ALGEBRA Chapter 14

f(x)

MATRICES Y
DETERMINANTES

HELICO MOTIVATING

¿Sabias que...?

El área de un triángulo se puede calcular a partir de sus vértices Para tal fin se utiliza los determinantes.

De la imagen, el área sombreada se calcularía así:

$$\text{área} = \frac{1}{2} \begin{vmatrix} a & b & 1 \\ c & d & 1 \\ e & f & 1 \end{vmatrix}$$

$$\text{determinante}$$

HELICO THEORY CHAPTHER 1

MATRICES Y DETERMINANTES

MATRIC

Es un arreglo rectangular de elementos distribuidos en filas y columnas

ES

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} \dots & a_{nm} \end{pmatrix} \text{ $n $ filas }$$

m columnas

Ejemplo:

$$\mathbf{B} = \begin{pmatrix} 6 & 0 \\ 3 & 2 \\ 9 & 1 \end{pmatrix}_{\mathbf{3} \times \mathbf{2}}$$

El orden de la matriz B es 3×2

II) MATRIZ CUADRADA

Son aquellas matrices que tienen el mismo número de filas y columnas.

Ejemplos:

$$A = \begin{pmatrix} 5 & 9 \\ 3 & 8 \end{pmatrix}_{2x2}$$
Diagonal Diagonal Secundaria Principal

$$B = \begin{pmatrix} 2 & 0 & 1 \\ 8 & 8 & 5 \\ 2 & 3 & 2 \end{pmatrix}_{3x3}$$

TRAZA DE UNA MATRIZ

Es la suma de elementos de la diagonal principal

IGUALDAD DE MATRICES

Sean las matrices

$$\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$$

$$\begin{array}{c}
a = m \\
b = n \\
c = p \\
d = q
\end{array}$$

Ejemplo:

Hallar x +y si A=B

$$\mathbf{A} = \begin{pmatrix} 3 & x+1 \\ 5 & 3y \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 3 & 5-x \\ 5 & y-6 \end{pmatrix}$$

$$x + 1 = 5 - x$$

$$x = 2$$

$$3y = y - 6$$

$$y = -3$$

$$3y = y - 6$$
$$y = -3$$

$$\therefore x + y = -1$$

IV) OPERACIONES CON MATRICES

1) ADICIÓN Y SUSTRACCIÓN

Ejemplo: Sean las matrices

$$\mathbf{A} = \begin{pmatrix} 7 & -2 \\ 3 & 1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}$$

Hallar:

- a) A+B
- b) A-B

a)
$$A + B = \begin{pmatrix} 7+3 & -2+2 \\ 3-1 & 1+4 \end{pmatrix}$$

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 10 & 0 \\ 2 & 5 \end{pmatrix}$$

b)
$$A - B = \begin{pmatrix} 7 - 3 & -2 - 2 \\ 3 - (-1) & 1 - 4 \end{pmatrix}$$

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 4 & -4 \\ 4 & -3 \end{pmatrix}$$

2) MULTIPLICACIÓN DE MATRICES

2.1) Multiplicación de un escalar por una matriz

Ejemplo:

Dada la matriz A

$$\mathbf{A} = \begin{pmatrix} 7 & -2 & 5 \\ 3 & 6 & 1 \end{pmatrix}$$

Calcular 3A

$$\mathbf{3A} = \begin{pmatrix} 3(7) & 3(-2) & 3(5) \\ 3(3) & 3(6) & 3(1) \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{3A} = \begin{pmatrix} 21 & -6 & 15 \\ 9 & 18 & 3 \end{pmatrix}$$

$$\mathbf{3A} = \begin{pmatrix} 21 & -6 & 15 \\ 9 & 18 & 3 \end{pmatrix}$$

HELICO | THEORY

2.2) Multiplicación de dos matrices

Sea
$$A=(a_{ij})_{m\times n}$$
 y $B=(b_{ij})_{n\times p}$

$$AB=(c_{ij})_{m\times p}$$

Observación

Para poder multiplicar A por B el número de columnas de A debe ser igual al número de filas de B

Ejemplo: Dada las matrices Ay B

$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}_{2 \times 2} \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 6 & 5 \end{pmatrix}_{2 \times 3}$$

Hallar AB

$$\mathbf{AB} = \begin{pmatrix} 3(1) + 2(6) & 3(0) + 2(5) & 3(3) + 2(4) \\ 4(1) + 5(6) & 4(0) + 5(5) & 4(3) + 5(4) \end{pmatrix}$$

$$\mathbf{AB} = \begin{pmatrix} 15 & 10 & 17 \\ 34 & 25 & 32 \end{pmatrix}_{\mathbf{2} \times \mathbf{3}}$$

DETERMINANTES

Es el valor numérico de una matriz cuadrada. Representa a todos los productos que se pueden formar entre todos sus elementos, de tal modo que en cada producto participen tantos factores como lo indique el orden de la matriz.

