MATEMATIK 1

Konya Jeknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Jemel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2020

Uyarı 9.1.2. $\int e^{x^2} dx$, $\int e^{-x^2} dx$, $\int \sin(x^2) dx$, $\int \sqrt{\sin(x)} dx$,... gibi hesaplanamayan pek çok integral vardır.

Bazı integralleri formüllere dayandırarak hesaplayabiliriz. Bunun için en temel metot değişken değiştirme metodudur.

Değişken Değiştirme Metodu

 $\int f(x)dx$ integrali verilsin. Bu integralde x=u(t) değişken değiştirmesi yapılırsa $\frac{dx}{dt}=u'(t)$ ya da dx=u'(t)dt olmak üzere

$$\int f(x)dx = \int f(u(t))u'(t)dt$$

elde edilir. Son eşitlikte $t = u^{-1}(x)$ dönüşümü ile istenilen sonuç elde edilir.

Örnek 9.1.1.1. $\int (2x+1)^3 dx$ integralini hesaplayınız.

Bu integrali doğrudan veren bir formül yoktur. Ancak değişken değiştirerek hesaplayabiliriz.

2x + 1 = u veya $x = \frac{u-1}{2}$ olsun. Bu durumda $dx = \frac{du}{2}$ olup bu değerler integralde yerine yazılırsa,

$$\int (2x+1)^3 dx = \int u^3 \frac{du}{2} = \frac{1}{2} \int u^3 du = \frac{u^4}{8} + c = \frac{(2x+1)^4}{8} + c$$

Örnek 9.1.1.2. $\int \sqrt{x+5} dx$ integralini hesaplayınız.

x + 5 = u veya x = u - 5 olsun. Bu durumda dx = du olup bu değerler integralde yerine yazılırsa,

$$\int \sqrt{x+5} \, dx = \int \sqrt{u} \, du = \int u^{\frac{1}{2}} du = \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + c$$
$$= \frac{2}{3} u^{\frac{3}{2}} + c = \frac{2}{3} (x+5)^{\frac{3}{2}} + c$$

Örnek 9.1.1.3. $\int 2xe^{x^2}dx$ integralini hesaplayınız.

 $x^2=u$ olsun. Bu durumda du=2xdx olup bu değerler integralde yerine yazılırsa,

$$\int 2xe^{x^2}dx = \int e^{x^2}2xdx = \int e^udu = e^u + c = e^{x^2} + c$$

elde edilir.

Örnek 9.1.1.4. $\int \frac{xdx}{x^2-4}$ integralini hesaplayınız.

 $x^2 - 4 = u$ olsun. Bu durumda $\frac{du}{2} = xdx$ olup bu değerler integralde yerine yazılırsa,

$$\int \frac{xdx}{x^2 - 4} = \int \frac{\frac{du}{2}}{u} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| + c = \frac{1}{2} \ln|x^2 - 4| + c$$

Örnek 9.1.1.5. $\int \frac{dx}{(5x+2)^3}$ integralini hesaplayınız.

5x + 2 = u olsun. Bu durumda $\frac{du}{5} = dx$ olup bu değerler integralde yerine yazılırsa,

$$\int \frac{dx}{(5x+2)^3} = \int \frac{\frac{du}{5}}{u^3} = \frac{1}{5} \int \frac{du}{u^3} = \frac{1}{5} \int u^{-3} du = \frac{-1}{10} u^{-2}$$
$$= -\frac{1}{10} (5x+2)^{-2} + c$$

elde edilir.

Örnek 9.1.1.6. $\int \sin^2(x)\cos(x)dx$ integralini hesaplayınız.

sin(x) = u olsun. Bu durumda du = cos(x) dx olup bu değerler integralde yerine yazılırsa,

$$\int \sin^2(x)\cos(x) \, dx = \int (\sin(x))^2 \cos(x) \, dx$$
$$= \int u^2 \, du = \frac{u^3}{3} + c = \frac{(\sin(x))^3}{3} + c$$

Örnek 9.1.1.7. $\int tan(x) dx$ integralini hesaplayınız.

Bu integral $\int \frac{\sin(x)}{\cos(x)} dx$ şeklinde yazılabilir. $\cos(x) = u$ olsun. Bu durumda $-du = \sin(x) dx$ olup bu değerler integralde yerine yazılırsa,

$$\int \tan(x) \, dx = \int \frac{\sin(x)}{\cos(x)} dx = \int \frac{-du}{u} = -\int \frac{du}{u}$$

elde edilir.

Örnek 9.1.1.8. $\int \frac{dx}{x^2+6x+9}$ integralini hesaplayınız.

