

SEARCH

INDEX DETAIL JAPANESE

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-138371

(43)Date of publication of

26.05.1998

application:

(51)Int.Cl.

B32B 1/02 B29C 49/22

> B32B 7/02

> 7/12 B32B

> B32B 27/36 B65D 65/40

B65D 81/24

// B29K 67:00

B29K101:12 B29L 9:00

B29L 22:00

(21)Application number:

09-259259

(71)Applicant: **KUREHA CHEM IND CO LTD**

(22)Date of filing:

08.09.1997

(72)

Inventor:

SHIIKI YOSHIYA

KAWAKAMI MICHITOMO

SATO NOBUO

HOSHINO MITSURU

KAYAMA TOSHITAKA

(30)Priority

Priority number:

08265540 Priority date:

13.09.1996 Priority

JP

country:

(54) MULTILAYER HOLLOW CONTAINER OF GAS BARRIER PROPERTY

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a multilayer hollow container of a gas barrier property which is suitable as a container for materials requiring a treating process under a high temperature and high humidity state by a method wherein an instrument wall of a structure in which a polyglycolic acid layer having a specific chemical structure is combined with a thermoplastic resin layer, is provided.

SOLUTION: A multilayer hollow container of a gas barrier property having a multilayer instrument wall structure is provided wherein a thermoplastic resin layer is laminated on at least one side of a layer formed of polyglycolic acid containing 60wt.% or over repetitive unit expressed by the formula. Thermoplastic resin and as occasion demands, an adhesive are respectively melted by heating with an extruder, which is made to flow into a multilayer parison molding die to be joined, a multilayer tubular parison is extruded, which is pinched with split molds while that is solidified, and one end of the parison is pinched. Besides, air is blown in to blow to a mold wall, which is cooled and molded. The thermoplastic resin is selected from polyolefin, polyester, polystyrene, etc.

$$\begin{array}{c|c}
 & CH_* - C \\
 & 0
\end{array}$$

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-138371

(43)公開日 平成10年(1998) 5月26日

(51) Int.Cl. ⁶	識別記号	F I
B 3 2 B 1/02		B 3 2 B 1/02
B 2 9 C 49/22		B 2 9 C 49/22
B32B 7/02		B 3 2 B 7/02
7/12		7/12
27/36		27/36
		審査請求 未請求 請求項の数14 FD (全 10 頁) 最終頁に続
(21)出願番号	特願平9-259259	(71)出願人 000001100
		呉羽化学工業株式会社
(22)出願日 平成9年(1997)9月8日		東京都中央区日本橋堀留町1丁目9番11-
		(72)発明者 椎木 善彌
(31)優先権主張番号	特願平8-265540	千葉県習志野市鷺沼台1-8-37
(32)優先日	平8 (1996) 9 月13日	(72)発明者 川上 進盟
(33)優先権主張国	日本 (JP)	福島県いわき市植田町根小屋25-13
		(72)発明者 佐藤 宜夫
		福島県いわき市岩間町上山80
		(72)発明者 星野 満
		福島県いわき市錦町中央3-5-9
		(72)発明者 香山 俊孝
		福島県いわき市中岡町四丁目 2 -12
		(74)代理人 弁理士 西川 繁明

(54) 【発明の名称】 ガスバリヤー性多層中空容器

(57)【要約】

【課題】 レトルト滅菌のような高温・高湿下での処理 工程を要する物、長期保存を要する物等の容器として好 適な、酸素ガスバリヤー性及び炭酸ガスバリヤー性が特 に優れた多層中空容器を提供すること。

【解決手段】 式(1)

で表される繰り返し単位を60重量%以上含有するポリ グリコール酸から形成された層の少なくとも片面に、熱 可塑性樹脂層が積層された多層の器壁構成を有すること を特徴とするガスバリヤー性多層中空容器、及びブロー 成形法によるガスバリヤー性多層中空容器の製造方法。

【特許請求の範囲】

【請求項1】 式(1)

【化1】

$$\begin{cases}
O - CH_{\delta} - C \\
0
\end{cases}$$
(1)

で表される繰り返し単位を60重量%以上含有するポリグリコール酸から形成された層の少なくとも片面に、熱可塑性樹脂層が積層された多層の器壁構成を有することを特徴とするガスバリヤー性多層中空容器。

【請求項2】 熱可塑性樹脂層が、ボリオレフィン、ポリエステル、ポリスチレン、ボリ塩化ビニル、ボリカーボネート、ポリアミド、ポリウレタン、エチレン・ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリ乳酸、ポリこはく酸エステル、及びポリカプロラクトンからなる群より選ばれる熱可塑性樹脂から形成された層である請求項1記載のガスバリヤー性多層中空容器。

【請求項3】 23℃、相対湿度80%で測定した器壁の酸素ガス透過率及び炭酸ガス透過率の少なくとも一方が、熱可塑性樹脂層のみの器壁のそれらの値の1/2以下である請求項1または2記載のガスバリヤー性多層中空容器。

【請求項4】 ポリグリコール酸層と熱可塑性樹脂層と の間に接着剤層を介在させてなる請求項1ないし3のいずれか1項に記載のガスバリヤー性多層中空容器。

【請求項5】 接着剤層が、カルボキシル化ポリオレフィン、エポキシ化ポリオレフィン、エチレン・酢酸ビニル共重合体、アイオノマー、ポリウレタン、エボキシ樹脂、スチレン・ブタジエン・スチレンブロック共重合体エラストマー、水添スチレン・ブタジエン・スチレンブロック共重合体エラストマー、ポリクロロプレン、スチレン・ブタジエン共重合ゴム、及び天然ゴムからなる群より選ばれる接着剤から形成された層である請求項4記載のガスバリヤー性多層中空容器。

【請求項6】 ポリグリコール酸層が、(融点+20℃)の温度で、剪断速度100/秒で測定した溶融粘度 n*が500~100,000Pa・s、融点Tmが150℃以上、かつ、溶融エンタルピームHmが20J/g以上のポリグリコール酸から形成された層である請求 項1ないし5のいずれか1項に記載のガスバリヤー性多層中空容器。

