

Современные системы цифрового телевидения

Старт 2-клик Стоп - 1 клик

Лекция 1

Принципы передачи видеоинформации

ФИО преподавателя: Смирнов

Александр Витальевич

e-mail: av smirnov@mirea.ru

Введение

- Программой первого семестра предусмотрено 8 лекций
- В течение семестра необходимо выполнить 4 лабораторных работы и 8 практических заданий
- . Форма промежуточной аттестации зачет
- К зачету допускаются студенты, выполнившие все работы и задания

Литература

- 1. Смирнов А.В. Современные системы цифрового телевидения [Электронный ресурс]: Учебное пособие. М.: МИРЭА Российский технологический университет. 2022.
- 2. Смирнов А.В. Основы телевидения и видеотехники. Учебное пособие. М.: Горячая линия - Телеком. 2018.- 358 с.*

(На кафедре есть электронная версия этого пособия)

Типы систем передачи видеоинформации

- 1. Системы ТВ вещания
- 2. Системы прикладного ТВ
- 3. Системы видеосвязи
- 4. Системы интерактивного ТВ

Все эти системы в настоящее время перешли на цифровые технологии

Физическая природа света

Свет – электромагнитные волны, воспринимаемые зрением человека. Диапазон длин волн света от 0,38 до 0,77 мкм (или от 380 до 770 нм).

Свет с разными длинами волн создает ощущение разных цветов.

 0,4
 0,52
 0,7 мкм

 УФ Ф С Г З Ж О К ИК

УФ – ультрафиолетовое излучение

ИК – инфракрасное излучение

Светотехнические величины

Световой поток Ф – мощность излучения, оцениваемая по воздействию на глаз.

При $\lambda = 550$ нм P = 1 Вт дает световой поток $\Phi = 120$ лм (люмен).

Cила света $\Delta I = \Delta \Phi / \Delta \omega$, т.е. световой поток $\Delta \Phi$, излучаемый в телесный угол $\Delta \omega$.

Измеряется в канделах (кд). Кандела – основная единица по СИ.

Яркость $B = I / S \cos \alpha$, кд / м², где S - площадь излучающей поверхности; I - сила света; α – угол между направлением света и нормалью к поверхности.

Для экранов ТВ $B = 100 ... 1000 кд/м^2$.

Освещенность $E = \Phi / S$, люкс (лк), где Φ – падающий свет. поток; S – площадь освещаемой поверхности.

Устройство глаза

10.8.20

Функции частей глаза

Фокусировка изображения на сетчатку выполняется с помощью роговицы, передней камеры и, в первую очередь, хрусталика.

Регулировка светового потока производится посредством зрачка.

Преобразование света в нервные импульсы – сетчатка, содержащая около 7 млн. колбочек и 130 млн. палочек.

Колбочки есть трех видов, чувствительные в красной, зеленой и синей частях спектра. Суммированием этих трех цветов можно получить другие цвета

Дальнейшая обработка изображения — в зрительной коре головного мозга. Процессы здесь адаптивны. При недостаточной яркости суммируются сигналы от нескольких рецепторов, что ухудшает пространственное разрешение.

Характеристики зрения

Поле ясного зрения − примерно 16 х 12 °. Для восприятия более широких полей необходимо менять направление зрения.

Разрешающая способность — минимальный разрешаемый угол, приблизительно 1 минута.

Инерционность — глаз сохраняет ощущение света некоторое время после прекращения действия света. Есть два параметра:

Слитность движения – 15 –16 кадров/с.

Критическая частота мельканий— зависит от яркости. Примерно равна 46—48 Гц, но для больших экранов больше.

Порог заметности изменений яркости — в соответствии с Законом Вебера — Фехнера

$$\Delta B_{\text{nop}} = k B_{\text{фон}}$$

где $B_{\text{фон}}$ – яркость фона, $k \approx 0.02 - 0.05$ - коэффициент, $\Delta B_{\text{пор}}$ - пороговое отличие яркости объекта от фона.

Кривая видности

Диаграмма цветности

Характеристики цвета:

- 1. Светлота
- 2. Цветовой тон
- 3. Насыщенность

Опорный белый:

$$x = 0.3127$$
; $y = 0.3290$

Стандартные цвета:

R:
$$x = 0.640$$
; $y = 0.330$

G:
$$x = 0.290$$
; $y = 0.600$

B:
$$x = 0.150$$
; $y = 0.050$

Способы сложения цветов

- 1. Одновременный
- 2. Поочередный
- 3. Пространственный
- 4. Бинокулярный

Развертка

Изменяющееся во времени изображение представляется Последовательностью неподвижных картинок - *кадров*.

Каждый кадр посредством *развертки* элемент за элементом, строка за строкой преобразуется в электрический сигнал и передается по каналу связи. В приемнике кадр воспроизводится на экране также с применением развертки.

При построчной или прогрессивной развертке строки передаются одна за другой. В случае чересстрочной развертки сначала передаются нечетные строки, образующие первое поле, а затем – четные строки, составляющие второе поле. Чересстрочная развертка применяется для устранения мерцаний экрана при частоте кадров 25 или 30 Гц.

