Solutionnaire EXAMEN 1

Exercice I : Analyse de signaux avec un oscilloscope

La figure 1 montre le relevé à l'oscilloscope de deux signaux de fréquence identique. La position des traces correspondant à une tension nulle (masse) a été ajustée, préalablement, au milieu de l'écran.

1) Calcul de la fréquence de ces deux signaux.

Ce calcul s'effectue en mesurant la période : $f = \frac{1}{T} = \frac{1}{8 \times 0.004} = 31.25 \, Hz$

2) Signal 1: Tension rectangulaire avec une composante continue

Amplitudes minimale et maximale:

$$A_{\min} = 0 V$$
 et $A_{\max} = 6 V$

Équations caractéristiques du signal :

On prend comme origine de temps et d'angle, la quatrième ligne verticale en partant de la gauche.

$$si$$
 $0 \le t < 16 \, ms$ $alors$ $v(t) = A_{max} = 6 \, V$

$$si$$
 16 $ms \le t < 32ms$ $alors$ $v(t) = A_{min} = 0 V$

Pour la suite, on note t_1 =16ms et la période T=32ms

Calcul de valeur moyenne :

$$V_{moy} = \frac{1}{T} \cdot \int_{0}^{T} v(t) dt = \frac{1}{T} \cdot \left[\int_{0}^{t_{1}} V_{\text{max}} dt + \int_{t_{1}}^{T} 0 dt \right] = \frac{t_{1}}{T} \cdot V_{\text{max}} = \frac{4 \times 0.004}{8 \times 0.004} \cdot 6 = 3 V$$

Calcul de valeur efficace :

$$V_{rms} = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} v(t)^{2} \cdot dt} = \sqrt{\frac{1}{T} \cdot \left[\int_{0}^{t_{1}} A_{\text{max}}^{2} \cdot dt + \int_{t_{1}}^{T} 0^{2} dt \right]} = A_{\text{max}} \cdot \sqrt{\frac{t_{1}}{T}} = 6 \cdot \sqrt{\frac{0.016}{0.032}} = 4.24 V$$

3) Signal 2: Courant sinusoïdal

Amplitudes minimale et maximale:

$$A_{\min} = -15A$$
 et $A_{\max} = 15A$

Équations caractéristiques du signal :

On prend comme origine de temps et d'angle, la troisième ligne verticale en partant de la gauche. Dans ce cas, on obtient :

$$v(t) = A_1 \cdot \sin(2\pi f \cdot t)$$
 ou $v(\alpha) = A_1 \cdot \sin(\alpha)$

$$v(t) = 15 \cdot \sin(2\pi f \cdot t)$$
 ou $v(\alpha) = 15 \cdot \sin(\alpha)$

Calcul de valeur moyenne :

Cette valeur moyenne peut se déduire directement sur le graphique. Elle est égale à 0. On peut aussi faire la démonstration :

$$V_{mov} = \frac{1}{T} \cdot \int_0^T v(t) \cdot dt = \frac{1}{2\pi} \cdot \int_0^{2\pi} v(\alpha) \cdot d\alpha = \frac{1}{2\pi} \cdot \int_0^{2\pi} \left[A_1 \cdot \sin \alpha \right] \cdot d\alpha = 0 \text{ A}$$

Calcul de valeur efficace :

On sait que la valeur efficace d'un signal sinusoïdal, sans composante continue, d'amplitude maximale

A₁ est:
$$V_{RMS} = \frac{A_1}{\sqrt{2}} = \frac{15}{\sqrt{2}} = 10.6 A$$

On peut faire aussi cette démonstration:

$$V_{RMS} = \sqrt{\frac{1}{T} \cdot \int_0^T v(t)^2 \cdot dt} = \sqrt{\frac{1}{2\pi} \cdot \int_0^{2\pi} v(\alpha)^2 \cdot d\alpha} = \sqrt{\frac{1}{2\pi} \cdot \left[\int_0^{2\pi} \left(A_1 \sin \alpha\right)^2 \cdot d\alpha\right]}$$