Bu integral $\int \frac{dx}{(x+3)^2}$ şeklinde yazılabilir. x+3=u olsun. Bu durumda dx=du olup bu değerler integralde yerine yazılırsa,

$$\int \frac{dx}{x^2 + 6x + 9} = \int \frac{dx}{(x+3)^2} = \int \frac{du}{u^2} = \int u^{-2} du = \frac{u^{-1}}{-1} + c$$
$$= -\frac{1}{u} + c = -\frac{1}{x+3} + c \qquad \text{elde edilir.}$$

Örnek 9.1.1.9. $\int \frac{xdx}{1+x^4}$ integralini hesaplayınız.

Bu integral $\int \frac{xdx}{1+(x^2)^2}$ şeklinde yazılabilir. $x^2=u$ olsun. Bu durumda $\frac{du}{2}=xdx$ olup bu değerler integralde yerine yazılırsa,

$$\int \frac{xdx}{1+x^4} = \int \frac{xdx}{1+(x^2)^2} = \int \frac{\frac{du}{2}}{1+u^2} = \frac{1}{2} \int \frac{du}{1+u^2}$$
$$= \frac{1}{2} \arctan(u) + c = \frac{1}{2} \arctan(x^2) + c \qquad \text{elde edilir.}$$

Örnek 9.1.1.10. $\int \frac{dx}{a^2+x^2}$ integralini hesaplayınız.

Bu integral $\int \frac{dx}{a^2(1+(\frac{x}{a})^2)} = \frac{1}{a^2} \int \frac{dx}{1+(\frac{x}{a})^2}$ şeklinde yazılabilir.

 $\frac{x}{a} = u$ olsun. Bu durumda dx = adu olup bu değerler integralde yerine yazılırsa,

$$\int \frac{dx}{a^2 + x^2} = \int \frac{dx}{a^2 \left(1 + \left(\frac{x}{a}\right)^2\right)} = \frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{x}{a}\right)^2} = \frac{1}{a^2} \int \frac{adu}{1 + u^2} = \frac{1}{a} \arctan(u) + c = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + c$$

Örnek 9.1.1.11. $\int e^{\cos^2(x)} \sin(x) \cos(x) dx$ integralini hesaplayınız.

 $cos^2(x) = u$ olsun. Bu durumda $\frac{-du}{2} = sin(x) cos(x)$ olup bu değerler integralde yerine yazılırsa,

$$\int e^{\cos^2(x)} \sin(x) \cos(x) dx = \int e^u \cdot \frac{-du}{2} = -\frac{1}{2} \int e^u du$$
$$= -\frac{1}{2} e^u + c = -\frac{1}{2} e^{\cos^2(x)} + c$$

elde edilir.

Örnek 9.1.1.12. $\int \frac{dx}{x \ln(x)}$ integralini hesaplayınız.

Bu integral $\int \frac{dx}{x \ln(x)} = \int \frac{1}{\ln(x)} \frac{dx}{x}$ olarak yazılabilir. $\ln(x) = u$ olsun. Bu durumda $du = \frac{dx}{x}$ olup bu değerler integralde yerine yazılırsa,

$$\int \frac{dx}{x \ln(x)} = \int \frac{1}{\ln(x)} \frac{dx}{x} = \int \frac{1}{u} du = \ln|u| + c = \ln|\ln x| + c$$

Örnek 9.1.1.13. $\int \frac{e^x}{1+e^x} dx$ integralini hesaplayınız.

 $1 + e^x = u$ olsun. Bu durumda $du = e^x dx$ olup bu değerler integralde yerine yazılırsa,

$$\int \frac{e^{x}}{1+e^{x}} dx = \int \frac{du}{u} = \ln|u| + c = \ln|1+e^{x}| + c$$

elde edilir.

Örnek 9.1.1.14. $\int \frac{arcsin(x)}{\sqrt{1-x^2}} dx$ integralini hesaplayınız.

arcsin(x) = u olsun. Bu durumda $du = \frac{dx}{\sqrt{1-x^2}}$ olup bu değerler integralde yerine yazılırsa,

$$\int \frac{\arcsin(x)}{\sqrt{1-x^2}} dx = \int u du = \frac{u^2}{2} + c = \frac{\arcsin^2(x)}{2} + c$$

Köklü Fonksiyonların İntegrali

1. $\sqrt{a^2 - x^2}$ ifadesini içeren integraller:

Bu tür integraller $-\frac{\pi}{2} < u < \frac{\pi}{2}$ olmak üzere x = asinu ve dx = a.cosu.du değişken değiştirmesi ile hesaplanabilir.

Örnek 9.1.2.1. $\int \frac{dx}{\sqrt{4-x^2}}$ integralini hesaplayınız.

