CLAIMS

What is claimed is:

1. A method for treating, preventing or inhibiting tumor cell metastasis in a subject comprising administering to the subject in need of such therapy a therapeutically effective amount of an activated $a_{11b}\beta_3$ receptor antagonist.

- 2. The method of claim 1, wherein the tumor ceil metastasis targets an organ system of the subject.
- 3. The method of claim 2, wherein the tumor cell metastasis targets a skeletal system of the subject.
- 4. The method of claim 3, wherein the tumor cell metastasis targets a bone of the subject skeletal system.
- 5. The method of claim 3, wherein the tumor cell metastasis targets a bone cell of the subject skeletal system.
- 6. The method of claim 1, wherein the antagonist is a platelet-specific activated $\alpha_{\text{lib}}\beta_3$ receptor antagonist.
- 7. The method of claim 1, wherein the platelet-specific activated $a_{11b}\beta_3$ receptor antagonist is a spiro compound.
- 8. The method of claim 7, wherein the spiro compound is represented by the formula:

wherein

Z is a spirocyclic nucleus selected from the group consisting of Nucleus (A), (B), (C), or (D) represented by the formulas:

Nucleus (B)

Nucleus (A)

$$(CH_2)_r$$
 A_{42} $(R_0)_n$ $(R_{10})_m$ $(CH_2)_s$ A_{43}

$$(CH_2)_r$$
 A_{51}
 A_{52}
 $(R_{10})m$
 $(CH_2)_s$
 A_{54}
 A_{53}

Nucleus (C) Nucleus (D)
$$A_{72}$$
 A_{61} A_{62} A_{63} A_{63} A_{63} A_{63} A_{63} A_{74} A_{74} A_{75} A_{76} A_{76} A_{76} A_{76} A_{76} A_{76}

wherein

the group Q--(L)_Z -- is bound to the nitrogen containing ring of nuclei (A), (B), (C), or (D) and the group R_3 is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} ; or

the group R_3 is bound to the nitrogen containing ring and the group Q--(L)_Z -- is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} ;

r and s are independently a number from zero to 5 with the proviso that not both r or s are 0 and (r+s) is not more than 6, and z is zero or one;

atoms A₄₁, A₄₂, A₄₃, A₅₁, A₅₂, A₅₃, A₅₄, A₆₁, A₆₂, A₆₃, A₆₄, A₆₅, A₇₁, A₇₂, A₇₃, A₇₄, A₇₅, or A₇₆ are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one of said atoms is carbon;

provided that the hydrogens of the nitrogen containing part of the spirocycle Z may be substituted by a number of m substituents R₁₀, wherein;

m is a number from zero to (r+s); and

R₁₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===O, or ===S, with the proviso that only one or two R₁₀ may be ===O or ===S;

n is a number from zero to 3 in Z of having nuclei (A), or a number from zero to 4 in Z having nuclei (B), a number from zero to 5 in Z having nuclei (C), or a number from zero to 6 in Z having nuclei (D);

 R_0 is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===5, with the proviso that only one or two R_0 may be ===0 or ===5; and

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.

9. The method of claim 7, wherein the spiro compound is represented by the formula:

$$(R_0)_n$$
 $(R_0)_n$
 $(R_0)_n$
 $(R_0)_n$

wherein

atoms A_i and B_j are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one atom of A_i is carbon, and at least one atom B_i is carbon;

optionally, the rings of the spirobicycle formed by A_i and B_j, respectively, are partly unsaturated;

p and q are independently numbers from 2 to 6;

m is a number from zero to p;

 R_{10} is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===O, or ===S, with the proviso that only one R_{10} may be ===O or ===S, if p is 2 or one or two R_{10} may be ===O or ===S, if p is a number from 3 to 6;

n is the number from zero to q;

 R_0 is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===O, or ===S, with the proviso that only one R_0 may be ===O or ===S, if q is 2 or one or two R_0 may be ===O or ===S, if q is a number from 3 to 6;

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof..

