Encodage

(IFT3325)

A. S. Hafid

e-mail: ahafid@iro.umontreal.ca

phone: (514) 343-2446

Plan

- Encodage numérique numérique
- Encodage numérique analogique
- Encodage analogique numérique
- Encodage analogique analogique
- Transmission Synchrone Vs. Transmission asynchrone

Techniques d'Encodage

Interprétation d'un signal digital

- Connaitre, avec une certaine précision, quand le bit commence et quand le bit termine
- Doit déterminer la valeur du signal
 - Lire la valeur au milieu du bit
 - Par exemple, il y a une valeur prédéterminée: si plus petit c'est le bit 0, sinon c'est le bit 1

Encodage numérique –numérique

• Pourquoi on a besoin de ce type d'encodage?

Encodage numérique – numérique

- Synchronisation
 - Synchroniser l'émetteur et le receveur
 - Horloge

Techniques d'Encodage

- Non-retour à zéro (NRZ-L)
- Non-retour à zéro inversé (NRZI)
- Bipolaire -AMI
- Pseudoternary
- Manchester (biphase)
- Manchester différentiel
- B8ZS
- HDB3

NRZ-L

- 2 voltages différents pour les bits 0 et 1
- Voltage constant durant l'intervalle d'un bit
 - Pas de transition
- e.g. Absence de voltage pour zéro et voltage constant positif pour 1
- Généralement, voltage négatif pour une valeur et voltage positif pour l'autre

NRZ

• NRZI

- Une transition (bas vers le haut ou haut vers le bas) représente 1
- pas de transition représente 0

NRZ

- Avantages?
- Désavantages?

NRZ

- Avantages
 - Facile à réaliser
 - Bonne utilisation de largeur de bande
- Désavantages
 - Manque de la capacité de synchronisation
- Généralement utilisé pour le stockage
- Généralement, il n'est pas utilisé pour la transmission de signal

Bipolaire-AMI

- 0 est représenté par l'absence de signal
- 1 est représenté par une pulse négative ou positive qui s'alternent
- Les pulses représentant 1 changent de polarité

Bipolaire-AMI et Pseudoternary

Bipolaire-AMI

• Problème?

Bipolaire-AMI

• On peut perdre la synchronisation lorsqu'il y a une longue suite de 0 (une suite de 1 n'est pas un problème)

Pseudoternary

- 1 représenté par l'absence de signal
- 0 représenté par une pulse positive et négative qui s'alternent
- Pas d'avantage ou désavantage sur bipolaire AMI

Bipolaire-AMI et Pseudoternary (Cont.)

• Efficacité?

Bipolaire-AMI et Pseudoternary (Cont.)

- Pas efficace comme NRZ
 - Chaque élément de signal représente un seul bit
 - Dans un système à trois niveaux, un élément de signal peut représenter log₂3=1.58 bits
 - Le receveur doit pouvoir distinguer 3 niveaux
 (+A, -A, 0)

Bipolaire-AMI et Pseudoternary: Avantage!

• Facilité de détecter les erreurs

Biphase

Manchester

- Transition au milieu de chaque période de bit
- Transition joue le rôle d'horloge et de données
- Bas à haut représente 1
- Haut à bas représente 0
- Utilisé par IEEE 802.3

Manchester

Manchester: Codage

Biphase

Manchester différentiel

- La transition au milieu d'une période d'un bit représente l'horloge seulement
- La transition au début d'une période de bit représente 0
- Pas de transition au début d'une période de bit représente 1
- Utilisé par IEEE 802.5

Manchester Différentiel

Differential Manchester Encoding

Biphase (Cont.)

- Désavantages?
- Avantages?

Biphase (Cont.)

Désavantages

- Au moins une transition par une période de bit et possiblement 2
- Le taux maximum de modulation est le double de NRZ
- Demande plus de largeur de bande

Avantages

- Synchronisation au milieu de la transition de bit
- Détection d'erreur
 - Absence de transition attendue

Taux de Modulation

Question

- Pour bipolaire, il y a un problème quand il y a une longue suite de 0.
- À votre avis comment on peut résoudre ce problème?

Scrambling

- Utiliser scrambling pour remplacer les séquences de bits qui produisent un voltage constant
- Séquence de remplacement: exigences?

