Main Course Notes

There are 5 axioms that we will use in this class:

Axiom 1 If each of a and b is a number, then exactly one of the following is true:

- 1. a = b
- 2. a < b
- 3. a > b

Axiom 2 If each of a, b, c is a number, a < b, and b < c, then a < c.

Axiom 3 If a and b are two points on the number line, then there is a point between them.

Axiom 4 If a is a point, then there is a smallest integer b such that b > a and a largest integer c such that c < a.

Axiom 5 If n is an integer, then n + 1 and n - 1 are integers, and n is the only integer between n - 1 and n + 1.

Then, as the course continues, we will make various definitions and notation for these definitions.

Definition 1 If a and b are two points and a < b, the statement that the point p is **between** the points a and b means that a < p and p < b.

Definition 2 A point set is a set of one or more points.

Definition 3 The statement that the point set S is a **segment** means that there are two points a and b, called the endpoints of S, such that S is the set of all points between a and b.

Notation 1 If a and b are two points and a < b then (a,b) denotes the segment consisting of all points between a and b.

Definition 4 If M is a point set and p is a point, the statement that p is a **limit** point of the point set M means that every segment that contains p contains a point of M different from p.

Definition 5 The statement that the point set I is an **interval** means that there are two points a and b, called the endpoints of I, such that I is the set containing a, b, and (a,b). I is denoted by [a,b].

Notation 2 If a and b are two points and a < b then [a,b] denotes the interval with endpoints a and b.

Definition 6 The statement that the point set H is a **subset** of the point set K means that if p is a point of H, then p is a point of K.

Notation 3 If H is a point set and K is a point set then $H \subseteq K$ means that H is a subset of K.

Definition 7 If each of H and K is a point set and there is a point that is in both of them, then the **intersection** of H and K is the set to which a point p belongs if and only if p is in both H and K.

Notation 4 If each of H and K is a point set and there is a point that is in both of them, then $H \cap K$ denotes the intersection of H and K.

Definition 8 If each of H and K is a point set, the **union** of H and K is the set to which the point p belongs if and only if p is in H or p is in K.

Notation 5 If each of H and K is a point set, then $H \cup K$ denotes the union of H and K. Thus $H \cup K$ is the set of all points in H together with the points in K.