PH203: Optics

Lecture #6

16.11.2018

Intensity distribution

For S_1P and $S_2P >> S_1 S_2$ the two beams wld travel almost along the same direction

$$\vec{E}_{1} = \hat{x}E_{01}\cos\left(\frac{2\pi}{\lambda_{0}}S_{1}P - \omega t\right)$$

$$\vec{E}_{1} = \hat{x}E_{01}\cos\left(\frac{2\pi}{\lambda_{0}}S_{1}P - \omega t\right)$$

$$\vec{E}_{2} = \hat{x}E_{02}\cos\left(\frac{2\pi}{\lambda_{0}}S_{2}P - \omega t\right)$$

$$\vec{E}_2 = \hat{x}E_{02}\cos\left(\frac{2\pi}{\lambda_0}S_2P - \omega t\right)$$

Resultant field at P by superposition principle

$$\vec{E} = \vec{E}_1 + \vec{E}_2 = \hat{x} \left[E_{01} \cos \left(\frac{2\pi}{\lambda_0} S_1 P - \omega t \right) + E_{02} \cos \left(\frac{2\pi}{\lambda_0} S_2 P - \omega t \right) \right]$$

 \Rightarrow Intensity, $I = K |\vec{E}|^2$

From trigonometry,

$$cos(A + B) = cos A cos B - sin A sin B$$
 and $cos(A - B) = cos A cos B + sin A sin B$

$$\Rightarrow$$
 2 cos A cos B = cos(A + B) + cos(A - B)

$$I = K \left[E_{01}^2 \cos^2 \left(\frac{2\pi}{\lambda_0} S_1 P - \omega t \right) + E_{02}^2 \cos^2 \left(\frac{2\pi}{\lambda_0} S_2 P - \omega t \right) + 2E_{01} E_{02} \cos \left(\frac{2\pi}{\lambda_0} S_1 P - \omega t \right) \cos \left(\frac{2\pi}{\lambda_0} S_2 P - \omega t \right) \right]$$

$$\Rightarrow$$

$$I = K \left[E_{01}^2 \cos^2 \left(\frac{2\pi}{\lambda_0} S_1 P - \omega t \right) + E_{02}^2 \cos^2 \left(\frac{2\pi}{\lambda_0} S_2 P - \omega t \right) + E_{01} E_{02} \left\{ \cos \left[2\omega t - \frac{2\pi}{\lambda_0} (S_1 P + S_2 P) \right] + \cos \left(\frac{2\pi}{\lambda_0} [S_2 P - S_1 P] \right) \right\} \right]$$

When a photodetector detects such a time varying intensity, it will respond only to the time average because optical frequency:

$$\omega_{
m optical} pprox 2\pi imes 10^{15} \, {
m Hz}$$

$$\langle f(t) \rangle = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} f(t)dt \implies \langle \cos^2(\omega t - \theta) \rangle = \frac{1}{2}; \text{ and } \langle \cos(2\omega t - \varphi) \rangle = 0$$

$$\therefore I = \frac{1}{2}K(E_{01}^2 + E_{02}^2) + \frac{1}{2}\sqrt{K}E_{01} \times \sqrt{K}E_{02} \times 2\cos\delta;$$

$$\delta = \left(\frac{2\pi}{\lambda_0}\right)[S_2P - S_1P] = 2m\pi; m = 0, 1, 2, \dots : \text{for maxima} \implies S_2P - S_1P = m\lambda_0$$

and for minima:
$$\delta=(2m+1)\pi \ \Rightarrow \ S_2P-S_1P=\left(m+\frac{1}{2}\right)\lambda_0$$

$$\Rightarrow$$

$$\Rightarrow I = I_1 + I_2 + 2 \times \sqrt{\frac{K}{2}} E_{01} \times \sqrt{\frac{K}{2}} E_{02} \cos \delta \Rightarrow I = I_1 + I_2 + 2 \times \sqrt{I_1 I_2} \cos \delta$$

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta; \ \delta = \frac{2\pi}{\lambda} (S_2 P - S_1 P)$$

 \because max of $\cos \delta$ are ± 1 corresponding to m=0 for max or min

$$\therefore I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1 I_2} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2; I_{\text{mi}} = I_1 + I_2 - 2\sqrt{I_1 I_2} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$$

IT

$$I_1 = I_2 \quad \Rightarrow \quad I_{\min} = \left(\sqrt{I_1} - \sqrt{I_1}\right)^2 = 0$$
 In general, $I_1 \neq I_2 \Rightarrow$ Intensity is usually never 0!

