

Εθνικό Μετσοβίο Πολυτέχνειο

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΧΝΟΛΟΓΙΕΣ ΚΙΝΗΤΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΗΣ ΥΓΕΙΑΣ

Εργασία

 $^{\circ\circ}$ Προβλέψη Υπογλυκαιμικών και υπέργλυκαιμικών επείσοδιών σε ατόμα με σακχαρώση διαβητή τύπου 1 με χρησή τέχνικών βαθίας μαθήσης."

Ομάδα : Μαρία Παναγιώτου Μελίνα Μάη Ελευθέριος Σοφράς

Περιεχόμενα

1	Εισαγωγή		
2	Θεωρητικό Υπόβαθρο	2	
3	Σχεδίαση και Ανάπτυξη Μοντέλων 3.1 Το μοντέλο LSTM	4 6	
4	Αποτελέσματα 4.1 Κριτήρια Αξιολόγισης	10 11	
5	Επίλογος	19	

1 Εισαγωγή

Ο Σαχχαρώδης Δ ιαβήτης ($\Sigma\Delta$) είναι μια αυτοάνοση μεταβολιχή ασθένεια, η οποία χαρακτηρίζεται από την αδυναμία του οργανισμού να διατηρεί τα επίπεδα γλυκόζης στο αίμα εντός φυσιολογικών ορίων. Ανάλογα με το αν προκαλείται από ελαττωμένη έκκριση ινσουλίνης είτε από μειωμένη ευαισθησία των χυττάρων στην ινσουλίνη, χαραχτηρίζεται απο Σαχχαρώδη Διαβήτη Τύπου 1 (ΣΔΤ1) ή Τύπου 2 (ΣΔΤ2) αντίστοιχα[1]. Τις τελευταίες δεκαετίες, εκτεταμένες ερευνητικές μελέτες έχουν αποκαλύψει περισσότερους από 50 τρόπους συσχέτισης της νόσου με το γονιδίωμα, παρόλα αυτά η γενετική ευαισ ϑ ησία δεν μπορεί να εξηγήσει την αυξημένη συχνότητα εμφάνισης του $\Sigma\Delta$ παγκοσμίως [1]. Η καθολικότητα της νόσου και ο μεγάλος ρυθμός εξάπλωσής του, καθιστά επιτακτική την ανάγκη εύρεσης κατάλληλων μεθόδων αντιμετώπισής του και πρόληψης των επιπλοχών του. Σύμφωνα με τον Παγχόσμιο Οργανισμό Υγείας, ο χίνδυνος εμφάνισης μακροπρόθεσμων επιπλοκών του $\Sigma\Delta$ μειώνεται σημαντικά μέσω του τακτικού ελέγχου. Προς αυτή την κατεύθυνση αναπτύσσονται μεταξύ άλλων, συστήματα που στοχεύουν στη βελτιστοποίηση των μεθόδων ελέχγου και κυρίως προβλέψεων, βασισμένα σε υβριδικά μοντέλα μεταβολισμόυ γλυκόζης-ινσουλίνης με την χρήση Νευρωνικών Δ ικτύων με Aνάδραση ($N\Delta A$) και σχεδιασμού της συνάρτησης κόστους[1].

Στην παρούσα εργασία επικεντρωνόμαστε στην αντιμετώπιση του $\Sigma\Delta T1$, παραθέτουμε βιβλιογραφική ανασκόπηση των βασικών εννοιών που συναντήσαμε και σχεδιάζουμε, αναπτύσσουμε και αξιολογούμε μοντέλο LSTM (Long short-term memory), το οποίο είναι μια αρχιτεκτονική τεχνητών επαναλαμβανόμενων νευρωνικών δικτύων (RNN) που χρησιμοποιείται στον τομέα της Βαθιάς Μάθησης, προκειμένου να προβλέψουμε τα επίπεδα γλυκόζης στο αίμα 30 ασθενών σε ορίζοντα 15,30,60 και 120 λεπτών.

2 Θεωρητικό Υπόβαθρο

O $\Sigma\Delta 1$ αποτελεί μια χρόνια ασθένεια που χαρακτηρίζεται από την απουσία ομοιόστασης της γλυκόζης. Ένα υγιές πάγκρεας ελέγχει δυναμικά την απελευθέρωση ινσουλίνης και γλυκαγόνων ορμονών μέσω των α-κυττάρων και των β-κυττάρων αντίστοιχα, προκειμένου να διατηρηθεί η ευγλυκαιμία. Στον διαβήτη τύπου 1, τα β-κύτταρα διακυβεύονται και επομένως υποφέρουν από μειωμένη παραγωγή ινσουλίνης. Η αναποτελεσματική διαχείρηση της της ασθένειας, οδηγεί σε περιόδους υπεργλυκαιμίας (αυξημένη συγκέντρωση γλυκόζης στο αίμα $(BG)>180~{\rm mg/dL})$ και υπογλυκαιμίας (μειωμένη συγκέντρωση $BG<70~{\rm mg/dL}).$

Απαιτείται θεραπεία με ινσουλίνη για τη διατήρηση των επιπέδων γλυκόζης στο προτεινόμενο εύρος [2]. Η τυπική προσέγγιση στη διαχείριση του διαβήτη απαιτεί τα νοσούντα άτομα να λαμβάνουν ενεργά μετρήσεις γλυκόζης, σχεδόν αποκλειστικά καθ όλη

τη διάρχεια της ημέρας, με ένα τεστ δακτύλου και ουσιαστικά αυτοπαρακολούθηση της γλυκόζης στο αίμα. Η πρόσφατη ανάπτυξη συσκευών συνεχούς παρακολούθησης γλυκόζης (CGM) επιτρέπει βελτιωμένη και αυτοματοποιημένη δειγματοληψία (κάθε 5 λεπτά) των μετρήσεων γλυκόζης. Αυτή η προσέγγιση έχει αποδειχθεί αποτελεσματική στον έλεγχο της γλυκόζης, βελτιώνοντας ταυτόχρονα την ποιότητα ζωής των ατόμων [3].