 $\int \frac{dx}{\sqrt{4-x^2}}$ integrali $\int \frac{dx}{\sqrt{2^2-x^2}}$ şeklinde yazılabilir. x=2. sinu ve dx=2. cosu. du değerleri integralde yerine yazılırsa,

$$\int \frac{dx}{\sqrt{4-x^2}} = \int \frac{(2\cos u)du}{\sqrt{4-4\sin^2 u}} = 2 \int \frac{\cos u.du}{\sqrt{4(1-\sin^2 u)}} = 2 \int \frac{\cos u.du}{2\sqrt{\cos^2 u}}$$
$$= \int \frac{\cos u.du}{\cos u} = \int du = u + c$$

olur. Tekrar x değişkenine dönmek için $u = arcsin \frac{x}{2}$ değeri son eşitlikte yerine yazılırsa,

$$\int \frac{dx}{\sqrt{4-x^2}} = u + c = \arcsin\frac{x}{2} + c$$

2. $\sqrt{x^2 - a^2}$ ifadesini içeren integraller:

Bu tür integraller $0 < u < \frac{\pi}{2}$ veya $\frac{\pi}{2} < u < \pi$ olmak üzere $x = \frac{a}{cosu}$ ve $dx = \frac{asinu}{cos^2u}du$ değişken değiştirmesi ile hesaplanabilir.

Örnek 9.1.2.2. $\int \frac{dx}{\sqrt{x^2-16}}$ integralini hesaplayınız.

 $\int \frac{dx}{\sqrt{x^2-16}}$ integrali $\int \frac{dx}{\sqrt{x^2-4^2}}$ şeklinde yazılabilir. $x=\frac{4}{\cos u}$ ve $dx=\frac{4\sin u}{\cos^2 u}du$ değerleri integralde yerine yazılırsa,

$$\int \frac{dx}{\sqrt{x^2 - 16}} = \int \frac{\frac{4\sin u}{\cos^2 u}}{\sqrt{\frac{4}{\cos^2 u}}} dx = \int \frac{\frac{4\sin u}{\cos^2 u}}{\sqrt{\frac{16}{\cos^2 u} - 16}} dx$$

$$= \int \frac{\frac{4\sin u}{\cos^2 u}}{\sqrt{\frac{16 - 16\cos^2 u}{\cos^2 u}}} = \int \frac{\frac{\sin u}{\cos^2 u}}{\sqrt{\frac{1 - \cos^2 u}{\cos^2 u}}} dx = \int \frac{\frac{\sin u}{\cos^2 u}}{\sqrt{\frac{\sin^2 u}{\cos^2 u}}} dx$$

$$= \int \frac{\frac{\sin u}{\cos^2 u}}{\frac{\sin u}{\cos^2 u}} dx = \int \frac{dx}{\cos u} = \ln\left|\frac{1}{\cos u} + \tan u\right| + c$$

olur. Tekrar x değişkenine dönmek için $u = \arccos \frac{4}{x}$ değeri son eşitlikte yerine yazılırsa,

$$\int \frac{dx}{\sqrt{x^2 - 16}} = \ln \left| \frac{1}{\cos(\arccos\frac{4}{x})} + \tan\left(\arccos\frac{4}{x}\right) \right| + c = \ln \left| \frac{4}{x} + \tan\left(\arccos\frac{4}{x}\right) \right| + c = \text{elde ediling}$$

3. $\sqrt{a^2+x^2}$ ifadesini içeren integraller:

Bu tür integraller $-\frac{\pi}{2} < u < \frac{\pi}{2}$ olmak üzere x = atanu ve $dx = a(1 + tan^2u)du$ değişken değiştirmesi ile hesaplanabilir.

Örnek 9.1.2.3. $\int \frac{dx}{\sqrt{4+x^2}}$ integralini hesaplayınız.

 $\int \frac{dx}{\sqrt{4+x^2}}$ integrali $\int \frac{dx}{\sqrt{2^2+x^2}}$ şeklinde yazılabilir. x=2tanu ve $dx=\frac{2}{cos^2u}du$ değerleri integralde yerine yazılırsa,

$$\int \frac{dx}{\sqrt{4+x^2}} = \int \frac{\frac{2}{\cos^2 u} du}{\sqrt{4+4\tan^2 u}} = \int \frac{\frac{2}{\cos^2 u} du}{2\sqrt{1+\tan^2 u}} = \int \frac{\frac{1}{\cos^2 u} du}{\sqrt{\frac{1}{\cos^2 u}}}$$

$$= \int \frac{\frac{1}{\cos^2 u} du}{\frac{1}{\cos u}} = \int \frac{du}{\cos u} = \ln \left| \frac{1}{\cos u} + \tan u \right| + c$$

olur. Tekrar x değişkenine dönmek için $u = \arctan\left(\frac{x}{2}\right)$ değeri son eşitlikte yerine yazılırsa,

$$\int \frac{dx}{\sqrt{4+x^2}} = \ln \left| \frac{1}{\cos(\arctan(\frac{x}{2}))} + \tan\left(\arctan(\frac{x}{2})\right) \right| + c$$

$$= \ln \left| \frac{1}{\cos(\arctan(\frac{x}{2}))} + \frac{x}{2} \right| + c$$

4. $\sqrt[ki]{ax+b}$ şeklindeki ifadeleri içeren integraller:

Bu tür integralleri hesaplamak için k_i kök kuvvetlerinin en küçük ortak katı t olmak üzere $ax+b=u^t$ dönüşümü yapılmalıdır.

