

PROGRESS IN THE REACH SECONDARY ANALYSES

2025

Gates Foundation

Outline

Introduction

Introduction

Methods

Results

Sensitivity analysis

Discussion

Background

Introduction

- Child mortality remains high in sub-Saharan Africa;
- MDA with azithromycin has emerged as promising intervention beyond trachoma;
- MORDOR trial: 13.5% reduction in under-five mortality with biannual treatment;
- But: Benefits not consistent across all settings
- Concerns: Antimicrobial resistance with repeated exposure

Current WHO guidance (2020): IMR \geq 60/1,000 or U5MR \geq 80/1,000 - thresholds based on expert opinion, not trial data.

This study: First data-driven foundation for cessation criteria using comprehensive trial data

Analytical Roadmap: Objectives

Four interconnected goals

- 1. **Reference age patterns**: derive robust neonatal, infant, and child hazard profiles from DHS birth histories.
- 2. **De-noised and spatially coherent baseline mortality**: generate accurate cluster-level estimates of underlying mortality from sparse REACH trial data.
- 3. **Contextual heterogeneity**: assess whether immunization coverage and malaria burden explain baseline variation and/or systematically modify treatment effects.
- Decision-ready thresholds: identify mortality levels where azithromycin no longer improves survival.

Data integration: DHS birth histories (17 surveys), REACH trial mortality/person-time/coordinates, and contextual indicators (IHME immunization, Malaria Atlas).

Stage 1: Demographic Age Patterns

Goal: Establish reliable age profiles for mortality hazards and a robust neonatal to post-neonatal bridge.

- Convert DHS age-specific death probabilities to cumulative hazards: $H_a = -n_a \log(1 - p_a)$ across standard age bands.
- Pooled log-log regression with country intercepts to model neonatal hazard as function of early and late post-neonatal mortality:

$$\log H_0 = \alpha_{\text{country}} + \beta_1 \log H_{1-11} + \beta_2 \log H_{12-59} + \epsilon$$

Output: age pattern priors and quantified uncertainty to inform trial-based modeling.

Sensitivity analysis

Goal: Calibrate demographic priors to observed placebo data.

Baseline hazard (1–59m): Fit a quasi-Poisson GLM with offset and cluster-robust SEs on placebo clusters:

$$\log E[y_c] = \alpha_g + \log E_c$$

where y_c = observed deaths, E_c = person-time. Produces trial—country baseline hazard priors with uncertainty.

▶ Age split (1–11 vs 12–59m): Update DHS Beta prior with observed placebo deaths by age group:

$$p_q \mid \text{data} \sim \text{Beta}(\alpha_{q,0} + d_{q,1-11}, \ \beta_{q,0} + d_{q,12-59})$$

giving the fraction of under-five hazard in 1-11m.

Outputs: Group-specific hazard priors (μ_a) and calibrated age shares (p_a) , passed forward to the hierarchical spatial model.

Sensitivity analysis

Goal: Derive spatially coherent cluster-level IMR and U5MR.

$$y_i \sim \mathsf{Poisson}(E_i \exp\{\lambda_i\}), \quad \lambda_i = \mu_{g[i]} + u(\mathbf{s}_i) + v_i$$

- u(s): Hilbert Space Gaussian Process (HSGP) approximation to a Matérn-3/2 field.
- $\triangleright v_i$: cluster-specific deviations with a regularized horseshoe prior (adaptive shrinkage).
- Age decomposition: combine trial deaths and DHS bridge to recover neonatal. infant, and child hazards.
- Outputs: posterior distributions for cluster-level IMR and U5MR.

Goal: Test whether context explains baseline mortality or modifies treatment effects. Nested models (Poisson GLMM with age spline f(a) and exposure offset):

Base:
$$\log \mu_{iat} = \log E_{iat} + \beta_0 + f(a) + b_i$$

+Covariate: $\log \mu_{iat} = \ldots + \beta_1 x_i$

+Interaction:

 $\log \mu_{iat} = \ldots + \beta_2 T_i + \beta_3 (x_i \times T_i)$

- Covariates: immunization gaps (DPT1-3, MCV1, BCG, Polio3) and malaria indicators (ITN, incidence, mortality).
- Likelihood ratio tests compare nested models to assess explanatory vs modifying effects.

