

Real-time covariance tracking algorithm for embedded systems

A. Roméro, L. Lacassagne, A. Zahraee, M. Gouiffès

www.lri.fr/~lacas

LRI, LIMSI & IEF - University Paris-Sud

Context & goal

- Covariance matching techniques are interesting:
 - good performance for object retrieval, detection and tracking
 - mixing color and texture information into compact representation
- ▶ But ...
 - heavy computations even for State-of-the-Art processors
- ▶ So:
 - optimizations are mandatory for embedded systems (Intel mobile proc, ARM Cortex A9)
- Presentation in 4 points
 - algorithm presentation
 - algorithm optimization
 - benchmarks
 - video examples

Covariance algorithm part #1

From an image:

- a set of features (F) is computed, and a set of product of features (P)
- the integral images (IF) and (IP) are computed
- Finally the covariance of a given Rol is easily computed thanks to integral image properties
- ▶ Features are tuned to the nature of the image
 - Face tracking & recognition: [x, y, lx, ly, lxx, lyy] (coordinates, first and second derivatives)
 - pedestrian tracking: [x, y, Intensity, sin(LBP), cos(LBP)] (coordinates, intensity, Local Binary Pattern manipulations)

image

features → product of features

covariance of a RoI

integral of

features

integral product

of features

- But: required a huge amount of memory
 - sizeof(IF) = sizeof(F) = nF x sizeof(float) x N^2 & sizeof(IP) = sizeof(P) = nP x sizeof(float) x N^2
 - with nF=7 and np=28 => 280 bytes per pixel for a 1024x1024 image : 280 MB !!!
 - ... thanks to product symetry, nP = nF(nF+1)/2

Covariance algorithm part #2

- Two running modes: matching and tracking/searching
- matching of Rol
 - one-on-one matching: Rol association between I Rol of image X(t) and I Rol of image (t+I)
 - winner takes all strategy.
 - score is the similarity between covariance matrix

- Searching / tracking of Rol
 - each Rol of image X(t) is searched in image X(t+1)

typically 40 random positions

Algorithm optimizations

- ▶ The algorithm is composed of 3 parts
- features computation
- kernel part = {product of features and integrale image computation}
- tracking / searching
- First benchmark analysis: the kernel part is the most time consumming: about 80% of total time

- First optimization: cache aware algorithm with models of parallelization
- two data memory layouts: Array of Structures (AoS) or Structure of Arrays (SoA)
- AoS enables SIMD computations (Instruction Level Parallelism = ILP)
- SoA enables thread parallelization with OpenMP (Task Level Parallelism = TLP)
- Benchmark on 3 generations of Intel processors
- 4-C Penryn, 8-C Nehalem and 4-C SandyBridge

Results on GPP #1: SIMD or OpenMP?

- ▶ What is the most efficient parallel model, OpenMP or SIMD ?
 - execution time in cycles per point (cpp) for image size from 128x128 to 1024x1024
 - with 4 cores, AOS+SIMD is more efficient than SOA+OpenMP4
 - with a faster DRAM bus, SandyBridge is x2 faster than Penryn ...
 - very early cache overflow (when data doesn't fit in the cache) (around 200x200)

Results on GPP #2: SIMD or OpenMP?

On bi-quad Nehalem

- 8 cores with scalar computations match 1-core with SIMD
- SOA+OpenMP is not efficient on GPP
- and even more on embedded systems with a smaller number of core (Cortex-A9: up to 4 cores, Cortex-A15: 2 cores only)
- => AOS+SIMD is the memory layout / parallelism chosen

Covariance complexity

- Two embedded systems, focus on kernel part of the algorithm
 - 4 configurations {Intel Penryn ULV, ARM Cortex-A9} x {scalar, SIMD}
 - complexity = arith {MUL+ADD}, memory access {LOAD+STORE}, Arithmetic Intensity (AI) (arith/mem)
- Observation
 - low Al due to too many memory accesses == SIMD won't be efficient :-(
 - => reduce memory accesses by loop fusion (quite tricky ...)

instructions	MUL	ADD	LOAD	STORE	AI
AoS scalar version with 3 loops	1 2 2 2		NAME OF THE PERSON OF THE PERS		Sir direct
product of features	n_P	0	$2n_P$	n_P	My Y
integral of features	0	$3n_F$	$4n_F$	n_F	-3
integral of products	0	$3n_P$	$4n_P$	n_P	Zá Nec
total	n_P	$3(n_P + n_F)$	$6n_P + 4n_F$	$2n_P + n_F$	
total with $n_P = n_F(n_F + 1)/2$	$2n_F^2 + 5n_F$		$4n_F^2 + 9n_F$		1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
total with $n_F = 7$	133		259		0.5
$\overline{AoS\ SIMD\ (with\ n_F=7)\ versio}$	n with 3	loops	Market Control		
product of features	7	0	2	7	a.(-)
integral of features	0	21	28	7	-
integral of products	0	6	2	2	
total SSE (+ 15 PERM)	49		$\frac{\dot{54}}{}$		0.9
total Neon (+ 48 PERM)	82		54		1.5

advanced Loop Transform (multiple fusions)

