Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir Electrochemistry

DPP: 3

- Q1 The standard electrode potential of zinc ions is $0.76~\mathrm{V}$. What will be the potential of a $2\mathrm{M}$ solution at $300~{\rm K}$?
 - (A) 0.83~V
 - (B) 0.76 V
 - (C) 0.23~V
 - (D) 0.98~V
- **Q2** The EMF of H-electrode if pH of electrolyte is 2 is [P = 1 atm]
 - (A) $\frac{RT}{E}$

 - (A) $\frac{F}{F}$ (B) $\frac{RT}{2F}$ (C) $\frac{2.303RT}{F}$
 - (D) -0.118 V
- Q3 The Nernst equation giving dependence of electrode oxidation potential on concentration is

(A)
$$\mathrm{E} = \mathrm{E^o} + \frac{2.303\mathrm{RT}}{\mathrm{nF}}\mathrm{log}\left[\mathrm{M}^{+\mathrm{n}}\right]$$

(B)
$$\mathrm{E} = \mathrm{E^o} - \frac{2.303\mathrm{RT}}{\mathrm{nF}}\mathrm{log}\frac{\mathrm{[M^{n+}]}}{\mathrm{[M]}}$$

(C)
$$\mathrm{E} = \mathrm{E^o} - \frac{2.303\mathrm{RT}}{\mathrm{nF}}\mathrm{log}\left[\mathrm{M^{n+}}\right]$$

$$\begin{aligned} &\text{(A) E} = E^o + \frac{2.303 \text{RT}}{\text{nF}} \log \left[M^{+\text{n}} \right] \\ &\text{(B) E} = E^o - \frac{2.303 \text{RT}}{\text{nF}} \log \frac{\left[M^{\text{n+}} \right]}{\left[M \right]} \\ &\text{(C) E} = E^o - \frac{2.303 \text{RT}}{\text{nF}} \log \left[M^{\text{n+}} \right] \\ &\text{(D) E} = E^o + \frac{2.303 \text{RT}}{\text{nF}} \log \frac{\left[M \right]}{\left[M^{\text{n+}} \right]} \end{aligned}$$

- Q4 The relationship between standard reduction potential of a cell and equilibrium constant is shown by

 - (A) $E_{cell}^o=\frac{n}{0.059}log\,K_C$ (B) $E_{cell}^o=\frac{0.059}{n}log\,K_C$
 - (C) $E_{cell}^o = 0.059 n \log K_C$
 - (D) $E_{cell}^o = rac{\log K_C}{r}$

Q5 Which is the correct representation for the Nernst equation?

(A)
$$m E_{RP} = E_{RP}^o + rac{0.059}{n} log rac{[oxidant\,]}{[product\,]}$$

$$\begin{split} \text{(A)} \, E_{RP} &= E_{RP}^o + \frac{0.059}{n} log \frac{\text{[oxidant]}}{\text{[product]}} \\ \text{(B)} \, E_{OP} &= E_{OP}^O - \frac{0.059}{n} log \frac{\text{[oxidant]}}{\text{[reductant]}} \\ \text{(C)} \, E_{OP} &= E_{OP}^O + \frac{0.059}{n} log \frac{\text{[reductant]}}{\text{[oxidant]}} \end{split}$$

(C)
$$\mathrm{E_{OP}} = \mathrm{E_{OP}^O} + rac{0.059}{\mathrm{n}} \mathrm{log} rac{\mathrm{[reductant\,]}}{\mathrm{[oxidant\,]}}$$

- (D) All of these
- Q6 For the cell

$$\mathrm{Tl}\left|\mathrm{Tl}^{+1}(0.001M)\|\mathrm{Cu}^{+2}(0.1M)\right|\mathrm{Cu}, E_{cell}$$
 at

- $25^{\circ}\mathrm{C}$ is $0.83~\mathrm{V}$. Which can be increased by
- (A) increasing $\left[\mathrm{Cu}^{+2}\right]$
- (B) increasing $[Tl^+]$
- (C) decreasing $\left[\mathrm{Cu}^{+2}\right]$
- (D) None of these
- Q7 How much will the potential of a hydrogen electrode change when its solution initially at pH = 0 is neutralized to pH = 7?
 - (A) increase by $0.059~\mathrm{V}$
 - (B) decrease by $0.059~\mathrm{V}$
 - (C) increase by $0.41~\mathrm{V}$
 - (D) decrease by $0.41~\mathrm{V}$
- **Q8** For a cell involving one electron, $E_{
 m cell}^{
 m o} = 0.59~{
 m V}$ at 298 K, the equilibrium constant for the reaction is

$$\frac{2.303 RT}{F} = 0.059 \ V$$

- (A) 10^{30}
- (B) 10^2

- (C) 10^5
- (D) 10^{10}
- **Q9** Find the value of the emf of the cell in which the following reaction takes place :

$${
m Ni(s)} + 2{
m Ag}^+(0.002{
m M})
ightarrow {
m Ni}^{2+}(0.160{
m M}) +$$

- $2{
 m Ag(s)}$, given that $E^{\Theta}_{
 m (cell)}\,=1.05~{
 m V}$
- (A) 0.23 volt
- (B) 0.31 volt
- (C) 0.51 volt
- (D) 0.91 volt
- Q10 The cell in which the following reaction occurs:

$$2\mathrm{Fe}^{3+}(\mathrm{aq})+2ar{I}^{-}(\mathrm{aq})
ightarrow 2\mathrm{Fe}^{2+}(\mathrm{aq})$$
 has

- $+ I_2(s)$
- $E_{
 m (cell)}^{\circ}=0.236~{
 m V}$ at $298~{
 m K}.$ Find the value of the standard Gibbs energy and the equilibrium

constant of the cell reaction.

- (A) $\Delta_{
 m r} {
 m G}^\Theta = -45.54~{
 m kJ~mol}^{-1}$,
 - $\mathrm{K_c} = 9.62 \times 10^7$
- (B) $\Delta_{
 m r} G^\Theta = -55.54~{
 m kJ~mol}^{-1},$
 - $\mathrm{K_c} = 7.62 \times 10^7$
- (C) $\Delta_{\mathrm{r}} \mathrm{G}^{\Theta} = -80.54 \ \mathrm{kJ} \ \mathrm{mol}^{-1}$,
 - $m K_c = 3.62 imes 10^7$
- (D) $\Delta_r G^\Theta = -10.54~\mathrm{kJ~mol}^{-1}$,
 - $\mathrm{K_c} = 1.62 imes 10^7$

Answer Key

Q1	(B)	Q6	(A)
Q2	(D)	Q7	(D)
Q3	(C)	Q6 Q7 Q8 Q9 Q10	(D)
Q4	(B)	Q9	(D)
Q5	(D)	Q10	(A)

Master NCERT with PW Books APP

