# **CS366: Systems Networking**

#### [1] Network Topologies

- A. Star Network Topology
- B. Bus Network Topology
- C. Token-Ring Network Topology
- D. Mesh Network Topology

### [2] ISO OSI (Open System Interconnect) 7 Layer Network Reference Model

| Layer           |  |
|-----------------|--|
| 7. Application  |  |
| 6. Presentation |  |
| 5. Session      |  |
| 4. Transport    |  |
| 3. Network      |  |
| 2. Data-Link    |  |
| 1. Physical     |  |

### [3] TCP/IP Network Model

| Layer          |                 |                   |
|----------------|-----------------|-------------------|
| 5. Application | System          |                   |
| 4. Transport   |                 |                   |
| 3. Network     | Network Devices | Routers           |
| 2. Data-Link   |                 | Switches, Bridges |
| 1. Physical    |                 | Hubs              |





#### TCP/IP 4 Laver Model

| OSI Model TCP/IP Model                                                                             |                         | Functions                                                                                     | Protocol Suites                            |  |
|----------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|--|
| <ul><li>7. Application</li><li>6. Presentation</li><li>5. Session</li><li>4. Application</li></ul> |                         | Defines the applications used to process requests and what ports and sockets are used         | Telnet, FTP, SMTP, DNS, SNMP               |  |
| 4. Transport                                                                                       | 3. Transport            | Defines the type of connection established between hosts and how to acknowledgements are sent | TCP, UDP                                   |  |
| 3. Network                                                                                         | 2. Internet             | Defines the protocols used for addressing and routing the data packets                        | IP, ICMP, ARP                              |  |
| 2. Data-Link 1. Physical                                                                           | 1. Network<br>Interface | Defines how the host connects to the network                                                  | Ethernet, ATM, Token-<br>Ring, Frame Relay |  |

# [4] Classes of IP Networks

| A Class: | 0.0.0.0 - 126.255.255       | Governments, Very Large Networks      |
|----------|-----------------------------|---------------------------------------|
| B Class: | 128.0.0.0 - 191.255.255.255 | Midsize Companies, Universities, etc. |
| C Class: | 192.0.0.0 - 223.255.255.255 | Small Networks                        |

| Private Network Addresses:    |  |
|-------------------------------|--|
| 10.0.0.0 - 10.255.255.255     |  |
| 172.16.0.0 – 172.31.255.255   |  |
| 192.168.0.0 - 192.168.255.255 |  |

### [5] CIDR: Classless InterDomain Routing

• Classful network: The IP addresses and subnets are within same network.

A Class: 255.0.0.0 B Class: 255.255.0.0 C Class: 255.255.255.0

There will be a lot of unused IP address space.

Class A has more than 16 million IP addresses.

Class B has more than 65000 IP addresses.

Only a limited number of class A and B address space has been allocated for Internet uses.

• Supernetting: Allow multiple networks to be specified by one subnet mask.

• CIDR (pronounced "cider"): CIDR notion specifies the number of bits set to a 1 that make up the subnet mask.

| CIDR | Number of bits                          | Subnet Mask     |
|------|-----------------------------------------|-----------------|
| /8   | 11111111.00000000.00000000.00000000     | 255.0.0.0       |
| /9   | 11111111.10000000.00000000.00000000     | 255.128.0.0     |
| /10  | 11111111.11000000.00000000.00000000     | 255.192.0.0     |
| /11  | 11111111.11100000.00000000.00000000     | 255.224.0.0     |
| /12  | 11111111.11110000.00000000.00000000     | 255.240.0.0     |
| /13  | 11111111111111000.000000000.00000000    | 255.248.0.0     |
| /14  | 11111111111111100.00000000.00000000     | 255.252.0.0     |
| /15  | 11111111.11111110.00000000.00000000     | 255.254.0.0     |
| /16  | 111111111111111111000000000000000000000 | 255.255.0.0     |
| /17  | 11111111.111111111.10000000.00000000    | 255.255.128.0   |
| /18  | 11111111.111111111.11000000.00000000    | 255.255.192.0   |
| /19  | 11111111.111111111.11100000.00000000    | 255.255.224.0   |
| /20  | 11111111.11111111.11110000.00000000     | 255.255.240.0   |
| /21  | 11111111.11111111.11111000.00000000     | 255.255.248.0   |
| /22  | 11111111.11111111.11111100.00000000     | 255.255.252.0   |
| /23  | 11111111.111111111.11111110.00000000    | 255.255.254.0   |
| /24  | 11111111.11111111.11111111.00000000     | 255.255.255.0   |
| /25  | 11111111.111111111.11111111.10000000    | 255.255.255.128 |
| /26  | 11111111.111111111.11111111.11000000    | 255.255.255.192 |
| /27  | 11111111.111111111.11111111.11100000    | 255.255.255.224 |
| /28  | 11111111.111111111.11111111.11110000    | 255.255.255.140 |
| /29  | 11111111.11111111.11111111.11111000     | 255.255.255.248 |
| /30  | 11111111.111111111.11111111.1111100     | 255.255.255.252 |
| /31  | 11111111.111111111.11111111.1111110     | 255.255.255.254 |
| /32  | 11111111.111111111.11111111.1111111     | 255.255.255.255 |

