Technical Appendix - VTOL Precision Landing Simulator

1) Notation (units)

z: altitude above the landing pad (m).

W: camera image width (px). H: height (px). HFOV: horizontal field of view (degrees).

f px: focal length (px). S: marker physical size (m). px: marker pixel span (px).

x, y: lateral pad-relative coordinates (m). dt: time step (s), default dt = 1.

q: process noise scale for the constant-velocity model. sigma: measurement standard deviation (m).

2) Camera geometry (pinhole, nadir view)

Focal length in pixels: f px = W / (2 * tan(HFOV / 2)).

Marker pixel-size model: $px = f_px * S / max(z, eps)$. Use eps = 1e-6 to avoid division by zero.

Field-of-view gating (approximate): radial $\leq z * tan(HFOV / 2)$, where radial $= sqrt(x^2 + y^2)$.

3) Vision detection and lock logic

Base detection probability (logistic): base = $1/(1 + \exp(-k * (px - thresh_px)))$. Use k = 0.25. Modifiers: light_boost = 0.6 + 0.4 * illum; blur_penalty = (1 - 0.6 * blur); backend_boost = 1.0 for ArUco, 1.1 for AprilTag.

Final probability: p det = clip(base * light boost * blur penalty * backend boost, 0, 1).

Dwell and lock: if detected then dwell += 1 else dwell = 0. If dwell >= N, set lock = True.

Unlock: if locked and the frame index exceeds one-third of the total frames in the descent, unlock with a small probability p approx. 0.05 when not detected.

4) Beacon correction (when locked)

When locked, pull the raw XY measurement toward pad center (beacon-like correction): $pos_raw = pos_raw + (-g * pos_raw)$, where g in [0.0, 0.8]. Typical g approx. 0.35.

5) Constant-velocity Kalman filter (2D)

State: $X = [x, y, vx, vy]^T$. Measurement: $z \text{ meas} = [x, y]^T$.

Dynamics (dt = 1): A = [[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]]. H = [[1,0,0,0],[0,1,0,0]].

Process noise: Q = q * [[1/4,0,1/2,0],[0,1/4,0,1/2],[1/2,0,1,0],[0,1/2,0,1]].

Measurement noise: $R = diag([sigma^2, sigma^2])$.

Predict: X = A X; $P = A P A^T + Q$. Update: $K = P H^T (H P H^T + R)^{-1}$; X = X + K (z - H X); P = (I - K H) P.

Technical Appendix (continued)

6) Measurement noise scheduling (R)

Unlocked: sigma = kf_r _base (typical GPS approx. 1.0 m; typical RTK approx. 0.03 to 0.10 m). Locked: sigma = clip(0.8 / max(px est, 1.0), 0.02, 0.20).

Interpretation: a larger marker in the image implies a smaller sigma -> tighter R -> greater measurement trust.

7) Landing cone and corridor

Allowed radius: $r_allowed = (z / z_top) * r_top$. In the app: $z_top = 10$ m and $r_top = 1.0$ m. Cone violation per frame: radial > r allowed. Violation rate is the mean of these events over the run.

8) Metrics

Pad accuracy (XY): $e_xy = sqrt(x_TD^2 + y_TD^2)$ using the final Kalman-filtered position. Touchdown vertical speed: $v_z = max(0, (z[-k-1] - z[-1]) / (k * dt))$, for small k (for example, k = 5). Cone violation rate: mean(radial > r_a llowed). Lock stability: mean(locked over the last 30 percent of frames).

9) Scoring (0 to 100)

score = $100 * (0.40 * exp(-e_xy / 0.20) + 0.20 * exp(-max(0, v_z - 0.5) / 0.5) + 0.20 * exp(-5 * viol rate) + 0.20 * lock stability).$

Intent: reward pad accuracy and a soft touchdown, and encourage cone compliance and stable final lock.

10) Numerical stability and reproducibility

Use eps = 1e-6 in denominators; clip probabilities to [0, 1]; clip sigma to [0.02, 0.20] when locked. Set a random seed for reproducible tuning; keep dt consistent across A, Q, and the v_z computation.

11) Parameter ranges (typical)

RTK sigma: 0.02 to 0.10 m; GPS sigma: 0.5 to 2.0 m.

Lock threshold: 20 to 40 px; dwell: 6 to 12 frames; marker size: 0.3 to 0.8 m.

Kalman q: approx. 3e-5 to 1e-2; beacon gain q: 0.2 to 0.6.

Lidar Z near-ground RMS: approx. 0.02 to 0.05 m if the sensor is in spec.

12) Data export schema (CSV)

Columns: t (frame), x_raw (m), y_raw (m), x_kf (m), y_kf (m), z_agl (m), detected (0/1), locked (0/1), px_est (px).