New York City Taxi Fare Prediction

image.png

In this assignment, we will foresee the passage sum for a taxi ride in New York City, surrendered the pick, drop off areas and the date season of the get. We will begin from making an easiest model after some essential information cleaning, this straightforward model isn't Machine Learning, at that point we will move to more complex models. We should begin.

Table of Contents

- Environment setup for python
- ✓ dataset observations
- Data cleaning
- ✓ Feature Engineering
- data visualization
- ✓ Fare Prediction
- Result Evaluation
- conclusion
- reference

Environment setup for python

At first, we have to import the python libraries which will be used in this project. Then we have to lead the tarin and test data. But our train data has almost 55M rows and it's quite impossible for us to use the whole dataset. That's why we'll a part of the dataset.

```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt # for plotting
import seaborn as sns # high quality image
sns.set() # use Seaborn styles
from collections import Counter
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
       print(os.path.join(dirname, filename))
# You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "-
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
/kaggle/input/new-york-city-taxi-fare-prediction/GCP-Coupons-Instructions.rtf
/kaggle/input/new-york-city-taxi-fare-prediction/train.csv
/kaggle/input/new-york-city-taxi-fare-prediction/test.csv
/kaggle/input/new-york-city-taxi-fare-prediction/sample_submission.csv
#Here we're keeping out train dataset in "train_df" data frame and test dataset in "test_df" data frame.
train_df = pd.read_csv('/kaggle/input/new-york-city-taxi-fare-prediction/train.csv', nrows = 10_000_000)
test_df = pd.read_csv('/kaggle/input/new-york-city-taxi-fare-prediction/test.csv')
```

dataset observations

Now our 1st task is to carefully observe the test and train dataset using python's built in function.

1. At first, we're trying to find out the column's name & info of the train and test dataset

train_df.head()

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
0	2009-06-15 17:26:21.0000001	4.5	2009-06-15 17:26:21 UTC	-73.844311	40.721319	-73.841610	40.712278
1	2010-01-05 16:52:16.0000002	16.9	2010-01-05 16:52:16 UTC	-74.016048	40.711303	-73.979268	40.782004
2	2011-08-18 00:35:00.00000049	5.7	2011-08-18 00:35:00 UTC	-73.982738	40.761270	-73.991242	40.750562
3	2012-04-21 04:30:42.0000001	7.7	2012-04-21 04:30:42 UTC	-73.987130	40.733143	-73.991567	40.758092
4	2010-03-09 07:51:00.000000135	5.3	2010-03-09 07:51:00 UTC	-73.968095	40.768008	-73.956655	40.783762

test_df.head()

	key	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_coun
0	2015-01-27 13:08:24.0000002	2015-01-27 13:08:24 UTC	-73.973320	40.763805	-73.981430	40.743835	1
1	2015-01-27 13:08:24.0000003	2015-01-27 13:08:24 UTC	-73.986862	40.719383	-73.998886	40.739201	1
2	2011-10-08 11:53:44.0000002	2011-10-08 11:53:44 UTC	-73.982524	40.751260	-73.979654	40.746139	1
3	2012-12-01 21:12:12.0000002	2012-12-01 21:12:12 UTC	-73.981160	40.767807	-73.990448	40.751635	1
4	2012-12-01 21:12:12.0000003	2012-12-01 21:12:12 UTC	-73.966046	40.789775	-73.988565	40.744427	1

2. Now the datetype of the train and test dataset are shown

train_df.dtypes

key object fare_amount float64 pickup_datetime object pickup_longitude float64 pickup_latitude float64 dropoff_longitude float64 dropoff_latitude float64 passenger_count int64 dtype: object

test_df.dtypes

key object
pickup_datetime object
pickup_longitude float64
pickup_latitude float64
dropoff_longitude float64
dropoff_latitude float64
passenger_count int64
dtype: object

```
print('train_df: ' + str(train_df.shape))
print('test_df: ' + str(test_df.shape))

train_df: (10000000, 8)
test_df: (9914, 7)
```

4. It's time to know some statistical information about the train and test dataset

train_df.describe()

