

Yann-Edwin Keta

in collaboration with E. Fodor, F. van Wijland, M.E. Cates, and R.L. Jack

DAMTP StatPhys & SoftMat seminars 02/03/2021

Phys. Rev. E **103**, 022603 (2021) **O** yketa/DAMTP_MSC_2019_Wiki

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Biased trajectories and cloning algorithm
- Oynamical phase transitions for active Brownian particles
- 4 Collective motion mechanism
 - CM transition point
 - 2 run-and-tumble particles on a ring
 - Hydrodynamic theory
- 5 Conclusion

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Biased trajectories and cloning algorithm
- Oynamical phase transitions for active Brownian particles
- 4 Collective motion mechanism
 - CM transition point
 - 2 run-and-tumble particles on a ring
 - Hydrodynamic theory
- Conclusion

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance.

L. Berthier and J. Kurchan, arXiv preprint arXiv:1906.04039 (2019).

M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219-244 (2015).

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance. We can identify 3 general classes:

Systems relaxing towards equilibrium.

Example

Thermal system adapting to its thermostat, glasses.

L. Berthier and J. Kurchan, arXiv preprint arXiv:1906.04039 (2019).

M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219-244 (2015).

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance. We can identify 3 general classes:

- Systems relaxing towards equilibrium.
- Systems with boundary conditions imposing steady currents.

Example

Sheared liquid, metal rod between two thermostats.

L. Berthier and J. Kurchan, arXiv preprint arXiv:1906.04039 (2019).

M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance. We can identify 3 general classes:

- Systems relaxing towards equilibrium.
- Systems with boundary conditions imposing steady currents.
- Active matter.

Definition

System composed of self-driven units, *active particles*, each capable of converting stored or ambient free energy into systematic movement.

M. C. Marchetti et al., Reviews of Modern Physics 85, 1143 (2013).

Example

Cell tissues, swarms of bacteria, schools of fish, flocks of birds.

L. Berthier and J. Kurchan, arXiv preprint arXiv:1906.04039 (2019).

M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).

Non-equilibrium phenomenon in active matter: swarming (Vicsek)

$$\dot{\theta}_i = rac{1}{ au_p}(arphi_i - heta_i) + \xi_i \ \ (1)$$

T. Vicsek et al., Physical Review Letters 75, 1226 (1995).

B. Szabo et al., Physical Review E 74, 061908 (2006).

Non-equilibrium phenomenon in active matter: MIPS

 $t = 0.00000e + 00. \Delta t = 5.00000e + 02$ 0.6 0.4 0.2 0.0 -20 -20

20 40 60

-0.4

N = 2.00e + 03, $\phi = 0.50$, $\tilde{v} = 1.00e - 02$, $\tilde{v}_c = 5.00e - 06$, L = 1.128e + 02

$$\dot{\theta}_i = \sqrt{2\tau_p^{-1}}\xi_i \quad (2)$$

$$\langle \boldsymbol{u}(\theta_i(0)) \cdot \boldsymbol{u}(\theta_i(t)) \rangle = e^{-t/\tau_p} \quad (3)$$

M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015). Y.-E. Keta and J. Rottler, EPL (Europhysics Letters) 125, 58004 (2019).

Yann-Edwin Keta Large deviations of active particles (

-40 -20

$$\dot{\mathbf{r}}_i = -\mu \nabla_i U(\{\mathbf{r}_j\}) + v_0 \mathbf{u}(\theta_i) + \sqrt{2D} \boldsymbol{\eta}_i \tag{4}$$

$$\dot{\theta}_i = \sqrt{2D_r}\xi_i \tag{5}$$

T. Nemoto et al., Physical Review E 99, 022605 (2019).

G. S. Redner et al., Physical Review Letters 110, 055701 (2013).

$$\dot{\boldsymbol{r}}_i = -\mu \nabla_i U(\{\boldsymbol{r}_j\}) + v_0 \boldsymbol{u}(\theta_i) + \sqrt{2D} \boldsymbol{\eta}_i$$
 (4)

$$\dot{\theta}_i = \sqrt{2D_r}\xi_i \tag{5}$$

7 control parameters: N, ϕ , σ , μ , v_0 , D, D_r .

T. Nemoto et al., Physical Review E 99, 022605 (2019).

G. S. Redner et al., Physical Review Letters 110, 055701 (2013).

$$\dot{\mathbf{r}}_i = -\mu \nabla_i U(\{\mathbf{r}_j\}) + \mathbf{u}(\theta_i) + \sqrt{2D} \boldsymbol{\eta}_i \tag{4}$$

$$\dot{\theta}_i = \sqrt{2D_r}\xi_i \tag{5}$$

5 control parameters: N, ϕ , μ , D, D_r .

 \rightarrow Units of space and time: $\sigma = 1$, $\sigma/v_0 = 1$.

T. Nemoto et al., Physical Review E 99, 022605 (2019).

G. S. Redner et al., Physical Review Letters 110, 055701 (2013).

$$\dot{\mathbf{r}}_i = -\mu \nabla_i U(\{\mathbf{r}_j\}) + \mathbf{u}(\theta_i) + \sqrt{2D} \boldsymbol{\eta}_i \tag{4}$$

$$\dot{\theta}_i = \sqrt{2\tilde{l}_p^{-1}}\xi_i \tag{5}$$

5 control parameters: N, ϕ , μ , D, $\tilde{l}_{\rm p}=D_r^{-1}$.

 \rightarrow Units of space and time: $\sigma = 1$, $\sigma/v_0 = 1$.

T. Nemoto et al., Physical Review E 99, 022605 (2019).

G. S. Redner et al., Physical Review Letters 110, 055701 (2013).

$$\dot{\boldsymbol{r}}_{i} = -\mu \nabla_{i} U(\{\boldsymbol{r}_{j}\}) + \boldsymbol{u}(\theta_{i}) + \sqrt{\frac{2}{3}} \tilde{l}_{p}^{-1} \boldsymbol{\eta}_{i}$$
 (4)

$$\dot{\theta}_i = \sqrt{2\tilde{l}_{\rm p}^{-1}\xi_i} \tag{5}$$

4 control parameters: N, ϕ , μ , $\tilde{l}_{\rm p} = D_r^{-1}$.

