6 Lineare Programmierung

- 6.1 Grundlagen
- 6.2 Simplex-Algorithmus
- 6.3 Komplexität von linearer Programmierung
- 6.4 Ganzzahlige lineare Programme

Lineares Programm (LP): Finde optimale Werte für d reelle Variablen $x_1, \ldots, x_d \in \mathbb{R}$.

Dabei soll eine lineare Zielfunktion

$$c_1x_1+\ldots+c_dx_d$$

für gegebene Koeffizienten $c_1, \ldots, c_d \in \mathbb{R}$ minimiert oder maximiert werden.

Lineares Programm (LP): Finde optimale Werte für d reelle Variablen $x_1, \ldots, x_d \in \mathbb{R}$. Dabei soll eine lineare Zielfunktion

$$c_1x_1+\ldots+c_dx_d$$

für gegebene Koeffizienten $c_1, \ldots, c_d \in \mathbb{R}$ minimiert oder maximiert werden.

Es müssen m lineare Nebenbedingungen eingehalten werden. Für jedes $i \in \{1, \dots, m\}$ sind Koeffizienten $a_{i1}, \dots, a_{id} \in \mathbb{R}$ und $b_i \in \mathbb{R}$ gegeben. Eine Belegung der Variablen ist nur dann gültig, wenn sie die folgenden Nebenbedingungen einhält:

$$a_{11}x_1 + \ldots + a_{1d}x_d \le b_1$$

 \vdots
 $a_{m1}x_1 + \ldots + a_{md}x_d \le b_m$

Lineares Programm (LP): Finde optimale Werte für d reelle Variablen $x_1, \ldots, x_d \in \mathbb{R}$. Dabei soll eine lineare Zielfunktion

$$c_1x_1 + \ldots + c_dx_d$$

für gegebene Koeffizienten $c_1, \ldots, c_d \in \mathbb{R}$ minimiert oder maximiert werden.

Es müssen m lineare Nebenbedingungen eingehalten werden. Für jedes $i \in \{1, \dots, m\}$ sind Koeffizienten $a_{i1}, \dots, a_{id} \in \mathbb{R}$ und $b_i \in \mathbb{R}$ gegeben. Eine Belegung der Variablen ist nur dann gültig, wenn sie die folgenden Nebenbedingungen einhält:

$$a_{11}x_1 + \ldots + a_{1d}x_d \le b_1$$

 \vdots
 $a_{m1}x_1 + \ldots + a_{md}x_d \le b_m$

Statt \leq ist auch \geq erlaubt.

Sei
$$x^{T} = (x_1, ..., x_d)$$
 und $c^{T} = (c_1, ..., c_d)$.

Damit kann die Zielfunktion als Skalarprodukt $c \cdot x$ geschrieben werden.

Sei $x^{T} = (x_1, ..., x_d)$ und $c^{T} = (c_1, ..., c_d)$.

Damit kann die Zielfunktion als Skalarprodukt $c \cdot x$ geschrieben werden.

Außerdem sei $A \in \mathbb{R}^{m \times d}$ die Matrix mit den Einträgen a_{ij} und $b^{\mathsf{T}} = (b_1, \dots, b_m) \in \mathbb{R}^m$.

Dann entspricht jede Zeile der Matrix einer Nebenbedingung.

Wir können die Nebenbedingungen als $Ax \leq b$ schreiben.

Sei
$$x^{T} = (x_1, ..., x_d)$$
 und $c^{T} = (c_1, ..., c_d)$.

Damit kann die Zielfunktion als Skalarprodukt $c \cdot x$ geschrieben werden.

Außerdem sei $A \in \mathbb{R}^{m \times d}$ die Matrix mit den Einträgen a_{ij} und $b^{\mathsf{T}} = (b_1, \dots, b_m) \in \mathbb{R}^m$. Dann entspricht jede Zeile der Matrix einer Nebenbedingung.

Wir können die Nebenbedingungen als $Ax \leq b$ schreiben.

