Lecture Notes #6
(Chapter 8)
Economics 120B
Econometrics

Prof. Dahl UC San Diego

Nonlinear Regression Functions

(SW Chapter 8)

- Everything so far has been linear in the X's
- But the linear approximation is not always a good one
- The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more *X*.

Outline

- 1. Nonlinear regression functions general comments
- 2. Nonlinear functions of one variable
- 3. Nonlinear functions of two variables: interactions

The *TestScore* – *STR* relation looks linear (maybe)...

But the *TestScore* – *Income* relation looks nonlinear...

Nonlinear Regression Population Regression Functions – General Ideas (SW Section 8.1)

If a relation between Y and X is **nonlinear**:

- The effect on Y of a change in X depends on the value of X that is, the marginal effect of X is not constant
- A linear regression is mis-specified the functional form is wrong
- The estimator of the effect on *Y* of *X* is biased it needn't even be right on average.
- The solution to this is to estimate a regression function that is nonlinear in *X*

Nonlinear Functions of a Single Independent Variable (SW Section 8.2)

We'll look at two complementary approaches:

- 1. Polynomials in X
 - The population regression function is approximated by a quadratic, cubic, or higher-degree polynomial
- 2. Logarithmic transformations
 - Y and/or X is transformed by taking its logarithm
 - this gives a "percentages" interpretation that makes sense in many applications

1. Polynomials in X

Approximate the population regression function by a polynomial:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + ... + \beta_r X_i^r + u_i$$

- This is just the linear multiple regression model except that the regressors are powers of X!
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS
- The coefficients are difficult to interpret, but the regression function itself is interpretable

Example: the **TestScore** – **Income** relation

 $Income_i$ = average district income in the i^{th} district (thousands of dollars per capita)

Quadratic specification:

$$TestScore_i = \beta_0 + \beta_1 Income_i + \beta_2 (Income_i)^2 + u_i$$

Cubic specification:

$$TestScore_{i} = \beta_{0} + \beta_{1}Income_{i} + \beta_{2}(Income_{i})^{2} + \beta_{3}(Income_{i})^{3} + u_{i}$$

Estimation of the quadratic specification in STATA

```
generate avginc2 = avginc*avginc;
reg testscr avginc avginc2, r;
```

Create a new regressor

Regression with robust standard errors

Number of obs = 420 F(2, 417) = 428.52 Prob > F = 0.0000 R-squared = 0.5562 Root MSE = 12.724

testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
avginc	3.850995	.2680941	14.36	0.000	3.32401	4.377979
avginc2	0423085	.0047803	-8.85	0.000	051705	0329119
_cons	607.3017	2.901754	209.29	0.000	601.5978	613.0056

Test the null hypothesis of linearity against the alternative that the regression function is a quadratic....

Interpreting the estimated regression function:

(a) Plot the predicted values

$$TestScore = 607.3 + 3.85 * Income_i - 0.0423(Income_i)^2$$
(2.9) (0.27) (0.0048)

Interpreting the estimated regression function, ctd:

(b) Compute "effects" for different values of X

$$TestScore = 607.3 + 3.85 * Income_i - 0.0423(Income_i)^2$$
(2.9) (0.27) (0.0048)

Predicted change in *TestScore* for a change in income from \$5,000 per capita to \$6,000 per capita:

