EECS 376: Foundations of Computer Science

Chris Peikert
6 February 2023

Last Weekend: OH**

Today's Agenda

- * Recap: (un)countability
- * "Almost all" problems are undecidable
- * The Barber Paradox & an <u>explicit</u> undecidable language
- * Two more undecidable problems:
 - * Accepting problem $L_{\sf ACC}$
 - * Halting problem L_{HALT}
- * Turing reductions/reducibility

Review: Countability

- * A set S is *countable* if there is an ordered list of its elements (each element $s \in S$ gets its own <u>unique</u> natural number ID)
- * The set of all *finite* binary strings is countable.
 - * List the elements in lexicographic order: ε , 0,1,00,01,10,11,000,001,...
- * The set of all *infinite* binary sequences is uncountable.
 - * Idea: For any list of such sequences, use *diagonalization* to construct a sequence that is *not* in the list.

Language ≡ Infinite Binary Sequence

- st Claim: A language L is $\underline{equivalent}$ to an $\underline{infinite}$ binary sequence.
- * Idea: First, list $\Sigma^*=\{s_1,s_2,s_3,s_4,\ldots\}$ lexicographically. Then $L\equiv b_1b_2b_3b_4\cdots$, where $b_i\in\{0,1\}$ indicates if $s_i\in L$.
- * Example: $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots \}$ $L = \{ \varepsilon, 00, 01, 10, 11, \dots \}$ $\equiv 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \cdots$

There is an Undecidable Language

- * Set of all <u>TMs</u> (programs) is countable:
 - * Can list them by their "source code" (descriptions as strings)
 - * $\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \dots \in \{0,1\}^*$
- * Set of all <u>decidable languages</u> is countable:
 - Each TM decides at most one language
- * Set of all <u>languages</u> (infinite binary strings) is <u>uncountable</u>
- * So, there is an undecidable language! Indeed, "almost all" languages are undecidable. (Similarly, "almost all" real numbers are irrational...)

Diagonalization Yields An Undecidable Language

- * List all deciders M_i w/ their decided langs $L(M_i)$ (seq's).
- * There is a language L^* that is <u>not in the list</u>: 'flip the diagonal'.
- * Claim: No TM decides L^* . Every decider M_i appears in the list, but 'behaves incorrectly' on string s_i !

		s1	s2	s3	s4	s5	s6	•••
	M 1	1	0	0	1	1	0	• • •
	M2	0	1	1	0	0	0	• • •
\boldsymbol{X}	M 3	1	1	1	1	1	1	• • •
	M4	0	0	0	0	0	0	• • •
	M5	1	0	1	0	0	0	
	•••	•••	• • •	•••				•••

L*	0	0	0	1	1	•••	

Summary

The 'good': We showed that there is an undecidable language

The 'bad': This language is "non-constructive" and "unnatural"

Q: Can we say anything about "natural" problems that we care about, or are "useful"?

The Barber Paradox

- * Sign: "Barber B is the best barber in town! B cuts the hair of <u>all</u> those—and <u>only</u> those—who do not cut their own hair."
- * **Question:** Who cuts *B*'s hair?
- * Answer: Consider some person *P*.
- 1. P cuts own hair $\Longrightarrow B$ does not cut P's hair.
- 2. P does not cut own hair $\Longrightarrow B$ cuts P's hair.
- * Question: What if P = B?
- 1. B cuts own hair $\Longrightarrow B$ does not cut B's hair.
- 2. B does not cut own hair $\Longrightarrow B$ cuts B's hair.

Contradiction! Such a barber cannot exist!

Barber Paradox and Diagonalization

* Let X be a list of everyone in town, and whose hair they cut: $X(i,j) = \begin{cases} 1 & \text{if } P_i \text{ cuts } P_j \text{ 's hair} \\ 0 & \text{otherwise} \end{cases}$

- * Barber B is the flipped diagonal: B(i) is 0 if P_i cuts P_i 's hair, else 1.
- * Thus, B is not on the list X the barber does not exist!

