

# EC25-QuecOpen Hardware Design

# **LTE Module Series**

Rev. EC25-QuecOpen\_Hardware\_Design\_V1.0

Date: 2017-02-23



Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

# **Quectel Wireless Solutions Co., Ltd.**

Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Email: info@quectel.com

# Or our local office. For more information, please visit:

http://www.quectel.com/support/salesupport.aspx

# For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/techsupport.aspx

Or email to: Support@quectel.com

### **GENERAL NOTES**

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

### **COPYRIGHT**

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.



# **About the Document**

# History

| Revision | Revision Date |          | Description |
|----------|---------------|----------|-------------|
| 1.0      | 2017-02-23    | Lorry XU | Initial     |



# **Contents**

| Ab  | About the Document                                          | 2  |
|-----|-------------------------------------------------------------|----|
| Co  | Contents                                                    | 3  |
| Та  | Table Index                                                 | 5  |
| Fig | Figure Index                                                | 7  |
| 1   | Introduction                                                | 9  |
|     | 1.1. Safety Information                                     | 10 |
| 2   | Product Concept                                             | 11 |
| _   | 2.1. General Description                                    |    |
|     | 2.2. Key Features                                           |    |
|     | 2.3. Functional Diagram                                     |    |
|     | 2.4. Evaluation Board                                       | 15 |
| 3   | Application Interfaces                                      | 16 |
|     | 3.1. General Description                                    |    |
|     | 3.2. Pin Assignment                                         | 17 |
|     | 3.3. Pin Description                                        |    |
|     | 3.4. Operating Modes                                        | 31 |
|     | 3.5. Power Saving                                           | 31 |
|     | 3.5.1. Sleep Mode                                           | 31 |
|     | 3.5.1.1. Main UART Application                              | 31 |
|     | 3.5.1.2. USB Application with USB Remote Wakeup Function    | 32 |
|     | 3.5.1.3. USB Application without USB Remote Wakeup Function | 33 |
|     | 3.5.1.4. USB Application without USB Suspend Function       | 34 |
|     | 3.5.2. Airplane Mode                                        | 34 |
|     | 3.6. Power Supply                                           | 35 |
|     | 3.6.1. Power Supply Pins                                    | 35 |
|     | 3.6.2. Decrease Voltage Drop                                | 35 |
|     | 3.6.3. Reference Design for Power Supply                    | 36 |
|     | 3.6.4. Monitor the Power Supply                             | 37 |
|     | 3.7. Turn on and off Scenarios                              |    |
|     | 3.7.1. Turn on Module Using the PWRKEY                      | 37 |
|     | 3.7.2. Turn off Module                                      | 39 |
|     | 3.7.2.1. Turn off Module Using the PWRKEY Pin               |    |
|     | 3.7.2.2. Turn off Module Using AT Command or API Interface  | 40 |
|     | 3.7.3. Reset The Module                                     | 40 |
|     | 3.8. USIM Card Interface                                    | 42 |
|     | 3.9. USB Interface                                          | 44 |
|     | 3.10. UART Interfaces                                       | 46 |
|     | 3.11. PCM and I2C Interfaces                                | 49 |
|     | 3.12. SD Card Interface                                     |    |
|     | 3.13. SPI Interface                                         | 54 |



|    | 3.14. Wireless Connectivity Interfaces                   | 56 |
|----|----------------------------------------------------------|----|
|    | 3.14.1. WLAN Interface                                   | 59 |
|    | 3.14.2. BT Interface*                                    | 59 |
|    | 3.15. ADC Function                                       | 59 |
|    | 3.16. Network Status Indication                          | 60 |
|    | 3.17. STATUS                                             | 61 |
|    | 3.18. USB_BOOT Interface                                 | 62 |
| 4  | GNSS Receiver                                            | 63 |
|    | 4.1. General Description                                 | 63 |
|    | 4.2. GNSS Performance                                    | 63 |
|    | 4.3. Layout Guidelines                                   | 64 |
| 5  | Antenna Interfaces                                       | 65 |
|    | 5.1. Main/Rx-diversity Antenna Interface                 | 65 |
|    | 5.1.1. Pin Definition                                    | 65 |
|    | 5.1.2. Operating Frequency                               | 65 |
|    | 5.1.3. Reference Design of RF Antenna Interface          |    |
|    | 5.1.4. Reference Design of RF Layout                     | 67 |
|    | 5.2. GNSS Antenna Interface                              | 69 |
|    | 5.3. Antenna Installation                                |    |
|    | 5.3.1. Antenna Requirement                               |    |
|    | 5.3.2. Recommended RF Connector for Antenna Installation |    |
| 6  | Electrical, Reliability and Radio Characteristics        | 73 |
|    | 6.1. Absolute Maximum Ratings                            |    |
|    | 6.2. Power Supply Ratings                                | 74 |
|    | 6.3. Operating Temperature                               |    |
|    | 6.4. Current Consumption                                 |    |
|    | 6.5. RF Output Power                                     |    |
|    | 6.6. Electrostatic Discharge                             | 76 |
| 7  | Mechanical Dimensions                                    | 77 |
|    | 7.1. Mechanical Dimensions of the Module                 | 77 |
|    | 7.2. Recommended Footprint                               |    |
|    | 7.3. Design Effect Drawings of the Module                | 80 |
| 8  | Storage, Manufacturing and Packaging                     |    |
|    | 8.1. Storage                                             |    |
|    | 8.2. Manufacturing and Soldering                         |    |
|    | 8.3. Packaging                                           | 83 |
| 9  | Appendix A References                                    |    |
| 10 | 9 - 1                                                    |    |
| 11 | • •                                                      |    |
| 12 | 2 Appendix D EDGE Modulation and Coding Schemes          | 90 |



# **Table Index**

| TABLE 1: KEY FEATURES OF EC25-QUECOPEN MODULE                          | 12 |
|------------------------------------------------------------------------|----|
| TABLE 2: I/O PARAMETERS DEFINITION                                     | 18 |
| TABLE 3: PIN DESCRIPTION                                               | 19 |
| TABLE 4: ALTERNATE FUNCTIONS                                           | 28 |
| TABLE 5: PULL UP/DOWN RESISTANCE OF GPIO                               | 30 |
| TABLE 6: OVERVIEW OF OPERATING MODES                                   | 31 |
| TABLE 7: VBAT AND GND PINS                                             | 35 |
| TABLE 8: PWRKEY PIN DESCRIPTION                                        | 37 |
| TABLE 9: RESET_N PIN DESCRIPTION                                       |    |
| TABLE 10: PIN DEFINITION OF THE USIM CARD INTERFACE                    | 42 |
| TABLE 11: PIN DESCRIPTION OF USB INTERFACE                             | 44 |
| TABLE 12: PIN DEFINITION OF THE MAIN UART INTERFACE                    |    |
| TABLE 13: PIN DEFINITION OF THE DEBUG UART INTERFACE                   |    |
| TABLE 14: PIN DEFINITION OF THE UART1 INTERFACE                        | 47 |
| TABLE 15: PIN DEFINITION OF THE UART2 INTERFACE (MULTIPLEXED WITH SPI) | 47 |
| TABLE 16: LOGIC LEVELS OF DIGITAL I/O                                  | 48 |
| TABLE 17: PIN DEFINITION OF PCM                                        | 51 |
| TABLE 18: PIN DEFINITION OF I2C INTERFACES                             |    |
| TABLE 19: PIN DEFINITION OF THE SD CARD INTERFACE                      | 52 |
| TABLE 20: PIN DEFINITION OF THE SPI INTERFACE                          | 54 |
| TABLE 21: PARAMETERS OF SPI INTERFACE TIMING                           | 55 |
| TABLE 22: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES           |    |
| TABLE 23: PIN DEFINITION OF THE ADC                                    | 60 |
| TABLE 24: CHARACTERISTIC OF THE ADC                                    |    |
| TABLE 25: PIN DEFINITION OF NETWORK STATUS INDICATOR                   | 60 |
| TABLE 26: WORKING STATE OF THE NETWORK STATUS INDICATOR                | 61 |
| TABLE 27: PIN DEFINITION OF STATUS                                     | 61 |
| TABLE 28: PIN DEFINITION OF USB_BOOT INTERFACE                         | 62 |
| TABLE 29: GNSS PERFORMANCE                                             | 63 |
| TABLE 30: PIN DEFINITION OF THE RF ANTENNA                             | 65 |
| TABLE 31: MODULE OPERATING FREQUENCIES                                 | 65 |
| TABLE 32: PIN DEFINITION OF GNSS ANTENNA INTERFACE                     | 69 |
| TABLE 33: GNSS FREQUENCY                                               | 69 |
| TABLE 34: ANTENNA REQUIREMENTS                                         | 70 |
| TABLE 35: ABSOLUTE MAXIMUM RATINGS                                     | 73 |
| TABLE 36: POWER SUPPLY RATINGS                                         | 74 |
| TABLE 37: OPERATING TEMPERATURE                                        | 74 |
| TABLE 38: GNSS CURRENT CONSUMPTION OF EC25-QUECOPEN MODULE             | 75 |
| TABLE 39: RF OUTPUT POWER                                              | 75 |
| TABLE 40: ELECTROSTATIC DISCHARGE CHARACTERISTICS                      | 76 |
| TABLE 41: RELATED DOCUMENTS                                            | 84 |



| TABLE 42: TERMS AND ABBREVIATIONS                 | 84 |
|---------------------------------------------------|----|
| TABLE 43: DESCRIPTION OF DIFFERENT CODING SCHEMES | 88 |
| TABLE 44: GPRS MULTI-SLOT CLASSES                 | 89 |
| TABLE 45: EDGE MODUL ATION AND CODING SCHEMES     | an |



# Figure Index

| FIGURE 1: FUNCTIONAL DIAGRAM                                                      | 15  |
|-----------------------------------------------------------------------------------|-----|
| FIGURE 2: PIN ASSIGNMENT (TOP VIEW)                                               | 17  |
| FIGURE 3: SLEEP MODE APPLICATION VIA UART                                         |     |
| FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP                           | 33  |
| FIGURE 5: SLEEP MODE APPLICATION WITHOUT USB REMOTE WAKEUP                        | 33  |
| FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION                         | 34  |
| FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION                           | 36  |
| FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY                                      | 36  |
| FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY                                       | 37  |
| FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT                               | 38  |
| FIGURE 11: TURN ON THE MODULE USING KEYSTROKE                                     | 38  |
| FIGURE 12: TIMING OF TURNING ON MODULE                                            |     |
| FIGURE 13: TIMING OF TURNING OFF MODULE                                           | 40  |
| FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT                  | 41  |
| FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON                           |     |
| FIGURE 16: TIMING OF RESETTING MODULE                                             | 42  |
| FIGURE 17: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH AN 8-PIN USIM CARD       |     |
| CONNECTOR                                                                         | 43  |
| FIGURE 18: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNEC |     |
|                                                                                   |     |
| FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION                                   |     |
| FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP                                 |     |
| FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT                              |     |
| FIGURE 22: PRIMARY MODE TIMING                                                    |     |
| FIGURE 23: AUXILIARY MODE TIMING                                                  |     |
| FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC                  |     |
| FIGURE 25: REFERENCE CIRCUIT OF SD CARD APPLICATION                               |     |
| FIGURE 26: SPI TIMING                                                             |     |
| FIGURE 27: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODL   | JLE |
|                                                                                   |     |
| FIGURE 28: REFERENCE CIRCUIT OF THE NETWORK STATUS INDICATOR                      |     |
| FIGURE 29: REFERENCE CIRCUITS OF STATUS                                           |     |
| FIGURE 30: REFERENCE CIRCUIT OF USB_BOOT INTERFACE                                |     |
| FIGURE 31: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE                              |     |
| FIGURE 32: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB                                |     |
| FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB                        | 67  |
| FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE  |     |
| GROUND)                                                                           |     |
| FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE  |     |
| GROUND)                                                                           |     |
| FIGURE 36: REFERENCE CIRCUIT OF GNSS ANTENNA                                      | 69  |



| FIGURE 37: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) | 71 |
|--------------------------------------------------------------|----|
| FIGURE 38: MECHANICALS OF UF.L-LP CONNECTORS                 | 71 |
| FIGURE 39: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)        | 72 |
| FIGURE 40: MODULE TOP AND SIDE DIMENSIONS                    | 77 |
| FIGURE 41: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW)            | 78 |
| FIGURE 42: RECOMMENDED FOOTPRINT (TOP VIEW)                  | 79 |
| FIGURE 43: TOP VIEW OF THE MODULE                            | 80 |
| FIGURE 44: BOTTOM VIEW OF THE MODULE                         | 80 |
| FIGURE 45: REFLOW SOLDERING THERMAL PROFILE                  | 82 |
| FIGURE 46: TAPE AND REEL SPECIFICATIONS                      | 83 |



# 1 Introduction

This document defines the EC25-QuecOpen module and describes its air interface and hardware interface which are connected with your application.

This document can help you quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EC25-QuecOpen module. Associated with application note and user guide, customers can use EC25-QuecOpen module to design and set up mobile applications easily.



# 1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC25-QuecOpen module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customer's failure to comply with these precautions.



Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.



Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft.



Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are desinged to prevent possible interference with sensitive medical equipment.



