

PoC versus Production

"All of AI, .., has a proof-of-concept-to-production gap. The full cycle of a machine learning project is not just modelling. It is finding the right data, deploying it, monitoring it, feeding data back [into the model], showing safety—doing all the things that need to be done [for a model] to be deployed. [That goes] beyond doing well on the test set, which fortunately or unfortunately is what we in machine learning are great at."

- Andrew Ng

The big picture

Basic ML building blocks

Data Management	Experimentation	Production
 Process and govern the data used by models: Usually large data sets Should be of high quality Should be compliant with legislation Should be tracked 	 Build a model based on business requirements, after iteration of experimentation: Workflow is iterative Experiment should be tracked Code should have standards Accuracy metrics should be tracked Retraining should be possible Requires specific infrastructure 	 Integrate prediction into production and business processes: Generate systematic predictions Track performance across time Follow best engineering practices

Moving to production is hard

(Not so) Fun fact

According to VentureBeat, roughly 1 out of 10 Machine Learning models actually makes it into production. But why?

The Set up is not right

- Bad infrastructure
- Disconnect between the relevant parties
- Poor data management
- Leadership doesn't understand

ML has its own difficulties

- Scaling is not easy
- Duplication is widespread
- Management not on board
- Lack of Reproducibility
- Support across technologies

Deploying models takes time

36% of survey participants said their data scientists spend **a quarter** of their time deploying ML models

36% of survey participants said their data scientists spend **a quarter to half** of their time deploying ML models

20% of survey participants said their data scientists spend **half to three-quarters** of their time deploying ML models

7% of survey participants said their data scientists spend **more than three-quarters** of their time deploying ML models

Basic process for building a model

Real life is a bit more complicated

Changing anything changes all

Hidden technical debt

Developing and deploying ML systems is relatively fast and cheap, but maintaining them over time is difficult and expensive. Some of the reasons for this are:

- Data dependencies cost more than code dependencies
- Feedback Loops
- ML-Systems anti-patterns
- Configuration debts
- Always changing external world
- Other ML related debt (e.g Data testing, Reproducibility debt)

Other production issues

Data quality:

 ML models reflect the data they are build on, so they are very dependent on its size and quality

Model decay:

 As times goes by, there might be changes in behavior that the original data would not necessarily reflect causing the quality of the model to drop

Locality:

• The quality of the performance of ML model does not always translates completely to production