DATA ANALYTICS

DR. BRENDA MULLALLY

AGE OF TECHNOLOGY

- Technology has made it possible to collect and store huge amounts of data.
 - · Retailers, credit agencies, investment companies, government agencies,
- It is difficult for businesses to make sense of all of the data collected.
- Many more people now have the power to analyse data and make decisions on the basis of quantitative analysis.
- Quantitative analysis is now conducted by people other than those that traditionally had done the number crunching.
- Most employees now have access to software to analyse data, particularly spreadsheet and database software.
- Quantitative analysis is now an integral part of these people's job.

- Basic data summaries and visualisations:
 - Summary statistics
 - Frequency tables
 - Histograms
 - Boxplots
 - Scatterplots
 - Correlation tables
 - Cross-tabulations

 Typical employees today not just the managers and technical specialists have a wealth of easy-to-use tools at their disposal, and it is frequently up to them to summarize data in a way that is both meaningful and useful to their constituents: people within their company, their company's suppliers, and their company's customers. It takes some training and practice to do this effectively.

- Data analysis in the real world is never done in a vacuum. It is done to solve a problem. Typically, there are four steps that are followed, whether the context is business, medical science, or any other field.
- 1. Recognise a problem that needs solving
- 2. Gather data to help understand and then solve the problem.
- 3. Analyse the data
- 4. Act on the analysis by changing policies, undertaking initiatives, publishing records etc.

- Populations and Samples
 - Population includes all of the entities of interest: people, households, machines, or whatever.
 - Sample is a subset of a population, often randomly chosen and preferably representative of the population as a whole.
- It is very important that the sample is representative of the population. This means that any observed characteristics of the sample can be generalised to the population as a whole.

- Data Sets, Variables, and Observations
 - Data set: a rectangular array of data where columns contain Variables, such as height, gender, and income.
 - Each row contains an observation.
 - Each observation contains the attributes of a particular member of a population: a person, a company, a city, a machine...
 - A variable (column) is often called a field or an attribute.
 - An observation (row) is often called a case or a record.

EXAMPLE 2.1: QUESTIONNAIRE DATA.XLSX

- Objective: To illustrate variables and observations in a typical data set.
- **Solution:** Data set includes observations on 30 people who responded to a questionnaire on the president's environmental policies.
- Variables include: age, gender, state, children, salary, opinion.
- Include a row that lists variable names.
- Include a column that shows an index of the observation.

\mathcal{A}	A	В	C	D	E	F	G
1	Person	Age	Gender	State	Children	Salary	Opinion
2	1	35	Male	Minnesota	1	\$65,400	5
3	2	61	Female	Texas	2	\$62,000	1
4	3	35	Male	Ohio	0	\$63,200	3
5	4	37	Male	Florida	2	\$52,000	5
6	5	32	Female	California	3	\$81,400	1
7	6	33	Female	New York	3	\$46,300	5
28	27	27	Male	Illinois	3	\$45,400	2
29	28	63	Male	Michigan	2	\$53,900	1
30	29	52	Male	California	1	\$44,100	3
31	30	48	Female	New York	2	\$31,000	4

- Data Types
 - Numerical and Categorical data
 - Do you want to do arithmetic on the data?
 - Can you average days of the week or gender?
 - What about a variable that has 1, 2, 3, 4, or 5 as its value?
 - Ordinal: a natural ordering to categories.
 - Nominal: no natural order to categories.
 - All categorical variables can be encoded with numbers but not all are, it is personal choice.
 - Dummy variable

- Data Types
 - Sometimes a number variable is coded using a category.
 - binning (discretising)

ENVIRONMENTAL DATA USING A DIFFERENT CODING (SLIDE 3 OF 5)

1	A	В	C	D	E	F	G	H	1	J	K	L
1	Person	Age	Gender	State	Children	Salary	Opinion		1	1		
2	1	Middle-aged	1	Minnesota	1	\$65,400	Strongly agree		Note th	e formulas in columns	D. C. and	
3	2	Elderly	0	Texas	2	\$62,000	Strongly disagree		500000000000000000000000000000000000000	generate this recoded d		
4	3	Middle-aged	1	Ohio	0	\$63,200	Neutral		formulas in columns B and G are based on the lookup tables below.			
5	4	Middle-aged	1	Florida	2	\$52,000	Strongly agree					
6	5	Young	0	California	3	\$81,400	Strongly disagree					
7	6	Young	0	New York	3	\$46,300	Strongly agree			91		
8	7	Elderly	O	Minnesota	2	\$49,600	Strongly disagree		Age look	kup table (range name	AgeLookup)	
9	8	Middle-aged	1	New York	1	\$45,900	Strongly agree		0	Young		
10	9	Middle-aged	1	Texas	3	\$47,700	Agree		35	Middle-aged		
11	10	Young	0	Texas	1	\$59,900	Agree		60	Elderly		
12	11	Middle-aged	1	New York	1	\$48,100	Agree					
13	12	Middle-aged	0	Virginia	0	\$58,100	Neutral		Opinion	lookup table (range na	me Opinion	Lookup)
14	13	Middle-aged	0	Illinois	2	\$56,000	Strongly disagree		1	Strongly disagree		
15	14	Middle-aged	0	Virginia	2	\$53,400	Strongly disagree		2	Disagree		
16	15	Middle-aged	0	New York	2	\$39,000	Disagree		3	Neutral		
17	16	Middle-aged	1	Michigan	1	\$61,500	Disagree		4	Agree		
18	17	Middle-aged	1	Ohio	0	\$37,700	Strongly disagree		5	Strongly agree		
19	18	Middle-aged	0	Michigan	2	\$36,700	Agree					
28	27	Young	1	Illinois	3	\$45,400	Disagree					
29	28	Elderly	1	Michigan	2	\$53,900	Strongly disagree		1			
30	29	Middle-aged	1	California	1	\$44,100	Neutral					
31	30	Middle-aged	0	New York	2	\$31,000	Agree					

