Math 320 H.W 9

Joseph C. McGuire

November 8, 2018

1 Problem (79)

Prove that every Abelian group of order 27 must have a subgroup of order 9.

Proof. Let G be an Abelian group such that |G| = 27. Then, by the Fundamental Theorem of Finite Abelian Groups, we have $G \approx \mathbb{Z}_{27}$. Then there exists an isomorphism $\phi: \mathbb{Z}_{27} \to G$. Also, note that |<3>|=9 in \mathbb{Z}_{27} and |<3>|=9 in |<3>|=9 in

2 Problem (80)

 $R = \{s,t,u,v,w,x,y,z\}$ is a finite ring under the +, * operations.

2.1 Which element equals 0 in this ring? Justify your answer.

u = 0, since under the + operation, we have u + a = a, for all $a \in R$.

2.2 Does the ring have a unity element? If so, say which elements equal 1 and justify your answer.

w=1, since under the operation * we have w*b=b, for all $b\in R$.

2.3 Find the elements -1 and 3 * 1 in R, and make it clear which is which.

Since w = 1, by part (2), and u = 0, by part (1), we want the element $a \in R$ such that w + a = u. Following the Cayley table the only such element that satisfies this condition is v. Hence v = -1 in R.

Next we will find the element $b \in R$ such that w + w + w = b, since by part (2) we have w = 1. Following the Cayley table, this gives us that x = 3 * 1.

2.4 What are the units of R? Explain how you know that your answer is right.

By the Cayley table, we have $v*v=w=1,\,t*t=w=1,\,w*w=w=1,$ and x*x=w=1. Thus, the units in R are the element $\{v,t,w,x\}.$

3 Problem (81)

Let $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[\sqrt{3}]$ is a ring under the ordinary addition and multiplication of the real numbers.

Proof. First, note that \mathbb{R} is a ring and $\mathbb{Z}[\sqrt{3}] \subseteq \mathbb{R}$. Then we will show $\mathbb{Z}[\sqrt{3}]$ is a ring by Theorem 12.3.

 $(\mathbb{Z}[\sqrt{3}] \text{ is nonempty})$

Consider $1 + 3\sqrt{3}$, by definition of the set, we have $1 + 3\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. Hence $\mathbb{Z}[\sqrt{3}] \neq \emptyset$.

 $(a-b\in\mathbb{Z}[\sqrt{3}])$ Let $a,b\in\mathbb{Z}[\sqrt{3}].$ Then for some $c,d,e,f\in\mathbb{Z},\ a=c+d\sqrt{3}$ and $b=e+f\sqrt{3}.$ Then consider the following:

$$a - b = c + d\sqrt{3} - (e + f\sqrt{3})$$
$$= c + d\sqrt{3} - e - f\sqrt{3}$$
$$= (c - e) + d\sqrt{3} - f\sqrt{3}$$
$$= (c - e) + (d - f)\sqrt{3}$$

Hence (a - b) $\in \mathbb{Z}[\sqrt{3}]$. (ab $\in \mathbb{Z}[\sqrt{3}]$) Let $\alpha, \beta \in \mathbb{Z}[\sqrt{3}]$. Then for some $\gamma, \delta, \epsilon, \zeta \in \mathbb{Z}$, $\alpha = \gamma + \delta\sqrt{3}$ and $\beta = \epsilon + \zeta\sqrt{3}$. Then consider the following:

$$\alpha\beta = (\gamma + \delta\sqrt{3})(\epsilon + \zeta\sqrt{3}) = \alpha\epsilon + \gamma\zeta\sqrt{3} + \epsilon\delta\sqrt{3} + \delta\zeta(\sqrt{3})^{2}$$
$$= \alpha\epsilon + \delta\zeta3 + \gamma\zeta\sqrt{3} + \epsilon\delta\sqrt{3} = (\alpha\epsilon + \delta\zeta3) + (\gamma\zeta + \epsilon\delta)\sqrt{3}.$$

Since $(\gamma \zeta + \epsilon \delta)$, $(\alpha \epsilon + \delta \zeta 3) \in \mathbb{Z}$, we have $\alpha \beta \in \mathbb{Z}[\sqrt{3}]$.