Cellular terminals or mobiles operatingover radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid USIM/SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.



Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.



In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.



# **2** Product Concept

# 2.1. General Description

QuecOpen<sup>TM</sup> is an application solution where the module acts as a main processor. With the development of communication technology and the ever-changing market demands, more and more customers have realized the advantages of QuecOpen<sup>TM</sup> solution. Especially, its advantage in reducing the product cost is greatly valued by customers. With QuecOpen<sup>TM</sup> solution, development flow for wireless application and hardware design will be simplified. Main features of QuecOpen<sup>TM</sup> solution are listed below:

- Simplifies the development of embedded applications, and shortens product development cycle
- Simplifies circuit design, and reduces product cost
- Decreases the size of terminal products
- Reduces power consumption
- Supports remote upgrade of firmware wirelessly
- Improves products' cost-performance ratio, and enhances products' competitiveness

EC25-QuecOpen module is a baseband processor platform based on ARM Cortex A7 kernel. The maximum dominant frequency is up to 1.2GHz. Customers can use EC25-QuecOpen modules as the basis for development of QuecOpen<sup>TM</sup> applications.

EC25-QuecOpen is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive diversity, and provides data connectivity on LTE-FDD, LTE-TDD, DC-HSPA+, HSPA+, HSDPA, HSUPA, WCDMA, EDGE and GPRS networks. It also provides GNSS<sup>1)</sup> and voice<sup>2)</sup> functionalities for your specific application.

# NOTES

- 1) GNSS function is optional.
- 2. <sup>2)</sup> EC25-QuecOpen series module includes **Data-only** and **Telematics** versions. **Data-only** version does not support voice function, while **Telematics** version supports it.

With a compact profile of 32.0mm × 29.0mm × 2.4mm, EC25-QuecOpen can meet almost all requirements for M2M applications such as automobile, metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc.



EC25-QuecOpen is an SMD type module which can be embedded in applications through its 144-pin pads, including 80 LCC signal pads and 64 LGA signal pads.

# 2.2. Key Features

The following table describes the detailed features of EC25-QuecOpen module.

Table 1: Key Features of EC25-QuecOpen Module

| Feature            | Details                                                         |
|--------------------|-----------------------------------------------------------------|
| Power Supply       | Supply voltage: 3.3V~4.3V Typical supply voltage: 3.8V          |
|                    | Class 4 (33dBm±2dB) for GSM850                                  |
|                    | Class 4 (33dBm±2dB) for GSM900                                  |
|                    | Class 1 (30dBm±2dB) for DCS1800                                 |
|                    | Class 1 (30dBm±2dB) for PCS1900                                 |
|                    | Class E2 (27dBm±3dB) for GSM850 8-PSK                           |
| Transmitting Power | Class E2 (27dBm±3dB) for GSM900 8-PSK                           |
|                    | Class E2 (26dBm±3dB) for DCS1800 8-PSK                          |
|                    | Class E2 (26dBm±3dB) for PCS1900 8-PSK                          |
|                    | Class 3 (24dBm+1/-3dB) for WCDMA bands                          |
|                    | Class 3 (23dBm±2dB) for LTE-FDD bands                           |
|                    | Class 3 (23dBm±2dB) for LTE-TDD bands                           |
|                    | Support up to non-CA CAT4                                       |
|                    | Support 1.4 to 20MHz RF bandwidth                               |
| LTE Features       | Support MIMO in DL direction                                    |
|                    | FDD: Max 50Mbps (UL), 150Mbps (DL)                              |
|                    | TDD: Max 35Mbps (UL), 130Mbps (DL)                              |
|                    | Support 3GPP R8 DC-HSPA+                                        |
| WCDMA Features     | Support 16-QAM, 64-QAM and QPSK modulation                      |
| WODINA Features    | 3GPP R6 CAT6 HSUPA: Max 5.76Mbps (UL)                           |
|                    | 3GPP R8 CAT24 DC-HSPA+: Max 42Mbps (DL)                         |
|                    | R99:                                                            |
|                    | CSD: 9.6kbps, 14.4kbps                                          |
|                    | GPRS:                                                           |
|                    | Support GPRS multi-slot class 12 (12 by default)                |
| GSM Features       | Coding scheme: CS-1, CS-2, CS-3 and CS-4                        |
|                    | Maximum of four Rx time slots per frame                         |
|                    | EDGE:                                                           |
|                    | Support EDGE multi-slot class 12 (12 by default)                |
|                    | Support GMSK and 8-PSK for different MCS (Modulation and Coding |



|                            | Scheme)  Downlink coding schemes: CS 1-4 and MCS 1-9  Uplink coding schemes: CS 1-4 and MCS 1-9                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internet Protocol Features | Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/ MMS*/FTPS*/SMTPS*/SSL* protocols Support the protocols PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) usually used for PPP connections                                                                                                                                                                                                |
| SMS                        | Text and PDU modes Point to point MO and MT SMS cell broadcast SMS storage: ME by default                                                                                                                                                                                                                                                                                                                                                    |
| USIM Interface             | Support USIM/SIM card: 1.8V, 3.0V                                                                                                                                                                                                                                                                                                                                                                                                            |
| Audio Features             | Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression                                                                                                                                                                                                                                                                               |
| PCM Interface              | Used for audio function with external codec Support 8-bit A-law*, µ-law* and 16-bit linear data formats Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization                                                                                                                                                                              |
| USB Interface              | Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA output, software debugging and firmware upgrade Support USB drivers for: Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Windows 10, Linux 2.6 or later, Android 4.0/4.2/4.4/5.0/5.1/6.0                                                                              |
| UART Interface             | Main UART: Used for AT command communication only Baud rate reach up to 3000000bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART: Used for Linux console, log output 115200bps baud rate UART1: Used for communication with peripherals Baud rate reach up to 3000000bps, 115200bps by default Support RTS and CTS hardware flow control UART2 (Multiplexing with SPI): Used for communication with peripherals |



|                          | Baud rate reach up to 3000000bps, 115200bps by default                                                                      |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                          | Support RTS and CTS hardware flow control                                                                                   |  |  |  |
| SD Card Interface        | Compliant with SD3.0 protocol                                                                                               |  |  |  |
| SPI Interface            | Support master mode only                                                                                                    |  |  |  |
| - Interidee              | Maximum clock frequency rate: 50MHz                                                                                         |  |  |  |
| I2C Interface            | Compliant with I2C specification 5.0 Multi-master is not supported                                                          |  |  |  |
| Wireless Connectivity    | Support a low-power SDIO 3.0 interface for WLAN and UART/PCM                                                                |  |  |  |
| Interfaces               | interfaces for Bluetooth*                                                                                                   |  |  |  |
| Rx-diversity             | Support LTE/WCDMA Rx-diversity                                                                                              |  |  |  |
| CNCC Footures            | Gen8C-Lite of Qualcomm                                                                                                      |  |  |  |
| GNSS Features            | Protocol: NMEA 0183                                                                                                         |  |  |  |
| AT Commands              | Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands                                                      |  |  |  |
| Network Indication       | NET_STATUS is used to indicate network connectivity status                                                                  |  |  |  |
| Antenna Interface        | Including main antenna interface (ANT_MAIN), Rx-diversity antenna interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS) |  |  |  |
| Physical Characteristics | Size: (32.0±0.15)mm × (29.0±0.15)mm × (2.4±0.2)mm Weight: approx. 4.9g                                                      |  |  |  |
| Tomporatura Danga        | Operation temperature range: -35°C ~ +75°C 1)                                                                               |  |  |  |
| Temperature Range        | Extended temperature range: -40°C ~ +85°C <sup>2)</sup>                                                                     |  |  |  |
| Firmware Upgrade         | USB interface and DFOTA*                                                                                                    |  |  |  |
| RoHS                     | All hardware components are fully compliant with EU RoHS directive                                                          |  |  |  |
|                          |                                                                                                                             |  |  |  |

# **NOTES**

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. <sup>2)</sup> Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P<sub>out</sub> might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.
- 3. "\*" means under development.



# 2.3. Functional Diagram

The following figure shows a block diagram of EC25-QuecOpen and illustrates the major functional parts.

- Power management
- Baseband
- DDR+NAND flash
- Radio frequency
- Peripheral interfaces



**Figure 1: Functional Diagram** 

# 2.4. Evaluation Board

In order to help customers develop applications conveniently with EC25-QuecOpen module, Quectel supplies the evaluation board (EVB), USB data cable, earphone, antenna and other peripherals to control or test the module.



# **3** Application Interfaces

# 3.1. General Description

EC25-QuecOpen is equipped with 80-pin LCC pads plus 64-pin LGA pads. Sub-interfaces included in these pads are described in detail in the following chapters:

- Power supply
- USIM card interface
- USB interface
- UART interfaces
- PCM and I2C interfaces
- SD card interface
- SPI interface
- Wireless connectivity interface
- ADC interface
- Status indication interfaces
- USB\_BOOT interface



# 3.2. Pin Assignment

The following figure shows the pin assignment of EC25-QuecOpen module.



Figure 2: Pin Assignment (Top View)

# **NOTES**

- 1. 1) means these pins cannot be pulled up before startup.
- 2. <sup>2)</sup> PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
- 3. Pads 37~40, 118, 127 and 129~139 are wireless connectivity interfaces, among which pads 127 and



- 129~138 are WLAN function pins, and others are Bluetooth (BT) function related pins. BT function is under development.
- 4. Pads 24~27 are multiplexing pins used for audio design on EC25-QuecOpen module and BT function on FC20 module.
- 5. Keep all RESERVED pins and unused pins unconnected.
- 6. GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84 should not be designed in schematic and PCB decal.
- 7. "\*" means these interface functions are only supported on **Telematics** version.

# 3.3. Pin Description

The following tables show the pin definition, alternate function and GPIO pull up/down resistance of EC25-QuecOpen module.

Table 2: I/O Parameters Definition

| Туре | Description                                                 |
|------|-------------------------------------------------------------|
| Ю    | Bidirectional                                               |
| DI   | Digital input                                               |
| DO   | Digital output                                              |
| PI   | Power input                                                 |
| РО   | Power output                                                |
| Al   | Analog input                                                |
| AO   | Analog output                                               |
| OD   | Open drain                                                  |
| В    | Bidirectional digital with CMOS input                       |
| ВН   | High-voltage tolerant bidirectional digital with CMOS input |
| PU   | Pull up                                                     |
| PD   | Pull down                                                   |
| Н    | High level                                                  |
| L    | Low level                                                   |



**Table 3: Pin Description** 

| Power Supply   |                                                             |     |                                             |                                                                                  |                                                                                   |
|----------------|-------------------------------------------------------------|-----|---------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Pin Name       | Pin No.                                                     | I/O | Description                                 | DC Characteristics                                                               | Comment                                                                           |
| VBAT_BB        | 59, 60                                                      | PI  | Power supply for module baseband part       | Vmax=4.3V<br>Vmin=3.3V<br>Vnorm=3.8V                                             | It must be able to provide sufficient current up to 0.8A.                         |
| VBAT_RF        | 57, 58                                                      | PI  | Power supply for module RF part             | Vmax=4.3V<br>Vmin=3.3V<br>Vnorm=3.8V                                             | It must be able to provide sufficient current up to 1.8A in a burst transmission. |
| VDD_EXT        | 7                                                           | РО  | Provide 1.8V for external circuit           | Vnorm=1.8V<br>I <sub>O</sub> max=50mA                                            | Power supply for external GPIO's pull up circuits.                                |
| GND            | 8, 9, 19,<br>22, 36, 46,<br>48, 50~54,<br>56, 72,<br>85~112 |     | Ground                                      |                                                                                  |                                                                                   |
| Turn on/off    |                                                             |     |                                             |                                                                                  |                                                                                   |
| Pin Name       | Pin No.                                                     | I/O | Description                                 | DC Characteristics                                                               | Comment                                                                           |
| PWRKEY         | 21                                                          | DI  | Turn on/off the module                      | V <sub>IH</sub> max=2.1V<br>V <sub>IH</sub> min=1.3V<br>V <sub>IL</sub> max=0.5V | The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.     |
| RESET_N        | 20                                                          | DI  | Reset the module                            | V <sub>IH</sub> max=2.1V<br>V <sub>IH</sub> min=1.3V<br>V <sub>IL</sub> max=0.5V | Pull-up to 1.8V internally. Active low.                                           |
| Status India   | cation                                                      |     |                                             |                                                                                  |                                                                                   |
| Pin Name       | Pin No.                                                     | I/O | Description                                 | DC Characteristics                                                               | Comment                                                                           |
| STATUS         | 61                                                          | OD  | Indicate the module operating status        | The drive current should be less than 0.9mA.                                     | Require external pull-up. If unused, keep it open.                                |
| NET_<br>STATUS | 6                                                           | DO  | Indicate the module network activity status | V <sub>OH</sub> min=1.35V<br>V <sub>OL</sub> max=0.45V                           | 1.8V power domain. If unused, keep it open.                                       |
| USB Interface  |                                                             |     |                                             |                                                                                  |                                                                                   |
| Pin Name       | Pin No.                                                     | I/O | Description                                 | DC Characteristics                                                               | Comment                                                                           |



