STA447 Lecture Notes

Yuchen Wang

February 24, 2020

Contents

1	Mai	rkov Chain Probabilities	2
	1.1	Markov Chain examples	2
	1.2	Elementary Computations	3
	1.3	Recurrence and Transience	4
	1.4	Communicating States and Irreducibility	7
2	Maı	rkov Chain Convergence	12
	2.1	Stationary Distributions	12
	2.2	Searching for Stationary	12
	2.3	Obstacles to Convergence	14
	2.4	Convergence Theorem	15

2

1 Markov Chain Probabilities

Notation 1.1.

$$P(X_{n+1} = j | X_n = i) = p_{ij}$$

Definition 1.1 (Markov chain). A (discrete time, discrete space, time homogeneous) <u>Markov chain</u> is specified by three ingredients:

- A state space S, any non-empty finite or countable set.
- Initial probabilities $\{v_i\}_{i\in S}$, where v_i is the probability of starting at i (at time 0). (So $v_i \geq 0$ and $\sum_i v_i = 1$)
- Transition probabilities $\{p_{ij}\}_{i,j\in S}$, where p_{ij} is the probability of jumping to j if you start at i. (So $p_{ij} \ge 0$, and $\sum_j p_{ij} = 1$ for all i)

Remark 1.1 (Markov property).

$$P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, X_2 = i_2, \dots, X_n = i_n) = P(X_{n+1} = j | X_n = i_n) = p_{i_n j}$$

i.e. The probabilities at time n+1 depend only on the state at time n.

Remark 1.2.

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = v_{i_0} p_{i_0 i_1} p_{i_1 i_2} \dots p_{i_{n-1} i_n}$$

1.1 Markov Chain examples

Example 1.1 (the Frog Walk). Let $X_n := \text{pad}$ index the frog is at after n steps.

$$S = \{1, 2, 3, \dots, 20\}$$

$$v_{20} = 1, v_i = 0 \,\forall i \neq 20$$

$$p_{ij} = \begin{cases} \frac{1}{3}, & |j - i| \leq 1 \text{ or } |j - i| = 19\\ 0, & \text{otherwise} \end{cases}$$

Example 1.2 (Bernoulli process).

$$S = \{1, 2, 3, \dots\}$$

$$v_0 = 1, v_i = 0 \,\forall i \neq 0$$

$$p_{ij} = \begin{cases} p, & j = i+1\\ 1-p, & j = i\\ 0, & \text{otherwise} \end{cases}$$

where 0 .

3

Example 1.3 (Simple random walk (s.r.w.)). Let $X_n := \text{net gain (in dollars)}$ after n bets

$$S = \{0, 1, 2, 3, \dots\}$$

$$v_a = 1, v_i = 0 \,\forall i \neq a$$

$$p_{ij} = \begin{cases} p, & j = i + 1\\ 1 - p, & j = i - 1\\ 0, & \text{otherwise} \end{cases}$$

where 0 .

Special case: When p = 1/2, call it simple symmetric random walk.

Example 1.4 (Ehrenfest's Urn). Let $X_n := \#$ balls in Urn 1 at time n.

We have d balls in total, divided into two urns. At each time, we choose one of the d balls uniformly at random, and move it to the other urn.

$$S = \{1, 2, 3, \dots, d\}$$

$$v_a = 1, v_i = 0 \,\forall i \neq a$$

$$p_{ij} = \begin{cases} (d-i)/d, & j = i+1\\ i/d, & j = i-1\\ 0, & \text{otherwise} \end{cases}$$

1.2 Elementary Computations

Notation 1.2.

$$\mu_i^{(n)} := P(X_n = i)$$

Notation 1.3.

$$m := |S|$$
 (the number of elements in S, could be infinity)
 $\mu^{(n)} = (\mu_1^{(n)}, \mu_2^{(n)}, \mu_3^{(n)}, \dots)$ $(m \times 1)$
 $v = (v_1, v_2, v_3, \dots)$ $(m \times 1)$
 $P = (p_{ij}) = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1m} \\ p_{21} & p_{22} & \dots & \\ & \ddots & \\ p_{m1} & \dots & p_{mm} \end{pmatrix}$ $(m \times m \text{ matrix})$

Fact 1.1.

$$\mu^{(1)} = vP = \mu^{(0)}P$$
$$\mu^{(n)} = vP^n = \mu^{(0)}P^n$$

4

Notation 1.4.

