Solution Techniques for Linear and Logistic Regression

Practicum and Final Exam

- \circ The **Practicum** is due at 11:59pm on Wednesday December 13th.
- Final Exam Monday December 18th from 7:30-10pm in MUEN E050
 - ☐ Cumulative but will emphasize material since midterm
 - ☐ Bring a calculator
 - ☐ Two-page note-sheet. Handwritten. No magnifying glasses.
- Review in class on Wednesday. Come with questions!

Previously on CSCI 3022

Given data $(x_{i1}, x_{i2}, \dots, x_{ip}, y_i)$ for $i = 1, 2, \dots, n$ fit a MLR model of the form

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$
 where $\epsilon_i \sim N(0, \sigma^2)$

by minimizing the sum of squared errors: $SSE = \sum_{i=1}^{n} \left[y_i - (eta_0 + eta_1 x_i) \right]^2$

Given data $(x_{i1}, x_{i2}, \dots, x_{ip}, y_i)$ for $i = 1, 2, \dots, n$ fit a LogReg model of the form

$$p(y = 1 \mid x) = \text{sigm}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$

by minimizing a similar functional.

Finding Parameters in Linear Regression

Whether doing simple linear regression or multiple linear regression, parameters are estimated by minimizing the SSE

$$SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2 \quad SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip})]^2$$

When you lots of data and a model with many features, this becomes a difficult problem

While direct methods (based on linear algebra) exist, they are far too memory and computationally expensive to perform in real life

Instead, we use an iterative method

Iterative Solution Methods

Iterative methods can be thought of as very intelligent guess and check

- Make a guess at the parameters
- O Update your guess in a smart way, based on the problem specs, to get a better guess
- o Repeat until guess converges to something very close to the correct answer

$$\beta^{(1)}_{0} = 0 \rightarrow \beta^{(1)}_{0} = 0.25 \rightarrow \beta^{(2)}_{0} \rightarrow 0.25 \rightarrow 0.2$$

Suppose you want to find the minimum of the function $\,f(z)=z^2-2z+2\,$

Can we rewrite this function in a different way so it's clear what the minimum is?

$$f(2) = (2^2 - 22 + 1) + 1 \Rightarrow f(2) = (2 - 1)^2 + 1$$

minimize $2 = 1$ minimum $f(1) = 1$

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

Can we rewrite this function in a different way so it's clear what the minimum is?

$$f(z) = (z - 1)^2 + 1$$

Question: What nice properties for minimization does this function have?

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

OK, suppose that I guess that the minimizer is $z^{\left(0\right)}=2.25$

Question: Which way should I move?

A Silly Example fiz=22-2

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

OK, suppose that I guess that the minimizer is $z^{(0)}=2.25\,$

Question: Which way should I move? Answer: Downhill! But which way is down?

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

OK, suppose that I guess that the minimizer is $z^{(0)}=2.25\,$

Question: But which way is down? Answer: Derivative tells you uphill. Go opposite direction

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

Question: But which way is down? Answer: Derivative tells you uphill. Go opposite direction

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

Question: But which way is down? Answer: Derivative tells you uphill. Go opposite direction

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

Question: But which way is down? Answer: Derivative tells you uphill. Go opposite direction

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

Question: But which way is down? Answer: Derivative tells you uphill. Go opposite direction

Suppose you want to find the minimum of the function $f(z)=z^2-2z+2$

Question: But which way is down? Answer: Derivative tells you uphill. Go opposite direction

Question: How do we fix this so we can get closer to the true minimum?

This method is called **Gradient Descent** (think Derivative Descent)

$$z^{(k+1)} = z^{(k)} - \eta \cdot f'(z^{(k)})$$

OK, so how do we use the idea of Gradient Descent to estimate the parameters in SLR

Recall, the estimated parameters are the value of eta_0 and eta_1 that minimize the SSE

$$SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Important: We're minimizing over the $eta '_{
m S}$. The $x'_{
m S}$ and $y'_{
m S}$ are the values from the data.

