Introduction to R Software

Introduction to Statistical Functions :::

Boxplots, Skewness and Kurtosis

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Summary of observations

In R, quartiles, minimum and maximum values can be easily obtained by the summary command

```
summary(x) x: data vector
```

It gives information on

- minimum,
- maximum
- first quartile
- second quartile (median) and
- third quartile.

Summary of observations

Example:

- > marks <- c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42)
- > summary(marks)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 29.0 46.5 63.0 63.2 79.5 96.0
```

```
R Console
> summary (marks)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   29.0 46.5 63.0 63.2 79.5 96.0
>
```

Summary of observations

Example:

- > marks1 <- c(628, 812, 613, 186, 34, 986, 41, 89, 29, 51, 795, 77, 56, 509, 420)
- > summary(marks1)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 29.0 53.5 186.0 355.1 620.5 986.0
```

Earlier, we had

> summary(marks)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 29.0 46.5 63.0 63.2 79.5 96.0
```

Boxplot

Box plot is a graph which summarizes the distribution of a variable by using its median, quartiles, minimum and maximum values.

boxplot() draws a box plot.

Example:

- > marks <- c(68, 82, 63, 86, 34, 96, 41, 89,
 29, 51, 75, 77, 56, 59, 42)</pre>
- > boxplot(marks)

Example:

- > marks1 <- c(628, 812, 613, 186, 34, 986, 41, 89, 29, 51, 795, 77, 56, 509, 420)
- > boxplot(marks1)

Boxplot(marks1)

Boxplot(marks)

Descriptive statistics:

First hand tools which gives first hand information.

 Structure and shape of data tendency (symmetricity, skewness, kurtosis etc.)

 Relationship study (correlation coefficient, rank correlation, corralation ratio, regression etc.)

Skewness

Measures the shift of the hump of frequency curve.

Coefficient of skewness based on values $x_1, x_2, ..., x_n$.

$$\gamma_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{3}}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right)^{3/2}}$$

Mean:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Kurtosis

Measures the peakedness of the frequency curve.

Coefficient of kurtosis based on values $x_1, x_2, ..., x_n$.

$$\gamma_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^2}, -3 < \gamma_2 < 3$$

Skewness

$$\gamma_1=0$$
 Zero skewness (Symmetric)

Kurtosis

Skewness and kurtosis

First we need to install a package 'moments'

```
> install.packages("moments")
> library(moments)

skewness () : computes coefficient of skewness
kurtosis () : computes coefficient of kurtosis
```

Skewness and kurtosis

Example

```
> marks <- c(68, 82, 63, 86, 34, 96, 41, 89,
29, 51, 75, 77, 56, 59, 42)
> skewness(marks)
[1] -0.09869395
> kurtosis(marks)
[1] 1.830791
```

```
R Console

> skewness (marks)
[1] -0.09869395
>
> kurtosis (marks)
[1] 1.830791
>
```