

Music Information Retrieval: Feature Extraction, Evaluation, Applications

http://www.ifs.tuwien.ac.at/mir

Alexander Schindler
Research Assistant
Information & Software Engineering Group
Vienna University of Technology
http://www.ifs.tuwien.ac.at/~schindler

Outline

- Acoustic Scene Classification
 - Defintion
 - Approaches
- Sound Event Detection
 - Approaches
- Examples

History

1983	Bregman: ,Auditory Scene Analysis'			
1993	Computational Auditory Scene Analysis (CASA)			
	Development of digital hearing aids pushed CASA			
2003	MFCC + Hidden Markov Models			
2009	Negative Matrix Factorization, Image Features			
2012	Detection and Classification of Acoustic Scenes and Events (DCASE) – by IEEE Audio and Acoustic Signal Processing Technical Committee			

- recognizing the general environment type (the acoustic "scene")
- detecting and classifying events occurring within a scene
- 2016 DNN based approaches dominating

Computational Auditory Scene Analysis

- Computational Auditory Scene Analysis (CASA)
 - Terminology based on
 - A.S. Bregman, ,Auditory Scene Analysis'
 - D.L.Wang, G.J.Brown, ,Computational Auditory Scene Analysis: Principles, Algorithms, and Applications.
 - CASA is human-centric
 - Often taken to imply an approach which aims to
 - parallel the stages of processing in human audition
 - mimic observed phenomeny of human audition
 - Including illusions and phantasms

Acoustic Scene Classification

Acoustic Scene Classification (ASC)

- characterize the acoustic environment of an audio stream
- by selecting a semantic label for it
- Machine Learning Task
 - Single-Label Classification problem
 - Similar to
 - Music Genre Recognition
 - Artist Identification
 - Speaker Recognition

Challenges

- Different Sound Scapes
 - Same acoustic scene / different city
- Different recording devices
 - Professional microphone
 - Smartphone

Vienna! Athens!

Task Differences

Acoustic Scene Classification

- Single Label
- No Onsets
- Entire track

- Multi Label
- No Onsets
- Entire track

Sound Event Detection

- Multi Label
- With Onsets and length

FACULTY OF !NFORMATICS

Acoustic scene classification and Audio Tagging

A. Mesaros et al., "Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 Challenge," in *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 26, no. 2, pp. 379-393, Feb. 2018.

Approaches

- Two main strategies
 - Bag-of-frames approach using sets of low-level features
 - Set of High-Level Features
 - Vocabulary of acoustic atoms

ifS

Bag-of-frames Approach

- Scene/Object is represented as
 - long-term statistical distribution of local spectral features
 - Most common: Mel-frequency Cepstral Coefficients (MFCCs)
- Standard Approach
 - Constructing a Gaussian Mixture Model (GMM) for each class

Set of High-Level Features

- Vocabulary of acoustic atoms is learned
- Non-negative Matrix factorization (NMF)
 - Extract bases
 - Convert to MFCC
 - Use for classification

s |İf

Deep Learning

Pros:

- A powerful method for supervised learning
- Convolutional Neural Networks (CNNs)
- Spectrograms as images
- Feature Learning
- Successfully applied on images, speech and music

Cons:

- Confusion of classes when dealing with noisy scenes and blurry spectrograms
- Lack of generalization and overfitting if the training data does not contain various sessions
- General tendency for overfitting in audio due to high self-similarity and low variance in spectrograms

Deep Learning for Music IR

Pre-Processing: Waveform → Spectrogram → 40 Mel bands → Log scale

Winning algorithm MIREX 2015 music/speech classification task (99.73%) by Thomas Lidy

ifS

0 2 4 6 8 10

Visualizing CNN Filters learned for Music/Speech Classification

0 2 4 6 8 10

Learned Filter Weights

Convolved Spectrograms

VGG Style CNN

- Most Common Convolutional Neural Network (CNN) Architecture
- Also very common in Audio Analysis

Parallel Architecture

100 epochs

200 epochs

	Shallow	Deep	Shallow	Deep
GTZAN	78.1	78.6	80.8	80.6
ISMIRgenre	85.5	84.1	84.9	85.1
Latin	92.4	94.4	93.5	95.1
MSD	63.9	67.2	/	1