【請求項7】 ボリグリコール酸が、グリコリドの開環 重合体である請求項1ないし6のいずれか1項に記載の ガスバリヤー性多層中空容器。

【請求項8】 ボリグリコール酸が、グリコリド60重量%以上100重量%未満と、シュウ酸エチレン、ラクチド、ラクトン類、トリメチレンカーボネート、及び1、3-ジオキサンからなる群より選ばれる少なくとも一種のコモノマー0重量%超過40重量%以下との共重合体である請求項1ないし6のいずれか1項に記載のガ

スバリヤー性多層中空容器。

【請求項9】 熱可塑性樹脂/接着剤/ポリグリコール酸の層構成を有する請求項1ないし8のいずれか1項に記載のガスバリヤー性多層中空容器。

【請求項10】 熱可塑性樹脂/接着剤/ポリグリコール酸/接着剤/熱可塑性樹脂の層構成を有する請求項1ないし8のいずれか1項に記載のガスバリヤー性多層中等容器。

【請求項11】 ポリオレフィン/接着剤/ポリグリコール酸/接着剤/ポリオレフィンの層構成を有する請求項10記載のガスバリヤー性多層中空容器。

【請求項12】 ポリエステル/接着剤/ボリグリコール酸/接着剤/ボリエステルの層構成を有する請求項1 ()記載のガスバリヤー件多層中空容器。

【請求項13】 式(1)

【化2】

$$\begin{bmatrix} O - CH_2 - C \\ \parallel \\ O \end{bmatrix}$$
 (1)

で表される繰り返し単位を60重量%以上含有するポリグリコール酸、少なくとも一種の熱可塑性樹脂、及び必要に応じて接着剤を、各々押出機で加熱溶融し、多層パリソン成形用ダイに流入させて合流させ、多層のチューブ状パリソンを押出し、これを固化しないうちに割り金型で挟んで、当該パリソンの一端をピンチすると共に、空気を吹き込んで金型壁までブローし、冷却して成形することを特徴とするガスバリヤー性多層中空容器の製造方法。

【請求項14】 式(1)

【化3】

$$\begin{bmatrix} O - CH_2 - C \\ \parallel \\ O \end{bmatrix}$$
 (1)

で表される繰り返し単位を60重量%以上含有するポリグリコール酸、少なくとも一種の熱可塑性樹脂、及び必要に応じて接着剤を共射出して有底パリソンを成形し、これを一旦固化させ若しくは固化させずに、過冷却状態若しくは融点Tm以下の温度で、長さ方向に延伸し若しくは延伸しないで、金型内で空気を吹き込んで金型壁までブローし、冷却して成形することを特徴とするガスバリヤー性多層中空容器の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ガスバリヤー性多層中空容器に関し、さらに詳しくは、ポリオレフィン等の熱可塑性樹脂の層とポリグリコール酸層とを組み合わせることにより、熱可塑性樹脂層の酸素ガスバリヤー性及び/または炭酸ガスバリヤー性が顕著に改善された多層中空容器に関する。本発明のガスバリヤー性多層中空容器は、飲料用、食品用、日用品用、ガソリン用等の各

種容器として特に好適である。

[0002]

【従来の技術】従来より、飲料、食品、日用品、ガソリ ン等の各種物品の容器として、各種樹脂製の中空容器が 使用されている。具体的には、例えば、ポリオレフィ ン、ポリエステル、ポリスチレン、ポリ塩化ビニル等の 熱可塑性樹脂を用いた中空容器が挙げられる。しかし、 これらの中空容器は、一般に、酸素ガスバリヤー性、炭 酸ガスバリヤー性などのガスバリヤー性が不十分である ため、特に飲料用・食品用容器、トイレタリー用容器等 の用途には不満足である。そこで、樹脂製中空容器のガ スバリヤー性を改良するために、エチレン・ビニルアル コール共重合体 (EVOH)、ポリアミド等からなるガ スバリヤー層を組み合わせた多層中空容器が開発されて いる。しかしながら、EVOHやポリアミド等のガスバ リヤー性樹脂の層は、高温・高湿下でガスバリヤー性が 大幅に劣化するため、これらの層を含有する従来の多層 中空容器は、レトルト滅菌のような高温・高湿下での処 理工程を要する物や、特別に長期保存を要する物などの 中空容器としては不十分であった。

【0003】近年、環境負荷の小さいプラスチック材料として、例えば、ボリ乳酸、ボリこはく酸エステル、ボリカプロラクトン等の生分解性ポリマーが注目され、これらの生分解性ポリマーを用いた中空容器も開発されつつある。しかし、これらの生分解性ポリマーの中空容器は、酸素ガスバリヤー性、炭酸ガスバリヤー性等のガスバリヤー性に関しては不十分である。また、これらの生分解性ポリマー層に、従来のEVOHやボリアミド等からなるガスバリヤー性樹脂層を複合化させて、ガスバリヤー性を向上させると、環境負荷が増大するという問題があった。本発明者らは、ポリグリコール酸からガスバリヤー性に優れた中空容器を製造することに成功した。しかしながら、ボリグリコール酸単層では、例えば、耐湿性、機械的強度、経済性などが必ずしも十分ではない。

[0004]

【発明が解決しようとする課題】本発明の目的は、レトルト滅菌のような高温・高湿下での処理工程を要する物、長期保存を要する物等の容器として好適なガスバリヤー性多層中空容器を提供することにある。また、本発明の目的は、酸素ガスバリヤー性及び炭酸ガスバリヤー性が特に優れたガスバリヤー性多層中空容器を提供することにある。本発明の他の目的は、環境負荷の小さいガスバリヤー性多層中空容器を提供することにある。

【0005】本発明者らは、前記従来技術の問題点を克服するために鋭意研究した結果、ポリグリコール酸層と熱可塑性樹脂層とを組み合わせることにより、熱可塑性樹脂層の酸素ガスバリヤー性及び/または炭酸ガスバリヤー性が顕著に改善されたガスバリヤー性多層中空容器が得られることを見いだした。例えば、ボリオレフィン

