epics Documentation

Release 3.0.11

Matthew Newville

CONTENTS

1	1.1 Prerequisites 1.2 Downloads 1.3 Development Version 1.4 Installation 1.5 Acknowledgements	3 3 3 4 4 4
2	2.1 Quick Start	7 8 9 12
3	3.1Overview13.2The PV class13.3String representation for a PV13.4Automatic Monitoring of a PV23.5User-supplied Callback functions23.6User-supplied Connection Callback functions23.7Put with wait, put callbacks, and put_complete2	15 15 19 20 22 22 23
4	4.1General description, difference with C library24.2Initialization, Finalization, and Life-cycle24.3Using the CA module24.4Implementation details34.5User-supplied Callback functions34.6Omissions3	27 28 28 34 36 37
5	5.1 Strategies for working with large arrays	41 41 43 45
6	-F	17 17

	6.2	Examples	47
7	epi	cs.devices Epics Devices	49
	7.1	Overview	49
	7.2	Epics Motor Device	50
	7.3	Other Device Examples	54
8	epi	cs.alarm Epics Alarm	57
	8.1	Overview	57
9	epi	cs.wx wxPython Widgets for epics	59
	9.1	Overview	59
	9.2	wx Widgets for Epics	59
	9.3	Decorators and other Utility Functions	62
	9.4	wxMotorPanel Widget	62
	9.5	OGL Classes	64
Рy	thon	Module Index	67
In	dex		69

The Epics Python package is an interface for the Channel Access (CA) library of the Epics control system to the Python Programming language.

The epics package provides methods for reading from and writing to Epics Process Variables via the CA protocol. The package includes a complete, thin layer over the low-level Channel Access library in the ca module, and a few higher-level abstractions built on top of this basic functionality. The PV class provides a *PV* object for an object-oriented approach, and there is also a simple functional approach to CA similar to EZCA and the Unix command-line tools *caget*, *caput*, *cainfo*, and *camonitor*. In addition, there are classes for an epics Device, epics Motor, Alarm, and special code for wxPython widgets.

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

DOWNLOADING AND INSTALLATION

1.1 Prerequisites

This package requires Python version 2.5, 2.6, or 3.1. I believe that Python 2.7 will work, but this has yet not tested. It is possible that Python 2.4 will work if the ctypes package is installed, but this has not been tested.

In addition, version 3.14 of the EPICS Channel Access library (v 3.14.8 or higher, I believe) is required. More specifically, the shared libraries libCom.so and libca.so (or Com.dll and ca.dll on Windows) from *Epics Base* are required to use this module. For 32-bit Windows, pre-built DLLs are included and installed so that no other Epics installation is required to use the modules. For Unix-like systems, these are assumed to be available (and findable by Python at runtime) on the system. This may mean setting LD_LIBRARY_PATH or DYLD_LIBRARY_PATH or configuring ldconfig.

1.2 Downloads

The latest stable version of the Epics Python Package is 3.0.11. There are a few ways to get the Epics Python Package:

Download Option	Location
Source Kit	epics-3.0.11.tar.gz (CARS) or epics-3.0.11.tar.gz (PyPI)
Windows Installers	epics-3.0.11.win32-py2.6.exe or epics-3.0.11.win32-py3.1.exe
Development Version	use pyepics github repository

if you have Python Setup Tools installed, you can download and install the PyEpics Package simply with:

easy_install epics

1.3 Development Version

The PyEpics module is still under active development, and enhancements and bug-fixes are being added frequently. All development is done through the pyepics github repository. To get a read-only copy of the atest version, use:

```
git clone http://github.com/pyepics/pyepics.git
```

or:

git clone git@github.com/pyepics/pyepics.git

Current and older source source kits, and Windows Installers can also be found at the PyEpics Source Tree.

1.4 Installation

Installation from source on any platform is:

```
python setup.py install
```

For more details, especially about how to set paths for LD_LIBRARY_PATH or DYLD_LIBRARY_PATH on Unix-like systems, see the INSTALL file.

Again, if you have Python Setup Tools installed, you can download and install the PyEpics Package with:

```
easy_install epics
```

1.5 Acknowledgements

PyEpics was originally written and is maintained by Matt Newville <newville@cars.uchicago.ed>. Several people have provided valuable additions or bug reports, which has greatly improved the quality of the library: Michael Abbott, Marco Cammarata, Angus Gratton, Craig Haskins, Pete Jemian, Andrew Johnson, Janko Kolar, Irina Kosheleva, Tim Mooney, Mark Rivers, Friedrich Schotte, Steve Wasserman, and Glen Wright.

1.6 Epics Open License

The PyEpics source code, this documentation, and all material associated with it are distributed under the Epics Open License:

The epics python module was originally written by

Matthew Newville <newville@cars.uchicago.edu> CARS, University of Chicago

There have been several contributions from many others, notably Angus Gratton <angus.gratton@anu.edu.au>. See the Acknowledgements section of the documentation for a list of more contributors.

Except where explicitly noted, all files in this distribution are licensed under the Epics Open License.:

Copyright 2010 Matthew Newville, The University of Chicago. All rights reserved.

The epics python module is distributed subject to the following license conditions: SOFTWARE LICENSE AGREE-MENT Software: epics python module

- 1. The "Software", below, refers to the epics python module (in either source code, or binary form and accompanying documentation). Each licensee is addressed as "you" or "Licensee."
- 2. The copyright holders shown above and their third-party licensors hereby grant Licensee a royalty-free nonexclusive license, subject to the limitations stated herein and U.S. Government license rights.
- 3. You may modify and make a copy or copies of the Software for use within your organization, if you meet the following conditions:
 - 1. Copies in source code must include the copyright notice and this Software License Agreement.
 - 2. Copies in binary form must include the copyright notice and this Software License Agreement in the documentation and/or other materials provided with the copy.

- 4. You may modify a copy or copies of the Software or any portion of it, thus forming a work based on the Software, and distribute copies of such work outside your organization, if you meet all of the following conditions:
 - 1. Copies in source code must include the copyright notice and this Software License Agreement:
 - 2. Copies in binary form must include the copyright notice and this Software License Agreement in the documentation and/or other materials provided with the copy;
 - 3. Modified copies and works based on the Software must carry prominent notices stating that you changed specified portions of the Software.
- 5. Portions of the Software resulted from work developed under a U.S. Government contract and are subject to the following license: the Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this computer software to reproduce, prepare derivative works, and perform publicly and display publicly.
- 6. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDERS, THEIR THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL BE CORRECTED.
- 7. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDERS, THEIR THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES.

In plain words, this means

- 1. you can use this software for any purpose.
- 2. you can modify and redistribute this software if you keep existing copyright notices intact.
- 3. you cannot claim that you wrote this software or remove copyright notices.
- 4. you cannot claim the copyright holders endorse your use of this software.
- 5. you cannot claim the copyright holders owe you anything if the software does not work as you expect it to, and
- 6. if you are the US government, you can probably do whatever you want.;)

OVERVIEW OF EPICS CHANNEL ACCESS IN PYTHON

The epics python package consists of several modules to interact with EPICS Channel Access. The simplest approach uses the functions <code>caget()</code>, <code>caput()</code>, <code>cainfo()</code>, <code>camonitor()</code>, and <code>camonitor_clear()</code> within the top-level <code>epics</code> module. These functions are similar to the Unix command line utilities and to the EZCA library interface, and described in more detail below.

The epics package consists of several functions, modules and classes that are imported with:

import epics

These components includes

- functions caget(), caput(), camonitor(), camonitor_clear(), and cainfo() as described below.
- a ca module, providing the low-level Epics Channel Access library as a set of functions.
- a PV object, giving a higher-level interface to Epics Channel Access.
- a Device object: a collection of related PVs
- a Motor object: a mapping of an Epics Motor
- an Alarm object, which can be used to set up notifications when a PV's values goes outside an acceptable bounds.
- an epics.wx module that provides wxPython classes designed for use with Epics PVs.

If you're looking to write quick scripts, using the caget () and caput () functions is probably how you want to start.

Users looking to build larger-scale solutions recommended to use PV objects provided by the pv module. The PV class provides a Process Variable object that has both methods (including get () and put ()) to read and change the PV, and attributes that are kept automatically synchronized with the remote channel.

The lowest-level CA functionality is exposed in the ca and dbr module. While not necessary for most use, this module does provide a fairly complete wrapping of the basic EPICS CA library. For people who have used CA from C or other languages, this module should be familiar and quite usable, if a little more verbose and C-like than using PV objects.

In addition, the *epics* package contains more specialized modules for Epics motors, alarms, a host of other *devices* (collections of PVs), and a set of wxPython widget classes for using EPICS PVs with wxPython.

The *epics* package is targeted for use on Unix-like systems (including Linux and Mac OS X) and Windows with Python versions 2.5, 2.6, and 3.1.

2.1 Quick Start

If you're somewhat familiar with Epics Channel Access, you may be able to get started right away without reading the full documentation, and then use Python's introspection tools and built-in help system, referring to this documentation for further details.

2.1.1 Functional Approach: caget(), caput()

To get values from PVs, you can simply use the caget () function:

```
>>> from epics import caget, caput
>>> m1 = caget('XXX:m1.VAL')
>>> print m1
1.2001
```

To set PV values, you can simply use the caput () function:

```
>>> caput('XXX:m1.VAL', 1.90)
>>> print caget('XXX:m1.VAL')
1.9000
```

For many uses, the simplicity and clarity of this approach is perfect.

2.1.2 Object Oriented Approach: PV

If you want to repeatedly access the same PV, you may find it more convenient to "create a PV object" and use it in a more object-oriented manner.

```
>>> from epics import PV
>>> pv1 = PV('XXX:m1.VAL')
```

PV objects have several methods and attributes. The most important methods are get () and put () to receive and send the PV's value, and the value attribute which stores the current value. In analogy to the caget () and caput () examples above, the value of a PV can be fetched either with

```
>>> print pv1.get()
1.2001
or
>>> print pv1.value
1.2001
To set a PV's value, you can either use
>>> pv1.put(1.9)
or assign the value attribute
>>> pv1.value = 1.9
```

PV objects have several more methods, especially related to monitoring external changes to the PVs and defining functions to be run automatically when the value changes. There are also several attributes associated with a PV reflecting the Control Attributes. Further details are at *epics.pv the PV object*

2.2 Functions defined in epics: caget(), caput(), etc.

The simplest interface to EPICS Channel Access provides functions caget(), caput(), as well as functions camonitor(), $camonitor_clear()$, and cainfo(). These are similar to the EPICS command line utilities and to the functions in the EZCA library, in that these function all take the name of an Epics Process Variable (PV) as the first argument. As with the EZCA library, the python implementation actually keeps a cache of already connected PV (in this case, using internally monitored PV objects) so that repeated use of a PV name does not actually result in a new connection to that PV. Thus, though the functionality is limited, the performance of the functional approach can be quite good.

2.2.1 caget()

```
epics.caget (pvname[, as_string=False[, count=None[, as_numpy=True]) retrieves and returns the value of the named PV.
```

Parameters

- pvname name of Epics Process Variable
- as_string (True/False) whether to return string representation of the PV value.
- count number of elements to return for array data.

The *count* and *as_numpy* options apply only to array or waveform data. The default behavior is to return the full data array and convert to a numpy array if available.

The *as_string* argument tells the function to return the **string representation** of the value. The details of the string representation depends on the variable type of the PV. For integer (short or long) and string PVs, the string representation is pretty easy: 0 will become '0', for example.. For float and doubles, the internal precision of the PV is used to format the string value. For enum types, the name of the enum state is returned:

Adding the *as_string=True* argument always results in string being returned, with the conversion method depending on the data type:

```
>>> print caget('XXX:m1.VAL', as_string=True)
'0.10000'
>>> print caget('XXX:m1.FOFF', as_string=True)
'Frozen'
```

For most array data from Epics waveform records, the regular value will be a numpy array (or a python list if numpy is not installed). The string representation will be something like '<array size=128, type=int>' depending on the size and type of the waveform. An array of doubles might be:

```
>>> print caget('XXX:scan1.P1PA') # A Double Waveform array([-0.08 , -0.078 , -0.076 , ..., 1.99599814, 1.99799919, 2. ])
```

```
>>> print caget('XXX:scan1.P1PA', as_string=True)
'<array size=2000, type=DOUBLE>'
```

As an important special case, CHAR waveforms will be turned to Python strings when *as_string* is True. This is to work around the low limit of the maximum length (40 characters!) of EPICS strings, and means that it is fairly common to use CHAR waveforms when long strings are desired:

Of course, some character waveforms are not used for long strings but to hold byte array data.

2.2.2 caput()

```
epics.caput (pvname, value[, wait=False[, timeout=60]]) set the value of the named PV.
```

Parameters

- **pvname** name of Epics Process Variable
- value value to send.
- wait (*True or False*) whether to wait until the processing has completed.
- timeout (double) how long to wait (in seconds) for put to complete before giving up.