Περαιτέρω βελτίωση του ελέγχου της γλυκόζης όμως μπορεί να πραγματοποιηθεί μέσω διαφόρων τεχνικών προβλέψεων, οι οποίες επιτρέπουν στους χρήστες να προβούν σε ενέργειες εκ των προτέρων και εγκαίρως προκειμένου να ελαχιστοποιηθεί η εμφάνιση ανεπιθύμητων γλυκαιμικών συμβάντων. Η πρόκληση σε αυτές τη μεθόδους έγκειται σε πολλούς παράγοντες που επηρεάζουν τη μεταβλητότητα της γλυκόζης, όπως η μεταβλητότητα της ινσουλίνης, τα γεύματα που καταναλώνονται από τους ασθενείς, το άγχος και άλλες φυσικές δραστηριότητες. Επιπλέον, οι ατομικές γλυκαιμικές αποκρίσεις μεταβάλλονται μεταξύ υποκειμένων [4], οδηγώντας σε διαφορετικές αποκρίσεις μεταξύ ατόμων υπό τις ίδιες συνθήκες.

H μηχανική μάθηση (ML) επιτρέπει στα έξυπνα συστήματα να κατασκευάζουν κατάλληλα μοντέλα, μαθαίνοντας και εξάγοντας μοτίβα δεδομένων. Τα μοντέλα ανακαλύπτουν αντιστοιχίσεις από την αναπαράσταση δεδομένων εισόδου στην έξοδο. Οι επιδόσεις των παραδοσιαχών αλγορίθμων μηχανιχής μάθησης, όπως η λογιστιχή παλινδρόμηση (Logistic Regression), οι Κ- κοντινότεροι γείτονες (K-Nearest Neighbours) [5] ή η Παλινδρόμηση Διανυσμάτων Υποστήριξης (Support Vector Regression, SVR) [6] βασίζονται σε μεγάλο βαθμό στην αναπαράσταση των δεδομένων που τους δίδονται. Σ υνή ϑ ως, τα χαρακτηριστικά / πληροφορίες που περιλαμβάνει η αναπαράσταση είναι κατασκευασμένα με προηγούμενες γνώσεις και στατιστικά χαρακτηριστικά (π.χ. μέσος όρος, διαχύμανση κ.α.), ανάλυση κύριων συνιστωσών (Principal Component Analysis, PCA) καθώς και με γραμμική διακριτική ανάλυση (Linear Discriminant Analysis-LDA) . Τα τεχνητά νευρωνικά δίκτυα (Artificial Neural Networks, ANN) διερευνώνται επίσης ευρέως στη διαχείριση του διαβήτη [7] [8] . Ένα πλεονέχτημα του τεχνητού νευρωνικού δικτύου είναι ότι, συνήθως δεν απαιτείται εύρεση χαρακτηριστικών χειροχίνητα. Ωστόσο, το τεχνητό νευρωνικό δίκτυο στη βιβλιογραφία εφαρμόζεται κυρίως σε λιγότερα από 3 επίπεδα, επομένως η μαθησιακή του ικανότητα είναι περιορισμένη λόγω της πολυπλοκότητας του μοντέλου.

Η βαθιά μάθηση, η οποία ενσωματώνει νευρωνικά δίκτυα πολλαπλών επιπέδων, έχει οδηγήσει σε σημαντική πρόοδο στην όραση υπολογιστών [9], στη διάγνωση ασθενειών και στην υγειονομική περίθαλψη . Η βαθιά μάθηση δείχνει ανώτερη απόδοση σε σχέση με τις παραδοσιακές τεχνικές ML λόγω αυτής ακριβώς της ικανότητας αυτόματης εκμάθησης χαρακτηριστικών με μεγαλύτερη πολυπλοκότητα και αναπαραστάσεις [10] . Ως

εκ τούτου, κωδικοποιεί λειτουργίες που ενδέχεται να μην ήταν γνωστές προηγουμένως στους ερευνητές.