... By Theorem 12.3, $\mathbb{Z}[\sqrt{3}]$ is a subring of \mathbb{R} , hence a ring itself

4 Problem (82)

The set $\{0,2,4,6,8\}$ under addition and multiplication modulo 10 has a unity. Find it, and show that it works.

We want the element of the above set such that for all $a \in \{0, 2, 4, 6, 8\}$, $ax \equiv a \pmod{10}$, where x is our unity element. The only such element that this works with is 6:

$$0*6 \equiv 0 \pmod{10}$$

 $2*6 \equiv 12 \equiv 2 \pmod{10}$
 $4*6 \equiv 24 \equiv 4 \pmod{10}$
 $6*6 \equiv 36 \equiv 6 \pmod{10}$
 $8*6 \equiv 48 \equiv 8 \pmod{10}$

Thus 6 is the unity element of this specific set.

5 Problem (83)

5.1 Show that $\mathbf{x} = \mathbf{3}$ is a solution to the equation $x^2 + 7 = 0$ in $\mathbb{Z}_8[x]$.

Take $x^2 + 7 = 0$ in $\mathbb{Z}_8[x]$, note that $7 \equiv -1$ (modulo 8). Hence $x^2 + 7 = 0$ iff $x^2 - 1 = 0$ in $\mathbb{Z}_8[x]$ iff $x^2 = 1$. If we take x = 3, then we get $x^2 = 9$ and $9 \equiv 1$ (modulo 8). Thus x = 3 is a solution to $x^2 + 7 = 0$ in $\mathbb{Z}_8[x]$.

5.2 The argument below seems to show that the <u>only</u> solution to $x^2 - 1 = 0$ in $\mathbb{Z}_8[x]$ are x = 1 and x = 7, which would contradict what you showed in part(a) above. Which implication in the argument is incorrect? Show that it is incorrect.

Step(ii) is incorrect, because in $\mathbb{Z}_8[x]$, (x+7)(x+1)=0 doesn't imply that x+7=0 or x+1=0. Consider the case in part(a), where we had x=3, then we have $(x+7)(x+1)=(3+7)(3+1)=(10)(4)\equiv 0$ (modulo 8). Hence our hypothesis is true, but $3+7\equiv 10\equiv 2$ (modulo 8) and $3+1\equiv 4$ (modulo 8). So our conclusion is false. Thus in $\mathbb{Z}_8[x]$ $(x+7)(x+1)=0 \Rightarrow x+7=0$ or x+1=0.

6 Problem (84)

Let R be a ring with unity 1, and let $a \in R$ be fixed. Prove that there can exist at most one element $b \in R$ such that ab = ba = 1.

Proof. Let R be a ring with unity 1 and $a \in R$ be fixed. Suppose, for sake of contradiction, that for some $b \in R$ and $c \in R$, where b and c are distinct in R, we have ac = ca = 1 and

ab = ba = 1. Then consider the following:

$$ca=1$$
 iff $ca=1*1$, since 1 is the unity of R iff $c(ba)=1(b*1)$, by left-multiplication iff $c*1=b$, by our assumption that $ab=ba=1$ iff $c=b$.

But this is a contradiction of our hypothesis that c and b were distinct. Thus there can exist at most one element $b \in R$ such that ba = ab = 1, for a fixed $a \in R$.

7 Problem (85)

Find an integer n such that the ring \mathbb{Z}_n , need not have the following properties that the ring integers has:

- 7.1 $a^2 = a$ implies a 0 or a = 1.
- 7.2 ab = 0 implies a = 0 or b = 0.
- 7.3 ab = ac and $a \neq 0$ implies b = c.

Let n = 12, then $\mathbb{Z}_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ under the operations + and * modulo 12. Then note that the conditions don't hold:

- (a.) $4^2 \equiv 4 \pmod{12}$, but $4 \not\equiv 0 \pmod{12}$ and $4 \not\equiv 1 \pmod{12}$.
- (b.) $3*4 \equiv 0 \pmod{12}$, but $3 \not\equiv 0 \pmod{12}$ and $4 \not\equiv 0 \pmod{12}$.
- (c.) $3*4 \equiv 0 \equiv 3*8 \pmod{12}$, but $4 \not\equiv 8 \pmod{12}$ and $3 \not\equiv 0 \pmod{12}$. No, 12 isn't a prime.

