## Zaawansowane modele liniowe - lista 4

## Klaudia Weigel

## 1 Zadanie 1

Przyjmujemy oznaczenia:

- n liczba obiektów,
- k liczba pomiarów na każdym obiekcie,
- p liczba kolumn w macierzy planu,
- N = n \* k liczba zmiennych objaśnianych  $y_{ij}$ .

### 1.1 Podpunkt a

Dla n=20, k=3, p=4 wygenerujemy macierz  $X\in\mathbb{M}_{N\times p-1}$  taką, że jej elementy są niezależnymi realizacjami z rozkładu  $N(0,1/\sqrt{N})$ . Do macierzy dodamy również kolumnę jedynek odpowiadającą interceptowi. Następnie podzielimy macierz na n=N/k podmacierzy  $X_1,\ldots,X_n\in\mathbb{M}_{k\times p-1}$ .

```
n = 20
k = 3
p = 4
N = n*k

X = cbind(1, matrix(rnorm(N*(p-1), sd = 1/sqrt(N)), nrow = N, ncol = p-1))
Xsplit = lapply(split(X, rep(c(1:n),each=k)), matrix, nrow=k)

beta = c(0,3,3,0)
rho = 0.3
gamma = 2
sigma = matrix(rho, nrow = k, ncol = k)
diag(sigma) = 1
sigma = gamma^2*sigma
```

Przyjmujemy  $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)' = (0, 3, 3, 0)'$  oraz

$$\Sigma = \gamma^2 \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{pmatrix} \in \mathbb{M}_{k \times k},$$

gdzie  $\gamma = 2$  oraz  $\rho = 0.3$ .

### 1.2 Podpunkt b

Wygenerujemy n niezależnych wektorów losowych

$$y_i = (y_{i1}, \dots, y_{ik})' \sim N(X_i \beta, \Sigma) \in \mathbb{R}^k, \quad i = 1, 2, \dots, n.$$

Zapiszemy dane w jednowymiarowej reprezentacji.

```
Y = lapply(Xsplit, function(X) rmvnorm(1, mean = X%*%beta, sigma = sigma))

data_uni = lapply(1:n, function(i) cbind(t(Y[[i]]), rep(i, k), 1:k, Xsplit[[i]]))
data_uni = do.call(rbind, data_uni)
data_uni = data.frame(data_uni)
colnames(data_uni) = c('y', 'id', 'T', 'X0', 'X1', 'X2', 'X3')
head(data_uni)
```

```
## y id T X0 X1 X2 X3

## 1 -1.3663981 1 1 1 -0.11414299 -0.13855508 0.08415341

## 2 2.5906389 1 2 1 -0.11926290 -0.05390070 -0.23656952

## 3 -1.4295557 1 3 1 -0.11970749 -0.06436812 -0.24339448

## 4 1.3175352 2 1 1 0.18548876 -0.04251278 -0.07955364

## 5 -0.2434386 2 2 1 0.05461402 0.11361755 -0.04397249

## 6 -0.6612170 2 3 1 -0.25755047 0.06615645 -0.02359897
```

Za pomocą funkcji gls zbudujemy model liniowy.

## 1.3 Podpunkt c

#### 1.3.1 Wektor $\beta$

Estymator wektora  $\beta$ , otrzymujemy z

$$\hat{\beta} = \left(\sum_{i=1}^n X_i' \Sigma^{-1} X_i\right)^{-1} \left(\sum_{i=1}^n X_i' \Sigma^{-1} y_i\right).$$

W tym punkcie za  $\Sigma$  podstawimy estymator otrzymany metodą REML ( $\hat{\Sigma}_{REML}$ ).

Estymator wektora  $\beta$  ma asymptotycznie rozkład

$$\hat{\beta} \to^d N\left(\beta, \left(\sum_{i=1}^n X_i' \hat{\Sigma}^{-1} X_i\right)^{-1}\right).$$

W zadaniu będziemy korzystać z normy supremum, która dla wektora x jest zdefiniowana jako:

$$||x||_{sup} = \max_{i} |x_i|.$$

Natomiast dla macierzy X:

