

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustech.edu.cn

Division, Primes

Congruence

■ Greatest Common Divisor (GCD)

Division, Primes

$$a = dq + r$$

Congruence

■ Greatest Common Divisor (GCD)

Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

■ Greatest Common Divisor (GCD)

Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

■ Greatest Common Divisor (GCD)

Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

$$a \equiv b \pmod{m}$$
 if m divides $a - b$

Greatest Common Divisor (GCD)

Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

$$a \equiv b \pmod{m}$$
 if m divides $a - b$

Greatest Common Divisor (GCD)

Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

$$a \equiv b \pmod{m}$$
 if m divides $a - b$

 Greatest Common Divisor (GCD) (extended) Euclidean algorithm

Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

$$a \equiv b \pmod{m}$$
 if m divides $a - b$

Greatest Common Divisor (GCD)

Find the GCD of 286 and 503.

```
\gcd(503,286) \qquad 503 = 1 \cdot 286 + 217 \\ = \gcd(286,217) \qquad 286 = 1 \cdot 217 + 69 \\ = \gcd(217,69) \qquad 217 = 3 \cdot 69 + 10 \\ = \gcd(69,10) \qquad 69 = 6 \cdot 10 + 9 \\ = \gcd(10,9) \qquad 10 = 1 \cdot 9 + 1 \qquad 1 = 29 \cdot 217 - 22 \cdot 286 \\ = 1 \qquad 9 = 9 \cdot 1 \qquad 1 = 29 \cdot 503 - 51 \cdot 286
```


Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

```
a \equiv b \pmod{m} if m divides a - b
```

Greatest Common Divisor (GCD) (extended) Euclidean algorithm find the modular inverse solve linear congruence $ax \equiv b \pmod{m}$ (gcd(a, m) = 1)

Division, Primes a = dq + r $q = a \ div \ d$ $r = a \ mod \ d$

Congruence $a \equiv b \pmod{m}$ if m divides a - b

- Greatest Common Divisor (GCD) (extended) Euclidean algorithm find the modular inverse solve linear congruence $ax \equiv b \pmod{m} (\gcd(a, m) = 1)$ Chinese Remainder Theorem / back substitution
- Euler's Theorem / Fermart's Little Theorem

Division, Primes

$$a = dq + r$$
 $q = a div d$ $r = a mod d$

Congruence

```
a \equiv b \pmod{m} if m divides a - b
```

- Greatest Common Divisor (GCD) (extended) Euclidean algorithm find the modular inverse solve linear congruence $ax \equiv b \pmod{m} (\gcd(a, m) = 1)$ Chinese Remainder Theorem / back substitution
- Euler's Theorem / Fermart's Little Theorem $x^{\phi(n)} \equiv 1 \mod n$ if $\gcd(x, n) = 1$ $x^{p-1} \equiv 1 \mod p$ if $x \not\equiv 0 \mod p$

Q: Consider the RSA system. Let (e, d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \mod n = M$)

Q: Consider the RSA system. Let (e,d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \mod n = M$)

Case I:
$$gcd(M, n) = 1$$

$$C^{d'} \bmod n = M^{ed'} \bmod n = M^{k\lambda(n)+1} \bmod n$$

$$= (M^{k\lambda(n)} \bmod n) M \bmod n$$

$$= (M^{(p-1)(q-1)/\gcd(p-1,q-1)} \bmod n)^k M \bmod n$$

By Fermat's theorem, $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod p = (M^{(q-1)/\gcd(p-1,q-1)})^{p-1} \mod p = 1$ and $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod q = 1$. Then by Chinese Remainder Theorem, we have $C^{d'} \mod n = M$.

Q: Consider the RSA system. Let (e, d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \mod n = M$)

Case II: gcd(M, n) = p

M = tp for some integer 0 < t < q. We have gcd(M, q) = 1 and $ed' = k\lambda(n) + 1$ for some integer k. By Fermat's theorem, we have

$$(M^{k\lambda(n)}-1) \bmod q = (M^{k(p-1)(q-1)/\gcd(p-1,q-1)}-1) \bmod q = 0.$$

Then

$$(M^{ed'} - M) \mod n = M(M^{ed'-1} - 1) \mod n$$

$$= tp(M^{k\lambda(n)} - 1) \mod pq$$

$$= 0$$

Q: Consider the RSA system. Let (e,d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \mod n = M$)

Case III: gcd(M, n) = q

Similar to Case II.

