

Winning Space Race with Data Science

Twesigye Ronald Karakire 30th May, 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - Exploratory Data Analysis (EDA)
 - Predictive Analysis (Classification)
 - Logistic Regression
 - Support Vector Machine (SVM)
 - Decision Tree Classifier
 - K-Nearest Neighbour (KNN)
- Summary of all results
 - KSC LC-39A has highest launch success rate
 - Overall launch success rate has been improving since 2013
 - Decision Tree Classifier generated best accuracy score

Introduction

- Background
 - Determine cost of launch
 - Provide information for bid against SpaceX for rocket launch
- Problems
 - Predict whether Falcon 9 first stage will land successfully

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX API
 - Web Scraping (Wikipedia)
- Perform data wrangling using Python Pandas
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Standardization (Scikit-Learn Standard Scaler)
 - Train-Test Split
 - Hyperparameter tuning (GridSearchCV)
 - Train & test scores

Data Collection

- Datasets were collected from two(2) sources:
 - SpaceX API
 - Using python requests library
 - Wikipedia
 - Using python BeautifulSoup web scraping library

Data Collection – SpaceX API

Data Collection - Scraping

Data Wrangling

- Tools
 - Pandas
- Key points
 - Null value counts
 - Column data types
 - Class mean
 - Columns analysed Launch Sites, Orbit, Outcome, Class
- https://github.com/twesigyeronaldk/coursera-ibm-data-science/blob/ master/EDA.ipynb

EDA with Data Visualization

- Graphs plotted
 - Scatter plot
 - Launch Site vs Flight Number
 - Launch Site vs Payload Mass (kg)
 - Orbit vs Flight Number
 - Orbit vs Payload Mass (kg)
 - Bar graph
 - Success Rate vs Orbit
 - Line graph
 - Success Rate vs Years
 - Visualize launch success yearly trend
- https://github.com/twesigyeronaldk/coursera-ibm-data-science/blob/master/EDA% 20with%20Data%20Visualization.ipynb

EDA with SQL

Queries

- SELECT DISTINCT(LAUNCH_SITE) FROM SPACEXTBL;
- SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 0, 5;
- SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE CUSTOMER = 'NASA (CRS)';
- SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE BOOSTER_VERSION = 'F9 v1.1';
- SELECT MIN(DATE) FROM SPACEXTBL WHERE LANDING_OUTCOME = 'Success (ground pad)';
- SELECT (BOOSTER_VERSION) FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Success (drone ship)' AND PAYLOAD MASS KG > 4000 AND PAYLOAD MASS KG < 6000;
- SELECT COUNT(*), MISSION_OUTCOME FROM SPACEXTBL GROUP BY MISSION_OUTCOME;
- SELECT BOOSTER_VERSION, PAYLOAD_MASS__KG_ FROM SPACEXTBL ORDER BY PAYLOAD_MASS__KG_ DESC;
- SELECT BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Failure (drone ship)' AND DATE LIKE '2015%';
- SELECT LANDING_OUTCOME, COUNT(*) AS COUNT FROM SPACEXTBL WHERE DATE > '2010-06-04' AND DATE
 < '2017-03-20' GROUP BY LANDING_OUTCOME;
- https://github.com/twesigyeronaldk/coursera-ibm-data-science/blob/master/EDA%2
 0with%20SQL.ipynb
- Note: I run my sql queries directly inside IBM DB2 environment not jupyter notebooks

Build an Interactive Map with Folium

- Map objects
 - Circle
 - For drawing circles
 - Marker
 - For identifying particular coordinate points on the map
 - FeatureGroup
 - For grouping a particular feature (for example a collection of markers) on the map
 - MousePosition
 - To get coordinate of current mouse position over the map
- https://github.com/twesigyeronaldk/coursera-ibm-data-science/blob/master/Interactive%20Visual%20Analytics%20with%20Folium%20lab.ipynb

Build a Dashboard with Plotly Dash

- Graphs plotted
 - Pie charts
 - Success launches by site
 - For all launch sites
 - Per launch site
 - Scatter plot
 - Class vs Pay load mass (kg)
- Interactions implemented
 - Laun sites drop down menu
 - Used to switch between launch sites for target figure (pie chart)
 - Payload mass (kg) slider
 - Used to select payload mass range (kg) for target figure (scatter plot)
- https://github.com/twesigyeronaldk/coursera-ibm-data-science/blob/master/space x_dash_app.py