10. The method of claim 7, wherein the spiro compound is represented by the formula:

wherein

the spirocycle having $(A_i)_p$, C, and $(B_i)_q$ is

m Is a number from zero to 9:

R₁₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo:

n is a number from zero to 2;

R₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo;

wherein Q-(L) is attached at a and R₃ is attached at b;

-(L)-- is a bond or a substituted or unsubstituted chain selected from the group consisting of CO, CO(C_1 - C_6 alkyl), O(C_1 - C_6 alkyl), NHCO, and C_1 - C_6 alkyl;

Q is a basic group selected from the group consisting of amino, imino, amidino, hydroxyamidino, N-alkylamidine, N,N'-dialkylamidine, N-arylamidine, aminomethyleneamino, aminomethylamino, guanidino, aminoguanidino, alkylamino, dialkylamino, trialkylamino, alkylideneamino, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazollinyl, cinnolinyl, amide, thloamide, benzamidino, pteridinyl, 4aH-carbozolyl, carbozolyl, beta-carbolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, phenarsazinyl, phenothiazinyl, pyrrolinyl, imidazolidinyl, imidazolidinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, indolinyl, isoindolinyl quinuclidinyl, morpholinyl, any of the foregoing radicals substituted on a benzene ring, optionally substituted with R_{2c}, wherein R_{2c} is hydrogen or halogen and any of the foregoing radicals substituted by amino, imino, amidino, hydroxyamidino, aminomethyleneamino, iminomethylamino, guanidino, alkylamino, dialkylamino, trialkylamino, tetrahydroisoquinoline, dihydrosioindole, alkylideneamino or

; and

 R_3 is an acidic group selected from the group consisting of CO_2 R_5 , $(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , or $CONH(C_1-C_6$ alkyl) $CH(NHR_4)CO_2$ R_5 , wherein R_4 is SO_2 (C_1-C_6 alkyl), SO_2 aryl, or SO_2 (substituted aryl); and

R₅ is hydrogen, C₁-C₆ alkyl, aryl, or substituted aryl; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.

11. The method of claim 7, wherein the spiro compound is represented by the formula:

or a pro-drug thereof.

12. The method of claim 11, wherein the pro-drug is represented by the formula:

- 13. A method for preventing or inhibiting tumor cell formation in a subject comprising administering to the subject in need of such therapy a therapeutically effective amount of an activated $a_{\text{IIb}}\beta_3$ receptor antagonist.
- 14. The method of claim 13, wherein the tumor cell the tumor cell is formed in an organ system of the subject.
- 15. The method of claim 14, wherein the tumor cell the tumor cell is formed in a skeletal system of the subject.

16. The method of claim 15, wherein the tumor cell the tumor cell is formed in a bone of the subject skeletal system.

- 17. The method of claim 15, wherein the tumor cell the tumor cell is formed in a bone cell of the subject skeletal system.
- 18. The method of claim 13, wherein the antagonist is a platelet-specific activated $a_{\text{lib}}\beta_3$ receptor antagonist.
- 19. The method of claim 18, wherein the platelet-specific activated $a_{\text{IIb}}\beta_3$ receptor antagonist is a spiro compound.
- 20. The method of claim 19, wherein the spiro compound is represented by the formula:

$$Q-(L)_{Z}-Z-R_{3}$$

wherein

Z is a spirocyclic nucleus selected from the group consisting of Nucleus (A), (B), (C), or (D) represented by the formulas:

wherein

the group Q--(L)_Z -- is bound to the nitrogen containing ring of nuclei (A), (B), (C), or (D) and the group R₃ is bound to the ring formed by the groups A₄₁, A₄₂, A₄₃, A₅₁, A₅₂, A₅₃, A₅₄, A₆₁, A₆₂, A₆₃, A₆₄, A₆₅, A₇₁, A₇₂, A₇₃, A₇₄, A₇₅, or A₇₆; or

the group R_3 is bound to the nitrogen containing ring and the group Q--(L)_Z -- is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} ;

r and s are independently a number from zero to 5 with the proviso that not both r or s are 0 and (r+s) is not more than 6, and z is zero or one;

