FONTES DE ENERGIA UTILIZADAS NA AGRICULTURA

PROF. DR. GABRIEL AGOSTINI ORSO

gabriel.orso@ufmt.br

TÓPICOS DA AULA

I.INTRODUÇÃO

Energia: É a capacidade de realizar trabalho podendo ser de um corpo, uma substância ou um sistema físico;

Medidas de energia:

 A energia elétrica pode ser oriunda de diversas fontes como: Energia hidráulica, eólica, térmica, solar, nuclear entre outras.

I. INTRODUÇÃO

Matriz Elétrica

I.INTRODUÇÃO

Utilizam recursos de natureza infinita

Não contribuem ou contribuem marginalmente na emissão de gases de efeito estufa

Fontes Renováveis | Fontes não renováveis

São naturalmente limitados ou escassos

Principais contribuidores na emissão de gases de efeito estufa.

É uma fonte de energia que apresenta um crescimento exponencial, por ser uma fonte renovável;

Além de ser renovável é uma fonte de energia inesgotável;

Sua forma de utilização é proveniente da luz e/ou calor do sol, e desta forma o seu uso pode ser na forma de calor, transformações fotovoltaicas e energia heliotérmica.

Evolução da Fonte Solar Fotovoltaica no Brasil

Fonte: ANEEL/ABSOLAR, 2025.

- A radiação solar pode ser diretamente convertida em energia elétrica por meio de efeitos da radiação (calor e luz) sobre determinados materiais, particularmente os <u>semicondutores</u>.
- Através do sol dois efeitos são obtidos: Termoelétrico e fotovoltaico.
- **Termoelétrico**: Caracteriza-se pelo surgimento de uma diferença potencial provocada pela junção de dois metais quando tal junção está em uma temperatura mais elevada do que as outras extremidades dos fios.

Fotovoltaico:

- Foi observado pela primeira vez em 1839 pelo físico francês Edmund Becquerel;
- Entre os semicondutores mais adequados para conversão da radiação solar em energia elétrica, o que mais se destaca é o silício;
- * A eficiência de conversão das células solares é medida pela proporção da radiação solar incidente sobre a superfície da célula que é convertida em energia elétrica;

Para geração e utilização da energia solar fotovoltaica são utilizadas os seguintes equipamentos: Painéis solares, inversor solar, sistema de fixação das placas solares, cabeamentos, conectores e outros materiais elétricos padrões

Figura 4 – Ilustração de um sistema de geração fotovoltaica de energia elétrica. Fonte: Atlas (2005) apud Fiedler e Oliveira (2018).

- ✓ Painel solar: É composto por vária células fotovoltaicas. Um célula fotovoltaica é a unidade básica de um sistema fotovoltaico. É o componente responsável por converter a radiação solar em eletricidade. O material mais utilizado para a produção de células fotovoltaicas é o silício que pode estar na forma cristalina, semicristalina e filme finamente disperso sobre um substrato. Uma célula fotovoltaica de silício cristalino produz uma tensão de aproximadamente 0,46 a 0,56 volts e uma corrente de aproximadamente 30 mA/cm². As células comerciais geram em torno de I A, 2,5 A, 3 A, 5 A e 7 A. Para atingir as potências comerciais os painéis são constituídos de várias células ligadas em séries.
- ✓ **Controlador de carga:** É necessário para equalizar a carga recebida pelos painéis com a do banco de baterias quanto este é utilizado.
- ✓ **Banco de baterias:** Tem o objetivo de armazenar a carga não utilizada de energia produzida e disponibilizar essa carga durante os períodos de menor produção.
- ✓ **Inversor:** Transforma a corrente contínua de 12 V, 24 V ou 48 V em corrente alternada de 127 V ou 240 V, com frequência igual à da rede elétrica.

- A energia eólica é aquela obtida através da energia cinética gerada pelos movimentos das massas de ar provocada pelas diferenças de temperatura existentes na superfície do planeta;
- A geração eólica ocorre pelo contato do vento com as pás do cata-vento, elementos integrantes da usina;
- Desta forma ao girar, as pás dão origem à energia mecânica que aciona o rotor do aerogerador que produz eletricidade;
- Assim a energia cinética dos ventos se transforma em energia mecânica ao girar as pás enquanto no gerador ocorre a conversão de energia mecânica em energia elétrica;

- De acordo com que se evoluiu a tecnologia dos materiais permitiu a construção de turbinas de maior diâmetro, desta forma aproveitando melhor a energia eólica. Um exemplo desta evolução é a dimensão das turbinas em 1985 com 20 m de diâmetro contra as atuais que podem chegar a 100 m;
- Da mesma forma houve um aumento na produtividade destas turbinas, antigamente era de 50 kW e atualmente pode superar 5 mil kW;
- Porém a produtividade destas turbinas não depende somente do seu tamanho, mas sim das condições climáticas, como: quantidade e direção do vento, do relevo e da geografia do local.

