Esercitazione N.7: Usi non lineari dell'OpAmp

Gruppo BF Andrea Luzio, Gianfranco Cordella, Valerio Lomanto

24 Novembre 2016

1 Scopo e strumentazione

Nel corso dell'esperienza sfrutteremo un OpAmp (TL081) per realizzare circuiti non lineari, valutandone di volta in volta le caratteristiche e i limiti di funzionamento.

2 Discriminatore

Figura 1: Circuito Discriminatore

Si è montato il circuito come in figura (1), inviando segnali sinusoidali in ingresso. La normale risposta del circuito può essere osservata in figura (2): di fatto, l'uscita è ad una tensione $\approx V_{CC} \approx 15 \, \mathrm{V}$ quando l'ingresso è a tensione negativa, mentre è a $\approx V_{EE} \approx -15 \, \mathrm{V}$ quando l'ingresso è a tensione positiva. In realtà, il passaggio dell'output da alto a basso o viceversa avviene quando l'input attraversa una tensione leggermente diversa da 0: questa tensione di offset è stata misurata con l'oscilloscopio come la tensione dell'input nel momento in cui l'output inizia la discesa (o la salita), ottenendo il valore di $31.8 \pm 3.4 \, \mathrm{mV}$ (la cui incertezza è primariamente data dalla difficoltà nel riconoscere la contemporaneità delle due tensioni).

Si è poi incrementata gradualmente la frequenza del segnale in ingresso, osservando la variazione del funzionamento del circuito ad alte frequenze. Dapprima, e mantenendo l'ampiezza del segnale in ingresso a qualche volt, si osservano effetti legati allo slew rate finito dell'OpAmp: dal momento che il passaggio dell'output da V_{CC} a V_{EE} non può essere istantaneo, quando l'input ha un semiperiodo confrontabile col tempo richiesto per passare da +15 a -15 V (che è costante) quest'ultimo diventa una parte sostanziale del periodo dell'output, che dunque si allontana dall'ideale onda quadra per avvicinarsi ad un'onda triangolare con fronti di salita e discesa aventi pendenza data dallo slew rate. Si è dunque proceduto al fit dello slew rate dell'OpAmp. Acquisiti i dati attraverso l'oscilloscopio si è fittatta la retta affine (2 parametri). Per stimare l'errore di digitalizzazione si è fittato il segnale costante 15 V visibile all'inizio del grafico. Imponendo che il chi quadro fosse pari ai gradi di liberà di questo fit, si è così ottenuta una stima dell'errore di digitalizzazione dell'oscilloscopio. Come errore dei tempi si è scelto metà dell'intervallo di campionatura. Si sono dunque fittati i dati nella regione di interesse (fra 0s e -1.2×10^{-6} s) si sono ottenuti così i seguenti risultati (dati e fit nel grafico 3): $SR = 18.771 \pm 0.015$ MV/s

 $SR = 18.771 \pm 0.015 \,\mathrm{MV/s}$

 $^{^1\}mathrm{Si}$ sono ottenute in effetti tre stime, una massima (0.117 V), una media(0.124 V) e una minima(0.130 V), imponendo che il p-value fosse rispettivamente il 5%, 49%($\chi^2=\mathrm{~dof})$ e 95%, non sono state attuate le solite procedure di propagazione lineare dell'errore dato che il χ^2 è molto piccato. Si confronti il risultato con quanto atteso in modo banale dal numero di bin per divisione nella modalità grafica, ovvero 25 pt per divisione, dunque, a 5 V per divisione, 0.2 V

Figura 2: Risposta del discriminatore ad un segnale sinusoidale.

```
q = -10.286 \pm 0.010 \,\mathrm{V}
\chi^2 = 537.07(598 \,\mathrm{dof}, p = 0.97)
```

Si vede come la procedura fornisca comunque un chi quadro non compatibile. Questo è però fisiologico in quanto la misura dell'errore fatta con la tecnica descritta ha essa stessa un errore, e questo errore si ripercuote sulla stima del χ^2 . Essendo la distribuzione del χ^2 con 598 gradi di libertà abbastanza piccata, è possibile che variando l'errore nel errore sia possibile ottenere un p-value significativo. Non è stata però portata avanti questo tipo di analisi per semplicità, si è solamente controllato che se si dovesse scegliere un chi-quadro della primo fit corrispondente a un p-value del 95%, si otterrebbe un chi quadro per il secondo fit di $\chi^2 = 594.60(598 \text{ dof}, p = 0.5316)$ (cosa che ci ha fatto propendere per questa spiegazione).

