

Spectral Condensation in VMEC

- the latest episode in code archeology -

Meeting of the SPECtaculars

<u>J. Schilling</u>, M. Cianciosa, M. Landreman, F. Hindenlang, O. Maj, J. Geiger 2021-05-04

Outline

- Introduction
- Literature Review: Spectral Condensation in VMEC (brief!)
- VMEC algorithm overview
- Details...

Introduction

- VMEC is a spectral MHD equilibrium code
- assumes nested flux surfaces → radial coordinate == encl. toroidal flux
- on surfaces: angle-like coordinates θ (poloidal), ζ (toroidal) [2π periodic]
- on each surface: 2-dim. Fourier expansion of R, Z, λ
 - \rightarrow Inverse coordinate representation X (s, θ , ζ) with X \in {R, Z, λ }
- Toroidal coordinate ζ == cylindrical angle φ
- Poloidal coordinate θ has tangential degree of freedom
 - can be exploited to make most efficient use of available truncated Fourier coefficients
 - λ is used to represent straight magnetic field lines

Goals:

unique poloidal angle & "economical" Fourier spectrum of R, Z, λ

Literature Review: Spectral Condensation in VMEC

- 1. Hirshman & Whitson (1983) "Steepest Descent Method ..."
 - Basic idea of VMEC, variational method, MHD forces, first results, ...
- 2. Hirshman & Weitzner (1985) "A convergent spectral representation ..."
 - "quasi-polar" angle constraint, conditions on individual Fourier coefficients, ...
- 3. Hirshman & Meier (1985) "Optimized Fourier representations ..."
 - "spectral condensation", <M>, DESCUR/SCRUNCH, energy principle, "VMEC without MHD", ...
- 4. Hirshman & Hogan (1986) "ORMEC: A Three-Dimensional MHD ... Code"
 - Consolidation of algorithm, some numerical details, constrained-current method, m=1 constraint
- 5. Hirshman & Lee (1986) "MOMCON: A Spectral Code for 3D MHD Equilibira"
 - Integration of "spectral condensation forces" with MHD forces, relatively close to source code, ...
- 6. Hirshman, Schwenn & Nührenberg (1990) "Improved Radial Differencing ..."
 - Interaction between full- and half-radial mesh, even-m/odd-m decomposition
- 7. Hirshman & Betancourt (1991) "Preconditioned Descent Algorithm ..."
 - 1D-preconditioner (radial), some "inspiration" for time-step algorithm, ...
- 8. Hirshman & Breslau (1998) "Explicitly spectrally optimized Fourier series ..."
 - Quasi-polar representation vs. "full" spectral condensation, in code: _HBANGLE, ...

VMEC algorithm overview

- Initialization, read input file, initial guess, ...
- Multi-grid iterations: # of surfaces increasing, force tolerance decreasing
 - Iterative "time evolution" of Fourier coefficients
 - == viscous motion along force vector (~ "conjugate-gradient" optimizer)
 - Inverse Fourier transform from R, Z, Lambda Fourier coefficients into real space
 - Evaluate forces in real space: need magnetic field components, iota, free-boundary contribution (NESTOR), constraint forces, preconditioner, ...
 - Fourier-transform real-space forces to Fourier coefficients of forces
 - Check force residual in Fourier space
- Final diagnostics, write output file(s)

VMEC boundary: user input

$$R(\theta,\zeta) = \sum_{m,n} \left[Rbc(n,m)\cos(m\theta - n\zeta) + Rbs(n,m)\sin(m\theta - n\zeta) \right]$$

$$Z(\theta,\zeta) = \sum_{m,n} \left[Zbs(n,m)\sin(m\theta - n\zeta) + Zbc(n,m)\cos(m\theta - n\zeta) \right]$$

if **non-stellarator-symmetric**, check if Δ = 0 where $\Delta \equiv \frac{Rbs(0,1) - Zbc(0,1)}{|Rbc(0,1)| + |Zbs(0,1)|}$ \Rightarrow If not, re-scale coefficients as follows:

