COMP 285
Analysis of Algorithms

Welcome to COMP 285

Lecture 21: Dynamic Programming II

Lecturer: Chris Lucas (cflucas@ncat.edu)

HW7!

Due 11/15 @ 11:59PM ET

HW7!

Walkthrough Pt. 1 (available) + Pt.2 (EoD)

HW8 FYI

Released next week, due last week of class

Quizzes

Quiz 8 (today), Quiz 9 (11/15), Quiz 10 (11/22)

Final Exam

Tuesday 12/06 2:00pm-4:00pm

Quiz!

www.comp285-fall22.ml or Blackboard

Recall where we ended last lecture...

What is Dynamic Programming?

- It is an algorithm design paradigm
 - like divide-and-conquer, greediness, etc. are algorithm design paradigms.
- Usually, it is for solving optimization problems
 - E.g., shortest, best, maximum/minimum option
 - (Fibonacci numbers aren't an optimization problem, but they are a good example of dynamic programming anyway...)
- Similar to greedy, there are two properties to look for...

Properties of Dynamic Programming

1. Optimal substructure

- Big problems break up into sub-problems
 - Fibonacci numbers: F(i) for i <= n
- The solution to a subproblem can be expressed in terms of solutions to smaller subproblems.
 - Fibonacci numbers: F(i) = F(i-1) + F(i-2)

2. Overlapping subproblems

- Subproblems overlap/can be reused
 - Fibonacci numbers:
 - 1. Both F[i+1] and F[i+2] directly use F[i]
 - 2. Lots of different F[i+x] indirectly use F[i].
- This means that we can save time by solving a sub-problem just once and storing the answer.
 - To be continued...

Bottom up approach (what we just saw!)

- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
 - o fill in F[2]
- ...
- Then bigger problems
 - o fill in F[n-1]
- Then finally solve the real problem.
 - o fill in F[n]

def fasterFibonacci(n):

- F = [0, 1, None, None, ..., None]:
- for i = 2, ..., n:
 - F[i] = F[i-1] + F[i-2]
- return F[n]

Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc...

- **def** Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
 - o F[i] = the i-th Fibonacci number
- 2. Relate subproblems
 - How do subproblems build upon or use other subproblems?
 - o F[i] = F[i-1] + F[i-2]. Base case: F[1] = F[2] = 1
- 3. Top-down with memoization or build table bottom-up with ordering
 - o e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4, ... n
- 4. Solve original problem
 - Return F[n]

Steps 1 and 2 are often the trickiest / take the most practice.

Example: Longest Increasing Subsequence

Input: vector of integers vec of size N > 0

Output: length of the longest increasing subsequence within the vector

Note: with a subsequence, we pick numbers within the vector in order (we're allowed skips)

Example: $[5, 2, 8, 6, 3, 6, 9, 7, 1] \rightarrow 4$

Example: $[6, 1, 8, 2, 3, 1, 9] \rightarrow 3$

Example: Longest Increasing Subsequence

```
algorithm longestIncreasingSubsequence
  Input: vector of integers vec of size N > 0
  Output: length of the longest increasing subsequence of vec
  L = array to store subproblem solutions
  for i = 0, 1, 2, 3, ... N-1:
    maxLength = 1
    for j = 0, 1, 2, ... i:
      if vec[i] < vec[i]</pre>
        maxLength = max(maxLength, L[j] + 1)
    L[i] = maxLength
                                               1. L[i] = longest subsequence ending at index i.
  // find max
                                              2. L[i] = max(L[i]) for i in 0...i if vec[i] > vec[i]) + 1
  answer = 1
  for each value in L:
                                              3. Solve i = 0, 1, 2, ...
     answer = max(value, answer)
                                               4. Return max value in table
  return answer
```


Big Questions!

 More examples of dynamic programming!

Big Questions!

 More examples of dynamic programming!

Example #1: Longest Common Subsequence

• How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT

DNA:
GACAGCCTACAAGCGTTAGCTTG

Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

- Subsequence:
 - BDFH is a subsequence of ABCDEFGH
- If X and Y are sequences, a **common subsequence** is a sequence which is a subsequence of both.
 - BDFH is a common subsequence of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - o ...is a common subsequence that is longest.
 - The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.

We sometimes want to find these

Applications in bioinformatics

- The unix command diff
- Merging in version controlsvn, git, etc...

