

# Winning Space Race with Data Science

Emmanuel Effanga 9 January, 2024



## Outline



## **Executive Summary**

#### Summary of methodologies

- The IBM Data Science Capstone project aimed to predict if the Falcon 9 first stage will land successfully using advanced data science methodologies. The project followed a comprehensive and structured approach, encompassing the following key methodologies:
  - Data Collection via API
  - Web Scraping
  - Exploratory Data Analysis (EDA) with Data Visualization
  - EDA with SQL
  - Interactive Map with Folium
  - Dashboards with Plotly Dash
  - Predictive Analysis

#### **Summary of all results**

- Exploratory Data Analysis results: Through in-depth analysis, significant insights and patterns within the data were uncovered
- Interactive maps and dashboard: Uncovered profound insights within the data, visually represented through interactive maps and dashboards for enhanced comprehension
- Predictive results: The selected model(s) demonstrated high predictive accuracy, effectively addressing the project's primary objectives.

#### Introduction

#### Project background and context

- In the realm of space exploration, the cost-effectiveness of rocket launches is a critical factor that can revolutionize the aerospace industry. At the forefront of this endeavor is SpaceX, renowned for its innovative approach in reusing the Falcon 9 rocket's first stage, thereby significantly reducing launch costs. The ability to predict the successful landing of the Falcon 9's first stage emerges as a pivotal element in determining the overall cost of a launch.
- SpaceX, on its website, advertises Falcon 9 rocket launches at a competitive cost of 62 million dollars, a stark contrast to other providers whose offerings soar upwards of 165 million dollars each. This substantial cost disparity primarily stems from SpaceX's groundbreaking achievement of reusing the first stage of the Falcon 9. The potential savings are not merely financial; they represent a paradigm shift in the economics of space travel.

#### Problems you want to find answers

- Determine if the Falcon 9 first stage will land successfully
- Determine the cost of each launch by gathering information about Space X



## Methodology

#### **Executive Summary**

- Data collection methodology:
  - Data was collected by sending a GET request to SpaceX REST API
  - Webscraping data from Wikipedia
- Perform data wrangling
  - Transformed the JSON file from the API to a pandas dataframe
  - Removed unnecessary columns and replaced null values with its mean
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - How to build, tune, evaluate classification models

#### **Data Collection**

• Datasets were collected through the SpaceX REST API available on <a href="https://api.spacexdata.com/v4">https://api.spacexdata.com/v4</a>. The data collected from the API were information about past launches, rockets, launchpads, cores and payload data.



Data was also collected by web scraping the SpaceX Wikipedia sites on
 <a href="https://en.wikipedia.org/wiki/List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_launches">https://en.wikipedia.org/wiki/List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_launches</a> using BeautifulSoup python library

## Data Collection – SpaceX API

#### **REST API Call**

#### Decode response as JSON and convert to a dataframe

data = pd.json\_normalize(response.json())

#### Filter the dataframe to only include Falcon9 information

data\_falcon9 = df[(df['BoosterVersion']!='Falcon 1')]

#### Replace missing values with mean

mean = data\_falcon9["PayloadMass"].mean()
data\_falcon9["PayloadMass"].replace(np.nan,mean)

#### **Export to csv**

data\_falcon9.to\_csv('dataset\_part\_1.csv', index=False)

## **Data Collection - Scraping**

 Present your web scraping process using key phrases and flowcharts

https://github.com/embee43
 O/Data Projects/blob/d863caee553f
 532f0143b4389a772002a
 80e3833/jupyter\_labs\_webs
 craping.ipynb



## **Data Wrangling**

- In the data set, there are several different cases where the booster landed successfully or did not land successfully.
  - True Ocean, True RTLS and True ASDS means the mission outcome was successfully landed to a specific region
  - False Ocean, False RTLS and False ASDS means the mission outcome was unsuccessfully landed to a specific region
- In the data wrangling stage, we converted the outcome into categorical variable 1 and 0 for our model.



