a.

Since $\mathcal{B}(\mathbb{R})$ is the σ -algebra generated by all open sets in \mathbb{R} , and Y is contained only open sets. We have that $\sigma(Y) \subseteq \mathcal{B}(\mathbb{R})$. Thus to prove that $\sigma(Y) = \mathbb{R}$, we need to prove that all open sets in $\mathbb{R} \in Y$. Since every open sets in \mathbb{R} can be rewritten as at most countable of pairwise disjoint open intervals and there are 3 types of open intervals in \mathbb{R} . For $a, b \in \mathbb{R}$

- (a, ∞) Choose any $x \in \mathbb{R}$ such that x > a, since D is dense, there is infinitely countable number $d \in \mathbb{D}$ such that a < d < x. Thus there is a strictly increasing $(d_n)_{n=1}^{\infty}$ such that $\lim d_n = a$. Therefore, $\bigcup_{n=1}^{\infty} (d, \infty) = (a, \infty) \in \sigma(\mathbb{Y})$.
- $(-\infty, a)$ Choose any $x \in \mathbb{R}$ such that x < a, since D is dense, there is infinitely countable number $d \in \mathbb{D}$ such that a > d > x. Thus there is a strictly decreasing $(d_n)_{n=1}^{\infty}$ such that $\lim d_n = a$. Therefore, $\bigcup_{n=1}^{\infty} (d, \infty)^c = \bigcup_{n=1}^{\infty} (-\infty, d] = (-\infty, a) \in \sigma(\mathbb{Y})$.
- (a,b)We have that $(a,b)=(a,\infty)\cap(-\infty,b)\in\sigma(Y)$

Thus, every open sets in \mathbb{R} is in $\sigma(Y)$, thus $\sigma(Y) = \mathcal{B}(\mathbb{R})$.

b.

For any interval $(a, \infty) \in Y$, notice that since D is dense, we can construct a strictly decreasing $(a_n)_{n=1}^{\infty} \in D$ and strictly increasing sequence $(b_n)_{n=1}^{\infty} \in D$ such that $\lim(a_n, b_n) = (a, \infty)$. And thus for any $a \in D$, we have that $(a, \infty) = \bigcup_{n=1}^{\infty} (a_n, b_n) \in \sigma(Z)$. Therefore, $\sigma(Y) \subseteq \sigma(Z)$. For any $a, b \in D$, we have that $(-\infty, b) \cap (-\infty, a)^c = [a, b) \in \sigma(Y)$. Thus $\sigma(Z) \subseteq \sigma(Y)$ and $\sigma(Y) = \sigma(Z) = \mathcal{B}(\mathbb{R})$.

c.

From definition, for any $E \in \mathcal{B}(\overline{\mathbb{R}})$, E can be rewritten as $E = E' \cup B'$ or $E' \cup B'^c$ where $E' \in \mathcal{B}(\mathbb{R})$ and $B' \in \{(a, \infty], [-\infty, a), [-\infty, a) \cup (b, \infty]$. Thus we have that $E \setminus \{-\infty, \infty\} = (E' \setminus \{-\infty, \infty\}) \cup (B' \setminus \{-\infty, \infty\}) = E' \cup B''$, where $B'' \in \{(a, \infty), (-\infty, a), (-\infty, a) \cup (b, \infty)\} \subset \mathcal{B}(\mathbb{R})$ thus $E \setminus \{-\infty, \infty\} \in \mathcal{B}(\mathbb{R})$.

a.

For any open sets $G=(a,b)\in\mathbb{R}$, let

$$a_n = \begin{cases} a + \frac{1}{n}, & \text{if } a \neq -\infty \\ C - n, & \text{if } a = -\infty \end{cases}$$

and similarly

$$b_n = \begin{cases} b - \frac{1}{n}, & \text{if } b \neq \infty \\ C + n, & \text{if } b = \infty \end{cases}$$

where C is some constant in \mathbb{R} . Then we have that

$$(a,b) = \bigcup_{n=1}^{\infty} [a_n, b_n]$$

b.

