ITSMOre than a UNIVERSITY

Современная теория информации

Лекция 12. Коды, исправляющие ошибки.

Содержание лекции

- Конечные поля.
- Опитер пространства над конечным полем.
- 🗿 Линейные коды.
- Коды Хемминга.

Кодер и декодер канала

Как исправлять ошибки в канале?

Модель канала

- Пусть $m_0, m_1, ..., m_i, ...$ последовательность символов , которая передаётся по цифровому каналу, $m_i \in \{0, 1\}$;
- ullet $y_0,y_1,...,y_i,...$ символы на выходе канала, $y_i\in\{0,1\}$;
- Ошибки канала моделируются внешним источником, который генерирует двоичный вектор ошибок $e_0, e_1, ..., e_i, ...,$ где $e_i = 1$ в случае ошибки, $e_i = 0$ иначе.

Основная идея

- Для надёжной передачи данных используются коды, исправляющие ошибки.
- Основная идея заключается в том, что кодер канала генерирует избыточные (проверочные) символы, которые передаются вместе с информационныеми символами.
- Декодер канала детектирует и исправляет ошибки.

Конечные поля

Конечное множество X называется конечным полем (или полем Галуа) если имеют место следующие свойства:

- На множестве определены операции сложения и умножения, результат этих операций принадлежит множеству.
- Для любых элементов $x_i, x_j, x_k \in X$ выполняются следующие равенства:

$$(x_i + x_j) + x_k = x_i + (x_k + x_j),$$

$$(x_i \cdot x_j) \cdot x_k = x_i \cdot (x_k \cdot x_j),$$

$$x_i + x_j = x_j + x_i,$$

$$x_i \cdot x_j = x_j \cdot x_i,$$

$$(x_i + x_j) \cdot x_k = x_i \cdot x_k + x_j \cdot x_k.$$

• Существует нулевой элемент для сложения $x_0 \in X$ и единичный элемент для умножения $x_1 \in X$:

$$x_i + x_0 = x_0 + x_i = x_i,$$

 $x_i \cdot x_1 = x_1 \cdot x_i = x_i.$

Конечные поля

ullet Для каждого элемента $x_i \in X$ существует единственный элемент $x_j \in X$, обратный для сложения

$$x_i+x_j=0,$$

• Для каждого элемента $x_i \in X$, кроме x_0 , существует единственный элемент $x_i \in X$, обратный для умножения

$$x_i \cdot x_j = 1$$
.

В литературе, конечное поле обозначается как GF(q), где q — число элементов в поле.

Конечные поля. Пример.

Рассмотрим конечное поле $GF(5) = \{0, 1, 2, 3, 4\}$, которое включает в себя все вычеты по модулю 5. Здесь $x_0 = 0$, $x_1 = 1$.

Таблица: Таблица сложения (слева) и умножения (справа) в поле GF(5)

	0	1	2	3	4		0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0		0				
2	2	3	4	0	1	2	0	2	4	1	3
	3					3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

Линейные пространства над конечным полем

Пусть X – конечное поле и $\mathbf{x}=(x_1,x_2,...,x_n)\in X^n$ – вектор, каждая компонента которого принадлежит X. Тогда сумма векторов $\mathbf{x}\in X^n$ and $\mathbf{y}\in X^n$ определяется как

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n).$$
 (1)

Если $c \in \mathcal{X}$, тогда умножение вектора \mathbf{x} на скаляр c определяется как

$$c \cdot \mathbf{x} = (c \cdot x_1, c \cdot x_2, ..., c \cdot x_n). \tag{2}$$

Пример. Рассмотрим два вектора $\mathbf{x}=(1,2,3,4)$ и $\mathbf{y}=(4,2,3,1)$, каждый элемент которого принадлежит GF(5). Тогда $\mathbf{x}+\mathbf{y}=(0,4,1,0)$. Пусть c=2, тогда $c\cdot\mathbf{x}=(2,4,1,3)$.