Case IV: gcd(M, n) = pq

Trivial.

We start by reviewing proof by smallest counterexample to try and understand what it is really doing.

- We start by reviewing proof by smallest counterexample to try and understand what it is really doing.
- This leads us to transform the *indirect proof* of proof by counterexample to *direct proof*. This direct proof technique will be **induction**.

- We start by reviewing proof by smallest counterexample to try and understand what it is really doing.
- This leads us to transform the indirect proof of proof by counterexample to direct proof. This direct proof technique will be induction.
- We conclude by distinguishing between the weak principle of mathematical induction and the strong principle of mathematical induction.

- We start by reviewing proof by smallest counterexample to try and understand what it is really doing.
- This leads us to transform the indirect proof of proof by counterexample to direct proof. This direct proof technique will be induction.
- We conclude by distinguishing between the weak principle of mathematical induction and the strong principle of mathematical induction.

The *strong principle* can actually be derived from the *weak principle*.

■ The statement P(n) is true for all n = 0, 1, 2, ...

■ The statement P(n) is true for all n = 0, 1, 2, ...

We prove this by

(i) Assume that a counterexample exists, i.e., There is some n > 0 for which P(n) is false

■ The statement P(n) is true for all n = 0, 1, 2, ...

We prove this by

- (i) Assume that a counterexample exists, i.e., There is some n > 0 for which P(n) is false
 - (ii) Let m > 0 be the smallest value for which P(n) is false

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \qquad m-1 \quad m$$

$$P(m')$$
 true; $0 \le m' < m$

P(m) not true

■ The statement P(n) is true for all n = 0, 1, 2, ...

We prove this by

- (i) Assume that a counterexample exists, i.e., There is some n > 0 for which P(n) is false
 - (ii) Let m > 0 be the smallest value for which P(n) is false
- (iii) Then use the fact that P(m') is true for all $0 \le m' < m$ to show that P(m) is true, contradicting the choice of m.

■ The statement P(n) is true for all n = 0, 1, 2, ...

We prove this by

- (i) Assume that a counterexample exists, i.e., There is some n > 0 for which P(n) is false
 - (ii) Let m > 0 be the smallest value for which P(n) is false
- (iii) Then use the fact that P(m') is true for all $0 \le m' < m$ to show that P(m) is true, contradicting the choice of m.

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

(*)
$$0+1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

(*)
$$0+1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

♦ Suppose that (*) is not always true

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

(*)
$$0+1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

- ♦ Suppose that (*) is not always true
- \diamond Then there must be a smallest $n \in N$ s.t. (*) does not hold for n

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

(*)
$$0+1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

- ♦ Suppose that (*) is not always true
- \diamond Then there must be a smallest $n \in N$ s.t. (*) does not hold for n
- \diamond For any nonnegative integer i < n,

$$1+2+\cdots+i=\frac{i(i+1)}{2}$$

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

(*)
$$0+1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

- ♦ Suppose that (*) is not always true
- \diamond Then there must be a smallest $n \in N$ s.t. (*) does not hold for n
- \diamond For any nonnegative integer i < n,

$$1+2+\cdots+i=\frac{i(i+1)}{2}$$

 \diamond Since $0 = 0 \cdot 1/2$, (*) holds for n = 0

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

(*)
$$0+1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

- ♦ Suppose that (*) is not always true
- \diamond Then there must be a smallest $n \in N$ s.t. (*) does not hold for n
- \diamond For any nonnegative integer i < n,

$$1+2+\cdots+i=\frac{i(i+1)}{2}$$

- \diamond Since $0 = 0 \cdot 1/2$, (*) holds for n = 0
- \diamond The smallest counterexample *n* is larger than 0

- We now have
 - (i) smallest counterexample n is greater than 0, and
 - (ii) (*) holds for n-1