$$||X||_{sup} = \max_{i,j} |x_{ij}|.$$

```
sigma_reml = getVarCov(m1)
a1 = lapply(1:n, function(i) t(Xsplit[[i]])%*%solve(sigma_reml)%*%Xsplit[[i]])
a1 = Reduce('+', a1) # zsumuj n macierzy
a1 = solve(a1)
b1 = lapply(1:n, function(i) t(Xsplit[[i]])%*%solve(sigma_reml)%*%t(Y[[i]]))
b1 = Reduce('+', b1)
beta_est_reml = a1%*%b1
t(beta_est_reml)
##
                       [,2]
                               [,3]
                                         [,4]
              [,1]
## [1,] 0.04925239 3.698328 3.46146 2.185057
Porównamy wynik z tym zwracanym przez funkcję gls
coef(m1)
## (Intercept)
                        X1
                                    Х2
                                                 ХЗ
## 0.04925239 3.69832823 3.46146001 2.18505666
Estymatory są takie same.
Norma supremum dla różnicy \hat{\beta}oraz prawdziwych wartości:
max(abs(beta_est_reml - beta))
## [1] 2.185057
Spójrzmy teraz na macierz kowariancji wektora \beta
a1
##
                [,1]
                            [,2]
                                          [,3]
## [1,] 0.091559097 -0.06035025 -0.002099436 0.05391394
## [2,] -0.060350245 2.51067175 0.117472239 -0.20896850
## [3,] -0.002099436  0.11747224  1.839375248 -0.28335792
## [4,] 0.053913941 -0.20896850 -0.283357922 2.62764304
Porównajmy wynik z funkcją vcov
vcov(m1)
##
                                                  Х2
                (Intercept)
                                     Х1
## (Intercept) 0.091559097 -0.06035025 -0.002099436 0.05391394
## X1
               -0.060350245 2.51067175 0.117472239 -0.20896850
## X2
               ## X3
                0.053913941 -0.20896850 -0.283357922 2.62764304
Otrzymane macierze są takie same.
Prawdziwą wartość macierzy kowariancji wektora \beta obliczmy podstawiając pod \Sigma macierz zadaną w poleceniu.
cov_beta = lapply(1:n, function(i) t(Xsplit[[i]])%*%solve(sigma)%*%Xsplit[[i]])
cov_beta = Reduce('+', cov_beta)
cov_beta = solve(cov_beta)
cov_beta
##
               [,1]
                           [,2]
                                       [,3]
                                                   [,4]
```

## [1,] 0.10963015 -0.07494681 -0.00273796 0.0670384

```
## [2,] -0.07494681 3.11660939 0.14870924 -0.2615358
## [3,] -0.00273796 0.14870924 2.28283766 -0.3551597
## [4,] 0.06703840 -0.26153584 -0.35515967 3.2657673
```

Norma supremum różnicy między prawdziwa macierzą kowariancji a jej estymatorem REML to:

```
norm(cov_beta - a1, type = "M")
```

```
## [1] 0.6381243
```

#### 1.3.2 Macierz $\Sigma$

Przyj<br/>rzyjmy się teraz estymatorom parametrów  $\rho$  ora<br/>z $\gamma.$  Ich wartości to

```
cov2cor(sigma_reml)[1,2]; sqrt(sigma_reml[1,1])
```

```
## [1] 0.3156537
```

## [1] 1.811032

Table 1: Własności parametrów.

|          | Wartość<br>prawdziwa | Estymator | Wartość bezw. różnicy $ \theta - \hat{\theta} $ |
|----------|----------------------|-----------|-------------------------------------------------|
| Parametr | y beta               |           |                                                 |
| $eta_0$  | 0.0                  | 0.0493    | 0.0493                                          |
| $eta_1$  | 3.0                  | 3.6983    | 0.6983                                          |
| $eta_2$  | 3.0                  | 3.4615    | 0.4615                                          |
| $eta_3$  | 0.0                  | 2.1851    | 2.1851                                          |
| Rho      |                      |           |                                                 |
| $\rho$   | 0.3                  | 0.3157    | 0.0157                                          |
| Gamma    |                      |           |                                                 |
| $\gamma$ | 2.0                  | 1.8110    | 0.1890                                          |

Wartości estymatorów generalnie są zbliżone do prawdziwych wartości, ich wartości są jednak silnie zależne od próby.

Table 2: Norma supremum różnicy.

|          | $\hat{eta}$ | $\hat{ ho}$ | $\hat{\gamma}$ | $\hat{\Sigma}_{REML}$ |
|----------|-------------|-------------|----------------|-----------------------|
| sup-norm | 2.185057    | 0.0156537   | 0.1889677      | 0.6381243             |