Return type integer

The optional *wait* argument tells the function to wait until the processing completes. This can be useful for PVs which take significant time to complete, either because it causes a physical device (motor, valve, etc) to move or because it triggers a complex calculation or data processing sequence. The *timeout* argument gives the maximum time to wait, in seconds. The function will return after this (approximate) time even if the caput () has not completed.

This function returns 1 on success, and a negative number if the timeout has been exceeded.

```
>>> from import epics import caget, caput, cainfo
>>> caput('XXX:m1.VAL',2.30)
1
>>> caput('XXX:m1.VAL',-2.30, wait=True)
... waits a few seconds ...
1
```

2.2.3 cainfo()

```
epics.cainfo(pvname[, print_out=True])
```

prints (or returns as a string) an informational paragraph about the PV, including Control Settings.

Parameters

- pvname name of Epics Process Variable
- print out whether to write results to standard output (otherwise the string is returned).

2.2.4 camonitor()

```
epics.camonitor(pvname[, writer=None[, callback=None]])
```

This *sets a monitor* on the named PV, which will cause *something* to be done each time the value changes. By default the PV name, time, and value will be printed out (to standard output) when the value changes, but the action that actually happens can be customized.

Parameters

- pvname name of Epics Process Variable
- writer (*None or a method that takes a string argument*.) where to write results to standard output .
- callback (None or callable function) user-supplied function to receive result

One can specify any function that can take a string as *writer*, such as the *write* method of a file that has been open for writing. If left as None, messages of changes will be sent to sys.stdout.write(). For more complete control, one can specify a *callback* function to be called on each change event. This callback should take keyword arguments for *pvname*, *value*, and *char_value*. See *User-supplied Callback functions* for information on writing callback functions for camonitor().

```
>>> from epics import camonitor
>>> camonitor('XXX.m1.VAL')

XXX.m1.VAL 2010-08-01 10:34:15.822452 1.3

XXX.m1.VAL 2010-08-01 10:34:16.823233 1.2

XXX.m1.VAL 2010-08-01 10:34:17.823233 1.1

XXX.m1.VAL 2010-08-01 10:34:18.823233 1.0
```

2.2.5 camonitor_clear()

```
epics.camonitor_clear (pvname)
    clears a monitor set on the named PV by camonitor().
```

Parameters

• pvname – name of Epics Process Variable

This simple example monitors a PV with camonitor() for while, with changes being saved to a log file. After a while, the monitor is cleared and the log file is inspected:

```
>>> import epics
>>> fh = open('PV1.log','w')
>>> epics.camonitor('XXX:DMM1Ch2_calc.VAL',writer=fh.write)
>>> .... wait for changes ....
>>> epics.camonitor_clear('XXX:DMM1Ch2_calc.VAL')
>>> fh.close()
>>> fh = open('PV1.log','r')
>>> for i in fh.readlines(): print i[:-1]
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:40.536946 -183.5035
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:41.536757 -183.6716
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:42.535568 -183.5112
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:43.535379 -183.5466
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:44.535191 -183.4890
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:45.535001 -183.5066
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:46.535813 -183.5085
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:47.536623 -183.5223
XXX:DMM1Ch2_calc.VAL 2010-03-24 11:56:48.536434 -183.6832
```

2.3 Motivation: Why another Python-Epics Interface?

Py-Epics3 is intended as an improvement over EpicsCA 2.1, and should replace that older Epics-Python interface. That version had performance issues, especially when connecting to a large number of PVs, is not thread-aware, and has become difficult to maintain for Windows and Linux.

There are a few other Python modules exposing Epics Channel Access available. Most of these have a interface to the CA library that was both closer to the C library and lower-level than EpicsCA. Most of these interfaces use specialized C-Python 'wrapper' code to provide the interface.

Because of this, an additional motivation for this package was to allow a more common interface to be used that built higher-level objects (as EpicsCA had) on top of a complete lower-level interface. The desire to come to a more universally-acceptable Python-Epics interface has definitely influenced the goals for this module, which include:

- providing both low-level (C-like) and higher-level access (Pythonic objects) to the EPICS Channel Access protocol.
- 2. supporting as many features of Epics 3.14 as possible, including preemptive callbacks and thread support.
- 3. easy support and distribution for Windows and Unix-like systems.
- 4. being ready for porting to Python3.
- 5. using Python's ctypes library.

The main implementation feature used here (and difference from EpicsCA) is using Python's ctypes library to handle the connection between Python and the CA C library. Using ctypes has many advantages. Principally, it fully eliminates the need to write (and maintain) wrapper code either with SWIG or directly with Python's C API. Since the ctypes module allows access to C data and objects in pure Python, no compilation step is needed to build the module, making installation and support on multiple platforms much easier. Since ctypes loads a shared object library at runtime, the underlying Epics Channel Access library can be upgraded without having to re-build the Python wrapper. In addition, using ctypes provides the most reliable thread-safety available, as each call to the underlying C library is automatically made thread-aware without explicit code. Finally, by avoiding the C API altogether, migration to Python3 is greatly simplified. PyEpics3 does work with both Python 2.* and 3.*.

2.4 Status and To-Do List

The Epics3 package is under active development. The current status is that most features are working well, and it is starting to be used in production code, but more testing and better tests are needed.

The package is targeted and tested to work with Python 2.5, 2.6, 2.7, and 3.1 simultaneously (that is, the same code is meant to support all versions). Currently, the package works with Python 3.1, but is not extremely well-tested.

There are several desired features are left undone or unfinished:

- port CaChannel interface, ca util, epicsPV (and other interfaces??) to use epics.ca
- add more "devices", including low-level epics records.
- further testing for Python 3.1
- further testing for threading and 'contexts'.
- include dedicate epics db records to facilitate better automated testing.
- build and distribute example Epics applications, such as:
 - PV stripcharter
 - Probe replacement

- application to manage saved "positions" of multiple PVs in an "instrument".

EPICS.PV THE PV OBJECT

3.1 Overview

This module provides a higher-level class PV, which creates a PV object for an EPICS Process Variable. A PV object has both methods and attributes for accessing it's properties.

3.2 The PV class

```
class pv.PV (pvname[, callback=None[, form='native'[, auto_monitor=None[, connection_callback=None[, connection_timeout=None[, verbose=False]]]]]]) create a PV object for a named Epics Process Variable.
```

Parameters

- pvname name of Epics Process Variable
- callback (callable or None) user-defined callback function on changes to PV value or state.
- **form** (*string*, *one of* ('*native*','*ctrl*', *or* '*time*')) which epics *data type* to use: the 'native', or the 'ctrl' (Control) or 'time' variant.
- auto_monitor (None, True, or False) whether to automatically monitor the PV for changes.
- **connection_callback** (*float or None*) user-defined function called on changes to PV connection status.
- connection timeout time (in seconds) to wait for connection before giving up
- verbose (True/False) whether to print out debugging messages

Once created, a PV should (barring any network issues) automatically connect and be ready to use.

```
>>> from epics import PV
>>> p = PV('XX:m1.VAL')
>>> print p.get()
>>> print p.count, p.type
```

The *pvname* is required, and is the name of an existing Process Variable.

The *callback* parameter specifies a python method to be called on changes, as discussed in more detail at *User-supplied Callback functions*

The *connection_callback* parameter specifies a python method to be called on changes to the connection status of the PV (that is, when it connects or disconnects). This is discussed in more detail at *User-supplied Connection Callback functions*

The *form* parameter specifies which of the three variants 'native' (the default), 'ctrl' (Control) or 'time' to use for the PV. The control and time variants add additional fields to the PV, which can be useful in some cases. Also note that the additional 'ctrl' value fields (see the *Table of Control Attributes*) can be obtained with get_ctrlvars() even for PVs of 'native' form.

The *auto_monitor* parameter specifies whether the PV should be automatically monitored. See *Automatic Monitoring* of a PV for a detailed description of this.

The *verbose* parameter specifies more verbose output on changes, and is intended for debugging purposes.

3.2.1 methods

A PV has several methods for getting and setting its value and defining callbacks to be executed when the PV changes.

```
pv.get([count=None[, as_string=False[, as_numpy=True]]]) get and return the current value of the PV
```

Parameters

- count (integer or None) maximum number of array elements to return
- as_string (True/False) whether to return the string representation of the value.
- as_numpy whether to try to return a numpy array where appropriate.

see String representation for a PV for details on how the string representation is determined.

With the *as_numpy* option, an array PV (that is, a PV whose value has more than one element) will be returned as a numpy array, provided the numpy module is available. See *Strategies for working with large arrays* for a discussion of strategies for how to best deal with very large arrays.

pv.put (value[, wait=False[, timeout=30.0[, callback=None[, callback_data=None]]]]) set the PV value, optionally waiting to return until processing has completed.

Parameters

- value value to set PV
- wait (True/False) whether to wait for processing to complete (or time-out) before returning.
- **timeout** (*double*) maximum time to wait for processing to complete before returning anyway.
- callback (None or a valid python function) user-supplied function to run when processing has completed.
- callback_data extra data to pass on to a user-supplied callback function.

The wait and callback arguments, as well as the put_complete attribute give a few options for ensuring that a put () has completed, or being notified when it has completed. See Put with wait, put callbacks, and put_complete for more details.

```
pv.get_ctrlvars()
```

returns a dictionary of the **control values** for the PV. This dictionary may have many members, depending on the data type of PV. See the *Table of Control Attributes* for details.

```
pv.poll ([evt=1.e-4[, iot=1.0]])
```

poll for changes. This simply calls ca.poll(evt=evt,iot=iot)

Parameters

- evt (double) time to pass to ca.pend event ()
- iot (double) time to pass to ca.pend io()

pv.connect([timeout=None])

this explicitly connects a PV, and returns whether or not it has successfully connected. It is probably not that useful, as connection should happen automatically. See wait_for_connection().

Parameters

• timeout (double) - maximum connection time, passed to ca.connect_channel()

Return type True/False

if timeout is None, the PVs connection_timeout paramater will be used. If that is also None, ca.DEFAULT_CONNECTION_TIMEOUT will be used.

pv.wait for connection([timeout=None])

this waits until a PV is connected, or has timed-out waiting for a connection. Returns whether the connection has occured.

Parameters

• **timeout** (*double*) – maximum connection time.

Return type True/False

if timeout is None, the PVs connection_timeout paramater will be used. If that is also None, ca.DEFAULT_CONNECTION_TIMEOUT will be used.

pv.disconnect()

disconnect a PV, clearing all callbacks.

pv.add_callback (callback=None[, index=None [, with_ctrlvars=True[, **kw]])

adds a user-defined callback routine to be run on each change event for this PV. Returns the integer *index* for the callback.

Parameters

- callback (None or callable) user-supplied function to run when PV changes.
- index (None (integer will be produced) or immutable) identifying key for this callback
- with_ctrlvars whether to (try to) make sure that accurate control values will be sent to the callback.
- **kw** additional keyword/value arguments to pass to each execution of the callback.

Return type integer

Note that multiple callbacks can be defined, each having its own index (a dictionary key, typically an integer). When a PV changes, all the defined callbacks will be executed. They will be called in order (by sorting the keys of the callbacks dictionary)

See also: callbacks attribute, User-supplied Callback functions

pv.remove_callback (index=None)

remove a user-defined callback routine using supplied

Parameters

3.2. The PV class

• **index** (*None or integer*) — index of user-supplied function, as returned by add_callback(), and also to key for this callback in the callbacks dictionary.

Return type integer

If only one callback is defined an index="None", this will clear the only defined callback.

See also: callbacks attribute, *User-supplied Callback functions*

pv.clear_callbacks()

remove all user-defined callback routine.

pv.run_callbacks()

execute all user-defined callbacks right now, even if the PV has not changed. Useful for debugging!

See also: callbacks attribute, User-supplied Callback functions

3.2.2 attributes

A PV object has many attributes, each associated with some property of the underlying PV: its *value*, *host*, *count*, and so on. For properties that can change, the PV attribute will hold the latest value for the corresponding property, Most attributes are **read-only**, and cannot be assigned to. The exception to this rule is the value attribute.

pv.value

The current value of the PV.

Note: The value attribute can be assigned to. When read, the latest value will be returned, even if that means a get () needs to be called.

