Package 'SpeciesPool'

May 29, 2019 Title Plot-specific species pools based on Beal's smoothing Version 0.0.0.9000 Description Function to calculate the plot-specific species pool, based on a vegetation database and Beals' smoothing.					
			License GPL-3		
			Encoding UTF-8		
			LazyData true		
RoxygenNote 6.1.1					
Depends dplyr, Matrix, dismo, tidyr, reshape2, SpadeR, vegan, parallel, doParallel, foreach					
R topics documented:					
beals.all bray.curtis Mij.calc SAR.IIIb SpeciesPool_sPlot					
Index					
beals.all Beals' smoothing					

Description

Calculates Beals' smoothing for all species in a target plot, based on Mij matrix

2 bray.curtis

Usage

```
beals.all(x.names, x.cover, Mij)
```

Arguments

x.names vector of species names or labelsx.cover vector of species presence-absences

Mij Matrix of pairwise likelihood of species co-occurrence (Sparse matrices ac-

cepted)

Value

A vector of bray-curtis dissimilarity between the target and all the other relevés in input.data

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

References

Ewald, J. (2002) Multiple controls of understorey plant richness in mountain forests of the Bavarian Alps. Phytocoenologia, 32, 85-100.

bray.curtis

Bray-Curtis dissimilarity

Description

Calculates Bray-Curtis dissimilarity between a target plot, and all the other plots in the dataset

Usage

```
bray.curtis(input.data, target.plot.ID)
```

Arguments

```
input.data A species x relevés matrix with abundance values target.plot.ID ID or label of target plot
```

Value

A vector of bray-curtis dissimilarity between the target and all the other relevés in input.data

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

Mij.calc 3

Mij.calc

Pairwise likelihood of species co-occurrence

Description

Intermediate step to calculate Beals' smoothing

Usage

```
Mij.calc(dt, verbose = F)
```

Arguments

dt

A data.frame with three columns: releve ID, species ID, and abundance

Value

Returns a square matrix of the likelihood of pairwise species co-occurrence

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

SAR.IIIb

Rarefaction curves

Description

Builds an empirical rarefaction curve

Usage

```
SAR.IIIb(x, areas, n = 10)
```

Arguments

x A vector of species richness

areas A vector of plot sizes

n numeric - number of intervals of rarefaction curve

Value

Returns a dataframe of cumulative richness and pooled plot areas

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

4 SpeciesPool_sPlot

SpeciesPool_sPlot Species pool based on Beal's smoothing
--

Description

For each relevé, this function selectes all neighbouring relevé having a similar potential species composition, and fits empirical non-linear functions to rarefaction curves.

Usage

```
SpeciesPool_sPlot(input.data, coords, Mij = NULL, ncores = 1,
  rows = NULL, t.radius = 20000, t.bray = 0.2, t.plot.number = 10L,
  verbose = T, species.list = F)
```

Arguments

input.data	data.frame of species abundances across relevés. It should have three columns: Relevé ID, Species ID, and species abundance
coords	A SpatialPointsDataFrame with the geographic coordinates of all plots. It should have Relevè ID and areas defined in the @data
Mij	Matrix of pairwise likelihood of species co-occurrence (Sparse matrices accepted)
ncores	integer indicating the number of cores to use. If ncores>1 the calculation will be don in parallel
rows	a vector of integers indicating on which rows of input.data the function should run
t.radius	Threshold of geographic buffer around target relevé
t.bray	Threshold of bray-curtis dissimilarity for selection relevé compositionally similar to target relevé
t.plot.number	Minimum number of neighbouring relevés for calculating rarefaction curves
verbose	logical
species.list	logical - Should the list of species composing the species pool be returned?

Value

Returns a dataframe containing for each relevé: Species - the number of species observed across all relevé neighouting the target relevé Chao, iChao2, jack1, jack2 - various species richness estimates, standard errors, as derived from the function SpadeR::ChaoSpecies nplots - number of relevés within a t.radius distance from the target relevé having a bray-curtis dissimilarity lower than t.bray beals.at.chao - cut-off of Beals' occurrence likelihood, selected as the ith species corresponding to chao n.plots.area - number of relevés within a t.radius distance, and t.bray dissimilarity from target relevés for which area data is available arr, gomp, mm, Asymp - parameter estimates for different empirical non-linear functions fitted to rarefaction curves, with relative AIC sp.pool.list - list of species compatible with target relevé, i.e. having a Beals' likelihood lower than beals.at.chao

Author(s)

Francesco Maria Sabatini Helge Bruelheide

Index

```
beals.all, 1
bray.curtis, 2

Mij.calc, 3

SAR.IIIb, 3
SpeciesPool_sPlot, 4
```