Figura 5 – Turbina eólica. Fonte: DW (2012)

Uma outra forma de utilização da energia eólica, principalmente no meio rural, é através de moinhos de vento utilizados para moer grãos ou acionar bombas hidráulicas entre outras atividades, desta forma a energia cinética é diretamente transformada em energia mecânica.

Figura 6 – Moinho de vento. Fonte: Peon (2021)

2. FONTES DE ENERGIA 2.3 GEOTÉRMICA

- A energia geotérmica é obtida pela transformação da energia térmica presente no interior da terra em energia elétrica. As principais fontes de energia térmica são as gêiseres;
- Onde estas não estão presentes a energia térmica pode ser proveniente do calor presente no interior das rochas;
- A produção de energia se dá pela transformação que ocorre através de turbinas que são movimentadas por vapor d'água extremamente aquecidos assim como nas termoéletricas.

2. FONTES DE ENERGIA2.3 GEOTÉRMICA

https://www.youtube.com/watch?v=VbejdTX4Ojs

2. FONTES DE ENERGIA 2.3 GEOTÉRMICA

 Alguns países, como México, Japão, Filipinas, Quênia, Islândia e Estados Unidos investiram no campo da energia geotérmica.

- A água é o recurso natural presente em grande abundância na terra, com um volume estimado de 1,36 bilhão de quilômetros cúbicos (km³) recobrindo 2/3 da superfície do planeta;
- A energia hidroelétrica é gerada através da transformação da energia potencial da água acumulada em grandes alturas, em energia cinética, que nas turbinas geradoras será transformada em energia elétrica;
- A energia cinética da água, causada pela diferença de elevação, também é transformada diretamente em energia mecânica utilizada na movimentação dos moinhos;

Figura 7 – Usina hidroelétrica de forma esquemática. Fonte: Fiedler e Oliveira (2018)

- As hidroelétricas normalmente são construções de grande porte, pois para o ganho de energia potencial a água necessita de grandes elevações o que configura em enormes áreas alagadas;
- As usinas hidroelétricas são classificadas de acordo com: Vazão, localização, tipo de barragem, reservatório, altura da queda d'água, capacidade ou potência instalada e tipo de turbina empregada;
- A altura da queda d'água e a vazão são fatores que dependem do local de construção, esses determinarão qual será a capacidade instalada que por sua vez, determina o tipo de turbina, barragem e reservatório;
- Existem dois tipos de reservatórios: acumulação e fio d'água;

Usinas de reservatório

Armazenamento de água para uso humano e agrícola.

Controle de enchentes regulando o fluxo de água.

Geração constante de eletricidade, independente das condições climáticas.

Possibilidade de regular a produção de energia de acordo com a procura.

Usina de Itaipu

Usinas fio d'água

Impacto ambiental mínimo, pois não é necessária a construção de barragem.

Menor custo de construção e manutenção em comparação com usinas de reservatório.

Utilização de recursos naturais sem alterar significativamente o meio ambiente.

Geração de eletricidade a partir de um recurso renovável e limpo.

Usina de Belo Monte

- As usinas são classificadas quanto a sua potência instalada da seguinte forma: Centrais Geradoras Hidrelétricas (com até I MW de potência instalada), Pequenas Centrais Hidrelétricas (entre I,I MW e 30 MW) e Usina Hidrelétrica de Energia (Com mais 30 MW);
- Devido ao tamanho da área alagada e os impactos diretamente causados no meio ambiente as usinas são instaladas longe dos grandes centros. Devido a esta distância, linhas de transmissão são construídas com tensões altas e extra altas (de 230 quilovolts a 750 quilovolts);
- O parque hidrelétrico chegou a representar 90% da capacidade instalada da produção de energia elétrica no país, estando hoje próximo de 60%;

- As três principais razões para este efeito são:
- Necessidade da diversificação da matriz energética;
- * A construção de novos empreendimentos hídricos pela ausência da oferta e estudos e inventários;
- Aumento da preocupação ambiental.

2. FONTES DE ENERGIA2.5 ENERGIA DOS MARES

- Nas águas do mar existem algumas possibilidades de geração de energia elétrica podendo ser através das marés, correntes marítimas, ondas, energia térmica e gradientes de salinidade;
- Esse tipo de geração de energia apresenta ainda elevados custos principalmente quanto a manutenção, pois o ambiente marinho é fortemente corrosivo e degradante;
- No mundo os principais projetos piloto com o aproveitamento da energia das marés são: Estados Unidos, Argentina, México, Austrália, Índia, Canadá, Rússia Reino Unido e Coréia do Sul.