| USB_VBUS      | 71      | PI  | USB detection                  | Vmax=5.25V<br>Vmin=3.0V<br>Vnorm=5.0V                                                                                                                                                                                                                                        |                                                             |  |
|---------------|---------|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| USB_DP        | 69      | Ю   | USB differential data bus      | Compliant with USB 2.0 standard specification.                                                                                                                                                                                                                               | Require differential                                        |  |
| USB_DM        | 70      | Ю   | USB differential data bus      | Compliant with USB 2.0 standard specification.                                                                                                                                                                                                                               | impedance of 90 ohm.                                        |  |
| USIM Interfac | e       |     |                                |                                                                                                                                                                                                                                                                              |                                                             |  |
| Pin Name      | Pin No. | I/O | Description                    | DC Characteristics                                                                                                                                                                                                                                                           | Comment                                                     |  |
| USIM_GND      | 10      |     | Specified ground for USIM card |                                                                                                                                                                                                                                                                              | Connect to ground of USIM card connector.                   |  |
| USIM_VDD      | 14      | РО  | Power supply for USIM card     | For 1.8V USIM: Vmax=1.9V Vmin=1.7V  For 3.0V USIM: Vmax=3.05V Vmin=2.7V                                                                                                                                                                                                      | Either 1.8V or 3V is supported by the module automatically. |  |
| USIM_DATA     | 15      | Ю   | Data signal of USIM card       | I <sub>O</sub> max=50mA  For 1.8V USIM:  V <sub>IL</sub> max=0.6V  V <sub>IH</sub> min=1.2V  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=1.35V  For 3.0V USIM:  V <sub>IL</sub> max=1.0V  V <sub>IH</sub> min=1.95V  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=2.55V |                                                             |  |
| USIM_CLK      | 16      | DO  | Clock signal of USIM card      | For 1.8V USIM:  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=1.35V  For 3.0V USIM:  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=2.55V                                                                                                                                   |                                                             |  |
| USIM_RST      | 17      | DO  | Reset signal of USIM card      | For 1.8V USIM:<br>V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                                                                                                     |                                                             |  |



|                   |           |     |                            | For 3.0V USIM:<br>V <sub>OL</sub> max=0.45V                                                                   |                                              |  |
|-------------------|-----------|-----|----------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
|                   |           |     |                            | V <sub>OH</sub> min=2.55V                                                                                     |                                              |  |
| USIM_<br>PRESENCE | 13        | DI  | USIM card insert detection | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V | 1.8V power domain. If unused, keep it open.  |  |
| Main UART I       | nterface  |     |                            |                                                                                                               |                                              |  |
| Pin Name          | Pin No.   | I/O | Description                | DC Characteristics                                                                                            | Comment                                      |  |
| MAIN_CTS          | 64        | DO  | Clear to send              | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.  |  |
| MAIN_RTS          | 65        | DI  | Request to send            | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                             | 1.8V power domain. If unused, keep it open.  |  |
| MAIN_TXD          | 67        | DO  | Transmit data              | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain.  If unused, keep it open. |  |
| MAIN_RXD          | 68        | DI  | Receive data               | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                             | 1.8V power domain. If unused, keep it open.  |  |
| UART1 Interf      | ace       |     |                            |                                                                                                               |                                              |  |
| Pin Name          | Pin No.   | I/O | Description                | DC Characteristics                                                                                            | Comment                                      |  |
| UART1_<br>TXD     | 63        | DO  | Transmit data              | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.  |  |
| UART1_<br>RXD     | 66        | DI  | Receive data               | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                             | 1.8V power domain. If unused, keep it open.  |  |
| Debug UART        | Interface |     |                            |                                                                                                               |                                              |  |
| Pin Name          | Pin No.   | I/O | Description                | DC Characteristics                                                                                            | Comment                                      |  |
| DBG_TXD           | 12        | DO  | Transmit data              | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.  |  |



| DBG_RXD       | 11      | DI  | Receive data                                | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                                             | 1.8V power domain. If unused, keep it open.                                                                               |
|---------------|---------|-----|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| ADC Interfac  | e       |     |                                             |                                                                                                                               |                                                                                                                           |
| Pin Name      | Pin No. | I/O | Description                                 | DC Characteristics                                                                                                            | Comment                                                                                                                   |
| ADC0          | 45      | Al  | General purpose analog to digital converter | Voltage range:<br>0.3V to VBAT_BB                                                                                             | If unused, keep it open.                                                                                                  |
| ADC1          | 44      | Al  | General purpose analog to digital converter | Voltage range:<br>0.3V to VBAT_BB                                                                                             | If unused, keep it open.                                                                                                  |
| PCM Interfac  | e       |     |                                             |                                                                                                                               |                                                                                                                           |
| Pin Name      | Pin No. | I/O | Description                                 | DC Characteristics                                                                                                            | Comment                                                                                                                   |
| PCM_IN        | 24      | DI  | PCM data input                              | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                                             | 1.8V power domain.  If unused, keep it open.                                                                              |
| PCM_OUT       | 25      | DO  | PCM data output                             | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                        | 1.8V power domain. If unused, keep it open.                                                                               |
| PCM_SYNC      | 26      | Ю   | PCM data frame synchronization signal       | $V_{OL}$ max=0.45V<br>$V_{OH}$ min=1.35V<br>$V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V | 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. |
| PCM_CLK       | 27      | Ю   | PCM clock                                   | $V_{OL}$ max=0.45V<br>$V_{OH}$ min=1.35V<br>$V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V | 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. |
| I2C Interface |         |     |                                             |                                                                                                                               |                                                                                                                           |
| Pin Name      | Pin No. | I/O | Description                                 | DC Characteristics                                                                                                            | Comment                                                                                                                   |
| I2C_SCL       | 41      | OD  | I2C serial clock                            |                                                                                                                               | External pull-up resistor is required.                                                                                    |
|               |         |     |                                             |                                                                                                                               |                                                                                                                           |



| I2C_SDA        | 42      | OD  | I2C serial data    |                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8V only. If unused, keep it open.  External pull-up resistor is required. 1.8V only. If unused, keep it open.                                         |
|----------------|---------|-----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| SD Card Inte   | erface  |     |                    |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         |
| Pin Name       | Pin No. | I/O | Description        | DC Characteristics                                                                                                                                                                                                                                                                                                                                                                                    | Comment                                                                                                                                                 |
| SDC2_<br>DATA3 | 28      | IO  | SD card SDIO data3 | For 1.8V signaling:  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=1.4V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> max=0.58V  V <sub>IH</sub> min=1.27V  V <sub>IH</sub> max=2.0V  For 3.0V signaling:  V <sub>OL</sub> max=0.38V  V <sub>OH</sub> min=2.01V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> max=0.76V  V <sub>IH</sub> min=1.72V  V <sub>IH</sub> max=3.34V | SDIO signal level can be selected according to the one supported by SD card. Please refer to SD 3.0 protocol for more details. If unused, keep it open. |
| SDC2_<br>DATA2 | 29      | IO  | SD card SDIO data2 | For 1.8V signaling:  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=1.4V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> max=0.58V  V <sub>IH</sub> min=1.27V  V <sub>IH</sub> max=2.0V  For 3.0V signaling:  V <sub>OL</sub> max=0.38V  V <sub>OH</sub> min=2.01V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> max=0.76V  V <sub>IH</sub> min=1.72V  V <sub>IH</sub> max=3.34V | SDIO signal level can be selected according to the one supported by SD card. Please refer to SD 3.0 protocol for more details. If unused, keep it open. |
| SDC2_<br>DATA1 | 30      | Ю   | SD card SDIO data1 | For 1.8V signaling:<br>V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.4V<br>V <sub>IL</sub> min=-0.3V                                                                                                                                                                                                                                                                                             | SDIO signal level can<br>be selected<br>according to the one<br>supported by SD                                                                         |



|                |    |    |                         | V <sub>IL</sub> max=0.58V<br>V <sub>IH</sub> min=1.27V<br>V <sub>IH</sub> max=2.0V<br>For 3.0V signaling:<br>V <sub>OL</sub> max=0.38V<br>V <sub>OH</sub> min=2.01V<br>V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.76V<br>V <sub>IH</sub> min=1.72V<br>V <sub>IH</sub> max=3.34V                                                                                                               | card. Please refer to SD 3.0 protocol for more details. If unused, keep it open.                                                                        |
|----------------|----|----|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDC2_<br>DATA0 | 31 | IO | SD card SDIO data0      | For 1.8V signaling:  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=1.4V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> max=0.58V  V <sub>IH</sub> min=1.27V  V <sub>IH</sub> max=2.0V  For 3.0V signaling:  V <sub>OL</sub> max=0.38V  V <sub>OH</sub> min=2.01V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> max=0.76V  V <sub>IH</sub> min=1.72V  V <sub>IH</sub> max=3.34V | SDIO signal level can be selected according to the one supported by SD card. Please refer to SD 3.0 protocol for more details. If unused, keep it open. |
| SDC2_CLK       | 32 | DO | SD card SDIO clock      | For 1.8V signaling: V <sub>OL</sub> max=0.45V V <sub>OH</sub> min=1.4V  For 3.0V signaling: V <sub>OL</sub> max=0.38V V <sub>OH</sub> min=2.01V                                                                                                                                                                                                                                                       | SDIO signal level can be selected according to the one supported by SD card. Please refer to SD3.0 protocol for more details. If unused, keep it open.  |
| SDC2_CMD       | 33 | Ю  | SD card SDIO<br>command | For 1.8V signaling:  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=1.4V  V <sub>IL</sub> min=-0.3V  V <sub>IL</sub> max=0.58V  V <sub>IH</sub> min=1.27V  V <sub>IH</sub> max=2.0V  For 3.0V signaling:                                                                                                                                                                                              | SDIO signal level can be selected according to the one supported by SD card. Please refer to SD3.0 protocol for more details. If unused, keep it open.  |



|                  |         |     |                                      | V <sub>OL</sub> max=0.38V<br>V <sub>OH</sub> min=2.01V<br>V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.76V<br>V <sub>IH</sub> min=1.72V<br>V <sub>IH</sub> max=3.34V |                                                                              |
|------------------|---------|-----|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| SD_INS_<br>DET   | 23      | DI  | SD card insert detection             | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                                                              | 1.8V power domain. If unused, keep it open.                                  |
| VDD_SDIO         | 34      | РО  | SD card SDIO pull<br>up power source | I <sub>O</sub> max=50mA                                                                                                                                                    | Configurable power source. 1.8V/2.85V power domain. If unused, keep it open. |
| SPI Interface    |         |     |                                      |                                                                                                                                                                            |                                                                              |
| Pin Name         | Pin No. | I/O | Description                          | DC Characteristics                                                                                                                                                         | Comment                                                                      |
| SPI_CS_N         | 37      | DO  | SPI chip selection                   | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                     | 1.8V power domain. If unused, keep it open.                                  |
| SPI_MOSI         | 38      | DO  | SPI master out slave in              | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                     | 1.8V power domain. If unused, keep it open.                                  |
| SPI_MISO         | 39      | DI  | SPI master in slave out              | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                                                              | 1.8V power domain. If unused, keep it open.                                  |
| SPI_CLK          | 40      | DO  | SPI serial clock                     | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                     | 1.8V power domain. If unused, keep it open.                                  |
| WLAN Interfa     | ice     |     |                                      |                                                                                                                                                                            |                                                                              |
| Pin Name         | Pin No. | I/O | Description                          | DC Characteristics                                                                                                                                                         | Comment                                                                      |
| WLAN_SLP_<br>CLK | 118     | DO  | WLAN sleep clock                     |                                                                                                                                                                            | If unused, keep it open.                                                     |
| PM_ENABLE        | 127     | DO  | External power enable control        | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                     | 1.8V power domain. If unused, keep it open.                                  |
| SDC1_<br>DATA3   | 129     | Ю   | WLAN SDIO data3                      | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                     | 1.8V power domain. If unused, keep it                                        |
|                  |         |     |                                      |                                                                                                                                                                            |                                                                              |



|     |                                 |                                                | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                                                                                                        | open.                                                    |
|-----|---------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 130 | Ю                               | WLAN SDIO data2                                | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V<br>V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                  | 1.8V power domain. If unused, keep it open.              |
| 131 | Ю                               | WLAN SDIO data1                                | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V<br>V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                  | 1.8V power domain. If unused, keep it open.              |
| 132 | Ю                               | WLAN SDIO data0                                | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V<br>V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                  | 1.8V power domain. If unused, keep it open.              |
| 133 | DO                              | WLAN SDIO clock                                | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                                   | 1.8V power domain. If unused, keep it open.              |
| 134 | DO                              | WLAN SDIO command                              | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                                   | 1.8V power domain. If unused, keep it open.              |
| 135 | DI                              | WLAN wake up module                            | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                                                                                                        | 1.8V power domain. Active low. If unused, keep it open.  |
| 136 | DO                              | WLAN enabled                                   | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                                   | 1.8V power domain. Active high. If unused, keep it open. |
| 137 | DI                              | LTE/WLAN&BT coexistence signal                 | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                                                                            | 1.8V power domain. If unused, keep it open.              |
| 138 | DO                              | LTE/WLAN&BT coexistence signal                 | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                                   | 1.8V power domain. If unused, keep it open.              |
|     | 131<br>132<br>133<br>134<br>135 | 131 IO  132 IO  133 DO  134 DO  135 DI  137 DI | 131 IO WLAN SDIO data1  132 IO WLAN SDIO data0  133 DO WLAN SDIO clock  134 DO WLAN SDIO command  135 DI WLAN wake up module  136 DO WLAN enabled  137 DI LTE/WLAN&BT coexistence signal | 130                                                      |



