂ n) opérations

- · Les cartes arrivent déjà triées
- · On fait n opérations (déplacements de cartes)

 N_{2} operations = 1 + 2 + 3 + 4 + 5

- · Les cartes arrivent en ordre décroissant
- · On fait i opérations pour la i-ème carte
- Le nombre totale est l + 2 + 3 + ··· + n

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) = \frac{1}{2}(n^2 + n) \in O(n^2)$$

LA BOUCLE « POUR »

```
pour i := x à y faire
  quelque chose
fin
```

```
i := x

tant que i ≤ y faire
  quelque chose
  i := i + |
fin
```

TRI D'UN TABLEAU PAR INSERTION

```
procedure trier-par-insertion(T)
    n := longueur(T)
    pour i = | \hat{a} n - | faire
       \times \coloneqq \mathsf{T[i]}
       i := i
       tant que j > 0 et x < T[j-1] faire
            (décaler d'un élément)
           T[i] := T[i - 1]
           i = i - 1
        (ici \times \geq T[j-1] \text{ ou bien } j=0)
        | | | := \times
```

10	7	9	2	8		13	12
0		2	3	4	5	6	7

TERMINAISON

```
procedure trier-par-insertion(T)
    n = longueur(T)
    pour i = | \hat{a} n - | faire
        \times \coloneqq \mathsf{T[i]}
        | := |
        tant que j > 0
                 et \times < T[j-1] faire
            (décaler d'un élément)
            T[i] := T[i - 1]
            j := j - 1
        (ici \times \geq T[j-1] ou bien j=0)
        T[i] := \times
```

 La boucle pour termine toujours

 La boucle tant que termine (au pire)
 quand j = 0

CORRECTION

```
procedure trier-par-insertion(T)
    n = longueur(T)
    pour i = | \hat{a} n - | faire
        \times \coloneqq \top [i]
        i := i
        tant que j > 0
                 et \times < T[i-1] faire
            (décaler d'un élément)
            T[j] := T[j-1]
            i = i - 1
        (ici \times \geq T[j-1] \text{ ou bien } j=0)
        T[i] := \times
```

Le sous-tableau
 T[0, ..., i – I] est trié au début de la boucle
 pour

EFFICACITÉ

```
procedure trier-par-insertion(T)
    n := longueur(T)
    pour i = | \hat{a} n - | faire
        \times \coloneqq \mathsf{T[i]}
        i := i
        tant que j > 0
                 et \times < T[i-1] faire
             (décaler d'un élément)
             T[j] := T[j-1]
            j := j - 1
        (ici \times \geq T[j-1] \text{ ou bien } j=0)
        T[i] := \times
```

- O(n) opérations dans le meilleur des cas
- O(n²) opérations dans le pire des cas

EST-CE QU'ON PEUT FAIRE MIEUX QUE ÇA?

TRI FUSION

DIVISER

DIVISER

DIVISER

TOUS LES JEUX SONTTRIÉS!

TOUS LES JEUX SONTTRIÉS!

TOUS LES JEUX SONTTRIÉS!

LE JEU ESTTRIÉ!

EFFICACITÉ DUTRI FUSION

EFFICACITÉ DUTRI FUSION

LA COMPLEXITÉ DU TRI FUSION EST

 $O(n \log_2 n)$