Способы реализации развертки

- 1. Оптико-механическая развертка (до 30-х годов XX века)
- 2. Электронно-лучевая развертка (с 30-х годов до конца XX века)
- 3. Развертка посредством электронной коммутации элементов (с 90-х годов XX века по настоящее время)

Последовательность кадров

Построчная и чересстрочная развертка

Структура ТВ системы

Стандарты изображения в цифровом ТВ

Стандарт	Формат	Число	Макс.част.	Тип	Бит на отсчет	Битрейт Мбит/с
		пикселей	кадров Гц	развертки		
SDTV	4:3	720x576	25, 30	чс	8 или 10	198
HDTV	16:9	1920x1080	50, 60	чс и пр	8 или 10	989 или 1978
UHDTV	16:9	3840x2160	50, 60	пр	10 или 12	7910
UHDTV-1	16:9	3840x2160	100, 120	пр	10 или 12	15820
UHDTV-2	16:9	7680x4320	100, 120	пр	10 или 12	63281

Частоты кадров, кратные 25 Гц относятся к европейским стандартам, а кратные 30 Гц - к американским.

Значения битрейта даны для формата 4:2:2 при максимальной частоте кадров и только для видеоинформации.

Применяется также стандарт 720р с форматом 16:9, прогрессивной разверткой с частотой кадров 60 Гц, число пикселей 1280х720.

Форматы изображения

ТВ обычной четкости - 16x12 град., расстояние 5 высот экрана.

ТВ сигналы

В системах ТВ вещания передаются яркостной сигнал E'_{Y} и два цветоразностных сигнала E'_{R-Y} и E'_{B-Y} :

$$E'_{Y} = 0.299E'_{R} + 0.587E'_{G} + 0.114E'_{B},$$

$$E'_{R-Y} = E'_{R} - E'_{Y},$$

$$E'_{B-Y} = E'_{B} - E'_{Y}.$$
(1)

Эти равенства справедливы для систем SDTV и HDTV. В системах UHDTV выражение для яркостного сигнала имеет вид

$$E'_{Y} = 0.2627E'_{R} + 0.6780E'_{G} + 0.0593E'_{B}$$
 (2)

Сигналы основных цветов формируются в приемнике из яркостного и цветоразностных сигналов на основе равенств (1).

После преобразования в цифровую форму сигнал яркости обозначается Y, а цветоразностные сигналы - C_R и C_R .

Свойства ТВ сигналов

Для неокрашенных участков изображения:

$$E_R = E_G = E_B$$
 (баланс белого);

$$E'_{R-Y} = E'_{G-Y} = E'_{B-Y} = 0.$$

Для любого участка изображения:

$$0.299E'_{R-Y} + 0.587E'_{G-Y} + 0.114E'_{B-Y} = 0.$$

Форма сигнала яркости и синхроимпульсов одной строки

- Н длительность строки, т.е. период строчной развертки,
- а длительность обратного хода строки,
- d длительность строчного синхроимпульса.

ТВ сигнал при чересстрочной развертке

Спектр аналогового ТВ сигнала

Верхняя граничная частота сигнала яркости 5 - 6 МГц. В видеозаписи VHS была снижена до 3 МГц.

Система SECAM

Sequentiel de Couleurs Avec Memoire (франц.) – «поочередность цветов и память».

Цветоразностные сигналы («красный» и «синий») передаются *поочередно* (через строку) с частотной модуляцией цветовых поднесущих (у каждого сигнала своя поднесущая). В приемнике для того, чтобы получить одновременно оба цветоразностных сигнала, используют *память* – линию задержки на 64 мкс.

Сигнал системы SECAM

Система PAL

В PAL одновременно передаются два цветоразностных сигнала *U* и *V* с применением квадратурной модуляции:

 $E_p = U\cos \omega_s t \pm V\sin \omega_s t$, где $\omega_s = 2\pi f_s$, $f_s = 4,43$ МГц — частота цветовой поднесущей.

При этом $f_s = 283,75 f_{cmp}$.

 $U = 0.493 E'_{B-Y}$, $V = 0.877 E'_{R-Y}$.

 $(\underline{+})$ » означает, что фаза сигнала V меняется на 180° в каждой второй строке.

В декодере PAL сигналы цветности двух соседних строк усредняются.

Сигнал системы PAL

Частотные диапазоны аналогового ТВ вещания

```
І диапазон — 48,5...66 МГц (каналы 1 и 2);

ІІ диапазон — 76...100 МГц (каналы 3...5);

ІІІ диапазон — 174...230 МГц (каналы 6...12);

ІV диапазон — 470...582 МГц (каналы 21...34);

V диапазон — 582...790 МГц (каналы 35...60).

І,ІІ и ІІІ диапазоны — МВ (ОВЧ или VHF);

ІV и V диапазоны — ДМВ (УВЧ или UHF).
```

В кабельном ТВ используют также диапазоны 100...174 МГц (мезодиапазон) и 230...470 МГц (гипердиапазон)

Модуляция в аналоговом ТВ вещании

В наземном и кабельном ТВ для передачи ПЦТС применяется АМ с частично подавленной нижней боковой полосой.

Звуковое сопровождение передается с ЧМ на отдельной несущей.

Аналоговое ТВ вещание в эфире в России прекратилось в 2019 году. Но в кабельных сетях оно еще работает.

Спектр сигнала аналогового ТВ вещания

Параметры показаны для принятых в России стандартов D (для МВ) и K (для ДМВ). В Зап. Европе действуют стандарты В и G, в которых ширина полосы ПЦТС 5 МГц, расстояние между несущими звука и изображения 5,5 МГц.

Радиосигнал аналогового ТВ вещания

Спасибо за внимание!