МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет)

Институт	информатики и кибернетики	<u>I</u>
Кафедра программных систем		
	ОТЧЕТ ПО ПРАКТИКЕ	
Вид практики	Производственная (учебная, производственная)	
	Научно-исследовательская (в соответствии с ОПОП ВО)	
Сроки і	прохождения практики: с 01.10.202 рответствии с календарным учебны	4 по 26.12.2024
-	по направлению подготовки 02.0 итальная информатика и информаци (уровень бакалавриата)	ионные технологии
направле	енность (профиль) «Информационн	ные технологии»
Обучающийся гру	тпы № 6401-020302D	А.А. Алёнушка
T . T	ктики, программных систем,	О.А. Гордеева
Дата сдачи 26.12.2 Дата защиты 26.12		
Оценка		

СОДЕРЖАНИЕ

Задани	я по практике для выполнения определенных видов работ, связанных с б	удущей
профес	ссиональной деятельностью (сбор и анализ данных и материалов, проведо	ение
исслед	ований)	3
ВВЕДЕ	ЕНИЕ	8
1 Оп	писание средств реализации	10
1.1	Описание операционной системы	10
1.2	Описание языка программирования	10
1.3	Описание среды разработки	11
1.4	Описание используемых библиотек	12
2 On	писание проекта разрабатываемого приложения	13
2.1	The Super Memo	14
2.2	Алгоритм Anki	16
2.3	Система Duolingo	17
2.4	База данных	18
2.5	Диаграмма use case	19
3 Оп	писание экранных форм разработанного программного приложения	21
3.1	Начало работы: регистрация и вход	21
3.2	Работа с коллекциями карточек	22
3.3	Добавление и редактирование карточек	23
3.4	Редактирование коллекций и поиск карточек	23
3.5	Повторение карточек	24
ЗАКЛЬ	ОЧЕНИЕ	26
СПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева»

мени академика С.П. Королевах (Самарский университет)

Инсти	гут информатики и кибернетики
Кафед	ра программных систем
Задан	ия по практике для выполнения определенных видов работ, связанных с будущей профессиональной деятельностью
	(сбор и анализ данных и материалов, проведение исследований)
•	ющемуся Алёнушка Александру Александровичу ы 6401-020302D
	влен на практику приказом по университету от 27.09.2024 г. № <u>451-ПР</u> кафедру программных систем
Тема:_	Разработка веб-приложения для обучения по системе Лейтнера с зацией алгоритма интервального повторения

Планируемые результаты освоения образовательной программы (компетенции)	Выполнение определенных видов работ, связанных с будущей профессиональной деятельностью (сбор и анализ данных и материалов, проведение исследований)	Результаты практики
ОПК-1. Способен применять	Исследовать	Обзор
фундаментальные знания,	современные подходы	существующих
полученные в области	и технологии создания	библиотек и
математических и (или)	веб-приложений с	программных
естественных наук, и	использованием	средств для

	T	T
использовать их в	универсальных	разработки веб-
профессиональной	программных средств.	приложений и
деятельности.	Исследовать	алгоритмов
ОПК-1.1. Использует	существующие	интервального
основные положения и	алгоритмы	повторения.
концепции в области	интервального	
математических и	повторения.	
естественных наук, Базовые		
теории и истории основного,		
теории коммуникации; знает		
основную терминологию.		
ОПК-1.2. Осуществляет		
первичный сбор и анализ		
материала, интерпретирует		
различные математические		
объекты.		
ОПК-1.3. Применяет опыт		
решения стандартных		
математических задач в		
профессиональной		
деятельности.		
ОПК-2. Способен применять	Изучить возможности	Изучены и освоены
компьютерные/суперкомпьюте	и основные подходы	следующие
рные методы, современное	Spring Boot для	программные
программное обеспечение, в	создания веб-	средства: Spring
том числе отечественного	приложений,	Boot, Liquibase,
происхождения, для решения	библиотеки для	MyBatis.
задач профессиональной	работы с миграциями	
деятельности.	Liquibase, библиотеки	
ОПК-2.1. Использует	для работы с	
основные положения и	запросами к базе	
концепции в области	данных MyBatis.	
программирования,		
архитектуры языков		
программирования, теории		
коммуникации, знает		
основную терминологию,		
знаком с содержанием Единого		
Реестра Российских программ.		
ОПК-2.2. Анализирует код на		
типовых языках		
программирования, может		
составлять программы.		
ОПК-2.3. Применяет опыт		
решения задач анализа,		

