Scilab Textbook Companion for Engineering Physics by S. D. Jain and G. G. Sahasrabudhe¹

Created by Kopalle Naga Anjaneyulu B.TECH

Computer Engineering
Anurag Group of Institutions-CVSR College of Engg.
College Teacher
G. Vishnu Murthy

Cross-Checked by K. V. P. Pradeep

June 3, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: S. D. Jain and G. G. Sahasrabudhe

Publisher: University Press, India

Edition: 1

Year: 2010

ISBN: 9788173716782

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Physics and Engineering	6
2	What is Light	10
3	Interference	16
4	Diffraction	28
5	Polarisation	35
6	Quantum Physics	39
7	Atomic Physics	51
8	Nuclear Physics	54
9	Structure and Properties of Matter	62
10	Dielectric and Magnetic Materials	65
11	Conductors Semiconductors and Superconductors	7 2
12	Diodes and Transistors	80
13	Charged Particles in Electric and Magnetic Fields	84
14	Lasers	89

15 Fibre Optics	93
16 Acoustics	97

List of Scilab Codes

Exa 1.1	Error Estimation	6
Exa 1.2	Error Estimation	7
Exa 1.3	Refinement in experiment	7
Exa 1.4	Refinement in theory	8
Exa 2.2	Space and Time profile	10
Exa 2.3	Wave Parameters	12
Exa 2.6	Sound and Light waves	14
Exa 3.3	Incoherence	16
Exa 3.4	Ordinary and Laser source	17
Exa 3.5	Optical path	18
Exa 3.6	Total optical path	19
Exa 3.8	Maximum observable fringes	21
Exa 3.9	Interference pattern	21
Exa 3.10	Wedge angle	22
Exa 3.13	Interference for different waves	22
Exa 3.14	Intensity distribution	23
Exa 3.15	Linear expansivity	24
Exa 3.16	Michelsons interferometer	25
Exa 3.17	Newtons ring apparatus	25
Exa 3.18	Anti Reflection Coating	26
Exa 4.4	Interference minima	28
Exa 4.6	Angles of Diffraction	29
Exa 4.8	Dispersion and resolving power	30
Exa 4.9	Determination of separation of lines	32
Exa 4.10	Diffraction of Xrays	33
Exa 4.11	Resolution of human eye	33
Exa 5.4	Brewster Law	35
Exa 5.5	Critical angle for TIR	35

Exa 5.6	Minimum thickness of wave plate	36
Exa 5.7	Birefringent crystal	37
Exa 5.9	Application of Optical Activity	37
Exa 6.1	Quantised energy levels	39
Exa 6.2	Finding Photon Energy	40
Exa 6.3	Failure of wave theory	41
Exa 6.4	Determination of h and phi	42
Exa 6.5	Incident wavelength in Compton Scattering	43
Exa 6.6	Observability of Compton effect	43
Exa 6.7	Finding pe by pp ratio	44
Exa 6.8	Wave particle characteristics	46
Exa 6.9	deBroglie wavelength of an electron	47
Exa 6.10	de Broglie wavelength	48
Exa 6.14	Application of uncertainty principle	48
Exa 6.17	Application of Schrodinger equation	49
Exa 7.1	Hydrogen atom	51
Exa 7.2	Bohr Theory	52
Exa 7.3	Bohrs theory for helium	52
Exa 7.4	Bohrs radius	53
Exa 8.1	Nuclear and atomic density	54
Exa 8.2	Rest mass of a pion	54
Exa 8.3	Nuclear and Electronic Binding Energy	55
Exa 8.4	Average Binding Energy	55
Exa 8.5	Q value of a nuclear reaction	56
Exa 8.7	Angle of ejection	57
Exa 8.8	Electronic and nuclear energy levels	57
Exa 8.9	Energy released in Fission	58
Exa 8.10	Power output	59
Exa 8.11	Radioactive dating of a tree	60
Exa 8.12	Radioactivity of iodine 131	61
Exa 8.13	Co 60 gamma rays	61
Exa 9.3	Miller indices of planes	62
Exa 9.7	Determination of crystal structure	63
Exa 9.8	Determination of density	63
Exa 10.1	Electronic polarisation	65
Exa 10.2	Diamagnetism	65
Exa 10.3	Dipole moment and polarisability	66
Exa 10.4	Orientational polarisation	67

Exa 10.5	Susceptibility of paramagnetic materials 6	7
Exa 10.6	Relative dielectric constant 6	8
Exa 10.7	Power loss due to hysteresis 6	9
Exa 10.8	Classical model of internal field 6	9
Exa 10.9	Saturation Magnetisation	0
Exa 10.10	Electronic and Ionic polarisability	0
Exa 11.3	Fermi energy in metals	2
Exa 11.4	Fraction of electrons	2
Exa 11.6	Intrinsic resistivity	3
Exa 11.7	Variation of n by N	4
Exa 11.8	Variation of n by N	4
Exa 11.9	Ef equals to Ec	5
Exa 11.10	Si doped with phosphorus	5
Exa 11.11	Silicon wafer doped with phosphorus	6
Exa 11.12	Increase in conductivity	7
Exa 11.13	Photon energy	8
Exa 11.14	Increase in conductivity	8
Exa 12.1	Determination of V0	0
Exa 12.2	Carrier concentration	1
Exa 12.3	Current through pn junction diode 8	1
Exa 12.4	Voltage regulation using Zener diode	2
Exa 12.5	Voltage gain	3
Exa 13.1	Electron in an electric field	4
Exa 13.5	Projected electron	5
Exa 13.7	Helical path of an electron	6
Exa 13.9	Electrons orbit in magnetic field 8	6
Exa 13.11	Angle of refraction	7
Exa 13.12	Bainbridge mass spectograph 8	7
Exa 13.13	Deuteron motion in a cyclotron	8
Exa 14.2	Thermal pumping	9
Exa 14.3	Calculating wavelength difference	0
Exa 14.5	deltalambda by lambda	0
Exa 14.6	Intensity of a laser beam	1
Exa 14.7	Information capacity of laser	1
Exa 15.1	Importance of cladding material	3
Exa 15.2	Number of reflections	3
Exa 15.3	Determining Limiting Diameter	
Exa. 15.4	Calculation of attenuation 9	

Exa 15.5	Calculation of maximum delay 9	5
Exa 16.1	Increase in Sound velocity	7
Exa 16.2	Limits of displacement amplitudes 9	7
Exa 16.3	Imax by Imin	8
Exa 16.4	Sound intensities	9
Exa 16.5	Determination of reverberation time	0
Exa 16.6	Determination of unknown absorption coefficient 10	0
Exa 16.7	Use of ultrasound by bats	1
Exa 16.8	Ultrasonic generators	1
Exa 16.9	Noise pollution	2
Exa 16.10	Determination of sea depth	3

List of Figures

2.1	Space and Time profile	12
2.2	Space and Time profile	13

Chapter 1

Physics and Engineering

Scilab code Exa 1.1 Error Estimation

```
1 clear;
2 clc();
3 //Given:
4 1=9.3; // length in cm
5 b=8.5;// breadth in cm
6 h=5.4; // height in cm
7 V = 1*b*h; // Volume in cm^3
8 delta_l = 0.1; delta_b = 0.1; delta_h = 0.1; //
      scale has a least count = 0.1 cm
9 // absolute error
10 delta_V = (b*h*delta_l + l*h*delta_b + l*b*delta_h);
     // in cm<sup>3</sup>
11 //relative error
12 \text{ re = delta_V/V};
13 p= re*100; // Evaluating percentage error
14 printf("Percentage Error = %d percentage.",p);
```

Scilab code Exa 1.2 Error Estimation

```
1 clear;
2 clc();
3 //Given :
4 M= 10.0; // weight in g
5 V= 5.80; //volume in cm<sup>3</sup>
6 Rho = M/V; // Density in g/cm<sup>3</sup>
7 delta_M= 0.2 // apparatus has a least count of 0.2
  delta_V = 0.05// apparatus has a least count of 0.05
  delta_Rho = (delta_M/V) + ((M*delta_V)/V^2); //
      absolute error in g/cm<sup>3</sup>
10 re = delta_Rho/Rho ; //Evaluating Relative Error
11 p = re*100; // Evaluating Percentage Error
12 printf("Percentage error = \%.1f percentage.",p);
13 //Result obtained differs from that in textbook,
      because delta_M walue is taken 0.1 g , instead of
       0.2 g as mentioned in the problem statement.
```

Scilab code Exa 1.3 Refinement in experiment

```
1 clc();
2 clear;
3 //Given:
4 //(a)
5 lc = 0.1// least count in cm
6 c = 6.9 //Circumference c in cm
7 r= 1.1 // radius of circle in cm
8 val =2*%pi;
9 // Circumference, c= 2*pi*r or c/r = 2*pi
10 // Error in c/r is , delta(c/r)= [(c/r^2)+(1/r)](LC)
```

```
(2), LC is Least Count.
11 E= ((c/r^2)+(1/r))*(1c/2);//Error in c/r is delta(c/r)
12 ob = c/r; // Observed Value
13 //Actual Value of c/r ranges between
14 ac1 = ob-E; // Evaluating Minimum value for c/r
15 ac2 = ob+E; // Evaluating Maximum value for c/r
16 p = (E/ob)*100; //Evaluating percentage error
17 printf("(a) Actual Value of c/r ranges between %.2 f -
      %.2f and Percentage error = %.2f percentage.\n
     ",ac1,ac2,p);
18 //(b)
19 lc1 = 0.001; //Now the least count is 0.001 cm
20 c1 = 6.316; // Circumference in cm
21 r1=1.005; // Circle radius in cm
22 E1 = ((c1/r1^2) + (1/r1))*(1c1/2); // Error in c/r is
       delta (c/r)
23 ob1= c1/r1; //Observed Value
24 p1=(E1/ob1)*100; // Evaluating percentage error
25 //Actual Value of c/r ranges between
26 a1= ob1-E1; // Evaluating Minimum value for c/r
27 a2= ob1+E1; // Evaluating Maximum value for c/r
28 printf("(b) Actual Value of c/r ranges between %.3 f -
      \%.3 f and Percentage error = \%.2 f percentage.\n",
     a1,a2,p1);
```

Scilab code Exa 1.4 Refinement in theory

```
1 clc();
2 clear;
3 //Given
4 // (a) Newton's Theory
5 // v= (P/rho)^2 , P= Pressure , rho = density
```

```
6 P = 76; // 76 cm of Hg pressure
7 V= 330; // velocity of sound in m/s
8 rho = 0.001293; // density for dry air at 0 degrees
      celsius in g/cm<sup>3</sup>
9 g = 980; // gravitational acceleration in cm/s<sup>2</sup>
10 //Density of mercury at room temperature is 13.6 g/
      cm^3
11 // 1 \text{ cm}^2 = 1.0*10^-4 \text{ m}^2
12 v = sqrt(((P*13.6*g)/rho)*10^-4); // velocity of
      sound in m/s
13 p= ((V-v)/V)*100; //\% lower than the experimental
14 printf("(a) It is is %d percentage lower than the
      experimental value.\n\n",p);
15
16 // (b) Laplace's Theory
17 // v = ((gama*P)/rho)^2., gamma = adiabatic index
      Thus,
18 // Given :
19 gama = 1.41 // Adiabatic index
20 //Density of mercury at room temperature is 13.6 g/
      cm^3
21 // 1 \text{ cm}^2 = 1.0*10^-4 \text{ m}^2
22 \text{ v1} = \text{sqrt}(((\text{gama*P*13.6*g})/\text{rho})*10^-4); // \text{velocity}
      of sound in m/s
23 p1 = ((V-round(v1))/V)*100; // \% higher than the
      eperimental value
24 printf("(b) It is %.1f percantage
                                           higher than the
      experimental value.\n", abs(p1));
```

Chapter 2

What is Light

Scilab code Exa 2.2 Space and Time profile

```
1 clc();
2 clear;
3 // \text{ wave y} = 2*\sin(10*\text{pi}*\text{t} - (\text{pi}*\text{x})/40 + \text{pi}/4)
4 // (a) Plot the space profile at t = T/4
5 // Comapring the given Equation with y= A*sin(omega
      *t - k*x + phi
6 omega = 10*\%pi ; //Angular frequency in rad/s
7 k= %pi/40 ; // Wave number in rad/m
8 T= 1/5; // 2*pi/T = 10*pi, so Time period is 1/5 s
9 lambda = 80; // Wavelength in m , 2*pi/lambda = pi
      /40 , so lambda = 80
10 t1= T/4; //time period in s
11 x1 = 0; // in m
12 printf ("The Space profile of a wave y = 2*\sin(10*pi*t)
       - (pi*x)/40 + pi/4) when t = T/4 \setminus n \setminus n")
13 printf("\tx (in m) \t y1(x) (in m)\n");
14 while x1<180
15 y1 = 2*sin((omega*t1)-(k*x1)+(%pi/4));
16 printf ("\t\%d\t\t\%.3 f\n", x1, y1);
17 \times 1 = \times 1 + 10;
18 end
```

```
19 //Now, we will plot the space profile from the
      values obtained for y1 for each value of x1
20 x_1 =
      [0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170];
21 \ y_1 =
      [1.414214, 2.000000, 1.414214, 0.000000, -1.414214, -2.000000, -1.414214]
22 // axis centered at (0,0)
23 axis=gca(); // Handle on axes entity
24 axis.x_location = "origin";
25 axis.y_location = "origin";
26 plot(x_1,y_1,style=5);
27 xtitle ("Space Profile at t = T/4 for the wave
     2*\sin(10*pi*t - (pi*x)/40 + pi/4)", "x (in m)", "
     y1(x) (in m)");
28 xpause (1000000);
29 //(b)
30 x2= lambda/8; //in m
31 t2=0; // time period in s
32 printf ("The time profile of a wave y = 2*\sin(10*pi*t)
     - (pi*x)/40 + pi/4 when x= lambda/8\n\n")
                              y2(t) (in m)\n\n");
33 printf("\t t(in s) \t
34 while t2<0.4
35 y2=2*sin((omega*t2)-(k*x2)+(%pi/4));
36 printf("\t\%.3 f\t\t\%.3 f\n", t2, y2);
37 \quad t2=t2+0.025;
38 end
39 //Now, we will plot the time profile from the values
      obtained for y2, for each value of t2
40 \ x_2
      = [0,0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.22500,0.250000,0.
41 y_2
      = [0.000000, 1.414214, 2.000000, 1.414214, 0.000000, -1.414214, -2.000000
42 // axis centered at (0,0)
43 axis1=gca(); // Handle on axes entity
```


