Mining Graph Data

Hazim Fitri

2025-01-12

Contents

Data Jaringan (Network Science)	2
Types of graph	2
1) Directed graph	2
2) Undirected Graph	3
3) Weighted Graph	4
4) Labeled Graph	5
5) Cyclic Graph	5
6) Acyclic Graph	5
7) Trees Graph	6
8) Bipartite Graph	7
9) Hypergraph	7
Representations for Graphs	8
1) Adjacency list	8
2) Edge list	12
3) Adjacency Matrix	13
Graph Manipulation	13
Remove Specific Nodes/Vertices	14
Generate Subgraph	15
Generate Subgraph	
	15
Join Graph	15 16
Join Graph	15 16
Join Graph	15 16 16
Join Graph	15 16 16 17
Join Graph Modify the Nodes Data Modify the Edge Data Graph Visualization Node Prominence Analysis	15 16 16 17 19
Join Graph Modify the Nodes Data Modify the Edge Data Graph Visualization Node Prominence Analysis Prominence Node Measurement:	15 16 16 17 19
Join Graph Modify the Nodes Data Modify the Edge Data Graph Visualization Node Prominence Analysis Prominence Node Measurement: Degree Centrality	15 16 16 17 19 22
Join Graph Modify the Nodes Data Modify the Edge Data Graph Visualization Node Prominence Analysis Prominence Node Measurement: Degree Centrality Closeness Centrality	15 16 16 17 19 22 22

Data Jaringan (Network Science)

set.seed(12)
plot(g)

```
# Perlombongan data graf
library(igraph)
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
##
      decompose, spectrum
## The following object is masked from 'package:base':
##
##
      union
Types of graph
1) Directed graph
g = graph_from_literal(1-2, 1-3, 1-7, 3-4, 2-3, 2-4, 3-5, 4-5,
                      4-6, 4-7, 5-6, 5-8, 6-7, 7-8)
## IGRAPH 1b59e92 UN-- 8 14 --
## + attr: name (v/c)
## + edges from 1b59e92 (vertex names):
## [1] 1--2 1--3 1--7 2--3 2--4 3--4 3--5 7--4 7--6 7--8 4--5 4--6 5--6 5--8
# labelkan nod/verteks
V(g) name = c('Adam', 'Judy', 'Bobby', 'Sam', 'Frank', 'Tom', 'Jerry',
              'Jay')
## IGRAPH 1b59e92 UN-- 8 14 --
## + attr: name (v/c)
## + edges from 1b59e92 (vertex names):
## [1] Adam --Judy Adam --Bobby Adam --Sam Judy --Bobby Judy --Frank
## [6] Bobby--Frank Bobby--Tom Sam --Frank Sam --Jerry Sam --Jay
## [11] Frank--Tom Frank--Jerry Tom --Jerry Tom --Jay
# Plot graf dengan hubungan tak terarah
```


2) Undirected Graph

```
dg = graph_from_literal(KL-+CHINA, KL-+London, CHINA++London)
dg

## IGRAPH 1b6de77 DN-- 3 4 --
## + attr: name (v/c)
## + edges from 1b6de77 (vertex names):
## [1] KL ->CHINA KL ->London CHINA ->London London->CHINA
plot(dg)
```


3) Weighted Graph

• berapa kuat hubungan antara nod/verteks

4) Labeled Graph

5) Cyclic Graph

At least ada 1 kitaran dah boleh dianggap sebagai graf berkitar

6) Acyclic Graph

plot(dg)

7) Trees Graph

```
tr = make_tree(40, children=3, mode='undirected')
plot(tr)
```


8) Bipartite Graph

```
gb = sample_bipartite(10,5,p=0.4)
col = c('blue', 'red')
shape = c('circle', 'square')
plot(gb, vertex.color = col[as.numeric(V(gb)$type+1)],
    vertex.shape=shape[as.numeric(V(gb)$type+1)])
```


9) Hypergraph

library(HyperG)

```
## Loading required package: mclust

## Package 'mclust' version 6.1.1

## Type 'citation("mclust")' for citing this R package in publications.

##

## Attaching package: 'HyperG'

## The following objects are masked from 'package:igraph':

##

## is.simple, line.graph

h = hypergraph_from_edgelist(list(1:2, 2:5, 3:7, c(1,3,5,7,9)))
plot(h)
```


