MODELING SUD TREATMENT READMISSION WITH A RECURRENT TIME-TO-EVENT APPROACH

José A. Ruiz-Tagle, MSc

2022-03-25

 $\#token \ ghp_ltr \verb|WEMrC4|zoyVJL33|uxayM7|nfcAEOjOWJK8|q|$

Antecedentes

- El consumo indebido de sustancias se relaciona con múltiples problemas de salud:
 - Enfermedades cardiacas
 - Síntomas de psicosis
 - Conductas sexuales de riesgo
- Los programas de rehabilitación son el principal mecanismo para abordar este problema
 - Más del 60% del presupuesto de SENDA está destinado al tratamiento

¿Qué se sabe de los programas de rehabilitación?

- Se relaciona con diversos beneficios
 - Reducir mortalidad asociada al consumo
 - Reducir comorbilidades psiquiátricas
 - Mejorar calidad de vida
- En 2018, solo el 23% alcanzó el alta terapéutica

Readmisión

- Condición de recaídas crónicas
- Sobreuso del sistema sanitario
 - Listas de espera
- Mantención del logro terapéutico al largo plazo
- Es un evento recurrente

Eventos recurrentes

- Eventos reversibles/irreversibles
- Reversibles -> Multiples (hospitalización) o Recurrentes (readmisión)
- Dos características principales:
 - Correlación intra-individuo
 - Covariables time-variant
- ¿De dónde viene la correlación?
 - Dependencia
 - Heterogeneidad

¿Por qué necesitamos teorizar sobre esto?

- Los modelos clásicos de supervivencia se centran en el primer evento (COXPH)
- Los errores estándar pueden estar mal estimados si no consideramos la correlación
- Modelos de varianza corregida
 - Andersen Gil (AG)
 - Prentice, Williams y Petersen (PWP)
 - Frailty
 - WLW

Materiales y método

- SISTRAT
- Random forest imputation (~8% de perdidos)
- Modelos PWP
 - Total Time (TT)
 - Gap Time (GT)
- Interacción con estrato (N° de admisión)
 - <= 3 Admisiones</p>
- Bootstrap paramétrico para obtener IC de la combinación no lineal con transformación (exp)

Resultados

Table 1: Estimated PWP-TT and PWP-GT models

	PWP-TT Raw	PWP-TT imp	PWP-GT Raw	PWP-GT imp
Therenesia Disaberra		0.79 (0.75, 0.82)		•
Therapeutic Discharge	0.80 (0.77, 0.84)		0.81 (0.77, 0.85)	0.79 (0.76, 0.83)
Female	1.22 (1.18, 1.26)	1.21 (1.18, 1.25)	1.21 (1.17, 1.25)	1.21 (1.17, 1.24)
Age of onset	0.99 (0.99, 1.00)	0.99 (0.99, 0.99)	1.00 (0.99, 1.00)	0.99 (0.99, 0.99)
Separated	1.02 (0.97, 1.07)	1.01 (0.96, 1.05)	1.02 (0.97, 1.06)	1.00 (0.96, 1.05)
Single	0.95 (0.92, 0.98)	0.97 (0.94, 1.00)	0.94 (0.91, 0.98)	0.96 (0.93, 0.99)
Widower	0.89 (0.75, 1.04)	0.90 (0.77, 1.04)	0.90 (0.76, 1.04)	0.91 (0.77, 1.04)
Cocaine	1.21 (1.17, 1.25)	1.19 (1.14, 1.23)	1.20 (1.16, 1.24)	1.18 (1.14, 1.22)
Marijuana	0.92 (0.86, 0.99)	0.86 (0.79, 0.93)	0.94 (0.87, 1.01)	0.88 (0.82, 0.95)
Other subs	1.03 (0.92, 1.14)	0.96 (0.85, 1.07)	1.06 (0.95, 1.17)	0.99 (0.88, 1.09)
Cocaine Paste	1.41 (1.38, 1.45)	1.38 (1.34, 1.41)	1.42 (1.39, 1.46)	1.39 (1.35, 1.42)
Secondary ed	0.91 (0.87, 0.94)	0.91 (0.88, 0.95)	0.91 (0.88, 0.95)	0.92 (0.88, 0.95)
Primary ed	0.76 (0.72, 0.80)	0.76 (0.72, 0.80)	0.78 (0.74, 0.82)	0.78 (0.74, 0.82)
Moderate compromise	1.07 (1.02, 1.13)	1.08 (1.03, 1.14)	1.08 (1.02, 1.13)	1.08 (1.03, 1.14)
Severe compromise	1.33 (1.27, 1.39)	1.32 (1.27, 1.38)	1.34 (1.29, 1.40)	1.33 (1.28, 1.39)
Woman specific	1.27 (1.22, 1.32)	1.29 (1.24, 1.33)	1.25 (1.21, 1.30)	1.27 (1.23, 1.32)
Employee	0.89 (0.86, 0.92)	0.91 (0.88, 0.94)	0.89 (0.86, 0.93)	0.91 (0.88, 0.94)
Inactive	0.92 (0.89, 0.96)	0.96 (0.93, 1.00)	0.93 (0.89, 0.96)	0.96 (0.92, 1.00)
Freq	1.00 (1.00, 1.01)	1.01 (1.00, 1.01)	1.00 (0.99, 1.01)	1.00 (1.00, 1.01)
Age	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)
TD x Strata2	0.99 (0.91, 1.08)	1.01 (0.93, 1.10)	1.00 (0.92, 1.08)	1.01 (0.93, 1.09)
TD × Strata3	1.09 (0.96, 1.23)	1.12 (0.98, 1.26)	1.05 (0.91, 1.19)	1.06 (0.93, 1.20)

Intervalos de confianza

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Edad	14.9	27.7	34.3	36.1	42.9	88.88
Edad de inicio	5.0	14.0	15.0	16.5	18.0	74.0

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
summary(cars)
```

```
##
       speed
                      dist
   Min. : 4.0
##
                 Min. : 2.00
##
   1st Qu.:12.0
                 1st Qu.: 26.00
##
   Median:15.0
                 Median: 36.00
   Mean :15.4
                 Mean : 42.98
##
   3rd Qu.:19.0
                 3rd Qu.: 56.00
##
   Max. :25.0
                 Max. :120.00
##
```

Including Plots

You can also embed plots, for example:

