Semantics and Types - Assignment 2

Mikkel Willén bmq419

February 21, 2024

Task 2.2

Theorem 2.19 If $\langle c, \sigma \rangle \downarrow \sigma'$, then $\langle c, \sigma \rangle \rightarrow^* \langle \mathbf{skip}, \sigma' \rangle$.

Case
$$\mathcal{E} = \frac{\langle c_0, \sigma \rangle \downarrow \sigma'' \quad \langle c_1, \sigma'' \rangle \downarrow \sigma'}{\langle c_0; c_1, \sigma \rangle \downarrow \sigma'}$$

By IH on \mathcal{E}_0 we get

$$\langle c_0, \sigma \rangle \to^* \langle \mathbf{skip}, \sigma'' \rangle$$

Then by iterated SC-Seq1 we get

$$\langle c_0; c_1, \sigma'' \rangle \to^* \langle c_1, \sigma'' \rangle$$

which we recognize to be \mathcal{E}_1 . By IH on \mathcal{E}_1 we get

$$\langle c_1, \sigma'' \rangle \to^* \langle \mathbf{skip}, \sigma' \rangle$$

Concatenating these we get

$$\langle c_0; c_1, \sigma \rangle \to^* \langle \mathbf{skip}, \sigma' \rangle$$

Lemma 2.20 Given a derivation \mathcal{S} of $\langle c, \sigma \rangle \to \langle c', \sigma' \rangle$, and a derivation \mathcal{E}' of $\langle c', \sigma' \rangle \downarrow \sigma''$, then there also exists a derivation \mathcal{E} of $\langle c, \sigma \rangle \downarrow \sigma''$.

Case
$$S = \frac{\langle c_0, \sigma \rangle \xrightarrow{S_0} \langle c'_0, \sigma' \rangle}{\langle c_0; c_1, \sigma \rangle \xrightarrow{} \langle c'_0; c_1, \sigma' \rangle}$$

We have $c = (c_0; c_1)$ and $c' = (c'_0; c_1)$. Since there is only one big-step rule for **sequence** commands, \mathcal{E}' must have the shape:

$$\mathcal{E}' = \frac{\langle c_0', \sigma' \rangle \downarrow \sigma_2' \quad \langle c_1, \sigma_2' \rangle \downarrow \sigma_1'}{\langle c_0'; c_1, \sigma' \rangle \downarrow \sigma_1'}$$

where $\sigma'' = \sigma'_1$. By IH on \mathcal{S}_0 and \mathcal{E}'_0 we get a big-step derivation of \mathcal{E}_0 of $\langle c_0, \sigma \rangle \downarrow \sigma'_2$ which we can use to construct \mathcal{E} as follows

$$\mathcal{E} = \frac{\langle c_0, \sigma \rangle \downarrow \sigma_2' \quad \langle c_1, \sigma_2' \rangle \downarrow \sigma''}{\langle c_0; c_1, \sigma \rangle \downarrow \sigma''}$$

Case
$$S = \frac{1}{\langle \mathbf{skip}; c_1, \sigma \rangle \to \langle c_1, \sigma \rangle}$$

Here $c = (\mathbf{skip}; c_1)$, $c' = c_1$ and $\sigma' = \sigma$. Since $\sigma' = \sigma$ we can use the supplied big-step derivation \mathcal{E}' directly to construct \mathcal{E} using EC-Skip

$$\mathcal{E} = \frac{\langle \mathbf{skip}, \sigma \rangle \downarrow \sigma \quad \langle c_1, \sigma \rangle \downarrow \sigma''}{\langle \mathbf{skip}; c_1, \sigma \rangle \downarrow \sigma''}$$

Task 2.3

Case
$$S = \frac{1}{\langle \text{while } b \text{ do } c_0, \sigma \rangle \rightarrow \langle \text{if } b \text{ then } (c_0; \text{while } b \text{ do } c_0) \text{ else skip}, \sigma \rangle}$$

