

Experimental Methods: Lecture 4

Topics in experimental heterogeneity

Raymond Duch

May 21, 2020

Director CESS Nuffield/Santiago

Road Map

- Effect heterogeneity: theory
- Design heterogeneity: modes

Effect heterogeneity: theory

Motivation

- Recall the fundamental assumption about treatment effects for the RI confidence interval estimator
- What does "constant treatment effects" really mean?
- More importantly, is the average treatment effect the same for every single observation in the sample?
- Furthermore, we are often interested in the "generalizability" of experimental findings and their policy relevance
- Treatment effect heterogeneity is one way to address these issues

Ferraz and Finan 2008

Theory

We move away from constant treatment effects and therefore define

$$\tau_i \equiv Y_i(1) - Y_i(0) \tag{1}$$

The fundamental interest under treatment effect heterogeneity is in

$$Var(\tau_i) = Var(Y_i(1) - Y_i(0))$$

$$= Var(Y_i(1)) + Var(Y_i(0)) + 2Cov(Y_i(1), Y_i(0))$$
(2)

Informally, we define treatment effect heterogeneity as variance of the treatment effect τ_i across subjects.

What is the problem with Eq. 2?

Theory

- This is an old and now for us very familiar problem:
- Any experiment does not allow us to estimate every component of $Var(\tau_i)$
- We have information about the marginal distributions of Y_i(1) and Y_i(0), but not about the joint distribution of these potential outcomes
- So what should we do?

Bounding $Var(\tau_i)$

- Recall that by randomization, $E[Y_i(0)|D_i = 1] = E[Y_i(0)|D_i = 0]$
- We can pair each observed Y_i(1) with one of the observed Y_i(0)
- But which one? Many combinations possible
- We place bounds suggesting how large or small $Var(\tau_i)$ may be
- Pair values of $Y_i(0)$ and $Y_i(1)$ such that implied $Cov(Y_i(0), Y_i(1))$ is as large (upper bound) or as small (lower bound) as possible
- Sort values in ascending-ascending / ascending-descending order

Testing for heterogeneity

Suppose $H_0: Var(\tau_i) = 0$ What if we compared $Var(Y_i(1))$ and $Var(Y_i(0))$?

Note that

$$Var(Y_i(1)) = Var(Y_i(0) + \tau_i)$$

$$= Var(Y_i(0)) + Var(\tau_i) + 2Cov(Y_i(0), \tau_i)$$
(3)

Then, the Null of constant τ_i implies that

$$Var(\tau_i) = -2Cov(Y_i(0), \tau_i) = 0$$
 (4)

These two terms therefore cancel in Eq. 3 and we have shown that testing $H_0: Var(\tau_i) = 0$ is the same as testing $Var(Y_i(1)) = Var(Y_i(0))$

Observed Outcome Local Budget

We can test this with randomization inference

	Budget share if village head is male	Budget share if village head is female
Village 1	?	15
Village 2	15	?
Village 3	20	?
Village 4	20	?
Village 5	10	?
Village 6	15	?
Village 7	?	30
Mean	16	22.5
Variance	17.5	112.5

Variance in control:

$$\frac{1}{7-2-1}2(15-16)^2 + 2(20-16)^2 + (10-16)^2 = 17.5$$

Variance in treatment: $\frac{1}{2-1}(15-22.5)^2+(30-22.5)^2=112.5$

Interaction

- These approaches test whether τ_i varies
- But we want to know more: conditions under which τ_i varies
- We are interested in a different estimand: Conditional Average Treatment Effect (CATE) = ATE for a defined subset of subjects $\tau_i(x) = E[Y_i(1) Y_i(0)|X_i = x]$ (individual), and, if distribution of X_i is known, $E[\tau_i(X_i)]$ is identified (average)
- Change in treatment effect that occurs from one subgroups to the next is the difference between 2 CATEs
- These subgroups can either be defined by covariate values (treatment-by-covariate interactions) or by design (treatment-by-treatment interactions)

