STA 437/2005: Methods for Multivariate Data Week 11: Conditional independence

Piotr Zwiernik

University of Toronto

Basic definitions

Random vector and independence

Let (X, Y) be a vector of two random variables.

Joint distribution

Density function $f_{XY}(x, y)$ if continuous.

Probability mass function $f_{XY}(x,y) = \mathbb{P}(X=x,Y=y)$ if discrete.

Marginal distribution

continuous: $f_X(x) = \int_{\mathbb{R}} f_{XY}(x, y) dy$.

discrete: $f_X(x) = \sum_y f_{XY}(x, y) = \mathbb{P}(X = x)$.

This can be generalized to random vectors.

Independence

If $f_{XY}(x,y)$ is the joint density (or PMF) of (X,Y) then X and Y are independent if and only if $f_{XY}(x,y) = f_X(x)f_Y(y)$ for all x,y.

We write $X \perp \!\!\! \perp Y$.

Recall:

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$
 and $var(X) = cov(X, X)$.

The correlation $\rho_{X,Y}$ between X,Y is:

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}} \in [-1,1].$$

If $X \perp \!\!\! \perp Y$ then $\rho_{X,Y} = 0$. (but in general not the other way around, see slide 13)

Conditional distribution

Conditional distribution

In the discrete case the conditional probability mass function is defined as

$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

for all x, y such that $\mathbb{P}(Y = y) > 0$ and so

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$
 for all x, y s.t. $f_Y(y) > 0$.

In the continuous case we use the same definition.

Important reformulation of independence

 $X \perp \!\!\! \perp Y$ if and only if $f_{X|Y}(x|y) = f_X(x)$. (knowing Y brings no extra information about X)

A cautionary note

Note:
$$f_{X|Y}(x|y) \neq f_{Y|X}(y|x)$$
.

Example: A medical test for a disease
$$D$$
 has outcomes $+$ and $-$ with probabilities
$$\begin{array}{c|c} D & D^c \\ \hline + & .009 & .099 \\ \hline - & .001 & .891 \end{array}$$

As needed
$$\mathbb{P}(+|D)=0.9$$
 and $\mathbb{P}(-|D^c)=0.9.$ However, $\mathbb{P}(D|+)\approx 0.08$ (!)

Conditional independence

X, Y, Z random variables.

X is independent of Y given Z (write $X \perp \!\!\!\perp Y|Z$) if

$$f_{XY|Z}(x,y|z) = f_{X|Z}(x|z)f_{Y|Z}(y|z)$$
 for every z .

Important reformulation of independence

 $X \perp \!\!\! \perp Y|Z$ if and only if $f_{X|Y,Z}(x|y,z) = f_{X|Z}(x|z)$. (if we observed Z, extra information about Y brings no extra information about X)

Testing independence

Recall: A statistical test

Given a statistical hypothesis $H_0:\theta\in\Theta_0,\ H_1:\theta\in\Theta_1$, a statistical test consists of a test statistics $T(X^{(1)},\ldots,X^{(n)})$ and a rejection region, typically of the form

$$R = \{T(X^{(1)}, \dots, X^{(n)}) > t\}.$$

If the null hypothesis is true T is unlikely to take large values.

Type I error: $\mathbb{P}(T \in R|H_0)$

although H_0 is true, it is rejected

Type II error: $\mathbb{P}(T \notin R|H_1)$

although H_0 is false, it is retained

A good test should minimize probabilities of both types of errors.

Testing independence

Data:
$$(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{iid}{\sim} P_{X,Y}$$
.

Goal: Decide whether $X \perp \!\!\! \perp Y$.

Statistical test:
$$H_0: X \perp\!\!\!\perp Y$$
, $H_A: X \perp\!\!\!\perp Y$

There are many tests of independence.

We discuss some examples.

Test for vanishing correlation

Fisher's z-transform test for Gaussian data

Let r_n is the sample correlation coefficient from an *iid* sample $(X^{(i)}, Y^{(i)})$.

Define
$$Z_n = \frac{1}{2} \log \left(\frac{1+r_n}{1-r_n} \right)$$
.