Quick Overview of Approach

$$LCS(X = "ace", Y = "abcde")$$
 1+ $LCS(X = "ac", Y = "abcd")$

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
- 2. Relate subproblems
 - How do subproblems build upon or use other subproblems?
- 3. Top-down with memoization or build table bottom-up with ordering
 - e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4,
 - ... N

4. Solve original problem

Step 1: Define recursive subproblem

Prefixes:

Notation: denote this prefix **ACGC** by Y₄

Our sub-problems will be finding LCS's of prefixes to X and Y.

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
- 2. Relate subproblems

- How do subproblems build upon or use other subproblems?
- 3. Top-down with memoization or build table bottom-up with ordering
 - e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4,

... N

4. Solve original problem

Step 2: Relate subproblems

 Write C[i,j] in terms of the solutions to smaller sub-problems (2D matrix of solutions)

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
- 2. Relate subproblems
 - How do subproblems build upon or use other subproblems?
- Top-down with memoization or build table bottom-up with ordering
 - e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4,
 - ... N
- 4. Solve original problem

Longest Common Subsequence Dynamic Programming

• LCS(X, Y):

```
\circ C[i,0] = C[0,j] = 0 for all i = 0,...,m, j=0,...n.
```

- o **For** i = 1,...,m
 - For j = 1,...,n:
 - If X[i] = Y[j]:
 - \circ C[i,j] = C[i-1,j-1] + 1
 - Else:

o Return C[m,n]

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

Kahooty

www.kahoot.it, Code: XXX YYYY
Enter your @aggies.ncat email

Longest Common Subsequence Dynamic Programming

```
    LCS(X, Y):
    C[i,0] = C[0,j] = 0 for all i = 0,...,m, j=0,...n.
    For i = 1,...,m
    For j = 1,...,n:
    If X[i] = Y[j]:
    C[i,j] = C[i-1,j-1] + 1
    Else:
    C[i,j] = max{ C[i,j-1], C[i-1,j] }
```

Running time: O(nm)

o Return C[m,n]

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

LCS Complexity

- Good exercise to write out pseudocode for what we just saw!
 - Or you can find it in lecture notes.
- Takes time O(mn) to fill the table
- Takes time O(n + m) on top of that to recover the LCS
 - We walk up and left in an n-by-m array
 - \circ We can only do that for n + m steps.
- Altogether, we can find LCS(X,Y) in time O(mn).

Kahooty

www.kahoot.it, Code: XXX YYYY
Enter your @aggies.ncat email

What have we learned?

- We can find LCS(X,Y) in time O(nm), what about space?
 - o if |Y|=n, |X|=m
 - O(nm) space as well to store the solutions C[i, j]

- We went through the steps of coming up with a dynamic programming algorithm.
 - We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.

Big Questions!

 More examples of dynamic programming!

Example 2: Knapsack Problem

We have n items with weights and values:

Item:

Weight:

6

2

4

3

11

Value:

20

8

14

13

35

And we have a knapsack:

o it can only carry so much weight

Item:

Weight: Value:

4 14 3

13

• Unbounded Knapsack:

- Suppose I have infinite copies of all items.
- What's the most valuable way to fill the knapsack?

Total weight: 10

Total value: 42

- 0/1 Knapsack:
 - o Suppose I have only one copy of each item.
 - o What's the most valuable way to fill the knapsack?

Total weight: 9

Total value: 35

Some notation

Item:

Weight:

Value:

 $egin{array}{c} W_1 \ V_1 \end{array}$

 W_2

W₃

Capacity: W

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
- 2. Relate subproblems
 - How do subproblems build upon or use other subproblems?
- 3. Top-down with memoization or build table bottom-up with ordering
 - e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4,
 - ... N

4. Solve original problem

Define recursive subproblem

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.
 - \circ K[x] = value you can fit in a knapsack of capacity x

First solve the problem for small backpack

Then larger ...

Then larger ...

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
- 2. Relate subproblems
 - How do subproblems build upon or use other subproblems?
- 3. Top-down with memoization or build table bottom-up with ordering
 - e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4,
 ... n

••• | |

4. Solve original problem

Relate subproblems

item i

• Suppose this is an optimal solution for capacity x:

Say that the optimal solution for capacity x:

least one copy of item i.

 \bullet Then this is the optimal solution for capacity x - w_i :

Do we agree?

Capacity x – w_i Value V - v.

Relate subproblems

• Let K[x] be the optimal value for capacity x.

$$K[x] = \max_{i} \{$$

The maximum is over all i so that $w_i \leq x$.