3 Σχεδίαση και Ανάπτυξη Μοντέλων

3.1 Το μοντέλο LSTM

Στα πλαίσια αυτά και όπως προαναφέρθηκε στην εισαγωγή, η παρούσα εργασία επικεντρώνεται στη χρήση τεχνικών βαθιάς μάθησης προκειμένου να υλοποιηθεί ο προβλέπτης των επιπέδων γλυκόζης στο αίμα. Το LSTM αποτελεί πολλά υποσχόμενο μοντέλο που στηρίζεται στη βαθιά μάθηση και προσφέρει στο χρήστη πληθώρα επιλογών και εναλλακτικών τρόπων προσέγγισης των διαφόρων προβλημάτων. Αποτελεί τεχνητή επαναλαμβανόμενη αρχιτεκτονική νευρωνικού δικτύου RNN. Σε αντίθεση με τα τυπικά feedforward νευρωνικά δίκτυα, το LSTM έχει συνδέσεις ανατροφοδότησης. Δ εν μπορεί να επεξεργαστεί μόνο μεμονωμένα σημεία δεδομένων (πχ. εικόνες), αλλά και ολόκληρες ακολουθίες δεδομένων (όπως ομιλία ή βίντεο). Για παράδειγμα, το LSTM μπορεί να εφαρμοστεί σε εργασίες όπως η αναγνώριση γραφής, η αναγνώριση ομιλίας και η ανίχνευση ανωμαλιών στην κυκλοφορία δικτύου ή IDS (συστήματα εντοπισμού εισβολών). Η πιο κοινή μονάδα LSTM αποτελείται από ένα κελί, μια πύλη εισόδου, μια πύλη εξόδου και μια "forget gate". Το κελί "θυμάται' τιμές σε αυθαίρετα χρονικά διαστήματα και οι τρεις πύλες ρυθμίζουν τη ροή πληροφοριών μέσα και έξω από το κελί. Τα δίκτυα LSTM είναι κατάλληλα για την ταξινόμηση, την επεξεργασία και την πραγματοποίηση προβλέψεων με βάση δεδομένα χρονοσειρών, καθώς μπορεί να υπάρχουν καθυστερήσεις άγνωστης διάρκειας μεταξύ σημαντικών γεγονότων σε μια χρονική σειρά. Τα LSTM αναπτύχθηκαν για να αντιμετωπίσουν το πρόβλημα της βαθμίδας που εξαφανίστηκε κατά την εκπαίδευση παραδοσιακών RNN. Η σχετική ευαισθησία στο μήκος διακένου είναι ένα πλεονέκτημα του LSTM έναντι των RNN, των κρυφών μοντέλων Markov και άλλων μεθόδων εκμάθησης ακολουθιών σε πολλές εφαρμογές.

Για όλους τους παραπάνω λόγους επιλέχθηκε το LSTM προκειμένου να προβλέψουμε τα επίπεδα γλυκόζης στα δεδομένα μας.

3.2 Διαδικασία Υλοποίησης-Εργαλεία

Το πρώτο πράγμα που οφείλουμε να αναφέρουμε είναι η γλώσσα προγραμματισμού την οποία θα επιλέξουμε ώστε να υλοποιήσουμε τον πρόβλεπτη. Η Python αποτελεί μια ερμηνευμένη, υψηλού επιπέδου, γλώσσα προγραμματισμού γενιχού σχοπού. Η φιλοσοφία σχεδιασμού της Python δίνει έμφαση στην αναγνωσιμότητα του χώδιχα με την αξιοσημείωτη χρήση σημαντιχού χενού χώρου. Οι γλωσσιχές κατασχευές και η

αντικειμενοστρεφής προσέγγιση στοχεύουν να βοηθήσουν τους προγραμματιστές να γράψουν σαφή, λογικό κώδικα για μικρά και μεγάλα έργα. Είναι dynamically typed και garbage-collected. Υποστηρίζει πολλαπλά παραδείγματα προγραμματισμού, συμπεριλαμβανομένων του δομημένου (ιδιαίτερα διαδικαστικού), αντικειμενοστραφούς και λειτουργικού προγραμματισμού. Φυσικά ενδείκνυται για την επίλυση προβλημάτων που κατηγοριοποιούνται ομοίως με το δικό μας πρόβλημα.

Τα πλαίσια (Frameworks) διαδραματίζουν καθοριστικό ρόλο στον τομέα της επιστήμης δεδομένων. Αποτελούν μια συλλογή πακέτων και βιβλιοθηκών που βοηθούν στην απλοποίηση της συνολικής εμπειρίας προγραμματισμού για τη δημιουργία ενός συγκεκριμένου είδους εφαρμογών. Το Keras και το TensorFlow είναι από τα πιο δημοφιλή frameworks όσον αφορά τη βαθιά μάθηση.

Το TensorFlow είναι μια ολοκληρωμένη πλατφόρμα ανοιχτού κώδικα για μηχανική μάθηση. Είναι ένα ολοκληρωμένο και ευέλικτο οικοσύστημα εργαλείων, βιβλιοθηκών και άλλων πόρων που παρέχουν ροές εργασίας με ΑΡΙ υψηλού επιπέδου. Προσφέρει διάφορα επίπεδα εννοιών για να επιλέξει ο χρήστης αυτό που χρειάζεται για να δημιουργήσει και να αναπτύξετε μοντέλα μηχανικής μάθησης. Μερικά από τα εμφανή χαρακτηριστικά είναι η εύκολη κατασκευή μοντέλων, καθώς το TensorFlow προσφέρει πολλαπλά επίπεδα αφαίρεσης για κατασκευή και εκπαίδευση μοντέλων, στιβαρή παραγωγή ΜL οπουδήποτε, αφού επιτρέπει την εκπαίδευση και εύκολη ανάπτυξη του μοντέλου, ανεξάρτητα από τη γλώσσα ή την πλατφόρμα που χρησιμοποιεί ο χρήστης, και τέλος ο ισχυρός πειραματισμός για έρευνα. Το TensorFlow δίνει την ευελιξία και τον έλεγχο με δυνατότητες όπως το Keras Functional ΑΡΙ για τη δημιουργία σύνθετων τοπολογιών.