| RF Interface     |         |     |                              |                                                                                                                                                 |                                             |
|------------------|---------|-----|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Pin Name         | Pin No. | I/O | Description                  | DC Characteristics                                                                                                                              | Comment                                     |
| ANT_DIV          | 35      | AI  | Diversity antenna            | 50 ohm impedance                                                                                                                                | If unused, keep it open.                    |
| ANT_MAIN         | 49      | Ю   | Main antenna                 | 50 ohm impedance                                                                                                                                |                                             |
| ANT_GNSS         | 47      | Al  | GNSS antenna                 | 50 ohm impedance                                                                                                                                | If unused, keep it open.                    |
| <b>GPIO Pins</b> |         |     |                              |                                                                                                                                                 |                                             |
| Pin Name         | Pin No. | I/O | Description                  | DC Characteristics                                                                                                                              | Comment                                     |
| GPIO1            | 1       | Ю   | General purpose input/output | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V<br>$V_{OL}$ max=0.45V<br>$V_{OH}$ min=1.35V                   | 1.8V power domain. If unused, keep it open. |
| GPIO2            | 02 2 10 |     | General purpose input/output | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V<br>$V_{OL}$ max=0.45V<br>$V_{OH}$ min=1.35V                   | 1.8V power domain. If unused, keep it open. |
| GPIO3            | 3       | Ю   | General purpose input/output | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V<br>$V_{OL}$ max=0.45V<br>$V_{OH}$ min=1.35V                   | 1.8V power domain. If unused, keep it open. |
| GPIO4            | 4       | Ю   | General purpose input/output | $V_{IL}$ min=-0.3 $V$<br>$V_{IL}$ max=0.6 $V$<br>$V_{IH}$ min=1.2 $V$<br>$V_{IH}$ max=2.0 $V$<br>$V_{OL}$ max=0.45 $V$<br>$V_{OH}$ min=1.35 $V$ | 1.8V power domain. If unused, keep it open. |
| GPIO5            | 5       | Ю   | General purpose input/output | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V<br>$V_{OL}$ max=0.45V<br>$V_{OH}$ min=1.35V                   | 1.8V power domain. If unused, keep it open. |



| GPIO6         | 62                                                           | Ю   | General purpose input/output            | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V<br>$V_{OL}$ max=0.45V<br>$V_{OH}$ min=1.35V | 1.8V power domain. If unused, keep it open. |
|---------------|--------------------------------------------------------------|-----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Other Interfa | ce Pins                                                      |     |                                         |                                                                                                                               |                                             |
| Pin Name      | Pin No.                                                      | I/O | Description                             | DC Characteristics                                                                                                            | Comment                                     |
| USB_BOOT      | 115                                                          | DI  | Force the module to boot from USB port. | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                 | 1.8V power domain. If unused, keep it open. |
| BT_EN*        | 139                                                          | DO  | BT function enabled                     |                                                                                                                               | This function is still under development.   |
| RESERVED I    | Pins                                                         |     |                                         |                                                                                                                               |                                             |
| Pin Name      | Pin No.                                                      | I/O | Description                             | DC Characteristics                                                                                                            | Comment                                     |
| RESERVED      | 18, 43, 55, 73~84, 113, 114, 116, 117, 119~126, 128, 140~144 |     | Reserved                                | 46/                                                                                                                           | Keep these pins unconnected.                |

# **NOTES**

- 1. Keep all RESERVED pins and unused pins unconnected.
- 2. "\*" means under development.

**Table 4: Alternate Functions** 

| Pin Name | Pin<br>No. | Model 1<br>(Default) | Model 2 | Model 3 | Reset 1) | Wake-up Interrupt <sup>2)</sup> | Comment           |
|----------|------------|----------------------|---------|---------|----------|---------------------------------|-------------------|
| GPIO1    | 1          | GPIO_25              |         |         | B-PD,L   | YES                             | BOOT_<br>CONFIG_2 |
| GPIO2    | 2          | GPIO_10              |         |         | B-PD,L   | NO                              |                   |
| GPIO3    | 3          | GPIO_42              |         |         | B-PD,L   | YES                             |                   |



| GPIO4             | 4   | GPIO_11            |         |                    | B-PD,L | YES |                   |
|-------------------|-----|--------------------|---------|--------------------|--------|-----|-------------------|
| GPIO5             | 5   | GPIO_24            |         |                    | B-PD,L | NO  | BOOT_<br>CONFIG_1 |
| USIM_<br>PRESENCE | 13  | USIM_<br>PRESENCE  | GPIO_34 |                    | B-PD,L | YES |                   |
| SD_INS_DET        | 23  | SD_INS_<br>DET     | GPIO_26 |                    | B-PD,L | YES |                   |
| PCM_IN            | 24  | PCM_IN             | GPIO_76 |                    | B-PD,L | YES |                   |
| PCM_OUT           | 25  | PCM_OUT            | GPIO_77 |                    | B-PD,L | NO  |                   |
| PCM_SYNC          | 26  | PCM_SYNC           | GPIO_79 |                    | B-PD,L | YES | BOOT_<br>CONFIG_7 |
| PCM_CLK           | 27  | PCM_CLK            | GPIO_78 |                    | B-PD,L | NO  | BOOT_<br>CONFIG_8 |
| SPI_CS_N          | 37  | SPI_CS_N_<br>BLSP6 | GPIO_22 | UART_RT<br>S_BLSP6 | B-PD,L | YES |                   |
| SPI_MOSI          | 38  | SPI_MOSI_<br>BLSP6 | GPIO_20 | UART_TX<br>D_BLSP6 | B-PD,L | YES |                   |
| SPI_MISO          | 39  | SPI_MISO_<br>BLSP6 | GPIO_21 | UART_RX<br>D_BLSP6 | B-PD,L | YES |                   |
| SPI_CLK           | 40  | SPI_CLK_<br>BLSP6  | GPIO_23 | UART_CT<br>S_BLSP6 | B-PU,H | NO  | BOOT_<br>CONFIG_4 |
| I2C_SCL           | 41  | I2C_SCL_<br>BLSP2  | GPIO_7  | UART_CT<br>S_BLSP2 | B-PD,L | NO  |                   |
| I2C_SDA           | 42  | I2C_SDA_<br>BLSP2  | GPIO_6  | UART_RT<br>S_BLSP2 | B-PD,L | NO  |                   |
| GPIO6             | 62  | GPIO_75            |         |                    | B-PD,L | YES |                   |
| UART1_TXD         | 63  | UART_TXD<br>_BLSP2 | GPIO_4  | UART_TX<br>D_BLSP2 | B-PD,L | NO  |                   |
| UART1_RXD         | 66  | UART_RXD<br>_BLSP2 | GPIO_5  | UART_RX<br>D_BLSP2 | B-PD,L | YES |                   |
| MAIN_CTS          | 64  | UART_CTS<br>_BLSP3 |         |                    | B-PD,L |     |                   |
| MAIN_RTS          | 65  | UART_RTS<br>_BLSP3 |         |                    | B-PD,L |     |                   |
| MAIN_TXD          | 67  | UART_TXD<br>_BLSP3 |         |                    | B-PD,L |     |                   |
| MAIN_RXD          | 68  | UART_RXD<br>_BLSP3 |         |                    | B-PD,L |     |                   |
| SDC1_             | 129 | SDC1_              | GPIO_12 |                    | B-PD,L | YES |                   |



| DATA3             |     | DATA3             |         |            |     |                    |
|-------------------|-----|-------------------|---------|------------|-----|--------------------|
| SDC1_             | 130 | SDC1_             | GPIO_13 | <br>B-PD,L | YES |                    |
| DATA2             |     | DATA2             |         |            |     |                    |
| SDC1_<br>DATA1    | 131 | SDC1_<br>DATA1    | GPIO_14 | <br>B-PD,L | NO  |                    |
| SDC1_<br>DATA0    | 132 | SDC1_<br>DATA0    | GPIO_15 | <br>B-PD,L | NO  |                    |
| SDC1_CLK          | 133 | SDC1_CLK          | GPIO_16 | <br>B-NP,L | YES |                    |
| SDC1_CMD          | 134 | SDC1_CMD          | GPIO_17 | <br>B-PD,L | YES |                    |
| WAKE_<br>WLAN     | 135 | WAKE_<br>WLAN     | GPIO_59 | <br>B-PD,L | YES |                    |
| WLAN_EN           | 136 | WLAN_EN           | GPIO_38 | <br>B-PD,L | YES | BOOT_CO<br>NFIG_12 |
| COEX_<br>UART_RXD | 137 | COEX_<br>UART_RXD | GPIO_37 | <br>B-PD,L | YES | FORCE_<br>USB_BOOT |
| COEX_<br>UART_TXD | 138 | COEX_<br>UART_TXD | GPIO_36 | <br>B-PD,L | NO  | BOOT_<br>CONFIG_3  |

# **NOTES**

- 1. The pin function in Model 2 and Model 3 takes effect only after software configuration.
- 2. 1) Please refer to *Table 2* for more details about the symbol description.
- 3. <sup>2)</sup> All GPIOs support interrupt function. But not all interrupts can wake up the sleeping module. The wake-up interrupt function is disabled by default.
- 4. All BOOT\_CONFIG and FORCE\_USB\_BOOT pins are prohibited to be pulled up before the module is powered on.

Table 5: Pull Up/Down Resistance of GPIO

| Symbol          | Description          | Min | Max | Unit |
|-----------------|----------------------|-----|-----|------|
| R <sub>PU</sub> | Pull-up resistance   | 55  | 390 | kohm |
| R <sub>PD</sub> | Pull-down resistance | 55  | 390 | kohm |



# 3.4. Operating Modes

The table below briefly summarizes the various operating modes referred in the following chapters.

**Table 6: Overview of Operating Modes** 

| Mode                       | Details                                                                                                                                                                                                              |                                                                                                                          |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Normal                     | Idle                                                                                                                                                                                                                 | Software is active. The module has registered on the network, and it is ready to send and receive data.                  |  |  |
| Operation                  | Talk/Data                                                                                                                                                                                                            | Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate. |  |  |
| Minimum Functionality Mode | <b>AT+CFUN</b> command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and USIM card will be invalid.                                           |                                                                                                                          |  |  |
| Airplane Mode              | <b>AT+CFUN</b> command can set the module enter into airplane mode. In this case, RF function will be invalid.                                                                                                       |                                                                                                                          |  |  |
| Sleep Mode                 | In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally. |                                                                                                                          |  |  |
| Power Down<br>Mode         | In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.           |                                                                                                                          |  |  |

# 3.5. Power Saving

# 3.5.1. Sleep Mode

EC25-QuecOpen is able to reduce its current consumption to a minimum value during the sleep mode. The following sub-chapters describe the power saving procedure of EC25-QuecOpen module.

# 3.5.1.1. Main UART Application

If the host communicates with module via Main UART interface, the following preconditions can let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Ensure the level of pins that configured as wake-up interrupt in Table 4 are under none-wakeup status.



The following figure shows the connection between the module and the host.



Figure 3: Sleep Mode Application via UART

- Drive the host GPIO to high/low level, or an edge-triggered interrupt will wake up the module (the module supports high/low level wakeup and edge-triggered interrupt wakeup functions which can be configured via software).
- Whenever receiving phone call, short messages, network data or alarm ringing, EC25-QuecOpen will be woken up from sleep mode. The module's GPIO can be used to wake up the host.

NOTE

GPIO<sup>1)</sup>: GPIOs that configured as wakeup interrupt function.

# 3.5.1.2. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup function, the following three preconditions must be met to let the module enter into the sleep mode.

- Execute AT+QSCLK=1 command to enable the sleep mode.
- Ensure the level of pins that configured as wake-up interrupt in *Table 4* are under none-wakeup status.
- The host's USB bus, which is connected with the module's USB interface, enters into suspended state.



The following figure shows the connection between the module and the host.



Figure 4: Sleep Mode Application with USB Remote Wakeup

- Sending data to EC25-QuecOpen through USB will wake up the module.
- When EC25-QuecOpen has URC to report, the module will send remote wake-up signals via USB bus so as to wake up the host.

### 3.5.1.3. USB Application without USB Remote Wakeup Function

If the host supports USB suspend/resume, but does not support remote wake-up function, it needs to be woken up via the module's GPIO.

There are three preconditions to let the module enter into the sleep mode.

- Execute AT+QSCLK=1 command to enable the sleep mode.
- Ensure the level of pins that configured as wake-up interrupt in *Table 4* are under none-wakeup status
- The host's USB bus, which is connected with the module's USB interface, enters into suspended state.

The following figure shows the connection between the module and the host.



Figure 5: Sleep Mode Application without USB Remote Wakeup



- Sending data to EC25-QuecOpen through USB will wake up the module.
- When EC25-QuecOpen has URC to report, the module's GPIO signal can be used to wake up the host.

