Uniconf v.1.0.0

Copyright: Yury Minenkov N.N. Semenov Federal Research Center of Chemical Physics RAS 119991 Moscow, The Russian Federation Kosygina street, 4

E-mail: Yury.Minenkov@chph.ras.ru, Yury.Minenkov@gmail.com

Table of Contents

1. Brief theoretical introduction.	2
2. Quick start	
2.1 Prerequisites	
2. Main Keywords	
2.1 Input file general design	
2.2 Group \$BOND	
2.3 Group \$MOLECULE	
Cartesian coordinates of all atoms should be provided in this section	
2.4 Group \$CHARGE	
Atomic charges for each atom in \$MOLECULE group should be provided here	
2.2 Group \$ALGO	
2. Detailed documentation (advanced keywords)	

1. Brief theoretical introduction

Uniconf generator algorithm **Input:** Starting cluster geometry {X,Y,Z}₀, atomic charges {Z_i}, rotatable bonds N_{ROT} **Output:** N_{CONF} cluster geometries {X,Y,Z}_i // determination of connectivity in the molecule Connectivity: write (automatic) or read **Initialization: for** *i* in range(N_{CONF}) **do**: // setting up random values $6N_{FRG} + N_{ROT} \leftarrow rand()$ **Procedure:** preliminary generation **for** *i* in range(N_{CONF}) **do:** // optimization with N_{ITER1} steps $\{X,Y,Z\}_i \leftarrow min(6N_{FRG} + N_{ROT}, N_{ITER1})$ // shortest non-bonded distance check if mindist $(\{X,Y,Z\}_i)$ < thld: remove $(\{X,Y,Z\}_i)$ else: pass Clustering ($\{X,Y,Z\}_1,k_1$) N_{CONF}=k₁ **End Procedure Procedure:** final generation **for** i in range(N_{CONF}) **do:** // optimization with N_{ITER2} steps $\{X,Y,Z\}_i \leftarrow min(6N_{FRG} + N_{ROT}, N_{ITER2})$ **for** *i* in range(N_{CONF}) **do**: **for** *j* in range(N_{CONF} -1) **do**: // close in energies? **if** $|E(\{X,Y,Z\}_i) - E(\{X,Y,Z\}_i)| < thld:$ **if** RSMD($\{X,Y,Z\}_i - \{X,Y,Z\}_i$) < thld: $N_{CONF}=N_{CONF}-1$ remove $(\{X,Y,Z\}_i)$ Clustering ($\{X,Y,Z\}_1,k_2$) N_{CONF}=k₂ **End Procedure** return N_{CONF} {X,Y, Z}_I

Scheme 1. Pseudo code of the *uniconf* spatial structure generator.

2. Quick start

2.1 Prerequisites

- 64bit Linux OS
- Conformer generator binary (uniconf) & input file (filename.inp)
- Input file should contain:
 - **x** Rotatable bonds (if any)
 - ✗ Initial Cartesian coordinates of the (super-)molecule
 - **x** Atomic charges
- Running the code: "/path/to/program/uniconf filename.inp", e.g. ~/Isomers/128/uniconf m1_01_Li_VC_N3.inp

2. Main Keywords

2.1 Input file general design

Each keyword group starts with "\$" symbol and should be closed with "\$END" expression.

```
$BOND
28 29 120 240 15
$END
$ALGO
$END
$MOLECULE
Li
    -3.118257632
                1.717973895
                               0.890951148
C
     0.543523281
                  0.285069258
                              -0.272235148
$END
$CHARGE
1.0
0.778632
$END
```

2.2 Group \$BOND

Here the rotational bonds should be specified in the following format:

```
Atom1 Atom2 Angle_Increment Angle_MAX_value Angle_MAX_deviation
1 2 120 240 15
```

In the example above the rotational bond is between atom 1 and atom 2. This torsion is specified to have three values: 0, 120, 240. With 0 value here the starting torsion angle value is meant. In case of no rotatable bonds, leave this group empty.

2.3 Group \$MOLECULE

Cartesian coordinates of all atoms should be provided in this section.

2.4 Group \$CHARGE

Atomic charges for each atom in \$MOLECULE group should be provided here.

2.2 Group \$ALGO

	•	
CONNECT	=WRITE =READ	// automatic connectivity detection that is written to filename.bond // filename.bond can be modified to adjust/correct the connectivity // (default) // connectivity is read from filename.bond // needed in cases when automatic connectivity fails
		,,
ALGO	=CONF	// generate conformers (default)
MK	=int	// integer number (e.g. 10) N of initially generated conformers on-the // initial NCONF value in the pseudo code above
	=0	// systematic conformational search with respect to provided torsions // see \$BOND group above
COM	=int	// what is considered to be center of coordinates // -1 center of mass of the whole cluster geometry specified in // \$MOLECULE (default) // 0 N – center of mass of individual fragment in the cluster // numeration starts from 0. It is convenient when an ion needs to
SCALE	=float	// be surrounded by molecules, e.g. Li+ // any float value from 0.0 to 0.99 (default: 0.75) // characterizes the maximum of individual fragment com from // the initial center. The lesser the value the closer to the inital // structure conformer is generated.
LIBRARY	=NLOPT	// optimization library for potential energy optimization (default)
OPTO	=nlop =nlop =nlop =nlop =nlop =nlop =nlop =nlop	// more at https://nlopt.readthedocs.io/en/latest/ e

