WHAT IS CLAIMED IS:

1	1. A method of estimating engine torque loss due to a fan
2	comprising the steps of:
3	compiling a table of maximum fan torque losses at a plurality of
4	engine speeds;
5	configuring an engine control unit (ECU) with the table of maximum
6	fan torque losses;
7	retrieving from the table a first maximum fan torque loss and a
8	second maximum fan torque loss for an engine speed;
9	interpolating between the first maximum fan torque loss and the
10	second maximum fan torque loss to estimate a maximum fan torque loss for the
11	engine speed; and
12	calculating an engine torque loss estimate by adjusting the maximum
13	fan torque loss based on a set of predetermined fan characteristics.
1	2. The method according to claim 1 wherein adjusting the
2	maximum fan torque loss based on the set of predetermined fan characteristics
3	comprises the steps of:
4	determining if the fan is a single speed fan;
5	determining if the fan is operating;
6	setting the engine torque loss estimate at zero if the fan is not
7	operating; and
8	setting the engine torque loss estimate at the maximum fan torque loss
9	if the fan is operating and the fan is a single speed fan.
1	3. The method according to claim 2 wherein adjusting the
2	maximum fan torque loss based on the set of predetermined fan characteristics
3	further comprises the steps of:
4	determining if the fan is a two speed fan;
5	determining the operating speed of the fan;
6	setting the engine torque loss estimate at zero if the fan is not
7	operating;

8	setting the engine torque loss estimate by multiplying the maximum
9	fan torque loss by a speed scale factor if the fan is a two speed fan operating at low
10	speed; and
11	setting the engine torque loss estimate at the maximum fan torque loss
12	if the fan is a two speed fan operating at high speed.
1	4. The method according to claim 3 wherein adjusting the
2	maximum fan torque loss based on the set of predetermined fan characteristics
3	further comprises the steps of:
4	determining if the fan is a dual type fan;
5	determining how many fans are operating;
6	setting the engine torque loss estimate at zero if both fans are not
7	operating;
8	setting the engine torque loss estimate by multiplying the maximum
9	fan torque loss by an adjustable scale factor if the fan is a dual fan and only one fan
10	is operating; and
11	setting the engine torque loss estimate at the maximum fan torque loss
12	if the fan is a dual fan with both fans operating.
1	5. The method according to claim 4 wherein each of the dual
2	fans are the same and the adjustable scale factor is 0.5.
1	6. The method according to claim 4 wherein adjusting the
2	maximum fan torque loss based on the set of predetermined fan characteristics
3	further comprises the steps of:
4	determining if the fan is a variable speed fan;
5	setting the engine torque loss estimate at zero if the fan is not
6	operating;
7	determining if the fan is operating at or above a maximum duty
8	cycle;
9	multiplying the maximum fan torque loss by a ratio of an actual fan
10	duty cycle compared to the maximum fan duty cycle if the fan type is a variable fan
11	and the fan is operating at less than the maximum duty cycle; and

12	setting the engine torque loss estimate at the maximum fan torque loss
13	if the fan is a variable speed fan operating at or above the maximum duty cycle.
1	7. The method according to claim 6 wherein the maximum duty
2	cycle is 50% duty cycle.
1	8. The method according to claim 1 wherein the engine torque
2	loss estimate is reported on a digital communication link in a vehicle, the engine
3	control unit optimally adjusting the operation of the fan according to operating
4	conditions of the engine and the engine torque loss estimate.
1	9. A system for estimating engine torque loss due to a fan
2	comprising:
3	an engine control unit (ECU);
4	a digital communication link connected to the engine control unit; and
5	a fan connected to the digital communication link;
6	wherein the ECU calculates a maximum fan torque loss by
7	interpolating between a plurality of maximum fan torque loss values based on engine
8	speed stored in a table in the ECU; the maximum fan torque loss being adjusted to
9	obtain a fan torque loss estimate based on a set of predetermined fan characteristics.
1	10. The system according to claim 9 wherein the set of
2	predetermined fan characteristics comprise whether the fan is a single speed fan, a
3	two speed fan, a variable speed fan, and a dual fan.
1	11. The system according to claim 9 wherein the set of
2	predetermined fan characteristics comprise the type of fan used and the operating
3	speed of the fan.
1	12. The system according to claim 9 wherein the digital
	communication link comprises a SAE J1939 digital communication link.