УЛК 632.651

РАСПРОСТРАНЕНИЕ НЕМАТОД СЕМЕЙСТВА TRICHODORIDAE — ПЕРЕНОСЧИКОВ ТОБРАВИРУСОВ В МОСКОВСКОЙ ОБЛАСТИ

© Н. И. Козырева, Н. Д. Романенко

Центр паразитологии Института проблем эволюции и экологии им. А. Н. Северцова РАН
Ленинский пр., 33,
Москва, 199071
Е-mail: n_kozyreva@list.ru
Поступила 09.06.2008

В результате проведенных исследований в 6 районах Московской обл. выявлено 3 вида триходорид, являющиеся переносчиками тобравирусов: *Trichodorus similis*, *T. primitivus*, *Paratrichodorus teres*. Частота совпадения очагов распространения триходорид и вируса погремковости табака (TRV) составляла 73 %. Установлены основные типы фитоценозов и виды растений — хозяев триходорид. Отмечено широкое распространение триходорид в агроценозах, где частота встречаемости их в отдельные годы достигала 50 % в посадках картофеля и 25 % в посевах ячменя. Установлено влияние факторов среды (типа почвы, кислотности, механического состава почвы) на распространение этих нематод: триходориды чаще встречались в легких песчаных и супесчаных почвах. Установлен двухпиковый характер сезонной динамики *P. teres*. Выявлен высокий уровень поражения посадок картофеля вирусом погремковости табака на фоне комплексной вирусной инфекции. Изучены различные сорта картофеля на зараженность их TRV и другими вирусными инфекциями.

Нематоды сем. Trichodoridae — небольшая группа фитопаразитических нематод, ограниченная 4 родами. Они относятся к эктопаразитам корневой системы растений и вызывают симптомы «оборванных корней», т. е. появление укороченных вздутых корней. В последнее время интерес к изучению нематод этого семейства значительно возрос в связи с выявлением их роли как переносчиков вирусных заболеваний важнейших культур. Триходориды являются переносчиками палочковидных вирусов (тобравирусов), поражающих около 400 видов растений. В настоящее время известно, что к переносу вирусов способна лишь часть видов триходорид, относящихся к 2 родам Trichodorus и Paratrichodorus: 13 из около 70 видов нематод этих родов переносят 3 вида вирусов из группы тобравирусов, которые наносят существенный вред широкому кругу растений, особенно луковичным декоративным культурам и картофелю (Santos et al., 1997; Ferraz, Brown, 2002). Широкие исследования взаимоотношений триходорид и тобравирусов начали проводиться в европейских странах в связи с выяснением роли триходорид в распространении болезни клубней картофеля «sprang», вызванной «Tobacco

Rattle virus». В начале 1990-х годов представители ряда европейских стран выступили с проектом общеевропейской программы изучения тобравирусов и их переносчиков.

Триходориды и связанные с ними вирусы распространены фактически повсеместно. Они обнаружены на всех континентах и на многих островах (Decraemer, Reay, 1991). Имеются литературные данные о находках нематод этого семейства на территории России и сопредельных стран: Дальнем Востоке, в Грузии, Молдавии, Эстонии, в Приуралье, на Сахалине, в Ленинградской обл. (Иванова, 1977; Романенко, 2006). Полученные нами данные по Московской обл. свидетельствуют о высокой степени зараженности картофеля комплексом триходорид и тобравирусов (Козырева, 1996; Romanenko, Kozyreva, 1998).

материал и методика

Сбор материала проводился в 6 районах Московской обл. (Талдомском, Красногорском, Пушкинском, Ленинском, Подольском, Люберецком) и в г. Москве в естественных фитоценозах и агроценозах различной степени окультуренности. В течение 6-летних наблюдений во всех точках отбора проб на нематод оценивали тип фитоценоза, тип почвы, зараженность растений вирусными инфекциями. За весь период исследований собрано и проанализировано 828 почвенных проб. Стационарные исследования собранного материала включали: 1) определение численности и видового состава нематод, 2) вирусологическое тестирование растительного материала. Извлечение нематод из почвы осуществлялось методом просеивания и декантации (Flegg, 1977). Постоянные препараты (смонтировано 2540 препаратов) готовили по методу Сайнхорста (Seinhorst, 1959). В растительных образцах вирусы диагностировали методом серологического тестирования (ELISA), которое проводили на базе Центра биотехнологии Института картофельного хозяйства (Коренево, Московская обл.) и Лаборатории защиты растений ГБС РАН (Москва). Определение кислотности почвы проводили электрометрическим методом на базе ВСТИСП (Москва).

