

D 4

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 335/06, A01N 43/08, 43/10, 43/18, 43/22, 43/38, 43/42, 43/84, 43/56, C07D 279/16, 333/54, 337/08, 401/06, 403/06, 405/06, 409/06, 417/06

(11) International Publication Number:

WO 97/08164

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/US96/13347

A1

(22) International Filing Date:

15 August 1996 (15.08.96)

(30) Priority Data:

60/002,803

25 August 1995 (25.08.95)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 60/002,803 (CIP) 25 August 1995 (25.08.95)

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GEE, Stephen, Kenneth [US/US]; 3339 Morningside Drive, Wilmington, DE 19810-3206 (US). HANAGAN, Mary, Ann [US/US]; 108 Country Flower Road, Newark, DE 19711-2482 (US). HONG, Wonpyo [KR/US]; 12 Salt Hill Court, Timonium, MD

21093-1960 (US). KUCHARCZYK, Roman [US/US]; 11 Hillendale Road, Chadds Ford, PA 19317-9345 (US).

(74) Agent: KATZ, Elliott, A.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BB, BG, BR, BY, CA, CN, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: BICYCLIC HERBICIDES

(57) Abstract

Compounds of Formula (I), and their agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetaion, wherein Q is (Q-1) or (Q-2); and A, Y, Z, R¹-R⁷, q and r are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of Formula (I).

$$\mathbb{Z}$$
 \mathbb{Q}
 \mathbb{Q}
 \mathbb{Q}
 \mathbb{Q}
 \mathbb{Q}

$$\mathbb{R}^{3}$$
 $(\mathbb{R}^{4})_{q}$ $(Q-1)$ o

$$\mathbb{R}^{5}$$
 \mathbb{N} \mathbb{R}^{6} \mathbb{Q}^{-2}

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Аппепіа	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	
BR	Brazil	KE	Kenya		Portugal
BY	Belarus	KG	Kyrgystan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic	144	of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
СН	Switzerland .	KZ	Kazakhstan	SG	Singapore
CI	Côte d'Ivoire	LI	Liechtenstein	SI	Slovenia
CM	Cameroon	LK		SK	Slovakia
CN	China		Sri Lanka	SN	Senegal
CS	Czechoslovakia	LR	Liberia	SZ	Swaziland
CZ	Czech Republic	LT	Lithuania	TD	Chad
DE	Germany	LU	Luxembourg	TG	Togo
DK	Denmark	LV	Latvia	TJ	Tajikistan
EE		MC	Моласо	TT	Trinidad and Tobago
ES	Estonia	MD	Republic of Moldova	UA	Ukraine
	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

10

15

1

TITLE BICYCLIC HERBICIDES

BACKGROUND OF THE INVENTION

This invention relates to certain bicyclic compounds, their agriculturally suitable salts and compositions, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

EP 283,261 discloses cyclic diones of Formula i as herbicides:

$$X^1$$
 X
 X^2
 X^2

wherein

 X, X^1 and X^2 are independently O or S;

20 R¹ is a monocyclic or fused-bicyclic heterocyclic group containing up to ten ring atoms up to five of which may be selected from O, N and S, optionally substituted with one or more groups selected from, among others, oxo, halogen, nitro, cyano, alkyl, haloalkyl, haloalkoxy, alkoxy, alkylsulfonyl; and

Y is, among others, C₂-C₄ alkylene which is optionally substituted with one or more groups selected from, among others, halogen or alkyl.

The bicyclic herbicides of the present invention are not disclosed in this publication.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, agriculturally suitable salts thereof, agricultural compositions containing them and their use for controlling undesirable vegetation:

$$Z \xrightarrow{R^1 \qquad (R^2)_f} Q$$

I

wherein

5

10

15

20

25

Q is

$$R^3$$
 or R^{30} R^6 R^6 R^7 $Q-2$

A is -(CH₂)_m-, -CH=CH-, -CH₂CH=CH-, -CH=CHCH₂-, -(CH₂)_n-NR⁹-, -NR⁹-(CH₂)_n-, -(CH₂)_n-O- or -(CH₂)_n-S(O)₂-, each group optionally substituted with one to four R⁸, and the directionality of the A linkage is defined such that the moiety depicted on the left side of the linkage is bonded to Y and the moiety on the right side of the linkage is bonded to the phenyl ring;

Y is O; NR^9 ; or CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen; provided that when A is - NR^9 -(CH_2)_n-, then Y is CH_2 ;

Z is C(=X), O, or $S(O)_2$; provided that when Y is O or NR^9 , then Z is C(=X); X is O or S;

R¹ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, halogen, cyano, nitro, $S(O)_2NR^{10}R^{11}$, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, C₃-C₆ alkenylsulfonyl, C₃-C₆ haloalkynylsulfonyl or C₃-C₆ cycloalkylsulfonyl; or R¹ is phenylsulfonyl optionally substituted with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro;

each R^2 is independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano or nitro;

BNSDOCID: <WO__9708164A1_I_>

10

15

20

25

30

- $R^3 \text{ is OR}^{12}, C_1\text{-}C_6 \text{ alkylthio}, C_1\text{-}C_6 \text{ haloalkylthio}, C_1\text{-}C_6 \text{ alkylsulfinyl}, C_1\text{-}C_6 \text{ haloalkylsulfonyl}, C_1\text{-}C_6 \text{ haloalkylsulfonyl} \text{ or halogen};$
- each R⁴ is independently C₁-C₃ alkyl, C₁-C₃ alkoxy, C₁-C₃ alkylthio or halogen; or when two R⁴ are attached to the same carbon atom, then said R⁴ pair can be taken together to form -OCH₂CH₂O-, -OCH₂CH₂CH₂O-, -SCH₂CH₂S- or -SCH₂CH₂S-, each group optionally substituted with 1-4 CH₂:
- R^5 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkoxyalkyl, formyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_7 dialkylaminocarbonyl, C_1 - C_6 alkylsulfonyl or C_1 - C_6 haloalkylsulfonyl; or R^5 is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro;
- R⁶ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl or C₃-C₆ alkynyl; or R⁶ is phenyl or benzyl, each optionally substituted on the phenyl ring with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro;
- R^7 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano or nitro;
- each R⁸ is independently C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, hydroxy or halogen; or two R⁸ groups bonded to the same carbon atom can be taken together with the carbon to which they are attached to form C(=O) or C(=S); provided that when two R⁸ groups are attached to a carbon atom which is attached to an O, NR⁹ or S(O)₂, then no more than one of said R⁸ groups can be C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, hydroxy or halogen;
- each R⁹ is independently H; C₁-C₆ alkyl; C₁-C₆ haloalkyl; C₃-C₆ alkenyl; C₃-C₆ haloalkenyl; C₃-C₆ alkynyl; C₃-C₆ haloalkynyl; C₃-C₆ cycloalkyl; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; C₂-C₆ alkoxyalkyl; formyl; C₂-C₆ alkylcarbonyl; C₂-C₆ alkoxycarbonyl; C₂-C₆ alkylaminocarbonyl; C₃-C₇ dialkylaminocarbonyl; or phenyl, benzyl or benzoyl, each optionally substituted on the phenyl ring with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro;
- R¹⁰ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₃-C₆ cycloalkyl or C₁-C₆ alkoxy; or R¹⁰ is phenyl or benzyl, each optionally substituted on the phenyl ring with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro;
- R^{11} is H, C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; or

 R^{10} and R^{11} can be taken together as -CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, or -CH₂CH₂CH₂-, each optionally substituted with 1-4 C₁-C₃ alkyl;

 R^{12} is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkoxyalkyl, formyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_7 dialkylaminocarbonyl, C_1 - C_6 alkylsulfonyl or C_1 - C_6 haloalkylsulfonyl; or R^{12} is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro;

m is 1, 2 or 3;

10 n is 1 or 2;

5

15

20

25

30

q is 0, 1, 2, 3 or 4; and

r is 0, 1 or 2;

provided that

- (i) when Z is C(=X) or O; A is -(CH₂)_m- optionally substituted with one to four R⁸; and m is 1 or 2; then Q is Q-2;
- (ii) when Z is C(=X) or O; and A is -CH=CH- optionally substituted with one to two R⁸; then Q is Q-2;
- (iii) when Z is C(=X) or O; A is -(CH₂)_n-NR⁹-, -NR⁹-(CH₂)_n- or -(CH₂)_n-O- each optionally substituted with one to four R⁸; and n is 1; then Q is Q-2;
- (iv) when A is $-(CH_2)_n-NR^9-$, $-(CH_2)_n-O-$ or $-(CH_2)_n-S(O)_2-$ each optionally substituted with one to four R⁸; and Y is CH₂ optionally substituted with one or two groups independently selected from C_1-C_6 alkyl, C_1-C_6 haloalkyl and halogen; then Z is O or $S(O)_2$;
- (v) when A is $-(CH_2)_m$ optionally substituted with one to four R^8 ; Y is CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen; and Z is O or $S(O)_2$; then each R^8 is independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, hydroxy or halogen provided that no more than one R^8 is C_1 - C_6 alkoxy; and
- (vi) when A is $-(CH_2)_m$ optionally substituted with one to four R^8 ; Y is CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen; Z is $S(O)_2$; and m is 2; then Q is Q-1 and each R^8 is independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, hydroxy or halogen.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-4 alkyl" indicates that one to four of the available positions for that substituent may be alkyl which are independently selected. The term "1-4 CH₃" indicates that one

-4

5

10

15

20

25

30

35

to four of the available positions for that substituent may be methyl. "Alkenyl" includes straight-chain or branched alkenes such as 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

The term "halogen", either alone or in compound words such as "haloalkyl", - includes fluorine, chlorine, bromine or iodine. The term "1-2 halogen" indicates that one or two of the available positions for that substituent may be halogen which are independently selected. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include (Cl)₂C=CHCH₂ and CF₃CH₂CH=CHCH₂. Examples of "haloalkynyl" include HC≡CCHCl, CF₃C≡C, CCl₃C≡C and FCH₂C≡CCH₂. Examples of "haloalkynyl" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O. Examples of "haloalkylthio" include CCl₃S, CF₃S, CCl₃CH₂S and ClCH₂CH₂CH₂S. Examples of "haloalkylsulfinyl" include CF₃S(O), CCl₃S(O), CF₃CH₂S(O) and CF₃CF₂S(O). Examples of "haloalkylsulfonyl" include CF₃S(O), CCl₃S(O)₂, CCl₃S(O)₂, CF₃CH₂S(O)₂ and CF₃CF₂S(O)₂.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 7. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group

PCT/US96/13347

substituted with an alkoxy group containing a total of four carbon atoms, examples including $CH_3CH_2CH_2OCH_2$ and $CH_3CH_2OCH_2CH_2$. Examples of "alkylcarbonyl" include $C(O)CH_3$, $C(O)CH_2CH_2CH_3$ and $C(O)CH(CH_3)_2$. Examples of "alkoxycarbonyl" include $CH_3OC(=O)$, $CH_3CH_2OC(=O)$, $CH_3CH_2CH_2OC(=O)$, $CH_3CH_2CH_2OC(=O)$, $CH_3CH_2CH_2OC(=O)$, $CH_3CH_2CH_2OC(=O)$, $CH_3CH_2CH_2OC(=O)$, and the different butoxy- or pentoxycarbonyl isomers.

When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents. Further, when the subscript indicates a range, e.g. $(R)_{i-j}$, then the number of substituents may be selected from the integers between i and j inclusive.

When a group contains a substituent which can be hydrogen, for example R¹ or R¹², then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

Some compounds of this invention can exist as one or more tautomers. One skilled in the art will recognize, for example, that compounds of Formula Ia (Formula I where Q is Q-1, R³ is OR¹², and R¹² is H) can also exist as the tautomers of Formulae Ib and Ic as shown below. One skilled in the art will recognize that said tautomers often exist in equilibrium with each other. As these tautomers interconvert under environmental and physiological conditions, they provide the same useful biological effects. The present invention includes mixtures of such tautomers as well as the individual tautomers of compounds of Formula I.

5

10

15

20

25

$$R^{1} \xrightarrow{R^{2}}_{V-A} \xrightarrow{R^{2}}_{O} \xrightarrow{R^{4}}_{OH}$$
Ia
$$R^{1} \xrightarrow{(R^{2})_{r}} \xrightarrow{(R^{4})_{q}}$$

$$Z_{V-A} \xrightarrow{R^{1}}_{V-A} \xrightarrow{(R^{4})_{q}}$$
Ib

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as an enol.

Preferred compounds for reasons of better activity and/or ease of synthesis are: Preferred 1. Compounds of Formula I above, and agriculturally suitable salts thereof, wherein:

the A-Y-Z moiety is selected from combinations of A, Y and Z such that

- (i) when A is $-(CH_2)_m$ optionally substituted with one to two R⁸ and Y is O or NR⁹, then Z is C(=X);
- (ii) when A is $-(CH_2)_m$ optionally substituted with one to two R⁸ and Y is CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen, then Z is O; and
- (iii) when A is $-(CH_2)_m$ or $-(CH_2)_n$ -NR⁹- optionally substituted with one to two R⁸ and Y is CH_2 optionally substituted with one or

15

10

```
two groups independently selected from C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub>
                                                               haloalkyl and halogen, then Z is S(O)_2;
                                                  X is O;
                                                  each R<sup>4</sup> is independently C<sub>1</sub>-C<sub>3</sub> alkyl;
                                                  R<sup>6</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl or C<sub>3</sub>-C<sub>6</sub> alkenyl;
     5
                                                  R^7 is H, C_1-C_3 alkyl or C_1-C_3 haloalkyl;
                                                  R^9 is H, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_3-C_6 alkenyl, C_3-C_6 alkynyl or
                                                               C<sub>3</sub>-C<sub>6</sub> cycloalkyl;
                                                  R^{12} is H, formyl, C_2-C_6 alkylcarbonyl, C_2-C_6 alkoxycarbonyl, C_2-C_6
                                                               alkylaminocarbonyl, C<sub>3</sub>-C<sub>7</sub> dialkylaminocarbonyl, C<sub>1</sub>-C<sub>6</sub>
   10
                                                              alkylsulfonyl or C_1-C_6 haloalkylsulfonyl; or \mathbb{R}^{12} is benzoyl or
                                                              phenylsulfonyl, each optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl,
                                                              halogen, cyano or nitro;
                                                 q is 0, 1 or 2; and
  15
                                                 r is 0 or 1.
                          Preferred 2. Compounds of Preferred 1 wherein:
                                                 R^1 is H, methyl, halogen, S(O)_2NR^{10}R^{11}, C_1-C_4 alkylsulfonyl, C_1-C_4
                                                             haloalkylsulfonyl or C3-C5 cycloalkylsulfonyl;
                                                R<sup>2</sup> is methyl, halogen or nitro;
 20
                                                 R<sup>3</sup> is OR<sup>12</sup>:
                                                R^5 is H or C_1-C_3 alkylsulfonyl; or R^5 is benzoyl or phenylsulfonyl, each
                                                             optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;
                                                each R^8 is independently C_1-C_3 alkyl, C_1-C_3 alkoxy or halogen; or two
                                                             R<sup>8</sup> groups bonded to the same carbon atom can be taken together
                                                             with the carbon to which they are attached to form C(=0);
 25
                                                R^{10} is H, C_1-C_4 alkyl, allyl or propargyl;
                                               R^{11} is H or C_1-C_4 alkyl; and
                                               R^{12} is H or C_1-C_3 alkylsulfonyl; or R^{12} is benzoyl or phenylsulfonyl, each
                                                            optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro.
                                  Most preferred are compounds of Preferred 2 selected from the group:
30
                                  2-(1,1-dimethylethyl)-5-[(1-ethyl-5-hydroxy-1H-pyrazol-4-yl)carbonyl]-8-
                                  (ethylsulfonyl)-3,4-dihydro-1(2H)-isoquinolinone;
                                  (2,3-dihydro-2,4,7-trimethylbenzo[b]thiophen-5-yl)(1-ethyl-5-hydroxy-1H-
                                  pyrazol-4-yl)methanone S,S-dioxide;
                                 (1-ethyl-5-hydroxy-1H-pyrazol-4-yl)(2,3,4,5-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-1-tetrahydro-6,9-dimethyl-
35
                                 benzothiepin-7-yl)methanone S,S-dioxide;
                                 4-ethyl-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2H-1,4-benzothiazin-
                                 3(4H)-one 1,1-dioxide;
```

10

15

20

4-ethyl-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-5,8-dimethyl-2*H*-1,4-benzothiazin-3(4*H*)-one 1,1-dioxide; and (2,3-dihydro-2,4,7-trimethylbenzo[*b*]thiophen-5-yl)(5-hydroxy-1-methyl-1*H*-pyrazol-4-yl)methanone *S*,*S*-dioxide.

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-31. The definitions of Q, A, Y, Z, X, R¹-R¹², m, n, q and r in the compounds of Formulae 1-29 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ie are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ie are as defined above for Formula I. Compounds of Formulae Id and Ie correspond to Formula I compounds wherein Q is Q-1 and Q-2, respectively.

Scheme 1 illustrates the preparation of compounds of Formula Id (R³ = OR¹³ and R¹³ is the same as R¹² as described in the Summary of the Invention excluding H) whereby a compound of Formula Id (R³ = OH) is reacted with a reagent of Formula 2 in the presence of a base wherein X¹ is chlorine, bromine, fluorine, methylsulfonyloxy (OMs), trifluoromethylsulfonyloxy (OTf), p-toluenesulfonyloxy (OTs) or acetyloxy (OAc) and R¹³ is as previously defined. The coupling is carried out by methods known in the art (or by obvious modifications of these methods): for example, see K. Nakamura, et al., WO 95/04054.

Scheme 1

$$X = \frac{R^{1}}{A} = OH$$
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{13}
 R^{13}

Scheme 2 illustrates the preparation of compounds of Formula Id (R³ = S(O)_rR¹⁴;

r = 1 or 2; and R¹⁴ = C₁-C₆ alkyl or C₁-C₆ haloalkyl) whereby a compound of Formula Id (R³ = SR¹⁴) is reacted with an oxidizing reagent such as peroxyacetic acid, m-chloroperoxybenzoic acid, peroxytrifluoroacetic acid, potassium peroxymonosulfate or hydrogen peroxide. The oxidation is carried out by methods known in the art (or by obvious modifications of these methods); for example, see S. Patai, et al., The Chemistry of Sulphones and Sulphoxides, John Wiley & Sons, 1988; pp 205-213, 235-253.

Scheme 2

$$Z = R^{1} (R^{2})_{r} R^{14}S$$

$$Z = R^{1} (R^{2})_{r} R^{14}S(O)_{r}$$

$$Z = R^{1} (R^{2})_{r} R^{14}S(O)_{r}$$

$$Z = R^{1} (R^{4})_{q}$$

$$Z = R^{1} (R^{2})_{r} R^{14}S(O)_{r}$$

$$Z = R^{1} (R^{4})_{q}$$

$$Z = R^{1} (R^{4})_{q}$$

$$Z = R^{14} (R^{3} = S(O)_{r}R^{14})$$

Compounds of Formula Id (R³ = Nu; Nu = SR¹⁴ or OR¹⁵; R¹⁴ is as defined previously; R¹⁵ is C₁-C₆ alkyl, C₁-C₆ haloalkyl or C₂-C₆ alkoxyalkyl) can be prepared from a compound of Formula Id (R³ = halogen) by treatment with a nucleophile of Formula 3 (Nu = SR¹⁴ or OR¹⁵; M = Na, K or Li) as shown in Scheme 3 using methods well documented in the literature (or obvious modifications of these methods): for example, see P. H. Nelson, et al., Synthesis, (1992), 12, 1287-1291; and S. Miyano, et al., J. Chem. Soc. Perkin Trans, (1976), 1, 1146.

Scheme 3

$$Z = \text{halogen}$$

Compounds of Formula Id (R^3 = halogen) can be prepared by reacting a compound of Formula Id (R^3 = OH) with a halogenating reagent such as oxalyl bromide or oxalyl chloride (Scheme 4). This conversion is carried out by methods known in the art (or by obvious modifications of these methods): for example, see S. Muller, et al., WO 94/13619; S. Muller, et al., DE 4,241,999.

Scheme 4

10

15

5

Scheme 5 illustrates the preparation of compounds of Formula Id ($R^3 = OH$) whereby an enol ester of Formula 4 is reacted with a base such as triethylamine in the presence of a catalytic amount of a cyanide source (e.g., acetone cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by obvious modifications of these methods): for example, see W. J. Michaely, EP 369,803.

Enol esters of Formula 4 can be prepared by reacting a dione of Formula 5 with an acid chloride of Formula 6 in the presence of a slight molar excess of a base such as triethylamine in an inert organic solvent such acetonitrile, methylene chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 6). This type of coupling is known in the art: for example, see W. J. Michaely, EP 369,803.

Scheme 6

$$(R^4)q$$
 + $(R^2)_r$ base (e.g., triethylamine) 4

10

15

5

Enol esters of Formula 4 can also be prepared by reacting a dione of Formula 5 with an acid of Formula 7 in the presence of a coupling agent such as 2-chloro-1-methylpyridinium iodide and a slight excess of base such as triethylamine in an inert organic solvent such as acetonitrile, methylene chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 6A). This type of coupling is known in the art: for example, see T. Mukaiyama et al., *Chem. Lett.* (1975), 1045-1048.

Scheme 6A

$$\begin{array}{c}
\text{base} \\
\text{(e.g., triethylamine)} \\
\hline
\text{coupling agent} \\
\text{(e.g., 2-chloro-1-methyl-pyridinium iodide)}
\end{array}$$

The acid chlorides of Formula 6 can be prepared by reacting an acid of Formula 7 with a halogenating reagent (e.g., oxalyl chloride or thionyl chloride) and a catalytic amount of dimethylformamide (Scheme 7). This chlorination is well known in the art: for example, see W. J. Michaely, EP 369,803.

