Twitter Sentiment Analysis: A case study from Automotive Industry

Project Breif

Challange

Analysis and prediction of sentiments using twitter data

Scenario

An automobile company wants to:

- 1. Maintain its Brand Reputation
- 2. What do users like/dislike about our products? Has the number of negative responses increased gradually?
- 3. To build machine learning models to predict sentiment.

Goal

- 1. Answer business questions
- 2. Build machine learning that can predict sentiment from twitter data.

PROCESS

Stopwords

Overall Sentiment Analysis

Sentiment Score Distribution

Brand Sentiment Over Time

Top 10 words found in NEGATIVE Dataframe(Trigram Analysis)

N-grams are continuous sequences of words or symbols or tokens in a

Trigram Analysis

Hypothesis Testing

The **Granger causality test** is a statistical hypothesis test for determining whether one time series is useful in forecasting another

Null Hypothesis: Past twitter sentiment values are not statistically significant for stock price prediction.

Alternative Hypothesis: Past twitter sentiment values are statistically significant for stock price prediction

ADF Test for Stationarity

Sentiment score = stationary

Tesla Stock = stationary after first difference

Granger Causality Test

Reject Null hypothesis as p value < 0.05.

	sentiment_score_x	tesla_stock_x
sentiment_score_y	1.0000	0.0
tesla_stock_y	0.0002	1.0

Top 10 words found in POSITIVE Dataframe(Trigram Analysis)

Top 10 words found in NEUTRAL Dataframe(Trigram Analysis)

Topic Modelling (LDA) Unsupervised Machine Learning Method

Topic O: tesla stock year tsla ceo investor space via value say

Topic I: bmw ev mercedes lose driver last guy front amp own

Topic 2: tesla go like would buy share much get many charge

Topic 3: mercedes model thats apple ever right china mercedespenz everyone always

Topic 4: tesla drive want mercedes dont car im doesnt say bad

Topic 5:tesla wait first stop news love turn state yeah spot

Topic 6: twitter tesla get phone im work keep owner change spacex

Topic 7: tesla money he new market start amp every get free

Topic 8: tesla car audi sell vehicle electric price battery year best

Topic 9: tesla one think make even still company need could get

Topic Modelling (LDA)

1

Tesla stock price and investors

2

BMW vs Mercedes 3

Tesla Share

4

Popularity & love for Mercedes in China

5

Tesla vs Mercedes

6

News about first spot of Tesla

7

Tesla or Twitter 8

Tesla money being invested somewhere else 9

Best selling electric vehicle

10

Company Need

Intertopic Distance Map (via multidimensional scaling)

Conclusion

- 1. what are ppl liking about a brand
- 2. Tesla is not luxurious
- 3. Tesla Stock price
- 4. Tesla needs new CEO

Modelling

Accuracy score of 10 models

- Train-Testvalidation: 50%,
 33%, 17%
- Best models: MLP,
 SVC, LGBM,
 logistic
 Regression,
 XGBoosting

Scores...

	Models	Accuracy Training	Accuracy test	F1 Macro	Precision	Recall	Fbeta_half	Cross Validation
8	Multilayer Perceptron	0.998807	0.838515	0.829478	0.829374	0.830305	0.829329	0.828157
6	Support Vector Machine	0.971375	0.834738	0.820620	0.834795	0.818516	0.827442	0.833023
9	Logistic Regression	0.891704	0.833575	0.820335	0.830631	0.818522	0.825366	0.828586
3	LightGBM	0.870808	0.835246	0.819968	0.832562	0.823994	0.825401	0.826248
4	XGBoost	0.848051	0.788028	0.768134	0.795108	0.770087	0.780034	0.787605
0	Random Forest	0.998807	0.780110	0.752642	0.788898	0.753499	0.768215	0.779018
5	Decision Tree	0.998807	0.698460	0.680597	0.679717	0.684147	0.679755	0.685892
1	Gradient Boosting	0.710844	0.691777	0.654766	0.726693	0.652781	0.683434	0.691617
7	Naive Bayes	0.742474	0.686547	0.653633	0.754386	0.631738	0.701543	0.681408
2	AdaBoost	0.659988	0.663228	0.629671	0.691253	0.642527	0.653252	0.650922

Results after Hyper Parameter Tunning

Models	Accuracy Training	Accuracy Validation	F1 Macro	Precision	Recall	Fbeta_half	Cross Validation
Support Vector Machine	0.926769	0.862173	0.850454	0.853587	0.852009	0.851766	0.855350
Multilayer Perceptron	0.996565	0.860598	0.850036	0.851543	0.850558	0.850695	0.851534
Logistic Regression	0.921092	0.858738	0.847487	0.851173	0.847326	0.849261	0.850341
XGBoost	0.863031	0.800343	0.778622	0.805509	0.779420	0.790693	0.795716
LightGBM	0.632174	0.621297	0.608123	0.631136	0.637004	0.615244	0.624969

		SVC			
	precision	recall	f1-score	support	
negative	0.82	0.71	0.76	1710	
neutral	0.85	0.97	0.91	2023	
positive	0.89	0.87	0.88	3254	
accuracy			0.86	6987	
macro avg	0.85	0.85	0.85	6987	
weighted avg	0.86	0.86	0.86	6987	

MLP

	precision	recall	f1-score	support	
negative	0.77	0.74	0.75	1710	
neutral	0.86	0.93	0.89	2023	
positive	0.89	0.86	0.87	3254	
accuracy	0.84	0.84	0.85 0.84	6987 6987	
macro avg weighted avg	0.85	0.85	0.85	6987	
mergineed dvg	0.05	0.05	0.05	3307	

Logistic Regression

2081011011							
	precision	recall	f1-score	support			
negative neutral	0.82 0.85	0.72 0.94	0.77 0.90	1710 2023			
positive	0.88	0.88	0.88	3254			
accuracy			0.86	6987			
macro avg weighted avg	0.85 0.86	0.85 0.86	0.85 0.86	6987 6987			

XGBoosting

	precision	recall	f1-score	support
negative	0.78	0.64	0.71	1710
neutral	0.72	0.98	0.83	2023
positive	0.89	0.77	0.82	3254
accuracy			0.80	6987
macro avg	0.80	0.80	0.79	6987
weighted avg	0.81	0.80	0.80	6987

LightGBMC

	precision	recall	f1-score	support
negative neutral positive	0.84 0.79 0.88	0.63 0.98 0.86	0.72 0.88 0.87	1710 2023 3254
accuracy macro avg weighted avg	0.84 0.84	0.82 0.84	0.84 0.82 0.83	6987 6987 6987

Bootstrapped confidence Interval for Fbeta_half score

SVC

Logistic Regression

Feature Importance for sentiment classification(Shap Values)

ebaycomitm Class 1 0.20 0.25 mean(|SHAP value|) (average impact on model output magnitude)

Class 2 Class 0 mean(|SHAP value|) (average impact on model output magnitude)

LightGMB

XGBoosting

Logistic Regression

class 0: Negative class 1: Neutral class 2: positive

VVords Frequencies

Next Steps

- 1. Preliminary Analysis
- 2.Add more languages, location for twitter data collection etc and do in-depth analysis of other brands.
- 3. Sentiment Analysis and stock price prediction

Thank You