		P1	P2	P3	P4	P5	• • •
	P1	0	1	1	0	1	• • •
V	P2	1	1	0	0	0	• • •
X	P3	0	0	0	0	0	• • •
	P4	0	1	1	1	0	• • •
	• • •	• • •	• • •	• • •	• • •	• • •	• • •

Quote of The Day

"I would not join any club that would have me as a member."

Groucho Marx

Barber Paradox & Computability

Source Code as Input

* Since a program's source code is just a string, it can be passed as input to another program—or even to the program itself!

```
* Example: int M1(string s) {
    ... return 0, else
    return 1;
}
```

 $\langle M_1 \rangle$ = "int M1(string s) {\n... return 0, else \n return 1;\n}\n"

Q: What does $M_1(\langle M_1 \rangle)$ return?

The Barber Paradox (Part 2)

- * Sign: "Barber B is the best barber in town! B cuts the hair of all those—and only those—who do not cut their own hair."
- * Let's consider a computational analogy, where:
 - * barber, people ⇒ program(s)
 - * $hair \Rightarrow source code$
 - * $\underline{\text{cut}} \Rightarrow \underline{\text{accept}}$
- * Result: "Program B accepts the source code of all programs—and only those programs—that do not accept their own source code."
- * Reminder: The *language of a program* is the set of inputs it <u>accepts</u>.

Thus,
$$L(B) = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle \}$$

The Barber Paradox (Part 2)

- * Result: " $\underline{Program} \ B$ accepts the source code of all $\underline{programs}$ —and only those $\underline{programs}$ —that do not accept their own source code."
- * Question: Does program B accept its own source code?
- * Answer: Suppose P is a program.
- 1. P accepts its own code $\Longrightarrow B$ does not accept P's code.
- 2. P does not accept its own code $\Longrightarrow B$ accepts P's code.
- * Question: What if P = B?
- 1. B accepts its own code $\Longrightarrow B$ does not accept B's code.
- 2. B does not accept its own code $\Longrightarrow B$ accepts B's code.

Contradiction! Program B cannot exist

Barber and Diagonalization (Part 2)

- * Let X be a list of all programs, and whose code they accept: $X(i,j) = \begin{cases} 1 & \text{if } P_i \text{ accepts } P_j \text{'s code} \\ 0 & \text{otherwise} \end{cases}$
- * Program B is the flipped diagonal: B(i) is 0 if P_i accepts P_i 's code, 1 otherwise.
- st Thus, $m{B}$ is not on the list X program B does not exist!

		P1	P2	P3	P4	P5	•••
X	P1	0	1	0	1	1	•••
	P2	1	1	0	1	0	•••
	P3	0	0	0	0	0	•••
	P4	1	1	1	0	1	•••
	• • •						

В	1	0	1	1	•••	

An Explicit Undecidable Language

- * Since no program has $L_{\rm BARBER} = \left\{ \langle M \rangle : M \text{ does not accept } \langle M \rangle \right\}$ as its language, $L_{\rm BARBER}$ is *undecidable*.
- * This is our first example of an <u>explicit</u> undecidable language!
- * Q: Why do we care about this language?
- * A: Once we have one undecidable language, we can use it to show that other languages are also undecidable.

A More Useful Language

It would be useful to have a program that does the following: Given as input a Turing Machine M and a string x, determine whether M accepts x.

```
bool M(string x):

n \leftarrow 100

while (n > 1): n \leftarrow n - 1

return T
```

Example: Does M accept x=376?

In other words, is the following language decidable?:

$$L_{\mathsf{ACC}} = \{(\langle M \rangle, x) : M \text{ accepts } x\}$$

Attempt 1: Interpreter ("Universal" Turing Machine)

- * An *interpreter* is a program that <u>takes another program as input</u> and <u>simulates</u> its behavior.
- * Specifically, an interpreter U takes two inputs: (1) some source code $\langle M \rangle$, and (2) a string x.
- * $U(\langle M \rangle, x)$ just simulates the execution of M on x. So:
 - * M accepts $x \Longrightarrow U$ accepts $(\langle M \rangle, x)$
 - * M rejects $x \Longrightarrow U$ rejects $(\langle M \rangle, x)$
 - * M loops on $x \Longrightarrow U$ loops on $(\langle M \rangle, x)$

Does Interpreter Decide L_{ACC} ?

