Dịa chỉ IP

• Địa chỉ IP là một số nhị phân 32 bit

IP address format

• Chia thành bằng 4 octet

IP address format

 Có 2 thành phần: Network ID (index) and Host ID.

Chuyển số hệ 2 sang hệ 10 và ngược lại

Ví dụ

11000000 • 00000101 • 00100010 • 00001011

Octet (8 bits)

Octet (8 bits)

Octet (8 bits)

Octet (8 bits)

2 ⁽⁷⁾	2 ⁽⁶⁾	⁽⁵⁾ 2	2 ⁽⁴⁾	2 (3)	2 (2)	(1) 2	2 (0)
128	64	32	16	8	4	2	1

Ví dụ: Hệ 10 sang hệ 2

Ví dụ: Hệ 2 sang hệ 10

IP address format

• Chia thành bằng 4 octet

Mỗi octet có giá trị từ ? đến ?

$$00000000 \longrightarrow 0$$

IP address format

• Có 2 thành phần: Network ID and Host ID.

Network ID và host ID

Network ID :

- Được cung cấp bởi Internet Network Information Center.
- Định danh mạng mà thiết bị được gắn vào.

• Host ID:

- Được thiết lập bởi người quản trị mạng.
- Định danh một thiết bị trên một mạng.

Các Bit trên địa chỉ IP

Network Bits:

- Định danh network ID
- Định danh lớp trong địa chỉ IP
- Tất cả các bit là 0: Không được phép

Host Bits:

- Định danh host ID
- Tất cả các bit là 0 : dành cho địa chỉ mạng
- Tất cả các bit là 1: dành cho địa chỉ quảng bá

Các lớp địa chỉ IP

	1 Byte ←8 Bits →			
Class A:	N	Н	Н	Н
Class B:	N	N	Н	Н
Class C:	N	N	N	Н

• Các lớp địa chỉ khác nhau sẽ dành một lượng bít khác nhau cho vị trí Network và Host.

Class A (Lóp A)

Class A

- Bít đầu tiên của Class A luôn là 0.
- Octet đầu tiên của Class A có thể nhận giá trị
 là: ?

0000000

01111111

• 8 bits đầu tiên dùng để định danh phần network.

Class A

- Địa chỉ network có thế nhận các giá trị từ 0.0.0.0 đến 126.0.0.0 → có bao nhiêu network?
- 3 octet còn lại dùng để định danh host → một mạng có thể đánh địa chỉ cho bao nhiêu host?
- Mỗi một mạng lớp A sẽ có thể đánh được 16,777,214 địa chỉ IP (2 ²⁴-2)
- Địa chỉ của 1 host sẽ nằm trong khoảng nào?

Class B

Class B

- 2 bít đầu tiên của Class B luôn là 10.
- Octet đầu tiên của Class B có thể nhận giá trị là: ?

10000000

10111111

 2 octet đầu tiên dùng để định danh phần network.

Class B

- Địa chỉ network có thể nhận các giá trị từ 128.0.0.0 đến 191.255.0.0 → có bao nhiêu network?
- 2 octet còn lại dùng để định danh host → một mạng có thể đánh địa chỉ cho bao nhiêu host?
- Mỗi một mạng lớp B sẽ có thể đánh được 65.534 địa chỉ IP (2 16 -2)
- Địa chỉ của 1 host sẽ nằm trong khoảng nào?

Class C

Class C

- 3 bít đầu tiên của Class C luôn là 110.
- Octet đầu tiên của Class C có thể nhận giá trị là: ?

11000000

11011111

• 3 octet đầu tiên dùng để định danh phần network.

Class C

- Địa chỉ network có thể nhận các giá trị từ 192.0.0.0 to 223.255.255.0 → có bao nhiêu network?
- 1 octet còn lại dùng để định danh host → một mạng có thể đánh địa chỉ cho bao nhiêu host?
- Mỗi một mạng lớp C sẽ có thể đánh được 254 địa chỉ IP (2 8 -2).
- Địa chỉ của 1 host sẽ nằm trong khoảng nào?

