1 26th of September 2018 — F. Poloni

1.1 Orthogonality (II)

In the previous lecture we introduced some sufficent conditions for matrix orthogonality.

Theorem 1.1. Let $U \in M(n, \mathbb{R})$ be an orthogonal matrix and let $x \in \mathbb{R}^n$. Then ||Ux|| = ||x||. Proof. Instead of proving that ||Ux|| = ||x|| we will prove $||Ux||^2 = ||x||^2$:

$$||Ux||^2 = (Ux)^T \cdot (Ux) \stackrel{\text{(1)}}{=} x^T U^T U x = x^T I_n x = x^T x = ||x||$$

where $\stackrel{\text{(1)}}{=}$ follows from the definition of transpose of a product.

Geometrically an orthogonal preserve the norm, so a matrix A represents a symmetry or a rotations on vector x and these operations do not alter the size of vectors.

Definition 1.1 (Orthogonality). Let $x, y \in R^n$ we say that x and y are **orthonormal** if $\langle x, y \rangle = 0$.

Definition 1.2 (Orthonormality). Let $x, y \in R^n$ we say that x and y are **orthonormal** if $\langle x, y \rangle = 0$ and ||x|| = ||y|| = 1.

Fact 1.2. Let us take $U \in M(n, \mathbb{R})$ such that U is orthogonal. Then its columns U^1, U^2, \dots, U^n are orthonormal and the same holds for its rows.

$$U^{iT}U^{j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

and

$$U_i U_j^T = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Fact 1.3. Let $U, V \in M(n, \mathbb{R})$, such that U and V are orthogonal, then $U \cdot V$ is orthogonal. Orthogonal are closed under the product.

Proof.
$$(UV)^T \cdot (UV) = V^T U^T UV = V^T I_n V = V^T V = I_n$$

Fact 1.4. We will often deal with tall thin rectangular matrices with orthonormal columns:

$$U_1 = [u_1 \ u_2 \ \dots \ u_n] \in \mathbb{R}^{m \times n} \ (m \ge n)$$

There exists a matrix U_2 s.t. $[U_1 \ U_2]$ is square orthogonal.

1.2 Eigenvalues / Eigenvector

Definition 1.3 (Eigenvectors and eigenvalues). Let $A \in M(n, \mathbb{R})$ and let $x \neq 0 \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.

If $Ax = \lambda x$ we say that x is an **eigenvector** of **eigenvalue** λ .

Fact 1.5. Let $A \in M(n, \mathbb{R})$ (real triangular matrix). The eigenvalues of A are the scalars on the diagonal.

NOTE: Eigenvectors and eigenvalues are interesting because we can use it to get a special decomposition of a matrix A.

Eigendecomposition of a matrix:

For almost almost all matrices $A \in \mathbb{R}^{n \times n}$ under some conditions we can decompose A as:

$$A = V\Lambda V^{-1}$$

$$A = V\Lambda V^{-1} = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

where v_i , $\forall i = 1, ..., n$ are eigenvectors of A of eigenvalue λ_i and $w_i = \text{rows of } V^{-1}$.

Another way to see the diagonalized form of A is the following:

$$A = V\Lambda V^{-1} = \sum_{i=1}^{n} v_i \lambda_i w_i^T =$$

$$\boxed{v_1 \cdot \begin{bmatrix} \lambda_1 \end{bmatrix} \cdot \begin{bmatrix} w_1^T \end{bmatrix} + \begin{bmatrix} v_2 \end{bmatrix} \cdot \begin{bmatrix} \lambda_2 \end{bmatrix} \cdot \begin{bmatrix} w_2^T \end{bmatrix} + \dots + \begin{bmatrix} v_n \end{bmatrix} \cdot \begin{bmatrix} \lambda_n \end{bmatrix} \cdot \begin{bmatrix} w_n^T \end{bmatrix} }$$

Something on Matlab ...

Notice that in Matlab the eigenvalues and eigenvectors of a matrix are computed using the command [V, Lambda] = eig(U) and this operation has a computational complexity of $O(n^3)$.

we can check that the matrix A is equal to the decomposition in this way:

A - V*Lambda*inv(V) or norm(A - V*Lambda*inv(V)) (both should be near to zero)

Notice that not all matrices $A \in M(n, \mathbb{R})$ allow a diagonal decomposition. It may happen that such a matrix is diagonalizable in \mathbb{C} and its eigenvalues are complex.

Fact 1.6. If this factorization with eigenvalues and eigenvectors holds, then:

$$A = V\Lambda V^{-1} \Longrightarrow Av_i = v_i\lambda , \ \forall i = 1, \ldots n$$

This decomposition tell us the behavior under repeated application of a matrix A to a vector x. This process allow to scale a general vector x.

Something on Matlab ...

e.g A = [1 1; 1 1] and x = [1 1]then A*x is equal to [2 2]' and A*A*x is equal to [4 4]'

Fact 1.7. If $A \in M(n,\mathbb{R})$ is diagonalizable (aka may be written as $A = V\Lambda V^{-1}$) then:

$$A^k x = \sum_{i=1}^n v_i \lambda_i^k w_i^T$$

.

Proof. LINEAR ALGEBRA VIEW POINT:

NOTE: if A is not square, Av, λv have different sizes and it doesn't make sense to talk about eigenvalues.

What can go wrong with eigenvalue decomposition

- 1. The eigenvalue decomposition is highly non-unique, we can:
 - Reorder eigenvalues/vectors
 - Replace an eigenvector v_i with $2v_i$, $3.5v_i$...
 - For matrices with repeated eigenvalues, even more possibilities: e.g $I=VIV^{-}1$ for every invertible V

- 2. some matrices have only complex eigenvalues: e.g. $\begin{pmatrix} 2 & 4 \\ -3 & 3 \end{pmatrix}$
- 3. some matrices have fewer eigenvectors than we want and we can't use eigenvalue decomposition: e.g. $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Now, thanks to the eigenvalue decomposition we can prove the following:

Theorem 1.8. Let $A \in M(n, \mathbb{R})$. If $|\lambda_i| < 1$ for all eigenvalues λ_i of A then $\lim_{k \to \infty} A^k x = 0$.

Theorem 1.9. Let $A \in M(n, \mathbb{R})$. If $\forall \lambda_i$ eigenvalues of $A |\lambda_i| < |\lambda_1|$ then $A^k x \approx V^1 \lambda_1^k \alpha_1$.

Fact 1.10. Let $A \in M(n, \mathbb{R})$ be a diagonalizable matrix and let

$$A = V\Lambda V^{-1} = \begin{pmatrix} V^1 & V^2 & \cdots & V^n \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

Let us now consider a reordering of V 's columns and apply the same permutations to the "diagonal vector" of Λ such that

$$\hat{V} = \begin{pmatrix} V^2 & V^1 & V^3 \cdots & V^n \end{pmatrix} \text{ and } \hat{\Lambda} = \begin{pmatrix} \lambda_2 & & & & \\ & \lambda_1 & & & \\ & & \lambda_3 & & \\ & & & \ddots & \\ & & & & \lambda_n \end{pmatrix}$$

A can be diagonalized through such \hat{V} and $\hat{\Lambda}$: $A = V\Lambda V^{-1} = \hat{V}\hat{\Lambda}\hat{V}^{-1}$.

Moreover, in the case of repeated eigenvalues

Fact 1.11. Let $A \in M(n, \mathbb{R})$ a diagonalizable matrix such that $A = V\Lambda V^{-1}$, where $\lambda_1 = \lambda_2$

(without loss of generality). Then
$$V$$
 can be replaced by $\tilde{V} = \begin{pmatrix} V^1 + V^2 & V^1 - V^2 & V^3 & \cdots & V^n \end{pmatrix}$.

Theorem 1.12 (Spectral theorem). Let $A \in S(n, \mathbb{R})$ (A is a real symmetric matrix). Then A is diagonalizable $A = U\Lambda U^-1$, where eigenvalues are all real numbers and we can take U orthogonal matrix.

For symmetric matrices, nothing goes wrong: eigenvalues decomposition always exists (Spectral theorem). The matrix will not have complex eigenvalues and not fewer eigenvectors. We can choose an U orthogonal because we said it was possible to reorder eigenvalues/vectors and replace eigenvector v_i .

Something on Matlab ...

If we have an symmetric matrix B and we compute [V, D] = eig(B), matlab will always return an orthogonal matrix V.

Quadratic forms: for a fixed symmetric matrix $Q = Q^T$, consider $x \in \mathbb{R}^n$ and $Q \in \mathbb{R}^{n \times n}$ $f(x) = x^T Q x$ (Geometric idea: paraboloids):

Let's see two example in a Geometric point of view:

Example 1:

$$f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Example 2:

with a matrix
$$Q = \begin{pmatrix} 3 & 2 \\ 2 & -4 \end{pmatrix}$$

Fact 1.13. Let $Q \in S(n, \mathbb{R})$ (For a fixed symmetric matrix) and let $x \in \mathbb{R}^n$. Then

$$\lambda_{min} \|x\|^2 \le x^T Q x \le \lambda_{max} \|x\|^2$$

where λ_{max} and λ_{min} are respectively the eigenvalue of maximum value and the eigenvalue of minimum value.

