

University of Asia Pacific (UAP)

Department of Computer Science & Engineering

Program: B.Sc. in Computer Science and Engineering Mid-Term Examination, Fall 2020

Course Code: CSE 317

Course Title: Computer Architecture

Name: Sudip Ghose

Reg. ID: 18101094

Semester: 3rd Year 2nd Semester

Section: B

Date: 26-02-21

Ans to the gus no. 1 (a)

There are 5 classic component of a computer.

- 1. Input
- 2. output
- 3. Memory
- 4. Datapath
- 5. control.

fig. Basic component of a computer.

Fig. Relationship among Instruction set, software and Hardware of a computer.

Ans to the gus no. 1 (b)

1. Response time: The time between the start and completion of a task.

- 2. Throughput: The total amount of work in a given time.
- 3. Relative Performence: relative performence is the total excution of two program.
- 4. Measing performence. Time is
 the measure of computer performent
 The computer performs the
 Same amount work, in the least
 time.

clock cycle: A clock cycle is a sigle period of an oscillating clock signal.

ex. multiplication, addition is a sequence of cycle.

at the dust of a dit of the plant of the

Ans to the gus no.1 (e)

Clock cycles For:

Instruction:

1 st code

CPU clock cycle =
$$(3\times6)+(2\times4)+(4\times2)$$

 $(2nd\ code)$ = 3A cycles.

$$CPI \left(2nd \ code\right) = \frac{39}{12} = 2.83$$

So, 2nd code sea. will be faster, Because it's CPI is less, So, performence will be better.

$$m = \frac{3.1}{2.83} = 1.1$$

So, 2nd code sequence will faster by 1.1 times.

Page: X

4-00100

: mx=11100

-a = 11100

1 1 0 1 1 (1's

11

Ans to the gus no. 3 (a)

$$m_1 = 11001$$

Page: 8

1			. 8
Iteration	steps	Mn	P Extra Bit
0	initialization	00110	00000 111000
1	1. Po Po-1 = 00 1. (a) NOP 2. \overrightarrow{P}	00110	00000011100
2 / (1)	1. Po. Po-1 = 00 1 (a) NOP 2. P	00110	00000 001110
3	1. $P_0 P_{0-1} = 10$ 1 (a) $P(L) = P_L - Mn$ 2. \overrightarrow{P}	00110	11010 001110
A .,	1. Po Po-1=11 1.(a) NOP 2. P	00110	11110 100011
ريا ا	1.Po Po-1=11 1(0) Nop 2.P		11 111 01000[] Result Extra Bit
	2 3 4.	1. Po Po-1=00 1. Po Po-1=00 1. (a) NOP 2. P 2. P 3. 1. Po Po-1=10 1. (a) P(L)=R-Mn 2. P 4. 1. Po Po-1=11 1. (a) NOP 2. P 5. 1. Po Po-1=11 1. (a) NOP	0 initialization 00110 1. Po Po-1=00 1. (a) NOP 2. \overrightarrow{P} 2 1. Po Po-1=00 1. (a) NOP 2. \overrightarrow{P} 3 1. Po Po-1=10 1. (a) P(L)=R-Mn 2. \overrightarrow{P} 4. 1. Po Po-1=11 1. (a) NOP 2. \overrightarrow{P} 5. 1. Po Po-1=11 1. (a) NOP

Ans to the aus no. 2 (a)

Instruction class of MIPS architum

1) Rtype > Register reference Ins.

(11) I type > Memory reference Ins.

(111) Jaype > Jump Instruction.

(i) Rtype: Arthicmatic operations are a Rtype instruction.

MIPS code: add \$0, \$51, \$52

C code: A = B + C So SI S2

and the form of the terms

1D:18101094

Page: 10

I type & load, store, Addi, Subi, are I type instruction.

code: A[5] = b + A[6] So S, S,

and the first of the first transfer of the f

MIPS code. IN Sto 40(40)

add \$to, \$\$1, \$to Su \$to, 32(\$,00)

Jum J type.

op code Address

In MIPS arthmetic we use 3 operadands for simplification hardware design

Page: 12

ID: 18101094

Page: 13

(3) [15 | 17 | 19 | 356 = 001111 | 10001 | 10011 | 0000001011 | 00100

Page: 14

				\subset	
		Ans	to the rus	no.3(b)	
	ver.1 muliplication 69 Bit ALV	\sqrt{x}	er 2 wiiplication Bit ALU	ver 3 muliplcation	
	69 Bit wasted		bit wasted	no bit	
~				waste &	
	multiplicand 69 Bit		Multiplicat 32 bit	mutiplicant 32 bit	
	Multiplier 32 bit		Multiplier 32 bit	multiplier 32 bit	
	Multiplein Bon anothe register		Muliplie Another mesister.	For my	_