С целью изучения сезонной динамики триходорид в почвенном профиле проводили отбор почвенных образцов в 6-кратной повторности из ризосферы яблони на экспериментальном участке ИНПА РАН (г. Москва) на глубине 0—10, 11—30, 31—70 см методом шурфирования с мая по октябрь с интервалом в 1 месяц в течение двух вегетационных периодов. В почвенных образцах в разных слоях исследуемого профиля определяли численность нематод. Всего отобрано и проанализировано 216 почвенных проб. Полученные данные были подвергнуты статистической обработке дисперсионным анализом (ANOVA).

РЕЗУЛЬТАТЫ

Распространенность триходорид в Московской обл. На территории Московской обл. обнаружено 3 вида нематод сем. Trichodoridae, относящихся к родам *Trichodorus* и *Paratrichodorus*: *T. similis*, *T. primitivus*, *P. teres*. Все 3 вида являются переносчиками тобравирусов. Установлено, что высокие плотности нематод—вирусоносителей в большинстве обследованных фитоценозов сопровождаются вирусными эпифитотиями, среди возбудителей которых

наиболее часто регистрируется переносимый этими нематодами вирус «To-bacco Rattle virus» (TRV). Отмечено, что частота совпадения очагов распространения триходорид и тобравирусов приближается к 3/4 (в 73 % выявленных очагов триходорид растения были поражены тобравирусами). Установлены основные типы фитоценозов и виды растений—хозяев, в ризосфере которых обнаружены триходориды.

Распространение триходорид в различных фитоценозах. Установлено широкое распространение триходорид в Московской обл., как в окультуренных почвах, так и в естественных условиях. Триходориды обнаружены в ризосфере различных культурных и дикорастущих растений (табл. 1).

Отмечено, что триходорид чаще встречались в окультуренных почвах, особенно в посадках картофеля и посевах ячменя. В целом около 50 % обследованных почв агроценозов заражены триходоридами.

В естественных условиях триходориды встречались реже, но их распространение носило более агрегированный характер, и численность достигала более высоких значений. В целом средняя численность триходорид от общего количества нематод в пробах колебалась от 0.2 до 11 % в агроценозах и до 32 % в природных очагах.

Влияние некоторых почвенных факторов на распространение триходорид. Распространение нематод во многом зависит от экологических факторов, в частности типов почв, механического состава, влажности, почвенной кислотности и других характеристик. В Московской обл. триходориды встречались в различных типах почв, исключая заболоченные почвы с развитым процессом оглеения и почвы с тяжелым механическим составом. Наиболее распространенным типом для этих нематод была дерново-подзолистая почва разной степени окультуренности. Известно, что триходориды предпочитают легкие по механическому составу почвы, обеспечивающие опти-

Таблица 1
Распространение триходорид в различных фитоценозах Московской области Table 1. Distribution of trichodorids in different phytocenoses of Moscow Oblast

Фитоценоз	Растение—хозяин	Вид триходорид Trichodorus	Численность триходорид (особей/л)	Частота встречаемости, %*
	Агро	оценозы		
Пропашные культуры	Картофель	T. primitivus T. similis	30—50	55.6
Плодовые культуры	Черная смородина	P. teres	30	7
	Яблоня	То же	110	42
	Земляника	Trichodorus sp.	40	23
Злаковые	Ячмень	T. primitivus	3080	16—25
Бобовые	Горох	Trichodorus sp.	70	12
	Естествен	ные ценозы		
Лесной	Дикая малина	Trichodorus sp.	450	13
Луговой	Мятлик	T. primitivus	80	10
	Пижма	Trichodorus sp.	20—30	25
Лугово-пойменный	Клевер	T. primitivus	30—100	9—35
	Овсяница, мятлик	То же	30—100	

Примечание. * — число проб, содержащих триходорид, от общего числа проанализированных проб.

Таблица 2
Частота встречаемости триходорид в зависимости от механического состава почв Тable 2. Frequency of the trichodorids'

occurrence depending on soil texture

№	Почвы различного механического состава	Частота встречаемости триходорид, %		
1	Супесь	77 a		
2	Опесчаненный суглинок	57 b		
3	Легкий суглинок	33 c		
4	Средний суглинок	25 d		
5	Тяжелый суглинок	0		
		$HCP_{0.05} = 8.21$		

мальную аэрацию и влажность (Taylor, Brown, 1997). Распространение триходорид в Московской обл. также связано с легкими песчаными и супесчаными почвами флювиогляциального происхождения; они были отмечены даже в грубопесчаной почве с примесью моренного галечника (P < 0.05). Частота встречаемости этих нематод была ниже в легких суглинках, в средних и тяжелых суглинках они встречались в единичных экземплярах, а в тяжелых глинистых почвах вообще не были обнаружены. По результатам статистической обработки (неравномерный комплекс) можно констатировать статистически значимые различия между всеми вариантами на уровне 95 %, за исключением вариантов 3 и 4, различия между которыми не превышают значения HCP (табл. 2).

