user's guide

Communications/Memory Module

Table of Contents

1.0	Overview	
2.0	Capabilities Matrix	
3.0	Block Diagram	
4.0	Mechanical	
5.0	Memory Interfaces	
5.1	AvBus	
5.2	SDRAM	
5.3	SRAM	
5.4	FLASH	
6.0	Communication Interfaces	
6.1	I/O Interfaces	
6.	1.1 Gigabit Ethernet	
6.	1.2 IrDA	8
6.	1.3 PCMCIA/PCCard	9
6.	1.4 USB	
7.0	Connectors	
7.1	AvBus	
7.2	USB Type B	12
7.3	Ethernet	12
8.0	Power Requirements	12
Figure	Figures 21: Communications/Memory Module Block Diagram	
Figure	e 2: Part Placement – Top	(
	Tables	
Table	2-1: Capabilities Matrix	
Table	6-1: Gigabit Ethernet Configuration Options	8
	6-2: Reference Clock Selection	
	6-3: IrDA Mode Select Settings	
	7-1: AvBus Memory Connector (with JTAG)	
Table	7-2: AvBus Memory Connector (No JTAG)	11
Table	7-3: Jumper Table for Signals PT1, PT2 and PT3	12
	7-4: USB Type B Connector Assignment	
	7-5: Ethernet RJ-45 Connector Assignment	

Description:

The Communications/Memory Module is an expansion daughtercard for use with the Avalon Reference Design SystemTM. The daughtercard interfaces via AvBus connectors and provides general-purpose resources to complement Avalon base modules. The daughtercard provides all necessary resources for implementation of XilinxTM MicroBlazeTM core designs.

Ordering Information:

The following table lists the Module part numbers and available software options.

Internet Link at http://www.em.avnet.com/

Part Number	Description
ADS-EMU-DAU	Communications/Memory
ADS-EMU-DAU	Module
	Communications/Memory
ADS-XLX-MB-DAU	Module bundled with
	MicroBlaze Core License

Features:

- ▲ 64 Mbytes SDRAM
- 16 Mbytes FLASH
- ▲ 1 Mbyte SRAM
- ▲ 10/100/1000 Ethernet PHY
- ▲ IrDA
- ▲ USB 2.0
- PC Card

Target Applications:

- ▲ Complete resources for implementation of Xilinx MicroBlaze Core
- ▲ Functional expansion of Avalon Reference Design System evaluation and development kits
- ▲ Ethernet 10/100/1000 interface
- PC Card development
- ▲ USB 2.0 applications

1.0 Overview

The Communications/Memory Module is a daughterboard, which provides additional memory resources and communications capabilities to motherboards, which are compliant with the Avnet Design Services Avalon Reference Design SystemTM. In particular, this module will focus on providing the memory subsystems needed for demonstration of the Xilinx MicroBlazeTM core and a peripheral set which demonstrates the versatility of the VirtexTM-E and Virtex-II FPGA families. The module provides the following resources:

- 64 Mbytes SDRAM
- 16 Mbytes FLASH
- 1 Mbyte SRAM
- 10/100/1000 Ethernet PHY
- IrDA
- USB 2.0
- PC Card

2.0 Capabilities Matrix

While the Communications/Memory Module is intended to be used by any motherboard compliant with the Avalon Reference Design SystemTM, the design has been optimized for the Avnet XilinxTM Virtex-II Development board, the Avnet Xilinx Spartan®-IIE Evaluation board and the Avnet Xilinx Virtex-E Development board. Various combinations of resources are available depending on which board the module is supporting, the FPGA installed on the motherboard and how it is attached.

The Communications/Memory Module can be connected to the Virtex-II Development board, the Spartan-IIE Evaluation board or the Virtex-E Development board in two ways. The first, the normal connection, has both AvBus connectors on the motherboard connected with both AvBus connectors on the module. The other method, the offset connection, has only one of the AvBus connectors used on each board.

