Problems and Solutions: Properties of the Riemann Integral

Problem 1. Suppose f is a continuous function on [a,b], and $f(x) \ge 0$ for all $x \in [a,b]$. Prove that if $\int_a^b f = 0$, then f(x) = 0 for all $x \in [a,b]$.

Solution Sketch. The proof relies on Ross, Theorem 33.4(ii) [2], which states this result directly. Alternatively, prove by contradiction:

- Assume $f(x_0) > 0$ for some $x_0 \in (a, b)$.
- By continuity of f, there exists $\delta > 0$ such that for $x \in (x_0 \delta, x_0 + \delta) \subset [a, b]$, we have $f(x) > f(x_0)/2$. Let $\alpha = f(x_0)/2 > 0$ and $[c, d] = [x_0 \delta/2, x_0 + \delta/2]$.
- Since $f(x) \ge 0$ everywhere, and $f(x) \ge \alpha$ on [c,d], we have by monotonicity of the integral [Ross, Thm. 33.4(i)]:

$$\int_{a}^{b} f(x) dx \ge \int_{c}^{d} f(x) dx \ge \int_{c}^{d} \alpha dx = \alpha(d - c) = \alpha \delta > 0$$

• This contradicts the given condition $\int_a^b f = 0$. Thus, the assumption must be false, and f(x) = 0 for all $x \in [a, b]$. (Handle endpoints a, b similarly if x_0 is an endpoint).

Problem 2. Consider the function

$$f(x) = \begin{cases} 1 & \text{if } x = 2^{-n} \text{ for } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is integrable on [0,1] and that $\int_0^1 f = 0$.

Solution Sketch. Boundedness: $0 \le f(x) \le 1$, so f is bounded.

Lower Integral: For any partition $P = \{t_0, \dots, t_k\}$ of [0, 1], any subinterval $[t_{i-1}, t_i]$ contains points where f(x) = 0 (e.g., irrationals). Thus, $m_i = \inf\{f(x) : x \in [t_{i-1}, t_i]\} = 0$. The lower sum is

$$L(f,P) = \sum_{i=1}^{k} m_i(t_i - t_{i-1}) = \sum_{i=1}^{k} 0 \cdot (t_i - t_{i-1}) = 0$$

The lower Darboux integral is $L(f) = \sup_{P} \{L(f, P)\} = 0$.

Upper Integral: We use the integrability criterion [Ross, Thm. 32.5]: f is integrable iff for any $\epsilon > 0$, there exists a partition P such that $U(f, P) - L(f, P) < \epsilon$. Since L(f, P) = 0, we need $U(f, P) < \epsilon$.

- Let $\epsilon > 0$. The set where f(x) = 1 is $S = \{2^{-n} : n \in \mathbb{N}\}$. These points accumulate only at 0.
- Choose $N \in \mathbb{N}$ large enough such that $2^{-N} < \epsilon/2$. The points $\{2^{-n} : n > N\}$ are in $[0, 2^{-N})$. The points $x_j = 2^{-j}$ for $j = 1, \ldots, N$ are in $[2^{-N}, 1]$.
- Choose $\eta > 0$ small enough such that $\eta < \epsilon/(4N)$ and the intervals $[x_j \eta, x_j + \eta]$ are disjoint within $[2^{-N}, 1]$.
- Define a partition P using points $0, 2^{-N}$ and $x_j \pm \eta$ for j = 1, ..., N. Let $P = \{0 = t_0 < t_1 < \cdots < t_m = 1\}$.
- The upper sum is $U(f,P) = \sum_{i=1}^{m} M_i(t_i t_{i-1})$, where $M_i = \sup_{[t_{i-1},t_i]} f$. $M_i = 1$ only if the subinterval contains some 2^{-n} .
- Contribution from the first subinterval $[0, t_1]$ (assuming $t_1 \approx 2^{-N}$, we can ensure $t_1 \leq 2^{-N}$): Contains points 2^{-n} for n > N. $M_1 = 1$. We can choose $t_1 = 2^{-N}$. Contribution is $M_1(t_1 t_0) = 1 \cdot 2^{-N} < \epsilon/2$.