/ガスバリヤー性樹脂/ポリオレフィンの層構成の器壁を有する従来のガスバリヤー性多層中空容器において、EVOHやポリアミドなどからなるガスバリヤー性樹脂層に代えて、ポリグリコール酸層を配置すると、酸素ガスバリヤー性と炭酸ガスバリヤー性に優れ、高温・高温下での処理工程を要する物や長期保存を要する物の容器として十分な特性を有するガスバリヤー性多層中空容器を得ることができる。

【0006】EVOHやポリアミドなどからなるガスバリヤー性樹脂層とポリグリコール酸層を組み合わせて使用すると、酸素ガスバリヤー性のみならず、炭酸ガスバリヤー性が顕著に改善された多層中空容器を得ることができる。ボリ乳酸、ポリこはく酸エステル、ボリカプロラクトン等の生分解性ポリマー層とポリグリコール酸層とを組み合わせると、生分解性(土中崩壊性)が損なわれることなく、ガスバリヤー性や経済性に優れた多層中空容器を得ることができる。本発明は、これらの知見に基づいて完成するに至ったものである。

[0007]

【課題を解決するための手段】かくして、本発明によれば、式(1)

[0008]

【化4】

$$\begin{array}{c|c}
-C & C & C \\
\hline
0 & C & C
\end{array}$$
(1)

で表される繰り返し単位を60重量%以上含有するポリ グリコール酸から形成された層の少なくとも片面に、熱 可塑性樹脂層が積層された多層の器壁構成を有すること を特徴とするガスバリヤー性多層中空容器が提供され る。また、本発明によれば、式(1)

[0009]

【化5】

$$\begin{array}{c|c}
\hline
O - CH_8 - C \\
\parallel \\
O
\end{array}$$
(1)

で表される繰り返し単位を60重量%以上含有するポリグリコール酸、少なくとも一種の熱可塑性樹脂、及び必要に応じて接着剤を、各々押出機で加熱溶融し、多層パリソン成形用ダイに流入させて合流させ、多層のチューブ状パリソンを押出し、これを固化しないうちに割り金型で挟んで、当該パリソンの一端をピンチすると共に、空気を吹き込んで金型壁までブローし、冷却して成形することを特徴とする多層中空容器の製造方法が提供される。さらに、本発明によれば、式(1)

[0010]

【化6】

で表される繰り返し単位を60重量%以上含有するポリグリコール酸、少なくとも一種の熱可塑性樹脂、及び必要に応じて接着剤を共射出して有底パリソンを成形し、これを一旦固化させ若しくは固化させずに、過冷却状態若しくは軽点Tm以下の温度で、長さ方向に延伸し若しくは延伸しないで、金型内で空気を吹き込んで金型壁までブローし、冷却して成形することを特徴とする多層中空容器の製造方法が提供される。

【0011】熱可塑性樹脂層としては、例えば、ポリオ レフィン(メタロセン触媒によるポリオレフィンも含 む)、ポリエステル、ポリスチレン、ポリ塩化ビニル、 ポリカーボネート、ポリアミド、ポリウレタン、エチレ ン・ビニルアルコール共重合体、ポリ塩化ビニリデン、 ポリ乳酸、ボリこはく酸エステル、及びボリカプロラク トンからなる群より選ばれる熱可塑性樹脂から形成され た層が好ましい。本発明のガスバリヤー性多層中空容器 は、23℃、相対湿度(RH)80%で測定した器壁の 酸素ガス透過率及び炭酸ガス透過率の少なくとも一方 は、これら熱可塑性樹脂単独からなる中空容器の器壁の それらの値の1/2以下に低減されている。ポリグリコ ール酸層の厚みは、通常、1 μm~3 mmであり、多層 胴部側壁全体の厚みは、通常、5μm~5mmである。 また、各層間の接着性を改善するために、接着剤層を介 在させてもよい。

[0012]

【発明の実施の形態】

ガスバリヤー性多層中空容器の器壁構成

本発明のガスバリヤー性多層中空容器は、少なくとも1層の熱可塑性樹脂層(以下、ベース樹脂層ということがある)、及びボリグリコール酸層を有する多層中空容器である。必要に応じて、各層間に接着剤層を介在させることができる。本発明のガスバリヤー性多層中空容器の胴部側壁全体の厚みは、通常 5μ m \sim 5mm、好ましくは 10μ m \sim 3mm、より好ましくは 20μ m \sim 2mmである。この厚みが 5μ m未満では、機械的強度が不足するおそれがある。この厚みが5mm超過では、中空容器として使用する場合は超過品質となり、コスト高でもあり、生産性、経済性の観点から好ましくない。

【0013】本発明のガスバリヤー性多層中空容器の基本的な層構成は、次のとおりである。ただし、接着剤層を省略して表記する。また、ポリグリコール酸をPGAと略記する。

- (1)熱可塑性樹脂/PGA
- (2) 熱可塑性樹脂1/PGA/熱可塑性樹脂1
- (3)熱可塑性樹脂1/PGA/熱可塑性樹脂2

本発明のガスバリヤー性多層中空容器は、前記の基本的 な層構成を備えておれば、各種の要求特性に応じて、同 種または異種の各種熱可塑性樹脂層が付加的に積層され たものであってもよい。また、熱可塑性樹脂層とポリグ リコール酸層の多層化法は、特に限定されず、例えば、 共押出法や共射出法により積層する方法など、各種の加工法を採用することができる。

【0014】熱可塑性樹脂層(ベース樹脂層)

本発明のガスバリヤー性多層中空容器において、熱可塑 性樹脂層に用いられる熱可塑性樹脂としては、例えば、 超低密度ポリエチレン(VLDPE)、線状低密度ポリ エチレン(LLDPE)、低密度ポリエチレン(LDP E) 中密度ポリエチレン(MDPE) 高密度ポリエ チレン(HDPE)、ポリプロピレン(PP)、エチレ ン・プロピレンゴム(EPM)、エチレン・酢酸ビニル 共重合体(EVA)、エチレン・アクリル酸エステル共 重合体(EEA)、アイオノマー(IO)などのポリオ レフィン;ポリエチレンテレフタレート(PET)、ポ リエチレンナフタレート (PEN) などのポリエステ ル;ポリスチレン(PS)、耐衝撃性ポリスチレン(H IPS)、スチレン・ブタジエン・スチレンブロック共 重合体(SBS)、水素添加SBS(すなわち、SEB S) などのポリスチレン系樹脂; 硬質ポリ塩化ビニル、 軟質ポリ塩化ビニルなどのポリ塩化ビニル (PVC)系 樹脂、ポリカーボネート(PC)、ポリアミド(P A)、ポリウレタン(PU)、エチレン・ビニルアルコ ール共重合体(EVOH)、ポリ塩化ビニリデン系樹脂 (PVDC)などを挙げることができる。