Линейные пространства над конечным полем

Множество векторов ${f V}$ формируют линейное пространство, если это множество является замкнутым по отношению к операциям сложения и умножения на скаляр. Это означает, что для любого $k=\{1,2,3,...\}$, вектор

$$z = \sum_{i=1}^{k} c_i \cdot x_i \tag{3}$$

принадлежит V для любого $c_i \in X$ и $\mathbf{x}_i \in X^n$. Правая часть (3) называется линейной комбинацией векторов $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$. Пример. Рассмотрим два множества векторов V_1 и V_2 над полем $GF(2)=\{0,1\}$.

$$\mathbf{V_1} = \left\{ egin{array}{c} 000 \\ 110 \\ 011 \\ 101 \end{array}
ight\}, \mathbf{V_2} = \left\{ egin{array}{c} 000 \\ 100 \\ 010 \\ 001 \end{array}
ight\}.$$

Множество V_1 является линейным пространством, потому что сумма любой пары векторов из V_1 принадлежит V_1 . Множество V_2 не является линейным пространством.

Линейные пространства над конечным полем

Подмножество линейного пространства, для которого выполняются все свойства линейного пространства, называется *линейным* подпространством.

Пример. Рассмотрим два множества векторов V_1 и V_2 в поле $GF(2) = \{0,1\}.$

$$\mathbf{V}_1 = \left\{egin{array}{c} 000 \\ 001 \\ 010 \\ 100 \\ 101 \\ 110 \\ 111 \end{array}
ight\}, \mathbf{V}_2 = \left\{egin{array}{c} 000 \\ 110 \\ 011 \\ 101 \end{array}
ight\}.$$

Множество \mathbf{V}_2 является линейным подпространством пространства \mathbf{V}_1 .

Линейные пространства над конечным полем

Векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ называются линейно независимыми, если равенство

$$c_1 \cdot \mathbf{x}_1 + c_2 \cdot \mathbf{x}_2 + \dots + c_k \cdot \mathbf{x}_k = \mathbf{0}, \tag{4}$$

где 0 - нулевой вектор, выполняется, если

$$c_1 = c_2 = \dots = c_k = 0.$$
 (5)

Пример. Векторы (0,1,1,1) и (0,2,2,2) над полем GF(5) являются линейно зависимыми, поскольку $2\cdot(0,2,2,2)+(0,1,1,1)=(0,0,0,0)$.

В каждом линейном пространстве существуют линейно независимые векторы $\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_k$, такие что каждый вектор

$$\mathbf{x}_i = c_1 \cdot \mathbf{x}_1 + c_2 \cdot \mathbf{x}_2 + c_k \cdot \mathbf{x}_k. \tag{6}$$

Такие векторы называются *базисными векторами* линейного пространства.

Линейные пространства над конечным полем

Пример. Рассмотрим два множества векторов V_1 и V_2 над полем $GF(2) = \{0,1\}.$

$$\mathbf{V}_1 = \left\{ egin{array}{c} 000 \\ 001 \\ 010 \\ 100 \\ 101 \\ 110 \\ 111 \end{array}
ight\}, \mathbf{V}_2 = \left\{ egin{array}{c} 100 \\ 010 \\ 001 \end{array}
ight\}.$$

Векторы, принадлежащие V_2 являются базисными векторами для линейного пространства V_1 .

Порождающая матрица линейного пространства

Пусть векторы $\mathbf{g}_1=(g_{11},...,g_{1n}),\ \mathbf{g}_2=(g_{21},...,g_{2n}),\ ...,\ \mathbf{g}_k=(g_{k1},...,g_{kn})$ являются базисными векторами для линейного пространства \mathbf{V}_k . Тогда каждый вектор \mathbf{x} в \mathbf{V}_k может быть предствлен как линейная комбинация базисных векторов:

$$\mathbf{x} = m_1 \cdot \mathbf{g}_1 + m_2 \cdot \mathbf{g}_2 + \dots + m_k \cdot \mathbf{g}_k. \tag{7}$$

Выражение (7) может быть записано как:

$$\mathbf{x} = (m_1, m_2, ..., m_k) \cdot \begin{bmatrix} g_{11} & g_{12} & \cdot & g_{1n} \\ g_{21} & g_{22} & \cdot & g_{2n} \\ \cdot & \cdot & \cdot & \cdot \\ g_{k1} & g_{k2} & \cdot & g_{kn} \end{bmatrix} = \mathbf{m} \cdot \mathbf{G}, \tag{8}$$

где $\mathbf{m}=(m_1,m_2,...,m_k)$ и $k\times n$ матрица \mathbf{G} имеет в качестве своих строк базисные векторы линейного пространства \mathbf{V}_k . Маtrix \mathbf{G} называется порождающей матрицей линейного пространства \mathbf{V}_k .

