Machine Learning Model to Inform COVID-19 Risk Mitigation Policy

*New Mexico Highlands University, Las Vegas, New Mexico USA

†Volv Global, Lausanne, Switzerland

Background

- Indigenous Americans have been disproportionately hit by COVID-19, experiencing higher rates of infection, hospitalization and death than general population in the US
- Effective risk mitigation should be based upon analysis of the efficacy of social distancing

Covid deaths per 100,000 people, by race

Guardian graphic. Source: APM Research Lab

Related work

- Standard models for characterizing/predicting COVID-19 transmission:
 - include susceptible-infectious-removed (SIR) models [e.g. Chen et al. 2020,
 Weissman et al. 2020] and related models [e.g. Zhou et al. 2020];
 - do not yield consistently-accurate predictions or capture real-world risk mitigation policies, such as masks and social distancing.
- Machine learning (ML) models for characterizing/predicting COVID-19 transmission:
 - adopt traditional data-driven ML approach [Lalmuanawma et al. 2020, Ardabili et al. 2020, Liu et al. 2020, Punn et al. 2020, Chimmula/Zhang 2020];
 - do not leverage medical domain knowledge or nonstandard data sources.

SIR model

- Used for mathematical modeling of spread of infectious diseases
- Population is divided into 3 groups: Susceptible, Infectious, Recovered
- Constant parameters are used for modeling

Modeling results

QSIR model

- introduce quarantining/social distancing into the SIR model as a function Q(t)
- **use** the resulting **Q** as a metric for public adherence to, and utility of, disease-containment policy

SIR-Q model diagram

ML model for Q(t)

Setup

- Objective investigate the feasibility of use of machine learning models to inform COVID-19 policy for Navajo Nation
- Tasks
 - modify and apply QSIR model to real COVID-19 data for Navajo Nation
 - estimate quarantine function Q(t)
 - compare results to the real data

Data sources

- COVID-19 infection and policy data:
 - Navajo Times https://navajotimes.com/coronavirus-updates/covid-19-across-the-navajo-nation/
 - Navajo Nation COVID-19 Dashboard https://www.ndoh.navajo-nsn.gov/COVID-19/Data
- Mobility data
 - Apple Mobility Trends https://covid19.apple.com/mobility
 - Google Mobility Trends https://www.google.com/covid19/mobility/

QSIR model

Results of modeling for the 1st wave of COVID-19 on the Navajo Nation

QSIR model validation

Predicted quarantine strength (1st wave)

Day 0 – April 17th

Real case count and policy
Source: Navajo Nation Department of Health

Mobility trends

≰Maps

Google

Mobility trends for Navajo county

Conclusions

- Machine learning methods can improve accuracy of classical epidemiological models
- QSIR model offers potential for near real-time monitoring of generalized quarantine efficiency, a metric likely to be useful for informing/adjusting epidemic containment strategies
- There are many ways to improve/extend existing models

References

- Dandekar, R., Rackauckas, C., & Barbastathis, G. (2020). A Machine Learning-Aided Global Diagnostic and Comparative Tool to Assess Effect of Quarantine Control in COVID-19 Spread. Patterns, 1(9), 100145.
- Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.
- Chang, S. Y., Pierson, E., Koh, P. W., Gerardin, J., Redbird, B., Grusky, D., & Leskovec, J. (2020). Mobility network modeling explains higher SARS-CoV-2 infection rates among disadvantaged groups and informs reopening strategies. medRxiv.
- Benzell, S. G., Collis, A., & Nicolaides, C. (2020). Rationing social contact during the COVID-19 pandemic:
 Transmission risk and social benefits of US locations. Proceedings of the National Academy of Sciences, 117(26), 14642-14644.

Acknowledgements

- NSF DMR 2031548 (RAPID)
- NSF DMR 1523611 (PREM)

Thank you for your attention!