$$\Delta TestScore = 607.3 + 3.85 * 6 - 0.0423 * 6^{2}$$

$$-(607.3 + 3.85 * 5 - 0.0423 * 5^{2})$$

$$= 3.4$$

Estimation of a cubic specification in STATA

```
gen avginc3 = avginc*avginc2;
                                     Create the cubic regressor
reg testscr avginc avginc2 avginc3, r;
Regression with robust standard errors
                                                Number of obs =
                                                                  420
                                                F(3, 416) = 270.18
                                                 Prob > F
                                                             = 0.0000
                                                R-squared
                                                             = 0.5584
                                                Root MSE
                                                             = 12.707
                         Robust
                        Std. Err. t P>|t|
                                                  [95% Conf. Interval]
                 Coef.
    testscr
    avginc
              5.018677
                        .7073505
                                   7.10 0.000
                                                   3.628251
                                                             6.409104
    avginc2
                        .0289537
                                   -3.31 0.001
                                                  -.1527191
              -.0958052
                                                             -.0388913
                       .0003471
                                   1.98 0.049
                                                  3.27e-06
    avginc3
              .0006855
                                                             .0013677
               600.079
                                                   590.0499
                         5.102062
                                  117.61
                                          0.000
                                                               610,108
      cons
```

Testing the null hypothesis of linearity, against the alternative that the population regression is quadratic and/or cubic, that is, it is a polynomial of degree up to 3:

 H_0 : pop'n coefficients on $Income^2$ and $Income^3 = 0$ H_1 : at least one of these coefficients is nonzero.

```
test avginc2 avginc3; Execute the test command after running the regression

( 1) avginc2 = 0.0
( 2) avginc3 = 0.0

F( 2, 416) = 37.69
Prob > F = 0.0000
```

The hypothesis that the population regression is linear is rejected at the 1% significance level against the alternative that it is a polynomial of degree up to 3.

Summary: polynomial regression functions

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + ... + \beta_r X_i^r + u_i$$

- Estimation: by OLS after defining new regressors
- Coefficients have complicated interpretations
- To interpret the estimated regression function:
 - plot predicted values as a function of x
 - compute predicted $\Delta Y/\Delta X$ at different values of x
- Hypotheses concerning degree *r* can be tested by *t* and *F* tests on the appropriate (blocks of) variable(s).
- Choice of degree *r*
 - plot the data; *t* and *F*-tests, check sensitivity of estimated effects; judgment.
 - Or use model selection criteria (later)

2. Logarithmic functions of Y and/or X

- ln(X) = the natural logarithm of X
- Logarithmic transforms permit modeling relations in "percentage" terms (like elasticities), rather than linearly.

Here's why:
$$\ln(x+\Delta x) - \ln(x) = \ln\left(1 + \frac{\Delta x}{x}\right) \cong \frac{\Delta x}{x}$$
(calculus:
$$\frac{d\ln(x)}{dx} = \frac{1}{x}$$
)

Numerically:

$$ln(1.01) = .00995 \cong .01;$$

$$ln(1.10) = .0953 \cong .10 \text{ (sort of)}$$

The three log regression specifications:

Case	Population regression function				
I. linear-log	$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$				
II. log-linear	$\ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$				
III. log-log	$\ln(Y_i) = \beta_0 + \beta_1 \ln(X_i) + u_i$				

- The interpretation of the slope coefficient differs in each case.
- The interpretation is found by applying the general "before and after" rule: "figure out the change in *Y* for a given change in *X*."

I. Linear-log case

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

for small ΔX ,

$$\beta_1 \cong \frac{\Delta Y}{\Delta X / X}$$

Now $100 \times \frac{\Delta X}{X}$ = percentage change in X, so a 1% increase in X

(multiplying X by 1.01) is associated with a .01 β_1 change in Y.

(1% increase in $X \Rightarrow .01$ increase in $\ln(X)$

 \Rightarrow .01 β_1 increase in Y)

Example: TestScore vs. In(Income)

- First defining the new regressor, ln(Income)
- The model is now linear in ln(*Income*), so the linear-log model can be estimated by OLS:

$$TestScore = 557.8 + 36.42 * ln(Income_i)$$
(3.8) (1.40)

so a 1% increase in *Income* is associated with an increase in *TestScore* of 0.36 points on the test.

- Standard errors, confidence intervals, R^2 all the usual tools of regression apply here.
- How does this compare to the cubic model?

