# UNIVERSITY OF TECHNOLOGY-VNU-HCM

# **Falcuty of Electrical-Electronis**



# COMPUTER ARCHITECTURE-MILESTONE

Design a 32 bit single-cycle cpu RISC-V

Teacher: PhD Tran Hoang Linh

TA: Xuan Hai Cao

Group: ca120

| Họ và tên         | MSSV    | Lớp |
|-------------------|---------|-----|
| Nguyễn Hoàng Sang | 2212910 | L01 |

MILESTONE 1 Group: 20

#### I. FEATURE LIST.

• Review basic concepts of sequential logic and Finite State Machine (FSM) design.

- Implement a simple vending machine using System Verilog.
- Practice simulation and waveform analysis to verify system functionality.

#### II. PROBLEM STATEMENT.

#### **Design a vending machine with the following requirements:**

- Accepts coins: ¢5 (nickel), ¢10 (dime), ¢25 (quarter).
- Only one coin is accepted per clock cycle.
- When the total amount of money inserted is  $\geq c20$ , the machine should:

**Dispense a soda** (o\_soda = 1)

**Return change** (o\_change), encoded as a 3-bit value:

| o_change Value | Change Amount |
|----------------|---------------|
| 000            | ¢0            |
| 001            | ¢5            |
| 010            | ¢10           |
| 011            | ¢15           |
| 100            | ¢20           |

#### III. SYSTEM DESIGN.

#### 3.1. Block diagram



MILESTONE 1 Group: 20

## 3.2. FSM state diagram



## IV. SIMULATION.

### 4.1. Test cases

| Test | Sequence       | Total | Expected Result                         |
|------|----------------|-------|-----------------------------------------|
| 1    | dime + quarter | ¢35   | o_soda = 1 , o_change = 011 (¢15)       |
| 2    | 4 × nickel     | ¢20   | o_soda = 1 , o_change = 000 (no change) |
| 3    | 2 × dime       | ¢20   | o_soda = 1 , o_change = 000             |
| 4    | 1 × quarter    | ¢25   | o_soda = 1 , o_change = 001 (¢5)        |

### 4.2. Waveform

MILESTONE 1 Group: 20



## **V. EVALUATION.**

- The vending machine works correctly according to the specifications.
- FSM transitions and outputs are verified to be accurate.
- Edge cases (exactly 20¢, extra change, multiple coin sequences) are handled correctly.
- Clean and modular Verilog code, easy to expand or modify.