Math 22 Fall 2004

Linear Algebra with Applications

The Inverse of a Matrix October 11, 2004

Load the packages for doing Linear Algebra

> with(Student[LinearAlgebra]):

Warning, the protected name `.` has been redefined and unprotected

Define a matrix we want to invert

> A := <<0, 3, -1>|<2, -2, 0>|<1, -5, 1>>;
$$A := \begin{bmatrix} 0 & 2 & 1 \\ 3 & -2 & -5 \\ -1 & 0 & 1 \end{bmatrix}$$

Augment it with the identical matrix

$$A_I := \begin{bmatrix} 0 & 2 & 1 & 1 & 0 & 0 \\ 3 & -2 & -5 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Perform row reductions to transform A into the Reduced Echelon Form (that is, the identity matrix).

> A_I := SwapRows(A_I, 1, 3); $A_I := \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 1 \\ 3 & -2 & -5 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 & 0 & 0 \end{bmatrix}$ 2, 1, 3); $A_I := \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 1 \\ 0 & -2 & -2 & 0 & 1 & 3 \\ 0 & 2 & 1 & 1 & 0 & 0 \end{bmatrix}$ > A_I := AddRow(A_I, 2, 1, 3); > A_I := AddRow(A_I, 3, 2, 1); $A_{-}I := \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 1 \\ 0 & -2 & -2 & 0 & 1 & 3 \\ 0 & 0 & -1 & 1 & 1 & 3 \end{bmatrix}$ > A_I := MultiplyRow(A_I, 3, -1): $A_I := MultiplyRow(A_I, 2, -1/2):$ A_I := MultiplyRow(A_I, 1, -1); $A_{-}I := \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & \frac{-1}{2} & \frac{-3}{2} \\ 0 & 0 & 1 & -1 & -1 & -3 \end{bmatrix}$ > A_I := AddRow(A_I, 2, 3, -1): $A_I := AddRow(A_I, 1, 3, 1);$ $A_I := \begin{bmatrix} 1 & 0 & 0 & -1 & -1 & -4 \\ 0 & 1 & 0 & 1 & \frac{1}{2} & \frac{3}{2} \end{bmatrix}$

Now the last 3 columns should form the inverse matrix of A

> A_Inverse := LinearAlgebra[DeleteColumn](A_I, [1 .. 3]);

$$A_Inverse := \begin{bmatrix} -1 & -1 & -4 \\ 1 & \frac{1}{2} & \frac{3}{2} \\ -1 & -1 & -3 \end{bmatrix}$$

Let's check our answer

> A.A_Inverse, A_Inverse.A;

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$