Scheme 7

Scheme 8 illustrates the preparation of acids of Formula 7 whereby a ketone of Formula 8 is reacted with an oxidizing reagent such as NaOCl, NaOBr, NaOI or NaNO₂. The oxidation is carried out by methods known in the art (or by obvious modifications of these methods): for example, see T. F. Braish, et al., Org. Prep. Proced. Int., (1991), 23, 655-658 and J. A. Skorcz, et al., Heterocycl. Chem., (1973), 10, 249.

Scheme 8

 $(R^{16}=NR^{10}R^{11},\,C_1-C_6\text{ alkyl},\,C_1-C_6\text{ haloalkyl},\,C_3-C_6\text{ alkenyl},\,C_3-C_6\text{ haloalkenyl},\\ C_3-C_6\text{ alkynyl},\,C_3-C_6\text{ haloalkynyl}\text{ or }C_3-C_6\text{ cycloalkyl};\text{ or phenyl optionally substituted})$

Scheme 9 illustrates the preparation of sulfones of Formula 8a whereby a sulfide of Formula 9 is reacted with an oxidizing reagent such as peroxyacetic acid, m-chloroperoxybenzoic acid, peroxytrifluoroacetic acid, potassium peroxymonosulfate or hydrogen peroxide. The oxidation is carried out by methods known in the art (or by obvious modifications of these methods): for example, see S. Patai, et al., The

Chemistry of Sulphones and Sulphoxides, John Wiley & Sons, 1988; pp 205-213, 235-253. For some sulfides of Formula 9 containing a functional group not compatible with the reaction conditions, the functional group may be protected before the oxidation and then be deprotected after the oxidation. The protection and deprotection procedures are well known in the literature: for example, see T. W. Greene, et. al., Protective

Groups in Organic Synthesis (Second Edition), John Wiley & Sons, Inc., J. E. McMurry and T. Hoz, J. Org. Chem., (1975), 40, 3797 and references cited therein.

Scheme 9

20 (R¹⁶=NR¹⁰R¹¹, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl or C₃-C₆ cycloalkyl; or phenyl optionally substituted)

Scheme 10 illustrates the preparation of ketones of Formula 9 whereby a sulfide of Formula 10 is reacted with an acylating reagent 11 such as acetyl chloride or acetic

anhydride in the presence of a Lewis acid such as aluminum chloride in a solvent such as carbon disulfide, methylene chloride or 1,2-dichloroethane. This conversion is carried out using methods well known in the art: for example, see R. A. Cutler, *J. Amer. Chem. Soc.*, (1952), 74, 5475.

5

10

Scheme 10

$$R^{16}S$$
 X
 $Y-A$
 $CH_3C(=O)R^{17}$

Lewis acid (e.g., AlCl₃)

 X
 $Y-A$
 $Y-$

The lactam of Formula 10a (X = O, $Y = NR^9$, $A = -(CH_2)_m$, and m = 2) can be prepared by treating an amide of Formula 12 (Scheme 11) with a base such as potassium *t*-butoxide or sodium hydride in a solvent such as benzene, dimethylformamide or THF. This conversion is carried out using methods known in the art (or obvious modifications of these methods): for example, see R. N. Misra, et al., *Bioorg. Med. Chem. Lett.*, (1991), 1, 295-298.

Scheme 11

15

20

The compounds of Formula 12 (Scheme 12) can be prepared from compounds of Formula 12a ($X^3 = OH$) by converting the alcohol to an appropriate leaving group such as a halogen, a mesylate or tosylate. For example, the reactions to prepare the mesylate or tosylate are carried with a sulfonyl chloride of Formula 13 in the presence of a base such as pyridine, sodium hydride or triethylamine in a solvent such as pyridine or

methylene chloride at temperatures between 0 °C and room temperature. This conversion is carried out using methods well known in the literature (or obvious modifications of these methods): for example, see R. N. Misra, et al., *Bioorg. Med. Chem. Lett.*, (1991), 1, 295-298, *Helv. Chim. Acta*, (1947), 30, 1454 and L. F. Fieser and M. Fieser, *Reagents for Organic Synthesis*, Vol. 1, Wiley, New York, (1967), 1179.

Scheme 12

Compounds of Formula 12a (Scheme 13) can be prepared from an amide of

Formula 14 by treatment with an excess of a base such as *n*-butyllithum and an
electrophile such as an epoxide of Formula 15 in a solvent such as THF. This conversion
is carried out using methods known in the literature (or obvious modifications of these
methods): for example, see R. N. Misra, et al., *Bioorg. Med. Chem. Lett.*, (1991), 1,
295-298 and B. H. Bhide, et al., *Chem. and Ind.*, (1975), 519.

15

Scheme 13

Compounds of Formula 14 (Scheme 14) can be prepared from an acid chloride of Formula 16 and an amine of Formula 17 in the presence of a base such as triethylamine or excess NH₂R⁹ in a solvent such as chloroform. This conversion is carried out using

methods well known in the literature (or obvious modifications of these methods): for example, see A. D. Wolf, EP 196,786.

Scheme 14

$$R^{16}S$$
 $(R^2)_T$
 $+NH_2R^9$
 $(e.g., EigN)$
 $R^{16}S$
 $(R^2)_T$
 $R^{16}S$
 $R^{16}S$

5

10

Scheme 15 illustrates the preparation of compounds of Formula 10b (X = O, $Y = NR^9$) whereby an olefin of Formula 10c is reacted with a reducing reagent such as hydrogen at 345 kPa (50 psi) in the presence of a catalyst such as palladium on carbon in a solvent such as ethanol. The reduction is carried out by methods well known in the art (or by obvious modifications of these methods): for example, R. D. Clark, et at., J. Med. Chem., (1993), 36, 2645-57 and C. Y. Cheng, J. Heterocyclic. Chem., (1995), 32, 73.

Scheme 15

10c (A = -CH=CH-, -CH₂CH=CHor -CH=CHCH₂-) 10b (A = -(CH₂)_m-, m = 2 or 3)

15

20

Scheme 16 illustrates the preparation of compounds of Formula 10d (X = O, $Y = NR^9$) whereby an amide of Formula 18 is treated with an alkyllithium such as n-butyllithium in a solvent such as THF. The resulting dianion is treated with an electrophile such as DMF or an amide to give compounds of Formula 10d. The reaction is carried out by methods well known in the art (or by obvious modifications of these methods): for example, see R. D. Clark, et al., J. Med. Chem., (1993), 36, 2645-57.

Scheme 16

$$(R^2)_r$$

1) n-BuLi
2) DMF
or $R^8CON(OMe)Me$
3) Acid (pH 1)
room temp.

 $R^{16}S$
 $R^{16}S$

Olefins of Formula 10e (X = O, $Y = NR^9$, A = -CH = CH-, $-CH_2CH = CH$ - or $-CH = CHCH_2$ -) can also be prepared from the corresponding lactones 10f(Y = O) with a substituted amine of Formula 17 (Scheme 17). The reaction is carried out by methods well known in the art (or by obvious modifications of these methods): for example, see R. Singh, et. al., J. Indian Chem. Soc., (1991), 68, 276-80, M. Somei, Chem. Pharm. Bull., (1981), 29, 249, and N. Gilman, Synth. Commun., (1982), 12, 373-80.

Scheme 17

$$R^{16}S$$
 $+ NH_2R^9$
 $R^{16}S$
 $R^$

10

5

The preparation of lactones of Formula 10g (X = O, Y = O) (Scheme 18) is carried out by methods well known in the art (or by obvious modifications of these methods): for example, see R. M. Hauser, *J. Org. Chem.*, (1988), 53, 4676-4681.

19

Scheme 18

1) BuLi
2) DMF
or
$$R^{8}CON (OMe) Me$$

3) Aqueous acid
reflux
18 ($R^{18} = H \text{ or } R^{8}$)

The preparation of compounds of Formula 10h (X = O, Y = O, $A = -(CH_2)_m$ -, m = 2) is carried out by methods well known in the art (or by obvious modifications of these methods): for example, R. J. Pasteris, EP 166,516, A. D. Wolf, EP 196,786 and F. M. Hauser, *J. Org. Chem.*, (1988), 53, 4676-4681.

Scheme 19

The preparation of compounds of Formula 10i (X = O, $Y = NR^9$, $A = -(CH_2)_m^-$, m = 1) is carried out by methods known in the art (or by obvious modifications of these methods): for example, see J. Epsztajn, et al., *Tetrahedron*, (1993), 49, 929-938 and R. J. Pasteris, EP 107,979 and EP 166,516.

Scheme 20

The preparation of compounds of Formula 10j (X = O, Y = O, $A = -(CH_2)_m$ -, m = 1) is carried out by methods known in the art (or by obvious modifications of these methods): for example, see R. Mali, et al., *J. Chem. Res.*, *Synop.*, (1993), 5, 184-185 and B. H. Bhide, *Tetrahedron*, (1971), 27, 6171.

Scheme 21

Scheme 22 illustrates the preparation of compounds of Formula Ie (R⁵ = R^{5a} and R^{5a} is the same as R⁵ as described in the Summary of the Invention excluding H) whereby a compound of Formula Ie (R⁵ = H) is reacted with a reagent of Formula 19 in the presence of a base wherein X⁴ is chlorine, bromine, fluorine, OTf or OAc and R^{5a} is as previously defined. This coupling is carried out by methods known in the art (or by obvious modification of these methods): for example, see K. Nakamura, et al., WO 95/04054.

Scheme 22

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{5a}
 \mathbb{R}^{5a}

wherein

5

10

R^{5a} is the same as R⁵ as described in the Summary of the Invention excluding H. Scheme 23 illustrates the preparation of compounds of Formula Ie (R⁵ = H) whereby an ester of Formula 20 is reacted with a base such as triethylamine in the presence of a catalytic amount of a cyanide source (e.g., acetone cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by obvious modification of these methods): for example, see W. J. Michaely, EP 369,803.

Scheme 23

An ester of Formula 20 can be prepared by reacting a hydroxypyrazole of

Formula 21 with an acid chloride of Formula 6 in the presence of a slight molar excess of
a base such as triethylamine in an inert organic solvent such as acetonitrile, methylene
chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 24). This type of
coupling is carried out by methods known in the art (or by obvious modification of these
methods): for example, see W. J. Michaely, EP 369,803.

Scheme 24

Scheme 25 illustrates the synthesis of compounds of the Formula 23 $(R^8 = C_1 - C_6 \text{ alkyl})$ wherein a thioether of the Formula 22 is heated either neat or in the presence of a high boiling solvent such as dimethylaniline at temperature from 150 °C to 200 °C to provide the benzothiophenes 23 (Scheme 25). For a representative example see, W. K. Anderson et al., J. Chem. Soc. Perkin Transactions I (1986), 1-4.

Scheme 25

$$R^{1}$$
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 $(R$

10

15

5

Compounds of the Formula 25 which can serve as intermediates for the synthesis of compounds of the present invention can readily be prepared by acid catalyzed cyclization of an appropriately substituted carboxylic acid of the Formula 24 (Scheme 26). Acid catalysts that have been used to promote this reaction are sulfuric acid, hydrochloric acid, trifluoroacetic acid and polyphosphoric acid. For a general review see, B. Iddon and R. M. Scrowston, *Advances in Heterocyclic Chemistry*, Vol. 1, Academic Press, New York (1970), 177.

Scheme 26

$$R^{1}$$
 $(R^{2})_{r}$
 R^{1}
 $(R^{2})_{r}$
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}

The preparation of compounds of the Formula 23a can be accomplished by treatment of compounds of the Formula 23 with triethylsilane in trifluoroacetic acid (Scheme 27). The reaction is best carried out at temperatures between 25 °C and 72 °C. For an example of this transformation see, E. N. Karaulova et al., *Zur Russ. Fiz-Chim.*, (1960), 30, 3292.

Scheme 27

$$R^{1}$$
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 R^{8}
 $(R^{2})_{r}$
 $(R^{3})_{r}$
 $(R^{3})_{r}$

10

5

Compounds of the Formula 25a can readily be prepared by treatment of compounds of the Formula 25 with triethylsilane in refluxing trifluoroacetic acid (Scheme 28). For a representative example, see, C. T. West et al., J. Org. Chem., (1963), 38, 2675-2681.

15

Scheme 28

$$R^{1}$$
 $(R^{2})_{r}$
 R^{8}
 R^{8}
 R^{1}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}

Compounds of Formula 26 (A = $-(CH_2)_m$ -, Y = $-CH_2$ -) can be regioselectively brominated *para* to the thioether functionality giving structures of Formula 27 (Scheme 29). Typical conditions employed are the treatment of compounds of Formula 26 with one equivalent to a slight excess of bromine in an inert solvent such as

dichloromethane or chloroform at temperatures from 20 °C up to the boiling point of the solvent. For a representative example see K. Nakamura et al., WO 95/04054.

Scheme 29

5

10

Scheme 30 illustrates the preparation of carboxylic acids of the Formula 28 $(A = -(CH_2)_m^-, Y = -CH_2^-)$ via halogen metal exchange followed by quenching of the resulting anion with carbon dioxide. This general method is carried out by the addition of *n*-butyl lithium to a solution of the compound of the Formula 27 in THF or diethyl ether at temperatures from 25 °C to -70 °C. Carbon dioxide is introduced to produce the resulting acid. This classical reaction is known to one skilled in the art. For a typical procedure see, R. L. Danheiser et al., *J. Am. Chem. Soc.*, (1986), 108, 806-810.

Scheme 30

Br
$$R^1$$
 $(R^2)_r$ HO R^1 $(R^2)_r$ R^2 $R^$

15

20

Compounds of the Formula 29 (A = $-(CH_2)_m$ -, Y = $-CH_2$ -) (Scheme 31) can readily be prepared by oxidation of compounds of the Formula 28 using any one of a number of oxidants. Typical reagents used for this transformation are hydrogen peroxide, peroxyacetic acid, m-chloroperoxybenzoic acid and potassium peroxymonosulfate. The oxidations can be carried out by methods known in the art or obvious modifications. For a general review see, S. Patai e.t.a., *The Chemistry of Sulphones and Sulfoxides*, John Wiley & Sons, 1988, pp. 205-213.

10

15

20

25

Scheme 31

HO
$$\begin{array}{c}
0 \\
R^{1} \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
R^{2} \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
0 \\
0 \\
0
\end{array}$$

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. 1 H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, d = quartet, m = multiplet, d = doublet of doublets, d = singlet.

101/05/0/135

EXAMPLE 1

Step A: Preparation of 2-(ethylthio)benzoic acid

73.5 g (1.84 mol) of sodium hydroxide was dissolved in 750 mL of ethanol. To this solution at 20 °C, 135 g (0.87 mol) of thiosalicylic acid and an additional 600 mL of ethanol was added. After stirring at room temperature for 1 h, the reaction mixture was cooled to 0 °C and 77 mL (0.97 mol) of ethyl iodide was added dropwise. The reaction mixture was then heated under reflux for 1 h, cooled to 10 °C and 1 N HCl added until the mixture was pH 2. The resulting precipitate was collected by filtration and washed several times with water. The solid was dried to give 148 g of the title compound of Step A. 1 H NMR (CDCl₃) δ 1.40 (t,3H), 3.00 (q,2H), 7.20 (t,1H), 7.38 (d,1H), 7.50 (t,1H), 8.15 (d,1H).

Step B: Preparation of N-(1,1-dimethylethyl)-2-(ethylthio)benzamide

296.4 g (1.63 mol) of the title compound of Step A, 300 mL (4.07 mol) of thionyl chloride and 600 mL of methylene chloride were heated at reflux for 4 h. After standing at room temperature overnight, an additional 25 mL of thionyl chloride was added and the reaction refluxed an additional 3 h. The reaction was concentrated under reduced pressure, chloroform was added, and the mixture was again concentrated to give 316 g of the acid chloride.

A solution of the acid chloride in 550 mL of chloroform was added dropwise to a solution of 377 mL (3.58 mol) of t-butyl amine in 550 mL of chloroform at 0 °C. After the addition was complete, the reaction was heated at 40 °C and then allowed to stand at room temperature overnight. The reaction mixture was poured into water and extracted twice with methylene chloride. The combined organic extracts were washed twice with 1 N HCl, dried (MgSO₄) and concentrated. The crude oil was triturated with hexane to give 284 g of the title compound of Step B as a white solid (a sample prepared in a separate experiment provided material melting at 126-129 °C). An additional 44.6 g was obtained from the filtrate. ¹H NMR (CDCl₃) δ 1.29 (t,3H), 1.48 (s,9H), 2.92 (q,2H), 6.52 (br s, 1H), 7.21-7.40 (m,3H), 7.62 (dd,1H).

Step C: Preparation of N-(1,1-dimethylethyl)-2-(ethylthio)-6-(2-hydroxyethyl)benzamide

20.0 g (84.4 mmol) of the title compound of Step B was dissolved in 250 mL of dry THF and cooled to -45 °C. n-Butyl lithium (116 mL of a 1.6 M solution in hexanes, 186 mmol) was added dropwise to this mixture at -45 °C. The reaction was allowed to warm to 0 °C and kept at this temperature for 30 min. Ethylene oxide was then added rapidly at 0 °C and the reaction was kept below room temperature. After 1 h, saturated ammonium chloride was added and the reaction mixture was extracted twice with ether. The combined organic extracts were dried (Na₂SO₄) and concentrated. The crude oil was triturated with n-butyl chloride to give 9.94 g of the title compound of Step C as a

5

10

15

20

25

30

10

15

20

25

30

35

white solid melting at 113-117 °C. 1 H NMR (Me₂SO- d_6) δ 1.17 (t,3H), 1.32 (s,9H), 2.67 (t,2H), 2.87 (q,2H) 3.55-3.59 (m,2H), 4.62 (t,1H), 7.00-7.21 (m,3H), 7.84 (br s,1H).

Step D: Preparation of N-(1,1-dimethylethyl)-2-(ethylthio)-6-[2-[(methylsulfonyl)oxy]ethyl]benzamide

To a mixture of 16.67 g (59.32 mmol) of the title compound of Step C in 245 mL of pyridine at 0 °C was added dropwise 14 mL (178 mmol) of mesyl chloride at 0 °C. After 1 h at 0 °C, the reaction mixture was poured into ice water and the precipitate collected by filtration. The solid was washed with water and dried to give 15.14 g of the title compound of Step D (a sample prepared in a separate experiment provided material melting at 111-113 °C). 1 H NMR (Me₂SO- d_6) δ 1.20 (t,3H), 1.36 (s,9H), 2.93 (m,5H), 3.11 (s,3H), 4.38 (t,2H), 7.17 (dd,1H), 7.30 (m,2H), 8.00 (br s,1H).

Step E: Preparation of 2-(1,1-dimethylethyl)-8-(ethylthio)-3,4-dihydro-1(2H)isoquinolinone

To a mixture of 5.67 g (50.61 mmol) of potassium *t*-butoxide in 100 mL of dimethylformamide at 0 °C was added a solution of 15.14 g (42.17 mmol) of the title compound of Step D in 100 mL dimethylformamide at 0 °C. The reaction was allowed to warm to room temperature over 1 h and an additional 150 mL of dimethylformamide and 1 g of potassium *t*-butoxide added. After an additional 30 min, the reaction mixture was poured onto ice and 10% HCl was added to adjust the pH to 2. The reaction mixture was extracted three times with ethyl acetate. The combined organic phases were washed three times with water, then saturated aqueous NaCl, dried (MgSO₄) and concentrated to give 8.6 g of the title compound of Step E as an amber oil. ¹H NMR (CDCl₃) δ 1.40 (t,3H), 1.55 (s,9H), 2.88 (m,4H), 3.50 (m,2H), 6.85 (d,1H), 7.18 (d,1H), 7.23 (m,2H).

Step F: Preparation of 5-acetyl-2-(1,1-dimethylethyl)-8-(ethylthio)-3,4-dihydro-1(2H)-isoquinolinone

To a solution of 2.0 g (7.6 mmol) of the title compound of Step E and 32 mL of methylene chloride was added 1.0 g (7.5 mmol) of aluminum chloride. The reaction mixture was heated under reflux for 1 h and cooled to room temperature. A solution of 1.2 g (9.12 mmol) of aluminum chloride and 0.72 g (9.12 mmol) of acetyl chloride in 20 mL of methylene chloride was added and the reaction mixture was refluxed an additional 2 h. The reaction mixture was cooled and 20 mL of 1 N HCl was added dropwise. The phases were separated and the aqueous phase was extracted two more times with methylene chloride. The combined organic phases were dried (MgSO₄) and concentrated to give 2.3 g of an oil. The residue was flash chromatographed on silica gel with ethyl acetate/hexane to give 1.04 g of the title compound of Step F as a white solid (a sample prepared in a separate experiment provided material melting at 109-110 °C).

10

15

20

25

30

35

¹H NMR (Me₂SO- d_6) δ 1.25 (t,3H), 1.45 (s,9H), 2.55 (s,3H), 2.89 (q,2H), 3.00 (t,2H), 3.40 (t,2H), 7.33 (d,1H), 7.86 (d,1H).