$$p_{ij}^{(n)} := P(X_n = j, X_0 = i) = P(X_{m+n} = j | X_m = i)$$
 (for any $m \in \mathbb{N}$)

Fact 1.2.

$$\sum_{j \in S} p_{ij}^{(n)} = 1$$

$$p_{ij}^{(1)} = p_{ij}$$

$$P^{(n)} = P^n \qquad (\text{for all } n \in \mathbb{N})$$

Notation 1.5.

$$\begin{split} P^0 &:= I \\ P^{(0)} &:= I \\ p_{ij}^{(0)} &= \begin{cases} 1 & i=j \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Theorem 1.1 (Chapman-Kolmogorov equations).

$$p_{ij}^{(m+n)} = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)}$$

$$P_{ij}^{(m+s+n)} = \sum_{k \in S} \sum_{l \in S} p_{ik}^{(m)} p_{kl}^{(s)} p_{lj}^{(n)}$$

Matrix form:

$$P^{(m+n)} = P^{(m)}P^{(n)}$$

$$P^{(m+s+n)} = P^{(m)}P^{(s)}P^{(n)}$$

Theorem 1.2 (Chapman-Kolmogorov Inequality).

$$p_{ij}^{(m+n)} \ge p_{ik}^{(m)} p_{kj}^{(n)}$$
 (for all $k \in S$)

$$P_{ij}^{(m+s+n)} \ge p_{ik}^{(m)} p_{kl}^{(s)} p_{lj}^{(n)}$$
 (for any $k, l \in S$)

1.3 Recurrence and Transience

Notation 1.6.

$$P_i(\ldots) \equiv P(\ldots | X_0 = i)$$

$$E_i(\ldots) \equiv E(\ldots | X_0 = i)$$

$$N(i) = \#\{n \ge 1 : X_n = i\}$$
(total number of times that the chain hits i , not counting time 0)

Definition 1.2 (return probability). Let f_{ij} be the return probability from i to j.

$$f_{ij} := P_i(X_n = j \text{ for some } n \ge 1) \equiv P_i(N(j) \ge 1)$$

Fact 1.3.

$$1 - f_{ij} = P_i(X_n \neq j \text{ for all } n \ge 1) \tag{1}$$

$$P_i(N(i) \ge k) = (f_{ii})^k \tag{2}$$

$$P_i(N(j) \ge k) = f_{ij}(f_{ij})^{k-1}$$
 (3)

$$f_{ik} \ge f_{ij} f_{jk} \tag{4}$$

Fact 1.4. $f_{ij} > 0$ iff $\exists m \geq 1$ with $p_{ij}^{(m)} > 0$, i.e., there is some time m for which it is possible to get from i to j in m steps.

Definition 1.3 (recurrent and transient states). A state i of a Markov chain is recurrent if $f_{ii} = 1$. Otherwise, i is transient if $f_{ii} < 1$.

Proposition 1.1. If Z is a non-negative integer, then

$$E(Z) = \sum_{k=1}^{\infty} P(Z \ge k)$$

Theorem 1.3 (Recurrent State Theorem). As follows

- State *i* is recurrent $\iff P_i(N(i) = \infty) = 1 \iff \sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$
- State *i* is transient $\iff P_i(N(i) = \infty) = 0 \iff \sum_{n=1}^{\infty} p_{ii}^{(n)} < \infty$

Proof.

$$P_{i}(N(i) = \infty) = \lim_{k \to \infty} P_{i}(N(i) \ge k)$$
 (by continuity of probabilities)

$$= \lim_{k \to \infty} (f_{ii})^{k}$$
 ($P_{i}(N(i) \ge k) = (f_{ii})^{k}$)

$$= \begin{cases} 1, & f_{ii} = 1 \\ 0, & f_{ii} < 1 \end{cases}$$

Therefore,

$$\sum_{n=1}^{\infty} p_{ii}^{(n)} = \sum_{n=1}^{\infty} P_i(X_n = i)$$

$$= \sum_{n=1}^{\infty} E_i(\mathbb{I}\{X_n = i\})$$

$$= E_i(\sum_{n=1}^{\infty} \mathbb{I}\{X_n = i\})$$

$$= E_i(N(i))$$

$$= \sum_{k=1}^{\infty} P_i(N(i) \ge k)$$
 (by proposition 1.1)
$$= \sum_{k=1}^{\infty} (f_{ii})^k$$

$$= \begin{cases} \infty, & f_{ii} = 1 \\ \frac{f_{ii}}{1 - f_{ii}} < \infty, & f_{ii} < 1 \end{cases}$$

Example 1.5 (simple random walk). If p = 1/2 then $\forall i, f_{ii} = 1$. If $p \neq 1/2$, then $\forall i, f_{ii} < 1$

Proof. Consider state 0. We need to check if $\sum_{n=1}^{\infty} p_{00}^{(n)} = \infty$.

