Universidad Técnica Federico Santa María

Departamento de Electrónica

TEL231 - Sistemas de Telecomunicaciones Tarea 1

Profesor: Rodrigo Muñoz Lara Ayudantes: Nilsson Acevedo - Gabriel Zapata - Yu Ze Zhou Zhou

Instrucciones de entrega

- (a) La tarea deberá ser realizado en grupo de 2 personas. No pueden haber grupos de 1 persona. Si esto sucede, el profesor asignará los grupos a los alumnos que estén solos (Inscripciones en AULA Pestaña de información general).
- (b) Cualquier detección de copia tiene como consecuencias un 0 en el ramo. Además su caso será enviado a la comisión de ética del departamento de electrónica. Tanto el que presta como el que accede a material de otro grupo será enviado a comisión. El uso de inteligencia artificial para realizar la tarea también es considerado un mecanismo de copia. No se exponga.
- (c) No se arriesgue a incumplir en el software o mecanismos permitidos en la tarea. Es preferible contactar al correo del ayudante Nilsson Acevedo: nilsson.acevedo@usm.cl en un horario razonable.
- (d) Borrar estas instrucciones dentro de su entrega final.

Fecha y hora límite:

Miércoles 24 de septiembre de 2025, hasta las 23:59 hrs.

Cualquier entrega después de la fecha indicada será evaluada con nota 0.

Formato de entrega:

Subir un único archivo comprimido en formato .zip con el siguiente nombre:

TEL231_Tarea1_ApellidoNombre1_ApellidoNombre2.zip

Estructura obligatoria del archivo .zip:

```
--TEL231_Tarea1_ApellidoNombre1_ApellidoNombre2/
-audios/
-audio_original/
-audios_filtrados/
-graficos/
-Parte1/
-Parte2/
-src/
-Parte1.py
-Parte2.py
-TEL231_Tarea1_ApellidoNombre1_ApellidoNombre2.pdf
-README.md
```

Requisitos obligatorios:

- Las ecuaciones deben estar ordenadas y con sus correspondientes unidades de medida.
- Todas las figuras deben tener título, ejes con unidades y leyendas.
- Adjuntar las ecuaciones utilizadas en el anexo.
- Referenciar la información utilizada en la bibliografía.
- Los scripts deben ejecutarse sin errores en un entorno estándar de Python.
- El archivo README.md debe incluir:
 - Nombres y roles de los integrantes.
 - Librerías necesarias para la ejecución.
 - Explicación del código realizado.
 - Diagrama de flujo por cada código.

Instalar dependencias

• Cómo instalar las dependencias recomendadas:

```
pip install numpy
pip install plotly
pip install librosa
pip install soundfile
pip install pydub
```

1. Series de Fourier y Representaciones Espectrales

Considera la siguiente señal continua en el tiempo, x(t), definida por la expresión:

$$x(t) = 2 - 2\sin\left(\frac{\pi}{2}t - \pi\right)\sin\left(\frac{3\pi}{2}t + \frac{\pi}{4}\right)$$

- (a) Transformar x(t) a y(t) (Producto de Senos a Suma de Cosenos)
- (b) Transformar y(t) a k(t) (Expandir Cosenos con Fase)
- (c) Aplicar la Forma Trigonométrica y Polar de la Serie de Fourier
- (d) Calcular la potencia media (Teorema de Parseval)

2. Demostraciones de las Transformadas de Fourier

(a) Demuestre que

$$x(t) * y(t)$$
 CTFT $X(f)Y(f)$

(b) Demuestre que

$$x(t)y(t)$$
 CTFT $X(f) * Y(f)$

(c) Demuestre que

$$x(t) = \operatorname{rect}\left(\frac{t}{\tau}\right) \quad \operatorname{CTFT} \ X(\omega) = \tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$$

(d) Demuestre que

$$x(t) = \operatorname{triang}\left(\frac{t}{\tau}\right) \text{ CTFT } X(f) = \tau \operatorname{sinc}^2(f\tau)$$

(e) Demuestre que la transformada de Fourier de un tren de impulsos de período T,

$$\delta_T(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

es

$$\mathcal{F}\{\delta_T(t)\} = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{-j\omega kT}$$

3. Parte I: Implementación y Visualización 3D en Python

Consideremos la siguiente señal:

$$x(t) = \sin(2\pi \cdot 3t) + \frac{1}{5}\sin(2\pi \cdot 7t) + \frac{3}{10}\sin(2\pi \cdot 11t) + \frac{1}{5}\sin(2\pi \cdot 17t)$$

- (a) Genere la señal x(t) en el intervalo $0 \le t \le 2$ y grafique el resultado.
- (b) Calcule la Transformada Discreta de Fourier (DFT) con numpy.fft y justifique sus resultados.
- (c) Muestre en un gráfico 3D:
 - La señal en el dominio del tiempo.
 - El espectro en frecuencia.
 - Las ondas sinusoidales componentes que reconstruyen x(t).
- (d) Experimente con distintos coeficientes y frecuencias en la señal para observar cómo cambia su espectro (Al menos 3 coeficientes diferentes de la señal x(t)) y muestre su correspondiente gráfico en 3D.

