# Forecasting of daily average temperature in Manaus city, Brazil

Hieu Ng. Minh, Long Ng. Hoang

Applied Forecasting course, VNUK Institute for Research and Executive Education

February 2023



### **Project Introduction**

- Forecasting the daily temperature is one of the most practical and widespread applications of forecasting techniques.
- This project aims to predict the average daily temperature in Manaus, Brazil.
- Basic forecasting methods and models are used to exploit historical data and other weather components to produce forecasts.

### **Executive Summary**

 The rise in temperature (global warming) causes changes in natural conditions and leads to extreme phenomena which impact humans' lives negatively [1].



- Accurate temperature forecast helps increase the effectiveness of energy consumption [4], predict other meteorological variables and weather components [5][6], and drive proper decisions on making plans for activities, energy policy, and business development [7].
- Basic methods and models that are used in this project including: bench marking methods of forecasting, decomposition (STL), exponential smoothing, time-series regression, ARIMA, dynamic regression models.
- The daily temperature can be predicted well with values of other weather components through the regression model.
- Dynamic regression models also perform precisely in this task by capturing all patterns including seasonality and trends.

#### **About the data**

- Brazil Weather, Conventional Stations (1961-2019) dataset on Kaggle.
- It is meteorological data observed in conventional meteorological stations of the National Institute of Meteorology INMET, from 1961 to 2019.
- There are 12,251,335 rows (observations) in total. Observations come from 265 stations, are measured 3 times per day, are recorded daily from 01/01/1961 to 31/12/2019.
- Daily temperature appears to be highest (warmest)
   around late August and in September, while the
   weather is coldest around late January and in February.



# Forecasting results



#### References

[1] Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change \| EPIC.[2] Sharma, N.; Sharma, P.; Irwin, D.; Shenoy, P. Predicting solar generation from weather forecasts using machine learning. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications, Brussels, Belgium, 17--20 October 2011; pp. 528--533.[3] Sardans, J.; Peñuelas, J.; Estiarte, M. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 2006, 289, 227--238.[4] Green, M.A. General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovoltaics Res. Appl. 2003, 11, 333--340.[5] Jovic, S.; Nedeljkovic, B.; Golubovic, Z.; Kostic, N. Evolutionary algorithm for reference evapotranspiration analysis. Comput. Electron. Agric. 2018, 150, 1--4.[6] Marzo, A.; Trigo, M.; Alonso-Montesinos, J.; Martínez-Durbán, M.; López, G.; Ferrada, P.; Fuentealba, E.; Cortés, M.; Batlles, F.J. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renew. Energy 2017, 113, 303--311.[7] Smith, D.M.; Cusack, S.; Colman, A.W.; Folland, C.K.; Harris, G.R.; Murphy, J.M. Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model. Science 2007, 317, 796--799.