- Contribution from intervals covering x_1, \ldots, x_N : Each x_j is contained in one or two subintervals of total length at most $2\eta = \epsilon/(2N)$. $M_i = 1$ for these. Total contribution from these N points is bounded by $N \cdot (2\eta) = N \cdot (\epsilon/(2N)) = \epsilon/2$.
- Contribution from other intervals: These contain no points 2^{-n} , so $M_i = 0$. Contribution is 0.
- Total upper sum:

$$U(f,P) < \frac{\epsilon}{2} + \frac{\epsilon}{2} + 0 = \epsilon$$

Since U(f, P) can be made arbitrarily small, the upper integral $U(f) = \inf_{P} \{U(f, P)\} = 0$.

Conclusion: Since L(f) = U(f) = 0, f is integrable on [0, 1] and $\int_0^1 f = 0$.

Problem 3. Construct an example of a function where $f(x)^2$ is integrable on [0, 1] but f(x) is not.

Solution Sketch. Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ -1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases}$$

Integrability of f: For any partition P, any subinterval $[t_{k-1}, t_k]$ contains both rational and irrational numbers.

$$m_k = \inf_{x \in [t_{k-1}, t_k]} f(x) = -1, \quad M_k = \sup_{x \in [t_{k-1}, t_k]} f(x) = 1$$

The Darboux sums are:

$$L(f,P) = \sum_{k=1}^{n} (-1)(t_k - t_{k-1}) = -1, \quad U(f,P) = \sum_{k=1}^{n} (1)(t_k - t_{k-1}) = 1$$

The lower and upper integrals are L(f) = -1 and U(f) = 1. Since $L(f) \neq U(f)$, f is not integrable [Ross, Def. 32.3]. **Integrability of** f^2 : Consider $g(x) = f(x)^2$. If x is rational, $g(x) = (1)^2 = 1$. If x is irrational, $g(x) = (-1)^2 = 1$. So, $g(x) = f(x)^2 = 1$ for all $x \in [0, 1]$. This is a constant function. Constant functions are continuous, and continuous functions on [a, b] are integrable [Ross, Thm. 33.2]. Therefore, f^2 is integrable on [0, 1].

Problem 4. Construct an example of a sequence of functions (f_n) on [0,1] such that $f_n \to 0$ pointwise, but the sequence $s_n = \int_0^1 f_n$ diverges.

Solution Sketch. Consider the sequence $f_n(x) = n^2 x (1 - x^2)^n$ for $x \in [0, 1]$ [4].

Pointwise Convergence:

- If x = 0, $f_n(0) = 0$ for all n, so $\lim_{n \to \infty} f_n(0) = 0$.
- If $0 < x \le 1$, let $r = 1 x^2$. Then $0 \le r < 1$. We need $\lim_{n \to \infty} n^2 x r^n$. Since $0 \le r < 1$, $\lim_{n \to \infty} n^p r^n = 0$ for any p [Rudin, Thm. 3.20(d)]. Thus,

$$\lim_{n \to \infty} f_n(x) = x \lim_{n \to \infty} (n^2 r^n) = x \cdot 0 = 0$$

So, $f_n \to 0$ pointwise on [0,1].

Sequence of Integrals: Calculate $s_n = \int_0^1 f_n(x) dx$.

$$s_n = \int_0^1 n^2 x (1 - x^2)^n \, dx$$

Use substitution $u = 1 - x^2$, du = -2x dx. When x = 0, u = 1. When x = 1, u = 0.

$$s_n = n^2 \int_1^0 u^n \left(-\frac{1}{2} du \right) = \frac{n^2}{2} \int_0^1 u^n du = \frac{n^2}{2} \left[\frac{u^{n+1}}{n+1} \right]_0^1 = \frac{n^2}{2(n+1)}$$

Divergence: Evaluate the limit of s_n :

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{n^2}{2n+2} = \lim_{n \to \infty} \frac{n}{2+2/n} = +\infty$$

The sequence of integrals s_n diverges.