$$V_{RMS} = \sqrt{\frac{1}{2\pi} \cdot \left[\int_0^{2\pi} A_1^2 \cdot \left(\frac{1 - \cos 2\alpha}{2} \right) \cdot d\alpha \right]}$$

$$V_{RMS} = \sqrt{\frac{1}{2\pi} \cdot \left[\left(\frac{A_1^2}{2} \right) \cdot \left[\alpha \right]_0^{2\pi} + A_1^2 \cdot \left[-\sin 2\alpha \right]_0^{2\pi} \right]}$$

$$V_{RMS} = \sqrt{\frac{1}{2\pi} \cdot \left[2\pi \cdot \left(\frac{A_1^2}{2} \right) \right]} = \sqrt{\frac{A_1^2}{2}} = \frac{A_1}{\sqrt{2}} = \frac{15}{\sqrt{2}} = 10.6 \text{ A}$$

4) Signal 3: Fonction MATH pour le produit

Amplitudes minimale et maximale:

$$A_{\min} = -60 W(ouVA)$$
 et $A_{\max} = 90W$

Équations caractéristiques du signal :

On prend comme origine de temps et d'angle, la troisième ligne verticale en partant de la gauche. Dans ce cas, sur l'intervalle où le signal n'est pas nul, on obtient:

$$v(t) = 90 \cdot \sin(2\pi f \cdot t)$$
 entre $t_2 = 4$ ms et $t_3 = 20$ ms
On a aussi $v(t) = 0$ $pour$ $0 \le t < 4ms$
 $v(t) = 0$ $pour$ $20 \le t < 32ms$ sachant que le période T = 32ms

On peut aussi écrire :

$$v(\alpha) = 90 \cdot \sin(\alpha)$$
 pour $\frac{\pi}{4} \le \alpha < \frac{5\pi}{4}$

Calcul de valeur moyenne :

$$V_{moy} = \frac{1}{T} \cdot \int_{0}^{T} v(t) \cdot dt = \frac{1}{2\pi} \cdot \int_{0}^{2\pi} v(\alpha) \cdot d\alpha = \frac{1}{2\pi} \cdot \int_{\pi/4}^{5\pi/4} [90 \cdot \sin \alpha] \cdot d\alpha = \frac{1}{2\pi} \cdot [-90 \cdot \cos \alpha]_{\pi/4}^{5\pi/4}$$

$$V_{moy} = \frac{90}{2\pi} \cdot \left[\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right] = \frac{90}{2\pi} \cdot \sqrt{2} = 20.26 \, W$$

3

Calcul de valeur efficace :

$$\begin{split} V_{RMS} &= \sqrt{\frac{1}{T}} \cdot \int_{0}^{T} v(t)^{2} \cdot dt = \sqrt{\frac{1}{2\pi}} \cdot \int_{0}^{2\pi} v(\alpha)^{2} \cdot d\alpha = \sqrt{\frac{1}{2\pi}} \cdot \left[\int_{\frac{\pi}{4}}^{5\pi/4} \left[90 \cdot \sin \alpha \right]^{2} \cdot d\alpha \right] \\ V_{RMS} &= 90 \cdot \sqrt{\frac{1}{2\pi}} \cdot \left[\int_{\frac{\pi}{4}}^{5\pi/4} \left(\sin^{2} \alpha \right) \cdot d\alpha \right] \\ V_{RMS} &= 90 \cdot \sqrt{\frac{1}{2\pi}} \cdot \left[\int_{\frac{\pi}{4}}^{5\pi/4} \left(\frac{1 - \cos 2\alpha}{2} \right) \cdot d\alpha \right] = 90 \cdot \sqrt{\frac{1}{2\pi}} \cdot \left[\frac{\alpha}{2} - \frac{\sin 2\alpha}{4} \right]_{\frac{\pi}{4}}^{5\pi/4} \\ V_{RMS} &= 90 \cdot \sqrt{\frac{1}{4\pi}} \cdot (\pi) - \frac{1}{8\pi} \cdot \left(\sin \frac{5\pi}{2} - \sin \frac{\pi}{2} \right) = 90 \cdot \sqrt{\frac{1}{4} - \frac{1}{8\pi}} \cdot (1 - 1) = \frac{90}{2} = 45 \, W \end{split}$$

