CS340 – Advanced Data Structures and Algorithm Design – Fall 2020 Assignment 1 – September 11, 2020

Dr. Sandra Zilles, Department of Computer Science, University of Regina

answer kev

Problem 1 (1+1+1+1 marks). For each question,

- subtract half a mark if the solution is not the simplest possible, e.g., if someone writes $\Theta(0.1N^3\sqrt{N})$ or $\Theta(N+1)$,
- give no mark if the growth rate class given is not correct.

(a)
$$T(N) = 5.3 \cdot N^3 \sqrt{N} = +22N^3 \log(N) + 100N\sqrt{N} = \Theta(N^3 \sqrt{N})$$

(b)
$$T(N) = 0.6 \frac{\log^2(N)}{N} 12.5N = \Theta(N)$$

(c)
$$T(N) = \Theta(N \cdot \log^3(N))$$

(d)
$$T(N) = \frac{36 \log^2(N)}{N^2} + \frac{2}{3} \frac{\log(N) \cdot 3^{N+1}}{N^2} + 57 \cdot \frac{\log(N)}{N^2} = \Theta(\frac{\log(N) \cdot 3^N}{N^2})$$

Problem 2 (3+3 marks). (a) T(N) = o(f(N)) implies T(N) = O(f(N)) and $T(N) \neq \Omega(f(N))$. (0.5 marks)

 $f(N) = \Theta(g(N))$ implies f(N) = O(g(N)). (0.5 marks)

T(N) = O(f(N)) and $f(N) = \Theta(g(N))$ together imply T(N) = O(g(N)). (1 mark)

 $T(N) \neq \Omega(f(N))$ and f(N) = O(g(N)) implies $T(N) \neq \Omega(g(N))$ and thus T(N) = o(g(N)). (1 mark)

(b) T(N) = 1, $f(N) = \log(N)$, g(N) = N. (1.5 marks for correct choice, 0.5 marks for every correct relation, e.g., 1 mark if f(N) = o(g(N)) and T(N) = O(g(N)), but $T(N) = \Omega(f(N))$)

Then T(N) = O(g(N)), because N grows faster than 1 (a constant). (0.5 marks)

f(N) = o(g(N)), because $\log(N) = O(N)$ and $\log(N)$ does not grow as fast as N. (0.5 marks)

 $T(N) \neq \Omega(f(N))$, because $\log(N)$ grows faster than 1 (a constant). (0.5 marks)

Problem 3 (3+3+3 marks). For each of the following code fragments, determine the best possible asymptotic upper bound on its running time, depending on n. Give a brief explanation for each of your answers.

- (a) The statement inside the loops has a running time of O(1). (1 mark)

 The inner loop iterates O(n) times (namely roughly n/2 times), thus making the overall running time of the inner loop O(n). (1 mark)

 The outer loop runs n times, resulting in an overall running time of $O(n^2)$. (1 mark)
- (b) The statement inside the loops has a running time of O(1). (0.5 marks)

 The inner loop iterates O(n) times (namely roughly n/2 times), thus making the overall running time of the inner loop O(n). (1 mark)

 The outer loop runs $O(\log(n))$ times, resulting in an overall running time of $O(n \cdot \log(n))$. (1.5 marks)
- (c) The running time T(n) can be described (asymptotically) by T(n) = 1 if n = 1 and T(n) = T(n-1) + 1 if n > 1. (1.5 marks) This results in T(n) = n = O(n). (1.5 marks) (Other correct explanations will also be accepted.)

- Problem 4 (4+2+4 marks). (a) half marks for a reasonable approach that does not work because of a small error
 - (b) half marks for a reasonable approach that does not work because of a small error
 - (c) $n \log(n)$ is the only function for which the ratio by **result** calculated in (b) approaches a constant for growing n. Hence we may conclude that the asymptotic growth of the result of **assignment1Algorithm(n)** is $\Theta(n \cdot \log(n))$. (1.5 marks)
 - $n \log(n)$ is the only function for which the ratio by timeUsed calculated in (b) approaches a constant for growing n. Hence we may conclude that the asymptotic growth of the running time of assignment1Algorithm(n) is $\Theta(n \cdot \log(n))$. (1.5 marks)
 - $n\log(n)$ grows only slightly faster than n, whereas $n\sqrt{n}$ grows "significantly" faster than $n\log(n)$. (1 mark)