Audio texture modeling and synthesis using Gaussian process models

MAKSIM KOPTELOV

What is a definition of texture?

- No universal valid definition
- Texture should exhibit similar characteristics over time
- Can have local structure and randomness, but characteristics remain constant

Why is it important?

Application in audio processing and sound engineering:

- audio restoration
- missing parts estimation
- etc.

Application in scoring:

- background music
- game music
- etc.

What we are doing

Input – audio clip t1 seconds

Output – new audio clip t2 seconds, t2 > 0

- Audio texture can be captured from a clip
- It can be used then to synthesize new audio clips with necessary length of time

Existing audio textures modeling and synthesis methods:

- physics based not universal
- sampling based mostly manual
- learning based methods more universal, automatic

Learning based methods

- high dimensionality curse of dimensionality
 dimensionality reduction process must be applied infers by Gaussian process
- most of audio textures are not linear learning algorithm cannot be linear more flexible model must be found based of Gaussian process
- big computational cost of optimization necessary to have a good performance first-order Markov model based on Gaussian process

Why Gaussian process? Not many approaches can be used for modeling and synthesis

Gaussian process dynamic model

- latent variable model
- 2 mappings: from a latent space X to the observation space Y and dynamic behavior of latent variables
- kernel function: at least one for mapping from X to Y
- X sequence of artificial samples, Y sequence of real samples
- A parameters, B kernel weights

Y_i is a multivariate Gaussian process indexed by X_i expressed by likelihood

$$p(\mathbf{Y}|\mathbf{X},\boldsymbol{\theta}) = \prod_{t=1}^{N} p(y_t|x_t,\boldsymbol{\theta}) = \frac{1}{(2\pi)^{DN/2} |\mathbf{K}_Y|^{D/2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}_Y^{-1} \mathbf{Y} \mathbf{Y}^T\right)\right)$$

Gaussian process

Definition

Gaussian processes – infinite-dimensional generalization of multivariate normal distributions

Initially we have:

- \blacksquare d random variables ($X_{t1},...,X_{td}$) not equally spaced
- timeline t_i
- d = 100
- 100 time indexes t_i
- i₀ index when space is increased
- not regular sampling

Gaussian process

Characterized by mean and covariance

- all the vector of interest are centered zero mean initially
- **a** assume a specific form for the covariance of any subsample $(X_{t1},...,X_{td})$

$$k(t_i, t_j) = cov(X_{t_i}, X_{t_j}) = \alpha \exp(-\frac{\|t_i - t_j\|^2}{2l^2})$$

Parameters:

a - scale parameter,

I - dispersion parameter

Gaussian process

From one covariance matrix and one sequence of time $(t_1,...,t_k)$ possible Gaussian distribution $(X_{t1},...,X_{tk})$ with zero mean and covariance C

On the axis:

x_{ti} – values of random variables

t_i – time indexes

Trend of samples is not spoiled by not equally spaced time indexes and can be easily seen

References

■ N. Lawrence, "Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models", Journal of Machine Learning Research 6 (2005) 1783–1816

■ Gerda Strobl, Gerhard Eckel, "SOUND TEXTURE MODELING: A SURVEY", Institute of Electronic Music and Acoustics. University of Music and Dramatic Arts Graz.