

— iTOP-4412 开发板介绍

1.1 开发板平台简要介绍

1.1.1 核心板

Exynos4412 有两种封装形式,其中 POP 封装的芯片内含 1GB 内存,所以不需要外扩 DDR,可大大节省 PCB 面积,功耗控制方面也更好,多用于手持设备当中; SCP 封装优点是内存扩展更灵活,生产工艺相对更容易控制。

电源芯片 S5M8767 的输入电压范围是 3.5v~5.5v, 但是最佳的输入电压是 4v, 这样可以使 S5M8767 芯片处于最佳的工作状态。

1.1.1.1 POP 封装

POP 封装的芯片内部集成内存,开发板内存默认为1G。

eMMC 大小型号为: KLM4G 对应 4G;KLM8G 对应 8G;KLMAG 对应 16G; KLMBG 对应 32G。

长宽:5CM * 6CM,高度1.5MM,320个引脚(80 * 4);

板载 1GB 内存, 电源管理;

和底板装配的时候注意"防呆箭头"。

1.1.1.2 SCP 1G 封装

核心板 SCP1G 和 SCP2G, 判断核心板内存的方法是看芯片型号, k4b2g 是一片 256M; k4b4g 是一片 512M。如果是 k4b2g,则内存大小是 k4b2gx4=1G;如果是 k4b4g,则内存大小是 k4b4gx4=2G。

eMMC 大小型号为: KLM4G 对应 4G;KLM8G 对应 8G;KLMAG 对应 16G; KLMBG 对应 32G。

长宽:6CM*7CM,高度1.5MM,320个引脚(80*4);

SCP 板载 1G 内存, 电源管理;

和底板装配的时候注意"防呆箭头"。

如下图所示,核心板 SCP 1G

1.1.1.3 SCP 2G 封装

核心板 SCP1G 和 SCP2G, 判断核心板内存的方法是看芯片型号, k4b2g 是一片 256M; k4b4g 是一片 512M。如果是 k4b2g,则内存大小是 k4b2gx4=1G;如果是 k4b4g,则内存大小是 k4b4gx4=2G。

eMMC 大小型号为: KLM4G 对应 4G;KLM8G 对应 8G;KLMAG 对应 16G; KLMBG 对应 32G。

长宽:6CM*7CM,高度1.5MM,320个引脚(80*4);

SCP 板载 2G 内存, 电源管理;

和底板装配的时候注意"防呆箭头"。

1.1.2 底板

iTOP-4412 精英版底板如下图所示(下图中的核心板是 POP):

1.1.2.1 电源以及接口

如下图所示,为电源以及电源开关,输入5V电源即可。

开发板电源原理图部分如下。

上电开机之后 LED1 会亮,表明有电源输入,原理图如下所示。

核心板供电部分如下图,建议给核心板提供 4V 电源,可以使核心板电源管理芯片 8767处于最佳工作状态,原理图如下所示。如果选用 RT8065 电源芯片,R131 和 R135 的比例和下图中比例"39K:10K"一样即可,这两个电阻的比例决定输出电压的大小;另外为了确保输出电压的稳定,尽量选用精度 1%或者以上的电阻;下图中的 F2 是不用焊接的,直接断路即可。

精英版用户使用手册

1.1.2.2 拨码开关以及对应功能

iTOP-4412 开发板可以通过拨码开关控制启动方式以及显卡输出。

如下图,XOM2,XOM3,XOM5 用于控制 4412 启动方式,AP_SLEEP,XEINT6 用于控制显卡输出。拨码开关的具体用法可以参考使用手册 2.2 小节。

OM选择

1.1.2.3 显卡资源以及接口

iTOP-4412 有丰富的视频输出接口,如下图所示包括 HDMI,RGB 以及 LVDS。在手册 2.1.2 小节有具体怎么进行显卡硬件连接的详细介绍。

RGB-LCD接口用于支持4.3寸屏幕。

4.3 LCD RGB Interface

HDMI 接口用于支持各种 HDMI 显示器电视等等。这里需要注意的是,小的 HDMI 口输出的才是 HDMI 信号,大的 HDMI 口输出的是 LVDS 信号。