Проверочная матрица линейного пространства

Произвольный вектор $\mathbf{x}=(x_1,...,x_n)\in \mathbf{V}_k$ удовлетворяет следующей системе линейных уравнений:

$$\begin{cases} h_{11} \cdot x_1 + \dots + h_{1n} \cdot x_n = 0, \\ h_{21} \cdot x_1 + \dots + h_{2n} \cdot x_n = 0, \\ \dots \\ h_{r1} \cdot x_1 + \dots + h_{rn} \cdot x_n = 0, \end{cases}$$
(9)

где r = n - k, или в матричной записи

$$\mathbf{x} \cdot \mathbf{H}^T = \mathbf{0}. \tag{10}$$

Система уравнений (10) проверяет, что вектор ${\bf x}$ принадлежит линейному пространству ${\bf V}_k$. Поэтому ${\bf H}$ называется *проверочной матрицей* линейного пространства ${\bf V}_k$.

$$\mathbf{x} \cdot \mathbf{H}^T = \mathbf{m} \cdot \mathbf{G} \cdot \mathbf{H}^T = \mathbf{0}. \tag{11}$$

$$\mathsf{G}\cdot\mathsf{H}^T=\mathsf{0}.$$

Линейные коды

Линейным q-ичными кодом длины n с k информационных символов, или (n,k)-кодом над полем GF(q), называется k-мерное подпространство линейного n-мерного пространства всех векторов над полем GF(q).

Линейный (n,k)-код задаётся базисными векторами $\mathbf{g}_1=(g_{11},...,g_{1n})$, $\mathbf{g}_2=(g_{21},...,g_{2n})$, ..., $\mathbf{g}_k=(g_{k1},...,g_{kn})$, $g_{ij}\in GF(q)$ или порождающей матрицей

$$\mathbf{G} = \begin{bmatrix} g_{11} & g_{12} & \cdot & g_{1n} \\ g_{21} & g_{22} & \cdot & g_{2n} \\ \cdot & \cdot & \cdot & \cdot \\ g_{k1} & g_{k2} & \cdot & g_{kn} \end{bmatrix}, \tag{13}$$

при этом кодовое слово $\mathbf{c}=(c_1,c_2,...,c_n)$ является линейной комбинацией базисных векторов:

$$\mathbf{c} = m_1 \cdot \mathbf{g}_1 + \dots + m_k \cdot \mathbf{g}_k = \mathbf{m} \cdot \mathbf{G}, \tag{14}$$

где ${f m}=(m_1,m_2,...,m_k)$ — информационная последовательноєть. ${f E}$

Коды, исправляющие ошибки Линейные коды

Если порождающая матрицы ${f G}$ может быть представлена как

$$\mathbf{G} = [\mathbf{I}_k | \mathbf{G}_2], \tag{15}$$

где I_k - единичная матрица, размером $k \times k$, то эта матрица имеет левую каноническую форму.

Если порождающая матрица имеет каноническую форму, то линейный код называется *систематическим*. Для систематического кода, кодовое слово представляется как

$$\mathbf{c} = \mathbf{m} \cdot \mathbf{G} = \mathbf{m} \cdot [\mathbf{I}_k | \mathbf{G}_2] = (\mathbf{m}, \mathbf{m} \cdot \mathbf{G}_2), \tag{16}$$

то есть, кодовое слово состоит из двух подслов: левое подслово это информационная последовательность $\mathbf{m}=(m_1,m_2,...,m_k)$ длины k, а правое подслово состоит из r=n-k проверочных символов.