интегрании разлинии у типор		
интеграции различных типов программного обеспечения,		
анализа типов коммуникаций. ОПК-3. Способен к разработке	A HOTHER CORPORATION	Просновномороми
	Анализ современных	Проанализированы
алгоритмических и	подходов разработки,	современные
программных решений в	разворачивания и	подходы
области системного и	доставки веб-	разработки,
прикладного	приложений.	разворачивания и
программирования,	Изучить алгоритмы	доставки веб-
математических,	интервального	приложений.
информационных и	повторения.	Изучены
имитационных моделей,		алгоритмы
созданию информационных		интервального
ресурсов глобальных сетей,		повторения.
образовательного контента,		
прикладных баз данных, тестов		
и средств тестирования систем		
и средств на соответствие		
стандартам и исходным		
требованиям.		
ОПК-3.1. Понимает методы		
теории алгоритмов, методы		
системного и прикладного		
программирования, основные		
положения и концепции в		
области математических,		
информационных и		
имитационных моделей.		
ОПК-3.2. Соотносит знания в		
области программирования,		
интерпретацию прочитанного,		
определяет и создает		
информационные ресурсы		
глобальных сетей,		
образовательного контента,		
средств тестирования систем.		
ОПК-3.3. Имеет практический		
опыт применения разработки		
программного обеспечения.		
ОПК-4. Способен участвовать	Написание	Отчет по
в разработке технической	письменного отчета по	результатам
документации программных	выполненной работе.	выполненных
продуктов и комплексов с		задач
использованием стандартов,		
норм и правил, а также в		

управлении проектами		
создания информационных		
систем на стадиях жизненного		
цикла.		
ОПК-4.1. Использует		
принципы сбора и анализа		
информации, создания		
информационных систем на		
стадиях жизненного цикла.		
ОПК-4.2. Осуществляет		
управление проектами		
информационных систем.		
ОПК-4.3. Демонстрирует		
практический опыт анализа и		
интерпретации		
информационных систем.		
ОПК-5. Способен	Настроить окружение	Настроено
инсталлировать и	разработки,	локальное
сопровождать программное	развернуть базу	окружение
обеспечение информационных	данных PostgreSQL,	разработки,
систем и баз данных, в том	настроить систему	установлена и
числе отечественного	контроля версий и	сконфигурирована
происхождения, с учетом	автоматизировать	PostgreSQL БД,
информационной	процесс сборки и	настроен Git
безопасности.	развертывания	репозиторий.
ОПК-5.1. Понимает методику	приложения с	Создан и
установки и	использованием	протестирован
администрирования	Docker.	процесс
информационных систем и баз		автоматического
данных. Знаком с содержанием		развертывания
Единого реестра российских		приложения через
программ.		Docker.
ОПК-5.2. Реализует		
техническое сопровождение		
информационных систем и баз		
данных.		
ОПК-5.3. Использует		
практические навыки		
установки и инсталляции		
программных комплексов,		
применения основ сетевых		
технологий.		
ОПК-6. Способен понимать	Реализовать	Разработан
принципы работы	современный	адаптивный
современных	пользовательский	пользовательский

информационных технологий	интерфейс для работы	интерфейс,
и использовать их для решения	с карточками,	реализована
задач профессиональной	интеграцию с	интеграция
деятельности	бэкендом и систему	фронтенда с
ОПК-6.1. Понимает основные	хранения данных	бэкендом через
положения, концепции и	пользователя.	REST API,
современные методы		внедрена система
обработки и хранения данных.		аутентификации и
ОПК-6.2. Осуществляет		авторизации
первичный сбор и анализ		пользователей.
данных для организации		
информационных процессов		
ОПК-6.3. Обладает		
практическим опытом		
применения современных		
информационных технологий		
для решения задач		
профессиональной		
деятельности.		