atoms A₄₁, A₄₂, A₄₃, A₅₁, A₅₂, A₅₃, A₅₄, A₆₁, A₆₂, A₆₃, A₆₄, A₆₅, A₇₁, A₇₂, A₇₃, A₇₄, A₇₅, or A₇₆ are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one of said atoms is carbon;

the hydrogens of the nitrogen containing part of the spirocycle Z may be substituted by a number of m substituents R_{10} , wherein;

m is a number from zero to (r+s); and

 R_{10} Is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===5, with the proviso that only one or two R_{10} may be ===0 or ===5;

n is a number from zero to 3 in Z of having nuclei (A), or a number from zero to 4 in Z having nuclei (B), a number from zero to 5 in Z having nuclei (C), or a number from zero to 6 in Z having nuclei (D);

 R_0 is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===5, with the proviso that only one or two R_0 may be ===0 or ===5; and

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.

21. The method of claim 19, wherein the spiro compound is represented by the formula:

wherein

atoms A_i and B_j are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one atom of A_i is carbon, and at least one atom B_j is carbon;

optionally, the rings of the spirobicycle formed by A_i and B_j, respectively, are partly unsaturated;

p and q are independently numbers from 2 to 6; m is a number from zero to p;

 R_{10} is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===\$, with the proviso that only one R_{10} may be ===0 or ===\$, if p is 2 or one or two R_{10} may be ===0 or ===\$, if p is a number from 3 to 6;

n is the number from zero to q;

 R_0 is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===O, or ===S, with the proviso that only one R_0 may be ===O or ===S, if q is a number from 3 to 6;

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof..

22. The method of claim 19, wherein the spiro compound is represented by the formula:

$$Q \xrightarrow{(L)} A \qquad C \qquad B \qquad (R_0)_n$$

$$(R_{10})_m \qquad R_3$$

wherein

the spirocycle having $(A_i)_p$, C, and $(B_j)_q$ is

m is a number from zero to 9;

R₁₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo;

n is a number from zero to 2;

R₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo;

wherein Q-(L) is attached at a and R₃ is attached at b;

--(L)-- is a bond or a substituted or unsubstituted chain selected from the group consisting of CO, CO(C₁-C₆ alkyl), O(C₁-C₆ alkyl), NHCO, and C₁-C₆ alkyl;

Q is a basic group selected from the group consisting of amino, imlno, amidino, hydroxyamidino, N-alkylamidine, N,N'-dialkylamidine, N-arylamidine, aminomethyleneamino, aminomethylamino, guanidino, aminoguanidino, alkylamino, dialkylamino, trialkylamino, alkylideneamino, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, indolizinyl, isoindolyl, 3H-Indolyl, indolyl, 1H-Indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, amide, thioamide, benzamidino, pteridinyl, 4aH-carbozolyl, carbozolyl, beta-carbolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, phenarsazinyl, phenothiazinyl, pyrrolinyl, imidazolidinyl, pyrazolidinyl, pyrazolinyl, plperidyl, piperazinyl, indolinyl, isoindollnyl quinuclidinyl, morphollnyl, any of the foregoing radicals substituted on a benzene ring, optionally substituted with R_{2c}, wherein R_{2c} is hydrogen or halogen and any of the foregoing radicals substituted by amino, imino, amidino, hydroxyamidino, aminomethyleneamino, iminomethylamino, guanidino, alkylamino, dialkylamino, trialkylamino, tetrahydrolsoquinoline, dihydrosioindole, alkylideneamino or

; and

 R_3 is an acidic group selected from the group consisting of CO_2 R_5 , $(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , or $CONH(C_1-C_6$ alkyl) $CH(NHR_4)CO_2$ R_5 , wherein R_4 is SO_2 (C_1-C_6 alkyl), SO_2 aryl, or SO_2 (substituted aryl); and

R₅ is hydrogen, C₁-C₈ alkyl, aryl, or substituted aryl; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.

23. The method of claim 19, wherein the spiro compound is represented by the formula:

or a pro-drug thereof.

