7: Eksperimenter I

Videregående kvantitative metoder i studiet af politisk adfærd

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Institut for Statskundskab Københavns Universitet

25. oktober 2017

Case: GGI

Kig fremad

- 1 Formalia
- 2 Opsamling fra sidst
- 3 Mere om potential outcomes framework
- 4 Randomisering i praksis
- 5 Faldgruber ved eksperimentelle designs
- 6 Case: Gerber, Green & Larimer (2008)
- 7 Kig fremad

Fagets opbygning

Blok 1

Gang	Tema	Litteratur	Case
1	Introduktion til R	Leeper (2016)	
2	R workshop + tidy data	Wickham (2014), Zhang (2017)	
3	Regression I: OLS brush-up	AP kap 3	Newman et al. (2015), Solt et al. (2017)
4	Regression II: Paneldata	AGS kap 4	Larsen et al. (2017)

Fagets opbygning

Blok 2

5	Introduktion til kausal inferens	Hariri (2012), Samii (2016)	Eckles & Bakshy (2017)
6	Matching	Justesen & Klemmensen (2014)	Nall (2015)
Efterårsferie			
7	Eksperimenter I	AP kap 1+2, GG kap 1+2	Gerber, Green & Larimer (2008)
8	Eksperimenter II	GG kap 3+4+5	Gerber & Green (2000)
9	Instrumentvariable	AP kap 4	Lundborg et al. (2017)
10	Difference-in-differences	AP kap 5	Enos (2016)
11	Regressions diskontinuitets designs	AP kap 6	Eggers & Hainmueller (2009)

Fagets opbygning

Blok 3

12	Tekst som data	Grimmer & Stewart (2013), Benoit & Nulty (2016)	Baturo & Mikhaylov (2013)
13	Scraping af data fra online-kilder	MRMN kap 9+14	Hjorth (2016)
14	'Big data' og maskinlæring	Varian (2014), Montgomery & Olivella (2017)	Theocharis et al. (2016)

Halvvejsevaluering:

https://fghjorth.typeform.com/to/LioGD4

Formalia

000

Case: GGI

Kig fremad

- introduktion til potential outcomes framework
- problemer ved ekstrapolation og modelafhængighed
- common support
- propensity score matching
- coarsened exact matching
- balance checks
- case: Nall (2015)

Case: GGI

Kig fremad

»Our view is that regression can be motivated as a particular sort of weighted matching estimator, and therefore the differences between regression and matching estimates are unlikely to be of major empirical importance.« (70)

Motiverende eksempel: NHIS

Group	Sample Size	Mean Health Status	Std. Error
Hospital	7,774	3.21	.014
No hospital	90,049	3.93	.003

 $[\]rightarrow$ hvad indikerer dette om effekten af hospitaler på sundhed?

To studerende. Khuzdar & Maria

- Y_{1i} : potentielt outcome hvis i tager på hospitalet
- Y_{0i} : potentielt outcome hvis *i ikke* tager på hospitalet
- i dette case: hospitalisering gavner Khuzdar, men ikke Maria

$$Y_{1K} - Y_{0K} = 4 - 3 = 1 \tag{1}$$

$$Y_{1M} - Y_{0M} = 5 - 5 = 0 (2)$$

Fuldt potential outcomes schedule:

	Khuzdar	Maria
Y_{0i}	3	5
Y_{1i}	4	5
D_i	1	0
Y_i	4	5
$Y_{1i} - Y_{0i}$	1	0

Case: GGL

Kig fremad

Observerede outcomes:

	Khuzdar	Maria
$\overline{Y_{0i}}$?	5
Y_{1i}	4	?

$$\to \, \bar{Y}_1 - \, \bar{Y}_0 = 4 - 5 = -1$$

Kig fremad

Den direkte sammenligning afspejler både ATE hos de treatede + selection bias:

$$Y_{K} - Y_{M} = Y_{1K} - Y_{0M}$$

$$= Y_{1K} - Y_{0K} + Y_{0K} - Y_{0M}$$

$$= 1 + (-2)$$
(3)
$$= (4)$$

$$=-1 \tag{6}$$

M. mere general notation i AP+GG:

$$E[Y_{1i}|D_i=1] - E[Y_{0i}|D_i=0] =$$
 $E[Y_{1i} - Y_{0i}|D_i=1] + E[Y_{0i}|D_i=1] - E[Y_{0i}|D_i=0]$ (7)

når treatment randomiseres er Y_0i uafhængig af D_i :

$$E[Y_{0i}|D_i=1]-E[Y_{0i}|D_i=0]=0$$
 (8)

m.a.o.: random assignment eliminerer selection bias

»This does not mean that randomized trials are problem-free, but that in principle they solve the most important problem that arises in empirical research. « (15)

nalia Opsamling Mere om POF Randomisering i praksis Faldgruber Case: GGL Kig fremad

Succesfuld randomisering kan efterprøves m. balance tests

Table 2.2.1
Comparison of treatment and control characteristics in the Tennessee STAR experiment

