Natural Language Processing with Classification and Vector Spaces

Week1:

Supervised ML & Sentiment Analysis

1. In supervised learning, we have input X and output Y. We try to fit a function f(X) = Y, such that predicted value of function f(X) = Y. We change our parameters at each iteration to minimize cost.

Vocabulary & Feature Extraction

Let's consider a Tweet

Tweet1: I am happy because I am learning NLP.

Tweet2: I Hated the movie

To represent these tweets in vector form we need to follow the following steps:

- 1. List all the unique words from all the available tweets.
- 2. Assign value =1 if that word appears in dictionary else 0.

I am happy because I am learning NLP

A lot of Zeros! That's a sparse Representation

Problem With Sparse Representation

- 1. Most of the values are zeros if my tweet is small.
- 2. Logistic Regression will require a V number of parameters to train for each word in the vocabulary.
- 3. It will take more training time since vector size is very big
- 4. Prediction will also be slower.

Problems with sparse representations

Negative and Positive Frequencies

Corpus: a collection of written texts

Consider having a corpus of tweets as given below:

Corpus

I am happy because I am learning NLP
I am happy
I am sad, I am not learning NLP
I am sad

To count the number of positive and negative frequencies, we will make a table as given below:

Positive and negative counts

Positive tweets
I am <u>happy</u> because I am learning NLP
I am <u>happy</u>

Vocabulary	PosFreq (1)
1	3
am	3
happy	2
because	1
learning	1
NLP	1
sad	0
not	0

Similarly for negative class, we can count the frequencies.

Word frequency in classes

	,		
Vocabulary	PosFreq (1)	NegFreq (0)	
1	3	3	-
am	3	3	fregs: dictionary mapping from
happy	2	0	(word, class) to frequency
because	1	0	(1101 a, 61000, 60 11 equelle)
learning	1	1	
NLP	1	1	
sad	0	1	
not	0	1	
			•

Feature Extraction with Frequencies

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$
 Features of tweet m Bias Sum Pos. Frequencies Frequencies

Feature extraction

Vocabulary	PosFreq (1)	I am sad, I am not learning NLP
I	_3_	
am	<u>3</u>	
happy	2	$X_m = [1, \sum freqs(w, 1), \sum freqs(w, 0)]$
because	1	\boldsymbol{w} w
learning	1	
NLP	1	
sad	0	8
not	0	

$$X_{m} = [1, \sum_{w} \frac{freqs}{\downarrow}(w, 1), \sum_{w} \frac{freqs}{\downarrow}(w, 0)]$$
$$X_{m} = [1, 8, 11]$$

Preprocessing

Preprocess Tweet:

@Ymourri @AndrewNg are tuning a GREAT ai Model at https://deeplearning.ai

1. We need to remove stop words and punctuation mark which does not contribute any meaning in the task of sentiment analysis

After removing StopWords and punctuation from the tweet.

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning	Stop words	Punctuation
GREAT AI model	and	,
https://deeplearning.ai!!!	is	
	a	:
@YMourri @AndrewYNg tuning	at	<u>!</u>
GREAT AI model	has	п
https://deeplearning.ai	for	
	of	

tweets having handles and URLs also does not contribute anything to Sentiment Analysis. We will remove them too.

- 2. We need to perform Stemming(Transforming any word to its base term). SO the word **tune, tuned or tuning** have the same base word, so after stemming it will become **tun.**
- **3.** lower case all the words. GREAT, Great, great will reduced to great. since it does not change the sentiment of the sentence.

Preprocessed tweet: [tun, great, ai, model]

Putting It All Together(Stemming, tokenizing, Removing Stop Words, Punctuation etc)

For each tweet, we will use the sum of +ve and -ve frequency to represent it in vector form.

At the end, you will have X matrix with m rows and 3 columns. as shown below.

Logistic Regression Cost Function

Cost function for logistic regression

When label is 0 and output is 0, then Cost = 0, when label is 1 and output is 1 then cost = 0, else cost is +ve inf.

Week2 Naive Bayes

Summary

- Conditional probabilities → Bayes' Rule
- $P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$

$P(w_i | class)$

Words having the same probability in both class don't add anything to sentiment.

Naïve Bayes

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

word	Pos	Neg
ı	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

Laplacian Smoothing:

little transformation avoids the probability being zero.

Laplacian Smoothing

$$P(w_i|class) = \frac{freq(w_i, class)}{N_{class}}$$

class ∈ {Positive, Negative}

$$P(w_i|class) = \frac{freq(w_i, class) + 1}{N_{class} + V_{class}}$$

 N_{class} = frequency of all words in class

 V_{class} = number of unique words in class

Log Likelihood

Log Likelihood

$$\frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

- Products bring risk of underflow
- log(a*b) = log(a) + log(b)

•
$$log(\frac{P(pos)}{P(neg)}\prod_{i=1}^{n}\frac{P(w_i|pos)}{P(w_i|neg)}) \implies log\frac{P(pos)}{P(neg)} + \sum_{i=1}^{n}log\frac{P(w_i|pos)}{P(w_i|neg)}$$

log prior + log likelihood

Log Likelihood

doc: I am happy because I am learning.

