

Gsm Channel: 512: Measure Occupied Bandwidth

Date: 22.MAY.2015 16:03:28

Gsm,512 : Measure bandwidth 26dB Date: 22.MAY.2015 16:03:18

Gsm Channel: 661: Measure Occupied Bandwidth

Date: 22.MAY.2015 16:04:04

Gsm,661 : Measure bandwidth 26dB Date: 22.MAY.2015 16:03:55

Gsm Channel: 810: Measure Occupied Bandwidth

Date: 22.MAY.2015 16:04:41

Gsm,810 : Measure bandwidth 26dB Date: 22.MAY.2015 16:04:31

5.3.7 Test results WCDMA

Wcdma Channel: 9263: Measure Occupied Bandwidth

Date: 14.AUG.2015 11:02:54

Wcdma,9263 : 26 dB Bandwidth Date: 14.AUG.2015 11:03:19

Wcdma Channel: 9400: Measure Occupied Bandwidth

Date: 14.AUG.2015 11:05:37

Wcdma,9400 : 26 dB Bandwidth Date: 14.AUG.2015 11:06:02

Wcdma Channel: 9538: Measure Occupied Bandwidth

Date: 14.AUG.2015 11:08:44

Wcdma,9538 : 26 dB Bandwidth Date: 14.AUG.2015 11:09:09

Wcdma Channel: 4132: Measure Occupied Bandwidth

Date: 14.AUG.2015 11:03:43

Wcdma,4132 : 26 dB Bandwidth Date: 14.AUG.2015 11:04:08

Wcdma Channel: 4182: Measure Occupied Bandwidth

Date: 14.AUG.2015 11:06:29

Wcdma,4182 : 26 dB Bandwidth Date: 14.AUG.2015 11:06:54

Wcdma Channel: 4233: Measure Occupied Bandwidth

Date: 14.AUG.2015 11:09:32

Wcdma,4233 : 26 dB Bandwidth Date: 14.AUG.2015 11:09:58

5.3.8 Measurement uncertainties

Technology	Uncertainty
GSM850	± 1.3 kHz
PCS1900	± 1.3 kHz
WCDMA	± 55.5 kHz

5.4 Frequency Stability Measurement

5.4.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block.

5.4.2 Limit

The frequency stability of the transmitter shall be maintained within \pm 0,00025% (\pm 2,5 ppm) of the centre frequency.

5.4.3 Measuring instruments

The measuring instruments are listed in chapter 3.4 of this report.

5.4.4 Test setup

5.4.5 Test procedure for Temperature Variation

- 1) The EUT was set up in the thermal chamber and connected with the system simulator.
- 2) With Power off, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3) With Power off, the temperature was incremented in 10 °C steps up to 50 °C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

5.4.6 Test procedure for Voltage variation

- 1) The EUT was placed in a temperature chamber at 25±5 °C and connected with system simulator.
- 2) The power supply voltage attached to the EUT was varied from BEP (Battery End Point) to 115% of the nominal value measured at the input to the EUT.
- 3) The variation in frequency was measured for the worst case and recorded.

5.4.7 Test Result of Temperature variation

Test results GSM and PCS

Band	GSM850	Mid channel	162
		Frequency	836.6 MHz
	PCS1900	Mid channel	661
		Frequency	1880 MHz
Limit [ppm]	±2,5	Vnom= 4.0 [V]	BEP < 3,6 V

Temperature	GSM850 MHz		GSM1900 MHz	
[°C]	Frequency Dev.[Hz]	Deviation [ppm]	Frequency Dev.[Hz]	Deviation [ppm]
-30	5,75	0,007	-1,87	0,001
-20	2,45	0,003	-9,1	0,005
-10	8,52	0,010	-1,03	0,001
0	6,78	0,008	0,0	0,0
10	7,10	0,008	-0,39	0,0
20 (nom)	6,46	0,008	-10,01	0,005
30	9,36	0,011	-12,4	0,007
40	7,55	0,009	-1,23	0,001
50	9,36	0,011	-6,46	0,003

Test results WCDMA

Band	WCDMA Band II	Mid channel	9400
		Frequency	1880 MHz
	WCDMA Band V	Mid channel	4182
Limit [ppm]	±2,5	Frequency	836,4 MHz

Temperature	WCDMA Band II		WCDMA Band V	
[°C]	Frequency	Frequency Deviation		Deviation
	Dev,[Hz]	[ppm]	Dev,[Hz]	[ppm]
-30	5,48	0,003	8,33	0,01
-20	8,44	0,001	7,88	0,009
-10	-51,8	0,006	6,87	0,008
0	2,88	0,002	2,17	0,003
10	18,4	0,002	52,33	0,013
20 (nom)	-5,25	0,003	3,8	0,005
30	16,5	0,009	-0,79	0,001
40	-6,07	0,003	3,03	0,004
50	-8,95	0,005	4,03	0,005

