- Problems from Engineering Mathematics 1 Veerarajan.
- 1. Virily that $\iint (x^2 + y^2) dx dy = \iint (x^2 + y^2) dy dx$
- a Evaluate I I ny (n+y) drdy.
- 3. Evaluate Is aydady, where R is the region bounded by the line neay=a, lying in the first quadrant
- 4. Evaluate II = drdy where R is the region bounded by the lines, x = 0, x = y and $y = \infty$.
 - 5 Evaluate Ssnydady, where R is the region bounded by the parabola $y^2 = x$ and the lines y = 0, x+y=2lying in the first quadrant

Part A:
$$21$$

1. Evaluate $\iint_{0}^{1} \frac{dx dy}{dx}$

The $\pi/2$

3. $\iint_{0}^{1} \frac{\sin(\theta+\phi)}{\theta} d\theta d\phi$

4. $\iint_{0}^{1} \frac{dx dy}{dx}$

TIZ TIZ

3.
$$\int \int \sin(\theta + \phi) d\theta d\phi$$
4.
$$\int \int dx dy$$
T sine

sketch the region of integration for the following 1 1

double integrals.

1.
$$\int \int f(x,y) dx dy$$
2.
$$\int \int f(x,y) dx dy$$
3.
$$\int \int f(x,y) dx dy$$
4.
$$\int \int f(x,y) dx dy$$
4.
$$\int \int f(x,y) dx dy$$
6.
$$\int \int f(x,y) dx dy$$
7.
$$\int \int f(x,y) dx dy$$
8.
$$\int \int f(x,y) dx dy$$
9.
$$\int f(x,y) dx dy$$

$$3. \int_{0}^{\infty} \int_{0}^{\sqrt{(x,y)}} \frac{dxdy}{dxdy} + \int_{0}^{\infty} \int_{0}^{\sqrt{(x,y)}} \frac{dxdy}{dxdy}$$

III Find the limits of integration in the double integral II +(x, y) dady where R is in the I quadrant and bounded by

1.
$$x = 0, y = 0, x + y = 1$$
.

a.
$$n = 0$$
, $y = 0$, $\frac{n^2}{a^2} + \frac{y^2}{b^2} = 1$.

3.
$$x = 0$$
, $x = y$, $y = 1$.

$$4 = 1, y = 0, y^2 = 4x$$

I J y dady and sketch the region of $0 y^2/4$ IV 1. Evaluate

integration a $\int u^2 - x^2$.

Evaluate $\int \int y \, dx \, dy$ and sketch the region of a. Evaluate integration.

3. Evaluate $\int \int \frac{y \, dx \, dy}{x^2 + y^2}$ and sketch the region of integration.

a Jag-na V. 1. Evaluate) Ja-n-y2 dn dy.

I. Change of order of integration

- 1. Change the order of integration in Ift(x, y) dydx.
 - a. Change the order of integration in (f(u,y) dudy.
 - 3. Change the order of integration] | +(1,y) dy dn.
- II. Change the order of integration and hence evaluate a $4a^2-y^2$

- [Ans. $\frac{3}{3}a^{4}$]

 5). $\int \int \frac{1}{(x+y)} dxdy$.

 6) $\int \int \frac{x}{x^{2}+y^{2}} dxdy$. [Ans.: $\frac{Ta}{4}$].
- 7) | (ny dydn
 - $\begin{bmatrix} Ans. \frac{1}{2} \end{bmatrix}$ $b = \frac{a}{b} \sqrt{b^2 y^2}$ $10). \int \int xy dx dy$ $0 \frac{x^{2}}{4a}$ [Ans.: $\frac{64}{3} \frac{4}{3}$
- 4). \\ \(\alpha \cdot \ [Ans.; \(\frac{a^2 b^2}{a}\)]

- 11) Evaluate by changing the order of integration. $\int_{0}^{\infty} \sqrt{a^{2}-n^{2}} dy dn = \left\{ An5. : \frac{\pi a^{3}}{6} \right\}$
- 12). Change the order of integration and hence evaluate j j ny dydn { Ans.: log4-1}
 - 13) Change the order of integration in I sydnedy and hence evaluate. { Ans.: 3 a4}.
 - 14). Change the order of integration and hence evaluate I o 2 dydn { Ans.: 24}.
- 15) Change the order of integration and then evaluate of $\sqrt{4x^2-y^2}$ and $\sqrt{4x}$ and $\sqrt{4x}$ and $\sqrt{4x}$ by $\sqrt{4x}$ dy $\sqrt{4x}$ dy

 - $\begin{cases} \text{Ans.} \frac{a^2b^2}{a^4} \end{cases}$ $\begin{cases} \text{Ans.} \frac{a^2 \log(1+\overline{a})}{a} \end{cases}$ $\begin{cases} \text{Ans.} \frac{a^2 \log(1+\overline{a})}{a^2 + y^2} \end{cases}$ $\begin{cases} \text{Ans.} \frac{1}{a} \log a \end{cases}$ $\begin{cases} \text{Ans.} \frac{1}{$ $\left\{ \text{Ans.: } \frac{\pi}{16} a^3 b \right\}$

ad)
$$\int_{0}^{2} \frac{4-n^{2}}{(n+y)} dy dn$$

$$\begin{cases} Ans. : \frac{a+1}{60} \end{cases}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a-1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a-1}{60}$$

$$\frac{a+1}{60}$$

$$\frac{a+1}$$

23)
$$\int_{0}^{4} \int_{0}^{11-x^{2}} y^{2} dxdy \left\{ Ans. \frac{\pi}{16} \right\}$$
25)
$$\int_{0}^{4} \int_{0}^{16} (x^{2}+y^{2}) dxdy \cdot \frac{\pi}{2} \left\{ Ans. \frac{\pi}{2} + \frac{\pi}{2} \frac{\pi}{2} \right\}$$

$$\begin{cases} Ans. \frac{\pi}{2} + \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \\ Ans. \frac{\pi}{6} \frac{\pi}{6} \frac{\pi}{2} \end{cases}$$
28)
$$\int_{0}^{4} \int_{0}^{17} \frac{y^{2}}{\sqrt{2}} dxdy \cdot \frac{\pi}{2} \frac{\pi}$$

37)
$$\int_{0}^{a} \frac{\sqrt{a^{2}-x^{2}}}{xy \, dx \, dy}$$

$$\begin{cases} Ans. \frac{a^{4}}{8} \end{cases}$$

$$39) \int_{0}^{a} \frac{\sqrt{a^{2}-x^{2}}}{\sqrt{a^{2}-x^{2}}}$$

$$\begin{cases} \frac{a^{4}}{16} + \frac{\pi}{3a} a^{4} \end{cases}$$

$$1 = \frac{a^{4}}{16} + \frac{\pi}{3a} a^{4} \end{cases}$$

$$1 = \frac{a^{4}}{16} + \frac{\pi}{3a} a^{4}$$

38)
$$\int (x^{2}+y^{2}) dx dy$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ 4 \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi a^{4} \\ Ans. & \pi a^{4} \end{cases}$$

$$-\alpha = \begin{cases} Ans. & \pi$$