Lineares Programm

Eingabe: $c \in \mathbb{R}^d$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times d}$

Lösungen: alle $x \in \mathbb{R}^d$ mit $Ax \le b$ Zielfunktion: minimiere/maximiere $c \cdot x$

Beispiel:

Ein Hobbygärtner besitzt 100 m² Land, auf dem er Blumen und Gemüse anbauen möchte.

- 60 m² Land geeignet für Blumen und Gemüse
 40 m² nur für Gemüse geeignet
- Er hat ein Budget in Höhe von 720 €.
- Kosten für Blumen: 9 € pro Quadratmeter
 Kosten für Gemüse: 6 € pro Quadratmeter
- Erlös für Blumen: 20 € pro Quadratmeter
 Erlös für Gemüse: 10 € pro Quadratmeter

Frage: Wie viele Blumen und wie viel Gemüse sollte er anbauen, um seinen Gewinn zu maximieren?

Wähle geeignete Variablen:

- $x_B \in \mathbb{R} =$ Quadratmeter Blumen
- $x_G \in \mathbb{R} =$ Quadratmeter Gemüse

Dann können wir die Nebenbedingungen wie folgt formulieren:

$x_B \geq 0, x_G \geq 0$	(keine negative Anbaufläche
$x_B + x_G \leq 100$	(maximal 100 m ²)
$x_B \leq 60$	(maximal 60 m ² Blumen)
$9x_B+6x_G\leq 720$	(Budget von 720 €)

Wähle geeignete Variablen:

- $x_B \in \mathbb{R} =$ Quadratmeter Blumen
- $x_G \in \mathbb{R} =$ Quadratmeter Gemüse

Dann können wir die Nebenbedingungen wie folgt formulieren:

$$x_B \geq 0, x_G \geq 0$$
 (keine negative Anbaufläche)
 $x_B + x_G \leq 100$ (maximal 100 m²)
 $x_B \leq 60$ (maximal 60 m² Blumen)
 $9x_B + 6x_G \leq 720$ (Budget von 720 \in)

Der Gewinn ist die Differenz von Erlös und Ausgaben.

Somit soll die folgende Zielfunktion maximiert werden:

$$(20-9)x_B + (10-6)x_G = 11x_B + 4x_G.$$

Beispiel: Maximaler Fluss

Eingabe: Flussnetzwerk G = (V, E) mit Quelle $s \in V$ und Senke $t \in V$,

Kapazitätsfunktion $c: E \to \mathbb{N}_0$

Aufgabe: Finde einen maximalen Fluss von *s* nach *t* in *G*.

Beispiel: Maximaler Fluss

Eingabe: Flussnetzwerk G = (V, E) mit Quelle $s \in V$ und Senke $t \in V$,

Kapazitätsfunktion $c: E \to \mathbb{N}_0$

Aufgabe: Finde einen maximalen Fluss von s nach t in G.

Modellierung als LP:

Variablen: Für jedes $e \in E$ Variable $x_e \in \mathbb{R}$, die den Fluss auf e angibt.

Beispiel: Maximaler Fluss

Eingabe: Flussnetzwerk G = (V, E) mit Quelle $s \in V$ und Senke $t \in V$,

Kapazitätsfunktion $c: E \to \mathbb{N}_0$

Aufgabe: Finde einen maximalen Fluss von *s* nach *t* in *G*.

Modellierung als LP:

Variablen: Für jedes $e \in E$ Variable $x_e \in \mathbb{R}$, die den Fluss auf e angibt.

Zielfunktion:

$$\sum_{e=(s,v)} x_e - \sum_{e=(v,s)} x_e$$

Beispiel: Maximaler Fluss

Eingabe: Flussnetzwerk G = (V, E) mit Quelle $s \in V$ und Senke $t \in V$,

Kapazitätsfunktion $c: E \to \mathbb{N}_0$

Aufgabe: Finde einen maximalen Fluss von s nach t in G.

Modellierung als LP:

Variablen: Für jedes $e \in E$ Variable $x_e \in \mathbb{R}$, die den Fluss auf e angibt.

