CS1200: Intro. to Algorithms and their Limitations	Anshu & Vadhan
Lecture 20: NP-completeness	
Harvard SEAS - Fall 2024	2024-11-12

1 Announcements

- PS7 due tomorrow.
- PS8 out by Thursday, due 2024-11-20.
- Next SRE on Thursday.

Recommended Reading:

- MacCormick §14, 17
- Sipser §7.5

2 Recap

- Def of NP_{search}.
- \bullet Def of NP_{search} -completeness.
- Cook-Levin Theorem and significance.
- Transitivity of \leq_p .

In today's lecture, we will prove that several different problems are NP_{search}-complete.

3 3-SAT

Once we have one $\mathsf{NP}_{\mathsf{search}}$ -complete problem, we can get others via reductions from it. Consider the computational problem 3-SAT, which is obtained when we restrict the number of literals in each clause of SAT.

${\bf Input}$: A CNF formula φ on n variables $z_0, \dots z_{n-1}$ in which each clause has
	width at most 3 (i.e. contains at most 3 literals)
Output	: An $\alpha \in \{0,1\}^n$ such that $\varphi(\alpha) = 1$ (if one exists)

Computational Problem 3-SAT

Theorem 3.1. 3-SAT is NP_{search}-complete.

Proof. The proof follows in two steps.

- 1. 3SAT is in NP_{search}:
- 2. 3SAT is NP_{search} -hard: Since every problem in NP_{search} reduces to SAT (Cook–Levin Theorem), all we need to show is SAT $\leq_p 3SAT$ (since reductions compose).

The reduction algorithm from SAT to 3SAT has the following components (Figure ??). First, we give an algorithm R which takes a SAT instance φ to a 3SAT instance φ' .

SAT instance
$$\varphi \xrightarrow{\text{polytime R}} 3\text{SAT}$$
 instance φ'

Then we feed the instance φ' to our 3SAT oracle and obtain a satisfying assignment β to φ' or \bot if none exists. If we get \bot from the oracle, we return \bot , else we transform β into a satisfying assignment to φ using another algorithm S.

SAT assignment
$$\alpha \stackrel{\text{polytime S}}{\longleftarrow} 3\text{SAT}$$
 assignment β

Algorithm R: The intuition behind this algorithm is that when we have a clause $(\ell_0 \vee \ell_1 \vee ... \vee \ell_{k-1})$ in the SAT instance ϕ (with large width k > 3), we want to break it into multiple clauses of width 3.

Note that φ' is **not** an equivalent formula to φ . While φ is on variables $z_0, \ldots z_{n-1}$, the formula φ' is on variables $z_0, \ldots z_{n-1}, y_0, \ldots y_{t-1}$, where t is the number of iterations of the while loop.

Algorithm S: Given an assignment β to the variables $z_0, \ldots z_{n-1}, y_0, \ldots y_{t-1}$, the algorithm simply takes part of the assignment to the variables $z_0, \ldots z_{n-1}$.

Next we consider the runtime and correctness of the overall reduction algorithm.

Runtime of the reduction algorithm: We first consider the runtime of the algorithm R:

Then, we consider the runtime of the algorithm S, which is simply O(n). Overall, the runtime of the reduction algorithm is O(nm).

Proof of correctness: We will show that if φ is satisfiable, then the reduction algorithm produces a satisfying assignment and if φ is unsatisfiable, the reduction algorithm will output \bot . This is based on the following two claims.

Claim 3.2. If φ is satisfiable then $\varphi' = R(\varphi)$ is satisfiable.

Proof of claim. Assume that φ is satisfiable. Let $\varphi = \varphi_0, \varphi_1, \ldots, \varphi_t = R(\varphi)$ be the formula as it evolves through the t loop iterations. We will prove by induction on i that φ_i is satisfiable for $i = 0, \ldots, t$. constructed through the t loop iterations.

Base case (i = 0):

Induction step: By the induction hypothesis, we can assume that φ_{i-1} is satisfiable, and now we need to show that φ_i is satisfiable:

Claim 3.3. If β satisfies $R(\varphi)$, then $\alpha = S(\beta)$ also satisfies φ .

Proof of claim. We prove by "backwards induction" that β satisfies φ_i for i = t, ..., 0. We can then drop the extra t variables that don't appear in φ without changing the satisfiability. (We call this "backwards induction" since our base cases is i = t.)

The base case (i = t) follows because β satisfies $R(\varphi) = \varphi_t$ by assumption. For the induction step:

To finish the correctness proof, suppose φ is satisfiable. Then from Claim 3.2, φ' is also satisfiable. The 3SAT oracle returns a satisfying assignment β , which is turned into a satisfying assignment for φ via the algorithm S (Claim 3.3). If φ is unsatisfiable, then by Claim 3.3, φ' is also unsatisfiable. In this case, the 3SAT oracle returns \bot - as a result the reduction algorithm also returns \bot .

