Why do large-scale replications and meta-analyses diverge? A case study of infant-directed speech preference

Molly Lewis
Carnegie Mellon University

Christina Bergmann, Martin Zettersten, Melanie Soderstrom, Angeline Sin Mei Tsui, Julien Mayor, Rebecca A. Lundwall, Jessica E. Kosie, Natalia Kartushina, Riccardo Fusaroli, Michael C. Frank, Krista Byers-Heinlein, Alexis K. Black, and Maya B. Mathur

What's the best way to estimate the size of important effects in psychology?

Weakest

Metaanalyses & systematic reviews Randomized controlled trials Case-control studies Cross sectional studies

Animal trials & in vitro studies

Case reports, opinion papers, and letters

Meta-analysis =

Statistical aggregation of effects from existing literature

Multi-lab replications = Coordinated replications across many labs

thelogicofscience.com

These methods have different strengths/weaknesses

Meta-Analyses:

- Relatively few resources
- Variability in population, stimuli, method
- Individual studies typically not pre-registered; subject to publication bias

Multi-Lab Replications:

- Highly resource intensive
- Standardization of stimuli and method; some variability in populations
- Typically pre-registered

What's the relationship between aggregate estimates derived using these two methods?

- Naively, expect them to be the same
- But, recent work suggests they are discrepant (Kvarven, et al, 2020)
- ES from MAs three times larger than MLRs
- Due to publication bias?
- Evidence that publication bias can't fully account for discrepancy (Lewis, et al., 2020)

(Shanks, et al. 2015)

Why the discrepancy? (Lewis et al., 2020)

- Another possibility: Heterogeneity
- MAs contain more heterogeneity along relevant dimensions
- MAs are adapted to their local context, whereas MLRs are typically not
- Perhaps accounting for these moderators will reveal the source of the discrepancy.

Case Study: Infant directed speech preference

Do babies prefer to listen to infant directed speech (IDS), compared to adult directed speech (ADS)?

Kuhl (2004) - originally Fernald & Kuhl (1987)

Shorter utterances, higher, varied pitch, longer pauses

Case Study: Infant directed speech preference

Dependent measure:

Looking time to checkerboard

Independent variable:

ADS vs. IDS played in pairs of trials within subjects

(Cooper & Aslin, 1990)

adult-directed.

(Source: Moll & Tomasello, 2010)

Meta-analysis of IDS preference (Dunst, Gorman, & Hamby, 2012)

- N = 34 studies (840 infants), published 1983-2011
- Aggregate ES = 0.67 (CI = [0.57-0.76])

Multi-Lab Replication of IDS preference (ManyBabies, 2020)

- Each lab conducted their own replication based on Cooper & Aslin (1990)
- Consensus design
- 67 labs, 2,329 babies!
- Constant stimuli, DV
- Some variation in method
- Aggregate ES = 0.35 (CI = [0.29-0.41])

The current work

- As found previously,
 meta-analytic ES > multi-lab ES
 (discrepancy = 0.32)
- Why?
- Systematically compared effect sizes from two sources, accounting for possible differences due to heterogeneity by coding same set of moderators in each

Moderators we examined for both data sources

- 1. Age
- 2. Test language (native vs. non-native)
- 3. Method (central fixation vs. headturn preference procedure vs. other)
- 4. Speech type (Infant directed speech vs. simulated infant directed speech vs. synthesized speech)
- 5. Speech source (caregiver vs. other)
- 6. Visual stimulus (unrelated vs. speaker)
- 7. DV type (looking time vs. facial expression vs. preference for target)
- 8. Target research question (primary vs. secondary)

Analysis Approach

- Fit both meta-analytic and multi-lab replication data in single meta-analytic model (robust meta-regression; Hedges et al., 2010; Tipton, 2015)
- Naive model: Source (MA vs. MLR) as only moderator
- Moderated model: Source + 8 moderators that should affect outcomes based on past research (additive)
 - Continuous moderators centered; reference levels for factors defined by most frequent MA level
 - *Model only able to converge with 3 moderators (age, test language, method)
- Planned analyses pre-registered

Results: Naive Model

MA - MLR Discrepancy = .32 [0, .64] Tau = .35

Results: Moderated Model

Moderator	Est [95 CI]	p
intercept	0.13 [-0.08, 0.35]	0.22
is-MA (true)	0.48 [-0.02, 0.97]	0.06
mean age	0.02 [0.01, 0.03]	<.001
test language (non-native)	-0.09 [-0.20, 0.02]	0.10
test language (artificial)	-0.5 [-2.49, 1.48]	0.39
method (hpp)	0.11 [-0.23, 0.46]	0.51
method (other)	0.67 [-1.17, 2.52]	0.28

MA - MLR Discrepancy = .48 [-.02, .97] Tau = .33

Could the discrepancy be due to publication bias in the MA?

