DNA Sequen cing

Lecture - 3.1 & 3.2

Presented By-Faisal Imran, Assistant Professor, CSE, DIU Taslima Ferdaus Shuva, Assistant Professor, CSE, DIU

CONTENTS

- 1. DNA Sequencing
- 2. First Gen Sequencing
 -Sanger Method (1977)
- 3. Second / Next Gen Sequencing
 - 454/Roche (2005)
 - ABI SOLiD (2006)
 - Illumina/Solexa (2007)
- Third / Next-Next Gen Sequencing
 - Pacific Biosciences (PacBio)
 - Oxford Nanopore
- **5**. Miscellaneous Terms

1. DNA Sequencing

Determining nucleotide sequences

DNA Sequencing

DNA sequencing is the process of determining the precise order of nucleotides (A, T, G, C) within a DNA molecule.

2. First Generation Sequencing

Predominant method for sequencing for decades

Sanger Method

Developed by Frederick Sanger in 1977

Most popular and predominant method for DNA Sequencing for decades

Can read up to 2000 bps ▶

▶Slow and expensive

▶Labor intensive

►Human Genome Project was completed using Sanger Sequencing

Read sequence as complement of bands containing labeled strands

Step 1 - DNA Preparation

- Cut DNA into a smaller piece for sequencing
- Insert into Plasmid
- Insert Plasmid inside Bacteria
 Cell and let it multiply
- Extract all the necessary
 Plasmids and from Plasmid,
 isolate the DNA for sequencing

Step 2 –Sequencing Reaction

Strand Separation

- Heat DNA in 96°C (denaturation)

▶Primer Annealing

- Lower temperature to 50°C (annealing)
- Primer binds to DNA

Primer Extension

- Increase temperature to 60°C
- DNA Polymerase binds to Primer
- Add complementary bases (dNTP) after Primer until terminator base is added (ddNTP)

▶Termination

- Terminate chain after ddNTP is added
- ddNTP is fluorescently labelled (different colors for A, T, G, C)

Step 3 – Electrophoresis in Capillary

- Sort the newly synthesized DNA strands by length (নতুন সংশ্লেষিত ডিএনএ স্ট্যান্ডগুলি দের্ঘ্য অনুসারে সাজান) Strands are loaded inside a capillary tube
- ► An electrical negative charge pulls positively charged DNA strands through the capillary
- Emerged strands pass through a laser beam that excites the ddNTP fluorescent dye at the end of each strand
- Beam causes dye to glow in a specific wavelength/color which is captured by photocell and stored in a computer
- Computer than maps each color to each nucleotide sequentially and generates final sequence output

3. Second / Next Gen Sequencing

Less Costly methods, mostly Short Read Sequences, High number of reads

454/Roche (2005)

- Pyrosequencing technique
- Long Read Sequencing (length up to 700 bps)
- Accuracy 99.9%
- Can sequence up to 1 Million reads/run
- Fast (around 24 hours/run)
- Expensive (costs around \$10 per 1 million base)

ABI SOLiD (2006)

- SOLiD (Sequence by Ligation)
- Short Read Sequencing (length up to 100 bps)
- Accuracy 99.9%
- Can sequence up to 1.4 Billion reads/run
- Time around 1-2 weeks, Slower than other sequencers
- Cheap (costs around \$0.13 per 1 million base)

Illumina / Solexa (2007)

- Sequencing by Synthesis
- Short Read Sequencing (length up to 300 bps)
- Accuracy 99.9%
- Can sequence up to 3 Billion reads/run
- Moderately Slow (around 1-11 days/run)
- Expensive Equipment, run cost is low (costs around \$0.05-\$0.15)

4. Third / Next-Next Gen Sequencing

Long reads, Higher error rate

Pacific Biosciences (PacBio)

- Single Molecule Real Time Sequencing
- Long Read Sequencing (length up to 40,000 bps)
- Accuracy 87%
- Can sequence up to 500-1000 Mega reads/run
- Time around 30 minutes 4 hours, Faster
- Expensive Equipment, run cost is low (costs around \$0.13-\$0.60)

Oxford Nanopore

- Nanopore sequencing
- Very Long Read Sequencing (length up 500 kb), Portable
- Accuracy 92-97%
- Depends on read length selected by user
- Time around 1 minutes 48 hours, Faster
- Expensive Equipment, run cost is low (costs around \$500-\$999 per flow cell)

5. Miscellaneous Terms

Some comparisons, terms etc.

Oligonucleotide

- **⊳Short sequences of DNA or RNA**
- ▶Typically less than 20bp
- ▶Oligonucleotide of 'k' bases length is called k-mer.

Denaturation and Annealing

Denaturation

- Energy of heat pull apart two DNA strands
- Happens at a critical temperature denoted T_m

Annealing

- Decrease temperature, and strands are joined back together
 - Only complementary bases will bond

Plasmid

- Small, circular piece of DNA often found in bacteria.
- ⊳ Sizes of 2.5-20 kb
- ⊳Plasmid using method -
 - * Isolate them in large quantities
 - * Cut and splice them, adding whatever DNA needed
- * Put them back into bacteria, where they'll replicate along with the bacteria's own DNA
- * Isolate them again getting billions of copies of whatever DNA was inserted into the plasmid

Bacterial Artificial Chromosome (BAC)

- *PUsed like a plasmid*
- ▶BACs carry DNA from humans or mice or any other living being, and is inserted into a host bacterium for replication
- **BAC** is artificially constructed, unlike Plasmid

Cloning Vector

►A cloning vector is a small piece of DNA, taken from a virus, a plasmid, or the cell of a higher organism, that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes.

8%

Of Human DNA is made of Ancient Viruses

700 Terabytes

Data can be stored in 1gm DNA

50 Years Time

Type entire human genome at a speed of 60

99.9%

Human DNA is identical, 0.01% creates

TO BE CONTINUED

Impressed?

Youtube Links

⊳Sanger Sequencing - https://www.youtube.com/watch?v=0NGdehkB8jU