1.

Base 10(decimal numbers)	binary(32,16,8,4,2,1)	octal(group binary into groups of 3 and then(8,4,2,1)	hexadecimal(group binary into 4 and then (16,8,4,2,1)
35 → 32+2+1	100011	100 011 →43) ₈	$0010\ 0011 \rightarrow 23)_{16}$
36	100100	44) ₈	24) ₁₆
37	100101	45) ₈	25) ₁₆
38	100110	46) ₈	26) ₁₆
39	101000	47) ₈	27) ₁₆
40	101010	50) ₈	28) ₁₆
41	101011	51) ₈	29) ₁₆
42	101010	52) ₈	2A) ₁₆
43	101011	53) ₈	2B) ₁₆

- 2. Binary to Decimal
- a) $01101 \rightarrow 1 + 4 + 8 \rightarrow 13$
- b) $11010 \rightarrow 2 + 8 + 16 \rightarrow 26$

Explain why the answer in b is 2 times a): b is 2 times a because when you shift the binary number down 2ⁿ

Problem 3:

- a)– 32)₁₀ to decimal using sign and magnitude
- 1 10 0000
- b)-32)₁₀ to decimal using 1s complement
- 1 01 1111
- c)- 32)₁₀ to decimal using 2s complement
- 1 00 000 (because -0 doesn't have a binary representation in 2's complement, we can assign -32 to this representation
- d) Compare and discuss the results of a) . What is the minimum number of bits used to represent the number and why?

7 bits because we need 6 for the magnitude and 1 for the sign

Problem 4

- a) Convert the binary sign-and-magnitude number 1110 to 1's complement representation?
- 1 001

- b) Convert the result in a) to 2's complement representation
- 1 010
 - c) Convert the result in b) to a decimal number
- 1 110 \rightarrow 6 1s complement

Problem 5

- d) Convert the binary 2's complement number 100111 to 1's complement representation 1 00110
- e) b) Convert the result in (a) to sign and -magnitude representation 1 11001