Class 10: Structural Bioinformatics Pt 1

Bernice Lozada (A16297973)

What's in the PDB Database?

The main repository of biomolecular structure info is the PDB <www.rcsb.org>.

This database contains:

```
pdb_csv <- read.csv("Class10.csv", row.names = 1)
pdb_csv</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	161,663	12,592	12,337	200	74	32
Protein/Oligosaccharide	9,348	2,167	34	8	2	0
Protein/NA	8,404	3,924	286	7	0	0
Nucleic acid (only)	2,758	125	1,477	14	3	1
Other	164	9	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	186,898					
Protein/Oligosaccharide	11,559					
Protein/NA	12,621					
Nucleic acid (only)	4,378					
Other	206					
Oligosaccharide (only)	22					

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

First need to get rid of the commas - can you find a function to get rid of the commas?

```
x <- pdb_csv$X.ray
as.numeric(sub(",","",x))</pre>
```

```
[1] 161663 9348 8404 2758 164 11
```

Let's write a function for this and then use apply() to work on the entire table of data.

```
sumcomma <- function(x) {</pre>
  sum(as.numeric(sub(",","",x)))
apply(pdb_csv, 2, sumcomma)
        X.ray
                              EM
                                               NMR Multiple.methods
        182348
                           18817
                                             14173
                                                                  230
       Neutron
                           Other
                                             Total
            79
                              37
                                            215684
(apply(pdb_csv, 2, sumcomma))/sumcomma(pdb_csv$Total) *100
                              EM
                                               NMR Multiple.methods
        X.ray
                                                          0.10663749
  84.54405519
                     8.72433746
                                        6.57118748
                           Other
       Neutron
                                             Total
```

0.03662766 0.01715473 100.00000000

84.5% of structures are solved by X-ray and 8.7% are solved by electron microscopy.

Q2: What proportion of structures in the PDB are protein?

```
pdb_total <- sumcomma(pdb_csv$Total)
(as.numeric(sub(",","",pdb_csv[1, "Total"])))/pdb_total</pre>
```

[1] 0.8665362

0.86 of the structures in the PDB are protein.

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

There are about 0.0075118 structures in the PDB.

Visualizing the HIV-1 protease structure

I want to insert my image from Mol* here.

Here, I insert my image with the Asp in both Chain A and B as spacefill into the program.

Working with the bio3d package

```
library(bio3d)
pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file

pdb

Call: read.pdb(file = "1hsg")</pre>
```

```
Total Models#: 1
     Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  pdbseq(pdb)[25]
25
"D"
```

Predicting functional motions of a single structure

We can do a bioinformatic prediction of functional motions (i.e. flexibility/dynamics):

```
pdb_1 <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

# Normal mode analysis = NMA
   m <- nma(pdb_1)

Building Hessian... Done in 0.063 seconds.
Diagonalizing Hessian... Done in 0.581 seconds.</pre>
```

plot(m)

Writes a pdb file to working directory
mktrj(m, file="adk_m7.pdb")