- Probably not...
- After correcting for publication bias (Vevea & Hedges, 1995), the ES was actually larger (.92 CI = [.6-1.23])
- Sensitivity analysis for publication bias (Mathur & VanderWeele, 2020 see Maya's talk today!)
 - Worst case scenario = "statistically significant" positive results are infinitely more likely to be published than "nonsignificant" or negative results
 - Meta-analyze only non-significant/negative studies
 - Significant studies would have to be about 8 times more likely to be published than nonsignificant/negative studies to eliminate discrepancy

Discussion

- Even when analyzed within the same model and controlling for moderators, MA effect size more than twice as big as MLR effect size
- Probably not due (entirely) to publication bias in MA
- Next: Update MA with recent papers since 2011
- Extend ManyBabies1 dataset with existing or pending spin-off studies
 - ManyBabies1-Bilingual (Byers-Heinlein et al., 2020/in press; 333 participants, 17 labs)
 - Test-retest reliability (Schreiner et al., in prep; 149 participants, 7 labs)
 - O ManyBabies1-Africa (Tsui et al., in prep; data collection planned for 2021-2022)
 - Native language follow-up (7 labs signed up; data collection ongoing)

Other possible sources of discrepancy

- Still lots of residual heterogeneity - look at other moderators (e.g., by fitting separate models)
- Difference in inclusion criteria between ManyBabies and MA
- Others?

Thanks!

Papers:

Pre-registration: https://osf.io/scq9z

Lewis, Mathur, VanderWeele, & Frank (2020): https://psyarxiv.com/pbrdk

Mathur & VanderWeele (2020, J. Royal Stat. Society: Series C): https://osf.io/s9dp6/

IDS MLR (ManyBabies; 2020, AMPPS): https://psyarxiv.com/s98ab

Appendix

Table 1: The distribution of moderators in the meta-analysis (MA) and large-scale replication ManyBabies1 (MB).

	MA	MB	p	test
n	51	104		
$study_type = MB (\%)$	0(0.0)	104 (100.0)	< 0.001	
mean_agec (mean (SD))	0.00(6.61)	11.78 (7.63)	< 0.001	
$test_lang = nonnative (\%)$	0 (0.0)	58 (55.8)	< 0.001	
native_lang (%)			0.001	
cantonese	4(7.8)	0(0.0)		
dutch	0(0.0)	5 (4.8)		
english	47 (92.2)	62 (59.6)		
french	0 (0.0)	6 (5.8)		
german	0(0.0)	16 (15.4)		
hungarian	0(0.0)	2 (1.9)		
italian	0(0.0)	1(1.0)		
japanese	0(0.0)	4 (3.8)		
korean	0(0.0)	3(2.9)		
norwegian	0(0.0)	1 (1.0)		
spanish	0(0.0)	2 (1.9)		
swissgerman	0(0.0)	1(1.0)		
turkish	0(0.0)	1(1.0)		
method (%)	, ,	,	< 0.001	
a.cf	34 (66.7)	69 (66.3)		
b.hpp	10 (19.6)	35 (33.7)		
c.other	7 (13.7)	0 (0.0)		
speech_type (%)	,	,	< 0.001	
a.simulated	28 (54.9)	0(0.0)		
b.naturalistic	16 (31.4)	104 (100.0)		
c.filtered	4 (7.8)	0 (0.0)		
d.synthesized	3 (5.9)	0(0.0)		
$own_mother = b.yes (\%)$	4 (7.8)	0 (0.0)	0.019	
presentation = \bar{b} .video recording (%)	15 (29.4)	0(0.0)	< 0.001	
dependent_measure = b.affect (%)	7 (13.7)	0 (0.0)	0.001	
main question ids preference = b.no (%)	11 (21.6)	0 (0.0)	< 0.001	

Table 1
Average Weighted Cohen's d and 95% Confidence Intervals for Different Speech Conditions

