

Concepts of Programming Languages

Dr. Liam O'Connor University of Edinburgh LFCS UNSW. Term 3 2020



Natural Deduction

#### **Formalisation**

## Assignment Project Exam Help

To talk about languages in a mathematical way, we need to formalise them.

Formalisation https://powcoder.com
Formalisation is the placess of giving a language a formal, mathematical description.

#### **Formalisation**

## Assignment Project Exam Help

To talk about languages in a mathematical way, we need to formalise them.

Formalisation https://powcoder.com
Formalisation is the placess of glving a language a formal, mathematical description.

Typically, we describe the language in another language, called the *meta-language*. For implementations it is usually a minimal logic called *meta-logic*.

#### **Learning from History**

What sort of meta logic should we use? There are a number of things to formalise: ASSIGNMENT PROJECT EXAM HELD

Scoping https://pow.coder.com Typing Cost Models **Dynamic Semantics** Parsing Runtime Behaviour Syntax Grammar

#### **Learning from History**

Logicians in the early 20th century had much the same desire to formalise logics. ASSIGNMENT PROJECT EXAM Help

Scoping https://pow.coder.com Typing **Proof Models** Logical Models Ambiguity Truth Models Syntax Grammar

#### **Learning from History**

Assignment Project Exam Help In this course, we will use a meta-logic based on Natural Deduction and Inductive inference rules, originally invented for formalising logics by Gerhard Gentzen in the mid 1930s.

https://powcoder.com
Der Kalkül des natürlichen Schließens.

Add We Chat poweder

#### **Judgements**

A judgement is a statement asserting a certain property for an object. Help

Example (Informal Judgements)

Example (Informal Judgements)

- $3 + 4 \times 5$  is a valid arithmetic expression.
- The string made is a palindrome wcoder.com
   The string snooze is a palindrome
- - ⇒ Judgements do not have to hold.

#### **Judgements**

A judgement is a statement asserting a certain property for an object. Help

Example (Informal Judgements)

Example (Informal Judgements)

- $3 + 4 \times 5$  is a valid arithmetic expression.
- The string made is a palindrome wcoder.com
   The string snooze is a palindrome
- - ⇒ Judgements do not have to hold.

### Unary Judgement dd WeChat powcoder

Formally, we denote the judgement that a property A holds for an object s by writing s A.

Typically, s is a string when describing syntax, and s is a term when describing semantics.

Natural Deduction

#### **Proving Judgements**

## We densi ginment b Projectidi Examer Help

#### Inference Rules

000000000

An inference rule is written as /powcoder.com

This states that Acid to Wedge that (thows of the states to prove all judgements  $J_1$  through to  $J_n$  (the *premises*).

Rules with no premises are called axioms. Their conclusions always hold.

## Assignment Project Exam Help

https://powcoder.com

Add WeChatten in sa natural number oder

What terms are in the set  $\{n \mid n \text{ Nat}\}$ ?

Natural Deduction

## Assignment Project Exam Help

https://powcoder.com

Add WeChatten however of oder

What terms are in the set  $\{n \mid n \text{ Nat}\}$ ?

 $\{0, (S 0), (S (S 0)), (S (S (S 0))), \dots\}$ 

Natural Deduction

## Assignment Project Exam Help

n Even

https://powcoder.com

## The Proof Vid Add WeChat powcoder

To show that a judgement s A holds:

- Find a rule whose conclusion matches s A.
- The preconditions of the applied rules become new proof obligations.
- Rince and repeat until all obligations are proven up to axioms.

Natural Deduction

## Assignment Project Exam Help

n Even

n Odd

https://powcoder.com.o.



## Assignment Project Exam Help

n Even

n Odd

https://powcoder.com.o.

## Add WeChat powcoder

 $\frac{(S (S (S (S 0)))) \text{ Even}}{(S (S (S (S (S 0))))) \text{ Odd}} O_1$ 



Natural Deduction

## Assignment Project Exam Help

n Even

n Odd

https://powcoder.como

## Add WeChat powcoder

```
\frac{\overline{(S (S 0)) \text{ Even}}}{\overline{(S (S (S (S 0)))) \text{ Even}}} E_2}
\overline{(S (S (S (S (S 0))))) \text{ Odd}} O_1
```



Natural Deduction

## Assignment Project Exam Help

n Even

n Odd

https://powcoder.com.o.

