ЛР1. Методична розробка 3

Нагадаємо загальну ідею ітераційних методів уточнення коренів нелінійного рівняння f(x) = 0, де $f(x) \in C[a,b]$. Це рівняння переписуємо у вигляді, більш зручному для ітерування, а саме:

$$x = \varphi(x)$$
, де
$$\varphi(x) \equiv x + \psi(x) \cdot f(x), \qquad (1.3)$$

1.5 Метод простої ітерації

Цей метод добудемо як частинний випадок ітераційних методів, якщо функцію $\psi(x)$, що знаходиться у правій частині рівності (1.3), виберемо у вигляді $\psi(x) = -k = Const \neq 0$.

Ітераційна формула (1.4) для методу простої ітерації набуде такого вигляду

$$x_{n+1} = x_n - k \cdot f(x_n), \quad n = 0, 1, \dots$$

Вважаємо, що на [a, b] похідна f'(x) існує, є неперервною та зберігає знак (це **умова застосування методу**). Коефіцієнт k виберемо так, щоб виконувалася умова $|\phi'(x)| = |1 - k \cdot f'(x)| < 1$ (тобто, щоб метод збігався). Останню нерівність можна переписати у вигляді $-1 < 1 - k \cdot f'(x) < 1$, або у вигляді системи двох нерівностей

$$\begin{cases} k \cdot f'(x) > 0, \\ k \cdot f'(x) < 2. \end{cases} \tag{1.12}$$

Нехай $m_1 \le |f'(x)| \le M_1$, $\forall x \in [a,b]$. Розглянемо два випадки.

- 1. f'(x) > 0, $\forall x \in [a,b]$. З умов (1.12) добуваємо нерівності $0 < k < \frac{2}{f'(x)}$. Звідси випливає, що коефіцієнт k може бути будь яким числом з проміжку $\left(0; \frac{2}{M_1}\right)$.
- 2. f'(x) < 0, $\forall x \in [a,b]$. З умов (1.12) приходимо до нерівностей $\frac{-2}{|f'(x)|} < k < 0$. Звідси випливає, що якщо коефіцієнт k належить проміжку $\left(\frac{-2}{M_1};\ 0\right)$, то $|\phi'(x)| \le q < 1$.

В обох випадках швидкість збіжності залежить від числа q. **Метод буде** збігатися найшвидше, якщо

$$k = \frac{2}{M_1 + m_1}$$
 у випадку $f'(x) > 0$, $\forall x \in [a, b]$, (1.13)

або
$$k = \frac{-2}{M_1 + m_1}$$
 у випадку $f'(x) < 0$, $\forall x \in [a,b]$. (1.14)

Зауважимо, що $\varphi'(\xi) = 1 - k \cdot f'(\xi) \neq 0$, взагалі кажучи. Це означає, що *порядок збіжності методу простої ітерації дорівнює одиниці*.

Приклад. Нехай треба методом простої ітерації на відрізку [-3; -2] уточнити корінь нелінійного рівняння $f(x) \equiv x^3 - 2.9x + 3 = 0$. Переконаємося, що на відрізку [-3; -2] існує єдиний дійсний корінь: f(-3) = -15.3 < 0; f(-2) = 0.8 > 0. Так, корінь існує. Перевіримо, чи буде цей корінь єдиний, для цього знаходимо першу похідну

$$f'(x) = 3x^2 - 2,9 > 0, \ \forall x \in [-3;-2].$$

Перша похідна зберігає знак на відрізку [–3; –2], це гарантує єдиність кореня. Запишемо нелінійне рівняння у вигляді, зручному для ітерування

$$x = \varphi(x)$$
, де $\varphi(x) \equiv x - k \cdot f(x)$, $x \in [-3; -2]$.

Щоб визначити коефіцієнт k, знаходимо границі для першої похідної за модулем

$$m_1 \leq |f'(x)| \leq M_1$$
.

Оскільки друга похідна зберігає знак f''(x) = 6x < 0, $\forall x \in [-3; -2]$, то функція f'(x) своє найбільше і найменше значення досягає в межових точках, тобто

$$f'(-2) = 9,1 = m_1; f'(-3) = 24,1 = M_1.$$

Отже, маємо $k \in \left(0; \frac{2}{24,1}\right) \approx (0; 0,08)$. За формулою (1.13) обчислюємо коефіцієнт k.

$$k = \frac{2}{m_1 + M_1} = \frac{2}{33,2} \approx 0,06024 \approx 0,06$$
.

