

FIG. 1

R - LIGHT RECEIVER FIBER OPTICS
S - LIGHT SOURCE FIBER OPTIC

FIG. 2

2010 RELEASE UNDER E.O. 14176

FIG. 3

204070 "5026001"

FIG. 4A

4/99

FIG. 4B

FIG. 4C

40039205 - 000400

5/99

FIG. 5A

FIG. 5B

40039205 - 010326

FIG. 6

7/99

FIG. 7A

20090620050040

FIG. 7B

FIG. 8A

FIG. 8B

S - LIGHT SOURCE FIBER
R - RED RECEIVER
G - GREEN RECEIVER
B - BLUE RECEIVER
P - NEUTRAL (FULL BAND) RECEIVERS

FIG. 9

FIG. 10A

20039205.5040402

S - LIGHT SOURCE FIBER
 P - NEUTRAL (FULL BAND) RECEIVER
 C - COLOR RECEIVER

FIG. 10B

S - LIGHT SOURCE FIBER
 R_{1X} - INNER RING RECEIVER FIBER
 R_{2X} - 2nd RING RECEIVER FIBER
 R_{3X} - 3rd RING RECEIVER FIBER

11/99

1000362602001000

4,089,205 - 02/10/82

FIG. 11

10039205 - DT-02

FIG. 12

SINGLE FILTER PROPERTIES (SPECTRUM)

FIG. 13A

FIG. 13B

FIG. 14A

FIG. 14B

FIG. 15

FIG. 16A

FIG. 16B

INTRAORAL POSITIONING DEVICE

FIG. 17A

20140720 - 00000000000000000000000000000000

FIG. 17B

FIG. 18

100039205 - 5040122

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23B

FIG. 24

FIG. 25

20030525_001.tif

VIDEO IMAGE

FIG. 26

FIG. 27

3,000,000 0,000,000

FIG. 28A

FIG. 28B

FIG. 29

FIG. 30A

FIG. 30B

31/99

ALL INFORMATION CONTAINED
HEREIN IS UNCLASSIFIED

FIG. 31A

32/99

SEARCHED SERIALIZED INDEXED
2005-06-01

FIG. 31B

FIG. 32

34/99

FIG. 33

1000 COPIES ORDERED

FIG. 34

FIG. 35

FIG. 36

LIGHT REFLECTION AND SCATTERING

FIG. 37A

FIG. 37B

FIG. 38

FIG. 39

FIG. 40

FIG. 41A

FIG. 41B

10039205 03.04.2023

FIG. 42

Diffusing Cavity

FIG. 43A

2010362053400

FIG. 43B

FIG. 43C

FIG. 44

PRINTED IN U.S.A. 1970

FIG. 45

FIG. 46A

FIG. 46B

FIG. 47A

FIG. 47B

FIG. 48A

FIG. 48B

20140107-20263000

FIG. 49

INTENSITY SPECULAR

FIG. 50A

PROBLEMS - PRACTICE

INTENSITY DIFFUSE

FIG. 50B

601

FIG. 51A

2025 RELEASE UNDER E.O. 14176

FIG. 51B

601

FIG. 51C

FIG. 52

FIG. 53

FIG. 54

Intensity

1000
800
600
400
200
0

FIG. 55

FIG. 56

FIG. 57

FIG. 58

20030205.04402

FIG. 59

10009905 - 040402

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 64

FIG. 65

100029205 - DRAFTED

10009205 - 01002

FIG. 66A

FIG. 66B

FIG. 67A

FIG. 67B

FIG. 68

FIG. 69

10039205 - 010402

FIG. 70

10020205 · 010402

Block Diagram

FIG. 71

72/99

10039205 "DRAFT"

Non-Coherent Light Guide

FIG. 72

10039205 - 01.04.02

FIG. 73A

Non-Coherent Light Guide End View A

FIG. 73B

Non-Coherent Light Guide End View B

Optical Manifold

FIG. 74A

Optical Manifold A Exit Port Detail

FIG. 74B

40039205.03.0402

Optical Manifold Spacer

FIG. 75

77/99

FIG. 76A

10039205.03.04.CE

Optical Manifold Bottom View

FIG. 76B

Optical Manifold with Collimation Lenses

FIG. 77

Optical Manifold with Collimation Lenses Constructed from Two Optical Materials with Different Indexes of Refraction

FIG. 78

Optical Manifold with Collimating
Lenses and Hollow Cavity and Baffle

FIG. 79

Top View

FIG. 80A

Side View

FIG. 80B

40039205 - 010402

Round to Line Non-Coherent Light Guide

FIG. 81

Round to Line Non-Coherent Light Guide

FIG. 82A

Non-Coherent Light Guide Round End

FIG. 82B

Non-Coherent Light Guide Line End

16039205.010402

Round to Line Non-Coherent Light Guide
with Lens and Absorption Filters

FIG. 83

FIG. 84A

FIG. 84B

Top View

FIG. 85A

Front View

FIG. 85B

Ray Diagram

FIG. 86

Pocket SpectrometerTM Block Diagram

FIG. 87

Optical Sensors Intensity Measurement Examples

FIG. 88

FIG. 89A

FIG. 89B

RISC Software Timing Flow Chart

FIG. 90A

Register	Description
LOOP_COUNTER	Number of times the sensor is sampled in the timing loop. This register determines the resolution of the measurement and it also determines the sampling rate. The larger the resolution is, the lower the sampling rate.
NEW_INPUT	New sensor(s) input - each sensor input is one bit
OLD_INPUT	Former sensor input
INPUT_XOR	XOR new and old inputs
N_SENSOR	Number of sensors
SENSOR_INDEX	Index to the sensor being tested
TRANSITION_COUNTER[N_SENSOR]	Array - number of transitions that occurred for sensors
PERIOD_COUNTER_FIRST[N_SENSOR]	Array - number of timing loops executed prior to first sensor transitions
PERIOD_COUNTER_LAST[N_SENSOR]	Array - number of loops that occurred prior to final transition
INTENSITY[N_SENSOR]	Array - calculated intensity for sensor

Timing Loop Register Descriptions

FIG. 90B

FIG. 90C

Transition Determination Flow Chart

FIG. 90D

Intensity Calculations Flow Chart

FIG. 90E

Pocket Spectrometer™ Physical, 40 Sensors

FIG. 91

40039205-040202

FIG. 92

FIG. 94

99/99

FIG. 97

1003200-00404020

FIG. 98

FIG. 99