SCRUM Domain Optimization Model

Generated from Entities, Relationships, Goals, Conditions, Decision Variables ${\rm August}\ 12,\,2025$

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	7

1 1. Sets (Entities)

- \mathcal{P} : Projects (Project)
- \mathcal{T} : Teams (Team)
- W: Workers (Worker)
- \mathcal{F} : Features (Feature)
- SK: Skills (Skill)
- \mathcal{RO} : Roles (Role)
- PO: Product Owners (ProductOwner)
- SM: Scrum Masters (ScrumMaster)
- PB: Product Backlogs (ProductBacklog)
- SP: Sprints (Sprint)
- SPP: Sprint Plannings (SprintPlanning)
- \mathcal{DS} : Daily Scrums (DailyScrum)
- SR: Sprint Reviews (SprintReview)
- SRE: Sprint Retrospectives (SprintRetrospective)
- SBL: Sprint Backlogs (SprintBacklog)
- SG: Sprint Goals (SprintGoal)
- \mathcal{E} : Epics (Epic)
- US: User Stories (UserStory)
- TSK: Tasks (Task)
- \mathcal{DEV} : Development Snapshots (DevelopmentSnapshot)
- BL: Blockers (Blocker)
- SH: Stakeholders (Stakeholder)
- VEL: Velocity records (Velocity)
- REP: Release Plans (ReleasePlan)
- \mathcal{RM} : Roadmaps (Roadmap)
- SCB: Scrum Boards (ScrumBoard)
- FED: Feature Docs (FeatureDocumentation)

Relationship-induced index sets (from Relationships.csv). We use the following incidence sets:

- $\mathcal{T}(p) \subseteq \mathcal{T}$: teams assigned to project p (R1).
- $W(t) \subseteq W$: workers belonging to team t (R2).
- $SK(w) \subseteq SK$: skills of worker w (R3).
- $\mathcal{RO}(w) \subseteq \mathcal{RO}$: roles of worker w (R4).
- $\mathcal{F}(pb) \subseteq \mathcal{F}$: features contained in product backlog pb (R7).
- $\mathcal{E}(pb) \subseteq \mathcal{E}$: epics in product backlog (R8).
- $\mathcal{US}(e) \subseteq \mathcal{US}$: user stories in epic e (R9).
- $TSK(us) \subseteq TSK$: tasks in user story us (R10).
- $\mathcal{US}(sbl) \subseteq \mathcal{US}$: stories assigned to sprint backlog sbl (R11).
- $sbl(s) \in SBL$: unique sprint backlog of sprint s (R12).
- $sg(s) \in \mathcal{SG}$: goal of sprint s (R13).
- $TSK(scb) \subseteq TSK$: tasks on scrum board scb (R14).
- $f(FED) \in \mathcal{F}$: feature documented by a feature doc (R15).
- $\mathcal{BL}(tsk) \subseteq \mathcal{BL}$: blockers of task tsk (R16).
- $SR(sh) \subseteq SR$: reviews a stakeholder attends (R17).
- $SRE(sm) \subseteq SRE$: retros moderated by scrum master sm (R18).
- $t(vel) \in \mathcal{T}$: team referred to by velocity record (R19).
- $\mathcal{F}(rep) \subseteq \mathcal{F}$: features planned in release plan (R20).
- $rm(rep) \in \mathcal{RM}$: roadmap of release plan (R21).
- $dev(s) \in \mathcal{DEV}$: snapshot generated by sprint s (R22).

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, sk \in \mathcal{SK}, ro \in \mathcal{RO}$
- $po \in \mathcal{PO}$, $sm \in \mathcal{SM}$, $pb \in \mathcal{PB}$, $s \in \mathcal{SP}$, $spp \in \mathcal{SPP}$
- $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$, $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$
- $e \in \mathcal{E}$, $us \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$, $bl \in \mathcal{BL}$
- $sh \in SH$, $vel \in VEL$, $rep \in REP$, $rm \in RM$, $scb \in SCB$

Selected parameters (from attributes). We use numeric parameters derived from entity attributes:

