Permissões Especiais

Prof. Me Robson Ferreira Lopes rferreira@ifsp.edu.br IFSP Câmpus Guarulhos

Permissões Tradicionais

No Linux há três modelos de controle de acesso básicos: Read, Write e Execution. Veja um exemplo de permissão básica na figura abaixo:

O Tipo do Objeto significa:

d => diretório;

b => arquivo de bloco;

c => arquivo especial de caractere;

p => canal;

s => socket;

- => arquivo normal.

Já os outros caracteres significam:

r => permissão de leitura (read);

w => permissão de gravação (write);

x => permissão de execução (execution);

- => permissão desabilitada.

Explicando um pouco mais:

Leitura (r):

Em arquivos, permite examinar o conteúdo do arquivo.

Em diretórios permite listar conteúdo do diretório.

Escrita (w):

Em arquivos, permite escrever, remover e alterar o arquivo.

Em diretórios, permite criar e remover arquivos dentro do diretório.

Execução (x):

Em arquivos, permite executar um arquivo como um programa.

Em diretório, permite ler e escrever em arquivos dentro do diretório.

Sendo que os três primeiros rwx pertencem ao Dono do arquivo, os outros três rwx pertencem ao Grupo e por fim os últimos três rwx pertencem há outros usuários que não fazem parte do grupo.

Permissões de acesso especiais

Mas somente as três permissões básicas (rwx) não dão toda flexibilidade para controlar acesso aos arquivos e diretórios. Por isso o Linux tem mais três modelos especiais para controle de acesso, chamados suid (set user id), sgid (set group id) e Sticky (Sticky bit). Veja um exemplo de permissão especial na figura abaixo:

SUID (4) (Set User ID)

A propriedade SUID é somente para arquivos executáveis e não tem efeito em diretórios. Nas permissões básicas, o usuário que executou o programa é dono do processo. Mas em arquivo executável com a propriedade SUID aplicada, o programa rodará com o ID do dono do arquivo, não como ID do usuário que executou o programa. Normalmente o usuário dono do programa executável é também dono do processo sendo executado. Ou seja, quando um arquivo/programa executável tem o controle de acesso SUID, ele é executado como se ele estivesse iniciado pelo dono do arquivo/programa.

A permissão de acesso especial SUID pode aparecer somente no campo Dono.

SGID(2) (Set Group ID)

A propriedade SGID tem a mesma função que o SUID para arquivos executáveis. Mas a propriedade.SGID tem um efeito especial para os diretórios. Quando SGID é aplicado em um diretório, os novos arquivos que são criados dentro do diretório assumem o mesmo ID de Grupo do diretório com a propriedade SGID aplicado. A permissão de acesso especial SGID pode aparecer somente no campo Grupo.

Sticky(1) (Sticky bit)

Em arquivos executáveis, a propriedade Sticky faz com que o sistema mantenha uma imagem do programa em memória depois que o programa finalizar. Esta capacidade aumenta o desempenho, pois será feito um cache do programa para a memória e da próxima vez que ele for executado, será carregado mais rápido.

Em diretórios, a propriedade Sticky impede que outros usuários deletem ou renomeiam arquivos dos quais não são donos. Isso normalmente é utilizado para aumentar a segurança, pois o diretório estará em modo append-only (somente incremente). Sendo assim, somente o usuário que é Dono do arquivo, poderá deletar ou renomear os arquivos dentro de um diretório com a propriedade Sticky aplicada. A permissão especial Sticky pode ser especificada somente no campo outros usuários das permissões de acesso.

Usando as personagens e características dos filmes de Harry Potter vamos entender como funciona as permissões especiais

Considerações finais

Na prática quando realizamos uma estrutura de compartilhamento combinado SGID com o sticky bit para que quando um arquivo é criado tenha sim como dono os usuários que o criou e o grupo seja o mesmo atribuído do diretório. Além disso somente o dono poderá apagar esse arquivo. O único usuário que poderá ter privilégios acima desses é o root.

Hora da prática

. . .

