SNARK Flipper

Flip and prove multiple instances efficiently

Joint work with Anca Nitulescu, Carla Rafóls **Nikitas Paslis**Universitat Pompeu
Fabra

In Brief

Flip := Folding via IPP

What are SNARKs?

zk-SNARK Succinctness proof size independent Zero-Knowledge of NP witness size does not leak anything about the witness **Non-Interactivity** zk-SNARK no exchange between prover and verifier **Argument Knowledge Soundness** soundness holds only a witness can be efficiently against computationally extracted from the prover bounded provers

Proof of storage

Storage Providers

- onboard storage capacity
- earn block rewards
- regularly prove the storage

= Provers

Nodes in network

- ensure data is being stored, maintained, and secured
- need to check proofs of space

= Verifiers

Original Filecoin

How it works?

Groth16

Bilinear Groups

$$\langle g \rangle = \mathbb{G}_1, \ \langle h \rangle = \mathbb{G}_2$$
 $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
 $e(g^a, h^b) = e(g, h)^{ab}$

Groth16

$$e(g^a, h^b) = e(g, h)^{ab}$$

Many SNARKs

$$e(A_1, B_1) = e(C_1, D)$$
 $e(A_2, B_2) = e(C_2, D)$

$$e(A_n, B_n) = e(C_n, D)$$

Verify many SNARKs

Verify many SNARKs

Time

SnarkPack Aggregation

(Gailly, Maller, Nitulescu)

SNARK Aggregation

Aggregation

$$Z_{AB} = \prod e(A_i, B_i^{r^i})$$

$$Z_{c} = \prod C_{i}^{r^{i}}$$

$$Z_{AB} = Z_{C}$$

Tools: GIPP

Proofs for Inner Pairing Products and Applications - Bünz, Maller, Mishra, Tyagi, Vesely

$$\langle \mathbf{A}, \mathbf{b} \rangle = \prod A_{\mathbf{i}}^{b_{\mathbf{i}}}$$

$$\langle \mathbf{A}, \mathbf{B} \rangle = \prod e(\mathbf{A}_i, \mathbf{B}_i)$$

$$A_i \in \mathbb{G}_1, B_i \in \mathbb{G}_2, b_i \in \mathbb{Z}_q$$

$$\langle A, B \rangle = e(A_1, B_1) e(A_2, B_2)... e(A_n, B_n)$$

$$\mathbf{A} = (A_1, A_2, ... A_n)$$
 $\mathbf{B} = (B_1, B_2 ... B_n)$

$$B = (B_1, B_2 ... B_n)$$

$$\langle A, B \rangle = e(A_1, B_1) e(A_2, B_2) \dots e(A_n, B_n)$$

$$A = (A_1, A_2, ... A_n)$$

Aleft

Aright

$$B = (B_1, B_2 ... B_n)$$

Bleft

Bright

$$\langle \mathbf{A}, \mathbf{B} \rangle = e(A_1, B_1) \ e(A_2, B_2) \dots \ e(A_n, B_n)$$

$$\mathbf{A} = (A_1, A_2, \dots A_n) \qquad \mathbf{B} = (B_1, B_2 \dots B_n)$$

$$\mathbf{A}_{left} \qquad \mathbf{A}_{right} \qquad \mathbf{B}_{left} \qquad \mathbf{B}_{right}$$

$$\mathbf{L} = \langle \mathbf{A}_{left}, \mathbf{B}_{right} \rangle$$

$$\langle A, B \rangle = e(A_1, B_1) e(A_2, B_2) \dots e(A_n, B_n)$$

$$A = (A_1, A_2, \dots A_n)$$

$$B = (B_1, B_2 \dots B_n)$$

$$A' = (A'_1, \dots A'_{n/2})$$

$$B' = (B'_1, \dots B'_{n/2})$$

$$B' = (B'_1, \dots B'_{n/2})$$

$$\langle A, B \rangle = e(A_1, B_1) e(A_2, B_2)... e(A_n, B_n)$$

$$A = (A_1, A_2, ... A_n)$$

$$\mathbf{A} = (A_1, A_2, ... A_n)$$
 $\mathbf{B} = (B_1, B_2 ... B_n)$

 $\langle A', B' \rangle$

$$A' = (A'_{1, \dots} A'_{n/2})$$

SnarkPack aggregation

SnarkPack aggregation

SnarkPack aggregation

R1CS Extensions

Relaxed

$$\mathcal{L}_{\mathbf{A},\mathbf{B},\mathbf{C}}^{\text{relaxed}} = \left\{ (u, \mathbf{x}, \mathbf{e}) \in \mathbb{F} \times \mathbb{F}^l \times \mathbb{F} \mid \exists \mathbf{w} \in \mathbb{F}^{m-l} \text{ s.t.} \right.$$
$$\mathbf{z} = \begin{pmatrix} u \\ \mathbf{x} \\ \mathbf{w} \end{pmatrix} \land \mathbf{Az} \circ \mathbf{Bz} = u\mathbf{Cz} + \mathbf{e} \right\}$$

