

Multimodal Emotion Classification using User's Speech & Facial Expression

Introduction

Emotions are one of the most basic features that distinguish human beings from the machines and robots. Humans express their emotions through various media like facial expressions, their actions and most importantly speech. To bring the artificial intelligence close to humans, it becomes necessary to be able to recognize as well as generate emotions by machines. One of a huge challenge is developing computers that can effectively simulate human interaction. A lot of research has been done in the past years in this field. This motivates us to develop a system which can efficiently determine the mental state of the user by studying the speech and facial expressions of the user.

Scope of Project Work

- **Call Center** conversation may be used to analyze behavioral study of call attendants with the customers which helps to improve quality of service of a call attendant.
- In **Aircraft** cockpits, speech recognition systems trained to recognize stressed speech are used for better performance and can be useful in detecting emergency situations.
- It is Useful for enhancing the naturalness in speech based human machine interaction
- Interactive movie, storytelling & **E-tutoring** applications would be more practical, if they can adapt themselves to listeners or students emotional states.
- **Home Automation** Home Automation Systems capable of sensing emotion can avert risk of depression by changing ambient lighting, playing cheerful music, ordering favorite food items from nearby bakery.

Scope of Project Work

By doing this project, the followings are achieved:

- a) Development of separate modules to detect the emotion of the person using Facial Expression and Speech Data
 - i. Module 1: Emotion Classification using Facial Expressions
 - ii. Module 2: Emotion Classification using Speech Data
- b) Diffusing the results of speech and facial expression classifier to enhance the accuracy.
- c) Using effective machine learning algorithms to achieve the above mentioned task.
- d) Comparing the accuracies obtained by different methodologies and choosing the best one

The Data-Set

Audio Data

- **Source**: Surrey Audio-Visual Expressed Emotion (SAVEE)[3]
- 480 British English utterances recorded by 4 male actors 7 emotions—happy, angry, sad, disgusted, fearful, surprised, and neutral
- Source: Recorded IIIT-A DATA
- 853 audio clips by 82 actors (11 female, 71 male) expressing the 7 seven emotions.

All the audio clips are captured at a frequency of 44100 Hz. The length of each audio file is around 2.0 ~ 3.0 seconds and are stored in wave (.wav) format. The total number of audio clips are 1333, which are further divided into 988 for training and 345 for validating the model.

Fig. Recording for Dataset

Image Data

- 32,298 grayscale images
- Each image of 48 x 48 pixel
- 28,709 Training + 3,589 validation
- 7 emotion classes

Source: FER2013 Dataset

0=Angry
1=Disgust
2=Fear
3=Happy
4=Sad
5=Surprise
6=Neutral.

Happiness Surprise Fear

Disgust Anger Sadness

Sadness

Approach: Deep Learning

- Convolutional Neural Network(CNN): CNN take into consideration spatial information in an image
 - **Input Layer** will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three color channels R,G,B it would have dimensions 32 x 32 x 3.
 - **CONV Layer** will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and a small region they are connected to in the input volume. This may result in volume such as [32x32x12] if we decided to use 12 filters.
 - **RELU Layer** will apply an element wise activation function, such as the **max(0,x)** thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]) and removes the negative intensities.
 - **POOL layer** will perform a down sampling operation along the spatial dimensions (width, height), resulting in volume such as [16x16x12] if we use a 2 x 2 pooling filter. Eg. 2 x 2 max pool filter.
 - **FC Layer**(i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a class score, such as among the 10 categories.

Why CNN??- The basic need of CNN aroused for image recognitions problems as in case of images the no of parameters in input layer become large and in order to make the recognizing system efficient the number of hidden layers in the neural network are also large, due to which the effect to the weights of initial hidden layers is not much during back propagation. This increases the number of iterations needed to adjust the weights in order to obtain good accuracy from the system, thereby increasing the computation power.

Methodology

Model 1: Using MFCC

Accuracy Obtained: 50.12%

Emotion	Pitch	Intensity	Speaking rate	Voice quality
Anger	higher mean wider range abrupt changes	higher	slightly faster	breathy chest tone
Joy	higher mean wider range	higher	faster or slower	breathy blaring
Sadness	lower mean narrower range	lower	slower	resonant
Fear	higher mean wider range	normal	faster	irregular voicing
Disgust	lower mean wider range	lower	slower	grumbled chest tone

Variation of various acoustic variables

[5]R. Murray and J. L. Arnott, "Toward the simulation of emotion in synthetic speech: A review of the literature on human vocal emotion"

