What is Reinforcement Learning

About Me

Witthawin Sripheanpol (Ro)

B.Eng. Institute of Field Robotics (**FIBO**), **King Mongkut's University of Technology Thonburi**

Project Manager & Lead Lecturer, iGenius Robot Education

Data Specialist Consultant, iDevfinite Solutions Co., Ltd.

Head Finetuning InstructGPT & RLHF Volunteer, **OpenThaiGPT**

SuperAl Engineer Season4: Silver Medal

Lead Senior Al Engineer, **Botnoi Group**

Al Researcher, Al & Data Solution Specialist,

Chula-Al Edvisory Co., Ltd.

Agenda

- Recap Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Overview Agent Environment
- How Agent take action ?
- Value Function & Q Learning
- Next step: Policy Optimization, Actor-Critic

Recap Machine Learning

Supervised Learning

Unsupervised Learning

Association Rule

Clustering

Recommendation

Dimension Reduction

Reinforcement Learning

Objective

- **Maximize Cumulative Reward** The primary goal in RL is to learn a policy that maximizes the expected cumulative reward over time.
- Optimize Long-Term Value The agent must balance short-term and long-term rewards to achieve an optimal strategy.
- Learn an Optimal Policy The goal is to find the best mapping from states to actions that results in the highest expected reward.
- Explore and Exploit Efficiently The agent needs to balance exploration (trying new actions) and exploitation (choosing known good actions).
- Handle Uncertainty and Partial Observability In many environments, the agent must learn under incomplete information (POMDP settings).

Reinforcement Learning

States/Observations Space $\,S_t\,$

States

Observation

Action Space $\,A_t\,$

Discrete

Up / Down / Left / Right

Continuous

Degree (Number)

$$R(\tau) = r_{t+1} + r_{t+2} + r_{t+3} + r_{t+4} + \dots$$
Return: cumulative reward

Trajectory (read Tau)
Sequence of states and actions

$$R(\tau) = \sum_{k=0}^{\infty} r_{t+k+1}$$

Expect!!

Reward = 100

Actuality!!

$$R(\tau) = \sum_{k=0}^{\infty} r_{t+k+1}$$

$$T=1 \rightarrow Reward = 1$$

$$T=2 -> Reward = 1+2$$

$$T=3 -> Reward = 1+2+3$$

$$T=10 \rightarrow Reward = 1+2+3...+5+6+5+6$$

Reward = 100

Rewards and the discounting

Trajectory (read Tau)
Sequence of states and actions

$$R(\tau) = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

Rewards and the discounting

$$R(\tau) = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

$$T=1 -> Reward = 1*0.9$$

$$T=2 \rightarrow Reward = (1*0.9)+(2*0.9^2)$$

$$T=3 \rightarrow Reward = (1*0.9)+(2*0.9^2)+(3*0.9^3)$$

Reward = 100

Exploration / Exploitation

Reward = 1000

Epsilon Greedy E

Environment

Policy $a = \pi(s)$

Environment

Value Function $v_{\pi}\left(S ight)$

States

$v_{\pi}\left(S ight)$

" ()			
3	2	1	2
4		B •	1
5		1	Ţ,
	X.	2	3

$$v_\pi(s) = \mathbb{E}_\piig[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots \mid S_t = sig]$$

S = (2, 1)

Value function

Expected discounted return

Starting at state s

Value Function $v_{\pi}\left(S\right) \longrightarrow Q\left(S,A\right)$

Q Function $Q\left(S,A\right)$

Q Learning

```
Algorithm 14: Sarsamax (Q-Learning)
 Input: policy \pi, positive integer num\_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
 Output: value function Q \approx q_{\pi} if num\_episodes is large enough)
 Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
                                                                                                      Step 1
 for i \leftarrow 1 to num\_episodes do
     \epsilon \leftarrow \epsilon_i
     Observe S_0
     t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy) Step 2
         Take action A_t and observe R_{t+1}, S_{t+1} Step 3
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)) Step 4
         t \leftarrow t + 1
     until S_t is terminal;
 end
 return Q
```

Q Learning

Workshop #1 https://github.com/ro-witthawin/BU-DeepReinforcementLearning

Workshop #2 https://github.com/ro-witthawin/BU-DeepReinforcementLearning

Reinforcement Learning Organize Chart

Ref: https://smartmobilityalgorithms.github.io/book/content/LearnToSearch/ReinforcementLearning.html

REINFORCEMENT LEARNING

Structure in Deep Reinforcement Learning: A Survey and Open Problems

Aditya Mohan

A.MOHAN@AI.UNI-HANNOVER.DE

Institute of Artificial Intelligence Leibniz University Hannover

Amy Zhang

 ${\tt AMY.ZHANG@AUSTIN.UTEXAS.EDU}$

University of Texas at Austin, Meta AI

Marius Lindauer

M.LINDAUER@AI.UNI-HANNOVER.DE

Institute of Artificial Intelligence, L3S Research Center Leibniz University Hannover

Ref: https://arxiv.org/pdf/2306.16021

University of Washington : https://www.youtube.com/watch?v=0MNVhXEX9to

Google Deepmind : https://www.youtube.com/watch?v=TCCjZe0y4Qc

MIT: https://www.youtube.com/watch?v=8JVRbHAVCws&t=1s

Hugging Face RL: https://huggingface.co/learn/deep-rl-course/en/unit0/introduction

การประชุมเทคโนโลยีโอเพนซอร์สชั้นนำของเอเชีย

งานประจำปีครั้งที่ 16 • วิทยากรนานาชาติกว่า 170 คน • 200+ หัวข้อเสวนา

13-15 March

Bangkok, Thailand

summit.fossasia.org

Open Source • AI • Cloud • Security • Database • Hardware • Data Science

See ya next time

Witthawin Sripheanpol (Ro)

I'm Al Engineer & Researcher