$$Rbs(n,m) \leftarrow Rbs(n,m)\cos(m\Delta) - Rbc(n,m)\sin(m\Delta)$$

$$Rbc(n,m) \leftarrow Rbs(n,m)\sin(m\Delta) + Rbc(n,m)\cos(m\Delta)$$

$$Zbs(n,m) \leftarrow Zbs(n,m)\cos(m\Delta) - Zbc(n,m)\sin(m\Delta)$$

$$Zbc(n,m) \leftarrow Zbs(n,m)\sin(m\Delta) + Zbc(n,m)\cos(m\Delta)$$

Resulting operation: shift of poloidal angle

$$R(\theta,\zeta) = \sum_{m,n} \left[Rbc(n,m)\cos(m(\theta + \Delta) - n\zeta) + Rbs(n,m)\sin(m(\theta + \Delta) - n\zeta) \right]$$

$$Z(\theta,\zeta) = \sum_{m,n} \left[Zbs(n,m)\sin(m(\theta + \Delta) - n\zeta) + Zbc(n,m)\cos(m(\theta + \Delta) - n\zeta) \right]$$

Conversion to "internal" Fourier series representation

 $R(\theta, \zeta) = \sum \left[Rbc(n, m) \cos(m\theta - n\zeta) + Rbs(n, m) \sin(m\theta - n\zeta) \right]$ m=0, n=-ntor

(analogously for Z)

 $R(\theta, \zeta) = \sum \{ Rbc(n, m) \left[\cos(m\theta) \cos(n\zeta) + \sin(m\theta) \sin(n\zeta) \right]$

m=0, n=-ntor

$$+Rbs(n,m)\left[\sin(m\theta)\cos(n\zeta)-\cos(m\theta)\sin(n\zeta)\right]$$

Split into four coefficients \rightarrow only n>=0 required!

mpol-1, ntor

$$R(\theta,\zeta) = \sum_{m=0}^{cc} \left[R_{mn}^{cc} \cos(m\theta) \cos(n\zeta) + R_{mn}^{ss} \sin(m\theta) \sin(n\zeta) + R_{mn}^{sc} \sin(m\theta) \cos(n\zeta) + R_{mn}^{cs} \cos(m\theta) \sin(n\zeta) \right]$$

 $R_{m,|n|}^{cc} \Leftarrow Rbc(n,m)$ $R_{m,|n|}^{ss} \Leftarrow Rbc(n,m)$

 $|R_{m,|n|}^{sc} \leftarrow Rbs(n,m)|$

 $|R_{m,|n|}^{cs} \Leftarrow -Rbs(n,m)|$

for n=-ntor, ..., ntor

Coefficient mapping: user input to VMEC-internal arrays

	R: stellarator-symmetric Z: non-stellarator-symmetric	Z: stellarator-symmetric R: non-stellarator-symmetric			
2D and 3D (ntor >= 0) Tokamak and Stellarator	$X_{mn}^{cc} = \begin{cases} X_{m0}^{\cos} & : n = 0\\ X_{mn}^{\cos} + X_{m,-n}^{\cos} & : n > 0 \end{cases}$	$X_{mn}^{sc} = \begin{cases} 0 & : n = 0, m = 0 \\ X_{m0}^{\sin} & : n = 0, m > 0 \\ X_{mn}^{\sin} + X_{m,-n}^{\sin} & : n > 0, m > 0 \end{cases}$			
only 3D (ntor > 0) only for Stellarator	$X_{mn}^{ss} = \begin{cases} 0 & : n = 0\\ X_{mn}^{\cos} - X_{m,-n}^{\cos} & : n > 0, m > 0 \end{cases}$	$X_{mn}^{cs} = \begin{cases} 0 & : n = 0 \\ -X_{mn}^{\sin} + X_{m,-n}^{\sin} & : n > 0 \end{cases}$			

 $X \in \{R, Z\}$

2D: ntor = 0 (Tokamak)

3D: ntor > 0 (Stellarator)

used within VMEC

from user input

Check for change of sign-of-Jacobian; flip θ otherwise

$$r_{\text{test}} = \sum_{n=0}^{N} R_{1n}^{cc}$$

$$z_{\text{test}} = \sum_{n=0}^{N} Z_{1n}^{sc}$$

if $sgn(r_{test}) != sgn(z_{test})$, need to flip θ

This is how θ is flipped in the coefficient arrays (X=R,Z, *=c,s):

$$X_{mn}^{c*} \leftarrow X_{mn}^{c*} \begin{cases} -1 & : m \text{ odd} \\ +1 & : m \text{ even} \end{cases}$$

$$X_{mn}^{s*} \leftarrow X_{mn}^{s*} \begin{cases} +1 & : m \text{ odd} \\ -1 & : m \text{ even} \end{cases}$$

