Машинное обучение Лекция 4. Байесовский подход

https://yandexdataschool.ru/edu-process/courses/machine-learning

Содержание лекции

- Байесовский классификатор
- Восстановление плотности распределения
 - непараметрическое
 - параметрическое

Вероятностная постановка задачи

- P(x,y) неизвестная точная плотность распределения на X×Y
- х_ℓ выборка из случайных, независимых и одинаково распределенных прецедентов
- Найти: эмпирическую оценку плотности
- Классификатор с минимальной вероятностью ошибки:

$$a(x) = \arg \max_{y \in Y} P(y|x) = \arg \max_{y \in Y} P(y)p(x|y)$$

• Классификатор с минимальным средним риском: $a(x) = \arg\min_{y} E_s \ \mathcal{L}(s,y)$

Пример

• y + o
$$p(y|x) 0.3 0.7$$

- Классификатор с минимальной вероятностью ошибки: a(x) = o
- Классификатор с минимальным средним риском (пусть $\mathcal{L}(+,o)=3$, $\mathcal{L}(o,+)=1$): a(x)=+

Подходы к восстановлению плотности распределения

• Непараметрическое оценивание плотности:

$$\hat{p}(x) = \sum_{i=1}^{\ell} w_i K\left(\frac{\rho(x, x_i)}{h}\right)$$

• Параметрическое оценивание плотности:

$$\hat{p}(x) = \varphi(x, \theta)$$

Наивный байесовский классификатор

- Восстановление п одномерных плотностей — намного более простая задача, чем одной п-мерной.
- Допущение (наивное): признаки являются независимыми случайными величинами
- Тогда совместная плотность распределения представима в виде произведения частных плотностей:

$$p(x|y) = p_1(\xi_1|y) \cdots p_n(\xi_n|y), \quad x = (\xi_1, \dots, \xi_n), \quad y \in Y.$$

Непараметрическое оценивание

 Определение плотности вероятности (одномерный случай):

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P[x - h, x + h]$$

• Эмпирическая оценка:

$$\hat{p}_h(x) = \frac{1}{2h} \frac{1}{\ell} \sum_{i=1}^{\ell} [|x - x_i| < h]$$

Пример – гистограмма оценок

2.1. Poziom podstawowy

Пример – гистограмма возрастов

Локальная непараметрическая оценка Парзена-Розенблатта

$$\hat{p}_h(x) = \frac{1}{\ell h} \sum_{i=1}^{\ell} K\left(\frac{x - x_i}{h}\right)$$

K(z) — функция, называемая ядром, чётная и нормированная:

$$\int K(z) \, dz = 1$$

 \hat{p}_h сходится к р при $h \rightarrow 0$, $\ell \rightarrow \infty$, $h\ell \rightarrow \infty$

Зависимость от h

11

Выбор ядра

$$E(r) = \frac{3}{4}(1-r^2)ig[|r| \leqslant 1ig]$$
 — оптимальное (Епанечникова);

$$Q(r) = \frac{15}{16}(1-r^2)^2 [|r| \leqslant 1]$$
 — квартическое;

$$T(r) = (1-|r|)[|r| \leqslant 1]$$
 — треугольное;

$$G(r) = (2\pi)^{-1/2} \exp(-\frac{1}{2}r^2)$$
 — гауссовское;

$$\Pi(r) = \frac{1}{2} [|r| \leqslant 1]$$
 — прямоугольное.

Выбор ядра

Функционал качества восстановления плотности:

$$J(K) = \int_{-\infty}^{+\infty} \mathsf{E}(\hat{p}_h(x) - p(x))^2 dx$$

ядро $K(r)$	степень гладкости	$J(K^*)/J(K)$
Епанечникова $K^*(r)$	\hat{p}_h' разрывна	1.000
Квартическое	\hat{p}_h'' разрывна	0.995
Треугольное	\hat{p}_h' разрывна	0.989
Гауссовское	∞ дифференцируема	0.961
Прямоугольное	\hat{p}_h разрывна	0.943

В таблице представлены асимптотические значения отношения J(K*)/J(K) при m → ∞, причём это отношение не зависит от p(x).

Параметрическое оценивание плотности

$$p(x) = \varphi(x; \theta)$$

• Принцип максимума правдоподобия:

$$L(\theta; X^{\ell}) = \sum_{i=1}^{\ell} \ln \varphi(x_i; \theta) \to \max_{\theta}$$

• Необходимое условие оптимума:

$$\frac{\partial}{\partial \theta} L(\theta; X^{\ell}) = \sum_{i=1}^{\ell} \frac{\partial}{\partial \theta} \ln \varphi(x_i; \theta) = 0$$

Многомерное нормальное распределение

$$a(x) = \arg\max_{y \in Y} P(y|x) = \arg\max_{y \in Y} P(y)p(x|y)$$
$$p(x|y) = \mathcal{N}(x; \mu_y, \Sigma_y) = \frac{e^{-\frac{1}{2}(x - \mu_y)^{\mathsf{T}} \Sigma_y^{-1} (x - \mu_y)}}{\sqrt{(2\pi)^n \det \Sigma_y}}$$

где $\mu_y \in \mathbb{R}^n$ — вектор матожидания (центр) класса $y \in Y$ $\Sigma_y \in \mathbb{R}^{n \times n}$ — ковариационная матрица класса $y \in Y$

Принцип максимума правдоподобия:

$$L(\theta, X^{\ell}) = \prod_{i=1}^{\ell} \varphi(x_i, y_i, \theta) \to \max_{\theta}$$

Решение — подстановочный алгоритм:

$$\hat{\mu} = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i; \qquad \hat{\Sigma} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_i - \hat{\mu})(x_i - \hat{\mu})^{\mathsf{T}}$$

Многомерное нормальное распределение

Недостатки подстановочного алгоритма

- Функции правдоподобия классов могут существенно отличаться от гауссовских.
- Проблема мультиколлинеарности: на практике встречаются задачи, в которых признаки «почти линейно зависимы». Тогда матрица Σ_y⁻¹ является плохо обусловленной. Она может непредсказуемо и сильно изменяться при незначительных вариациях исходных данных.
- Выборочные оценки чувствительны к нарушениям нормальности распределений, в частности, к редким большим выбросам.

Мультиколлинеарность признаков

Методы устранения мультиколлинеарности

- Регуляризация ковариационной матрицы: обращение Σ+τ вместо Σ
- Диагонализация ковариационной матрицы нормальный наивный байесовский классификатор:

$$p_j(\xi|y) = \frac{1}{\sqrt{2\pi}\sigma_{yj}} \exp\left(-\frac{(\xi - \mu_{yj})^2}{2\sigma_{yj}^2}\right)$$

$$p_y(x) = p_{y1}(\xi_1) \cdots p_{yn}(\xi_n)$$

Проблема выбросов

• Эмпирическое среднее является оценкой матожидания, неустойчивой к редким большим выбросам.

Отсев выбросов

- Идея: решать задачу два раза
 - В первый найти и исключить выбросы
 - Во второй построить более точное решение по выборке без выбросов
- Критерий крутого склона:

