# Exploratory Data Analysis Lecture 8

Corina Besliu

Technical University of Moldova

September 23, 2021



Fit a line to describe the relationship between Experience and Salary



### But what is the best line?



# Choose the one that minimizes the residuals $\sum_{i=1}^{n} e_n^2$



### Quntifying the relationship

$$\min 
ightarrow \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$



$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$$

$$\min \rightarrow \sum_{i=1}^n (Y_i - \hat{eta}_0 - \hat{eta}_1 X_i)^2$$

### Quntifying the relationship

$$\min 
ightarrow \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$



### Quntifying the relationship

$$\min 
ightarrow \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$



$$\hat{\beta}_0$$
 and  $\hat{\beta}_1$ 

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\beta}_1 = \frac{\sum\limits_{i=1}^{N} \left[ \, \left( X_i - \overline{X} \right) \, \left( Y_i - \overline{Y} \right) \, \right]}{\sum\limits_{i=1}^{N} \left( X_i - \overline{X} \right)^2}$$

|            | Y                        | X                     |
|------------|--------------------------|-----------------------|
| Individual | Salary (in thousand USD) | Experience (in years) |
| 1          | 50                       | 2                     |
| 2          | 30                       | 1                     |
| 3          | 60                       | 3                     |
| 4          | 65                       | 4                     |
| 5          | 30                       | 0                     |

1/

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]/(n-1)}{\sum_{i=1}^n (X_i - \bar{X})^2/(n-1)} = \frac{Cov(X, Y)}{Var(X)} = 10$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 27$$

$$\widehat{Salary}_i = 27 + 10 * Experience$$

|            | Y                        | X                     |
|------------|--------------------------|-----------------------|
| Individual | Salary (in thousand USD) | Experience (in years) |
| 1          | 50                       | 2                     |
| 2          | 30                       | 1                     |
| 3          | 60                       | 3                     |
| 4          | 65                       | 4                     |
| 5          | 30                       | 0                     |

 $\bar{Y} = 47$ 

 $\bar{X}=2$ 

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]/(n-1)}{\sum_{i=1}^n (X_i - \bar{X})^2/(n-1)} = \frac{Cov(X, Y)}{Var(X)} = 10$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 27$$

$$\widehat{Salary}_i = 27 + 10 * Experience$$

|            | Y                        | X                     |
|------------|--------------------------|-----------------------|
| Individual | Salary (in thousand USD) | Experience (in years) |
| 1          | 50                       | 2                     |
| 2          | 30                       | 1                     |
| 3          | 60                       | 3                     |
| 4          | 65                       | 4                     |
| 5          | 30                       | 0                     |

$$\bar{Y} = 47$$
  $\bar{X} = 2$ 

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]/(n-1)}{\sum_{i=1}^n (X_i - \bar{X})^2/(n-1)} = \frac{Cov(X, Y)}{Var(X)} = 10$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 27$$

$$\widehat{Salary}_i = 27 + 10 * Experience$$

|            | Y                        | X                     |
|------------|--------------------------|-----------------------|
| Individual | Salary (in thousand USD) | Experience (in years) |
| 1          | 50                       | 2                     |
| 2          | 30                       | 1                     |
| 3          | 60                       | 3                     |
| 4          | 65                       | 4                     |
| 5          | 30                       | 0                     |

 $\bar{Y} = 47$ 

 $\bar{X}=2$ 

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]/(n-1)}{\sum_{i=1}^n (X_i - \bar{X})^2/(n-1)} = \frac{Cov(X,Y)}{Var(X)} = 10$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 27$$

$$\widehat{Salary}_i = 27 + 10 * Experience$$

|            | Y                        | X                     |
|------------|--------------------------|-----------------------|
| Individual | Salary (in thousand USD) | Experience (in years) |
| 1          | 50                       | 2                     |
| 2          | 30                       | 1                     |
| 3          | 60                       | 3                     |
| 4          | 65                       | 4                     |
| 5          | 30                       | 0                     |

 $\bar{Y} = 47$ 

 $\bar{X}=2$ 

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n [(X_i - \bar{X})(Y_i - \bar{Y})]/(n-1)}{\sum_{i=1}^n (X_i - \bar{X})^2/(n-1)} = \frac{Cov(X, Y)}{Var(X)} = 10$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 27$$

$$\widehat{Salary}_i = 27 + 10 * Experience_i$$

X - Independent Variable, Regressor, Predictor

Y - Dependent Variable, Regressand, Predicted Variable

 $\beta_0$  - Constant, Intercept

 $eta_1$  - Regression Coefficient, Slope Coefficient

- X Independent Variable, Regressor, Predictor
- Y Dependent Variable, Regressand, Predicted Variable
- $\beta_0$  Constant, Intercept
- $\beta_1$  Regression Coefficient, Slope Coefficient

- X Independent Variable, Regressor, Predictor
- Y Dependent Variable, Regressand, Predicted Variable
- $\beta_0$  Constant, Intercept
- $\beta_1$  Regression Coefficient, Slope Coefficient