If *n* is odd, then $p_{00}^{(n)} = 0$.

If n is even, $p_{00}^{(n)} = P(\frac{n}{2} \text{ heads and } \frac{n}{2} \text{ tails on first } n \text{ tosses}).$

This is a Binomial(n, p) distribution, so

$$p_{00}^{(n)} = \binom{n}{n/2} p^{n/2} (1-p)^{n/2}$$

$$= \frac{n!}{[(n/2)!]^2} p^{n/2} (1-p)^{n/2}$$

$$= \frac{(n/e)^n \sqrt{2\pi n}}{[(n/2e)^{n/2} \sqrt{2\pi n/2}]^2} p^{n/2} (1-p)^{n/2}$$
(Sirling's approximation)
$$= [4p(1-p)]^{n/2} \sqrt{2/\pi n}$$

Case 1: If p = 1/2, then 4p(1-p) = 1, so

$$\begin{split} \sum_{n=1} \infty p_{00}^{(n)} &= \sum_{n=2,4,6,\dots} \sqrt{2/\pi n} \\ &= \sqrt{2/\pi} \sum_{n=2,4,6,\dots} n^{-1/2} \\ &= \sqrt{2/\pi} \sum_{n=1}^{\infty} 2k^{-1/2} \\ &= \infty \end{split}$$

Therefore, state 0 is recurrent.

Case 2: If $p \neq 1/2$, then 4p(1-p) < 1, so

$$\sum_{n=1}^{\infty} \infty p_{00}^{(n)} = \sum_{n=2,4,6,\dots} [4p(1-p)]^{n/2} \sqrt{2/\pi n}$$

$$< \sum_{n=2,4,6,\dots} [4p(1-p)]^{n/2}$$

$$= \frac{4p(1-p)}{1-4p(1-p)}$$

$$< \infty$$
(Geometric Series)

Therefore, the state 0 is transient.

The same exact calculation applies to any other state i.

Theorem 1.4 (f-Expansion).

$$f_{ij} = p_{ij} + \sum_{k \in S, k \neq j} p_{ik} f_{kj}$$

Proof.

$$f_{ij} = P_i(\exists n \ge 1 : X_n = j)$$

$$= \sum_{k \in S} P_i(X_1 = k, \exists n \ge 1 : X_n = j)$$

$$= P_i(X_1 = j, \exists n \ge 1 : X_n = j) + \sum_{k \ne j} P_i(X_1 = k, \exists n \ge 1 : X_n = j)$$

$$= P_i(X_1 = j)P_i(\exists n \ge 1 : X_n = j|X_1 = j) + \sum_{k \ne j} P_i(X_1 = k)P_i(\exists n \ge 1 : X_n = j|X_1 = k)$$

$$= p_{ij}(1) + \sum_{k \ne j} p_{ik}(f_{kj})$$

Remark 1.3. The f-Expansion shows that $f_{ij} \geq p_{ij}$.

Remark 1.4. It essentially follows from logical reasoning: from i, to get to j eventually, we have to either jump to j immediately (with probability p_{ij}), or jump to some other state k (with probability p_{ik}) and then get to j eventually (with probability p_{kj})

1.4 Communicating States and Irreducibility

Definition 1.4 (communicating states). State i communicates with state j, written $i \to j$, if $f_{ij} > 0$.

Remark 1.5. i.e. if it is possible to get from i to j.

Notation 1.7. Write $i \leftrightarrow j$ if both $i \to j$ and $j \to i$.

Definition 1.5 (irreducibility). A Markov chain is <u>irreducible</u> if $i \to j$ for all $i, j \in S$, i.e., if $f_{ij} > 0$ for all $i, j \in S$. Otherwise, the chain is <u>reducible</u>.