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	1.000000e+07	1.000000e+07	1.000000e+07	9.999931e+06	9.999931e+06	1.000000e+07
mean	1.133854e+01	-7.250775e+01	3.991934e+01	-7.250897e+01	3.991913e+01	1.684793e+00
std	9.799930e+00	1.299421e+01	9.322539e+00	1.287532e+01	9.237280e+00	1.323423e+00
min	-1.077500e+02	-3.439245e+03	-3.492264e+03	-3.426601e+03	-3.488080e+03	0.000000e+00
25%	6.000000e+00	-7.399207e+01	4.073491e+01	-7.399139e+01	4.073403e+01	1.000000e+00
50%	8.500000e+00	-7.398181e+01	4.075263e+01	-7.398016e+01	4.075316e+01	1.000000e+00
75%	1.250000e+01	-7.396710e+01	4.076712e+01	-7.396367e+01	4.076810e+01	2.000000e+00
max	1.273310e+03	3.457626e+03	3.344459e+03	3.457622e+03	3.351403e+03	2.080000e+02

test_df.describe()

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	9914.000000	9914.000000	9914.000000	9914.000000	9914.000000
mean	-73.974722	40.751041	-73.973657	40.751743	1.671273
std	0.042774	0.033541	0.039072	0.035435	1.278747
min	-74.252193	40.573143	-74.263242	40.568973	1.000000
25%	-73.992501	40.736125	-73.991247	40.735254	1.000000
50%	-73.982326	40.753051	-73.980015	40.754065	1.000000
75%	-73.968013	40.767113	-73.964059	40.768757	2.000000
max	-72.986532	41.709555	-72.990963	41.696683	6.000000

Data cleaning

In Machine Learning world data cleaning is the most important part of ML project. We on avg spend 85% of time on cleaning dataset because our ML model's result is going to extremely depends on data cleaning.

Data cleaning will be applied on train data only

1. Missig values: At first, we are going to resolve the missing values. Since out train dataset is huge so we're not going to generate missing value. We'll drop the missing rows.

```
print(train_df.isnull().sum())
```

```
0
key
fare_amount
                      0
pickup_datetime
                      0
pickup_longitude
                      0
pickup_latitude
                      0
dropoff_longitude
                     69
dropoff_latitude
                     69
passenger_count
                     0
dtype: int64
print('Old size: %d' % len(train_df))
train_df = train_df.dropna(how = 'any', axis = 'rows')
print('New size: %d' % len(train_df))
Old size: 10000000
New size: 9999931
print(train_df.isnull().sum())
key
fare_amount
                     0
pickup_datetime
                     0
pickup_longitude
                     0
pickup_latitude
                     0
dropoff_longitude
dropoff_latitude
                     0
passenger_count
                     0
dtype: int64
2. Valied fare: A valied fare is always positive number. So we have to remove the fare which are less than or equal to Zero.
# count how many negative and Zero values are here
Counter(train_df['fare_amount'] <= 0)</pre>
Counter({False: 9999242, True: 689})
train_df['fare_amount'].describe()
count
        9.999931e+06
mean
         1.133849e+01
        9.799845e+00
std
        -1.077500e+02
        6.000000e+00
25%
50%
        8.500000e+00
75%
         1.250000e+01
max
        1.273310e+03
Name: fare_amount, dtype: float64
print('before: ' + str(train_df.shape))
train_df = train_df.drop(train_df[train_df['fare_amount'] <= 0].index, axis = 0)</pre>
print('after: ' + str(train_df.shape))
before: (9999931, 8)
after: (9999242, 8)
train_df['fare_amount'].describe()
```

```
9.999242e+06
count
mean
         1.133966e+01
         9.798609e+00
std
min
        1.000000e-02
25%
         6.000000e+00
50%
        8.500000e+00
75%
        1.250000e+01
max
        1.273310e+03
Name: fare_amount, dtype: float64
```