【0015】環境負荷の小さい熱可塑性樹脂としては、例えば、ボリ乳酸、ボリこはく酸エステル、ボリカプロラクトンなどが好ましい。本発明のガスバリヤー性多層中空容器では、これらの熱可塑性樹脂層は、単層または多層で用いられる。熱可塑性樹脂層の厚みは、通常 4μ m \sim 5mm、好ましくは 10μ m \sim 3mm、より好ましくは 20μ m \sim 2mmの範囲であることが、加工性、経済性等の面から望ましい。

【0016】接着剤層

本発明では、熱可塑性樹脂層 (ベース樹脂層) とポリグ リコール酸層との接着性を高めるために、層間に接着剤 層を介在させることができる。接着剤層に用いられる接 着剤としては、例えば、カルボキシル化ポリオレフィ ン、エポキシ化ポリオレフィン、エチレン・酢酸ビニル 共重合体、アイオノマー、ポリウレタン、エポキシ樹 脂、SBS、SEBS、ポリクロロプレン、スチレン・ ブタジエン共重合ゴム (SBR)、天然ゴム (NR)等 のポリマーが挙げられる。カルボキシル化ポリオレフィ ンとは、ポリオレフィンをアクリル酸、メタクリル酸、 無水マレイン酸等の不飽和酸単量体で変性して、カルボ キシル基を導入したポリオレフィンである。カルボキシ ル基の導入は、共重合法及びグラフト法のいずれでもよ い。また、上記不飽和酸単量体と、メタクリル酸エステ ル、アクリル酸エステル、酢酸ビニル等のビニル系単量 体とを併用してもよい。

【0017】エポキシ化ポリオレフィンとは、ポリオレフィンをメタクリル酸グリシジル等のエポキシ基含有単

量体で変性して、エボキシ基を導入したボリオレフィンである。エボキシ基の導入は、共重合法及びグラフト法のいずれでもよい。また、上記エボキシ基含有単量体と、メタクリル酸エステル、アクリル酸エステル、酢酸ビニル等のビニル系単量体を併用してもよい。これらの中でも、カルボキシル化ポリオレフィン及びエチレン・酢酸ビニル共重合体は、接着性と加工性の観点から特に好ましい。接着剤層の厚みは、通常 $0.5\mu m \sim 2m$ m、好ましくは $2\mu m \sim 1mm$ 、より好ましくは $3\mu m \sim 0.5mm$ の範囲である。この厚みが $0.5\mu m$ 表荷は、接着性が不十分となるおそれがある。この厚みが2mm超過では、コスト高であり経済的面から不利である。

【0018】ポリグリコール酸層

本発明のガスバリヤー性多層中空容器では、酸素ガスバリヤー性及び/または炭酸ガスバリヤー性を改善するために、ガスバリヤー性樹脂層として、ポリグリコール酸層を積層する。一般の熱可塑性樹脂層を用いた場合には、酸素ガスバリヤー性及び炭酸ガスバリヤー性の両方が改善される。本発明で使用するボリグリコール酸は、下記式(1)

[0019]

[化7]

で表される繰り返し単位を含有するボリマーである。ポリマー中、式(1)で表される繰り返し単位の割合は、60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上である。式(1)で表される繰り返し単位の割合が60重量%未満であると、ガスバリヤー性が損なわれるおそれが生じる。式(1)で表される繰り返し単位以外の繰り返し単位としては、例えば、下記式(2)

[0020]

【化8】

(式中、 $n=1\sim10$ 、 $m=0\sim10$) で表される繰り返し単位、下記式(3)

[0021]

【化9】

(式中、 $j=1\sim10$)で表される繰り返し単位、下記式(4)

[0022]

【化10】

$$\begin{bmatrix}
R_1 \\
O \leftarrow C \\
\downarrow R_1 \\
R_3 \\
O
\end{bmatrix}$$
(4)

(式中、 R_1 及び R_2 は、それぞれ独立に水素原子または 炭素数 $1\sim10$ のアルキル基である。 $k=2\sim10$)で 表される繰り返し単位、下記式(5)

[0023]

【化11】

で表される繰り返し単位、及び下記式(6)

[0024]

【化12】

$$+ O - CH_2 - O - CH_2 - CH_2 - CH_3 - CH_3$$

で表される繰り返し単位を挙げることができる。

【0025】これらの繰り返し単位(2)~(6)を1重量%以上の割合で導入することにより、ポリグリコール酸ホモボリマーの融点Tmを下げることができる。ボリグリコール酸のTmが下がれば、ポリマーの加工温度を下げることができるので、溶融加工時の熱分解を低減することができる。共重合によりポリグリコール酸の結晶化速度を制御して、押出加工性や延伸加工性を改良することもできる。これらの繰り返し単位(2)~(6)が40重量%を超過すれば、ポリグリコール酸が本来有するガスバリヤー性が損なわれ、その樹脂層の強靭性、耐熱性等も低下するおそれがある。

【0026】〈分子量-溶融粘度〉本発明のガスバリヤー性多層中空容器に使用するポリグリコール酸は、高分子量ポリマーである。溶融粘度を分子量の指標とすることができる。本発明で使用するポリグリコール酸は、

