

WHAT IS CLAIMED IS:

1. A method for treating bladder disease in a subject, said method comprising:

administering to a subject a pharmaceutical composition comprising a therapeutic amount of a compound selected from the group consisting of: (1) a compound having the formula

wherein Q is a group of the formula

R and R¹ are each independently C₁-C₄-alkyl, R₁ is thienyl, phenyl, cyclopentyl or cyclohexyl and X⁻ is a physiologically acceptable anion; (2) a compound having the formula

- 26 -

wherein X^- is a physiologically acceptable ion; (3) a compound having the formula

wherein X^- is a physiologically acceptable ion; (4) a compound having the formula

wherein R_1 is 2-thienyl or cyclopentyl, and A is 3α -(6,7-dehydro)-tropanyl methobromide, 3β -tropanyl methobromide, or 3α -(N-isopropyl)-nortropanyl methobromide; (5) a compound having the formula

wherein R is an optionally halo- or hydroxyl-substituted C_{1-4} alkyl group, R^1 is a C_{1-4} alkyl group, or R and R^1 together form a C_{4-6} alkylene group; X^- is a physiologically acceptable anion, and R_1 is H, OH, CH_2OH , C_{1-4} alkyl or C_{1-4} alkoxy; (6) a compound having the formula

wherein R is an optionally halo- or hydroxy-substituted C_{1-4} -alkyl group, R^1 is a C_{1-4} -alkyl group, or R and R^1 together form a C_{4-6} -alkylene group, X^- is a physiologically acceptable anion and R_1 is H, OH, CH_3 , CH_2OH , C_{1-4} -alkyl, or C_{1-4} -alkoxy; (7) a compound having the formula

- 28 -

(8) a compound having the formula

and (9) a compound having the formula

- 29 -

wherein X^- is a physiologically acceptable anion.

2. The method according to claim 1, wherein the compound has the formula

wherein Q is a group of the formula

- 30 -

—CH₂—CH₂—, —CH=CH— or

R and R¹ are each independently C₁₋₄-alkyl, R₁ is thienyl, phenyl, cyclopentyl or cyclohexyl, and X[−] is a physiologically acceptable anion.

3. The method according to claim 2, wherein R is CH₃, C₂H₅, n-C₃H₇, or i-C₃H₇ and R¹ is CH₃.
4. The method according to claim 3, wherein R₁ is thienyl.
5. The method according to claim 2, wherein X[−] is Br[−] or CH₃SO₃.
6. The method according to claim 1, wherein the compound has the formula

wherein X[−] is a physiologically acceptable ion.

- 31 -

7. The method according to claim 1, wherein the compound has the formula

wherein X^- is a physiologically acceptable ion.

8. The method according to claim 1, wherein the compound has the formula

R_1 is 2-thienyl or cyclopentyl, and A is 3α -(6,7-dehydro)-tropanyl methobromide, 3β -tropanyl methobromide, or 3α -(N-isopropyl)-nortropanyl methobromide.

9. The method according to claim 8, wherein R_1 is 2-thienyl and A is 3α -(6,7-dehydro)-tropanyl methobromide.

10. The method according to claim 8, wherein R_1 is 2-thienyl and A is 3β -tropanyl methobromide.

11. The method according to claim 8, wherein R₁ is cyclopentyl and A is 3 α -(N-isopropyl)-nortropanyl methobromide.

12. The method according to claim 1, wherein the compound has the formula

wherein R is an optionally halo- or hydroxyl-substituted C₁₋₄ alkyl group, R¹ is a C₁₋₄ alkyl group, or R and R¹ together form a C₄₋₆ alkylene group; X⁻ is a physiologically acceptable anion, and R₁ is H, OH, CH₃, CH₂OH, C₁₋₄ alkyl or C₁₋₄ alkoxy.

13. The method according to claim 12, wherein X⁻ is bromide.

14. The method according to claim 12, wherein R₁ is OH, CH₃, or CH₂OH.

15. The method according to claim 12, wherein R is methyl and R¹ is methyl, ethyl, n-propyl or i-propyl.

16. The method according to claim 1, wherein the compound has the formula

- 33 -

wherein R is an optionally halo- or hydroxy-substituted C₁₋₄-alkyl group, R¹ is a C₁₋₄-alkyl group, or R and R¹ together form a C₄₋₆-alkylene group, X⁻ is a physiologically acceptable anion and R₁ is H, OH, CH₂OH, C₁₋₄-alkyl, or C₁₋₄-alkoxy.

17. The method according to claim 16, wherein X⁻ is bromide.
18. The method according to claim 16, wherein R₁ is OH, CH₃, or CH₂OH.
19. The method according to claim 16, wherein R is methyl and R¹ is methyl, ethyl, n-propyl or i-propyl.
20. The method according to claim 1, wherein the compound has the formula

- 34 -

21. The method according to claim 1, wherein the compound has the formula

22. The method according to claim 1, wherein the compound has the formula

- 35 -

wherein X⁻ is a physiologically acceptable anion.

23. The method according to claim 22, wherein X⁻ is a bromide.