Automated Calibration of Experimental Parameters in Trapped Ion Quantum Computing

Chen Huang

Institute for Quantum Computing, Baidu Inc. physchenhuang@gmail.com

Contents

- Overview
- 2 Physical Process
- 3 Calibration of Experimental Parameters
- Summary

Quantum Computing Architecture

How to build a Quantum Computer?

- **Superconducting** quantum computing
- **Photonic** quantum computing
- quantum dots quantum computing
- Trapped-ion quantum computing

Comparing the Characteristics of different types of QC¹

Superconducting QC

Pros

- Fast working
- Build on existing semiconductor industry

Cons

Collapse easily and must be kept in cold

Photonics QC

Pros

CMOS compatible photonics waveguide technology

Automated Calibration of Experimental Parameters

Cons

Cryogenic single photon sources and detectors

Pros

- Very stable > 1000*s*
- Highest achieved gate fidelities (e.g. two-qubit gate 99.9%)
- Fully connected

Cons

- Scalability
- Slow operation

Trapped-Ion QC

¹Bruzewicz et al. 2019

Quantum Computing with Trapped Ions

Vibration Modes

Canonical Hamiltonian

$$\hat{H} = \sum_{j=1}^{N} \left(\frac{1}{2m} \hat{p}_{j}^{2} + \frac{m}{2} \omega_{m}^{2} \hat{q}_{j}^{2} \right)$$

Quantization

$$\hat{q} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right)$$

$$\hat{p} = -i\sqrt{\frac{\hbar m\omega}{2}} \left(\hat{a} + \hat{a}^{\dagger} \right)$$

Kinetic term

$$\hat{H}_m = \hbar\omega \left(\hat{a}^\dagger\hat{a} + rac{1}{2}
ight) \sim \hbar\omega\hat{a}^\dagger\hat{a}$$

Third axial:

When N oscillators are coupled, N different canonical modes are obtained, which correspond to phonons of N different frequencies.

Two-level Approximation and Raman Process

Figure: Internal energy level transition of ions

Two-level approximation for electronic energy levels

$$\hat{H}_{e}=\hbar\left(\omega_{g}\left|g\right\rangle\left\langle g\right|+\omega_{e}\left|e\right\rangle\left\langle e\right|\right)\sim\hbarrac{\omega_{0}}{2}\hat{\sigma}_{z}$$

Interaction term

$$\hat{H}_{int} = \frac{\hbar}{2} \Omega \left(\left| e \right\rangle \left\langle g \right| + \left| g \right\rangle \left\langle e \right| \right) \left[e^{i(kx - \omega t + \phi)} + e^{-i(kx - \omega t + \phi)} \right]$$

Why is it necessary to go through a 'bridge'?

- 1 It is difficult to produce a laser at the GHz level.
- ② There may be an electric dipole forbidden transition between the $|g\rangle$ and $|e\rangle$ states.
- 3 Many factors, like laser intensity, phase, and frequency, can affect the direct transition from $|g\rangle$ to $|e\rangle$, leading to operational inaccuracies.

The Basic Hamiltonian

1 Trans to interaction picture

$$H'_{int} = e^{iH_0t/\hbar}H_{int}e^{-iH_0t/\hbar}$$

- $2 kx = kx_0 (\hat{a} + \hat{a}^{\dagger}) = \eta (\hat{a} + \hat{a}^{\dagger})$
- Rotating wave approximation
- 4 Lamb-Dicke approximations $\eta \sqrt{\langle (\hat{a}^\dagger + \hat{a})^2 \rangle} \ll 1$

Lamb-Dicke Parameter η

$$\eta = k_x x_0 = k_x \sqrt{\langle 0 | x^2 | 0 \rangle} = k_x \sqrt{\frac{\hbar}{2m\omega_x}}$$

 η quantifies the coupling strength between the internal and motional states of the ion.

$$Hpprox rac{\hbar}{2}\hat{\sigma}_{+}\left[1+i\eta\left(\hat{a}^{\dagger}\mathrm{e}^{i\omega_{m}t}+\hat{a}\mathrm{e}^{-i\omega_{m}t}
ight)
ight]\mathrm{e}^{i(\phi-\mu t)}+\mathrm{h.c.}$$

• Carrier transition $|g\rangle |n\rangle \leftrightarrow |e\rangle |n\rangle (\mu = 0)$

$$H_{\text{car}} = \frac{\hbar}{2} \Omega \left(\hat{\sigma}_{+} e^{i\phi} + \hat{\sigma}_{-} e^{-i\phi} \right)$$

• Blue sideband transition $|g\rangle\,|n\rangle\leftrightarrow|e\rangle\,|n+1\rangle\,(\mu=\omega_m+\delta)$

$$H_{\rm bsb} = i \eta \frac{\hbar}{2} \Omega \left(\hat{\sigma}_{+} \hat{a}^{\dagger} \mathrm{e}^{i \phi} \mathrm{e}^{-i \delta t} + \hat{\sigma}_{-} \hat{a} \mathrm{e}^{-i \phi} \mathrm{e}^{i \delta t} \right)$$