The linear-log and cubic regression functions

II. Log-linear case

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

for small
$$\Delta X$$
, $\beta_1 \cong \frac{\Delta Y/Y}{\Delta X}$

- Now $100 \times \frac{\Delta Y}{Y}$ = percentage change in Y, so a change in X by one unit ($\Delta X = 1$) is associated with a $100\beta_1\%$ change in Y.
- 1 unit increase in $X \Rightarrow \beta_1$ increase in $\ln(Y)$ $\Rightarrow 100\beta_1\%$ increase in Y

III. Log-log case

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$$

for small ΔX ,

$$\beta_1 \cong \frac{\Delta Y/Y}{\Delta X/X}$$

Now $100 \times \frac{\Delta Y}{Y}$ = percentage change in *Y*, and $100 \times \frac{\Delta X}{X}$ =

percentage change in X, so a 1% change in X is associated with a β_1 % change in Y.

• In the log-log specification, β_1 has the interpretation of an elasticity.

Summary: Logarithmic transformations

- Three cases, differing in whether *Y* and/or *X* is transformed by taking logarithms.
- The regression is linear in the new variable(s) ln(Y) and/or ln(X), and the coefficients can be estimated by OLS.
- Hypothesis tests and confidence intervals are now implemented and interpreted "as usual."
- The interpretation of β_1 differs from case to case.
- Choice of specification should be guided by judgment (which interpretation makes the most sense in your application?), tests, and plotting predicted values

Interactions Between Independent Variables (SW Section 8.3)

- Perhaps a class size reduction is more effective in some circumstances than in others...
- Perhaps smaller classes help more if there are many English learners, who need individual attention
- That is, $\frac{\Delta TestScore}{\Delta STR}$ might depend on PctEL
- More generally, $\frac{\Delta Y}{\Delta X_1}$ might depend on X_2
- How to model such "interactions" between X_1 and X_2 ?
- We first consider binary X's, then continuous X's

(a) Interactions between two binary variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$$

- D_{1i} , D_{2i} are binary
- β_1 is the effect of changing D_1 =0 to D_1 =1. In this specification, this effect doesn't depend on the value of D_2 .
- To allow the effect of changing D_1 to depend on D_2 , include the "interaction term" $D_{1i} \times D_{2i}$ as a regressor:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

Interpreting the coefficients

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

General rule: compare the various cases

$$E(Y_i|D_{1i}=0, D_{2i}=d_2) = \beta_0 + \beta_2 d_2$$
 (b)

$$E(Y_i|D_{1i}=1, D_{2i}=d_2) = \beta_0 + \beta_1 + \beta_2 d_2 + \beta_3 d_2$$
 (a)

subtract (a) - (b):

$$E(Y_i|D_{1i}=1, D_{2i}=d_2) - E(Y_i|D_{1i}=0, D_{2i}=d_2) = \beta_1 + \beta_3 d_2$$

- The effect of D_1 depends on d_2 (what we wanted)
- β_3 = increment to the effect of D_1 , when $D_2 = 1$

Example: TestScore, STR, English learners

Let

$$HiSTR = \begin{cases} 1 \text{ if } STR \ge 20 \\ 0 \text{ if } STR < 20 \end{cases} \text{ and } HiEL = \begin{cases} 1 \text{ if } PctEL \ge 10 \\ 0 \text{ if } PctEL < 10 \end{cases}$$

$$FestScore = 664.1 - 18.2HiEL - 1.9HiSTR - 3.5(HiSTR \times HiEL)$$
(1.4) (2.3) (1.9) (3.1)

- "Effect" of *HiSTR* when HiEL = 0 is -1.9
- "Effect" of *HiSTR* when HiEL = 1 is -1.9 3.5 = -5.4
- Class size reduction is estimated to have a bigger effect when the percent of English learners is large
- This interaction isn't statistically significant: t = 3.5/3.1

(b) Interactions between continuous and binary variables

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + u_i$$

- D_i is binary, X is continuous
- As specified above, the effect on Y of X (holding constant D) = β_2 , which does not depend on D
- To allow the effect of X to depend on D, include the "interaction term" $D_i \times X_i$ as a regressor:

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

Binary-continuous interactions: the two regression lines

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

Observations with $D_i = 0$ (the "D = 0" group):

$$Y_i = \beta_0 + \beta_2 X_i + u_i$$
 The **D=0** regression line

Observations with $D_i=1$ (the "D=1" group):

$$Y_i = \beta_0 + \beta_1 + \beta_2 X_i + \beta_3 X_i + u_i$$

= $(\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_i + u_i$ The D=1 regression line

Binary-continuous interactions, ctd.