Το Keras, από την άλλη πλευρά, είναι μια βιβλιοθήκη νευρωνικών δικτύων υψηλού επιπέδου που λειτουργεί στην κορυφή των TensorFlow, CNTK και Theano. Η χρήση του Keras στη βαθιά μάθηση επιτρέπει την εύκολη και γρήγορη δημιουργία πρωτοτύπων καθώς και την απρόσκοπτη λειτουργία σε CPU και GPU. Αυτό το framework είναι γραμμένο σε κώδικα Python που είναι εύκολο να εντοπίσει λάθη κώδικα και επιτρέπει ευκολία για επεκτασιμότητα. Τα κύρια πλεονεκτήματα του Keras είναι πως είναι φιλικό προς το χρήστη, διότι το Keras έχει μια απλή, συνεπή διεπαφή, βελτιστοποιημένη για κοινές περιπτώσεις χρήσης, η οποία παρέχει σαφή και ενεργή ανατροφοδότηση για σφάλματα χρήστη. Τα μοντέλα στο Keras κατασκευάζονται συνδέοντας διαμορφώσιμα δομικά στοιχεία μαζί, με λίγους περιορισμούς. Έχει ακόμα εύκολη επέκταση,καθώς επίσης είναι εύκολο στη χρήση. Προσφέρει σταθερά και απλά ΑΡΙ που βοηθούν στην ελαχιστοποίηση του αριθμού των ενεργειών χρήστη που απαιτούνται για συνήθεις περιπτώσεις χρήσης, καθώς επίσης παρέχει σαφή και ενεργή ανατροφοδότηση σχετικά με το σφάλμα χρήστη. Για όλους τους παραπάνω λόγους επιλέχθηκαν τα ανωτέρο Frameworks για την υλοποίηση.

Τέλος, χρησιμοποιήθηκε περιβάλλον Matlab για μια αρχική επεξεργασία των δεδομένων των ασθενών, καθώς τα δεδομένα ήταν εξ αρχής σε αυτή τη μορφή. Το Matlab είναι ένα υπολογιστικό περιβάλλον πολλαπλών παραδειγμάτων και μια ιδιόκτητη γλώσσα προγραμματισμού. Επιτρέπει χειρισμούς πινάκων, σχεδίαση συναρτήσεων και δεδομένων, εφαρμογή αλγορίθμων, δημιουργία διεπαφών χρήστη και διασύνδεση με προγράμματα γραμμένα σε άλλες γλώσσες.

3.3 Προεπεξεργασία Δεδομένων

Από τα πιο σημαντικά κομμάτια, αν όχι το πιο σημαντικό, στην υλοποίηση οποιουδήποτε τύπου νευρωνικών δικτύων είναι η κατάλληλη προεπεξεργασία των δεδομένων πριν την είσοδο τους στις πύλες εισόδου. Η ανάλυση δεδομένων που δεν έχουν ελεγχθεί προσεκτικά μπορεί να παράγει παραπλανητικά αποτελέσματα. Έτσι, η αναπαράσταση και η ποιότητα των δεδομένων είναι πρώτα και κύρια προαπαιτούμενα πριν από την εκτέλεση μιας ανάλυσης. Συχνά, η προεπεξεργασία δεδομένων είναι η πιο σημαντική φάση ενός προγράμματος μηχανικής μάθησης, ειδικά στον τομέα της υπολογιστικής βιολογίας, στον οποίο εμπλέκεται και η παρούσα εργασία.

Για την ανάπτυξη και την αξιολόγηση του μοντέλου χρησιμοποιήθηκε το σύνολο εικονικών ασθενών με ΣΔΤ1 του Προσομοιωτή UVA του Πανεπιστημίου της Padova. Ο προσομοιωτής χρησιμοποιεί έναν αλγόριθμο λογισμικού για τη μοντελοποίηση του ανθρώπινου μεταβολικού συστήματος. Με βάση τα δεδομένα ασθενών από 300 παιδιά, εφήβους και ενήλικες με διαβήτη τύπου 1, ο αλγόριθμος χρησιμοποιεί πολλές διαφορετικές παραμέτρους για να μιμηθεί τον ανθρώπινο μεταβολισμό σε ατομικό επίπεδο, μέσω διαφόρων ξεχωριστών προφίλ ασθενών. Μέσα σε αυτά τα μεμονωμένα προφίλ, μεταβλητές όπως η διατροφή, η συμπεριφορά άσκησης και η πρόσληψη ινσουλίνης μπορούν να χρησιμοποιηθούν για να ελέγξουν την ακρίβεια ή την αποτελεσματικότητα ενός νέου προϊόντος υπό διάφορες συνθήκες - ή για να το συγκρίνουν με τα υπάρχοντα προϊόντα. Εμείς χρησιμοποιήσαμε τα δεδομένα από 30 ασθενείς (10 ενήλικες ,10 έφηβους και 10 παιδιά) για την εργασία μας και προσομοίωση δεδομένων διάρκειας 1 εβδομάδας.

Ο χώρος εισόδου του μοντέλου καθορίστηκε ώστε να περιλαμβάνει τιμές γλυκόζης που καταγράφονται από διάταξη συνεχούς μέτρησης γλυκόζης (Sensor), τιμές χορηγούμενης ινσουλίνης από μία υποδόρια αντλία συνεχούς έγχυσης ινσουλίνης (Injection) καθώς και την ποσότητα των υδατανθράκων στα λαμβανόμενα γεύματα (CHO). Η συλλογή των δεδομένων βασίστηκε σε δειγματοληψία ανά 5 λεπτά, σύμφωνα με τις αρχές λειτουργίας των διατάξεων συνεχούς μέτρησης γλυκόζης

