Monte Carlo Methods

Derek Li

Contents

Pseudorandom Numbers 2

Pseudorandom Numbers

We first generate an i.i.d. sequence $U_i \sim \text{Uniform}[0,1]$.

Method (Linear Congruential Generator/LCG).

- Choose large positive integers m, a, and b.
- Start with a seed value x_0 , e.g., the current time in milliseconds.
- Recursively, $x_n = (ax_{n-1} + b) \mod m$, i.e., x_n is the remainder when $ax_{n-1} + b$ is divided by m. Hence $0 \le x_n \le m 1$.
- Let $U_n = \frac{x_n}{m}$, $\{U_n\}$ will seem to be approximately i.i.d. Uniform[0, 1].

Note. We need m large so many possible values; a large enough that no obvious pattern between U_{n-1} and U_n ; b to avoid short cycles of numbers. We want large period, i.e., number of iterations before repeat. One common choice: $m = 2^{32}$, a = 69069, b = 23606797.

Theorem. The LCG has full period (m) iff both gcd(b, m) = 1, and every "prime or 4" divisor of m also divides a - 1.

Once we have $U_i \sim \text{Uniform}[0,1]$, we can generate other distributions with transformations, using change of variable theorem.

Example. To make $X \sim \text{Uniform}[L, R]$, set $X = (R - L)U_1 + L$.

Example. To make $X \sim \text{Bernoulli}(p)$, set

$$X = \begin{cases} 1, & U_1 \le p \\ 0, & U_1 > p \end{cases}$$

Example. To make $Y \sim \text{Binomial}(n, p)$, either set $Y = X_1 + \cdots + X_n$ where

$$X_i = \begin{cases} 1, & U_i \le p \\ 0, & U_i > p \end{cases}$$

or set

$$Y = \max \left\{ j : \sum_{k=0}^{j-1} \binom{n}{k} p^k (1-p)^{n-k} \le U_1 \right\}$$

Generally, to make $P(Y = x_i) = p_i$ for some $x_1 < x_2 < \cdots$, where $p_i \ge 0$ and $\sum_i p_i = 1$, set

$$Y = \max \left\{ x_j; \sum_{k=1}^{j-1} p_k \leqslant U_1 \right\}$$

Example. To make $Z \sim \text{Exponential}(1)$, set $Z = -\ln(U_1)$. Generally, to make $W \sim \text{Exponential}(\lambda)$, set $W = \frac{Z}{\lambda} = \frac{-\ln(U_1)}{\lambda}$ so that W has density $\lambda e^{-\lambda x}$ for x > 0.

Example. If

$$X = \sqrt{2 \ln \left(\frac{1}{U_1}\right)} \cos(2\pi U_2)$$
$$Y = \sqrt{2 \ln \left(\frac{1}{U_1}\right)} \sin(2\pi U_2)$$

then $X, Y \sim \mathcal{N}(0, 1)$ and $X \perp Y$.

Method (Inverse CDF Method).

- We want CDF $P(X \le x) = F(x)$.
- For 0 < t < 1, set $F^{-1}(t) = \min\{x; F(x) \ge t\}$ and $X = F^{-1}(U_1)$.
- $X \leqslant x$ iff $U_1 \leqslant F(x)$ and thus $P(X \leqslant x) = P(U_1 \leqslant F(x)) = F(x)$.