- * $U(\langle M \rangle, x)$ simulates the execution of M on x:
 - M accepts $x \Longrightarrow U$ accepts $(\langle M \rangle, x)$
 - M rejects $x \Longrightarrow U$ rejects $(\langle M \rangle, x)$

st The language of U is: $L(U) \equiv L_{ACC} = \left\{ \left(\langle M \rangle, x \right) : M \text{ accepts } x \right\}$

- st However, U is <u>not a decider</u> for $L_{
 m ACC}$: U loops on some inputs.
- st Q: Can we write a decider for $L_{
 m ACC}$?

$L_{ m ACC}$ is Undecidable

- * Q: Is there a decider for $L_{ACC} = \left\{ \left(\langle M \rangle, x \right) : M \text{ accepts } x \right\}$?
- st A hypothetical decider C for $L_{
 m ACC}$ must behave as follows:

- * M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$ = M rejects or loops * M does not accept $x \Longrightarrow C$ rejects $(\langle M \rangle, x)$
- Could try to come up with a clever diagonalization. But let's not reinvent the wheel!
- **IDEA:** show that such C would let us decide some knownundecidable language: contradiction! Via (Turing) reduction

$L_{ m ACC}$ is Undecidable

We need to implement:

B takes one input: $\langle M \rangle$ M does not accept $\langle M \rangle \Longrightarrow B$ accepts $\langle M \rangle$ M accepts $\langle M \rangle \Longrightarrow B$ rejects $\langle M \rangle$

We have:

C takes two inputs: $\langle M \rangle$ and x. M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$

M doesn't accept $x \Longrightarrow C$ rejects $(\langle M \rangle, x)$

* Proof: Assume (for contradiction) that a decider C exists for $L_{\rm ACC} = \big\{ \big(\langle M \rangle, x \big) : M \text{ accepts } x \big\}.$

We will use C to construct a decider B for

$$L_{\text{BARBER}} = \{ \langle M \rangle : M \text{ does not accept } \langle M \rangle \}$$
:

$L_{ m ACC}$ is Undecidable

We need to implement:

B takes one input: $\langle M angle$ M does not accept $\langle M angle \Longrightarrow B$ accepts $\langle M angle$ M accepts $\langle M angle \Longrightarrow B$ rejects $\langle M angle$

We have:

C takes two inputs: $\langle M \rangle$ and x M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$ M doesn't accept $x \Longrightarrow C$ rejects $(\langle M \rangle, x)$

- * In code:
- * B on input $\langle M \rangle$: (B takes one input: source code of some program M)
 - * Run C on $(\langle M \rangle, \langle M \rangle)$ (Ask C: "does M accept its source code"?)
 - * If C accepts, <u>reject</u>; if C rejects, <u>accept</u> (flip C's answer)

* Analysis:

- * B halts on any input, because C does (C is a decider).
- * $\langle M \rangle \in L_{\text{BARBER}} \iff M \text{ does not accept } \langle M \rangle$ $\iff C \text{ rejects } (\langle M \rangle, \langle M \rangle) \iff B \text{ accepts } \langle M \rangle.$

The Halting Problem and (More) Turing Reductions

Halting Problem

Halting Problem: Given a TM M and string x as input, decide if M halts on x. Fundamental problem in software and hardware design!

- * Q: Why can't we just run M on x (using an interpreter) to see if it halts?
 - * A: M might loop on x, so we might never produce an answer!

A hypothetical decider H for L_{HALT} takes two inputs, $\langle M \rangle$ and x:

- st M halts (accepts or rejects) on $x\Longrightarrow H$ accepts $ig(\langle M
 angle,xig)$
- st M doesn't halt (loops) on $x\Longrightarrow H$ rejects $\left(\langle M
 angle,x
 ight)$

Show that H can't exist, using undecidability of L_{ACC} . How? Use hypothetical H to construct a decider for L_{ACC} . Since L_{ACC} is undecidable, we get a contradiction.