Örnek 9.1.2.4. $\int (\sqrt{x+1} + \sqrt[3]{x+1}) dx$ integralini hesaplayınız.

OKEK(2,3) = 6 olduğundan $x + 1 = u^6$ dönüşümü yapılır. Buradan $dx = 6u^5du$ olup bu değerler integralde yerine yazılırsa,

$$\int (\sqrt{x+1} + \sqrt[3]{x+1}) dx = \int (\sqrt{u^6} + \sqrt[3]{u^6}) 6u^5 du$$

$$= 6 \int (u^{3} + u^{2})u^{5} du$$
$$= 6 \int (u^{8} + u^{7}) du$$
$$= 6 \left(\frac{u^{9}}{9} + \frac{u^{8}}{8}\right) + c$$

olur. $x + 1 = u^6$ ise $u = (x + 1)^{\frac{1}{6}}$ olacağından tekrar x değişkenine dönüldüğünde

$$\int (\sqrt{x+1} + \sqrt[3]{x+1}) dx = 6 \left(\frac{\left((x+1)^{\frac{1}{6}} \right)^9}{9} + \frac{\left((x+1)^{\frac{1}{6}} \right)^8}{8} \right) + c$$

$$= 6 \left(\frac{(x+1)^{\frac{3}{2}}}{9} + \frac{(x+1)^{\frac{4}{3}}}{8} \right) + c$$

Örnek 9.1.2.5. $\int_{3}^{3} \sqrt{\frac{x-2}{3}} \cdot \sqrt[4]{\frac{x-2}{3}} dx$ integralini hesaplayınız.

OKEK(4,3) = 12 olduğundan $\frac{x-2}{3} = u^{12}$ dönüşümü yapılır. Buradan $dx = 36u^{11}du$ olup bu değerler integralde yerine yazılırsa,

$$\int \sqrt[3]{\frac{x-2}{3}} \cdot \sqrt[4]{\frac{x-2}{3}} dx = \int \sqrt[3]{u^{12}} \cdot \sqrt[4]{u^{12}} 36u^{11} du$$
$$= 36 \int u^4 \cdot u^3 \cdot u^{11} du = 36 \frac{u^{19}}{19} + c$$

olur. $\frac{x-2}{3}=u^{12}$ ise $u=\left(\frac{x-2}{3}\right)^{\frac{1}{12}}$ olacağından tekrar x değişkenine dönüldüğünde

$$\int \sqrt[3]{\frac{x-2}{3}} \cdot \sqrt[4]{\frac{x-2}{3}} dx = \frac{36}{19} \left(\frac{x-2}{3}\right)^{\frac{19}{12}} + c$$

Kısmi İntegrasyon Metodu

İntegral hesaplamada kullanılan yaygın metotlardan biri de kısmi integrasyon metodudur. u ve v x'e bağlı türevli fonksiyonlar olsun. Çarpım fonksiyonunun türevinden

$$\frac{d}{dx}(u.v) = v\frac{du}{dx} + u\frac{du}{dx}$$

dir. Buradan d(uv) = vdu + udv yazılabilir. Son eşitlikte her iki tarafın integrali alınırsa

$$\int d(uv) = \int vdu + \int udv$$

ve $uv = \int v du + \int u dv$ olur. Bu durumda

$$\int u dv = uv - \int v du$$
 ya da $\int v du = uv - \int u dv$

elde edilir. Bu metotta integral u ve dv ya da v ve du biçiminde yazılmalıdır.

Örnek 9.1.3.1. $\int xe^{3x}dx$ integralini hesaplayınız.

x=u ve $e^{3x}dx=dv$ olsun. Bu durumda $v=\frac{1}{3}e^{3x}$ ve dx=du olur. Bu değerler formülde yerine yazılırsa,

$$\int xe^{3x}dx = x\frac{1}{3}e^{3x} - \int \frac{1}{3}e^{3x}dx = \frac{x}{3}e^{3x} - \frac{1}{3}\int e^{3x}dx$$
$$= \frac{x}{3}e^{3x} - \frac{1}{9}e^{3x} + c = \frac{3x-1}{9}e^{3x} + c$$

elde edilir.

Örnek 9.1.3.2. $\int x\cos(5x)dx$ integralini hesaplayınız.

x=u ve cos(5x)dx=dv olsun. Bu durumda $v=\frac{1}{5}\sin(5x)$ ve dx=du olur. Bu değerler formülde yerine yazılırsa,

$$\int x\cos(5x)dx = x.\frac{1}{5}\sin(5x) - \int \frac{1}{5}\sin(5x) dx$$
$$= \frac{x.\sin(5x)}{5} + \frac{1}{25}\cos(5x) + c$$

Örnek 9.1.3.3. $\int lnxdx$ integralini hesaplayınız.

lnx = u ve dx = dv olsun. Bu durumda $du = \frac{dx}{x}$ ve x = v olur. Bu değerler formülde yerine yazılırsa,

$$\int \ln x dx = x \ln x - \int x \frac{dx}{x} = x \ln x - \int dx = x \ln x - x + c$$

Örnek 9.1.3.4. $\int x^2 e^{4x} dx$ integralini hesaplayınız.

