Pressure signal processing

JMO Massey[†], F Cabrera-Booman, T Jaroslawski, J Klewicki, BJ McKeon

Center for Turbulence Research Stanford University

August 20, 2025

Thanks to DARPA for funding this work.

Pipe. 8-20 † masseyj@stanford.edu 0/5

Going from raw data to clean spectra

Raw measurements from pinhole (PH) mic.

Cleaned pressure spectra.

Pipe. 8-20 [†]masseyj@stanford.edu 1/5

Figure: Complete pressure processing pipeline for measurement of the WPFs through a pinhole microphone. similar to Tsuji et al. (2007)

Pipe. 8-20 [†]masseyj@stanford.edu 2/5

Microphone calibration

Pipe. 8-20 [†]masseyj@stanford.edu 3/5

Corrected signals

Show corrected signals and coherence

Pipe. 8-20 [†]masseyj@stanford.edu 4/5

Calibration algos

Algorithm 1 *H* Transfer-Function Estimation

Require: x[n] (ref), y[n] (treated), f_s , Welch (N_{seg} , N_{ov} , w)

Ensure: f[k], H[k], $\gamma^2[k]$

- 1: Compute $S_{xx}[k]$, $S_{yy}[k]$ (Welch)
- 2: Compute $S_{xy}[k]$ (same settings)
- 3: $H[k] \leftarrow S_{xy}[k]/S_{xx}[k]$
- 4: $\gamma^{2}[k] \leftarrow |S_{xy}[k]|^{2}/(S_{xx}[k]S_{yy}[k])$
- 5: **return** $(f[k], H[k], \gamma^2[k])$

Algorithm 2 Coherence-weighted Wiener inverse

Require: y_r , f_s , grid f, H(f), $\gamma^2(f)$

Ensure: y

- 1: $y_r \leftarrow y_r \text{mean}(y_r)$
- 2: $\hat{y}_r \leftarrow \mathcal{F}(y_r, N_{\text{fft}})$
- 3: $m \leftarrow |H|$, $\phi \leftarrow \text{unwrap}(\angle H)$
- 4: Interp m, ϕ, γ^2 to FFT grid $\Rightarrow m_i, \phi_i, \gamma_i^2$
- 5: $H_i \leftarrow m_i e^{j\phi_i}$; $\varepsilon \leftarrow$ machine epsilon
- 6: $H_{inv} \leftarrow \gamma_i^2 H_i^* / \max(m_i^2, \varepsilon)$
- 7: $H_{inv}[0] \leftarrow 0$ (& Nyquist if present)
- 8: $y \leftarrow \Re\left\{\mathcal{F}^{-1}(\hat{y}_r \cdot H_{inv})[0:N]\right\}$
- 9: **return** *y*

References

TSUJI, Y., FRANSSON, J. H. M., ALFREDSSON, P. H. & JOHANSSON, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. *J. Fluid Mech.* **585**, 1–40.

Pipe. 8-20 [†]masseyj@stanford.edu 5/5