

Deploy a Microservice Application connected to an Oracle DB

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described for Oracle's products may change and remains at the sole discretion of Oracle Corporation.

Oracle Database Product Management – Oracle Platform Technology Solutions (PTS)

Who We Are

Part of Oracle Server Technologies Development division

Primary responsibility is technology enablement NOT a sales function

Enable partners to rapidly, successfully, and efficiently adopt Oracle server technologies

Value to Partners

In-depth architectural/technology reviews

Upgrading/Migrating to latest releases and new features

Validation support (onsite or in Oracle lab)

Pedro Torres

PTS – Platform Technology Solutions

Global Team – NAS, LAD, EMEA, APAC

OCP 11g, 12c, RAC Expert, 19c ATP.

LAD – Mexico City

+18 years in IT

+16 DB Solutions

\$ who -u

Alexandre Fagundes

alexandre.af.fagundes@oracle.com

LAD Technical Partner Advisor

20+ years in IT Industry14+ years of Oracle (3 seasons)

- Cloud Architect
- Database Administrator
- EBS Applications DBA
- Support Engineer
- Partner Enablement

in /alexandre-b-fagundes

Data Driven Apps Create Value from Data in New Ways

Data Driven Apps Create Value from Data in New Ways

Data Driven Apps are Built Using New Dev Paradigms

Modernize the Monolith

Different Services have Different Data-Store Needs

		User Sessions	Financial Transactions	Insurance Claims	Recommend Engine	Product Catalog	Reporting	Analytics	Activity Logs
Processing	Heavy Writes								√
	Heavy Reads				\checkmark	\checkmark	\checkmark	\checkmark	
	Fast Read/Write	\checkmark							
	Data Consistency		\checkmark						
	Data Durability		\checkmark						
	Analytic						\checkmark	\checkmark	
	Graph				\checkmark			√	
	Spatial							√	
	Geo Distribution			√		\checkmark			√
Data store	Relational		\checkmark				\checkmark	\checkmark	
	Key/Value	\checkmark		\checkmark					\checkmark
	Document/JSON					√			√
	Graph				\checkmark				

what might Polyglot Persistence look like?

Source: The future is: NoSQL Databases Polyglot Persistence http://martinfowler.com/articles/nosql-intro-original.pdf

Data-Stores for Microservices

"Polyglot persistence will occur over the enterprise as different applications use different data storage technologies. It will also occur within a single application as different parts of an application's data store have different access characteristics."

Martin Fowler & Pramod Sadalage, Feb. 2012 http://martinfowler.com/articles/nosql-intro-original.pdf

Data Fragmentation from Single-Purpose Databases

- Each single-purpose database stores a fragment of your enterprise data, requiring data to be moved around and transformed
- Integrating fragmented data makes application development and analytics extremely complex
- Operating many unique databases is inherently complex, expensive, and risky

In contrast, the converged approach is inherently simpler, lower cost, and lower risk.

Polyglot Persistence Integration Nightmare

Approaches | Single-Purpose vs Converged

Amazon & Niche Database Vendors

Run single-purpose proprietary database for each data type and workload

Oracle Database

Run converged, open, SQL Database for multiple data types and workloads

Oracle Database – Converged Features

- Multitenant for Efficient, Agile Database Clouds
- In-Memory for Database Acceleration
- Sharding for Hyperscale and Geo Distribution
- Native JSON for Document Data
- In-Memory Ingest for Fastest IoT
- Cloud SQL for integrating Object Store Data Lake
- AutoML for simple integrated Machine Learning
- Persistent Memory Store for Lowest Latency
- Blockchain Tables for Preventing Fraud
- Spatial and Graph for Mapping and Social Networks
- APEX for Low-Code Development
- And many more ...

In-Memory Analytics

JSON

In-Memory IoT

Integration

Blockchain

Persistent Memory

Learning

Spatial

Multi-language Support

Oracle Database as a Data Platform

Development Services

Node.js, Python, .NET, Java, PHP, Ruby, PL/SQL, C, C++, Perl, Go, EBR, REST Services, Advanced Queuing, APEX, SODA, Docker

Platform Services

Cloud to On-Premise, Clustering, Microservices, Sharding, Security, High Availability, Isolation, Zero Data Loss, Administration

Analytical Services

SQL, Columnar In-Memory, Machine Learning (Advanced Analytics), R, Al

Data Support

Relational, JSON, XML, Spatial, Graph, RDF, Text, Binary. Object Stores, HDFS, Kafka, NoSQL Stores

Oracle Database for the Developer

Supporting all major development environments and APIs

- Oracle provided Drivers
- Open-Source Drivers (Oracle contributions)
- Open-Source Drivers (Third-party maintainers)

... and ODBC, OLE DB, Pro*C, Pro*COBOL, Pro*Fortran, SQLJ

Modernize with Converged Database

- Transforming data > Converged Database
- Availability > Maximum Availability Architecture
- Data consistency > Self-service data catalog
- Costly > Multi-Tenant
- Security > Database Vault
- Slow > Exadata

Strategy | Choose the Best Database Engine

Enterprise-class performance, scalability, reliability & security for all data-driven workloads

Any Data

Converged, open, SQL database for all data types and data models

Specialized Data

Overhead from integration complexity

Any Workload

Transparent scale-up, scale-out, sharding, in-memory, parallel SQL

Dedicated Workload

High effort exchanging and transforming different formats

Which one is Most Productive?

