TKT20005 Laskennan mallit Viikko1

Tehtävä 1 Implikaatio ja ekvivalenssi.

 Alicella ja Bobilla on molemmilla lehmiä, jotka laiduntavat samalla niityllä. Tiedämme, että seuraavat loogiset lauseet niityllä olevista lehmistä ovat totta:

```
"Lehmä on Alicen." ⇒ "Lehmä on ruskea."
"Lehmä on Bobin." ⇔ "Lehmällä on sarvet."
```

Luonnollisella kielellä yllä olevat lauseet voidaan ilmaista esim.:

- · Jos lehmä on Alicen, se on ruskea.
- Lehmä on Bobin, jos ja vain jos sillä on sarvet.
- **(a)(1)** Lehmä on ruskea. Implikaatiosta "Jos lehmä on Alicen, se on ruskea" $(A \Rightarrow R)$ ei voi päätellä mitään omistajasta jos lehmä on ruskea. Ruskea lehmä voi olla Alicen, mutta se voi olla myös jonkun muun lehmä. Omistajasta ei siis voida päätellä mitään.
 - (2) Lehmä ei ole ruskea. Implikaatiosta $A \Rightarrow R$ seuraa loogisesti $\neg R \implies \neg A$. Tämä tarkoittaa: "Jos lehmä ei ole ruskea, se ei ole Alicen."Koska lehmä ei ole ruskea, voimme varmuudella sanoa, että lehmä ei ole Alicen
 - (3) Lehmällä on sarvet. Ekvivalenssi "Lehmä on Bobin, jos ja vain jos sillä on sarvet" ($B \iff S$) tarkoittaa, että lauseilla on aina sama arvo. Koska lehmällä on sarvet, sen on oltava Bobin.
 - **(4)** Lehmällä ei ole sarvia. Ekvivalenssin ($B \iff S$) mukaan, jos lehmällä ei ole sarvia, se ei voi olla Bobin. Lehmä ei ole Bobin.
- (b)(1) Jos D on tosi, implikaatiosta $A \Rightarrow D$ ei voida päätellä mitään A:n totuusarvosta.
 - (2) Jos D ei ole tosi, niin $\neg D \Rightarrow \neg A$ nojalla voidaan todeta, että **A ei ole tosi.**
 - (3) Jos tiedetään että E on tosi, ekvivalenssin $B \iff E$ nojalla myös **B** on tosi.
 - (4) Jos tiedetään että E ei ole tosi, ekvivalenssin $B \iff E$ nojalla myös **B ei ole tosi.**

Tehtävä 2 Vastaesimerkki ja epäsuora todistus.

Tunnetusti kahden luonnollisen luvun summa on luonnollinen luku. Toisin sanoen pätee:

$$a \in \mathbb{N}$$
 ja $b \in \mathbb{N} \implies a + b \in \mathbb{N}$

- 1. Tiedetään, että a on luonnollinen luku ja b ei ole luonnollinen luku. Voidaanko tästä päätellä, että a+b ei ole luonnollinen luku? Perustele vastauksesi täsmällisesti antamalla vastaesimerkki tai todistus perustuen yllä olevaan implikaatioon ja epäsuoraan todistustekniikkaan.
- 2. Tiedetään, että a on luonnollinen luku ja a+b ei ole luonnollinen luku. Voidaanko tästä päätellä, että b ei ole luonnollinen luku? Perustele vastauksesi täsmällisesti antamalla vastaesimerkki tai todistus perustuen yllä olevaan implikaatioon ja epäsuoraan todistustekniikkaan.
- (1) Väite on: $a \in \mathbb{N}$ ja $b \notin \mathbb{N} \Rightarrow a + b \notin \mathbb{N}$

On löydettävä sellaiset luvut a ja b, joilla alkuoletus pätee ($a \in \mathbb{N}$ ja $b \notin \mathbb{N}$), mutta johtopäätös ei päde ($a + b \in \mathbb{N}$)

Valitaan a=3 ja b=-2

- Tällöin a=3 on luonnollinen luku.
- Luku b = -2 ei ole luonnollinen luku.
- a+b=3+(-2)=1. Luku 1 on luonnollinen luku; siis $a+b \in \mathbb{N}$

Koska löysimme tapauksen, missä oletukset on voimassa mutta väite ei pidä paikkaansa, emme voi yleisesti sanoa a+b ei ole luonnollinen luku. **Väite on siis epätosi.**

(2) Väite on: $a \in \mathbb{N}$ ja $a + b \notin \mathbb{N} \Rightarrow b \notin \mathbb{N}$

Väite on tosi. Todistetaan tämä epäsuorasti.

Oletetaan, että $a \in \mathbb{N}$ ja $a + b \notin \mathbb{N}$. Oletetaan vastoin väitettä, että b on luonnollinen luku: $b \in \mathbb{N}$.

Nyt meillä on tiedossa kaksi asiaa:

- Alkuperäisen oletuksen mukaan $a \in \mathbb{N}$.
- Vastaoletuksen mukaan $b \in \mathbb{N}$.

Tehtävänannossa annetun perustiedon mukaan kahden luonnollisen luvun summa on aina luonnollinen luku. Koska a ja b ovat molemmat oletustemme mukaan luonnollisia lukuja, niiden summan a+b on siis pakko olla luonnollinen luku, eli $a+b\in\mathbb{N}$

Tämä on kuitenkin ristiriidassa alkuperäisen oletuksen kanssa, jonka mukaan $a+b\notin\mathbb{N}$ eli alkuperäinen väite on tosi.