## **EDA** with Data Visualization

The following graphs were used for exploring the SpaceX data in visual form using matplotlib and seaborn libraries.

#### **Scatter Plots**

Scatter plots show relationships between variables as follows:

- ☐ Flight Number and Payload Mass
- ☐ Flight Number and Launch Site
- ☐ Payload and Launch Site
- ☐ Flight Number and Orbit type
- ☐ Payload and Orbit type

#### Bar Graph

Bar graphs show the relationship between numeric and categoric variables

☐ Success rate of each orbit type

#### Line Graph

Line graphs show data variables and their trends

☐ Launch success yearly trend

## **EDA** with SQL

#### We performed SQL queries to explore and understand the data based on the questions:

- Displaying the names of the unique launch sites in the space mission.
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS).
- Display average payload mass carried by booster version F9 v1.1.
- List the date when the first successful landing outcome in ground pad was achieved.
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000.
- List the total number of successful and failure mission outcomes.
- List the names of the booster\_versions which have carried the maximum payload mass.
- List the records which will display the month names, faiilure landing\_ouutcomes in drone ship, booster versions, launch\_site for the months in year 2015.
- Rank the count of successful landiing\_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

#### 12

## Build an Interactive Map with Folium

Folium map object is a map centered on NASA Johnson Space Center at Houson, Texas

- Red circle at NASA Johnson Space Center's coordinate with label showing its name (folium.Circle, folium.map.Marker).
- Red circles at each launch site coordinates with label showing launch site name (folium.Circle, folium.map.Marker,
- folium.features.Divlcon).
- The grouping of points in a cluster to display multiple and different information for the same coordinates
- (folium.plugins.MarkerCluster).
- · Markers to show successful and unsuccessful landings. Green for successful landing and Red for unsuccessful landing.
- (folium.map.Marker, folium.lcon).
- Markers to show distance between launch site to key locations (railway, highway, coastway, city) and plot a line between them.
- (folium.map.Marker, folium.PolyLine, folium.features.Divlcon)

## Build a Dashboard with Plotly Dash

A dashboard was created with these components, a dropdown, pie chart, range slider and scatter plot components.

- Dropdown allows a user to choose the launch site or all launch sites (dash\_core\_components.Dropdown).
- Pie chart shows the total success and the total failure for the launch site chosen with the dropdown component (plotly.express.pie).
- Rangeslider allows a user to select a payload mass in a fixed range (dash\_core\_components.RangeSlider).
- Scatter chart shows the relationship between two variables, in particular Success vs Payload Mass (plotly.express.scatter)Explain why you added those plots and interactions

## Predictive Analysis (Classification)

#### **Data Preparation**

Loaded datasets and normalized it Splits the dataset into test and training set

#### **Model Development**

Developed models using different classification models

Trained the model with the training datasets

Used GridSearchCV on all models to find hyperparameters that

allows the models to perform best

#### **Model Evaluation**

Tested each model with the test data and computed accuracy score with a confusion matrix

#### **Model Comparison**

Compared and chose the model with the best accuracy score

## Results





## Flight Number vs. Launch Site



We observed that the launch site CCAFS SLC 40 recorded less success rate compared to other launch sites and also had more launches than other sites.

## Payload vs. Launch Site



We observed that heavier payload of the rockets were successful from all launch sites

## Success Rate vs. Orbit Type



From the chart, we noted launches to the orbit ES-L1, GEO, HEO, SSO had the best success rate.