ВВЕДЕНИЕ

Современные технологии обучения и методики запоминания информации играют ключевую роль в образовательном процессе, помогая людям эффективно усваивать новые знания в различных областях — от изучения иностранных языков до освоения профессиональных навыков. Особое место среди этих методик занимает система интервального повторения Лейтнера, которая основана на принципе повторения с оптимальными временными интервалами эффективность И показала свою В многочисленных исследованиях. С развитием цифровых технологий традиционные методики обучения трансформируются в современные образовательные инструменты, делая процесс обучения более доступным, удобным и эффективным.

В современных условиях особую актуальность приобретает создание вебприложений, переносящих классические образовательные методики в цифровую форму. Система Лейтнера, изначально разработанная для работы с физическими карточками, прекрасно адаптируется к цифровому формату, позволяя автоматизировать процесс управления интервалами повторения и отслеживания прогресса обучения. Такое веб-приложение может найти широкое применение в образовательных учреждениях, языковых школах и среди самостоятельно обучающихся пользователей, предоставляя им эффективный инструмент для запоминания информации.

Во время практики необходимо решить следующие задачи:

- исследовать современные подходы к разработке веб-приложений с использованием Spring Boot и сопутствующих технологий;
- изучить принципы работы системы интервального повторения
 Лейтнера;
- освоить инструменты разработки, включая Docker, PostgreSQL и MyBatis;
- реализовать удобный пользовательский интерфейс для работы с карточками;
 - изучить алгоритмы интервального повторения;

_	подготовить и оформить писи	ьменный отчет по выполне	енной работе.
		9	

1 Описание средств реализации

В настоящее время существует огромное количество программных продуктов, позволяющих в эффективно и качественно разработать программный комплекс для различных предметных областей. Для правильного и обоснованного выбора во внимание принимались различные критерии для оценки качества программного продукта.

1.1 Описание операционной системы

В качестве операционной системы (ОС) для клиентской части выбрана Windows 10 – операционная система, выпущенная компанией Microsoft в 2015 году [1]. Среди ключевых преимуществ данной ОС можно выделить:

- интуитивно понятный пользовательский интерфейс, упрощающий процесс установки и администрирования программного обеспечения;
- высокий уровень безопасности благодаря регулярным обновлениям и встроенному антивирусу Windows Defender;
- широкая совместимость с различным программным обеспечением, так как большинство разработчиков в первую очередь выпускают свои продукты именно для Windows 10.

1.2 Описание языка программирования

Для реализации клиентской части системы выбран язык программирования JavaScript с использованием библиотеки React.

ЈаvaScript — это интерпретируемый язык программирования, широко применяемый для разработки интерактивных веб-приложений [2]. Он обеспечивает динамическое взаимодействие с пользователем, обновление контента без перезагрузки страницы и реализацию сложной клиентской логики. React — это JavaScript-библиотека, ориентированная на создание пользовательских интерфейсов путем компоновки независимых и повторно используемых UI-элементов [3]. Выбор JavaScript и React обусловлен их распространенностью в веб-разработке, высокой производительностью, общирной экосистемой инструментов и библиотек, а также способностью создавать динамичные и отзывчивые пользовательские интерфейсы.

