The averaging trick and the Černý conjecture

Benjamin Steinberg

Carleton University

bsteinbg@math.carleton.ca

http://www.mathstat.carleton.ca/~bsteinbg

DLT August 20, 2010

- All automata in this talk are deterministic without initial or final states.
- An automaton (Q,A) is said to be synchronizing if there is a word $w\in A^*$ such that |Qw|=1.
- Such a word w is called a reset word.
- The Černý conjecture is concerned with bounding the length of a reset word as a function of the number of states.

Conjecture (Černý)

- All automata in this talk are deterministic without initial or final states.
- An automaton (Q, A) is said to be synchronizing if there is a word $w \in A^*$ such that |Qw| = 1.
- Such a word w is called a reset word.
- The Černý conjecture is concerned with bounding the length of a reset word as a function of the number of states.

Conjecture (Černý)

- All automata in this talk are deterministic without initial or final states.
- An automaton (Q, A) is said to be synchronizing if there is a word $w \in A^*$ such that |Qw| = 1.
- Such a word w is called a reset word.
- The Černý conjecture is concerned with bounding the length of a reset word as a function of the number of states.

Conjecture (Černý)

- All automata in this talk are deterministic without initial or final states.
- An automaton (Q, A) is said to be synchronizing if there is a word $w \in A^*$ such that |Qw| = 1.
- Such a word w is called a reset word.
- The Černý conjecture is concerned with bounding the length of a reset word as a function of the number of states.

Conjecture (Černý)

- All automata in this talk are deterministic without initial or final states.
- An automaton (Q, A) is said to be synchronizing if there is a word $w \in A^*$ such that |Qw| = 1.
- Such a word w is called a reset word.
- The Černý conjecture is concerned with bounding the length of a reset word as a function of the number of states.

Conjecture (Černý)

Černý's examples

• Černý showed that the shortest length reset word for the *n*-state synchronizing automaton with transitions

$$a = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & n \end{pmatrix}$$

is
$$(n-1)^2$$
.

• The Černý automaton for n=4:

• The word $b(a^3b)^2$ resets to state 2.

Černý's examples

• Černý showed that the shortest length reset word for the *n*-state synchronizing automaton with transitions

$$a = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & n \end{pmatrix}$$

is $(n-1)^2$.

• The Černý automaton for n = 4:

• The word $b(a^3b)^2$ resets to state 2.

Černý's examples

• Černý showed that the shortest length reset word for the *n*-state synchronizing automaton with transitions

$$a = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & n \end{pmatrix}$$

is
$$(n-1)^2$$
.

• The Černý automaton for n=4:

• The word $b(a^3b)^2$ resets to state 2.

- It is straightforward to obtain a cubic upper bound of $\frac{n^3-n}{3}$ on reset words for synchronizing automata.
- The best known upper bound is $\frac{n^3-n}{6}$, which was proved by Pin modulo an extremal set theory result of Frankl.
- Probabilistically speaking, all automata are synchronizing with reset word of length at most 2n.
- The majority of the Černý literature consists of a vast array of special, but interesting, cases.
- I want to abstract here an argument that has been used in an increasing number of papers.

- It is straightforward to obtain a cubic upper bound of $\frac{n^3-n}{3}$ on reset words for synchronizing automata.
- The best known upper bound is $\frac{n^3-n}{6}$, which was proved by Pin modulo an extremal set theory result of Frankl.
- Probabilistically speaking, all automata are synchronizing with reset word of length at most 2n.
- The majority of the Černý literature consists of a vast array of special, but interesting, cases.
- I want to abstract here an argument that has been used in an increasing number of papers.

- It is straightforward to obtain a cubic upper bound of $\frac{n^3-n}{3}$ on reset words for synchronizing automata.
- The best known upper bound is $\frac{n^3-n}{6}$, which was proved by Pin modulo an extremal set theory result of Frankl.
- Probabilistically speaking, all automata are synchronizing with reset word of length at most 2n.
- The majority of the Černý literature consists of a vast array of special, but interesting, cases.
- I want to abstract here an argument that has been used in an increasing number of papers.

- It is straightforward to obtain a cubic upper bound of $\frac{n^3-n}{3}$ on reset words for synchronizing automata.
- The best known upper bound is $\frac{n^3-n}{6}$, which was proved by Pin modulo an extremal set theory result of Frankl.
- Probabilistically speaking, all automata are synchronizing with reset word of length at most 2n.
- The majority of the Černý literature consists of a vast array of special, but interesting, cases.
- I want to abstract here an argument that has been used in an increasing number of papers.

- It is straightforward to obtain a cubic upper bound of $\frac{n^3-n}{3}$ on reset words for synchronizing automata.
- The best known upper bound is $\frac{n^3-n}{6}$, which was proved by Pin modulo an extremal set theory result of Frankl.
- Probabilistically speaking, all automata are synchronizing with reset word of length at most 2n.
- The majority of the Černý literature consists of a vast array of special, but interesting, cases.
- I want to abstract here an argument that has been used in an increasing number of papers.

- The basic strategy is to work backwards.
- Let (Q, A) be an n-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S \subset Q$ with 1 < |S| < |Q|, we can find a word $w \in A^*$ with $|Sw^{-1}| > |S|$.
- Then we can find a reset word of length at most 1 + (n-2)k
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with m < n-2 and $|w_i| < k$ such that $|aa^{-1}w_1^{-1} \cdots w_m^{-1}| = |Q|$.
- If k = n, then we obtain $1 + (n 2)n = (n 1)^2$

- The basic strategy is to work backwards.
- Let (Q, A) be an n-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1} \cdots w_m^{-1}| = |Q|$.
- If k=n, then we obtain $1+(n-2)n=(n-1)^2$

- The basic strategy is to work backwards.
- Let (Q, A) be an n-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1}\cdots w_m^{-1}| = |Q|$.
- If k=n, then we obtain $1+(n-2)n=(n-1)^2$

- The basic strategy is to work backwards.
- Let (Q, A) be an n-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k.
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1}\cdots w_m^{-1}| = |Q|$.
- If k = n, then we obtain $1 + (n 2)n = (n 1)^2$

- The basic strategy is to work backwards.
- Let (Q, A) be an n-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k.
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1}\cdots w_m^{-1}| = |Q|$.
- If k=n, then we obtain $1+(n-2)n=(n-1)^2$

- The basic strategy is to work backwards.
- Let (Q, A) be an *n*-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k.
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1}\cdots w_m^{-1}| = |Q|$.
- If k = n, then we obtain $1 + (n-2)n = (n-1)^2$

- The basic strategy is to work backwards.
- Let (Q, A) be an *n*-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k.
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1}\cdots w_m^{-1}| = |Q|$.
- If k = n, then we obtain $1 + (n-2)n = (n-1)^2$.