Passando a frequenze di qualche centinaio di kHz e riducendo l'ampiezza dell'input si osserva un fenomeno particolare: poiché il guadagno dell'OpAmp a queste frequenze è significativamente inferiore, esso raggiunge la saturazione solo per ampiezze dell'input molto maggiori, dunque è apprezzabile per buona parte del periodo la risposta lineare dell'OpAmp, come si può vedere dalla figura (4) (si nota inoltre la diversa relazione tra le fasi di ingresso e uscita rispetto alle basse frequenze, compatibile con il comportamento da circuito a un polo). Ci è però poco chiara la ragione dell'offset dell'output, che non sembra dovuto ad un possibile offset del generatore (poiché permane anche inserendo un condensatore tra questo e l'ingresso invertente dell'OpAmp) né riteniamo sia causato da una $V_{os} \neq 0$.

Figura 3: Fit dello slew-rate.

Figura 4: Risposta del circuito ad alte frequenze e piccole ampiezze.

3 Amplificatore di carica

Figura 5: Circuito rilevatore di carica.

Si è montato il circuito in figura (5), dove lo scopo del generatore di onde quadre V_S , insieme al condensatore C_T , è di iniettare nel nostro circuito una carica (che rappresenti ad esempio il segnale di un detector).

Il funzionamento che ci attendiamo, ammettendo l'idealità del generatore, dell'OpAmp e dei condensatori, è il seguente: al fronte di salita (o discesa) di V_S una carica $\Delta V_S C_T$ si deposita sul condensatore C_F , portando dunque la tensione V_{sh} a $\Delta V_S \frac{C_T}{C_F}$. La scarica del condensatore attraverso R_1 fa sì che la carica su di esso, e quindi la tensione V_{sh} , decadano esponenzialmente con un tempo caratteristico $\tau = C_F/R_1$. L'OpAmp X_2 , configurato come discriminatore con una tensione di soglia positiva (poco inferiore ai 200 mV), ha nel tempo in cui V_{sh} è minore di tale soglia un'uscita V_{discr} negativa ($\approx V_{EE}$); ai fronti di discesa di V_S dunque non ci aspettiamo nessuna variazione dell'output (poichè V_{sh} scende sotto lo 0), mentre ai fronti di salita dovremmo vedere V_{discr} salire a $\approx V_{CC}$ e rimanerci fintantoché V_{sh} non scenda, per lo scaricarsi del condensatore C_F , nuovamente al di sotto della tensione di soglia. La figura (6) riporta i segnali V_{sh} e V_{discr} , e si può vedere come le nostre attese siano almeno qualitativamente rispettate.

Figura 6: Andamento di V_{sh} e V_{discr} .

4 Trigger di Schmitt

Si è montato il circuito in figura (7) e si sono misurati con il multimetro le resistenze $R_1 = 9.93 \pm 0.09 \,\mathrm{k}\Omega$ e $R_2 = 2.27 \pm 0.03 \,\mathrm{k}\Omega$. Il trigger di schmitt è un comparatore di soglia con isteresi che traforma

Figura 7: trigger di Schmitt

l'ingresso in un uscita che oscilla tra due valori di tensione. Tale trigger ha due valori di soglia in ingresso che sono $V_T = V_O \frac{R_2}{R_1 + R_2}$ al variare dei due valori possibile per V_O . In figura (8) si mostra la

Figura 8: Risposta del trigger ad un ingresso sinusoidale.

risposta del trigger ad un ingresso sinusoidale con frequenza e ampiezza tale da permettere un corretto funzionamneto del circuito. Quando l'ingresso V_{in} è minore della soglia bassa V_{TL} allora l'uscita assume il valore basso $V_{OL} \approx V_{EE}$. Mentre V_{in} è compreso tra le due soglie l'uscita viene mantenuta al valore assunto prima di varcare la soglia bassa. Quando V_{in} supera la soglia alta V_{TH} l'uscita si porta ad un valore $V_{OH} \approx V_{CC}$. Se invece l'ingresso è all'inizio maggiore di V_{TH} e poi se ne inizia a diminuire l'ampiezza, allora il trigger scatta quando V_{in} diventa minore di V_{TL} e l'uscita si regola sul valore basso V_{OL} .