Assigning to value is equivalent to setting the value with the put () method.

```
>>> from epics import PV
>>> p1 = PV('xxx.VAL')
>>> print p1.value
1.00
>>> p1.value = 2.00
```

pv.char_value

The string representation of the string, as described in get ().

pv.status

The PV status, which will be 1 for a Normal, connected PV.

pv.type

string describing data type of PV, such as *double*, *float*, *enum*, *string*, *int*, *long*, *char*, or one of the *ctrl* or *time* variants of these, which will be named *ctrl_double*, *time_enum*, and so on. See the *Table of DBR Types*

pv.ftype

The integer value (from the underlying C library) indicating the PV data type according to Table of DBR Types

pv.host

string of host machine provide this PV.

pv.count

number of data elements in a PV. 1 except for waveform PVs

pv.read_access

Boolean (True/False) for whether PV is readable

pv.write_access

Boolean (True/False) for whether PV is writable

```
pv.access
     string describing read/write access. One of 'read/write', 'read-only', 'write-only', 'no access'.
pv.severity
     severity value of PV. Usually 0 for PVs that are not in an alarm condition.
pv.timestamp
     Unix (not Epics!!) timestamp of the last seen event for this PV.
pv.precision
     number of decimal places of precision to use for float and double PVs
pv.units
     string of engineering units for PV
pv.enum strs
     a list of strings for the enumeration states of this PV (for enum PVs)
pv.info
     a string paragraph (ie, including newlines) showing much of the information about the PV.
pv.upper disp limit
pv.lower disp limit
pv.upper_alarm_limit
pv.lower_alarm_limit
pv.lower_warning_limit
pv.upper_warning_limit
pv.upper_ctrl_limit
pv.lower_ctrl_limit
     These are all the various kinds of limits for a PV.
pv.put_complete
     a boolean (True/False) value for whether the most recent put () has completed.
pv.callbacks
     a dictionary of currently defined callbacks, to be run on changes to the PV. This dictionary has integer keys
```

(generally in increasing order of when they were defined) which sets which order for executing the callbacks. The values of this dictionary are tuples of (callback, keyword_arguments).

Note: The callbacks attribute can be assigned to or manipulated directly. This is not recommended. Use the methods add_callback(), remove_callback(), and clear_callbacks() instead of altering this dictionary directly.

3.3 String representation for a PV

The string representation for a PV, as returned either with the as_string argument to ca.get() or from the char_value attribute (they are equivalent) needs some further explanation.

The value of the string representation (hereafter, the char_value), will depend on the native type and count of a PV. Table of String Representations

Table of String Representations: How raw data value is mapped to char_value for different native data types.

data types	count	char_value
string	1	= value
char	1	= value
short	1	= str(value)
long	1	= str(value)
enum	1	= enum_str[value]
double	1	= ("%%.%if" % (precision)) % value
float	1	= ("%%.%if" % (precision)) % value
char	> 1	= long string from bytes in array
all others	> 1	= <array size="*count*," type="*type*"></array>

For double/float values with large exponents, the formatting will be ("%%.%ig" % (precision)) % value. For character waveforms (char data with count > 1), the char_value will be set according to:

```
>>> firstnull = val.index(0)
>>> if firstnull == -1: firstnull= len(val)
>>> char_value = ''.join([chr(i) for i in val[:firstnull]).rstrip()
```

3.4 Automatic Monitoring of a PV

When creating a PV, the *auto_monitor* parameter specifies whether the PV should be automatically monitored or not. Automatic monitoring means that an internal callback will be registered for changes. Any callbacks defined by the user will be called by this internal callback when changes occur.

For most scalar-value PVs, this automatic monitoring is desirable, as the PV will see all changes (and run callbacks) without any additional interaction from the user. The PV's value will always be up-to-date and no unnecessary network traffic is needed.

For some PVs, especially those that change much more rapidly than you care about or those that contain large arrays as values, auto_monitoring can add network traffic that you don't need. For these, you may wish to create *your PVs with *auto_monitor=False*. When you do this, you will need to make calls to get () to explicitly get the latest value.

The default value for *auto_monitor* is None, and is set to True if the element count for the PV is smaller than 16384 (The value is set as ca.AUTOMONITOR_MAXLENGTH). To suppress monitoring of PVs with fewer array values, you will have to explicitly turn *auto_monitor* to False. For waveform arrays larger than 16384 items, automatic monitoring will be False unless you explicitly set it to True. See *Strategies for working with large arrays* for more details.

3.5 User-supplied Callback functions

This section describes user-defined functions that are called when the value of a PV changes. These callback functions are useful as they allow you to be notified of changes without having to continually ask for a PVs current value. Much of this information is similar to that in *User-supplied Callback functions* for the ca module, though there are some important enhancements to callbacks on *PV* objects.

When defining a callback function to be run on changes to a PV, as set from add_callback(), it is important to know two things:

- 1. how your function will be called.
- 2. what is permissible to do inside your callback function.

Callback functions will be called with several keyword arguments. You should be prepared to have them passed to your function, and should always include **kw to catch all arguments. Your callback will be sent the following keyword parameters:

- pvname: the name of the pv
- value: the latest value
- char_value: string representation of value
- count: the number of data elements
- ftype: the numerical CA type indicating the data type
- *type*: the python type for the data
- status: the status of the PV (1 for OK)
- precision: number of decimal places of precision for floating point values
- units: string for PV units
- · severity: PV severity
- timestamp: timestamp from CA server.
- read_access: read access (True or False)
- write_access: write access (True or False)
- access: string description of read- and write-access
- host: host machine and CA port serving PV
- enum_strs: the list of enumeration strings
- upper_disp_limit: upper display limit
- lower_disp_limit: lower display limit
- upper_alarm_limit: upper alarm limit
- lower_alarm_limit: lower alarm limit
- upper_warning_limit: upper warning limit
- lower_warning_limit: lower warning limit
- upper_ctrl_limit: upper control limit
- lower_ctrl_limit: lower control limit
- chid: integer channel ID
- cb_info: (index, self) tuple containing callback ID and the PV object

Some of these may not be directly applicable to all PV data types, and some values may be None if the control parameters have not yet been fetched with get ctrlvars().

Note that a the user-supplied callback will be run *inside* a CA function, and cannot reliably make any other CA calls. It is helpful to think "this all happens inside of a pend_event() call", and in an epics thread that may or may not be the main thread of your program. It is advisable to keep the callback functions short and not resource-intensive. Consider strategies which use the callback only to record that a change has occurred and then act on that change later – perhaps in a separate thread, perhaps after pend_event() has completed.

The *cb_info* parameter supplied to the callback needs special attention, as it is the only non-Epics information passed. The *cb_info* parameter will be a tuple containing (index, self) where index is the key for the callbacks dictionary for the PV and self *is* PV object. A principle use of this tuple is to **remove the current callback** if an error happens, as for example in GUI code if the widget that the callback is meant to update disappears.

3.6 User-supplied Connection Callback functions

A *connection* callback is a user-defined function that is called when the connection status of a PV changes – that is, when a PV initially connects, disconnects or reconnects due to the process serving the PV going away, or loss of network connection. Currently, a connection callback must be specified when a PV is created.

Such a connection callback should be prepared to receive the following keyword arguments:

- pvname: the name of the pv
- conn: the connection status

where *conn* will be either *True* or *False*, specifying whether the PV is now connected. A simple example is given below.

3.7 Put with wait, put callbacks, and put_complete

Some EPICS records take a significant amount of time to fully process, and sometimes you want to wait until the processing completes before going on. There are a few ways to accomplish this. First, one can simply wait until the processing is done:

```
import epics
p = epics.PV('XXX')
p.put(1.0, wait=True)
print 'Done'
```

This will hang until the processing of the PV completes (motor moving, etc) before printing 'Done'. You can also specfy a maximum time to wait – a *timeout* (in seconds):

```
p.put(1.0, wait=True, timeout=30)
```

which will wait up to 30 seconds. For the pedantic, this timeout should not be used as an accurate clock – the actual wait time may be slightly longer.

A second method is to watch for the put_complete attribute to become True after a put (). This is somewhat more flexible than using *wait=True* as above because you can more carefully control how often you look for a put () to complete, and what to do in the interim. A simple example would be:

```
p.put(1.0)
waiting = True
while waiting:
    time.sleep(0.001)
    waiting = not p.put_complete
```

An additional advantage of this approach is that you can easily wait for multiple PVs to complete with python's builtin *all* function, as with:

```
pvgroup = (epics.PV('XXX'), epics.PV('YYY'), epics.PV('ZZZ'))
newvals = (1.0, 2.0, 3.0)
for pv, val in zip(pvgroup, newvals):
    pv.put(val)

waiting = True
while waiting:
    time.sleep(0.001)
    waiting = all(pv.put_complete for pv in pvgroup)
print 'All puts are done!'
```

For maximum flexibility, one can all define a *put callback*, a function to be run when the put () has completed. This function requires a *pvname* keyword argument, but will receive no others, unless you pass in data with the *callback data* argument (which should be dict-like) to :meth'put'. A simple example would be:

```
pv = epics.PV('XXX')
def onPutComplete(pvname=None, **kws):
    print 'Put done for %s' % pvname
pv.put(1.0, callback=onPutComplete)
```

3.8 Examples

Some simple examples using PVs follow.

3.8.1 Basic Use

The simplest approach is to simply create a PV and use its value attribute:

```
>>> from epics import PV
>>> p1 = PV('xxx.VAL')
>>> print p1.value
1.00
>>> p1.value = 2.00
```

The *print p1.value* line automatically fetches the current PV value. The p1.value = 2.00 line does a put () to set the value, causing any necessary processing over the network.

The above example is equivalent to

```
>>> from epics import PV
>>> p1 = PV('xxx.VAL')
>>> print p1.get()
1.00
>>> p1.put(value = 2.00)
```

To get a string representation of the value, you can use either

```
>>> print p1.get(as_string=True)
'1.000'
or, equivilently
>>> print p1.char_value
'1.000'
```

3.8.2 Example of using info and more properties examples

A PV has many attributes. This can be seen from its info paragraph:

```
>>> import epics
>>> p = epics.PV('13IDA:m3')
>>> print p.info
== 13IDA:m3 (native_double) ==
  value = 0.2
  char_value = '0.200'
```

3.8. Examples 23

```
= 1
count.
         = double
type
          = mm
units
precision = 3
          = ioc13ida.cars.aps.anl.gov:5064
access
          = read/write
status
severity = 0
timestamp = 1274809682.967 (2010-05-25 12:48:02.967364)
upper_ctrl_limit = 5.49393415451
lower_ctrl_limit = -14.5060658455
upper_disp_limit = 5.49393415451
lower_disp_limit = -14.5060658455
upper_alarm_limit = 0.0
lower_alarm_limit = 0.0
upper_warning_limit = 0.0
lower_warning_limit = 0.0
PV is internally monitored, with 0 user-defined callbacks:
______
```

The individual attributes can also be accessed as below. Many of these (the *control attributes*, see *Table of Control Attributes*) will not be filled in until either the info attribute is accessed or until get_ctrlvars() is called.

```
>>> print p.type
double
>>> print p.units, p.precision, p.lower_disp_limit
mm 3 -14.5060658455
```

3.8.3 Getting a string value

It is not uncommon to want a string representation of a PVs value, for example to show in a display window or to write to some report. For string PVs and integer PVs, this is a simple task. For floating point values, there is ambiguity how many significant digits to show. EPICS PVs all have a precision field. which sets how many digits after the decimal place should be described. In addition, for ENUM PVs, it would be described to get at the name of the ENUM state, not just its integer value.

To get the string representation of a PVs value, use either the char_value attribute or the $as_string=True$ argument to get ()

3.8.4 Example of put ()

To put a new value to a variable, either of these two approaches can be used:

```
>>> import epics
>>> p = epics.PV('XXX')
>>> p.put(1.0)
Or (equivalently):
>>> import epics
>>> p = epics.PV('XXX')
>>> p.value = 1.0
```

The value attribute is the only attribute that can be set.

3.8.5 Example of simple callback

It is ofen useful to get a notification of when a PV changes. In general, it would be inconvenient (and possibly inefficient) to have to continually ask if a PVs value has changed. Instead, it is better to set a *callback* function: a function to be run when the value has changed.

A simple example of this would be:

```
import epics
import time
def onChanges(pvname=None, value=None, char_value=None, **kw):
    print 'PV Changed! ', pvname, char_value, time.ctime()

mypv = epics.PV(pvname)
mypv.add_callback(onChanges)

print 'Now wait for changes'

t0 = time.time()
while time.time() - t0 < 60.0:
    time.sleep(1.e-3)
print 'Done.'</pre>
```

This first defines a *callback function* called *onChanges()* and then simply waits for changes to happen. Note that the callback function should take keyword arguments, and generally use **kw to catch all arguments. See *User-supplied Callback functions* for more details.

3.8.6 Example of connection callback

A connection callback:

```
# example of using a connection callback that will be called
# for any change in connection status
import epics
import time
import sys
from pvnames import motor1
motor1 = '13XRM:m2.VAL'
write = sys.stdout.write
def onConnectionChange(pvname=None, conn= None, **kws):
    write('PV connection status changed: %s %s\n' % (pvname, repr(conn)))
    sys.stdout.flush()
def onValueChange(pvname=None, value=None, host=None, **kws):
   write('PV value changed: %s (%s) %s\n' % (pvname, host, repr(value)))
    sys.stdout.flush()
mypv = epics.PV (motor1,
                connection_callback= onConnectionChange,
                callback= onValueChange)
mypv.get()
write ('Now waiting, watching values and connection changes: \n')
t0 = time.time()
```

3.8. Examples 25

while time.time()-t0 < 300:
 time.sleep(0.01)</pre>

CHAPTER

FOUR

EPICS.CA LOW-LEVEL EPICS INTERFACE

4.1 General description, difference with C library

This module provides a low-level wrapping of the EPICS Channel Access (CA) library, using ctypes. Most users of the *epics* module will not need to be concerned with most of the details here, and will instead use the simple functional interface (epics.caget(), epics.caput() and so on), or use the epics.PV class to create and use epics PV objects.