OPTI	JOC = = = = = = = = = = = = = = = = = = =	=nlopt_auglag_eq =nlopt_gn_esch =nlopt_ln_sbplx
		=nlopt_ln_bobyqa
ITER1	=int	// number of iterations for the first (prelinimary) conformer generation
		// (default: 10)
DIST	=float	// minimal non-bonded distance threshold for conformer exclusion
NONHD	=FALSI	// after preliminary and final conformer generation (default: 1.25) // DIST related keyword. When searching for the minimal non-bonded // distance, do not skip the pairs including hydrogens (e.g. C – H)
	=TRUE	// (default) // skip the pairs that contain hydrogens
SORT	=e	// after minimal distance test (see DIST) that occurs after preliminary // and final conformer generation, all conformers are sorted based on // certain property. E stands for sorting by energies (default)
	=d1	// sort by the average distance from each fragment's com to the whole // molecule center of mass
	=d2	// same as d1 but in case of COM!=-1 (i.e. when center is not the whole // molecule center of mass)
MAXCONF	=int	// after sorting above, take that amount of conformer is taken // for further treatment (default: 100)
KMEANS	=int	<pre>// first clustering option (in the preliminary conformer generation) // -3: K (number of clusters) is estimated K=Nconf/2 // -1: (default) no clustering // 0: K = (Nconf/2)**0.5 // Any int number, e.g. 10</pre>
KMEANS1	=int	// second clustering option (after the final conformer generation) // only for STRATEGY=1, see below // -3: K (number of clusters) is estimated K=Nconf/2 // -1: (default) no clustering // 0: K = (Nconf/2)**0.5 // Any int number, e.g. 10
CLUSTERPI	ROPERTY	=IXX // the clustering property; the whole molecule sorted principal // moments of inertia (3) =distcommol // distance from each individual fragment com to the // molecular COM
		=ixxfrg // three sorted principal moments of the whole molecules
		inning // united sortical printerpail moments of the whole molecules

		// and each individual fragment (default)
		=eixx // the whole molecule energy and three principal moments // of inertia
		=trans // translational variables for each fragment
		=rot // rotational variables for each fragment
		=transrotbond // translational, rotational variables and torsion bonds
		// for each fragments
ITER2	=int	// number of iterations for the second (final) conformer generation
		// (default: 10 000)
EDIFF	=float	// energy difference floating point value below which the
		// structure geometries are compared with quatit RMSD
		// (default: 0)
RMSD	=float	// RMSD criteria for difference between the two structures for discrarding
		// at the DISCARDING procedure after final conformer generation
		// utilized by Quatfit algorithm
MAXCONFI	PRINT =int	// number of conformers for final priting to the file
STRATEGY	=0	// strategies to treat the conformers after the final generation (default: 0)
		// just print MAXCONFPRINT conformers to the file
	=1	// clustering of all conformes after the final generation, followed by
		// sorting. After that MAXCONFPRINT conformers are printed to file.

2. Detailed documentation (advanced keywords)

```
ALGO
              =OPTIMIZE
                                   // simple optimization of a given structures
                                   // no descrete values of bond torsions are allowed
       ITER2
                     =int
                            // the number of geometry optimization steps for ALGO=OPTIMIZE
                            // is given with ITER2
PAREN
              =FALSE
                            // Parallel mode for potential energy single-point calculation (default:
                            // FALSE)
                            // DO NOT USE THIS, NO SPEED UP IS OBSERVED
              =TRUE
ITER
              =int
                            // clustering-related interation number (default: 1)
TESTSIZE
              =float
                            // NLOPT optimization-related keyword (default: 1e-3)
              =float
                            // scaling coefficient for electrostatic energy (default: 1)
KEL.
                            // scaling coefficient for the DFT-D2 Grimme's dispersion
KGD
              =float
                            // sometimes it helps for stronger binding of the fragments (default 0)
KVW
                            // scaling coefficient for the van der Waals UFF energy (default: 1)
              =float
HB1
              =float
                            // A hydrogen bonding coefficient, see main article (default: 6.71)
              =float
                            // B hydrogen bonding coefficient, see main article (default: 3.55)
HB2
                            // alpha hydrogen bonding coefficientm, see main article (default: 0.75)
HB3
              =float
ALGO
              =FIT
                            // Fitting parameters to reproduce the initial geometry specified in
                            // $MOLECULE group
       FIT
              =false
                            // no fitting (default)
                            // fitting electrostatic energy coefficient
              =KEL
                            // fitting van der Waals non-bonded UFF energy
              =KVW
              =KELKVW
                            // fitting both electrostatic and van der Waals energies
                            // fitting the hydrogen bond coefficients
              =HBOND
                                   // number of iterations for fitting (default: 1000)
       ITERFIT
                            =int
                                   // number of geometry optimization steps inside fitting step
       ITERFIRGEOM
                            =int
                                   // (default 1000)
                                   // global optmization algorithm for fitting (default:
       OPTGLOBFIT
                            =str
                                   // nlopt_gn_orig_direct)
                                   // local optimiztion algorithm for fitting (default:
       OPTLOCFIT
                            =str
                                   // nlopt ln sbplx)
                                   // local optimization algorithm for geometry optimization
       OPTLOCFITGEOM =str
                                   // inside fitting (default: nlopt ln sbplx)
                            =K-MEANS
                                                 // (default) algorithms for clustering
CLUSTERALGORITHM
                            =K-MEDOIDS
                                                 // (memory intensive, use with caution)
PRINTDATA
                                   // (default) no detailed output for clusterization
                            =()
                            =1
                                   // detailed output for clusterization
                                   // (default) do not use the centroid center, use minimum E
CENTROIDCENTER
                            =()
                                   // structure
                                   // use the cluster centroid
                            =1
PRINTLEVEL
                            =0
                                   // (default: 0). Do not print coordinates after ITER1 & ITER2
```

=-1 // print all coordinates at the intermediate steps.