Equilibres et stabilité de réseaux métaboliques avec inhibition en rétroaction séquentielle

Frédéric Grognard - INRIA Sophia-Antipolis

RESEAUX METABOLIQUES:

- représentation graphique du métabolisme.
- noeuds=metabolites.
- construction de modèle par loi d'équilibre de masses.

RESEAUX GENIQUES:

- représentation graphique.
- construction de modèles basé sur la transmission d'information.

EXAMPLE: Métabolisme Aspartat → Acides Aminés

Figure 1: x_1 représente la concentration en aspartate; les acides aminés sont: lysine (x_9) , methionine (x_{14}) , threonine (x_{16}) , and isoleucine (x_{20}) .

Regulation

Pour illustrer notre approche, considérons la chaîne métabolique

$$\longleftarrow uX \longleftarrow \iota^{-u}X \longleftarrow \cdots \longleftarrow \iota^{-u}X \longleftarrow \iota^{-1}X \longrightarrow \iota^{$$

Modèle par équilibre de masses - Notations

 $x_i = \text{concentration intracellulaire (ex: fraction molaire) du metabolite <math>X_i$.

 $v_i = \text{vitesse}$ de la réaction $X_i \longrightarrow X_{i+1}$.

Modèle d'état

$$n, \dots, 1 = i \quad ix \mu - 1 - i \nu + i \nu - i \hat{x} \quad \stackrel{i \nu}{\leftarrow} i X \stackrel{1 - i \nu}{\leftarrow}$$

- $oldsymbol{\bullet}$ $\mu= au$ aux de croissance des cellules.
- sous forme matricielle: $\dot{x} = Kv + bv_0 \mu x$

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} = d \begin{pmatrix} 1 \\ 1 - 1 + \\ 1$$

Modélisation des vitesses de reaction

Réaction catalysée par un enzyme

$$i_{i+i}X \longleftarrow i_{i}X$$

$$(i_{i}x)_{i}\phi = i_{i}v$$

Inhibition par rétroaction séquentielle

$$i < i \qquad (ix)\psi(ix)i\phi = ia$$

Chaîne métabolique sans inhibition

 $\underline{n}_0 = \text{coustant}$

- Système positif coopératif (orthant positif orthant I^{pn} invariant).
- an \overline{x} anpinn ərdilinpə nu \overline{x}
- ullet est globalement asymptotiquement stable dans $I\!\!P^n$.

Chaîne métabolique avec inhibition en rétroaction

$$\longleftarrow u_X \longleftarrow \iota^{-u}_X \longleftarrow \cdots \longleftarrow \iota_X \longleftarrow \iota_X \longleftarrow \iota_X \longleftarrow$$

Système positif.

Non coopératif.

S existence et stabilité des équilibres dans \mathbb{P}^n

Proposition 1. \exists un équilibre unique $ar{x}$ dans l'orthant positif $ar{I}^{pn}$

Preuve par équilibres de masse successifs

 $\mathbf{5}\mathbf{x}$ ab atilité de \mathbf{x}

Proposition 2.

$$ip \ge (ix)i\phi > 0$$

$$\sum_{i=1}^{2} \frac{1}{i} x y - (x_{i}x) \psi(x_{i}x) \psi(x_{i}x)$$

$$0 > (nx) \psi \ge \omega -$$

$$1 > \frac{Ab}{n+Ab} \lim_{\Delta = A} \left(\frac{1b}{n} + 1 \right) \frac{100}{n} \log \bullet$$

• Alors \bar{x} est globalement asymptotiquement stable dans l'orthant positif.

Preuve de la Proposition 2

$$ux = u$$

$$ux = u$$

$$ux = v$$

$$ux = v$$

$$ux = v$$

$$vx + vx + v(vx) + v(vx)$$

T-

Interconnexion de systèmes coopératifs

Instabilité dans le cas d'inhibition importante

$$\longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_4 \longrightarrow X_4 \longrightarrow X_4 \longrightarrow X_4 \longrightarrow X_4 \longrightarrow X_5 \longrightarrow X_5 \longrightarrow X_7 \longrightarrow X_$$

- 01=1.2, 1.1=1.2, 1.1=1.1 Michaelis-Menten $a_1=3.2, a_2=1.4, a_3=1.2, 1.4=1.0$
- Taux de croissance de la cellule $\mu=0.01$

- Typeset by Foiltex -

• Inhibition

Simulation

Figure 2: Evolution des états du système pour p=0 (trait continu), p=10 (tirets) and p=60 (pointillés).

Réseaux géniques

$$_{i}x_{i}\gamma -(x)\gamma =_{i}\dot{x}$$

- \(\lambda\) est constant par morceaux.
- $_{\rm f}$ est une fonction de seuil: r=0 ou 1 selon que les concentrations des $x_{\rm j}$ inhibent ou activent le gène responsable de la transcription de la protéine
- \dot{X}
- recherche d'équilibres
- étude de stabilité.

Conclusion

Ce que j'attends