Lecture 2: Chiral symmetry			
Continuum chiral symmetry.			
St[4, \$\Pi, A] = \int d4 x \$\Pi \gamma_n (\pa_n + iA_n) \psi = \int d4 x \$\Pi D\$ \psi operator	·		
Chiral transformation $\Psi \Rightarrow \Psi' = e^{i\alpha \gamma_5} \psi = \pi \psi = \pi \psi$			
Chiral transformation $\psi \rightarrow \psi' = e^{i\alpha \Upsilon_5} \psi$; $\overline{\psi} \rightarrow \overline{\psi}' = \overline{\psi} e^{i\alpha \Upsilon_5}$ $\overline{\psi}' \gamma_{n} (\partial_n + iA_n) \psi' = \overline{\psi} e^{i\alpha \Upsilon_5} \gamma_{n} (\partial_n + iA_n) e^{i\alpha \Upsilon_5} \psi$ $\underbrace{\{\gamma_{n}, \gamma_5\}}_{=0} = 0$			
$= \overline{\psi} e^{i\alpha \gamma_5 - i\alpha \gamma_5} \gamma_n (\partial_n + iA_n) \psi$ $= \overline{\psi} e^{i\alpha \gamma_5 - i\alpha \gamma_5} \gamma_n (\partial_n + iA_n) \psi$ $= \overline{\psi} e^{i\alpha \gamma_5 - i\alpha \gamma_5} \gamma_n (\partial_n + iA_n) \psi$			
Mass term $m \overline{\psi}' \psi = m \overline{\psi} e^{2i\alpha T_5} \psi$			
Projection operator $P_{l_{R}} = \frac{1 + r_{5}}{2}, P_{R}^{2} = P_{R}, P_{R}P_{L} = P_{L}P_{R} = 0, P_{R} + P_{L} = 1$			
$\gamma_{\mu}P_{\mu}=P_{R}\gamma_{\mu}$			
Ψ _{R/L} = P _{R/L} Ψ; Ψ _{R/L} = ΨP _{L/R} → L[Y,Ψ,A] = ΨDY _L + Ψ _R DY _R			
$m\overline{\Psi}\Psi = m\left(\overline{Y}_{R}\Psi_{L} + \overline{\Psi}_{L}\Psi_{R}\right)$			
Σ ummarize $\Sigma_{r,D} = 0$.			
Generalize to No Flavors SF = \(\sum_{\text{F}} \ight) d^{\text{V}} \tau^{\text{f}} (\gamma_{\text{L}} (\delta_{\text{L}} + i\A_{\text{A}}) + M) \gamma^{\text{f}} \)			
Note: vector transformations jost:			
Note: vector transformations $ \psi' = e^{i\alpha T_i} \psi, \overline{\psi}' = \overline{\psi} e^{-i\alpha T_i} \text{generators} \\ \psi' = e^{i\alpha T_i} \psi, \overline{\psi}' = \overline{\psi} e^{-i\alpha T_i} \text{of SU(NA)} $ $ \psi' = e^{i\alpha T_i} \psi, \overline{\psi}' = \overline{\psi} e^{-i\alpha T_i} - \text{U(i)} $	'U(24),	¢ U(1)	V·

Axial transformation (chiral)

