№1.

Зная природу источника сообщений, то есть энтропию его вероятностной схемы, можно значительно сократить число последовательностей для перербора значений.

Будем считать иформацию в битах.

1)
$$1 = 100$$
, $n = 20$

Не зная ничего об источнике будет требоваться перебрать ${\sf n}^1$ вариантов

$$n^1 = 20^{100} = 2^{100 \log_2 20} \approx 2^{432}$$

Однако имея информацию об источнике

при
$$H_{\infty}=1$$
 \Longrightarrow число рассматриваемых слов = $2^{1\star H_{\infty}}=2^{100}$

при
$$H_{\infty} = 2$$
 \implies число рассматриваемых слов = $2^{1*H_{\infty}} = 2^{200}$

при
$$H_{\infty}=3$$
 \Longrightarrow число рассматриваемых слов = $2^{1\star H_{\infty}}=2^{300}$

при
$$H_{\infty} = 4$$
 \implies число рассматриваемых слов = $2^{1\star H_{\infty}} = 2^{400}$

$$2) 1 = 100, n = 32$$

Не зная ничего об источнике будет требоваться перебрать n^1 вариантов $n^1=32^{100}=2^{100\,\log_232}=2^{500}$

Однако имея информацию об источнике

Данный пример ещё раз показывает, что чем больше энтропия источника, тем больше вариантов требуется перебрать, чтобы гарантировать достоверность ответа

№2. Пронуперуем монеты.

Пусть А - исходный эксперимент, состоящий из событий:

- 1) 1 ая монета фальшивая и она больше остальных
- 2) 1 ая монета фальшивая и она меньше остальных

. . .

- 17) 9 ая монета фальшивая и она больше остальных
- 18) 9 ая монета фальшивая и она меньше остальных

Вероятность каждого события
$$p = \frac{1}{18}$$

$$Тогда H (A) = log 18$$

Обозначим за A_k – результат k-ого взвешивание монет на весах (исходы : =, <, >)

Заметим, что $H(A_k) \le log 3$

Хотим найти такое k, что $H(A | A_1 A_2 ... A_k) = 0$

Из условия $H(A \mid A_1 A_2 ... A_k) = 0$ следует, что

$$\text{H (A) } = \text{H (A } \text{A}_1 \text{ A}_2 \dots \text{A}_k) \\ = \text{H (A}_1 \text{ A}_2 \dots \text{A}_k) \\ \leq \text{H (A}_1) \\ + \dots \\ + \text{H (A}_k) \\ \leq \text{k * H (A}_1) \\ = \text{k *$$

 $\log 18 \le k * \log 3$

Минимальное k при котором это выполняется есть ни что иное, как k=3

№3.

$$\begin{split} A &= \left(\begin{array}{cccc} a_1 & \ldots & a_n \\ p & (a_1) & \ldots & p & (a_n) \end{array} \right) \\ B &= \left(\begin{array}{cccc} b_1 & \ldots & b_{n-1} \\ p & (b_1) & \ldots & p & (b_{n-1}) \end{array} \right), \ p & \left(b_k \right) \ = \ \frac{p & (a_k)}{1 - p & (a_n)}, \ k < n \\ \\ H & (B) &= \ \frac{p & (a_1)}{1 - p & (a_n)} \log \frac{1 - p & (a_n)}{p & (a_1)} + \ldots + \frac{p & (a_{n-1})}{1 - p & (a_n)} \log \frac{1 - p & (a_n)}{p & (a_{n-1})} \end{split}$$