Тепер будуємо функцію $\varphi(x)$

$$\varphi(x) = x - 0.06 \cdot (x^3 - 2.9x + 3) = -0.06x^3 + 1.174x - 0.18.$$

Вибираємо нульове наближення $x_0 = -2.5$. За ітераційною формулою (1.4) обчислюємо перше наближення.

$$\phi(x_0) = -0.06 \cdot (-15,625) + 1.174 \cdot (-2.5) - 0.18 = 0.9375 - 2.935 - 0.18 = -2.1775.$$

Приймемо до уваги властивість самовиправленості ітераційних методів і для спрощення подальших обчислень добуте число заокруглимо. Залишимо ті розряди

(починаючи з лівого краю), які не змінились порівняно з x_0 , та ще два розряди, які уточнюються. Отже, $x_1 = -2.18$.

Далі обчислюємо друге наближення.

$$x_2 = \varphi(x_1) = -0.06 \cdot (-10.360232) + 1.174 \cdot (-2.18) - 0.18 =$$

= 0.6216739 - 2.55932 - 0.18 = -2.1176461.

Порівнюючи друге та перше наближення, бачимо, що у x_2 уточнюється другий розряд після коми. Отже, можна вважати $x_2 = -2,12$.

Оцінимо похибку останнього наближення апріорним методом. Для цього треба знати число q, яке визначається формулою

$$q = \max_{x \in [a; b]} |\varphi'(x)|. \tag{1.9}$$

Обчислимо потрібну похідну

$$\varphi'(x) = -0.18x^2 + 1.174$$
.

Перевіримо, чи буде ця похідна монотонною. Для цього обчислимо другу похідну $\varphi''(x) = -0.36 \cdot x > 0$, $\forall x \in [-3; -2]$. Оскільки похідна $\varphi''(x)$ зберігає знак на відрізку [-3; -2], то перша похідна є монотонною на цьому відрізку. Отже, достатньо знайти значення похідної $\varphi'(x)$ на кінцях відрізка [-3; -2].

$$\phi'(-3) = -0.18 \cdot 9 + 1.174 = -1.62 + 1.174 = -0.446;$$

$$\phi'(-2) = -0.18 \cdot 4 + 1.174 = -0.72 + 1.174 = 0.454.$$

Зауважимо, що у прикладі похідна $\varphi'(x)$ не зберігає знак в околі кореня ξ . Отже, маємо q=0,454 та обчислюємо $\frac{q}{1-q}=\frac{0,454}{0,546}\approx 0,83$. Тепер звертаємося до (1.7).

$$|x_2 - \xi| \le \frac{q}{1 - q} |x_2 - x_1| \approx 0.83 \cdot 0.06 \approx 0.05$$
.

Якщо точність нас не задовольняє, то обчислюємо наступну ітерацію.

$$\phi(x_2) = -0.06 \cdot (-2.12)^3 + 1.174 \cdot (-2.12) - 0.18 =$$

$$= -0.06 \cdot (-9.528128) - 2.48888 - 0.18 = -2.09719232.$$

Звідси знаходимо $x_3 = -2,097$, і т. п. поки не наблизимось до кореня ξ з бажаною точністю.

1.6. Метод Ньютона (дотичних)

У цьому варіанті ітераційних методів функцію $\psi(x)$, що стоїть у правій частині формули (1.3), виберемо у вигляді $\psi(x) = -\frac{1}{f'(x)}$, тоді $\phi(x) = x - \frac{f(x)}{f'(x)}$.

