Resumen de teoremas para el final de Lenguajes Formales y Computabilidad

Agustín Curto, agucurto95@gmail.com Francisco Nievas, frannievas@gmail.com

2017

Índice general

0.1.	Notación y	conceptos básicos.																	4
------	------------	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

0.1. Notación y conceptos básicos

Lemma 1: Sea $S \subseteq \omega \times \Sigma^*$, entonces S es rectangular si y solo si se cumple la siguiente propiedad:

Si
$$(x, \alpha), (y, \beta) \in S \Rightarrow (x, \beta) \in S$$

Proof: Ejercicio.

Q.E.D.

<u>Lemma 2:</u> La relación < es un orden total estricto sobre Σ^* .

Proof: Ejercicio.

Q.E.D.

<u>Lemma 3:</u> La función $s^{<}: \Sigma^{*} \to \Sigma^{*}$, definida recursivamente de la siguiente manera:

$$s^{<}(\varepsilon) = a_1$$

$$s^{<}(\alpha a_i) = \alpha a_{i+1}, i < n$$

$$s^{<}(\alpha a_n) = s^{<}(\alpha) a_1$$

tiene la siguiente propiedad:

$$s^{<}(\alpha) = \min\{\beta \in \Sigma^* : \alpha < \beta\}$$

Proof: Supongamos que $\alpha < \beta$. Probaremos entonces que $s^{<}(\alpha) \leq \beta$.

Caso
$$|\alpha| < |\beta|$$

Se puede ver fácilmente que $|\alpha| = |s^{<}(\alpha)|$ salvo en el caso en que $\alpha \in \{a_n\}^*$, por lo cual solo resta ver el caso $\alpha \in \{a_n\}^*$. Supongamos $\alpha = a_n^{|\alpha|}$, entonces $s^{<}(\alpha) = a_1^{|\alpha|+1}$. Si $|\beta| = |\alpha| + 1$ entonces es fácil ver usando el ítem 2 de la definición del orden de Σ^* que $s^{<}(\alpha) = a_1^{|\alpha|+1} \le \beta$. Si $|\beta| > |\alpha| + 1$, entonces por el ítem 1, de tal definición tenemos que $s^{<}(\alpha) = a_1^{|\alpha|+1} < \beta$.

Caso
$$|\alpha| = |\beta|$$

Tenemos entonces que:

$$\alpha = \alpha_1 a_i \gamma_1
\beta = \alpha_1 a_j \gamma_2$$

con i < j y $|\gamma_1| = |\gamma_2|$. Si $\gamma_1 = \gamma_2 = \varepsilon$ entonces es claro que $s^<(\alpha) \le \beta$. El caso en el que γ_1 termina con a_l para algún l < n es fácil. Veamos el caso en que $\gamma_1 = a_n^k$ con $k \ge 1$. Tenemos que:

$$s^{<}(\alpha) = s^{<}(\alpha_1 a_i a_n^k)$$

$$= s^{<}(\alpha_1 a_i a_n^{k-1}) a_1$$

$$\vdots \qquad \vdots$$

$$= s^{<}(\alpha_1 a_i) a_1^k$$

$$= \alpha_1 a_{i+1} a_1^k$$

$$\leq \alpha_1 a_j \gamma_2 = \beta$$

Supongamos finalmente que $\gamma_1 = \rho_1 a_l a_n^k$ con $k \ge 1$ y l < n. Tenemos que:

$$s^{<}(\alpha) = s^{<}(\alpha_1 a_i \rho_1 a_l a_n^k)$$

$$= s^{<}(\alpha_1 a_i \rho_1 a_l a_n^{k-1}) a_1$$

$$\vdots \qquad \vdots$$

$$= s^{<}(\alpha_1 a_i \rho_1 a_l) a_1^k$$

$$= \alpha_1 a_i \rho_1 a_{l+1} a_1^k$$

$$< \beta$$

Para completar nuestra demostración debemos probar que $\alpha < s^{<}(\alpha)$, para cada $\alpha \in \Sigma^*$. Dejamos al lector como ejercicio esta prueba la cual puede ser hecha por inducción en $|\alpha|$ usando argumentos parecidos a los usados anteriormente.