Treatment-by-covariate interactions

- What is the H_0 here?
- We can test the difference in CATEs with randomization inference or in a regression framework

$$Y_i = a + bI_i + cP_i + dI_iP_i + u_i$$
 (5)

When $P_i = 0$, the CATE is b:

$$Y_i = a + bI_i + u_i \tag{6}$$

When $P_i = 1$, the CATE is b + d:

$$Y_i = a + bI_i + c + dI_i + u_i = (a + c) + (b + d)I_i + u_i$$
 (7)

where d yields the change in CATEs that occurs when P_i changes

Treatment-by-covariate interactions

- An alternative is to conduct an F test using randomization inference
- Compares sum of squared residuals from from the two nested models (alternative model is Eq. 5 and null model is $Y_i = a + bI_i + cP_i + u_i$)
- If there are interaction affects, Eq. 5 should reduce SSR
- Simulate random assignments and calculate fraction of F-statistics at least as large as the observed F-statistic
- H_0 is that 2 CATEs are the same

Caveats

- Multiple comparisons problem:
 - With 20 covariates, the probability of finding at least 1 that significantly interacts with the treatment at $\alpha = 0.05$ is $1 (1 0.05)^{20} = 0.642$
 - Bonferroni correction (divide target p-value by number of hypothesis tests h)
 - Pre-register your design! (lab)
- Subgroup analysis is non-experimental: groups that are not formed by random assignment, but pre-assignment
- Teacher incentives and teacher education

Treatment-by-treatment interactions

- Manipulate treatment and contextual factor / personal characteristic (e.g. COVID and community infection levels)
- Define a factorial experiment as an experiment involving factors 1 and 2, with factor 1 conditions being A and B, and factor 2 conditions being C and D and E
- Then, allocate subjects at random to every possible combination of experimental conditions
- {*AC*, *AD*, *AE*, *BC*, *BD*, *BE*}

Gottlieb et al. 2018: EGAP Metaketa II: Taxation

Jessica Gottlieb, Adrienne LeBas, Nonso Obikili: "Formalization, Tax Appeals, and Social Intermediaries in Lagos, Nigeria"

- T1. Control condition, not encouraged
- T2. Encouraged, but not receiving a follow-up visit
- T3. Encouraged, and receiving one of the following four follow-up visit combinations:
 - T3a. Public goods message from state representative
 - T3b. Enforcement message from state representative
 - T3c. Public goods message from marketplace representative
 - T3d. Enforcement message from marketplace representative

Figure 2: Research Design and Assignment Probabilities

				Message Type		
				Public Goods	Enforcement	
Control	Formalization		State Rep.	Т3а:	T3b:	
Control	Intervention only	Type	Str	5/36	5/36	
T1:	T2:	elivery	et	T3c:	T3d:	
1/6	5/18	Ď	Market ssociatio	5/36	5/36	

Multiple treatment arms

From Rosen 2010

	Co	lin	Jos	se	
	Good grammar Bad grammar		Good grammar	ar bad grammar	
% Received reply	52	29	37	34	
(N)	(100)	(100)	(100)	(100)	

This design requires us to be especially careful with defining the causal estimand – what quantity are we interested in in this application?

Multiple treatment arms

Quiz: Why would these two models estimate the same quantities from the Rosen 2010 experiment?

 $\{NG, HG, NB, HB\}$ are indicator variables for each of the 4 treatment groups

 $J_i = 1$ if Jose Ramirez; $G_i = 1$ if good grammar

$$Y_i = b_1 CG + b_2 JG + b_3 CB + b_4 JB + u_i$$

 $Y_i = a + bJ_i + cG_i + d(J_iG_i) + u_i$

What quantity in the table do each of the coefficients represent?