• Red sideband transition $|g\rangle |n\rangle \leftrightarrow |e\rangle |n-1\rangle (\mu = -\omega_m - \delta)$

$$H_{\mathsf{rsb}} = i\eta \frac{\hbar}{2} \Omega \left(\hat{\sigma}_{+} \hat{a} e^{i\phi} e^{i\delta t} - \hat{\sigma}_{-} \hat{a}^{\dagger} e^{-i\phi} e^{-i\delta t} \right)$$

Figure: Transitions

Single-Qubit Gates

Carrier transition

$$H_{\mathsf{car}} = rac{\hbar}{2} \Omega \left(\hat{\sigma}_{+} \mathrm{e}^{i arphi} + \hat{\sigma}_{-} \mathrm{e}^{-i arphi}
ight)$$

The system can realize a rotation of angle $\theta/2 = \Omega t/2$ around any axis (φ) in the x-y plane under the action of H_{car} after free evolution for a time t.

$$R(\theta,\varphi) = e^{-iH_{\text{car}}t/\hbar} = \begin{pmatrix} \cos\frac{\theta}{2} & ie^{i\varphi}\sin\frac{\theta}{2} \\ ie^{-i\varphi}\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

•
$$R_x(\theta) = R(\theta, \varphi = 0) = \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

•
$$R_y(\theta) = R(\theta, \varphi = \pi/2) = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

10/22

Two-Qubit Gates

Cirac-Zoller Gate²

Red sideband transition

$$H_{\text{rsb}} = i \eta \frac{\hbar}{2} \Omega \left(\hat{\sigma}_{+} \hat{a} e^{i\phi} e^{i\delta t} - \hat{\sigma}_{-} \hat{a}^{\dagger} e^{-i\phi} e^{-i\delta t} \right)$$

- **1** Apply a π -pulse on ion A
- **2** Apply a 2π -pulse on ion B
- **3** Apply a π -pulse on ion A again

$$|\pm\rangle = (|g\rangle \pm |e\rangle)/\sqrt{2}$$
 \Rightarrow

$$\begin{array}{cccccc} (1) & (2) & (3) \\ |gg0\rangle & \rightarrow & |gg0\rangle & \rightarrow & |gg0\rangle & \rightarrow & |gg0\rangle \\ |ge0\rangle & \rightarrow & |ge0\rangle & \rightarrow & |ge0\rangle & \rightarrow & |ge0\rangle \\ |eg0\rangle & \rightarrow & -i|gg1\rangle & \rightarrow & i|gg1\rangle & \rightarrow & |eg0\rangle \end{array}$$

 $-i |ge1\rangle$

$$|g\rangle |\pm\rangle \rightarrow |g\rangle |\pm\rangle$$

 $|e\rangle |\pm\rangle \rightarrow |e\rangle |\mp\rangle$

 $|ee0\rangle$

Controlled-Z Gate!

 $-|ee0\rangle$

 $-i |ge1\rangle$

Mølmer-Sørensen Gate

By simultaneously applying a two-frequency laser beam $\omega_0 \pm (\omega_m + \delta)$ to two ions separately, it is possible to drive the red sideband transition and the blue sideband transition of the ions at the same time.

Red sideband transition

$$H_{rsb} = i\eta \frac{\hbar}{2} \Omega \left(\hat{\sigma}_{+} \hat{a} e^{i\phi} e^{i\delta t} - \hat{\sigma}_{-} \hat{a}^{\dagger} e^{-i\phi} e^{-i\delta t} \right)$$

Blue sideband transition

$$H_{bsb} = i\eta \frac{\hbar}{2} \Omega \left(\hat{\sigma}_{+} \hat{a}^{\dagger} e^{i\phi} e^{-i\delta t} + \hat{\sigma}_{-} \hat{a} e^{-i\phi} e^{i\delta t} \right)$$

$$H_{MS} = \sum_{j=1}^{2} (H_{rsb} + H_{bsb})$$

Physical Process

Mølmer-Sørensen Gate

$$U\left(t_{g}\right) = \exp\left[-i\sum_{j}^{M}\hat{\sigma}_{x}^{j}\sum_{k=1}^{N}\left(\alpha_{j,k}\left(t_{g}\right)\hat{a}_{k}^{\dagger} - \alpha_{j,k}^{*}\left(t_{g}\right)\hat{a}_{k}\right) + i\sum_{m < n}^{M}\chi_{m,n}\left(t_{g}\right)\hat{\sigma}_{x}^{m}\hat{\sigma}_{x}^{n}\right]\right]$$

where

$$\alpha_{j,k}\left(t_{g}\right) = \int_{0}^{t_{g}} dt f\left(\eta_{k,j}, \Omega_{j}(t), \omega_{k}\right), \ \chi_{m,n}\left(t_{g}\right) = \sum_{k} \int_{0}^{t_{g}} dt \int_{0}^{t} dt_{1} g\left(\eta_{k,j}, \Omega_{m}(t), \Omega_{n}\left(t_{1}\right), \omega_{k}\right)$$

