UNCLASSIFIED

AD NUMBER

AD343884

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational use; 9 Oct 1963. Other requests shall be referred to Office of Naval Research, Arlington VA 22217-0000.

AUTHORITY

31 Dec 1972, GDS, DoD 5200.1-r per document marking; ONR ltr 4 May 1977

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

GENERAL "CLASSIFICATION SCHEDULE

IN ACCORDANCE WITH
DOD 5200.1-R & EXECUTIVE ORDER 11652

THIS DOCUMENT IS:

CLASSIFIED BY____

Subject to General Declassification Schedule of Executive Order 11652-Automatically Downgraded at Years Intervals- DECLASSIFIED ON DECEMBER 31, 7 2.

BY

Defense Documentation Center
Defense Supply Agency
Cameron Station
Alexandria, Virginia 22314

AD 343884

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION

AFFECTING THE NATIONAL DEFENSE OF

THE UNITED STATES WITHIN THE MEAN
ING OF THE ESPIONAGE LAWS, TITLE 18,

U.S.C., SECTIONS 793 and 794. THE

TRANSMISSION OR THE REVELATION OF

ITS CONTENTS IN ANY MANNER TO AN

UNAUTHORIZED PERSON IS PROHIBITED

BY LAW.

343884

National Research Corporation

CONFIDENTIAL

vom ivlmiral

Research Division

NATIONAL RESEARCH CORPORATION

70 Memorial Drive

Cambridge 42, Massachusetts

NRC Project 54-1-0226

This document consists of 20, pages and 2 figures. This is copy 25 of 165 copies.

Nonr 3608(00)

Special Report

HEAT OF FORMATION OF Li3AlH6 (C)

DOWNGRADED AT 3 YEAR INTERVALS DECLASSIFIED AFTER 12 YEARS DOD DIR 5200.10

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

Submitted to:

Department of the Navy Office of Naval Research Washington 25, D. C. Prepared by: Indwig J. Fasolini

Ludwig G. Fasolino Project Manager

Approved by:

Allen L. Klibanoff

Program Director

Reviewed by:

John V. E. Hansen, Director Marketing and Contracts

9 October 1963

TABLE OF CONTENTS

	<u>Page</u>
LIST OF ILLUSTRATIONS	ii
LIST OF TABLES	iii
ABSTRACT	iv
INTRODUCTION	. 1
APPARATUS	1
MATERIALS	2
EXPERIMENTAL	2
RESULTS	3
DISCUSSION	4
APPENDIX I	I-1
APPARATUS	I-1.1
APPENDIX II	11-1
MATERIALS	11-1.1
Lithium	11-1.1
Aluminum	11-1.1
L1-A1-H	11-1.2
Results	11-1.2

- ii -

LIST OF ILLUSTRATIONS

Figure 1 - CALORIMETER

Figure 2 - REACTION BOMB

- 111 -

LIST OF TABLES

TABLE I - Electrical Calibrations

TABLE II - Heat of Solution of Aluminum and Lithium

TABLE III - Heat of Solution of Lithium Aluminum Hydride

TABLE IV - Heat of Solution of Runs 1 - 4 Li3AlH6

- iv -

ABSTRACT

The heat of formation of a material, Li_3AlH_6 , (synthesized at Reaction Motors) has been determined in this laboratory by measuring the heats of reaction of aluminum, lithium, and Li_3AlH_6 in 4 N HCl at 25°C in a closed bomb.

The heats of solution were found to be:

	△H ₂₉₈ · kcal/mole				
Aluminum	-128.14 <u>+</u> 0.39				
Lithium	-67.05 ± 0.53				
Li3AlH6	-249.90 ± 1.47				

From this data, the heat of formation of Li3AlH6 was calculated to be:

 $\triangle \text{Hf}_{298} \circ \text{Li}_{3}\text{AlH}_{6} = -79.4 \pm 3.4 \text{ kcal/mole}$

- 1 -

INTRODUCTION

Recently, Reaction Motors Division of Thiokol Chemical Corporation has successfully synthesized a compound which, upon analysis, appears to be Li₃AlH₆. A sample of this material was received from Reaction Motors for thermochemical study in an attempt to determine its heat of formation.

The method employed was that of measuring the heats of solution of aluminum, lithium, and Li_3AlH_6 in 4 N HCl, from which the heat of formation of the compound was calculated.

Although the aluminum and lithium data, and a description of the apparatus were reported in an earlier report, they are repeated here for the convenience of the reader.

APPARATUS

The calorimeter is described in detail in Appendix I. It consists essentially of an adiabatically-operated Parr combustion calorimeter, modified to increase its sensitivity. The temperature sensing element is a thermistor in a Wheatstone bridge network with a sensitivity of 6.8×10^{-5} °C or 0.17 calories. Under adiabatic conditions the thermal leak rate is 7×10^{-5} deg. min. The reaction was carried out in a bomb in which the liberated hydrogen was confined.

¹Special Report, "Heat of Formation of LiAlH₄," National Research Corporation, April 1963, Nonr - 3608(00)

- 2 -

MATERIALS

The following materials were used in this work:

Material	Source	Purity
Aluminum	Mallinkro Chemicals	99.9%
Lithium	Lithium Corporation of America	99.9%
Li3AlH6	Reaction Motors Division, Thickel Chemical	92.87%

The analyses of these materials are shown in Appendix II.

EXPERIMENTAL

One-hundred fifty m1 of 4 N HCl was added to the bomb. To this was added 4 drops (0.17 gm) of 10% platinum chloride solution as a catalyst to hasten the reaction rates.

The samples were sealed under argon in glass ampoules. A dry box was used for preparation of the lithium and the Li3AlH6 samples. The sample-containing ampoule was placed in the bomb, the lid put in place, and the air exhausted from the bomb. Argon was allowed to replace the air. This procedure prevented the possible ignition of the hydrogen-oxygen mixture which would be present during and after a run. The omission of this step resulted in a hydrogen-oxygen combustion in an early run.

The bomb was placed in the calorimeter bucket and 2000 ml of distilled water added. The bucket and jacket temperatures were adjusted to 24.85°C to 25.00°C. Upon reaching equilibrium

CONFIDENTIAL

- 3 -

conditions the reaction was initiated by turning down the central shaft which lowered the baffle plates and crushed the glass ampoule. All runs were performed adiabatically. The evolved hydrogen was confined within the bomb during each of the runs.

RESULTS

From the amounts of materials used, the following equations represent the reactions studied:

Heats of reaction at constant volume, $\triangle E$, were converted to their corresponding constant pressure values by the equation:

$$\triangle H = \triangle E + \triangle nRT$$

Tables II and III present the experimental data. Run Li-9 shows no measurable effect by doubling the sample weight. Runs A1-10 and A1-11 were made in 4 N HCl containing lithium ions at a concentration equal to that following a lithium run. No significant difference is noted when compared with aluminum runs made in the absence of the lithium ions. The possibility of interaction at these dilutions is shown to be negligible.

- 4 -

From the measurements of the heats of solution, the heat of formation of Li3AlHa was calculated:

	$\Delta^{\text{H}}_{\text{reac}}$, kcal/mole
$\Delta H_1:1x[A1 + 3HC1(aq)>$ $A1C1_3(soln) + 3/2H_2$	-128.14 <u>+</u> .39
$\Delta H_2:3x[Li + HCl(aq)>$ $LiCl(soln) + 1/2H_2$	(3x) - 67.05 + 0.53 = $-201.15 + 1.6$
$\triangle H_3:1x[Li_3A1H_6 + 6HC1(aq)> (A1C1_3 + LiC1)(soln) + 6H_2]$	-249.89 <u>+</u> 1.47

3Li + Al + 3H₂ ---> Li₃AlH₆

$$\triangle$$
Hf₂₉₈° Li₃AlH₆ = \triangle H₁ + \triangle H₂ - \triangle H₃
= -79.39 + 3.45 kcal/mole

All uncertainties listed in this work are twice the standard deviation, or 2 ~, according to Rossini².

DISCUSSION

Upon receiving the Li3AlH6 from Reaction Motors, four samples were prepared in our vacuum dry box for preliminary calorimetric runs. No samples were taken at this time for concurrent chemical analysis. The heats of reaction of these four runs as shown in Table IV were higher than the second batch of samples used in runs 5 to 11. During the preparation of this second batch of samples, material was also prepared for the analytical

 $^{^{\}mathbf{2}}$ F.D.Rossini, Chemical Reviews $\underline{^{18}}$, 233 (1936)

- 5 -

work, the results of which were utilized in this work. It appears that the material was in a higher purity state at the first sampling, but that either with time, or accidental sampling contamination, the purity of the second sampling was lessened.

