Math 470 Assignment 34

Arnold Jiadong Yu

May 9, 2018

- Q1. Suppose X is metric space. E is a (path) connected subset of X.
- a) Prove or give a counterexample. E is (path) connected.
- b) Prove or give a counterexample. ∂E is (path) connected.

proof: 1) With path.

- a) No. Let $X = \mathbb{R}^2$, $E = \{(x, \sin \frac{1}{x}) : x \in (0, 1]\}$. E is path connected. $\overline{E} = \{(x, \sin \frac{1}{x}) : x \in (0, 1]\} \cup \{(0, y) : y \in [-1, 1]\}$ and \overline{E} is not path connected.
- b) No. Let $X = \mathbb{R}$, and E = (a, b) with a < b be a path connected subset of \mathbb{R} . Then $\partial E = \{a\} \cup \{b\}$ which is not path connected.
- 2) Without path.
- a) Yes. Prove by contradiction. Suppose X is metric space. E is a connected subset of X. Suppose \overline{E} is disconnected, then \exists nonempty open subsets A and B such that $A \cap B = \emptyset$, $A \cup B = \overline{E}$. i.e. for some $C, D \in \partial E, C \cap D = \emptyset$ and $C \cup D = \partial E$. W.L.O.G, let $C \in A, D \in B$. Therefore, $\{A \setminus C\} \cap \{B \setminus D\} = \emptyset$ and $\{A \setminus C\} \cup \{B \setminus D\} = E$. i.e. E is disconnected. It contradicts with E is connected. Hence \overline{E} is connected.
- b) No. Same example as 1b.