Current working hypothesis: (thanks to J. Geiger!) r_{test} , z_{test} are related to the leading terms of $d(R,Z)/d\theta$ at $(\theta, \zeta)=(\pi/2, 0)$ for R and at $(\theta, \zeta)=(0, 0)$ for Z. If the leading derivatives have the same sign, the path is probably going counter-clockwise, with different signs it is likely going clockwise.

for all m=1, ..., (mpol-1)

m=1 constraint on geometry of flux surfaces

"proper" names of these quantities
$$\mathbf{R^+_{sym,n}} = R_{1n}^{ss} \leftarrow \frac{1}{2} \left(R_{1n}^{ss} + Z_{1n}^{cs} \right)$$

$$\mathbf{R^-_{sym,n}} = Z_{1n}^{cs} \leftarrow \frac{1}{2} \left(R_{1n}^{ss} - Z_{1n}^{cs} \right)$$

for all n=0, ..., ntor

Only if 3D

... and this is just where they are stored within the code

$$\begin{array}{l} {\rm R^+_{asym,n}} = R_{1n}^{sc} \leftarrow \frac{1}{2} \left(R_{1n}^{sc} + Z_{1n}^{cc} \right) \\ {\rm R^-_{asym,n}} = Z_{1n}^{cc} \leftarrow \frac{1}{2} \left(R_{1n}^{sc} - Z_{1n}^{cc} \right) \end{array} \right)$$

Only if non-stellarator-symmetric

Forward transform (as shown above):

→ done only on initial guess; then maintained during iterations

Reverse operation (see next slides):

→ convert_sym, convert_asym in totzsp()

mscale(m), nscale(n): just some normalization factors ...

$$m_{\text{scale}} = \begin{cases} 1 & : m = 0\\ \sqrt{2} & : m > 0 \end{cases}$$

$$n_{\text{scale}} = \begin{cases} 1 & : n = 0\\ \sqrt{2} & : n > 0 \end{cases}$$

included in Fourier basis functions (small excerpt):

$$\begin{aligned} \cos & \max(i,m) = \cos \left(2\pi \frac{i-1}{n_{\theta}} m \right) m_{\text{scale}} \\ & \sin & \min(i,m) = \sin \left(2\pi \frac{i-1}{n_{\theta}} m \right) m_{\text{scale}} \end{aligned}$$

poloidal Fourier basis

$$\oint \cos(m\theta) \cos(m'\theta) d\theta = \frac{1}{2} \delta_{m,m'}$$

$$\oint \cos(n\zeta) \cos(n'\zeta) d\zeta = \frac{1}{2} \delta_{n,n'}$$
e.g.
$$\cos(k,n) = \cos\left(2\pi \frac{k-1}{n_{\zeta}}n\right) n_{\text{scale}}$$

$$\sin(k,n) = \sin\left(2\pi \frac{k-1}{n_{\zeta}}n\right) n_{\text{scale}}$$

toroidal Fourier basis

These normalization factors need to be factored out when reading user input for geometry!

Spectral Width from Fourier coefficients

actual term used to "create" constraint forces

Need to dig deeper!

p=4, q=1 and with Q=p+q we identify this as the case Q_2 =5 in Hirshman & Meier (1985)

 $f(m)=m^p(m^q-M) \label{eq:fmaybe}$ [maybe p=1,q=1, M=1 in f(m) near Eqn. (5) in Hirshman, Meier (1985)]

But this is only used as a screen diagnostic in VMEC !?!?!?

