

Monte Carlo Tree Search

Tom Vodopivec

IADS Big Data and Analytics Summer School 2019-08-05

Planning and Search

Planning, producing a sequence of decisions (actions) to a goal

Search, retrieving information stored in given data structure or in the search space of given problem domain

Impossible to search whole space - use heuristics.

Algorithms

- Best-first search, A*, minimax, alpha-beta pruning
- Monte Carlo tree search

Monte Carlo Tree Search

Heuristic search algorithm

Given a state, choose the most promising next move

Simulate possible action paths and observe outcome

- build a tree representation of knowledge
- grow the tree asymmetrically towards the most promising directions

Requires a model of the problem at hand

The Framework

Applications - Games

Classic games: Go

- Large branching factor
- Difficult modelling of human knowledge
- AlphaGo, AlphaGo Zero, AlphaZero

Applications - Games

Classic games: Go

- Large branching factor
- Difficult modelling of human knowledge
- AlphaGo, AlphaGo Zero, AlphaZero

Research: Starcraft

Applications - Games

Classic games: Go

- Large branching factor
- Difficult modelling of human knowledge
- AlphaGo, AlphaGo Zero, AlphaZero

Research: Starcraft

Industry: Total War: Rome II

The UCT Algorithm

Most popular MCTS algorithm (Kocsis and Szepesvari, 2006)

UCT = Upper Confidence Bounds for Trees

- Derived from multi-armed bandits
- UCB applied to each level of tree
- Parameter to balance exploration-exploitation

Variants

Expand by one or all nodes?

Graph or tree?

Evaluation functions?

>100 domain-specific enhancements and heuristics available

Reading Material

Browne et al., "A Survey of Monte Carlo Tree Search Methods", 2012.

Silver et al., AlphaGo, AlphaGo Zero, AlphaZero

The Connection Between MCTS and RL

Tom Vodopivec

IADS Big Data and Analytics Summer School 2018-08-02

Monte Carlo tree search

Goal: Output best action after a batch of iterations

The Reinforcement Learning Setting

Goal: Identify which actions lead to highest reward

Two Communities

The game and search community

Focus on specific problems Expert knowledge, heuristics Focus on <u>selecting actions</u>

The reinforcement learning community

Universally-applicable solutions
Transfer of knowledge across domains
Focus on <u>updating knowledge</u>

4

Similarities

Assign value to actions, identify best actions, build an optimal control policy

Explore the environment, balance exploration with exploitation

Collect experience: visit states, observe rewards, iteratively

Memorize feedback: build a model of knowledge, update a value function

Similarities

MCTS emphasizes <u>selection</u>
RL emphasizes <u>backpropagation</u>

Differences

MCTS expands the representation on the fly MCTS has the playout phase

Unified Framework

The components any sample-based decision-making system

A representation of knowledge

A representation policy

A learning algorithm

An action-selection policy

Applications

Recommendation systems

Automated testing

Games