Chapter 23: 条件期望

Latest Update: 2025年1月2日

对于习题 23.1 到 23.6, 假设 Y 是 (Ω, \mathcal{A}, P) 正的或可积随机变量, \mathcal{G} 是 \mathcal{A} 的子 σ -代数.

Exercise #23. 1. 证明: $|\mathbb{E}\{Y|\mathcal{G}\}| \leq \mathbb{E}\{|Y| \mid \mathcal{G}\}.$

证明. 若 $Y \ge 0$, 则 $|\mathbb{E}\{Y|\mathcal{G}\}| = \mathbb{E}\{|Y| \mid \mathcal{G}\}.$

若 Y 可积, 根据绝对值函数 $\varphi(x)=|x|$ 是凸函数, 则由 Jensen 不等式 (Thm 23.9) 立刻得出结论.

Exercise #23. 2. 假设 $\mathcal{H} \subset \mathcal{G}$, 其中 $\mathcal{H} \not\in \mathcal{G}$ 的子 σ -代数. 证明:

$$\mathbb{E}\{\mathbb{E}\{Y|\mathcal{G}\}|\mathcal{H}\} = \mathbb{E}\{Y|\mathcal{H}\}.$$

证明. 由条件: $\mathcal{H} \subset \mathcal{G}$. 首先, $\mathbb{E}(Y|\mathcal{G})$ 是 \mathcal{G} 可测的. 要证对于任意的 $\mathcal{H} \in \mathcal{H} \subset \mathcal{G}$, 有

$$\int_{H} \mathbb{E}\{\mathbb{E}\{Y|\mathcal{G}\}|\mathcal{H}\}dP = \int_{H} \mathbb{E}\{Y|\mathcal{H}\}dP \overset{by\,def}{=} \int_{H} YdP.$$

而左边的定义是 $\forall H \in \mathcal{H}$,

$$\int_{H} \mathbb{E}\{\mathbb{E}\{Y|\mathcal{G}\}|\mathcal{H}\}dP = \int_{H} \mathbb{E}\{Y|\mathcal{G}\}dP.$$

 $\overrightarrow{\mathbb{m}} H \in \mathcal{G}$,

$$\int_H \mathbb{E}\{Y|\mathcal{G}\}dP = \int_H YdP.$$

显然.

Exercise #23. 3. 证明: $\mathbb{E}\{Y \mid Y\} = Y \ a.s.$

证明. 由定义, 显然.

Exercise #23. 4. 证明若 $|Y| \le c$ a.s. 则 $\mathbb{E}\{Y|\mathcal{G}\} \le c$ a.s.

证明. 根据引理 23.1, 定理 23.4, 显然.

Exercise #23. 5. 若 $Y = \alpha$ a.s., 其中 α 是常数, 证明: $\mathbb{E}\{Y|\mathcal{G}\} = \alpha$ a.s.

证明. 根据定义, 只需验证, $\forall G \in \mathcal{G}$,

$$\int_{G} \mathbb{E}\{Y|\mathcal{G}\}dP = \int_{G} \alpha dP.$$

得证.

Exercise #23. 6. 若 Y 是正的, 证明 $\{\mathbb{E}\{Y\mid\mathcal{G}\}=0\}\subset\{Y=0\}$, 以及 $\{Y=+\infty\}\subset\{\mathbb{E}\{Y\mid\mathcal{G}\}=+\infty\}$ a.s.