APPENDIX I

APPARATUS

The heats of solution were measured in a modified Parr combustion calorimeter operated adiabatically (see Figure 1).

The bomb (see Figure 2) consisted of a nickel alloy body, the inner wall of which was gold-plated. A special lid was constructed through which passed a centered, gas-tight, moveable shaft. Two baffle plates were attached to the bottom section of the shaft which allowed the sample (contained in a glass vial) to be crushed while submerged in the acid. The plates further prevented splattering resulting from violent reactions. A thin tantalum sheet was placed on the bottom of the bomb. The bottom plate was constructed of tantalum, also. The lid bottom, shaft, and upper baffle were also gold-plated for protection against attack by the acid. A relief valve was also built into the lid to exhaust the bomb prior to a run and to release hydrogen following the run.

The lid to the calorimeter jacket was modified to allow the crushing shaft, thermistor tube, and heater tube to pass through to the calorimeter bucket contained within. Beckmann thermometers were used to monitor the bucket and jacket water temperatures. Improvements in water circulation were made by increasing the rate of stirring (small pulley used) and by placing a tube around the stirrer blades.

FIGURE I

APPENDIX II

MATERIALS

Lithium --

The lithium metal was obtained from Lithium Corporation of America as 99.9% lithium.

Spectrographic Analysis of Lithium

Element sought	Found (ppm)
Fe	1
Ni	<1
Cr	<1
A1	<10
Ti	ND<1
Cu	<5
Ca	10
Mg	10
V	ND<1
Pb	ND<5
Sn	ND<1
Mn	<1
Co	ND<10

Aluminum --

The aluminum wire was obtained from Mallinkrodt Chemicals.

Element sought	Found (ppm)		
Ni	0<10		
Ti	0<10		
Fe	10		
Cr	<10		
Mg	<10		
Mn	ND<5		
Si	10		
В	ND<10		
V	ND<10		
Cu	<10		

II-1.2

Li-Al-H

The sample was obtained from Reaction Motors Division of Thiokol Chemical Corporation. The material was analysed as follows:

aluminum - EDTA

lithium - flame photometer

hydrogen - evolution by reaction with HCl

chlorine - volumetric

Results

% A1	% Li	%LiCl	% H	
45.70	37.39			
45.60	37.72			
45.59	37.51			
45.45	37.84	 .		
45.77	38.01		9.82	
45.77	37.67	1.79 (0.29% Li)	9.84	
45.65	37.68	1.79 (0.29% L1)	9.83	Averages

The % Li as LiC1, when subtracted from total lithium yields 37.39% lithium in the Li-Al-H compound.

II-1.3

The purity of the compound Li-Al-H equals 92.87%. The stoichiometry was determined as follows:

	%	Moles	Molar Li		based on	Average
Li	37.39	5.39	3.00	3.19	3.31	3.17
A1	45.65	1.69	0.94	1.00	1.03	0.99
H	9.83	9.75	5.45	5.77	6.00	5.74

The material was, therefore, assigned the formula: $\label{eq:Li3AlH6} \text{Li}_3\text{AlH}_6.$

TABLE I

The second of

ELECTRICAL CALIBRATIONS

1/ohm						
$\mathbf{E} = \frac{\mathbf{q}}{\sqrt{\mathbf{R}}}, \operatorname{cal/ohm}$	32.22	32.14	32.46	32.39	32.39	
∧R, ohms	16.438	17.972	17.093	17.384	17.562	
q, cal.	529.68	577.54	554.80	563.09	568.91	