The goal of this ca module is to stay fairly close to the C interface to the CA library while also providing a pleasant Python experience. It is expected that anyone looking into the details of this module is somewhat familiar with Channel Access and knows where to consult the Channel Access Reference Documentation. This document focuses on the differences with the C interface, assuming a general understanding of what the functions are meant to do.

4.1.1 Name Mangling

As a general rule, a CA function named ca_XXX in the C library will have the equivalent function called XXX in the ca module. This is because the intention is that one will import the ca module with

```
>>> from epics import ca
```

so that the Python function ca.XXX () will corresponds to the C function ca_XXX . That is, the CA library called its functions ca_XXX because C does not have namespaces. Python does have namespaces, and so they are used.

Similar name *un-mangling* also happens with the DBR prefixes for constants, held here in the *dbr* module. Thus, the C constant DBR_STRING becomes dbr.STRING in Python.

4.1.2 Other Changes and Omissions

Several function in the C version of the CA library are not implemented in the Python module. Most of these unimplemented functions are currently seen as unnecessary for Python, though some of these could be added without much trouble if needed. See *Omissions* for further details.

In addition, while the CA library supports several *DBR* types in C, not all of these are supported in Python. Only native types and their DBR_TIME and DBR_CTRL variants are supported here. The DBR_STS and DBR_GR variants are not, as they are subsets of the DBR_CTRL type, and space optimization is not something you'll be striving for with Python. Several *dbr_XXX* functions are also not supported, as they appear to be needed only to be able to dynamically allocate memory, which is not necessary in Python.

4.2 Initialization, Finalization, and Life-cycle

The Channel Access library must be initialized before it can be used. There are 3 main reasons for this need:

- 1. CA requires a context model (preemptive callbacks or non-preemptive callbacks) to be specified before any actual calls can be made.
- 2. the ctypes interface requires that the shared library be loaded before it is used.
- 3. ctypes also requires that references to the library and callback functions be kept for the life-cycle of CA-using part of a program (or else they will be garbage collected).

As far as is possible, the ca module hides the details of the CA lifecyle from the user, so that it is not necessary to to worry about explicitly initializing a Channel Access session. Instead, the library is initialized as soon as it is needed, and intervention is really only required to change default settings. The ca module also handles finalizing the CA session, so that core-dumps and warning messages do not happen due to CA still being 'alive' as a program ends.

Because some users may wish to customize the initialization and finalization process, the detailed steps will be described here. These initialization and finalization tasks are handled in the following way:

- The libca variable in the ca module holds a permanent, global reference to the CA shared object library (DLL).
- the function initialize_libca() is called to initialize libca. This function takes no arguments, but does use the global Boolean PREEMPTIVE_CALLBACK (default value of True) to control whether preemptive callbacks are used.
- the function finalize_libca() is used to finalize libca. Normally, this is function is registered to be called when a program ends with atexit.register(). Note that this only gets called on a graceful shutdown. If the program crashes (for a non-CA related reason, for example), this finalization may not be done, and connections to Epics Variables may not be closed completely on the Channel Access server.

ca.PREEMPTIVE CALLBACK

sets whether preemptive callbacks will be used. The default value is True. If you wish to run without preemptive callbacks this variable *MUST* be set before any other use of the CA library. With preemptive callbacks enabled, EPICS communication will not require client code to continually poll for changes. With preemptive callback disables, you will need to frequently poll epics with pend_io() and func:pend_event.

ca. DEFAULT CONNECTION TIMEOUT

sets the default timeout value (in seconds) for connect_channel (). The default value is 2.0

ca. AUTOMONITOR_MAXLENGTH

sets the default array length (ie, how many elements an array has) above which automatic conversion to numpy arrays *and* automatica monitoring for PV variables is suppressed. The default value is 16384. To be clear: waveforms with fewer elements than this value will be automatically monitored changes, and will be converted to numpy arrays (if numpy is installed). Larger waveforms will not be monitored.

Strategies for working with large arrays for more details.

4.3 Using the CA module

Many general-purpose CA functions that deal with general communication and threading contexts are very close to the C library:

ca.context_create([context=None])

here, you can explicitly set context to 1 to enable preemptive callbacks, 0 to disable them, or leave as None to use the value of PREEMPTIVE_CALLBACK to set the context.

```
ca.context_destroy()
```

```
ca.attach_context()
ca.detach_context()
ca.current_context()
ca.client_status(context, level)
ca.message(status)
ca.flush_io()
ca.replace_printf_handler(fcn)
    replace the printf() function with the supplied function (defaults to sys.stderr.write())
ca.pend_io([t=1.0])
ca.pend_event([t=1.e-4])
ca.poll([evt=1.e-4[, iot=1.0]])
    a convenience function which is equivalent to:
        pend_event(evt)
        pend_io_(iot)
```

4.3.1 Creating and Connecting to Channels

The basic channel object is the Channel ID or chid. With the CA library (and ca module), onee creates and acts on the chid values. These are simply ctypes.c_long (C long integers) that hold the memory address of the C representation of the channel, but it is probably a good idea to treat these as object instances.

```
ca.create_channel (pvname[, connect=False[, userfcn=None]]) creates a channel, returning the Channel ID chid used by other functions to identify this channel.
```

Parameters

- pvname the name of the PV to create.
- connect (True/False) whether to (try to) connect to PV as soon as possible.
- **userfcn** (None or callable.) user-defined Python function to be called when the connection state changes.

The user-defined function should be prepared to accept keyword arguments of

- pvname name of PV
- chid chid Channel ID
- conn True/False: whether channel is connected.

Internally, a connection callback is used so that you should not need to explicitly connect to a channel, unless you are having difficulty with dropped connections.

```
\verb|ca.connect_channel| (chid[, timeout=None[, verbose=False]])|
```

explicitly connect to a channel (usually not needed, as implicit connection will be done when needed), waiting up to timeout for a channel to connect. It returns the connection state, True or False.

Parameters

- chid chid Channel ID
- timeout (None or double.) maximum time to wait for connection.

• **verbose** – whether to print out debugging information

if timeout is None, the value of DEFAULT_CONNECTION_TIMEOUT is used (usually 2.0 seconds).

Normally, channels will connect in milliseconds, and the connection callback will succeed on the first attempt.

For un-connected Channels (that are nevertheless queried), the 'ts' (timestamp of last connection attempt) and 'failures' (number of failed connection attempts) from the _cache will be used to prevent spending too much time waiting for a connection that may never happen.

Many other functions that require a valid Channel ID, but not necessarily a connected Channel. These functions are essentially identical to the CA library are:

ca.name(chid)

return PV name for Channel.

ca.host_name(chid)

return host name and port serving Channel.

ca.element_count(chid)

return number of elements in Channel's data.

ca.read access (chid)

return read access for a Channel: 1 for True, 0 for False.

ca.write access(chid)

return write access for a channel: 1 for True, 0 for False.

ca.field type (chid)

return the integer DBR field type. See the ftype column from Table of DBR Types.

ca.clear_channel(chid)

clear the channel.

ca.state(chid)

return the state of the channel.

A few additional pythonic functions have been added:

ca.isConnected(chid)

returns $dbr.CS_CONN==state(chid)$ ie True for a connected channel or False for an unconnected channel.

ca.access(chid)

returns a string describing read/write access: one of no access, read-only, write-only, or read/write

ca.promote_type (chid[, use_time=False[, use_ctrl=False]])

promotes the native field type of a chid to its TIME or CTRL variant. See *Table of DBR Types*. Returns the integer corresponding to the promoted field value.

ca. cache

The ca module keeps a global cache of Channels that holds connection status and a bit of internal information for all known PVs. This cache is not intended for general use.

ca.show_cache([print_out=True])

this function will print out a listing of PVs in the current session to standard output. Use the *print_out=False* option to be returned the listing instead of having it printed.

4.3.2 Interacting with Connected Channels

Once a chid is created and connected there are several ways to communicating with it. These are primarily encapsulated in the functions get(), put(), and create_subscription(), with a few additional functions for retrieving specific information.

These functions are where this python module differs the most from the underlying CA library, and this is mostly due to the underlying CA function requiring the user to supply DBR TYPE and count as well as chid and allocated space for the data. In python none of these is needed, and keyword arguments can be used to specify such options.

ca.get (chid[, ftype=None[, count=None[, as_string=False[, as_numpy=True]]]]) return the current value for a Channel. Note that there is not a separate form for array data.

Parameters

- chid (ctypes.c long) chid Channel ID
- **ftype** (*integer*) field type to use (native type is default)
- count (integer) maximum element count to return (full data returned by default)
- as_string (True/False) whether to return the string representation of the value. See notes below.
- **as_numpy** (True/False) whether to return the Numerical Python representation for array / waveform data.

For a listing of values of *ftype*, see *Table of DBR Types*. The optional *count* can be used to limit the amount of data returned for array data from waveform records.

The as_string option warrants special attention: The feature is not as complete as as the as_string argument for PV.get(). Here, a string representing the value will always be returned. For Enum types, the name of the Enum state will be returned. For waveforms of type CHAR, the string representation will be returned. For other waveforms (with count > 1), a string like count = 3, cou

The *as_numpy* option will cause an array value to be returned as a numpy array. This is only applied if numpy can be imported. See *Strategies for working with large arrays* for a discussion of strategies for how to best deal with very large arrays.

ca.put (chid, value[, wait=False[, timeout=20[, callback=None[, callback_data=None]]]]) sets the Channel to a value, with options to either wait (block) for the process to complete, or to execute a supplied callback function when the process has completed. The chid and value are required.

Parameters

- chid (ctypes.c_long) chid Channel ID
- wait (True/False) whether to wait for processing to complete (or time-out) before returning.
- **timeout** (*double*) maximum time to wait for processing to complete before returning anyway.
- callback (None or callable) user-supplied function to run when processing has completed.
- callback_data extra data to pass on to a user-supplied callback function.

put () returns 1 on success and -1 on timed-out

Specifying a callback will override setting wait=True. This callback function will be called with keyword arguments

pvname=pvname, data=callback_data

For more on this put callback, see User-supplied Callback functions below.

ca.create_subscription (chid[, use_time=False[, use_ctrl=False[, mask=7[, userfcn=None]]]]) create a subscription to changes, The user-supplied callback function will be called on any changes to the PV.

Parameters

- use_time (True/False) whether to use the TIME variant for the PV type
- use_ctrl (True/False) whether to use the CTRL variant for the PV type
- mask (integer) integer bitmask to control which changes result in a callback
- userfcn (None or callable) user-supplied callback function

Return type tuple containing (callback ref, user arg ref, event id)

The returned tuple contains *callback_ref* an *user_arg_ref* which are references that should be kept for as long as the subscription lives (otherwise they may be garbage collected, causing no end of trouble). *event_id* is the id for the event (useful for clearing a subscription).

For more on writing the user-supplied callback, see *User-supplied Callback functions* below.

Warning: *event_id* is the id for the event (useful for clearing a subscription). You **must** keep the returned tuple in active variables, either as a global variable or as data in an encompassing class. If you do *not* keep this data, the return value will be garbage collected, the C-level reference to the callback will disappear, and you will see coredumps.

On Linux, a message like:

```
python: Objects/funcobject.c:451: func_dealloc: Assertion 'g->gc.gc_refs != (-2)' failed.
Abort (core dumped)
```

is a hint that you have *not* kept this data.

ca.clear_subscription(event_id)

clears a subscription given its event_id.

Several other functions are provided:

ca.get_timestamp(chid)

return the timestamp of a channel – the time of last update.

ca.get_severity(chid)

return the severity of a channel.

ca.get_precision(chid)

return the precision of a channel. For channels with native type other than FLOAT or DOUBLE, this will be 0.

ca.get_enum_strings(chid)

return the list of names for ENUM states of a Channel. Returns None for non-ENUM Channels.

ca.get_ctrlvars(chid)

returns a dictionary of CTRL fields for a Channel. Depending on the native data type, the keys in this dictionary may include *Table of Control Attributes*

Table of Control Attributes

attribute	data types
status	
severity	
precision	0 for all but double, float
units	
enum_strs	enum only
upper_disp_limit	
lower_disp_limit	
upper_alarm_limit	
lower_alarm_limit	
upper_warning_limit	
lower_warning_limit	
upper_ctrl_limit	
lower_ctrl_limit	

Note that *enum_strs* will be a tuple of strings for the names of ENUM states.

ca.get_timevars(chid)

returns a dictionary of TIME fields for a Channel. This will contain a status, severity, and timestamp key.

4.3.3 Synchronous Groups

Synchronous Groups can be used to ensure that a set of Channel Access calls all happen together, as if in a *transaction*. Synchronous Groups work in PyEpics as of version 3.0.10, but more testing is probably needed.

