Relations: 3 n-ary Relations and Their Applications

N Geetha

AM & CS

PSG Tech

n-ary relations

We can have relation between more than just 2 sets

A binary relation involves 2 sets and can be described by a set of pairs A ternary relation involves 3 sets and can be described by a set of triples ...

An n-ary relation involves n sets and can be described by a set of n-tuples

Relations are used to represent computer databases

Let A_1, A_2, \dots, A_n be sets

An n-ary relation is a subset of the cartesian product $A_1 \times A_2 \times \cdots \times A_n$

The sets A_1, A_2, \dots, A_n are the *domains* of the relation

The degree of the relation is n

Let *R* be the relation on $N \times N \times N$ consisting of triples (a,b,c) such that a < b < c

Note: N is the set of natural numbers {0,1,2,3,...}

$$R = \{(0,1,2), (0,1,3), \dots, (0,2,3), (0,2,4), \dots, (1,2,3), \dots\}$$

$$(2,4,3) \notin R$$

The relation has degree 3

The domains of the relation are the set of natural numbers

Let *R* be the relation on $N \times Z \times N \times Z$ consisting of 4-tuples (a,b,c,d) such that $(a+b \neq c+d) \wedge (a+b+c+d=0)$

Note: N is the set of natural numbers $\{0,1,2,3,...\}$ Z is the set of integers $\{...,-2,-1,0,1,2,...\}$

$$(0,-1,1,0) \in R$$

 $(5,-11,3,3) \in R$
 $(6,6,3,9) \notin R$

The relation has degree 4

Relational databases

Database is made up of records. Typical operations on a database are

- find records that satisfy a given criteria
- · delete records
- · add records
- update records

Some everyday databases

- student records
- health records
- tax information
- telephone directories
- banking records

•

Databases *may* be represented using the relational model

Gpa is an attribute

Database made up of records, they are n-tuples, made up of fields

Student record might look as follows

(Jones,200401986,Arts,4.9) (Lee,200408972,Science,3.6) (Kuhns,200501728,Humanities,5.0)

(Moore, 200308327, Science, 5.5)

(name,IDNo,Major,Gpa)

relations (in reIDB) also called tables

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	ComputerScience	3.49
Goodfriend	453876	M athematics	3.49
Rao	678543	M athematics	3.90
Stevens	786576	Psychology	2.99

Attributes: name, ID No, Dept and GPA

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	ComputerScience	3.49
Goodfriend	453876	M athematics	3.49
Rao	678543	M athematics	3.90
Stevens	786576	Psychology	2.99

primary key:

An attribute/domain/column is a primary key when the value of this attribute uniquely defines tuples i.e. no two tuples have the same value for that attribute In a database, a primary key should remain unique even if new records are added.

Name cannot be a primary key, neither can Dept or GPA. IDNo is a primary key

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	M athematics	3.49
Rao	678543	M athematics	3.90
Stevens	786576	Psychology	2.99

The current collection of n-tuples (records) in the relation (table) is called *the extension of the relation*

The permanent aspects of the relation (table) such as the attribute names is called *the intension of the relation*

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	ComputerScience	3.49
Goodfriend	453876	M athematics	3.49
Rao	678543	M athematics	3.90
Stevens	786576	Psychology	2.99

A composite key is a combination of attributes that uniquely define tuples

Combinations of domains can also uniquely identify n-tuples in an n-ary relation.

When the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these domains is called a composite key.

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	ComputerScience	3.49
Goodfriend	453876	M athematics	3.49
Rao	678543	M athematics	3.90
Stevens	786576	Psychology	2.99

Let R be an n-ary relation and C a condition that elements in R must satisfy. The selection operator S_c maps R to the new n-ary relation of all n-tuples from R that satisfy the condition C

Relational databases

Selection

Operations on n-ary relations

Let R be an n-ary relation and C a condition that elements in R must satisfy. The selection operator S_c maps R to the new n-ary relation of all n-tuples from R that satisfy the condition C

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	ComputerScience	3.49
Goodfriend	453876	Mathematics	3.49
Rao	678543	M athematics	3.90
Stevens	786576	Psychology	2.99

Apply the election operator S_c where C is the condition GPA > 3.45

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.49
Rao	678543	Mathematics	3.90

Name	IDNo	Dept	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	M athematics	3.49
Rao	678543	M athematics	3.90
Stevens	786576	Psychology	2.99

The projection $P_{i_1 i_2 \cdots i_m}$ where $i_1 < i_2 < \cdots < i_m$ maps the n-tuple (a_1, a_2, \cdots, a_n) to the m-tuple $(a_{i_1}, a_{i_2}, \cdots, a_{i_m})$ where $m \le n$

It strips out specific columns

The projection $P_{i_1 i_2 \cdots i_m}$ where $i_1 < i_2 < \cdots < i_m$ maps the n-tuple (a_1, a_2, \cdots, a_n) to the m-tuple $(a_{i_1}, a_{i_2}, \cdots, a_{i_m})$ where $m \le n$.

