Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

	ongratulations! You passed!	Next Item
	1/1 points	
at i	s the "cache" used for in our implementation of forward propagation and b	packward propagation
	It is used to cache the intermediate values of the cost function during train	
	We use it to pass variables computed during backward propagation to the forward propagation step. It contains useful values for forward propagation activations.	
	It is used to keep track of the hyperparameters that we are searching ove computation.	r, to speed up
)	We use it to pass variables computed during forward propagation to the	corresponding
	backward propagation step. It contains useful values for backward propa derivatives.	gation to compute
orı	derivatives. rect rect, the "cache" records values from the forward propagation units and se kward propagation units because it is needed to compute the chain rule de	nds it to the
orı	derivatives. rect rect, the "cache" records values from the forward propagation units and se	nds it to the
corr	derivatives. Tect rect, the "cache" records values from the forward propagation units and se kward propagation units because it is needed to compute the chain rule de	nds it to the
corr	derivatives. Pect rect, the "cache" records values from the forward propagation units and se kward propagation units because it is needed to compute the chain rule de	nds it to the

10/10 points (100%)

Key corleepts ប់អាហិមep Neural Networks

Quiz, 10 questions bias vectors $b^{[l]}$ **Un-selected is correct** learning rate α Correct number of layers L in the neural network Correct number of iterations Correct size of the hidden layers $n^{[l]}$ Correct 1/1 points Which of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. Correct The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers. 1/1 points

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an

Key concepts on Deeph Neurial Networks over the layers I=1, 2,, L. True/False?	10/10 points (100%)
Quiz, 10 questions	10/10 points (100/0)

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]} = g^{[2]}(z^{[2]})$, $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]} = g^{[l]}(z^{[l]}), z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}, ...)$.

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer dims = $[n_v, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims)/2)):
2
     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]))
         * 0.01
3
     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims)/2)):
2
     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]))
         * 0.01
     parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
3
```

```
for(i in range(1, len(layer_dims))):
1
2
     parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i]))
         * 0.01
3
     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]))
2
3
     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1 / 1

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

6.

Consider the following neural network.

How many layers does this network have?

0	The number of layers \boldsymbol{L} is 4. The number of hidden layers is 3

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers $\it L$ is 4. The number of hidden layers is 4.
The number of layers $\it L$ is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False			

4/7

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

0	True			
Corre	ect			
	False			

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Key Quiz, 1

10/10 points (100%)

concepts on Deep Neural Networks	
10 questions Correct	
Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.	
,	
$W^{[1]}$ will have shape (3, 4)	
Un-selected is correct	
$b^{[1]}$ will have shape (3, 1)	
Un-selected is correct	
$W^{[2]}$ will have shape (3, 4)	
W S will have shape (3, 4)	
Correct	
Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.	
. [2]	
$b^{[2]}$ will have shape (1, 1)	
Un automodificación de	
Un-selected is correct	
$oxed{ } W^{[2]}$ will have shape (3, 1)	
Un-selected is correct	
$b^{[2]}$ will have shape (3, 1)	
Correct	
Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
$W^{[3]}$ will have shape (3, 1)	
will flave shape (5, 1)	
Un-selected is correct	
. [2]	
$b^{[3]}$ will have shape (1, 1)	
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
res. More generally, the shape of v^{**} is $(n^{**},1)$.	

 $W^{[3]}$ will have shape (1, 3)

Coursera Online Courses From Top Universities. Join for Free	
Correct Key concepts general per la peral Wetworks-11). Quiz, 10 questions	10/10 points (100%)
$b^{[3]}$ will have shape (3, 1)	
Un-selected is correct	
1/1 points	
10. Whereas the previous question used a specific network, in the general case what is the $W^{[l]}$, the weight matrix associated with layer l ?	dimension of
$igcup W^{[l]}$ has shape $(n^{[l]},n^{[l+1]})$	
$igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$	
$igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$	

Correct

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

True