LVDS-HDMI 接口可以迅为的 7 寸屏幕或者 9.7 寸屏幕。

LVDS LCD Interface using HDMI's Wire

LVDS-LCD 接口使用排线连接迅为的 7 寸或者 9.7 寸屏幕。

LVDS Interface

1.1.2.4 蜂鸣器 BEEP

BEEP 的原理图如下图,MOTOR_PWM 网络给高电平即可使蜂鸣器发出"滴滴"的声响。

如下图示蜂鸣器在 PCB 上的位置。

1.1.2.5 灯 LEDS

LED 灯原理图如下图所示。

LED 在蜂鸣器旁边,高电平 LEDS 即可点亮。

1.1.2.6 按键 Keys

底板有5个独立按键,原理图如下,原理比较简单。

KEY

在 Android 系统中,这几个按键和平板的类似,分别是 HOME 按键,BACK 返回按键,SLEEP 休眠按键(休眠后唤醒也是该按键),VOL+、VOL-音量加和减。

1.1.2.7 摄像头 CAMERA+AVIN 扩展口

摄像头连接的时候注意"三角形箭头"要和模块小箭头对应(底板上的三角箭头指向的管脚,模块上的三角箭头指向的管脚,它们是对应的)。

原理图如下图所示。

PCB 上 camera 接口,如下图所示。

1.1.2.8 JTAG 扩展口

原理图如下图所示。

PCB 上 JTAG 接口,如下图所示。

1.1.2.9 GPIO+CAN+485 扩展口

CPIO 连接的时候注意"三角形箭头"要和模块小箭头对应(在接 CAN+485 模块,或者 RFID 模块的时候,底板上的三角箭头指向的管脚,模块上的三角箭头指向的管脚,它们是对应的)。

原理图如下图所示。

PCB上 GPIO 接口,如下图所示。

1.1.2.10 模数 A/D 转换

4412 有三路 A/D,另外两路在 GPIO 中引出。可以参考 1.1.2.9 小节。通过滑动变阻器检测,原理图如下图所示。

AD

PCB 上滑动变阻器,如下图所示。

1.1.2.11 声卡资源以及接口

声卡有耳机和耳麦接口,还有外放如下图所示左边红色方框的 PIN2 的喇叭外放扩展口。原理图如下图所示。

PCB 上声卡,如下图所示。

1.1.2.12 串口接口

CON3 口默认用来调试程序, CON2 串口的使用, 硬件请参考使用手册的 1.1.3 小节, 软件测试可以参考 8.5 小节。CON2 和 CON3 都是输出 RS232 电平,可以和电脑的串口直接相连,如果和电脑的 USB 接口相连,那么需要 USB 转串口。

原理图如下图所示。

PCB 上串口,如下图所示。

1.1.2.13 MIPI 接口

MIPI 接口可以接高清 MIPI 屏幕。原理图如下图所示。

MIPI

PCB上 MIPI接口,如下图所示。

1.1.2.14 实时时钟 RTC

RTC 实时时钟,在 Android4.0.3 中,安装 CR1220 锂电池之后,完全断电之后时钟也可以工作。原理图如下图所示。

PCB 上 RTC 接口,如下图所示。

1.1.2.15 以太网

在 Android4.0.3 中,需要参考 2.4.3.2 来设置以太网。

在 Android4.4.4 中,则可以在 Android 设置中,将默认网络设置为有线网。

设置好之后就可以上网了。

原理图如下图所示。

100M以网

PCB 上以太网接口,如下图所示。

1.1.2.16 WIFI 扩展口

开发板接入 WIFI 模块之后(底板上的三角箭头指向的管脚,模块上的三角箭头指向的管脚,它们是对应的)即可使用 WIFI 上网。

这里需要特别注意的是,如果在 Android 中打开了 WIFI,那么则在系统重新启动时,必须有 WIFI 模块; WIFI 必须先连接硬件,再上电启动。

原理图如下图所示。

PCB上WIFI接口,如下图所示。

1.1.2.17 串口+矩阵键盘+GPS 扩展口

这里需要注意的是部分串口复用了,用户可以根据实际使用情况,参考使用手册 1.1.4 小节和原理图来使用串口。该接口可以用来扩展 GPS、矩阵键盘、串口模块。原理图如下图所示。

UART+KEYPAD (4*4)

PCB上串口+矩阵键盘+GPS扩展口,如下图所示。

1.1.2.18 OTG 接口

OTG 接口用来烧写镜像,还可以用来作为 Android 应用 APP 的调试口。在 Android 系统下面可以用来上传文件和安装应用 APP(在没有网络的情况下很好用)。

