Tópicos de Matemática

Licenciatura em Ciências da Computação

1º teste - versão A

	d	duração: 1h50min		
Nome	e:	Número:		
Relativ	Grupo I vamente às questões deste grupo, indique para cada alínea se a afirmação	é verdadeira	(V) ou	
	F), marcando x no quadrado respetivo.	V	F	
1.	As fórmulas $q o (q o q)$ e $(q o q) o q$ não são logicamente equivalentes.	X	. 🗆	
2.	A variável p ter valor lógico verdadeiro é uma condição necessária para a fórmula $\neg p \to (p \to \neg p)$ ter valor lógico verdadeiro.	3	X	
3.	Para quaisquer fórmulas φ e ψ , se $\varphi \lor \psi$ é uma tautologia, então φ é uma tautologia.	ologia	X	
4.	Para quaisquer conjuntos A , B e C , se $A\subseteq B\cup C$, então $A\subseteq B$ ou $A\subseteq C$.		X	
5.	Se $A=\{1,\{1,\{1\}\},\mathbb{Z}\}$, então $A\nsubseteq\mathbb{Z}$ e $\mathbb{Z}\nsubseteq A.$	X		
6.	Se $A=\{1,2,\{1,5\},\{4\}\}$ e $B=\{(1,5),2\}$, então $B\setminus A=\emptyset$.		X	
	Grupo II			

Para cada uma das questões deste grupo, indique a sua resposta sem apresentar qualquer justificação.

1. Considere a proposição

$$p: \forall_{x \in \mathbb{Z}} (x < 0 \to \exists_{y \in \mathbb{Z}} (y > 0 \land x + y = 0))$$

Indique em linguagem simbólica, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.

Resposta: $\exists_{x \in \mathbb{Z}} (x < 0 \land \forall_{y \in \mathbb{Z}} (y \le 0 \lor x + y \ne 0))$

2. Considere os conjuntos

$$A = \{5, \{-5\}, \emptyset\}, B = \{-1, 1, 3\}, C = \{5x \,|\, x \in B \text{ e } x^2 \in B\}.$$

Indique C, $\mathcal{P}(A) \setminus \mathcal{P}(C)$ e $B \times (A \setminus \mathbb{Z})$.

Resposta: $C = \{5, -5\}$,

$$\mathcal{P}(A) \setminus \mathcal{P}(C) = \{\{\emptyset\}, \{\{-5\}\}, \{5,\emptyset\}, \{\{-5\},\emptyset\}, \{5,\{-5\}\}, A\},\$$

$$B \times (A \setminus \mathbb{Z}) = \{(-1, \{-5\}), (1, \{-5\}), (3, \{-5\}), (\emptyset, \{-5\}), (\emptyset, \{-5\}), (\emptyset, \{-5\})\}.$$

Grupo III

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

- 1. Considere as fórmulas proposicionais $\varphi = p \to (\neg p \lor q)$ e $\psi = (\neg q) \to (p \to q)$.
 - (a) Justifique que as fórmulas φ e ψ são logicamente equivalentes.

As fórmulas φ e ψ são logicamente equivalentes se a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia.

Da tabela de verdade seguinte

p	q	$\neg p$	$\neg q$	$\neg p \lor q$	$p \rightarrow q$	φ	ψ	$\varphi \leftrightarrow \psi$
1	1	0	0	1	1	1	1	1
1	0	0	1	0	0	0	0	1
0	1	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1

conclui-se que a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia, pois o seu valor lógico é sempre verdadeiro independentemente do valor lógico das variáveis proposicionais p e q. Por conseguinte, as fórmulas φ e ψ são logicamente equivalentes.

