Disagreement Detection

Final Presentation

Connor Capitolo

Max Li

Morris Reeves

Jiahui Tang

Overview

- Problem statement & motivation
- Data
- Literature
- Modeling approach
- Evaluation & interpretation
- Conclusion

What is disagreement?

Disagreement comes in different forms...

Playful

Pie in America

Serious

Australian Teens
Discussing Abortion

What are we trying to achieve?

Generate insights about disagreement based on the Spotify English-Language 100k Podcast Dataset

Why is disagreement detection important?

Better User Experience
Tailored recommendations

Drive audience engagementImprove style or moderation

Better Content Moderation
Happier Users + Happier Creators =
Happier Spotify

Definition of Disagreement

- Generate disagreement labels that can be used for modeling
- Definition: a speaker is directly contradicting or rejecting another person's idea where it is immediately perceptible by the listener
 - Rule of thumb: If you handed this podcast to a stranger, they would know it's disagreement

Dog clip: a couple discussing what it means to have a dog when single

Data

- 105,360 episodes
- 8,360 shows
- 23 genres

audio

~ 50k hours

text

> 600M words

	min	average	max
minutes	<1	31.6	305.0
words	11	5,728	43,504

Data - podcast genre

Data - episode duration

Data

- 105,360 episodes
- 8,360 shows
- 23 genres

audio50k hours

> 600M words

	min	average	max
minutes	<1	31.6	305.0
words	11	5,728	43,504

How do we handle all this data? Where are disagreements?

Data

discretizing finding getting target finding how combining audio and episodes to labels to annotate annotations text data annotate

Problem

definition of disagreement

consistent formatting & ease of use

random podcast selection not efficient

multiple annotators

segment & merge

Solution

immediately perceptible contradiction

functions for searching metadata & transcripts

functions for compiling & unioning annotation

sliding window with adjustable parameters

text

audio (and text)

Literature overview

	Xu et al. (<u>2019</u>)	Gokcen and de Marneffe (2015)	Wang and Cardie (<u>2014</u>)	Wang et al. (<u>2011</u>)	Hillard et al. (2003)
Model class	RNN	Logistic regression	Conditional random field	Conditional random field	Decision tree
Features	GloVe word vectors	n-grams speech acts dependencies	n-grams dependencies TFIDF	n-grams speech rate pitch	words pause fundamental frequency
Data	Tweets	Online forums (IAC)	Wiki Discussions	English Broadcast Conversations	Meetings (ICSI)

Literature: our approach in context

- Modeling on podcast data is relatively unexplored
 - Diversity of podcast episode genres, topics
 - Disagreement in podcasts may be more subdued
- Limited exploration of multivariate audio features (DWT, spectrogram)
 - Existing approaches: primarily count-based or univariate features

Modeling: inputs and outputs

Model overview

Category	Input Features	Model Class	
Baseline	Random coin flip	NA	
Toyt	Negation word counts	Logistic Regression	
Text	Avg. word2vec embedding	Logistic Regression	
Audio	Mel spectrogram	CNN	
	Discrete Wavelet Transform (DWT)	Logistic Regression	
	DWT	Random Forest	
	DWT	XGBoost	
	DWT	LSTM	

Text: count-based model

Hypothesis: p(disagreement) = f(count of "negation words")

Category	Words	
Analytic negation	no, not	
Contraction negation	ain't, aren't, didn't, shouldn't, etc.	
Synthetic negation	neither, never, nor, none, nobody, noone, no-one	
Other	disagree, incorrect, wrong, ridiculous, absurd	

Text: count-based model

Hypothesis: p(disagreement) = f(count of "negation words")

Text input:

Text: embedding-based model

Hypothesis: p(disagreement) = f(word embeddings)

Text input:

Google News pretrained word2vec:

1x300 vector

Audio: Spectrogram CNN

Hypothesis: p(disagreement) = f(changes in frequency, amplitude over time)

Audio input:

Mel spectrogram: FFT: time → frequency STFT: FFT on windows Mel: nonlinear freq. scale

Discrete Wavelet Transform

Audio input:

N observations of 2.5 second sliding window audio chunks features: discrete wavelet coefficients

0.003	0.219					
-------	-------	--	--	--	--	--

Models using DWT

- Logistic Regression
- Random Forest
- Boosting
 - XGBoost
 - AdaBoost
 - GradientBoost
- LSTM
 - time series don't have i.i.d assumptions
 - LSTM could better capture patterns in sequential data

Evaluation/Results

Category	Name	Precision: Test Set 1 (Australian teens)	Precision: Test Set 2 (2 "Hot Take" eps.)
Baseline	Naive	0.04	0.04
Text	Word count	0.09	0.07
	Word2vec	0.06	0.03
Audio	Spectrogram	0.04	0.06
	Wavelet - Logreg	0.04	0.02
	Wavelet - RF	0.00	0.00
	Wavelet - XGBoost	0.00	0.00
	LSTM	0.03	0.07

doesn't generalize to different test episodes/domains

Evaluation/Results

Word2vec model

Audio models

Interpretation

Sparsity of Disagreement (Class Imbalance)

Dating + Food episode: 4 people discussing dating and restaurants in NYC

 Severe class imbalance makes classification difficult (only 4% of either test set is disagreement), even with class weights and augmentation

Interpretation

Challenges in Generalization

- Episodes span different genres + styles, making it difficult to generalize
- Train-test splits within the same podcast episode yield much higher precision (0.4)
 - 0.5) than train-test splits across episodes
 - One potential solution: pre-train a large model with general dataset and fine-tune it over first few mins of testing episode

IID Assumption

Models treat segments as independent, constraining performance

Future suggestions

Use **speaker changes** as feature

Perform data augmentation for invariance to speaker characteristics

Consider longer **contexts** and autoregressive approaches

Key Contributions

Creation of first-in-kind annotated disagreement dataset

Data pipeline for discretizing audio and text data

Identification of categories of disagreement

Baseline **modeling** approach

Identification of key **challenges** that a successful model need to address: sparse target class, data augmentation, generalization

Special Thanks

Our partners: Rosie Jones and Jussi Karlgren

Our TFs: **Eagon Meng** and **Nick Stern**

Our Professor: Chris Tanner

Q&A