Zielfunktion:

$$\sum_{e=(s,v)} x_e - \sum_{e=(v,s)} x_e$$

Nebenbedingungen:

$$\forall e \in E : x_e \geq 0$$

(Fluss nicht negativ)

$$\forall e \in E : x_e \leq c(e)$$

(Fluss nicht größer als Kapazität)

$$orall v \in V \setminus \{s,t\}: \sum_{e=(u,v)} x_e - \sum_{e=(v,u)} x_e = 0$$
 (Flusserhaltung)

6 Lineare Programmierung

- 6.1 Grundlagen
- 6.2 Simplex-Algorithmus
- 6.3 Komplexität von linearer Programmierung
- 6.4 Ganzzahlige lineare Programme

kanon	ische	Form
-------	-------	------

 $\min c \cdot x$

 $Ax \leq b$

 $x \ge 0$

Gleichungsform

 $\min c \cdot x$

Ax = b

 $x \ge 0$

kanonische Form	Gleichungsform
$\min c \cdot x$	$\min c \cdot x$
$Ax \leq b$	Ax = b
$x \ge 0$	$x \ge 0$

Sei $a_i = (a_{i1}, \dots, a_{id})^\mathsf{T} \in \mathbb{R}^d$ die *i-*te Zeile von *A*.

kanonische Form	Gleichungsform
$\min c \cdot x$	$\min c \cdot x$
$Ax \leq b$	Ax = b
$x \ge 0$	$x \ge 0$

Sei $a_i = (a_{i1}, \dots, a_{id})^\mathsf{T} \in \mathbb{R}^d$ die *i*-te Zeile von A.

Transformationen

 $\bullet \ \ \text{,maximiere} \ c \cdot \textit{x} `` \ \ \text{entspricht} \ \ \ \text{,minimiere} \ -\textit{c} \cdot \textit{x} ``.$

kanonische Form	Gleichungsform
$\min c \cdot x$	$\min c \cdot x$
$Ax \leq b$	Ax = b
$x \ge 0$	$x \ge 0$

Sei $a_i = (a_{i1}, \dots, a_{id})^\mathsf{T} \in \mathbb{R}^d$ die *i*-te Zeile von A.

- "maximiere $c \cdot x$ " entspricht "minimiere $-c \cdot x$ ".
- Variable x_i kann durch $x_i' x_i''$ für zwei Variablen $x_i' \geq 0$ und $x_i'' \geq 0$ ersetzt werden.

kanonische Form	Gleichungsform
$\min c \cdot x$	$\min c \cdot x$
$Ax \leq b$	Ax = b
$x \ge 0$	$x \ge 0$

Sei $a_i = (a_{i1}, \dots, a_{id})^\mathsf{T} \in \mathbb{R}^d$ die *i*-te Zeile von A.

- "maximiere $c \cdot x$ " entspricht "minimiere $-c \cdot x$ ".
- Variable x_i kann durch $x_i' x_i''$ für zwei Variablen $x_i' \ge 0$ und $x_i'' \ge 0$ ersetzt werden.
- $a_i \cdot x \ge b_i$ entspricht $-a_i \cdot x \le -b_i$.

kanonische Form	Gleichungsform
$\min c \cdot x$	$\min c \cdot x$
$Ax \leq b$	Ax = b
$x \ge 0$	$x \ge 0$

Sei $a_i = (a_{i1}, \dots, a_{id})^\mathsf{T} \in \mathbb{R}^d$ die *i*-te Zeile von A.

- "maximiere $c \cdot x$ " entspricht "minimiere $-c \cdot x$ ".
- Variable x_i kann durch $x_i' x_i''$ für zwei Variablen $x_i' \ge 0$ und $x_i'' \ge 0$ ersetzt werden.
- $a_i \cdot x \ge b_i$ entspricht $-a_i \cdot x \le -b_i$.
- Gleichung $a_i \cdot x = b_i$ kann durch $a_i \cdot x \le b_i$ und $a_i \cdot x \ge b_i$ ersetzt werden.

kanonische Form	Gleichungsform
$\min c \cdot x$	$\min c \cdot x$
$Ax \leq b$	Ax = b
$x \ge 0$	$x \ge 0$

Sei $a_i = (a_{i1}, \dots, a_{id})^\mathsf{T} \in \mathbb{R}^d$ die *i*-te Zeile von A.

