My probability and statistics exercises

Evgeny Markin

2023

Contents

1	\mathbf{Intr}	Introduction to Probability				
	1.1	The History of Probability	2			
	1.2	Interpretations of Probability	2			
	1.3	Experiments and Events	2			
		Set Theory				
	1.5	The Definition of Probability	2			
	1.6	Finite Sample Spaces	5			
		Counting Methods				

Chapter 1

Introduction to Probability

- 1.1 The History of Probability
- 1.2 Interpretations of Probability
- 1.3 Experiments and Events
- 1.4 Set Theory

Exercises in this section (or exercises similar to them) are handled in the set theory course

1.5 The Definition of Probability

1	2/5
$\parallel 2$	0.7
3a	1/2
3b	1/6
3c	3/8
\parallel 4	0.6
5	0.4
6	0.5
8	30
11a	1 - $\pi/4$
11b	0.75
11c	2/3
11d	0
14a	0.38, 0.16
14b	0.04

A little notation, related to 6:

$$Pr(A) = 0.5$$

$$Pr(B) = 0.2$$

$$Pr(A \cap B) = 0.1$$

$$Pr(A \cup B) = 0.6$$

$$Pr((A \cup B) \cap (A \cap B)^c) = P(A \cup B) - P((A \cup B) \cap (A \cap B)) = P(A \cup B) - P(A \cap B) = 0.5$$

1.5.7

If Pr(A) = 0.4 and Pr(B) = 0.7, then we follow that the maximum $Pr(A \cap B)$ is attained if $A \subset B$, in which case $Pr(A \cap B) = Pr(A) = 0.4$. The minimum is obtained if $A \cup B = S$, in which case $Pr(A \cap B) = 0.1$

1.5.9

The event that exactly one of the events occurs can be expressed as

$$(A \cap B^c) \cup (A^c \cap B)$$

which comes from either the definition of xor, common sense or something else, depending on your preferences. Thus we follow that

$$Pr((A \cap B^{c}) \cup (A^{c} \cap B)) = Pr(A \cap B^{c}) + Pr(A^{c} \cap B) - Pr((A \cap B^{c}) \cap (A^{c} \cap B)) =$$

$$= Pr(A \cap B^{c}) + Pr(A^{c} \cap B) - Pr((A \cap A^{c}) \cap (B^{c} \cap B)) =$$

$$= Pr(A \cap B^{c}) + Pr(A^{c} \cap B) = Pr(A) - Pr(A \cap B) + Pr(B) - Pr(B \cap A) =$$

$$= Pr(A) - Pr(A \cap B) + Pr(B) - Pr(A \cap B) = Pr(A) + Pr(B) - 2Pr(A \cap B)$$

as desired (rules used in this derivitation: association of unions, $A \cap A^c = \emptyset$ and other trivial stuff)

1.5.10

$$Pr(A \cap B^c) = Pr(A) - Pr(A \cap B)$$
$$Pr(A \cap B^c) + Pr(A \cap B) = Pr(A)$$

as desired.

1.5.12

Suppose that $n > m \in N$. Then we follow that by definition

$$B_m \subseteq A_m$$

and

$$B_n \subseteq A_m^c$$

thus we follow that

$$B_m \cap B_n \subseteq A_m \cap A_m^c = \emptyset$$

thus

$$B_m \cap B_n = \emptyset$$

therefore we conclude that $B_1, B_2...$ are disjoint sets. Thus we follow that

$$Pr(\bigcup_{i=1}^{n} B_i) = \sum_{i=1}^{n} Pr(B_i)$$

For n=2 we've got that

$$B_1 \cup B_2 = A_1 \cup (A_1^c \cap A_2) = (A_1 \cup A_1^c) \cap (A_1 \cup A_2) = A_1 \cup A_2$$

and by induction we can follow that

$$\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$$

thus

$$Pr(\bigcup_{i=1}^{n} B_i) = \sum_{i=1}^{n} Pr(B_i)$$

implies that

$$Pr(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} Pr(B_i)$$

for $n \in \mathbb{N}$. Given that n is arbitrary, we can follow that

$$Pr(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} Pr(B_i)$$

as desired.

1.5.13

First equation follow from induction on the result that

$$Pr(A \cup B) \le Pr(A) + Pr(B)$$

the second equation follows from the first equation, DeMorgan laws and induction on the form

$$Pr(A \cap B) = Pr((A^c \cup B^c)^c) = 1 - Pr(A^c \cup B^c) \ge 1 - (Pr(A^c) + Pr(B^c))$$

1.5.14

$$Pr(A) = 0.34$$

 $Pr(B) = 0.12$
 $Pr(O) = 0.5$
 $Pr(AB) = 1 - 0.34 - 0.12 - 0.5 = 0.04$
 $Pr(a - A) = 0.34 + 0.04 = 0.38$
 $Pr(a - B) = 0.12 + 0.04 = 0.16$

1.6 Finite Sample Spaces

$\parallel 1$	$\mid 1/2 \mid$
2	1/2
3	2/3
$\parallel 4$	1/7
5	4/7
6	1/4
8b	1/4

1.6.7

The possible genotypes are Aa and aa with probabilities 1/2 and 1/2 respectively

1.6.8a

The sample space of the experiment is $\{heads, tails\} \times \{1, 2, 3, 4, 5, 6\}$,

1.7 Counting Methods

1	14
2	9000
3	120
4	24
5	5/18
6	5/324
7	0.014731
8	360 / 2401
9	1 / 20
10a	r/100
10b	r/100
10c	r/100

1.7.11

$$s(n) = \frac{1}{2}\log(2\pi) + (n + \frac{1}{2})\log n - n \approx \log n!$$

$$\log n! - \log(n - m)! = \log \frac{n!}{(n - m)!}$$

$$s(n) - s(n - m) = \frac{1}{2}\log(2\pi) + (n + \frac{1}{2})\log n - n - (\frac{1}{2}\log(2\pi) + ((n - m) + \frac{1}{2})\log n - m - (n - m)) =$$

$$= (n + \frac{1}{2})\log n - n - ((n - m) + \frac{1}{2})\log(n - m) + (n - m) =$$

$$= (n + \frac{1}{2})\log n - ((n - m) + \frac{1}{2})\log(n - m) - m \approx \log \frac{n!}{(n - m)!}$$

$$P(n, m) = \frac{n!}{(n - m)!} = \exp(s(n) - s(n - m))$$