Ύστερα κανονικοποιήσαμε (Normalization) τις τιμές όλων των δεδομένων, καθώς έτσι

τα χαρακτηριστικά σε ένα μοντέλο δεδομένων είναι οργανωμένα για να αυξήσουν τη συνοχή των τύπων οντοτήτων. Στόχος της εξομάλυνσης αυτής των δεδομένων είναι να μειώσει ή ακόμη και να εξαλείψει τον πλεονασμό δεδομένων. Υπάρχουν δύο βασικά πλεονεκτήματα της ύπαρξης ενός κανονικοποιημένου σχήματος δεδομένων: η αυξημένη συνέπεια και η εύκολη αντιστοίχηση αντικειμένων προς τα δεδομένα. Όσων αφορά το πρώτο, οι πληροφορίες αποθηκεύονται σε ένα και μόνο μέρος, μειώνοντας την πιθανότητα ασυνεπειών δεδομένων. Όσων αφορά το δεύτερο, τα κανονικοποιημένα σχήματα δεδομένων γενικά είναι πλησιέστερα εννοιολογικά με αντικειμενοστραφή σχήματα, επειδή οι αντικειμενοστρεφείς στόχοι της προώθησης υψηλής συνοχής και χαλαρής σύζευξης μεταξύ των τάξεων οδηγούν σε παρόμοιες λύσεις (τουλάχιστον από άποψη δεδομένων).

Επόμενο και αναγκαίο βήμα αποτελεί ο διαχωρισμός του συνόλου των αρχικών δεδομένων σε δύο υποσύνολα, το Train και το Test Set. Όπως αναφέρουν και τα ονόματα, το πρώτο αφορά την εκπαίδευση του νευρωνικού και το δεύτερο την εξέταση και αξιολόγηση των αποτελεσμάτων. Ο διαχωρισμός αυτός πρέπει να τηρεί δύο πολύ βασικές προϋποθέσεις. Πρώτον, το Test Set πρέπει να είναι τόσο μεγάλο ώστε να παρέχει στατιστικά σωστά αποτελέσματα ενώ ταυτόχρονα το Train Set πρέπει να είναι αρκετά μεγάλο ώστε να εκπαιδευτεί βέλτιστα το νευρωνικό αποφεύγοντας φυσικά το Overfitting. Δεύτερον πρέπει το Test Set να είναι αντιπροσωπευτικό του συνόλου δεδομένων, με άλλα λόγια, να μην αποτελεί ένα test set με διαφορετικά χαρακτηριστικά από το train set. Με γνώμονα τα παραπάνω για την εκπαίδευση του μοντέλου χρησιμοποιήθηκε το 70% των δεδομένων, ενώ για την αξιολόγησή του χρησιμοποιήθηκε με τότοιο τρόπο ώστε να διασφαλιστεί ίση εκπροσώπηση όλων των ηλικιακών κατηγοριών (ενήλικες, έφηβοι, παιδιά).

Ουσιαστικά το μοντέλο LSTM που υλοποιούμε "θα μάθει" μια συνάρτηση με την οποία θα αντιστοιχεί μια ακολουθία προηγούμενων παρατηρήσεων (είσοδος) σε μια παρατήρηση εξόδου. Ως εκ τούτου, η ακολουθία των παρατηρήσεων πρέπει να μετατραπεί σε πολλαπλά παραδείγματα από τα οποία μπορεί να μάθει το LSTM. Μπορούμε να χωρίσουμε την ακολουθία εισόδου (ουσιαστικά το Training Set) σε πολλαπλά μοτίβα εισόδου / εξόδου που ονομάζονται δείγματα (Samples), όπου κ χρονικά βήματα χρησιμοποιούνται ως είσοδος και 1 βήμα χρησιμοποιείται ως έξοδος για την πρόβλεψη που μαθαίνει το LSTM. Η συνάρτηση split sequence εφαρμόζει αυτήν τη λειτουργία και χωρίζει μια δεδομένη ακολουθία σε πολλαπλά δείγματα όπου κάθε δείγμα έχει έναν καθορισμένο αριθμό χρονικών βημάτων και η έξοδος είναι ένα μόνο βήμα χρόνου. Δημιουργούμε έτσι τα Χtrain/Χtest και ytrain/ytest. Στο ytrain/ytest έχουμε την πρόβλεψη μας που είνα μόνο τα αποτελέσματα του sensor. Στο Χtrain/Χtest έχουμε όλα τα δεδομένα από την βασή μας.

3.4 Αρχιτεκτονική Μοντέλου

Την επεξεργασία δεδομένων ακολουθεί η τελική υλοποίηση και ο καθορισμός της αρχιτεκτονικής του LSTM νευρωνικού. Καθοριστικό ρόλο σε αυτό παίζουν οι σωστές επιλογές των υπερπαραμέτρων του μοντέλου. Η κατάλληλη επιλογή κόμβων (Nodes) και επιπέδων (Layers) δεν έχει συγκεκριμένο αλγόριθμο και βασίζεται αποκλειστικά στο πρόβλημα που καλούμαστε να επιλύσουμε.

Το (χρονικά) διαδοχικό API (Sequential) επιτρέπει τη δημιουργία μοντέλων επίπεδο προς επίπεδο. Είναι περιορισμένο, καθώς δεν επιτρέπει την δημιουργία μοντέλων που μοιράζονται επίπεδα ή έχουν πολλές εισόδους ή εξόδους, είναι όμως κατάλληλο για την φύση του δικού μας προβλήματος. Κάνοντας πολλές δοκιμές επιλέξαμε τελικά 50 νευρώνες να δομούν το νευρωνικό. Αφού επιλέξαμε τα στρώματα του LSTM πρέπει να μειώσουμε το σχήμα εισόδου (input shape), ώστε να ταιριάζει με την επιθυμητή έξοδο.

