Représentation des connaissances et raisonnement

Logique propositionnelle

Elise Bonzon elise.bonzon@u-paris.fr

LIPADE - Université Paris Cité http://helios.mi.parisdescartes.fr/~bonzon/

Introduction

- 1. Principe généraux de la logique
- 2. Logique propositionnelle
- 3. Schémas de raisonnement en logique propositionnelle
- 4. Conclusion

Principe généraux de la logique

Principe généraux de la logique

- Logique : langage formel permettant de représenter des informations à partir desquelles on peut tirer des conclusions
- La syntaxe désigne les phrases (ou énoncés) bien formées dans le langage
- La sémantique désigne la signification, le sens de ces phrases
- Par exemple, dans le langage arithmétique :
 - x + y = 4 est une phrase syntaxiquement correcte
 - x4y+= n'en est pas une
 - 2 + 3 = 4 est une phrase syntaxiquement correcte mais sémantiquement incorrecte
 - x + y = 4 est vraie ssi x et y sont des nombres, et que leur somme fait 4
 - x + y = 4 est vraie dans un monde où x = 1 et y = 3
 - x + y = 4 est fausse dans un monde où x = 2 et y = 1

Relation de conséquences

- Relation de conséquences : un énoncé découle logiquement d'un autre énoncé : $\alpha \models \beta$
- $\alpha \models \beta$ est vraie si et seulement si β est vraie dans tous mondes où α est vraie
 - Si α est vraie, β doit être vraie
- Bases de connaissances = ensemble d'énoncés. Une BC a un énoncé pour conséquence : $BC \models \alpha$
- La relation de conséquences est une relation entre des énoncés (la syntaxe) basée sur la sémantique

Les modèles

- Les logiciens pensent en terme de modèles, qui sont des mondes structurés dans lesquels la vérité ou la fausseté de chaque énoncé peut être évaluée
- m est un modèle de l'énoncé α si α est vraie dans m
- $M(\alpha)$ est l'ensemble de tous les modèles de α
- $BC \models \alpha$ si et seulement si $M(BC) \subseteq M(\alpha)$

Inférence logique

- $KB \vdash_i \alpha$: l'énoncé α est dérivé de KB par la procédure i
- Validité (soundness) : i est valide si, lorsque $KB \vdash_i \alpha$ est vrai, alors $KB \models \alpha$ est également vrai
- Complétude (completness) : i est complète si, lorsque $KB \models \alpha$ est vrai, alors $KB \vdash_i \alpha$ est également vrai
- Une procédure valide et complète permet de répondre à toute question dont la réponse peut être déduite de la base de connaissances

Logique propositionnelle

Logique propositionelle - syntaxe

- Les atomes :
 - Constantes logiques ⊤ (vrai) et ⊥ (faux)
 - **Symbole propositionnel** : proposition qui peut être vraie ou fausse a. b. c...
- Les connecteurs logiques :
 - ¬ (négation)
 - ∧ (et)
 - \langle (ou)
 - ⇒ (implication)
 - ⇔ (équivalence)
- Un atome (précédé ou non de ¬) est appelé un littéral
- Les formules bien formées (wffs)

Logique propositionelle - syntaxe

Formule bien formée

- Tout atome est une wff
- Si E_1 et E_2 sont des wffs, alors
 - $\neg E_1$ est une wwf (négation)
 - $E_1 \wedge E_2$ est une wwf (conjonction)
 - $E_1 \vee E_2$ est une wwf (disjonction)
 - $E_1 \Rightarrow E_2$ est une wwf (implication)
 - $E_1 \Leftrightarrow E_2$ est une wwf (équivalence)
- Ordre de priorité des opérateurs : $\neg > \land > \lor > \Rightarrow, \Leftrightarrow$

Logique propositionelle - sémantique

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer une wff en fonction d'un modèle m:

```
\neg E
 est vrai ssi E est faux
E_1 \land E_2 est vrai ssi E_1 est vrai et E_2 est vrai
E_1 \lor E_2 est vrai ssi E_1 est vrai ou E_2 est vrai
E_1 \Rightarrow E_2 est vrai ssi E_1 est faux ou E_2 est vrai
E_1 \Rightarrow E_2 est faux ssi E_1 est vrai et E_2 est faux
E_1 \Leftrightarrow E_2 est vrai ssi E_1 \Rightarrow E_2 est vrai et E_2 \Rightarrow E_1 est vrai
```