(Tm+20℃)の温度(すなわち、通常の溶融加工温度に相当する温度)及び剪断速度100/秒において測定した溶融粘度n*が、通常、500~100,000 Pa・s、好ましくは1,000~50,000Pa・s、より好ましくは1,500~20,000Pa・sである。ボリグリコール酸の溶融粘度n*が500Pa・s未満では、中空容器に溶融成形する際に溶融体がドローダウンしたりして溶融加工が困難であったり、あるいは、得られた樹脂層の強靭性が不十分となったりするおそれがある。ボリグリコール酸の溶融粘度n*が100,000Pa・s超過では、溶融加工に高い温度が必要となり、加工時にボリグリコール酸が熱劣化を起こすおそれがある。

【0027】〈熱的物性〉本発明で使用するポリグリコール酸の融点Tmは、通常150℃以上、好ましくは180℃以上、より好ましくは200℃以上であり、多くの場合、210℃以上である。本発明で使用するポリグリコール酸の溶融エンタルピームHmは、通常20J/

g、好ましくは30J/g以上、より好ましくは40J/g以上である。ポリグリコール酸のTmまたはΔHmが低すぎると、ガスバリヤー性、耐熱性、機械的強度などが不十分となるおそれがある。

②グリコール酸またはグリコール酸アルキルエステル を、触媒の存在下または不存在下に加熱して、脱水また は脱アルコールする重縮合法である。

【0029】ポリグリコール酸共重合体を得るには、上 記②または②の方法において、コモノマーとして、例え ば、シュウ酸エチレン(すなわち、1,4-ジオキサン -2,3-ジオン)、ラクチド、ラクトン類(例えば、 β -プロピオラクトン、 β -ブチロラクトン、ピバロラ クトン、 γ -ブチロラクトン、 δ -バレロラクトン、 β -メチル- δ -バレロラクトン、 ϵ -カプロラクトン 等)、トリメチレンカーボネート、及び1,3-ジオキ サンなどの環状モノマー:乳酸、3-ヒドロキシプロパ ン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン 酸、6-ヒドロキシカプロン酸などのヒドロキシカルボ ン酸またはそのアルキルエステル: エチレングリコー ル、1、4-ブタンジオール等の脂肪族ジオールと、こ はく酸、アジピン酸等の脂肪族ジカルボン酸またはその アルキルエステルとの実質的に等モルの混合物; または これらの2種以上を、グリコリド、グリコール酸、また はグリコール酸アルキルエステルと適宜組み合わせて共 重合すればよい。

【0030】また、ボリグリコール酸共重合体は、ボリグリコール酸と、例えば前記式(2)~(5)から選ばれる繰り返し単位を有する他の重合体とを、加熱下にエステル交換反応させることによって得られたものであってもよい。前記製造方法のうち、Φの開環重合法の方が、高分子量のボリグリコール酸が得られるので、好ましい。前記Φの製造方法において、モノマーとして使用するグリコリド(グリコール酸の2量体環状エステル)としては、従来のグリコール酸オリゴマーの昇華解重合法によって得られるものよりも、本発明者らが開発した「溶液相解重合法」(特願平9−38404号)によって得られるものの方が、高純度であり、しかも高収率で大量に得ることができるので好ましい。モノマーとして高純度のグリコリドを用いることにより、高分子量のポリグリコール酸を容易に得ることができる。

【0031】溶液相解重合法では、(1)グリコール酸

オリゴマーと230~450℃の範囲内の沸点を有する少なくとも一種の高沸点極性有機溶媒とを含む混合物を、常圧下または減圧下に、該オリゴマーの解重合が起こる温度に加熱して、(2)該オリゴマーの融液相の残存率(容積比)が0.5以下になるまで、該オリゴマーを該溶媒に溶解させ、(3)同温度で更に加熱を継続して該オリゴマーを解重合させ、(4)生成した2量体環状エステル(すなわち、グリコリド)を高沸点極性有機溶媒と共に溜出させ、(5)溜出物からグリコリドを回収する。

【0032】高沸点極性有機溶媒としては、例えば、ジ (2-メトキシエチル) フタレートなどのフタル酸ビス (アルコキシアルキルエステル)、ジエチレングリコー ルジベンゾエートなどのアルキレングリコールジベンゾ エート、ベンジルブチルフタレートやジブチルフタレー トなどの芳香族カルボン酸エステル、トリクレジルホス フェートなどの芳香族リン酸エステル等を挙げることが でき、グリコール酸オリゴマーに対して、通常、0.3 ~50倍量(重量比)の割合で使用する。高沸点極性有 機溶媒と共に、必要に応じて、グリコール酸オリゴマー の可溶化剤として、ポリプロピレングリコール、ポリエ チレングリコール、テトラエチレングリコールなどを併 用することができる。グリコール酸オリゴマーの解重合 温度は、通常、230℃以上であり、好ましくは230 ~320℃である。解重合は、常圧下または減圧下に行 うが、0.1~90.0kPa(1~900mbar) の減圧下に加熱して、解重合させることが好ましい。

【0033】本発明で用いるボリグリコール酸層としては、ボリグリコール酸のニートレジンを単独で使用することができるが、本発明の目的を阻害しない範囲内において、無機フィラー、他の熱可塑性樹脂、可塑剤などを配合した樹脂組成物を使用することができる。より具体的には、ボリグリコール酸100重量部に対し、0~30重量部の無機フィラー、0~30重量部の他の熱可塑性樹脂、0~50重量部の可塑剤などを配合した樹脂組成物(コンパウンド)を用いることができる。無機フィラーまたは他の熱可塑性樹脂が30重量部を超過し、あるいは、可塑剤が50重量部を超過すると、得られるボリグリコール酸層のガスバリヤー性が不足し、また、溶融加工性が低下するおそれがある。

【0034】無機フィラーとしては、例えば、アルミナ、シリカ、シリカアルミナ、ジルコニア、酸化チタン、酸化鉄、酸化ホウ素、炭酸カルシウム、ケイ酸カルシウム、リン酸カルシウム、炭酸マグネシウム、ケイ酸マグネシウム、リン酸マグネシウム、硫酸マグネシウム、カオリン、タルク、マイカ、フェライト、炭素、ケイ素、窒化ケイ素、二硫化モリブデン、ガラス、チタン酸カリウム等の粉末、ウイスカー、繊維などが挙げられる。これらの無機フィラーは、それぞれ単独で、あるいは2種以上を組み合わせて使用すること

