Indirect Image Orientation

All Slides Courtesy of:

Dr. Derek Lichti
University of Calgary

Indirect image orientation

Resection Example

▶ Input data

Image Point Observations (reduced to PP)				
ID	x (mm)	y (mm)		
30	106.399	90.426		
40	18.989	93.365		
50	98.681	-62.769		
112	9.278	-92.926		

Control Point Co-ordinates						
ID X (m) Y (m) Z (m)						
30	7350.27	4382.54	276.42			
40	6717.22	4626.41	280.05			
50	6905.26	3279.84	266.47			
112	6172.84	3269.45	248.10			

Other Information	
c (mm)	152.150
Approximate image format size (mm x mm)	229 x 229
$\sigma_{\rm obs} (\mu {\rm m})$	15

Image point distribution

Object point distribution

Derived quantities

Approximate parameter values			
X^{c} (m) 6338.6			
$Y^{c}(m)$	3984.6		
$\mathbf{Z}^{c}\left(\mathbf{m}\right)$	1453.1		
ω (°)	0		
φ (°)	0		
κ (°)	-18.854		

Convergence tolerances			
Tol _{coords} (m)	0.012		
Tol _{tilt} (°)	0.00056		
$\operatorname{Tol}_{\kappa}(^{\circ})$	0.00053		

▶ Partial solution—first iteration

A matrix						
	X ^c	Y ^c	Z ^c	ω	ф	κ
X ₃₀	-0.12237	0.041786	-0.09108	12.92595	236.1245	90.96798
y 30	-0.04179	-0.12237	-0.07731	-174.751	127.3797	-107.166
X40	-0.12275	0.041915	-0.01669	38.45985	150.3037	94.64906
y 40	-0.04192	-0.12275	-0.08069	-195.772	79.7179	-19.5723
X ₅₀	-0.12134	0.041435	-0.08255	107.3491	190.7664	-62.0362
y 50	-0.04144	-0.12134	0.052279	-180.831	19.54384	-97.9609
X ₁₁₂	-0.11949	0.040804	-0.00778	54.73177	142.6969	-92.2175
y 112	-0.0408	-0.11949	0.076529	-198.716	61.8539	-9.37397

w vector (mm)			
X 30	0.76747		
y 30	0.54198		
X40	0.58334		
y 40	1.28406		
X ₅₀	-0.72014		
y 50	0.73276		
X ₁₁₂	0.09597		
y 112	0.70854		

▶ Final solution—after 3 iterations

Other quantities		
RMS_{vx} (mm)	0.014	
RMS _{vy} (mm)	0.015	
Redundancy	2	
Variance factor	3.771	

Residual vector v (mm)			
$\mathbf{x_{30}}$ -0.010			
y 30	0.024		
X40	0.024		
y 40	-0.014		
X ₅₀	-0.012		
y 50	0.000		
X ₁₁₂	-0.002		
y 112	-0.010		

Partial solution—after 3 iterations

Parameters and standard deviations					
X^{c} (m) 6349.488 0.323					
Y^c (m) 3965.252 0.536					
$\mathbf{Z}^{c}\left(\mathbf{m}\right)$	1458.095	0.154			
ω (°)	0.98846	0.01879			
φ (°)	0.40706	0.01387			
κ (°)	-18.90485	0.00680			

Correlation coefficient matrix of the parameters						
	X ^c	Y ^c	Z ^c	ω	ф	κ
X ^c (m)	1				•	
Y ^c (m)	0.00	1				
$\mathbf{Z}^{c}\left(\mathbf{m}\right)$	0.69	-0.18	1			
ω (°)	0.07	-0.99	0.25	1		
φ (°)	0.97	-0.13	0.79	0.20	1	
κ (°)	-0.18	-0.77	0.01	0.72	-0.07	1

Precision estimates are NOT scaled by the estimated variance factor

Questions for Discussion

- Comment on the precision of the exterior orientation parameters
- Why is ω correlated with Y^c?
- Why is ϕ correlated with X^c ?
- What is the cause of these correlations?
- How could the solution be improved?
- How should the convergence tolerances be set?

Partial Derivative Analysis

column 2 / column 4 column 2 / column 6

Partial Derivative Analysis (cont'd)