$$\begin{split} p\;(a_n)\;\star\;log\;\frac{1}{p\;(a_n)}\;+\;\left(1-p\;(a_n)\right)\;\star\;\left(log\;\frac{1}{1-p\;(a_n)}\;+\;H\;(B)\right)=\\ p\;(a_n)\;\star\;log\;\frac{1}{p\;(a_n)}\;+\\ &\left(1-p\;(a_n)\right)\;\star\;\left(log\;\frac{1}{1-p\;(a_n)}\;+\;\frac{p\;(a_1)}{1-p\;(a_n)}\;log\;\frac{1-p\;(a_n)}{p\;(a_1)}\;+\;\dots\;+\;\frac{p\;(a_{n-1})}{1-p\;(a_n)}\;log\;\frac{1-p\;(a_n)}{p\;(a_{n-1})}\right)=\\ p\;(a_n)\;\star\;log\;\frac{1}{p\;(a_n)}\;+\\ &\left(\left(1-p\;(a_n)\right)\star\;log\;\frac{1}{1-p\;(a_n)}\;+\;p\;(a_1)\;log\;\frac{1-p\;(a_n)}{p\;(a_1)}\;+\;\dots\;+\;p\;(a_{n-1})\;log\;\frac{1-p\;(a_n)}{p\;(a_{n-1})}\right)=\\ p\;(a_n)\;\star\;log\;\frac{1}{p\;(a_n)}\;+\\ &\left(\left(1-p\;(a_n)\right)\star\;log\;\frac{1}{1-p\;(a_n)}\;+\;p\;(a_1)\;log\;\frac{1-p\;(a_n)}{p\;(a_1)}\;+\;\dots\;+\;p\;(a_{n-1})\;log\;\frac{1-p\;(a_n)}{p\;(a_{n-1})}\right)=\\ p\;(a_n)\;\star\;log\;\frac{1}{p\;(a_n)}\;+\;p\;(a_{n-1})\;log\;\frac{1}{p\;(a_{n-1})}\;+\;\dots\;+\;p\;(a_{n-1})\;log\;\frac{1-p\;(a_n)}{p\;(a_{n-1})}\right)=\\ p\;(a_n)\;\star\;log\;\frac{1}{p\;(a_n)}\;+\;p\;(a_{n-1})\;log\;\frac{1}{p\;(a_{n-1})}\;+\;\dots\;+\;p\;(a_1)\;log\;\frac{1}{p\;(a_1)}\;+\\ &\left(-\left(1-p\;(a_n)\right)\star\;log\;\left(1-p\;(a_n)\right)\;+\;p\;(a_1)\;log\;\left(1-p\;(a_n)\right)\;+\;\dots\;+\;p\;(a_{n-1})\;log\;\left(1-p\;(a_n)\right)\right)=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_1)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_1)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_1)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_1)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_1)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_1)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_1)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_n)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_n)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_n)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_n)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_{n-1})\;+\;\dots\;+\;p\;(a_n)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_n)\;+\;p\;(a_n)\;+\;\dots\;+\;p\;(a_n)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_n)\;+\;p\;(a_n)\;+\;\dots\;+\;p\;(a_n)\right)\;=\\ H\;(A)\;+\;log\;\left(1-p\;(a_n)\right)\;\left(-1+p\;(a_n)\;+\;p\;(a_n)\;+\;p\;(a_n)\;+\;\dots\;+\;p\;(a_n)\;+\;p\;(a_n)\;+\;\dots\;+\;p\;(a_n)\;+\;p\;(a_n)\;+\;p\;(a_n)\;+\;p\;($$

№4. Пронуперуем студентов.

Пусть А - исходный эксперимент, состоящий из событий:

- 1) загадан был 1 ый студент
- 2) загадан был 2 ый студент

25) загадан был 25 – ый студент

Вероятность каждого события $p = \frac{1}{25}$

Тогда H (A) = log 25

Обозначим за A_k – результат k-ого вопроса (исходы: "Да", "Нет")

Заметим, что $H(A_k) \le log 2$

Хотим найти такое k, что $H(A \mid A_1 A_2 ... A_k) = 0$

Из условия Н (A | $A_1 A_2 ... A_k$) = 0 следует, что

$$H \ (A) \ = \ H \ (A \ A_1 \ A_2 \ \ldots \ A_k) \ = \ H \ (A_1 \ A_2 \ \ldots \ A_k) \ \le \ H \ (A_1) \ + \ \ldots \ + \ H \ (A_k) \ \le \ k \ * \ H \ (A_1) \ = \ k \ * \ H \ (A_1)$$

 $\log 25 \le k * \log 2$

Минимальное k при котором это выполняется есть ни что иное, как k=5

№5.

С помощью программы на компьюете был произведён подсчёт. Идея алгоритма заключается в последовательном подсчёте слов, начиная с наиболее вероятного,

до тех пор, пока суммарная вероятность не превзойдёт α .

Результаты работы программы при разных 1 и α приведены ниже.

$1 \setminus \alpha$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
10	7	21	41	64	109	154	229	334	510
20	1239	4803	11 613	20 281	38 615	58 840	103 873	168 514	298 204
30	342 022	1 444 4 %	3 530 0 %	7 428 2 %	14886 :	25 339 %	46 563 :	87 491 :	176 18 :
		59	01	81	060	329	300	498	4 359
40	84 953 %	404 20 :	11555x	28211:	59626	11 298 :	20 843 :	42 701 ·	102 95 \
	587	0 225	57 1 5 \	38 24 %	48 22 %	0079·	0715·	5594:	6618 \
			5	4	7	23	10	37	139