

什么是最优化 (Optimization)

最优化就是在复杂环境中遇到的许多决策中, 挑选最优 决策的一门科学。

什么是最优化方法

最优化方法就是寻找最优决策的方法。

线性规划、整数规划、非线性规划、目标规划、 动态规划 (五规划)

对策论、存储论、排队论、决策论、图论 (五论)

第一章 线性规划

§1 线性规划问题的基本概念

例1 (生产计划问题) 某工厂生产甲、乙、丙、丁四种产品,需要用 A、B、C三种设备,每 kg 产品在生产中需要占用的设备机时数、可以获得的利润以及三种设备可利用的机时数如下表所示,制订使总利润最大的生产计划。

每 kg 产品占用的 机时数(小时)	产品甲	产品乙	产品丙	产品丁	设备能力 (小时)
设备A	1.5	1.0	2.4	1.0	2000
设备B	1.0	5.0	1.0	3.5	8000
设备C	1.5	3.0	3.5	1.0	5000
利润 (元/kg)	5.24	7.30	8.34	4.18	

例2 (**配料问题**) 某工厂要用四种合金 T_1 , T_2 , T_3 和 T_4 为 原料,经熔炼成为一种新的不锈钢G。这四种原料含元素铬 (Cr),锰 (Mn)和镍 (Ni)的含量 (%)、这四种原料的单价以及新的不锈钢材料 G 所要求的Cr,Mn 和 Ni 的最低含量 (%)如下表所示:

	T_1	T_2	T_3	T_4	G
Cr	3.21	4.53	2.19	1.76	3.20
Mn	2.04	1.12	3.57	4.33	2.10
Ni	5.82	3.06	4.27	2.73	4.30
单价(元/公斤)	115	97	82	76	

设熔炼时重量没有损耗,要熔炼成100公斤不锈钢 G,应选用原料 T_1 , T_2 , T_3 和 T_4 各多少公斤,使成本最小。

例3 (背包问题) 一只背包最大装载重量为50公斤。现有三种物品,每种物品数量无限。每种物品每件的重量、价值如下表所示:

	物品1	物品2	物品3
重量(公斤/件)	10	41	20
价值(元/件)	17	72	35

要在背包中装入这三种物品各多少件,使背包中的物品价值最高。

例4 (运输问题) 设某种物资从两个供应地 A_1 , A_2 运往三个需求地 B_1 , B_2 , B_3 。各供应地的供应量、各需求地的需求量、每个供应地到每个需求地的单位物资运价如下表所示。

运价(元/吨)	\mathbf{B}_1	B_2	\mathbf{B}_3	供应量(吨)
\mathbf{A}_1	2	3	5	35
A_2	4	7	8	25
需求量(吨)	10	30	20	

如何安排运输, 使总运费最小。

例5 (指派问题) 有张、王、李、赵4位教师被分配教语文、数学、物理、化学4门课程,每位教师教一门课程,每门课程由一位老师教。根据这四位教师以往教课的情况,他们分别教这四门课程的平均成绩如下表:

	语文	数学	物理	化学
张	92	68	85	76
王	82	91	77	63
李	83	90	74	65
赵	93	61	83	75

要确定哪一位教师上哪一门课,使四门课的平均成绩之和为最高。

线性规划的数学模型:

$$\max (\min) z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) \ b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge) \ b_2 \\ \vdots & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) \ b_m \\ x_1, x_2, \dots, x_n \ge 0 \end{cases}$$

说明:

(1) 决策变量: x_1 , x_2 , …, x_n 。

一组决策变量表示为问题的一个方案;

(2)目标函数: max(min) z z为决策变量的线性函数;

(3) 约束条件:一组线性不等式或等式。

6

1.2 图解法

例: 用图解法求 $\max z = 2x_1 + 3x_2$

$$\begin{array}{c}
x_1 + 2x_2 \le 8 & \text{ } \textcircled{1} \\
4x_1 & \le 16 & \text{ } \textcircled{2} \\
4x_2 \le 12 & \text{ } \textcircled{3} \\
x_1, x_2 \ge 0
\end{array}$$

解: (1)建立 x₁-x₂坐标;

(2) 约束条件的几何表示;

(3) 目标函数的几何表示;

$$z = 2x_1 + 3x_2$$
$$\Rightarrow x_2 = -\frac{2}{3}x_1 + \frac{1}{3}z$$

首先取 z=0,然后,使 z 逐 渐增大,直至找到最优解所对 应的点。 可见,在 Q_2 点 z 取到最大值。 因此, Q_2 点所对应的解为最优解。 由此求得最优解: $x_1^*=4$ $x_2^*=2$ 最大值: $\max z=z^*=2x_1+3x_2=14$ 讨论: (1) 唯一最优解 $\max z=z^*$ 时,解唯一,如本例。

(4)无可行解

$$\max z = 2x_1 + 3x_2$$

$$\text{s.t.} \begin{cases} 2x_1 + 4x_2 \ge 8 \\ x_1 + x_2 \le 1 \\ x_1, x_2 \ge 0 \end{cases}$$

无公共部分,无可行域。即无可行解。 在实际问题中,可能是关系错。

小结:

- (1) 线性规划问题的可行域是一个凸多边形。
- (2) 线性规划如果有最优解,其最优解必可在某个顶点 达到。

® ®

1.3 线性规划的标准型

1、标准型
$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\text{s.t} \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ x_1, x_2, \dots, x_n \ge 0 \end{cases}$$

简记:
$$\max z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$s.t \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} & i = 1, \dots, m \\ x_{i} \ge 0, & j = 1, \dots, n \end{cases}$$

矩阵形式: max z = C x

$$\max z = C x$$

$$s.t \begin{cases} Ax = b, \\ x \ge 0. \end{cases} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \cdots & & \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}$$

其中·

$$x = (x_1, x_2, \dots, x_n)^T$$
, $C = (c_1, c_2, \dots, c_n)$, $b = (b_1, b_2, \dots, b_m)^T$

向量形式: $\max z = Cx$

$$s.t \begin{cases} \sum_{j=1}^{n} p_{j} x_{j} = b \\ x_{j} \ge 0, j = 1, \dots, n \end{cases}$$

$$p_j = (a_{1j} \ a_{2j} \cdots a_{mj})^T \ x_j$$
的系数列向量

® ®

2、标准型的化法

(1)
$$\min \rightarrow \max \quad \min z = Cx = -\max(-z)$$

$$\Leftrightarrow z' = -z, \quad \text{M} \max z' = -Cx$$

(2)不等式 (≤,≥)

对于 " \leq " 情况: 在 " \leq " 左边加上一个松弛变量(非负),变为等式;

对于 "≥"情况:在 "≥"左边减去一个剩余变量(非负),变为等式。

注: 松弛变量、剩余变量在目标函数中的价值系数为 0。

- (3) 无约束变量 $\diamond x_k = x'_k x''_k, x'_k, x''_k \ge 0$
- (**4**) 右端项为负 两边乘以 –1

例: 将下述问题化为标准型

$$\min z = x_1 - 2x_2 + 3x_3$$

$$\mathrm{s.t} \begin{cases} x_1 + x_2 + x_3 \leq 7 & \text{①} \\ x_1 - x_2 + x_3 \geq 2 & \text{②} \\ -3x_1 + x_2 + 2x_3 = -5 & \text{③} \\ x_1, x_2 \geq 0, \ x_3 \mathcal{\Xi}约束 \end{cases}$$

 $\Re: \quad \diamondsuit z' = -z, \qquad x_3 = x_4 - x_5, \quad x_4, x_5 \ge 0$

①式加上一个松弛变量 x_6 ; ②式减去一个剩余变量 x_7 ;

$$\max z' = -x_1 + 2x_2 - 3(x_4 - x_5)$$
s.t
$$\begin{cases} x_1 + x_2 + x_4 - x_5 + x_6 = 7 \\ x_1 - x_2 + x_4 - x_5 - x_7 = 2 \\ 3x_1 - x_2 - 2x_4 + 2x_5 = 5 \end{cases}$$

 $x_1, x_2, x_4, x_5, x_6, x_7 \ge 0$

® ®

3 线性规划解的概念

设线性规划为 $\max z = Cx$ ①

$$\max z = Cx \qquad (1)$$

$$s.t \begin{cases} Ax = b \qquad (2) \\ x \ge 0 \qquad (3) \end{cases}$$

A为 $m \times n$ 矩阵, n > m, Rank A = m (A为行满秩矩阵)