Verificando programas que tem o SUid ativado

```
root@operacao:~# find / -perm -4000 2> /dev/null
/usr/lib/policykit-1/polkit-agent-helper-1
/usr/lib/dbus-1.0/dbus-daemon-launch-helper
/usr/lib/eject/dmcrypt-get-device
/usr/lib/xorg/Xorg.wrap
/usr/lib/openssh/ssh-keysign
/usr/bin/su
/usr/bin/ntfs-3q
/usr/bin/gpasswd
/usr/bin/umount
/usr/bin/sudo
/usr/bin/chfn
/usr/bin/pkexec
/usr/bin/newgrp
/usr/bin/bwrap
/usr/bin/fusermount
/usr/bin/mount
/usr/bin/chsh
/usr/bin/passwd
/usr/sbin/pppd
```

Verificando programas que tem o SGid ativado

```
root@operacao:~# find / -perm -2000 2> /dev/null
/usr/bin/chage
/usr/bin/ssh-agent
/usr/bin/dotlockfile
/usr/sbin/unix_chkpwd
/usr/local/share/fonts
/run/log/journal
/run/log/journal/ee2abbb4f5114276b29b2c7121589021
/var/mail
/var/local
```

Verificando programas que tem o Sticky Bitativado

```
root@operacao:~# find / -perm -1000 2> /dev/null
/dev/mqueue
/dev/shm
/run/screen
/run/lock
/var/spool/cron/crontabs
/var/tmp
/tmp
```

Criar os usuários Harry, Hermione, Luna, Severo, Cho, Malfoy e Dumbledore

```
#adduser harry
#adduser hermione
#adduser malfoy
#adduser severo
#adduser cho
#adduser luna
#adduser dumbledore
```

Criar o grupo armada, grifinoria, sonserina e corvinal

```
#addgroup armada
#addgroup grifinoria
#addgroup sonserina
#addgroup corvinal
```

Adicione harry, hermione e luna no grupo armada, Harry e Hermione no grupo grifinoria, cho e a luna no grupo corvinal por fim malfoy e severo no grupo sonserina.

```
#gpasswd -a harry armada
#gpasswd -a hermione armada
#gpasswd -a luna armada
#gpasswd -a harry grifinoria
#gpasswd -a hermione grifinoria
#gpasswd -a luna corvinal
#gpasswd -a cho corvinal
```

```
#gpasswd -a malfoy sonserina
#gpasswd -a severo sonserina
```

- membrosarmada.txt

Criar os diretórios precisa, sonserina, grifinoria e corvinal em /srv

```
root@operacao:~#mkdir /srv/{precisa,sonserina,grifinoria,corvinal}
Resultado:
root@operacao:~# cat /etc/passwd | awk -F: '$3 >= 1002 && $3 <
1020 {print $1}'
harry
hermione
malfoy
luna
severo
cho
dumbledore
root@operacao:~# cat /etc/group | awk -F: '$3 >= 1002 && $3 < 1020
{print $1}'
armada
grifinoria
sonserina
corvinal
root@operacao:~# cat /etc/group | awk -F: '$3 >= 1002 && $3 < 1020
{print $1FS$4}'
armada:harry,hermione,luna
grifinoria: harry, hermione
sonserina:malfoy, severo
corvinal: luna, cho
root@operacao:~# tree /srv
/srv
- corvinal
-- grifinoria
-- precisa
    - chapeu.sh
```

```
nomes.txt
sonserina

root@operacao:~# ls -lha /srv

total 24K

drwxr-xr-x 6 root root 4,0K jan 22 17:20 .

drwxr-xr-x 20 root root 4,0K dez 12 14:41 ..

drwxr-xr-x 2 root root 4,0K jan 22 17:20 corvinal

drwxr-xr-x 2 root root 4,0K jan 22 17:20 grifinoria

drwxr-xr-x 2 root root 4,0K jan 22 17:20 grifinoria

drwxr-xr-x 2 root root 4,0K jan 22 17:03 precisa

drwxr-xr-x 2 root root 4,0K jan 22 17:20 sonserina
```

5. Gerar conteúdo para o diretório /srv/precisa

5.1 Usando a técnica dos redirecionadores de fluxo criar um arquivo membrosarmada.txt com os nomes Harry Potter, Hermione e Ronald

```
root@operacao:~# cat << membros > /srv/precisa/membrosarmada.txt
> Harry Potter
> Hermione
> Ronald
> membros
```

5.2 Elaborar o script logo a seguir com o nome de chapéu.sh root@operacao:/srv/precisa# vim chapeu.sh

```
#!/bin/bash
echo "Preparando para execução"
sleep 3
echo "Quem é você? "
read NOME
echo $NOME >> nomes.txt 2> /dev/null
if [ $? = 0 ]
then
   clear
   echo "$NOME incluido"
   sleep 5
   cat nomes.txt
```

```
exit 0
else
  clear
  echo "$NOME não incluido"
  exit 1
fi
```

