令和5年 修士論文草稿

タイトル

指導教員:相馬 隆郎

東京都立大学大学院 電子情報システム工学域

学修番号:22861651

氏名:西原涼介

論文要旨

ここから論文要旨

目 次

第	II部 はじめに	3
1	研究背景	3
2	関連研究 2.1 機械学習を用いた自然言語処理による商品レビューの評価 [1]	
3	研究目的	8
第	III 部 提案手法	9
4	トピックモデル	9
	4.1 Latent Dirichlet Allocation	9
	4.2 Biterm Topic Model	9
5	提案システム	10
	5.1 データ収集	
	5.2 前処理手法	
	5.3 BTM によるトピック抽出	
	5.4 文章生成	
	5.5 文章間の類似度計算	
	5.6 提案システムの精度検証	10
第	SIII部 実験結果	11
6	実験目的、仮説	11
第	IV 部 参考文献	11

第I部

はじめに

1 研究背景

近年、Amazon や楽天市場などの大手 EC サイトをはじめ、数多くの EC サイトが普及し、その 利用者も急増している. そして. 商品を購入する際に EC サイトのレビューを参考にしている利用 者の割合は約70%と言われていて, その中でもレビューの信頼性を重要視している人が多いことが 明らかになっている. また、多くの企業にとって、ECサイトのレビューからユーザーの嗜好や意見 を分析し,マーケティングに活用することが重要な課題となっている. そのため, EC サイトのレ ビューの信頼性や参考になるかどうかを評価する評判分析や口コミ分析、レビューを様々なトピッ クに分類する文書分類に関する研究が多く行われている. 例えば、関連研究の項で詳しく紹介する 「機械学習を用いた自然言語処理による商品レビューの評価」[1] では. Amazon の商品レビューを 機械学習を用いて参考になる順に並びかえるシステムの構築、及びその評価に関する研究を行って いる。また近年では、従来の EC サイトや商品の Web ページ以外にも、YouTube のような動画投 稿サイトや X(旧 Twitter) や Instagram などの SNS で自社製品・サービスの宣伝を行う企業が増 えてきている. それにつれて、商品を購入する際に SNS や YouTube 上でその商品を宣伝している 投稿を参考にしている人も増加している. そのため, SNS や YouTube 上の広告に対するユーザー のコメントも、他のユーザーが商品の購入を検討する際の重要な判断材料になり得ると考えられる. つまり、SNS や YouTube 上での商品の宣伝に対するコメントは、EC サイトのレビューと同等の機 能を持ち、その信頼性や参考になるかどうかが重要になるため、評判分析や文書分類の研究の対象 になると考えられる. ここで, SNS や YouTube は商品レビューのページとは異なり, 誰でも気軽に コメントを投稿できたり、その投稿内容も自由という特性上、商品やサービスに関係ないコメント が多数存在する.

そこで、本研究では分析対象を YouTube 上で自社製品やサービスを宣伝している動画に対するユーザーのコメントとし、トピックモデルの一種である Biterm Topic Model による商品に関するトピック抽出を用いて、その動画に対するユーザーのコメントから、宣伝している商品やサービスに対して関連性が高いコメントを抽出するシステムの作成、及び作成したシステムの人手に対する精度の検証を行った.

本論文の第 I 部では、EC サイトのレビューにおける評判分析やトピックモデルを用いた文書分類に関する関連研究の紹介、また本研究の研究目的を明確に説明する。第 II 部では、本研究で用いる二つのトピックモデルの説明、及び提案手法のシステムや実装方法について説明する。第 III 部では、実際の YouTube 上の動画に対するコメントを用いた実験結果を述べる。第 IV 部では、実験結果をもとに考察した提案手法の有効性や将来性について述べる。

2 関連研究

本研究を進めるにあたり、研究テーマの方向性決めや研究課題の発見、及び本研究で用いている 技術に関して参考にした論文を4つ紹介する.

2.1 機械学習を用いた自然言語処理による商品レビューの評価[1]

この論文では、ユーザーが商品レビューを読んで参考になったかどうかを評価する機能が備わっていない EC サイトの場合に、数多くあるレビューから参考になる情報を探す必要がある問題に着目し、機械学習を用いた自然言語処理の手法で分析、評価を行い、レビューを参考になる順番に並び替えるシステムの構築を目的としている。そして並び替えた順番が正しいかどうかを評価するために、クイックソートを利用した新しい評価法である QE 法を提案している。