Resolução alternativa: Considerando as propriedades de equivalência lógica, tem-se

$$\begin{array}{lll} \neg q \rightarrow (p \rightarrow q) & \Leftrightarrow & \neg (\neg q) \vee (\neg p \vee q) & ((\varphi \rightarrow \psi) \Leftrightarrow (\neg \varphi \vee \psi)) \\ & \Leftrightarrow & q \vee (\neg p \vee q) & (\text{dupla negação}) \\ & \Leftrightarrow & \neg p \vee (q \vee q) & (\text{associatividade e comutatividade da disjunção}) \\ & \Leftrightarrow & \neg p \vee q & (\text{idempotência da disjunção}) \end{array}$$

e

$$\begin{array}{cccc} p \to (\neg p \vee q) & \Leftrightarrow & \neg p \vee (\neg p \vee q) & ((\varphi \to \psi) \Leftrightarrow (\neg \varphi \vee \psi)) \\ & \Leftrightarrow & (\neg p \vee \neg p) \vee q & (\text{associatividade da disjunção}) \\ & \Leftrightarrow & \neg p \vee q & (\text{idempotência da disjunção}) \end{array}$$

Logo, as fórmulas φ e ψ são logicamente equivalentes.

(b) Diga, justificando, se o argumento representado por

$$\begin{array}{c}
\theta \to \neg \psi \\
\sigma \lor \varphi \\
\hline
\vdots \theta \to \sigma
\end{array}$$

é um argumento válido para quaisquer fórmulas proposicionais σ e θ .

O argumento é válido, pois sempre que as premissas $\theta \to \neg \psi$ e $\sigma \lor \varphi$ são verdadeiras, a conclusão $\theta \to \sigma$ também é verdadeira. De facto, assumindo que as premissas são verdadeiras, a fórmula $\sigma \lor \varphi$ é verdadeira. Logo, temos dois casos a considerar: σ é verdadeira ou θ é verdadeira.

- Caso σ seja verdadeira, a fórmula $\theta \to \sigma$ é verdadeira.
- Caso φ seja verdadeira, a fórmula ψ também é verdadeira, uma vez que ψ e φ são logicamente equivalentes. Assim, $\neg \psi$ é falsa e, como $\theta \to \neg \psi$ é verdadeira, a fórmula θ é falsa. Logo, a fórmula $\theta \to \sigma$ é verdadeira.

Em qualquer dos casos, a conclusão do argumento é verdadeira e, portanto, o argumento é válido.

2. Considere a proposição

$$p: (\forall_{x \in A} \exists_{y \in A} \ x + y = 2) \to (\exists_{y \in A} \forall_{x \in A} \ x + y = 2)$$

onde A é um subconjunto de \mathbb{Z} .

(a) Justifique que p é falsa para $A = \mathbb{Z}$.

Representemos por p_1 e p_2 , respetivamente, o antecedente e o consequente da implicação p, ou seja,

$$p_1 = \forall_{x \in A} \exists_{y \in A} \ x + y = 2,$$

$$p_2 =: \exists_{y \in A} \forall_{x \in A} \ x + y = 2.$$

A proposição p_1 é verdadeira, uma vez que, para qualquer $x \in \mathbb{Z}$, existe y=2-x tal que $y \in \mathbb{Z}$ e x+y=2. A proposição p_2 é falsa, pois, para todo $y \in \mathbb{Z}$, existe x=3-y tal que $x \in \mathbb{Z}$ e $x+y \neq 2$. Então, consideradando que o antecedente da implicação é verdadeiro e o consequente é falso, a proposição p é falsa.

(b) Diga, justificando, se p é verdadeira para algum conjunto A que seja um subconjunto próprio de \mathbb{Z} .

A proposição p é verdadeira para $A=\{1\}$, pois o consequente da implicação p é sempre verdadeiro. A proposição p_2 é verdadeira para $A=\{1\}$, uma vez que existe $y=1\in A$ tal que, para todo $x\in A$, x+y=2 (o único elemento de A é o elemento x=1 e x+y=2).

Resolução alternativa: A proposição p é verdadeira para $A=\{2\}$, pois o antecedente da implicação é falso. A proposição p_1 é falsa para $A=\{2\}$, pois existe $x=2\in A$ tal que, para todo $y\in A$, $x+y\neq 2$ (o único elemento de A é o elemento y=2 e $x+y\neq 2$).

