Lecture 2

Deep Neural Network

Seoul National University

Human Interface Laboratory

Contents

- Neural Network is a Function Approximator
- Perceptron
- Deep Neural Network

Neural Network is a Function Approximator

ightharpoonup Unknown function f를 N.N. $(f_{ heta})$ 으로 approximate 하겠다!

- 매우 많은 $(x_i, y_i) \in TrainData$ 가 주어질 때, $y_i \approx f_{\theta}(x_i)$ 가 되도록 Neural Network f_{θ} 를 학습하겠다
- [희망 사항] 학습때 쓰이지 않은 $(x_i, y_i) \in TestData$ 에 대해서도 $y_i \approx f_{\theta}(x_i)$ 가 될 것이다!

Neural Network is a Function Approximator

<i>f</i> (함수)	<i>x</i> (입력)	<i>y</i> (출력)
$f(x) = x^3$	1.1	1.331
	-0.3	-0.027
And Gate	(1, 1)	1
	(1, 0)	0
Image Classifier		"강아지"
Language Model (ex. ChatGPT)	"안녕하세"	"£"
	"Question"	"Answer"

Neural Network is a Function Approximator

ightharpoonup Unknown function f를 N.N. $(f_{ heta})$ 으로 approximate 하겠다!

- 매우 많은 $(x_i, y_i) \in TrainData$ 가 주어질 때, $y_i \approx f_{\theta}(x_i)$ 가 되도록 Neural Network f_{θ} 를 학습하겠다
- [희망 사항] 학습때 쓰이지 않은 $(x_i, y_i) \in TestData$ 에 대해서도 $y_i \approx f_{\theta}(x_i)$ 가 될 것이다!

Motivation (Synapse & Neuron)

Perceptron

• $\sigma(\cdot)$: Activation function (비선형 함수)

Perceptron 실습 (AND Gate)

- Lab2-1. PyTorch Tensor
- Lab2-2. Perceptron (AND Gate)

Perceptron 실습 (AND Gate)

- 1. github.com/wifihan 접속
- 2. ssai_winter_24w 클릭

3. lec2/lec2.ipynb 다운로드

Perceptron 실습 (AND Gate)

4. 구글에 colab 검색 후 접속

Human Interface Lab.

- 4. Open Colab -> 업로드 (3.에서 다운받았던 lec2.ipynb)
- 5. 런타임 유형 GPU로 변경

Seoul National University

6. 연결확인

9

Perceptron 학습

- 1. Parameter $\theta = [w, b]$ 를 random한 값으로 초기화
- 2. $(x_i, y_i) \in TrainData$ 에 대해 $y_i \approx f_{\theta}(x_i)$ 되도록 모델의 parameter θ 를 학습
- ➤ [한계] 매우 간단한 함수 (ex. AND gate)만 approximate 가능. 조금 만 복잡해져도 (ex. XOR gate) approximate 불가능.

Deep Neural Network

Deep Neural Network (DNN)는 여러 Layer들로 이루어져 있음

$$\hat{y} = f(x) = f^{L}\left(f^{L-1}\left(\cdots f^{1}(x)\right)\right)$$

• Layer 종류: <u>Fully Connected Layer</u>, Convolutional Layer, Recurrent Layer, Transformer, ...

Neural Network 학습 알고리즘

1.
$$\hat{y} = f_{\theta}(x)$$

: Forward Propagation

2.
$$Loss = \mathcal{L}(\hat{y}, y)$$

: 정답과의 차이 계산

Ex) Mean squared error (MSE) loss = $\frac{1}{B}\sum_{i=1}^{B}(y_i - \widehat{y}_i)^2$

3.
$$\frac{\partial \mathcal{L}}{\partial \theta}$$
계산

: Backpropagation

$$4. \quad \theta \leftarrow \theta - \eta \cdot \frac{\partial \mathcal{L}}{\partial \theta}$$

: Gradient descent

Learning rate, 충분히 작은 상수 (ex. 0.001)

위 1~4를 계속 반복하면 Loss가 줄어든다

- $\succ (x_i, y_i) \in TrainData$ 에 대해 $y_i \approx f_{\theta}(x_i)$ 가 된다
- \triangleright $(x_i, y_i) \in TestData$ 에 대해서도 $y_i \approx f_{\theta}(x_i)$ 가 되길 희망

Neural Network 학습 알고리즘

1.
$$\hat{y} = f_{\theta}(x)$$

: Forward Propagation

2.
$$Loss = \mathcal{L}(\hat{y}, y)$$
 : 정답과의 차이 계산 Ex) Mean squared error (MSE) loss $= \frac{1}{B} \sum_{i=1}^{B} (y_i - \hat{y_i})^2$

3.
$$\frac{\partial \mathcal{L}}{\partial \theta}$$
계산

: Backpropagation

$$4. \quad \theta \leftarrow \theta - \eta \cdot \frac{\partial \mathcal{L}}{\partial \theta}$$

: Gradient descent

Learning rate, 충분히 작은 상수 (ex. 0.001)

위 1~4를 계속 반복하면 Loss가 줄어든다

- $\succ (x_i, y_i) \in TrainData$ 에 대해 $y_i \approx f_{\theta}(x_i)$ 가 된다
- \triangleright $(x_i, y_i) \in TestData$ 에 대해서도 $y_i \approx f_{\theta}(x_i)$ 가 되길 희망

Chain Rule

•
$$y = g(f(x))$$

•
$$y' = g'(f(x)) \cdot f'(x)$$

•
$$\iff \frac{\partial y}{\partial x} = \frac{\partial g}{\partial f} \cdot \frac{\partial f}{\partial x}$$

Backpropagation Using Chain Rule

•
$$h = g_{\theta_1}(x)$$

•
$$\hat{y} = f_{\theta_2}(h)$$

•
$$\mathcal{L} = Loss(\hat{y}, y)$$

$$\bullet \quad \frac{\partial \mathcal{L}}{\partial \theta_2} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \theta_2}$$

$$\bullet \quad \frac{\partial \mathcal{L}}{\partial \theta_1} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial h} \cdot \frac{\partial h}{\partial \theta_1}$$

$$x \longrightarrow \boxed{g} \xrightarrow{h} \boxed{f} \xrightarrow{\hat{y}} \boxed{Loss} \longrightarrow \mathcal{L}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\theta_1 \qquad \theta_2 \qquad y$$

Gradient Descent

$$\theta \leftarrow \theta - \eta \cdot \frac{\partial \mathcal{L}}{\partial \theta}$$

Learning rate, 충분히 작은 상수 (ex. 0.001)

Neural Network 학습을 위한 준비물

Data

- 학습을 위한 $(x_i, y_i) \in TrainData$
- 검증을 위한 $(x_i, y_i) \in TestData$

Model

Fully Connected Layer, Convolutional Layer, Recurrent Layer,
 Transformer, ...

Training Algorithm

- Loss
- Backpropagation
- Optimizer (ex. Gradient descent)

Neural Network 학습을 위한 준비물

Data

- 학습을 위한 $(x_i, y_i) \in TrainData$
- 검증을 위한 $(x_i, y_i) \in TestData$

Model

Fully CoTransfo

O PyTorch

ent Layer,

- Training Algoria.
 - Loss
 - Backpropagation
 - Optimizer (ex. Gradient descent)

Neural Network 실습 (Regression)

- Lab2-3 ~ 2-5. Training a Perceptron (AND Gate)
- Lab2.6 Deep Neural Network (Regression)

