4. Funkce s absolutní hodnotou

Úloha 1. Načrtněte grafy funkcí

- (a) $f_1(x) = |x| 1$
- (b) $f_2(x) = |2x 1| x$
- (c) $f_3(x) = |1 x| + |x 1|$
- (d) $f_4(x) = \frac{1}{2}|x-2| |x+1| + 2$
- (e) $f_5(x) = |x| |x 2| + 2|x + 1| 3 x$
- (f) $f_6(x) = |1 2x| |1 3x| + |1 4x|$

Úloha 2. Podívejte se na graf $f_6(x)$ z úlohy 1 a určete:

- (a) všechny lokální extrémy f_6 a jejich typy (maximum/minimum? je ostré?),
- (b) všechny globální extrémy a jejich typy,
- (c) počet řešení rovnice $f_6(x) = c$ v závislosti na reálném parametru c (jinak řečeno, pro jaké hodnoty bude mít tato rovnice kolik řešení),
- (d) všechna řešení rovnice $f_6(x) = 10$ (tady bude potřeba i počítat, ale graf může pomoct na jakých intervalech může být řešení?).

Úloha 3. Ověřte (početně, tj. dosazením -x), že

- (a) funkce $h_1(x) = |x+6| + |x-6|$ je sudá,
- (b) funkce $h_2(x) = |x+6| |x-6| x$ je lichá.
- \star Úloha 4. Označme relu(x) = $\frac{1}{2}(x+|x|).$ Předpis funkce g_1 níže lze vyjádřit jako

$$g_1: y = x - \text{relu}(x+2) + 3 \text{relu}(x+1) - 4 \text{relu}(x-1).$$

Rozmyslete si, jak toto funguje, a najděte obdobný předpis pro další dvě funkce.

Úloha 5. Načrtněte grafy funkcí

(a) $k_1(x) = |x^2 - 1|$

(d) $k_4(x) = x^2 - 2|x+1|$

(b) $k_2(x) = -|x^2 - 1| + 1$

(e) $k_5(x) = x \cdot |x+1|$

(c) $k_3(x) = x \cdot |x|$

- (f) $k_6(x) = |x^2 1| + x$
- * Úloha 6. Řešte rovnice $(\max(a, b) = \text{to větší z čísel } a, b, \min(a, b) = \text{to menší})$
 - (a) $\max(x+1, -2x) + 3\min(x+2, -x+3) = 8$
 - (b) $\min(x+3, x^2) = 1$

Výsledky

- **2.** (a) v $\frac{1}{4}$ a $\frac{1}{2}$ jsou ostrá lokální minima, v $\frac{1}{3}$ je ostré lokální maximum (b) pouze v $\frac{1}{4}$ je ostré globální minimum (c) $c \in (-\infty; \frac{1}{4}) \Rightarrow 0$ řešení, $c = \frac{1}{4} \Rightarrow 1$ řešení, $c \in (\frac{1}{4}; \frac{1}{2}) \cup (\frac{2}{3}; \infty) \Rightarrow 2$ řešení, $c \in \{\frac{1}{2}; \frac{2}{3}\} \Rightarrow 3$ řešení, $c \in (\frac{1}{2}; \frac{2}{3}) \Rightarrow 4$ řešení (d) $K = \{-3; \frac{11}{3}\}$
- **3.** (a) $h_1(-x) = |-x+6| + |-x-6| = |x-6| + |x+6| = h_1(x)$
- **(b)** $h_2(-x) = |-x+6| |-x-6| + x = |x-6| |x+6| + x = -h_2(x)$
- **4.** g_2 : y = 2x + 4 relu(x+3) 2 relu(x-1),

 g_3 : $y = 3x + 8 - 4 \operatorname{relu}(x+2) + \operatorname{relu}(x+1) + \operatorname{relu}(x-1) - 4 \operatorname{relu}(x-2)$

6. (a) $K = \{\frac{1}{4}; 1\}$ (b) $K = \{-2; -1; 1\}$