T03 Planning and Uncertainty

17341137 Zhenpeng Song

November 19, 2019

Contents

1	$\mathbf{Q}1$		3
	1.1	(a)	3
	1.2	(b)	3
	1.3	(c)	3
	1.4	$(d) \ \ldots $	3
2	$\mathbf{Q2}$		4
	2.1	(a)	4
		2.1.1 Actions	4
		2.1.2 Initial KB	4
		2.1.3 Goal	4
	2.2	(b)	5
3	$\mathbf{Q3}$		6
	3.1	(a)	6
	3.2	(b)	6
	3.3	(c)	6
	3.4	(d)	7

4	$\mathbf{Q4}$		8
	4.1	(a) \ldots	8
	4 2	(b)	10

1 Q1

1.1 (a)

Initial State: Contains(p1, 5, s0), Contains(p2, 0, s0).

1.2 (b)

• empty(p):

To do empty(p) in situation s, we need to have:

 $\exists w. \ Contains(p, w, s) \land w \neq 0$

effects:

Contains(p,0,do(empty(p)))

• transfer(p, p'):

To do transfer(p, p') in situation s, we need to have:

 $\exists w1, w2. \ Contains(p, w1, s) \bigwedge w1 \neq 0 \bigwedge Contains(p', w2, s) \bigwedge w2 \neq volume(p')$

effects:

 $Contains(p, w1 - (volume(p') - w2), do(transfer(p, p')) \land$

 $((Contains(p', volume(p'), do(transfer(p, p') \land w1 - (volume(p') - w2) >= 0)) \lor$

 $(Contains(p', w1 + w2, do(transfer(p, p') \land w1 - (volume(p') - w2) < 0)))$

1.3 (c)

Final Goal Situation: $\exists s.Contains(p2, 1, s)$

1.4 (d)

Find σ :

do(transfer(p1,p2), do(empty(p2), do(transfer(p1,p2), do(empty(p2), do(transfer(p1,p2), S0)))))

2 Q2

2.1 (a)

2.1.1 Actions

- 1. move(x, y, z)
 - Pre: on(x, y), clear(x), clear(z)
 - Adds: on(x, z), clear(y)
 - Dels: on(x, y), clear(z)
- 2. moveFromTable(x, y)
 - Pre: onTable(x), clear(x), clear(y)
 - Adds: on(x, y)
 - Dels: onTable(x), clear(y)
- 3. moveToTable(x, y)
 - Pre: on(x, y), clear(x)
 - Adds: onTable(x), clear(y)
 - Dels: on(x, y)

2.1.2 Initial KB

$$KB = on(a, b), on(b, c), onTable(c), clear(a)$$

2.1.3 Goal

$$Goal = on(a, b), onTable(b), onTable(c), clear(a), clear(c)$$

2.2 (b)

```
Reachablity analysis:
S0: \{onTable(c), on(b,c), on(a,b), clear(a)\}
A0: \{\text{moveToTable}(a,b)\}
S1: {onTable(c), on(b,c), on(a,b), clear(a), clear(b), onTable(a)}
A1: {moveFromTable(a,b), moveToTable(b,c)}
S2: {onTable(c), on(b,c), on(a,b), clear(a), clear(b), onTable(a), clear(c), onTable(b)}
A2: {moveFromTable(b,c), moveFromTable(c,b), moveFromTable(c,a), moveFromTable(c,a), moveFromTable(c,a), moveFromTable(c,b), moveFromTable(c,a), moveFromTable(c,b), m
From Table(a,b), move From Table(b,a))
===
G: {onTable(b), onTable(c), on(a,b), clear(a), clear(c)}
CountActions(G, S2):
GP = \{onTable(c), on(a,b), clear(a)\}
GN = \{onTable(b), clear(c)\}\
A = \{moveToTable(b,c)\}
NewG = \{onTable(c), on(a,b), clear(a), on(b,c), clear(b)\}
return CountActions(NewG, S1) + size(A)
CountActions(NewG, S1):
GP = \{onTable(c), on(a,b), clear(a), on(b,c)\}
GN = \{clear(b)\}\
A = \{moveToTable(a,b)\}\
NewG = \{onTable(c), on(a,b), clear(a), on(b,c)\}\
return CountActions(NewG, S0) + size(A)
CountActions(NewG, S0):
return 0
minlen(P') = 2.
```