- 1. 可行解: 满足条件②、③的 x;
- 2. 最优解: 满足条件①的可行解;
- 3. 基: 取 B 为 A 中的 m 阶子矩阵,Rank B = m,则称 B 为线性规划问题的一个基。

设
$$B = (p_1, p_2, \dots, p_m)$$
 $p_j = (a_{1j}, a_{2j}, \dots, a_{mj})^T$ 则称 x_1, x_2, \dots, x_m 为基变量,其它为非基变量。

4. 基(本)解: 非基变量为0且满足②的解 x; 设 $B = (p_1, p_2, \dots, p_m)$, $\begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots & \vdots & \vdots \\ a_{mm+1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_{m+1} \\ \vdots & \vdots & \vdots \\ x_n \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$ 令 $x_{m+1} = \cdots = x_n = 0$ (非基变量为0)
则 $Bx_B = b$ $x_B = B^{-1}b = (x_1^{(0)}, x_2^{(0)}, \dots, x_m^{(0)})^T$ 基本解: $X = (x_1^{(0)}, x_2^{(0)}, \dots, x_m^{(0)}, \underbrace{0, \dots, 0}_{n-m+1})^T$ 基本解个数 $\leq C_n^m$

例: 求所有基解、基可行解 $\begin{cases} x_1 + 2x_2 \le 8, \\ x_2 \le 2. \end{cases}$ 解: 化为标准型 $\begin{cases} x_1 + 2x_2 + x_3 = 8, \\ x_2 + x_4 = 2. \end{cases} A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = (p_1, p_2, p_3, p_4)$ A 的所有 2 阶方阵有 $B_1 = (p_1, p_2) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} B_2 = (p_1, p_3) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ $B_3 = (p_1, p_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} B_4 = (p_2, p_3) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$ $B_5 = (p_2, p_4) = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} B_6 = (p_3, p_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

1.4 线性规划的基本理论 定义1 设 $S = R^n$ 的一个子集,若对任意 $x_1 \in S, x_2 \in S, 0 \le \lambda$ ≤ 1 ,有 $\lambda x_1 + (1-\lambda)x_2 \in S$,则称S为凸集 (Convex Set)。 凸组合: 设 $x_i \in R^n$,若存在 $0 < \mu_i < 1$, $i = 1, \dots, k$, $\sum_{i=1}^k \mu_i = 1$ 使 $x = \sum_{i=1}^k \mu_i x_i$,则称 $x \to x_i$ 的凸组合。 极(项)点: $x \in S$,若不存在不同的两点 $x_1 \in S$, $x_2 \in S$,使 $x = \alpha x_1 + (1-\alpha)x_2$ ($0 < \alpha < 1$),注: 极点所对应的解是基可行解。

 $x \ge 0$ }为凸集。 定理2 线性规划的可行解 $x = (x_1, x_2, ..., x_n)$ 为基可行解的充要条件是: x的正分量所对应的系数列向量线性无关。 定理3 线性规划问题的基可行解 x 对应于线性规划问题可行域(凸集)的顶点。 定理4 有界凸集 S上任一点可表示为 S 的极点的凸组合。 定理5 若线性规划有解,则一定存在基可行解为最优解,如果在几个顶点上都达到最优解,则这些顶点的每个凸组合上也达到最优。 定理6 若线性规划问题有可行解,必有基可行解。

6 9

定理1 若线性规划存在可行域,则可行域 $S = \{x \mid Ax = b,$

1. 单纯形法原理 $\max Z = 2x_1 + 3x_2 + 3x_3 \qquad \max Z = 2x_1 + 3x_2 + 3x_3 + 0x_4 + 0x_5$ $\begin{cases} x_1 + x_2 + x_3 \le 3 \\ x_1 + 4x_2 + 7x_3 \le 9 \\ x_1, x_2, x_3 \ge 0 \end{cases} \qquad \text{s.t.} \begin{cases} x_1 + x_2 + x_3 + x_4 = 3 \\ x_1 + 4x_2 + 7x_3 + x_5 = 9 \\ x_1 - x_5 \ge 0 \end{cases}$ $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 4 & 7 & 0 & 1 \end{pmatrix} \qquad B = (p_4, p_5) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 用非基变量表示基变量 $x_4 = 3 - x_1 - x_2 - x_3$ $x_5 = 9 - x_1 - 4x_2 - 7x_3$ 用非基变量表示目标函数 $Z = 2x_1 + 3x_2 + 3x_3$ 基本解 (0, 0, 0, 3, 9) 也是可行的

§2 单纯形法

 $Z = 2x_1 + 3x_2 + 3x_3$

$$x_4 = 3 - x_1 - x_2 - x_3 x_5 = 9 - x_1 - 4x_2 - 7x_3$$

$$\begin{cases} x_1 = 3 - x_2 - x_3 - x_4 \\ x_5 = 6 - 3x_2 - 6x_3 + x_4 \end{cases}$$

取 x_1 增大,应该确定其增大的上限 θ

 x_1 增大时,其余非基变量保持为零,称 x_1 进基

$$\theta = \min \left\{ \frac{3}{1}, \frac{9}{1} \right\} = 3$$
 新的基本可行解 (3, 0, 0, 0, 6)

$$Z = 2(3-x_2-x_3-x_4)+3x_2+3x_3=6+x_2+x_3-2x_4$$

有正的检验数,不是最优。

6

$$Z = 6 + x_2 + x_3 - 2x_4$$

$$\begin{cases} x_1 = 3 - x_2 - x_3 - x_4 \\ x_5 = 6 - 3x_2 - 6x_3 + x_4 \end{cases}$$

$$x_1 = 1 + x_3 - \frac{4}{3}x_4 + \frac{1}{3}x_5$$

$$x_2 = 2 - 2x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5$$

取
$$x_2$$
 进基
$$\begin{cases} x_1 = 3 - x_2 \\ x_5 = 6 - 3x_2 \end{cases} \quad x_2 = \theta = \min \left\{ \frac{3}{1}, \frac{6}{3} \right\} = 2$$

x5 出基 新的基本可行解(1, 2, 0, 0, 0)

$$Z = 6 + \left(2 - 2x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5\right) + x_3 - 2x_4$$
$$= 8 - x_3 - \frac{5}{3}x_4 - \frac{1}{3}x_5$$

所有检验数小于零,目标最优,最优值 Z=8

方法步骤总结:

- 1. 确定 (观察法) 一个初始基本可行解;
- 2. 从约束中解出基变量 (用非基变量表示基变量);
- 3. 代入目标消去基变量 (用非基变量表示目标函数),得 到非基变量 x_i 的检验数 σ_i 。
- 4. 判断最优。若 $\sigma_{i} \leq 0$,当前解最优;

若 σ_k >0,则选 x_k 进基

- 5. 用最小比值法确定 x_t 的最大值 θ , 使基变量 x_t 取0值, 其它基变量非负, 即 x_1 出基, 若 θ 不存在, 则 $Z\rightarrow\infty$, 没 有有限最优解。
- 6. 重复上述1到5的工作。

初始基可行解的确定

(1) 松弛基 (松弛变量对应的B)

对约束条件是"≤"形式的不等式,在每个约束条件的 左端加上一个松弛变量。

$$\max z = x_1 + 3x_2 \qquad \max z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$s.t \begin{cases} x_1 + 2x_2 \le 3 \\ 2x_1 + 3x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases} \xrightarrow{\text{KFALL}} s.t \begin{cases} x_1 + 2x_2 + x_3 = 3 \\ 2x_1 + 3x_2 + x_4 = 4 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \end{bmatrix}, \qquad \mathbb{M} \ B = \begin{bmatrix} p_3 & p_4 \end{bmatrix}$$

取 x_3 、 x_4 为基变量, 初始基可行解: $x^{(0)} = (0, 0, 3, 4)^T$

(2) 人工基

对所有约束条件是"≥"形式的不等式及等式约束情况, 化为标准型后若不存在单位矩阵式,就采用人工基方法。 即对不等式约束减去一个非负剩余变量,再加上一个非 负人工变量;对于等式约束再加上一个非负的人工变量, 总能得到一个单位矩阵。