- The basic strategy is to work backwards.
- Let (Q, A) be an *n*-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k.
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1}\cdots w_m^{-1}| = |Q|$.
- If k = n, then we obtain $1 + (n-2)n = (n-1)^2$.

- The basic strategy is to work backwards.
- Let (Q, A) be an *n*-state synchronizing automaton.
- Some letter, say a, must collapse two states to a state q.
- So $|qa^{-1}| \ge 2$.
- Suppose that, for each subset $S\subset Q$ with 1<|S|<|Q|, we can find a word $w\in A^*$ with $|Sw^{-1}|>|S|$.
- Then we can find a reset word of length at most 1 + (n-2)k.
- Indeed, we can find a word w_1 with $|w_1| \le k$ and $|qa^{-1}w_1^{-1}| > |qa^{-1}| \ge 2$.
- Continuing in this fashion, we can find words w_2, \ldots, w_m with $m \le n-2$ and $|w_i| \le k$ such that $|qa^{-1}w_1^{-1}\cdots w_m^{-1}| = |Q|$.
- If k = n, then we obtain $1 + (n-2)n = (n-1)^2$.

One-cluster automata

- Béal and Perrin introduced a modified version of the basic strategy in the context of one-cluster automata.
- (Q,A) is a one-cluster automaton if there is a letter a such that the subgraph consisting of edges labelled by a is connected. For example:

One-cluster automata

- Béal and Perrin introduced a modified version of the basic strategy in the context of one-cluster automata.
- (Q, A) is a one-cluster automaton if there is a letter a such that the subgraph consisting of edges labelled by a is connected. For example:

One-cluster automata

- Béal and Perrin introduced a modified version of the basic strategy in the context of one-cluster automata.
- (Q, A) is a one-cluster automaton if there is a letter a such that the subgraph consisting of edges labelled by a is connected. For example:

- Suppose one has a special subset $C \subseteq Q$ and a "short" word u with $Qu \subseteq C$.
- For one-cluster automata, C is the a-cycle and $u=a^{|Q|-|C|}$.
- ullet Since one can "push" Q into C efficiently, we just need to expand subsets of C.
- Suppose that, for each $\emptyset \neq S \subsetneq C$, we can find a word w of length at most k such that $|Sw^{-1} \cap C| > |S|$.
- Then we can find a reset word of length at most (|C|-1)k + |u|.
- First we expand from one state of C to all of C using repeatedly words of length at most k and then we apply u^{-1}
- We lose here the ability to obtain the first expansion with a single letter: a serious problem!

- Suppose one has a special subset $C \subseteq Q$ and a "short" word u with $Qu \subseteq C$.
- For one-cluster automata, C is the a-cycle and $u = a^{|Q| |C|}$.
- Since one can "push" Q into C efficiently, we just need to expand subsets of C.
- Suppose that, for each $\emptyset \neq S \subsetneq C$, we can find a word w of length at most k such that $|Sw^{-1} \cap C| > |S|$.
- Then we can find a reset word of length at most (|C|-1)k+|u|.
- First we expand from one state of C to all of C using repeatedly words of length at most k and then we apply u^{-1}
- We lose here the ability to obtain the first expansion with a single letter: a serious problem!

- Suppose one has a special subset $C \subseteq Q$ and a "short" word u with $Qu \subseteq C$.
- For one-cluster automata, C is the a-cycle and $u = a^{|Q| |C|}$.
- Since one can "push" Q into C efficiently, we just need to expand subsets of C.
- Suppose that, for each $\emptyset \neq S \subsetneq C$, we can find a word w of length at most k such that $|Sw^{-1} \cap C| > |S|$.
- Then we can find a reset word of length at most (|C|-1)k+|u|.
- First we expand from one state of C to all of C using repeatedly words of length at most k and then we apply u^{-1}
- We lose here the ability to obtain the first expansion with a single letter: a serious problem!

- Suppose one has a special subset $C \subseteq Q$ and a "short" word u with $Qu \subseteq C$.
- For one-cluster automata, C is the a-cycle and $u = a^{|Q|-|C|}$.
- Since one can "push" Q into C efficiently, we just need to expand subsets of C.
- Suppose that, for each $\emptyset \neq S \subsetneq C$, we can find a word w of length at most k such that $|Sw^{-1} \cap C| > |S|$.
- Then we can find a reset word of length at most (|C|-1)k+|u|.
- First we expand from one state of C to all of C using repeatedly words of length at most k and then we apply u^{-1} .
- We lose here the ability to obtain the first expansion with a single letter: a serious problem!

- Suppose one has a special subset $C \subseteq Q$ and a "short" word u with $Qu \subseteq C$.
- For one-cluster automata, C is the a-cycle and $u = a^{|Q|-|C|}$.
- Since one can "push" Q into C efficiently, we just need to expand subsets of C.
- Suppose that, for each $\emptyset \neq S \subsetneq C$, we can find a word w of length at most k such that $|Sw^{-1} \cap C| > |S|$.
- Then we can find a reset word of length at most (|C|-1)k+|u|.
- First we expand from one state of C to all of C using repeatedly words of length at most k and then we apply u^{-1} .
- We lose here the ability to obtain the first expansion with a single letter: a serious problem!