Normal (2 connector)

Xilinx Virtex-II Development Board P5 to Communications/Memory Module J4 Xilinx Virtex-II Development Board P4 to Communications/Memory Module J3

Xilinx Spartan-IIE Evaluation Board P2 to Communications/Memory Module J4 Xilinx Spartan-IIE Evaluation Board P1 to Communications/Memory Module J3

Xilinx Virtex-E Development Board P12 to Communications/Memory Module J4 Xilinx Virtex-E Development Board P11 to Communications/Memory Module J3

Offset (1 connector)

Xilinx Virtex-II Development Board P4 to Communications/Memory Module J4 Xilinx Virtex-II Development Board P5 No Connect Communications/Memory Module J3 No Connect

Xilinx Spartan-IIE Evaluation Board P1 to Communications/Memory Module J4 Xilinx Spartan-IIE Evaluation Board P2 No Connect Communications/Memory Module J3 No Connect

Xilinx Virtex-E Development Board P11 to Communications/Memory Module J4 Xilinx Virtex-E Development Board P12 No Connect Communications/Memory Module J3 No Connect

The Xilinx Virtex-II Development Board can be assembled with either an XC2V1500, XC2V2000 in the FF856 package, or an XC2V4000-10000 in the FF1152 package.

The table below shows the combinations of part type and connection versus the resources available to the motherboard from the Communications/Memory Module.

	SDRAM	SRAM	Flash	GbE	IrDA	USB	PCCard	Notes
Xilinx Virtex-II	37	37	37	37	37			
Development Board 1500, FF896, Normal	X	X	X	X	X			
Xilinx Virtex-II				***	***	***	77	
Development Board 1500, FF896, Offset				X	X	X	X	
Xilinx Virtex-II								
Development Board 2000, FF896, Normal	X	X	X	X	X		X	
Xilinx Virtex-II								
Development Board 2000, FF896, Offset				X	X	X	X	
Xilinx Virtex-II								
Development Board 4000+, FF1152,	X	X	X	X	X	X	X	
Normal								
Xilinx Virtex-II								
Development Board				X	X	X	X	
4000+, FF1152, Offset								
Xilinx Spartan-IIE								
Evaluation Board Normal	X	X	X	X	X			
Xilinx Spartan-IIE								
Evaluation Board				X	X	X		
Offset Xilinx Virtex-E								
Development Board	X	X	X	X	X		X	
Normal	2.	23	23	2.5	7.		23	
Xilinx Virtex-E								
Development Board				X	X	X	X	
Offset								

Table 2-1: Capabilities Matrix

3.0 Block Diagram

The following diagram displays the hardware for Communications/Memory Module.

Figure 1: Communications/Memory Module Block Diagram

4.0 Mechanical

Figure 2: Part Placement – Top

Board Dimensions: 5.5" x 4.4"

The Communications/Memory Module Printed Circuit Board (PCB) is an eight-layer board, which has three signal layers, two ground planes and a +3.3V power plane. The board stack-up is as follows:

Layer 1: Primary Component

Layer 2: Ground Plane

Layer 3: Signal

Layer 4: Signal

Layer 5: Ground

Layer 6: Signal

Layer 7: +3.3VDC Power

Layer 8: Secondary Component

5.0 Memory Interfaces

5.1 AvBus

The memory is interfaced to the FPGA on the Virtex II development board or the Spartan II-E Evaluation board via the AvBus Memory with JTAG connector. This connector provides 32 bits of address bus, 32 bits of data bus, read/write, chip select, buffer control and memory control signals. The module buffers both the address and data buses from the AvBus connector before they are connected to the memory devices and the PCCard connector.

5.2 SDRAM

The module incorporates 64Mbytes of SDRAM organized as 16Mbits x 32. The two Micron MT48LC16M16A2 256Mbit SDRAM devices are connected directly to the AvBus connector (J3).

5.3 SRAM

The module incorporates 1Mbyte of SRAM organized as 256K x 32. The two Cypress CY7C1041V33 are connected to the address bus (U10) and data bus buffers (U11).

