ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I

Biblioteca padrão Python

BIBLIOTECA PADRÃO

Vimos até o momento algumas funções e classes que a linguagem Python oferece: sum(), max(), int, float, etc.

A biblioteca padrão Python contém muitas outras funções e classes, as quais estão organizadas em módulos.

Cada módulo contém funções e classes específicas para um domínio de aplicação.

Mais de 200 módulos formam a bilioteca padrão Python.

BIBLIOTECA PADRÃO

Alguns exemplos de aplicações que contêm módulos predefinidos:

- Programação para redes de computadores
- Programação para Web
- Desenvolvimento de interfaces gráficas
- Banco de dados
- Funções matemáticas
- Geradores de números pseudoaleatórios

MÓDULO math

Para usar o módulo, devemos importá-lo:

>>> import math

Para usar uma função do módulo, a chamamos juntamente com o módulo que a contém:

- >>> math.sqrt(4)
- 2.0
- >>> math.log(8, 2)
- 3.0

MÓDULO math

Algumas outras funções e constantes do módulo math:

Function	Explanation
sqrt(x)	\sqrt{x}
ceil(x)	$\lceil x \rceil$ (i.e., the smallest integer $\geq x$)
floor(x)	$\lfloor x \rfloor$ (i.e., the largest integer $\leq x$)
cos(x)	$\cos(x)$
sin(x)	$\sin(x)$
log(x, base)	$\log_{base}(x)$
pi	3.141592653589793
е	2.718281828459045

Fonte: (Perkovic, 2015)

MÓDULO fractions

O tipo Fraction é usado para representar frações e realizar operações com números racionais.

Exemplo:

$$\frac{1}{2} + \frac{3}{4} = \frac{5}{4}$$

>>> import fractions

>>> a = fractions.Fraction(1, 2)

>>> b = fractions.Fraction(3, 4)

>>> a + b

Fractions

MÓDULO fractions

Uma particularidade do tipo Fraction é que ele permite representar números muito maiores, quando comparado com o tipo float:

>>> 0.5 ** 1075

0.0

>>> fractions.Fraction(1, 2) ** 1075

Fraction(1, 40480450661462 ... 40480450661462)

Obs. Por outro lado, usar o tipo float em expressões é muito mais rápido do que o tipo Fraction.

ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I

Biblioteca padrão Python