编译原理与技术 H7

PB18111697 王章瀚

请写出下面的变量 a 的类型表达式

```
int a[][3];
int *a[3];
int (*a)[3];
int *(*a)[3];
int *(*a)[3];
int **a[3];
```

a.type 应为:

- 1. array(?,array(3,int)), 这里用? 表示是因为确实不知道大小, 比如在 C 中直接这样写会报错. (或者干脆写成 pointer(array(3,int)))
- 2. array(3,pointer(int))
- 3. pointer(array(3,int))
- 4. pointer(array(3,pointer(int)))
- 5. array(3,pointer(pointer(int)))

教材 5.6

下列文法定义字面常量表的表. 符号的解释和图 5.2 文法的那些相同, 增加类型 list, 它表示类型 T 的元素表.

$$\begin{split} P &\to D; E \\ D &\to D; D|id: T \\ T &\to list\ of\ T|char|integer \\ E &\to (L)|literal|num|id|nil \\ L &\to E, L|E \end{split}$$

写一个类似 5.3 节中的翻译方案, 以确定表达式 (E) 和表 (L) 的类型.

可以写成:

$$\begin{array}{ll} P \rightarrow D; E \\ D \rightarrow D; D \\ D \rightarrow id: T & \{addtype(id.entry, T.type); \} \\ T \rightarrow list \ of \ T_1 & \{T.type = list(T_1.type) \} \\ T \rightarrow char & \{T.type = char; \} \\ T \rightarrow integer & \{T.type = integer; \} \\ E \rightarrow (L) & \{E.type = list(T.type) \} \\ E \rightarrow literal & \{E.type = char \} \\ E \rightarrow num & \{E.type = integer; \} \\ E \rightarrow id & \{E.type = looup(id.entry); \} \\ E \rightarrow nil & \{E.type = list(?) \} \\ L \rightarrow E, L_1 & \{L.type = if(L_1.type == E.type)L_1.type \ else \ type_error \} \\ L \rightarrow E & \{L.type = E.type \} \end{array}$$

教材 5.15

找出下列表达式的最一般的合一代换:

(a)
$$(pointer(\alpha)) \times (\beta \to \gamma)$$

(b)
$$\beta \times (\gamma \to \delta)$$

如果 (b) 的 δ 是 α 呢?

(1). 原来的: 最一般的合一代换就是

$$S(\beta) = (pointer(\alpha))$$

 $S(\gamma) = (pointer(\alpha))$
 $S(\delta) = (pointer(\alpha))$

最后能代换成:

$$(pointer(\alpha)) \times (pointer(\alpha) \rightarrow pointer(\alpha))$$

(2). 如果 (b) 的 δ 是 α , 就变成

(a)
$$(pointer(\alpha)) \times (\beta \to \gamma)$$

(b)
$$\beta \times (\gamma \to \alpha)$$

这时它不存在合一代换. 因为如果要合一, 就要有

$$S(\beta) = S(pointer(\alpha))$$

 $S(\beta) = S(\gamma)$
 $S(\gamma) = S(\alpha)$

从而需要 $S(\alpha) = S(pointer(\alpha))$, 这要求一个类型的指针类型依然是这个类型, 显然不合理.

教材 5.17

效仿例 5.5, 推导下面 map 的多态类型:

$$map: \forall \alpha. \forall \beta. ((\alpha \rightarrow \beta) \times list(\alpha)) \rightarrow list(\beta)$$

map 的 ML 定义是:

```
fun map(f,l)=

if null (l) then nil

else cons(f(hd(1)), map(f,tl(l)));
```

在这个函数体中, 内部定义的标志符类型是:

$$\begin{split} null : \forall \alpha. list(\alpha) &\rightarrow boolean; \\ nil : \forall \alpha. list(\alpha); \\ cons : \forall \alpha. (\alpha \times list(\alpha)) &\rightarrow list(\alpha); \\ hd : \forall \alpha. list(\alpha) &\rightarrow \alpha; \\ tl : \forall \alpha. list(\alpha) &\rightarrow list(\alpha); \end{split}$$

答:

整个推导过程如下:

			I
行	定型断言	代换	规则
1	$f:\gamma$		Exp Id
2	$l:\delta$		Exp Id
3	$map:\epsilon$		Exp Id
4	$map(f,l): \zeta$	$\epsilon = \gamma \times \delta \to \zeta$	Exp FunCall
5	$null: list(\alpha_1) \rightarrow boolean$		Exp Id Fresh
6	null(l):boolean	$\delta = list(\alpha_1)$	Exp FunCall
7	$nil: list(lpha_2)$		Exp Id Fresh
8	$hd: list(\alpha_3) \to \alpha_3$		Exp Id Fresh
9	$hd(l): lpha_3$	$\alpha_3 = \alpha_1$	Exp FunCall
10	$f(hd(l)): lpha_4$	$\gamma = \alpha_1 \to \alpha_4$	Exp FunCall
11	$tl: list(\alpha_5) \to list(\alpha_5)$		Exp Id
12	$tl(l): list(lpha_5)$	$\alpha_5 = \alpha_1$	Exp Id
13	$map(f,tl(l)):\zeta_1$	$\zeta_1 = \zeta$	Exp FunCall
14	$cons: (\alpha_6 \times list(\alpha_6)) \rightarrow list(\alpha_6)$		Exp Id Fresh
15	$cons(f(hd(l)), map(f, tl(l))) : list(\alpha_6)$	$\alpha_6 = \alpha_4$	Exp FunCall
		$\zeta = list(\alpha_4)$	
16	$if\ boolean \times \lambda \times \lambda \to \lambda$	$\lambda = list(\alpha_4)$	Exp Id Fresh
17	$if(): list(lpha_4)$	$\alpha_4 = \alpha_2$	Exp FunCall
18	$match: \mu \times \mu \to \mu$		Exp Id Fresh
19	$match(): list(\alpha_2)$	$\alpha_8 = \alpha_2$	Exp FunCall

这样,就推断出来了

$$\begin{split} f: \alpha_1 &\to \alpha_4 \\ l: list(\alpha_1) \\ map: ((\alpha_1 \to \alpha_4) \times list(\alpha_1)) &\to list(\alpha_4) \end{split}$$

从而有

$$map: \forall \alpha. \forall \beta. ((\alpha \rightarrow \beta) \times list(\alpha)) \rightarrow list(\beta)$$