Chapter 8, Q 1,3,4,5,7,8 (Next week Q 10-14)

# 2D NMR part II

Chris Waudby

c.waudby@ucl.ac.uk

The HSQC experiment



#### Quadrature detection in 2D



hypercomplex data

# **HSQC** sensitivity



INEPT transfer efficiencies

# HSQC sensitivity



Relaxation losses

## Processing / sensitivity

Observed magnetisation =

$$H_x \cos (\omega_N t_1) \pm H_y \sin (\omega_N t_1)$$

Sum =  $2 \cos (\omega_N t_1)$ 

Difference =  $2i \sin(\omega_N t_1)$ 

- 2x increase in signal by adding/subtracting adjacent FIDs
- · Noise is also added
- Net gain of √2 in SNR
- Less in practice due to relaxation in longer sequence

# The sensitivity-improved HSQC



#### Comparison of HSQC and SI-HSQC sensitivity

HSQC sensitivity:

 $\sin^2(2\pi J_{HN}\tau) \exp(-4R_{2,H}\tau)$ 

SI-HSQC sensitivity:

 $\sqrt{2} \sin^3 (2\pi J_{HN}\tau) \exp(-6R_{2,H}\tau)$ 







# The HMQC experiment The HMQC experiment $t_2$ $t_3$ $t_4$ $t_5$ $t_6$ $t_7$ $t_8$ $t_8$ $t_8$ $t_8$ $t_8$ $t_8$ $t_8$ $t_9$ $t_9$ $t_1$ $t_1$ $t_1$ $t_1$ $t_2$ $t_1$ $t_2$

#### $\tau = 1 / (2J_{HN}) = 4.5 \text{ ms } (90 \text{ Hz})$

# Evolution of passive couplings during $t_1$



#### HMQC vs HSQC

- HMQC is simpler pulse sequence less scope for calibration errors, and pulse imperfections (especially 180° pulses) don't matter so much
- Product operators during *t*<sub>1</sub>:
  - HSQC: single quantum in-phase and anti-phase 2H<sub>z</sub>N<sub>v</sub> <=> N<sub>x</sub>
  - HMQC: multiple (zero + double) quantum
- · Relative relaxation rates:
  - $R_2(N_x) < R_2(2H_zN_y) < R_2(2H_xN_y)$
- IMPORTANT EXCEPTION: methyl-TROSY HMQC!



# Evolution of passive couplings during $t_2$



$$(H_N)_{\infty} \rightarrow \overline{}$$

### The in-phase HSQC (HISQC) experiment



## Effect of perdeuteration



# Comparison of HMQC, HSQC, HISQC



# Amide exchange

# Vector model description of J-coupling

Ix is really a mixture of 
$$S_X$$
 and  $S_X$  spin states:

$$I_X = I_X S_X + I_X S_B \longrightarrow I_Y(S_X S_X) = I_Y S_Z$$

$$I_Y S_X \longrightarrow I_X S_X$$

$$I_X \longrightarrow I_X \longrightarrow I_X$$

$$I_X \longrightarrow$$

 $E = \pi J T = \frac{\pi}{2}$  for complete conversion to antiphase  $= > T = \frac{1}{2J}$ 

# Vector model description of J-coupling



# Decoupling (on-resonance)

- Coupling = splitting of resonances by frequency J
- Therefore, to observe (resolve) coupling, need to observe for time τ ≥ 1 / J
  - i.e. lifetime of coupled state must be ≥ 1 / J
- Converse: reduce the lifetime, and coupling won't be observed
- Basic idea: exchange S<sub>α</sub> <—> S<sub>β</sub> with π pulse to refocus coupling evolution