Lemma 1.1 (Sum Lemma). If $i \to k$, and $l \to j$, and $\sum_{n=1}^{\infty} p_{kl}^{(n)} = \infty$, then $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$

Proof. Since $i \to k$, and $l \to j$, there exists $m, r \ge 1$ s.t. $p_{ik}^{(m)} > 0$ and $p_{lj}^{(r)} > 0$. By the Chapman-Kolmogorov inequality,

$$p_{ij}^{(m+s+r)} \ge p_{ij}^{(m)} p_{kl}^{(s)} p_{lj}^{(r)}$$

Hence

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} \ge \sum_{n=m+r+1}^{\infty} p_{ij}^{(n)}$$

$$= \sum_{s=1}^{\infty} p_{ij}^{(m+s+r)}$$

$$\ge \sum_{s=1}^{\infty} p_{ij}^{(m)} p_{kl}^{(s)} p_{lj}^{(r)}$$

$$= \underbrace{p_{ij}^{(m)}}_{+} \underbrace{p_{lj}^{(r)}}_{+} \underbrace{\sum_{s=1}^{\infty}}_{=\infty} p_{kl}^{(s)}$$

$$= \infty$$

$$= \infty$$

Corollary 1.1 (Sum Corollary). If $i \leftrightarrow k$, then i is recurrent iff k is recurrent.

Proof. Setting j=i and l=k in the Sum Lemma: If $i\leftrightarrow k$, then $\sum_{n=1}^{\infty}p_{ii}^{(n)}=\infty\iff\sum_{n=1}^{\infty}p_{kk}^{(n)}=\infty$.

Theorem 1.5 (Cases Theorem). For an irreducible Markov chain, either

- (a) $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$ for all $i, j \in S$, and all states are recurrent (<u>recurrent Markov chain</u>);
- (b) $\sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty$ for all $i, j \in S$, and all states are transient (<u>transient Markov chain</u>).

Theorem 1.6 (Finite Space Theorem). An irreducible Markov chain on a finite state space always falls into case (a), i.e., $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$ for all $i, j \in S$, and all states are recurrent.

Proof. Choose any state $i \in S$. We have

$$\sum_{j \in S} \sum_{n=1}^{\infty} p_{ij}^{(n)} = \sum_{n=1}^{\infty} \sum_{j \in S} p_{ij}^{(n)}$$
 (exchanging the sums)
$$= \sum_{n=1}^{\infty} 1$$

$$= \infty$$

Then if S is finite, it follows that there must exist at least one $j \in S$ with $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$. So we must be in case (a).

Notation 1.8. For $i \neq j$, let H_{ij} be the event that the chain hits the state i before returning to j, i.e.,

$$H_{ij} = \{ \exists n \in \mathbb{N} : X_n = i, \text{ but } X_m \neq j \text{ for } 1 \leq m \leq n-1 \}$$

Lemma 1.2 (Hit Lemma). If $j \to i$ with $j \neq i$, then $P_j(H_{ij}) > 0$.

Proof. Since $j \to i$, there is some possible path from j to i. i.e., there is $m \in \mathbb{N}$ and x_0, x_1, \ldots, x_m with $x_0 = j$ and $x_m = i$ and $p_{x_r x_{r+1}} > 0$ for all $0 \le r \le m-1$.

Let $S = \max\{r : x_r = j\}$ be the last time this path hits j.

Then $x_S, x_{S+1}, \ldots, x_m$ is a possible path which goes from j to i without first returning to j. Hence $P_j(H_{ij}) \geq P(x_0, x_1, \ldots, x_m) = p_{x_S x_{S+1}} p_{x_{S+1} x_{S+2}} \ldots p_{x_{m-1} x_m} > 0$

Remark 1.6. If it is possible to get from j to i at all, then it is possible to get from j to i without first returning to j.

Intuitively obvious: If there is some path from j to i, then the final part of the path (starting with the last time it visits i) is a possible path from j to i which does not return to j.

Lemma 1.3 (f-Lemma). If $j \to i$ and $f_{jj} = 1$, then $f_{ij} = 1$

Proof. If i = j it is trivial, so assume $i \neq j$.

Since $j \to i$, we have $P_j(H_{ij}) > 0$ by the Hit Lemma.

But one way to never return to j is to first hit i and then from i never return to j:

$$P_j(\text{never return to } j) \ge P_j(H_{ij})P_i(\text{never return to } j)$$

Therefore

$$1 - f_{ij} \ge P_i(H_{ij})(1 - f_{ij})$$

Since
$$f_{jj} = 1$$
, then $\underbrace{P_j(H_{ij})}_{>0} (1 - f_{ij}) = 0$

Hence $f_{ij} = 1$.