证明. 若不然, 根据 $Y \ge 0$

$$P(Y > 0, \mathbb{E}\{Y|\mathcal{G}\} = 0) \neq 0.$$

而根据概率的连续性,

$$\lim_{n\to\infty} P\left(Y \ge \frac{1}{n}, \mathbb{E}\{Y|\mathcal{G}=0\}\right) = P(Y > 0, \mathbb{E}\{Y|\mathcal{G}=0\}) \neq 0.$$

于是, 存在充分大的 N 使得当 n > N 时,

$$P\left(Y \ge \frac{1}{n}, \mathbb{E}\{Y|\mathcal{G}=0\}\right) > 0.$$

根据 $\mathbb{E}(Y|\mathcal{G})$ 的定义, $\forall G \in \mathcal{G}$ -meas,

$$\langle G, \mathbb{E}\{Y|\mathcal{G}\}\rangle = \langle G, Y\rangle.$$

取 $G = \mathbb{I}\{\mathbb{E}(Y|\mathcal{G}) = 0\}$, 则

$$\langle G, \mathbb{E}\{Y|\mathcal{G}\}\rangle = 0$$
, (根据运算)

对于 $\langle G, Y \rangle, \forall n > 0$,

$$0 = \langle \mathbb{I}\{\mathbb{E}(Y|\mathcal{G}) = 0\}, Y\rangle \geq \langle \mathbb{I}\{\mathbb{E}(Y|\mathcal{G}) = 0\}, Y\mathbb{I}_{\{Y \geq 1/n\}}\rangle \geq \frac{1}{n}P(Y \geq 1/n, \mathbb{E}(Y|\mathcal{G}) = 0).$$

矛盾! 所以 $\{\mathbb{E}\{Y \mid \mathcal{G}\} = 0\} \subset \{Y = 0\}$ a.s.

同理,要证

$${Y = \infty} \subset {\mathbb{E}{Y|\mathcal{G}} = +\infty}a.s.$$

反证法, 若不然,

$$P(Y = \infty, \mathbb{E}\{Y|\mathcal{G}\} < \infty) > 0.$$

于是存在充分大的 N 使得

$$P(Y > M, \mathbb{E}\{Y|\mathcal{G}\} < \infty) > 0.$$

根据 $\mathbb{E}{Y|\mathcal{G}}$ 的定义, $\forall G \in \mathcal{G}$,

$$\int_{G} \mathbb{E}\{Y|\mathcal{G}\}dP = \int_{G} YdP.$$

取 $G = \{\mathbb{E}\{Y|\mathcal{G}\} < \infty\}$, 则

$$\infty > \int_G Y dP = \int_G Y \left(\mathbb{I}_{Y>M} + \mathbb{I}_{Y\leq M} \right) dP \ge MP(Y \le M,) + P(Y > M, \mathbb{E}\{Y | \mathcal{G}\} < \infty) > 0.$$

Exercise #23. 7. 设 X,Y 是独立的, 设 f 是 Borel 的使得 $f(X,Y) \in L^1(\Omega,A,P)$. 令

$$g(x) = \begin{cases} \mathbb{E}\{f(x,Y)\} & \text{if } |\mathbb{E}\{f(x,Y)\}| < \infty, \\ 0 & \text{otherwise.} \end{cases}$$

证明: g(X) 是 \mathbb{R}^1 上的 Borel 函数满足

$$\mathbb{E}\{f(X,Y)\mid X\}=g(X).$$

证明.

$$g^{-1}(B) = \Big\{ \{ x \in \mathbb{R} : \mathbb{E} \{ f(x, Y) \} \in B \}, \text{ if } 0 \notin B, \Big\}$$

根据 Fubini 定理.

2. 用定理 23.2, 23.6

$$\mathbb{E}\{f(X,Y) \mid X\} = \mathbb{E}\{\mathbb{E}\{f(X,Y) \mid X,Y\} \mid X\}$$

Exercise #23. 8. 设 Y 是 $L^2(\Omega, \mathcal{A}, P)$ 上的随机变量,假设 $\mathbb{E}\{Y^2 \mid X\} = X^2$ 以及 $\mathbb{E}\{Y \mid X\} = X$. 证明 Y = X a.s.

Exercise #23. 9. 设 Y 是指数分布随机变量满足 $P(Y>t)=e^{-t}, t>0$. 计算 $\mathbb{E}\{Y\mid Y\wedge t\}$, 其中 $Y\wedge t=\min(t,Y)$.

