HARUN ALBAYRAK – Homework #3 Report 171044014 CSE 331

FSM of the control unit:

S2	S1	S0	PR0	C==31	Start	-	LP	LMC	SP	SM	IC	N2	N1	N0
0	0	0	Х	Χ	0	-	0	0	0	0	0	0	0	0
0	0	0	Х	X	1	-	0	0	0	0	0	0	0	1
0	0	1	Χ	Χ	Χ	-	1	1	0	0	0	0	1	0
0	1	0	0	Χ	Χ	-	0	0	0	0	0	1	0	0
0	1	0	1	Χ	Х	-	0	0	0	0	0	0	1	1
0	1	1	Χ	0	Х	-	1	0	1	0	1	0	1	0
0	1	1	Χ	1	Х	-	1	0	1	0	1	1	0	1
1	0	0	Χ	0	Χ	-	1	0	1	1	1	0	1	0
1	0	0	Х	1	Χ	-	1	0	1	1	1	1	0	1
1	0	1	Х	X	Χ	-	0	0	0	0	0	0	0	0

Inputs = S2,S1,S0 (States), PR0 (Product0), C==31, Start

Outputs = LP (Load of product register)

LMC (Load of multiplicand register and counter)

SP (Select bit of product register)

SM (Select of the 3rd mux)

IC (Increment counter)

LP = S2'S0 + S2S1'S0'

LMC = S2'S1'S0

SP,IC = S2'S1S0 + S2S1'S0'

SM = S2S1'S0'

N2 = S2'S1S0'(PR0)' + S2'S1S0(C==31) + S2S1'S0'(C==31)

N1 = S2'S1'S0 + S2'S1S0'(PR0) + S2'S1S0(C==31)' + S2S1'S0'(C==31)'

N0 = S2'S1'S0'(START) + S2'S1S0'(PR0) + S2'S1S0(C==31) + S2S1'S0'(C==31)

Control Unit:

Datapath:

You should press the start button after you enter the multiplier and multiplicand

Test Cases:

1)4 x 4 = 16

$0100 \times 0100 = 10000$

2)5 x 10 = 50

0101 x 1010 = 110010

3)8 x 64 = 512

1000 x 1000000 = 1000000000

4) 4 x 12 = 48

$0100 \times 1100 = 110000$

5) 7 x 7 = 49

$0111 \times 0111 = 110001$

6) 5 x 5 = 25 0101 x 0101 = 11001

7) 9 x 9 = 81

1001 x 1001 = 1010001

