Fondamenti di Automatica Note sull'analisi modale dei sistemi lineari tempo continuo

2.4 Anti-trasformata di Laplace

Definizione (Radici di un polinomio e molteplicità). Dato un polinomio a(s) nella variable complessa s, i valori $p_i \in \mathbb{C}$ per cui $a(p_i) = 0$ sono dette **radici**. Dato un polinomio $a(s) \neq 0$ ed una radice $p_i \in \mathbb{C}$, si dice che p_i ha **molteplicità** m_i se il polinomio a(s) può essere scritto come $a(s) = \tilde{a}(s)(s-p_i)^{m_i}$ dove $\tilde{a}(s)$ è un polinomio tale che $\tilde{a}(p_i) \neq 0$.

Definizione (Polinomi coprimi). Dati due polinomi a(s) e b(s), essi si dicono **coprimi** se non hanno radici comuni.

Consideriamo adesso una funzione razionale

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

dove a(s) e b(s) sono polinomi coprimi. Le radici p_i di a(s) sono dette **poli** di F(s). Supponiamo preliminarmente che tutte le radici di a(s) siano distinte, ovvero $p_i \neq p_\ell$ per tutti gli $i \neq \ell$. Allora vale il seguente risultato, noto come sviluppo in fratti semplici.

<u>Fatto 2.4</u> (Sviluppo in fratti semplici per funzioni razionali con radici distinte). Si consideri una funzione razionale strettamente propria

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_{n-1}s^{n-1} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$$

dove a(s) e b(s) sono polinomi. Siano p_1, \ldots, p_n le radici di a(s) e si assuma che queste radici siano distinte. Allora,

$$F(s) = \sum_{i=1}^{n} \frac{K_i}{s - p_i}$$

dove

$$K_i = \lim_{s \to p_i} (s - p_i) F(s)$$

è detto **residuo** associato al polo p_i . In particolare, $K_i = 0$ se e solo se p_i è una radice di b(s). La funzione f(t) tale che $F(s) = \mathcal{L}\{f(t)\}$ è data da

$$f(t) = \sum_{i=1}^{n} K_i e^{p_i t}$$

Esempio 2.5 Consideriamo la funzione

$$F(s) = \frac{s-2}{(s+1)(s-a)}, \quad a \neq -1$$

Possiamo allora decomporre F(s) come

$$F(s) = \frac{K_1}{s+1} + \frac{K_2}{s-a}$$

dove

$$K_1 = \lim_{s \to -1} (s+1)F(s) = \lim_{s \to -1} \frac{s-2}{s-a} = \frac{3}{a+1}, \quad K_2 = \lim_{s \to a} (s-a)F(s) = \lim_{s \to a} \frac{s-2}{s+1} = \frac{a-2}{a+1}$$

La corrispondente funzione nel tempo è data da

$$f(t) = K_1 e^{-t} + K_2 e^{at}$$

Consideriamo adesso il caso generale in cui i poli p_i possono avere molteplicità $m_i > 1$ e in cui l'elemento b_n può essere diverso da 0 (ovvero numeratore e denominatore possono avere lo stesso grado). Allora vale il seguente risultato generale.

<u>Fatto 2.5</u> (Decomposizione in fratti semplici - caso generale). Si consideri una funzione razionale F(s) = b(s)/a(s) con a(s) e b(s) coprimi. Siano p_i , i = 1, 2, ..., k, le radici di a(s) e si indichi con m_i la molteplicità della radice p_i . Allora F(s) ammette un'espansione in fratti nella forma

$$F(s) = K_0 + \sum_{i=1}^{k} \sum_{\ell=1}^{m_i} \frac{K_{i\ell}}{(s - p_i)^{\ell}}$$

dove

$$K_0 = b_n, \quad K_{i\ell} = \lim_{s \to p_i} \frac{1}{(m_i - \ell)!} \frac{d^{(m_i - \ell)}}{ds^{m_i - \ell}} [(s - p_i)^{m_i} F(s)]$$

sono detti **residui**. Inoltre,

$$f(t) = \mathcal{L}^{-1} \left\{ F(s) \right\} = K_0 \delta(t) + \sum_{i=1}^k \sum_{\ell=1}^{m_i} \frac{K_{i\ell}}{(\ell-1)!} t^{\ell-1} e^{p_i t}, \quad t \ge 0$$

Quindi, ad una radice p_i con molteplicità m_i sono associati i segnali

$$e^{p_i t}$$
, $t e^{p_i t}$, ..., $t^{m_i - 1} e^{p_i t}$

detti **modi** della funzione F(s).

