20 MHz GPSDO PLL

This is a preliminary document describing a GPSDO PLL that is to work with a ublox NEO-7 GPS receiver. Eventually it is desired to incorporate an Arduino uP to manage the startup with a simple display and a buffer board that will supply a suitable signal for reference frequency distribution employing 74HCT1G125 drivers.

The First PCB [1.7" x 1.7"] provides a PLL, an interface to the ublox GPS, an Arduino connection and a level converter for the serial communications. There is provision for a battery backup for the ublox NEO-7 that may be implemented in several different ways.

The PLL filter is described by the normal equations found below and exploited in a spreadsheet to be made available later.

Second Order Passive Lead-Lag Filter

[(Power Supply/2])/[PI/2] = (Power Supply) / PI

 $K_p\,$ is the phase detector gain in volts per radian

 K_v is the VCO gain in radians per volt-second

s is the damping factor [zeta]

 ω_n is the natural frequency of the loop = 2*PI*f

N is the loop frequency devisor

f is the loop frequency in Hz

2*PI*(VCO Slope)

K9IVB 10/18/2014

After some additional reading, I have added another tab to the spreadsheet with the damping factor [zeta], $\zeta = 0.707$. As it turns out you can achieve this condition by changing the R1 value to 200.0K and R2 to 3010 Ohms, = 0.7418; C still = 470 μ F. Keeping the values of R1 =196.0K and C = 470 μ F with R2 = 3.020 K by simply putting two of the 6.040K resistors in parallel and $\zeta = 0.7245$, if you are interested in this value for ζ .

In my opinion, too many of the authors have put far too much emphasis on Floyd Gardner's mathematics and very little on the real world. Gardner shows best performance with $\zeta = 0.5$ and has a "compromise" value of $\zeta = 0.707$. These values reflect loops primarily used for an integer N synthesizer or signal recovery. We are doing neither and overshoot is undesirable, so $\zeta = 1.3$ is number that I have chosen. Professor Long does differentiate in types of loops and suggests that even higher values of ζ may be used.

Another variable, of the few that are available is the loop natural frequency. This design can be considered a high gain loop, because of the VCO slope, the loop divisor N is only 10 and the reference frequency is 2.0MHz. When using reference frequencies of 1pps or up to 10KHz the loop natural frequency needs to be very small and preferably several orders of magnitude less than the reference frequency. I have chosen to keep this value small and still sub Hz at 0.16Hz. It is possible that it could be raised 10 to 100 times without affecting performance. Raising this value would bring the value of C near a level where a high performance film capacitor would be able to replace the Tantalum used for C1.

I will put more info on the web site after I get one built.

References:

Best, Rolland E. Phase Locked Loops Design, Simulation, and Applications, Fifth Edition, New York, McGraw-Hill, 2003

Gardner, F.M., Phaselock Techniques, Second Edition, New York, NY, John Wiley and Sons, 1979.

Long. Prof Steve, PLL_intro_594a_s05.pdf, UCSB/ECE Department, April 27, 2005

Stevens, Donald R., *PHASE-LOCKED LOOPS FOR WIRELESS COMMUNICATIONS Digital, Analog and Optical Implementations*, Second Edition, NEW YORK, KLUWER ACADEMIC PUBLISHERS, 2002