Determinantes de Orden 2

Ejemplo:Hallar | A |

$$|A| = \begin{vmatrix} 5 & 9 \\ 3 & 8 \end{vmatrix}_{2x^2}$$

Resolución

$$|A| = (5)(8) - (9)(3)$$

$$|A| = 13$$

Determinantes de Orden 3

Ejemplo:Hallar |B|
$$|B| = \begin{vmatrix} 2 & 0 & 1 \\ 3 & 6 & 5 \end{vmatrix}$$
Resolución
$$2 & 0 & 1 \\ 2 & 3 & 2 \\ 3 & 6 & 5 \end{vmatrix}$$

$$|B| = (24 + 9 + 0) - (12 + 30 + 0)$$

 $|B| = -9$

HELICO PRACTICE CHAPTHER 1

1. Sea la matriz
$$A = (a_{ij})_{3r2}$$
 donde:

$$a_{ij} = \begin{cases} i - j; si \ i < j \\ i.j ; si \ i = j \\ i + j; si \ i > j \end{cases}$$

Determina la suma de los elementos de la matriz A

Resolución

Sea la Matriz:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}_{3x2}$$
filas
columnas

De la condición: i<j

De la condición: i=j

De la condición: i>j

$$a_{12} = 1 - 2 = -1$$

$$a_{11} = 1.1 = 1$$
 $a_{22} = 2.2 = 4$

$$a_{21} = 2 + 1 = 3$$

$$a_{31} = 3 + 1 = 4$$

$$a_{32} = 3 + 2 = 5$$

Reemplazando se obtiene:

$$\mathbf{A} = \begin{pmatrix} \mathbf{1} & -\mathbf{1} \\ \mathbf{3} & \mathbf{4} \\ \mathbf{4} & \mathbf{5} \end{pmatrix}$$

∴ Suma de elementos de A = 16

2. Dadas las matrices:

$$A = \begin{pmatrix} 2x + 1 & y \\ 3 - y & x \end{pmatrix} \quad B = \begin{pmatrix} 5 - y & 2 - x \\ 3 - y & 2 \end{pmatrix} \quad C = \begin{pmatrix} -2 & 5 \\ 4 & -1 \end{pmatrix}$$

Se sabe que A=B. Evalúe: 2A+3C.

Resolución

Del dato: A=B

$$\begin{pmatrix} 2x+1 & y \\ 3-y & x \end{pmatrix} = \begin{pmatrix} 5-y & 2-x \\ 3-y & 2 \end{pmatrix}$$

Reemplazando obtenemos A

$$A = \begin{pmatrix} 5 & 0 \\ 3 & 2 \end{pmatrix}$$

Piden 2A + 3C

$$2A + 3C = 2\begin{pmatrix} 5 & 0 \\ 3 & 2 \end{pmatrix} + 3\begin{pmatrix} -2 & 5 \\ 4 & -1 \end{pmatrix}$$

$$2A + 3C = \begin{pmatrix} 10 & 0 \\ 6 & 4 \end{pmatrix} + \begin{pmatrix} -6 & 15 \\ 12 & -3 \end{pmatrix}$$

$$\therefore 2A + 3C = \begin{pmatrix} 4 & 15 \\ 18 & 1 \end{pmatrix}$$

3. Dadas las matrices:

$$A = \begin{pmatrix} 3 & 5 \\ -2 & 1 \end{pmatrix} B = \begin{pmatrix} -2 & 7 \\ 4 & -1 \end{pmatrix} C = \begin{pmatrix} 11 & 1 \\ 10 & 5 \end{pmatrix}$$
Resuelva: $3(X - 2A) = 5(B - C) + 2(X - A - B)$

Resolución

$$3(X - 2A) = 5(B - C) + 2(X - A - B)$$

Efectuamos y despejamos X

$$3X - 6A = 5B - 5C + 2X - 2A - 2B$$

$$X = 4A + 3B - 5C$$

Reemplazando:

$$X = 4 \begin{pmatrix} 3 & 5 \\ -2 & 1 \end{pmatrix} + 3 \begin{pmatrix} -2 & 7 \\ 4 & -1 \end{pmatrix} - 5 \begin{pmatrix} 11 & 1 \\ 10 & 5 \end{pmatrix}$$

$$3(X - 2A) = 5(B - C) + 2(X - A - B) \qquad \mathbf{X} = \begin{pmatrix} 12 & 20 \\ -8 & 4 \end{pmatrix} + \begin{pmatrix} -6 & 21 \\ 12 & -3 \end{pmatrix} - \begin{pmatrix} 55 & 5 \\ 50 & 25 \end{pmatrix}$$

$$\therefore \mathbf{X} = \begin{pmatrix} -49 & 36 \\ -46 & -24 \end{pmatrix}$$

4. Sean las matrices:

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 7 & 8 \\ 1 & 0 \end{pmatrix}$$

Además: 3A+B=C. Calcule: Traz(AC)

