LAB 4 – Exploring Integration Patterns with Bluetooth, CoAP, & MQTT

Introduction

Integration patterns

- 1. Direct integration pattern
- 2. Gateway integration pattern
- 3. Cloud integration pattern

Direct integration pattern

- Direct connection to internet
- Support HTTP and TCP/IP
- Expose web API directly
- Independent of internet
- Type of device
 - Not battery powered
 - Short latency needed
 - Decent bandwidth
 - Capable of running web service
 - Direct access from clients required

Gateway integration pattern

- Resource constrained devices
- Talk to more powerful intermediary device (WoT gateways)
- Communicate via low power, non-web protocol
- Gateway
 - Exposed to the internet
 - Translates incoming messages
 - Sometimes extra functionality
- Type of device
 - Limited resources (battery, memory, processor, ...)
 - Can't serve HTTP requests directly

Gateway integration pattern

Cloud integration pattern

- Extension of gateway pattern
- Large quantities of devices and data
- More powerful and scalable platform
- More features
- Easily integrated into third-party systems

Cloud integration pattern

Lab4

Goals

- 1. Send data from the ESP32 via **Bluetooth** Classic and Bluetooth Low Energy (BLE)
- 2. Send data from the ESP32 to the RPi using CoAP
- 3. Let the RPi act as a **gateway** and pass incoming data from CoAP to your Ingress API
- 4. Publish data **directly** from the ESP32 to a broker via **MQTT** and have the RPi subscribe to that data
- 5. Modify your Ingress API to receive data from an MQTT broker in the cloud, which receives data from the ESP32.
- 6. Implement integration patterns for connecting Things to the web

Material

Own material

- Laptop & charger
- Smartphone & charger
- Ethernet cable (optional)
- Micro-USB cable for the ESP32

Material available in classroom

- (mobile) Screen with HDMI (& power cable (USB to barrel jack))
- HDMI cable
- Keyboard
- Mouse

@Home: Preparation Work: Installation

- CoAP and MQTT on RPi
 - CoAPthon3
 - Mosquitto broker
- Arduino IDE
 - CoAP simple library
 - PubSub client (MQTT)
- Bluetooth on Rpi (optional)
 - Bluetooth set of libraries
 - Bluepy (to connect with BLE)
- Bluetooth app on smartphone

In Lab: Installation

- VNC Viewer
 - 2 week free trial period
 - Install only in lab when we come together

In Lab: Task1: Send data with Bluetooth

Bonus Task2: Control LED with Bluetooth

In Lab: Task3: Send data with Bluetooth Low Energy

Bonus Task4: Send data via BLE to RPi

In Lab: Task5: Send data via CoAP to RPi

In Lab: Task 6 - RPi is gateway to Ingress

In Lab: Task7: Publish data directly to RPi via MQTT

Bonus Task8: Control a(n) LED via MQTT

In Lab: Task 9 - ESP32 Talk to Ingress in Cloud

Material to submit

- Preparation part at home: due Thursday 13 March at 10:00
 - Checklist on Ufora
- Archive (Lab4_FamilyName_FirstName.zip): due Thursday 27 March at 10:00
 - Lab report in .pdf
 - Explanation of code
 - Screenshots and/or pictures of task results
 - Questions
 - Source code
 - no .idea or __pycache__ folders!
 - Videos of task results (if applicable)

Ing. Cedric Bruylandt PhD student

Cedric.Bruylandt@UGent.be

Dr. Jennifer B. Sartor Onderwijsbegeleider

Jennifer.Sartor@ugent.be