TYPES OF DATA

- A numerical variable is discrete if it results from a count, such as the number of children.
- A continuous variable is the result of an essentially continuous measurement, such as weight or height.
- Data Set:
- Cross-sectional data are data on a cross section of a population at a distinct point in time.
- Time series data are data collected over time.

HOW TO DESCRIBE CATEGORICAL VARIABLES?

- There are only a few possibilities for describing a categorical variable, all based on counting:
 - Count the number of categories.
 - Give the categories names.
 - Count the number of observations in each category (referred to as the count of categories).
 - Once you have the counts, you can display them graphically, usually in a column chart or a pie chart.

EXAMPLE 2.2: SUPERMARKET TRANSACTIONS.XLSX

- Objective: To summarize categorical variables in a large data set.
- Solution: Data set contains transactions made by supermarket customers over a two-year period.
- Children, Units Sold, and Revenue are numerical.
- Purchase Date is a date variable.
- Transaction and Customer ID are used only to identify.
- All of the other variables are categorical.

-24	Α	В	С	D	E	F	G	Н	1	J	K	0	Р
1	Transaction	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City	State or Province	Country	Units Sold	Revenue
2	1	12/18/2011	7223	F	S	Υ	2	\$30K - \$50K	Los Angeles	CA	USA	5	\$27.38
3	2	12/20/2011	7841	M	M	Υ	5	\$70K - \$90K	Los Angeles	CA	USA	5	\$14.90
4	3	12/21/2011	8374	F	M	N	2	\$50K - \$70K	Bremerton	WA	USA	3	\$5.52
5	4	12/21/2011	9619	M	M	Υ	3	\$30K - \$50K	Portland	OR	USA	4	\$4.44
6	5	12/22/2011	1900	F	S	Υ	3	\$130K - \$150K	Beverly Hills	CA	USA	4	\$14.00
7	6	12/22/2011	6696	F	M	Υ	3	\$10K - \$30K	Beverly Hills	CA	USA	3	\$4.37
8	7	12/23/2011	9673	M	S	Υ	2	\$30K - \$50K	Salem	OR	USA	4	\$13.78
9	8	12/25/2011	354	F	M	Υ	2	\$150K +	Yakima	WA	USA	6	\$7.34
10	9	12/25/2011	1293	M	M	Υ	3	\$10K - \$30K	Bellingham	WA	USA	1	\$2.41
11	10	12/25/2011	7938	M	S	N	1	\$50K - \$70K	San Diego	CA	USA	2	\$8.96

EXAMPLE 2.2: SUPERMARKET TRANSACTIONS.XLSX

- To get the counts in column S, use Excel's COUNTIF function.
- To get the percentages in column T, divide each count by the total number of observations.
- When creating charts, be careful to use appropriate scales.

EXAMPLE 2.2: SUPERMARKET TRANSACTIONS.XLSX

- Another efficient way to find counts for a categorical variable is to use dummy (0–1) variables.
 - Recode each variable so that one category is replaced by 1 and all others by 0.
 - This can be done using a simple IF formula.
 - Find the count of that category by summing the 0s and 1s.
 - Find the percentage of that category by averaging the 0s and 1s.

14	А	В	С	D	E
1	Transaction	Purchase Date	Customer ID	Gender	Gender Dummy for M
2	1	12/18/2011	7223	F	0
3	2	12/20/2011	7841	M	1
4	3	12/21/2011	8374	F	0
5	4	12/21/2011	9619	M	1
6	5	12/22/2011	1900	F	0
7	6	12/22/2011	6696	F	0
8	7	12/23/2011	9673	M	1
9	8	12/25/2011	354	F	0
10	9	12/25/2011	1293	M	1
11	10	12/25/2011	7938	M	1
14055	14054	12/29/2013	2032	F	0
14056	14055	12/29/2013	9102	F	0
14057	14056	12/29/2013	4822	F	0
14058	14057	12/31/2013	250	M	1
14059	14058	12/31/2013	6153	F	0
14060	14059	12/31/2013	3656	M	1
14061			111111111111111111111111111111111111111	Count	6889
14062				Percent	49.0%

DESCRIPTIVE MEASURES FOR NUMERICAL VARIABLES

- There are many ways to summarize numerical variables, both with numerical summary measures and with charts.
- To learn how the values of a variable are distributed, ask:
 - ■What are the most "typical" values?
 - How spread out are the values?
 - What are the "extreme" values on either end?
 - Is the chart of the values symmetric about some middle value, or is it skewed in some direction? Does it have any other peculiar features besides possible skewness?