Problem 5. Suppose that f is continuous on (a,b), where a may be $-\infty$ and b may be ∞ . If $\int_a^b |f(x)| dx < \infty$, show that the integral $\int_a^b f(x) dx$ exists and is finite.

Solution Sketch. Define the positive and negative parts of f:

$$f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \max\{-f(x), 0\}$$

These are continuous and non-negative. We have the relations:

$$f(x) = f^{+}(x) - f^{-}(x), \quad |f(x)| = f^{+}(x) + f^{-}(x)$$

From these, we get the inequalities:

$$0 \le f^+(x) \le |f(x)|, \quad 0 \le f^-(x) \le |f(x)|$$

We are given that $\int_a^b |f(x)| dx$ converges. By the comparison test for improper integrals [Ross, Exer. 36.6], since f^+, f^- are non-negative and bounded above by the integrable function |f|, their improper integrals must also converge:

$$\int_{a}^{b} f^{+}(x) dx < \infty, \quad \int_{a}^{b} f^{-}(x) dx < \infty$$

The improper integral $\int_a^b f(x) dx$ exists if the limits defining it exist and are finite. For $c \in (a, b)$:

$$\int_{a}^{b} f \, dx = \lim_{y \to a^{+}} \int_{y}^{c} f \, dx + \lim_{z \to b^{-}} \int_{c}^{z} f \, dx$$

Since $f = f^+ - f^-$, and the integrals of f^+ and f^- converge, the limits for f must exist:

$$\lim_{y\to a^+} \int_y^c f\,dx = \lim_{y\to a^+} \int_y^c f^+\,dx - \lim_{y\to a^+} \int_y^c f^-\,dx \quad \text{(exists and is finite)}$$

$$\lim_{z \to b^-} \int_c^z f \, dx = \lim_{z \to b^-} \int_c^z f^+ \, dx - \lim_{z \to b^-} \int_c^z f^- \, dx \quad \text{(exists and is finite)}$$

Therefore, $\int_a^b f(x) dx$ exists and is finite, equaling $\int_a^b f^+ dx - \int_a^b f^- dx$.

Problem 6. (a) Suppose $|f(x)| \le M$ for $x \in [a, b]$. Show $|f(x)|^2 - f(y)|^2 \le 2M|f(x) - f(y)|$.

- (b) Prove that if f is integrable on [a, b], then so is f^2 .
- (c) Suppose f, g are integrable on [a, b]. Show fg is integrable.

Solution Sketch. (a) Use the difference of squares:

$$|f(x)^2 - f(y)^2| = |(f(x) - f(y))(f(x) + f(y))| = |f(x) - f(y)||f(x) + f(y)|$$

By the triangle inequality and the bound $|f(z)| \leq M$:

$$|f(x) + f(y)| \le |f(x)| + |f(y)| \le M + M = 2M$$

Substituting gives the result:

$$|f(x)^2 - f(y)^2| \le |f(x) - f(y)|(2M)$$

(b) If f is integrable, it is bounded, say $|f(x)| \leq M$. Then $|f(x)^2| \leq M^2$, so f^2 is bounded. Use the integrability criterion $U(h,P)-L(h,P)<\epsilon$ [Ross, Thm. 32.5]. Let $\epsilon>0$. For any subinterval $I_k=[t_{k-1},t_k]$ of a partition P, let $M_k(h)=\sup_{I_k}h$ and $m_k(h)=\inf_{I_k}h$. From (a), for $x,y\in I_k$: $|f(x)^2-f(y)^2|\leq 2M|f(x)-f(y)|$. This implies:

$$M_k(f^2) - m_k(f^2) \le 2M(M_k(f) - m_k(f))$$

Summing over the partition:

$$U(f^2, P) - L(f^2, P) = \sum_{k} (M_k(f^2) - m_k(f^2)) \Delta t_k \le \sum_{k} 2M(M_k(f) - m_k(f)) \Delta t_k$$

$$U(f^2,P)-L(f^2,P)\leq 2M(U(f,P)-L(f,P))$$

Since f is integrable, choose P such that $U(f,P)-L(f,P)<\epsilon/(2M)$ (assume M>0; if $M=0,\ f=0,\ f^2=0$ is integrable). Then $U(f^2,P)-L(f^2,P)<2M(\epsilon/(2M))=\epsilon$. Thus f^2 is integrable.

