

T1 TEAM

NGUYỄN HỮU SANG

LÊ HOÀI NAM

NGUYỄN ĐÌNH DŨNG

NGUYỄN VĂN HÙNG

YÊU CẦU BÀI TOÁN

hiết kế shipping robot sử dụng hề điều hành thời gian thực 01

PHƯƠNG ÁN THIẾT KẾ

Cơ khí, phần cứng, phần mềm

02

NỘI DUNG

03

CHƯƠNG TRÌNH

Thuật toán điều khiển

04

BÀI TẬP

Bài tập 10.1 10.2 10.3

Thiết kế shipping robot sử dụng hề điều hành thời gian thực

SHIPPING ROBOT

PHẦN CỨNG

- Thiết kế robot với cảm biến phù hợp, ứng dụng IoT
- Đầu vào: cảm biến / Đầu ra: motor, buzzer
- Trọng lượng <= 2kg
- Giao tiếp không dây: RF, Zigbee, Wifi
- Sử dụng VĐK PIC

PHẦN MỀM

- Viết chương trình C dựa trên hệ điều hành thời gian thực (RTOS)
- Xây dựng thuật toán dựa trên yêu cầu thiết kế (đi thẳng, rẽ, tránh vật cản)

Sân thi đấu

Giao diện người-máy

Hệ thống máy tính thời gian thực

Đối tượng điều khiển

Thiết kế cơ khí

- Xe có trọng lượng nhẹ <= 2kg
 - → Sử dụng khung xe bằng nhựa mica, Nguồn: khay pin 18650, điện áp ra ~ 12V
- Xe có thể đi thẳng, rẽ hướng, điều khiển tốc độ
 - → Sử dụng 2 động cơ DC motor điều khiển độc lập
 - → kết hợp driver điều khiển động cơ L298D

Khung xe

Chất liệu: nhựa mica Màu sắc: trong suốt Kích thước: 25 x 14.8 cm

Nguồn

Điện áp ra: ~12V Dòng sạc: 1.25 A Dòng xả: 20A

Module L298D

IC chính: L298 - Dual Full Bridge Driver Điện áp đầu vào: 5~30VDC Công suất tối đa: 25W 1 cầu Dòng tối đa cho mỗi cầu H là: 2A Mức điện áp logic: Low -0.3V~1.5V, High: 2.3V~Vss

Kích thước: 43x43x27mm

Bánh điều hướng Omni

Điện áp sử dụng: 3~6VDC. Dòng điện tiêu thụ: 110-200mA Tỉ số truyền: 1:48 Số vòng/1phút: 90 vòng/ 1 phút tại 3VDC. 200 vòng/ 1 phút tai 6VDC.

DC/MOTOR + Bánh xe

Diện áp sử dụng: 3~6VDC. Dòng điện tiêu thụ: 110-200mA Tỉ số truyền: 1:48 Số vòng/1phút: 90 vòng/ 1 phút tại 3VDC. 200 vòng/ 1 phút tai 6VDC.

Cảm Biến Tốc Độ Encoder V1

Điện áp sử dụng: 3.3~5VDC Dòng sử dụng: 15mA Ngõ ra: Ananlog và Digital.

Thiết kế phần cứng

- Sử dụng VĐK PIC
 - → Lựa chọn VĐK PIC18F4520, đã được sử dụng ở môn học trước

- Giao tiếp không dây
 - → Giao tiếp qua wifi sử dụng module wifi **nodeMCU**, dễ sử dụng, truyền thông UART đơn giản với PIC

PIC18F4520

Lõi: 8-bit

Tốc độ: 40MHz

Kết nối: I2C, SPI, UART

Thiết bị ngoại vi: HLVD, POR, PWM,

WDT

Số chân I/O: 36 Điện áp: 4.2 ~ 5.5\

NodeMCU

IC chính: ESP8266 Wifi SoC. Cấp nguồn: 5VDC MicroUSB hoặc Vin. GIPO giao tiếp mức 3.3VDC

30 pins: 10 GPIO/PWM, I2C, 1-wire

WiFi @ 2.4 GHz, hỗ trợ bảo mật WPA / WPA2

Wi-Fi Connectivity (802.11 b/g/n)

modes: STA/AP/STA+AP

Kích thước: 25 x 50 mm

Lựa chọn cảm biến

- Xác định hướng di chuyển của xe
 - → Lựa chọn Cảm Biến Góc Gia Tốc MPU6050 GY-521, đã được sử dụng ở môn học trước
- Phát hiện vật cản
 - → Vật cản ở phía trước xe nên sử dụng cảm biến siêu âm HY-SRF05 đặt phía trước xe
- Phát hiện Zone
 - → Zone được xác định bằng các ô line màu đen, sử dụng cảm biến dò line đơn TCRT5000 đặt dưới gầm xe

GY-5216DOF MPU6050

Điện/áp sử dụng: 3~5VDC Điện áp giao tiếp: 3~5VDC Chuẩn giao tiếp: I2C Tín hiệu ra:

Gyroscopes: +/- 250 degree/sec

Acceleration: +/- 2g

UltraSonic HY-SRF05

Điện áp hoạt động: 5VDC Dòng tiêu thụ: 10~40mA Tín hiệu giao tiếp: TTL Góc quét:<15 độ

Khoảng cách đo được: 2~450cm. Kích thước: 43mmx20mmx17mm

TCRT5000

Nguồn cung cấp: 5VDC Có thể điều chỉnh độ nhạy bằng biến trở Dòng điện tiêu thụ: <10mA. Ngõ giao tiếp: 4 dây VCC, GND, DO, AO. Mức tín hiệu ngõ ra: Digital TTL & Analog Kích thước: 3.2 x 1.4mm

Thiết kế phần mềm

- Viết chương trình C dựa trên hệ điều hành thời gian thực (RTOS)
 - → Sử dụng CSS 5 là trình biên dịch ngôn ngữ C, hỗ trợ họ VĐK PIC, tích hợp sẵn thư viên RTOS
- Giao diện người máy
 - → Sử dụng ứng dụng viết bằng Blynk để cấu hình robot, nhận thông báo gửi lên
 - → Kết nối qua wifi, dễ kết nối, lập trình, giao diện trực quan, sử dụng được trên điện thoại di động

CC\$5 Compiler

Lập trình RTOS cho VĐK PIC18F4520

Arduino IDE

Lập trình cho NodeMCU

Blynk App

Thiết kế giao diện người – máy Cấu hình, nhận thông báo từ robot Sử dụng trên điện thoại di dộng

Giao diện người-máy

Online: Sử dụng Blynk App Offline: AP mode Webserver

Sơ đồ hệ thống

Thuật toán điều khiển

(Thuật toán đặt lịch ưu tiên)

10.1

- **Tác vụ 1**: chạy mỗi 250ms, đổi trạng thái trân RB0
- Tác vụ 2: chạy mỗi 500ms, đổi trạng thái chân RB1
- Tác vụ 3: chạy mỗi 1s, đổi trạng thái chân RB2
- **Tác vụ 4**: chạy mỗi 2s, đổi trạng thái chân RB3

10.2

- Task Live: chạy sau mỗi 200ms, đổi trạng thái chân RD0
- Task Generator: đếm từ 0 -> 255,
 Khi nhấn nút, gửi giá trị đếm sang task Display
- Task Display: đọc số từ hàng đợi thông điệp, hiện thị số gua 8 led

VIDEO