ができる。

の単独重合体及び共重合体、シュウ酸エチレンの単独重 合体及び共重合体、ε-カプロラクトンの単独重合体及 び共重合体、ポリこはく酸エステル、ポリヒドロキシブ タン酸、ヒドロキシブタン酸-ヒドロキシ吉草酸共重合 体、酢酸セルロース、ポリビニルアルコール、でん粉、 ポリグルタミン酸エステル、天然ゴム、ポリエチレン、 ポリプロピレン、スチレンーブタジエン共重合ゴム、ア クリロニトリルーブタジエン共重合ゴム、ポリメチルメ タクリレート、ポリスチレン、スチレンーブタジエンー スチレンブロック共重合体、スチレン-エチレン・ブチ レン-スチレンブロック共重合体、ABS樹脂、MBS 樹脂、エチレンービニルアルコール共重合体等が挙げら れる。これらの熱可塑性樹脂は、それぞれ単独で、ある いは2種以上を組み合わせて使用することができる。 【0036】可塑剤としては、ジ(メトキシエチル)フ タレート、ジオクチルフタレート、ジエチルフタレー ト、ベンジルブチルフタレート等のフタル酸エステル; ジエチレングリコールジベンゾエート、エチレングリコ ールジベンゾエート等の安息香酸エステル; アジピン酸 ジオクチル、セバチン酸ジオクチル等の脂肪族二塩基酸 エステル:アセチルクエン酸トリブチル等の脂肪族三塩 基酸エステル; リン酸ジオクチル、リン酸トリクレジル 等のリン酸エステル:エポキシ化大豆油等のエポキシ系 可塑剤;ポリエチレングリコールジセバケート、ポリプ ロピレングリコールジラウレート等のポリアルキレング リコールの脂肪酸エステル;等が挙げられる。これらの 可塑剤は、それぞれ単独で、あるいは2種以上を組み合 わせて使用することができる。本発明では、必要に応じ

【0035】他の熱可塑性樹脂としては、例えば、乳酸

記のような添加剤が必要に応じて有効量用いられる。 【0037】ガスバリヤー性多層中空容器の胴部側壁の 物性

て、熱安定剤、光安定剤、防湿剤、防水剤、焼水剤、滑

剤、離型剤、カップリング剤、顔料、染料などの各種添

加剤をポリグリコール酸に添加することができる。これ

ら各種添加剤は、それぞれの使用目的に応じて有効量が

使用される。尚、当然に本発明における熱可塑性樹脂層

においても熱可塑性樹脂に種々のフィラー、あるいは前

本発明のガスバリヤー性多層中空容器の胴部側壁は、酸素ガス透過率及び/または炭酸ガス透過率が、熱可塑性 樹脂層のそれらの値に比較して、通常1/2以下、好ましくは1/5以下、より好ましくは1/10以下に改善されている。すなわち、本発明のガスバリヤー性多層中空容器は、例えば、ボリオレフィン、ボリエステル、ボリスチレン、ボリ塩化ビニル、ボリカーボネート、ボリ乳酸、ボリこはく酸エステル、ボリカプロラクトン、ボリアミド、EVOH、ボリウレタン、PVDCなどから選ばれた樹脂からなる熱可塑性樹脂層に、ガスバリヤー件改良材として、ボリグリコール酸層を組み合わせるこ

とによって、酸素ガスバリヤー性及び炭酸ガスバリヤー性の少なくとも一方を、該熱可塑性樹脂層に比較して驚異的に改善した中空容器である。しかも、本発明のガスバリヤー性多層中空容器は、高温・高湿下での処理を受けても、そのガスバリヤー性の低下が極めて少ないことが、大きな特徴である。

【0038】ガスバリヤー性多層中空容器の製造方法 中空容器の多層化の目的は、単一材料では得られない要 求特性を多層化することによって得ることにある。具体 的には、酸素、炭酸ガス等に対するガスバリヤー性の付 与、ヒートシール性の付与、耐湿性の改善、機械的強度 の改善、コストの大幅低減などである。本発明の多層中 空容器の製造方法としては、大別して次のような方法を 用いることができる。ガスバリヤー性多層中空容器の製 造方法としては、主として、「多層押出ブロー成形法」 及び「多層インジェクションブロー成形法」が採用でき る。両ブロー成形法において、それぞれブロー成形時 に、1軸または2軸方向に延伸させる「延伸ブロー成形 法」と、延伸させない「無延伸ブロー成形法」とがあ る。ここで、「延伸ブロー成形法」は、ブロー成形時に 延伸することにより高分子鎖を配向させ、透明性、強 度、弾性率、ガスバリヤー性などの物理的性質を向上さ せる成形法である。このような物性を向上させるには、 延伸ブロー時、パリソンが融点以下、ガラス転移点Tg 以上の温度に保たれていることが肝要である。

【0039】〈多層押出ブロー成形法〉本発明の多層押 出ブロー成形は、先ず、ポリグリコール酸、少なくとも 一種の熱可塑性樹脂、及び必要に応じて接着剤から構成 される多層のパリソンを成形する。このために、各々の 押出機で加熱溶融した各樹脂を、多層パリソン成形用ダ イ(通常サーキュラーダイ)に流入させ、ダイ内部で、 同時または逐次に合流させ、当該ダイからチューブ状パ リソンを押出す。溶融押出したパリソンを固化しないう ちに割り金型で挟んで、パリソンの一端をピンチし、内 部に空気を吹き込んで金型壁までブローし、冷却する。 冷却後、金型を開いて成形品を取出する。ブローをする 際に、パリソンを、過冷却状態若しくは結晶化温度(T c_1) 以下で、かつ、ガラス転移温度Tgより若干高い 温度範囲で、1軸または2軸方向に延伸すれば、1軸若 しくは2軸方向に配向した成形品を得ることができる。 【0040】〈多層インジェクションブロー成形法〉イ ンジェクションブロー成形は、射出成形によって試験管 状の有底パリソン(プリフォーム)を射出成形し、この パリソンを過冷却状態またはガラス転移点Tg以上でブ ロー成形するものである。このうち、パリソン射出成形 後、固化しない状態で、融点Tm以下の温度で調温し、 ブロー成形するのが、ホットパリソン法である。一方、 パリソン射出成形後、パリソンを一旦冷却固化した後、 Tg以上に再加熱し、調温し、ブロー成形するのがコー ルドパリソン法である。ホットパリソン法には、延伸ブ ロー成形と未延伸ブロー成形があるが、コールドパリソン法は、通常、延伸ブロー成形のみである。本発明の多層のインジェクションブロー成形は、ポリグリコール酸、少なくとも一種の熱可塑性樹脂、及び必要に応じて接着剤を共射出(コインジェクション)法によって、プリフォームを成形し、これをホットパリソン法またはコールドパリソン法によりブロー成形することによって行う。この際、延伸ブロー成形または無延伸ブロー成形が行われる。