Optimal way to The value of fill the smaller item i. knapsack

$$K[x] = max_i \{ K[x - w_i] + v_i \}$$

- (And K[x] = 0 if the maximum is empty).
 - That is, if there are no i so that $w_i \leq x$

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
- 2. Relate subproblems
 - O How do subproblems build upon or use other subproblems?
- 3. Top-down with memoization **or** build table bottom-up with ordering
 - e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4,
 - ... N
- 4. Solve original problem

Let's write a bottom-up approach

UnboundedKnapsack(W, n, weights, values):

```
• K[0] = 0

• for x = 1, ..., W:

• K[x] = max_i \{ w_i + w_i \}

• K[x] = max_i \{ w_i + w_i \} + v_i \}

• for i = 1, ..., n:

• if w_i \le x:

• K[x] = max \{ K[x], K[x - w_i] + v_i \}

• return K[W]
```

How to Create Algorithms with Dynamic Programming

- 1. Define recursive subproblem
 - What does an instance of the problem we're solving look like?
- 2. Relate subproblems
 - How do subproblems build upon or use other subproblems?
- 3. Top-down with memoization **or** build table bottom-up with ordering
 - e.g. Build table bottom-up by starting at i=1 then solving 2, 3, 4,
 - ... N
- 4. Solve original problem

Let's write a bottom-up approach

• UnboundedKnapsack(W, n, weights, values):

```
• K[0] = 0

• for x = 1, ..., W:

• K[x] = max_i \{ k[x - w_i] + v_i \}

• for i = 1, ..., n:

• if w_i \le x:

• K[x] = max \{ K[x], K[x - w_i] + v_i \}

• return K[W]
```

Let's write a bottom-up approach

UnboundedKnapsack(W, n, weights, values):

```
• K[0] = 0
                                                K[x] = max_{\cdot} \{ + \frac{k}{m} \}
• ITEMS[0] = \emptyset
• for x = 1, ..., W:
                                                    = \max_{i} \{ K[x - w_{i}] + v_{i} \}
    • K[x] = 0
    • for i = 1. .... n:
         • if w_i \leq x:
              • K[x] = \max\{K[x], K[x - w_i] + v_i\}
              • If K[x] was updated:
                   • ITEMS[x] = ITEMS[x − w<sub>i</sub>] ∪ { item i }
return ITEMS[W]
```

Example

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Value:

Example

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Capacity: 4

6

ITEMS[2] = ITEMS[1] + 🥦

2

Example

- K[0] = 0ITEMS[0] = Ø
- for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:

UnboundedKnapsack(W, n, weights, values):

- $K[x] = \max\{K[x], K[x w_i] + v_i\}$
- If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
- return ITEMS[W]

3

Item:

0

0

Weight: Value:

1

1

2

4

6

ITEMS[2] = ITEMS[0] +

2

4

Example

- K[0] = 0 $ITEMS[0] = \emptyset$
- for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:

UnboundedKnapsack(W, n, weights, values):

- $K[x] = \max\{K[x], K[x w_i] + v_i\}$
- If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
- return ITEMS[W]

Item:

Weight: Value:

0

3

6

Example

ITEMS[3] = ITEMS[2] +

0	1	2	3	4
0	1	4	5	

Item:			
Weight:	1	2	3

Value:

6

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS $[0] = \emptyset$
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Example

0	1	2	3	4
0	1	4	6	

Item:			
Weight:	1	2	3

Value: 1

4

6

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

 \cap

Example

ITEMS[4] = ITEMS[3] +

U	1	Z	3	4
0	1	4	6	7

Item:		
-------	--	--

Weight: 1 2 3 Value: 1 4 6

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Example

$$ITEMS[4] = ITEMS[2] +$$

Ü	1	2	3	4
0	1	4	6	8

Item:			
Weight:	1	2	3

Value: 1 4

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Capacity: 4

6

Item:

Example

$$ITEMS[4] = ITEMS[2] +$$

U	1	2	3	4
0	1	4	6	8

1	2	3

Weight: 1 2 Value: 1 4

• UnboundedKnapsack(W, n, weights, values):

- K[0] = 0
- ITEMS $[0] = \emptyset$
- for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
- return ITEMS[W]

Capacity: 4

6

Final solution is K[4] Max value of 8 using two

Kahooty

www.kahoot.it, Code: XXX YYYY
Enter your @aggies.ncat email

What have we learned?

- We can solve unbounded knapsack in time O(nW).
 - If there are n items and our knapsack has capacity W.

- We again went through the steps to formulate our solution:
 - We kept a one-dimensional table, creating smaller problems by making the knapsack smaller.

COMP 285
Analysis of Algorithms

Welcome to COMP 285

Lecture 21: Dynamic Programming II

Lecturer: Chris Lucas (cflucas@ncat.edu)