الإجابة النموذجية وسلم التنقيط متحان البكالوريا دورة: 2014 اختبار مادة: الرياضيات–علوم تجريبية لمدة: 3 سا و30 د

العلامة		عناصر الإجابة	(الموضوع الأول)
مجموع	مجزأة	ما المار المجاب	
			<u>التمرين الأول: (04 نقاط)</u>
	0,50	بان (v_n) متتالیة هندسیة $\cdot v_{n+1} = \frac{2}{3}v_n$	$^{\circ}$ من أجل كل n من أجل (1
	0,50	$v_0 = 5$	أساسها $\frac{2}{3}$ و حدّها الأورّ
04	0,50×2	$u_n = 5\left(\frac{2}{3}\right)^n - 4 \text{o} v_n = 5\left(\frac{2}{3}\right)^n$	، $\mathbb N$ من أجل كل n من (2
	0,50	$u_{n+1} - u_n < 0$ و منه $u_{n+1} - u_n = 5\left(\frac{2}{3}\right)^n \left(-\frac{1}{3}\right)^n$	، $\mathbb N$ من أجل كل n من (3) ، (u_n) متتالية متناقصة تم
	0,50		$\frac{(u_n)}{-\left(\frac{2}{3}\right)^{n+1}} - 4(n+1)$ (4
	0,50	\mathbb{N} الإن (w_n) متزايدة تماما على $w_{n+1}-w_n>0$ ، ا	\mathbb{N} من أجل كل n من n
	0,50	$\cdot \left(\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0\right)$ لأنّ	$\lim_{n\to+\infty} (u_n - w_n) = 0 \ (\hookrightarrow$
	0,75		التمرين الثاني: (05 نقاط)
		C غير مرتبطين خطيا إذن A ، A و A A غير مرتبطين خطيا إذن A	$0;1) \cdot \overrightarrow{AB}(-3;3;0) (1)$
			.(ABC) تعیّن مستویا
	01	و منه $\overrightarrow{n}(1;1;1)$ شعاع $\overrightarrow{n}\perp \overrightarrow{AC}$ و منه $\overrightarrow{n}\perp \overrightarrow{AB}$ شعاع \overrightarrow{n} .	$\overrightarrow{AC} = 0$ و $\overrightarrow{n}.\overrightarrow{AB} = 0$ (ب
			ناظمي للمستوي (ABC).
	0.50	(ABC	$C): x + y + z + d = 0 (\Rightarrow)$
05	0,50	(ABC): $x+y+z-2=0$ أي: d	$=-2$ و منه: $A \in (ABC)$
	01	$\cdot G\left(-\frac{1}{2};2;\frac{1}{2}\right)$ اِذِن $\overrightarrow{OG} = \frac{\overrightarrow{OA} + 2\overrightarrow{OB} - \overrightarrow{OC}}{2}$ (1) (2)	
	0,50	$[GD]$ إذن Γ هو المستوي المحوري للقطعة $[GD]$.	MD معناه $M\in (\Gamma)$ ب
	0,50	$\cdot(\Gamma)$: (6x - 4y + 2z + 3 = 0 (=
		$\overrightarrow{n}(1;1;1)$ ناظمي لــر (Γ) . ناظمي للمستوي $\overrightarrow{n}(1;1;1)$ شعاع ناظمي للمستوي	(3) ليكن (6;-4;2) شعاع
	0,25	ا. إذن (ABC) و (Γ) متقاطعان وفق مستقيم (Δ) .	_ → →

الإجابة النموذجية وسلم التنقيط متحان البكالوريا دورة: 2014 اختبار مادة: الرياضيات– علوم تجريبية المدة: 3 سا و30 د