Si ricorda che le radici di a(s) possono essere complesse coniugate. In questo caso, ad una radice $p_i = \sigma_i + j\omega_i$ di molteplicità m_i corrisponde anche una radice $p_r = \overline{p}_i = \sigma_i - j\omega_i$ di molteplicità m_i . Inoltre, indicando con $K_{i\ell} = \alpha_{i\ell} + j\beta_{i\ell}$ l' ℓ -esimo residuo associato a p_i con $\ell = 1, 2, ..., m_i$, allora l' ℓ -esimo residuo $K_{r\ell}$ associato a $p_r = \overline{p}_i$ soddisfa $K_{r\ell} = \alpha_{i\ell} - j\beta_{i\ell}$. Questi due residui si combinano in modo tale che

$$\mathcal{L}^{-1}\left\{\frac{K_{i\ell}}{(s-p_i)^{\ell}} + \frac{K_{r\ell}}{(s-p_r)^{\ell}}\right\} = \frac{1}{(\ell-1)!} \left(2\alpha_{i\ell} t^{\ell-1} e^{\sigma_i t} \cos(\omega_i t) - 2\beta_{i\ell} t^{\ell-1} e^{\sigma_i t} \sin(\omega_i t)\right)$$

Classificazione dei modi

Riportiamo qui di seguito l'andamento qualitativo dei modi in funzione di ℓ e Re $\{p_i\}$.

• Modi reali TC: $t^{\ell}e^{p_it}$.

• Modi complessi coniugati TC: $(t^{\ell}\cos(\omega_i t)e^{\sigma_i t}, t^{\ell}\sin(\omega_i t)e^{\sigma_i t})$ con $p_i = \sigma_i + j\omega_i$.

Dai grafici sopra riportati si vede subito che un modo $t^{\ell}e^{p_it}$ risultante **oscillante** se e solo se per il corrispondente polo $p_i = \sigma_i + j\omega_i$ si ha una parte immaginaria $\omega_i \neq 0$. I modi di evoluzione nel tempo possono essere inoltre classificati sulla base del loro comportamento nel limite per t tendente ad infinito. In particolare, un modo di evoluzione del tipo $t^{\ell}e^{p_it}$ si dice **convergente** se:

$$\lim_{t\to +\infty} t^\ell e^{p_i t} = 0$$

Un modo si dice **limitato** se:

$$\exists M > 0 : |t^{\ell} e^{p_i t}| < M \qquad \forall t > 0$$

Infine un modo si dice divergente se non è limitato.

Esaminando l'andamento nel tempo dei diversi modi, è immediato fare le seguenti considerazioni:

- Tutti i modi $t^{\ell}e^{p_it}$ associati a un polo con $\sigma_i = \text{Re}\{p_i\} < 0$ sono convergenti, indipendentemente da ℓ , in quanto l'esponenziale e^{σ_it} domina sulla potenza t^{ℓ} .
- Tutti i modi $t^{\ell}e^{p_it}$ associati a un polo con $\sigma_i=\mathrm{Re}\{p_i\}<0$ sono divergenti.
- Nel caso invece di modi associati a poli sull'asse immaginario, ovvero con $\sigma_i = \text{Re}\{p_i\} = 0$, dobbiamo distinguere due sottocasi:
 - per $\ell = 0$ si hanno modi limitati;
 - per $\ell > 0$ si hanno invece modi divergenti a causa della presenza della potenza t^{ℓ} .