BART

BART Estimation strategy

- Estimate f(x) = E(Y|x)
- Fit a sequence of "weak" tree-based regression models
- Each tree contributes a "a small and different portion of f" (Chipman et al 2010)¹
- Iterative application of sum-of-trees effectively generates a posterior probability distribution of outcomes, given covariate vector X
- From which you can recover E(Y|x) and uncertainty intervals

¹BART: Bayesian Additive Regression Trees, The Annals of Applied Statistics, 2010, Vo.4, No.1

Altered posterior probabilities given covariate values

Estimating the CATE - overall strategy

- BART model estimation generates posterior function of f(x)
- Averaging repeat draws from posterior density generates mean outcome for each observation given its vector of predictors x_i
- x_i contains treatment assignment plus other covariates
- Predict \hat{y}_i for two matrices:
 - 1. Actual observed treatment values (plus covariates)
 - 2. Counterfactual matrix of reversed treatment assignment $(1 \leftrightarrow 0)$ (plus same covariates)
- For each observation i, we recover two estimates: $y_{i,d=1}$ and $y_{i,d=0}$
- CATE = $y_{i,d=1} y_{i,d=0}$

Estimating the CATE - generate two test matrices

- Predictions are made using two matrices²
- Second matrix is the test dataset in the R code
- Matrices are identical except treatment assignment is reversed in second matrix

bs.	Gender	Education	Уi,d ¯
1	Female	High	14
1	Female	Low	12
)	Female	High	4
)	Female	Low	6
1	Male	High	7
1	Male	Low	7
)	Male	High	8
)	Male	Low	6
	Obs. 1 1 0 1 1 1 1 1 1 1 1 1 1	1 Female 1 Female 0 Female 0 Female 1 Male 1 Male 0 Male	1. Female High 1. Female Low 2. Female High 2. Female Low 1. Male High 1. Male Low 2. Male High 2. Male High 3. Male High

1 maic mgn	D _{Counter} . 0 0 1 1 0 1	Gender Female Female Female Male Male	Education High Low High Low High Low High	<i>y</i> _{i,d} 7 7 12 13 8 6	
1 Male Low 6	1	Male	High	8	

 $^{^2\}text{NB}$: The first, observed matrix is implicitly generated by BART since it is the initial training data (excluding observed outcome)

Estimating the CATE - rearrange matrices

- Matrices can be rearranged such that all observations in matrix 1 are d = 1 and vice versa for matrix 2
- Covariate information is constant across both matrices

Γ	$D_{\mathbf{Obs.}}$	Gender	Education	$y_{i,d=1}$]	D _{Counter} .	Gender	Education	$y_{i,d=0}$	1
l	1	Female	High	14		0	Female	High	7	
l	1	Female	Low	12		0	Female	Low	7	
ı	1	Female	High	12		0	Female	High	4	
١	1	Female	Low	13		0	Female	Low	6	
l	1	Male	High	7		0	Male	High	8	
l	1	Male	Low	7		0	Male	Low	6	
l	1	Male	High	8		0	Male	High	8	
L	1	Male	Low	6		0	Male	Low	6 _	

Estimating the CATE - recover CATE

- CATE = $\hat{y}_{i,d=1} \hat{y}_{i,d=0}$
- To check for treatment heterogeneity, append covariate information since this is constant across two matrices³

$$\begin{pmatrix} \hat{y}_{i,d=1} \\ 14 \\ 12 \\ 12 \\ 13 \\ 7 \\ 7 \\ 6 \\ 7 \end{pmatrix} - \begin{pmatrix} \hat{y}_{i,d=0} \\ 7 \\ 7 \\ 6 \\ 6 \\ 7 \end{pmatrix} = \begin{pmatrix} CATE & Gender & Education \\ 7 & Female & High \\ 5 & Female & Low \\ 8 & Female & High \\ 7 & Female & Low \\ -1 & Male & High \\ 1 & Male & Low \\ -2 & Male & High \\ 1 & Male & Low \end{pmatrix}$$

³NB: all observations are predicted from posterior draws; red numbers indicate predictions using counterfactual treatment assignment

Machine learning, heterogeneity and experimental measurement

error

Data Generation

- Costs declining significantly
- Convenience samples are the norm
- Proliferation of data generation modes
- Democratic

There are Costs: Camerer et al 2018 Nature

Some Observations

- How do you know you have this experimental measurement error?
- You typically have no clue as to whether its an issue
- Note: this has nothing to do with external validity/representative sample/etc.