### 3.5.1.4. USB Application without USB Suspend Function

If the host does not support USB suspend function, USB\_VBUS should be connected with an external control circuit to let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable the sleep mode.
- Ensure the level of pins that configured as wake-up interrupt in *Table 4* are under none-wakeup status.
- Disconnect USB\_VBUS.

The following figure shows the connection between the module and the host.



Figure 6: Sleep Mode Application without Suspend Function

Switching on the power switch to supply power to USB\_VBUS will wake up the module.

# NOTE

Please pay attention to the level match shown in dotted line between the module and the host. Refer to **document [1]** for more details about the module's power management application.

### 3.5.2. Airplane Mode

When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. The mode can be set via **AT+CFUN=<fun>** command. The parameter **<fun>** indicates the module's functionality levels, as shown below.



- AT+CFUN=0: Minimum functionality mode; both USIM and RF functions are disabled.
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode. RF function is disabled.

NOTE

The execution of **AT+CFUN** command will not affect GNSS function.

# 3.6. Power Supply

# 3.6.1. Power Supply Pins

EC25-QuecOpen provides four VBAT pins for connection with an external power supply. There are two separate voltage domains for VBAT.

- Two VBAT\_RF pins for module RF part
- Two VBAT\_BB pins for module baseband part

The following table shows the details of VBAT pins and ground pins.

Table 7: VBAT and GND Pins

| Pin Name | Pin No.                                               | Description                           | Min. | Тур. | Max. | Unit |
|----------|-------------------------------------------------------|---------------------------------------|------|------|------|------|
| VBAT_RF  | 57, 58                                                | Power supply for module RF part       | 3.3  | 3.8  | 4.3  | V    |
| VBAT_BB  | 59, 60                                                | Power supply for module baseband part | 3.3  | 3.8  | 4.3  | V    |
| GND      | 8, 9, 19, 22, 36,<br>46, 48, 50~54,<br>56, 72, 85~112 | Ground                                |      | 0    |      | V    |

### 3.6.2. Decrease Voltage Drop

The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks.





Figure 7: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be used to provide the low ESR. The main power supply from an external application has to be a single voltage source and expanded to two sub paths with star structure. The width of VBAT\_BB trace should be no less than 1mm; and the width of VBAT\_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be.

Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. These capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is suggested that you should use a zener diode of which reverse zener voltage is 5.1V and dissipation power is more than 0.5W. The following figure shows the star structure of the power supply.



Figure 8: Star Structure of the Power Supply

## 3.6.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that you should use an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.



The following figure shows a reference design for +5V input power source. The designed output for the power supply is about 3.8V and the maximum load current is 3A.



Figure 9: Reference Circuit of Power Supply

## 3.6.4. Monitor the Power Supply

AT+CBC command can be used to monitor the VBAT\_BB voltage value. Please refer to **document [2]** for more details.

## 3.7. Turn on and off Scenarios

## 3.7.1. Turn on Module Using the PWRKEY

The following table shows the pin definition of PWRKEY.

**Table 8: PWRKEY Pin Description** 

| Pin Name | Pin No. | Description            | DC Characteristics       | Comment                      |
|----------|---------|------------------------|--------------------------|------------------------------|
|          |         |                        | V <sub>IH</sub> max=2.1V | The output voltage is 0.8V   |
| PWRKEY   | (EY 21  | Turn on/off the module | V <sub>IH</sub> min=1.3V | because of the diode drop in |
|          |         |                        | V <sub>IL</sub> max=0.5V | the Qualcomm chipset.        |

When EC25-QuecOpen is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 100ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure.





Figure 10: Turn on the Module Using Driving Circuit

The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.



Figure 11: Turn on the Module Using Keystroke



The turn on scenario is illustrated in the following figure.



Figure 12: Timing of Turning on Module

#### **NOTES**

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.
- 2. Recommended pull up level range is 1.3V~2.1V if there is any pull up circuit added on PWRKEY pin.

#### 3.7.2. Turn off Module

The following procedures can be used to turn off the module:

- Normal power down procedure: Turn off the module using the PWRKEY pin.
- Normal power down procedure: Turn off the module using AT command or API interface.

#### 3.7.2.1. Turn off Module Using the PWRKEY Pin

Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure.





Figure 13: Timing of Turning off Module

#### 3.7.2.2. Turn off Module Using AT Command or API Interface

It is also a safe way to use AT command or API interface to turn off the module, which is similar to turning off the module via PWRKEY Pin.

Please refer to document [2] for details.

# NOTES

- 1. In order to avoid damaging the internal flash, do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command or API interface, the power supply can be cut off.
- 2. When turn off module with AT command or API, please keep PWRKEY at high level after the execution of power off command. Otherwise the module will turn on again after successfully turn-off.

#### 3.7.3. Reset The Module

The RESET\_N can be used to reset the module. The module can be reset by driving the RESET\_N to a low level voltage for time between 150ms and 460ms. As the RESET\_N pin is sensitive to interference, the routing trace on the interface board of the module is recommended to be as short as possible and totally ground shielded.



Table 9: RESET\_N Pin Description

| Pin Name | Pin No. | Description      | DC Characteristics                                                               | Comment                                 |
|----------|---------|------------------|----------------------------------------------------------------------------------|-----------------------------------------|
| RESET_N  | 20      | Reset the module | V <sub>IH</sub> max=2.1V<br>V <sub>IH</sub> min=1.3V<br>V <sub>IL</sub> max=0.5V | Pull-up to 1.8V internally. Active low. |

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET\_N.



Figure 14: Reference Circuit of RESET\_N by Using Driving Circuit



Figure 15: Reference Circuit of RESET\_N by Using Button



The reset scenario is illustrated in the following figure.



Figure 16: Timing of Resetting Module

# **NOTES**

- 1. Use RESET\_N only when turning off the module by AT command, API interface and PWRKEY pin are all failed.
- 2. Please assure that there is no large capacitance on PWRKEY and RESET\_N pins.

## 3.8. USIM Card Interface

The USIM card interface circuitry meets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and 3.0V USIM cards are supported.

Table 10: Pin Definition of the USIM Card Interface

| Pin Name          | Pin No. | 1/0 | Description                    | Comment                                                       |
|-------------------|---------|-----|--------------------------------|---------------------------------------------------------------|
| USIM_VDD          | 14      | РО  | Power supply for USIM card     | Either 1.8V or 3.0V is supported by the module automatically. |
| USIM_DATA         | 15      | Ю   | Data signal of USIM card       |                                                               |
| USIM_CLK          | 16      | DO  | Clock signal of USIM card      |                                                               |
| USIM_RST          | 17      | DO  | Reset signal of USIM card      |                                                               |
| USIM_<br>PRESENCE | 13      | DI  | USIM card insertion detection  |                                                               |
| USIM_GND          | 10      |     | Specified ground for USIM card |                                                               |



EC25-QuecOpen supports USIM card hot-plug via the USIM\_PRESENCE pin. The function supports low level and high level detections, and is disabled by default. Please refer to **document [2]** about **AT+QSIMDET** command.

The following figure shows a reference design for USIM card interface with an 8-pin USIM card connector.



Figure 17: Reference Circuit of USIM Card Interface with an 8-Pin USIM Card Connector

If USIM card detection function is not needed, then USIM\_PRESENCE can be used for other function. Please refer to *Table 4* for more details. A reference circuit for USIM card interface with a 6-pin USIM card connector is illustrated in the following figure.



Figure 18: Reference Circuit of USIM Card Interface with a 6-Pin USIM Card Connector



In order to enhance the reliability and availability of the USIM card in your application, please follow the criteria below in the USIM circuit design:

- Keep layout of USIM card as close to the module as possible. Keep the trace length as less than 200mm as possible.
- Keep USIM card signals away from RF and VBAT trace.
- Assure the ground between the module and the USIM card connector short and wide. Keep the trace
  width of ground and USIM\_VDD no less than 0.5mm to maintain the same electric potential.
- To avoid cross-talk between USIM\_DATA and USIM\_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not be more than 50pF. The 22 ohm resistors should be added in series between the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD protection. The 33pF capacitors are used for filtering interference of GSM900. Please note that the USIM peripheral circuit should be close to the USIM card connector.
- The pull-up resistor on USIM\_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the USIM card connector.

## 3.9. USB Interface

EC25-QuecOpen contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB\*. The following table shows the pin definition of USB interface.

Table 11: Pin Description of USB Interface

| Pin Name     | Pin No. | 1/0 | Description                           | Comment                 |
|--------------|---------|-----|---------------------------------------|-------------------------|
| USB Signal F | Part    |     |                                       |                         |
| USB_DP       | 69      | Ю   | USB differential data bus (positive)  | Require differential    |
| USB_DM       | 70      | Ю   | USB differential data bus (minus)     | impedance of $90\Omega$ |
| USB_VBUS     | 71      | PI  | Used for detecting the USB connection | Typical 5.0V            |
| GND          | 72      |     | Ground                                |                         |

For more details about the USB 2.0 specifications, please visit <a href="http://www.usb.org/home">http://www.usb.org/home</a>.



The USB interface is recommended to be reserved for firmware upgrade in your design. The following figure shows a reference circuit of USB interface.



Figure 19: Reference Circuit of USB Application

In order to ensure the integrity of USB data line signal, components R1, R2, R3 and R4 must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply with the following principles:

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90 ohm.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
  important to route the USB differential traces in inner-layer with ground shielding on not only upper
  and lower layers but also right and left sides.
- Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF.
- Keep the ESD protection components as close to the USB connector as possible.

## NOTES

- 1. EC25-QuecOpen module can only be used as a slave device and does not support OTG.
- 2. "\*" means under development.



#### 3.10. UART Interfaces

The module provides four UART interfaces: Main UART, Debug UART, UART1 and UART2. UART1 has the same function as UART2. Both of them support RTS/CTS, and can be used for communication with peripherals. UART1's RTS/CTS are multiplexed with I2C, and UART2 is multiplexed with SPI.

The following are the features of these UART interfaces.

- The Main UART interface supports 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 and 3000000bps baud rates, and the default is 115200bps. It supports RTS and CTS hardware flow control, and it is used for AT command communication only.
- The Debug UART interface supports 115200bps baud rate. It is used for Linux console and log output.
- The UART1 interface supports 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 and 3000000bps baud rates, and the default is 115200bps. It supports RTS and CTS hardware flow control, and it is used for communication and data transmission with peripherals.
- The UART2 interface supports 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 and 3000000bps baud rates, and the default is 115200bps. It supports RTS and CTS hardware flow control, and it is used for communication and data transmission with peripherals.

The following tables show the pin definition of the four UART interfaces.

Table 12: Pin Definition of the Main UART Interface

| Pin Name | Pin No. | I/O | Description     | Comment           |
|----------|---------|-----|-----------------|-------------------|
| MAIN_CTS | 64      | DO  | Clear to send   | 1.8V power domain |
| MAIN_RTS | 65      | DI  | Request to send | 1.8V power domain |
| MAIN_TXD | 67      | DO  | Transmit data   | 1.8V power domain |
| MAIN_RXD | 68      | DI  | Receive data    | 1.8V power domain |

Table 13: Pin Definition of the Debug UART Interface

| Pin Name | Pin No. | I/O | Description   | Comment           |
|----------|---------|-----|---------------|-------------------|
| DBG_TXD  | 12      | DO  | Transmit data | 1.8V power domain |
| DBG_RXD  | 11      | DI  | Receive data  | 1.8V power domain |



Table 14: Pin Definition of the UART1 Interface

|           |         |     | Description                          |                      |                      |  |
|-----------|---------|-----|--------------------------------------|----------------------|----------------------|--|
| Pin Name  | Pin No. | I/O | Alternate<br>function 1<br>(Default) | Alternate function 2 | Alternate function 3 |  |
| I2C_SCL   | 41      | OD  | I2C_SCL_BLSP2                        | GPIO_7               | UART_CTS_BLSP2       |  |
| I2C_SDA   | 42      | OD  | I2C_SDA_BLSP2                        | GPIO_6               | UART_RTS_BLSP2       |  |
| UART1_TXD | 63      | DO  | UART_TXD_BLSP2                       | GPIO_4               | UART_TXD_BLSP2       |  |
| UART1_RXD | 66      | DI  | UART_RXD_BLSP2                       | PIO_5                | UART_RXD_BLSP2       |  |

Table 15: Pin Definition of the UART2 Interface (Multiplexed with SPI)

|          |         |     | Description                          |                      |                      |  |
|----------|---------|-----|--------------------------------------|----------------------|----------------------|--|
| Pin Name | Pin No. | I/O | Alternate<br>function 1<br>(Default) | Alternate function 2 | Alternate function 3 |  |
| SPI_CS_N | 37      | DO  | SPI_CS_N_BLSP6                       | GPIO_22              | UART_RTS_BLSP6       |  |
| SPI_MOSI | 38      | DO  | SPI_MOSI_BLSP6                       | GPIO_20              | UART_TXD_BLSP6       |  |
| SPI_MISO | 39      | DI  | SPI_MISO_BLSP6                       | GPIO_21              | UART_RXD_BLSP6       |  |
| SPI_CLK  | 40      | DO  | SPI_CLK_BLSP6                        | GPIO_23              | UART_CTS_BLSP6       |  |

## **NOTE**

The non-default alternate functions mentioned in the above two tables take effect only after software configuration. Please refer to corresponding chapters for details.