Tổng kết

Địa chỉ mạng các lớp (Network ID)

- 1.0.0.0 126.0.0.0 : Class A.
- 127.*.*.* : Loopback network.
- 128.0.0.0 191.255.0.0 : Class B.
- 192.0.0.0 223.255.255.0 : Class C.
- 224.0.0.0 < 240.0.0.0 : Class D, multicast.
- >= 240.0.0.0: Class E, reserved.

Dja chỉ Network

 2 hosts mà có địa chỉ network khác nhau thì để giao tiếp được với nhau, yêu cầu phải có 1 thiết bị, router.

Dia chỉ Network

 Một địa chỉ IP mà kết thúc bằng các bít 0s trong tất cả các bit host thì đó là địa chỉ network.

Dia chỉ quảng bá (Broadcast address)

- Quảng bá đến tất cả các host trên một network ID cụ thể nào đó.
- Một địa chỉ IP mà kết thúc bằng các bit 1s trong tất cả các bit host thì địa chỉ đó được dành cho quảng bá trực tiếp (directed broadcast address).
- Một địa chỉ IP mà kết thúc bằng các bit 1s trong tất cả các bit network các bit host thì địa chỉ đó dành cho địa chỉ quảng bá cục bộ (local broadcast address).

Local broadcast address

255.255.255.255

Directed broadcast address

192.168.20.255

Broadcast address

Ví dụ: 172.16.20.200

172.16.20.200 là địa chỉ lớp B

• Network: 172.16

• Host: 20.200

• Network address: 172.16.0.0

• Broadcast address: 172.16.255.255

Dịa chỉ cá nhân (Private addresses)

- Class A: 10.0.0.0.
- Class B: 172.16.0.0 172.31.0.0.
- Class C: 192.168.0.0 192.168.255.0.

Ví dụ

- 1. Octet đầu tiên của một địa chỉ lớp B có thể nhận giá trị trong khoảng nào (hệ 10 và hệ 2)
 - Hệ 10: 128 191
 - Hệ 2: 10000000 10111111
- 2. Octet nào biểu diễn vị trí network của một địa chỉ lớp C?
 - 3 octets đầu
- 3. Octet nào biểu diễn vị trí host của một địa chỉ lớp A?
 - 3 octets cuối

Octet đầu tiên của 1 địa chỉ	Address Class	
10001010	В	
01110011	Α	
11001110	С	

Ví dụ

Host IP Address	Address Class	Network Address	Host Address	Broadcast Address
216.14.55.137	C	218.14.55	137	218.14.55.255
123.1.1.15	A	123	1.1.15	123.255.255.
150.127.221.244	В	150.127	221.244	150.127.255.255
194.125.35.199	C	194.125.35	199	194.125.35.255
175.12.239.244	В	175.12	239.244	175.12.255.255

SUBNET

• Giảm kích thước một miền quảng bá

Không dùng SUBNET

Có dùng SUBNET

Chia Subnet

 Đế tạo ra một địa chỉ subnet, người quản trị mạng mượn một vài bít (từ trái sang phải) của trường Host ID để làm Subnet

Không dùng subnet

NETWORK HOST

Có dùng subnet

NETWORK SUBNET HOST

Chia Subnet

- Cho địa chỉ 192.5.34.0
- Đây là địa chỉ lớp:
- Số bit dành cho Network ID là:
- Số bit dành cho Host ID là:
- Các host có thể nhận các địa chỉ IP:
- Mượn 3 bit từ Host ID để chia Subnet

• 3 bit đó sẽ nhận các giá trị là:

3 bit mượn	Subnet	
000	11000000.00000101.00100010.00000000	192.5.34.0
001	11000000.00000101.00100010.00100000	192.5.34.32
010	11000000.00000101.00100010.01000000	192.5.34.64
011	11000000.00000101.00100010.01100000	192.5.34.96
100	11000000.00000101.00100010.10000000	192.5.34.128
101	11000000.00000101.00100010.10100000	192.5.34.160
110	11000000.00000101.00100010.11000000	192.5.34.192
111	11000000.00000101.00100010.11100000	192.5.34.224