$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

最优性检验与解的判别

对于
$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$\begin{cases} x_i + \sum_{j=m+1}^{n} a_{ij} x_j = b_i & i = 1, \dots, \end{cases}$$

s.t
$$\begin{cases} x_i + \sum\limits_{j=m+1}^n a_{ij} x_j = b_i & i = 1, \cdots, m \\ x_j \geq 0 & j = 1, \cdots, n \end{cases}$$
 设 x_i 为基变量, $i = 1, \cdots, m$ $x_i = b_i' - \sum\limits_{j=m+1}^n a_{ij}' x_j$ 则 $z = \sum\limits_{i=1}^m c_i (b_i' - \sum\limits_{j=m+1}^n a_{ij}' x_j) + \sum\limits_{j=m+1}^n c_j x_j$ $= \sum\limits_{i=1}^m c_i b_i' + \sum\limits_{j=m+1}^n (c_j - \sum\limits_{j=1}^m c_i a_{ij}') x_j$

ਪੋਟੈ
$$z_0 = \sum_{i=1}^{m} c_i b'_i$$
, $z_j = \sum_{i=1}^{m} c_i a'_{ij}$

$$\begin{split} &= z_0 + \sum_{j=m+1}^n (c_j - z_j) x_j \qquad (\sigma_j = c_j - z_j) \\ &= z_0 + \sum_{j=m+1}^n \sigma_j x_j \qquad \qquad 称 \, \sigma_j \, \exists x_j \, \text{的检验数} \; . \end{split}$$

解的判别:

- 1. 若所有 σ_i ≤0,则此时的基可行解为最优解;
- 2. 若所有 $\sigma_j \leq 0$,又对于某个非基变量 x_{m+t} 有 $\sigma_{m+t} = 0$,则该线性规划问题具有无穷多最优解;
- 3. 若存在某个非基变量 x_{m+t} 的检验数 $\sigma_{m+t} > 0$,且 $p_{m+t} \le 0$,则该线性规划问题具有无界解(或称无最优解)。

基变换

1. 进基变量

若 $\max_{j \in J_n} \{ \sigma_j > 0 \} = \sigma_{m+l}$,则 x_{m+l} 为进基变量。

2. 离基变量

用最小比值法确定 x_{m+1} 的最大值 θ ,使基变量 x_1 取 0 值,其它基变量非负;

$$x_i = b'_i - a'_{i,m+t} x_{m+t} \ge 0$$
 $i = 1, 2, \dots, m$

$$\theta = \min \left\{ \frac{b'_i}{a'_{i,m+t}} \middle| a'_{i,m+t} > 0 \right\} = \frac{b'_l}{a'_{l,m+t}}$$

下证: $x_1, \dots, x_{l-1}, x_{m+t}, x_{l+1}, \dots, x_m$ 构成新的基变量。

2. 单纯形表
$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{cases} x_1 + a_{1,m+1} x_{m+1} + \dots + a_{1n} x_n = b_1 \\ x_2 + a_{2,m+1} x_{m+1} + \dots + a_{2n} x_n = b_2 \end{cases}$$

$$S.J \begin{cases} \vdots & \vdots & \vdots \\ x_m + a_{m,m+1} x_{m+1} + \dots + a_{mn} x_n = b_m \\ x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_{n+m} \ge 0 \end{cases}$$

$$-z \quad x_1 \quad x_2 \quad \dots \quad x_m \quad x_{m+1} \quad x_{m+2} \quad \dots \quad x_{n+m} \quad b$$

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & a_{1,m+1} & a_{1,m+2} & \dots & a_{1,n} & b_1 \\ 0 & 0 & 1 & \dots & 0 & a_{2,m+1} & a_{2,m+2} & \dots & a_{2,n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & a_{m,m+1} & a_{m,m+2} & \dots & a_{m,n} & b_m \\ 1 & c_1 & c_2 & \dots & c_m & c_{m+1} & c_{m+2} & \dots & c_n & 0 \end{cases}$$

•												
解的判别				1	3	0	0	0				
1 2 0	c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	θ			
$\sigma_1 = 1 \ \sigma_2 = 3 > 0$	0	x_3	8	1	2	1	0	0	8/2			
x ⁽⁰⁾ 非最优解	0	x_4	16	4	0	0	1	0				
	0	x_5	12	0	[4] _↑	0	0	1_	_12/4			
		-z	0	1	3	0	0	0				
基变换												
	$\max \{\sigma_1, \sigma_2\} = 3 = \sigma_2$ x_2 入基 $\min \{8/2, 12/4\} = 12/4$ x_5 出基											
								•	9			

		1	3	0	0	0		此时的解:
0 x_3	2	(1)	0	1	0	-1/2_	2/1	$x^{(1)}=(0\ 3\ 2\ 16\ 0)^{-1}$
0 x_4	16	4	0	0	1	0	16/4	$z^{(1)}=0$
3 x_2	3	0 1	1	0	0	1/4		- /
-z	-9	1	0	0	0	-3/4		x ⁽¹⁾ 非最优
1 x	1 2	1	0	1	0	-1/2		此时的解:
0 x	8	0	0	-4	1	2		$x^{(2)} = (2\ 3\ 0\ 8\ 0)^{\mathrm{T}}$
3 x	3	0	1	0	0	1/4		$z^{(2)}=11$
-2	-11	0	0	-1	0	-1/4		x ⁽²⁾ 为最优解
即:	最优	忙解:	x* =	(2 3	080) ^T		

		$c_{\rm j}$	2	3	3	0	0	
c_B	x_B	x_j	x_1	x_2	x_3	x_4	<i>x</i> ₅	θ
		b						
0	x_4	3	[1]	1	1	1	0	3/1
0	<i>x</i> ₅	9	1	4	7	0	1	9/1
	-z	0	2	3	3	0	0	
2	x_1	3	1	1	1	1	0	3/1
0	x_5	6	0	(3)	6	-1	1 _	_6/3
	-z	-6	0	1	1	-2	0	
2	x_1	1	1	0	-1	4/3	-1/3	
3	x_2	2	0	1	2	-1/3	1/3	
	- z	-8	0	0	-1	-5/3	-1/3	

3. 单纯形法的进一步讨论

前面提到用人工变量法可以得到初始基可行解,但加入 人工变量的数学模型与未加人工变量的数学模型一般是 不等价的。

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m \\ x_1 \sim x_n \ge 0, x_{n+1} \sim x_{n+m} \ge 0 \end{cases}$$

结论:新问题的最优解中,如果人工变量均为零,则得到的解也是原问题的最优解,否则原问题无可行解。

大 M 法 (M 为很大的正数)

法则:

对于max问题,人工变量在目标函数中的价值系数为-M; 对于min问题,人工变量在目标函数中的价值系数为 M。

$$\begin{cases} 2x_1 + 3x_2 \le 6 \\ 2x_1 + x_2 \ge 1 \\ x_1, x_2 \ge 0 \end{cases} \begin{cases} 2x_1 + 3x_2 + x_3 = 6 \\ 2x_1 + x_2 - x_4 + x_5 = 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

-			1	5	0	0	M		
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	θ	
0	x_3	6	2	3	1	0	0	6/2	
M	x_5	1	†(2)	1	0	-1	1 ←	-1/2	
	-z	-M	1-2M	5-M		M	0		
			•					(9

			1	5	0	0	M	
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	θ
0	x_3	6	2	3	1	0	0	6/2
M	x_5	1	[2]	1	0	-1	1	1/2
	- z	<i>−M</i>	1–2 <i>M</i>	5-M	0	M	0	
0	x_3	5	0	2	1	1	-1	
1	x_1	1/2	1	1/2	0	-1/2	1/2	
	-z -	-1/2	0	9/2	0	1/2	M - 1/2	

 $x^* = (x_1 \ x_2 \ x_3 \ x_4 \ x_5)^T = (1/2 \ 0 \ 5 \ 0 \ 0)^T$

(b):
$$\max z = x_1 + 2x_2$$
 $\max z = x_1 + 2x_2 + 0x_3 - Mx_4 + 0x_5$

$$st\begin{cases} -x_1 + 2x_2 \ge 4 \\ x_1 + x_2 \le 1 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases} st\begin{cases} -x_1 + 2x_2 - x_3 + x_4 = 4 \\ x_1 + x_2 + x_5 = 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

		c_{j}	1	2	0	-M	0	
c_B	x_B	x_j	x_1	x_2	x_3	x_4	x_5	θ
		b						
-M	x_4	4	-1	2	-1	1	0	4/2
0	x_5	1	1	† [1]	0	0	1 -	-1/1
	-z	4M	1-M	2+2 <i>M</i>	-M	0	0	

