Análise Complexa e Equações Diferenciais

Problemas propostos para as aulas práticas

Semana 2 - 28 de Setembro a 2 de Outubro de 2020

1.	Escreva	na form	a + b	i os	seguintes	números	compl	exos
----	---------	---------	-------	------	-----------	---------	-------	------

a) $2e^{\frac{4\pi i}{3}}$ b) e^{2+i} c) sen(1+i) d) cos(2+3i)

2. Estabeleça as seguintes identidades (onde z = x + iy):

a) $\cos(iz) = \cosh(z)$;

b) $\operatorname{sen}(iz) = i \operatorname{senh} z$;

c) $\cos^2 z + \sin^2 z = 1$:

d) $|\cos z|^2 + |\sin z|^2 = \cosh(2y)$;

e) $\cosh^{2}(z) - \sinh^{2}(z) = 1$;

f) $\cosh^2 z + \sinh^2 z = \cosh(2z)$;

g) $\operatorname{sen}(z+w) = \operatorname{sen} z \cdot \cos w + \cos z \cdot \operatorname{sen} w$; h) $\cos(z+w) = \cos z \cdot \cos w - \sin z \cdot \operatorname{sen} w$.

3. Prove que sen z e $\cos z$ são simultaneamente reais se e só se z é real.

4. Mostre que os períodos das funções sen e cos são da forma $2k\pi$, com $k \in \mathbb{Z}$; e que os períodos das funções senh e cosh são da forma $2k\pi i$, com $k \in \mathbb{Z}$.

5. Mostre que sen , cos : $\mathbb{C} \to \mathbb{C}$ são sobrejectivas.

6. Mostre que sen $z = \operatorname{sen} w \Leftrightarrow z = w + 2k\pi$ ou $z = -w + \pi + 2k\pi$, para algum $k \in \mathbb{Z}$.

7. Calcule o valor principal (i.e., considerando o ramo principal da função $\log z$, ou seja, $\log z = \log |z| + i\theta$, com $\theta \in]-\pi,\pi]$) de:

a) $\log(-e)$ b) $\log(-i)$ c) $\log(1-i)$ d) 2^{-i} e) i^{i} f) $\left(\frac{1+i}{\sqrt{2}}\right)^{1-i}$

8. Determine todas as soluções das seguintes equações:

a) $e^z = e$ b) $e^z = -1$ c) $\log z = 1 + 2\pi i$ d) $e^{iz} + e^{-iz} + 2 = 0$

e) sen(z) = 10 f) $(z^4 - 1) sen(\pi z) = 0$ g) $cosh^2 z = 0$ h) $sen^2(1/z) = 0$

9. Seja $c \in [-1, 1]$. Mostre que sen z = c se e só se $z \in \mathbb{R}$. Idem para coseno.

1

10. a) Mostre que para todo o $a \in \mathbb{C} \setminus 0$ e $b \in \mathbb{R}$ se tem $|a^b| = |a|^b$.

- b) Em que condições se verifica a igualdade $\log a^b = b \log a$, para números complexos $a \neq 0$ e b?
- 11. Estabeleça a seguinte fórmula

$$\arctan z = \frac{i}{2} \log \left(\frac{i+z}{i-z} \right).$$

Sugestão: Use a relação $z = \tan w$ e, resolvendo em ordem a e^{iw} , termine obtendo w em função de z.

- 12. Determine a parte real e a parte imaginária de cada uma das funções:
 - a) $\overline{z} + iz^2$ b) $i z^3$ c) \overline{z}/z d) $\operatorname{sen}(z)$ e) $\tan(z)$

- 13. Esboçe a imagem pela aplicação f do conjunto A indicado:
 - $f(z) = z^2$, $A = \{z \in \mathbb{C} : \operatorname{Arg} z = \frac{\pi}{6}\}$
 - $f(z) = z^2, \quad A = \{z \in \mathbb{C} : \operatorname{Re}(z) \ge 0\}$
 - c) $f(z) = e^z$, $A = \{z \in \mathbb{C} : \text{Re}(z) < 0, |\text{Im}(z)| < \pi \}$
 - d) $f(z) = \log z$ (ramo principal), $A = \{z \in \mathbb{C} : 2 < |z| < e, \frac{\pi}{4} < \operatorname{Arg} z < \frac{7\pi}{4} \}$
 - e) $f(z) = (z i)^{-1}$, $A = \{z \in \mathbb{C} : |z i| \le 2\}$
 - $f(z) = (z i)^{-1}, \quad A = \{z \in \mathbb{C} : |z| > 1, z \neq i\}$
- 14. Use coordenadas polares para determinar a imagem dos seguintes conjuntos através da aplicação $z \to z + \frac{1}{z}$

a)
$$\{z \in \mathbb{C} : |z| = 1\}$$

$$\mathrm{b})\;\{z\in\mathbb{C}:|z|>1\}$$

a)
$$\{z \in \mathbb{C} : |z| = 1\}$$
 b) $\{z \in \mathbb{C} : |z| > 1\}$ c) $\{z \in \mathbb{C} : |z| < 1\}$.