Réseaux de neurones artificiels et apprentissage profond

Julien VELCIN

Université Lumière Lyon 2

Master 2 Data Mining

1 / 43

Plan

Introduction générale

Le perceptron simple

Le perceptron multicouches

Remerciements

- Julien Ah-Pine MCF d'Informatique (ICOM, Lyon 2)
- Mathieu Lefort MCF d'Informatique (FST, Lyon 1)

2 / 43

Réseaux de neurones artificiels

- Modèles (lointainement) inspirés du fonctionnement de notre cerveau et de travaux en sciences cognitives et neurosciences
- Notre cerveau est capable de traiter des problèmes difficiles : reconnaissance de visages, de la parole, etc.
- Paradigme connexionniste, une vision parallèle et distribuée de l'activité du cerveau vu comme un système de traitement de l'information :
 - chaque neurone traite l'information indépendamment des autres avant d'en communiquer le résultat à d'autres neurones grâce aux synapses
 - des parties du cerveau (groupes de neurones) se spécialisent dans certaines tâches

Schéma d'un neurone biologique

5 / 43

Un peu d'histoire

- 1943 : neurone formel de McCulloch & Pitts "A logical calculus of the ideas immanent in nervous activities"
- 1948 : Von Neumann les réseaux d'automates
- 1949 : Donald Hebb hypothèse de l'efficacité synaptique, notion de mémoire associative, premières règles locales d'apprentissage
- 1958 : Rosenblatt et Widrow Perceptron et Adaline
- 1969 : Minsky et Papert analyse théorique des capacités de calcul des réseaux à base de perceptron.
- Début des années 70 : stagnation des recherches sur les réseaux neuromimétiques ; report des efforts en Intelligence Artificielle symbolique (systèmes experts...)
- Années 70-80 : quelques avancées perceptron multicouches (MLP), cartes auto-organisatrices (SOM), etc.
- Des mécanismes d'apprentissage performant pour le perceptron multicouches voient le jour (rétropropagation du gradient)

Comparons les deux "machines"

Caractéristiques	Cerveau humain	Ordinateur
Support des données	neurones	circuits électroniques
Véhicule des données	neurotransmetteurs (substances chimiques)	impulsions électriques
Enregistrement des données	analogique (continu)	numérique (binaire)
Types de mémoires	à long terme à court terme registres sensoriels externes : bibliothèques	morte (ROM) vive (RAM) tampon (buffer) périphériques : disques,
Localisation, spécialisation des fonctions	aires cérébrales spécialisées (cortex visuel,)	circuits spécialisés (CPU, mémoires, contrôleurs, horloge,)
Nombre de cellules	≈ 30 000 000 000 (1010)	4 000 000 000 (109)
Liaisons par cellule	≈ 10 000 (104)	2 (cellules voisines)
Structure	réseau (non linéaire)	liste (linéaire)
Durée des impulsions	0,001 sec (10-3)	0,000 000 001 sec (10-9)
Vitesse de propagation	130 m/sec (102)	300 000 000 m/sec (108)
Temps d'accès (sec.)	0,1 sec (10-1)	0,000 000 1 sec (10-7)
Débit (bits/sec.)	faible (102)	fort (108)

http://intelligence-artificielle-tpe.e-monsite.com/pages/limites-technologiques-et-ethique-de-l-ia/cerveau-humain-et-robot.htm

6 / 43

Un peu d'histoire récente

Avènement de l'apprentissage profond (deep learning) :

- avant 2000 : de nombreux travaux importants mais qui passent inaperçus (la faute aux SVM ?), tels que les machines de Boltzmann (1985) ou la mémoire à *long short-term memory* (LSTM) pour les réseaux récurrents (1997)
- Peu à peu, des progrès importants sont faits quant à la puissance de calculs (ex. GPUs) et les architectures profonde gagnent les compétitions
- 2013 : un réseau de neurones remporte la compétition ImageNet
- 2015 : Google annonce des taux de reconnaissance de visage de l'ordre de 99,63% avec FaceNet (réseau de neurones à 22 couches!)
- octobre 2015 : victoire d'alphaGo contre le champion européen de Go, Fan Hui
- mi-mars 2016 : victoire de DeepMind contre le champion du monde de Go, Lee Sedol (4 parties à 1)

7 / 43

S'inspirer des modèles naturels

9 / 43

Un **réseau neuromimétique** est un graphe pondéré orienté dont les sommets sont appelés "neurones' et sont dotés d'un comportement d'automate simple.

Modèle de neurone artificiel

Figure 1 - Neurone artificiel (McCullogh et Pitts, 1943)

10 / 43