Άλλο ένα επίπεδο που πρέπει να προσθέσουμε είναι το επίπεδο ενεργοποίησης (Activation). Τεχνικά, αυτό μπορεί να συμπεριληφθεί στο επίπεδο πυκνότητας (Dense), αλλά υπάρχει λόγος να το χωρίσουμε. Γενικά, ο διαχωρισμός του στρώματος πυκνότητας και του στρώματος ενεργοποίησης καθιστά δυνατή την ανάκτηση της ελαχιστοποιημένης εξόδου του στρώματος πυκνότητας του μοντέλου. Το ποιά συνάρτηση ενεργοποίησης θα επιλέξουμε είναι πάλι ανάλογο με την εφαρμογή. Προκειμένου να χρησιμοποιήσουμε stochastic gradient descent με backpropagation σφαλμάτων για την εκπαίδευση του βαθιού νευρικού δικτύου, απαιτείται μια συνάρτηση ενεργοποίησης που να μοιάζει και να λειτουργεί σαν μια γραμμική συνάρτηση, αλλά στην πραγματικότητα να είναι μια μη γραμμική συνάρτηση που επιτρέπει την εκμάθηση σύνθετων σχέσεων στα δεδομένα. Η συνάρτηση πρέπει επίσης να παρέχει περισσότερη ευαισθησία στην είσοδο και να αποφεύγει τον εύκολο κορεσμό. Η λύση είναι να χρησιμοποιήσουμε την rectified linear activation function , ή ReLU για συντομία. Ένας κόμβος ή μονάδα που εφαρμόζει αυτήν τη συνάρτηση ενεργοποίησης αναφέρεται ως rectified linear activation unit ή ReLU.

Η συνάρτηση απωλειών και η συνάρτηση ενεργοποίησης επιλέγονται συχνά μαζί. Η χρήση της συνάρτησης ενεργοποίησης ReLU μας οδηγεί στην Mean Square Error (MSE) ως την προτιμώτερη συνάρτηση απωλειών. Η MSE είναι η πιο συχνά χρησιμοποιούμενη συνάρτηση, και αποτελεί το άθροισμα των τετραγώνων αποστάσεων μεταξύ της μεταβλητής στόχου και των προβλεπόμενων τιμών. Για την επιλογή του βελτιστοποιητή (optimizer), η adaptive moment estimation (adam) έχει αποδειχθεί ότι λειτουργεί καλά στις περισσότερες πρακτικές εφαρμογές και λειτουργεί καλά με λίγες μόνο αλλαγές στις υπερπαραμέτρους. Τέλος, πρέπει να αποφασίσουμε, μετά από ποια μέτρηση θέλουμε να κρίνουμε το μοντέλο μας. Το Keras προσφέρει πολλαπλές λειτουργίες για μέτρηση της ακρίβειας. Σε πολλές περιπτώσεις, η αξιολόγηση της απόδοσης

των μοντέλων από μια πιο σφαιρική οπτική θα είναι η καλύτερη επιλογή ερμηνείας, καθώς και επαρκής ως προς την απόδοση του μοντέλου.

Τελικό κομμάτι της υλοποίησης αποτελεί η επιλογή του πλήθους των εποχών (Epochs) και του Batch Size. Οι epochs είναι μια υπερπαραμέτρος που καθορίζει τον αριθμό των φορών που ο αλγόριθμος εκμάθησης θα λειτουργεί σε ολόκληρο το σύνολο δεδομένων εκπαίδευσης. Το batch size είναι μια υπερπαράμετρος που καθορίζει τον αριθμό των δειγμάτων που πρέπει να επεξεργαστούν από το σύστημα πριν από την ενημέρωση των εσωτερικών παραμέτρων του μοντέλου. Επιλέξαμε 100 εποχές και 1 το μέγεθος του batch ύστερα από πολλές δοκιμές, καθώς προσέδιδαν τα καλύτερα αποτελέσματα.

4 Αποτελέσματα

4.1 Κριτήρια Αξιολόγισης

Για να αξιολογήσουμε το μοντέλο μας χρησιμοποιήσαμε κάποια κριτήρια:

1. Τη ρίζα μέσου τετραγωνικού σφάλματος (root mean square error, rmse).Το RMSE υποδεικνύει τη διαφορά μεταξύ των πραγματικών δεδομένων και των προβλέψεων.

$$RMSE = \sqrt{\frac{1}{n}\sum_{k=1}^{n}(y_k - \dot{y}_k)^2}$$

2. Το mean absolute relative difference (MARD) είναι σήμερα η πιο κοινή μετρική που χρησιμοποιείται για την αξιολόγηση της απόδοσης των συστημάτων CGM. Το MARD είναι ο μέσος όρος του απόλυτου σφάλματος μεταξύ όλων των τιμών των προβλέψεων και των αντίστοιχων τιμών αναφοράς (πραγματικών τιμών). Ένα μικρό ποσοστό δείχνει ότι οι προβλέψεις είναι κοντά στην τιμή της πραγματικής γλυκόζης, ενώ ένα μεγαλύτερο ποσοστό υποδεικνύει μεγαλύτερες αποκλίσεις.

$$MARD = \frac{1}{n} \sum_{k=1}^{n} \left(\frac{|y_k - \dot{y}_k|}{y_k} \right)$$