- "maximiere $c \cdot x$ " entspricht "minimiere $-c \cdot x$ ".
- Variable x_i kann durch $x_i' x_i''$ für zwei Variablen $x_i' \ge 0$ und $x_i'' \ge 0$ ersetzt werden.
- $a_i \cdot x \ge b_i$ entspricht $-a_i \cdot x \le -b_i$.
- Gleichung $a_i \cdot x = b_i$ kann durch $a_i \cdot x \le b_i$ und $a_i \cdot x \ge b_i$ ersetzt werden.
- $a_i \cdot x \le b_i$ können wir durch $s_i + a_i \cdot x = b_i$ für eine Schlupfvariable $s_i \ge 0$ darstellen.

Geometrische Interpretation: Betrachte LP in kanonischer Form

Variablenbelegung $x \in \mathbb{R}^d$ entspricht Punkt im \mathbb{R}^d .

Geometrische Interpretation: Betrachte LP in kanonischer Form

Variablenbelegung $x \in \mathbb{R}^d$ entspricht Punkt im \mathbb{R}^d .

Eine Gleichung $a_i \cdot x = b_i$ definiert eine affine Hyperebene $\{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}$.

Jede solche affine Hyperebene definiert den abgeschlossenen Halbraum

$$\mathcal{H}_i = \{x \in \mathbb{R}^d \mid a_i \cdot x \leq b_i\}.$$

Geometrische Interpretation: Betrachte LP in kanonischer Form

Variablenbelegung $x \in \mathbb{R}^d$ entspricht Punkt im \mathbb{R}^d .

Eine Gleichung $a_i \cdot x = b_i$ definiert eine affine Hyperebene $\{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}$.

Jede solche affine Hyperebene definiert den abgeschlossenen Halbraum

$$\mathcal{H}_i = \{x \in \mathbb{R}^d \mid a_i \cdot x \leq b_i\}.$$

Eine Variablenbelegung $x \in \mathbb{R}^d$ erfüllt genau dann Nebenbedingung i, wenn $x \in \mathcal{H}_i$ gilt.

Eine Variablenbelegung $x \in \mathbb{R}^d$ ist genau dann gültig, wenn $x \in \mathcal{P} := \mathcal{H}_1 \cap \ldots \cap \mathcal{H}_m \cap \mathbb{R}^d_{>0}$ gilt.

Beispiel:

Betrachte lineares Programm mit den folgenden Nebenbedingungen

$$x_1 \ge 0,$$
 $x_2 \ge 0,$ $x_1 \le 2,$ $-x_2 \le -1,$ $-x_1 + x_2 \le 2$

Wir können $\mathbb{R}^d_{\geq 0}$ als einen Schnitt von d Halbräumen darstellen:

$$\mathbb{R}_{\geq 0}^d = \{ x \in \mathbb{R}^d \mid -x_1 \leq 0 \} \cap \ldots \cap \{ x \in \mathbb{R}^d \mid -x_d \leq 0 \}.$$

Somit ist \mathcal{P} der Schnitt von endlich vielen Halbräumen.

Wir können $\mathbb{R}^d_{\geq 0}$ als einen Schnitt von d Halbräumen darstellen:

$$\mathbb{R}^d_{\geq 0} = \{x \in \mathbb{R}^d \mid -x_1 \leq 0\} \cap \ldots \cap \{x \in \mathbb{R}^d \mid -x_d \leq 0\}.$$

Somit ist \mathcal{P} der Schnitt von endlich vielen Halbräumen.

Einen solchen Schnitt nennt man Polyeder. Wir sagen, dass ein lineares Programm zulässig ist, wenn sein Lösungspolyeder nichtleer ist.

