a torus

Summer 2010 Jim Fowler

Problem Set 1 is *intentionally* vague: I want you to think a bit about how you would make these notions precise. Problems marked with a • should be written up.

Problem 1. Build a circle S^1 by gluing some line segments together along their vertices. How many different ways are there of doing this?

Problem 2. Build a sphere S^2 by gluing triangles together along their boundaries. How are the various ways of doing this related to each other?

Definition. An object built by gluing together triangles is called a *simplicial complex*.

Problem 3. Build a torus T^2 by gluing triangles together.

Definition. A function $f: K \to L$ sending

- o vertices to vertices,
- o edges to either edges or vertices, and
- triangles to triangles, or to edges, or to vertices

is called a simplicial map.

Remark. You might be worried that, because there are different ways of building T^2 out of triangles, the notion of "simplicial map" is ill-defined. You're right: we'll have to fix that. Nevertheless...

- **Problem 6.** Find a simplicial map $f: T^2 \to S^2$ which doesn't crush any edges (i.e., edges are sent to edges, not to vertices).
- **Problem 7.** Find a simplicial map $f: S^2 \to T^2$ which doesn't crush any edges.

Problem 8. Suppose $f: S^1 \to S^2$ is an injective simplicial map (i.e., distinct simplexes are sent to distinct simplexes). Does the image of f necessarily separate S^2 into two pieces?

Problem 9. Suppose $f: S^1 \to T^2$ is an injective simplicial map. Into how many pieces can the image of f separate T^2 ?

Problem 10. Do there exist simplicial maps $f: T^2 \to S^2$ and $g: S^2 \to T^2$ which are inverses of each other? If not, why not?