Übungsblatt 7 Ana

Computational and Data Science FS2025

Lösungen Mathematik 2

Lernziele:

Sie kennen die Begriffe Mehrfachintegral, Integrationsgebiet und deren wichtigste Eigenschaften.

Sie können – z. B. für die Vereinfachung von Zweifach- und Dreifachintegralen kartesische Koordinaten in Polar- bzw. Zylinderkoordinaten umwandeln.

> Sie können Mehrfachintegrale auf einfachen Gebieten in 2D und 3D berechnen und die Integrationsreihenfolge vertauschen.

> Sie können Masse, Volumen und Schwerpunkt mittels Mehrfachintegralen bestimmen.

1. Aussagen über Zweifachintegrale

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Ein Zweifachintegral beschreibt das Volumen zwischen dem Graphen einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ und einem Gebiet in der xy-Ebene.	X	
b) Die Fläche eines Gebiets in 2D lässt sich mit Hilfe eines Zweifachintegrals berechnen.	Х	
c) Für $f(x,y) \ge 0$ gilt: $\int_G f(x,y)dA \ge 0$ für jedes Gebiet G in der xy-Ebene.	X	
d) Für $f(x, y) \le 0$ gilt:		Х
$\int_{x_0}^{x_E} \int_{y_0}^{y_E} f(x, y) dy dx \le 0 \text{ für alle } x_0, x_E, y_0, y_E \in \mathbb{R}.$		

2. Integrale über Rechtecke

Berechnen Sie die folgenden Integrale.

a)
$$\int_{0}^{1} \int_{0}^{2} xy \, dx \, dy$$

b)
$$\int_{0}^{2} \int_{0}^{1} x^{2} dx dy$$

c)
$$\int_0^{\ln 3} \int_0^{\ln 2} e^{2x+y} dx dy$$

d)
$$\int_0^1 \int_1^e \frac{x^2}{y} dy dx$$

e)
$$\int_{1}^{4} \int_{-1}^{2} (2x + 6x^{2}y) dx dy$$

a)
$$\int_0^1 \int_0^2 xy \, dx \, dy$$
 b) $\int_0^2 \int_0^1 x^2 \, dx \, dy$ c) $\int_0^{\ln 3} \int_0^{\ln 2} e^{2x+y} \, dx \, dy$ d) $\int_0^1 \int_1^e \frac{x^2}{y} \, dy \, dx$ e) $\int_1^4 \int_{-1}^2 (2x + 6x^2y) \, dx \, dy$ f) $\int_{-1}^2 \int_1^4 (2x + 6x^2y) \, dy \, dx$

a)
$$\underline{I} = \int_0^1 \int_0^2 xy \, dx \, dy = \int_0^2 x \, dx \cdot \int_0^1 y \, dy = \frac{1}{2} \cdot \left[x^2 \right]_0^2 \cdot \frac{1}{2} \cdot \left[y^2 \right]_0^1 = \frac{1}{4} \cdot (2^2 - 0) \cdot (1^2 - 0)$$

$$= \frac{1}{4} \cdot 4 \cdot 1 = \underline{1}.$$

b)
$$\underline{I} = \int_0^2 \int_0^1 x^2 \, dx \, dy = \int_0^1 x^2 \, dx \cdot \int_0^2 1 \, dy = \frac{1}{3} \cdot \left[x^3 \right] \Big|_0^1 \cdot \left[y \right] \Big|_0^2 = \frac{1}{3} \cdot (1^3 - 0) \cdot (2 - 0)$$

$$= \frac{1}{3} \cdot 1 \cdot 2 = \frac{2}{3}.$$

c)
$$\underline{I} = \int_{0}^{\ln(3)} \int_{0}^{\ln(2)} e^{2x+y} dx dy = \int_{0}^{\ln(3)} \int_{0}^{\ln(2)} e^{2x} \cdot e^{y} dx dy = \int_{0}^{\ln(2)} e^{2x} dx \cdot \int_{0}^{\ln(3)} e^{y} dy$$

$$= \frac{1}{2} \cdot \left[e^{2x} \right]_{0}^{\ln(2)} \cdot \left[e^{y} \right]_{0}^{\ln(3)} = \frac{1}{2} \cdot (e^{2 \cdot \ln(2)} - e^{0}) \cdot (e^{\ln(3)} - e^{0}) = \frac{1}{2} \cdot (2^{2} - 1) \cdot (3 - 1)$$