Sulla base di queste considerazioni, possiamo osservare che per studiare il macro-comportamento di una funzione non è necessario calcolare i residui. È sufficiente calcolare le radici di a(s) e la corrispondente molteplicità.

Vale infatti il seguente risultato.

<u>Teorema 2.1</u> (Evoluzione dei modi) Si consideri una funzione razionale F(s) = b(s)/a(s) con a(s) e b(s) coprimi. Siano p_i , i = 1, 2, ..., k, le radici di a(s) e si indichi con m_i la molteplicità della radice p_i . Sia $f(t) = \mathcal{L}^{-1} \{F(s)\}$. Allora:

- a) f(t) è **convergente** ($\lim_{t\to\infty} f(t) = 0$) se e solo se tutti i modi di F(s) sono convergenti, ovvero se e solo se tutte le radici di a(s) hanno parte reale < 0.
- b) f(t) è **limitata** ($\exists M$ tale che $|f(t)| \leq M$ per tutti i $t \geq 0$) se e solo se tutti i modi di F(s) sono limitati, ovvero se e solo se tutte le radici di a(s) hanno parte reale ≤ 0 , e, nel caso tale parte reale sia nulla, la molteplicità è 1.
- c) f(t) è **divergente** $(\lim_{t\to\infty} |f(t)| = \infty)$ se e solo se esiste un modo di F(s) che diverge, ovvero se e solo se esiste almeno una radice di a(s) con parte reale > 0, e/o, almeno un radice con parte reale = 0 e molteplicità > 1.

Osserviamo per concludere che nel caso b) non necessariamente f(t) ammette limite per t tendente finito. In particolare il limite non esiste ogni volta che esistono modi oscillanti persistenti, ovvero associati a poli con $\sigma_i = \text{Re}\{p_i\} \geq 0$ e $\omega_i = \text{Im}\{p_i\} \neq 0$. Tuttavia, se non ci sono modi oscillanti persistenti, vale il seguente risultato (anche noto come Teorema del valore finale).

<u>Fatto 2.6</u> (Teorema del valore finale). Si consideri una funzione razionale F(s) = b(s)/a(s) con a(s) e b(s) coprimi. Se tutti i poli di F(s) hanno parte reale < 0 tranne al più un polo in 0 con molteplicità 1, allora vale

$$\lim_{t \to \infty} f(t) = K$$

con K il residuo del polo in zero, calcolato come $K = \lim_{s\to 0} sF(s)$.

Dimostrazione. Posso prendere, senza perdita di generalità, come primo polo quello in 0, ovvero porre $p_1 = 0$. Nelle ipotesi fatte, la scomposizione in fratti semplici della F(s) assume la forma

$$F(s) = K_0 + \frac{K_1}{s} + \sum_{i=2}^{k} \sum_{\ell=1}^{m_i} \frac{K_{i\ell}}{(s - p_i)^{\ell}}$$

dove in particolare $K_1 = \lim_{s\to 0} sF(s)$. Di conseguenza

$$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\} = K_0\delta(t) + K_1 \, \mathbf{1}(t) + \sum_{i=2}^{k} \sum_{\ell=1}^{m_i} \frac{K_{i\ell}}{(\ell-1)!} \, t^{\ell-1} \, e^{p_i t} \, \mathbf{1}(t), \quad t \ge 0$$

Nel limite per t tendente ad infinito tutti i modi nella sommatoria convergono a 0 in quanto sono associati, per ipotesi, a poli con parte reale < 0. Di conseguenza si ha $\lim_{t\to\infty} f(t) = K_1$ con K_1 il residuo associato al polo $p_1 = 0$.

L'importanza di questo tipo di analisi risiede nel fatto che, nel dominio di Laplace, la soluzione per sistemi lineari è data da funzioni razionali. Possiamo quindi studiare il comportamento di una sistema lineare ricorrendo al Teorema 2.1.

