Table of Contents

```
% Projet d'optimisation
xi;
yi;
%clear; close all; clc %clear efface le workspace, close all ferme les
close all; clc
dbtype('ctls.m');
dbtype('grad ctls.m');
dbtype('fletcher.m');
dbtype('quasi_newton.m');
ctls(0.2,0.2,xi,yi);
cx = linspace(-1,1,100); % Valeur prise par Cx
cy = linspace(-1,2,100); % Ensemble de valeur prise par Cy
% Intervalle -1 4
cx2 = linspace(-1, 4, 200);
cy2 = linspace(-1, 4, 200);
epsilon = zeros(100,100) ; % Premier intervalle
epsilon2 = zeros(200,200); % Second intervalle
for j = 1:100
 for k = 1: 100
   epsilon = [epsilon, ctls(cx(j),cy(k),xi,yi)];
   epsilon(j,k) = ctls(cx(j),cy(k),xi,yi);
 end
end
for j = 1:200
```

```
for k = 1:200
        epsilon = [epsilon, ctls(cx(j),cy(k),xi,yi)];
        epsilon2(j,k) = ctls(cx2(j),cy2(k),xi,yi);
    end
end
% figure;
      surf( cx,cy,epsilon)
% figure;
     surf( cx2,cy2,epsilon2)
figure;
    contour( cx,cy,epsilon,100)
   xlabel ('cx')
   ylabel ('cy')
    axis equal
figure;
    contour( cx2,cy2,epsilon2,100)
   xlabel ('cx')
   ylabel ('cy')
   axis equal
% On remarque l'existence d'un maximum local, mais nous recherchons un/des
% minimums locaux/globaux
% On étudie la fonction sur deux intervalles différents, donc pour le
% graphe n2 on observe dans les valeurs de l'écart (la fonction de cout)
% De plus le nombre de points pour l'intervalle [-1,4] est identique que
% pour l'intervalle [-1 1] donc le graphe est moins précis
1
      function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
     end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
         R = 1.5;
```

```
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
7
2
3
      %function[s]=fletcher_function(cx,cy,xi,yi,epsilon,cxo,cyo)
      function[s]=fletcher(cx,cy,a,d,xi,yi) % d est un doublet cx, cy
4
5
          dbtype('grad_ctls.m');
6
          dbtype('ctls.m') ;
7
8
          al = 0 ; % alpha left
          ar = inf ; % alpha right
9
10
11
          lambda = 20;
12
13
          B1 = 10^{4} - 3;
          B2 = 0.99;
14
          %y = 0 ; % : Gamma On le déclare et on lui donne sa valeur
15
16
17
          % Nous devons calculer gamma à partir de a,B1,B2, d est moins le
18
          % gradient
19
          y = -B1*(grad\_ctls(cx,cy,xi,yi)') * d; % Il faut que d soit un
20
vecteur colonne
21
22
23
          % Condition de Wolf 1 et Wolf 2 Il vaut mieux faire un while
24
          while (ctls(cx+a*d(1),cy+a*d(2),xi,yi) > ctls(cx,cy,xi,yi) - a*y)
25
 | ((grad_ctls(cx+a*d(1),cy+a*d(2),xi,yi)')*d/((grad_ctls(cx,cy,xi,yi)')*d) >
B2
    ) % On calcule la fonction de cout et on vérifie
26
27
              % Condition de Wolf 1
28
              if(ctls(cx+a*d(1),cy+a*d(2),xi,yi) \le ctls(cx,cy,xi,yi) - a*y)
% Si la condition de Wolf 1 est respectée
29
                  al = a;
30
                       if(ar >= inf)
31
                           a = lambda*a ;
32
                       else
33
                           a = (al+ar)/2;
34
                       end
              else % Si elle n'est pas respectée
35
```

```
36
                  ar = a ;
37
                  a = (al + ar)/2 ;
38
              end
39
          end
40
          s = a;
41
      end
      function[s,result,counter]=quasi_newton(cx,cy,xi,yi,epsilon_newton) % d
 est un doublet cx, cy
          dbtype('grad_ctls.m');
3
          dbtype('ctls.m') ;
4
          dbtype('fletcher.m')
          % On initialise la matrice Hk à 0
5
          % Attention dans ce code je choisit la notation Hk mais ici en
6
réalité
7
          % nous avons Hk^-1 c'est la matrice inverse de Hk
8
9
          I = eye(2);
10
          alpha = 1 ;
11
          Hk = eye(2); % On doit avoir une matrice de taille 2
12
          disp(Hk)
13
          result = [];
14
          counter = 0 ;
15
16
17
          Grad_fk = grad_ctls(cx,cy,xi,yi)
18
19
          while (norm(Grad_fk)>epsilon_newton)
20
              Grad_fk = grad_ctls(cx,cy,xi,yi)
21
              dk = -Hk*Grad fk;
22
23
              alpha = fletcher(cx,cy,alpha,dk,xi,yi);
24
25
              cx = cx + alpha*dk(1);
26
              cy = cy + alpha*dk(2);
27
28
              Grad_fk1 = grad_ctls(cx,cy,xi,yi) ;
29
30
              yk = Grad_fk1 - Grad_fk ;
31
              dk_ = alpha*dk ; % dk barre On peut aussi l'écrire comme la
32
différence des xk+1 xk
33
              Hk = (I - dk_*(yk')/((dk_')*yk))*Hk*(I - yk*(dk_')/((dk_')*yk)
34
  ) + dk_*(dk_')/((dk_')*yk) ;
35
36
              result = [result;[cx,cy]];
37
              counter = counter + 1
38
          end
39
          s = [cx, cy];
40
41
      end
```


Question 2

```
[min_cx,min_cy]=find(epsilon==min(epsilon(:)));
%cx(min_cx)
%disp(" LE Minimum de cy est :")
%cy(min_cy)
% On calcule un minimum de : 17.1935 pour cx = 0.4545 et cy = 1.1515 avec
% 100points
[min_cx2,min_cy2]=find(epsilon2==min(epsilon2(:)));
disp("Le Minimum de cx2 est :")
cx2(min_cx2)
disp("Le Minimum de cy2 est :")
cy2(min_cy2)
% = 0.00 % On calcule un minimum de l'écarrt : 14.0446 pour cx2 = 2.6869 et cy =
% 1.3737 avec 100points
figure;
   plot(xi,yi,'+')
    %plot([cx(min_cx),cy(min_cy)])
    viscircles([0.4545,1.1515],1.5)
    viscircles([2.6869,1.3737],1.5)
% Le centre obtenu au second cercle semble cohérent, dû à la présence
% d'outlayer (le point tout à droite) est excentré donc à un "poiids" plus
% grand donc contribue à décaler le minimum global
% Ppour un intervalle de taille [-1,1]*[-1,2] On a besoin de
% (2/10^{-4})*(3/10^{-4}) donc 600 Millions de valeurs
% Ppour un intervalle de taille [-1,4]*[-1,4] On a besoin de
% (5/10^{-4})*(5/10^{-4}) donc 2.5 Milliards de valeurs
% On sait que pour chaque couple cx,cy on doit évaluer la fonction pour R
% [0.5,2.5]. On veut une précision de 10-4 près donc on doit multiplier le nom
% nombre d'évaluation de la fonction de coût que l'on a déterminé précédemment
par 20 000.
% Nous allons donc chercher à trouver des algorithmes d'optimisations pour
% réduire le nombre d'évaluations de la fonciton de coût à réaliser
Le Minimum de cx2 est :
ans =
    2.7186
```

```
Le Minimum de cy2 est :

ans =

1.3367

ans =

Group with properties:

Children: [2×1 Line]

Visible: on

HitTest: on

Use GET to show all properties

ans =

Group with properties:

Children: [2×1 Line]

Visible: on

HitTest: on

Use GET to show all properties
```

7

Question 3

Cf. feuille

Question 4

```
%
  [FX,FY] = gradient(ctls);
% FX(-1,-1,xi,yi)
% FY(-1,-1,xi,yi)
h = 10^{(-8)};
vtiq_cx = (ctls(-3+h, -2, xi, yi)-ctls(-3, -2, xi, yi)) / h;% Composante selon cx
vtiq_cy = (ctls(-3,-2+h,xi,yi)-ctls(-3,-2,xi,yi)) / h;% Composante selon cy
vexp = grad_ctls(-3, -2, xi, yi);
e_cx = (vtiq_cx - vexp(1))/vtiq_cx % Ecart relatif
e_cy = (vtiq_cy - vexp(2))/vtiq_cy % Ecart relatif
% Le calcul du gradient semble cohérent avec le calcul du gradient par
% difféerence fini
e\_cx =
  -2.2779e-08
e\_cy =
   1.1242e-08
```