- \rightarrow Units of space and time: $\sigma = 1$, $\sigma/v_0 = 1$.
- ightarrow Stokes-Einstein relation: $D=\frac{1}{3}D_r=\frac{1}{3}\tilde{l}_{\rm p}^{-1}$.

T. Nemoto et al., Physical Review E 99, 022605 (2019).

G. S. Redner et al., Physical Review Letters 110, 055701 (2013).

$$\dot{\boldsymbol{r}}_{i} = -\frac{1}{3}\tilde{l}_{p}^{-1}\nabla_{i}U(\{\boldsymbol{r}_{j}\}) + \boldsymbol{u}(\theta_{i}) + \sqrt{\frac{2}{3}\tilde{l}_{p}^{-1}}\boldsymbol{\eta}_{i}$$
(4)

$$\dot{\theta}_i = \sqrt{2\tilde{l}_{\rm p}^{-1}}\xi_i \tag{5}$$

3 control parameters: N, ϕ , $\tilde{l}_{\rm p}=D_r^{-1}$.

- \rightarrow Units of space and time: $\sigma = 1$, $\sigma/v_0 = 1$.
- \rightarrow Stokes-Einstein relation: $D = \frac{1}{3}D_r = \frac{1}{3}\tilde{l}_{\rm p}^{-1}$.
- \rightarrow Scaling of energy: $\mu = D$.

T. Nemoto et al., Physical Review E 99, 022605 (2019).

G. S. Redner et al., Physical Review Letters 110, 055701 (2013).

EOM
$$\dot{\mathbf{r}}_i = v_0 \mathbf{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (6)

EOM
$$\dot{\mathbf{r}}_i = v_0 \mathbf{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (6)

EOM
$$\dot{\boldsymbol{r}}_{i} = v_{0}\boldsymbol{u}(\theta_{i}) - D\nabla_{i}U + \sqrt{2D}\boldsymbol{\eta}_{i}$$
 (6)
dissipated power $\dot{\mathcal{W}}_{i} = \sum_{i=1}^{N} \dot{\boldsymbol{r}}_{i} \circ \frac{1}{D}(\dot{\boldsymbol{r}}_{i} - \sqrt{2D}\boldsymbol{\eta}_{i})$ (7)

EOM
$$\dot{\boldsymbol{r}}_i = v_0 \boldsymbol{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (6)

dissipated power

$$\dot{\mathcal{W}}_i = \sum_{i=1}^{N} \dot{\boldsymbol{r}}_i \circ \frac{1}{D} (\dot{\boldsymbol{r}}_i - \sqrt{2D} \boldsymbol{\eta}_i)$$
 (7)

$$\frac{1}{\tau} \int_0^{\tau} \dot{\mathcal{W}}_i(t) \, \mathrm{d}t = \frac{N v_0^2}{D} w_{\tau} + \frac{1}{\tau} [U(\tau) - U(0)] \qquad (8)$$

EOM
$$\dot{\boldsymbol{r}}_i = v_0 \boldsymbol{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (6)

dissipated power

$$\dot{\mathcal{W}}_i = \sum_{i=1}^N \dot{\boldsymbol{r}}_i \circ \frac{1}{D} (\dot{\boldsymbol{r}}_i - \sqrt{2D}\boldsymbol{\eta}_i)$$
 (7)

$$\frac{1}{\tau} \int_0^\tau \dot{\mathcal{W}}_i(t) \, \mathrm{d}t = \frac{N v_0^2}{D} w_\tau + \frac{1}{\tau} [U(\tau) - U(0)] \tag{8}$$

EOM
$$\dot{\boldsymbol{r}}_i = v_0 \boldsymbol{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (6)

dissipated power $\dot{\mathcal{W}}_i = \sum_{i=1}^{N} \dot{\boldsymbol{r}}_i \circ \frac{1}{D} (\dot{\boldsymbol{r}}_i - \sqrt{2D} \boldsymbol{\eta}_i)$ (7)

$$\frac{1}{\tau} \int_0^\tau \dot{\mathcal{W}}_i(t) \, \mathrm{d}t = \frac{N v_0^2}{D} w_\tau + \frac{1}{\tau} [U(\tau) - U(0)] \tag{8}$$

active work $w_{\tau} = \frac{1}{v_0 N \tau} \sum_{i=1}^{N} \int_{0}^{\tau} \mathbf{u}(\theta_i) \circ d\mathbf{r}_i$ (9)

EOM
$$\dot{\mathbf{r}}_i = \mathbf{v}_0 \mathbf{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (6)

$$\dot{\mathcal{W}}_i = \sum_{i=1}^N \dot{\mathbf{r}}_i \circ \frac{1}{D} (\dot{\mathbf{r}}_i - \sqrt{2D} \boldsymbol{\eta}_i) \tag{7}$$

$$\frac{1}{\tau} \int_0^\tau \dot{\mathcal{W}}_i(t) \, \mathrm{d}t = \frac{N v_0^2}{D} w_\tau + \frac{1}{\tau} [U(\tau) - U(0)] \tag{8}$$

$$w_{\tau} = \frac{1}{v_0 N \tau} \sum_{i=1}^{N} \int_0^{\tau} \boldsymbol{u}(\theta_i) \circ \mathrm{d}\boldsymbol{r}_i \tag{9}$$

$$\mathbf{w}_{\tau} = 1 + \mathbf{w}_{f,\tau} + \mathbf{w}_{\eta,\tau} \tag{10}$$

EOM
$$\dot{\mathbf{r}}_i = \mathbf{v}_0 \mathbf{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (6)

dissipated power
$$\dot{\mathcal{W}}$$

$$\dot{\mathcal{W}}_i = \sum_{i=1}^N \dot{\boldsymbol{r}}_i \circ \frac{1}{D} (\dot{\boldsymbol{r}}_i - \sqrt{2D}\boldsymbol{\eta}_i) \tag{7}$$

$$\frac{1}{\tau} \int_0^\tau \dot{\mathcal{W}}_i(t) \, \mathrm{d}t = \frac{N v_0^2}{D} w_\tau + \frac{1}{\tau} [U(\tau) - U(0)] \tag{8}$$

$$w_{\tau} = \frac{1}{v_0 N \tau} \sum_{i=1}^{N} \int_0^{\tau} \boldsymbol{u}(\theta_i) \circ \mathrm{d}\boldsymbol{r}_i \tag{9}$$