Model 2: CNN

Accuracy Obtained: 72.46%

None				
Layer (type)	Output	Shape	Param #	Connected to
convolution2d_1 (Convolution2D)	(None,	64, 98, 433)	640	convolution2d_input_1[0][0]
batchnormalization_1 (BatchNorma	(None,	64, 98, 433)	256	convolution2d_1[0][0]
elu_l (ELU)	(None,	64, 98, 433)	0	batchnormalization_1[0][0]
maxpooling2d_1 (MaxPooling2D)	(None,	64, 49, 216)	0	elu_1[0][0]
dropout_1 (Dropout)	(None,	64, 49, 216)	0	maxpooling2d_1[0][0]
convolution2d_2 (Convolution2D)	(None,	128, 51, 218)	73856	dropout_1[0][0]
batchnormalization_2 (BatchNorma	(None,	128, 51, 218)	512	convolution2d_2[0][0]
elu_2 (ELU)	(None,	128, 51, 218)	0	batchnormalization_2[0][0]
maxpooling2d_2 (MaxPooling2D)	(None,	128, 17, 72)	0	elu_2[0][0]
dropout_2 (Dropout)	(None,	128, 17, 72)	0	maxpooling2d_2[0][0]
convolution2d_3 (Convolution2D)	(None,	128, 19, 74)	147584	dropout_2[0][0]
batchnormalization_3 (BatchNorma	(None,	128, 19, 74)	512	convolution2d_3[0][0]
elu_3 (ELU)	(None,	128, 19, 74)	0	batchnormalization_3[0][0]
maxpooling2d_3 (MaxPooling2D)	(None,	128, 4, 18)	0	elu_3[0][0]
dropout_3 (Dropout)	(None,	128, 4, 18)	0	maxpooling2d_3[0][0]
flatten_1 (Flatten)	(None,	9216)	0	dropout_3[0][0]
outputl (Dense)	(None,	2048)	18876416	flatten_1[0][0]
dropout_4 (Dropout)	(None,	2048)	0	output1[0][0]
output2 (Dense)	(None,	1024)	2098176	dropout_4[0][0]
dense_1 (Dense)	(None,	7)	7175	output2[0][0]
Total params: 21,205,127				

Total params: 21,205,127 Trainable params: 21,204,487 Non-trainable params: 640 Test score: 0.968174676273

Test accuracy: 0.724637680814

Predicted Label

		ans	in gie	gust res	or ha	opy rei	iti ^{al} sai) _S u	, Q
	angry	49	0	0	7	1	0	1	
<u> </u>	disgust	4	33	4	5	4	3	0	
True Label	fear	2	0	21	6	0	5	5	
Je L	happy	10	4	3	33	2	0	2	
Ē	neutral	0	1	0	0	52	6	0	
	sad	0	1	3	1	5	34	0	
	surprise	2	0	4	4	0	0	28	

Confusion Matrix

Model 3: CNN + LSTM

Accuracy Obtained: 74.49%

elu_2 (ELU)	(None,	128, 51, 218)	0	batchnormalization_2[0][0]
maxpooling2d_2 (MaxPooling2D)	(None,	128, 17, 72)	0	elu_2[0][0]
dropout_2 (Dropout)	(None,	128, 17, 72)	0	maxpooling2d_2[0][0]
convolution2d_3 (Convolution2D)	(None,	128, 19, 74)	147584	dropout_2[0][0]
batchnormalization_3 (BatchNorma	(None,	128, 19, 74)	512	convolution2d_3[0][0]
elu_3 (ELU)	(None,	128, 19, 74)	0	batchnormalization_3[0][0]
maxpooling2d_3 (MaxPooling2D)	(None,	128, 4, 18)	0	elu_3[0][0]
dropout_3 (Dropout)	(None,	128, 4, 18)	0	maxpooling2d_3[0][0]
convolution2d_4 (Convolution2D)	(None,	128, 6, 20)	147584	dropout_3[0][0]
batchnormalization_4 (BatchNorma	(None,	128, 6, 20)	512	convolution2d_4[0][0]
elu_4 (ELU)	(None,	128, 6, 20)	0	batchnormalization_4[0][0]
maxpooling2d_4 (MaxPooling2D)	(None,	128, 1, 5)	0	elu_4[0][0]
dropout_4 (Dropout)	(None,	128, 1, 5)	0	maxpooling2d_4[0][0]
permute_1 (Permute)	(None,	5, 128, 1)	0	dropout_4[0][0]
reshape_1 (Reshape)	(None,	5, 128)	0	permute_1[0][0]
gru1 (LSTM)	(None,	5, 32)	20608	reshape_1[0][0]
gru2 (LSTM)	(None,	32)	8320	gru1[0][0]
output1 (Dense)	(None,	16)	528	gru2[0][0]
output2 (Dense)	(None,	16)	272	output1[0][0]
dense_1 (Dense)	(None,	7)	119	output2[0][0]
Total params: 401,303 Trainable params: 400,407 Non-trainable params: 896				