We have c = (while $b \ do \ c_0), \ c' = ($ if $b \ then \ (c_0;$ while $b \ do \ c_0) \ else \ skip)$ and $\sigma' = \sigma$. By Theorem 2.2 we have that $c \sim c'$ and since there are two big-step rules for **conditionals**, \mathcal{E}' can have the two following shapes:

$$\text{Subcase } \mathcal{E}' = \frac{\langle b, \sigma \rangle \downarrow \mathbf{true}}{\langle \mathbf{if} \ b \ \mathbf{then} \ (c_0; \mathbf{while} \ b \ \mathbf{do} \ c_0, \sigma \rangle \downarrow \sigma''} \frac{\langle \mathbf{chile} \ b \ \mathbf{do} \ c_0, \sigma' \rangle \downarrow \sigma''}{\langle \mathbf{c}_0; \mathbf{while} \ b \ \mathbf{do} \ c_0, \sigma \rangle \downarrow \sigma''}}{\langle \mathbf{or} \ \mathbf{chile} \ b \ \mathbf{do} \ c_0, \sigma \rangle \downarrow \sigma''}}$$

$$\mathcal{E} = rac{\langle b, \sigma
angle \downarrow \mathbf{true} \quad \langle c_0, \sigma
angle \downarrow \sigma' \quad \langle \mathbf{while} \,\, b \,\, \mathbf{do} \,\, c_0, \sigma'
angle \downarrow \sigma''}{\langle \mathbf{while} \,\, b \,\, \mathbf{do} \,\, c_0, \sigma
angle \downarrow \sigma''}$$

Subcase
$$\mathcal{E}' = \frac{\langle b, \sigma \rangle \downarrow \text{false}}{\langle \text{if } b \text{ then } (c_0; \text{while } b \text{ do } c_0) \text{ else skip}, \sigma \rangle \downarrow \sigma''}$$

$$\mathcal{E} = rac{\langle b, \sigma
angle \downarrow ext{false}}{\langle ext{while } b ext{ do } c_0, \sigma
angle \downarrow \sigma''}$$

where $\sigma'' = \sigma$.

Task 2.4

(No rules for t: already fully executed)

$$\text{SB-Eq1}: \frac{\sigma \vdash a_0 \to a_0'}{\sigma \vdash a_0 = a_1 \to a_0' = a_1} \quad \text{SB-Eq2}: \frac{\sigma \vdash a_1 \to a_1'}{\sigma \vdash \overline{n_0} = a_1 \to \overline{n_0} = a_1'}$$

SB-EQT :
$$\frac{1}{\sigma \vdash \overline{n} = \overline{n} \to \mathbf{true}}$$
 SB-EQF : $\frac{1}{\sigma \vdash \overline{n} = \overline{n} \to \mathbf{false}}$ $(n_0 \neq n_1)$

SB-Leq1:
$$\frac{\sigma \vdash a_0 \to a_0'}{\sigma \vdash a_0 < a_1 \to a_0' < a_1} \quad \text{SB-Leq2: } \frac{\sigma \vdash a_1 \to a_1'}{\sigma \vdash \overline{n_0} < a_1 \to \overline{n_0} < a_1'}$$

SB-LeqT:
$$\frac{1}{\sigma \vdash \overline{n_0} \leq \overline{n_1} \to \mathbf{true}} (n_0 \leq n_1)$$
 SB-LeqF: $\frac{1}{\sigma \vdash \overline{n_0} \leq \overline{n_1} \to \mathbf{false}} (n_0 > n_1)$

SB-Neg1:
$$\frac{\sigma \vdash b \to b'}{\sigma \vdash \neg b \to \neg b'}$$

$$\text{SB-NegT}: \frac{}{\neg \text{true} \rightarrow \text{false}} \quad \text{SB-NegT}: \frac{}{\neg \text{false} \rightarrow \text{true}}$$

Task 2.5

Theorem 2.15 If $\langle b, \sigma \rangle \downarrow t$ then $\sigma \vdash b \rightarrow^* t$.