Developers & Architects, Data Analysts/Scientists and DBAs

Oracle Database

A Converged, Open SQL Database Allows You to Focus on Innovation

Database Container per Service

Multi-model

Best-of-Breed Relational, JSON, Spatial, Graph, Cube, Text, Blockchain Cross-model operations enables you to easily create value across all your data

Multi-workload

High Performance Transactions, DW, Analytics, ML, IoT, Streaming, Multitenant Deep optimizations deliver exceptional price-performance across all workloads

Most productive for developers and analysts

Same SQL and transactions operate on any data and workload Integrated microservices, events, REST, CI/CD, Low-code

Modularize and containerize by app service

Low-level data types and workloads should not dictate your architecture

Oracle Database Developer Ecosystem

MODERN deployment model examples: Converged and Multitenant for Microservices

Modularize by Application Service

Data-driven optimization

Containerize with Multitenant Architecture

Oracle Multitenant Simplifies SaaS Architectures

- Oracle makes it simple to implement secure and modular SaaS Apps
 - Use a separate logical database (PDB) for each SaaS tenant
 - Easier to develop tenants are transparent to App
 - More agile tenants are easily cloned, moved, etc.
- Database enforces tenant security
 - No need for risky coding of tenant separation in every App
- Enables tenants to use standard tools (e.g. analytics)
- Used by Autonomous Database, NetSuite, Fusion Apps, Taleo

Single Physical Container DB

In-Database Containers

Containers simplify deployments by enabling rapid and lightweight deployments of logical systems instead of physical systems

Oracle implements the container concept natively in the database using light-weight **pluggable** container databases

- Avoids the need for deploying a physical database for each Microservice
- Many Pluggable Databases can be deployed on top of a single physical database to simplify Operations
- Pluggable databases can be easily cloned and moved between physical databases

Physical Database

Up to 255 PDBs included with Database 23c Free

Multitenant vs. other Database Consolidation Architectures

Isolation & Agility

Decentralized Data Architecture

- Data-as-a-Product thinking
- Decentralized data architecture
- Domain-oriented data ownership

- Distributed data-in-motion
- Self-service access
- Strong data governance

Database Convergence Simplicity

- Data Integrity across all data
- Microservices support
- Open interfaces
- Easy app building blocks & APIs
- Less to learn, manage, backup, upgrade, secure
- Self-managing with Autonomous
 Database

Microservice Architectures

Microservices encapsulate functionality of specific application modules

- Agile: Can be developed and upgraded independently
- Highly available: Microservices can fail independently

Pluggable Databases Simplify Microservice Architectures

Oracle makes it simple for each Microservice to store its data in a logically separate Data Container called a Pluggable Database

Pluggable Databases Simplify Microservice Architectures

Oracle makes it simple for each Microservice to store its data in a logically separate Data Container called a Pluggable Database

Pluggable Databases can easily be physically combined to simplify deployment, or separated to improve isolation and scalability

Summary

- 1. Modernize the monolith basic concepts
- 2. Polyglot persistence single-purpose data stores vs. Oracle converged
- 3. Oracle converged: multi-model, multi-workload, multi-tenant
- 4. Domain-oriented decentralized data architecture
- 5. Key features: Security, Blockchain, Al/ML, JSON, Graph, IoT
- 6. Pluggable databases for Microservice Architecture

Blogs and Workshops

Kubernetes operator

- Livelab: https://bit.ly/3m6Rwuw
- Blog: https://bit.ly/41jJJK5
- Web: https://www.oracle.com/database/kubernetes-for-container-database

Oracle Backend for Spring Boot and Mobile (Microservices)

- Livelab: http://bit.ly/CloudBankOnOBaaS
- Blog: http://bit.ly/microservicesblogs
- Web: http://bit.ly/oraclespringboot

MicroServices

- LiveLab: https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=3375&clear=RR,180&session=114876907409912
- Event Code: 7731-JXHC-YTFI-DDIS

Thank you

Alexandre Fagundes Cloud Architect, Oracle Latin America

ORACLE