Texhuчeckoe задание для эксперементального чипа FRAM

Соловьянов Михаил. Лаборатория Нейровычислительных систем. 12 сентября 2020 г.

1 Постановка задачи

Предлагается в сжатые сроки создать уникальный чип-тестовую станцию, для тестирования инновационных энергоэффективных видов памяти. Помещение тестирующей аппаратуры прямо «на чип» позволит избежать проблем связанных с паразитными параметрами зондовых станций, что позволит изучать высокочастотные характеристики памяти, а также позволит автоматизировать процесс изучения качества выращенной памяти.

2 Устройство чипа

Поставленные требования будут достигнуты следующим образом: чип будет состоять как из массивов памяти, так и из аналогового измерительного блока, информация от которого может в оцифрованном виде поступать в контроллер чипа. Контроллер будет представлять из себя встроенный микропроцессор управляющий памятью и измерительными блоками, а также обмениваться информацией, настройками и записанными измерениями с внешним миром через интерфейс SPI.

Рис. 1: Супер общая схема чипа

Примерное устройство чипа представлено на рисунке, и предполагает контроль/измерение нескольких ядер различной памяти,а также анализаторов от-

клика, с возможностью подключать их как к интересующим нас столбцам выбранного стека, так и к индивидуальной ячейки. Планируется покрыть спектр измерений ячеек, схожий с возможностями тестовой станции <u>B1500A</u>

Ядро памяти (Test memory array) Представляет собой почти обычное ядро памяти (для примера можно посмотреть ядро DRAM памяти (рис. 2)), только с конденсаторами интересующего нас массива, а так же с драйвом (то есть подачей питания) для нижней обкладки.

Рис. 2: Для понимания схема DRAM

Измерительная часть (Measuring electronics block)

Контроллер чипа (Digital logic)

Переферия

3 Выполнение

Предлагаю скоординировать коллектив, выполнение и постановку тактических задач в $\underline{\text{Todoist}}$.

3.1 Roadmap

Предположительно придется уложиться вот в такие сроки (уточнить практическую возможность):

Рис. 3: Черновик предлагаемой карты проекта

Aктуальная ссылка на карту проекта: https://docs.google.com/spreadsheets/d/liLgjOFxgOekC7h_q5b4wdxDc1nRjKAJDCEXyratIL5U/edit?usp=sharing

3.2 Квалификации

Ниже приведены необходимые hard skills к выполнению задач, а так же люди подходящие под описание. Диму я исключил тут из всех категорий, но он есть во всех видимо.

- **Цифровая электроника** Разработка контроллера, имлементация verilog кода, настройка синтеза на кристалл. (Миша)
- **Аналоговая электроника** Схемотехника, Симуляция, Создание Layout ячеек (Паша, Миша)
- Python programming : создание компилятора для SPICE и физической репрезентации, возможно написание скриптов для отладки, тестирования, автоматизированной симуляции. (Паша, Миша)

3.3 Имеющиеся Ассеты

- Имеется недописанный компилятор ядра
- В открытом доступе можно найти много verilog кода для RISCV архитектуры и перефирии.
- SRAM компилятор для проекта от Микрона
- У Димы есть готовый базовый чип памяти, но он плохо маштабируется. Можно использовать для референса ядра.