

COMP7015 Artificial Intelligence

Lecture 5: Machine Learning I --- Linear Models and Decision Tree

Instructor: Dr. Kejing Yin

October 6, 2022

Decision Tree Algorithm

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Play Tennis or Not?

Given past data:

build a system to predict Play/Not Play?

- Decision Tree is a method for approximating classification functions by means of a **tree-based representation**.
- A learned Decision Tree can be represented as a set of if-then rules

Idea: building a classification tree

- Top-down tree construction:
 - At start, all training samples are at the root.
 - Split the samples recursively by choosing one attribute each time

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

- Which attribute should we choose at each node?
- Divide-and-conquer: Split the into smaller subset.
- criteria: choose the attribute that "best" separates the classes on the training samples
- How do we measure the information contained in each attribute? information measure

COMP7015 (HKBU) L5: Machine Learning I October 6, 2022

Information measures: Entropy

• Entropy is a measure of the uncertainty of a random variable.

https://www.youtube.com/watch?v=2s3aJfRr9gE

Information measures: Entropy

- Entropy is a measure of the uncertainty of a random variable (or purity of a dataset).
- Given dataset D with K classes of samples, e.g., play/not play data: K=2

• Entropy of dataset
$$D$$
: Ent $(D) = -\sum_{k=1}^{K} p_k \log_2 p_k$

 p_k is the frequency of the k-th class

• The smaller Ent(D), the purer D.

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Exercise: compute Ent(D)

 $\log_2 0.643 \approx -0.637$ $\log_2 0.357 \approx -1.486$

- K = 2 (Yes/No)
- Samples with k = 1 (Yes):

$$p_k = 9/14 = 0.643$$

• Samples with k = 2 (No):

$$p_k = 5/14 = 0.357$$

$$Ent(D) = -(0.643 * log_2 0.643 + 0.357 * log_2 0.357)$$
$$= -(0.643 * -0.637 + 0.357 * -1.486)$$
$$= 0.94$$

Exercise: compute $\operatorname{Ent}(D)$ for the following datasets

(only labels are shown)

•
$$D_1 = \{+1, +1, -1, -1, -1, +1, -1, +1\}$$

•
$$D_2 = \{A, B, B, A, C, D, B, A, C, D, D, C\}$$

•
$$D_3 = \{A, A, A, A, A, B, A, A, C, C, D, A\}$$

$$\log_2 0.5 = -1$$

 $\log_2 0.25 = -2$
 $\log_2 0.67 \approx -0.578$
 $\log_2 0.083 \approx -3.591$
 $\log_2 0.167 \approx -2.582$

Information Gain

• For attribute a, it has V possible values. E.g., a="outlook", V = 3

• If we divide the data using a, the information gain is:

Gain
$$(D,a) = \text{Ent}(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} \text{Ent}(D^v)$$

$$D^v: \text{ dataset that has value of } v \text{ in } D$$

purity before split

purity <mark>after</mark> split

Information Gain

• For attribute a, it has V possible values. E.g., a="outlook", V=3

• If we divide the data using a, the information gain is:

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$$
 D^v : dataset that has value of v in D

• What is the information gain Gain(D, "outlook")?

Sunny:
$$\frac{|D^v|}{D}$$
 Ent $(D^v) = \frac{5}{14} \left(-\frac{2}{5} * \log_2 \frac{2}{5} - \frac{3}{5} * \log_2 \frac{3}{5} \right) = 0.347$
Overcast: $\frac{|D^v|}{D}$ Ent $(D^v) = \frac{4}{14} \left(-\frac{4}{4} * \log_2 \frac{4}{4} - \frac{0}{4} * \log_2 \frac{0}{4} \right) = 0$ We define $0 \log_2 0 = 0$
Rainy: $\frac{|D^v|}{D}$ Ent $(D^v) = \frac{5}{14} \left(-\frac{3}{5} * \log_2 \frac{3}{5} - \frac{2}{5} * \log_2 \frac{2}{5} \right) = 0.347$
Information Gain: Gain $(D$, "outlook") $= 0.94 - 0.347 - 0 - 0.347 = 0.246$

COMP7015 (HKBU)