Representations for Graphs

1) Adjacency list

plot(g)


```
Adj.list1 = as_adj_list(g)
Adj.list1
## $Adam
## + 3/8 vertices, named, from 1b59e92:
## [1] Judy Bobby Sam
##
## $Judy
## + 3/8 vertices, named, from 1b59e92:
## [1] Adam Bobby Frank
##
## $Bobby
## + 4/8 vertices, named, from 1b59e92:
## [1] Adam Judy Frank Tom
## $Sam
## + 4/8 vertices, named, from 1b59e92:
## [1] Adam Frank Jerry Jay
## $Frank
## + 5/8 vertices, named, from 1b59e92:
## [1] Judy Bobby Sam
                        Tom
                               Jerry
##
## $Tom
## + 4/8 vertices, named, from 1b59e92:
## [1] Bobby Frank Jerry Jay
##
## $Jerry
## + 3/8 vertices, named, from 1b59e92:
## [1] Sam Frank Tom
##
## $Jay
## + 2/8 vertices, named, from 1b59e92:
## [1] Sam Tom
Adj.list2 = as_adj_list(dg)
Adj.list2
## $KL
## + 2/3 vertices, named, from 1b6de77:
## [1] CHINA London
##
## $CHINA
## + 3/3 vertices, named, from 1b6de77:
## [1] KL London London
##
## $London
## + 3/3 vertices, named, from 1b6de77:
## [1] KL
            CHINA CHINA
Adj.list3 = as_adj_list(tr)
Adj.list3
## [[1]]
## + 3/40 vertices, from 1b8c5cb:
## [1] 2 3 4
##
## [[2]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 1 5 6 7
##
```

```
## [[3]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 1 8 9 10
## [[4]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 1 11 12 13
## [[5]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 2 14 15 16
##
## [[6]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 2 17 18 19
## [[7]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 2 20 21 22
## [[8]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 3 23 24 25
##
## [[9]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 3 26 27 28
##
## [[10]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 3 29 30 31
##
## [[11]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 4 32 33 34
##
## [[12]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 4 35 36 37
##
## [[13]]
## + 4/40 vertices, from 1b8c5cb:
## [1] 4 38 39 40
##
## [[14]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 5
##
## [[15]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 5
##
## [[16]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 5
##
## [[17]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 6
##
## [[18]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 6
##
```

```
## [[19]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 6
##
## [[20]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 7
##
## [[21]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 7
##
## [[22]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 7
## [[23]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 8
## [[24]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 8
##
## [[25]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 8
##
## [[26]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 9
##
## [[27]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 9
##
## [[28]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 9
##
## [[29]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 10
##
## [[30]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 10
##
## [[31]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 10
##
## [[32]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 11
##
## [[33]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 11
##
## [[34]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 11
##
```

```
## [[35]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 12
##
## [[36]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 12
##
## [[37]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 12
##
## [[38]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 13
##
## [[39]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 13
## [[40]]
## + 1/40 vertex, from 1b8c5cb:
## [1] 13
2) Edge list
Ed.list1 = as.data.frame(as_edgelist(g))
Ed.list1
##
         V1
               ٧2
## 1
       Adam Judy
## 2
      Adam Bobby
## 3
      Adam
              Sam
## 4
       Judy Bobby
## 5
      Judy Frank
## 6 Bobby Frank
## 7 Bobby
              Tom
## 8
        Sam Frank
## 9
        Sam Jerry
## 10
        \mathtt{Sam}
              Jay
## 11 Frank
              Tom
## 12 Frank Jerry
## 13
        Tom Jerry
## 14
        Tom
             Jay
Ed.list2 = as.data.frame(as_edgelist(dg))
Ed.list2
##
         V1
                ٧2
## 1
        KL CHINA
         KL London
## 3 CHINA London
## 4 London CHINA
Ed.list3 = as.data.frame(as_edgelist(gb))
Ed.list3
      V1 V2
## 1
      1 11
```

2

3 11

```
6 11
     10 11
      6 12
      7 12
## 7
      8 12
## 8 10 12
## 9
      1 13
## 10 6 13
## 11
      7 13
## 12 1 14
## 13
      2 14
## 14
      5 14
## 15 8 14
## 16 9 14
## 17 2 15
## 18 3 15
## 19 5 15
## 20 7 15
## 21 8 15
## 22 9 15
```

3) Adjacency Matrix

```
Adj.M1 = as_adjacency_matrix(g)
Adj.M1
## 8 x 8 sparse Matrix of class "dgCMatrix"
##
             Adam Judy Bobby Sam Frank Tom Jerry Jay
## Adam
                . 1
                                  1
                                         1
## Judy
## Bobby

    1
    1
    .
    .
    1
    1
    .
    .

    1
    .
    .
    .
    1
    .
    1
    1
    1

    .
    .
    1
    .
    1
    .
    1
    1
    .

    .
    .
    .
    .
    .
    .
    .
    .
    .
    .

## Sam
## Frank
## Tom
                                        1
                                                  1
## Jerry
                                                       1
## Jay
Adj.M2 = as_adjacency_matrix(dg)
Adj.M2
## 3 x 3 sparse Matrix of class "dgCMatrix"
          KL CHINA London
##
## KL
                         1
## CHINA
```

Graph Manipulation

Among the important techniques of graph manipulation are:

1. remove specific nodes/vertices.