Thứ tự Subnet	Subnet	Địa chỉ IP có thể đánh cho host t mỗi Subnet	
Subnet 0	192.5.34.0		
Subnet 1	192.5.34.32	192.5.34.33	192.5.34.62
Subnet 2	192.5.34.64	192.5.34.65	192.5.34.94
Subnet 3	192.5.34.96	192.5.34.97	192.5.34.126
Subnet 4	192.5.34.128	192.5.34.129	192.5.34.158
Subnet 5	192.5.34.160	192.5.34.161	192.5.34.190
Subnet 6	192.5.34.192	192.5.34.193	192.5.34.222
Subnet 7	192.5.34.224		

- Cho địa chỉ 133.17.0.0
- Mượn 4 bit từ Host ID để chia Subnet
- Liệt kê các Subnet
- Liệt kê các địa chỉ IP có thể đánh cho host trên mỗi Subnet

Subnet mask

- Phân biệt phần nào trong địa chỉ IP là Network ID và phần nào là Host ID.
- 1 số 32 bit.
- Chia thành 4 octets.
- Phần nào trong địa chỉ IP là network và subnet thì phần đó trong Subnet Mask=1.
- Phần còn lại = 0.

Subnet mask

	Network	Subnet	Host
130.5.0.0	10000010 00000101	00000000	00000000
255.255.255.0	11111111 11111111	11111111	00000000
Extended Network Prefix (Subnet Mask)			

Các tính Network ID

AND Subnet Mask

Network and Subnet address

Ví dụ: cho địa chỉ 131.108.2.2, subnet mask là 255.255.255.0

131.108.2.2	10000011	01101100	00000010	00000010
AND		A	ND	
255.255.255.0	11111111	11111111	11111111	00000000
131.108.2.0	10000011	01101100	00000010	00000000

Các tính Network ID

Toán tử Boolean

			Result
1	AND	1	2.5
1	AND	0	0
0	AND	1	0
0	AND	0	0
1	OR	1	1
1	OR	0	1
0	OR	1	1
0	OR	0	0
	NOT 0 = 1		
	NOT 1 = 0		

Cho địa chỉ 192.5.34.100/24. Địa chỉ này thuộc subnet nào?

Cho địa chỉ 192.5.34.100/27. Địa chỉ này thuộc subnet nào?

Thứ tự Subnet	Subnet	Địa chỉ IP có thể đánh cho host trê mỗi Subnet	
Subnet 0	192.5.34.0		
Subnet 1	192.5.34.32	192.5.34.33	192.5.34.62
Subnet 2	192.5.34.64	192.5.34.65	192.5.34.94
Subnet 3	192.5.34.96	192.5.34.97	192.5.34.126
Subnet 4	192.5.34.128	192.5.34.129	192.5.34.158
Subnet 5	192.5.34160	192.5.34.161	192.5.34.190
Subnet 6	192.5.34.192	192.5.34.193	192.5.34.222
Subnet 7	192.5.34.224		

Default subnet mask

Default subnet mask

IP Address

Default Subnet Mask

8-bit Subnet Mask

Chúng ta có thể mượn bao nhiêu bit?

- Tất cả các bit subnet là:
 - 0: dành cho network address.
 - 1: dành cho broadcast address.
- Số bit tối thiểu có thể mượn là: 2 bits.
- Số bit tối đa có thể mượn là :
 - $A: 22 \text{ bits} \sim 2^{22} 2 = 4.194.302 \text{ subnets.}$
 - **B**: 14 bits $\sim 2^{14} 2 = 16.382$ subnets.
 - C: 06 bits $\sim 2^{06} 2 = 62$ subnets.

- Cho địa chỉ 172.16.0.0.
- Chia thành 6 subnets và sử dụng nhiều hơn 8100 hosts trên mỗi subnet.

Bước 1: subnet mask?

- Xác định lớp (class)
 - Class B
- Xác định default subnet mask
 - 255.255.0.0
- Chọn số bit mượn n = 3:
 - Số subnets là:

$$2^3 - 2 = 6$$

Số hosts trên mỗi subnet là:

$$2^{(16-3)} - 2 = 8190$$

• Có thể chọn n = 4, n = 5?

Bước 1: subnet mask?

