Линейные пространства

Задача 1.1. Можно ли задать структуру линейного пространства

- а) над каким-либо полем на абелевой группе \mathbb{Z} целых чисел;
- б) над $\mathbb R$ на вещественных числах $\mathbb R$ со следующей операцией умножения на скаляры: $\lambda \cdot u = \lambda^2 u$;
- в) над $\mathbb R$ на вещественных числах $\mathbb R$ со следующей операцией умножения на скаляры: $\lambda \cdot u = \lambda^3 u$?

Задача 1.2. Рассмотрим \mathbb{R} как линейное пространство над \mathbb{Q} .

- а) Докажите: векторы 1 и ξ линейно независимы тогда и только тогда, когда ξ иррационально.
- б) Принадлежит ли $\sqrt[6]{2}$ линейной оболочке векторов 1, $\sqrt{2}$ и $\sqrt[4]{2}$?
- **Задача 1.3.** Пусть $P_0(x)$, $P_1(x)$, ... многочлены с вещественными коэффициентами, причём $\deg P_n(x) \le n$. При каких условиях на коэффициенты эта последовательность является базисом пространства $\mathbb{R}[x]$ всех многочленов?
- **Задача 1.4.** Докажите, что в пространстве $\widehat{\mathbb{R}}^{\infty}$ всех бесконечных последовательностей вещественных чисел не существует счётного базиса.
- **Задача 1.5.** Пусть U, V, W подпространства в \mathbb{R}^n , причём $U \cap V = V \cap W = U \cap W = \{\mathbf{0}\}$. Верно ли, что $\dim(U + V + W) = \dim U + \dim V + \dim W$?

Cуммой нескольких подпространств V_1,\dots,V_n линейного пространства V называется линейная оболочка их объединения:

$$V_1 + \ldots + V_n = \langle V_1 \cup \ldots \cup V_n \rangle.$$

- Задача 1.6 (прямая сумма двух подпространств). Сумма двух подпространств V_1+V_2 называется прямой (обозначение: $V_1 \oplus V_2$), если для любого вектора $v \in V_1 + V_2$ представление $m{v} = m{v}_1 + m{v}_2$, где $m{v}_1 \in V_1$ и $m{v}_2 \in V_2$, единственно. Докажите эквивалентность следующих условий:
- а) сумма $V_1 + V_2$ прямая; б) $V_1 \cap V_2 = \{0\};$
- в) если $\mathbf{0} = v_1 + v_2$, где $v_1 \in V_1$ и $v_2 \in V_2$, то $v_1 = v_2 = \mathbf{0}$; г) $\dim V_1 + \dim V_2 = \dim(V_1 + V_2)$.
- Задача 1.7 (прямая сумма нескольких подпространств). Сумма подпространств $V_1 + \ldots + V_n$ называется npямой, если для любого вектора $v \in V_1 + \ldots + V_n$ представление $v = v_1 + \ldots + v_n$, где $v_i \in V_i$, единственно.

Убедитесь, что условия $V_i \cap V_j = \{\mathbf{0}\}$ при $1 \leqslant i < j \leqslant n$ не являются достаточными для того, чтобы сумма $V_1 + \ldots + V_n$ была прямой. Докажите эквивалентность следующих условий:

- а) сумма $V_1 + \ldots + V_n$ прямая; б) $V_i \cap (V_{i+1} + \ldots + V_n) = \{\mathbf{0}\}$ для любого $i = 1, \ldots, n-1$;
- в) $V_i \cap (V_1 + \ldots + V_{i-1} + V_{i+1} + \ldots + V_n) = \{0\}$ для любого $i = 1, \ldots, n$;
- г) если ${\bf 0}={m v}_1+\ldots+{m v}_n$, где ${m v}_i\in V_i$, то ${m v}_1=\ldots={m v}_n={m 0};$
- μ д) dim $V_1 + \ldots + \dim V_n = \dim(V_1 + \ldots + V_n)$.
- Задача 1.8. Составьте систему линейных уравнений, задающую линейную оболочку системы векторов в координатном пространстве:
- a) (1, 1, 1, 1), (1, 2, 1, 3); b) (1, 1, 1, 1), (1, 1, 1, 3), (3, -5, 7, 2), (1, -7, 5, -2).

Задача 1.9. Найдите размерности и базисы суммы и пересечения подпространств L_1 и L_2 :

- a) $L_1 = \langle (1,2,3), (4,3,1), (2,-1,-5) \rangle$, $L_2 = \langle (1,1,1), (-3,2,0), (-2,3,1) \rangle$;
- 6) $L_1: x_1 + x_2 x_3 + x_4 x_5 = 0, \ L_2 = \langle (1, 1, 1, 1, 1), (1, 0, -1, 1, -1), (0, 1, -1, -1, 1), (-2, 1, 0, 1, -1) \rangle;$ B) $L_1: \begin{cases} x_1 + x_3 + x_4 x_5 = 0, \\ x_2 x_4 = 0, \end{cases}$ $L_2: \begin{cases} x_3 + 2x_4 = 0, \\ x_1 x_2 x_5 = 0. \end{cases}$
- **Задача 1.10.** Докажите, что базисы e и e' линейного пространства над $\mathbb R$ одинаково ориентированы тогда и только тогда, когда существует деформация e(t) базиса e, для которой e(1) = e'.