Orlando Code Camp

3D Printing Basics

Presented by Jeremy Huckeba

Overview

- Getting set up
- Slicing models
- Building a print server with OctoPi
- Creating your own model

Getting set up

Selecting a printer

- Start simple, you can always upgrade later
- A heated print bed is imperative
- Higher temps are better but again, you can always upgrade later
- Look for a robust community for the model you select

Assembly Tips

- When assembling extrusion rails tighten slowly and ensure rails are square
- Place your printer on a level surface
- Don't overtighten concentric nuts
- Watch several assembly videos on YouTube before you begin assembling your printer. The printer instructions may not tell you everything you want to know
- Update your firmware!

Manual Bed Leveling

- Demo
- Stiff springs are really helpful

Automatic Bed Leveling Methods

- Auto-leveling
 - Touch sensor (BL-Touch)
 - Inductive sensor
 - Optical sensor
- May require custom firmware (such as <u>Marlin</u>)

Choosing a filament

A little about filament

- Mind your diameter
- Type of plastic
- Quality matters
- Start with a common, brand name PLA
- Many types of plastics to choose from

PLA – Polylactic Acid

- Most common material
- Biodegradable
- Large diversity of colors
- Large diversity of specialty blends (wood, metal, carbon fiber, etc)
- Low printing temperature (190°-220°C)
- Low glass transition temperature (60°-65°C)

- Moisture issues
- Not suitable for high temperature applications
- Not UV-resistant
- Brittle
- Little or no fumes

ABS – Acrylonitrile Butadiene Styrene

- Second most common material
- Lower friction coefficient than PLA (easier to extrude)
- Large diversity of colors
- Few specialty blends
- Higher printing temperature (200°-250°C)
- Higher glass transition temperature (~105°C)

- No moisture issues
- Not suitable for high temperature applications
- Not UV-resistant
- Temperature sensitive, prone to warping and layer separation
- Brittle
- Mild fumes possible. Ventilation recommended

TPE/TPU – Thermoplastic Elastomer / Thermoplastic Polyurethane

- TPU is a type of TPE but is firmer
- Common material
- Higher friction coefficient than PLA (harder to extrude)
- Large diversity of colors
- Flexible and/or stretchable
- Similar printing temperature (210°-240°C)
- Similar glass transition temperature 20°-70°C)

- Higher chemical resistance
- Not suitable for high temperature applications
- Prone to stringing
- Think flexible and impact resistant
- Little or no fumes

ASA – Acrylonitrile Styrene Acrylate

- Less common material
- Similar to ABS
- Large diversity of colors
- Few or no specialty blends
- Higher printing temperature (230°-250°C)
- Higher glass transition temperature (~110°C)

- No moisture issues
- Not suitable for high temperature applications, but better
- UV-resistant, great for outdoor applications!
- Temperature sensitive, prone to warping and layer separation
- Higher cost
- Mild fumes possible. Ventilation recommended

PET – Polyethylene terephthalate

- Several variants: PETG, PETE, PETT
- Less common material
- Large diversity of colors
- Glossy and smooth finish
- Few or no specialty blends
- Higher printing temperature (230°-250°C)
- Higher glass transition temperature (75°-90°C)

- No moisture issues
- Not suitable for high temperature applications, but better
- Some grades have UV-resistance, may be suitable for outdoor applications
- Good bed and layer adhesion
- Food-grade (FDA approved) filaments available
- May create intense fumes that are dangerous to people and pets. Ventilation recommended.

Nylon

- Less common material
- Large diversity of colors
- Few or no specialty blends
- Very high printing temperature (>240°C)
- Wide range of glass transition temperatures, depending on bed material (55°-80°C)
- Extremely moisture sensitive, should be dried before printing

- More suitable for high temperature applications
- Some grades have UV-resistance, may be suitable for outdoor applications
- Temperature sensitive, prone to warping and layer separation
- Extremely tough and impact resistant
- May create intense fumes that are dangerous to people and pets.
 Ventilation recommended.

Finding and Making Models

About printable models

- STL Format
 - (STereoLithography, Standard Triangle Language, Standard Tessellation Language)
 - Created by 3D Systems
 - Common format for 3D-printable models
 - Also common for CNC Routing
 - See http://www.fabbers.com/tech/STL Format
- 3MF Format
 - 3D ManuFacturing
 - Common format for 3D-printable models and slicers
 - Contains all necessary model, material, and property information
 - See https://3mf.io/
- Many 3D design apps can output to STL or 3MF

- Finding models
 - thingiverse.com
 - turbosquid.com
 - cgtrader.com
 - myminifactory.com

Creating 3D Models

- SketchUp
 - Has plugins for importing/exporting STL files • Others
 - Free version
- Autodesk Tinkercad
 - All online
 - Free

- Microsoft 3D Builder
 - Free for Windows 8.1/10
- - Autodesk AutoCAD
 - Blender
 - FreeCAD
 - More

Demonstration

Preparing the Model

Slicing

- Applies printer and materialspecific parameters to the model
- Slices the model and produces optimized instructions for the printer to follow
- Allows the user to customize parameters to produce better prints

- Some Popular Slicers
 - Ultimaker Cura
 - Slic3r
 - Repetier-Host
 - Raise3D ideaMaker
 - Many others

Slicer Demo

Adding a Print Server

- Provides a web interface for remote control and monitoring
- Powerful plugin system
- Integration with slicer software (such as Cura) for direct printing

- Can be run on a Raspberry Pl using OctoPi
 - Raspberry PI 3B or 3B+ recommended
 - Download at https://octoprint.org/download
 - Note slightly different Wi-Fi configuration
 - Can support web cam or Pi Camera

A Little About GCode

GCode

- Numerical control programming language for industrial applications
- Is implemented by most RepRap printers
- Is generated by slicer software
- Can be modified to create highly customized prints (allow filament changes, etc)
- Note: Not all firmware supports all commands the same
- See https://www.reprap.org/wiki/G-code

- Numerical units usually millimeters for RepRap
- Useful commands to know
 - M0 (stop / wait for user)
 - G28 (move to origin / home)
 - G1 (Linear Move)
 - X (y-axis)
 - Y (y-axis)
 - Z (z-axis)
 - F (acceleration)
 - E (extruder)

Stay Connected

- www.agilethought.com
- www. linkedin.com/company/AgileThought
- @AgileThought

Jeremy Huckeba github.com/jshuckeba/3DPrinting linkedin.com/in/jshuckeba