Scrambling

- Séquence de remplacement
 - Doit produire assez de transitions pour la synchronisation
 - Doit être reconnu par le receveur et remplacé avec le signal d'origine
 - même longueur que le signal d'origine

B8ZS et HDB3

• B8ZS

- Bipolar With 8 Zeros Substitution
- Si 8 zéros consécutifs et le dernier pulse de voltage est positive, donc coder comme 000+-0-+
- Si 8 zéros consécutifs et le dernier pulse de voltage est négative, donc coder comme 000-+0+-

HDB3

- High Density Bipolar 3 Zeros
- Basée sur bipolaire-AMI
- Séquence de 4 zéros remplacée avec un ou 2 pulses
 - Si le dernier pulse de voltage est positive et nombre de pulses bipolaires est impair donc 000+
 - Si le dernier pulse de voltage est positive et nombre de pulses bipolaires est pair donc -00-
 - Si le dernier pulse de voltage est négative et nombre de pulses bipolaires est impair donc 000-
 - Si le dernier pulse de voltage est négative et nombre de pulses bipolaires est pair donc +00+

B8ZS et HDB3 (cont.)

- Si 8 zéros consécutifs et le dernier pulse de voltage est positive, donc coder comme 000+-0-+
- Si 8 zéros consécutifs et le dernier pulse de voltage est négative, donc coder comme 000-+0+-

B8ZS et HDB3 (cont.)

- Séquence de 4 zéros remplacée avec un ou 2 pulses
 - Si le dernier pulse de voltage est positive et nombre de pulses bipolaires est impair donc 000+
 - Si le dernier pulse de voltage est positive et nombre de pulses bipolaires est pair donc -00-
 - Si le dernier pulse de voltage est négative et nombre de pulses bipolaires est impair donc 000-
 - Si le dernier pulse de voltage est négative et nombre de pulses bipolaires est pair donc +00+

Encodage numérique – numérique: Critères de comparaison

- Synchronisation
 - Supporte ou non
- Complexité et coût
 - Des techniques exigent un taux de signal supérieur au taux de données
- Détection d'erreurs
 - Peut faire partie de l'encodage du signal

Encodage numérique – numérique:

- Utilisé principalement pour des liaisons filaires courtes Objectif : rendre les flux de bits plus faciles à interpréter de manière fiable
 - Garantir des transitions pour le synchronisme des bits
 - Permettre une détection simple d'erreurs
- Exemples :
 - Codage 8b/10b dans USB 3.0, Ethernet Gigabit
 - Ethernet
 - 10BASE-T: Manschester
 - 1000BASE-TX: 8b/10b
 - 10GBASE-R: 64b/66b
 - Ligne T1 (1.544 Mbps, North America): AMI + B8ZS

8b/10b

- 8b/10b is a digital-to-digital block line coding scheme developed by IBM.
 - It maps 8-bit data into 10-bit codewords
- Each 8-bit input value is mapped to one or two possible 10-bit outputs depending on the running disparity.
- The transmitter chooses the encoding that keeps the cumulative disparity close to zero.
- The receiver, which also tracks disparity, can then unambiguously decode the received 10-bit symbol back into the correct 8-bit data or control symbol.

Encodage Numérique – Analogique

- Une onde transmise sans modification, à une fréquence fixe ne transmet aucune information: on parle d'une onde porteuse.
- Pour transmettre une information, il faut modifier l'onde porteuse.
 - Les données numériques sont encodées en signaux analogiques.
- Les modifications, appelées *modulations* permettent de coder l'information à transmettre.
 - On modifie un ou plusieurs paramètres de l'onde porteuse, tels que sa phase, son amplitude ou sa fréquence.

Encodage Numérique – Analogique (Cont.)

Modulation d'amplitude (AM)

- deux différents niveaux de voltage sont utilisés pour représenter 0 et 1. La fréquence reste constante.
- Sensible aux changements brusques
- Pas efficace

Modulation de fréquence (FM)

- deux (ou plusieurs) fréquences différentes représentent 0 et 1. L'amplitude reste constante
 - La plus utilisée est FM binaire (i.e., 2 fréquences)
- Moins sensible aux erreurs que AM

Modulation de phase (PM)

- la phase de l'onde porteuse varie de 45, 135, 225 ou 335 degrés à des instants régulièrement espacés. Chaque changement de phase transmet 2 bits d'information.
- En présence de bruit, le taux d'erreur de bit de PM est supérieur de ~3dB par rapport à celui de AM et FM

Encodage Numérique – Analogique

- Si on prévoit 4 valeurs pour un des paramètres (ici la phase), on peut transmettre 2 bits à la fois
 - Le nombre de bits transmis par seconde est 2 fois plus grand que le nombre de bauds.

Encodage Numérique – Analogique (Cont.)

- On peut combiner la modification de plusieurs paramètres (ici 4 valeurs de la phase et 2 valeurs de l'amplitude).
 - Le nombre de bits transmis par seconde est 3 fois plus important que le nombre de bauds.