- $budget_p \ge 0$ (Project.budget); $status_p^{\text{active}} \in \{0,1\}$ (Project.status=active)
- $avail_w \in [0,1]$ (Worker.availability); $status_w^{\text{active}} \in \{0,1\}$
- $teamstat_t^{\text{available}} \in \{0,1\}; \ size^{\min}, size^{\max} \ \text{bounds for team size}$
- $prio_f \in \mathbb{Z}_+; \ \widehat{eff}_f \geq 0 \ (\texttt{Feature.estimated_effort})$
- $sev_{bl} \in \mathbb{Z}_+$; $resolved_{bl} \in \{0, 1\}$
- $att_{sr} \in \mathbb{Z}_+$ (SprintReview.attendees_count)
- $goalAch_s \in [0,1]$ (Sprint.achievement_of_goal)
- $vel_{vel}^{avg} \geq 0$ and mapping t(vel) (Velocity.avg_story_points)
- $totEff_{sbl} \ge 0, nTasks_{sbl} \in \mathbb{Z}_+$ (SprintBacklog)
- $rel_{sh} \in [0,1]$ (Stakeholder.relevance_to_feature)

3 3. Goals

We maximize a weighted sum of maximize.... terms and minimize a weighted sum of minimize.... terms by converting minimization components to maximization (via subtraction from upper bounds or negation). Let $\lambda_g > 0$ denote the CSV weight of goal g and Norm[·] a positive scaling to place heterogeneous terms on comparable ranges.

• G0 maximize_avg_story_points (Weight 1.0, CriteriaType 1)

Logic: Prefer teams with higher historical velocity.

Math: max
$$\lambda_{G0} \sum_{vel \in \mathcal{WL}} \text{Norm}[vel_{vel}^{avg}]$$

• G1 minimize_blocker_severity (Weight 1.0, CriteriaType 2)

Logic: Reduce unresolved blocker impact.

Math: min
$$\lambda_{G1} \sum_{tsk \in \mathcal{TSK}} \sum_{bl \in \mathcal{BL}(tsk)} (1 - resolved_{bl}) sev_{bl}$$

• G2 minimize_task_effort (Weight 0.9, CriteriaType 1)

Logic: Prefer selecting/assigning lower-effort tasks. Let $a_{tsk,w} \in \{0,1\}$ (DV4).

Math: min
$$\lambda_{G2} \sum_{tsk} \sum_{w} a_{tsk,w} \ effort_{tsk}$$

• G3 maximize_sprint_goal_achievement (Weight 1.0, CriteriaType 2)

Logic: Favor sprints with higher goal achievement.

Math: max
$$\lambda_{G3} \sum_{s \in \mathcal{SP}} \text{Norm}[goalAch_s]$$

• G4 minimize_feature_estimated_effort (Weight 0.8, CriteriaType 1)

Logic: Prefer lower-effort features when selected for a sprint. Let $y_{f,s} \in \{0,1\}$ (DV2)

adapted over sprints).

Math: min
$$\lambda_{G4} \sum_{s} \sum_{f} y_{f,s} \ \widehat{eff}_{f}$$

• G5 maximize_stakeholder_relevance (Weight 0.7, CriteriaType 1)

Logic: Prefer items valuable to highly relevant stakeholders. Map features to stakeholders by participation in reviews of sprints that include those features.

Math (proxy): max
$$\lambda_{G5} \sum_{s} \sum_{f} y_{f,s} \Big(\sum_{sr \in SR} \sum_{sh \in SH} \mathbf{1}[sr \in SR(sh)] \ rel_{sh} \Big)$$

• G6 minimize_total_sprint_effort (Weight 1.0, CriteriaType 2)

Logic: Keep planned effort within capacity.

Math: min
$$\lambda_{G6} \sum_{s} totEff_{sbl(s)}$$

• G7 maximize_attendees_in_review (Weight 0.5, CriteriaType 1)

Logic: Prefer sprints with broader review participation.

Math: max
$$\lambda_{G7} \sum_{sr \in SR} \text{Norm}[att_{sr}]$$

• G8 minimize_number_of_tasks (Weight 0.6, CriteriaType 1)

Logic: Prefer smaller WIP.

Math: min
$$\lambda_{G8} \sum_{s} nTasks_{sbl(s)}$$

• **G9** maximize_worker_availability (Weight 1.0, CriteriaType 2)

Logic: Assign work to more-available workers.

Math:
$$\max \lambda_{G9} \sum_{tsk} \sum_{w} a_{tsk,w} \operatorname{Norm}[avail_w]$$

• G10 minimize_project_budget (Weight 0.9, CriteriaType 1)

Logic: Prefer plans consuming less budget. If $b_f \geq 0$ is allocated feature budget (DV8),

assign features to projects by backlog.