Tale funzionamento realizza un' isteresi tra ingresso e uscita come è visibile nella figura (9).

Una caratteristica importante di tale trigger che lo differenzia dai comparatori con una sola soglia è il fatto che, in presenza di un segnale di rumore che oscilla intorno ad una soglia l'uscita non oscilla a sua volta perchè il trigger scatta al massimo una volta. Si sono misurati con l'oscilloscopio $V_{OL} = -14.0 \pm 0.1\,\mathrm{V}$ e $V_{OH} = 14.5 \pm 0.1\,\mathrm{V}$ e le due soglie dell'ingresso e si sono confrontate le misure con i valori attesi ricavati dalla formula prima scritta. Si nota dalla tabella che i valori attesi e misurati

$V_{T,atteso}$ [V]	$V_{T,misurato}$ [V]
2.66 ± 0.05	2.72 ± 0.02
-2.69 ± 0.05	-2.64 ± 0.02

Tabella 1: Tensioni di soglia del trigger misuarate e attese.

sono tra di loro compatibili.

Figura 9: uscita in funzione dell'ingresso.

Diminuendo l'ampiezza del segnale in ingresso si è ottenuto il grafico in figura (10).

Figura 10: Ampiezza di V_{in} sotto soglia.

Si nota che il massimo di V_{in} fa scattare il trigger, che regola quindi l'uscita a V_{OH} . Essendo il segnale non simmetrico, il minimo di V_{in} non è minore della soglia negativa V_{TL} quindi il trigger non scatta e l'uscita resta quindi impostata sul livello alto.

All'aumentare della frequenza del segnale in ingresso si possono avere degli effetti dovuti allo slew rate dell'OpAmp come in figura (11). Infatti il tempo di commutazione del segnale in uscita tra livello alto e basso non è istantanea e tale aspetto è messo in evidenza proprio ad alte frequenze. Infatti in tale regime l'OpAmp impiegando un certo tempo per commutare l'uscita , questa non è più un onda quadra ma bensì presenta dei fronti di discesa e salita con una pendenza in modulo pari a $12.7 \,\mathrm{V/\mu s}$.

Figura 11: Evidenza dello slew rate dell'OpAmp per frequeze dell'ordine di 100 kHz

5 Multivibratore astabile

Figura 12: Circuito del multivibratore astabile utilizzato.

Si è montato il circuito in figura (12) e se ne sono misurati i valori dei componenti con il multimetro in tabella (??). I valori di R e C sono stati scelti in modo da avere un periodo di circa 2 ms utilizzando la formula $T=2RC\log\frac{2+\frac{R_1}{R_2}}{\frac{R_1}{R_2}}$, dove T è proprio il periodo dell'onda quadra. Utilizzando l'oscilloscopio sono stati misurati i segnali nei punti V_O, V_+, V_- come riportato nei grafici in figura ??, 14. I valori ottenuti delle ampiezze dei tre segnali sono riportati in tabella ?? insieme ai valori attesi. I valori attesi sono $V_+ = -V_- = \frac{V_\gamma + V_z}{1+\frac{R_1}{R_2}}$. $V_O = V_\gamma + V_z$ a meno di un segno negativo a seconda che sia il valore alto o basso.

Il ruolo dei diodi zener è quello di limitare l'ampiezza della tensione in uscita in modo simmetrico tra $(V_{\gamma} + V_z)$ e $-(V_{\gamma} + V_z)$. Al comtempo si inserisce all'uscita dell'OpAmp la resistenza R_3 in modo da limitare la quantità di corrente che fluisce nei diodi zener.

Misura		
\overline{R}	$972 \pm 8 \mathrm{k}\Omega$	
R_1	$9.88\pm0.09\mathrm{k}\Omega$	
R_2	$9.88 \pm 0.09 \mathrm{k}\Omega$	
R_3	$972 \pm 9\Omega$	
C	$1.04 \pm 0.07 \mathrm{nF}$	

Tabella 2: misure dei componenti del circuito

	Misurato [V]	Atteso [V]
$\overline{V_O}$	6.88(4)	6.8
V_{+}	3.48(2)	3.4
V_{-}	3.52(2)	3.4

Tabella 3: Ampiezze dei segnali misuarati e attesi.

Figura 13: L'nda quadra rappresenta V_O mentre l'altra V_- .

Figura 14: L'onda quadra di ampiezza maggiore è V_{O} mentre l'altra è V_{+}