```
!pip install xgboost

Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (2.0.3)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.25.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.11.4)

from sklearn import svm, datasets
iris = datasets.load_iris()

import pandas as pd

df = pd.DataFrame(iris.data,columns=iris.feature_names)

df['flower'] = iris.target

df['flower'] = df['flower'].apply(lambda x: iris.target_names[x])

df[47:150]
```

flower	petal width (cm)	petal length (cm)	sepal width (cm)	sepal length (cm)	
setosa	0.2	1.4	3.2	4.6	47
setosa	0.2	1.5	3.7	5.3	48
setosa	0.2	1.4	3.3	5.0	49
versicolor	1.4	4.7	3.2	7.0	50
versicolor	1.5	4.5	3.2	6.4	51
virginica	2.3	5.2	3.0	6.7	145
virginica	1.9	5.0	2.5	6.3	146
virginica	2.0	5.2	3.0	6.5	147
virginica	2.3	5.4	3.4	6.2	148
virginica	1.8	5.1	3.0	5.9	149

103 rows × 5 columns

Approach 1: Use train_test_split and manually tune parameters by trial and error

Approach 2: Use K Fold Cross validation

Manually try suppling models with different parameters to cross_val_score function with 5 fold cross validation

```
array([0.96666667, 1. , 0.9 , 0.96666667, 1.
```

Above approach is manual. We can use for loop as an alternative

From above results we can say that rbf with C=1 or 10 or linear with C=1 will give best performance

- Approach 3: Use GridSearchCV
- GridSearchCV does exactly same thing as for loop above but in a single line of code

```
from sklearn.model selection import GridSearchCV
clf = GridSearchCV(svm.SVC(gamma='auto'), {
    'C': [1,10,20],
    'kernel': ['rbf','linear']
}, cv=5, return_train_score=False)
clf.fit(iris.data, iris.target)
clf.cv_results_
     {'mean_fit_time': array([0.00100484, 0.0006494 , 0.00073299, 0.00069718, 0.00074325,
             0.00073876]),
      'std_fit_time': array([2.58868811e-04, 2.39167943e-05, 3.50948909e-05, 5.25749242e-05,
             2.78207411e-05, 1.16441603e-04]),
      'mean_score_time': array([0.0006146 , 0.00044088, 0.00049305, 0.00048633, 0.00046725,
             0.0005022 ]),
      'std_score_time': array([1.49077203e-04, 9.42812095e-06, 3.47885306e-05, 3.83248948e-05,
             5.38087017e-06, 8.28924313e-05]),
      'param_C': masked_array(data=[1, 1, 10, 10, 20, 20],
                   mask=[False, False, False, False, False],
             fill_value='?',
                  dtype=object),
      'param_kernel': masked_array(data=['rbf', 'linear', 'rbf', 'linear', 'rbf', 'linear'],
                  mask=[False, False, False, False, False],
             fill_value='?',
                  dtype=object),
      'params': [{'C': 1, 'kernel': 'rbf'}, {'C': 1, 'kernel': 'linear'},
       {'C': 10, 'kernel': 'rbf'},
       {'C': 10, 'kernel': 'linear'},
       {'C': 20, 'kernel': 'rbf'},
       {'C': 20, 'kernel': 'linear'}],
      'split0_test_score': array([0.96666667, 0.96666667, 0.96666667, 1.
                                                                                , 0.96666667,
                     ]),
             1.
      'split1_test_score': array([1., 1., 1., 1., 1., 1.]),
      'split2_test_score': array([0.96666667, 0.96666667, 0.96666667, 0.9
             0.9
                       1),
      'split3_test_score': array([0.96666667, 0.96666667, 0.96666667, 0.96666667, 0.96666667,
             0.93333333]),
      'split4_test_score': array([1., 1., 1., 1., 1., 1.]),
      'mean_test_score': array([0.98
                                          , 0.98
                                                      , 0.98
                                                                   , 0.97333333, 0.96666667,
             0.96666667]),
      'std test score': array([0.01632993, 0.01632993, 0.01632993, 0.03887301, 0.03651484,
            0.0421637 ]),
      'rank_test_score': array([1, 1, 1, 4, 5, 6], dtype=int32)}
```

```
df = pd.DataFrame(clf.cv_results_)
df
```