- Suppose one has a special subset $C \subseteq Q$ and a "short" word u with $Qu \subseteq C$.
- For one-cluster automata, C is the a-cycle and $u = a^{|Q|-|C|}$.
- Since one can "push" Q into C efficiently, we just need to expand subsets of C.
- Suppose that, for each $\emptyset \neq S \subsetneq C$, we can find a word w of length at most k such that $|Sw^{-1} \cap C| > |S|$.
- Then we can find a reset word of length at most (|C|-1)k+|u|.
- First we expand from one state of C to all of C using repeatedly words of length at most k and then we apply u^{-1} .
- We lose here the ability to obtain the first expansion with a single letter: a serious problem!

- Suppose one has a special subset $C \subseteq Q$ and a "short" word u with $Qu \subseteq C$.
- For one-cluster automata, C is the a-cycle and $u = a^{|Q|-|C|}$.
- Since one can "push" Q into C efficiently, we just need to expand subsets of C.
- Suppose that, for each $\emptyset \neq S \subsetneq C$, we can find a word w of length at most k such that $|Sw^{-1} \cap C| > |S|$.
- Then we can find a reset word of length at most (|C|-1)k+|u|.
- First we expand from one state of C to all of C using repeatedly words of length at most k and then we apply u^{-1} .
- We lose here the ability to obtain the first expansion with a single letter: a serious problem!

The averaging trick: a summary

 Most papers that use this expansion technique rely on the following two simple observations:

Observation

A non-constant function must exceed its average value.

Observation

A strict chain of non-zero subspaces of an n-dimensional vector space has length at most n.

 Some papers use the language of rational power series to avoid discussing strict chains of subspaces.

The averaging trick: a summary

 Most papers that use this expansion technique rely on the following two simple observations:

Observation

A non-constant function must exceed its average value.

Observation

A strict chain of non-zero subspaces of an n-dimensional vector space has length at most n.

 Some papers use the language of rational power series to avoid discussing strict chains of subspaces.

The averaging trick: a summary

 Most papers that use this expansion technique rely on the following two simple observations:

Observation

A non-constant function must exceed its average value.

Observation

A strict chain of non-zero subspaces of an n-dimensional vector space has length at most n.

 Some papers use the language of rational power series to avoid discussing strict chains of subspaces.

The averaging trick: a summary

 Most papers that use this expansion technique rely on the following two simple observations:

Observation

A non-constant function must exceed its average value.

Observation

A strict chain of non-zero subspaces of an n-dimensional vector space has length at most n.

• Some papers use the language of rational power series to avoid discussing strict chains of subspaces.

- Pin for circular automata with a prime number of states.
- Rystsov for regular automata.
- Dubuc for circular automata in general.
- Kari for Eulerian automata.
- Béal, Berlinkov and Perrin for one-cluster automata
- D'Alessandro and Carpi for strongly transitive and locally strongly transitive automata.
- The speaker for Cayley graphs of groups and for one-clusterral automata.

- Pin for circular automata with a prime number of states.
- Rystsov for regular automata.
- Dubuc for circular automata in general
- Kari for Eulerian automata.
- Béal, Berlinkov and Perrin for one-cluster automata
- D'Alessandro and Carpi for strongly transitive and locally strongly transitive automata.
- The speaker for Cayley graphs of groups and for one-clusterral automata.

- Pin for circular automata with a prime number of states.
- Rystsov for regular automata.
- Dubuc for circular automata in general.
- Kari for Eulerian automata.
- Béal, Berlinkov and Perrin for one-cluster automata.
- D'Alessandro and Carpi for strongly transitive and locally strongly transitive automata.
- The speaker for Cayley graphs of groups and for one-cluster automata.

- Pin for circular automata with a prime number of states.
- Rystsov for regular automata.
- Dubuc for circular automata in general.
- Kari for Eulerian automata.
- Béal, Berlinkov and Perrin for one-cluster automata.
- D'Alessandro and Carpi for strongly transitive and locally strongly transitive automata.
- The speaker for Cayley graphs of groups and for one-cluster automata.

- Pin for circular automata with a prime number of states.
- Rystsov for regular automata.
- Dubuc for circular automata in general.
- Kari for Eulerian automata.
- Béal, Berlinkov and Perrin for one-cluster automata.
- D'Alessandro and Carpi for strongly transitive and locally strongly transitive automata.
- The speaker for Cayley graphs of groups and for one-cluster automata.

- Pin for circular automata with a prime number of states.
- Rystsov for regular automata.
- Dubuc for circular automata in general.
- Kari for Eulerian automata.
- Béal, Berlinkov and Perrin for one-cluster automata.
- D'Alessandro and Carpi for strongly transitive and locally strongly transitive automata.
- The speaker for Cayley graphs of groups and for one-cluster automata.

- Pin for circular automata with a prime number of states.
- Rystsov for regular automata.
- Dubuc for circular automata in general.
- Kari for Eulerian automata.
- Béal, Berlinkov and Perrin for one-cluster automata.
- D'Alessandro and Carpi for strongly transitive and locally strongly transitive automata.
- The speaker for Cayley graphs of groups and for one-cluster automata.

- ullet Recall our setup: (Q,A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$
- Typically one shows that under the hypothesis of one's paper, the average value of |Sw⁻¹| on some well-chosen subset X of words of length at most k is |S|.
- One has |Sw⁻¹| = [Q]w[S]^T where [Y] denotes the characteristic vector of Y ⊆ Q.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- Therefore, $|Sw^{-1}| > |S|$ for some $w \in X$
- Let's formalize this!

- ullet Recall our setup: (Q,A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has |Sw⁻¹| = [Q]w[S]^T where [Y] denotes the characteristic vector of Y ⊆ Q.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- ullet Therefore, $|Sw^{-1}|>|S|$ for some $w\in X$
- Let's formalize this!

- ullet Recall our setup: (Q,A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has $|Sw^{-1}| = [Q]w[S]^T$ where [Y] denotes the characteristic vector of $Y \subseteq Q$.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- Therefore, $|Sw^{-1}| > |S|$ for some $w \in X$
- Let's formalize this!

- Recall our setup: (Q, A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has $|Sw^{-1}| = [Q]w[S]^T$ where [Y] denotes the characteristic vector of $Y \subseteq Q$.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- Therefore, $|Sw^{-1}| > |S|$ for some $w \in X$
- Let's formalize this!

