Data Mining and Decision Systems 08338

Assessed Coursework

Data Mining of Legacy Data

Stage 3. Classifier Performance

Student Number: 201303310

PDF Due: 2pm 30 November 2015 via E-Bridge

Monday, 30 November 2015

1. Classifier Performance

Classifier Performance on the given data (**Data_Base**) and cleaned data (e.g. **Data_Clean2**) is described in Table 1 below, based on the worksheet **Performance**.

Classifier	Data	RMSE	Accuracy	TP	FP	TN	FN	Sensitivity	Specificity
J48	Data_Base	0.1638	93.94	377	27	584	35	0.9150	0.9558
J48	Data_RiskKnown	0.2232	94.61	379	23	586	32	0.9221	0.9622
J48	Data_Clean0	0.2253	94.38	376	24	582	33	0.9193	0.9604
J48	Data_Clean1	0.1793	96.50	382	17	583	18	0.9550	0.9717
Ј48	Data_Clean2	0.1793	96.50	382	17	583	18	0.9550	0.9717
NaiveBayes	Data_Clean2	0.1917	94.90	366	17	583	34	0.9150	0.9717
SMO	Data_Clean2	0.1844	96.60	384	18	582	16	0.9600	0.9700
JRip	Data_Clean2	0.1710	97.00	384	14	586	16	0.9600	0.9767
Ridor	Data_Clean2	0.1761	96.90	376	7	593	24	0.9400	0.9883
NNge	Data_Clean2	0.1342	98.20	391	9	591	9	0.9775	0.9850
PART	Data_Clean2	0.1383	97.90	392	13	587	8	0.9800	0.9783

Table 1. Summary Table of Classifier Performance on the ACW data

To find the classifier with the greatest performance for the data set provided, there is first a test to decipher which cleaned data set is the best performing. The classifier 'J48' is used to test. As seen on Table1, 'Data_Clean2' is shown to have the greatest accuracy, sensitivity and specificity. However the root mean squared error (RMSE) is lower than the data sets 'Data_RiskKnown' and 'Data_Clean0'. This is possibly due to 5 duplicated records being removed between data sets 'Data Clean0' and 'Data Clean1', yet it is still greater than that of the base data set and consequently 'Data Clean2' will be used with the other classifiers.

The classifier with the highest RMSE is 'NaiveBayes', however it is not the best performing due to lacking accuracy, sensitivity and specificity. There is another classifier ('NNge') with the greatest accuracy, sensitivity and specificity but has the lowest RMSE value. The classifier which is possibly the best performing is 'SMO' – it has the second highest RMSE, good midrange accuracy, sensitivity and specificity. However, the difference between the classifiers is at best small, leading to a range of classifiers being used as the best possible route.