 $u=x^2$ ve $e^{4x}dx=dv$ olsun. Bu durumda 2xdx=du ve $v=\frac{1}{4}e^{4x}$ olur. Bu değerler formülde yerine yazılırsa,

$$\int x^2 e^{4x} dx = x^2 \frac{1}{4} e^{4x} - \int \frac{1}{4} e^{4x} 2x dx = \frac{x^2}{4} e^{4x} - \frac{1}{2} \int x e^{4x} dx$$

elde edilir. $\int xe^{4x}dx$ integralini doğrudan veren bir formül yoktur. Bu integrale tekrar kısmi integrasyon metodu uygulanabilir.

u=x ve $e^{4x}dx=dv$ olsun. Bu durumda dx=du ve $v=\frac{1}{4}e^{4x}$ olur. Bu değerler formülde yerine yazılırsa,

$$\int xe^{4x}dx = x\frac{1}{4}e^{4x} - \int \frac{1}{4}e^{4x}dx = \frac{x}{4}e^{4x} - \frac{1}{16}e^{4x} + c$$

olur. Bulunan değer $\int x^2 e^{4x} dx$ integralinde yerine yazılırsa,

$$\int x^2 e^{4x} dx = \frac{x^2}{4} e^{4x} - \frac{1}{2} \left(\frac{x}{4} e^{4x} - \frac{1}{16} e^{4x} \right) + c$$

Örnek 9.1.3.5. $\int e^x \cos(x) dx$ integralini hesaplayınız.

 $u=e^x$ ve $dv=\cos(x)\,dx$ olsun. Bu durumda $du=e^xdx$ ve $v=\sin(x)$ olur. Bu değerler formülde yerine yazılırsa,

$$\int e^x \cos(x) dx = e^x \sin x - \int \sin x e^x dx$$

elde edilir. $\int \sin x \, e^x dx$ integraline tekrar kısmi integrasyon metodu uygulanabilir.

 $u=e^x$ ve $dv=\sin(x)dx$ olsun. Bu durumda $du=e^xdx$ ve v=-cos(x) olur. Bu değerler formülde yerine yazılırsa,

$$\int \sin x \, e^x dx = -e^x \cos x - \int -\cos x e^x dx$$
$$= -e^x \cos x + \int e^x \cos x dx$$

olur. Bulunan değer yerine yazılırsa,

$$\int e^x \cos(x) dx = e^x \sin x - (-e^x \cos x + \int e^x \cos x dx)$$
$$= e^x \sin x + e^x \cos x - \int e^x \cos x dx$$

elde edilir. Yukarıdaki eşitlikte ilk ve son integral aynı olduğundan,

$$2\int e^x \cos(x) dx = e^x (\sin x + \cos x) + c$$

ve

$$\int e^x \cos(x) \, dx = \frac{e^{x(\sin x + \cos x)}}{2} + c$$

Basit Kesirlere Ayırma Metodu

 $\int \frac{p(x)}{q(x)} dx$ şeklindeki integrallerin hesabında $\frac{p(x)}{q(x)}$ ifadesi basit kesirlere ayrılarak integral daha basit hale getirilir.

Örnek 9.1.4.1. $\int \frac{dx}{x^2-x}$ integralini hesaplayınız.

 $\frac{1}{x^2-x}$ fonksiyonunu basit kesirlere ayıralım:

$$\frac{1}{x^2 - x} = \frac{A}{x} + \frac{B}{x - 1} = \frac{A(x - 1) + Bx}{x(x - 1)}$$

şeklinde yazılabilir. Buradan A=-1 ve B=1 elde edilir. Yani $\frac{1}{x^2-x}$ fonksiyonunun yerine $-\frac{1}{x}+\frac{1}{x-1}$ ifadesi kullanılabilir. Bu durumda

$$\int \frac{dx}{x^2 - x} = \int \left(\frac{-1}{x} + \frac{1}{x - 1}\right) dx = \int \frac{-1}{x} dx + \int \frac{1}{x - 1} dx$$
$$= -\ln|x| + \ln|x - 1| + c = \ln\left|\frac{x - 1}{x}\right| + c$$

Örnek 9.1.4.2. $\int \frac{dx}{x^2-4}$ integralini hesaplayınız.