Compute the information gain for other attributes

highest

Gain(D, "outlook") = 0.246

$$Gain(D, "windy") = 0.048$$

Gain(D, "humidity") = 0.152

Gain(D, "temperature") = 0.029

We can split data using the attribute that has the highest information gain

Split by information gain: ID3 algorithm

```
ID3(\mathbf{D}, \mathbf{X}) =
  Let T be a new tree
  If all instances in D have same class c
      Label(T) = c; Return T
  If X = \emptyset or no attribute has positive information gain
      Label(T) = most common class in D; return T
   X ← attribute with highest information gain
   Label(T) = X
  For each value x of X
     \mathbf{D}_{x} \leftarrow \text{instances in } \mathbf{D} \text{ with } X = x
      If D<sub>x</sub> is empty
        Let T_x be a new tree
        Label(T_x) = most common class in D
     Else
                                     Recursively call the ID3 algorithm (as if this is a brand new dataset)
        T_x = ID3(\mathbf{D}_x, \mathbf{X} - \{X\})
     Add a branch from T to T_x labeled by x
```

Return T

October 6, 2022

12

COMP7015 (HKBU)

L5: Machine Learning I

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

When outlook=sunny

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
sunny	mild	normal	true	Yes

- As if we are given this dataset and continue selecting the attribute to split this "new" dataset. $\operatorname{Ent}(D) = -(\frac{3}{5} * \log_2 \frac{3}{5} + \frac{2}{5} * \log_2 \frac{2}{5}) = 0.971$
- Information Gain of the remaining attributes (temperature, humidity, windy)?

$$\begin{aligned} & \text{Gain}(\textit{D}, \text{"temperature"}) = 0.971 - \frac{2}{5} \operatorname{Ent}(\textit{D}^{t=\text{hot}}) - \frac{2}{5} \operatorname{Ent}(\textit{D}^{t=\text{mild}}) - \frac{1}{5} \operatorname{Ent}(\textit{D}^{t=\text{cool}}) = 0.971 - 0 - \frac{2}{5} - 0 = 0.571 \\ & \text{Gain}(\textit{D}, \text{"humidity"}) = 0.971 - \frac{3}{5} \operatorname{Ent}(\textit{D}^{h=\text{high}}) - \frac{2}{5} \operatorname{Ent}(\textit{D}^{h=\text{normal}}) = 0.971 - 0 - 0 = 0.971 \\ & \text{Gain}(\textit{D}, \text{"windy"}) = 0.971 - \frac{3}{5} \operatorname{Ent}(\textit{D}^{w=\text{false}}) - \frac{2}{5} \operatorname{Ent}(\textit{D}^{w=\text{true}}) = 0.971 - 0.5510 - 0.4 = 0.02 \end{aligned}$$

Split by information gain: ID3 algorithm

```
ID3(\mathbf{D}, \mathbf{X}) =
   Let T be a new tree
  If all instances in D have same class c
      Label(T) = c; Return T
   If X = \emptyset or no attribute has positive information gain
      Label(T) = most common class in D; return T
   X \leftarrow attribute with highest information gain
   Label(T) = X
   For each value x of X
      \mathbf{D}_x \leftarrow \text{instances in } \mathbf{D} \text{ with } X = x
      If \mathbf{D}_{x} is empty
         Let T_x be a new tree
         Label(T_x) = most common class in D
      Else
         T_x = ID3(\mathbf{D}_x, \mathbf{X} - \{X\})
      Add a branch from T to T_x labeled by x
   Return T
```


Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
sunny	mild	normal	true	Yes

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

When outlook=overcast

Split by information gain: ID3 algorithm

```
ID3(\mathbf{D}, \mathbf{X}) =
   Let T be a new tree
  If all instances in D have same class c
      Label(T) = c; Return T
  If X = \emptyset or no attribute has positive information gain
      Label(T) = most common class in D; return T
   X \leftarrow attribute with highest information gain
   Label(T) = X
   For each value x of X
      \mathbf{D}_x \leftarrow \text{instances in } \mathbf{D} \text{ with } X = x
      If D<sub>x</sub> is empty
         Let T_{\nu} be a new tree
         Label(T_x) = most common class in D
      Else
         T_x = ID3(\mathbf{D}_x, \mathbf{X} - \{X\})
     Add a branch from T to T_x labeled by x
   Return T
```


Outlook	Temperature	Humidity	Windy	Play?
overcast	hot	high	false	Yes
overcast	cool	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes

17

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

- When outlook=rainy
- Exercise: construct the remaining decision tree.