3. passenger_count: This value is always greater than or equal to one. On the other hand, a standard size taxi can carry max 6 people. So we are assuming that a valied passenger count is greater than equal to One and less than or equal to Six.

```
train_df['passenger_count'].describe()
         9.999242e+06
count
mean
        1.684807e+00
std
        1.323424e+00
         0.000000e+00
min
25%
        1.0000000e+00
50%
        1.000000e+00
75%
        2.000000e+00
        2.080000e+02
max
Name: passenger_count, dtype: float64
print('before: ' + str(train_df.shape))
train_df = train_df.drop(train_df[train_df['passenger_count'] <= 0].index, axis = 0) # remove numbers less or equal 0</pre>
train_df = train_df.drop(train_df[train_df['passenger_count'] > 6].index, axis = 0) # remove numbers greater or equal 0
print('after: ' + str(train_df.shape))
before: (9999242, 8)
after: (9963965, 8)
train_df['passenger_count'].describe()
         9.963965e+06
count
        1.690557e+00
mean
std
        1.306525e+00
min
        1.000000e+00
25%
        1.000000e+00
50%
        1.000000e+00
75%
        2.000000e+00
        6.000000e+00
max
Name: passenger_count, dtype: float64
```

Feature Engineering

1. Time: Taxi fare heavily depends on time. For example: in holydays, people do visit a lot. On the other hand during reany season people hardy go outside. Moreover, in the mid night people don't go outside without important reason. On the other hand, people go outside during festival eg: xmas days. So time plays an important role in taxi fare. That's why we'll do categories the data base on time(hour, weekday, month, year).

```
def add_time_features(df):
    df['pickup_datetime'] = df['pickup_datetime'].str.replace(" UTC", "")
    df['pickup_datetime'] = pd.to_datetime(df['pickup_datetime'], format='%Y-%m-%d %H:%M:%S')
    df['hour'] = df.pickup_datetime.dt.hour
    #df['week'] = df.pickup_datetime.dt.week
    df['weekday'] = df.pickup_datetime.dt.weekday
    df['month'] = df.pickup_datetime.dt.month
    df['year'] = df.pickup_datetime.dt.year
    return df

train_df = add_time_features(train_df) # adding some columns to train dataset
```

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
0	2009-06-15 17:26:21.0000001	4.5	2009-06-15 17:26:21	-73.844311	40.721319	-73.841610	40.712278
1	2010-01-05 16:52:16.0000002	16.9	2010-01-05 16:52:16	-74.016048	40.711303	-73.979268	40.782004
2	2011-08-18 00:35:00.00000049	5.7	2011-08-18 00:35:00	-73.982738	40.761270	-73.991242	40.750562
3	2012-04-21 04:30:42.0000001	7.7	2012-04-21 04:30:42	-73.987130	40.733143	-73.991567	40.758092
4	2010-03-09 07:51:00.000000135	5.3	2010-03-09 07:51:00	-73.968095	40.768008	-73.956655	40.783762

2. Location: Let's build two new features in our training set that represent the "travel vector" in both longitude and latitude coordinates between the start and end points of the taxi trip. As we're just interested in the distance travelled, we'll take the absolute value. Using a helper feature so later on we may want to do the same thing with the test collection.

```
def add_travel_vector_features(df):
    df['abs_diff_longitude'] = (df.dropoff_longitude - df.pickup_longitude).abs()
    df['abs_diff_latitude'] = (df.dropoff_latitude - df.pickup_latitude).abs()

add_travel_vector_features(train_df)

# calculate straight distance and add as feature

def calculate_add_distance_feature(df):
    df['distance'] = (df['abs_diff_longitude'] ** 2 + df['abs_diff_latitude'] ** 2) ** .5
    return df

train_df = calculate_add_distance_feature(train_df)

train_df["distance"].hist(figsize=(12,4))
plt.title("Histogram ride distance");

Histogram ride distance
```


train_df['distance'].describe()

```
9.963965e+06
count
mean
        2.547027e-01
        1.399081e+01
std
       0.000000e+00
min
25%
       1.239305e-02
50%
        2.143539e-02
75%
        3.835107e-02
        7.548848e+03
max
Name: distance, dtype: float64
```