8 Problem (86)

8.1 In \mathbb{Z}_6 , show that 4|2.

 $4|2 \text{ in } \mathbb{Z}_6 \text{ iff } 2q \equiv 4 \pmod{6}, \text{ s.t } q \in \mathbb{Z}_6 \text{ iff } q \equiv 2 \pmod{6}.$ Thus $4|2 \text{ in } \mathbb{Z}_6, \text{ since } 4*2 \equiv 2 \pmod{6}.$

8.2 In \mathbb{Z}_8 , show that 3|7.

 $3|7 \text{ in } \mathbb{Z}_8 \text{ iff } 3q \equiv 7 \pmod{8} \text{ iff } 3q \equiv -1 \pmod{8} \text{ iff } q \equiv -3 \pmod{8} \text{ iff } q \equiv 5 \pmod{8}$ 8). Hence $3*5 \equiv 7 \pmod{8}$ and $3|5 \text{ in } \mathbb{Z}_8$.

8.3 In \mathbb{Z}_{15} , show that 9|12.

9|12 in \mathbb{Z}_{15} iff $9q \equiv 12 \pmod{15}$ iff $9q \equiv -3 \pmod{15}$ iff $-6q \equiv -3 \pmod{15}$ iff $q \equiv -2 \pmod{15}$. Hence $13 * 9 \equiv 12 \pmod{15}$, and 9|12 in \mathbb{Z}_{15} .

9 Problem (87)

Give an example of a non-commutative ring that has exactly 16 elements.

Consider the set
$$M_2(\mathbb{Z}_2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}_2 \right\}.$$

Then $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$

Hence $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

and $M_2(\mathbb{Z}_2)$ is itself a ring, since $M_2(\mathbb{Z}_2) \neq \emptyset$, by above, and

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a - c & b - f \\ c - g & d - h \end{pmatrix} \in M_2(\mathbb{Z}_2)$$
and
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \in M_2(\mathbb{Z}_2).$$
thus since $M_1(\mathbb{Z}_2) \in M_2(\mathbb{Z}_2)$ are here $M_1(\mathbb{Z}_2)$ is a subset

thus since $M_2(\mathbb{Z}_2) \subseteq M_2(\mathbb{Z}_n)$, we have $M_2(\mathbb{Z}_2)$ is a subgroup of $M_2(\mathbb{Z}_n)$ by Theorem 12.3.

10 Problem (88)

Let $G_1, G_2, ..., G_n$ be groups and let H_i be a subgroup of G_i for each $n \in \mathbb{N}$. Prove that $H_1 \oplus H_2 \oplus ... \oplus H_n$ is a subgroup of $G_1 \oplus G_2 \oplus ... \oplus G_n$.

Proof. Let $G_1, G_2, ..., G_n$ be groups and $H_i \geq G_i$ for all $i \in \{1, 2, ..., n\}$. Then let $(a_1, ..., a_n), (b_1, ..., b_n) \in H_1 \oplus ... \oplus H_n$, then we have $(a_1, ..., a_n) * (b_1, ..., b_n) = (a_1b_1, ..., a_nb_n)$, since $a_ib_i \in H_i$, since H_i is a subgroup of G_i . Next, note that for each a_i , there exists $a_i^{-1} \in H_i$, since H_i is a subgroup of G_i . Thus $(a_1, ..., a_n) * (a_1^{-1}, ..., a_n^{-1}) = (a_1a_1^{-1}, ..., a_na_n^{-1}) = (e_1, ..., e_n)$. Hence $H_1 \oplus ... \oplus H_n$ has inverses for all of its elements. Thus, by Theorem 3.2, $H_1 \oplus ... \oplus H_n$ is a subgroup of $G_1 \oplus ... \oplus G_n$.