Isomorphism theorem between q-Schur algebras of type B and type A

Ziqing Xiang

University of Georgia

May 13, 2019

Joint work with Chun-Ju Lai and Daniel K. Nakano.

Weyl groups and Iwahori-Hecke algebras of classical type

Let $G := Aut(\{\pm 1, ..., \pm d\}).$

- 1. Type A: $W^{A} \subset G$. $s_{i} := (i, i+1)(-i, -i-1)$.
- 2. Type B: $W^{B} \subset G$. $s_{0}^{B} := (1, -1)$.
- 3. Type D: $W^{\mathrm{D}} \subset G$. $s_0^{\mathrm{D}} := (1,-1)(2,-2) = s_0^{\mathrm{B}} s_1 s_0^{\mathrm{B}}$.

Weyl groups and Iwahori-Hecke algebras of classical type

Let $G := Aut(\{\pm 1, ..., \pm d\}).$

- 1. Type A: $W^{A} \subset G$. $s_{i} := (i, i+1)(-i, -i-1)$.
- 2. Type B: $W^{B} \subset G$. $s_{0}^{B} := (1, -1)$.
- 3. Type D: $W^{\mathrm{D}} \subset G$. $s_0^{\mathrm{D}} := (1,-1)(2,-2) = s_0^{\mathrm{B}} s_1 s_0^{\mathrm{B}}$.

$$W^{A} \subseteq W^{D} \subseteq W^{B} \subseteq G$$
.

Weyl groups and Iwahori-Hecke algebras of classical type

Let $G := Aut(\{\pm 1, ..., \pm d\}).$

- 1. Type A: $W^{A} \subset G$. $s_{i} := (i, i+1)(-i, -i-1)$.
- 2. Type B: $W^{B} \subset G$. $s_{0}^{B} := (1, -1)$.
- 3. Type D: $W^{\mathrm{D}} \subset G$. $s_0^{\mathrm{D}} := (1,-1)(2,-2) = s_0^{\mathrm{B}} s_1 s_0^{\mathrm{B}}$.

$$W^{A} \subseteq W^{D} \subseteq W^{B} \subseteq G$$
.

$$\mathcal{H}_q^{\mathrm{A}} \subseteq \mathcal{H}_q^{\mathrm{D}} \subseteq \mathcal{H}_{Q=1,q}^{\mathrm{B}}$$
.

Tensor space

For
$$n=2r+\epsilon$$
, let

$$V := V_{>0} \oplus V_0 \oplus V_{<0},$$

where

$$V_{>0} \cong k^r$$
, $V_0 \cong k^{\epsilon}$, and $V_{<0} \cong k^r$.

Tensor space

For $n = 2r + \epsilon$, let

$$V := V_{>0} \oplus V_0 \oplus V_{<0},$$

where

$$V_{>0} \cong k^r$$
, $V_0 \cong k^{\epsilon}$, and $V_{<0} \cong k^r$.

The tensor space

$$V^{\otimes d}$$

admits an action of the type B Weyl group $\langle s_0^{\mathrm{B}}, s_1, \ldots, s_{d-1} \rangle$, hence actions of W^{Φ} for $\Phi \in \{A_{d-1}, B_d, D_d\}$.

Tensor space

For $n = 2r + \epsilon$, let

$$V := V_{>0} \oplus V_0 \oplus V_{<0},$$

where

$$V_{>0} \cong k^r$$
, $V_0 \cong k^\epsilon$, and $V_{<0} \cong k^r$.

The tensor space

$$V^{\otimes d}$$

admits an action of the type B Weyl group $\langle s_0^{\mathrm{B}}, s_1, \dots, s_{d-1} \rangle$, hence actions of W^{Φ} for $\Phi \in \{A_{d-1}, B_d, D_d\}$.

The tensor space $V^{\otimes d}$ is a $\mathcal{H}_{\mathbf{q}}^{\Phi}$ -module, for $\Phi \in \{A_{d-1}, B_d, D_d\}$.

q-Schur algebra of classical type

Definition 1

The q-Schur algebra of type Φ is

$$S_{\mathbf{q}}^{\Phi}(n,d) := \operatorname{End}_{\mathcal{H}_{\mathbf{q}}^{\Phi}}(V^{\otimes d}).$$

q-Schur algebra of classical type

Definition 1

The q-Schur algebra of type Φ is

$$S_{\mathbf{q}}^{\Phi}(n,d) := \operatorname{End}_{\mathcal{H}_{\mathbf{q}}^{\Phi}}(V^{\otimes d}).$$

Morita equivalences between Iwahori-Hecke algebras of classical type

From now on, assume that $f_d(Q,q) := \prod_{i=1-d}^{d-1} (Q^{-2} + q^{2i})$ is invertible in k.