## Add WeChat powcoder

```
\frac{\frac{0 \text{ Even}}{(\text{S (S 0)) Even}} E_2}{\frac{(\text{S (S (S 0))) Even}}{(\text{S (S (S (S 0)))) Odd}} E_2}
```



Natural Deduction

## Assignment Project Exam Help

n Even

n Odd

https://powcoder.com.o.

# Add WeChat powcoder

$$\frac{\frac{0 \text{ Even}}{(S (S 0)) \text{ Even}} E_2}{\frac{(S (S (S 0))) \text{ Even}}{(S (S (S (S 0)))) \text{ Odd}} E_2}$$

$$\frac{(S (S (S (S (S 0))))) \text{ Odd}}{(S (S (S (S 0))))) \text{ Odd}} O_2$$



Natural Deduction

#### **Defining Languages**

## Examples Signment a Purgiect Exam Help

 $M ::= \varepsilon \mid MM \mid (M)$ 

Examples of stratetps://powcoder.com

#### Three rules:

Natural Deduction

Axiom The empty string is in M
Nesting And Gring Wift on the artounded by COCET
parentheses, giving a new string in M

Any two strings in M can be concatenated **Juxtaposition** 

to give a new string in M

#### With Rules

## The Answing Inment Project Exam Help

https://powcoder.com





Natural Deduction

000000

#### With Rules

## The Answing Imment Project Exam Help

s M

https://powcoder.com

## Add WeChat powcoder

() M (()) M () (() M



#### With Rules

## The Answing Inment Project Exam Help

https://powcoder.com

## Add WeChat powcoder

```
()(())M
```

#### With Rules

## The Answing Inment Project Exam Help

s M

https://powcoder.com

```
\frac{\frac{\varepsilon M}{E}M_E}{() M}M_N \qquad \frac{\frac{\varepsilon M}{() M}M_N}{(() M}M_N \qquad M_N}
```

#### **Getting Stuck**

## Assignment Project Exam Help If we had started with rule $M_N$ instead, we would have gotten stuck:

https://power.com

**Takeaway** 

## Add WeChat powcoder

Getting stuck does not mean what you're trying to prove is false!

# Considerate State Project Exam Help

Does adding the change M? The is it not adhissible to M? The change M? The is it not adhissible to M?

## Considerate Significant Project Exam Help

No, because we could always use the My twice instead. Nales that are compositions of existing rules are called *derivable*:

Add We 
$$\underbrace{\mathsf{Chat}}_{(s)}$$
 powcoder

We can prove rules as well as judgements, by deriving the conclusion of the rule while taking the premises as local axioms.

## Assignment Project Exam Help

*s* N

https://powedder.com

## Assignment Project Exam Help

Is this rule derivable?

https://powerder.com

Is the Assignment Project Exam Help  $\frac{(s)M}{sM}Q$ 

https://powcoder.com



It is not admiss at the Sie/depowted the second



# Assignment Project Exam Help Is this rule admissible? If so, is it derivable?

https://pow.com

# Assignment Project Exam Help Is this rule admissible? If so, is it derivable?

https://powseder.com

- It is admissible, as it doesn't let us prove any new judgements about M.
  It is not derivable, as it is not made upon the composition of existing rules.
- We will see how to prove these sorts of rules are admissible later on.

#### **Hypothetical Derivations**

## we Assignment Project Exam Help

This allows us to nearly make rules premises of other rules, called hypothetical

I his allows us to nearly make rules premises of other rules, called *hypothetical* derivations:

**Example** 

Natural Deduction

Add WeChat powcoder

Read as: If assuming A we can derive B, then we can derive C.

#### **Specifying Logic**

With Apsthelia Inmenty Pgit, Once Stheright Purpose In a true deduction. Let A True be the judgement that the proposition A is true.

Example (And and Implies) / powcoder.com  $\frac{A \text{ True}}{A \text{ A B True}} \xrightarrow{B \text{ True}} \land_{I} \frac{A \land B \text{ True}}{A \text{ True}} \land_{E1} \frac{A \land B \text{ True}}{B \text{ True}} \land_{E2}$   $\frac{A \land B \text{ True}}{A \Rightarrow B \text{ True}} \xrightarrow{\Rightarrow_{I}} \frac{A \land B \text{ True}}{B \text{ True}} \xrightarrow{\Rightarrow_{E}} \Rightarrow_{E}$ 

#### **Specifying Logic**

With Apsthelia Inmenty Pgit, Once Stheright Purpose In a true deduction. Let A True be the judgement that the proposition A is true.