Wir können $\mathbb{R}^d_{\geq 0}$ als einen Schnitt von d Halbräumen darstellen:

$$\mathbb{R}^{d}_{>0} = \{x \in \mathbb{R}^{d} \mid -x_{1} \leq 0\} \cap \ldots \cap \{x \in \mathbb{R}^{d} \mid -x_{d} \leq 0\}.$$

Somit ist \mathcal{P} der Schnitt von endlich vielen Halbräumen.

Einen solchen Schnitt nennt man Polyeder. Wir sagen, dass ein lineares Programm zulässig ist, wenn sein Lösungspolyeder nichtleer ist.

Eine Menge X heißt konvex, wenn für alle Punkte $x \in X$ und $y \in X$ gilt:

$$L(x,y) := \{\lambda x + (1-\lambda)y \mid \lambda \in [0,1]\} \subseteq X.$$

Lemma 6.1

Das Lösungspolyeder ${\mathcal P}$ ist konvex.

Beweis: Sei \mathcal{P} der Durchschnitt der abgeschlossenen Halbräume $\mathcal{H}_1, \dots, \mathcal{H}_n$.

Lemma 6.1

Das Lösungspolyeder \mathcal{P} ist konvex.

Beweis: Sei \mathcal{P} der Durchschnitt der abgeschlossenen Halbräume $\mathcal{H}_1, \dots, \mathcal{H}_n$.

Jeder abgeschlossene Halbraum $\mathcal{H} = \{z \mid u \cdot z \leq w\}$ ist konvex:

Seien $x \in \mathcal{H}$ und $y \in \mathcal{H}$ beliebig. Für jedes $\lambda \in [0,1]$ gehört dann auch der Punkt $\lambda x + (1-\lambda)y$ zu \mathcal{H} , denn

$$u \cdot (\lambda x + (1 - \lambda)y) = \lambda(u \cdot x) + (1 - \lambda)(u \cdot y) \le \lambda w + (1 - \lambda)w = w.$$

Lemma 6.1

Das Lösungspolyeder $\mathcal P$ ist konvex.

Beweis: Sei \mathcal{P} der Durchschnitt der abgeschlossenen Halbräume $\mathcal{H}_1, \dots, \mathcal{H}_n$.

Jeder abgeschlossene Halbraum $\mathcal{H} = \{z \mid u \cdot z \leq w\}$ ist konvex:

Seien $x \in \mathcal{H}$ und $y \in \mathcal{H}$ beliebig. Für jedes $\lambda \in [0,1]$ gehört dann auch der Punkt $\lambda x + (1-\lambda)y$ zu \mathcal{H} , denn

$$u \cdot (\lambda x + (1 - \lambda)y) = \lambda(u \cdot x) + (1 - \lambda)(u \cdot y) \le \lambda w + (1 - \lambda)w = w.$$

Der Schnitt zweier konvexer Mengen ist wieder konvex:

Seien $X \subseteq \mathbb{R}^d$ und $Y \subseteq \mathbb{R}^d$ konvexe Mengen, und seien $x, y \in X \cap Y$ beliebig. Da die Mengen X und Y konvex sind, gilt $L(x,y) \subseteq X$ und $L(x,y) \subseteq Y$. Dementsprechend gilt auch $L(x,y) \subseteq X \cap Y$.

Sei ein lineares Programm in kanonischer Form mit Lösungspolyeder ${\mathcal P}$ gegeben.

Wir sagen, eine Variablenbelegung $x \in \mathcal{P}$ ist lokal optimal, wenn es ein $\varepsilon > 0$ gibt, für das es kein $y \in \mathcal{P}$ mit $||x - y|| \le \varepsilon$ und $c \cdot y < c \cdot x$ gibt¹.

¹Hierbei bezeichnet ||x - y|| den euklidischen Abstand zwischen x und y, also $||x - y|| = \sqrt{(x_1 - y_1)^2 + \ldots + (x_d - y_d)^2}$.

Sei ein lineares Programm in kanonischer Form mit Lösungspolyeder ${\mathcal P}$ gegeben.

