MH1810 Math 1 Part 4 Integration Improper Integrals

Tang Wee Kee

Nanyang Technological University

Improper Integrals

We know that a continuous function is Riemann integrable over a closed and bounded interval [a,b] i.e., the integral $\int_a^b f(x) \ dx$ has a finite value. More generally, if f is not continuous at a finite number of points in [a,b], then $\int_a^b f(x) \ dx$ exists.

However, when the integrand f is not bounded on [a, b] or the interval [a, b] is no longer bounded, we have to consider the corresponding integrals carefully, and the integral may or may not converge to a finite value. Such integrals are known as improper integrals.

Improper Integrals (1): Unbounded Integrand

We shall discuss two types of improper integrals.

1 Unbounded Integrand f(x). Consider the integral

$$\int_{-1}^1 \frac{1}{x^2} dx,$$

which is not defined on [-1,1], and $\frac{1}{x^2}$ is not bounded on [-1,1] since $\lim_{x\to 0}\frac{1}{x^2}=\infty$. For the same reason, neither

$$\int_{-1}^{0} \frac{1}{x^2} dx \text{ nor } \int_{0}^{1} \frac{1}{x^2} dx$$

are defined (in the Riemann sense).

Improper Integrals (2): Unbounded Interval

2 Unbounded Intervals.

Consider the integral $\int_1^\infty \frac{x}{1+x^2} dx$ and $\int_{-\infty}^{-1} \frac{1}{x^3} dx$. Both intervals $[1, \infty)$ or $(-\infty, -1]$ are not bounded.

The above integrals are called improper integrals.

How should we assign meaning to such an improper integrals?

Example

Evaluate $\int_{-1}^{0} \frac{1}{x^2} dx$.

Since $\lim_{x\to 0^-}\frac{1}{x^2}=\infty$, 0 is known as the **singular point.** We replace the upper limit 0 by a variable t<0:

$$\int_{-1}^t \frac{1}{x^2} dx.$$

and, define the improper integral $\int_{-1}^{0} \frac{1}{x^2} dx$ as follows:

$$\int_{-1}^{0} \frac{1}{x^{2}} dx = \lim_{t \to 0^{-}} \int_{-1}^{t} \frac{1}{x^{2}} dx.$$

Therefore

$$\int_{-1}^{0} \frac{1}{x^{2}} dx = \lim_{t \to 0^{-}} \int_{-1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to 0^{-}} \left(\frac{-1}{x} \right) \Big|_{-1}^{t}$$
$$= \lim_{t \to 0^{-}} \left(\frac{-1}{t} - 1 \right) = \infty.$$

We say that the improper integral $\int_{-1}^{0} \frac{1}{x^2} dx$ diverges to infinity.

Example

Evaluate
$$\int_0^1 \frac{1}{\sqrt{2x-x^2}} dx$$
.

Solution

Note that $\lim_{x\to 0^+} \frac{1}{\sqrt{2x-x^2}} = \infty$. The integrand has a singular point at 0.

Thus, we have

$$\begin{split} &\int_0^1 \frac{1}{\sqrt{2x - x^2}} \ dx = \lim_{t \to 0^+} \left(\int_t^1 \frac{1}{\sqrt{2x - x^2}} \ dx \right) \\ &= \lim_{t \to 0^+} \left(\int_t^1 \frac{1}{\sqrt{1 - (x - 1)^2}} \ dx \right) \\ &= \lim_{t \to 0^+} \left(-\sin^{-1}(t - 1) \right) = -(\frac{-\pi}{2}) = \frac{\pi}{2}. \end{split}$$

We say that the improper integral converges to $\frac{\pi}{2}$.

Example

Evaluate
$$\int_0^2 \frac{1}{\sqrt{2x-x^2}} dx$$
.

Solution

Note that
$$\lim_{x\to 0^+}\frac{1}{\sqrt{2x-x^2}}=\infty$$
 and $\lim_{x\to 2^-}\frac{1}{\sqrt{2x-x^2}}=\infty$.
However, the function $\frac{1}{\sqrt{2x-x^2}}$ is continuous on $(0,2)$. We evaluate the

given improper integral as follows:

$$\int_0^2 \frac{1}{\sqrt{2x - x^2}} \ dx = \int_0^1 \frac{1}{\sqrt{2x - x^2}} \ dx + \int_1^2 \frac{1}{\sqrt{2x - x^2}} \ dx$$

The integral $\int_0^1 \frac{1}{\sqrt{2x-x^2}} dx$ is an improper integral which is evaluated in the preceding example.

