MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 4º ANO

EICO039 | MÉTODOS FORMAIS EM ENGENHARIA DE SOFTWARE | 2014-15 - 1° SEMESTRE

Consultation restricted to the "Alloy quick reference". Duration: 50 minutes.

ent name:_	Number
11.2 points] For each question, mark with a cross (X) the correct answer	
Each correct	answer is graded 1.6 points. Each incorrect answer is graded-0.4 points.
a) Pixels alv	vays have three components:ed, greenand blue A possible translation to Allo y would be:
sig F	ixel { } sig Red, Green, Blue extends Pixel { }
enum	Component { Red, Green, Blue } sig Pixel { components: Component -> Int }
sig F	ixel { Red : Int, Green: Int, Blue: Int }
All th	e previous answers are correct
b) In an Un that in Alloy	iversity, a School has several Departments, but a Department belongs to just one schooHow to trans?
	Iniversity { schools: some School, deps : Department some - > one schools }
_	Ini versity { schools: some School, deps : schools -> Department }
_	Iniversity { schools: some School, deps : schools some -> one Department }
_	Iniversity { schools: some School, deps : schools 1* ->1 Department }
9	, (,
c) What is th	ne converse (\sim R) of the binary relation R = {(a,b),(b,c),(c,b)} ?
~R = {	(a,b),(b,a),(b,c),(c,b)
~R = {(a,b),(b ,c), (c ,b), (a,a),(b ,b) ,(c,c)}
~R = {(o,a),(c,b),(b ,c)}
~R = {(o,c),(c,b) }
d) Given R1	$=\{(a,a),(a,b),(b,c)\}$ and $R2=\{(a),($ c) $\}$ what is the value of the restiction R1:> R2?
R1 :>	$R2 = \{(a,a)\}$
R1 :>	$R2 = \{(a,a,a),(a,a,c)\}$
	$2 = \{(a,a),(b,c)\}$
	$2 = \{(a,a),(a,b)\}$
111.211	2 – ((0,0),(0,0)
e) Given R1	={(a,b),(b, b) } , R2={(a,a)} and R3={(b , a)} what is the value of(R1 ++ R2) + R3?
{(a,b),(l	p,b),(a,a),(b,a) }
{(a ,a)	(b,b),(b,a) }
{(a,a) ,(b,a) }
None o	f the previous answers is correct
f) Consider	a graph definition where each node has a set of adjacent nodesig Node { adjacent : set Node
	onnected if there is a path from every node to any otherode. How to express that constraint in Alloy?
fact	connected { iden in ^ adjacent }
fact	connected { all disj n1, n2: Node n2 in n1.^ adjacent }
fact	connected { all n1: Node n1 in n1.* adjacent }
All the	previous answers are correct
g) Given sig	g Exam{grades: Student - >lone Int} , how can we obtain the pairs(exam, studen) that recei
fun r	
fun r	
fun res	
	of the previous answers are correct

```
sig Account {}
   abstract sig Transaction { amount: Int }
   sig Deposit, Withdrawal extends Transaction
                                                      -- A transaction is either a deposit
                                                          or a withdrawal
    sig Client {
     accounts: | Some | Account, -- a client can access several accounts (1 or more)
0.4
0.4
                            set
                                  Account, -- but can't withdraw from all of them (0..*)
     withdrawPrivileges:
0.6
     balance: Account | set
                            ->
                                   lone | Int -- the amount each account currently has
0.6
                                  -> | set | Transaction -- a list of all account movements
     transactions: Account one
   pred invariants[c: Client] {
     -- the balance of an account should never be lower than 0
       all n : Account.balance | n >= 0
0.6
      - a client can only withdraw from accounts she has access to
      withdrawPriviliges in accounts
0.6
        a client only has balance from accounts she has access to
       balance. Int in accounts
0.6
    -- transaction t withdraws quantity q from account a of client c,
    -- resulting in a new state c'
   pred withdraw[c, c': Client, a: Account, qty: Int, t: | Transaction
      -- pre-conditions (without using predicate invariants)
           (TODO)
1.4
      -- post-conditions (without using predicate invariants)
       (TODO)
1.6
    -- gives the total balance of a client c
    fun totalBalance[c: Client] : Int {
        sum a: c.accounts | c.balance[a]
0.8
   assert withdraw preserves invariants {
     all c, c': Client, account: Account, qty: Int, t: Transaction |
        -- if one withdraws from a consistent client
0.4
        (invariants[c] and | withdraw[c,c',a, qy,
                                                       t]
        -- one ends up with a new consistent client state
0.4
              invariants[c']
   }
```

check withdraw preserves invariants

2. [8.8 points] Fill in the empty blocks.

Good luck!