Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

CLASA a XII-a SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1. Pentru $n \in \mathbb{N}^*$ considerăm funcția $f_n : [0, n] \to \mathbb{R}$ dată de $f_n(x) = \operatorname{arctg}([x])$, unde [x] reprezintă partea întreagă a numărului real x. Să se arate că f_n este integrabilă și să se determine $\lim_{n \to \infty} \frac{1}{n} \int_0^n f_n(x) dx$.

Soluție. Funcția f_n este egală cu constanta $f_n(i)$ pe $[i, i+1] \setminus \{i+1\}$, $i \in \overline{0, n-1}$, deci este integrabilă pe fiecare interval [i, i+1].

$$\int_0^n f_n(x) dx = \sum_{i=0}^{k-1} \int_i^{i+1} f_n(i) dx = \sum_{i=0}^{n-1} \operatorname{arctg} i.$$

......3p

Folosind teorema Stolz-Cesaro, limita cerută este

$$\lim_{n \to \infty} \frac{\arctan 1 + \arctan 2 + \ldots + \arctan n}{n} = \lim_{n \to \infty} \arctan n = \frac{\pi}{2}.$$

......2p

Problema 2. Fie $f:[0,1]\to\mathbb{R}$ o funcție derivabilă, cu derivata continuă și fie $s_n=\sum_{k=1}^n f\left(\frac{k}{n}\right)$.

Să se arate că șirul $(s_{n+1} - s_n)_{n \in \mathbb{N}^*}$ este convergent către $\int_0^1 f(x) dx$.

Soluție. Folosind teorema lui Lagrange, obținem

$$s_{n+1} - s_n = \sum_{k=1}^{n+1} f\left(\frac{k}{n+1}\right) - \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = f(1) - \sum_{k=1}^{n} \left(f\left(\frac{k}{n}\right) - f\left(\frac{k}{n+1}\right)\right)$$
$$= f(1) - \frac{1}{n(n+1)} \sum_{k=1}^{n} k f'(x_k), \ \frac{k}{n+1} < x_k < \frac{k}{n}, \ k = 1, 2, \dots, n$$

Dacă
$$f' \ge 0$$
, atunci $\frac{x_k f'(x_k)}{n+1} \le \frac{k f'(x_k)}{n(n+1)} \le \frac{x_k f'(x_k)}{n}$, $k = 1, 2, ..., n$, deci $\frac{1}{n+1} \sum_{k=1}^{n} x_k f'(x_k) < \frac{1}{n(n+1)} \sum_{k=1}^{n} k f'(x_k) \le \frac{1}{n} \sum_{k=1}^{n} x_k f'(x_k)$. Deoarece

 (x_1, x_2, \ldots, x_n) reprezintă o familie de puncte intermediare asociate diviziunii $(0, 1/n, 2/n, \ldots, n/n)$, rezultă

$$\lim_{n \to \infty} \frac{1}{n(n+1)} \sum_{k=1}^{n} kf'(x_k) = \int_0^1 xf'(x) dx = xf(x) \Big|_0^1 - \int_0^1 f(x) dx,$$

de unde concluzia.

În cazul în care există și puncte în care f' ia valori negative, înlocuim f cu $g: x \mapsto f(x) + Mx$, unde $M = \sup |f'|$. Conform celor de mai sus, pentru $t_n = \sum_{k=1}^n g(\frac{k}{n})$ avem $(t_{n+1} - t_n)_n \to \int_0^1 g(x) dx = \int_0^1 f(x) dx + \frac{M}{2}$, iar $t_{n+1} - t_n = s_{n+1} - s_n + \frac{M}{2}$, deci concluzia este valabilă și în acest caz.

Problema 3. Fie $(A, +, \cdot)$ un inel cu proprietatea: oricare ar fi $x \in A$, $x + x^2 + x^3 = x^4 + x^5 + x^6$.

- a) Să se arate că dacă $n \geq 2$ este un număr natural, $x \in A$ și $x^n = 0$, atunci x = 0.
 - b) Să se arate că $x^4 = x$, oricare ar fi $x \in A$.

Soluție. a) Din ipoteză obținem $x^{n-1} = x^n(x^4 + x^3 + x^2 - x - 1) = 0$ și, analog, $x^{n-2} = x^{n-3} = \dots = x = 0$.

.....2p

b) Din ipoteză, $(x^3 - 1)(x^2 + x + 1) = 0$.

Rezultă $(x^4 - x)^2 = x^2(x - 1)(x^3 - 1)(x^2 + x + 1) = 0$ deci, conform a), $x^4 - x = 0$.

......5p

Problema 4. Fie (G,\cdot) un grup care nu are elemente de ordin 4 și $f: G \to G$ un morfism de grupuri care are proprietatea $f(x) \in \{x, x^{-1}\}$, oricare ar fi $x \in G$. Să se arate că f(x) = x, oricare ar fi $x \in G$, sau $f(x) = x^{-1}$, oricare ar fi $x \in G$.

Soluție. Să presupunem, prin absurd, că există $a,b \in G$ astfel încât $f(a) = a \neq a^{-1}$ și $f(b) = b^{-1} \neq b$. Atunci $f(ab) = f(a)f(b) = ab^{-1} \neq ab$, deci $f(ab) = (ab)^{-1} = b^{-1}a^{-1}$. Rezultă astfel $ab^{-1} = b^{-1}a^{-1}$, $b^{-1} = ab^{-1}a$.

.....3p

Apoi $f(ab^2) = f(a)f^2(b) = ab^{-2}$. Dacă $f(ab^2) = ab^2$, atunci $b^4 = e$, de unde ord(b) = 4 – contradicție cu ipoteza, sau $b^2 = e$ – contradicție cu $b \neq b^{-1}$. Astfel $f(ab^2) = (ab^2)^{-1} = b^{-2}a^{-1}$, deci $ab^{-2} = b^{-2}a^{-1}$. Rezultă

$$ab^{-2}a = b^{-2} = (b^{-1})^2 = ab^{-1}aab^{-1}a,$$

de unde $a^2 = e$ – contradiție, ca mai sus.

.....4p