5.4 FLASH

The Module incorporates 16 Mbytes of FLASH memory organized as 4M x 32. The two flash devices are connected to the address (U10) and data buffers (U11). The PCB is designed so that the footprint patterns for the two types of FLASH are overlaid. This allows the use of either (2) Intel E28F640J3 (U6, U8), (2) Micron MT28F640J3 (U6, U8) or (2) AMD Am29LV640DU (U7, U9). Either part can be installed at assembly time. Due to reliability issues with sockets, the Flash devices are mounted directly to the PCB and JTAG tools are used for programming.

6.0 Communication Interfaces

6.1 I/O Interfaces

The Communications/Memory Module provides several I/O interfaces:

- Gigabit Ethernet
- USB 2.0
- IrDA
- PCMCIA/PCCard

6.1.1 Gigabit Ethernet

The Communications/Memory Module contains a National Semiconductor DP83861 Gigabit Ethernet PHY. This PHY implements a GMII interface to connect to the FPGA via AvBus connector (J4) and supports a Gigabit Ethernet Over Copper interface on the media side. The PHY is connected to the appropriate magnetics module, which connects to an RJ45 connector. The PHY supports Gigabit Ethernet via the GMII interface and 10/100 Mbps Ethernet via the subset MII interface.

Nine LEDs are included on the board, two of them in the RJ45 connector (J1). The two LEDs in the RJ45 connector indicate LINK and ACTIVITY. The other seven LEDs on the board indicate RX ACTIVITY (D1), TX ACTIVITY (D2), COLLISION (D3), 1000 Mbps (D4), 100 Mbps (D5), 10 Mbps (D6) and DUPLEX (D7).

The initial configuration of the PHY is determined by the logic level present on six pins during POReset. The logic levels on these pins are determined by the installation of 1K resistor jumpers during assembly. The following table lists the configuration options:

JT1	JT2	JT3	JT4	JT5	JT6	Function
1-2						Reference clock set to 25 MHz
2-3						Reference clock set to 125 MHz
	1-2					Disables Non-compliant mode
	2-3					Enables Non-compliant mode
		1-2				Configures PHY to Slave during Master/Slave
						negotiation
		2-3				Configures PHY to Master during Master/Slave
						negotiation
			1-2			Disables Manual Master/Slave configuration
			2-3			Enable Manual Master/Slave configuration
				1-2		Disables Auto-negotiation
				2-3		Enables Auto-negotiation
					1-2	Advertises Single-Node
					2-3	Advertises Multi-Node

Table 6-1: Gigabit Ethernet Configuration Options

A 25 MHz crystal oscillator (U22) is installed on the board to provide the reference clock to the PHY. However, some MACs require that the PHY run off of their reference clock. The selection of the 25 MHz reference clock for the PHY is provided by the installation of zero ohm jumpers as follows:

JT9	Function
1-2	Reference clock provided by MAC
2-3	Reference clock provided by on-board crystal oscillator

Table 6-2: Reference Clock Selection

6.1.2 IrDA

An Agilent HSDL-3600 IrDA transceiver is included on the board. This transceiver provides IrDA 1.1 compliant links from 9.6 kbps to 4Mbps. It is connected to the FPGA via the AvBus connector (J4).

When connected to the Spartan-IIE Evaluation board in the normal configuration, the Mode 0, Mode 1 and FIR Select pins of the transceiver are not driven by the FPGA. In this case, these pins are controlled by the installation of 4.7 K ohm resistor jumpers as follows:

JT11	JT12	JT13	Function
1-2			FIR Select = SIR
2-3			FIR Select = MIR/FIR
	1-2		Mode 1 = 0
	2-3		Mode 1 = 1
		1-2	Mode 0 = 0
		2-3	Mode 0 = 1

Table 6-3: IrDA Mode Select Settings

6.1.3 PCMCIA/PCCard

A PC Card connector is incorporated on the board and connected to the FPGA via the AvBus connector (J4). The PC Card connector (P1) supports 26 address lines and 16 data lines. These address and data lines are buffered separately from the memory address and data busses (U12, U13). The socket does not support hot swapping. The Vcc and Vpp pins are selectable via jumpers (JP4, JP5) between +3.3 Vdc and +5 Vdc.