- Recall our setup: (Q, A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has $|Sw^{-1}| = [Q]w[S]^T$ where [Y] denotes the characteristic vector of $Y \subseteq Q$.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- ullet Therefore, $|Sw^{-1}|>|S|$ for some $w\in X$
- Let's formalize this!

- Recall our setup: (Q, A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has $|Sw^{-1}| = [Q]w[S]^T$ where [Y] denotes the characteristic vector of $Y \subseteq Q$.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- Therefore, $|Sw^{-1}| > |S|$ for some $w \in X$
- Let's formalize this!

- Recall our setup: (Q, A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has $|Sw^{-1}| = [Q]w[S]^T$ where [Y] denotes the characteristic vector of $Y \subseteq Q$.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- Therefore, $|Sw^{-1}| > |S|$ for some $w \in X$
- Let's formalize this!

- Recall our setup: (Q, A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has $|Sw^{-1}| = [Q]w[S]^T$ where [Y] denotes the characteristic vector of $Y \subseteq Q$.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- Therefore, $|Sw^{-1}| > |S|$ for some $w \in X$
- Let's formalize this!

- Recall our setup: (Q, A) is a synchronizing automaton with n states.
- $\bullet \ \emptyset \subsetneq S \subsetneq Q.$
- We want a word w of length at most k with $|Sw^{-1}| > |S|$.
- If w is a reset word, then $|Sw^{-1}| = |Q| > |S|$.
- Typically one shows that under the hypothesis of one's paper, the average value of $|Sw^{-1}|$ on some well-chosen subset X of words of length at most k is |S|.
- One has $|Sw^{-1}| = [Q]w[S]^T$ where [Y] denotes the characteristic vector of $Y \subseteq Q$.
- One deduces that $|Sw^{-1}|$ is not constant for some word $w \in X$ by an ascending chain of subspaces argument.
- Therefore, $|Sw^{-1}| > |S|$ for some $w \in X$
- Let's formalize this!

- $\mathbb{R}A$ is the ring of polynomials in non-commuting variables A over \mathbb{R} .
- ullet A probability on A^* is an element

$$P = \sum_{w \in A^*} P(w)w \in \mathbb{R}^A$$

such that: $P(w) \ge 0$ for all $w \in A^*$, and

$$\sum_{w \in A^*} P(w) = 1.$$

The support of P is

$$\sigma(P) = \{ w \in A^* \mid P(w) > 0 \}.$$

- $\mathbb{R}A$ is the ring of polynomials in non-commuting variables A over \mathbb{R} .
- ullet A probability on A^* is an element

$$P = \sum_{w \in A^*} P(w)w \in \mathbb{R}A$$

such that: $P(w) \ge 0$ for all $w \in A^*$, and

$$\sum_{w \in A^*} P(w) = 1.$$

The support of P is

$$\sigma(P) = \{ w \in A^* \mid P(w) > 0 \}.$$

- $\mathbb{R}A$ is the ring of polynomials in non-commuting variables A over \mathbb{R} .
- ullet A probability on A^* is an element

$$P = \sum_{w \in A^*} P(w)w \in \mathbb{R}A$$

such that: $P(w) \ge 0$ for all $w \in A^*$, and

$$\sum_{w \in A^*} P(w) = 1.$$

ullet The support of P is

$$\sigma(P) = \{ w \in A^* \mid P(w) > 0 \}.$$

- $\mathbb{R}A$ is the ring of polynomials in non-commuting variables A over \mathbb{R} .
- ullet A probability on A^* is an element

$$P = \sum_{w \in A^*} P(w)w \in \mathbb{R}A$$

such that: $P(w) \ge 0$ for all $w \in A^*$, and

$$\sum_{w \in A^*} P(w) = 1.$$

 \bullet The support of P is

$$\sigma(P) = \{ w \in A^* \mid P(w) > 0 \}.$$

- $\mathbb{R}A$ is the ring of polynomials in non-commuting variables A over \mathbb{R} .
- ullet A probability on A^* is an element

$$P = \sum_{w \in A^*} P(w)w \in \mathbb{R}A$$

such that: $P(w) \ge 0$ for all $w \in A^*$, and

$$\sum_{w \in A^*} P(w) = 1.$$

 \bullet The support of P is

$$\sigma(P) = \{ w \in A^* \mid P(w) > 0 \}.$$

Expected value

• If $X: A^* \to \mathbb{R}$ is a random variable, the expected value of X with respect to the probability P is:

$$\mathbf{E}_P(X) = \sum_{w \in A^*} P(w)X(w) = \sum_{w \in \sigma(P)} P(w)X(w).$$

- A random variable that is not almost surely constant, must
- More precisely, if X is not constant on the support of P, then

Expected value

• If $X \colon A^* \to \mathbb{R}$ is a random variable, the expected value of X with respect to the probability P is:

$$\mathbf{E}_P(X) = \sum_{w \in A^*} P(w)X(w) = \sum_{w \in \sigma(P)} P(w)X(w).$$

- A random variable that is not almost surely constant, must exceed it expected value with positive probability.
- More precisely, if X is not constant on the support of P, then
 it exceeds its expected value somewhere on the support of P.

Expected value

• If $X \colon A^* \to \mathbb{R}$ is a random variable, the expected value of X with respect to the probability P is:

$$\mathbf{E}_P(X) = \sum_{w \in A^*} P(w)X(w) = \sum_{w \in \sigma(P)} P(w)X(w).$$

- A random variable that is not almost surely constant, must exceed it expected value with positive probability.
- More precisely, if X is not constant on the support of P, then
 it exceeds its expected value somewhere on the support of P.

