МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.2.3

Резонанс токов в параллельном контуре

Выполнил:

Гисич Арсений

Б03-102

1 Аннотация

В данной работе исследовался резонанс токов в параллельном колебательном контуре с изменяемой ёмкостью, были получены амплитудно-частотные и фазово-частотные характеристики, определены основные параметры контура.

2 Теоретические сведения

Рассмотрим вынужденные колебания в параллельном контуре, одна из ветвей которого содержит индуктивность L и сопротивление R, а другая — ёмкость C (рис. 1).

Рис. 1: Параллельный контур с внешним гармоническим источником ЭДС

Контур подключён к источнику ЭДС, задающему во внешней цепи ток, изменяющийся по гармоническому закону: $I=I_0\cos{(\omega t+\varphi_0)}$. Таким образом, мы предполагаем, что внутреннее сопротивлением источника столь велико, что он является генератором тока, который по определению обладает бесконечно большим внутренним сопротивлением. Потерями в катушке индуктивности и конденсаторе будем, как и ранее, пренебрегать. Необходимые уточнения будут сделаны в описаниях соответствующих лабораторных работ.

Воспользуемся формулами для импедансов элементов цепи и правилами сложения сопротивлений. Для комплексных амплитуд токов в ёмкостной $\mathbf{I_C}$ и индуктивной $\mathbf{I_L}$ ветвях контура, а также для напряжения \mathbf{U} на контуре (совпадающем в нашем приближении с напряжением на конденсаторе) при нулевой начальной фазе тока $\varphi_0=0$ получаем выражения

$$\mathbf{I_{C}} = \mathbf{I} \frac{Z_{LR}}{Z_{C} + Z_{LR}} = I_{0} \frac{1 + i \frac{\rho \omega}{R\omega_{0}}}{1 + i \frac{\rho}{R} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)},$$

$$\mathbf{I_{L}} = \mathbf{I} \frac{Z_{C}}{Z_{C} + Z_{LR}} = I_{0} \frac{-i \frac{\rho \omega_{0}}{R\omega}}{1 + i \frac{\rho}{R} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)},$$

$$\mathbf{U} = \mathbf{I} \frac{Z_{C}Z_{LR}}{Z_{C} + Z_{LR}} = I_{0} \frac{\rho^{2}}{R} \frac{1 - i \frac{\rho \omega_{0}}{R\omega}}{1 + i \frac{\rho}{R} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)},$$
(1)

где $Z_C = \frac{1}{i\omega C}$ и $Z_{LR} = R + i\omega L$ — импедансы ёмкостной и индуктивной ветвей параллельного контура соответственно.

Ограничимся рассмотрением наиболее интересного случая контура с высокой добротностью вблизи резонансной частоты, когда $Q \approx \rho/R \gg 1$, выполняется условие и применимо разложение. При этом вещественные части комплексных амплитуд (1) можно пред-

ставить в виде

$$I_{C}(t) = QI_{0} \frac{\omega}{\omega_{0}} \frac{\cos(\omega t - \psi_{C})}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \qquad \psi_{C} = \arctan(\tau \Delta \omega) - \frac{\pi}{2} + \frac{1}{Q},$$

$$I_{L}(t) = QI_{0} \frac{\omega_{0}}{\omega} \frac{\cos(\omega t - \psi_{L})}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \qquad \psi_{L} = \arctan(\tau \Delta \omega) + \frac{\pi}{2}, \qquad (2)$$

$$U(t) = Q\rho I_{0} \frac{\cos(\omega t - \psi_{U})}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \qquad \psi_{U} = \arctan(\tau \Delta \omega) + \frac{\omega_{0}}{\omega} \frac{1}{Q}.$$