$$= \frac{1}{2} \cdot (4 - 1) \cdot 2 = \frac{1}{2} \cdot 3 \cdot 2 = \underline{3}.$$

d)
$$\underline{I} = \int_0^1 \int_1^e \frac{x^2}{y} \, dy \, dx = \int_0^1 x^2 \, dx \cdot \int_1^e \frac{1}{y} \, dy = \frac{1}{3} \cdot \left[x^3 \right] \Big|_0^1 \cdot \ln\left(\frac{e}{1}\right) = \frac{1}{3} \cdot (1^3 - 0) \cdot \ln(e)$$

$$= \frac{1}{3} \cdot 1 \cdot 1 = \frac{1}{3}.$$

e)
$$\underline{\underline{I}} = \int_{1}^{4} \int_{-1}^{2} (2x + 6x^{2}y) dx dy = \int_{1}^{4} \left[x^{2} + 2x^{3}y \right]_{-1}^{2} dy = \int_{1}^{4} (4 + 16y - 1 + 2y) dy$$

$$= \int_{1}^{4} (3 + 18y) dy = \left[3y + 9y^{2} \right]_{1}^{4} = 12 + 144 - 3 - 9 = \underline{144}.$$

f)
$$\underline{\underline{I}} = \int_{-1}^{2} \int_{1}^{4} (2x + 6x^{2}y) \, dy \, dx = \int_{-1}^{2} \left[2xy + 3x^{2}y^{2} \right]_{1}^{4} dx = \int_{-1}^{2} (8x + 48x^{2} - 2x - 3x^{2}) \, dx$$

$$= \int_{-1}^{2} (6x + 45x^{2}) \, dx = \left[3x^{2} + 15x^{3} \right]_{-1}^{2} = 12 + 120 - 3 + 15 = \underline{144}.$$

3. Zweifachintegrale

Berechnen Sie die folgenden Integrale.

a)
$$\int_0^2 \int_{y^2}^{2y} (4x - y) \, dx \, dy$$
 b) $\int_1^2 \int_{1-x}^{\sqrt{x}} x^2 y \, dy \, dx$ c) $\int_1^2 \int_0^x e^{\frac{y}{x}} \, dy \, dx$

a)
$$\underline{I} = \int_{0}^{2} \int_{y^{2}}^{2y} (4x - y) \, dx \, dy = \int_{0}^{2} \left[2x^{2} - yx \right]_{y^{2}}^{2y} \, dy$$

$$= \int_{0}^{2} \left(2 \cdot 4y^{2} - y \cdot 2y - 2 \cdot y^{4} + y \cdot y^{2} \right) \, dy = \int_{0}^{2} \left(6y^{2} - 2y^{4} + y^{3} \right) \, dy$$

$$= \left[2y^{3} - \frac{2y^{5}}{5} + \frac{y^{4}}{4} \right]_{0}^{2} = 2 \cdot 2^{3} - \frac{2 \cdot 2^{5}}{5} + \frac{2^{4}}{4} - 0 + 0 - 0 = 16 - \frac{64}{5} + 4 = 20 - \frac{64}{5}$$

$$= \frac{100}{5} - \frac{64}{5} = \frac{36}{5}.$$

$$\begin{split} &\underbrace{I} = \int_{1}^{2} \int_{1-x}^{\sqrt{x}} x^{2}y \, \mathrm{d}y \, \mathrm{d}x = \int_{1}^{2} x^{2} \cdot \frac{1}{2} \cdot \left[y^{2} \right] \Big|_{1-x}^{\sqrt{x}} \, \mathrm{d}x = \frac{1}{2} \int_{1}^{2} x^{2} \cdot \left(x - (1-x)^{2} \right) \mathrm{d}x \\ &= \frac{1}{2} \int_{1}^{2} x^{2} \cdot \left(x - 1 + 2x - x^{2} \right) \mathrm{d}x = \frac{1}{2} \int_{1}^{2} x^{2} \cdot \left(3x - 1 - x^{2} \right) \mathrm{d}x \\ &= \frac{1}{2} \int_{1}^{2} \left(3x^{3} - x^{2} - x^{4} \right) \mathrm{d}x = \frac{1}{2} \cdot \left[\frac{3x^{4}}{4} - \frac{x^{3}}{3} - \frac{x^{5}}{5} \right] \Big|_{1}^{2} \\ &= \frac{1}{2} \cdot \left(\frac{3 \cdot 2^{4}}{4} - \frac{2^{3}}{3} - \frac{2^{5}}{5} - \frac{3 \cdot 1^{4}}{4} + \frac{1^{3}}{3} + \frac{1^{5}}{5} \right) = \frac{1}{2} \cdot \left(12 - \frac{8}{3} - \frac{32}{5} - \frac{3}{4} + \frac{1}{3} + \frac{1}{5} \right) \\ &= \frac{1}{2} \cdot \left(12 - \frac{7}{3} - \frac{31}{5} - \frac{3}{4} \right) = \frac{1}{2} \cdot \left(\frac{720}{60} - \frac{140}{60} - \frac{372}{60} - \frac{45}{60} \right) = \frac{1}{2} \cdot \frac{163}{60} = \frac{163}{\underline{120}}. \end{split}$$

