Problem set 9

[Revised Jan 29, 9:21 PM]

Numerical Integration

For all questions on this problem set we consider evaluating the definite integral

$$I = \int_0^3 \left[\sin(0.5x^3) + 1.0 \right] dx$$

for which the exact value of *I* is

```
I = 3.5158553705912787e+00
```

The integrand can be evaluated using the following Python function

```
import numpy

def integrand_function(x):
    return numpy.sin(0.5*x**3) + 1.0
```

 Complete the Python function integrate_midpoint_rule() found in midpoint.py to perform the midpoint integration rule You will call the function integrate midpoint rule() like this

where ncells is the number of segments defined over the domain [0,3], and $integrand_function$ is a Python function defining the integrand.

• Using your function midpoint(), use the midpoint rule to estimate I when using ncells = 80, ncells = 160, ncells = 320. Call the results I 80,

```
I 160 , I 320 .
```

- \circ Compute the error assocaited with midpoint method (using the exact value of I provided at the top of this problem set) with ncells = 80, ncells = 160, ncells = 320. Verify the order of accuracy of the midpoint rule is $O(h^2)$. Explain your reasoning.
- Use I_80 and I_160 with Richardson extrapolation to obtain a new approximation for I. Call this I_160_rich.
- Use I_160 and I_320 with Richardson extrapolation to obtain another approximation for I. Call this I_320_rich.
- \circ Verify that the Richardson extrapolation procedure is $O(h^4)$ accurate. Explain your reasoning.
- 2. Use Gaussian quadrature ($scipy.integrate.fixed_quad()$) with order (n) = 5, 10, 15, 20. Compute the error for each estimate of I obtained.
- 3. Use the trapezoid rule with 320 points (scipy.integrate.trapezoid()). Report the value of I_m obtained and compute the error of the approximation.
- 4. Use Simpson's rule with 320 points (scipy.integrate.simpson()). Report the value of I_m obtained and compute the error of the approximation.
- 5. Use the adaptive quadrature method (scipy.integrate.quad()). Report the value of I_m obtained and compute the error of the approximation.