Midterm 2 practice, Math 33b, Winter 2013 Instructor: Tonći Antunović

Name and student ID: _____

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

1. (a) (2 points) Specify all values t_0 for which the initial value problem

$$y' = \frac{y^2 - xy}{x^2 - x}, \quad y(x_0) = 3,$$

may fail to have any solutions.

(b) (2 points) Write down an autonomous equation x' = f(x) for which x = 1 is an unstable equilibrium solution and such that for any $x_0 < 1$ the solution of the initial value problem

$$x' = f(x), \quad x(0) = x_0,$$

satisfies $\lim_{t\to\infty} x(t) = 1$.

- (c) (2 points) Write down the solution of any second order homogeneous linear differential equation with constant coefficients which satisfies y(0) = 0 and y'(0) = 0.
- (d) (2 points) Check that y = 1/t and $y = t^3$ are solutions of

$$t^2y'' - ty' - 3y = 0,$$

and write down the general solution of this equation.

(e) (2 points) The solution to the initial value problem

$$y'' - qy = 0$$
, $y(0) = 1$, $y'(0) = y_1$,

satisfies $\lim_{t\to\infty} y(t) = 0$. If q > 0 is a positive constant find y_1 .

2. (10 points) Find all equilibrium solutions of the autonomous equation $y' = (e^y - 1)(y - 1)^2(y - 2)$ and for each of them determine whether it's stable or unstable. Also determine all the possible values of the limit $\lim_{t\to\infty} y(t)$.

3. (10 points) Find the solution of the initial value problem

$$y'' - 2y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 2$.

4. (10 points) Find the solution of the initial value problem

$$y'' + 4y' + 4y = 2e^{-2t} + t$$
, $y(0) = 0$, $y'(0) = 1$.

5. (10 points) An object of mass m is attached to a spring of constant k. It is determined that to make the system critically damped one would need to set the damping constant to $\mu=4$. When there is no damping the system oscillates with period 4π . Find the values of m and k. In the case when there is no damping the object is removed from the equilibrium is to $y(0)=-\sqrt{2}$ and is given an initial velocity $y'(0)=-1/\sqrt{2}$. Find the amplitude and the phase of oscillations.