半順序集合の初等的性質による Zorn の補題の証明

(arXiv:2305.10258)

縫田 光司(NUIDA, Koji)

九州大学 マス・フォア・インダストリ研究所 (IMI) (nuida@imi.kyushu-u.ac.jp)

日本数学会年会@大阪公立大学 2024年3月19日

背景と結果の概要

- Zorn の補題は数学で頻出 (それこそ、学部の講義でも登場)
- しかし、証明には集合論的な準備が必要で 初学者には敷居が高い**と思われている**
 - ・主張自体は半順序集合の簡単な語彙しか 用いていないのに…
- 行ったこと: 半順序集合の基本的性質のみで Zorn の補題を証明
 - 既存の同様の証明よりもさらに初等的

Zorn の補題

主張

非空半順序集合 (P, \leq) の鎖(全順序部分集合)が どれも P内に上界をもてば、Pは極大元をもつ

- 「普通の」証明:「もし極大元がなければ鎖を 永遠に伸ばせてしまい矛盾」を超限再帰 (←非初等的な集合論の道具)で厳密化
- [Lewin, Amer. Math. Monthly 1991]: 話者の知る限り最も初等的な既存の証明
 - もっと簡潔にしたい
 - 特に、↑の証明は(主張には現れない)整列集合の概念に基づく(←省きたい)

証明の骨格

- 最大元がないと仮定 → 鎖にその真の上界を 割り当てる関数 f が(選択公理で)存在
- \cdot C: 「f と整合的」な鎖全体の集合
- ullet o \mathcal{C} 全体の和 $C^* := \bigcup \mathcal{C}$ も鎖で、 \mathcal{C} に属する
- ullet o $C^{**}:=C^*\cup\{f(C^*)\}$ も鎖で、 $\mathcal C$ に属する
- しかし構成より C** ⊈ (JC (矛盾)
- これ自体は Lewin の証明と同様
 - C の定義が Lewin と異なる

鎖の集合℃の定義

- $U_X := \{a \in P \setminus X : a は X の(真の)上界 \}$
- C:鎖 $\leadsto \exists f(U_C) \in U_C$ (選択公理)
- $C^* := \bigcup \mathcal{C} \quad \mathcal{C}$ は以下で定義:

鎖の集合℃の定義

- $U_X := \{a \in P \setminus X : a は X の(真の)上界 \}$
- C:鎖 $\leadsto \exists f(U_C) \in U_C$ (選択公理)
- $C^* := \bigcup \mathcal{C} \quad \mathcal{C}$ は以下で定義:
- 補助的な集合 C_0 : (i-C) を満たす鎖 C 全体 (i-C) [$S \subseteq C$ かつ $U_S \not\subseteq U_C$] $\Rightarrow f(U_S) \in C$
 - 。「SがCの天井に届かなければ $f(U_S) \in C$ 」

鎖の集合℃の定義

- $U_X := \{a \in P \setminus X : a は X の(真の)上界 \}$
- C:鎖 $\leadsto \exists f(U_C) \in U_C$ (選択公理)
- $C^* := \bigcup \mathcal{C} \quad \mathcal{C}$ は以下で定義:
- 補助的な集合 C_0 : (i-C) を満たす鎖 C 全体 (i-C) [$S \subseteq C$ かつ $U_S \not\subseteq U_C$] $\Rightarrow f(U_S) \in C$
 - 。「S がC の天井に届かなければ $f(U_S) \in C$ 」
- 集合C: (ii-C) を満たす鎖 $C \in C_0$ 全体 (ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$
 - \bullet 「C の元は他の $C' \in C_0$ の中か上に居る」

$$C_0 := \{C : 鎖, (i-C)\}, \quad C := \{C \in C_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

• (ii-
$$C^*$$
): $C^* \setminus C' \subseteq \bigcup_C (C \setminus C') \subseteq U_{C'}$ (ii- C)

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \nsubseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- (ii- C^*): $C^* \setminus C' \subseteq \bigcup_C (C \setminus C') \subseteq U_{C'}$ (ii-C)
- $x \in C' \in C$ と $y \in C^*$ が比較可能: $y \in C'$ なら 鎖ゆえ成立、 $\not\in$ なら (ii- C^*) より $y \in U_{C'}$

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- (ii- C^*): $C^* \setminus C' \subseteq \bigcup_C (C \setminus C') \subseteq U_{C'}$ (ii-C)
- $x \in C' \in C$ と $y \in C^*$ が比較可能: $y \in C'$ なら 鎖ゆえ成立、 $\not\in$ なら (ii- C^*) より $y \in U_{C'}$
- (i- C^*): $U_S \not\subseteq U_{C^*} = \bigcap_C U_C :: \exists C; \exists x \in U_S \setminus U_C$

$$C_0 := \{C : 鎖, (i-C)\}, \quad C := \{C \in C_0 : (ii-C)\}$$

(i-C) $[S \subseteq C かつ U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- (ii- C^*): $C^* \setminus C' \subseteq \bigcup_C (C \setminus C') \subseteq U_{C'}$ (ii-C)
- $x \in C' \in \mathcal{C}$ と $y \in C^*$ が比較可能: $y \in C'$ なら 鎖ゆえ成立、 $\not\in$ なら (ii- C^*) より $y \in U_{C'}$
- (i- C^*): $U_S \nsubseteq U_{C^*} = \bigcap_C U_C \therefore \exists C; \exists x \in U_S \setminus U_C$ $\exists y \in S \setminus C \ (\subseteq C^* \setminus C \subseteq U_C \ (ii-C^*))$ なら $x > y \in U_C \ (\because x \in U_S) \therefore x \in U_C \ (矛盾)$