$$\mathbf{C})$$

$$&\underline{I} = \int_{1}^{2} \int_{0}^{x} e^{\frac{y}{x}} \, \mathrm{d}y \, \mathrm{d}x = \int_{1}^{2} \left[x \cdot e^{\frac{y}{x}} \right] \Big|_{0}^{x} \, \mathrm{d}x = \int_{1}^{2} x \cdot \left(e^{\frac{x}{x}} - e^{\frac{0}{x}} \right) \, \mathrm{d}x = (e-1) \int_{1}^{2} x \, \mathrm{d}x \\ &= (e-1) \cdot \frac{1}{2} \cdot \left[x^{2} \right] \Big|_{1}^{2} = (e-1) \cdot \left(\frac{2^{2}}{2} - \frac{1^{2}}{2} \right) = (e-1) \cdot \left(\frac{4}{2} - \frac{1}{2} \right) = \frac{3}{2} \cdot (e-1). \end{split}$$

4. Integrale über Gebiete

Berechnen Sie das folgende Integral über das jeweils angegebene Gebiet G.

$$I = \int_{G} 2xy^2 dA$$

- a) Rechteck mit Eckpunkten (-1;-1), (4;-1), (4;2), (-1;2)
- b) Dreieck mit Eckpunkten (0;0), (3;1), (-2;1)

$$\underline{I} = \int_{G} 2xy^{2} dA = 2 \int_{G} xy^{2} dA = 2 \int_{-1}^{2} \int_{-1}^{4} xy^{2} dx dy = 2 \int_{-1}^{4} x dx \cdot \int_{-1}^{2} y^{2} dy$$

$$= 2 \cdot \frac{1}{2} \cdot \left[x^{2} \right]_{-1}^{4} \cdot \frac{1}{3} \cdot \left[y^{3} \right]_{-1}^{2} = \left(4^{2} - (-1)^{2} \right) \cdot \frac{1}{3} \cdot \left(2^{3} - (-1)^{3} \right) = (16 - 1) \cdot \frac{1}{3} \cdot (8 + 1)$$

$$= 15 \cdot \frac{1}{3} \cdot 9 = 5 \cdot 9 = \underline{45}.$$

b)

$$\underline{I} = \int_{G} 2xy^{2} dA = 2 \int_{G} xy^{2} dA = 2 \int_{0}^{1} \int_{-2y}^{3y} xy^{2} dx dy = 2 \int_{0}^{1} y^{2} \int_{-2y}^{3y} x dx dy$$

$$= 2 \int_{0}^{1} y^{2} \cdot \frac{1}{2} \cdot \left[x^{2} \right]_{-2y}^{3y} dy = \int_{0}^{1} y^{2} \cdot \left((3y)^{2} - (-2y)^{2} \right) dy = \int_{0}^{1} y^{2} \cdot \left(9y^{2} - 4y^{2} \right) dy$$

$$= \int_{0}^{1} y^{2} \cdot 5y^{2} dy = 5 \int_{0}^{1} y^{4} dy =$$

$$= 5 \cdot \frac{1}{5} \cdot [y^{5}]_{0}^{1} = 1 - 0 = 1$$

5. Integrationsreihenfolge tauschen

Vertauschen Sie die Integrationsreihenfolge für die folgenden Integrale.