(1)

		c_{j}	1	2	0	-M	0	
c_B	x_B	x_j b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	θ
-M	x_4	4	-1	2	-1	1	0	
0	x_5	1	1	(1)	0	0	1	
	-z	4 <i>M</i>	1-M	2+2 <i>M</i>	-M	0	0	
-M	x_4	2	-3	0	-1	1	-2	

-M	x_4	2	-3	0	-1	1	-2	
2	x_2	1	1	1	0	0	1	
	– z	2 <i>M</i> –2	-1-3M	0	-M	0	-2-2 <i>M</i>	

所有 $\sigma_i \leq 0$ 已经是最优解, $x_4=2$ 人工变量不为零, 表示 原问题无可行解。 参照图解法结果

(1)

两阶段法

第一阶段:
$$\min w = x_{n+1} + \cdots + x_{n+m}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i, i = 1, \dots, m \\ x_i \ge 0, j = 1, \dots, n + m \end{cases}$$

如果 w*=0, 且人工变量全为非基变量, 则得到原问题的基 本可行解。

第二阶段: $\max z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$

以第一阶段最优解作为初始基本可行解,继续迭代.

例:
$$\min z = x_1 + 5x_2$$
 第一阶段:
$$\begin{cases} 2x_1 + 3x_2 \le 6 & \min z = x_1 + 5x_2 + 0x_3 + 0x_4 \\ 2x_1 + x_2 \ge 1 & \begin{cases} 2x_1 + 3x_2 + x_3 = 6 \\ 2x_1 + x_2 - x_4 = 1 \end{cases} \\ \min w = x_5 & \begin{cases} 2x_1 + 3x_2 + x_3 = 6 \\ 2x_1 + x_2 - x_4 + x_5 = 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

$$\frac{c_B \quad x_B \quad b \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad \theta}{0 \quad x_3 \quad 6 \quad 2 \quad 3 \quad 1 \quad 0 \quad 0 \quad 6/2}$$

$$\frac{1}{1} \quad x_5 \quad 1 \quad 12 \quad 1 \quad 0 \quad -1 \quad 1 \quad -1/2 \quad -2 \quad -1 \quad 0 \quad 1 \quad 0$$

			0	0	0	0	1	
c_B	x_B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅	θ
0	x_3	6	2	3	1	0	0	6/2
1	x_5	1	[2]	1	0	-1	1	1/2
	-z	-1	-2	-1	0	1	0	
0	x_3	5	0	2	1	1	-1	
1	x_1	1/2	1	1/2	0	-1/2	1/2	
	-z	0	0	0	0	0	1	

第一阶段有最优解 $x^* = (1/2, 0, 5, 0, 0)^T$

1

第二阶段: 去掉人工变量,换上原线性规划目标函数

			1	5	0	0	
c_B	x_B	b	x_1	x_2	x_3	x_4	θ
0	x_3	5	0	2	1	1	
1	x_1	1/2	1	1/2	0	-1/2	
	- z	-1/2	0	9/2	0	1/2	

最优解: $x^* = (1/2, 0, 5, 0)^T$ $z^* = 1/2$

几个问题

1. 检验数相同

 $\max_{j} \{\sigma_{j} > 0\}$ 有两个以上相同值

2. 最小比值相同

 $\min \left\{ \frac{b_i'}{a_{i,k}'} \middle| a_{i,k}' > 0 \right\}$ 有相同值 此时就会出现退化解。

定义: 一个基本可行解如果有取零的基变量,则称为退化的基本可行解,相应的基称为退化基。

(1)

(9 (9)

6

§3 应用实例

线性规划建模

- (1) 设立决策变量;
- (2) 明确约束条件并用变量的线性等式或不等式表示;
- (3) 用变量的线性函数表示目标,并确定是求极小还是极大:
- (4) 根据变量的物理性质研究变量是否有非负性。

® ®

一、生产计划问题

例: A, B两种产品, 两道工序

产品 工序一 工序二

A 加工2小时 加工3小时 加工3小时 加工3小时

 B
 加工3小时
 加工4小时

 可利用工时
 15
 25

每生产一吨B, 可得到两吨产品C

A每吨盈利400元, B每吨盈利800元

销售一吨C盈利300元

报废每吨C损失200元

市场预测,C最大销量为5吨

决定A, B的产量, 使工厂总的盈利最大。

例:产品=2个零件1+3个零件2

		生产效率(件/小时)			
车间	总工时	零件1	零件2		
1	100	8	6		
2	50	10	15		
3	75	16	21		

	生产工时数					
车间	零件1	零件2				
1	<i>x</i> ₁₁	x ₁₂				
2	x_{21}	x_{22}				
3	x_{31}	x ₃₂				

二、合理下料问题

从给定尺寸的材料中,按需要的尺寸截取给定数量的零件,使残余废料总量最小的问题。

例:用长9米的原料截取: 3.1米 200根, 2.5米 100根 1.7米 300根

废料长	0.3	1.1	0.9	0	0.8	1.5	0.6	1.4	0.5
1.7米	0	1	0	2	3	0	2	3	5
2.5米	1	0	2	1	0	3	2	1	0
3.1米	2	2	1	1	1	0	0	0	0
方案	1	2	3	4	5	6	7	8	9

三、合理配料问题

例:根据对食物所含的营养素成份及食物的市场价格调查,按照医生所提出的对每个人每天所需的营养要求,可得下表:

		食		每天的最	
营养成份	A	В	С	D	低需要量
维生素A (国际单位)	1000	1500	1750	3250	4000
维生B (毫克)	0.6	0.27	0.68	0.3	1
维生素C (毫克)	17.5	7.5	0	30	30
单 价(元)	0.8	0.5	0.9	1.5	

怎样采购食物才能保证营养要求的前提下花费最省?

1. 对偶问题的提出

例:制定生产计划 $\max z = 2x_1 + 3x_2 \\ \begin{cases} 1x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$

	I	II	限制
设备台时	1	2	8台时
材料A	4	0	16kg
材料B	0	4	12kg
利润	2	3	

假设有客户提出要求,购买工厂所拥有的工时和材料, 为客户加工别的产品,由客户支付工时费和材料费。 那么工厂给工时和材料制订的最低价格应是多少,才 值得出卖工时和材料?

§4 对偶理论

6

设 w_1 为设备单位台时的租金, w_2 , w_3 为材料A、B转让附加

原问题: $\max z = cx$ $Ax \le b$ $x \ge 0$ $\max z = 2x_1 + 3x_2$ 对偶问题: $\min y = wb$ $yA \ge c$ $y \ge 0$ 比较: $\max z$ $\min y$ 决策变量为n个 约束条件为n个 约束条件为n个 " \le " " \ge "

(3)混合形式

例
$$\max z = x_1 + 2x_2 + 4x_3$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 3 \\ x_1 + 2x_2 + 5x_3 \le 4 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$\min y = 3w_1' - 3w_1'' + 4w_2$$

$$\sup_{S:t} \begin{cases} 2w_1' - 2w_1'' + w_2 \ge 1 \\ w_1' - w_1'' + 2w_2 \ge 2 \\ 3w_1' - 3w_1'' + 5w_2 \ge 4 \\ w_1', w_1'', w_2 \ge 0 \end{cases}$$

$$\min y = 3w_1 + 4w_2$$

$$\begin{cases} 2w_1 + w_2 \ge 1 \\ w_1 + 2w_2 \ge 2 \\ 3w_1 + 5w_2 \ge 4 \\ w_2 \ge 0, w_1 \pm 9\pi \end{cases}$$

例
$$\min z = 4x_1 + 2x_2 + 3x_3$$

$$\begin{cases} 4x_1 + 5x_2 - 6x_3 = 7 \\ 8x_1 - 9x_2 + 10x_3 \ge 11 \\ 12x_1 + 13x_2 \le 14 \\ x_1 \le 0, x_2$$
 符号不限, $x_3 \ge 0$

$$\max y = 7w_1 + 11w_2 + 14w_3$$

$$\begin{cases} 4w_1 + 8w_2 + 12w_3 \ge 4 \\ 5w_1 - 9w_2 + 13w_3 = 2 \\ -6w_1 + 10w_2 \le 3 \\ w_1$$
 符号不限, $w_2 \ge 0, w_3 \le 0$

3. 对偶理论

定理1(对称性)对偶问题的对偶为原问题。

定理2 (弱对偶性) 设 $x^{(0)}$, $w^{(0)}$ 分别为LP和DP问题的可行 解,则 $cx^{(0)} \le w^{(0)}b$.