$\mathbf{3}$ Q3

3.1 (a)

3.2 (b)

For example, by the chain rule:

$$P(d, b, a) = P(d|b, a)P(b|a)P(a)$$

By assuming independence:

$$P(d, b, a) = P(d|b)P(b|a)P(a)$$

3.3 (c)

This problem seems to be a little confusing, I am not sure if the value d, e had been assigned...

Assigned: In other words, to calculate $P(a, b, c | \neg d, e)$:

$$P(a,b,c|\neg d,e) = \frac{P(a,b,c,\neg d,e)}{P(\neg d,e)}$$

$$= \frac{P(e|c)P(\neg d|b,c)P(b|a)P(c|a)P(a)}{\sum_{abc} P(e|c)P(\neg d|b,c)P(b|a)P(c|a)P(a)}$$
(2)

$$= \frac{P(e|c)P(\neg d|b,c)P(b|a)P(c|a)P(a)}{\sum_{abc} P(e|c)P(\neg d|b,c)P(b|a)P(c|a)P(a)}$$
(2)

$$= \frac{P(e|c)P(\neg d|b,c)P(b|a)P(c|a)P(a)}{\sum_{c} P(e|c)\sum_{b} P(\neg d|b,c)\sum_{a} P(b|a)P(c|a)P(a)}$$
(3)

$$= \frac{0.8 \times 0.2 \times 0.8 \times 0.2 \times 0.2}{0.04 \times 0.8 + 0.664 \times 0.6} \tag{4}$$

$$=0.0119$$
 (5)

However, it can also be...

To calculate P(a, b, c), since for given a, b and c are independent:

$$P(a,b,c) = P(b,c|a)P(a)$$
(6)

$$= P(c|a)P(b|a)P(a) \tag{7}$$

$$=0.032$$
 (8)

Similarly,

$$P(\neg a, b, c) = 0.008$$

$$P(a, \neg b, c) = 0.008$$

$$P(a, b, \neg c) = 0.128$$

$$P(\neg a, \neg b, c) = 0.032$$

$$P(a, \neg b, \neg c) = 0.032$$

$$P(\neg a, b, \neg c) = 0.152$$

$$P(\neg a, \neg b, \neg c) = 0.608$$

3.4(d)

To judge either the given facts help or hinder, I decided to calculate $P(a|\neg d,e)$ and compare it with P(a).

$$P(a|\neg d, e) = \frac{P(a, \neg d, e)}{P(\neg d, e)} \tag{9}$$

$$P(a|\neg d, e) = \frac{P(a, \neg d, e)}{P(\neg d, e)}$$

$$= \frac{P(b|a)P(c|a)P(a)\sum_{d}P(d|b, c)\sum_{e}P(e|c)}{\sum_{c}P(e|c)\sum_{b}P(\neg d|b, c)\sum_{a}P(b|a)P(c|a)P(a)}$$
(10)

$$=0.5379$$
 (11)

Consequently, 0.5379 > 0.2, we are now more inclined to believe that the patient has cancer.