Вважаємо, що на [a, b] похідні f'(x), f''(x) існують, неперервні та зберігають знак (це *умови застосування методу дотичних*). Знаходимо похідну $\varphi'(x)$.

$$\varphi'(x) = 1 - \frac{f'(x)}{f'(x)} + \frac{f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2} = f(x) \cdot \frac{f''(x)}{(f'(x))^2}.$$
 (1.15)

Як видно з (1.15), $\varphi'(\xi) = 0$. Це означає, що існує такий окіл точки ξ , де $\max_{x \in [a,b]} |\varphi'(x)| < 1$, тобто ітераційний процес буде збігатися. Отже, якщо **метод**

Ньютона розбігається, то треба звузити відрізок [a, b]. З (1.15) знаходимо $\phi''(\xi) = \frac{f''(\xi)}{f'(\xi)} \neq 0$. Це означає, що в умовах (1.11) m = 2, тобто, **порядок збіжності**

методу Ньютона дорівнює двом.

Запишемо ітераційну формулу методу Ньютона.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, \dots$$
 (1.16)

Якщо x_0 вибрати так, щоб $f(x_0) \cdot f''(x_0) > 0$, то $\phi'(x_0) > 0$, тому всі наближення, починаючи з x_0 , будуть знаходитись з одного і того ж боку від кореня ξ (з того, де розташоване x_0) та будуть прямувати до кореня ξ монотонно.

Якщо x_0 вибрати так, щоб $f(x_0) \cdot f''(x_0) < 0$, то наближення x_1 буде з іншого боку від кореня ξ , ніж x_0 , і якщо x_1 не вийде за межі відрізка [a, b], то всі наступні наближення x_2, x_3, \ldots будуть з того боку від кореня ξ , з якого знаходиться x_1 . Отже, послідовність x_1, x_2, x_3, \ldots буде монотонно прямувати до кореня ξ . Якщо x_1 вийде за межі відрізка [a, b], то треба змінити x_0 .

Метод Ньютона має своє власне геометричне зображення, показане на рис. 1.7. Ітераційну формулу (1.16) можна добути з геометричного зображення методу, для цього треба записати рівняння дотичної до графіка функції y = f(x) в точці $(x_n, f(x_n))$

$$y = f(x_n) + (x - x_n)f'(x_n).$$

Точка перетину цієї дотичної з віссю абсцис має координати $(x_{n+1},0)$. Підставивши координати цієї точки в рівняння дотичної, добудемо формулу (1.16).

Рис. 1.7. Графічне зображення методу Ньютона

Приклад. Нехай треба методом дотичних уточнити на відрізку [-3; -2] корінь нелінійного рівняння

$$f(x) \equiv x^3 - 2.9x + 3 = 0.$$

Обчислюємо значення функції f(x) на кінцях відрізка [-3; -2].

$$f(-3) = -27 - 2.9 \cdot (-3) + 3 = -15.3 < 0;$$
 $f(-2) = -8 - 2.9 \cdot (-2) + 3 = 0.8 > 0.$

Вибираємо нульове наближення так, щоб виконувалась умова $f(x_0) \cdot f''(x_0) > 0$. Для цього знаходимо потрібні похідні.

$$f'(x) = 3x^2 - 2,9 > 0, \forall x \in [-3;-2],$$

 $f''(x) = 6x < 0, \forall x \in [-3;-2].$

Отже, $x_0 = -3$. За ітераційною формулою (1.16) обчислимо декілька наближень.

$$x_1 = -3 - \frac{f(-3)}{f'(-3)} = -3 - \frac{(-15,3)}{24,1} = -3 + 0,6348547... = -2,3651453...$$

У добутому числі достатньо залишити після коми лише два розряди, інші відкидаємо. Отже,

$$x_1 = -2,36$$
.

Далі обчислюємо

$$x_2 = -2,36 - \frac{f(-2,36)}{f'(-2,36)} = -2,36 - \frac{(-3,300256)}{13,8088} = -2,36 + 0,2389965... = -2,1210035...$$

Оскільки x_2 та x_1 відрізняються починаючи з першого розряду після коми, то знову залишаємо після коми два розряди. $x_2 = -2,12$. Обчислюємо x_3 .

$$x_3 = -2.12 - \frac{f(-2.12)}{f'(-2.12)} = -2.12 - \frac{(-0.380128)}{10.5832} = -2.12 + 0.035918 = -2.084082.$$

Відмінність x_3 від x_2 починається з другого розряду після коми, тобто похибка в x_3 можлива не ближче до коми, ніж у другому розряді. Цей висновок, зроблено апостеріорним методом.