The difficulty is that this is a function of two variables, which is not quite a simple parabola

In 1-dimension the SSE is a parabola. In 2-dimensions it's a bowl-like surface

$$SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

In 1-dimension the SSE is a parabola. In 2-dimensions it's a bowl-like surface

$$SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

In 2D the process is still the same:

- Make a guess at the minimum
- Move iteratively downhill

In 1-dimension the SSE is a parabola. In 2-dimensions it's a bowl-like surface

$$SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

In 2D the process is still the same:

- Make a guess at the minimum
- Move iteratively downhill

In 1-dimension the SSE is a parabola. In 2-dimensions it's a bowl-like surface

$$SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

But how do we move downhill in 2d?

In 1-dimension the SSE is a parabola. In 2-dimensions it's a bowl-like surface

$$SSE = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

But how do we move downhill in 2d?

In 1-dimension, Gradient Descent was $z^{(k+1)} = z^{(k)} - \eta \cdot f'(z^{(k)})$

In 2-dimensions, we have the following:

$$\beta_0^{(k+1)} = \beta_0^{(k)} - \eta \frac{\partial SSE}{\partial \beta_0^{(k)}}$$

$$\beta_1^{(k+1)} = \beta_1^{(k)} - \eta \frac{\partial SSE}{\partial \beta_1^{(k)}}$$

In 1-dimension, Gradient Descent was $z^{(k+1)} = z^{(k)} - \eta \cdot f'(z^{(k)})$

In 2-dimensions, we have the following:

$$\beta_0^{(k+1)} = \beta_0^{(k)} - \eta \sum_{i=1}^n -2 \cdot \left[y_i - (\beta_0^{(k)} + \beta_1^{(k)} x_i) \right]$$

$$\beta_1^{(k+1)} = \beta_1^{(k)} - \eta \sum_{i=1}^n -2 \cdot \left[y_i - (\beta_0^{(k)} + \beta_1^{(k)} x_i) \right] x_i$$

In 1-dimension, Gradient Descent was $z^{(k+1)} = z^{(k)} - \eta \cdot f'(z^{(k)})$

In 2-dimensions, we have the following:

$$\beta_0^{(k+1)} = \beta_0^{(k)} - \eta \sum_{i=1}^n -2 \cdot \left[y_i - (\beta_0^{(k)} + \beta_1^{(k)} x_i) \right]$$

$$\beta_1^{(k+1)} = \beta_1^{(k)} - \eta \sum_{i=1}^n -2 \cdot \left[y_i - (\beta_0^{(k)} + \beta_1^{(k)} x_i) \right] x_i$$

Question: Does anything about this seem slow?

$$\beta_0 \leftarrow \beta_0 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)]$$

$$\beta_1 \leftarrow \beta_1 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)] x_i$$

Question: Does anything about this seem slow?

To get more rapid updates, update parameters one data point at a time

For each point (x_i, y_i) in dataset, update parameters

$$\beta_0 \leftarrow \beta_0 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)]$$

$$\beta_1 \leftarrow \beta_1 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)] x_i$$

Important Note: Better if you loop through dataset randomly. Avoids biases in order of data

Stochastic Gradient Descent for SLR

To get more rapid updates, update parameters one data point at a time

For each point (x_i, y_i) in RANDOMLY SHUFFLED dataset, update parameters

$$\beta_0 \leftarrow \beta_0 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)]$$

$$\beta_1 \leftarrow \beta_1 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)] x_i$$

Stochastic Gradient Descent for SLR

To get more rapid updates, update parameters one data point at a time

For each point (x_i, y_i) in **RANDOMLY SHUFFLED** dataset, update parameters

$$\beta_0 \leftarrow \beta_0 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)]$$

$$\beta_1 \leftarrow \beta_1 - \eta \cdot (-2) \cdot [y_i - (\beta_0 + \beta_1 x_i)] x_i$$

One pass over the entire data set is called an epoch

Too small of a learning rate and it takes forever to converge

Too large a learning rate and you can get oscillations that bounce around

Way too large a learning rate and you can diverge

Generally have to tune learning rate to get it just right

Recall that in LogReg we have data of the form (x_i, y_i) where $y_i \in \{0, 1\}$