(threed1-file from VMEC run for W7-X)

	S	<radial FORCE></radial 	TOROIDAL FLUX	IOTA	<jsupu></jsupu>	<jsupv></jsupv>	d(VOL)/ d(PHI)	. ,	<m></m>
							u(FIII)	u(FIII)	
			-0.0000E+00		-3.619E+05				
			-3.4208E-02 -6.8416E-02		-3.508E+05 -3.397E+05	1.588E+02 2.345E+02	1.600E+01 1.599E+01	5.620E+04 5.406E+04	
	E-02 E-02		-1.0262E-01 -1.3683E-01		-3.270E+05 -3.148E+05	2.981E+02 3.572E+02	1.597E+01 1.596E+01	5.204E+04 5.013E+04	
	E-01 E-01		-1.7104E-01 -2.0525E-01		-3.034E+05 -2.925E+05	4.146E+02 4.717E+02	1.595E+01 1.593E+01	4.832E+04 4.661E+04	1.091
1.40	E-01	2.90E-05	-2.3946E-01	8.7253E-01	-2.822E+05	5.294E+02	1.592E+01	4.499E+04	1.128
	E-01 E-01		-2.7366E-01 -3.0787E-01		-2.725E+05 -2.633E+05	5.884E+02 6.489E+02	1.591E+01 1.590E+01	4.345E+04 4.199E+04	
			-3.4208E-01 -3.7629E-01		-2.545E+05 -2.461E+05	7.114E+02 7.760E+02	1.588E+01 1.587E+01	4.060E+04 3.928E+04	
			-4.1050E-01 -4.4470E-01		-2.382E+05 -2.306E+05	8.428E+02 9.119E+02	1.586E+01 1.585E+01	3.803E+04 3.683E+04	
2.80	E-01	-4.16E-05	-4.7891E-01	8.8579E-01	-2.233E+05	9.832E+02	1.584E+01	3.569E+04	1.257
3.00	E-01	-4.03E-05	-5.1312E-01	8.8797E-01	-2.164E+05	1.057E+03	1.583E+01	3.460E+04	1.276

$$M(p,q) = \frac{\sum_{m,n} m^{p+q} (R_{mn}^2 + Z_{mn}^2)}{\sum_{m,n} m^p (R_{mn}^2 + Z_{mn}^2)}$$

Extra-/Interpolation of initial guess for geometry

Initial guess of coefficients for R,Z in volume from interpolation

• m=0 - modes interpolated between axis and boundary

raxis cc, zaxis cs, ...

user-input boundary... Rbc, Zbs, ...

Inverse-Fourier transform of geometry to real space (1/2)

- initial guess for the geometry of all flux surfaces is now available
 - → first iteration: transform geometry coefficients back to real space and eval MHD forces etc.
- first need to undo m=1 constraint:

$$R_{1n}^{ss} \leftarrow R_{\text{sym},n}^{+} + R_{\text{sym},n}^{-} \equiv R_{1n}^{ss} + Z_{1n}^{cs}$$

 $Z_{1n}^{cs} \leftarrow R_{\text{sym},n}^{+} - R_{\text{sym},n}^{-} \equiv R_{1n}^{ss} - Z_{1n}^{cs}$

convert_asym()
$$R_{1n}^{sc} \leftarrow R_{\text{asym},n}^{+} + R_{\text{asym},n}^{-} \equiv R_{1n}^{sc} + Z_{1n}^{cc}$$

$$Z_{1n}^{cc} \leftarrow R_{\text{asym},n}^{+} - R_{\text{asym},n}^{-} \equiv \underbrace{R_{1n}^{sc} + Z_{1n}^{cc}}_{\text{asym},n}$$

this is where the coefficients are stored in the code

Inverse-Fourier transform of geometry to real space (2/2)

X_{mn} are now available in "physical" form (m=1 - constraint not active)

→ can do inverse Fourier transform to real space now!

but: handle even / odd-m individually (needed for precise radial derivatives)

$$X = \frac{X_e}{X_o} + \sqrt{\Phi} X_o,$$

for $X \in \{R, Z\}$

$$X_e = \sum X_{mn}(\Phi) \exp[i(m\theta - n\zeta)],$$

$$X_o = \Phi^{-1/2} \sum_{\text{odd min}} X_{mn}(\Phi) \exp[i(m\theta - n\zeta)]$$

 $\operatorname{scalxc}(s_j, m) = \begin{cases} 1 & : m \text{ even} \\ 1/\sqrt{s_j} & : s_j > 0, m \text{ odd} \\ 1/\sqrt{\operatorname{ns} - 1} & : s_j = 0, m \text{ odd} \end{cases}$

for
$$j = 1, ..., ns,$$

 $m = 0, ..., (mpol - 1)$

Hirshman, Schwenn & Nührenberg (1990) "Improved Radial Differencing ..."

