

CLAIMS

What is claimed is:

- 1 1. In a digital communications network, a method comprising:
 - 2 checking a multiplexed connection's bandwidth capacity to carry a call
 - 3 over a link; and
 - 4 overflowing the call onto a non-multiplexed connection, when the
 - 5 multiplexing connection's bandwidth is insufficient to carry the call.

- 1 2. The method of claim 1, further comprising sending the call over the
- 2 multiplexed connection when the multiplexed connection's bandwidth is sufficient
- 3 to carry the call.

- 1 3. The method of claim 2, wherein overflowing the call comprises:
 - 2 adding a single non-multiplexed connection over the link per call;
 - 3 transmitting the call over the non-multiplexed connection; and
 - 4 tearing down the single non-multiplexed connection once the call is
 - 5 completed.

- 1 4. The method of claim 3, wherein the multiplexed connection is a
- 2 multiplexed Q.AAL2 signaling channel.

- 1 5. The method of claim 4, wherein the non-multiplexed connection is a non-
- 2 multiplexed Q.AAL2 signaling channel.

- 1 6. An apparatus for use in a digital communication network, comprising:

2 means for checking a multiplexed connection's bandwidth capacity to
3 carry a call over a link; and
4 means for overflowing the call onto a non-multiplexed connection, when
5 the multiplexing connection's bandwidth is insufficient to carry the
6 call.

1 7. The apparatus of claim 6, further comprising means for sending the call
2 over the multiplexed connection when the multiplexed connection's bandwidth is
3 sufficient to carry the call.

1 8. The apparatus of claim 7, wherein the means for overflowing the call
2 comprises:

3 means for adding a single non-multiplexed connection over the link per
4 call;
5 means for transmitting the call over the non-multiplexed connection; and
6 means for tearing down the single non-multiplexed connection once the
7 call is completed.

1 9. The apparatus of claim 8, wherein the multiplexed connection is a
2 multiplexed Q.AAL2 signaling channel.

1 10. The apparatus of claim 9, wherein the non-multiplexed connection is a
2 non-multiplexed Q.AAL2 signaling channel.

1 11. A computer-readable medium having stored thereon a plurality of
2 instructions, said plurality of instructions when executed by a computer, cause
3 said computer to perform the method of:

4 checking a multiplexed connection's bandwidth capacity to carry a call
5 over a link; and
6 overflowing the call onto a non-multiplexed connection, when the
7 multiplexing connection's bandwidth is insufficient to carry the call.

1 12. The computer-readable medium of claim 11 having stored thereon
2 additional instructions, said plurality of instructions when executed by a
3 computer, cause said computer to further perform the method of sending the call
4 over the multiplexed connection when the multiplexed connection's bandwidth is
5 sufficient to carry the call.

1 13. The computer-readable medium of claim 12 having stored thereon
2 additional instructions, said plurality of instructions when executed by a computer
3 for overflowing the call, cause said computer to further perform the method of:
4 adding a single non-multiplexed connection over the link per call;
5 transmitting the call over the non-multiplexed connection; and
6 tearing down the single non-multiplexed connection once the call is
7 completed.

1 14. The computer-readable medium of claim 13, wherein the multiplexed
2 connection is a multiplexed Q.AAL2 signaling channel.

1 15. The computer-readable medium of claim 14, wherein the non-multiplexing
2 connection is a non-multiplexed Q.AAL2 signaling channel.

1 16. A digital communication switch comprising:
2 a processor coupled to a bus;

3 a storage device coupled to the bus storing instructions executed by the
4 processor; and

5 a buffer for storing voice data cells,
6 wherein the processor monitors the available bandwidth of a multiplexed
7 connection, receives a voice call, and routes the call according to the available
8 bandwidth.

1 17. The switch of claim 16, wherein the processor overflows the call onto a
2 non-multiplexed connection when the available bandwidth of the multiplexed
3 connection is insufficient to carry the call.

1 18. The switch of claim 17, wherein the processor sends the call over the
2 multiplexed connection when the available bandwidth of the multiplexed
3 connection is sufficient to carry the call.

1 19. The switch of claim 18, wherein the multiplexing connection is a
2 multiplexed Q.AAL2 signaling channel.

1 20. The switch of claim 19, wherein the non-multiplexing connection is a non-
2 multiplexed Q.AAL2 signaling channel.