Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works¹

Emma Brunskill

CS234 Reinforcement Learning

Winter 2022

¹Material builds on structure from David SIlver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6:1-6.3 ○

Refresh Your Knowledge L3 [Polleverywhere Poll]

- What is the max number of iterations of policy iteration in a tabular MDP?
 - 1 |A||S
 - $|S|^{|A|}$
 - (3) |A||S|
 - Unbounded
 - Not sure
- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
 - True.
 - Palse
 - Not sure
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).
 - True.
 - Palse
 - Not sure

Refresh Your Knowledge L3

- What is the max number of iterations of policy iteration in a tabular MDP? Answer: $|A|^{|S|}$: There are only $|A|^{|S|}$ policies in a tabular MDP and each policy can only be considered at most once, since policy improvement either results in a policy with a higher value or returns the same policy if the optimal policy has been found.
- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
 Answer. True. Both are guaranteed to converge to the optimal value function and a policy with an optimal value
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).
 - Answer: True. As an example, consider a single state, single action MDP where $r(s,a)=1,\ \gamma=.9$ and initialize $V_0(s)=0.\ V^*(s)=\frac{1}{1-\gamma}$ but after the first iteration of value iteration, $V_1(s)=1$.

Today's Plan

check your understanding pulls

Ove Sinday at 6 pm

Stanford

Time

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today

dynamics d

- Policy evaluation without known dynamics & reward models
- Next Time:

1250120

Control when don't have a model of how the world works

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Metrics to evaluate and compare algorithms

Recall

- Definition of Return, G_t (for a MRP)
 - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

- Definition of State Value Function, $V^{\pi}(s)$
 - Expected return from starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots | s_t = s]$$

- Definition of State-Action Value Function, $Q^{\pi}(s, a)$
 - \bullet Expected return from starting in state s, taking action a and then following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | s_t = s, a_t = a]$$

= $\mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a]$

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Metrics to evaluate and compare algorithms

Monte Carlo (MC) Policy Evaluation

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{T \sim \pi}[G_t | s_t = s]$
 - \bullet Expectation over trajectories ${\cal T}$ generated by following π
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns

Monte Carlo (MC) Policy Evaluation

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards
- Does not assume state is Markov
- Can be applied to episodic MDPs
 - Averaging over returns from a complete episode
 - Requires each episode to terminate

Monte Carlo (MC) On Policy Evaluation

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- MC computes empirical mean return
- Often do this in an incremental fashion
 - After each episode, update estimate of V^{π}

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s) = 0$$
, $G(s) = 0 \ \forall s \in S$
Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each time step t till the end of the episode i
 - ullet If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Evaluation of the Quality of a Policy Estimation Approach: Bias, Variance and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Onsider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}] - heta$$

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$Var(\hat{\theta}) = \mathbb{E}_{x|\theta}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2]$$

• Definition: mean squared error (MSE) of an estimator $\hat{\theta}$ is:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})^{2}$$

- ◆□▶◆@▶◆意▶◆意▶ · 意 · かへぐ

Evaluation of the Quality of a Policy Estimation Approach: Consistent Estimator

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}] - heta$$

- Let n be the number of data points x used to estimate the parameter θ and call the resulting estimate of θ using that data $\hat{\theta}_n$
- Then the estimator $\hat{\theta}_n$ is consistent if, for all $\epsilon > 0$

$$\lim_{n\to\infty} \Pr(|\hat{\theta}_n - \theta| > \epsilon) = 0$$

• Quick check: if an estimator is unbiased (bias = 0) is it consistent?

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s) = 0$$
, $G(s) = 0 \ \forall s \in S$
Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each time step *t* till the end of the episode *i*
 - If this is the **first** time *t* that state *s* is visited in episode *i*
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- ullet V^π estimator is an unbiased estimator of true $\mathbb{E}_\pi[G_t|s_t=s]$
- ullet By law of large numbers, as $\mathit{N}(s) o \infty, \ \mathit{V}^{\pi}(s) o \mathbb{E}_{\pi}[\mathit{G}_t | \mathit{s}_t = s]$

- ◀ □ ▶ ◀ Ē ▶ ◀ Ē ▶ · · Ē · · · 의 익 C

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each time step t till the end of the episode i
 - state s is the state visited at time step t in episodes i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s) = 0$$
, $G(s) = 0 \ \forall s \in S$
Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each time step *t* till the end of the episode *i*
 - state s is the state visited at time step t in episodes i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- V^{π} every-visit MC estimator is a **biased** estimator of V^{π}
- But consistent estimator and often has better MSE

Worked Example First Visit MC On Policy Evaluation

Initialize N(s)=0, G(s)=0 $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each time step t till the end of the episode i
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: $R(s) = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$