Quadrature PM

- Plus efficace; chaque élément de signal représente plus d'un bit
 - Chaque élément du signal représente 4 bits
 - La phase change en multiple de 90°
 - Peut utiliser 8 phases et plus d'une amplitude
 - Utilisé pour transmettre 9.600 bits par seconde sur une ligne à 2.400 bauds

Encodage Numérique – Analogique

- Mappe les bits numériques sur des formes d'ondes analogiques (amplitude, phase, fréquence)
- Initialement utilisée pour transmettre des données numériques sur le réseau téléphonique analogique (modems)
- Aujourd'hui : utilisée pour l'efficacité et les haut-débits
 - Augmenter l'efficacité spectrale (plusieurs bits par symbole)
 - Adapter l'ordre de modulation à la qualité du canal
 - Permettre la transmission sur radio, fibre, longs câbles cuivre
 - Assurer une communication haut-débit fiable avec correction d'erreurs (FEC)

Encodage Numérique – Analogique: Utilisation

- Ethernet
 - PAM-5, PAM-4 dans les liaisons haut-débit (Amplitude(
- Wi-Fi
 - QAM jusqu'à 1024-QAM (Amplitude and Phase)
- 4G/5G
 - QPSK (4_QAM), 16-QAM, 64-QAM, 256-QAM
- Réseaux optiques
 - QPSK, 16-QAM et plus
- Télévision par câble
 - QAM

Lien entre FEC (couche physique) et correction d'erreurs (couche liaison)

- La couche liaison (Ethernet, Wi-Fi, etc.) détecte les erreurs avec CRC et les corrige par retransmission (ARQ)
 - Fiable mais coûteux si le délai ou la bande passante est critique.
- La couche physique moderne ajoute un FEC (Forward Error Correction).
 - Bits redondants ajoutés par l'émetteur.
 - Le récepteur corrige directement certaines erreurs sans retransmission.
- Pourquoi FEC au niveau physique?
 - Les systèmes haut-débit (PAM-4, QAM-256) sont très sensibles au bruit.
 - La retransmission n'est pas possible ou trop lente (fibre optique, satellite, 5G).
 - Le FEC réduit le BER (bit error rate) avant même d'arriver à la couche liaison.

Lien entre FEC (couche physique) et correction d'erreurs (couche liaison): Exemples

- Fibre optique
 - Reed–Solomon FEC
- 5G NR
 - LDPC et codes polaires
- Wi-Fi 6
 - LDPC

Reed-Solomon FEC

- Idée de base
- Je veux envoyer Data = (3, 7)
- J'exécute 2 calculs
 - Check1 = 3 + 7 = 10• Check2 = 3 + 2*7 = 17
- J'envois Data=(3,7,10,17)
- Si le « 7 » est corrompu, le récepteur dispose encore de (3, ?, 10, 17). En utilisant les équations de contrôle, il peut recalculer et retrouver que le nombre manquant doit être 7.

Diagramme

Orthogonal Frequency Division Multiplexing (OFDM)

- Les communications modernes exigent des débits très élevés (vidéo, Internet, cloud, 5G...).
- L'OFDM permet de maximiser le débit
 - transmission parallèle sur de nombreuses sousporteuses.
 - Utiliser efficacement le spectre.
- Exemples d'utilisation
 - -4G/5G
 - Wi-Fi haut débit
 - Télévision numérique (HD)
 - Etc.

OFDM

Principe

- Diviser le canal en nombreuses sous-porteuses étroites.
- Chaque sous-porteuse transporte une partie des données.
- Les sous-porteuses sont orthogonales : elles se chevauchent mais ne s'interfèrent pas

• Résultat

débit élevé + robustesse.

OFDM

• Intégral du produit de deux signaux est égale a zéro (orthogonal)

OFDM

Encodage analogique - numérique

Comment faire?

Échantillonnage de signaux

- PCM est utilisée pour l'échantillonnage de signaux
- Un échantillonnage d'un signal s(t) décrit ce signal si

$$1/T>=2*F$$

- T: durée d'échantillonnage (sec)
- 1/T: fréquence d'échantillonnage
- F: fréquence (en Hertz) la plus haute du signal, la *bande passante* ou *largeur de bande*
- E.g. voix est limitée à 4000Hz; exigence: 8000 échantillons par second sont nécessaires pour pouvoir (~) reproduire la voix

PCM: Exemple

PCM: Exemple

• Combien de bits on doit utiliser par échantillon?

PCM: Exemple

- Combien de bits on doit utiliser par échantillon?
 - Normalement entre 8 et 24
 - 8: Convient aux paroles de « mauvaise » qualité ou aux effets sonores simples
 - 16: Audio de qualité CD
 - 24: enregistrement et production audio professionnels.
 - On peut allez jusqu'au 32 bits

Encodage linéaire Vs. Encodage non-linéaire

Encodage plus simple?