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_C	param_kernel
0	0.001005	0.000259	0.000615	0.000149	1	rbf
1	0.000649	0.000024	0.000441	0.000009	1	linear
2	0.000733	0.000035	0.000493	0.000035	10	rbf
3	0.000697	0.000053	0.000486	0.000038	10	linear
4	0.000743	0.000028	0.000467	0.000005	20	rbf
5	0.000739	0.000116	0.000502	0.000083	20	linear

df[['param_C','param_kernel','mean_test_score']]

	param_C	param_kernel	mean_test_score	=
0	1	rbf	0.980000	ılı
1	1	linear	0.980000	
2	10	rbf	0.980000	
3	10	linear	0.973333	
4	20	rbf	0.966667	
5	20	linear	0.966667	

```
clf.best_params_
```

{'C': 1, 'kernel': 'rbf'}

clf.best_score_

0.98000000000000001

dir(clf)

'__reduce__',
'__reduce_ex__',
'__repr__',
'__setattr__',
'__setstate__',

```
_valldate_params ,
best_estimator_',
'best_index_',
'best_params_',
'best_score_',
'classes_',
'cv',
'cv_results_',
'decision_function',
'error_score',
'estimator',
'fit',
'get_params',
'inverse_transform',
'multimetric_',
'n_features_in_',
'n_jobs',
'n_splits_'
'param grid'
'pre_dispatch',
'predict',
'predict_log_proba',
'predict_proba',
'refit',
'refit_time_',
'return_train_score',
'score',
'score_samples',
'scorer_',
'scoring'
'set_params',
'transform',
'verbose']
```

Use RandomizedSearchCV to reduce number of iterations and with random combination of parameters. This is useful when you have too many parameters to try and your training time is longer.

```
from sklearn.model_selection import RandomizedSearchCV
rs = RandomizedSearchCV(svm.SVC(gamma='auto'), {
        'C': [1,10,20],
        'kernel': ['rbf','linear']
    },
    cv=5,
    return_train_score=False,
    n_iter=2
rs.fit(iris.data, iris.target)
pd.DataFrame(rs.cv_results_)[['param_C','param_kernel','mean_test_score']]
         param_C param_kernel mean_test_score
      0
                          linear
                                        0.980000
                                                   th
      1
              10
                          linear
                                        0.973333
```

Different models with different hyperparameters

```
from sklearn import sym
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
model_params = {
    'svm': {
        'model': svm.SVC(gamma='auto'),
        'params' : {
            'C': [1,10,20],
            'kernel': ['rbf','linear']
    },
    'random_forest': {
        'model': RandomForestClassifier(),
        'params' : {
             'n_estimators': [1,5,10]
    },
    'logistic_regression' : {
        'model': LogisticRegression(solver='liblinear',multi_class='auto'),
        'params': {
             'C': [1,5,10]
    }
}
scores = []
for model_name, mp in model_params.items():
    clf = GridSearchCV(mp['model'], mp['params'], cv=5, return_train_score=False)
    clf.fit(iris.data, iris.target)
    scores.append({
        'model': model name,
        'best_score': clf.best_score_,
        'best_params': clf.best_params_
    })
   = pd.DataFrame(scores,columns=['model','best_score','best_params'])
df
                    model best_score
                                            best_params
                                                           0
                     svm
                             0.980000
                                       {'C': 1, 'kernel': 'rbf'}
      1
            random_forest
                             0.960000
                                         {'n_estimators': 5}
      2 logistic_regression
                             0.966667
                                                  {'C': 5}
                                       View recommended plots
 Next steps:
              Generate code with df
```

Based on above, I can conclude that SVM with C=1 and kernel='rbf' is the best model for solving my problem of iris flower classification

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import matplotlib.pyplot as plt

X_train, X_test, y_train, y_test = train_test_split(X_test, y_test, test_size=0.2, random_state=42)

# Train a logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)

* LogisticRegression
LogisticRegression()
```

```
# Make predictions on the test set
y_pred = model.predict(X_test)
y_proba = model.predict_proba(X_test)[:, 1]
from sklearn.metrics import precision_score, recall_score, f1_score
# Calculate evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1-score:", f1)
     Accuracy: 0.7777777777778
     Recall: 0.7777777777778
     F1-score: 0.7925925925925926
```

Based on above, I can conclude that precision is the best evaluation metrics to assess model performance.

Start coding or generate with AT