The idea is to first create a synchronous group, then add a series of sg_put() and sg_get() which do not happen immediately, and finally block while all the channel access communication is done for the group as a unit. It is important to *not* issue pend_io() during the building of a synchronous group, as this will cause pending sg_put() and sg_get() to execute.

ca.sg_create()

create synchronous group. Returns a *group id*, *gid*, which is used to identify this group and is passed to all other synchronous group commands.

ca.sg_delete(gid)

delete a synchronous group

ca.sg_block (gid[, t=10.0])

block for a synchronous group to complete processing

```
ca.sg_get (gid, chid[, fype=None[, as_string=False[, as_numpy=True]]]) perform a get within a synchronous group.
```

This function will not immediately return the value, of course, but the address of the underlying data.

After the sg_block() has completed, you must use _unpack() to convert this data address to the actual value(s).

See example below.

ca.sg_put (gid, chid, value)

perform a put within a synchronous group. This put cannot wait for completion.

ca.sq test (gid)

test whether a synchronous group has completed.

ca.sg_reset (gid)

resets a synchronous group

An example use of a synchronous group:

```
from epics import ca
import time
pvs = ('X1.VAL', 'X2.VAL', 'X3.VAL')
chids = [ca.create_channel(pvname) for pvname in pvs]
for chid in chids:
    ca.connect_channel(chid)
    ca.put(chid, 0)
# create synchronous group
sg = ca.sg_create()
# get data pointers from ca.sg_get
data = [ca.sg_get(sg, chid) for chid in chids]
print 'Now change these PVs for the next 10 seconds'
time.sleep(10.0)
print 'will now block for i/o'
ca.sg_block(sg)
# CALL ca._unpack with data points and chid to extract data
for pvname, dat, chid in zip(pvs, data, chids):
    val = ca._unpack(dat, chid=chid)
    print "%s = %s" % (pvname, str(val))
ca.sg_reset(sg)
# Now a SG Put
print 'OK, now we will put everything back to 0 synchronously'
for chid in chids:
    ca.sg_put(sg, chid, 0)
print 'sg_put done, but not blocked / committed. Sleep for 5 seconds '
time.sleep(5.0)
ca.sg_block(sg)
print 'done.'
```

4.4 Implementation details

The details given here should mostly be of interest to those looking at the implementation of the *ca* module, those interested in the internals, or those looking to translate lower-level C or Python code to this module.

4.4.1 DBR data types

Table of DBR Types

CA type	integer ftype	Python ctypes type
string	0	string
int	1	integer
short	1	integer
float	2	double
enum	3	integer
char	4	byte
long	5	integer
double	6	double
time_string	14	
time_int	15	
time_short	15	
time_float	16	
time_enum	17	
time_char	18	
time_long	19	
time_double	20	
ctrl_string	28	
ctrl_int	29	
ctrl_short	29	
ctrl_float	30	
ctrl_enum	31	
ctrl_char	32	
ctrl_long	33	
ctrl_double	34	

4.4.2 PySEVCHK and ChannelAccessExcepction: checking CA return codes

exception ca.ChannelAccessException

This exception is raised when the ca module experiences unexpected behavior and must raise an exception

ca.PySEVCHK (func_name, status [, expected=dbr.ECA_NORMAL])

This checks the return status returned from a $libca.ca_****$ and raises a ChannelAccessException if the value does not match the expected value.

The message from the exception will include the *func_name* (name of the Python function) and the CA message from message.

ca.withSEVCHK()

this decorator handles the common case of running PySEVCHK() for a function whose return value is from a $libca.ca_***$ function and whose return value should be $dbr.ECA_NORMAL$.

4.4.3 Function Decorators

In addition to with SEVCHK (), several other decorator functions are used heavily inside of ca.py

ca.withCA()

ensures that the CA library is initialized before many CA functions are called. This prevents, for example, one creating a channel ID before CA has been initialized.

ca.withCHID()

ensures that CA functions which require a chid as the first argument actually have a chid as the first argument. This is not a highly robust test (it actually checks for a ctypes.c_long or int) but is useful enough to catch most errors before they would cause a crash of the CA library.

ca.withConnectedCHID()

ensures that the first argument of a function is a connected chid. This test is (intended to be) robust, and will (try to) make sure a chid is actually connected before calling the decorated function.

4.4.4 Unpacking Data from Callbacks

Throughout the implementation, there are several places where data returned by the underlying CA library needs to be be converted to Python data. This is encapsulated in the <code>_unpack()</code> function. In general, you will not have to run this code, but there is one exception: when using <code>sg_get()</code>, the values returned will have to be unpacked with this function.

```
ca._unpack(cdata, chid=None[, count=None[, ftype=None[, as_numpy=None]]])
```

This takes the ctypes data *cdata* and returns the Python data.

Parameters

- cdata cdata as returned by internal libca functions, and sg_get().
- **chid** channel ID (optional: used for determining count and ftype)
- count number of elements to fetch (defaults to element count of chid or 1)
- **ftype** data type of channel (defaults to native type of chid)
- as_numpy (True or False) whether to convert to numpy array.

4.5 User-supplied Callback functions

User-supplied callback functions can be provided for both put () and create_subscription(). Note that callbacks for *PV* objects are slightly different: see *User-supplied Callback functions* in the pv module for details.

When defining a callback function to be run either when a put () completes or on changes to the Channel, as set from create_subscription(), it is important to know two things:

- 1. how your function will be called.
- 2. what is permissible to do inside your callback function.

In both cases, callbacks will be called with keyword arguments. You should be prepared to have them passed to your function. Use **kw unless you are very sure of what will be sent.

For callbacks sent when a put () completes, your function will be passed these:

- pvname: the name of the pv
- *data*: the user-supplied callback_data (defaulting to None).

For subscription callbacks, your function will be called with keyword/value pairs that will include:

- pvname: the name of the pv
- value: the latest value
- count: the number of data elements
- ftype: the numerical CA type indicating the data type
- status: the status of the PV (1 for OK)
- *chid*: the integer address for the channel ID.

Depending on the data type, and whether the CTRL or TIME variant was used, the callback function may also include some of these as keyword arguments:

- enum_strs: the list of enumeration strings
- precision: number of decimal places of precision.
- *units*: string for PV units
- severity: PV severity
- timestamp: timestamp from CA server.

Note that a the user-supplied callback will be run *inside* a CA function, and cannot reliably make any other CA calls. It is helpful to think "this all happens inside of a pend_event () call", and in an epics thread that may or may not be the main thread of your program. It is advisable to keep the callback functions short and not resource-intensive. Consider strategies which use the callback only to record that a change has occurred and then act on that change later – perhaps in a separate thread, perhaps after pend_event() has completed.

4.6 Omissions

Several parts of the CA library are not implemented in the Python module. These are currently seen as unneeded (with notes where appropriate for alternatives), though they could be added on request.

```
ca.ca_add_exception_event()
```

Not implemented: Python exceptions are raised where appropriate and can be used in user code.

```
ca.ca_add_fd_registration()
```

Not implemented

```
ca.ca_replace_access_rights_event()
```

Not implemented

```
ca.ca_client_status()
```

Not implemented

```
ca.ca_set_puser()
```

Not implemented: it is easy to pass user-defined data to callbacks as needed.

```
ca.ca_puser()
```

Not implemented: it is easy to pass user-defined data to callbacks as needed.

```
ca.ca SEVCHK()
```

Not implemented: the Python function PySEVCHK() is approximately the same.

```
ca.ca_signal()
```

Not implemented: the Python function PySEVCHK() is approximately the same.

```
ca.ca_test_event()
```

Not implemented: this appears to be a function for debugging events. These are easy enough to simulate by directly calling Python callback functions.

ca.ca_dump_dbr()

Not implemented

In addition, not all *DBR* types in the CA C library are supported.

Only native types and their DBR_TIME and DBR_CTRL variants are supported: DBR_STS and DBR_GR variants are not. Several *dbr_XXX* functions are also not supported, as they are needed only to dynamically allocate memory.

4.6. Omissions 37

4.7 Examples

Here are some example sessions using the ca module.

4.7.1 Create, Connect, Get Value of Channel

Note here that several things have been simplified compare to using CA in C: initialization and creating a main-thread context are handled, and connection of channels is handled in the background:

```
from epics import ca
chid = ca.create_channel('XXX:m1.VAL')
count = ca.element_count(chid)
ftype = ca.field_type(chid)
print "Channel ", chid, count, ftype
value = ca.get()
print value
```

4.7.2 Put, waiting for completion

Here we set a PVs value, waiting for it to complete:

```
from epics import ca
chid = ca.create_channel('XXX:m1.VAL')
ca.put(chid, 1.0, wait=True)
```

The put () method will wait to return until the processing is complete.

4.7.3 Define a callback to Subscribe to Changes

Here, we *subscribe to changes* for a PV, which is to say we define a callback function to be called whenever the PV value changes. In the case below, the function to be called will simply write the latest value out to standard output:

```
from epics import ca
import time
import sys
# define a callback function. Note that this should
# expect certain keyword arguments, including 'pvname' and 'value'
def onChanges(pvname=None, value=None, **kw):
    fmt = 'New Value: %s value=%s, kw = %s \ n'
    sys.stdout.write(fmt % (pvname, str(value), repr(kw)))
    sys.stdout.flush()
# create the channel
mypv = 'XXX.VAL'
chid = ca.create_channel(mypv)
# subscribe to events, giving 'userfon' as the callback function
eventID = ca.create_subscription(chid, userfcn=onChanges)
# now we simply wait for changes
t0 = time.time()
while time.time()-t0 < 10.0:
    time.sleep(0.001)
```

It is **vital** that the return value from <code>create_subscription()</code> is kept in a variable so that it cannot be garbage collected. Failure to keep this value will cause trouble, inlcuding almost immediate segmentation faults (on Windows) or seemingly inexplicable crashes later (on linux).

4.7.4 Define a connection callback

Here, we define a connection callback – a function to be called when the connection status of the PV changes. Note that this will be called on initial connection:

```
import epics
import time

def onConnectionChange(pvname=None, **kw):
    print 'ca connection status changed: ', pvname, kw

# create channel, provide connection callback
motor1 = '13IDC:m1'
chid = epics.ca.create_channel(motor1, userfcn=onConnectionChange)

print 'Now waiting, watching values and connection changes:'
t0 = time.time()
while time.time()-t0 < 30:
    time.sleep(0.001)</pre>
```

This will run the supplied callback soon after the channel has been created, when a successful connection has been made. Note that the callback should be prepared to accept keyword arguments and that the **kw form is recommended.

4.7. Examples 39

CHAPTER

FIVE

ADVANCED TOPIC WITH PYTHON CHANNEL ACCESS

5.1 Strategies for working with large arrays

EPICS Channels / Process Variables usually have values that can be stored with a small number of bytes. This means that their storage and transfer speeds over real networks is not a significant concern. However, some Process Variables can store much larger amounts of data (say, several megabytes) which means that some of the assumptions about dealing with Channels / PVs may need reconsideration.

When using PVs with large array sizes (here, I'll assert that *large* means more than 1000 or so elements), it is necessary to make sure that the environmental variable EPICS_CA_MAX_ARRAY_SIZE is suitably set. Unfortunately, this represents a pretty crude approach to memory management within Epics for handling array data as it is used not only sets how large an array the client can accept, but how much memory will be allocated on the server. In addition, this value must be set prior to using the CA library – it cannot be altered during the running of a CA program.

Normally, the default value for EPICS_CA_MAX_ARRAY_SIZE is 16384 (16k, and it turns out that you cannot set it smaller than this value!). As Python is used for clients, generally running on workstations or servers with sufficient memory, this default value is changed to 2**24, or 16Mb) when epics.ca is initialized. If the environmental variable EPICS_CA_MAX_ARRAY_SIZE has not already been set.

The other main issue for PVs holding large arrays is whether they should be automatically monitored. For PVs holding scalar data or small arrays, any penalty for automatically monitoring these variables (that is, causing network traffic every time a PV changes) is a small price to pay for being assured that the latest value is always available. As arrays get larger (as for data streams from Area Detectors), it is less obvious that automatic monitoring is desirable.

The Python epics.ca module defines a variable AUTOMONITOR_MAXLENGTH which controls whether array PVs are automatically monitored. The default value for this variable is 16384, but can be changed at runtime. Arrays with fewer elements than AUTOMONITOR_MAXLENGTH will be automatically monitored, unless explicitly set, and arrays larger than AUTOMONITOR_MAXLENGTH will not be automatically monitored unless explicitly set. Auto-monitoring of PVs can be be explicitly set with

```
>>> pv2 = epics.PV('ScalerPV', auto_monitor=True)
>>> pv1 = epics.PV('LargeArrayPV', auto_monitor=False)
```

5.1.1 Example handling Large Arrays

Here is an example reading data from an EPICS areaDetector, as if it were an image from a digital camera. This uses the Python Imaging Library for much of the image processing:

```
>>> import epics
>>> import Image
>>> pvname = '13IDCPS1:image1:ArrayData'
>>> img_pv = epics.PV(pvname)
>>>
>>> raw_image = img_pv.get(as_numpy=False)
>>> im_mode = 'RGB'
>>> im_size = (1360, 1024)
>>> img = Image.frombuffer(im_mode, im_size, raw_image, 'raw', im_mode, 0, 1)
>>> img.show()
```

The result looks like this (taken with a Prosilica GigE camera):

5.1.2 Example using Character Waveforms as Long Strings

As EPICS strings can be only 40 characters long, Character Waveforms are sometimes used to allow Long Strings. While this can be a common usage for character waveforms, this module resists the temptation to implicitly convert such byte arrays to strings using as_string=True.