- Suppose that $Q = \{1, \dots, n\}$.
- For each $w \in A$, we have the associated matrix M(w) where

$$M(w)_{ij} = \begin{cases} 1 & iw = 3\\ 0 & \text{else.} \end{cases}$$

$$\pi\left(\sum_{w\in A^*} f(w)w\right) = \sum_{w\in A^*} f(w)M(w).$$

- Suppose that $Q = \{1, \dots, n\}$.
- ullet For each $w\in A$, we have the associated matrix M(w) where

$$M(w)_{ij} = \begin{cases} 1 & iw = j \\ 0 & \text{else.} \end{cases}$$

$$\pi\left(\sum_{w\in A^*} f(w)w\right) = \sum_{w\in A^*} f(w)M(w).$$

- If P is a probability on A^* , then $\pi(P)$ is a stochastic matrix.
- ullet That is, each row of $\pi(P)$ is a probability vector

- Suppose that $Q = \{1, \dots, n\}$.
- ullet For each $w\in A$, we have the associated matrix M(w) where

$$M(w)_{ij} = \begin{cases} 1 & iw = j \\ 0 & \text{else.} \end{cases}$$

$$\pi\left(\sum_{w\in A^*} f(w)w\right) = \sum_{w\in A^*} f(w)M(w).$$

- If P is a probability on A^* , then $\pi(P)$ is a stochastic matrix.
- That is, each row of $\pi(P)$ is a probability vector.

- Suppose that $Q = \{1, \dots, n\}$.
- For each $w \in A$, we have the associated matrix M(w) where

$$M(w)_{ij} = \begin{cases} 1 & iw = j \\ 0 & \text{else.} \end{cases}$$

$$\pi\left(\sum_{w\in A^*} f(w)w\right) = \sum_{w\in A^*} f(w)M(w).$$

- If P is a probability on A^* , then $\pi(P)$ is a stochastic matrix.
- That is, each row of $\pi(P)$ is a probability vector.

- Suppose that $Q = \{1, \dots, n\}$.
- For each $w \in A$, we have the associated matrix M(w) where

$$M(w)_{ij} = \begin{cases} 1 & iw = j \\ 0 & \text{else.} \end{cases}$$

$$\pi\left(\sum_{w\in A^*} f(w)w\right) = \sum_{w\in A^*} f(w)M(w).$$

- If P is a probability on A^* , then $\pi(P)$ is a stochastic matrix.
- That is, each row of $\pi(P)$ is a probability vector.

 Let us first state a variant of our result in the context of the original version of the basic strategy.

Lemma (Averaging Lemma 1)

Let $\mathscr{A} = (Q, A)$ be a strongly connected synchronizing automator with n states and let P_1, P_2 be probabilities on A^* such that:

- P_2 has support $A^{\leq n-1}$;
- $Q[Q]P_2P_1 = [Q].$

Then $\mathscr A$ has a reset word of length at most 1+(n-2)(n-1+L) where L is the maximum length of a word in $\sigma(P_1)$.

 Let us first state a variant of our result in the context of the original version of the basic strategy.

Lemma (Averaging Lemma 1)

Let $\mathscr{A}=(Q,A)$ be a strongly connected synchronizing automaton with n states and let P_1,P_2 be probabilities on A^* such that:

- P_2 has support $A^{\leq n-1}$;
- $Q[Q]P_2P_1 = [Q]$

Then $\mathscr A$ has a reset word of length at most 1+(n-2)(n-1+L) where L is the maximum length of a word in $\sigma(P_1)$.

• Let us first state a variant of our result in the context of the original version of the basic strategy.

Lemma (Averaging Lemma 1)

Let $\mathscr{A} = (Q, A)$ be a strongly connected synchronizing automaton with n states and let P_1, P_2 be probabilities on A^* such that:

- P_2 has support $A^{\leq n-1}$;
- $Q[Q]P_2P_1 = [Q].$

Then \mathscr{A} has a reset word of length at most 1 + (n-2)(n-1+L) where L is the maximum length of a word in $\sigma(P_1)$.

• Let us first state a variant of our result in the context of the original version of the basic strategy.

Lemma (Averaging Lemma 1)

Let $\mathscr{A} = (Q, A)$ be a strongly connected synchronizing automaton with n states and let P_1, P_2 be probabilities on A^* such that:

- P_2 has support $A^{\leq n-1}$;

Then \mathscr{A} has a reset word of length at most 1+(n-2)(n-1+L) where L is the maximum length of a word in $\sigma(P_1)$.

 Let us first state a variant of our result in the context of the original version of the basic strategy.

Lemma (Averaging Lemma 1)

Let $\mathscr{A} = (Q, A)$ be a strongly connected synchronizing automaton with n states and let P_1, P_2 be probabilities on A^* such that:

- P_2 has support $A^{\leq n-1}$;
- $[Q]P_2P_1 = [Q].$

Then \mathscr{A} has a reset word of length at most 1+(n-2)(n-1+L) where L is the maximum length of a word in $\sigma(P_1)$.

An example: pseudo-Eulerian automata

- Kari termed an automaton Eulerian if its underlying digraph has a directed Euler path.
- This is equivalent to saying that the in-degree of each vertex is |A|, i.e., each row and column sum of the adjacency matrix of (Q,A) is |A|.
- Hence if we define a probability

$$P = \frac{1}{|A|} \sum_{a \in A} a$$

then $\pi(P)$ is doubly stochastic.

• That means, each row and column is a probability vector.

Definition (Pseudo-Eulerian)

An automaton (Q,A) is pseudo-Eulerian if there exists a probability P with support the alphabet A such that $\pi(P)$ is doubly stochastic.

- Kari termed an automaton Eulerian if its underlying digraph has a directed Euler path.
- This is equivalent to saying that the in-degree of each vertex is |A|, i.e., each row and column sum of the adjacency matrix of (Q,A) is |A|.
- Hence if we define a probability

$$P = \frac{1}{|A|} \sum_{a \in A} a$$

then $\pi(P)$ is doubly stochastic.

• That means, each row and column is a probability vector.

Definition (Pseudo-Eulerian)

- Kari termed an automaton Eulerian if its underlying digraph has a directed Euler path.
- This is equivalent to saying that the in-degree of each vertex is |A|, i.e., each row and column sum of the adjacency matrix of (Q,A) is |A|.
- Hence if we define a probability

$$P = \frac{1}{|A|} \sum_{a \in A} a$$

then $\pi(P)$ is doubly stochastic.

• That means, each row and column is a probability vector.

Definition (Pseudo-Eulerian)

- Kari termed an automaton Eulerian if its underlying digraph has a directed Euler path.
- This is equivalent to saying that the in-degree of each vertex is |A|, i.e., each row and column sum of the adjacency matrix of (Q,A) is |A|.
- Hence if we define a probability

$$P = \frac{1}{|A|} \sum_{a \in A} a$$

then $\pi(P)$ is doubly stochastic.