Solution

Solution

We evaluate the improper integral $\int_{1}^{2} \frac{1}{\sqrt{2x-x^2}} dx$ as follows:

$$\int_{1}^{2} \frac{1}{\sqrt{2x - x^{2}}} dx = \lim_{t \to 2^{-}} \left(\int_{1}^{t} \frac{1}{\sqrt{2x - x^{2}}} dx \right)$$
$$= \lim_{t \to 2^{-}} \left(\int_{1}^{t} \frac{1}{\sqrt{1 - (x - 1)^{2}}} dx \right)$$
$$= \lim_{t \to 2^{-}} \left(\sin^{-1}(t - 1) \right) = \frac{\pi}{2}.$$

Solution

Thus, we have

$$\int_0^2 \frac{1}{\sqrt{2x - x^2}} dx = \int_0^1 \frac{1}{\sqrt{2x - x^2}} dx + \int_1^2 \frac{1}{\sqrt{2x - x^2}} dx$$
$$= \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

The improper integral converges to π .

Improper Integral (2): Unbounded Intervals

Improper integrals over an unbounded interval:

$$\int_{a}^{\infty} f(x) dx, \int_{-\infty}^{b} f(x) dx, \int_{-\infty}^{\infty} f(x) dx$$

To integrate over an unbounded interval

- Replace the interval by a bounded interval, and
- Pass the definite integral to limiting process: $t \to \infty$ or $t \to -\infty$.

Unbounded Intervals (a)

For the improper integral $\int_{a}^{\infty} f(x) dx$, we define it as

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx.$$

Example

Evaluate $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Solution

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} dx = \lim_{t \to \infty} \left(-\frac{1}{x} \Big|_{1}^{t} \right)$$

 $= \lim_{t \to \infty} \left(-\frac{1}{t} + 1 \right) = 1.$

Thus, the improper integral $\int_{1}^{\infty} \frac{1}{x^2} dx$ converges to 1.

Unbounded Intervals (b)

For the improper integral $\int_{-\infty}^{b} f(x) dx$, we define it as

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx.$$

Example

Evaluate $\int_{-\infty}^{-1} \frac{1}{x^3} dx$

Solution

$$\int_{-\infty}^{-1} \frac{1}{x^3} dx = \lim_{t \to -\infty} \int_{t}^{-1} \frac{1}{x^3} dx$$

$$= \lim_{t \to -\infty} \left(-\frac{1}{2x^2} \Big|_{t}^{-1} \right)$$

$$= \lim_{t \to \infty} \left(-1/2 - \left(-\frac{1}{2t^2} \right) \right) = -1/2.$$

Thus, the improper integral $\int_{-\infty}^{-1} \frac{1}{x^3} dx$ converges to -1/2.

Comparison Test for Integrals

Often, we want to estimate whether a given improper integral is convergent or divergent. We may use comparison theorem (stated below) to compare with a known convergent or divergent improper integrals.

Theorem (Comparison Theorem for Integrals)

Suppose f and g are continuous functions such that $f(x) \ge g(x) \ge 0$, for $x \ge a$. Then

- If $\int_{a}^{\infty} f(x) dx$ converges, then $\int_{a}^{\infty} g(x) dx$ converges.
- 2 If $\int_{2}^{\infty} g(x) dx$ diverges, then $\int_{2}^{\infty} f(x) dx$ diverges.

Example

Determine whether $\int_{2}^{\infty} \frac{1}{\ln x} dx$ converges or diverges.

Solution

For x > 2, we have $\ln x < x$ (why?), so

$$\frac{1}{\ln x} > \frac{1}{x}.$$

However, we have

$$\int_{2}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \left(\int_{2}^{t} \frac{1}{x} dx \right) = \lim_{t \to \infty} \left(\ln t - \ln 2 \right) = \infty.$$

By the Comparison Theorem, we conclude that $\int_2^\infty \frac{1}{\ln x} dx$ also diverges.

The following improper integrals known as p-integrals are useful in comparison test.

Theorem (p-integrals)

Suppose $a \in \mathbb{R}$ and a > 0. Then

(a)

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{a^{1-p}}{p-1} & \text{for } p > 1, \\ \infty & \text{for } p \leq 1. \end{cases}$$

(b)

$$\int_0^a \frac{1}{x^p} dx = \begin{cases} \frac{a^{1-p}}{1-p} & \text{for } p < 1, \\ \infty & \text{for } p \ge 1. \end{cases}$$

Proof of (a)

Note that
$$\int_{a}^{b} \frac{1}{x^{p}} dx = \frac{b^{-p+1} - a^{-p+1}}{-p+1}$$
, if $p \neq 1$.

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \int_{a}^{t} \frac{1}{x^{p}} dx = \begin{cases} \lim_{t \to \infty} \frac{t^{-p+1} - a^{-p+1}}{-p+1}, & \text{if } p \neq 1 \\ \lim_{t \to \infty} (\ln t - \ln a), & \text{if } p = 1 \end{cases}$$

$$= \begin{cases} \frac{a^{1-p}}{p-1}, & \text{if } -p+1 < 0, \text{ i.e., } p > 1; \\ \infty, & \text{if } -p+1 > 0, \text{ i.e., } p \leq 1. \end{cases}$$

Proof of (b)