$$\mathbf{w}_{\tau} = 1 + \mathbf{w}_{f,\tau} + \mathbf{w}_{f,\tau} \tag{10}$$

$$\dot{\mathbf{r}}_i = v_0 \mathbf{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$

dissipated power

$$\dot{\mathcal{W}}_i = \sum_{i=1}^N \dot{m{r}}_i \circ rac{1}{D} (\dot{m{r}}_i - \sqrt{2D}m{\eta}_i)$$

$$\frac{1}{\tau} \int_0^\tau \dot{\mathcal{W}}_i(t) \, \mathrm{d}t = \frac{N v_0^2}{D} w_\tau + \frac{1}{\tau} [U(\tau) - U(0)] \qquad (8)$$

active work

$$w_{\tau} = \frac{1}{v_0 N \tau} \sum_{i=1}^{N} \int_0^{\tau} \boldsymbol{u}(\theta_i) \circ \mathrm{d}\boldsymbol{r}_i \tag{9}$$

$$\mathbf{w}_{\tau} = 1 + \mathbf{w}_{f,\tau} + \mathbf{w}_{f,\tau} \tag{10}$$

Flocking

A A A

$$\mathbf{u}(\theta_i) \cdot \nabla_i U = 0 \Rightarrow \langle w_\tau \rangle = 1$$

Jamming

$$\dot{\mathbf{r}}_i = 0 \Rightarrow \langle w_\tau \rangle = 0$$

(6)

(7)

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Biased trajectories and cloning algorithm
- Oynamical phase transitions for active Brownian particles
- 4 Collective motion mechanism
 - CM transition point
 - 2 run-and-tumble particles on a ring
 - Hydrodynamic theory
- Conclusion

$$\langle X_i \rangle = \mu, \ \langle (X_i - \mu)^2 \rangle = \sigma^2$$
 (11)

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (12)

$$\langle X_i \rangle = \mu, \ \langle (X_i - \mu)^2 \rangle = \sigma^2$$
 (11)

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (12)

Law of large numbers

$$P\left(\lim_{n\to\infty}R_n=\mu\right)=1\tag{13}$$

$$\langle X_i \rangle = \mu, \ \langle (X_i - \mu)^2 \rangle = \sigma^2$$
 (11)

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (12)

Central limit theorem

$$P(R_n) \underset{n \to \infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \tag{13}$$

$$\langle X_i \rangle = \mu, \ \langle (X_i - \mu)^2 \rangle = \sigma^2$$
 (11)

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (12)

Large deviation principle

$$R_n$$
 satisfies a LDP $\Leftrightarrow -\log P(R_n = r) \sim n/(r)$ (13)

$$I \equiv \text{ rate function of } R_n \Leftrightarrow P(R_n = r) \times \exp(-nI(r))$$
 (14)

LDP example: mean of random bits

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (15)

LDP example: mean of random bits

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (15)

$$\lim_{n \to \infty} -\frac{1}{n} \log P(R_n = r) = \log 2 + r \log r + (1 - r) \log(1 - r) = I(r)$$
 (16)

$$P(R_n = r) \approx \exp(-nI(r)) \tag{17}$$

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (15)

$$\lim_{n \to \infty} -\frac{1}{n} \log P(R_n = r) = \log 2 + r \log r + (1 - r) \log(1 - r) = I(r) \quad (16)$$

$$P(R_n = r) \approx \exp(-nI(r)) \tag{17}$$

sample average
$$R_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 (15)

$$\lim_{n \to \infty} -\frac{1}{n} \log P(R_n = r) = \log 2 + r \log r + (1 - r) \log(1 - r) = I(r) \quad (16)$$

$$P(R_n = r) \approx \exp(-nI(r)) \tag{17}$$

Scaled cumulant generating function

SCGF
$$\psi(s) = \lim_{n \to \infty} \frac{1}{n} \log \langle \exp(-snR_n) \rangle$$
 (18)

Scaled cumulant generating function

SCGF
$$\psi(s) = \lim_{n \to \infty} \frac{1}{n} \log \langle \exp(-snR_n) \rangle$$
 (18)

Gärtner-Ellis theorem

$$\psi$$
 is differentiable $\Rightarrow I(r) = \sup_{s} \{-sr - \psi(s)\}$ (19)

H. Touchette, Physics Reports 478, 1-69 (2009).

Analogy with equilibrium statistical mechanics: free energy

mean energy per particle for n particles E_n

Boltzmann distribution
$$P_{\beta}(\omega) = \frac{e^{-\beta n E_{n}(\omega)}}{Z_{n}(\beta)}$$
 (20)

Analogy with equilibrium statistical mechanics: free energy

mean energy per particle for n particles E_n

Boltzmann distribution
$$P_{\beta}(\omega) = \frac{e^{-\beta n E_n(\omega)}}{Z_n(\beta)}$$
 (20)

SCGF
$$\psi_{\beta}(\Delta\beta) = \lim_{n \to \infty} \frac{1}{n} \log \int e^{-\Delta\beta n E_n(\omega)} P_{\beta}(\omega) d\omega$$
 (21)

mean energy per particle for n particles E_n

Boltzmann distribution
$$P_{\beta}(\omega) = \frac{e^{-\beta n E_n(\omega)}}{Z_n(\beta)}$$
 (20)

SCGF
$$\psi_{\beta}(\Delta\beta) = \lim_{n \to \infty} \frac{1}{n} \log \int e^{-\Delta\beta n E_{n}(\omega)} P_{\beta}(\omega) d\omega$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \frac{Z_{n}(\beta + \Delta\beta)}{Z_{n}(\beta)}$$

$$= \beta F(\beta) - (\beta + \Delta\beta)F(\beta + \Delta\beta)$$
(21)

free energy density
$$\beta F(\beta) = -\lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta)$$
 (22)

Analogy with equilibrium statistical mechanics: entropy

$$\psi_{\beta}$$
 is differentiable $\xrightarrow{\text{G\"{a}rtner-Ellis}} P_{\beta}(E_n) \times \exp(-nI_{\beta}(E_n))$ (23)