Question 5

```
% On calcule lors de l'échantillonnage régulier
epsilon3 = zeros(100,100) ; % Premier intervalle
grad_epsilon3_cx = zeros(100,100) ; % Gradient selon cx
grad_epsilon3_cy = zeros(100,100) ; % GRadient selon cy
epsilon3 = zeros(200,200) ; % Second intervalle

for j = 1:100
    for k = 1: 100
        epsilon3(j,k) = ctls( cx(j),cy(k),xi,yi ) ;
```

```
grad_epsilon3_cx(j,k) = grad_ctls(cx(j),cy(k),xi,yi)(1) ; % C'est une
 matrice de vecteur normalement
        grad_epsilon3_cy(j,k) = grad_ctls(cx(j),cy(k),xi,yi)(2) ;
        G = grad_ctls(cx(j),cy(k),xi,yi); % On doit passer par une variable
 intermédiaire car lorsque le tableau est en lecture il ne peut pas etre en
 écriture au meme moment
        grad_epsilon3_cx(j,k) = G(1);
        grad_epsilon3_cy(j,k) = G(2);
    end
end
figure;
    contour( cx,cy,epsilon,100)
    xlabel ('cx')
    ylabel ('cy')
    axis equal
    hold on
    quiver(cx,cy,grad_epsilon3_cx,grad_epsilon3_cy);
    axis equal;
    hold off
% Plus le gradient
```


Question 6 Méthode de Fletcher le Maréchal

```
% Il faut que notre fonction gradient renvoie un vecteur colonne IMPORTANT
% ON CHERCHE LA DIRECTION Dk à xk fixé .On se servira surement du
gradient_ctls
% On évalue le minimum de alpha tel que f(xk + alpha*dk)
% On calcule xk+1
% On vérifie que le gradient évaluée en xk ||Nabla(xk)|| <= v epsilon. Si ce
n'est pas le cas on recommence
cxk = 2 ; % Première approximation du minimum en cx
cyk = 2 ; % Première approximation du minimum en cy
%a = 50 ;
b = 50 ;
d = -grad\_ctls(0.5, 0.5, xi, yi)
y = 0.5
%dbtype('fletcher.m');
% Il faut tester avec des valeurs opposées au gradient
d = -grad\_ctls(0.5, 0.5, xi, yi)
```

```
fletcher(0.5,0.5,10^-6,-grad\_ctls(0.5,0.5,xi,yi),xi,yi) % Calcul de alpha
%fletcher complet(0,3,10^-3,xi,yi,10^-4)
% ON utilise FLETCHER_Le_Marechal avec les coordonnées de départ (0.5,0.5)
[b, it, i] = fletcher_complet(-0.5, -0.5, 10^{-3}, xi, yi, 10^{-4})
% Question 6.1 On représente l'ens des points
figure ;
    contour(cx2,cy2,epsilon2', 100)
    hold on
    axis equal
    plot(it(:,1), it(:,2))
    hold off
d =
   -2.7379
    7.5389
y =
    0.5000
d =
   -2.7379
    7.5389
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                         , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
ans =
    0.0080
7
2
3
      %function[s]=fletcher_function(cx,cy,xi,yi,epsilon,cxo,cyo)
4
      function[s]=fletcher(cx,cy,a,d,xi,yi) % d est un doublet cx, cy
5
          dbtype('grad_ctls.m');
          dbtype('ctls.m');
6
7
8
          al = 0 ; % alpha left
9
          ar = inf ; % alpha right
10
11
          lambda = 20;
12
          B1 = 10^{4} - 3;
13
          B2 = 0.99;
14
          y = 0; % : Gamma On le déclare et on lui donne sa valeur
15
16
17
          % Nous devons calculer gamma à partir de a,B1,B2, d est moins le
18
          % gradient
19
20
          y = -B1*(grad\_ctls(cx,cy,xi,yi)') * d; % Il faut que d soit un
vecteur colonne
21
22
23
          % Condition de Wolf 1 et Wolf 2 Il vaut mieux faire un while
          while (ctls(cx+a*d(1),cy+a*d(2),xi,yi) > ctls(cx,cy,xi,yi) - a*y)
 | ((grad_ctls(cx+a*d(1),cy+a*d(2),xi,yi)')*d/((grad_ctls(cx,cy,xi,yi)')*d) >
    ) % On calcule la fonction de cout et on vérifie
26
27
              % Condition de Wolf 1
              if(ctls(cx+a*d(1),cy+a*d(2),xi,yi) <= ctls(cx,cy,xi,yi) - a*y)
28
 % Si la condition de Wolf 1 est respectée
                  al = a;
29
30
                      if(ar >= inf)
                          a = lambda*a ;
31
32
                      else
```

```
33
                         a = (al + ar)/2 ;
34
                      end
35
              else % Si elle n'est pas respectée
36
                  ar = a;
37
                  a = (al + ar)/2 ;
38
              end
39
          end
40
          s = a;
      end
41
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
         R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
2
                             n = length(xi);
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              ,k,0,29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
            d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
 (CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
            d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                          ,k,0,29
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
 (CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
 (CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                               for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
           R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
           for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
           end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
           R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
          end
14
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
           R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
           for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
           end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
           R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
 (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              ,k,0,29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
 (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
         R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                          ,k,0,29
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                          ,k,0,29
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                          ,k,0,29
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                          ,k,0,29
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
 (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              ,k,0,29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                          ,k,0,29
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
     end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
 (CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
         for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5 ;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
         for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2), k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5 ;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
          d = [0;0];
3
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1);
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2)) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
                 function[d]=grad_ctls(cx,cy,xi,yi)
7
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1 ;
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1);
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              , k, 0, 29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
     function[d]=ctls(cx,cy,xi,yi)
7
2
         n = length(xi);
         d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                      , k, 0, 29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                        , k, 0, 29
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = [0;0];
3
          R = 1.5 ;
4
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                        , k, 0, 29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
  (cy)^2) - 1);
                                           d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
                               end
14
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                                %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                          ,k,0,29
      ) ;
8
9
                                for k = 1:30
10
                                          d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                               end
12
                   end
                  function[d]=grad_ctls(cx,cy,xi,yi)
1
                               n = length(xi);
2
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
9
                               for k = 1: length(xi)
10
                                         d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
11
 (cy)^2) - 1 ;
                                         d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                               end
15
                  end
1
                  function[d]=ctls(cx,cy,xi,yi)
                               n = length(xi);
2
3
                               d = 0;
                               R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
```

```
11
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
  (CY)^2) - 1 ;
                                        d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (cy)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
                             d = 0;
3
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                             for k = 1:30
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                              end
12
                 end
1
                 function[d]=grad_ctls(cx,cy,xi,yi)
                             n = length(xi);
2
3
                             d = [0;0];
4
                             R = 1.5;
5
6
                             %syms k ;
7
                             d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
     ) ;
8
9
                            for k = 1: length(xi)
10
                                       d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
 (CY)^2)) - 1);
                                       d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
 (CY)^2)) - 1);
13
14
                             end
15
                 end
                 function[d]=ctls(cx,cy,xi,yi)
1
                             n = length(xi);
2
3
                             d = 0;
4
                             R = 1.5;
5
6
                             %syms k ;
7
                              d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                              ,k,0,29
      ) ;
8
9
                             for k = 1:30
10
                                         d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                             end
12
                 end
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
```

```
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       , k, 0, 29
  ) ;
```

```
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                           ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
7
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
           n = length(xi);
2
3
           d = 0;
4
           R = 1.5;
5
6
           %syms k ;
           d = \text{symsum}((\text{sqrt}((\text{xi}(k)-\text{cx})^2 + (\text{yi}(k) - \text{cy})^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
           n = length(xi);
2
3
           d = [0;0];
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
           end
```

```
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
          R = 1.5;
4
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
                                                                      ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - (xi(k)-cx)^2))))
(cy)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                           ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                            , k, 0, 29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
```

```
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                               for k = 1:30
                                            d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
1
                  function[d]=grad_ctls(cx,cy,xi,yi)
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                                %syms k ;
7
                                d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                               for k = 1: length(xi)
10
                                           d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi
7 7
                                            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
 (CY)^2) - 1 ;
13
14
                               end
15
                   end
                   function[d]=ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = 0;
                               R = 1.5;
4
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            , k, 0, 29
      ) ;
8
9
                                for k = 1:30
                                           d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                               end
12
                   end
                   function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                               n = length(xi);
3
                               d = [0;0];
4
                               R = 1.5;
5
6
                               %syms k ;
7
                                d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                                                                                                                                                                            ,k,0,29
      ) ;
8
                               for k = 1: length(xi)
9
```

```
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
     function[d]=grad ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
         d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
          end
11
```

```
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
7
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2 ,k,0,29
 ) ;
8
          for k = 1: length(xi)
9
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
        for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
         end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
         R = 1.5;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
b =
    0.4496
            1.1563
it =
  -0.5000
            -0.5000
  -0.4498 -0.4603
  -0.4025 -0.4224
            -0.3861
  -0.3580
  -0.3160
            -0.3513
  -0.2764
            -0.3180
  -0.2391
            -0.2860
  -0.2039
            -0.2553
  -0.1707
            -0.2258
  -0.1394
            -0.1975
            -0.1701
  -0.1097
            -0.1438
   -0.0818
  -0.0553
            -0.1184
  -0.0303
            -0.0939
  -0.0067
            -0.0702
   0.0157
            -0.0474
   0.0368
            -0.0253
    0.0569 -0.0039
    0.0758
             0.0168
    0.0938
            0.0369
```