128	64	32	16	8	4	2	1	Hệ 10
1	0	0	0	0	0	0	0	= 128
1	1	0	0	0	0	0	0	= 192
1	1	1	0	0	0	0	О	= 224
1	1	1	1	0	0	0	o	= 240
1	1	1	1	1	0	0	О	= 248
1	1	1	1	1	1	0	О	= 252
1	1	1	1	1	1	1	О	= 254
1	1	1	1	1	1	1	1	= 255

→subnet mask: 255.255.224.0.

Bước 2 : Xác định subnet ID?

Xác định các subnets khi mượn 3 bits:

• 0 subnet: .00000000.00000000

• 1st subnet: $.00100000.0000000(32=2^5)$

• 2nd subnet: .01000000.00000000

• 3rd subnet: .0110000.00000000

• 4th subnet: .10000000.00000000

• 5th subnet: .10100000.00000000

• 6^{th} subnet: $.11000000.00000000(6x2^5)$

• subnet: .11100000.0000000

Bước 3: Xác định khoảng địa chỉ host IDs

N o	Sub-network address	Possible host address	Broadcast address	Use ?
0	0.0	172.16.0.1 – 172.16.15.254	31.255	N
1	32.0	172.16.32.1 - 172.16.63.254	63.255	Υ
2	64.0	172.16.64.1 – 172.16.95.254	95.255	Υ
3	96.0	172.16.96.1 – 172.16.127.254	127.255	Υ
4	128.0	172.16.128.1 – 172.16.159.254	159.255	Y.
5	160.0	172.16.160.1 – 172.16.191.254	191.255	Υ
6	192.0	172.16.192 - 172.16.223.254	223.255	Υ
7	224.0	172.16.224.1 – 172.16.255.254	255.255	N

Bước 4: Xác định broadcast address?

•
$$1^{st} = 32.0$$

•
$$2^{\text{nd}} = 64.0$$

•
$$3^{rd} = 96.0$$

•
$$4^{th} = 128.0$$

•
$$5^{th} = 160.0$$

•
$$6^{th} = 192.0$$

Thiết lập địa chỉ IP

- Sử dụng các subnets No.1 đến No.6.
- Thiết lập địa chỉ IP cho các host và interfaces trên mỗi network.

Các địa chỉ bị mất khi chia subnet

Number of Bits Borrowed	Number of Subnets Created	Number of Hosts Per Subnet	Total Number of Hosts	Percent Used
2	2	62	124	49%
3	6	30	180	71%
4	14	14	196	77%
5	30	6	180	71%
6	62	2	124	49%

Bài tập 1: Cho địa chỉ 200.4.5.0 Mượn 3 bits

Subnet Mask = 255.255.255.224

- Số networks được tạo $ra2^3 = 8$
- Số networks có thể sử dụng được $2^3 = 8 2 = 6$
- Số host trên một network $2^5 = 32$
- Số host trên một network có thể sử dụng được: $2^5 = 32 2 = 30$
- Khoảng cách giữa các subnet là: 32

Hãy tìm địa chỉ subnet 6?

Muốn tìm địa chỉ subnet 6, ta lấy $6 \times 32 = 192$. Địa chỉ subnet $6 \times 1200.4.5.192$

Bài tập 2: Cho địa chỉ 150.4.0.0 Mượn 3 bits

- Subnet Mask = 255.255.224.0
- Số networks được tạo ra $2^3 = 8$
- Số networks có thể sử dụng được $2^3 = 8 2 = 6$
- Số host trên mỗi network $2^5 \times 256 = 8192$
- Các network sẽ cách nhau 32 tại octet thứ 3

Hãy tìm địa chỉ chỉ subnet 5?

Bài tập 3: Cho địa chỉ 150.4.0.0 Mượn 8 bits

Subnet Mask = 255.255.255.0

- Số network được tạo ra $2^8 = 256$
- Số network có thể sử dụng được: $2^8 = 256 2 = 254$
- Số host trên một network: $2^0 \times 256-2 = 254$

Hãy tìm địa chỉ subnet 26?

Bài tập 4: Cho địa chỉ 150.4.0.0 Mượn 11 bits Subnet Mask = 255.255.255.224

- Số network được tạo ra 2¹¹ = 2048 (or 2³ X 256 = 2048)
- Số network có thể sử dụng được $2^{11} = 2048 2 = 2046$
- Số host trên một network $2^5 = 32$

Hãy tìm subnet 325?