## A Combinatorial Identity for Unicellular Maps

Matthew Ludwig

May 2021

#### Outline

- Introduction to Unicellular Maps
- The Gluing and Slicing Operations
- Bijections Between Sets of Unicellular Maps
- Recurrence Relation

#### Surfaces

- A surface is a 2 dimensional object that looks like Euclidean space around each point on it.
- The genus of a surface is the number of holes that the surface has.



Figure: Surfaces of Genus g

# Maps on Surfaces

#### **Definition**

A map or an embedding of a graph on a surface is a drawing of the graph on a surface in which no edges cross. The components of the complement of an embedded graph are called *regions* or *faces*. A map or an embedding of a graph is *cellular* if every region is topologically equivalent to a polygon. [2]



# Unicellular Maps

#### **Definition**

A unicellular map or one-face map is a graph embedded on a surface whose complement is topologically equivalent to a polygon. [1]



Figure: A Unicellular Map on a Genus 1 Surface

## How Many Unicellular Maps are There?

- How many graphs embedded on a surface of genus g are unicellular?
  - A lot.
- How do we count them?
  - Develop a recurrence relation.

## Unicellular Maps of Genus 0

- Unicellular maps on a surface of genus 0 are the ordered plane trees.
  - Enumerated by the Catalan numbers
  - $C_n = \frac{1}{n+1} {2n \choose n} = 1, 1, 2, 5, 14, 42, 132, 429, 1430, ...$



## Unicellular Maps of Genus 0



Figure: A Unicellular Map on a Genus 0 Surface

## Equivalent Representations for Unicellular Maps

- Three equivalent representations for unicellular maps.
  - ► A graph embedded on a surface
  - ► A ribbon graph
  - A triple  $\mathbf{m} = (H, \alpha, \sigma)$ 
    - $\star$  H is set of cardinality 2n
    - $\star \quad \alpha \rightarrow \text{pairs of half-edges}$
    - $\star$   $\sigma \rightarrow$  information about the vertices.
    - $\star$   $\gamma \rightarrow$  order of half-edges around the map



$$\begin{split} H &= \begin{bmatrix} 1,22 \end{bmatrix} \\ \alpha &= (1,22)(2,5)(3,11)(4,12)(6,21)(7,16) \\ (8,9)(10,15)(13,18)(14,19)(17,20) \\ \sigma &= (1,5,21)(2,11,4)(3,12,18,14,10) \end{split}$$

$$\begin{cases} (6, 16, 20)(7, 9, 15)(8)(13, 19, 17)(22) \\ \gamma = \alpha \sigma = (1, 2, 3, \dots, 22) \end{cases}$$



Figure: Three Equivalent Representations of Unicellular Maps [1]

### Equivalent Representations of Unicellular Maps



Figure: Constructing the Ribbon Graph from the Permutation Representation

## Equivalent Representations of Unicellular Maps



Figure: Constructing the Topological Representation from the Permutation Representation

## Properties of Unicellular Maps

- Every unicellular map has a distinguished half-edge called the root.
- ullet A *tour* of the face of a unicellular map is given by the permutation  $\gamma$ .
- The *linear order*  $<_m$  on H is given by  $r <_m \gamma(r) <_m \gamma^2(r) <_m ... <_m \gamma^{2n-1}(r)$



Figure: A tour of the face for two different unicellular maps.

### The Gluing Operation

- The gluing operation allows us to create a unicellular map of a larger genus from a unicellular map of smaller genus.
- Requires three distinct half-edges  $a_1 <_{\mathbf{m}} a_2 <_{\mathbf{m}} a_3$  belonging to three distinct vertices.