Pg 2 of 5 K9IVB 11/08/2014

Pg 3 of 5 K9IVB 11/08/2014

Pg 4 of 5 K9IVB 11/08/2014

GPSDO-PLL BOM K9IVB 10/18/2014

Ref Des	Value	Description	Part Number	Mfg	PAD	Mouser	Qty
C1	470uF	Tantalum Capacitors - Solid SMD 6.3V 470uF 10% "Y" Case	TAJY477K006RNJ	AVX	[7343]	581-TAJY477K006RNJ	1
C2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 101, 102	0.1	Multilayer Ceramic Capacitors MLCC - SMD/SMT 25volts 0.1uF X7R 10%	C0805C104K3R	KEMET	[0805]	80-C0805C104K3R	13
		Aluminum Electrolytic Capacitors - Leaded 16volts 10uF 4X7mm L/S=5.0mm Ammo					
C13, 14, 15	10uF	Crmp	EEA-GA1C100B	Panasonic	0.2" LS	667-EEAGA1C100B	3
C16, 17, 18, 19, 20, 21, 22	4.7uF Tant	Tantalum Capacitors - Solid SMD 10V 4.7uF 10% "A"	T491A475K010AT	KEMET	1206	80-T491A475K010	7
		Schottky Diodes &					,
D1 D100, 101	PMEG4005EJ 1N4148	Rectifiers 40V 0.5A 1N4148, SOD-323F	PMEG4005EJ,115	NXP Fairchild	SOD-323 SOD-123	771-PMEG4005EJ-T/R 512-1N4148WS	1 2
J1, 2, 3, 4, 5, 6, 101, 102 J100, 103 JB100		1x2 .100" Header 1x4 .100" Header 2x3 .100" Header					8 2 1
L1, 2, 3, 4, 5, 6 O1	MPZ2012S221A VCTCXO	FERRITE CHIP 220 OHM 3A	MPZ2012S221A ASVTX-09-20.000MHz-T		[0805]	810-MPZ2012S221A 815-ASVTX-09-20.0MT	6 1
R1	196K	Thin Film Resistors - SMD 0805 196Kohm 0.1% 25ppm	ERA-6AEB1963V	Panasonic		667-ERA-6AEB1963V	1
R2	6.040K	Thin Film Resistors - SMD 0805 6.04Kohm 0.1% 25ppm	ERA-6AEB6041V	Panasonic		667-ERA-6AEB6041V	1
		Thick Film Resistors - SMD 1/10watts					
R3	10K	10Kohms 5%	RK73B1JTTDD103J	KOA Speer	[0805]	660-RK73B1JTTDD103J	1

Pg 5 of 5 K9IVB 11/08/2014

		Thin Film Resistors - SMD 0805 1/8W					
R4	3K	3Kohms 0.1% 0805	ERA-6AEB302V	Panasonic	[0805]	667-ERA-6AEB302V	1
R5	470	Thick Film Resistors - SMD 1/8W 470ohm 1%	AC0805FR-07470RL	Yageo	[0805]	603-AC0805FR-07470RL	1
R6	10	Thick Film Resistors - SMD 1/8W 10ohm 1%	AC0805FR-0710RL	Yageo	[0805]	603-AC0805FR-0710RL	1
R7, 105	4.7	Thick Film Resistors - SMD 1/8W 4.7ohm 1% Thick Film Resistors - SMD 1/8W 4.7K ohm	AC0805FR-074R7L	Yageo	[0805]	603-AC0805FR-074R7L	2
R100	4.7K	1%	AC0805FR-074K7L	Yageo	[0805]	603-AC0805FR-074K7L	1
R101	9.1K	Thick Film Resistors - SMD 0805 9.1Kohms 1% Tolerance Metal Film Resistors - Through Hole 100ohm	ERJ-6ENF9101V	Panasonic	[0805]	667-ERJ-6ENF9101V	1
R103	100	1/4W 1%	MFR-25FRF52100R	Yageo	axial	603-MFR-25FRF52100R	1
R104	47	Thick Film Resistors - SMD 1/8W 47ohm 1% Logic Gates 2 Input	AC0805FR-0747RL		[0805]	603-AC0805FR-0747RL	1
U1, 4	SN74LVC1G86	XOR		TI	SOT-23-5	586-SN74LVC1G86DBVR	2
U2	LT1116		LT1116CS8	Linear Technology	SOIC-8		1
	alt	Analog Comparators High Speed Comp	TL3116CD	TI	SOIC-8	595-TL3116CD	
U3	74HC4017	Counter ICs 5-STAGE JOHNSON DECADE COUNTER [syncronus]	74HC4017D,653	NXP	SO-16	771-74HC4017D-T	1
U5, 6	SN74LVC1G80	Flip Flops Positive Edge Trig	SN74LVC1G80DBVR	TI	SOT-23-5	595-SN74LVC1G80DBVR	2
U7	MIC5205-5.0	LDO Voltage Regulators 5V 150mA 1% Low Noise LD	MIC5205-5.0YM5 TR	Micrel	SOT-23-5	998-MIC5205-5.0YM5TR	1
U8	MIC5205-3.0	LDO Voltage Regulators 3.0V 150mA 1% Low Noise LD	MIC5205-3.0YM5 TR	Micrel	SOT-23-5	998-MIC5205-3.0YM5TR	1
U100	74AHCT1G125	Buffers & Line Drivers Tri-State Single Bus	SN74AHCT1G125DBVR	TI	SOT-23-5	595-SNAHCT1G125DBVR	1

Pg 6 of 5 K9IVB 11/08/2014