- 1. (a) Proof by contrapositive: $F \circ G$ and G one-to-one don't ensure F is. As a counter-example, let $A = \{1\}$, $B = \{1, 2\}$, $C = \{1\}$, and $g : A \rightarrow B$ where g(1) = 1 and $f : B \rightarrow C$ where f(1) = f(2) = 1. Then $F \circ G : A \rightarrow C$ is defined by $(F \circ G)(1) = 1$. This map is a bijection from A = f1g to C = f1g, so is one-to-one. However, F is not one-to-one, since F(1) = F(2) = 1.
 - (b) Suppose $x, y \in A$ and g(x) = g(y). Therefore $F \circ G(x) = F \circ G(y) \Rightarrow x = y$ because $F \circ G$ is one-to-one
- 2. (a) it is anti-reflexive. We cannot have (1, -1) because $(1, -1) \not\ge 0$ it is symmetric. $xy = yx \in R_1$ it is transitive. We have $(x, y) \in R_1$ and $(y, z) \in R_1$ if $xy \ge 0$, both x and $y \ge 0$. So all x, y, z are ≥ 0 . Therefore, it follows that $(x, z) \in R_1$
 - (b) It is anti-reflexive. We cannot have (2, 2) because it doesn't satisfy the statement x = 2y. It is anti-symmetric. we can have (4, 2) but we cannot have (2, 4) It is non-transitive. If we have (x, y) = (4, 2) and (y, z) = (2, 1), (x, z) = (4, 1) but it doesn't satisfy the statement x = 2y as $(4) \neq 2(1)$
- 3. (a) It is reflexive. Because $0 = 0 \rightarrow a a = b b \rightarrow ((a, b), (a, b)) \in \mathbb{R}$ It is symmetric. $((a, b), (c, d)) \rightarrow a - c = b - d \rightarrow c - a = d - b -> ((c, d), (a, b))$ It is transitive. Have $((a, b), (c, d)) \rightarrow a - c = b - d$, $((c, d), (e, f)) \rightarrow c - e = d - f$. Then, $(a - c) + (c - e) = (b - d) + (d - f) \rightarrow a - e = b - f \rightarrow ((a, b), (e, f))$
 - (b) f(x, y) = x y. Then we have: $f(a, b) = f(c, d) \rightarrow a b = c d$ $\rightarrow a - c = b - d$ $\rightarrow ((a, b), (c, d))$
 - (c) $((a, b), (1, 1)) \rightarrow a 1 = b 1 \rightarrow a = b \rightarrow The class is {(a, a)} \rightarrow 2 \text{ elements: } (2, 2) \text{ and } (3, 3)$
 - (d) There are infinite classes with infinite number of elements. Each class is the set of tuples $\{(a,b)\}$ where the difference between a and b is constant.

4. (a) It is reflexive because $(a, a) \in R_4$.

It is symmetric because $(a, b) \in R_4 = (b, a) \in R_4$

It is transitive because if a and b is in the same building, b and c is in the same building, then a and c is in the same building.

Therefore, it is an equivalent relation.

 $R_4 = \{(a, b) \mid \text{lives in the same building}\}\$

If R is the refinement of S. Subset or refinement of same building or same unit or same floor.

(b) It is reflexive because $(a, a) \in R_5$.

It is symmetric because $(a, b) \in R_5 = (b, a) \in R_5$

It is transitive because (a = b) = (b = c). a and b graduated from the same high school, b and c graduated from the same high school, so a and c graduated from the same high school.

Therefore, it is an equivalent relation.

 $R_5 = \{(a, b) \mid \text{graduated from the same high school}\}$

If R is the refinement of S. Subset or refinement of same high school, same college, or same year.

5. (a) it is reflexive $\rightarrow x/x = 1 \in Z$

It is anti-symmetric \rightarrow x/y does not always mean y/x unless x = y It is transitive \rightarrow if we have (x, y) = (1, 2) and (y, z) = (2, 3) then we have (x, z) = (1, 3). x/z = 1/3 which is \in Z.

 $(x, y) \in R_6$ if and only if $x/z \in Z$ is partial ordered set.

(b) It is reflexive \rightarrow x - x = 0 \in Z

It is symmetric \rightarrow x – y \in Z \rightarrow -(x-y) \in Z \rightarrow y – x \in Z

It is transitive \rightarrow have $x - y \in Z \& y - z \in Z$, x - z

$$= x - y + y - z$$
$$= (x - y) + (y - z) \in Z$$

 $(x,y) \in R_7$ if and only if $x-y \in Z$ is equivalent relation

 $[2]_{R7} = Z^{+} \text{ and } [\pi]_{R7} = \{ \pi - 3 + n \mid n \in N \}$