Statistics 2, Chapter 1: Random Variables & Probability Distributions

July 2, 2019

Random Variable

- A variable whose value is determined by the outcome of a random experiment.
- Can be discrete or continuous.

Discrete Random Variable

• A random variable that assumes countable values.

Continuous Random Variable

• A random variable that can assume any value contained in one or more intervals.

1 Example

Three cards are selected without replacement from a deck of 52 cards. A random variable may be defined as

X = number of aces obtained

- 1. Then X can assume the values 0, 1, 2 or 3.
- 2. Since X can assume only 4 values, it is a discrete random variable.

2 Example

3 Example

Get on a scale and weigh yourself. Let the random variable, X be defined as your weigh in kilogram.

- Then X could be any of the infinitely many values between 40kg and 90kg,
- i.e. 40 < X < 90. \Rightarrow X is continuous random variable.

4 Discrete Probability Distribution

4.1 Definition

4.2 Example

- (a) No, because they do not add up to 1
- (b) Yes
- (c) No, a probability distribution should not have negative probability values (values have to fall between 0 and 1)

5 Example

Toss 2 fair dice.

- Let X denotes the sum of the spots on the 2 dice.
- Find the probability distribution of the r. v. X.

Second Die									
	$X_1 + X_2$	1	2	3	4	5	6		
	1	2	3	4	5	6	7		
First Die	2	3	4	5	6	7	8		
	3	4	5	6	7	8	9		
	4	5	6	7	8	9	10		
	5	6	7	8	9	10	11		
	6	7	8	9	10	11	12		

Probability Distribution

x	2	3	4	5	6	7	8	9	10	11	12	C
$P\left[X=x\right]$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	o um

 $=\frac{36}{36}=1$

6 Example

Heads	0	1	2	3
P(Heads)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

7 Example

1.

print-graph-paper.com

- (a)
- (b)

- i. P(X=2) = 0.35
- ii. $P(0 \le X \le 2)$

$$P (0 \le X \le 2) = 0.15 + 0.20 + 0.35$$
$$= 0.7$$

iii. P(X > 1)

$$P(X > 1) = 0.35 + 0.30$$
$$= 0.65$$

iv. $P(X \le 1)$

$$P(X \le 1) = P(X = 1) + P(X = 2)$$

= 0.35

- 8 Example
- 9 Example