- We now have
 - (i) smallest counterexample n is greater than 0, and
 - (ii) (*) holds for n-1

$$\diamond$$
 Substituting $n-1$ for i gives
$$1+2+\cdots+n-1=\frac{(n-1)n}{2}$$

- We now have
 - (i) smallest counterexample n is greater than 0, and
 - (ii) (*) holds for n-1
 - \diamond Substituting n-1 for i gives $1+2+\cdots+n-1=rac{(n-1)n}{2}$
 - ♦ Adding *n* to both sides gives

$$1+2+\cdots+n-1+n=\frac{(n-1)n}{2}+n=\frac{n(n+1)}{2}$$

- We now have
 - (i) smallest counterexample n is greater than 0, and
 - (ii) (*) holds for n-1
 - \diamond Substituting n-1 for i gives $1+2+\cdots+n-1=rac{(n-1)n}{2}$
 - ♦ Adding *n* to both sides gives

$$1+2+\cdots+n-1+n=\frac{(n-1)n}{2}+n=\frac{n(n+1)}{2}$$

♦ Thus, n is not a counterexample. Contradiction!

- We now have
 - (i) smallest counterexample n is greater than 0, and
 - (ii) (*) holds for n-1
 - \diamond Substituting n-1 for i gives $1+2+\cdots+n-1=rac{(n-1)n}{2}$
 - ♦ Adding *n* to both sides gives

$$1+2+\cdots+n-1+n=\frac{(n-1)n}{2}+n=\frac{n(n+1)}{2}$$

- ♦ Thus, n is not a counterexample. Contradiction!
- \diamond Therefore, (*) holds for all positive integers n.

What implication did we have to prove?

What implication did we have to prove?

The key step was proving that

$$P(n-1) \rightarrow P(n)$$

where P(n) is the statement

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

■ Use proof by smallest counterexample to show that, $\forall n \in N$, $2^{n+1} \ge n^2 + 2$.

■ Use proof by smallest counterexample to show that, $\forall n \in N$,

$$2^{n+1} > n^2 + 2$$
.

Let $P(n) - 2^{n+1} \ge n^2 + 2$. We start by assuming that the statement

$$\forall n \in N \ P(n)$$

is false.

• Use proof by smallest counterexample to show that, $\forall n \in N$,

$$2^{n+1} \geq n^2 + 2$$
.

Let $P(n) - 2^{n+1} \ge n^2 + 2$. We start by assuming that the statement

$$\forall n \in N P(n)$$

is false

When a for all quantifier is false, there must be some n for which it is false. Let n be the smallest nonnegative integer for which $2^{n+1} \geq n^2 + 2$.

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

This means that, for all $i \in N$ with i < n, $2^{i+1} \ge i^2 + 2$

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

This means that, for all $i \in N$ with i < n, $2^{i+1} \ge i^2 + 2$

Since $2^{0+1} \ge 0^2 + 2$, we know that n > 0. Thus, n - 1 is a nonnegative integer less than n.

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

This means that, for all $i \in N$ with i < n,

$$2^{i+1} \ge i^2 + 2$$

Since $2^{0+1} \ge 0^2 + 2$, we know that n > 0. Thus, n - 1 is a nonnegative integer less than n.

Then setting i = n - 1 gives

$$2^{(n-1)+1} \ge (n-1)^2 + 2.$$

or

(*)
$$2^n \ge n^2 - 2n + 1 + 2 = n^2 - 2n + 3$$

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

We are now given
$$2^n \ge n^2 - 2n + 3$$
. (*)

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

We are now given
$$2^n \ge n^2 - 2n + 3$$
. (*)

Multiply both sides by 2, giving

$$2^{n+1} = 2 \cdot 2^n \ge 2 \cdot (n^2 - 2n + 3) = 2n^2 - 4n + 6.$$

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

We are now given
$$2^n \ge n^2 - 2n + 3$$
. (*)

Multiply both sides by 2, giving

$$2^{n+1} = 2 \cdot 2^n \ge 2 \cdot (n^2 - 2n + 3) = 2n^2 - 4n + 6.$$

To get a contradiction, we want to convert the right side into $n^2 + 2$ plus an additional nonnegative term.

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

We are now given
$$2^n \ge n^2 - 2n + 3$$
. (*)

Multiply both sides by 2, giving

$$2^{n+1} = 2 \cdot 2^n \ge 2 \cdot (n^2 - 2n + 3) = 2n^2 - 4n + 6.$$

To get a contradiction, we want to convert the right side into $n^2 + 2$ plus an additional nonnegative term.