Wir sagen, eine Variablenbelegung $x \in \mathcal{P}$ ist lokal optimal, wenn es ein $\varepsilon > 0$ gibt, für das es kein $y \in \mathcal{P}$ mit $||x - y|| \le \varepsilon$ und $c \cdot y < c \cdot x$ gibt¹.

¹Hierbei bezeichnet ||x-y|| den euklidischen Abstand zwischen x und y, also $||x-y|| = \sqrt{(x_1-y_1)^2 + \ldots + (x_d-y_d)^2}$.

Sei ein lineares Programm in kanonischer Form mit Lösungspolyeder ${\mathcal P}$ gegeben.

Wir sagen, eine Variablenbelegung $x \in \mathcal{P}$ ist lokal optimal, wenn es ein $\varepsilon > 0$ gibt, für das es kein $y \in \mathcal{P}$ mit $||x - y|| \le \varepsilon$ und $c \cdot y < c \cdot x$ gibt¹.

Theorem 6.2

Sei ein lineares Programm in kanonischer Form mit Lösungspolyeder $\mathcal P$ gegeben und sei $x \in \mathcal P$ eine lokal optimale Variablenbelegung. Dann ist x auch global optimal, d. h. es gibt kein $y \in \mathcal P$ mit $c \cdot y < c \cdot x$.

¹Hierbei bezeichnet ||x-y|| den euklidischen Abstand zwischen x und y, also $||x-y|| = \sqrt{(x_1-y_1)^2 + \ldots + (x_d-y_d)^2}$.

Beweis: Annahme: es gibt $y \in \mathcal{P}$ mit $c \cdot y < c \cdot x$.

Beweis: Annahme: es gibt $y \in \mathcal{P}$ mit $c \cdot y < c \cdot x$.

Da \mathcal{P} konvex ist, liegt jeder Punkt aus L(x, y) in \mathcal{P} .

Sei $z = \lambda x + (1 - \lambda)y$ mit $\lambda \in [0, 1)$ ein solcher Punkt.

Beweis: Annahme: es gibt $y \in \mathcal{P}$ mit $c \cdot y < c \cdot x$.

Da \mathcal{P} konvex ist, liegt jeder Punkt aus L(x, y) in \mathcal{P} .

Sei $z = \lambda x + (1 - \lambda)y$ mit $\lambda \in [0, 1)$ ein solcher Punkt.

Zielfunktion an der Stelle z:

$$c \cdot z = c \cdot (\lambda x + (1 - \lambda)y) = \lambda(c \cdot x) + (1 - \lambda)(c \cdot y) < c \cdot x.$$

Beweis: Annahme: es gibt $y \in \mathcal{P}$ mit $c \cdot y < c \cdot x$.

Da \mathcal{P} konvex ist, liegt jeder Punkt aus L(x, y) in \mathcal{P} .

Sei
$$z = \lambda x + (1 - \lambda)y$$
 mit $\lambda \in [0, 1)$ ein solcher Punkt.

Zielfunktion an der Stelle z:

$$c \cdot z = c \cdot (\lambda x + (1 - \lambda)y) = \lambda(c \cdot x) + (1 - \lambda)(c \cdot y) < c \cdot x.$$

 \Rightarrow Jeder Punkt $z \in L(x, y)$ mit $z \neq x$ ist eine echt bessere Variablenbelegung als x.

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Sei $c \cdot x$ eine beliebige lineare Zielfunktion und sei $w \in \mathbb{R}$ beliebig. Die Menge

$$\{x \in \mathbb{R}^d \mid c \cdot x = w\}$$

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Sei $c \cdot x$ eine beliebige lineare Zielfunktion und sei $w \in \mathbb{R}$ beliebig. Die Menge

$$\{x \in \mathbb{R}^d \mid c \cdot x = w\}$$

bildet eine affine Hyperebene mit Normalenvektor c.