Resolución

Calculamos C

$$C = 3\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} + \begin{pmatrix} 7 & 8 \\ 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 3 & 6 \\ 12 & 15 \end{pmatrix} + \begin{pmatrix} 7 & 8 \\ 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 10 & 14 \\ 13 & 15 \end{pmatrix}$$

Hallamos AC

$$AC = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 10 & 14 \\ 13 & 15 \end{pmatrix}$$

$$AC = \begin{pmatrix} 36 & 44 \\ 105 & 131 \end{pmatrix}$$

Piden Traz(AC)

$$Traz(AC) = 36 + 131$$

$$\therefore Traz(AC) = 167$$

5. Halle el valor de x, si:

$$\begin{vmatrix} x+1 & 2(x+1) \\ 3 & 5 \end{vmatrix} = \begin{vmatrix} -4 & x+2 \\ 1 & x-1 \end{vmatrix}$$

Resolución

Observación:

Se cumple

$$\begin{vmatrix} ma & mb \\ c & d \end{vmatrix} = m \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

$$\begin{vmatrix} x+1 & 2(x+1) \\ 3 & 5 \end{vmatrix} = \begin{vmatrix} -4 & x+2 \\ 1 & x-1 \end{vmatrix}$$

$$(x+1) \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = \begin{vmatrix} -4 & x+2 \\ 1 & x-1 \end{vmatrix}$$

$$(x+1) (5-6) = -4(x-1)-1(x+2)$$

$$-x-1 = -4x+4-x-2$$

$$4x = 3$$

$$\therefore x = 3/4$$

6. Si a y b son soluciones de:

$$\begin{vmatrix} x & 5 \\ x & x \end{vmatrix} = \begin{vmatrix} 3x & 20 - x \\ x & x \end{vmatrix}$$

con a
b. Halle: 2b - a - 1

Resolución

Observación:

Se cumple

$$\begin{vmatrix} a & b \\ mc & md \end{vmatrix} = m \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

$$\begin{vmatrix} x & 5 \\ x & x \end{vmatrix} = \begin{vmatrix} 3x & 20 - x \\ x & x \end{vmatrix}$$

$$\mathbf{x} \begin{vmatrix} x & 5 \\ 1 & 1 \end{vmatrix} = \mathbf{x} \begin{vmatrix} 3x & 20 - x \\ 1 & 1 \end{vmatrix}$$

$$x(x-5) = x(3x-(20-x))$$

$$x(x-5)=x(4x-20)$$

$$\therefore 2b - a - 1 = 9$$

7. Al resolver la ecuación:

$$\begin{vmatrix} f_1 \\ f_2 \\ f_3 \end{vmatrix} \begin{vmatrix} x-1 & x & x \\ x & x+2 & x \\ x & x & x+3 \end{vmatrix} = 2x-10$$

Se encuentra la edad de Juan hace 20 años. ¿Cuál es la edad de Juan?

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c - a & d - b \end{vmatrix}$$

Observación:
Se cumple
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c - a & d - b \end{vmatrix}$$

$$\begin{vmatrix} x - 1 & x & x \\ x - (x - 1) & x + 2 - x & x - x \\ x - (x - 1) & x - x & x + 3 - x \end{vmatrix}$$

$$\begin{vmatrix} x - 1 & x & x \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{vmatrix} = (6(x-1)+0+0) - (2x+0+3x)$$

$$x-6 = 2x-10 \text{ (por dato)}$$

$$x = 4 \qquad \therefore \text{ Juan tiene}$$

$$24 \text{ años}$$

8.

$$\begin{vmatrix} x^2 & 1 & x \\ 1 & x & 1 \\ x & 1 & 1 \end{vmatrix} = \begin{vmatrix} x & 1 & x^2 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix}$$

$$\begin{vmatrix} x^2 & 1 & x \\ 1 & x & 1 \end{vmatrix} = (x^3 + x + x) - (x^3 + x^2 + 1)$$

$$-x^2 + 2x - 1 \dots (\alpha)$$

$$\begin{vmatrix} x & 1 & x^{2} \\ 1 & x & 1 \\ x & 1 & x^{2} \end{vmatrix} = (x^{3} + x^{2} + 1) - (x^{3} + x + x)$$

$$x + x^{2} = (x^{3} + x^{2} + 1) - (x^{3} + x + x)$$

$$x^{2} = (x^{3} + x^{2} + 1) - (x^{3} + x + x)$$

$$x^{2} = (x^{3} + x^{2} + 1) - (x^{3} + x + x)$$

$$x^{2} = (x^{3} + x^{2} + 1) - (x^{3} + x + x)$$

$$x^{2} = (x^{3} + x^{2} + 1) - (x^{3} + x + x)$$

$$(\alpha) = (\beta)$$

$$-x^{2} + 2x - 1 = x^{2} - 2x + 1$$

$$0 = 2x^{2} - 4x + 2$$

$$0 = x^{2} - 2x + 1$$

$$0 = (x - 1)^{2}$$

$$x = 1$$

$$\therefore cs = \{1\}$$