

Correlation and Regression

Dr. Md. Atiqul Islam

M.Sc. (SUST, BD), M.Sc. (UHasselt, BE), PhD (RuG, NL)

Professor Department of Statistics Jagannath University, Dhaka-1100

E-mail: atique@stat.jnu.ac.bd

Concept Covered

- Correlation Analysis
- Regression Analysis
- Kruskal-Wallis Test (Nonparametric ANOVA)

Correlation Analysis

- \triangleright Karl Pearson's correlation coefficient (r)
- \triangleright Spearman's rank correlation coefficient (rho, ρ)

Correlation

- The degree of linear relationship existing between two or more variables observed from same entity is called correlation.
- Correlation coefficient is a quantitative measure of the **direction** and **strength** of the linear relationship between two numerically measured variables.

$$r_{xy} = \frac{\sum_{i=1}^{n} X_i Y_i - \frac{\sum_{i=1}^{n} X_i \sum_{i=1}^{n} Y_i}{n}}{\sqrt{\left(\sum_{i=1}^{n} X_i^2 - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n}\right) \left(\sum_{i=1}^{n} Y_i^2 - \frac{\left(\sum_{i=1}^{n} Y_i\right)^2}{n}\right)}}$$

- ▶ This formula is also known as Karl Pearson's correlation coefficient.
- \triangleright Assumptions of r_{xy}
 - → Linearity
 - → Bivariate normal distribution

Interpretation of Corr. Coeff.

Spearman's Rank Correlation

- ▶ When
 - → The variables are **qualitative or binary** variables.
 - → The population from which the observations are drawn is not **normal**.
 - → To measure the association between two variables without making any assumption about their joint distribution.
- In these situations, rank each individual with respect to the two variables of interest.
- The coefficient of correlation between these ranks is known as the rank correlation or Spearman's rank correlation coefficient.

Spearman's Rank Correlation Coefficient

- \triangleright The Spearman's Rank Correlation Coefficient (ρ):
- ▶ It is the nonparametric statistical measure used to study the strength of association between the two ranked variables.
- ▶ This method is applied to the ordinal set of numbers, which can be arranged in order, i.e. one after the other so that ranks can be given to each.
- ▶ It is defined as

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

where, $\rho = Rank$ correlation coefficient d = Difference of ranks n = Number of observations

Correlation

- ▶ **Bodyfat data description (bodyfat.csv)**: A sample dataset containing the estimates of the percentage of body fat determined by underwater weighing and various body circumference measurements for 252 men.
- ▶ Some variables:
 - → siri: percent body fat using Siri's equation: 495/Density 450
 - → Density: determined from underwater weighing (gm/cm**3)
 - → age (years)
 - → weight (lbs)
 - → height (inches)
 - → neck circumference (cm)

Correlation

- First import bodyfat.csv data in SPSS.
- ∇1: Calculate BMI in the bodyfat dataset and save the data in your convenient format.
- Q2: Draw a scatter plot of Siri and neck. Also, draw the fitted line on the scatter plot.
- Q3: Calculate the correlation coefficient of Siri and neck and comment on it.
- Q4: Draw a scatter plot of Siri and BMI. Also, draw the fitted line on the scatter plot.
 - ► What do you think about the plot? Calculate the correlation coefficient and comment on it.
 - ► Is there any unusual observation? If yes, how do you deal with it?
 - ► Do you think the unusual observation has an effect on the correlation coefficient?

Data Import (1)

Data Import (2)

Data Import (3)

Press 2 times Next

Data Import (4)

Data Import: Simple way

Data Import: Body Fat

BMI Calculation

- **>** Q1:
- ▶ To calculate BMI, let's open the Syntax window in SPSS.

Write down in the Syntax window:

Compute BMI = (weight*703/height**2).

EXECUTE.

Correlation (Q2): Scatter plot

Correlation (Q2)

Double click on the graph and click the "Add Fit line at Total" Symbol

Correlation (Q3)

Correlation Matrix

Correlations

		siri	neck	ВМІ
siri	Pearson Correlation	1	.491**	.371**
	Sig. (2-tailed)		.000	.000
	N	252	252	252
neck	Pearson Correlation	491**	1	.266**
	Sig. (2-tailed)	.000		.000
	N	252	252	252
ВМІ	Pearson Correlation	.371**	.266**	1
	Sig. (2-tailed)	.000	.000	
	N	252	252	252

^{**.} Correlation is significant at the 0.01 level (2-tailed).