При исследовании влияния кислотности почвы на распространение триходорид обнаружено, что высокая численность этих нематод может наблюдаться в сильнокислых почвах: например, в почве лесного малинника с рН 4.3 численность их составляла 450 особей/л. В целом триходориды встречались в почвах как с низким, так и с высоким уровнем кислотности (рН 4.0-7.5), при этом нематоды вида *Paratrichodorus teres* предпочитали почвы, имеющие близкую к нейтральной и слабощелочную реакцию среды (рН 6.5-7.0), а для *Trichodorus primitivus* и *T. similis* оптимальная кислотность почвы рН 5.8-7.0.

Изучение вертикального распределения триходорид в почвенном профиле и сезонные изменения их численности в зависимости от климатических факторов и физиологической активности растений—хозяев проводили в течение 2 вегетационных периодов на примере популяции *Paratrichodorus teres*. В результате изучения сезонной динамики численности *P. teres* в ризосфере яблони установлен двухпиковый характер этой динамики в почвенном профиле (0—70 см): 1-й пик численности приходился на май—июнь, 2-й — на сентябрь (P < 0.05). В целом такая динамика характерна для фитопаразитов многолетних культур и совпадает с периодами физиологической активности растений—хозяев. При отклонении климатических условий (количество осадков, температуры) от среднемесячных, по-видимому, происходило смещение максимумов численности нематод во всех почвенных горизонтах: так, во второй год наблюдения, 1-й пик численности *P. teres* наблюдали в более поздний срок (в июле), что связано, по-видимому, с климатическими особенностями данного года — крайней сухостью мая и оби-

Таблица 3

Сезонная динамика численности нематод-триходорид *Paratrichodorus teres* (особь/л) в почвенном профиле за период вегетации (n = 6)

Table 3. Seasonal dynamics of the *Paratrichodorus teres* abundance (ind/l) in soil strata during vegetation (n = 6)

Глубина горизонта, см	Даты отбора проб / средняя численность триходорид*					
	1.06	23.06	6.07	11.08	25.08	20.09
0—10	61	63	70	31	0	99 a
11—40	40	40	70	21	10	55 b
41—70	33	41	62	30	10	41 b
Средняя численность	34.6	48.0	67.3	27.3	6.6	51.6 c

Примечание. * — P < 0.05 (при сезонной динамики численности нематод).

льными осадками в конце июня, превышающими норму в 2 раза. В отличие от сезонной динамики триходорид, у которых выявилось четкое различие в изменении плотности популяции в почве (P < 0.05), при горизонтальном распределении статистические различия в их численности не всегда были достоверны (P > 0.05). Поэтому здесь можно говорить только о тенденции изменения численности триходорид в зависимости от горизонта почвы. В периоды высокой увлажненности почвы максимальная численность триходорид наблюдалась в верхнем почвенном горизонте, а при уменьшении осадков и повышении температуры максимум их численности был приурочен к глубине 40—70 см, где концентрировалась основная масса мелких и средних корней (табл. 3). Следует отметить, что перепады численности триходорид оказывались более существенными в верхнем горизонте, где изменения влажности были более значительны. С глубиной численность триходорид уменьшалась, в более глубоких слоях почвы (более 70 см) отмечали единичные экземпляры триходорид.

Распространение триходорид и TRV на картофеле. Наибольшее распространение триходорид отмечено в посадках картофеля, где были распространены виды *Т. primitivus* и *Т. similis*, которые являются переносчиками вируса погремковости табака (TRV), наиболее опасного на картофеле.

Вирус погремковости табака отмечался в посадках картофеля в течение нескольких лет наблюдения. В табл. 4 приводятся данные по распространению TRV на фоне комплексной вирусной инфекции, представленной различными вирусами картофеля в семенных посадках (Талдомский р-н) (табл. 4).

Таким образом, зараженность посадок картофеля вирусом погремковости табака довольно значительна не только на полях, но и в частых посадках. На картофеле TRV встречался преимущественно на фоне комплексной вирусной инфекции. Наиболее часто TRV наблюдался в комплексе с вирусами XPV (X-вирус картофеля) и SPV (S-вирус картофеля), а также с YPV (V-вирус картофеля). Около 75 % зараженного растительного материала характеризовалось комплексной инфекцией, при этом моноинфекция TRV наблюдалась достаточно редко.