• That means, each row and column is a probability vector.

Definition (Pseudo-Eulerian)

- Kari termed an automaton Eulerian if its underlying digraph has a directed Euler path.
- This is equivalent to saying that the in-degree of each vertex is |A|, i.e., each row and column sum of the adjacency matrix of (Q,A) is |A|.
- Hence if we define a probability

$$P = \frac{1}{|A|} \sum_{a \in A} a$$

then $\pi(P)$ is doubly stochastic.

• That means, each row and column is a probability vector.

Definition (Pseudo-Eulerian)

- Every Eulerian automaton is pseudo-Eulerian.
- The automaton below is pseudo-Eulerian but not Eulerian.

$$\bullet \ \ \text{If} \ P = a/2 + b/6 + c/3, \ \pi(P) = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} & 0 \\ 0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{6} & 0 & \frac{1}{2} \end{bmatrix} \ \text{is doubly}$$

- Every Eulerian automaton is pseudo-Eulerian.
- The automaton below is pseudo-Eulerian but not Eulerian.

$$\text{ If } P = a/2 + b/6 + c/3, \ \pi(P) = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} & 0 \\ 0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{6} & 0 & \frac{1}{2} \end{bmatrix} \text{ is doubly }$$

- Every Eulerian automaton is pseudo-Eulerian.
- The automaton below is pseudo-Eulerian but not Eulerian.

• If
$$P = a/2 + b/6 + c/3$$
, $\pi(P) = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} & 0 \\ 0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{6} & 0 & \frac{1}{2} \end{bmatrix}$ is doubly stochastic.

 It is a simple linear programming task to determine whether an automaton is pseudo-Eulerian.

Theorem

An *n*-state synchronizing pseudo-Eulerian automaton admits a reset word of length at most $1 + (n-2)(n-1) < (n-1)^2$.

- Let P be a probability on A with $\pi(P)$ doubly stochastic.
- Let P_1 be a point mass at ε .
- Put $P_2 = \frac{1}{n} \sum_{m=0}^{n-1} P^m$; it has support $A^{\leq n-1}$.
- $\pi(P)$ doubly stochastic implies [Q]P=[Q]. So $[Q]P_2P_1=[Q]\cdot \frac{1}{n}\sum_{m=0}^{n-1}P^m=[Q].$
- The Averaging Lemma yields the desired upper bound.

 It is a simple linear programming task to determine whether an automaton is pseudo-Eulerian.

Theorem

An n-state synchronizing pseudo-Eulerian automaton admits a reset word of length at most $1 + (n-2)(n-1) < (n-1)^2$.

- Let P be a probability on A with $\pi(P)$ doubly stochastic.
- Let P_1 be a point mass at ε .
- Put $P_2 = \frac{1}{n} \sum_{m=0}^{n-1} P^m$; it has support $A^{\leq n-1}$.
- $\pi(P)$ doubly stochastic implies [Q]P = [Q]. So $[Q]P_2P_1 = [Q] \cdot \frac{1}{n} \sum_{m=0}^{n-1} P^m = [Q]$.
- The Averaging Lemma yields the desired upper bound.

 It is a simple linear programming task to determine whether an automaton is pseudo-Eulerian.

Theorem

An n-state synchronizing pseudo-Eulerian automaton admits a reset word of length at most $1 + (n-2)(n-1) < (n-1)^2$.

- Let P be a probability on A with $\pi(P)$ doubly stochastic.
- Let P_1 be a point mass at ε .
- Put $P_2 = \frac{1}{n} \sum_{m=0}^{n-1} P^m$; it has support $A^{\leq n-1}$.
- $\pi(P)$ doubly stochastic implies [Q]P = [Q]. So $[Q]P_2P_1 = [Q] \cdot \frac{1}{n} \sum_{m=0}^{n-1} P^m = [Q]$.
- The Averaging Lemma yields the desired upper bound.

 It is a simple linear programming task to determine whether an automaton is pseudo-Eulerian.

Theorem

An n-state synchronizing pseudo-Eulerian automaton admits a reset word of length at most $1 + (n-2)(n-1) < (n-1)^2$.

- Let P be a probability on A with $\pi(P)$ doubly stochastic.
- Let P_1 be a point mass at ε .
- Put $P_2 = \frac{1}{n} \sum_{m=0}^{n-1} P^m$; it has support $A^{\leq n-1}$.
- $\pi(P)$ doubly stochastic implies [Q]P = [Q]. So $[Q]P_2P_1 = [Q] \cdot \frac{1}{n} \sum_{m=0}^{n-1} P^m = [Q]$.
- The Averaging Lemma yields the desired upper bound

 It is a simple linear programming task to determine whether an automaton is pseudo-Eulerian.

Theorem

An n-state synchronizing pseudo-Eulerian automaton admits a reset word of length at most $1 + (n-2)(n-1) < (n-1)^2$.

- Let P be a probability on A with $\pi(P)$ doubly stochastic.
- Let P_1 be a point mass at ε .
- Put $P_2 = \frac{1}{n} \sum_{m=0}^{n-1} P^m$; it has support $A^{\leq n-1}$.
- $\pi(P)$ doubly stochastic implies [Q]P = [Q]. So $[Q]P_2P_1 = [Q] \cdot \frac{1}{n} \sum_{m=0}^{n-1} P^m = [Q]$.
- The Averaging Lemma yields the desired upper bound

• It is a simple linear programming task to determine whether an automaton is pseudo-Eulerian.

Theorem

An n-state synchronizing pseudo-Eulerian automaton admits a reset word of length at most $1 + (n-2)(n-1) < (n-1)^2$.

- Let P be a probability on A with $\pi(P)$ doubly stochastic.
- Let P_1 be a point mass at ε .
- Put $P_2 = \frac{1}{n} \sum_{m=0}^{n-1} P^m$; it has support $A^{\leq n-1}$.
- $\pi(P)$ doubly stochastic implies [Q]P = [Q]. So $[Q]P_2P_1 = [Q] \cdot \frac{1}{n} \sum_{m=0}^{n-1} P^m = [Q]$.
- The Averaging Lemma yields the desired upper bound.