There is a moderate positive correlation (r = 0.49, p < 0.001) between *siri* and *neck circumference*. Also, a weak positive relationship is observed between *BMI* and *Siri* (r = 0.37, p < 0.001); and *BMI* and *neck* (r = 0.266, p < 0.001). Both relationships are statistically significant.

Correlation (Q4): Scatter plot

Correlation (Q4): Scatter plot

Correlation (Q4)

Correlation (Q4)

Correlation: After Removing Outlier

Correlations

		siri	neck	ВМІ
siri	Pearson Correlation	1	.497**	.725**
	Sig. (2-tailed)		.000	.000
	N	251	251	251
neck	Pearson Correlation	.497**	1	.785**
	Sig. (2-tailed)	.000		.000
	N	251	251	251
ВМІ	Pearson Correlation	.725**	.785**	1
	Sig. (2-tailed)	.000	.000	
	N	251	251	251

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Sample size reduced

Scatter Plot (Q4)

Use new data "Dataset name" to generate the Scatter plot of Siri and BMI

Rank Correlation Coefficient

Rank Correlation Coefficient

Correlations

			siri	neck	ВМІ
Spearman's rho	siri	Correlation Coefficient	1.000	.491**	.727**
		Sig. (2-tailed)		.000	.000
		N	252	252	252
	neck	Correlation Coefficient	.491**	1.000	.767**
		Sig. (2-tailed)	.000		.000
		N	252	252	252
	ВМІ	Correlation Coefficient	.727**	.767**	1.000
		Sig. (2-tailed)	.000	.000	
		N	252	252	252

^{**.} Correlation is significant at the 0.01 level (2-tailed).

There is a moderate positive correlation ($\rho = 0.491, p < 0.001$) between *siri* and *neck circumference*. Also, a strong positive relationship ($\rho = 0.727, p < 0.001$) is observed between *BMI* and *Siri*; and *BMI* and *neck* ($\rho = 0.266, p < 0.001$). Both relationships are statistically significant.

Regression Analysis

- Regression analysis is a statistical technique to study the cause-andeffect relationship of two or more variables observed from the same entity.
- ▶ More precisely, it is a technique to analyze and to estimate the influence of the independent variable on the dependent variable.
- After setting up a hypothesis, how can we examine the relationship between the DV and the IV?

Variables Used in Regression

- The variable being predicted is called the dependent variable.
- ▶ The variable(s) being used to predict the value of the dependent variable is called an independent variable.
- Dependent or Response or Outcome or Target or Explained variable (Y):
 - Variable we want to predict or explain.
- ▶ Independent or Predictor or Covariate or Feature or Explanatory variable (X):
 - Attempts to explain the response.
- Independent variable causes a change in Dependent Variable and it is not possible that Dependent Variable could cause a change in Independent Variable.
- ▶ In regression:
 - ► **X** is used to predict or explain outcome **Y**.

Simple Linear Regression Model

▶ The simple linear regression model is

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Where,

- ► The variable *Y* is regarded as the response, outcome, or dependent variable.
- ightharpoonup The variable X is regarded as the predictor, explanatory, or independent variable.
- $ightharpoonup eta_0$ is the intercept (parameter) of the regression model measuring the value of Y in absence of X.
- $ightharpoonup eta_1$ is the slope or regression coefficient of Y on X (parameter) which measures the rate of change of Y for a unit change in the value of X.
- \triangleright ε_i is the random error term.
- ▶ The above equation is also called two variable regression model.

Multiple Linear Regression Analysis

▶ The multiple linear regression model is

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} ... + \beta_p X_{ip} + \varepsilon_i$$

Where,

- \triangleright Y_i is the outcome for i
- \triangleright β_0 is the intercept
- \triangleright β_1 , β_2 ..., β_p are the slopes/regression coefficients
- $\triangleright X_{i1}, X_{i2,...}, X_{ip}$ are the predictors for i
- \triangleright ε_i is the residual variation for i

$$\varepsilon_i \sim N(0, \sigma^2)$$

Regression Assumptions: LINE

- \triangleright The dependent variable Y is linearly related to X.
- Y's are independent of each other.
- Distribution of Y is normal.
- $\triangleright Var(Y)$ does not depend on X.
- \triangleright The error term ε_i is normally and identically and independently distributed with mean zero and variance σ^2 , i. e.,

$$\varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2).$$

Linearity

Independence

Normality

Equal variance

Example: Regression Analysis

- ▶ First import Body Temperature data (.sav) data in SPSS.
- ▶ The data represent the 100 people with heart rate and body temperature.
- ▶ Q1: What is the effect of heart rate on body temperature?
- ▶ Q2: What percentage of the variation of the body temperature is explained by heart rate?
- ▶ Q3: Check the diagnostics of the model.
- Q4: Based on the estimated regression equation, predict the body temperature if the heart rate of a person is 92.