Покажемо, як у цьому прикладі оцінити похибку апріорним методом. Для цього в обчисленій ітерації x_3 залишимо п'ять розрядів після коми і використаємо нерівність (1.10). Отже, маємо $x_3 = -2,08408$. Оскільки f'(x) монотонна на відрізку [-3;-2], то

$$\min_{x \in [-3;-2]} |f'(x)| = \min\{|f'(-3)|, |f'(-2)|\} = \min\{24,1; 9,1\} = 9,1.$$

Тепер звертаємось до нерівності (1.10)

$$\left|\xi - x_n\right| \le \frac{\left|f(x_n)\right|}{\min\limits_{x \in [a,b]} \left|f'(x)\right|} \ . \tag{1.10}$$

Обчислюємо

$$|x_3 - \xi| \le \frac{|f(-2,08408)|}{9.1} = \frac{0,0081389}{9.1} = 0,0008943 \cdots$$

Видно, що похибка в x_3 не більша, ніж одиниця в третьому розряді після коми. Тому остаточно приймаємо $\xi \approx -2,084$.

1.7. Метод хорд

Цей частинний випадок ітераційних методів добудемо, якщо функцію $\psi(x)$, що стоїть у правій частині формули (1.3), візьмемо у вигляді

$$\psi(x) = -\frac{x - c}{f(x) - f(c)},$$

де c – якась фіксована точка з [a, b]. З формули (1.3) маємо

$$\varphi(x) = x - \frac{(x-c)f(x)}{f(x) - f(c)}.$$

Ітераційна формула методу хорд має вигляд

$$x_{n+1} = x_n - \frac{(x_n - c)f(x_n)}{f(x_n) - f(c)}, \quad n = 0, 1, 2, \dots$$
 (1.17)

Щоб проаналізувати особливості збіжності методу, знайдемо похідну $\phi'(x)$.

$$\phi'(x) = 1 - \left(\frac{x - c}{f(x) - f(c)}\right)_{x}^{'} \cdot f(x) - \frac{(x - c) \cdot f'(x)}{f(x) - f(c)} =$$

$$= 1 - f(x) \left(\frac{1}{f(x) - f(c)} - \frac{(x - c) \cdot f'(x)}{(f(x) - f(c))^{2}}\right) - \frac{(x - c) \cdot f'(x)}{f(x) - f(c)} =$$

$$= 1 - \frac{f(x)}{f(x) - f(c)} + \frac{(x - c)f'(x)}{f(x) - f(c)} \left(\frac{f(x)}{f(x) - f(c)} - 1\right) =$$

$$= \frac{f(c)}{(f(x) - f(c))^{2}} (f(c) - f(x) + (x - c)f'(x)).$$

Якщо скористатися наступним розвиненням

$$f(c) = f(x) + (c - x) \cdot f'(x) + \frac{(c - x)^2}{2!} f''(\tilde{x}), \quad \tilde{x} \in (x, c),$$

то шукану похідну $\varphi'(x)$ можна переписати у вигляді

$$\varphi'(x) = \frac{f(c) \cdot f''(\tilde{x}) \cdot (c - x)^2}{2(f(x) - f(c))^2}, \quad \tilde{x} \in (x, c).$$
(1.18)

Похідні f'(x), f''(x) зберігають знак на [a, b] (це **умови застосування методу хорд**), тому якщо точку c вибрати так, щоб виконувалася нерівність

$$f(c) \cdot f''(c) > 0,$$
 (1.19)

то на всьому відрізку [a, b] буде виконуватись умова $\varphi'(x) > 0$, а це означає, що послідовність наближень $\{x_n\}_{n=0}^{\infty}$ буде прямувати до кореня ξ монотонно. Якщо при цьому нульове наближення x_0 вибрати так, щоб

$$f(x_0) \cdot f(c) < 0, \tag{1.20}$$

то в знаменнику формули (1.18) модулі чисел $f(x_n)$ та f(c) будуть додаватися.

Коли число c взято достатньо близьким до точного кореня ξ , то, як видно з формули (1.18), $\varphi'(x)$ буде малим за модулем числом за рахунок множника f(c) і тому існує такий окіл точки ξ , в якому буде виконуватися нерівність $|\varphi'(x)| < 1$, а це означає, що ітераційний процес буде збігатися до точного кореня ξ .

