Simulação em Python da Aplicação da Teoria do Controle Ótimo em um modelo Presa-Predador

Tomás Ferranti

Escola de Matemática Aplicada, FGV-RJ, RJ, Brasil

O objetivo deste trabalho é ilustrar o uso da teoria do controle ótimo para obter estratégias ótimas no controle de um sistema presa-predador. A variável de controle usada, que pode ser interpretada como um inseticida, reduz ambas às populações proporcionalmente sem deixar resíduos de modo a atingir o equilíbrio do sistema minimizando um determinado custo.

1 Introdução

Teoria do Controle Ótimo é uma área da matemática aplicada que lida com achar uma lei de controle para um sistema dinâmico durante um período de tempo de modo que uma certa função objetivo é otimizada. É usada em diversas aplicações como ciência e engenharia. Por exemplo, o sistema dinâmico talvez seja um foguete com os controles dos propulsores e o objetivo pode ser alcançar a lua utilizando a menor quantidade de combustível possível. Também podemos ter o sistema dinâmico como a economia de uma nação, com o objetivo de minimizar o desemprego. Os controles nesse caso poderiam ser políticas fiscais e monetárias.

Controle Ótimo é uma extensão do cálculo variacional, e é um método de otimização matemática para derivar o comportamento de um controle. Os principais contribuidores para esta área são Lev Pontryagin e Richard Bellman em 1950, após contribuições para o cálculo variaconal de Edward J. McShane. Controle Ótimo pode ser visto como uma estratégia de controle em Teoria do Controle.

Neste trabalho, nosso sistema dinâmico é o Presa-Predador e nosso controle seria um inseticida afetando ambas as populações. O nosso objetivo é levar a trajetória do sistema ao ponto de equilíbrio, que é o menor ponto de flutuação populacional, minimizando o custo de presas e o custo do inseticida.

2 Modelo

Entre várias opções de modelo disponíveis como matriciais e logísticos, estocásticos e determinísticos, foi escolhido o de Lotka-Volterra para aplicação. Este retrata razoavelmente bem a realidade e é matematicamente simples.

Trata-se de um modelo determinístico para o comportamento dos níveis populacionais de duas espécies. Considere $N_1(t)$ como o número de presas no instante t e $N_2(t)$ o número de predadores no instante t. Lotka-Volterra diz que as populações seguem o seguinte par de equações diferenciais:

$$\frac{dN_1}{dt} = (\alpha_1 - \beta_1 N_2) N_1, \tag{1}$$

$$\frac{dN_2}{dt} = (\beta_2 N_1 - \alpha_2) N_2,\tag{2}$$

, onde $\alpha_1, \alpha_2, \beta_1$ e β_2 são constantes positivas.

Com esses valores, o ponto $P = (\alpha_2/\beta_2, \alpha_1/\beta_1)$ é o equilíbrio do sistema, isto é, se a população se encontra nesses valores, ela se mantém constante. Quanto mais distante N_1 e N_2 se encontram do equilíbrio, maior é a flutuação populacional.

Considere u(t) como a nossa váriavel de controle que representa o nível de inseticida no instante $t,\ 0 \le u \le u_{\rm max}$. Podemos representá-lo no sistema mudando as equações diferenciais da seguinte forma:

$$\frac{dN_1}{dt} = (\alpha_1 - \beta_1 N_2) N_1 - b_1 u N_1,$$

$$\frac{dN_2}{dt} = (\beta_2 N_1 - \alpha_2) N_2 - b_2 u N_2,$$

, onde b_1 e b_2 são constantes positivas.

Logo, u(t) pode ser analisado como um inseticida que reduz proporcionalmente ambas as populações sem deixar resíduos.

Agora considere que em t=0 os níveis populacionais são observados, $N_1(0)=N_{10}$ e $N_2(0)=$

 N_{20} . Considere T como nosso tempo final, não especificado. Queremos que $N_1(T) = \alpha_2/\beta_2$ e $N_2(T) = \alpha_1/\beta_1$, pois queremos estabilizar a população. Logo, para podermos aplicar a teoria do controle ótimo, nos resta definir uma função custo.