(c) Use the polarization identity [Ross, Exer. 33.8a]:

$$fg = \frac{1}{4} \left((f+g)^2 - (f-g)^2 \right)$$

- If f, g are integrable, then f + g and f g are integrable [Ross, Thm. 33.3].
- By part (b), $(f+g)^2$ and $(f-g)^2$ are integrable.
- The difference $(f+g)^2 (f-g)^2$ is integrable [Ross, Thm. 33.3].
- Multiplying by the constant 1/4, fg is integrable [Ross, Thm. 33.3].

Problem 7. (a) For $u, v \in \mathbb{R}$, prove $uv \leq (u^2 + v^2)/2$. If $\int_a^b f^2 = 1$, $\int_a^b g^2 = 1$, show $\int_a^b fg \leq 1$.

- (b) Prove the Schwarz inequality: $\left| \int_a^b fg \right| \le \left(\int_a^b f^2 \right)^{1/2} \left(\int_a^b g^2 \right)^{1/2}$.
- (c) Let X = C[a, b]. Show $d(f, g) = (\int_a^b |f g|^2)^{1/2}$ is a metric.

Solution Sketch. (a) The inequality $(u-v)^2 = u^2 - 2uv + v^2 \ge 0$ implies $u^2 + v^2 \ge 2uv$, hence $uv \le (u^2 + v^2)/2$. Applying this pointwise: $f(x)g(x) \le \frac{f(x)^2 + g(x)^2}{2}$. Since f, g are integrable, f^2, g^2, fg are integrable (Problem 6). Integrate the inequality [Ross, Thm. 33.4(i)]:

$$\int_{a}^{b} f(x)g(x) \, dx \le \int_{a}^{b} \frac{f(x)^{2} + g(x)^{2}}{2} \, dx$$

Using linearity [Ross, Thm. 33.3]:

$$\int_{a}^{b} fg \le \frac{1}{2} \left(\int_{a}^{b} f^{2} + \int_{a}^{b} g^{2} \right)$$

Given $\int f^2 = 1$ and $\int g^2 = 1$, we get $\int_a^b fg \le \frac{1}{2}(1+1) = 1$.

(b) Consider the quadratic in λ :

$$Q(\lambda) = \int_{a}^{b} (f(x) + \lambda g(x))^{2} dx \ge 0$$

Expand using linearity:

$$Q(\lambda) = \int_a^b f^2 dx + 2\lambda \int_a^b fg dx + \lambda^2 \int_a^b g^2 dx$$

Let $A = \int g^2$, $B = 2 \int fg$, $C = \int f^2$. Then $A\lambda^2 + B\lambda + C \ge 0$. If A = 0, then g = 0 a.e., $\int fg = 0$, inequality holds $(0 \le 0)$. If A > 0, the quadratic is always ≥ 0 , so its discriminant must be ≤ 0 :

$$B^{2} - 4AC \le 0$$

$$\left(2\int_{a}^{b} fg\right)^{2} - 4\left(\int_{a}^{b} g^{2}\right)\left(\int_{a}^{b} f^{2}\right) \le 0$$

$$4\left(\int_{a}^{b} fg\right)^{2} \le 4\left(\int_{a}^{b} f^{2}\right)\left(\int_{a}^{b} g^{2}\right)$$

$$\left(\int_{a}^{b} fg\right)^{2} \le \left(\int_{a}^{b} f^{2}\right)\left(\int_{a}^{b} g^{2}\right)$$

Taking the square root yields the Schwarz inequality:

$$\left| \int_a^b fg \right| \le \left(\int_a^b f^2 \right)^{1/2} \left(\int_a^b g^2 \right)^{1/2}$$

- (c) Verify metric properties for $d(f,g) = \left(\int_a^b |f-g|^2\right)^{1/2}$ on X = C[a,b].
- 1. Non-negativity: $|f g|^2 \ge 0 \implies \int |f g|^2 \ge 0 \implies d(f, g) \ge 0$.
- 2. **Identity:** $d(f,g) = 0 \iff \int |f-g|^2 = 0$. Since $|f-g|^2$ is continuous and non-negative, this holds iff $|f(x) g(x)|^2 = 0$ for all x, which means f(x) = g(x) for all x, i.e., f = g [Ross, Thm. 33.4(ii)].