Proof. Easy case with $Q = \Lambda$ diagonal:

$$x^{T}Qx = x^{T} \cdot \begin{pmatrix} \lambda_{2} & & & \\ & \lambda_{1} & & \\ & & \lambda_{3} & & \\ & & & \ddots & \\ & & & & \lambda_{n} \end{pmatrix} \cdot x = \lambda_{1}x_{1}^{2} + \lambda_{2}x_{2}^{2} + \dots + \lambda_{n}x_{n}^{2}$$

It is obvious that this sum is bounded by:

$$\lambda_{\min} \cdot (x_1^2 + x_2^2 + \dots + x_n^2) \le \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2 \le \lambda_{\max} \cdot (x_1^2 + x_2^2 + \dots + x_n^2)$$

The following holds: $\lambda_{\min} \cdot (x_1^2 + x_2^2 + \dots + x_n^2) = \lambda_{\min} \cdot x^T x = \lambda_{\min} \cdot ||x||^2$ and, on the other hand, $\lambda_{\max} \cdot (x_1^2 + x_2^2 + \dots + x_n^2) = \lambda_{\max} \cdot x^T x = \lambda_{\max} \cdot ||x||^2$ and this proves the fact in the special case of diagonal matrix Q.

General case: Let us represent Q through its eigendecomposition: $A=U\Lambda U^{-1}=U\Lambda U^{T},$ where U is an orthogonal matrix.

$$x^T Q x = x^T U \Lambda U^T x \stackrel{\text{(1)}}{=} y^T \Lambda y$$

where $\stackrel{\text{(1)}}{=}$ is due to the change of variable $y = U^T x$ (that implies $y^T = x^T U$).

By the same argument used in the diagonal case,

$$\lambda_{\min} \cdot \|y\|^2 \le y^T \Lambda y \le \lambda_{\max} \cdot \|y\|^2$$

Now the point is that if we can replace $||y||^2$ with $||x||^2$ we have proved the theorem. In fact this is true, due to the orthogonality of matrix U ($UU^T = U^TU = I$.

Corollary 1.14. Let $Q \in S(n, \mathbb{R})$ and let $x \in \mathbb{R}^n$. If $x \neq 0$, $\lambda_{min} \leq \frac{x^T Qx}{\|x\|^2} \leq \lambda_{max}$, where λ_{max} and λ_{min} are respectively the eigenvalue of maximum value and the eigenvalue of minimum value.

Definition 1.4 (Positive semidefinite). Let $Q \in S(n, \mathbb{R})$. If $\lambda_i \geq 0$ for each eigenvalue of Q then $x^TQx \geq 0$ for each vector x. Q is called positive semidefinite.

$$x^T Q x \ge 0 \left\| x \right\|^2 \ge 0$$

This is Iff, so the reverse holds: if $x^TQx \ge 0$ for all x, then eigenvalues of Q are ≥ 0 .

Definition 1.5 (Positive definite). Let $Q \in S(n, \mathbb{R})$. If $\lambda_i > 0$ for each eigenvalue of Q then $x^TQx > 0$ for each vector $x \neq 0$. Q is called positive semidefinite.

$$x^{T}Qx \ge \lambda_{min} \|x\|^{2} > 0 \|x\|^{2} = 0$$

This is Iff, so the reverse holds: if $x^TQx > 0$ for all x, then eigenvalues of Q are > 0.

Fact 1.15. Let $Q \in S(n, \mathbb{R})$. Iff Q is **positive semidefinite** then $\lambda \geq 0 \ \forall \lambda$ eigenvalue of Q iff Q is **positive semidefinite**. On the other hand, all eigenvalues are **strictly** positive iff Q is positive definite.

Proof.

Let's prove that Iff Q is **positive semidefinite** then $\lambda \geq 0 \ \forall \lambda$ by contradiction: if Q has a eigenvalue $\lambda_i < 0$ then

$$v_i^T Q v_i = v_i^T \lambda v_i = \lambda_i \|v_i\|^2 < 0$$

for the eigenvector v_i associated to λ_i

Fact 1.16. Let $B \in M(m, n, \mathbb{R})$ (possibly rectangular), $B^TB \in S(n, \mathbb{R})$ is a valid product and gives a square, symmetric matrix and is positive semidefinite.

П

Proof. Symmetry: $(B^TB)^T = B^T \cdot (B^T)^T = B^TB$.

Positive definite: $x^T B^T B x = (Bx)^T (Bx) = \|Bx\|^2 \ge 0$

Corollary 1.17. The same holds for BB^T , since we can define $C = B^T$.

Fact 1.18. Let $Q \in S(n, \mathbb{R})$. $A \succeq 0$ and A invertible iff Q is strictly positive definite.

Something on Matlab ...

In ordert to check if a matrix A is positive definite in Matlab we can look at its eigenvalues (cfr. eig(A)).

NOTE for complex matrices:

Most of these properties work also for matrices with complex entries, with one change: replace A^T with $\overline{A^T}$ (transpose + entrywise conjugate). Often denoted with A^* or A^H .

The norm of a complex vector:

$$||x||_{2}^{2} = x^{*}x = \overline{x_{1}}x_{1} + \overline{x_{2}}x_{2} + \dots + \overline{x_{n}}x_{n} = |x_{1}|^{2} + \dots + |x_{n}|^{2}$$
 which is always real ≥ 0

Some terminology changes:

- $UU^* = I$: unitary matrix (orthogonal + complex)
- $Q = Q^*$: Hermitian matrix (capital letter, after Charles Hermite).