课前任务单

第6章第2次

完成日期: 2021-11-26

班级					
学习目标	 了解图的十字链表(有向图)、邻接多重表(无向图) 理解图的深度优先搜索和广度优先搜索的算法思想 能阐明图的连通相关的概念 能运用 Prim 算法和 Kruskal 算法构造图的最小生成树 				
本节学习路径	学习内容	时间要才	考核	要素	
	在 SPOC 平台完成课程 6.3-6.4 视频内容的学习		完成	完成课前任务单	
	自学超星平台栈拓展资源		学习	进度	
	完成图的 PTA 实验		РТА	成绩	
慕课内容思考问题	 如何进行图的深度优先搜索? 如何进行图的广度优先搜索? 如何根据 Prim 算法求最小生成树? 如何根据 Kruskal 算法求最小生成树? 用 Prim 和 Kruskal 两种算法构造图的最小生成树,所得到的最小生成树是相同的吗? 				
课堂讨论题目	1. 已知图的邻接表,分别给出用深度优先搜索和广度优先搜索从顶点 3 出发的遍历序列。 1. 已知图的邻接表,分别给出用深度优先搜索和广度优先搜索从顶点 3 出发的遍历序列。 2. 对下图用两种方法求最小生成树 1. 已知图的邻接表,分别给出用深度优先搜索和广度优先搜索从顶点 3 出发的遍历序列。 2. 对下图用两种方法求最小生成树				
	25 4 22 3				

本次访问的顶点序列:
A E G F H B D C
其它的顶点访问序列:
A F G E H B D C
A B C D E G H F

不可能的顶点访问序列: AECFHBDG

1、 2、

BFS (Breadth First Search)

本次访问的顶点序列:
A E F B G H D C 其它的顶点访问序列:
A B F E C D H G
A F B E H G C D
......
不可能的顶点访问序列:
A E F B C D H G

1. 普里姆(**prim**) 算法 以选 顶点为主

对n个顶点的连通网,初始时, T=(U,TE) ,U为一个开始顶点, $TE=\Phi$,以后根据MST性质,每次增加一个顶点和一条边,重复n-1次。U不断增大,V —U不断减小直到为空。

集合U

集合V-U

例: 从A出发

2. 克鲁斯卡尔 (Kruskai)算法,以选边为主

需要将边按递增次序排列以供选择。

网G

最小生成树T

2

克鲁斯卡尔 (Kruskai)算法的另一最小生成树

5、权值一样,生成树一样