Lemma 1.4 (Infinite Returns Lemma). For an irreducible Markov chain, if it is recurrent, then

$$P_i(N(j) = \infty) = 1$$

for all $i, j \in S$.

But if it transient, then $P_i(N(j) = \infty) = 0$ for all $i, j \in S$.

Proof. Let $i, j \in S$. If the chain is recurrent, then $f_{ij} = f_{jj} = 1$ by the f-Lemma. Then

$$P_i(N(j) = \infty) = \lim_{k \to \infty} P_i(N(j) \ge k)$$

$$= \lim_{k \to \infty} f_{ij} (f_{jj})^{k-1}$$

$$= \lim_{k \to \infty} (1)(1)^{k-1}$$

$$= 1$$

If the chain is transient, then $f_{jj} < 1$, then

$$P_i(N(j) = \infty) = \lim_{k \to \infty} P_i(N(j) \ge k)$$

$$= \lim_{k \to \infty} f_{ij}(f_{jj})^{k-1}$$

$$= \lim_{k \to \infty} (1)(f_{jj})^{k-1}$$

$$= 0$$

Theorem 1.7 (Recurrence Equivalence Theorem). If a chain is irreducible, then the following are equivalent (and all correspond to case (a)):

- 1. There are $k, l \in S$ with $\sum_{n=1}^{\infty} p_{kl}^{(n)} = \infty$.
- 2. For all $i, j \in S$, we have $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$.
- 3. There is $k \in S$ with $f_{kk} = 1$, i.e. k is recurrent.
- 4. For all $j \in S$, we have $f_{jj} = 1$, i.e. all states are recurrent.
- 5. For all $i, j \in S$, we have $f_{ij} = 1$.
- 6. There are $k, l \in S$ with $P_k(N(l) = \infty) = 1$.
- 7. For all $i, j \in S$, we have $P_i(N(j) = \infty) = 1$.

Proof. Follow from results that we have already proven

- 1 \implies 2: Sum Lemma.
- 2 \Longrightarrow 4: Recurrent State Theorem (with i = j).
- $4 \implies 5$: f-Lemma.
- 5 \implies 3: immediate.
- 3 \implies 1: Recurrent State Theorem (with l = k).
- $4 \implies 7$: Infinite Returns Lemma.

- 7 \implies 6: Immediate.
- 6 \implies 3: Recurrent State Theorem (with l = k).

Theorem 1.8 (Transience Equivalence Theorem). If a chain is irreducible, then the following are equivalent (and all correspond to case (b)):

- 1. There are $k, l \in S$ with $\sum_{n=1}^{\infty} p_{kl}^{(n)} < \infty$.
- 2. For all $i, j \in S$, we have $\sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty$.
- 3. For all $k \in S$, we have $f_{kk} < 1$, i.e. k is transient.
- 4. There is $j \in S$ with $f_{jj} < 1$, i.e. some state is recurrent.
- 5. There are $i, j \in S$ with $f_{ij} < 1$.
- 6. For all $k, l \in S, P_k(N(l) = \infty) = 0$.
- 7. There are $i, j \in S$ with $P_i(N(j) = \infty) = 0$.

Remark 1.7 (closed subset note). Suppose a chain is reducible, but it has a closed subset $C \subseteq S$ (i.e. $p_{ij} = 0$ for $i \in C$ and $j \notin C$) on which it is irreducible (i.e. $i \to j$ for all $i, j \in C$). Then, the Recurrence Equivalence Theorem and other results about irreducible chains still apply to the chain when restricted to C.

Proposition 1.2. For simple random walk with p > 1/2, $f_{ij} = 1$ whenever j > i. (Similarly, if p < 1/2 and j < i, then $f_{ij} = 1$.)

Proof. Let $X_0 = 0$, and $Z_n = X_n - X_{n-1}$ for n = 1, 2, ..., so that $X_n = \sum_{i=1}^n Z_i$. Since Z_n s iid with $P(Z_n = 1) = p$ and $P(Z_n = -1) = 1 - p$, then by Law of Large Numbers,

$$\lim_{n \to \infty} \frac{1}{n} (Z_1 + Z_2 + \ldots + Z_n) \stackrel{p}{=} E(Z_1) = p(1) + (1 - p)(-1) = 2p - 1 > 0$$

$$\implies \infty = \lim_{n \to \infty} (Z_1 + Z_2 + \dots + Z_n)$$

$$= \lim_{n \to \infty} X_n - X_0$$

$$= \lim_{n \to \infty} X_n$$

But if i < j, then to go from i to ∞ , the chain must pass through j, so $f_{ij} = 1$.

2 Markov Chain Convergence

2.1 Stationary Distributions

Definition 2.1 (stationary distributions). If π is a probability distribution on S (i.e. $\pi_i \geq 0$ for all $i \in S$, and $\sum_{i \in S} \pi_i = 1$), then π is stationary for a Markov chain with transition probabilities (p_{ij}) if $\sum_{i \in S} \pi_i p_{ij} = \pi_j$ for all $j \in S$ (or $\pi P = \pi$, in matrix notation).

Remark 2.1. Intuitively, π being stationary means if the chain starts with probabilities $\{\pi_i\}$, then it will keep the same probabilities one time unit later.

Definition 2.2 (doubly stochastic). A Markov Chain is doubly stochastic if in addition to the usual condition that $\sum_{j \in S} p_{ij} = 1$ for all $i \in S$, $\sum_{i \in S} p_{ij} = 1$ for all $j \in S$.

Remark 2.2. This holds for the Frog Example.

Proposition 2.1. If a Markov chain with states S satisfies $|S| < \infty$ and is doubly stochastic, then the uniform distribution on S is a stationary distribution.

Proof. Let $\{\pi_i\}$ be a distribution such that $\pi_i = \frac{1}{|S|}$. Then

$$\sum_{i \in S} \pi_i p_{ij} = \sum_{i \in S} \frac{1}{|S|} p_{ij}$$

$$= \frac{1}{|S|} \sum_{i \in S} p_{ij}$$

$$= \frac{1}{|S|} (1) \qquad \text{(doubly stochastic)}$$

$$= \frac{1}{|S|}$$

$$= \pi_j$$

Then $\{\pi_i\}$ is stationary.

2.2 Searching for Stationary

Definition 2.3 (reversibility). A Markov chain is <u>reversible</u> (or time reversible, or satisfies detailed balance) with respect to a probability distribution $\{\pi_i\}$ if $\pi_i p_{ij} = \pi_j p_{ji}$ for all $i, j \in S$.

Proposition 2.2. If a chain is reversible with respect to π , then π is a stationary distribution.

Proof. Reversibility means $\pi_i p_{ij} = \pi_j p_{ji}$, so then for $j \in S$,

$$\sum_{i \in S} \pi_i p_{ij} = \sum_{i \in S} \pi_j p_{ji} = \pi_j \sum_{i \in S} p_{ji} = \pi_j (1) = \pi_j$$

Lemma 2.1 (M-test). Let $\{x_{nk}\}_{n,k\in\mathbb{N}}$ be a collection of real numbers. Suppose that $\lim_{n\to\infty} x_{nk}$ exists for each fixed $k\in\mathbb{N}$. Suppose further that $\sum_{k=1}^{\infty} \sup_{n} |x_{nk}| < \infty$. Then $\lim_{n\to\infty} \sum_{k=1}^{\infty} x_{nk} = \sum_{k=1}^{\infty} \lim_{n\to\infty} x_{nk}$.

Proposition 2.3 (Vanishing Probabilities Proposition). If a Markov chain's transition probabilities satisfy that $\lim_{n\to\infty} p_{ij}^{(n)} = 0$ for all $i, j \in S$, then the chain does not have a stationary distribution.

Proof. Suppose for contradiction that there is a stationary distribution π . Then we would have $\pi_j = \sum_{i \in S} \pi_i p_{ij}^{(n)}$ for any n, so

$$\pi_j = \lim_{n \to \infty} \pi_j = \lim_{n \to \infty} \sum_{i \in S} \pi_i p_{ij}^{(n)}$$

$$\pi_{j} = \lim_{n \to \infty} \pi_{j}$$

$$= \lim_{n \to \infty} \sum_{i \in S} \pi_{i} p_{ij}^{(n)}$$

$$= \sum_{i \in S} \lim_{n \to \infty} \pi_{i} p_{ij}^{(n)}$$
 (exchange the sum and the limit, which is valid by M-test)
$$= \sum_{i \in S} \pi_{i} \lim_{n \to \infty} p_{ij}^{(n)}$$

$$= \sum_{i \in S} 0$$

$$= 0$$

So we would have $\pi_j = 0$ for all j. But this means that $\sum_j \pi_j = 0$, which is a contradiction.

