

Computational Genomics: Applied Comparative Genomics Charlotte Darby 4/24/18

O. Linked Read Sequencing 10X Genomics

Linked reads are short paired-end reads with additional barcodes attached in library preparation

- Diploid *de novo* genome assembly
- Structural variant breakpoints
- Single-cell applications

genome

fragments

Molecule Length	μ 85,667 bp
DNA in Molecules >20kb	91.6%
DNA in Molecules >100kb	38.6%
Corrected Estimated of DNA Loaded	1.23 ng

typical length is 10's to 100's of kb (mean 50-100kb)

Molecule Length (kb)

genome			
fragments			
barcodes			
short-read sequence	Ordinary shor	t reads, 100's of	bp insert size
		-	→

genome

fragments

10X Genomics Chromium

barcodes

short-read sequencing

Illumina instrument

alignment

reference genome

Resolve multi-mapping reads using barcodes

variant calling

haplotype assembly

diploid genome fragments barcodes

- Each linked read has ~0.1X "coverage"
- Likely that least one constituent read overlaps a heterozygous site, at least in long fragments

Resources

Biotechnology, alignment (Lariat) and haplotype phasing (Longranger)

Haplotyping germline and cancer genomes with high-throughput linked-read sequencing.

Zheng et al., Nat Biotech (2016)

Diploid assembly (Supernova)

Direct determination of diploid genome sequences.

Weisenfeld et al., Genome Res (2017)

Simulation

LRSim: A Linked-Reads Simulator Generating Insights for Better Genome Partitioning
Luo et al., Comp Struct Biotech J (2018)

SV calling

Genome-wide reconstruction of complex structural variants using read clouds

Spies et al., Nat Methods (2017)

https://www.10xgenomics.com/resources/publications/

1. What is a	somatic /	mosaic	mutation?

Inherited variants are present in at least some of the cells of a parent

De novo mutations are present in all of the cells of the child

(E)

De novo

Father has mutation in a single sperm cell and transmits it to the child. Child is heterozygous in every cell.

Mutation occurs in zygote within first few cell divisions. Child is heterozygous in every cell.

Somatic mutations are present in <u>none</u> of the cells of the parents and <u>only some</u> of the cells of the child

Somatic

Child has mosaic somatic mutation that occurrs early in postzygotic development and is present in a percentage of his cells.

Child has mosaic mutation that occurrs later in development and affects fewer cells (e.g. skin cells)

2. How c	do somatic	mutatio	ns man	ifest?

somatic mosaicism

gonadal mosaicism

low-grade somatic mosaicism (endoderm)

medium-grade somatic mosaicism (endoderm)

constitutional somatic mosaicism

Somatic mutations can have different distributions throughout the body

Biesecker and Spinner, Nat Rev Genet (2013)

An individual with somatic mosaicism in skin does not pass the trait to his offspring

A father with gonasomal mosaicism is affected and has some affected children

3. What are possible mechanisms of somatic mutation?

Mechanisms leading to mosaicism SINGLE GENETIC ALTERATION Early stage embryo ANEUPLOIDY (including UPD) or STRUCTURAL ALTERATION Late stage embryo REVERSION of INHERITED MUTATION

Variable

levels

mosaicism

Mutations occurring early in development are in a subset of cells of the adult

"Model for how new mutations are selected in the generation of mosaic phenotypes. Mosaic populations arise if new mutations that occur early in development (blue circles) do not compromise growth or, alternatively, new mutations that occur relatively late in development (green circles) confer a proliferative advantage. Mutations that compromise cell growth early on most likely will not contribute to the mosaic phenotype (red circle)."

(A) Cell-specific lethality

4. Chromosome-scale mutations

Chromosome-scale mutations

- Uniparental disomy
 - Both copies of one chromosome are from the same parent
- Aneuploidy
 - Not diploid
- Loss of heterozygosity
- Rearrangement

SNP array detection of aneuploidy

Biesecker and Spinner, Nat Rev Genet (2013)

SNP array detection of large-scale mosaicism

(c) A mosaic deletion at 20q is indicated by a narrow split in the intermediate BAF band along with a small decrease in LRR. A nonmosaic heterozygous deletion would have no intermediate BAF bands and a larger decrease in LRR. (d) A mosaic deletion at 6q is indicated by a wide split in the intermediate BAF band along with a large decrease in LRR. The mosaic in d has a greater proportion of cells containing the deletion than the one in c.

Laurie et al., Nat Genet (2012)

5. Smaller-scale mutations

Connections to my own research

Somatic mutations have low allele frequency in the sequencing reads

Allele(s) on the haplotype	Fraction of total <u>reads</u>	
— A — C — — — — — — — — — — — — — — — —	40% 40%	All cells you sequence have a heterozygous (A/T) variant
—A—C— ——G—	10%	20% of cells you sequence have a somatic (C/T) variant where the somatic variant allele G always co-occurs with the heterozygous variant allele T
somatic variant		TICCOLYGOUS VALIATIC ATICIC

Allele(s) on the haplotype	Fraction of total <u>reads</u>
— <u>A</u> ——C—	40%
T C	40%
—A—C—	10%
T G	10%

Allele fraction at somatic mutation site

C

10%

90%

Allele fraction partitioned by haplotype

G

C

A

0% 50%

T

10% | 40%

Haplotype-discordant reads

A high fraction of haplotype-discordant reads indicates that the <u>alleles on each haplotype are not uniform</u>

BUT ... Uniformity is expected at heterozygous/homozygous sites

NGS-based detection of sites with low variant allele frequency (VAF)