Example (And and Implies)/powcoder.com  $\frac{A \text{ True}}{A \land B \text{ True}} \xrightarrow{A \land B \text{ True}} \land_{I} \xrightarrow{A \land B \text{ True}} \land_{E1} \xrightarrow{B \text{ True}} \land_{E2}$   $\frac{A \land B \text{ True}}{A \land B \text{ True}} \xrightarrow{A \land B \text{ True}} \Rightarrow_{I} \xrightarrow{B \text{ True}} \Rightarrow_{E}$   $A \Rightarrow B \text{ True} \xrightarrow{B} \text{ True}$   $A \Rightarrow B \text{ True}$  B True

#### **Specifying Logic, Continued**

## Exan Als Significent Project Exam Help



$$\frac{A \text{ True} \vdash \bot \text{ True}}{\neg A \text{ True}} \neg_{I} \quad \frac{\neg A \text{ True}}{B \text{ True}} \neg_{E}$$

#### **Specifying Logic, Continued**

## Exan Als Significent Project Exam Help



$$\frac{A \text{ True} \vdash \bot \text{ True}}{\neg A \text{ True}} \neg_I \quad \frac{\neg A \text{ True}}{B \text{ True}} \neg_E$$

#### Minimal Definitions

### Assignment Project Exam Help

https://powcoder.com

# The above rules are the smallest set of rules to define every string in M. Add WeChat powcoder

### **Therefore**

If we know that a string s M, it must have been through one of these rules.

This is called an *inductive definition* of M.

Supp de gygyjagt jo shryethen t proporty je et tri les xholdsfor and strill M. We will use rule mourron



Then we have shown P(s) for all s M.

These assumptions are called *inductive hypotheses*.

### Assignment Project Exam Help

#### **Example (Counting Parens)**

Let op(s) denote the number of closing parentheses. We shall prove that

by doing rule induction on  $s \stackrel{\text{M}}{\text{M}} \stackrel{\text{op}}{\text{Chat}} \stackrel{\text{op}}{\text{powcoder}}$ 

# Examples (Significant Project Exam Help Base Case: $op(\varepsilon) = 0 = cl(\varepsilon)$

https://powcoder.com

# Examples (Significant Project Exam Help) $M_E$ Base Case: $op(\varepsilon) = 0 = cl(\varepsilon)$

 $\frac{s}{(s)} \frac{\text{Mutps://poweeder.edm}}{op(s) = cl(s)}$ 

# Examples (Significant Project Exam Help) $M_E$ Base Case: $op(\varepsilon) = 0 = cl(\varepsilon)$

s Mttps://poweoder.eom

$$op(s_1) = cl(s_1) \text{ and } op(s_2) = cl(s_2)$$

$$op(s_1s_2) = op(s_1) + op(s_2) = cl(s_1s_2)$$

#### Rule Induction in General

### Assignment Project Exam Help

Given a set of rules R, we may prove a property P inductively for all judgements that can be inferred with R by showing, for each rule of the form https://powcoder.com

that if P holds Add f W. E. the hadden owcoder

Therefore, axioms are the base cases of the induction, all other rules form inductive cases, and the premises of each rule give rise to inductive hypotheses.

#### Structural Induction

Conventions ignificant such a special case of rule induction.



### **Another Example**

## Assignment Project Exam Help

n Even



Let's prove the original Odd rule, but for Odd' (to whiteboard):

n Even (S n) Odd'



#### **Arithmetic**

### Assignment Project Exam Help

**Example (Arithmetic Expression)** 

### **Arithmetic**

### Assignment Project Exam Help

**Example (Arithmetic Expression)** 

 $\begin{array}{c} \text{All the power of the$ 

Infer  $1 + 2 \times 3$  Arith (both ways) to whiteboard

### **Ambiguity**

Assignment Project Exam Help

Arith is ambiguas, which means that there are multiple ways to derive the same judgement.