【0041】用途

本発明のガスバリヤー性多層中空容器は、その優れた酸素ガスバリヤー性及び/または炭酸ガスバリヤー性を活かして、例えば、飲料用・食品用の中空容器、トイレタリー用容器、ガソリン用容器に用いられる。特に、レトルト減菌等の高温・高湿下での処理を要する物、特別に長期保存を要する物、炭酸ガスバリヤー性を要求する物、環境負荷の低減が要求される物等の包装容器の用途に好ましく用いられる。

[0042]

【実施例】以下に、合成例、実施例、及び比較例を挙げて、本発明についてより具体的に説明する。

物性の測定法

(1)溶融粘度 n*

ポリマーの分子量の指標として、溶融粘度か*を測定した。試料として、各ポリマーの厚み約0.2mmの非晶シートを約150でで5分間加熱して結晶化させたものを用い、D=0.5mm、L=5mmのノズル装着キャピログラフ〔東洋精機 (株) 製〕を用いて、(Tm+20で)の温度、剪断速度100/秒で測定した。

(2) ポリマーの熱的性質: 試料として、各ポリマーの厚み約0.2mmの非晶シートを用いて、示差走査熱量計(DSC; Mettler社製TC-10A型)を用い、窒素ガス気流下、 $10℃/分の速度で昇温し、結晶化温度(Tc₁)、融点(Tm)、及び溶融エンタルピー(<math>\Delta$ Hm)を測定した。ガラス転移温度(Tg)は、5℃/分の昇温速度で測定した。

(3)酸素ガス透過率(○₂透過率)

ブロー容器の胴部側壁から切り取った各サンプルについて、GLサイエンス社製の両面加温式ガス透過試験機を用い、JIS K-7126に準拠して、23℃、80% RHで酸素ガス透過度を測定し、フィルム厚み1mmに換算して酸素ガス透過率を求めた。

(4)炭酸ガス透過率(CO₂透過率)

ブロー容器の胴部側壁から切り取った各サンプルについて、GLサイエンス社製両面加湿式ガス透過試験機を用いて、JIS K-7126に準拠して、23^{\circ}、80% RHで炭酸ガス透過度を測定し、フィルム厚み1 mmに換算して炭酸ガス透過率を求めた。

【0043】 [合成例1] モノマーの合成

10リットルオートクレーブに、グリコール酸〔和光純

薬(株)製〕5kgを仕込み、撹拌しながら、170℃ から200℃まで約2時間かけて昇温加熱し、生成水を 溜出させながら、縮合させた。次いで、20kPa(2 OOmbar)に減圧し2時間保持して、低沸分を溜出 させ、グリコール酸オリゴマーを調製した。グリコール 酸オリゴマーの融点Tmは、205℃であった。グリコ ール酸オリゴマー1.2kgを10リットルのフラスコ に仕込み、溶媒としてベンジルブチルフタレート5kg 〔純正化学(株)製〕及び可溶化剤としてポリプロピレ ングリコール〔純正化学(株)製、#400〕150g を加え、窒素ガス雰囲気中、5kPa(50mbar) の減圧下、約270℃に加熱し、グリコール酸オリゴマ 一の「溶液相解重合」を行い、生成したグリコリドをベ ンジルブチルフタレートと共溜出させた。得られた共溜 出物に約2倍容のシクロヘキサンを加えて、グリコリド をベンジルブチルフタレートから析出させ、沪別した。 これを、酢酸エチルを用いて再結晶し、減圧乾燥し精製 グリコリドを得た。

【0044】 [ボリマー調製例1] 合成例1で得たグリコリド2008を、PFA製シリンダーに仕込み、窒素ガスを吹き込みながら約30分間室温で乾燥した。次いで、触媒として $SnC1_4\cdot 6.5H_2$ 0を0.048添加し、窒素ガスを吹き込みながら170~175℃に2時間保持して重合した。重合終了後、シリンダーを室温まで冷却し、シリンダーから取り出したボリマーを粉砕して、約150℃、0.1kPa(=1mbar)以下で一晩減圧乾燥し、残存モノマーを除去してボリグリコール酸(ボリマー(P-1))を得た。同じ方法を繰り返し、必要量のボリマー(P-1)を翻製した。

【0045】[ボリマー調製例2]グリコリド200gに代えて、グリコリド196gとLー(ー)ラクチド4gとの混合物を用いたこと以外は、ボリマー調製例1と同様にして重合と後処理を行い、グリコール酸ーラクチド共重合体(ボリマー(P-2))を得た。同じ方法を繰り返し、必要量のボリマー(P-2)を調製した。ボリマー調製例1及び2で得られたボリグリコール酸の組成と物件を表1に示す。

[0046]

【表1】

		ポリマー調製例		
		1	2	
ı	·ノマー組成 (wt/wt)	GA	GA/LA = 98/2	
ポリマーコード		P-1	P-2	
η	* (Pa·s)	••s) 4000 3800		
+1	Tg (℃)	38	38	
熱的	Tc₁ (°C)	84	77	
熱的性質	Tm (℃)	221	216	
٦,	Δ Hm (J/g)	72	68	