Exercise #23. 10 (Chebyshev 不等式). 证明对于 $X \in L^2$, a > 0, $P(|X| \ge a \mid \mathcal{G}) \le \frac{\mathbb{E}\{X^2 \mid \mathcal{G}\}}{a^2}$. 其中 $P(A \mid \mathcal{G}) = \mathbb{E}\{\mathbb{I}_A \mid \mathcal{G}\}$.

Exercise #23. 11 (Cauchy-Schwarz 不等式). 对于 $X, Y \in L^2$, 证明:

$$(\mathbb{E}\{XY|\mathcal{G}\})^2 < \mathbb{E}\{X^2|\mathcal{G}\}\mathbb{E}\{Y^2|\mathcal{G}\}.$$

Exercise #23. 12. 设 $X \in L^2$. 证明

$$\mathbb{E}\{(X - \mathbb{E}\{X|\mathcal{G}\})^2\} \le \mathbb{E}\{(X - \mathbb{E}\{X\})^2\}.$$

Exercise #23. 13. 设 $p \ge 1, r \ge p$. 证明: 对于关于一个概率测度的期望来说 $L^p \supset L^r$.

Exercise #23. 14. 设 Z 是定义在 (Ω, \mathcal{F}, P) 上的随机变量, 其中 $Z \geq 0$, $\mathbb{E}Z = 1$. 定义一个新的 概率测度 Q, 满足 $Q(\Lambda) = \mathbb{E}\{\mathbb{I}_{\Lambda}Z\}$. 设 Q 是 \mathcal{F} 的一个子 σ -代数, 设 Q 是 Q 证明:

$$\mathbb{E}_{Q}\{X \mid \mathcal{G}\} = \frac{\mathbb{E}\{XZ \mid \mathcal{G}\}}{U},$$

其中 X 是任意的有界 F-可测随机变量. 这里 $\mathcal{E}_Q\{X\mid \mathcal{G}\}$ 表示随机变量 X 关于概率测度 Q 的条件期望.

Exercise #23. 15. 证明: 赋范线性空间 $L^p(\Omega, \mathcal{F}, P)$ 是完备的, 其中 $1 \leq p < \infty$.

Exercise #23. 16. 设 $X \in L^1(\Omega, \mathcal{F}, P)$ 以及 \mathcal{G}, \mathcal{H} 是 \mathcal{F} 的子 σ -代数. 进一步假设 \mathcal{H} 独立于 $\sigma(\sigma(X), \mathcal{G})$. 证明: $\mathbb{E}\{X \mid \mathcal{G}\} = \mathbb{E}\{X \mid \sigma(\mathcal{G}, \mathcal{H})\}$ a.s.

Exercise #23. 17. 设 $\{X_n\}_{n\geq 1}$ 独立同分布,且是 L^1 上的随机变量。令 $S_n = X_1 + \cdots + X_n$, $\mathcal{G}_n = \sigma(S_n, S_{n+1}, ...)$. 证明: $\mathbb{E}\{X_1 \mid \mathcal{G}_n\} = \mathbb{E}\{X_1 \mid S_n\}$, $\mathbb{E}\{X_j \mid \mathcal{G}_n\} = \mathbb{E}\{X_j \mid S_n\}$, $1 \leq j \leq n$. 证明: $\mathbb{E}\{X_j \mid \mathcal{G}_n\} = \mathbb{E}\{X_1 \mid S_n\}$, $1 \leq j \leq n$.

注. 用习题 23.16 的结论.

Exercise #23. 18. 设 $X_1, X_2, ..., X_n$ 独立同分布, 且是 L^1 上的随机变量. 证明对于每一个 $1 \le j \le n$, 有

$$\mathbb{E}\left\{X_j \mid \sum_{i=1}^n X_i\right\} = \frac{1}{n} \sum_{i=1}^n X_i.$$

注. 用定理 23.2 的结论, 对称性来源于独立同分布条件.