This completes the proof that 3-SAT is NP_{search}-complete.

4 Mapping Reductions

The usual strategy for proving that a problem Γ in NP_{search} is also NP_{search} -hard (and hence NP_{search} -complete) follows a structure similar to the proof of Theorem 3.1.

- 1. Pick a known $\mathsf{NP}_{\mathsf{search}}\text{-}\mathsf{complete}$ problem Π to try to reduce to Γ .
- 2. Come up with an algorithm R mapping instances x of Π to instances R(x) of Γ .

- 3. Show that R runs in polynomial time.
- 4. Show that if x has a valid answer, then so does R(x).
- 5. Conversely, show that if R(x) has an answer, then so does x. Moreover, we can transform valid answers to R(x) into valid answers to x through a polynomial time algorithm S.

Reductions with the structure outlined above are called *mapping reductions*, and they are what are typically used throughout the theory of NP-completeness. A formal definition will be given in the detailed notes.

5 Independent Set

Next we turn to IndependentSet. (Formally the IndependentSet-ThresholdSearch version.)

Theorem 5.1. Independent Set is NP_{search}-complete.

Proof. We'll do this proof less formally than we did the proof of NP_{search}-completeness of 3SAT.

1. In NP_{search}:

2. NP_{search} -hard: We will show $3SAT \leq_p IndependentSet$.

We've previously encoded many other problems in SAT, but here we're going in the other direction and showing a graph problem can encode SAT.

Our reduction $R(\varphi)$ takes in a CNF and produces a graph G and a size k. We'll use as an example the formula

$$\varphi(z_0, z_1, z_2, z_3) = (\neg z_0 \lor \neg z_1 \lor z_2) \land (z_0 \lor \neg z_2 \lor z_3) \land (z_1 \lor z_2 \lor \neg z_3).$$

Our graph G consists of:

- Variable gadgets:
- Clause gadgets:

We pick k = m + n. An algorithm R can create this graph (and k) in polynomial time given φ . The graph for the formula φ is below.

Input : A digraph G = (V, E), two vertices $s, t \in V$, and a path-length $k \in \mathbb{N}$: A path from s to t in G of length k, if one exists

Computational Problem LongPath

We will prove that LongPath is NP_{search} -complete, even in the special case where k = n - 1, i.e. the path visits all vertices in the graph:

${\bf Input}$: A digraph $G = (V, E)$, two vertices $s, t \in V$
Output	: A path from s to t in G that includes every vertex in G , if one exists

Computational Problem HamiltonianPath

Theorem 6.1. HamiltonianPath is NP_{search}-complete.

In fact, the HamiltonianCycle problem (where s=t) is also NP_{search} -complete, even in undirected graphs. (See the Sipser text for a proof.) HamiltonianCycle is a special case of the Travelling Salesperson Problem (TSP), where a salesperson wants to visit a set of cities and return to their start city in the minimum amount of travel time. If the possible trips between cities are given by a digraph G and every possible trip takes the same amount time, then the shortest possible route is of length n and is given by a HamiltonianCycle.

In contrast, Eulerian Walk, where we seek a walk from s to t that uses every edge in G exactly once is known to be in P_{search} .

Proof Sketch. We follow the proof from the Sipser text (Thm 7.46) closely, and the figures are from there.

- 1. In NP_{search}:
- 2. NP_{search} -hard: We will show $SAT \leq_p HamiltonianPath$. (Again note that this the opposite direction from the SRE, where we showed LongPath $\leq_p SAT$.)

For the reduction from SAT, we follow the proof in the Sipser text, and refer to that for more details. Given a SAT formula, $\varphi(x_0, \ldots, x_{n-1})$ with m clauses, our reduction algorithm R constructs a digraph G as follows.

1. Each of our n "variable gadgets" consists of a diamond D_i as follows:

The key point is that there exactly two Hamiltonian paths from the top to the bottom.

2. We connect these n variable gadgets together by making the bottom vertex of D_i equal to the top vertex of D_{i+1} , setting s to be the top vertex of D_0 , and t to be the bottom vertex of D_{n-1} .

3. Finally for each of the m clauses C_j in φ , we add an extra clause vertex c_j to G. For each variable x_i that occurs in C_j , we add two detour edges from the diamond D_i that allow us to visit c_j in the process of traversing D_i (only if traversing in the correct direction according to whether or not x_i appears positively or negatively in C_j).

Here's an illustration for the same formula we had in our reduction from 3-SAT to IndependentSet:

The graph G has O(nm) vertices and O(nm) edges and can be constructed in O(nm) time. For the correctness of the reduction:

Claim 6.2. $G = R(\varphi)$ has a Hamiltonian path if and only if φ is satisfiable. Moreover, Hamiltonian paths in G can be mapped to satisfying assignments of φ in polynomial time.

In optional reading in the detailed lecture notes, there is also a proof that 3DCompleteMatching (the problem from ps7) is NP_{search} -complete.