При резонансе, когда в принятом выше приближении $\omega=\omega_0,\,\Delta\omega=0,\,$ амплитуды токов в ветвях контура, напряжения на нём, фазовые сдвиги ψ и их производные по циклической частоте $\psi'=d\psi/d\omega$ принимают вид

$$I_{C_{\omega}}(\omega_{0}) = QI_{0}, \qquad \psi_{C}(\omega_{0}) = -\frac{\pi}{2} + \frac{1}{Q},$$

$$I_{L_{\omega}}(\omega_{0}) = QI_{0}, \qquad \psi_{L}(\omega_{0}) = \frac{\pi}{2}, \qquad (3)$$

$$U_{\omega}(\omega_{0}) = Q^{2}RI_{0}, \qquad \psi_{U}(\omega_{0}) = \frac{1}{Q}.$$

$$\psi_C'(\omega_0) = \psi_L'(\omega_0) = \psi_U'(\omega_0) = \tau.$$

Из формул (3) следует, что на частоте ω_0 токи I_C и I_L в ёмкостной и индуктивной ветвях контура в Q раз превышают ток I во внешней цепи. При этом ток I_C опережает внешний ток I по фазе почти на $\pi/2$,а ток I_L — отстаёт на $\pi/2$. Между собой токи I_C и I_L сдвинуты по фазе на угол, близкий к π . Можно сказать, что токи I_C и I_L образуют контурный ток, последовательно обтекающий элементы контура и в Q раз превышающий по амплитуде внешний ток I. Последнее обстоятельство послужило поводом назвать резонанс в параллельном контуре резонансом токов.

Отметим, однако, что максимальные значения токов в контуре не строго равны QI_0 и достигаются не строго на частоте ω_0 . Соответствующие относительные поправки, как и в случае резонанса напряжения, обусловлены входящими в выражения (2) для токов I_C , I_L множителями $(\omega_0/\omega)^{\pm 1}$ и составляют доли малой величины Q^{-2} .

Из формул (1) вытекает, что на частоте ω_0 импеданс контура $Z(\omega_0) = U(\omega_0)/I_0$ является почти чисто активным. В пренебрежении малыми поправками порядка Q^{-2} его модуль и фаза относительно внешнего тока соответственно равны:

$$|Z(\omega_0)| = Q^2 R, \quad \psi_Z(\omega_0) = \frac{1}{Q}.$$

Как видим, сопротивление контура в резонансе в Q^2 раз превышает его активное сопротивление R. Это свойство параллельного контура широко используется в радиотехнике.

По формулам (3) легко построить векторную диаграмму для резонанса токов в рассмотренном выше параллельном контуре, в котором не учитывались потери в конденсаторе и катушке индуктивности. Подобная диаграмма показана на рис. 2.

По оси ординат диаграммы отложен внешний ток **I**. Напряжение на конденсаторе, равное напряжению на контуре **U**, с учётом принятого правила знаков отстаёт по фазе от тока **I** на угол Q^{-1} . Ток **I**_C через конденсатор (без потерь) опережает по фазе напряжение U на $\pi/2$. Ток через индуктивность **I**_L отстаёт от внешнего тока I по фазе на $\pi/2$.

Рис. 2: Векторная диаграмма при резонансе токов

Напряжение $\mathbf{U_R}$ на сопротивлении совпадает по фазе с током $\mathbf{I_L}$, напряжение $\mathbf{U_L}$ на индуктивности (без потерь) опережает ток $\mathbf{I_L}$ на $\pi/2$. Как видим, контур с активными потерями только в индуктивной ветви проявляет ёмкостную реакцию: напряжение на контуре отстаёт по фазе от тока.

Таким образом, условия резонанса токов в параллельном контуре и резонанса напряжений в последовательном высокодобротном контуре совпадают: $\omega = \omega_0$. Но если в последовательном контуре резонансное сопротивление контура равно чисто активному сопротивлению цепи R и минимально, обеспечивая максимум тока при заданном внешнем напряжении, то в параллельном контуре резонансное сопротивление контура почти чисто активное, обратно пропорционально R и в Q^2 раз его превышает, обеспечивая максимум напряжения на контуре при заданном внешнем токе. Сдвиг фаз между напряжением и током при резонансе напряжений всегда отсутствует, а при резонансе токов он близок к нулю, только если $Q \gg 1$.

