

NG A Deep Ranking Model for Spatio-Temporal Highlight Detection from a 360° Video

Youngjae Yu

Sangho Lee

Joonil Na

Jaeyun Kang

Gunhee Kim

Thirty-Second AAAI Conference on

Seoul National University, Seoul, Korea

Motivation

360° video provides panoramic view of the entire scene.

However, viewer experience can be severely handicapped due to the limited human's field-of-view.

Objective

Summarize the 360° video spatially and temporally.

- Select pleasant looking normal field-of-view within 360° field-of-view.
- Produce a concise highlight at the same time.

(Input) 360° Video

Composition View Score (CVS) Model

- (1) Fully convolutional CVS generates a layered spherical score maps.
- (2) Position-wise composition score learns fidelity of views and determines which view is suitable for highlight.

$$f(x) = \sum_{i,j} \sum_{l,m} \kappa(l-i)\kappa(m-j) \mathbf{w}_{x}^{c(k,l,m)}(i,j|\mathcal{M}) \quad \text{where } \kappa(u) = \frac{exp(-u^{2}/2h^{2})}{\sqrt{2\pi}h}, c(k,l,m) = k \times l + m$$

(3) CVS model significantly reduces a burden of normal field-of-view projection

(a) Dense Projection

(b) Sparse Projection

Processing # of time ST-glimpses

AutoCam[1] 178 min 198

CVS 11 min 12

(b) Sparse Projection (Our CVS model)

Triplet Ranking in order

- · Rank quality of visual composition in video.
- ☐> Professional videos > casual 360º videos > Random regions.

$$f(p_i) > f(c_i) > f(n_i), \quad \forall (p_i, c_i, n_i) \in \mathcal{D}$$

	Video	Topic	Type	# video	Total (hour)	mean (minute)
•	360 °	wedding	360°	62	54.8	53.1
	video	MV		53	17.2	19.5
		wedding	professional	755	87.1	6.9
	NFOV		casual	664	104.5	9.4
	video	MV	professional	333	3.3	4.4
		1V1 V	casual	654	47.5	0.6

• Our model correctly quantify the quality differences among the samples with ranking loss.

$$\mathcal{L}_i = \alpha \max(0, f(c_i) - f(p_i) + 1) + (1 - \alpha) \max(0, f(n_i) - f(c_i) + 1)$$

 $\mathcal{L} = \sum_{i} \mathcal{L}_{i} + \lambda ||\mathcal{M}||_{F}^{2}$

where \mathcal{M} denotes CVS model parameters, i denotes index of minibatch.

Experiments

Examples of view selection.

Examples of position score maps \mathbf{w}_{x} .

Results of spatial summarization on the Pano2Vid [1] dataset

Methods	Frame	Frame
Methods	cosine sim	overlap
Center	0.572	0.336
Eye-Level	0.575	0.392
Saliency [1]	0.387	0.188
AutoCam (w/o stitch) [1]	0.541	0.354
AutoCam-stitch [1]	0.581	0.389
RankNet [2]	0.562	0.398
TS-DCNN [3]	0.578	0.441
CVS-C3D	0.656	0.554
CVS-Inception	0.642	0.545
CVS-Fusion	0.701	0.590
CVS-C3D-stitch	0.774	0.646
CVS-Inception-stitch	0.768	0.666
CVS-Fusion-stitch	0.800	0.677

Results of highlight detection on our newly collected dataset

Methods	Wedding	MV
Center	7.88	5.90
RankNet [2]	11.98	11.65
TS-DCNN [3]	13.23	12.28
CVS-C3D	16.32	12.15
CVS-Inception	16.13	12.38
CVS-Fusion (pairwise)	14.34	12.56
CVS-Fusion	17.96	14.92

AMT results for our dataset

CVS-Fusion vs	Wedding	MV
Center	68.0 % (117/150)	57.3 % (86/150)
RankNet [2]	67.3 % (101/150)	65.3 % (98/150)
TS-DCNN [3]	64.0 % (96/150)	58.0 % (87/150)

References

- [1] Su,Y.-C et al. 2016. Pano2Vid: Automatic Cinematography for Watching 360° Videos. In ACCV.
- [2] Gygli, M et al. 2016. Video2GIF: Automatic Generation of Animated GIFs from Video. In CVPR.
- [3] Yao,T et al. 2016. Highlight Detection with Pairwise Deep Ranking for First-Person Video Summarization. In CVPR.