Ch 5. Consistency and Limiting distributions

Convergence in probability

Definition

Let $\{X_n\}$ be a sequence of random variables and let X be a random variable. X_n converges to X in probability if and only if, for all $\epsilon>0$, $\lim_{n\to\infty}P(|X_n-X|\geq\epsilon)=0$

- In this case, we will write $X_n \stackrel{p}{\to} X$
- Some useful tools to show the convergence in probability
 - Markov inequality (p. 93): For u(X) > 0,

$$P(u(X) \ge c) \le \frac{E(u(X))}{c}$$

Chebyshev's inequality (p. 93)

$$P((X - \mu)^2 \ge c) \le \frac{\sigma^2}{c}$$
 or $P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$

▶ Weak Law of Large Numbers (WLLN): For iid random sample X_1, \ldots, X_n , $\bar{X}_n \stackrel{p}{\to} \mu$ if $\mu = E(X_1)$ and $Var(X_1) < \infty$.

Continuous Mapping Theorem (CMT): If $\bar{X}_n \stackrel{p}{\to} X$ and $\bar{Y}_n \stackrel{p}{\to} Y$, then $g(X_n, Y_n) \stackrel{p}{\to} g(X, Y)$.

- Example 5.1

$$\blacktriangleright X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

$$\to \frac{\sum X_i}{n-2} \xrightarrow{p} \mu$$
 and $S_n^2 = \frac{\sum (X_i - \bar{X})^2}{n-1} \xrightarrow{p} \sigma^2$

$$ightharpoonup X_1, X_2, \dots \stackrel{iid}{\sim} Gamma(3, \beta)$$

$$\rightarrow \frac{\bar{X}_n}{3} \stackrel{p}{\rightarrow} \beta$$

- Example 5.2
 - $ightharpoonup X_1, \dots, X_n \stackrel{iid}{\sim} U[0, \theta]$

$$\rightarrow Y_n = \max(X_1, \dots, X_n) \xrightarrow{p} \theta$$

Convergence in distribution

Definition

For a sequence of random variables X_1, X_2, \ldots , if $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ for all x, then we say that X_n converges to X in distribution, and write $X_n \stackrel{d}{\to} X$.

- Two useful theorems for $\stackrel{d}{\rightarrow}$.
 - 1. Continuous mapping theorem: $X_n \stackrel{d}{\to} X$ implies that $g(X_n) \stackrel{d}{\to} g(X)$ for any continuous function g.
 - 2. Slutsky's theorem: If $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{p}{\to} c_1$, $Z_n \stackrel{p}{\to} c_2$, where c_1 and c_2 are constants, then

$$Y_n X_n + Z_n \stackrel{d}{\to} c_1 X + c_2$$

- Relationship between $\stackrel{d}{ o}$ and $\stackrel{p}{ o}$
 - 1. $\stackrel{p}{\rightarrow}$ implies $\stackrel{d}{\rightarrow}$
 - 2. $\stackrel{d}{\rightarrow}$ may not impliy $\stackrel{p}{\rightarrow}$

- Example 5.3: $X_1,\ldots,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$

Let
$$T_n = rac{ar{X}_n - \mu}{s/\sqrt{n}}$$
 where $s = \sqrt{rac{\sum (X_i - ar{X}_n)^2}{n-1}}$, then

$$T_n \stackrel{d}{\to} Z$$
, where $Z \sim N(0,1)$

Central Limit Theorem (CLT)

Theorem

Suppose that X_1, X_2, \ldots is a random sample from a distribution having mean zero and unit variance. Then $Y_n = \sqrt{n} \bar{X}_n \stackrel{d}{\to} N(0,1)$

Proof.

Neet to show $P(Y_n \leq y) \to \Phi(y)$ for all y, where $\Phi(y)$ is the cdf of N(0,1). This is equivalent to showing

 $M_{Y_n}(t) \to M_Z(t) = e^{t^2/2}$. First we assume that $M_X(t)$ exists for -h < t < h, h > 0. From Taylor expansion, we have

$$M_X(t) = M_X(0) + M_X'(0) + M_X''(\xi)t^2/2 = 1 + M_X''(\xi)t^2/2$$

for some $0 < \xi < t$.

Now,

$$M_{Y_n}(t) = E(e^{tY_n}) = E\left(\exp\left(\frac{tX_1}{\sqrt{n}} + \dots + \frac{tX_n}{\sqrt{n}}\right)\right)$$
$$= \left[E\left(\exp\left(\frac{tX_1}{\sqrt{n}}\right)\right)\right]^n = \left[M_X\left(\frac{t}{\sqrt{n}}\right)\right]^n$$

for some $-h < t/\sqrt{n} < h$. This means that

$$M_{Y_n}(t) \approx \left(1 + \frac{t^2/2}{n}\right)^n \to e^{t^2/2}$$

You can easily generalize this theorem as follows: Suppose that X_1, X_2, \ldots is a random sample from a distribution having mean μ and variance σ^2 . Then $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$

- Example 5.4

1.
$$X_1, \ldots, X_n \stackrel{iid}{\sim} b(1, p) \Rightarrow \sqrt{n}(\bar{X}_n - p) \stackrel{d}{\rightarrow} N(0, p(1-p))$$

2.
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \chi_1^2 \Rightarrow \sqrt{n}(\bar{X}_n - 1) \stackrel{d}{\rightarrow} N(0, 2)$$

Theorem (Delta method)

If
$$\sqrt{n}(X_n-\theta)\stackrel{d}{\to} N(0,\sigma^2)$$
, then
$$\sqrt{n}(g(X_n)-g(\theta))\stackrel{d}{\to} N(0,\sigma^2(g'(\theta))^2),$$

for any twice differential function $g(\cdot)$ at θ and $g'(\theta) \neq 0$.

Proof.

$$g(X_n) = g(\theta) + g'(\theta)(X_n - \theta) + \frac{g''(\xi)}{2}(X_n - \theta)^2$$
 for some $0 < \xi < X_n$

- Example 5.5: $X_1, \ldots, X_n \stackrel{iid}{\sim} Gamma(\alpha, \beta)$

$$(1)\sqrt{n}\left(\frac{1}{\bar{X}_n}-?\right)\stackrel{d}{\to}N(0,?)$$

$$(2)\sqrt{n}\left(\log(\bar{X}_n)-?\right) \stackrel{d}{\to} N(0,?)$$

Exercises: 5.1.2, 5.1.3, 5.1.7, 5.2.2, 5.2.3, 5.2.12, 5.3.9, 5.3.11