CLAIMS

I claim:

- 1 1). A method, comprising:
- analyzing each routine, of a software program having a plurality of separately
- 3 compilable routines, to create a plurality of local side-effect problems for
- 4 each routine; and
- 5 merging the local side-effect problems to create a global side-effect problem.
- 1 2). The method of claim 1, further comprising:
- 2 computing a global solution to the global problem; and
- 3 splitting the global solution into local solutions.
- 1 3). The method of claim 2, further comprising:
- determining for each routine, whether a pointer parameter within the routine
- 3 is used to write to or read from a storage device.
- 1 4). The method of claim 3, further comprising:
- 2 determining for each routine whether the pointer parameter is used to derive
- 3 a return value of the routine.
- 1 5). The method of claim 4, further comprising:
- 2 computing a lattice value associated with each of the pointer parameters,
- 3 wherein the lattice value comprises one of a PURE effect; LOST effect;
- 4 RETURN effect; OUT effect; IN effect; RETURN, OUT, and IN effect;
- 5 RETURN and OUT effect; RETURN and IN effect; and OUT and IN effect.
- 1 6). The method of claim 5, further comprising:
- 2 providing the lattice values to an interprocedural analysis solver to optimize
- 3 compilation of the software program.

8

1

2

3

5

6

7

2

1	7). The method of claim 6, further comprising:
2	representing the local side-effect problems as directed graphs having edges
3	and vertices, wherein
4	each edge has an associated monotone transfer function;
5	each vertex has a vertex value, wherein the vertex value is one of formal
6	parameter, implicit parameter, local pointer variable, or gate
7	parameter; and

a subset of vertices is marked with lattice values.

- 8). A computer-readable medium having stored thereon a plurality of instructions, said plurality of instructions when executed by a computer, cause said computer to perform: analyzing each routine, of a software program having a plurality of separately compilable routines, to create a plurality of local side-effect problems for each routine; and merging the local side-effect problems to create a global side-effect problem.
- 1 9). The computer-readable medium of claim 8 having stored thereon additional
 - instructions, said additional instructions when executed by a computer, cause
- 3 said computer to further perform:
- 4 computing a global side-effect solution to the global side-effect problem; and
- 5 splitting the global side-effect solution into local side-effect solutions.
- 1 10). The computer-readable medium of claim 9 having stored thereon
- 2 additional instructions, said additional instructions when executed by a computer,
- 3 cause said computer to further perform:

SKD --32-- 042390.P11195

- determining for each routine, whether a pointer parameter within the routine is used to write to or read from a storage device.
- 1 11). The computer-readable medium of claim 10 having stored thereon
- additional instructions, said additional instructions when executed by a
- 3 computer, cause said computer to further perform:
- determining for each routine whether the pointer parameter is used to derive
- 5 a return value of the routine.
- 1 12). The computer-readable medium of claim 11 having stored thereon
- 2 additional instructions, said additional instructions when executed by a computer,
- 3 cause said computer to further perform,
- 4 computing a lattice value associated with each of the pointer parameters,
- 5 wherein the lattice value comprises one of a PURE effect; LOST effect;
- 6 RETURN effect; OUT effect; IN effect; RETURN, OUT, and IN effect;
- 7 RETURN and OUT effect; RETURN and IN effect; and OUT and IN effect.
- 1 13). The computer-readable medium of claim 12 having stored thereon
- 2 additional instructions, said additional instructions when executed by a computer,
- 3 cause said computer to further perform:
- 4 providing the lattice values to an interprocedural analysis solver to optimize
- 5 compilation of the software program.
- 1 14). The computer-readable medium of claim 13 having stored thereon
- 2 additional instructions, said additional instructions when executed by a
- 3 computer, cause said computer to further perform:
- 4 representing the local side-effect problems as directed graphs having edges
- 5 and vertices, wherein
- 6 each edge has an associated monotone transfer function;

SKD --33-- 042390.P11195

7	each vertex has a vertex value, wherein the vertex value is one of formal
8	parameter, implicit parameter, local pointer variable, or gate
9	parameter; and
10	a subset of vertices is marked with lattice values.
1	15). A system, comprising:
2	a processor;
3	memory connected to the processor storing instructions for interprocedural
4	side-effect analysis executed by the processor;
5	storage connected to the processor that stores a software program having a
6	plurality of separately compilable routines,
7	wherein the processor analyzes each routine, of the software program, to
8	create a plurality of local side-effect problems for each routine; and
9	merges the local side-effect problems to create a global side-effect
10	problem.
1	16). The system of claim 15, wherein the processor computes a global solution
2	to the global problem; and splits the global solution into local solutions.
1	17). The system of claim 16, wherein the processor determines for each
2	routine, whether a pointer parameter within the routine is used to write to or
3	read from the storage device.

- 1 18). The system of claim 17, wherein the processor determines for each routine whether the pointer parameter is used to derive a return value of the routine.
- 1 19). The system of claim 18, wherein the processor:

SKD --34-- 042390.P11195

computes a lattice value associated with each of the pointer parameters, 2 wherein the lattice value comprises one of a PURE effect; LOST effect; 3 RETURN effect; OUT effect; IN effect; RETURN, OUT, and IN effect; 4 RETURN and OUT effect; RETURN and IN effect; and OUT and IN effect. 5 The system of claim 19, wherein the processor: 1 20). provides the lattice values to an interprocedural analysis solver to optimize 2 compilation of the software program. 3 21). The system of claim 20, wherein the processor: 1 represents the local side-effect problems as directed graphs having edges 2 3 and vertices, wherein each edge has an associated monotone transfer function; each vertex has a vertex value, wherein the vertex value is one of formal parameter, implicit parameter, local pointer variable, or gate 6 parameter; and 7

a subset of vertices is marked with lattice values.

SKD --35-- 042390.P11195