Figure 2.1: Space and Time profile

Scilab code Exa 2.3 Wave Parameters

```
1 clc();
2 clear;
```


Figure 2.2: Space and Time profile

```
3 //Let us consider, wave function y = A*sin(omega*t)
     - K*x + phi
4 A= 0.02; // Amplitude in m
5 lambda = 6; // Wavelength (lambda) = Crest Distance
     = 6 \text{ m}
6 T= 2; // Time period is s
7 nu = 1/T; // Frequency in Hz
8 omega = 2*\%pi*nu ; //Angular Frequency in rad/s
9 k = 2*\%pi/lambda; //wave number in rad/m
10 //from Space profile, when x=1.5 m, t=0
11 y = 0.02; //in m
12 x=1.5; //in m
13 t = 0; // in s
14 phi = (asin(y/A) + (k*x) - (omega*t)); // Initial
      phase in radians
15 printf(" Wave parameters from the space profile and
      time profile \n")
16 printf(" (1) Amplitude is \%.2 \text{ f m } \text{ n} (2) Wavelength is
```

```
%d m \n (3)Time period is %d s \n (4)Frequency
is %.1f Hz \n (5)Angular Frequency is %.3f rad/s\
n (6)Wave number is %.3f rad/m \n (7)Initial
phase is %.3f radians\n",A,lambda,T,nu,omega,k,
phi);

// y(x,t=0): -0.02 = 0.02*sin(0-(pi*x)/3 + pi)
//Thus (-pi*x)/3 + pi = -pi/2,-5*pi/2, giving x=
9/2 m,21/2m

V= omega/k; // Velocity of wave in m/s
// I is proportional to A^2
I = A^2; // Intensity in m^2 (Proportional)
printf(" (8)The velocity of wave is %d m/s \n (9)
Intensity is proportional to: %.1f x 10^-4 m^2."
,V,I*10^4);
```

Scilab code Exa 2.6 Sound and Light waves

```
1 clc();
2 clear;
3 //(a) Tunning fork
4 nu= 440; // Frequency in Hz
5 V=340; // velocity of sound in air in m/s
6 lambda= V/nu; // Wavelength of sound wave in m
7 k= 2*\%pi/lambda; // Wave number in m
8 //(b) Red Light
9 nu1 = 5*10^14; // Frequency of Red light in Hz
10 V1 = 3*10^8; // Velocity of light in m/s
11 lambda1 = V1/nu1; //Wavelength of light wave in m
12 k1= 2*%pi/lambda1; // Wave number in m
13 printf("For Sound wave : \n\n Frequency: %d Hz \n
     Velocity: %d m/s \n Wavelegth: %.3f m\n Wave
     number: %.2 f m \n Wave Equation for Sound wave:
     y = A*sin((\%.2f*x)-(\%.3f*t)) \setminus n \setminus n", nu, V, lambda, k
```

Chapter 3

Interference

Scilab code Exa 3.3 Incoherence

```
1 clc();
2 clear;
3 // Given :
4 lambda1 = 5890 ; // Wavelength in angstroms
5 lambda2 = 5896 ; // Wavelength in angstroms
6 //For sodium doublet
7 nu1 = 5.0934*10^14; //Frequency in Hz
8 nu2 = 5.0882*10^14; //Frequency in Hz
10 deltanu = nu1-nu2; // Differnece in Frequencies in
11 Tc = 1/deltanu ; // Coherence time in s
12
13 n1 = Tc*nu1; // Number of Cycles of wavelength 5890
     angstroms
14 n2 = Tc*nu2; // Number of cycles of wavelegth 5896
     angstrom
15 //in this coherence time, we have:
16 printf("Cycles: %d, Wavelength %d A \n", round(n1),
     lambda1);
17 printf("Cycles: %d, Wavelength %d A", round(n2),
```

Scilab code Exa 3.4 Ordinary and Laser source

```
1 clc();
2 clear;
3 //Given:
4 deltalambda1 = 0.01; // The line width of the orange
      line of krypton, Kr<sup>86</sup> in A
  lambda = 6058; // Wavelength in angstroms =
     6058*10^-10 m
6 deltalambda2 = 0.00015; // The line width of a laser
       source in A
7 c = 3*10^8; // Velocity of light in vacuum in m/s
8 nu0 = c/(lambda*10^-10); // lambda in m , 1 A = 1.0
         10^{-10} \text{ m}
9 / 1 A = 1.0
                  10^{-10} \text{ m}
10 //For orange line of Krypton
11 Lc1= (lambda^2/deltalambda1)*10^-10; // coherence
     length in m
12 deltanu1 = c/Lc1; // bandwidth in Hz
13 Tc1 = (Lc1/c); // Coherence time in s
14 //Xi = deltanu/nu0, where nu0 = c/lambda which
      equals to (deltanu*lambda)/c, lambda in A
15 Xi1 = deltanu1/nu0 ; //degree of monochromaticity
16 //For Laser Source
17 Lc2= (lambda^2/deltalambda2)*10^-10;// coherence
     length in m
18 deltanu2 = c/Lc2; // in Hz
19 Tc2 = (Lc2/c); // Calculating Coherence time in s
20 / Xi = deltanu/nu0, where nu0 = c/lambda which
      equals to (deltanu*lambda)/c, lambda in A
21 Xi2 = deltanu2/nu0 ; // degree of monochromaticity
```

```
22 printf("For Orange line of Krypton : \n\n Coherence
    Length : \t %.4 f m \n Bandwidth : \t\t %.2 f x
    10^8 Hz \n Coherence : \t\t %.2 f x 10^-8 s \n
    Degree of Monochromaticity : %.2 f x 10^-6 \n\n"
    ,Lc1,deltanu1*10^-8,Tc1*10^8,Xi1*10^6);
23 printf("For Laser Source : \n\n Coherence Length : \t\t %.2 f m \n Bandwidth : \t\t %.2 f x 10^7 Hz \n
    Coherence : \t\t %.2 f x 10^-8 s \n Degree of
    Monochromaticity : %.2 f x 10^-8 \n\n",Lc2,
    deltanu2*10^-7,Tc2*10^8,Xi2*10^8);
```

Scilab code Exa 3.5 Optical path

```
1 clc();
2 clear;
3 //(a)
4 // Given:
5 lambda = 5890; // Wavelength in A
6 1 = 5.89; //thickness of the film in mum
7 mu = 1.35; // refractive index
8 delta = mu*1; // optical path in the medium in m
9 //(b) (i) Number of waves in the medium
10 //1 angstrom = 1.0*10^{\circ}-10 m and 1 mu m = 1*10^{\circ}-6 m
11 N= (1*10^-6)/(lambda*10^-10/mu);
12 //the distance in vaccum for those waves :
13 delta1 =N*lambda*10^-10; // optical path in m
14 //(b) (ii) Phase difference in the medium
15 //1 angstrom = 1.0*10^{-}-10 m and 1 mu m = 1*10^{-}-6 m
16 phi = ((2*\%pi)/(lambda*10^-10/mu))*(l*10^-6);
17 printf("Optical path = \%.4 \, \text{f mu m/n}", delta);
18 printf ("Number of waves : \%.1 \text{ f} \ \text{n}", N);
19 printf ("The distance in vaccum for those waves is:
     \%.4 \text{ f mu m} \quad \text{n",delta1*10^6};
```

Scilab code Exa 3.6 Total optical path

```
1 clc();
2 clear;
3 //Given:
4 lambda = 5890; // Wavelength of a beam of sodium
     light in A
5 l = 100 ; // thickness in cm
6 mu1 = 1.00; //refractive index of air
7 mu2 = 1.33; // refractive index of water
8 mu3 = 1.39; // refractive index of oil
9 mu4 = 1.64; // refractive index of glass
10 c = 3*10^8; // Velocity of light in vacuum in m/s
11 //For Air :
12 lambda1 = lambda/mu1; // wavelength of light in A
13 v1 = c/mu1; // Velocity of light in air in m/s
14 // 1 \text{cm} = 1*10^{-2} \text{ m}
15 t1 = (1*10^-2/v1); //time of travel in s
16 // 1 A = 1*10^-10 m
17 N1 = (1*10^-2)/(lambda1*10^-10); // Number of waves
18 delta1 = mu1*1; // Optical path in cm
19 //For Water :
20 lambda2 = lambda/mu2; // wavelength of light in A
21 v2 = c/mu2; // Velocity of light in water in m/s
22 / 1 \text{cm} = 1 * 10^{-2} \text{ m}
23 t2 = (1*10^-2/v2); //time of travel in s
24 / 1 A = 1*10^-10 m
25 \text{ N2} = (1*10^-2)/(lambda2*10^-10); // Number of waves}
26 delta2 = mu2*1; // Optical path in cm
27 / \text{For Oil}:
28 lambda3 = lambda/mu3; // wavelength of light in A
```

```
29 v3 = c/mu3; // Velocity of light in Oil in m/s
30 / 1 \text{cm} = 1*10^{-2} \text{ m}
31 t3 = (1*10^-2/v3); //time of travel in s
32 //1 A = 1*10^-10 m
33 N3 = (1*10^-2)/(lambda3*10^-10); // Number of waves
34 delta3 = mu3*1; // Optical path in cm
35 //For Glass:
36 \text{ lambda4} = \text{lambda/mu4}; // \text{ wavelength of light in A}
37 v4 = c/mu4; // Velocity of light in Glass in m/s
38 // 1 cm = 1*10^- - 2 m
39 t4 = (1*10^-2/v4); //time of travel in s
40 / 1 A = 1*10^-10 m
41 \text{ N4} = (1*10^-2)/(lambda4*10^-10); // Number of waves}
42 delta4 = mu4*1; // Optical path in cm
43 delta = delta1+delta2+delta3+delta4; // total
       optical path in cm
44 printf ("Parameters \t \t \ Air \t \ Water \t \
       Oil \t \t \t \ (n\n");
45 printf("Wavelength : \t\t\ %.0f A \t\t\ %.1f A \t\t\
       .1 f A \t\t \%.1 f A \n", lambda1, lambda2, lambda3,
       lambda4);
46 printf ("Velocity: \t \ \%.0 \ f \ x \ 10^8 \ m/s \ \ t \ \%.2 \ f \ x
       10^8 \text{m/s} \setminus t \%.2 \text{ f x } 10^8 \text{ m/s} \setminus t \%.2 \text{ f x } 10^8 \text{ m/s} \setminus n"
       ,v1*10^-8,v2*10^-8,v3*10^-8,v4*10^-8);
47 printf ("Time of travel : t \%2.1 f \times 10^-10 s t \%2.1 f
        x 10^{-}-10 \text{ s} \text{ t } \%2.1 \text{ f } x 10^{-}-10 \text{ s} \text{ t } \%2.1 \text{ f } x 10^{-}-10 \text{ s}
        n, t1*10^10, t2*10^10, t3*10^10, t4*10^10);
48 printf ("Number of waves: t \%.1 f \times 10^6 t t \%.1 f x
       10^6 \text{ } \text{tt} %.1f x 10^6 \text{ } \text{tt} %.1f x 10^6 \text{ } n", N1
       *10^-6, N2*10^-6, N3*10^-6, N4*10^-6);
49 printf("Optical path : \t\t %d cm \t\t %d cm \t\t %d
        cm \t \tau \mathbb{n} \tau \mathbb{n} \n\n\", delta1, delta2, delta3, delta4)
50 printf(" The total optical path = \%d \text{ cm} \ n\ \ delta);
```

Scilab code Exa 3.8 Maximum observable fringes

```
1 clc();
2 clear;
3 //Given :
4 lambda = 6058; // Wavelength of light in A
5 deltalambda1 = 0.01; // line width for a krypton
      source in A
  deltalambda2 = 0.00015; // line width for a laser
      source in A
  // The maximum number of fringes is given by n<sub>max</sub> =
      lambda/deltalambda
8 // (a) For a krypton source :
9 n_max1 = lambda/deltalambda1 ;
10 // (b) For a laser source :
11 n_max2 = lambda/deltalambda2;
12 printf ("The maximum number of fringes observable are
       : \ n \ n");
13 printf("(a) For a krypton source : %d \n\n", n_max1);
14 printf("(b) For a laser source : %d \n\n", n_max2);
```

Scilab code Exa 3.9 Interference pattern

```
1 clc();
2 clear;
3 //Given :
4 mu = 1.4; // refractive index of a thin film
5 lambda = 5890; // Wavelength of sodium light in A
```

Scilab code Exa 3.10 Wedge angle

```
1 clc();
2 clear;
3 //Given:
4 lambda = 6000; // wavelength in A
5 mu = 1; //refractive index for air
6 // Fringe pattern having 100 fringes per cm
7 betaa = 0.01; // fringe width in cm
8 // And, We know betaa = lambda/(2*mu*alpha) , so
9 // 1 A = 1.0*10^-8 cm
10 alpha = lambda*10^-8/(2*mu*betaa); // wedge angle in rad
11 printf("Wedge angle = %.3f rad",alpha);
```

Scilab code Exa 3.13 Interference for different waves

```
1 clc();
2 clear;
3 //Given :
4 angle = 4*10^-2; // angle in rad
5 //1 radian = 57.2957795 degrees
```

```
6 theta = angle *57.2957795 ; // in degrees
7 // d*sin(theta) = lambda, so d = lambda/(sin(theta))
      theta)):
8 //(a) For Sound waves
9 lambda1 = 0.75; // Wavelength in m
10 d1 = lambda1/sind(theta); // distance in m
11 //(b) For Ultrasonic waves
12 \quad lambda2 = 0.1; // Wwavelength in m
13 d2 = lambda2/sind(theta); // distance in m
14 //(c) For microwaves
15 lambda3 = 2.9; // Wavelength in cm
16 / 1 \text{cm} = 1.0 * 10^{-2} \text{ m}
17 d3 = lambda3*10^-2/sind(theta); // distance in m
18 //(d) For IR waves
19 lambda4 = 10; // Wavelength in mu_m
20 // 1 \text{ mu_m} = 1.0*10^{-6} \text{ m}
21 d4 = lambda4*10^-6/sind(theta);//distance in m
22 //(e) For light waves
23 lambda5 = 5890; // in angstroms
24 / 1 A = 1.0*10^{-10} m
25 d5 = lambda5*10^-10/sind(theta); // distance in m
26 printf(" (a) For Sound waves : \%.2 \text{ f m } \text{n}, d1);
27 printf(" (b) For Ultrasonic waves : \%.2 \text{ f m } \text{n}",d2);
28 printf(" (c) For Microwaves : \%.2 \text{ f m } \text{n}", d3);
29 printf(" (d) For IR waves : %.1 f mu m \n", d4*10^6);
30 printf(" (e) For Light waves : \%.2 \text{ f mu m } \text{n}", d5*10^6)
```