	Number		Average	95% Confidence		
Condition	Studies	Effect Sizes	Effect Size	Intervals	Z	p-value
Speaker						
Mothers	20	30	0.61	0.48-0.74	8.97	.0000
Unfamiliar Adults	14	21	0.73	0.58-0.87	10.06	.0000
Speech Presentation						
Audio Recordings Only	26	36	0.62	0.51-0.73	11.14	.0000
Audio + Video	8	15	0.82	0.61-1.03	7.67	.0000
Child Outcome						
Preference Measure	33	44	0.64	0.54-0.75	12.33	.0000
Positive Affect	7	7	0.87	0.56-1.18	5.49	.0000
Table 2 Moderator Analyses of the Relati	•	en Infant-Directe Imber	ed Speech and th Average	e Child Preference Meas 95% Confidence	cures	
Moderator Analyses of the Relati	Nu	mber	Average	95% Confidence		n-value
Moderator Analyses of the Relati	•		•		cures Z	p-value
Moderator Analyses of the Relati Moderators Year of Publication	Nu Studies	Effect Sizes	Average Effect Size	95% Confidence Intervals	Z	1
Moderator Analyses of the Relati Moderators Year of Publication < 1991	Nu Studies	Effect Sizes	Average Effect Size	95% Confidence Intervals	Z 10.38	.0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995	Nu Studies	Effect Sizes 16 20	Average Effect Size 0.92 0.56	95% Confidence Intervals 0.72-1.09 0.41-0.72	Z 10.38 7.09	.0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995 1995 +	Nu Studies	Effect Sizes	Average Effect Size	95% Confidence Intervals	Z 10.38	.0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995 1995 + Type of Design	Nu Studies 13 12 9	Effect Sizes 16 20 15	Average Effect Size 0.92 0.56 0.53	95% Confidence Intervals 0.72-1.09 0.41-0.72 0.35-0.71	Z 10.38 7.09 5.83	.0000 .0000 .0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995 1995 + Type of Design Between Conditions	Nu Studies 13 12 9 29	Effect Sizes 16 20 15	Average Effect Size 0.92 0.56 0.53	95% Confidence Intervals 0.72-1.09 0.41-0.72 0.35-0.71 0.60-0.81	Z 10.38 7.09 5.83 12.87	.0000 .0000 .0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995 1995 + Type of Design Between Conditions Between Group	Nu Studies 13 12 9	Effect Sizes 16 20 15	Average Effect Size 0.92 0.56 0.53	95% Confidence Intervals 0.72-1.09 0.41-0.72 0.35-0.71	Z 10.38 7.09 5.83	.0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995 1995 + Type of Design Between Conditions Between Group Type of Study	Nu Studies 13 12 9 29 5	Effect Sizes 16 20 15 42 9	Average Effect Size 0.92 0.56 0.53 0.71 0.49	95% Confidence Intervals 0.72-1.09 0.41-0.72 0.35-0.71 0.60-0.81 0.26-0.71	2 10.38 7.09 5.83 12.87 4.19	.0000 .0000 .0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995 1995 + Type of Design Between Conditions Between Group Type of Study Journal Article	Nu Studies 13 12 9 29 5 33	Effect Sizes 16 20 15 42 9 49	Average Effect Size 0.92 0.56 0.53 0.71 0.49	95% Confidence Intervals 0.72-1.09 0.41-0.72 0.35-0.71 0.60-0.81 0.26-0.71 0.55-0.76	Z 10.38 7.09 5.83 12.87 4.19	.0000 .0000 .0000 .0000
Moderator Analyses of the Relation Moderators Year of Publication 1991 1991 – 1995 1995 + Type of Design Between Conditions Between Group Type of Study Journal Article Other	Nu Studies 13 12 9 29 5	Effect Sizes 16 20 15 42 9	Average Effect Size 0.92 0.56 0.53 0.71 0.49	95% Confidence Intervals 0.72-1.09 0.41-0.72 0.35-0.71 0.60-0.81 0.26-0.71	2 10.38 7.09 5.83 12.87 4.19	.0000 .0000 .0000
Moderator Analyses of the Relati Moderators Year of Publication < 1991 1991 – 1995 1995 + Type of Design Between Conditions Between Group Type of Study Journal Article	Nu Studies 13 12 9 29 5 33	Effect Sizes 16 20 15 42 9 49	Average Effect Size 0.92 0.56 0.53 0.71 0.49	95% Confidence Intervals 0.72-1.09 0.41-0.72 0.35-0.71 0.60-0.81 0.26-0.71 0.55-0.76	Z 10.38 7.09 5.83 12.87 4.19	.0000 .0000 .0000 .0000