Stage 5: Cessation Thresholds via Posterior Crossings

Goal: Identify mortality levels where azithromycin benefits vanish.

▶ Poisson interaction model with baseline mortality on log scale:

$$y_i \sim \mathsf{Poisson}(\lambda_i t_i), \qquad \log \lambda_i = \alpha_{g[i]} + \beta_U U_i + \mathsf{trt}_i \big(\beta_T + \beta_{U \times T} U_i \big)$$

where:

 y_i observed deaths in cluster i

 t_i person-time (exposure offset)

 trt_i treatment indicator (0/1)

 U_i latent baseline log mortality (sampled from baselines posterior)

 $\alpha_{g[i]}$ group-level intercept

- Posterior predictive rates generated on dense mortality grid by treatment arm.
- ▶ Threshold U^* is by draw mortality level where predicted curves cross.
- Output: distribution of cessation thresholds (mean, Crl) for IMR/U5MR.

Study Population

Trial	Country	Clusters	Children	Deaths	Person-years
AVENIR	Niger	2,158	619,228	3,837	298,683
CHAT	Burkina Faso	285	237,434	1,086	119,139
MORDOR I	Malawi	304	240,384	1,044	108,009
MORDOR I	Tanzania	613	131,095	360	63,127
MORDOR I/II	Niger	594	400,111	5,253	205,360
Total		3,954	1.63M	11,580	794,318

Coverage: Ages 1-59 months across diverse epidemiological contexts

Validation: Denominators match original trial publications

Baseline Mortality Patterns

Spatial Model

$$\mu_i = 1000 \times (1 - \exp(-H_{i,1}^{59}))$$
:

- Observed data: raw cluster estimates (placebo)
- Posterior: cluster posterior means
- Prior: trial—country prior (shaded band) with dashed prior mean (text labels also prior mean and 95% CI)

Validating HSGP + HS using SPDE

- SPDE posteriors closely overlap HSGP + HS
- Both recover similar distributional shapes across clusters
- Independent approximation (mesh vs. basis) \rightarrow cross-check
- Agreement confirms robustness of mortality estimates

Contextual Heterogeneity: Correlations

- Immunization variables use vaccination gap (1 - coverage)
- Vaccination coverage generally strongly correlated with mortality
- Malaria burden positively associated
- Strong correlations between related indicators

Strong correlation between many of the indicators.

Contextual Heterogeneity: Treatment Interactions

Statistical Significance by Covariate

Introduction

Cessation Thresholds: Main Results

Based on posterior crossings:

- ► **U5MR:** 49.4 per 1,000 live births (95% CI: 35.8-72.0)
- ► IMR: 27.3 per 1,000 live births (95% CI: 20.3-37.9)
- Interpretation: Treatment benefits vanish when mortality falls below these levels

Cessation Thresholds: Model Evidence

Statistical evidence:

- Clear treatment-mortality interactions
- Negative interaction terms confirm diminishing benefits
- Threshold densities appropriately skewed
- Wider uncertainty in IMR effects

Model Fit: U5MR Predictions

Crossing visualization:

- Thick dashed line: threshold mean
- Dotted lines: credible intervals
- Clear convergence of treatment/placebo curves
- Benefits above threshold, minimal below

Model Fit: IMR Predictions

Similar pattern to U5MR:

- Clear treatment-placebo convergence
- Narrower intervals at lower mortality
- Consistent evidence for threshold effects

Sensitivity Analysis: Mathematical Framework

Two approaches to threshold estimation:

- **1. Analytical Method:** From the interaction model: $\log \lambda_i = \alpha + \beta_m U_i + \operatorname{trt}_i(\beta_t + \beta_{mt} U_i)$ Treatment effect becomes zero when: $\beta_t + \beta_{mt}U^* = 0$ Solving: $U^* = -\frac{\beta_t}{\beta_{md}}$ (threshold on log-mortality scale)
- **2. Crossing Method:** Generate predicted rates on dense mortality grid:

$$\lambda_{\text{placebo}}(U) = \exp(\alpha + \beta_m U)$$
$$\lambda_{\text{treatment}}(U) = \exp(\alpha + \beta_m U + \beta_t + \beta_{mt} U)$$

Find U^* where $\lambda_{\text{treatment}}(U^*) = \lambda_{\text{placebo}}(U^*)$

Both methods: Full posterior uncertainty via MCMC draws

Sensitivity Analysis: Model Scenarios

Comprehensive robustness testing across 8 scenarios: Stan Models:

- Random Baseline (group-specific)
- Fixed Baseline (pooled)

INLA Models:

- All trial data
- Sequential exclusions by location

Exclusion Scenarios:

- Niger MORDOR
- Niger AVENIR
- Tanzania MORDOR
 - Malawi MORDOR
- Burkina Faso CHAT

Purpose: Test sensitivity to influential sites and modeling assumptions

Ranked Threshold Densities

Sensitivity Analysis: Summary Threshold Distributions

	U5MR		IMR	
Scenario	Analytical	Crossing	Analytical	Crossing
STAN Random Baseline	35.9 (7.2-68.3)	49.4 (35.8-72.0)	21.0 (6.2-36.6)	27.3 (20.3-37.9)
INLA -Malawi MORDOR	49.5 (22.8-69.1)	52.2 (36.5-69.6)	27.5 (14.2-36.9)	28.9 (21.0-37.1)
INLA AII	52.1 (29.1-69.5)	53.5 (37.6-69.7)	29.4 (17.3-37.7)	30.0 (21.5-37.9)
STAN Fixed Baseline	52.8 (30.9-69.9)	54.1 (37.6-70.1)	29.0 (17.4-37.2)	29.7 (21.3-37.3)
INLA -Burkina CHAT	54.8 (29.3-73.4)	56.4 (37.7-73.8)	32.2 (19.3-41.1)	32.8 (22.7-41.1)
INLA -Tanzania MORDOR	55.9 (33.6-73.1)	56.8 (38.7-73.2)	30.0 (17.9-38.4)	30.7 (21.5-38.4)
INLA -Niger MORDOR	59.6 (47.9-67.4)	59.6 (48.0-67.4)	32.8 (26.9-36.8)	32.8 (27.0-36.8)
INLA -Niger AVENIR	59.1 (30.2-81.3)	60.6 (38.7-81.5)	33.4 (18.4-43.6)	34.0 (22.5-43.7)

- Generally consistent across modeling approaches
- Analytical method unstable for STAN Random baseline (0 denominator)
- Crossing method typically yields slightly higher estimates

Sensitivity analysis

Comparison with Current Guidance

	WHO 2020	This Study
IMR threshold	60 per 1,000	27.3 per 1,000 (20.3-37.9)
U5MR threshold	80 per 1,000	49.4 per 1,000 (35.8-72.0)
Basis	Expert opinion	Trial data analysis
Uncertainty	Not quantified	Full posterior distributions

Implications:

- Programs might continue longer than current guidance suggests
- Important caveat: Resistance monitoring remains essential
- Balance mortality benefits with AMR concerns through surveillance

Limitations & Next Steps

Kev limitations

- Context alignment: Outcomes cannot be perfectly matched with contextual drivers (vaccination, malaria, health systems, nutrition) in space and time.
- **External validity:** Analysis is based on a limited set of trial countries and sample sizes; findings may not generalize directly elsewhere.

Contribution

- First data-driven threshold analysis for REACH, with transparent assumptions and full uncertainty quantification.
- ► Fully reproducible:

https://github.com/IDM-Wmsemburi/reach-cessation-analysis