28

Step G: Preparation of 5-acetyl-2-(1,1-dimethylethyl)-8-(ethylsulfonyl)-3,4-dihydro-1(2H)-isoquinolinone

To a solution of 2.06 g (3.35 mmol) of Oxone® in 8 mL of water was added a solution of 0.41 g (1.34 mmol) of the title compound of Step F in 3 mL of acetone. The reaction mixture was stirred at room temperature for 1.5 h and then diluted with water and ethyl acetate. The phases were separated and the aqueous phase was extracted again with ethyl acetate. The combined organic phases were dried (MgSO₄) and concentrated to give 0.5 g of the title compound of Step G as a solid (a sample prepared in a separate experiment provided material melting at 139-142 °C). ¹H NMR (Me₂SO- d_6) δ 1.18 (t,3H), 1.47 (s,9H), 2.62 (s,3H), 3.00(t,2H), 3,48 (t,2H), 3.85 (q,2H), 7.97 (d,1H,J=8.26 Hz), 8.08 (d,1H,J=8.26 Hz).

Step H: Preparation of 2-(1,1-dimethylethyl)-8-(ethylsulfonyl)-1,2,3,4-tetrahydro-1-oxo-5-isoquinolinecarboxylic acid

To a 5 °C solution of 0.54 g (13.5 mmol) of sodium hydroxide in 1.25 mL of water was added 0.24 mL (4.65 mmol) of bromine and the reaction mixture was stirred until a clear yellow solution was obtained. To this solution was added 0.5 g (1.48 mmol) of the title compound of Step G dissolved in 1 mL of 1,4-dioxane and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with water and adjusted to pH 2 with concentrated HCl. It was extracted three times with ethyl acetate and the combined organic extracts were dried (MgSO₄) and concentrated to give 0.53 g of the title compound of Step H as an amber oil. 1 H NMR (Me₂SO- 2 G) 3 B 1.18 (t,3H), 1.48 (s,9H), 3.20 (t,2H), 3.51 (t,2H), 3.85 (q,2H), 7.95(d,1H,J=8.26 Hz), 8.06 (d,1H,J=8.26 Hz).

Step I: Preparation of (1-ethyl-1*H*-pyrazol-5-yl) 2-(1,1-dimethylethyl)-8-(ethylsulfonyl)-1,2,3,4-tetrahydro-1-oxo-5-isoquinolinecarboxylate

0.5 g (1.45 mmol) of title compound of Step H and 14 mL of thionyl chloride were combined and heated under reflux for 4 h. The reaction mixture was allowed to cool and was then concentrated. The residue was dissolved in methylene chloride and re-concentrated. The residue was dissolved in 6 mL of chloroform and 0.2 g (1.79 mmol) of 1-ethyl-5-hydroxy-1*H*-pyrazole was added followed by 0.18 g (1.78 mmol) of triethylamine. The reaction mixture was heated at reflux for 1 h and then allowed to stir at room temperature overnight. The reaction mixture was poured into ice and 1 N HCl and extracted three times with methylene chloride. The combined organic extracts were dried (MgSO₄) and concentrated to give 0.5 g of an oil. The residue was flash chromatographed on silica gel with ethyl acetate to give 90 mg of the title compound of Step I as a solid (a sample prepared in a separate experiment provided

10

15

20

25

30

35

material melting at 158-161 °C with apparent decomposition). ^{1}H NMR (Me₂SO- d_{6}) δ 1.20 (t,3H), 1.32 (t,3H), 1.49 (s,9H), 3.25 (m,2H), 3.56 (m,2H), 3.87 (q,2H) 4.09 (q,2H), 6.24 (d,1H), 7.47 (d,1H), 8.09 (d,1H), 8.38 (d,1H).

Step J: Preparation of 2-(1,1-dimethylethyl)-5-[(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)carbonyl]-8-(ethylsulfonyl)-3,4-dihydro-1(2*H*)-isoquinolinone

0.28 g (0.65 mmol) of the title compound of Step I, 3.4 mL of dry methylene chloride, 0.16 mL (1.15 mmol) of triethylamine and one drop of acetone cyanohydrin were combined and stirred at room temperature over the weekend. The reaction mixture was diluted with ethyl acetate and 1 N HCl. The organic phase was then extracted three times with saturated aqueous sodium bicarbonate. The basic aqueous phase was adjusted to pH 2 and extracted four times with methylene chloride. The combined methylene chloride extracts were dried (MgSO₄) and concentrated to give 0.35 g. Trituration with ether/hexane gave 0.15 g of the title compound of Step J, a compound of the invention, as a yellow solid melting at 164-167 °C. 1 H NMR (Me₂SO- d_6) δ 1.20 (t,3H), 1.27 (t,3H), 1.47 (s,9H), 2.82 (t,2H), 3.50 (t,2H), 3.87 (q,2H), 3.92 (q,2H), 7.48 (s,1H), 7.69 (d,1H), 7.97 (d,1H).

EXAMPLE 2

Step A: Preparation of 1-[(2-chloro-2-propenyl)thio]-2,5-dimethylbenzene

To a suspension of potassium carbonate 50.0 g (0.362 mol) in 600 mL of DMF at room temperature was added 50.0 g (0.362 mol) of 2,5-dimethylthiophenol dropwise. The temperature was allowed to rise to 29 °C with continued stirring for an additional 1 h. 40.1 g (0.362 mol) of 2,3-dichloropropene was added dropwise at room temperature and the reaction was allowed to stir overnight. The crude reaction mixture was poured into excess ice/water and the resulting solution was extracted twice with ethyl acetate. The combined organic phase was dried (MgSO₄) and concentrated to give a gold oil 76.1 g of the title compound of Step A which was used in the next step without further purification. 1 H NMR (CDCl₃) δ 2.30 (s,3H), 2.40 (s,3H), 3.64 (s,2H), 5.22 (d,2H), 6.95 (d,1H), 7.08 (d,1H), 7.13 (s,1H).

Step B: Preparation of 2,4,7-trimethylbenzo[b]thiophene

To 230 mL of dimethylaniline at reflux was added dropwise a solution of 50.0 g (0.236 mol) of the title compound of Step A and 200 mL of dimethylaniline. The solution was heated overnight at reflux and then allowed to come to room temperature. The crude reaction mixture was diluted with excess ether and washed with 1N HCl until dimethylaniline could no longer be detected. The ether layer was dried over MgSO₄, filtered and concentrated to yield 38.1 g of the title compound of Step B as a brown oil. The compound was used without further purification in the next reaction. ¹H NMR (CDCl₃) δ 2.30 (s,3H), 2.55 (s,3H), 2.61 (s,3H), 6.95 (d,1H), 7.04 (d, 1H), 7.10 (s,1H).

15

20

25

30

Step C: Preparation of 2,3-dihydro-2,4,7-trimethylbenzo[b]thiophene

A solution of 38.0 g (0.215 mol) of the title compound of step B, 98.0 mL (0.429 mol) of triethylsilane in 280 mL of trifluoroacetic acid was heated overnight at reflux. The crude reaction mixture was concentrated, diluted with excess ether, and washed with saturated sodium bicarbonate until an aqueous test extraction was neutral. The ether phase was dried over MgSO₄, filtered and concentrated to yield an orange oil. Chromatography on silica gel with hexane provided 20.4 g of the title compound of Step C as a pale yellow oil. ¹H NMR (CDCl₃) δ 1.48 (d,3H), 2.20 (s,6H), 2.90 (dd,1H), 3.38(dd,1H), 3.95-4.09 (m,1H), 6.78 (d,1H), 6.83 (d,1H).

10 Step D: Preparation of 5-bromo-2,3-dihydro-2,4,7-trimethylbenzo[b]thiophene

A solution of 10.3 g (58.0 mmol) of the title compound of Step C in 120 mL of dichloromethane was treated at room temperature with 9.3 g (58.0 mmol) of bromine dropwise. The solution was stirred an additional 3 h, diluted with excess ethyl acetate, washed with excess saturated sodium bisulfite solution and dried over MgSO₄. Filtration followed by concentration provided the crude product as a yellow oil. Chromatography on silica gel in hexanes provide 10.6 g of the title compound of Step D as a clear oil. ¹H NMR (CDCl₃) δ 1.46 (d,3H), 2.16 (s,3H), 2.29 (s,3H), 2.95 (dd,1H), 3.40 (dd,1H), 3.93-3.99 (m,1H), 7.15 (s,1H).

Step E: Preparation of 2,3-dihydro-2,4,7-trimethylbenzo[b]thiophene-5-carboxylic acid

To a solution of 15.1 g (58.7 mmol) of the title compound of Step D in THF at -70 °C was added dropwise a solution of n-butyl lithium (24.7 mL of a 2.5 M solution in hexanes, 61.6 mmol). During the addition, the temperature was maintained below -60 °C. The reaction mixture was stirred an additional 30 min at -70 °C and then excess carbon dioxide gas was passed into the solution (15 min). The reaction mixture was allowed to slowly warm to room temperature and stir overnight. The reaction mixture was diluted with excess water, acidified with concentrated HCl to pH 2, and extracted with ethyl acetate several times. The combined organic phase was dried over MgSO₄, filtered and concentrated to provide the crude acid as a green solid. The crude product was suspended in hexanes, collected by filtration, and air dried to yield 8.5 g of the title compound of Step E as a green solid. 1 H NMR (CDCl₃) δ 1.48(d,3H), 2.23(s,3H), 2.51(s,3H), 3.01(dd,1H), 3.47(dd,1H), 3.98-4.03(m,1H), 7.71(s,1H).

Step F: Preparation of 2,3-dihydro-2,4,7-trimethylbenzo[b]thiophene-5-carboxylic acid 1,1-dioxide

To a solution of 38.8 g (56.0 mmol) of Oxone® in 250 mL of water at room temperature was added dropwise a solution of 5.0 g (23.0 mmol) of the title compound of Step E in 50 mL of acetone. To the resulting solution was added portionwise 12.0 g (143 mmol) of sodium bicarbonate. The solution was stirred an additional 1.5 h at room

15

20

25

30

35

temperature. To the solution was added 1N HCl to bring the pH to 3. The solution was extracted with ethyl acetate and the combined organic phase was washed with saturated sodium bisulfite solution, dried over MgSO₄, filtered and concentrated to provide the title compound of Step F as a white solid melting at 186-189 °C. 1 H NMR (CDCl₃) δ 1.56 (d,3H), 2.52 (s,3H), 2.65 (s,3H), 2.82 (dd,1H), 3.40-3.61(m,2H), 7.83 (s,1H).

Step G: Preparation of 1-ethyl-1-H-pyrazol-5-yl 2,3-dihydro-2,4,7-trimethylbenzo[b]thiophene-5-carboxylate 1,1-dioxide

To a solution of 1.0 g (3.94 mmol) of the title compound of Step F in 35 mL of dichloromethane at room temperature was added 0.55 mL (6.30 mmol) of oxalyl chloride and a catalytic amount of dimethylformamide. The resulting solution was heated to reflux for 3 h and then stirred at ambient temperature overnight. The reaction mixture was concentrated *in vacuo*. The crude reaction mass was dissolved in 20 mL of dichloromethane and treated at room temperature successively with 0.89 mL (6.30 mmol) of triethylamine followed by 0.46 g (4.11 mmol) of 1-ethyl-5-hydroxy-1*H*-pyrazole. The reaction mixture was stirred at room temperature overnight. The reaction mixture was diluted with excess ethyl acetate, washed with water and dried over MgSO₄. Filtration followed by concentration afforded the crude product which was chromatographed on silica gel (elution with 1:1 ethyl acetate:hexanes) to afford 0.89 g of the title compound of Step G as a white solid. ¹H NMR (CDCl₃) δ 1.45 (t,3H), 1.58 (d,3H), 2.54 (s,3H), 2.69 (s,3H), 2.85 (dd,1H), 3.47-3.59 (m,2H), 4.10 (q,2H), 6.24 (d,1H), 7.50 (d,1H), 7.86 (s,1H).

Step H: Preparation of (2,3-dihydro-2,4,7-trimethylbenzo[b]thiophene-5-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S*,*S*-dioxide

To a solution of 0.89 g (2.56 mmol) of the title compound of Step G in 15 mL of acetonitrile at room temperature was added 4 drops of acetone cyanohydrin followed by 0.57 mL (4.09 mmol) of triethylamine. The solution was stirred at room temperature overnight, then diluted with excess water, acidified with 1N HCl to pH 3-5 and extracted with ethyl acetate. The organic phase was dried over MgSO₄, filtered and concentrated. The crude product was triturated with a 1:1 mixture of n-butyl chloride:hexanes to yield the title compound of Step H, a compound of the invention, as a white solid melting at 152-157 °C. 1 H NMR (CDCl₃) δ 1.46 (t,3H), 1.57 (d,3H), 2.29 (s,3H), 2.66 (s,3H), 2.80 (dd,1H), 3.44 (dd,1H), 3.50-3.61 (m,1H), 4.08 (q,2H), 7.28 (s,1H), 7.35 (s,1H).

EXAMPLE 3

Step A: Preparation of methyl 4-[(2-ethoxy-2-oxoethyl)thio]-3-nitrobenzoate

0.36 g (9 mmol) of 60% sodium hydride was suspended in anhydrous
dimethylformamide and cooled to 0 °C. After the dropwise addition of 0.93 mL

(8.5 mmol) of ethyl 2-mercaptoacetate, the reaction was warmed to room temperature and stirred for an additional 30 minutes. 1.8 g (8.3 mmol) of methyl 4-chloro-3-

10

15

20

25

nitrobenzoate was added dropwise, keeping the reaction temperature below 10 °C. The reaction mixture was then slowly warmed to room temperature and poured into 150 mL of ice water. The precipitate was stirred vigorously for 20 minutes and then filtered. The solid was dried to give 2.3 g of the title compound of Step A as a yellow solid melting at 74-76 °C. 1 H NMR (CDCl₃) δ 8.88 (d,1H), 8.20 (d,1H), 7.6 (d,1H), 4.23 (q,2H), 3.97 (s,3H), 3.80 (s,2H), 1.28 (t,3H).

Step B: Preparation of methyl 3,4-dihydro-3-oxo-2*H*-1,4-benzothiazine-6-carboxylate

10.0 g (35 mmol) of the title compound of Step A was dissolved in 160 mL of acetic acid and 20 mL of water was added. The solution was heated to 65 °C and 11.7 g (210 mmol) of iron powder was added in small portions. Vigorous stirring was continued for 10 minutes after the end of the iron addition, after which the reaction was filtered through Celite[®]. The solids were washed with acetic acid and the combined filtrates concentrated. The crude mixture was partitioned between ethyl acetate and sodium bicarbonate solution. The layers were separated and the organic phase was extracted three times with more ethyl acetate. The combined ethyl acetate layers were washed with sodium bicarbonate solution and saturated aqueous NaCl, dried over magnesium sulfate, and concentrated to yield 7.0 g of the title compound of Step B as a white solid melting at 178-180 °C. ¹H NMR (CDCl₃) δ 8.68 (br s,1H), 7.67 (d,1H), 7.57 (s,1H), 7.38 (d,1H), 3.93 (s,3H), 3.49 (s,2H).

Step C: Preparation of methyl 4-ethyl-3,4-dihydro-3-oxo-2*H*-1,4-benzothiazine-6-carboxylate

10.0 g (45 mmol) of the title compound of Step B was dissolved in 50 mL of anhydrous dimethylformamide. 6.0 g (54 mmol) of potassium *t*-butoxide was added and the reaction was stirred for 15 minutes. 4.0 mL (50 mmol) of ethyl iodide was added dropwise and the reaction was stirred for 2 h. The reaction mixture was poured into 350 mL of cold water and extracted three times with diethyl ether. The combined ether extracts were washed three times with water, twice with saturated aqueous NaCl, and were then dried over magnesium sulfate and concentrated to a crude oil.

30 Chromatography with ethyl acetate and hexane yielded 3.7 g of the title compound of Step C. ¹H NMR (CDCl₃) δ 7.80 (s,1H), 7.70 (d,1H), 7.42 (d,1H), 4.09 (q,2H), 3.94 (s,3H), 3.41 (s,2H), 1.30 (t,3H).

Step D: Preparation of methyl 4-ethyl-3,4-dihydro-3-oxo-2*H*-1,4-benzothiazine-6-carboxylate 1,1-dioxide

To a mixture of 2.0 g (8.0 mmol) of the title compound of Step C in 50 mL of methylene chloride was added 5.0 mL (24 mmol) of 32% peracetic acid dropwise over a period of 20 minutes. The reaction mixture was stirred at room temperature for 48 h, diluted further with methylene chloride, washed once with water, twice with sodium

15

sulfite solution, and once with sodium bicarbonate solution. The organic phase was dried over magnesium sulfate and concentrated to afford 2.05 g of the title compound of Step D as a yellow solid. ^{1}H NMR (CDCl₃) δ 8.05 (d,1H), 7.99 (m,2H), 4.26 (s,2H), 4.18 (q,2H), 4.00 (s,3H), 1.37 (t,3H).

5 <u>Step E:</u> <u>Preparation of 4-ethyl-3,4-dihydro-3-oxo-2*H*-1,4-benzothiazine-6-carboxylic acid 1,1-dioxide</u>

To a mixture of 2.05 g (7.2 mmol) of the title compound of Step D in 15 mL of methanol was added dropwise a solution of 1.2 g (29 mmol) of sodium hydroxide in 5 mL of water. The reaction mixture was stirred at room temperature for 1 h, diluted with water, and cooled in an ice/water bath. Slow acidification with 1N HCl to pH 2 yielded a precipitate which was isolated by filtration to give 1.45 g of the title compound of Step E as a white solid. 1 H NMR (Me₂SO- d_6) δ 13.8 (s,1H), 8.02 (d,1H), 7.96 (d,1H), 7.91 (d,1H), 4.91 (s,2H), 4.11 (q,2H), 1.20 (t,3H).

Step F: Preparation of 3-oxo-1-cyclohexen-1-yl 4-ethyl-3,4-dihydro-3-oxo-2*H*-1,4-benzothiazine-6-carboxylate 1,1-dioxide

To a mixture of 500 mg (1.86 mmol) of the title compound of Step E and 570 mg (2.23 mmol) of N-methyl-2-chloropyridinium iodide in 2 mL of methylene chloride was added 310 μL (2.25 mmol) of triethylamine and the reaction mixture was stirred for 15 minutes. A solution of 212 mg (1.9 mmol) of 1,3-cyclohexanedione and 310 μL (2.25 mmol) of triethylamine in 2 mL of methylene chloride was then added dropwise. After stirring overnight at room temperature, the reaction mixture was concentrated and the crude residue was chromatographed in ethyl acetate and hexane to give 210 mg of the title compound of Step F as a white solid. ¹H NMR (CDCl₃) δ 8.1 (d,1H), 8.02 (s,1H), 8.0 (d,1H), 6.08 (s,1H), 4.28 (s,2H), 4.2 (q,2H), 2.7 (t,2H), 2.5 (t,2H), 2.2 (m,2H), 1.38 (t,3H).

Step G: Preparation of 4-ethyl-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]2H-1,4-benzothiazin-3(4H)-one 1,1-dioxide

80 mg (0.22 mmol) of the title compound of Step F, $56 \,\mu\text{L}$ (0.40 mmol) of triethylamine, and 1 drop of acetone cyanohydrin were dissolved in 6 mL of dry acetonitrile and stirred for 12 h. A catalytic crystal of potassium cyanide was added to the reaction mixture and stirring was continued for another 24 h. The reaction mixture was then concentrated and the residue was dissolved in water. The aqueous mixture was washed once with diethyl ether, acidified to pH 2 with 1N HCl, and extracted twice with ethyl acetate. The combined ethyl acetate extracts were dried over magnesium sulfate and concentrated to yield 60 mg of the title compound of Step G, a compound of the invention, as an oil which crystallized to a solid melting at 158-165 °C. ^{1}H NMR (CDCl₃) δ 7.96 (d,1H), 7.37 (s,1H), 7.33 (d,1H), 4.26 (s,2H), 4.12 (q,2H), 2.8 (br s,2H), 2.5 (br s,2H), 2.1 (m,2H), 1.36 (t,3H).

30

PC1/US96/13347

34

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 30 can be prepared. The following abbreviations are used in the Tables which follow: t = tertiary, n = normal, i = iso, Me = methyl, Et = ethyl, Pr = propyl, i-Pr = isopropyl, Bu = butyl, Ph = phenyl, OMe = methoxy, OEt = ethoxy, CN = cyano, $NO_2 = nitro$, CHO = formyl, $CO_2Et = ethoxycarbonyl$, $SO_2Me = methylsulfonyl$, $SO_2Et = ethylsulfonyl$, and $SO_2Ph = phenylsulfonyl$.

