- 7-1 D_z 起稳幅作用,其稳定电压± U_z =±6 V_z = did算:
 - (1) 输出电压不失真情况下的有效值;
 - (2) 振荡频率。

解答:

(1)输出电压不失真情况下的峰值 是稳压管的稳定电压,故其有效值

$$\frac{U_{o}}{U_{Z}} = \frac{R_{1} + R_{f}}{R_{f}} = \frac{3R_{1}}{2R_{1}} = 1.5$$

$$U_{\rm o} = \frac{1.5 U_{\rm Z}}{\sqrt{2}} \approx 6.36 \text{V}$$

(2) 电路的振荡频率

$$f_0 = \frac{1}{2\pi RC} \approx 9.95 \text{Hz}$$

7-2 试将图示电路合理连线,组成RC桥式正弦波振荡电路

④、5与9相连,3与8相连,1与6相连,2与7相连。

7-3 电路如题 8.7 图所示,试判断这些电路是否有可能产生正弦波振荡。

解答: 图(a)电路中,放大电路是反相输入比例器, $\varphi_A = -180^\circ$;三节 RC 相移电路最大相移为 270°,当三节 RC 电路相移为 180°时, $\varphi_A + \varphi_F = 0$ 。所以,本电路有可能产生振荡。

图(b)电路中反馈信号接到运放 A 的同相输入端, $\varphi_A = 0$; 四节 RC 移相电路中有三节 RC 移相电路是超前移相网络,一节 RC 移相电路是滞后移相网络,等效为两节 RC 超前移相网络,最大相移为 180° ,不满足 $\varphi_A + \varphi_F = 2n\pi$ 的条件,故而不可能产生振荡。

7-4 电路是否满足正弦波振荡的条件?试改正错误之处。

- **7-5** 用理想运放组成的电压比较器如图所示。已知稳压管的正向导通压降 $U_{\rm D}$ =0.7V, $U_{\rm Z}$ =5V。1)试求比较器的电压传输特性;
 - 2) 若 $u_i = 6\sin\omega t$ V, U_R 为方波如图所示,试画出 u_o 的波形。

解答:

$$U_T = -\frac{R_2}{R_1} U_R = -\frac{2}{3} U_R$$

- 7-6 如图所示电路中:设集成运放的最大输出电压为 $\pm 14V$,稳压管的 $U_Z = \pm 12V$,控制电压信号 U_C 的值再 u_{c1} 的两个峰值之间变化。
 - (1) 简述电路组成及工作原理。 (2) 求 u_{o1} 的周期。 (3) 求 u_{o3} 的占空比与 U_{C} 的函数关系;并设 U_{C} =2.5V,试画出 u_{o1} 、 u_{o2} 和 u_{o3} 的波形。

解答:

- 1) A1组成反相积分器, A2滞回比较器,两个环节形成 闭环后构成三角波-方波发生器。 A3组成单限电压比较器。
- (2)由于 A₂的反相输入端电压为零,利用叠加原理可求得 A₂的同相输入端电压为

$$u_{+2} = \frac{u_{01}}{R_3 + R_4} R_4 + \frac{u_{02}}{R_3 + R_4} R_3$$

u+2过零时,比较器输出电压发生跃变,即比较器的翻转条件为

$$\frac{u_{01}}{R_3 + R_4} R_4 + \frac{u_{02}}{R_3 + R_4} R_3 = 0$$

7-6 解答:

求解上式可得比较器翻转时 uoi与 uoz的关系

$$u_{01}=-\frac{R_3}{R_4}u_{02}$$

当 $u_{02} = -U_z = -12$ V 时

$$u_{\rm OI} = U_{\rm Olm} = -\frac{R_3}{R_4}u_{\rm O2} = -\frac{16}{30} \times (-12) \text{ V} = 6.4 \text{ V}$$

当 $u_{02} = U_z = 12$ V 时

$$u_{\rm OI} = -U_{\rm OIm} = -\frac{R_3}{R_4}u_{\rm O2} = -\frac{16}{30} \times 12 \text{ V} = -6.4 \text{ V}$$

因为 A_i 积分器的输出电压 u_{0i} 为三角波,比较器输出电压 u_{0i} 为方波。所以

$$u_{01}(t) = -\frac{1}{R_1 C} \int_{t_1}^{t} u_{02} dt + u_{01}(t_1) = -\frac{u_{02}}{R_1 C} t + u_{01}(t_1)$$

即uoi随时间 t 线性的变化。

令
$$t_1 = 0$$
,那么, $u_{01}(0) = 0$

当
$$t = t_1 + \frac{T}{4}$$
时

$$u_{\text{OI}}\left(\frac{T}{4}\right) = \frac{12}{R_1 C} \frac{T}{4} = U_{\text{Olm}} = 6.4 \text{ V}$$

$$T = \frac{6.4}{3}R_1C = \frac{6.4}{3} \times 15 \times 10^3 \times 0.1 \times 10^{-6} \text{ ms} = 3.2 \text{ ms}$$

^{即电路的振荡周期为 3.2 ms。}

7-6 解答:

(3) 设 u_{03} 波形的占空比 ε 与控制信号 U_{c} 成线性关系,其函数关系为

$$\varepsilon = \frac{T_1}{T} = aU_C + b$$

当 $U_c = 0$ 时, u_{c3} 为方波, 占空比为 50%, 得常数 b = 0.5。

当 $U_{\rm C} = \frac{1}{2} U_{\rm Olm} = 3.2 \text{ V}$ 时,占空比为 75%,可得比例系数 $a = \frac{5}{64} \text{V}^{-1}$

于是得

$$\varepsilon = \frac{5}{64} U_{\rm c} + 0.5$$

当 $U_c = 2.5 \text{ V}$ 时, u_{03} 矩形脉冲的占空比为

$$\varepsilon = \frac{5}{64} \times 2.5 + 0.5 \approx 70\%$$