Ejercicios de ecuaciones en diferencias y sistemas dinámicos discretos. (1)

GIDE

UDELAR 2024

- 1. Exprese a_n en función de los términos anteriores $(a_k \text{ con } k \leq n-1)$ y resuelva la relativa ecuación en diferencias correspondiente, siendo a_n :
 - (a) El monto de una cuenta bancaria al n-ésimo mes de haber sido abierta si se paga un interés del i% mensual y el dueño retira r euro por mes.
 - (b) El número de puntos de cortes de n líneas diferentes no paralelas ni concurrentes del plano.
 - (c) El número de secuencias de ceros y unos de largo n en las cuales no aparecen dos ceros seguidos.
 - (d) El número de secuencias de ceros y unos de largo n en las cuales no aparecen dos ceros ni dos unos seguidos.
 - (e) La cantidad de saludos que se dieron los primeros n invitados de una reunión, si cada vez que llego uno, éste saludó el resto.
- 2. Supongamos que la suma constante T se deposita al final de cada período fijo en un banco que paga una tasa de interés r por período. Sea a_n la cantidad acumulada en el banco luego de n períodos.
 - (a) Escribir la ecuación en diferencias que describe a_n .
 - (b) Resolver la ecuación.
- 3. Se considera la ecuación en diferencias

$$x_{n+1} = \alpha x_n$$

A partir de un valor inicial x_0 dado, esbozar el gráfico de la telaraña x_n en los casos: $1 < \alpha < 0, \alpha < 1$ y $\alpha = 1$ y a partir de esto calcular $\lim_{n \to +\infty} x_n$ dicutiendo según el valor de α . Idem para la ecuación

$$x_{n+1} = \alpha x_n + \beta$$

- 4. Encuentre la solución general de las siguientes ecuaciones:
 - (a) $a_{n+1} = \frac{3}{2}a_n; a_0 = 1$
 - (b) $a_{n+1} = na_n; a_0 = a$
 - (c) $a_{n+1} = \frac{n}{n+1}a_n; n > 0$
 - (d) $a_{n+1} + a_n = 2n + 3; a_0 = 1$
 - (e) $a_{n+1} 2a_n = 3n^2 n; a_0 = 3$
 - (f) $a_{n+1} 2a_n = 6; a_0 = 1$
 - (g) $a_{n+1} 4a_n = 2^n; a_0 = -1$

5. Ecuaciones no lineales transformables a ecuaciones lineales

(a) Ecuación de Riccati: Resolver la ecuación

$$x_{n+1}x_n + px_{n+1} + qx_n = 0$$

mediante el cambio de variable

$$y_n = \frac{1}{x_n}$$

(b) Generalización: Resolver la ecuación

$$x_{n+1} = \frac{ax_n + b}{cx_n + d}$$

mediante el cambio de variable

$$\frac{y_{n+1}}{y_n} = cx_n + d$$

(c) Resolver la ecuación

$$x_{n+1} = \frac{2x_n + 3}{3x_n + 2}$$

y estudiar directamente la estabilidad de los equilibrios.

(d) Resolver la ecuación

$$x_{n+1} = x_n^2$$

y calcular $\lim_{n\to+\infty} x_n$.

(e) Resolver la ecuación

$$x_{n+1} = 2x_n \left(1 - x_n\right)$$

y calcular $\lim_{n\to+\infty}x_n$ dicutiendo según el valor de la condición inicial. Sugerencia: usar el cambio de variable $y_n=1-2x_n$ y la ecuación precedente.

6. En el modelo de oferta y demanda supongamos que la curva de oferta esta dada por

$$S_{n+1} = p_n^2 + 1$$

y la curva de demanda esta dada por

$$D_n = -2p_n + 3$$

- (a) Hallar la ecuación en diferencias que relaciona p_{n+1} con p_n .
- (b) Hallar el precio de mercado p^* y estudiar su estabilidad.
- 7. Consideremos la siguiente extensión del modelo de la telaraña

$$D_{n} = b_{D} - m_{D}p_{n}$$

$$S_{n} = b_{S} + m_{S}p_{n}^{e}$$

$$D_{n} = S_{n}$$

$$p_{n}^{e} = p_{n-1}^{e} + \lambda \left(p_{n-1} - p_{n-1}^{e}\right)$$

donde $0 < \lambda < 1$.