a)
$$\int_{1}^{3} \int_{2}^{5} f(x, y) \, dx \, dy$$

b)
$$\int_0^1 \int_{2x}^2 f(x, y) \, dy \, dx$$

c)
$$\int_0^4 \int_{\sqrt{y}}^2 f(x,y) dx dy$$

d)
$$\int_0^2 \int_{y^2}^4 f(x, y) \, dx \, dy$$

e)
$$\int_0^8 \int_{\sqrt[3]{x}}^2 f(x, y) \, dy \, dx$$

a)
$$\int_{1}^{3} \int_{2}^{5} f(x, y) \, dx \, dy$$
 b) $\int_{0}^{1} \int_{2x}^{2} f(x, y) \, dy \, dx$ c) $\int_{0}^{4} \int_{\sqrt{y}}^{2} f(x, y) \, dx \, dy$ d) $\int_{0}^{2} \int_{y^{2}}^{4} f(x, y) \, dx \, dy$ e) $\int_{0}^{8} \int_{\sqrt{x}}^{2} f(x, y) \, dy \, dx$ f) $\int_{1}^{3} \int_{\ln x}^{3} f(x, y) \, dy \, dx$

a)

$$\underline{\underline{I}} = \int_G f \, dA = \underbrace{\int_2^5 \int_1^3 f(x; y) \, dy \, dx}.$$

b)

$$\underline{\underline{I}} = \int_G f \, \mathrm{d}A = \underbrace{\int_0^2 \int_0^{\frac{y}{2}} f(x; y) \, \mathrm{d}x \, \mathrm{d}y}.$$

$$\underline{\underline{I}} = \int_{G} f \, dA = \int_{0}^{2} \int_{0}^{x^{2}} f(x; y) \, dy \, dx.$$

d)

$$\underline{\underline{I}} = \int_G f \, dA = \int_0^4 \int_0^{\sqrt{x}} f(x; y) \, dy \, dx.$$

e)

$$\underline{\underline{I}} = \int_{G} f \, dA = \underbrace{\int_{0}^{2} \int_{0}^{y^{3}} f(x; y) \, dx \, dy}_{Q}.$$

$$\underline{\underline{I}} = \int_{G} f \, dA = \int_{G_{1}} f \, dA + \int_{G_{2}} f \, dA$$

$$= \int_{0}^{\ln(3)} \int_{1}^{e^{y}} f(x; y) \, dx \, dy + \int_{\ln(3)}^{3} \int_{1}^{3} f(x; y) \, dx \, dy.$$

6. Doppelintegrale

Lösen Sie die beiden folgenden Integrale unter Verwendung von Polarkoordinaten.

a) $I = \iint_A (1+x+y)dA$, wobei der Integrationsbereich der Einheitskreis sein soll

b) $I=\iint_A (3\sqrt{x^2+y^2}+4)dA$, wobei der Integrationsbereich der angegebene Kreisring sein soll (Innenradius = 1, Aussenradius = 3).

a)

Unter Verwendung von *Polarkoordinaten* transformiert sich der *Integrand* wie folgt $(x = r \cdot \cos \varphi, y = r \cdot \sin \varphi)$:

$$z = f(x; y) = 1 + x + y = 1 + r \cdot \cos \varphi + r \cdot \sin \varphi$$

Das Flächenelement dA lautet in Polarkoordinaten $dA = r dr d\varphi$, die Integrationsgrenzen sind (sie

r-Integration: von r = 0 bis r = 1

 φ -Integration: von $\varphi = 0$ bis $\varphi = 2\pi$

Damit gilt:

$$I = \iint_{(A)} (1 + x + y) dA = \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} (1 + r \cdot \cos \varphi + r \cdot \sin \varphi) r dr d\varphi =$$

$$= \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} (r + r^2 \cdot \cos \varphi + r^2 \cdot \sin \varphi) dr d\varphi$$

Wir integrieren zunächst nach r, dann nach φ .

