GPU Sparsity

03/21/24

About Me

- PyTorch Core
 - Architecture Optimization
 - Quantization / Sparsity
 - GenAl (LLMs, ViT)
- Based in NYC
- UCLA (Go Bruins!)

- Email: jessecai@meta.com
- Github: @jcaip

What is Sparsity / Pruning?

Why waste compute use many parameters when few parameter do trick?

- Two parts:
 - Accuracy: zero out parameters from the model
 - Performance: how to make multiplying by zero fast

Dates back to <u>Optimal Brain Damage (Hinton 89)</u>

Sparsity (Performance)

- Multiplying by zero is fast!
 - 0 * 1231231 vs 123123123 * 123123
- But not if you still do the computation
 - You can still do long multiplication for 0 * 1231231 and this will take a similar amount of time as 2 * 1231231
- So let's add a bunch of zeros to our model and skip those computations

How should we add zeros?

- Different Sparsity Patterns
- We want flexibility for accuracy
- But we want structure for performance reasons

Sparsity Pattern	Mask Visualization (50% sparsity level)							
Unstructured Sparsity	_							
	1	0	1	1	0	1	0	1
	0	0	1	1	1	1	1	0
	1	0	0	0	1	0	1	0
	0	1	1	0	0	0	0	1
	F	ig 2.	3: ur	stru	ctur	ed s	pars	ity
2:4 Semi-Structured								
	0	1	1	0	1	0	1	0
	0	0	1	1	1	1	0	0
	1	0	0	1	0	1	0	1
	0	1	0	1	1	0	1	0
	F	ig 2	.4: 2		emi- rsity		cture	ed
Block Sparsity								
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	Fig 2.5: 4x4 block-wise structured sparsity							
Structured Sparsity								
	1	1	1	1	1	1	1	1
	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1
	0	0	0	0	0	0	0	0
	Fig 2.6: row-wise structured sparsity							

Sparsity (Performance)

- How can we do that for tensors multiplication?
 - Sparse representations + Sparse kernels
 - Store the data and structure independently
- COO representation
 - [123 000 -> index: < (0,0) (0,1) (0,2) > 000] data: < 123 >
- Sparse matmul
 - Only faster at high sparsity levels (>99%)

Sparsity Pattern	Mask Visualization (50% sparsity level)							
Unstructured Sparsity								
	1	0	1	1	0	1	0	1
	0	0	1	1	1	1	1	0
	1	0	0	0	1	0	1	0
	0	1	1	0	0	0	0	1
	Fi	g 2.	3: ur	stru	cture	ed s	pars	ity
2:4 Semi-Structured	_							
	0	1	1	0	1	0	1	0
	0	0	1	1	1	1	0	0
	1	0	0	1	0	1	0	1
	0	1	0	1	1	0	1	0
	Fig 2.4: 2:4 semi-structured sparsity							
Block Sparsity								
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	Fig 2.5: 4x4 block-wise structured sparsity							
Structured Sparsity	_							
	1	1	1	1	1	1	1	1
	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1
	0	0	0	0	0	0	0	0
	Fig 2.6: row-wise structured sparsity							

Table 4.4: Description of some common energity patterns

OK but how to parallelize?

- Unstructured sparsity is cool and accuracy preserving but you can't make it fast on GPUs
 - Not easy to parallelize
 - GPUs work on blocks we can't have blocks with structure with unstructured sparsity
- How to make it fast on GPU
 - What if we remove a row instead of just a single param? structured pruning
 - We can reuse dense kernels (yay)
 - But the accuracy impact is large and difficult to deal with

GPU Sparsity

- Semi-structured (2:4) sparsity
 - Fixed 50% sparsity level, up to 2x theoretical max speedup
 - Relatively easy to recover accuracy.
- Block sparsity
 - Block based on block size, speedups of ~3.4x at 90% sparsity
 - Requires more advanced <u>algorithms</u> to recover accuracy (DRESS)

Sparsity Pattern	Mask Visualization (50% sparsity level)							
Unstructured Sparsity	/							
	1	0	1	1	0	1	0	1
	0	0	1	1	1	1	1	0
	1	0	0	0	1	0	1	0
	0	1	1	0	0	0	0	1
	Fi	g 2.	3: ur	nstru	ctur	ed s	pars	•
2:4 Semi-Structured								•
	0	1	1	0	1	0	1	0
	0	0	1	1	1	1	0	0
	1	0	0	1	0	1	0	1
	0	1	0	1	1	0	1	0
	Fig 2.4: 2:4 semi-structured sparsity							
Block Sparsity								
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	0	0	0	0	1	1	1	1
	Fig 2.5: 4x4 block-wise structured sparsity							
Structured Sparsity								
	1	1	1	1	1	1	1	1
	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1
	0	0	0	0	0	0	0	0
	Fig 2.6: row-wise structured sparsity							

Table 4.4: Description of same common energity netterns

Semi-Structured (2:4) Sparsity

- Also known as M:N / fine-grained structured sparsity
- 2 in every 4 elements are 0
- Can be applied to STRIP or TILE