Table 1

<u>R</u> 1	<u>R</u> ²	<u>R⁹</u>	<u>R</u> 1	<u>R²</u>	<u>R</u> 9	R1	R ²	<u>R</u> 9
SO ₂ Me	H	Н	SO ₂ Et	H	t-Bu	SO ₂ NMe ₂	H	Me
SO ₂ Me	H	Me	SO ₂ Et	Н	Me	SO ₂ NMe ₂	Н	Et
SO ₂ Me	H	Et	SO ₂ Et	H	CH ₂ CH ₂ OCH ₃	SO ₂ NMe ₂	Me	t-Bu
SO ₂ Me	H	<i>t-</i> Bu	SO ₂ Et	Me	t-Bu	SO ₂ NMe ₂	Me	Me
SO ₂ Me	Me	t-Bu	SO ₂ Et	Me	Me	SO ₂ NMe ₂	Me	Et
SO ₂ Me	Me	Me	SO ₂ Et	Me	Et	SO ₂ NMe ₂	Cl	<i>t</i> -Bu
SO ₂ Me	Me	Et	SO ₂ Et	Cl	t-Bu	SO ₂ NMe ₂	Cl	Et
SO ₂ Me	Cl	H	SO ₂ Et	Cl	Me	SO ₂ Et	Н	OMe
SO ₂ Me	Cl	Me	SO ₂ Et	Cl	Et	SO ₂ Et	Me	OMe
SO ₂ Me	Cl	Et	SO ₂ NMe ₂	Н	н			

Table 2

<u>R</u>1 \mathbb{R}^2 <u>R</u>9 <u>R¹</u> $\underline{\mathtt{R}^2}$ <u>R</u>9 <u>R</u>2 <u>R</u>9 SO_2Me SO₂Et Н Н Me Me Me t-Bu

SO ₂ Me	Н	Et	SO ₂ Et	H	Et	SO ₂ NMe ₂	Me	Me
SO ₂ Me	H	t-Bu	SO ₂ Et	Me	<i>t</i> -Bu	SO ₂ NMe ₂	Me	Et
SO ₂ Me	Me	Н	SO ₂ Et	Me	Me	SO ₂ NMe ₂	Cl	t-Bu
SO ₂ Me	Me	Me	SO ₂ Et	Me	Et	SO ₂ NMe ₂	Cl	Et
SO ₂ Me	Me	Et	SO ₂ Et	Cl	<i>t-</i> Bu	SO ₂ Et	Н	OMe
SO ₂ Me	Cl	Н	SO ₂ Et	Cl	Me	SO ₂ Et	Me	OMe
SO ₂ Me	Cl	Me	SO ₂ Et	Cl	Et	SO ₂ -n-Pr	Н	Me
SO ₂ Me	Cl	Et	SO ₂ NMe ₂	H	t-Bu	SO ₂ -n-Pr	Н	t-Bu
SO ₂ Et	Н	Н	SO ₂ NMe ₂	H	Et			

<u>R</u> 1	<u>R²</u>	<u>R</u> 9	<u>R</u> 1	<u>R²</u>	<u>R</u> 9	<u>R</u> 1	<u>R²</u>	<u>R⁹</u>
SO ₂ Me	H	Н	SO ₂ Me	Me	E t	SO ₂ Et	Cl	t-Bu
SO ₂ Me	H	Me	SO ₂ Me	Cl	t-Bu	SO ₂ NMe ₂	н	t-Bu
SO ₂ Me	H	Et	SO ₂ Me	Cl	Me	SO ₂ NMe ₂	Me	t-Bu
SO ₂ Me	H	t-Bu	SO ₂ Me	Cl	Et	SO ₂ NMe ₂	Cl ·	t-Bu
SO ₂ Me	Me	t-Bu	SO ₂ Et	Н	<i>t-</i> Bu	SO ₂ Et	Н	OMe
SO ₂ Me	Me	Me	SO ₂ Et	Me	<i>t-</i> Bu	SO ₂ Et	Me	OMe

Table 4

<u>R1</u>	<u>R</u> ²	<u>R</u> 1	<u>R</u> ²	<u>R1</u>	<u>R</u> ²
SO ₂ Me	H	SO ₂ Et	H	SO ₂ NMe ₂	Н
SO ₂ Me	Me	SO ₂ Et	Me	SO ₂ NMe ₂	Me

<u>R1</u>	<u>R²</u>	<u>R</u> 1	<u>R²</u>	<u>R</u> 1	<u>R²</u>	<u>R</u> 1	<u>R²</u>
SO ₂ Me	H	SO ₂ Et	Н	SO ₂ Et	Cl	SO ₂ NMe ₂	Me
SO ₂ Me	Me	SO ₂ Et	Me	SO ₂ NMe ₂	Н	SO ₂ NMe ₂	Cl
SO ₂ Me	Cl						

Table 6

Table 7

<u>R</u>1 <u>R</u>1 $\underline{R^1}$ SO_2NH_2 SO₂NH-n-Pr $SO_2N(n-Pr)_2$ SO_2NEt_2 $SO_2NHCH_2CH_2Cl$ $SO_2NHCH_2CH=C(CH_3)_2$ $SO_2NHCH_2CF_3$ SO₂NHOMe SO₂NHOEt SO_2 NHCH $_2$ C \equiv CH $SO_2NHCH_2C_6H_5$ SO₂NHC₆H₄-2-Me $SO_2NHC_6H_5$ $SO_2NHC_6H_4$ -3-OMe SO₂NHC₆H₄-3-OCF₃

SO ₂ NHC ₆ H ₄ -3-CF ₃	SO ₂ NHC ₆ H ₄ -3-CN	SO2NHC6H4-3-NO2
SO ₂ NHC ₆ H ₃ -2,4-diCl	SO ₂ -azetidinyl	SO ₂ -pyrrolidinyl
SO ₂ -piperdinyl	SO ₂ -2,6-dimethylmorpholinyl	SO ₂ -i-Pr
SO ₂ -t-Bu	SO ₂ -n-C ₅ H ₁₁	SO ₂ -n-C ₆ H ₁₃
SO ₂ CH ₂ CH ₂ CF ₃	SO ₂ CH ₂ C≡CH	SO ₂ -cyclopropyl
SO ₂ -cyclohexyl	SO ₂ C ₆ H ₅	SO ₂ C ₆ H ₄ -2-Me
$SO_2C_6H_4$ -3-CF ₃	SO ₂ C ₆ H ₄ -2-OMe	SO ₂ C ₆ H ₄ -3-OCF ₃
$SO_2C_6H_3$ -2,4-diCl	SO ₂ C ₆ H ₄ -3-CN	$SO_2C_6H_4$ -3- NO_2
SO ₂ NHMe	SO ₂ NHEt	

Table 9

<u>R</u> 5	<u>R</u> 5	<u>R</u> 5	<u>R</u> 5
Me	SO ₂ C ₆ H ₅	CONEt ₂	CO ₂ Me
CF ₃	$C(=0)C_6H_4-3-CN$	SO ₂ CF ₃	CONHE
C(=0)CH ₃	Et	$C(=0)C_6H_4-2-CH_3$	SO ₂ Me

CO ₂ Et CONMe ₂	CH ₂ OMe C(=0)CH ₂ CH ₃	SO ₂ C ₆ H ₄ -4-CH ₃	C(=0)C ₆ H ₅
SO ₂ Et SO ₂ -n-Pr	CONHMe	СНО	C(=0)C ₆ H ₄ -3-CF ₃ SO ₂ C ₆ H ₄ -4-CF ₃

Table 10

$$\frac{R^6}{Me}$$

Br

Table 11

Me O HO N

$$r$$
-Bu

 $\frac{R^7}{n\text{-Pr}}$
 $\frac{R^7}{\text{CF}_3}$

CN

F CI

<u>R</u>7

Et

<u>R</u>7

Me

Table 12

Me
$$R^8$$
 R^8
 R^8

 $\begin{array}{ccc} \underline{R^8} & & \underline{R^8} \\ \text{Me} & & \text{Et} \\ \text{CF}_3 & & \text{OMe} \end{array}$

Table 13

Me O HO N

$$r$$
-Bu R^8
 n -Pr r
 r -Bu r -Bu r -Bu r
 r -S r

 $\begin{array}{ccc} \underline{R^8} & & \underline{R^8} \\ \text{Me} & & \text{Et} \\ \text{CF}_3 & & \text{OMe} \end{array}$

Table 14

cyclohexyl $CO_2Me \\ CH_2C_6H_5 \\ C_6H_4\text{-2-OMe}$

<u>R</u>9

Table 15

<u>R</u> 1	<u>R</u> ²	<u>R</u> 6	R1	<u>R</u> 2	<u>R</u> 6	<u>R</u> 1	<u>R²</u>	ъб
Cl	Cl	Et	OCH ₃					<u>R</u> 6
		Lt	OCH3	OCH_3	Et	CH ₃	CH_3	Me
CH ₃	Cl	Et	OCH ₂ CH ₃	H	Et	CH ₃	CH ₃	n-propyl
CH ₃	CH ₃	Et	CH ₃	H	Et	СН3	CH ₃	t-butyl
CF ₃	Н	Et	CH ₃ SO ₂	H	Et	CH ₃	н	Me
n-butyl	H	Et	Н	Н	Et	Cı	Cl	Me
CI-CH ₂ CH ₂	H	Et	OCF ₃	Н	Et	CH ₃	Н	Me
F	F	Et	F	Н	Et	CH ₃	CH ₃	Ph
CH ₃	CH ₃	CF ₃	CH ₃	CH ₃	i-propyl	Cing	Cirig	r II
CH ₃	CH ₃	_	3	3	ı-brobăi	1		
C113	C113	CF ₂ H						

Table 16

$$OH \longrightarrow SO_2 \longrightarrow CH_3$$

<u>R1</u>	<u>R</u> ²	<u>R</u> 1	<u>R</u> ²	<u>R1</u>	<u>R²</u>	\mathbb{R}^{1}	R ²
Cl	Н	СН3	CH ₃	F	F	OCH ₂ CH ₃	H
H	Cl	CH ₃	Н	Et	Н	OCH ₂ CH ₃	Cl
OCH ₃	OCH ₃	Cl	Cl	n-propyl	H	н	Н

 $\underline{\mathbf{R^2}}$

Н

Н

 CH_3

41

			K.	-`				
<u>R</u> 1	<u>R</u> ²	<u>R</u> 6	<u>R</u> 1	<u>R</u> 2	<u>R</u> 6	<u>R</u> 1	<u>R²</u>	<u>R</u> 6
Cl	Cl	Et	осн ₃	OCH ₃	Et	Cl	Cl	CH ₃
CH ₃	Cl	Et	OCH ₂ CH ₃	Н	Et	осн ₃	OCH ₃	CH ₃
CH ₃	CH ₃	Et	CH ₃	Н	Et	СН3	CH ₃	Ph
CF ₃	Н	Et	Н	Н	Et	CH ₃ SO ₂	Н	Et
n-butyl	Н	Et	OCF ₃	Н	Et	CH ₃ SO ₂	Н	CH ₃
CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	<i>i</i> -propyl	Н	OCH ₃	CH ₃
F	F .	СН3	осн ₃	Н	CH ₃	СН3	н	Ph
H ·	CH_3SO_2	Et	СН3	CH ₃	t-butyl	NO ₂	Н	Et
CH ₃	CH ₃	n-butyl	NO ₂	Н	CH ₃	_		

Table 19

<u>R</u>1

CH₃

 $\underline{\mathbb{R}^2}$

Н

CH ₃	CH ₃	осн ₃	OCH ₃	CF ₃	Ħ	OEt	Н
Cl	H	F	F	NO ₂	Н	SO ₂ N(CH ₃) ₂	Н
Cl	Cl	F	Н	Et	H	CICH ₂ CH ₂	Н
$CH_3CH_2SO_2$	H	CF ₂ H	H	CH ₂ F	H	OCF ₃	Н

<u>R</u> 1	<u>R²</u>	<u>R</u> 1	<u>R</u> ²	<u>R</u> 1	<u>R²</u>	<u>R1</u>	<u>R</u> ²
CH ₃	CH ₃	Et	H	Cl	Cl	OCH ₃	Н
CH ₃	H	OCH ₃	OCH ₃	F	Н	NO ₂	H
CH ₃	Cl	CH ₃ SO ₂	Н	F	F	CF ₃	Н
OEt	H	Н	H	Н	Cl	Н	СН3

Table 21

$$\begin{array}{c|c}
O & R^1 \\
\hline
N & OH & CH_3 \\
R^6 & R^2 & CH_3
\end{array}$$

<u>R</u> 1	<u>R²</u>	<u>R</u> 6	<u>R</u> 1	<u>R</u> ²	<u>R</u> 6	<u>R¹</u>	<u>R</u> ²	<u>R</u> 6
CH ₃	CH ₃	Et	осн ₃	CH ₃	Et	F	Н	Et
Cl	Cl	Et	осн ₃	Н	Et	F	F	CH ₃
CH ₃	CH ₃	CH ₃	осн ₃	OCH ₃	Et	CH ₃ SO ₂	Н	Et
CH ₃	CH ₃	n-propyl	СН3	CH ₃	t-butyl	СН3	Н	Et

<u>R⁵</u>	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6
CH ₃	Et	СH ₃ ОСН ₂	Et	CH ₃ SO ₂	Et	benzoyl	Et
CH_2CH_3	Et	CH ₃ OCH ₂ CH ₂	Et	CH ₃ CH ₂ SO ₂	Et	PhSO ₂	Et
CH(O)	Et	(Me) ₂ NC(O)	Et	CH ₃ C(O)	Et	CH ₃ OC(O)	Et
CH ₃	CH ₃	CH ₃ SO ₂	CH ₃	benzoyl	CH ₃	PhSO ₂	CH ₃

Table 23 OCH3 OR5 SO2

<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6
CH ₃	Et	CH ₃ OCH ₂	Et	benzoyl	Me
Et	Et	СH ₃ ОСН ₂	Me	benzoyl	Et
CHO	Et	CH ₃ OCH ₂ CH ₂	Et	CH ₃ SO ₂	Me
CH ₃	CH ₃	CH ₃ OCH ₂ CH ₂	Me	CH ₃ SO ₂	Et
PhSO ₂	CH ₃	PhSO ₂	Et	EtSO ₂	Et.

<u>R¹²</u>	<u>R¹²</u> .	<u>R¹²</u>	R ¹²
CH ₃	CH ₃ OCH ₂	CH ₃ SO ₂	CH ₃ OC=O
Et	CH ₃ OCH ₂ CH ₂	EtSO ₂	(CH ₃) ₂ NC=O
n-Pr	CH ₃ C=O	benzoyl	PhSO ₂

$$R_6$$
 R_8
 R_6
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

<u>R</u> 6	<u>R</u> 8	<u>R</u> 6	<u>R</u> 8	<u>R</u> 6	<u>R</u> 8	R ⁶	R ⁸
Et	CH ₃	Et	Cl	Et	n-propyl	t-butyl	H
Et	Н	Et	OCH ₃	Me	OCH ₃	t-butyl	CH ₃
Me	Н	Me	Me	n-propyl	СН3	n-butyl	Н

<u>R</u> ⁴	g	<u>R</u> 8	<u>R</u> ⁴	д	<u>R</u> 8
Н	2	Н	н	2	осн3
H	2	CH ₃	CH ₃	2	осн ₃
CH ₃	2	Н	CH ₃	2	OEt
CH ₃	2	CH ₃	н	2	OEt

Table 30

$$R^2$$
 R^9
 R^1
 R^0

		-
<u>R</u> 1	<u>R</u> ²	<u>R</u> 9
Н	Н	Me
Me	H	Me
H	Me	Me
Me	Me	Me
Н	Н	Et
Н	Н	t-Bu
Cl	Cl	Et

PC 1/US96/13347

46

Me Me Et Me Me i-Bu

Formulation/Utility

5

10

15

20

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

		Weight Percent	
	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0–94	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40–95	0–15
Dusts Granules and Pellets	1–25 0.01–99	70–99 5–99.99	0–5 0–15
High Strength Compositions	90–99	0–10	0–2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp.,

10

15

20

25

30

35

Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147-48, *Perry's Chemical Engineer's Handbook*, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-E.

	Example A	
5	High Strength Concentrate	
	Compound 20	98.5%
	silica aerogel	0.5%
	synthetic amorphous fine silica	1.0%.
	Example B	
10	Wettable Powder	
	Compound 22	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
15	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
	Compound 20	10.0%
	attapulgite granules (low volatile matter,	
20	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.
	Example D	
	Extruded Pellet	
	Compound 22	25.0%
	anhydrous sodium sulfate	10.0%
25	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain,

30

10

15

20

25

30

35

pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate. bensulfuron-methyl, bensulide, bentazone, bifenox, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butylate, chlomethoxyfen, chloramben, chlorbromuron. chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1Himidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC. endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethyl α ,2-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1*H*-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate (F8426), fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, fluridone, flurochloridone, fluroxypyr, fomesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox (AC 299 263), imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium,

imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, isoxaben,

isoxaflutole (RPA 201772), lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methyl [[2chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4-a]pyridazin-1vlidene)amino]phenyl]thioacetate (KIH 9201), methylarsonic acid and its calcium, 5 monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4-carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, 10 napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon, 3-oxetanyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoate (CGA 277476), oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, 15 propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyrithiobac, pyrithiobac-sodium, quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl, TCA, TCA-sodium, tebuthiuron,

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane,

terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390),

thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron,

trifluralin, triflusulfuron-methyl, and vernolate.

Preferred for better control of undesired vegetation (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a herbicide selected from the group atrazine, chlorimuron-ethyl, cyanazine, glyphosate (and its isopropylammonium, sesquisodium and trimesium salts), imazaquin (and its ammonium salt), imazethapyr (and its ammonium salt), nicosulfuron, primisulfuron-methyl, rimsulfuron and thifensulfuron-methyl. Specifically preferred mixtures (compound numbers refer to compounds in Index Tables A-E) are selected from the group: compound 1 and atrazine; compound 1 and chlorimuron-ethyl; compound 1 and cyanazine; compound 1 and glyphosate; compound 1 and imazaquin; compound 1 and imazethapyr; compound 1 and nicosulfuron; compound 1 and primisulfuron-methyl; compound 1 and rimsulfuron; compound 1 and

20

25

30

thifensulfuron-methyl; compound 20 and atrazine; compound 20 and chlorimuron-ethyl; compound 20 and cyanazine; compound 20 and glyphosate; compound 20 and imazaquin; compound 20 and imazethapyr; compound 20 and nicosulfuron; compound 20 and primisulfuron-methyl; compound 20 and rimsulfuron; compound 20 and thifensulfuron-methyl; compound 21 and atrazine; compound 21 and chlorimuron-ethyl; 5 compound 21 and cyanazine; compound 21 and glyphosate; compound 21 and imazaquin; compound 21 and imazethapyr; compound 21 and nicosulfuron; compound 21 and primisulfuron-methyl; compound 21 and rimsulfuron; compound 21 and thifensulfuron-methyl; compound 22 and atrazine; compound 22 and chlorimuron-ethyl; 10 compound 22 and cyanazine; compound 22 and glyphosate; compound 22 and imazaquin; compound 22 and imazethapyr; compound 22 and nicosulfuron; compound 22 and primisulfuron-methyl; compound 22 and rimsulfuron; compound 22 and thifensulfuron-methyl; compound 41 and atrazine; compound 41 and chlorimuron-ethyl; compound 41 and cyanazine; compound 41 and glyphosate; compound 41 and 15 imazaquin; compound 41 and imazethapyr; compound 41 and nicosulfuron; compound 41 and primisulfuron-methyl; compound 41 and rimsulfuron; and compound 41 and thifensulfuron-methyl.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.004 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-E for compound descriptions. The following abbreviations are used in the Index Tables which follow: t = tertiary, n = normal, i = iso, Me = methyl, Et = ethyl, Pr = propyl, Bu = butyl, Ph = phenyl, OMe = methoxy, MeSO₂ = methylsulfonyl, EtSO₂ = ethylsulfonyl, PhSO₂ = phenylsulfonyl, and PhC(O) = benzoyl. The abbreviation "Ex" stands for

PhSO₂ = phenylsulfonyl, and PhC(O) = benzoyl. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

20

INDEX TABLE A

$$R^{1}$$
 R^{3}
 R^{4a}
 R^{4b}

wherein R^{2a} is H or R^2 and R^{4a} and R^{4b} are independently H or R^4

Cmpd No.	<u>A</u>	<u>Y</u>	<u>z</u>	<u>R</u> 1	R ^{2a}	\mathbb{R}^3	R ^{4a}	R ^{4b}	m.p. (°C)
1 (Ex. 3)	-C(=O)-NEt-	CH ₂	- S(O) ₂	H	H	ОН	H	H	158-165
2	-СН ₂ -	CHMe	$S(O)_2$	Me	Me	ОН	H	Н	209-214
3	-(CH ₂) ₃ -	CH ₂	$S(O)_2$	Me	Me	ОН	Н	Н	160-166
4	-C(=O)-N(<i>i</i> -Bu)-	CH ₂	$S(O)_2$	Н	Н	ОН	H	Н	
5	-(CH ₂) ₃ -	CH ₂	$S(O)_2$	Me	Me	ОН	Me	Ме	oil*
6	-CH ₂ -NEt-	CH ₂	$S(O)_2$	Н	Н	OH			137-138
7	-C(=O)-NMe-	CH ₂	_				H	H	158-161
			S(O) ₂	H	H	OH	H	Н	185-195
8	-CH ₂ -NMe-	CH ₂	$S(O)_2$	H	H	OH	Н	H	143-149
9	-СНМе-	CH ₂	$S(O)_2$	Me	Me	OH	Me	Me	156-160
10	-CHMe-	СНМе	S(O) ₂	Me	Me	ОН	Н	H	170-178
11	-СНМе-	СНМе	$S(O)_2$	Me	Me	ОН	Me	Me	84-97
12	-(CH ₂) ₂ -CH(OMe)-	CH ₂	S(O) ₂	Me	Me	ОН	Н	Н	82-101
13	-CHMe-	CH ₂	S(O) ₂	Me	Me	ОН	Н	Н	189-193
14	-CH(t-Bu)-	CH ₂	$S(O)_2$	Me	Me	ОН	Н	Н	87-92
15	-CH(<i>t</i> -Bu)-	CH ₂	$S(O)_2$	Me	Me	ОН	Me	Me	
16	-(CH ₂) ₂ -CH(OMe)-	CH ₂	$S(O)_2$						175-185
	Total Total Control	C112	3(0)2	Me	Me	OH	Me	Me	78-84

^{*}See Index Table E for ¹H NMR data.

INDEX TABLE B

Cmpd No.	A	<u>Y</u>	<u>Z</u>	<u>R</u> 1	<u>R³</u>	m.p. (°C)
17	-CH ₂ -CMe ₂ -	CH ₂	S(O) ₂	Н	OH	foam*
18	-CH ₂ -CMe ₂ -	CH ₂	S(O) ₂	Cl	OH	foam*

*See Index Table E for ¹H NMR data.