На разных сортах картофеля отечественной и зарубежной селекции зараженность вирусом TRV проявлялась по-разному. Наиболее пораженными TRV из зарубежных сортов оказались Бербанк и Романо, из отечествен-

Таблица 4

Распространение вирусных инфекций на картофеле
в Талдомском р-не Московской обл. (по результатам 6-летних наблюдений)

Тable 4. Distribution of viral infections in potato plantings
from Taldomsky District of Moscow Oblast by the results of six-year observations

	•			•		•	
Год иссле- дований	1-й	2-й	3-й	4-й	5-й	6-й	6-й
Вирусы	сы Картофельные поля (количество зараженных растений, %)						Частные посадки
TRV	27	5	10	30	32	7	32
XPV	14	11	20	28	34	90	75
YPV	_	21	24	8	11	7	4
SPV	96	10	49	25	42	82	25
MPV	3	10	50	28	54	40	42

Таблица 5
Степень заражения различных сортов картофеля вирусными инфекциями Table 5. Rates of viral infections in differebr potato breeds

		Вирусы (количество зараженных растений, %)								
Сорт	TRV	XPV	YPV	SPV	MPV	PLRV				
Гория	_	37	100	87	62					
Агрия		9	14	17	_					
Невский	_		92	95	83					
Кварц	33	100	32	67	100	_				
Диско			85	32						
Калинка	22	11	99	98	100					
Бербанк	55	48	12		25	50				
Аноста	20	13	_	80	_					
Орбита	3-53	16	12	48	76	4				
Романо	7—38	40	12	28	32	32				

ных — Орбита (табл. 5). Концентрация вирусных частиц в проростках, полученных из клубней картофеля голландского сорта, Бербанк составила $1000-1500~\rm Hr/mл$. В клубнях семенного картофеля сортов Орбита и Романо, взятых на проращивание после зимнего хранения, зараженность TRV составляла $60~\rm u$ $40~\rm \%$ соответственно. Наиболее редко встречался P-вирус картофеля (PLRV).

Таким образом, в Московской области выявлено 3 вида триходорид, установлена взаимосвязь их распространения с тобравирусами (в частности, TRV), оценено влияние факторов среды на распространение этих нематод и характер сезонной динамики одного из представителей — P. teres, выявлен высокий уровень поражения посадок картофеля вирусом погрем-ковости табака на фоне комплексной вирусной инфекции и установлен прогрессирующий характер распространения вируса в течение 6 лет наблюдения.

Список литературы

- Иванова Т. С. 1977. Корневые нематоды вирусоносители подотряда Diphtherophorina. Л.: Наука. 93 с.
- Козырева Н. И. 1996. К вопросу изучения фауны триходорид переносчиков тобравирусов в Московской области. Матер. науч. конф. «Систематика, таксономия и фауна паразитов». М. 65—66.
- Романенко Н. Д. 2006. Нематоды переносчики вирусов. В кн.: Прикладная нематология. М.: Наука. 122—162.
- Decraemer W., Reay F. 1991. Trichodorid nematodes from Australia with description of two new speciesz from native vegetation. Australian Plant Pathology. 20: 52-66.
- Ferraz L. C. C., B. Brown D. J. F. 2002. An introduction to Nematodes: Plant Nematology. Pensoft, Sofia—Moscow. 221 p.
- Flegg J. J. M. 1977. Extraction of *Xiphinema* and *Longidorus* species from soil by a modification of Cobb's decanting of Sielving technique. Ann. Apl. Biol. 60: 429–437.
- Romanenko N., Kozyreva N. 1998. Investigations of trichodorid nematodes (Nematoda: Trichodoridae) and tobraviruses in Russia. Russian Journ. of Nematology. 6 (1): 77.
- Taylor C. E., Brown D. J. F. 1997. Nematode vectors of plant viruses. CAB International. 286 p.
- Santos M. S. N., Abrantes I. M., Brown D. J. F., Lemos R. M. 1997. An introduction to virus vector nematodes and their associated viruses. Portugal. 535 p.
- Seinhorst J. W. 1959. A parid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica. 4 (1): 67–69.

DISTRIBUTION OF THE NEMATODES FROM FAMILY TRICHODORIDAE, VECTORS OF THE TOBACCO RATTLE VIRUS, IN THE MOSCOW OBLAST

N. I. Kozyreva, N. D. Romanenko

Key words: Trichodorus similis, Trichodorus primitivus, Paratrichodorus teres, distribution, soil type, virus, TRV, potato, Moscow Oblast.

SUMMARY

Three nematodes species for the family Trichodoridae, *Trichodorus similis*, *T. primitivus*, and *Paratrichodorus teres*, vectors of Tobacco Rattle virus (TRV), have been found in the vicinity of Moscow. Frequency of the joint occurrence of the above species and TRV infection was 73 %. Trichodorids occurred more often in agrocenoses, where their frequency of occurrence in some years was 50 % in potato fields and 25 % in barley fields. The effects of the environmental factors (soil type, pH, and soil texture) on the distribution of trichodorids and seasonal dynamics of *P. teres* are established. A high level of the infection with TRV, against the background of complex viral infections, in plantings of different potato breeds in revealed.