Table de vérité des connecteurs logiques

E_1	E_2	$\neg E_1$	$E_1 \wedge E_2$	$E_1 \vee E_2$	$E_1 \Rightarrow E_2$	$E_1 \Leftrightarrow E_2$
vrai	vrai	faux	vrai	vrai	vrai	vrai
vrai	faux	faux	faux	vrai	faux	faux
faux	vrai	vrai	faux	vrai	vrai	faux
faux	faux	vrai	faux	faux	vrai	vrai

- La valeur de vérité d'une wff est calculée récursivement en utilisant la table de vérité ci-dessus
- Une wff peut avoir différentes valeurs de vérité dans différentes interprétations (différents modèles)

Equivalence logique

 Deux wffs sont logiquement équivalentes si et seulement si elles sont vraies dans les même modèles :

Validité et satisfiabilité

- Une wff est valide si elle est vraie dans tous les modèles. On dit aussi tautologie
 - Exemples : vrai; $a \lor \neg a$; $a \Rightarrow a$; $(a \land (a \Rightarrow b)) \Rightarrow b$
- Théorème de la déduction :

$$\mathit{KB} \models \alpha$$
 si et seulement si $(\mathit{KB} \Rightarrow \alpha)$ est valide

Validité et satisfiabilité

- Une wff est valide si elle est vraie dans tous les modèles. On dit aussi tautologie
 - Exemples : vrai; $a \lor \neg a$; $a \Rightarrow a$; $(a \land (a \Rightarrow b)) \Rightarrow b$
- Théorème de la déduction :

$$\mathit{KB} \models \alpha$$
 si et seulement si $(\mathit{KB} \Rightarrow \alpha)$ est valide

- Une wff est satisfiable si elle est vraie dans certains modèles
 - Exemples : $a \lor b$; c
- Une wff est insatisfiable si elle n'est vraie dans aucun modèle
 - Exemple : $a \land \neg a$
- Satisfiabilité :

$$KB \models \alpha$$
 si et seulement si $(KB \land \neg \alpha)$ est insatisfiable

Schémas de raisonnement en

logique propositionnelle

Raisonnement en logique propositionnelle

 Raisonnement : Organisation d'un ensemble d'étapes élémentaires (inférences)

Raisonnement en logique propositionnelle

- Raisonnement : Organisation d'un ensemble d'étapes élémentaires (inférences)
- La machine n'a pas accès à la sémantique
 - Seulement aux propositions de la base de connaissances
 - ⇒ Comment calculer les conséquences logiques?

Raisonnement en logique propositionnelle

- Raisonnement : Organisation d'un ensemble d'étapes élémentaires (inférences)
- La machine n'a pas accès à la sémantique
 - Seulement aux propositions de la base de connaissances
 - ⇒ Comment calculer les conséquences logiques?
- Par manipulation syntaxique des formules
 - La machine n'examine pas les valeurs de vérité des formules

Schémas de raisonnement en

logique propositionnelle

Calcul de conséquences logiques

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable à partir des axiomes (grâce à des règles d'inférence)

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable à partir des axiomes (grâce à des règles d'inférence)
- $BC \vdash_i \alpha$ signifie que α peut être démontré à partir de BC grâce à la procédure i

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable à partir des axiomes (grâce à des règles d'inférence)
- $BC \vdash_i \alpha$ signifie que α peut être démontré à partir de BC grâce à la procédure i

Rappel

- Une procédure i est valide (sound) si tout ce qu'elle permet de démontrer à partir de BC est une conséquence logique de BC : si BC ⊢_i α, alors BC ⊨ α
- Une procédure i est complète si tout ce qui est conséquence logique de BC peut être démontré par i :
 si BC ⊨ α alors BC ⊢_i α

Inférence en logique propositionnelle

Pour pouvoir démontrer de nouvelles conséquences, on a besoin :

- Des règles de ré-écritures (équivalences logiques)
- Et de règles d'inférence
 - Un ensemble de conditions
 - Une partie conclusion (vraie si les conditions sont vérifiées)

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

Modus Ponens
$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$
 Elimination de la conjonction
$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha}$$

$$\begin{array}{c} \text{Modus Ponens} & \frac{\alpha \Rightarrow \beta, \alpha}{\beta} \\ \text{Elimination de la conjonction} & \frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i} \\ \text{Introduction de la conjonction} & \frac{\alpha_1, \alpha_2, \ldots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n} \end{array}$$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Elimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$
Introduction de la disjonction	$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Elimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$
Introduction de la disjonction	$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$
Elimination de la double négation	$\frac{\neg \neg \alpha}{\alpha}$