5

INDEX TABLE C

$$Z$$
 R^{1}
 R^{5}
 R^{5}
 R^{6}
 R^{7}

wherein R^{2a} is H or R^2

					_				
Cmpd No.	<u>A</u>	Y	<u>Z</u>	<u>R ¹</u>	R^{2a}	<u>R</u> 5	<u>R</u> 6	<u>R</u> 7	m.p. (°C)
19	-CH ₂ -	CMe ₂	0	Me	Me	H	Et	H	124-129
20 (Ex. 2)	-CH ₂ -	СНМе	S(O) ₂	Me	Me	Н	Et	H	152-157
21	-(CH ₂) ₃ -	CH ₂	S(O) ₂	Me	Me	Н	Et	H	148-153
22	-CH ₂ -	СНМе	S(O) ₂	Me	Me	H	Me	Н	208-209
23	-CH ₂ -	CMe ₂	0	Me	Me	Н	Me	H	168-171
24	-C(=O)-NEt-	CH ₂	S(O) ₂	H	Н	Н	Et	H	170-185
25	-CHMe-	CH ₂	$S(O)_2$	Me	Me	H	Me	H	226-232
26	-CHMe-	CH ₂	S(O) ₂	Me	Me	Н	Et	H	109-124
27	-CHMe-	СНМе	S(O) ₂	Me	Me	Н	Et	Н	94-104
28	-CHMe-	CHMe	S(O) ₂	Me	Me	Н	Me	H	139-147
29	-CHMe-	CH ₂	S(O) ₂	Me	Me	$PhSO_2$	Et	Н	69-76
30	-CHMe-	CH ₂	S(O) ₂	Me	Me	PhC(O)	Et	H	oil*

31	-(CH ₂) ₂ -CH(OMe)-	CH ₂	S(O) ₂	Me	Me	H	Et	Н	159-161
32	-CH(t-Bu)-	CH ₂	S(O) ₂	Me	Me	Н	Et	H	191-197
33	-СНМе-	CH ₂	S(O) ₂	Me	Me	MeSO ₂	Et	Н	178-180
34	-CH(t-Bu)-	CH ₂	S(O) ₂	Me	Me	н	Me	Н	>200*
35	-(CH ₂) ₂ -CH(OMe)-	CH ₂	S(O) ₂	Me	Me	Н	Me	н	53-60

^{*}See Index Table E for ¹H NMR data.

INDEX TABLE D

$$R^1$$
 Z
 $Y-A$
 Q
 R^5Q
 R^6
 R^6

Cmpd No.	A	Y	<u>Z</u>	<u>R¹</u>	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 7	m.p. (°C)
36	-(CH ₂) ₂ -	NMe	C(=O)	EtSO ₂	Н	Et	Н	195-197
37	-(CH ₂) ₂ -	NMe	C(=O)	MeSO ₂	H	Et	Н	213-218
38ª	-СH ₂ -	0	C(=O)	EtSO ₂	Н	Et	Н	gum*
39	-СH ₂ -	N(t-Bu)	C(=O)	n -PrSO $_2$	Н	Et	Н	193-199
40	-CH ₂ -	NMe	C(=O)	n-PrSO ₂	Н	Et	Н	77-85
41 (Ex. 1)	-(CH ₂) ₂ -	N(t-Bu)	C(=O)	EtSO ₂	Н	Et	Н	164-167
42	-(CH ₂) ₂ -	NH	C(=O)	EtSO ₂	Н	Et	Н	211-214
43	-(CH ₂) ₂ -	NMe	C(=O)	EtSO ₂	H	Me	Н	172-174
44	-(CH ₂) ₂ -	N(t-Bu)	C(=O)	EtSO ₂	Н	Me	Н	175-177

^a Compound contains approximately 43% by weight of 7-(ethylsulfonyl)-1,3-dihydro-1-oxo-4-isobenzofurancarboxylic acid.

10

INDEX TABLE E

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
4	δ 0.94 (d,6H), 2.05 (m,1H), 2.11 (m,2H), 2.51 (t,2H), 2.82 (t,2H), 3.96
	(d,2H), 4.26 (s,2H), 7.35 (s,1H), 7.35 (d,1H), 7.98 (d,1H).
17	δ 1.4 (s,6H), 1.9-2.1 (m,2H), 2.3-2.5 (m,4H), 2.6 (t,2H), 2.75 (br t,1H),
	3.3-3.4 (m,2H), 7.5-7.7 (m,3H), 8.4 (br s,1H).
18	δ 1.65 (s,6H), 2.0-2.1 (m,2H), 2.3-2.6 (m,4H), 2.6 (t,J=6.9 Hz,1H), 2.8
	(t,J=6.3 Hz,1H), 3.2-3.4 (m,2H), 7.6-7.7 (m,2H) (acidic hydrogen not
	observed).

^{*}See Index Table E for ¹H NMR data.

30	δ 1.32 (d,J=7.24 Hz,3H), 1.47 (t,J=7.24 Hz,3H), 2.22 (s,3H), 2.52 (s,3H),
	3.10 (d,J=13.25 Hz,1H), 3.33 (dd,J=13.25, 8.07 Hz,1H), 4.06
	(q,J=7.24 Hz,2H), 7.14 (s,1H), 7.50-7.55 (m,2H), 7.68-7.74 (m,1H), 7.85
	(s,1H), 7.89-7.95 (m,2H).
34	δ 1.32 (s,9H), 2.31 (s,3H), 2.63 (s,3H), 3.09 (dd,J=16.20, 10.02 Hz,1H),
	3.23 (dd,J=16.2, 8.18 Hz,1H), 3.39 (dd,J=10.02, 8.18 Hz,1H), 3.72
	(s,3H), 7.25 (s,1H), 7.34 (s,1H).
38	(Me_2SO-d_6) δ 1.13 (t,J=7.5 Hz,3H), 1.29 (t,J=7.2 Hz,3H), 3.74
	(q,J=7.5 Hz,2H), 4.03 (q,J=7.5 Hz,2H), 5.76 (s,1H), 7.80 (s,1H), 8.22
	(d,J=7.8 Hz,1H), 8.42 (d,J=7.8 Hz,1H).

^a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (br s)-broad singlet, (br t)-broad triplet.

5

10

15

BIOLOGICAL EXAMPLES OF THE INVENTION TEST A

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant.

At the same time, these crop and weed species were also treated with

postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

TABLE A	COMPOUND				TABLE A	(IPOU	ND	
Rate 2000 g/ha	2	19	20	38	Rate 2000 g/ha	2	19	20	38
POSTEMERGENCE					PREEMERGENCE				
Barley	9	0	7	0	Barley	4	0	4	0
Barnyardgrass	9	9	9	9	Barnyardgrass	10	0	10	1
Bedstraw	9	9	9	9	Bedstraw	8	0	9	2
Blackgrass	9	0	9	1	Blackgrass	7	0	6	0
Chickweed	9	9	9	8	Chickweed	9	0	9	9
Cocklebur	9	9	9	6	Cocklebur	8	0	7	0
Corn	9	7	9	0	Corn	2	0	3	2
Cotton	10	10	10	6	Cotton	7	0	6	0
Crabgrass	9	5	9	2	Crabgrass	9	0	10	1
Downy brome	9	0	3	1	Downy brome	9	0	2	1
Giant foxtail	9	6	9	0	Giant foxtail	7	4	9	2
Lambsquarter	9	9	9	9	Lambsquarter	10	9	10	9
Morningglory	10	8	9	2	Morningglory	10	0	3	0
Nutsedge	7	6	8	1	Nutsedge	9	0	4	_
Rape	10	9	10	4	Rape	10	0	10	1
Rice	9	8	9	0	Rice	9	7	9	0
Sorghum	9	2	9	3	Sorghum	8	0	9	0
Soybean	9	8	9	4	Soybean	9	0	9	0
Sugar beet	10	10	10	9	Sugar beet	10	_	10	9
Velvetleaf	10	9	10	6	Velvetleaf	10	6	10	0
Wheat	9	1	7	0	Wheat	9	0	6	0
Wild buckwheat	10	9	10	9	Wild buckwheat	9	0	9	3
Wild oat	9	4	8	0	Wild oat	8	0	9	0

•										
TABLE A					CON	1P0	UND			
Rate 1000 g/ha		1	6	7	8 39	4	0 41	. 42	2 43	3 44
POSTEMERGENCE										
Barley	() ;	1 !	5 :	1 0)	0 4	c) () 1
Barnyardgrass	7	, ,	9 9	9 9	9 8	: .	4 9	9	, 9	10
Bedstraw	7	' (5 8	3 4	4 5		B 9	5	8	9
Blackgrass	1	. 2	2 3	3 2	2 2	(0 4	2	3	7
Chickweed	8	9	9 9	9 8	3 8	9	9	6	8	10
Cocklebur	8	. 8	3 10) 8	9 9	8	3 9	7	7	9
Corn	1	C) 1	. 3	0	C) 7	1	0	8
Cotton	5	9	10	7	' 3	. 4	8	2	6	10
Crabgrass	8	9	9	9	9	1	. 9	4	9	9
Downy brome	0	1	4	1	0	C	2	1	0	3
Giant foxtail	1	1	6	4	3	0	9	3	8	9
Lambsquarter	8	9	8	9	9	9	9	9	9	9
Morningglory	9	9	10	9	9	5	9	3	8	10
Nutsedge	0	0	5	4	0	0	_	0	1	7
Rape	8	9	7	9	8	6	10	8	10	10
Rice	7	9	7	8	8	6	9	4	9	10
Sorghum	4	2	3	6	5	1	10	1	1	10
Soybean	7	7	9	5	6	6	8	3	4	8
Sugar beet	10	10	10	10	10	9	10	9	10	10
Velvetleaf	7	9	9	9	9	2	9	3	5	9
Wheat	1	2	4	2	0	0	7	1	2	4
Wild buckwheat	8	7	10	6	6	7	8	5	7	9
Wild oat	1	2	2	2	0	0	10	3	9	.8

TABLE A				c	COMI	POU	ND			
Rate 1000 g/ha	4	6	7	8	39	40	41	42	43	44
PREEMERGENCE										
Barley	0	0	1	0	0	0	0	0	0	0
Barnyardgrass	1	3	0	3	0	0	9	0	4	10
Bedstraw	3	0	4	0	0	0	8	1	0	8
Blackgrass	0	0	0	0	0	0	5	0	0	2
Chickweed	8	3	7	7	0	6	9	0	0	10
Cocklebur	3	0	8	6	2	0	7	0	0	8
Corn	0	0	0	0	0	0	0	0	0	0
Cotton	5	0	8	0	0	0	7	0	0	6
Crabgrass	3	7	10	9	7	0	10	0	5	10
Downy brome	0	0	5	0	0	0	0	1	0	0
Giant foxtail	1	0	5	0	1	0	8	0	2	8
Lambsquarter	9	10	9	9	9	8	9	9	7	9
Morningglory	7	7	8	6	2	0	10	1	2	8
Nutsedge	-	0	9	0	0	0	8	0	0	5
Rape	4	2	5	2	3	0	8	2	0	9
Rice	8	3	7	1	0	0	9	0	2	8
Sorghum	4	0	0	0	0	0	9	0	0	3
Soybean	0	0	7	0	0	0	3	0	0	6
Sugar beet	10	10	10	9	9	3	10	3	0.	10
Velvetleaf	6	2	9	7	8	0	10	0	1	10
Wheat	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	5	2	8	1	0	0	6	0	0	8
Wild oat	0	0	0	0	0	0	4	0	0.	3

TABLE A				(СОМ	POU	ND			
Rate 400 g/ha	1	2	17	18	19	20	24	36	37	38
POSTEMERGENCE										
Barley	2	8	0	4	0	4	1	0	1	0
Barnyardgrass	9	9	5	9	9	9	9	9	9	8
Bedstraw	9	9	3	8	9	9	7	8	9	- 6
Blackgrass	0	9	1	3	0	8	1	1	5	0
Chickweed	9	9	6	8	9	9	9	9	9	7
Cocklebur	9	9	5	9	9	9	9	8	9	6
Corn	0	8	0	0	2	8	5	0	0	0
Cotton	10	10	1	٩	7	10	9	8	8	3
Crabgrass	9	9	4	9	1	9	4	9	9	0
Downy brome	0	8	0	2	0	0	0	0	3	0
Giant foxtail	4	9	3	9	3	9	4	8	8	0
Lambsquarter	-	9	5	8	9	9	9	9	.9	8
Morningglory	9	10	6	9	3	9	3	8	9	2
Nutsedge	1	7	0	2	-	7	2	0	-	0
Rape	9	10	4	8	9	10	7	10	10	2
Rice	8	9	2	7	8	9	7	9	8	0
Sorghum	6	9	1	7	0	9	4	0	1	2
Soybean	8	9	3	8	8	9	6	6	7	3
Sugar beet	10	10	10	9 .	9	10	10	10	10	8
Velvetleaf	8	10	7	10	9	10	9	8	8	5
Wheat	2	9	0	7	1	6	1	1	6	0
Wild buckwheat	9	10	2	8	9	9	9	4	6	6
Wild oat	0	9	1	0	2	8	2	8	8	0

TABLE A	COMPOUND													
Rate 400 g/ha	1	. 2	17	18	19	20	24	36	37	38				
PREEMERGENCE														
Barley	0	2	0	0	0	2	0	0	0	0				
Barnyardgrass	2	3	0	3	0	9	0	8	0	0				
Bedstraw	4	7	0	0	0	8	0	0	7	1				
Blackgrass	0	1	0	0	0	2	0	0	0	0				
Chickweed	7	8	0	7	0	8	6	3	8	4				
Cocklebur	0	8	0	5	0	5	0	3	0	0				
Corn	1	0	0	0	0	0	0	0	2	0				
Cotton	1	3	0	2	0	6	0	0	0	0				
Crabgrass	9	10	0	7	0	10	7	2	8	0				
Downy brome	0	5	0	0.	0	0	1	1	2	0				
Giant foxtail	1	3	0	0	0	7	0	1	3	0				
Lambsquarter	-	10	0	9	9	10	9	9	9	9				
Morningglory	9	8	0	0	0	2	0	1	0	0				
Nutsedge	0	3	0	0	-	4	0	0	_	0				
Rape	0	10	0	0	0	8	0	2	7	0				
Rice	1	8	0	6	4	9	0	0	0	0				
Sorghum	0	3	0	2	0	6	0	0	0	0				
Soybean	3	8	0	0	0	6	0	0	4	0				
Sugar beet	10	10	0	8	4	10	8	8	10	8				
Velvetleaf	0	10	0	6	4	10	0	0	2	0				
Wheat	0	6	0	0	0	3	0	0 .	0	0				
Wild buckwheat	6	8	0	0	0	3	0	0	2	0				
Wild oat	0	4	0	0	0	3	0	0	0	0				

TABLE A								COM	IPOU	ND						•
Rate 200 g/ha	3	4	5	6	7	8	21	. 22	23	29	39	40	41	42	43	44
POSTEMERGENCE																
Barley	8	0	9	0	1	0	8	3	1	. 7	0	0	1	0	0	0
Barnyardgrass	9	1	10	2	4	8	9	9	4	10	3	1	9	4	9	9
Bedstraw	10	7	10	2	8	2	9	9	9	9	_	8	8	4	8	و .
Blackgrass	6	0	7	0	2	0	8	6	2	8	0	0	2	0	0	3
Chickweed	9	8	9	5	9	7	9	10	9	9	6	7	9	5	7	10
Cocklebur	9	7	9	3	8	7	9	10	8	10	8	5	9	4	6	9
Corn	5	1	4	0	O	1	7	7	0	3	0	0	4	0	0	7
Cotton	10	5	9	3	10	7	9	10	9	3	3	2	7	2	3	9
Crabgrass	9	5	9	6	, 3	2	9	9	9	9	3	0	8	1	3	9
Downy brome	8	0	8	o	2	0	3	3	1	4	0	0	1	0	Ó	0
Giant foxtail	8	0	9	0	2	1	9	9	5	9	1	0	9	0	3	9
Lambsquarter	10	7	9	6	8	1	9	9	8	10	9	9	9	4	6	9
Morningglory	9	9	9	9	10	8	2	9	6	8	8	2	9	2	3	9
Nutsedge	3	-	6	0	1	0	-	9	7	9	0	0	3	0	0	4
Rape	10	4	10	8	4	7	10	10	9	10	6	6	9	3	7	10
Rice	10	6	9	4	3	5	10	10	9	9	6	5	9	0	2	10
Sorghum	9	1	8	0	1	2	8	9	2	9	4	0	7	0	0	7
Soybean	9	6	9	5	8	5	9	9	8	9	5	4	6	2	2	8
Sugar beet	10	10	10	10	10	10	10	10	10	10	10	9	10	9	9	10
Velvetleaf	10	7	9	8	8	8	10	10	10	10	8	1	9	2	2	9
Wheat	9	0	7	0	3	0	8	7	0	10	0	0	4	0	0	2
Wild buckwheat	10	7	10	2	10	1	9	10	9	10	5	3	5	-	6	7
Wild oat	2	0	6	0	0	1	9	8	4	10	0	0	9	Ω	Λ	6

TABLE A	COMPOUND															
Rate 200 g/ha	3	4	5	6	5 7	8	3 21	. 22	23	29	39	40	41	42	43	44
PREEMERGENCE																
Barley	0	0	0	C	0	C) (0	0	0	0	0	0	0	0	0
Barnyardgrass	4	0	7	C	0	0	9	8	0	10	0	0	6	0	0	3
Bedstraw	6	0	7	0	3	0	1	5	0	8	0	0	3	0	_	3
Blackgrass	3	0	1	0	0	0	0	0	0	2	0	0	0	0	0	0
Chickweed	9	2	10	0	6	0	9	8	0	-	0	0	9	0	0	8
Cocklebur	9	0	3	-	4	0	7	3	0	8	0	0	5	0	- 0	4
Corn	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Cotton	3	0	3	0	2	0	0	4	0	2	0	0	2	0	0	0
Crabgrass	9	1	10	0	7	0	7	9	0	8	1	0	8	0	0	9
Downy brome	2	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0
Giant foxtail	1	1	3	0	0	0	6	7	0	9	0	0	6	0	0	7
Lambsquarter	9	7	9	9	9	4	9	10	0	-	7	4	9	8	6	9
Morningglory	8	2	5	0	6	0	0	0	2	0	0	0	9	0	0	6
Nutsedge	-	-	3	0	3	0	-	-	0	10	0	0	0	0	0	0
Rape	8	2	9	1	2	0	8	9	0	4	0	0	6	0	0	8
Rice	9	3	7	0	2	0	10	9	0	9	0	0	3	0	0	2
Sorghum	1	0	3	0	0	0	3	5	0	5	0	0	4	0	0	0
Soybean	9	0	2	0	5	0	6	7	2	5	0	0	0	0	0	0
Sugar beet	10	8	10	8	10	2	2	10	0	-	6	0	9	0	0	9
Velvetl e af	10	1	10	0	2	0	10	9	1	10	1	0	8	0	0	9
Wheat	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Wild buckwheat	2	0	6	0	7	0	1	3	0	4	0	0	4	0	0	2
Wild oat	0	0	0	0	0	0	3	0	0	7	0	0	1	0	0	0

TABLE A		(COMI	POUI	ND		TABLE A		(COMI	POU	ND	
Rate 100 g/ha	1	17	18	24	36	37	Rate 100 g/ha	1	17	18	24	36	37
POSTEMERGENCE							PREEMERGENCE						
Barley	0	0	3	0	0	0	Barley	0	0	0	0	0	0
Barnyardgrass	6	-	8	9	9	9	Barnyardgrass	0	0	0	0	0	0
Bedstraw	6	0	8	7	3	8	Bedstraw	0	0	0	0	0	3
Blackgrass	0	0	0	0	0	1	Blackgrass	0	0	0	0	0	0
Chickweed	8	0	8	9	3	-	Chickweed	6	0	6	0	0	0
Cocklebur	7	0	9	9	6	8	Cocklebur	_	0	0	0	0	0
Corn	0	-	0	2	0	0	Corn	0	0	0	0	0	0
Cotton	7	-	5	8	7	2	Cotton	0	0	1	0	0	0
Crabgrass	6	2	8	4	3	8	Crabgrass	1	0	3	2	0	3
Downy brome	0	0	0	0	0	0	Downy brome	0	0	0	0	1	1
Giant foxtail	2	0	6	3	4	4	Giant foxtail	0	0	0	0	0	1
Lambsquarter	-	0	8	9	8	9	Lambsquarter	_	0	9	9	9	9
Morningglory	9	2	8	2	7	6	Morningglory	6	0	0	0	0	0 .
Nutsedge	0	0	1	1	0	2	Nutsedge	-	0	0	0	0	-
Rape	3	1	7	3	2	9	Rape	0	0	0	0	0	2
Rice	3	0	8	4	7	7	Rice	1	0	2	0	0	0
Sorghum	0	-	6	2	0	0	Sorghum	0	0	0	0	0	0
Soybean	7	-	8	6	4	4	Soybean	0	0	0	0	0	0
Sugar beet	10	8	9	10	9	9	Sugar beet	. 9	0	2	2	7	9
Velvetleaf	2	3	10	8	5	7	Velvetleaf	0	0	2	.0	0	0
Wheat	0	0.	2	1	0	1	Wheat	0	0	0	0	0	0
Wild buckwheat	7	1	3	9	1	6	Wild buckwheat	3	0	0	0	0	0
Wild oat	O	0	0	1	1	4	Wild oat	0	Λ	Λ	Λ	^	^