As an example, let's say you've created a character waveform PV, as with this EPICS database:

```
grecord(waveform, "$(P):filename") {
    field(DTYP, "Soft Channel")
    field(DESC, "file name")
    field(NELM, "128")
```

```
field (FTVL, "CHAR")
}
You can then use this with:
>>> import epics
>>> pvname = 'PREFIX:filename.VAL'
>>> pv = epics.PV(pvname)
>>> print pv.info
>>> plain_val = pv.get()
>>> print plain_val
array([ 84, 58, 92, 120, 97, 115, 95, 117, 115, 101, 114,
     97, 114, 99, 104, 50, 48, 49,
                                        48,
                                             92,
                                                   70,
                                                        97, 115, 116,
         97, 112,
                    Ο,
                         0,
                               0,
                                    0,
                                         0,
                                              0,
                                                    0,
                                                         Ο,
                                                              Ο,
                          0,
                               0,
     0,
          Ο,
                     Ο,
                                    Ο,
                                         Ο,
                                              0,
                                                    0,
                                                         Ο,
                                                              0,
                Ο,
                                                                   0,
     0,
          Ο,
              0,
                   Ο,
                         0,
                             0,
                                    0,
                                         0,
                                              0,
                                                   0,
                                                         Ο,
                                                              Ο,
                                                                   0.
                         0,
                                         0,
              Ο,
                    0,
                             0,
                                    0,
                                                   0,
                                                         0,
      Ο,
           Ο,
                                              Ο,
                                                              0,
                                                                   0,
      Ο,
         Ο,
              Ο,
                    Ο,
                          0,
                             0,
                                    Ο,
                                         0,
                                             Ο,
                                                   Ο,
                                                         Ο,
                                                            Ο,
                                                                   0,
                                                         Ο,
      0,
          0, 0,
                    0,
                          0,
                             0,
                                    Ο,
                                         Ο,
                                             Ο,
                                                   0,
              Ο,
                          Ο,
                               0,
           Ο,
                    Ο,
                                    Ο,
                                         Ο,
                                             Ο,
                                                   Ο,
                                                         Ο,
                                                                   0,
                              0,
      0,
           Ο,
              Ο,
                     0,
                          Ο,
                                    0,
                                         Ο,
                                              0,
                                                         01)
>>> char_val = pv.get(as_string=True)
>>> print char_val
'T:\\xas_user\\March2010\\FastMap'
```

This uses the PV class, but the get () method of ca is essentially equivalent, as its as_string parameter works exactly the same way.

5.2 Using Python Threads

An important feature of the epics python package is that it can be used with Python threads. This section of the document focuses on using Python threads both with the PV object and with the procedural functions in the ca module.

Using threads in Python is fairly simple, but Channel Access adds a complication that the underlying CA library will call Python code within a particular thread, and you need to set which thread that is. The most rule for using Threads with the epics module is to use PREEMPTIVE_CALLBACK = True. This is the default value, so you usually do not need to change anything.

5.2.1 Thread Example

This is a simplified version of test code using Python threads. It is based on code from Friedrich Schotte, NIH, and included as *thread test.py* in the *tests* directory of the source distribution.

In this example, we define a *run_test* procedure which will create PVs from a supplied list, and monitor these PVs, printing out the values when they change. Two threads are created and run concurrently, with overlapping PV lists, though one thread is run for a shorter time than the other.:

```
import time
from threading import Thread
import epics

pvlist1 = ('13IDA:DMM1Ch2_raw.VAL', 'S:SRcurrentAI.VAL')
pvlist2 = ('13IDA:DMM1Ch3_raw.VAL', 'S:SRcurrentAI.VAL')
```

```
def run_test(runtime=1, pvnames=None, run_name='thread c'):
   print ' |-> thread "%s" will run for %.3f sec ' % ( run_name, runtime)
    def onChanges(pvname=None, value=None, char_value=None, **kw):
                     %s = %s (%s)' % (pvname, char_value, run_name)
    # A new CA context must be created per thread
    epics.ca.context_create()
    t0 = time.time()
    pvs = []
    for pvn in pvnames:
        p = epics.PV(pvn)
        p.aet()
        p.add_callback(onChanges)
        pvs.append(p)
    while time.time()-t0 < runtime:</pre>
        time.sleep(0.01)
    for p in pvs:
        p.clear_callbacks()
    print 'Done with Thread ', run_name
    epics.ca.context_destroy()
print "Run 2 Threads simultaneously:"
th1 = Thread(target=run_test,args=(3, pvlist1, 'A'))
th1.start()
th2 = Thread(target=run_test,args=(6, pvlist2, 'B'))
th2.start()
th1.join()
th2.join()
print 'Done'
```

The calls to *epics.ca.context_create()* and *epics.ca.context_destroy()* are required: forgetting them will suppress all callbacks, and is likely to to lead in core dumps. The output from this will look like:

```
Run 2 Threads simultaneously:
|-> thread "A" will run for 3.000 sec
|-> thread "B" will run for 6.000 sec
      13IDA:DMM1Ch2\_raw.VAL = -183.71218999999999 (A)
     13IDA:DMM1Ch3_raw.VAL = -133.090332999999999 (B)
      S:SRcurrentAI.VAL = 102.19321199346312 (A)
      S:SRcurrentAI.VAL = 102.19321199346312 (B)
      S:SRcurrentAI.VAL = 102.19109399346311 (A)
      S:SRcurrentAI.VAL = 102.19109399346311 (B)
      13IDA:DMM1Ch2\_raw.VAL = -183.673003999999999 (A)
      13IDA:DMM1Ch3_raw.VAL = -133.04856000000001 (B)
      S:SRcurrentAI.VAL = 102.18830251346313 (A)
      S:SRcurrentAI.VAL = 102.18830251346313 (B)
      S:SRcurrentAI.VAL = 102.18780211346312 (B)
      S:SRcurrentAI.VAL = 102.18780211346312 (A)
      13IDA:DMM1Ch2\_raw.VAL = -183.69587200000001 (A)
      13IDA:DMM1Ch3_raw.VAL = -133.00154800000001 (B)
      S:SRcurrentAI.VAL = 102.18441979346312 (A)
      S:SRcurrentAI.VAL = 102.18441979346312 (B)
Done with Thread A
```

```
S:SRcurrentAI.VAL = 102.18331875346311 (B)
13IDA:DMM1Ch3_raw.VAL = -133.170962 (B)
S:SRcurrentAI.VAL = 102.18109007346312 (B)
S:SRcurrentAI.VAL = 102.18066463346311 (B)
13IDA:DMM1Ch3_raw.VAL = -133.09478999999999 (B)
S:SRcurrentAI.VAL = 102.17867355346313 (B)
S:SRcurrentAI.VAL = 102.17707979346312 (B)
13IDA:DMM1Ch3_raw.VAL = -133.04619199999999 (B)
S:SRcurrentAI.VAL = 102.17559191346312 (B)
Done with Thread B
```

Note that while both threads A and B are running, a callback for the PV S:SRcurrentAI.VAL is generated in each thread.

Note also that the callbacks for the PVs created in each thread are **explicitly cleared** with:

```
for p in pvs:
    p.clear_callbacks()
```

Without this, the callbacks for thread A will persist even after the thread has completed!!!

5.3 time.sleep() or epics.poll()?

In order for a program to communicate with Epics devices, it needs to allow some time for this communication to happen. With ca.PREEMPTIVE_CALLBACK set to True, this communication will be handled in a thread separate from the main Python thread. This means that CA events can happen at any time, and ca.pend_event() does not need to be called to explicitly allow for event processing.

Still, some time must be released from the main Python thread on occasion in order for events to be processed. The simplest way to do this is with time.sleep(), so that an event loop can simply be:

```
>>> while True:
>>> time.sleep(0.001)
```

Unfortunately, the time.sleep() method is not a very high-resolution clock, with typical resolutions of 1 to 10 ms, depending on the system. Thus, even though events will be asynchronously generated and epics with pre-emptive callbacks does not *require* ca.pend_event() or ca.poll() to be run, better performance may be achieved with an event loop of:

```
>>> while True:
>>> epics.poll(evt=1.e-5, iot=0.1)
```

as the loop will be run more often than using time.sleep().

EPICS.AUTOSAVE AUTO-SAVING

6.1 Overview

The autsave module provides simple save/restore functionality for PVs, similar to the autosave module in synApps for IOCs but (obviously) via Channel Access.

Request & Save file formats are designed to be compatible with synApps autosave.

Use of this module requires the pyparsing parser framework. The Debian/Ubuntu package is "python-pyparsing" The web site is http://pyparsing.wikispaces.com/

6.2 Examples

A simple example usign the autosave module:

EPICS DEVICES EPICS DEVICES

7.1 Overview

This module provides a simple interface to a collection of PVs. Here a *device* holds a set of PVs, all sharing a prefix, but having many *attributes*. Many PVs will have names made up of *prefix+attribute*, with a common prefix for several related PVs. This almost describes an Epics Record, but as it is concerned only with PV names, the mapping to an Epics Record is not exact. On the other hand, the concept of a *device* is more flexible than a predefined Epics Record as it can actually hold PVs from several different records.:

While useful on its own like this, the real point of a *device* is as a base class, to be inherited and extended. In fact, there is a more sophisticated Motor device described below at *Epics Motor Device*

```
class device.Device(prefix=None[, delim=''[, attrs=None]])
```

The attribute PVs are built as needed and held in an internal buffer self._pvs. This class is kept intentionally simple so that it may be subclassed.

To pre-load attribute names on initialization, provide a list or tuple of attributes with the attr option.

Note that *prefix* is actually optional. When left off, this class can be used as an arbitrary container of PVs, or to turn any subclass into an epics Device.

In general, PV names will be mapped as prefix+delim+attr. See add_pv() for details of how to override this.

```
device.PV (attr[, connect=True[, **kw]]])
    returns the PV object for a device attribute. The connect argument and any other keyword arguments are passed
    to epics.PV().

device.put (attr, value[, wait=False[, timeout=10.0]])
```

put an attribute value, optionally wait for completion or up to a supplied timeout value device.get (attr[, as_string=False]) get an attribute value, option as_string returns a string representation

```
device.add_callback (attr, callback)
```

add a callback function to an attribute PV, so that the callback function will be run when the at tribute's value changes

```
device.add_pv(pvname[, attr=None[, **kw]])
```

adds an explicitly names epics.PV() to the device even though it may violate the normal naming rules (in which *attr* is mapped to *epics.PV(prefix+delim+attr*). That is, one can say:

```
import epics
m1 = epics.Device('XXX:m1', delim='.')
m1.add_pv('XXX:m2.VAL', attr='other')
print m1.VAL  # print value of XXX:m1.VAL
print m1.other  # prints value of XXX:m2.VAL

device._pvs
a dictionary of PVs making up the device.
```

7.2 Epics Motor Device

The Epics Motor record has over 100 fields associated with it. Of course, it is often preferable to think of 1 Motor with many attributes than 100 or so separate PVs. Many of the fields of the Motor record are interrelated and influence other settings, including limits on the range of motion which need to be respected, and which may send notifications when they are violated. Thus, there is a fair amount of functionality for a Motor. Typically, the user just wants to move the motor by setting its drive position, but a fully enabled Motor should allow the use to change and read many of the Motor parameters.

The Motor class helps the user create and use Epics motors. A simple example use would be:

```
import epics
m1 = epics.Motor('XXX:m1')

print 'Motor: ', m1.DESC , ' Currently at ', m1.RBV

m1.tweak_val = 0.10
m1.move(0.0, dial=True, wait=True)

for i in range(10):
    m1.tweak(dir='forward', wait=True)
    time.sleep(1.0)
    print 'Motor: ', m1.DESC , ' Currently at ', m1.RBV
```

Which will step the motor through a set of positions. You'll notice a few features for Motor:

- 1. Motors can use English-name aliases for attributes for fields of the motor record. Thus 'VAL' can be spelled 'drive' and 'DESC' can be 'description'. The Table
 - 2. The methods for setting positions can use the User, Dial, or Step coordinate system, and can wait for completion.

7.2.1 The epics. Motor class

Parameters

- pvname (string) prefix name (no '.VAL' needed!) of Epics Process Variable for a Motor
- **timeout** (*float*) time (in seconds) to wait before giving up trying to connect.

Once created, a Motor should be ready to use.

```
>>> from epics import Motor
>>> m = Motor('XX:m1')
>>> print m.drive, m.description, m.slew_speed
1.030 Fine X 5.0
>>> print m.get('device_type', as_string=True)
'asynMotor'
```

A Motor has very many fields. Only a few of them are created on initialization – the rest are retrieved as needed. The motor fields can be retrieved either with an attribute or with the get () method. A full list of Motor attributes and their aliases for the motor record is given in *Table of Motor Attributes*.