Math: min
$$\lambda_{G10} \sum_{p \in \mathcal{P}} \sum_{pb: pb \text{ of } p} \sum_{f \in \mathcal{F}(pb)} b_f \leq \sum_{p} budget_p$$
 (also enforced as constraint in Sec. 4)

• G11 maximize_scrum_master_experience (Weight 0.4, CriteriaType 1)

Logic: Prefer assigning more-experienced SMs. Let $z_{sm,t} \in \{0,1\}$ (DV5). Parameter

$$exp_{sm} \ge 0.$$
Math: max $\lambda_{G11} \sum_{t \in \mathcal{T}} \sum_{sm \in \mathcal{SM}} z_{sm,t} \text{ Norm}[exp_{sm}]$

Composite objective. With \mathcal{G}_{max} the set of maximize-goals and \mathcal{G}_{min} minimize-goals (converted by sign/upper bounds), we solve:

$$\max \ \sum_{g \in \mathcal{G}_{\text{max}}} \lambda_g \cdot \text{Term}_g \ - \sum_{g \in \mathcal{G}_{\text{min}}} \lambda_g \cdot \text{Term}_g^{(\text{min})}$$

subject to the conditions in Section 4 and variable domains in Section 5.

4 4. Conditions

Interpretation rule: For each condition Ck, Criteria Type = 2 (Must-Match) is a hard constraint; = 1 (May-Match) is modeled as a soft preference added to the objective (positive bonus or negative penalty); = 0 (Cannot-Match) forbids assignments/selections.

Let further decision variables from Sec. 5 be available. We list each condition with logic and mathematics.

5

• C0 active_projects_only (Must, IsSum=False)

Logic: Only active projects participate.

 $\textit{Math: } \forall p \in \mathcal{P}: \; status_p^{\text{active}} = 1 \; \text{(or equivalently, filter } \mathcal{P} \leftarrow \{p: status_p^{\text{active}} = 1\}).$

• C1 team_status_available (Must)

Logic: Only available teams can be used.

Math: $\forall t \in \mathcal{T} : teamstat_t^{\text{available}} = 1.$

• C2 worker_status_active (Must)

Logic: Only active workers can be assigned.

Math: $\forall w \in \mathcal{W}, \forall t : x_{w,t} \leq status_w^{\text{active}}, \ \forall p : u_{w,p} \leq status_w^{\text{active}}$

• C3 min_worker_availability (Must)

Logic: Assignments require $avail_w \ge \alpha$ (threshold).

Math: $\forall w, t : x_{w,t} \leq \mathbf{1}[avail_w \geq \alpha]$, and $\forall w, tsk : a_{tsk,w} \leq \mathbf{1}[avail_w \geq \alpha]$.

• C4 user_story_ready (Must)

Logic: Only ready user stories may be selected into a sprint. Let $\mathtt{ready}_{us} \in \{0,1\}$. Math: $\forall s, us: y_{us,s}^{US} \leq \mathtt{ready}_{us}$.

• C5 feature_priority_threshold (Must)

Logic: Selected features must have $prio_f \geq \underline{\pi}$.

Math: $\forall s, f: y_{f,s} \leq \mathbf{1}[f \geq \underline{\pi}].$

• C6 sprint_in_progress_or_planned (Must)

Logic: Consider only sprints with admissible status. Let $ok_s \in \{0, 1\}$.

Math: $\forall s$: $\mathsf{ok}_s = 1$ (or restrict \mathcal{SP} accordingly).

• C7 exclude_unresolved_blockers (Cannot-Match, IsSum=True)

Logic: Tasks with unresolved blockers cannot be assigned.

Math: $\forall tsk, \forall bl \in \mathcal{BL}(tsk) : (1 - resolved_{bl}) = 1 \Rightarrow \sum_{w} a_{tsk,w} = 0.$

• C8 prefer_dev_task_type (May-Match)

Logic: Prefer Task.type=development. Let $dev_{tsk} \in \{0,1\}$. Weight 0.5.

Math (objective bonus): $+0.5\sum_{tsk,w} a_{tsk,w} \cdot \text{dev}_{tsk}$

• C9 backlog_status_refined (Must)

Logic: Only refined product backlogs contribute features/stories. Let $refined_{pb} \in \{0, 1\}$.

Math: $\forall pb$: refined_{pb} = 1 and for $f \in \mathcal{F}(pb)$ or $us \in \mathcal{US}(e), e \in \mathcal{E}(pb)$, selections must satisfy $y_{f,s} \leq \text{refined}_{pb}$ and $y_{us,s}^{US} \leq \text{refined}_{pb}$.

• C10 release_plan_planned (Must)

Logic: Only planned release plans are considered. Let planned_{rep} $\in \{0, 1\}$.

 $Math: \forall rep: \mathtt{planned}_{rep} = 1.$

• C11 roadmap_end_date_defined (Must)

Logic: Roadmaps must have end date set. Let $hasEnd_{rm} \in \{0,1\}$.

