Welcome to Week 16, Lecture 01!

Linear Regression -Revisited

Agenda

- Assignments
- Announcements
- Today:
 - Why Use Linear Regression?
 - How does Linear Regression work?
 - What are coefficients?
 - The 4 Assumptions of Linear Regression
 - o Demo: How to fit a linear regression with statsmodels.
- Next Class:
 - Diagnosing a Regression model
 - o Iterating on our model
 - Advanced approaches

Assignments

Only 1 required assignment:

Project 3 - Part 4(Core)

Highly Recommended:

• Do Project 3 - Part 5 for your portfolio!!!

Week 3 assignment feedback will be added by E.O.D. tomorrow.

Final Assignment Deadline = Friday at 9 AM PST!

- All resubmissions from week 1 and 2.
- All week 3 and 4 assignments turned in.
 - If you are asked for resubmissions for week 3 assignments, I will extend deadline to Monday.

- Solution of the second of the second
 - Friday, July 01st @ 5 PM PST
 - Our cohort + students from 12 week program.
 - In the same Zoom Room as lecture
- Bonus Lecture Tuesday (tomorrow):
 - Topic: Deep Dive into Object-Oriented Programming
 - Date: Tuesday 06/14/22 @ 5 PM PST
 - We will first review the very basics of Object-Oriented Programming
 - Then we will discuss important special class methods
 - We will be designing a (fancy) PlayingCard class;

Why Linear Regression?

Why Linear Regression?

PROS:

- Its quick!
- Its simple.
- It's easy to interpret.

CONS:

- It's the "dumbest" regression model.
- Least accurate.
- It's picky! (There are several assumptions built into it, like hypothesis testing.)

Interpretability

You have been hired by a homeowner's association to analyze the prices of homes sold in their region and to give them advice on how to increase the resale value of their homes.

We want a simple way to summarize the effect of a feature on the home's price. For example, Square Footage.

What data science/machine learning tools do we have that would accomplish this?

How does it work?

Linear Regression!

- It calculates a best-fit line that has:
 - o *m*: a slope/rate of change.
 - o b: the y-intercept/constant.

How does it work?

- Try many different values for slope
- Try many different values for the intercept
- Choose the best slope and intercept that minimized the sum of the squared errors (e.g. Mean Squared Error).

What are coefficients?

In data science...

We use "betas" (β) to represent our **coefficients**.

- The slope (m) for X-column becomes β₁
- The intercept (b) becomes β_0

Multiple Regression

With multiple X-columns, we calculate a coefficient for each column $(\mathbf{x}_1, \mathbf{x}_2, \text{ etc})$.

$$y = \beta_1 x_1 + \beta_2 x_2 + ... + \beta_0$$

bedrooms

Colab Notebook

- Here is the colab notebook that generated the visualizations on the prior slides.
 - It has a small example of a Linear Regression with scikit-learn.
 - Depending on time, we may/may not walk through it in class. 0

Because today...we are abandoning scikit-learn! 😱

Linear Regression Assumptions

The 4 Assumptions of Linear Regression

The first 2 assumptions are about the **features**:

- Linearity
- Independence of features (AKA Little-to-No Multicollinearity)

The last 2 assumptions are about the residuals (errors):

- Normality
- Homoscedasticity

Assumption of Linearity

That the input features have a linear relationship with the target.

- To check:
 - Use visualizations!

Independence of features

(AKA Little-to-No Multicollinearity)

That the features are not strongly related to other features.

- To Check:
 - Use correlation heatmaps!
 - Use Variance Inflation Factor!

Normality (of residuals)

The model's residuals are approximately normally distributed.

- To Check:
 - Use a Quantile-Quantile (Q-Q)
 Plot!

Homoscedasticity (Equal Variance)

The model residuals have equal variance across all predictions.

- To Check:
 - Plot a residual scatter plot!
 - X-axis: Predicted Y-Values
 - Y-axis: Residuals (y-y_pred)

Fitting a Linear Regression with Statsmodels

Walkthrough: Linear Regression with statsmodels

Fitting a linear regression to predict movie revenue.

- Basically, the optional assignment: Project 3 Part 5.
- Repo: https://github.com/coding-dojo-data-science/data-enrichment-linear-regression-with-movies

Today:

- Preparing the data for a statsmodels OLS.
- Fitting and evaluating an OLS model.
- Interpreting the Model Summary and its coefficients.

Next Class:

- Diagnosing the model
- Better meeting the assumptions
- Advanced approaches to dealing with multicollinearity

Branch from Class

"Week-of_06-13-22":

https://github.com/coding-dojo-data-science/data-enrichment-linear-regression-with-movies/tree/week-of_06-13-22