3 Методика измерений

$$I = \frac{E}{R_I} = \frac{E_0 cos(\omega t + \varphi_0)}{R_I} = I_0 cos(\omega t + \varphi_0) - \text{ток на генераторе.}$$

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} tg\delta, \tag{4}$$

где R_S — эквивалентное последовательное сопротивление (ЭПС). Для используемых емкостей C_n выполнено $tg\delta < 10^{-3}$.

$$R_{\Sigma} = R + R_L + R_S,\tag{5}$$

где R_{\sum} — суммарное активное сопротивление контура.

Воспользуемся методом комплексных амплитуд:

$$Z_L = R_L + i\omega L, \quad Z_C = R_S - i\frac{1}{\omega C}, \quad Z = R_{\Sigma} + i(\omega L - d\frac{1}{\omega C}).$$

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно представить в виде:

$$I_c = I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})},$$

Рис. 3: Блок-схема экспериментального стенда

$$\begin{split} I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}, \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i\frac{R + R_L}{\rho}\frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}, \end{split}$$

где $\omega_0=\frac{1}{\sqrt{LC}}$ — собственная частота, $\rho=\sqrt{\frac{L}{C}}$ — реактивное сопротивление контура, $Q=\frac{\rho}{R_{\Sigma}}$ — добротность контура.

Рассмотрим случай, когда $|\Delta\omega|=|\omega-\omega_0|\ll\omega_0$. Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}.$$

Пренебрегая поправками порядка Q^{-2} , получим:

$$I_{c} = QI_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{c}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{c} = \frac{\pi}{2} - \frac{R + R_{L}}{\rho} - arctg(\tau \Delta \omega),$$

$$I_{L} = QI_{0} \frac{\omega_{0}}{\omega} \frac{e^{i\phi_{L}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{L} = -\frac{\pi}{2} + \delta \arctan(\tau \Delta \omega),$$

$$U = Q\rho I_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{U}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{U} = -\frac{\omega}{\omega_{0}} \frac{R + R_{L}}{\rho} + \delta - arctg(\tau \Delta \omega),$$

где $au=rac{2L}{R_{\Sigma}}=rac{2Q}{\omega_0}$ — время затухания. При резонансе, т. е. когда $\Delta\omega=0$:

$$I_c(\omega_0) = QI_0, \phi_c(\omega_0) = \frac{\pi}{2} - \frac{R + R_L}{\rho},$$

$$I_{L}(\omega_{0}) = QI_{0}, \phi_{L}(\omega_{0}) = -\frac{\pi}{2} + \delta,$$

$$U(\omega_{0}) = Q\rho I_{0} = Q^{2}R_{\sum}I_{0}, \phi_{U}\omega_{0} = -\frac{R + R_{L}}{\rho} + \delta,$$

$$\phi'_{c}(\omega_{0}) = \phi'_{L}(\omega_{0}) = \phi'_{U}(\omega_{0}) = -\tau.$$

4 Используемое оборудование

- 1. генератор сигналов;
- 2. источник напряжения;
- 3. двухканальный осциллограф;
- 4. цифровые вольтметры;

5 Результаты измерений и обработка данных

Параметры установки:

$$R=3,5 O_M$$

 $R_1 = 1008 \ O_M$

Получим формулы для вычисления параметров контура:

$$\omega_0 = 2\pi f = \frac{1}{\sqrt{LC}} \Rightarrow L = \frac{1}{C(2\pi f)^2},$$

$$\rho \triangleq \sqrt{\frac{L}{C}} \Rightarrow \rho = \frac{1}{2\pi fC},$$

$$I_0 = \frac{E_0}{R_1} \Rightarrow Z_{\text{pes}} = \frac{U}{I_0} = \frac{U}{E_0} R_1.$$

Из формул (3) следует:

$$Z_{pes} = Q\rho \Rightarrow Q = \frac{Z_{pes}}{\rho} = \frac{UR_1}{E_0} 2\pi f C,$$
$$Q = \frac{\rho}{R_{\Sigma}} \Rightarrow R_{\Sigma} = \frac{\rho}{Q} = \frac{E_0}{UR_1} \frac{1}{(2\pi f C)^2}.$$

Из формулы (4) (при максимальном значении $\operatorname{tg} \delta = 10^{-3}$) получаем:

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C},$$

Тогда из формулы (5) находим:

$$R_L = R_{sum} - R - R_S = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}.$$

Результаты измерения резонансных частот для 7 разных конденсаторов и вычисления параметров контура представлены в таб. 1.

