Solid s, liquid ℓ . Container walls at uniform temperature T_w , melt initially at uniform temperature T_m at which liquid and solid would coexist. Latent heat of fusion H_s^{ℓ} energy needed to melt unit mass of solid. Container of characteristic dimension d.

In each phase

$$\frac{\partial T}{\partial t} = \kappa \nabla^2 T \tag{a}$$

At the solid–liquid interface, mass flux $J_i\ell^s$ from liquid to solid, unit normal n_ℓ^s directed from liquid into solid. Interface propagates normal to itself with speed c.

Balance of total energy:

$$-H_s^{\ell} J_{\ell}^s = \boldsymbol{n}_{\ell}^s \cdot [k \nabla T]_{\ell}^s, \tag{b}$$

Balance of mass:

$$\rho_s(\boldsymbol{v}_s \cdot \boldsymbol{n}_{\ell}^s - c) = J_{\ell}^s = \rho_{\ell}(\boldsymbol{v}_{\ell} \cdot \boldsymbol{n}_{\ell}^s - c)$$
 (c)

Rigid solid $\mathbf{v}_s = 0$.

Assumption: liquid and solid of identical properties

$$\rho_{\ell} = \rho_s = \rho \implies \boldsymbol{v}_{\ell} = 0$$

Kinetics of solidification:

$$J_{\ell}^{s} = \lambda(T_{m} - T); \tag{d}$$

if temperature T at the interface $< T_m$, then mass is converted from liquid into solid.

Kinematics: r, position vector of a point on the interface

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} \cdot \boldsymbol{n}_{\ell}^{s} = c \tag{e}$$

End of formulation.

Eliminate J_{ℓ}^{s} between (d) and (b):

$$\lambda H_s^{\ell}(T_m - T) + \boldsymbol{n}_{\ell}^2 \cdot [k\nabla T]_{\ell}^s = 0. \tag{f}$$

Then there are time derivatives only in (a) and in (e).

There are three time scales. Conduction (from (a)) $t_c = d^2/\kappa$, thermal diffusivity κ . Kinetic (from (d) and (c)) $t_k = \rho d/(\lambda \Delta T)$, time taken for the interface to propagate across container if temperature at interface is T_w . Third time scale (from (b) and (c)) $t_H = \rho H_s^\ell d^2/(k\Delta T), = t_c H_s^\ell/(c_p\Delta T)$ (specific heat c_p). Osher has $t_c \approx t_H \gg t_k$ so that $T = T_m$ at the interface. For $t_H \approx t_k \gg t_c$, heat conduction will be quasi-steady. This conclusion, and the time scales, can be obtained by introducing dimensionless variables, which you should do if you decide to use this model problem.