Package 'SDR causal'

June 30, 2020

Maintainer Mohammad Ghasempour <mohammad.ghasempour@umu.se> **Description** Provides two semiparametric estimators, imp.ate and ipw.ate.

Version 0.3.0

Date 2020-06-11

Title SDRcausal

Index

Author Filip Edstrom [aut, cre]

Encoding UTF-8	
Imports stats, ggplot2	
Suggests nloptr	
LazyData true	
License GPL (>= 2)	
RoxygenNote 7.1.0	
NeedsCompilation yes	
needs Compilation yes	
R topics documented:	
	2
aipw.ate	
aipw.var	
aipw2.ate	
b10_fun	
b_fun	
cms.ps.semi	
cms.semi	
example_data	
imp.ate	
imp.val	
imp.var	
imp2.var	16
ipw.ate	17
ipw.var	19
nw_kernel_regress	21
plot_imp	22
plot_ipw	23
ns semi	23

26

2 aipw.ate

aipw.ate

Combines IPW and IMP estimators to form the augmented IPW, AIPW

Description

Augmented IPW (AIPW) as in Ghosh, Ma, & De Luna (2020).

Usage

```
aipw.ate(y, treated, imp, ipw)
```

Arguments

у	Observed response
treated	Binary vetor indicating treatment
imp	imp_output object from imp.ate()
ipw	<pre>ipw_output object from ipw.ate()</pre>

Value

Average treatment effect (ATE) for the augmented IPW (AIPW)

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates</pre>
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
            explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
            bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 8,</pre>
           bwc_prop_score = 8)
# Calculate the Augmented IPW (AIPW)
aipw <- SDRcausal::aipw.ate(y, trt, imp, ipw)</pre>
```

aipw.var 3

aipw.var

Estimates Augmented Inverse Probability variance

Description

Variance of the Augmented IPW as in Ghosh, Ma, & De Luna (2020).

Usage

```
aipw.var(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale1,
    bandwidth_scale0,
    bandwidth_scale_pr,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001,
    num_deriv_h = 1e-08,
    verbose = FALSE
)
```

Arguments

Х Covariate matrix У Response vector treated Binary vetor indicating treatment imp imp_output object from imp.ate() ipw ipw_output object from ipw.ate() bandwidth_scale1 Scaling of the calculated bandwidth, m1 bandwidth_scale0 Scaling of the calculated bandwidth, m0 bandwidth_scale_pr Scaling of the calculated bandwidth, pr kernel Specifies which kernel function to be used explicit_bandwidth Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/5)}$. gauss_cutoff Cutoff value for Gaussian kernel num_deriv_h Step size of numerical derivative. verbose Specifies if the program should print output while running.

Value

The variance of Augmented IPW

4 aipw2.ate

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::aipw.var(x, y, trt, imp, ipw,</pre>
           bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0,
           bandwidth_scale_pr = ipw$bw_pr)
```

aipw2.ate

Improved Augmented IPW (IAIPW)

Description

Combines IPW and IMP estimators to form the improved augmented IPW, IAIPW as in Ghosh, Ma, & De Luna (2020).

Usage

```
aipw2.ate(y, treated, imp, ipw)
```

Arguments

У	Observed response
treated	Binary vetor indicating treatment
imp	imp_output object from imp.ate()
ipw	ipw_output object from ipw.ate()

b10_fun 5

Value

Average treatment effect (ATE) for the improved augmented IPW (IAIPW)

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates</pre>
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
            explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
            bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the Improved Augmented IPW (AIPW2)
iaipw <- SDRcausal::aipw2.ate(y, trt, imp, ipw)</pre>
```

b10_fun

Calculates B1/0

Description

Calculates Eq 2.8 or 2.10 in Ghosh, Ma, & De Luna (2020).

Usage