3. Mostre que, para quaisquer inteiros m e n, se mn e m+n são pares, então m e n são ambos pares.

No sentido de se fazer a prova por redução ao absurdo, admitamos que mn e m+n são pares e que m ou n são impares

Se m e n são ambos ímpares, tem-se m=2k+1 e n=2k'+1, para alguns $k,k'\in\mathbb{Z}$. Logo, mn=2(2kk'+k+k')+1, com $2kk'+k+k'\in\mathbb{Z}$. Portanto, mn é ímpar (contradição). Se m é par e n é ímpar, tem-se m=2k e n=2k'+1, para alguns $k,k'\in\mathbb{Z}$. Logo, m+n=2(k+k')+1, com $k+k'\in\mathbb{Z}$. Portanto, m+n é ímpar (contradição). O caso em que m é ímpar e n é par é análogo ao anterior. Em qualquer dos casos obtem-se uma contradição. Desta forma, ficou provado que se mn e m+n são pares, então m e n são ambos pares.

4. Sejam A, B e C conjuntos. Mostre que $(A \cup B) \setminus (B \cap C) = (A \setminus (B \cap C)) \cup (B \setminus C)$.

Para todo x, tem-se

$$x \in (A \cup B) \setminus (B \cap C) \quad \Leftrightarrow \quad (x \in A \lor x \in B) \land x \not\in (B \cap C) \qquad \qquad \text{(definição de união e complementação)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in (B \cap C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land (x \not\in B \lor x \not\in C)) \qquad \qquad \text{(definição de interseção e leis de De Morgan)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in B) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(definição de interseção e leis de De Morgan)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C)) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distributividade)} \\ \Leftrightarrow \quad (x \in A \land x \not\in (B \cap C)) \lor (x \in B \land x \not\in C) \qquad \qquad \text{(distr$$

Logo, $(A \cup B) \setminus (B \cap C) = (A \setminus (B \cap C)) \cup (B \setminus C)$.

5. Prove, por indução nos naturais, que, para todo o natural n,

$$1 \times 2 + 2 \times 2^{2} + 3 \times 2^{3} + \ldots + n \times 2^{n} = (n-1) \times 2^{n+1} + 2.$$

Representemos por p(n) o predicado

$$1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \ldots + n \times 2^n = (n-1) \times 2^{n+1} + 2$$

Pretendemos mostrar que, para todo $n \in \mathbb{N}$, p(n) é verdadeiro. A prova segue recorrendo ao Princípio de Indução (simples) para \mathbb{N} .

(i) Base de indução (n = 1): Para n = 1, tem-se

$$1 \times 2 = 2 = (1 - 1) \times 2^{1+1} + 2.$$

Logo p(1) é verdadeiro.

(ii) Passo de indução: Seja $k \in \mathbb{N}$. Admitamos, por hipótese de indução, que p(k) é verdadeiro, isto é,

$$1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \ldots + k \times 2^k = (k-1) \times 2^{k+1} + 2.$$

Com base na hipótese de indução, prova-se que p(k+1) é verdadeiro, ou seja,

$$1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \ldots + k \times 2^k + (k+1) \times 2^{k+1} = k \times 2^{k+2} + 2$$
.

De facto,

$$\begin{array}{ll} 1\times 2+2\times 2^2+3\times 2^3+\ldots+k\times 2^k+(k+1)\times 2^{k+1}\\ =&((k-1)\times 2^{k+1}+2)+(k+1)\times 2^{k+1}\\ =&(k-1+k+1)\times 2^{k+1}+2\\ =&2k\times 2^{k+1}+2\\ =&k\times 2^{k+2}+2. \end{array}$$
 (por hipótese de indução)

Logo, para todo $k \in \mathbb{N}$,

$$p(k) \Rightarrow p(k+1).$$

De (i) e (ii) concluímos, pelo Princípio de Indução para \mathbb{N} , que, para todo $n \in \mathbb{N}$, p(n) é verdadeiro.

Cotações: Grupo I: 6×0.75 ;

Grupo II: 1. (1,25); 2. (2,25). Grupo III: 1. (1,5+1,5); 2. (1,25+1,25); 3. (2,0); 4. (2,0); 5. (2,5).