TABLE A						CO	MPO	ממט	ı.				
Rate 50 g/ha	3	5	9	10	11	21	22	23	25	26	27	28	29
POSTEMERGENCE													
Barley	5	7	6	2	3	7	0	0	1	3	1	2	1
Barnyardgrass	9	9	9	9	9	9	9	2	9	9	9	9	10
Bedstraw	8	9	9	8	9	9	8	8	7	8	7	7	8
Blackgrass	3	1	4	4	5	2	3	0	6	8	7	3	8
Chickweed	9	7	9	9	9	9	10	9	9	9	9	9	9
Cocklebur	9	8	9	9	9	9	10	8	10	10	9	10	9
Corn	0	0	1	1	5	4	3	0	2	1	1	6	2
Cotton	10	9	9	10	9	7	9	9	9	10	9	10	10
Crabgrass	9	8	10	9	6	9	9	6	10	9	9	9	3
Downy brome	6	2	3	3	3	0	2	0	3	3	2	1	2
Giant foxtail	1	6	5	2	2	9	9	2	9	9	7	7	9
Lambsquarter	9	9	9	10	9	9	9	8	9	9	9	9	10
Morningglory	9	9	10	9	9	2	9	1	9	3	1	9	3
Nutsedge	0	3	3	6	2	-	8	2	6	4	3	3	3
Rape	9	9	10	10	10	9	9	7	8	10	9	10	8
Rice	9	9	10	9	10	9	9	9	9	10	9 .	10	9
Sorghum	8	5	4	2	3	6	6	0	6	8	8	5	8
Soybean	9	8	9	9	6	8	9	7	9	9	8	9	9
Sugar beet	10	10	10	10	10	9	10	9	10	10	10	10	10
Velvetleaf	10	9	10	10	10	9	10	9	9	10	9	9	9
Wheat	5	4	8	5	7	6	3	0	5	8	8	6	9
Wild buckwheat	7	10	9	8	7	9	10	8	9	7	8	9	9

1 2 5 3 5 5 5 1 6 6 7 5 9

Wild oat

TABLE A						C	OMPO	ומטכ	כ כ				
Rate 50 g/ha	3	5	9	10	11	21	22	23	25	26	27	28	29
PREEMERGENCE													
Barley	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	8	0	2	2	7	0	0	5	0	1	1
Bedstraw	0	-	8	4	4	0	4	0	9	4	5	3	-
Blackgrass	1	0	0	0	0	0	0	0	0	0	0	0	0
Chickweed	2	5	8	7	7	7	5	0	8	8	7	7	-
Cocklebur	5	0	7	3	3	7	0	0	0	1	0	-	4
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass	8	7	10	6	8	7	6	0	6	9	8	7	3
Downy brome	0	0	0	0	0	0	0	0	0	0	0	0	0
Giant foxtail	0	1	1	0	1	4	2	0	2	2	2	2	1
Lambsquarter	9	8	10	10	9	9	7	0	9	10	9	8	-
Morningglory	6	0	4	1	1	0	0	0	0	0	2	0	0
Nutsedge	-	0	0	0	1	-	0	0	0	0	-	0	0
Rape	2	1	6	4	7	2	7	0	5	0	0	0	-
Rice	0	0	7	0	3	4	5	0	4	4	3	3	6
Sorghum	0	0	0	0	0	0	0	0	0	0	0	0	1
Soybean	8	0	0	0	0	0	2	0	10	0	0	0	2
Sugar beet	8	8	10	10	10	1	7	0	8	7	8	0	-
Velvetleaf	9	4	10	8	8	6	1	1	6	6	7	6	8
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	. 0
Wild buckwheat	0	0	2	0	3	0	2	0	0	4	0	3	-
Wild oat	0	0	0	0	0	0	0	0	0	0	0.	0	2

TABLE A			C	OMP	OUN	D	
Rate 10 g/ha	9	10	11	25	26	27	28
POSTEMERGENCE							
Barley	3	0	0	0	1	0	0
Barnyardgrass	8	4	4	9	9	7	2
Bedstraw	7	7	8	7	6	5	7
Blackgrass	3	1	1	0	3	4	0
Chickweed	9	6	6	9	8	8	8
Cocklebur	9	9	8	9	10	9	9
Corn	0	0	0	0	0	0	0
Cotton	9	9	8	9	6	7	8
Crabgrass	8	6	2	8	9	7	5
Downy brome	1	0	0	0	0	1	0
Giant foxtail	2	0	0	3	6	2	2
Lambsquarter	9	9	9	8	9	8	8
Morningglory	9	9	9	7	2	1	5
Nutsedge	2	1	0	1	2	2	0
Rape	8	8	7	6	5	7	8
Rice	9	5	7	6	9	9	8
Sorghum	2	2	1	2	2	4	2
Soybean	7	8	5	8	7	6	7
Sugar beet	10	9	9 :	10	9	10 :	10
Velvetleaf	10	9	9	9	9	7	8
Wheat	6	2	3	1	4	4	3
Wild buckwheat	3	2	5	3	2	3	2
Wild oat	3	0	3	2	3	3	3

TABLE A			CON	1POU	ND		
Rate 10 g/ha	9	10	11	25	26	27	28
PREEMERGENCE							
Barley	0	0	0	0	0	0	0
Barnyardgrass	1	0	0	0	1	0	0
Bedstraw	-	-	3	9	0	4	2
Blackgrass	0	0	0	0	0	0	0
Chickweed	6	0	0	6	0	0	0
Cocklebur	5	0	0	0	C) 0) _
Corn	0	0	0	0	0	0	0
Cotton	0	0	0	0	0	0	-
Crabgrass	2	1	1	2	4	2	2
Downy brome	0	0	0	0	0	0	0
Giant foxtail	0	0	0	0	0	0	0
Lambsquarter	8	8	5	8	0	0	2
Morningglory	0	0	0	-	0	0	-
Nutsedge	0	0	0	0	0	0	0
Rape	0	0	0	0	0	0	0
Rice	0	0	0	0	0	0	0
Sorghum	0	0	0	0	0	0	0
Soybean	0	0	0	1	0	0	0
Sugar beet	8	3	6	6	0	3	0
Velvetleaf	8	2	6	2	4	2	0
Wheat	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	0	0
Wild oat	0	0	0	0	0	0	0

TEST B

The compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood test. Water depth was approximately 2.5 cm for the flood test and was maintained at this level for the duration of the test.

Plant species in the preemergence and postemergence tests consisted of barnyardgrass (*Echinochloa crus-galli*), barley (*Hordeum vulgare*), bedstraw (*Galium aparine*), blackgrass (*Alopecurus myosuroides*), chickweed (*Stellaria media*), cocklebur

7//05/04

68

(Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halpense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica),

sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa), barnyardgrass (Echinochloa crus-galli) and Late watergrass (Echinochloa oryzicola) grown to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response this ratings, summarized in Table B, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

20

5

10

TABLE B CO	OMPOUND	TABLE B	COMPOUND
Rate 500 g/ha	43	Rate 500 g/ha	43
POSTEMERGENCE		PREEMERGENCE	
Barley Igri	0	Barley Igri	0
Barnyard Flood	0	Barnyardgrass	10
Barnyardgrass	90	Bedstraw	100
Bedstraw	90	Blackgrass	0
Blackgrass	10	Chickweed	0
Chickweed	65	Cocklebur	10
Cocklebur	70	Corn	0
Corn	0	Cotton	0
Cotton	50	Crabgrass	30
Crabgrass	80	Downy Brome	0
Downy Brome	0	Giant foxtail	0
Duck salad	0	Italn. Ryegrass	10
Giant foxtail	70	Johnsongrass	0
Italn. Ryegrass	0	Lambsquarter	95
Johnsongrass	30	Morningglory	20
Lambsquarter	65	Rape	0
Morningglory	40	Redroot Pigweed	i 60
Rape	85	Soybean	0
Redroot Pigweed	50	Speedwell	0
Rice Japonica	0	Sugar beet	0
Soybean	40	Velvetleaf	0
Speedwell	100	Wheat	0
Sugar beet	20	Wild buckwheat	0
Umbrella sedge	35	Wild oat	0
Velvetleaf	70		
Watergrass 2	-		
Wheat	0		
Wild buckwheat	10		
Wild oat	30		

TABLE B	COMPOUND	TABLE B COMPOUND
Rate 250 g/ha	24 43	Rate 250 g/ha 43
POSTEMERGENCE		PREEMERGENCE
Barley Igri	- 0	Barley Igri 0
Barnyard Flood	0 0	Barnyardgrass 0
Barnyardgrass	- 90	Bedstraw 0
Bedstraw	- 80	Blackgrass 0
Blackgrass	- 0	Chickweed 0
Chickweed	- 65	Cocklebur 0
Cocklebur	- 70	Corn 0
Corn	- 0	Cotton 0
Cotton	- 30	Crabgrass 0
Crabgrass		Downy Brome 0
Downy Brome	- 0	Giant foxtail 0
Duck salad	0 0	Italn. Ryegrass 0
Giant foxtail		Johnsongrass 0
Italn. Ryegrass	- 0	Lambsquarter 0
Johnsongrass	- 30	Morningglory 0
Lambsquarter	- 65	Rape 0
Morningglory		Redroot Pigweed 20
Rape	- 20	Soybean 0
Redroot Pigweed		Speedwell 0
Rice Japonica	0 0	Sugar beet 0
Soybean	- 40	Velvetleaf 0
Speedwell	- 100	Wheat 0
Sugar beet	- 0	Wild buckwheat 0
Umbrella sedge	0 30	Wild oat 0
Velvetleaf	- -	
Watergrass 2		
Wheat	- 0	
Wild buckwheat	- 0	
Wild oat	- 10	

TABLE B				COME	OUNI)		
Rate 125 g/ha	2	5	18	20	24	37	41	43
POSTEMERGENCE			•					
Barley Igri	75	60	0	20	_	0	0	0
Barnyard Flood	75	20	35	90	0	45	30	0
Barnyardgrass	100	95	65	100	-	90	90	70
Bedstraw	90	95	65	90	-	80	80	40
Blackgrass	90	85	10	80	-	10	0	0
Chickweed	100	95	85	100	-	95	90	10
Cocklebur	90	90	90	100	-	90	90	50
Corn	40	20	0	45	-	0	0	0
Cotton	100	95	90	100	-	70	80	30
Crabgrass	95	90	80	95	-	90	90	50
Downy Brome	85	0	0	0	-	0	0	0
Duck salad	40	35	0	10	0	15	20	0
Giant foxtail	95	85	60	95	-	80	90	30
Italn. Ryegrass	30	10	0	10	-	0	0	0
Johnsongrass	80	40	40	80	-	0	40	30
Lambsquarter	100	95	95	100	-	80	80	50
Morningglory	95	90	50	95	-	85	90	30
Rape	100	100	95	95	-	95	90	10
Redroot Pigweed	90	90	90	95	-	80	90	40
Rice Japonica	90	10	30	95	0	25	15	0
Soybean	90	90	55	90	-	40	60	30
Speedwell	100	95	75	100	-	100	100	0
Sugar beet	100	100	100	100	-	100	100	0
Umbrella sedge	75	25	0	30	0	20	25	20
Velvetleaf	100	100	90	100	-	90	90	50
Watergrass 2	75	-	25	95	-	40	-	-
Wheat	75	40	0	0	-	0	0	0
Wild buckwheat	90	95	75	95	-	20	30	0
Wild oat	70	25	0	40	-	0	50	0

TABLE B		C	OMPO	DND			
Rate 125 g/ha	2	2 5	5 18	3 20	37	7 41	43
PREEMERGENCE							
Barley Igri	C) () (0	C	0	0
Barnyardgrass	90	80) (100	50	60	0
Bedstraw	90	100) (60	C	0	0
Blackgrass	10	C	10	0	0	0	0
Chickweed	95	60	10	95	95	90	0
Cocklebur	90	30	0	60	0	60	0
Corn	0	0	0	0	0	10	0
Cotton	90	0	0	20	0	0	0
Crabgrass	100	100	0	100	30	60	0
Downy Brome	0	0	0	0	0	0	0
Giant foxtail	20	10	10	100	20	60	0
Italn. Ryegrass	0	0	0	0	0	10	0
Johnsongrass	10	30	0	70	0	30	0
Lambsquarter	95	100	95	100	95	95	0
Morningglory	90	60	0	9 0	0	60	0
Rape	100	100	0	9 5	0	10	0
Redroot Pigweed	80	80	80	100	40	90	10
Soybean	85	20	0	40	0	10	0
Speedwell	100	95	10	95	0	100	0
Sugar beet	100	100	100	100	0	100	0
Velvetleaf	100	100	20	100	0	80	0
Wheat	0	0	0	0	0	0	0
Wild buckwheat	25	0	10	0	0	10	0
Wild oat	0	0	0	0	0	0	0

TABLE B					С	OMPOU	ND .				
Rate 62 g/ha	2	2 3	3 !	5 1	8 2	0 21	24	. 3	7 41	43	
POSTEMERGENCE											
Barley Igri	70	30	3 () () ·	0 0	-	(0 0	0	
Barnyard Flood	35	20) (2 (0 8	5 5 5	0	25	5 25	0	
Barnyardgrass	95	95	90	5:	5 9	5 95	-	9(90	60	
Bedstraw	90	85	90	60	75	5 80	_	80	80	30	
Blackgrass	20	80	40) (20	65	_	C) 0	0	
Chickweed	100	90	90	85	100	90	_	90	90	10	
Cocklebur	90	90	90	80	90	90	_	70	90	50	
Corn	0	0	10	C		20	_	0	0	0	
Cotton	100	100	80	80	95	90	_	50	80	10	
Crabgrass	90	90	90	70	95	90	_	75	90	30	
Downy Brome	40	25	0	0	0	0	_	0	0	0	
Duck salad	30	25	25	0	10	40	0	0	0	0	
Giant foxtail	90	30	75	35	95	90	_	50	70	10	
Italn. Ryegrass	0	20	0	0	10	20	-	0	0	0	
Johnsongrass	55	50	30	30	80	50	-	0	20	20	
Lambsquarter	100	100	95	95	100	100	-	80	80	50	
Morningglory	95	90	90	30	95	90	-	70	90	20	
Rape	100	95	100	90	95	95	-	90	60	0	
Redroot Pigweed	80	85	90	80	95	90	-	80	75	30	
Rice Japonica	40	0	0	15	95	45	0	25	0	0	
Soybean	90	90	90	40	90	90	-	40	50	30	
Speedwell	100	90	95	75	95	100	-	90	100	0	
Sugar beet	100	100	100	100	100	95	-	95	100	0	
Umbrella sedge	70	25	20	0	25	45	0	10	25	0	
Velvetleaf	100	95	100	90	100	90	-	70	90	20	
Watergrass 2	65	-	-	20	95	-	-	20	-	-	
Wheat	40	40	20	0	0	40	-	0	0	0	
Wild buckwheat	80	95	90	65	70	90	-	10	0	0	
Wild oat	20	15	0	0	40	40	_	0	50	0	

1 C1/03/0/135-

TABLE B				C	OMPO	UND			
Rate 62 g/ha	2	3	5	18	20	21	37	41	43
PREEMERGENCE									
Barley Igri	0	0	0	0	0	0	0	0	0
Barnyardgrass	50	10	30	0	95	30	20	10	0
Bedstraw	70	0	50	0	60	10	0	0	0
Blackgrass	0	0	0	0	0	0	0	0	0
Chickweed	90	35	60	0	95	10	45	65	0
Cocklebur	80	50	30	0	40	0	0	10	0
Corn	0	0	0	0	0	0	0	0	0
Cotton	70	0	0	0	0	0	0	0	0
Crabgrass	90	90	60	0	100	50	30	50	0
Downy Brome	0	0	0	0	0	0	0	0	0
Giant foxtail	0	0	10	0	95	30	0	20	0
Italn. Ryegrass	0	0	0	0	0	0	0	0	0
Johnsongrass	0	0	0	-	40	0	0	30	0
Lambsquarter	95	95	100	95	95	95	95	95	0
Morningglory	90	50	30	0	60	0	0	60	0
Rape	100	0	90	0	40	0	0	0	0
Redroot Pigweed	40	30	60	20	60	50	40	70	0
Soybean	60	0	0	0	20	0	0	0	0
Speedwell	100	90	90	0	60	0	0	100	-
Sugar beet	100	95	100	10	100	0	0	100	0
Velvetleaf	100	100	100	0	100	90	0	30	0
Wheat	0	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	10	0	0	0
Wild oat	0	0	0	0	0	10	0	o	0

TABLE B							CC	MPO	UND						
Rate 31 g/h	na 2	3	5 5	5 9	10	18	3 20	2:	1 22	24	1 25	5 26	3.	7 4:	144
POSTEMERGENCE	Ξ														
Barley Igri	20	20) c	20	0	0	0	(0	-	. () 10	() (0
Barnyard Floo	od 30	15	0	-	-	15	30	35	5 15	С) -		10) 10	0
Barnyardgrass	95	90	90	90	90	35	95	95	90	-	100	95	80	90	90
Bedstraw	90	80	90	90	60	40	75	80	95	_	55	60	30	80	
Blackgrass	20	75	20	20	10	0	10	50	35	-	. 0	30	c) (
Chickweed	100	90	90	90	95	80	100	90	90	_	95	100	70	90	
Cocklebur	90	90	80	90	90	50	90	90	90	-	90	90	50		
Corn	0	0	0	0	5	0	0	0	10	_	10	10	0	0	
Cotton	100	90	80	90	100	30	95	80	90	_	95	80	-		
Crabgrass	90	80	85	70	80	70	95	90	90	_	90	90	50	•	
Downy Brome	20	15	0	20	10	0	0	0	20	_	10	30	0		
Duck salad	0	20	0	-	-	0	10	30	80	0	_		0	0	0
Giant foxtail	70	20	40	40	30	20	95	90	90	_	95	100	30	70	30
Italn. Ryegra	ss 0	20	0	20	0	0	0	10	25	_	0	20	0	0	0
Johnsongrass	45	50	20	40	30	20	75	50	50	_	60	70	0	10	20
Lambsquarter	100	95	95	95	100	90	100	95	100	_	90	100	70	70	65
Morningglory	95	90	90	90	90	20	95	90	90	_	80	40	70	90	90
Rape	100	80	95	100	100	90	95	90	90	_	100	40	90	60	95
Redroot Pigwee	ed70	80	70	70	50	75	95	80	90	_	60	80	70	75	40
Rice Japonica	30	0	0	-	-	15	90	35	25	0	_	_	0	0	10
Soybean	85	90	80	90	85	35	80	90	90	_	90	80	35	50	60
Speedwell	100	-	90	60	90	60	95	90	90	-	60	90	-	100	95
Sugar beet	100	95	100	100	90	90	100	95	100	_	70	90	65	100.	100
Umbrella sedge	≥ 35	10	10	-	-	0	20	35	60	0	-	-	10	15	0
Velvetleaf	100	95	100	100	90	90	100	90	90	-	90	100	70	90	75
Watergrass 2	25	-	-	-	-	0	75	-	-	-	_	_	10	<u>-</u>	_
Wheat	10	20	0	50	0	0	0	10	0	_	20	40	0	0	. 0
Wild buckwheat	60	70	70	60	40	50	70	90	90	-	40	50	0	0	0
Wild oat	10	10	0	30	0	0	0	20	35	-	35	40	0	20	0

WO 97/08164 PCT/US96/13347

TABLE B						C	COMP	DUNE)					
Rate 16 g/ha	2	3	5	.9	10	18	20	21	. 22	25	26	37	41	44
PREEMERGENCE														
Barley Igri	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	20	20	0	10	0	30	30	20	0	0	0
Bedstraw	30	0	0	-	0	0	30	0	0	0	0	0	0	0
Blackgrass	0	0	0	10	0	0	0	0	0	0	10	0	0	0
Chickweed	70	25	0	70	10	0	65	0	50	60	100	0	0	0
Cocklebur	60	-	10	30	30	0	0	0	0	10	0	0	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	20	0	0	20	0	0	0	0	0	0	0	0	0	0
Crabgrass	65	20	30	40	20	0	90	20	40	40	60	0	10	0
Downy Brome	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Giant foxtail	0	0	0	0	0	0	30	10	10	20	25	0	0	0
Italn. Ryegrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Johnsongrass	0	0	0	10	0	0	0	0	0	25	25	0	0	0 :-
Lambsquarter	95	95	45	100	100	90	90	95	95	90	90	85	20	0
Morningglory	60	0	0	0	10	0	0	0	0	0	0	0	0	0 -
Rape	25	0	0	20	20	0	0	0	0	0	0	0	0	· 0
Redroot Pigweed	0	0	60	30	0	0	20	0	50	30	40	0	35	20
Soybean	30	0	0	0	40	0	0	0	0	10	20	0	0	20
Speedwell	90	0	-	80	10	0	10	0	100	50	20	0	100	0
Sugar beet	10	0	0	30	60	0	0	0	0	0	0	0	0	30
Velvetleaf	100	90	70	90	65	0	55	0	15	30	55	0	0	0
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	20	0	0	. 0	0	0	0	0	0	0
Wild oat	0	0	0	0	_	0	0	0	0	0	0	0		