6.1.4 USB

A Cypress CY7C68013 single chip USB 2.0 compliant transceiver is incorporated on the board. This transceiver can support data transfers up to the maximum USB 2.0 defined data rate of 56 Mbytes per second as well as handling both USB 1.1 and USB 2.0 defined protocols. The transceiver operates at Full Speed (12 Mbps) and High Speed (480 Mbps). The part is connected to a USB Type B connector (JR1). An LED (D8) indicates link power although the transceiver is powered by the +3.3V board power plane. Two pushbutton switches are included on the board to generate Reset (SW1) and WakeUp (SW2). The data path and control interfaces are connected to the FPGA via the AvBus connector (J4).

7.0 Connectors

7.1 AvBus

Avnet Design Services has defined four configurations for the AvBus connector. Two of those configurations are used in the Communication/Memory Module; AvBus Memory with JTAG and AvBus Memory without JTAG. The pin definitions for these connectors on the Communications/Memory Module are as follows:

Pin	AvBus Spec Signal	Function	Pin	AvBus Spec Signal	Function
	Name			Name	
4	1 FX7 1		74	A 11 O	A 0
1	+5Vdc		71	Addr0	A0
2	Addr1	A1	72	Gnd	1.0
3	Addr2	A2	73	Addr3	A3
4	Gnd		74	Addr4	A4
5	Addr5	A5	75	Gnd	
6	Addr6	A6	76	Addr7	A7
7	Gnd		77	Addr8	A8
8	Addr9	A9	78	+3.3Vdc	
9	Addr10	A10	79	Addr11	A11
10	Gnd		80	Addr12	A12
11	Addr13	A13	81	Gnd	
12	Addr14	A14	82	Addr15	A15
13	+5Vdc		83	Addr16	A16
14	Addr17	A17	84	Gnd	
15	Addr18	A18	85	Addr19	A19
16	Gnd		86	Addr20	A20
17	Addr21	A21	87	Gnd	
18	Addr22	A22	88	Addr23	A23
19	Gnd		89	Addr24	A24
20	Addr25	A25	90	+3.3Vdc	
21	Addr26	A26	91	Addr27	A27
22	Gnd		92	Addr28	A28
23	Addr29	A29	93	Gnd	
24	Addr30	A29	94	Addr31	A31
25	+5Vdc		95	Data0	D0
26	Data1	D1	96	Gnd	
27	Data2	D2	97	Data3	D3
28	Gnd		98	Data4	D4
29	Data5	D5	99	Gnd	
30	Data6	D6	100	Data7	D7
31	Gnd		101	Data8	D8

