

ELTE TTK Fizika szak

SZAKDOLGOZAT

témavezető Wolf György

Kivonat

Egy nehézion ütközésben résztvevő alkotó elemek száma néhány ezerig terjed legfeljebb, így a kidolgozott néhány-test elméletek, mint a három-test problémára kidolgozott Fagyejev-egyenletek, nem alkalmazhatóak, de az alkotóelemek alacsony száma miatt még a statisztikus fizikai modellek sem használhatóak, ráadásul nem is egyensúlyi reakciókról van szó az esetek többségében.

A rendelkezésre álló számítási kapacitás lehetővé tette, egy-egy ilyen nemegyensúlyi reakció teljes vizsgálatát, mikroszkópikus transzport-modellek segítségével. Egy ilyen modell a Boltzmann-Uehling-Uhlenbeck elmélet (BUU), ami fázistérben leírja adott részecskék között az ütközéseket és figyelembe veszi az azok között ható kölcsönhatást, egy időfüggő, átlagtér potenciállal. Korai modellek a részecskéket szabadnak tekintették, amikor azok nem vettek részt ütközésekben.

Az én célom, hogy egy, a BUU-ra épülő szimulációhoz kidolgozzak egy olyan programot, ami a kölcsönható részecskéket, esetemben főként nukleonokat, klaszterezi, azaz csomósodásokat keres különböző távolság definíciók mellett (térben, impulzustérben, stb.). Ennek fontos szerepe lehet a detektor válasz meghatározásakor,

Tartalomjegyzék

I.	Elméleti áttekintés	3
	I.1. Bevezető	3
II.	. Transzport egyenletek	3

I. Elméleti áttekintés

I.1. Bevezető

Egy nehézion ütközés erősen nem egyensúlyi termodinamikai rendszer. A statisztikus fizikában 10^{23} részecskére jól kidolgozott, statisztikus modell áll rendelkezésünkre, továbbá jól tudjuk magyarázni a néhányrészecske rendszereket is, azonban például egy Au + Au ütközésben a részecskék száma még és már nem kezelhető a korábbi modellekkel.

Kezdetben a folyamat leírására termodinamikai modelleket állítottak fel, amelyekben különböző hipotéziseket tettek fel. Ezek közé tartozott, hogy a részecskék gyorsan termalizálódnak és kialakul egy globális egyensúly, és már egyensúlyi állapotukban detektáljuk őket. Eztután hidrodinamikai modellekhez folyamodtak amelyekben már nem volt globális, csak lokális termodinamikai egyensúly.

Azonban egy prominensebb ága a nehézion ütközések leírásának a nemegyensúlyi, mikroszkopikus transzport-modellek. Először kaszkád elméleteket dolgoztak ki, amelyben a részecskék között csak ütközéskor hatottak kölcsön, később azonban hosszú hatótávolságú erőket és nukleáris potenciálokat is figyelembe vettek.

II. Transzport egyenletek

A nehézion ütközések dinmaikáját transzport egyenletek segítségével lehet vizsgálni. Ennek két fő irányzata van, az egyik a Boltzmann-modellre épülő hidrodinamikai megközelítés, ami szerint

$$N = \int d^3 \vec{p} \int d^3 \vec{r} \quad f(\vec{r}, \vec{p}, t)$$
 (1)

ahol N a részecskék száma, míg $f(\vec{r}, \vec{p}, t)$ a fázistérben vett sűrűség függvény. Mivel a fázistérfogatelem $(d^3\vec{p}d^3\vec{r})$ állandó, azonban ütközés során a részecske sűrűség változik, így az csak a fázissűrűségen keresztül változhat. Így tehát kapjuk a Boltzmann-egyenletet

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial \vec{p}} \frac{d\vec{p}}{dt} + \frac{\partial f}{\partial \vec{r}} \frac{d\vec{r}}{dt} = I_{coll}$$
 (2)

Ezt pedig a szokott alakra hozva, bevezethetünk egy I_{coll} ütközési integrált, amire különböző hipotéziseket tehetünk majd fel.

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial \vec{p}} \vec{F} + \vec{\nabla} f \frac{\vec{p}}{m} = I_{coll}$$
 (3)

Ez még természetesen csak az alapvető fizikai modell, a transzport-modellhez az úgynevezett Boltzmann-Uehling-Uhlenbeck egyenleteket használják. Tehát az előbbi egyenletbe bevezetnek egy impulzusfüggő átlagtéret $U(\vec{r}, \vec{p})$. Alacsony energiákon a rugalmatlan ütközések elhanyagolhatóak, a rendszer csak nukleonokból áll. Így

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial \vec{p}}(-\nabla_{\vec{r}}U) + \vec{\nabla}f\frac{\vec{p}}{m} = I_{coll}$$
(4)

Ahol tömeghéjon lévő kvázi-részecske közelítéssel élve az egyenlet átfogalmazható

$$m^*(\vec{r}, \vec{p}) = m_N + U(\vec{r}, \vec{p}) \qquad E^2 = m^{*2} + p^2$$
 (5)