Spectral-Constraint "source terms": Rcon, Zcon

$$\begin{split} R_{e,o}^{\text{con}} &= \sum_{m,n} m(m-1) \left[R_{mn}^{\cos} \cos(m\theta - n\zeta) + \ldots \right] \\ Z_{e,o}^{\text{con}} &= \sum_{m,n} m(m-1) \left[Z_{mn}^{\sin} \sin(m\theta - n\zeta) + \ldots \right] \end{split}$$
 additional terms for non-stellarator-symmetric geometry

Next assemble Rcon, Zcon from even/odd-m contributions:

$$R^{\rm con} = R_e^{\rm con} + \sqrt{s} R_o^{\rm con}$$

xmpq(m,1)

$$Z^{\rm con} = Z_e^{\rm con} + \sqrt{s} Z_o^{\rm con}$$

side note:

Compare R^{con}, Z^{con} to X and Y in Hirshman, Meier (1985):

$$I(\theta, \phi) = X(\theta, \phi) x_{\theta} + Y(\theta, \phi) y_{\theta}, \tag{5a}$$

$$X(\theta,\phi) = \sum_{m=1,n} f(m) x_{mn} \cos(m\theta - n\phi), \tag{5b}$$

$$Y(\theta,\phi) = \sum_{m=1,n} f(m) y_{mn} \sin(m\theta - n\phi), \qquad (5c)$$

$$f(m) = m^p (m^q - M)$$

 $f(m) = m^p (m^q - M)$ for p=1, q=1, M=1, f(m) = xmpq(m,1)

Initial Rcon0, Zcon0: extrapolation into volume

$$R_0^{
m con} = s_j R^{
m con,(1)}$$
 R^{con}, Z^{con} (previous slide) from first iteration for current # of surfaces

Fixed for current multi-grid iteration

then used for constraint force:

$$R_{\text{eff}}^{\text{con}} = R^{\text{con},(i)} - R_0^{\text{con}}$$
$$Z_{\text{eff}}^{\text{con}} = Z^{\text{con},(i)} - Z_0^{\text{con}}$$

Linear interpolation in s

cf. MOMCON article:

To avoid the inconvenience associated with such preprocessing, MOMCON has been written to minimize the following linearized constraint: ?

$$\langle M \rangle_{L} = \sum_{m=2;n} m^{p+1} \left[\left(R_{mn} - R_{mn}^{0} \right)^{2} + \left(Z_{mn} - Z_{mn}^{0} \right)^{2} \right].$$
 (5)

Here, (R_{mn}^0, Z_{mn}^0) are suitable guesses for the Fourier coefficients, which are usually chosen equal to the initial profiles.

--- ongoing work ---

- Cliffhanger -

funct3d: MHD forces forward model (1)

- compute Jacobian => Z_s , R_s , R_s , R_θ , Z_θ , τ
 - make use of properly regularized radial derivatives
 - check if Jacobian changes sign => restart iteration (irst==2)
- now call bcovar(λ_{θ} , $-\lambda_{\zeta}$)
 - compute metric elements on half-mesh
 - compute plasma volume and dV/ds
 - compute "first half" of B^{θ}, B^{ζ} from λ_{θ} , λ_{ζ} by adding even, odd contributions and interp to half-mesh
 - add magn. fluxes to B^θ, B^ζ to make them whole (also adjust iota profile for constrained-current)
 - use metric elements to obtain $B_{\theta} = g_{\theta\theta} B^{\theta} + g_{\theta\zeta} B^{\zeta}$, $B_{\zeta} = g_{\theta\zeta} B^{\theta} + g_{\zeta\zeta} B^{\zeta}$ (covariant B components)
 - now can compute $|B|^2/2 = (B^{\theta}B_{\theta} + B^{\zeta}B_{\zeta})/2$ (\rightarrow vol.-int. to get W_B) and thermal/"kinetic" $W_P = \int_0^1 p(s) \frac{\partial V}{\partial s} ds$
 - put B_{θ} , B_{ζ} onto full-mesh \rightarrow these are the λ -forces, and since λ is on the full-mesh, need forces there as well
 - calc. avg. force balance → calc_fbal() → yields grad(p) <j x B>

funct3d: MHD forces forward model (2)

bcovar() cont'd

- 1d-preconditioner, computation of tcon profile: constraint-force multiplier
- tcon0 given by user (have you ever wondered about the name...?)