3. Τον συντελεστή συσχέτισης (correlation coefficient,CC) ο οποίος αντιπροσωπεύει τη γραμμική εξάρτηση μεταξύ δύο συνόλων δεδομένων, τα οποία στη συγκεκριμένη περίπτωση είναι τα πραγματικά δεδομένα και οι προβλέψεις.

$$CC = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

όπου,

y_k: πραγματική μέτρηση

 \dot{y}_k : προβλεπόμενη μέτρηση

4.2 Πίνακες αποτελεσμάτων των κριτηρίων αξιολόγισης

Στους πιο κάτω πίνακες παρουσιάζονται τα metrics που αναφέραμε προηγουμένως για κάθε ασθενή του test set καθώς και τα συνολικά για κάθε Prediction Horizon $(15,30,60,120~{\rm min}).$

 Γ ia PH = 15min

Ασθενής	RMSE (mg/dL)	MARD (%)	CC (%)
Έφηβος 1	0.01028886766884929	3.197578155195336	99.44003417483506
Έφηβος 2	0.00987408598982434	2.541975924324385	99.16462116411951
Έφηβος 3	0.010474179766979405	3.171808978257715	99.99.39819091200603
Ενήλικας 1	0.010341500035184545	2.4012783056019735	99.15578092159578
Ενήλικας 2	0.009726316634194295	3.121232918494993	99.19287988766744
Ενήλικας 3	0.00964092364032624	3.1558867848813525	98.8800374285567
Παιδί 1	0.011175993498055394	4.067448194731852	99.7960593068629
Παιδί 2	0.013796667782995787	3.4163829190856463	98.60020882982815
Παιδί 3	0.010411986358876794	2.122421843108961	99.43155628570281
Συνολιχό	0.010704217306161952	3.0217793359646907	99.50837995491548

Γ ia PH = 30min

Ασθενής	RMSE (mg/dL)	MARD (%)	CC (%)
Έφηβος 1	0.020258142453906464	6.305687385955537	97.84239820155302
Έφηβος 2	0.019818897881347244	4.904781520466652	96.65742804384587
Έφηβος 3	0.021302873689482592	6.204875867894633	97.57002816867465
Ενήλικας 1	0.020211033923717432	4.520892758408708	96.71743855106668
Ενήλικας 2	0.018315042925677174	5.976570765973976	97.10936848358618
Ενήλικας 3	0.018638152120014417	6.151072640597687	95.83768946710326
Παιδί 1	0.02413870963411307	8.917259955470088	99.03706721821631
Παιδί 2	0.026422747201523128	6.407461346177612	9 4.97354885100003
Παιδί 3	0.020084791244301504	4.008403228740547	97.90710454029698
Συνολιχό	0.021167424113037347	5.93300060774289	98.04307565103734

 Γ ia PH = 60min

Ασθενής	RMSE (mg/dL)	MARD (%)	CC (%)
Έφηβος 1	0.03996906127307534	12.114804867822333	92.88850987751908
Έφηβος 2	0.03867540709369907	9.118261274429683	89.53512976843172
Έφηβος 3	0.040952316625144515	11.849437100449506	92.20732646893084
Ενήλικας 1	0.03669333085328517	7.796213600886268	89.91182638589072
Ενήλικας 2	0.0312863561878541	11.007386008479783	91.89158138665886
Ενήλικας 3	0.03316974567619446	11.215741857334717	88.62916437179778
Παιδί 1	0.046344600712848794	18.10107312227395	96.50605204731578
Παιδί 2	0.05017787350865864	11.996728885382481	85.50393493255956
Παιδί 3	0.03586075132474639	6.691441965483041	93.28072915200045
Συνολικό	0.03964776628342419	11.099009853615678	93.27029057701859

 Γ ia PH = 120min

A 0 /	DMCD / /II)	MADD (04)	QQ (Q4)
Ασθενής	RMSE (mg/dL)	MARD (%)	CC (%)
Έφηβος 1	0.06425066046506013	21.321672606090882	80.21313183436459
Έφηβος 2	0.05679515981612028	15.545225152869463	76.27598362967134
Έφηβος 3	0.06785382854023317	22.50860806802601	78.49119073869353
Ενήλικας 1	0.054185939347208764	12.806425384211481	75.13648247423433
Ενήλικας 2	0.053817995804287755	18.70166388267772	75.56230914548733
Ενήλικας 3	0.058059063074799716	20.453444336108923	69.62227165156203
Παιδί 1	0.09332072623373174	35.05610210773047	84.98724124640236
Παιδί 2	0.07628906338248587	21.29053859473824	65.63370414396292
Παιδί 3	0.06162459965244624	10.599694299835647	79.88040725246186
Συνολιχό	0.06623837215831231	19.80926382580977	80.02210116619403

4.3 Παρατηρήσεις από τα αποτελέσματα των κριτηρίων αξιολόγισης

Παρατηρούμε ότι για μικρότερο Prediction Horizon το σφάλμα είναι και αυτό μικρότερο. Όταν έχουμε PH=15 min παρατηρούμε ότι το σφάλμα RMSE είναι πολύ μικρό και παραμένει στο επίπεδο του $0.01 \ mg/dL$ για όλους τους ασθενείς. Το MARD αρχικά για PH=15 min είναι πολύ χαμηλό της τάξης του 2-4 %. Όσο αυξάνουμε τον ορίζοντα πρόβλεψης βλέπουμε ότι σταδιακά αυξάνονται κάθε φορά και το RMSE αλλά και το MARD. Για PH=120 min καταλήγουν να είναι 6 φορές περίπου μεγαλύτερα από όσο ήταν για PH=15 min. Ο συντελεστής συσχέτισης για PH=15 min είναι πολύ ψηλός της τάξης του 99% και σιγά σιγά μειώνεται με την αύξηση του ορίζοντα πρόβλεψης

καταλήγοντας σε ποσοστά 65-80%.