2.5 Analisi modale

Consideriamo ora il sistema LTI TC

$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases} \quad t \ge 0$$

Come visto, l'evoluzione libera dello stato $x_{\ell}(t) = e^{At}x(0)$ nel dominio di Laplace assume la forma

$$X_{\ell}(s) = (sI - A)^{-1}x(0) = \frac{\text{Adj}(sI - A)}{\varphi(s)}x(0)$$

La matrice $(sI-A)^{-1}$ ha come elementi funzioni razionali strettamente proprie aventi al denominatore il polinomio caratteristico del sistema $\varphi(s) = \det(sI-A)$. Tuttavia, il rapporto tra $\mathrm{Adj}(sI-A)$ e $\varphi(s)$ può dare luogo a cancellazioni.

Esempio 2.6 Si consideri un sistema LTI TC con

$$A = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] .$$

In questo caso si ha

$$sI - A = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$
, $Adj(sI - A) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$, $\varphi(s) = s^2$

Il polinomio caratteristico $\varphi(s)$ presenta una radice in $\lambda = 0$ con molteplicità 2. Tuttavia, questa molteplicità viene perduta quando si fa il rapporto tra $\mathrm{Adj}(sI - A)(s)$ e $\varphi(s)$. Vale infatti,

$$(sI - A)^{-1} = \frac{1}{s} \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Quando avvengono cancellazioni, alla matrice A è possibile associare un altro polinomio m(s), detto **polinomio minimo** del sistema, ottenuto come segue:

- a. si calcolano $\mathrm{Adj}(sI A)$ e $\varphi(s)$;
- b. si calcola $(sI A)^{-1} = \text{Adj}(sI A)/\varphi(s)$ effettuando tutte le semplificazioni;
- c. si calcola m(s) come minimo comune multiplo dei denominatori degli elementi di $(sI A)^{-1}$.

Questo porta alla semplificazione

$$(sI - A)^{-1} = \frac{\operatorname{Adj}(sI - A)}{\varphi(s)} = \frac{Q(s)}{m(s)}$$

con Q(s) matrice di polinomi.

Esempio 2.6 (continua) Nell'esempio visto in precedenza si ha m(s) = s. Quindi,

$$Q(s) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad m(s) = s$$

Il polinomio m(s) si chiama **polinomio minimo** proprio in virtù del fatto che non è possibile fare ulteriori semplificazioni. Il seguente risultato mette in relazione il polinomio minimo m(s) e quello caratteristico $\varphi(s)$.

6

<u>Fatto 2.7</u> Il polinomio minimo m(s) contiene come radici tutti gli autovalori del sistema, ovvero tutte le radici del polinomio caratteristico $\varphi(s)$, eventualmente con molteplicità inferiore. In particolare,

- sia λ_i un generico autovalore del sistema;
- sia μ_i la sua molteplicità come radice del polinomio caratteristico $\varphi(s)$ (μ_i à detta molteplicità algebrica);
- sia m_i la sua molteplicità come radice del polinomio minimo m(s)

Allora vale la seguente relazione

$$1 \le m_i \le \mu_i$$

Dimostrazione. La relazione $m_i \leq \mu_i$ è ovvia perché semplificando non posso aumentare la molteplicità! La relazione $1 \leq m_i$ equivale a mostrare che

$$\varphi(\lambda_i) = 0 \implies m(\lambda_i) = 0$$

ovvero che un autovalore λ_i non può sparire completamente nell'espressione $(sI - A)^{-1}$. Per vedere questo, ricordiamo che per ogni autovalore λ_i esiste almeno un vettore v_i (detto autovettore) tale per cui

$$A v_i = \lambda_i v_i$$

Di conseguenza, cambiando segno e aggiungendo ad ambo i membri $s v_i$ vale,

$$s v_i - A v_i = s v_i - \lambda_i v_i$$

che può essere riscritto come

$$(sI - A)v_i = (s - \lambda_i)v_i$$

Questa equazione implica a sua volta

$$\frac{1}{s - \lambda_i} v_i = (s I - A)^{-1} v_i$$

Poiché v_i è un vettore costante, questo implica necessariamente che il termine $s - \lambda_i$ deve comparire al denominatore di almeno uno degli elementi di $(sI - A)^{-1}$.