1

- 2. generate subgraph.
- 3. join graphs.

London .

- 4. modify the nodes data.
- 5. modify the edge data.

Remove Specific Nodes/Vertices

```
h = g- vertices(c('Jerry', 'Bobby'))
h

## IGRAPH 1c41577 UN-- 6 7 --
## + attr: name (v/c)
## + edges from 1c41577 (vertex names):
## [1] Adam --Judy Adam --Sam Judy --Frank Sam --Frank Sam --Jay
## [6] Frank--Tom Tom --Jay

par(mfrow=c(1,2))
plot(g)
plot(h)
```


Generate Subgraph

Join Graph

```
h3 = union(h2, g)
plot(h3)
```


Modify the Nodes Data

```
V(h3)
\#\# + 9/9 vertices, named, from 1c49663:
## [1] Adam
             Judy
                  Tom
                        Aminah Frank Bobby Sam
                                                     Jerry Jay
V(h3) $gender = c('male', 'female', 'male', 'female', 'male', 'male', 'male',
                'male', 'female')
h3
## IGRAPH 1c49663 UN-- 9 17 --
## + attr: name (v/c), gender (v/c)
## + edges from 1c49663 (vertex names):
## [1] Sam --Jay
                      Sam --Jerry Frank --Jerry Frank --Sam
                                                                 Frank --Bobby
## [6] Aminah--Frank Tom --Jay
                                    Tom --Jerry Tom --Bobby Tom --Frank
## [11] Judy --Bobby Judy --Frank Judy --Aminah Adam --Sam
                                                                 Adam --Bobby
## [16] Adam --Tom
                     Adam --Judy
vertex_attr(h3)
## $name
               "Judy"
                        "Tom"
                                "Aminah" "Frank" "Bobby"
## [1] "Adam"
                                                          "Sam"
                                                                   "Jerry"
## [9] "Jay"
## $gender
## [1] "male"
               "female" "male"
                                "female" "male"
                                                  "male"
                                                          "male"
                                                                   "male"
```

Modify the Edge Data

[9] "female"

```
E(h3)
## + 17/17 edges from 1c49663 (vertex names):
## [1] Sam
             --Jay
                       \mathtt{Sam}
                            --Jerry Frank --Jerry Frank --Sam
                                                                    Frank --Bobby
## [6] Aminah--Frank Tom
                             --Jay
                                      Tom
                                           --Jerry Tom
                                                           --Bobby Tom
                                                                          --Frank
## [11] Judy --Bobby Judy --Frank Judy --Aminah Adam --Sam
                                                                    Adam --Bobby
## [16] Adam --Tom
                       Adam --Judy
E(h3)$type = c('email', 'phone', 'FB', 'email', 'class', 'Twitter', 'neighbor',
               'phone', 'FB', 'email', 'class', 'neighbor', 'phone', 'email',
               'email', 'FB', 'neighbor')
edge_attr(h3)
## $type
                              "FB"
                                                    "class"
## [1] "email"
                   "phone"
                                         "email"
                                                                "Twitter"
## [7] "neighbor" "phone"
                              "FB"
                                         "email"
                                                    "class"
                                                                "neighbor"
## [13] "phone"
                                         "FB"
                   "email"
                              "email"
                                                    "neighbor"
E(h3)$weight = c(10,1,3,2,2,2,1,5,9,8,1,6,2,9,3,10,7)
edge_attr(h3)
## $type
                              "FB"
   [1] "email"
                                         "email"
                                                    "class"
                                                                "Twitter"
                   "phone"
  [7] "neighbor" "phone"
                              "FB"
                                         "email"
                                                    "class"
                                                                "neighbor"
```

Graph Visualization

"email"

"email"

[1] 10 1 3 2 2 2 1 5 9 8 1 6 2 9 3 10 7

"FB"

[13] "phone"

\$weight

##

```
plot(h3, vertex.label=V(h3)$gender, edge.label = E(h3)$type)
```

"neighbor"

plot(h3, vertex.label=V(h3)\$name, edge.label = E(h3)\$weight)

Node Prominence Analysis

```
library(statnet)
## Loading required package: tergm
## Loading required package: ergm
## Loading required package: network
## 'network' 1.19.0 (2024-12-08), part of the Statnet Project
## * 'news(package="network")' for changes since last version
## * 'citation("network")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Attaching package: 'network'
## The following object is masked from 'package:HyperG':
##
##
      has.loops
## The following objects are masked from 'package:igraph':
##
      %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
##
       get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
##
       is.directed, list.edge.attributes, list.vertex.attributes,
##
       set.edge.attribute, set.vertex.attribute
##
## 'ergm' 4.7.5 (2024-11-06), part of the Statnet Project
## * 'news(package="ergm")' for changes since last version
## * 'citation("ergm")' for citation information
## * 'https://statnet.org' for help, support, and other information
## 'ergm' 4 is a major update that introduces some backwards-incompatible
## changes. Please type 'news(package="ergm")' for a list of major
## changes.
## Loading required package: networkDynamic
## 'networkDynamic' 0.11.5 (2024-11-21), part of the Statnet Project
## * 'news(package="networkDynamic")' for changes since last version
## * 'citation("networkDynamic")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Registered S3 method overwritten by 'tergm':
##
    method
##
    simulate_formula.network ergm
## 'tergm' 4.2.1 (2024-10-08), part of the Statnet Project
## * 'news(package="tergm")' for changes since last version
## * 'citation("tergm")' for citation information
```

* 'https://statnet.org' for help, support, and other information

```
## Attaching package: 'tergm'
## The following object is masked from 'package:ergm':
##
##
       snctrl
## Loading required package: ergm.count
##
## 'ergm.count' 4.1.2 (2024-06-15), part of the Statnet Project
## * 'news(package="ergm.count")' for changes since last version
## * 'citation("ergm.count")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Loading required package: sna
## Loading required package: statnet.common
##
## Attaching package: 'statnet.common'
## The following object is masked from 'package:ergm':
##
##
       snctrl
## The following objects are masked from 'package:base':
##
##
       attr, order
## sna: Tools for Social Network Analysis
## Version 2.8 created on 2024-09-07.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
  For citation information, type citation("sna").
   Type help(package="sna") to get started.
##
## Attaching package: 'sna'
## The following objects are masked from 'package:igraph':
##
##
       betweenness, bonpow, closeness, components, degree, dyad.census,
##
       evcent, hierarchy, is.connected, neighborhood, triad.census
## Loading required package: tsna
## 'statnet' 2019.6 (2019-06-13), part of the Statnet Project
## * 'news(package="statnet")' for changes since last version
## * 'citation("statnet")' for citation information
## * 'https://statnet.org' for help, support, and other information
## unable to reach CRAN
install UserNetR from github
library(devtools)
## Loading required package: usethis
```

Using GitHub PAT from the git credential store. ## Skipping install of 'UserNetR' from a github remote, the SHA1 (0888dd2b) has not changed since last install. ## Use 'force = TRUE' to force installation library(UserNetR) data(Bali) #par(mar=c(1,1,1,1))

Bali

##

```
##
    vertices = 17
    directed = FALSE
##
##
    hyper = FALSE
    loops = FALSE
##
##
    multiple = FALSE
##
    bipartite = FALSE
##
     total edges= 63
       missing edges= 0
##
##
       non-missing edges= 63
##
##
    Vertex attribute names:
##
       role vertex.names
##
##
    Edge attribute names:
##
       IC
```

Network attributes:

install_github('DougLuke/UserNetR')

plot(Bali, displaylabels = T)

```
name = Bali%v%'vertex.names'
name
   [1] "Muklas"
              "Amrozi"
                      "Imron"
                               "Samudra"
                                       "Dulmatin" "Idris"
##
##
  [7] "Mubarok"
              "Husin"
                      "Ghoni"
                               "Arnasan"
                                       "Rauf"
                                                "Octavia"
              "Junaedi"
## [13] "Hidayat"
                      "Patek"
                               "Feri"
                                       "Sarijo"
Node roles
Role = Bali%v%'role'
Role
## [1] "CT" "OA" "OA" "CT" "BM" "CT" "OA" "BM" "BM" "SB" "TL" "TL" "TL" "TL" "BM"
## [16] "SB" "BM"
Edge attribute
Attr = Bali%e%'IC'
Attr
```

Prominence Node Measurement:

Degree Centrality

```
deg = degree(Bali)
deg
   [1] 18 8 18 30 18 20 6 18 18 10 10 10 10 10 18 12 18
```

Closeness Centrality

```
cls = closeness(Bali)
cls
   [1] 0.6956522 0.5517241 0.6956522 0.9411765 0.6956522 0.7272727 0.5333333
   [8] 0.6956522 0.6956522 0.5714286 0.5714286 0.5714286 0.5714286 0.5714286
```

Betweenness Centrality

[15] 0.6956522 0.4848485 0.6956522

```
btw = betweenness(Bali)
btw
    [1]
          4.6666667
                      0.6666667
                                   3.3333333 122.3333333
                                                            3.3333333
                                                                       12.3333333
          0.0000000
                      3.3333333
                                   3.3333333
                                                            0.0000000
                                                                        0.0000000
    [7]
                                               0.0000000
##
## [13]
          0.0000000
                      0.0000000
                                   3.3333333
                                               0.0000000
                                                            3.3333333
```

Eigenvector Centrality Scores

Information Centrality Scores

Flow Betweenness Scores

Centralization

Cutpoints