Scilab code Exa 3.14 Intensity distribution

```
1 clc();
2 clear;
3 //Given :
```

```
4 // Now, the intensity distribution is given by :
  5 // I = I_{-1} + I_{-2} + 2*(I_{-1}*I_{-2})^0.5 *\cos(alpha1 - I_{-2})^0.5 *\cos(
                      alpha2), Using alpha = alpha1 - alpha2 and I_{-}1
                     = I_{2} = I_{0}
  6 // I = 2*I_0*(1 + \cos(alpha))
  7 \text{ nu} = 1.2 * 10^6 ; // frequency in Hz
  8 c = 3*10^8 ; // velocity of light in m/s
  9 lambda = c/nu; // wavelength in m
10 d = 500; // two identical vertical dipole antenna
                     spaced 500 m apart
11 // Directions along which the intensity is maximum
12 printf("Maximum Intensity \n\n");
13 \text{ for } n = 0 : 2
14 theta = asind((n*lambda)/d); // in degrees
15 printf("---> theta = \%d degrees\n", theta);
16 \text{ end}
17 // Directions for which intensity is minimum :
18 \text{ n1} = 0;
19 theta1 = asind(((n1 + (1/2))*lambda)/d);//in degrees
20 printf("Minimum Intensity \n\n");
21 printf("--> theta = \%.1 \, f \, degrees \ n", theta1);
```

Scilab code Exa 3.15 Linear expansivity

```
1 clc();
2 clear;
3 //Given :
4 lambda = 5900 ; //Wavelength in A
5 delta_T = 150; // Temperature of the metal cylinder
    is now raised by 150 K
6 p = 20 ; // p is the number of rings shifted due to
    increase in t_n (t_n is the thickness of the air
```

```
film)
7 l = 5; // length of the metal cyclinder in mm
8 mu = 1; //refractive index for air
9 //Increase in length = (p*lambda)/2*mu
10 // 1 A = 1.0*10^-7 mm
11 delta_l = (p*lambda*10^-7)/2*mu; // increase in length in mm
12 //Linear expansivity of the metal of the cyclinder
13 alpha = (delta_l)/(l*delta_T); // in 1/K
14 printf("The linear expansivity of the metal of the cylinder using Newtons rings apparatus is: %.1f x 10^-6/K", alpha*10^6);
```

Scilab code Exa 3.16 Michelsons interferometer

Scilab code Exa 3.17 Newtons ring apparatus

```
1 clc();
2 clear;
3 //Given :
4 D10_air = 1.75 ;//diameter of the 10th bright ring
    in Newton's ring apparatus in cm
5 D10_liquid = 1.59 ; // diameter of the 10th bright
    ring in Newton's ring apparatus in cm
6 // The diameter of the nth bright ring in Newton's
    ring apparatus : D_n = 2*(R*(n + 1/2)*(lambda/mu))^0.5
7 mu = (D10_air/D10_liquid)^2;
8 printf("The refractive index of the liquid is %.3f",
    mu);
```

Scilab code Exa 3.18 Anti Reflection Coating

```
1 clc();
2 clear;
3 // Given :
4 lambda = 5500; // Wavelength in A
5 \text{ mu\_f} = 1.38; // \text{refractive index for MgF2}
6 mu_f1 = 1.48; // refractive index for lucite
7 //The minimum thickness
8 t = lambda/(4*mu_f); // thickness in A
9 printf("The minimum thickness = \%.1 f A \ln \%, t);
10 // Resultant reflected intensity = I = 2*I_0*(1 +
      cos(alpha))
11 // alpha = (2*pi/lambda)*(path difference)
12 alpha1 = (2*\%pi/lambda)*(2*mu_f*t); // angle in
      radians
13 alpha2 = (2*\%pi/lambda)*(2*mu_f1*t); // angle in
      radians
14 printf(" alpha = \%.3 f for MgF2 and \%.3 f for lucite\n
```

Chapter 4

Diffraction

Scilab code Exa 4.4 Interference minima

```
1 clc();
2 clear;
3 // Given :
4 d = 8.8*10^{-2}; // slit width in mm
5 b = 0.7; // seperation between slits in mm
6 lambda = 6328; // Wavelength in A
7 // First diffraction minima is possible, when d*sin(
      theta) = lambda
8 // 1 A = 1.0*10^{-7} mm
9 theta = asind((lambda*10^-7)/d); // angle in degrees
10 printf("theta = \%.3 \, f degrees .\n\n", theta);
11 //interference minima is possible, when sin(theta)
     = ((p + 1/2)*lambda)/b
12 \text{ for } p = 0 : 10
       //1 A = 1.0*10^{-7} mm
13
       theta1 = asind((p + 1/2)*(lambda*10^-7/b)); //
14
          angle in degrees
15
       printf("When p = \%d \setminus n",p);
       printf("theta = \%.3 \, \text{f degrees} . \n\n", theta1);
16
    if(theta1 > theta)
17
        printf(" When p \ge \%d, theta > \%.3 f degrees
18
```

```
.\n\nBetween the first two diffraction minima, %d interference minima are possible .",p,theta,2*p);

19 break;
20 end
21 end
```

Scilab code Exa 4.6 Angles of Diffraction

```
1 clc();
2 clear;
3 //Given :
4 // a+b = (2.54/N) cm
5 N = 15000; //grating has 15000 lines
6 \text{ a_plus_b} = 2.54/\text{N}; // grating element in cm
7 //Grating equation, (a+b)*sin(theta_n) = n*lambda,
     we get: theta_n = asind ((n*lamba)/(a+b))
8 printf("For line D1 and Wavelength 5890 A:\n\n");
9 printf(" Angles at which first order and second
      order maxima will be observed are :\n");
10 lambda1 = 5890; //Wavelength in A
11 for n = 1:2 // First and second order maxima
12 // 1 A = 1.0*10^{-7} mm
13 theta1_n = asind((n*lambda1*10^-8)/a_plus_b);//
      angle in degrees
14 printf(" Order : \%d , \%. 3 f degrees \n", n, theta1_n);
15 end
16 printf("For line D2 and Wavelength 5895.9 \text{ A :} \n\n");
17 printf (" Angles at which first order and second
      order maxima will be observed are :\n");
18 lambda2 = 5895.9; //Wavelength in A
19 for n1 = 1:2 //First and second order maxima
20 // 1 A = 1.0*10^{-7} mm
```

Scilab code Exa 4.8 Dispersion and resolving power

```
1 clc();
2 clear;
3 //  Given :
4 //(a) 15000 lines per inch
5 \text{ N1} = 15000; //15000 \text{ lines per inch}
6 a1_plus_b1 = (2.54/N1)*10^8; //grating element in A
7 lambda1 = 5890; //Wavelength in A
8 lambda2 = 5895.9; // Wavelength in A
9 deltalambda1 = lambda2-lambda1; //in A
10 //For first order
11 n = 1;
12 theta1 = 20.355; // in degrees
13 deltatheta1 = ((n*deltalambda1)/((a1_plus_b1)*cosd(
      theta1)));// dispersion in degrees/A
14 rp1 = n*N1; // resolving power
15
16
17 / (b) 15000 lines per cm
18 / 1 \text{ cm} = 0.393701 \text{ inches}, \text{ so We have } 15000 \text{ lines}
      per 0.393701 inches.
19 //Therefore, For 1 inch we have 15000/0.393701 =
      38099.979 or 38100 lines
20 N2 = 38100 ; //38100 lines per inch
```

```
21 a2_plus_b2 = (2.54/N2)*10^8; //grating element in A
22 //For first order
23 theta_1 = asind((n*lambda1)/(a2_plus_b2));// in
      degrees
24 deltatheta_1 = ((n*deltalambda1)/((a2_plus_b2)*cosd(
      theta_1)));// dispersion in degrees/A
25 rp2 = n*15000; // resolving power
26
27
28 //(c)5906 lines per cm
29 / 1 \text{ cm} = 0.393701 \text{ inches}, \text{ so We have } 5906 \text{ lines per}
       0.393701 inches.
30 / \text{Therefore}, For 1 inch we have 5906/0.393701 =
      15001.232
                or 15001 lines
31 N3 = 15001; //15001 lines per inch
32 a3_plus_b3 = (2.54/N3)*10^8; //grating element in A
33 //For first order
34 theta_1 = asind((n*lambda1)/(a3_plus_b3)); // in
      degrees
35 deltatheta__1 = ((n*deltalambda1)/((a3_plus_b3)*cosd
      (theta_1))); // dispersion in degrees/A
36 rp3 = n*5906; // resolving power
37
38 printf(" Number of lines \tGrating element (in A)\t
      Angle of diffraction (degrees)\t Dispersion (
      degrees/A) \t Resolving Power\n");
39 printf("%d /inch\t\t\t\ %.0 f\t\t\ %.2 f\t\t\t\\t\ %.2 f x
       10^{-3} t \ t \ t \ %d\n", N1, a1_plus_b1, theta1,
      deltatheta1*10^3,rp1);
40 printf("%d /cm\t\t\t\%.0f\t\t\%.2f \t\t\t\t\\ %.2f x
      10^-3\t \t \t \ %d\n",15000,a2_plus_b2,theta_1,
      deltatheta_1*10^3,rp2);
41 printf("%d /cm\t\t\t\%.0f\t\t\%.2f \t\t\t\t\\ %.2f x
     10^-3\t \t \t \ %d\n",5906,a3_plus_b3,theta__1,
      deltatheta__1*10^3,rp3);
42 // Error in textbook for dispersion values . Error
      in decimal point placement.
```

Scilab code Exa 4.9 Determination of separation of lines

```
1 clc();
2 clear;
3 // Given:
4 //Wavelength
5 n=1; // first order diffraction
6 \quad lambda1 = 4680 ; // Wavelength in A
7 lambda2 = 4800; //Wavelength in A
8 lambda3 = 5770; // Wave; ength in A
9 // First order diffraction angle
10 theta1 = 28.0; // angle in degrees
11 theta2 = 28.7; // angle in degrees
12 theta3 = 35.5; //angle in degrees
13 //Grating equation : (a+b) = n*lambda/sin(theta)
14 a1_plus_b1 = (n*lambda1)/sind(theta1); //spacing in
  a2_plus_b2 = (n*lambda2)/sind(theta2); //spacing in
  a3_plus_b3 = (n*lambda3)/sind(theta3); //spacing
  mean_spacing = (a1_plus_b1 + a2_plus_b2 + a3_plus_b3
     )/3; // mean spacing in A
18 printf("(a) Wavelength: %d A \n Angle of 1st order
      Diffraction: \%.1f degrees \n Spacing = \%.1f A\n\
     n", lambda1, theta1, a1_plus_b1);
19 printf("(b) Wavelength: %d A \n Angle of 1st order
     Diffraction: \%.1f degrees \n Spacing = \%.1f A\n
     n", lambda2, theta2, a2_plus_b2);
20 printf("(c) Wavelength: %d A \n Angle of 1st order
      Diffraction: \%.1f degrees \n Spacing = \%.1f A\n\
     n", lambda3, theta3, a3_plus_b3);
```

```
21 printf("Mean Spacing = %.1 f A", mean_spacing);
```

Scilab code Exa 4.10 Diffraction of Xrays

```
1 clc();
2 clear;
3 //Given:
4 N = 15000; //Number of lines per inch
5 a_plus_b = (2.54/N)*10^8 ; //Grating period in A
6 lambda = 1 ; //Wavelength in A
7 //Grating equation : (a+b)*sin(theta_n) = n*lambda
8 //First order maximum
9 theta1 = asind(lambda/a_plus_b); // angle in degrees
10 printf("The first order maximum will be obtained at : %.4f degrees .\n\n",theta1);
```

Scilab code Exa 4.11 Resolution of human eye

```
1 clc();
2 clear;
3 //Given:
4 lambda = 6000; //Wwavelength in A
5 mu = 1.33; //Refractive index for cornea
6 D = 2; //Diameter of pupil in mm
7 //Yellow light wavelength in eye:
8 lambda1 = lambda/mu; //Wavelength in A
9 //The angular resolution
10 //1 A = 1.0*10^-7 mm
11 theta_c = (1.22*lambda1*10^-7)/D; // angle in rad
```

```
12 //Maximum value for L
13 L = 1/tan(theta_c); // in mm
14 printf("Maximum value for L should be : %.1 f mm",L);
```

Polarisation

Scilab code Exa 5.4 Brewster Law

```
1 clc();
2 clear;
3 //Given:
4 mu = 1.33; //Refractive index of water
5 //Brewster's angle, theta_p = atand(mu);
6 theta_p = atand(mu); // in degrees
7 theta_s = 90-theta_p; // in degrees
8 printf("Angle = %.1f degrees", theta_s);
```

Scilab code Exa 5.5 Critical angle for TIR

```
1 clc();
2 clear;
3 //Given:
4 r = 90; // in degrees
5 mu_o= 1.658 ;// Refractive index for ordinary array
```

Scilab code Exa 5.6 Minimum thickness of wave plate

```
1 clc();
2 clear;
3 // Given :
4 mu_o = 1.544; //Refractive index for ordinary ray
5 mu_e = 1.553; // Refractive index for extraordinary
      ray
6 lambda = 5890; // Wavelength in A
7 //(a) Plane polarised light :
8 //lambda is converted from A to cm , 1 A = 1.0*10^{-8}
       cm
9 t1 = (lambda*10^-8)/(2*(mu_e-mu_o));//Minimum
      thickness in cm
10 //(b) Circularly polarised light:
11 t2 = (lambda*10^-8)/(4*(mu_e-mu_o)); // Minimum
      thickness in cm
12 printf("Minimum thickness :\n\n");
13 printf("(a) Plane polarised light: \%.2 \, \text{f} \times 10^{-3} \, \text{cm}
      n \ n", t1*10^3);
14 printf("(b) Circularly polarised light: \%.2 \text{ f} \times 10^{-3}
       cm ",t2*10^3);
```

