(B) 日本国特許庁 (JP)

⑩特許出願公開 B召57—21402

⑩公開特許公報(A)

63公開 昭和57年(1982)2月4日 庁内整理番号 DInt. Cl.3 職別記号 6946-4 J C 08 F 8/00 発明の数 1 B 01 J 39/20 7918-4G 審査請求 未請求 47/12 7918-4G 7415-4F C 08 J 5/22 101 (全 4 頁)

会陽イオン交換体の製造方法
徳山市御影町1番1号徳山曹達 株式会社内

②特 願 昭55--93903 ②出 願 昭55(1980)7月11日

②出 願 昭55(1980)7月11 ②発明者井原啓文 ①出 願 人 徳山曹達株式会社 徳山市御影町1番1号

誰を成している。また最近では、後架橋によ つて勝イオン交換体を得る方法も提案されて いる。何えば、特公昭 4 9 - 3 3 3 5 6 号で 1. 発明の名称 は、スチレンークロロメチルスチレン共重合 日イオン交換体の製造方法 物を破骸で架橋とスルホン化を同時に行い、 備イオン交換制度および際イオン交換扱が得 陽イオン交換基または陽イオン交換基の導 られている。 入に通しだ官能薬を有するモノマー,ハロゲ 従来のスチレンージビニルペンゼン系の策 ン世換アルキル薬と不飽和糖合を有する芳香 機高分子体を母体とするイオン交換体は、そ 族化合物、およびアクリセニトリルまたはメ のスチレンとジビニルペンゼンの共重合物中 タクリロニトリルを主体とするモノマー協会 の割合が重合の初期と提期において異なるた 物を重合した後、架衡処理し、必要に応じ降 めに、架橋構造が不均質であることが知られ イオン交換器を導入することを答案とする語 ている。これに対して、上配した如き後果義 イオン交換体の製造方法。 によつて得られるイオン交換体は架橋密度が 3. 発明の群級な説明 均一であり、一般にかかる均一な架構密度を 本祭明は帰イオン交換体の製造方法に関す 有し且つ均一なポアサイズを有するイオン交 後袱脂および腰はアイソポーラス型と呼ばれ 従来の隠イオン交換体の骨格はスチレンー ている。特にイオン交換膜の場合には、その **ジビニルベジゼン系が主体であり、予めスチ** 學機構造がより物質なものほど、電気化学的 レンータビニルベンセンの架板高分子体を製 性質とのほかが良好であることは苦りまでも つた後、陽イオン交換薬を導入する方法が主

