Synthesis of Maximally Permissive Strategies for LTL_f Specifications

Shufang Zhu, Giuseppe De Giacomo IJCAI-ECAI 2022

Sapienza University of Rome

LTL_f Synthesis

- Autonomy, one of the grand objectives AI
 - Autonomous system, react to environment changes
- LTL_f synthesis [De Giacomo & Vardi, 2015]
 - Linear Temporal Logic on finite traces [De Giacomo & Vardi, 2013]
 - Obtain a winning strategy (system model) From a declarative specification

 Strategy: prescribes for history + env action, makes agn response, generated traces satisfy spec

- Strategy: prescribes for history + env action, makes agn response, generated traces satisfy spec
 - Deterministic: $\sigma: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{\mathcal{Y}}$, returns a single agent action

- Strategy: prescribes for history + env action, makes agn response, generated traces satisfy spec
 - Deterministic: $\sigma: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{\mathcal{Y}}$, returns a single agent action
 - Nondeterministic: $\Pi: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{2^{\mathcal{Y}}}$, returns a set of agent actions to choose from nondeterministically

- Strategy: prescribes for history + env action, makes agn response, generated traces satisfy spec
 - Deterministic: $\sigma: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{\mathcal{Y}}$, returns a single agent action
 - Nondeterministic: $\Pi: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{2^{\mathcal{Y}}}$, returns a set of agent actions to choose from nondeterministically
- ullet Every nondet. strategy Π captures a set of det. strategies σ

- Strategy: prescribes for history + env action, makes agn response, generated traces satisfy spec
 - Deterministic: $\sigma: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{\mathcal{Y}}$, returns a single agent action
 - Nondeterministic: $\Pi: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{2^{\mathcal{Y}}}$, returns a set of agent actions to choose from nondeterministically
- ullet Every nondet. strategy Π captures a set of det. strategies σ
 - preserves more autonomy

- Strategy: prescribes for history + env action, makes agn response, generated traces satisfy spec
 - Deterministic: $\sigma: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{\mathcal{Y}}$, returns a single agent action
 - Nondeterministic: $\Pi: (2^{\mathcal{X} \cup \mathcal{Y}})^* \times 2^{\mathcal{X}} \to 2^{2^{\mathcal{Y}}}$, returns a set of agent actions to choose from nondeterministically
- Every nondet. strategy Π captures a set of det. strategies σ
 - preserves more autonomy
 - agent chooses det. strategy while in execution, without committing to any specific one beforehand

Maximally Permissive Strategy for LTL_f Specifications

- Maximally Permissive Strategy (MaxSet)
 - MaxSet = {all deterministic winning strategies}
 - Maximal autonomy

Maximally Permissive Strategy for LTL_f Specifications

- Maximally Permissive Strategy (MaxSet)
 - MaxSet = {all deterministic winning strategies}
 - Maximal autonomy

Theorem

 LTL_f **DOES NOT** admit a single nondeterministic strategy that captures MaxSet.

MaxSet of LTL_f through Reachability Games

Observation

- Winning region maintains the ability to win
- "staying in the winning region" ≠ "win the game"
 - Taking y₂ at s forever does not lead to the goal

MaxSet of LTL_f through Reachability Games

Key idea

- Every winning strategy switches
 - from "deferring" (y₂ at s, staying in the winning region)
 - to "non-deferring" (y₃ at s, surely reaching the goal)
- No matter when to switch, the switching is mandatory

MaxSet of LTL_f Specifications

- A single nondet. strategy Π_{df} captures all the deferring strategies (maintaining the ability to win)
- A single nondet. strategy Π_{ndf} captures all the non-deferring strategies (assuring to win)
- A declarative constraint forcing any choice function ch eventually switch from Π_{df} to Π_{ndf}

Experimental Evaluations

 Computing MaxSet only brings a minor overhead comparing to computing a single strategy

Conclusions and Future Research

- MaxSet of LTL_f specifications
 - Two nondeterministic strategies and a constraint
 - A minimal overhead
- Improve the performance of LTL_f synthesis
- MaxSet of other specification languages, e.g., LTL

Poster: Slot 201 at Row 6