Для серверной части системы был выбран реализации язык программирования Java. Java – объектно-ориентированный, компилируемый язык программирования, характеризующийся надежностью, платформенной независимостью и широким применением в серверной разработке. В качестве фреймворка для серверной части приложения выбран Spring Framework, обширный набор предоставляющий инструментов И компонентов, упрощающих разработку Java-приложений. Spring Framework способствует созданию масштабируемых, поддерживаемых и тестируемых Обоснованием выбора Java и Spring Framework служат их надежность, производительность, зрелость экосистемы, а также способность создавать отказоустойчивую и эффективную серверную часть (backend) для реализации алгоритмов интервального повторения и обработки данных.

1.3 Описание среды разработки

В качестве интегрированной среды разработки (IDE) была выбрана IntelliJ IDEA. IntelliJ IDEA — это мощная IDE, разработанная JetBrains, предоставляющая широкий спектр инструментов для разработки программного обеспечения на различных языках, включая Java, JavaScript и многие другие. IntelliJ IDEA предлагает следую:

- умное автодополнение кода (IntelliSense) IDE анализирует контекст кода и предлагает релевантные варианты автодополнения, включая имена переменных, методов, классов и ключевые слова, что ускоряет процесс разработки и снижает вероятность ошибок;
- встроенный отладчик позволяет пошагово выполнять код,
 отслеживать значения переменных и выявлять источники ошибок, что
 существенно упрощает процесс отладки;
- поддержка рефакторинга IntelliJ IDEA предоставляет богатый набор инструментов для рефакторинга кода, позволяющих безопасно и эффективно изменять структуру проекта, улучшая его читаемость и поддерживаемость;

- интеграция с системами контроля версий IDE бесшовно интегрируется с популярными системами контроля версий, такими как Git, облегчая совместную работу над проектом и управление изменениями в коде;
- поддержка широкого спектра технологий и фреймворков IntelliJ IDEA предоставляет встроенную поддержку для Java, Spring Framework, JavaScript, React и других технологий, используемых в данном проекте, что упрощает настройку окружения и разработку.

1.4 Описание используемых библиотек

Для управления миграциями базы данных в проекте используется Liquibase. Liquibase — это инструмент управления версиями базы данных с открытым исходным кодом, который позволяет отслеживать, управлять и применять изменения схемы базы данных. Использование Liquibase обеспечивает согласованность и воспроизводимость структуры базы данных в различных средах разработки и развертывания.

Взаимодействие с базой данных реализовано с помощью MyBatis. МуBatis — это инструмент для работы с базой данных, отличающийся простотой и эффективностью для Java, который упрощает отображение SQL-запросов на объекты Java и обратно. MyBatis обеспечивает гибкость в написании SQL-запросов и позволяет оптимизировать производительность запросов к базе данных.

Для преобразования сущностей Java в объекты передачи данных (DTO) и обратно используется MapStruct. MapStruct — это генератор кода, который создает эффективный и типобезопасный код для маппинга объектов. Применение MapStruct уменьшает объем шаблонного кода и повышает производительность приложения.

На клиентской стороне для поддержки синтаксиса Markdown в карточках используется Markdown-it. Markdown-it — это быстрый и совместимый парсер Markdown, написанный на JavaScript. Он позволяет отображать форматированный текст Markdown в пользовательском интерфейсе вебприложения.

В качестве основы веб-приложения используется Spring Boot. Spring Boot — это фреймворк, упрощающий разработку и развертывание приложений на основе Spring. Он предоставляет автоматическую настройку, встроенный вебсервер и множество других функций, которые ускоряют процесс разработки и повышают производительность приложения.

Для разработки пользовательского интерфейса используется библиотека React. React — это JavaScript-библиотека, предназначенная для создания динамических и интерактивных пользовательских интерфейсов. Она основана на компонентном подходе, что позволяет разбивать интерфейс на независимые и повторно используемые блоки, упрощая разработку и поддержку сложных UI. React эффективно обновляет и перерисовывает только измененные части интерфейса, обеспечивая высокую производительность и отзывчивость приложения.