5.2.1 Criar o arquivo nomes.txt dentro de /srv/precisa

#echo ***** Lista de nomes ***** > /srv/precisa/nomes.txt

5.2.2 Dar permissão de execução ao script chapeu.sh

#chmod 755 /srv/precusa/chapeu.sh

5.3 Mudar o grupo dos arquivos e do diretório /srv/precisa em modo recursivo para armada.

#chgrp -R armada /srv/precisa

5.4 Mudar o grupo dos diretorios grifinoria, sonserina e corvinal para o respectivo grupo.

```
#chgrp -R grifinoria /srv/grifinoria
#chgrp -R sonserina /srv/sonserina
#chgrp -R corvinal /srv/corvinal
```

5.5 Ajuste a permissão total para o dono e grupo e retire a permissão dos outros usuários acessarem esse arquivo.

```
#chmod 770 /srv/precisa
#chmod 770 /srv/grifinoria
#chmod 770 /srv/sonserina
#chmod 770 /srv/corvinal
```

Resultado 5.3, 5.4 e 5.5

```
drwxr-xr-x 2 root corvinal 4,0K jan 22 17:20 corvinal
drwxr-xr-x 2 root grifinoria 4,0K jan 22 17:20 grifinoria
                         4,0K jan 22 17:03 precisa
drwxr-xr-x 2 root armada
drwxr-xr-x 2 root sonserina 4,0K jan 22 17:20 sonserina
/srv/corvinal:
total 8,0K
drwxr-xr-x 2 root corvinal 4,0K jan 22 17:20 .
drwxr-xr-x 6 root root 4,0K jan 22 17:20 ...
/srv/grifinoria:
total 8,0K
drwxr-xr-x 2 root grifinoria 4,0K jan 22 17:20 .
drwxr-xr-x 6 root root 4,0K jan 22 17:20 ...
/srv/precisa:
total 20K
drwxr-xr-x 2 root armada 4,0K jan 22 17:03 .
drwxr-xr-x 6 root root 4,0K jan 22 17:20 ...
-rwxr-xr-x 1 root armada 264 jan 22 17:03 chapeu.sh
-rw-rw-r-- 1 root armada 29 jan 22 17:24 membrosarmada.txt
-rw-rw-r-- 1 root armada 83 jan 22 17:03 nomes.txt
/srv/sonserina:
total 8,0K
drwxr-xr-x 2 root sonserina 4,0K jan 22 17:20 .
drwxr-xr-x 6 root root 4,0K jan 22 17:20 ...
```

Agora que o cenário foi preparado vamos começar a testar as permissões especiais

O dumbledore é o administrador e será quem ira administrar o castelo. Assim terá alguns poderes adicionais como por exemplo alterar permissões dos usuários assim...

Inclua o dumbledore no grupo do root e no grupo armada

```
#gpasswd -a dumbledore root
#gpasswd -a dumbledore root
```

Aplique o comando ls para exibir com detalhes o binario do chmod

```
root@operacao:~# ls -lha /usr/bin/chmod
-rwxr-xr-x 1 root armada 63K fev 28 2019 /usr/bin/chmod
```

Em outro terminal com o usuário dumbledore (use o comando su -) \$su - dumbledore

Entre no diretório /srv/precisa e liste seu conteúdo

```
$cd /srv/precisa
dumbledore@operacao:/srv/precisa$ ls -la
total 28
drwxrwx--- 2 root armada 4096 jan 22 21:47 .
drwxr-xr-x 6 root root 4096 jan 22 17:20 ..
-rwxr-xr-x 1 root armada 264 jan 22 17:03 chapeu.sh
-rw-rw-r-- 1 luna users 30 jan 22 21:46 cidades.txt
-rw-rw-rw-1 luna users 29 jan 22 20:43 frutas.txt
-rw-rw-r-- 1 root armada 29 jan 22 17:24 membrosarmada.txt
-rw-ry-ry-1 root armada 100 jan 22 20:40 nomes.txt
```

Teste a criação de um arquivo vazio com o nome de dumbledore.txt em seguida tente trocar a permissão para 666

```
dumbledore@operacao:/srv/precisa$ > dumbledore.txt
dumbledore@operacao:/srv/precisa$ chmod 666 dumbledore.txt
```

Resultado:

```
dumbledore@operacao:/srv/precisa$ ls -1 dumbledore.txt
-rw-rw-rw- 1 dumbledore users 0 jan 22 21:56 dumbledore.txt
```

