Université Cadi Ayyad Faculté des Sciences Semlalia Département de Physique Marrakech

Année universitaire 2009/2010 Filières : SMPC et SMA S1

Module: Physique 1

Demi module: Thermodynamique

TD de thermodynamique Série 3

Exercice 1:

Au cours d'une transformation réversible élémentaire d'un corps pur sous une seule phase, la quantité de chaleur élémentaire s'exprime par :

$$\delta Q = C_{\nu} dT + l dV,$$

$$\delta Q = C_{\nu} dT + h dP$$

- 1) En raisonnant successivement à pression constante ou à volume constant, trouver les expressions de l et h en fonction de $C_P C_V$, et des dérivées partielles de T(P,V).
 - 2) Dans le cas du gaz parfait, retrouver les expressions de l et de h.
- 3) En variables T et V pour un gaz parfait, vérifier que δQ n'est pas une différentielle totale exacte. Qu'en est-il de la quantité $\frac{\delta Q}{T}$?

Exercice 2:

Deux liquides L_1 et L_2 de température T_1 et T_2 respectivement ($T_1 > T_2$), sont isolés du milieu extérieur et mis en contact thermique. On désigne par C_1 la capacité calorifique de L_1 et par C_2 la capacité calorifique de L_2 .

- 1) Déterminer la température d'équilibre Te.
- 2) Dans le cas où les deux liquides sont identiques de capacité calorifique $C_1 = C_2 = C$
 - a) Déterminer la variation d'entropie ΔS_1 de L₁.
 - b) Déterminer la variation d'entropie ΔS_2 de L₂.
 - c) Déterminer la variation d'entropie de l'univers ΔS .
 - d) Vérifier le second principe.

Exercice 3:

Une enceinte de volume V, peut être mise en communication avec deux réservoirs de volumes V_1 et V_2 (voir figure). L'ensemble est isolé thermiquement et mécaniquement. Initialement, la pression dans l'enceinte est nulle, elle vaut P_1 et P_2 dans les réservoirs $\overline{1}$ et $\overline{2}$ qui renferment m_1 et m_2 grammes de gaz aux températures T_1 et T_2 . Les gaz sont parfaits et identiques.

- 1) $T_1 = T_2$, on établit les communications avec l'enceinte. Calculer : les variations d'énergie interne, de température, des deux gaz entre ces deux états d'équilibre.
 - 2) Calculer la variation d'entropie du système.
 - 3) Quel est le travail non récupéré au cours de cette transformation ?

Exercice 4:

Une masse d'air que l'on assimilera à un gaz parfait est utilisée comme fluide d'une machine thermique et décrit le cycle suivant : la masse d'air de volume V_A prise à la pression P_1 et à la température T_A est comprimée d'une façon adiabatique et réversible jusqu'à la pression P_2 , ce qui la porte, de ce fait, à la température T_B et au volume V_B . Suite à un apport de chaleur à pression constante P_2 , sa température devient T_C et son volume V_C . Une détente adiabatique réversible, la ramène à la pression P_1 , mais à la température T_D et au volume V_D . Le retour à l'état initial se fait à pression constante.

1) Représenter ce cycle dans le diagramme (P,V). Calculer le rendement de ce cycle en fonction de P₁ et P₂ en supposant que la capacité calorifique de l'air est indépendante de la température.

On donne $P_1 = 1$ atm, $P_2 = 5$ atm et $\gamma = \frac{7}{5}$.

- 2) Calculer l'entropie reçue par une mole d'air qui passe de T_B à T_C et la comparer à celle du passage de cette mole de T_D à T_A .
- 3) Tracer le diagramme entropique (T,S) du cycle décrit par cette mole d'air en prenant $T_A = 283 \text{ K}$, $T_C = 565 \text{ K}$ et $C_p = 7 \text{ cal/mol}$. Que représente une quantité de chaleur dans ce diagramme? En déduire les quantités de chaleur prises à la source chaude et cédée à la source froide. Retrouver la valeur du rendement.

www.rapideway.com/vb

منتدى طريق المعرفة

Thermodynamique.

Groupe: 5 SMP/81

Série xº3

Exercice 3

gat 2
$$(m_1)$$

encuente (1) \longrightarrow T, P, V \longleftarrow encuente (2)
 $P_1, V_1 T_1$ état final.
 $P_2, V_2, T_2 = T_1$

on a
$$\Delta U_1 = C_V (T_{\xi} - T_1)$$

avec $-e_V = \frac{C_V}{m_1}$
 $-c_V : l_a challer massique du gaz.$

V la température. Tf

comme le système estisole thermiquement et emécaniquement (pas de changement de l'energie au milieu exterieur)

donc
$$\Delta U = 0$$
 => $\Delta U_1 + \Delta U_2 = 0$

=> $m_1 e_V (T_1 - T_1) + m_2 c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) = 0$
 $(m_1 + m_2) c_V (T_2 - T_1) =$

Dans cette transformation les gaz auraient pu se détendre de V₁ et V₂ à V Pour maintenir T constante il aurait fallu fournir une quantité de chaleur Q Telle que :

to
$$W+Q = \Delta U = 0$$
 = $W = -Q$

where $Q = T\Delta S$
 $W = -T.\Delta S$