

Introdução à Ciência da Computação - 113913

Prova 1

Questão B

Observações:

- As provas também serão corrigidas por um **corretor automático**, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- Serão testadas várias entradas além das que foram dadas como exemplo, assim como as listas.
- Assim como as listas, as provas devem ser feitas na versão Python 3 ou superior.
- Questão A valerá 30% da nota da Prova 1 e a Questão B valerá 70% da nota da Prova 1.
- Leia com atenção e faça exatamente o que está sendo pedido.

Questão B - Fibonacci

Leia uma sequência de inteiros positivos do teclado, um por linha. A sequência termina quando for lido um inteiro menor ou igual a 0 (que não fará parte da sequência de números lidos). Para cada número $\mathbf{k} > \mathbf{0}$ lido, calcule o \mathbf{k} -ésimo (F_k) elemento da sequência de Fibonacci, conforme definição dada abaixo:

$$F_n = \begin{cases} 1; \ n = 1 \text{ ou } n = 2\\ F_{n-1} + F_{n-2}; \ n > 2 \end{cases}$$

Entrada

Cada linha de entrada conterá um inteiro k, quando a linha conter $k \leq 0$ o programa deve parar. Considere que pelo menos um k > 0 será lido.

Saída

Considerando o valor de F_k :

- $\bullet\,$ Caso F_k seja par e k
 seja par, imprima a soma dos dois.
- $\bullet\,$ Caso F_k seja par e k
 seja ímpar, imprima a diferença de F_k com k.
- $\bullet\,$ Caso F_k seja ímpar e k
 par, imprima a multiplicação.
- \bullet Caso F_k seja ímpar e k
 seja ímpar, imprima a divisão inteira de F_k por k.

Ao final, informa a média aritmética dos números lidos da sequência com duas casas decimais e o maior F_k calculado, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
1	1
	2
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	-1
	2.00
-1	2
1	1
1	1
	12
4	2.00
0	3
4	12
5	1
$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	4.50
U	5
6	14
7	1
	6.50
-6	13
10	550
	25
9	168
8	1
7	8.50
-185	55

Tabela 1: Questão B

Boa Prova!