

A uniform rod AB of length 2x and weight W rests on the smooth rim of a fixed hemispherical bowl of radius a. The end B of the rod is in contact with the rough inner surface of the bowl. The coefficient of friction between the rod and the bowl at B is $\frac{1}{3}$. A particle of weight $\frac{1}{4}W$ is attached to the end A of the rod. The end B is about to slip upwards when AB is inclined at an angle θ to the horizontal, where $\tan \theta = \frac{3}{4}$ (see diagram).

- (i) By resolving parallel to the rod, show that the normal component of the reaction of the bowl on the rod at B is $\frac{3}{4}W$.
- (ii) Find, in terms of W, the reaction between the rod and the smooth rim of the bowl. [4]
- (iii) Find x in terms of a. [3]