Question 17 (8 marks)

The diagram shows a circle with equation $x^2 + y^2 = 16$ with points A, B being the horizontal intercepts of this circle. DC is the tangent to the circle at point D, intersecting the x axis at point C. Point D has coordinates $(2, -2\sqrt{3})$.

(a) Show that the equation for the tangent at point D can be written in the form $\sqrt{3}y = x - 8$. (3 marks)

(b)	Determine the coordinates of point C.	(1 mark)
The region bounded by the arc AD , the line segment \overline{DC} and the x axis is rotated about the		
x axis.		
(c)	Determine the volume of the resulting solid, correct to the nearest 0.01 cubic ur	nits
(0)	Determine the volume of the resulting sond, correct to the floarest c.s. reading the	(4 marks)