For each $x \in \mathbb{R} \setminus E$, f is continuous at x thus for all $n \in \mathbb{N}$, there is $\delta_{x,n}$ such that $|f(y) - f(x)| < \frac{1}{n}$ for all $y \in (x - \delta_{x,n}, x + \delta_{x,n})$. Thus let $\mathcal{O}_n = \bigcup_{x \in E^c} (x - \delta_{x,n}, x + \delta_{x,n})$. We can see that

$$\bigcap_{n=1}^{\infty} \mathcal{O}_n = \bigcap_{n=1}^{\infty} \bigcup_{x \in E^c} (x - \delta_{x,n}, x + \delta_{x,n}) = \bigcup_{x \in E^c} \bigcap_{n=1}^{\infty} (x - \delta_{x,n}, x + \delta_{x,n}) = E^c$$

And therefore, E^c is a G_δ set and thus E is a F_σ set.

a.

If μ is σ -finite, then there exists some $X_n \in \mathcal{M}$ such that $X = \bigcup_{n=1}^{\infty} X_n$, $X_n \subseteq X_{n+1}$ and $\mu(X_n) < \infty$. Thus for each $E \in \mathcal{M}$ with $\mu(E) = \infty$, there exists $N \in \mathbb{N}$ such that

$$\mu(X_N \cap E) > 0$$

as else $\mu(E \cap \bigcup_{j=1}^n) = \mu(E \cap A) = 0$. But since $\mu(X_N \cap E) \leq \mu(X_N) < \infty$. X_N satisfies $X_N \in \mathcal{M}, X_N \subseteq E, 0 < \mu(X_N) < \infty$.

b.

Let

$$S = \{ F \in \mathcal{M} : F \subseteq E, \mu(F) < \infty \}$$

Then we know that $\sup_{F\in S}\mu(F)$ must exists. Suppose it is less than ∞ , that is $\sup_{F\in S}\mu(F)=L$ for some $L\in\mathbb{R}$, then we can choose $(F_n)_{n=1}^\infty$ such that $\lim \mu(F_n)=L$. Then, we have that $\mu(\cup_{F\in S}F)=\mu(\cup_{n=1}^\infty F_n)=L$. Therefore, $\mu(E\setminus \cup_{F\in S}F)=\infty$, thus there exists $F'\subset E\setminus F$, so that $0<\mu(F')<\infty$. But $F\cup F'\subset E$ and $\infty>\mu(F\cup F')=\mu(F)+\mu(F')>L$ which is a contradiction and therefore $\sup_{F\in S}\mu(F)=\infty$ and there is some set $F\subseteq E$ such that $C<\mu(F)<\infty$.

c.

First,

$$u_0(\varnothing) = \sup\{\mu(F) : F \subseteq \varnothing, \mu(F) < \infty\} = 0$$

as the only subset of empty set is itself. If $E_j \in \mathcal{M}$ for all $j \in \mathbb{N}$ and E_j are pairwise disjoint then in case where there is j such that $\mu(E_j) = \infty$ then from part b, we have

$$\sum_{j=1}^{\infty} \mu_0(E_j) = \infty = \mu_0(\sqcup_{j=1}^{\infty} E_j)$$

If $\mu_0(E_j) = L_j$ are finite for every $j \in \mathbb{N}$ then we can choose $(F_{j,n})_{n=1}^{\infty} \subseteq E_j$ such that $\lim \mu(F_{j,n}) = L_j$ and since E_j are pairwise disjoint, $F_{j_1,n} \cap F_{j_2,n} = \emptyset$ for $j_1 \neq j_2$. Therefore, there is a sequence $F_n = \bigsqcup_{j=1}^{\infty} F_{j,n} \subset \bigsqcup_{j=1}^{\infty} E_j$ such that $\lim \mu_0(F_n) = \sum_{j=1}^{\infty} L_j$ thus $\mu_0(\bigsqcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} L_j = \sum_{j=1}^{\infty} \mu_0(E_j)$. If $\mu_0(E) = \infty$ for some $E \in \mathcal{M}$, then for any constant C, there exists $F \subseteq E$ such that $\mu(F) < \infty$. Now if for every $F \subseteq E$ satisfying $\mu(F) < \infty$, $\mu(F) = 0$ then $\mu_0(E) = 0$ which is a contradiction. Thus there exists some F such that $F \subseteq E$ and $0 < \mu(F) < \infty$.

a.