Comentário: Como o dono é o próprio dumbledore ele troca a permissão mas no arquivo nomes.txt que tem o dono o root ele não permite alteração da permissão

como: alterando permissões de 'nomes.txt': Operação não permitida

No terminal do root aplique a permissão SUid

root@operacao:~# chmod 4755 /usr/bin/chmod

Retorne ao terminal do dumbledore

dumbledore@operacao:/srv/precisa\$ chmod 664 nomes.txt

Comenário: Veja que agora com o usuário dumbledore mesmo o arquivo sendo do root ele conseque alterar a permissão

```
dumbledore@operacao:/srv/precisa$ ls -la
total 28
drwxrwx--- 2 root
                   armada 4096 jan 22 21:56 .
                      root 4096 jan 22 17:20 ...
drwxr-xr-x 6 root
-rwxr-xr-x 1 root
                      armada 264 jan 22 17:03 chapeu.sh
-rw-rw-r-- 1 luna
                              30 jan 22 21:46 cidades.txt
                      users
-rw-rw-r-- 1 dumbledore users
                               0 jan 22 21:56 dumbledore.txt
                  users 29 jan 22 20:43 frutas.txt
-rw-rw-rw- 1 luna
                    armada 29 jan 22 17:24 membrosarmada.txt
-rw-rw-r-- 1 root
-rw-r--r-- 1 luna
                              0 jan 22 21:47 mensagem.txt
                      users
-rw-rw-r-- 1 root
                      armada 100 jan 22 20:40 nomes.txt
```

Para essa segunda parte do experimento vamos usar combinados os bits de SGid com Sticky bit assim podemos aplicar em um exemplo pratico

Aplicar a permissão de SGid com a permissão total para o dono e para o grupo e nenhuma permissão para outros de modo recursivo no diretório /srv/sonserina

root@operacao:~# chmod -R 2770 /srv/sonserina

Criar o diretório /srv/comunal

root@operacao:~# #mkdir /srv/comunal

Criar o grupo hogwarts

root@operacao:~# #addgroup hogwarts

Alterar o dono para dumbledore e o grupo para hogwarts do diretório /srv/comunal

root@operacao:~# #chown dumbledore:hogwarts /srv/comunal

Alterar a permissão do diretório para total para dono, grupo e outros com o sticky bit ativado

root@operacao:~# #chmod 1777 /srv/comunal

Assim aplicar a permissão de SGid e Sticky bit com a permissão total para o dono e para o grupo e nenhuma permissão para outros de modo recursivo em /srv/precisa, /srv/sonserina, /srv/grifinoria e /srv/corvinal

```
root@operacao:~# chmod -R 3770 /srv/precisa
root@operacao:~# chmod -R 3770 /srv/grifinoria
root@operacao:~# chmod -R 3770 /srv/corvinal
```