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

Elimination de l'équivalence

Introduction de l'équivalence

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$
$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

Elimination de l'équivalence

Introduction de l'équivalence

Résolution unitaire

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$
$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$
$$\frac{\alpha \lor \beta, \neg \beta}{\alpha}$$

Elimination de l'équivalence	$\alpha \Leftrightarrow \beta$	
Elimination de l'équivalence	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$	
Introduction de l'équivalence	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$	
introduction de l'équivalence	$\alpha \Leftrightarrow \beta$	
Résolution unitaire	$\alpha \vee \beta, \neg \beta$	
resolution ameane	α	
Résolution	$\alpha \vee \beta, \neg \beta \vee \gamma$	
Resolution	$\alpha \vee \gamma$	

Méthodes de preuve : déduction

Déductions

Une formule A se déduit d'un ensemble de formules $\{B_1, B_2, \ldots, B_n\}$, noté $B_1, B_2, \ldots, B_n \vdash A$ s'il existe une suite finie $(A_1, A_2, \ldots, A_i, \ldots, A)$, où chaque A_i est

- Soit un axiome
- Soit l'un des Bi
- Soit obtenu par l'application d'une règle d'inférence sur deux éléments A_j , A_k de la suite déjà obtenue (j, k < i).

Méthodes de preuve : stratégies

• Stratégie ascendante :

 Partir des éléments de la base de connaissance pour en chercher les conséquences, dont celle(s) qui nous intéresse(nt)

- Partir des conséquences recherchées, et voir quelles règles d'inférence pourraient permettre de les démontrer
- Démarche récursive

 Partir des éléments de la base de connaissance pour en chercher les conséquences, dont celle(s) qui nous intéresse(nt)

- Partir des éléments de la base de connaissance pour en chercher les conséquences, dont celle(s) qui nous intéresse(nt)
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

- Partir des éléments de la base de connaissance pour en chercher les conséquences, dont celle(s) qui nous intéresse(nt)
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

- Partir des éléments de la base de connaissance pour en chercher les conséquences, dont celle(s) qui nous intéresse(nt)
- Par exemple, est-ce que $q \wedge r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

- Partir des éléments de la base de connaissance pour en chercher les conséquences, dont celle(s) qui nous intéresse(nt)
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

• Partir des conséquences recherchées, et voir quelles règles d'inférence pourraient permettre de les démontrer

- Partir des conséquences recherchées, et voir quelles règles d'inférence pourraient permettre de les démontrer
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

- Partir des conséquences recherchées, et voir quelles règles d'inférence pourraient permettre de les démontrer
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

- Partir des conséquences recherchées, et voir quelles règles d'inférence pourraient permettre de les démontrer
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

- Partir des conséquences recherchées, et voir quelles règles d'inférence pourraient permettre de les démontrer
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

- Partir des conséquences recherchées, et voir quelles règles d'inférence pourraient permettre de les démontrer
- Par exemple, est-ce que $q \land r$ est conséquence de $\{p, p \Rightarrow q, r\}$?

Schémas de raisonnement en

logique propositionnelle

Preuves par résolution

Preuve par résolution : démarche

- 1. Normaliser la représentation
 - \rightarrow les formes normales : clauses
- 2. Introduction d'une règle d'inférence unique
 - \rightarrow la résolution

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Forme normale conjective (CNF)

Forme normale conjonctive (CNF) : conjonction de disjonctions de littéraux.

- Une disjonction de littéraux est une clause
- Exemple : $(a \lor \neg b) \land (b \lor \neg c \lor \neg d)$

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Forme normale conjective (CNF)

Forme normale conjonctive (CNF) : conjonction de disjonctions de littéraux.

- Une disjonction de littéraux est une clause
- Exemple : $(a \lor \neg b) \land (b \lor \neg c \lor \neg d)$

La transformation d'une wff en CNF est toujours possible

Traduction d'une wff en CNF

Traduction d'une wff en CNF

Jusqu'à 5 étapes nécessaires :

- 1. Eliminer les équivalences
- 2. Eliminer les implications
- 3. Faire migrer les négations "à l'intérieur"
- 4. Eliminer les doubles négations
- 5. Appliquer la loi de distributivité sur \wedge et \vee

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

2. Eliminer les implications

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg(\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg(\neg p \land (q \lor r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Eliminer les doubles négations

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv ((p \lor \neg q) \land (p \lor \neg r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Eliminer les doubles négations
 - 5. Distribuer les \land sur les \lor