Loop Fusion

- instead of 3 loop nests to produce Products (P), Integral Features (IF), Integral Products (IP),
- only I loop nest to produce IF and IP, without access (load & store) to Products
- amount of memory accesses has been divided by 3.36 (scalar) 2.7 (SIMD)
- less stress on memory buses

instructions	MUL	ADD	LOAD	STORE	AI
$\overline{AoS\ scalar\ version\ +\ Loop\ Fusio}$	on	nijirda da karaba yan da			
integral of features	0	$2n_F$	$2n_F$	n_F	- 15 de
integral product of features	n_P	$2n_P$	n_P	n_P	
total	n_P	$2(n_P + n_F)$	$n_P + 2n_F$	$n_P + n_F$	-
total with $n_P = n_F(n_F + 1)/2$	$1.5n_F^2 + 3.5n_F$		$n_F^2 + 4n_F$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
total with $n_F = 7$	98		77		1.3
$AoS SIMD (with n_F = 7) versio$	n + Loop	Fusion	Barthach (Car		
integral of features	0	4	4	2	2/15
integral product of features	7	14	7	7	-
total SSE (+ 15 PERM)	40		20		2.0
total Neon (+ 48 PERM)	73		20		3.7

features.

1 loop nest computation

integral product

of features

integral of

features IF

image

Benchmarks - Loop Transform (Fusion)

- Intel Penryn ULV 9300 (1,2 GHz)
 - Loop Transform provides a $\sim x^2$ compared to AOS & AOS+SIMD. Total speedup = $x^5.3$
- ► ARM Cortex A9 (1.0 GHz)
 - AoS & AoS+SIMD are not efficient compared to SoA (reasons: memory bandwidth, cache perf)
 - advanced loop transforms are mandatory: speedup x3.4

Benchmarks - Intel Penryn ULV U9300

Observation

- kernel duration divided by x6.9 => total duration divided by <math>x2.9
- real-time execution on I core for 312x233, 2 cores for 640x480

sequence	panda		pedxing	
size	312 × 233		640	× 480
algorithm version	SoA	AoS+SIMD+T	SoA	AoS+SIMD+T
features computation (cpp)	128	150	128	150
kernel computation (cpp)	599	87	618	91
tracking (cpp)	23	23		
total (cpp)	738	248	769	264
kernel / total ratio	81 %	35 %	80 %	34 %
total speedup	× 2.9		x 2.9	
I-core execution time (ms)	45	15	197	68
2-core execution time (ms)	36	9	158	38

cpp & execution time (ms) for Intel Penryn ULV U9300

Benchmarks - ARM Cortex-A9

Observation

- kernel duration divided by x3.7 => total duration divided by <math>x2.2
- real-time execution on 2 core for 312x233

sequence	panda		pedxing	
size	312 × 233		640 × 480	
algorithm version	SoA	AoS+SIMD+T	SoA	AoS+SIMD+T
features computation (cpp)	461	461	486	486
kernel computation (cpp)	1491	395	1600	415
tracking (cpp)	96	96	19	19
total (cpp)	2048	952	2106	921
kernel / total ratio	73 %	42 %	73 %	45 %
total speedup	× 2.2		× 2.2	
I-core execution time (ms)	149	69	647	283
2-core execution time (ms)	108	36	492	149

cpp & execution time (ms) for ARM Cortex-A9

Conclusion & future works

Conclusion

- Covariance matching / tracking is a robust and parametrizable algorithm
- agility to tune features to nature of image
- Real-time execution on embedded processors (ARM Cortex, Intel ULV)
- agility to adapt the number of features to the computation power
- huge impact of High Level Transforms (x6.9 x3.7) : an efficient compiler is not enough!

Future works

- enhanced feature-matching with kinematic tracking
- benchmark algorithm on Cortex A15 (better pipeline throuput)
- port algorithm to many-cores architecture:
 - embedded system Kalray MPPA and or Tilera TileGX (640x480 & 720p multi-target tracking)
 - High Performance Computing Intel Xeon-Phi (HD 1080p multi-target tracking)

video examples

Pedxing

- pedestiran crossing
- lot of cluter due to jpeg/mpeg compression (block boundaries)

▶ Panda

- "slow motion" panda but with
- high variability (black & white != white & black)

▶ PETS 2009

- multi-target tracking

Thanks!

www.lri.fr/~lacas

SoA vs AoS: product of features

SoA versus AoS for nF = 4 features

Memory layout

- SoA = a cube of I matrix by feature
- AoS = I matrix of interlaced features
 SIMDization is possible because nF >= cardinal(SIMD) = 4 with SSE and Neon

F1

F0

Algorithm 1: product of features - SoA version

```
k \leftarrow 0 for each k_1 \in [0..n_F - 1] do k_2 \in [k_1..n_F - 1] do k_3 \in [0..n_F - 1] for each k_3 \in [0..n_F - 1] do k_4 \in [0..n_F - 1] for each k_5 \in [0..n_F - 1] do k_5 \in [0..n_F - 1] do k_6 \in [0..n_F - 1]
```

Algorithm 1: product of features - AoS version

SoA vs AoS: integrale images

Memory layout

- SoA = a cube of I matrix by feature
- AoS = I matrix of interlaced features

Algorithm 1: integral image - SoA version, $n \in \{n_F, n_P\}$

Algorithm 1: integral image - AoS version, $n \in \{n_F, n_P\}$

Covariance tracking initialisation

▶ How to initialize tracking / searching?

- not addressed in the paper but:

- still camera:
 - background substraction [DASIP 2012] [ICIP 2009] [JRTIP 2008]
 - mixture of Gaussian (abnormal intensity) [ISIVC 2012]
- camera in motion:
 - HoG (Histogram of Gradient) or features recognition [Viola Jones]
 - optical flow segmentation (abnormal flow) [ISIVC 2012]