### 2 Zadanie 2

Wygenerujemy 500 replikacji wektora Y i skonstruujemy przy ich pomocy modele liniowe z których następnie wyznaczymy 500 replikacji wektora  $\hat{\beta}$ ,  $\hat{\rho}$  oraz  $\hat{\gamma}$ .

```
sim = function(Xsplit) {
  rep = 500; N = n*k
  beta_rep = matrix(nrow = rep, ncol = p); gamma_rep = numeric(length = rep)
  rho_rep = numeric(length = rep)

for (i in 1:rep) {
```

```
Y = lapply(Xsplit, function(X) rmvnorm(1, mean = X%*%beta, sigma = sigma))
    data_uni = lapply(1:n, function(i) cbind(t(Y[[i]]), rep(i, k), 1:k, Xsplit[[i]]))
   data_uni = do.call(rbind, data_uni)
    data_uni = data.frame(data_uni); colnames(data_uni) = c('y', 'id', 'T', paste0("X", 0:(p-1)))
    if(p == 4) {
      m = gls(y~. -id-T-X0, correlation = corCompSymm(form = ~1|id),
              weights = varIdent(form = ~1), method = "REML", data = data_uni) }
    else {
      m = gls(y~. -id-T-X0, correlation = corCompSymm(form = ~1|id),
              weights = varIdent(form = ~1), data = data_uni,
              control = glsControl(opt='optim')) }
   beta_rep[i,] = coef(m); covM = getVarCov(m)
   rho_rep[i] = cov2cor(covM)[1,2]; gamma_rep[i] = sqrt(covM[1,1])
  colnames(beta_rep) = paste0("b", 0:(p-1))
  return(list(b = beta_rep, r = rho_rep, g = gamma_rep))
}
# Kowariancja asymptotyczna wektora beta
avar = lapply(1:n, function(i) t(Xsplit[[i]])%*%solve(sigma)%*%Xsplit[[i]])
avar = Reduce('+', avar); avar = solve(avar)
res_z2 = sim(Xsplit)
```



Figure 1: Histogramy dla n = 20, k = 3, p = 4.

Widzimy, ze histogramy są bliskie rozkładom asymptotycznym. Ponieważ rozmiar próby jest mały, to dane są dość mocno rozrzucone. Wartości są skoncentrowane wokół prawdziwych wartości, choć pojawiają się znaczące odchylenia.

## 3 Zadanie 3

Ponownie wykonamy symulacje z zadania 2 dla n=500.



Figure 2: Histogramy dla n = 500, k = 3, p = 4.

Histogramy są bliskie rozkładom asymptotycznym. W porównaniu do przypadku gdy n = 20, wahania w danych są mniejsze i estymatory są wyznaczane z większą dokładnością.

## 4 Zadanie 4

Ponownie wykonamy symulacje z zadania 2 dla k = 30.



Figure 3: Histogramy  $\hat{\beta}_0$  oraz  $\hat{\beta}_1$ , dla n=20, k=30, p=4.



Figure 4: Histogramy  $\hat{\rho}$  oraz  $\hat{\gamma}$  dla n=20, k=30, p=4.

Estymatory dla k=30 są zbliżone do przypadku gdy n=20, choć wartości skrajne są nieco mniejsze.

# 5 Zadanie 5

Tym razem zwiększymy wartość p do 40.



Figure 5: Histogramy dla n = 20, k = 3, p = 40.

Estymatory osiągają bardziej skrajne wartości niż w poprzednich zadaniach. Estymacja dla wielu przypadków jest mało dokładna.

## 6 Podsumowanie wyników z zadań 2-5

Table 3: Własności estymatora  $\hat{\beta}$ .

| Obciążenie $(\hat{\beta}_i) = E(\hat{\beta}_i) - \beta_i$ |    |    |               |               |               |               | $  \hat{eta}_i$ | $  _{sup}$    |               |               |
|-----------------------------------------------------------|----|----|---------------|---------------|---------------|---------------|-----------------|---------------|---------------|---------------|
| n                                                         | k  | p  | $\hat{eta}_0$ | $\hat{eta}_1$ | $\hat{eta}_2$ | $\hat{eta}_3$ | $\hat{eta}_0$   | $\hat{eta}_1$ | $\hat{eta}_2$ | $\hat{eta}_3$ |
| 20                                                        | 3  | 4  | 0.002         | -0.033        | 0.031         | -0.240        | 1.177           | 8.310         | 7.583         | 6.138         |
| 500                                                       | 3  | 4  | 0.000         | -0.028        | -0.031        | 0.046         | 0.190           | 9.063         | 8.058         | 5.770         |
| 20                                                        | 30 | 4  | -0.005        | -0.053        | -0.021        | 0.199         | 0.822           | 7.937         | 8.584         | 5.329         |
| 20                                                        | 3  | 40 | -0.012        | -0.082        | -0.014        | 0.245         | 1.515           | 11.814        | 13.054        | 13.346        |