Theorem 2 (Dipper-James '92, Pallikaros '94, Hu '02)

$$\mathcal{H}_{Q,q}^{\mathrm{B}_d} \sim_{\mathit{Morita}} igoplus_{i=0}^d \mathcal{H}_q^{\mathrm{A}_{i-1}} \otimes \mathcal{H}_q^{\mathrm{A}_{d-i-1}} \ .$$

$$\mathcal{H}_q^{\mathrm{D}_d} \sim_{\mathit{Morita}} \mathcal{A}_{d/2} \oplus igoplus_{i=0}^{\lceil d/2-1
ceil} \mathcal{H}_q^{\mathrm{A}_{i-1}} \otimes \mathcal{H}_q^{\mathrm{A}_{d-i-1}} \,.$$

where $\mathcal{A}_{d/2}=0$ if d is odd, and $\mathcal{A}_{d/2}/\left(\mathcal{H}_q^{\mathrm{A}_{d/2-1}}\otimes\mathcal{H}_q^{\mathrm{A}_{d/2-1}}\right)\cong k\mathbb{Z}_2$ if d is even.

Isomorphism theorem for q-Schur algebras of type B

Theorem 3 (Lai-Nakano-X. '19)

There exists an algebra isomorphism

$$S_{Q,q}^{\mathbb{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathbb{A}}(\lceil n/2 \rceil,i) \otimes S_{q}^{\mathbb{A}}(\lfloor n/2 \rfloor,d-i).$$

Sketch of the proof of the isomorphism theorem for type B

For $e = e_{i,d-i}$ such that

$$e \mathcal{H}^{\mathrm{B}} e \cong \mathcal{H}^{\mathrm{A}} \otimes \mathcal{H}^{\mathrm{A}}$$
.

Sketch of the proof of the isomorphism theorem for type B

For $e = e_{i,d-i}$ such that

$$e \mathcal{H}^{\mathrm{B}} e \cong \mathcal{H}^{\mathrm{A}} \otimes \mathcal{H}^{\mathrm{A}}$$
.

Calculation shows that

$$V^{\otimes d}e\cong \ V^{\otimes i}_{>0}\otimes \ V^{\otimes d-i}_{<0},$$

where $V_{\geq 0} := V_{> 0} \oplus V_0$.

Sketch of the proof of the isomorphism theorem for type B

For $e = e_{i,d-i}$ such that

$$e \mathcal{H}^{\mathrm{B}} e \cong \mathcal{H}^{\mathrm{A}} \otimes \mathcal{H}^{\mathrm{A}}$$
.

Calculation shows that

$$V^{\otimes d}e \cong V^{\otimes i}_{>0} \otimes V^{\otimes d-i}_{<0}$$

where $V_{\geq 0} := V_{\geq 0} \oplus V_0$.

$$\operatorname{End}_{e\,\mathcal{H}^{\operatorname{B}}_{O,g}\,e}(\,V^{\otimes d}e)\cong\operatorname{End}_{\mathcal{H}^{\operatorname{A}}_{q}}(\,V^{\otimes i}_{\geq 0})\otimes\operatorname{End}_{\mathcal{H}^{\operatorname{A}}_{q}}(\,V^{\otimes d-i}_{<\,0}).$$

Structure of *q*-Schur algebras of type D

Conjecture 4

$$S_q^{\mathbf{D}}(n,d) \sim_{\mathsf{Morita}} M_2 \left(S_q^{\mathbf{A}}(\lceil n/2 \rceil, d/2) \otimes S_q^{\mathbf{A}}(\lfloor n/2 \rfloor, d/2) \right)^{\mathbb{Z}_2} \oplus \bigoplus_{i=0}^{\lceil d/2-1 \rceil} S_q^{\mathbf{A}}(\lceil n/2 \rceil, i) \otimes S_q^{\mathbf{A}}(\lfloor n/2 \rfloor, d-i).$$

Corollary: Simple modules of q-Schur algebras

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil,i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor,d-i).$$

The simple modules of $S_q^{A}(n,d)$ are indexed by partitions

$$\Lambda^{\mathcal{A}}(n,d) := \{ \lambda \vdash d : \ \ell(\lambda) \le n \}.$$

Corollary: Simple modules of *q*-Schur algebras

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil, i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor, d-i).$$

