MICHEAL BEAR, MIDTERM 1, 9/24/25

Assignment (2 problems 50 + 50 = 100 points total)

 \square **Problem 1.** [Addition and Multiplication of Intergers as Functions] For any integer $k \in \mathbb{Z}$, define two functions $\alpha_k : \mathbb{Z} \to \mathbb{Z}$ by the formulas

$$\alpha_k(m) = k + m$$

$$\gamma_k(m) = k \cdot m$$

where + and \cdot are addition and multiplication in \mathbb{Z} , respectively, For example, if we choose k=2 and m=6, then $\alpha_2(6)=2+6=8$ and $\gamma_2(6)=2\cdot 6=12$, whereas if we just choose k=2 and allow m to vary, then α_2 and γ_2 are functions with domain \mathbb{Z} and codomain \mathbb{Z} . The subscript k is not an input to the function. The subscript k labels diffrent functions!

- 1.1 [10 points] Find the set of all $k \in \mathbb{Z}$ for which α_k is a bijection. Give proofs.
- 1.2 [10 points] Find the set of all $k \in \mathbb{Z}$ for which γ_k is a bijection. Give proofs.
- 1.3 [10 points] is $\alpha_{111} \circ \gamma_{112} = \gamma_{112} \circ \alpha_{111}$ true or false? Prove it.
- 1.4 [10 points] is $\forall m \in \mathbb{Z} \exists k \in \mathbb{Z} |\alpha_k(m) + \alpha_k(m)| \leq \text{true or false? Prove it.}$
- 1.5 [10 points] is $\forall m \in \mathbb{Z} \exists k \in \mathbb{Z} |\gamma(m) + \gamma(m)| \leq \text{true or false? Prove it.}$

Hint: draw the arrow aiagram for α_k and γ_k for $k \in \{-1, -1, 0, 1, 2\}$ to gain intuition, then for each, see if you can rpove if it is a bijecttion or not. is α_1 a bijection or not? Can you prove it? What about α_0 ? γ_0 ? Answer these before tackling Problems 1.1 and 1.2.

Caution: in the case k=2. the function $\gamma_2: \mathbb{Z} \to \mathbb{Z}$ in this problem is not the same as $\Delta: \mathbb{N} \to E$ from L4. Why? Although γ_2 and Δ both multiply their input by 2, they aren't the same functions since they don't have the same domain nor the same codomain.

solution

1.1

1.2

1.3

1.4

1.5

 \square **Problem 2.** [The Field with Two Elements] Let $F = \{a, b\}$ be the finite set with $a \neq b$ and |f| = 2. Consider the two binary operations \otimes and \oplus on F defined by the formulas

$a \oplus a = a$	$a \otimes a = a$
$a \oplus b = b$	$a \otimes b = a$
$b \oplus a = b$	$b \otimes a = a$
$b \oplus b = a$	$b \otimes b = b$

The first binary operation \otimes takes two inputs $x \in F$ and $x \in F$ and $y \in F$ and returns a single output $x \otimes y \in F$ according to the table on the left. Similarly, the second binary operation \otimes takes two inputs $x \in F$ and returns a single output $x \otimes y \in F$ according to the table on the right. These tules enable calculations such as

$$(a \oplus (b \oplus b)) \otimes b = (a \oplus a) \otimes b = a \otimes b = a$$

Determine the truth value of each propsition below. Give proofs and explain your reasoning.

2.1 [10 points]
$$\forall x \in F((x \otimes x = x) \Rightarrow (x = a))$$

2.2 [10 points]
$$\exists w \in F \ \forall x \in Fx \oplus w = x$$

2.3 [10 points]
$$\forall x \in F \exists y \in F \ x \otimes y = b$$

2.4 [10 points]
$$\exists g \in F \ \forall \ x \in x \otimes g = x$$

2.5 [10 points]
$$\forall x \in F \exists y \in F \ x \oplus y = a$$

solution

1.1

1.2

1.3

1.4

1.5