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- Scikit-Learn was used for the machine learning process
- After importing the data into pandas, we had to first get X, that is, the independent variables and y, the dependent variable
- We then had to first scale X using scikit-learn Standard Scaler
- We then split the data into train & test data
- To get the best hyperparameters, we used GridSearchCV for the various estimators
 - Logistic Regression
 - Support Vector Machine
 - Decision Tree Classifier
 - K-Nearest Neighbour Classifier
- We got the score of each classifier on the test data using the score method
- We also drew th confusion matrix for each of the classifiers
- https://github.com/twesigyeronaldk/coursera-ibm-data-science/blob/master/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Results - EDA(1)

- All columns have zero (0) null values except LandingPad
- LandingPad has 40.625% null values
- LaunchSite value counts

\bigcirc	CCAFS SLC 40	55
\circ		

- KSC LC 39A22
- VAFB SLC 4E13

Results - EDA(2)

Orbit value counts

0	GTO	27
0	ISS	21
0	VLEO	14
0	РО	9
0	LEO	7
0	SSO	5
0	MEO	3
0	ES-L1	1
0	HEO	1
0	SO	1
0	GEO	1

Results - EDA(3)

- Landing outcomes value counts
 - True ASDS 41
 - None None19
 - o True RTLS 14
 - False ASDS6
 - True Ocean5
 - False Ocean
 - None ASDS
 - False RTLS1

Results - Dash Plotly(1)

Results - Dash Plotly(2)

Results - Predictive Analysis

		Accuracy		
Classifier	Train	Test		
Logistic Regression	0.84	0.85		
Support Vector Machine	0.85	0.83		
Decision Tree Classifier	0.9	0.78		
KNN	0.85	0.83		

Flight Number vs. Launch Site

- Majority of the first flights (flight number < 40) where a fail for CCAFS SLC 40 launch site
- Majority of later flights (flight number > 40) where a success for CCAFS SLC 40 launch site
- Launch site VAFB SLC 4E had only three(3) fails
- Majority of flights from KSC LC 39A where a success

Payload vs. Launch Site

- Majority of payloads at CCAFS SLC 40 where less than 10 tonnes and most where fails
- CCAFS SLC 40 launches with payload > 12.5 tonnes where mostly successful
- VAFB SLC 4E had very few launches. All had a maximum payload of about 10 tonnes and most were successful
- KSC LC 39A had payloads between 2.5 and about 150 tonnes. Majority of launches were succesfull

Success Rate vs. Orbit Type

- SSO, HEO, GEO and ES-L1 orbits all had 100% success rates
- SO has to lowest success rate

Flight Number vs. Orbit Type

 Majority of launches where conducted for LEO, ISS, PO and GTO orbits

Payload vs. Orbit Type

- Majority of orbits had a payload less than 10 tonnes
- Only ISS, PO and VLEO had payloads that where greater than 10 tonnes

Launch Success Yearly Trend

- Between 2010 and 2013, there was a zero(0) percent success rate
- From 2013 upwards, the success rate began to steadily increase
- There was a slight drop in success rate during 2018 but it improved the next year

All Launch Site Names

- Launch sites
 - o CCAFS LC-40
 - o CCAFS SLC-40
 - o KSC LC-39A
 - VAFB SLC-4E
- SQL Query
 - SELECT DISTINCT(LAUNCH_SITE) FROM SPACEXTBL;

Launch Site Names Begin with 'CCA'

- Query
 - SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE
 'CCA%' LIMIT 0, 5;

Total Payload Mass

- Total payload carried by boosters from NASA
 - 45596
- Query
 - SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL
 WHERE CUSTOMER = 'NASA (CRS)';

Average Payload Mass by F9 v1.1

- Average payload mass carried by booster version F9 v1.1
 - o 2928
- Query
 - SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTBL
 WHERE BOOSTER VERSION = 'F9 v1.1';