Q.E.D.

Corollary 4: $s^{<}$ es inyectiva.

Proof: Supongamos $\alpha \neq \beta$. Ya que el orden de Σ^* es total podemos suponer sin pérdida de generalidad que $\alpha < \beta$. Por el lema anterior tenemos que $s^{<}(\alpha) \leq \beta < s^{<}(\beta)$ y ya que < es transitiva obtenemos que $s^{<}(\alpha) < s^{<}(\beta)$, lo cual nos dice $s^{<}(\alpha) \neq s^{<}(\beta)$.

Q.E.D.

Lemma 5: Se tiene que:

- 1. $\varepsilon \neq s^{<}(\alpha)$, para cada $\alpha \in \Sigma^*$.
- 2. Si $\alpha \neq \varepsilon$, entonces $\alpha = s^{<}(\beta)$ para algún β .
- 3. Si $S \subseteq \Sigma^*$ es no vacío, entonces $\exists \alpha \in S$ tal que $\alpha < \beta$, para cada $\beta \in S \{\alpha\}$.

Proof:

- 1. Ejercicio
- 2. Ejercicio
- 3. Sea $k = \min\{|\alpha| : \alpha \in S\}$. Notese que hay una cantidad finita de palabras de S con longitud igual a k y que la menor de ellas es justamente la menor palabra de S.

Q.E.D.

<u>Lemma 6:</u> Tenemos que:

$$\Sigma^* = \{*^<(0), *^<(1), \ldots\}$$

Mas aún la función * es biyectiva.

Proof: Supongamos $*^<(x) = *^<(y)$ con x > y. Note que $y \ne 0$ ya que ε no es el sucesor de ninguna palabra. Osea que $s^<(*^<(x-1)) = s^<(*^<(y-1))$ lo cual ya que $*^<$ es inyectiva nos dice que $*^<(x-1) = *^<(y-1)$. Iterando este razonamiento llegamos a que $*^<(z) = *^<(0) = \varepsilon$ para algún z > 0, lo cual es absurdo.

Veamos que *< es sobreyectiva. Supongamos no lo es, es decir supongamos que $\Sigma^* - I_{*<} \neq \varnothing$. Por (3) del lema anterior $\Sigma^* - I_{*<}$ tiene un menor elemento α . Ya que $\alpha \neq \varepsilon$, tenemos que $\alpha = s^{<}(\beta)$, para algún β . Ya que $\beta < \alpha$ tenemos que $\beta \notin \Sigma^* - I_{*<}$, es decir que $\beta = *^{<}(x)$, para algún $x \in \omega$. Esto nos dice que $\alpha = s^{<}(*^{<}(x))$, lo cual por la definición de *< nos dice que $\alpha = *^{<}(x+1)$. Pero esto es absurdo ya que $\alpha \notin I_{*<}$.

O E D

<u>Lemma 7:</u> Sea $n \ge 1$ fijo, entonces cada $x \ge 1$ se escribe en forma única de la siguiente manera:

$$x = i_k n^k + i_{k-1} n^{k-1} + \dots + i_0 n^0$$

con $k \ge 0$ y $1 \le i_k, i_{k-1}, ..., i_0 \le n$.

Proof: Veamos primero la unicidad. Supongamos que:

$$i_k n^k + i_{k-1} n^{k-1} + \dots + i_0 n^0 = j_m n^m + j_{m-1} n^{m-1} + \dots + j_0 n^0$$

con $k,m \geq 0$ y $1 \leq i_k,i_{k-1},...,i_0,j_m,...,j_0 \leq n$. Supongamos k < m. Llegaremos a un absurdo. Notese que:

$$\begin{array}{ll} i_k n^k + i_{k-1} n^{k-1} + \ldots + i_0 n^0 & \leq & n.n^k + n.n^{k-1} + \ldots + n.n^0 \\ & \leq & n^{k+1} + n^k + \ldots + n^1 \\ & < & n^{k+1} + n^k + \ldots + n^1 + n^0 \\ & \leq & n^m + n^{m-1} + \ldots + n^0 \\ & \leq & j_m n^m + j_{m-1} n^{m-1} + \ldots + j_0 n^0 \end{array}$$

lo cual contradice la primera igualdad.