When $\alpha_{i,k}(t_g) \to 0$ and $\chi_{m,n}(t_g) \to \pi/4$, the **maximum entangled state** is obtained:

$$\begin{array}{ccc} |gg\rangle & \rightarrow & (|gg\rangle + i\,|ee\rangle)/\sqrt{2} \\ |ee\rangle & \rightarrow & (|ee\rangle + i\,|gg\rangle)/\sqrt{2} \\ |ge\rangle & \rightarrow & (|ge\rangle - i\,|eg\rangle)/\sqrt{2} \\ |eg\rangle & \rightarrow & (|eg\rangle - i\,|ge\rangle)/\sqrt{2} \end{array}$$

Readout

Resonance Fluorescence Method

- Fluorescence detected: |1>
- Fluorescence NOT detected: |0>

- Measurement readout fidelity > 99.999%
- Single measurement time $\sim 150 \mu s$

Calibration

Motivation

Factors limiting the fidelity (physical layer)

- Decoherence
- Preparation error
- Imprecise of experimental parameters (e.g. phonon frequency ω_k , Lamb-Dicke parameter η, \cdots)

General Calibration Schemes for Ion Trap Systems

- Insufficient automation
- Low efficiency
- Poor accuracy

Calibration

For your question, my answer is ...

$$H = \sum_{j,k} H_{j,k} = \hbar \sum_{j} \frac{\Omega_{j}}{2} \hat{\sigma}_{j}^{+} e^{i(\phi_{j} - \mu_{j}t)} \sum_{k} \exp\left[i\eta_{j,k} \left(\hat{a}_{k}^{\dagger} e^{i\omega_{k}t} + \hat{a}_{k} e^{-i\omega_{k}t}\right)\right] + \text{h.c.}$$

- Calibrating the phonon frequencies ω_k
- Calibrating the Lamb-Dicke parameters $\eta_{i,k}$

Figure: Calibration of phonon frequencies

Changing the laser frequency and recording the evolution of the ions at different frequencies.

Aug 31, 2023

Calibration of Phonon Frequency

Aug 31, 2023

Calibration of Phonon Frequency

Example: 3 ions with 3 phonons.

	Phonon frequency	Calibrated Phonon frequency	Error
ω_1	2.9574 MHz	2.9574 MHz	$-0.0154~{\rm MHz}$
ω_2	3.0542 MHz	3.040 MHz	$-0.0142~\mathrm{MHz}$
ω_3	3.1222 MHz	3.106 MHz	$-0.0162~\mathrm{MHz}$

Error Sources? Stark shift

Rabi frequency v.s. Resonance frequency

Calibration of Lamb-Dicke Parameters

Simulation

Calculation

$$P(\Omega, \eta, \Delta, t) = \frac{\eta^2 \Omega^2}{\eta^2 \Omega^2 + \Delta^2 / 4} \sin^2 \left(\sqrt{\eta^2 \Omega^2 + \frac{\Delta^2}{4}} t \right)$$

Example: 3 ions with 3 phonons.

	n: 1.	Calibrated $ \eta_{j,k} $	Error
	$\eta_{j,k}$		
η_{11}	-0.0457	0.0457	0.00%
η_{12}	0.0776	0.0774	-0.26%
η_{13}	0.0625	0.0625	0.00%
η_{21}	0.0909	0.0908	-0.11%
η_{22}	-2.77×10^{-6}	0.0	-
η_{23}	0.0629	0.0629	0.00%
η_{31}	-0.0457	0.0457	0.00%
η_{32}	-0.0776	0.0774	-0.26%
η_{33}	0.0625	0.0625	0.00%

Calibration of Lamb-Dicke Parameters

Determine the sign of $\eta_{i,k}$

Coupling the ions with different phonon modes

Figure: Example: 2 ions with 2 phonons

Complexity: 2^{N^2-1}

Segmented calibration \rightarrow Complexity: $2N^2$

Summary

Thank you!

References I

- Bruzewicz, Colin D. et al. (June 2019). "Trapped-ion quantum computing: Progress and challenges". en. In: *Applied Physics Reviews* 6.2, p. 021314. ISSN: 1931-9401. DOI: 10.1063/1.5088164.
- Cirac, J. I. and P. Zoller (May 1995). "Quantum Computations with Cold Trapped Ions". In: *Physical Review Letters* 74.20. Publisher: American Physical Society, pp. 4091–4094. DOI: 10.1103/PhysRevLett.74.4091.