1. Finde ein $w \in \mathbb{R}$, sodass $\{x \in \mathbb{R}^d \mid c \cdot x = w\} \cap \mathcal{P} \neq \emptyset$.

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Sei $c \cdot x$ eine beliebige lineare Zielfunktion und sei $w \in \mathbb{R}$ beliebig. Die Menge

$$\{x \in \mathbb{R}^d \mid c \cdot x = w\}$$

- 1. Finde ein $w \in \mathbb{R}$, sodass $\{x \in \mathbb{R}^d \mid c \cdot x = w\} \cap \mathcal{P} \neq \emptyset$.
- 2. Verschiebe $\{x \in \mathbb{R}^d \mid c \cdot x = w\}$ solange parallel in Richtung -c wie obiger Schnitt nichtleer ist.

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Sei $c \cdot x$ eine beliebige lineare Zielfunktion und sei $w \in \mathbb{R}$ beliebig. Die Menge

$$\{x \in \mathbb{R}^d \mid c \cdot x = w\}$$

- 1. Finde ein $w \in \mathbb{R}$, sodass $\{x \in \mathbb{R}^d \mid c \cdot x = w\} \cap \mathcal{P} \neq \emptyset$.
- 2. Verschiebe $\{x \in \mathbb{R}^d \mid c \cdot x = w\}$ solange parallel in Richtung -c wie obiger Schnitt nichtleer ist.

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Sei $c \cdot x$ eine beliebige lineare Zielfunktion und sei $w \in \mathbb{R}$ beliebig. Die Menge

$$\{x \in \mathbb{R}^d \mid c \cdot x = w\}$$

- 1. Finde ein $w \in \mathbb{R}$, sodass $\{x \in \mathbb{R}^d \mid c \cdot x = w\} \cap \mathcal{P} \neq \emptyset$.
- 2. Verschiebe $\{x \in \mathbb{R}^d \mid c \cdot x = w\}$ solange parallel in Richtung -c wie obiger Schnitt nichtleer ist.

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Sei $c \cdot x$ eine beliebige lineare Zielfunktion und sei $w \in \mathbb{R}$ beliebig. Die Menge

$$\{x \in \mathbb{R}^d \mid c \cdot x = w\}$$

- 1. Finde ein $w \in \mathbb{R}$, sodass $\{x \in \mathbb{R}^d \mid c \cdot x = w\} \cap \mathcal{P} \neq \emptyset$.
- 2. Verschiebe $\{x \in \mathbb{R}^d \mid c \cdot x = w\}$ solange parallel in Richtung -c wie obiger Schnitt nichtleer ist.

Ein LP heißt unbeschränkt, wenn der zu minimierende Zielfunktionswert innerhalb des Lösungspolyeders \mathcal{P} beliebig klein werden kann. Ansonsten heißt es beschränkt.

Sei $c \cdot x$ eine beliebige lineare Zielfunktion und sei $w \in \mathbb{R}$ beliebig. Die Menge

$$\{x \in \mathbb{R}^d \mid c \cdot x = w\}$$

- 1. Finde ein $w \in \mathbb{R}$, sodass $\{x \in \mathbb{R}^d \mid c \cdot x = w\} \cap \mathcal{P} \neq \emptyset$.
- 2. Verschiebe $\{x \in \mathbb{R}^d \mid c \cdot x = w\}$ solange parallel in Richtung -c wie obiger Schnitt nichtleer ist.
- 3. Terminiert der zweite Schritt nicht, so ist das LP unbeschränkt. Ansonsten sei $\mathcal{A} = \{x \in \mathbb{R}^d \mid c \cdot x = w\}$ die letzte Hyperebene mit $\mathcal{A} \cap \mathcal{P} \neq \emptyset$. Dann ist jeder Punkt $x^* \in \mathcal{A} \cap \mathcal{P}$ eine optimale Variablenbelegung des LPs.

Beispiele:

6 Lineare Programmierung

- 6 Lineare Programmierung
- 6.1 Grundlagen

6.2 Simplex-Algorithmus

- 6.3 Komplexität von linearer Programmierung
- 6.4 Ganzzahlige lineare Programme

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Simplex-Algorithmus (informelle Beschreibung)

Starte an einer Ecke $x^1 \in \mathcal{P}$ und teste, ob es eine benachbarte Ecke mit besserem Zielfunktionswert gibt.