Class Size

		Class	P-value for equality	
Variable	Small	Regular	Regular/Aide	across groups
Free lunch	.47	.48	.50	.09
White/Asian	.68	.67	.66	.26
Age in 1985	5.44	5.43	5.42	.32
Attrition rate	.49	.52	.53	.02
Class size in kindergarten	15.10	22.40	22.80	.00
Percentile score in kindergarten	54.70	48.90	50.00	.00

Notes: Adapted from Krueger (1999), table I. The table shows means of variables by treatment status for the sample of students who entered STAR in kindergarten. The *P*-value in the last column is for the *F*-test of equality of variable means across all three groups. The free lunch variable is the fraction receiving a free lunch. The percentile score is the average percentile score on three Stanford Achievement

Regressions analyse af randomiseret treatment D_i :

$$Y_i = \alpha + \rho D_i + \eta_i \tag{9}$$

Med tilføjet vektor af kontrolvariable X_i :

$$Y_i = \alpha + \rho D_i + X_i' \gamma + \eta_i \tag{10}$$

Hvorfor tilføjer vi X_i' ?

- For at rette op på kendte ubalancer i treatment
- 2 For at reducere residual varians i outcome $\rightarrow \downarrow$ standardfejl
- \rightarrow mere om dette i næste uge!

Randomisering i praksis

Opsamling

Mere om POF

0000000000

School fixed effects

Experimental estimate	Table of the e		class size on	test scores
Explanatory Variable	(1)	(2)	(3)	(4)
Small class	4.82 (2.19)	5.37 (1.26)	5.36 (1.21)	5.37 (1.19
Regular/aide class	.12 (2.23)	.29 (1.13)	.53 (1.09)	.31 (1.07
White/Asian	_	_	8.35 (1.35)	8.44 (1.36
Girl	_	_	4.48 (.63)	4.39
Free lunch	_	_	-13.15 (.77)	-13.07
White teacher	_	_	_	57 (2.10
Teacher experience	_	_	_	.26 (.10)
Teacher Master's degree	_	_	_	-0.51 (1.06)

No

Yes

Yes

Yes

Case: GGL

Kig fremad

Faldgruber

Gerber & Greens procedure:

»First, determine N, the number of subjects in your experiment, and m, the number of subjects who will be allocated to the treatment group. Second, set a random number 'seed' using a statistics package, so that your random numbers may be reproduced by anyone who cares to replicate your work. Third, generate a random number for each subject. Fourth, sort the subjects by the random numbers in ascending order. Finally, classify the first m observations as the treatment group. « (37)

To kritiske antagelser om potential outcomes:

- excludability
- non-interferens (SUTVA)

Ad (1):

Lad $Y_i(z,d)$ være potential outcome for treatment assignment $z_i = z$ og faktisk treatment status $d_i = d$

Eksklusionsrestriktionsantagelsen: $Y_i(1, d) = Y_i(0, d)$

Ad (2):

Lad $Y_i(\mathbf{z}, \mathbf{d})$ være PO for Y_i for den fulde mængde af assignments og treatments

Under non-interferens: $Y_i(\mathbf{z}, \mathbf{d}) = Y_i(z, d)$

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election

	Experimental Group					
	Control	Civic Duty	Hawthorne	Self	Neighbors	
Percentage Voting	29.7%	31.5%	32.2%	34.5%	37.8%	
N of Individuals	191,243	38,218	38,204	38,218	38,201	

ormalia Opsamling Mere om POF Randomisering i praksis Faldgruber Case: GGL Kig fremad
0000 00 0000000000 0 000 000 000 000

Neighbors mailing

30423-3 || || || || ||

East Lansing, MI 48826

For more information: (517) 351-1975 email: ctov@grebner.com Practical Political Consulting P. O. Box 6249 PRSAT STD U.S. Poslage PAID Lansing, MI Permit # 444

ECRLOT **C050 THE JACKSON FAMILY 9999 MAPLE DR FLINT MI 48507

Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for years, but it only seems to get worse. This year, we're taking a new approach. We're sending this mailing to you and your neighbors to publicize who does and does not yote.

The chart shows the names of some of your neighbors, showing which have voted in the past. After the August 8 election, we intend to mail an updated chart. You and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY - VOTE!

MAPLE DR	Aug 04	Nov 04	Aug 0
9995 JOSEPH JAMES SMITH	Voted	Voted	Aug o
9995 JENNIFER KAY SMITH	10104	Voted	_
9997 RICHARD B JACKSON		Voted	
9999 KATHY MARIE JACKSON		Voted	

Hey @tedcruz your brilliant public shaming campaign has inspired me to caucus on Monday...For @marcorubio

Næste gang:

- eksperimenter II
- fokus: cluster random assignment, covariate adjustment, noncompliance
- case: Gerber & Green (2000)
- husk at udfylde halvvejsevaluering! https://fghjorth.typeform.com/to/LioGD4

Randomisering i praksis

Faldgruber

Case: GGL

Kig fremad

Tak for i dag!

Opsamling

Mere om POF