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv ((p \lor \neg q) \land (p \lor \neg r)) \lor s$$

$$\equiv (p \lor \neg q \lor s) \land (p \lor \neg r \lor s)$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Eliminer les doubles négations
 - 5. Distribuer les ∧ sur les ∨
 - 5. Distribuer les ∧ sur les ∨

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - ullet Si q est faux, alors p est vrai
 - ullet On peut donc conclure $(p \lor r)$

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - Si q est faux, alors p est vrai
 - On peut donc conclure $(p \lor r)$

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

$$\frac{\alpha_1 \vee \alpha_2 \vee \ldots \vee \beta \vee \ldots \vee \alpha_n, \gamma_1 \vee \gamma_2 \vee \ldots \vee \neg \beta \vee \ldots \vee \gamma_p}{\alpha_1 \vee \ldots \vee \alpha_n \vee \gamma_1 \vee \ldots \vee \gamma_p}$$

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - Si q est faux, alors p est vrai
 - On peut donc conclure $(p \lor r)$

Résolution unitaire
$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

• Le modus ponens est un cas particulier de la résolution

Algorithme de résolution

- Démonstration par l'absurde : pour montrer $BC \models \alpha$, on montre que $BC \land \neg \alpha$ est insatisfiable
- Méthodologie :
 - Ajouter la négation de la conclusion désirée à la base de connaissances
 - Obtention de la clause vide par résolution
- La résolution par réfutation est valide et complète pour la logique propositionnelle

Schémas de raisonnement en logique propositionnelle

Systèmes à base de règles

Clauses de Horn

- Clauses de Horn : disjonction de littéraux dont un au maximum est positif
 - $(\neg a \lor \neg b \lor c)$ est une clause de Horn
 - $(\neg a \lor b \lor c)$ n'est pas une clause de Horn
- Toute clause de Horn peut s'écrire sous la forme d'une implication avec
 - Prémisse = conjonction de littéraux positifs
 - Conclusion = littéral positif unique
 - $(\neg a \lor \neg b \lor c) = ((a \land b) \Rightarrow c)$
- Clauses définies : clauses de Horn ayant exactement un littéral positif
- Littéral positif = tête; littéraux négatifs = corps de la clause
- Fait = clause sans littéraux négatifs

Formes de Horn

- Forme de Horn : BC = conjonction de clauses de Horn
- Modus Ponens pour les clauses de Horn :

$$\frac{\alpha_1,\ldots,\alpha_n \quad (\alpha_1\wedge\ldots\wedge\alpha_n)\Rightarrow\beta}{\beta}$$

- Ce Modus Ponens peut être utilisé pour le chaînage avant ou chaînage arrière
- Ces algorithmes sont très naturels et sont réalisés en temps linéaire

Chaînage avant

- Idée : appliquer toutes les règles dont les prémisses sont satisfaits dans la base de connaissances
- Ajouter les conclusions de ces règles dans la base de connaissances, jusqu'à ce que la requête soit satisfaite
- Le chaînage avant est valide et complet pour les bases de connaissances de Horn

Chaînage avant : exemple

R1.
$$p \Rightarrow q$$

R2.
$$I \wedge m \Rightarrow p$$

R3.
$$b \wedge l \Rightarrow m$$

R4.
$$a \land p \Rightarrow I$$

R5.
$$a \wedge b \Rightarrow I$$

R6. a

R7. b

ightarrow On veut prouver q

Chaînage avant : exemple

R1.
$$p \Rightarrow q$$

R2.
$$I \wedge m \Rightarrow p$$

R3.
$$b \wedge l \Rightarrow m$$

R4.
$$a \wedge p \Rightarrow I$$

$$--R6,R7-->a,b$$

R5.
$$a \wedge b \Rightarrow I$$

ightarrow On veut prouver q

R1.
$$p \Rightarrow q$$

R2.
$$I \wedge m \Rightarrow p$$

R3.
$$b \wedge l \Rightarrow m$$

R4.
$$a \land p \Rightarrow I$$

R5.
$$a \wedge b \Rightarrow I$$

$$ightarrow$$
 On veut prouver q

R1.
$$p \Rightarrow q$$

R2.
$$I \wedge m \Rightarrow p$$

R3.
$$b \wedge l \Rightarrow m$$

R4.
$$a \wedge p \Rightarrow I$$

R5.
$$a \wedge b \Rightarrow I$$

$$ightarrow$$
 On veut prouver q

R1.
$$p \Rightarrow q$$
 R5. $a \land b \Rightarrow l$
R2. $l \land m \Rightarrow p$ R6. a
R3. $b \land l \Rightarrow m$ R7. b
R4. $a \land p \Rightarrow l$ \rightarrow On veut prouver q