Scilab code Exa 5.7 Birefringent crystal

```
1 clc();
2 clear;
3 //Given :
4 lambda = 5890; //Wavelength in A
5 //(a) Calcite crystal
6 mul_o = 1.658; //refractive index for ordinary ray
7 mul_e = 1.486; //refractive index for extraordinary
     ray
8 t1 = 0.0052 ; //thickness in mm
9 // 1 A = 1.0*10^{-7} mm
10 alpha1 = ((2*\%pi*(mu1_o-mu1_e)*t1)/(lambda*10^-7));
     // phase difference in radians
11 //(b) Quartz crystal
12 mu2_o = 1.544; //refractive index for ordinary ray
13 mu2_e = 1.553; //refractive index for extraordinary
     ray
14 t2 = 0.0234; // thickness in mm
15 alpha2 = ((2*\%pi*(mu2_e-mu2_o)*t2)/(lambda*10^-7));
     // phase difference in radians
16 printf("(a) Calcite crystal : \n Phase difference is
      \%.3 f radians \n",alpha1);
17 printf("(a) Quartz crystal : \n Phase difference is
     \%.3 f radians", alpha2);
```

Scilab code Exa 5.9 Application of Optical Activity

```
1 clc();
2 clear;
3 //Given :
4 rho = 6.6; // Specific rotation of sugar in degrees
    g^-1 cm^2
```

```
5 1 = 20; //length in cm
6 deltad = 1*10^-3; // difference in sugar concentration
       in g/cm<sup>3</sup>
7 lc = 0.1; // least count in degrees
8 //Rotation due to optical activity = rho*l*d
9 deltatheta = rho*l*deltad; // in degrees
10 printf("Change in theta:\%1.3 f degrees.\n\n",
      deltatheta);
11
12 if (deltatheta > lc)
       printf("The concentration of 1 mg/cm<sup>3</sup> will be
13
          detected by the given urinalysis tube.");
14
     else
         printf("The concentration of 1 mg/cm^3 will
15
            not be detected.");
16 \, \text{end}
```

Quantum Physics

Scilab code Exa 6.1 Quantised energy levels

```
1 // Quantised energy levels for microscopic and
      macroscopic systems
2 clc();
3 clear;
4 // Given :
5 // (a) For a 1s simple pendulum :
6 T = 1; // time period in s
7 nu = 1/T; //Frequency in Hz
8 //Planck's quantisation princple : E_n = n*h*nu
9 h = 6.625*10^{-34}; //Planck's constant in Js
10 printf ("Energy at First three levels for a 1s simple
       pendulum :\langle n \rangle;
11 \text{ for } n1 = 1:3
12
       E1 = n1*h*nu; // Energry in J
       printf ("E_%d : \%1.3 \text{ f x } 10^-34 \text{ J/n}", n1, E1*10^34);
13
14 end
15 // (b) For a hydrogen electron
16 // E_n = (-13.6/n^2) eV
17 printf ("Energy at First three levels for a
       hydrogen electron :\n\n");
18 \text{ for } n2 = 1:3
```

```
E2 = (-13.6/n2^2); //Energy in eV
19
20
       printf ("E_{-}\%d : %.2 f J\n", n2, E2);
21 end
22
23 //Now, for a simple pendulum
24 m = 10; // mass in g
25 a = 1; // amplitude in cm
26 omega = 2*\%pi*nu; // angular frequency in rad/s
27 / 1 \text{ g} = 1.0*10^{-3} \text{ Kg} \text{ and } 1 \text{ cm} = 1.0*10^{-2} \text{ m}
28 E = 1/2*((m*10^-3)*(omega^2)*(a*10^-2)^2); // Energy
       in J
29 //Thus, quantum number n = E/h*nu
30 n = E/(h*nu);
31 printf("Quantum number n is : \%.2 \, \text{f} \times 10^2 \, \text{km}",n
      *10^-28);
32 //(i)Pendulum :
33 //percentage change in energy = (E_n+1 - E_n)*100/
      E_n which is equal to (n+1)*h*nu - n*h*nu
      *100/(n*h*nu)
34 //Therefore, it is (1/n) * 100
35 pc = (1/n)*100; //percentage change in energy
36 printf ("Percentage change in energy (pendulum) is
      \%1.3 \text{ f x } 10^-27 \text{ } \text{n}^{n}, \text{pc*10^27});
37 //(ii) Hyderogen electron :
38 n_1 = 1; //ground state
39 n_2 = 2; // next quantum state
40 E_1 = (-13.6/n_1^2); // Energy in eV
41 E_2 = (-13.6/n_2^2); //Energy in eV
42 //percentage change : |((E_2-E_1)*100)|/|E_1|
43 pc1 = ((E_2-E_1)*100)/(-E_1); //percentage change
44 printf("Percentage change in energy (hydrogen
      electron) is \%.1 \, f, abs(pc1));
```

Scilab code Exa 6.2 Finding Photon Energy

```
1 clc();
2 clear;
3 //Given :
4 h = 6.625*10^{-34}; // Planck's constant in Js
5 c = 3*10^8 ; //velocity of light in m/s
6 // 1A = 1.0*10^{-10} \text{ m}
7 //(a) Energy of a photon :
8 // E = h*nu \text{ or } E = h*c/lambda
9 printf ("Energy of a photon is %2.4 f x 10<sup>-16</sup> /lambda
      (in A) J \ n", ((h*c)*10^10)*10^16);
10 / 1 \text{eV} = 1.6 * 10^{-19} \text{ J}
11 printf("Energy of a photon is %.0f/lambda(in A)
      n \ n", round (((h*c)/(1.6*10^-19))*10^10));
12 //(b) Visible light Range is 4000-7000 A
13 lambda1 = 4000; // Wavelength in A
14 lambda2 = 7000; // Wavelength in A
15 // 1eV = 1.6*10^{-19} J
16 E1 = (h*c)/(lambda1*10^-10*1.6*10^-19); //Energy in
      eV
17 E2 = (h*c)/(lambda2*10^-10*1.6*10^-19); //Energy in
      eV
18 printf ("Hence the range of energies for visible
      photos is \%.1 \text{ f eV} to \%.1 \text{ f eV}", E2, E1);
```

Scilab code Exa 6.3 Failure of wave theory

```
1 clc();
2 clear;
3 //Given :
4 //Power of the source = 10^-5 W = 10^-5 J/s
5 P = 10^-5 ; //Power in J/s
```

```
6  r = 10^-9; //radius in m
7  r1 = 5; // metal plate 5 m away from the source
8  WF = 5; //Work function in eV
9  area = %pi*(10^-9)^2; //area in m^2
10  area1 = 4*%pi*r1^2; // area in m^2
11  P1 = P*(area/area1); // in J/s
12  // 1eV = 1.6*10^-19 J
13  t = (WF*1.6*10^-19)/P1 ; // in s
14  //1 day = 24 hours * 60 minutes * 60 seconds
15  N = t/(24*60*60); //in days
16 printf(" It will take %.0 f days \n",round(N));
```

Scilab code Exa 6.4 Determination of h and phi

Scilab code Exa 6.5 Incident wavelength in Compton Scattering

```
1 clc();
2 clear;
3 // Given :
4 ME = 35*10^3; //Maximum energy in eV
5 theta = %pi; // photon is backscattered
6 h = 6.625*10^{-34}; //planck's constant in Js
7 \text{ m0} = 9.1*10^{-31}; //electron mass in Kg
8 c = 3*10^8; //Speed of light in m/s
9 deltalambda = (h*(1-cos(theta)))/(m0*c); // in A
10 // (h*c/lambda) - (h*c/lambda') = 35 \text{ KeV}
      deltalambda/lambda*lambda1) = (35 \text{ KeV/h*c})
11 //Simplifying the above Equation, we will obtain:
     lambda^2 + 0.048 \ lambda - 0.017
12 //Roots of the quadratic equation are :
13 values = [-0.017, 0.048, 1]; // a, b, c values of the
      quadratic equation
14 equation = poly(values, 'lamb', 'coeff'); //quadratic
       equation
15 r = roots(equation); //Roots of the final equation
16 printf ("Incident photon wavelength in Compton
      scattering is \%.2 f A",r(2));
```

Scilab code Exa 6.6 Observability of Compton effect

```
1 clc();
2 clear;
```

```
3 //Given :
4 theta = 90; //angle in degrees
5 \text{ m0} = 9.1*10^{-31}; //electron mass in kg
6 c = 3*10^8; //Speed of light in m/s
7 h = 6.625*10^{-34}; //planck's constant in Js
8 deltalambda = ((h*(1-cosd(theta)))/(m0*c))*10^10; //
       in A
9 //(a) Microwave range
10 lambda1 = 3.0; // wavelength in cm
11 // lambda1 = 3.0*10^8 A, 1 cm = 1*10^8 A
12 \text{ pc1} = ((deltalambda)*100)/((lambda1*10^8) +
      deltalambda); // percent change in photon energy
13 printf ("Percentage change in energy for radiation in
       microwave range is : \%.0 \, \text{f} \times 10^{-9} \, \text{n}, pc1*10^9);
14 //(b) Visible range
15 lambda2 = 5000; // wavelength in A
16 pc2 = ((deltalambda)/(lambda2 + deltalambda))*100 ;
      //percent change in photon energy
17 printf ("Percentage change in energy for radiation in
       visible range is : \%.0 \,\mathrm{f} \times 10^{-4} \,\mathrm{n}, pc2*10^4);
18 //(c) X-ray range
19 lambda3 = 1; //wavelength in A
20 pc3 = ((deltalambda)/(lambda3 + deltalambda))*100 ;
      //percent change in photon energy
21 printf ("Percentage change in energy for radiation in
       X-ray range is : \%.1 \text{ f} \text{ n}, pc3);
22 //(d)Gamma ray range
23 lambda4 = 0.012; // wavelength in A
24 pc4 = ((deltalambda)/(lambda4 + deltalambda))*100 ;
      //percent change in photon energy
25 printf ("Percentage change in energy for radiation in
       Gamma range is : \%.1 \text{ f} \text{ n}", pc4);
```

Scilab code Exa 6.7 Finding pe by pp ratio

```
1 clc();
2 clear;
3 //Given:
4 // Photoelectric effect
5 lambda1 = 2000; //wavelength in A
6 phi1 = 2.3; // Work function in eV
7 \text{ m} = 9.1*10^{-31}; //electron mass in kg
8 E1 = 12422/lambda1; // Energy of photon in eV
9 c = 3*10^8; //Speed of light in m/s
10 Ee1 = (12422/lambda1) - phi1; // energy of an
      electron in eV
11 pe1 = sqrt(2*m*Ee1*1.6*10^-19); //electron momentum
      in kg m/s
12 pp1 = (E1*1.6*10^-19)/c; // Momentum of incident
      photon in kg m/s
13 ratio1 = pe1/pp1 ; // (pe/pp)
14 //Compton effect
15 lambda2 = 1; // wavelength in A
16 deltalambda = 0.048; // Compton shift in A
17 E2 = 12422/lambda2; // Energy of photon in eV
18 Ee2 = (12422/lambda2) - (12422/(lambda2+deltalambda))
      ;//energy of an electron in eV
19 pe2 = sqrt(2*m*Ee2*1.6*10^-19); //electron momentum
      in kg m/s
20 pp2 = (E2*1.6*10^-19)/c; // Momentum of incident
      photon in kg m/s
21 ratio2 = pe2/pp2; // (pe/pp)
22 printf("Photoelectric effect :\n\n");
23 printf ("Electron energy: %.1f eV \n Electron
      momentum : \%.2 \text{ f x } 10^--24 \text{ kg m/s} \setminus \text{n Momentum of}
      incident photon : \%.2 \, \text{f} \times 10^{-27} \, \text{kg m/s} \setminus n \, \text{pe/pp} :
       \%.0 \text{ f } \ln \text{n}, Ee1, pe1*10^24, pp1*10^27, ratio1);
24 printf("Compton effect :\n\n");
25 printf ("Electron energy: %.1f eV \n Electron
      momentum : \%.1 \text{ f x } 10^--23 \text{ kg m/s} \setminus \text{n Momentum of}
      incident photon : \%.2 \, \text{f} \times 10^{-24} \, \text{kg m/s} \setminus \text{n pe/pp} :
```

Scilab code Exa 6.8 Wave particle characteristics

```
1 clc();
2 clear;
3 //Given:
4 //Gamma-rays, X-rays
5 \text{ lambda1} = 0.01; // \text{Wavelength in A}
6 c = 3*10^8; //Speed of light in m/s
7 E1 = 12422/lambda1; // Energy in A
8 p1 = (E1*1.6*10^-19)/c ; //Momentum in kg m/s
9 //UV
10 lambda2 = 100; // Wavelength in A
11 c = 3*10^8; //Speed of light in m/s
12 E2 = 12422/lambda2; // Energy in A
13 p2 = (E2*1.6*10^-19)/c; //Momentum in kg m/s
14 //IR
15 lambda3 = 1*10^-4; // Wavelength in m
16 c = 3*10^8; //Speed of light in m/s
17 / lambda3 = 1*10^- - 4*10^1 0 A, 1 m = 1*10^1 0 A
18 E3 = 12422/(lambda3*10^10); // Energy in A
19 p3 = (E3*1.6*10^-19)/c; //Momentum in kg m/s
20 //Microwave
21 \quad lambda4 = 1; // Wavelength in m
22 c = 3*10^8; //Speed of light in m/s
23 / lambda4 = 1*10^10 A, 1 m = 1*10^10 A
        12422/(lambda4*10^10); // Energy in A
24 E4 =
25 \text{ p4} = (E4*1.6*10^-19)/c ; //Momentum in kg m/s
26 //Radio waves
27 \text{ lambda5} = 100; // Wavelength in m}
28 c = 3*10^8; //Speed of light in m/s
29 / lambda5 = 100*10^10 A, 1 m = 1*10^10 A
```