Math: $\forall rep$: hasEnd_{rm(rep)} = 1.

Capacity, budget, and linking (implied by entities/relationships).

- Worker-Team assignment (DV0): $x_{w,t} \in \{0,1\}$ and $\sum_t x_{w,t} \leq 1$.
- Worker-Project assignment (DV1): $u_{w,p} \in \{0,1\}$ and $u_{w,p} \leq \sum_{t \in \mathcal{T}(p)} x_{w,t}$ (project via team).

- ScrumMaster-Team (DV5): $z_{sm,t} \in \{0,1\}$ and $\sum_{sm} z_{sm,t} = 1$.
- ProductOwner-Project (DV6): $q_{po,p} \in \{0,1\}$ and $\sum_{po} q_{po,p} = 1$.
- Feature–Sprint selection (DV2): $y_{f,s} \in \{0,1\}$; if $f \in \mathcal{F}(pb)$ associated to project p, then $y_{f,s} \leq \sum_{po} q_{po,p}$.
- Story-Sprint selection (DV3): $y_{us,s}^{US} \in \{0,1\}$ with $us \in \mathcal{US}(e)$ and (optionally) $y_{us,s}^{US} \leq \sum_{f \in \mathcal{F}(pb)} y_{f,s}$ if stories are gated by chosen features/epics.
- Task assignment (DV4): $a_{tsk,w} \in \{0,1\}$ and $\sum_{w} a_{tsk,w} \leq 1$; link to stories $tsk \in TSK(us)$ implies $a_{tsk,w} \leq \sum_{s} y_{us,s}^{US}$.
- Sprint effort vs availability: $\sum_{us} y_{us,s}^{US} \cdot \text{SP}_{us} \leq \sum_{w} cap_{w,s}$ where SP_{us} are (DV11) story points and $cap_{w,s} = avail_w \cdot Cap^{\max}$.
- Budget (DV8, G10): $\sum_f b_f \leq \sum_p budget_p$ and $b_f \leq M \sum_s y_{f,s}$.
- Team size (DV9): $size^{\min} \le n_t \le size^{\max}$ with $n_t = \sum_w x_{w,t}$.
- Sprint length (DV7): $7 \le L_s \le 30$ (days).
- Feature priority (DV10): $1 \le \pi_f \le 5$ and if $y_{f,s} = 1$ then $\pi_f \ge \underline{\pi}$ (duplicate of C5).

5 5. DecisionVariables

Let the following decision variables correspond exactly to DecisionVariables.csv (domains and bounds included).

- **DV0** assign_worker_to_team: $x_{w,t} \in \{0,1\}, w \in \mathcal{W}, t \in \mathcal{T}$ (1 if worker w is assigned to team t).
- **DV1** assign_worker_to_project: $u_{w,p} \in \{0,1\}, w \in \mathcal{W}, p \in \mathcal{P} \text{ (1 if worker } w \text{ contributes to project } p).$
- **DV2** select_feature_for_sprint: $y_{f,s} \in \{0,1\}, f \in \mathcal{F}, s \in \mathcal{SP}$ (1 if feature f is in sprint s).
- $\bullet \ \, \mathbf{DV3} \quad \mathbf{select_user_story_for_sprint} \colon \, y^{US}_{us,s} \in \{0,1\}, \, us \in \mathcal{U\!S}, s \in \mathcal{S\!P}.$
- DV4 assign_task_to_worker: $a_{tsk,w} \in \{0,1\}, tsk \in TSK, w \in W$.
- DV5 choose_scrum_master_for_team: $z_{sm,t} \in \{0,1\}, sm \in \mathcal{SM}, t \in \mathcal{T}$.
- DV6 choose_product_owner_for_project: $q_{po,p} \in \{0,1\}, po \in \mathcal{PO}, p \in \mathcal{P}.$
- DV7 set_sprint_length_days: $L_s \in \mathbb{Z}$, $s \in \mathcal{SP}$ with $7 \le L_s \le 30$.
- DV8 allocate_budget_to_feature: $b_f \in \mathbb{R}_+$, $f \in \mathcal{F}$ with $0 \le b_f \le 1,000,000$.
- DV9 set_team_size: $n_t \in \mathbb{Z}$, $t \in \mathcal{T}$ with $3 \le n_t \le 20$.
- DV10 set_feature_priority: $\pi_f \in \mathbb{Z}$, $f \in \mathcal{F}$ with $1 \le \pi_f \le 5$.
- DV11 decide_story_points_for_user_story: $SP_{us} \in \mathbb{Z}$, $us \in \mathcal{US}$ with $1 \leq SP_{us} \leq 13$.