Thus, we write

$$2^{n+1} \geq 2n^2 - 4n + 6$$

$$= (n^2 + 2) + (n^2 - 4n + 4)$$

$$= n^2 + 2 + (n - 2)^2$$

$$\geq n^2 + 2.$$

Let *n* be the smallest nonnegative integer for which $2^{n+1} \ge n^2 + 2$.

We are now given
$$2^n \ge n^2 - 2n + 3$$
. (*)

Multiply both sides by 2, giving

$$2^{n+1} = 2 \cdot 2^n \ge 2 \cdot (n^2 - 2n + 3) = 2n^2 - 4n + 6.$$

To get a contradiction, we want to convert the right side into $n^2 + 2$ plus an additional nonnegative term.

Thus, we write

Let $P(n) - 2^{n+1} \ge n^2 + 2$

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$

Let $P(n) - 2^{n+1} \ge n^2 + 2$

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$
- \diamond Suppose there is some *n* for which P(n) is false (*)

Let $P(n) - 2^{n+1} \ge n^2 + 2$

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$
- \diamond Suppose there is some *n* for which P(n) is false (*)
- ♦ Let n be the smallest counterexample

Let $P(n) - 2^{n+1} \ge n^2 + 2$

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$
- \diamond Suppose there is some *n* for which P(n) is false (*)
- ♦ Let n be the smallest counterexample
- \diamond Then, from (a) n > 0, so P(n-1) is true

Let $P(n) - 2^{n+1} \ge n^2 + 2$

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$
- \diamond Suppose there is some *n* for which P(n) is false (*)
- ♦ Let n be the smallest counterexample
- \diamond Then, from (a) n > 0, so P(n-1) is true
- \diamond Therefore, from (b), using direct inference, P(n) is true

- Let $P(n) 2^{n+1} \ge n^2 + 2$
 - We just showed that
 - (a) P(0) is true
 - (b) if n > 0, then $P(n-1) \rightarrow P(n)$
 - \diamond Suppose there is some *n* for which P(n) is false (*)
 - ♦ Let n be the smallest counterexample
 - \diamond Then, from (a) n > 0, so P(n-1) is true
 - \diamond Therefore, from (b), using direct inference, P(n) is true
 - ♦ This contradicts (*).

- Let $P(n) 2^{n+1} \ge n^2 + 2$
 - We just showed that
 - (a) P(0) is true
 - (b) if n > 0, then $P(n-1) \rightarrow P(n)$
 - \diamond Suppose there is some *n* for which P(n) is false (*)
 - ♦ Let n be the smallest counterexample
 - \diamond Then, from (a) n > 0, so P(n-1) is true
 - \diamond Therefore, from (b), using direct inference, P(n) is true
 - ♦ This contradicts (*).
 - \diamond Thus, P(n) is true for all $n \in N$.

What did we really do?

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$

What did we really do?

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

We just showed that

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$

We then used proof by smallest counterexample to derive that P(n) is true for all $n \in N$.

What did we really do?

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

We just showed that

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$

We then used proof by smallest counterexample to derive that P(n) is true for all $n \in N$.

This is an *indirect proof*. Is it possible to prove this fact *directly*?

What did we really do?

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

We just showed that

- (a) P(0) is true
- (b) if n > 0, then $P(n-1) \rightarrow P(n)$

We then used proof by smallest counterexample to derive that P(n) is true for all $n \in N$.

This is an *indirect proof*. Is it possible to prove this fact *directly*?

Since
$$P(n-1) \rightarrow P(n)$$
, we see that $P(0)$ implies $P(1)$, $P(1)$ implies $P(2)$, ...

The *well-ordering* principle permits us to assume that every set of nonnegative integers has a smallest element, allowing us to use the smallest counterexample.

The *well-ordering* principle permits us to assume that every set of nonnegative integers has a smallest element, allowing us to use the smallest counterexample.

This is actually **equivalent** to the *principle of mathematical* induction.

The *well-ordering* principle permits us to assume that every set of nonnegative integers has a smallest element, allowing us to use the smallest counterexample.

This is actually **equivalent** to the *principle of mathematical* induction.

Principle. (the Weak Principle of Mathematical Induction)

- (a) If the statement P(b) is true
- (b) the statement $P(n-1) \rightarrow P(n)$ is true for all n > b, then P(n) is true for all integers $n \ge b$

The *well-ordering* principle permits us to assume that every set of nonnegative integers has a smallest element, allowing us to use the smallest counterexample.

This is actually **equivalent** to the *principle of mathematical* induction.

Principle. (the Weak Principle of Mathematical Induction)

- (a) If the statement P(b) is true
- (b) the statement $P(n-1) \rightarrow P(n)$ is true for all n > b, then P(n) is true for all integers $n \ge b$
 - (a) Basic Step Inductive Hypothesis
 - (b) Inductive Step Inductive Conclusion

$$\forall n \geq 0, \ 2^{n+1} \geq n^2 + 2$$

 $\forall n \geq 0, \ 2^{n+1} \geq n^2 + 2$

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

 $\forall n \geq 0, \ 2^{n+1} \geq n^2 + 2$

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

(i) Note that for n = 0, $2^{0+1} = 2 \ge 2 = 0^2 + 2 - P(0)$

 $\forall n \geq 0, \ 2^{n+1} \geq n^2 + 2$

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

- (i) Note that for n = 0, $2^{0+1} = 2 \ge 2 = 0^2 + 2 P(0)$
- (ii) Suppose that n > 0 and that $2^n \ge (n-1)^2 + 2$ (*)

 $\forall n \geq 0, \ 2^{n+1} \geq n^2 + 2$

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

- (i) Note that for n = 0, $2^{0+1} = 2 \ge 2 = 0^2 + 2 P(0)$
- (ii) Suppose that n > 0 and that $2^n \ge (n-1)^2 + 2$ (*) $2^{n+1} \ge 2(n-1)^2 + 4$ $= (n^2 + 2) + (n^2 - 4n + 4)$ $= n^2 + 2 + (n-2)^2$ $> n^2 + 2$

 $\forall n \geq 0, \ 2^{n+1} \geq n^2 + 2$

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

- (i) Note that for n = 0, $2^{0+1} = 2 \ge 2 = 0^2 + 2 P(0)$
- (ii) Suppose that n > 0 and that $2^n \ge (n-1)^2 + 2$ (*) $2^{n+1} \ge 2(n-1)^2 + 4$ $= (n^2 + 2) + (n^2 - 4n + 4)$ $= n^2 + 2 + (n-2)^2$ $> n^2 + 2$

Hence, we've just prove that for n > 0, $P(n-1) \rightarrow P(n)$.

 $\forall n \geq 0, \ 2^{n+1} \geq n^2 + 2$

Let
$$P(n) - 2^{n+1} \ge n^2 + 2$$

- (i) Note that for n = 0, $2^{0+1} = 2 \ge 2 = 0^2 + 2 P(0)$
- (ii) Suppose that n > 0 and that $2^n \ge (n-1)^2 + 2$ (*) $2^{n+1} \ge 2(n-1)^2 + 4$ $= (n^2 + 2) + (n^2 - 4n + 4)$ $= n^2 + 2 + (n-2)^2$ $> n^2 + 2$

Hence, we've just prove that for n > 0, $P(n-1) \rightarrow P(n)$.

By mathematical induction, $\forall n > 0$, $2^{n+1} \ge n^2 + 2$.

$$\forall n \geq 2, 2^{n+1} \geq n^2 + 3$$

$$\forall n \geq 2, \ 2^{n+1} \geq n^2 + 3$$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

 $\forall n \geq 2, \ 2^{n+1} \geq n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

(i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 - P(2)$

 $\forall n \geq 2, \ 2^{n+1} \geq n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

- (i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 P(2)$
- (ii) Suppose that n > 2 and that $2^n \ge (n-1)^2 + 3$ (*)

 $\forall n \geq 2, \ 2^{n+1} \geq n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

- (i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 P(2)$
- (ii) Suppose that n > 2 and that $2^n \ge (n-1)^2 + 3$ (*) $2^{n+1} \ge 2(n-1)^2 + 6$ $= n^2 + 3 + n^2 - 4n + 4 + 1$ $= n^2 + 3 + (n-2)^2 + 1$ $> n^2 + 3$

 $\forall n \geq 2, \ 2^{n+1} \geq n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

- (i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 P(2)$
- (ii) Suppose that n > 2 and that $2^n \ge (n-1)^2 + 3$ (*) $2^{n+1} \ge 2(n-1)^2 + 6$ $= n^2 + 3 + n^2 - 4n + 4 + 1$ $= n^2 + 3 + (n-2)^2 + 1$ $> n^2 + 3$

Hence, we've just prove that for n > 2, $P(n-1) \rightarrow P(n)$.