- X Independent Variable, Regressor, Predictor
- Y Dependent Variable, Regressand, Predicted Variable
- $\beta_0$  Constant, Intercept
- $\beta_1$  Regression Coefficient, Slope Coefficient

$$Y_i \,=\, \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \, \cdots \, + \beta_K X_{Ki} + \boldsymbol{\varepsilon}_i$$

where

- The biggest difference with multivariate regression model is in the interpretation of the slope coefficients.
- Coefficients are called partial regression coefficients.
- Allow a researcher distinguish the impact of one variable from that of other independent variables.

$$Y_i \,=\, \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \, \cdots \, + \beta_K X_{Ki} + \varepsilon_i$$

#### where:

i, goes from 1 to N and indicates the observation number  $\boldsymbol{\theta}$ 

 $X_{1i}$  - indicates the ith observation of independent variable  $X_{1}$ 

 $X_{2i}$  indicates the ith observation of another independent variable,  $X_2$ .

- The biggest difference with multivariate regression model is in the interpretation of the slope coefficients.
- Coefficients are called partial regression coefficients.
- Allow a researcher distinguish the impact of one variable from that of other independent variables.

$$Y_i \,=\, \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \,\cdots\, + \beta_K X_{Ki} + \boldsymbol{\varepsilon}_i$$

where:

i, goes from 1 to N and indicates the observation number

 $X_{1i}$  - indicates the ith observation of independent variable  $X_1$ 

 $X_{2i}$  indicates the ith observation of another independent variable,  $X_2$ .

- The biggest difference with multivariate regression model is in the interpretation of the slope coefficients.
- Coefficients are called partial regression coefficients.
- Allow a researcher distinguish the impact of one variable from that of other independent variables.

$$Y_i \,=\, \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \,\cdots\, + \beta_K X_{Ki} + \boldsymbol{\varepsilon}_i$$

where:

- The biggest difference with multivariate regression model is in the interpretation of the slope coefficients.
- Coefficients are called partial regression coefficients.
- Allow a researcher distinguish the impact of one variable from that of other independent variables.

$$Y_i \,=\, \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \,\cdots\, + \beta_K X_{Ki} + \boldsymbol{\varepsilon}_i$$

where:

- The biggest difference with multivariate regression model is in the interpretation of the slope coefficients.
- Coefficients are called partial regression coefficients.
- Allow a researcher distinguish the impact of one variable from that of other independent variables.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_K X_{Ki} + \varepsilon_i$$

where:

- The biggest difference with multivariate regression model is in the interpretation of the slope coefficients.
- Coefficients are called partial regression coefficients.
- Allow a researcher distinguish the impact of one variable from that of other independent variables.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_K X_{Ki} + \varepsilon_i$$

where:

- The biggest difference with multivariate regression model is in the interpretation of the slope coefficients.
- Coefficients are called partial regression coefficients.
- Allow a researcher distinguish the impact of one variable from that of other independent variables.

### Multivariate OLS Coefficient Interpretation

Specifically, a **multivariate regression coefficient** indicates the change in the dependent variable associated with a one-unit increase in the independent variable in question, *holding constant the other independent variables in the equation.* 

#### Thus:

- The coefficient  $\beta 1$  measures the impact on Y of a one-unit increase in  $X_1$ , holding constant  $X_2$ ,  $X_3$ , . . . and  $X_K$
- but not holding constant any relevant variables that might have been omitted from the equation (e.g.,  $X_{k+1}$ ).

### Multivariate OLS Coefficient Interpretation

Specifically, a **multivariate regression coefficient** indicates the change in the dependent variable associated with a one-unit increase in the independent variable in question, *holding constant the other independent variables in the equation.* 

#### Thus:

- The coefficient  $\beta 1$  measures the impact on Y of a one-unit increase in  $X_1$ , holding constant  $X_2$ ,  $X_3$ , . . . and  $X_K$
- but not holding constant any relevant variables that might have been omitted from the equation (e.g.,  $X_{k+1}$ ).

### Multivariate OLS Coefficient Interpretation

Specifically, a **multivariate regression coefficient** indicates the change in the dependent variable associated with a one-unit increase in the independent variable in question, *holding constant the other independent variables in the equation.* 

#### Thus:

- The coefficient  $\beta 1$  measures the impact on Y of a one-unit increase in  $X_1$ , holding constant  $X_2$ ,  $X_3$ , . . . and  $X_K$
- but not holding constant any relevant variables that might have been omitted from the equation (e.g.,  $X_{k+1}$ ).

$$\label{eq:final_problem} \begin{aligned} & - & + \\ & \text{FINAID}_i = \beta_0 + \beta_1 \text{PARENT}_i + \beta_2 \text{HSRANK}_i + \varepsilon_i \end{aligned}$$

#### where

- FINAID<sub>i</sub> = the financial aid (measured in dollars of grant per year) awarded to the ith applicant
- PARENT<sub>i</sub> = the amount (in dollars per year) that the parents of the ith student are judged able to contribute to college expenses
- HSRANK<sub>i</sub> = the ith students GPA in high school, measured as a percentage (ranging from a low of 0 to a high of 100)

$$\label{eq:final_problem} \begin{aligned} & - & + \\ & \text{FINAID}_i = \beta_0 + \beta_1 \text{PARENT}_i + \beta_2 \text{HSRANK}_i + \varepsilon_i \end{aligned}$$

