菜单

深入浅出 HTTPS 工作原理

蔡卓伦 发表于 蔡卓伦的专栏

1.2K

HTTP 协议由于是明文传送,所以存在三大风险:

1、被窃听的风险: 第三方可以截获并查看你的内容

2、被篡改的危险: 第三方可以截获并修改你的内容

3、被冒充的风险: 第三方可以伪装成通信方与你通信

HTTP 因为存在以上三大安全风险,所以才有了 HTTPS 的出现。

HTTPS 涉及到了很多概念,比如 SSL/TSL,数字证书、数字签名、加密、认证、公钥和私钥等,比较容易混淆。我们先从一次简单的安全通信故事讲起吧,其中穿插复习一些密码学的概念。

一、关于 Bob 与他好朋友通信的故事

这个故事的原文是:

http://www.youdzone.com/signature.html

阮一峰老师也翻译过:

http://www.ruanyifeng.com/blog/2011/08/what_is_a_digital_signature.html

(不过阮老师里面没有很好的区分加密和认证的概念,以及最后 HTTPS 的说明不够严谨,评论区的针对这些问题的讨论比较激烈,挺有意思的)

这里重新叙述一下这个故事:

故事的主人公是 Bob,他有三个好朋友 Pat、Doug 和 Susan。Bob 经常跟他们写信,因为他的信是明文传输的,在传递过程可能被人截获偷窥,也可能被人截获然后又篡改了,更有可能别人伪装成 Bob 本人跟他的好朋友通信,总之是不安全的。他很苦恼,经过一番苦苦探索,诶,他发现计算机安全学里有一种叫非对称加密算法的东东,好像可以帮助他解决这个问题

深入浅出 HTTPS 工作原理

写文章

钥解开。非对称加密算法的安全性很高,但是因为计算量庞大,比较消耗性能。

在这篇:

好了,来看看 Bob 是怎么应用非对称加密算法与他的好朋友通信的:

1、首先 Bob 弄到了两把钥匙: 公钥和私钥;

一、关· 通信的 二、HT

分享

- 2、Bob 自己保留下了私钥,把公钥复制成三份送给了他的三个好朋友 Pat、Doug 和 Susan;
- 3、此时,Bob 总算可以安心地和他的好朋友愉快地通信了。比如 Susan 要和他讨论关于去哪吃午饭的事情,Susan 就可以先把自己的内容(明文)首先用 Bob 送给他的公钥做一次加密,然后把加密的内容传送给 Bob。Bob 收到信后,再用自己的私钥解开信的内容;

说明:这其实是计算机安全学里加密的概念,加密的目的是为了不让别人看到传送的内容,加密的手段是通过一定的加密算法及约定的密钥进行的(比如上述用了非对称加密算法以及 Bob 的公钥),而解密则需要相关的解密算法及约定的秘钥(如上述用了非对称加密算法和 Bob 自己的私钥),可以看出加密是可逆的(可解密的)。

4、Bob 看完信后,决定给 Susan 回一封信。为了防止信的内容被篡改(或者别人伪装成他的身份 跟 Susan 通信),他决定先对信的内容用 hash 算法做一次处理,得到一个字符串哈希值,Bob 又用自己的私钥对哈希值做了一次加密得到一个签名,然后把签名和信(明文的)一起发送给 Susan;

说明 2: Bob 的内容实质是明文传输的,所以这个过程是可以被人截获和窥探的,但是 Bob 不担心被人窥探,他担心的是内容被人篡改或者有人冒充自己跟 Susan 通信。这里其实涉及到了计算机安全学中的认证概念,Bob 要向 Susan 证明通信的对方是 Bob 本人,另外也需要确保自己的内容是完整的。

5、Susan 接收到了 Bob 的信,首先用 Bob 给的公钥对签名作了解密处理,得到了哈希值 A,然后 Susan 用了同样的 Hash 算法对信的内容作了一次哈希处理,得到另外一个哈希值 B,对比 A和 B,如果这两个值是相同的,那么可以确认信就是 Bob 本人写的,并且内容没有被篡改过;