2 Описание проекта разрабатываемого приложения

Для разработки веб-приложения, основанного на системе Лейтнера с алгоритмом интервального повторения, была выбрана архитектура, которая включает в себя клиент-серверный подход, слоистую структуру и использование контейнеров. Такой выбор обусловлен рядом факторов, которые обеспечивают гибкость, масштабируемость и удобство в развертывании приложения.

Клиент-серверная архитектура — приложение разделено на два компонента: фронтенд, который отвечает за интерфейс пользователя, и бэкенд, обрабатывающий запросы и выполняющий бизнес-логику. Это позволяет изолировать логику и интерфейс, что улучшает безопасность и производительность системы.

Слоистая архитектура на бэкэнде включает три уровня:

- контроллеры отвечают за обработку входящих НТТР-запросов и передачу их в соответствующие сервисы;
- сервисы содержат бизнес-логику приложения, осуществляют обработку данных и взаимодействуют с репозиториями;

– репозитории — отвечают за доступ к данным, взаимодействие с базой данных и выполнение CRUD-операций.

Такой подход позволяет легко тестировать и изменять отдельные слои без влияния на другие компоненты системы, а также упрощает поддержание чистоты кода.

Использование контейнеров (Docker) позволяет обеспечить изоляцию всех компонентов приложения, упростить развертывание и поддержку различных сред, а также повысить гибкость и масштабируемость системы.

Эта архитектура является оптимальной для создания приложения, которое будет поддерживать сложную бизнес-логику (алгоритм интервального повторения), легко масштабироваться и интегрироваться с другими сервисами.

Архитектура приложения описана, можно перейти к рассмотрению алгоритмов, которые лежат в основе системы Лейтнера и других методов интервального повторения. Эти алгоритмы играют ключевую роль в оптимизации процесса обучения, позволяя пользователю эффективно запоминать информацию с учетом принципов распределенного повторения.

2.1 The Super Memo

Алгоритмы интервального повторения Super Memo являются одними из самых известных в мире. Эти алгоритмы постоянно совершенствуются и оптимизируются с 1982 года, когда д-р Петр Вожняк из Польши разработал свой первый алгоритм Super Memo [4].

Преимущество Super Memo перед более простыми алгоритмами (системой Лейтнера) в том, что Super Memo включает в себя способность обеспечивать точную оценку сложности карточек, и способность алгоритмов адаптироваться к учащемуся, основываясь на индивидуальности его мозга и памяти.

Последним выпущенным алгоритмом является SM-18, 2019 год. Однако данный алгоритм требует лицензирования, и получить к нему доступ можно только путем покупки лицензии. Поэтому рассмотрим алгоритм SM-2, который находится в открытом доступе.

Последовательность действий алгоритма SM-2, который используется в электронном варианте метода Super Memo и предполагает расчет коэффициентов простоты для отдельных заданий, следующая:

- разделить знания на мельчайшие элементы;
- со всеми предметами связать E-Factor, равный 2.5;
- повторять информацию, используя следующий расчет интервалов:
 - \circ I(1) := 1
 - \circ I(2) := 6
 - o for n > 2: I(n) = I(n-1) * EF,

где I(n) – межповторный интервал после n-го повторения (в днях), EF (E-Factor) – коэффициент легкости, отражающий легкость запоминания и удержания в памяти данного элемента.

Если результат представляет собой дробь, то необходимо округлить его до ближайшего целого числа.

- сразу после ответа оценить качество реакции на повторение по шкале от 0 до 5:
 - 5 идеальный ответ;
 - 4 правильный ответ после небольшого колебания;
 - 3 правильный ответ после длительного колебания;
 - 2 неверный ответ, где правильный казался легким;
 - 1 неверный ответ, правильный вспомнился;
 - 0 ответ полностью забыт.
- после каждого повторения необходимо пересчитывать E-Factor недавно повторенного элемента по формуле:

$$EF' = EF + (0.1 - (5 - q) * (0.08 + (5 - q) * 0.02))$$

где EF' – новое значение E-Factor, EF – старое значение E-Factor, q – качество ответа по пятибалльной шкале.

