assignment_01_RamirezKyle

Kyle Ramirez

6/9/2021

Create a numeric vector with the values of 3, 2, 1 using the c() function

Assign the value to a variable named num_vector

Print the vector

num_vector <- c(3,2,1) print(num_vector) ## Create a character vector with the values of "three", "two", "one" "using the c() function ## Assign the value to a variable named char_vector ## Print the vector char_vector <- c("three", "two", "one") print(char_vector)

Create a vector called week1_sleep representing how many hours slept each night of the week

Use the values 6.1, 8.8, 7.7, 6.4, 6.2, 6.9, 6.6

week1 sleep <- c(6.1, 8.8, 7.7, 6.4, 6.2, 6.9, 6.6)

Display the amount of sleep on Tuesday of week 1 by selecting the variable index

week1_sleep[3]

Create a vector called week1_sleep_weekdays

Assign the weekday values using indice slicing

week1_sleep_weekdays <- week1_sleep[1:7]

Add the total hours slept in week one using the sum function

Assign the value to variable total_sleep_week1

total_sleep_week1 <- sum(week1_sleep)

Create a vector called week2_sleep representing how many hours slept each night of the week

Use the values 7.1, 7.4, 7.9, 6.5, 8.1, 8.2, 8.9

 $\text{week2_sleep} \leftarrow c(7.1, 7.4, 7.9, 6.5, 8.1, 8.2, 8.9)$

Add the total hours slept in week two using the sum function

Assign the value to variable total_sleep_week2

total sleep week2 <- sum(week2 sleep)

Determine if the total sleep in week 1 is less than week 2 by using the < operator

total_sleep_week1 < total_sleep_week2

Calculate the mean hours slept in week 1 using the mean() function

mean(week1_sleep)

Create a vector called days containing the days of the week.

Start with Sunday and end with Saturday

days <- c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")

Assign the names of each day to week1_sleep and week2_sleep using the names function and days vector

names(week1 sleep) <- days names(week2 sleep) <- days

Display the amount of sleep on Tuesday of week 1 by selecting the variable name

week1_sleep[3]

Create vector called weekdays from the days vector

weekdays <- days[1:7]

Create vector called weekends containing Sunday and Saturday

weekends <- days[c(1,7)]

Calculate the mean about sleep on weekdays for each week

Assign the values to weekdays1 mean and weekdays2 mean

weekdays1_mean <- mean(week1_sleep[weekdays]) weekdays2_mean <- mean(week2_sleep[weekdays])

Using the weekdays1_mean and weekdays2_mean variables,

see if weekdays1_mean is greater than weekdays2_mean using the > operator

weekdays1 mean > weekdays2 mean

Determine how many days in week 1 had over 8 hours of sleep using the > operator

 $week1_sleep > 8$

Create a matrix from the following three vectors

student01 <- c(100.0, 87.1) student02 <- c(77.2, 88.9) student03 <- c(66.3, 87.9) students_combined <- c(student01, student02, student03) grades <- matrix(students_combined, byrow = 2, nrow = 3)

Add a new student row with rbind()

 $student04 \leftarrow c(95.2, 94.1) \text{ grades} \leftarrow rbind(grades, student04)$

Add a new assignment column with cbind()

 $assignment04 \leftarrow c(92.1, 84.3, 75.1, 97.8)$ grades $\leftarrow cbind(grades, assignment04)$

Add the following names to columns and rows using rownames() and colnames()

assignments <- c
("Assignment 1", "Assignment 2", "Assignment 3") students <- c
("Florinda Baird", "Jinny Foss", "Lou Purvis", "Nola Maloney")

rownames(grades) <- students colnames(grades) <- assignments

Total points for each assignment using colSums()

colSums(grades)

Total points for each student using rowSums()

rowSums(grades)

Matrix with 10% and add it to grades

weighted grades <- grades * 0.1 + grades

Create a factor of book genres using the genres_vector

Assign the factor vector to factor_genre_vector

genres_vector <- c("Fantasy", "Sci-Fi", "Sci-Fi", "Mystery", "Sci-Fi", "Fantasy") factor_genre_vector <- genres_vector

Use the summary() function to print a summary of factor_genre_vector

summary(factor_genre_vector)

Create ordered factor of book recommendations using the recommendations vector

no is the lowest and yes is the highest

recommendations_vector <- c("neutral", "no", "no", "neutral", "yes") factor_recommendations_vector <- factor(recommendations_vector, levels = c("no", "neutral", "yes"), ordered = TRUE)

Use the summary() function to print a summary of factor_recommendations_vector

summary(factor_recommendations_vector)

Using the built-in mtcars dataset, view the first few rows using the head() function

head(mtcars, 1)

Using the built-in mtcars dataset, view the last few rows using the tail() function

tail(mtcars, 1)

Create a dataframe called characters_df using the following information from LOTR

name <- c("Aragon", "Bilbo", "Frodo", "Galadriel", "Sam", "Gandalf", "Legolas", "Sauron", "Gollum") race <- c("Men", "Hobbit", "Hobbit", "Elf", "Hobbit", "Maia", "Elf", "Maia", "Hobbit") in_fellowship <- c(TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE) ring_bearer <- c(FALSE, TRUE, TRUE, FALSE, TRUE, TRUE) age <- c(88, 129, 51, 7000, 36, 2019, 2931, 7052, 589)

characters_df <- data.frame(name, race, in_fellowship, ring_bearer, age)

Sorting the characters_df by age using the order function and assign the result to the sorted_characters_df

```
sorted_characters_df <- characters_df[order(age),]
```

Use head() to output the first few rows of sorted_characters_df

```
head(sorted_characters_df)
```

Select all of the ring bearers from the dataframe and assign it to ringbearers_df

```
ringbearers_df <- characters_df[characters_df$ring_bearer == TRUE,]
```

Use head() to output the first few rows of ringbearers_df

 $head(ringbearers_df)$