IN THE SPECIFICATION:

Please replace the paragraph beginning on page 7, line 19, with the following amended paragraph:

The position deriving system 150 indicated in the embodiment shown in Figure 1 may utilize the same communication satellite 122 to transmit the positional information as communications link 120 uses to transmit the video, still images, audio, text, data, etc. Alternatively, another communication satellite [[122']] can be used to transmit the positional information, or any other known device that transmits positional information may also be used in the same manner as described relative to the communication satellite 122. The second GPS link 154 is shown as extending from the communications satellite 122 to the remote module 104. Positional information is transmitted between the remote module 104 to the off-site module 108 via the communication network 106. Alternately, the second GPS link 154 may extend directly from the communication satellite 122 to the off-site module 108 where one or more of the off-site service computers 109a, 109b, or 109c can receive the positional information transmitted from the communications attachment 110 via the first GPS link 152.

Please replace the paragraph beginning on page 9, line 22, with the following amended paragraph:

The user input device 212 has multiple input devices that may include one or more of the following: a keypad, a multiple press-buttons, a bar-code reader, or a parameter measuring device. The user input device 212 provides physical communication from the on-site person 114 to one or more of the off-site service computers 109a, 109b, or 109c. The on-site person 114 may have to key in a prescribed code before they can utilize the communications attachment 110. The user can input the identity their identity using the off-site service computer 109a, 109b, or 109c by entering a password in the keypad input. Another user input device is a bar

code scanner that enables tools, parts, or equipment to be uniquely numbered and recorded prior to their use. The bar code scanner preferably interacts with a database that is capable of retrieving a checklist stored in the off-site module 108 or the remote module 104. The database contains the desired information relating to that particular tool or part. The off-site module 108 or the remote module 104 can, in response, return a simple schematic of a part or tool along with a prompt for critical dimensions/features to be checked for that particular tool.

Please replace the paragraph beginning on page 10, line 25, with the following amended paragraph:

There are typically at least three computers that interact within the communication system 100. These computers are located at the on-site computer 116, the remote module 104 (that is preferably configured as a server), and one of the offsite service computers 109a, 109b, or 109c at the off-site module 108 [[102]]. The components of each of these computers is now described in order.

Please replace the paragraph beginning on page 18, line 31, with the following amended paragraph:

Figure 3 shows one embodiment of communications attachment 110 that is attached to an outer (usually side) surface of a hardhat 300. The communications attachment 110 comprises a sidemount attachment portion 302, a display portion 304, and an audio insert or speaker 310 [[222]]. The audio insert is positioned within the hardhat 300 in a position that the wearer can hear the audio output. The display 304 may be a liquid crystal display (LCD), a light emitting diode (LED), a heads up display of the type used in many modern aircraft, or any of a variety of applicable displays that are known. The display 304 may be "flipped up" to remove the display from obstructing the view of the on-site person when the display is not being used. The components of the communications attachment 110 are shown.

Please replace the paragraph beginning on page 20, line 8, with the following amended paragraph:

The video/still image display 304 and the audio speaker 222 display the video received from either the off-site module 108, the remote module 104, or the on-site computer 116. A front exemplary view of one embodiment of the display is illustrated in Figure 4 that comprises prempt prompt screen portion 404 of the video/still image display 304 and a user input prompt and instruction display portion 406. Light sensor and light may be applied to the video/still image display to provide an enhanced video image. The video/still image portion may show a video image of the service person, an assembly drawing, a picture of a part that is being described, a video of an installation procedure, a training session, or whatever information is desired to provide to the onsite person 114 to perform the task at hand. The user input prompt and instruction display portion 406 provides text or data relating to the on-site person. Examples of the user input prompt and instruction display portion include a checklist of operations to perform, request for logon procedure, options for the on-site person to select, and instructions from an off-site person. An example of a logon procedure includes prompts for a user to input a personal identification code. Audio instructions to the on-site person 114 to be used during the user input prompt or other communications can also be provided by the audio speakers 222.

Please replace the paragraph beginning on page 22, line 20, with the following amended paragraph:

The GPS receiver 318 is provided to indicate the position of the on-site person 114 based upon the location of the helmet 300 [[200]]. GPS receivers are well known and used to provide positional information in such applications as aircraft, missiles, hikers, etc. The cost of GPS receivers has recently decreased to make them commercially viable for a wide variety of users. The positional data provided by the GPS receiver 318 can be transmitted over the local link 118 to the on-site computer 116 (or over communication system 100 to the remote module 104 or the off-site service

computer 108) to the respective database. The GPS positional values stored in the database for a specific worksite can be compared with those for a plurality of work sites, and the location of the on-site person 114 can be the off-site modules 108. The billing or technical data can be directed at the remote module 104 or the off-site module 108 automatically based upon the positional GPS information received from the on-site person 1.14. Additionally, such positional information may be used to locate a lost or injured on-site person.

Please replace the paragraph beginning on page 24, line 11, with the following amended paragraph:

Some of the instructional information can also be provided by the service person located at the off-site service computer 109a, 109b, or 109c. For example, the service person may either provide verbal instructions, or may select which one of a plurality of instructions stored as files in the databases 737 or 747 should be provided to the on-site person 114. The service person then forwards the above information (plus information that may be added automatically by the computer based upon the question or query) to the communications attachment 110. If the remote module 104 stores the instruction information corresponding to the input information, then the instruction information is retrieved and returned it to the on-site computer 116 [[106]] (over communications link 120) in block 514. If one of the off-site service computers 109a, 109b, or 109c stores the instruction information corresponding to the input information, then the remote module 104 transfers the input information from the desired off-site service computer 109a, 109b, or 109c to the on-site computer 116 [[106]] via remote module. The remote module 104 transmits the instruction information over the communication link 120 to the on-site computer 116.

Please replace the paragraph beginning on page 25, line 11, with the following amended paragraph:

Following block 518, the method continues to optional block 520 in which the result information derived in block 518 is combined with actual measurements from the downhole sensor/control module 250 and is processed by the DAC unit 266. The DAC unit 266 provides an output in data format that may be used by the remote module 104 or the off-site service computers 109a, 109b, or 109c to determine whether the specific measured or calibrated part is applicable for the present operation based upon specific conditions. The combined information is transmitted over the communications link 120 to the remote module 104 (block 522), and possibly, to [[(if]] the off-site service computers 109a, 109b, or 109c instead of the remote module 104.

Please replace the paragraph beginning on page 25, line 19, with the following amended paragraph:

The method 500 continues to block 524 in which the remote module and/or the off-site computer 109a, 109b, or 109c 129a, 129b, or 129c receives and processes the combined information to determine if the part or machine is suitable for operation under measured condition. Block 524 is performed using computer programs associated with the specific operation. For example, a computer program may input the measured dimensions of a casing in an oil drill to determine if the casing is structurally adequate or sufficiently contoured considering the present condition of the drill string, as determined by the DAC unit 266 of the on-site computer. The results from the processing of the combined information in block 524 are returned to the on-site person 114, as well to the off-site service computers 109a[[.]], 109b, or 109c where the service personnel are located (block 526).