Bineary Search
- Efficient Securching method, which consumes less time The essential thing here is the array should be souted first. Steps for binary Search
Let the input array be A [o n-1] Key is the element to be searched A [m] is the mid element of array A. Then,
(2) If A[m] > Key, then go to left Sub list. (3) If A [m] < Key, then go to night sublist.
Example
Input away -> 0 5 10 15 20 25.30 35 40
1 15 20 25 30 35 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Let key = 5 (no. to be searched) Now find the middle element
$m = \frac{10\omega + high}{2}$ $= \frac{0+8}{2}$
: A[m] = 20

Check if A [m] = Key
Heste, AIm] = 20 Key = 5
: A [m] = Key
Now, Key < A[m]
: We have to search the left sub-list
0 1 2 3 0 5 10 15 1 10 15
m = (Low + high)/2 $= (o + 3)/2$ $= 1$
Now Key = 5 A[m] = 5
· · Key = A [m]
Thus, the no. is present in the list.

Algorithm for binary seconch
(i) Initialize away A [0n-1]
2) 10w1-0
(3) high < - n-1
(4) Do((low + high)/2) e-> m
(5) if (Key = A[m]) then
return m;
(c) if (Key < A [m]) then
high <- m-+ [Sewich left Sub triee]
(7) if (Key > A [m]) then
low L- m+1 [Second right sub tree]
(+10989Kd tou si tuament is 1- urrntar (8)