1) Dado, Osmak y Zsp, sec.

 $A_{k,m,p} = \{\alpha \in \{0,1,...,p-1\}^{*} \mid \alpha \in \alpha \text{ representation } p - \alpha \in \alpha \notin X$

) x mod k = m }

Da un metado general para construr un automata que acepte Ak, m, p

para el automata

- " = {0,1,...p-1} el alfabeto sera 0 a p-1
- · Q={0,1,...,m,...,k-1} tendra los estados de 0 a k-1
- * estado inicial O
- · estado final m
- · 8 seria de la signette forma

5 (0, 2) = # & mod k can # & el numero representado por la cadera

2) Considera el siguente automates no determinista con transciones - E Transformate en un automata determinista usando los metodos vistos en clase 12030s 7 1) hacenos las estades con el conjunto potencia 2) remos las relacions entre estados 3) poremos al estado muel como el estado que trene todos los inicials 4) ponemos alestado final a todos los estados que tienen alson final MICIO 9,6 pushmosia Scomo final perque pade - aceptor E

3) Da una expresion result que senere el lensuage {de {a,b}* 1 × contienc un numero par de a o un numero impor de 63 primero hacemos dos expresiones y las unimos numero per de a b* + (b* ab* ab*)* numero impor de b a b (a ba ba ba*) * a* extences los unims (b*+(b*ab*ab*)*)+a*b(a*ba*ba*)*a* entonces esta es kierpresion

abora los unimo

entonces este evel automats

5) Da una gramatica que genere el lenguare aceptado por el automata del gercicio 4

1= 1,3 del automata 3=1,4 4=2,4

						Z)										
	(8 1	Ĩ												
	8	a	b													
MICIA final	1	2	3													
final			-													
	2	11	4													
	7	1,														
final	3	4	1													
	4	3	2													
final				}												
									-							

6) Constraye in autor	nata que acepte	el lenguaje	generado	por la expression	
(0+1(01*0)*1)*				1000	

	5	10	1
final	5	5	90
	90	91	S
	91	90	91