MATH 316D W09

DD1 Individual Quiz

- 1. Keep.
- 2. **Keep**.
- 3. Change to, "Let $\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$; one of the eigenvalues of \mathbf{A} is:
 - (a) 6
 - (b) $0 \implies \mathbf{Correct}$
 - (c) -2
 - (d) None of the above.
- 4. **Keep**.
- 5. Change to, "Given the definition of an eigenpair as, $\mathbf{A}\vec{v} = \lambda \vec{v}$, where \mathbf{A} is an $n \times n$ matrix and \vec{v} is the non-zero eigenvector. How is the action of \mathbf{A} equivalent to the scalar multiplication of λ , the eigenvalue?"
 - (a) It is the same geometrically in that it will flip, stretch, or shrink the vector equivalently. \implies Correct
 - (b) λ is equivalent to the determinant of **A**.
 - (c) All of the above.
 - (d) The scalar multiplication of λ is not equivalent to the action of **A** but depends on the column vector \vec{v} .

DD2 Group Quiz (Exam III Review)

- 1. **Keep**.
- 2. Change to, "Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 - a. What is the span of the columns of **A**?
 - b. Does A^{-1} exist? If it does, find it. If it does not, explain why it does not exist.
 - c. What is the volume of the parallelepiped spanned by the columns of A?
 - d. Write out the linear system represented by $\mathbf{A}\vec{x} = \vec{b}$, if $\vec{b} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$.
 - e. Is \vec{b} in the span of the columns of **A**? If it is, write \vec{b} as a linear combination of the columns of **A**.
- 3. Change to, "Mark each statement True or False. Justify your answer. Let S be a set of n vectors in \mathbb{R}^m ."
 - (a) If n > m the elements of S are linearly independent.
- 4. Keep.
- 5. **Keep** but please make sure that the questions reads as follows: "Compute the eigenvalues and eigenvectors for $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}$. Describe the action of \mathbf{A} on a vector \vec{x} in \mathbb{R}^2 ."
- 6. Keep.
- 7. **Keep** but please make sure that the question reads as follows: "Determine all values of h such that the augmented system is consistent, $\begin{bmatrix} 1 & h & 3 \\ 2 & h & 6 \end{bmatrix}$."
- 8. **Keep**.
- 9. **Keep**.
- 10. **Keep**.

KEY - Exam III Review

- 1. $\lambda = 1$
- 2. a. $Span(\mathbf{A}) = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 - b. Yes. $\mathbf{A}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$
 - c. V = 1
 - d.

$$x_1 + x_2 + x_3 = -1$$
$$x_2 + x_3 = 2$$
$$x_3 = 3$$

- e. Yes.
- 3. (a) \Longrightarrow False
 - (b) \Longrightarrow True
 - $(c) \implies True$
 - $(d) \implies True$
- 4. a. -2
 - b. -8
 - c. -2
 - d. $-\frac{1}{2}$
 - e. This operation is not possible because...
- 5. The eigenvalues of \mathbf{A} are $\lambda_1 = \sqrt{2}$ and $\lambda_2 = -\sqrt{2}$, with corresponding eigenvectors of $\vec{x}_1 = \begin{bmatrix} -1 \sqrt{2} \\ 1 \end{bmatrix}$, and $\vec{x}_2 = \begin{bmatrix} -1 + \sqrt{2} \\ 1 \end{bmatrix}$. The action of \mathbf{A} on \vec{x} is to stretch the vector \vec{x} by a factor of $\sqrt{2}$.
- 6. $\vec{r}(t) = \begin{bmatrix} -\frac{5}{2} \\ 2 \end{bmatrix} t + \begin{bmatrix} \frac{1}{6} \\ \frac{1}{3} \end{bmatrix}$ or $\vec{r}(t) = \begin{bmatrix} -5 \\ 4 \end{bmatrix} t + \begin{bmatrix} \frac{1}{6} \\ \frac{1}{3} \end{bmatrix}$
- 7. \implies All reals.
- 8. a. An appropriate answer will be along the lines of: "A pivot point is a point in a given matrix, \mathbf{A} , that corresponds to a leading 1 when that matrix is in RREF." An appropriate equation will be of the form: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
 - b. An appropriate answer is along the lines of: "Two matrices are row equivalent when any number of elementary steps can be taken to transform one matrix into the other." Some elementary steps that may be mentioned are:

 1) replacement, where a row is put back after being added to or subtracted by another row times a constant, 2) interchangeability, rows can be swapped as long as their columns do not shift position, and 3) scaling, every entry in each row can be multiplied by a non-zero constant.
- 9. An appropriate answer to this question may be, "Yes. A 2×3 linear system, when augmented, can be inconsistent because..."
- 10. An example of a matrix with complex eigenvalues is, $\mathbf{T} = \begin{bmatrix} 4 & -4 \\ 5 & -4 \end{bmatrix}$. The eigenvalues and eigenvectors of this matrix are as follows: $\lambda_1 = 2\mathbf{i}$ and $\lambda_2 = -2\mathbf{i}$, with the corresponding eigenvectors being $\vec{v}_1 = \begin{bmatrix} 4+2\mathbf{i} \\ 5 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 4-2\mathbf{i} \\ 5 \end{bmatrix}$.