TALK ABOUT A "WILKERSON CRITERION" FOR MORAVA E-THEORY

CHARLES REZK

1. Λ -rings

A Λ -ring is a commutative ring A, together with functions $\lambda^k \colon A \to A$ for $k \geq 0$, such that

- (1) $\lambda^0(a) = 1, \lambda^1(a) = a,$
- (2) $\lambda^k(0) = 0$,
- (3) $\lambda^k(1) = 0$ for $k \ge 2$, (4) $\lambda^k(a+b) = \sum_{0 \le i \le k} \lambda^i(a) \lambda^{k-i}(b)$,
- (5) $\lambda^k(ab) = P(\lambda^i(a), \lambda^j(b)),$
- (6) $\lambda^k \lambda^\ell(a) = Q(\lambda^i(a)).$

The P and Q are certain polynomials which are deduced from the "splitting principle". A "line bundle" is an element $a \in A$ such that $\lambda^k(a) = 0$ for $k \ge 2$. The formulae for (5) and (6) are those valid for arbitrary sums of line bundles, where we stipulate that product of two line bundles is a line bundle.

A Λ -ring with involution is a Λ -ring A, together with a homomorphism $\psi^{-1}: A \to A$ of Λ -rings such that $\psi^{-1}\psi^{-1}=\mathrm{id}_A$. I write Λ for the category of Λ -rings with involution.

Complex equivariant K-theory $X \mapsto K_G^0(X)$ naturally takes values in Λ ; the operations λ^k are defined by kth exterior power, and ψ^{-1} is defined by complex conjugation.

We are going to give another description of Λ , in terms of the multiplicative group scheme \mathbb{G}_m . Note that $K^0_{S^1}(\mathrm{pt}) \approx RS^1 \approx \mathbb{Z}[t,t^{-1}]$, and that this carries a coproduct associated to the group homomorphism $S^1 \to S^1 \times S^1$. We identify $\mathbb{G}_m = \mathrm{Spec}(RS^1)$.

The endomorphism ring of \mathbb{G}_m is \mathbb{Z} , where $n \in \mathbb{Z}$ corresponds to the map $[n]: \mathbb{G}_m \to \mathbb{G}_m$ defined by $[n]^*(f(t)) = f(t^n)$. Let $\mathcal{G} \approx \mathbb{Z} - \{0\}$ denote the monoid of non-zero endomorphisms.

If we consider the base-change $(\mathbb{G}_m)_{\mathbb{F}_p}$ to the finite field \mathbb{F}_p , then [p] can be identified with the Frobenius map, since mod p we have $[p]^*(f(t)) = f(t^p) = f(t)^p$.

We define a category A as follows. The objects are commutative rings A, together with a homomorphism $\psi \colon \mathcal{G} \to \text{hom}_{\text{rings}}(A, A)$, satisfying the following congruence condition.

(1) Congruence. For each prime p, we have $\psi^p(a) \equiv a^p \mod p$. Informally, this means that " ψ takes Frobenius" to Frobenius", taking into account that Frobenius is not defined over \mathbb{Z} , but rather after base change to a ring of charateristic p. That is, when $f: (\mathbb{G}_m)_R \to (\mathbb{G}_m)_R$ is the Frobenius isogeny, then $\psi^f: A \otimes R \to A \otimes R$ is the

Frobenius map.

Date: September 25, 2006.

There is a functor $\Psi \colon \Lambda \to \mathcal{A}$, which was constructed by Adams, using the formula

$$\sum_{m\geq 1} \psi^m(a) \cdot X^m = -\frac{d}{dX} \log \left[\sum_{k\geq 0} \lambda^k(a) \cdot (-X)^k \right]$$

to define the homomorphisms ψ^m .

Let $\Lambda^{\rm tf}$ and $\mathcal{A}^{\rm tf}$ denote the subcategories of torsion free objects.

Theorem 1.1 (Wilkerson). The functor $\Psi \colon \Lambda^{\mathrm{tf}} \to \mathcal{A}^{\mathrm{tf}}$ is an equivalence of categories.

The proof uses the "Dwork lemma". That is, for $A \in \mathcal{A}^{tf}$ there exist functions $\theta_d \colon A \to A$ which are uniquely determined by the expressions

$$\psi^m(a) = \sum_{d|m} d\,\theta_d(a)^{m/d}.$$

That this is so is a consequence of the congruence condition. Then the formal identities

$$\sum_{k\geq 0} \lambda^k(a) \cdot (-X)^k = \exp\left[-\sum_{m\geq 1} \frac{\psi^m(a)}{m} X^m\right] = \prod_{d\geq 1} (1 - \theta_d(a) \cdot X^d)$$

show how to obtain the λ^k 's from the θ_d 's.

