CS-4053 Recommender System

Fall 2023

Lecture 7: Matrix Factorization

Course Instructor: Syed Zain Ul Hassan

National University of Computer and Emerging Sciences, Karachi

Email: zain.hassan@nu.edu.pk

Flow of this lecture

- Features
- ☐ Factorizing interaction matrix
- Storage
- Optimization
- Predictions

Factorization

☐ Factorization is a mathematical technique that allows a term to be decomposed into a product of two or more smaller terms

$$16 = 8 \times 2$$

■ Matrix Factorization is a technique in which user-item interaction matrix is decomposed into a product of two or three matrices

☐ We have a set of users and their interaction matrix for anime

User 4

User 1

User 2

User 3

User 4

Let us consider some anime, their features, and User 1

Action	Sci-fi
1	0

Action	Sci-fi
2	1

Action	Sci-fi
1	4

Action	Sci-fi
4	1

Let us consider some anime, their features, and User 1

Action	Sci-fi
1	0

Action	Sci-fi
2	1

Action	Sci-fi
1	4

Action	Sci-fi
4	1

Let us try this with User 2

Action	Sci-fi
0	1

Action	Sci-fi
2	1

Action	Sci-fi
1	4

Action	Sci-fi
4	1

User 1

User 2

User 3

User 4

(k x n)

	11	12	I 3	14	15
F1	2	1	4	1	2
F2	1	4	1	2	2

	I 1	12	I 3	14	15
User 1	2	1	4	1	2
User 2	1	4	1	2	2
User 3	3	5	5	3	4
User 4	2	3	?	2	3

Matrix Factorization: Prediction

Matrix Factorization: Finding Factors

(k x n)

User 1

User 2

User 3

User 4

	F1	F2
TO TO	1	0
	0	1
	1	1
	1	0.5

13 14 15 F1 4 F2 2 2

Issue: Where do **these** values come from? In other words, how do we find these two matrices (factors)?

Matrix Factorization: Finding Factors

(k x n)

F1 F2 0

User 1

User 2

User 3

User 4

Issue: Where do **these** values come from? In other words, how do we find these two matrices (factors)?

Answer: *Gradient Descent*

 $(m \times k)$

Matrix Factorization: Gradient Descent

	F1	F2
MAN	0.2	0.5

User 1

User 2

User 3

User 4

	0.2	0.5
6	0.4	0.6
	0.1	0.05
	0.9	0.3

Start with a rough guess

 $0.2 \times 0.1 + 0.5 \times 0.8$ = 0.42(Do the same to fill all cells)

We are "off" by 1.58

	I1	I 2	I 3	14	I 5
F1	0.1	1.5	0.9	3.4	1.2
F2	0.8	3.1	2.5	4.5	0.6

	I 1	I 2	I 3	14	15
User 1	0.42	1.85 1	4	1	2
User 2	1	4	1	2	2
User 3	3	5	5	3	4
User 4	2	3	?	2	3

Matrix Factorization: Gradient Descent

	F1	F2
		Г
NAAA		

User 1

User 2

User 3

User 4

Start with a rough guess

$$0.2 \times 0.1 + 0.5 \times 0.8$$

= 0.42

Error =
$$(2 - 0.42)^2$$

+ $(1 - 1.85)^2$
+ ...

	I 1	l 2	I 3	14	15
F1	0.1	1.5	0.9	3.4	1.2
F2	0.8	3.1	2.5	4.5	0.6

	I 1	12	I 3	14	15
User 1	0.42	1.85 1	4	1	2
User 2	1	4	1	2	2
User 3	3	5	5	3	4
User 4	2	3	?	2	3

Matrix Factorization: Gradient Descent

User 1

User 2

User 3

User 4

Let's try this again with different values

 $0.14 \times 0.2 + 0.45 \times 1.1$ = 0.52

Keep repeating until error can be minimized

	I 1	I2	I 3	14	I 5
F1	0.2	1.7	0.8	3.7	1.9
F2	1.1	3.3	3.2	4.0	0.5

	I 1	I 2	I 3	I 4	I 5
User 1	0.52	1.72	4	1	2
User 2	1	4	1	2	2
User 3	3	5	5	3	4
User 4	2	3	?	2	3

Matrix Factorization: Finding Factors

User 1

User 2

User 3

User 4

	F1	F2	
TO .	1	0	
	0	1	
	1	1	
	1	0.5	

(k x n)

	I1	I2	I 3	14	15
F1	2	1	4	1	2
F2	1	4	1	2	2

To find these values we can also use:

- **Genetic Algorithm**
- **Linear Programming**
- **PSO** any other optimization technique

 $(m \times k)$

Matrix Factorization: Pros and Cons

Pros

- It can take much less storage e.g. a **2000x1000** interaction matrix can be stored as two matrices of **2000x100** and **100x1000** dimensions

 Storage taken by 2000x1000 matrix = **2M**Storage taken by separate matrices = **200k** + **100k** i.e., **300k**
- Predictions can be calculated quickly and easily

Cons

The cost of optimization during training is non-deterministic