First Successful Ground Landing Date

- Date of first successful landing outcome on ground pad
 - o 2015-12-22
- Query
 - SELECT MIN(DATE) FROM SPACEXTBL WHERE LANDING_OUTCOME = 'Success (ground pad)';

Successful Drone Ship Landing with Payload between 4000 and 6000

- Names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
 - o F9 FT B1022
 - o F9 FT B1026
 - o F9 FT B1021.2
 - o F9 FT B1031.2
- Query
 - SELECT (BOOSTER_VERSION) FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Success (drone ship)' AND PAYLOAD_MASS__KG_ > 4000 AND PAYLOAD_MASS__KG_ < 6000;

Total Number of Successful and Failure Mission Outcomes

- Total number of successful and failure mission outcomes
 - Failure (in flight)

1

Success

99

- Success (payload status unclear)1
- Query
 - SELECT MISSION_OUTCOME, COUNT(*) AS COUNT FROM SPACEXTBL GROUP BY MISSION OUTCOME;

Boosters Carried Maximum Payload

Names of the booster which have carried the maximum payload mass

```
F9 B5 B1048.4 15600
F9 B5 B1049.4 15600
F9 B5 B1051.3 15600
F9 B5 B1056.4 15600
F9 B5 B1048.5 15600
```

Query

 SELECT BOOSTER_VERSION, PAYLOAD_MASS__KG_ FROM SPACEXTBL ORDER BY PAYLOAD MASS KG DESC;

2015 Launch Records

- Failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
 - F9 v1.1 B1012 CCAFS LC-40
 - F9 v1.1 B1015 CCAFS LC-40
- Query
 - SELECT BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE LANDING_OUTCOME = 'Failure (drone ship)' AND DATE LIKE '2015%';

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

```
No attempt
Failure (drone ship)
Success (drone ship)
Controlled (ocean)
Success (ground pad)
Uncontrolled (ocean)
Failure (parachute)
Precluded (drone ship)
```

- Query
 - SELECT LANDING_OUTCOME, COUNT(*) AS COUNT FROM SPACEXTBL WHERE DATE > '2010-06-04' AND DATE < '2017-03-20' GROUP BY LANDING_OUTCOME;

Map of Launch Site Locations

• The different launch sites are located on the east and west coast of the United States

Map showing successful launches per site

• The above map narrows down to the launch sites on the east coast

SpaceX Launch Records Dashboard - Pie Chart(1)

- The above screenshot shows "All Sites" selected
- KSC LC-39A has the highest success rate of 41.7%
- CCAFS SLC-40 has the lowest success rate of 12.5%

SpaceX Launch Records Dashboard - Pie Chart(2)

- The above screenshot shows "KSC LC-39A" selected
- KSC LC-39A has an individual 76.9% success rate
- KSC LC-39A has an individual 23.1% failure rate

SpaceX Launch Records Dashboard - Scatter Plot

• Scatter plot showing relationship between payload mass (kg) and class

Classification Accuracy

 The Decision Tree Classifier has the highest training accuracy

Confusion Matrix

- True Positives 12
- True Negatives 3
- False Positives 0
- False Negatives 3

Conclusions

• Based on the result of our classifier, we will have an over 80% accuracy in making our predictions of determining whether Falcon 9 will launch successfully.

Appendix

Dash Plotly Dropdown

```
from dash import Dash, dcc, html, Input, Output
app = Dash(__name__)
app.layout = html.Div([
    dcc.Dropdown(['NYC', 'MTL', 'SF'], 'NYC', id='demo-dropdown'),
    html.Div(id='dd-output-container')
])
@app.callback(
    Output('dd-output-container', 'children'),
    Input('demo-dropdown', 'value')
def update_output(value):
    return f'You have selected {value}'
if __name__ == '__main__':
    app.run_server(debug=True)
```

Appendix

Dash Plotly Simple Slider

```
from dash import dcc, html, Input, Output
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div([
    dcc.Slider(0, 20, 5,
               value=10,
               id='my-slider'
   html.Div(id='slider-output-container')
@app.callback(
   Output('slider-output-container', 'children'),
   Input('my-slider', 'value'))
def update_output(value):
   return 'You have selected "{}"'.format(value)
if __name__ == '__main__':
    app.run_server(debug=True)
```

