1.1 22/12 82

upper	lower	eng	ko \$	\$ 구의정 > pl-2et2표기
A	d	alpha	空中	A, Jalpha
B	B	beta	HIEL	B) beta
I	\(\frac{1}{2}\)	gamma	Por	Gamma, Igamma
\triangle	8	delta	Get	Delta, Idelta
E	ϵ	epsilon	엑실로	E, lepsilon
Z	Ś	zeta	2/6/	Z, \zeta
H	n	eta	01/2/	H, leta
	θ	theta	HIEF	Theta, theta
K	K	Kappa	升平	k, \kappa
Λ	λ	lambda	350	Lambda, lambda
M	M	mu	T	M, \mu
\sim	V	hu	7	N, Ina
	5	Ĩ×	240	X_{i} , X_{i}
Tī	π	Pì	可-0)	Pi, pi
P	P	rho	3	P, Irho
\sum_{i}	6	sigma	1201	Sigma, Isigma
T	T	tan	49	T, Itau
Φ	ϕ	Phi	时/三	Phi, Iphi
X	×	chi	-)tol	X, Ichi
亚	Y	PSi	INO	Psi, Ipsi
Ω	W	omega	211171	Omega, lomega

> 孔,大名, ··· , 光小 ①午空山之中中平江州中 ②千里沙叶号外也 对于 将李

及引动的 \$2 知题 对数(set) 03 到验如

 $\{1,2,3,4\}$ $\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{5},\alpha_{6}\}$ $\{\alpha_{1},\alpha_{2},\cdots,\alpha_{N}\}$

(1) 对 \$5月14年 1年4 17月21日 全营 or 建筑 层层 42月四层的, 对对部州王建筑大

21:N ExigN

分分配是实际战时的不同性。是11岁中的过去,对分别的时,

ne ER

午7112 時間知かなし α_1, α_2) 時間野女神思 $(\alpha_1, \alpha_2) \in R \times R$ $(\alpha_1, \alpha_2) \in R^2$

수열의 화라급

行管 对对达一区(sigma) Bot — 6 sumproduce 千包 在日达一丁(pi) 2 st — 6 product? · 기호 아라마는 연박上 사台旅, 淮 카는 인덱上 智旅

· 最終空时侧 X 外 喜野午泉中里 a.b (dat) 些 境型的(ab)

$$\sum_{i=1}^{N} \chi_i = \chi_i + \chi_{2} + \dots + \chi_N$$

$$\prod_{i=1}^{N} \chi_i = \chi_i \cdot \chi_{2} \cdot \dots \cdot \chi_N$$

付部以各部院性部份外首础, 彭/召植格》2021, 罗宝

$$\sum_{k=1}^{4} i = 1 + 2 + 3 + 4$$

$$\sum_{k=1}^{4} 10k = 10 \cdot 1 + 10 \cdot 2 + \cdots + 10 \cdot 9$$

$$\prod_{i=0}^{20} i = (10) \cdot (11) \cdot \cdots \cdot (20)$$

Stated loop)
$$\overset{\text{States}}{\leq} (= \text{nested loop})$$

$$\overset{\text{N}}{\leq} (\overset{\text{N}}{\geq} \chi_{ij}) = \overset{\text{N}}{\leq} \overset{\text{N}}{\leq} \chi_{ij}$$

过计是 到处 种的 例:

$$\frac{2}{x=1} \int_{j=1}^{3} (i+j) = \sum_{i=1}^{2} \left(\sum_{j=1}^{3} (i+j) \right) \\
= \sum_{i=1}^{2} \left((i+1) + (i+2) + (i+3) \right) \\
= \left((i+1) + (i+2) + (i+3) \right) + \left((2+1) + (2+2) + (2+3) \right)$$

$$\frac{3}{11} \frac{2}{11} (m+2n) = \frac{3}{11} \left(\frac{2}{11} (m+2n) \right)$$

$$= \frac{3}{11} \left((m+2\cdot1) \cdot (m+2\cdot2) \right)$$

$$= \left((1+2\cdot1) \cdot (1+2\cdot2) \right) \cdot \left((2+2\cdot1) + (2+2\cdot2) \right)$$

$$\left((3+2\cdot1) + (3+2\cdot2) \right)$$

可分别(2.1) 口音和是是可料中的介绍的种种的是对别是对可是对于

$$= ((a, a, y, y, \chi, \chi, \chi,) + (a, a, y, y, \chi, \chi,) + (a, a, y, y, \chi, \chi, \chi,)) + ((a, a, y, y, \chi, \chi, \chi,) + (a, a, y, y, \chi, \chi, \chi,) + (a, a, y, y, \chi, \chi, \chi,) + (a, a, y, y, \chi, \chi, \chi,)) + ((0, a, y, y, \chi, \chi, \chi,)) + ((0, a, y, y, \chi, \chi, \chi,)) + ((0, a, y, y, \chi, \chi, \chi, \chi,))$$

$$= \left(6_{1}^{2} \left(V_{1} W_{1}\right)^{2} + 6_{2}^{2} \left(V_{2} W_{1}\right)^{2} + 6_{3}^{2} \left(V_{2} W_{1}\right)^{2}\right)$$

$$+ \left(6_{1}^{2} \left(V_{1} W_{2}\right)^{2} + 6_{2}^{2} \left(V_{2} W_{2}\right)^{2} + 6_{3}^{2} \left(V_{3} W_{2}\right)^{2}\right)$$

$$+ \left(6_{1}^{2} \left(V_{1} W_{2}\right)^{2} + 6_{2}^{2} \left(V_{2} W_{3}\right)^{2} + 6_{3}^{2} \left(V_{3} W_{2}\right)^{2}\right)$$