75 U.S.	特開昭57-21402(2)
本発明者は上記した後者の後無義によつて	マーを用いることは知られている。また前記
************************************	した特公昭49-33356号の後架構化よ
************************************	る陽イオン交換体の製造においては、スチレ
、 数単町欠り相乗、ステレンークロロメチルスチレン系に特定された第3成分を共重合	ンとアクリル酸ーローブデルを用いクロロメ
ルヘアレンボル特定された第3放分を共重者 させることによつて、電気化学的性質の極め	チルスチレンと共重合した実施例が開示され
	ている。しかしながら、スチレンークロロメ
て優れた陽イオン交換額が得られることを知	チルスチレン系に種々の共重合可能な第3成 -
見し、本発明を提供するに至つたものである。	分モノマーから選択されて、特にアクリロニ
本発明は陽イオン交換基または陽イオン交	トリルまたはメタクリロニトリルを共重合さ
美峯の導入に適した官能基を有するモノマー,	せることによつて、電気化学的性質などの更
ハロゲン世換アルキル薬と不動和勧合を有す	に優れた陽イオン交換体が得られることが示
る芳香族化合物,およびアクリロニトリルま	唆された事実はない。
たはメタクリロエトリルを主体とするモノマ	本発明の方法により得られる陽イオン交換
一混合物を重合した後、架橋処理し、必要に	臓は、電気抵抗が小さく且つ表面が得らかで
応じて帰イオン交換基を導入することを特徴	弾力性を有するしなやかな性質を有する。 即
とする陽イオン交換体の製造方法である。	ち、スチレン=ジビニルベンゼン系の陽イオ
従来のスチレンージビニルベンゼン系陽イ	ン交換膜は勿論のこと、単代スチレ+ンークロ
オン交換体においても、第3成分としてアク	ロメチルスチレン系の陽イオン交換膜に比べ
リロニトリル,アクリル酸エステル,メタク	ても、本発明の障イオン交換額は上記した性
リル像キステルなど種々の共重合可能なモノ	質に優れており、例えば同一電気抵抗の膜で
比較すると塩の拡散が少なく電産効率が高い。	たはイオン交換器の導入に適した官能器を有
したがつて、本発明の隠イオン交換額を例え	するモノマーとしては、スチレン,スチレン
ば海水機能の電気透析に用いる場合には、資	スルホン酸酵導体、ビニルスルホン酸酵導体。
度の高いかん水を得ることができる。また後	アクリル酸エステル,無水マレイン酸などで
記した比較例として示したスチレンークロロ	ある。またハロゲン量換アルギル基と不飽和
メチルスチレン系ピアクリル酸メチルを共重	結合を有する芳香族化合物としては、クロロ
合して得た降イオン交換膜に比べても、本発	メチルスチレン・クロロメチルビニルナフタ
羽の帰イオン交換膜が有する電気化学的性質	レン,プロモメチルスチレン,プロモメチル
の便位性が明らかである。	ピニルナフタレンなどである。
かかる本発明の器イオン交換膜が優れた電	上配イオン交換基またはイオン交換基の導
気化学的性質を発揮する理由について詳細は	入に適した官能薬を有するモノマーとして一
明らかでないが、アクリロムトリル里たはメ	教に用いられるスチレンに対して、ハロゲン
タクリロニトリルを共重合させることによつ	重換アルキル基と不飽和結合を有する芳香族
てクロロメチルスチレンの重合が均一に行わ	化合物は少なく用いることにより、架橋反応
れる結果、後根板によつて均質な架板構造が	に与からない芳香核にイオン交換薬が導入さ
形成されるものと推測する。したがつて、本	れる。したがつて、かかる芳香族化合物の使
発明による陽イオン交換体は脳状物に扱らず	用割合は、イオン交換基またはイオン交換基
例えば粒状の隠イオン交換樹脂にも均質な契	の導入に楽した官能薬を有するモノマー 100
職構造の什与が十分に期待される。	重量部に対して、一般に 1 ~ 5 0 重量部であ
本発明において使用されるイオン交換基ま	る。また本発明においてアクリロニトリルま

19M8757- 21402 (3) たはメタクリロニトリルの使用量を増加させ いられる。重合触簾としては、例えばベンソ るにしたがつて、得られる共重合体に対する イルバーオキサイド,アプピスインプチョニ 架模反応が容易になり、電気抵抗の小さな且 トリル・ジクミルバーオキサイドなどである。 可量剤としては、何えばジオクチルフタレー つしなやかな性質の隔イオン交換膜を得るこ ト,ジプチルフタレートなどである。最粉末 とができる。しかしながら、アクリョニトリ ルまたはメククリロニトリルの使用量が増大 の勢可関性物質としては、例えばポリエチレ すぎると、得られる陽イオン交換体の交換客 ン、ポリ塩化ビニル、アクリロニトリル一塩 化ビニル共重合体、塩化ビニル一導化ビニリ 量が被少する。したがつて、アクリロニトリ ルまたはメタクリロニトリルの使用割合は、 デン共重合体、NBR、SBR、ポリプタジ エンたどである。薬材としてイオン交換庫の イオン交換基またはイオン交換基の導入に進 製造用には無機質・有機質を開わず、例えば した容能基を有するモノマー100重量部に 硝子線線、毛、ビニロン、カネカロン、テビ 対して、一般に1~50重量部、好ましくは . v . * L . v . * + v . * / . v . # / * 10~30重量部である。 本発明の層イオン交換体の製造方法は、上 ル(以上、簡弱名)。ポリエチレン、ポリブ 配したモノマー進合物を用いて、公知の粒状 ョビレンなどの布状物あるいは顕状物が用い イオン交換機能・イオン交換膜などの製法に Att. 単じて実施される。したがつて、目的とする 本発明の方法における職イオン交換体の製 帰イオン交換体に応じて、そのほか重合触媒, 造は、調製されたモノマー混合器策を重合し 可盟剤,増粘剤あるいは補放材としての徴粉 た後、得られる高分子母体に架構処理および 必要に応じて帰イオン交換器の導入を行う。 末島町間性高分子物質。基材などが適宜に用 得た。得られた原便を観像ークロルスルホン 架橋処理は一般に硫酸、塩化アルミニウム・ **酸(1:1)の液において、40℃で1時間** 四枚 ルスズ、四堆 ルチャンなどのフリーデル 処理して帰イオン交換膜とした。 ・クラフト触媒を用いて行うことができる。 この職イオン交換膜はしなやかな感触を有 なお、陽イオン交換差としてスルホン蒸を導 し、取扱いが容易であり、 0.5-N a C & (2 5 入する場合には、濃硫酸、クロルスルホン酸 で)中での電気抵抗が 1.2 Ω - 04 であつた。 またはこれらの混合物を用いることによつて また、この隠イオン交換膜と除イオン交換 果醬が同時に達成される。また陽イオン交換 版(毎山盲連社製、ネオセプタAFS-4F) 盖の導入はスルホン盖のほかカルポキシル盖; とを組合せた電気透析機において、程度30 ホスホン薬などを公知の方法によつて導入さ で,電視密度 3 A / dm[®] の条件下で海水を通 縮した結果、得られるカン水中の塩素イオン 以下に本発明の実施例を示すが、本発明は 後度は3.4 規定であつた。 これらによつて何ら制限されるものではない。 an table 2 実施例 1 実施例 1 において用いたアクリロニトリル スポレン10重量部、クロロメチルスチレ の代りにメタクリロニトリルを使用し、同様 ン2重量部,アクリロニトリル2重量部,ジ の操作で騒イオン交換膜を得た。