- 3. Symmetry: $|f g|^2 = |g f|^2 \implies \int |f g|^2 = \int |g f|^2 \implies d(f, g) = d(g, f)$.
- 4. **Triangle Inequality (Minkowski):** Show $d(f,h) \le d(f,g) + d(g,h)$. Let u = f g, v = g h. Need to show $(\int |u + v|^2)^{1/2} \le (\int |u|^2)^{1/2} + (\int |v|^2)^{1/2}$.

$$\int |u+v|^2 = \int (u+v)^2 = \int (u^2 + 2uv + v^2) = \int u^2 + 2\int uv + \int v^2$$

By Schwarz inequality (part b): $\int uv \le |\int uv| \le (\int u^2)^{1/2} (\int v^2)^{1/2}$.

$$\int |u+v|^2 \le \int u^2 + 2(\int u^2)^{1/2} (\int v^2)^{1/2} + \int v^2$$

The right side is $(\|u\|_2 + \|v\|_2)^2$, where $\|w\|_2 = (\int w^2)^{1/2}$.

$$\int |u+v|^2 \le \left(\left(\int u^2 \right)^{1/2} + \left(\int v^2 \right)^{1/2} \right)^2$$

Taking the square root gives the Minkowski inequality:

$$\left(\int |u+v|^2\right)^{1/2} \le \left(\int u^2\right)^{1/2} + \left(\int v^2\right)^{1/2}$$

Substituting back u = f - g, v = g - h, u + v = f - h gives $d(f, h) \le d(f, g) + d(g, h)$.

All properties hold, so d is a metric.

Chapter Summary: The Riemann Integral

These problems primarily cover material from Ross, Chapters 32 and 33, focusing on the definition and fundamental properties of the Riemann integral.

The core concept is the **Definition of Riemann Integrability** via Darboux sums (Ross, Def. 32.1, 32.3). A bounded function f on [a,b] is integrable if its lower integral L(f) equals its upper integral U(f). The common value is $\int_a^b f$. The **Integrability Criterion** (Ross, Thm. 32.5), stating that f is integrable iff for every $\epsilon > 0$, there exists a partition P with $U(f,P) - L(f,P) < \epsilon$, is a key tool for proving integrability (Problems 2, 6(b)).

Essential Properties of the Integral include:

- Linearity (Ross, Thm. 33.3): $\int (cf + dg) = c \int f + d \int g$.
- Monotonicity (Ross, Thm. 33.4(i)): $f \leq g \implies \int f \leq \int g$. This leads to the property that if $f \geq 0$ is continuous and $\int f = 0$, then $f \equiv 0$ (Ross, Thm. 33.4(ii), Problem 1).
- Absolute Value and Products: If f, g are integrable, then |f|, f^2 , and fg are integrable (Ross, Thm. 33.5, Exer. 33.7b, 33.8a; Problems 3, 6). The inequality $|\int f| \le \int |f|$ holds (Ross, Thm. 33.5).

Important classes of **Integrable Functions** include continuous functions (Ross, Thm. 33.2) and monotonic functions (Ross, Thm. 33.1). Functions with limited discontinuities may also be integrable (Problem 2).

The relationship between **Integration and Limits** is subtle. Pointwise convergence of f_n to f does not suffice to ensure $\int f_n \to \int f$ (Problem 4). Stronger conditions like uniform convergence (Ross, Thm. 25.2) are needed.

The **Schwarz Inequality** (Problem 7(b)) is a fundamental result relating the integral of a product to the integrals of squares. It forms the basis for the L^2 norm and metric structure on function spaces, as demonstrated by showing the triangle inequality for the L^2 metric on C[a, b] (Problem 7(c)).

Finally, the concept of **Absolute Convergence** for improper integrals is introduced (Problem 5), showing that if $\int |f|$ converges, then $\int f$ converges.