Figure: The Gluing Operation on a Ribbon Graph

## The Gluing Operation Example



Figure: The Gluing Operation

## Intertwined Half-edges

#### **Definition**

Let  $\overline{m} = (H, \alpha, \overline{\sigma})$  be a map of genus g + 1, and three half-edges  $a_1, a_2, a_3$ belonging to a same vertex  $\overline{v}$  of  $\overline{m}$ . We say that  $a_1, a_2, a_3$  are intertwined if they do not appear in the same order in  $\overline{\gamma} = \alpha \overline{\sigma}$  and in  $\overline{\sigma}$ .[1]



Figure: Intertwining resulting from the gluing operation applied to a plane tree

A Combinatorial Identity for Unicellular Maps

15 / 30

#### **Trisections**

- A trisection is a special half-edge that marks where there is intertwining in the map.
- Every unicellular map of genus g has 2g trisections.
- The half-edge 4 has become a trisection.



Figure: Intertwining resulting from the gluing operation applied to a plane tree.

## The Slicing Operation

- The Slicing operation allows us to create a unicellular map of a smaller genus from a unicellular map of larger genus.
- Requires three intertwined half-edges belonging to the same vertex.



Figure: The Gluing Operation on a Ribbon Graph [1]

# Example of the Slicing Operation



Figure: The Slicing Operation

#### What have we done so far?

- Unicellular maps
  - ► There are three equivalent representations.
  - ▶ The linear order  $<_m$  and the tour of the face.
- The slicing and gluing operations
  - ▶ Allowed us to relate unicellular maps of genus g and genus g + 1.
  - ▶ The gluing operation makes half-edges intertwined.
  - Trisections are special half-edges which mark where there is intertwining.

#### What's Next?

- Find a recurrence relation that relates unicellular maps of larger genus to unicellular maps of smaller genus.
  - Use the gluing and slicing operations?

# Example of Why the Gluing Operation is not Injective



Figure: Two distinct unicellular maps of genus 1 that when glued result in the same unicellular map of genus 2

# Making the Gluing Operation Injective

- Specify which trisection to apply the slicing operation to.
- Not all trisections are the same.
  - ▶ Use block diagrams to categorize the types of trisections.

### Trisections of Type I and II

- What's the difference between I and II?
  - lacktriangleright Trisections of type I ightarrow half-edge with small amount of intertwining
  - lacktriangleright Trisections of type II ightarrow half-edge with large amount of intertwining



Figure: Distinguishing between Trisections of Type I and II around the vertex  $\overline{v}$  [1]

## Bijections for Trisections of Type I and II

### Theorem (Bijection for Trisections of Type I)

Unicellular maps of genus g+1 and a distinguished trisection au of type I  $\ \updownarrow$ 

Unicellular maps of genus g with three distinguished vertices. [1]

### Theorem (Bijection for Trisections of Type II)

Unicellular maps of genus g+1 and a distinguished trisection au of type II  $\ \updownarrow$ 

Unicellular maps of genus g with a distinguished triple  $(v_1, v_2, \tau)$ . [1]

### Example of Genus 2 Case with n = 4

•  $4 \cdot \epsilon_2(4) = {4-1 \choose 3} \epsilon_1(4) + {4+1 \choose 5} Cat(4)$ 



# A Recurrence Relation for Unicellular Maps

#### Theorem

The number of  $\epsilon_g(n)$  of rooted unicellular maps of genus g with n edges satisfies the following combinatorial identity:

$$2g \cdot \epsilon_g(n) = \binom{n+3-2g}{3} \epsilon_{g-1}(n) + \binom{n+5-2g}{5} \epsilon_{g-2}(n) + \dots + \binom{n+1}{2g+1} \epsilon_0(n)$$

[1]

## Applying the Gluing Operation to a Plane Tree



Figure: Applying the Gluing Operation to a Plane Tree

# A Formula for the Number of Unicellular Maps

#### Corollary

The number of  $\epsilon_{\sigma}(n)$  of unicellular maps of genus g with n edges equals:

$$\epsilon_g(n) = R_g \operatorname{Cat}(n)$$

where  $R_g$  is the polynomial of degree 3g defined by the formula:

$$R_g(n) = \sum_{0=g_0 < g_1 < \dots < g_r = g} \prod_{i=1}^r \frac{1}{2g_i} \binom{n+1-2g_{i-1}}{2(g_i - g_{i-1})+1}$$

[1]

### The End

Thank you!

#### References



