

## Radiación Gravitacional

Julián Orlando Jiménez Cárdenas

# Radiación Gravitacional (Gravitational Radiation)

#### Julián Orlando Jiménez Cárdenas

Tesis o trabajo de grado presentada(o) como requisito parcial para optar al título de: **Físico** 

Director(a): Ph.D. Leonardo Castañeda Colorado

Línea de Investigación:
Astrofísica, Gravitación y Cosmologia
Grupo de Investigación:
Grupo de Galaxias, Gravitación y Cosmologia

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá D. C. ,Colombia 2019

## $m \stackrel{^{1}}{R}esumen$

En la primera parte de este texto se presenta una introducción a la geometría diferencial como herramienta matemática para la Relatividad General. Se estudia la gravedad linealizada y el papel que esta desempeña en la radiación gravitacional, profundizando así en los conceptos de gauge, energía y contribución cuadrupolar. Seguidamente se presentan las ecuaciones de Einstein relajadas como una generalización para el estudio de la radiación gravitacional y se obtienen expresiones generales para la energía, el momentum lineal y angular. Posteriormente se muestra la relación entre las expresiones de flujo de energía, momentum lineal y angular con el tensor de Weyl.

Palabras clave: Radiación Gravitacional, Gravedad Linealizada, Ecuaciones de Einstein relajadas, Tensor de Weyl

### Abstract

In the first part of this text an introduction to differential geometry is presented as a tool for General Relativity. The linearized gravity is studied and the role that this one plays in the gravitational radiation, deepening in the gauge, energy and quadrupolar contribution concepts. After this the relaxed Einstein equations are presented as a generalization for the study of gravitational radiation and general expression of energy, linear and angular momentum are obtained. Later it is shown the relation between the flux of energy, lineal and angular momentum with the Weyl tensor.

Keywords: Gravitational Radiation, Linearized Gravity, Relaxed Einstein field equations, Weyl tensor

## Contenido

|     | latividad General |                               |  |  |  |  |
|-----|-------------------|-------------------------------|--|--|--|--|
| 1.1 | Introd            | lucción                       |  |  |  |  |
| 1.2 | Varied            | lades                         |  |  |  |  |
|     | 1.2.1             | Mapas                         |  |  |  |  |
|     | 1.2.2             | Regla de la cadena            |  |  |  |  |
|     | 1.2.3             | Variedades                    |  |  |  |  |
|     | 1.2.4             | Espacio tangente y cotangente |  |  |  |  |

## 1 Relatividad General

#### 1.1. Introducción

Este capítulo es una breve introducción a la teoría de la relatividad general, partiendo desde el concepto de variedad, el espacio tangente y cotangente, el concepto de curvatura y el papel que juega la gravedad en todas estas ideas matemáticas. Las referencias clave de este capítulo son [1],[2].

#### 1.2. Variedades

#### 1.2.1. Mapas

**Definición 1.2.1** (Mapa). Dados dos conjuntos A y B, un mapa  $\phi$  :  $M \to N$  es una relación que asigna cada elemento  $x \in M$  a un único elemento  $y \in N$ . En este caso, se denota como  $\phi(x) = y$ .

**Definición 1.2.2** (Composición de Mapas). Con dos mapas  $\phi: A \to B$  y  $\Psi: B \to C$ , se define la composición de ambos mapas,  $\Psi \circ \phi: A \to C$ , por su acción sobre los elementos de A:

$$(\Psi \circ \phi)(a) = \Psi(\phi(a)).$$



Un mapa  $\phi: A \to B$  se dice inyectivo (uno a uno) si cada elemento de B tiene a lo sumo un elemento de A que es mapeado a él. Este mapa se dice sobreyectivo si cada elemento de B tiene al menos un elemento de A mapeado a él. A se conoce como el dominio del mapa  $\phi$ , y su imagen es

$$Im \phi := \{ y \in B : \exists x \in A \text{ tal que } \phi(x) = y \}.$$

La preimagen de un conjunto  $U \subseteq B$  bajo la función  $\phi$  se define como

$$\phi^{-1}(U):=\{x\in A: \exists y\in U \text{ tal que } \phi(x)=y\}.$$

1.2 Variedades 3

Un mapa  $\phi: A \to B$  que es inyectivo y sobreyectivo a la vez se conoce como invertible (biyectivo). En este caso, se define el mapa inverso  $\phi^{-1}: B \to A$  de modo que se satisfaga que, para todo  $y \in B$   $(\phi \circ \phi^{-1})(y) = y$ .

$$A \stackrel{\phi^{-1}}{\swarrow} B$$

Un mapa f de  $\mathbb{R}^m$  a  $\mathbb{R}^n$  toma una m-tupla  $(x^1, x^2, \ldots, x^m)$  y la envía a una n-tupla  $(y^1, y^2, \ldots, y^n)$ , de modo que se puede pensar como una colección de n funciones  $\phi^i$  de m variables:

$$y^{i} = \phi^{i}(x^{1}, \dots, x^{m}) \text{ con } i = 1, \dots, n,$$

de modo que

$$f(x^1, \dots, x^m) = (\phi^1(x^1, \dots, x^m), \dots, \phi^n(x^1, \dots, x^m)).$$

Se referirá a cada una de las funciones  $\phi^i$  como  $C^p$  si son continuas y p-veces diferenciables, y al mapa entero  $f: \mathbb{R}^m \to \mathbb{R}^n$  como  $C^p$  si cada uno de los campos escalares  $\phi^i, i = 1, \ldots, n$  es al menos  $C^p$ .