Innere Integration (nach der Variablen r)

$$\int_{r=0}^{1} (r + r^2 \cdot \cos \varphi + r^2 \cdot \sin \varphi) dr = \left[\frac{1}{2} r^2 + \frac{1}{3} r^3 \cdot \cos \varphi + \frac{1}{3} r^3 \cdot \sin \varphi \right]_{r=0}^{1} =$$

$$= \frac{1}{2} + \frac{1}{3} \cdot \cos \varphi + \frac{1}{3} \cdot \sin \varphi - 0 - 0 - 0 = \frac{1}{2} + \frac{1}{3} \cdot \cos \varphi + \frac{1}{3} \cdot \sin \varphi$$

Äußere Integration (nach der Variablen φ)

$$I = \int_{\varphi=0}^{2\pi} \left(\frac{1}{2} + \frac{1}{3} \cdot \cos \varphi + \frac{1}{3} \cdot \sin \varphi \right) d\varphi = \left[\frac{1}{2} \varphi + \frac{1}{3} \cdot \sin \varphi - \frac{1}{3} \cdot \cos \varphi \right]_{0}^{2\pi} =$$

$$= \pi + \frac{1}{3} \cdot \underbrace{\sin (2\pi)}_{0} - \frac{1}{3} \cdot \underbrace{\cos (2\pi)}_{1} - 0 - \frac{1}{3} \cdot \underbrace{\sin 0}_{0} + \frac{1}{3} \cdot \underbrace{\cos 0}_{1} = \pi - \frac{1}{3} + \frac{1}{3} = \pi$$

Ergebnis: $I = \pi$ b)

 $I = \iint_A (3\sqrt{x^2 + y^2} + 4)dA$, wobei der Integrationsbereich der angegebene Kreisring sein soll.

Die Transformationsgleichungen für den Übergang von kartesischen Koordinaten zu Polarkoordinaten lauten:

$$x = r \cdot \cos \varphi$$
, $y = r \cdot \sin \varphi$, $dA = r dr d\varphi$

Die Integrationsgrenzen des kreisringförmigen Integrationsbereiches sind (sie

r-Integration: von r = 1 bis r = 3

 φ -Integration: von $\varphi = 0$ bis $\varphi = 2\pi$

Unter Berücksichtigung von

$$x^{2} + y^{2} = r^{2} \cdot \cos^{2} \varphi + r^{2} \cdot \sin^{2} \varphi = r^{2} (\underbrace{\cos^{2} \varphi + \sin^{2} \varphi}) = r^{2}$$

transformiert sich der Integrand des Doppelintegrals wie folgt:

$$z = f(x; y) = 3 \cdot \sqrt{x^2 + y^2} + 4 = 3 \cdot \sqrt{r^2} + 4 = 3r + 4$$

Das Doppelintegral I lautet damit in Polarkoordinaten:

$$I = \iint\limits_{(A)} (3 \cdot \sqrt{x^2 + y^2} + 4) dA = \int\limits_{\varphi=0}^{2\pi} \int\limits_{r=1}^{3} (3r + 4) r dr d\varphi = \int\limits_{\varphi=0}^{2\pi} \int\limits_{r=1}^{3} (3r^2 + 4r) dr d\varphi$$

Die Auswertung erfolgt in der üblichen Weise (erst nach r, dann nach φ integrieren).

Innere Integration (nach der Variablen r)

$$\int_{r=1}^{3} (3r^2 + 4r) dr = \left[r^3 + 2r^2\right]_{r=1}^{3} = 27 + 18 - 1 - 2 = 42$$

Äußere Integration (nach der Variablen φ)

$$I = \int_{\varphi=0}^{2\pi} 42 \, d\varphi = 42 \cdot \int_{0}^{2\pi} 1 \, d\varphi = 42 \left[\varphi\right]_{0}^{2\pi} = 42 (2\pi - 0) = 84\pi$$

Ergebnis: $I=84\pi$

7. Schwerpunkt

Bestimmen Sie den Flächenschwerpunkt S des skizzierten Kreisringausschnitts mit Innenradius $r_1 = 2$ und Aussenradius $r_2 = 6$.

Der Integrationsbereich für die Berechnung des Flächenschwerpunktes $S = (x_S; y_S)$ lautet:

r-Integration: von r = 2 bis r = 6

 φ -Integration: von $\varphi = 0$ bis $\varphi = \pi$

Der benötigte Flächeninhalt A lässt sich elementar berechnen (als Differenz zweier Halbkreisflächen):

$$A = \frac{1}{2} (\pi r_2^2 - \pi r_1^2) = \frac{1}{2} \pi (r_2^2 - r_1^2) = \frac{1}{2} \pi (36 - 4) = 16\pi = 50,2655$$