Scilab code Exa 6.9 deBroglie wavelength of an electron

```
1 clc();
2 clear;
3 //Given :
4 h = 6.625*10^-34; //planck's constant in Js
5 m = 9.109*10^-31; // electron mass in kg
6 e = 1.6*10^-19; // charge of an electron in C
7 //Lambda = h/sqrt(2*m*eV) here we dont have V , so
    let us caluclate the remaining part.
8 lambda = h/sqrt(2*m*e); // wavelength in A
9 // 1 A = 1.0*10^-10 m
10 printf("Lambda(A) = %.2 f/sqrt(V) ",lambda
    /(1.0*10^-10));
```

Scilab code Exa 6.10 de Broglie wavelength

Scilab code Exa 6.14 Application of uncertainty principle

```
1 clc();
2 clear;
3 //Given:
4 //(a) Ball
5 h = 6.625*10^-34; //planck's constant in Js
6 m1 = 45; //mass in g
7 v1 = 40; //Speed in m/s
8 prec1 = 1.5/100; //precision
```

```
9 \ // \ m1 \ = \ 45*10^{-} - 3 \ kg \ , \ 1 \ g \ = \ 1.0*10^{-} - 3 \ kg
10 p1 =m1*10^-3*v1; // momentum in kg m/s
11 //(deltap/p)*100 = 1.5
12 \text{ deltap1} = prec1*p1;
13 deltax1 = h/deltap1; // uncertainty in position in m
14 printf ("Uncertainty in position for a ball: %.2f x
       10^-32 \text{ m } \text{ } \text{n}", deltax1*10^32);
15 //(b) Electron
16 m2 = 9.1*10^-31; //electron mass in kg
17 v2 = 2*10^6; // Speed in m/s
18 prec2 = 1.5/100; // precision
19 p2 = m2*v2; // momentum in kg m/s
20 //(deltap/p)*100 = 1.5
21 \text{ deltap2} = \text{prec2*p2};
22 deltax2 = h/deltap2; // uncertainty in position in m
23 // 1 A = 1.0*10^{-10} m
24 printf ("Uncertainty in position for an electron : \%
      .0 f A \n, deltax2/(1.0*10^-10));
```

Scilab code Exa 6.17 Application of Schrodinger equation

```
Energry in J
        printf("E_{-}\%d: %.1 f x 10^{-}-64 J\n",n1,En1*10^64);
12
13 \text{ end}
14 / (b) For an electron
15 m2 = 9.1*10^-31; //electron mass in kg
16 L2 = 1; // width in A
17 / L2 = 1*10^{-} - 10 \text{ m}, 1 A = 1.0*10^{-} - 10 \text{ m}
18 printf("(b)For an electron \n\n");
19 \text{ for } n2 = 1:3
        En2 = (n2^2*h^2)/(8*m2*(L2*10^-10)^2); //
20
            Energry in J
         \mbox{\tt printf}\,("\,E_{-}\%d~:~\%.1\,f~eV\backslash n"\,\mbox{\tt ,n2\,\tt,(En2}
21
            *6.24150934*10^18); // 1J = 6.24150934*10^18
               \mathrm{eV}
22 \text{ end}
```

Atomic Physics

Scilab code Exa 7.1 Hydrogen atom

```
1 clc();
2 clear;
3 // Given :
4 n = 1 ; // ground state
5 \text{ m} = 9.109382*10^{-31}; //electron mass in kg
6 h = 6.625*10^{-34}; //planck's constant in Js
7 e = 1.602176*10^-19; // Charge of an electron in C
8 e0 = 8.854188*10^{-12}; // Vacuum permittivity in F/m
9 r1 = (n^2*h^2*e0)/(\%pi*m*e^2);// Radius in A
10 v1 = e^2/(2*h*e0*n); // Velocity in m/s
11 E1 = -((m*e^4)/(8*n^2*h^2*e0^2)); // Energy of an
      electron in eV
12 // 1 A = 1.0*10^{-10} m, 1 eV = 1.6*10^{-19} J
13 printf ("For hydrogen atom : \n Radius = \%.2 f A \n
      Velocity = \%.1 \, \text{f} \times 10^{\circ} \, 6 \, \text{m/s} \setminus \text{n} Energy of an
      electron = \%.1 f eV", r1*10^10, v1*10^-6, E1
      /(1.6*10^-19));
```

Scilab code Exa 7.2 Bohr Theory

```
1 clc();
2 clear;
3 //Given :
4 //(a)
5 m = 9.109382*10^-31; //electron mass in kg
6 c = 2.997925*10^8; //Speed of light in m/s
7 h = 6.626069*10^-34; //planck's constant in Js
8 e = 1.602176*10^-19; // Charge of an electron in C
9 e0 = 8.854188*10^-12; // Vacuum permittivity in F/m
10 R = (m*e^4)/(8*h^3*e0^2*c); // Rydberg constant in m
11 printf ("Rydberg constant for hydrogen : %.2 f cm^-1\n
      n, R*10^-2);
12 //(b)
13 M = 1.672622*10^-27; // proton mass in kg
14 R1 = ((m*e^4)/(8*h^3*e0^2*c))*(1/(1 + (m/M))); //
      Rydberg Constant in m<sup>-1</sup>
15 //1 \text{ m}^- - 1 = 1.0 * 10^- - 2 \text{ cm}^- - 1
16 printf("Rydberg Constant is \%.2 \text{ f cm}^-1", R1*10^-2);
```

Scilab code Exa 7.3 Bohrs theory for helium

```
1 clc();
2 clear;
3 //Given :
```

Scilab code Exa 7.4 Bohrs radius

```
1 clc();
2 clear;
3 //Given
4 h = 6.625*10^-34; //planck's constant in Js
5 m = 9.1*10^-31; //electron mass in kg
6 E1 = 13.6; //Energy of electron in eV
7 //1 eV = 1.6*10^-19 J
8 p = sqrt(2*m*E1*1.6*10^-19); //momentum in kg m/s
9 deltax = h/(2*%pi*p);
10 // 1 A = 1.0*10^-10 m
11 printf("Uncertainty in position : %.2 f A", deltax /(1.0*10^-10));
```

Nuclear Physics

Scilab code Exa 8.1 Nuclear and atomic density

```
1 clc();
2 clear;
3 //Given:
4 mp = 1.67*10^-27 ; // proton mass in kg
5 r0 = 1.2*10^-15; // constant in m
6 a0 = 0.5*10^-10; // atomic dimensions in m
7 //rho_nucleus = nuclear mass/ nuclear volume
8 rho_nucleus = (3*mp)/(4*%pi*r0^3); // nuclear density in kg/m^3
9 //ratio = rho_nucleus/rho_atom = (a0/r0)^3
10 ratio = a0^3/r0^3;
11 printf("Nuclear density is %.1f x 10^17 kg/m^3 \n", rho_nucleus*10^-17);
12 printf("Nuclear density is %.1f x 10^13 times Atomic density.", ratio*10^-13);
```

Scilab code Exa 8.2 Rest mass of a pion

```
1 clc();
2 clear;
3 //Given :
4 h = 1.05*10^-34; //planck's constant in Js
5 m = 9.1*10^-31; //electron rest mass in kg
6 c = 3*10^8; //Speed of light in m/s
7 b = 1.7*10^-15; // range of nuclear force in m
8 m_pi = h/(b*c); // rest mass of a pion in kg
9 t = m_pi/m; // times the rest mass of an electron
10 printf("Rest mass of a pion is %d times the rest mass of an electron",t);
11 // textbook answer is 220 , because approximate value for m_pi was considered.
```

Scilab code Exa 8.3 Nuclear and Electronic Binding Energy

```
1 clc();
2 clear;
3 //Given :
4 mp = 1.007276470 ; // proton mass in u
5 mn = 1.008665012; // neutron mass in u
6 md = 2.013553215; // deuteron mass in u
7 //E = ( mp + mn - md)*c^2
8 // 1 u * c^2 = 931.5 MeV , where 1 u = 1.66*10^-27 kg and c = 3*10^8 m/s
9 E = (mp + mn - md)*931.5; // Binding energy in MeV
10 printf("Binding energy : %.3 f MeV",E);
```

Scilab code Exa 8.4 Average Binding Energy

```
1 clc();
2 clear;
3 //Given :
4 m_alpha = 4.001506106; // mass of an alpha particle
    in u
5 mp = 1.007276470 ; // proton mass in u
6 mn = 1.008665012; // neutron mass in u
7 //E = ( 2*mp + 2*mn - m_alpha)*c^2
8 // 1 u * c^2 = 931.5 MeV , where 1 u = 1.66*10^-27
    kg and c = 3*10^8 m/s
9 E = (2*mp + 2*mn - m_alpha)*931.5; // Binding energy
    in MeV
10 printf("Average binding energy per nucleon : %.3 f
    MeV", E/4);
```

Scilab code Exa 8.5 Q value of a nuclear reaction

```
1 clc();
2 clear;
3 //Given :
4 Mn = 14.00753; //mass of Nitrogen 14 in u
5 Mo = 17.0045; // mass of Oxygen 17 in u
6 m_alpha = 4.00387; // mass of alpha particle in u
7 mp = 1.00184; // mass of proton in u
8 //Q = (m_alpha + Mn - Mo - mp)*c^2
9 //// 1 u * c^2 = 931.5 MeV , where 1 u = 1.66*10^-27 kg and c = 3*10^8 m/s
10 Q = (m_alpha + Mn - Mo - mp)*931.5 ;// Q value in MeV
11 printf("Q value is %.1 f MeV",Q);
```

Scilab code Exa 8.7 Angle of ejection

```
1 clc();
2 clear;
3 //Given :
4 Q = 4 ;// in MeV
5 Ex = 2; // in MeV
6 Ey = 5 ; // in MeV
7 mx = 4; // in u
8 my = 1 ; // in u
9 My =13; // in u
10 theta = acosd(( (Ey*(1 + (my/My))) - (Ex*(1 - (mx/My))) - Q )/((2/My)*sqrt(mx*Ex*my*Ey))); // angle of ejection in degrees
11 printf("Angle of ejection is %.0f degrees", theta);
```

Scilab code Exa 8.8 Electronic and nuclear energy levels

```
1 clc();
2 clear;
3 //Given :
4 h = 6.625*10^-34 ; //planck's constant in Js
5 me = 9.1*10^-31 ; //electron mass in kg
6 mn = 1.67*10^-27; // a nucleon mass in kg
7 //(a) For electron
8 L1 = 1; // in A
9 //E = (n^2*h^2)/(8*m*L^2) , here n value is not given , so let us calculate the remaining part (
```

```
neglecting n^2 in the formula)

10  //L1 = 1*10^-10 m , 1A = 1.0*10^-10 m

11  E1 = h^2/(8*me*(L1*10^-10)^2); // energy in J

12  //(b) For nucleon

13  L2 = 1; // in fm

14  //E = (n^2*h^2)/(8*m*L^2) , here n value is not given , so let us calculate the remaining part (neglecting n^2 in the formula)

15  //L2 = 1*10^-15 m , 1 fm = 1.0*10^-15 m

16  E2 = h^2/(8*mn*(L2*10^-15)^2); // energy in J

17  printf("Energy for an electron : %.1 f x 10^-17 x n^2 J \n",E1*10^17);

18  printf("Energy for a nucleon : %.2 f x 10^-11 x n^2 J",E2*10^11);
```

Scilab code Exa 8.9 Energy released in Fission

```
1 clc();
2 clear;
3 //Given :
4 Na = 6.023*10^23 ; // Avogadro constant in atoms/
    mole
5 LE = 200 ; // liberated energy in MeV
6 mm = 235; // molar mass of U 235 in gm/mole
7 // 1 eV = 1.6*10^-19 J , 1 MeV = 1.0*10^6 eV
8 RE = (Na*LE*1.6*10^-19*10^6)/mm ; //released energy
    in J
9 // 1 cal = 4.187 J
10 EC = RE/4.187 ; // energy in cal
11 //Burning 1 kg of coal releases 7000 K cal of energy
12 Q1 = EC/(7000*10^3); // Quantity of Coal in Kg
13 //Exploding 1 kg of TNT releases 1000 cal of energy
14 Q2 = EC/1000; // Quantity of TNT in kg
```

```
15 printf("Energy released : %.0 f x 10^10 cal \n",EC
     *10^-10);
16 printf(" %.1 f tonnes of Coal\n",Q1*10^-3);
17 printf(" %.0 f tonnes of TNT\n",Q2*10^-3);
18 // Results obtained differ from those in textbook,
    because approximate values were considered in
    textbook.
```

Scilab code Exa 8.10 Power output

```
1 clc();
2 clear;
3 // Given :
4 Na = 6.023*10^23; // Avogadro constant atoms/mole
5 LE = 200; // liberated energy in MeV
6 mm = 235*10^{-3}; // molar mass of U 235 in gm/mole
7 p = 30/100 ; // conversion efficiency
8 // 1 \text{ eV} = 1.6*10^{-}-19 \text{ J}, 1 \text{ MeV} = 1.0*10^{-}6 \text{ eV}
9 RE = (Na*LE*1.6*10^-19*10^6)/mm; //released energy
     in J per day
10 // 1 \, day = 24 \, hrs * 60 \, mins * 60 \, sec
11 P = RE/(24*60*60); // Power output in W per day
12 // 1 \text{ cal} = 4.187 \text{ J}
13 EC = RE/4.187; // energy in cal
14 //Burning 1 kg of coal releases 7000 K cal of energy
15 Q1 = EC/(7000*10^3); // Quantity of Coal in Kg per
      day
16 EP = p*P; // electric power in W
17 printf(" \%.0 f tonnes of Coal\n",Q1*10^-3);
18 printf(" Electric power for 30 percent conversion
      efficiency : \%.1 \text{ f kW}", EP*10^-3);
19 // Results obtained differ from those in textbook,
      because approximate values were considered in
```

