

PREDICTING LIFETIME GIVING FOR POLITICAL CAMPAIGN DONORS

Lizzie Ellis DC DAT 10 February 24, 2016

THE GOAL:

- I. Can we predict how long a donor will continue to give to the organization?
- 2. Are there certain characteristics that make someone more likely to give repeatedly over time?

THE RAW DATA

- All donors whose first gift occurred between 2008 and 2015
- Aggregate Giving History: average gift, gifts per year, gifts per channel, gifts per channel per year
- Indicators for:
 - Online only donors
 - Donors w/ email addresses in the system
 - People who purchased from the Online Store

FEATURE ENGINEERING

- Aggregate giving over time, by donor and by channel
- · Flags for election year only donors, online only donors, mail only donors
- Alternatives to Datetimes
 - · Created dummies for month of first gift and year of first gift
 - Calculated months since first gift using timedelta functions, convert to int

Zipcode:

- · Can't treat as a float or int, really more a categorical
- Created zip_region indicator off first digit of zip

MODELING

- Data scaled before regression to offset impact of high dollar donors
- Feature set of I I values,
 plus first gift month and
 account dummies

- Linear regression
- Ridge regression
- Baysean Ridge Regression
- Random Forest
 Regression

Model	RMSE (10-fold Cross Validation)	Other Params
Null RMSE	1.148532689	
Linear Regression	0.452854407	
Ridge Regression	0.452854406	alpha = 1.0
Bayesian Ridge	0.452841997	
Random Forests	0.522537554	max_depth = 4
Optimized Random Forest	0.235205041	max_depth = 13

Conclusion: Bayesian Ridge performs slightly better than others, but not by a significant amount

```
Skipping line 477846: expected 128 fields, saw 129
Skipping line 487703: expected 128 fields, saw 130
Skipping line 488292: expected 128 fields, saw 129
Skipping line 488638: expected 128 fields, saw 129
Skipping line 508883: expected 128 fields, saw 129
Skipping line 570933: expected 128 fields, saw 129
Skipping line 574103: expected 128 fields, saw 129
Skipping line 574984: expected 128 fields, saw 129
Skipping line 606825: expected 128 fields, saw 129
Skipping line 636228: expected 128 fields, saw 129
Skipping line 687399: expected 128 fields, saw 130
Skipping line 794761: expected 128 fields, saw 129
Skipping line 819196: expected 128 fields, saw 129
Skipping line 849668: expected 128 fields, saw 129
Skipping line 856968: expected 128 fields, saw 129
Skipping line 878954: expected 128 fields, saw 129
```

Skipping line 1991/4: expected 128 fields, saw 129

Skipping line 258189: expected 128 fields, saw 129

Challenges

HOW I SPENT MY TIME

Feature Selection & Engineering - Python

NEXT STEPS

- Gradient Boosting Regression
- Increased tuning of models
- More feature selection analysis
- Include Telemarketing data
- Include Consumer/demographic data
- Look at coefficients on features

LESSONS LEARNED

Data Cleaning is ...

...Frustrating

Beware the Feature Selection Quagmire

Datetime variables are extra tricky

Leave more time than you think you need

Answering the question is only part of the problem