Exercice II : Convention générateur/récepteur et calcul de puissance

- La convention pour A est définie avec V₁ et I₁. Elle est de type récepteur (le courant dans A est dans le sens des potentiels décroissants).
 La convention pour D est définie avec V₂ et I₂. Elle est de type récepteur (le courant dans D est dans le sens des potentiels décroissants).
- 2) Puissance de A:

$$P_A = V_1 \cdot I_1 = 3.5 \times (-7.1) = -24.85 \, W$$
 $\Delta P_A = |V_1| \cdot \Delta I_1 + \Delta V_1 \cdot |I_1| = 3.5 \times 0.3 + 0.2 \times 7.1 = 2.47 \, W$
Résultat : $P_A = -24.9 \pm 2.5 \, W$ A fournit de la puissance (c'est un générateur)

Puissance de D:

$$P_D = V_2 \cdot I_2 = (-6.2) \times (1.1) = -6.82 \, W$$

$$\Delta P_D = |V_2| \cdot \Delta I_2 + \Delta V_2 \cdot |I_2| = 6.2 \times 0.2 + 0.4 \times 1.1 = 1.68 \, W$$
Résultat : $P_D = -6.8 \pm 1.7 \, W$
D fournit de la puissance (c'est un générateur)

3) Courant
$$I_B$$
: $I_B = -I_1 - I_2 = 7.1 - 1.1 = 6 A$ et $\Delta I_B = \Delta I_1 + \Delta I_2 = 0.3 + 0.2 = 0.5 A$
Résultat : $I_B = 6.0 \pm 0.5 A$
Puissance de B :

$$P_B = V_2 \cdot I_B = (-6.2) \times 6 = -37.2 \, W \qquad \Delta P_B = \left| V_2 \right| \cdot \Delta I_B + \Delta V_2 \cdot \left| I_B \right| = 6.2 \times 0.5 + 0.4 \times 6 = 5.5 \, W$$

Résultat :
$$P_B = -37 \pm 6 W$$

Compte tenu du sens de I_B, la convention utilisée est de type récepteur. Comme P_B est négatif, B fournit de la puissance (c'est un générateur)

4) On obtient la puissance C par bilan de puissance en sommant toutes les puissances fournies (on peut enlever le signe – de ces puissances)

$$P_C = P_A + P_B + P_D = 68.7 W$$
 C absorbe forcément de la puissance puisque A, B et D sont des générateurs.

L'incertitude
$$\Delta P_C = \Delta P_A + \Delta P_B + \Delta P_D = 2.47 + 6 + 1.68 = 10.15 W$$

Résultat :
$$P_C = 69 \pm 10 W$$

Exercice III: Dimensionnement d'une installation photovoltaïque

1)
$$P_{ray-moy} = \frac{3520}{24} = 147 \, W / m^2$$
 et $E_{ray-an} = 3.52 \times 365 = 1284 \, kWh / m^2$

2) On lit les valeurs sur la figure 3 (résultats approximatifs)

$$Vmax = 27.5V$$
 $Imax = 7.9 A$ et $P = 140 W$

La puissance de rayonnement que peut capter le panneau dépend de sa surface :

$$P_{ray} = 500 \times 1.5 = 750 W$$

Le rendement est donc
$$\eta = \frac{P}{P_{ray}} = \frac{140}{750} = 0.187 \text{ ou } 18.7\%$$

2) On lit les valeurs sur la figure 3 (résultats approximatifs)

Pray (W/m ²)	100	200	300	400	500	600	700	800	900	1000
Pcaptée_pan (W)	20	50	80	110	140	170	200	230	260	290
Pelec_pan (W)	150	300	450	600	750	900	1050	1200	1350	1500
Rendement η (%)	13.3	16.7	17.8	18.3	18.7	18.9	19	19.2	19.3	19.3