FACULTY OF !NFORMATICS

Pittfalls, Obstacles & Solutions

Temporal resolution is critical

- High temporal resolution (zooming out)
 - pro: sound structure, structured acoustic events
 - con: Fluctuation patterns get lost
- Low temporal resolution (zooming in)
 - pro: phase and flucuations (e.g. difference between Truck and Car)
 - con: structure missing
- Solution
 - Find a compromise (tune resulution as parameter)
 - Use multiple samples per track (random/structured) + aggregation (majority vote, max, sum, avg)
 - Use multiple resolutions
 - Statically / Inception Architecture

Sound event detection

A. Mesaros et al., "Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 Challenge," in *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 26, no. 2, pp. 379-393, Feb. 2018.

Sound Event Detection

- Identify Sounds by a predefined set of classes
 - Detect Events
 - Categorize Events
- Two main Approaches
 - Detect Onsets => Classification
 - Moving Window Classification => Interpret peaks in classification results
 - New: Integrated Neural Network based approaches
- More Complicated
 - Multi-event Detection

Ground Truth Label Types

Strong Labels

- High precission (~0.5s)
- Per class labelling
- Expensive
- Datasets usually small

Weak labels

- Low precission (~10s)
- Multi class labelling
- "cheap"
- Large Datasets

FACULTY OF !NFORMATICS

Harb, Robert, and Franz Pernkopf. "Sound event detection using weakly-labeled semi-supervised data with GCRNNS, VAT and Self-Adaptive Label Refinement." arXiv preprint arXiv:1810.06897 (2018).

ifS

Google Audio Set

- 2M Videos
- 632 audio events
- annotaded according acoustic categories
- Weakly labelled (10s)
- Currently largest source of data

Number of examples

ifS

Convolutional Recurrent Neural Networks (CRNN)

Input representation

Common: Mel-Spectrograms

2. Convolutional Neural Network Block (CNN)

Learn audio embeddings

3. Recurrent Neural Network Block (RNN)

Learn Temporal dependencies of embeddings

4. Array of Fully Connected Layers

- One Layer per temporal dimension (Time-Distributed)
- Dimensionality of Layer = Number of classes

5. Outputs

- Strong Labels Training & Inference
 - Output of Time-Distributed Fully Connected Layers
- Weak Labels Training
 - Output Layer aggregation (e.g. avg, max)
 - Multi label prediction

CRNNs with Attention Layers

- Attention Layer
 - Filter non-relevant information from Input
 - Help to learn faster
 - Better convergence
 - Better generalization
 - Smoother prediction signal

Audio Event Detection

Recurrent Convolutional Neural Networks

ifS

Monitoring of domestic activities based on multi-channel acoustics

0

Applications

Crime Scene Investigation

Audio Similarity Search

Task

- Searching for video-segments with similar audio-signature
- Sub-Segment video-search

Use-Case

- Suspect could not be identified in one video
- Select segment and search for others using audio-signature
- Instant localization (videos close to audio source)

Technology

Rhythm Patterns + Statistical Pattern Descriptors

90% similar

Results

85% similar

70% similar

Audio-based Video-Synchronization

Task

- Synchronize various video files with unreliable time metadata
- Use audio-signature to relatively align video files

Technology

- Audio-fingerprints (chromaprint)
- Noise invariant

References

- A. Mesaros et al., "Detection and Classification of Acoustic Scenes and Events:
 Outcome of the DCASE 2016 Challenge," in IEEE/ACM Transactions on Audio,
 Speech, and Language Processing, vol. 26, no. 2, pp. 379-393, Feb. 2018.
- Giannoulis, D., Benetos, E., Stowell, D., Rossignol, M., Lagrange, M., & Plumbley, M. D. (2013, October). Detection and classification of acoustic scenes and events: An IEEE AASP challenge. In *Applications of Signal Processing to Audio and Acoustics (WASPAA)*, 2013 IEEE Workshop on (pp. 1-4). IEEE.