Inverse Circular Function

(বিপরীত ত্রিকোণমিতিক ফাংশন)

বিপরীত ত্রিকোণমিতিক ফাংশন ঃ

(i)
$$\sin^{-1} x = \arcsin x$$

(ii)
$$\cos^{-1} x = \operatorname{arc} \cos x$$

(i)
$$\sin^{-1}x = \arcsin x$$
 (ii) $\cos^{-1}x = \arccos x$ (iii) $\tan^{-1}x = \arctan x$

(iv)
$$\cot^{-1} x = \operatorname{arc} \cot x$$

(v)
$$\sec^{-1}x = \operatorname{arc} \sec x$$

(iv)
$$\cot^{-1}x = \operatorname{arc} \cot x$$
 (v) $\sec^{-1}x = \operatorname{arc} \sec x$ (vi) $\csc^{-1}x = \operatorname{arc} \csc x$

২। মুখ্যমানঃ নির্দিষ্ট ব্যবধিতে বিপরীত ত্রিকোণমিতিক ফাংশনের ধনাত্মক বা ঋনাত্মক ক্ষুদ্রতম মান।

যেমনঃ (i)
$$\sin^{-1}(\frac{\sqrt{3}}{2})$$
 এর মুখ্যমান 60^0 (ii) $\sin^{-1}(\frac{-\sqrt{3}}{2})$ এর মুখ্যমান -60^0

(ii)
$$\sin^{-1}(\frac{-\sqrt{3}}{2})$$
 এর মুখ্যমান -60^0

(iii)
$$\cos^{-1}(\frac{-1}{2})$$
 এর মুখ্যমান 120^0 \because $\cos^{-1}\left(-\frac{1}{2}\right)=\pi-\cos^{-1}\frac{1}{2}=180^0-60^0=$
$$=120^0[\because\cos^{-1}(-x)=\pi-\cos^{-1}x]$$

$$\circ | \sin^{-1}(-x) = -\sin^{-1}(x)$$

$$8 + \cos^{-1}(-x) = \pi - \cos^{-1}x$$

$$c + \tan^{-1}(-x) = -\tan^{-1}x$$

$$b \mid \sin^{-1} x = \csc^{-1} \frac{1}{x}$$

$$9 \cdot \cos^{-1} x = \sec^{-1} \frac{1}{x}$$

$$b + \tan^{-1} x = \cot^{-1} \frac{1}{x}$$

$$\delta + \sin^{-1}x + \cos^{-1}x = \pi/2$$

$$50 + \tan^{-1}x + \cot^{-1}x = \pi/2$$

$$33 \cdot \sec^{-1}x + \csc^{-1}x = \pi/2$$

$$32 + \sin^{-1}\sin x = \sin \sin^{-1}x = x$$

$$y \circ + \cos^{-1}\cos x = \cos\cos^{-1}x = x$$

$$38 \cdot \tan^{-1} \tan x = \tan \tan^{-1} x = x$$

ه ا (i)
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$$
 (ii) $\tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy}$

Function	Domain	Range
sin ^{−1} x	[-1,1]	$[-\pi/2,\pi/2]$
cos ⁻¹ x	[-1,1]	[0, π]
tan ⁻¹ x	$(-\infty, +\infty)$	$(-\pi/2,\pi/2)$
cot ⁻¹ x	$(-\infty, +\infty)$	$(0,\pi)$
sec ⁻¹ x	$(-\infty, -1] \cup [1, +\infty)$	$[0,\pi/2) \cup [\pi,3\pi/2)$
cosec ^{−1} x	$(-\infty, -1] \cup [1, +\infty)$	$(0,\pi/2] \cup (\pi,3\pi/2]$

$$38 \cdot \tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\frac{x + y + z - xyz}{1 - xy - yz - zx}$$

$$39 \cdot (i) \sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1 - y^2} + y\sqrt{1 - x^2})$$

(ii)
$$\sin^{-1}x - \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} - y\sqrt{1-x^2})$$

$$\text{Str}(i) \ \cos^{-1}\!x + \ \cos^{-1}\!y = \cos^{-1}\!\big\{xy - \sqrt{(1-x^2)(1-y^2)}\big\}$$

(ii)
$$\cos^{-1} x - \cos^{-1} y = \cos^{-1} \left\{ xy + \sqrt{(1 - x^2)(1 - y^2)} \right\}$$

که ا
$$2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2} = \sin^{-1}\frac{2x}{1+x^2} = \cos^{-1}\frac{1-x^2}{1+x^2}$$
 (V. V. Important law)

২০। বিপরীত ত্রিকোণমিতিক ফাংশনের ডোমেন, রেঞ্জ ঃ

৯। বৃত্তীয় ও বিপরীত বৃত্তীয় ফাংশনের লেখচিত্র ঃ

 $f(x) = \sin x$ Domain: $((k-1)\pi, k\pi)$

Domain $\{-\infty,\infty\}$ Range: [-1,1]Period, 2a

/(x)-post

 $f(x) = \tan x$ Doment [(\$\dag{\psi} 1)\pi, \psi\pi)

Domain: [-1,1] Range: $-\frac{\pi}{2}, \frac{\pi}{2}$

 $f(x) = \arcsin x$

Domain: [-1,1] Range: [0, r]

Domain: $\{-\infty,-1\}\cup [1,\infty\}$

Domain: (-x, x)

f(x) – gretan xDemain: (∞,∞)

Domain: $\{-\infty, -1\} \cup [1, \infty\}$ $f(x) = \csc^{-}x$ f(x) = accose x

Trigonometric Equation

(ত্রিকোণমিতিক সমীকরণ)

১।(i)
$$\sin\theta = 0$$
 হলে $\theta = n\pi$

(ii)
$$\cos\theta = 0$$
 ফলে $\theta = (2n + 1)^{\pi}/2$

$$(iii)$$
 $tan\theta = 0$ হলে $\theta = n\pi$

(iv)
$$\sin\theta = 1$$
 হলে $\theta = (4n+1)^{\pi}/2$

$$(v)$$
 $\sin\theta=-1$ হলে $\theta=(4n-1)^{\pi}\!\!/_2$ (vi) $\cos\theta=1$ হলে $\theta=2n\pi$

(vi)
$$\cos\theta = 1$$
 হলে $\theta = 2n\pi$

(vii)
$$\cos\theta = -1$$
 হলে $\theta = (2n+1)\pi$

(viii)
$$\sin\theta = k = \sin\alpha$$
 হলে $\theta = n\pi + (-1)^n\alpha$

যেমৰ
$$\epsilon \sin 2\theta = \frac{\sqrt{3}}{2} \Rightarrow \sin 2\theta = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} \Rightarrow \div 2\theta = n\pi + (-1)^n \frac{\pi}{3} \div \theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{6}$$

(ix)
$$\cos\theta = K = \cos\alpha$$
 হলে $\theta = 2n\pi \pm \alpha$

$$(x) \tan \theta = K = \tan \alpha$$
 হলে $\theta = n\pi + \alpha$

২। $a\cos\theta+b\sin\theta=c$ এই ধরনের সমীকরণের সমাধানে উভয়পক্ষকে $\sqrt{a^2+b^2}$ দ্বারা ভাগ করতে হবে।