 $\frac{1}{x^2-4}$ fonksiyonunu basit kesirlere ayıralım:

$$\frac{1}{x^2 - 4} = \frac{A}{x + 2} + \frac{B}{x - 2} = \frac{A(x - 2) + B(x + 2)}{(x + 2)(x - 1)}$$

şeklinde yazılabilir. Buradan $A = -\frac{1}{2}$ ve $B = \frac{1}{2}$ elde edilir. Yani $\frac{1}{x^2-4}$ fonksiyonunun yerine $-\frac{1}{x} + \frac{1}{x-1}$ ifadesi kullanılabilir. Bu durumda

$$\int \frac{dx}{x^2 - 4} = \int \left(\frac{-\frac{1}{2}}{x + 2} + \frac{\frac{1}{2}}{x - 2} \right) dx = \int \frac{-\frac{1}{2}}{x + 2} dx + \int \frac{\frac{1}{2}}{x - 2} dx$$
$$= -\frac{1}{2} \ln|x + 2| + \frac{1}{2} \ln|x - 2| = \frac{1}{2} \ln\left| \frac{x - 2}{x + 2} \right| + c$$

Örnek 9.1.4.3. $\int \frac{xdx}{(x+1)(x^2+3)}$ integralini hesaplayınız.

 $\frac{x}{(x+1)(x^2+3)}$ fonksiyonunu basit kesirlere ayıralım:

$$\frac{x}{(x+1)(x^2+3)} = \frac{A}{x+1} + \frac{Bx+C}{(x^2+3)} = \frac{A(x^2+3) + (Bx+C)(x+1)}{(x+1)(x^2+3)}$$

şeklinde yazılabilir. Buradan $A = -\frac{1}{4}$, $B = \frac{1}{4}$ ve $C = \frac{3}{4}$ elde edilir.

Yani $\frac{x}{(x+1)(x^2+3)}$ fonksiyonunun yerine $\frac{-\frac{1}{4}}{x+1} + \frac{\frac{1}{4}x + \frac{3}{4}}{(x^2+3)}$ ifadesi

kullanılabilir. Bu durumda

$$\int \frac{xdx}{(x+1)(x^2+16)} = \int \frac{-\frac{1}{4}}{x+1} dx + \int \frac{\frac{1}{4}x + \frac{3}{4}}{x^2 + 3} dx$$

$$= -\frac{1}{4} \int \frac{1}{x+1} dx + \frac{1}{4} \int \frac{x+3}{x^2 + 3} dx$$

$$= -\frac{1}{4} \int \frac{1}{x+1} dx + \frac{1}{4} \int (\frac{x}{x^2 + 3} + \frac{3}{x^2 + 3}) dx$$

$$= -\frac{1}{4} \int \frac{1}{x+1} dx + \frac{1}{4} \int \frac{x}{x^2 + 3} dx + \frac{3}{4} \int \frac{1}{x^2 + 3} dx$$

$$= -\frac{1}{4} \ln|x + 1| + \frac{1}{8} \ln|x^2 + 3| + \frac{\sqrt{3}}{4} \arctan\left(\frac{\sqrt{3}}{3}x\right) + c$$

Örnek 9.1.4.4. $\int \frac{x^2 dx}{(x+2)^3}$ integralini hesaplayınız.

 $\int \frac{x^2 dx}{(x+2)^3}$ fonksiyonunu basit kesirlere ayıralım:

$$\frac{x^2 dx}{(x+2)^3} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3}$$
$$= \frac{A(x+2)^2 + B(x+2) + C}{(x+2)^3}$$

şeklinde yazılabilir. Buradan A = 1, B = -4 ve C = 4 elde edilir.

Bu durumda

$$\int \frac{x^2 dx}{(x+2)^3} = \int \left(\frac{1}{x+2} + \frac{-4}{(x+2)^2} + \frac{4}{(x+2)^3}\right) dx$$

$$= \int \frac{1}{x+2} dx + \int \frac{-4}{(x+2)^2} dx + \int \frac{4}{(x+2)^3} dx$$

$$= \ln|x+2| + \left(-4\right) \frac{(x+2)^{-1}}{-1} + 4 \frac{(x+2)^{-2}}{-2}$$

$$= \ln|x+2| + \frac{4}{(x+2)} - \frac{2}{(x+2)^2} + c$$

Örnek 9.1.4.5. $\int \frac{x^2 dx}{x^2 - 4x + 3}$ integralini hesaplayınız.

 $\frac{x^2}{x^2-4x+3}$ fonksiyonunu basit kesirlere ayıralım, fonksiyonun pay ve paydasının derecesi eşit olduğundan $\frac{x^2}{x^2-4x+3}=1+\frac{4x-3}{x^2-4x+3}$ olarak yazılabilir. Bu durumda

$$\int \frac{x^2 dx}{x^2 - 4x + 3} = \int \left(1 + \frac{4x - 3}{x^2 - 4x + 3} \right) dx = \int dx + \int \frac{4x - 3}{x^2 - 4x + 3} dx$$
$$= x + 2 \ln|x^2 - 4x + 3| + \frac{5}{2} \ln|x - 3| - \frac{5}{2} \ln|x - 1| + c$$

Örnek 9.1.4.6. $\int \frac{x^4 dx}{x^2 - 16}$ integralini hesaplayınız.

