

Topology Optimization in ANSYS

Presented by:

Brian King

Analysis Project Engineer

IMPACT Engineering Solutions, Inc.

Tel: 847-599-5635

E-mail: bking@impactengsol.com

About IMPACT...

- Founded in 1987, IMPACT Engineering Solutions Inc. has grown into a market leader, providing technology based engineering services
- Focused on solid modeling since 1993
- Key IMPACT Product Offerings:
 - Design Support
 - Staff Augmentation
 - Product Simulation
 - Professional Services
- Analysis Services Division Initiated October 2002
- Gurnee, IL Office Opened in November 2003

Analysis Capabilities and Expertise

- COSMOSWorks Structure/Motion
- Pro/MECHANICA Structure/Motion
- MSC.NASTRAN / NE/Nastran
- FEMAP Pre & Post-Processing
- ♦ ANSYS
- ⋄ CFDesign CFD Simulation
- LS-DYNA Drop and Crash Testing
- FE-Fatigue (nCode) Durability Analysis

Extensive combined engineering analysis experience in a variety of materials and industries

What is Topological Optimization?

- Layout optimization
- Try to find the best use of material for a body
- No optimization parameters need to be defined
 - The material distribution function over a body is the optimization parameter
- The goal (objective function) is to minimize / maximize the energy of structural compliance or maximize the natural frequency while satisfying the constraints specified

What is Topological Optimization?

- The design variables are pseudo-densities
 - Assigned to each finite element
 - Values range from 0 to 1
 - □ 0 = material to be taken away
 - □ 1 = material to be kept

Main Steps of Optimization Procedure

- Define the structural problem
- Select the element types
- Specify optimized and non-optimized regions
- Define and control the load cases or frequency extraction
- Define and control the optimization process
- Review the results

Define the structural problem

- Define the problem as you would for any linear elastic analysis
 - Single or multiple load case linear structural static analysis
 - Modal frequency analysis
- Material properties to be defined
 - Young's modulus
 - Poisson's ratio
 - □ Must be between 0.1 and 0.4
 - Material density if necessary

Element Types

 2D Planar, 3D Solid, and shell elements are supported

o 2D Solids: PLANE2, PLANE82

o 3D Solids: SOLID92, SOLID95

Shells: SHELL93

Used to control which regions of the model to optimize

Primary Commands Used

- ⋄ TOCOMP
 - Defines single or multiple load cases as topological optimization function for linear static problem
- ⋄ TOFREQ
 - Defines single or mean frequency formulation as the topological optimization function for modal analysis
- ⋄ TOVAR
 - Specifies objective and constraints

Cancel

OK

Help

Primary Commands Used

- ⋄ TOTYPE
 - Specifies solution method for topological optimization
- ⋄ TODEF
 - defines the accuracy for the solution
- ⋄ TOLOOP
 - Invokes a macro to solve, postprocess, and plot each iteration
 - Process terminates once convergence is attained or the maximum iteration number is reached
 - Up to 100 iterations allowed

Workbench vs. ANSYS Optimization

- Solid parts only in Workbench Topology Opt.
- Type 1 and Type 2 elements driven by boundary conditions in Workbench
 - Preprocessing commands can change defaults
- Only Basic Opt from ANSYS is available
 - Single load case
 - Maximize stiffness, reduce volume
 - Preprocessing commands for Advanced Top. Opt.

ANSYS Mesh

www.impactengsol.com

Density Plot - Averaged

Density Plot - Unaveraged

Blue = pseudo-density 0 < 0.5Red = pseudo- density $0.5 \ge 1.0$

Case Study – Bumper Project

Density Plots

Blue = pseudo-density 0 < 0.5Red = pseudo- density $0.5 \ge 1.0$

Density Plots

Elements with density 0.5 or greater only

Model Created Based on Topology Results

Analysis Results

Displacement (in)

Maximum Principal Stress (psi)

Comparison to Current Design

New Prototype

ANSYS

Current Design

204.5 lbs 363.5 lbs

159 lb Difference!

Hints and Comments

- Results are sensitive to the load configuration
- Results are sensitive to the density of the mesh
- When a large (80% or greater) volume reduction is requested and a very fine mesh is used a truss-like solution may occur
- A linear structural static analysis or a modal analysis must be performed during optimization looping
- Inputs and commands are not saved in the ANSYS database

Questions?

Contact Information:

Brian King

Brookfield, WI Office: (262) 317-8118 Gurnee, IL Office: (847) 599-5635

E-mail: bking@impactengsol.com