- Theoretical 2x max acceleration
 - 1.6x on average in practice
 - Depends on matrix shapes
- Simple retraining recipe
 - Prune once the retrain
- cuSPARSELt vs CUTLASS backend

E2E Results

Network	Data Set	Metric	Dense FP16	Sparse FP16
ResNet-50	ImageNet	Top-1	76.1	76.2
ResNeXt-101_32x8d	ImageNet	Top-1	79.3	79.3
Xception	ImageNet	Top-1	79.2	79.2
SSD-RN50	COCO2017	bbAP	24.8	24.8
MaskRCNN-RN50	COCO2017	bbAP	37.9	37.9
FairSeq Transformer	EN-DE WMT'14	BLEU	28.2	28.5
BERT-Large	SQuAD v1.1	F1	91.9	91.9

Table 2. Sample accuracy of 2:4 structured sparse networks trained with our recipe.

	SAM vit_h								
model	i	mage_enco	e2e						
	bs 32 (s)	img/sec	peak memory (GB)	coco 2017 val accuracy					
fp16	2.37	13.52	56.5	0.5842					
compiled	1.64	19.55	47.3	0.5842					
SDPA	1.58	20.24	29.2	0.5842					
int8 weight only quant	1.58	20.26	28.6	0.5837					
int8 dynamic (weight + activation) quant	1.40	22.79	29.2	0.5846					
2:4 sparsity (magnitude)	1.39	23.03	28.0	0.5331					

Easy API

- https://gist.github.com/jcaip/44376
 cd69d3a05cbe16610b4379d9b70
- Get zeros into the right spots, then call
 - to_sparse_semi_structured
- Works with torch.compile!
 - Needed to fuse transpositions
 - Only first matrix sparse
 - \circ xW' = (xW')'' = (Wx')'

sparsify.py

```
import torch
     from torch.sparse import to_sparse_semi_structured, SparseSemiStructuredTensor
     # Sparsity helper functions
     def apply_fake_sparsity(model):
        This function simulates 2:4 sparsity on all linear layers in a model.
 8
         It uses the torch.ao.pruning flow.
         0.00
 9
10
        # torch.ao.pruning flow
         from torch.ao.pruning import WeightNormSparsifier
11
12
        sparse_config = []
13
         for name, mod in model.named modules():
             if isinstance(mod, torch.nn.Linear):
14
                 sparse config.append({"tensor fgn": f"{name}.weight"})
15
16
17
         sparsifier = WeightNormSparsifier(sparsity_level=1.0,
18
                                           sparse_block_shape=(1,4),
                                           zeros per block=2)
19
         sparsifier.prepare(model, sparse_config)
20
21
         sparsifier.step()
22
23
         sparsifier.step()
        sparsifier.squash mask()
24
25
26
27
     def apply_sparse(model):
28
        apply fake sparsity(model)
29
         for name, mod in model.named_modules():
             if isinstance(mod, torch.nn.Linear):
30
                 mod.weight = torch.nn.Parameter(to_sparse_semi_structured(mod.weight))
31
```

Block Sparsity

- Use <u>Superblock</u> to recover accuracy
- Microbenchmarks for ViT-L Layers:

Batch size = 256 MLP 1				
	blocksize=8	blocksize=16	blocksize=32	blocksize=64
sparsity_level = 0.9	0.007	0.509	1.439	2.202
sparsity_level = 0.8	0.003	0.262	0.666	1.776
Batch size = 256 MLP 2				
	blocksize=8	blocksize=16	blocksize=32	blocksize=64
sparsity_level = 0.9	0.008	0.429	1.073	1.631
sparsity_level = 0.8	0.004	0.28	0.795	1.251

E2E result: ImageNet ViT-L 1.44x speedup with minimal acc loss (78 -> 76)

Current Work

- Composing with quantization
 - Performance
 - Accuracy
- 2:4 sparse training
- Pruning algorithm experimentation (<u>torchao</u>)
 - We need help here!!! This is a the current sticking point

2:4 Sparse Training

2:4 sparsity for training

- Can we use 2:4 sparsity for training? Yes!
- Main Idea:
 - Sparsify + sparse mm < dense mm
 - Need both W and W_t for forward / backward pass
- xFormers ran <u>experiments</u> with DINO show 10-20% e2e speedup with 0.5% acc gap (81.6 -> 80.5) on ImageNet-1k
 - Applying 2:4 sparsity to activations

Initial results - ViT-Base on ImageNet / MLP with GeLU


```
baseline
def forward(self, x: Tensor) -> Tensor:
   x = self.fc1(x)
   x = self.act(x)
   x = self.drop(x)
   x = self.fc2(x)
   x = self.drop(x)
    return x
                                               sp24 preact
  sp24_postact
def forward(self, x: Tensor) -> Tensor:
                                           def forward(self, x: Tensor) -> Tensor:
    x = self.fc1(x)
                                               x = self.fc1(x)
    x = self.act(x)
    x = self.drop(x)
                                               x = self.sparsify_24(x)
    x = self.sparsify_24(x.abs())
                                               x = self.act(x)
                                               x = self.drop(x)
    x = self.fc2(x)
                                               x = self.fc2(x)
    x = self.drop(x)
                                               x = self.drop(x)
                                                return x
    return x
```