If (X,Y) is bivariate normal with correlation ρ then Z_n has asymptotically normal distribution with mean $\frac{1}{2}\log\left(\frac{1+\rho}{1-\rho}\right)$ and variance $\frac{1}{n-3}$.

Fisher's z-transform test is implemented in R as cor.test.

Non-gaussianity may invalidate the test and affect its power.

Basic nonparametric test

Kendall's tau test for non-Gaussian data

Suppose a bivariate sample (x_i, y_i) for i = 1, ..., n is given.

Pair (x_i, y_i) , (x_j, y_j) is concordant if $(x_i, y_i) < (x_j, y_j)$ or $(x_i, y_i) > (x_j, y_j)$. Otherwise discordant.

```
Define \tau_{XY} = \frac{(\# concordant) - (\# discordant)}{\binom{n}{2}} \in [-1, 1].
```

Test based on Kendell's au statistic is implemented in R as cor.test.

```
1 > set.seed(1); n <- 200; rho <- 0.2; Z <- runif(n);
2 > X <- runif(n)^2+sqrt(rho)*Z; Y <- runif(n)+sqrt(rho)*Z
3 > cor.test(X, Y, method = "pearson")$p.value
[1] 0.03417231
5 > cor.test(X, Y, method = "kendall")$p.value
[1] 0.01100592
```

Non-Gaussianity issue

Vanishing covariance does not imply independence!

```
1 # generate sample from two uncorrelated but dependent random variables
2 > set.seed(1): n <- 200</pre>
3 > A < - runif(n) - 1/2; B < - runif(n) - 1/2
4 > X < -t(c(cos(pi/4), -sin(pi/4))) %*% rbind(A,B))
   > Y <- t(c(sin(pi/4),cos(pi/4)) %*% rbind(A,B))</pre>
   > cor.test(X,Y, method = "pearson")
7 # Pearson's product-moment correlation
8 data: X and Y
   t = -0.84711, df = 198, p-value = 0.398
   alternative hypothesis: true correlation is not equal to 0
10
   95 percent confidence interval:
11
12 -0.1971897 0.0793095
13
   sample estimates:
14
           cor
-0.06009275
```

X and Y are uncorrelated but dependent!

We see that X and Y are highly dependent.

Test based on distance correlation

Distance correlation $\mathcal{R}(X,Y)$ provides a test which applies when X,Y are two random vectors of any dimensions.

 $\mathcal{R}(X,Y)=0$ if and only if X and Y are independent.

The sample version of $\mathcal{R}(X,Y)$ gives a nonparametric test of independence.

```
1 > library(energy); set.seed(1); n <- 200
2 > A <- runif(n)-1/2; B <- runif(n)-1/2
3 > X <- t(c(cos(pi/4),-sin(pi/4)) %*% rbind(A,B))
4 > Y <- t(c(sin(pi/4),cos(pi/4)) %*% rbind(A,B))
5 > dcor.test(X,Y,R=1000)
6
7 # dCor independence test (permutation test)
8 data: index 1, replicates 1000
9 dCor = 0.21161, p-value = 0.004995
10 sample estimates:
11 dCov dCor dVar(X) dVar(Y)
12 0.03999654 0.21160982 0.17870935 0.19990601
```

Here R = 1000 is the number of the permutation bootstrap replications.

Another cautionary example

Bowman& Azzalini (1997) analyse aircraft wing span and speed data.


```
1 > library(sm); set.seed(1);
2 > X <- aircraft$Span
3 > Y <- aircraft$Speed
4 > cor.test(X,Y)$p.value
5 [1] 0.7816014
6 > dcor.test(X,Y,R=1000)$p.value
7 [1] 0.000999001
```

Tests for discrete data

χ^2 -test for discrete data

```
> M < -as.table(rbind(c(762, 327, 468), c(484, 239, 477)))
   > dimnames(M) <- list(gender = c("F", "M"),</pre>
                          partv = c("Democrat", "Independent", "Republican"))
3
4
   > (Xsq <- chisq.test(M)) # Prints test summary
6
   Pearsons Chi-squared test
8
   data: M
   X-squared = 30.07, df = 2, p-value = 2.954e-07
11
12
   > Xsq$expected # expected counts under the null
13
         party
   gender Democrat Independent Republican
14
15
        F 703.6714 319.6453 533.6834
        M 542.3286 246.3547 411.3166
16
```

df = 2 is the difference between 5 (saturated model) and 3 (independence)

Testing conditional independence

Testing conditional independence is hard in general.