Если EF меньше, чем 1.3, значит присвоить EF значение 1.3.

- если качество реакции на ответ было ниже трех, то повторение задания начинать с самого начала без изменения E-Factor, как если бы приходилось отвечать на вопрос заново;
- после каждого захода на повторение в текущий день повторить еще раз
 все пункты, получившие менее четырех баллов реакции. И продолжать
 повторения до тех пор, пока все эти элементы не наберут не менее четырех.

2.2 Алгоритм Anki

Anki — одна из самых популярных в мире систем интервального повторения на основе карточек. Алгоритм Anki, основанный на оригинальном алгоритме SM-2 Петра Вожняка, представляет собой систему с открытым исходным кодом, которую могут бесплатно использовать все учащиеся.

Так как Anki основан на SM-2, то рассмотрим основные отличия двух алгоритмов [5]:

- SM-2 описывает исходный интервал в один день, последующий в шесть дней. С Anki появляется возможность полного контроля над длительностью начальных шагов обучения. Метод Anki понимает, что может возникнуть необходимость увидеть новую информацию несколько раз, прежде чем она будет запомнена;
- Апкі использует четыре варианта ответа на вопрос. Таким образом,
 существует только один вариант с ошибкой. Благодаря этому в дальнейшем
 можно отрегулировать легкость вопроса, просто изменив положительные ответы;
- ответы на вопросы позже запланированного времени будут учитываться при расчете следующего интервала, так как Anki понимает понятие «поздно», что как будто говорит о том, что вы опоздали с изучением материала;
- как и в SM-2, отказ от ответа в Anki по умолчанию сбрасывает интервал вопроса. Но в Anki вместо полного сброса пользователь может выбрать уменьшение интервала;

– легкость запоминания увеличивает коэффициент простоты (E-Factor) и также добавляет дополнительный «бонус» к текущему расчету интервала повторения.

2.3 Система Duolingo

Half-life Regression (HLR) — новая модель практики интервального повторения, используемая в приложениях по обучению иностранным языкам. HLR сочетает психолингвистическую теорию с современными методами машинного обучения, косвенно оценивая «период полураспада» слова или понимания в долговременной памяти учащегося [6].

В разработке данной модели использовались методы работы с «большими данными», такими как логистическая регрессия, и с использованием экспоненциальной функции кривой забывания Эббингауза.

Период полураспада слова в памяти рассчитывается с помощью следующей формулы:

$$h = 2^{\Theta \cdot x}$$

где Θ — вес регрессионной модели, X — набор переменных, которые обобщают историю обучения слова.

HLR включает в себя поиск «лучшего» веса модели для Θ путем минимизации «функции потерь» l на каждом занятии для каждого ученика:

$$l((p, \Delta, x); \Theta) = \left(p - 2^{-\frac{\Delta}{2\Theta \cdot x}}\right)^{2} + \alpha \left(-\frac{\Delta}{\log_{2}(p)} - 2^{\Theta \cdot x}\right)^{2} + \lambda ||\Theta||_{2}^{2}$$

где:

- р вероятность правильного припоминания предмета;
- $-\Delta$ функция времени задержки с момента последнего выполнения вопроса;
- α параметр для контроля относительной важности периода полураспада в общей целевой функции тренировки;
- $-\lambda$ параметр, контролирующий срок регуляризации и помогающий предотвратить переизбыток информации.

Например, на Рисунке 1 показано, как может выглядеть кривая забывания HLR для определенного слова:

Рисунок 1 – История запоминания слов учащегося и кривая забывания, предсказанная HLR

Каждый раз, когда ученик правильно отвечает (зеленые галочки), h увеличивается, и память начинает ухудшаться медленнее (пунктирная линия). Но каждый раз, когда возникает ошибка (красные крестики), h уменьшается, и необходимо будет повторять материал раньше времени.