32.32 + .119* Average

*Uncertainty calculated as twice the standard deviation = 2 ~

m, gm 0.2404 0.2398 0.2696 0.2700 0.0696 0.0768 0.0954 0.0954 0.1395 ean	TABUE II			
Mo. m, gm	HEAT OF REACTION OF ALUMINUM WITH 4N HCI	M WITH 4N HCl	4	
O	a,	E. △ B- ^c pt*	-\lambda \begin{align*} \mathbb{E}_298 \\ \mathrm{ca} 1/mole \end{align*}	-\rangle H 298 cal/mole
0.2398 31.812 0.2696 36.010 0.2700 36.067 0.2701 35.971 35.971 36.034 2.2703 36.034 3	36.03	1147.2	128757	197860
0.2696 36.010 0.2700 36.067 35.971 35.971 35.971 36.034 2.2707 36.034 36.111	36.	1143.7	128685	197797
O . 2700		1294.9	129593	128705
0.2701 35.971 36.034 3		1297.0	129611	128723
0 0.2719 363.04 0.2707 36.034 0.2707 36.034 0.2703 36.111		1293.5	129213	128325
0.2707 36.034		1305.5	129549	128661
Mo. m.gm A. A. A. Wean Wo. m.gm A. A. O.0596 18.764 O.0777 20.935 O.0835 22.911 O.0954 25.446 O.1395 37.701 Wean Wean Wean	36	1295.8	129156	128268
Mean		1296.1	129377	128489
				128230
# HEAT OF REACTION OF BEACTION OF SEACTION OF SEACTIO				
HEAT OF REACTION OF REACTION OF TRACTION O				0.21
No. m,gm ARA. 0.0696 18.764 0.0777 20.935 0.0778 20.758 0.0835 22.911 0.0954 25.446 0.1395 37.701 Mean Wean Uncertainty	IT OF REACTION OF LITHIUM WITH	M WITH 4N HC1		
Mo. m.gm A.R.A. 0.0696 18.764 0.0777 20.935 0.0778 20.758 0.0835 22.911 0.0954 25.446 0.1395 37.701 Mean Wean Uncertainty			- <u>/</u> E ₂₉₈	-\ Hoas
0.0696 18.764 0.0777 20.935 0.0768 20.758 0.0835 22.911 0.0954 25.446 0.1395 37.701 Wean C.	#	R. △ R- ^c pt	cal/mole	cal/mole
0.0777 20.935 0.0768 20.758 0.0835 22.911 0.0954 25.446 0.1395 37.701 Mean C. Break	8 764 35 07	274 O**		
0.0768 20.758 0.0835 22.911 0.0954 25.446 0.1395 37.701 Mean Mean C.		750 0**	67240	66990 66913
0.0835 22.911 0.0954 25.446 0.1395 37.701 Mean Mean C.		746 7**	67465	10600
0.0954 25.446 0.1395 37.701 Mean Mean - C		824 1**	68484	80170
0.1395 37.701 Mean Mean Uncertainty		915 34*	66575	66970
tai.	.701	1358.4**	62229	67273
tai				
ncertai				67059
				516
5 2				0.77

 $^*c_{pt}$ = Catalyst Correction = 2.5 cal/0.17 gm $_{\rm H_2PtCl_6}$ (10% solution) **No catalyst used.

248.896 + 1.47***

Average

TABLE III

HEAT OF SOLUTION OF LISATH

- AH kcal/mole corr.	250.021	251.855	249.548	251.988	248.098	248.802	248.954	
kcal/mole Unc**	232.195	233.899	231.756	234.022	230.409	231.066	231.204	
kcal/mole	235.765	237.469	235.326	237.592	233.879	234.636	234.774	
$\mathcal{E}_{\stackrel{\sim}{\circ}_{\overline{a}}\overline{1}}$	556.03	399.53	449.24	455.77	475.78	467.53	479.14	
m, gens	0.1270	9060.0	0.1028	0.1033	0.1095	0.1073	0.1099	
Run	8B	9B	10B	11B	12B	13B	14B	

*Corrected for heat of breaking glass capsules = 0.9 cals, 4 drops of 10% solution of $\rm H_2Pt + Cl_6$ catalyst = 2.5 cals **Uncorrected in respect to purity **Uncorrected in respect to purity

E = 32.32 cal/ohm

M = 53.850

 $\triangle H = \triangle K + \triangle nRT$, where $\triangle nRT = 3.57$ kcal

II-1.7

TABLE IV

HEAT OF SOLUTION OF Lizalhe (FIRST SAMPLING)

- AH kcal/mole Purity unknown	237.625	237.679	238.765	237.211	
kcal/mole	241.195	241.249	242.335	240.781	
€ ∧ R*	459.10	430.53	467.57	386.77	
m, gms	0.1025	0.0961	0.1039	0.0865	
Run	2B	3B	4B	ев	

237.820 + 0.664** Average

**Uncertainty calculated as twice the standard deviation = 2σ 4 drops of 10% solution of $H_2Pt + Cl_6$ catalyst = 2.5 cals *Corrected for heat of breaking glass capsule = 0.9 cals,

 \mathcal{E} = 32.32 cal/ohm

M = 53.850

 \triangle H = \triangle B + \triangle nRT, where \triangle nRT = 3.57 kcal

UNCLASSIFIED

UNCLASSIFIED