

Capacitação em Inteligência Artificial e Aplicações

Introdução às Redes Neurais: Perceptron Simples

- Prof. Gerson Vieira Albuquerque Neto
- Prof. Rodrigo Carvalho Souza Costa
- Prof. Yves Augusto Romero

Planejamento da Disciplina

D	S	Т	Q	Q	S	S
26	27 Introdução ao curso	28 Áreas e aplicações de IA	29 Tipos e definições de Inteligência artificial	30 Revisão de álgebra e probabilidade	31 Laboratório Python 1	1
2	Introdução aos classificadores supervisionados	4 Aula teórica Naive Bayes	5 Aula prática Naive Bayes	6 Feriado Semana Santa	7 Feriado Semana Santa	8
9	10 KNN + Métricas de Avaliaçã o	11 Regressão Linear e e Introdução à árvores de decisão	12 Prática Regressão Lienar + Árvores de Decisão	13 Feriado	14 Introdução à Clusterização + KMédias	15
16	Falta de Energia Campus Fortaleza	18 PCA / Hiperparâmetros	19 Introdução ao Perceptron Simples – Prática	20 MLP	21 Feriado Tiradentes	28
23	24 Introdução ao DeepLearning	25 Introdução ao TensorFlow / Keras	26 Introdução ao Pytorch	27 Tensorflow for android	28	29

Objetivos da Aula

- Após a conclusão deste módulo, você será capaz de:
 - Descrever a definição e o desenvolvimento de redes neurais;
 - Compreender sobre os componentes essenciais para as redes neurais de aprendizagem profunda;

0

Revisão: Algoritmos de Machine Learning

- Introdução às Redes Neurais

Introdução

- O cérebro humano é um computador (sistema de processamento de informação) altamente complexo, não-linear e paralelo que tem a capacidade de realizar processamentos (HAYKIN, 2001).
- Atualmente, a definição da rede neural ainda não foi determinada.
 - Uma rede neural como um sistema de computador composto de elementos de processamento simples e altamente interconectados, que processam informações por resposta dinâmica a entradas externas (NIELSEN, 1989)
 - Sistemas paralelos distribuídos composto por unidades de processamento simples que calculam determinadas funções matemáticas disposta em uma ou mais camadas e interligadas por um grande número de conexões (BRAGA, 2000)

Neurônio

 Uma rede neural pode ser simplesmente expressa como um sistema de processamento de informações projetado para imitar a estrutura e as funções do cérebro humano com base em sua fonte, características e explicações.

recebe os estímulos transmitidos pelos outros neurônios e conduz até o corpo celular

responsável por transmitir os estímulos para outras células

coleta e combina informações vindas de outros neurônios

Axônio

Exemplo: Classificação de Segurança Alimentar

- Imagine que uma pessoa está tentando decidir se um alimento é seguro para consumo ou não, com base em informações obtidas pelos sentidos.
- O neurônio pode ser visto como um processador de informações, que recebe entradas (por exemplo, informações sensoriais sobre o alimento) e produz uma saída (por exemplo, uma decisão sobre a segurança do alimento)

Neurônio Artificial

 Uma rede neural pode ser simplesmente expressa como um sistema de processamento de informações projetado para imitar a estrutura e as funções do cérebro humano com base em sua fonte, características e explicações.

Evolução Histórica

Evolução Histórica

Deep Learning

 Geralmente, a arquitetura de aprendizagem profunda é uma rede neural profunda. "Profundo" em "aprendizagem profunda" refere-se ao número de camadas da rede neural.

Perceptron

Deep neural network

Diferentes Redes neurais

A mostly complete chart of

- Introdução às Redes Neurais
- Perceptron Simples

Rede Neural Artificial

- Formada por neurônios artificiais conectados uns aos outros, a rede neural extrai e simplifica a microestrutura e as funções do cérebro humano.
- É uma abordagem importante para simular a inteligência humana e refletir várias características básicas das funções cerebrais humanas, como processamento simultâneo de informações, aprendizado, associação, classificação de modelos e memória.

Perceptron de camada única (Simples)

- Vetor de entrada: $\mathbf{X} = [x_0, x_1, ..., x_n]^T$
- Peso: $\mathbf{W} = [\boldsymbol{\omega_0}, \boldsymbol{\omega_1}, ..., \boldsymbol{\omega_n}]^T$, em que $\boldsymbol{\omega_0}$ é o bias (viés).
- Função de ativação: $\mathbf{O} = \mathbf{sign}(net) = \begin{cases} 1, \text{net} > 0, \\ -1, \text{otherwise.} \end{cases}$

$$net = \sum_{i=0}^{n} \boldsymbol{\omega_i} x_i = \mathbf{W}^T \mathbf{X}$$

Propagação dos sinais pelo neurônio

- Cada neurônio recebe na entrada números de ponto flutuante (por exemplo, 1,0, 0,5, -1,0) e os multiplica pelos valores dos pesos que são também números de ponto flutuante (por exemplo, 0,7, 0,6, 1,4), resultando em entradas ponderadas.
 - Os pesos atuam como um mecanismo para se concentrar ou ignorar certas entradas.
- As entradas ponderadas são então somadas (por exemplo, 0,7 + 0,3 + -1,4 = -0,4) juntamente com um valor de viés (exemplo, -0,1, resultando em uma saída igual à -0,5.
- O valor somado (x) é agora transformado em um valor de saída (y) de acordo com a função de ativação do neurônio (y = f(x)).

Perceptron de camada única (Simples)

- O perceptron anterior é equivalente a um classificador. Ele usa o vetor X de alta dimensão como entrada e executa a classificação binária em amostras de entrada no espaço de alta dimensão.
 - O Quando $W^TX > 0$, O = 1. Neste caso, as amostras são classificadas em uma classe.
 - O Caso contrário, 0 = -1. Neste caso, as amostras são classificadas na outra classe.

A fronteira de decisão entre as duas classes é $W^TX = 0$, que é um hiperplano de alta dimensão.

Classification poir Ax + B = 0 Classification line Ax + By + C = 0

Classification pla x + By + Cz + D = dução

Funções de Ativação Clássicas:

Função Limiar

(t constante)

$$f(x) = \begin{cases} 1, & x < t \\ 0, & x \ge t \end{cases}$$

Função Linear (k constante) $f(x) = k \cdot x$

Função sigmóide

$$f(x) = \frac{1}{1 + exp(-x)}$$

Tangente Hiperbólica $f(x) = tan^{-1}(x)$

Problema do OU Exclusivo (XOR)

 Em 1969, Minsky, um matemático americano e pioneiro da IA, provou que um perceptron é essencialmente um modelo linear que só pode lidar com problemas de classificação linear, mas não pode processar dados não-lineares.

Introdução às Redes Neurais: Perceptron Simples

Instituto Iracema

PESQUISA E INOVAÇÃO

MLP

Dúvidas?

Módulo de Inteligência Artificial

