

Winning Space Race with Data Science

Sarah Wolff 20/09/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Predicting whether a SpaceX flight will have a successful first-stage landing
- Using data visualization, exploratory analysis, classification methods
- Finding that which characteristics impact success

Introduction

- The rocket flights offered by SpaceY include reusable parts
- If the first-stage rocket part lands successfully, it can be reused and costs are severely cut
- The company wants to predict whether this will happen for a particular planned flight because it allows for precise cost estimation
- Further, the company wants to uncover which flight characteristics increase the chance for a successful first stage

Methodology

Executive Summary

- Data collection methodology:
 - Request data from API
- Perform data wrangling
 - · Clean and filter data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Find best hyperparameter
 - Evaluate using resulting accuracy score

Data Collection

Data Collection – SpaceX API

 https://github.com/pickelbit/CapstoneAssignment/blob/dbfaOecd3c44386e9d8efb8ef7d5c723Od6b7d77/ jupyter-labs-spacex-data-collection-api%2O(1).ipynb

Data Collection - Scraping

• https://github.com/pickelbit/CapstoneAssignment/blob/dbfaOecd3c44386e9d8efb8ef7d5c723Od6b7d77/ jupyter-labs-webscraping.ipynb

Data Wrangling

 https://github.com/pickelbit/CapstoneAssignment/blob/dbfaOecd3c44386e9d8efb8ef7d5c723Od6b7d77/ labs-jupyter-spacex-Data%2Owrangling.ipynb

EDA with Data Visualization

- Plot relationships between:
 - Flight number and launch sites -> success rates highly used launch sites
 - Payload and launch sites -> one of the sites does not launch high payload flights
 - Success rate and orbit type -> some orbits have a near 100% success rate
 - Flight number and orbit type -> in some orbits, flight number does not matter
 - Payload and orbits type -> some orbits cope well with higher payload
 - Launch success yearly trend -> from 2013 to 2020 the success rate increased
- https://github.com/pickelbit/CapstoneAssignment/blob/dbfaOecd3c44386e9d8efb8ef7d5c723Od6b7 d77/jupyter-labs-eda-dataviz.ipynb

EDA with SQL

- Get unique launch sites
- Calculate the total payload mass of NASA and F9 v1.1 boosters
- Get date of first successful landing
- Get number of successes and failures
- Get boosters that carry maximum payload
- Rank count of successful landing outcomes
- https://github.com/pickelbit/CapstoneAssignment/blob/dbfaOecd3c44386e9d8efb8ef7d5c723Od6b7 d77/jupyter-labs-eda-sql-coursera_sqllite%2O(1).ipynb

Build an Interactive Map with Folium

- Show geographical location of launch sites
- Display success counts of all launch sites
- Display infrastructure in proximity
- https://github.com/pickelbit/CapstoneAssignment/blob/dbfaOecd3c44386e9d8efb8ef7d5c723Od6b7d77/la b_jupyter_launch_site_location.ipynb

Predictive Analysis (Classification)

- Find best hyperparameter
- Calculate accuracy score
- For the following methods:
 - Support vector machines
 - Decision trees
 - Logistics regression
 - K-nearest neighbour
- https://github.com/pickelbit/CapstoneAssignment/blob/dbfaOecd3c44386e9d8efb8ef7d5c723Od6b7 d77/SpaceX_Machine%2OLearning%2OPrediction_Part_5.ipynb

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

• There are 4 unique launch sites:

```
In [22]:

▶ %sql select distinct "Launch_Site" from SPACEXTBL
               * sqlite:///my_data1.db
             Done.
   Out[22]:
                Launch_Site
               CCAFS LC-40
               VAFB SLC-4E
                 KSC LC-39A
              CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

Out[24]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
	04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp
	08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

• The total payload carried by boosters from NASA:

	* sqlite:///my_data1.db Done.		
Out[25]:	Customer	sum("PAYLOAD_MASSKG_")	
	ABS Eutelsat	7759	
	AsiaSat	8963	
	Bulsatcom	3669	
	CONAE	3000	
	CONAE, PlanetIQ, SpaceX	3130	
	Canadian Space Agency (CSA)	4200	
	EchoStar	5600	
	Es hailSat	5300	
	Hisdesat exactEarth SpaceX	2150	
	Hispasat NovaWurks	6092	
	Inmarsat	6070	
	Intelsat	6761	

Average Payload Mass by F9 v1.1

• The average payload mass carried by booster version F9 v1.1:

	* sqlite:///my_data1.db Done.						
Out[27]:	Booster_Version avg("PAYL	OAD_MASSKG_")					
	F9 B4 B1039.2	2647.0					
	F9 B4 B1040.2	5384.0					
	F9 B4 B1041.2	9600.0					
	F9 B4 B1043.2	6460.0					
	F9 B4 B1039.1	3310.0					
	F9 B4 B1040.1	4990.0					
	F9 B4 B1041.1	9600.0					
	F9 B4 B1042.1	3500.0					
	F9 B4 B1043.1	5000.0					
	F9 B4 B1044	6092.0					

First Successful Ground Landing Date

• First successful landing outcome on ground pad:

Successful Drone Ship Landing with Payload between 4000 and 6000

 Boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

Total number of successful mission outcomes

Boosters Carried Maximum Payload

• Booster which have carried the maximum payload mass:

1.db		
AD_MASSKG_		
15600		
15600		
15600		
15600		
15600		
15600		
15600		
15600		
	15600 15600 15600 15600 15600	15600 15600 15600 15600 15600

2015 Launch Records

• Failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015:

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order:

Site locations

• There are launch sites in two geographical areas

Successes vs. failures

Infrastructure in proximity to launch sites

Classification Accuracy

- Tree model has the highest accuracy
- Tree: 0.888
- Logistic regression: 0.847
- Support vector machines: 0.847
- Neirest neighbour: 0.847

Confusion Matrix

• Tree model with an accuracy of 0.8333

Conclusions

- Choose orbit and launch site carefully
- Use decision trees for prediction