	ψ'= e	~γ _ς Τ; ψ ;	Ψ': Ψ	eiars To	SC	ه (۲۷)					
	ψ'= e''	×γ ₅ 1 ψ ;	Ψ': Ψe	ia 7s		ŊĄ					
- 1) PI	. L.								in exp	icitly	broken
Full flavor symmi	etry	U(NH)A &)(bt)" ~	en(nt)	<u>@</u> SU	(nt) ^k &	ر (۱) ک	Ø Uli) _A	xial an	omaly
for degen moss	-> (2 ~ LAN)C	U(N+) 0 ⊗	v (1) 0							
for any moss.	Ţ.	υ(ι)υ ⊗	. & U(1).	, (Nf +i	mes)						
20(NL)*	→ Spo	ntaneously	broken in	QCD ->	order	param	<a< td=""><td>(x) U(x</td><td>· 57</td><td></td><td></td></a<>	(x) U(x	· 57		
6 18											
Goldstone boson		· · · · ·	ع جماطه	tone boson		3 pin	nc ±	_,			
flavor: SU(2))			40 Mel	J _.
3 flavor: Sulz) flavor	symm >	8 Golds	tone boso	ns t	Pseud	doscala	r oct	e t		
U(DA -> 1 Go	oldstone	boson > 7									
	V.,	U(1)A 3	explicitly	broken bi	s topolog	gical f	ield co	nfig s	-> in	stantor	nŞ.
n'- 958 Me											
Chiral symmetry	on the	lattice									
Nitlsen - Ninomiya	e theore	. W									
- Reflection P - cubic group	os.	Dirac of D(r)	= -D(-A								
- chiral inv.											
- Locality		D (P)	= Zifn((P) 7/ = 3	$\frac{5}{4}$ $i + 1$) T (a)	PL+P	و)			
		Naive Dir	ac - fr	(P) = ,5in(A	200						
. 7.	1 = 5, 8	S, @ S, @ S,	particl	و ع کوره	of vec	tor fix	e(d				
.+1 ;ndex	-> SOU	rce or sink	; -1.ii	ndex> Sa	ddle po	pint					

Poincare - Hopf theorem -. Sum of indices of the zeros of a continuous vedor field on a compact manifold is equal to the Euler characteristic of that manifold => There are an equal number of th and th particles for every set of 9.1. Ginsparg-Wilson equation in continuen: { m, D3 = 0 continuum limit a >0. on lattice Ers, D3 = aDr, D Dr5 (1- 2D) + (1- 2D) r5D=0 $D\gamma_s + \gamma_s D = aD\gamma_s D$ $\Rightarrow \gamma_5 D_{n,m}^{-1} + D_{n,m}^{-1} \gamma_5 = \alpha \gamma_5 \delta(n-m)$ field transformation reformation $\psi' = \exp\left(i\alpha T_5(1-\frac{9}{2}D)\right) \psi , \quad \overline{\psi}' = \overline{\psi} \exp\left(i\alpha \chi(1-\frac{9}{2}D)\right)$ $\mathcal{L} = \overline{\Psi} \mathcal{D} \Psi' = \overline{\Psi} \exp(i\alpha \gamma_5 (1 - \frac{a}{2}D)) D \exp(i\alpha \gamma_5 (1 - \frac{a}{2}D)) \Psi$ = \$\bar{\psi} \exp(iar_{\sigma}(\ldots)) \exp(-iar_{\sigma}(\ldots)) D\psi = \bar{\psi} \psi \psi $\hat{\gamma}_{s} = \gamma_{s} (1 - \alpha D) \Rightarrow \hat{P}_{L/e} = \frac{1 + \hat{\gamma}_{s}}{2}$ C= FOV= FLDYL + ThDYR, M(FRYL+TLYR)= MF(1- 2D) 4 Spectra of GW Dirac operator P(x): det[D-17] = det[rs2(D-21)] = det[rs(D-21)rs] = det [(D+ 71)] = det [D - 7"] = P(1")"

A is a zero of PW, so is A

either I is purely real, or they come in c.c. pairs.

 $\lambda \left(\Lambda^{1}, \lambda^{2} \Lambda^{4} \right) = \left(\Lambda^{1}, \lambda^{2} D \Lambda^{3} \right) = \left(\Lambda^{2}, D_{+} \lambda^{2} \Lambda^{2} \right) = \left(D \Lambda^{2}, \lambda^{2} \Lambda^{3} \right) = \lambda^{2} \left(\Lambda$ $u^{\dagger}v = (u,v)$

 $(v_{\lambda}, \gamma_{5} v_{\lambda}) = 0$ unless $\lambda \in \mathbb{R}$ $v^{\dagger} \gamma_{5} v \neq 0$

GW operator

 $\overline{D} \gamma_5 + \gamma_5 D = \alpha D \gamma_5 D$

 $D^{\dagger} + D = \alpha D^{\dagger} D ; D + D^{\dagger} = \alpha D D^{\dagger} \rightarrow [D, D^{\dagger}] = 0$

 $\lambda'' + \lambda = a\lambda'' \lambda$ $\Rightarrow (x - \frac{1}{a})^{2} + y^{2} = \frac{1}{a^{2}} \Rightarrow GW \text{ circle}$

doubler mess term

22
a