Simple Linear Regression Analysis

Result

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.448ª	.200	.192	.86001

a. Predictors: (Constant), HeartRate

b. Dependent Variable: Temperature

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	18.168	1	18.168	24.564	.000 ^b
l	Residual	72.482	98	.740		
	Total	90.650	99			

a. Dependent Variable: Temperature

b. Predictors: (Constant), HeartRate

??

??

Which one will we report?

	Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	92.391	1.201		76.900	.000
	HeartRate	.081	.016	.448	4.956	.000

a. Dependent Variable: Temperature

Standardized or Unstandardized

- ▶ Unstandardized β: Heart Rate (β) = 0.081 meaning that for every unit (*every beat per minute*) increase in heart rate, the body temperature (*on average*) will be increase by 0.081 unit (degree Fahrenheit).
- Standardized β : Heart Rate $(\beta) = 0.448$ indicates that a change of one standard deviation in the *heart rate* results in a 0.448 standard deviations increase in the *body temperature*.
- \triangleright Procedure to Calculate Standardized β :

$$Standardized\ value = \frac{Each\ value\ of\ the\ variable}{Std.\ deviation\ of\ the\ variable}$$

▶ Re-run the regression: the desired standardized regression coefficients will be obtained.

Model Diagnostic

Normal P-P Plot of Regression Standardized Residual

Constant variance

Multiple Linear Regression Analysis

The multiple linear regression model is

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} ... + \beta_p X_{ip} + \varepsilon_i$$

Where,

- \triangleright Y_i is the outcome for i
- \triangleright β_0 is the intercept
- \triangleright β_1 , β_2 ..., β_p are the slopes/regression coefficients
- $\triangleright X_{i1}, X_{i2,...}, X_{ip}$ are the predictors for i
- \triangleright ε_i is the residual variation for i

$$\varepsilon_i \sim N(0, \sigma^2)$$

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.506ª	.256	.233	.83810

a. Predictors: (Constant), Sex, Age, HeartRate

b. Dependent Variable: Temperature

ANOVA^a

	Model	Sum of Squares	df	Mean Square	F	Sig.
Γ	1 Regression	23.218	3	7.739	11.018	.000b
ı	Residual	67.432	96	.702		
L	Total	90.650	99			

a. Dependent Variable: Temperature

b. Predictors: (Constant), Sex, Age, HeartRate

The general rule of thumb: VIF > 4 warrant further investigation

VIF > 10 are signs of serious multicollinearity

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B		Co	llinearity	Sta lics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tole	erance	VIF
1	(Constant)	92.890	1.238		75.023	.000	90.432	95.347			
	HeartRate	.085	.016	.473	5.344	.000	.054	.117	/	.987	1.013
	Age	026	.013	177	-1.996	.049	052	.000	<i>y</i>	.989	1.012
	Sex	.292	.168	.153	1.739	.085	041	.625		.997	1.003

a. Dependent Variable: Temperature

Tolerance < 0.10 means multicollinearity

Model building

- ▶ How do we decide if an explanatory variable has to be included in the model or not?
 - Because of the theory
 - P-value < 0.05
- Method of variable selection
 - Simple linear regression for all variables
 - Pre-selection on large alpha (0.25) [Hosmer–Lemeshow criteria]
 - Default in SPSS: Enter
 - Better: Backward by hand
 - Stepwise methods save time, but in general not recommended.
- ▶ Model evaluation: (adjusted) R²

Model building

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.506ª	.256	.233	.83810

a. Predictors: (Constant), Sex, Age, HeartRate

b. Dependent Variable: Temperature

Problem!!!

ANOVA^a

Mod	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	23.218	3	7.739	11.018	.000b
	Residual	67.432	96	.702		
	Total	90.650	99			

a. Dependent Variable: Temperature

b. Predictors: (Constant), Sex, Age, HeartRate

The general rule of thumb: Variance Inflation Factor (VIF)

VIF > 4 warrant further investigation.

VIF > 10 are signs of serious multicollinearity.

