目 录

目 录

第	1章	抽象空间·····	1
	1.1	引言 ·····	1
	1.2	赋范空间	1
	1.3	Banach 空间·····	2
	1.4	常用函数空间 · · · · · · · · · · · · · · · · · · ·	2
	1.5	内积空间与 Hilbert 空间 · · · · · · · · · · · · · · · · · ·	2

第1章 抽象空间

- 1.1 引言
- 1.2 赋范空间

设 X 是数域 K 上的向量空间 (K = R 或 C),若对每个 $x \in X$ 指定一个实数 ||x||,称为 x 的范数,其满足以下范数公理。

- (N_1) 齐次性 $||ax|| = |a| \cdot ||x||$ $a \in K$
- (N_2) 三角不等式 $||x + y|| \le ||x|| + ||y||$
- (N_3) 正定性 $||x|| \ge 0$, $||x|| = 0 \leftrightarrow ||x|| = 0$

则称 X 为 K 上的赋范向量空间, 简称赋范空间。

注:

- 1 如 K=R, 称为实赋范空间, 如 K=C, 则称为复赋范空间。
- 2 description
 - **a.** 称 $|x| = \sqrt{\sum_{i} |x_{i}|^{2}}$ 称为 Euclid 范数,常用于解释赋范空间的模型。
 - b. 一般范数无具体计算公式,其本质在于范数公理,正是舍弃了特殊的表达式,才得到了具有高度抽象性的赋范空间理论。
 - c. 一旦将赋范空间理论应用于某个特定空间,就必须选择适当的范数公式。

例:有界函数空间 $B(\Omega)$

设 Ω 是任一非空集合, $B(\Omega)$ 是定义在 Ω 上的有界实(复)函数之全体。其显然是一实(复)向量空间。任给 $\mu \in B(\Omega)$,令

$$||\mu||_0 = \sup_{x \in \Omega} |\mu(x)|$$

验证:

10 齐次性

$$||a\mu||_0 = \sup_{x \in \Omega} |a\mu(x)|$$

- 20 三角不等式
- 30 正定性

[说明]

1. 自然数集 N 上的有界函数就是有界数列。因此,有界数列空间 B(N) 是一赋范空间,通常记做 ℓ^{∞} 。

- 1.3 Banach 空间
- 1.4 常用函数空间
- 1.5 内积空间与 Hilbert 空间