(b) Different intercepts, different slopes

(a) Different intercepts, same slope

(c) Same intercept, different slopes

Interpreting the coefficients

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

General rule: compare the various cases

$$Y = \beta_0 + \beta_1 D + \beta_2 X + \beta_3 (D \times X)$$
 (b)

Now change *X*:

$$Y + \Delta Y = \beta_0 + \beta_1 D + \beta_2 (X + \Delta X) + \beta_3 [D \times (X + \Delta X)] \quad (a)$$

subtract (a) - (b):

$$\Delta Y = \beta_2 \Delta X + \beta_3 D \Delta X$$
 or $\frac{\Delta Y}{\Delta X} = \beta_2 + \beta_3 D$

- The effect of *X* depends on *D* (what we wanted)
- β_3 = increment to the effect of X, when D = 1

Example: TestScore, STR, HiEL (=1 if PctEL > 10, = 0 otherwise)

$$TestScore = 682.2 - 0.97 * STR + 5.6 * HiEL - 1.28(STR * HiEL)$$

$$(11.9) (0.59) (19.5) (0.97)$$

• When HiEL = 0:

$$TestScore = 682.2 - 0.97 * STR$$

• When HiEL = 1,

$$TestScore = 682.2 - 0.97 * STR + 5.6 - 1.28 * STR$$

= $687.8 - 2.25 * STR$

- Two regression lines: one for each *HiSTR* group.
- Class size reduction is estimated to have a larger effect when the percent of English learners is large.

Example, ctd: Testing hypotheses

$$TestScore = 682.2 - 0.97 * STR + 5.6 * HiEL - 1.28(STR * HiEL)$$

$$(11.9) (0.59) (19.5) (0.97)$$

- The two regression lines have the same **slope** \Leftrightarrow the coefficient on $STR \times HiEL$ is zero: t = -1.28/0.97 = -1.32
- The two regression lines have the same **intercept** \Leftrightarrow the coefficient on *HiEL* is zero: t = -5.6/19.5 = 0.29
- The two regression **lines** are the same \Leftrightarrow population coefficient on HiEL = 0 and population coefficient on $STR \times HiEL = 0$: F = 89.94 (p-value < .001) !!
- We reject the joint hypothesis but neither individual hypothesis (how can this be?)

(c) Interactions between two continuous variables

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- X_1, X_2 are continuous
- As specified, the effect of X_1 doesn't depend on X_2
- As specified, the effect of X_2 doesn't depend on X_1
- To allow the effect of X_1 to depend on X_2 , include the "interaction term" $X_{1i} \times X_{2i}$ as a regressor:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

Interpreting the coefficients:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

General rule: compare the various cases

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \times X_2)$$
 (b)

Now change X_1 :

$$Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2 + \beta_3 [(X_1 + \Delta X_1) \times X_2]$$
 (a)

subtract (a) - (b):

$$\Delta Y = \beta_1 \Delta X_1 + \beta_3 X_2 \Delta X_1$$
 or $\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2$

- The effect of X_1 depends on X_2 (what we wanted)
- β_3 = increment to the effect of X_1 from a unit change in X_2

Application: Nonlinear Effects on Test Scores of the Student-Teacher Ratio (SW Section 8.4)

Nonlinear specifications let us examine more nuanced questions about the Test score -STR relation, such as:

- 1. Are there nonlinear effects of class size reduction on test scores? (Does a reduction from 35 to 30 have same effect as a reduction from 20 to 15?)
- 2. Are there nonlinear interactions between *PctEL* and *STR*? (Are small classes more effective when there are many English learners?)