The logic levels of the four UART interfaces are described in the table below.

Table 16: Logic Levels of Digital I/O

| Parameter       | Min. | Max. | Unit |
|-----------------|------|------|------|
| $V_{IL}$        | -0.3 | 0.6  | V    |
| V <sub>IH</sub> | 1.2  | 2.0  | V    |
| V <sub>OL</sub> | 0    | 0.45 | V    |
| V <sub>OH</sub> | 1.35 | 1.8  | V    |

The module provides 1.8V UART interfaces. A level translator should be used if your application is equipped with a 3.3V UART interface. A level translator TXS0104EPWR provided by Texas Instrument is recommended. The following figure shows a reference design.



Figure 20: Reference Circuit with Translator Chip

Please visit <a href="http://www.ti.com">http://www.ti.com</a> for more information.

Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to the design of solid line section, in terms of both module input and output circuit designs, but please pay attention to the direction of connection.





Figure 21: Reference Circuit with Transistor Circuit

NOTE

Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.

#### 3.11. PCM and I2C Interfaces

EC25-QuecOpen provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes:

- Primary mode (short frame synchronization, works as both master and slave)
- Auxiliary mode (long frame synchronization, works as master only)

In primary mode, the data is sampled on the falling edge of the PCM\_CLK and transmitted on the rising edge. The PCM\_SYNC falling edge represents the MSB. In this mode, PCM\_CLK supports 128, 256, 512, 1024 and 2048kHz for different speech codecs.

In auxiliary mode, the data is sampled on the falling edge of the PCM\_CLK and transmitted on the rising edge. The PCM\_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 128kHz PCM\_CLK and an 8kHz, 50% duty cycle PCM\_SYNC only.

EC25-QuecOpen supports 8-bit A-law\* and  $\mu$ -law\*, and also 16-bit linear data formats. The following figures show the primary mode's timing relationship with 8kHz PCM\_SYNC and 2048kHz PCM\_CLK, as well as the auxiliary mode's timing relationship with 8kHz PCM\_SYNC and 128kHz PCM\_CLK.



Figure 22: Primary Mode Timing



Figure 23: Auxiliary Mode Timing



The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design.

Table 17: Pin Definition of PCM

|          |         |     | Description                     |                         |                         |
|----------|---------|-----|---------------------------------|-------------------------|-------------------------|
| Pin Name | Pin No. | I/O | Alternate<br>Function1(Default) | Alternate<br>Function 2 | Alternate<br>Function 3 |
| PCM_IN   | 24      | DI  | PCM_IN                          | GPIO_76                 |                         |
| PCM_OUT  | 25      | DO  | PCM_OUT                         | GPIO_77                 |                         |
| PCM_SYNC | 26      | Ю   | PCM_SYNC                        | GPIO_79                 |                         |
| PCM_CLK  | 27      | Ю   | PCM_CLK                         | GPIO_78                 |                         |

Table 18: Pin Definition of I2C Interfaces

|          |         |     | Description                   |                         |                         |  |
|----------|---------|-----|-------------------------------|-------------------------|-------------------------|--|
| Pin Name | Pin No. | I/O | Alternate Function 1(Default) | Alternate<br>Function 2 | Alternate<br>Function 3 |  |
| I2C_SCL  | 41      | OD  | I2C_SCL_BLSP2                 | GPIO_7                  | UART_CTS_BLSP2          |  |
| I2C_SDA  | 42      | OD  | I2C_SDA_BLSP2                 | GPIO_6                  | UART_RTS_BLSP2          |  |

#### **NOTES**

- 1. For more details about non-default alternate functions for the pins mentioned in the above two tables, please refer to corresponding chapters.
- 2. "\*" means under development.

Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048kHz PCM\_CLK and 8kHz PCM\_SYNC. Please refer to **document [2]** about **AT+QDAI** command for details.



The following figure shows a reference design of PCM interface with an external codec IC.



Figure 24: Reference Circuit of PCM Application with Audio Codec

## **NOTES**

- It is recommended to reserve an RC (R=22ohm, C=22pF) circuit on the PCM lines, especially for PCM\_CLK.
- 2. EC25-QuecOpen works as a master device pertaining to I2C interface.

## 3.12. SD Card Interface

EC25-QuecOpen provides one SD card interface which supports SD 3.0 protocol. The following tables show the pin definition.

Table 19: Pin Definition of the SD Card Interface

|            |         |     | Description                          |                      |                      |         |
|------------|---------|-----|--------------------------------------|----------------------|----------------------|---------|
| Pin Name   | Pin No. | I/O | Alternate<br>function 1<br>(Default) | Alternate function 2 | Alternate function 3 | Comment |
| SDC2_DATA3 | 28      | Ю   | SDC2_DATA3                           |                      |                      |         |
| SDC2_DATA2 | 29      | Ю   | SDC2_DATA2                           |                      |                      |         |



| SDC2_DATA1 | 30 | Ю  | SDC2_DATA1         |                                                                          |
|------------|----|----|--------------------|--------------------------------------------------------------------------|
| SDC2_DATA0 | 31 | Ю  | SDC2_DATA0         |                                                                          |
| SDC2_CLK   | 32 | DO | SDC2_CLK           |                                                                          |
| SDC2_CMD   | 33 | Ю  | SDC2_CMD           |                                                                          |
| VDD_SDIO   | 34 | РО | VDD_SDIO           | 1.8V/2.85V configurable output. Cannot be used for SD card power supply. |
| SD_INS_DET | 23 | DI | SD_INS_DET GPIO_26 |                                                                          |

## **NOTE**

For more details about non-default alternate functions for the pins mentioned in the above table, please refer to corresponding chapters.

The following figure shows a reference design of SD card interface.



Figure 25: Reference Circuit of SD Card Application



Please follow the principles below in the SD card circuit design:

- The voltage range of SD card power supply VDD\_3V is 2.7~3.6V and a sufficient current up to 0.8A should be provided. As the maximum output current of VDD\_SDIO is 50mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card.
- To maximally limit the surge current caused by SD card insertion, the bypass capacitor (C7) of SD card power source should not exceed 5uF.
- To avoid jitter of bus, resistors R7~R11 are needed to pull up the SDIO to VDD\_SDIO. Value of these
  resistors is among 10~100kohm and the recommended value is 100kohm. For EC25-QuecOpen
  module, these resistors can be not mounted.
- In order to improve signal quality, it is recommended to add 0 ohm resistors R1~R6 in series between the module and the SD card. The bypass capacitors C1~C6 are reserved with no mounting by default. All resistors and bypass capacitors should be placed close to the module.
- In order to offer good ESD protection, it is recommended to add TVS on SD card pins.
- The load capacitance of SDIO bus should be less than 40pF.
- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace is 50 ohm (±10%).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc.
- It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm and the total routing length less than 50mm. The total trace length inside the module is 27mm, so the exterior total trace length should be less than 23mm.
- Make sure the adjacent trace spacing is two times of the trace width and the bus capacitance is less than 40pF.

# 3.13. SPI Interface

EC25-QuecOpen provides one SPI interface which supports only master mode with a maximum clock frequency up to 50MHz.

The following table shows the pin definition.

Table 20: Pin Definition of the SPI Interface

|          |         |     | Description                    |                      |                      |
|----------|---------|-----|--------------------------------|----------------------|----------------------|
| Pin Name | Pin No. | I/O | Alternate function 1 (Default) | Alternate function 2 | Alternate function 3 |
| SPI_CS_N | 37      | DO  | SPI_CS_N_BLSP6                 | GPIO_22              | UART_RTS_BLSP6       |
| SPI_MOSI | 38      | DO  | SPI_MOSI_BLSP6                 | GPIO_20              | UART_TXD_BLSP6       |



| SPI_MISO | 39 | DI | SPI_MISO_BLSP6 | GPIO_21 | UART_RXD_BLSP6 |
|----------|----|----|----------------|---------|----------------|
| SPI_CLK  | 40 | DO | SPI_CLK_BLSP6  | GPIO_23 | UART_CTS_BLSP6 |

# NOTE

For more details about non-default alternate functions for the pins mentioned in the above table, please refer to corresponding chapters.

The following figure shows the timing relationship of SPI interface. The related parameters of SPI timing is shown in the table below.



Figure 26: SPI Timing

**Table 21: Parameters of SPI Interface Timing** 

| Parameter | Description               | Min  | Typical | Max | Unit |
|-----------|---------------------------|------|---------|-----|------|
| Т         | SPI clock period          | 20.0 | -       | -   | ns   |
| t(ch)     | SPI clock high level time | 9.0  | -       | -   | ns   |
| t(cl)     | SPI clock low level time  | 9.0  | -       | -   | ns   |



| t(mov) | SPI master data output valid time | -5.0 | - | 5.0 | ns |
|--------|-----------------------------------|------|---|-----|----|
| t(mis) | SPI master data input setup time  | 5.0  | - | -   | ns |
| t(mih) | SPI master data input hold time   | 1.0  | - | -   | ns |

# NOTE

The module provides 1.8V SPI interface. A level translator should be used between the module and the host if customer's application is equipped with a 3.3V processor or device interface.

# 3.14. Wireless Connectivity Interfaces

EC25-QuecOpen provides an SDIO 3.0 interface with low power consumption for WLAN function, and UART & PCM interfaces for BT function.

The following table shows the pin definition of wireless connectivity interfaces.

**Table 22: Pin Definition of Wireless Connectivity Interfaces** 

| Pin Name   | Pin NO. | I/O | Description                       |                         |                         |
|------------|---------|-----|-----------------------------------|-------------------------|-------------------------|
| Power Part |         |     | Alternate<br>Function 1 (Default) | Alternate<br>Function 2 | Alternate<br>Function 3 |
| PM_ENABLE  | 127     | DO  | PM_ENABLE                         |                         |                         |
| WLAN Part  |         |     |                                   |                         |                         |
| SDC1_DATA3 | 129     | Ю   | SDC1_DATA3                        | GPIO_12                 |                         |
| SDC1_DATA2 | 130     | Ю   | SDC1_DATA2                        | GPIO_13                 |                         |
| SDC1_DATA1 | 131     | Ю   | SDC1_DATA1                        | GPIO_14                 |                         |
| SDC1_DATA0 | 132     | Ю   | SDC1_DATA0                        | GPIO_15                 |                         |
| SDC1_CLK   | 133     | DO  | SDC1_CLK                          | GPIO_16                 |                         |
| SDC1_CMD   | 134     | Ю   | SDC1_CMD                          | GPIO_17                 |                         |
| WLAN_EN    | 136     | DO  | WLAN_EN                           | GPIO_38                 |                         |



| WLAN_SLP_<br>CLK  | 118 | DO | WLAN_SLP_CLK   |         |                |
|-------------------|-----|----|----------------|---------|----------------|
| WAKE_WLAN         | 135 | DI | WAKE_WLAN      | GPIO_59 |                |
| Coexistence Part  |     |    |                |         |                |
| COEX_UART_<br>RXD | 137 | DI | COEX_UART_RXD  | GPIO_37 |                |
| COEX_UART_<br>TXD | 138 | DO | COEX_UART_TXD  | GPIO_36 |                |
| BT Part*          |     |    |                |         |                |
| BT_EN*            | 139 | DO | BT_EN*         |         |                |
| SPI_CS_N          | 37  | DO | SPI_CS_N_BLSP6 | GPIO_22 | UART_RTS_BLSP6 |
| SPI_MOSI          | 38  | DO | SPI_MOSI_BLSP6 | GPIO_20 | UART_TXD_BLSP6 |
| SPI_MISO          | 39  | DI | SPI_MISO_BLSP6 | GPIO_21 | UART_RXD_BLSP6 |
| SPI_CLK           | 40  | DO | SPI_CLK_BLSP6  | GPIO_23 | UART_CTS_BLSP6 |
| PCM_IN            | 24  | DI | PCM_IN         | GPIO_76 |                |
| PCM_OUT           | 25  | DO | PCM_OUT        | GPIO_77 |                |
| PCM_SYNC          | 26  | Ю  | PCM_SYNC       | GPIO_79 |                |
| PCM_CLK           | 27  | Ю  | PCM_CLK        | GPIO_78 |                |
|                   |     |    |                |         |                |

## **NOTES**

- 1. For more details about non-default alternate functions for the pins mentioned in the above table, please refer to corresponding chapters.
- 2. When WLAN or BT function is used, the coexistence part mentioned in the above table must be used simultaneously.
- 3. "\*" means under development.



The following figure shows a reference design for the connection between wireless connectivity interfaces and Quectel FC20 module.



Figure 27: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module

## **NOTES**

- 1. FC20 module can only be used as a slave device.
- When BT function is enabled on EC25-QuecOpen module, PCM\_SYNC and PCM\_CLK pins are only used to output signals.
- 3. For more information about wireless connectivity interfaces application, please refer to **document** [5].



#### 3.14.1. WLAN Interface

EC25-QuecOpen provides a low power SDIO 3.0 interface and a control interface for WLAN design.

