Analisis y Diseño de Algoritmos

Juan Gutiérrez

August 16, 2022

Resumen

Algoritmos

Algoritmos

¿Qué es un algoritmo?

Técnicas a estudiar en el curso

Introducción al análisis de eficiencia

Ejemplo 2. Tenemos dos computadores A y B con las siguientes características y algoritmos a ejecutar:

- Computador A:
 - Velocidad: 10¹⁰ instrucciones/s,
 - Algoritmo a ejecutar: Insertion sort, cuyo tiempo de ejecucion es 2n² (es decir, con entrada de tamaño n, ejecuta 2n² instrucciones),
- Computador B:
 - Velocidad: 10⁷ instrucciones/s,
 - Algoritmo a ejecutar: Merge sort, cuyo tiempo de ejecucion es 50n lg(n)
- Si ordenamos 10⁷ números tenemos que ...
- Si ordenamos 10⁸ números tenemos que ...

Ejercicios

Ejercicio 1. Suponga que en una misma computadora se corre Insertion sort y Merge sort, donde Insertion sort corre en $8n^2$ pasos con entrada de tamaño n y Merge sort corre en $64n \lg n$ pasos. Para que valores de n, es más eficiente el Insertion sort?

Ejercicios

Ejercicio 2. Cual es el menor valor de n tal que un algoritmo con tiempo de ejecucion $100n^2$ es más rapido que uno con tiempo de ejecucion 2^n en la misma máquina.

Ejercicios

Ejercicio 3. Para cada función f(n) y tiempo t en la siguiente tabla, determine el mayor tamaño de n de un problema que puede ser resuelto en tiempo t, suponiendo que el algoritmo para resolver el problema toma f(n) μs

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
$\lg n$							
$\frac{\lg n}{\sqrt{n}}$							
n							
n lg n							
n^2							
n^3							
2 ⁿ							
$ \frac{n \lg n}{n^2} $ $ \frac{n^3}{2^n} $ $ n!$							

Propiedades de logaritmos

• $\log_a b = x$ si y solo si $b = a^x$.

Propiedades de logaritmos

- $\log_a b = x$ si y solo si $b = a^x$.
- $\log_a x^y = y \log_a x$

Propiedades de logaritmos

- $\log_a b = x$ si y solo si $b = a^x$.
- $\log_a x^y = y \log_a x$
- $\bullet \log_a xy = \log_a x + \log_a y$

Propiedad

Para todo número natural n, $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

Propiedad

Para todo número natural n, $1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$.

Propiedad

Para todo número natural n, $\frac{1}{2} + \frac{1}{6} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$..

Propiedad

Para todo número natural n, $\lg n \le n$.

Propiedad

Para todo número natural $n \ge 44$, $8 \lg n \le n$.

Definición 5. Dada una secuencia a_1, a_2, \ldots, a_n de números, donde n es un entero no negativo, podemos escribir la suma finita $a_1 + a_2 + \cdots + a_n$ como

$$\sum_{k=1}^{n} a_k.$$

Definición 6. Dada una secuencia infinita a_1, a_2, \ldots de números, podemos escribir la suma infinita $a_1 + a_2 + \cdots$ como

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k.$$

Si el límite no existe, la serie diverge, si no, esta converge.

Propiedad de Linealidad

Para cada número real c y cualesquier secuencias a_1, a_2, \dots, a_n y b_1, b_2, \dots, b_n , tenemos que

$$\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k.$$

Series aritméticas

Son series en donde la resta de cada dos términos consecutivos es la misma. Ejemplo:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Suma de cuadrados y cubos

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$
$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} = (\frac{n(n+1)}{2})^2.$$

Series geométricas

Son series en donde la división de cada dos términos consecutivos es la misma. Por ejemplo, para cada número real $x \neq 1$,

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}.$$

Serie ármónica

Es la serie

$$H_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}.$$

Acotando sumatorias por inducción

Probaremos por inducción en \boldsymbol{n} que

$$\sum_{k=1}^{n} k \le \frac{1}{2} (n+1)^2.$$

Acotando sumatorias por inducción

Probaremos por inducción en \boldsymbol{n} que

$$\sum_{k=0}^{n} 3^k \le c3^n$$

Acotando sumatorias por inducción

Probaremos por inducción en \boldsymbol{n} que

$$\sum_{k=0}^{n} 3^k \le \frac{3}{2} 3^n.$$

Acotando sumatorias por términos

Podemos acotar superiomente cada término de una serie, por ejemplo

$$\sum_{k=1}^n k \le \sum_{k=1}^n n = n^2$$

Acotando sumatorias por términos

En general, sea
$$a_{\max} = \max_{1 \le k \le n} a_k$$
, tenemos que

$$\sum_{k=1}^{n} a_k \le \sum_{k=1}^{n} a_{\max} = n \cdot a_{\max}$$

Acotando sumatorias por división

Acotaremos $\sum_{k=1}^{n} k$. I

Acotando sumatorias por división

Acotaremos $\sum_{k=0}^{\infty} k^2/2^k$.

Acotando sumatorias por división

Acotaremos
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
.

Árboles binarios

Un árbol binario T es definido recursivamente según:

- \bullet si T no tiene nodos entonces es un árbol binario
- si T tiene nodos, está compuesto por un nodo raíz, un árbol binario llamado subárbol izquierdo y un árbol binario llamado subárbol derecho

Árboles binarios

Figure B.8 A complete binary tree of height 3 with 8 leaves and 7 internal nodes.

Figure 1: Tomada del libro Cormen, Introduction to Algorithms

Gracias