$$\texttt{tcon_mul} = \frac{1}{16} \texttt{tcon0} \left(1 + \frac{\texttt{ns}}{60} + \frac{\texttt{ns}^2}{200 \cdot 120} \right)$$

tcon0 is value of tcon mul for ns \rightarrow 0 (hence tcon0)

from preconditioner...

$$t^{con}(s_j) = \min\left(\frac{|a_d^R(s_j,1)|}{a_{\text{norm}}^R}, \frac{|a_d^Z(s_j,1)|}{a_{\text{norm}}^Z}\right) \cdot \text{tcon_mul} \cdot \left(\frac{32}{\text{ns}-1}\right)^2 \qquad \text{with} \qquad \begin{cases} a_{\text{norm}}^R = \int\limits_0^{2\pi} \int\limits_0^{2\pi} \left(\frac{\partial R}{\partial \theta}\right)^2 \mathrm{d}\theta \mathrm{d}\zeta \\ a_{\text{norm}}^R = \int\limits_0^{2\pi} \int\limits_0^{2\pi} \left(\frac{\partial R}{\partial \theta}\right)^2 \mathrm{d}\theta \mathrm{d}\zeta \end{cases}$$

$$t^{\text{con likely is } \alpha(s) \text{ from MOMCON paper, Eqn. (4)}$$

$$\begin{cases} a_{\text{norm}}^{R} = \int_{0}^{2\pi} \int_{0}^{2\pi} \left(\frac{\partial R}{\partial \theta}\right)^{2} d\theta d\zeta \\ a_{\text{norm}}^{Z} = \int_{0}^{2\pi} \int_{0}^{2\pi} \left(\frac{\partial Z}{\partial \theta}\right)^{2} d\theta d\zeta \end{cases}$$

funct3d: MHD forces forward model (3)

free-boundary contribution from NESTOR

- for each call to NESTOR, multiply R^{con}_{0} , Z^{con}_{0} by 0.9 \rightarrow gradually turn off
- geometry is assembled from xc*scalxc (temp. re-use of gc array); indep. inv-DFT in NESTOR
- "vacuum force" is then given by:

funct3d: MHD forces forward model (4)

compute constraint force

$$\begin{aligned} & \texttt{extra1} \leftarrow \left(R^{\text{con},(i)} - R_0^{\text{con}}\right) \frac{\partial R}{\partial \theta} + \left(Z^{\text{con},(i)} - Z_0^{\text{con}}\right) \frac{\partial Z}{\partial \theta} \\ & = \left(\sum_{m,n} m(m-1) \left[R_{mn}^{\cos,(i)} - R_{mn}^{\cos,(0)} s_j\right] \cos(m\theta - n\zeta)\right) \frac{\partial R}{\partial \theta} \\ & + \left(\sum_{m,n} m(m-1) \left[Z_{mn}^{\sin,(i)} - Z_{mn}^{\sin,(0)} s_j\right] \sin(m\theta - n\zeta)\right) \frac{\partial Z}{\partial \theta} \end{aligned}$$

funct3d: MHD forces forward model (5)

- de-alias by Fourier bandpass: only retain m=1, ..., M-1 (alias() routine)
 - first step: DFT of constraint force

$$g_{mn}^{cs}(s_j) = t^{\mathrm{con}}(s_j) \int_{0}^{2\pi} \int_{0}^{2\pi} \mathrm{extra1} \cdot \frac{\cos{(m\theta_i)}}{n_{\theta}n_{\zeta}} \cdot \sin{(n\zeta_k)} \, \mathrm{d}\theta_i \mathrm{d}\zeta_k$$
 $g_{mn}^{sc}(s_j) = t^{\mathrm{con}}(s_j) \int_{0}^{2\pi} \int_{0}^{2\pi} \mathrm{extra1} \cdot \frac{\sin{(m\theta_i)}}{n_{\theta}n_{\zeta}} \cdot \cos{(n\zeta_k)} \, \mathrm{d}\theta_i \mathrm{d}\zeta_k$

