ME 639 Introduction to Robotics

Mini Project

2R - Elbow Manipulator

Souritra Garai 18110166

Robot Description

As shown in figure 1, in the present 2R elbow manipulator, two rods are joined using revolute joints that restrict movement to the xy plane. Rod or link 1 of mass m_1 and length l_1 , is attached to ground at the origin via revolute joint J_1 . Link 2 of mass m_2 and length l_2 is connected to the other end of link 1 via revolute joint J_2 . Thus, the system has 2 degrees of freedom. The end effector (free end of link 2) is denoted by point E(x,y). The links 1 and 2 form angles q_1 and q_2 respectively with the horizontal x axis. Motors present at joints J_1 and J_2 can provide torques τ_1 and τ_2 at the respective joints.

Figure 1 2D Schematic of 2R Elbow Manipulator

Forward Kinematics

From vector algebra, the coordinates of E(x, y) can be found as

$$x = l_1 \cos q_1 + l_2 \cos q_2 \tag{1}$$

$$y = l_1 \sin q_1 + l_2 \sin q_2 \tag{2}$$

Taking the first derivative with respect to time, the x and y components of velocity are found as

$$\dot{x} = -l_1 \sin q_1 \cdot \dot{q}_1 - l_2 \sin q_2 \cdot \dot{q}_2 \tag{3}$$

$$\dot{y} = l_1 \cos q_1 \cdot \dot{q}_1 + l_2 \cos q_2 \cdot \dot{q}_2 \tag{4}$$

Expressing the same in matrix form

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -l_1 \sin q_1 & -l_2 \sin q_2 \\ l_1 \cos q_1 & l_2 \cos q_2 \end{pmatrix} \cdot \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \end{pmatrix}$$
 (5)

Taking the second derivative with respect to time, the x and y components of acceleration are obtained

$$\ddot{x} = -l_1 \sin q_1 \cdot \ddot{q}_1 - l_1 \cos q_1 \cdot \dot{q}_1^2 - l_2 \sin q_2 \cdot \ddot{q}_2 - l_2 \cos q_2 \cdot \dot{q}_2^2 \tag{6}$$

$$\ddot{y} = l_1 \cos q_1 \cdot \ddot{q}_1 - l_1 \sin q_1 \cdot \dot{q}_1^2 + l_2 \cos q_2 \cdot \ddot{q}_2 - l_2 \sin q_2 \cdot \dot{q}_2^2 \tag{7}$$

Again, expressing the same in matrix form

$$\begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = \begin{pmatrix} -l_1 \sin q_1 & -l_2 \sin q_2 \\ l_1 \cos q_1 & l_2 \cos q_2 \end{pmatrix} \cdot \begin{pmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{pmatrix} - \begin{pmatrix} l_1 \cos q_1 & l_2 \cos q_2 \\ l_1 \sin q_1 & l_2 \sin q_2 \end{pmatrix} \cdot \begin{pmatrix} \dot{q}_1^2 \\ \dot{q}_2^2 \end{pmatrix}$$
 (8)

Inverse Kinematics

In figure 2, two right angle triangles are constructed to define angles θ , φ and φ . θ is the angle between links 1 and 2. Using parallelogram law for vector addition, θ can be found as

$$x^{2} + y^{2} = l_{1}^{2} + l_{2}^{2} + 2l_{1}l_{2}\cos\theta \tag{9}$$

$$\Rightarrow \theta = \pm \cos^{-1} \left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2} \right) \tag{10}$$

Figure 2 Geometric representation of the robot links on xy plane

The \pm values of θ correspond to elbow-up and elbow-down configuration of the manipulator. To remain consistent and maximize the range of the manipulator, elbow-up configuration is chosen. Therefore,

$$\theta = \begin{cases} \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}\right), & x \ge 0\\ -\cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}\right), & x < 0 \end{cases}$$
(11)

From the constructed right triangles, the values of ϕ and φ can be deduced as

$$\phi = \tan^{-1} \left(\frac{y}{y} \right) \tag{12}$$

$$\varphi = \tan^{-1} \left(\frac{l_2 \sin \theta}{l_1 + l_2 \cos \theta} \right) \tag{13}$$