EXAMPLE 2.3: BASEBALL SALARIES 2011.XLSX

- Objective: To learn how salaries are distributed across all 2011 MLB players.
- Solution: Data set contains data on 843 Major League Baseball players in the 2011 season.
- Variables are player's name, team, position, and salary.
- Create summary measures of baseball salaries using Excel functions.

A	Α	В	С	D
1	Player	Team	Position	Salary
2	A.J. Burnett	New York Yankees	Pitcher	\$16,500,000
3	A.J. Ellis	Los Angeles Dodgers	Catcher	\$421,000
4	A.J. Pierzynski	Chicago White Sox	Catcher	\$2,000,000
5	Aaron Cook	Colorado Rockies	Pitcher	\$9,875,000
6	Aaron Crow	Kansas City Royals	Pitcher	\$1,400,000
7	Aaron Harang	San Diego Padres	Pitcher	\$3,500,000
8	Aaron Heilman	Arizona Diamondbacks	Pitcher	\$2,000,000
9	Aaron Hill	Toronto Blue Jays	Second Baseman	\$5,000,000
10	Aaron Laffey	Seattle Mariners	Pitcher	\$431,600
11	Aaron Miles	Los Angeles Dodgers	Second Baseman	\$500,000
12	Aaron Rowand	San Francisco Giants	Outfielder	\$13,600,000
13	Adam Dunn	Chicago White Sox	Designated Hitter	\$12,000,000
14	Adam Everett	Cleveland Indians	Shortstop	\$700,000

EXAMPLE 2.3: BASEBALL SALARIES 2011.XLSX

-d	Α	В	С	D	E	F
1	Measures o	of central tendency			Measures of variability	
2	Mean	\$3,305,055			Range	\$31,586,000
3	Median	\$1,175,000			Interquartile range	\$3,875,925
4	Mode	\$414,000	57		Variance	20,563,887,478,833
5					Standard deviation	\$4,534,742
6	Min, max,	percentiles, quartile	S		Mean absolute deviation	\$3,249,917
7	Min	\$414,000				
8	Max	\$32,000,000			Measures of shape	
9	P01	\$414,000	0.01		Skewness	2.2568
10	P05	\$414,000	0.05		Kurtosis	5.7233
11	P10	\$416,520	0.10			
12	P20	\$424,460	0.20		Percentages of values less than given values	
13	P50	\$1,175,000	0.50		Value	Percentage less than
14	P80	\$5,500,000	0.80		\$1,000,000	46.38%
15	P90	\$9,800,000	0.90		\$1,500,000	54.69%
16	P95	\$13,590,000	0.95		\$2,000,000	58.36%
17	P99	\$20,000,000	0.99		\$2,500,000	63.23%
18	Q1	\$430,325	1		\$3,000,000	66.55%
19	Q2	\$1,175,000	2			
20	Q3	\$4,306,250	3			

© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

MEASURES OF CENTRAL TENDENCY

- The **mean** is the average of all values.
 - If the data set represents a sample from some larger population, this measure is called the **sample mean** and is denoted by X.
 - If the data set represents the entire population, it is called the **population mean** and is denoted by μ .

$$Mean = \frac{\sum_{i=1}^{n} X_i}{n}$$

• In Excel, the mean can be calculated with the AVERAGE function.

MEASURES OF CENTRAL TENDENCY

(SLIDE 2 OF 3)

- The **median** is the middle observation when the data are sorted from smallest to largest.
 - If the number of observations is odd, the median is literally the middle observation.
 - If the number of observations is even, the median is usually defined as the average of the two middle observations.
- In Excel, the median can be calculated with the MEDIAN function.

MEASURES OF CENTRAL TENDENCY

(SLIDE 3 OF 3)

- The **mode** is the value that appears most often.
 - In most cases where a variable is essentially continuous, the mode is not very interesting because it is often the result of a few lucky ties.
 - However, it is not always a result of luck and may reveal interesting information.
- In Excel, the mode can be calculated with the MODE.SNGL function.

MINIMUM, MAXIMUM, PERCENTILES, AND QUARTILES

- For any percentage p, the pth **percentile** is the value such that a percentage p of all values are less than it.
- The quartiles divide the data into four groups, each with (approximately) a quarter of all observations.
 - The first, second and third quartiles are the percentiles corresponding to p = 25%, p = 50%, and p = 75%.
 - By definition, the second quartile (p = 50%) is equal to the median.
- The **minimum** and **maximum** values can be calculated with Excel's MIN and MAX functions, and the percentiles and quartiles with Excel's PERCENTILE and QUARTILE functions.