نمة	العلا	عناصر الإجابة	(المعرض عالم الأمار)
مجموع	مجزأة	حصصر الإجابة	(الموضوع الأول)
	0,50	أو أي تمثيل آخر $x = 3t + \frac{1}{2}$ $y = 2t + \frac{3}{2}$ $(t \in \mathbb{R})$ $z = -5t$	
		قاط)	التمرين الثالث: (05 نا
	0,75	$z'' = 3\sqrt{2}(1-i) = \overline{z'}$ $z' = 3\sqrt{2}(1+i)$	$\Delta = \left(6\sqrt{2}i\right)^2 (1)$
	0,75	$.(1+i)z_A = 6\sqrt{2}e^{i\frac{\pi}{2}} \cdot z_B = z'' = 6e^{-i\frac{\pi}{4}} z_B = z'' = 6e^{-i\frac{\pi}{4}}$	
	0,50	$\cdot \left(\frac{\left(1+i\right)z_A}{6\sqrt{2}}\right)^{201}$	$=e^{i1007\pi}=-1$ (φ
05	01	بن النقط $O:B:A:O$ تتتمي إلى نفس $DO=DA=D$ إذن النقط $\sqrt{2}$.	,
		$\cdot \left(\overrightarrow{CA}; \overrightarrow{CB}\right) = rg\left(rac{z_B - z_C}{z_A - z_C} ight) = CA$ و متساوي الساقين $CA = CB$ و النقطة D	$\frac{\pi}{2} \cdot \frac{z_B - z_C}{z_A - z_C} = i (2)$
	0,75	$z_D = rac{z_C}{2}$ و كذلك منتصف القطعة $[OC]$ لأنّ	
	0,25	دوران z'=iz :R دوران	
	0,50	ومنه $\overrightarrow{C'A}$ و مرتبطان خطیا $z_{\overrightarrow{AC}} = 3\sqrt{2}(1-i) = z_{\overrightarrow{C'A}}$	
	0,50	رالمربع) الدوران R هو الرباعي $OACB$ بالدوران R هو الرباعي $R(B)=A$ ، $R(B)=A'$ ، $R(O)=C'$ ، $R(A)=A'$ ، $R(O)=C'$	
	0,25	,	التمرين الرابع: (06 نا
	×	(C_f) المستقيم ذو المعادلة $x=0$ هو مستقيم مقارب للمنحنى ا $\lim_{x o \infty}$	$\int_{0}^{\infty} f(x) = -\infty (1)$
	4	$\cdot (C_f)$ ــا نقيم ذُو المعادلة $y=1$ هو مستقيم مقارب	
02,75	0,50	$f'(x) = \frac{2}{x^2} (1 - \ln x) \cdot]0; +\infty[$	ب) من أجل كل x من
	0,25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$: f'(x) إشارة
	0,25	$[e;+\infty[$ و متناقصة تمامًا على $[e;+\infty[$	
	0,25	لدالة . f	– جدول تغيّرات
	0,50	$0 - 1 + +\infty$ و منه إشارة $f(x)-1$ هي: $f(x)$	$(x) - 1 = \frac{2\ln x}{x} $ (i) (2)

الإجابة النموذجية وسلم التنقيط متحان البكالوريا دورة: 2014 اختبار مادة: الرياضيات–علوم تجريبية لمدة: 3 سا و30 د

العلامة		عناصر الإجابة	(1.51.5
مجموع	مجزأة	عاصر الإجاب	(الموضوع الأول)
	0,25	(Δ) أسفل (Δ) ، من أجل x من $1;+\infty[$ على (Δ) أعلى (C_f) . $A(1;1)$	$]0;1[$ من أجل x من أجل $\left(C_f ight)$ فو $\left(\Delta ight)$ يقطع
	0,25		(T): y = 2x - 1 (ب
	0,75	$\lim_{x \stackrel{>}{\longrightarrow} 0} f\left(x\right) = -\infty$ متز ايدة تماما على المجال $\left[0;1\right]$ ، و $\left[0;1\right]$ تقبل حلا مسب مبر هنة القيم المتوسطة فإنّ المعادلة $f\left(x\right) = 0$ تقبل حلا $\left[0;1\right]$ $\left[0;1\right]$ $\left[0;1\right]$ $\left[0;1\right]$ أي: $\left[0;1\right]$ $\left[0;1\right]$	و $0 < 1 = (1)$ ؛ إذن وحيدا α في المجال]
	0,50		 (T) إنشاء المماس (3)
03,25	0,50	و منه h دالة زوجية $h(x) - h(-x) = 0$ ، $\mathbb{R} - \{0\}$ ، و منه h دالة زوجية أو $h(yy')$ محور نتاظر لـــ $h(C_h)$.	
03,23	0,50	$(C_f$) و منه (C_h) ينطبق على $h(x) = f(x)$ ، (yy') هو نظير (C_f) بالنسبة إلى (C_h)	
	0,50		$ x^2 = (m-1) x $ (ج $ x^2 = (m-1) x $ (ج $ x^2 = (m-1) x $ تقاطع المنحنی $ x^2 = (m-1) x $ المعادل $ x^2 = (m-1) x $

