(1) 由题意
$$f(x) = (x-a)^3, f(4) = (4-a)^3 = 8 \Rightarrow a = 2$$

(2) 由题意
$$f(x) = (x-a)(x-b)^2$$

 $f'(x) = (x-b)^2 + 2(x-a)(x-b) = (x-b)(3x-2a-b)$
故 $\frac{2a+b}{3}$ 则 a,b 只能为 -3 和 3
若 $a = -3, b = 3$ 时 $\frac{2a+b}{3} = -1$ (舍去)
若 $a = 3, b = -3$ 时 $\frac{2a+b}{3} = 1$ (符合题意)
故 $f(x) = (x-3)(x+3)^2, f'(x) = (x+3)(3x-3)$
 $x < -3, f'(x) > 0; -3 \le x \le 1, f'(x) \le 0; x > 1, f'(x) > 0;$
故在 $x = 1$ 处取得极小值 $f(1) = -2 * 16 = -32$

(3) 由题意
$$f(x) = x(x-b)(x-1) = (x^2-x)(x-b) = x^3 - (b+1)x^2 + bx$$
 $f'(x) = 3x^2 - 2(b+1)x + b$ $f'(x) = 0$ 时 $3x^2 - 2(b+1)x + b = 0$ 易知 $f(x)$ 在 $x_0 = \frac{2(b+1) - \sqrt{4(b+1)^2 - 4 \cdot 3b}}{6} = \frac{b+1 - \sqrt{b^2 - b+1}}{3}$ 处取得极大值 $x_0^2 = \frac{2b^2 + b + 2 - 2(b+1)\sqrt{b^2 - b+1}}{9}$ $x_0^3 = \frac{4b^3 + 3b^2 + 3b + 4 - (4b^2 + 5b + 4)\sqrt{b^2 - b+1}}{27}$ $f(x_0) = \frac{-2b^3 + 3b^2 + 3b - 2 + (2b^2 - 2b + 2)\sqrt{b^2 - b+1}}{27}$ 难解 注意到 $f(x) = x(x-b)(x-1)$ 为零点式,过定点 $(0,0), (1,0)$ 动点 $(b,0)$ 易知 $0 < x_0 < b \le 1$ 猜想 $b = 1$ 时 $f(x_0)$ 最大 验证: $x_0(x_0-1)(x_0-1) - x_0(x_0-1)(x_0-b) = x_0(x_0-1)(b-1) \ge 0$ 猜想成立,此时 $x_0 = \frac{1}{3}, f(x_0) = \frac{4}{27}$