56. a. Use a graphing utility to generate the graph of

$$f(x) = \frac{1}{100}(x+2)(x+1)(x-3)(x-5)$$

And use the graph to make a conjecture about the sign of the integral $\int_{-2}^{5} f(x)dx$.

- b. Check your conjecture by evaluating the integral.
- 57. Define F(x) by $F(x) = \int_{1}^{x} (3t^2 3) dt$
 - a. Use Part 2 of the Fundamental Theorem of Calculus to find F'(x).
 - b. Check the result in part (a) by first integrating and then differentiating.
- 58. Define F(x) by $F(x) = \int_{\pi/4}^{x} \cos 2t \, dt$
 - a. Use Part 2 of the Fundamental Theorem of Calculus to find F'(x).
 - b. Check the result in part (a) by first integrating and then differentiating.

Use Part 2 of the Fundamental Theorem of Calculus to find the derivatives.

59. a.
$$\frac{d}{dx} \int_1^x \sin(t^2) dt$$
 b. $\frac{d}{dx} \int_1^x e^{\sqrt{t}} dt$

b.
$$\frac{d}{dx} \int_1^x e^{\sqrt{t}} dt$$

61.
$$\frac{d}{dx} \int_{x}^{0} t \sec t \, dt$$
 62. $\frac{d}{du} \int_{0}^{u} |x| dx$

62.
$$\frac{d}{du} \int_0^u |x| dx$$

64. Let
$$F(x) = \int_{\sqrt{3}}^{x} \tan^{-1} t \, dt$$
. Find a. $F(\sqrt{3})$ b. $F'(\sqrt{3})$

a.
$$F(\sqrt{3})$$

b.
$$F'(\sqrt{3})$$

c.
$$F''(\sqrt{3})$$

65. Let
$$F(x) = \int_0^x \frac{t-3}{t^2+7} dt$$
 for $-\infty < x < \infty$.

- a. Find the value of x where F attains its minimum value.
- b. Find the intervals over which F is only increasing or only decreasing.
- c. Find open intervals over which F is only concave up or only concave down.
- 67. a. Over what open interval does the formula $F(x) = \int_1^x \frac{dt}{t}$ represent an antiderivative of $f(x) = \frac{1}{x}$
 - b. Find a point where the graph of F crosses the x-axis.