#### **NMOS FET Equations**

### **Triode Region**

$$i_D = k'_n \left(\frac{W}{L}\right) \left(v_{OV}v_{DS} - \frac{1}{2}v_{DS}^2\right) = k'_n \left(\frac{W}{L}\right) \left((v_{GS} - V_t)v_{DS} - \frac{1}{2}v_{DS}^2\right)$$

#### Saturation Region

$$i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) v_{OV}^2 = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (v_{GS} - V_t)^2$$

#### **PMOS FET Equations**

## **Triode Region**

$$i_{D} = k'_{p} \left(\frac{W}{L}\right) \left(|v_{OV}|v_{SD} - \frac{1}{2}v_{SD}^{2}\right) = k'_{p} \left(\frac{W}{L}\right) \left((v_{GS} - |V_{t}|)v_{SD} - \frac{1}{2}v_{SD}^{2}\right)$$

# **Saturation Region**

$$i_D = \frac{1}{2} k_p' \left( \frac{W}{L} \right) v_{OV}^2 = \frac{1}{2} k_p' \left( \frac{W}{L} \right) (v_{GS} - |V_t|)^2$$

$$g_m = \frac{2I_D}{V_{OV}} = k_n' \left(\frac{W}{L}\right) (V_{GS} - V_t)$$

$$r_o = \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$



## Characteristics of MOSFET Amplifiers

|                                       |                |                                                                                                          | S                                               | S                                                                               | S                                                                                 |
|---------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Amplifier type                        | $R_{in}$       | $A_{vo}$                                                                                                 | $R_o$                                           | $A_{ u}$                                                                        | $G_{ u}$                                                                          |
| Common source                         | ∞              | $-g_{m}R_{o}$                                                                                            | $R_D$ or $(R_D \parallel r_o)$                  | $-g_{m}\left(R_{o}    R_{L}\right)$                                             | $-g_{m}\left(R_{o} \parallel R_{L}\right)$                                        |
| Common source with $R_S$              | ∞              | $-\frac{g_m R_o}{1 + g_m R_s}$                                                                           | $R_{D}$ or $\left(R_{D} \parallel r_{o}\right)$ | $-\frac{g_m(R_o    R_L)}{1 + g_m R_s}$                                          | $-\frac{g_m(R_o    R_L)}{1+g_m R_s}$                                              |
| Common gate                           | $1/g_m    R_s$ | $g_m R_o$                                                                                                | $R_D$ or $(R_D \parallel r_o)$                  | $g_{m}\left(R_{o}    R_{L}\right)$                                              | $\left(\frac{R_{in}}{R_{in} + R_{sig}}\right) g_m \left(R_o \parallel R_L\right)$ |
| Common drain<br>or source<br>follower | ∞              | $ \begin{array}{c} 1 \text{ w/o } r_o \\ \text{or} \\ \frac{r_o}{r_0 + \left(1/g_m\right)} \end{array} $ | $1/g_m    R_s$                                  | $\frac{R_L \parallel r_o}{\left(R_L \parallel r_o\right) + \left(1/g_m\right)}$ | $\frac{R_L \parallel r_o}{\left(R_L \parallel r_o\right) + \left(1/g_m\right)}$   |

BJT Small Signal Models and parameters:



$$g_m = \frac{I_C}{V_T}$$

$$r_\pi \equiv \frac{v_{be}}{i_b} = \frac{\beta}{g_m} = \frac{V_T}{I_b}$$

$$r_e \equiv \frac{v_{be}}{i_e} = \frac{V_T}{I_E} = \frac{\alpha}{g_m}$$

$$r_o = \frac{|V_A|}{I_C}$$

Characteristics of BJT Amplifiers (with and without  $r_o$ ):

| Amplifier<br>type                             | $R_{in}$                      | $A_{vo}$                                                                                                             | $R_o$                                     | $A_{ u}$                                                         | $G_{ u}$                                                                                                                                                                                                                     |
|-----------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Common<br>emitter                             | $(\beta+1)r_e$ or $r_\pi$     | $-g_{m}R_{o}$                                                                                                        | $R_C$ or $\left(R_C \parallel r_o\right)$ | $-g_m(R_o    R_L)$                                               | $-\left(\frac{R_{in}}{R_{in}+R_{sig}}\right)g_{m}\left(R_{o}    R_{L}\right)$                                                                                                                                                |
| Common emitter with $R_e$                     | $(\beta+1)(r_e+R_e)$          | $-\frac{g_m R_o}{1+g_m R_e}$                                                                                         | $R_C$ or $(R_C \parallel r_o)$            | $-\frac{g_m\left(R_o \parallel R_L\right)}{1+g_m R_e}$           | $-\left(\frac{R_{in}}{R_{in}+R_{sig}}\right)\frac{g_m(R_o \parallel R_L)}{1+g_mR_e}$                                                                                                                                         |
| Common base                                   | $r_{e} \parallel R_{E}$       | $g_m R_o$                                                                                                            | $R_C$ or $(R_C \parallel r_o)$            | $g_m\left(R_o \mid\mid R_L\right)$                               | $\left(\frac{R_{in}}{R_{in}+R_{sig}}\right)g_m\left(R_o \parallel R_L\right)$                                                                                                                                                |
| Common<br>collector<br>or emitter<br>follower | $(\beta+1)(r_e+(R_L    R_o))$ | $   \begin{array}{c}     1 \text{ w/o } r_o \\     \text{or} \\     \hline     \frac{r_o}{r_0 + r_e}   \end{array} $ | $r_o \parallel R_{\scriptscriptstyle E}$  | $\frac{R_L \parallel r_o}{\left(R_L \parallel r_o\right) + r_e}$ | $\left(\frac{R_{in}}{R_{in} + R_{ig}}\right) \frac{R_L \parallel R_o}{\left(R_L \parallel R_o\right) + r_e}$ $R_{out} = r_o \parallel R_E \parallel \left(r_e + \frac{R_B \parallel R_{sig}}{\left(\beta + 1\right)}\right)$ |

Quadratic Equation:

Roots of 
$$ax^2 + bx + c = 0$$
 are  $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$