## Flight Number vs. Orbit Type



From the chart, we noted that higher launches were more concentrated on the Very Low Earth Orbit (VLEO) and Middle Earth orbit

## Payload vs. Orbit Type



We observed that launches of heavier payloads were on the Very Low Earth Orbit (VLEO)

## Launch Success Yearly Trend



From the line chart, we can see that the success rates dramatically increased since 2013

## All Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

We selected the distinct values from the launch sites which return 4 distinct launch sites.

```
%sql select distinct launch_site from SPACEX
 * ibm_db_sa://tgb63017:***@824dfd4d-99de-440d-9
Done.
 launch_site
 CCAFS LC-40
CCAFS SLC-40
 KSC LC-39A
 VAFB SLC-4E
```

## Launch Site Names Begin with 'CCA'

%sql select \* from SPACEX where launch\_site like 'CCA%' limit 5

\* ibm\_db\_sa://tgb63017:\*\*\*@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90108kqb1od8lcg.databases.appdomain.cloud:30119/BLUDB Done.

| DATE           | timeutc_ | booster_version | launch_site     | payload                                                          | payload_masskg_ | orbit        | customer           | mission_outcome | landing_outcome     |
|----------------|----------|-----------------|-----------------|------------------------------------------------------------------|-----------------|--------------|--------------------|-----------------|---------------------|
| 2010-06-<br>04 | 18:45:00 | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon Spacecraft Qualification Unit                             | 0               | LEO          | SpaceX             | Success         | Failure (parachute) |
| 2010-12-<br>08 | 15:43:00 | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon demo flight C1, two CubeSats,<br>barrel of Brouere cheese | 0               | LEO<br>(ISS) | NASA (COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-05-       | 7:44:00  | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon demo flight C2                                            | 525             | LEO<br>(ISS) | NASA (COTS)        | Success         | No attempt          |
| 2012-10-<br>08 | 0:35:00  | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX CRS-1                                                     | 500             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt          |
| 2013-03-<br>01 | 15:10:00 | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX CRS-2                                                     | 677             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt          |

The query returned 5 recorded launches with launch sites names that starts with the string 'CCA'.

## **Total Payload Mass**

```
%sql select sum(payload_mass__kg_) as Total_payload from spacex where customer='NASA (CRS)'

* ibm_db_sa://tgb63017:***@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90108kqb1od8lcg.databases.appdomain.cloud:30119/BLUDB
Done.
total_payload

45596
```

The total payload mass where the customer is NASA(CRS) is 45,596kg. The query summed all payloads by this customer.

## Average Payload Mass by F9 v1.1

```
%sql select avg(payload_mass__kg_) from spacex where booster_version='F9 v1.1'

* ibm_db_sa://tgb63017:***@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:30119/BLUDB
Done.
    1
2928
```

The query returned 2,928kg as the average payload mass carried by booster version F9 v1.1

## First Successful Ground Landing Date

• The first successful landing on ground pad was recorded on the 22<sup>nd</sup> of December, 2015.

The date was retrieved using the query

select min(date) from SPACEX where landing\_outcome = 'Success (ground pad)'

#### Successful Drone Ship Landing with Payload between 4000 and 6000

- The names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000 are as follows:
- F9 FT B1022
- F9 FT B1026
- F9 FT B1021.2
- F9 FT B1031.2

 The query select booster\_version from spacex where landing\_\_outcome='Success (drone ship)' and payload\_mass\_\_kg\_ between 4000 and 6000 was used

#### Total Number of Successful and Failure Mission Outcomes

Failure (in flight):

Success: 99

Success (payload status unclear):

• The query below grouped the total mission outcomes by the outcome itself.

select mission\_outcome, count(mission\_outcome) from spacex group by mission\_outcome

## **Boosters Carried Maximum Payload**

Names of the booster which have carried the maximum payload mass

| booster_version |
|-----------------|
| F9 B5 B1048.4   |
| F9 B5 B1049.4   |
| F9 B5 B1051.3   |
| F9 B5 B1056.4   |
| F9 B5 B1048.5   |
| F9 B5 B1051.4   |
| F9 B5 B1049.5   |
| F9 B5 B1060.2   |
| F9 B5 B1058.3   |
| F9 B5 B1051.6   |
| F9 B5 B1060.3   |
| F9 B5 B1049.7   |

• The query below was minded with a subquery to select the booster version that carried the max payload mass.