```
b10_fun(x, treated, dm, beta, kernel, bandwidth, gauss_cutoff)
```

Arguments

x Projection of covariate matrix on CMS
 treated Binary vector indicating treatment.
 dm Derivative of imputed values

beta CMS

kernel Specifies which kernel function to be used bandwidth Specifies if bandwidth_scale will be used as the

gauss_cutoff Cutoff value for Gaussian kernel

6 cms.ps.semi

Value

B1/0 matrix

b_fun Calculates B1/0

Description

Calculates Eq 2.8 or 2.10 in Ghosh, Ma, & De Luna (2020).

Usage

b_fun(x, treated, alpha_hat, h, kernel, bandwidth, bandwidth_pr, verbose)

Arguments

x Projection of covariate matrix on CMS

treated Treated

alpha_hat Derivative of imputed values

h CMS

kernel Specifies which kernel function to be used

bandwidth Kernel bandwidth

bandwidth_pr Kernel bandwidth for probability

verbose Specifies if the program should print output while running.

Value

B1/0 matrix

cms.ps.semi Estimates the Central Mean Space (CMS)

Description

Semiparametric estimation of the Central Mean Space (CMS) as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::ps.semi().

cms.ps.semi 7

Usage

```
cms.ps.semi(
    x,
    treated,
    alpha_initial,
    solver = "optim",
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    gauss_cutoff = 0.001,
    penalty = 10,
    n_before_pen = 5,
    root_tol = 0.001,
    n_threads = 1,
    verbose = FALSE,
    ...
)
```

Arguments

	a	
V	Covariate	matrix
^	Covarian	шашл

treated Binary vetor indicating treatment

alpha_initial Initial guess of CMS

solver Specifies which solver to be used. Current options optim and cobyla (from nloptr

package).

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used explicitly as the bandwidth.

bandwidth_scale

Scaling of the calculated bandwidth, or in case of explicit bandwidth = TRUE

the bandwidth.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if a probability is outside (0, 1). Added to the function

value in optim as: penalty^(n), where n is the number of probabilities outside

(0, 1).

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

root_tol Tolerance which makes the program warn if optim stops at at a value higher than

 $root_tol.$

n_threads Sets number of threads for parallel run. Set to 0 serial. If n_threads exceeds max-

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to $n_{threads}$ to $max_{threads}$ of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to solver.

Value

A list containing the final alpha, bandwwidth used, and the output of optim

8 cms.semi

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

```
[stats::optim]
```

Examples

cms.semi

Estimates the Central Mean Space (CMS)

Description

Semiparametric estimation of the Central Mean Space (CMS) as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::imp.val().

Usage

```
cms.semi(
  Х,
  у,
  treated,
  beta_initial,
  solver = "optim",
  kernel = "EPAN",
  explicit_bandwidth = FALSE,
  bandwidth_scale = 1,
  gauss_cutoff = 0.001,
  penalty = 10,
  n_before_pen = 1,
  root_tol = 0.001,
  n_{threads} = 1,
  verbose = FALSE,
)
```

cms.semi 9

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment

beta_initial Initial guess of CMS

solver Specifies which solver to be used. Current options optim and cobyla (from nloptr

package).

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/5)}$

bandwidth_scale

Scaling of the bandwidth or the actual bandwidth if explicit bandwidth.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if local linear regression fails. Added to the function

value in solver as: penalty^(n - n_before_pen), where n is the number of llr fails.

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

root_tol Tolerance which makes the program warn if optim stops at at a value higher than

root_tol.

n_threads Sets number of threads for parallel run. Set to 0 serial. If n_threads exceeds max-

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to n_threads to max_threads of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to optim.

Value

A list containing the final beta, the bandwidth used, a warning if optim does not converge or converges to a value that is larger than root_tol, and the output of optim.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

[stats::optim]

```
# Using example data from package SDRcausal
library(SDRcausal)
```

```
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
```

imp.ate

example_data

Example data

Description

Data generated as in paper, study 1. Using the betas in betas data. Use beta1/0 for imputation as the initial guess of the central mean space (CMS) and alpha as the initial guess of the CMS for IPW.

Format

Data used in examples of the SDRcausal package

- covariatescovariate matrix
- · outcomesobserved outcome vector
- · treatedbinary treatment vector
- beta1_guessStarting guess for CMS for treated
- beta0_guessStarting guess for CMS for untreated
- alpha_guessStarting guess for CMS for propensity score

imp.ate

Estimates Average Treatment Effect (ATE) by imputation (IMP)

Description

Semiparametric estimation of the average treatment effect based on the imputation method described in Ghosh, Ma, & De Luna (2020).

imp.ate 11

Usage

