Sum-Product Network and Its Application to Image Completion

A thesis defense

Yilin Zheng Supervised by: Ke Tang & Shan He

Southern University of Science and Technology(SUSTech)

May 23, 2019

Yilin Zheng SUSTect

- 1 Motivation
- 2 Sum-Product Network
- 3 Application: Image Completion
- 4 Conclusion and Future Work

lin Zheng SUSTec

Probability Graphical Model

Importance:

- A rich framework to encode factorization and independence over random variables
- Wide applications: medical diagnosis, image understanding, speech recognition, and natural language processing

Weaknesses of Traditional PGMs

Traditional PGMs:

- Bayesian network
- Markov random field

Weaknesses:

- Complexity scales unproportionally
- Approximate learning
- Intractability
- Separation of learning and inference

ilin Zheng SUSTech

Why SPN:

- Complexity scales up linearly
- Exact learning
- Tractability
- 4 Combination of learning and inference

What is SPN

Sum-product network(SPN):

- Graph type: DAG
- Leaves: random variables
- Internal node: sum node, product node
- Root: sum node
- Network polynomial: $f_{\mathcal{S}}(\mathbf{X}) = \sum_{X \in \mathbf{X}} \Phi(X) \prod_{X \in \mathbf{X}} (X)$

Example

Figure: An Example of SPN

A: Rain \overline{A} : No rain B: Thunder \overline{B} : No thunder

$$f_{\mathcal{S}}(A, B, \overline{A}, \overline{B})$$
=0.15(0.6A + 0.4\overline{A})(0.2B + 0.8\overline{B})
+0.85(0.6A + 0.4\overline{A})(0.5B + 0.5\overline{B})
=0.273AB + 0.327A\overline{B} + 0.182\overline{A}B
+0.218\overline{A}\overline{B}

Query: P(rain + thunder) = ?

$$f_{\mathcal{S}}(1,1,0,0) = 0.273$$

/ilin Zheng SUSTect

Learning Methods

Learning:

- Structure learning:
 - Poon-Domingos Architecture: Rectangle regions
 - Dennis-Venture Architecture: Any shape regions
- Parameter learning:
 - Gradient method: maximize log-likelihood
 - EM algorithm: introduce latent variables, inference in E-step, update weights in M-step

Inference Methods

Differential approach:

- Compute the marginal distribution via network polynomials
- Interpret the probability distribution through derivatives

Goal

Image completion¹: filling up the missing or corrupted part of an image.

¹Poon and Domingos, "Sum-product networks: A new deep architecture".

Enviroment:

- Platform: TaiYi
- Library: OpenMPI C++
- Dataset:
 - Caltech:
 - 101 categories, from 40 to 800 images per category
 - **a** about 300×200 pixels, rescaled to 100×64 pixels
 - Olivetti:
 - face images taken between Apr. 1992 and Apr. 1994 at AT&T Laboratories Cambridge
 - size 64×64 pixels

Cilin Zheng SUSTec

Process

10 /0

Experiments

Factors: number of cores, input size

Experiments:

- **Caltech**: 80 cores. **Olivetti**: 40 cores, size 64×64
- **Caltech**: 120 cores, **Olivetti**: 80 cores, size 64×64
- **3 Caltech**: 80 cores, size 100×64
- **Caltech**: 120 cores, size 100×64

Poon's experiments: **Caltech**: 102 cores, **Olivetti**: 51 cores,

size 64×64

Exp #1 vs. Exp #2: number of cores

Exp #1 vs. Exp #3 and Exp #2 vs. Exp #4: input size

Comparison on MSE(1)

Figure: Exp. #1 vs Poon's(Caltech)

Figure: Exp. #2 vs Poon's(Caltech)

Figure: Exp. #3 vs Poon's(Caltech)

Figure: Exp. #4 vs Poon's(Caltech)

Comparison on Number of Cores

Figure: Exp. #1 vs Exp. #2(Caltech)

Yilin Zheng

Comparison on Input Size

Figure: Exp. #1 vs Exp. #3(Caltech) Figure: Exp. #2 vs Exp. #4(Caltech)

Comparison on Image(1)

Figure: Airplanes-bottom(Poon's, Exp. #2, Exp. #4)

Figure: Yin_yang-left(Poon's, Exp. #2, Exp. #4)

Figure: Pyramid-bottom(Poon's, Exp. #2, Exp. #4)

Figure: Sunflower-bottom(Poon's, Exp. #2, Exp. #4)

SUSTe

Time Cost	Poon's	Exp. #1	Exp. #2	Exp. #3	Exp. #4
Caltech-101 Olivetti	$\leq 2 \text{ hours}$ within a few minutes	_	_	$\leq 11 {\rm hours} \\ {\rm Nan}$	$\leq 19 \; \mathrm{hours}$ Nan

Table: Time Cost of Poon's Experiments and My Experiments

ilin Zheng SUSTec

Analysis

Conclusion:

- Number of cores makes no influence
- Larger input size leads to lower MSE
- My implementation is valid

Why:

- Randomness in architecture
- Difference between implementation
- Complexity of model

Yilin Zheng

Conclusion

Conclusion:

- My implementation is valid and the reproduction is successful
- Reproduction is not easy

ilin Zheng SUSTech

Future Work

Future work:

- Architecture improvement
- More applications
- New algorithms for learning and inference

Acknowledgement

Advisors:

Prof. Ke Tang Prof. Shan He

Inspector:

Prof. Bo Tang

Committee Members:

Prof. Qi Wang (Committee chair)

Prof. Jianqiao Yu (Committee member)

Prof. Jialin Liu (Committee member)

Yilin Zh

SUSTech

Thanks

Thanks for listening!

Timi Zircing

SUSTec

Q & A

Questions?

Yilin Zhen

SUSTech