الإجابة النموذجية وسلم التنقيط متحان البكالوريا دورة: 2014 اختبار مادة: الرياضيات– علوم تجريبية المدة: 3 سا و30 د

العلامة			
مه مجموع		عناصر الإجابة	(الموضوع الثاني)
04	0,75	$q=e^{-1}$ إذن $\left(u_{n} ight)$ متتالية هندسية أساسها . $u_{n+1}=e^{-1}.u_{n}$ ،	$u_0 = \sqrt{e}$ و حدّها الأول
	0,75	متتالیة متقاربة. (u_n)	$\lim_{n\to+\infty}u_n=0$ (2) انتج أنّ
	0,50		$S_n = \sqrt{e} \left(\frac{1 - e^{-n-1}}{1 - e^{-1}} \right) $ (3)
	0,50	$v_{n+1} = v_n - 1$ ، N من $v_n = \frac{1}{2} - n$ ،	$\mathbb N$ من أجل كل n من ($\mathbb I$
	0,50	$v_0=rac{1}{2}$ يها $r=-1$ وحدّها الأوّل $r=-1$	إذن (v_n) متتالية حسابية أساء
	0,50	$P_n = \frac{1-n^2}{2}$ أي $P_n = v_0 + v_1 + v_2 + \dots + v_n = 0$	
	0,50		$1>0$ أي $P_n+4n>0$
	0,50	$n \in \{0,1,2,3,4,5,6,7,8\}$ أي $n \in \{0,1,2,3,4,5,6,7,8\}$	
	0,75	C عير مرتبطين خطيا إذن \overrightarrow{AC} و \overrightarrow{AC} و $\overrightarrow{AC}(1;1)$	التمرين الثاني: (05 نقاط) $\overrightarrow{AB}(0, 1, 1)$
		.AC (1, عير مرتبطين حطيا إدن B (AC و C	ا) ۱، (۱، (۱, –۱, –۱) (۱ (۱ ليست في إستقامية.
	0,75	او أي تمثيل $\begin{cases} x = 1 + \beta \\ y = -1 - \alpha + \beta \end{cases}$, $(\alpha, \beta \in \mathbb{R})$: (ABC)	
	0,75	x+y-z-2=0 هي: (ABC)	ج) التحقق أنّ معدلة للمستوع
	0,25	(Q) مي لـــ (P) و $(3;2;-1)$ شعاع ناظمي لـــ (P)	
05	0,75	(Δ) با إذن (P) و (Q) يتقاطعان وفق مستقيم $x=t-3$ $y=-t$ $(t\in\mathbb{R})$ هو: (Δ) هو (Δ)	
	0,75	$\cdot (t = -6) \cdot (ABC) \cap (P) \cap (Q) = \{E(-9; 6;$	(3) تقاطع المستويات : {(5–
	0,50	$ x - y - 2z + 5 = 3x + 2y - z + 10 $ أي $\sqrt{6} \times d(M, (B))$	$(P) = \sqrt{14} \times d(M,(Q))$
	_		$:$ ديث: $(\Gamma) = (P_1) \cup (P_2)$
	0,50	$(P_2): 4x + y - 3z + 15 = 0 (P_2): 4x + y - 3z + 15 = 0$	(2x + 3y + z + 5 = 0)

الإجابة النموذجية وسلم التنقيط متحان البكالوريا دورة: 2014 اختيار مادة: الرياضيات – علوم تجريبية المدة: 3 سا و 30 د