Hint: Visualización 3D

Para abordar la parte (c) de este ejercicio, se recomienda utilizar una biblioteca de visualización interactiva como **Plotly**, ya que permite explorar el gráfico 3D de manera más intuitiva que las herramientas estáticas.

1. Configuración del Entorno

Asegúrate de tener las bibliotecas necesarias. Si no las tienes, puedes instalarlas fácilmente usando pip:

pip install numpy
pip install plotly

2. Estrategia de Visualización 3D

La clave para este gráfico es alinear los tres dominios (señal compuesta, componentes y espectro) en un solo espacio 3D de manera lógica:

- Eje X: Representará el Tiempo (s).
- Eje Y: Representará la Frecuencia (Hz).
- Eje Z: Representará la Amplitud.

3. Consejo para Mostrar el Gráfico

Para evitar problemas con visores de gráficos integrados en distintos editores (como VS Code o Spyder), es muy recomendable forzar a Plotly a abrir el gráfico en tu navegador web. Usa el siguiente comando al final de tu script:

'fig' es tu objeto de figura de Plotly
fig.show(renderer="browser")

Figura 1: Referencia

4. Parte II: Implementación y uso de la Transformada Rápida de Fourier (FFT) en Python

(a) Grabación del audio: Cada estudiante debe grabar un archivo de audio en formato .wav o .m4a, diciendo la siguiente frase:

"Mi nombre es ____ y junto a ____ estoy cursando el curso de TEL231 – Sistema de Telecomunicaciones, y estoy grabando este audio el día ___."

El archivo debe guardarse con el nombre audio_apellido1_apellido2.m4a (o .mp3).

- (b) Aplicación de filtros: A partir del audio grabado, aplique tres filtros distintos mediante la FFT:
 - Pasa bajos: hasta 1000 Hz (audio más grave pero entendible).
 - Pasa banda: entre 300 Hz y 3400 Hz (banda típica de telefonía).
 - Pasa altos: desde 1000 Hz hacia arriba (audio más agudo pero entendible).
- (c) Reconstrucción de la señal: Obtenga la señal en el dominio del tiempo mediante la transformada inversa (IFFT) para cada filtro aplicado.
- (d) Comparación de resultados: Genere y explique las siguientes gráficas comparativas:
 - Onda temporal original vs. onda filtrada.
 - Espectro en frecuencia original vs. espectro filtrado.
- (e) Reflexión: Responda las siguientes preguntas:
 - ¿Por qué los gráficos en el dominio del tiempo cambian al aplicar un filtro?
 - ¿Qué significa que un audio pase por un filtro pasa banda de 300 Hz a 3400 Hz?
 - ¿Cómo influye la percepción auditiva al aplicar un filtro pasa bajos o pasa altos?
 - ¿Para qué sirven estas aplicaciones en la vida real?
- (f) Entrega: El reporte debe incluir las gráficas generadas, audios generados y una breve conclusión sobre cómo cambia la percepción del audio en cada caso.

Hint: Librerías en Python

A continuación se entrega un fragmento de código que incluye las librerías necesarias y/o complementarias:

```
import numpy as np
import librosa
import soundfile as sf
from pydub import AudioSegment
import plotly.graph_objects as go
from plotly.subplots import make_subplots
```

5. Reflexiones Finales

Responda con sus propias palabras las siguientes preguntas en base a lo aprendido durante la tarea

- (a) Pregunta: ¿Cuál es la diferencia fundamental entre una señal de energía y una señal de potencia, y por qué es importante esta distinción en el análisis de señales?
- (b) Pregunta: ¿Por qué los filtros ideales son físicamente irrealizables en sistemas de tiempo continuo, y qué implicación tiene esto para el diseño de filtros prácticos?
- (c) Pregunta: ¿Cuál es el propósito principal de la Serie de Fourier y qué tipo de señales son susceptibles a ser representadas por ella?
- (d) **Pregunta:** ¿Cómo se extiende el concepto de análisis de frecuencia de la Serie de Fourier a señales no periódicas, y cuál es la idea fundamental detrás de la Transformada de Fourier?
- (e) Pregunta: ¿Cuáles son las principales limitaciones de la comunicación en bandabase que la modulación de portadora busca resolver, especialmente en medios inalámbricos?
- (f) Pregunta: ¿Qué establece el Teorema de Muestreo Uniforme y cuál es la importancia de la frecuencia de Nyquist en la conversión de señales analógicas a digitales?
- (g) Pregunta: ¿Cuál es la relación entre la Transformada Discreta de Fourier (DFT) y la Serie de Fourier Discreta (DFS) para secuencias de longitud finita?

6. Anexos

7. Bibliografía