Mathematics for Political Science

Lecture 2: Algebra

Exercise Solutions

1.

1.
$$x = \frac{1}{3}$$

2.
$$x = \frac{3}{4}$$

2.

1.
$$\alpha = \beta + 4\theta$$

2.
$$\alpha = \frac{4}{(x+y-x^2-y^2)}$$

3.

1.
$$x > -18$$

3.
$$y \leq \frac{29}{22}$$

4.

1.
$$x = 2$$
 or $x = -7$

2.
$$x = 4$$

3.
$$x = 2$$
 or $x = -5$

5.

1.
$$x = \frac{1}{9}$$
 or $x = -1.5$

2.
$$x = -\frac{2}{7}$$
 or $x = \frac{4}{5}$

6.

1.
$$a = 0, b = 2$$

2.
$$a = 5, b = 5$$

7.

1.
$$c = 7$$
, $d = -2$

2.
$$c = -3$$
, $d = 4$

8.
$$x = 4\alpha + 2$$
, $y = 2\alpha + 1$

9.
$$q = 1$$
, $r = -1$, $s = 3$

10.

- 1. 25
- 2. 22

11. **c** is the longest

1.
$$\|\mathbf{a}\| = \sqrt{50}$$

2.
$$\|\mathbf{b}\| = \sqrt{48}$$

3.
$$\|\mathbf{c}\| = \sqrt{51}$$

12. Odd powers are identical to the matrix given; even powers are the identity matrix.

13.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a+0 & b+0 \\ c+0 & d+0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a*1+b*0 & a*0+b*1 \\ c*1+d*0 & c*0+d*1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

14.

2.
$$\begin{bmatrix} ap + bq + cr \\ dp + eq + fr \\ gp + hq + ir \end{bmatrix}$$

- 3. The inner dimensions do not conform, so these matrices cannot be multiplied in this order.
- 15. Multiply the matrices below to show that order matters for matrix multiplication:

1.
$$\begin{bmatrix} 17 \end{bmatrix}$$
 or $\begin{bmatrix} 12 & 21 & 3 \\ 0 & 0 & 0 \\ 20 & 35 & 5 \end{bmatrix}$

2.
$$\begin{bmatrix} 44 & 64 & 36 \\ 15 & 36 & 21 \\ 20 & 22 & 12 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 48 & 114 \\ 15 & 44 \end{bmatrix}$$

16.

$$\begin{bmatrix} 1 & 2 & 4 \\ 3 & -7 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} -7 \\ 12 \\ 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 4 \\ 3 & -7 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 1*5+2*0+4*-3 \\ 3*5+-7*0+1*-3 \\ 2*5+1*0+2*-3 \end{bmatrix} = \begin{bmatrix} -7 \\ 12 \\ 4 \end{bmatrix}$$