

本期论文主题:Bert

导师: Yamada

《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

预训练的深度双向transformer用于语义理解

作者: Jacob Devlin

单位: Google

发表会议及时间: 2018

前期知识储备

Pre-knowledge reserve

概率论

了解基本的概率论知识, 掌握条件概率的概念和公 式

语言模型

掌握语言模型的原理,了 解语言模型的评价标准

Transformer

掌握Transformer的基本 工作原理。

注意力机制

了解注意力机制的思想, 掌握注意力机制的分类和 实现方式

深度之眼 deepshare.net

Learning objectives

课程安排

The schedule of course

第一课:论文导读

The first lesson: the paper guide

- 论文研究背景、成果及意义
- 2/论文泛读
- 3 Bert衍生模型和Bert、Elmo、GPT比较
- 4 本课回顾及下节预告

知识树

论文研究背景、成果及意义

研究背景

Research background

Glue Benchmark

Table 1: A list of the different tasks and datasets used in our experiments.

Task	Datasets
Natural language inference	SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering	RACE [30], Story Cloze [40]
Sentence similarity	MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
Classification	Stanford Sentiment Treebank-2 [54], CoLA [65]

Glue是用于衡量通用NLP模型的基准 https://gluebenchmark.com/leaderboard

研究背景

深度之眼 deepshare.net

Research background

Feature-Based and Fine -tuning

深度之眼 deepshare.net

Research Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
275	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Bert在下游任务中的表现完全远超之前的模型。

研究意义

Research Meaning

Bert历史意义

- 获取了left-to-right和right-to-left的上下文信息。
- nlp领域正式开始pretraining+finetuning的模型训练方式

名个下游任务都有自身的模型 2018

Bert

重点 重点来了!

nlp领域

各个下游任务统一使用Bert模型

研究意义

Research Meaning

Bert历史意义

- 获取了left-to-right和right-to-left的上下文信息。
- nlp领域正式开始pretraining+finetuning的模型训练方式

重点 重点来了!

论文泛读

Strcuture of Paper

论文结构

深度之眼 deepshare.net

Structure of Papers

abstract

摘要核心

- 1. 我们提出了一种新的语言表征模型bert,不同于其他的语言表征模型,bert可以同时学习到向左和向右的上下文信息。
- 2. 预训练好的bert可以直接fine-tuning,只需加相应的输出层,无需太多模型结构的改动。
- 3. bert模型在各项nlp下游任务中都表现得良好。

深度之眼 deepshare.net

Paper title

- 1. Introduction
- 2. Related Work
 - 2.1 Unsupervised Feature-based Approaches
 - 2.2 Unsupervised Fine-tuning Approaches
 - 2.3 Transfer Learning from Supervised Data
- 3. BERT
 - 3.1 Pre-training BERT
 - 3.2 Fine-tuning BERT

- 4. Experiments
 - **4.1 GLUE**
 - 4.2 SQuAD v1.1
 - 4.3 SQuAD v2.0
 - 4.4 SWAG
- 5. Ablation Studies
 - 5.1 Effect of Pre-training Tasks
 - 5.2 Effect of Model Size
 - 5.3 Feature-based Approach with BERT
- 6. Conclusion

Bert衍生模型以及 Elmo、GPT、Bert对比

Strcuture of Paper

Bert衍生模型

深度之眼 deepshare.net

Structure of Papers

衍生模型	模型特点	论文地址
RoBERTa	模型更大,参数量更多,静态 mask变成动态mask	https://arxiv.org/pdf/1907.11692
ALBERT	参数量减少,跨层的参数共享	https://arxiv.org/pdf/1909.11942
BERT-WWM	全词mask,中文	https://arxiv.org/pdf/1906.08101
ERINE	mask实体,中文	https://arxiv.org/pdf/1904.09223v1
SpanBERT	随机选取span进行mask	https://arxiv.org/pdf/1907.10529
TinyBERT	对transformer结构进行蒸馏	https://arxiv.org/pdf/1909.10351
Sentence-BERT	孪生网络	https://arxiv.org/pdf/1908.10084
K-BERT	知识图谱	https://arxiv.org/pdf/1909.07606v1

Elmo、GPT、Bert比较

Structure of Papers

模型	模型采用结构	预训练形式	优点	缺点	在Glue上 表现
ELMO	Bilstm+LM	featue-based	动态的词向 量表征	双向只是单纯的 concat两个lstm,并 没有真正的双向	最差
GPT	Transformer Deocder部分 (含有sequence mask, 去掉中间的 encoder-decoer的 attention)	fine-tuning	在文本生成 任务上表现 出色 同时采用辅 助目标函数 和Im	单向的transformer结 构,无法利用全局上 下文信息	较差
BERT	Transformer Encoder部分 (无sequence mask)	fine-tuning	在各分子的 在各分子的 在各分子的 在各分子的 在各分子的 一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个,	在文本生成任务上表 现不好	最好

本课回顾及下节预告

Review in the lesson and Preview of next lesson

深度之眼 deepshare.net

Review in the lesson

01 研究背景及成果意义

学习了GLUe以及概念feature-based和fine-tuning、了解了论文的实验结果。

02 论文总览

论文总共包含6个部分,论文主要介绍bert的结构。

03 Bert的衍生模型和Elmo、GPT、Bert的比较

学习了Bert的衍生模型,比较了Elmo、GPT以及Bert。

下节预告

Preview of next lesson

01 Pre-training Bert

学习Bert的pre-training部分

02 Fine-tuning Bert 学习Bert的fine-tuning部分

03 实验设置及结果分析

比较了模型在几个数据集上的表现情况。

04 论文总结

总结论文中创新点、关键点及启发点

深度之眼 deepshare.net

Preview of next lesson

- 下载论文
- 泛读论文
- 筛选出自己不懂的部分,带着问题进入下一课时

结 语-

循循而进,欲速则不达也。

联系我们:

电话: 18001992849

邮箱: service@deepshare.net

QQ: 2677693114

公众号

客服微信