• It is a simple linear programming task to determine whether an automaton is pseudo-Eulerian.

Theorem

An n-state synchronizing pseudo-Eulerian automaton admits a reset word of length at most $1 + (n-2)(n-1) < (n-1)^2$.

- Let P be a probability on A with $\pi(P)$ doubly stochastic.
- Let P_1 be a point mass at ε .
- Put $P_2 = \frac{1}{n} \sum_{m=0}^{n-1} P^m$; it has support $A^{\leq n-1}$.
- $\pi(P)$ doubly stochastic implies [Q]P = [Q]. So $[Q]P_2P_1 = [Q] \cdot \frac{1}{n} \sum_{m=0}^{n-1} P^m = [Q]$.
- The Averaging Lemma yields the desired upper bound.

Here is a version adapted to the modified basic strategy.

- P_2 has support $A^{\leq n-1}$;
- $[R]P_2P_1 = [R];$

$$(|R|-1)(n-1+L)+|w_0|$$

Here is a version adapted to the modified basic strategy.

Lemma (Averaging Lemma 2)

Let $\mathscr{A}=(Q,A)$ be an n-state synchronizing automaton. Suppose there exist probabilities P_1,P_2 on A^* and $R \subseteq Q$ such that:

- P_2 has support $A^{\leq n-1}$;
- $[R]P_2P_1 = [R];$
- $\mathbf{3}$ $R \subseteq qA^*$ for all $q \in R$;
- lacksquare there exists $w_0 \in A^*$ with $Qw_0 \subseteq I$
- $(|R|-1)(n-1+L)+|w_0|$
- where L is the maximum length of a word in $\sigma(P_1)$.

Here is a version adapted to the modified basic strategy.

Lemma (Averaging Lemma 2)

Let $\mathscr{A}=(Q,A)$ be an n-state synchronizing automaton. Suppose there exist probabilities P_1,P_2 on A^* and $R \subseteq Q$ such that:

- P_2 has support $A^{\leq n-1}$;

- there exists $w_0 \in A^*$ with $Qw_0 \subseteq R$
 - $(|R|-1)(n-1+L)+|w_0|$
- where L is the maximum length of a word in $\sigma(P_1)$.

Here is a version adapted to the modified basic strategy.

Lemma (Averaging Lemma 2)

Let $\mathscr{A}=(Q,A)$ be an n-state synchronizing automaton. Suppose there exist probabilities P_1,P_2 on A^* and $R \subseteq Q$ such that:

- P_2 has support $A^{\leq n-1}$;
- **2** $[R]P_2P_1 = [R];$
- there exists $w_0 \in A^*$ with $Qw_0 \subseteq R$.

Then $\mathscr A$ has a reset word of length at most

$$(|R|-1)(n-1+L)+|w_0|$$

where L is the maximum length of a word in $\sigma(P_1)$

Here is a version adapted to the modified basic strategy.

Lemma (Averaging Lemma 2)

Let $\mathscr{A} = (Q, A)$ be an *n*-state synchronizing automaton. Suppose there exist probabilities P_1, P_2 on A^* and $R \subseteq Q$ such that:

- P_2 has support $A^{\leq n-1}$;
- $|R|P_2P_1 = |R|;$
- **3** $R \subseteq qA^*$ for all $q \in R$;
- there exists $w_0 \in A^*$ with $Qw_0 \subseteq R$.

$$(|R| - 1)(n - 1 + L) + |w_0|$$

Here is a version adapted to the modified basic strategy.

Lemma (Averaging Lemma 2)

Let $\mathscr{A} = (Q, A)$ be an *n*-state synchronizing automaton. Suppose there exist probabilities P_1, P_2 on A^* and $R \subseteq Q$ such that:

- P_2 has support $A^{\leq n-1}$;
- $|R|P_2P_1 = |R|;$
- **3** $R \subseteq qA^*$ for all $q \in R$;
- there exists $w_0 \in A^*$ with $Qw_0 \subseteq R$.

$$(|R|-1)(n-1+L)+|w_0|$$

• The statement in the paper is even more technical than this!

Here is a version adapted to the modified basic strategy.

Lemma (Averaging Lemma 2)

Let $\mathscr{A} = (Q, A)$ be an *n*-state synchronizing automaton. Suppose there exist probabilities P_1, P_2 on A^* and $R \subseteq Q$ such that:

- P₂ has support $A^{\leq n-1}$;
- $|R|P_2P_1 = |R|;$
- **3** $R \subseteq qA^*$ for all $q \in R$;
- there exists $w_0 \in A^*$ with $Qw_0 \subseteq R$.

Then A has a reset word of length at most

$$(|R|-1)(n-1+L)+|w_0|$$

where L is the maximum length of a word in $\sigma(P_1)$.

• The statement in the paper is even more technical than this!

Here is a version adapted to the modified basic strategy.

Lemma (Averaging Lemma 2)

Let $\mathscr{A} = (Q, A)$ be an n-state synchronizing automaton. Suppose there exist probabilities P_1, P_2 on A^* and $R \subseteq Q$ such that:

- **1** P_2 has support $A^{\leq n-1}$;
- **2** $[R]P_2P_1 = [R];$
- there exists $w_0 \in A^*$ with $Qw_0 \subseteq R$.

Then A has a reset word of length at most

$$(|R|-1)(n-1+L)+|w_0|$$

where L is the maximum length of a word in $\sigma(P_1)$.

• The statement in the paper is even more technical than this!

- The next result simultaneously generalizes results of the following authors.
- Rystsov on regular automata.
- Carpi and d'Alessandro on strongly and locally strongly transitive automata (which is the case k=1 below).
- Béal and Perrin on one-cluster automata (which is a special case of locally strongly transitive automata).

- The next result simultaneously generalizes results of the following authors.
- Rystsov on regular automata.
- Carpi and d'Alessandro on strongly and locally strongly transitive automata (which is the case k=1 below).
- Béal and Perrin on one-cluster automata (which is a special case of locally strongly transitive automata).