Scilab code Exa 8.11 Radioactive dating of a tree

```
1 clc();
2 clear;
3 //Given :
4 T_half = 5730; // carbon 14 half life in years
5 Na = 6.023*10^23; // Avogadro constant in nuclei/
     mole
6 M = 25; // charcoal mass in gm
7 mm = 12; // molar mass of carbon 12 in gm/mole
8 a = 250; // disinitegrations per minute (Carbon 14
       activity)
9 // 1 \text{ year} = 525949 \text{ minutes}
10 lambda = 0.693/(T_half*525949); // disinitegrations
     per minute per nucleus
11 NO_1 = (Na/mm)*M; // Number of nuclei (Carbon 12)
12 // Carbon 14 to Carbon 12 ratio = 1.3*10^-12
13 \text{ NO}_2 = 1.3*10^-12*NO_1 ; // Number of nuclei (Carbon
       14)
14 RO = NO_2*lambda; // disinitegrations per minute
     per nucleus
15 a0 = R0; // initial activity
16 t = log(a0/a)/lambda;
17 // 1 \text{ year} = 525949 \text{ minutes}
18 printf("The tree died %d years ago", t/525949);
19 // Result obtained differs from the textbook,
     because R0 value obtained here is 375.1025, where
       as in textbook it is 374.
```

Scilab code Exa 8.12 Radioactivity of iodine 131

Scilab code Exa 8.13 Co 60 gamma rays

```
1 clc();
2 clear;
3 //Given :
4 RBE = 0.7 ; //RBE factor for cobalt 60 gamma rays
5 dose = 1000 ; // dose in rad
6 e = RBE*dose; // equivalent dose in rem
7 printf("Equivalent dose is %d rem",e);
```

Structure and Properties of Matter

Scilab code Exa 9.3 Miller indices of planes

```
1 clc();
2 clear;
3 // Given :
4 // Intercepts
5 ix = 1/3; //along x-axis
6 iy = 2/3; // along y-axis
7 iz =1; // along z-axis
8 // Reciprocals
9 \text{ rx} = 1/\text{ix};
10 \text{ ry} = 1/iy;
11 rz = 1/iz;
12 // Conversion
13 x = rx*2;
14 y = ry*2;
15 z = rz*2;
16 printf("Miller indices of the plane are : ( %d %d %d
       )",x,y,z);
```

Scilab code Exa 9.7 Determination of crystal structure

```
1 clc();
2 clear;
3 //Given:
4 n = 1;
5 theta = 30; // angle in degrees
6 lambda = 1.67; // wavelength in A
7 r = 1.25; // atomic radius in A
8 //Bragg's Law : 2*d*sin(theta) = n*lambda , d= d111
9 d111 = (n*lambda)/(2*sind(theta));
10 //plane (111)
11 h =1; k=1; l=1;
12 / dhkl = a/sqrt(h^2 + k^2 + l^2)
13 a = d111*sqrt(h^2 + k^2 + l^2); // in A
14 \text{ ratio} = r/a;
15 printf(" Since, r/a = \%.4 f and r = \%f*a
                                                Crystal
      Structure : BCC", ratio, ratio);
```

Scilab code Exa 9.8 Determination of density

```
1 clc();
2 clear;
3 //Given:
4 n = 1;
5 theta = 30; //angle in degrees
6 lambda = 2.88; // wavelength in A
7 M = 108; // atomic weight in kg
```

```
8 Z = 4; // unit cell of silver is FCC
9 Na = 6.023*10^26 ; // Avogadro constant in kmole
10 //Bragg's Law : 2*d*sin(theta) = n*lambda , d = d110
11 d110 = (n*lambda)/(2*sind(theta)); // in A
12 //plane (110)
13 h =1; k=1; l=0;
14 //dhkl = a/sqrt(h^2 + k^2 + l^2)
15 a = d110*sqrt(h^2 + k^2 + l^2); // in A
16 //1 A = 1.0*10^-10 m
17 rho = (Z*M)/(Na*(a*10^-10)^3); // density in kg/m^3
18 printf(" Density of silver : %.1 f kg/m^3",rho);
```

Dielectric and Magnetic Materials

Scilab code Exa 10.1 Electronic polarisation

```
1 clc();
2 clear;
3 //Given:
4 er = 1.0000684; // relative dielectric constant
5 N = 2.7*10^25; // atoms/m^3
6 //We know, er - 1 = 4*pi*N*R^3
7 R = ((er-1)/(4*%pi*N))^(1/3); // in m
8 printf("R: %.1f x 10^-10 m", R*10^10);
```

Scilab code Exa 10.2 Diamagnetism

```
1 clc();
2 clear;
3 //Given :
```

```
4 R = 1; // radius in A
5 N = 5*10^28 ; // atoms/m^3
6 \text{ mu}_0 = 4*\%\text{pi}*10^-7; // \text{ permiability of free space in}
       H/m
7 mu_r = 1; // relative permiability
8 m = 9.1*10^{-31} // electron mass in kg
9 e = 1.6*10^-19; // charge of an electron in C
10 / R = 1*10^{-}-10 \text{ m} because 1 A = 1.0*10^{-}-10 \text{ m}
11 chi = -(N*e^2*(R*10^-10)^2*mu_0*mu_r)/(4*m); //
      Susceptibility of diamagnetic material
12 printf ("Susceptibility of diamagnetic materials
                                                          is
     \%.2 \text{ f x } 10^-5", chi*10^5);
13 //Result obtained differs from that in textbook,
      because in textbook only the order of 10 is
      considered .
```

Scilab code Exa 10.3 Dipole moment and polarisability

```
3.33 x 10^-30 C m

14 printf("Dipole moment = %.2 f debye \n",mu_p/D);

15 //e0*(er1 - 1) = N*(alpha_e + alpha_i + (mu_p^2/3*k*T1))

16 Sum = ((e0*(er1 - 1))/N) - ((mu_p)^2/(3*k*T1)); //alpha_e + alpha_i in farad m^2

17 printf("Sum = %.1 f x 10^-39 farad m^2",Sum*10^39);
```

Scilab code Exa 10.4 Orientational polarisation

Scilab code Exa 10.5 Susceptibility of paramagnetic materials

```
1 clc();
2 clear;
3 //Given :
4 N = 5*10^28 ;// number of dipoles per m^3
```

Scilab code Exa 10.6 Relative dielectric constant

```
1 clc();
2 clear;
3 //Given :
4 M = 32; // Atomic weight in kg/kmole
5 Na =6.023*10^26; // Avogadro constant in atoms/
      kmole
6 alpha_e = 3.28*10^-40; // electronic polarisability
      in farad/m<sup>2</sup>
7 rho = 2.08; //density in gm/cm^3
8 e0 = 8.85*10^-12; // dielectric constant in farad/m
9 / (er - 1) / (er + 2) = (N*alpha_e/3*e0)
10 //1 \text{ gm} = 1.0*10^{-3} \text{ kg}, 1 \text{ cm}^{3} = 1.0*10^{-6} \text{ m}^{3}
11 N = (Na*(rho*10^3))/M; // atoms/m^3
12 er = (2*((N*alpha_e)/(3*e0)) + 1)/(1 - ((N*alpha_e))
      /(3*e0));
13 printf("Relative dielectric constant = \%.2 \, \mathrm{f} ",er);
```

Scilab code Exa 10.7 Power loss due to hysteresis

```
clc();
clear;
//Given:
area = 50000; // area of hysteresis on a graph
axis1 = 10^-4; // units of scale in Wb/m^2
axis2 = 10^2; // units of scale in A/m
vol = 0.01; // volume in m^3
F = 50; //frequency in Hz
E1 = area*axis1*axis2; // Energy lost per cycle in J/m^3
E2 = E1*vol; // Energy lost in core per cycle in J
P = E2*F; // Power loss in W
printf("Power loss = %d W",P);
```

Scilab code Exa 10.8 Classical model of internal field

```
1 clc();
2 clear;
3 //Given :
4 mu_d = 9.27*10^-24; // Bhor magneton in Am^2
5 mu_0 = 4*%pi*10^-7; // Magnetic permiability in H/m
6 r = 2; // dipoles distance in A
7 //U = mu_d*B = -( mu_0*mu_d^2)/(2*pi*r)
8 //r = 2*10^-10 m , 1 A = 1.0*10^-10 m
9 U = ( mu_0*mu_d^2)/(2*%pi*(r*10^-10)^3); // Energy
10 printf("U = %.1 f x 10^-25 ",U*10^25);
```

Scilab code Exa 10.9 Saturation Magnetisation

```
1 clc();
2 clear;
3 //Given :
4 a = 2.87; // lattice constant in A
5 mu = 4; // 4 Bohr magnetons/atom
6 // BCC = 2 atoms/unit cell , 1 A = 1.0*10^-10 m
7 N = 2/(2.87*10^-10)^3; // atoms/m^3
8 //1 Bohr magneton = 9.27*10^-24 Am^2
9 Msat = N*mu*9.27*10^-24; // Saturation in magnetisation in A/m
10 printf(" Saturation Magnetisation = %.2 f x 10^6 A/m", Msat*10^-6);
```

Scilab code Exa 10.10 Electronic and Ionic polarisability

```
1 clc();
2 clear;
3 //Given :
4 er = 6.75 ; // relative dielectric constant for
        glass
5 f = 10^9 ; // frequency in Hz
6 n = 1.5; // refractive index of glass
7 e0 = 8.85*10^-12; // dielectric constant in farad/m
8 //Pe = e0*(n^2 - 1)*E , Pi = e0*(er - n^2)*E , P =
        Pi + Pe = e0*(er - 1)*E
9 //Percentage = [(e0*(er - n^2)*E)/(e0*(er -1)*E)
        ]*100 , both the E's cancel each other
10 per = [(e0*(er - n^2))/(e0*(er -1))]*100; //
        percentage
11 printf("Percentage = %.1f",per);
```

Chapter 11

Conductors Semiconductors and Superconductors

Scilab code Exa 11.3 Fermi energy in metals

Scilab code Exa 11.4 Fraction of electrons

```
1 clc();
2 clear;
3 //Given :
4 Ef = 7.04 ; // Ef for copper in eV
```

Scilab code Exa 11.6 Intrinsic resistivity

```
1 clc();
2 clear;
3 //Given :
4 ni1 = 2.5*10^19; // per m^3 for Ge
5 ni2 = 1.5*10^16; // per m^3 for Si
6 mu_e1 = 0.38; // mobility of free electrons for Ge
      in m^2/Vs
7 mu_h1 = 0.18; //mobility of holes for Ge in m^2/Vs
8 mu_e2 = 0.13; //mobility of free electrons for Si in
     m^2/Vs
9 mu_h2 = 0.05; //mobility of holes for Si in m^2/Vs
10 e = 1.6*10^-19; // charge of an electron in C
11 sigma1 = ni1*e*(mu_e1 + mu_h1); // intrinsic
      conductivity in mho m^-1 for Ge
12 sigma2 = ni2*e*(mu_e2 + mu_h2); // intrinsic
      conductivity in mho m^-1 for Si
13 rho1 = 1/sigma1; //intrinsic resistivity in ohm m
      for Ge
14 rho2 = 1/sigma2; //intrinsic resistivity in ohm m for
15 printf ("Resistivity of Ge \%.3 f ohm m \n", rho1);
16 printf ("Resistivity of Si %.3f x 10^3 ohm m", rho2
      *10^-3);
```

Scilab code Exa 11.7 Variation of n by N

```
1 clc();
2 clear;
3 // Given :
4 / Fraction F = n/N
5 Eg = 0.72; // Energy gap in eV
6 k = 0.026/300; // kT value at 300 K, so k = kT/T
7 T1 = 30; // Temperature in K
8 T2 = 300; //Temperature in K
9 T3 = 1210; //Temperature in K
10 //Fraction of electrons : n/N = \exp(-Eg/2*k*T)
11 F1 = \exp(-Eg/(2*k*T1));
12 F2 = \exp(-Eg/(2*k*T2));
13 F3 = \exp(-Eg/(2*k*T3));
14 printf(" For 30 K , n/N = \%.1 f \times 10^{-61} n", F1
      *10^61);
15 printf(" For 300 K , n/N = \%.1 f \times 10^{-7} n", F2*10^7)
16 printf(" For 1210 K , n/N = \%.3 f \ n", F3);
```

Scilab code Exa 11.8 Variation of n by N

```
1 clc();
2 clear;
3 //Given :
4 Eg1= 0.72; //Energy gap for Germanium in eV
5 Eg2= 1.10; //Energy gap for Silicon in eV
```

```
6 Eg3= 5.6; //Energy gap for diamond in eV
7 //Fraction of electron : n/N = exp(-Eg/(2*k*T)) , k*
    T = 0.026 eV
8 F1 = exp(-Eg1/(2*0.026)); // For Germanium
9 F2 = exp(-Eg2/(2*0.026)); // For Silicon
10 F3 = exp(-Eg3/(2*0.026)); // For diamond
11 printf("For Germanium , n/N = %.1 f x 10^-7\n",F1
    *10^7);
12 printf("For Silicon , n/N = %.1 f x 10^-10\n",F2
    *10^10);
13 printf("For diamond, n/N = %.1 f x 10^-47",F3*10^47);
```

Scilab code Exa 11.9 Ef equals to Ec

```
1 clc();
2 clear;
3 //Given :
4 D = 5*10^28; // density of atoms in silicon per m^3
5 C = 2.0*10^8; //donor concentration
6 ND = D/C; // donor atoms density per m^3
7 // ND = 4.82*10^21*T^(3/2)
8 T = (ND/(4.82*10^21))^(2/3);
9 printf("Temperature = %.2 f K",T);
```

Scilab code Exa 11.10 Si doped with phosphorus

```
1 clc();
2 clear;
3 //Given :
```

```
4 Ecd = 0.045; // Ec-Ed in eV
5 Ecf = 0.035; // Ec-Ef in eV
6 \text{ Efd} = 0.01; // \text{ Ef-Ed in eV}
7 Ev = 0; // in eV
8 Ef = 1.065; // in eV
9 me = 9.1*10^-31; // electron mass in kg
10 m_e = 0.31*me; // free electron mass
11 m_h = 0.38*me; // hole mass
12 kT = 0.026; // kT value at room temperature
13 h = 6.625*10^{-34}; // planck's constant in Js
14 Nc = 2*((2*\%pi*m_e*kT*1.6*10^-19)/(h^2))^(3/2); //
      per m<sup>3</sup>
15 Nv = 2*((2*\%pi*m_h*kT*1.6*10^-19)/(h^2))^(3/2); //
       per m<sup>3</sup>
16 //(a)
17 / \text{Nc} \cdot \exp[-(\text{Ec-Ef})/\text{kT}] = \text{Nd} \cdot [1 - 1/(1 + \exp[(\text{Ed-Ef})/
      kT])]
18 / Ed - Ef = -(Ef-Ed) = - Efd
19 Nd = (Nc*exp(-Ecf/kT))/(1 - (1/(1+exp(-Efd/kT))));
      // per m^3
20 //(b)
21 Nd_plus = Nd*(1 - (1/(1 + \exp(-Efd/kT)))); // per m
22 //(c)
23 n = Nc*exp(-Ecf/kT); // per m<sup>3</sup>
24 // (d)
25 p = Nv*exp((Ev-Ef)/kT); // per m^3
26 printf ("Nd = \%.1 \, \text{f} \times 10^2.4 \, / \, \text{m}^3 \, \text{n}", Nd * 10^-24);
27 printf("Nd_plus = \%.2 f \times 10^24 / m^3 \n", Nd_plus
       *10^-24);
28 printf("n = \%.2 \, \text{f} \times 10^2 \, 4 / \text{m}^3 \, \text{n}, n*10^-24);
29 printf("p = \%.1 \, \text{f} \times 10^{6} / \text{m}^{3}",p*10^-6);
```

