

Этикетка

КСНЛ.431271.014 ЭТ

Микросхема 1564ЛА2Т1ЭП

Микросхема интегральная 1564ЛА2Т1ЭП Функциональное назначение: логический элемент «8И - HE»

Условное графическое обозначение

Таблица назначения выводов

$N_{\underline{0}}$	Обозначение	Назначение	$N_{\underline{0}}$	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	A	Вход	8	Y	Выход
2	В	Вход	9	NC	Не подключён
3	C	Вход	10	NC	Не подключён
4	D	Вход	11	G	Вход
5	Е	Вход	12	Н	Вход
6	F	Вход	13	NC	Не подключён
7	0V	Общий	14	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
U_{CC} =2,0 B, U_{IH} =1,5 B, I_{O} = 20 мкА	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IH} = 4,2 B, I_{O} = 20 мкА		-	0,10
при:			
$U_{CC} = 4.5 \text{ B}, U_{IH} = 3.15 \text{ B}, I_0 = 4.0 \text{ mA}$		-	0,26
$U_{CC} = 6.0 \text{ B}, U_{IH} = 4.2 \text{ B}, I_0 = 5.2 \text{ mA}$		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B, I_{O} = 20 мкА	U_{OHmin}	1,9	=
U_{CC} =4,5 B, U_{IL} =0,9 B U_{IH} =3,15 B, I_{O} = 20 мкА		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B U_{IH} = 4,2 B, I_{O} = 20 мкА		5,9	-
при:			
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0.9 \text{ B}, U_{IH} = 3.15 \text{ B}, I_{O} = 4.0 \text{ MA}$		4,0	-
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}, I_0 = 5.2 \text{ mA}$		5,5	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$I_{\rm IL}$	-	/-0,1/

4. Входной ток высокого уровня, мкА, при: $U_{CC} = 6,0 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при: $U_{CC}\!\!=\!6,\!0$ B, $U_{IL}\!\!=\!0$ B, $U_{IH}\!\!=\!U_{CC}$	I_{CC}	-	1,0
6. Динамический ток потребления, мА, при: $U_{CC}\!=\!6,\!0\;B,f\!=\!10\;M\Gamma_{I\!I}$	I _{occ}	-	12
7. Время задержки распространения при включении и выключении, нс, при:	$t_{ m PHL}, \ t_{ m PLH}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	150
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ п}\Phi$		-	30
$U_{CC} = 6,0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	25
8. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото серебро в том числе: золото Γ/MM на 14 выволах ллиной

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

MM

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °С не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости (ТСу) при ү = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-05ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛА2Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-05ТУ и признаны годными для эксплуатации.

Приняты по (извещение, акт и др	от	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепровер	ка произведена	» (дата)
Приняты по (извещение, акт и д	др.) от	
Место для штампа ОТК		Место для штампа П
Цена договорная		

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала не более 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): выход - общий, вход-выход.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.