- (a) Mostrar que el precio p_n sigue una ecuación en diferencias lineal de primer orden no homogénea.
- (b) Obtener el equilibrio y mostrar que es asintóticamente estable si $0<\lambda<\frac{2m_D}{m_D+m_S}.$
- 8. Esbozar el gráfico de $y=2x^2-1$ y considerando el método de la telaraña para la ecuación en diferencias $x_{n+1}=2x_n^2-1$, calcular $\lim_{n\to+\infty}x_n$ dicutiendo según el valor de la condición inicial.
- 9. Estudiar el comportamiento de las soluciones de la ecuación en diferencias:
 - (a) $x_{n+1} = e^{x_n}$
 - (b) $x_{n+1} = \sqrt{4x_n 3}$
 - (c) $x_{n+1} = x_n^3 x_n^2 + 1$
- 10. Sea $f(x) = \frac{3x-1}{x+1}$.
 - (a) Estudiar el signo de f(x) x.
 - (b) Se considera la ecuación en diferencias $x_{n+1} = f(x_n)$. Determinar los equilibrios y estudiar su estabilidad.
 - (c) Si $x_0 = 2$, calcular $\lim_{n \to +\infty} x_n$.
 - (d) Si $x_0 = \frac{1}{2}$, determinar si x_n puede tomar valores negativos.

11. Ecuación logística de Pielou (E.C. Pielou, An introduction to Mathematical Ecology, Wiley Interscience, New York, 1969) E.C. Pielou se refiere a la siguiente ecuación como el equivalente discreto de la ecuación logística:

$$x_{n+1} = \frac{\alpha x_n}{1 + \beta x_n}$$

donde $\alpha > 1$ y $\beta > 0$.

- (a) Hallar el equilibrio positivo p.
- (b) Tomando $\alpha = 2$ y $\beta = 1$, mostrar que el equilibrio p es un atractor.
- (c) Discutir la estabilidad de p según los valores de α y β .
- (d) Resolver la ecuación de Pielou y obtener nuevamente los resultados de las partes anteriores. (Sugerencia: observar que es una ecuación del tipo Riccati y usar el relativo cambio de variable).
- Para las siguientes ecuaciones, hallar los puntos de equilibrio y discutir su estabilidad.
 - (a) $x_{n+1} = 5 \frac{6}{x_n}$
 - (b) $x_{n+1} = x_n^2 + 3x_n$
 - (c) $x_{n+1} = x_n^2 + \frac{3}{16}$
 - (d) $x_{n+1} = \frac{1}{2} (x_n^3 + x_n)$
 - (e) $x_{n+1} = -(x_n^3 + x_n)$
 - (f) $x_{n+1} = x_n^3 + x_n^2 + x_n$
 - (g) $x_{n+1} = x_n^3 x_n^2 + x_n$
- 13. Mostrar que 0 es un equilibrio asintóticamente estable de la ecuación $x_{n+1} = \frac{n+1}{n+2} x_n$.
- 14. Mostrar que 0 es un equilibrio asintóticamente estable de la ecuación $x_{n+1} = a_n x_n$ si y solo si

$$\lim_{n \to +\infty} \left| \prod_{i=0}^{n-1} a_i \right| = 0$$

- 15. Mostrar que $\{-1,1\}$ es una órbita periódica asintóticamente estable del mapa $f(x)=-\frac{1}{2}x^2-x+\frac{1}{2}.$
- 16. Para las siguientes ecuaciones, hallar los equilibrios y los 2-ciclos y discutir su estabilidad.
 - (a) $x_{n+1} = x_n^2 + x_n 4$
 - (b) $x_{n+1} = 1 x_n^2$

- 17. Hallar los valores de $a,b \in \mathbb{R}$ tales que $\{0,1\}$ es una órbita periódica asintóticamente estable del mapa $f(x) = ax^3 - bx + 1$.
- 18. Puede una función decreciente tener ciclos? Y una función creciente?
- 19. Se considera el mapa definido por:

$$B(x) = \begin{cases} 2x, & \text{si } x \in [0, \frac{1}{2}] \\ 2x - 1, & \text{si } x \in (\frac{1}{2}, 1] \end{cases}$$

