Enzyme Kinetics Analysis Report

Jozef Fülöp

March 2023

1 Introduction

Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes. This report analyzes two sets of experimental data on enzyme kinetics, one with an inhibitor and one without an inhibitor. Calculates the V_{max} , K_M and K_I values.

2 Input data

(a) Reaction without inhibitor

[S](mmol/l)	[I](mmol/l)	$V (\mu mol/L/min)$	
1	0	0.67	
2	0	1.13	
3	0	1.48	
4	0	1.74	
5	0	1.98	
(b) Reaction with inhibitor			

(b)) F	teac	tion	with	n in	hibi	tor
---	----	-----	------	------	------	------	------	-----

[S](mmol/l)	[I](mmol/l)	V (µmol/L/min)
1	1	0.05
2	1	0.10
3	1	0.15
4	1	0.16
5	1	0.18

Table 1: Reaction rates with and without inhibitor

Equations

The Michaelis-Menten equation is given by:

$$V = V_{max} \frac{[S]}{K_M + [S]} \tag{1}$$

The Lineweaver-Burk equation is given by:

$$\frac{1}{V} = \frac{1}{V_{max}} + \frac{1}{K_M} \cdot \frac{1}{[S]} \tag{2}$$

The Michaelis-Menten equation can be derived from the Lineweaver-Burk equation by multiplying both sides by V and rearranging the terms:

$$V = \frac{V_{max}}{1 + \frac{K_M}{[S]}} \tag{3}$$

The Michaelis-Menten equation can be used to calculate the K_I value, in noncompetitive inhibition, as follows:

$$V = \frac{\frac{V_{max}}{1 + \frac{[I]}{K_I}} \cdot [S]}{K_M + [S]} \tag{4}$$

Plots

Figure 1: Michaelis-Menten kinetics plot showing the relationship between substrate concentration and reaction rate with and without inhibitor. The plot also includes fitted values and $1/2\ V_{max}$ lines for both datasets.

Figure 2: Lineweaver-Burk plot showing the reciprocal of substrate concentration (1/[S]) versus the reciprocal of enzyme velocity (1/V) for inhibited (red) and uninhibited (blue) enzyme reactions. The plot includes two linear regression lines with slopes and intercepts calculated from the data.

3 Uninhibited Reaction

The first set of data is from an uninhibited reaction. The data was fit to the Michaelis-Menten equation $V = V_{max} \frac{[S]}{K_M + [S]}$, where V_{max} is the maximum velocity of the reaction, [S] is the substrate concentration, and K_M is the Michaelis constant. The fitted parameters are as follows:

- $V_{max} = 3.89 \pm 0.08 \text{ mmol/l}$
- $K_M = 4.88 \pm 0.18 \, \mu \text{mol/L/min}$

Table 2: Model summary without inhibitor

	Estimate	Std. Error	t value	$\Pr(> t)$
V_{max}	3.892276	0.0846582	45.97636	0.0000227
K_M	4.881717	0.1828702	26.69498	0.0001153

Table 3: Confidence interval for Vm and Km for uninhibited reaction

	2.5%	97.5%
V_{max}	3.640811	4.185819
K_M	4.340821	5.518560

4 Inhibited Reaction