- Bayesian statistical modeling
- Classification approaches
- Error filters
- VAF closer to 0% and 50% are harder to detect
- Higher sequencing depth gives more detection power
- Paired "normal" sample or trio information can also be used

▼
104317571 104317581 104317591 104317601 CGTGGCCGCCAGGTCTTGATGTACTCCCCTACAGACGT
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,n,,,,,g,,,,,,t,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,C,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,n,,,,,,,,,,t,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,a,,a,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,g,,,,,,,,,,,,,,,,,,,,,,,,,

6. Mosaic disease

"Mendelian" diseases may also be caused by somatic mutation

- Disease has been studied and specific causal gene(s) are known
- Phenotype may be intermediate or patchy
- Specific gene can be studied closely for mosaicism

Note: A certain mutation (chromosomal or smaller-scale) might manifest <u>only</u> as a somatic mutation because if every cell had this mutation, the embryo would not survive (e.g. McCune-Albright Syndrome)

Sturge-Weber syndrome

The Sturge–Weber syndrome and port-wine stains are caused by a somatic activating mutation in *GNAQ*.

http://blog.creative-bioarray.com/introduction-on-the-heterogeneity-of-tumor-cell/

7. Are mosaic mutations normal?

Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis

Henne Holstege,^{1,10} Wayne Pfeiffer,² Daoud Sie,³ Marc Hulsman,⁴ Thomas J. Nicholas,⁵ Clarence C. Lee,⁶ Tristen Ross,⁶ Jue Lin,⁷ Mark A. Miller,² Bauke Ylstra,³ Hanne Meijers-Heijboer,¹ Martijn H. Brugman,⁸ Frank J.T. Staal,⁸ Gert Holstege,⁹ Marcel J.T. Reinders,⁴ Timothy T. Harkins,⁶ Samuel Levy,⁵ and Erik A. Sistermans¹

¹Department of Clinical Genetics, VU University Medical Center, 1007 MB Amsterdam, The Netherlands; ²San Diego Supercomputer Center, UCSD, La Jolla, California 92093, USA; ³Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands; ⁴Delft Bioinformatics Laboratory, Delft University of Technology, 2628 CD Delft, The Netherlands; ⁵Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, San Diego, California 92037, USA; ⁶Advanced Applications Group, Life Technologies, Beverly, Massachusetts 01915, USA; ⁷Department of Biochemistry and Biophysics UCSF, San Francisco, California 94143, USA; ⁸Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; ⁹Centre for Clinical Research, University of Queensland, Herston, QLD 4006, Australia

"The detected mutations appear to have been harmless passenger mutations: They were enriched in noncoding, AT-rich regions that are not evolutionarily conserved, and they were depleted for genomic elements where mutations might have favorable or adverse effects on cellular fitness, such as regions with actively transcribed genes."

Genome Res. (2014)

Single nucleotide mutation detection

GATK/SAMtools overlap:

3,265,602

unique SNVs

Rapid blood cell turnover could contribute to blood-only somatic mutations at extreme age VAF is bimodal at 20% and 30% - clonal

expansion?

Detected po	utative mutations in	blood: 612
highly likely	moderately likely	slightly likely
382	86	144
Confirmed some	ntic: 214 of 256 valid	dated mutations
highly likely	moderately likely	slightly likely
201/202 (99.5%)	13/27 (48%)	0/27 (0%)

Extrapolation of confirmed variants to detected variants: 424

Extrapolation to whole genome:

551 somatic single nucleotide mutations

Indel detection

detection of somatic indels using GATK & BFAST read counts

Validation by Ion PGM and/or Sanger sequencing

Extrapolation of confirmed variants to detected variants: 28 (whole genome was assessed)

28 somatic indels

Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network

Michael J. McConnell^{1,*,†}, John V. Moran^{2,3,*,†}, Alexej Abyzov⁴, Schahram Akbarian⁵, Taejeong Bae⁴, Isidro Cortes-Ciriano⁶, Jennifer A. Erwin⁷, Liana Fasching⁸, Diane A. Flasch², Donald Freed^{9,10}, Javier Ganz^{11,12}, Andrew E. Jaffe¹³, Kenneth Y. Kwan^{2,14}, Minseok Kwon⁶, Michael A. Lodato^{11,12}, Ryan E. Mills^{2,15}, Apua C. M. Paquola⁷, Rachel E. Rodin^{11,12}, Chaggai Rosenbluh¹⁶, Nenad Sestan¹⁷, Maxwell A. Sherman⁶, Joo Heon Shin¹³, Saera Song^{18,19}, Richard E. Straub¹³, Jeremy Thorpe^{9,10}, Daniel R. Weinberger 13,20,21, Alexander E. Urban 22, Bo Zhou 22, Fred H. Gage 7, Thomas Lehner 23, Geetha Senthil 23, Christopher A. Walsh^{11,12}, Andrew Chess¹⁶, Eric Courchesne²⁴, Joseph G. Gleeson^{18,19}, Jeffrey M. Kidd^{2,15}, Peter J. Park⁶, Jonathan

Pevsner^{9,10}, Flora M. Vaccarino^{8,25}, Brain Somatic Mosaicism Network[‡]

"The BSMN will examine large collections of postmortem brain tissue from neurotypical individuals and patients with neuropsychiatric disorders. By sequencing brain DNA and single neuronal genomes directly, rather than genomic DNA derived from peripheral blood or other somatic tissues, the BSMN will test the hypothesis that brain somatic variants contribute to neuropsychiatric disease."

Mitochondrial heteroplasmy

Youssoufian and Pyeritz, Nat Rev Genet (2002)