# Pierwsza metoda Lapunowa

#### Adrian Jałoszewski

#### 4kwietnia 2017, godzina 12:30

# Spis treści

| 1 | Wst       | tęp   |                                                                                                                                    | 1  |
|---|-----------|-------|------------------------------------------------------------------------------------------------------------------------------------|----|
| 2 | Wykonanie |       |                                                                                                                                    |    |
|   | 2.1       | Układ | równań van der Polla                                                                                                               | 2  |
|   |           | 2.1.1 | Współczynnik $a = 1 \dots \dots$   | 2  |
|   |           | 2.1.2 | Współczynnik $a = 5$                                                                                                               | 4  |
|   |           | 2.1.3 | Współczynnik $a=0$                                                                                                                 | 6  |
|   |           | 2.1.4 | Współczynnik a = $0,5$                                                                                                             | 6  |
|   | 2.2       | Wahac | llo tlumione                                                                                                                       | 8  |
|   |           | 2.2.1 | Współczynniki a=1, b=1                                                                                                             | 8  |
|   |           | 2.2.2 | Współczynnik $a=4,b=1$                                                                                                             | 10 |
|   |           | 2.2.3 | Współczynnik $a=4,b=0$                                                                                                             | 12 |
|   | 2.3       | Współ | czynnik $a = 1, b = 3 \dots \dots$ | 13 |
|   | 2.4       | Układ | mechaniczny                                                                                                                        | 15 |
|   |           | 2.4.1 | Sprężyna twarda                                                                                                                    | 15 |
|   |           | 2.4.2 | Sprężyna miękka                                                                                                                    | 17 |
| 3 | Wn        | ioski |                                                                                                                                    | 18 |

# 1 Wstęp

Celem laboratorium było zapoznanie się z regulatorami P, PI, PD oraz PID w dziedzinie częstotliwości, traktując je jako filtry. Oprócz tego należało zaprojektować filtr pasmowoprzepustowy.

# 2 Wykonanie

### 2.1 Układ równań van der Polla

#### 2.1.1 Współczynnik a = 1



Rysunek 1: Układ nieliniowy



Rysunek 2: Układ zlinearyzowany



Rysunek 3: TODO

#### 2.1.2 Współczynnik a = 5



Rysunek 4: Układ nieliniowy



Rysunek 5: Układ zlinearyzowany



Rysunek 6: TODO

### 2.1.3 Współczynnik a = 0



Rysunek 7: Układ nieliniowy

### 2.1.4 Współczynnik a = 0.5



Rysunek 8: Układ nieliniowy



Rysunek 9: Układ zlinearyzowany



Rysunek 10: TODO

# 2.2 Wahadło tłumione

#### 2.2.1 Współczynniki a=1, b=1



Rysunek 11: Układ nieliniowy



Rysunek 12: Układ zlinearyzowany



Rysunek 13: TODO

### 2.2.2 Współczynnik a = 4, b = 1



Rysunek 14: Układ nieliniowy



Rysunek 15: Układ zlinearyzowany



Rysunek 16: TODO

#### 2.2.3 Współczynnik $a=4,\,b=0$



Rysunek 17: Układ nieliniowy

# 2.3 Współczynnik $a=1,\,b=3$



Rysunek 18: Układ nieliniowy



Rysunek 19: Układ zlinearyzowany



Rysunek 20: TODO

# 2.4 Układ mechaniczny

#### 2.4.1 Sprężyna twarda



Rysunek 21: Układ nieliniowy



Rysunek 22: Układ zlinearyzowany





Rysunek 23: TODO

#### 2.4.2 Sprężyna miękka



Rysunek 24: Układ nieliniowy



Rysunek 25: Układ zlinearyzowany

Rysunek 26: TODO



Rysunek 27: TODO

#### 3 Wnioski

Traktując regulatory jako filtry można zmieniać czułość regulatora w zależności od częstotliwości podawanego na niego sygnału. Można w ten sposób zapinając sprzężenie zwrotne reagować lepiej na szybkie zmiany sygnału wyjściowego (regulator PD) lub na zmiany powolne (regulator PI) lub na obydwa rodzaje zmian - wykorzystując regulator PID.

Filtr pasmowo przepustowy może zostać zrealizowany przy pomocy obiektu drugiego rzędu. Jednak narasta on i opada wtedy łagodnie na brzegach (20 dB na dekadę). Można te tępo wzrostu i spadku zwiększyć, powiększając bieguny oraz zera transmitancji. Należy jednak być z tym ostrożnym, gdyż zwiększa to rząd transmitancji, a to może być niekorzystne w sytuacji zapinania sprzężenia zwrotnego – układ może stać się łatwo niestabilny.