Gibt es eine solche benachbarte Ecke $x^2 \in \mathcal{P}$, so mache mit x^2 analog weiter und teste, ob es eine bessere benachbarte Ecke gibt.

Finden einer initialen Lösung

Sei ein LP mit den Nebenbedingungen Ax = b gegeben und sei o. B. d. A. $b \ge 0$.

Finden einer initialen Lösung

Sei ein LP mit den Nebenbedingungen Ax = b gegeben und sei o. B. d. A. $b \ge 0$.

Für die *m* Nebenbedingungen führen wir Hilfsvariablen $h_1 \geq 0, \dots, h_m \geq 0$ ein.

Die NB $a_i \cdot x = b_i$ ersetzen wir für jedes i durch die NB $a_i \cdot x + \mathbf{h_i} = b_i$.

Wir ignorieren die Zielfunktion und definieren als neue Zielfunktion $h_1 + \ldots + h_m$.

Finden einer initialen Lösung

Sei ein LP mit den Nebenbedingungen Ax = b gegeben und sei o. B. d. A. $b \ge 0$.

Für die m Nebenbedingungen führen wir Hilfsvariablen $h_1 \geq 0, \ldots, h_m \geq 0$ ein.

Die NB $a_i \cdot x = b_i$ ersetzen wir für jedes i durch die NB $a_i \cdot x + \mathbf{h_i} = b_i$.

Wir ignorieren die Zielfunktion und definieren als neue Zielfunktion $h_1 + \ldots + h_m$.

Zulässige Lösung für dieses LP:

$$h_i = b_i$$
 für jedes $i \in \{1, \dots, m\}$ und $x_i = 0$ für alle $i \in \{1, \dots, d\}$.

Finden einer initialen Lösung

Sei ein LP mit den Nebenbedingungen Ax = b gegeben und sei o. B. d. A. $b \ge 0$.

Für die m Nebenbedingungen führen wir Hilfsvariablen $h_1 \geq 0, \ldots, h_m \geq 0$ ein.

Die NB $a_i \cdot x = b_i$ ersetzen wir für jedes i durch die NB $a_i \cdot x + \mathbf{h_i} = b_i$.

Wir ignorieren die Zielfunktion und definieren als neue Zielfunktion $h_1 + \ldots + h_m$.

Zulässige Lösung für dieses LP:

$$h_i = b_i$$
 für jedes $i \in \{1, \dots, m\}$ und $x_i = 0$ für alle $i \in \{1, \dots, d\}$.

Initialisiere Simplex-Algorithmus mit dieser Lösung und berechne eine opt. Lösung (x^*, h^*) .

Gilt $h^* \neq 0$, dann ist das ursprüngliche LP nicht zulässig.

Finden einer initialen Lösung

Sei ein LP mit den Nebenbedingungen Ax = b gegeben und sei o. B. d. A. $b \ge 0$.

Für die m Nebenbedingungen führen wir Hilfsvariablen $h_1 \geq 0, \ldots, h_m \geq 0$ ein.

Die NB $a_i \cdot x = b_i$ ersetzen wir für jedes i durch die NB $a_i \cdot x + \mathbf{h_i} = b_i$.

Wir ignorieren die Zielfunktion und definieren als neue Zielfunktion $h_1 + \ldots + h_m$.

Zulässige Lösung für dieses LP:

$$h_i = b_i$$
 für jedes $i \in \{1, \dots, m\}$ und $x_i = 0$ für alle $i \in \{1, \dots, d\}$.

Initialisiere Simplex-Algorithmus mit dieser Lösung und berechne eine opt. Lösung (x^*, h^*) .

Gilt $h^* \neq 0$, dann ist das ursprüngliche LP nicht zulässig.

Gilt $h^* = 0$, dann ist x^* eine zulässige Lösung für das ursprüngliche LP.