#### [6] IP ADDRESS DECODING:

IP: 139.182.148.50 NM: 255.255.254.0

| - | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
|---|-----|----|----|----|---|---|---|---|
|   | 1   | 1  | 1  | 1  | 1 | 1 | 1 | 1 |

**NA: NETWORK ADDRESS** 

 $\begin{array}{ll} & 139.182.148.50 = 10001010.10110110.10010100.00110010 \\ \text{AND} & 255.255.254.0 = 11111111.11111111.11111110.000000000 \\ \end{array}$ 

10001010.10110110.10010100.000000000 139 . 182 . 148 . 0

**BA: BROADCAST ADDRESS** 

OR

139.182.148.50 = 10001010.10110110.10010100.00110010255.255.254.0 = 00000000.00000000.00000001.111111111

10001010.10110110.10010101.11111111

139 . 182 . 149 . 255

PRACTICE: PLEASE CALCULATE [NA] AND [BA]

IP: 192.168.0.100NM: 255.255.252.0

NA: \_\_\_\_\_\_\_(First Address of the Network)

BA: (Last Address of the Network)

How many IP addresses are available to use in this network?

[7] MAC (Media Access Control) Address:

Example: 00:06:5B:90:E3:0F

MAC = OUI + S/N

OUI = :90:E3:0F

S/N: 00:06:5B:

How to get MAC Address:

Linux ifconfig Windows: ipconfig

Mac OS: Network Utility -> Click on Info tab

# [8] Ethernet Cable Standard:

| Pin# | Function:                 | EIA/TIA 568A COLOR CODE | EIA/TIA 568B COLOR CODE |  |  |
|------|---------------------------|-------------------------|-------------------------|--|--|
| 1    | 1 Transmit + Green Stripe |                         | Orange Stripe           |  |  |
| 2    | 2 Transmit - Green        |                         | Orange                  |  |  |
| 3    | Receive + Orange Stripe   |                         | Green Stripe            |  |  |
| 4    | Not Used                  | Blue                    | Blue                    |  |  |
| 5    | Not Used Blue Stripe      |                         | Blue Stripe             |  |  |
| 6    | Receive -                 | Orange                  | Green                   |  |  |
| 7    | Not Used                  | Brown Stripe            | Brown Stripe            |  |  |
| 8    | Not Used                  | Brown                   | Brown                   |  |  |

**Straight Through Cable:** 

|   |   | T          |               |               |
|---|---|------------|---------------|---------------|
| L | 1 | Transmit + | Green Stripe  | Green Stripe  |
|   | 2 | Transmit - | Green         | Green         |
|   | 3 | Receive +  | Orange Stripe | Orange Stripe |
|   | 4 | Not Used   | Blue          | Blue          |
|   | 5 | Not Used   | Blue Stripe   | Blue Stripe   |
|   | 6 | Receive -  | Orange        | Orange        |
|   | 7 | Not Used   | Brown Stripe  | Brown Stripe  |
|   | 8 | Not Used   | Brown         | Brown         |

## **Crossover Cable:**

| 1 | Transmit + | Green Stripe  | Orange Stripe |
|---|------------|---------------|---------------|
| 2 | Transmit - | Green         | Orange        |
| 3 | Receive +  | Orange Stripe | Green Stripe  |
| 4 | Not Used.  | Blue          | Blue          |
| 5 | Not Used   | Blue Stripe   | Blue Stripe   |
| 6 | Receive -  | Orange        | Green         |
| 7 | Not Used   | Brown Stripe  | Brown Stripe  |
| 8 | Not Used   | Brown         | Brown         |

**Categories of Twisted Pair Cables:** 

| Category | Description:                      | Bandwidth/Data Rate      |  |
|----------|-----------------------------------|--------------------------|--|
| CAT3     | Telephone Network Class C         | ~ 16Mbps                 |  |
| CAT5     | Computer Network Class D          | ~ 100MHz/100 Mbps (100m) |  |
| CAT5e    | Computer Network                  | ~ 100MHz/1000 Mbps       |  |
| CAT6     | Hi-Speed Computer Network Class E | ~ 250 MHz                |  |
| CAT7     | Hi-Speed Computer Network Class F | ~ 600 MHz                |  |