select booster\_version from spacex where payload\_mass\_\_kg\_ = (select max(payload\_mass\_\_kg\_)from spacex)

#### 2015 Launch Records

 Failed landing\_outcomes in drone ship, their booster versions, and launch site names for in year 2015

| DATE       | booster_version | launch_site | landing_outcome      |
|------------|-----------------|-------------|----------------------|
| 2015-01-10 | F9 v1.1 B1012   | CCAFS LC-40 | Failure (drone ship) |
| 2015-04-14 | F9 v1.1 B1015   | CCAFS LC-40 | Failure (drone ship) |

 The query selected the date, booster version, launch site of failed landing outcome on drone ship

SELECT DATE, BOOSTER\_VERSION, LAUNCH\_SITE, LANDING\_\_OUTCOME FROM spacex WHERE LANDING\_\_OUTCOME = 'Failure (drone ship)' AND YEAR(date) = 2015

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

| landing_outcome        | count_launches |
|------------------------|----------------|
| No attempt             | 10             |
| Failure (drone ship)   | 5              |
| Success (drone ship)   | 5              |
| Controlled (ocean)     | 3              |
| Success (ground pad)   | 3              |
| Failure (parachute)    | 2              |
| Uncontrolled (ocean)   | 2              |
| Precluded (drone ship) | 1              |
|                        |                |

• The query grouped landing outcomes counts in descending order



#### **Launch Sites Locations**



• 4 distinct launch sites locations were used for the launches. One (1) in Vandenberg Space Force Base LA, 2 in Cape Canaveral Space Force Station and 1 in a creek all in close proximity to the coastline for safety reasons.

# Successful/Failed launches across all launch sites

 Launch site KSC LC-39A had the most success rate of launches.









# Launch Site Distance to Railways, Highways, Coastline and Closest City

• The launch site is 1.26km to the railways, 1.18km to the highways, 1.35km to the coastline and 13.69km to the closest city, Lompoc.







## Success Count for all Launch Sites



Launch site KSC LC-39A recorded the most successful launch followed by launch site CCAFS LC-40

## Launch Site with highest success rate



• Launch site KSC LC-39A had the highest launch success rate with 76.9% success rate and 23.1% unsuccessful launches.

## Payload vs Launch Outcome



- Payload range of 3000kg 4000kg had the highest launch successes.
- Lower payload range recorded the most unsuccessful launches.
- F9 Booster version 'FT' had the highest launch success rate



## **Classification Accuracy**

 All the models have the same accuracy score of 83.33% except for the Decision Tree model



## **Confusion Matrix**

 All the models performed the same in predicting if Falcon9 will land or not with accuracy score of 83%



### Conclusions

- Successful launches can be achieved by using payload mass between 3000kg to 4000kg
- The chances of the model accurately predicting if the booster with land or not is 83.33%, meaning there is a slight chance of the model to fail in its prediction.
- Successful launches can be achieved by launching the rockets in launch site KSC LC-39A