TABLE B				CO	MPOU	ND		
Rate 8 g/ha	3	9	10	21	22	25	26	44
POSTEMERGENCE								
Barley Igri	0	0	0	0	0	0	0	0
Barnyard Flood	0	-	-	0	0	-	_	0
Barnyardgrass	80	60	70	90	70	7 5	95	60
Bedstraw	80	30	40	80	85	20	30	0
Blackgrass	10	0	0	20	0	0	0	0
Chickweed	85	50	70	85	70	90	70	65
Cocklebur	70	90	90	90	80	90	90	90
Corn	0	0	0	0	0	0	0	0
Cotton	90	50	90	50	80	40	80	50
Crabgrass	70	40	60	80	70	65	80	30
Downy Brome	10	0	0	0	0	0	0	0
Duck salad	0	-	_	0	0	_	_	0
Giant foxtail	0	10	10	60	50	70	70	0
Italn. Ryegrass	10	0	0	0	0	0	0	0
Johnsongrass	30	10	10	10	20	25	40	10
Lambsquarter	95	85	85	95	90	90	90	20
Morningglory	85	80	90	90	90	30	20	80
Rape	30	70	60	80	90	60	20	70
Redroot Pigweed	70	40	30	30	70	30	40	20
Rice Japonica	0	-	-	0	0	-	-	10
Soybean	80	60	70	80	65	70	60	30
Speedwell	90	40	50	70	85	50	-	50
Sugar beet	90	70	50	80	95	60	90	95
Umbrella sedge	0	-	-	0	0	-	-	0
Velvetleaf	90	90	90	80	90	90	90	60
Watergrass 2	-	-	-	-	-	-	-	-
Wheat	10	20	0	0	0	0	20	0
Wild buckwheat	60	10	10	85	90	10	10	0
Wild oat	0	10	0	0	0	25	20	0

TABLE B			C	COMPO	DUND	*		
Rate 8 g/ha	3	9	10	21	22	25	26	44
PREEMERGENCE								
Barley Igri	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	10	0	10	10	0	0
Bedstraw	0	0	0	0	0	0	0	0
Blackgrass	0	0	0	0	0	0	0	0
Chickweed	20	30	0	0	0	60	100	0
Cocklebur	10	0	10	0	0	0	0	0
Corn	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	0	0	0	0
Crabgrass	10	0	10	10	20	30	10	0
Downy Brome	0	0	0	0	0	0	0	0
Giant foxtail	0	0	0	0	0	10	0	0
Italn. Ryegrass	0	0	0	0	0	0	0	0
Johnsongrass	0	0	0	0	0	15	0	0
Lambsquarter	90	100	95	20	0	80	70	0
Morningglory	0	0	0	0	0	0	0	0
Rape	0	0	10	0	0	0	0	0
Redroot Pigweed	0	25	0	0	10	0	0	10
Soybean	0	0	10	0	0	0	0	0
Speedwell	0	80	0	0	45	50	0	-
Sugar beet	0	0	10	0	0	0	0	20
Velvetleaf	30	90	40	0	0	30	30	0
Wheat	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	0	0	0
Wild oat	0	0	10	0	0	0	0	0

TABLE B			COME	POUNI)	
Rate 4 g/ha	9	10	22	25	26	44
POSTEMERGENCE						
Barley Igri	0	0	0	0	0	(
Barnyard Flood	-	-	0	-	_	(
Barnyardgrass	50	40	50	35	90	30
Bedstraw	10	30	80	0	0	(
Blackgrass	0	0	0	0	0	(
Chickweed	20	20	70	90	70	-
Cocklebur	75	80	80	80	80	70
Corn	0	0	0	0	0	C
Cotton	50	40	60	40	40	40
Crabgrass	40	40	50	50	70	20
Downy Brome	0	0	0	0	0	C
Duck salad	-	-	0	-	-	C
Giant foxtail	0	0	20	40	50	-
Italn. Ryegrass	0	0	0	0	0	0
Johnsongrass	0	0	20	10	25	0
Lambsquarter	85	85	90	85	85	20
Morningglory	80	75	80	20	0	30
Rape	10	30	85	30	0	40
Redroot Pigweed	30	30	40	20	40	10
Rice Japonica	-	-	0	-	-	10
Soybean	50	65	50	50	35	30
Speedwell	40	0	60	-	20	0
Sugar beet	70	50	95	40	80	95
Umbrella sedge	-	.	. 0	-	-	0
Velvetleaf	90	80	90	65	80	40
Watergrass 2	-	-	-	-	-	-
Wheat	10	0	0	0	10	0
Wild buckwheat	0	0	80	0	0	0
Wild oat	0	0	0	10	20	0

TABLE B			CON	IPOUN	Œ	
Rate 4 g/ha	9	10	22	25	26	44
PREEMERGENCE						
Barley Igri	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	0	0
Bedstraw	0	0	0	0	0	0
Blackgrass	0	0	0	0	0	0
Chickweed	30	0	0	20	60	0
Cocklebur	0	0	0	0	0	0
Corn	0	0	0	0	0	0
Cotton	0	0	0	0	0	0
Crabgrass	0	0	10	10	0	0
Downy Brome	0	0	0	0	0	0
Giant foxtail	0	0	0	0	0	0
Italn. Ryegrass	. 0	0	0	0	0	0
Johnsongrass	0	0	0	0	0	0
Lambsquarter	80	60	0	80	-	0
Morningglory	0	0	0	0	0	0
Rape	0	0	0	0	0	0
Redroot Pigweed	0	0	0	0	0	0
Soybean	0	0	0	0	0	0
Speedwell	60	0	0	10	-	0
Sugar beet	0	0	0	0	0	20
Velvetleaf	40	30	0	0	0	0
Wheat	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	0
Wild oat	0	0	0	0	0	0

TEST C

Seeds of barnyardgrass (Echinochloa crus-galli), bindweed (Convolvulus arvensis), black nightshade (Solanum ptycanthum dunal), cassia (Cassia obtusifolia), cocklebur (Xanthium strumarium), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarter (Chenopodium album), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), prickly sida (Sida spinosa), shattercane (Sorghum vulgare), signalgrass (Brachiaria platyphylla), smartweed (Polygonum pensylvanicum), soybean

5

(Glycine max), sunflower (Helianthus annuus), velvetleaf (Abutilon theophrasti), wild proso (Panicum miliaceum), woolly cupgrass (Eriochloa villosa), yellow foxtail (Setaria lutescens) and purple nutsedge (Cyperus rotundus) tubers were planted into a sandy loam or clay loam soil. These crops and weeds were grown in the greenhouse until the plants ranged in height from two to eighteen cm (one to four leaf stage), then treated postemergence with the test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. Pots receiving preemergence treatments were planted immediately prior to test chemical application. Pots treated in this fashion were placed in the greenhouse and maintained according to routine greenhouse procedures.

10

5

Treated plants and untreated controls were maintained in the greenhouse approximately 14-21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table C, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

TABLE C	COMPOUND	TABLE C	COMPOUND
Rate 35 g/ha	20	Rate 17 g/ha	20
POSTEMERGENCE		POSTEMERGENCE	
Barnyardgrass	100	Barnyardgrass	90
Bindweed	90	Bindweed	80
Blk Nightshade	100	Blk Nightshade	100
Cocklebur	100	Cocklebur	100
Corn	5	Corn	5
Cotton	90	Cotton	90
Crabgrass	100	Crabgrass	85
Fall Panicum	100	Fall Panicum	100
Giant Foxtail	50	Giant Foxtail	30
Green Foxtail	100	Green Foxtail	85
Jimsonweed	100	Jimsonweed	100
Johnson Grass	50	Johnson Grass	40
Lambsquarter	100	Lambsquarter	100
Morningglory	70	Morningglory	40
Nutsedge	70	Nutsedge	40
Pigweed	100	Pigweed	90
Prickly Sida	60	Prickly Sida	45
Ragweed	90	Ragweed	80
Shattercane	90	Shattercane	30
Signalgrass	90	Signalgrass	80
Smartweed	100	Smartweed	100
Soybean	100	Soybean	90
Sunflower	95	Sunflower	90
Velvetleaf	100	Velvetleaf	100
Wild Proso	100	Wild Proso	100
Woolly cupgrass	90	Woolly cupgrass	85
Yellow Foxtail	100	Yellow Foxtail	80

TABLE C	COMPOUND	TABLE C	COMPOUND
Rate 8 g/ha	20	Rate 4 g/ha	20
POSTEMERGENCE		POSTEMERGENCE	
Barnyardgrass	60	Barnyardgrass	40
Bindweed	70	Bindweed	50
Blk Nightshade	100	Blk Nightshade	100
Cocklebur	100	Cocklebur	100
Corn	0	Corn	0
Cotton	85	Cotton	60
Crabgrass	85	Crabgrass	20
Fall Panicum	100	Fall Panicum	50
Giant Foxtail	20	Giant Foxtail	0
Green Foxtail	30	Green Foxtail	0 ·
Jimsonweed	100	Jimsonweed	100
Johnson Grass	10	Johnson Grass	5
Lambsquarter	100	Lambsquarter	90
Morningglory	30	Morningglory	0
Nutsedge	5	Nutsedge	0
Pigweed	80	Pigweed	70
Prickly Sida	20	Prickly Sida	0
Ragweed	80	Ragweed	80
Shattercane	10	Shattercane	0
Signalgrass	40	Signalgrass	0
Smartweed	80	Smartweed	80
Soybean	80	Soybean	75
Sunflower	90	Sunflower	85
Velvetleaf	100	Velvetleaf	90
Wild Proso	100	Wild Proso	100
Woolly cupgrass	10	Woolly cupgrass	10
Yellow Foxtail	60	Yellow Foxtail	40

TEST D

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in

a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include American black nightshade 5 (Solanum americanum), arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), Florida beggarweed 10 (Desmodium purpureum), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb (Polygonum persicaria), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) 15 and wild poinsettia (Euphorbia heterophylla). Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table D, were based upon a 0 to 100 scale where 0 was no effect and 100 was complete control. A dash response (-) means no test result.

TABLE D	COM	POUND	TABLE D	COM	IPOUND
Rate 140 g/ha	21	22	Rate 70 g/ha	21	. 22
POSTEMERGENCE			POSTEMERGENCE		
Arrowleaf Sida	50	60	Arrowleaf Sida	10	5
Barnyardgrass	100	100	Barnyardgrass	95	95
Cocklebur	90	90	Cocklebur	90	95
Common Ragweed	80	95	Common Ragweed	_	90
Corn	20	20	Corn	10	5
Cotton	80	95	Cotton	85	90
Estrn Blknight	100	100	Estrn Blknight	100	100
Fall Panicum	100	100	Fall Panicum	100	100
Field Bindweed	10	0	Field Bindweed	10	0
Fl Beggarweed	-	100	Fl Beggarweed	95	90
Giant Foxtail	100	100	Giant Foxtail	95	100
Hairy Beggartic	70	85	Hairy Beggartic	70	80
Ivyleaf Mrnglry	10	80	Ivyleaf Mrnglry	0	70
Johnsongrass	70	15	Johnsongrass	50	15
Ladysthumb	80	100	Ladysthumb	80	100
Lambsquarters		100	Lambsquarters	90	90
Large Crabgrass	100	100	Large Crabgrass 1	.00	95
Purple Nutsedge	60	70	Purple Nutsedge	40	70
Redroot Pigweed	85	90	Redroot Pigweed	80	90
Soybean	90	95	Soybean	90	90
Surinam Grass	90	75	Surinam Grass	85	60
Velvetleaf	95	100	Velvetleaf	95	100
Wild Poinsettia	70	95	Wild Poinsettia	60	85

TABLE D	COM	POUND	TABLE D	COM	POUND
Rate 35 g/ha	21	22	Rate 17 g/ha	21	22
POSTEMERGENCE			POSTEMERGENCE		
Arrowleaf Sida	5	5	Arrowleaf Sida	0	5
Barnyardgrass	95	60	Barnyardgrass	75	60
Cocklebur	90	90	Cocklebur	80	85
Common Ragweed	70	90	Common Ragweed	40	70
Corn	10	0	Corn	10	0
Cotton	70	90	Cotton	65	80
Estrn Blknight	100	100	Estrn Blknight	100	100
Fall Panicum	95	90	Fall Panicum	70	85
Field Bindweed	-	0	Field Bindweed	0	0
Fl Beggarweed	75	-	Fl Beggarweed	80	70
Giant Foxtail	85	90	Giant Foxtail	60	75
Hairy Beggartic	50	70	Hairy Beggartic	20	30
Ivyleaf Mrnglry	5	65	Ivyleaf Mrnglry	0	60
Johnsongrass	35	5	Johnsongrass	15	0
Ladysthumb	-	100	Ladysthumb	70	60
Lambsquarters	90	90	Lambsquarters	80	80
Large Crabgrass	95	80	Large Crabgrass	85	60
Purple Nutsedge	40	50	Purple Nutsedge	0	40
Redroot Pigweed	80	85	Redroot Pigweed	-	80
Soybean	75	80	Soybean	65	75
Surinam Grass	70	30	Surinam Grass	30	10
Velvetleaf	80	90	Velvetleaf	80	80
Wild Poinsettia	5	70	Wild Poinsettia	5	30

TABLE D	COM	POUNI
Rate 8 g/ha	21	22
POSTEMERGENCE		
Arrowleaf Sida	0	5
Barnyardgrass	50	25
Cocklebur	70	80
Common Ragweed	40	10
Corn	0	0
Cotton	40	60
Estrn Blknight	80	100
Fall Panicum	50	80
Field Bindweed	0	0
Fl Beggarweed	5	40
Giant Foxtail	50	45
Hairy Beggartic	0	30
Ivyleaf Mrnglry	0	40
Johnsongrass	15	0
Ladysthumb	50	-
Lambsquarters	40	70
Large Crabgrass	80	40
Purple Nutsedge	0	0
Redroot Pigweed	40	50
Soybean	50	50
Surinam Grass	10	5
Velvetleaf	70	60
Wild Poinsettia	5	5

TEST E

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), alfalfa (Medicago sativa), bermudagrass (Cynodon dactylon), broadleaf signalgrass (Brachiaria plantyphylla), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), cotton (Gossypium hirsutum), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata), johnson grass (Sorghum halepense), large crabgrass (Digitaria sanguinalis), peanuts (Arachis hypogaea), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), surinam grass (Brachiaria decumbens) and texas panicum (Panicum Texas) were planted into greenhouse pots of flats containing greenhouse planting medium. Plant species were

5

grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence and postemergence to the plants. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table E, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

10

TABLE E CO	MPOUND	TABLE E CO	MPOUND
Rate 250 g/ha	20	Rate 125 g/ha	20
POSTEMERGENCE		POSTEMERGENCE	
Alexandergrass	80	Alexandergrass	65
Bermudagrass	65	Bermudagrass	55
Brdlf Sgnlgrass	65	Brdlf Sgnlgrass	50
Cmn Purslane	75	Cmn Purslane	70
Cmn Ragweed	65	Cmn Ragweed	60
Cotton	95	Cotton	55
Dallisgrass	70	Dallisgrass	55
Goosegrass	45	Goosegrass	40
Guineagrass	25	Guineagrass	15
Itchgrass	50	Itchgrass	10
Johnson grass	55	Johnson grass	45
Large Crabgrass	85	Large Crabgrass	70
Peanuts	40	Peanuts	40
Pit Morninglory	55	Pit Morninglory	0
Purple Nutsedge	65	Purple Nutsedge	50
Sandbur	85	Sandbur	65
Sourgrass	65	Sourgrass	65
Surinam grass	65	Surinam grass	45

TABLE E CO	OMPOUND	TABLE E	COMPOUND
Rate 64 g/ha	20	Rate 64 g/ha	20
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	35	Alexandergrass	95
Bermudagrass	40	Bermudagrass	90
Brdlf Sgnlgrass	40	Brdlf Sgnlgras	s 0
Cmn Purslane	70	Cmn Purslane	90
Cmn Ragweed	35	Cmn Ragweed	80
Cotton	45	Cotton	0
Dallisgrass	45	Dallisgrass	40
Goosegrass	20	Goosegrass	-
Guineagrass	10	Guineagrass	0
Itchgrass	0	Itchgrass	0
Johnson grass	30	Johnson grass	15
Large Crabgrass	60	Large Crabgras	s 30
Peanuts	35	Peanuts	75
Pit Morninglory	0	Pit Morninglor	y 65
Purple Nutsedge	25	Purple Nutsedge	= 0
Sandbur	30	Sourgrass	100
Sourgrass	55	Surinam grass	5
Surinam grass	35		

TABLE E C	OMPOUND	TABLE E	COMPOUND
Rate 32 g/ha	20	Rate 32 g/ha	20
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	100	Alexandergrass	50
Bermudagrass	80	Bermudagrass	95
Brdlf Sgnlgrass	75	Brdlf Sgnlgras	s 0
Cmn Purslane	98	Cmn Purslane	90
Cmn Ragweed	60	Cmn Ragweed	30
Cotton	100	Cotton	0
Dallisgrass	80	Dallisgrass	20
Goosegrass	65	Goosegrass	0
Guineagrass	20	Guineagrass	0
Itchgrass	20	Itchgrass	0
Johnson grass	25	Johnson grass	0
Large Crabgrass	90	Large Crabgrass	30
Peanuts	60	Peanuts	40
Pit Morninglory	90	Pit Morninglory	7 30
Purple Nutsedge	80	Purple Nutsedge	.0 €
Sandbur	95	Sourgrass	98
Sourgrass	80	Surinam grass	0
Surinam grass	65		

TABLE E	COMPOUND	TABLE E CO	DMPOUND
Rate 16 g/ha	20	Rate 16 g/ha	a 20
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	100	Alexandergrass	0
Bermudagrass	60	Bermudagrass	50
Brdlf Sgnlgrass	0	Brdlf Sgnlgrass	0
Cmn Purslane	98	Cmn Purslane	90
Cmn Ragweed	90	Cmn Ragweed	0
Cotton	80	Cotton	0
Dallisgrass	80	Dallisgrass	10
Goosegrass	50	Goosegrass	0
Guineagrass	5	Guineagrass	0
Itchgrass	5	Itchgrass	0
Johnson grass	10	Johnson grass	0
Large Crabgrass	90	Large Crabgrass	10
Peanuts	10	Peanuts	40
Pit Morninglory	75	Pit Morninglory	80
Purple Nutsedge	30	Purple Nutsedge	0
Sandbur	70	Sourgrass	98
Sourgrass	75	Surinam grass	0
Surinam grass	50		

TABLE E	COMPOUND	TABLE E COM	IPOUND
Rate 8 g/ha	20	Rate 8 g/ha	20
POSTEMERGENCE	:	PREEMERGENCE	
Alexandergras	s 0	Alexandergrass	0
Bermudagrass	0	Bermudagrass	0
Brdlf Sgnlgra	ss 0	Brdlf Sgnlgrass	0
Cmn Purslane	0	Cmn Purslane	0
Cmn Ragweed	0	Cmn Ragweed	0
Cotton	10 .	Cotton	0
Dallisgrass	0	Dallisgrass	0
Goosegrass	0	Goosegrass	0
Guineagrass	0	Guineagrass	0
Itchgrass	0	Itchgrass	0
Johnson grass	0	Johnson grass	0
Large Crabgra	ss 0	Large Crabgrass	0
Peanuts	0	Peanuts	0
Pit Morninglo	ry 75	Pit Morninglory	70
Purple Nutsed	ge 0	Purple Nutsedge	0
Sandbur	0	Sourgrass	7 5
Sourgrass	0	Surinam grass	0
Surinam grass	0		

TEST F

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were in the one-to four leaf stage (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include annual bluegrass (*Poa annua*), black nightshade (*Solanum nigra*), blackgrass (*Alopecurus myosuroides*), chickweed (*Stellaria media*), deadnettle (*Lamium amplexicaule*), downy brome (*Bromus tectorum*), field violet (Viola arvensis), galium (Galium aparine), green foxtail (*Setaria viridis*), jointed goatgrass (*Aegilops cylindrica*), kochia (*Kochia scoparia*), lambsquarters (*Chenopodium album*), little seed canarygrass (*Phalaris minor*), rape (*Brassica napus*),

5

10

10

redroot pigweed (Amaranthus retroflexus), ryegrass (Lolium multiflorum), scentless chamomile (Matricaria inodora), speedwell (Veronica persica), spring barley (Hordeum vulgare cv. 'Klages'), spring wheat (Triticum aestivum cv. 'ERA'), sugar beet (Beta vulgaris cv. 'US1'), sunflower (Helianthus annuus cv. 'Russian Giant'), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti), winter barley (Hordeum vulgare cv. 'Igri') and winter wheat (Triticum aestivum cv. 'Talent').

