

Simultaneous Identification of Multiple Driver Pathways in Cancer

Max Leiserson ISMB 2014

Clonal theory of cancer

"typical tumor": ~10 driver mutations

100's – 1000's of passenger mutations

Clonal theory of cancer

"typical tumor": ~10 driver mutations

100's – 1000's of passenger mutations

Clonal theory of cancer

"typical tumor": ~10 driver mutations

sequence genome

100's – 1000's of passenger mutations

Types of Variation in Tumor Genomes

Single Nucleotide Copy Number Variants

Variants

Healthy .. ACGTCATCATGA ...

Tumor .. ACGTCAGCATGA ... deletion amplification

Compare variation across tumors

= gene

= SNV / CNA

Significantly mutated genes in cancer

Significance Score

Mutations weighted by:

- Gene length
- Mutation context
- Expression level
- Replication timing
- ...

"Long tail" of mutated genes complicates finding driver mutations

Significance Score

Mutations weighted by:

- Gene length
- Mutation context
- Expression level
- Replication timing

• ...

Comparison of significantly mutated genes

TCGA Pan-Cancer Dataset [TCGA Research Network, 2013] >3000 tumor samples of twelve cancer types

"Long tail" of mutated genes complicates finding driver mutations

Significance Score

Mutations weighted by:

- Gene length
- Mutation context
- Expression level
- Replication timing

• ...

Comparison of significantly mutated genes

TCGA Pan-Cancer Dataset [TCGA Research Network, 2013] >3000 tumor samples of twelve cancer types

50 genes agreed upon by all methods Hundreds found by only one method

Mutations target pathways

Significance Score

Mutations weighted by:

- Gene length
- Mutation context
- Expression level
- Replication timing

• ...

Comparison of significantly mutated genes

TCGA Pan-Cancer Dataset [TCGA Research Network, 2013] >3000 tumor samples of twelve cancer types

50 genes agreed upon by all methods Hundreds found by only one method

Identifying significantly mutated pathways

TCGA Ovarian (Nature 2011)

TCGA Colorectal (Nature 2012)

Identifying significantly mutated pathways

₹ 92% 97% ₹

WNT signalling

TGF-β signalling ₹ 27% 87% ₹

TCGA Colorectal (Nature 2012)

RB and PI3K/RAS signalling

TCGA Ovarian (Nature 2011)

- Novel pathways
- Crosstalk
- Origin specific

Cancer pathways often harbor mutually exclusive mutations

Few driver mutations distributed across multiple pathways

→ Approximately one driver mutation per pathway per patient

Cancer pathways often harbor mutually exclusive mutations

Few driver mutations distributed across multiple pathways

→ Approximately one driver mutation per pathway per patient

1. Exclusivity

Cancer pathways often harbor mutually exclusive mutations

Few driver mutations distributed across multiple pathways

→ Approximately one driver mutation per pathway per patient

1. Exclusivity

→ Many patients have a mutation in important cancer pathway

2. High Coverage

De novo driver exclusivity (Dendrix)

de novo: without prior biological information (pathways, interactions, etc.)

Goal: Find sets **M** of genes with:

- High coverage: many patients with
 ≥ 1 mutation in M
- Approximate exclusivity: most patients have ≤ 1 mutation in M

- Finding optimal set is NP-Hard.
- MCMC algorithm samples sets in proportion to weight.

Cancer requires mutations to more than one pathway

Greedy can fail

Cancer requires mutations to more than one pathway

Find multiple pathways greedily.

Groups most frequently mutated genes even without exclusivity.

= otherwise.

Greedy can fail

Cancer requires mutations to more than one pathway

Find multiple pathways greedily.

Groups most frequently mutated genes even without exclusivity.

Greedy can fail

Cancer requires mutations to more than one pathway

Find multiple pathways greedily.

Groups most frequently mutated genes even without exclusivity.

Cancer requires mutations to more than one pathway

Find multiple pathways simultaneously

- ILP rapidly finds optimal solution
- Searches wide range of parameters to find stable collections of gene sets

Cancer requires mutations to more than one pathway

Most samples have approximately one mutation in each of t pathways.

Integer Linear Program

Cancer requires mutations to more than one pathway

Most samples have approximately one mutation in each of t pathways.