Pin	AvBus Spec Signal Name	Function	Pin	AvBus Spec Signal Name	Function
32	Data9	D9	102	+3.3Vdc	
33	Data10	D10	103	Data11	D11
34	Gnd		104	Data12	D12
35	Data13	D13	105	Gnd	
36	Data14	D14	106	Data15	D15
37	+5Vdc		107	Data16	D16
38	Data17	D17	108	Gnd	
39	Data18	D18	109	Data19	D19
40	Gnd		110	Data20	D20
41	Data21	D21	111	Gnd	
42	Data22	D22	112	Data23	D23
43	Gnd		113	Data24	D24
44	Data25	D25	114	+3.3Vdc	
45	Data26	D26	115	Data27	D27
46	Gnd		116	Data28	D28
47	Data29	D29	117	Gnd	
48	Data30	D30	118	Data31	D31
49	+5Vdc		119	Flash_CE0#	Flash_CS#
50	Flash_CE1#	SRAM_CS#	120	Gnd	
51	Flash_OE#	OE#	121	Flash_WE#	WE#
52	Gnd		122	Flash_Reset#	RST#
53	SDRAM_CS#	SDRAM_CS#	123	Gnd	
54	SDRAM_CAS#	CAS#	124	SDRAM_WE#	MDBUF_DIR
55	Gnd		125	SDRAM_Clk	CLK
56	SDRAM_RAS#	RAS#	126	+3.3Vdc	
57	SDRAM_ClkEn	CLKEN	127	SDRAM_Byte0#	BS0#
58	Gnd		128	SDRAM_Byte1#	BS1#
59	SDRAM_Byte2#	BS2#	129	Gnd	
60	SDRAM_Byte3#	BS3#	130	User_I/O0	PCCDBUF_OE#
61	+5Vdc		131	User_I/O1	PCCDBUF_DIR
62	User_I/O2	MDBUF_OE#	132	Gnd	
63	User_I/O3	N/C	133	User_I/O4	MABUF_OE#
64	Gnd		134	User_I/O5	PCCABUF_OE#
65	User_I/O6	N/C	135	Gnd	_
66	User_I/O7	N/C	136	User_I/O8	N/C
67	Gnd		137	TMS	SEC_TMS
68	TDO	SEC_TDO	138	+3.3Vdc	_
69	TCK	SEC_TCK	139	TDI	SEC_TDI
70	Gnd		140	TRST	SEC_TRST#

Table 7-1: AvBus Memory Connector (with JTAG)

Pin	AvBus Spec Signal	Function	Pin	AvBus Spec Signal	Function
	Name			Name	
1	+5Vdc		71	Data32	GMII_MDC
2	Data33	GMII_MDIO	72	Gnd	
3	Data34	GMII_COL	73	Data35	GMII_CRS
4	Gnd		74	Data36	GMII_RX_CLK
5	Data37	GMII_RX_ER	75	Gnd	
6	Data38	GMII_RXD7	76	Data39	GMII_RX_DV
7	Gnd		77	Data40	GMII_RXD6
8	Data41	GMII_RXD5	78	+3.3Vdc	
9	Data42	GMII_RXD3	79	Data43	GMII_RXD4
10	Gnd		80	Data44	GMII_RXD2
11	Data45	GMII_RXD1	81	Gnd	
12	Data46	GMII_TX_CLK	82	Data47	GMII_RXD0
13	+5Vdc		83	Data48	GMII_TX_ER