```
imp.ate(
 Х,
 у,
  treated1,
 beta_guess1,
  beta_guess0,
  solver = "optim",
  kernel = "EPAN",
  explicit_bandwidth = FALSE,
  recalc_bandwidth = FALSE,
 bwc_dim_red1 = 1,
 bwc_impute1 = 1,
 bwc_dim_red0 = 1,
 bwc_impute0 = 1,
  gauss_cutoff = 0.001,
 penalty = 10,
 n_before_pen = 5,
  to_extrapolate = TRUE,
  to_truncate = TRUE,
 extrapolation_basis = 5,
 n_{threads} = 1,
  verbose = TRUE,
)
```

Arguments

x Covariate matrixy Response vector

treated1 Binary vector indicating treatment.

beta_guess1 Initial guess of beta for m1 beta_guess0 Initial guess of beta for m0

solver Specifies which solver to be used. Current options optim and cobyla (from nloptr

package).

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as $bw = bandwidth_scale * sd(x * beta) * n^(1/3)$.

recalc_bandwidth

Specifies wheter the bandwidth should be recalculated after the estimation of alpha (cms ps semi)

alpha (cms.ps.semi).

bwc_dim_red1 Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth. For dimension reduction (cms.semi).

bwc_impute1 Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

bandwidth. Recalculated if explicit_bandwidth = FALSE and recalc_bandwidth

= TRUE. For imputation.

bwc_dim_red0 See bwc_dim_red1

imp.ate

bwc_impute0	See bwc_impute1	
gauss_cutoff	Cutoff value for Gaussian kernel	
penalty	Penalty for the optimizer if local linear regression fails. Added to the function value in solver as: penalty $^(n - n_before_pen)$, where n is the number of llr fails.	
n_before_pen	Number of probabilities outside the range (0, 1) to accept during dimension reduction.	
to_extrapolate	Specifies wheter to extrapolate or not	
to_truncate	Specifies wheter to extrapolate or not	
extrapolation_basis		
	Number of data point to base extrapolation on.	
n_threads	Sets number of threads for parallel run. Set to 0 serial. If n_threads exceeds maximum number of threads, sets n_threads to max_threads - 1. To use max_threads, set to n_threads to max_threads of system.	
verbose	Specifies if the program should print output while running.	
	Additional parameters passed to optim.	

Value

A list containing the average treatment effect of the combination of observed and imputed values (ate), the average treatment effect based on the imputed values only (ate2), the imputed values for treated (m1) and untreated treated (m0), the and the output from optim (op).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

```
[stats::optim]
```

imp.val

imp.val

Estimates imputed values based on CMS

Description

Performs semiparametric imputation based on the CMS calculated by cms.semi, as in Ghosh, Ma, & De Luna (2020).

Usage

```
imp.val(
    x,
    y,
    treated,
    beta_hat,
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    gauss_cutoff = 0.001,
    to_extrapolate = TRUE,
    to_truncate = TRUE,
    extrapolation_basis = as.integer(5),
    verbose = FALSE
)
```

Arguments

Covariate matrix Χ Response vector У treated Binary vetor indicating treatment beta_hat Locally efficient CMS kernel Specifies which kernel function to be used explicit_bandwidth Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$ bandwidth_scale Kernel bandwidth gauss_cutoff Cutoff value for Gaussian kernel to_extrapolate Specifies wheter to extrapolate or not Specifies wheter to extrapolate or not to_truncate extrapolation_basis

Number of data point to base extrapolation on.

verbose Specifies if the program should print output while running

Value

A list containing the reduced space xb, the imputed values and their derivatives.

14 imp.var

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates</pre>
y <- SDRcausal::outcomes
trt1 <- SDRcausal::treated</pre>
n <- as.integer(dim(x)[1])</pre>
trt0 <- as.integer(rep(1, times = n) - trt1)</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
# Perform semiparametric dimension reduction for treated
cms1 <- SDRcausal::cms.semi(x, y, trt1, b1,</pre>
           explicit_bandwidth = 1, bandwidth_scale = 1)
# Perform semiparametric dimension reduction for untreated
cms0 <- SDRcausal::cms.semi(x, y, trt0, b0,</pre>
           explicit_bandwidth = 1, bandwidth_scale = 1)
# Perform semiparametric imputation for treated
m1 <- SDRcausal::imp.val(x, y, trt1, cms1$fb,</pre>
         explicit_bandwidth = 1, bandwidth_scale = cms1$bw)
# Perform semiparametric imputation for untreated
m0 \leftarrow SDRcausal::imp.val(x, y, trt0, cms0$fb,
         explicit_bandwidth = 1, bandwidth_scale = cms0$bw)
```