Analogy with equilibrium statistical mechanics: entropy

$$\psi_{\beta}$$
 is differentiable \Longrightarrow $P_{\beta}(E_n) \simeq \exp(-nl_{\beta}(E_n))$ (23)

$$P_{\beta}(E_{n}) \approx \exp(n(S(E_{n}) - \beta E_{n} + \beta F(\beta)))$$

$$= \text{number of states}$$

Analogy with equilibrium statistical mechanics: entropy

$$\psi_{\beta}$$
 is differentiable \Longrightarrow $P_{\beta}(E_n) \simeq \exp(-nI_{\beta}(E_n))$ (23)

$$P_{\beta}(E_{n}) \approx \exp(n(S(E_{n}) - \beta E_{n} + \beta F(\beta)))$$

$$= \text{entropy}$$

$$\equiv \text{number of states}$$

$$partition$$

$$\text{function}$$

$$\text{function}$$

$$\text{(24)}$$

$$I_{\beta}(E_{n}) = -S(E_{n}) + \beta E_{n} - \beta F(\beta)$$
 (25)

$$\psi_{\beta}$$
 is differentiable \Longrightarrow $P_{\beta}(E_n) \simeq \exp(-nl_{\beta}(E_n))$ (23)

$$P_{\beta}(E_{n}) \approx \exp(n(S(E_{n}) - \beta E_{n} + \beta F(\beta)))$$

$$= \text{number of states}$$

$$\text{partition function}$$

$$\text{partition function}$$

$$\text{partition}$$

$$I_{\beta}(E_{n}) = -S(E_{n}) + \beta E_{n} - \beta F(\beta)$$
 (25)

$$I_{\beta}(E_n) = 0 \Leftrightarrow F(\beta) = E_n - \frac{1}{\beta}S(E_n)$$
 (26)

Application to trajectories: dynamical phase transitions

d-dimensional system of size N represented by $\{X_1(t), \dots, X_N(t)\}$

$$R_{N\tau} = \frac{1}{N\tau} \int_0^{\tau} \sum_{i=1}^{N} f(\boldsymbol{X}_i(t)) dt$$
 (27)

d-dimensional system of size N represented by $\{X_1(t), \dots, X_N(t)\}$

$$R_{N\tau} = \frac{1}{N\tau} \int_0^{\tau} \sum_{i=1}^{N} f(\boldsymbol{X}_i(t)) dt$$
 (27)

$$I(r) = \lim_{\tau \to \infty} -\frac{1}{N\tau} \log P(R_{N\tau} = r), \ \psi(s) = \lim_{\tau \to \infty} \frac{1}{N\tau} \log \left\langle e^{-sN\tau R_{N\tau}} \right\rangle$$
 (28)

d-dimensional system of size N represented by $\{X_1(t), \dots, X_N(t)\}$

$$R_{N\tau} = \frac{1}{N\tau} \int_0^{\tau} \sum_{i=1}^{N} f(\boldsymbol{X}_i(t)) dt$$
 (27)

$$I(r) = \lim_{\tau \to \infty} -\frac{1}{N\tau} \log P(R_{N\tau} = r), \ \psi(s) = \lim_{\tau \to \infty} \frac{1}{N\tau} \log \left\langle e^{-sN\tau R_{N\tau}} \right\rangle$$
 (28)

Quantity	Equilibrium counterpart	
$\{\boldsymbol{X}_i(t)\}$	ω	Microstate in $(d+1)$ -dim.
$R_{N au}$	E_n	Mean energy
S	Δeta	Inverse temperature
ψ	$\beta F(\beta) - (\beta + \Delta \beta) F(\beta + \Delta \beta)$	Free energy
1	$-S(E_n) + \beta E_n - \beta F(\beta)$	Entropy

equilibrium canonical ensemble o biased ensemble of trajectories

$$P_s[\{\boldsymbol{X}_i(t)\}] \propto P_0[\{\boldsymbol{X}_i(t)\}] e^{-sN\tau R_{N\tau}}$$
(29)

$$\langle \mathcal{A} \rangle_{s} = \frac{\langle \mathcal{A}e^{-s \, N \, \tau \, R_{N\tau}} \rangle}{\langle e^{-s \, N \, \tau \, R_{N\tau}} \rangle} \tag{30}$$

R. L. Jack, The European Physical Journal B 93, 1-22 (2020).

T. Nemoto et al., Physical Review E 93, 062123 (2016).

equilibrium canonical ensemble \rightarrow biased ensemble of trajectories

$$P_s[\{\boldsymbol{X}_i(t)\}] \propto P_0[\{\boldsymbol{X}_i(t)\}] e^{-sN\tau R_{N\tau}}$$
(29)

$$\langle \mathcal{A} \rangle_{s} = \frac{\langle \mathcal{A} e^{-s \, N \, \tau \, R_{N\tau}} \rangle}{\langle e^{-s \, N \, \tau \, R_{N\tau}} \rangle} \tag{30}$$

$$\psi(s) = \lim_{\tau \to \infty} \frac{1}{\tau} \log \left\langle e^{s \int_0^{\tau} x(t)(1+x(t)) dt} \right\rangle$$
 (31)

R. L. Jack, The European Physical Journal B 93, 1-22 (2020).

T. Nemoto et al., Physical Review E 93, 062123 (2016).

29.6

29.8

30.0

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Biased trajectories and cloning algorithm
- Oynamical phase transitions for active Brownian particles
- 4 Collective motion mechanism
 - CM transition point
 - 2 run-and-tumble particles on a ring
 - Hydrodynamic theory
- Conclusion

How does the active work control emerging behaviours? Large deviations of active particles (PRE 103, 022603 (2021)) How does the active work control emerging behaviours?

① Cloning algoritm \Rightarrow trajectories biased with respect to w_{τ} .

How does the active work control emerging behaviours?

- **①** Cloning algoritm \Rightarrow trajectories biased with respect to w_{τ} .
- **2** Singularities in ψ .

How does the active work control emerging behaviours?

- **①** Cloning algoritm \Rightarrow trajectories biased with respect to w_{τ} .
- **2** Singularities in ψ .
- Oescription of qualitative changes at dynamical transition.

