Sales Forecasting Models

June 14, 2024

0.0.1 1. Data Processing

```
[1]: import pandas as pd
     import numpy as np
[2]: #Load Data
     df=pd.read_excel(r"C:\Users\USER\Documents\Data Portfolio Projects\Retail\Sales_
      ⇔Forecasting\refined_sales_forecasting_dataset.xlsx")
     df.head()
[2]:
                   Langa_Fresh Produce Langa_Dairy Langa_Canned Goods \
             Date
     0 2021-01-01
                                     NaN
                                                  NaN
                                                                        NaN
     1 2021-01-02
                                                 20.0
                                    15.0
                                                                       21.0
     2 2021-01-03
                                    21.0
                                                  28.0
                                                                       20.0
     3 2021-01-04
                                    25.0
                                                 22.0
                                                                       16.0
     4 2021-01-05
                                    15.0
                                                  17.0
                                                                       17.0
                                           Nyanga_Fresh Produce
        Langa_Bakery
                      Langa_Frozen Foods
                                                                  Nyanga_Dairy
     0
                 NaN
                                       NaN
                                                              NaN
                                                                             {\tt NaN}
                  9.0
                                      29.0
     1
                                                             16.0
                                                                            18.0
                 17.0
                                      20.0
     2
                                                             17.0
                                                                            18.0
     3
                 20.0
                                      22.0
                                                             29.0
                                                                            21.0
     4
                 26.0
                                      17.0
                                                             16.0
                                                                            11.0
        Nyanga_Canned Goods
                              Nyanga_Bakery
                                                 Pinelands_Bakery
     0
                         NaN
                                         NaN
                                                               NaN
     1
                        18.0
                                        21.0 ...
                                                              17.0
     2
                        17.0
                                        20.0 ...
                                                              17.0
     3
                        17.0
                                        20.0 ...
                                                              18.0
     4
                        27.0
                                        22.0 ...
                                                              22.0
                                 Thornton_Fresh Produce Thornton_Dairy
        Pinelands_Frozen Foods
     0
                            NaN
                                                      NaN
                                                                       NaN
                           26.0
                                                     18.0
                                                                      11.0
     1
     2
                           25.0
                                                     26.0
                                                                      18.0
     3
                           33.0
                                                     18.0
                                                                      20.0
     4
                           23.0
                                                                      30.0
                                                     22.0
```

```
Thornton_Canned Goods Thornton_Bakery
                                             Thornton_Frozen Foods \
0
                                                                NaN
                      NaN
                                        NaN
                                                               16.0
1
                     20.0
                                       20.0
2
                     25.0
                                       16.0
                                                               23.0
3
                     18.0
                                       17.0
                                                               14.0
                     23.0
                                       23.0
                                                               26.0
   Economic_Indicator Holiday_Indicator
                                            Promotion_Indicator
0
            88.728706
                                         0
1
           115.513937
                                         0
                                                               0
2
            87.385129
                                         0
                                                               0
3
           114.177901
                                         0
                                                               0
            96.823213
                                         0
```

[5 rows x 29 columns]

```
[3]: # Handle missing values by imputing with the median df.fillna(df.median(), inplace=True)
```

C:\Users\USER\AppData\Local\Temp\ipykernel_13268\32931963.py:2: FutureWarning: DataFrame.mean and DataFrame.median with numeric_only=None will include datetime64 and datetime64tz columns in a future version.

df.fillna(df.median(), inplace=True)

[]:

0.0.2 Exploratory Data Analysis

Data will be visualized to identify trends, seasonality, and relationships between variables.

```
[5]: import matplotlib.pyplot as plt import seaborn as sns
```

```
[6]: # Plot of the sales trends for the Langa Store and the Fresh Produce category
    plt.figure(figsize=(14, 7))
    plt.plot(df['Date'], df['Langa_Fresh Produce'], label='Langa Fresh Produce')
    plt.xlabel('Date')
    plt.ylabel('Sales')
    plt.title('Sales Trend for Langa Fresh Produce')
    plt.legend()
    plt.show()
```



```
[8]: # Sales by month
plt.figure(figsize=(14, 7))
sns.boxplot(x='Month', y='Langa_Fresh Produce', data=df)
plt.xlabel('Month')
plt.ylabel('Sales')
plt.title('Sales Distribution by Month for Langa Fresh Produce')
plt.show()
```