- (1) max问题任一可解的目标值为min问题目标值的一个 下界; min问题任一可解的目标值为max问题目标值的一 个上界。
- (2) 设 $x^{(0)}$, $w^{(0)}$ 分别为LP和DP问题的可行解, 当 $cx^{(0)}$ = $w^{(0)}b$ 时,它们为最优解。
- (3) 若原问题(对偶问题)为无界解,则对偶问题(原问题)为 无可行解。

定理3(强对偶性)设若原问题有最优解,那么对偶问题 也有最优解,且目标值相等。

例: 已知 $x_1^* = 1.2, x_2^* = 0.2$ 是下列问题的最优解,求其对偶问 题的最优解。

解
$$w_1^* + 2w_2^* + 2w_3^* + 3w_4^* = 20$$

 $2w_1^* + w_2^* + 3w_3^* + 2w_4^* = 20$
 $x_1^* + 2x_2^* = 1.6 > 1$
 $2x_1^* + x_2^* = 2.6 > 2$
 $2x_1^* + 3x_2^* = 3$
 $3x_1^* + 2x_2^* = 4$
 $w_3^* = 4$, $w_4^* = 4$

4. 对偶最优解的经济含义——影子价格

$$z^* = cx^* = w^*b = w_1^*b_1 + w_2^*b_2 + \dots + w_m^*b_m$$

 $\frac{\partial z^*}{\partial x} = w_i^* \quad 称w_i^* 为 b_i 的影子价格$ 其经济含义是为约束条 ∂b_i 件所付出的代价。

	Α	В	C	拥有量
工 时	1	1	1	3
材 料	1	4	7	9
单件利润	2	3	3	

$$\max z = 2x_1 + 3x_2 + 3x_3$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 \le 3\\ x_1 + 4x_2 + 7x_3 \le 9\\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

 $\min y = 3w_1 + 9w_2$ $w_1 + w_2 \ge 2$ $s.t \left\{ w_1 + 4w_2 \ge 3 \right.$ $w_1 + 7w_2 \ge 3$ $| w_1, w_2 \ge 0$

(1)

 $w_1 = 5/3, \ w_2 = 1/3$

即工时的影子价格为5/3,材料的影子价格为1/3。

如果目前市场上材料的价格低于1/3,则企业可以购进 材料来扩大生产, 反之可以卖掉部分材料。

如果有客户以高于5/3的价格购买工时,则可以出售一 些工时,反之则反。

5. 对偶单纯形法

单纯形法: 由 $x_B = B^{-1}b \ge 0$, 使 $\sigma \le 0$

$$\sigma = c - c_B B^{-1} A = c - w^{(0)} A \le 0 \qquad w^{(0)} \ge 0$$

即 $w^{(0)} = c_B B^{-1}$ 是对偶问题的可行解

对偶单纯形法: 由 $\sigma \le 0$,使 $x_B = B^{-1}b \ge 0$

定义 设 $x^{(0)}$ 是LP问题的一个基本解,对应的基是B,

$$\sigma=c-c_BB^{-1}A\leq 0\,,$$

则称 $x^{(0)}$ 为正则解,B为正则基。

计算步骤:

- (1) 保持 $\sigma \le 0$, 确定 x_B , 建立计算表格;
- (2) 判别 $x_B = B^{-1}b \ge 0$ 是否成立?
 - ① 若成立, 当前解为最优解;
 - ② 若不成立,转下一步。

® ®

- (3) 基变换
- ① 出基变量

若
$$\min_i \{\overline{b_i}\} = \overline{b_r}$$
 $i = 1, \dots, m$,则 x_{B_r} 出基; $\overline{b_r} < 0$

② 入基变量

若
$$\min_{j} \left\{ \frac{\sigma_{j}}{a_{rj}} \middle| a_{rj} < 0 \right\} = \frac{\sigma_{k}}{a_{rk}} \quad 则 x_{k} 入基。$$

若所有 $a'_{ij} \ge 0$,则原问题无可行解。

$$x_{B_r} = \overline{b_r} - \sum_{j \in J_N} a'_{rj} x_j$$

(4) 消元运算,得到新的 x_B 。 重复(2) \sim (4)步,求出结果。

例:用对偶单纯形法求解

$$\min z = 2x_1 + 3x_2 + 4x_3 \qquad \max f = -2x_1 - 3x_2 - 4x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 + 2x_2 + x_3 \ge 1 \\ 2x_1 - x_2 + 3x_3 \ge 4 \\ x_1, x_2, x_3 \ge 0 \end{cases} \qquad \begin{cases} -x_1 - 2x_2 - x_3 + x_4 = -1 \\ -2x_1 + x_2 - 3x_3 + x_5 = -4 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

解:

			-2	-3	$-4 \\ x_3$	0	0
c_B	x_B		x_1	x_2	x_3	x_4	x_5
0	x_4	-1	-1 (-2)	-2	-1	1	0
0	x_5	<u>-4</u>	(-2)	1	-3	0	1
	-f	0	-2 _t			0	0
			1		4/3		

6 6

			-2	-3	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	-1	-1	-2	-1	1	0
0	x_5	-4	(-2)	1	-3	0	1
	-f	0	-2	-3	-4	0	0
			1		4/3		
0	x_4	1	0	-5/2	1/2	1	-1/2
-2	x_1	2	1	-1/2	3/2	0	-1/2
	-f	4	0	-4	-1	0	-1

最优解: $x_1^* = 2, x_2^* = 0, x_3^* = 0, x_4^* = 1, x_5^* = 0$

目标值: $z^* = -f^* = 4$

mi	: 用对偶单纯形法求解 $\min z = 3x_1 + 9x_2$ $x_1 + 4x_2 \ge 2$ $x_1 + 4x_2 \ge 3$ $x_1 + 7x_2 \ge 3$ $x_1 \ge 0, x_2 \ge 0$				ma	2 -3 -3			
			L	- 3	_9 	0	0	0	
_	c_B	x_B	$\stackrel{b}{\longrightarrow}$	x_1	x_2			x_5	_
	0	x_3	-2	(-1)	-1	1	0	0	
	0	x_4	-3	-1	-4	0	1	0	
_	0	x_5	-3	-1	-7	0	0	1	
		-f	0	-3 _↑	-9	0	0	0	_
				3 1	9				-

_				- 3	- 9	0	0	0	
	C_B	x_B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅	
	0	x_3	-2	[-1]	-1	1	0	0	
	0	x_4	-3	-1	-4	0	1	0	
	0	x_5	-3	-1	-7	0	0	1	
		-f	0	-3	-9	0	0	0	
				3	9				
_	- 3	<i>x</i> ₁	2	1	1	-1	0	0	
	0	x_4	_1-	> 0	[-3]	-1	1	0	
	0	x_5	-1	0	-6	-1	0	1	
		-f	6	0	-6 _t	-3	0	0	
					2	3			
	•			•	•	•			® ©

			- 3	-9	0	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
– 3	x_1	2	1	1	-1	0	0
0	x_4	-1	0	[-3]	-1	1	0
0	x_5	-1	0	-6	-1	0	1
	-f	6	0	-6	-3	0	0
				2	3		
- 3	x_1	5/3	1	0	-3/4	1/3	0
_9	x_1	1/3	0	1	1/3	-1/3	0
0	x_2	1	0	0	1	-2	1
	-f	8	0	0	-1	-2	0
-	J		J	<u> </u>			

6. 灵敏度分析 分析 c_i , a_{ij} , b_i 变化对最优解的影响。 最优性条件: $\sigma_N = c_N - c_B B^{-1} N \le 0$ 或 $\sigma = c - c_B B^{-1} A \le 0$ 或 $\sigma_j = c_j - c_B B^{-1} p_j \le 0, j = 1, 2, \dots, n$ 可行性条件: $x_B = B^{-1} b \ge 0$,

1. 当 c 变化时: $c \rightarrow c + \Delta c$

检验数变为 $(c + \Delta c) - (c_B + \Delta c_B)B^{-1}A$

目标函数值变为 $(c_B + \Delta c_B)B^{-1}b$

例1 已知下述问题的最优解及最优单纯形表,

- (1) 求 Δc₄的变化范围,使最优解不变;
- (2) 求 Δc_2 的变化范围,使最优解不变.