Tudo ajustado

root@operacao:~# ls -lha /srv/

total 28K

```
drwxr-xr-x 7 root
                                   4,0K jan 22 22:41 .
                        root
drwxr-xr-x 20 root
                        root
                                   4,0K dez 12 14:41 ...
drwxrwxrwt 2 dumbledore hogwarts 4,0K jan 22 22:41 comunal
                                   4,0K jan 22 17:20 corvinal
drwxrws--T 2 root
                        corvinal
drwxrws--T 2 root
                        grifinoria 4,0K jan 22 22:32 grifinoria
drwxrws--T 2 root
                        armada
                                   4,0K jan 22 21:56 precisa
                        sonserina 4,0K jan 22 17:20 sonserina
drwxrws--- 2 root
root@operacao:~# ls -lhaR /srv/
/srv/:
total 28K
```

```
drwxr-xr-x 7 root
                         root
                                   4,0K jan 22 22:41 .
                                   4,0K dez 12 14:41 ...
drwxr-xr-x 20 root
                         root
                                   4,0K jan 22 22:41 comunal
drwxrwxrwt 2 dumbledore hogwarts
                                   4,0K jan 22 17:20 corvinal
drwxrws--T 2 root
                        corvinal
                        grifinoria 4,0K jan 22 22:32 grifinoria
drwxrws--T 2 root
drwxrws--T 2 root
                                    4,0K jan 22 21:56 precisa
                        armada
```

```
/srv/comunal:
total 8,0K
drwxrwxrwt 2 dumbledore hogwarts 4,0K jan 22 22:41 .
drwxr-xr-x 7 root
                      root 4,0K jan 22 22:41 ...
/srv/corvinal:
total 8,0K
drwxrws--T 2 root corvinal 4,0K jan 22 17:20 .
drwxr-xr-x 7 root root 4,0K jan 22 22:41 ...
/srv/grifinoria:
total 12K
drwxrws--T 2 root grifinoria 4,0K jan 22 22:32 .
                        4,0K jan 22 22:41 ..
drwxr-xr-x 7 root root
-rw-r--r-- 1 harry grifinoria 17 jan 22 22:32 harry.txt
/srv/precisa:
total 28K
drwxrws--T 2 root
                      armada 4,0K jan 22 21:56 .
drwxr-xr-x 7 root
                      root 4,0K jan 22 22:41 ...
                       armada 264 jan 22 17:03 chapeu.sh
-rwxrws--T 1 root
-rwxrws--T 1 luna
                       users 30 jan 22 21:46 cidades.txt
-rwxrws--T 1 dumbledore users
                               0 jan 22 21:56 dumbledore.txt
-rwxrws--T 1 luna
                       users
                               29 jan 22 20:43 frutas.txt
-rwxrws--T 1 root
                       armada 29 jan 22 17:24 membrosarmada.txt
                       users 0 jan 22 21:47 mensagem.txt
-rwxrws--T 1 luna
                       armada 100 jan 22 20:40 nomes.txt
-rwxrws--T 1 root
/srv/sonserina:
total 8,0K
drwxrws--- 2 root sonserina 4,0K jan 22 17:20 .
drwxr-xr-x 7 root root 4,0K jan 22 22:41 ...
```

root@operacao:~# tree /srv/

drwxrws--- 2 root sonserina 4,0K jan 22 17:20 sonserina

```
/srv/

├── comunal

├── corvinal

├── grifinoria

├── harry.txt

├── precisa

├── chapeu.sh

├── cidades.txt

├── dumbledore.txt

├── frutas.txt

├── membrosarmada.txt

├── mensagem.txt

├── nomes.txt

└── sonserina
```

Vamos agora validar o trabalho
Validando o SGid
Em outro terminal logar com usuário severo

 $\verb|sysadmin@operacao:~$ su - severo|\\$

Tente entrar em outros diretórios que não tem permissão para validar

```
severo@operacao:~$ cd /srv/corvinal/
-bash: cd: /srv/corvinal/: Permissão negada
severo@operacao:~$ cd /srv/precisa/
-bash: cd: /srv/precisa/: Permissão negada
severo@operacao:~$ cd /srv/grifinoria/
-bash: cd: /srv/grifinoria/: Permissão negada
severo@operacao:~$ cd /srv/sonserina/
severo@operacao:/srv/sonserina$ ls
```

Criando um arquivo texto severo.txt

severo@operacao:/srv/sonserina\$ echo "sou o principe mestiço" >
severo.txt

Conferindo a criação do arquivo severo.txt

```
severo@operacao:/srv/sonserina$ 1s -1a
total 12
drwxrws--- 2 root sonserina 4096 jan 22 23:11 .
drwxr-xr-x 7 root root 4096 jan 22 22:41 ..
-rw-r--r-- 1 severo sonserina 24 jan 22 23:11 severo.txt
```

Comentário:

Podemos verificar que a permissão SGid funcionou, pois o arquivo criado por severo tem ele como dono, mas o grupo é o do diretório e não o dele que é o users

Faça logoff do usuário severo

```
severo@operacao:/srv/sonserina$ exit
sair
```

Efetuar o login com o usuário malfoy

sysadmin@operacao:~\$ su - malfoy

Entra no diretório /srv/sonserina e verifica se o arquivo está lá

```
malfoy@operacao:~$ cd /srv/sonserina/
malfoy@operacao:/srv/sonserina$ ls
severo.txt
```

Depois tente apagar o arquivo criado pelo severo.txt

```
malfoy@operacao:/srv/sonserina$ rm severo.txt
rm: remover arquivo comum 'severo.txt' protegido contra escrita? s
malfoy@operacao:/srv/sonserina$ ls
malfoy@operacao:/srv/sonserina$
```

Observe que o programa dá o aviso que o documento está protegido contra escrita, mesmo assim apagou o arquivo. Porque a permissão de SGid somente vai garantir que o grupo dos novos arquivos seja o mesmo do diretório pai.