Линейные коды

Пример. Пусть порождающая матрица с длиной кодового слова n=7 и длиной информационной последовательности k=4 имеет вид:

Необходимо сформировать кодовое слово ${\bf c}$ для информационной последовательности ${\bf m}=(0101).$

$$\mathbf{c} = \mathbf{m} \cdot \mathbf{G} = (0101) \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} = (0101010).$$

Свойства линейных кодов

Пусть \mathbf{x} и \mathbf{y} – два слова из X^n . Расстоянием Хемминга $d(\mathbf{x},\mathbf{y})$ между \mathbf{x} и \mathbf{y} называется число позиций, в которых эти слова различаются.

Рассмотрим $\mathbf{c}=(\mathbf{c}_1,...,\mathbf{c}_M)$ как кодовое слово длины n над алфавитом X. Минимальное расстояние d кода \mathbf{C} это минимальное расстояние Хемминга между любыми парами кодовых слов из \mathbf{C} .

Teopema 1. Минимальное расстояние линейного кода **C** равно минимуму из весов ненулевых кодовых слов.

Theorem 2. Если любые $I \leq d-1$ столбцов проверочной матрицы **H** линейного кода линейно независимы, то минимальное расстояние кода будет по меньшей мере d. Если при этом найдутся d линейно зависимых столбцов, то минимальное расстояние кода равно d.

Теорема 3. Код с минимальным расстоянием d исправляет любые ошибки крастности t=(d-1)/2 и обнаруживает ошибки кратности $t\leq d-1$.

Коды Хемминга

Коды Хемминга это линейные коды, которые обеспечивают минимально возможное количество проверочных символов для минимального кодового расстояния d=3. Рассмотрим метод построения порождающей и проверочной матрицы для систематического кода Хемминга над полем GF(2). Пусть порождающая матрица кода \mathbf{G} представляется в левой

Пусть порождающая матрица кода **G** представляется в левой канонической форме:

$$\mathbf{G} = [\mathbf{I}_k | \mathbf{G}_2], \tag{17}$$

где \mathbf{I}_k — единичная подматрица размером $k \times k$ и \mathbf{G}_2 — подматрица размером $r \times k$.

Проверочная матрица Н может быть записана как:

$$\mathbf{H} = [\mathbf{H}_1 | \mathbf{H}_2], \tag{18}$$

где \mathbf{H}_1 — подматрица размером r imes k, \mathbf{H}_2 — подматрица

размером
$$r \times r$$
.
 $\mathbf{0} = \mathbf{G} \cdot \mathbf{H}^T = [\mathbf{I}_k | \mathbf{G}_2] \begin{bmatrix} \mathbf{H}_1^T \\ \mathbf{H}_2^T \end{bmatrix} = \mathbf{H}_1^T + \mathbf{G}_2 \cdot \mathbf{H}_2^T$. (19)

Коды Хемминга

Пусть проверочная матрица Н представлена в правой канонической форме, то есть \mathbf{H}_{2}^{T} – единичная подматрица. Тогда,

$$\mathbf{0} = \mathbf{H}_{1}^{T} + \mathbf{G}_{2} \cdot \mathbf{H}_{2}^{T} = \mathbf{H}_{1}^{T} + \mathbf{G}_{2}. \tag{20}$$

С учетом работы в поле GF(2), из (20) следует:

$$\mathbf{G}_2 = \mathbf{H}_1^T. \tag{21}$$

- Матрица Н не должна содержать нулевых столбцов.
- Из Теоремы 2 следует, что для построения линейного кода с расстоянием d=3 любые два столбца ${\bf H}$ должны быть линейно независимы. В случае GF(2) это означает, что любые два столбца Н должны быть различными (это возможно, когда $n = k + r \le 2^r - 1$). При этом, матрица **H** должна быть записана в правой канонической форме, то есть содержать единичную подматрицу в правой части.

Построение кода Хемминга

Input.

Длина кодового слова n.

Длина информационной последовательности k.

Step 1.

$$r := n - k$$
.

Сформировать \mathbf{H}_1 размером $r \times k$ из k различных столбцов, каждый из которых содержит больше одной единицы.

Step 2.