Unbiased behaviour

T. Nemoto et al., Physical Review E 99, 022605 (2019).

 $CM \equiv collective motion$, $PSA \equiv phase-separated arrest$

T. Nemoto et al., Physical Review E 99, 022605 (2019).

Singularities in ψ

$$\langle w_{\tau} \rangle_{s} = w(s) = -\psi'(s)$$
 (32)

$$-w'(s) = \psi''(s) = \lim_{\tau \to \infty} N\tau \operatorname{Var}(w_{\tau})_s$$

(33)

T. Nemoto et al., Physical Review E 99, 022605 (2019).

polarisation
$$\hat{\nu} = \left| \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{u}(\theta_i) \right|, \ \bar{\nu}_{\tau} = \frac{1}{\tau} \int_{0}^{\tau} \hat{\nu}(t) \, \mathrm{d}t$$
 (34)

$$\langle \bar{\nu}_{\tau} \rangle = \langle \bar{\nu}_{\tau} \rangle_{s=0} = \propto N^{-1/2}$$
 (35)

T. Nemoto et al., Physical Review E 99, 022605 (2019).

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Biased trajectories and cloning algorithm
- 3 Dynamical phase transitions for active Brownian particles
- Collective motion mechanism
 - CM transition point
 - 2 run-and-tumble particles on a ring
 - Hydrodynamic theory
- Conclusion

• Location s^* of the transition.

$$s* \neq 0 \Rightarrow I \neq 0 \tag{36}$$

• Location s^* of the transition.

$$s* \neq 0 \Rightarrow I \neq 0 \tag{36}$$

Analytical illustration of collective motion.

• Location s^* of the transition.

$$s* \neq 0 \Rightarrow I \neq 0 \tag{36}$$

- Analytical illustration of collective motion.
- Top-down hydrodynamic description.

CM transition point

$$w^{\text{free}}(s) = 1 - \frac{2sD}{v_0^2}$$

$$s^{\text{con}} = s \left(1 - \frac{2sD}{v_0^2} \right)$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

Y.-E. Keta et al., Physical Review E 103, 022603 (2021).

Run-and-tumble particles on a ring

$$\alpha_i \in \{-1, +1\} \tag{40}$$

$$I = \tau_p(\alpha_i \to -\alpha_i)v_0 \tag{41}$$

A. Slowman et al., Physical Review Letters 116, 218101 (2016).

F. Cagnetta and E. Mallmin, Physical Review E 101, 022130 (2020).

active work
$$\dot{w}_f^{\rm RTP} = v_0(\alpha_1 - \alpha_2)\partial_{r_1}V(r_{12})$$
 (42)

SCGF
$$\psi^{\text{RTP}}(\lambda) = \lim_{\tau \to \infty} \frac{1}{\tau} \log \left\langle e^{-\lambda \int_0^{\tau} \dot{w}_f^{\text{RTP}}(t) dt} \right\rangle$$
 (43)

polarisation
$$u^{\text{RTP}} = \frac{1 + \alpha_1 \alpha_2}{2}$$
 (44)

Spectral problem

$$\psi^{\text{RTP}}(\lambda)\boldsymbol{P}_{\lambda} = (\mathcal{L} - \lambda \dot{w}_f^{\text{RTP}})\boldsymbol{P}_{\lambda} \tag{45}$$

$$\mathbf{P}_{\lambda}(r \equiv r_2 - r_1) \equiv (P_{\lambda}^{++}(r), P_{\lambda}^{--}(r), P_{\lambda}^{+-}(r), P_{\lambda}^{-+}(r))$$
 (46)

H. Touchette, Physica A: Statistical Mechanics and its Applications 504, 5-19 (2018).

T. Arnoulx de Pirey et al., Physical Review Letters 123, 260602 (2019).

$$\psi^{\text{RTP}}(\lambda)\boldsymbol{P}_{\lambda} = (\mathcal{L} - \lambda \dot{w}_f^{\text{RTP}})\boldsymbol{P}_{\lambda}$$
 (45)

$$\mathbf{P}_{\lambda}(r \equiv r_2 - r_1) \equiv (P_{\lambda}^{++}(r), P_{\lambda}^{--}(r), P_{\lambda}^{+-}(r), P_{\lambda}^{-+}(r))$$
 (46)

H. Touchette, Physica A: Statistical Mechanics and its Applications 504, 5-19 (2018).

T. Arnoulx de Pirey et al., Physical Review Letters 123, 260602 (2019).

Polarisation averages

$$\left\langle w_f^{\rm RTP} \right\rangle_{\lambda} = -\partial_{\lambda} \psi^{\rm RTP}, \ \nu^{\rm RTP} = \frac{1 + \alpha_1 \alpha_2}{2}$$
 (48)

 $\lambda L v_0$

0.5

Y.-E. Keta et al., Physical Review E 103, 022603 (2021).

- M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).
- M. E. Cates, arXiv preprint arXiv:1904.01330 (2019).

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

M. E. Cates, arXiv preprint arXiv:1904.01330 (2019).

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

flux
$$\mathbf{J} = \mathbf{J}_d + \sqrt{2\sigma(\rho)} \boldsymbol{\eta}$$
 (50)

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

flux
$$\mathbf{J} = \mathbf{J}_d + \sqrt{2\sigma(\rho)} \boldsymbol{\eta}$$
 (50)

$$\mathbf{J}_{d} = -D_{c}(\rho)\nabla\rho\tag{51}$$

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

flux
$$\mathbf{J} = \mathbf{J}_d + \sqrt{2\sigma(\rho)} \boldsymbol{\eta}$$
 (50)

$$\mathbf{J}_{d} = -D_{c}(\rho)\nabla\rho + \mathbf{v}_{0}\rho\mathbf{P} \tag{51}$$

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

flux
$$\mathbf{J} = \mathbf{J}_d + \sqrt{2\sigma(\rho)} \boldsymbol{\eta}$$
 (50)

$$\mathbf{J}_{d} = -D_{c}(\rho)\nabla\rho + \mathbf{v}_{0}\rho\mathbf{P} \tag{51}$$

polarisation
$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P})$$
 (52)

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

Top-down fluctuating hydrodynamic description

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

flux
$$\mathbf{J} = \mathbf{J}_d + \sqrt{2\sigma(\rho)} \mathbf{\eta}$$
 (50)

$$\mathbf{J}_{d} = -D_{c}(\rho)\nabla\rho + \mathbf{v}_{0}\rho\mathbf{P} \tag{51}$$

polarisation
$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P}) + b(\rho, \mathbf{P})\nabla\rho$$
 (52)

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

M. E. Cates, arXiv preprint arXiv:1904.01330 (2019).

Top-down fluctuating hydrodynamic description

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

flux
$$\mathbf{J} = \mathbf{J}_d + \sqrt{2\sigma(\rho)} \mathbf{\eta}$$
 (50)

$$\mathbf{J}_{d} = -D_{c}(\rho)\nabla\rho + v_{0}\rho\mathbf{P} \tag{51}$$

polarisation
$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P}) + b(\rho, \mathbf{P})\nabla\rho + \sqrt{2\gamma(\rho, \mathbf{P})}\boldsymbol{\xi}$$
 (52)

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

M. E. Cates, arXiv preprint arXiv:1904.01330 (2019).

Top-down fluctuating hydrodynamic description

continuity
$$\dot{\rho} = -\nabla \cdot \mathbf{J}$$
 (49)

flux
$$\mathbf{J} = \mathbf{J}_d + \sqrt{2\sigma(\rho)} \boldsymbol{\eta}$$
 (50)
$$\mathbf{J}_d = -D_c(\rho) \nabla \rho + \mathbf{v}_0 \rho \boldsymbol{P}$$
 (51)

polarisation
$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P}) + b(\rho, \mathbf{P})\nabla\rho + \sqrt{2\gamma(\rho, \mathbf{P})}\boldsymbol{\xi}$$
 (52)

bias
$$\mathbf{w}_{\tau} N \tau = \int_{0}^{\tau} \int_{[0,L]^2} \omega(\rho, \mathbf{P}) d^2 \mathbf{r} dt$$
 (53)

M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).

M. E. Cates, arXiv preprint arXiv:1904.01330 (2019).

$$\dot{\rho} = -\nabla \cdot \left(\mathbf{J}_d + \sqrt{2\sigma(\rho)} \mathbf{\eta} \right) \tag{54}$$

$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P}) + b(\rho, \mathbf{P})\nabla\rho + \sqrt{2\gamma(\rho, \mathbf{P})}\boldsymbol{\xi}$$
 (55)

$$\mathbf{w}_{\tau} \mathbf{N} \tau = \int_{0}^{\tau} \int_{[0,L]^{2}} \omega(\rho, \mathbf{P}) \,\mathrm{d}^{2} \mathbf{r} \,\mathrm{d}t$$
 (56)

$$\dot{\rho} = -\nabla \cdot \left(\mathbf{J}_d + \sqrt{2\sigma(\rho)} \boldsymbol{\eta} \right) \tag{54}$$

$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P}) + b(\rho, \mathbf{P})\nabla\rho + \sqrt{2\gamma(\rho, \mathbf{P})}\boldsymbol{\xi}$$
 (55)

$$\mathbf{w}_{\tau} \mathbf{N} \tau = \int_{0}^{\tau} \int_{[0,L]^{2}} \omega(\rho, \mathbf{P}) \,\mathrm{d}^{2} \mathbf{r} \,\mathrm{d}t$$
 (56)

hydrodynamic variables

$$\mathbf{r} \to \mathbf{r}/L, \ t \to Dt/L^2$$
 (57)

$$\dot{\rho} = -\nabla \cdot \left(\mathbf{J}_d + \sqrt{2\sigma(\rho)} \mathbf{\eta} \right) \tag{54}$$

$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P}) + b(\rho, \mathbf{P})\nabla\rho + \sqrt{2\gamma(\rho, \mathbf{P})}\boldsymbol{\xi}$$
 (55)

$$\mathbf{w}_{\tau} \mathsf{N} \tau = \int_{0}^{\tau} \int_{[0,L]^{2}} \omega(\rho, \mathbf{P}) \,\mathrm{d}^{2} \mathbf{r} \,\mathrm{d}t \tag{56}$$

hydrodynamic variables

$$\mathbf{r} \to \mathbf{r}/L, \ t \to Dt/L^2$$
 (57)

$$P[\rho, \mathbf{J}, \mathbf{P}] \propto \exp\left(-L^2 \int_0^{\tau} \int_{[0,1]^2} S(\rho, \mathbf{J}, \mathbf{P}) d^2 \mathbf{r} dt\right)$$
 (58)

L. Bertini et al., Reviews of Modern Physics 87, 593 (2015).

$$\dot{\rho} = -\nabla \cdot \left(\mathbf{J}_d + \sqrt{2\sigma(\rho)} \boldsymbol{\eta} \right) \tag{54}$$

$$\dot{\mathbf{P}} = -\gamma(\rho, \mathbf{P})\mathbf{f}(\mathbf{P}) + b(\rho, \mathbf{P})\nabla\rho + \sqrt{2\gamma(\rho, \mathbf{P})}\boldsymbol{\xi}$$
 (55)

$$\mathbf{w}_{\tau} \mathsf{N} \tau = \int_{0}^{\tau} \int_{[0,L]^{2}} \omega(\rho, \mathbf{P}) \,\mathrm{d}^{2} \mathbf{r} \,\mathrm{d}t \tag{56}$$

hydrodynamic variables

$$\mathbf{r} \to \mathbf{r}/L, \ t \to Dt/L^2$$
 (57)

$$P[\rho, \mathbf{J}, \mathbf{P}] \propto \exp\left(-L^2 \int_0^{\tau} \int_{[0,1]^2} S(\rho, \mathbf{J}, \mathbf{P}) \,\mathrm{d}^2 \mathbf{r} \,\mathrm{d}t\right)$$
 (58)

$$S = \frac{D}{4\sigma} |\mathbf{J} - \mathbf{J}_d|^2 + \frac{1}{4D\gamma} \left| \frac{D}{L} \dot{\mathbf{P}} + \gamma \mathbf{f} L - b \nabla \rho \right|^2 + \frac{sL^2}{D} \omega$$
 (59)

L. Bertini et al., Reviews of Modern Physics 87, 593 (2015).

Mean-field analysis

$$S = \frac{D}{4\sigma} |\mathbf{J} - \mathbf{J}_d|^2 + \frac{1}{4D\gamma} \left| \frac{D}{L} \dot{\mathbf{P}} + \gamma \mathbf{f} L - b \nabla \rho \right|^2 + \frac{sL^2}{D} \omega$$
 (60)

$$S = \frac{D}{4\sigma} |\mathbf{J} - \mathbf{J}_d|^2 + \frac{1}{4D\gamma} \left| \frac{D}{L} \mathbf{P} + \gamma \mathbf{f} \mathbf{L} = b \nabla \rho \right|^2 + \frac{sL^2}{D} \omega$$
 (60)

Mean-field analysis

 $(\rho, \mathbf{J}, \mathbf{P})$ independent of space and time

Mean-field analysis

$$S = \frac{1}{4D\gamma} |\gamma \mathbf{f} L|^2 + \frac{sL^2}{D} \omega \tag{60}$$

 $(\rho, \mathbf{J}, \mathbf{P})$ independent of space and time

$$S = \frac{1}{4D\gamma} |\gamma \mathbf{f} L|^2 + \frac{sL^2}{D} \omega \tag{60}$$

LDP on polarisation
$$P_{s=0}[\bar{\rho}, \mathbf{J}_d, \mathbf{P}] \propto \exp\left(-\frac{L^2 t}{D}\bar{\rho}\mathcal{J}(\mathbf{P})\right)$$
 (61)

$$S = \frac{\bar{\rho}L^2}{D}\mathcal{J}(\mathbf{P}) + \frac{sL^2}{D}\omega \tag{60}$$

LDP on polarisation
$$P_{s=0}[\bar{\rho}, \mathbf{J}_d, \mathbf{P}] \propto \exp\left(-\frac{L^2 t}{D}\bar{\rho}\mathcal{J}(\mathbf{P})\right)$$
 (61)

$$S = \frac{\bar{\rho}L^2}{D}\mathcal{J}(\mathbf{P}) + \frac{sL^2}{D}\omega \tag{60}$$

LDP on polarisation
$$P_{s=0}[\bar{\rho}, \mathbf{J}_d, \mathbf{P}] \propto \exp\left(-\frac{L^2 t}{D}\bar{\rho}\mathcal{J}(\mathbf{P})\right)$$
 (61)

analytical derivation
$$\mathcal{J}(\mathbf{P}) = \frac{1}{2}D_r|\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4)$$
 (62)

Taylor expansion
$$\omega(\bar{\rho}, \mathbf{P}) = \bar{\rho} \left[\langle \mathbf{w}_{\tau} \rangle + \frac{c_{\omega}}{2} |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (63)

$$S = \frac{\bar{\rho}L^2}{D} \left[s \left\langle \mathbf{w}_{\tau} \right\rangle + \frac{1}{2} (D_r + sc_{\omega}) |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (60)

LDP on polarisation
$$P_{s=0}[\bar{\rho}, \mathbf{J}_d, \mathbf{P}] \propto \exp\left(-\frac{L^2 t}{D}\bar{\rho}\mathcal{J}(\mathbf{P})\right)$$
 (61)

analytical derivation
$$\mathcal{J}(\mathbf{P}) = \frac{1}{2}D_r|\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4)$$
 (62)

Taylor expansion
$$\omega(\bar{\rho}, \mathbf{P}) = \bar{\rho} \left[\langle \mathbf{w}_{\tau} \rangle + \frac{c_{\omega}}{2} |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (63)

$$S = \frac{\bar{\rho}L^2}{D} \left[s \left\langle \mathbf{w}_{\tau} \right\rangle + \frac{1}{2} (D_r + sc_{\omega}) |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (64)

N. Goldenfeld, (CRC Press, 2018).

Y.-E. Keta et al., Physical Review E 103, 022603 (2021).

$$S = \frac{\bar{\rho}L^2}{D} \left[s \left\langle \mathbf{w}_{\tau} \right\rangle + \frac{1}{2} (D_r + sc_{\omega}) |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (64)

analogy with a ferromagnet

$$\mathcal{L}(H=0) = a(T_c)(T-T_c)\eta^2 + \mathcal{O}(\eta^4), \ T_c \propto J$$
 (65)

N. Goldenfeld, (CRC Press, 2018).

Y.-E. Keta et al., Physical Review E 103, 022603 (2021).

$$S = \frac{\bar{\rho}L^2}{D} \left[s \langle \mathbf{w}_{\tau} \rangle + \frac{1}{2} (D_r + sc_{\omega}) |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (64)

analogy with a ferromagnet

$$\mathcal{L}(H=0) = a(T_c)(T-T_c)\eta^2 + \mathcal{O}(\eta^4), \ T_c \propto J$$
 (65)

N. Goldenfeld, (CRC Press, 2018).

$$S = \frac{\bar{\rho}L^2}{D} \left[s \langle \mathbf{w}_{\tau} \rangle + \frac{1}{2} (D_r + sc_{\omega}) |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (64)

N. Goldenfeld, (CRC Press, 2018).

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Biased trajectories and cloning algorithm
- Oynamical phase transitions for active Brownian particles
- 4 Collective motion mechanism
 - CM transition point
 - 2 run-and-tumble particles on a ring
 - Hydrodynamic theory
- 5 Conclusion

Conclusion

Conclusion

• We have introduced a model of active Brownian particles biased with respect to a measure of the averaged dissipated power (active work w_{τ}).

- We have introduced a model of active Brownian particles biased with respect to a measure of the averaged dissipated power (active work w_{τ}).
- This model of isotropic active matter displays phase-separated arrest (PSA) when w_{τ} is decreased (s>0) and collective motion (CM) when w_{τ} is increased (s<0).

- We have introduced a model of active Brownian particles biased with respect to a measure of the averaged dissipated power (active work w_{τ}).
- This model of isotropic active matter displays phase-separated arrest (PSA) when w_{τ} is decreased (s > 0) and collective motion (CM) when w_{τ} is increased (s < 0).
- This transition to CM happens at finite biasing $s^* \sim -D_r$ implying that these fluctuations are very distinct from the unbiased behaviour.

- We have introduced a model of active Brownian particles biased with respect to a measure of the averaged dissipated power (active work w_{τ}).
- This model of isotropic active matter displays phase-separated arrest (PSA) when w_{τ} is decreased (s > 0) and collective motion (CM) when w_{τ} is increased (s < 0).
- This transition to CM happens at finite biasing $s^* \sim -D_r$ implying that these fluctuations are very distinct from the unbiased behaviour.
- We have computed particle alignment exactly for a system of 2 particles, and showed that increased w_{τ} is accompanied by **effective** aligning interactions.

- We have introduced a model of active Brownian particles biased with respect to a measure of the averaged dissipated power (active work w_{τ}).
- This model of isotropic active matter displays phase-separated arrest (PSA) when w_{τ} is decreased (s > 0) and collective motion (CM) when w_{τ} is increased (s < 0).
- This transition to CM happens at finite biasing $s^* \sim -D_r$ implying that these fluctuations are very distinct from the unbiased behaviour.
- We have computed particle alignment exactly for a system of 2 particles, and showed that increased w_{τ} is accompanied by **effective** aligning interactions.
- We have proposed a fluctuating hydrodynamic theory which captures the emergence of polar order in the biased state.