Our model was
$$p = p(y = 1 \mid x) = \operatorname{sigm}(\beta_0 + \beta_1 x) \Rightarrow p(y = 0 \mid x) = 1 - \operatorname{sigm}(\beta_0 + \beta_1 x)$$

This can be written more compactly as

$$p(y \mid x) = \text{sigm}(\beta_0 + \beta_1 x)^y * (1 - \text{sigm}(\beta_0 + \beta_1 x)^{(1-y)})$$

Notice that this looks like a Bernoulli random variable with mean $\operatorname{sigm}(\beta_0 + \beta_1 x)$

The Likelihood tells us how well the parameters fit the data and model

$$L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(y_i \mid x_i; \beta_0, \beta_1)$$
$$= \prod_{i=1}^{n} sigm(\beta_0 + \beta_1 x_i)^{y_i} (1 - sigm(\beta_0 + \beta_1 x_i))^{1-y_i}$$

$$L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(y_i \mid x_i; \beta_0, \beta_1)$$
$$= \prod_{i=1}^{n} \operatorname{sigm}(\beta_0 + \beta_1 x_i)^{y_i} (1 - \operatorname{sigm}(\beta_0 + \beta_1 x_i))^{1-y_i}$$

This is messy because of all the products. We'll turn them into sums by taking the log

Can make it even nicer by taking the negative, to the the so-called Negative Log-Likelihood

$$NLL(\beta_0, \beta_1) = -\log (\prod_{i=1}^{n} p(y_i \mid x_i; \beta_0, \beta_1))$$

$$= -\sum_{i=1}^{n} y_i \log \operatorname{sigm}(\beta_0 + \beta_1 x_i) + (1 - y_i) \log(1 - \operatorname{sigm}(\beta_0 + \beta_1 x_i))$$

$$NLL(\beta_0, \beta_1) = -\log(\prod_{i=1}^{n} p(y_i \mid x_i; \beta_0, \beta_1))$$

$$= -\sum_{i=1}^{n} y_i \log \operatorname{sigm}(\beta_0 + \beta_1 x_i) + (1 - y_i) \log(1 - \operatorname{sigm}(\beta_0 + \beta_1 x_i))$$

Need partial derivatives of $NLL(\beta_0,\beta_1)$ w.r.t. parameters (Try these yourself!)

$$\frac{\partial NLL(\beta_0, \beta_1)}{\partial \beta_0} = -\sum_{i=1}^n \left[y_i - \text{sigm}(\beta_0 + \beta_1 x_i) \right]$$

$$\frac{\partial NLL(\beta_0, \beta_1)}{\partial \beta_1} = -\sum_{i=1}^n \left[y_i - \operatorname{sigm}(\beta_0 + \beta_1 x_i) \right] x_i$$

Like before, we'll only do one data point at a time

$$NLL(\beta_0, \beta_1) = -\log(\prod_{i=1}^{n} p(y_i \mid x_i; \beta_0, \beta_1))$$

$$= -\sum_{i=1}^{n} y_i \log \operatorname{sigm}(\beta_0 + \beta_1 x_i) + (1 - y_i) \log(1 - \operatorname{sigm}(\beta_0 + \beta_1 x_i))$$

Stochastic Gradient Descent for LogReg: Loop over each shuffled data point and do

$$\beta_0 \leftarrow \beta_0 + \eta \cdot [y_i - \operatorname{sigm}(\beta_0 + \beta_1 x_i)]$$

$$\beta_1 \leftarrow \beta_1 + \eta \cdot [y_i - \operatorname{sigm}(\beta_0 + \beta_1 x_i)] x_i$$

OK! Let's Go to Work!

Get in groups, get out laptop, and open the Lecture 26 In-Class Notebook

Let's:

- Actually implement SGD for simple linear regression
- Actually implement SGD for logistic regression

Faculty Course Questionnaires

Available at the following link:

http://colorado.campuslabs.com/courseeval

Open now until December 15th at 11:59pm