Riassumendo, il **Fatto 2.7** dice che partendo dagli autovalori di un sistema, questi autovalori possono perdere molteplicità ma non possono sparire completamente nell'espressione $(sI - A)^{-1}$. Ricordando ora che per la risposta libera vale

$$x_{\ell}(t) = e^{At}x(0) = \mathcal{L}^{-1}\left\{ (sI - A)^{-1} \right\} x(0),$$

abbiamo che ciascun elemento della matrice e^{At} può essere ottenuto anti-trasformando il corrispondente elemento della matrice $(sI-A)^{-1} = Q(s)/m(s)$. Quindi conoscendo il polinomio minimo m(s), ovvero gli autovalori del sistema λ_i e le loro molteplicità geometriche m_i , possiamo immediatamente sapere come sarà l'evoluzione nel tempo di e^{At} .

<u>Teorema 2.2</u> (Modi naturali). Dato un sistema LTI TC, siano $\lambda_1, \ldots, \lambda_k$ gli autovalori del sistema e siano m_1, \ldots, m_k le corrispondenti molteplicità nel polinomio minimo m(s). Allora e^{At} è una matrice avente come elementi opportune combinazioni lineari di $e^{\lambda_i t}$, $te^{\lambda_i t}$, ..., $t^{m_i-1}e^{\lambda_i t}$ per $i=1,\ldots,k$. Tale segnali sono detti **modi naturali del sistema**.

Di conseguenza $x_{\ell}(t) = e^{At}x(0)$ e $y_{\ell}(t) = C e^{At}x(0)$ evolvono secondo una opportuna combinazione dei modi naturali del sistema (al variare delle condizioni iniziali).

Concludiamo con alcune considerazioni sul **Teorema 2.2**.

- Notiamo che, come sempre, quando ho un autovalore complesso $\lambda_i = \sigma_i + j\omega_i$ anche il suo complesso coniugato $\overline{\lambda}_i = \sigma_i j\omega_i$ è autovalore con la stessa molteplicità m_i . Quindi i due modi $t^{\ell}e^{\lambda_i t}$ e $t^{\ell}e^{\overline{\lambda}_i t}$ sono sempre presenti in coppia e danno luogo ai due modi reali $t^{\ell}\cos(\omega_i t)e^{\sigma_i t}$ e $t^{\ell}\sin(\omega_i t)e^{\sigma_i t}$.
- Ricordando che nel dominio di Laplace la soluzione assume la forma

$$\begin{cases} X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s) \\ Y(s) = C(sI - A)^{-1}x(0) + \left[C(sI - A)^{-1}B + D\right]U(s) \end{cases}$$
(1)

si possono allora trarre le seguenti conclusioni:

1. Se i modi naturali sono tutti convergenti, la risposta libera nello stato e nell'uscita converge a zero per ogni condizione iniziale, in accordo a

$$\begin{cases} X_{\ell}(s) = (sI - A)^{-1}x(0) \\ Y_{\ell}(s) = C(sI - A)^{-1}x(0) \end{cases}$$

- 2. Se i modi naturali sono tutti limitati, la risposta libera nello stato e nell'uscita si mantiene limitata per ogni condizione iniziale.
- Sfruttando la dimostrazione del **Fatto 2.7**, abbiamo che, dato un autovettore v_i associato all'autovalore λ_i , vale

$$(sI - A)^{-1}v_i = \frac{1}{s - \lambda_i}v_i$$

e di conseguenza, anti-trasformando,

$$e^{At}v_i = e^{\lambda_i t}v_i$$

Quindi se noi prendiamo come condizione iniziale x(0) un autovettore v_i la corrispondente evoluzione libera assume la forma

$$x_{\ell}(t) = e^{At}x(0) = e^{At}v_i = e^{\lambda_i t}v_i$$

L'interpretazione è che la condizione iniziale $x(0) = v_i$ eccita solo il modo naturale $e^{\lambda_i t}$, e il sistema evolve secondo tale modo naturale nella direzione dell'autovettore.