À Montréal, le panneau de 1.5 m² peut capter une puissance de rayonnement de $P_{ray} = 147 \times 1.5 = 220.5 \, W$

Dans ces conditions et en utilisant le tableau précédent, on en déduit approximativement son rendement : $\eta = 19.1\%$ (valeur comprise entre 19 et 19.2%)

3) Si on a une surface de 50 m², l'énergie électrique produite par an sera :

$$E = \eta \cdot E_{ray-an} \cdot S = 0.191 \times 3.52 \times 365 \times 50 = 12269 \text{ kWh}$$

Le coût total dépend du nombre de panneaux pour avoir une surface de 50 m²:

$$N = \frac{S_{tot}}{S_{panneau}} = \frac{50}{1.5} = 33.3 \quad donc \quad 33 panneaux$$

Coût pour 33 panneaux : C\$ = $N \cdot prix_{panneau} = 33 \times 800 = 26400$ \$

Revenu annuel lié à l'achat de l'électricité :

$$R$$
\$ / $an = 0.08$ \$ / $kWh \times E = 0.08 \times 12269 = 981.5$ \$ / an

Durée d'amortissement :
$$Duree = \frac{C\$}{R\$ / an} = \frac{26400}{981.5} = 27 \text{ ans}$$

Ce n'est pas intéressant puisque la durée de vie des panneaux est d'environ 25 ans. Il faudrait que le prix d'achat de l'énergie soit plus élevé.

Exercice IV: Identification d'un circuit équivalent

1) Essai 1:
$$\Delta I_1 = 0.003 \times 0.225 + 0.001 = 1.675 \, mA$$

Essai 2: $\Delta I_2 = 0.003 \times 0.6 + 0.001 = 2.8 \, mA$

2) Essai 1 :
$$V_T = [R_T + R] \cdot I_1$$

Essai 2 : $V_T = R_T \cdot I_2$

Donc
$$R_T \cdot I_2 = R_T \cdot I_1 + R \cdot I_1$$
 et $R_T = \frac{R \cdot I_1}{I_2 - I_1} = \frac{60 \times 0.225}{0.6 - 0.225} = 36 \Omega$

On en déduit :
$$V_T = [R_T + R] \cdot I_1 = [36 + 60] \cdot 0.225 = 21.6 V$$

- 3) On peut utiliser la méthode différentielle ou la méthode des extrêmes.
 - a) Méthode différentielle :

$$R_T = f(R, I_1, I_2) = \frac{R \cdot I_1}{I_2 - I_1} \quad \text{et}$$

$$\Delta R_T = \left| \frac{\partial f(R, I_1, I_2)}{\partial R} \right| \cdot \Delta R + \left| \frac{\partial f(R, I_1, I_2)}{\partial I_1} \right| \cdot \Delta I_1 + \left| \frac{\partial f(R, I_1, I_2)}{\partial I_2} \right| \cdot \Delta I_2$$

$$\Delta R_T = \left| \frac{I_1}{I_2 - I_1} \right| \cdot \Delta R + \left| \frac{R \cdot (I_2 - I_1) + R \cdot I_1}{\left(I_2 - I_1\right)^2} \right| \cdot \Delta I_1 + \left| \frac{-R \cdot I_1}{\left(I_2 - I_1\right)^2} \right| \cdot \Delta I_2$$

$$\Delta R_T = 0.6 \cdot 3 + 256 \times 0.001675 + 96 \times 0.0028 = 2.4976 \Omega$$

$$\Rightarrow$$
 $R_T = 36.0 \pm 2.5 \Omega$

$$\begin{aligned} V_T &= f(R_T, I_2) = R_T \cdot I_2 \\ \Delta V_T &= \left| \frac{\partial f(R_T, I_2)}{\partial R_T} \right| \cdot \Delta R_T + \left| \frac{\partial f(R_T, I_2)}{\partial I_2} \right| \cdot \Delta I_2 \\ \Delta V_T &= I_2 \cdot \Delta R_T + R_T \cdot \Delta I_2 \\ \Delta V_T &= 0.6 \times 2.498 + 36 \times 0.0028 = 1.599 \, V \end{aligned}$$