Un mapa  $C^0$  es continuo pero no necesariamente diferenciable, mientras que un mapa  $C^{\infty}$  es continuo y puede ser diferenciado cuantas veces se desee. Los mapas  $C^{\infty}$  se llaman suaves.

**Definición 1.2.3** (Difeomorfismo). El mapa  $\phi: A \to B$  se conoce como difeomorfismo si es biyectivo, y tanto él como su inversa son  $C^{\infty}$ . Se dice entonces que los conjuntos A y B son difeomorfos.

#### 1.2.2. Regla de la cadena

Si tiene dos mapas  $f: \mathbb{R}^m \to \mathbb{R}^n$  y  $g: \mathbb{R}^n \to \mathbb{R}^l$ , que se componen en  $(g \circ f): \mathbb{R}^m \to \mathbb{R}^l$ , represente cada espacio en términos de coordenadas:  $x^a$  en  $\mathbb{R}^m$ ,  $y^b$  en  $\mathbb{R}^n$  y  $z^c$  en  $\mathbb{R}^l$ , donde los índices a, b, c varían sobre los valores apropiados.



La regla de la cadena relaciona las derivadas parciales de la composición  $(g \circ f)$  con las derivadas parciales de los mapas f y g de la siguiente manera

$$\frac{\partial}{\partial x^a} (g \circ f)^c = \sum_{b=1}^n \frac{\partial f^b}{\partial x^a} \frac{\partial g^c}{\partial y^b}.$$

#### 1.2.3. Variedades

En el capítulo de estabilidad se trató el concepto de variedad como un espacio métrico homeomorfo localmente a la bola abierta. En este capítulo se tomará una variedad más general: la variedad topológica, para lo cual se introducirá la idea de topología, y demás conceptos necesarios en términos de la topología de la variedad.

**Definición 1.2.4** (Espacio topologico). Tome A como un conjunto arbitrario.  $\tau$  es una topología para el conjunto A si satisface las siguientes condiciones:

- 1.  $\emptyset, A \in \tau$
- 2. Si  $\{U_{\alpha}\}_{{\alpha}\in I}\subset \tau$  es una familia arbitraria de elementos de  $\tau$ , entonces la unión de toda esta familia pertenece a  $\tau$ , es decir,  $\bigcup_{{\alpha}\in I}U_{\alpha}\in \tau$ , y
- 3. Si  $\{U_n\}_{n=1}^m \subset \tau$  es una familia finita de elementos de  $\tau$ , entonces la intersección de todos sus elementos también es un elemento de  $\tau$ , es decir,  $\bigcap_{n=1}^m U_n \in \tau$ .

En este caso se dice que la pareja  $(A, \tau)$  es un espacio topológico. Los elementos de  $\tau$  se llaman abiertos y sus complementos se llaman cerrados.

**Definición 1.2.5** (Carta o sistema coordenado). Considere un espacio topológico  $(M, \tau)$ . Una carta o sistema coordenado  $(U, \phi)$  consiste de un conjunto abierto  $U \subset M$ , junto con un mapa inyectivo  $\phi: U \to \mathbb{R}^n$ , tal que  $\phi(U)$  es abierto en  $(\mathbb{R}^n, \tau_u)^{\perp}$ .

**Definición 1.2.6** (Atlas  $C^r$ ). Un atlas  $C^r$  es una colección indexada de cartas  $\{(U_\alpha.\phi_\alpha)\}_{\alpha\in I}$ , con  $\phi_\alpha$  siendo al menos  $C^r$ , para todo  $\alpha\in I$ , que satisface las siguientes condiciones

- 1.  $\bigcup_{\alpha \in I} U_{\alpha} = M$ , es decir,  $\{U_{\alpha}\}_{\alpha \in I}$  es un cubrimiento abierto para M y
- 2. si para algunos  $\alpha, \beta \in I$  ( $\alpha \neq \beta$ ),  $U_{\alpha} \cap U_{\beta} \neq \emptyset$ , entonces el mapa ( $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ ):  $\phi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$  toma puntos en  $\phi_{\beta}(U_{\alpha} \cap U_{\beta}) \subseteq \mathbb{R}^{n}$  y los envía a puntos en  $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ , y viceversa. Ambas composiciones deben ser  $C^{r}$ . Si se satisface esta condición se dice que los mapas  $\phi_{\alpha}$  y  $\phi_{\beta}$  son compatibles

Un atlas se dice maximal si contiene todas las posibles cartas compatibles.