SDIO interface supports the following modes:

- Single data rate (SDR) mode (up to 200MHz)
- Double data rate (DDR) mode (up to 52MHz)

As SDIO signals are very high-speed signals, in order to ensure the SDIO interface design corresponds with the SDIO 3.0 specification, please comply with the following principles:

- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO signal trace is 50 ohm (±10%).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc.
- It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm and the total routing length less than 50mm.
- Keep termination resistors within 15~24 ohm on clock lines near the module and keep the route distance from the module clock pins to termination resistors less than 5mm.
- Make sure the adjacent trace spacing is two times of the trace width and the bus capacitance is less than 15pF.

#### 3.14.2. BT Interface\*

More information about BT interface will be added in the future version of this document.

**NOTE** 

"\*" means under development.

## 3.15. ADC Function

The module provides two analog-to-digital converters (ADC). **AT+QADC=0** command can be used to read the voltage value on ADC0 pin. **AT+QADC=1** command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer to **document [2]**.

In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.



Table 23: Pin Definition of the ADC

| Pin Name | Pin No. | Description                                 |
|----------|---------|---------------------------------------------|
| ADC0     | 45      | General purpose analog to digital converter |
| ADC1     | 44      | General purpose analog to digital converter |

The following table describes the characteristic of the ADC function.

Table 24: Characteristic of the ADC

| Parameter          | Min. | Тур. | Max.    | Unit |
|--------------------|------|------|---------|------|
| ADC0 Voltage Range | 0.3  |      | VBAT_BB | V    |
| ADC1 Voltage Range | 0.3  |      | VBAT_BB | V    |
| ADC Resolution     |      | 15   |         | bits |

## **NOTES**

- 1. ADC input voltage must not exceed VBAT\_BB.
- 2. It is prohibited to supply any voltage to ADC pins when VBAT is removed.
- 3. It is recommended to use resistor divider circuit for ADC application.

## 3.16. Network Status Indication

EC25-QuecOpen provides one network indication pin: NET\_STATUS. The pin is used to drive a network status indication LED.

The following tables describe the pin definition and logic level changes of NET\_STATUS in different network status.

**Table 25: Pin Definition of Network Status Indicator** 

| Pin Name   | Pin No. | I/O | Description                                    | Comment           |
|------------|---------|-----|------------------------------------------------|-------------------|
| NET_STATUS | 6       | DO  | Indicate the module's network activity status. | 1.8V power domain |



**Table 26: Working State of the Network Status Indicator** 

| Pin Name   | Indicator Status (Logic Level Changes) | Network Status           |
|------------|----------------------------------------|--------------------------|
|            | Flicker slowly (200ms High/1800ms Low) | Network searching        |
| NET STATUS | Flicker slowly (1800ms High/200ms Low) | Idle                     |
| NET_STATUS | Flicker quickly (125ms High/125ms Low) | Data transfer is ongoing |
|            | Always High                            | Voice calling            |

A reference circuit is shown in the following figure.



Figure 28: Reference Circuit of the Network Status Indicator

## **3.17. STATUS**

The STATUS pin is an open drain output for indicating the module's operation status. It can be connected to a GPIO of DTE with a pulled up resistor, or as LED indication circuit as below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state.

**Table 27: Pin Definition of STATUS** 

| Pin Name | Pin No. | I/O | Description                            | Comment                  |
|----------|---------|-----|----------------------------------------|--------------------------|
| STATUS   | 61      | OD  | Indicate the module's operation status | Require external pull-up |

The following figure shows different circuit designs of STATUS, and customers can choose either one according to specific application demands.





Figure 29: Reference Circuits of STATUS

## 3.18. USB\_BOOT Interface

EC25-QuecOpen provides a USB\_BOOT pin. Developers can pull up the USB\_BOOT to VDD\_EXT before powering on the module, thus the module will enter into forced download mode when it is powered on. In this mode, the module supports firmware upgrade over USB interface.

Table 28: Pin Definition of USB\_BOOT Interface

| Pin Name | Pin No. | I/O | Description                            | Comment                                                                                    |
|----------|---------|-----|----------------------------------------|--------------------------------------------------------------------------------------------|
| USB_BOOT | 115     | DI  | Force the module to boot from USB port | <ul><li>1.8V power domain.</li><li>Active high.</li><li>If unused, keep it open.</li></ul> |

The following figure shows a reference circuit of USB\_BOOT interface.



Figure 30: Reference Circuit of USB\_BOOT Interface



# **4** GNSS Receiver

# 4.1. General Description

EC25-QuecOpen includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).

EC25-QuecOpen supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default.

By default, GNSS engine of the module is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to **document [3]**.

## 4.2. GNSS Performance

The following table shows GNSS performance of EC25-QuecOpen.

**Table 29: GNSS Performance** 

| Parameter             | Description                      | Conditions   | Тур. | Unit |
|-----------------------|----------------------------------|--------------|------|------|
|                       | Cold start                       | Autonomous   | -146 | dBm  |
| Sensitivity<br>(GNSS) | Reacquisition                    | Autonomous   | -157 | dBm  |
|                       | Tracking                         | Autonomous   | -157 | dBm  |
|                       | Cold start @open sky  Warm start | Autonomous   | 35   | S    |
|                       |                                  | XTRA enabled | 18   | S    |
| TTFF<br>(GNSS)        |                                  | Autonomous   | 26   | S    |
|                       | @open sky                        | XTRA enabled | 2.2  | S    |
|                       | Hot start                        | Autonomous   | 2.5  | S    |



|                    | @open sky | XTRA enabled            | 1.8 | S |
|--------------------|-----------|-------------------------|-----|---|
| Accuracy<br>(GNSS) | CEP-50    | Autonomous<br>@open sky | <4  | m |

# NOTES

- 1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes.
- 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock.
- 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command.

# 4.3. Layout Guidelines

The following layout guidelines should be taken into account in your design.

- Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
- Digital circuits such as USIM card, USB interface, camera module, display connector and SD card should be kept away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep 50 ohm characteristic impedance for the ANT\_GNSS trace.

Please refer to *Chapter 5* for GNSS antenna reference design and antenna installation information.



# **5** Antenna Interfaces

EC25-QuecOpen include a main antenna interface, an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The antenna interfaces have an impedance of 50 ohm.

# 5.1. Main/Rx-diversity Antenna Interface

#### 5.1.1. Pin Definition

The pin definition of main antenna and Rx-diversity antenna interfaces are shown below.

Table 30: Pin Definition of the RF Antenna

| Pin Name | Pin No. | I/O | Description                   | Comment          |
|----------|---------|-----|-------------------------------|------------------|
| ANT_MAIN | 49      | Ю   | Main antenna pad              | 50 ohm impedance |
| ANT_DIV  | 35      | AI  | Receive diversity antenna pad | 50 ohm impedance |

## 5.1.2. Operating Frequency

**Table 31: Module Operating Frequencies** 

| 3GPP Band | Transmit  | Receive   | Unit |
|-----------|-----------|-----------|------|
| B1        | 1920~1980 | 2110~2170 | MHz  |
| B2 (1900) | 1850~1910 | 1930~1990 | MHz  |
| B3 (1800) | 1710~1785 | 1805~1880 | MHz  |
| B4        | 1710~1755 | 2110~2155 | MHz  |
| B5 (850)  | 824~849   | 869~894   | MHz  |
| B6        | 830~840   | 875~885   | MHz  |



| B7       | 2500~2570 | 2620~2690 | MHz |
|----------|-----------|-----------|-----|
| B8 (900) | 880~915   | 925~960   | MHz |
| B12      | 699~716   | 729~746   | MHz |
| B13      | 777~787   | 746~756   | MHz |
| B18      | 815~830   | 860~875   | MHz |
| B19      | 830~845   | 875~890   | MHz |
| B20      | 832~862   | 791~821   | MHz |
| B26      | 814~849   | 859~894   | MHz |
| B28      | 703~748   | 758~803   | MHz |
| B38      | 2570~2620 | 2570~2620 | MHz |
| B40      | 2300~2400 | 2300~2400 | MHz |
| B41      | 2555~2655 | 2555~2655 | MHz |

# 5.1.3. Reference Design of RF Antenna Interface

A reference design of ANT\_MAIN and ANT\_DIV antenna pads is shown as below. It should reserve a π-type matching circuit for better RF performance. The capacitors are not mounted by default.



Figure 31: Reference Circuit of RF Antenna Interface



## NOTES

- 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the receiving sensitivity.
- 2. ANT\_DIV function is enabled by default. **AT+QCFG="diversity",0** command can be used to disable receive diversity. Please refer to **document [2]** for details.
- 3. Place the  $\pi$ -type matching components (R1/C1/C2, R2/C3/C4) as close to the antenna as possible.

## 5.1.4. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50 ohm. The impedance of the RF traces is determined by the trace width (W), the materials' dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with difference PCB structures.



Figure 32: Microstrip Line Design on a 2-layer PCB



Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB





Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)



Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use impedance simulation tool to control the characteristic impedance of RF traces as 50 ohm.
- The GND pins adjacent to RF pins should not be hot welded, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times of the width of RF signal traces (2\*W).

For more details about RF layout, please refer to document [6].



## 5.2. GNSS Antenna Interface

The following tables show the pin definition and frequency specification of GNSS antenna interface.

Table 32: Pin Definition of GNSS Antenna Interface

| Pin Name | Pin No. | I/O | Description            | Comment          |
|----------|---------|-----|------------------------|------------------|
| ANT_GNSS | 47      | Al  | GNSS antenna interface | 50 ohm impedance |

**Table 33: GNSS Frequency** 

| Туре             | Frequency      | Unit |
|------------------|----------------|------|
| GPS/Galileo/QZSS | 1575.42±1.023  | MHz  |
| GLONASS          | 1597.5~1605.8  | MHz  |
| BeiDou           | 1561.098±2.046 | MHz  |

A reference design of GNSS antenna is shown as below.



Figure 36: Reference Circuit of GNSS Antenna

## **NOTES**

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.



## 5.3. Antenna Installation

# 5.3.1. Antenna Requirement

The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.

**Table 34: Antenna Requirements** 

| Туре              | Requirements                                        |
|-------------------|-----------------------------------------------------|
|                   | Frequency range: 1561~1615MHz                       |
|                   | Polarization: RHCP or linear                        |
|                   | VSWR: <2 (Typ.)                                     |
| GNSS              | Passive antenna gain: >0dBi                         |
| GNSS              | Active antenna noise figure: <1.5dB                 |
|                   | Active antenna gain: >-2dBi                         |
|                   | Active antenna embedded LNA gain: 20dB (Typ.)       |
|                   | Active antenna total gain: >18dBi (Typ.)            |
|                   | VSWR: ≤2                                            |
|                   | Gain (dBi): 1                                       |
|                   | Max input power (W): 50                             |
|                   | Input impedance (ohm): 50                           |
|                   | Polarization type: Vertical                         |
| GSM/WCDMA/LTE     | Cable insertion loss: <1dB                          |
| GSIVI/WCDIVIA/LTE | (GSM850, GSM900, WCDMA B5/B6/B8/B19,                |
|                   | LTE B5/B8/B12/B13/B18/B20/B26/B28)                  |
|                   | Cable insertion loss: <1.5dB                        |
|                   | (GSM1800, GSM1900, WCDMA B1/B2/B4, LTE B1/B2/B3/B4) |
|                   | Cable insertion loss <2dB                           |
|                   | (LTE B7/B38/B40/B41)                                |



#### 5.3.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use UF.L-R-SMT connector provided by HIROSE.



Figure 37: Dimensions of the UF.L-R-SMT Connector (Unit: mm)

U.FL-LP serial connector listed in the following figure can be used to match the UF.L-R-SMT.



Figure 38: Mechanicals of UF.L-LP Connectors



The following figure describes the space factor of mated connector.



Figure 39: Space Factor of Mated Connector (Unit: mm)

For more details, please visit http://hirose.com.



# **6** Electrical, Reliability and Radio Characteristics

## **6.1. Absolute Maximum Ratings**

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

**Table 35: Absolute Maximum Ratings** 

| Parameter               | Min. | Max.    | Unit |
|-------------------------|------|---------|------|
| VBAT_RF/VBAT_BB         | -0.3 | 4.7     | V    |
| USB_VBUS                | -0.3 | 5.5     | V    |
| Peak Current of VBAT_BB | 0    | 0.8     | A    |
| Peak Current of VBAT_RF | 0    | 1.8     | A    |
| Voltage at Digital Pins | -0.3 | 2.3     | V    |
| Voltage at ADC0         | 0    | VBAT_BB | V    |
| Voltage at ADC1         | 0    | VBAT_BB | V    |



#### 6.2. Power Supply Ratings

**Table 36: Power Supply Ratings** 

| Parameter         | Description                                    | Conditions                                                                              | Min. | Тур. | Max. | Unit |
|-------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|------|------|------|------|
| VBAT              | VBAT_BB and<br>VBAT_RF                         | Voltage must stay within the min/max values, including voltage drop, ripple and spikes. | 3.3  | 3.8  | 4.3  | V    |
|                   | Voltage drop during burst transmission         | Maximum power control level on GSM900.                                                  |      |      | 400  | mV   |
| I <sub>VBAT</sub> | Peak supply current (during transmission slot) | Maximum power control level on GSM900                                                   |      | 1.8  | 2.0  | A    |
| USB_VBUS          | USB detection                                  |                                                                                         | 3.0  | 5.0  | 5.25 | V    |

#### 6.3. Operating Temperature

The operating temperature is listed in the following table.