2.4 База данных

Для первоначальной версии приложения была спроектирована база данных со следующими сущностями:

- users (id, email, password, created_at)
- cards (id, question, answer, collection_id, created_at)
- collections (id, name, user_id, created_at)
- repetitions (id, card_id, user_id, repetition_date, interval, easiness_factor, grade, next_repetition_date)

Рассмотрим подробнее сущность repetitions. Она предназначена для реализации алгоритма SM2. Рассмотрим ее поля и их назначения:

- id идентификационный номер для каждой записи по повторению;
- card_id идентификационный номер карточки, которую повторял пользователь;
 - user_id идентификационный номер пользователя;

- repetition_date дата, когда происходило повторение;
- interval рассчитанный в днях интервал, через который данная карточка должна быть повторена;
- easiness_factor коэффициент для расчета интервала, который отражает насколько хорошо пользователь запоминает эту карточку;
 - grade оценка пользователем своего ответа по 4 бальной шкале;
- next_repetition_date
 дата с которой данная карточка должна
 выводиться в списке для повторения.

На рисунке 2 изображена ER диаграмма базы данных:

Рисунок 2 – ER диаграмма базы данных

2.5 Диаграмма use case

Для иллюстрации функциональных требований к системе на концептуальном уровне используется диаграмма вариантов использования, позволяющая наглядно отразить ключевые сценарии взаимодействия пользователей и компонентов приложения.

вариантов использования (use case diagram) Диаграмма поведенческая диаграмма в языке UML, отображающая отношения между акторами (пользователями или внешними системами) И прецедентами использования), позволяет описать функциональные ЧТО требования системы на концептуальном уровне [7]. Такая диаграмма показывает, какие сервисы предоставляет система и каким образом они используются внешними сущностями, не вдаваясь в детализацию внутренней реализации [8].

На рисунке 3 представлена диаграмма прецедентов (use case), демонстрирующая виды взаимодействия акторов с Java-приложением и определяющая основные варианты использования.

Рисунок 3 – Диаграмма вариантов использования

- 3 Описание экранных форм разработанного программного приложения
- 3.1 Начало работы: регистрация и вход

Для работы с веб-приложением пользователь должен пройти процедуру регистрации, указав email, пароль и подтверждение пароля. Требования к регистрации:

- email должен соответствовать формату электронной почты (проверка через регулярное выражение: $\S+@\S+\.\S+$);
 - пароль должен содержать не менее 6 символов;
- при успешной регистрации отображается сообщение: «Пользователь успешно зарегистрирован!».

На рисунке 4 приведена форма регистрации.

Рисунок 4 — Страница регистрации

После успешной регистрации можно выполнить вход в систему указав логин и пароль. На рисунке 5 приведена форма для входа.

Рисунок 5 – Страница входа

3.2 Работа с коллекциями карточек

После входа пользователь попадает на главную страницу, где отображается список всех его коллекций карточек. Здесь отображаются следующие данные для каждой коллекции:

- название коллекции;
- количество всех карточек;
- количество новых;
- количество карточек в стадии «обучения»;
- количество карточек; готовых к повторению.

На рисунке 6 изображена главная страница.

Рисунок 6 – Главная страница

Также на этой странице реализованы следующие функции:

- создание новой коллекции;
- удаление существующих коллекций;
- переход к добавлению карточек в коллекцию;
- запуск режима повторения для выбранной коллекции.
- 3.3 Добавление и редактирование карточек

Выбрав коллекцию, пользователь может добавить в неё новые карточки. Редактор поддерживает:

- ввод текста карточки с использованием Markdown-разметки;
- выделение фрагментов для последующего скрытия («cloze»-режим) позволяет создавать карточки с пропусками, которые надо вспомнить при повторении;
 - предпросмотр карточки в реальном времени;
 - включение Vim-режима для продвинутых пользователей.

На рисунке 7 изображена страница для создания карточек.

Рисунок 7 – Страница создания карточек

После ввода текста карточки пользователь сохраняет её в коллекции нажатием кнопки «Добавить карточку».

