Работа 3.2.4

СВОБОДНЫЕ КОЛЕБАНИЯ В ЭЛЕКТРИЧЕСКОМ КОНТУРЕ

Работу выполнил Матренин Василий Б01-006

Цель работы: Исследование свободных колебаний в электрическом контуре.

В работе используются: Генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, катушка индуктивности, электронный осциллограф, универсальный измерительный мост.

1 Теория

1.1 Схема установки

Схема установки представлена на рисунке 1.

Рис. 1. Схема установки

1.2 Исследуемые величины

В работе планируется:

1. Исследовать зависимость периода свободных колебаний контура от емкости. Согласно теории, зависимость должна иметь вид (Формула Томпсона):

$$T = 2\pi\sqrt{LC} \quad , \tag{1}$$

где Т - период колебаний, L и С - индуктивность и емкость контура соответственно.

Период планируется измерять с помощью осциллографа.

2. Исследовать зависимость логарифмического декремента затухания от сопротивления. Расчет логарифмического декремента затухания будет производиться по следующей формуле:

$$\lambda = \frac{1}{n} \ln \frac{W_k}{W_{k+n}} \quad , \tag{2}$$

где W_i - энергия контура после i-того колебания.

Энергию контура планируется высчитывать используя напряжение на конденсаторе, которое в свою очередь, измеряется с помощью осциллографа.

Согласно теории, логарифмический декремент затухания пропорционалени сопротивлению

$$\lambda \propto R$$
 (3)

3. Определить критическое сопротивление. Критическое сопротивление вычисляется по формуле:

$$R_{\rm kp} = 2\sqrt{\frac{L}{C}} \tag{4}$$

4. Определить добротность контура. Добротность планируется вычислить двумя способами, с последующим сравнением результатов.

Первый способ - Через формулу для логарифмического декремента затухания. Второй способ - используя параметры контура R, L, C.

Формула для вычисления добротности через логарифмический декремент затухания:

$$Q = \frac{\pi}{\lambda} \tag{5}$$

Формула для вычисления добротности с использованием параметров контура

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{6}$$

1.3 Методы проверки зависимостей

Для проверки теоретических зависимостей проще всего сводить эти зависимости к линейным уравнениям исследуемых величин (тогда графики будут наглядными и отклонения от нормы будут более заметны).

В связи с этим будут построены графики зависимостей (7) и (9):

$$T^2(LC)$$
 , (7)

тогда зависимость, согласно теории, будет иметь линейный вид:

$$T^2 = 4\pi^2 LC \tag{8}$$

$$\lambda(R)$$
 , (9)

здесь зависимость и так линейная

2 Ход работы

2.1 Сравнение теоретического и измеренного периодов колебаний

Период, снятый с осциллографа: $T_{\mbox{\tiny H3M}} = (34,0\pm0,3)10^{-5} \ {
m c}$

Теоретический период, расчитанный через L и C: $T_{\text{теор}} = (33, 4 \pm 0, 6)10^{-5} \text{ c}$

Видно, что в пределах погрешности, данные величины совпадают.

2.2 Измерение логарифмического декремента и добротности контура

Наблюдая за затуханием колебаний в контуре при разных сопротивлениях R , и зная, что зависимость $R(\Theta)$ линейна, найдем для LC контура его сопротивление и логарифмический декремент затухания.

Рис. 2. Затухания в контуре

Данные представлены в таблице 1:

R, Ом	n	U_k , дел	U_{k+n} , дел	$\Theta, 10^{-2}$
0	22	4	2	3,151
2	21	4	2	3,301
4	20	4	2	3,466
6	19	4	2	3,648
8	18	4	2	3,851
10	17	4	2	4,077
12	16	4	2	4,332
14	15	4	2	4,621

Таблица 1. Данные.

По методу наименьших квадратов построю график линейной зависимости $R(\Theta)$:

Puc. 4. Зависимость $R(\Theta)$

Из к-та b найду сопротивление LC контура: $R_0=36,1\pm2,1\,$ Ом.

Из к-та наклона найду критическое сопротивление LC контура: $R_{\rm kp.} = 8000 \pm 400~{
m Om}.$

Подобрал значение критического сопротивления путем увеличения сопротивления до тех пор, пока на экране осциллографа не исчезнут колебания: $R_{\rm kp.\ nog6.} \approx 7600\,$ Ом.

Рис. 5. График без колебаний

Видно, что полученные значения для критического сопротивления LC цепи совпадают в пределах погрешности.

2.3 Определение добротности

Определею добротность контура с помощью данных таблицы 1 и сравню результат с расчетом через R, L и C. Результаты расчетов представлены в таблице 2.

R, Ом	Q(R)	Θ	$Q(\Theta)$
36,09	101,46	0,032	99,71
38,09	96,27	0,033	95,18
40,09	91,58	0,035	90,65
42,09	87,33	0,036	86,11
44,09	81,65	0,039	81,58
46,09	78,25	0,041	77,05
48,09	75,13	0,043	72,52
50,09	72,24	0,046	67,99

Таблица 2. Добротность.

Видно, что результаты расчетов сходятся в пределах погрешностей.

2.4 Определение логарифмического декремента затухания по Х-У диаграмме

Если перевести переключатель TIMES-DIV в положение X-Y, то можно получить следующую картину:

Рис. 6. Х-У диаграмма

По данной диаграмме можно определить логарифмический декремент затухания и сравнить его с теоретическим значением, полученным через R, L и C.

2.4.1 Для $R = 800 \ O_{ m M}$

 $X_k = 3,6$ дел. $X_{k+n} = 2,8$ дел. Тогда $\Theta = 0,687$.

Значение полученное по формуле: $\Theta_{\text{теор}} = 0,663$.

2.4.2 Для $R = 400 \ O_{M}$

 $X_k=2,5$ дел. $X_{k+n}=1,2$ дел. Тогда $\Theta=0,331$. Значение полученное по формуле: $\Theta_{ ext{Teop}}=0,332$.

Видно, что данные значения сходятся в пределах погрешности.

3 Заключение

В ходе выполнения лабараторной работы все полученные значения: индуктивности, логарифмического декремента затухания, добротности, совпали с теоретическими расчетами. Также был получен линейный график для зависимости $R(\Theta)$, что также согласуется с теорией.

ОМ БЫЛ ПРАВ.