No trabalho [2] é proposto um custo linear, dificultando posteriormente na equação de u. Para nosso objetivo, considere ele quadrático. Logo podemos definir o nosso custo como:

$$J = \int_0^T (c_1 N_1 + c_2 u^2) dt$$

Queremos minimizar J ao longo da nossa trajetória ao equilíbrio, o que implica maximizar -J.

3 Condições de Otimalidade

Os métodos da Teoria do Controle Ótimo se encontram presentes e explicado em muitos livros

didáticos. Para este trabalho, utilizamos os presentes em [1]. Nosso problema se resume a:

$$\max \int_{0}^{T} (-c_1 N_1 - c_2 u^2) dt$$

sujeito a

$$N_{1}(0) = N_{10}, N_{2}(0) = N_{20};$$

$$N_{1}(T) = \frac{\alpha_{2}}{\beta_{2}}, N_{2}(T) = \frac{\alpha_{1}}{\beta_{1}};$$

$$0 \le u \le u_{\text{max}};$$

$$\frac{dN_{1}}{dt} = (\alpha_{1} - \beta_{1}N_{2})N_{1} - b_{1}uN_{1},$$

$$\frac{dN_{2}}{dt} = (\beta_{2}N_{1} - \alpha_{2})N_{2} - b_{2}uN_{2},$$

Temos que nosso hamiltoniano será, junto com as derivadas dos estados adjuntos:

$$H(t, N_1, N_2, \lambda_1, \lambda_2, u) = -c_1 N_1 - c_2 u^2 + (\alpha_1 - \beta_1 N_2) N_1 \lambda_1 - b_1 u N_1 \lambda_1 + (\beta_2 N_1 - \alpha_2) N_2 \lambda_2 - b_2 u N_2 \lambda_2$$

$$\frac{d\lambda_1}{dt} = -\frac{dH}{dN_1} = c_1 + (\beta_1 N_2 - \alpha_1) \lambda_1 + b_1 u \lambda_1 - \beta_2 N_2 \lambda_2$$

$$\frac{d\lambda_2}{dt} = -\frac{dH}{dN_2} = \beta_1 N_1 \lambda_1 + (\alpha_2 - \beta_2 N_1) \lambda_2 + b_2 u \lambda_2$$

Além disso, $H(N^*(t), u^*(t), \lambda(t)) = 0$, e durante a trajetória ótima o controle ótimo $u^*(t)$ minimiza H com respeito a todos os controles. Logo:

- $H_u > 0 \implies u^*(t) = 0;$
- $H_u < 0 \implies u^*(t) = u_{\text{max}};$
- $H_u = 0 \implies u^*(t) = \frac{b_1 N_1 \lambda_1 + b_2 N_2 \lambda_2}{-2c_2};$

Como desejamos que o nosso sistema tenha um destino final, os valores finais de λ_1 e λ_2 são desconhecidos. O método para achar uma aproximação será explicado na próxima seção. Agora nos resta simular o problema numericamente.

4 Simulação

Para a simulação são usados três métodos presentes em [1]. Todo o código para a simulação foi re-

alizado com a linguagem de programação Python e se encontra em [3].

4.1 Método de Runge-Kutta

Suponha que x(t) seja uma função contínua em [0,T] que assume valores nos reais e x'(t) = f(t,x(t)). O método Runge-Kutta 4 diz que uma aproximação para x(t+h) dado x(t), onde h geralmente é um valor pequeno, é dada por:

$$x(t+h) \approx x(t) + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 onde
$$k_1 = f(t, x(t))$$

$$k_2 = f(t + \frac{h}{2}, x(t) + \frac{h}{2}k_1)$$

$$k_3 = f(t + \frac{h}{2}, x(t) + \frac{h}{2}k_2)$$

$$k_3 = f(t + h, x(t) + hk_3)$$

Este método possui uma precisão maior que o Método de Euler [4] e é amplamente usado em teoria do controle ótimo devido à necessidade de integrar múltiplas funções com precisão.