For
$$I_1 = I_2 = I_0$$
, $I = 2I_0 + 2I_0 \cos \delta \implies \frac{I}{I_0} = 2(1 + \cos \delta) = 2 \times 2\cos^2 \frac{\delta}{2} = 4\cos^2 \frac{\delta}{2}$

cos² fringe or pattern

Example

For a path difference Δ of $\lambda/5$, $\frac{I}{I_{\rm max}}$?

$$\Rightarrow \frac{I}{I_{\text{max}}} = \frac{4I_0 \times \cos^2(2\pi/10)}{4I_0} = \cos^2(0.628) \approx (0.809)^2 \approx 0.65$$

Interference by division of amplitude

Wave reflected from the upper and lower surface of the thin film will interfere at the photographic plate *P*

Optical path difference from the one reflecting from the upper surface and the one from the lower surface: $n_{\rm f}$.2d because the film thickness d is traversed twice

Additionally the beam reflected from the upper surface undergoes an additional phase change of π as it is reflected from the interface of air and film of higher r.i. (can be proved from Lloyd's Mirrror expt.)

Since for constructive interference, phase difference should be $2m\pi$

$$\Rightarrow \frac{2\pi}{\lambda_0} \times 2n_f \times d - \pi = 2m\pi \Rightarrow \frac{2\pi}{\lambda_0} \times 2n_f \times d = 2\pi \left(m + \frac{1}{2}\right); m = 0,1,2,....$$

$$\Rightarrow 2n_f \times d = \left(m + \frac{1}{2}\right)\lambda_0; m = 0,1,2,\dots$$
: for constructive interference

$$2n_f \times d = \left(m + \frac{1}{2}\right)\lambda_0$$
; $m = 0,1,2,\ldots$; for constructive interference

For destructive interference:

$$\frac{2\pi}{\lambda_0} \times 2n_f \times d - \pi = (2n+1)\pi; n = 0,1,2,....$$

$$\Rightarrow$$
 $2\pi \times 2n_f \times d = 2\pi \times (n+1)\lambda_0; n = 0,1,2,....$

$$\Rightarrow$$
 $2n_f \times d = (n+1)\lambda_0; n = 0,1,2,.... = m\lambda_0; m = 1,2,....$

$$\Rightarrow 2n_f d = m\lambda_0; m = 1,2,...$$
 for destructive interference

If an air film is sandwiched between two glass plates:

- Extra phase change of π is only at air-glass interface
 - ⇒ No change in interference condition

Interference condition will be reversed

Check

Oblique incidence (cosine law):

C: foot of the normal from F

Wave reflected from the upper surface of the film and the one reflected from the lower surface interfere

 \Rightarrow Path difference between them: $\Delta = n_f (BD + DF) - n_1 BC$

$$\angle$$
JBD = \angle BDN = \angle NDF = $heta_t$

 $\angle \mathtt{BDJ} = \frac{\pi}{2} - \theta_t$ and $\angle \mathtt{B/DJ} = \pi - \left[\left(\frac{\pi}{2} - \theta_t \right) + \theta_t + \theta_t \right] = \frac{\pi}{2} - \theta_t \Rightarrow BD = B/D \text{ and } BJ = JB/ = d$

$$\Rightarrow BD + DF = B/D + DF = B/F \Rightarrow \Delta = n_f B/F - n_1 BC \text{ but } \angle \mathsf{CFB} = \frac{\pi}{2} - \left(\frac{\pi}{2} - \theta_i\right) = \theta_i$$

In triangle BCF,
$$\frac{BC}{BF} = \sin \theta_i$$
 In triangle BKF, $\frac{KF}{BF} = \cos \left(\frac{\pi}{2} - \theta_t\right) = \sin \theta_t$
 $\mathbf{n_1}$ $\therefore BC = BF \sin \theta_i = \frac{KF}{\sin \theta_t} \sin \theta_i = KF \frac{n_f}{n_1}$

$$\therefore BC = BF \sin \theta_i = \frac{KF}{\sin \theta_t} \sin \theta_i = KF \frac{n_f}{n_1}$$

Thus optical path difference:

$$\Delta = n_f B/F - n_1 BC = n_f B/F - n_1 \frac{n_f}{n_1} KF$$
$$= n_f B/K = 2dn_f \cos \theta_t$$

 \Rightarrow Opt. phase diff δ : $\frac{2\pi}{\lambda_0}\Delta - \pi = \frac{2\pi}{\lambda_0} \times 2dn_f \cos\theta_t - \pi$

For constructive interference, $\delta=\frac{2\pi}{\lambda_0}\times 2dn_f\cos\theta_t-\pi=2m\pi; m=0,1,2,...$ $\Rightarrow \frac{2\pi}{\lambda_c} \times 2dn_f \cos \theta_t = 2\pi \left(m + \frac{1}{2}\right)$

$$\Rightarrow \Delta = 2dn_f \cos\theta_t = \left(m + \frac{1}{2}\right)\lambda_0 \text{: maxima}$$

$$= m\lambda_0 \text{: minima}$$
 Called Cosine law

Non-reflecting films:

Consider two media having r.i.'s $n_{1,2}$ separated by an interface

a) $\begin{array}{c|c}
 & a_i \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

From Stoke's relations, one can show:

Light is incident normally a) from a medium of r.i. n_1 on a medium of r.i. n_2

Amplitudes of reflected and transmitted light are given by:

$$a_r = \frac{n_1 - n_2}{n_1 + n_2} a_i$$

$$a_t = \frac{2n_1}{n_1 + n_2} a_i$$

 \Rightarrow If $n_2 > n_1$, a_r is negative \Rightarrow A phase change of π takes place

Amplitude reflection and transmission coefficients are given by:

$$\frac{a_r}{a_i} = r = \frac{n_1 - n_2}{n_1 + n_2}; \quad \frac{a_t}{a_i} = t = \frac{2n_1}{n_1 + n_2}$$

Corresponding quantities, when light is incident from a medium of r.i. n_2 on a medium of r.i. n_1 :

$$r' = \frac{n_2 - n_1}{n_1 + n_2} = -r;$$

$$t' = \frac{2n_2}{n_1 + n_2}$$

$$\Rightarrow 1 - tt' = 1 - \frac{4n_1n_2}{(n_1 + n_2)^2} = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 = r^2$$

In many optical instruments there could be several interfaces, loss in intensity due to reflection at each of these could lead to substantial loss

Example, for air-crown glass
$$(n = 1.5)$$
: $r = \left(\frac{1.5 - 1}{1.5 + 1}\right)^2 = \frac{0.25}{6.25} = 0.04 \Rightarrow 4\%$

of the incident light is reflected at each such reflection

For flint glass having n = 1.67, it would be about 6%

In order to reduce these losses, lens e.g. spectacles surfaces are coated with a thin non-reflecting film of r.i. (e.g. MgF_2 of n_f = 1.38) less than that of the glass

Abrupt phase change of π occurs at both interfaces: air-film and film-glass

⇒ Condition for destructive interference for near normal incidence i.e. $\cos \theta \approx 1$:

$$2n_f d \cong \left(m + \frac{1}{2}\right)\lambda$$
 \Rightarrow For $m = 0$
 $2n_f d \cong \frac{\lambda}{2} \Rightarrow d \cong \frac{\lambda}{4n_f}$
 $\cong \frac{5 \times 10^{-5}}{4 \times 1.20} \approx 9 \times 10^{-6} \text{ cm} = 0.09 \ \mu\text{m}$

Thus, for $\lambda \sim 5 \times 10^{-5}$ cm,

$$d \cong \frac{5 \times 10^{-5}}{4 \times 1.38} \approx 9 \times 10^{-6} \text{ cm} = 0.09 \,\mu\text{m}$$

Visual benefits/advantage of lenses with anti-reflective (AR) coating ⇒ sharper vision with less glare when driving at night in low-light conditions and greater comfort during prolonged computer use (compared with wearing eyeglass lenses without AR coating)

From Stoke's relations, it can be shown that required n_f is

$$n_f = \sqrt{n_a n_g}$$

with $n_a = 1$, $n_g = 1.5$, $n_f = 1.38$,

Reflectivity will be ~ 1.3% in contrast to ~ 4% without AR coating

Ideal value should have been n_f

$$n_f = 1.2247!$$

Newton's rings

A thin air film of r.i. (n = 1) of variable thickness (t) is entrapped between the lens and the glass plate: t is 0 at the point of contact O and increases away from O

For near-normal incidence, and for points close to \emph{O} , opt. path difference $\approx 2nt$

Interference takes place between light reflected from AOB and POQ

$$\therefore \text{ for maxima: } 2t = \left(m + \frac{1}{2}\right)\lambda; m = 0,1,2,\dots$$

for minima:
$$2t = m\lambda$$
; $m = 1,2,...$

Due to the spherical surface f the lens, t will be const over a circle with O as its center \Rightarrow we will get concentric dark and bright fringes in the form of rings

M: A travelling microscope

AOB: A plano-convex lens S: An extended light source

POQ: A plane glass plate G: A glass plate beam splitter

Radius of the mth dark ring:

From the figure

$$(R-t)^{2} + r_{m}^{2} = R^{2}$$

$$\Rightarrow R^{2} \cong r_{m}^{2} + R^{2} - 2tR + t^{2}$$

$$\Rightarrow r_{m}^{2} \cong t(2R-t)$$

Typically, $R \sim 100$ cm; $t \sim 10^{-3}$ cm $\Rightarrow t$ can be neglected rel to 2R

$$\Rightarrow$$
 $2t = \frac{r_m^2}{R} = m\lambda \Rightarrow r_m = \sqrt{mR\lambda}$; $m = 1,2,...$ (for m^{th} dark ring)

⇒ Radii of the dark rings vary as sq root of natural numbers

In expt, diameters of m^{th} and $(m + p)^{th}$ rings are measured $(p \sim 10)$ and from the following relation source wavelength λ is measured:

$$(D_{m+p})^{2} - (D_{m})^{2} = 4(m+p-m)R\lambda$$

$$\Rightarrow \lambda = \frac{D_{m+p}^{2} - D_{m}^{2}}{4nR}$$