24. The method of claim 23, wherein the pro-drug is represented by the formula:

- 25. A method for destroying a tumor in a subject comprising administering to the subject in need of such therapy a therapeutically effective amount of an activated $a_{lib}\beta_3$ receptor antagonist.
- 26. The method of claim 25, wherein the tumor cell resides in an organ system of the subject.
- 27. The method of claim 26, wherein the tumor cell resides in a skeletal system of the subject.
- 28. The method of claim 27, wherein the tumor cell resides in a bone of the subject skeletal system.
- 29. The method of claim 27, wherein the tumor cell resides in a bone cell of the subject skeletal system.
- 30. The method of claim 25, wherein the antagonist is a platelet-specific activated $a_{\text{IIb}}\beta_3$ receptor antagonist.
- 31. The method of claim 30, wherein the platelet-specific activated $a_{\text{llb}}\beta_3$ receptor antagonist is a spiro compound.

32. The method of claim 31, wherein the spiro compound is represented by the formula:

wherein

Z is a spirocyclic nucleus selected from the group consisting of Nucleus (A), (B), (C), or (D) represented by the formulas:

Nucleus (A) Nucleus (B)
$$(CH_2)_r \xrightarrow{A_{42}} (R_0)_n \xrightarrow{(CH_2)_r} (CH_2)_s \xrightarrow{A_{51}} (R_0)_n$$
 Nucleus (C) Nucleus (D)
$$(CH_2)_r \xrightarrow{A_{61}} (R_0)_n \xrightarrow{(CH_2)_r} (CH_2)_s \xrightarrow{A_{61}} (R_0)_n$$
 Nucleus (D)
$$(CH_2)_r \xrightarrow{A_{71}} (R_0)_n \xrightarrow{(CH_2)_r} (CH_2)_s \xrightarrow{A_{71}} (R_0)_n$$

wherein

the group Q--(L)_Z -- is bound to the nitrogen containing ring of nuclei (A), (B), (C), or (D) and the group R₃ is bound to the ring formed by the groups A₄₁, A₄₂, A₄₃, A₅₁, A₅₂, A₅₃, A₅₄, A₆₁, A₆₂, A₆₃, A₆₄, A₆₅, A₇₁, A₇₂, A₇₃, A₇₄, A₇₅, or A₇₆; or

the group R_3 is bound to the nitrogen containing ring and the group Q--(L)_Z -- is bound to the ring formed by the groups A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} ;

r and s are independently a number from zero to 5 with the proviso that not both r or s are 0 and (r+s) is not more than 6, and z is zero or one;

atoms A_{41} , A_{42} , A_{43} , A_{51} , A_{52} , A_{53} , A_{54} , A_{61} , A_{62} , A_{63} , A_{64} , A_{65} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , or A_{76} are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one of said atoms is carbon;

the hydrogens of the nitrogen containing part of the spirocycle Z may be substituted by a number of m substituents R₁₀, wherein;

m is a number from zero to (r+s); and

 R_{10} is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===5, with the proviso that only one or two R_{10} may be ===0 or ===5;

n is a number from zero to 3 in Z of having nuclei (A), or a number from zero to 4 in Z having nuclei (B), a number from zero to 5 in Z having nuclei (C), or a number from zero to 6 in Z having nuclei (D);

 R_0 is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===5, with the proviso that only one or two R_0 may be ===0 or ===5; and

-(L)- Is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.

33. The method of claim 31, wherein the spiro compound is represented by the formula:

wherein

atoms A_i and B_j are independently selected from carbon, nitrogen, oxygen or sulfur, provided that at least one atom of A_i is carbon, and at least one atom B_i is carbon;

optionally, the rings of the spirobicycle formed by A_l and B_l , respectively, are partly unsaturated;

p and q are independently numbers from 2 to 6;

m is a number from zero to p;

 R_{10} is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, sulfo, ===0, or ===\$, with the proviso that only one R_{10} may be ===0 or ===\$, if p is 2 or one or two R_{10} may be ===0 or ===\$, if p is a number from 3 to 6;

n is the number from zero to q;

R₀ is the same or different and is a non-interfering substituent independently selected from hydrogen, alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano,

halo, nitro, sulfo, ===0, or ===5, with the proviso that only one R_0 may be ===0 or ===5, if q is 2 or one or two R_0 may be ===0 or ===5, if q is a number from 3 to 6;

--(L)-- is a bond or a divalent substituted or unsubstituted chain of from 1 to 10 atoms selected from the group consisting of carbon, nitrogen, sulfur, and oxygen;

Q is a basic group containing one or more basic radicals; and R₃ is an acidic group containing one or more acid radicals; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof..