2. FONTES DE ENERGIA2.5 ENERGIA DOS MARES

Figura 8 – Geração de energia em usina maremotriz. Fonte: Fiedler e Oliveira (2018)

2. FONTES DE ENERGIA2.5 ENERGIA DOS MARES

https://www.youtube.com/watch?v=lwMOq3FqyZs

- As transformações ocorridas em núcleos atômicos (fissão) em alguns isótopos, principalmente o urânio, gera uma grande quantidade de calor nas usinas nucleares;
- O calor gerado por essa transformação é convertido em energia elétrica através da utilização de tubos geradores.
 Onde o calor gerado no reator transforma a água em vapor superaquecido e pressurizado, e vapor sob alta pressão movimenta a um turbo gerador;

Figura 9 – Esquema técnico de uma usina nuclear. Fonte: Fiedler e Oliveira (2018)

- A energia nuclear é considerada uma fonte limpa de energia, apesar de produzir lixo radioativo e sua operação pode ser considerada de alto risco;
- O lixo ocupa um pequeno volume e os riscos de operação podem ser controlados;
- Há uma pequena quantidade de gás carbônico (CO₂) que é produzida durante a operação;

Figura 10 – Angra I. Fonte: http://defesacivil.rj.gov.br/index.php/a-energia-nuclear-cestgen

3. COMBUSTÍVEIS 3. I COMBUSTÍVEIS FÓSSEIS

- O nome combustível fóssil, tem como origem a matéria viva, como plantas e animais, que existiram há milhões de anos, e que devido a processos de decomposição, pressão e temperatura se transformaram em algumas das fontes primárias que hoje se conhecem;
- No caso do petróleo e do gás natural, surgiram de organismos microscópicos e camadas de restos de vegetais, que foram cobertos com lamas e areias, e que sofreram reações químicas originando os fluidos combustíveis e gases que hoje conhecemos.

3. COMBUSTÍVEIS 3. I. I PETRÓLEO

- O petróleo apresenta como composição o crude, gás natural em solução, compostos pesados e leves, e compostos betuminosos;
- Todos os depósitos de petróleo contém gás natural, mas nem todos os depósitos de gás natural contém petróleo;
- O petróleo passa por um processo de "refinamento", para dar origem aos produtos, tais como: Querosene, gasolina, parafinas, ceras, diesel entre outros;

3. COMBUSTÍVEIS 3. I. I PETRÓLEO

Torre de fraccionamento

Figura II - Esquema simplificado da torre de fraccionamento e dos produtos resultantes. Fonte: Hinrichs e Kleinbach (2006) apud Calhau (2011).

3. COMBUSTÍVEIS 3. I. I PETRÓLEO

Muitos dos produtos produzidos são posteriormente tratados química e termicamente para produzir gasolina,
 óleo de aquecimento, combustível de avião, diesel, parafinas e asfalto;

3. COMBUSTÍVEIS 3. I.2 CARVÃO

- O carvão mais novo é o lenhite, que se caracteriza por ter sido formado a temperaturas e pressões mais baixas, o
 que faz com que tenha uma maior quantidade de água e consequentemente menor poder calorífico inferior;
- Já o carvão sub-betuminoso, é formado em maiores pressões e temperaturas. O mesmo possui a vantagem por possuir uma menor quantidade de enxofre e baixo valor de exploração;
- O carvão betuminoso é o que possui o maior valor calorífico.

3. COMBUSTÍVEIS 3. I. 3 GÁS NATURAL

- É o mais simples dos combustíveis naturais, e fora as impurezas que o constituem, é composto por uma molécula bem conhecida que é o metano (CH₄);
- O gás natural quando encontrados em reservas compostas apenas por gás natural este tem o nome de "Gás não associado", e quando é encontrado em reservatórios onde existe petróleo é chamado "Gás associado";
- Uma das vantagens do metano é de ser menos poluidor quando comparado com o petróleo e com o carvão, e
 está cada vez mais a ser usado para aquecimento de água, produção de energia, espaços interiores.

3. COMBUSTÍVEIS 3. I.3 GÁS NATURAL

Combustível	Calor produzido pela combustão			CO₂ libertado (kg)	
	k\Mh/ka	kWh/kg GJ/t GJ/m ³	C I/m ³	Por 100 kWh	Por GJ de
	KVVII/KG		GJ/III	de calor	calor
Petróleo	12	42	34	20	75
Carvão	7,2	26	50	35	120
Gás natural	15	55	0,04 ^b	14	50

^b- Gases à pressão normal.

Figura 12 - Poder calorífico dos combustíveis e CO2 libertado na sua combustão. Fonte: Ramage (1997) apud Calhau (2011).