We expect most of these values to be very small (likely between 0 and 1) since it should all be differences between GPS coordinates within one city. For reference, one degree of latitude is about 69 miles. However, we can see the dataset has extreme values which do not make sense. Let's remove those values from our training set. Based on the scatterplot, it looks like we can safely exclude values above 5 (though remember the scatterplot is only showing the first 2000 rows...)

```
print('Old size: %d' % len(train_df))
train_df = train_df[(train_df.abs_diff_longitude < 5.0) & (train_df.abs_diff_latitude < 5.0)]
print('New size: %d' % len(train_df))

Old size: 9963965
New size: 9943523</pre>
```

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
0	2009-06-15 17:26:21.0000001	4.5	2009-06-15 17:26:21	-73.844311	40.721319	-73.841610	40.712278
1	2010-01-05 16:52:16.0000002	16.9	2010-01-05 16:52:16	-74.016048	40.711303	-73.979268	40.782004
2	2011-08-18 00:35:00.00000049	5.7	2011-08-18 00:35:00	-73.982738	40.761270	-73.991242	40.750562
3	2012-04-21 04:30:42.0000001	7.7	2012-04-21 04:30:42	-73.987130	40.733143	-73.991567	40.758092
4	2010-03-09 07:51:00.000000135	5.3	2010-03-09 07:51:00	-73.968095	40.768008	-73.956655	40.783762

train_df.describe()

train_df.head()

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	hour
count	9.943523e+06	9.943523e+06	9.943523e+06	9.943523e+06	9.943523e+06	9.943523e+06	9.943523e+06
mean	1.134003e+01	-7.256882e+01	3.995091e+01	-7.256796e+01	3.995125e+01	1.690605e+00	1.351120e+01
std	9.780789e+00	1.075765e+01	6.592764e+00	1.075754e+01	6.592813e+00	1.306535e+00	6.517226e+00
min	1.000000e-02	-3.348349e+03	-3.488080e+03	-3.348349e+03	-3.488080e+03	1.000000e+00	0.000000e+00
25%	6.000000e+00	-7.399209e+01	4.073497e+01	-7.399140e+01	4.073409e+01	1.000000e+00	9.000000e+00
50%	8.500000e+00	-7.398183e+01	4.075266e+01	-7.398018e+01	4.075318e+01	1.000000e+00	1.400000e+01
75%	1.250000e+01	-7.396717e+01	4.076714e+01	-7.396375e+01	4.076812e+01	2.000000e+00	1.900000e+01
max	1.273310e+03	3.442185e+03	2.973980e+03	3.442185e+03	2.973980e+03	6.000000e+00	2.300000e+01

data visualization

In this part well do plot the data so that we can see the real picture. This will give us clear idea about the dataset and problem as well.

```
train_df.passenger_count.hist()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fb0fa476c50>


```
plt.figure(figsize=(28,8))
plt.hist(train_df["fare_amount"], 500, facecolor="purple")
plt.xlabel("Fare amount")
plt.ylabel("Count")
plt.title("Fare Amount Histogram")
plt.xlim(0,100)
```

(0.0, 100.0)


```
train_df["passenger_count"].value_counts().plot.bar()
plt.title("Passenger count Histogram")
plt.xlabel("Passenger Count")
plt.ylabel("Frequency")
```

Text(0, 0.5, 'Frequency')