Результаты измерений амплитудно-частотной характеристики $U(\nu)$ для 1-ой (25, 1 $n\Phi$) и 7-ой (101, 6 $n\Phi$) ёмкостей конденсатора представлены в таб. 2 и 3.

График амплитудно-частотных характеристик $U(\nu)$ для обеих ёмкостей представлен на рис. 4.

$C, H\Phi$	$f, \kappa \Gamma u$	U, B	E, B	L , мк Γ н	ρ, O_M	$ Z_{pes} , O_{\mathcal{M}}$	Q	$R_{sum}, O_{\mathcal{M}}$	$R_{S_{max}}, O_{\mathcal{M}}$	R_L , Ом
25,1	32,12	1,190	0,202	978,2	197,4	5938,2	30	6,56	0,20	2,87
33,2	27,79	0,790	0,202	987,9	172,5	3942,2	23	7,55	0,17	3,88
47,3	23,16	0,670	0,202	998,4	145,3	3343,4	23	6,31	0,15	2,67
57,4	21,28	0,573	0,202	974,5	130,3	2859,3	22	5,94	0,13	2,31
67,5	19,46	0,449	0,202	990,9	121,2	2240,6	18	6,55	0,12	2,93
82,7	17,67	0,380	0,202	981,0	108,9	1896,2	17	6,26	0,11	2,65
101,6	16,02	0,335	0,202	971,5	97,8	1671,7	17	5,72	0,10	2,12
Среднее значение			983,2						2,77	
Случ. погрешность				3,6						0,21

Таблица 1: Параметры колебательного контура при разных значениях ёмкости конденсатора

	СП	TT D	c D
$\nu, \kappa \Gamma u$	$\delta_{ u}, \kappa \Gamma u$	U, B	δ_U, B
31,38	0,01	0,682	0,001
31,44	0,01	0,715	0,001
31,51	0,01	0,765	0,001
31,58	0,01	0,822	0,001
31,69	0,01	0,910	0,001
31,73	0,01	0,951	0,001
31,78	0,01	0,992	0,001
32,08	0,01	1,187	0,001
32,86	0,01	0,705	0,001
32,81	0,01	0,735	0,001
32,68	0,01	0,825	0,001
32,48	0,01	0,986	0,001
32,30	0,01	1,127	0,001
32,12	0,01	1,189	0,001

Таблица 2: Амплитудно-частотная характеристика колебательного контура для 1-ой ёмкости

График амплитудно-частотных характеристик $U(\nu)$ для обеих ёмкостей в безразмерных координатах представлен на рис. 5. Кривая для ёмкости C_7 шире, чем для ёмкости C_1 , что говорит о меньшей добротности контура с ёмкостью C_7 .

 C_1 , что говорит о меньшей добротности контура с ёмкостью C_7 . Добротность определяется по формуле $Q=\frac{1}{\delta\omega}$, где $\delta\omega$ — ширина резонансных кривых на уровне $\frac{1}{\sqrt{2}}=0,707$. Полученные значения добротности:

$$Q_1 = 29 \pm 1, \quad Q_7 = 16 \pm 1.$$

$\nu, \kappa \Gamma u$	$\delta_{ u}, \kappa \Gamma u$	U, B	δ_U, B
15,41	0,01	0,193	0,001
15,51	0,01	0,215	0,001
15,54	0,01	0,222	0,001
15,60	0,01	0,239	0,001
15,61	0,01	0,242	0,001
15,64	0,01	0,250	0,001
15,69	0,01	0,267	0,001
15,78	0,01	0,289	0,001
15,83	0,01	0,304	0,001
15,92	0,01	0,325	0,001
16,03	0,01	0,338	0,001
16,71	0,01	0,200	0,001
16,66	0,01	0,211	0,001
16,60	0,01	0,223	0,001
16,52	0,01	0,243	0,001
16,44	0,01	0,264	0,001
16,30	0,01	0,301	0,001
16,15	0,01	0,332	0,001

