Từ trường tĩnh

Lê Quang Nguyên www4.hcmut.edu.vn/~leqnguyen nguyenquangle59@yahoo.com

Nội dung

- 1. Dòng điện
- Từ trường
- 3. Lực từ
- 4. Định luật Gauss đối với từ trường
- 5. Định luật Ampère
- 6. Dipole từ
- 7. Từ trường ở quanh ta

cuu duong than cong . com

1a. Vecto mật độ dòng điện

- Xét dòng các hạt điện tích *q* chuyển động.
- Vectơ mật độ dòng điện:

$$\vec{j} = Nq\vec{v} = \rho\vec{v}$$
 (C/m².s)
hay (A/m

- N: mật độ hạt mang điện,
- ρ = Nq: mật độ điện tích.
- *j* hướng theo chiều chuyển động của các hạt mang điện dương.

j.n là điện lượng đi qua một đơn vị diện tích của (S) trong một đơn vị thời gian

1b. Cường độ dòng điện

 Cường độ dòng = điện lượng qua (S) trong một đơn vị thời gian:

$$I = \int_{(S)} \vec{j} \cdot \vec{n} dS$$

- *j*, *n* là mật độ dòng và pháp vectơ trên *dS*.
- *n* theo chiều chuyển động của điện tích dương.

CuuDuongThanCong.com

1c. Sức điện động

 Công do nguồn thực hiện khi dịch chuyển một đơn vị điện tích thành dòng kín trong mạch:

(J/C) hay (V)

1d. Định luật Ohm

 Giữa mật độ dòng điện và điện trường trong vật dẫn có hệ thức:

$$\vec{j} = \sigma \vec{E}$$

- σ là điện dẫn suất của vật (nghịch đảo của điện trở suất).
- Đó là dạng vi phân của định luật Ohm.

cuu duong than cong . com

1d. Định luật Ohm (tt)

- Xét một đoạn dây dẫn chiều dài *l*, tiết diện *S*, có mật độ dòng điện *j* đều.
- Cường độ dòng qua dây:

$$I = jS = \sigma ES = \frac{\sigma S}{l} El$$

$$I = \frac{\Delta V}{R}$$

2a. Từ trường - vecto cảm ứng từ

- Nam châm hay dòng điện tạo ra từ trường, ở mỗi vị trí trong từ trường có một vectơ cảm ứng từ B xác định.
- Từ trường tạo bởi các dòng điện dùng, có cường độ dòng không thay đổi theo thời gian, được gọi là từ trường tĩnh.
- Để mô tả từ trường người ta cũng dùng các đường sức từ.

2a. Từ trường – đường sức

2b. Lực từ lên một điện tích chuyển động

 Điện tích điểm q chuyển động trong từ trường B với vận tốc v,

 lực từ (lực Lorentz) tác động lên q:

$$\vec{F} = q\vec{v} \times \vec{B}$$

- B đo bằng Tesla (T).
- Công của lực từ luôn bằng không.

2c. Lực từ lên một dòng điện

 Lực từ tác động lên một dòng điện vi phân:

$$d\vec{F} = Id\vec{l} \times \vec{B}$$

 Lực từ tác động lên một dòng điện bất kỳ:

$$\vec{F} = \int_{(C)} Id\vec{l} \times \vec{B}$$

 tích phân theo các đoạn dl trên (C).

2c. Lực từ lên một dòng điện (tt)

• Khi từ trường đều:

$$\vec{F} = I \left(\int_{(C)} d\vec{l} \right) \times \bar{E}$$

$$\vec{F} = I\vec{l} \times \vec{B}$$

 với l là vectơ nối từ điểm đầu đến điểm cuối của dòng điện.

2d. Từ trường tạo bởi dòng điện

• Định luật Biot-Savart:

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^3}$$

$$\mu_0 = 4\pi \times 10^{-7} (T.m/A)$$

- là *độ từ thẩm* của chân không.
- Từ trường toàn phần:

$$\vec{B} = \frac{\mu_0}{4\pi} \int_{(C)} \frac{Id\vec{l} \times \vec{r}}{r^3}$$

3. Định luật Gauss cho từ trường

 Từ thông qua một mặt kín bằng không:

$$\oint_{(S)} \vec{B} \cdot \vec{n} dS = 0$$

• Hay dưới dạng vi phân:

$$div\vec{B} = 0$$

 Ý nghĩa: đường sức từ trường luôn luôn khép kín.

cuu duong than cong . com

4. Định luật Ampère

- Chiều dương của pháp vecto n là chiều thuận đối với định hướng của (C).
- Lưu số của B theo (C) tỷ lệ với cường độ dòng toàn phần qua (S):

$$\oint_{(C)} \vec{B} \cdot d\vec{r} = \mu_0 I_{tot}$$

$$rot\vec{B} = \mu_0\vec{j}$$

4. Định luật Ampère (tt)

- Nếu (C) đi vòng qua một dòng điện nhiều lần,
- thì dòng điện đó phải được cộng bấy nhiêu lần với dấu tương ứng.

5a. Dipole từ

- Dipole từ là một dòng điện kín có kích thước nhỏ.
- Momen dipole tù:

$$\vec{p}_m = NIS\vec{n}$$

- N là số vòng dây,
- I là cường độ dòng điện,
- S: diện tích một vòng dây,
- *n*: pháp vectơ theo chiều thuận đối với dòng điện.

5b. Dipole từ trong từ trường

• Dipole từ trong từ trường ngoài có thế năng:

$$U_m = -\vec{p}_m \cdot \vec{B}$$

- thế năng cực tiểu khi momen từ cùng chiều với từ trường.
- Dipole chịu tác động của momen ngẫu lực:

$$\vec{\tau} = \vec{p}_m \times \vec{B}$$

• Momen này có xu hướng quay dipole song song với từ trường ngoài.

cuu duong than cong . com

cuu duong than cong . com