## $\LaTeX 2_{\varepsilon}$ Template

## April 1, 2018

$$u_p^l(r,\phi) \propto r^l L_p^l(2r^2/w^2) e^{-r^2/w^2} \frac{e^{-il\phi}}{e^{-il\phi}}$$
 (1)

1. Low gain.

2. 
$$H \sim \int d^3 \mathbf{r} \chi^{(2)}(\mathbf{r}) E_p^{(+)}(\mathbf{r}, t) E_s^{(-)}(\mathbf{r}, t) E_i^{(-)}(\mathbf{r}, t) + H.c.$$

3. 
$$H = i\hbar\Gamma \int d\mathbf{q}_s d\mathbf{q}_i F(\mathbf{q}_s, \mathbf{q}_i) a_{\mathbf{q}_s}^{\dagger} a_{\mathbf{q}_i}^{\dagger} + H.c.$$

4.

$$F(\mathbf{q}_s, \mathbf{q}_i) = C \exp\left\{-\sigma^2 \frac{(\mathbf{q}_s + \mathbf{q}_i)^2}{2}\right\} \operatorname{sinc}\left(\frac{L(\mathbf{q}_s - \mathbf{q}_i)^2}{4k_p}\right) \exp\left\{i\frac{L(\mathbf{q}_s - \mathbf{q}_i)^2}{4k_p}\right\}$$

5. 
$$|\psi\rangle = \exp\left\{-\frac{i}{\hbar} \int_{-\infty}^{\infty} dt H(t)\right\} |0\rangle \approx -\frac{i}{\hbar} \int_{-\infty}^{\infty} dt H|0\rangle$$

6. Shmidt decomposition

7. 
$$F(q_s, q_i, \phi_s - \phi_i) = \sum_{s} \chi_n(q_s, q_i) e^{in(\phi_s - \phi_i)}$$

8. 
$$\chi_n(q_s, q_i) = \sum_{m} \sqrt{\lambda_{mn}} \frac{u_{mn}(q_s)}{\sqrt{q_s}} \frac{v_{mn}(q_i)}{\sqrt{q_i}}$$

9. 
$$F(\mathbf{q}_s, \mathbf{q}_i) = \sum_{m,n} \sqrt{\lambda_{mn}} \frac{u_{mn}(q_s)}{\sqrt{q_s}} \frac{v_{mn}(q_i)}{\sqrt{q_i}} e^{in(\phi_s - \phi_i)}$$

10. broadband modes and high gain

11. 
$$A_{mn}^{\dagger} = \int d\mathbf{q}_s \frac{u_{mn}(q_s)}{\sqrt{q_s}} e^{in\phi_s} a_{\mathbf{q}_s}^{\dagger}$$

12. 
$$B_{mn}^{\dagger} = \int d\mathbf{q}_i \frac{v_{mn}(q_i)}{\sqrt{q_i}} e^{-in\phi_i} a_{\mathbf{q}_i}^{\dagger}$$

13. 
$$H = i\hbar\Gamma \sum_{m,n} \sqrt{\lambda_{mn}} (A_{mn}^{\dagger} B_{mn}^{\dagger} - A_{mn} B_{mn})$$

14. 
$$\frac{dA_{mn}}{dt} = \frac{i}{\hbar}[H, A_{mn}]$$

15. 
$$A_{mn}^{out} = A_{mn}^{in} \cosh[G\sqrt{\lambda_{mn}}] + [B_{mn}^{in}]^{\dagger} \sinh[G\sqrt{\lambda_{mn}}]$$

16. 
$$B_{mn}^{out} = B_{mn}^{in} \cosh[G\sqrt{\lambda_{mn}}] + [A_{mn}^{in}]^{\dagger} \sinh[G\sqrt{\lambda_{mn}}]$$

17. 
$$\frac{da_{\mathbf{q}_{s,i}}}{dt} = \Gamma \sum_{m,n} \sqrt{\lambda_{mn}} \frac{u_{mn}(q_s)}{\sqrt{q_s}} \left[ A_{mn}^{\dagger} e^{-in\phi_{s,i}} + B_{mn}^{\dagger} e^{in\phi_{s,i}} \right]$$

18. 
$$\langle N_s(\mathbf{q}_s) \rangle = \sum_{m,n} \frac{|u_{mn}(q_s)|^2}{q_s} (\sinh[G\sqrt{\lambda_{mn}}])^2$$

19. three crystals

20.

$$F(\mathbf{q}_{s}, \mathbf{q}_{i}) = C \exp\left\{-\sigma^{2} \frac{(\mathbf{q}_{s} + \mathbf{q}_{i})^{2}}{2}\right\} \operatorname{sinc}\left(\frac{\Delta \widetilde{q}L}{2}\right) \times \left(\exp\left\{\frac{i\Delta \widetilde{q}L}{2}\right\} + \exp\left\{i(\Delta \widetilde{q}^{air}d_{1} + \frac{3}{2}\Delta \widetilde{q}L)\right\} + \exp\left\{i(\Delta \widetilde{q}^{air}(d_{1} + d_{2}) + \frac{5}{2}\Delta \widetilde{q}L)\right\}\right)$$
(2)

21.

$$\Delta \widetilde{q} = \frac{(\mathbf{q}_s - \mathbf{q}_i)^2}{2k_p}$$

22.

$$\Delta \widetilde{q}^{air} = \frac{(\mathbf{q}_s - \mathbf{q}_i)^2}{2k_p} n_s + \frac{2\delta n^{air} k_s}{n_s}$$

23. splitters

24.

$$|\psi_{in}\rangle = g(a_1^{\dagger})|0\rangle = \sum_{n=0} g_n(a_1^{\dagger})^n|0\rangle$$

25.

$$|\psi_{aux}\rangle = f(a_2^{\dagger})|0\rangle = \sum_{n=0} f_n(a_2^{\dagger})^n|0\rangle$$

26.

$$|\psi\rangle = |\psi_{in}\rangle \otimes |\psi_{aux}\rangle = \sum_{m,n=0} \alpha_{m,n} (a_1^{\dagger})^m (a_2^{\dagger})^n |0\rangle^{\otimes 2}$$

27.

$$r_i^2 + t_i^2 + a_i^2 = 1$$

28.

$$a_1^\dagger \to r_j a_1^\dagger + i t_j a_2^\dagger$$

29.

$$a_2^{\dagger} \rightarrow r_j a_2^{\dagger} + i t_j a_1^{\dagger}$$

30. 4 channels

31. 
$$|\psi_4\rangle = \sum_{i,j,k,m} \beta_{i,j,k,m} (a_1^{\dagger})^i (a_2^{\dagger})^j (a_3^{\dagger})^k (a_4^{\dagger})^m |0\rangle^{\otimes 4}$$

32. both ideal detectors were clicked

33.

$$|\psi_{after}\rangle = 0$$

34. First and only one ideal detector was clicked

35. final state

36.

$$|\psi_{out}\rangle = \sum_{m,n} \alpha_{m,n} (a_1^{\dagger})^m (a_2^{\dagger})^n |0\rangle^{\otimes 2}$$

37. example with two coherent states - alpha=1

38.

$$|\alpha\rangle\otimes|\alpha\rangle\approx e^{-1}(1+1)$$