Table 4: Wariancja i średnia estymatorów  $\hat{\beta}_i$ .

| n   | k  | р  | $var(\hat{\beta}_0)$ | $var(\hat{\beta}_1)$ | $var(\hat{\beta}_2)$ | $var(\hat{eta}_3)$ | $E(\hat{\beta}_0)$ | $E(\hat{\beta}_1)$ | $E(\hat{\beta}_2)$ | $E(\hat{\beta}_3)$ |
|-----|----|----|----------------------|----------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 20  | 3  | 4  | 0.116                | 3.296                | 2.565                | 3.452              | 0.002              | 2.967              | 3.031              | -0.240             |
| 500 | 3  | 4  | 0.005                | 3.826                | 3.590                | 3.302              | 0.000              | 2.972              | 2.969              | 0.046              |
| 20  | 30 | 4  | 0.057                | 2.918                | 2.889                | 2.801              | -0.005             | 2.947              | 2.979              | 0.199              |
| 20  | 3  | 40 | 0.229                | 9.368                | 13.263               | 20.306             | -0.012             | 2.918              | 2.986              | 0.245              |

Table 5: Własności macierzy  $\hat{\Sigma}_{REML}$ .

| n    | k  | р  | Obciążenie | Średnia   | Wariancja |
|------|----|----|------------|-----------|-----------|
| Rho  |    |    |            |           |           |
| 20   | 3  | 4  | -0.0143211 | 0.2856789 | 0.0236220 |
| 500  | 3  | 4  | -0.0029085 | 0.2970915 | 0.0009127 |
| 20   | 30 | 4  | -0.0041718 | 0.2958282 | 0.0048728 |
| 20   | 3  | 40 | -0.0266906 | 0.2733094 | 0.1457461 |
| Gamn | ıa |    |            |           |           |
| 20   | 3  | 4  | -0.0223781 | 1.9776219 | 0.0412943 |
| 500  | 3  | 4  | -0.0045628 | 1.9954372 | 0.0016911 |
| 20   | 30 | 4  | -0.0047753 | 1.9952247 | 0.0115972 |
| 20   | 3  | 40 | -0.0128289 | 1.9871711 | 0.1043919 |

Najgorzej zachowują się estymatory w przypadku p=40. Większa ilość predyktorów wpływa na zwiększenie obciążenia estymatora jak i wariancji, zatem estymacja jest mniej dokładna. Osiągane wartości skrajne są znacznie większe niż dla pozostałych przypadków. Drugie największe obciążenie mają estymatory dla n=20, co jest naturalne jako że mała ilość obiektów nie pozwala nam na dokładne wyestymowanie parametrów. Najlepsze wyniki są osiągane dla n=500 oraz dla k=30. Warto też zauważyć, że estymatory  $\rho$  oraz  $\gamma$  mają generalnie ujemne obciążenie, czyli estymator kowariancji REML raczej ściąga wartości do zera.

## 7 Zadanie 6

Powtórzymy zadanie 2, tym razem używając do estymacji macierzy kowariancji metody ML.



Figure 6: Histogramy dla n=20, k=3, p=4, estymacja metodą ML.

Table 6: Własności  $\hat{\Sigma}_{ML}$ 

| n   | k  | p | Obciążenie | Średnia   |
|-----|----|---|------------|-----------|
| Rho |    |   |            |           |
| 20  | 3  | 4 | -0.0262871 | 0.2737129 |
| Gam | ma |   |            |           |
| 20  | 3  | 4 | -0.0786789 | 1.9213211 |

Widzimy, że wartość bezwzględna obciążenia estymatorów jest większa niż w przypadku estymacji metodą REML. Obciążenie jest ujemne, a wartości średnie estymatorów są mniejsze od prawdziwych wartości parametrów. Potwierdza to teorię, iż estymator uzyskany metodą ML ściąga do zera silniej niż estymator REML.

Table 7: Własności estymatora  $\hat{\beta}$ , metoda ML.

|               | Obciążenie | Sup-norm | Średnia | Wariancja |
|---------------|------------|----------|---------|-----------|
| $\hat{eta}_0$ | 0.005      | 1.177    | 0.005   | 0.096     |
| $\hat{eta}_1$ | 0.080      | 8.310    | 3.080   | 3.167     |
| $\hat{eta}_2$ | 0.043      | 7.583    | 3.043   | 3.384     |
| $\hat{eta}_3$ | 0.007      | 6.138    | 0.007   | 3.249     |

Jeśli chodzi o estymatory  $\hat{\beta}$ , to nie widać znaczącej różnicy w porównaniu do wyników z poprzedniego zadania.