図1はこの論文で提案されている、レビューを参考になる順番に並び替えるシステムの概要図である. はじめに、インターネット経由で Amazon の商品レビューのデータ取得し、学習用データと評価データに分ける. 学習段階では、レビュー文章の正規化や各前処理を施し、教師データとして準備する. この研究では、全角数字やアルファベットを半角に変換したり、数字は全て0に置換、アルファベットは全て小文字に変換などの正規化を行っている. また、日本語形態素解析システムである MeCab を用いて形態素解析を行い、品詞ごとに"_"で分割する. その後、活用語の原型への変換、及びストップワード除去を行っている. 例えば、「ロボットは24時間働けるのでAIに仕事をとられる.」という文章の場合、正規化と前処理を施すことで、「ロボット_0_働ける_ai_仕事_とる.」となる. この一連の処理を学習用データに施した後、機械学習の際に用いる素性の抽出を行う. この研究はレビューを参考になる順序に並べ替えることが目的のため、素性には単語の出現

図 1: システム概要図

頻度を用いている。目的変数をレビューが参考になる確率 P とし、抽出した素性を用いてロジスティック回帰により学習する。ロジスティック回帰のモデル式は式(1)で示される。 θ_i は素性の重み、N は素性の数を表している。

$$P = \frac{1}{1 + exp(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_N x_N)}$$
 (1)

次に学習したモデルを用いて、評価用データに対して実験を行ない、提案システムの精度を検証している。この研究の提案システムの精度の評価は、実際の商品ページのレビューの並び順との一致率で評価している。正解の並び方を L_R 、提案システムによる並べ方を L_P としたとき、それぞれの要素の一致率を P_{match} としている。例えば、以下の並び方のとき、 $P_{match}=100\%$ となり最も良い結果となる。

 $L_R: \{1, 2, 3, 4, 5\}$ $L_P: \{1, 2, 3, 4, 5\}$

しかし、以下のように並び方の評価としては良い結果と言える場合でも、5 件のレビュー中 1 件のみ一致していることになり, $P_{match}=20\%$ と低い結果になる.

 $L_R: \{1, 2, 3, 4, 5\}$ $L_P: \{4, 1, 2, 3, 5\}$

このように正しい評価が行えない場合を解決するため、この研究ではクイックソートを利用した新しい評価法の QE 法 (Quicksort Evaluation method) を提案している。 QE 法ではピボットを中央値とし、昇順にするために要素を入れ替えた回数 S_{count} と、要素数における最大の入れ替え回数 S_{max} を用いた式(2)により、評価値 P_{QE} を求めている。なお、 S_{max} は全ての要素が逆順の場合にクイックソートで昇順に入れ替えた回数である。

$$P_{QE} = 1 - \frac{S_{count}}{S_{max}} \tag{2}$$

実際の商品レビュー 52,403 件を取得し、そのうち 51,403 件を学習用データ、1,000 件を評価用データに分けて実験を行い、提案システムの精度を評価した結果を表 1 に示している.ここで、登場回数 F とは学習の素性とするか決定するための単語の出現回数である.表 1 から、F=5000、学習率 $\eta=1.7$ のときに評価値 $P_{QE}=0.814$ と最大になる.従って、この論文で提案しているシステムはレビューを参考になる順序に並び替える手法として有効であると言える.

しかし、この論文では Amazon の商品レビューを分析の対象としていて、素性には単語の出現頻度を用いているため、提案システムが成り立つにはしっかり商品をレビューしている文章を学習させる必要がある。そのため、この論文で提案されているシステムでは YouTube で商品を宣伝している動画や、SNS の投稿に対するコメントを学習させた場合に上手く学習できなかったり、精度が悪くなってしまうことが考えられる。なぜならば、YouTube の動画や SNS の投稿に対するコメントというのは誰でも気軽にでき、内容も自由であるため、商品のレビューのようなコメントの数がAmazon の商品レビューに比べると少ないからである。また、一文の長さも短いことが多く、素性となり得る単語の抽出も難しいと考えられる。そこで、本論文ではそのような問題を解決するための手法を第Ⅱ部で提案する。

登場回数	素性数	学習率 η											
F	N	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	
100	2083	0.788	0.783	0.800	0.806	0.796	0.766	0.750	0.762	0.769	0.747	0.768	
200	2083	0.788	0.783	0.800	0.806	0.796	0.766	0.750	0.762	0.769	0.747	0.768	
500	1472	0.774	0.748	0.781	0.782	0.769	0.769	0.763	0.751	0.787	0.774	0.726	
1000	1058	0.728	0.794	0.746	0.781	0.758	0.813	0.792	0.762	0.795	0.776	0.784	
2000	701	0.782	0.756	0.781	0.712	0.737	0.734	0.722	0.800	0.795	0.769	0.718	
5000	363	0.759	0.773	0.774	0.801	0.764	0.763	0.772	0.814	0.757	0.765	0.755	
10000	207	0.795	0.804	0.795	0.809	0.789	0.782	0.794	0.781	0.741	0.787	0.759	