Probaremos por inducción en x que: (1) existen $k \geq 0$ y $i_k, i_{k-1}, ..., i_0 \in \{1, ..., n\}$ tales que:

$$x = i_k n^k + i_{k-1} n^{k-1} + \dots + i_0 n^0$$

El caso x=1 es trivial. Supongamos (1) vale para x, probaremos que vale para x+1. Hay varios casos:

Caso $i_0 < n$

$$x+1 = (i_k n^k + i_{k-1} n^{k-1} + \dots + i_0 n^0) + 1$$
$$= i_k n^k + i_{k-1} n^{k-1} + \dots + (i_0 + 1) n^0$$

Caso $i_k = i_{k-1} = \dots = i_0 = n$

$$x+1 = (i_k n^k + i_{k-1} n^{k-1} + \dots + i_0 n^0) + 1$$
$$= (nn^k + nn^{k-1} + \dots + nn^0) + 1$$
$$= 1n^{k+1} + 1n^k + \dots + 1n^1 + 1n^0$$

Caso $i_0 = i_1 = \dots = i_h = n, i_{h+1} \neq n$ para algún $0 \leq h < k$

$$x+1 = (i_k n^k + \dots + i_{h+2} n^{h+2} + i_{h+1} n^{h+1} + n n^h + \dots + n n^0) + 1$$

$$= (i_k n^k + \dots + i_{h+2} n^{h+2} + i_{h+1} n^{h+1} + n^{h+1} + n^h + \dots + n^1) + 1$$

$$= i_k n^k + \dots + i_{h+2} n^{h+2} + (i_{h+1} + 1) n^{h+1} + 1 n^h + \dots + 1 n^1 + 1 n^0$$

Q.E.D.

<u>Lemma 8:</u> La función #< es biyectiva.

Proof: Ejercicio.

Q.E.D.

<u>Lemma 9:</u> Las funciones $\#^{<}$ y $*^{<}$ son una inversa de la otra.

Proof: Probaremos por inducción en x que para cada $x \in \omega$, se tiene que $\#^{<}(*^{<}(x)) = x$. El caso x = 0 es trivial. Supongamos que $\#^{<}(*^{<}(x)) = x$, veremos entonces que $\#^{<}(*^{<}(x+1)) = x + 1$. Sean $k \geq 0$ y $i_k, ..., i_0$ tales que $*^{<}(x) = a_{i_0}...a_{i_0}$. Ya que $\#^{<}(*^{<}(x)) = x$ tenemos que $x = i_k n^k + ... + i_0 n^0$. Hay varios casos:

Caso $i_0 < n$. Entonces $*(x+1) = s(*(x)) = a_{i_k}...a_{i_0+1}$ por lo cual:

$$\#^{<}(*^{<}(x+1)) = i_k n^k + i_{k-1} n^{k-1} + \dots + (i_0+1)n^0$$
$$= (i_k n^k + i_{k-1} n^{k-1} + \dots + i_0 n^0) + 1$$
$$= x+1$$

Caso $i_k = i_{k-1} = \dots = i_0 = n$. Entonces $*(x+1) = s(*(x)) = a_1^{k+2}$ por lo cual:

$$\#^{<}(*^{<}(x+1)) = 1n^{k+1} + 1n^{k} + \dots + 1n^{1} + 1n^{0}$$
$$= (nn^{k} + nn^{k-1} + \dots + nn^{0}) + 1$$
$$= x + 1$$

Caso $i_0 = i_1 = ... = i_h = n$, $i_{h+1} \neq n$, para algun $0 \leq h < k$. Entonces $*(x+1) = s(*(x)) = a_{i_k}...a_{i_{h+2}}a_{i_{h+1}+1}a_1...a_1$ por lo cual

$$\#^{<}(*^{<}(x+1)) = i_{k}n^{k} + \dots + i_{h+2}n^{h+2} + (i_{h+1}+1)n^{h+1} + 1n^{h} + \dots + 1n^{1} + 1n^{0}$$

$$= (i_{k}n^{k} + \dots + i_{h+2}n^{h+2} + i_{h+1}n^{h+1} + n^{h+1} + n^{h} + \dots + n^{1}) + 1$$

$$= (i_{k}n^{k} + \dots + i_{h+2}n^{h+2} + i_{h+1}n^{h+1} + nn^{h} + \dots + nn^{0}) + 1$$

$$= x + 1$$

Q.E.D.