```
Passenger count Histogram

Passenger count Histogram

Passenger Count

def drop_unrealistic_distance(df):
print('before: ' + str(df.shape))
```

```
df = df.drop(df[train_df['distance'] < 0.01].index, axis = 0)</pre>
    print('after: ' + str(df.shape))
    return df
train_df = drop_unrealistic_distance(train_df)
before: (9943523, 15)
after: (8203939, 15)
train_df["fare_per_distance"] = train_df["fare_amount"] / train_df["distance"]
train_df["fare_per_distance"].describe()
         8.203939e+06
count
mean
         3.754881e+02
         1.517397e+02
std
min
         4.715623e-02
25%
         2.835819e+02
50%
         3.513208e+02
75%
         4.350787e+02
         1.891399e+04
max
Name: fare_per_distance, dtype: float64
plt.figure(figsize=(28,8))
plt.scatter(train_df["distance"], train_df["fare_per_distance"])
plt.xlabel("distance")
plt.ylabel("fare per distance")
plt.xlim(0,40)
plt.title("Scatter DIagram of fare-amount")
```

Text(0.5, 1.0, 'Scatter DIagram of fare-amount')

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
1	2010-01-05 16:52:16.0000002	16.9	2010-01-05 16:52:16	-74.016048	40.711303	-73.979268	40.782004
2	2011-08-18 00:35:00.00000049	5.7	2011-08-18 00:35:00	-73.982738	40.761270	-73.991242	40.750562
3	2012-04-21 04:30:42.0000001	7.7	2012-04-21 04:30:42	-73.987130	40.733143	-73.991567	40.758092
4	2010-03-09 07:51:00.000000135	5.3	2010-03-09 07:51:00	-73.968095	40.768008	-73.956655	40.783762
5	2011-01-06 09:50:45.0000002	12.1	2011-01-06 09:50:45	-74.000964	40.731630	-73.972892	40.758233

 $\label{limits} $$ train_df.pivot_table('fare_per_distance', index='hour', columns='year').plot(figsize=(28,12)) $$ plt.ylabel("Fare $USD / distance"); $$ plt.title("Fare variation in years") $$$

Text(0.5, 1.0, 'Fare variation in years')

train_df.pivot_table("fare_per_distance", index="hour", columns="month").plot(figsize=(28,12))
plt.ylabel("Fare \$USD / distance");
plt.title("Fare variation in month")

Text(0.5, 1.0, 'Fare variation in month')


```
train_df.pivot_table("fare_per_distance", index="hour", columns="weekday").plot(figsize=(28,12))
plt.ylabel("Fare $USD / distance");
plt.title("Fare variation in week days")
```

Text(0.5, 1.0, 'Fare variation in week days')


```
fig, axs = plt.subplots(1, 2, figsize=(32,12))
axs[0].scatter(train_df["distance"], train_df["fare_amount"], alpha=0.2)
axs[0].set_xlabel("distance")
axs[0].set_ylabel("Fare $USD")
axs[0].set_title("All Data")

idx = ((train_df['distance'] < 15) & (train_df["fare_amount"] < 100))
axs[1].scatter(train_df[idx]["distance"], train_df[idx]["fare_amount"], alpha=0.2)
axs[1].set_xlabel("distance")
axs[1].set_ylabel("Fare $USD")
axs[1].set_title("Zoom in on distance < 15 and fare < $100")</pre>
```

Text(0.5, 1.0, 'Zoom in on distance < 15 and fare < \$100')

Fare Prediction

So far, we have cleaned up our dataset, have done feature engineering and done visualization. Now it's time to predict the fare.

At the very 1st time, we had only 8 columns in out train dataset. But after doing a lots of operation now our tarin data set has some new columns. Mainly we'll use theose columns to predict the fare.

train_df.dtypes

key	object
fare_amount	float64
pickup_datetime	datetime64[ns]
pickup_longitude	float64
pickup_latitude	float64
dropoff_longitude	float64
dropoff_latitude	float64
passenger_count	int64
hour	int64
weekday	int64
month	int64
year	int64
abs_diff_longitude	float64
abs_diff_latitude	float64
distance	float64
fare_per_distance	float64
dtype: object	

train_df.shape

(8203939, 16)

train_df.head()

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
1	2010-01-05 16:52:16.0000002	16.9	2010-01-05 16:52:16	-74.016048	40.711303	-73.979268	40.782004
2	2011-08-18 00:35:00.00000049	5.7	2011-08-18 00:35:00	-73.982738	40.761270	-73.991242	40.750562
3	2012-04-21 04:30:42.0000001	7.7	2012-04-21 04:30:42	-73.987130	40.733143	-73.991567	40.758092

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
4	2010-03-09 07:51:00.000000135	5.3	2010-03-09 07:51:00	-73.968095	40.768008	-73.956655	40.783762
5	2011-01-06 09:50:45.0000002	12.1	2011-01-06 09:50:45	-74.000964	40.731630	-73.972892	40.758233

Here,

Our model is: X * m = Y

where, X = a matrix of input feature

Y = target variable (fare)

and m = weight

So, in our training session, model will learn some weight that will be kept in \mathbf{m} .

Now, we have to decide which columns form train value are going to feed as X.

Here we'll use:

passenger_count, hour, weekday, month, year, abs_diff_longitude, abs_diff_latitude from train dataset and also will be added 1 as bias.

And then numpy's Istsq library function will be used to find the optimal weight column m.