3. COMBUSTÍVEIS 3.2 BIOCOMBUSTÍVEIS

 Um dos maiores impulsionadores para o desenvolvimento dos biocombustíveis é pela menor contribuições que eles têm para o aquecimento global quando comparado com a utilização dos combustíveis fósseis;

A sua utilização apresenta a vantagem, em que a sua combustão pode ser considerada neutra quando refere-se à libertação de CO₂, pois a quantidade que é libertada deste gás, durante a combustão, é igual à que é retida da atmosfera durante a fotossíntese e no crescimento das culturas;

3. COMBUSTÍVEIS 3.2.1 ETANOL

• O etanol pode ser produzido a partir de qualquer matéria-prima biológica que contenha quantidades significativas de açúcar e matérias que possam ser convertidas em açúcar, como o amido e a celulose;

Açucar	Culturas de Raiz	Beterraba	
	Culturas do Caulo	Cana-de-açúcar	
	Culturas de Caule	Sorgo Doce	
		Milho	
Amido		Cevada	
	Cereais	Centeio	
		Trigo	
		Sorgo	
	Culturas de Raiz	Batatas	
	Culturas de Raiz	Cevada	
	Resíduos Florestais	-	
		Salgueiros	
	Culturas Energéticas	Choupo	
Celulose	· ·	Relva	
Celulose	Lixo municipal sólido	-	
	•	Palha	
	Resíduos Agrícolas	Folhas e Caule do Milho	
	•	Bagaço	

Figura 13 - Diferentes tipos de matéria-prima para produção de etanol. Fonte: Rutz e Janssen (2008) apud Calhau (2011).

3. COMBUSTÍVEIS 3.2. I ETANOL

- As etapas para a produção do etanol são:
- Produção de matéria-prima colheita, recepção e armazenagem;
- Pré tratamento físico moagem, fatiamento, extração do líquido;
- Pré-hidrólise separação dos componentes da madeira, conversão da hemicelulose em xilose;
- Hidrólise conversão da celulose em glucose;
- Sacarificação liquefação do substrato da hidrólise, conversão de amido em açúcar;
- Tratamento químico diluição de açúcares em água e adição de leveduras ou outros organismos;

3. COMBUSTÍVEIS 3.2. I ETANOL

- Fermentação produção de etanol, água, subprodutos e outros resíduos a partir do açúcar;
- Destilação separação de etanol;
- Desidratação remoção de água do álcool;
- Preparação de Sub-produtos remoção do álcool para produção de alimentos para animais.

Matéria Prima	Balanço de energia fóssil estimado
Etanol (Celulose)	2-36
Etanol (Cana de Açúcar)	8
Etanol (Trigo)	2
Etanol (Beterraba)	2
Etanol (Milho)	1,5
Etanol (Sorgo Doce)	1
Etanol (Fóssil)	0,8

Figura 14 - Comparação dos diferentes balanços energéticos para diferentes matérias primas. Fonte: Rutz e Janssen (2008) apud Calhau (2011).

3. COMBUSTÍVEIS 3.2.2 BIODIESEL

	Frutos de Palma	Côco Óleo de Palma	
	Algas	Microalgas	
		Rícino	
		Girassol	
Biodiesel	Sementes	Amendoim	
biodiesei		Sorgo	
		Colza	
		Soja	
		Jatrofa	
	Óleos usados	Óleo de Fritar	
	Oleos usados	Gordura animal	

Figura 15 - Diferentes matérias-primas utilizadas na obtenção de óleos para a produção de biodiesel. Fonte: Rutz e Janssen (2008) apud Calhau (2011).

3. COMBUSTÍVEIS 3.2.2 BIODIESEL

Figura 16 - Processo de produção do biodiesel. Fonte: Rutz e Janssen (2008) apud Calhau (2011).

4.REFERÊNCIAS

- CALHAU, M. F. P.V. P. Principais biocombustíveis e combustíveis fósseis, com breve abordagem ao Projecto de Conversão da Refinaria de Sines do ponto de vista da Higiene e segurança. 99 f. Dissertação (Mestrado em Energia e Bioenergia) Universidade Nova de Lisboa. 2011.
- FIEDLER, N. C.; OLIVEIRA, M. P. **Motores e máquinas florestais**. CAUFES: Alegre-ES, 323p. 2018.
- https://www.dw.com/pt-br/energia-e%C3%B3lica-deve-superar-a-gerada-por-usinas-nucleares-no-mundo-at%C3%A9-2020/a-15918962.Acessado em 25/01/2025.
- http://www.peon.com.br/orcamento-ver/moinho-de-vento/68/. Acessado em 25/01/2025.