113 學年度第二學期五專(資工二乙)數學第一次小考

一、單一選擇題(共60分,每題15分)

1. (D) 已知二階方陣
$$A = \begin{bmatrix} 2 & 0 \\ 4 & -2 \end{bmatrix}$$
、 $B = \begin{bmatrix} 6 & 6 \\ -4 & 2 \end{bmatrix}$ 與 X ,滿足 $2X + 3A = B$,則 $X = ?$
(A) $\begin{bmatrix} 4 & 6 \\ -8 & 4 \end{bmatrix}$ (B) $\begin{bmatrix} 22 & 18 \\ -4 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 6 \\ -16 & 8 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 3 \\ -8 & 4 \end{bmatrix}$

解析: $\pm 2X + 3A = B$ 移項得 2X = B - 3A 等式兩邊同乘 $\frac{1}{2}$ 得

$$X = \frac{1}{2}B - \frac{3}{2}A = \frac{1}{2} \begin{bmatrix} 6 & 6 \\ -4 & 2 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} 2 & 0 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ -2 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 6 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ -8 & 4 \end{bmatrix}$$

2. (B) 設 a 為實數且方程組 $\begin{cases} ax + y = 3 \\ 2x + (a+1)y = -3 \end{cases}$ 無解,則 a = (A)2 (B)1 (C)-1 (D)-2

解析:
$$\Delta = \begin{vmatrix} a & 1 \\ 2 & a+1 \end{vmatrix} = a^2 + a - 2 = (a+2)(a-1)$$
 $\Delta_x = \begin{vmatrix} 3 & 1 \\ -3 & a+1 \end{vmatrix} = 3(a+1) + 3 = 3(a+2)$

$$\Delta_y = \begin{vmatrix} a & 3 \\ 2 & -3 \end{vmatrix} = -3a - 6 = -3(a+2)$$

 \therefore 方程式無解, $\therefore \Delta = 0$ 且 $\Delta_x \setminus \Delta_y \setminus \Delta_z$ 至少有一不為0 故a = 1

3. (D)
$$\stackrel{\text{in}}{=} A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 1 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 2 & 4 \\ 3 & 1 & 1 \end{bmatrix}, \stackrel{\text{th}}{=} AB = C = [c_{ij}], \text{ } [c_{13} = (A) - 7 (B) - 3]$$

 $(C)11 \quad (D)13$

解析:
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 1 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 2 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 2 & 4 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 5 & 13 \\ -3 & -3 & 11 \end{bmatrix}, c_{13} = 13$$
 故選(D)

4. (D) 已知 A 為二階方陣,且 $A^2=3A$,若 $(3A-2I_2)^2=mA+nI_2$,m、n 為實數,則 m+n=? (A)16 (B)17 (C)18 (D)19

解析:
$$(3A-2I_2)^2 = 9A^2 - 12A + 4I_2 = 9(3A) - 12A + 4I_2 = 27A - 12A + 4I_2 = 15A + 4I_2$$

⇒ $m = 15$ \cdot $n = 4$ \cdot $m + n = 19$

二、計算與證明題(共40分,每題20分)

1. 設 $d \cdot e \cdot f$ 為實數,已知圓方程式為 $x^2 + y^2 + dx + ey + f = 0$,且點 $(-2,1) \cdot (0,1)$ 與 (-1,2) 在此圓周上,求 $d \cdot e \cdot f$ 之值。

答案: 因為(-2,1)、(0,1)、(-1,2)在圓周上,所以將點代入方程式可得

$$\begin{cases} 4+1-2d+e+f=0\\ 1+e+f=0\\ 1+4-d+2e+f=0 \end{cases}, \stackrel{\text{\ref{ab}}}{=} \begin{cases} -2d+e+f=-5\cdots\cdots @\\ e+f=-1\cdots\cdots @\\ -d+2e+f=-5\cdots\cdots @ \end{cases}$$

①-③ 得
$$-d-e=0$$
,所以 $e=-2$,代入②式得 $f=1$

2. 試寫出方程組
$$\begin{cases} x - y + z = 6\\ 3x - 2y - z = 6 \end{cases}$$
的
$$2x + 3y - 2z = 0$$

(1)係數矩陣 (2)增廣矩陣 (3)利用矩陣列運算求出其解

答案: (1)條數矩陣為 $\begin{bmatrix} 1 & -1 & 1 \\ 3 & -2 & -1 \\ 2 & 3 & -2 \end{bmatrix}$

(2)增廣矩陣為
$$\begin{bmatrix} 1 & -1 & 1 & 6 \\ 3 & -2 & -1 & 6 \\ 2 & 3 & -2 & 0 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 & -1 & 1 & 6 \\ 3 & -2 & -1 & 6 \\ 2 & 3 & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 6 \\ 0 & 1 & -4 & -12 \\ 0 & 5 & -4 & -12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 6 \\ 0 & 1 & -4 & -12 \\ 0 & 0 & 16 & 48 \end{bmatrix}$$

化為上三角形式的方程組為
$$\begin{cases} x - y + z = 6 \cdots \\ y - 4z = -12 \cdots \\ 16z = 48 \cdots \end{cases}$$

由③得
$$z=3$$
代入②,得 $y-12=-12 \Rightarrow y=0$

將
$$y = 0, z = 3$$
代入①,得 $x = 3$

故解為(3,0,3)