说明: 4 跟 5 其实构成了一次完整的通过数字签名进行认证的过程。数字签名的过程简述为: 发送方通过不可逆算法对内容 text1 进行处理(哈希),得到的结果值 hash1,然后用私钥加密 hash1 得到结果值 encry1。对方接收 text1 和 encry1,用公钥解密 encry1 得到 hash1,然后用 text1 进行同等的不可逆处理得到 hash2,对 hash1 和 hash2 进行对比即可认证发送方。

- 6、此时,另外一种比较复杂出现了,Bob 是通过网络把公钥寄送给他的三个好朋友的,有一个不怀好意的家伙 Jerry 截获了 Bob 给 Doug 的公钥。Jerry 开始伪装成 Bob 跟 Doug 通信,Doug 感觉通信的对象不像是 Bob,但是他又无法确认;
- 7、Bob 最终发现了自己的公钥被 Jerry 截获了,他感觉自己的公钥通过网络传输给自己的小伙伴似乎也是不安全的,不怀好意的家伙可以截获这个明文传输的公钥。为此他想到了去第三方权威机构"证书中心"(certificate authority,简称 CA)做认证。证书中心用自己的私钥对 Bob 的公钥和其它信息做了一次加密。这样 Bob 通过网络将数字证书传递给他的小伙伴后,小伙伴们先用 CA 给的公钥解密证书,这样就可以安全获取 Bob 的公钥了。

二、HTTPS 通信过程

通过 Bob 与他的小伙伴的通信,我们已经可以大致了解一个安全通信的过程,也可以了解基本的加密、解密、认证等概念。HTTPS 就是基于这样一个逻辑设计的。

首先看看组成 HTTPS 的协议: HTTP 协议和 SSL/TSL 协议。HTTP 协议就不用讲了,而 SSL/TSL 就是负责加密解密等安全处理的模块,所以 HTTPS 的核心在 SSL/TSL 上面。整个通信如下:

- 1、浏览器发起往服务器的 443 端口发起请求,请求携带了浏览器支持的加密算法和哈希算法。
- 2、服务器收到请求,选择浏览器支持的加密算法和哈希算法。
- 3、服务器下将数字证书返回给浏览器,这里的数字证书可以是向某个可靠机构申请的,也可以是自制的。
- 4、浏览器进入数字证书认证环节,这一部分是浏览器内置的 TSL 完成的:
 - 4.1 首先浏览器会从内置的证书列表中索引,找到服务器下发证书对应的机构,如果没有找到,此时就会提示用户该证书是不是由权威机构颁发,是不可信任的。如果查到了对应的机构,则取出该机构颁发的公钥。
 - 4.2 用机构的证书公钥解密得到证书的内容和证书签名,内容包括网站的网址、网站的公钥、证书的有效期等。浏览器会先验证证书签名的合法性(验证过程类似上面 Bob 和 Susan 的通信)。签名通过后,浏览器验证证书记录的网址是否和当前网址是一致的,不一致会提示用户。如果网址一致会检查证书有效期,证书过期了也会提示用户。这些都通过认证时,浏览器就可以安全使用证书中的网站公钥了。
 - 4.3 浏览器生成一个随机数 R, 并使用网站公钥对 R 进行加密。
- 5、浏览器将加密的 R 传送给服务器。
- 6、服务器用自己的私钥解密得到 R。
- 7、服务器以 R 为密钥使用了**对称加密算法**加密网页内容并传输给浏览器。
- 8、浏览器以 R 为密钥使用之前约定好的解密算法获取网页内容。

备注 1: 前 5 步其实就是 HTTPS 的握手过程,这个过程主要是认证服务端证书(内置的公钥)的

合法性。因为非对称加密计算量较大,**整个通信过程只会用到一次非对称加密算法**(主要是用来保护传输客户端生成的用于对称加密的随机数私钥)。**后续内容的加解密都是通过一开始约定好的对称加密算法进行的**。

备注 2: SSL/TLS 是 HTTPS 安全性的核心模块,TLS 的前身是 SSL,TLS1.0 就是 SSL3.1,TLS1.1 是 SSL3.2,TLS1.2 则是 SSL3.3。 SSL/TLS 是建立在 TCP 协议之上,因而也是应用层级别的协议。其包括 TLS Record Protocol 和 TLS Handshaking Protocols 两个模块,后者负责握手过程中的身份认证,前者则保证数据传输过程中的完整性和私密性。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。 如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于 2017-06-19

上一篇:全球各大公有云厂商对.NET的支持情况汇总下一篇:微服务架构:微服务间的共享的管理(六)

相关文章

来自专栏 张霁的专栏

当深度学习成为过去,迁移学习才是真正的未来?