- (a) Graficar la función B.
- (b) Mostrar que $x \in [0,1]$ es un punto eventualmente fijo de B sii es de la forma $x = \frac{k}{2^n} \text{ con } k = 1, 2, ... 2^n - 1.$
- (c) Graficar la función B^2 , calcular los 2-ciclos de B y estudiar su estabilidad.
- (d) Calcular el número de órbitas periódicas de período 3, 4 y 5.
- 20. Modelo de crecimiento económico de Solow en tiempo discreto. Los ingredientes son:
 - (a) Tecnología: hay un solo bien Y_t que se producen usando dos factores de producción, capital K_t y trabajo L_t de acuerdo con la función de producción F(K, L) que satisface las siguientes condiciones:
 - i. $F(\lambda K, \lambda L) = \lambda F(K, L); \forall \lambda, K, L \in \mathbb{R}^+$ (retornos constantes a
 - ii. $F(K,0) = F(0,L) = 0; \forall K, L \in \mathbb{R}^+$

 - iii. $\frac{\partial F}{\partial K} > 0$, $\frac{\partial F}{\partial L} > 0$, $\frac{\partial^2 F}{\partial K^2} < 0$, $\frac{\partial^2 F}{\partial L^2} < 0$ iv. $\lim_{K \to 0} \frac{\partial F}{\partial K} = \lim_{L \to 0} \frac{\partial F}{\partial L} = +\infty$; $\lim_{K \to +\infty} \frac{\partial F}{\partial K} = \lim_{L \to +\infty} \frac{\partial F}{\partial L} = 0$ (condiciones de Inada)
 - (b) Evolución de los factores: la fuerza de trabajo L_t crece a la tasa constante n de modo que

$$L_{t+1} = (1+n) L_t \tag{1}$$

y la tasa de crecimiento del stock de capital iguala la inversión neta I = sF(K, L) menos la depreciación del capital δK :

$$K_{t+1} - K_t = sF\left(K_t, L_t\right) - \delta K_t \tag{2}$$

(c) Evolución de la economía: Si $k_t = \frac{K_t}{L_t}$ es el capital por trabajador y $f(k) = F\left(\frac{K}{L}, 1\right) = F(k, 1)$ es la función de producción en forma intensiva tenemos que: $f(0) = 0, f'(k) > 0, \forall k \in \mathbb{R}^+, \lim_{k \to +\infty} f'(k) =$ 0, $\lim_{k\to 0^+} f'(k) = +\infty$ y $f''(k) < 0, \forall k \in \mathbb{R}^+$. Dividiendo la ecuación (2) por la ecuación (1) se obtiene la ecuación fundamental del modelo de Solow a tiempo discreto. Esta ley describe como varía con el tiempo el capital per cápita:

$$k_{t+1} = \frac{s}{1+n}f(k_t) + \left(\frac{1-\delta}{1+n}\right)k_t$$

Se pide estudiar cualitativamente la dinámica del modelo.

1 Soluciones:

1. Expresión de a_n

(a)
$$a_{n+1} = (1+i) a_n - r$$
; $a_n = (1+i)^n \lambda + \frac{r}{i}$

(b)
$$a_{n+1} = a_n + n; a_1 = 0$$

(c)
$$a_{n+1} = a_n + a_{n-1}; a_2 = 3$$

(d)
$$a_n = 2$$

(e)
$$a_{n+1} = a_n + n$$

2. a)
$$a_{n+1} = (1+r) a_n + T$$
; b) $a_n = -\frac{T}{r} + (1+r)^n \left(a_0 + \frac{T}{r}\right)$

3.
$$\lim_{\substack{n \to +\infty \\ \forall n \text{ si } a = -1}} x_n = \begin{cases} 0 & \text{si } -1 < a < 1 \\ \infty & \text{si } 1 < |a| \end{cases}$$
; $x_n = x_0 \ \forall n \ \text{si } a = 1 \ \text{y} \ x_n = (-1)^n x_0$