Case
$$\mathcal{E} = \frac{\langle b_0, \sigma \rangle \downarrow \mathbf{true} \quad \langle b_1, \sigma \rangle \downarrow t}{\langle b_0 \wedge b_1, \sigma \rangle \downarrow t}$$

By IH on \mathcal{E}_0 we get \mathcal{SS}_0 of $\sigma \vdash b_0 \to^*$ **true**. Using SB-And1 we get

$$\sigma \vdash b_0 \wedge b_1 \rightarrow \mathbf{true} \wedge b_1$$

which we can concatenate with SB-AndT to obtain $\sigma \vdash \mathbf{true} \land b_1 \to^* b_1$. By IH on \mathcal{E}_1 we get $\sigma \vdash b_1 \to^* t$ to obtain

$$\langle b_0 \wedge b_1, \sigma \rangle \to^* t$$

Case
$$\mathcal{E} = \frac{\langle b_0, \sigma \rangle \downarrow \mathbf{false}}{\langle b_0 \wedge b_1, \sigma \rangle \downarrow \mathbf{false}}$$

By IH on \mathcal{E}_0 we get $\sigma \vdash b_0 \to^*$ false. Using SB-And1 we get

$$\sigma \vdash b_0 \wedge b_1 \rightarrow^* \mathbf{false} \wedge b_1$$

which we can concatenate with SB-AndF we get $\sigma \vdash \mathbf{false} \land b_1 \to^* \mathbf{false}$ and we have

$$\langle b_0 \wedge b_1, \sigma \rangle \to^* t$$

Lemma 2.16 If $\sigma \vdash b \rightarrow b'$ and $\langle b', \sigma \rangle \downarrow t$ then $\langle b, \sigma \rangle \downarrow t$.

Case
$$S = \text{SB-And1} \frac{\sigma \vdash b_0 \to b_0'}{\sigma \vdash b_0 \land b_1 \to b_0' \land b_1}$$

So $b = (b_0 \wedge b_1)$ and $b' = (b'_0 \wedge b_1)$. Since there are two big-step rules for **conjunctions**, \mathcal{E}' must have one of the two following shapes:

Subcase
$$\mathcal{E}' = \text{EB-AndT} \frac{\langle b'_0, \sigma \rangle \downarrow \mathbf{true}}{\langle b'_0, \delta \rangle_1, \sigma \rangle \downarrow t} \frac{\mathcal{E}'_1}{\langle b'_0, \delta \rangle_1, \sigma \rangle \downarrow t}$$

By IH on \mathcal{S}_0 with \mathcal{E}'_0 we get a derivation \mathcal{E}_0 of $\langle b_0, \sigma \rangle \downarrow \mathbf{true}$ and we can construct \mathcal{E} as

$$\mathcal{E} = \text{EB-AndT} \frac{\langle b_0, \sigma \rangle \downarrow \mathbf{true} \quad \langle b_1, \sigma \rangle \downarrow t}{\langle b_0 \wedge b_1, \sigma \rangle \downarrow t}$$

Subcase
$$\mathcal{E}' = \text{EB-AndF} \frac{\langle b'_0, \sigma \rangle \downarrow \mathbf{false}}{\langle b'_0 \wedge b_1, \sigma \rangle \downarrow \mathbf{false}}$$

By IH on \mathcal{S}_0 with \mathcal{E}'_0 we get a derivation \mathcal{E}_0 of $\langle b_0, \sigma \rangle \downarrow$ false and we can construct \mathcal{E} as

$$\mathcal{E} = \text{EB-AndF} \frac{\langle b_0, \sigma \rangle \downarrow \mathbf{false}}{\langle b_0 \wedge b_1, \sigma \rangle \downarrow \mathbf{false}}$$

Case
$$S = SB-ANDT \frac{}{\sigma \vdash \mathbf{true} \land b_1 \rightarrow b_1}$$

3

So $b = (\mathbf{true} \wedge b_1)$ and $b' = b_1$. Since there is only one possible big-step rule for evaluation of b', namely EB-Cst, we must have

$$\mathcal{E}' = \text{EB-Cst} \frac{1}{\langle b_1, \sigma \rangle \downarrow b_1}$$

and we can construct

$$\mathcal{E} = \text{EB-Cst} \frac{1}{\langle b_1, \sigma \rangle \downarrow b_1}$$

Case
$$S = SB-ANDF \frac{}{\sigma \vdash false \land b_1 \rightarrow false}$$

So $b = (\mathbf{false} \land b_1)$ and $b' = \mathbf{false}$. Since there is only one possible big-step rule for evaluation of b', namely EB-Cst, we must have

$$\mathcal{E}' = \text{EB-Cst} \frac{}{\langle b_0, \sigma \rangle \downarrow \mathbf{false}}$$

and we can construct

$$\mathcal{E} = \text{EB-Cst} \overline{\langle b_0, \sigma \rangle \downarrow \mathbf{false}}$$