

Neural Network-based Detection of Taylor Vortices in Annular Flow Systems

Exposé for Master Thesis - Initial Presentation

Mahyar Alikhani, Institute of Applied Mechanics
12 Dezember 2023

Contents

Problem Statment

Task definition and objective

Litrature Review

Approache

Deep Operator Learning (DeepOnet)

Motivation

Time Planning

Literatur

Problem Statement

Taylor-Couette flow

- a fluid dynamic phenomenon that occurs when a fluid is passing between two coaxial-rotating cylinders.
- Inner cylinder is typically rotating faster than outer cylinder.
- Dimensionless control parameters like Re, ω_{inner} and ω_{outter} are key factors

Abbildung: Taylor-couette flow at time-step 19

Objectives

• Governing equ:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f}$$
 (1)

w.r.t boundary conditions:

$$\mathbf{u} = \mathbf{u}_0$$
 at Γ_1 (2)

$$\mathbf{u} = 0$$
 at Γ_2 (3)

$$\frac{\partial p}{\partial n} = 0 \quad \text{at} \quad \Gamma_3 \tag{4}$$

Litrature Review

(a) (Liang et al., 2018), a CNN-based vortex identification method to use both local and global information of flow field.

Litrature Review

(b) (Deng et al., 2022), replacing the fully-connected NN with a segmented network to reduce the computational complexity.

Approach

- (a) Data preparation:
 - Running the Taylor merve case for different values of $\{\omega_{\mathit{inner}}, \omega_{\mathit{outter}}, Re\}$
 - Collecting the velocity fields and λ_2 vectors for all time steps.
- (b) Model development:
 - Trying to Learn the mapping from a function in field to a Region-like method for detecting vortices.

Deep operator networks(Lu, Jin, Pang, Zhang & Karniadakis, 2021) (DeepONets)

D Unstacked DeepONet

- Each input function u is evaluated at fixed sensor points $\{x_1, x_2, \dots, x_m\}$
- y with d components and u(x_i) for i = 1, 2, ..., m are not matched. Therefor, it is needed to use two subnets. Branch for encoding input function at sensor points - Trunk for the location to evaluate output function

$$G(u)(y) \approx \sum_{k=1}^{p} b_k t_k + b_0$$
 (5)

Deep operator networks (DeepONets): prediction of λ_2

 $t \in \mathbb{R}^{N_f}$, (128000, N_f)

Motivation

Timeline

Abbildung: Timeplan

Thank you! Any questions?

TU Clausthal

- Deng, L., Bao, W., Wang, Y., Yang, Z., Zhao, D., Wang, F., ... Guo, Y. (2022). Vortex-u-net: An efficient and effective vortex detection approach based on u-net structure. *Applied Soft Computing*, 115, 108229. Zugriff auf https://www.sciencedirect.com/science/article/pii/S1568494621010620 doi: https://doi.org/10.1016/j.asoc.2021.108229
- Liang, D., Wang, Y., Liu, Y., Wang, F., Li, S. & Liu, J. (2018, 10). A cnn-based vortex identification method. *Journal of Visualization*, 22. doi: 10.1007/s12650-018-0523-1
- Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. *Nature Machine Intelligence*, *3* (3), 218–229.