# Design Project

[ISSS612] Big Data: Tools and Techniques

### **DemeterAl**

#### <u>Team</u>

Colin Jiang Kelin (colinjiang.2021@mitb.smu.edu.sg)
Khoo Kian Sim (kskhoo.2021@mitb.smu.edu.sg)
Lim Wei Jie (wjlim.2022@mitb.smu.edu.sg)
Perry Chia Dun Li (perry.chia.2021@mitb.smu.edu.sg)
Tong Zi Heng (ziheng.tong.2021@mitb.smu.edu.sg)
Yeo Yi Xuan (yixuan.yeo.2021@mitb.smu.edu.sg)

### **Design Principles**

#### Cost

Keep cost low by re-using current capabilities or utilizing open source software, and limiting new technologies to as few as possible without affecting performance

Also avoid hardware which is too costly

#### Scalability

Able to scale both horizontally and vertically, as well as cater to new storage and processing types when needed

#### **Agility**

Bringing data to the right person and at the right timing

#### Integration

Prioritize high availability while maintaining eventual consistency to have single source of truth given inadequate broadband circumstances

#### Flexibility

Ease of integrating with existing technologies, as well as with new technologies when required in the future

### **Architecture View (As-is)**



#### 1. Sensors

- IoT Sensor
- Weather Radar
- Camera



### **Architecture View (To-Be)**



## **Technological Components**

| Tool               | Why is it needed?                                                                                                                                                  | Existing | New |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| On-Site Data Lake  | Data dump into on-site data lake before putting into cloud data lake (Amazon S3)<br>Maintain data dumps for 5 years                                                | ✓        | ✓   |
| MQTT               | Standardized way to manage data flow for IoT system(s)                                                                                                             | ✓        | ✓   |
| Kafka              | Real-time stream-processing platform for various data sources including sensors, external data and business data                                                   | ✓        | ✓   |
| Python/R/SAS       | Programming tool for data analytics                                                                                                                                | ✓        | ✓   |
| Grafana            | Interactive visualization web application for analytics. Also send alerts based on preconfigured thresholds met for real-time data (business activity monitoring). | ✓        | ✓   |
| MySQL              | Relational database management system for OLTP                                                                                                                     |          | ✓   |
| Amazon S3          | Cloud storage service as data lake for easy scalability Maintain data dumps for 5 years                                                                            |          | ✓   |
| SparkStreaming     | Perform data transformations as needed                                                                                                                             |          | ✓   |
| Cassandra          | NoSQL database management system which prioritises availability over consistency                                                                                   |          | ✓   |
| Tensorflow/TF lite | Deep learning application and deployment on edge devices                                                                                                           |          | ✓   |
| Spark MLib         | For machine learning algorithms such as classification, regression, decision trees and clustering                                                                  |          | ✓   |
| Apache Camel       | Integration framework to integrate data from multiple sources and exposing data as an API                                                                          |          | ✓   |

### **Assumptions**

- 1. Restrictions in hardware upgrades, so only selected crucial events are streamed in real-time.
- 2. Employees are well versed in existing technology hence keeping most of the existing data analytics tools to minimize staff retraining.
- 3. Intention is to scale up significantly, so traffic will be high. Running on self managed open-source technology will aid in saving cost in the long run.