Natural Language Processing

Word Meanings

Dr. Uzair Ahmad

Program

- Word meanings and context
- The distributional hypothesis
- Evaluation of representations

Word meanings: NLP Challenge

The distributional hypothesis

Acquire meaningful representations from unlabeled data

A bottle of ____ is on the table.

Everybody likes ____.

Don't have ____ before you drive.

We make ____ out of corn.

The distributional hypothesis

- (14.1) A bottle of ____ is on the table.
- (14.2) Everybody likes ____.
- (14.3) Don't have ____ before you drive.
- (14.4) We make ____ out of corn.

contextual properties					
	(14.1)	(14.2)	(14.3)	(14.4)	
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	0	

YOU SHALL KNOW A WORD BY THE COMPANY IT KEEPS. (FIRTH 1957)

Lexical semantic relationships

Word representations

Context

```
Brown Clusters \{one\}

WORD2VEC, h=2 \{moment, one, English, complications\}

Structured WORD2VEC, h=2 \{(moment, -2), (one, -1), (English, +1), (complications, +2)\}

Dependency contexts, \{(one, NSUBJ), (English, DOBJ), (moment, ACL^{-1})\}
```

Representation

Transition

$$y_i = P(w_i \mid w_{context})$$
$$y_i = \frac{exp^{o_i}}{\sum_{n=1}^{V} exp^{o_n}}$$

- Skipgram Model
 - The context is predicted from the word $P(w_c | w_m)$

Skip-gram word2Vec training data

```
... lemon, a [tablespoon of apricot jam, a] pinch ...
c1 c2 w c3 c4
```

positive examples +

c_{pos} apricot tablespoon apricot of apricot jam apricot a

negative examples -

W	c_{neg}	W	c_{neg}
apricot	aardvark	apricot	seven
apricot	my	apricot	forever
apricot	where	apricot	dear
apricot	coaxial	apricot	if

Skip-gram word2vec: Intuition

P(+ |apricot, jam) > P(- |apricot, regression)
P(+ |w, c) > P(- |w,
$$\sim$$
c)

$$P(+|w,c) = \frac{1}{1 + e^{-w.c}}$$

$$P(-|w,c) = \frac{1}{1 + e^{w.c}}$$

$$P(-|w,c) = \frac{1}{1 + e^{w.c}}$$

Skip-gram word2vec and Logistic Regression

$$P(+|w,c_{1:L}) = \prod_{i=1}^{L} \frac{1}{1 + e^{w.c_i}}$$

$$P(-|w,c_{1:L}) = \sum_{i=1}^{L} log \frac{1}{1 + e^{-w.c_i}}$$

Skip-gram Loss Function

- The goal of the learning algorithm is to adjust those embeddings to
 - Maximize the similarity of the target word, context word pairs (w, cpos)
 - Minimize the similarity of the (w, cneg)

$$L_{CE} = -\log \left[P(+|w, c_{pos}) \prod_{i=1}^{k} P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log \left(1 - P(+|w, c_{neg_i}) \right) \right]$$

$$= -\left[\log \sigma(c_{pos} \cdot w) + \sum_{i=1}^{k} \log \sigma(-c_{neg_i} \cdot w) \right]$$

Skip-gram Learning the weights

One step of GD

- Continuous bag-of-words (CBOW)
 - Simplified context
 - Immediate neighborhood of size h

$$\overline{v}_m = \frac{1}{2h} \sum_{n=1}^h v_{w_{m+n}} + v_{w_{m-n}}$$

 $v_{w_{m-2}}$ $v_{w_{m-1}}$ $v_{w_{m+1}}$ $v_{w_{m+2}}$ $v_{w_{m+2}}$ $v_{w_{m+2}}$ $v_{w_{m+2}}$ $v_{w_{m+2}}$ $v_{w_{m+2}}$ $v_{w_{m+2}}$

• $P(w_i \mid w_{context})$

Continuous bag-of-words (CBOW)

the corpus likelihood

$$\log p(w) \approx \sum_{m=1}^{M} \log p(w_m \mid w_{m-h}, w_{m-h+1}, \dots, w_{m+h-1}, w_{m+h})$$

$$= \sum_{m=1}^{M} \log \frac{\exp(u_{w_m} \cdot \overline{v}_m)}{\sum_{j=1}^{V} \exp(u_j \cdot \overline{v}_m)}$$

$$= \sum_{m=1}^{M} u_{w_m} \cdot \overline{v}_m - \log \sum_{j=1}^{V} \exp(u_j \cdot \overline{v}_m).$$

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient estimation of word representations in vector space. In Proceedings of International Conference on Learning Representations.

Evaluating word embeddings

- Intrinsic (intuition based)
 - Word similarity
 - WordSim353 dataset
 - Word analogies
 - King: queen:: man:?
- Extrinsic (Empirical evidence)
 - downstream tasks
 - Sequence labeling
 - Document classification

Summary

- Distributed representations
 - Latent Semantic Analysis
 - Brown clusters
 - Neural word embeddings
- Evaluation methods
 - Intrinsic
 - Extrinsic