#### where:

- FINAID<sub>i</sub> = the financial aid (measured in dollars of grant per year) awarded to the ith applicant
- PARENT<sub>i</sub> = the amount (in dollars per year) that the parents of the ith student are judged able to contribute to college expenses
- HSRANK<sub>i</sub> = the ith students GPA in high school, measured as a percentage (ranging from a low of 0 to a high of 100)

$$\label{eq:final_problem} \begin{aligned} & - & + \\ & \text{FINAID}_i = \beta_0 + \beta_1 \text{PARENT}_i + \beta_2 \text{HSRANK}_i + \varepsilon_i \end{aligned}$$

#### where:

- FINAID<sub>i</sub> = the financial aid (measured in dollars of grant per year) awarded to the ith applicant
- PARENT<sub>i</sub> = the amount (in dollars per year) that the parents of the ith student are judged able to contribute to college expenses
- $HSRANK_i$  = the ith students GPA in high school, measured as a percentage (ranging from a low of 0 to a high of 100)

$$\label{eq:finaldistance} \begin{aligned} & - & + \\ & FINAID_i = \beta_0 + \beta_1 PARENT_i + \beta_2 HSRANK_i + \varepsilon_i \end{aligned}$$

#### where:

- FINAID<sub>i</sub> = the financial aid (measured in dollars of grant per year) awarded to the ith applicant
- PARENT<sub>i</sub> = the amount (in dollars per year) that the parents of the ith student are judged able to contribute to college expenses
- $HSRANK_i$  = the ith students GPA in high school, measured as a percentage (ranging from a low of 0 to a high of 100)

- FINAID<sub>i</sub> = the financial aid (measured in dollars of grant per year) awarded to the ith applicant
- PARENT<sub>i</sub> = the amount (in dollars per year) that the parents of the ith student are judged able to contribute to college expenses
- HSRANK<sub>i</sub> = the ith students GPA in high school, measured as a percentage (ranging from a low of 0 to a high of 100)

$$\widehat{FINAID}_i = 8927 - 0.36PARENT_i + 87.4HSRANK_i$$



# $\hat{eta}_0$ , $\hat{eta}_1$ and $\hat{eta}_2$

$$\begin{split} \hat{\beta}_1 &= \frac{(\sum y x_1)(\sum x_2^2) - (\sum y x_2)(\sum x_1 x_2)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} \\ \hat{\beta}_2 &= \frac{(\sum y x_2)(\sum x_1^2) - (\sum y x_1)(\sum x_1 x_2)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} \\ \hat{\beta}_0 &= \overline{Y} - \hat{\beta}_1 \overline{X}_1 - \hat{\beta}_2 \overline{X}_2 \end{split}$$

### How do we judge the goodness of our model?

Some concepts to help us judge how much of the variation of the dependent variable is explained by our regression.

$$TSS = \sum_{i=1}^{N} (Y_i - \overline{Y})^2$$

### TSS Decomposed

Total sum of squares has two components – variation that can be explained by the regression and variation that cannot be explained.

### **Decomposition of Variation in** *Y*

$$\sum_{i} (Y_{i} - \overline{Y})^{2} = \sum_{i} (\hat{Y}_{i} - \overline{Y})^{2} + \sum_{i} e_{i}^{2}$$

$$Total Sum = Explained + Residual$$
of Sum of Sum of
$$Squares \qquad Squares$$

$$(TSS) \qquad (ESS) \qquad (RSS)$$

### TSS, ESS, RSS and the Regression Line



### Coefficient of Determination $R^2$

### To judge the goodness of fit of our model we use $R^2$

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum e_i^2}{\sum (Y_i - \overline{Y})^2}$$





$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum e_{i}^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

- Adding a variable cannot change TSS, but in most cases the added variable will reduce RSS, so  $R^2$  will rise.
- It also lessens the degrees of freedom (N K 1). Fewer degrees of freedom erode the ability to test the model.

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum e_{i}^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

- Adding a variable cannot change TSS, but in most cases the added variable will reduce RSS, so  $R^2$  will rise.
- It also lessens the degrees of freedom (N K 1). Fewer degrees of freedom erode the ability to test the model.

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum e_{i}^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

- Adding a variable cannot change TSS, but in most cases the added variable will reduce RSS, so  $R^2$  will rise.
- It also lessens the degrees of freedom (N K 1). Fewer degrees of freedom erode the ability to test the model.

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum e_{i}^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

- Adding a variable cannot change TSS, but in most cases the added variable will reduce RSS, so R<sup>2</sup> will rise.
- It also lessens the degrees of freedom (N K 1). Fewer degrees of freedom erode the ability to test the model.

$$\overline{R}^{2} = 1 - \frac{\sum e_{i}^{2}/(N - K - 1)}{\sum (Y_{i} - \overline{Y})^{2}/(N - 1)}$$