## **Cover Sheet**

Faculty name: Computers and Artificial Intelligence - Helwan

university

Course name: Selected Topics CS-2

### **Team number 18**

| Name                  | ID        |
|-----------------------|-----------|
| محمد سامح احمد        | 202000763 |
| شهاب جمال الدين السيد | 202000442 |
| عبدالرحمن احمد حمدى   | 202000497 |
| مايا احمد عبد الستار  | 202000710 |
| محسن هشام محمد        | 202000715 |
| نانسی احمد مصطفی      | 202000980 |

## **Paper details**

**Paper name:** UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

Authors name: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and

Jian Sun

**Publisher name:** Soumith Chintala

Content: DC GAN

Year of publish: 2016

**Dataset :** The ImageNet

**About dataset :** The ImageNet dataset is a large-scale image classification dataset that contains over 1.2 million images across 1,000 categories. The dataset is widely used in computer vision research and is often used as a benchmark for evaluating new image classification models.

The implemented algorithms: the ResNet architecture

**Results:** the authors trained ResNet models with up to 152 layers on the ImageNet dataset and achieved a top-5 error rate of 3.57%, which was significantly better than the previous state-of-the-art result of 3.57%. They also showed that ResNet models can be trained faster and with fewer parameters than previous deep neural network architectures.

## **General Information on the selected dataset**

Name: Human Faces

**Desciption :** A web scraped dataset of human faces suggested for image processing models

**Link:** <a href="https://www.kaggle.com/datasets/ashwingupta3012/human-faces">https://www.kaggle.com/datasets/ashwingupta3012/human-faces</a>

**Total number of samples : 7219** 

# Block diagram for the model



## Hyperparameters

**Learning rate : 2e-4 (0.0002)** 

Batch size : {64, 128, 256}

Image size: 64

**Noise Dimensions: 100** 

Number of epochs : {5, 10, 15}

**Discriminator features: 64** 

**Generator features: 64** 

**Optimizer: Adam** 

### **Results details**

#### First run

### **Hyperparameters:**

```
Learning_Rate = 2e-4
Batch_Size = 128
Image_size = 64
Channels_img = 3
Z_dim = 100
Num Epochs = 5
```

#### CPU

```
2.26
 loss G
                                                                        0.47
Loss
                                                                                                                           G 🖻 ☆ 🗆 🐠 :
← → C a colab.research.google.com/drive/1n7NsXujipIV-0cYaDgCrwcaYAu552cwP#scrollTo=Xz_dalVFFwZV
                                                                                                                  Comment A Share $ M
     File Edit View Insert Runtime Tools Help All changes saved
                                                                                                                              ✓ RAM → ^
           loss_gen = criterion(output, torch.ones_like(output))
gen.zero_grad()
loss_gen.backward()
optim_gen.step()
                                                                                                                       ↑ ↓ © □ ‡ 🖟 🔒 :
  ž) 0
Q
\{x\}
                     accasionally and print to tensorboard
           img_grid_fake = torchvision.utils.make_grid(
    fake[:32], normalize=True
              <>
```

### Second run

### **Hyperparameters:**

```
Learning_Rate = 2e-4
Batch_Size = 128
Image_size = 64
Channels_img = 3
Z_dim = 100
Num_Epochs = 5
```





#### Third run

### **Hyperparameters:**

```
Learning_Rate = 2e-4
Batch_Size = 256
Image_size = 64
Channels_img = 3
Z_dim = 100
Num Epochs = 5
```





### Fourth run

#### **Hyperparameters:**

```
Learning_Rate = 2e-4
Batch_Size = 128
Image_size = 64
Channels_img = 3
Z_dim = 100
Num_Epochs = 10
```





#### Fifth run

#### **Hyperparameters:**

```
Learning_Rate = 2e-4
Batch_Size = 64
Image_size = 64
Channels_img = 3
Z_dim = 100
Num_Epochs = 10
```