5.4.8 Test Result of Voltage variation

Band &	Mode	Voltage	Frequency	Deviation	Limit
Channel		[V]	Dev. [Hz]	[ppm]	(ppm)
GSM850	GSM	BEP < 3,6	4,97	0,006	±2,5
Ch. :190		4,0	3,55	0,004	
		4,255	4,26	0,005	
PCS1900	GSM	BEP < 3,6	-10,72	0,006	
Ch.: 661		4,0	-10,72	0,006	
		4,255	-8,85	0,005	
WCDMA II	RMC	BEP < 3,6	26,17	0,014	
Ch.: 9400	12,2	4,0	-5,25	0,003	
	Kbps	4,255	2,33	0,001	
WCDMA V	RMC	BEP < 3,6	10,41	0,012	
Ch.: 4182	12,2	4,0	3,8	0,005	
	Kbps	4,255	2,33	0,001	

5.4.9 Measurement uncertainties

Measurement uncertainties are within the 95% Confidence interval at= \pm 0.011 [ppm]

5.5 Radiated spurious emissions / Band edge emissions

5.5.1 Limit

The power of any emission outside of the authorized operating frequency ranges must be below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

5.5.2 Measuring instruments

The measuring instruments are listed in chapter 3.4 of this report.

5.5.3 Test setup

As shown in chapter 3.3 of this report.

5.5.4 Test procedure

As these tests are performed as radiated measurement, these are performed within the SAC chamber. These are mainly done at two attempts:

- a) For frequencies below 1 GHz utilizing a BiconiLog antenna.
- b) For frequencies above 1 GHz using a Horn antenna.

The measurements are repeated for both horizontal and vertical orientation of the antenna pointing at the EUT placed on the centre of a turn table.

Note 1: The graphics below represent radiated power levels calculated from the measured radiated field strength in the far field. This due to limitations of the spectrum analyzer.

Note 2: For WCDMA band 2 high pass filter No. 15 is used, and for WCDMA band 5 high pass filter No. 16 is used.

Note 3: To convert dBµV/m to dBm, see the conversion factors below are used.

Above 1 GHz:

EIRP (dBm) = E (dB μ V/m) – 95.2(dBm).

Below 1 GHz:

ERP (dBm) = E (dB μ V/m) – 97.3(dBm).

5.5.5 Test results GSM 850

Ch. 128, Horizontal pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 12:10:30

Ch. 128, Vertical pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 12:54:48

Ch. 162, Horizontal pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 11:55:06

Ch. 162, Vertical pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 11:45:51

Ch. 251, Horizontal pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 13:18:41

Ch. 251, Vertical pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 13:09:23

Ch. 128, Horizontal pol, (1 ≤ F < 9 GHz)

Ch. 128, Vertical pol, (1 ≤ F < 9 GHz))

Ch. 162, Horizontal pol, (1 ≤ F < 9 GHz)

Ch. 162, Vertical pol, (1 ≤ F < 9 GHz)

Ch. 251, Horizontal pol, (1 ≤ F < 9 GHz)

Ch. 251, Vertical pol, $(1 \le F < 9 \text{ GHz})$

5.5.6 Test results PCS 1900 MHz

Ch. 512, Horizontal pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 14:04:43

Ch. 512, Vertical pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 14:10:53

Ch. 661, Horizontal pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 14:33:16

Ch. 661, Vertical pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 14:23:46

Ch. 810, Horizontal pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 15:14:41

Ch. 810, Vertical pol, (0.03 < F < 1 GHz)

Date: 16.JUL.2015 15:20:42

Ch. 512, Horizontal pol, (1 ≤ F < 18 GHz)

Ch. 512, Vertical pol, (1 ≤ F < 18 GHz)

Ch. 661, Horizontal pol, (1 ≤ F < 18 GHz)

Ch. 661, Vertical pol, (1 ≤ F < 18 GHz)

Ch. 810, Horizontal pol, (1 ≤ F < 18 GHz)

Ch. 810, Vertical pol, (1 ≤ F < 18 GHz)

5.5.7 Test results WCDMA Band 2

1. 30 MHz to 1 GHz See plots in 5.5.5

Ch. 9263, Horizontal pol, (1 ≤ F < 18 GHz)

Ch. 9263, Vertical pol, (1 ≤ F < 18 GHz)

Ch. 9400, Horizontal pol, (1 ≤ F < 18 GHz)

Ch. 9400, Vertical pol, (1 ≤ F < 18 GHz)

Ch. 9538, Horizontal pol, (1 ≤ F < 18 GHz)

Ch. 9538, Vertical pol, (1 ≤ F < 18 GHz)

