Homework 5

Mark Archual | MTH 515

Dr. Scott | Real Analysis

2/20/2019

Problem 2.4.1

Original Solution

Part A

Show the sequence is bounded and monotone.

Monotone

$$x_2 = \frac{1}{4-3} = 1$$

Thus $x_2 < x_1$ and the induction is grounded.

$$x_{n+1} \le x_n$$

$$4-x_{n+1} \geq 4-x_n$$

$$\frac{1}{4-x_{n+1}} \leq \frac{1}{4-x_n}$$

Thus $x_{n+1} \leq x_n.$ Inductive step complete and the sequence is decreasing.

Bounded

Try $a_n>rac{1}{4}$

$$a_1=3>\frac{1}{4}$$

Suppose $a_n > \frac{1}{4}$ for some $n \geq 1$.

$$\frac{1}{4-a_n} > \frac{1}{4}$$

Thus the sequence is bounded.

Part B

If x_n exists, then we can use induction to show x_{n+1} exists. Alternatively, x_{n+1} can be thought of as a subsequence of x_n and because x_n converges, x_{n+1} converges as well.

Part C

$$lim x_{n+1} = lim rac{1}{4-x_n}$$

Let $lim x_{n+1} = l$.

$$l=rac{1}{4-limx_n}$$
 $l=rac{1}{4-l}$ $l(4-l)=1$

$$l^2 - 4l + 1 = 0$$

$$(l+2)^2 - 3 = 0$$

$$l = \sqrt{3} - 2$$

Self-Evaluation

Part A

A small mistake in the conclusion, I should have stated $x_{n+2} \leq x_{n+1}$

Part B

My answer here differs, but I believe the fact about subsequences would hold here and be correct.

Part C

Bad algebra mistake here on finding the square root. I was close!

Problem 2.4.3

Original Solution

Part B

Let
$$(a_n) = \sqrt{2}, \sqrt{2\sqrt{2}}, etc.$$

If (a_n) converges, then it is bounded and monotone.

 (a_n) is monotone

$$a_2=\sqrt{2\sqrt{2}}>\sqrt{2}$$

The induction is grounded.

Suppose by way of induction that

$$a_{n+1}>a_n$$

 $\text{ for some } n \geq 1.$

$$2*a_{n+1} > 2*a_n$$

$$\sqrt{2*a_{n+1}} > \sqrt{2*a}$$

$$a_{n+2} > a_{n+1}$$

Inductive step complete.

Find the limit.

$$lim(a_{n+1}) = lim(a_n)$$

Let
$$lim(a_{n+1}) = l$$

$$l=lim(\sqrt{2*a_n})$$

$$l=\sqrt{2*lim(a_n)}$$

We know that $lim(a_{n+1}) = lim(a_n) = l$

$$l = \sqrt{2 * l}$$

$$l^2 = 2l$$

$$l^2 - 2l = 0$$

Thus l is either 0 or 2. We know the sequence is increasing so 0 does not make sense.

$$l=2$$

Self-Evaluation

Somehow I neglected to include the evaluation of the limit for the sequence. I have added my original work above.

Problem 2.4.6

Original Solution

Part A

For any two positive real numbers,

$$(x-y)^2 \geq 0$$
 $(x+y)^2 - 4xy \geq 0$ $(x+y)^2 \geq 4xy$ $(x+y) \geq 2\sqrt{xy}$

$$\frac{x+y}{2} \ge \sqrt{xy}$$

Part B

Part B I ran out of time and was a bit confused on. I was not sure if the problem was telling me that the sequence values of the one limit, fed into the recursion of the other, or not.

Self-Evaluation

Part B

I see that I was mistaken and that the terms of the two sequences do not interact with each other. I think the book could have maybe done a better job here with the notation, but regardless I could have done some more critical thinking here. I see that the key was utilizing the known relationships between x_n and y_n and using the MCT to show they converge.

Problem 2.5.2

Original Solution

Part A

This is true and is a result of Theorem 2.5.2.

Part B

This is false. To be able to say that (x_n) diverges, at least two divergent subsequences need to be found.

Part C

This is true and is a result of Theorem 2.5.2.

Part D

This is true and is a result of Theorem 2.5.5.

Self-Evaluation

Parts B and C

I got parts B and C a little confused in my analysis. I remebered us going over Part C in class, and I relied on that example a little too heavily for Part B. In Part B, I was thinking that the subsequence just converged to a different term than the overall sequence, not that it diverged all together. I now see why B is simply the contrapositive of Theorem 2.5.2.

Expanding on Part C, I could have given more background to my answer but I assumed that since it was stated pretty explicitly in the text that we could simply refer back to the claim that was made there.

Part D

Looks like I needed to read the question more carefully and see that the sequence was not bounded. The solution presented makes sense.

Problem 2.6.4

Original Solution

Part A

Let $c_n = |a_n - b_n|$

If a_n is cauchy, then $orall rac{\epsilon}{2} > 0, \exists N_1 \in \mathbb{N}$ s.t. for $m,n \geq N_1$

$$|a_n-a_m|<\frac{\epsilon}{2}$$

If b_n is cauchy, then $orall rac{\epsilon}{2} > 0, \exists N_2 \in \mathbb{N}$ s.t. for $m,n \geq N_2$

$$|b_n-b_m|<\frac{\epsilon}{2}$$

Let $N=max(N_1,N_2)$, then c_n is cauchy if for $n,m\geq N, \exists \epsilon>0$ s.t.

$$|c_n-c_m|<\epsilon$$
 $|c_n-c_m|=||a_n-a_m|+|b_n-b_m||$

$$|c_n-c_m| \leq |a_n-a_m| + |b_n-b_m|$$

- -

$$|c_n-c_m|=rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$$

Thus c_n is cauchy.

Part B

 c_n is not cauchy because it does not converge. The odd and even terms will converge to different values. For example if a_n was $\frac{n}{n+1}$ the even terms would converge to 1 and the odd terms to -1.

Part C

 c_n is not cauchy. If $a_n=rac{(-1)^n}{n}$ then the even terms converge to 0 and the odd terms converge to -1.

Self-Evaluation

Part A

My answer here takes a different approach, but I believe still holds.

External References