With a little bit of work, the category Λ is determined entirely by \mathcal{A} . One observes that the functor $U \colon \mathcal{A}^{\mathrm{tf}} \to \mathrm{Ab^{tf}}$ admits a left adjoint $F \colon \mathrm{Ab^{tf}} \to \mathcal{A}^{\mathrm{tf}}$, and that $\mathcal{A}^{\mathrm{tf}}$ is equivalent to the category of algebras over the monad T' = UF on $\mathrm{Ab^{tf}}$. We can prolong this to a monad T on Ab .

Theorem 1.2. There is an equivalence of categories $(T\text{-algebras}) \approx \Lambda$.

The key point here is that $T'(\mathbb{Z}^{\oplus k})$ can be shown to be isomorphic to the free Λ -ring with involution on k-generators.

2. Sheaves on formal groups

Fix a prime p and an integer $n \geq 1$.

Let \mathcal{R} denote the category of Artinian local rings R such that the residue field R/\mathfrak{m} is perfect of characteristic p. Morphisms are local homomorphisms.

Let \mathcal{M}_R denote the category of R-modules, and \mathcal{A}_R denote the category of R-algebras.

For R in \mathcal{R} , let \mathcal{G}_R denote the category whose objects are formal groups G over R such that the restriction G_0 over R/\mathfrak{m} has height n. The morphisms of \mathcal{G}_R are isogenies, which is to say, non-zero homomorphisms of formal groups.

The set of morphisms $\mathcal{G}_R(G, G')$ has a topology. A basic open neighborhood of a map $\alpha \colon G \to G'$ consists of all homomorphisms $\beta \colon G \to G'$ such that α and β agree to order N, for some $N \geq 1$.

Let $\mathcal{G}_R^{\text{iso}}$ denote the maximal subgroupoid of \mathcal{G}_R , i.e., the subcategory consisting of all the objects and all the isomorphisms.

For each $f: R \to R'$ in \mathcal{R} , there are base-change functors

$$f^* \colon \mathcal{M}_R o \mathcal{M}_{R'}, \qquad f^* \colon \mathcal{A}_R o \mathcal{A}_{R'}, \qquad f^* \colon \mathcal{G}_R o \mathcal{G}_{R'}.$$

If $R \xrightarrow{f} R' \xrightarrow{g} R''$, there are natural isomorphisms $(gf)^* \approx g^*f^*$ satisfying the evident coherence property.

We define a category \mathcal{M} as follows. The objects are data $\{M_R, M_f\}$, consisting of, for each R in \mathcal{R} , a functor

$$M_R \colon \mathcal{G}_R^{\mathrm{iso}^{\mathrm{op}}} \to \mathcal{M}_R,$$

and for each $f: R \to R'$ in \mathcal{R} , a natural isomorphism

$$M_f \colon f^* M_R \xrightarrow{\sim} M_{R'} f^*,$$

satisfying the following two conditions.

- (1) Coherence. For $R \xrightarrow{f} R' \xrightarrow{g} R''$, both ways of constructing a natural map $g^*f^*M_R \to M_{R''}g^*f^*$ are identical.
- (2) Continuity. The function

$$\mathcal{G}_R^{\mathrm{iso}}(G,G') \to \mathcal{M}_R(M_R(G'),M_R(G))$$

is continuous, where the right-hand side is given the compact-open topology, where the modules are given the discrete topology. Explicitly, this means that for all $m' \in M_R(G')$ and $m \in M_R(G)$, the set of $\alpha \in \mathcal{G}_R^{\mathrm{iso}}(G, G')$ such that $M_R(\alpha)(m') = m$ is open.

Morphisms $M \to N$ in \mathcal{M} are natural transformations $M_R \to N_R$ which commute with the structure.

