# **Combustion Analysis Report**

### **Input Parameters:**

Fuel: Methanol (CH3OH) [simplified]

Initial temperature (T): 800.0 K

Pressure (P): 2.0 atm

Equivalence ratio (phi): 1.0

Grid Size (NxN): 4x4

Oxidizer: Air

#### **Calculation Statistics:**

Total points calculated: 16

Total calculation time: 440.92 seconds

### **Outlier Compensation Settings:**

Parameters used for outlier compensation:

| Parameter      | Threshold | Multiplier |
|----------------|-----------|------------|
| T_ad           | 3500.0    | 3.0        |
| ignition_delay | 100000.0  | 3.0        |
| flame_speed    | 100.0     | 3.0        |
| NOx            | 20000.0   | 3.0        |
| СО             | 75000.0   | 3.0        |
| CO2            | 200000.0  | 3.0        |

### **Advanced Simulation Settings:**

Configured parameters for simulation mechanisms:

| Parameter                  | Value    | Unit |
|----------------------------|----------|------|
| ignition_end_time          | 0.1      | S    |
| ignition_temp_threshold    | 100      | К    |
| ignition_detection_method  | max_dTdt |      |
| ignition_detection_species | ОН       |      |
| flame_width                | 0.05     | m    |

Generated: 2025-06-18 20:06:38

Results directory: C:\Users\warsa\Desktop\6SEM\MKWS\COMBI\_BUMBI\_v5 FINAL\Calc\_Results\_1

#### **Important Notes on Physical Realism**

#### **Ignition Delay Plots:**

- Extremely short or zero delay times may indicate non-ignition within simulation time
- At low temperatures or pressures, ignition may not occur, leading to reported 0.0 values
- True zero ignition delay is non-physical as there's always finite time for reactions
- Flat areas at zero likely indicate conditions outside flammability limits
- Current detection method: max\_dTdt (Species: OH)

#### **NOx Emission Plots:**

- Equilibrium calculations often overpredict real-world NOx emissions
- NOx formation is kinetically limited and may not reach equilibrium in practical systems
- Factors like flame quenching limit actual NOx below equilibrium predictions

#### **CO and CO2 Emission Plots:**

- Equilibrium calculations might not reflect real emissions due to kinetic limitations
- CO may be underpredicted in rich conditions due to incomplete combustion
- CO2 may be overpredicted in systems with rapid quenching preventing full oxidation
- At extreme equivalence ratios, emissions are highly sensitive to kinetic factors

#### Flame Speed Plots:

- Zero flame speeds indicate non-convergence, likely outside flammability limits
- At low temperatures or pressures, flames may be unstable or extinguish
- Abrupt changes in plots may indicate numerical boundaries of model validity
- Current flame width setting: 0.05 m

#### **General Interpretation Guidelines:**

- Flat areas at zero often indicate non-ignition or non-propagation conditions
- Uniformly low/high values may represent model limitations in extreme regimes
- Abrupt changes may indicate boundaries where solver converges/fails
- Results at extreme conditions (T<900K, P<1atm, phi<0.5 or phi>2.0) may be unreliable

## 3D Plot: Adiabatic\_Temperature\_K

### Temperature achieved during adiabatic combustion

Adiabatic\_Temperature\_K vs Temperature [K] and Pressure [atm]



# Contour Plot: Adiabatic\_Temperature\_K

Temperature achieved during adiabatic combustion



# 3D Plot: Ignition\_Delay\_us

### Time required for autoignition after heating

Ignition\_Delay\_us vs Temperature [K] and Pressure [atm]



## Contour Plot: Ignition\_Delay\_us

Time required for autoignition after heating



# 3D Plot: Flame\_Speed\_m\_s

### Flame propagation speed in laminar conditions

Flame\_Speed\_m\_s vs Temperature [K] and Pressure [atm]



## Contour Plot: Flame\_Speed\_m\_s

Flame propagation speed in laminar conditions



## 3D Plot: NOx\_Emission\_ppm

### NOx emissions (ppm)

NOx\_Emission\_ppm vs Temperature [K] and Pressure [atm]



## Contour Plot: NOx\_Emission\_ppm

NOx emissions (ppm)



## 3D Plot: CO\_Emission\_ppm

### Carbon monoxide (CO) emissions (ppm)

CO\_Emission\_ppm vs Temperature [K] and Pressure [atm]



## **Contour Plot: CO\_Emission\_ppm**

Carbon monoxide (CO) emissions (ppm)



## 3D Plot: CO2\_Emission\_ppm

### Carbon dioxide (CO2) emissions (ppm)

CO2\_Emission\_ppm vs Temperature [K] and Pressure [atm]



# **Contour Plot: CO2\_Emission\_ppm**

Carbon dioxide (CO2) emissions (ppm)

