Application Serial No. Unassigned Atty. Docket No. 030681-537

Page 2

IN THE CLAIMS:

1. (Currently Amended) A superconducting resistive current limiter adapted for a

nominal voltage U_N and carrying a nominal current I_N at a working temperature T_N, with at

least one track (1) of length Ltot comprising a thin-film of high-temperature superconducting

material with a critical current density J_c and an electrical bypass layer in contact with the

film, wherein the track (1)-consists of a multitude of constrictions (2) having a total length Lc

and each having an approximately constant critical current lc.c equal to the nominal current

I_N and being separated from each other by connecting sections (3) having a critical current

I_{C.S} larger than I_N,

characterized in that wherein the total resistance R_C of the constrictions (2) at working

temperature T_N is adapted to cause a voltage drop equal to the nominal voltage U_N at an

initial fault current l_b limited to a value below a prospective fault current.

2. (Currently Amended) The current limiter according to claim 1, characterized in that

wherein the resistance R_c of the constrictions (2) at an initial fault current I_b with a current

density J_b of approximately 1.5 times J_c flowing in the constrictions (2) is adapted to cause a

voltage drop $U_C = R_C$ times I_b equal to the nominal voltage U_N .

3. (Currently Amended) The current limiter according to claim 2, characterized in that

wherein an averaged reduced resistivity ρ_C of the constrictions (2) at working temperature T_N

and at the initial fault current density J_b is adapted to limit the surface power density p_b

dissipated by the constrictions (2).

Application Serial No. Unassigned Atty. Docket No. 030681-537 Page 3

- 4. (Currently Amended) The current limiter according to claim 3, characterized in that wherein the averaged reduced resistivity ρ_C of the constrictions (2) is given by $\rho_C = p_b / J_b^2$. e, wherein e is the thickness of the superconducting film at the constrictions.
- 5. (Currently Amended) The current limiter according to claim 4, characterized in that wherein the conductivity of the bypass layer is higher along the constrictions (2) than along the connecting sections (3).
- 6. (Currently Amended) The current limiter according to one of claims 1 to 4, characterized in that claim 1, wherein the constrictions (2) are divided into two or more paths (20) electrically connected in parallel.