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		0	95.0% Confidence Interval for B		Co	llinearity	Statis
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tol	erance	VIF
1	(Constant)	92.890	1.238		75.023	.000	90.432	95.347			
1	HeartRate	.085	.016	.473	5.344	.000	.054	.117		.987	1.013
	Age	026	.013	177	-1.996	.049	052	.000	/	.989	1.012
	Sex	.292	.168	.153	1.739	0 .085	041	.625		.997	1.003

a. Dependent Variable: Temperature

Tolerance < 0.10 means multicollinearity

Model building

Stepwise method

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confidence Interval for B		Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound Upper Bound		Tolerance	VIF
1	(Constant)	92.391	1.201		76.900	.000	90.006	94.775		
	HeartRate	.081	.016	.448	4.956	.000	.048	.113	1.000	1.000
2	(Constant)	93.152	1.242		75.023	.000	90.688	95.617		
	HeartRate	.084	.016	.466	5.216	.000	.052	.116	.989	1.011
	Age	027	.013	181	-2.020	.046	053	.000	.989	1.011

a. Dependent Variable: Temperature

Regression: CW

▶ Research Question: Identify the determinants of heart rate.

ANOVA

- ▶ The one-way ANOVA is used to test the claim that two or more population means are equal.
- \triangleright This is an extension of the two independent samples t-test.
- ▶ The outcome variable must be continuous, and the independent variable must have more than two groups.
- \triangleright An ANOVA uses the *F* test comparison of variance.
- Reveals if a difference is present.
 - Does NOT reveal which sample means are different.
 - ► If there is no significance found, the test is concluded.
 - ► If there is a difference, do analyze a Post-hoc test (Bonferroni, Tukey, or Scheffe test).

Assumptions in ANOVA

- ▶ Conditions or Assumptions
 - The data are randomly sampled
 - ► The variances of each sample are assumed equal
 - The residuals are normally distributed

Hypothesis in ANOVA

▶ The null hypothesis is that the means are all equal

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

▶ The alternative hypothesis is that at least one of the means is different

 H_1 : at least one of them differs.

Why not Multiple Pairwise t-tests?

- \triangleright With t-test, only 2 means at a time are compared
 - ► *F* test compares all means at once
- \triangleright The more t-tests that are conducted, more likely to find significant differences by chance alone (Type-I error).
- ▶ Many means to compare so more tests required.
 - ightharpoonup For 10 means, 45 t tests required
- ▶ ANOVA greatly reduces Type-I errors as the number of treatments to compare increases.

Post-hoc pairwise comparison tests

▷ Rule of Thumb

- Use the Tukey test when samples are equal in size.
- Use Scheffe's test if samples differ in size.
- These two tests are similar to a t test in that they do pairwise comparisons, but are adjusted so that they account for the fact that more than 2 means are compared.

Post-hoc pairwise comparison tests

▷ Rule of Thumb

- ► Bonferroni correction is used to reduce the chances of obtaining false-positive results (type I errors).
- To perform a Bonferroni correction, divide the significance level (α) by the number of comparisons being made. For example, if 10 hypotheses are being tested, the new critical value would be $new \ \alpha = \frac{\alpha}{10}$, e.g., $new \ \alpha = \frac{0.05}{10} = 0.005$.
- ► Bonferroni has more power when the number of comparisons is small, whereas Tukey is more powerful when testing large numbers of means.
- ► Tukey's HSD is only applied to situations where you want to examine all possible pairwise comparisons, whereas Bonferroni correction can be applied to any set of hypothesis tests.

Which Post-hoc Test should we use?

Exercise

- ▷ Sample_Dataset_2014.sav
- Question: To test if there is a statistically significant difference in *sprint time* with respect to *smoking status*.
- > Sprint time will serve as the dependent variable, and smoking status will act as the independent variable.
- First, import the data into SPSS.
 - Hint: ANOVA

Hypothesis in ANOVA

▶ The null hypothesis is that the means are all equal

$$H_0: \mu_{nonsmoker} = \mu_{past\ smoker} = \mu_{current\ smoker}$$

▶ The alternative hypothesis is that at least one of the means is different

 H_1 : at least one of them differs.

In SPSS: ANOVA

To run a One-Way ANOVA in SPSS

click Analyze > Compare Means > One-Way ANOVA.