imp.var

Estimates IMP variance

Description

Variance of the IMP as in Ghosh, Ma, & De Luna (2020).

imp.var

Usage

```
imp.var(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale1,
    bandwidth_scale0,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001
)
```

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment imp imp_output object from imp.ate() ipw_output object from ipw.ate()

bandwidth_scale1

Scaling of the calculated bandwidth, or in case explicit_bandwidth the actual

bandwidth. For m1 and beta1.

bandwidth_scale0

See bandwidth_scale1. For m0 and beta0.

kernel Specifies which kernel function to be used

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

gauss_cutoff Cutoff value for Gaussian kernel

Value

Variance of IMP

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated
b1 <- SDRcausal::beta1_guess</pre>
```

imp2.var

imp2.var

Estimates IMP2 variance

Description

Variance of IMP2 as in Ghosh, Ma, & De Luna (2020).

Usage

```
imp2.var(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale1,
    bandwidth_scale0,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001
)
```

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment imp imp_output object from imp.ate() ipw_output object from ipw.ate()

bandwidth_scale1

Scaling of the calculated bandwidth, or in case explicit_bandwidth the actual bandwidth. For m1 and beta1.

bandwidth_scale0

See bandwidth_scale1. For m0 and beta0.

ipw.ate 17

Value

Variance of IMP

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::imp2.var(x, y, trt, imp, ipw,</pre>
           bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0)
```

ipw.ate

Estimates average treatment effect through IPW

Description

Semiparametric estimation of the average treatment effect based on the IPW method described in Ghosh, Ma, & De Luna (2020).

18 ipw.ate

Usage

```
ipw.ate(
 Х,
 у,
  treated,
  alpha_initial,
  kernel = "EPAN"
  explicit_bandwidth = FALSE,
  recalc_bandwidth = TRUE,
  bwc_dim_red = 1,
  bwc_prop_score = 10,
  gauss\_cutoff = 0.001,
 penalty = 10,
 n_before_pen = 1,
 n_{threads} = 1,
  verbose = TRUE,
)
```

Arguments

x Covariate matrixy Response vector

treated Binary vector indicating treatment.

alpha_initial Initial guess of beta for m1

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

recalc_bandwidth

Specifies wheter the bandwidth should be recalculated after the estimation of

alpha (cms.ps.semi)

bwc_dim_red Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth. For dimension reduction (cms.ps.semi).

bwc_prop_score Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

bandwidth. Recalculated if explicit_bandwidth = FALSE and recalc_bandwidth

= TRUE. For propensity score.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if a probability is outside (0, 1) during dimension re-

duction. Added to the function value in solver as: penalty^(n - n_before_pen),

where n is the number of probabilities outside (0, 1).

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

 $n_threads$ Sets number of threads for parallel run. Set to 0 serial. If $n_threads$ exceeds max-

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to n threads to max threads of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to optim.

ipw.var

Value

A list containing the average treatment effect (ate), the propensity score (pr), the final alpha (fa), and the output from optim (op).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

```
[stats::optim]
```

Examples

ipw.var

Estimates IPW variance

Description

Variance of the IPW as in Ghosh, Ma, & De Luna (2020).