3 формули (1.18) маємо
$$\varphi'(\xi) = \frac{f(c) \cdot f''(\tilde{x}) \cdot (c - \xi)^2}{2(f(c))^2} \neq 0$$
. Це означає, що в

умовах (1.11) m = 1, тобто метод хорд має **перший порядок збіжності**.

Метод хорд має своє власне геометричне зображення, показане на рис. 1.8.

Рис. 1.8. Графічне зображення методу хорд

Ітераційну формулу (1.17) можна добути з геометричного зображення методу хорд. Для цього запишемо рівняння прямої, що проходить через дві точки з координатами $(x_n, f(x_n))$ та (c, f(c))

$$\frac{x-x_n}{c-x_n} = \frac{y-f(x_n)}{f(c)-f(x_n)}.$$

Ця пряма (хорда) перетинає вісь абсцис у точці з координатами $(x_{n+1},0)$. Підставивши координати цієї точки до рівняння хорди, добудемо формулу (1.17).

Приклад. Нехай треба методом хорд уточнити корінь на відрізку [-3; -2] нелінійного рівняння

$$f(x) \equiv x^3 - 2.9x + 3 = 0.$$

Обчислимо значення функції f(x) на кінцях відрізка [-3; -2].

$$f(-3) = -27 - 2,9 \cdot (-3) + 3 = -15,3 < 0;$$

 $f(-2) = -8 - 2,9 \cdot (-2) + 3 = 0,8 > 0.$

Знаходимо потрібні похідні

$$f'(x) = 3x^2 - 2,9 > 0, \forall x \in [-3;-2],$$

 $f''(x) = 6x < 0, \forall x \in [-3;-2].$

Запишемо нелінійне рівняння у вигляді зручному для ітерування $x = \varphi(x)$, де

$$\varphi(x) = x - \frac{(x-c)f(x)}{f(x) - f(c)}.$$

Число c та нульове наближення x_0 виберемо так, щоб виконувались умови (1.19), (1.20). Отже, $x_0 = -2$; c = -3.

За ітераційною формулою (1.17) обчислюємо перше та друге наближення:

$$x_1 = -2 - \frac{(-2+3) \cdot f(-2)}{f(-2) - f(-3)} = -2 - \frac{0.8}{0.8 + 15.3} = -2 - 0.04968944... = -2.04968944...$$

$$x_1 = -2 - \frac{(-2+3) \cdot f(-2)}{f(-2) - f(-3)} = -2 - \frac{0.8}{0.8 + 15.3} = -2 - 0.04968944... = -2.04968944...$$

$$x_2 = -2,05 - \frac{(-2,05+3) \cdot f(-2,05)}{f(-2,05) + f(-3)} = -2,05 - \frac{0,95 \cdot 0,329875)}{0,329875 + 15,3} = -2,05 - \frac{0,3133812}{15,629875} = -2,05 - 0,0200501... = -2,0700501...$$

$$x_2 = -2,0700$$
.

Щоб оцінити похибку наближення x_2 апріорним методом, тобто користуючись нерівністю (1.7), треба знати число q, яке знаходиться за формулою $q = \max_{x \in [-3,-2]} |\phi'(x)|$. Похідна $\phi'(x)$ визначається формулою (1.18), дослідити її модуль на максимум достатнью складно, тому для оцінки похибки x_2 звернемося до більш

на максимум достатньо складно, тому для оцінки похибки x_2 звернемося до більш простої нерівності (1.10).

$$\left|\xi - x_n\right| \le \frac{\left|f(x_n)\right|}{\min\limits_{x \in [a,b]} \left|f'(x)\right|} \ . \tag{1.10}$$

Оскільки f'(x) монотонна на відрізку [-3; -2], то

$$\min_{x \in [-3;-2]} |f'(x)| = \min\{|f'(-3)|, |f'(-2)|\} = \min\{24,1; 9,1\} = 9,1.$$

Тепер запишемо нерівність (1.10).

$$|x_2 - \xi| \le \frac{|f(-2,0700)|}{9.1} = \frac{0.133257}{9.1} = 0.0146436\cdots$$

Отже, в другій ітерації треба залишити лише два розряди після коми, тобто маємо таку відповідь $\xi \approx -2,07$.

