\mathbf{F}	EUP - MIEIC	FÍSICA I - EIC0010 - 2008/2009	
N	OME:	LOG-IN FEUP:	
Ex	came final	30 de Junho de 2009	
	Duração: Duas horas. Com consulta de formulário. Pod nunca como meio de cópia ou de consulta!	de usar calculadora, mas apenas para fazer contas e	
1.	(3 valores). Uma escada (ver figura à direita) está apoiada ne numa parede vertical (ponto B). Entre a escada e a superficestático é μ , enquanto que o atrito da escada com a parede que o centro de gravidade da escada se encontra a metade o mínimo de μ , para garantir que a escada permaneça em equ	ície horizontal o coeficiente de atrito e vertical é desprezável. Admitindo do seu comprimento, calcule o valor	
2.	$(5~{\rm valores}).$ Uma partícula com massa igual a 1 kg desloca-se s ${\rm SI},$ a força tangencial sobre a partícula é dada pela expressã		
	(a) Determine os pontos de equilíbrio do sistema.		
	(b) Encontre as expressões para a energia potencial e a energia mecânica, em função da posição x e da velocidade v .		
	(c) Escreva as equações de evolução e calcule a matriz jacob	biana.	
	(d) Caracterize cada um dos pontos de equilíbrio do sistema	a. <u>A</u>	
	(e) Desenhe, no espaço de fase, um ciclo, uma órbita homoc existirem (se algumas das 3 não existirem, diga quais).	clínica e uma órbita heteroclínica, se $\begin{array}{c c} & & \\ & & \\ \end{array}$ 2.5 m \longrightarrow	
	PERGUNTAS . <i>Cotação</i> : Respostas certas, 0.8, erradas resposta. Serão avaliadas apenas as respostas que apareçan rascunho).		
3.	aceleração que aumenta em função do tempo: $a=7t$ (unidades SI). No instante $t=0$, a partícula encontra-se em repouso no ponto $x=4$ m. Calcule a posição da partícula	6. Um sistema dinâmico com duas variáveis de estado tem exactamente dois pontos de equilíbrio, P e Q. O ponto P é ponto de sela e o ponto Q é foco repulsivo. Qual das seguintes afirmações sobre o sistema é verdadeira?	
	em $t=5$ s.	(A) Podem existir ciclos.	
	(A) 149.8 m (C) 929.0 m (E) 449.5 m	(B) Pode existir uma órbita heteroclínica.	
	(B) 74.9 m (D) 374.6 m	(C) O sistema pode ser linear.	
	Resposta:	(D) O sistema pode estar em estado de equilíbrio estável.	
4.	Uma partícula desloca-se numa dimensão, sob a acção de	(E) Pode existir uma órbita homoclínica.	
	uma força conservativa e uma força de atrito suficiente- mente fraca. Desprezando a força de atrito, o sistema tem	Resposta:	
	um centro num ponto P do espaço de fase. Quando a força	7. A equação de van der Pol: $\ddot{x} + 2 \epsilon (x^2 - 1) \dot{x} + x = 0$, para	
	de atrito for tida em conta, o ponto P será:	qualquer valor do parâmetro positivo ϵ , tem sempre um único ponto de equilíbrio em $x = \dot{x} = 0$ e um ciclo limite	
	(A) nó repulsivo	unico ponto de equinorio em $x = x = 0$ e um cicio nimite atractivo. Designando o tipo de ponto de equilíbrio assim:	
	(B) nó atractivo		
	(C) ponto de sela	1. foco atractivo. 4. nó repulsivo.	
	(D) foco repulsivo(E) foco atractivo	 foco repulsivo. ponto de sela. nó atractivo. 	
	Resposta:	5. no atractivo.	
5.	As equações de evolução de um sistema linear, de segunda	Que tipo de ponto de equilíbrio pode ter a equação de van	
	ordem, são: $\dot{x} = ax + by$ $\dot{y} = cx + dy$	der Pol?	
	onde a,b,c e d são parâmetros reais, todos positivos excepto b que é negativo. Assim, o ponto de equilíbrio é:	(A) 1 ou 2 (C) 3, 4 ou 5 (E) 1 ou 3 (B) 3 ou 4 (D) 2 ou 4	
	(A) atractivo (D) nó		
	(B) repulsivo (E) ponto de sela (C) foco	Resposta:	

Resposta:

	As unidades J/(m·kg) (joule sobre metro vezes quilograma) 14	. As equações $\dot{x}=x(2-y),\dot{y}=y(2-x)$ definem um sistema:
	podem ser usadas para medir:	(A) Presa-predador.
	(A) Energia.	(B) Conservativo.
	(B) Aceleração.	(C) De duas espécies com cooperação.
	(C) Trabalho.	(D) De duas espécies com competição.
	(D) Velocidade.	(E) Linear.
	(E) Quantidade de movimento.	Resposta:
	Resposta:	
	o módulo da sua velocidade constante. Qual das seguintes afirmações é verdadeira?	a:rk([f,g],[y,z],[0,1],[x,0,1,0.1]) do Maxima foi usado para resolver numericamente um sistema de equações. Qual dos comandos seguintes produz
	(A) A aceleração é tangente à trajectória.	uma lista com os valores de y?
	(B) O módulo da aceleração é constante.	(A) makelist(a[2][i],i,1,11)
	(C) A aceleração é nula.	(B) makelist(a[3][i],i,1,11)
	(D) A aceleração é constante.	(C) makelist(a[i][3],i,1,11)
	(E) A aceleração é perpendicular à trajectória.	(D) makelist(a[i][1],i,1,11)
	Resposta:	(E) makelist(a[i][2],i,1,11)
10.	A força resultante sobre uma partícula que se desloca so-	Resposta:
	bre o eixo dos $y \notin \vec{F} = (y-3)(11-y)\vec{e}_y$. Em $t=0$ a partícula encontra-se em repouso no ponto $y=7$. Onde se 16 encontrará a partícula após um tempo muito elevado?	. Um sistema dinâmico com duas variáveis de estado tem uma curva de evolução com conjunto limite negativo num
	(A) Oscilando à volta de $y = 11$	ponto P. Em relação à lista seguinte:
	(B) Oscilando à volta de $y=3$	1. foco atractivo. 4. nó repulsivo.
	(C) Muito afastada, em $y \to \infty$	2. foco repulsivo. 5. centro.
	(D) Em $y = 11$	3. nó atractivo.
	(E) Em $y = 3$	
	Resposta:	Que tipo de ponto de equilíbrio pode ser o ponto P?
	Um sistema não linear com duas variáveis de estado tem um foco atractivo num ponto P. Quais poderão ser os dois valores próprios da matriz jacobiana no ponto P?	(A) 1 ou 3 (C) 2 ou 4 (E) 5 (B) 3 ou 4 (D) 1 ou 2
	(5)	Resposta:
	(A) 1 e 2 (C) 1 e -1 (E) 1+i e 1-i	. Um bloco de massa 6 kg desce deslizando sobre a superfície
	(B) -1+i e -1-i (D) -1 e -2	de um plano inclinado com base $x = 5$ m e altura $y = 3$ m.
	Resposta:	Admitindo que a aceleração da gravidade é $g = 9.8 \text{ m/s}^2$,
	A força resultante sobre um objecto de massa 2 kg é $\vec{F} = 1 \vec{e}_x + 9 t \vec{e}_y$ (SI) no intervalo $0 < t < 4$ s e nula em $t > 4$ s. Sabendo que a velocidade do objecto em $t = 0$ era $1 \vec{e}_x$ m/s, calcule a velocidade em $t = 6$ s.	calcule o módulo da reacção normal do plano sobre o bloco.
	(A) $5.0 \vec{e}_x + 72.0 \vec{e}_y$ (D) $3.0 \vec{e}_x + 36.0 \vec{e}_y$	У
	(B) $4.0 \vec{e}_x + 81.0 \vec{e}_y$ (E) $4.0 \vec{e}_x + 27.0 \vec{e}_y$ (C) $3.0 \vec{e}_x + 18.0 \vec{e}_y$	x
	Resposta:	(A) 58.80 N (C) 49.00 N (E) 60.50 N
	A matriz de um sistema linear no espaço de fase (x,y) foi armazenada na variável J, no Maxima. O comando eigenvectors(J) produz: [[[-1,-2], [1,1]], [1,-1], [1,1/3]] que tipo de ponto de equilíbrio é a origem?	(B) 25.21 N (D) 50.42 N Resposta:
	(A) ponto de sela. (D) foco atractivo.	
	(B) foco repulsivo. (E) centro.	
	(C) nó atractivo.	
	Resposta:	

Perguntas

3. A

6. E

9. E

12. D

15. E

4. E

7. D

10. A

13. C

16. C

5. B

8. B

11. B

14. D

17. D