 $\frac{x^4}{x^2-16}$ fonksiyonunu basit kesirlere ayıralım, fonksiyonun payının derecesi paydasının derecesinden büyük olduğundan payı paydaya bölersek,

$$\frac{x^4}{x^2 - 16} = x^2 + 16 + \frac{256}{x^2 - 16}$$

olur. Bu durumda

$$\int \frac{x^4}{x^2 - 16} dx = \int (x^2 + 16 + \frac{256}{x^2 - 16}) dx = \int (x^2 + 16) dx + \int \frac{256}{x^2 - 16} dx$$

$$= \frac{x^3}{3} + 16x + 256 \int \frac{dx}{x^2 - 16}$$

$$= \frac{x^3}{3} + 16x + 256 \int \left(\frac{-1}{8x + 32} + \frac{1}{8x - 32}\right) dx$$

$$= \frac{x^3}{3} + 16x - 32 \ln|x + 4| + 32 \ln|x - 4| + c$$

$$= \frac{x^3}{3} + 16x + 32 \ln\frac{|x - 4|}{|x + 4|} + c \qquad \text{elde edilir.}$$

Trigonometrik Fonksiyonların İntegrasyonu

Bazı özel durumlar için trigonometrik fonksiyonların integralini hesaplamak kolay olabilir. Bu tür integraller daha çok $k, t \in \mathbb{N}$ olmak üzere $\int sin^k(x).cos^t(x)dx$ şeklindedir. Bu integraller genel olarak değişken değiştirme ile çözülebilir.

Örnek 9.1.5.1. $\int cos^4(x)sin^3(x)dx$ integralini hesaplayınız.

$$\int \cos^4(x)\sin^3(x)dx = \int \cos^4(x)\sin(x)\sin^2(x)dx$$
$$= \int \cos^4(x)(1-\cos^2(x))\sin(x)dx$$

olur. $u = \cos(x)$ ve $du = -\sin(x)dx$ dönüşümü yapılırsa,

$$\int \cos^4(x)\sin^3(x)dx = \int u^4 (1 - u^2)(-du)$$

$$= -\int (u^4 - u^6)du = \frac{-u^5}{5} + \frac{u^7}{7} + c$$

$$= -\frac{(\cos(x))^5}{5} + \frac{(\cos(x))^7}{7} + c$$

Örnek 9.1.5.2. $\int cos^3(x)sin^3(x)dx$ integralini hesaplayınız.

$$u = \cos(x)$$
 ve $du = -\sin(x)dx$ dönüşümü yapılırsa,

$$\int \cos^3(x)\sin^3(x)dx = \int \cos^3(x)\sin(x)\sin^2(x)dx$$

$$= \int \cos^3(x)(1-\cos^2(x))\sin(x)dx$$

$$= \int u^3(1-u^2)(-du) = -\int (u^3-u^5)du$$

$$= -\frac{u^4}{4} + \frac{u^6}{6} + c = -\frac{\cos^4(x)}{4} + \frac{\cos^6(x)}{6} + c$$

Örnek 9.1.5.3. $\int \cos^2(x) \sin^2(x) dx$ integralini hesaplayınız.

Verilen integralde,

$$cos^{2}(x) = \frac{1 + cos(2x)}{2}$$
 ve $sin^{2}(x) = \frac{1 - cos(2x)}{2}$

eşitlikleri kullanılırsa

$$\int \cos^2(x)\sin^2(x)dx = \int \left(\frac{1+\cos(2x)}{2}\right) \left(\frac{1-\cos(2x)}{2}\right) dx$$

$$= \frac{1}{4} \int (1+\cos(2x)) \left(1-\cos(2x)\right) dx = \frac{1}{4} \int \left(1-\cos^2(2x)\right) dx$$

$$= \frac{1}{4} \int dx - \frac{1}{4} \int \cos^2(2x) = \frac{x}{4} - \frac{1}{4} \int \left(\frac{1+\cos(4x)}{2}\right) dx$$

$$= \frac{x}{4} - \frac{1}{8} \int (1+\cos(4x)) dx = \frac{x}{4} - \frac{x}{8} - \frac{\sin(4x)}{32} + c$$

$$= \frac{x}{8} - \frac{\sin(4x)}{32} + c$$

Uyarı 9.1.5.1. Trigonometrik integrallerde sık tercih edilen metotlardan biri de $u = tan\left(\frac{x}{2}\right)$, $sin(x) = \frac{2u}{1+u^2}$, $cos(x) = \frac{1-u^2}{1+u^2}$ ve $dx = \frac{2du}{1+u^2}$ değişken değiştirme metodudur.

