使用少量標記資料 訓練聊天機器人的語意模型

Presented by

朱柏憲

Work done by

朱柏憲、蔡宜恩、林建甫、廖沛倫

YOCTOL ACTIVATE YOUR DATA BRAIN

任務導向型聊天機器人 Task Oriented Chatbots

圖片取自陳蘊儂教授的授課投影片

單一應用就有多個模型需要訓練

單一應用就有多個模型需要訓練

不同應用之間,標記資料共用不易

以 Intent Classification 為例

點餐機器人

• 打招呼:早安,你好,開始使用

點餐機器人

點餐機器人

• 打招呼:早安,你好,開始使用

選擇餐點:我想點XXX,今天想吃XXX,XXX來一份

點餐機器人

- 打招呼:早安,你好,開始使用
- 選擇餐點:我想點XXX,今天想吃XXX,XXX來一份
- 結束點餐:這樣就好,請結帳,沒了就這樣
- •

如何有效率的訓練?

第一種嘗試

Bag-of-Words + Logistic Regression

好處:訓練、預測都快,系統容易測試且穩定

問題:準確度低,對錯字或抽換字面的辨識不容易學習

top-1 accuracy on test sets

	Task 1	Task 2	Task 3	Task 4	Task 5
bow + LR	0.377	0.413	0.306	0.285	0.208

第二種嘗試

Word2Vec + LR, RF, MLP

好處:維度小,訓練更快。對同義字的判斷更準確。

問題:無法捕捉更複雜的語句結構

top-1 accuracy on test sets

	Task 1	Task 2	Task 3	Task 4	Task 5
bow + LR	0.377	0.413	0.306	0.285	0.208
w2v + LR	0.856	0.722	0.76	0.687	0.583

『不要香菜要加蔥』≠『要加香菜不要蔥』

何不嘗試複雜的模型?

LSTM, Recursive NN, etc.

Self-Taught Learning!

Self-Taught Learning

· utterance-level embedding with unsupervised text data

Self-Taught Learning

- utterance-level embedding with unsupervised text data
 - Seq2Seq Auto Encoder by RNN or RNN + Attention

Self-Taught Learning

- utterance-level embedding with unsupervised text data
 - Seq2Seq Auto Encoder by RNN or RNN + Attention
 - Skip-Thoughts

Self-Taught Learning

- utterance-level embedding with unsupervised text data
 - Seq2Seq Auto Encoder by RNN or RNN + Attention
 - Skip-Thoughts
- Encode 完的 vector ,再用一般的分類器訓練

Self-Taught Learning

Seq2Seq + DNN = Awesome!

【目貝(1)

通常立即回覆

官理

窩カ森日優惠咬く哪裡領

您是8月8日生日,您的生日券已在7月8日寄出,約需5~7個工作天,請您稍候,謝謝!敬祝新的一歲事事順心。

top-1 accuracy on test sets

	Task 1	Task 2	Task 3	Task 4	Task 5
bow + LR	0.377	0.413	0.306	0.285	0.208
w2v + LR	0.856	0.722	0.76	0.687	0.583
seq2seq + DNN	0.864	0.814	0.853	0.623	0.718

top-1 accuracy on test sets

	Task 1	Task 2	Task 3	Task 4	Task 5
bow + LR	0.377	0.413	0.306	0.285	0.208
w2v + LR	0.856	0.722	0.76	0.687	0.583
seq2seq + DNN	0.864	0.814	0.853	0.623	0.718
LUIS	0.825	0.807	0.866	0.602	0.699
Dialogue Flow	0.857	0.825	0.813	0.641	0.707

Semi-supervised sequence tagging with bidirectional language models (ACL 2017)

OpenAI: Unsupervised Sentiment Neuron

https://blog.openai.com/unsupervised-sentiment-neuron/

Transfer Learning 在圖片辨識上已經很常見了

Transfer Learning 在圖片辨識上已經很常見了

前面的 convolution layer 固定住

圖片來源: http://book.paddlepaddle.org/03.image_classification/

Transfer Learning 在圖片辨識上已經很常見了

前面的 convolution layer 固定住

對 target domain 微調後面幾層

圖片來源: http://book.paddlepaddle.org/03.image_classification/

Curiosity-driven Exploration by Self-supervised Prediction (ICML 2017)

善用資料潛在的監督式訊息

感謝您的聆聽

cph@yoctol.com