Test score: 0.9643366737591 Test accuracy: 0.7449871345

Predicted Label

disgust neutral sad angry disgust **True Label** fear happy neutral sad surprise

Confusion Matrix

Module 2: Facial Expression

Accuracy Obtained: **61.27%**

Layer (type)	Output Shape	Param #	Connected to
convolution2d_1 (Convolution2D)	(None, 3, 50, 32)	13856	convolution2d_input_1[0][0]
convolution2d_2 (Convolution2D)	(None, 5, 52, 32)	9248	convolution2d_1[0][0]
maxpooling2d_1 (MaxPooling2D)	(None, 2, 26, 32)	0	convolution2d_2[0][0]
dropout_1 (Dropout)	(None, 2, 26, 32)	0	maxpooling2d_1[0][0]
convolution2d_3 (Convolution2D)	(None, 4, 28, 64)	18496	dropout_1[0][0]
convolution2d_4 (Convolution2D)	(None, 6, 30, 64)	36928	convolution2d_3[0][0]
maxpooling2d_2 (MaxPooling2D)	(None, 3, 15, 64)	0	convolution2d_4[0][0]
dropout_2 (Dropout)	(None, 3, 15, 64)	0	maxpooling2d_2[0][0]
convolution2d_5 (Convolution2D)	(None, 5, 17, 128)	73856	dropout_2[0][0]
convolution2d_6 (Convolution2D)	(None, 7, 19, 128)	147584	convolution2d_5[0][0]
maxpooling2d_3 (MaxPooling2D)	(None, 3, 9, 128)	0	convolution2d_6[0][0]
dropout_3 (Dropout)	(None, 3, 9, 128)	0	maxpooling2d_3[0][0]
flatten_1 (Flatten)	(None, 3456)	0	dropout_3[0][0]
dense_1 (Dense)	(None, 2048)	7079936	flatten_1[0][0]
dropout_4 (Dropout)	(None, 2048)	0	dense_1[0][0]
dense_2 (Dense)	(None, 7)	14343	dropout_4[0][0]
Total params: 7394247			

Test score: 1.08653423576

Test accuracy: 0.612705489002

Predicted Label

angy diseust lear happy say say herital						એ	
angry	239	3	41	44	70	12	58
disgust	14	23	6	4	7	0	2
fear	32	3	205	30	113	36	77
happy	22	1	13	744	30	17	68
sad	74	2	55	50	315	8	149
surprise	11	2	47	23	8	307	17
neutral	45	1	29	61	99	6	366

Confusion Matrix

Choosing the Best Model

Fusion Based on F-Scores

Precision =
$$\frac{TP}{TP + FP}$$
 TP=True Positive FP=False Positive

Recall =
$$\frac{TP}{TP + FN}$$
 TP=True Positive FN=False Negative

Emotions	Images	Speech	
Angry	0.5308	0.9034	
Disgust	0.5748	0.4864	
Fear	0.4581	0.5194	
Нарру	0.8113	0.6024	
Neutral	0.5302	0.7880	
Sad	0.4765	0.75	
Surprise	0.7623	0.6236	

Analysis

Dataset	Accuracy		
SAVEE	60.19%		
IIITA	80.93%		
SAVEE + IIIT A	74.49%		

Dashboard

▼ Publi

Public Leaderboard - Challenges in Representation Learning: Facial Expression Recognition Challenge

his leaderboard is calculated on approximately 50% of the test data. he final results will be based on the other 50%, so the final standings may be different. See someone using multiple accounts?

#	∆1w	Team Name + In the money	Score ②	Entries	Last Submission UTC (Best-Last Submission)
1	new	RBM *	0.69769	5	Thu, 23 May 2013 16:12:26 (-43h)
2	new	Unsupervised #	0.69072	8	Fri, 24 May 2013 18:32:35
3	new	Maxim Milakov	0.68153	7	Fri, 24 May 2013 20:07:41
4	new	Radu+Marius+Cristi #	0.67317	6	Fri, 24 May 2013 14:35:49 (-2.4d)
5	new	Lor.Voldy	0.64558	2	Tue, 21 May 2013 19:29:59 (-0h)
6	new	Eric Cartman	0.64447	1	Tue, 21 May 2013 19:32:52
7	new	ryank	0.64057	2	Tue, 21 May 2013 21:49:50
8	new	Xavier Bouthillier	0.62775	1	Fri, 24 May 2013 11:23:46
9	new	sayit	0.61911	2	Wed, 22 May 2013 16:52:46 (-14.7h)
10	new	Alejandro Dubrovsky	0.61382	5	Fri, 24 May 2013 23:30:26
11	new	jaberg	0.60797	6	Fri, 24 May 2013 22:09:53 (-30.7h)
12	new	kg	0.59181	4	Thu, 23 May 2013 23:45:22 (-0h)
13	new	bulbuloglu	0.58958	8	Fri, 24 May 2013 12:35:42 (-15.3h)
14	new	Liu	0.58038	8	Fri, 24 May 2013 21:10:48 (-26.2h)