**Definición 1.2.7** ( $C^r$  Variedad n-dimensional). Una  $C^r$  variedad n-dimensional es un espacio topológico  $(M, \tau)$  junto con un atlas maximal  $C^r$ .

 $<sup>^{1}\</sup>tau_{u}$  denota la topología usual sobre  $\mathbb{R}^{n}$ .

1.2 Variedades 5

El hecho de que una variedad sea localmente como  $\mathbb{R}^n$  (a través de las cartas) introduce la posibilidad de usar herramientas del cálculo real sobre ella. Tome por ejemplo dos  $C^{\infty}$  variedades  $(M, \tau_M)$  y  $(N, \tau_N)$  de dimensión m y n, respectivamente. Por simplicidad, pero sin pérdida de generalidad, tome  $\phi: M \to \mathbb{R}^m$  y  $\Psi: N \to \mathbb{R}^n$  como las cartas coordenadas de M y N, respectivamente. Si  $f: M \to N$  es una función entre ambas variedades,

$$M \xrightarrow{f} N$$

$$\downarrow^{\phi^{-1}} \qquad \qquad \downarrow^{\Psi}$$

$$\mathbb{R}^{m} \xrightarrow{\Psi \circ f \circ \phi^{-1}} \mathbb{R}^{n}$$

se puede introducir el concepto de diferenciación sobre el mapa f, construyendo el mapa

$$(\Psi \circ f \circ \phi^{-1}) : \mathbb{R}^m \to \mathbb{R}^n,$$

de modo que el operador  $\frac{\partial f}{\partial x^{\mu}}$  que<br/>de definido como

$$\frac{\partial f}{\partial x^{\mu}} := \frac{\partial}{\partial x^{\mu}} (\Psi \circ f \circ \phi^{-1}),$$

donde  $\mu = 1, \ldots, m$ .

#### 1.2.4. Espacio tangente y cotangente

Tome  $\mathcal{F}$  como el espacio de todas las funciones suaves  $f: M \to \mathbb{R}$  ( $\phi^{-1} \circ f$  es de clase  $C^{\infty}$ , siendo  $\phi$  la carta coordenada de M). Cada curva  $\gamma: \mathbb{R} \to M$  que pasa por algún punto  $p \in M$  define un operador sobre el espacio, la derivada direccional, que mapea f a

$$\frac{\mathrm{d}f}{d\lambda}\Big|_{\lambda:\gamma(\lambda)=p} := \frac{\mathrm{d}}{d\lambda}(f \circ \gamma)(\lambda)$$

(evaluada en p).

$$\mathbb{R} \xrightarrow{\gamma} M \xrightarrow{f} \mathbb{R}$$

**Definición 1.2.8** (Espacio tangente). El espacio tangente  $T_pM$  a un punto  $p \in M$  es el espacio de los operadores derivadas direccionales dados por todas las curvas que pasan por el punto p. Este espacio resulta ser un espacio vectorial.

El espacio tangente  $T_pM$  posee una base natural,  $\{\partial_{\mu}\}$ . Cada uno de estos operadores está definido en términos de la curva generada por la carta coordenada del punto p. Es decir, si  $(U,\phi)$  es una carta coordenada tal que  $p \in U$ , se toma  $(\phi^{-1})^{\mu} : \mathbb{R} \to M$  como la restricción de la función  $\phi^{-1}$  a una única variable,  $x^{\mu}$ ,  $\mu = 1, \ldots, m$ , con el objetivo de que esta nueva función sea una curva sobre M que pase por p, para que defina la derivada direccional  $\partial_{\mu}$ . Para ver que efectivamente es una base del espacio tangente  $T_pM$ , considere una variedad m-dimensional suave M, una carta coordenada  $(U,\phi)$ , una curva  $\gamma : \mathbb{R} \to M$  y una función  $f: M \to \mathbb{R}$ .



Si  $\lambda$  es el parámetro de la curva  $\gamma$ , se expande el operador  $\frac{d}{d\lambda}$  en términos de los operadores  $\partial_{\mu}$  aplicando la regla de la cadena:

$$\frac{\mathrm{d}f}{\mathrm{d}\lambda} = \frac{\mathrm{d}}{\mathrm{d}\lambda}(f\circ\gamma) = \frac{\mathrm{d}}{\mathrm{d}\lambda}((f\circ\phi^{-1})\circ(\phi\circ\gamma)) = \frac{\mathrm{d}(\phi\circ\gamma)^{\mu}}{\mathrm{d}\lambda}\frac{\partial(f\circ\phi^{-1})}{\partial x^{\mu}} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}\partial_{\mu}f.$$

Como la función f es arbitraria,

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \partial_{\mu},$$

con lo que los operadores derivada direccional  $\{\partial_{\mu}\}$  son una base para  $T_pM$ , conocida como base coordenada. Además, esto implica que el espacio tangente  $T_pM$  tiene la misma dimensión de la variedad.

## Bibliografía

- [1] CARROLL, S.: Lecture Notes on General Relativity. Institute of Theoretical Physics, University of California, 1997
- [2] Munkres, J.: Topology. Pearson Education Limited, 2014