Pin	AvBus Spec Signal Name	Function		Pin	AvBus Spec Signal Name	Function
14	Data49	GMII_TX_EN		84	Gnd	
15	Data50	GMII_TXD6		85	Data51	GMII_TXD7
16	Gnd			86	Data52	GMII_TXD5
17	Data53	GMII_TXD4		87	Gnd	
18	Data54	GMII_TXD2		88	Data55	GMII_TXD3
19	Gnd			89	Data56	GMII_GTC_CLK
20	Data57	GMII_TXD0		90	+3.3Vdc	
21	Data58	GMII_TXD1		91	Data59	GBEINT#
22	Gnd			92	Data60	GBE_RST#
23	Data61	IRDA_D0		93	Gnd	
24	Data62	IRDA_MD1		94	Data63	PCC_REG#
25	+5Vdc			95	Flash_CE2#	KBDATA
26	Flash_CE3#	IRDA_TXD		96	Gnd	
27	SDRAM_Byte4#	IRDA_RXD		97	SDRAM_Byte5#	KBCLK
28	Gnd			98	SDRAM_Byte6#	MSDATA
29	SDRAM_Byte7#	MSCLK		99	Gnd	
30	User_I/O0	PT3 (see Notes)		100	User_I/O1	PT1 (see Notes)
31	Gnd			101	User_I/O2	PT2 (see Notes)
32	User_I/O3	PCC_CE2#		102	+3.3Vdc	
33	User_I/O4	PCC_CE1#		103	User_I/O5	PCC_WP
34	Gnd			104	User_I/O6	PCC_WAIT#
35	User_I/O7	USB_FD1		105	Gnd	
36	User_I/O8	USB_FD2		106	User_I/O9	PCC_CD1#
37	+5Vdc			107	User_I/O10	PCC_CD2#
38	User_I/O11	USB_FD3		108	Gnd	
39	User_I/O12	USB_FD4		109	User_I/O13	PCC_RDY_BSY
40	Gnd			110	User_I/O14	PCC_INPACK#
41	User_I/O15	USB_FD5		111	Gnd	
42	User_I/O16	USB_FD6		112	User_I/O17	PCC_BVD2
43	Gnd			113	User_I/O18	PCC_BVD1
44	User_I/O19	USB_FD7		114	+3.3Vdc	
45	User_I/O20	USB_FD8		115	User_I/O21	PCC_VS1
46	Gnd			116	User_I/O22	PCC_VS2
47	User_I/O23	USB_FD9		117	Gnd	
48	User_I/O24	USB_FD10		118	User_I/O25	USB_IFCLK
49	+5Vdc	110D FD 11		119	User_I/O26	USB_CLKOUT
50	User_I/O27	USB_FD11		120	Gnd	770D 07 00 U
51	User_I/O28	USB_FD12		121	User_I/O29	USB_SLCS#
52	Gnd	110D FD 14		122	User_I/O30	USB_PEND
53	User_I/O31	USB_FD13		123	Gnd	TIOD FILE
54	User_I/O32	USB_FD14		124	User_I/O33	USB_FA0
55	Gnd	LICD EDAF	-	125	User_I/O34	USB_FA1
56	User_I/O35	USB_FD15		126	+3.3Vdc	
57	User_I/O46	USB_RDY0		127	User_I/O37	USB_FD0
58	Gnd			128	User_I/O38	USB_SLOE
59	User_I/O39	USB_RDY1		129	Gnd	LIOD WILL
60	User_I/O40	USB_CTL0		130	User_I/O41	USB_WU2
61	+5Vdc	LIOD OTT		131	User_I/O42	GBE_MAC_25MHZ_CLK
62	User_I/O43	USB_CTL1		132	Gnd	12.70
63	User_I/O44	USB_CTL2		133	User_I/O45	N/C
64	Gnd	LIOD DIFFIC !!		134	User_I/O46	N/C
65	User_I/O47	USB_INT0#		135	Gnd	12/0
66	User_I/O48	USB_INT1#		136	User_I/O49	N/C
67	Gnd			137	User_I/O50	N/C
68	User_I/O51	N/C		138	+3.3Vdc	
69	User_I/O52	N/C		139	User_I/O53	N/C
70	Gnd			140	User_I/O54	N/C

 Table 7-2: AvBus Memory Connector (No JTAG)

user's guide

Communications/Memory Module

by

Avnet Design Services

Notes:

JP9	JP8	JP7	Signal	Function
1-2			PT1	USB_INT0#
2-3			PT1	I2CSCL
	1-2		PT2	USB_INT1#
	2-3		PT2	I2CSDA
		1-2	PT3	USB_CTL2
		2-3	PT3	IRDA_FIR_SEL

Table 7-3: Jumper Table for Signals PT1, PT2 and PT3

7.2 USB Type B

Pin	Definition
1	+5 Vdc Line Power
2	Data-
3	Data+
4	Signal Gnd
5	Frame Gnd
6	Frame Gnd

Table 7-4: USB Type B Connector Assignment

7.3 Ethernet

Pin	Definition
1	Data A+
2	Data A-
3	Data B+
4	Data B-
5	Data C+
6	Data C-
7	Data D+
8	Data D-

Table 7-5: Ethernet RJ-45 Connector Assignment

8.0 Power Requirements

The two AvBus expansion connectors provide power for the circuits on the Expansion card. All devices on the expansion card operate at +3.3 volts. A National Semiconductor LP3966ES-1.8 LDO (U21) is used to generate the 1.8 volt core voltage supply for the Ethernet PHY. Input current requirements are TBD. Two LEDs indicate input power on the +3.3V (D9) and +5V (D10) power rails.