矩阵分析与应用 - 秘密共享 林宪正

参考文献:庞辽军等,"秘密共享技术及其应用,"人民邮电出版社

秘密共享

- 秘密共享: 将秘密以适当的方式拆分,拆分后的每一个份额由不同的参与者管理,单个参与者无法恢复秘密信息,只有若干个参与者一同协作才能恢复秘密消息。
- 秘密共享是一种将秘密分割存储的密码技术,目的是阻止秘密过于集中,以达到分散风险和容忍入侵的目的,是信息安全和数据保密中的重要手段。

秘密共享

门限秘密共享 -Shamir 门限方案

- 数学基础:多项式内插
- (t, n) 秘密分发:
 - 输入:秘密 s∈F_q
 - 随机选择 f(x)=a₀+a₁x+...+a_{t-1}x^{t-1},使 a₀=s
 - 计算 (w₁, f(w₁)), (w₂, f(w₂)),...,(w_n, f(w_n))
- 秘密恢复:
 - 当获得任何 t 秘密份额时,可以通过多项式插值方法 计算出 f(x) , 其常数项为秘密 s

门限秘密共享 -Shamir 门限方案

- 任意 t-1 份秘密份额无法获取 s 的任何信息。
- 减小秘密份额大小
 - f(x) 全部系数为秘密信息 (计算安全的秘密共享)
 - f(x) 部份系数为秘密信息 (Ramp Scheme)
- 侦测错误的秘密份额。
- 可否将 Shamir 门限方案建立在环上?

访问结构

- 访问结构用於指出哪些参与者可以合作恢复出所 共享的秘密,而哪些参与者合作不能恢复秘密。
- 例子:在 (t=2, n=3) 门限秘密共享中,令参与者集合为 P={P₁, P₂, P₃} , 则
 Γ={{P₁, P₂}, {P₁, P₃}, {P₂, P₃}, {P₁, P₂, P₃}} ,
 \bar{Γ}={{P₁}, {P₂}, {P₃}, {P₃}} 。

访问结构

- 访问结构的单调性。如果 $X \in \Gamma$ 且 $X \subseteq A \subseteq \Pi$,那 $\otimes A \in \Gamma$ 。
- 极小访问结构。 Γ_μ={A|A∈Γ 且∀ B⊂A⇒B∉Γ}。
- 极大非访问结构。

完备的秘密共享

- 完备的秘密共享方案。令π为实现访问结构Γ 的一个秘密共享方案,在 n 个参与者中共享了秘 密 s ,如果满足:
 - 任何集合 γ∈Γ 中的参与者将他们的秘密份额放在一 起能够确定秘密 s
 - 任何集合 η⊆P 且 η∉Γ中的参与者将他们的秘密份额 放在一起不能得到关於秘密 s 的任何信息

秘密共享的应用

- 门限数字签名
- 多方安全计算

探讨问题

- 分級的秘密共享
- 基於 MDS 码的秘密分享方案
 - X-Codes, P-Codes, Star Codes,...
- 基於信道编码的秘密分享方案
 - Product Codes
 - Generalized Reed-Muller Codes

秘密共享

- 视觉密码 (Visual Cryptography)

pixel		share #1	share #2	superposition of the two shares
	p = .5 p = .5			
	p = .5 $p = .5$			

半色调技术

• 误差扩散法 Error Diffusion