العلامة		عناصر الإجابة	(الموضوع الثاني)
مجموع	مجزأة		
,			التمرين الثالث: (04 نقاط
	0,25	$z=i$ و منه $\left(z^2-2z+5=0\right)$ و منه $\left(z$	
	0,75	$z'' = 1 - 2i \cdot z' = 1 + 2i \cdot \Delta = (4i)$	
	0,75	C 9	B ، A إنشاء النقط (2)
04	0,25		$z_H = 1 + i (\hookrightarrow $
	0,50	$\mathscr{A} = 2 cm^2$ هي: ABC	
	0,50	$z'=rac{1}{2}iz+rac{1}{2}+i$ الكتابة المركبة لـ S هي: S الكتابة المركبة ال	
	0,50	$\mathscr{A}'=rac{1}{4} imes 2=rac{1}{2}cm^2$ بالتشابه S هي: ABC بالتشابه ويا	
	0,50	[OD] ومنه مجموعة النقط هي محور القطعة $ z = z+2-i $	z = iz + 1 + 2i (4) ائي $D(-2;1)$ حيث
	0,50	•	التمرین الرابع: (07 نقاط $g(x) = -\infty$ ((1(I
		$x \to +\infty$ ، $x \to +\infty$.	$\rightarrow -\infty$
02	0,75	متز ایدة تماما علی \mathbb{R} . جدول تغیّرات الدالهٔ g .	
02		ة تماما على \mathbb{R} ، $g(0,8) \simeq 0.06$ و $g(0,7) \simeq -0.37$ إذن	2) أ) g مستمرة و متزايدة
	0,50	$0.7: قبل حلا وحيدا lphaحيث g\left(x ight)=0 نقبل حلا وحيدا$	حسب مبرهنة القيم المتوسط
	0,25	$-\infty$ $ 0$ 0 $+$ 0 0 0 0 0 0 0 0 0 0	
	0,50	$\lim_{x \to +\infty} f(x) = +\infty :$	$\lim_{x \to -\infty} f(x) = -\infty \text{ (1 (II))}$
05	0,50	$\int_{x \to +\infty} f(x) = +\infty $	2) أ) برهان أنّ من أجل كل
	0,50	$\lim_{x \to +\infty} \left f(x) - \frac{1}{2}(x+1) \right = 0 \lim_{x \to -\infty} \left f(x) - \frac{1}{2}(x+1) \right = 0$	$(x) - \frac{1}{2}(x+1) = 0$ (ب)
		$y = \frac{1}{2}(x+1): (\Delta)$ متقیماً مقاربا مائلا	إذن المنحى $\left(C_f ight)$ يقبل مس
	0,50	، $\mathbb R$ من أجل كل x من أجل $f(x) - \frac{1}{2}(x+1)$ $-\infty + \frac{1}{3} - +\infty : f(x)$	$0 = \frac{1 - 3x}{2(2x^2 - 2x + 1)}$ (\(\alpha\)
		$-\infty + \bigoplus_{i=1}^{\frac{1}{3}} - +\infty : j$	$f(x) - \frac{1}{2}(x+1)$ إشارة
		وْإِنّ $\binom{C_f}{3};+\infty$ فَإِنّ $\binom{\Delta}{2}$ وَإِذَا كَانَ $\binom{\Delta}{2}$ يَنْتَمِي إِلَى $\binom{\Delta}{3}$	$-\infty$; $\frac{1}{3}$ إذا كان x ينتمي إلى $\frac{1}{3}$
		$A\!\left(rac{1}{3};rac{2}{3} ight)$ يقطع Δ في كيون (Δ	$\left(C_f ight)$ و $\left(\Delta ight)$ أسفل $\left(C_f ight)$

الإجابة النموذجية وسلم التنقيط متحان البكالوريا دورة: 2014 اختبار مادة: الرياضيات–علوم تجربيبة المدة: 3 سا و30 د

0,50	$f'(x) = \frac{x \cdot g(x)}{(2x^2 - 2x + 1)^2}$ ، \mathbb{R} من أجل كل x من x أ) من أجل كل x من x	
0,25	$-\underline{\infty}$ + 0 α + + ∞ : $f'(x)$ اشارة (y)	
	f : f : الدالة	
0,25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$f(x) \qquad \qquad \downarrow f(\alpha) \qquad \downarrow$	
0,25	f(1) = 0 (4)	
0,50	$(x-1)(x^2+x-1)=0$ أي $\frac{(x-1)(x^2+x-1)}{2x^2-2x+1}=0$ تعني $f(x)=0$ التالي $x^2+x-1=0$ أو $x^2+x-1=0$ علول المعادلة هي: $x_2=\frac{-1+\sqrt{5}}{2}$, $x_1=\frac{-1-\sqrt{5}}{2}$, $x_0=\frac{-1+\sqrt{5}}{2}$	
0,50	$\left(C_f ight)$ و المنحنى $\left(\Delta ight)$ و المنحنى (5	
0,25	$h(x) = f(x) - 2$ ، \mathbb{R} من x من أجل كل x من أجل كل أ) التحقق من:	
0,25	$\stackrel{ ightarrow}{v}(0;-2)$ هو صورة C_f بالانسحاب الذي شعاعه C_h	
0,25	إنشاء (C_h) في المعلم السابق.	