LS-Dyna/Pre-post Tutorial 1

Ball and Plate Impact

Introduction

- This tutorial is an introduction LS-DYNA modeling using LS-Prepost
- In this tutorial, you will learn to:
 - Mesh a 2D plate and a 3D sphere
 - Assign section and materials properties to parts
 - Create node sets
 - Apply boundary constraints to node sets
 - Apply initial velocity conditions
 - Define part-to-part contacts
 - Set the simulation time, and define the output interval
 - Use the animation controls
 - Plot rigid body and nodal time-histories
 - Plot fringe components
- It is important that you process what you are doing this is not a cookbook exercise – you will need to understand what is possible in each step, not just what you need to get done.

Start the Program Manager and LS-PrePost

Much of your project management can be done from the LS_DYNA Program Manager

- From the Start Menu, select the LS-DYNA Manager
- Click on the LS-PrePost button on themenu bar and select "Start LS-PrePost".
- Depending on the version you are running, you may need to press the F11 key to toggle to the old style menu that is used in this tutorial.
- The LS-PrePost application will appear

In this tutorial you will model an rigid ball impacting an elastic-plastic plate.

Step 1: Create Plate Mesh

- Go to page 6 and select Mesh
- In the Entity menu, select 4N-Shell
- Enter the coords of the plate corners:
 - P1: -150,-150,0
 - P2: 150,-150,0
 - P3: 150,150,0
 - P4: -150,150,0
- Enter the # of elements in each dimension
 - NxNo: 16
 - NyNo: 16
- Enter Target Name
 - plate
- Click Create
- Click Accept

Step 2: Create Ball Mesh

- In the Entity menu, select Sphere_Solid
- Enter the ball radius and element density:
 - Radius: 50Density: 6
- Enter the center location
 - X: 0
 - Y: 0
 - Z: 51
- Enter Target Name
 - ball
- Click Create
- Click Accept
- Click Done

Step 3: Define Materials

- Go to page 3 and select *Mat
- Select GroupBy: All, sort by Type
- Select 020-Rigid and click Edit
- Click NewID in the pop-up, and enter:
 - TITLE: rigid steel ball
 - RO: 7.85E-3
 - E: 207E+3
 - PR: 0.3
- Click Accept
- Select 024-PIECEWISE LINEAR_PLASTICITY and click Edit
- Click NewID, and enter
 - TITLE: deformable plate
 - RO: 7.85E-3
 - E: 207E+3
 - PR: 0.3
 - SIGY: 200
 - ETAN:2E+3
- Click Accept
- Click Done

Step 4: Define Section Properties

- In page 3, select *Section
- Select SOLID from the list, and click Edit
- Click NewID in the pop-up, and enter:
 - TITLE: solid ball
 - FLFORM = 1
- Click Accept
- Click Done
- Select SHELL from the list, and click Edit
- Click on NewID and enter:
 - TITLE: plate section
 - ELFORM = 2
 - NIP = 5
 - T1 = 1
- Click Accept
- Click Done

*Contact *Initial *Section *Control *Intgrtn *Set *Def2Ra *Intrfac *Termnt *User Damping *Load 3 7 D 5 6 - Keywor Edit Done Model ALE2D BEAM BEAM AISC DISCRETE POINT SOURCE POINT_SOURCE_MIXTURE SPRING_DAMPER SEATBELT SHELL ALE SHELL EFG SHELL THERMAL [*]50LID (1) SOLID ALE SOLID EFG SPH TSHELL

*Dbase

*Define

*Elem

*Hrglass

*Airbag *Ale

*Boundry

*Compnt

*Mat

*Node

*Param *Part

*Rgdwal

*Note: T2, T3, T4 are automatically filled in

Step 5: Define Parts

*Airbag

*Boundry *Cnstrnd

*Compnt
*Contact

*Control

*Def2Ra

*Damping

[*]PART (2)

*Dbase

*Define

*Elem

*Eos

*Hrglass

*Initial

*Intgrtn

*Intrfac

*Load

5 6 7 D

*Mat

*Node

*Part

*Rgdwal

*Section

*Set

*Termnt

*User

Done Model

- In page 3, select *Part
- Click on [*]PART (2) and select Edit
- Select Part 1 on the list in the pop-up, and enter:
 - TITLE: plate
- Click on the SECID button and select:
 - 2 plate section
- Click on the MID button and select:
 - 2 deformable plate
- Click Accept
- Select Part 2 and enter:
 - TITLE: ball
- Click on SECID button and select:
 - 1 solid ball
- Click on MID button and select:
 - 1 rigid steel ball
- Click Accept
- Click Done

