第九章 概率模型第25讲事参数估计

黄定江

DaSE @ ECNU djhuang@dase.ecnu.edu.cn

- 1 25.1 直方图估计
- 25.2 核密度估计
- ③ 25.3 非参数回归估计
- 4 25.4 CDF 和统计泛函的估计

- 1 25.1 直方图估计
- 2 25.2 核密度估计
- ③ 25.3 非参数回归估计
- ④ 25.4 CDF 和统计泛函的估计

25.1.1 直方图估计的定义

定义 1

直方图可以定义为:

$$\widehat{f}_n(x) = \begin{cases} \widehat{p}_1/h, & x \in B_1 \\ \widehat{p}_2/h, & x \in B_2 \\ \dots \\ \widehat{p}_m/h, & x \in B_m \end{cases}$$

或者可以写的更简洁:

$$\widehat{f}_n(x) = \sum_{i=1}^m \frac{\widehat{p}_j}{h} I(x \in B_j)$$

25.1.1 直方图举例

直方图将输入空间划分为 m 个箱子 (bin), 箱子的宽度为 h=1/m 则这些箱子为 $B_1=[0,1/m)$, $B_2=[1/m,2/m)$, \cdots , $B_m=[(m-1)/m,1)$ 计算落入箱子 b 中的样本的数目 V_b , 落入箱子 b 的比率为 $\hat{p}_b=V_b/N$ 则直方图估计为

$$\hat{p}(x) = \sum_{b=1}^{m} \frac{\hat{p}_b}{h} \mathbf{1}(x \in B_b) = \frac{1}{N} \sum_{b=1}^{M} \frac{v_b}{h} \mathbf{1}(x \in B_b)$$

其中 $\mathbf{1}(x \in B_b)$ 表示当 $x \in B_b$ 时其值为 1, 否则为 0

- 1 25.1 直方图估计
- 25.2 核密度估计
- ③ 25.3 非参数回归估计
- ④ 25.4 CDF 和统计泛函的估计

25.2.1 核密度估计定义

直方图是不连续的。核密度估计较光滑且比直方图估计较快地收敛到真正的密度。

定义 2

给定一个核 K 与一个正数 h, 称作带宽, 核密度估计定义为

$$\widehat{f}_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

其中,参数 h 称为带宽 (bandwidth),核函数可为任意平滑的函数 K,满足

$$K(u) > 0, \qquad \int K(u) du = 1$$

$$\int uK(u) du = 0, \qquad \sigma_K^2 = \int u^2 K(u) du > 0$$

25.2.1 核密度举例

令 $X1,\cdots,Xn$ 表示观测数据,它们来自 f 的一个样本. 在本章中,核定义为任意一个光滑函数 K 使得 $K(x)\geqslant 0$, $\int K(x)\mathrm{d}x=1$, $\int xK(x)\mathrm{d}x=0$ 并且 $\sigma_K^2=\int x^2K(x)\mathrm{d}x>0$ 。核的两个例子分别为 Epanechnikov 核

$$K(x) = \begin{cases} \frac{3}{4} \left(\frac{1 - x^2}{5} \right) / \sqrt{5}, & |x| < \sqrt{5} \\ 0, &$$
其他

与高斯 (正态) 核

$$K(x) = (2\pi)^{-1/2} e^{-x^2/2}$$

25.2.1 平滑参数 h 的定理

定理1

在 f 和 K 的弱假设下,

$$R\left(f,\widehat{f}_n\right) \approx \frac{1}{4}\sigma_K^4 h^4 \int \left(f''(x)\right)^2 dx + \frac{\int K^2(x)dx}{nh}$$

其中, $\sigma_K^2 = \int x^2 K(x) dx$ 。最优的带宽为

$$h^* = \frac{c_1^{-2/5} c_2^{1/5} c_3^{-1/5}}{n^{1/5}}$$

其中,
$$c_1 = \int x^2 K(x) dx$$
, $c_2 = \int K(x)^2 dx$ 且 $c_3 = \int (f'(x))^2 dx$

证明略。

- 1 25.1 直方图估计
- 2 25.2 核密度估计
- ③ 25.3 非参数回归估计
- ④ 25.4 CDF 和统计泛函的估计

25.3.1 一元非参数回归

考虑点对 $(x_i, Y_i), \dots, (x_n, Y_n)$, 其关系为

$$Y_i = r(x_i) + \epsilon_i$$

其中, $E(\epsilon_i)=0$, $r(x_i)=E(Y|X)$ 。感兴趣的是如何求出 $r(x_i)$ 。 存在很多非参数回归估计。大多数涉及通过对 Y 取某种加权平均来估计 r(x),对靠近 x 的点给予更高的权重。一个常用的估计就是所谓 Nadaraya-Watson 核估计。

25.3.1 Nadaraya-Watson 核估计

定义 3

Nadaraya-Watson 核估计定义为

$$\widehat{r}(x) = \sum_{i=1}^{n} w_i(x) Y_i$$

其中, K 为一个核且其权重 $w_i(x)$ 由下式给出:

$$w_i(x) = \frac{K\left(\frac{x - x_i}{h}\right)}{\sum_{j=1}^n K\left(\frac{x - x_j}{h}\right)}$$

核密度回归还有另一种写法:

$$r(x) = \mathbb{E}(Y \mid X = x) = \int y f(y \mid x) dy = \frac{\int y f(x, y) dy}{\int f(x, y) dy}$$