- $\varnothing \in \mathcal{E}$. Choosing a = b, we have that $(a, b] \cap \mathbb{Q} = \varnothing \in \mathcal{E}$.
- If $E = (a_1, b_1] \cap \mathbb{Q}$, $F = (a_2, b_2] \cap \mathbb{Q} \in \mathcal{E}$ then in case $(a_1, b_1] \cap (a_2, b_2] = \emptyset$, $E \cap F = \emptyset \in \mathcal{E}$. In case $(a_1, b_1] \cap (a_2, b_2] \neq \emptyset$ then there exists a_3, b_3 such that $(a_1, b_1] \cap (a_2, b_2] = (a_3, b_3]$ thus $E \cap F = (a_3, b_3] \cap \mathbb{Q} \in \mathcal{E}$.
- If $E = (a, b] \cap \mathbb{Q} \in \mathcal{E}$ where a < b, then $E^c = ((-\infty, a] \cup (b, \infty]) \cap \mathbb{Q}$ = $\underbrace{((-\infty, a] \cap \mathbb{Q})}_{\in \mathcal{E}} \cap \underbrace{((b, \infty] \cup \mathbb{Q})}_{\in \mathcal{E}}$, which are disjoint as a < b

b.

From definition, $\mathcal{A} \subseteq \mathbb{Q}$ thus $\sigma(\mathcal{A}) \subseteq \mathcal{P}(\mathbb{Q})$.

For any $E \subseteq \mathcal{P}(Q)$, we can write $E = \{x_1, x_2, \dots, \}$ as rationals are countable. Then for any x_j , we can define

$$E_{j,n} = \left(x_1 - \frac{1}{n}, x_1\right] \cap \mathbb{Q} \in \mathcal{A} \subseteq \sigma(\mathcal{A})$$

so that

$$\bigcap_{n=1}^{\infty} E_{j,n} = x_j \cap \mathbb{Q} = x_j$$

Thus

$$\bigcap_{k=1}^{\infty} \bigcap_{n=1}^{\infty} E_{j,n} = E$$

c.

We have that $u_0(\emptyset) = 0$ and for $E_j \in \mathcal{A}$, where E_j are pairwise disjoint, there is 2 cases

• if there is non-empty E_k then $\bigsqcup_{j=1}^n E_j \neq \emptyset$ and thus

$$\mu_0(\bigsqcup_{j=1}^{\infty} E_j) = \infty = \sum_{j=1}^{\infty} E_j = \mu_0(E_k) + \sum_{\substack{j=1\\j\neq k}}^{\infty} \mu_0(E_j) = \infty$$

• if all of them are empty, then simply

$$\mu_0(\sqcup_{j=1}^{\infty} E_j) = \mu_0(\varnothing) = 0 = \sum_{j=1}^n \mu_0(E_j)$$

a.

Since $Q \cap [0,1] \subseteq \bigcup_{j=1}^{\infty} R_j^o$, taking closure, we have $[0,1] \subseteq \bigcup_{j=1}^{\infty} \overline{R_j^o}$. Thus

$$\sum_{j=1}^{\infty} |R_j^o| = \sum_{j=1}^{\infty} |\overline{R_j^o}| \ge \left| \bigcup_{j=1}^{\infty} \overline{R_j^o} \right| \ge 1$$

b.

Since $m(E_j) = 1$, we have that $m(E_j^c) = 0$ and thus

$$m(\bigcap_{j=1}^{\infty} E_j) = 1 - m(\bigcup_{j=1}^{\infty} E_j^c) \ge 1 - \sum_{j=1}^{\infty} m(E_j^c) = 1$$

But since $\bigcap_{j=1}^{\infty} E_j \subseteq [0,1]$ thus $m(\bigcap_{j=1}^{\infty} E_j) \leq 1$. Therefore, $m(\bigcap_{j=1}^{\infty} E_j) = 1$.

c.

Suppose that $m(\cap_{j=1}^n A_n)=0$, then $m(\cup_{j=1}^n A_j^c)=1$. However, we have that $m(\cup_{j=1}^n A_n^c)\leq \sum_{j=1}^n m(A_j^c)$. Now we know that

$$\sum_{j=1}^{n} m(A_j^c) + \sum_{j=1}^{n} m(A_j) > n - 1 + 1 = n$$

But

$$\sum_{j=1}^{n} m(A_j^c) + \sum_{j=1}^{n} m(A_j) = \sum_{j=1}^{n} m(A_j^c) + m(A_j) = \sum_{j=1}^{n} m([0,1]) = n$$