Differentialrechnung: Teil 4

Andreas Henrici

MANIT1 IT18ta_ZH

3. Dezember 2018

Überblick

- Ableitungsregeln
 - Repetition
 - Logarithmische Ableitung
 - Ableitung der Umkehrfunktion
- Anwendungen der Ableitung
 - Linearisierung einer Funktion
 - Monotonie
 - Krümmung

Ableitungsregeln: Repetition

- Ableitung der Grundfunktionen:
 - $f(x) = x^{\alpha}, \alpha \in \mathbb{R}$: $f'(x) = \alpha x^{\alpha-1}$
 - $f(x) = a^x$, a > 0: $f'(x) = a^x \cdot \ln(a)$
 - $f(x) = \log_a(x)$: $f'(x) = \frac{1}{x \cdot \ln(a)}$
 - $f(x) = \sin(x)$: $f'(x) = \cos(x)$
 - $f(x) = \cos(x)$: $f'(x) = -\sin(x)$
- Ableitung von zusammengesetzten Funktionen:
 - $f(x) = \lambda_1 u(x) + \lambda_2 v(x)$: $f'(x) = \lambda_1 u'(x) + \lambda_2 v'(x)$
 - $f(x) = u(x) \cdot v(x)$: f'(x) = u'(x)v(x) + u(x)v'(x)
 - $f(x) = \frac{u(x)}{v(x)}$: $f'(x) = \frac{u'(x)v(x) u(x)v'(x)}{v(x)^2}$
 - f(x) = u(v(x)): $f'(x) = u'(v(x)) \cdot v'(x)$

Logarithmische Ableitung: Beispiel

Beispiel

Problemstellung:

- Ableitung der Funktion $y = x^x$?
- Regeln über Ableitung von Potenzfunktion und Exponentialfunktionen sind nicht direkt anwendbar, da sowohl die Basis als auch der Exponent variabel sind!
- Andere Notation: $y = x^x = e^{x \cdot \ln(x)}$
- Ableiten mit Kettenregel und Produktregel:

$$y' = e^{x \cdot \ln(x)} \cdot \left(\ln(x) + \frac{x}{x} \right) = e^{x \cdot \ln(x)} \cdot \left(\ln(x) + 1 \right) = x^x \cdot \left(\ln(x) + 1 \right)$$

Andere Herleitung des gleichen Resultats:

- Logarithmieren: Aus $y = x^x$ folgt $ln(y) = x \cdot ln(x)$
- Ableiten mit Kettenregel und Produktregel: $\frac{y'}{v} = \ln(x) + 1$
- Auflösen nach y':

$$y' = y \cdot (\ln(x) + 1) = x^x \cdot (\ln(x) + 1)$$

Logarithmische Ableitung: Allgemeines Vorgehen

- Gesucht: Ableitung von $y = u(x)^{v(x)}$
- Logarithmieren: Aus $y = u(x)^{v(x)}$ folgt $\ln(y) = v(x) \cdot \ln(u(x))$
- Ableiten mit Kettenregel:

$$\frac{y'}{y} = v'(x) \cdot \ln(u(x)) + v(x) \cdot \frac{u'(x)}{u(x)}$$

Auflösen nach y':

$$y' = f(x) \cdot \left(v'(x) \cdot \ln(u(x)) + v(x) \cdot \frac{u'(x)}{u(x)}\right)$$
$$= u(x)^{v(x)} \cdot \left(v'(x) \cdot \ln(u(x)) + v(x) \cdot \frac{u'(x)}{u(x)}\right).$$

Beispiel

Ableitung von $y = x^{\sin(x)}$?

Ableitung der Umkehrfunktion: Ausgangslage

- Ziel: Ableitung von Funktionen wie z.B.
 - $y = \arctan(x)$
 - $y = \arccos(x)$
 - $y = \arcsin(x)$
 - $y = \ln(x)$
- Wir wissen: Diese Funktionen sind die Umkehrfunktionen von
 - $y = \tan(x)$
 - $y = \cos(x)$
 - $y = \sin(x)$
 - $y = e^x$
- Wir kennen die Ableitungen dieser Grundfunktionen:
 - $y' = 1 + \tan^2(x)$
 - $y' = -\sin(x)$
 - $y' = \cos(x)$
 - $y' = e^x$
- Wie k\u00f6nnen wir daraus die Ableitungen der Umkehrfunktionen finden?

Ableitung der Umkehrfunktion: Umsetzung

- Ausgangspunkt: Funktion f(x) mit Umkehrfunktion $f^{-1}(x)$
- Idee: Wir leiten die Gleichung

$$\underbrace{f^{-1}(f(x))}_{=(f^{-1}\circ f)(x)} = x$$

ab und verwenden dazu die Kettenregel.

