

Electro-Thermal Actuator

Under the guidance of - Dr.-Ing. Tamara Bechtold

Group 18

Ujjwal Verma Siddik Reddy Virupakshi Muhammad Asad Yamin (216100297)

(216206120)

(216100055)

Device – Electro-Thermal Actuator

- The conventional MEMS polysilicon electro-thermal microactuator uses Joule heating to generate thermal expansion and movement.^[1]
- Electrical boundary conditions determine how the device is actuated. Mechanical boundary conditions control how the device is constrained from movement.

Applications:

- Switches
- Stepper motors^[2]
- Safety Shut Off Devices
- Radiator temperature control.

Fig.1: Thermal Actuator^[*]

Case Setup

- Boundary Conditions
 - Thermal: 0 K temperature on both bottom pads.
 - Electrical: Voltage applied on top faces of pads 40 V on 1st pad and 0 V on the 2nd pad.
- Mesh
 - 89784 Nodes
 - 15650 Elements
 - Hexahedral mesh elements
- Static-Structural
 - Fixed support on bottom faces of both pads.
 - Frictionless Support on the bottom faces.
 - Fixed support on the edge of Actuator tip.(Dirichlet BC)

ANSYS
R17.0
Academic

Structural Height = $2 \mu m$

Fig.3: Project Schematic View

Thermal-Electrical Analysis

• Voltage provided to 1st pad and 2nd pad is grounded creating a potential difference and current flows.

- Current density is higher in the narrow section. This results in different thermal expansion between the two segments.
- Thin arm provides more resistance and thus heats up more than the thick arm.

Fig.6: Temperature and Resistivity trend

Fig.4: Temperature distribution

Static-Structural Analysis

Local heating and thereby thermal expansion of a beam-based geometry leads to defined deformation and to actuator deflection.^[3]

Deformation with clamp on tip: 7.4549e-002 μm

Reaction Force generated at the tip due to expansion

- X: 16.974 μN, Y: -63.609 μN, Z: 544.45 μN
- Total 548.41 μN

Fig.8: Deformation with clamp

Fig.9:Reaction Force generated

Results

- The Electric Resistivity required to achieve the target maximum temperature of 300K is 4.4445 ohm-mm.
- The Reaction Force generated at the actuator tip due to the heating effect is 548.41 μN

Observations

• Changing the environmental temperature from 295.13 K to 0 K in the Static-Structural Analysis results in a varied deformation state.

Details of "Static Structural (C	(5)"
Definition	
Physics Type	Structural
Analysis Type	Static Structural
Solver Target	Mechanical APDL
Options	
☐ Environment Temperature	0. K
Generate Input Only	No

Fig. 10: Environmental Temp: 0 K

Fig.11:Environmental Temp: 295.13 K

Reference

[1] E.S. Kolesar, P.B. Allen, J.T. Howard and J.M. Wilken, J. Vac. Sci. Technol. A, 17 (1999) 2257-2263.

[2] Kaur, Sandeep, Sukhdeep Kaur, and Subhash Poonia. "APPLICATION OF THERMAL ACTUATOR". International Journal of Advanced Research in Computer and Communication Engineering 2.10 (2013): 3. Print.

[3] Winterstein, Thomas et al. "SU-8 Electrothermal Actuators: Optimization Of Fabrication And Excitation For Long-Term Use". *Micromachines* 5.4 (2014): 1310-1322. Web.