# **Appendix**

#### Sample rainfall data in Australia

| Date       | MinTemp | MaxTemp | Rainfall | Evaporation | Sunshine | WindGustDir | WindGustSpeed | WindDir9am | WindDir3pm | . Humidity9am | Humidity3pm | Pressure9am | Pressure3pm | Cloud9am | Cloud3pm | Temp9am | Тетр3рт | RainToday | RainTomorrow |
|------------|---------|---------|----------|-------------|----------|-------------|---------------|------------|------------|---------------|-------------|-------------|-------------|----------|----------|---------|---------|-----------|--------------|
| 0 2/1/2008 | 19.5    | 22.4    | 15.6     | 6.2         | 0.0      | W           | 41            | S          | SSW        | . 92          | 84          | 1017.6      | 1017.4      | 8        | 8        | 20.7    | 20.9    | Yes       | Yes          |
| 1 2/2/2008 | 19.5    | 25.6    | 6.0      | 3.4         | 2.7      | W           | 41            | W          | Ε          | . 83          | 73          | 1017.9      | 1016.4      | 7        | 7        | 22.4    | 24.8    | Yes       | Yes          |
| 2 2/3/2008 | 21.6    | 24.5    | 6.6      | 2.4         | 0.1      | W           | 41            | ESE        | ESE .      | . 88          | 86          | 1016.7      | 1015.6      | 7        | 8        | 23.5    | 23.0    | Yes       | Yes          |
| 3 2/4/2008 | 20.2    | 22.8    | 18.8     | 2.2         | 0.0      | W           | 41            | NNE        | Ε          | . 83          | 90          | 1014.2      | 1011.8      | 8        | 8        | 21.4    | 20.9    | Yes       | Yes          |
| 4 2/5/2008 | 19.7    | 25.7    | 77.4     | 4.8         | 0.0      | W           | 41            | NNE        | W          | . 88          | 74          | 1008.3      | 1004.8      | 8        | 8        | 22.5    | 25.5    | Yes       | Yes          |

#### Sample launch data

|   | Flight<br>Number | Date           | Time<br>(UTC) | Booster<br>Version | Launch<br>Site | Payload                                          | Payload<br>Mass (kg) | Orbit        | Customer           | Landing<br>Outcome     | class | Lat       | Long       |
|---|------------------|----------------|---------------|--------------------|----------------|--------------------------------------------------|----------------------|--------------|--------------------|------------------------|-------|-----------|------------|
| 0 | 1                | 2010-<br>06-04 | 18:45:00      | F9 v1.0<br>B0003   | CCAFS<br>LC-40 | Dragon Spacecraft<br>Qualification Unit          | 0.0                  | LEO          | SpaceX             | Failure<br>(parachute) | 0     | 28.562302 | -80.577356 |
| 1 | 2                | 2010-<br>12-08 | 15:43:00      | F9 v1.0<br>B0004   | CCAFS<br>LC-40 | Dragon demo flight C1,<br>two CubeSats, barrel o | 0.0                  | LEO<br>(ISS) | NASA (COTS)<br>NRO | Failure<br>(parachute) | 0     | 28.562302 | -80.577356 |
| 2 | 3                | 2012-<br>05-22 | 7:44:00       | F9 v1.0<br>B0005   | CCAFS<br>LC-40 | Dragon demo flight C2+                           | 525.0                | LEO<br>(ISS) | NASA (COTS)        | No attempt             | 0     | 28.562302 | -80.577356 |
| 3 | 4                | 2012-<br>10-08 | 0:35:00       | F9 v1.0<br>B0006   | CCAFS<br>LC-40 | SpaceX CRS-1                                     | 500.0                | LEO<br>(ISS) | NASA (CRS)         | No attempt             | 0     | 28.562302 | -80.577356 |
| 4 | 5                | 2013-<br>03-01 | 15:10:00      | F9 v1.0<br>B0007   | CCAFS<br>LC-40 | SpaceX CRS-2                                     | 677.0                | LEO<br>(ISS) | NASA (CRS)         | No attempt             | 0     | 28.562302 | -80.577356 |

# **Appendix**

#### Sample code snippets

```
#Enter Your Code, Execute and take the Screenshot
x_train, x_test, y_train, y_test = train_test_split( features, Y, test_size=0.2, random_state=10)
```

```
KNN_Accuracy_Score = accuracy_score(y_test, predictions)
KNN_JaccardIndex = jaccard_score(y_test, predictions, pos_label=0)
KNN_F1_Score = f1_score(y_test, predictions, average='weighted')
print('KNN Accuracy Score: ', KNN_Accuracy_Score)
print('KNN Jaccard Index: ', KNN_JaccardIndex)
print('KNN F1 Score: ', KNN_F1_Score)

KNN Accuracy Score: 0.8183206106870229
KNN Jaccard Index: 0.7901234567901234
KNN F1 Score: 0.802374933635524
```