 $\forall n \geq 2, \ 2^{n+1} \geq n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

- (i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 P(2)$
- (ii) Suppose that n > 2 and that $2^n \ge (n-1)^2 + 3$ (*) $2^{n+1} \ge 2(n-1)^2 + 6$ $= n^2 + 3 + n^2 - 4n + 4 + 1$ $= n^2 + 3 + (n-2)^2 + 1$ $> n^2 + 3$

Hence, we've just prove that for n > 2, $P(n-1) \rightarrow P(n)$.

By mathematical induction, $\forall n > 2$, $2^{n+1} \ge n^2 + 3$.

 $\forall n \geq 2, \ 2^{n+1} \geq n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

Base Step

- (i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 P(2)$
- (ii) Suppose that n > 2 and that $2^n \ge (n-1)^2 + 3$ (*) $2^{n+1} \ge 2(n-1)^2 + 6$ Inductive Hypothesis $= n^2 + 3 + n^2 4n + 4 + 1$ $= n^2 + 3 + (n-2)^2 + 1$ $> n^2 + 3$

Inductive Step

Hence, we've just prove that for n > 2, $P(n-1) \rightarrow P(n)$.

By mathematical induction, $\forall n > 2$, $2^{n+1} \ge n^2 + 3$. Inductive Conclusion

We may have another form of direct proof as follows.

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)
 - \diamond Next suppose that we have a proof that, $\forall k > 0$,

$$P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k-1) \rightarrow P(k)$$

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)
 - \diamond Next suppose that we have a proof that, $\forall k > 0$,

$$P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k-1) \rightarrow P(k)$$

 \diamond Then, P(0) implies P(1)

$$P(0) \wedge P(1)$$
 implies $P(2)$

$$P(0) \wedge P(1) \wedge P(2)$$
 implies $P(3) \dots$

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)
 - \diamond Next suppose that we have a proof that, $\forall k > 0$,

$$P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k-1) \rightarrow P(k)$$

 \diamond Then, P(0) implies P(1)

$$P(0) \wedge P(1)$$
 implies $P(2)$

$$P(0) \wedge P(1) \wedge P(2)$$
 implies $P(3) \dots$

 \diamond Iterating gives us a proof of P(n) for all n

Strong Induction

- Principle (The Strong Principle of Mathematical Induction)
 - (a) If the statement P(b) is true
 - (b) for all n > b, the statement

$$P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$$
 is true.

then P(n) is true for all integers $n \geq b$.

Prove that every positive integer is a power of a prime or the product of powers of primes.

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$
 - ♦ Inductive Hypothesis: Suppose that every number less than n is a power of a prime or a product of powers of primes.

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$
 - ♦ Inductive Hypothesis: Suppose that every number less than n is a power of a prime or a product of powers of primes.
 - ♦ Then, if *n* is not a prime power, it is a product of two smaller numbers, each of which is, by the inductive hypothesis, a power of a prime or a product of powers of primes.

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$
 - ♦ Inductive Hypothesis: Suppose that every number less than n is a power of a prime or a product of powers of primes.
 - ♦ Then, if *n* is not a prime power, it is a product of two smaller numbers, each of which is, by the inductive hypothesis, a power of a prime or a product of powers of primes.
 - ♦ Thus, by the strong principle of mathematical induction, every positive integer is a power of a prime or a product of powers of primes.

Mathematical Induction

In practice, we do not usually explicitly distinguish between the weak and strong forms.

Mathematical Induction

- In practice, we do not usually explicitly distinguish between the weak and strong forms.
- In reality, they are equivalent to each other in that the weak form is a special case of the strong form, and the strong form can be derived from the weak form.