Kaggle Position(9th) with 61.27% accuracy for facial data

On testing the validation data, we analysed that 21.56% misclassified images have second most likely emotion as the correct label.

Modules Developed

- i. Emotion Classification using speech signal from audio file
- ii. Emotion Classification using from microphone audio file
- iii. Real Time Webcam Video Classification using Facial Expression
- iv. Emotion Classification using fusion of speech and audio signals.


```
🗀 't1.py 🔃
            test_audio_file.py
                              test_file.py
                                            untitled0.pv
                                                          untitled3.py
                                                                         audio_video_file.py
  34
  35 expressions = "Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"
  36
  37 def find exp(score) :
  38
        yx = zip(score[0,:],expressions)
  39
        vx.sort(reverse=True)
        y1 = np.empty([7], dtype='float32')
  41
        x1 = [x \text{ for } y, x \text{ in } yx]
  42
        y1 = [round(y,3) \text{ for } y,x \text{ in } yx]
  43
  44
        return x1,v1
  45
   46
  50 K.set_image_dim_ordering('th')
  52 model= load_model('model_221.h5')
  53 print ('Model Loaded....')
  55 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
  56 model.load weights('my model 221.h5')
  57 print ('Weights Loaded....')
  58
  61
  63 ############WTDFO DATA
  64
  66 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
  67 cap = cv2.VideoCapture('MAH01715.MP4')
  68 ans = []
  69 time = []
  70 p = 0
  71 i = 0
  72 c = 0
  73 + = 0
  74 x_test = np.empty([1,1,48,48])
  75 f = open('emotions.txt','w')
  76 f.close()
  77 while(cap.isOpened()):
  78
  79
        ret, frame = cap.read()
        #gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
```

caron en losers fricamadon bestrob familian idade à frest_viaco_inc.bx

```
Editor - C: \Users\Incarnation\Pictures\Screenshots\CNNandRNN saving Weights.py
test_file.py
                                                                                  CNNandRNN saving Weights.py
                              untitled3.py
                                            audio_video_file.py
                                                                test_video_file.py
   58 #plt.imshow(X train[5][0], interpolation='nearest')
   59 #plt.show()
   60
   61
   62 print("-----")
   63 print (X_test.shape)
   64 print (Y test.shape)
   65 print (test size)
   66 print (test rows)
   67 print (test cols)
   69
   70 X train = X train.astype("float32")
   71 X test = X test.astype("float32")
   73 Y train = np utils.to categorical(Y train,7)
   74 num classes = Y train.shape[1]
   75 Y_test = np_utils.to_categorical(Y_test,7)
   77
   78
   79 print("########model########")
   80 channel axis = 1
   81 freq axis = 2
   82 time axis = 3
   83 np.random.seed(1337) # for reproducibility
   84 K.set image dim ordering('th')
   85
   86
   87 model = Sequential()
   89 model.add(Convolution2D(64, 3, 3, border mode='full', input shape=(1, train rows, train cols)))
   90 model.add(BatchNormalization(axis=channel axis, mode=0))
   91 model.add(ELU())
   92 model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
   93 model.add(Dropout(0.1))
   95 model.add(Convolution2D(128, 3, 3, border mode='full'))
   96 model.add(BatchNormalization(axis=channel axis, mode=0))
   97 model.add(ELU())
   98 model.add(MaxPooling2D(pool size=(3, 3), strides=(3, 3)))
   99 model.add(Dropout(0.1))
  101 model.add(Convolution2D(128, 3, 3, border mode='full'))
  102 model.add(BatchNormalization(axis=channel axis, mode=0))
  103 model.add(ELU())
```


^ M 40 1 23:04

Technical Requirements

- Nvidia GPU
- CUDA
- Python
- Anaconda
- Librosa
- pyAudioAnalysis
- Theano
- Kares
- PyCharm

Thank You!

Vaibhav Srivastava (IIT2013027) Himanshu Tuteja (IIT2013038) Anirudh Gupta (IIT2013117)