(大) フトチハウ きまり 2巻 (Gaussian mixture model) まま 个小 T ミ Trズi Mx

= (TI, XI, MI + TI XI, MI) · (TI, N2/LI+ TI 2 7/2 M2) - (TI, X3 MI + TI X3 M2) · (TI, X4 MI + TI 2 7/4 M2)

研究 1.2.2

行到我听出了了部是想接着地发生了好。

Zi: 21, 12, 23, X4

可多和国家电对对处理和 生物 生物 年 00亿 计时 101

yi: 0, 1,0,0

(1) 公外以外科社器群体的混制性外。

 $\prod_{i} \chi_{i}^{y_{i}} = \chi_{i}^{\circ} \cdot \chi_{2}^{\prime} \cdot \chi_{3}^{\circ} \cdot \chi_{4}^{\circ} = \chi_{2}$

(a) the fray; old y=102 unant Doluted the?

千包의 引力 可处 中台社 智 想是 水田 似个

(1) old/Lab - HAJOIS 2/21/4/2 (242/2) estect

$$\sum_{i=1}^{N} \chi_{i} = \sum_{j=1}^{N} \alpha_{j}$$

$$\sum_{i=1}^{N} C\alpha_i = C\sum_{i=1}^{N} I_i$$

$$\sum_{i=1}^{N} (2i+y_i) = \sum_{i=1}^{N} 2i + \sum_{i=1}^{N} y_i$$

(4) 可可以是智能性性的气管性的气管和

$$\sum_{i=1}^{N}\sum_{j=1}^{M}=\sum_{i=1}^{N}\sum_{i=1}^{N}$$

● 网色细,叶子子公司与 金树 脚股 部名 空十.

$$\sum_{k=1}^{2} \sum_{j=1}^{3} 2_{ij} = (\chi_{11} + \chi_{12} + \chi_{13}) + (\chi_{21} + \chi_{22} + \chi_{23})$$

$$\sum_{i=1}^{3} \sum_{i=1}^{2} \chi_{ij} = (\chi_{i1} + \chi_{21}) + (\chi_{21} + \chi_{22}) + (\chi_{21} + \chi_{22}) + (\chi_{21} + \chi_{22})$$

明白五州 1.2.3 叶子中 可性中生的 产品 多型数工作的 千年纪 个时间 那里里面的 希特利 从各型中。

(1)
$$\left(\frac{3}{2} \chi_{i} \right)^{2} = \frac{3}{2} \underbrace{\sum_{i=1}^{3} \chi_{i} \chi_{i}}_{i=1}^{3}$$

$$= \underbrace{\sum_{i=1}^{3} \chi_{i} \chi_{i}}_{i=1}^{2} = \left(\chi_{1} + \chi_{2} + \chi_{3} \right)^{2} + 2\chi_{1} \chi_{2} + 2\chi_{2} \chi_{3} + 2\chi_{3} \chi_{3} + 2\chi_{2} \chi_{3} + 2\chi_{3} \chi_{3} +$$

$$(2) \qquad \sum_{i=1}^{3} \sum_{j=1}^{3} \chi_{i} y_{ij} = \sum_{i=1}^{3} \left(\chi_{i} \sum_{j=1}^{3} y_{ij} \right)$$

(科的) 美美文的

$$= (\chi_{1}y_{11} + \chi_{1}y_{12} + \chi_{1}y_{13}) + (\chi_{2}y_{21} + \chi_{2}y_{22} + \chi_{2}y_{23}) + (\chi_{3}y_{31} + \chi_{3}y_{32} + \chi_{3}y_{33})$$

对部分对于

 $X = \{\alpha_1, \chi_2, \chi_3\}$

$$\sum_{X} \chi = \chi_1 + \chi_2 + \chi_3$$

 $\prod_{\chi} \chi = \chi_1 \cdot \chi_2 \cdot \chi_3$

> TT 92 26X, 240

GEN 1.2.4

年础X,X之对规,X.升规,X.产X.升税经,X.产X.到产经验对2月 对 叶子华 到地中于制建设 会对补证

* 元星之时和平利时的展 2009 2019 12 2018 12 201

$$\frac{2}{\prod_{i=1}^{2}} \sum_{X_i} \chi_i = \sum_{X_i \times X_2} \frac{2}{i} \chi_i$$

 $X_1 = \{ \chi_1, \chi_2, \chi_3 \}$ $X_2 = \{ y_1, y_2, y_3 \}$

$$(244) \prod_{j=1}^{2} \sum_{\chi_{j}} \chi_{j} = (\chi_{1} + \chi_{2} + \chi_{3}) \cdot (y_{1} + y_{2} + y_{3})$$

$$= (\chi_{1}y_{1} + \chi_{1}y_{2} + \chi_{1}y_{3})$$

$$+ (\chi_{2}y_{1} + \chi_{2}y_{2} + \chi_{2}y_{3})$$

$$+ (\chi_{3}y_{1} + \chi_{3}y_{2} + \chi_{3}y_{3})$$

$$(\mathbf{f} \mathbf{b}) \sum_{\mathbf{x}_1 \times \mathbf{x}_2} \tilde{\mathbf{J}}_{\mathbf{x}} \chi_i = \sum_{\mathbf{x}_1 \times \mathbf{x}_2} (\mathcal{X}_1 \mathcal{X}_2)$$