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table F, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

PCT/US96/13347

TABLE F	COMPOUND
Rate 750 g/ha	43
POSTEMERGENCE	
Annual Bluegras	s 60
Blackgrass	-
Blk Nightshade	-
Chickweed	60
Deadnettle	50
Downy brome	50
Field violet	-
Galium	65
Green foxtail	10
Ivy Speedwell	-
Jointed Goatgr.	-
Kochia	45
Lambsquarters	100
LS Canarygrass	-
Redroot Pigweed	20
Russian Thistle	10
Ryegrass	-
Scentless Cham.	50
Spring Barley	0
Wheat (Spring)	0
Wheat (Winter)	0
Wild buckwheat	10
Wild mustard	-
Wild oat	-
Windgrass	-
Winter Barley	0

TABLE F	COMPOUND	TABLE F	COMPOUND	
Rate 250 g/ha	43	Rate 125 g/ha	21 22	
POSTEMERGENCE		POSTEMERGENCE		
Annual Bluegras	ss 60	Annual Bluegrass	100 100	
Blackgrass	-	Blackgrass	30 20	
Blk Nightshade	-	Blk Nightshade	30 20	
Chickweed	0	Chickweed	100 100	
Deadnettle	30	Deadnettle	100 100	
Downy brome	-	Downy brome	100 100	
Field violet	-	Field violet	0 5	
Galium	50	Galium	100 100	
Green foxtail	10	Green foxtail	60 70	
Ivy Speedwell	-	Ivy Speedwell	100 100	
Jointed Goatgr.	-	Jointed Goatgr.	10 10	
Kochia	30	Kochia	70 100	
Lambsquarters	40	Lambsquarters	100 100	
LS Canarygrass	-	LS Canarygrass		
Redroot Pigweed	10	Redroot Pigweed	100 100	
Russian Thistle	0	Russian Thistle	70 80	
Ryegrass	-	Ryegrass	5 20	
Scentless Cham.	50	Scentless Cham.	100 100	
Spring Barley	0	Spring Barley	20 10	
Wheat (Spring)	0	Wheat (Spring)	30 25	
Wheat (Winter)	0	Wheat (Winter)	30 15	
Wild buckwheat	30	Wild buckwheat	70 75	
Wild mustard	-	Wild mustard	100 100	
Wild oat	-	Wild oat	50 70	
Windgrass	-	Windgrass .	20 5	
Winter Barley	0	Winter Barley	20 15	

TABLE F		COMP	OUND	TABLE F	(COMP	OUND
Rate 62 g/ha	5	21	22	Rate 31 g/ha	5	21	22
POSTEMERGENCE				POSTEMERGENCE			
Annual Bluegrass	60	100	100	Annual Bluegrass	60	60	55
Blackgrass	10	20	10	Blackgrass	20	10	2
Blk Nightshade	15	20	10	Blk Nightshade	10	10	5
Chickweed	75	75	100	Chickweed	75	75	100
Deadnettle	65	100	100	Deadnettle	60	100	75
Downy brome	100	100	100	Downy brome	75	55	70
Field violet	10	0	0	Field violet	0	0	0
Galium	100	100	100	Galium	_	_	100
Green foxtail	55	45	55	Green foxtail	50	35	40
Ivy Speedwel	70	100	100	Ivy Speedwell	60	100	100
Jointed Goatgr.	15	0	10	Jointed Goatgr.	10	0	2
Kochia	35	65	80	Kochia	15	55	70
Lambsquarters	100	100	100	Lambsquarters	75	100	100
LS Canarygrass	10	20	20	LS Canarygrass	10	10	20
Redroot Pigweed	70	60	100	Redroot Pigweed	70	55	85
Russian Thistle	60	100	80	Russian Thistle	40	60	70
Ryegrass	5	5	0	Ryegrass	5	0	0
Scentless Cham.	70	70	7 5	Scentless Cham.	60	65	65
Spring Barley	30	10	10	Spring Barley	30	10	0
Wheat (Spring)	20	20	10	Wheat (Spring)	20	10	5
Wheat (Winter)	30	20	10	Wheat (Winter)	20	5	0
Wild buckwheat	30	60	70	Wild buckwheat	25	55	60
Wild mustard	75	100	100	Wild mustard	70	65	100
Wild oat	20	30	40	Wild oat	10	10	10
Windgrass	10	10	2	Windgrass	5	10	2
Winter Barley	30	15	10	Winter Barley	20	10	10

6 177 7 7				
TABLE F		COMP		TABLE F COMPOUND
Rate 16 g/ha	5	21	22	Rate 8 g/ha 5
POSTEMERGENCE				POSTEMERGENCE
Annual Bluegrass	50	60	30	Annual Bluegrass 40
Blackgrass	10	5	0	Blackgrass 0
Blk Nightshade	5	10	5	Blk Nightshade 0
Chickweed	70	65	75	Chickweed 50
Deadnettle	50	100	100	Deadnettle 40
Downy brome	60	70	100	Downy brome 60
Field violet	0	0	0	Field violet 0
Galium	70	100	100	Galium 60
Green foxtail	30	25	30	Green foxtail 40
Ivy Speedwell	50	30	60	Ivy Speedwell 30
Jointed Goatgr.	0	0	0	Jointed Goatgr. 0
Kochia	10	10	60	Kochia 0
Lambsquarters	60	100	100	Lambsquarters 30
LS Canarygrass	2	10	10	LS Canarygrass 0
Redroot Pigweed	60	50	50	Redroot Pigweed 50
Russian Thistle	30	40	50	Russian Thistle 30
Ryegrass	0	0	0	Ryegrass 0
Scentless Cham.	60	60	50	Scentless Cham. 50
Spring Barley	20	10	0	Spring Barley 10
Wheat (Spring)	15	10	2	Wheat (Spring) 10
Wheat (Winter)	10	0	0	Wheat (Winter) 0
Wild buckwheat	0	50	60	Wild buckwheat 0
Wild mustard	50	65	100	Wild mustard 60
Wild oat	5	15	0	Wild oat 0
Windgrass	5	5	2	Windgrass 0
Winter Barley	10	5	0	Winter Barley 10

TEST G

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture and applied to the surface of the water which was contained in each pot.

Individual containers of barnyardgrass (*Echinochloa oryzicola*), small flower umbrella sedge (*Cyperus difformis*), common falsepimpernel (*Lindernia procumbens*), monochoria (*Monochoria vaginalis*) and bulrush (*Scirpus juncoides*) were seeded and allowed to grow until the 1.5 to 2.5 leaf stage of development. A Sultama clay loam soil was used for this propagation. Japonica rice (*Oryza sativa*) was transplanted at 0 and 2

cm depth five days before application of the test compound to the water surface. An early and late stage of each weed species was treated, the stage of development being related to the concurrent planting of *Scirpus juncoides* which was then treated at the 1.5 (early) and the 2.5 (late) leaf stage.

5

Treated plants and untreated controls were maintained under greenhouse conditions for twenty to thirty days at which time treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table G, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) indicated that no test result was recorded.

TABLE G COM	POUND	TABLE G	COMPOUND
Rate 1000 g/ha	37	Rate 500 g/ha	18 37
Flood Saita soil		Flood Saita soi	1
barnyard early	100	barnyard early	75 65
barnyard late	70	barnyard late	55 60
C. difformis early	100	C. difformis ea	rly 100 80
C. difformis late	60	C. difformis la	te 80 30
Japoni rice Ocm	85	Japoni rice 0cm	100 50
Japoni rice 2cm	80	Japoni rice 2cm	80 50
L. procumben early	100	L. procumben ear	rly 100 100
L. procumben late	100	L. procumben las	te 100 100
M. vaginalis early	80	M. vaginalis ear	rly 80 65
M. vaginalis late	65	M. vaginalis lat	e 75 70
S. juncoides early	80	S. juncoides ear	aly 45 60
S. juncoides late	55	S. juncoides lat	e 55 5 0

TABLE G	COMP	DUND		TABLE G COMPOUND
Rate 250 g/ha	18	37	38	Rate 125 g/ha 18 37 38
Flood Saita soil				Flood Saita soil
barnyard early	40	65	20	barnyard early 35 10 20
barnyard late	50	50	20	barnyard late 35 0 30
C. difformis early	40	65	20	C. difformis early 20 20 20
C. difformis late	70	40	20	C. difformis late 30 10 40
Japoni rice 0cm	85	10	25	Japoni rice Ocm 45 0 5
Japoni rice 2cm	60	0	15	Japoni rice 2cm 5 10 15
L. procumben early	100	100	60	L. procumben early 100 70 20
L. procumben late	100	100	40	L. procumben late 100 100 50
M. vaginalis early	65	75	30	M. vaginalis early 70 30 10
M. vaginalis late	70	55	50	M. vaginalis late 55 30 40
S. juncoides early	45	40	20	S. juncoides early 35 10 30
S. juncoides late	50	30	30	S. juncoides late 40 0 40
TABLE G COM	1POUN	D		TABLE G COMPOUND
Rate 64 g/ha	18	38		Rate 32 g/ha 38
Flood Saita soil				Flood Saita soil
barnyard early	30	20		barnyard early 10
barnyard late	30	10		barnyard latete 20
C. difformis early	0	20		C. difformis early 30
C. difformis late	10	10		C. difformis late 10
Japoni rice 0cm	25	10		Japoni rice 0cm 5
Japoni rice 2cm	0	0		Japoni rice 2cm 5
L. procumben early	100	50		L. procumben early 20
L. procumben late	100	20		L. procumben late -
M. vaginalis early	60	10		M. vaginalis early 20
M. vaginalis late	60	30		M. vaginalis late 40
0 -				

S. juncoides early 30

S. juncoides late

S. juncoides early 20 30

20 20

S. juncoides late

CLAIMS

What is claimed is:

1. A compound selected from Formula I, and agriculturally suitable salts thereof,

5

$$\mathbb{Z}_{Y-A}^{\mathbb{R}^{1}}$$
 \mathbb{Q}_{Q}

I

wherein

Q is

Q-1

or

A is $-(CH_2)_m$ -, -CH=CH-, $-CH_2CH=CH$ -, $-CH=CHCH_2$ -, $-(CH_2)_n$ -NR⁹-,

10

Q-2

-NR⁹-(CH₂)_n-, -(CH₂)_n-O- or -(CH₂)_n-S(O)₂-, each group optionally substituted with one to four R⁸, and the directionality of the A linkage is defined such that the moiety depicted on the left side of the linkage is bonded to Y and the moiety on the right side of the linkage is bonded to the phenyl

ring;

Y is O; NR^9 ; or CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen; provided that when A is - NR^9 -(CH_2)_n-, then Y is CH_2 ;

20

Z is C(=X), O, or $S(O)_2$; provided that when Y is O or NR^9 , then Z is C(=X); X is O or S;

25

 $R^1 \text{ is H, C$_1$-$C$_6$ alkyl, C$_1$-C_6$ haloalkyl, C$_1$-C_6$ alkoxy, C$_1$-C_6$ haloalkoxy, halogen, cyano, nitro, $S(O)$_2NR^{10}R$^{11}, C_1$-C_6$ alkylsulfonyl, C_1$-$C$_6$ haloalkylsulfonyl, C_3$-$C$_6$ alkenylsulfonyl, C_3$-$C$_6$ haloalkynylsulfonyl or C_3$-$C$_6$ cycloalkylsulfonyl; or R^1 is$

phenylsulfonyl optionally substituted with C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro; each R^2 is independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano or nitro; R^3 is OR^{12} , C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 5 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl or halogen; each R⁴ is independently C₁-C₃ alkyl, C₁-C₃ alkoxy, C₁-C₃ alkylthio or halogen; or when two R⁴ are attached to the same carbon atom, then said R⁴ pair can be taken together to form -OCH2CH2O-, -OCH2CH2CH2O-, -SCH2CH2Sor -SCH₂CH₂CH₂S-, each group optionally substituted with 1-4 CH₃; 10 R^5 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkoxyalkyl, formyl, C_2 - C_6 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C7 dialkylaminocarbonyl, C_1 - C_6 alkylsulfonyl or C_1 - C_6 haloalkylsulfonyl; or \mathbb{R}^5 is benzoyl or phenylsulfonyl, each optionally substituted with C₁-C₃ alkyl, 15 halogen, cyano or nitro; R^6 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl; or R^6 is phenyl or benzyl, each optionally substituted on the phenyl ring with C_1 - C_3 alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro: R^7 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, 20 cyano or nitro; each R⁸ is independently C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, hydroxy or halogen; or two R⁸ groups bonded to the same carbon atom can be taken together with the carbon to which they are attached to form C(=O) or C(=S); provided that when two R⁸ groups are 25 attached to a carbon atom which is attached to an O, NR9 or S(O)2, then no more than one of said R⁸ groups can be C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, hydroxy or halogen; each R^9 is independently H; C_1 - C_6 alkyl; C_1 - C_6 haloalkyl; C_3 - C_6 alkenyl; C_3 - C_6 haloalkenyl; C_3 - C_6 alkynyl; C_3 - C_6 haloalkynyl; C_3 - C_6 cycloalkyl; C_1 - C_6 30 alkoxy; C₁-C₆ haloalkoxy; C₂-C₆ alkoxyalkyl; formyl; C₂-C₆ alkylcarbonyl; C_2 - C_6 alkoxycarbonyl; C_2 - C_6 alkylaminocarbonyl; C_3 - C_7 dialkylaminocarbonyl; or phenyl, benzyl or benzoyl, each optionally substituted on the phenyl ring with C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 35 alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro; R^{10} is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C₃-C₆ haloalkynyl, C₃-C₆ cycloalkyl or C₁-C₆ alkoxy; or R¹⁰ is

phenyl or benzyl, each optionally substituted on the phenyl ring with C_1 - C_3

10

20

25

30

35

alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, 1-2 halogen, cyano or nitro;

 R^{11} is H, C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; or

 R^{10} and R^{11} can be taken together as -CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, or -CH₂CH₂CH₂-, each optionally substituted with 1-4 C₁-C₃ alkyl;

R¹² is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkoxyalkyl, formyl, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₇ dialkylaminocarbonyl, C₁-C₆ alkylsulfonyl or C₁-C₆ haloalkylsulfonyl; or R¹² is benzoyl or phenylsulfonyl, each optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro;

m is 1, 2 or 3;

n is 1 or 2;

q is 0, 1, 2, 3 or 4; and

15 r is 0, 1 or 2;

provided that

- (i) when Z is C(=X) or O; A is $-(CH_2)_m$ optionally substituted with one to four R^8 ; and m is 1 or 2; then Q is Q-2;
- (ii) when Z is C(=X) or O; and A is -CH=CH- optionally substituted with one to two R⁸; then Q is Q-2;
- (iii) when Z is C(=X) or O; A is - $(CH_2)_n$ -NR⁹-, -NR⁹- $(CH_2)_n$ or - $(CH_2)_n$ -O- each optionally substituted with one to four R⁸; and n is 1; then Q is Q-2;
- (iv) when A is $-(CH_2)_n-NR^9-$, $-(CH_2)_n-O-$ or $-(CH_2)_n-S(O)_2-$ each optionally substituted with one to four R^8 ; and Y is CH_2 optionally substituted with one or two groups independently selected from C_1-C_6 alkyl, C_1-C_6 haloalkyl and halogen; then Z is O or $S(O)_2$;
- (v) when A is $-(CH_2)_m$ optionally substituted with one to four R^8 ; Y is CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen; and Z is O or $S(O)_2$; then each R^8 is independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, hydroxy or halogen provided that no more than one R^8 is C_1 - C_6 alkoxy; and
- (vi) when A is $-(CH_2)_m$ optionally substituted with one to four R^8 ; Y is CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen; Z is $S(O)_2$; and m is 2; then Q is Q-1 and each R^8 is independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, hydroxy or halogen.
- 2. A compound of Claim 1 wherein: the A-Y-Z moiety is selected from combinations of A, Y and Z such that

- (i) when A is $-(CH_2)_m$ optionally substituted with one to two R⁸ and Y is O or NR⁹, then Z is C(=X);
- (ii) when A is $-(CH_2)_m$ optionally substituted with one to two R^8 and Y is CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen, then Z is O; and (iii) when A is $-(CH_2)_m$ or $-(CH_2)_n$ -NR⁹- optionally substituted with one to two R^8 and Y is CH_2 optionally substituted with one or two groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and halogen, then Z is $S(O)_2$;
- 10 X is O;

15

each R⁴ is independently C₁-C₃ alkyl;

 R^6 is H, C_1 - C_6 alkyl or C_3 - C_6 alkenyl;

 R^7 is H, C_1 - C_3 alkyl or C_1 - C_3 haloalkyl;

 R^9 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl or C_3 - C_6 cycloalkyl;

 R^{12} is H, formyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_7 dialkylaminocarbonyl, C_1 - C_6 alkylsulfonyl or C_1 - C_6 haloalkylsulfonyl; or R^{12} is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro;

q is 0, 1 or 2; and

r is 0 or 1.

- 3. A compound of Claim 2 wherein:
- R^1 is H, methyl, halogen, $S(O)_2NR^{10}R^{11}$, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfonyl or C_3 - C_5 cycloalkylsulfonyl;
- 25 R² is methyl, halogen or nitro;

R³ is OR¹²:

- R^5 is H or C_1 - C_3 alkylsulfonyl; or R^5 is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro;
- each R^8 is independently C_1 - C_3 alkyl, C_1 - C_3 alkoxy or halogen; or two R^8 groups bonded to the same carbon atom can be taken together with the carbon to which they are attached to form C(=O);

 R^{10} is H, C_1 - C_4 alkyl, allyl or propargyl;

 R^{11} is H or C_1 - C_4 alkyl; and

- R^{12} is H or C_1 - C_3 alkylsulfonyl; or R^{12} is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro.
- 4. The compound of Claim 3 which is selected from the group: 2-(1,1-dimethylethyl)-5-[(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)carbonyl]-8-(ethylsulfonyl)-3,4-dihydro-1(2*H*)-isoquinolinone;

30

10

(2,3-dihydro-2,4,7-trimethylbenzo[b]thiophen-5-yl)(1-ethyl-5-hydroxy-1H-pyrazol-4-yl)methanone S,S-dioxide;

(1-ethyl-5-hydroxy-1H-pyrazol-4-yl)(2,3,4,5-tetrahydro-6,9-dimethyl-1-benzothiepin-7-yl) methanone S,S-dioxide;

4-ethyl-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2*H*-1,4-benzothiazin-3(4*H*)-one 1,1-dioxide;

4-ethyl-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-5,8-dimethyl-2<math>H-1,4-benzothiazin-3(4H)-one 1,1-dioxide; and

(2,3-dihydro-2,4,7-trimethylbenzo[b]thiophen-5-yl)(5-hydroxy-1-methyl-1H-pyrazol-4-yl)methanone S,S-dioxide.

- 5. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 6. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a
 15 compound of Claim 1.

PCT/US 96/13347

					700 307 13347
IPC 6	FICATION OF SUBJECT C07D335/06 A01N43/38 C07D333/54	A01N43/08 A01N43/42 C07D337/08	A01N43/10 A01N43/84 C07D401/06	A01N43/18 A01N43/56 C07D403/06	A01N43/22 C07D279/16 C07D405/06
According to	o International Patent Cla	assification (IPC) or to be	oth national classification	and IPC	
	SEARCHED				

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUI	MENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 283 261 A (ICI PLC ;ICI AMERICA INC (US)) 21 September 1988 cited in the application see page 57 - page 58; claim 1 see page 62; claim 11	1-6
X	WO 95 04054 A (IDEMITSU KOSAN CO; NAKAMURA KAZUFUMI (JP); KOIKE KAZUYOSHI (JP); S) 9 February 1995 cited in the application	1-6
P,X	& EP 0 712 853 A (IDEMITSU KOSAN COMPANY LIMITED) 22 May 1996 see page 45 - page 47; claims 1,10	1-6
		·

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
* Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search	T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family Date of mailing of the international search report
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authonzed officer Fink, D

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern	1 4	Application No
PC		96/13347

A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C07D409/06 C07D417/06	
According t	o International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS	SEARCHED	
Minimum d	locumentation searched (classification system followed by classification symbols)	
Documental	tion searched other than minimum documentation to the extent that such documents are inclu	ided in the fields searched
Electronic d	lata base consulted during the international search (name of data base and, where practical, s	earch terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	WO 94 04524 A (IDEMITSU KOSAN CO ;SAKAMOTO MASASHI (JP); SHIBATA MITSURU (JP); NA) 3 March 1994	1-6
Ρ,Χ	& US 5 480 858 A (M. SAKAMOTO ET AL.) 2 January 1996 see column 28 - column 29; claims 1,3	1-6
Х	WO 93 18031 A (IDEMITSU KOSAN CO) 16 September 1993	1-6
P,X	& US 5 468 722 A (M. SHIBATA ET AL.) 21 November 1995 see column 80; claims 1,7	1-6
Furt	her documents are listed in the continuation of box C.	embers are listed in annex.
'A' docum consid 'E' earlier filing ('L' docume	ent defining the general state of the art which is not cited to understand cited to understand invention document but published on or after the international date ent which may throw doubts on priority claim(s) or priority date and cited to understand invention document of particular cannot be considered involve an inventive an inventive an inventive and the state of the state o	ished after the international filing date not in conflict with the application but the principle or theory underlying the tlar relevance; the claimed invention d novel or cannot be considered to extep when the document is taken alone
O' docume other r	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or document is combined and proof to the international filing date but a cannot be considered document is combined to the international filing date but a cannot be considered document is combined to the international filing date but	lar relevance; the claimed invention d to involve an inventive step when the sed with one or more other such docu- ation being obvious to a person skilled
	han the priority date claimed "&" document member of actual completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the international search Date of mailing of the completion of the co	ne international search report
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	

Form PCT/ISA/210 (second sheet) (July 1992)

NTENATIONAL	SEARCH	REPORT			
			PCT/US	96	/13347

Patent document cited in search report	Publication date	Patent (family member (s)		Publication date	
EP-A-0283261	21-09-88	AT-T- AU-B- AU-A- DE-D- DE-T- EP-A- ES-T- JP-A- US-A- US-A- US-A- US-A- US-A- US-A- US-A-	110067 603648 1311388 1328088 3851073 3851073 0283152 2058257 63264542 1006256 5426091 4912262 5563115 5041681 5098464 5210312 5250501	15-09-94 22-11-90 22-09-88 24-11-88 22-09-94 02-03-95 21-09-88 01-11-94 01-11-88 10-01-89 20-06-95 27-03-90 08-10-96 20-08-91 24-03-92 11-05-93 05-10-93	
WO-A-9504054	09-02-95	AU-A- BR-A- CA-A- EP-A- HU-A-	7238894 9407169 2167925 0712853 73407	28-02-95 17-09-96 09-02-95 22-05-96 29-07-96	
WO-A-9404524	03-03-94	CN-A- US-A-	1089605 5480858	20-07-94 02-01-96	
WO-A-9318031	16-09-93	CA-A- EP-A- US-A-	2131191 0629623 5468722	04-09-93 21-12-94 21-11-95	