$\overline{L_{ m HALT}}$ is Undecidable

We need to implement:

C is given two inputs: $\langle M \rangle$ and x M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$ M does not accept $x \Longrightarrow C$ rejects $(\langle M \rangle, x)$

We have:

H takes two inputs: $\langle M \rangle$ and x M accepts/rejects $x \Longrightarrow H$ accepts $(\langle M \rangle, x)$ M loops on $x \Longrightarrow H$ rejects $(\langle M \rangle, x)$

- * Claim: $L_{\text{HALT}} = \{(\langle M \rangle, x) : M \text{ halts on } x\}$ is undecidable.
- * Proof: Assume (for contradiction) that some H decides $L_{\rm HALT}$. We construct a decider C for $L_{\rm ACC} = \{ (\langle M \rangle, x) : M \text{ accepts } x \}$:

$L_{ m HALT}$ is Undecidable

We need to implement:

C is given two inputs: $\langle M \rangle$ and x M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$ M does not accept $\langle M \rangle \Longrightarrow C$ rejects $(\langle M \rangle, x)$

We have:

H is given two inputs: $\langle M \rangle$ and x M accepts or rejects $x \Longrightarrow H$ accepts $(\langle M \rangle, x)$ M loops on $x \Longrightarrow H$ rejects $(\langle M \rangle, x)$

- * In code:
- * C on input $(\langle M \rangle, x)$: (Must answer: "does M accept x?")
 - * Run H on $(\langle M \rangle, x)$ (Ask H: "does M halt on x?")
 - * If H rejects, <u>reject</u> (M loops on x, so it doesn't accept it)
 - * If H accepts, run M on x (M halts on x, so this simulation will terminate)
 - * If M accepts, accept; If M rejects, reject (answer as M does)
- * Analysis: C halts on any input (why?). Moreover:
 - * M accepts $x \Longrightarrow H$ accepts $(\langle M \rangle, x) \Longrightarrow C$ accepts $(\langle M \rangle, x)$
 - * M rejects $x \Longrightarrow H$ accepts $(\langle M \rangle, x) \Longrightarrow C$ rejects $(\langle M \rangle, x)$
 - * M loops on $x \Longrightarrow H$ rejects $(\langle M \rangle, x) \Longrightarrow C$ rejects $(\langle M \rangle, x)$
- * Conclusion: $L_{
 m HALT}$ decidable $\Longrightarrow L_{
 m ACC}$ decidable
- st Contrapositive: $L_{
 m ACC}$ undecidable $\Longrightarrow L_{
 m HALT}$ undecidable

Turing Reducibility

- * Question: How can we show that a language is undecidable?
- * Two Options:
 - st Directly: $L_{
 m BARBER}$ is undecidable.
 - st Indirectly: If $L_{
 m HALT}$ is decidable then so is $L_{
 m ACC.}$
- * **Definition:** Language A is *Turing reducible* to language B, written $A \leq_T B$, if there exists a TM (program) M, with access to a membership oracle ("black box") for B, that decides A.
- * Intuition: solving A is "no harder than" solving B.
- * We have shown: $L_{\text{BARBER}} \leq_T L_{\text{ACC}} \leq_T L_{\text{HALT}}$

Conclusion and Exercises

- * Theorem: Suppose $A \leq_T B$. Then B is decidable $\Longrightarrow A$ is decidable.
- st **Proof:** use decider for B to implement the membership oracle.
- * Question: How can we show undecidability of a language?
- * Contrapositive: Suppose $A \leq_T B$. Then A is <u>undecidable</u> $\Longrightarrow B$ is <u>undecidable</u>.
- * Strategy: Pick an undecidable language A and show that $A \leq_T B$.
- * Question 1: Is it true that $L_{\text{HALT}} \leq_T L_{\text{ACC}}$?
- * Question 2: Suppose $A \leq_T B$. Must $B \leq_T A$?