34. The method of claim 31, wherein the spiro compound is represented by the formula:

Q—(L)
$$(R_0)_n$$
 $(R_0)_n$ $(R_10)_m$ $(R_3)_n$

wherein

the spirocycle having $(A_i)_p$, C, and $(B_j)_q$ is

m is a number from zero to 9;

R₁₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo;

n is a number from zero to 2;

R₀ is the same or different and is a non-interfering substituent independently selected from alkyl, halosubstituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, hydroxy, alkoxy, arylalkoxy, amino, substituted amino, carbamoyl, carboxy, acyl, cyano, halo, nitro, or sulfo;

wherein Q--(L) is attached at a and R₃ is attached at b;

--(L)-- is a bond or a substituted or unsubstituted chain selected from the group consisting of CO, CO(C_1 - C_6 alkyl), O(C_1 - C_6 alkyl), NHCO, and C_1 - C_6 alkyl;

Q is a basic group selected from the group consisting of amino, imino, amidino, hydroxyamidino, N-alkylamidine, N,N'-dialkylamidine, N-arylamidine, aminomethyleneamino, aminomethylamino, guanidino, aminoguanidino, alkylamino, dialkylamino, trialkylamino, alkylideneamino, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl,

phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, amide, thioamide, benzamidino, pteridinyl, 4aH-carbozolyl, carbozolyl, beta-carbolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, phenarsazinyi, phenothiazinyl, pyrrolinyl, imidazolidinyl, imidazolidinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, indolinyl, isoindolinyl quinuclidinyl, morpholinyl, any of the foregoing radicals substituted on a benzene ring, optionally substituted with R_{2c}, wherein R_{2c} is hydrogen or halogen and any of the foregoing radicals substituted by amino, imino, amidino, hydroxyamidino, aminomethyleneamino, iminomethylamino, guanidino, alkylamino, dialkylamino, tetrahydroisoquinoline, dihydrosioindole, alkylideneamino or

; and

 R_3 is an acidic group selected from the group consisting of CO_2 R_5 , $(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , $CO(C_1-C_6$ alkyl) CO_2 R_5 , or $CONH(C_1-C_6$ alkyl) $CH(NHR_4)CO_2$ R_5 , wherein R_4 is SO_2 (C_1-C_6 alkyl), SO_2 aryl, or SO_2 (substituted aryl); and

R₅ is hydrogen, C₁-C₆ alkyl, aryl, or substituted aryl; or a pharmaceutically-acceptable sait, solvate or pro-drug thereof.

35. The method of claim 31, wherein the spiro compound is represented by the formula:

or a pro-drug thereof.

36. The method of claim 35, wherein the pro-drug is represented by the formula:

10

- 37. A method for treating, preventing or inhibiting tumor cell metastasis to bone in a subject comprising replacing substantially all bone marrow affected by tumor cell metastasis transplant in the subject, wherein said bone marrow is replaced with β_3^{-1} bone marrow.
- 38. A method for treating, preventing or reversing tumor metastasis or formation comprising modulating β_3 integrin expression.
- 39. The method of claim 38, wherein the modulating β_3 integrin expression comprises decreasing the β_3 integrin expression in a mammalian cell.
 - 40. The method of claim 39, wherein decreasing the expression comprises transforming the cell to express a polynucleotide anti-sense to at least a portion of an endogenous polynucleotide encoding β_3 integrin.
 - 41. The method of claim 39, wherein decreasing the expression comprises transfecting the cell with a polynucleotide anti-sense to at least a portion of an endogenous polynucleotide encoding β_3 integrin.
- 15 42. The method of claim 39, wherein decreasing the expression comprises transfecting a cell with a siRNA targeting at least a portion of an endogenous polynucleotide encoding β_3 integrin.