Usage

```
ipw.var(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001,
    num_deriv_h = 0.001,
    verbose = FALSE
)
```

20 ipw.var

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment imp imp_output object from imp.ate() ipw ipw_output object from ipw.ate()

bandwidth_scale

Scaling of the calculated bandwidth, or in case of

kernel Specifies which kernel function to be used

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

gauss_cutoff Cutoff value for Gaussian kernel num_deriv_h Step size of numerical derivative.

verbose Specifies if the program should print output while running.

Value

The variance of IPW

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::ipw.var(x, y, trt, imp, ipw,</pre>
           bandwidth_scale = ipw$bw_pr)
```

nw_kernel_regress 21

nw_kernel_regress

The Nadaraya-Watson kernel estimator

Description

Gives the expected value of Y given X = x by kernel regression according to the Nadaraya-Watson kernel estimator to get E(Y|X). Note that y and x may be vectors or matrices, as long as dim(x)[1] = dim(y)[1].

Usage

```
nw_kernel_regress(
   y,
   x,
   bandwidth = 1,
   kernel = "EPAN",
   gauss_cutoff = 0.001,
   verbose = FALSE
)
```

Arguments

 $\begin{array}{ll} y & Y \text{ in } E(Y|X) \\ x & X \text{ in } E(Y|X) \\ \text{bandwidth} & \text{Kernel bandwidth} \end{array}$

kernel Indicates which kernel function to be used

gauss_cutoff Cutoff value for Gaussian kernel

verbose Specifies if the program should print output while running.

Value

Value of kernel regression

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes

# Extimating y given x, E(y | x)
k <- nw_kernel_regress(y, x, bandwidth = 1)</pre>
```

plot_imp

plot_imp

Plots imputation output

Description

Plot function for visualisation of imputation output from imp.ate. Note: The function requires ggplot2.

Usage

```
plot_imp(x, y, treated, imp)
```

Arguments

X	Covariate matrix
У	Response vector
treated	Binary vetor indicating treatment
imp	imp_output object from imp.ate()

Value

A list of ggplot plots of observed and imputed values (pl_imp), imputed treated values vs CMS (pl_m1), and imputed untreated values vs CMS (pl_m0).

plot_ipw 23

plot_ipw

Plots IPW output

Description

Plot function for visualisation of IPW output from ipw.ate. Note: The function requires ggplot2.

Usage

```
plot_ipw(treated, ipw)
```

Arguments

treated Binary vetor indicating treatment ipw ipw_output object from ipw.ate()

Value

ggplot plot of the propensity score vs CMS.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated
b1 <- SDRcausal::beta1_guess
b0 <- SDRcausal::beta0_guess
alp <- SDRcausal::alpha_guess
# Perform semiparametric imputation
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 8, bwc_prop_score = 8)

# Plotting
plots <- plot_ipw(trt, ipw)</pre>
```

ps.semi

Estimates propensity score

Description

Semiparametric estimation of the propensity score as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::cms.ps.semi().

ps.semi

Usage

```
ps.semi(
    x,
    treated,
    alpha_hat,
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    verbose = FALSE
)
```

Arguments

x Covariate matrix

treated Binary vetor indicating treatment

alpha_hat Locally efficient CMS kernel Kernel specification

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

bandwidth_scale

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth.

verbose Specifies if the program should print output while running.

Value

A list containing the estimated propensity scores values and their derivatives, and the bandwidth used.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

ps.semi 25

Index

```
*Topic data
      example_data, 10
aipw.ate, 2
aipw.var, 3
aipw2.ate, 4
b10_fun, 5
b_fun, 6
{\tt cms.ps.semi}, {\color{red} 6}
{\sf cms.semi}, 8
\verb|example_data|, 10
\texttt{imp.ate}, \textcolor{red}{10}
\texttt{imp.val}, \textcolor{red}{13}
imp.var, 14
imp2.var, 16
ipw.ate, 17
ipw.var, 19
nw\_kernel\_regress, \textcolor{red}{21}
{\tt plot\_imp,\, 22}
plot_ipw, 23
ps.semi, 23
```