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 4x_1 + x_4 = 16 \\ 4x_2 + x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

(9 (9)

解: (1)
$$\sigma_4' = c_4 + \Delta c_4 - c_B B^{-1} p_4 = \sigma_4 + \Delta c_4 \le 0$$

$$\Delta c_4 \le -\sigma_4 = \frac{1}{8}$$

6 6

(2)
$$\sigma = c - c_B B^{-1} A = (0, \Delta c_2, -3/2, -1/8, 0)$$

$$-(0, 0, \Delta c_2) \begin{pmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 0 & -2 & 1/2 & 1 \\ 0 & 1 & 1/2 & -1/8 & 0 \end{pmatrix}$$

$$\begin{split} &= \left(0,0,-\frac{3}{2} - \frac{1}{2}\Delta c_2, -\frac{1}{8} + \frac{1}{8}c_2,0\right) \\ &\Rightarrow \begin{cases} \Delta c_2 \geq -3 \\ \Delta c_2 \leq 1 \end{cases} \end{split}$$

® ®

2. 当 b 变化时:

$$b \rightarrow b + \Delta b$$

$$x_B = B^{-1}b \to x_B' = B^{-1}(b + \Delta B)$$

目标函数值变为 $c_B B^{-1}(b + \Delta b)$

若 $x'_{B} \ge 0$, 则最优解不变;

若 $x'_B \ge 0$ 不成立,由于 $\sigma = c - c_B B^{-1} A \le 0$ 仍成立,

可由对偶单纯形法求解最优解。

® ®

例2 对例1,

1) 求Δb,的变化范围,使最优解不变.

2) 求
$$\Delta b_1 = 4$$
时的最优解.

解: (1)
$$b_2 = 16 \rightarrow b_2 + \Delta b_2$$

) 求
$$\Delta b_1 = 4$$
时的最优解.
 $A : (1) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$

$$A : (2) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (3) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2 + \Delta b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2$$

$$A : (4) \ b_2 = 16 \rightarrow b_2$$

$$A : (4)$$

6

$$B^{-1}(b + \Delta b) = B^{-1}b + B^{-1}\Delta b$$

$$= \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ \Delta b_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 1/4 \\ 1/2 \\ -1/8 \end{bmatrix} \Delta b_2$$

1/2 -1/8 0 12 2

 $\int 4 + \Delta b_2 / 4 \ge 0$ $\Rightarrow \left\{ 4 + \Delta b_2 / 2 \ge 0 \quad \Rightarrow -8 \le \Delta b_2 \le 16 \right.$ $2-\Delta b_2/8 \ge 0$

(2)
$$\Delta b = (\Delta b_1 \ 0 \ 0)^T = (4 \ 0 \ 0)^T$$

$$B^{-1}(b + \Delta b) = B^{-1}b + B^{-1}\Delta b$$

$$= \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -8 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix}$$

不可行, 用对偶单纯形法计算

			2	3	0	0	0	
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	
2	x_1	4+0	1	0	0	1/4	0	
0	x_5	4-8	0	0	[-2]	1/2	1	
3	x_2	2+2	0	1	1/2	-1/8	0	
	-z	-14	0	0	-3/2	-1/8	0	
					3/4			
2	x_1	4		1	0	0	1/4	0
0	x_3	2	:	0	0	1	-1/4	-1/2
3	x_2	3	;	0	1	0	0	1/4
		-1	7	0	0	0	-1/2	-3/4

3. 当约束条件的系数列向量 p_k 变化时:

$$p_k \to p_k + \Delta p_k$$

(1) 若 x_k 不是基变量

$$\sigma'_{k} = c_{k} - c_{B}B^{-1}(p_{k} + \Delta p_{k}) = c_{k} - c_{B}B^{-1}p_{k} - c_{B}B^{-1}\Delta p_{k}$$
$$= \sigma_{k} - c_{B}B^{-1}\Delta p_{k}$$

- ① 若 $\sigma'_{\iota} \leq 0$,最优解不变;
- 继续用单纯形法 ② 若 $\sigma'_k > 0$, 对第 k 列 $B^{-1}p_k \to B^{-1}(p_k + \Delta p_k), \sigma_k \to \sigma'_k$
- (2) 若 x_k 是基变量,用单纯形表重新计算。

4. 增加一个新变量 x_{n+1} 时 新问题为:

$$\max z = c_1 x_1 + \dots + c_n x_n + c_{n+1} x_{n+1}$$

$$s.t \begin{cases} a_{i1}x_1 + \dots + a_{in}x_n + a_{i,n+1}x_{n+1} = b_i, i = 1, \dots m \\ x_j \ge 0, j = 1, \dots, n+1. \end{cases}$$

显然原问题的最优基 B 是新问题的可行基,

$$\sigma_{n+1} = c_{n+1} - c_B B^{-1} p_{n+1}$$

(1) 若 $\sigma_{n+1} \le 0$, 则 $x = (x_1^*, ..., x_n^*, 0)$ 是新问题的最优解.

(2) 若 $\sigma_{n+1} > 0$, 在最优单纯形表中增加一列

$$\begin{bmatrix} p'_{n+1} \\ \sigma_{n+1} \end{bmatrix} = \begin{bmatrix} B^{-1}p_{n+1} \\ c_{n+1} - c_{B}B^{-1}p_{n+1} \end{bmatrix} \qquad 继续迭代$$

6 9

例3 在例1的基础上,企业要增加一个新产品III,每件产 品需2个台时,原材料A6kg,原材料B3kg,利润5元/ 件,问如何安排各产品的产量,使利润最大?

解:

max
$$z = 2x_1 + 3x_2 + 5x_6$$

 $\begin{cases} x_1 + 2x_2 + 2x_6 \le 8 \\ 4x_1 + 6x_6 \le 16 \\ 4x_2 + 3x_6 \le 12 \end{cases}$ 料A 4 0 6 16
料B 0 4 3 12
 $x_1, x_2, x_6 \ge 0$
 $\sigma_6 = c_6 - C_B B^{-1} p_6 = 5 - [\frac{3}{2} \ \frac{1}{8} \ 0] \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix} = \frac{5}{4} > 0$
表明生产新品有利

表明生产新品有利。

(9 (9)

5. 增加新的约束条件

增加一个约束之后,应把最优解带入新的约束,若满足则最优解不变,否则填入最优单纯形表作为新的一行,引入一个新的非负变量(原约束若是小于等于形式可引入非负松弛变量,否则引入非负人工变量),并通过矩阵行变换把对应基变量的元素变为0,进一步用对偶单纯形法求解。

(1)

§5 运输问题

一、运输问题的数学模型

运輸问题的一般提法是: 设某种物资有m个产地 $A_1,...,A_m$,产量分别是 $a_1,...,a_m$,有n个销地 $B_1,...,B_n$,销量分别是 $b_1,...,b_n$ 。假定从 A_i 到 B_j 单位物资的运价为 c_{ij} ,怎样调运这些物品才能使总运费最小?

如果运输问题的总产量等于总销量,即有

$$\sum_{i=1}^m a_i = \sum_{i=1}^n b_i$$

称该运输问题为产销平衡问题; 反之, 称产销不平衡问题。

其中
$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

$$p_{ij} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ (m+n) < 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ (m+n) < 1 \end{bmatrix} + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ (m+n) < 1 \end{bmatrix} = e_i + e_{m+j}$$

$$\vdots$$

$$0 \\ (m+n) < 1 \end{bmatrix}$$

$$\min z = cx$$
矩阵表示的平衡运输问题模型为
$$st \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

$$A$$
 可简记为:
$$A = \begin{cases} e_1 & 0 & \cdots & 0 \\ 0 & e_1 & \cdots & 0 \\ & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & e_1 \\ I_n & I_n & \cdots & I_n \end{cases}$$

性质1:产销平衡运输模型必有最优基本可行解。

证明 记
$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = d$$
. 令

$$x_{ij} = \frac{a_i b_j}{d}$$
 $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$

因 $a_i \ge 0, b_i \ge 0$, 所以 $x_{ij} \ge 0$.