0.1107	0.0563
0.1268	0.0752
0.1421	0.0935
0.1565	0.1112
0.1702	0.1284
0.1831	0.1452
0.1954	0.1615
0.2070	0.1773
0.2180	0.1927
0.2285	0.2077
0.2384	0.2224
0.2477	0.2366
0.2566	0.2505
0.2650	0.2640
0.2730	0.2772
0.2805	0.2901
0.2877	0.3027
0.2944	0.3150
0.3008	0.3270
0.3069	0.3387
0.3126	0.3502
0.3180	0.3614
0.3232	0.3724
0.3280	0.3832
0.3326	0.3937
0.3369	0.4040
0.3410	0.4141
0.3449	0.4240
0.3485	0.4338
0.3520	0.4433
0.3552	0.4526
0.3583	0.4618
0.3612	0.4708
0.3639	0.4796
0.3664	0.4883
0.3688	0.4968
0.3711	0.5052
0.3732	0.5134
0.3752	0.5215
0.3771	0.5294
0.3789	0.5373
0.3805	0.5449
0.3821	0.5525
0.3835	0.5599
0.3849	0.5673
0.3861	0.5745
0.3873	0.5816
0.3884	0.5886
0.3895	0.5955
0.3904	0.6022
0.3913	0.6089
0.3922	0.6155
0.3929	0.6220
0.3936	0.6284

0.3943	0.6347
0.3949	0.6409
0.3955	0.6470
0.3960	0.6531
0.3965	0.6590
0.3970	0.6649
0.3974	0.6707
0.3977	0.6765
0.3981	0.6821
0.3984	0.6877
0.3987	0.6932
0.3990	0.6986
0.3992	0.7040
0.3994	0.7093
0.3996	0.7145
0.3998	0.7197
0.4000	0.7248
0.4001	0.7298
0.4002	0.7348
0.4004	0.7397
0.4005	0.7445
0.4006	0.7493
0.4007	0.7540
0.4007	
0.4008	0.7633
0.4009	0.7679
0.4009	0.7724
0.4010	0.7768
0.4010	0.7812
0.4011	0.7856
0.4011	0.7899
0.4012	0.7941
0.4012	0.7983
0.4013	0.8025
0.4013	0.8066
0.4014	0.8106
0.4014	0.8146
0.4014	0.8186
0.4015	0.8225
0.4015	0.8263
0.4016	0.8301
0.4016	0.8339
0.4017	0.8377
0.4017	0.8413
0.4018	0.8450
0.4018	0.8486
0.4019	0.8521
0.4020	0.8557
0.4020	0.8591
0.4021	0.8626
0.4022	0.8660
0.4023	0.8693
0.4024	0.8727
0.4025	0.8759

0.4025	0.8792
0.4026	0.8824
0.4028	0.8856
0.4029	0.8887
0.4030	0.8918
0.4031	0.8948
0.4032	0.8979
0.4033	0.9009
0.4035	0.9038
0.4036	0.9067
0.4037	0.9096
0.4039	0.9125
0.4040	0.9153
0.4042	0.9181
0.4043	0.9208
0.4045	0.9236
0.4046	0.9263
0.4048	0.9289
0.4050	0.9316
0.4051	0.9342
0.4053	0.9367
0.4055	0.9393
0.4057	0.9418
0.4059	0.9443
0.4061	0.9467
0.4063	0.9491
0.4064	0.9515
0.4066	0.9539
0.4068	0.9562
0.4071	0.9586
0.4073	0.9609
0.4075	0.9631
0.4077	0.9653
0.4079	0.9676
0.4081	0.9697
0.4083	0.9719
0.4086	0.9740
0.4088	0.9761
0.4090	0.9782
0.4092	0.9803
0.4095	0.9823
0.4097	0.9843
0.4099	0.9863
0.4102	0.9883
0.4104	0.9902
0.4106	0.9921
0.4109	0.9940
0.4111	0.9959
0.4114	0.9978
0.4114	0.9976
0.4119	1.0014
0.4121	1.0032
0.4123	1.0050
0.4126	1.0067

0.4128	1.0084
0.4131	1.0101
0.4133	1.0118
0.4136	1.0135
0.4138	1.0151
	1 0160
0.4141	1.0168
0.4143	1.0184
	1 0200
0.4146	1.0200
0.4148	1.0215
0.4151	1.0231
0.4153	1.0246
	1 0261
0.4156	1.0261
0.4158	1.0276
	1 0201
0.4161	1.0291
0.4163	1.0306
	1.0320
	1.0320
0.4168	1.0335
	1.0349
0.4171	1.0349
0.4173	1.0363
0.4176	1.0376
	1.03/6
0.4178	1.0390
0.4181	1.0404
	1.0404
0.4183	1.0417
0.4186	1.0430
	1.0430
0.4188	1.0443
0.4191	1.0456
0.4193	1.0469
0.4196	1.0481
0.4198	1.0494
0.4201	1.0506
0.4203	1.0518
0.4206	1.0530
0.4208	1.0542
0.4210	1.0554
0.4213	1.0565
0.4215	1.0577
0.4217	1.0588
0.4220	1.0599
0.4222	1.0610
0.4225	1.0621
0.4227	1.0632
0.4229	1.0643
0.4232	1.0653
0.4234	1.0664
0.4236	1.0674
0.4238	1.0684
0.4241	1.0694
0.4243	1.0704
0.4245	1.0714
0.4247	1.0724
0.4250	1.0733
0.4252	1.0743
0.4254	1.0752
0.4256	1.0761

0.4258	1.0771
0.4261	1.0780
0.4263	1.0789
0.4265	1.0797
0.4267	1.0806
0.4269	1.0815
0.4271	1.0823
0.4273	1.0832
0.4275	1.0840
0.4277	1.0848
	1.0857
0.4279	1.0857
0.4281	1.0865
0.4283	1.0873
0.4285	1.0880
0.4287	1.0888
0.4289	1.0896
0.4291	1.0904
0.4293	1.0911
0.4295	1.0918
0.4297	1.0926
0.4299	1.0933
0.4301	1.0940
0.4303	1.0947
0.4305	1.0954
0.4306	1.0961
0.4308	1.0968
0.4310	1.0975
0.4312	1.0982
0.4314	1.0988
0.4315	1.0995
0.4317	1.1001
0.4319	1.1008
0.4321	1.1014
0.4322	1.1020
0.4324	1.1026
0.4326	1.1032
0.4328	1.1038
0.4329	1.1044
0.4331	1.1050
0.4332	1.1056
0.4334	1.1062
0.4336	1.1068
0.4337	1.1073
0.4339	1.1079
0.4340	1.1084
0.4342	1.1090
0.4344	1.1095
0.4345	1.1100
0.4347	1.1106
0.4348	1.1111
0.4350	1.1116
0.4351	1.1121
0.4353	1.1126
0.4354	1.1131
0.7334	1.1131

0.4355	1.1136
0.4357	1.1141
0.4358	1.1146
0.4360	1.1150
0.4361	1.1155
	1.1160
0.4362	
0.4364	1.1164
0.4365	1.1169
0.4366	1.1173
0.4368	1.1178
0.4369	1.1182
0.4370	1.1186
0.4372	1.1190
0.4373	1.1195
0.4374	1.1199
0.4376	1.1203
0.4377	1.1207
0.4378	1.1211
0.4379	1.1215
0.4380	1.1219
0.4382	1.1223
0.4383	1.1227
0.4384	1.1231
0.4385	1.1234
0.4386	1.1238
0.4387	1.1242
0.4389	1.1245
0.4390	1.1249
0.4391	1.1252
0.4392	1.1256
	1.1259
0.4394	1.1263
0.4395	1.1266
0.4396	1.1270
0.4397	1.1273
0.4398	1.1276
0.4399	1.1279
0.4400	1.1283
0.4401	1.1286
0.4402	1.1289
0.4403	1.1292
0.4404	1.1295
0.4405	1.1298
0.4406	1.1301
0.4407	1.1304
0.4408	1.1307
0.4409	1.1310
0.4410	1.1313
0.4411	1.1316
0.4412	1.1318
0.4413	1.1321
0.4414	1.1324
0.4414	1.1327
0.4415	1.1329