For syntax, this is a big problem, as different interpretations of syntax can lead to semantic inconstate S://powcoder.com



### **Second Attempt**

We want to specify Arith in such a way that enforces order of operations. Here we Sistis and the color of the specific and the specific a

**Example (Arithmetic Expression)** 

https://powcoder.com SExp ::=  $PExp \mid SExp + SExp$ 

### **Second Attempt**

We want to specify Arith in such a way that enforces order of operations. Here we Sistis and the calculations: 101ect Exam Help

**Example (Arithmetic Expression)** 



$$\frac{a \text{ PExp} \qquad b \text{ PExp}}{a \times b \text{ PExp}} \qquad \frac{a \text{ SExp} \qquad b \text{ SExp}}{a + b \text{ SExp}}$$

Consider: Is there still any ambiguity here?

### More ambiguity

### Assignment Project Exam Help

```
2 \in \mathbb{Z}
                                                   1\in\mathbb{Z}
                                 3 \in \mathbb{Z}
                                3 Atom
                                                  1 Atom
                2 Atom
                                                                                    3 \in \mathbb{Z}
                     2 \times 3 PExp
1 PExp
                                                       1 \times 2 PExp
                                                                                   3 PExp
                                                            1 \times 2 \times 3 PExp
```

operations. Which ones?

### More ambiguity

### Assignment Project Exam Help

```
3 \in \mathbb{Z}
                                                  1\in\mathbb{Z}
                 2 \in \mathbb{Z}
                                                 1 Atom
                2 Atom
                                3 Atom
                                                                                   3 \in \mathbb{Z}
                     2 \times 3 PExp
1 PExp
                                                       1 \times 2 PExp
                                                                                  3 PExp
                                                            1 \times 2 \times 3 PExp
```

operations. Which ones? Operators that are not associative.

We have to specify the *associativity* of operators. How?

#### **Associativities**

**Ambiguity** 000000000

# Assignment Project Exam Help Operators have various associativity constraints:

Associative https://proweder.com

**Left-Associative** 
$$A \odot B \odot C = (A \odot B) \odot C$$

Right-Associated Weat powcoder

Try to think of some examples!

### **Enforcing associativity**

We force the grammar to accept a smaller set of expressions on one side of the operator Sny 1 sources to the with a CCT Exam Help

**Example (Arithmetic Expression)** 

https://pow.coderecom SExp ::= PExp | PExp + SExp

### **Enforcing associativity**

We force the grammar to accept a smaller set of expressions on one side of the operator Sny 1 source that the writing eCT EX am Help

**Example (Arithmetic Expression)** 

$$\begin{array}{c} https_{\text{REXp}}^{\text{Atom}} p \overset{\text{\tiny i.i.}}{\text{\tiny o}} \overset{\text{\tiny (SExp)}}{\text{\tiny occ}} \overset{\text{\tiny (i.i.}}{\text{\tiny occ}} \overset{\mathbb{Z}}{\text{\tiny pcom}} \\ \text{\tiny SExp} & ::= & \text{\tiny PExp} \mid \text{\tiny PExp} + \text{\tiny SExp} \end{array}$$

$$\frac{a \text{ Atom} \qquad b \text{ PExp}}{a \times b \text{ PExp}} \qquad \frac{a \text{ PExp}}{a + b \text{ SExp}}$$

Here we made multiplication and addition right associative. How would we do left?

### **Bring Back Parentheses**

### Assignment Project Exam Help

```
The Parenthetical Language
                       https://pow.coder.com
                       A^{\overline{\varepsilon}}_{M}^{M_{E}} W^{\underline{s}}_{C}^{\underline{M}}_{N}^{M_{N}} T^{\underline{s_{1}} \underline{M}}_{N}^{\underline{s_{2}} \underline{M}}_{N}^{\underline{M}_{J}}
```

Is this language ambiguous? to whiteboard

### **Ambiguity in Parentheses**

Not only is it ambiguous, it is infinitely so. Strings like () () () could be split at two different Solombut Twe use Charlet even the chirg () is ambiguous:





We will eliminate the ambiguity by once again splitting M into two judgements, N and

# L. Assignment Project Exam Help The crucial observation is that terms in M are a list (L) of terms nested within

parentheses (N).



### **Proving Equivalence**

### Assignment Project Exam Help

Now we shall prove M=L. There are two cases, each dispatched with rule induction:

The first case requires proving a lemma. The second requires simultaneous induction. These proofs with Carried but to be the the proof will also be uploaded.