Table of Aliases for attributes for the epics Motor class, and the corresponding attribute name of the Motor Record field.

alias	Motor Record field	alias	Motor Record field
disabled	_able.VAL	moving	MOVN
acceleration	ACCL	resolution	MRES
back_accel	BACC	motor_status	MSTA
backlash	BDST	offset	OFF
back_speed	BVEL	output_mode	OMSL
card	CARD	output	OUT
dial_high_limit	DHLM	prop_gain	PCOF
direction	DIR	precision	PREC
dial_low_limit	DLLM	readback	RBV
settle_time	DLY	retry_max	RTRY
done_moving	DMOV	retry_count	RCNT
dial_readback	DRBV	retry_deadband	RDBD
description	DESC	dial_difference	RDIF
dial_drive	DVAL	raw_encoder_pos	REP
units	EGU	raw_high_limit	RHLS
encoder_step	ERES	raw_low_limit	RLLS
freeze_offset	FOFF	relative_value	RLV
move_fraction	FRAC	raw_motor_pos	RMP
hi_severity	HHSV	raw_readback	RRBV
hi_alarm	HIGH	readback_res	RRES
hihi_alarm	HIHI	raw_drive	RVAL
high_limit	HLM	dial_speed	RVEL
high_limit_set	HLS	s_speed	S
hw_limit	HLSV	s_back_speed	SBAK
home_forward	HOMF	s_base_speed	SBAS
home_reverse	HOMR	s_max_speed	SMAX
high_op_range	HOPR	set	SET
high_severity	HSV	stop_go	SPMG
integral_gain	ICOF	s_revolutions	SREV
jog_accel	JAR	stop	STOP
jog_forward	JOGF	t_direction	TDIR
jog_reverse	JOGR	tweak_forward	TWF
jog_speed	JVEL	tweak_reverse	TWR
last_dial_val	LDVL	tweak_val	TWV
low_limit	LLM	use_encoder	UEIP
low_limit_set	LLS	u_revolutions	UREV
lo_severity	LLSV	use_rdbl	URIP
lolo_alarm	LOLO	drive	VAL
low_op_range	LOPR	base_speed	VBAS
	,	C	ontinued on next page

Table 7.1 – continued from previous page

low_alarm	LOW	slew_speed	VELO
last_rel_val	LRLV	version	VERS
last_dial_drive	LRVL	max_speed	VMAX
last_SPMG	LSPG	use_home	ATHM
low_severity	LSV	deriv_gain	DCOF

7.2.2 methods for epics. Motor

```
motor.get (attr[, as_string=False]) sets a field attribute for the motor.
```

Parameters

- attr (*string* (*from table above*)) attribute name
- as_string (True or False) whether to return string value.

Note that get () can return the string value, while fetching the attribute cannot do so:

```
>>> m = epics.Motor('XXX:m1')
>>> print m.device_type
0
>>> print m.get('device_type', as_string=True)
'asynMotor'

motor.put(attr, value[, wait=False[, timeout=30]])
    sets a field attribute for the motor.
```

Parameters

- attr (string (from table above)) attribute name
- value value for attribute
- wait (True or False) whether to wait for completion.
- **timeout** (*float*) time (in seconds) to wait before giving up trying to connect.

```
motor.check_limits()
```

checks whether the current motor position is causing a motor limit violation, and raises a MotorLimitException if it is.

returns None if there is no limit violation.

```
motor.within_limits(value[, limits='user'])
```

checks whether a target value would be a limit violation.

Parameters

- value target value
- limits (string) one of 'user', 'dial', or 'raw' for which limits to consider

Return type True/False

```
 \begin{tabular}{ll} motor.move (val=None[, relative=None[, wait=False[, timeout=300.0[, dial=False[, raw=False[, ignore_limits=False]]]]]]) \\ moves motor drive to position \\ \end{tabular}
```

Parameters

• val – value to move to (float) [Must be provided]

- relative move relative to current position (T/F) [F]
- wait whether to wait for move to complete (T/F) [F]
- dial use dial coordinates (T/F) [F]
- raw use raw coordinates (T/F) [F]
- **ignore_limits** try move without regard to limits (T/F) [F]
- **timeout** max time for move to complete (in seconds) [300]

Return type see below

Return codes:

None: unable to move, invalid value given -1: target value outside limits – no move attempted -2: with wait=True, wait time exceeded timeout 0: move executed successfully

will raise an exception if a motor limit is met.

```
motor.tweak (dir='forward'[, wait=False[, timeout=300.]]) move the motor by the current tweak value
```

Parameters

- dir (string: 'forward' (default) or 'reverse') direction of motion
- wait (True or False) whether to wait for completion
- **timeout** (*float*) max time for move to complete (in seconds) [default=300]

```
motor.get_position (readback=False[, dial=False[, raw=False]])
Returns the motor position in user, dial or raw coordinates.
```

Parameters

- **readback** whether to return the readback position in the desired coordinate system. The default is to return the drive position of the motor.
- dial whether to return the position in dial coordinates. The default is user coordinates.
- raw whether to return the raw position. The default is user coordinates.

The "raw" and "dial" keywords are mutually exclusive. The "readback" keyword can be used in user, dial or raw coordinates.

```
motor.set_position (position[ dial=False[, raw=False]]) set (that is, redefine) the current position to supplied value.
```

Parameters

- **position** The new motor position
- dial whether to set in dial coordinates. The default is user coordinates.
- raw whether to set in raw coordinates. The default is user coordinates.

The 'raw' and 'dial' keywords are mutually exclusive.

```
motor.get_pv (attr)
    returns the PV for the corresponding attribute.
motor.set_callback (attr='drive'[, callback=None[, kw=None]])
    sets a callback on the PV for a particular attribute.
motor.clear_callback (attr='drive')
    clears a callback on the PV for a particular attribute.
```

```
motor.show info()
```

prints out a table of attributes and their current values.

7.3 Other Device Examples

As defined here, an epics device provides a general way to group together a set of PVs. The examples below show how to build on this generality, and may inspire you to build your own device classes.

7.3.1 Device without a prefix

Here is a simple device, that does not even define a prefix. Thus, all PVs in the device must be *fully qualified*, and need not share a prefix.:

```
from epics import Device
dev = Device()
p1 = dev.PV('13IDC:m1.VAL')
p2 = dev.PV('13IDC:m2.VAL')
dev.put('13IDC:m1.VAL', 2.8)
dev.put('13IDC:m2.VAL', 3.0)
print dev.PV('13IDC:m3.DIR').get(as_string=True)
```

This demonstrates that a *Device* is simply a collection of PVs, which can be accessed through PV().

7.3.2 Epics ai record as Device

Here is a slightly more useful example: An Epics ai (analog input record) implemented as a Device.

Note that we pre-define the fields that are the *suffixes* of an Epics ai input record, and simply subclass Device with these fields. This ai class can then be used simply and cleanly as:

```
This_ai = ai('XXX.PRES')
print 'Value: ', This_ai.VAL
print 'Units: ', This_ai.EGU
```

Several of the other standard Epics records can easily be exposed as Devices in this way.

7.3.3 Epics Scaler Record as Device

And finally a slightly more complicated example: an incomplete, but very useful mapping of the Scaler Record from synApps, including methods for changing modes, and reading and writing data.

```
#!/usr/bin/python
"""Epics Scaler"""
import epics
class Scaler(epics.Device):
    Simple implementation of SynApps Scaler Record.
    attrs = ('CNT', 'CONT', 'TP', 'T')
    attr_kws = {'calc_enable': '%s_calcEnable.VAL'}
    chan_attrs = ('NM%i', 'S%i')
    calc_attrs = {'calc%i': '%s_calc%i.VAL', 'expr%i': '%s_calc%i.CALC'}
    _fields = ('_prefix', '_pvs', '_delim', '_nchan', '_chans')
    def __init__(self, prefix, nchan=8):
        self._nchan = nchan
        self._chans = range(1, nchan+1)
        attrs = list(self.attrs)
        for i in self._chans:
            for att in self.chan_attrs:
                attrs.append(att % i)
        epics.Device.__init__(self, prefix, delim='.', attrs=attrs)
        for key, val in self.attr_kws.items():
            self.add_pv(val % prefix, attr= key)
        for i in self._chans:
            for key, val in self.calc_attrs.items():
                self.add_pv(val % (prefix, i), attr = key % i)
    def AutoCountMode(self):
        "set to autocount mode"
        self.put('CONT', 1)
    def OneShotMode(self):
        "set to one shot mode"
        self.put('CONT', 0)
    def CountTime(self, ctime):
        "set count time"
        self.put('TP', ctime)
    def Count(self, ctime=None):
        "set count, with optional counttime"
        if ctime is not None:
            self.CountTime(ctime)
        self.put('CNT', 1)
    def EnableCalcs(self):
        " enable calculations"
```

```
self.put('calc_enable', 1)

def setCalc(self, i, calc):
    "set the calculation for scaler i"
    attr = 'expr%i' % i
    self.put(attr, calc)

def getNames(self):
    "get all names"
    return [self.get('NM%i' % i) for i in self._chans]

def Read(self, use_calc=False):
    "read all values"
    attr = 'S%i'
    if use_calc:
        attr = 'calc%i'
    return [self.get(attr % i) for i in self._chans]
```

Note that we can then create a scaler object from its base PV prefix, and use methods like Count () and Read() without directly invoking epics calls:

EPICS ALARM EPICS ALARM

8.1 Overview

The alarm module provides an Alarm object to specify an alarm condition and what to do when that condition is met.

 $\textbf{class alarm.Alarm} (pvname \big[, comparison=None \big[, trip_point=None \big[, callback=None \big[, alert_delay=10 \big] \big] \\ \big] \big])$

creates an alarm object.

param pvname name of Epics PV (string)

param comparison operation used to compare PV value to trip_point.

type comparison string or callable. Built in comparisons are listed in *Table of Alarm Operators*.

param trip_point value that will trigger the alarm

param callback user-defined callback function to be run when the PVs value meets the alarm condition

type callback callable or None

param alert_delay time (in seconds) to wait before executing another alarm callback.

The alarm works by checking the value of the PV each time it changes. If the new value is outside the acceptable range (violates the trip point), then the user-supplied callback function is run. This callback could be set do send a message or to take some other course of action.

The comparison supplied can either be a string as listed in *Table of Alarm Operators* or a custom callable function which takes the two values (PV.value, trip_point) and returns True or False based on those values.

Table of built-in Operators for Alarms:

operator	Python operator
'eq', '=='	eq
'ne', '!='	ne
'le', '<='	le
'lt', '<'	lt
'ge', '>='	ge
'gt', '>'	gt

The alert_delay prevents the alarm callback from being called too many times. For PVs with floating point values, the value may fluctuate around the trip_point for a while. If the value violates the trip_point, then momentarily goes back to an acceptable value, and back again to a violating value, it may not be desirable to send repeated, identical

messages. To prevent this situation, the alarm callback will be called when the alarm condition is met **and** the callback was not called within the time specified by alert_delay.

8.1.1 Alarm Example

An epics Alarm is very easy to use. Here is an alarm set to print a message when a PV's value reaches a certain value:

EPICS.WX WXPYTHON WIDGETS FOR EPICS

9.1 Overview

This module provides a set of wxPython classes for epics PVs. Most of these are derived from wxPython widgets, with special support added for epics PVs, especially regarding when to automatically update the widget based on a changing value for a PV.

Examples of some wx code is included in the scripts folder of the pyepics source distribution kit.

9.2 wx Widgets for Epics

9.2.1 pvCtrlMixin

class wx.**pvCtrlMixin** (parent, pv=None, font=None, fg=None, bg=None, **kw)

This is a mixin class for wx Controls with epics PVs: This connects to PV, and manages callback events for the PV.

Parameters

- parent wx parent widget
- **pv** epics.PV
- **font** wx.Font for display
- fg foreground colour
- bg background colour

A class that inherits from this class **must** provide a method called *_SetValue*, which will set the contents of the corresponding widget when the PV's value changes.

In general, the widgets will automatically update when the PV changes. Where appropriate, setting the value with the widget will set the PV value.

9.2.2 pvText

pvText(parent, pv=None, font=None, fg=None, bg=None,

```
minor_alarm="DARKRED", major_alarm="RED",
invalid_alarm="ORANGERED", **kw)
```

derived from wx.StaticText and pvCtrlMixin, this is a StaticText widget whose value is set to the string representation of the value for the corresponding PV.

By default, the text colour will be overriden when the PV enters an alarm state. These colours can be modified (or disabled by being set to None) as part of the constructor.

9.2.3 pvTextCtrl

class wx.pvTextCtrl (parent, pv=None, font=None, fg=None, bg=None, **kw)

derived from wx.TextCtrl and pvCtrlMixin, this is a TextCtrl widget whose value is set to the string representation of the value for the corresponding PV. Setting the value (hitting Return or Enter) of the widget will set the PV value.