Strategy for Question #1 (different effects for different STR?)

- Estimate linear and nonlinear functions of *STR*, holding constant relevant demographic variables
 - PctEL
 - *Income* (remember the nonlinear *TestScore-Income* relation!)
 - LunchPCT (fraction on free/subsidized lunch)
- See whether adding the nonlinear terms makes an "economically important" quantitative difference ("economic" or "real-world" importance is different than statistically significant)
- Test for whether the nonlinear terms are significant

Strategy for Question #2 (interactions between *PctEL* and *STR*?)

- Estimate linear and nonlinear functions of *STR*, interacted with *PctEL*.
- If the specification is nonlinear (with *STR*, *STR*², *STR*³), then years need to add interactions with all the terms so that the entire functional form can be different, depending on the level of *PctEL*.
- We will use a binary-continuous interaction specification by adding $HiEL \times STR$, $HiEL \times STR^2$, and $HiEL \times STR^3$.

Dependent variable: average test score in district; 420 observations.							
Regressor	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Student–teacher ratio (STR)	-1.00** (0.27)	-0.73** (0.26)	-0.97 (0.59)	-0.53 (0.34)	64.33** (24.86)	83.70** (28.50)	65.29** (25.26)
STR^2					-3.42** (1.25)	-4.38** (1.44)	-3.47** (1.27)
STR ³					0.059** (0.021)	0.075** (0.024)	0.060** (0.021)
% English learners	-0.122** (0.033)	-0.176** (0.034)					-0.166** (0.034)
% English learners ≥ 10%? (Binary, <i>HiEL</i>)			5.64 (19.51)	5.50 (9.80)	-5.47** (1.03)	816.1* (327.7)	
$HiEL \times STR$			-1.28 (0.97)	-0.58 (0.50)		-123.3* (50.2)	
$HiEL \times STR^2$						6.12* (2.54)	
$HiEL \times STR^3$						-0.101* (0.043)	
% Eligible for subsidized lunch	-0.547** (0.024)	-0.398** (0.033)		-0.411** (0.029)	-0.420** (0.029)	-0.418** (0.029)	-0.402** (0.033)
Average district income (logarithm)		11.57** (1.81)		12.12** (1.80)	11.75** (1.78)	11.80** (1.78)	11.51** (1.81)
Intercept	700.2** (5.6)	658.6** (8.6)	682.2** (11.9)	653.6** (9.9)	252.0 (163.6)	122.3 (185.5)	244.8 (165.7)

Tests of joint hypotheses:

(a) All STR variables and interactions = 0			5.64 (0.004)	5.92 (0.003)	(< 0.001)	4.96 (< 0.001)	5.91 (0.001)
(b) STR^2 , $STR^3 = 0$					6.17 (< 0.001)	5.81 (0.003)	5.96 (0.003)
(c) $HiEL \times STR$, $HiEL \times STR^2$, $HiEL \times STR^3 = 0$						2.69 (0.046)	
SER	9.08	8.64	15.88	8.63	8.56	8.55	8.57
\overline{R}^2	0.773	0.794	0.305	0.795	0.798	0.799	0.798

These regressions were estimated using the data on K-8 school districts in California, described in Appendix 4.1. Standard errors are given in parentheses under coefficients, and p-values are given in parentheses under F-statistics. Individual coefficients are statistically significant at the *5% or **1% significance level.

What can you conclude about question #1? About question #2?

Summary: Nonlinear Regression Functions

- Using functions of the independent variables such as ln(X) or $X_1 \times X_2$, allows recasting a large family of nonlinear regression functions as multiple regression.
- Estimation and inference proceed in the same way as in the linear multiple regression model.
- Interpretation of the coefficients is model-specific, but the general rule is to compute effects by comparing different cases (different value of the original *X*'s)
- Many nonlinear specifications are possible, so you must use judgment:
 - What nonlinear effect you want to analyze?
 - What makes sense in your application?