(脚注)GA=グリコリド、LA=L-(-)-ラクチド。

【0047】 [ペレット調製例1] ポリマー(P-1)を3mmφのノズルを装着した小型二軸混練押出機に窒素ガス流下で供給し、溶融温度約230~235℃でストランド状に押出し、空冷してカットし、ペレット(No.1)を得た。

【0048】 [ペレット調製例2] ボリマー (P-2) を用いて、溶融温度を約225~230℃に変更したこと以外は、ペレット調製例1と同様にして、ペレット (No. 2) を調製した。

【0049】 [実施例1] ベレット(No.1)、中密度ボリエチレン(MDPE; MI=108/10分)、及びカルボキシル化ボリオレフィン[登録商標名MODIC E-3008、三菱油化(株)製]を3種5層用共射出成形機に供給し、射出してプリフォーム金型に注入し、プリフォーム(外径約2cm、長さ約6cm)を成形し、次いで、固化する前に約120℃に調温して、金型内に挿入した。当該プリフォーム内にロッドを挿入して、プリフォームを長さ方向に約2倍延伸すると同時にブロー比約3でブローし、次いで、冷却固化して、多層中空容器MB-1(胴部外径約6cm、胴部長約10cm、首部外径約2cm、首部長約1cm、平底中央凹型)を調製した。

【0050】 [実施例2] ベレット(No. 1)の替わりにペレット(No. 2)を用いた点を除く他、実施例1と同様にして、多層中空容器MB-2を調製した。

【0051】 [実施例3]ペレット(No.1)、MDPE(MI=10g/10分)、及びカルボキシル化ボリオレフィン(登録商標名MODIC E-300S)を、3種5層用多層ダイヘッド(サーキュラーダイ)に供給し、チューブ状に溶融押出してパリソンを作成し、これをボトル用の割り金型に挟んで底部をピンチし、約120℃に調温して、プロー比約3でプローした。冷却

固化して、多層中空容器MB-3 (胴部外径約6cm、 胴部長約10cm、首部外径約2cm、首部長約1c m、平底中央凹型)を調製した。

【0052】 [実施例4] ベレット(No. 1)、ポリエチレンテレフタレート(PET; MI=138/10分)、及びカルボキシル化ポリオレフィン(登録商標名MODIC E-300S)を3種5層用共射出成形機に供給し、射出してプリフォーム金型に注入し、プリフォーム(外径約2cm、長さ約6cm)を形成して、冷却固化させた。次いで、該プリフォームを再加熱し、約85℃に調温し、金型内に挿入し、当該プリフォーム内にロッドを挿入して、プリフォームを長さ方向に約2倍延伸すると同時にプロー比約3でプローし、次いで、冷却固化して多層中空容器MB-4を調製した。

【0053】[比較例1]ペレット(No. 1)の替わりにMDPEを共射出成形機に供給した点を除く外、実施例1と同様にして多層中空容器MB-C1を調製した

【0054】 [比較例2] ベレット (No. 1) の替わりにPET (MI=13g/10分) を共射出成形機に供給した点を除く外、実施例4と同様にして、多層中空容器MB-C2を調製した。

【0055】 <ガスバリヤー性比較>実施例1~4、及び比較例1~2で得られた各中空容器につき、胴部側壁を切出し、各ガス透過率を測定した。さらに、実施例1~4、及び比較例1~2に用いたMDPE及びPETについて、それぞれホットプレスを用いて、溶融加工し、急冷して、厚み約0.1mmのベース樹脂シートBS-1、及びBS-2を調製し、これらについても各ガス透過率を測定し、上記の器胴部側壁の各ガス透過率値と比較した。結果は、一括して表2に示した。

【0056】

【表2】

実施例		実施例1	実施例 2	実施例3	実施例4	比較例1	比較例2	
部相	コードN	0.	MB-1	MB-2	MB-3	MB-4	MB-C1	MB-C2
	構成		PE/接 /PGA/ 接/PE	PE/接 /PGA/ 接/PE	PE/接 /PGA/ 接/PE	PET/接 /PGA/ 接/PET	PE/接 /PE/ 接/PE	PET/接 /PET/ 接/PET
	厚み (μπ)		49/11 /10/ 9/51	50/9 /10/ 11/50	49/10 /10/ 10/50	28/8 /10/ 12/32	52/12 /9/ 10/50	29/10 /10/ 11/30
PGA	PGA・コードNo.		P-1	P-2	P-1	P-1	_	_
O₂透過率 23℃、80%RH (cm³•mm/m²•day•atm)		0.3	0.3	0.3	0.2	60	3	
COz透過率 23°C、80%RH (cm³•mn/m²•day•atm)		1.9	2.0	2.0	1.3	260	25	
胴部(則壁 スシート		MB-1 /BS-1	MB-2 /BS-1	MB-3 /BS-1	MB-4 /BS-2	MB-C1 /BS-1	MB-C2 /BS-2
胴部の	則壁/ スシート	O ₂	4/1000	4/1000	4/1000	8/100		_
透過2		CO2	6/1000	6/1000	6/1000	7/100	-	s -

なお、ベース樹脂シートBS-1、及びBS-2の各ガス透過率の測定結果を表3に示す。

[0057]

【表3】

	コードNo.	BS-1	BS-2	
ベースシート	構 成	PE	PET	
	厚み (μπ)	100	100	
O₂透過率 23℃、80%RH (cm³•mm/m²•day•atm)		70	2.5	
CO₂透過率 23℃、80%RH (cn³·mn/n²·day·atm)		300	20	

[0058]

【発明の効果】本発明によれば、レトルト滅菌のような 高温・高温下での処理工程を要する物、特別に長期保存 を要する物、特に炭酸ガスバリヤー性を要する物等の容 器として好適なガスバリヤー性多層中空容器が提供され る。また、本発明によれば、酸素ガスバリヤー性及び炭酸ガスバリヤー性が特に優れた多層中空容器が提供される。さらに、本発明によれば、環境負荷の小さいガスバリヤー性多層中空容器を提供することが可能である。

フロントページの続き

(51)Int.Cl. ⁶	識別記号	FI		
B65D 65/40		B65D	65/40	D
81/24			81/24	D
// B29K 67:00				
101:12				
B29L 9:00				
22:00				