GENERATING STRUCTURED DRUM PATTERN USING VARIATIONAL AUTOENCODER AND SELF-SIMILARITY MATRIX

I-Chieh Wei, Chih-Wei Wu² and Li Su¹

¹Institute of Information Science, Academia Sinica, Taiwan, and, ²Netflix, Inc., USA

Summary

The challenge of automatic music generation is to generate patterns that are both **rhythmically** and **harmonically** cohesive throughout the piece. In this work, we focus on **conditional music generation** which aims to **generate rhythmically compatible percussive track** given the melodic tracks. we proposed a model that incorporates long term structure into the music generation process. The subjective evaluation results suggest the effectiveness of the proposed method.

256

し96ノ

current bar

spectrogram

Drum SSM generator

Melodic and drum SSM generally share a similar structure. (SSM example is shown below). This similarity makes the inferencing possible through a predictive model. A VAE-GAN model is trained in this work to infer a drum SSM from a melodic SSM input. The SSM generator is trained by minimizing the loss function:

$$\mathcal{L}_{ssm} = -E_{v \sim q_s(z_s|s_m)}[\log p_s(s_d|z_s)] + KL(q_s(z_s|s_m)||p(z_s)) + \mathcal{L}_D$$

SSM example of "Can't Buy Me Love" by Beatles

Drum pattern generator

Selected 8-bars spectrograms are feed into a VAE-based drum pattern generator as input. The model is trained to generate a single-bar drum pattern output for current bar. The following loss function is minimized during training stage:

$$\mathcal{L}_{drum} = -E_{z \sim q(z|y)} [\log p(x|z)] + KL(q(z|y)||p(z)) + r(c; \hat{c})$$

Dataset

In this work, we use the Lakh Pianoroll Dataset (LPD-5), LPD-5 contains 21,425 songs and each song has five tracks (piano, guitar, string, bass, and drums) extracted from the original MIDI.

Code and listening example:

https://sma1033.github.io/drum generation with ssm

Melodic spectrogram Grum SSM k = 7 ... bar selection via SSM Melodic spectrogram bar selection bar selection

Select reverent bars

k-nearest bars are located for every bar-level spectrogram according to the given song's drum SSM. These bars are identified by finding the *k*-smallest distance in every column of the drum SSM.

8-bars spectrogram feature

Together with the current bar spectrogram, the 8-bars (7+1) spectrogram are weighted then stacked into an eight-channel feature representation, which will be used as the input to the subsequent drum pattern generator.

Evaluation

Compare four methods

We evaluate the drum tracks collected from the four methods:

- *OMD* Original MIDI Drums are the drum patterns predefined in the source MIDI files.
- ODS Original Drum SSM is the proposed model except that the drum SSM used for bar selection is computed from OMD.
- *PDS* Predicted Drum SSM is the model we proposed.
- **NB N**eighboring **B**ars is the baseline model that uses no structural information for generation.

Pairwise comparison

Pairwise performed for drum tracks from the four methods. The result shows the effectiveness of our proposed model.

(Win-rate in pairwise test)

Subjective evaluation from musicians

Descriptive feedback from three musician is collected, such as, **ODS** - good distinction between sections; **NB** - unstructured yet unexpected.