Testando o Sticky bit

Efetuar o login como luna

sysadmin@operacao:~\$ su - luna

Entrar no diretório /srv/comunal que tem o sticky bit ativado
luna@operacao:~\$ cd /srv/comunal/

Gere um arquivo texto com a mensagem "afasta os nargoles" guarde no arquivo luna.txt

luna@operacao:/srv/comunal\$ echo "afastar os nargoles" > luna.txt
luna@operacao:/srv/comunal\$ ls -lha
total 12K
drwxrwxrwt 2 dumbledore hogwarts 4,0K jan 22 23:21 .
drwxr-xr-x 7 root root 4,0K jan 22 22:41 ..

-rw-r--r-- 1 luna users 20 jan 22 23:21 luna.txt

Faça logoff da usuária luna

luna@operacao:/srv/comunal\$ exit
sair

Faça login com a usuária cho

sysadmin@operacao:~\$ su - cho

Entrar no diretório /srv/comunal

cho@operacao:~\$ cd /srv/comunal

Tente apagar o arquivo da luna.txt

cho@operacao:/srv/comunal\$ rm luna.txt
rm: remover arquivo comum 'luna.txt' protegido contra escrita? s
rm: não foi possível remover 'luna.txt': Operação não permitida

Criar o arquivo com a mensagem "eu sou a Cho" e guarde em cho.txt cho@operacao:/srv/comunal\$ echo "eu sou a Cho" > cho.txt

Faça o logoff da usuária cho

cho@operacao:/srv/comunal\$ exit

Faça login com a usuária hermione

Tente apagar todos os arquivos do diretório /srv/comunal

hermione@operacao:\$cd /srv/comunal hermione@operacao:/srv/comunal\$ rm * rm: remover arquivo comum 'cho.txt' protegido contra escrita? s rm: não foi possível remover 'cho.txt': Operação não permitida rm: remover arquivo comum 'luna.txt' protegido contra escrita? s rm: não foi possível remover 'luna.txt': Operação não permitida hermione@operacao:/srv/comunal\$ echo "voces não lêem não?" > hermione.txt hermione@operacao:/srv/comunal\$ ls -la total 20 drwxrwxrwt 2 dumbledore hogwarts 4096 jan 22 23:25 . drwxr-xr-x 7 root 4096 jan 22 22:41 .. root -rw-r--r-- 1 cho 13 jan 22 23:23 cho.txt users -rw-r--r 1 hermione users 23 jan 22 23:25 hermione.txt -rw-r--r 1 luna users 20 jan 22 23:21 luna.txt

Agora vamos analisar a aplicação SGid com Sticky bit ativados Faça login com usuário harry

sysadmin@operacao:~\$ su - harry

Entre no diretório /srv/grifinoria

harry@operacao:~\$ cd /srv/grifinoria
harry@operacao:/srv/grifinoria\$ vim harry.txt
Sou Harry Potter
Hermione e Ronald são meus amigos
<salvar e sair>

Faça logoff no usuário harry

harry@operacao:/srv/grifinoria\$ exit sair

Faça login no usuário hermione

sysadmin@operacao:~\$ su - hermione
hermione@operacao:/srv/grifinoria\$ id

```
uid=1003(hermione) gid=100(users)
grupos=100(users),20(dialout),24(cdrom),25(floppy),29(audio),44(vi
deo),46(plugdev),1002(armada),1003(grifinoria)
```

Entrar e em seguida listar o conteúdo do diretório /srv/grifinoria

hermione@operacao:~\$ cd /srv/grifinoria

hermione@operacao:/srv/grifinoria\$ ls -lha

total 12K

drwxrws--T 2 root grifinoria 4,0K jan 22 23:30 .

drwxr-xr-x 7 root root 4,0K jan 22 22:41 ...

-rw-r--r-- 1 harry grifinoria 52 jan 22 23:28 harry.txt

hermione@operacao:/srv/grifinoria\$ cat harry.txt

Sou Harry Potter

Hermione e Ronald são meus amigos

hermione@operacao:/srv/grifinoria\$ vim harry.txt

Tente apagar o arquivo do diretório

hermione@operacao:/srv/grifinoria\$ rm *

rm: remover arquivo comum 'harry.txt' protegido contra escrita? s
rm: não foi possível remover 'harry.txt': Operação não permitida

Comentário:

Observe que quando foi aplicado as duas permissões de SGid e Sticky bit o dono sempre será o usuário que cria o arquivo e o grupo será igual ao grupo do diretório e somente o dono pode apagar o arquivo. Claro excluindo o root que pode tudo.