Scilab code Exa 11.11 Silicon wafer doped with phosphorus

```
1 clc();
2 clear;
3 //Given :
4 ni = 1.5*10^16; // ni for Si in m^-3
5 mue = 0.135; // mobility of free electrons in m^2/Vs
6 muh = 0.048; // mobility of holes in m^2/Vs
7 Nd = 10^21; // phosphorus atoms/m<sup>3</sup>
8 e = 1.6*10^-19; // charge of an electron in C
9 //(a)
10 n = Nd; // electrons/m<sup>3</sup>
11 //(b)
12 p = ni^2/Nd; // holes/m^3
13 //(c)
14 sigma = e*(n*mue + p*muh); // conductivity in mho m
15 rho = 1/sigma; // resistivity in ohm m
16
17 printf ("Major carrier concentration = \%.1 \, \text{f} \times 10^21
      electrons/m^3 \n", n*10^-21);
18 printf ("Minor carrier concentration = \%.2 \,\mathrm{f} \times 10^{11}
      holes/m^3\n",p*10^-11);
19 printf ("Resistivity = \%.3 \, \text{f ohm m}", rho);
```

Scilab code Exa 11.12 Increase in conductivity

```
1 clc();
2 clear;
3 //Given :
4 Eg = 1.1; // Energy gap in eV
5 T1 = 300 ; // Temperature in K
6 T2 = 473; // Temperature in K (273+ 200 = 473 K)
```

Scilab code Exa 11.13 Photon energy

```
1 clc();
2 clear;
3 // Given :
4 Eg1 = 0.72; // Energy gap for Ge in eV
5 Eg2 = 1.1; // Energy gap for Si in eV
6 Eg3 = 1.32; // Energy gap for GaAs in eV
7 // lambda = c/v = (c*h)/Eg or lambda(A) = 12422/Eg
       (eV)
8 lambda1 = 12422/Eg1; // wavelength in A
                                              (Ge)
9 lambda2 = 12422/Eg2; // wavelength in A
                                               (Si)
10 lambda3 = 12422/Eg3; // wavelength in A
                                               (GaAs)
11 printf("Wavelength for Ge = \%.1 f A \n", lambda1);
12 printf("Wavelength for Si = \%.1 \, \text{f A } \ \text{n}", lambda2);
13 printf("Wavelength for GaAs = \%.2 f A", lambda3);
```

Scilab code Exa 11.14 Increase in conductivity

```
1 clc();
2 clear;
3 //Given :
```

```
4 sigma = 4*10^-4; // conductivity at room temperature
       in ohm^-1 m^-1
5 M = 28.1; // atomic weight in kg/kmole
6 d = 2330; // \text{ density in } \text{kg/m}^3
7 dop = 10^8; // doping per 10^8 silicon atoms
8 e = 1.6*10^-19; // charge of an electron in C
9 mue = 0.135; // mobility of free electrons for
      silicon in m<sup>2</sup>/Vs
10 Na = 6.023*10^26; // Avagadro's constant in atoms/
     kmole
11 N = (d*Na)/M; //atoms/m^3
12 Nd = N/dop; // per m^3
13 n = Nd; // electron concentration / m<sup>3</sup>
14 sigma1 = n*e*mue; // conductivity in ohm^-1 m^-1
15 t = sigma1/sigma; // number of times the
      conductivity increased
16 printf("Conductivity increased %d times .",t);
17 //Result obtained differs from that in textbook,
      because approximate value for sigma1 was
      considered.
```

Chapter 12

Diodes and Transistors

Scilab code Exa 12.1 Determination of V0

```
1 clc();
2 clear;
3 //Given:
4 sigma_n = 10^4; //conductivity in mho/m
5 sigma_p = 10^2; // conductivity in mho/m
6 = 1.6*10^-19; // \text{ charge of an electron in } C
7 kT = 0.026; // k*T value at room temperature in eV
8 ni = 2.5*10^19; // per m<sup>3</sup>
9 mue = 0.38; // mobility of free electrons in m^2/Vs
10 muh = 0.18; // mobility of free electrons in m^2/Vs
11 // sigma_n = e*n*mue and sigma_p = e*p*muh
12 nn0 = sigma_n/(e*mue); // per m^3
13 pp0 = sigma_p/(e*muh); // per m^3
14 np0 = (ni^2)/pp0; // in m^-3
15 // V0 = (kT/e) * log(nn0/np0), but we consider only
     kT because kT/e = 0.026 eV/e , both the e's
      cancel each other. Finally we obtain the answer in
      Volts
16 V0 = (kT)*log(nn0/np0); // in V
17 printf("V0 = \%.2 f V", V0);
```

Scilab code Exa 12.2 Carrier concentration

```
1 clc();
2 clear;
3 //Given :
4 //(a)Forward bias of 0.1 V
5 // np = np0*exp[eV/kT] , here we dont have np0 value , so we will calculate the remaining part.
6 kT = 0.026; // in eV
7 np = exp(0.1/kT);
8 printf("(a) np = %.0f x np0 \n",np);
9 //(b)Reverse bias of 1 V
10 // np = np0*exp[-eV/kT] , here we dont have np0 value, so we will calculate the remaining part.
11 np1 = exp(-1/kT);
12 printf("(b) np = %.2f x 10^-17 x np0 \n",np1*10^17);
```

Scilab code Exa 12.3 Current through pn junction diode

```
1 clc();
2 clear;
3 //Given :
4 IO = 0.1; // muA
5 kT = 0.026; // kT value at room temperature
6 //Forward bias of 0.1 V
7 // I = IO[exp(eV/kT) - 1]
8 // since I = IO*(exp(0.1 eV/kT (eV))), both the eV'
    s cancel each other , so it is only I = IO*(exp
```

```
(0.1/kT) - 1) while evaluating.

9 I = I0*(exp(0.1/kT) - 1) // in muA

10 printf("Current = %.2 f muA", I);
```

Scilab code Exa 12.4 Voltage regulation using Zener diode

```
1 clc();
2 clear;
3 // Given :
4 Vin = 36; // Input Voltage in V
5 Vb = 6; // Zerner Breakdown Voltage in V
6 Vr = Vin-Vb; // Volatge drop across resistor
7 R = 5*10^3; // resistance in ohm
8 Rl = 2*10^3; // load resistance in ohm
9 I = Vr/R; // current in A
10 Il = Vb/Rl; // current in A
11 Iz = I - Il; // current in A
12 //(a)
13 Vin1 = 41; // Input Voltage in V
14 I1 = (Vin1-Vb)/R; // current in A
15 Iz1 = I1-Iz; // current in A
16 //(b)
17 Rl1 = 4*10^3; //load resistance in ohm
18 Il1 = Vb/Rl1; // current in A
19 Iz2 = I - Il1; // current in A
20 printf ("Input volatge = 41 V , Iz = \%.0 \text{ f mA}", Iz1
      *10^3);
21 printf("Load resistance = 4k ohm , Iz = \%.1 f mA", Iz2
     *10^3);
```

Scilab code Exa 12.5 Voltage gain

```
1 clc();
2 clear;
3 //Given :
4 deltaIE = 2; // in mA
5 deltaIB = 5; // in mA
6 Rl = 200*10^3; // load resistance in ohm
7 ri = 200; // input resistance in ohm
8 // IE= IB + IC , 1 muA = 1.0*10^-3 mA
9 deltaIC = deltaIE - deltaIB*10^-3 ;// in mA
10 alpha = deltaIC/deltaIE;
11 A = alpha*(Rl/ri);
12 printf("Voltage gain = %.1f",A);
```

Chapter 13

Charged Particles in Electric and Magnetic Fields

Scilab code Exa 13.1 Electron in an electric field

```
1 clc();
2 clear;
3 //Given :
4 // E = 2*10^9*t V/m
5 // a_x = e*E/m, where e = 1.6*10^-19 C, m = 9.12
         10^{-31} \text{ kg}
6 // a_x = 3.52*10^20*t m/s^2
7 // v_x = integral of a_x dt
8 //(a)
9 function a_x = f(t), a_x = 3.530*10^20*t, endfunction
10 v_x = intg(0,50*10^-9,f); // electron speed in m/s
      at time = 50 ns
11 printf ("v_x = \%.1 f \times 10^5 m/s n", v_x*10^-5);
12 //(b)
13 / v_x = 1.76*10^20*t^2 m/s
14 function vx = v(t), vx = 1.76*10^20*t^2, endfunction
15 x = intg(0,50*10^-9,v); // distance covered in m in
16 printf("x = \%.2 \text{ f mm} n", x*10^3);
```

```
17 //(c)

18 //x = 5.87*10^19*t^3 m

19 X = 5*10^-2; //distance between plates in m

20 t = (X/(5.87*10^19))^(1/3); // time required in s

21 printf("t = %.2 f x 10^-7 s",t*10^7);
```

Scilab code Exa 13.5 Projected electron

```
1 clc();
2 clear;
3 // Given :
4 u = 5*10^5; //horizontal velocity in m/s
5 alpha = 35; // in degrees
6 E = 200 ; // Electric field in V/m
7 e = 1.6*10^-19; // electron charge in C
8 \text{ m} = 9.12*10^{-31}; // electron mass in kg
9 a = (-e*E)/m; // horizontal range in m/s<sup>2</sup>
10 //(a);
11 z_{max} = (-(u^2)*(sind(alpha))^2)/(2*a); // maximum
      penetration in m
12 //(b)
13 T = (-2*u*sind(alpha))/a; // Time of flight in s
14 //(c)
15 H = (-(u^2)*(sind(2*alpha)))/a; // horizontal range
16 printf("z_max = \%.1 \text{ f mm } \n",z_max*10^3);
17 printf("T = \%.2 \, \text{f} \times 10^--8 \, \text{s} \setminus \text{n}", T*10^8);
18 printf("H = \%.1 f mm", H*10^3);
```

Scilab code Exa 13.7 Helical path of an electron

```
1 clc();
2 clear:
3 //Given :
4 m = 9.12*10^{-31}; // electron mass in kg
5 e = 1.6*10^-19; // electron charge in C
6 u = 5*10^7; // electron speed in m/s
7 alpha = 30; // angle in degrees
8 d = 0.5; // diameter in m
9 //(a)
10 // helix radius = (m*u*sin(alpha))/B*e
11 r = d/2; // radius in m
12 B = (m*u*sind(alpha))/(r*e); // magnetic flux
      density in Wb/m<sup>2</sup>
13 // (b)
14 T = (2*\%pi*m)/(B*e); // time in s
15 //(c)
16 p = T*u*cosd(alpha); // pitch in m
17 printf ("B = \%.2 \, \text{f} \times 10^{-3} \, \text{Wb/m}^2 \, \text{n}", B*10^3);
18 printf("T = \%.2 \, \text{f} \times 10^--8 \, \text{s} \setminus \text{n}", T*10^8);
19 printf("p = \%.2 \, \text{f m}",p);
```

Scilab code Exa 13.9 Electrons orbit in magnetic field

```
1 clc();
2 clear;
3 //Given :
4 m = 9.109*10^-31; // eletcron mass in kg
5 e = 1.6*10^-19; // electron charge in C
6 //T = (2*pi*m)/(B*e) , here B is not given
7 T = (2*%pi*m)/e; // time in s
8 printf("T = %.2 f x 10^-11 / B ",T*10^11);
```

Scilab code Exa 13.11 Angle of refraction

Scilab code Exa 13.12 Bainbridge mass spectograph

```
1 clc();
2 clear;
3 //Given :
4 M1 = 20; // neon isotope mass in amu
5 M2 = 22; //neon isotope mass in amu
6 E = 7*10^4; // Electric field in V/m
7 e = 1.6*10^-19; // electron charge in C
8 B = 0.5; // Magnetic field in Wb/m^2
9 B1 = 0.75; // Magnetic field in Wb/m^2
10 // Linear seperation = S2 - S1 = (2*E*(M2-M1))/(B*B1*e)
11 // 1 amu = 1.66*10^-27 kg
```

Scilab code Exa 13.13 Deuteron motion in a cyclotron

```
1 clc();
2 clear;
3 // Given:
4 \text{ m} = 2.01*1.66*10^-27; // deuteron mass in kg
5 q = 1.6*10^-19; // deuteron charge in C
6 //We know , 1/2(m*v^2) = q*V
7 //for a 5 MeV deuteron
8 // 1 \text{ MeV} = 10^{6} *1.6 *10^{-19} \text{ J}
9 v = ((2*5*10^6*1.6*10^-19)/m)^(1/2) ; // velocity in
      m/s
10 //(a)
11 R = 15; // inches
12 / 1 \text{ inch} = 2.54 * 10^{-2} \text{ m}
13 B = (m*v)/(q*R*2.54*10^-2); // magnetic field
      intensity in Wb/m<sup>2</sup>
14 // (b)
15 f = (q*B)/(2*\%pi*m); // frequency in Hz
16 //(c)
17 t = 50/f; // time in s
18 printf("B = \%.1 \text{ f Wb/m}^2 \ \text{n",B});
19 printf("f = \%.2 f MHz \n",f*10^-6);
20 printf("t = \%.2 f mu s ", t*10^6);
```