$\Rightarrow V_T = 21.6 \pm 1.6 V$

Ou
$$V_{T} = f(R, I_{1}, I_{2}) = \frac{R \cdot I_{1} \cdot I_{2}}{I_{2} - I_{1}}$$

$$\Delta V_{T} = \left| \frac{\partial f(R, I_{1}, I_{2})}{\partial R} \right| \cdot \Delta R + \left| \frac{\partial f(R, I_{1}, I_{2})}{\partial I_{1}} \right| \cdot \Delta I_{1} + \left| \frac{\partial f(R, I_{1}, I_{2})}{\partial I_{2}} \right| \cdot \Delta I_{2}$$

$$\Delta V_{T} = \left| \frac{I_{1} \cdot I_{2}}{I_{2} - I_{1}} \right| \cdot \Delta R + \left| \frac{R \cdot I_{2} \cdot (I_{2} - I_{1}) + R \cdot I_{1} \cdot I_{2}}{\left(I_{2} - I_{1}\right)^{2}} \right| \cdot \Delta I_{1} + \left| \frac{-R \cdot I_{1}^{2}}{\left(I_{2} - I_{1}\right)^{2}} \right| \cdot \Delta I_{2}$$

$$\Delta V_T = 0.36 \times 3 + 153.6 \times 0.001675 + 21.6 \times 0.0028 = 1.3977 V$$

$\Rightarrow V_T = 21.6 \pm 1.4 V$

b) Méthode des extrêmes :

Rmin	Rmax	I1min	I1max	I2min	l2max	RT	VT
57	63	0.223325	0.226675	0.5972	0.6028	34.0475426	20.3331925
57	63	0.223325	0.226675	0.5972	0.6028	37.6314945	22.4735285
57	63	0.223325	0.226675	0.5972	0.6028	34.870724	20.8247964
57	63	0.223325	0.226675	0.5972	0.6028	38.5413265	23.0168802
57	63	0.223325	0.226675	0.5972	0.6028	33.5450952	20.2209834
57	63	0.223325	0.226675	0.5972	0.6028	37.0761578	22.349508
57	63	0.223325	0.226675	0.5972	0.6028	34.3515454	20.7071115
57	63	0.223325	0.226675	0.5972	0.6028	37.9674975	22.8868075

$$R_{T \min} = \frac{R_{\min} \cdot I_{1 \min}}{I_{2 \min}} = 34.047 \,\Omega \qquad \qquad R_{T \max} = \frac{R_{\max} \cdot I_{1 \max}}{I_{2 \min}} = 38.541 \,\Omega$$

$$R_{T} = \frac{R_{T \max} + R_{T \min}}{2} = 36.294 \,\Omega \qquad \qquad \Delta R_{T} = \frac{R_{T \max} - R_{T \min}}{R} = 2.247 \,\Omega \qquad \Rightarrow \qquad R_{T} = 36.3 \pm 2.2 \,\Omega$$

$$V_{T \min} = \frac{R_{\min} \cdot I_{1 \min} \cdot I_{2 \min}}{I_{2 \min} - I_{1 \min}} = 20.333 \,V \qquad \qquad V_{T \max} = \frac{R_{\max} \cdot I_{1 \max} \cdot I_{2 \min}}{I_{2 \min} - I_{1 \max}} = 23.017 \,V$$

$$V_T = \frac{V_{T \text{ max}} + V_{T \text{ min}}}{2} = 21.675 V$$

$$V_T = \frac{V_{T \max} + V_{T \min}}{2} = 21.675 V$$
 $\Delta V_T = \frac{V_{T \max} - V_{T \min}}{2} = 1.342 V$ $\Rightarrow V_T = 21.7 \pm 1.3 V$

$$\Rightarrow V_T = 21.7 \pm 1.3 V$$