The simple modules of $S_q^{\rm A}(n,d)$ are indexed by partitions

$$\Lambda^{\mathcal{A}}(n,d) := \{ \lambda \vdash d : \ \ell(\lambda) \le n \}.$$

The simple modules of $S_{Q,q}^{\mathrm{B}}(n,d)$ are indexed by bipartitions

$$\Lambda^{\mathrm{B}}(n,d) := \{(\lambda,\mu) \vdash d: \ \ell(\lambda) \leq \lceil n/2 \rceil, \ell(\mu) \leq \lfloor n/2 \rfloor)\}.$$

Corollary: Cellular structure

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^d S_q^{\mathrm{A}}(\lceil n/2 \rceil,i) \otimes S_q^{\mathrm{A}}(\lfloor n/2 \rfloor,d-i).$$

Theorem 5

The algebra $S_q^{\rm A}(n,d)$ is cellular with poset $\Lambda^{\rm A}(n,d)$ ordered by dominance order.

Corollary: Cellular structure

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil,i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor,d-i).$$

Theorem 5

The algebra $S_q^{\rm A}(n,d)$ is cellular with poset $\Lambda^{\rm A}(n,d)$ ordered by dominance order.

Theorem 6 (Lai-Nakano-X. '19)

The algebra $S_{Q,q}^{\rm B}(n,d)$ is cellular with poset $\Lambda^{\rm B}(n,d)$ ordered by dominance order.

Corollary: Representation type of q-Schur algebras

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil, i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor, d-i).$$

Let l be the order of q^2 . Assume that $l \ge 2$ and $n \ge 5$.

Theorem 7 (Erdmann-Nakano '01)

The algebra $S_q^{\rm A}(n,d)$ is semisimple, finite but not semisimple, and wild if and only if d < l, $l \le d < 2l$, and $2l \le d$, respectively.

Theorem 8 (Lai-Nakano-X. '19)

The algebra $S_{Q,q}^{\mathrm{B}}(n,d)$ is semisimple, finite but not semisimple, and wild if and only if d < l, $l \le d < 2l$, and $2l \le d$, respectively.

Corollary: Quasi-hereditary cover

Definition 9 (Rouquier '08)

A quasi-hereditary cover $F \colon A\operatorname{\mathsf{-mod}} \to B\operatorname{\mathsf{-mod}}$ is 1-faithful if

 $\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(FM,FN)$ and $\operatorname{Ext}_A^1(M,N) \cong \operatorname{Ext}_B^1(FM,FN)$

for M and N admitting Δ -filtration.

Corollary: Quasi-hereditary cover

Definition 9 (Rouquier '08)

A quasi-hereditary cover $F \colon A\operatorname{\mathsf{-mod}} \to B\operatorname{\mathsf{-mod}}$ is 1-faithful if

 $\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(FM,FN)$ and $\operatorname{Ext}_A^1(M,N) \cong \operatorname{Ext}_B^1(FM,FN)$

for M and N admitting Δ -filtration.

Theorem 10 (Hemmer-Nakano '04)

For $n \geq d$, the algebra $S_q^{\rm A}(n,d)$ is the quasi-hereditary 1-cover of $\mathcal{H}_q(\Sigma_d)$.

Corollary: Quasi-hereditary cover

Definition 9 (Rouquier '08)

A quasi-hereditary cover $F: A\text{-mod} \rightarrow B\text{-mod}$ is 1-faithful if

 $\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(FM,FN)$ and $\operatorname{Ext}_A^1(M,N) \cong \operatorname{Ext}_B^1(FM,FN)$

for M and N admitting Δ -filtration.

Theorem 10 (Hemmer-Nakano '04)

For $n \geq d$, the algebra $S_q^{\rm A}(n,d)$ is the quasi-hereditary 1-cover of $\mathcal{H}_q(\Sigma_d)$.

Theorem 11 (Lai-Nakano-X. '19)

For $n \geq 2d$, the algebra $S_{Q,q}^{\mathrm{B}}(n,d)$ is the quasi-hereditary 1-cover of $\mathcal{H}_{Q,q}^{\mathrm{B}}(d)$.

Comparison between different type B Schur algebras

	QHA/ cellular	Schur functor	double cent'r prop	coord const'n	can'l bases
Orthogonal			✓	✓	
q-Schur algebra					
Sakamoto-Shoji's			✓		
q-Schur algebra					
Coideal	new	new	√	new	√
q-Schur algebra					
Cyclotomic	✓				
q-Schur algebra					
q -Schur 2 algebra	✓				
Rouquier's		✓			
q-Schur algebra					

Thanks for your attention.