0.1 Metric Spaces

Definition 0.1 A Metric space (X,d) is a set X together with a function $d: X \times X \to \mathbb{R}$ s.t.

- Positivity: $d(x,y) \ge 0, = 0 \iff x = y$
- Symmetry: d(y,x) = d(x,y)
- Triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$

Example 0.2 • $\mathbb{R}, d(x, y) = |x - y|$

- $R^n, d(x,y) = (\sum_{i+1}^n |x_i y_i|^2)^{\frac{1}{2}}$ $d_p(x,y) = (\sum_{i+1}^n |x_i - y_i|^p)^{\frac{1}{p}}$ p = 1 is the Manhattan Metric $d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$
- Any normed space $(V, \|\cdot\|)$
- X any set $(\neq \emptyset)$ d(x,y) = 1 if $x \neq y, 0$ if x = y
- TODO: Insert diagram Globe
- TODO: Insert diagram Toruses
- Paris metro or post office metric $d(x,y) = ||x-y|| \text{ if } y = tx \text{ for some } t \in \mathbb{R}$ |x|+|y| otherwise
- P-adic Metric: \mathbb{Z} , let p be a prime. If $x, y \in \mathbb{Z}$, $x - y = p^k n$, p does not divide n d(x, y) = 1/(k+1) if $x \neq y$ 0 if x = y

Definition 0.3 Let (X, d) be the a metric space.

The open ball of radius r, centre a is the set $B_r(a) = \{x \in X | d(x, a) < r\}$

Example 0.4

 \mathbb{R} usual metric, $B_r = (a - r, a + r)$

$$\mathbb{R}^n B_1(0) \in \mathbb{R}^n, d$$

TODO: Insert Diagrams for different metrics

$$B'r(x) = \{x\} \text{ if } r \leq 1$$

$$B'r(x) = X \text{ if } r \ge 1$$

Definition 0.5 $Y \subset X$ is a neighbourhood of a point $x \in X$ if $\exists r > 0$ s.t $B_r(x) \subset Y$

Definition 0.6 A set $X \subset X$ is bounded if $S \subset B_r(x)$ for some $x \in X, r > 0$

Proposition 0.7 If $S \subset X$ is bounded, then for any $y \in X \exists r > 0$ s.t. $S \subset B_r(y)$

Proof: Ex: Use triangle ineq

Definition 0.8 Suppose $A \subset X$. A point $x \in X$ is an interior point of A if $\exists r > 0$ s.t. $B_r(x) \subset A$ $x \in X$ is an exterior point if A if $\exists r > 0$ s.t. $B_r(x) \subset A^c = X - A$ A point $x \in X$ is a boundary point of A if $\forall r > 0$, if $B_r(x)$ contains points of A and points of A^c

Proposition 0.9 $X = intA \cup extA \cup \delta A$. These sets are pairwise disjoint,

Set of interior points = int A exterior = ext A boundary = δA

 $extA = int(A^c)$

 $intA = ext(A^c)$

 $intA\subset A,\; extA\subset A^c$