4. Soluciones

(a)
$$a_n = (\frac{3}{2})^n$$

(b)
$$a_n = (n-1)!a$$

(c)
$$a_n = \frac{1}{n}a_1$$

(d)
$$a_n = n + 1$$

(e)
$$a_n = -3n^2 - 5n - 8 + 11.2^n$$

(f)
$$a_n = -6 + 2^n$$

(g)
$$a_n = -2^{n-1}$$

5. Riccati

(a)
$$y_{n+1} = -\frac{p}{q}y_n - \frac{1}{q}; \quad x_n = \frac{1}{-\frac{1}{p+q} + \left(\frac{1}{x_0} + \frac{1}{p+q}\right)\left(-\frac{p}{q}\right)^n}$$

(b)
$$y_{n+2} = (a+d) y_{n+1} + (bc - ad) y_n$$

(c)
$$x_n =$$

(d)
$$x_n = (x_0)^{2^n}$$
; $\lim_{n \to +\infty} x_n = \begin{cases} 0 & \text{si } -1 < x_0 < 1 \\ \infty & \text{si } 1 < |x_0| \end{cases}$ y $x_n = 1 \ \forall n \ \text{si}$

6. a)
$$p_{n+1} = \frac{2-p_n}{2}$$
; b) $p^* = \sqrt{3}-1$ attractor

7. a)
$$p_{n+1} = \frac{m_D - \lambda (m_D + m_S)}{m_D} p_n + \frac{\lambda (b_D - b_S)}{m_D}$$
; b) $p^* = \frac{b_D - b_S}{m_S + m_D}$

- 8. Si $x_0 \le 0 \Rightarrow x_n \to 0$ y si $x_0 > 0 \Rightarrow x_n \to +\infty$
- 9. a) $\lim_{n \to +\infty} x_n = +\infty$, $\forall x_0$ b) 1 at a ractor, 3 repulsor c) -1 repulsor, 1 punto silla
- 10. a) $f(x) x > 0; \forall x > -1, x \neq 1, f(x) x < 0; \forall x < -1 y f(1) = 0; b)$ $p^* = 1, f'(1) = 1$ y es un punto silla; c) $\lim_{n \to +\infty} x_n = 1$; d) Si
- 11. a) $p^* = \frac{\alpha 1}{\beta}$; b) $f(p^*) = \frac{1}{2}$ attractor; c) p^* attractor $\forall \alpha > 1$; d) $x_n = \frac{1}{\frac{\alpha 1}{\beta} + \frac{1}{\alpha^n} \lambda}$
- 12. puntos de equilibrio
 - (a) 2 repulsor y 3 atractor
 - (b) 0 repulsor y -2 punto silla
 - (c) $\frac{3}{4}$ repulsor y $\frac{1}{4}$ attractor
 - (d) ± 1 repulsores y 0 atractor
 - (e) 0 repulsor
 - (f) -1 repulsor y 0 punto silla
 - (g) 1 repulsor y 0 punto silla

13.
$$x_n = \frac{1}{n}x_0 \Rightarrow \lim_{n \to +\infty} x_n = 0$$

14.
$$x_n = \left(\prod_{i=0}^{n-1} a_i\right) x_0$$
 y de alli sale.

- 15. f'(1)f'(-1) = 0 y de alli sale.
- 16. a) ± 2 repulsores y 2 atractor; $\left\{-1 \pm \sqrt{2}\right\}$ 2-ciclo repulsor b) $\left\{0,1\right\}$ 2-ciclo atractor; $\frac{-1 \pm \sqrt{5}}{2}$ puntos fijos

17.
$$\frac{1-\sqrt{17}}{4} < a < \frac{1+\sqrt{17}}{4}$$
; $b = a+1$

- 18. Una función creciente no puede tener ciclos. Una decreciente si.
- 19. Mapa de Baker
 - (a) La grafica de la función B(x) es

- (b) Sale de la definición: $B(x) = 1 \Leftrightarrow x = \frac{1}{4}$ o $x = \frac{3}{4}$ $B(x) = 0 \Leftrightarrow x = \frac{2}{4}$ y así se sigue
- (c) El 2-ciclo es $\left\{\frac{1}{3},\frac{2}{3}\right\}$ y es repulsor. La grafica de la función $B^2(x)$ es

(d) Hay 2 3-ciclos, 3 4-ciclos y 6 5-ciclos,