4.2 Método de Forward-Backward Sweep

Considere os vetores $\overrightarrow{x} = (N_1(t), N_2(t))$ e $\overrightarrow{\lambda} = (\lambda_1(t), \lambda_2(t))$. Segue abaixo o pseudoalgoritmo do método:

- Passo 1. Faça um chute inicial sobre o valor de u no intervalo [0, T];
- Passo 3. Usando os valores finais de $\overrightarrow{\lambda}$ e os valores de \overrightarrow{x} e u, integre numericamente $\overrightarrow{\lambda}$ ao contrário usando Runge-Kutta para obter seus valores;
- Passo 4. Atualize u com os novos valores de \overrightarrow{x} , e $\overrightarrow{\lambda}$;
- Passo 5. Verifique a convergência. Se os valores de \overrightarrow{x} , $\overrightarrow{\lambda}$ e u estão relativamente pertos de seus valores na última iteração, retorne os valores. Caso contrário, volte ao Passo 2.

Com este método conseguimos obter os valores finais de \overrightarrow{x} dado os valores finais de $\overrightarrow{\lambda}$ fixos.

4.3 Método da Secante

O Método da secante consiste em achar uma raíz de uma função $V: \mathbb{R} \to \mathbb{R}$ contínua. É construída uma sequência x_n a partir de dois valores iniciais de modo que, para $n \geq n_0$ com n_0 suficientemente grande, $V(x_n) \approx 0$.

Dado x_0 e x_1 , podemos achar os próximos valores da sequência com a equação:

$$x_{n+1} = x_n - \left(\frac{x_n - x_{n-1}}{V(x_n) - v(x_{n-1})}\right) V(x_n)$$

A justificativa desse método convergir para uma raíz se encontra em [5]. Com essa nova ferramenta, podemos usá-la para determinar os valores finais de λ :

Passo 1. Calcule o valor final de w usando o Método de Forward-Backward Sweep com dois chutes iniciais de i;

- Passo 2. Calcule o próximo termo da sequência utilizando o Método da Secante e seu respectivo valor final de x;

Para o nosso problema, serão necessárias duas rotinas desse método, devido à ele ser bidimensional.

5 Resultados

A simulação foi realizada com os seguintes valores: $\alpha_1 = \alpha_2 = \beta_1 = \beta_2 = b_1 = b_2 = c_1 = c_2 = u_{\text{max}} = 1$, e chutes iniciais para os valores de λ_1 com 3 e 2, respectivamente, e para λ_2 com 2 e 3, respectivamente.

Figura 1: Valores das váriaveis × tempo

Após alguns testes com vários valores de T, foi encontrado que T=1.75 era o menor valor de modo a se aproximar do equilíbrio. Podemos observar na Fig. 1 que o nosso controle u é uma combinação de nulo e máximo, o que é de se esperar na maioria dos problemas de controle ótimo.

Na Fig. 2 temos a trajetória do nosso sistema, $(1.5, 0.5) \rightarrow (1, 1)$. Podemos perceber a mudança brusca quando o controle é ativado no momento certo de modo a conduzí-lo ao equilíbrio.

6 Conclusão

O uso da Teoria do Controle Ótimo em biologia nos forneceu resultados interessantes. Um deles é de que não compensa ativar o controle (de nulo para máximo) enquanto a nossa trajetória se encontra de um jeito tal que, caso ativado, ela passaria logo abaixo do nosso equilíbrio.

Figura 2: Espaço de estado

Outro resultado curioso é de que foi necessário apenas uma mudança no controle (de nulo para máximo). O efeito disso se dá na prática da aplicação, em que seria necessário apenas observar a população por um período de tempo até ela atingir o nível em que o inseticida poderia ser aplicado em sua máxima intensidade sem nenhuma preocupação.

Um problema detectado no Método da Secante é de que algumas simulações tornam o valor de Lambda muito alto, causando instabilidade numérica e falha no método. Logo, durante a atualização de Lambda é coletado seus valores finais e a distância atual ao equilíbrio, de modo que caso o código seja afetado por este, obtemos nossos valores manualmente.

Referências

- [1] G. Leitmann et al., An Introduction to Optimal Control, McGraw-Hill, New York (1966).
- [2] Bean San Goh et al., Optimal Control of a Prey-Predator, University of New South Wales, Kensington, Australia (1974).
- [3] Repositório no GitHub com o código da simulação.
- [4] Página da Wikipédia sobre o Método de Euler
- [5] Página da Wikipédia sobre o Método da Secante.