9.2.4 pvFloatCtrl

class wx.**pvFloatCtrl** (parent, pv=None, font=None, fg=None, bg=None, **kw)

A special variation of a wx.TextCtrl that allows only floating point numbers, as associated with a double, float, or integer PV. Trying to type in a non-numerical value will be ignored. Furthermore, if a PV's limits can be determined, they will be used to limit the allowed range of input values. For a value that is within limits, the value will be *put* to the PV on return. Out-of-limit values will be highlighted in a different color.

9.2.5 pvBitmap

class wx.pvBitmap (parent, pv=None, bitmaps={}, defaultBitmap=None)

A Static Bitmap where the image is based on PV value.

If the bitmaps dictionary is set, it should be set as PVValue->Bitmap where particular bitmaps will be shown if the PV takes those certain values.

If you need to do any more complex or dynamic drawing, you may want to look at the OGL PV controls.

9.2.6 pvCheckBox

class wx.pvCheckBox (self, parent, pv=None, $on_value=1$, $off_value=0$, **kw) Checkbox based on a binary PV value, both reads/writes the PV on changes.

on_value and off_value are the specific values that are mapped to the checkbox.

There are multiple options for translating PV values to checkbox settings (from least to most complex):

- •Use a PV with values 0 and 1
- •Use a PV with values that convert via Python's own bool(x)
- •Set on_value and off_value in the constructor
- •Use SetTranslations() to set a dictionary for converting various PV values to booleans.

9.2.7 pvFloatSpin

```
pvFloatSpin(parent, pv=None, deadTime=500, min_val=None,
max_val=None, increment=1.0, digits=-1, **kw)
```

A FloatSpin is a floatin point spinctrl with buttons to increase and decrease the value by a particular increment. Arrow keys and page up/down can also be used (the latter changes the value by 10x the increment.)

pvFloatSpin is a special derivation that assigns a PV to the FloatSpin control. deadTime is the delay (in milliseconds) between when the user finishes typing a value and when the PV is set to it (to prevent half-typed numeric values being set.)

9.2.8 pvButton

```
pvButton(parent, pv=None, pushValue=1, disablePV=None,
disableValue=1, **kw)
```

A wx.Button linked to a PV. When the button is pressed, 'pushValue' is written to the PV (useful for momentary PVs with HIGH= set.)

Setting disablePV and disableValue will automatically cause the button to disable when that PV has a certain value.

9.2.9 pvRadioButton

class wx.pvRadioButton (parent, pv=None, pvValue=None, **kw)

A pvRadioButton is a radio button associated with a particular PV and one particular value.

Suggested for use in a group where all radio buttons are pvRadioButtons, and they all have a discrete value set.

9.2.10 pvComboBox

```
class wx.pvComboBox(parent, pv=None, **kw)
```

A ComboBox linked to a PV. Both reads/writes the combo value on changes.

9.2.11 pvEnumButtons

class wx.**pvEnumButtons** (parent, pv=None, font=None, fg=None, bg=None, **kw)

This will create a wx.Panel of buttons (a button bar), 1 for each enumeration state of an enum PV. The set of buttons will correspond to the current state of the PV

9.2.12 pvEnumChoice

class wx.pvEnumChoice (parent, pv=None, font=None, fg=None, bg=None, **kw)

This will create a dropdown list (a wx.Choice) with a list of enumeration states for an enum PV.

9.2.13 pvAlarm

class wx.**pvAlarm**(parent, pv=None, font=None, fg=None, bg=None, trip_point=None, **kw)

This will create a pop-up message (wx.MessageDialog) that is shown when the corresponding PV trips the alarm level.

9.3 Decorators and other Utility Functions

```
wx.DelayedEpicsCallback()
```

decorator to wrap an Epics callback in a wx.CallAfter, so that the wx and epics ca threads do not clash This also checks for dead wxPython objects (say, from a closed window), and remove callbacks to them.

```
wx.EpicsFunction()
```

decorator to wrap function in a wx.CallAfter() so that Epics calls can be made in a separate thread, and asynchronously.

This decorator should be used for all code that mix calls to wx and epics

```
wx.finalize_epics()
```

This function will finalize epics by calling epics.ca.finalize_libca(). It is recommended that this be added to any "close GUI" code, such as a method bound to wx.EVT_CLOSE(self, self.onClose), where the function might look like this:

```
def onClose(self, event):
    finalize_epics()
    self.Destroy()
```

9.4 wxMotorPanel Widget

A dedicated wx Widget for Epics Motors is included in the wx module that provides an easy-to-use Motor panel that is similar to the normal MEDM window, but with a few niceties from the more sophisticated wx toolkit. This widget can be used simply as:

```
import wx
from epics.wx import MotorPanel
....
mymotor = MotorPanel(parent, 'XXX:m1')
```

A sample panel looks like this

Which shows from right to left: the motor desription, an information message (blank most of the time), the readback value, the drive value, arrows to tweak the motor, and a drop-down combobox for tweak values, a "Stop" button and a "More" button. The panel has the following features:

- All controls are "live" and will respond to changes from other source.
- The values for the tweak values in the ComboBox are automatically generated from the precision and travel range of the motor.
- The entry box for the drive value will *only* accept numeric input, and will only set the drive value when hitting Enter or Return.
- The drive value will change to Red text on a Yellow background when the value in the box violates the motors (user) limits. If Enter or Return when the displayed value violates the limit, the motor will not be moved, but the displayed value will be changed to the closest limit value.

• Pressing the "Stop" button will stop the motor (with the .*SPMG* field), and set the Info field to "Stopped". The button label will change to "Go", and the motor will not move until this button is pressed.

Finally, the "More" button will bring up a more complete form of Motor parameters that looks like:

Many such MotorPanels can be put in a vertical stack, as generated from the 'wx_motor.py' script in the scripts folder of the source distribution as:

~>python wx_motor.py XXX:m1 XXX:m2 XXX:m3 XXX:m4

will look like this:

9.5 OGL Classes

OGL is a graphics drawing library shipped with wxPython. Is it built around the concept of "shapes" which are added to "canvases" and can be moved, scrolled, zoomed, animated, etc.

There is a pvShapeMixin class which allows PV callback functionality to be added to any OGL Shape class, and there are also pvRectangle and pvCircle subclasses already created.

A recommended way to use these OGL classes is to make a static bitmap background for your display, place it in an OGL Canvas and then add an overlay of shapes which appear/disappear/resize/change colour based on the PV values.

9.5.1 pvCtrlMixin

class wx.pvShapeMixin (self, pv=None, pvname=None)

Similar to pvMixin, this mixin should be added to any ogl. Shape subclass that needs PV callback support.

The main method is PVChanged(self, raw_value), which should be overriden in the subclass to provide specific processing based on the changed value.

There are also some built-in pieces of functionality. These are enough to do simple show/hide or change colour shape functionality, without needing to write specific code.

SetBrushTranslations(translations) allows setting a dict of PV Value -> wx.Brush mappings, which can be used to automatically repaint the shape foreground (fill) when the PV changes.

SetPenTranslations(translations) similar to brush translations, but the values are wx.Pen instances that are used to repaint the shape outline when the PV changes.

SetShownTranslations(translations) sets a dictionary of PV Value ->bool values which are used to show/hide the shape depending on the PV value, as it changes.

9.5.2 pvRectangle

 $\textbf{class} \ \texttt{wx.pvRectangle} \ (\textit{self}, \textit{w}, \textit{h}, \textit{pv=None}, \textit{pvname} = None)$

A pvCtrlMixin for the Rectangle shape class.

9.5.3 pvCircle

class wx.**pvCircle** (*self*, *diameter*, *pv=None*, *pvname=None*) A pvCtrlMixin for the Circle shape class.

9.5. OGL Classes 65

PYTHON MODULE INDEX

```
alarm, 57
C
ca, 28
d
device, 49
e
epics, 9
m
motor, 50
p
pv, 15
W
wx, 59
```

68 Python Module Index

INDEX

Symbols	client_status() (in module ca), 29
_cache (in module ca), 30	connect() (in module pv), 17
_pvs (in module device), 50	connect_channel() (in module ca), 29
_unpack() (in module ca), 36	context_create() (in module ca), 28
- 1 V V	context_destroy() (in module ca), 28
A	count (in module pv), 18
access (in module pv), 18	create_channel() (in module ca), 29
access() (in module ca), 30	create_subscription() (in module ca), 31
add_callback() (in module device), 49	current_context() (in module ca), 29
add_callback() (in module pv), 17	D
add_pv() (in module device), 49	
Alarm (class in alarm), 57	DEFAULT_CONNECTION_TIMEOUT (in module ca),
alarm (module), 57	28
attach_context() (in module ca), 29	DelayedEpicsCallback() (in module wx), 62
AUTOMONITOR_MAXLENGTH (in module ca), 28	detach_context() (in module ca), 29
	Device (class in device), 49
C	device (module), 49
ca (module), 28	disconnect() (in module pv), 17
ca_add_exception_event() (in module ca), 37	F
ca_add_fd_registration() (in module ca), 37	E
ca_client_status() (in module ca), 37	element_count() (in module ca), 30
ca_dump_dbr() (in module ca), 37	enum_strs (in module pv), 19
ca_puser() (in module ca), 37	epics (module), 9
ca_replace_access_rights_event() (in module ca), 37	EpicsFunction() (in module wx), 62
ca_set_puser() (in module ca), 37	_
ca_SEVCHK() (in module ca), 37	F
ca_signal() (in module ca), 37	field_type() (in module ca), 30
ca_test_event() (in module ca), 37	finalize_epics() (in module wx), 62
caget() (in module epics), 9	flush_io() (in module ca), 29
cainfo() (in module epics), 10	ftype (in module pv), 18
callbacks (in module pv), 19	
camonitor() (in module epics), 11	G
camonitor_clear() (in module epics), 11	get() (in module ca), 31
caput() (in module epics), 10	get() (in module device), 49
Channel Access Exception, 35	get() (in module motor), 52
char_value (in module pv), 18	get() (in module pv), 16
check_limits() (in module motor), 52	get_ctrlvars() (in module ca), 32
clear_callback() (in module motor), 53	get_ctrlvars() (in module pv), 16
clear_callbacks() (in module pv), 18	get_enum_strings() (in module ca), 32
clear_channel() (in module ca), 30	get_position() (in module motor), 53
clear_subscription() (in module ca), 32	get_precision() (in module ca), 32

get_pv() (in module motor), 53 get_severity() (in module ca), 32 get_timestamp() (in module ca), 32 get_timevars() (in module ca), 33	pvRadioButton (class in wx), 61 pvRectangle (class in wx), 64 pvShapeMixin (class in wx), 64 pvTextCtrl (class in wx), 60 PySEVCHK() (in module ca), 35
H	R
host (in module pv), 18 host_name() (in module ca), 30 I info (in module pv), 19 isConnected() (in module ca), 30	read_access (in module pv), 18 read_access() (in module ca), 30 remove_callback() (in module pv), 17 replace_printf_handler() (in module ca), 29 run_callbacks() (in module pv), 18
L	S
lower_alarm_limit (in module pv), 19 lower_ctrl_limit (in module pv), 19 lower_disp_limit (in module pv), 19 lower_warning_limit (in module pv), 19	set_callback() (in module motor), 53 set_position() (in module motor), 53 severity (in module pv), 19 sg_block() (in module ca), 33 sg_create() (in module ca), 33
M	sg_delete() (in module ca), 33
message() (in module ca), 29 Motor (class in motor), 50 motor (module), 50 move() (in module motor), 52	sg_get() (in module ca), 33 sg_put() (in module ca), 33 sg_reset() (in module ca), 33 sg_test() (in module ca), 33 show_cache() (in module ca), 30
N	show_info() (in module motor), 53 state() (in module ca), 30
name() (in module ca), 30	status (in module pv), 18
P	Т
pend_event() (in module ca), 29 pend_io() (in module ca), 29 poll() (in module ca), 29	timestamp (in module pv), 19 tweak() (in module motor), 53 type (in module pv), 18
poll() (in module pv), 16 precision (in module pv), 19	U
PREEMPTIVE_CALLBACK (in module ca), 28 promote_type() (in module ca), 30 put() (in module ca), 31 put() (in module device), 49 put() (in module motor), 52 put() (in module pv), 16	units (in module pv), 19 upper_alarm_limit (in module pv), 19 upper_ctrl_limit (in module pv), 19 upper_disp_limit (in module pv), 19 upper_warning_limit (in module pv), 19
put_complete (in module pv), 19	V
PV (class in pv), 15	value (in module pv), 18
pv (module), 15	W
PV() (in module device), 49 pvAlarm (class in wx), 61 pvBitmap (class in wx), 60 pvCheckBox (class in wx), 60 pvCircle (class in wx), 65 pvComboBox (class in wx), 61 pvCtrlMixin (class in wx), 59 pvEnumButtons (class in wx), 61 pvEnumChoice (class in wx), 61	wait_for_connection() (in module pv), 17 withCA() (in module ca), 35 withCHID() (in module ca), 35 withConnectedCHID() (in module ca), 35 within_limits() (in module motor), 52 withSEVCHK() (in module ca), 35 write_access (in module pv), 18 write_access() (in module ca), 30
pvFloatCtrl (class in wx), 60	wx (module), 59

70 Index