

Low Cost, Embeddable **Accelerometers**

Ideal for Continuous Vibration Monitoring in High-Volume and Commercial OEM Applications

Highlights

- Choice of Standard TO-5 or TO-8 Transistor-Style Packages
- Choice of Charge Mode Piezoelectric, Voltage Mode ICP®, and 3-Wire Low **Power Varieties**
- Mountable via Adhesive or Soldering and Choice of Either Integral Cable or Solder Pin Electrical Connections
- Variety of Sensitivities to Accommodate a Wide Variety of Applications
- Broad Bandwidth, High Shock Survivability, Wide Operating Temperature Range, High Resolution, and Large Dynamic Range

Series 660

The Series 660 low cost accelerometers offer an affordable solution for vibration and shock measurements in high-volume and commercial OEM applications. The units are particularly well suited for shock and impact detection of packages or components, as well as bearing and gear mesh vibration measurements in predictive maintenance and condition monitoring requirements. The compact designs may be imbedded into machinery at the OEM level to provide value-added monitoring protection.

The units employ field-proven, solid-state, piezoelectric sensing elements for durability and broadband performance. Choose from either charge mode types, which achieve high operating temperatures or voltage mode ICP® types, with built-in signal conditioning microelectronics, for simplified operation and connectivity to data acquisition and vibration monitoring instrumentation.

As with all instrumentation from IMI, these sensors are complemented with toll-free applications assistance, 24-hour customer service, and are backed by a Total Customer Satisfaction guarantee.

Low Profile TO-5

TO-5

Options:

- Low Output Bias Voltage
- High Temperature Operation to 365 °F (185 °C)
- High Range (less sensitivity)
- Temperature Output Signal

Specifications			
Package Size	Low Profile TO-5	TO-5	TO-8
2-Wire ICP® Configuration			
Primary Model Sensitivity (± 20%)	10 mV/g 1.02 mV/m/s²	100 mV/g 10.2 mV/m/s ²	1000 mV/g 102 mV/m/s ²
Measurement Range	500 g 5000 m/s²	50 g 500 m/s ²	5 g 50 m/s ²
requency Range (± 3 dB)	0.4 to 10 k Hz	0.32 to 10k Hz	0.13 to 8000 Hz
lesonant Frequency	>30 kHz	>25 kHz	>20 kHz
roadband Resolution	0.003 g pk	0.0003 g pk	0.00003 g pk
xcitation Voltage	18 to 28 VDC	18 to 28 VDC	18 to 28 VDC
xcitation Constant Current	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	<100 ohm	<100 ohm	<100 ohm
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
lischarge Time Constant	≥0.4 sec	≥0.5 sec	≥1.2 sec
ettling Time	2 sec	2.5 sec	12 sec
perating Temperature Range	-65 to +185 °F	-65 to +185 °F	-65 to +185 °F
porating remperature mange	-54 to +85 °C	-54 to +85 °C	-54 to +85 °C
Veight	0.08 oz 2.2 gm	0.1 oz 3 gm	0.88 oz 25 gm
	1 mV/g		100 mV/g, 500 mV/g
ther Available Sensitivities	0.102 mV/m/s ²	N/A	10.2 mV/m/s2, 51 mV/m
-Wire, Low-Power Configuration	on		
rimary Model Sensitivity (± 20%)	10 mV/g 1.02 mV/m/s²	100 mV/g 10.2 mV/m/s ²	1000 mV/g 102 mV/m/s ²
Measurement Range *	200 g 2000 m/s²	20 g 200 m/s ²	2 g 20 m/s ²
requency Range (± 3 dB)	0.32 to 10k Hz	0.32 to 10k Hz	0.32 to 8000 Hz
esonant Frequency	>30 kHz	>25 kHz	>20 kHz
roadband Resolution	0.003 g pk 0.03 m/s² pk	0.001 g pk 0.01 m/s² pk	0.0003 g pk 0.003 m/s ² pk
xcitation Voltage	3 to 12 VDC	3 to 12 VDC	3 to 12 VDC
urrent Draw	0.75 mA	0.75 mA	0.75 mA
utput Impedance	< 100 ohm	< 100 ohm	< 100 ohm
utput Bias Voltage (±10%)	0.5 × Excitation Voltage	0.5 × Excitation Voltage	0.5 × Excitation Voltage
ischarge Time Constant	≥0.5 sec	≥0.5 sec	≥0.5 sec
ettling Time	2.5 sec	2.5 sec	15 sec
	-65 to +185 °F		-65 to +185 °F
perating Temperature Range	-54 to +85 °C	-65 to +185 °F	-54 to +85 °C
Veight	0.08 oz 2.2 gm	0.1 oz 3 gm	0.88 oz 25 gm
harge Mode Configuration			
	5 pC/g	11 pC/g	120 pC/g
ensitivity (± 20%)	0.51 pC/m/s ²	1.12 pC/ms ²	12.2 pC/m/s ²
requency Range (± 3 dB)	10 kHz	10 kHz	8 kHz
esonant Frequency	>30 kHz	>25 kHz	>20 kHz
perating Temperature Range	-65 to +185 °F -54 to +85 °C	-65 to +185 °F	-65 to +250 °F
apacitance	350 pF	-54 to +85 °C 350 pF	-54 to +121 °C 3600 pF
	0.08 oz	0.1 oz	0.88 oz
Veight	2.2 gm	3 gm	25 gm
ommon Specifications			
ransverse Sensitivity	≤5%	≤ 5%	≤ 5%
on-Linearity	≤1%	≤1%	≤1%
emperature Coefficient	0.10 %/°F 0.18 %/°C	0.10 %/°F 0.18 %/°C	0.10 %/°F 0.18 %/°C
hock Limit	7000 g pk 70k m/s² pk	7000 g pk 70k m/s² pk	6000 g 60k m/s² pk
ousing Material	Stainless Steel	Stainless Steel	Stainless Steel
Mounting	Adhesive or Solder	Adhesive or Solder	Adhesive or Solder
ealing (welded)	Hermetic	Hermetic	Hermetic
	0.36 × 0.26 in	0.36 × 0.38 in	0.64 × 0.57 in
ize	9.1 × 6.6 mm	9.1 × 9.7 mm	16.3 × 14.5 mm
	3.1 × 0.0 mm	3.1 × 3.7 IIIII	10.0 % 1 1.0 111111

How to Order

Style								
66	Low Cost, Embeddable Accelerometer							
	Package Size and Sensitivity							
	10	Low-profile T0-5 with 10 mV/g sensitivity						
	16 Low-profile TO-5 with 1 mV/g sensitivity — must select configuration 2A below							
	19	Low-profile TO-5 with 5 pC/g sensitivity — must select configuration 2C below						
	21	TO-5 with 100 mV/g sensitivity						
	29		TO-5 with 11 pC/g sensitivity — must select configuration 2C below					
	31	TO-8 with 100 mV/g sensitivity						
	32 33	, and a second s						
	39		TO-8 with 1000 mV/g sensitivity TO-8 with 100 pC/g sensitivity — must select configuration 2C below					
	Sensor Configuration and Excitation Scheme							
	2A 2-wire ICP® voltage mode (pwr/sgnl, gnd), current regulated power							
		2C	, , , , , , , , , , , , , , , , , , , ,					
		3L 3P		3-wire voltage mode (pwr, sgnl, gnd), low power 3-wire voltage mode (pwr, sgnl, gnd), low power 3 to 12 VDC 4-wire voltage mode with temperature output (pwr, sgnl, gnd, temp)				
		эг 4Т						
		Orientation / Polarity				•		
			PZ Positive output for acceleration along z-axis (in upward direction when pin mounted) NZ Negative output for acceleration along z-axis (in upward direction when pin mounted)					
			IVZ	·	egative output for acceleration along z-axis (in upward direction when pin mounted)			
		Electrical Connection 1 Header Pins						
				2		ral 1 ft. (0.3 m) cable		
					Optio	ons		
					XX	Overall integral cable length in "XX" ft. (other than standard 1 ft.)		
					MXX	Overall integral cable length in "XX" meters (other than standard 0.3 m)		
Exa	Example							
66	21	2A	PZ	1		Low-cost, TO-5 size, 100 mV.g, 2-wire, ICP® accelerometer with positive polarity and header pin connections		

Mounting Examples

Optional Temperature Output Configuration

2-Wire ICP® Mode

2-Wire Charge Mode

4-Wire Voltage Mode with Temperature Output

IMI Sensors designs and manufactures a full line of accelerometers, sensors, vibration switches, vibration transmitters, cables and accessories for predictive maintenance, continuous vibration monitoring,

and machinery equipment protection. Products include rugged industrial

ICP® accelerometers, 4-20 mA industrial vibration sensors and transmitters for 24/7 monitoring, electronic and mechanical vibration

switches, the patented Bearing Fault Detector, high temperature

accelerometers to +1300 °F (+704 °C), 2-wire Smart Vibration Switch,

and the patented Reciprocating Machinery Protector. CE approved and

intrinsically safe versions are available for most products.

3425 Walden Avenue, Depew, NY 14043-2495 USA

Toll-free in the USA 800-959-4464 **24-hour SensorLineSM** 716-684-0003

Fax 716-684-3823 **Email** imi@pcb.com

Website www.imi-sensors.com

ISO 9001 CERTIFIED - A2LA ACCREDITED to ISO 17025

© 2013 PCB Group, Inc. In the interest of constant product improvement, specifications are subject to change without notice. PCB, ICP, Modally Tuned, Spindler, Swiveler and TORKDISC are registered trademarks of PCB Group. SoundTrack LXT, Spark and Blaze are registered trademarks of PCB Piezotronics. SensorLine is a service mark of PCB Group. All other trademarks are property of their respective owners.

Visit www.imi-sensors.com to locate your nearest sales office.

IMI-660-0513 Printed in U.S.A.