■ A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*) \qquad P(n-1) \to P(n)$$

or

$$(**) \qquad P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

3. We conclude on the basis of the principle of mathematical induction that P(n) is true for all $n \ge b$.

Recursion

Recursive computer programs or algorithms often lead to inductive analysis.

Recursion

Recursive computer programs or algorithms often lead to inductive analysis.

A classical example of recursion is the Towers of Hanoi Problem.

- 3 pegs; n disks of different sizes
- A legal move takes a disk from one peg and moves it onto another peg so that it is not on top of a smaller disk
- Problem: Find a (efficient) way to move all of the disks from one peg to another

Problem: Start with *n* disks on leftmost peg

■ **Problem:** Start with *n* disks on leftmost peg using only legal moves

Problem: Start with n disks on leftmost peg using only legal moves move all disks to rightmost peg.

Problem: Start with *n* disks on leftmost peg

using only legal moves

move all disks to rightmost peg.

Given
$$i, j \in \{1, 2, 3\}$$
, let $\overline{\{i, j\}} = \{1, 2, 3\} - \underline{\{i\}} - \{j\}$, i.e., $\overline{\{1, 2\}} = \{3\}$, $\overline{\{1, 3\}} = \{2\}$, $\overline{\{2, 3\}} = \{1\}$.

General solution

General solution

Recursion Base:

If n = 1, moving one disk from i to j is easy. Just move it.

General solution

Recursion Base:

If n = 1, moving one disk from i to j is easy. Just move it.

To move n > 1 disks from i to j


```
To move n > 1 disks from i to j
```

```
move top n-1 disks from i to \{i,j\}
```



```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


To prove Correctness of solution, we are implicitly using induction

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


- To prove Correctness of solution, we are implicitly using induction
- p(n) is statement that algorithm is correct for n

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


- To prove Correctness of solution, we are implicitly using induction
- p(n) is statement that algorithm is correct for n

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```

• p(1) is statement that algorithm works for n=1 disks, which is obviously true

- To prove Correctness of solution, we are implicitly using induction
- p(n) is statement that algorithm is correct for n
- To move n disks from i to ji) move top n-1 disks from i to $\overline{\{i,j\}}$ ii) move largest disk from i to jiii) move top n-1 disks from $\overline{\{i,j\}}$ to j
- p(1) is statement that algorithm works for n=1 disks, which is obviously true
- $p(n-1) \rightarrow p(n)$ is *recursion* statement that if our algorithm works for n-1 disks, then we can build a correct solution for n disks

Running time

M(n) is number of disk moves needed for n disks

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


Running time

M(n) is number of disk moves needed for n disks

To move n disks from i to ji) move top n-1 disks from i to $\overline{\{i,j\}}$ ii) move largest disk from i to jiii) move top n-1 disks from $\overline{\{i,j\}}$ to j

$$M(1) = 1$$
 if $n > 1$, then $M(n) = 2M(n-1) + 1$

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

• We guess that $M(n) = 2^n - 1$

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

• We guess that $M(n) = 2^n - 1$ We'll prove this by induction

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

• We guess that $M(n) = 2^n - 1$

We'll prove this by induction

Later, we'll also see how to solve without guessing

Formally, given

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

We show that $M(n) = 2^n - 1$.

Formally, given

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

We show that $M(n) = 2^n - 1$.

Proof. (by induction)

The base case n=1 is true, since $2^1-1=1$.

For the inductive step, assume that $M(n-1) = 2^{n-1} - 1$ for n > 1.

Formally, given

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

We show that $M(n) = 2^n - 1$.

Proof. (by induction)

The base case n = 1 is true, since $2^1 - 1 = 1$.

For the inductive step, assume that $M(n-1) = 2^{n-1} - 1$ for n > 1.

Then
$$M(n) = 2M(n-1) + 1 = 2(2^{n-1}-1) + 1 = 2^n - 1$$

Note that we used induction twice.

- Note that we used induction twice.
- The first time was to derive correctness of algorithm and the recurrence

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

- Note that we used induction twice.
- The first time was to derive correctness of algorithm and the recurrence

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

The second time was to derive the closed form solution $M(n) = 2^n - 1$ of the recurrence.

Next Lecture

recurrence ...