Wegen der Spiegelsymmetrie der Fläche liegt der Schwerpunkt auf der y-Achse. Somit ist $x_S = 0$. Die Ordinate y_S berechnen wir mit dem folgenden Doppelintegral:

$$y_S = \frac{1}{A} \cdot \iint_{(A)} y \, dA = \frac{1}{16\pi} \cdot \int_{\varphi=0}^{\pi} \int_{r=2}^{6} r^2 \cdot \sin \varphi \, dr \, d\varphi$$

(Transformationsgleichungen: $y = r \cdot \sin \varphi$, Flächenelement $dA = r dr d\varphi$)

Innere Integration (nach der Variablen r)

$$\int_{r=2}^{6} r^2 \cdot \sin \varphi \, dr = \sin \varphi \cdot \int_{r=2}^{6} r^2 \, dr = \sin \varphi \left[\frac{1}{3} r^3 \right]_{r=2}^{6} = \frac{1}{3} \cdot \sin \varphi \left[r^3 \right]_{r=2}^{6} = \frac{1}{3} \cdot \sin \varphi \left[216 - 8 \right] = \frac{208}{3} \cdot \sin \varphi$$

Äußere Integration (nach der Variablen φ)

$$y_{S} = \frac{1}{16\pi} \cdot \frac{208}{3} \cdot \int_{\varphi=0}^{\pi} \sin\varphi \, d\varphi = \frac{13}{3\pi} \left[-\cos\varphi \right]_{0}^{\pi} = \frac{13}{3\pi} \left(-\cos\pi + \cos\theta \right) = \frac{13}{3\pi} \left(1+1 \right) = \frac{26}{3\pi} = 2,7587$$

Schwerpunkt: S = (0; 2,7587)

8. Volumen zylinderförmiger Körper

Berechnen Sie das Volumen V des Körpers, der durch einen in der xy-Ebene gelegenen kreisförmigen Boden mit Radius r = 1 und einen Deckel mit der Fläche $z = e^{x^2 + y^2}$ gebildet wird.

Wir verwenden Polarkoordinaten (wegen der Kreis- bzw. Rotationssymmetrie). Der kreisförmige "Boden" liefert den Integrationsbereich : $0 \le r \le 1$, $0 \le \varphi \le 2\pi$. Die Rotationsfläche bildet den "Deckel" des zylindrischen Körpers, ihre Gleichung in Polarkoordinaten erhalten wir wie folgt (Transformationsgleichungen: $x = r \cdot \cos \varphi$, $y = r \cdot \sin \varphi$):

$$x^2 + y^2 = r^2 \cdot \cos^2 \varphi + r^2 \cdot \sin^2 \varphi = r^2 \underbrace{(\cos^2 \varphi + \sin^2 \varphi)}_{1} = r^2 \Rightarrow z = e^{x^2 + y^2} = e^{r^2}$$

(unter Verwendung des "trigonometrischen Pythagroas" $\sin^2 \varphi + \cos^2 \varphi = 1$)

Damit gilt für das gesuchte Volumen:

$$V = \iint_{(A)} z \, dA = \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} e^{r^2} \cdot r \, dr \, d\varphi \qquad \text{(Flächenelement } dA = r \, dr \, d\varphi)$$

Innere Integration (nach der Variablen r)

Wir lösen das innere Integral mit Hilfe der folgenden Substitution:

$$u = r^{2}, \quad \frac{du}{dr} = 2r, \quad dr = \frac{du}{2r}, \quad \text{Grenzen} < \underbrace{\text{unten: } r = 0 \quad \Rightarrow \quad u = 0}_{\text{oben: } r = 1 \quad \Rightarrow \quad u = 1}$$

$$\int_{r=0}^{1} e^{r^{2}} \cdot r \, dr = \int_{u=0}^{1} e^{u} \cdot \mathbf{m} \cdot \frac{du}{2\mathbf{m}} = \frac{1}{2} \cdot \int_{u=0}^{1} e^{u} \, du = \frac{1}{2} \left[e^{u} \right]_{u=0}^{1} = \frac{1}{2} \left(e^{1} - e^{0} \right) = \frac{1}{2} \left(e^{1} - e^{0} \right)$$

Äußere Integration (nach der Variablen φ)

$$V = \frac{1}{2} (e - 1) \cdot \int_{\varphi=0}^{2\pi} 1 d\varphi = \frac{1}{2} (e - 1) [\varphi]_{0}^{2\pi} = \frac{1}{2} (e - 1) (2\pi - 0) = (e - 1) \pi$$

Volumen: $V = (e - 1) \pi = 5{,}398$