対応集合とグロモフハウスドルフ距離と近似写像

1

定義 1.1. (対応集合). X,Y を集合とする. $\mathcal{R} \subset X \times Y$ は, 任意の $x \in X$ に対して, $y \in Y$ で $(x,y) \in \mathcal{R}$ を満たすものが存在し, かつ, 任意の $y \in Y$ に対して, $x \in X$ で $(x,y) \in \mathcal{R}$ を満たすものが存在するときに , 対応集合という.

命題 1.2. X, Y を集合とし, $f: X \to Y$ を全射とする. このとき,

$$\{(x, fx) \mid x \in X\}$$

は対応集合である.

証明. 明らかである. □

命題 1.3. $(X,d_X),(Y,d_Y)$ を距離空間とし, $\varepsilon>0$ とする. $f:X\to Y$ を, $Y\subset (fX)_\varepsilon$ とする. このとき,

$$\{(x,y) \mid x \in X, yfx < \varepsilon\}$$

は対応集合である.

証明. □

定義 1.4. $(X, d_X), (Y, d_Y)$ を距離空間とする. $\varepsilon > 0$ とする. $f: X \to Y$ は

$$|fxfx' - xx'| < \varepsilon$$

を満たすときに、 ε 近似写像という.

命題 1.5. $(X,d_X),(Y,d_Y)$ を距離空間とし, $\varepsilon>0$ とする. $d_{GH}(X,Y)<\varepsilon$ ならば, X から Y への 2ε 近似 写像が存在する.

証明・ $d_{GH}(X,Y)<\varepsilon$ ならば、適当な (Z,d_Z) と等長写像 $T:X\to Z,S:Y\to Z$ で、 $d_H(TX,SY)<\varepsilon$ を満たすものが存在する. $x\in X$ に対して、 $fx\in Y$ を $TxSy<\varepsilon$ を満たす $y\in Y$ により定めると、 $x,x'\in X$ に対して

$$fxfx' - xx' \le SfxSfx' - xx' \le SfxTx + TxTx' + Tx'Sfx' - xx' < 2\varepsilon$$

が成り立つ.

命題 1.6. $(X,d_X),(Y,d_Y)$ を距離空間とし、 $\varepsilon>0$ とする。 ε 近似写像 $f:X\to Y$ で、 $Y\subset (fX)_\varepsilon$ を満たすものが存在するならば、 $d_{GH}(X,Y)<2\varepsilon$ が成り立つ.

証明. $X\sqcup Y$ に $xy:=\inf\{xx'+y'y+\varepsilon\mid (x',y')\in\{(x,y)\mid x\in X,yfx<\varepsilon\}\}$ により距離を定めると、 $d_H({}^\iota X,\iota Y)<\varepsilon$ が成り立つ. 多分. きちんと確認してないから気をつけて.