DSC5103 Statistics

Session 8. Bagging and Random Forest

Last time

- The Basics of Decision Trees
 - Regression Trees
 - Building and Pruning Trees
 - Classification Trees
 - Trees vs. Linear Models
 - Advantages and Disadvantages of Trees
 - Suffer from big categorical variables
 - Low accuracy, High variance

Plan for today

- The Bootstrap
- Bagging and Random Forest

Ensemble methods in general

Dealing with Uncertainties

- Uncertainties in predictive analytics
 - Sample uncertainty: data sample is a random draw from the population
 - Data partition uncertainty: due to validation/cross-validation
 - Tool related uncertainty: randomization inside the algorithm
 - Test data uncertainty

- All estimation/learning methods depend on the data sample, which is random. If we could repeatedly and independently sample from the population, we can
 - estimate the variance of the output (e.g., β _hat, trees)
 - average over multiple outputs to reduce variance
 - but ...

The Bootstrap

- The bootstrap: a flexible and powerful statistical tool for generating new samples from the current sample
- The idea: to mimic the process of obtaining new data
 - Obtain distinct datasets by repeatedly sampling n observations from the original dataset with replacement => multiple bootstrap samples
 - Obtain estimates/predictions for each bootstrap sample => multiple bootstrap estimates
 - Calculate standard error/confidence interval (called Bootstrap Percentile) of the bootstrap estimates, which approximates the true standard error/confidence interval
 - Average over multiple predictions to reduce variance/overfitting

The Bootstrap

Bagging -- Motivation

- Decision trees suffer from <u>high variance!</u>
 - If we randomly split the training data into 2 parts, and fit decision trees on both parts, the results could be quite different
- To reduce variance
 - By regularization: pruning
 - By averaging:
 - Averaging over a set of trees if we have multiple training sets
 - If not, we can use bootstrap => <u>bagging</u> (<u>bootstrap</u> <u>aggregating</u>)

Bagging in General

- Bagging is an extremely powerful idea based on two things:
 - Bootstrapping: generate plenty of training datasets
 - Lead to many parallel models with similar bias

Aggregating: reduce variance by averaging

Bagging for Trees

- Generate B different bootstrapped training datasets
- Construct B trees using the bootstrapped training datasets without pruning
 - Each individual tree has high variance but low bias
- Averaging these trees reduces variance, and thus we end up lowering both variance and bias ©
- Prediction:
 - For regression: average the resulting predictions
 - For classification: majority vote by the class that each bootstrapped data set

Bagging for Trees

Example: Boston Housing Data

Bagging does not overfit as the number of trees increases

Out-of-Bag (OOB) Error Estimation

- A very straightforward way to estimate the test error of a bagged model
 - On average, each bootstrap sample takes around 2/3 of the observations, so we end up having the rest 1/3 <u>Out-of-Bag</u> observations
 - The remaining non-selected part could be used as the validation data
 - We can predict the response for the i-th observation using each of the trees in which that observation was OOB. This will yield around B/3 predictions for the ith observation, which we average.
- This estimate is essentially the LOOCV error for bagging, if B is large
 - No more CV!

Random Forest

- Motivation
 - Bagging works because of the variance reduction
 - Averaging the prediction of B correlated models
 - Random Forest: further de-correlate the trees to improve variance reduction
- How does it work?
 - Each time a split in a tree is considered, a random sample of *m* predictors is chosen as split candidates from the full set of *p* predictors
 - How to choose m?
 - If m=p, it becomes Bagging
 - Rule of thumb: m=p/3 for regression; m=sqrt(p) for classification
 - Can be easily tuned by OOB error

Why it works?

- In Bagging, a strong predictor will dominate in all the trees
- All bagged trees will look similar => highly correlated predictions
- Averaging many highly correlated quantities does not lead to a large variance reduction

- Random forest "de-correlates" the bagged trees by giving chance to weak predictors
 - less correlated predictions
 - more reduction in variance

Example: Boston Housing Data

RF outperforms because it is a generalization of Bagging

Random Forest with different values of "m"

Tuning parameter m

Interpretability

- Bagging/RF improves prediction accuracy at the expense of interpretability
 - Bagging/RF typically improves the accuracy over prediction using a single tree
 - It is no longer clear how to interpret the forest of trees

- But, we can still get an overall summary of the impact of each predictor
 - Relative Influence Plots
 - Partial Dependency plots

Relative Influence Plots

- How do we decide which variables are most useful in predicting the response?
- Relative Influence Plots
 - 1. The decrease in accuracy with vs. without a predictor, averaged over all trees
 - The total amount of deviance/gini that is decreased due to splits over a given predictor, averaged over all B trees. A large value indicates an important predictor.

Example: Boston Housing Data

rf.boston

Partial Plot in RF

Partial dependence on individual predictors

Ensemble Methods

Aggregation of predictions of multiple models with the goal of improving accuracy

- Famous example: the Netflix million dollar challenge
 - http://www.netflixprice.com
 - The top solution consists of blending of 107 individual results
 - Two top ranked teams united by merging their results and achieved better accuracy
 - Winning solution based on GBM: http://www.netflixprize.com/assets/GrandPrize2009 BPC BellKor.pdf

http://www2.research.att.com/~volinsky/netflix/

Ensemble Methods

Intuition: Utility of combining diverse, independent opinions in human decision-making

- Example:
 - Vote by 5 completely independent classifiers with 70% accuracy => 83.7% accuracy
 - Vote by 101 such classifiers => 99.9% accuracy