Rational functions with positive normalised denominator

(no poles)

James Chok w/ Geoff Vasil

(U Edinburgh)

Polynomial Approximation

$$f(x) \approx \sum_{n=0}^{N} a_n P_n(x) = \sum_{n=0}^{N} c_n x^n$$

(e.g. Legendre or Chebyshev)

Rational Approximation

$$f(x) \approx R_{N,M}(x) = \sum_{n=0}^{N} a_n P_n(x) / \sum_{m=0}^{M} b_m Q_m(x)$$

- Reduces Runge's Phenomena
- Faster convergence than ordinary polynomials

AAA Algorithm

Nakatsukasa, Sète, and Trefethen (2018)

$$f(x) \approx R_{N,N}(x) = \sum_{n=0}^{N} \frac{w_n f_n}{x - x_n} / \sum_{n=0}^{N} \frac{w_n}{x - x_n}$$

$$f_n = f(x_n), \quad w_n \neq 0$$

 $0 < x_0 < x_1 < \dots < x_N \le 1$ partitions [0,1]. Non-zero denominator at x_i

$$\min_{w} \sum_{i} \left[f_{i} \left(\sum_{n=0}^{N} \frac{w_{n}}{x_{i} - x_{n}} \right) - \left(\sum_{n=0}^{N} \frac{w_{n} f_{n}}{x_{i} - x_{n}} \right) \right]^{2}$$
Normalizing Condition: $||w|| = 1$

New Problem

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $\underline{Q(x) > 0}$ for $x \in [0,1]$

Bernstein Polynomials

$$B_k^{(N)}(x) = {N \choose k} x^k (1-x)^{N-k}$$
 $B_k^{(N)}(x) > 0$ for $x \in (0,1)$

Sergei Natanovich Bernstein

Our Proposal

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $Q(x) > 0$ for $x \in [0,1]$

$$Q(x) = \sum_{m=0}^{M} w_m B_m(x) \quad \text{where} \quad B_m(x) = \binom{M}{m} x^m (1-x)^{M-m}$$

Our Proposal

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $Q(x) > 0$ for $x \in [0,1]$

$$Q(x) = \sum_{m=0}^{M} w_m B_m(x) \quad \text{where} \quad B_m(x) = \binom{M}{m} x^m (1-x)^{M-m}$$

Positivity

$$w_m \geq 0$$

Normalization

$$\sum_{m} w_{m} = 1$$

Our Proposal

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $Q(x) > 0$ for $x \in [0,1]$

$$Q(x) = \sum_{m=0}^{M} w_m B_m(x) \quad \text{where} \quad B_m(x) = \binom{M}{m} x^m (1-x)^{M-m}$$

Positivity

$$w_m \geq 0$$

Normalization

$$\sum_{m} w_{m} = 1$$

$$f(x) \approx R_{N,M}(x) = \sum_{n=0}^{N} a_n P_n(x) / \sum_{m=0}^{M} w_m B_m(x)$$

For some $\{P_n(x)\}_n$

How to Solve

$$f(x) \approx R_{N,M}(x) = \sum_{n=0}^{N} a_n P_n(x) / \sum_{m=0}^{M} w_m B_m(x)$$

$$w \in \Delta^{M+1} = \left\{ w \in \mathbb{R}^{M+1} \mid w_m \ge 0 \text{ and } \sum_m w_m = 0 \right\}$$

Linearized Problem

$$\min_{\substack{a \in \mathbb{R}^{N+1} \\ w \in \Delta^{M+1}}} \left\| f(x) \sum_{m} w_m B_m(x) - \sum_{n} a_n P_n(x) \right\|$$

Very much like Lanczos (1938)

How to Solve

$$f(x) \approx R_{N,M}(x) = \sum_{n=0}^{N} a_n P_n(x) / \sum_{m=0}^{M} w_m B_m(x)$$

$$w \in \Delta^{M+1} = \left\{ w \in \mathbb{R}^{M+1} \mid w_m \ge 0 \text{ and } \sum_m w_m = 0 \right\}$$

Linearized

$$\min_{\substack{a \in \mathbb{R}^{N+1} \\ w \in \Delta^{M+1}}} \left\| f(x) \sum_{m} w_m B_m(x) - \sum_{n} a_n P_n(x) \right\|$$

Non-linearized

$$\min_{\substack{a \in \mathbb{R}^{N+1} \\ w \in \Delta^{M+1}}} \left\| f(x) - \sum_{n} a_n P_n(x) \middle/ \sum_{m} w_m B_m(x) \right\|$$

Linearized Residuals

$$\min_{\substack{a \in \mathbb{R}^{N+1} \\ w \in \Delta^{M+1}}} \int \left(f(x) \sum_{m} w_m B_m(x) - \sum_{n} a_n P_n(x) \right)^2 d\mu$$

$$\approx \min_{a,w} \sum_{i} \mu_{i} \left(f(x_{i}) \sum_{m} w_{m} B_{m}(x_{i}) - \sum_{n} a_{n} P_{n}(x_{i}) \right)^{2} \quad \text{for} \quad \mu_{i} \geq 0$$

with
$$w_m \ge 0$$
, $\sum_m w_m = 1$

Non-linearized Residuals

$$\min_{\substack{a \in \mathbb{R}^{N+1} \\ w \in \Delta^{M+1}}} \left\| f(x) - \sum_{n} a_n P_n(x) \middle/ \sum_{m} w_m B_m(x) \right\|$$

$$\min_{\substack{a \in \mathbb{R}^{N+1} \\ w \in \Delta^{M+1}}} \int \left(f(x) \sum_{m} w_m B_m(x) - \sum_{n} a_n P_n(x) \right)^2 \frac{d\mu}{\left(\sum_{m} w_m B_m(x) \right)^2}$$

Like the linearized part

Like an adjusted measure

(Like Sanathanan and Koerner. - 1963)

Optimizing Over a Simplex

Chok, and Vasil (2023)

$$\min_{w \in \Delta^M} F(w)$$

Enforces positivity

$$\frac{dw_i}{dt} = w_i (\nabla_{w_i} F - w \cdot \nabla_w F)$$

Enforces unit sum constraint

$$\sum_{i} \frac{dw_{i}}{dt} = (w \cdot \nabla_{w} F) - (w \cdot \nabla_{w} F) \sum_{i} w_{i}$$

$$F(w) = \left\| f(x) - \sum_{n} a_n P_n(x) / \sum_{m} w_m B_m(x) \right\|$$

How to Solve

$$F(a, w) = \left\| f(x) - \sum_{n} a_n P_n(x) / \sum_{m} w_m B_m(x) \right\|$$

1.Fix $a \in \mathbb{R}^{N+1}$ and a take step(s) in $w \in \Delta^{M+1}$ 2.Fix $w \in \Delta^{M+1}$ and solve for $a \in \mathbb{R}^{N+1}$ exactly 3.Repeat

Numerical Convergence

Numerical Convergence

Numerical Convergence (Runge's Example)

Penalization & smoothing

$$f(x) \approx R_{N,M}(x)$$
 and $R_{N,M}$ is smooth

$$\approx R_{N,M}(x)$$
 and Numerator is smooth

$$\rightarrow \min_{g} \left\| f(x) - g(x) \right\| + \sum_{k>0} \lambda_k \int (g^{(k)}(x))^2 d\mu_k \quad \text{for} \quad \lambda_k \ge 0$$

Legendre

$$\sum_{k\geq 0} \lambda_k \int_0^1 \left(\sum_{n=0}^N a_n P_n^{(k)}(x)\right)^2 d\mu_k = \sum_{n=0}^N a_n^2 (\lambda_n n^{2n})$$

Bivariate

$$R(x,y) = \sum_{n, m} a_{n,m} P_n(x) P_m(y) / \sum_{j,k} w_{j,k} B_j(x) B_k(y)$$

$$w_{j,k} \ge 0$$
 and $\sum_{j,k} w_{j,k} = 1$

Numerical Convergence

Numerical Convergence

Bernstein vs Spline

$$\sin(8x^2 + 8y^2) + \mathcal{N}(0,0.1^2)$$

Bernstein vs Spline

$$\sin\left((4(x-0.5))^2 + (4(y-0.5))^2\right) + \mathcal{N}(0,0.1^2)$$

Bernstein vs Spline

"Which approximation would be more useful in an application?

I think the only reasonable answer is, it depends.

Sometimes one really does need a guarantee about worst-case behavior."

L. N. Trefethen (2012)

Poleless Barycentric

J. P. Berrut (1988) and M. S. Floater and K. Hormann (2007)

Poleless Barycentric

J. P. Berrut (1988) and M. S. Floater and K. Hormann (2007)

Poleless Barycentric

J. P. Berrut (1988) and M. S. Floater and K. Hormann (2007)

Quasiconvex

V. Peiris, N. Sharon, N. Sukhorukova, and J. Ugon (2021)

Quasiconvex

V. Peiris, N. Sharon, N. Sukhorukova, and J. Ugon (2021)