Lemma 2.2 (Vanishing Lemma). If a Markov chain has some $k, l \in S$ with $\lim_{n \to \infty} p_{kl}^{(n)} = 0$, then for any $i, j \in S$ with $k \to i$ and $j \to l$, $\lim_{n \to \infty} p_{ij}^{(n)} = 0$.

Proof. Since $k \to i$ and $j \to l$, we can find $r, s \in \mathbb{N}$ with $p_{ki}^{(r)} > 0$ and $p_{jl}^{(s)} > 0$. Then by the Chapman-Kolmogorov Inequality,

$$p_{kl}^{(r+n+s)} \ge p_{ki}^{(r)} p_{ij}^{(n)} p_{jl}^{(s)}$$

Hence

$$p_{ij}^{(n)} \le p_{kl}^{(r+n+s)} / p_{ki}^{(r)} p_{jl}^{(s)}$$

But the assumptions imply that

$$\lim_{n\to\infty}\left[p_{kl}^{(r+n+s)}/p_{ki}^{(r)}p_{jl}^{(s)}\right]=0$$

Hence

$$0 \le \lim_{n \to \infty} p_{ij}^{(n)} \le 0$$

$$\implies \lim_{n \to \infty} p_{ij}^{(n)} = 0$$

Corollary 2.1 (Vanishing Together Corollary). For an irreducible Markov chain, either

- 1. $\lim_{n\to\infty} p_{ij}^{(n)} = 0$ for all $i, j \in S$, or
- 2. $\lim_{n\to\infty} p_{ij}^{(n)} \neq 0$ for all $i,j\in S$

Corollary 2.2 (Vanishing Probabilities Corollary). If an irreducible Markov chain's transition probabilities satisfy that $\lim_{n\to\infty}p_{kl}^{(n)}=0$ for some $k,l\in S$, then the chain does not have a stationary distribution.

Lemma 2.3. If the x_n s are non-negative, and $\sum_{n=1}^{\infty} x_n < \infty$, then $\lim_{n \to \infty} x_n = 0$.

Corollary 2.3 (Transient Not Stationary Corollary). A Markov chain which is irreducible and transient cannot have a stationary distribution.

Proof. If a chain is irreducible and transient, then by the Transience Equivalence Theorem, $\sum_{n=1}^{\infty} < \infty$ for all $i, j \in S$. Hence $\lim_{n \to \infty} p_{ij}^{(n)} = 0$ for all $i, j \in S$. Thus by the Vanishing Probabilities Corollary, there is no stationary distribution.

2.3 Obstacles to Convergence

Definition 2.4 (period). The period of a state i is the greatest common divisor (gcd) of the set $\{n \ge 1 : p_{ii}^{(n)} > 0\}$, i.e. the largest number m such that all the values of n with $p_{ii}^{(n)} > 0$ are all integer multiples of m. If the period of each state is 1, we say the chain is aperiodic; otherwise we say the chain is periodic.

Remark 2.3. Intuitively, the period of a state i is the pattern of returning to i from i. e.g. If the period of i is 2, then it is only possible to get from i to i in an even numbers of steps.

Fact 2.1. If state i has period t, and $p_{ii}^{(m)} > 0$, then m is an integer multiple of t, i.e., t divides m.

Fact 2.2. If $p_{ii} > 0$, then the period of state i is 1.

Fact 2.3. If $p_{ii}^{(n)} > 0$ and $p_{ii}^{(n+1)} > 0$, then the period of state *i* is 1.

Lemma 2.4 (Equal Periods Lemma). If $i \leftrightarrow j$, then the periods of i and of j are equal.

Proof. Let the periods of i and j be t_i and t_j . Since $i \leftrightarrow j$, we can find $r, s \in \mathbb{N}$ with $p_{ij}^{(r)} > 0$ and $p_{ii}^{(s)} > 0$. Then

$$p_{ii}^{(r+s)} \ge p_{ij}^{(r)} p_{ji}^{(s)} > 0$$

Therefore by Fact 2.1, t_i divides r + s.

Suppose now that $p_{j,j}^{(n)} > 0$. Then

$$p_{ii}^{(r+n+s)} \ge p_{ij}^{(r)} p_{jj}^{(n)} p_{ji}^{(s)} > 0$$

So t_i divides r + n + s.

Since t_i divides both r + n + s and r + s, then it must divide n as well.