原理图如下图所示。

USB OTG

PCB上OTG接口,如下图所示。

1.1.2.19 USB 接口

USB接口可以用来接鼠标和键盘。还可以用来接 PL2303 转接线,用于扩展串口,不过需要加载 PL2303 的驱动,具体加载方法参考使用手册 9.4.12。原理图如下图所示。

PCB上USB接口,如下图所示。

1.1.2.20 TF 卡接口

精英版可以使用 TF 卡,用于烧写系统或者存储数据,烧写系统在第三章有详细的介绍,存储数据的使用类似于手机中的 TF 卡,原理图如下图所示。

PCB上TF Card接口,如下图所示。

1.1.2.21 复位按键

火牛座和 TF Card 旁边的 RESET 是复位按键,在 Android 系统下面,按住大约 5 秒,即可重启。这个功能按键类似手机的重启按键,长按可以复位,原理图如下图所示。

PCB 上复位按键,如下图所示。

1.1.3 精英版使用串口修改方法

本节供用户查阅,新手用户如果有不理解的概念,可以在学习后面的基础知识后,在用到相应串口接口时再来查阅。

精英版上引出了两个 RS232 的串口,分别是 CON2 和 CON3。

CON2 对应的串口设备节点是/dev/ttySAC3, CON2 和 GPS 复用(J41, GPS 的电平是TTL3.3V),输出电平是RS232。

如果使用 CON2,不要插 GPS 模块,也不允许其它设备占用;同理如果要使用 GPS,那 么 CON2 口就不要接设备,需要去掉连接 MAX3232 芯片的 R20 和 R21 两个电阻。

原理图中的网络是 "BUF_GPS_TXD 和 BUF_GPS_RXD"。

CON3 对应的串口设备节点是/dev/ttySAC2,默认是作为系统的调试串口,输出电平是RS232。

原理图中的网络是 "BUF_XuRXD2/UART_AUDIO_RXD" 和
"BUF XuTXD2/UART AUDIO TXD"。

WIFI 模块(J40)对应的串口设备节点是/dev/ttySAC0,输出电平是 TTL1.8V;WIFI 模块和 J41 的其中一个串口复用,J41 输出电平也是 TTL1.8V。

原理图中的网络是 "XuRXD0和 XuTXD0"。

无论是使用蓝牙功能还是使用 WIFI 的功能,这个串口就被占用了;同理如果 J41 上的使用了这个串口,也会导致 WIFI/BT 功能不正常。

485 模块 (J38) 对应的串口设备节点/dev/ttySAC1。

原理图中的网络是 "XuTXD1 和 BUF XuRXD1"。电平分别是 TTL1.8V 和 TTL3.3V。

用户想测试串口,可以参考使用手册"8.5 小节 串口的测试"。 调试串口作为其它用途,可以参考使用手册"9.4.13 小节 串口虚拟控制台 console"。

串口在 Android 应用中可能需要修改权限,具体方法参考使用手册"10.9.8 小节 串口设备权限的修改"。

1.1.4 开发板扩展口的原理图和 PCB 管脚对应方式介绍

本小节介绍开发板扩展口的管脚和原理图的对应方式。

在原理图中,以GPIO扩展口为例,如下图所示。

如下图所示是 PCB 实物图,首先找到 PCB 板上的"小三角","小三角"对应的是原理图中的管脚 1,对面的是 2,"小三角"右边的是 3,3对面的是 4,依次类推。

1.2 光盘资料

用户购买开发板的同时,迅为电子会给附赠一张光盘,如下图,光盘目录如下。

下面简单的做一下了解,在需要使用这些资料的时候,会针对性的做详细介绍。

将文件以及文件夹按照"名称+递增"的方式排列,如下:

- 01_PCB_SCH_DATASHEET-- -----开发板的原理图, PCB 以及元件的 DATASHEET;
- 02 编译器以及烧写工具-----编译工具、烧写工具、各种驱动以及其它工具;
- 03_镜像_Android4.0.3 文件系统------Android4.0.3 文件系统的镜像以及对应的 uboot、kernel 镜像;
- 04_镜像_QT 文件系统------QtE4.7 以及 qtopia2.2.0 文件系统的镜像以及对应的 uboot、kernel 镜像;
- 05_镜像_Ubuntu 文件系统------Ubuntu 文件系统镜像以及对应的 uboot、kernel 镜像;
 - 06 源码 uboot 和 kernel------uboot 以及 kernel 内核的源码;
 - 07_源码_Android4.0.3 文件系统------Android4.0.3 文件系统的源码;
- 08_源码_QtE 以及 qtopia2.2.0 文件系统------QtE4.7.1 源码, qtopia2.2.0 文件系统以及对应的各种库和工具;