Worked Example MC On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$ • For each time step t till the end of the episode i
 - f= 2 52 Gn =1 • If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: R(s) = [100000+10]
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{ terminal})$
- Let $\gamma = 1$. First visit MC estimate of V of each state?
- $V(s_3) = 1 = V(s_2) = V(s_1)$ V = [110000]
- Now let $\gamma = 0.9$. Compare the first visit & every visit MC estimates of s_2 .
- · 11(53) Gil = Ot V. O1 Y2. O1 Y3

Worked Example MC On Policy Evaluation

Initialize N(s)=0, G(s)=0 $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each time step t till the end of the episode i
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- \bullet Mars rover: R = [1 0 0 0 0 0 0 +10] for any action
- Trajectory = $(s_3, a_1, 0, \underline{s_2}, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- Let $\gamma=1$. First visit MC estimate of V of each state? $V=[1\ 1\ 1\ 0\ 0\ 0\ 0]$
- Now let $\gamma = 0.9$. Compare the first visit & every visit MC estimates of s_2 . First visit: $V^{MC}(s_2) = \gamma^2$, Every visit: $V^{MC}(s_2) = \frac{\gamma^2 + \gamma}{2}$

Incremental Monte Carlo (MC) On Policy Evaluation

1 oupsives

After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s) \frac{N(s) - 1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^{\pi}(s) + \frac{1}{N(s)}(G_{i,t} - V^{\pi}(s))$$

Incremental Monte Carlo (MC) On Policy Evaluation

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- for i = 1: T_i where T_i is the length of the i-th episode

•
$$V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} - V^{\pi}(s_{it}))$$

Check Your Understanding L3N1: Polleverywhere Poll Incremental MC (State if each is True or False)

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for **first or every** time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Incremental MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i} = \bigvee_{v \in I} (V I)$ • $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- for t = 1: T_i where T_i is the length of the *i*-th episode

•
$$V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \underline{\alpha(G_{i,t} - V^{\pi}(s_{it}))}$$

- Incremental MC with lpha=1 is the same as first visit MC
- 2 Incremental MC with $\alpha = \frac{1}{N(s_{i+1})}$ is the same as first visit MC
- 3 Incremental MC with $\alpha = \frac{1}{N(s_{i+1})}$ is the same as every visit MC
- Incremental MC with $lpha>rac{1}{M(s_+)}$ could be helpful in non-stationary domains \square \wedge \wedge \square \wedge \wedge \supseteq \wedge \wedge \supseteq \wedge \wedge \supseteq \wedge

Break

• When we come back, continue with Monte Carlo policy evaluation

Check Your Understanding L3N1: Polleverywhere Poll Incremental MC Answers

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $\bullet \quad G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for **first or every** time t that state s is visited in episode i• N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$. Update estimate $V^{\pi}(s) = G(s)/N(s)$

Incremental MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- for $t = 1 : T_i$ where T_i is the length of the *i*-th episode
 - $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} V^{\pi}(s_{it}))$

- 2 Incremental MC with $\alpha = \frac{1}{N(s_{it})}$ is the same as first visit MC false
- 3 Incremental MC with $\alpha=\frac{1}{N(s_{it})}$ is the same as every visit MC true
- Incremental MC with $\alpha > \frac{1}{N(s_{it})}$ could help in non-stationary domains true

< ロ > 4 回 > 4 亘 > 4 亘 > 亘 夕 Q C

MC Policy Evaluation

$$(1-c)$$
 $V^{\pi}(s) + c G_{i,\tau}$ $V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$

= Expectation

□ = Terminal state

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

MC updates the value estimate using a **sample** of the return to approximate an expectation

- = Expectation
 - **□** = Terminal state

Monte Carlo (MC) Policy Evaluation Key Limitations

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - ullet Episode must end before data from episode can be used to update V

Monte Carlo (MC) Policy Evaluation Summary

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- ullet Updates V estimate using **sample** of return to approximate the expectation
- Does not assume Markov process
- Converges to true value under some (generally mild) assumptions

Break

• (End of Monte Carlo policy evaluation)

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Metrics to evaluate and compare algorithms

Temporal Difference Learning

- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." – Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple

Temporal Difference Learning for Estimating V

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Recall Bellman operator (if know MDP models) of February STIC TI

$$B^{\pi}V(s) = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s))V(s')$$

• In incremental every-visit MC, update estimate using 1 sample of return (for the current *i*th episode)

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

• Insight: have an estimate of V^{π} , use to estimate expected return

$$V^{\pi}(s) = V^{\pi}(s) + \alpha([r_{t} + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s))$$

Temporal Difference [TD(0)] Learning

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- Simplest TD learning: update value towards estimated value