```
def get_input_matrix(df):
    return np.column_stack((df.passenger_count, df.hour, df.weekday, df.month, df.year, df.abs_diff_longitude, df.abs_diff_latitude, |
train_X = get_input_matrix(train_df)
train_y = np.array(train_df['fare_amount'])

print(train_X.shape)
print(train_y.shape)

(8203939, 8)
(8203939,)

(m, _, _, _) = np.linalg.lstsq(train_X, train_y, rcond = None)
print(m)

[ 7.22998460e-02    1.68596349e-03 -2.58805752e-02    9.46214495e-02
    6.52325783e-01    1.45891991e+02    7.60138750e+01 -1.30638699e+03]
```

Finally it's time to predict the fare using test date but before that we have to make a matrix same as X and to do that we are reusing:

```
add_time_features
```

add_travel_vector_features

function

```
test_df = add_time_features(test_df)
add_travel_vector_features(test_df)
test_df.head()
```

	key	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_coun
0	2015-01-27 13:08:24.0000002	2015-01-27 13:08:24	-73.973320	40.763805	-73.981430	40.743835	1

	key	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_coun
1	2015-01-27 13:08:24.0000003	2015-01-27 13:08:24	-73.986862	40.719383	-73.998886	40.739201	1
2	2011-10-08 11:53:44.0000002	2011-10-08 11:53:44	-73.982524	40.751260	-73.979654	40.746139	1
3	2012-12-01 21:12:12.0000002	2012-12-01 21:12:12	-73.981160	40.767807	-73.990448	40.751635	1
4	2012-12-01 21:12:12.0000003	2012-12-01 21:12:12	-73.966046	40.789775	-73.988565	40.744427	1

Now we have our submission.csv file that contains the predicted fare.

```
result_df = pd.read_csv('./submission.csv')
result_df.head()
```

	key	fare_amount
0	2015-01-27 13:08:24.0000002	10.91
1	2015-01-27 13:08:24.0000003	11.47
2	2011-10-08 11:53:44.0000002	7.16
3	2012-12-01 21:12:12.0000002	9.79
4	2012-12-01 21:12:12.0000003	13.94

Result Evaluation:

The evaluation metric for this project is the root mean-squared error or RMSE. RMSE measures the difference between the predictions of a model, and the corresponding ground truth. A large RMSE is equivalent to a large average error, so smaller values of RMSE are better. One nice property of RMSE is that the error is given in the units being measured, so you can tell very directly how incorrect the model might be on unseen data.

RMSE is given by:

where yi is the ith observation and 'yi is the prediction for that observation.

Example 1. Suppose we have one observation, with an actual value of 12.5 and a prediction of 12.5 (good job!). The RMSE will be:

image.png

Example 2. We'll add another data point. Your prediction for the second data point is 11.0 and the actual value is 14.0. The RMSE will be:

image.png

```
approch = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
RMSE = [9.39599, 5.74184, 5.72030, 5.74240, 5.64520, 5.65298, 5.64798, 5.64792, 5.66021, 5.66021]
plt.plot(approch, RMSE)
plt.ylabel("RMSE");
plt.xlabel("Approch");
plt.title("Model progress")
```

Text(0.5, 1.0, 'Model progress')

conclusion:

New York City Taxi Fare Prediction is a very interesting real life problem to solve. By solving this problem one can get in to ML world.

Further Improvement:

New York City Taxi Fare Prediction has a very lagre dataset. A small part of that is used here. So by using large amount of rows can imporve the result. We also have used a linear model. Using a complex and non-linear model can also improve the result as well.

reference:

- NumPy
- Matplotlib
- pandas
- An Introduction to Linear Regression Analysis
- · Kernels Starter Tutorial
- Easy to use map and GPS tool
- Calculate distance between locations