Difference between inference and training

Training:

- Only compute benefit, slight memory penalty (9/8) *
- Sparsification happens at runtime
- Need both W and W t
- Needs contiguous output for distributed collective

Inference:

- Compute + memory speedup
- Sparsification happens offline
- Just W is sufficient
- Can return a view and torch.compile away subsequent transposition

2:4 sparse training components

- Fast sparsification ops:
 - Allow us to quickly calculate X_compressed and X_t_compressed.
 - Note that we need both for the forward and backward pass respectively.
- Custom autograd.Function
 - Forwards: returns sparse tensor subclass (X_compressed)
 - output = X @ W.T
 - Backwards: gradient update (use X_t_compressed)
 - input.grad = output.grad @ W.grad = output.grad.T @ input
- cuSPARSELt
 - Transposition fusion for subsequent distributed collective.

```
class _Sparsify24Func(torch.autograd.Function):
   @staticmethod
   def forward(ctx, x: torch.Tensor, algo: str, gradient: str, backend: str): # type: ignore[override]
       if gradient not in [GRADIENT_SP24, GRADIENT_DENSE]:
           raise ValueError(
                f"Invalid gradient type: '{gradient}'. "
                f"Expected '{GRADIENT_SP24}' or '{GRADIENT_DENSE}'"
       if not isinstance(x, Sparse24Tensor):
            (packed, meta, packed_t, meta_t, threads_masks) = SparsifyBothWays.OPERATOR(
               x, algorithm=algo, backend=backend
           cls = (
               Sparse24TensorCutlass
                if backend == BACKEND_CUTLASS
               else Sparse24TensorCuSparseLt
           out = cls(
               x.shape,
                packed=packed,
                meta=meta,
                packed_t=packed_t,
               meta_t=meta_t,
                threads_masks=threads_masks,
                requires_grad=False,
       else:
           if x.threads_masks is None:
                raise ValueError("!!")
            out = x
       ctx.threads_masks = out.threads_masks
       ctx.meta = out.meta
       ctx.meta_t = out.meta_t
       ctx.dtype = out.dtype
       ctx.gradient = gradient
        return out
```

```
@staticmethod
def backward(ctx, grad_out: torch.Tensor): # type: ignore[override]
    if isinstance(grad_out, Sparse24Tensor):
        return grad out, None, None, None
    assert not isinstance(grad_out, Sparse24Tensor)
   assert grad_out.dtype == ctx.dtype
    if ctx.gradient == GRADIENT SP24:
        packed, packed_t = SparsifyApply.OPERATOR(grad_out, ctx.threads_masks)
        grad in: torch.Tensor = Sparse24TensorCutlass(
            grad_out.shape,
            packed,
            ctx.meta,
            packed_t,
            ctx.meta_t,
            ctx.threads_masks,
            requires_grad=grad_out.requires_grad,
    elif ctx.gradient == GRADIENT DENSE:
        assert ctx.threads_masks.is_contiguous()
        grad in = SparsifyApplyDenseOutput.OPERATOR(grad out, ctx.threads masks)
    else:
        assert False, f"Unsupported gradient type: {ctx.gradient}"
    return (
        grad_in,
       None,
       None,
       None,
```

Open Questions

- Custom autograd functions + torch.compile
 - See here for more info
 - Dynamo when speculating expects that the gradient flowing in is a subclass, because the output of forward is a subclass for the autograd Function
- Can we reuse the same memory for specified elements of the sparse tensor?
 - Specified elements look to be the same, but swizzled between A_compressed and A_t_compressed
- Can we rewrite fast sparsification with torch.compile?
 - Alek from Quantsight has written fast torch.compile routines for CUTLASS, could we do the same thing but for cuSPARSELt?

Future Work

Future Work

- Block sparsity + 2:4 sparsity
 - Blocks that are 2:4 sparse themselves
 - 2:4 sparse arrangement of blocks
- Fusing a shuffle into the sparsity pattern (SHFL-BW)
 - More flexibility for accuracy
 - We can fuse the shuffle with torch.compile -> minimal perf hit
- 2:4 Sparse dropout
 - Do people still use dropout anymore?

Figure 3: Different sparse patterns and how to transform from Shfl-BW to block-wise sparsity.

Future Work (cuda-mode specific)

- Closing CUTLASS and cuSPARSELt gap
 - Aleksandar Samardžić has done a great job of this
 - Fuse transposition into matmul
 - Fuse dequant into CUTLASS kernel
- Autotuning parameters for sparse kernels
- Writing larger fused kernels
- More flexible sparsity patterns
- Load-as-sparse kernels
- Add to triton ?

Conclusion

- It's early but we're building towards something that could 2x (or more) the size of models.
- Accuracy is the main blocker right now
 - We can give researchers more flexible sparsity patterns
- Performance
 - We've show that sparsity works on GPUs and is faster
 - We can push performance by stacking sparsity / working on the corner cases
- Accuracy and Performance are getting more intertwined