4 Q4

4.1 (a)

VE -> P(e)						
f1((A)	f2(B)				
a	0.9	b	0.2			
~a	0.1	~b	0.8			
	f3(ABC)					
abc	0.1	a~bc	0.8	'	\	
~abc	0.7	ab~c	0.9			
~a~bc	0.4	a~b~c	0.2			
~ab~c	0.3	~a~b~c	0.6			
f4(BD)		f5(CE)		f6(CF)	
bd	0.1	ce	0.7	cf	0.2	
b~d	0.9	c~e	0.2	c~f	0.9	
~bd	0.8	~ce	0.3	~cf	8.0	
~b~d	0.2	~c~e	0.8	~c~f	0.1	
Elimination order: {D, A, B, F, C}						

Figure 2: (a)-1

Eliminating D					
	ADD Fact	or	DELETE Factor		
f7(B)	$= sum_D{$	f4(B, D)}			
	f7(B)		f4		
b		1	14		
~b		1			
		Eliminat			
	ADD Fact	or	DELETE Factor		
f8(B, C) =	sum_A{f1(A)f3(A, B, C)}			
	f8(B, C)				
bc	(0.16	f1, f3		
b~c	(0.84	11, 15		
~bc	(0.76			
~b~c	(0.24			
		Eliminat			
	ADD Fact	or	DELETE Factor		
f9(C) = s	um_B{f2(B)	f7(B)f8(B, C)}			
f9(C)			f2, f7, f8		
С		0.64	12, 17, 10		
~c	(0.36			
		Eliminat			
	ADD Fact		DELETE Factor		
f10($C) = sum_F$	-{f6(CF)}			
	f10(C)		f6		
С		1	10		
~c		1			
		Eliminat			
	ADD Fact		DELETE Factor		
f11(E) = s		E)f9(C)f10(C)}			
f11(E)			f5, f9, f10		
e	0.52		10, 10, 110		
~e	(0.48			
	Calculate P(e)				
alpha = 1 $P(e) = alpha * f11(E) = 0.52$					
Accomplished.					

Figure 3: (a)-2

4.2 (b)

VE -> P(e ~f)					
f1((A)	f2(B)		f6(CF)	
a	0.9	b	0.2	cf	0.2
~a	0.1	~b	0.8	c~f	0.9
	f3	(ABC)		~cf	8.0
abc	0.1	a~bc	0.8	~c~f	0.1
~abc	0.7	ab~c	0.9	Dootviet	
~a~bc	0.4	a~b~c	0.2		ion on f,
~ab~c	0.3	~a~b~c	0.6	f = ~f	
f4(BD)		f5(CE)		f7	(C)
bd	0.1	ce	0.7	С	0.9
b~d	0.9	c~e	0.2	~c	0.1
~bd	0.8	~ce	0.3		
~b~d	0.2	~c~e	0.8		
Elimination order: {D, A, B, C}					

Figure 4: (b)-1

Eliminating D				
	ADD Fac	tor	DELETE Factor	
f8(B) = sum_D{	[f4(B, D)]		
	f8(B)		f4	
b		1	14	
~b		1		
		Eliminati		
	ADD Fac		DELETE Factor	
f9(B, C) =	sum_A{f1	(A)f3(A, B, C)}		
	f9(B, C			
bc		0.16	f1, f3	
b~c		0.84	11, 10	
~bc		0.76		
~b~c		0.24		
		Eliminati	ng B	
	ADD Fact	tor	DELETE Factor	
f10(C) =	sum_B{f2(B)f8(B)f9(B, C)}		
	f10(C)		f2, f8, f9	
С		0.64	12, 10, 19	
~c		0.36		
		Eliminati	ng C	
	ADD Fac	tor	DELETE Factor	
f11(E) = 9	sum_C{f5(C	E)f7(C)f10(C)}		
f11(E)			f5, f7, f10	
е	0.4104		15, 17, 110	
~e	e 0.2016			
Calculate P(e ~f)				
alpha =	1/0.612	P(e ~f) =	= alpha * f11(E) = 0.6706	
Accomplished.				

Figure 5: (b)-2

In conclusion, computation from Eliminating D to Eliminating B can be reused. Those different parts from (a) are:

- $\bullet\,$ Restriction in Figure 4
- $\bullet\,$ Elimination on C in Figure 5