Nome _____Matr.___

Prova 1 – Inf251 – Prof. Ricardo dos Santos Ferreira – 2014/II

- 1- (valor 6 pontos). Seja X=2,1 e Y=0,7. Represente em Ponto Flutuante com 3 bits de expoente e 4 de mantissa. Calcule A=X+Y, mostre o cálculo com a representação binária. Converta os resultados para representação real.
- 2 (valor 14 pontos). Suponha que apenas os bits 31,30,29 são usados para o opcode e que o MIPS tenha apenas 9 instruções. 000 para lw, 001 para add/sub, 010 addi, 011 para beq. 100 jump, 101 sw (store), 110 subi, 111 andi. O campo Func bit 5 será 1 para subtração e 0 para soma. A ALU tem 2 bits de controle, 00 para soma, 01 para subtração e 10 para and. Monte a tabela e use os mapas de karnaugh ou derive as equações da tabela para determinar as funções usando o mínimo de portas possível. Não é necessário desenhar as portas.

3 (10 pontos) Usando o mesmo opcode e o mesmo conjunto de instruções da questão anterior, projete a máquina de estados para a unidade de controle da Multiciclo. Desenhe o diagrama e preencha todas as saídas e condições de transição da máquina usando uma tabela. Para implementar com a máquina de estados com memória, qual será o tamanho e a largura da memória. Preencha 5 linhas com padrões diferentes na memória da máquina de estados.

J-type	op	target address	
	6 bits	26 bits	

3	31 26	21	16	11	6	(
R-type	op	rs	rt	rd	shamt	funct	
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	
I-type	op	rs	rt	immediate/addbess			
	6 bits	5 bits	5 bits	16 bits			

x0				<u>x0</u>						
x2	0	1	3	2	x2 x3	0	1	3	2	
	4	5	7	6		4	5	7	6	
	12	13	15	14		12	13	15	14	x3
	8	9	11	10		8	9	11	10	
x1						<u>x1</u>				
	x0				x0					
x2	0	1	3	2	x2	0	1	3	2	 x3
	4	5	7	6		4	5	7	6	
	12	13	15	14		12	13	15	14	
	8	9	11	10		8	9	11	10	
			X	1				X	.1	