25.3.1 核估计举例

例 1

图 1给出了的宇宙微波背景 (CMB) 数据的拟合情况. 该数据包含了 n 对观察值 $(x_1,Y_1),\cdots,(x_n,Y_n)$, 其中, x_i 称作多极矩, Y_i 称作温度变化功率谱估计。所看到的是宇宙微波背景辐射中的声波,这是从宇宙大爆炸中留下来的。若令 r(z) 表示真正的功率谱,则

$$Y_i = r(x_i) + \epsilon_i$$

其中, ϵ_i 是一个均值为 0 的随机误差。r(z) 峰值的位置和大小为了解早期宇宙的状况提供了有价值的线索. 图 1给出了基于交叉验证的拟合,既有一个欠光滑的拟合也有一个过光滑的拟合。交叉验证拟合表明了三个定义好的峰值的存在,恰如大爆炸的物理学理论所预测的那样。

Frame Title

图 1: CMB 数据的回归分析

- ① 25.1 直方图估计
- ② 25.2 核密度估计
- ③ 25.3 非参数回归估计
- 4 25.4 CDF 和统计泛函的估计

25.4.1 经验分布函数

令 $X_1, \dots, X_n \sim F$ 为 IID 样本,其中,F 为实直线上的分布函数,将用经验分布函数估计 F,定义如下:

定义 4

经验分布函数 E 指在每一个数据点 X_i 上的概率密度为 $\frac{1}{n}$ 的 CDF,用公式表示为

$$\hat{F}_n(x) = \frac{\sum_{i=1}^n I(X_i \leqslant x)}{n}$$

其中,

$$I(X_i \leqslant x) = \begin{cases} 1, & X_i \leqslant x \\ 0, & X_i > x \end{cases}$$

25.4.1 经验分布函数举例

(神经数据) Cox 和 Lewis(1966) 报告了一种神经两次起搏之间的等待时间,共有 799 个数据。图2为经验的 CDF \hat{F}_n ,数据点以垂直直线体现在图的底部。假设要估计等待时间在 0.4 到 0.6 秒之间的概率,估计值为 $\hat{F}(0.6) - \hat{F}(0.4) = 0.93 - 0.84 = 0.09$ 。

图 2: 神经数据

25.4.1 CDF 定理

定理 2

在任意固定点 x 有

$$\mathbb{E}\left(\hat{F}_n(x)\right) = F(x)$$

$$\mathbb{V}\left(\hat{F}_n(x)\right) = \frac{F(x)(1 - F(x))}{n}$$

$$MSE = \frac{F(x)(1 - F(x))}{n} \to 0$$

$$\hat{F}_n(x) \stackrel{P}{\to} F(x)$$

定理3

(Glivenko-Cantelli 定理)
$$X_1, \cdots, X_n \sim F$$
,则
$$\sup_x \left| \hat{F}_n(x) - F(x) \right| \stackrel{p}{\to} 0$$

25.4.1 CDF 定理

定理 4

(Dvoretzky-Kiefer-Wolfowitz(DKW) 不等式) 令 $X_1, \cdots, X_n \sim F$, 则对任意 $\epsilon > 0$ 有

$$\mathbb{P}\left(\sup_{x} \left| F(x) - \hat{F}_n(x) \right| > \epsilon \right) \le 2e^{-2n\epsilon^2}$$

通过 DKW 不等式,可以按如下方式建立置信集:

25.4.1 CDF 定理

定义:

$$L(x) = \max \left\{ \hat{F}_n(x) - \epsilon_n, 0 \right\}$$

$$U(x) = \min \left\{ \hat{F}_n(x) + \epsilon_n, 1 \right\}$$

其中,

$$\epsilon = \sqrt{\frac{1}{2n} \log \left(\frac{2}{\alpha}\right)}$$

对任意 F, 由4得

$$\mathbb{P}(\$$
对所有 $x, L(x) \leqslant F(x) \leqslant U(x)) \geqslant 1 - \alpha$

例 2

图2的虚线给出了 95% 置信带, 其中, $\epsilon_n = \sqrt{\frac{1}{2n} \log \left(\frac{2}{0.05}\right)} = 0.048$

统计泛函的举例

统计泛函 T(F) 是 F 的任意函数,例如,均值 $\mu=\int x\ \mathrm{d}F(x)$,方差 $\sigma^2=\int (x-\mu)^2dF(x)$,中位数 $m=F^{-1}(1/2)$ 。

定义 5

 $\theta = T(F)$ 的的嵌入式估计量定义为

$$\hat{\theta}_n = T(\hat{F}_n)$$

换言之,就是用经验分布函数 $\hat{F}n$ 代替未知函数 F。

定义 6

如果对函数 r(x) 有 $T(F) = \int r(x) dF(x)$, 则称 T 为线性泛函。

线性泛函的嵌入式估计量

定理5

线性泛函 $T(F) = \int r(x) dF(x)$ 的嵌入式估计量为

$$T(\hat{F}_n) = \int r(x)d\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n r(X_i)$$

例 3

(均值) 令 $\mu=T(F)=\int x\,\mathrm{d}F(x)$,则均值的嵌入式估计量为 $\hat{\mu}=\int x\,\mathrm{d}\hat{F}_n(x)$,标准误差 $\mathrm{se}=\sqrt{\mathrm{V}}\left(\bar{X}_n\right)=\sigma/\sqrt{n}$,如果 $\hat{\sigma}$ 表示 σ 的估计,则估计的标准误差为 $\hat{\sigma}/\sqrt{n}$,的基于正态的 置信区间为 $\bar{X}_n\pm z_{\alpha/2}\,\mathrm{se.}$ 。