ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

1		.,	
)		К	Δ

ΚΑΝΟΝΙΚΗ ΔΙΑΖΕΥΚΤΙΚΗ ΜΟΡΦΗ

 $\psi_1 \vee \psi_2 \vee ... \vee \psi_n$

 $X_b \wedge X_b \wedge ... \wedge X_t$ Και τα χ, είναι μεταβλητές ή αρνήσεις προτασιακών

Κανονική Διαζευκτική Μορφή:

όπου κάθε ψ, είναι της μορφής:

είναι της μορφής:

μεταβλήτών

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Βήματα κατασκευής κανονικής διαζευκτικής μορφής Κατασκευάζουμε τον πίνακα αλήθειας του τύπου.

- Εκφράζουμε σαν σύζευξη (and) κάθε γραμμή που αληθεύει. Στην σύζευξη θέτουμε p αν $\alpha(p) = A$ και $\neg p \ \alpha \lor \alpha(p) = \Psi.$
 - Ο τύπος είναι η διάζευξη (or) όλων των συζεύξεων.

Προτεραιότητα λογικών συνδέσμων:

(1) ¬ (2) \vee , \wedge (3) \rightarrow , \leftrightarrow

Αντίφαση: είναι τύπος που είναι Ψ για όλες τις αποτιμήσεις

Παράδειγμα: Ο τύπος $p \land \neg(q \rightarrow p)$ είναι αντίφαση

p	q	$p \land \neg (q \to p)$
A	A	$A \land \neg (A \rightarrow A) = A \land \neg A = \Psi$
A	Ψ	$A \land \neg (\Psi \rightarrow A) = A \land \neg A = \Psi$
Ψ	A	$\Psi \land \neg (A \to \Psi) = \Psi \land \neg \Psi = \Psi$
Ψ	Ψ	$\Psi \land \neg (\Psi \rightarrow \Psi) = \Psi \land \neg A = \Psi$

Γνωστές Αντιφάσεις είναι οι μορφές τύπων

- φ Λ ¬φ όπου φ οποιοσδήποτε προτασιακός τύπος
- $\varphi \rightarrow \psi$ όπου φ=Ταυτολογία και ψ=Αντίφαση (Μορφή $\mathbf{A} \rightarrow \mathbf{\Psi}$)
- ¬φ όπου φ=Ταυτολογία
- $\varphi \leftrightarrow \neg \varphi$ όπου φ οποιοσδήποτε προτασιακός τύπος

<u>Ικανοποιήσιμος:</u> είναι τύπος που είναι Α σε τουλάχιστον μία αποτίμηση

Παράδειγμα: Ο τύπος $p \land \neg(q \rightarrow p)$ είναι ικανοποιήσιμος

Λύση:	p	q	$p \to (p \to q)$
	A	A	$p \rightarrow (p \rightarrow q) = A \rightarrow (A \rightarrow A) = A \rightarrow A = A$
	A	Ψ	$p \to (p \to q) = A \to (A \to \Psi) = A \to \Psi = \Psi$
	Ψ	A	$p \to (p \to q) = \Psi \to (\Psi \to A) = \Psi \to A = A$
	Ψ	Ψ	$p \to (p \to q) = \Psi \to (\Psi \to \Psi) = \Psi \to A = A$

Παράδειγμα: Να βρεθεί η Κ.Δ.Μ. του τύπου: $p \rightarrow \neg (q \rightarrow r)$

Ένας τύπος είναι σε κανονική διαζευκτική μορφή (ΚΔΜ), αν

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

	p	q	r	$p \to \neg (q \to r)$
	A	A	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow A) = A \rightarrow \Psi = \Psi$
	A	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow \Psi) = A \rightarrow A = A$
	A	Ψ	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (\Psi \rightarrow A) = A \rightarrow \Psi = \Psi$
	A	Ψ	Ψ	$p \to \neg (q \to r) = A \to \neg (\Psi \to \Psi) = A \to \Psi = \Psi$
1	Ψ	A	A	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow A) = \Psi \rightarrow \Psi = A$
1	Ψ	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow \Psi) = \Psi \rightarrow A = A$
1	Ψ	Ψ	A	$p \to \neg (q \to r) = \Psi \to \neg (\Psi \to A) = \Psi \to \Psi = A$
1	Ψ	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow \Psi) = \Psi \rightarrow \Psi = A$

H 2^η γραμμή: $p \wedge q \wedge \neg r$

H 5^η γραμμή: $\neg p \land q \land r$

H 7^{η} γραμμή: $\neg p \land \neg q \land r$

H 8η γραμμή: $\neg p \land \neg q \land \neg r$

H 6^η γραμμή: $\neg p \land q \land \neg r$

Άρα η Κανονική Διαζευκτική Μορφή του τύπου είναι:

$$\big(p \wedge q \wedge \neg r\big) \vee \big(\neg p \wedge q \wedge r\big) \vee \big(\neg p \wedge q \wedge \neg r\big) \vee \big(\neg p \wedge \neg q \wedge r\big) \vee \big(\neg p \wedge \neg q \wedge \neg r\big)$$

ΠΡΟΤΑΣΙΑΚΟΙ ΤΥΠΟΙ

Πίνακας Αλήθειας Λογικών Συνδέσμων:

 $\phi \wedge \psi \mid \phi \rightarrow \psi \mid \phi \leftrightarrow \psi \mid$ W $\neg \phi$ $\phi \vee \psi$ AA A A A A Ψ Ψ A Ψ Ψ Ψ Ψ Ψ A A A Ψ A Ψ Ψ Ψ Ψ A A A

Ταυτολογία: είναι τύπος που είναι Α για όλες τις αποτιμήσεις

Παράδειγμα: Ο τύπος $p \land \neg p \rightarrow q$ είναι ταυτολογία

Λύση:	p	q	$(p \land \neg p) \rightarrow q$
	A	A	$(A \land \neg A) \rightarrow A = \Psi \rightarrow A = A$
	A	Ψ	$(A \land \neg A) \rightarrow \Psi = \Psi \rightarrow \Psi = A$
	Ψ	A	$(\Psi \land \neg \Psi) \rightarrow A = \Psi \rightarrow A = A$
	Ψ	Ψ	$(\Psi \land \neg \Psi) \rightarrow \Psi = \Psi \rightarrow \Psi = A$

Γνωστες Ταυτολογίες είναι οι μορφές τύπων:

- $\phi \lor \neg \phi$ όπου ϕ οποιοσδήποτε προτασιακός τύπος
- $\phi \rightarrow \psi$ όπου φ=Αντίφαση (Μορφή $\Psi \rightarrow \cdots$) ή ψ=Ταυτολογία (Μορφή ... → A)
- $\phi \rightarrow \phi$ όπου ϕ οποιοσδήποτε προτασιακός τύπος
- $φ \leftrightarrow φ$ όπου φ οποιοσδήποτε προτασιακός τύπος
- Όλες οι μορφές τύπων νόμων της προτασιακής λονικής
- Όλες οι μορφές τύπων συντακτικών αντικατάσεων στα αξιωματικά σχήματα του προτασιακού λογισμού