Brefs rappels de formules de quadrature

Yves Coudière yves.coudiere@u-bordeaux.fr

14 septembre 2020

Formules élémentaires

Ce sont les formules de quadrature, notées génériquement Qf d'une fonction f définie sur un intervalle de référence $[\alpha, \beta]$. Ces formules servent à calculer une approximation de l'intégrale $If = \int_{\alpha}^{\beta} f(t)dt$. Elles ont la forme générale $Qf = \sum_{k=1}^{m} \omega_k f(t_k)$ où $\omega_k \in \mathbb{R}$ et $\alpha \leq t_k \leq \beta$ sont les poids et les points d'interpolation. Voir des exemples dans le tableau 1.

Ces formules sont caractérisées par le degré maximal p des polynomes intégrés exactement, c'est à dire pour lesquels on a If = Qf.

Formules composées

Ce sont les formules obtenues en composant les formules élémentaires sur un découpage de l'intervalle [a,b] en n sous-intervalles de même longueur $h=\frac{b-a}{n}$. On procède de la manière suivante (découpage de [a,b] en n sous-intervalles, puis changement de variable $x=a+ih+h\frac{t-\alpha}{\beta-\alpha}$ pour ramener $x \in [a+ih, a+(i+1)h]$ sur $t \in [\alpha, \beta]$ – dans chaque sous-intervalle):

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} \int_{a+ih}^{a+(i+1)h} f(x)dx = \sum_{i=0}^{n-1} \frac{h}{\beta - \alpha} \int_{\alpha}^{\beta} f\left(a + ih + h\frac{t - \alpha}{\beta - \alpha}\right) dt$$
$$= \frac{h}{\beta - \alpha} \sum_{i=0}^{n-1} \int_{\alpha}^{\beta} g_i(t)dt,$$

où $g_i(t) = f\left(a + ih + h\frac{t-\alpha}{\beta-\alpha}\right)$. On applique alors une formule de quadrature élémentaire à la fonction g_i sur l'intervalle de référence $[\alpha, \beta]$, et l'on trouve la formule composée

$$Q_n f = \frac{h}{\beta - \alpha} \sum_{i=0}^{n-1} \sum_{k=1}^{m} \omega_k f\left(a + ih + h \frac{t_k - \alpha}{\beta - \alpha}\right).$$

On trouve par exemple,

- pour la formule des trapèzes, $Q_n f = h \sum_{i=0}^{n-1} \frac{1}{2} (f(a+ih) + f(a+(i+1)h)),$ pour la formule du point milieu, $Q_n f = \frac{h}{2} \sum_{i=0}^{n-1} 2f(a+(i+0.5)h),$
- pour la formule de Simpson,

pour la formule de Simpson,
$$Q_n f = \frac{h}{2} \sum_{i=0}^{n-1} \frac{1}{3} \left(f(a+ih) + 4f(a+(i+0.5h)) + f(a+(i+1)h) \right),$$

Formule	α, β	m	ω_i	t_i	p
trapèzes	0,1	2	$\frac{1}{2}, \frac{1}{2}$	0,1	1
Simpson	-1,1	3	$\frac{1}{3}, \frac{4}{3}, \frac{1}{3}$	-1,0,1	3
point milieu	-1,1	1	$\overset{\circ}{2}$	0	1
Gauss-Legendre 2	-1,1	2	1,1	$-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}$	3
Gauss-Legendre 3	-1,1	3	$\frac{5}{9}, \frac{8}{9}, \frac{5}{9}$	$-\frac{\sqrt{15}}{5}, 0, \frac{\sqrt{15}}{5}$	5

Table 1 – Quadratures classiques.