Delta Modulation (DM): Exemple

Encodage analogique - analogique

• Pourquoi moduler des signaux analogiques?

Encodage analogique - analogique

• Traduction fréquentielle : placer un signal baseband sur une porteuse RF adaptée au canal passe-bande.

- Multiplexage (FDM) : partager le support en assignant une fréquence par service.
 - P.ex., Réseaux téléphoniques
- Robustesse : choisir AM/FM/PM selon le bruit dominant et la chaîne RF.
- Contrainte matérielle & règlementaire : travailler dans des bandes autorisées avec filtres et amplis dédiés.
- Utilisée surtout: radio AM/FM et TV analogue,

Encodage analogique - analogique

- Types de modulation
 - Amplitude
 - Angle
 - Fréquence
 - Phase
- AM:
 - faible complexité.
 - très sensible au bruit d'amplitude et au fading (l'info est portée par l'amplitude → ce que le bruit attaque en premier).
 - gagne en efficacité de bande
- FM/PM
 - Plus complexe
 - Très robuste
 - coûteux en spectre.

Modulation Analogique

```
m(t)=mi*x(t)
Mi: modulation index
(amplitude du signal /
amplitude de la porteuse)
AM: S(t)= (1+m(t))*cos2pft
S(t)=A*cos(2pft+q(t))
PM: q(t)=pmi*m(t)
FM: q'(t)=fmi*m(t)
```


FM (1)

- Dans la transmission FM, la fréquence du signal porteur est modulée pour suivre le niveau d'amplitude changeant du signal de modulation.
 - En développant la série de fourrier du signal, on obtient des raies à $fc\pm n$ fm; il existe des termes pour tous n=0,1,2,...
- La largeur de bande réelle est: $2(1 + \beta)$ B où β est généralement égale à 4.
 - Montrée de façon empirique
- La bande passante d'un signal audio (parole et musique) diffusé en stéréo est de près de 15 kHz.

FM (2)

• C'est quoi la largeur de bande requise pour appliquer une modulation de fréquence au signal audio?

FM (3)

- 150 KHz
- La FCC autorise 200 kHz (0,2 MHz) pour chaque station FM
- Les stations FM sont autorisées à utiliser des fréquences porteuses comprises entre 88 et 108 MHz.

Synchronisation

- Problèmes de temps exigent un mécanisme pour synchroniser l'émetteur et le récepteur
- 2 solutions?

Synchronisation

- 2 solutions
 - Asynchrone
 - Synchrone

Transmission Asynchrone

- Transmettre un caractère à la fois
 - 5 to 8 bits
- Chaque caractère ou octet est traité indépendamment pour la synchronisation d'horloge (bit) et de caractère
- Le récepteur re-synchronise au début de chaque caractère reçu.
- Chaque caractère à transmettre est encapsulé entre des bits supplémentaires:
 - start bit (bit de départ) et stop bit (bit d'arret)
- Simple
- Pas coûteux
- Adéquate pour des donnés espacées (e.g. clavier)
- Problème?

Transmission Asynchrone: Problème

• Overhead de 2 à 3 bits par caractère (~20%)

Transmission Asynchrone (Cont.)

Transmission Synchrone

- L'émetteur et le récepteur doivent se synchroniser: le récepteur doit synchroniser son horloge avec les signaux entrants
 - un bloc entier est transmis comme une suite de bits et le récepteur doit suivre le flux des bits entrant pendant la durée entière de la transmission d'une trame.
- Pour permettre au récepteur de se synchroniser, l'information d'horloge est embarquée dans la suite des bits transmise.
- On peut aussi utiliser une ligne séparée d'horloge
 - Pour des distances courtes
- Les méthodes ou codages principaux sont:
 - Codage bipolaire
 - Codage biphase Manchester
 - Codage Manchester différentiel
- Plus efficace que la transmission asynchrone en terme de overhead

Question

- Soit un canal parfait qui a une largeur de bande (bande passante) de ~3000 Hz.
 - Si on utilise une modulation de phase (4 valeurs) combiné avec une modulation d'amplitude (2 valeurs), calculer le temps nécessaire pour transmettre un caractère de 8 bits.
 - Calculer la rapidité de modulation dans ce cas

Question

- Énumérer les critères principaux (au moins 2) qui sont utilisés pour comparer les différents types d'encodage numérique
- Comparer brièvement NRZ et biphase.
- Encoder la suite de bits 10001001 en utilisant NRZ et bipolaire.