Thank you!

Temporal boundary conditions

 \rightarrow In the s-ensemble of trajectories $x(0 \le t \le \tau)$, t = 0 and $t = \tau$ are boundaries \Rightarrow dynamical analogue of boundary effects.

Figure: [from: J. P. Garrahan et al., Journal of Physics A: Mathematical and Theoretical 42, 075007 (2009) (Fig. 7)]

$$P_{\text{end}}(x) = \lim_{\tau \to \infty} \langle \delta(x(\tau) - x) \rangle_{s}$$
 (65)

$$P_{\text{ave}}(x) = \lim_{\tau \to \infty} \left\langle \tau^{-1} \int_0^{\tau} \delta(x(t) - x) dt \right\rangle_{\epsilon}$$
 (66)

T. Nemoto et al., Physical Review E 93, 062123 (2016).

Spectral problem

SDE
$$\dot{\mathbf{X}} = F(\mathbf{X}) + \sqrt{2D}\boldsymbol{\eta}$$
 (67)

Fokker-Planck equation
$$\frac{\partial}{\partial t}P(\mathbf{x},t) = \mathcal{L}P(\mathbf{x},t)$$
 (68)

$$P(\mathbf{x},t) = P(\mathbf{X}(t) = \mathbf{x}) \tag{69}$$

observable
$$A_{\tau} = \frac{1}{\tau} \int_{0}^{\tau} f(\boldsymbol{X}(t)) dt$$
 (70)

SCGF
$$\psi(s) = \lim_{\tau \to \infty} \frac{1}{\tau} \log \langle \exp(-s\tau A_{\tau}) \rangle$$
 (71)

 $\rightarrow \psi(s)$ is the largest eigenvalue of $\mathcal{L} - sf$.

$$\lambda(s)I(\mathbf{x}) = (\mathcal{L} - sf(\mathbf{x}))I(\mathbf{x}) \tag{72}$$

$$P_{\mathrm{end}}(\mathbf{x}) = I(\mathbf{x})$$

$$\lambda(s)r(\mathbf{x}) = (\mathcal{L}^{\dagger} - sf(\mathbf{x}))r(\mathbf{x}) \tag{74}$$

$$P_{\text{ave}}(\mathbf{x}) = I(\mathbf{x})r(\mathbf{x}) \tag{75}$$

H. Touchette, Physica A: Statistical Mechanics and its Applications 504, 5-19 (2018).

(73)

"Large deviations occur according to the least unlikely mechanism."

$$I_A(w) \le I(w) \le I_B(w)$$
 the closer the better (76)

R. L. Jack, The European Physical Journal B 93, 1-22 (2020).

Modified dynamics

$$\dot{\boldsymbol{r}}_i = v_s^{\text{con}} \boldsymbol{u}(\theta_i) - D\nabla_i U + \sqrt{2D} \boldsymbol{\eta}_i$$
 (77)

$$\dot{\theta}_i = -D_r \frac{\partial}{\partial \theta_i} U_g^{\text{con}} + \sqrt{2D_r} \xi_i \tag{78}$$

$$I(w) \le \lim_{\tau \to \infty} \mathcal{D}_{\mathrm{KL}}(P_{g(w)}^{\mathrm{mod}} || P)$$
 (79)

$$\mathcal{D}_{\mathrm{KL}}(P_{g(w)}^{\mathrm{mod}}||P) = \left\langle \log P_{g(w)}^{\mathrm{mod}}/P \right\rangle_{\mathrm{mod}} = f[\{\theta_i(t)\}, g(w)] \tag{80}$$

Contraction principle

$$I_{h(A)}(b) = \inf_{a:h(a)=b} I_A(a)$$
 (81)

$$I(w) = \inf_{\mathbb{CP}} I_2(w, \nu) = I_2(w, \nu(w)) \ge \inf_{w'} I_2(w', \nu(w)) = \mathcal{J}_1(\nu(w))$$
(82)

Bounds to the rate function

$$\omega(\bar{\rho}, \mathbf{P}) = \langle \bar{\rho} w_{\tau} \rangle_{\mathbf{h}(\mathbf{P})} = \frac{\langle \bar{\rho} w_{\tau} \exp(-\tau N \mathbf{h}(\mathbf{P}) \cdot \bar{\nu}_{\tau}) \rangle}{\langle \exp(-\tau N \mathbf{h}(\mathbf{P}) \cdot \bar{\nu}_{\tau}) \rangle}$$
(83)

$$\bar{\boldsymbol{\nu}}_{\tau} = \frac{1}{\tau} \int_{0}^{\tau} \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{u}(\theta_{i}(t)) \, \mathrm{d}t, \ \langle \bar{\boldsymbol{\nu}}_{\tau} \rangle_{\boldsymbol{h}(\boldsymbol{P})} = \boldsymbol{P}$$
 (84)

$$\omega(\bar{\rho}, \mathbf{P}) = \bar{\rho} \left[\langle w_{\tau} \rangle + \frac{c_{\omega}}{2} |\mathbf{P}|^2 + \mathcal{O}(|\mathbf{P}|^4) \right]$$
 (85)

$$c_{\omega} = \frac{\bar{\rho}\tau^2 L^4 D_r^2}{2} \operatorname{Cov}(w_{\tau}, |\bar{\boldsymbol{\nu}}_{\tau}|^2)$$
 (86)

Suppression of density fluctuations

• At P = 0, biasing w.r.t. w_{τ} is equivalent to biasing w.r.t. $|\tilde{\rho}_{\boldsymbol{a}}|^2$.

$$S_{s}(\boldsymbol{q}) = \left\langle |\tilde{\rho}_{\boldsymbol{q}}|^{2} \right\rangle_{s} = \begin{cases} \chi_{0}, & s = 0\\ b_{s}q, & s < 0 \end{cases}$$
(87)

 \Rightarrow We expect hyperuniformity in the isotropic s < 0 phase for $N \gg 1$.

Figure: Biased structure factor S_s .

 \rightarrow Finite system shows suppression of density fluctuations for s < 0.

J. Dolezal and R. L. Jack, Journal of Statistical Mechanics: Theory and Experiment 2019, 123208 (2019).