A projection $P_{i_1i_2\cdots i_m}$ keeps the m components $a_{i_1}, a_{i_2}, \cdots, a_{i_m}$ of an n-tuple and deletes its (n-m) other components.

	1
	1
	(
	(
	ŀ
on D	5

Apply the projection $P_{1,4}$

Name	IDNo	Dept	GPA
Ackermann	231455	ComputerScience	3.88
Adams	888323	Physics	3.45
Chou	102147	ComputerScience	3.49
Goodfriend	453876	M athematics	3.49
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Name		GPA
Ackermann		3.88
Adams		3.45
Chou		3.49
Goodfriend		3.49
Rao		3.90
Stevens		2.99

Projection

•In some cases, applying a projection to an entire table may not only result in fewer columns, but also in **fewer rows**.

•Why is that?

•Some records may only have differed in those fields that were deleted, so they become **identical**, and there is no need to list identical records more than once.

Eg: 2 : Identical rows are not listed

Table 5.3

Course Number	Course Title	Professor	Section Letter
MA 111	Calculus I	P. Z. Chinn	A
MA 111	Calculus I	V. Larney	В
MA 112	Calculus II	J. Kinney	A
MA 112	Calculus II	A. Schmidt	В
MA 112	Calculus II	R. Mines	C
MA 113	Calculus III	J. Kinney	A

Table 5.4

Course Number	Professor	Section Letter
MA 111	P. Z. Chinn	Α
MA 111	V. Larney	В
MA 112	J. Kinney	A
MA 112	A. Schmidt	В
MA 112	R. Mines	C
MA 113	J. Kinney	A

Table 5.5

Course Number	Course Title	
MA 111	Calculus I	
MA 112	Calculus II	
MA 113	Calculus III	

Join

- •Can use the **join** operation to combine two tables into one if they share some identical fields.
- •**Definition:** Let R be a relation of degree m and S a relation of degree n. The **join** $J_p(R, S)$, where $p \le m$ and $p \le n$, is a relation of degree m + n p that consists of all (m + n p)-tuples

$$(a_1, a_2, ..., a_{m-p}, c_1, c_2, ..., c_p, b_1, b_2, ..., b_{n-p}),$$

where

the m-tuple $(a_1, a_2, ..., a_{m-p}, c_1, c_2, ..., c_p)$ belongs to R and

the n-tuple $(c_1, c_2, ..., c_p, b_1, b_2, ..., b_{n-p})$ belongs to S.

Lecturer	Dept	Course
Cruz,	Zoology	335
Cruz,	Zoology	412
Faber	Psychology	501
Faber	Psychology	617
Grammer	Physics	544
Grammer	Physics	551
Rosen	ComputerScience	518
Rosen	M athematics	575

Dept	Course	Room	Time
Computer Science	518	N521	14.00
Mathematics	575	N502	15.00
M athematics	611	N521	16.00
Physics	544	B505	16.00
Psychology	501	A100	15.00
Psychology	617	A110	11.00
Zoology	335	A100	09.00
Zoology	412	A100	08.00

The join operator $J_p(R,S)$ where R and S are m-ary and n-ary relations respectively and $p \le m$ and $p \le n$ delivers a new relation of degree m+n-p such that the first m-p attributes come R and the last n-p attributes come from S where the overlapping p attributes match (see Rosen p.534 Defn 4)

Joins two tables/relations together, matching up on specific attributes

Lecturer	Dept	Course
Cruz,	Zoology	335
Cruz,	Zoology	412
Faber	Psychology	501
Faber	Psychology	617
Grammer	Physics	544
Grammer	Physics	551
Rosen	ComputerScience	518
Rosen	M athematics	575

Dept	Course	Room	Time
Computer Science	518	N521	14.00
M athematics	575	N502	15.00
Mathematics	611	N521	16.00
Physics	544	B505	16.00
Psychology	501	A100	15.00
Psychology	617	A110	11.00
Zoology	335	A100	09.00
Zoology	412	A100	08.00

Relation R $J_2(R,S)$

Relation S

Lecturer	Dept	Course	Room	Time
Cruz	Zoology	335	A100	09.00
Cruz	Zoology	412	A100	08.00
Faber	Psychology	501	A100	15.00
Faber	Psychology	617	A110	11.00
Grammer	Physics	544	B505	16.00
Rosen	ComputerScience	518	N521	14.00
Rosen	Mathematics	575	N502	15.00