Carlos kno 8eña

En los ejercicios 1 a 8, completar la tabla y utilizar el resultado para estimar el límite. Representar la función utilizando una herramienta de graficación, con el fin de confirmar su resultado.

1.
$$\lim_{x \to 4} \frac{x-4}{x^2-3x-4}$$

X	3.9	3.99	3.999	4.001	4.01	4.1
f(x)	/	Fee:	, L	0.0006		,

2.
$$\lim_{x\to 2} \frac{x-2}{x^2-4} = 0.25$$

X	1.9	1.99	1.999	2.001	2.01	2.1
f(x)	0204	1.950	DOCAL	0.2499	240	200

En los ejercicios 25 y 26, utilizar la gráfica de la función f para determinar si existe el valor de la cantidad dada. De ser así, ubicarla; si no existe, explicar por qué.

25. a) f(1)

- b) $\lim f(x)$

- f(0) -
- $\lim f(x)$
- e) f(2)
- f) $\lim_{x \to \infty} f(x)$
- f(4)
- $\lim f(x)$

Lim F(x) = 2

F(-2) = No exist.

F(2) - No es ta dexinida.

En los ejercicios 5 a 22, calcular el límite.

5.
$$\lim_{x\to 2} x^3 = F(2) = 2^3 = 2 = 2 = 6$$
. $\lim_{x\to -2} x^4$

7.
$$\lim_{x\to 0} (2x-1)$$

8.
$$\lim_{x \to -3} (3x + 2)$$

49.
$$\lim_{X \to 0} \frac{x}{x^2 - x} = \frac{0}{o^2 - o}$$

 $\lim_{X \to 0} \frac{x}{x^2 - x} = \lim_{X \to 0} \frac{0}{x^2 - x}$
 $\lim_{X \to 0} \frac{x}{x^2 - x} = \lim_{X \to 0} \frac{x}{x^2 - x} = \lim_{X \to 0} \frac{1}{x^2 - x^2} = \lim_{X \to 0} \frac{1}{x$

50.
$$\lim_{X\to 0} \frac{3x}{x^2+2x} = \frac{3(0)}{0^2+2(0)} = \frac{0}{0}$$

Lin
$$\frac{3x}{x \to 0}$$
 $\frac{3x}{x^2 + 2x} = \frac{2x}{x \to 0} = \frac{3x}{x^2 + 2x} = \frac{3x}{x^2 +$

51. Lim
$$\frac{x-4}{x^2-16} = \frac{4-4}{4^2-16} = \frac{0}{0}$$

$$\frac{\text{Lim}}{x \to 4} \frac{x - 4}{x^2 - 16} = \frac{\text{Lim}}{x \to 4} \frac{x + 4}{(x \to 4)(x + 4)} = \frac{1}{x \to 4} = \frac{1}{x \to 4} = \frac{1}{x \to 4}$$

$$\frac{1}{x \to 4} \frac{1}{x^2 - 16} = \frac{1}{x \to 4} = \frac{1}{x \to 4}$$

$$52. \lim_{X \to 3} \frac{3-x}{x^2-9} = \frac{3-3}{3^2-9} = \frac{0}{0}$$

$$\lim_{X \to 3} \frac{3-x}{x^2-9} = \lim_{X \to 3} \frac{3x}{(x+3)} = \lim_{X \to 3} \frac{7}{(x+3)} = \lim$$

73.
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 - q} = \frac{-3^2 + (3) - 6}{-3^2 - q} = \frac{0}{0}$$
 $\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 - q} = \lim_{x \to -3} \frac{(x + 3)(x - 2)}{(x + 3)(x - 2)} = \lim_{x \to -3} \frac{x - 2}{x - 3} = \frac{1}{0}$
 $\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 - q} = \lim_{x \to -3} \frac{(x + 3)(x - 2)}{(x + 3)(x - 3)} = \lim_{x \to -3} \frac{x - 2}{x - 3} = \frac{1}{0}$
 $\lim_{x \to -3} \frac{x^2 + x + 4}{x^2 - 2x - 8} = \lim_{x \to -4} \frac{(x + 3)(x - 2)}{(x - 2)(x + 3)} = \lim_{x \to -4} \frac{x - 2}{x - 4} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 4}{x^2 - 2x - 8} = \lim_{x \to -2} \frac{x - 2}{y - 2} = \lim_{x \to -2} \frac{x - 2}{y - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 4}{x^2 - 2x - 8} = \lim_{x \to -2} \frac{x - 2}{y - 2} = \lim_{x \to -2} \frac{x - 2}{y - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 4}{x^2 - 2x - 8} = \lim_{x \to -2} \frac{x - 2}{y - 2} = \lim_{x \to -2} \frac{x - 2}{y - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 4}{x^2 - 2x - 8} = \lim_{x \to -2} \frac{x - 2}{y - 2} = \lim_{x \to -2} \frac{x - 2}{y - 2} = 0$
 $\lim_{x \to -2} \frac{x - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 8} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 - 2x + 2}{x - 2x - 2} = 0$
 $\lim_{x \to -2} \frac{x^2 -$

57. Lim
$$\sqrt{x+5} - \sqrt{5} = \sqrt{0+5} - \sqrt{5} = 0$$

Lim $\sqrt{x+5} - \sqrt{5} = \sqrt{x+5} + \sqrt{5} = \lim_{X \to 0} (\sqrt{x+5}) + (\sqrt{5})^2 = \lim_{X \to 0} ($