1.8. Метод ділення навпіл

На відміну від розглянутих вище ітераційних методів метод ділення навпіл не потребує для уточнення кореня міняти вигляд рівняння f(x) = 0, $x \in [a, b]$. Рівняння на вказаному відрізку повинно мати один дійсний корінь ξ , а функція f(x) повинна бути неперервною на цьому відрізку (це *умови застосування методу*). Цей метод має ще назву «метод дихотомії», або «метод бісекції».

Нехай треба підійти до кореня ξ із заданою похибкою ϵ . Уточнювати корінь будемо за таким *алгоритмом*. Ділимо відрізок [a,b] навпіл точкою $x_0 = \frac{a+b}{2}$. Якщо $f(x_0) = 0$, то x_0 і ϵ шуканим коренем. Якщо ні, то з двох відрізків $[a,x_0]$, $[x_0,b]$ вибираємо той, на кінцях якого f(x) має значення протилежних знаків. Новий відрізок $[a_1,b_1]$ знову ділимо навпіл і повторюємо попередні міркування. У результаті або одержимо точний корінь на якомусь кроці, або прийдемо до відрізка $[a_n,b_n]$, довжина якого менша ніж 2ϵ . Середина останнього відрізка, тобто точка $x_n = \frac{b_n + a_n}{2}$, дає значення кореня ξ із заданою похибкою ϵ .

Дослідимо метод на **збіжність**. У загальному випадку алгоритм приводить до нескінченної послідовності вкладених відрізків $[a_1, b_1], [a_2, b_2], \ldots, [a_n, b_n], \ldots$ таких, що $a_1 \le a_2 \le \ldots \le a_n \le \ldots \le b_n \le \ldots \le b_2 \le b_1$. Довжина кожного відрізка дорівнює половині попереднього, тобто

$$b_1 - a_1 = \frac{b - a}{2}$$
, $b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b - a}{2^2}$, ..., $b_n - a_n = \frac{b - a}{2^n}$, ...

Ліві кінці цих відрізків $a_1, a_2, \cdots, a_n, \cdots$ утворюють нескінченну неспадну, обмежену зверху послідовність, а праві кінці $b_1, b_2, \cdots, b_n, \cdots$ утворюють не зростаючу нескінченну обмежену знизу послідовність. Звідси випливає, що існують границі $\lim_{n\to\infty} a_n$ та $\lim_{n\to\infty} b_n$. Якщо в рівності $b_n - a_n = \frac{b-a}{2^n}$ спрямувати n до нескінченності,

то будемо мати
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$$
. Позначимо цю спільну границю буквою $\bar{\xi}$. Отже,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \overline{\xi} . \tag{1.21}$$

Далі в нерівності $f(a_n)f(b_n)<0$, $n=1,2,\cdots$ спрямуємо n до нескінченності. Враховуючи те, що $f(x)\in C[a,b]$, а також границі (1.21), приходимо до нерівності

$$\left(f(\overline{\xi})\right)^2 \le 0.$$

Це можливо тільки тоді, коли $f(\bar{\xi}) = 0$, тобто $\bar{\xi}$ є нулем функції f(x). Але функція f(x) на відрізку [a,b] має лише один нуль ξ . Це означає, що $\bar{\xi} = \xi$.

Переваги методу ділення навпіл:

- цей метод не потребує обчислення похідної f'(x) та не вимагає монотонності функції f(x);
- метод завжди збігається;
- легко оцінити похибку наближеного значення x_n ;
- метод легко програмувати на ЕОМ.

Недоліки методу:

- метод має повільну збіжність. Він збігається зі швидкістю геометричної прогресії із знаменником 1/2, оскільки $|\xi x_n| \le |b_n a_n| = \frac{|b a|}{2^n}$;
- при підвищенні точності значно зростає об'єм обчислювальної роботи.

Висновок

Метод ділення навпіл рекомендується застосовувати для грубого знаходження кореня (в межах обчислювальної похибки), бо інколи через похибки округлень значення функції f(x) може мати не той знак, а значить буде розглядатися не та половина відрізка.