Сформировать \mathbf{H}_2 как единичную матрицу $r \times r$.

$$\mathsf{H} := [\mathsf{H}_1 | \mathsf{H}_2].$$

Step 3.

Сформировать \mathbf{G}_1 как единичную матрицу k imes k.

$$\mathbf{G} := [\mathbf{G}_1 | \mathbf{H}_1^T].$$

Построение кода Хемминга

Пример.
$$n = 7$$
, $k = 4$. Скорость кода $R = \frac{k}{n} = \frac{4}{7}$.

$$\mathbf{H}_1 = \left[egin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{array}
ight],$$

$$\mathbf{H} = [\mathbf{H}_1 | \mathbf{H}_2] = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Расширенные коды Хемминга

- Расширенные коды Хемминга обеспечивают минимально возможное количество проверочных символов для минимального кодового расстояния d=4.
- Увеличение минимального расстояние кода достигается путем замены одного информационного символа исходного кода Хемминга на проверочный символ.
- Поэтому проверочная матрица такого кода должна иметь на одну строку больше, чем в коде Хемминга.

Расширенные коды Хемминга

- В соответствии с теоремой 2 в проверочной матрице расширенного кода Хемминга любые три столбца должны быть линейно независимые.
- ullet В случае кода над полем GF(2) это означает, что
 - любые два столбца матрицы H должны быть различны;
 - матрица H не должна содержать нулевого столбца;
 - ▶ любые два столбца в сумме не должны давать третий.

Расширенные коды Хемминга

Обозначим через \mathbf{H}^3 проверочную матрицу кода Хемминга с минимальным расстоянием d=3. Тогда матрица

$$\mathbf{H}^{4} = \begin{bmatrix} \frac{1 & 1 & 1 & \dots & 1}{} \\ & & \mathbf{H}^{3} \end{bmatrix}$$
 (22)

удовлетворяет приведенным выше требованиям для кода с минимальным расстоянием d=4.

- ullet Во-первых, матрица $ullet^4$ не содержит двух одинаковых столбцов и не содержит нулевой столбец, поскольку в матрице \mathbf{H}^3 нет нулевых столбцов и все столбцы разные.
- Во-вторых, сумма по модулю 2 любых двух столбцов не равна никакому третьему столбцу, так как сумма двух столбцов будет содержать 0 в первом разряде, тогда как все столбцы в \mathbf{H}^4 в первом разряде равны 1.

Расширенные коды Хемминга

- Для формирования порождающей матрицы расширенного кода Хемминга проверочную матрицу \mathbf{H}^4 необходимо представить в правой канонической форме.
- Так как строки матрицы H⁴ являют базисным векторами линейного пространства, то каждый базисный вектор можно заменить другим базисным вектором, который является линейного комбинацией исходных базисных векторов.
- В случае кодов над полем GF(2) можно менять любую строку матрицы \mathbf{H}^4 на сумму двух или более строк по модулю 2 до тех пор, пока матрица \mathbf{H}^4 не примет правую каноническую форму.
- Затем, аналогично коду Хемминга можно построить порождающую матрицу.

Расширенные коды Хемминга. Пример построения.

Требуется построить проверочную и порождающую матрицу расширенного кода Хемминга с длиной кодового слова n=7 и информационной последовательностью длины k=3. В соответствии с шагом 1 алгоритма формируется подматрица

$$\mathbf{H}_1^3 = \left[\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{array} \right],$$

затем в соответствии с шагом 2 формируется единичная матрица \mathbf{H}_2^3 размером 3×3 , и формируется проверочная матрица в виде

$$\mathbf{H}^3 = [\mathbf{H}_1^3 | \mathbf{H}_2^3] = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Расширенные коды Хемминга. Пример построения.

В соответствии с шагом 3 формируется проверочная матрица расширенного кода как

Затем сумма всех строк H_4 по модулю 2 записывается в первую строку:

Расширенные коды Хемминга. Пример построения.

Для формирования правой канонической формы первая строка матрицы \mathbf{H}_4 складывается со второй, результат сложения записывается во вторую строку. Затем первая строка складывается с третьей, результат сложения записывается в третью строку. В итоге матрица \mathbf{H}_4 представляется как

$$\mathbf{H_4} = [\mathbf{H_1^4} | \mathbf{H_2^4}] = \left[\begin{array}{ccc|c} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right].$$

В соответствии с шагом 4 формируется единичная подматрица ${f G}_1^4$ размером 3×3 и порождающая матрица в виде

$$\mathbf{G} = [\mathbf{G}_1^4 | (\mathbf{H}_1^4)^T] = \left[egin{array}{ccccc} 1 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}
ight].$$

Декодирование кода Хемминга по минимуму расстояния

Пример. Пусть сообщение $\mathbf{m}=(101)$ передаётся при помощи расширенного кода Хемминга, имеющего порождающую матрицу

Кодер канала формирует кодовое слова ${f c}$ как

$$\mathbf{c} = \mathbf{m} \cdot \mathbf{G} = (101) \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix} = (1011010).$$

Предположим, что произошла одна ошибка, то есть вектор ошибок ${f e}=(0010000).$ Тогда декодер принял сообщение ${f y}={f c}+{f e}=(1001010).$

Декодирование кода Хемминга по минимуму расстояния

Декодер попарно вычисляет расстояние $d(\mathbf{y}, \mathbf{c}_i)$ между $\mathbf{y} = (1001010)$ и словами из С и строит таблицу:

i	m _i	$\mathbf{c}_i = \mathbf{m}_i \cdot \mathbf{G}$	$d(\mathbf{y},\mathbf{c}_i)$
0	000	0000000	2
1	001	0010111	4
2	010	0101011	4
3	011	0111100	6
4	100	1001101	6
5	101	1011010	1
6	110	1100110	3
7	111	1110001	5

Так как минимальное расстояние $d(y, c_5) = 1$ соответствует кодовому слову С5, то декодер принимает решение, что передавалось кодовое слово $\mathbf{c} = (1011010)$ и исходное сообщение $\mathbf{m} = (101)$.

Синдромное декодирование кода Хемминга

Из свойств проверочной матрицы следует, что $\mathbf{c} \cdot \mathbf{H}^T = \mathbf{0}$. Поэтому

$$s = y \cdot H^T = (c+e) \cdot H^T = c \cdot H^T + e \cdot H^T = e \cdot H^T,$$
 (23)

называемый *синдромом* зависит только от вектора ошибки ${f e}$ и не зависит от кодового слова ${f c}$. Если ошибка не произошла, то ${f s}={f 0}$.

i	\mathbf{e}_i	$ \mathbf{s}_i = \mathbf{e}_i \cdot \mathbf{H}^T$		
0	1000000	011		
1	0100000	101		
2	0010000	110		
3	0001000	111		
4	0000100	100		
5	0000010	010		
6	0000001	001		

Работа декодера в режиме обнаружения ошибок

Пусть для передачи сообщения ${\bf m}=(101)$ использовался расширенный код Хемминга и было сформировано кодовое слово ${f c}=(1011010)$. Пусть в процессе передачи возникли две ошибки и вектор ошибок e = (0010001). Тогда на вход декодера канала поступает сообщение y = c + e = (1001011).

Декодер канала вычисляет синдром

$$\mathbf{s}^* = \mathbf{y} \cdot \mathbf{H}^T = (1001011) \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = (0110).$$

Так как синдром s^* отличен от нулевого, то декодер канала выносит решение о том, что в канале произошла ошибка.

Работа декодера в режиме обнаружения ошибок. Число ошибок превышает d-1

Пусть для передачи сообщения $\mathbf{m}=(101)$ было сформировано кодовое слово $\mathbf{c}=(1011010)$. Пусть в процессе передачи возникли четыре ошибки и вектор ошибок $\mathbf{e}=(1110001)$. Тогда на вход декодера канала поступает сообщение $\mathbf{y}=\mathbf{c}+\mathbf{e}=(0101011)$. Декодер канала вычисляет синдром

$$\mathbf{s}^* = \mathbf{y} \cdot \mathbf{H}^T = (0101011) \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = (0000).$$

Так как синдром s^* является нулевым, то декодер канала выносит ошибочное решение о том, что в канале не было ошибок.