<u>Lemma 10:</u> Si $p, p_1, ..., p_n$ son numeros primos y p divide a $p_1...p_n$, entonces $p = p_i$, para algun i.

Proof: Ejercicio.

Q.E.D.

Theorem 11: Para cada $x \in \mathbb{N}$, hay una unica sucesion $(s_1, s_2, ...) \in \omega^{[\mathbb{N}]}$ tal que $x = \prod_{i=1}^{\infty} pr(i)^{s_i}$ (Notese que $\prod_{i=1}^{\infty} pr(i)^{s_i}$ tiene sentido ya que es un producto que solo tiene una cantidad finita de factores no iguales a 1.)

<u>Proof:</u> Primero probaremos la existencia por induccion en x. Claramente $1 = \prod_{i=1}^{\infty} pr(i)^0$, con lo cual el caso x = 1 esta probado. Supongamos la existencia vale para cada y menor que x, veremos que entonces vale para x. Si x es primo, entonces $x = pr(i_0)$ para algun i_0 por lo cual tenemos que $x = \prod_{i=1}^{\infty} pr(i)^{s_i}$, tomando $s_i = 0$ si $i \neq i_0$ y $s_{i_0} = 1$. Si x no es primo, entonces $x = y_1.y_2$ con $y_1, y_2 < x$. Por hipotesis inductiva tenemos que hay $(s_1, s_2, ...), (t_1, t_2, ...) \in \omega^{[\mathbf{N}]}$ tales que $y_1 = \prod_{i=1}^{\infty} pr(i)^{s_i}$ y $y_2 = \prod_{i=1}^{\infty} pr(i)^{t_i}$. Tenemos entonces que $x = \prod_{i=1}^{\infty} pr(i)^{s_i+t_i}$ lo cual concluye la prueba de la existencia.

Veamos ahora la unicidad. Suponganos que

$$\prod_{i=1}^{\infty} pr(i)^{s_i} = \prod_{i=1}^{\infty} pr(i)^{t_i}$$

Si $s_i > t_i$ entonces dividiendo ambos miembros por $pr(i)^{t_i}$ obtenemos que pr(i) divide a un producto de primos todos distintos de el, lo cual es absurdo por el lema anterior. Analogamente

llegamos a un absurdo si suponemos que $t_i > s_i$, lo cual nos dice que $s_i = t_i$, para cada $i \in \mathbf{N}$

Lemma 12: Las funciones
$$X \to \omega^{[N]}$$
 $\omega^{[N]} \to N$ $\omega^{[N]} \to \omega^{[N]}$ a biyecciones una inversa de la otra.

son biyecciones una inversa de la otra.

<u>Proof:</u> Notese que para cada $x \in \mathbb{N}$, tenemos que $\langle (x)_1, (x)_2, ... \rangle = x$. Ademas para cada $(s_1, \overline{s_2, \ldots}) \in \omega^{[\mathbf{N}]}$, tenemos que $((\langle s_1, s_2, \ldots \rangle)_1, (\langle s_1, s_2, \ldots \rangle)_2, \ldots) = (s_1, s_2, \ldots)$. Es claro que lo anterior garantiza que los mapeos en cuestion son uno inversa del otro \square

Q.E.D.

<u>Lemma 13</u> Para cada $x \in \mathbb{N}$: Lt(x) = 0 sii x = 1 $x = \prod_{i=1}^{Lt(x)} pr(i)^{(x)_i}$ Cabe destacar entonces que la funcion $\lambda ix[(x)_i]$ tiene dominio igual a \mathbb{N}^2 y la funcion $\lambda ix[Lt(x)]$ tiene dominio igual a N.

Proof: Ejercicio.

Q.E.D.

Bibliografía

- [1] DIEGO VAGGIONE, «Apunte de Clase, 2017», FaMAF, UNC.
- [2] AGUSTÍN CURTO, «Carpeta de Clase, 2017», FaMAF, UNC.