0.4416	1.1332
0.4417	1.1334
0.4418	1.1337
0.4419	1.1340
0.4420	1.1342
0.4420	1.1345
0.4421	1.1347
0.4422	1.1349
0.4423	1.1352
0.4424	1.1354
0.4424	1.1357
0.4425	1.1359
0.4426	1.1361
0.4427	1.1364
	1.1366
0.4427	
0.4428	1.1368
0.4429	1.1370
0.4429	1.1372
0.4430	1.1375
0.4431	1.1377
0.4432	1.1379
	1.1381
0.4432	
0.4433	1.1383
0.4434	1.1385
0.4434	1.1387
0.4435	1.1389
0.4436	1.1391
0.4436	1.1393
	1.1395
0.4437	
0.4438	1.1397
0.4438	1.1398
0.4439	1.1400
0.4439	1.1402
0.4440	1.1404
0.4441	1.1406
0.4441	1.1408
0.4442	1.1409
0.4442	1.1411
0.4443	1.1413
0.4444	1.1414
0.4444	1.1416
0.4445	1.1418
0.4445	1.1419
0.4446	1.1421
0.4446	1.1423
0.4447	1.1424
0.4447	1.1426
0.4448	1.1427
0.4449	1.1429
0.4449	1.1430
0.4450	1.1432
0.4450	1.1433
0.4451	1.1435
0.4451	1.1436

0.4452	1.1438
	1 1 1 2 0
0.4452	1.1439
0.4453	1.1440
0.4453	1.1442
0.4453	1.1443
0.4454	1.1444
0.4454	1.1446
0.4455	1.1447
0.4455	1.1448
0.4456	1.1450
0.4456	1.1451
0.4457	1.1452
0.4457	1.1454
0.4457	1.1455
0.4458	1.1456
0.4458	1.1457
0.4459	1.1458
0.4459	1.1460
0.4460	1.1461
	1.1401
0.4460	1.1462
	1.1463
	1.1403
0.4461	1.1464
	1.1465
	1.1405
0.4461	1.1466
	1.1467
0.4462	1.140/
0.4462	1.1468
0.4463	1.1470
	1.14/0
0.4463	1.1471
	1.1472
0.4463	1.14/2
0.4464	1.1473
	1.1474
0.4464	1.14/4
0.4464	1.1475
	1.1476
0.4465	1.14/0
0.4465	1.1477
	1.1478
	1.14/0
0.4466	1.1479
0.4466	1.1480
0.4466	1.1480
0.4467	1.1481
0.4467	1.1482
0.4467	1.1483
0.4468	1.1484
0.4468	1.1485
0.4468	1.1486
0.4469	1.1487
0.4469	1.1488
0.4469	1.1488
0.4470	1.1489
0.4470	1.1490
0.4470	1.1491
0.4470	1.1492
0.4471	1.1493
0.4471	1.1493
0.4471	1.1494

0.4472	1.1495
0 4472	1 1100
0.4472	1.1496
0.4472	1.1496
	1.1497
0.4472	
0.4473	1.1498
0.4473	1.1499
0.4473	1.1499
0.4473	1.1500
0.4474	1.1501
0.4474	1.1501
0.4474	1.1502
0.4474	1.1503
0.4475	1.1504
0.4475	1.1504
0.4475	1.1505
0.4475	1.1506
0.4475	1.1506
0.4476	1.1507
0.4476	1.1507
0.4476	1.1508
0.4476	1.1509
0.4477	1.1509
0.4477	1.1510
0.4477	1.1510
0.4477	1.1511
0.4477	1.1512
0.4478	1.1512
0.4478	1.1513
0.4478	1.1513
0.4478	1.1514
0.4478	1.1514
0.4479	1.1515
0.4479	1.1516
0.4479	1.1516
0.4479	1.1517
0.4479	1.1517
0.4480	1.1518
0.4480	1.1518
0.4480	1.1519
0.4480	1.1519
0.4480	1.1520
0.4480	1.1520
0.4481	1.1521
0.4481	1.1521
0.4481	1.1522
0.4481	1.1522
0.4481	1.1523
0.4481	1.1523
0.4482	1.1523
0.4482	1.1524
0.4482	1.1524
0.4482	1.1525
0.4482	1.1525
0.4482	1.1526

0.4483	1.1526
0.4483	1.1526
0.4483	1.1527
0.4483	1.1527
0.4483	1.1528
0.4483	1.1528
0.4483	1.1528
0.4484	1.1529
0.4484	1.1529
0.4484	1.1530
0.4484	1.1530
0.4484	1.1530
0.4484	1.1531
0.4484	1.1531
0.4485	1.1531
0.4485	1.1532
0.4485	1.1532
0.4485	1.1532
0.4485	1.1533
0.4485	1.1533
0.4485	1.1533
0.4485	1.1534
0.4485	1.1534
0.4486	1.1534
0.4486	1.1535
0.4486	1.1535
0.4486	1.1535
0.4486	1.1536
0.4486	1.1536
0.4486	1.1536
0.4486	1.1537
0.4487	1.1537
0.4487	1.1537
0.4487	1.1538
0.4487	1.1538
0.4487	1.1538
0.4487	1.1538
0.4487	1.1539
0.4487	1.1539
0.4487	1.1539
0.4487	1.1539
	1 1540
0.4488	1.1540
0.4488	1.1540
	1.1540
0.4488	1.1540
0.4488	1.1541
	1.1541
0.4488	1.1541
	1.1541
0.4488	1.1542
0.4488	1.1542
0.4488	1.1542
0.4488	1.1542
0.4488	1.1542
0.4489	1.1543
0.4402	T. T. T.

0.4489	1.1543
0.4489	1.1543
0.4489	1.1543
0.4489	1.1544
0.4489	1.1544
0.4489	1.1544
0.4489	1.1544
0.4489	1.1544
0.4489	1.1545
0.4489	1.1545
0.4489	1.1545
0.4490	1.1545
0.4490	1.1545
	1.1546
0.4490	
0.4490	1.1546
0.4490	1.1546
0.4490	1.1546
0.4490	1.1546
0.4490	1.1547
	1.1547
0.4490	
0.4490	1.1547
0.4490	1.1547
0.4490	1.1547
0.4490	1.1548
0.4490	1.1548
0.4490	1.1548
0.4491	1.1548
0.4491	1.1548
0.4491	1.1548
0.4491	1.1549
0.4491	1.1549
0.4491	1.1549
0.4491	1.1549
0.4491	1.1549
0.4491	1.1549
0.4491	1.1550
0.4491	1.1550
0.4491	1.1550
0.4491	1.1550
0.4491	1.1550
0.4491	1.1550
0.4491	1.1550
0.4491	1.1551
0.4491	1.1551
0.4492	1.1551
0.4492	1.1551
0.4492	
	1.1551
0.4492	1.1551
0.4492	1.1551
0.4492	1.1552
0.4492	1.1552
0.4492	1.1552
0.4492	1.1552
0.4492	1.1552

0.4492	1.1552
	1.1552
0.4492	1.1552
0.4492	1.1552
	1.1553
	1.1555
0.4492	1.1553
	1 1550
0.4492	1.1553
0.4492	1.1553
0.4492	1.1553
0.4492	1.1553
0.4492	1.1553
0.4492	1.1553
0.4492	1.1553
0.4492	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1554
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1555
0.4493	1.1556
0.4493	1.1556
0.4493	1.1556
0.4493	1.1556
0.4493	1.1556
0.4493	1.1556
	1 1556
0.4493	1.1556
0.4493	1.1556
	1.1556
0.4493	
0.4493	1.1556
0.4494	1.1556
0.4494	1.1556
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
U . 11/1	± • ± J J /

0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1557
0.4494	1.1558
0.4494	1.1558
0.4494	1.1558
0.4494	1.1558
0.4494	1.1558
0.4494	1.1558
0.4494	1.1558
0.4494	1.1558
0.4494	1.1558
	1.1556
0.4494	1.1558
	1.1558
0.4494	1.1556
0.4494	1.1558
	1 1550
0.4494	1.1558
0.4494	1.1558
	1 1550
0.4494	1.1558
0.4494	1.1558
	1 1550
0.4494	1.1558
0.4494	1.1559
	1 1550
0.4494	1.1559
0.4494	1.1559
	1 1550
0.4494	1.1559
0.4494	1.1559
0.4494	1.1559
0.4494	1.1559
0.4494	1.1559
0.4494	1.1559
0.4494	1.1559
0.4494	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1559
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560

0.4495	1.1560
	1.1560
	1.1500
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1560
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561

0 1105	1.1561
0.4495	
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
0.4495	1.1561
	1.1561
0.4495	
0.4495	1.1561
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4495	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
J . 1 1 J U	1.100

0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
	1 1560
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1562
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563

0 1106	1.1563
0.4496	
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
	1.1563
0.4496	
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	
	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563

0 1106	1.1563
0.4496	
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	
	1.1563
0.4496	1.1563

0 1106	1 1562
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
	1.1563
0.4496	
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
	1.1563
0.4496	
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
	1.1563
0.4496	
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563
0.4496	1.1563

```
0.4496 1.1563
0.4496 1.1563
0.4496 1.1563
i =
```