Chapter 14

Lasers

Scilab code Exa 14.2 Thermal pumping

```
1 clc();
2 clear;
3 //Given :
4 lambda = 6000; //wavelength in A
5 E2_E1 = 12422/lambda; // energy in eV
6 \text{ k} = 8.62*10^{-5}; // \text{ in } \text{eV/K}
7 T = 300; // Temperature in K
8 // Equilibrium ratio = N2/N1 = \exp[-(E2-E1)/k*T]
9 //(a)
10 Ratio = exp(-E2_E1/(k*T));
11 //(b)
12 T1 = (E2_E1)/(k*log(2)); // Temperature in K
13 printf ("Ratio = \%.2 \, \text{f} \times 10^{-35} \, \text{n}", Ratio * 10^35);
14 printf("T = \%d K", T1);
15 // Resuts obtained differ from those in texbook,
      because approximate value of k*T was considered
```

Scilab code Exa 14.3 Calculating wavelength difference

```
1 clc();
2 clear;
3 //Given :
4 L =8; // in cm
5 lambda = 5330; //wavelength in A
6 // lambda = 2*L/n
7 // 1 A = 1.0*10^-8 cm
8 n= (2*L)/(lambda*10^-8); // allowed modes
9 //adjacent mode
10 n1 = round(n+1);
11 // 1 cm = 1.0*10^8 A
12 lambda1 = ((2*L)/n1)*10^8; // wavelength in A
13 D = lambda-lambda1; // difference in wavelengths in A
14 printf("Difference = %.3 f A",D);
```

Scilab code Exa 14.5 deltalambda by lambda

```
1 clc();
2 clear;
3 //Given :
4 tau_c = 10^-5; // lifetime of lasing energy in s
5 tau_c1 = 10^-8; // coherence time in s
6 lambda = 5000; // wavelength in A
7 c = 3*10^8; // light speed in m/s
8 // Ratio = delta_lambda/lambda = lambda/(c*tau_c)
9 // 1 A = 1.0*10^-10 m
10 //(a) Laser source
11 Ratio = (lambda*10^-10)/(c*tau_c);
12 //(b) Ordinary source
13 Ratio1 = (lambda*10^-10)/(c*tau_c1);
```

```
14 printf("Laser source = %.2 f x 10^-10 \n", Ratio
     *10^10);
15 printf("Ordinary source = %.2 f x 10^-7 \n", Ratio1
     *10^7);
16 // Results obtained differ from those in textbook,
     beacuse only order of 10 was considered in the
    result.
```

Scilab code Exa 14.6 Intensity of a laser beam

```
1 clc();
2 clear;
3 //Given :
4 P = 10; // Power in W
5 lambda =5000; // wavelength in A
6 SI = 7*10^3; // Sun's radiation intensity in W/cm^2
7 // 1 A = 1.0*10^{-8} cm
8 I = P/(lambda*10^-8)^2; //Intensity in W/cm^2
9 Ratio = (I)/SI;
10 printf("Intensity = \%.0 \,\mathrm{f} \times 10^6 \,\mathrm{kW/cm^2} \,\mathrm{n}",I
      *10^-9);
11 printf ("Intensity of this laser source is %.1f x
      10<sup>6</sup> times the intensity of Sun radiation", Ratio
      *10^-6);
12 //Textbook : Only order of 10 is considered in the
      result
```

Scilab code Exa 14.7 Information capacity of laser

```
1 clc();
2 clear;
3 // Given :
4 c = 3*10^8; // light speed in m/s
5 // \text{Visible range} = 4000 \text{ A} - 7000 \text{ A}
6 \text{ lambda1} = 4000; // \text{ wavelength in A}
7 \text{ lambda2} = 7000; // \text{ wavelength in A}
8 // 1 A = 1.0*10^{-10} m
9 nu1 = c/(lambda1*10^-10); // frequency in Hz
10 nu2 = c/(lambda2*10^-10); // frequency in Hz
11 deltanu = nu1-nu2; // in Hz
12 //(a) Telephone conversations
13 f1 = 10^3; // frequency in Hz
14 n1 = deltanu/f1;
15 //(b) Television programmes
16 f2 = 10^7; // frequency in Hz
17 n2 = deltanu/f2;
18 printf(" Number of Telephone conversations = \%.1 \, \text{f} x
      10^11 \ n, n1*10^-11;
19 printf(" Number of Television programmes = \%.1 f x
      10^7 \ n, n2*10^-7;
```

Chapter 15

Fibre Optics

Scilab code Exa 15.1 Importance of cladding material

```
1 clc();
2 clear;
3 //Given :
4 n0 = 1; // refractive index of outer medium
5 n1 = 1.5025; // refractive index of core
6 n2 = 1.4975; // refractive index of cladding
7 NA = sqrt(n1^2 - n2^2); // Numerical aperture with cladding
8 alpha_c = asind(NA/n0); // acceptance angle in degrees
9 NA1 = sqrt(n1^2 - n0^2); // Numerical aperture without cladding
10 printf("With cladding, NA and Acceptance angle = % .4f and %.3f degrees \n ",NA,alpha_c);
11 printf("Without cladding, NA = %.4f ",NA1);
```

Scilab code Exa 15.2 Number of reflections

```
1 clc();
2 clear;
3 //Given :
4 n1 = 1.5025; // refractive index of core
5 delta = 0.0033; //
6 a = 50; // core radius in mu.m
7 Ls = a*sqrt(2/delta); // skip distance in mu.m
8 // 1 mu.m = 1.0*10^-6 m
9 R = 1/(Ls*10^-6); // reflections per m
10 printf("Ls = %.1 f mu.m \n", Ls);
11 printf("Reflections per m = %d", R);
```

Scilab code Exa 15.3 Determining Limiting Diameter

```
1 clc();
2 clear;
3 //Given :
4 lambda = 1.25; // wavelength in mu_m
5 n1 = 1.462; // refractive index of core
6 n2 = 1.457; // refractive index of cladding
7 // Single mode propagation : (2*pi*a*sqrt(n1^2 - n2^2))/lambda < 2.405
8 a = (2.405*lambda)/(2*%pi*sqrt(n1^2 - n2^2)); // radius in mu_m
9 d = a*2; // diameter in mu_m
10 printf("Limiting diameter = %.2f mu_m",d);</pre>
```

Scilab code Exa 15.4 Calculation of attenuation

```
1 clc();
2 clear;
3 // Given :
4 n1 = 1.525; // refractive index of core
5 n2 = 1.500; // refractive index of cladding
6 d = 30; // core diameter in mu_m
7 a = d/2; // core radius in mu_m
8 ab = 0.00001/100; // percentage absorbed
9 delta = (n1-n2)/n1;
10 Ls = a*sqrt(2/delta); // skip distance in mu_m
11 //1 \text{ mu} = 1.0*10^{-6} \text{ m}
12 R = 1000/(Ls*10^-6); // reflections per km (1000 m)
13 red_p = 1 - ab; // reduced power for each reflection
14 / Power P1km = P0*red_p^(6*10^6)
15 // A = 10*log10[P0/P1km] , P0 in the numerator and
      denominator will cancel each other
16 A = 10*log10(1/(red_p)^(R));
17 printf ("Attenuation = \%.1 \, f \, dB/km", A);
```

Scilab code Exa 15.5 Calculation of maximum delay

```
1 clc();
2 clear;
3 //Given :
4 n1 = 1.5025; // refractive index of core
5 n2 = 1.4975; // refractive index of cladding
6 L = 1; // length in m
7 F = 2*10^6; // frequency in Hz
8 c = 3*10^8; // light speed in m/s
9 delta_t = (n1*L/c)*((n1/n2)-1); // maximum delay in s
;
10 f = 1/(2*delta_t); // bandwidth for 1 m propogation
11 L1 = 1/(2*F*delta_t); // distance for 2MHz bandwidth
```

Chapter 16

Acoustics

Scilab code Exa 16.1 Increase in Sound velocity

```
1 clc();
2 clear;
3 //Given :
4 delta_t = 1; // temperature in degrees
5 t1 = 27; // temperature in degrees
6 //Ratio = v2/v1 = 1+ (delta_t /(t1+273))
7 Ratio = 1 + (delta_t /(2*(t1+273)));
8 v1 = 343; // speed of sound at room temperature in m/s
9 v2 = v1*Ratio; // speed of sound in air in m/s
10 delta_v = v2-v1; // speed in m/s
11 printf("Ratio = %.4f \n", Ratio);
12 printf("delta_v = %.1f m/s", delta_v);
```

Scilab code Exa 16.2 Limits of displacement amplitudes

```
1 clc();
2 clear;
3 // Given :
4 p_rms = 0.0002; // in microbar
5 p_rms1 = 20; // in pascal
6 v = 343; // speed of sound in m/s
7 rho_0 = 1.21; // density of air in kg/m^3
8 f = 1000; // frequency in Hz
9 // p_rms = pm_min/(2)^0.5
10 //1 \text{ microbar} = 0.1 \text{ N/m}^2
11 pm_min = sqrt(2)*p_rms*0.1; //in N/m^2
12 // 1 pascal = 1 N/m^2
13 pm_max = sqrt(2)*p_rms1*1; // in N/m^2
14 // sm = pm/(v*rho_0*omega);
15 / \text{omega} = 2 * pi * f
16 sm_min = pm_min/(v*rho_0*2*%pi*f); // displacement
      amplitude in m
17 sm_max = pm_max/(v*rho_0*2*\%pi*f); // displacement
      amplitude in m
18 printf ("Minimum displacement amplitude = \%.2 f pm \n
     ",sm_min*10^12);
19 printf ("Maximum displacement amplitude = \%.0 f mu m",
      sm_max*10^6);
```

Scilab code Exa 16.3 Imax by Imin

```
1 clc();
2 clear;
3 //Given :
4 sm_min = 11*10^-12; // Minimum displacement amplitude
        in m
5 sm_max = 11*10^-6; // Maximum displacement amplitude
        in m
```

Scilab code Exa 16.4 Sound intensities

```
1 clc();
2 clear;
3 // Given :
4 IO = 10^--12; // in W/m<sup>2</sup>
5 beta1 = 0; // in dB
6 \text{ beta2} = 60; // \text{ in } dB
7 beta3 = 120; // in dB
8 // Intensity level = beta = 10*\log 10 (I/I0)
9 I1 = 10^(beta1/10)*I0; // Intensity in W/m<sup>2</sup>
10 I2 = 10^(beta2/10)*I0; // Intensity in W/m^2
11 I3 = 10^{(beta3/10)}*I0; // Intensity in W/m^2
12 printf ("Hearing Threshold: \%.1 \text{ f x } 10^-12 \text{ W/m}^2 \text{ n}",
       I1*10^12);
13 printf ("Speech Activity : \%.1 \, \text{f} \times 10^{-6} \, \text{W/m}^2 \, \text{n}", I2
       *10^6);
14 printf("Pain Threshold: %.1 f W/m^2", I3);
```

Scilab code Exa 16.5 Determination of reverberation time

```
1 clc();
2 clear;
3 //Given :
4 1 = 200; // in ft
5 b = 50; // in ft
6 h = 30; // in ft
7 alpha = 0.25; //average absorption coefficient
8 V = 1*b*h; // Volume in ft<sup>3</sup>
9 S = 2*((1*b)+(1*h)+(b*h)); //total surface area in
      ft<sup>2</sup>
10 a = alpha*S;// in sabins
11 T = (0.049*V)/a; // reverberation time in s
12 //400 people present in the auditorium, 1 person is
      equivalent to 4.5 sabins
13 a1 = a+ 400*4.5; // in sabins
14 T1 = (0.049*V)/a1; // reverberation time in s
15 printf("For auditorium : \%.2 \, \text{f s } \ \text{n}",T);
16 printf("When people are present %.2f s",T1);
```

Scilab code Exa 16.6 Determination of unknown absorption coefficient

```
1 clc();
2 clear;
3 //Given :
4 V = 9*10*11; // Volume in ft^3
5 T = 4; // reverberation time in s
```

Scilab code Exa 16.7 Use of ultrasound by bats

```
1 clc();
2 clear;
3 //Given :
4 v = 343; // velocity of sound in m/s
5 lambda = 1; // wavelength in cm
6 // 1 cm = 1.0*10^-2 m
7 f = v/(lambda*10^-2); //frequency in Hz
8 printf("Frequency is %.1 f kHz",f*10^-3);
```

Scilab code Exa 16.8 Ultrasonic generators

```
1 clc();
2 clear;
3 //Given :
4 E1 = 8.55*10^10; //Modulus of elasticity in N/m^2
```

```
5 E2 = 21*10^10; // Modulus of elasticity in N/m<sup>2</sup>
6 rho1 = 2650; // density of Quartz in kg/m<sup>3</sup>
7 rho2 = 8800; // density of Nickel in kg/m^3
8 t = 2; // thickness of crystal in mm
9 1 = 50; // rod length in mm
10 // Piezoelectric generator
11 printf("Piezoelectric generator \n\n");
12 \text{ for } n = 1:3
13
       // 1 \text{ mm} = 1.0*10^{-3} \text{ m}
       nu1 = (n/(2*t*10^-3))*sqrt(E1/rho1); // frequency
14
            in Hz
       printf ("For n = \%d, Frequency = \%.2 f MHz\n"
15
           ,n,nu1*10^-6);
16 end
17 // Magnetostriction generator
18 printf ("Magnetostriction generator n ");
19 \text{ for } n1 = 1:3
20
        // 1 \text{ mm} = 1.0*10^{-3} \text{ m}
       nu2 = (n1/(2*1*10^-3))*sqrt(E2/rho2);//
21
          frequency in Hz
22
       printf ("For n = \%d, Frequency = \%.1 f kHz\n"
           ,n1,nu2*10<sup>-3</sup>);
23 end
24 // Results differ from those in textbook, because in
      the formulae (n/(2*t))*sqrt(E/rho) and (n/(2*1))*
      sqrt(E/rho), 2 is not multiplied with either t
      or l.
```

Scilab code Exa 16.9 Noise pollution

```
1 clc();
2 clear;
3 //Given :
```

Scilab code Exa 16.10 Determination of sea depth

```
1 clc();
2 clear;
3 //Given :
4 v = 1500; // velocity of ultrasound in m/s
5 rt = 0.8; // recorded time in s
6 t = rt/2; // time in s
7 //Ultrasound velocity = D/t
8 D = v*t; // sea depth in m
9 printf("Depth = %d m",D);
```