3.4 Редактирование коллекций и поиск карточек

В разделе редактирования коллекций пользователь может:

- просматривать и фильтровать все свои коллекции;

- просматривать список всех карточек в выбранной коллекции;
- выполнять сортировку и поиск по содержимому карточек;
- просматривать содержимое отдельной карточки в Markdown-формате.

На рисунке 8 представлена страница редактирования коллекций.

Рисунок 8 – Страница редактирования коллекций

3.5 Повторение карточек

Основная функция системы — проведение интервального повторения по алгоритму Лейтнера. При запуске повторения:

- пользователю последовательно показываются карточки из выбранной коллекции;
- карточки автоматически сортируются по приоритету показа: сначала новые; затем карточки, находящиеся в стадии обучения, и далее карточки на повторение,
- для cloze-карточек часть информации скрыта и открывается по нажатию Tab.

После просмотра карточки пользователь выбирает оценку ответа (кнопки: «Again»; «Hard», «Good», «Easy»), что влияет на дату следующего показа по алгоритму интервального повторения.

На рисунке 9 изображена страница режима повторения.

Производная функции f в точке x_0 — это [...] отношения [...] функции к приращению аргумента при стремлении последнего к [...], то есть

$$f'(x_0) = \lim_{h o 0} rac{[...]}{h},$$

если этот предел существует. Это же [...] f в точке x_0 или [...] коэффициент касательной к графику функции в этой точке.

Рисунок 9 – Страница режима повторения

ЗАКЛЮЧЕНИЕ

В результате выполнения производственной практики (научно-исследовательской работы):

- исследованы современные подходы к разработке веб-приложений с использованием Spring Boot и сопутствующих технологий;
- изучены принципы работы системы интервального повторения
 Лейтнера;
- освоены инструменты разработки, включая Docker, PostgreSQL и MyBatis;
- реализован удобный пользовательский интерфейс для работы с карточками;
 - изучены алгоритмы интервального повторения;
 - подготовлен и оформлен письменный отчет по практике.

Таким образом, в процессе выполнения научно-исследовательской работы были освоены все необходимые индикаторы (ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2, ОПК-3.3, ОПК-4.1, ОПК-4.2, ОПК-4.3, ОПК-5.1, ОПК-5.2, ОПК-5.3, ОПК-6.1, ОПК-6.2, ОПК-6.3) компетенций (ОПК-1, ОПК-2, ОПК-3, ОПК-4, ОПК-5, ОПК-6).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 What Is Windows 10? [Электронный ресурс]. URL: https://www.lifewire.com/windows-10-2626217 (дата обращения: 12.12.2024).
- 2 JavaScript [Электронный ресурс]. URL: https://en.wikipedia.org/wiki/Javascript (дата обращения: 12.12.2024).
- 3 React (software) [Электронный ресурс]. URL: https://en.wikipedia.org/wiki/React_%28software%29 (дата обращения: 12.12.2024).
- 4 Woźniak P. A. Optimization of Learning : магистерская диссертация, Познанский технологический университет, 1990 [Электронный ресурс]. URL: https://super-memory.com/english/ol.htm (дата обращения: 12.12.2024).
- 5 What Spaced Repetition Algorithm Does Anki Use? [Электронный ресурс]. Информационный портал «Frequently Asked Questions». URL: https://faqs.ankiweb.net/what-spaced-repetition-algorithm.html (дата обращения: 12.12.2024).
- 6 Settles B., Meeder B. A Trainable Spaced Repetition Model for Language Learning [Электронный ресурс]. URL: https://aclanthology.org/P16-1174.pdf (дата обращения: 12.12.2024).
- 7 Диаграмма прецедентов [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Диаграмма_прецедентов (дата обращения: 12.12.2024).
- 8 Использование диаграммы вариантов использования UML при проектировании программного обеспечения [Электронный ресурс]. URL: https://habr.com/ru/articles/566218/ (дата обращения: 12.12.2024).