Note, when x < 0, the value of ϕ should lie in the range $\left[\frac{\pi}{2}, \pi\right]$. But the principal value range of $\tan^{-1}(x)$ function is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. On the other hand, the value of angle φ can lie in any of the 4

quadrants depending on the values of l_1 , l_2 and θ . The arctan2 function in Numpy¹ library of Python implicitly outputs angles in the appropriate quadrant according to the \pm values of the numerator and denominator. Thus, the values of q_1 and q_2 are obtained as

$$q_1 = \phi + \varphi \tag{14}$$

$$q_2 = q_1 - \theta \tag{15}$$

Dynamics

Let a force, $\vec{F} = F_x \hat{\imath} + F_y \hat{\jmath}$, act on the end effector. Let q_1 and q_2 be the independent variables. Therefore, work done by force \vec{F} in moving dq_i

$$\delta W_F = \vec{F} \cdot \frac{\partial \vec{r}}{\partial q_i} dq_i \tag{16}$$

where, $\vec{r} = x\hat{\imath} + y\hat{\jmath}$ is the position vector of the end effector. Work done by motors is given by

$$\delta W_i = \tau_i dq_i \tag{17}$$

The potential energy of the system is obtained as

$$V = m_1 g \left(\frac{l_1}{2}\right) \sin q_1 + m_2 g \left\{l_1 \sin q_1 + \left(\frac{l_2}{2}\right) \sin q_2\right\}$$
 (18)

The kinetic energy of the system is obtained as

$$T = \frac{1}{2} \left(\frac{1}{3} m_1 l_1^2 \right) \dot{q}_1^2 + \frac{1}{2} \left(\frac{1}{12} m_2 l_2^2 \right) \dot{q}_2^2 + \frac{1}{2} m_2 v_2^2 \tag{19}$$

where, v_2 is the velocity of center of mass of link 2. It is given by

$$v_2^2 = (l_1 \dot{q}_1)^2 + \left(\frac{l_2 \dot{q}_2}{2}\right)^2 + 2(l_1 \dot{q}_1) \left(\frac{l_2 \dot{q}_2}{2}\right) \cos(q_1 - q_2) \tag{20}$$

¹ Documentation available at https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html

Applying Lagrange's equations of motion,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = F_x \frac{\partial x}{\partial q_i} + F_y \frac{\partial y}{\partial q_i} + \tau_i \tag{21}$$

$$\Rightarrow \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial V}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial V}{\partial q_i} = F_x \frac{\partial x}{\partial q_i} + F_y \frac{\partial y}{\partial q_i} + \tau_i$$
 (22)

Clearly, $\frac{\partial V}{\partial \dot{q}_i} = 0$. Calculating the other partial derivatives,

$$\frac{\partial V}{\partial q_1} = m_1 g \left(\frac{l_1}{2}\right) \cos q_1 + m_2 g l_1 \cos q_1 \tag{23}$$

$$\frac{\partial V}{\partial q_2} = m_2 g \left(\frac{l_2}{2}\right) \cos q_2 \tag{24}$$

$$\frac{\partial T}{\partial q_1} = -m_2(l_1\dot{q}_1) \left(\frac{l_2\dot{q}_2}{2}\right) \sin(q_1 - q_2) \tag{25}$$

$$\frac{\partial T}{\partial q_2} = -m_2(l_1\dot{q}_1) \left(\frac{l_2\dot{q}_2}{2}\right) \sin(q_2 - q_1) \tag{26}$$

$$\frac{\partial T}{\partial \dot{q}_1} = \left(\frac{1}{3}m_1 l_1^2\right) \dot{q}_1 + m_2 l_1^2 \dot{q}_1 + m_2 (l_1) \left(\frac{l_2 \dot{q}_2}{2}\right) \cos(q_1 - q_2) \tag{27}$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_1} \right) = \left(\frac{1}{3} m_1 l_1^2 \right) \ddot{q}_1 + m_2 l_1^2 \ddot{q}_1 + m_2 l_1 \left(\frac{l_2 \ddot{q}_2}{2} \right) \cos(q_1 - q_2)
- m_2 l_1 \left(\frac{l_2 \dot{q}_2}{2} \right) \sin(q_1 - q_2) \left(\dot{q}_1 - \dot{q}_2 \right)$$
(28)

$$\frac{\partial T}{\partial \dot{q}_2} = \left(\frac{1}{12}m_2l_2^2\right)\dot{q}_2 + m_2\left(\frac{l_2}{2}\right)^2\dot{q}_2 + m_2(l_1\dot{q}_1)\left(\frac{l_2}{2}\right)\cos(q_1 - q_2) \tag{29}$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_2} \right) = \left(\frac{1}{12} m_2 l_2^2 \right) \ddot{q}_2 + m_2 \left(\frac{l_2}{2} \right)^2 \ddot{q}_2 + m_2 (l_1 \ddot{q}_1) \left(\frac{l_2}{2} \right) \cos(q_1 - q_2)
- m_2 (l_1 \dot{q}_1) \left(\frac{l_2}{2} \right) \sin(q_1 - q_2) \left(\dot{q}_1 - \dot{q}_2 \right)$$
(30)