Syntax:

```
ONEWAY Sprint BY Smoking

/STATISTICS DESCRIPTIVES HOMOGENEITY

/PLOT MEANS

/MISSING ANALYSIS

/POSTHOC=TUKEY SCHEFFE LSD BONFERRONI ALPHA(0.05).
```

ANOVA

ANOVA

Descriptives

35-meter sprint time (seconds)

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Nonsmoker	261	6.41149	1.251783	.077483	6.25891	6.56406	4.503	9.597
Past smoker	33	6.83533	1.024415	.178328	6.47209	7.19858	4.889	8.549
Current smoker	59	7.12092	1.083500	.141060	6.83855	7.40328	5.295	9.475
Total	353	6.56968	1.233839	.065671	6.44053	6.69884	4.503	9.597

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
35-meter sprint time	Based on Mean	2.415	2	350	.091
(seconds)	Based on Median	2.322	2	350	.100
	Based on Median and with adjusted df	2.322	2	343.190	.100
	Based on trimmed mean	2.349	2	350	.097

ANOVA

ANOVA

35-meter sprint time (seconds)

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	26.788	2	13.394	9.209	.000
Within Groups	509.082	350	1.455		
Total	535.870	352			

Since p < 0.05, the null hypothesis is rejected. Therefore, we may conclude that there is a significant difference in *sprint time* with respect to *smoking status*.

Post-hoc Tests

Multiple Comparisons

Dependent Variable: 35-meter sprint time (seconds)

			Mean Difference (I-			95% Confid	ence Interval
	(I) Does student smoke?	(J) Does student smoke?	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Nonsmoker	Past smoker	423847	.222821	.140	94831	.10061
		Current smoker	709429 [*]	.173856	.000	-1.11864	30022
	Past smoker	Nonsmoker	.423847	.222821	.140	10061	.94831
		Current smoker	285582	.262163	.521	90264	.33148
	Current smoker	Nonsmoker	.709429*	.173856	.000	.30022	1.11864
		Past smoker	.285582	.262163	.521	33148	.90264
Scheffe	Nonsmoker	Past smoker	423847	.222821	.165	97160	.12391
		Current smoker	709429*	.173856	.000	-1.13681	28205
	Past smoker	Nonsmoker	.423847	.222821	.165	12391	.97160
		Current smoker	285582	.262163	.553	93005	.35888
	Current smoker	Nonsmoker	.709429*	.173856	.000	.28205	1.13681
		Past smoker	.285582	.262163	.553	35888	.93005
LSD	Nonsmoker	Past smoker	423847	.222821	.058	86208	.01439
		Current smoker	709429	.173856	.000	-1.05136	36750
	Past smoker	Nonsmoker	.423847	.222821	.058	01439	.86208
		Current smoker	285582	.262163	.277	80119	.23003
	Current smoker	Nonsmoker	.709429*	.173856	.000	.36750	1.05136
		Past smoker	.285582	.262163	.277	23003	.80119
Bonferroni	Nonsmoker	Past smoker	423847	.222821	.174	95985	.11216
		Current smoker	709429	.173856	.000	-1.12765	29121
	Past smoker	Nonsmoker	.423847	.222821	.174	11216	.95985
		Current smoker	285582	.262163	.830	91623	.34506
	Current smoker	Nonsmoker	.709429*	.173856	.000	.29121	1.12765
		Past smoker	.285582	.262163	.830	34506	.91623

^{*.} The mean difference is significant at the 0.05 level.

Kruskal-Wallis Test

- The nonparametric test makes no assumptions about the distribution of the data (e.g., *normality*).
- More than 2 groups − a nonparametric alternative to the one way ANOVA.
- ▶ The Kruskal-Wallis test (also called the H test) is a nonparametric test that uses ranks of sample data from three or more independent populations.
- ▶ It is used to test the null hypothesis that the independent samples come from populations with the equal medians.

> Hypothesis

 H_0 : The samples come from populations with equal medians.

 H_1 : The samples come from populations with medians that are not all equal.

Kruskal-Wallis Test: Requirements

- ▶ Need at least three independent samples, all of which are randomly selected.
- Each sample has at least 5 observations.
- ▶ There is no requirement that the populations have a normal distribution or any other particular distribution.

Example: Sample data 2014

> Hypothesis

 H_0 : The populations of sprinters with sprint time come from the three groups of smokers with equal medians.

 H_1 : The three populations medians are not all equal.

K-W Test: Sample Data set

Kruskal-Wallis Test

Ranks

	Smoking	Ν	Mean Rank
Sprint	Nonsmoker	261	163.50
	Past Smoker	33	202.12
	Current Smoker	59	222.66
	Total	353	

Test Statistics a,b

	Sprint
Kruskal-Wallis H	18.379
df	2
Asymp. Sig.	.000

- a. Kruskal Wallis Test
- b. Grouping Variable:
 Smoking

Since p < 0.05, the null hypothesis is rejected. Therefore, we may conclude that there is a significant difference in *sprint time* with respect to *smoking status*.

Flow Chart for Selecting Commonly Used Statistical Tests

Flow chart: Which test statistics should we use?

Thank You!