Τα αποτελέσματα μας είναι απολύτως αναμενόμενα αφού όσο πιο μακρινή είναι η πρόβλεψη η οποία θέλουμε να κάνουμε τόσο πιο δύσκολο είναι να γίνει με ακρίβεια.

4.4 Γραφικές Παραστάσεις

Για κάθε ασθενή εξάχθηκαν 4 γραφικές παραστάσεις για κάθε Prediction Horizon (PH=15min, PH=30 min, PH=60min, PH=120min) που εξετάσαμε.Καθεμιά από τις οποίες παρουσιάζει τις πραγματικές τιμές και τις προβέψεις (στον άξονα x ο χρόνος, στον άξονα y με πράσινο χρώμα οι πραγματικές τιμές και με κόκκινο χρώμα οι προβλέψεις.Για τις τιμές των προβλέψεων αναπαραστάθηκε κάθε φορά η τιμή για το τελικό σημείο του ορίζοντα πρόβλεψης έτσι ώστε να φανεί καλύτερα η διαφορά μεταξύ πραγματική τιμής.

 $\underline{\Gamma}$ ια PH=15min. Πιο κάτω παρουσιάζονται η καλύτερη και η χειρότερη γραφική (χαμηλότερο και ψηλότερο MARD από κάθε ορίζοντα πρόβλεψης.

Γ ia PH = 30min

Γ ia PH = 60min

Γ ia PH = 60min

Παρατηρούμε ότι οι πιο πάνω γραφικές παραστάσεις επιβεβαιώνουν πλέον και οπτικά τις προηγούμενες μας παρατηρήσεις. Για PH=15min η πράσινη καμπύλη σχεδόν ταυτίζεται με την κόκκινη σε σημείο που δεν μπορούμε να ξεχωρίσουμε με το μάτι τις διαφορές τους. Για PH=30min αρχίζουμε να βλέπουμε τις πρώτες πολύ μικρές αποκλίσεις ενώ για PH=60min οι αποκλίσεις αυτές γίνονται πιο ξεκάθαρες από τους προηγούμενους μικρότερους ορίζοντες πρόβλεψης. Τελικά για PH=120min οι δύο καμπύλες έχουν ξεχωρίσει και δεν ταυτίζονται πλέον ενώ σε πολλά σημεία μπορύμε να παρατηρήσουμε ότι η απόσταση της πραγματικής τιμής και της πρόβλεψης είναι σημαντική.

5 Επίλογος

Στην παρούσα εργασία επικεντρωθήκαμε στην δημιουργία ενός μοντέλου πρόβλεψης LSTM (Long short-term memory), το οποίο είναι μια αρχιτεκτονική τεχνητών επαναλαμβανόμενων νευρωνικών δικτύων(RNN)που χρησιμοποιείται στον τομέα της Βαθιάς Μάθησης, προκειμένου να προβλέψουμετα επίπεδα γλυκόζης στο αίμα 30 ασθενών με ΣΔ τύπου 1 σε ορίζοντα 15,30,60,120 λεπτών. Μετά από αξιολόγηση και εξαγωγή ορισμένων κριτηρίων παρατηρήσαμε ότι τα αποτελέσματα μας είναι πολύ ικανοποιητικά. Για επέκταση της εργασίας στο μέλλον θα θέλαμε να εξερευνήσουμε περισσότερα μοντέλα πρόβλεψης αλλά και να τα εξετάσουμε σε δεδομένα πραγματικών ασθενών.

Αναφορές

- [1] K. Zarkogianni, "Intelligent personalized medical decision support systems for the management of diabetes mellitus," 2011.
- [2] K. Li, J. Daniels, C. Liu, P. Herrero, and P. Georgiou, "Convolutional Recurrent Neural Networks for Glucose Prediction," tech. rep.
- [3] A. Facchinetti, "Continuous glucose monitoring sensors: Past, present and future algorithmic challenges," Sensors (Switzerland), vol. 16, jan 2016.
- [4] P. Pes, P. Herrero, M. Reddy, M. Xenou, N. Oliver, D. Johnston, C. Toumazou, and P. Georgiou, "An advanced bolus calculator for type 1 diabetes: System architecture and usability results," *IEEE Journal of Biomedical and Health Informatics*, vol. 20, pp. 11–17, jan 2016.
- [5] "Cascading K-means Clustering and K-Nearest Neighbor Classifier for Categorization of Diabetic Patients," tech. rep.
- [6] E. I. Georga, V. C. Protopappas, D. Ardigò, M. Marina, I. Zavaroni, D. Polyzos, and D. I. Fotiadis, "Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression," *IEEE Journal of Biomedical and Health Informatics*, vol. 17, no. 1, pp. 71–81, 2013.
- [7] K. Plis, R. Bunescu, C. Marling, J. Shubrook, and F. Schwartz, "A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management," tech. rep.
- [8] H. N. Mhaskar, S. V. Pereverzyev, and M. D. van der Walt, "A Deep Learning Approach to Diabetic Blood Glucose Prediction," *Frontiers in Applied Mathematics and Statistics*, vol. 3, p. 14, jul 2017.
- [9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional Architecture for Fast Feature Embedding *,"
- [10] J. Schmidhuber, "Deep Learning in Neural Networks: An Overview," tech. rep., 2014.