大牛吴恩达曾经说过: 做 AI 研究就像造宇宙飞船,除了充足的燃料之外,强劲的引擎也是必不可少的。假如燃料不足,则飞船就无法进入预定轨道。而引擎不够强劲,飞船甚至...

2.8K 3 0

来自专栏 AI科技大本营的专栏

关于程序员转型AI这件事、三位老炮跟你聊些干货(下)

Part 3 智亮: 你是我的眼——对计算机视觉的介绍今天我们主要聊的是计算机视觉,咱们先从最大的概念开始说一说,人工智能,机器学习,计算机视觉。人工智能这个概念…

336 0 0

来自专栏 云资讯小编的专栏

腾讯云助力智能交通物流 邱跃鹏:云是无人驾驶的高速公路

智能交通云在刚刚举办的2017腾讯"云+未来"峰会上,成为瞩目焦点。交通与物流智能化的领军人物就腾讯云新发布的"人工智能即服务"战略展开了讨论与分享。腾讯云也由…

315 0 0

来自专栏 陈林峰的专栏

闲置资源再利用: 个人电脑上畅玩 TensorFlow

眼下 github 社区最火的开源项目莫过于 tensorflow (后简称TF),本文介绍一种基于windows平台下搭建 TF 运行和开发环境,带大家畅玩 ...

1.1K 0 0

来自专栏 周景超的专栏

腾讯 AI Lab 计算机视觉中心人脸 & OCR 团队近期成果介绍...

腾讯 AI Lab 计算机视觉中心人脸&OCR; 团队专注于领域内国际前沿技术研究与应用,近期取得部分成果,这里和大家分享一下。

1.4K 4 0

来自专栏 杨熹的专栏

TensorFlow -2: 用 CNN 识别数字

昨天只是用了简单的 softmax 做数字识别,准确率为 92%,这个太低了,今天用 CNN 来提高一下准确率。关于 CNN,可以看这篇:图解何为CNN简单看一...

1.7K 0 0

来自专栏 张红林的专栏

机器学习从入门到出家

一个2010年入坑的后台如何转向做算法和机器学习的历程和感悟,附录一个书单。希望对于大家在摸索深度学习的入门路径过程中有帮助。

6K 8 0

来自专栏 丁科的专栏

基于 boosting 原理训练深层残差神经网络

介绍一种基于提升理论的训练深度模型的新方法。基于 boosting (提升) 原理,逐 层训练深度残差神经网络的方法,并对性能及泛化能力给出了理论上的证明。

来自专栏 AI科技大本营的专栏

关于程序员转型AI这件事,三位老炮跟你聊些干货(中)

著名财经作家吴晓波最近发表了一篇文章, 《为什么新科技的风口总火不过一 年》,在文章中引用了Garner技术发展曲线,他认为人工智能目前处在第一波峰的 顶点,那么很显...

576 0 0

来自专栏 云加头条

腾讯云小微激活硬件生态,携合作产品正式亮相

腾讯云小微自5月22日上线内测以来,吸引了众多关注。在6月22日腾讯"云+未 来"峰会现场,腾讯云小微以"声音连接物理世界"为主题,正式在AI小微专场上亮 相发布。

1.6K 4 0

社区 活动

专栏文章

互动问答

技术沙龙

技术快讯

团队主页

开发者手册 智能钛AI

原创分享计划 自媒体分享计划

域名备案

在线学习中心 技术周刊

资源

社区标签

关于

社区规范

免责声明

联系我们

开发者实验室

云+社区

扫码关注云+社区 领取腾讯云代金券

热门产品	域名注册	云服务器	区块链技术	消息队列	网络加速	关系型数据库	域名解析
	云存储	宿主机					
热门推荐	人脸识别	网站备案	数据可视化	CDN 加速	视频转码	图片文字识别	MySQL 数据库
	SSL 证书	语音识别					
更多推荐	数据安全	学生机	短信群发平台	文字识别	视频点播	数据安全审计	小程序开发

网站监控

Copyright © 2013 – 2020 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有 京ICP备11018762号京公网安备 11010802020287