R1CS Extensions

Relaxed

$$\mathcal{L}_{\mathbf{A},\mathbf{B},\mathbf{C}}^{\text{relaxed}} = \left\{ (u, \mathbf{x}, \mathbf{e}) \in \mathbb{F} \times \mathbb{F}^l \times \mathbb{F} \mid \exists \mathbf{w} \in \mathbb{F}^{m-l} \text{ s.t.} \right.$$

$$\mathbf{z} = \begin{pmatrix} u \\ \mathbf{x} \\ \mathbf{w} \end{pmatrix} \land \mathbf{Az} \circ \mathbf{Bz} = u\mathbf{Cz} + \mathbf{e} \right\}$$

R1CS Extensions

Relaxed

$$\mathcal{L}_{\mathbf{A},\mathbf{B},\mathbf{C}}^{\text{relaxed}} = \left\{ (u, \mathbf{x}, \mathbf{e}) \in \mathbb{F} \times \mathbb{F}^l \times \mathbb{F} \mid \exists \mathbf{w} \in \mathbb{F}^{m-l} \text{ s.t.} \right.$$
$$\mathbf{z} = \begin{pmatrix} u \\ \mathbf{x} \\ \mathbf{w} \end{pmatrix} \land \mathbf{Az} \circ \mathbf{Bz} = u\mathbf{Cz} + \mathbf{e} \right\}$$

Committed Relaxed

$$\mathcal{L}_{\mathsf{ck}_{1},\mathbf{A},\mathbf{B},\mathbf{C}}^{c\text{-relaxed}} = \left\{ (u,\mathbf{x},[e]_{1},[w]_{1}) \in \mathbb{F} \times \mathbb{F}^{l} \times \mathcal{C}^{2} \mid \exists (\mathbf{w},\mathbf{e}) \in \mathbb{F}^{m-l} \times \mathbb{F}^{m} \text{ s.t.} \right.$$

$$[w]_{1} = \mathsf{Com}_{\mathsf{ck}_{1}}(\mathsf{pp},\mathbf{w}) \wedge [e]_{1} = \mathsf{Com}_{\mathsf{ck}_{1}}(\mathsf{pp},\mathbf{e}) \wedge$$

$$((u,\mathbf{x},\mathbf{e}),\mathbf{w}) \in \mathcal{R}_{\mathbf{A},\mathbf{B},\mathbf{C}}^{\mathrm{relaxed}} \right\}$$

Nova style Folding

```
i \in \{1, 2\}: x_i = (\mathbf{x}_i, u_i, [e_i]_1, [w_i]_1), w_i = (\mathbf{w}_i, \mathbf{e}_i)
                                          P: q_i = (x_i, w_i)
                                                                                                                                                               V: x_i
                                           \mathbf{z}_i = (u_i, \mathbf{x}_i^\top, \mathbf{w}_i^\top)^\top
                                           \mathbf{t} = \mathbf{A}\mathbf{z}_1 \circ \mathbf{B}\mathbf{z}_2 + \mathbf{A}\mathbf{z}_2 \circ \mathbf{B}\mathbf{z}_1
                                                             -u_1Cz_2 - u_2Cz_1
                                                                                                                               [t]_1
                                           [t]_1 = \mathsf{Com}_{\mathsf{ck}_1}(\mathsf{pp}_1, \mathbf{t})
                                                                                                                                X
                                                                                                                                                               \chi \leftarrow \mathbb{F}
                                                                                                                                                                [e]_1 = [e_1]_1 + \chi[t] + \chi^2[e_2]_1
                                           \mathbf{e} = \mathbf{e}_1 + \chi \mathbf{t} + \chi^2 \mathbf{e}_2
                                                                                                                                                                [w]_1 = [w_1]_1 + \chi[w_2]_1
                                           \mathbf{w} = \mathbf{w}_1 + \chi \mathbf{w}_2
                                                                                                                                                                u = u_1 + \chi u_2
                                                                                                                                                               \mathbf{x} = \mathbf{x}_1 + \chi \mathbf{x}_2
                                           w = (\mathbf{w}, \mathbf{e})
                                                                                                                                                                x = (u, \mathbf{x}, [e]_1, [w]_1)
```