Since this is true for any n with $p_{jj}^{(n)} > 0$, it follows that t_i is a common divisor of $\{n \in \mathbb{N} : p_{jj}^{(n)} > 0\}$.

But t_j is the greatest such common divisor, so $t_j \geq t_i$.

Similarly we can show that $t_i \geq t_j$, so we have $t_i = t_j$.

Corollary 2.4 (Equal Periods Corollary). If a chain is irreducible, then all states have the same period.

Corollary 2.5. If a chain is irreducible and $p_{ii} > 0$ for some state i, then the chain is aperiodic.

2.4 Convergence Theorem

Theorem 2.1 (Markov Chain Convergence Theorem). If a Markov chain is irreducible, aperiodic, and has a stationary distribution $\{\pi_i\}$, then $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$ for all $i,j \in S$, and $\lim_{n\to\infty} P(X_n = j) = \pi_j$ for any initial probabilities $\{v_i\}$.

Theorem 2.2 (Stationary Recurrence Theorem). If chain irreducible and has a stationary distribution, then it is recurrent.

Proof. The Transient Not Stationary Corollary says that a chain cannot be irreducible, transient and have a stationary distribution.

Therefore, if a chain is irreducible and has a stationary distribution, then it cannot be transient, i.e. it must be recurrent.

Lemma 2.5 (Number Theory Lemma). If a set A of positive integers is non-empty, and satisfies additivity, and gcd(A) = 1, then there is some $n_0 \in \mathbb{N}$ s.t. for all $n \geq n_0$ we have $n \in A$ i.e. the set A includes all of the integers $n_0, n_0 + 1, n_0 + 2, \ldots$

Proposition 2.4. If a state i has $f_{ii} > 0$ and is aperiodic, then there is $n_0(i) \in \mathbb{N}$ such that $p_{ii}^{(n)} > 0$ for all $n \geq n_0(i)$

Proof. Let $A = \{n \geq 1 : p_{ii}^{(n)} > 0\}$. Since $f_{ii} > 0$, then A is not empty. If $m, n \in A$, then

$$p_{ii}^{(m+n)} \ge p_{ii}^{(m)} p_{ii}^{(n)} > 0$$

So $m + n \in A$, which shows that A satisfies additivity. Also gcd(A) = 1 since the state i is aperiodic. Hence from the Number Theory Lemma, there is $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, we have $n \in A$ i.e. $p_{ii}^{(n)} > 0$.

Corollary 2.6. If a chain is irreducible and aperiodic, then for any states $i, j \in S$, there is $n_0(i, j) \in \mathbb{N}$ s.t. $p_{i,j}^{(n)} > 0$ for all $n \geq n_0(i, j)$

Proof. Find $n_0(i)$ as in Proposition 2.3, and find $m \in \mathbb{N}$ with $p_{ij}^{(m)} > 0$.

Then let $n_0(i, j) = n_0(i) + m$

Then if
$$n \ge n_0(i,j)$$
, then $n-m \ge n_0(i)$, so $p_{ij}^{(n)} \ge p_{ii}^{(n-m)} p_{ij}^{(m)} > 0$.

Lemma 2.6 (Markov Forgetting Lemma). If a Markov chain is irreducible and aperiodic, and has stationary distribution $\{\pi_i\}$, then for all $i, j, k \in S$,

$$\lim_{n \to \infty} \left| p_{ik}^{(n)} - p_{jk}^{(n)} \right| = 0$$

Remark 2.4. Intuitively, after a long time n, the chain "forgets" whether it started from state i or from state j.

Proof. ______long

Proof of Markov Chain Convergence Theorem

long

Corollary 2.7. If a chain is irreducible, then it has at most one stationary distribution.

Proof. By Markov Chain Convergence Theorem, any stationary distribution that ie has must be equal to $\lim_{n\to\infty} P(X_n=j)$, so it is unique.

Definition 2.5 (convergence in distribution).

$$\forall a < b, \underset{n \to \infty}{P} (a < X_n < b) = P(a < X < b)$$

Definition 2.6 (weak convergence).

$$\forall \epsilon > 0, \lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$$

Remark 2.5. This is "converge in probability".

Definition 2.7 (strong convergence).

$$P(\lim_{n\to\infty} X_n = X) = 1$$

Remark 2.6. This is "converge almost surely".

Remark 2.7. Strong convergence implies weak convergence.

Proposition 2.5. If $\{X_n\}$ is a simple symmetric random walk, then the absolute values $|X_n|$ converge weakly to