浙江大学 2007-2008 学年 春夏 学期

《高等代数 II》课程期末考试试卷

	开课	学院:	理学院	_ ,考记	式形式:	闭卷,	允许	-带		\场			
	考试	时间:	2008_年_	<u>6</u> _月_ <u>29</u>	_日,所需	需时间:		20_分钟。	,任课老	师:			
考生姓名:			学号:					专业: _理科试验班 _					
旦宿	小	1		=	пп			<u> </u>	J-	1/	占 厶		

题序	_	<u>-</u>	111	四	五	六	七	八	总 分
得分									
评卷人									

- 一、 选择题(每小题3分,共12分)
- 1. 设 $W = \{(a, a+b, a-b) | a, b \in \mathbb{R}\}$, 这里**R**为实数集,则 ()
 - (A) W与R²同构。
 - (B) W与R³同构。
 - (C) W与 \mathbf{R}^2 的一个真子空间同构。
 - (D) \mathbb{R}^2 与W 的一个真子空间同构。
- 2. 设 V_1 , V_2 是偶氏空间V的两个子空间,则 V_2 是 V_1 的正交补的充要条件是()
 - (A) $V = V_1 + V_2$, $V_1 \cap V_2 = 0$
 - (B) $V_1 \perp V_2$
 - (C) $V = V_1 + V_2$, $\dim V = \dim V_1 + \dim V_2$
 - (D) $V = V_1 + V_2$, $\exists \forall \alpha \in V_1$, $\beta \in V_2$, $\exists (\alpha, \beta) = 0$
- 3. 设A是欧氏空间V的线性变换,则A是正交变换的必要而非充分条件是()
 - (A) $\forall \alpha, \beta \in V$, $\langle A\alpha, A\beta \rangle = \langle \alpha, \beta \rangle$
 - (B) $\forall \alpha \in V, |A\alpha| = |\alpha|$
 - (C) $\forall \alpha, \beta \in V$, $(A\alpha, A\beta) = (\alpha, \beta)$
 - (D) $A \times V$ 的任何一组标准正交基下的矩阵是正交矩阵
 - (注:其中〈,〉表示两个向量的夹角, (,)表示该空间的内积。)
- 4. 设 $_A$ 是线性空间 $_V$ 的线性变换, $_V_1, \cdots, _N_n$ 都是 $_V$ 的一组 $_A$ -不变子空间,且 $_V = W_1 \oplus \cdots \oplus W_n$,则 $_V$ 中一定存在一组基,使 $_A$ 在该基下的矩阵是()
 - (A) 对角矩阵 (B) 反对称矩阵 (C) 可逆矩阵 (D) 准对角矩阵

二、 判断题(对的打√,错的打×) (每小题 3 分,共 12 分)
1. 若两个 $m \times n$ 的 λ – 矩阵 $A(\lambda)$ 与 $B(\lambda)$ 有相同的秩,则 $A(\lambda)$ 与 $B(\lambda)$ 等价().
2. 在 R^3 空间中, $A = V$ 中任一向量在 xoy 平面上的垂直投影的线性变换,则 (i) $Im A \cap \ker A = \{0\}$. (); (ii) $Im A + \ker A = V$. ()
3. 欧氏空间中保持长度不变的变换是正交变换.()
4. 多项式 $x^3 - 6x^2 + 16x - 14$ 在有理数域上不可约. ()
三、 填空题 (每小题 4分, 共 16分)
1. 若矩阵 A 的全部初等因子为 $\lambda - 1$, $(\lambda - 1)^2$, $(\lambda + 2)^2$,则 A 的不变因子为
. $\Im \sigma, \tau \in \mathbb{R}^2$ 空间的线性变换,定义为 $\sigma(x,y) = (0,x), \ \tau(x,y) = (y,x), \ \forall x,y \in \mathbb{R}$,则 $(2\sigma^2 - 3\tau)(x,y) = \underline{\hspace{1cm}}$.
3. 已知 $f(x) = 2x^3 - 9x^2 + 30x - 13$ 有一个根为 $2 - 3i$,则 $f(x)$ 在实数域上典型分解式为 $f(x) =$
4. 设 s 为有限维复线性空间上的一个线性变换, I 为 s 的一个特征值,若 r_1,r_2 分别表示 s 的属于特征值 I 的特征子空间和根子空间的维数, r_3 表示 I 的重数,则 r_1,r_2,r_3 的大小关系满足。

五. (本题 10分)

. 试求多项式 $f(x) = x^4 + x^3 - 3x^2 - 4x - 1$ 和 $g(x) = x^3 + x^2 - x - 1$ 的最大公因式。

六. (本题 10分)

- (1) 设 W_1,W_2 是数域 \mathbf{P} 上的有限维线性空间, $\dim W_1=n,s$ 为定义在 W_1 上取值于 W_2 中的线性映射,试证明 $\dim(\operatorname{Im} s)+\dim(Kers)=n$ 。
- (2) 试利用(1)的结论解释齐次线性方程组 $A_{m',n}x=0$ 的解空间维数为 n-r(A) 。

七. (本题 10分)设A是数域P上的n阶方阵,证明A与A^T相似。

八、(本题15分)

实二次型 $f=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_3+4bx_2x_3$ 通过 R^3 上的正交线性变换 T 化为标准型 $g=y_2^2+2y_3^2$,求参数 a,b 及所用的正交变换 T 。