Thus, the equations of motion are

$$\left(\frac{1}{3}m_{1}l_{1}^{2}\right)\ddot{q}_{1} + m_{2}l_{1}^{2}\ddot{q}_{1} + m_{2}l_{1}\left(\frac{l_{2}\ddot{q}_{2}}{2}\right)\cos(q_{1} - q_{2})
- m_{2}l_{1}\left(\frac{l_{2}\dot{q}_{2}}{2}\right)\sin(q_{1} - q_{2})\left(\dot{q}_{1} - \dot{q}_{2}\right) + m_{2}(l_{1}\dot{q}_{1})\left(\frac{l_{2}\dot{q}_{2}}{2}\right)\sin(q_{1} - q_{2})
+ m_{1}g\left(\frac{l_{1}}{2}\right)\cos q_{1} + m_{2}gl_{1}\cos q_{1} = -F_{x}l_{1}\sin q_{i} + F_{y}l_{1}\cos q_{1} + \tau_{1}$$
(31)

$$\left(\frac{1}{12}m_{2}l_{2}^{2}\right)\ddot{q}_{2} + m_{2}\left(\frac{l_{2}}{2}\right)^{2}\ddot{q}_{2} + m_{2}(l_{1}\ddot{q}_{1})\left(\frac{l_{2}}{2}\right)\cos(q_{1} - q_{2})
- m_{2}(l_{1}\dot{q}_{1})\left(\frac{l_{2}}{2}\right)\sin(q_{1} - q_{2})\left(\dot{q}_{1} - \dot{q}_{2}\right) + m_{2}(l_{1}\dot{q}_{1})\left(\frac{l_{2}\dot{q}_{2}}{2}\right)\sin(q_{2} - q_{1})
+ m_{2}g\left(\frac{l_{2}}{2}\right)\cos q_{2} = -F_{x}l_{2}\sin q_{2} + F_{y}l_{2}\cos q_{2} + \tau_{2}$$
(32)

Further simplifying,

$$\left(\frac{1}{3}m_1l_1^2\right)\ddot{q}_1 + m_2l_1^2\ddot{q}_1 + m_2l_1\left(\frac{l_2\ddot{q}_2}{2}\right)\cos(q_1 - q_2) + m_2l_1\left(\frac{l_2\dot{q}_2^2}{2}\right)\sin(q_1 - q_2)
+ m_1g\left(\frac{l_1}{2}\right)\cos q_1 + m_2gl_1\cos q_1 = -F_xl_1\sin q_i + F_yl_1\cos q_1 + \tau_1$$
(33)

$$\left(\frac{1}{3}m_2l_2^2\right)\ddot{q}_2 + m_2(l_1\ddot{q}_1)\left(\frac{l_2}{2}\right)\cos(q_1 - q_2) - m_2(l_1\dot{q}_1^2)\left(\frac{l_2}{2}\right)\sin(q_1 - q_2)
+ m_2g\left(\frac{l_2}{2}\right)\cos q_2 = -F_xl_2\sin q_2 + F_yl_2\cos q_2 + \tau_2$$
(34)

If mass of the links is ignored, the dynamics is simplified to

$$\tau_1 = F_x l_1 \sin q_1 - F_y l_1 \cos q_1 \tag{35}$$

$$\tau_2 = F_x l_2 \sin q_2 - F_y l_2 \cos q_2 \tag{36}$$

Expressing the same in the matrix form

Statics

For the system to be in equilibrium with the external forces, $\ddot{q}_i=\dot{q}_i=0$. Thus,

$$\tau_1 = m_1 g\left(\frac{l_1}{2}\right) \cos q_1 + m_2 g l_1 \cos q_1 + F_x l_1 \sin q_i - F_y l_1 \cos q_1 \tag{38}$$

$$\tau_2 = m_2 g \left(\frac{l_2}{2}\right) \cos q_2 + F_x l_2 \sin q_2 - F_y l_2 \cos q_2 \tag{39}$$