光盘目录说明.txt+使用手册.pdf

开发板对应的使用手册 pdf 文档以及光盘目录说明 TXT 文本。

1.3 网盘资料

网盘的链接在购买开发板后可以在迅为电子技术支持 QQ 群下载。如果链接有更新,会在群里贴通告。

迅为电子的资料大部分通过百度网盘提供给用户,用可以申请一个百度账号,然后用手机注册验证,用户的网盘就可以扩充到1T。然后将资料存储到用户自己的网盘中,这样就可以通过百度网盘客户端下载,客户端支持断点传输,用户下载的时候非常方便。

网盘资料分为以下七个文件夹,按"文件名"方式排列,顺序如下。

Exynos4412 三星原厂资料

三星原厂资料

iTOP-4412 开发板所需 PC 软件(工具)

该文件夹中是和烧写相关的工具和驱动。

- 01-USB 转串口(PL2302 驱动)
- 02-超级终端(串口调试助手)
- 03-ADB 驱动
- 04-SSH 软件
- 05-fastboot 烧写工具
- 06-TF 卡测试工具

iTOP-4412 开发板搭建编译环境所需要的工具包以及补丁包

该文件夹中是与编译相关的工具包以及补丁包。

- 01-虚拟机 VMware_Workstation_wmb 软件
- 02-Ubuntu 软件
- 03-编译 linux-QT 文件系统需要补丁包
- 04-编译无界面 Linux 文件系统需要工具包以及补丁包
- 05-Android Eclipse 上层应用程序编译时需要的工具软件及插件
- 06-Qt_Creator
- 07-Android Studio 开发工具包以及插件
- 08-Android5.1 开发工具包
- 09-QtE5.7 的编译环境安装包

iTOP-4412 开发板源码(其它)

android 4.0.3 测试 APK

android_4.2.2 源码以及对应 Kernel 源码

android_4.4.4 源码以及对应 Kernel 源码

QT-ARM 官方原始程序

QT-ARM 源码文件夹(2014年7月前购买用户使用)

小模块的测试程序

支持 HDMI 的 Ubuntu 资料

支持以太网的 4.0 代码

最小 Linux 文件系统

QtE4.7 根文件系统升级目录

QtE5.7 移植资料

QtE4.7 测试程序

Android Eclipse 版本测试源码

Android Studio 版本测试源码

iTOP-4412 开发板相关文档(补充)

iTOP-4412 官方 QQ 群专题讨论

iTOP-4412 常见问题及解决方法

iTOP-4412 开发板视频教程及其相关

该文件夹中是开发板配套视频以及相应视频中用到的工具以及文档。

- 01-烧写、编译以及基础知识视频
- 02-嵌入式 Linux 视频
- 03-iTOP-4412 开发板硬件设计指导视频
- 04-Android 应用程序视频
- 05-Android 应用教程 2015
- 06-裸机程序实验文档以及工具文件
- 07-Linux-x86-Qt5.3.2 以及 QtE4.7.1 应用视频
- 08-Linux 驱动教程
- 09-迅为电子 Java 教程

注意:裸机程序没有视频,只有手册。

嵌入式学习推荐书籍及软件(第三方)

Altium Designer

嵌入式 ARM 推荐书籍

于博士 Allegro 视频

1.4 网盘压缩包 MD5 值的使用

用户在迅为的百度网盘中,可能需要下载到几个大的压缩包,目前大的压缩文件有 "source4.4.4.7z" (Android4.4.4 的源码包)和 "Ubuntu12.04.2_V2.0.7z" (搭建好的 Ubuntu 镜像),以后网盘中增加大文件不再进行特殊说明。

如果遇到无法解压的情况,这个时候如果全部重新下载,比较耗费时间,这里教大家一个简单的辨别方法,只需要找到 MD 值不对的压缩包,针对性的下载即可。

以 "iTOP-4412 开发板搭建编译环境所需要的工具包以及补丁包" \rightarrow "02-Ubuntu 软件" \rightarrow "02-搭建好的 Ubuntu 镜像 V2.0" 为例。

