Devoir surveillé n°4

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soient a et b deux réels. Montrer que :

- 1) $a \leqslant b \Rightarrow \lfloor a \rfloor \leqslant \lfloor b \rfloor$;
- 2) $|a| + |b| \le |a + b| \le |a| + |b| + 1$.

II. Une fonction de $\mathscr{P}(\mathbb{R})$.

Soit A et B deux parties de \mathbb{R} . On définit la fonction $f: \mathscr{P}(\mathbb{R}) \to \mathscr{P}(\mathbb{R})$ de la manière suivante : si $X \subset \mathbb{R}$, alors $f(X) = (X \cap A) \cup B$.

- 1) Soit X, Y deux parties de \mathbb{R} .
 - a) Montrer que $X \subset Y \Leftrightarrow X \cap Y = X$.
 - **b)** Montrer que $X \subset Y \Leftrightarrow X \cup Y = Y$.
- 2) a) Dans cette question, on suppose que $A = \emptyset$. Calculer f(X) pour tout $X \subset \mathbb{R}$.
 - b) Dans cette question, on suppose que $B = \mathbb{R}$. Calculer f(X) pour tout $X \subset \mathbb{R}$.
 - c) Que remarque-t-on dans les deux cas précédents?
- 3) Calculer, dans le cas général, $f(\emptyset)$, f(A), f(B) et $f(\mathbb{R})$.
- 4) Montrer que la fonction f est croissante, au sens de l'inclusion, *i.e.* que pour toutes parties X, Y de \mathbb{R} si $X \subset Y$ alors $f(X) \subset f(Y)$.
- 5) Soit Y une partie de \mathbb{R} . Montrer que les trois propositions suivantes sont équivalentes.
 - (i) Y admet un antécédent dans $\mathscr{P}(\mathbb{R})$ par f.
 - (ii) $B \subset Y \subset A \cup B$.
 - (iii) f(Y) = Y.
- **6)** a) Résoudre l'équation f(X) = A, d'inconnue $X \in \mathscr{P}(\mathbb{R})$.
 - b) Résoudre l'équation f(X) = B, d'inconnue $X \in \mathscr{P}(\mathbb{R})$.
- 7) a) Déterminer une condition nécessaire et suffisante sur A et B pour que f soit constante.
 - b) Déterminer une condition nécessaire et suffisante sur A et B pour que f soit surjective.
 - c) Montrer que cette dernière condition est aussi nécessaire et suffisante pour que f soit injective.

- 8) a) Que peut-on dire de $f \circ f$?
 - b) Soit E un ensemble quelconque, soit $g: E \to E$ idempotente, i.e. vérifiant $g \circ g = g$. Montrer que les propositions suivantes sont équivalentes.
 - (i) La fonction g est injective.
 - (ii) La fonction g est surjective.
 - (iii) On a $q = \mathrm{Id}_E$.

III. Distance à un ensemble.

Dans ce problème, on travaille indifféremment avec la distance entre deux nombres réels (la valeur absolue) et la distance entre deux nombres complexes (le module). On considère donc que $E = \mathbb{R}$ ou $E = \mathbb{C}$.

Pour une partie A non vide de E et un élément x de E, on définit la distance de x à A comme

$$d(x, A) = \inf\{|x - a| ; a \in A\}.$$

L'objet de ce problème est d'étudier cette notion sur quelques exemples puis d'en dégager quelques propriétés.

1) Question de cours : Soit $B \subset \mathbb{R}$ et $y \in \mathbb{R}$. Rappeler une condition nécessaire et suffisante sous laquelle B admet une borne inférieure. Sous cette condition, montrer que $y = \inf(B)$ si et seulement si

$$\forall b \in B, \ y \leqslant b \ \text{et} \ \forall \varepsilon > 0, \ \exists b \in B, \ b < y + \varepsilon.$$

- 2) Montrer que la borne inférieure apparaissant dans la définition de d(x, A) est bien définie.
- 3) Exemples réels. Dans cette partie, $E = \mathbb{R}$.
 - a) On prend $A = \{0\}$. Déterminer d(x, A) pour tout $x \in \mathbb{R}$.
 - **b)** On prend A = [-1, 1]. Déterminer d(x, A) pour tout $x \in \mathbb{R}$.
 - c) On prend $A = \mathbb{Q}$. Déterminer d(x, A) pour tout $x \in \mathbb{R}$.
- 4) Exemples complexes: on choisira soigneusement la forme sous laquelle on exprime les nombres complexes manipulés. Dans cette partie, $E = \mathbb{C}$.
 - a) On prend $A = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ (demi-plan de Poincaré). Déterminer d(x, A) pour tout $x \in \mathbb{C}$.
 - b) On prend $A = \{z \in \mathbb{C} ; |z| \leq 1\}$ (disque unité). Déterminer d(x,A) pour tout $x \in \mathbb{C}$.
- 5) Soit $A \subset E$ non vide et $x \in E$. Quelle relation y a-t-il entre les propositions $\langle x \in A \rangle$ et $\langle d(x,A) = 0 \rangle$?
- **6)** Soit $A \subset B \subset E$ non vides. Montrer que pour tout $x \in E$, $d(x, B) \leq d(x, A)$.
- 7) Soit $A \subset E$ non vide, soit $x, y \in E$. Montrer que $|d(x, A) d(y, A)| \leq |x y|$.
- 8) Dans le cas où $E = \mathbb{R}$ et pour $A \subset E$ non vide, en déduire que la fonction $x \mapsto d(x, A)$ est continue.