R1.
$$p \Rightarrow q$$
 R5. $a \land b \Rightarrow l$
R2. $l \land m \Rightarrow p$ R6. a
R3. $b \land l \Rightarrow m$ R7. b
R4. $a \land p \Rightarrow l$ \rightarrow On veut prouver q

Preuve de complétude

- La procédure de chaînage avant permet d'obtenir toute wff atomique pouvant être déduite de KB
 - 1. L'algorithme atteint un **point fixe** au terme duquel aucune nouvelle inférence n'est possible
 - 2. L'état final peut être vu comme un **modèle** *m* dans lequel tout symbole inféré est mis à *vrai*, tous les autres à *faux*
 - 3. Toutes les clauses définies dans la KB d'origine sont vraies dans m
 - 4. Donc m est un modèle de KB
 - 5. Si $KB \models q$ est vrai, q est vrai dans tous les modèles de KB, donc dans m

Chaînage arrière

- Idée : Partir de la requête et rebrousser chemin
 - Vérifier si q n'est pas vérifiée dans la BC
 - Chercher dans la BC les implications ayant q pour conclusion, et essayer de prouver leurs prémisses
- Eviter les boucles : vérifier si le nouveau sous-but n'est pas déjà dans la liste des buts à établir
- Eviter de répéter le même travail : vérifier si le nouveau sous-but a déjà été prouvé vrai ou faux

Chaînage arrière : exemple

R1.
$$p \Rightarrow q$$

R2.
$$I \wedge m \Rightarrow p$$

R3.
$$b \wedge I \Rightarrow m$$

R4.
$$a \wedge p \Rightarrow I$$

R5.
$$a \wedge b \Rightarrow I$$

$$ightarrow$$
 On veut prouver q

Chaînage avant vs chaînage arrière

- Chaînage avant : raisonnement piloté par les données
 - Conclusions à partir de percepts entrants
 - Pas toujours de requête spécifique en tête
 - Beaucoup de conséquences déduites, toutes ne sont pas utiles ou nécessaires
- Chaînage arrière : raisonnement piloté par le but
 - Répondre à des questions spécifiques
 - Se limite aux seuls faits pertinents
 - La complexité du chaînage arrière peut être bien inférieure à une fonction linéaire à la taille de la base de connaissances

Schémas de raisonnement en logique propositionnelle

Algorithmes efficaces d'inférence propositionnelle

Algorithmes efficaces d'inférence propositionnelle

Deux familles d'algorithmes efficaces pour l'inférence propositionnelle :

- Exploration par backtracking
 - Algorithme DPLL (Davis, Putnam, Logemann, Loveland)
- Algorithmes de recherche locale incomplète
 - Algorithme WalkSAT

Algorithme DPLL

- Cet algorithme détermine si une wff en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Une wff est fausse si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparait toujours avec le même "signe" dans toutes les clauses
 - $(a \lor \neg b) \land (\neg b \lor \neg c) \land (c \lor a)$. a et b sont purs, c est impur
 - Instancier les littéraux des symboles purs à vrai
 - Heuristique de la clause unitaire
 - Clause unitaire : clause qui ne contient qu'un littéral
 - Ce littéral doit être vrai

Algorithme WalkSAT

- Algorithme de recherche locale incomplète
- Chaque itération : sélection d'une clause non satisfaite et un symbole à "basculer"
- Choix du symbole à basculer :
 - Fonction d'évaluation : heuristique Min-Conflicts qui minimise le nombre de clauses non satisfaites
 - Etape de parcours aléatoire qui sélectionne le symbole au hasard

Conclusion

Conclusion

- Inférence sur une base de connaissances pour déduire de nouvelles informations et prendre une décision
- Concepts basiques de la logique
 - Syntaxe : structure formelle des énoncés
 - Sémantique : vérité de chaque énoncé dans un modèle
 - Conséquence : vérité nécessaire d'une wwf par rapport à un autre
 - Inférence : dérivation de nouveaux énoncés à partir d'anciens
 - Validité : l'inférence ne dérive que des énoncés qui sont des conséquences
 - Complétude : l'inférence dérive tous les énoncés qui sont des conséquences
- La résolution est complète pour la logique propositionnelle
- Les chaînages avant et arrière sont linéaire en temps, et complets pour les clauses de Horn
- La logique propositionnelle manque de pouvoir d'expression