Wir erhalten:

$$(f^{-1})'(f(x)) \cdot f'(x) = 1.$$

• Einsetzen von y = f(x) bzw. $x = f^{-1}(y)$ und Auflösen nach $f^{-1}(y)$:

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

• Also (Vertauschen von x und y):

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Ableitung der Umkehrfunktion: Resultat

Hauptresultat:

Satz

Sei y = f(x) eine umkehrbare und differenzierbare Funktion. Die Ableitung der Umkehrfunktion $y = f^{-1}(x)$ ist

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Wichtige Anwendungen:

Satz

Es gelten folgende Ableitungsregeln:

a)
$$\arctan'(x) = \frac{1}{1+x^2}$$

b)
$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

c)
$$arccos'(x) = \frac{1}{\sqrt{1+x^2}}$$

d)
$$\ln'(x) = \frac{1}{x}$$

Ableitung der Umkehrfunktion: Wichtige Beispiele

Beispiel

- Wir betrachten $f(x) = e^x$, $f^{-1}(x) = \ln(x)$
- $f'(x) = e^x$; $(f^{-1})'(x) = ?$
- Anwenden der Formel:

Beispiel

- Wir betrachten $f(x) = \tan(x)$, $f^{-1}(x) = \arctan(x)$
- $f'(x) = 1 + \tan^2(x)$; $(f^{-1})'(x) = ?$
- Anwenden der Formel:

Überblick

Überblick über die Anwendungen der Differentialrechnung:

- Wir verwenden die Ableitung einer Funktion, um verschiedene Aspekte der Funktion selbst besser zu verstehen.
- Wir bestimmen nicht nur die Steigung, sondern die Geradengleichung der Tangente an die Funktionskurve an einer bestimmten Stelle.
- Wir verwenden das Vorzeichen der Ableitung, um herauszufinden, ob die Funktionskurve ansteigt oder abfällt.
- Wir verwenden das Vorzeichen der zweiten Ableitung, um herauszufinden, ob die Funktionskurve eine Links- oder Rechtskurve beschreibt.
- Wir suchen Nullstellen der ersten Ableitung, um Hoch- und Tiefpunkte der Funktionskurve zu finden.
- Wir suchen Nullstellen der zweiten Ableitung, um Punkte zu finden, an denen die Funktionskurve ihren Drehsinn ändert.
- ...

Tangentengleichung

- Wir wissen: Die Ableitung $f'(x_0)$ ist die Steigung der Tangente an die Kurve y = f(x) im Punkt $(x_0, f(x_0))$.
- Gleichung der Tangente:

Satz

Sei y = f(x) eine differenzierbare Funktion mit Definitionsbereich D und $x_0 \in D$. Die Gleichung der Tangente an den Graphen von f(x) an der Stelle x_0 ist

$$y = f'(x_0) \cdot (x - x_0) + f(x_0).$$

 "Unter dem Mikroskop sieht jede Funktion lokal wie eine Gerade aus"

Tangentengleichung: Beispiel

Beispiel

Wir betrachten die Funktion $y = e^x$.

a) Bestimmen Sie die Gleichung der Tangente an den Funktionsgraphen von y = f(x) an der Stelle $x_0 = 0$.

b) Vergleichen Sie für x = 0.01 die Funktionswerte auf der Funktionskurve und auf der Tangenten.

Monotonie: Allgemeines

Satz

Sei y = f(x) eine differenzierbare Funktion mit Definitionsbereich D und Ableitung y' = f'(x), und sei $x_0 \in D$. Dann gilt:

- Ist $f'(x_0) > 0$, so wächst die Kurve streng monoton in einer Umgebung des Kurvenpunktes $P = (x_0, f(x_0)).$
- Ist $f'(x_0) < 0$, so fällt die Kurve streng monoton in einer Umgebung des Kurvenpunktes $P = (x_0, f(x_0)).$
- Ist $f'(x_0) = 0$, so hat die Funktionskurve im Kurvenpunkt $P = (x_0, f(x_0))$ eine horizontale Tangente.

Monotonie: Beispiel

Beispiel

Bestimmen Sie das Monotonieverhalten der folgenden Funktionen y = f(x) anhand des Vorzeichens ihrer Ableitungsfunktion y' = f'(x):

a) $y = e^{x}$

b) $y = e^{-x}$

c) $y = \ln(x)$

d) $y = (2 - 2x - x^2) \cdot e^{1-x}$

Krümmung: Allgemeines

Satz

Zusammenhang zwischen 2. Ableitung und Krümmung:

- Ist $f''(x_0) > 0$, so ist die Kurve in einer Umgebung des Kurvenpunktes $P = (x_0, f(x_0))$ nach links gekrümmt, bzw. sie ist konvex.
- Ist $f''(x_0) < 0$, so ist die Kurve in einer Umgebung des Kurvenpunktes $P = (x_0, f(x_0))$ nach rechts gekrümmt, bzw. sie ist konkav.
- Ist $f''(x_0) = 0$, so ist die Kurve im Kurvenpunkt $P = (x_0, f(x_0))$ nicht eindeutig gekrümmt.

Krümmung: Beispiel

Beispiel (Fortsetzung)

Bestimmen Sie das Krümmungsverhalten der folgenden Funktionen y = f(x) anhand des Vorzeichens ihrer Ableitungsfunktion y' = f'(x):

a)
$$y = e^{x}$$

b)
$$y = e^{-x}$$

c)
$$y = \ln(x)$$