Nova style Folding

Nova style Folding

Nova style Folding

Generic SNARK

Linear Overhead

OR

use generic commit and prove or sparse matrix lincheck techniques

OR

use generic commit and prove or sparse matrix lincheck techniques

use generic commit and prove or sparse matrix lincheck techniques

$$(\mathsf{srsp}, \mathsf{srsv}) := \mathsf{srs} \leftarrow \begin{pmatrix} \left[\alpha, \beta, \delta, \{x^i\}_{i=0}^{n-1}, \{u_j(x)\beta + v_j(x)\alpha + w_j(x) + \gamma \ell_j(x)\}_{j=0}^l, \\ \left\{ \frac{u_j(x)\beta + v_j(x)\alpha + w_j(x) + \gamma \ell_j(x)}{\delta} \right\}_{j=l+1}^m, \{x^i t(x)/\delta\}_{i=0}^{n-2} \right]_1, \\ \left[\beta, \delta, \gamma, \{x^i\}_{i=0}^{n-1}]_2, \ [\alpha\beta, t(x)]_T, H \end{pmatrix}$$

$$(\mathsf{srsp},\mathsf{srsv}) := \mathsf{srs} \leftarrow \begin{pmatrix} \left[\alpha,\beta,\delta,\{x^i\}_{i=0}^{n-1},\{u_j(x)\beta+v_j(x)\alpha+w_j(x)+\underline{\gamma\ell_j(x)}\}_{j=0}^l,\\ \left\{\frac{u_j(x)\beta+v_j(x)\alpha+w_j(x)+\underline{\gamma\ell_j(x)}}{\delta}\right\}_{j=l+1}^m,\{x^it(x)/\delta\}_{i=0}^{n-2}\right]_1,\\ \left[\beta,\delta,\underline{\gamma},\{x^i\}_{i=0}^{n-1}]_2,\; [\alpha\beta,t(x)]_T,H \end{pmatrix}$$

$$[A]_{1}[B]_{2} - [C]_{1}[\delta]_{2} - \left(\sum_{j=0}^{l} z_{j} [u_{j}(x)\beta + v_{j}(x)\alpha + w_{j}(x) + \gamma \ell_{j}(x)]_{1} - [e]_{1} u^{-1}\right) [1]_{2} + [w]_{1}[\gamma]_{2} = u [\alpha \beta]_{T}$$

$$[A]_{1}[B]_{2} - [C]_{1}[\delta]_{2} - \left(\sum_{j=0}^{l} z_{j} [u_{j}(x)\beta + v_{j}(x)\alpha + w_{j}(x) + \underline{\gamma \ell_{j}(x)}]_{1} - \underline{[e]_{1} u^{-1}}\right) [1]_{2} + \underline{[w]_{1} [\gamma]_{2}} = u [\alpha \beta]_{T}$$

Summary

We examine the problem of proof aggregation when a single prover is producing multiply proofs. Our contributions are the following:

Summary

We examine the problem of proof aggregation when a single prover is producing multiply proofs. Our contributions are the following:

• **Flipp**: a protocol that uses inner pairing product techniques to fold with logarithmic communication committed relaxed R1CS instances.

Summary

We examine the problem of proof aggregation when a single prover is producing multiply proofs. Our contributions are the following:

• **Flipp**: a protocol that uses inner pairing product techniques to fold with logarithmic communication committed relaxed R1CS instances.

 Committed Relaxed Groth16: a modification of Groth16 for proving committed relaxed R1CS instances.

Conclusion

Flip and prove aggregation:

- massive reduction in prover time compared to SnarkPack, in the setting of a single prover
- no need for expensive arithmetization of verifier circuit inside the prover
- no need for (half) cycles of elliptic curves

Conclusion

Flip and prove aggregation:

- massive reduction in prover time compared to SnarkPack
- no need for expensive arithmetization of verifier circuit inside the prover
- no need for (half) cycles of elliptic curves

Committed Relaxed Groth 16:

Can be potentially used as an alternative for proving the last step of Nova

