Лабораторная работа 2

Греков Максим Сергеевич 2021 Москва

RUDN University, Moscow, Russian Federation

Цель работы

Цель работы

Рассмотреть задачу о погоне.

Освоить базовые навыки работы с высокоуровневым языком программирования, созданным для математических вычислений - Julia.

Научиться с помощью него решать ДУ, строить графики, что позволит проектировать математичесие модели.

Постановка задачи

Постановка задачи

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 19,1 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5,2 раза больше скорости браконьерской лодки.

Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

1. Принимем за t_0 = 0, x_0 = 0 - место нахождения лодки браконьеров в момент обнаружения, $x_0=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

2. Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров x_0 ($\theta=x_0=0$).

Полярная ось r проходит через точку нахождения катера береговой охраны (рис. 1) нахождения катера береговой охраны.

Figure 1: Положение катера и лодки в начальный момент времени

3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки.

Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса).

Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/2v (во втором случае x+k/2v). Так как время одно и то же, то эти величины одинаковы.

Тогда неизвестное расстояние \boldsymbol{x} можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k - x}{nv}$$

$$\frac{x}{v} = \frac{k+x}{nv}.$$

Отсюда мы найдем два значения $x_1=\frac{19.1}{6.2}$ и $x2=\frac{19.1}{4.2}$, задачу будем решать для двух случаев.

5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки \boldsymbol{v} .

Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и $v_{ au}$ - тангенциальная скорость.

Радиальная скорость - это скорость, с которой катер удаляется от полюса

$$v_r = \frac{dr}{dt},$$

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса

$$v_{\tau} = r * \frac{d\theta}{dt}$$

Так как v_r = v_l , то $\frac{dr}{dt} = v_l$.

Из рисунка (учитывая, что радиальная скорость равна v) видно (рис. 2), что $v_{\tau}=\sqrt{4v^2-v^2}=\sqrt{3}v.$

Figure 2: Разложение скорости катера на тангенциальную и радиальную составляющие

6. Решение задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v\\ \frac{d\theta}{dt} * r = \sqrt{3}v \end{cases}$$

С начальными условиями
$$\begin{cases} \theta_0=0 \\ r_0=6.2 \end{cases}$$
 и $\begin{cases} \theta_1=-\pi \\ r_1=4.2 \end{cases}$.

Исключая из полученной системы производную по t, можно перейти к следующему уравнению

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{3}}.$$

Результаты решения

Результаты решения

Figure 3: График: 1 случай

Результаты решения

Figure 4: График: 2 случай

Вывод

Вывод

Рассмотрели задачу о погоне.

Освоили базовые навыки работы с высокоуровневым языком программирования, созданным для математических вычислений - Julia.

Научились с помощью него решать ДУ, строить графики.