Attention important j'ai epsilon 2 qui est inversé donc probablement epsilon 1 aussi

```
% Rapport sous forme d'un pdf, on peut le générer avec un rapport
% automatique matlab. Il faut pouvoir interpréter les résultats obtenus
```

Question 6.2

```
% cx_itere= linspace(-1,4,1049);
% cy_itere= linspace(-1,4,1049);
% figure;
% contour(cx_itere,cy_itere,[it(:,1), it(:,2)]);
```

```
% figure;
plot(ctls(it(:,1), it(:,2),xi,yi),i)
%

result_q6_2 = [];

for (variable = 1:size(it))
    result_q6_2 = [result_q6_2;ctls(it(variable,1),it(variable,2),xi,yi)];
end

figure;
plot(result_q6_2)
% hold on
% plot(abs(it(:,1)-it(:,2)))
% hold off
```


Question 8

```
[b_newton, it_newton, i_newton] = quasi_newton(0.5,0.5,xi,yi,10^-3);
[b_newton2, it_newton2, i_newton2] = quasi_newton(2.67,1.37,xi,yi,10^-3);
```

```
figure ;
    contour(cx2,cy2,epsilon2', 100)
    hold on
    axis equal
    plot(it_newton(:,1), it_newton(:,2))
    % Test affichage des solutions de la fonction de ciyt
figure;
    plot(xi,yi,'+')
    %plot([cx(min cx),cy(min cy)])
    viscircles(b_newton,1.5)
    viscircles(b_newton2,1.5)%
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2) - 1 ;
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
                                                                       ,k,0,29
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
1
2
3
      %function[s]=fletcher_function(cx,cy,xi,yi,epsilon,cxo,cyo)
      function[s]=fletcher(cx,cy,a,d,xi,yi) % d est un doublet cx, cy
```

```
5
          dbtype('grad_ctls.m') ;
6
          dbtype('ctls.m');
7
8
          al = 0 ; % alpha left
9
          ar = inf ; % alpha right
10
11
          lambda = 20;
12
          B1 = 10^{4} - 3;
13
          B2 = 0.99;
14
          %y = 0 ; % : Gamma On le déclare et on lui donne sa valeur
15
16
          % Nous devons calculer gamma à partir de a,B1,B2, d est moins le
17
18
          % gradient
19
20
          y = -B1*(grad\_ctls(cx,cy,xi,yi)') * d; % Il faut que d soit un
vecteur colonne
21
22
23
          % Condition de Wolf 1 et Wolf 2 Il vaut mieux faire un while
24
25
          while (ctls(cx+a*d(1),cy+a*d(2),xi,yi) > ctls(cx,cy,xi,yi) - a*y)
 | ((grad_ctls(cx+a*d(1),cy+a*d(2),xi,yi)')*d/((grad_ctls(cx,cy,xi,yi)')*d) >
B2 ) % On calcule la fonction de cout et on vérifie
26
27
              % Condition de Wolf 1
28
              if(ctls(cx+a*d(1),cy+a*d(2),xi,yi) <= ctls(cx,cy,xi,yi) - a*y)
% Si la condition de Wolf 1 est respectée
                  al = a;
29
                      if(ar >= inf )
30
                           a = lambda*a ;
31
32
                      else
33
                          a = (al+ar)/2 ;
34
                      end
35
              else % Si elle n'est pas respectée
                  ar = a;
36
37
                  a = (al + ar)/2 ;
38
              end
39
          end
40
          s = a;
41
      end
     1
           0
           1
Grad\ fk =
    2.7379
   -7.5389
Grad fk =
    2.7379
```

```
-7.5389
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
     1
Grad_fk =
  -3.5373
   -1.7487
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
        for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2) - 1 ;
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
     2
Grad_fk =
    2.4618
   -0.3485
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
         d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
     3
Grad_fk =
    2.3038
   -0.2934
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
     4
Grad\ fk =
   2.1584
   -0.2780
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

5

```
Grad\ fk =
    2.0222
   -0.2608
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
     6
Grad\ fk =
    1.8949
   -0.2448
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
         d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
9
         for k = 1: length(xi)
10
            d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
         %syms k ;
7
         d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    7
Grad_fk =
   1.7756
  -0.2298
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
         %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
     8
Grad\ fk =
   1.6639
   -0.2157
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
     9
Grad_fk =
   1.5593
   -0.2024
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    10
Grad\ fk =
    1.4614
   -0.1900
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
         end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    11
Grad\ fk =
    1.3696
```

```
-0.1783
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    12
Grad_fk =
    1.2836
   -0.1673
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    13
Grad_fk =
   1.2031
   -0.1569
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    14
Grad_fk =
    1.1276
   -0.1472
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    15
Grad_fk =
   1.0569
   -0.1381
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.9906
   -0.1296
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    17
Grad\ fk =
    0.9285
   -0.1215
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    18
Grad_fk =
   0.8703
   -0.1140
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    19
Grad\ fk =
    0.8158
   -0.1069
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    20
Grad_fk =
   0.7647
   -0.1003
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    21
Grad\ fk =
   0.7168
   -0.0941
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    22
Grad\ fk =
    0.6719
```

```
-0.0882
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    23
Grad_fk =
    0.6299
   -0.0827
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    24
Grad_fk =
   0.5904
   -0.0776
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    25
Grad_fk =
    0.5535
   -0.0728
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    26
Grad_fk =
   0.5188
   -0.0682
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.4864
   -0.0640
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    28
Grad\ fk =
    0.4559
   -0.0600
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
counter =
    29
Grad_fk =
   0.4274
   -0.0563
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    30
Grad\ fk =
    0.4007
   -0.0528
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    31
Grad_fk =
   0.3756
   -0.0495
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    32
Grad\ fk =
   0.3521
   -0.0464
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
         end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    33
Grad\ fk =
    0.3301
```

```
-0.0435
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    34
Grad_fk =
    0.3094
   -0.0408
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    35
Grad_fk =
   0.2901
   -0.0382
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    36
Grad_fk =
    0.2719
   -0.0359
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    37
Grad_fk =
   0.2549
   -0.0336
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.2390
   -0.0315
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    39
Grad\ fk =
   0.2240
   -0.0296
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    40
Grad_fk =
   0.2100
   -0.0277
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    41
Grad\ fk =
    0.1969
   -0.0260
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    42
Grad_fk =
   0.1846
   -0.0244
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    43
Grad\ fk =
   0.1730
   -0.0228
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
         end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    44
Grad\ fk =
    0.1622
```

```
-0.0214
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    45
Grad_fk =
    0.1521
   -0.0201
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    46
Grad_fk =
   0.1426
   -0.0188
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    47
Grad_fk =
    0.1337
   -0.0176
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    48
Grad fk =
   0.1253
   -0.0165
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.1175
   -0.0155
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    50
Grad\ fk =
   0.1101
   -0.0145
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
counter =
    51
Grad_fk =
   0.1032
   -0.0136
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
          %syms k ;
6
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    52
Grad\ fk =
    0.0968
   -0.0128
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    53
Grad_fk =
   0.0907
   -0.0120
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    54
Grad\ fk =
   0.0851
   -0.0112
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    55
Grad\ fk =
    0.0797
```

```
-0.0105
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    56
Grad_fk =
    0.0748
   -0.0099
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    57
Grad_fk =
   0.0701
   -0.0093
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    58
Grad_fk =
    0.0657
   -0.0087
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    59
Grad_fk =
   0.0616
   -0.0081
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.0577
   -0.0076
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    61
Grad\ fk =
   0.0541
   -0.0072
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    62
Grad_fk =
   0.0508
   -0.0067
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    63
Grad\ fk =
    0.0476
   -0.0063
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    64
Grad_fk =
   0.0446
   -0.0059
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    65
Grad\ fk =
   0.0418
  -0.0055
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
cy)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
    66
Grad\ fk =
    0.0392
```

```
-0.0052
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    67
Grad_fk =
    0.0368
   -0.0049
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    68
Grad_fk =
   0.0345
   -0.0046
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    69
Grad_fk =
    0.0323
   -0.0043
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    70
Grad_fk =
   0.0303
   -0.0040
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.0284
   -0.0038
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    72
Grad\ fk =
    0.0266
   -0.0035
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    73
Grad_fk =
   0.0250
   -0.0033
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    74
Grad\ fk =
    0.0234
   -0.0031
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    75
Grad_fk =
   0.0219
   -0.0029
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    76
Grad\ fk =
   0.0206
  -0.0027
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
cy)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
         %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
    77
Grad\ fk =
    0.0193
```

```
-0.0025
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    78
Grad_fk =
    0.0181
   -0.0024
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    79
Grad_fk =
   0.0169
   -0.0022
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    80
Grad_fk =
    0.0159
   -0.0021
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    81
Grad_fk =
   0.0149
   -0.0020
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.0140
   -0.0018
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    83
Grad\ fk =
    0.0131
   -0.0017
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    84
Grad_fk =
   0.0123
   -0.0016
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
          %syms k ;
6
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    85
Grad\ fk =
    0.0115
   -0.0015
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    86
Grad_fk =
   0.0108
   -0.0014
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    87
Grad\ fk =
   0.0101
  -0.0013
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
cy)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
    88
Grad\ fk =
    0.0095
```

```
-0.0013
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    89
Grad_fk =
    0.0089
   -0.0012
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    90
Grad_fk =
   0.0083
   -0.0011
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    91
Grad_fk =
    0.0078
   -0.0010
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    92
Grad_fk =
   0.0073
   -0.0010
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
Grad\ fk =
    0.0069
   -0.0009
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    94
Grad\ fk =
    0.0064
   -0.0009
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    95
Grad_fk =
   0.0060
   -0.0008
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    96
Grad\ fk =
    0.0057
   -0.0007
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    97
Grad_fk =
   0.0053
   -0.0007
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    98
Grad\ fk =
   0.0050
  -0.0007
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
cy)^2)) - 1 );
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
    99
Grad\ fk =
    0.0047
```

```
-0.0006
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   100
Grad_fk =
    0.0044
   -0.0006
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   101
Grad_fk =
   0.0041
   -0.0005
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   102
Grad_fk =
    0.0038
   -0.0005
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   103
Grad_fk =
   0.0036
   -0.0005
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

104

```
Grad\ fk =
    0.0034
   -0.0004
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   105
Grad\ fk =
   0.0032
   -0.0004
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   106
Grad_fk =
   0.0030
   -0.0004
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   107
Grad\ fk =
    0.0028
   -0.0004
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   108
Grad_fk =
   0.0026
   -0.0003
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   109
Grad\ fk =
   0.0024
  -0.0003
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   110
Grad\ fk =
    0.0023
```

```
-0.0003
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   111
Grad_fk =
    0.0021
   -0.0003
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   112
Grad_fk =
   0.0020
   -0.0003
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   113
Grad_fk =
    0.0019
   -0.0002
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   114
Grad_fk =
   0.0018
   -0.0002
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
115
```

```
Grad\ fk =
    0.0017
   -0.0002
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   116
Grad\ fk =
    0.0016
   -0.0002
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   117
Grad_fk =
   0.0015
   -0.0002
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
          %syms k ;
6
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   118
Grad\ fk =
    0.0014
   -0.0002
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   119
Grad_fk =
   0.0013
   -0.0002
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   120
Grad fk =
   0.0012
  -0.0002
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
cy)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
   121
Grad\ fk =
    0.0011
```

```
-0.0001
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   122
Grad_fk =
    0.0011
   -0.0001
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
         n = length(xi);
2
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   123
Grad_fk =
   1.0e-03 *
   0.9900
  -0.1309
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
```

```
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
counter =
   124
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
          for k = 1: length(xi)
9
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
7
2
3
      %function[s]=fletcher_function(cx,cy,xi,yi,epsilon,cxo,cyo)
      function[s]=fletcher(cx,cy,a,d,xi,yi) % d est un doublet cx, cy
4
          dbtype('grad_ctls.m');
5
6
          dbtype('ctls.m') ;
7
8
          al = 0; % alpha left
          ar = inf ; % alpha right
9
10
11
          lambda = 20;
12
13
          B1 = 10^{4} - 3;
          B2 = 0.99;
14
          %y = 0 ; % : Gamma On le déclare et on lui donne sa valeur
15
16
17
          % Nous devons calculer gamma à partir de a,B1,B2, d est moins le
18
          % gradient
19
20
          y = -B1*(qrad\ ctls(cx,cy,xi,yi)') * d; % Il\ faut\ que\ d\ soit\ un
vecteur colonne
21
22
23
          % Condition de Wolf 1 et Wolf 2 Il vaut mieux faire un while
24
          while (ctls(cx+a*d(1),cy+a*d(2),xi,yi) > ctls(cx,cy,xi,yi) - a*y)
 | ((grad_ctls(cx+a*d(1),cy+a*d(2),xi,yi)')*d/((grad_ctls(cx,cy,xi,yi)')*d) >
    ) % On calcule la fonction de cout et on vérifie
B2
26
              % Condition de Wolf 1
27
              if(ctls(cx+a*d(1),cy+a*d(2),xi,yi) \le ctls(cx,cy,xi,yi) - a*y)
28
% Si la condition de Wolf 1 est respectée
29
                  al = a;
30
                      if(ar >= inf)
31
                           a = lambda*a ;
32
                      else
33
                          a = (al+ar)/2 ;
34
                      end
35
              else % Si elle n'est pas respectée
36
                  ar = a ;
37
                  a = (al + ar)/2;
38
              end
39
          end
40
          s = a;
41
      end
     1
           0
     0
           1
```

 $Grad\ fk =$

```
-0.9336
           -0.3518
Grad fk =
           -0.9336
           -0.3518
                      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                                       n = length(xi);
3
                                       d = [0;0];
4
                                       R = 1.5;
5
6
                                       %syms k ;
7
                                       d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
        ) ;
8
9
                                      for k = 1: length(xi)
10
11
                                                   d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (xi(k)-cx)^2 + (yi(k) - cx)^2 + (yi(k)-cx)^2 + (yi(k)
12
                                                      d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
 (cy)^2)) - 1);
13
14
                                       end
15
                       end
                       function[d]=ctls(cx,cy,xi,yi)
1
2
                                       n = length(xi);
3
                                       d = 0;
                                       R = 1.5;
4
5
6
                                       %syms k ;
7
                                        d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
      ) ;
8
9
                                       for k = 1:30
10
                                                    d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                                       end
12
                       end
counter =
                   1
Grad\ fk =
                0.3894
                0.4062
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
         %syms k ;
7
         d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
        for k = 1:length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
11
(CY)^2)) - 1);
            d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
         R = 1.5;
5
6
         %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
counter =
     2
Grad_fk =
    0.3849
    0.3782
     function[d]=grad ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
```

```
for k = 1: length(xi)
10
11
                                                d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (yi(k) - cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(x
 (cy)^2)) - 1);
                                               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
  (CY)^2) - 1 ;
13
14
                                 end
15
                    end
                    function[d]=ctls(cx,cy,xi,yi)
1
                                 n = length(xi);
2
3
                                  d = 0;
                                  R = 1.5;
4
5
6
                                   %syms k ;
                                   d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                                  for k = 1:30
                                                 d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
                                   end
12
                    end
counter =
                 3
Grad fk =
              0.3709
              0.3655
                    function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                                  n = length(xi);
3
                                  d = [0;0];
                                  R = 1.5;
5
6
                                  %syms k ;
7
                                  d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
                                 for k = 1: length(xi)
9
10
                                               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
 (cy)^2)) - 1);
                                              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
  (cy)^2)) - 1);
13
14
                                  end
                    end
15
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
           for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
counter =
     4
Grad_fk =
    0.3595
    0.3541
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
```

```
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
     5
Grad\ fk =
    0.3482
    0.3431
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
         for k = 1: length(xi)
9
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
counter =
     6
Grad\ fk =
```

```
0.3324
1
                      function[d]=grad_ctls(cx,cy,xi,yi)
                                     n = length(xi);
2
3
                                     d = [0;0];
                                     R = 1.5 ;
4
5
6
                                     %syms k ;
7
                                     d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
        ) ;
8
                                    for k = 1: length(xi)
9
10
                                                    d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (yi(k) - cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(xi(k)-cx)*(x
  (CY)^2) - 1 ;
                                                  d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
  (CY)^2)) - 1);
13
14
                                     end
15
                      end
                      function[d]=ctls(cx,cy,xi,yi)
1
                                    n = length(xi);
2
3
                                     d = 0;
4
                                     R = 1.5 ;
5
6
                                     %syms k ;
7
                                      d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
        ) ;
8
9
                                     for k = 1:30
10
                                                     d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                                     end
12
                      end
counter =
                   7
Grad_fk =
               0.3268
               0.3221
1
                      function[d]=grad_ctls(cx,cy,xi,yi)
                                     n = length(xi);
2
3
                                     d = [0;0];
                                     R = 1.5;
4
5
```

0.3374

```
6
           %syms k ;
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
7
                                                                             ,k,0,29
  ) ;
8
9
           for k = 1: length(xi)
10
11
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
           n = length(xi);
3
           d = 0;
4
           R = 1.5 ;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
           for k = 1:30
9
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
counter =
     8
Grad\ fk =
    0.3166
    0.3120
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
           d = [0;0];
           R = 1.5 ;
4
5
6
           %syms k ;
7
           %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
                                                                             , k, 0, 29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2) - 1 ;
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
```

```
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
     9
Grad fk =
    0.3067
    0.3023
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
(CY)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    10
Grad fk =
    0.2972
    0.2929
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

11

```
Grad\ fk =
    0.2879
    0.2838
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    12
Grad\ fk =
    0.2789
    0.2749
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    13
Grad_fk =
    0.2702
    0.2664
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    14
Grad\ fk =
    0.2618
    0.2581
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    15
Grad_fk =
    0.2536
    0.2500
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    16
Grad\ fk =
    0.2457
    0.2422
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    17
Grad\ fk =
    0.2380
```

```
0.2347
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    18
Grad_fk =
    0.2306
    0.2274
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    19
Grad_fk =
    0.2234
    0.2203
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    20
Grad_fk =
    0.2164
    0.2134
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    21
Grad\ fk =
    0.2096
    0.2068
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

22

```
Grad\ fk =
    0.2031
    0.2003
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    23
Grad\ fk =
    0.1967
    0.1941
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
counter =
    24
Grad_fk =
    0.1906
    0.1880
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    25
Grad\ fk =
    0.1846
    0.1822
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    26
Grad_fk =
    0.1789
    0.1765
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    27
Grad\ fk =
    0.1733
    0.1710
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
counter =
    28
Grad\ fk =
    0.1679
```

```
0.1657
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    29
Grad_fk =
    0.1626
    0.1605
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    30
Grad_fk =
    0.1576
    0.1555
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    31
Grad_fk =
    0.1526
    0.1506
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    32
Grad\ fk =
    0.1479
    0.1459
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
33
```

```
Grad\ fk =
    0.1433
    0.1414
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    34
Grad\ fk =
    0.1388
    0.1370
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
counter =
    35
Grad_fk =
    0.1345
    0.1327
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    36
Grad\ fk =
    0.1303
    0.1286
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    37
Grad_fk =
    0.1262
    0.1246
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    38
Grad\ fk =
    0.1222
    0.1207
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
         end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    39
Grad\ fk =
    0.1184
```

```
0.1169
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    40
Grad_fk =
    0.1147
    0.1133
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    41
Grad_fk =
    0.1111
    0.1097
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    42
Grad_fk =
    0.1077
    0.1063
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    43
Grad\ fk =
    0.1043
    0.1030
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

44

```
Grad\ fk =
    0.1011
    0.0998
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    45
Grad\ fk =
    0.0979
    0.0967
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    46
Grad_fk =
    0.0948
    0.0936
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    47
Grad\ fk =
    0.0919
    0.0907
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    48
Grad_fk =
    0.0890
    0.0879
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    49
Grad\ fk =
    0.0862
    0.0852
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
         end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    50
Grad\ fk =
    0.0835
```

```
0.0825
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    51
Grad_fk =
    0.0809
    0.0799
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    52
Grad_fk =
    0.0784
    0.0774
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    53
Grad_fk =
    0.0759
    0.0750
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    54
Grad\ fk =
    0.0736
    0.0727
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

55

```
Grad\ fk =
    0.0713
    0.0704
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    56
Grad\ fk =
    0.0690
    0.0682
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    57
Grad_fk =
    0.0669
    0.0661
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    58
Grad\ fk =
    0.0648
    0.0640
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    59
Grad_fk =
    0.0628
    0.0620
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    60
Grad\ fk =
    0.0608
    0.0601
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
         end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    61
Grad\ fk =
    0.0589
```

```
0.0582
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    62
Grad_fk =
    0.0571
    0.0564
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    63
Grad_fk =
    0.0553
    0.0546
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    64
Grad_fk =
    0.0536
    0.0529
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    65
Grad\ fk =
    0.0519
    0.0513
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

66

```
Grad\ fk =
    0.0503
    0.0497
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    67
Grad\ fk =
    0.0487
    0.0481
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    68
Grad_fk =
    0.0472
    0.0466
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    69
Grad\ fk =
    0.0457
    0.0452
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    70
Grad_fk =
    0.0443
    0.0437
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    71
Grad\ fk =
    0.0429
    0.0424
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
         end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    72
Grad\ fk =
    0.0416
```

```
0.0411
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    73
Grad_fk =
    0.0403
    0.0398
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    74
Grad_fk =
    0.0390
    0.0385
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    75
Grad_fk =
    0.0378
    0.0373
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    76
Grad\ fk =
    0.0366
    0.0362
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
77
```

```
Grad\ fk =
    0.0355
    0.0350
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    78
Grad\ fk =
    0.0343
    0.0339
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
    79
Grad_fk =
    0.0333
    0.0329
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    80
Grad\ fk =
    0.0322
    0.0319
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    81
Grad_fk =
    0.0312
    0.0309
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    82
Grad\ fk =
    0.0303
    0.0299
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
counter =
    83
Grad\ fk =
    0.0293
```

```
0.0290
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    84
Grad_fk =
    0.0284
    0.0281
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    85
Grad_fk =
    0.0275
    0.0272
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    86
Grad_fk =
    0.0266
    0.0263
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    87
Grad\ fk =
    0.0258
    0.0255
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

88

```
Grad\ fk =
    0.0250
    0.0247
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    89
Grad\ fk =
    0.0242
    0.0239
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
        end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
counter =
    90
Grad_fk =
    0.0235
    0.0232
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    91
Grad\ fk =
    0.0227
    0.0225
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
    92
Grad_fk =
    0.0220
    0.0218
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
    93
Grad\ fk =
    0.0213
    0.0211
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    94
Grad\ fk =
    0.0207
```

```
0.0204
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    95
Grad_fk =
    0.0200
    0.0198
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
    96
Grad_fk =
    0.0194
    0.0192
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
    97
Grad_fk =
    0.0188
    0.0186
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
    98
Grad\ fk =
    0.0182
    0.0180
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
99
```

1

```
Grad\ fk =
    0.0176
    0.0174
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   100
Grad\ fk =
    0.0171
    0.0169
      function[d]=grad_ctls(cx,cy,xi,yi)
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   101
Grad_fk =
    0.0166
    0.0164
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   102
Grad\ fk =
    0.0160
    0.0158
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   103
Grad_fk =
    0.0155
    0.0154
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   104
Grad\ fk =
    0.0150
    0.0149
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
11
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
counter =
   105
Grad\ fk =
    0.0146
```

```
0.0144
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   106
Grad_fk =
    0.0141
    0.0140
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   107
Grad_fk =
    0.0137
    0.0135
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   108
Grad_fk =
    0.0133
    0.0131
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   109
Grad\ fk =
    0.0128
    0.0127
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
110
```

```
Grad\ fk =
    0.0124
    0.0123
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   111
Grad\ fk =
    0.0120
    0.0119
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   112
Grad_fk =
    0.0117
    0.0115
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
          %syms k ;
6
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   113
Grad\ fk =
    0.0113
    0.0112
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   114
Grad_fk =
    0.0110
    0.0108
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   115
Grad\ fk =
    0.0106
    0.0105
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
   116
Grad\ fk =
    0.0103
```

```
0.0102
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   117
Grad_fk =
    0.0100
    0.0098
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   118
Grad_fk =
    0.0096
    0.0095
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   119
Grad_fk =
    0.0093
    0.0092
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   120
Grad\ fk =
    0.0091
    0.0089
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
          %syms k ;
6
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

121

```
Grad\ fk =
    0.0088
    0.0087
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   122
Grad\ fk =
    0.0085
    0.0084
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
         end
12
     end
counter =
   123
Grad_fk =
    0.0082
    0.0081
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   124
Grad\ fk =
    0.0080
    0.0079
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   125
Grad_fk =
    0.0077
    0.0076
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   126
Grad\ fk =
    0.0075
    0.0074
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   127
Grad\ fk =
    0.0073
```

```
0.0072
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   128
Grad_fk =
    0.0070
    0.0069
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   129
Grad_fk =
    0.0068
    0.0067
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   130
Grad_fk =
    0.0066
    0.0065
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   131
Grad\ fk =
    0.0064
    0.0063
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
132
```

```
Grad\ fk =
    0.0062
    0.0061
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   133
Grad\ fk =
    0.0060
    0.0059
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   134
Grad_fk =
    0.0058
    0.0057
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   135
Grad\ fk =
    0.0056
    0.0056
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   136
Grad_fk =
    0.0054
    0.0054
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
  137
Grad\ fk =
    0.0053
    0.0052
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
   138
Grad\ fk =
    0.0051
```

```
0.0051
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   139
Grad_fk =
    0.0050
    0.0049
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   140
Grad_fk =
    0.0048
    0.0047
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   141
Grad_fk =
    0.0046
    0.0046
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   142
Grad\ fk =
    0.0045
    0.0045
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
143
```

```
Grad\ fk =
    0.0044
    0.0043
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   144
Grad\ fk =
    0.0042
    0.0042
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
         %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   145
Grad_fk =
    0.0041
    0.0040
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   146
Grad\ fk =
    0.0040
    0.0039
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   147
Grad_fk =
    0.0038
    0.0038
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   148
Grad\ fk =
    0.0037
    0.0037
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
           end
12
      end
counter =
   149
Grad\ fk =
    0.0036
```

