CS 228 : Logic in Computer Science

Krishna. S

Implications of the Game on FO definability

FO Definability

L is FO definable \Rightarrow there exists an *r* such that for every (w_1, w_2) pair, such that $w_1 \in L$, $w_2 \notin L$, spoiler wins in *r* rounds

Implications of the Game on FO definability

FO Definability

L is FO definable \Rightarrow there exists an *r* such that for every (w_1, w_2) pair, such that $w_1 \in L$, $w_2 \notin L$, spoiler wins in *r* rounds

Non FO Definability

For all $r \ge 0$, there exists a (w_1, w_2) pair with $w_1 \notin L$, $w_2 \in L$, duplicator wins in r rounds $\Rightarrow L$ is not FO definable

Non FO[<] definability

- FO[<, S] ⊆ FO[<]</p>
- ▶ Non definability in *FO*[<] implies non definability in *FO*[*S*,<]

- Assume that there is a sentence φ that defines words of even length, with $c(\varphi) = r$.
- ▶ Then, $a^i \models \varphi$ iff i is even
- ▶ Show that for all r > 0, $a^{2^r} \sim_r a^{2^r-1}$

- ▶ Base case : $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset) for r = 1
- ▶ In one round, duplicator wins on $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset)

- ▶ Base case : $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset) for r = 1
- ▶ In one round, duplicator wins on $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset)
- ▶ Consider (aaaa, aaa) for r = 3. Who wins?
- ▶ Consider (aaaa, aaa) for r = 2. Who wins?

- ▶ Show that for all $k \ge 2^r 1$, duplicator has a winning strategy for the *r*-round game in (a^k, a^{k+1}) , for all $r \ge 0$
- ▶ Induct on r
- ▶ If r = 1, then on (a, aa) duplicator wins in one round
- ▶ Assume now that the claim is true for $\leq r 1$

▶ Let $k \ge 2^r - 1$, and consider the structures

$$(a^{k}, a^{k+1})$$

 \triangleright Spoiler puts pebble z_1 in one of the words obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^t$$

▶ Let $k \ge 2^r - 1$, and consider the structures

$$(a^{k}, a^{k+1})$$

▶ Spoiler puts pebble z_1 in one of the words obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^t$$

▶ $s \leqslant \frac{k-1}{2}$ or $t \leqslant \frac{k-1}{2}$

▶ Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

▶ We have $2^r - 1 \le k = min(t, t') + s + 1 \le min(t, t') + \frac{k-1}{2} + 1$

Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^t,(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

- ▶ We have $2^r 1 \le k = min(t, t') + s + 1 \le min(t, t') + \frac{k-1}{2} + 1$
- ▶ Hence $min(t, t') \ge \frac{k-1}{2} \ge 2^{r-1} 1$

Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

- ▶ We have $2^r 1 \le k = min(t, t') + s + 1 \le min(t, t') + \frac{k-1}{2} + 1$
- ► Hence $min(t, t') \ge \frac{k-1}{2} \ge 2^{r-1} 1$
- ▶ By inductive hypothesis, duplicator has a winning strategy for the r-1 round game on $(a^t, a^{t'})$.

▶ Use the duplicator's winning strategy for the r-1 round game on $(a^t, a^{t'})$, to obtain a winning strategy in r-1 rounds on

$$(a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t}, (a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t'}$$

▶ Use the duplicator's winning strategy for the r-1 round game on $(a^t, a^{t'})$, to obtain a winning strategy in r-1 rounds on

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

▶ Whenever spoiler plays on a structure on letter $i \le s + 1$, duplicator plays on the same position on the other structure

9/1:

▶ Use the duplicator's winning strategy for the r-1 round game on $(a^t, a^{t'})$, to obtain a winning strategy in r-1 rounds on

$$(a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t}, (a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t'}$$

- ▶ Whenever spoiler plays on a structure on letter $i \le s + 1$, duplicator plays on the same position on the other structure
- When spoiler plays at a position i > s + 1 in either word, duplicator plays in the part of the other word > s + 1 using her winning strategy in (a^t, a^{t'})

- ▶ At the end of r rounds, we have structures w'_1, w'_2 .
- ▶ For $i \leq s + 1$, pebble z_j appears at position i of w'_1 iff pebble z_j appears at position i of w'_2
- Lets erase the first s + 1 letters in w'_1, w'_2 , obtaining v'_1, v'_2
- v_1', v_2' are the words that result after $r' \le r 1$ rounds of play on $(a^t, a^{t'})$. Recall that duplicator won this.
- ▶ Show that w'_1, w'_2 satisfy the same atomic formulae

- ▶ Atomic Formulae : $Q_a(z_i)$: Both w'_1, w'_2 satisfy this.
- $w'_1 \models z_i < z_j$. If z_i, z_j are in the first s + 1 letters, then $w'_2 \models z_i < z_j$.
- ▶ If z_i, z_j occur in the last $|w_1'| s 1$ positions, then $v_1' \models z_i < z_j$. By duplicator's win in $(a^t, a^{t'}), v_2' \models z_i < z_i$
- ▶ If z_i appears among the first s + 1 letters and z_j after the first s + 1 letters of w'_1 , same is true in w'_2 .

Historically Speaking

The games that we saw are due to Ehrenfeucht and Fraissé

Reference: Finite Automata, Formal Logic and Circuit Complexity, by Howard Straubing.