Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

Лабораторная работа №2 на тему: «Три схемы включения транзистора»

Вариант 4

Преподаватель:

Ковынев Н.В.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-44

Репозиторий работы: https://github.com/ledibonibell/Module04-ECE

Москва 2024

Цель работы

Изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.

Входные данные

Задание 1, 2, 3:

Вариант	E_1 мВ	F_{E1} к Γ ц	R_H к O м	E_2 B
4	25	3	2	12

Перечень приборов

Транзистор 2N3906:

1. Максимальное напряжение: 40 В

2. Максимальный ток: 0.2 А

3. Емкость: 4.5 рF

4. *h*_{21 *min*}: 30

5. $h_{21 max}$: 300

6. I_{k_0} : 7.5 мА

7. P_k : 0.625 Вт

Ход работы

Задание 1. Собрать на рабочем поле среды Multisim схему для испытания усилительного каскада на биполярном транзисторе с ОЭ (Рис. 1), ознакомиться с порядком расчёта параметров схемы.

Рис. 1

Параметр	ОЭ		
R_{in}	Теоретически	Экспериментально	
	361	325	
17	Теоретически	Экспериментально	
K_i	94.86	91.7	
K_u	Теоретически	Экспериментально	
	11.875	6.31	
R_{out}	Теоретически	Экспериментально	
	294	53	

Таблица 1

Параметр 2: $h_{21} = \sqrt{h_{21\,min} \cdot h_{21\,max}} = 94.86$

Параметр 1: $h_{11} = r_{6} + r_{69} = 398.9 \approx 400$

$$r_{\mathcal{G}} = \frac{\tau_k}{C_k} \approx 66.6$$

$$r_{69} = \frac{1 + h_{21}}{1/\varphi_T \cdot I_{k_0}} = 332.3$$

Входное сопротивление: $R_{in} = \frac{h_{11} \cdot R_{\sigma}}{h_{11} + R_{\sigma}} = 361$

$$R_{6} = \frac{R_{61} \cdot R_{62}}{R_{61} + R_{62}} = 3750$$

Выходное сопротивление: $R_{out} = R_{k \ni} \left(1 + \frac{h_{21} \cdot r_{\ni}}{r_{\ni} + r_{o}} \right) = 294$

Коэффициент усиления по напряжению: $K_u = \frac{h_{21} \cdot R_k}{h_{11}} = 11.875$

Коэффициент усиления по току: $K_i = h_{21} = 94.86$

Коэффициент усиления по мощности: $K_p = K_u \cdot K_i = 6886.836$

Рис. 2 - Осциллограмма схемы с ОЭ

Рис. 3 - ЛАЧХ схемы с ОЭ

Рис. 4 - ЛФЧХ схемы с ОЭ

Задание 2. Собрать на рабочем поле среды Multisim схему для испытания усилительного каскада на биполярном транзисторе с ОБ (Рис. 5), ознакомиться с порядком расчёта параметров схемы.

Рис. 5

Параметр	ОБ		
n.	Теоретически	Экспериментально	
R_{in}	3.68	3.91	
77	Теоретически	Экспериментально	
K_i	0.49	0.98	
K_u	Теоретически	Экспериментально	
	10.5	12.47	
R_{out}	Теоретически	Экспериментально	
	66.6	49.5	

Таблица 2

Параметр 2:
$$h_{21} = \frac{h_{219}}{1 + h_{219}} = 0.98$$

Параметр 1:
$$h_{11} = \frac{h_{119}}{1 + h_{219}} = 4.16$$

Параметр 3:
$$h_{22} = \frac{h_{223}}{1 - h_{213} + h_{213}} = 0.015$$

Входное сопротивление:
$$R_{in} = \left(\frac{1}{h_{11}} + \frac{1}{R_{61}} + \frac{1}{R_3}\right)^{-1} = 3,68$$

Коэффициент усиления по напряжению: $K_u = \frac{h_{21} \cdot R_k}{h_{11}} = 10.5$

Коэффициент усиления по току:
$$K_i = \frac{R_{_{\mathcal{I}}}}{R_{_{\mathcal{I}}} + h_{11}} \frac{h_{21}}{1 + h_{22} \cdot R_k} = 0.49$$

Коэффициент усиления по мощности: $K_p = K_u \cdot K_i = 5.145$

Рис. 6 - Осциллограмма схемы с ОБ

Рис. 7 - ЛАЧХ схемы с ОБ

Рис. 8 - ЛФЧХ схемы с ОБ

Задание 3. Собрать на рабочем поле среды Multisim схему для испытания усилительного каскада на биполярном транзисторе с ОК (Рис. 9), ознакомиться с порядком расчёта параметров схемы.

Рис. 9

Параметр	ОК		
D.	Теоретически	Экспериментально	
R_{in}	14800	13231	
17	Теоретически	Экспериментально	
K_i	96	86.7	
K_u	Теоретически	Экспериментально	
	0.99	0.984	
R_{out}	Теоретически	Экспериментально	
	1.485	150	

Таблица 3

Входное сопротивление: $R_{in} = h_{119} + \left(1 + h_{219}\right)R_9 = 14800$

Коэффициент усиления по напряжению:
$$K_u = \frac{\left(1 + h_{21\jmath}\right)R_{\jmath}}{h_{11\jmath} + \left(1 + h_{21\jmath}\right)R_{\jmath}} = 0.99$$

Коэффициент усиления по току: $K_i = h_{21} = 1 + h_{219} = 96$

Коэффициент усиления по мощности: $K_p = K_u \cdot K_i = 95.04$

Рис. 10 - Осциллограмма схемы с ОБ

Рис. 11 - ЛАЧХ схемы с ОБ

Рис. 12 - ЛФЧХ схемы с ОБ

Также рассмотрим полное сравнение теоретическим и практических характеристик исследуемого транзистора:

Парам.	Схема включения транзистора					
	ОЭ		ОБ		ОК	
R _{in}	Teop.	Экспер.	Teop.	Экспер.	Teop.	Экспер.
	361	325	3.68	3.91	14800	13231
K _i	Teop.	Экспер.	Teop.	Экспер.	Teop.	Экспер.
	94.86	91.7	0.49	0.98	96	86.7
K_u	Teop.	Экспер.	Teop.	Экспер.	Teop.	Экспер.
	11.875	6.31	10.5	12.47	0.99	0.984
R _{out}	Teop.	Экспер.	Teop.	Экспер.	Teop.	Экспер.
	294	53	66.6	49.5	1.485	150

Таблица 4

Вывод

В ходе лабораторной работы были изучены три основные схемы включения биполярного транзистора: с общей базой (ОБ), с общим эмиттером (ОЭ) и с общим коллектором (ОК).

Также были исследованы свойства и особенности каждой из схем, такие как входное и выходное сопротивление, коэффициент усиления по току и напряжению.

На основе полученных данных были сделаны выводы о том, что каждая из схем включения транзистора имеет свои преимущества и недостатки, и выбор схемы зависит от конкретных требований к усилительному каскаду.

Схема с ОБ обладает высоким коэффициентом усиления по напряжению и малым входным сопротивлением, что делает её подходящей для усиления высоких частот. Схема с ОЭ имеет высокий коэффициент усиления по току, что позволяет усиливать сигналы большой мощности. Схема с ОК обладает высоким входным и низким выходным сопротивлением, что делает её полезной для согласования каскадов и создания повторителей напряжения.