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

• TD error:

$$\delta_t = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

Temporal Difference [TD(0)] Learning Algorithm

Input:
$$\alpha$$

Initialize $V^{\pi}(s)=0$, $\forall s \in S$
Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Compute new V^{π} at the end of 1 trajectory

```
Input: \alpha
Initialize V^{\pi}(s) = 0, \forall s \in S
Loop
```

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{ terminal})$

TD
$$(S_3 \ a_1 \ O \ S_2)$$
 TD to $(S_2) = 0$
 $(S_3 \ a_1 \ O \ S_2)$ TD to $(S_2) = 0$
 $(S_2 \ a_1 \ O \ S_2)$ TD to $(S_2) = 0$
... $(S_1 \ a_1 \)$ trimal $(S_2) = 0$

Worked Example TD Learning

Input: α Initialize $V^{\pi}(s)=0$, $\forall s\in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \underbrace{\widehat{O}(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))}$

Example:

- \bullet Mars rover: R = [1 0 0 0 0 0 +10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- TD estimate of all states (init at 0) with $\alpha=1$? V = [1 0 0 0 0 0 0 0]
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]

Temporal Difference (TD) Policy Evaluation

$$V^{\pi}(s_{t}) = r(s_{t}, \pi(s_{t})) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_{t}, \pi(s_{t})) V^{\pi}(s_{t+1})$$

$$V^{\pi}(s_{t}) = V^{\pi}(s_{t}) + \alpha([r_{t} + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_{t}))$$

$$F_{t}([w)^{\pi}(s_{t+1})] = V^{\pi}(s_{t})$$

TD updates the value estimate using a **sample** of s_{t+1} to approximate an expectation

TD updates the value estimate by bootstrapping, uses estimate of V(s_{t+1})

States

= Expectation

□ = Terminal state

4□▶ 4□▶ 4□▶ 4□▶ □ 90○

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input: α Initialize $V^{\pi}(s)=0$, $\forall s\in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Select all that are true

- **1** If $\alpha = 0$ TD will weigh the TD target more than the past V estimate
- ② If $\alpha = 1$ TD will update the V estimate to the TD target
- 3 If $\alpha=1$ TD in MDPs where the policy goes through states with multiple possible next states, V may oscillate forever
- There exist deterministic MDPs where $\alpha = 1$ TD will converge

Break

0

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input:
$$\alpha$$
Initialize $V^{\pi}(s) = 0$, $\forall s \in S$
Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Answers. If $\alpha=1$ TD will update to the TD target. If $\alpha=1$ TD in MDPs where the policy goes through states with multiple possible next states, V may oscillate forever. There exist deterministic MDPs where $\alpha=1$ TD will converge.

Summary: Temporal Difference Learning

- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Bootstraps and samples
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Metrics to evaluate and compare algorithms

Recall: Dynamic Programming for Policy Evaluation

- If we knew dynamics and reward model, we can do policy evaluation
- Initialize $V_0^{\pi}(s) = 0$ for all s
- For k = 1 until convergence
 - For all s in S

$$V_k^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s)) \underbrace{V_{k-1}^{\pi}(s')}$$

- ullet $V_k^\pi(s)$ is exactly the k-horizon value of state s under policy π
- $V_k^{\pi}(s)$ is an **estimate of the infinite horizon** value of state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$$

Dynamic Programming Policy Evaluation

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

-

ullet Bootstrapping: Update for V uses an estimate

Dynamic Programming Policy Evaluation

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

• Bootstrapping: Update for V uses an estimate

What about when we don't know the models?

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s_i, a_i, r_i, s_{i+1}) tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s, a) = \frac{1}{N(s, a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a) r_k$$

• Compute V^{π} using MLE MDP 1 (using any method from lecture 2))

¹Requires initializing for all (s, a) pairs

s_1	<i>s</i> ₂	<i>S</i> ₃	S_4	s_5	s ₆	<i>S</i> ₇
R(s ₁) = +1 Okay Field Site		$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		$R(s_7) = +10$ Fantastic Field Site

- Mars rover: R = [100000+10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1_1_1 0 0 0 0]
- ullet TD estimate of all states (init at 0) with lpha=1 is [1 0 0 0 0 0 0]
- What is the certainty equivalent estimate?
- $\hat{r} = [1 \ 0 \ 0 \ 0 \ 0 \ 0], \ \hat{p}(terminate|s_1, a_1) = \hat{p}(s_2|s_3, a_1) = 1$
- $\hat{p}(s_1|s_2, a_1) = .5$, $\hat{p}(s_2|s_2, a_1) = .5$, $V = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- ullet Compute V^π using MLE MDP
- Cost: Updating MLE model and MDP planning at each update $(O(|S|^3))$ for analytic matrix solution, $O(|S|^2|A|)$ for iterative methods)
- Very data efficient and very computationally expensive
- Consistent (will converge to right estimate for Markov models)
- Can also easily be used for off-policy evaluation

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Metrics to evaluate and compare algorithms

Check Your Understanding L3N3: Properties of Algorithms for Evaluation.