- The next result simultaneously generalizes results of the following authors.
- Rystsov on regular automata.
- Carpi and d'Alessandro on strongly and locally strongly transitive automata (which is the case k=1 below).
- Béal and Perrin on one-cluster automata (which is a special case of locally strongly transitive automata).

- The next result simultaneously generalizes results of the following authors.
- Rystsov on regular automata.
- Carpi and d'Alessandro on strongly and locally strongly transitive automata (which is the case k=1 below).
- Béal and Perrin on one-cluster automata (which is a special case of locally strongly transitive automata).

- Let $\mathscr{A} = (Q, A)$ be a synchronizing automaton.
- Suppose there is a set of words $W \subseteq A^*$ and $k \ge 1$ so that, for each state $q \in Q$ and each state $s \in C = QW$, there are exactly k elements of W taking q to s.
- ullet Let ℓ be the length of the shortest word in W and L be the length of the longest.

Theorem

- Let $\mathscr{A} = (Q, A)$ be a synchronizing automaton.
- Suppose there is a set of words $W \subseteq A^*$ and $k \ge 1$ so that, for each state $q \in Q$ and each state $s \in C = QW$, there are exactly k elements of W taking q to s.
- ullet Let ℓ be the length of the shortest word in W and L be the length of the longest.

Theorem

- Let $\mathscr{A} = (Q, A)$ be a synchronizing automaton.
- Suppose there is a set of words $W \subseteq A^*$ and $k \ge 1$ so that, for each state $q \in Q$ and each state $s \in C = QW$, there are exactly k elements of W taking q to s.
- ullet Let ℓ be the length of the shortest word in W and L be the length of the longest.

Theorem

- Let $\mathscr{A} = (Q, A)$ be a synchronizing automaton.
- Suppose there is a set of words $W \subseteq A^*$ and $k \ge 1$ so that, for each state $q \in Q$ and each state $s \in C = QW$, there are exactly k elements of W taking q to s.
- ullet Let ℓ be the length of the shortest word in W and L be the length of the longest.

Theorem

- Our theorem yields better bounds than those in the original papers mentioned above.
- However, improved bounds have been found since.
- In the one-cluster case, we have found a way to deal with the problem of expanding the first state.
- The new idea is that instead of fixing a subset and averaging over a set of words, we average over all choices of the first state.
- This yields an upper bound of $2n^2 9n + 14$ on the length of a reset word for n-state one-cluster automata, which is the current record.
- It also leads to the following theorem

- Our theorem yields better bounds than those in the original papers mentioned above.
- However, improved bounds have been found since.
- In the one-cluster case, we have found a way to deal with the problem of expanding the first state.
- The new idea is that instead of fixing a subset and averaging over a set of words, we average over all choices of the first state.
- This yields an upper bound of $2n^2 9n + 14$ on the length of a reset word for n-state one-cluster automata, which is the current record.
- It also leads to the following theorem

- Our theorem yields better bounds than those in the original papers mentioned above.
- However, improved bounds have been found since.
- In the one-cluster case, we have found a way to deal with the problem of expanding the first state.
- The new idea is that instead of fixing a subset and averaging over a set of words, we average over all choices of the first state.
- This yields an upper bound of $2n^2 9n + 14$ on the length of a reset word for n-state one-cluster automata, which is the current record.
- It also leads to the following theorem

- Our theorem yields better bounds than those in the original papers mentioned above.
- However, improved bounds have been found since.
- In the one-cluster case, we have found a way to deal with the problem of expanding the first state.
- The new idea is that instead of fixing a subset and averaging over a set of words, we average over all choices of the first state.
- This yields an upper bound of $2n^2 9n + 14$ on the length of a reset word for n-state one-cluster automata, which is the current record.
- It also leads to the following theorem.

- Our theorem yields better bounds than those in the original papers mentioned above.
- However, improved bounds have been found since.
- In the one-cluster case, we have found a way to deal with the problem of expanding the first state.
- The new idea is that instead of fixing a subset and averaging over a set of words, we average over all choices of the first state.
- This yields an upper bound of $2n^2 9n + 14$ on the length of a reset word for n-state one-cluster automata, which is the current record.
- It also leads to the following theorem.

- Our theorem yields better bounds than those in the original papers mentioned above.
- However, improved bounds have been found since.
- In the one-cluster case, we have found a way to deal with the problem of expanding the first state.
- The new idea is that instead of fixing a subset and averaging over a set of words, we average over all choices of the first state.
- This yields an upper bound of $2n^2 9n + 14$ on the length of a reset word for n-state one-cluster automata, which is the current record.
- It also leads to the following theorem.

One-cluster automata with prime length cycle

Theorem

The Černý conjecture is true for one-cluster automata with prime length cycle.

 This has the following consequence for the hybrid Černý-Road Coloring conjecture:

Corollary

Let Γ be a strongly connected aperiodic digraph with constant out-degree, n vertices and no multiple edges. Suppose moreover that Γ contains a cycle of prime length p < n. Then Γ admits a synchronizing coloring with a reset word of length at most $3n-3p+1+(p-2)(2n-p) \leq (n-1)^2$.

One-cluster automata with prime length cycle

Theorem

The Černý conjecture is true for one-cluster automata with prime length cycle.

 This has the following consequence for the hybrid Černý-Road Coloring conjecture:

Corollary

Let Γ be a strongly connected aperiodic digraph with constant out-degree, n vertices and no multiple edges. Suppose moreover that Γ contains a cycle of prime length p < n. Then Γ admits a synchronizing coloring with a reset word of length at most $3n-3p+1+(p-2)(2n-p) \leq (n-1)^2$.

One-cluster automata with prime length cycle

Theorem

The Černý conjecture is true for one-cluster automata with prime length cycle.

 This has the following consequence for the hybrid Černý-Road Coloring conjecture:

Corollary

Let Γ be a strongly connected aperiodic digraph with constant out-degree, n vertices and no multiple edges. Suppose moreover that Γ contains a cycle of prime length p < n. Then Γ admits a synchronizing coloring with a reset word of length at most $3n-3p+1+(p-2)(2n-p) \leq (n-1)^2$.

The End

Thank you for your attention!