Integer Linear Program

Cancer requires mutations to more than one pathway

Contributions

A new algorithm, Multi-Dendrix, for identifying driver pathways de novo:

- 1. Outperforms previous methods on simulated data in speed and accuracy
- 2. Identifies gene sets that overlap known pathways in TCGA datasets
- 3. Ongoing work extending Multi-Dendrix to large datasets and overlapping pathways

Multi-Dendrix is significantly better on simulated data

Avg. distance d from planted pathways

	q	Multi-Dendrix	Iter-RME*	Iter-Dendrix
•	0.0	0.02 ± 0.19	$\textbf{0.01} \pm \textbf{0.12}$	0.30 ± 0.86
	0.0001	0.02 ± 0.18	$ extbf{0.01} \pm extbf{0.16}$	0.30 ± 0.86
	0.0005	$\textbf{0.04} \pm \textbf{0.23}$	0.10 ± 0.40	0.35 ± 0.89
	0.001	$ extit{0.10} \pm extit{0.35}$	0.32 ± 0.60	0.44 ± 1.01
	0.005	$\textbf{0.44} \pm \textbf{0.71}$	_	0.75 ± 1.07
	0.01	$\textbf{1.03} \pm \textbf{1.00}$	_	1.20 ± 1.15
	0.015	$\textbf{1.68} \pm \textbf{1.16}$	_	1.78 ± 1.26
	0.02	$\textbf{2.17} \pm \textbf{1.24}$	_	2.21 ± 1.29

P < 0.01

360 mutated genes in 160 patients

- High coverage and mutually exclusive
- Add passenger mutations (noise) to all genes

Multi-Dendrix is significantly faster on simulated data

Multi-Dendrix >2 orders of magnitude faster

Multi-Dendrix completes in fewer than 5 seconds for each dataset.

0. Data preprocessing

0. Data 1. Input mutation preprocessing matrix

Direct Interactions Test

Measures
 enrichment of PPI
 interactions within
 individual gene sets
 or in a collection of
 gene sets

Measures
 enrichment of PPI
 interactions within
 individual gene sets

or in a collection of

gene sets

- Run Multi-Dendrix across a range of parameters.
- Identify the stable "modules" of genes that appear together multiple times.

Contributions

A new algorithm, Multi-Dendrix, for identifying driver pathways de novo:

- 1. Outperforms previous methods on simulated data in speed and accuracy
- 2. Identifies gene sets that overlap known pathways in TCGA datasets
- 3. Ongoing work extending Multi-Dendrix to large datasets and overlapping pathways

Results: Glioblastoma

*Mutation data: 398 genes (events) in 261 patients

Results: Glioblastoma

Results: Glioblastoma

Results: TCGA breast cancer

Multi-Dendrix (α=2.5)

*Mutation data: 375 genes (events) in 507 patients

Contributions

A new algorithm, Multi-Dendrix, for identifying driver pathways de novo:

- 1. Outperforms previous methods on simulated data in speed and accuracy
- 2. Identifies gene sets that overlap known pathways in TCGA datasets
- 3. Ongoing work extending Multi-Dendrix to large datasets and overlapping pathways

Multi-Dendrix MCMC

Sample collections of gene sets in proportion to their weight

Distribution of collections of gene sets

- Finds a distribution optimal and suboptimal — of solutions
- Newest version on GitHub, requirements are all open-source

Sampling table

Marginal probability graph

- Marginal probability graph defines consensus subnetworks
- Edges (*u*, *v*) are weighted by how often gene *u* is sampled in the same gene set as gene *v*

Geneset	Weight	Sampling Frequency
G1 , G2 , G3, G4 G5, G6, G7, G8	200	60
G1 , G2 , G3, G4 G5, G7, G15, G16	130	9

Complete, weighted marginal probability graph

- → unconstrained size and number of gene sets
- → gene sets can overlap

Marginal probability graph

- Marginal probability graph defines consensus subnetworks
- Edges (*u*, *v*) are weighted by how often gene *u* is sampled in the same gene set as gene *v*

Geneset	Weight	Sampling Frequency
G1 , G2 , G3, G4 G5, G6, G7, G8	200	60
G1 , G2 , G3, G4 G5, G7, G15, G16	130	9

Complete, weighted marginal probability graph

- → unconstrained size and number of gene sets
- → gene sets can overlap

Dendrix++ results: GBM

Comprehensive genomic characterization defines human glioblastoma genes and core pathways

The Cancer Genome Atlas Research Network*

Dendrix++ results: GBM

Comprehensive genomic characterization defines human glioblastoma genes and core pathways

The Cancer Genome Atlas Research Network*

Dendrix++ results: GBM

Comprehensive genomic characterization defines human glioblastoma genes and core pathways

The Cancer Genome Atlas Research Network*

RTK/RAS/PI(3)K signaling

CDKN2A(D) (176) CDK4(A) (53) RB1 (19) CDKN2A(D) (176) TP53 (76)

MDM2(A) (23)

Summary

- Multi-Dendrix: Fast, exact ILP for identifying collections of gene sets with exclusive mutations
- Identifies modules that overlap multiple cancer pathways in glioblastoma and breast cancer
- Dendrix++: New algorithm that can identify more complex pathways (in preparation)

Acknowledgements

Research group

Ben Raphael
Jason Dobson
Iman Hajirasouliha
Fabio Vandin
Layla Oesper
Hsin-Ta Wu

Collaborators

Roded Sharan Dima Blokh

Funding + Data