Таблица 3: Амплитудно-частотная характеристика колебательного контура для 7-ой ёмкости

Рис. 4: Амплитудно-частотная характеристика $U(\nu)$ для колебательного контура с 1-ой и 7-ой ёмкостями конденсатора

Рис. 5: Амплитудно-частотная характеристика $U(\nu)$ для колебательного контура с 1-ой и 7-ой ёмкостями конденсатора в безразмерных координатах

Результаты измерений фазово-частотной характеристики $\psi_U(\nu)$ для 1-ой и 7-ой ёмкостей конденсатора представлены в таб. 4 и 5.

$\nu, \kappa \Gamma u$	δ_{ν} , κΓ u	знак ψ_U	$x, \partial e \Lambda$	δ_x , дел	$x_0, \partial e \Lambda$	δ_{x_0} , дел	$\psi_U, \pi \cdot pa \partial$	$\delta_{\psi_U}, \pi \cdot pa \partial$
30,35	0,01	-1	3,5	0,5	17,0	0,5	-0,21	0,03
30,75	0,01	-1	3,5	0,5	17,0	0,5	-0,21	0,03
30,99	0,01	-1	3,0	0,5	16,5	0,5	-0,18	0,03
31,10	0,01	-1	3,0	0,5	16,5	0,5	-0,18	0,03
31,35	0,01	-1	3,0	0,5	16,0	0,5	-0,19	0,03
31,56	0,01	-1	2,0	0,5	16,0	0,5	-0,13	0,03
31,64	0,01	-1	2,0	0,5	16,0	0,5	-0,13	0,03
31,88	0,01	-1	0,5	0,5	16,0	0,5	-0,03	0,03
32,17	0,01	1	0,5	0,5	16,0	0,5	0,03	0,03
32,50	0,01	1	3,0	0,5	16,0	0,5	0,19	0,03
32,68	0,01	1	4,0	0,5	16,0	0,5	0,25	0,03
32,81	0,01	1	4,5	0,5	16,0	0,5	0,28	0,03
32,99	0,01	1	5,0	0,5	16,0	0,5	0,31	0,03
33,21	0,01	1	5,0	0,5	15,5	0,5	0,32	0,03
33,67	0,01	1	5,5	0,5	15,5	0,5	0,35	0,03
34,28	0,01	1	6,5	0,5	15,0	0,5	0,43	0,04

Таблица 4: Фазово-частотная характеристика колебательного контура для 1-ой ёмкости

ν , $\kappa \Gamma$ μ	$\delta_ u, \kappa \Gamma u$	знак ψ_U	$x, \partial e n$	δ_x , дел	$x_0, \partial e \Lambda$	$\delta_{x_0}, \partial e$ л	$\psi_U, \pi \cdot pa\partial$	$\delta_{\psi_U}, \pi \cdot pa \partial$
14,51	0,01	-1	4,0	0,5	17,5	0,5	-0,23	0,03
14,90	0,01	-1	4,0	0,5	17,0	0,5	-0,24	0,03
15,17	0,01	-1	4,0	0,5	17,0	0,5	-0,24	0,03
15,51	0,01	-1	3,5	0,5	16,5	0,5	-0,21	0,03
15,68	0,01	-1	2,5	0,5	16,5	0,5	-0,15	0,03
15,82	0,01	-1	2,0	0,5	16,0	0,5	-0,13	0,03
15,95	0,01	-1	1,0	0,5	16,0	0,5	-0,06	0,03
16,12	0,01	1	0,5	0,5	16,0	0,5	0,03	0,03
16,29	0,01	1	2,0	0,5	16,0	0,5	0,13	0,03
16,46	0,01	1	4,0	0,5	16,0	0,5	$0,\!25$	0,03
16,69	0,01	1	5,0	0,5	15,5	0,5	0,32	0,03
17,02	0,01	1	5,5	0,5	15,0	0,5	0,37	0,04
17,45	0,01	1	6,0	0,5	15,0	0,5	0,40	0,04

Таблица 5: Фазово-частотная характеристика колебательного контура для 7-ой ёмкости

График фазово-частотных характеристик $\psi_U(\nu)$ для обеих ёмкостей в безразмерных координатах представлен на рис. 6.