For discrete data we have the asymptotic χ^2 -test.

Some parametric tests are implemented in the library bnlearn.

Many non-parametric methods have been implemented in CondIndTest

```
1 > library(CondIndTests); library(bnlearn); set.seed(1); n <- 100
2 > Z <- rnorm(n); X <- 4 + 2 * Z + rnorm(n); Y <- 3 * X^2 + Z + rnorm(n)
3 > CondIndTest(X,Y,Z, method = "KCI")$pvalue
4 [1] 2.419926e-10
5 > bnlearn::ci.test(X,Y,Z)$p.value
6 [1] 1.15458e-25
```

See Section 3 in: C. Heinze-Deml, J. Peters, N. Meinshausen, Invariant Causal Prediction for Nonlinear Models, Journal of Causal Inference, 2018.

See: http://www.bnlearn.com/documentation/man/conditional.independence.tests.html

Simpson's paradox: UC Berkeley admissions example

The admission figures of the grad school at UC Berkeley in 1973: 8442 (44%) men, $4321 \ (35\%)$ women admitted.

The same data conditioned on the department are:

Department	Men		Women	
	Applicants	Admitted	Applicants	Admitted
А	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

[&]quot;Measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation."

(Bickel et al, Sex Bias in Graduate Admissions: Data From Berkeley, Science, 1975)

```
In R·
   > library(gRim); data(UCBAdmissions)
2 > bnlearn::ci.test(x = "Gender" , y = "Admit", z = "Dept", test="x2",data = as
       .data.frame(UCBAdmissions))
   Pearsons X^2
5 data: Gender ~ Admit | Dept
   x2 = 0, df = 6, p-value = 1
   alternative hypothesis: true value is greater than 0
   # gRim gives a slightly more refined output
   > gRim::ciTest(as.data.frame(UCBAdmissions),set=~Gender+Admit+Dept)
   set: [1] "Gender" "Admit" "Dept"
   Testing Gender _ | _ Admit | Dept
   Statistic (DEV): 0.000 df: 6 p-value: 1.0000 method: CHISQ
   Slice information:
     statistic p.value df Dept
                    1 1 A
18 1
             0
             Ω
21 4
             Ω
             0
```

3

8

9

10 11

12 13

14 15

16

17

19

20

22 23

Conditional independence for Gaussian distributions

Recall: Marginal and conditional distributions

Split X into two blocks $X = (X_A, X_B)$. Denote

$$\mu = (\mu_A, \mu_B)$$
 and $\Sigma = \begin{bmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{bmatrix}$.

Marginal distribution

$$X_A \sim N_{|A|}(\mu_A, \Sigma_{AA})$$

Conditional distribution

$$X_A|X_B = x_B \sim N_{|A|} \left(\mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B), \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}\right)$$

▶ Note that the conditional covariance is constant.

Conditional independence

Independence and conditional independence

$$X_i \perp \!\!\! \perp X_j$$
 if and only if $\Sigma_{ij} = 0$.

$$X_i \perp \!\!\! \perp X_j | X_C$$
 if and only if $\Sigma_{ij} - \Sigma_{i,C} \Sigma_{C,C}^{-1} \Sigma_{C,j} = 0$

Let $R = V \setminus \{i, j\}$. The following are equivalent:

- $ightharpoonup X_i \perp \!\!\! \perp X_j | X_R$
- $\triangleright \ \Sigma_{ij} \Sigma_{i,R} \Sigma_{R,R}^{-1} \Sigma_{R,j} = 0$
- $\blacktriangleright (\Sigma^{-1})_{ij} = 0$