その結果、アクリロニトリルの場合と同様

にしなやかで表面状態の良好な陽イオン交換

膜で、 0.5 N - N a C & (2 5 ℃) 中での電気

板枚は 1、3 Ω − cal であつた。また、との勝イ

オッチルフタレート1重量部および敷粉末ポ

1 塩化ビェル1重量部を加熱集合したモノマ

一混合装に、ペンダイルバーオキサイド 0.2

重量部を抵加し、ポリ塩化ビニル布に散布し

た後、加熱重合して高分子膜母体(原膜)を

オン交換膜を用いて、実施例 1 K おけると同様に高水の濃縮を行つた結果、塩素イオン濃

度が 3. 5 規定のカン水を得た。

比較例 1

ステレン10重量部、クロロステルステレン2重量部、ジオタテルフタレート1重量部。 使物末ボリ塩化ビニル1重量部を用いて、実 第例1と同様の操作で帰イオン交換額を得た。

たの様イオン交換額は実施例1および2で得られた膜に比べて硬く、0.5N-NaCε(2.5で)中での電気抵抗は3.5Ω-α(であつ

た。また、この陽イオン交換膜を用いて、実 箱例1におけると同様に海水の鎮撃を行つた 結果、塩素イオン譲度が3.4 規定のカン水を

得た。 実施例 3

スチレン10重量部,クロロメチルスチレン3重量部,アクリロニトリル1重量部,ツ

オクチルフクレート1重量部および敷粉末ポ

り塩化ビニル1重量部を加熱混合し、高粘度

と全く同様にして陥イオン交換膜を得た。 この賭イオン交換膜の性質は、イオン交換 奈貴が 2.5 meq / g , 0.5 N - NaC 2 (2.5で)中の電気板抗が 2.7 Ω - cut であつた。 z

た実施例 2 と同様に海水を濃離した結果、カン水中の塩素イオン満産は 3.4 規定であつた。

 特開昭57- 21402 (4)

を有するモノマー場合版を得た。これに触版 としてベンソイルバーオキサイドを加えて、 ポリ塩化ビェル布に監布した後、加熱重合し て高分子顕常体(原顕)を得た。この原顕を 視摩ータリルスルホン酸(1:1)の場合核

において40℃で1時間処理した後、10% 寄性ソーダ水溶液において宝塩で1時間処理 して降イオン交換膜を得た。

この降イオン交換製はしなやかな膨胀を有 し、イオン交換等量が26meqグ ρ ,0.5 N ーNaC2 (25 で)中で可電気延載が1.8 Ω ー 回であつた。また、この降イオン交換製を 用いて実施列1.2 阿様に海水換板で行った軸 果、カッ本中の塩素イオン造板低3.7 規念で

あつた。 比較例 2

> ステレン10重量額,クロロメチルステレン3重量額,メテルメラクリレート1重量隔, レオタチルフタレート1重量部および最初来 ポリ媒化ビニル1重量額を用いて、実施何2

-14-