Step 6: Define Initial Velocity

- In page 3, select *Initial
- Select VELOCITY_RIGID_BODY from the list and click Edit
- In the pop-up, click on the PID button and select:
 - 2 ball
- Select VZ and enter:
 - VZ: -10
- Click Accept
- Click Done

Step 7: Define Contact

- In page 3, select *Contact
- Select AUTOMATIC_SURFACE_TO_SURFACE from the list and click Edit
- Click NewID in the pop-up, and enter:
 - TITLE: ball to plate contact
- Set SSTYP and MSTYP to 3
- Click on the SSID button and select:
 - 1 plate
- Click MSID and select:
 - 2 ball
- Enter the following:
 - FS: 0.1
 - FD: 0.1
- Check box A and set SOFT equal to 2
- Click Accept
- Click Done

Step 8: Set End Time

- In page 3, select *Control
- Select TERMINATION from the list and click Edit
- Enter:
 - ENDTIME: 10
- Click Accept
- Click Done

Step 9: Set Output Frequency

- In page 3, select *Dbase
- Select BINARY_D3PLOT from the list and click Edit
- Enter:
 - DT: 1
- Click Accept
- Click Done

Step 10: Define Edge Nodes Set

- Go to page 5 and select SetD
- Select Create and *SET_NODE
- Enter edge nodes in the Title Box
- On the bottom menu, select ByEdge
- Click on Prop
- Click along each of the four plate edges so that all the edge nodes are selected
- Click Apply
- Click Done

*Note: nodes can be removed by clicking with the right mouse button

Step 11: Define Boundary Constraint

- Go to page 3 and select *Boundary
- Select SPC_SET from the list and click Edit
- Enter plate edge constraint in the Title Box
- Click on the NSID button and select:
 - 1 edge nodes
- Change DOFX, DOFY, DOFX, DOFRX, DOFRY, and DOFRZ to 1
- Click Accept
- Click Done

Step 12: Save File

- File → Save Keyword
- Enter filename as ball_plate.k
- Click Save
- You can exit Prepost now

Step 13: Run Simulation

- In the LS-DYNA Program Manager, select Solver → Start LS-DYNA Analysis
- Click on the first Browse button and locate ball_plate.k
- Click RUN
- A command window will appear showing you the simulation process
- When the simulation is finished, you should see:

Normal termination

If you see

Error termination

then there was an error in your model and the simulation did not finish

Step 14: Post-Processing (Animation)

- If the simulation ran correctly, start up LS-Prepost again
- Go to File → Open → LS-DYNA Binary Plot
- Find the file d3plot that is in the same directory as the model k file you just ran
- You can run animation of the simulation using the animation control panel

in the bottom menu

Step 15a: Post-Processing (Rigid Body)

- Go to page 1, select Setting
- Select Hic/CSI const. and set the Time units to msec and Gravity Constant to 0.00981 and click Aply
- In page 1, select SelPar
- Select H2, which should only leave the ball model showing
- In page 1, select History, and choose Part
- Select Z-Rigid Body Velocity from the list
- Click on the model of the ball
- Click on Plot
- Click Quit to close plot

Step 15b: Post-Processing (Rigid Body)

- With part 2 still selected, select hic15 from the list
- hic15 calculates the HIC value with a maximum time window of 15 ms
- Click on Plot
- The two curves shown are the resultant acceleration, and the time window used for maximum HIC
- Information on the HIC value and the time window is beside the plot
- NOTE: This HIC is sensitive to the time step of the acceleration plot.
 Decrease the output time step in Step 9 to DT = 0.1 for a more

accurate calculation.

• Click *Quit* to close plot

Step 16: Post-Processing (Nodal)

- In page 1, select SelPar
- Select S1, which should only leave the plate model showing
- In page 1, select History, and choose Nodal
- Select Z-displacement from the list
- Click on the center node of the plate
 - It should indicate that it is selected
- Click on Plot
- Click Quit to close plot

Step 17: Post-Processing (Fringe Plot)

- In page 1, select Fcomp
- Select Stress, and choose plastic strain from the list
- In the animation control panel, set the current state to #12
 - This should be for time = 10