Örnek 9.1.5.4. $\int \frac{dx}{\cos x}$ integralini hesaplayınız.

$$\int \frac{dx}{\cos x} = \int \frac{\frac{2du}{1+u^2}}{\frac{1-u^2}{1+u^2}} = \int \frac{1+u^2}{1-u^2} \frac{2du}{1+u^2} = \int \frac{2du}{1-u^2} = \int \left(\frac{1}{1-u} + \frac{1}{1+u}\right) du$$

$$= -\ln|1-u| + \ln|1+u| + c$$

$$= \ln\left|\frac{1+u}{1-u}\right| + c = \ln\left|\frac{1+\tan(\frac{x}{2})}{1-\tan(\frac{x}{2})}\right| + c$$

Örnek 9.1.5.5.** $\int \frac{dx}{\sin x}$ integralini hesaplayınız.

Çözüm:

$$\int \frac{dx}{\sin x} = \left\{ u = tg\left(\frac{x}{2}\right), \sin x = \frac{2u}{1 + u^2}, dx = \frac{2du}{1 + u^2} \right\} =$$

$$=\int \frac{\frac{2du}{1+u^2}}{\frac{2u}{1+u^2}} = \int \frac{du}{u} = \ln(u) + c = \ln\left(tg\left(\frac{x}{2}\right)\right) + c$$

Şimdi de aynı örneği farklı bir yaklaşımla çözelim.

$$\int \frac{dx}{\sin x} = \int \frac{1}{\sin x} dx = \int \frac{\cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)}{2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)} dx$$

$$= \int \frac{\cos^2\left(\frac{x}{2}\right)}{2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)} dx + \frac{\sin^2\left(\frac{x}{2}\right)}{2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)} dx$$

$$= \int \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} d\left(\frac{x}{2}\right) + \int \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} d\left(\frac{x}{2}\right)$$

$$= \begin{cases} \sin\left(\frac{x}{2}\right) = u, & \cos\left(\frac{x}{2}\right) d\left(\frac{x}{2}\right) = du \\ \cos\left(\frac{x}{2}\right) = v, & -\sin\left(\frac{x}{2}\right) d\left(\frac{x}{2}\right) = dv \end{cases}$$

$$= \int \frac{du}{u} - \int \frac{dv}{v} = \ln(u) - \ln(v) + c$$

$$= \ln\left(\sin\left(\frac{x}{2}\right)\right) - \ln\left(\cos\left(\frac{x}{2}\right)\right) + c = \ln\left(tg\left(\frac{x}{2}\right)\right) + c$$

Örnek 9.1.5.4 deki $\int \frac{dx}{\cos x}$ integralini Örnek 9.1.5.5.** den yararlanarak çözünüz.

 $\int \frac{dx}{\cos x}$ integralinde $\cos x = \sin\left(x + \frac{\pi}{2}\right)$ olduğu göz önüne alınarak Örnek **9.1.5.5.**** örneğine dönüştürmek mümkündür.

Örnek 9.1.5.5. $\int \frac{dx}{1+\sin x+\cos x}$ integralini hesaplayınız.

$$\int \frac{dx}{1+\sin x + \cos x} = \int \frac{\frac{2du}{1+u^2}}{1+\frac{2u}{1+u^2} + \frac{1-u^2}{1+u^2}} = \int \frac{\frac{2du}{1+u^2}}{\frac{2(1+u)}{1+u^2}}$$

$$= \int \frac{du}{1+u} = \ln|1+u| + c = \ln|1+\tan(\frac{x}{2})| + c \quad \text{elde edilir.}$$

Örnek 9.1.5.6. $\int \frac{dx}{3-5\sin x}$ integralini hesaplayınız.

$$\int \frac{dx}{3-5\sin x} = \int \frac{\frac{2du}{1+u^2}}{3-5\left(\frac{2u}{1+u^2}\right)}$$

$$= \int \frac{2du}{3(1+u^2)-5.2u} = \int \frac{2du}{3u^2-10u+3}$$

$$= \int \frac{2du}{(3u-1)(u-3)} = \int \left(\frac{-\frac{3}{4}}{3u-1} + \frac{\frac{1}{4}}{u-3}\right) du$$

$$= -\frac{3}{4}\ln|3u-1| + \frac{1}{4}\ln|u-3| + c$$

$$= \frac{1}{4}\ln\left|\frac{u-3}{(3u-1)^3}\right| + c = \frac{1}{4}\ln\left|\frac{\tan(\frac{x}{2})-3}{(3\tan(\frac{x}{2})-1)^3}\right| + c$$

Kaynaklar:

- 1. G. B. Thomas ve Ark., **Thomas Calculus I**, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.
- 2. Prof. Dr. C. Çinar, Prof. Dr. İ. Yalçınkaya, Prof. Dr. A. S. Kurbanlı, Prof. Dr. D. Şimşek, **Genel Matematik**, Dizgi Ofset, 2013.
- 3. Prof. Dr. İ. Yalçınkaya, **Analiz III Diziler ve Seriler,** Dizgi Ofset, 2017.
- 4. H. İ. Karakaş, **Matematiğin Temelleri, Sayı Sistemleri ve Cebirsel Yapılar,** ODTÜ yayınları, 2011.