Рис. 6: Фазово-частотная характеристика $\psi_U(\nu)$ для колебательного контура с 1-ой и 7-ой ёмкостями конденсатора в безразмерных координатах

Добротности контуров можно определить двумя способами: по формуле $Q=\frac{1}{2}\frac{d\psi_U(x)}{dx}$ при x=1 или по расстоянию 1/Q между точками оси x, в которых у меняется от -1/4 до

1/4. Результаты измерения добротности 1-ым способом:

$$Q_1 = 18 \pm 5, \quad Q_7 = 13 \pm 4.$$

Результаты измерения добротности 2-ым способом (так как график не доходит до -1/4, то были взяты значения, наиболее близкие к -1/4):

$$Q_1 = 17 \pm 1, \quad Q_7 = 13 \pm 1.$$

График зависимости $R_L(\nu_{0n})$ представлен на рис. 7.

Рис. 7: График зависимости активного сопротивления катушки R_L от резонансной частоты контура ν_{0n}

Рис. 8: Векторная диаграмма

Построим векторную диаграмму для контура с наименьшей добротностью, например, для C_7 с добротностью $Q_7=17$.

Посчитаем ток $I=\frac{E}{R_1}=\frac{0,2}{1008}\approx 0,1$ мA. Его вектор равен сумме: $\vec{I}=\vec{I_L}+\vec{I_C}$, причем \vec{I} расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\varphi_C = \frac{\pi}{2} - \frac{R + R_L}{\rho}, \quad \varphi_L = -\frac{\pi}{2} + \delta$$

Здесь $\delta \simeq 10^{-3}$ — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол

$$\varphi_C' = \frac{R + R_L}{\rho} \approx 0,057.$$

Аналогичный угол у напряжения $\vec{U}: \varphi_U = -\frac{R+R_L}{\rho}$. Т.е. оно незначительно отклоняется от оси абсцисс на от-

рицательный угол.

6 Обсуждение результатов и выводы

В данной работе был исследован резонанс токов в параллельном колебательном контуре с изменяемой ёмкостью, были определены параметры контура, получены амплитудночастотные и фазово-частотные характеристики контура при 2 различных значениях ёмкости конденсатора. По графику АЧХ были определены добротности соответствующих контуров. Полученные значения:

$$Q_1 = 29 \pm 1$$
, $Q_7 = 16 \pm 1$.

Также добротности были определены с помощью графика ФЧХ 2-мя способами. Значения, полученные 1-ым способом (по углу наклона прямой вблизи резонанса):

$$Q_1 = 18 \pm 5, \quad Q_7 = 13 \pm 4.$$

Результат, полученный 2-ым способом (по расстоянию между y(-1/4) и y(1/4) по оси x):

$$Q_1 = 17 \pm 1, \quad Q_7 = 13 \pm 1.$$

Значения добротности, рассчитанные теоретически:

$$Q_1 = 30, \quad Q_7 = 17.$$

Результат, рассчитанный по AЧX совпадает с теоретическим в пределах погрешности. Однако результаты, полученные при исследовании ФЧX, совпадают по порядку, но существенно отличаются от рассчитанных теоретически. Это может быть связано с высокой погрешностью предложенного метода измерения сдвига фаз между E и U ввиду его сложности. Например, графики ФЧX для обоих контуров не пересекают прямую y = -1/4, что говорит о наличии систематической погрешности измерений.

Также была определена зависимость активного сопротивления катушки R_L от резонансной частоты ν_0 . Как видно из графика, R_L возрастает с возрастанием частоты. Это может быть вызвано скин-эффектом. Резкое скачкообразное изменение значений R_L может быть связано с изменением амплитуды ЭДС в процессе эксперимента.