	DPCE	MC	TD
Can use w/out access to true MDP models			
Usable in continuing (non-episodic) setting			
Assumes Markov process			
Converges to true value in limit ²			
Unbiased estimate of value			

ullet DPCE = Dynamic Programming w/certainty equivalence estimates, MC = Monte Carlo, TD = Temporal Difference

²For tabular representations of value function. More on this in later lectures

Check Your Understanding L3N3: Properties of Algorithms for Evaluation.

	DPCE	MC	TD
Can use w/out access to true MDP models	Х	Х	Х
Usable in continuing (non-episodic) setting	X.		Χ.
Assumes Markov process	Х		Х
Converges to true value in limit ³	Х	Χ	Х
Unbiased estimate of value		Χ	

Carath

ullet DPCE = Dynamic Programming w/certainty equivalence estimates, MC = Monte Carlo, TD = Temporal Difference

³For tabular representations of value function. More on this in later lectures

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Bias/variance characteristics
- Data efficiency
- Computational efficiency
- Mostly focus on comparing MC and TD methods but we will connect back to dynamic programming with certainty equivalence methods later

Bias/Variance of Model-free Policy Evaluation Algorithms

- Return G_t is an unbiased estimate of $V^{\pi}(s_t)$
- TD target $[r_t + \gamma V^{\pi}(s_{t+1}^{\prime\prime})]$ is a biased estimate of $V^{\pi}(s_t)$
- But often much lower variance than a single return G_t
- Return function of multi-step sequence of random actions, states & rewards
- TD target only has one random action, reward and next state
- MC
 - Unbiased (for first visit)
 - High variance
 - Consistent (converges to true) even with function approximation
- TD
 - Some bias
 - Lower variance
 - TD(0) converges to true value with tabular representation
 - TD(0) does not always converge with function approximation

s_1	<i>S</i> ₂	s_3	S_4	s_5	<i>s</i> ₆	S ₇
R(s ₁) = +1 Okay Field Site		$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		$R(s_7) = +10$ Fantastic Field Site

- Mars rover: R = [10000 + 10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- ullet TD estimate of all states (init at 0) with lpha=1 is [1 0 0 0 0 0 0]
- TD(0) only uses a data point (s, a, r, s') once
- Monte Carlo takes entire return from s to end of episode

Batch MC and TD

- Batch (Offline) solution for finite dataset
 - Given set of K episodes
 - Repeatedly sample an episode from K st
 - ullet Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience: A > 1=0 > B -> 1=0
 - A, 0, B, 0
 - B, 1 (observed 6 times)
 - B, 0
- Imagine run TD updates over data infinite number of times
- \bullet V(B) =

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- TD Update: $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] V^{\pi}(s_t))$ TD target

 To target

 MC V(B) = $\frac{6}{8} = \frac{3}{4}$
- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:

- A, 0, B, 0
- B,1 (observed 6 times)
- B, 0
- Imagine run TD updates over data infinite number of times
- V(B) = 0.75 by TD or MC
- What about V(A)?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B, 1 (observed 6 times)
 - B, 0
- Imagine run TD updates over data infinite number of times
- V(B) = 0.75 by TD or MC
- What about V(A)? $V^{MC}(A) = 0$ $V^{TD}(A) = .75$

Batch MC and TD: Converges

- Monte Carlo in batch setting converges to min MSE (mean squared error)
 - Minimize loss with respect to observed returns
 - In AB example, V(A) = 0
- TD(0) converges to DP policy V^{π} for the MDP with the maximum likelihood model estimates
- Aka same as dynamic programming with certainty equivalence!
 - Maximum likelihood Markov decision process model

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a) r_k$$

- Compute V^{π} using this model
- In AB example, V(A) = 0.75

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Data efficiency & Computational efficiency
- In simplest TD, use (s, a, r, s') once to update V(s)
 - O(1) operation per update
 - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD
- But TD exploits Markov structure
 - If in Markov domain, leveraging this is helpful
- Dynamic programming with certainty equivalence also uses Markov structure

Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to true MDP models. Ex. evaluating average purchases per session of new product recommendation system

- Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
 - Given on policy samples
 - Given off policy samples
- Temporal Difference (TD)
- Dynamic Programming with certainty equivalence
- Metrics to evaluate and compare algorithms
 - Robustness to Markov assumption
 - Bias/variance characteristics
 - Data efficiency
 - Computational efficiency

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works