Given a complete local ring R with perfect characteristic p residue field, and a formal group G over R, we define the notation

$$M_R(G) \stackrel{\mathrm{def}}{=} \lim_k M_{R/\mathfrak{m}^k}(G \otimes_R R/\mathfrak{m}^k).$$

Let G be the universal deformation of a height n formal group G_0 defined over $\bar{\mathbb{F}}_p = R/\mathfrak{m}$, with $R = \mathbb{W}\bar{\mathbb{F}}_p[\![u_1,\ldots,u_{n-1}]\!]$. Let $\mathbb{G}_n = \mathcal{G}^{\mathrm{iso}}_{\bar{\mathbb{F}}_p}(G_0,G_0) \rtimes \mathrm{Gal}(\bar{\mathbb{F}}_p,\mathbb{F}_p)$, a profinite group. Then \mathbb{G}_n acts on the inverse systems defining G and R, and thus acts on $M_R(G)$.

Morava E-theory is a functor

$$\mathcal{E} : \operatorname{Spectra} \to \mathcal{M}.$$

It is defined by

$$\mathcal{E}(X)_R(G) \stackrel{\text{def}}{=} (E_{G_0})_0(X) \otimes_{(E_{G_0})_0} R,$$

where $G_0 = G \otimes_R R/\mathfrak{m}$, where E_{G_0} is the Morava E-theory spectrum associated to the universal deformation of G_0 , and where $(E_{G_0})_0 \to R$ classifies G, viewed as a deformation of G_0 .

For any ring A which contains \mathbb{F}_p , let $\phi \colon A \to A$ denote the ring homomorphism $\phi(a) = a^p$. When A is an R-algebra, let Frob: $\phi^*A \to A$ denote the relative Frobenius defined by

$$R \xrightarrow{\phi} R = R$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \xrightarrow{\phi^* A \xrightarrow{\text{Frob}}} A$$

This defines a natural transformation Frob: $\phi^*A \to A$ of R-algebras, whenever $\mathbb{F}_p \subset R$. Applying this to the ring of functions on a formal group gives the Frobenius isogeny

Frob:
$$G \to \phi^* G$$

of formal groups over R.

We define a category \mathcal{A} as follows. The objects are data $\{A_R, A_f\}$, consisting of, for each R in \mathcal{R} , a functor

$$A_R \colon \mathcal{G}_R^{\mathrm{op}} \to \mathcal{A}_R,$$

and for each $f: R \to R'$ in \mathcal{R} a natural isomorphism

$$A_f \colon f^* A_R \xrightarrow{\sim} A_{R'} f^*,$$

satisfying the following three conditions.

- (1) Coherence, as in the definition of \mathcal{M} .
- (2) Continuity, as in the definition of \mathcal{M} .
- (3) Congruence. For all R in \mathcal{R} containing \mathbb{F}_p , and all G in \mathcal{G}_R , the diagram

$$\phi^* A_R(G) \xrightarrow{A_\phi} A_R(\phi^* G)$$
Frob
$$\downarrow^{A_R(\text{Frob})}$$

$$A_R(G)$$

commutes.

3. Morava E-theory of commutative S-algebras

Let $Comm_S$ denote the category of commutative S-algebra spectra. Then the Morava E-theory homology functor extends to a functor

$$\mathcal{E} \colon \mathrm{Comm}_S \to \mathcal{A}$$
.

This is essentially an unpublished result of Ando-Hopkins-Strickland.

More can be said. Let $\mathcal{M}^{\mathrm{tf}} \subset \mathcal{M}$ denote the full subcategory of torsion free objects; that is, the full subcategory of M in \mathcal{M} such that if we evaluate at a universal deformation G over R, we get an R-module $M_R(G)$ which has no p-torsion. Let $\mathcal{A}^{\mathrm{tf}} \subset \mathcal{A}$ denote the analogous full subcategory of torsion free objects. Then the forgetful functor $U: \mathcal{A}^{\mathrm{tf}} \to \mathcal{M}^{\mathrm{tf}}$ admits a left adjoint $F: \mathcal{M}^{\mathrm{tf}} \to \mathcal{A}^{\mathrm{tf}}$. Let T' = UF denote the monad on $\mathcal{M}^{\mathrm{tf}}$. This can be prolonged to a monad T on \mathcal{M} .

Let \mathbb{P} : Spectra \to Comm_S denote the free commutative S-algebra functor. There is a natural transformation

$$\gamma_X \colon \mathcal{E}(\mathbb{P}X) \to T(\mathcal{E}(X))$$

of functors Spectra $\to \mathcal{A}$, with the property that if X is a spectrum such that $\mathcal{E}(X)$ is isomorphic (in \mathcal{M}) to a direct sum of copies of $\mathcal{E}(S^{2q})$, then γ_X is an isomorphism.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL *E-mail address*: rezk@math.uiuc.edu