$$\sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} \frac{a_{i}b_{j}}{d} = \frac{a_{i}}{d} \sum_{j=1}^{n} b_{j} = a_{i} \quad (i = 1, 2, \dots, m)$$

$$\sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \frac{a_i b_j}{d} = \frac{b_j}{d} \sum_{i=1}^{m} a_i = b_j \quad (j = 1, 2, \dots, n)$$

所以 x_{ii} 是可行解,因此必有基本可行解。

又任一可行解均满足:

$$0 \le x_{ij} \le \min(a_i, b_j)$$

即任一可行解是有限的。基可行域是有界的。故必有最 优解。

性质2:运输模型的约束矩阵的秩为 (*m* + *n* – 1)。

证明: 因 A 的前 m 行的和与后 n 行的和相等,恰好都是 $e_1 = (1,1,\cdots,1)_{m \times n}$,所以 A 的行向量是线性相关。

从而

$$D = |p'_{11}p'_{12} \cdots p'_{1n}p'_{21}p'_{31} \cdots p'_{m1}|$$

$$|0 \quad 0 \quad \cdots \quad 0 \quad 1 \quad 0 \quad \cdots \quad 0|$$

$$R(A) \le m+n-1$$

去掉
$$A$$
的第一行,
并取如下 $m+n-1$

$$= \begin{vmatrix} 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \end{vmatrix} = \pm 1 \neq 0$$

$$R(A)=m+n-1$$

列,得到

® ®

6 9

6

二、表上作业法

例1:某部门有3个同类型的工厂(产地),生产的产品由 4个销售点出售,各工厂的生产量、各销售点的销售量 (假 定单位为 t)以及各工厂到销售点的单位运价 (元/t) 示于下表中,问如何调运才能使总运费最小?

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	4	12	4	11	16
A_2	2	10	3	9	10
A_3	8	5	11	6	22
销 量	8	14	12	14	48

1. 确定初始基本可行解

(1) 西北角规则

西北角规则是优先满足运输表中西北角 (左上角) 上空格的供销需求。

销地产地	B_1	B_2	B_3	B_4	产量
A ₁					16-
A ₂			4		10-
A_3			8	14	22
销 量	8	14	12	14	48

 $z = 8 \times 4 + 8 \times 12 + 6 \times 10 + 4 \times 3 + 8 \times 11 + 14 \times 6 = 372$

(2) 最小元素法 优先满足运价(或运距) 最小的供销业务。

销地 产地	B_1	B_2	B_3	B_4	产量	
A_1	4	12	10	11 6	16	
A_2	8	10	3	9	10	
A_3	8	5	11	6 8	22	
销 量	8	14	12	14	48	
	i	i	i			

 $z = 10 \times 4 + 6 \times 11 + 8 \times 2 + 2 \times 3 + 14 \times 5 + 8 \times 6 = 246$

2. 解的最优性检验 (位势法)

用 LP 的对偶理论可以证明,检验数的公式为:

$$\sigma_{ij} = c_{ij} - (u_i + v_j)$$

其中 u_i, v_i 分别称为行位势、列位势。

由基变量所对应的检验数为零,可从m+n-1个等式

$$c_{ij} - (u_i + v_j) = 0$$

解出所有的行位势、列位势。

可以证明,不论令 $v_n = a$ 为何值, $(u_i + v_i)$ 始终不变。

销地 产地	B_1	B_2	B_3	B_4	产量	u_i	
A_1	1	2 12	4	11	16	1	
A_2	2	1	3	-1	10	0	
A_3	10	5	12	6	22	-4	
销 量	8	14	12	14	48		
v_j	2	9	3	10			
		$\sigma_{ij} = 0$	$c_{ij} - (u_i + v_i)$	(γ_j)		© (•

® ®

3. 解的改进 (用闭回路法调整)

闭回路: $(i_1,j_1),(i_1,j_2),(i_2,j_2),(i_2,j_3),\ldots,(i_s,j_s),(i_s,j_1)$

 $(i_1, j_1), (i_2, j_1), (i_2, j_2), (i_3, j_2), \dots, (i_s, j_s), (i_1, j_s)$

其中, $i_1i_2,....,i_s$ 互不相同, $j_1j_2,....,j_s$ 互不相同

闭回路的特点: 封闭、每行每列至多两个顶点

	B_1	B_2	B_3	B_4	B_5
A_1	١.			ļ.	7
A_2					
A_3	L				
A_4					

® ®

选择进基变量: $\sigma_{kl} = \min_{i,i \in J_y} \{ \sigma_{ij} \mid \sigma_{ij} < 0 \}$

在进基格点所对应的闭回路上,定义顶点的序号:自进基格点起选定一个方向(比如顺时针方向),依次为第一格、第二格、...

在奇数格点上增加调整量 θ ,在偶数格点上减少调整量 θ 。

 $\theta = \min\{x_{ij} \mid (i, j)$ 为闭回路中的偶数格点}

(1)

(9 (9)

销地 产地	B_1	B_2	B_3	B_4	产量	u_i
A_1	1	2 12	10	-6	16	
A_2	8	10	2 3	<u>-1</u> 9	10	
A_3	10	5 14	12	8	22	
销 量	8	14	12	14	48	
销 量 <i>v_j</i>	8	14	12	14	48	

® ®

销地 产地	B_1	B_2	B_3	B_4	产量	u_i
A_1	0	2 12	12	4	16	1
A_2	8	2 10	1	2	10	-1
A_3	9 8	5 14	12	8	22	-4
销 量	8	14	12	14	48	
v_j	3	9	3	10		

4、表上作业法计算中的两个问题

(1). 无穷多个最优解

销地 产地	Е	3 ₁	1	B_2	Е	B ₃	В	34	u_i	
A_1	0 [4	2	12	12	4	4	11		
A_2	8	2	2	10	1	3	2	9		
A_3	9	8	14	5	12	11	8	6		
v_i										
										(

(2). 退化情况

有以下两种情况:

1. 在确定初始基本可行解时,若已确定在空格 (i,j) 处要添上调运量 x_{ij} ,而此时发点的当前可发送量与收点的当前需求量恰好相等。即发点的当前发送量已全部用完,而收点的需求量已全部满足。因此应同时划掉发送的行及接受的列。为了使调运表上确保有(m+n-1)个基变量的值,就需要在所划掉的行(或列)的任一空格添上调运量 0。这样就得到有一个基变量取值为0的基本可行解——退化解。

例如: 试用最小元素法求下表的一个初始基本可行解。

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	3	0 11	4	6	7
A_2	7	7	3	8	4
A_3	3	2	10	6	9
销 量	3	6	5	6	20

2. 在用闭回路调整当前基本可行解时,有多个偶数格值 相等且都是极小值点。此时只能取一个离基,其余的仍 作为基格。

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	3	r ³⁻³ -	1	-2	7
A_2	-1	-1	13-3	1-3	3
A_3	11	13	14	6	9
销 量	3	6	4	6	19

6 b

三、产销不平衡的运输问题

对产销不平衡问题,可转化为平衡问题,然后按表上 作业法求解。

1. 若产大于销,增加一个假想的销地(可视为库存地)其销量设定为余量,相应的运价设为0。

2. 若销大于产,增加一个虚拟的产地,其产量设定为 不足量,相应的运价也设为0。 例

(9 (9)

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	3	12	3	4	8
A_2	11	2	5	9	5
A_3	6	7	1	5	9
销 量	4	3	5	6	

§ 6 线性目标规划

一、线性目标规划的数学模型

 $\mathbf{M1}$ 某工厂生产 \mathbf{I} , \mathbf{II} 两种产品,已知有关数据见下

表。试求获利最大的生产方案。

	I	II	拥有量
原材料(kg)	2	1	11
设备(hr)	1	2	10
利润(元/件)	8	10	

$$\max z = 8x_1 + 10x_2$$

$$\begin{cases}
2x_1 + x_2 \le 11 \\
s.t \\
x_1 + 2x_2 \le 10
\end{cases}$$

$$x_1^*=4, x_2^*=3, z^*=62(\vec{\pi})$$

 $x_1, x_2 \ge 0$

实际上工厂在作决策时, 要考虑市场等一系列其他条件:

- (1) 根据市场信息,产品 I 的销售量有下降的趋势,故考虑产品 I 的产量不大于产品 II 。
- (2) 超过计划供应的原材料,需用高价采购,会使成本 大幅度增加。
- (3) 应尽可能充分利用设备台时,但不希望加班。
- (4) 应尽可能达到并超过计划利润指标56元。

