Sys-Verilog Questions Review

Some Solutions to questions from ChipIO-Dev

Counter

Counter

Router

Connect (wire)

Recursion or calling the same hardware segment repeatedly

Log2(**5**)

Minimum number of bits represent 5?

$$Min = 2$$

$$5 > 2^2$$
 (increment) ____ ___

Log2(**4**)

Minimum number of bits represent 5?

$$Min = 2$$

$$4 \not< 2^2$$
 (perfect)

Log2 : Debug Results

Second Largest

Count	0	1	2	3	4	
Data_In	DO	D1	D2	D3	D4	
2nd Largest	0	0	2	2	2	3

-, **2** 3, **2** 3, **2** 3, **2** 7, **3**

Rounded Division

Generate Logic Blocks

Gray code

Vertical Delay:) $2^3 = 8cycle$ $2^2 = 4cycle$ $2^1 = 2cycle$ $2^0 = 1cycle$

$$2^3 = 8cycle$$

$$2^2 = 4cycle$$

$$2^1 = 2cycle$$

$$2^0 = 1$$
cycle

0	0	0	O
O	O	O	1
O	O	1	1
O	O	1	O
O	1	1	O

Parralel In -Serial Out

Serial to Parallel

Serial to Parallel (Simulation Concept)

Fibonacci

Count Ones

Architecture Similar to Linked List Gen Din_0 adderz $wire_0$ equal_width Gen Din_1 Din adderz data_width $wire_1$ equal_width $wire_{15}$ Dout (i.e. Count) adderz equal_width equal_width = log2(data_width)

Count Ones

```
[2025-10-21 23:50:16 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out index - 0 input - 3 n_ones - 2 index - 1 input - 5 n_ones - 2 index - 2 input - 8 n_ones - 1 testbench.sv:44: $finish called at 9 (1s)

Done
```

Gray Code to Binary (Width = 3)

