Apellidos: Nombre: DNI: Universidad de Oviedo Escuela de Ingeniería Informática Estructuras de Datos

DURACIÓN DEL EXAMEN: 90 minutos.

INSTRUCCIONES

- Incluya sus datos personales en las dos caras de todas las hojas.
- Se atenderán dudas solo durante los primeros 20 minutos del examen.
- No deje respuestas indicadas, deberá llegar hasta al menos un decimal en los cálculos numéricos.
- El uso de cualquier tipo de dispositivo electrónico está estrictamente prohibido.
- Sea breve. Toda anotación fuera del espacio previsto para la respuesta no será evaluada.
- Utilice la versión de los algoritmos y estructuras de datos vistas en clase de teoría (EXP).
- Deberá entregar el examen completo (incluso si está en blanco).

PARTE I: ESTRUCTURAS EN RED

1. **[1 Punto]** Dado el siguiente grafo G1 (construido sobre una matriz de adyacencias vacía e insertando los nodos en orden alfabético), ejecute el algoritmo de Dijkstra para mostrar la evolución del conjunto S, el pivote W y los vectores D y P para cada interacción **partiendo del nodo 'e'**.

 $W = \{3, 2, 2, 1, 4, 3, 1, 3, 2, 2, 3, 3\}$

3

D											
It	S	W		а	b	С	d	Φ			
1	е			00	3	100	1	0			
2	d, e	d	<u>-</u> '	00	3	⊗	1	0			
3	b,d,e	Ь		00	3	00	1	0			
/-	1 1 6	-			2	20	4	>			

۲							
	а	b	С	d	е	f	g
	_	e)	e	1	e)	-
	-	e	1	e	1	Q	1
	1	e	1	0	I	е	1
	-	e)	е	1	e	F
)	9	1	6	-	е	F

2. **[1 Punto]** Dada la matriz **P**(caminos) obtenida después de **ejecutar Floyd** sobre el grafo G2 definido a continuación, ejecute el algoritmo **printPath** sobre ella para mostrar el camino de coste mínimo entre los nodos 'a' and 'a'.

La matriz P guarda posiciones, donde -1 es camino directo o que no existe camino

$$G2 = (V, E, W)$$
 $V = \{a, b, c, d, e, f, g\}$

P								> c
		а	b	С	d	е	f (g
* ->	a	-1	-1	-1 🗸	6	-1	(2)	(5)-> f
	b	5	-1	-1	6	-1	2	5
	С	5	5	-1	6	-1	-1 🗸	5
	d	5	-1	-1	-1	-1	-1	5
•	е	6	-1	6	6	-1	6	-1 /
	f	-1	0	6	6	-1	-1	-1 🗸
•	g	-1	3	3	-1	-1	3	-1

Camino: a, \underline{c} , \underline{f} , \underline{g}

DURACIÓN DEL EXAMEN: 90 minutos.

3. **[1 Punto]** Dado el siguiente grafo G2, ejecute el algoritmo de recorrido en profundidad para el nodo 1.

$$G2 = (V, E, W)$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 2), (1, 5), (1, 4), (2, 2), (2,3), (3, 5), (4, 3)\}$$

$$W = \{1, 10, 2, 4, 5, 1, 2\}$$

Recorrido en profundidad: <u>1, 2, 3, 5, 4</u>

Apellidos: Nombre: DNI: Universidad de Oviedo Escuela de Ingeniería Informática Estructuras de Datos

DURACIÓN DEL EXAMEN: 90 minutos.

PARTE II: ESTRUCTURAS JERÁRQUICAS

- 4. **[3 Puntos]** Crear un árbol B1 (árbol B de orden 1) y ejecute la siguiente serie de operaciones en orden secuencial. Dibuje la estructura al final de cada serie.
 - a. [1 Puntos] Insertar la secuencia: 10, 5, 8, 20, 15, 12, 25, 18, 14, 13, 11, 9

b. [1.5 Puntos] Borrar los elementos: 15, 12, 18.

- 5. **[2 Puntos]** Crear una cola de prioridad vacía (basada en un montículo binario de mínimos) de tamaño 10 y ejecute la siguiente serie de operaciones en orden secuencial. Dibuje la estructura al final de cada serie.
 - a. **[0.5 Puntos]** Insertar: 7, 3, 2, 9, 8, 4, 5, 0, 6, 1

0	1	3	6	2	4	S	9	7	8	
0	1	2	3	4	5	6	7	8	9	10

b. **[0,75 Puntos]** Sacar ()

1	2	3	6	8	4	S	9	7		
0	1	2	3	4	5	6	7	8	9	10

c. **[0,75 Puntos]** Borrar(6)

1	2	3	7	8	4	5	9			
0	1	2	3	4	5	6	7	8	9	10

Apellidos: Nombre: DNI: Universidad de Oviedo Escuela de Ingeniería Informática Estructuras de Datos

DURACIÓN DEL EXAMEN: 90 minutos.

Ejercicio S $\frac{1}{3} + \frac{13}{3} + \frac{7}{3} + \frac{3}{3} + \frac{2}{3} + \frac{3}{3} + \frac{13}{3} + \frac{1$ $\frac{2}{\sqrt{3}} = \frac{16}{\sqrt{3}} = \frac{16}{\sqrt{3}} = \frac{16}{\sqrt{3}} = \frac{2}{\sqrt{3}} =$