Probabilistic Optimization

TMKT48 Design Optimization

Deterministic vs Probabilistic

- Most computer models are determininistic
 - You get the same answer if you run the same model with the same settings
- The real world is probabilistic
- This is important for the problem below

Example: Variation in Young's modulus

Sadowski, A. J., Rotter, J. M., Reinke, T., & Ummenhofer, T. (2015). Statistical analysis of the material properties of selected structural carbon steels. *Structural Safety*, *53*, 26-35.

Probabilistic Design (Sannolikhetsbaserad Konstruktion)Real world construction is subject to uncertainties

- and variations
- Estimate uncertainty in the design and quantify the effects of them
- Based on probability theory and parametric models
- Example:
 - What is the probability to meet all requirements with a specific concept?
 - How much must the requirements be relaxed in order for the probability of success to be sufficiently high?

Probability and Design

- How can we work with uncertainty and probability in design?
- With a simulation model we can simulate the uncertainty and analyze how it affects different properties

Probabilistic Optimization Process

- Estimate uncertainties/probability distributions in
 - Design variables
 - Environmental variables
 - Models
- Estimate the impact that the uncertainties and variations have on the performance
- Calculate the desired statistical entities
 - Mean value
 - Standard Deviation

Assign Probability Distributions

Normal/Gaussian

Uniform

CDF

Estimating Statistical Entities

- Monte Carlo Simulation most common
 - It is a sampling method
 - Similar to throwing a pair of dice numerous times
 - Will converge but requires many simulations

Why not Probabilistic Optimization?

- Extremely computationally expensive
 - Each design is evaluated numerous times
- Solution
 - Replace expensive models with surrogate/metamodels
 - Use efficient methods to estimate statistical entities

Comparison MCS - LHS

Two Types of Probabilistic Optimization

- Robust Design Optimization
 - Optimal design that is insensitive to uncertainties and variations

$$\min F(x) = w_1 \mu(f(x)) + w_2 \sigma(f(x))$$

- Reliability Based Design Optimization
 - Minimize the probability of failure
 - Maximize the probability of success

$$\max F(x) = P(f(x) < f_{ref})$$

Stochastic model example

Tolerar	nce Model		
1010141			
Part	Min	Max	Random
Α	1.95	2.05	1.987347
В	1.95	2.05	1.951695
С	29.5	30.5	30.14836
D	34	35	34.72724
	Clearance	Clearance: D-(A+B+C)	

Probabilistic Design of the motorcycle example

- Study probabilistic design using MATLAB
- Estimate for example the influence of variation of the weight of the driver on the acceleration of the motorcycle.
 - Let the total mass of the motorcycle be Mtot=Mcycle + Mdriver
 - Sample Mdriver from a normal distribution with mue=75 kg and sigma = 10 kg.
 - Calculate Cumulative Distribution Functions of the acceleration to investigate the effect of the variation.

Questions?