这样在考虑产品决策时,便为多目标决策问题。目标规划方法是解这类决策问题的方法之一。

目标规划的基本概念

- 1.目标值: 是指预先给定的某个目标的一个期望值
- 2. 正、负偏差变量d+, d-

d+: 表示实际值超过目标值的部分

d-: 表示实际值未达到目标值的部分

当超额完成规定的指标: $d^+ > 0$, $d^-=0$

当未完成规定的指标: $d^+=0, d^->0$

当恰好完成指标时: $d^+=0, d^-=0$

$$d^+\times d^-=0$$

3. 绝对约束和目标约束

6

4. 优先级与权因子

一个规划问题常常有若干目标。但决策者在要求达到这些目标时,是有主次或轻重缓急的不同。优先因子 P_i 是将决策目标按其重要程度排序并表示出来。 $P_1>>P_2$ >> ... >> P_k 。

权系数 ω_k 区别具有相同优先因子的两个目标的差别,决策者可视具体情况而定。

5. 目标规划的目标函数

决策者的要求是尽可能缩小偏离目标值,因此目标 规划的目标函数只能是

$$\min z = f(d^+, d^-)$$

其基本形式有三种:

(1) 要求恰好达到目标值,即正、负偏差变量都要尽可能地小。

$$\min (d^+ + d^-)$$

(2) 要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小。

$$\min(d^+)$$

(3) 要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小。

 $\min(d^-)$

例2: 例1的决策者在原材料供应受严格限制的基础上考虑: 首先是产品II的产量不低于产品I的产量; 其次是充分利 用设备有效台时,不加班; 再次是利润额不小于56元。求 决策方案。

解 按决策者所要求的,分别赋予这三个目标 P_1 , P_2 , P_3 优先因子。

$$\min z = P_1 d_1^+ + P_2 (d_2^- + d_2^+) + P_3 d_3^-$$

$$\begin{cases} 2x_1 + x_2 \le 11 \\ x_1 - x_2 + d_1^- - d_1^+ = 0 \end{cases}$$

$$s.t \begin{cases} x_1 + 2x_2 + d_2^- - d_2^+ = 10 \\ 8x_1 + 10x_2 + d_3^- - d_3^+ = 56 \\ x_1, x_2, d_1^-, d_1^+ \ge 0, \quad i = 1, 2, 3 \end{cases}$$

目标规划的一般数学模型为 $\min z = \sum_{l=1}^{L} P_{l} \sum_{k=1}^{K} (\omega_{lk}^{-} d_{k}^{-} + \omega_{lk}^{+} d_{k}^{+})$ $\left\{ \sum_{j=1}^{n} c_{kj} x_{j} + d_{k}^{-} - d_{k}^{+} = g_{k}, \quad k = 1, \dots, K \right.$ $st \left\{ \sum_{j=1}^{n} a_{ij} x_{j} \le (=, \ge) b_{i}, \quad i = 1, \dots, m \right.$ $\left. x_{j} \ge 0, \quad j = 1, \dots, n \right.$ $\left. d_{k}^{-}, d_{k}^{+} \ge 0, \quad k = 1, 2, 3 \right.$

图解法解题步骤如下:

1、确定各约束条件的可行域,即将所有约束条件(包括目标约束和绝对约束,暂不考虑正负偏差变量)在坐标平面上表示出来;

2、在目标约束所代表的边界线上,用箭头标出正、负 偏差变量值增大的方向;

3、求满足最高优先等级目标的解;

4、转到下一个优先等级的目标,在不破坏所有较高优 先等级目标的前提下,求出该优先等级目标的解;

5、重复4,直到所有优先等级的目标都已审查完毕为止;

6、确定最优解和满意解。

® ®

例5 某公司分厂用一条生产线生产两种产品4和B,每周生产线运行时间为60小时,生产一台4产品需要4小时,生产一台8产品需要6小时.根据市场预测,4、B产品平均销售量分别为每周9、8台,每台销售利润分别为12、18万元。在制定生产计划时,经理考虑下述4项目标:

首先,产量不能超过市场预测的销售量;

其次,工人加班时间最少;

第三,希望总利润最大;

最后,要尽可能满足市场需求, 当不能满足时, 市场认为 B 产品的重要性是 A 产品的2倍.

(1)

三、目标规划的单纯形法

目标规划的数学模型特点:

- (1) 因目标规划问题的目标函数都是求最小化,所以以 c_j - z_j \geq 0 , j =1, 2, ... , n 为最优准则。
- (2) 因非基变量的检验数中含有不同等级的优先因子,即

$$c_j - z_j = \sum a_{kj} P_k$$
 $j = 1, 2, \dots, n; k = 1, 2, \dots, K$

因 $P_1>> P_2>>...>> P_K$, σ_j 的正、负首先决定于 P_1 的系数 a_{1j} 的正、负。若 $a_{1j}=0$,这时此检验数的正、负就决定于 P_2 的系数 a_{2j} 的正、负,依此类推。

例5 用单纯形法求解例2:

$$\min z = P_1 d_1^+ + P_2 (d_2^- + d_2^+) + P_3 d_3^-$$

$$\begin{cases} 2x_1 + x_2 + x_3 &= 11 \\ x_1 - x_2 + d_1^- - d_1^+ = 0 \end{cases}$$

$$s.t \begin{cases} x_1 + 2x_2 + d_2^- - d_2^+ = 10 \\ 8x_1 + 10x_2 + d_3^- - d_3^+ = 56 \\ x_1, x_2, x_3, d_1^-, d_1^+ \ge 0, \quad i = 1, 2, 3 \end{cases}$$

® ®

	C_i		0	0	0	0	P_1	P_2	P_2	P_3	0	
c_B	x_B	b	x_1	x_2	x_3	d_{1}^{-}	d_1^{+}	d_2^{-}	d_2^{+}	d_3^-	d_{3}^{+}	θ
$0\\ P_2\\ P_3$	$x_3 \\ d_1^- \\ d_2^- \\ d_3^-$	11 0 10 56	2 1 1 8	1 -1 (2) 10	1 0 0 0	0 1 0 0	0 -1 0 0	0 0 1 0	0 0 -1 0	0 0 0 1	0 0 0 -1	11 5 5.6
c_j	- z _j	$P_1 \\ P_2 \\ P_3$	0 -1 -8	0 ↑ -2 -10	0 0 0	0 0 0	1 0 0	0 0 0	0 2 0	0 0 0	0 0 1	

$$\sigma_j = c_j - c_B B^{-1} p_j$$

(1)

	c_{j}		0	0	0	0	P_1	P_2	P_2	P_3	0	
c_B	x_B	b	x_1	x_2	x_3	d_1^-	d_1^+	d_{2}^{-}	d_2^{+}	d_3^-	d_3^+	θ
0	x_3	6	3/2	0	1	0	0	-1/2	1/2	0	0	12
0	d_1^-	5	3/2	0	0	1	-1	1/2	-1/2	0	0	
0	x_2	5	1/2	1	0	0	0	1/2	-1/2	0	0	
P_3	d_3^-	6	3	0	0	0	0	-5	[5]	1	-1	6/
		P_1	0	0	0	0	1	0	0 †	0	0	
_	_	P_2	0 -3	0	0	0	0	1	$\begin{vmatrix} -1^{1} \\ -5 \end{vmatrix}$	0	0	
c_{j}	$-z_j$	$P_2 P_3$	-3	0	0	0	0	5	-5	0	1	

	c_{j}		0	0	0	0	P_1	P_2	P_2	P_3	0	_
c_B	x_B	b	x_1	x_2	x_3	d_{1}^{-}	d_1^+	d_{2}^{-}	d_2^{+}	d_{3}^{-}	d_{3}^{+}	θ
0	x_3	6	3/2	0	1	0	0	-1/2	1/2	0	0	
0	d_{1}^{-}	5 5	3/2	0	0	1	-1	1/2	-1/2	0	0	
P_2	d_2^{+}	5	1/2	1	0	0	0	1/2	-1/2	0	0	
P_2	d_2^{+}	6/5	3/5	0	0	0	0	-1	1	1/5	-1/5	
		P_1	0	0	0	0	1	0	0	0	0	
_	_	P_2	0 3/5 0	0	0	0	0	0	0	1/5	0	
c_{j}	$-z_j$	$P_1 \\ P_2 \\ P_3$	0	0	0	0	0	0	0	1	0	
											•	<u></u>