Micro-replications can help

- Maybe....
- But what micro-replication?
- In which micro-replication should you invest your research dollars?
- Multi- rather than single-mode replications are more informative of experimental measurement error

The Experimental Mode or Context

Modes and Experimental Measurement Error

- do modes exaggerate measurement error, i.e., $ME_k > 0$
- resulting in $ATE_k^* = (ATE_T + ME_k)$
- multi-mode replication design may be informative when:
 - $ME_k \neq ME_{k'}$ and
 - there is a reasonably high probability the researcher can distinguish low from high error modes

Multiple-mode Replication Simulation

Change in expected error (relative to single mode sampling)

-40 -20

Illustrate: Lying Experiment (Duch Laroze Zakharov 2018)

- Outcome of interest: Lying about income from RET
- Treatment: Deduction rate that make it more expensive to lie
- Expectation: Lying declines if deduction rates rise

Lying Experiment Design (Duch Laroze Zakharov 2018

- 3 different tax rates (10%, 20% and 30%)
- Fixed at the group level
- Taxes are redistributed equally among group members
- Public good
- No excludability
- No social gains/losses
- No audits or fines
- 10 rounds
- Paid for one of them at random
- Fixed groups of 4 participants
- Random matching at the beginning

Design: each round

- RET: solve as many additions as possible in 60 sec
- two random two-digit numbers
- Information individual gross profit (before tax)
- Declare their income (to be taxed)
- Information individual net profit (after tax and redistribution)
- Differentiated by profit, tax and redistribution

Lying Experiments

Conventional GLM Estimation

			_		
	Lab	Online Lab	Online UK	Mturk	
Ability Rank	-0.500***	-0.163***	-0.163**	-0.120***	
	(0.036)	(0.045)	(0.071)	(0.037)	
20% Deduction	-0.123***	, ,	, ,		
	(0.024)				
30% Deduction	-0.128***	-0.184***	0.042	0.018	
	(0.025)	(0.025)	(0.038)	(0.021)	
No Audit	-0.334***	-0.127***	-0.155***	0.011	
	(0.023)	(0.026)	(0.036)	(0.024)	
Age	0.012***	0.007**	-0.0002	0.002**	
	(0.002)	(0.003)	(0.001)	(0.001)	
Gender	0.002	0.100***	-0.022	-0.004	3
	(0.022)	(0.025)	(0.035)	(0.020)	

BART Estimation

- Bayesian estimation strategy using tree-logic
- Highly flexible estimation strategy

To recover individual estimates of treatment effect:

- Assume binary treatment
- Run BART on experimental data (the training set) to generate both model and predicted outcomes for observed data
- Invert treatment assignment of all observations, and pass through model (test set) to generate set of counterfactual predictions
- For each individual, i, $CATE = Y_{i,D=1} Y_{i,D=0}$

BART: R Code

```
# Separate outcome and training data
y <- df$report.rate
train <- df[,-1]
# Gen. test data where those treated become untreated, for use in calculating ITT
 test <- train
test$treat.het <- ifelse(test$treat.het == 1,0,ifelse(test$treat.het == 0,1,NA))
 # Run BART for predicted values of observed and synthetic observations
bart.out <- bart(x.train = train, y.train = y, x.test = test)
# Recover CATE estimates and format into dataframe
CATE <- c(bart.out$vhat.train.mean[train$treat.het == 1] - bart.out$vhat.test.mean[test$treat.het == 0],
                                 bart.out$vhat.test.mean[test$treat.het == 1] - bart.out$vhat.train.mean[train$treat.het == 0])
CATE_df <- data.frame(CATE = CATE)
covars <- rbind(train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[train[t
CATE_df <- cbind(CATE_df,covars)
CATE_df <- CATE_df[order(CATE_df$CATE),]
CATE_df$id <- c(1:length(CATE))
```

All replication code available at https://github.com/rayduch/Experimental-Modes-and-Heterogeneity