**Table 37: Operating Temperature** 

| Parameter                                | Min. | Тур. | Max. | Unit |
|------------------------------------------|------|------|------|------|
| Operation Temperature Range 1)           | -35  | +25  | +75  | °C   |
| Extended Temperature Range <sup>2)</sup> | -40  |      | +85  | °C   |

#### **NOTES**

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. <sup>2)</sup> Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P<sub>out</sub> might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.



### **6.4. Current Consumption**

Table 38: GNSS Current Consumption of EC25-QuecOpen Module

| Parameter | Description          | Conditions                  | Тур. | Unit |
|-----------|----------------------|-----------------------------|------|------|
|           | Searching            | Cold start @Passive Antenna | 54.0 | mA   |
|           | (AT+CFUN=0)          | Lost state @Passive Antenna | 53.9 | mA   |
|           |                      | Instrument Environment      | 30.5 | mA   |
|           | Tracking (AT+CFUN=0) | Open Sky @Passive Antenna   | 33.2 | mA   |
|           | ,                    | Open Sky @Active Antenna    | 40.8 | mA   |

### 6.5. RF Output Power

The following table shows the RF output power of EC25-QuecOpen module.

**Table 39: RF Output Power** 

| Frequency               | Max.         | Min.     |
|-------------------------|--------------|----------|
| GSM850/GSM900           | 33dBm±2dB    | 5dBm±5dB |
| DCS1800/PCS1900         | 30dBm±2dB    | 0dBm±5dB |
| GSM850/GSM900 (8-PSK)   | 27dBm±3dB    | 5dBm±5dB |
| DCS1800/PCS1900 (8-PSK) | 26dBm±3dB    | 0dBm±5dB |
| WCDMA bands             | 24dBm+1/-3dB | <-50dBm  |
| LTE-FDD bands           | 23dBm±2dB    | <-44dBm  |
| LTE-TDD bands           | 23dBm±2dB    | <-44dBm  |

#### **NOTE**

In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.



#### 6.6. Electrostatic Discharge

The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the module electrostatic discharge characteristics.

**Table 40: Electrostatic Discharge Characteristics** 

| Tested Points          | Contact Discharge | Air Discharge | Unit |
|------------------------|-------------------|---------------|------|
| VBAT, GND              | ±5                | ±10           | kV   |
| All Antenna Interfaces | ±4                | ±8            | kV   |
| Other Interfaces       | ±0.5              | ±1            | kV   |



## **7** Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm.

#### 7.1. Mechanical Dimensions of the Module



Figure 40: Module Top and Side Dimensions





Figure 41: Module Bottom Dimensions (Bottom View)



### 7.2. Recommended Footprint



Figure 42: Recommended Footprint (Top View)

#### **NOTES**

- 1. Pads 73~84 should not be designed.
- 2. For easy maintenance of the module, please keep about 3mm between the module and other components on the host PCB.



### 7.3. Design Effect Drawings of the Module



Figure 43: Top View of the Module



Figure 44: Bottom View of the Module

#### NOTE

These are design effect drawings of EC25-QuecOpen module. For more accurate pictures, please refer to the module that you get from Quectel.



# 8 Storage, Manufacturing and Packaging

#### 8.1. Storage

EC25-QuecOpen is stored in a vacuum-sealed bag. The storage restrictions are shown as below.

- 1. Shelf life in vacuum-sealed bag: 12 months at <40°C/90%RH.
- After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
  - Mounted within 72 hours at the factory environment of ≤30°C/60%RH.
  - Stored at <10% RH.</li>
- 3. Devices require bake before mounting, if any circumstances below occurs:
  - When the ambient temperature is 23°C±5°C and the humidity indicator card shows the humidity is >10% before opening the vacuum-sealed bag.
  - Device mounting cannot be finished within 72 hours at factory conditions of ≤30°C/60%RH.
  - Stored at >10% RH after the vacuum-sealed bag is opened.
- 4. If baking is required, devices may be baked for 48 hours at 125°C±5°C.

#### NOTE

As the plastic container cannot be subjected to high temperature, it should be removed from devices before high temperature (125°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.



#### 8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18mm. For more details, please refer to **document [4]**.

It is suggested that the peak reflow temperature is  $235 \sim 245^{\circ}$ C (for SnAg3.0Cu0.5 alloy). The absolute max reflow temperature is  $260^{\circ}$ C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:



Figure 45: Reflow Soldering Thermal Profile

**NOTE** 

During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module label with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc.



### 8.3. Packaging

EC25-QuecOpen is packaged in tape and reel carriers. One reel is 12.4m long and contains 250pcs modules. The reel diameter is 330mm. The figure below shows the package details, measured in mm.



Figure 46: Tape and Reel Specifications



# 9 Appendix A References

**Table 41: Related Documents** 

| SN  | Document Name                                      | Remark                                   |
|-----|----------------------------------------------------|------------------------------------------|
| [1] | Quectel_EC25_Power_Management_Application_<br>Note | EC25 Power Management Application Note   |
| [2] | Quectel_EC25&EC21_AT_Commands_Manual               | EC25 and EC21 AT Commands Manual         |
| [3] | Quectel_EC25&EC21_GNSS_AT_Commands_<br>Manual      | EC25 and EC21 GNSS AT Commands<br>Manual |
| [4] | Quectel_Module_Secondary_SMT_User_Guide            | Module Secondary SMT User Guide          |
| [5] | Quectel_EC25_Reference_Design                      | EC25 Reference Design                    |
| [6] | Quectel_RF_Layout_Application_Note                 | RF Layout Application Note               |

**Table 42: Terms and Abbreviations** 

| Abbreviation | Description                                 |
|--------------|---------------------------------------------|
| AMR          | Adaptive Multi-rate                         |
| API          | Application Program Interface               |
| bps          | Bits Per Second                             |
| ВТ           | Bluetooth                                   |
| CHAP         | Challenge Handshake Authentication Protocol |
| CS           | Coding Scheme                               |
| CSD          | Circuit Switched Data                       |
| CTS          | Clear To Send                               |
| DC-HSPA+     | Dual-carrier High Speed Packet Access       |
|              |                                             |



| DFOTA   | Delta Firmware Upgrade Over The Air                                                             |
|---------|-------------------------------------------------------------------------------------------------|
| DL      | Downlink                                                                                        |
| DTR     | Data Terminal Ready                                                                             |
| DTX     | Discontinuous Transmission                                                                      |
| EFR     | Enhanced Full Rate                                                                              |
| ESD     | Electrostatic Discharge                                                                         |
| FDD     | Frequency Division Duplex                                                                       |
| FR      | Full Rate                                                                                       |
| GLONASS | GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System |
| GMSK    | Gaussian Minimum Shift Keying                                                                   |
| GNSS    | Global Navigation Satellite System                                                              |
| GPS     | Global Positioning System                                                                       |
| GSM     | Global System for Mobile Communications                                                         |
| HR      | Half Rate                                                                                       |
| HSPA    | High Speed Packet Access                                                                        |
| HSDPA   | High Speed Downlink Packet Access                                                               |
| HSUPA   | High Speed Uplink Packet Access                                                                 |
| I/O     | Input/Output                                                                                    |
| Inorm   | Normal Current                                                                                  |
| LED     | Light Emitting Diode                                                                            |
| LNA     | Low Noise Amplifier                                                                             |
| LTE     | Long Term Evolution                                                                             |
| MIMO    | Multiple Input Multiple Output                                                                  |
| MO      | Mobile Originated                                                                               |
| MS      | Mobile Station (GSM engine)                                                                     |
|         |                                                                                                 |



| MT                  | Mobile Terminated                                       |
|---------------------|---------------------------------------------------------|
| PAP                 | Password Authentication Protocol                        |
| PCB                 | Printed Circuit Board                                   |
| PDU                 | Protocol Data Unit                                      |
| PPP                 | Point-to-Point Protocol                                 |
| QAM                 | Quadrature Amplitude Modulation                         |
| QPSK                | Quadrature Phase Shift Keying                           |
| RF                  | Radio Frequency                                         |
| RHCP                | Right Hand Circularly Polarized                         |
| Rx                  | Receive                                                 |
| SIM                 | Subscriber Identification Module                        |
| SIMO                | Single Input Multiple Output                            |
| SMS                 | Short Message Service                                   |
| TDD                 | Time Division Duplexing                                 |
| TDMA                | Time Division Multiple Access                           |
| TD-SCDMA            | Time Division-Synchronous Code Division Multiple Access |
| TX                  | Transmitting Direction                                  |
| UL                  | Uplink                                                  |
| UMTS                | Universal Mobile Telecommunications System              |
| URC                 | Unsolicited Result Code                                 |
| USIM                | Universal Subscriber Identity Module                    |
| Vmax                | Maximum Voltage Value                                   |
| Vnorm               | Normal Voltage Value                                    |
| Vmin                | Minimum Voltage Value                                   |
| V <sub>IH</sub> max | Maximum Input High Level Voltage Value                  |
|                     |                                                         |



| V <sub>IH</sub> min | Minimum Input High Level Voltage Value  |
|---------------------|-----------------------------------------|
| V <sub>IL</sub> max | Maximum Input Low Level Voltage Value   |
| V <sub>IL</sub> min | Minimum Input Low Level Voltage Value   |
| V <sub>I</sub> max  | Absolute Maximum Input Voltage Value    |
| V <sub>I</sub> min  | Absolute Minimum Input Voltage Value    |
| V <sub>OH</sub> max | Maximum Output High Level Voltage Value |
| V <sub>OH</sub> min | Minimum Output High Level Voltage Value |
| V <sub>OL</sub> max | Maximum Output Low Level Voltage Value  |
| V <sub>OL</sub> min | Minimum Output Low Level Voltage Value  |
| VSWR                | Voltage Standing Wave Ratio             |
| WCDMA               | Wideband Code Division Multiple Access  |
| WLAN                | Wireless Local Area Network             |
|                     |                                         |



# 10 Appendix B GPRS Coding Schemes

**Table 43: Description of Different Coding Schemes** 

| Scheme                       | CS-1 | CS-2 | CS-3 | CS-4 |
|------------------------------|------|------|------|------|
| Code Rate                    | 1/2  | 2/3  | 3/4  | 1    |
| USF                          | 3    | 3    | 3    | 3    |
| Pre-coded USF                | 3    | 6    | 6    | 12   |
| Radio Block excl.USF and BCS | 181  | 268  | 312  | 428  |
| BCS                          | 40   | 16   | 16   | 16   |
| Tail                         | 4    | 4    | 4    |      |
| Coded Bits                   | 456  | 588  | 676  | 456  |
| Punctured Bits               | 0    | 132  | 220  | -    |
| Data Rate Kb/s               | 9.05 | 13.4 | 15.6 | 21.4 |



## 11 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

**Table 44: GPRS Multi-slot Classes** 

| Multislot Class | Downlink Slots | Uplink Slots | Active Slots |
|-----------------|----------------|--------------|--------------|
| 1               | 1              | 1            | 2            |
| 2               | 2              | 1            | 3            |
| 3               | 2              | 2            | 3            |
| 4               | 3              | 1            | 4            |
| 5               | 2              | 2            | 4            |
| 6               | 3              | 2            | 4            |
| 7               | 3              | 3            | 4            |
| 8               | 4              | 1            | 5            |
| 9               | 3              | 2            | 5            |
| 10              | 4              | 2            | 5            |
| 11              | 4              | 3            | 5            |
| 12              | 4              | 4            | 5            |



# 12 Appendix D EDGE Modulation and Coding Schemes

**Table 45: EDGE Modulation and Coding Schemes** 

| Coding Scheme | Modulation | Coding Family | 1 Timeslot | 2 Timeslot | 4 Timeslot |
|---------------|------------|---------------|------------|------------|------------|
| CS-1:         | GMSK       | /             | 9.05kbps   | 18.1kbps   | 36.2kbps   |
| CS-2:         | GMSK       | 1             | 13.4kbps   | 26.8kbps   | 53.6kbps   |
| CS-3:         | GMSK       | 1             | 15.6kbps   | 31.2kbps   | 62.4kbps   |
| CS-4:         | GMSK       | 1             | 21.4kbps   | 42.8kbps   | 85.6kbps   |
| MCS-1         | GMSK       | С             | 8.80kbps   | 17.60kbps  | 35.20kbps  |
| MCS-2         | GMSK       | В             | 11.2kbps   | 22.4kbps   | 44.8kbps   |
| MCS-3         | GMSK       | A             | 14.8kbps   | 29.6kbps   | 59.2kbps   |
| MCS-4         | GMSK       | С             | 17.6kbps   | 35.2kbps   | 70.4kbps   |
| MCS-5         | 8-PSK      | В             | 22.4kbps   | 44.8kbps   | 89.6kbps   |
| MCS-6         | 8-PSK      | A             | 29.6kbps   | 59.2kbps   | 118.4kbps  |
| MCS-7         | 8-PSK      | В             | 44.8kbps   | 89.6kbps   | 179.2kbps  |
| MCS-8         | 8-PSK      | A             | 54.4kbps   | 108.8kbps  | 217.6kbps  |
| MCS-9         | 8-PSK      | A             | 59.2kbps   | 118.4kbps  | 236.8kbps  |