CPU, memorija i mrežna infrastruktura

3. PREDAVANJE

Sadržaj

- > Dodjela CPU resursa
- Dodjela memory resursa
- Uloga mrežne infrastrukture

CPU Scheduler

- > CPU scheduler je najbitniji dio sustava za dodjelu CPU resursa virtualnim mašinama
- ➤ Ima više funkcija:
 - > scheduliranje vCPU-ova na CPU-ove i jezgre
 - > provodi nekakvu vrstu proportional-share algoritma
 - > podržava SMP virtualne mašine
 - > koristi relaxed co-scheduling za SMP virtualne mašine
- > CPU scheduler je svjestan NUMA funkcionalnosti, kao i topologije procesora i cache memorije

Worlds

- World je execution context koji se izvršava na CPU-u.
- VM je kolekcija više world-ova:
 - > jedan za svaki vCPU
 - jedan za VM mouse, keyboard i screen
 - > jedan za VMM servis
- ➤ CPU scheduler bira koji world će se schedulirati na kojem procesoru

CPU Scheduler funkcije

- > CPU scheduler alocira CPU resurse i koodrinira korištenje CPU-a.
- > CPU scheduler koristi dinamičko, transparentno alociranje CPU resursa:
 - > radi scheduling vCPU-a na pCPU-ovima
 - provjerava pCPU utilization level svakih 2-40ms i migrira vCPU po potrebi

CPU Scheduler: podrška za SMP virtualke

- ▶ primjera radi, VMware ESXi™ koristi co-scheduling optimiziran za efikasno izvršavanje SMP virtualnih mašina
- > Co-scheduling tehnika za scheduliranje procesa na različitim procesorima u isto vrijeme:
 - > u bilo kojem trenutku, bilo koji vCPU može biti scheduled, descheduled, blocked itd.
 - uzima u obzir clock skew (razliku u brzini izvršavanja između dva ili više vCPU-a u SMP virtualnoj mašini)
 - vCPU skew se povećava ako jedan proces ne napreduje a neki drugi proces na drugom vCPU-u napreduje

eno računarstvo

 za vCPU kažemo da je skewed ako je kulumativni skew veći od treshold nivoa

CPU Scheduler Feature: NUMA-Aware

- > svaki CPU na NUMA hostu ima lokalnu memoriju na jednom ili više lokalnih memorijskih kontrolera:
 - procesi koji su pokrenuti na CPU-u mogu pristupiti svojoj lokalnoj memoriji brže nego memoriji na remote CPU-u
 - u situaciji kada veliki postotak VM mašine nije lokalan kažemo da imamo loš NUMA locality
 - > NUMA scheduler radi restrikciju u smislu scheduliranja vCPUova na jednom socketu zbog korištenja lokaliteta i cachea

Virtual Memory Overview

A ruming/mintual macimemory.

Guest "Physical" Memory

Host "Physical" Memory

Virtual Machine Memory Management

- VM starta bez fizičke memorije
- fizička memorija hosta se alocira na zahtjev
 - Guest OS ne radi alokaciju eksplicitno, već kroz prvi pristup memoriji (read ili write)

application

Memory Reclamation tehnike

- hipervizor koristi memory-reclamation da bi oslobodio fizičku memoriju:
 - > TPS (Transparent page sharing)
 - Balooning (VMware Tools)
 - > Memory compression
 - Host-level swapping
 - 💌 brza reklamacija memorije, ali veliki performance overhead
- > ove tehnike nam omogućuju da napravimo memory overcommitment

Uloga mreže

- > Čemu služi
- > Organizacija dinamična ili statična
- ➤ Cilj:
 - > Performanse
 - > Stabilnost
 - > Sigurnost

Vrste virtualnih switcheva, npr.VMware

- > 1. Standardni switch vrste konekcija:
 - > VM port grupe
 - > VMkernel portovi
 - IP storage, VMware vSphere® vMotion® migration, VMware vSphere® Fault Tolerance, VMware Virtual SAN™, and VMware vSphere® Replication™

Distributed Switch Architecture

Feature comparison

Feature	Standard Switch	Distributed Switch
Layer 2 switch	✓	✓
VLAN segmentation	✓	✓
IPv6 support	✓	✓
802.1Q tagging	✓	✓
NIC teaming	✓	✓
Outbound traffic shaping	✓	✓
Inbound traffic shaping		✓
Configuration backup and restore		✓
Private VLANs		✓
Link Aggregation Control Protocol		✓
Data center-level management		✓
Network vMotion		✓
Network I/O Control		✓
Per-port policy settings		✓
Port state monitoring		✓
NetFlow		✓
Port mirroring		✓

Prisjetimo se (3)

- >802.1Q
 - > Tagiranje paketa
 - > *Raspon od 1 do 4095*
 - > Modificira frame MTU
 - > L2 segmentacija
 - > Trunk portovi

Prisjetimo se (4)

> PVLAN

- > Opet 802.1Q
- > Efikasnije korištenje ID-eva
- > 3 vrste PVLAN-ova
 - ***** Promiscues
 - **Community**
 - × Isolated

Prisjetimo se (5)

> MTU

- > Dužina paketa
- > 1500 bytes default
- > Jumbo frames do 9000
- > Efikasnost
- > Prednost na brzim mrežama

MTU: Maximum Transmission Unit

Prisjetimo se (6)

> LAG

- Više fizičkih u jedan logički
- > Statički ili dinamički (LACP)
- > Bolji bandwith

