ELEC-313 Lab 3: Diode Circuits

September 27, 2013

Date Performed: September 25, 2013 Partners: Charles Pittman

Stephen Wilson

Contents

1	Objective	3						
2	Equipment	3						
3	Schematics	3						
4	Procedure 4.1 Rectifier	3 3 3						
5	Results	3						
6	Conclusion							
7	Equations							
List of Figures								
	1 Circuits used in this lab	3						
L	ist of Tables							
	Comparison of nominal and measured resistance in Part A	4						

1 Objective

The objective is to observe the basic operation of a diode. In addition, the Schockley equation (Eq 2) is used to find the diode's reverse saturation current (I_S) and thermal voltage (V_T) using values measured in the lab.

2 Equipment

Diode: 1N4007 Power supply: HP E3631A Function generator: HP 33120A Resistors: $47\,\Omega$ Multimeter: Fluke 8010A Capacitor: $1\,\mu\text{F}$ Oscilloscope: Agilent 54622D

Resistive decade box: HeathKit IN-3117

3 Schematics

(a) Circuit used for Parts A andPart B.(b) Circuit used for Part C.

Figure 1: Circuits used in this lab.

4 Procedure

4.1 Rectifier

4.2 Voltage Regulator

5 Results

	Nominal	Measured	% Difference
	(Ω)	(Ω)	
R_1	470	465.3	1.00

Table 1: Comparison of nominal and measured resistance in Part A.

Figure 2: Diode characteristics measured in Parts A and B.

$R(\Omega)$	V_d (V)	$I_d (\mathrm{mA})$
200	0.751	46.00
500	0.713	18.60
1k	0.682	9.30
2k	0.650	4.70
5k	0.605	1.85
10k	0.571	0.94
20k	0.538	0.47
50k	0.494	0.19
100k	0.464	0.10

Table 2: Diode characteristics measured in Part B.

$$\frac{V_d \text{ (V)} \quad I_d \text{ (mA)} \quad V_{OC} \text{ (V)}}{0.712} \quad 27.2 \quad 6.70}$$

Table 3: Diode characteristics measured in Part C.

Table 4: Results from data analysis.

6 Conclusion

7 Equations

$$\%_{diff} = \frac{|nominal - measured|}{nominal} 100\%$$
 (1)

$$I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right) \tag{2}$$

$$m = \frac{\ln(I_2) - \ln(I_1)}{V_2 - V_1} = \frac{1}{V_T}$$
(3)