HWRS 505: Vadose Zone Hydrology

Lecture 1

8/22/2023

Today:

- 1. Overview of the course
- 2. Review: Steady-state saturated flow

Vadose Zone: Conceptual picture

VZ and **CZ** are both complex systems:

- Fluid flow processes
- Geomechanical processes
- Geochemical processes
- Microbial processes

Vadose Zone: Context and who cares?

Agriculture and food production

Drinking water safety

Other examples?

- Natural hazards management (flooding, landslide, and erosion)
- Infrastructure development (buildings, roads, bridges, ...)

...

Vadose zone processes can have profound societal impacts

Vadose Zone: Context and who cares?

Hydrological cycle

Atmosphere 12.7 Ocean to land Water vapor transport 40 Cocean Precipitation 113 Cocean Precipitation 113 Cocean Precipitation 113 Cocean Cocea

Carbon cycle

Surface energy balance

Vadose zone processes play key roles in the global water, carbon, and energy balances

Vadose Zone Hydrology: Scope of the course

Goal:

Water + solutes

[Energ potential

Understanding and quantifying the processes related to <u>matter</u> and <u>energy</u> in the vadose zone

Approach:

- Conceptual pictures
- Physical laws and fundamental principles
- Mathematical formulations and analytical/numerical solutions
- Model <u>vs.</u> reality (measurements)

Syllabus + Readings

SCHEDULE OF TOPICS

Week	Date	Topic	Readings	Problem Sets
1	8/22	Introduction; Steady-state saturated flow	L01	
	8/24	Steady-state saturated flow	L01	
2	8/29	Transient saturated flow; saturated solute transport	L02	
	8/31	saturated solute transport	L03	
3	9/5	Multiphase fluids in capillary tubes	L04	Release #1
	9/7	Multiphase fluids in capillary tubes	L05	
4	9/12	Porous medium models and characteristic curves	J&H Ch 3	#1 DUE
	9/14	Macroscopic description of two-phase flow	P&C - Ch 11	Release #2
5	9/19	Richards' assumptions; Richards' Equation	P&C - Ch 11	
	9/21	Steady-state unsaturated flow	L08	#2 DUE
6	9/26	Numerical solution of steady-state unsat. flow	L09	Release #3
	9/28	Numerical solution of steady-state unsat. flow		
7	10/3	Transient unsaturated flow	J&H Ch 3	
	10/5	Transient unsaturated flow		
8	10/10	Transient unsaturated flow	J&H Ch 3	#3 DUE
	10/12	Numerical solution for transient unsat. flow	Celia 1990	
9	10/17	Use HYDRUS to study 1D transient unsat flow (In		
		class)		
	10/19	2D unsaturated flow	L12	
10	10/24	Review session for the midterm exam		Release #4
	10/26	Midterm Oral Exam		
11	10/31	Comments on midterm; Measurement methods	L15	
	11/2	Visit the soil physics lab of Dr. Markus Tuller (TBD)		#4 DUE
12	11/7	Parameter estimation/Inverse modeling; Use	L13	
		spreadsheet model		
	11/9	Inverse modeling w/ HYDRUS (in class)	L16, L13a	
13	11/14	Introduction to PFAS		
	11/16	Transport of PFAS under unsat. flow	Guo 2020	Release #5
14	11/21	Fluid-fluid interfacial area		
	11/23	Thanksgiving recess (no class)		
15	11/28	Informal presentation of "Art of Porous Media Flow";		#5 DUE
		Review session for the final exam		
	11/30	No class (work on final project)		
16	12/5	Presentation of final projects		
	12/7	No class (reading day)		
	12/8	Final Exam		

Readings:

- 1. Ferre, Vadose Zone Hydrology Lecture Notes
- 2. Jury & Horton, Soil Physics (sixth edition), 2004
- 3. Pinder & Celia, Subsurface Hydrology, 2006
- 4. Stephens, Vadose zone Hydrology, 1995

Grading:

Undergraduate students

Homework	55%
Midterm exam (oral)	20%
Final exam (written)	20%
Participation	5%

Graduate students

Cradado diadorno	
Homework	35%
Midterm exam (oral)	20%
Final exam (written)	20%
Final project	20%
Participation	5%
Art of porous media flow submission	+5%

Class websites:

- 1. GitHub
 - https://github.com/GuoPorousMediaLab/HWRS505-405-2023Fall
 - The **primary** site that we use for sharing course materials.
- 2. D2L
 - Materials for Homework and Exams.
 - Submit Homework and Exams.

Results of Pre-class Survey

- Glad to see many of you have taken most of the classes.
- No worries if you have not taken one or multiple classes. I will introduce the basic concepts when we use them.
 - ✓ Make sure to ask questions in class if an unfamiliar concept is used and I do not explain it.
 - Come to office hours.
 - ✓ Use Wikipedia and other resources to establish a basic understanding of these concepts.

Steady-state saturated flow

Energy potential (\Phi): work done on a unit mass of fluid in transferring it from a

reference state to some new state

W,= Wg(2,-20)

 $W_2 = V(P_1 - P_0)$

Total work applied:

$$W = W_1 + W_2 = mg(\frac{1}{2}, -20) + V(P_1 - P_0)$$

Energy potential: "per unit mass"

 $\overline{D} = \frac{W}{m} = g(\frac{1}{2}, -20) + \overline{P}(P_1 - P_0)$

Hydraulic head: "per unit weight"

 $H = \frac{W}{m \cdot g} = (\frac{1}{2}, -20) + \overline{P}(P_1 - P_0)$

Po: often chosen as atmospheric pressure (
$$P_0 = 3$$
)

2: datum ($Z_0 = 3$)

H = Z + $\frac{P}{eg}$

Elevation head ($Y = \frac{P}{eg}$)

Steady-state saturated flow

Schematic of Darcy's experiment [1856]