• second step: inv-DFT of constraint force; only retain m=1, ..., M-1

 $g^{\text{con}}(\theta_i, \zeta_k, s_j) = \sum_{m=1, n=0}^{M-1, N} \left[g^{cs}_{mn}(s_j) \cos\left(m\theta_i\right) \sin\left(n\zeta_k\right) + g^{sc}_{mn}(s_j) \sin\left(m\theta_i\right) \cos\left(n\zeta_k\right) \right] \cdot \text{faccon}(m)$ factor for constraint

funct3d: MHD forces forward model (6)

assembly of forces: subroutine forces()

three types of force contributions:

- A → constant
- B → poloidal derivative of something
- C → toroidal derivative of something

Fourier-transform of this ends up in gc vector

[based on comment in tomnsp]

funct3d: MHD forces forward model (7)

• constraint force: contributions to F^R, F^Z in real-space

$$A_{mn}^{R} \leftarrow A_{mn}^{R,\text{MHD}} + m(m-1) \cdot g^{\text{con}} \cdot \frac{\partial R}{\partial \theta}$$
$$A_{mn}^{Z} \leftarrow A_{mn}^{Z,\text{MHD}} + m(m-1) \cdot g^{\text{con}} \cdot \frac{\partial Z}{\partial \theta}$$

$$B_{mn}^{R} \leftarrow B_{mn}^{R,\text{MHD}} + \left(R^{\text{con},(i)} - R_0^{\text{con}}\right) \cdot g^{\text{con}}$$
$$B_{mn}^{Z} \leftarrow B_{mn}^{Z,\text{MHD}} + \left(Z^{\text{con},(i)} - Z_0^{\text{con}}\right) \cdot g^{\text{con}}$$

funct3d: MHD forces forward model (8)

- now scale gc ← gc * scalxc
- Fourier-transform forces: F^R , F^Z , $F^\lambda \rightarrow [gcr, gcz, gcl] == gc vector$
- call residue()
 - use the opportunity to scale (m=1)-components of forces (constrain_m1() routine)

$$\begin{split} & \operatorname{gc}_{1n}^R \leftarrow & \frac{1}{\sqrt{2}} \left(\operatorname{gc}_{1n}^R + \operatorname{gc}_{1n}^Z \right) \\ & \operatorname{gc}_{1n}^Z \leftarrow \begin{cases} 0 & \operatorname{fsqz} < 10^{-6} \text{ or iter2} < 2 \\ & \\ \frac{1}{\sqrt{2}} \left(\operatorname{gc}_{1n}^R - \operatorname{gc}_{1n}^Z \right) & \operatorname{else} \end{cases} \end{split}$$

- for Ithreed, apply to gc^{Rss}, gc^{Zcs}
- for lasym, apply to gc^{Rsc}, gc^{Zcc}
- call getfsq() to compute force residuals: summed over whole volume, all Fourier coefficients

$$g_{ ext{norm}}^R = g_{ ext{norm}} \sum_{j,m,n} \left(\operatorname{gc}_{mn}^R(s_j) \right)^2$$
 with $g_{ ext{norm}} = \frac{1}{4} \operatorname{fnorm}$ $g_{ ext{norm}}^Z = g_{ ext{norm}} \sum_{j,m,n} \left(\operatorname{gc}_{mn}^Z(s_j) \right)^2$ see $g_{ ext{norm}}^R = g_{ ext{norm}} \sum_{j,m,n} \left(\operatorname{gc}_{mn}^Z(s_j) \right)^2$

see preconditioner part in bcovar() ...

funct3d: MHD forces forward model (9)

in residue()

call scale_m1 to apply 1d-preconditioner (?)

$$\begin{split} \operatorname{gc}_{1n}^R \leftarrow & \operatorname{gc}_{1n}^R \cdot \frac{a_d^R + b_d^R}{a_d^R + b_d^R + a_d^Z + b_d^Z} \\ \operatorname{gc}_{1n}^Z \leftarrow & \operatorname{gc}_{1n}^Z \cdot \frac{a_d^Z + b_d^Z}{a_d^R + b_d^R + a_d^Z + b_d^Z} \end{split}$$

- for lthreed, apply to gc^{Rss}, gc^{Zcs}
- for lasym, apply to gcRsc, gcZcc

output from precondn() ...

- scalfor() gets called; apply 1d-preconditioner, solve tri-diagonal system
- getfsq() again; this time call for preconditioned forces → preconditioned force residuals fsq*1

... funct3d() done here ...