

Institut für Angewandte Materialien Computational Materials Science IAM-CMS

20mm

Masterarbeit

Implementierung eines Algorithmus zur automatisierten Erkennung von bruchkritischen Schwachstellen an Schweißnähten auf Basis berührungsloser 3D-Vermessung

Hintergrund

Rund 75% der Bauteil- und Strukturschäden der heutigen Zeit sind auf **Materialermüdung** zurückzuführen. Besonders geschweißte Bauteile erweisen sich als besonders kritisch für Ermüdungsschäden da die Kerbwirkung am Schweißnahtübergang die Entstehung von Ermüdungsrissen begünstigt.

... besteht in der **Entwicklung und Implementierung eines Algorithmus** der auf Basis ungeordneter X/Y/Z-Koordinaten geometrische Größen der Schweißnaht, wie den Nahtübergangsradius R und den Nahtöffnungswinkel θ erfasst und diese entsprechend in eine repräsentative Kerbformzahl umrechnet. Der Algorithmus soll dabei in **MATLAB** implementiert werden. Die Inputdaten werden dabei mittels eines **3D-Scanners** mit Lasertriangulationssensor an einfachen an Schweißproben generiert.

Voraussetzungen

Für die Bearbeitung des Themas sind Grundkenntnisse in der Werkstoffkunde und der Programmierung mit MATLAB von Vorteil. Interesse an experimenteller Arbeit sollte vorhanden sein.

Kontakt

Dr. Majid Farajian Institut für Angewandte Materialien – Computational Material Science IAM-CMS Gebäude 10.91

Tel. 0761-5142-268, **E-Mail: majid.farajian@kit.edu**

M. Sc. Jan Schubnell Fraunhofer Institut für Werkstoffmechanik, Wöhlerstraße 11, 79108 Freiburg Tel. 0761-5142-235,

E-Mail: jan.schubnell@iwm.fraunhofer.de