Free Theorems for Nested Types

ANONYMOUS AUTHOR(S)

1 FREE THEOREM FOR TYPE OF POLYMORPHIC IDENTITY

Suppose $\vdash g: \operatorname{Nat}^{\alpha} \alpha \alpha$, let $G^{\operatorname{Set}} = \llbracket \vdash g: \operatorname{Nat}^{\alpha} \alpha \alpha \rrbracket^{\operatorname{Set}}$, and let $G^{\operatorname{Rel}} = \llbracket \vdash g: \operatorname{Nat}^{\alpha} \alpha \alpha \rrbracket^{\operatorname{Rel}}$. By Theorem $\ref{eq:Rel}(G^{\operatorname{Set}}(\pi_1\rho), G^{\operatorname{Set}}(\pi_2\rho)) = G^{\operatorname{Rel}}\rho$. Thus, for all $\rho \in \operatorname{RelEnv}$ and any $(a,b) \in \llbracket \vdash \emptyset \rrbracket^{\operatorname{Rel}}\rho = 1$, eliding the only possible instantiations of a and b gives that

```
\begin{array}{lll} (G^{\operatorname{Set}},G^{\operatorname{Set}}) &=& (G^{\operatorname{Set}}(\pi_{1}\rho),G^{\operatorname{Set}}(\pi_{2}\rho)) &\in& \llbracket \vdash \operatorname{Nat}^{\alpha}\alpha\alpha \rrbracket^{\operatorname{Rel}}\rho \\ &=& \{\eta:id\Rightarrow id\} \\ &=& \{(\eta_{1}:id\Rightarrow id,\eta_{2}:id\Rightarrow id)\} \end{array}
```

That is, G^{Set} is a natural transformation from the identity functor on Set to itself.

Now let S be any set. If $S=\emptyset$, then there is exactly one morphism $id_S:S\to S$, so $G_S^{\operatorname{Set}}:S\to S$ must be id_S . If $S\neq\emptyset$, then if a is any element of S and $K_a:S\to S$ is the constantly a-valued morphism on S, then instantiating the naturality square implied by the above equality gives that $G_S^{\operatorname{Set}}\circ K_a=K_a\circ G_S^{\operatorname{Set}}$, i.e., $G_S^{\operatorname{Set}}=a$, i.e., $G_S^{\operatorname{Set}}=id_S$. Putting these two cases together we have that for every $S:\operatorname{Set},G_S^{\operatorname{Set}}=id_S$, i.e., $G_S^{\operatorname{Set}}=id_S$ is the identity natural transformation for the identity functor on Set. So every closed term g of closed type $\operatorname{Nat}^\alpha \alpha$ always denotes the identity natural transformation for the identity functor on Set, i.e., every closed term g of type $\operatorname{Nat}^\alpha \alpha$ a denotes the polymorphic identity function.