[]:

0.0.3 Model Selection and Training

We'll use a simple ARIMA model for time series forecasting. We'll start by preparing the data for the ARIMA model and then train the model.

```
Preparing the Data
```

```
[9]: from statsmodels.tsa.arima.model import ARIMA
[10]: # Convert the date column to datetime
    df['Date'] = pd.to_datetime(df['Date'])
[11]: # Set the date column as the index
    df.set_index('Date', inplace=True)
[12]: # Select the time series for the Langa store and Fresh Produce category
    series = df['Langa Fresh Produce']
```

```
[13]: # Split the data into training and testing sets
train_size = int(len(series) * 0.8)
train, test = series[:train_size], series[train_size:]
```

[]:

Train the ARIMA Model

[14]: # Train the ARIMA model
model = ARIMA(train, order=(5, 1, 0))
model_fit = model.fit()

Print the summary of the model
print(model_fit.summary())

C:\Users\USER\anaconda3\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

C:\Users\USER\anaconda3\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

C:\Users\USER\anaconda3\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

SARIMAX Results

Dep. Variable:	Langa_Fresh Produce	No. Observations:	876
Model:	ARIMA(5, 1, 0)	Log Likelihood	-2836.816
Date:	Mon, 10 Jun 2024	AIC	5685.632
Time:	17:00:34	BIC	5714.278
Sample:	01-01-2021	HQIC	5696.590

- 05-26-2023

Covariance Type: opg

========		========	========		========	=======
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.8381	0.031	-26.893	0.000	-0.899	-0.777
ar.L2	-0.6752	0.040	-16.746	0.000	-0.754	-0.596
ar.L3	-0.5233	0.042	-12.553	0.000	-0.605	-0.442
ar.L4	-0.3285	0.039	-8.496	0.000	-0.404	-0.253
ar.L5	-0.1719	0.030	-5.682	0.000	-0.231	-0.113
sigma2	38.2859	1.620	23.640	0.000	35.112	41.460

===

Ljung-Box (L1) (Q): 0.09 Jarque-Bera (JB):

```
16.45
    Prob(Q):
                                            0.76
                                                   Prob(JB):
    0.00
    Heteroskedasticity (H):
                                           0.81
                                                   Skew:
    -0.03
    Prob(H) (two-sided):
                                            0.07
                                                   Kurtosis:
    3.67
    Warnings:
    [1] Covariance matrix calculated using the outer product of gradients (complex-
    step).
[]:
```

0.0.4 Model Evaluation

```
[15]: # Make predictions
predictions = model_fit.forecast(steps=len(test))
```

```
[16]: # Plot the actual vs predicted values
    plt.figure(figsize=(14, 7))
    plt.plot(test.index, test, label='Actual')
    plt.plot(test.index, predictions, label='Predicted')
    plt.xlabel('Date')
    plt.ylabel('Sales')
    plt.title('Actual vs Predicted Sales for Langa Fresh Produce')
    plt.legend()
    plt.show()
```



```
[17]: # Calculate evaluation metrics
from sklearn.metrics import mean_squared_error

mse = mean_squared_error(test, predictions)
rmse = np.sqrt(mse)
print(f'RMSE: {rmse}')

RMSE: 9.184774172849416
[ ]:
```

0.0.5 Forecasting

Finally, we'll generate forecasts for different time horizons (weekly, monthly, quarterly, annual) and visualize the results

```
[18]: # Generate forecasts for the next year
future_steps = 365
forecast = model_fit.forecast(steps=future_steps)
```


[]: