GEOMETRY CÁPITULO 16

3 DE
SECUNDARIA
TRIANGULOS
SEMEJANTES
SESIÓN I

TRIÁNGULOS SEMEJANTES

<u>Definición</u>.- Dos triángulos son semejantes, si tienen sus ángulos congruentes y sus lados homólogos respectivamente, proporcionales.

Teoremas de semejanza

C

1.- Ángulo-Ángulo-Ángulo

 \triangle ABC \sim \triangle PQR

1. En un triángulo ABC, $D \in \overline{AB}$, $E \in \overline{BC}$, BE = 2m, DE = 3m y AC = 9m. Si m4BDE = m4ACB, halle AB.

- Piden: x
- **⊿**ABC ~ **⊿**EBD

$$\frac{x}{2} = \frac{9}{3} \frac{3}{1}$$

$$x = 3(2)$$

2. En la figura, halle x.

- Piden: x
- Si: <u>AB</u> // <u>PQ</u>

△PQC ~ △BAC

$$\frac{\mathbf{x}}{9} = \frac{4}{x}$$

$$x^2 = 36$$

$$x = 6 u$$

- 3. Los lados de un triángulo miden 2, 3 y 4. Halle el menor lado de un triángulo semejante de perímetro 18.
 - Piden: 2k

4k

$$9k = 18$$

Reemplazand Ο.

$$2k = 2(2)$$

$$2k = 4$$

01

4. Halle el valor de x.

- Piden: x
- ∆BAC ~ ∆CED

$$\frac{x}{8} = \frac{6}{3}$$

$$x^2 = 16$$

$$x = 4$$

5. En la figura, calcule x.

- Piden: x
 - △ABD ~ △BCD

$$\frac{x}{4} = \frac{9}{x}$$

$$x^2 = 36$$

6. En un triángulo ABC, recto en B, se traza la altura \overline{BH} , D $\in \overline{BC}$, $\overline{DE} \perp \overline{AC}$, E $\in \overline{HC}$, BH = 9 m, AH = 6 m y DE = 2 m. Halle EC.

7. Si O es centro, halle el valor de x.

8. Un estudiante de arquitectura mide las dimensiones de un parque triangular y al tomarle una foto observa que uno de los lados mide 16cm. Calcule la longitud del lado menor en la foto.

 Piden: DE • $\triangle DEF \sim \triangle ABC$ **DE** = **EF** 60 $DE = \underline{50}$