表 1: 登場回数と学習率の組み合わせごとの評価値 POE

2.2 単語の出現頻度と類似性に基づいたトピックモデル洗練化手法[2]

この論文では、第 Π 部で後述するトピックモデルの一種の Latent Dirichlet Allocation(以下 LDA) を自然言語文書に適用する際の改善案を提案している。通常、トピックモデルを自然言語文書に適用する際には、前処理として分類に不必要なストップワードの除去を行うことが多いが、一般的にストップワードリストに含まれている単語を除去するだけでは、特定の文書にのみ頻出する特徴的な単語を除去することが出来ず、トピックモデルの精度に影響を及ぼすという問題が存在する。また、トピックモデルによって分類したトピックには、類似したトピックが複数出現し、分類の精度が下がるという問題も存在する。

そこでこの論文では、前処理として分析対象としている文書から適切なストップワードリストを 作成する方法を提案している。また、トピックモデルを適用後の後処理として、トピックを構成し ている単語の類似度からトピック間の距離を算出し、類似しているトピックを統合することでより 正確なトピック分類を可能にする手法を提案している。図2は提案手法の全体像である。

図 2: 提案手法の流れ

ストップワードリストを作成する手順を図3で示している。この手法では、まず対象としている文書全体に対して出現率が高い単語をストップワードとして抽出する。出現率の算出にははDF(Document Frequency)を用いている。DFとは、文書全体に対してある単語Tが含まれる文書数のことであり、事前に設定した閾値よりも高いDF値を持つ単語をストップワードリストに加える。次に、抽出した単語と意味的に類似している単語をさらにストップワードとしてリストに加え

る. word2vec を用いて文章中の各単語を周辺の単語から学習し、単語の分散表現を得て単語間の類似度を算出する. それによりある単語 T の類似単語を抽出することができ、ある閾値以上の類似度を示した単語を全てストップワードリストに加える. これにより、DF 値が高くない場合でも文書の特徴を表しにくい単語をストップワードリストに加えることが可能になる.

図 3: ストップワード抽出手法の流れ

トピックモデル適用後の後処理では、分類結果に似たよったトピックが存在する場合にそれらのトピックを統合する処理を行うことを提案している.類似トピックの判断基準には、TF-IDF cos 類似度推定法が用いられている.これは、cos 類似度の計算に使用するベクトルの成分を TF-IDF で算出したものにした手法である.この研究では、分類した各トピックの単語集合に対して TF-IDF cos 類似度を利用したクラスタリングを行い、その結果に従ってトピックを統合する手法を提案している.

以上の提案手法を LDA のよるメーリングリストのトピック分類に適用し、評価項目に基づいて 比較することで提案手法の有効性の評価を行っている。評価項目として、一般的なストップワード リストを用いた手法と提案手法を比較している。また、後処理として類似トピックの統合を行った 場合についても比較を行っている。トピック分類の正確さを評価する指標として、適合率、再現率、 それらの調和平均の F 値を採用している。実験結果を表 2 に示している。

表 2: ストップワード数(#N), 適合率, 再現率, F 値の結果

	# <i>N</i>	適合率	再現率	F 値
ストップワードなし	なし	0.047	0.497	0.086
Fox ストップ ワードリスト	425	0.237	0.397	0.297
Poisson ストップ ワードリスト	1238	0.355	0.422	0.385
RAKE	500	0.091	0.423	0.149
提案手法 (前処理)	761	0.411	0.418	0.414
提案手法 (前処理+後処理)		0.489	0.453	0.470

3 研究目的

研究目的

第II部

提案手法

4 トピックモデル

トピックモデルの説明

4.1 Latent Dirichlet Allocation

LDA の説明

4.2 Biterm Topic Model

BTM の説明

5 提案システム

ここでは、前項で説明した Bitem Topic Model を用いて、YouTube 上で自社製品やサービスを 宣伝している動画に対するユーザーのコメントから、宣伝している商品やサービスに対して関連性 が高いコメントを抽出するシステムを提案する. また、提案したシステムの精度を検証する方法に ついても説明する.

5.1 データ収集

実験に用いる YouTube のコメントは, YouTube Data API v3 を用いて取得した.

- 5.2 前処理手法
- 5.3 BTM によるトピック抽出
- 5.4 文章生成
- 5.5 文章間の類似度計算
- 5.6 提案システムの精度検証

第III部

実験結果

6 実験目的、仮説

第IV部

参考文献

- [1] 機械学習を用いた自然言語処理による商品レビューの評価
- [2] 単語の出現頻度と類似性に基づいたトピックモデル洗練化手法