$$C_0 := \{C : 鎖, (i-C)\}, \quad C := \{C \in C_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \nsubseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- (ii- C^*): $C^* \setminus C' \subseteq \bigcup_C (C \setminus C') \subseteq U_{C'}$ (ii-C)
- $x \in C' \in C$ と $y \in C^*$ が比較可能: $y \in C'$ なら 鎖ゆえ成立、 $\not\in$ なら (ii- C^*) より $y \in U_{C'}$
- (i- C^*): $U_S \nsubseteq U_{C^*} = \bigcap_C U_C :. \exists C; \exists x \in U_S \setminus U_C$ $\exists y \in S \setminus C \ (\subseteq C^* \setminus C \subseteq U_C \ (ii-C^*))$ なら $x > y \in U_C \ (::x \in U_S) :. x \in U_C \ (矛盾)$ $:.S \subseteq C :. f(U_S) \in C \subseteq C^* \ (i-C)$

$$C_0 := \{C : 鎖, (i-C)\}, \quad C := \{C \in C_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \nsubseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

C** は鎖:定義より

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- C** は鎖:定義より
- (i- C^{**}): $u \in S \Rightarrow U_S \subseteq U_{\{u\}} \subseteq U_{C^{**}}$ (矛盾)

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- C** は鎖:定義より
- (i- C^{**}): $u \in S \Rightarrow U_S \subseteq U_{\{u\}} \subseteq U_{C^{**}}$ (矛盾) ∴ $S \subseteq C^*$ ∴ $U_{C^*} \subseteq U_S$ 場合分けで $f(U_S) \in C^{**}$ を示す:

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- *C*** は鎖:定義より
- (i- C^{**}): $u \in S \Rightarrow U_S \subseteq U_{\{u\}} \subseteq U_{C^{**}}$ (矛盾) : $S \subseteq C^*$: $U_{C^*} \subseteq U_S$

場合分けで $f(U_S) \in C^{**}$ を示す:

• $U_S \subseteq U_{C^*} \Rightarrow U_{C^*} = U_S : f(U_S) = u$

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- *C*^{**} は鎖:定義より
- (i- C^{**}): $u \in S \Rightarrow U_S \subseteq U_{\{u\}} \subseteq U_{C^{**}}$ (矛盾) : $S \subseteq C^*$: $U_{C^*} \subseteq U_S$

場合分けで $f(U_S) \in C^{**}$ を示す:

- $U_S \subseteq U_{C^*} \Rightarrow U_{C^*} = U_S : f(U_S) = u$
- $U_S \not\subseteq U_{C^*} \Rightarrow f(U_S) \in C^*$ (i- C^*)

$$C_0 := \{C : 鎖, (i-C)\}, \quad C := \{C \in C_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \nsubseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

• (ii- C^{**}): $C^* \setminus C' \subseteq U_{C'}$ (i- C^*)

$$C_0 := \{C : 鎖, (i-C)\}, \quad C := \{C \in C_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \nsubseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

• (ii- C^{**}): $C^* \setminus C' \subseteq U_{C'}$ (i- C^*) $u \in C'$ または $u \in U_{C'}$ を場合分けで示す:

$$C_0 := \{C : 鎖, (i-C)\}, \quad C := \{C \in C_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \nsubseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in C_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- (ii- C^{**}): $C^* \setminus C' \subseteq U_{C'}$ (i- C^*) $u \in C'$ または $u \in U_{C'}$ を場合分けで示す:
 - $\exists x \in C^* \setminus C' \ (\subseteq U_{C'} \ (\text{ii-}C^*))$: $u > x \in U_{C'} \therefore u \in U_{C'}$

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- (ii- C^{**}): $C^* \setminus C' \subseteq U_{C'}$ (i- C^*) $u \in C'$ または $u \in U_{C'}$ を場合分けで示す:
 - $\exists x \in C^* \setminus C' \ (\subseteq U_{C'} \ (ii-C^*))$: $u > x \in U_{C'} \therefore u \in U_{C'}$
 - $C^* \subseteq C'$ かつ $U_{C^*} \subseteq U_{C'}$: $u \in U_{C^*} \subseteq U_{C'}$

$$\mathcal{C}_0 := \{C : 鎖, (i-C)\}, \quad \mathcal{C} := \{C \in \mathcal{C}_0 : (ii-C)\}$$

(i-C) $[S \subseteq C$ かつ $U_S \not\subseteq U_C] \Rightarrow f(U_S) \in C$
(ii-C) $C' \in \mathcal{C}_0 \Rightarrow C \setminus C' \subseteq U_{C'}$

- (ii- C^{**}): $C^* \setminus C' \subseteq U_{C'}$ (i- C^*) $u \in C'$ または $u \in U_{C'}$ を場合分けで示す:
 - $\exists x \in C^* \setminus C' \ (\subseteq U_{C'} \ (\text{ii-}C^*))$: $u > x \in U_{C'} \therefore u \in U_{C'}$
 - $C^* \subseteq C'$ かつ $U_{C^*} \subseteq U_{C'}$: $u \in U_{C^*} \subseteq U_{C'}$
 - $C^* \subseteq C'$ かつ $U_{C^*} \nsubseteq U_{C'}$: $u = f(U_{C^*}) \in C' \text{ (i-}C')$
- これで証明が完了した

- 行ったこと:半順序集合の基本的性質のみで Zorn の補題を証明
 - 既存の同様の証明よりもさらに初等的
- arXiv:2305.10258
- よろしければ講義や著書にご活用ください