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^{m} \lambda(w_i)$$

 $\log likelihood = 0 + 0 + 2.2 + 0 + 0 + 0 + 1.1 = 3.3$

Pos	Neg	λ
0.05	0.05	0
0.04	0.04	0
0.09	0.01	2.2
0.01	0.01	0
0.03	0.01	1.1
0.02	0.02	0
0.01	0.09	-2.2
0.02	0.03	-0.4
	0.05 0.04 0.09 0.01 0.03 0.02 0.01	0.05 0.05 0.04 0.04 0.09 0.01 0.01 0.01 0.03 0.01 0.02 0.02 0.01 0.09

Log Likelihood

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} > 0$$

Summary

- 0. Get or annotate a dataset with positive and negative tweets
- Preprocess the tweets: process_tweet(tweet) → [w₁, w₂, w₃, ...]
- Compute freq(w, class)
- 3. Get P(w | pos), P(w | neg)
- 4. Get λ(w)
- 5. Compute logprior = log(P(pos) / P(neg))

Testing Naive Bayes

Predict using Naïve Bayes

- $logprior = log \frac{D_{pos}}{D_{neg}} = 0$
- Tweet: [I, pass the NLP interview]

$$score = -0.01 + 0.5 - 0.01 + 0 + logprior = 0.48$$

$$pred = score > 0$$

word	λ
	-0.01
the	-0.01
happi	0.63
because	0.01
pass	0.5
NLP	0
sad	-0.75
not	-0.75

Naïve Bayes Applications

- Sentiment analysis
- Author identification
- Information retrieval
- Word disambiguation
- Simple, fast and robust!

Summary

- $X_{val} \ Y_{val} \longrightarrow$ Performance on unseen data
- Predict using λ and logprior for each new tweet

• Accuracy
$$\longrightarrow \frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$$

What about words that do not appear in λ(w)?

Summary

- Independence: Not true in NLP
- · Relative frequency of classes affect the model

Error Analysis

Processing as a Source of Errors: Removing Words

Tweet: This is not good, because your attitude is not even close to being nice.

processed_tweet: [good, attitude, close, nice]

Processing as a Source of Errors: Word Order

Adversarial attacks

Sarcasm, Irony and Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]

Week3 (Word Embedding)

Vector Space Models:

Why learn vector space models?

Fundamental concept

"You shall know a word by the company it keeps"

Firth, 1957

(Firth, J. R. 1957:11)

- 1. Vector Space model helps to derive the dependencies between words
- 2. Vector space models are used in information extraction to answer the question in the style of who, what, where, how etc., chatbot programming and machine translation.

Cooccurance Matrix of words:

1. The Number of times they occur together in a corous within a certain distance k.

Word by Word Design

Number of times they occur together within a certain distance k

I like simple data
I prefer simple raw data

Word by Document Design

Number of times a word occurs within a certain category

	Entertainment	Economy	Machine Learning
	Entertainment	Economy	Machine Learning
data	500	6620	9320
film	7000	4000	1000

Vector Space

Cosine Similarity

Manipulating word vectors

Week4: Machine Translation

Overview of Translation

Align word vectors

subsets of the full vocabulary

initialize R

in a loop:

$$Loss = \parallel \mathbf{XR} - \mathbf{Y} \parallel_F$$

$$g = \frac{d}{dR} Loss \qquad \text{gradient}$$

$$R = R - \alpha g \qquad \text{update}$$

Frobenius norm

$$\|\mathbf{X}\mathbf{R} - \mathbf{Y}\|_{F}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\|\mathbf{A}_{F}\| = \sqrt{2^{2} + 2^{2} + 2^{2} + 2^{2}}$$

$$\|\mathbf{A}_{F}\| = 4$$

$$\|\mathbf{A}\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}$$

Gradient

$$Loss = \|\mathbf{X}\mathbf{R} - \mathbf{Y}\|_F^2$$
$$g = \frac{d}{dR}Loss = \frac{2}{m} \left(\mathbf{X}^T (\mathbf{X}\mathbf{R} - \mathbf{Y})\right)$$

Which side of the plane?

Multiple planes, single hash value?

Multiple planes, single hash value!!

```
def hash_multiple_plane(P_1,v):
    hash_value = 0
    for i, P in enumerate(P_1):
        sign = side_of_plane(P,v)
        hash_i = 1 if sign >=0 else 0
        hash_value += 2**i * hash_i
    return hash_value
```