```
0.0036
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   150
Grad_fk =
    0.0035
    0.0035
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   151
Grad_fk =
    0.0034
    0.0033
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   152
Grad_fk =
    0.0033
    0.0032
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   153
Grad\ fk =
    0.0032
    0.0031
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
154
```

```
Grad\ fk =
    0.0031
    0.0030
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   155
Grad\ fk =
    0.0030
    0.0029
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   156
Grad_fk =
    0.0029
    0.0029
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   157
Grad\ fk =
    0.0028
    0.0028
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   158
Grad_fk =
    0.0027
    0.0027
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   159
Grad\ fk =
    0.0026
    0.0026
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
   160
Grad\ fk =
    0.0025
```

```
0.0025
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   161
Grad_fk =
    0.0025
    0.0024
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   162
Grad_fk =
    0.0024
    0.0024
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   163
Grad_fk =
    0.0023
    0.0023
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   164
Grad\ fk =
    0.0022
    0.0022
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

165

```
Grad\ fk =
    0.0022
    0.0021
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   166
Grad\ fk =
    0.0021
    0.0021
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   167
Grad_fk =
    0.0020
    0.0020
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   168
Grad\ fk =
    0.0020
    0.0019
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   169
Grad_fk =
    0.0019
    0.0019
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
  170
Grad\ fk =
    0.0019
    0.0018
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1);
13
14
          end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
     end
counter =
   171
Grad\ fk =
    0.0018
```

```
0.0018
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   172
Grad_fk =
    0.0017
    0.0017
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   173
Grad_fk =
    0.0017
    0.0017
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   174
Grad_fk =
    0.0016
    0.0016
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   175
Grad\ fk =
    0.0016
    0.0016
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
176
```

```
Grad\ fk =
    0.0015
    0.0015
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   177
Grad\ fk =
    0.0015
    0.0015
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   178
Grad_fk =
    0.0014
    0.0014
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   179
Grad\ fk =
    0.0014
    0.0014
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
77
(CY)^2) - 1 ;
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
```

```
d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   180
Grad_fk =
    0.0013
    0.0013
      function[d]=grad ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
          end
15
     end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
```

```
12 end
counter =
   181
Grad\ fk =
    0.0013
    0.0013
1
     function[d]=grad_ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
cy)^2)) - 1 );
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   182
Grad\ fk =
    0.0013
```

```
0.0013
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   183
Grad_fk =
    0.0012
    0.0012
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
          end
15
      end
     function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   184
Grad_fk =
    0.0012
    0.0012
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
          d = [0;0];
3
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1 );
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
cy)^2)) - 1 );
13
```

```
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   185
Grad_fk =
    0.0011
    0.0011
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
```

```
d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
12
      end
counter =
   186
Grad\ fk =
    0.0011
    0.0011
      function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
187
```

```
Grad\ fk =
    0.0011
    0.0011
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = [0;0];
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
12
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                        , k, 0, 29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   188
Grad\ fk =
    0.0010
    0.0010
      function[d]=grad_ctls(cx,cy,xi,yi)
1
```

```
n = length(xi);
2
3
         d = [0;0];
4
         R = 1.5 ;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(CY)^2)) - 1);
13
14
         end
15
     end
1
     function[d]=ctls(cx,cy,xi,yi)
         n = length(xi);
2
3
         d = 0;
         R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
         end
12
     end
counter =
   189
Grad_fk =
    0.0010
    0.0010
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
```

```
d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
      end
counter =
   190
Grad\ fk =
   1.0e-03 *
    0.9811
    0.9698
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
          for k = 1: length(xi)
9
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))))
12
(cy)^2)) - 1);
13
14
          end
      end
15
```

```
function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
 ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   191
Grad_fk =
   1.0e-03 *
    0.9504
    0.9395
1
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
1
      function[d]=ctls(cx,cy,xi,yi)
2
         n = length(xi);
          d = 0;
3
4
          R = 1.5 ;
5
6
          %syms k ;
          %d = symsum( ( sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R )^2
                                                                       ,k,0,29
  ) ;
```

```
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   192
Grad_fk =
   1.0e-03 *
    0.9207
    0.9101
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
8
9
          for k = 1: length(xi)
10
              d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
```

```
193
```

```
Grad\ fk =
   1.0e-03 *
    0.8920
    0.8817
     function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
11
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(cy)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   194
Grad\ fk =
   1.0e-03 *
    0.8641
```

```
0.8541
```

```
function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5 ;
4
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(cy)^2)) - 1);
              d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = 0;
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   195
Grad_fk =
   1.0e-03 *
    0.8371
    0.8275
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
2
3
          d = [0;0];
          R = 1.5;
5
```

```
6
          %syms k ;
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
7
  ) ;
8
9
          for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(Cy)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
(CY)^2)) - 1);
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
 ) ;
8
          for k = 1:30
9
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   196
Grad_fk =
   1.0e-03 *
    0.8109
    0.8016
     function[d]=grad_ctls(cx,cy,xi,yi)
1
          n = length(xi);
2
3
          d = [0;0];
          R = 1.5;
4
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
         for k = 1: length(xi)
9
10
            d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
cy)^2)) - 1);
```

```
d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
  (CY)^2)) - 1);
13
14
                                   end
15
                    end
                    function[d]=ctls(cx,cy,xi,yi)
1
2
                                   n = length(xi);
                                   d = 0;
3
4
                                   R = 1.5;
5
6
                                   %syms k ;
7
                                   d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
       ) ;
8
9
                                   for k = 1:30
10
                                                 d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
                                   end
12
                    end
counter =
           197
Grad\ fk =
           1.0e-03 *
              0.7856
              0.7765
                    function[d]=grad_ctls(cx,cy,xi,yi)
1
2
                                   n = length(xi);
3
                                   d = [0;0];
4
                                   R = 1.5;
5
6
                                   %syms k ;
                                   d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
7
       ) ;
8
9
                                  for k = 1: length(xi)
10
                                               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2))) + (yi(k) - cx)^2 + (
11
  (CY)^2) - 1 ;
12
                                               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
 (CY)^2)) - 1);
13
14
                                   end
15
                     end
                    function[d]=ctls(cx,cy,xi,yi)
1
2
                                   n = length(xi);
```

```
d = 0;
3
4
           R = 1.5;
5
6
           %syms k ;
7
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
           for k = 1:30
               d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
           end
12
      end
counter =
   198
Grad_fk =
   1.0e-03 *
    0.7610
    0.7523
      function[d]=grad_ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = [0;0];
          R = 1.5;
4
5
6
           %syms k ;
           d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                            ,k,0,29
  ) ;
8
9
          for k = 1: length(xi)
10
               d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
               d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2))) + (yi(k) - cy)*(R/(sqrt((xi(k)-cx)^2) + (yi(k) - cy)^2)))
(cy)^2)) - 1);
13
14
           end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
           R = 1.5;
4
5
6
           %syms k ;
7
           d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
          for k = 1:30
```

```
10
             d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   199
Grad\ fk =
   1.0e-03 *
    0.7373
    0.7288
1
      function[d]=grad_ctls(cx,cy,xi,yi)
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          %d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
12
cy)^2)) - 1 );
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
2
          n = length(xi);
3
          d = 0;
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
10
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
12
      end
counter =
   200
```

```
Grad fk =
   1.0e-03 *
    0.7142
    0.7060
      function[d]=grad_ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
3
          d = [0;0];
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2 ,k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cx)^2)))
(cy)^2)) - 1);
12
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)))
(CY)^2) - 1 ;
13
14
          end
15
      end
      function[d]=ctls(cx,cy,xi,yi)
1
2
          n = length(xi);
          d = 0;
3
4
          R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                       ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
11
          end
12
      end
counter =
   201
Grad\ fk =
   1.0e-03 *
    0.6919
    0.6839
```

```
function[d]=grad ctls(cx,cy,xi,yi)
2
         n = length(xi);
3
         d = [0;0];
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum((sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2, k,0,29)
  ) ;
8
9
         for k = 1: length(xi)
10
             d(1) = d(1) + 2*(xi(k)-cx)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
11
(CY)^2)) - 1);
             d(2) = d(2) + 2*(yi(k)-cy)*(R/(sqrt((xi(k)-cx)^2 + (yi(k) -
(cy)^2)) - 1);
13
14
         end
15
     end
     function[d]=ctls(cx,cy,xi,yi)
1
2
         n = length(xi);
3
         d = 0;
4
         R = 1.5;
5
6
          %syms k ;
7
          d = symsum( (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2
                                                                     ,k,0,29
  ) ;
8
9
          for k = 1:30
              d = d + (sqrt((xi(k)-cx)^2 + (yi(k) - cy)^2)-R)^2;
10
11
          end
12
     end
counter =
   202
ans =
 Group with properties:
    Children: [2×1 Line]
    Visible: on
    HitTest: on
  Use GET to show all properties
ans =
 Group with properties:
```

Children: [2×1 Line]

Visible: on HitTest: on

Use GET to show all properties

Question 9

Published with MATLAB® R2021b