如下图所示,红框中就是包含 MD5 值的文本,蓝色框中就是大文件压缩包。

这里使用的是"2345 好压"软件,如果出现无法解压的情况,单击任意压缩包,右键选择用"2345 好压"打开。如下图,单击工具箱,选择"MD5 校验"。

如下图,弹出 MD5 校验计算窗口,按照 2345 软件的提示,将下载的压缩包全部拖到其中。

	请拍	拽文件或者?	文件夹到这里)	进行校验	
计算选项 ☑ 版本 (V)	▼ 时间(T)	☑ MD5 (M)	SHA1 (A)	▼ CRC32 (R)	☑ 隐藏主界面 (0)

如下图,计算中。

如下图所示,每个压缩包的 MD5 数值全部计算出来了,然后和网盘中的 MD5 对比一下,哪个压缩包的 MD5 数值不正确,则重新下载对应的压缩包。

1.5 使用 github 获取开发源码

目前 iTOP-4412 开发平台软件源码是通过网盘下载的方式提供给客户,每隔 3--4 个月的时间网盘内容会更新一次,采用网盘下载方式可以获取到稳定版本,但是由于发布周期较长,用户无法第一时间获取到版本最新状态,如我们解决的 Bug 和新增加的功能。故我们把 iTOP-4412 的代码上传到了 GitHub 平台,通过此平台更新,同步源代码。GitHub 是我们的开发版本,里面仅提供源码下载,如需要获取二进制镜像,请在光盘或者网盘获取。

用户不需要 github 的账号既可以下载所有的源码,另外迅为电子也会定期把项目源码发布到网盘,提供给用户下载。

注意:学习型用户使用光盘中的源码就足够了,等有了一定的经验之后再去下载最新的源码。详细的 github 使用过程以及源码使用方法参考附录六

iTOP-4412 项目在 GitHub 的主页地址: https://github.com/TOPEET-Develop

1.6 扩展文档

迅为电子的工程师编写了大量技术文档,由于用户使用手册篇幅有限,很多技术文档没有 集成到用户使用手册中,而是采取独立文档的方式提供给大家。

如果任意一章有对应的独立文档,我们会增加"扩展文档"这个目录,其中会列出对应章节所有的独立文档,里面会介绍独立文档的名称以及简单描述文档内容。

所有独立文档都可以从技术支持 QQ 群目录"迅为独立文档和程序源码汇总"中下载。

1.6.1 查看内存和 emmc 大小

文档全称是"iTOP-4412-开发板-如何查看内存和 eMMC 大小",文档介绍了查看 emmc 大小的方法。

1.6.2 底板制作方法教程

如果用户想自己制作底板,迅为电子提供了视频教程来教大家如何做底板原理设计。

视频不在 QQ 群,在网盘"iTOP4412 开发板资料汇总(不含光盘内容)\iTOP-4412 开发板视频教程及其相关\03-iTOP-4412 开发板硬件设计指导视频"目录下有"iTOP-4412 开发板底板设计基础"和"实验 02-iTOP-4412 开发板底板设计演示"来协助大家。

1.6.3 用户自定制屏幕教程

如果用户想自己定制屏幕,迅为电子提供了视频教程来教大家如何做屏幕定制。

视频不在 QQ 群,在网盘"iTOP4412 开发板资料汇总(不含光盘内容)\iTOP-4412 开发板视频教程及其相关\03-iTOP-4412 开发板硬件设计指导视频"目录下有"实验 03-iTOP-4412 开发板之如何扩展不同规格 LCD 屏幕"和"实验 04-LCD 转接板设计"来协助大家。

1.6.4 7 寸屏亮度调整

文档全称是"iTOP-开发板-硬件-7寸屏幕亮度调整",文档介绍了7寸屏幕亮度的调整方法。

1.6.5 屏幕亮度调整方法介绍

文档全称 "iTOP-4412-硬件-屏幕亮度调整_V1.0" , 文档介绍了所有嵌入式屏幕亮度调整 整的整体思路和方法。

1.6.6 金属框 10.1 寸排线和 HDMI 的硬件配置方法

文档全称 "iTOP-4412-硬件-金属框 10.1 寸屏幕硬件修改支持排线和 HDMI 线 __V1.0" , 文档介绍了金属框 10.1 寸屏幕硬件如何通过修改电阻来支持排线或者 HDMI 线。