Projektowanie elektronicznych układów sterowania

Zasilacz laboratoryjny

Michał Szczęsny	233845
Albert Sawiński	233839
Michał Witczewski	233851

1. Cel projektu.

Celem projektu było zaprojektowanie układu spełniającego rolę zasilacza laboratoryjnego, przeprowadzenie symulacji potwierdzających działanie a następnie złożenie wszystkich elementów i zaprogramowanie algorytmu sterującego w mikrokontrolerze.

2. Założenia projektu.

- Przygotowanie symulacji części elektrycznej oraz układu symulacji w programie PSIM.
- Dobór odpowiednich elementów elektronicznych oraz ich parametrów.
- Stworzenie schematu układu w programie Eagle oraz zaprojektowanie obwodu drukowanego.
- Zaprojektowanie obudowy w technologii druku 3D.
- Testy poszczególnych części układu na płytce stykowej.
- Montaż urządzenia.
- Testy gotowego urządzenia.

3. Rezultaty.

Przygotowana została symulacja układu w programie PSIM.
Uwzględnione zostały także przypadki, gdy układ został poddany zakłóceniom.

Rys. 3.3 - Przebieg napięcia wyjściowego oraz wartości zadanej w czasie (dla U_{zad} = 15 V).

Rys. 3.4 - Przebieg napięcia wyjściowego oraz wartości zadanej w czasie z dodanym zakłóceniem (dla U_{zad} = 15 V).

• Przeprowadzone symulacje pozwoliły na lepszy dobór parametrów elementów elektronicznych.

- Stworzono schemat układu w programie Eagle oraz zaprojektowano obwód drukowany.
- Zasilacz składa się z trzech równoległych faz, zbudowanych na podstawie tranzystorów N-MOSFET i sterownika IR2101, jak i obwodu LC, który obniża napięcie wejściowe.

Rys. 3.5 - Jedna z trzech faz zasilacza wraz z obwodem sterującym

 Dodana jest również faza której zadaniem jest zasilać wentylator chłodzący. Ponieważ jakość napięcia na tej fazie nie jest krytyczna to zastosowaliśmy tańsze i mniej skomplikowane podejście sterowania obwodem LC poprzez P-MOSFET i diodę zwrotną.

Rys. 3.6 - Faza zasilania wentylatora.

 Mierzenie wartości wyjściowych zasilacza odbywa się za pomocą wbudowanego przetwornika ADC w układ STM32. Pomiar prądu osiągany jest poprzez układ AD8206 i rezystor pomiarowy. Pomiar napięcia odbywa się poprzez dzielnika napięcia. Dzielnik napięcia dodatkowo zabezpieczony jest przed przepięciami.

Rys. 3.7 - Wyjście zasilacza oraz pomiar napięcia i prądu.

- Zastosowaliśmy transformator obniżający napięcie sieciowe 230VAC na 27 VAC. Napięcie to następnie jest prostowane i filtrowane poprzez kondensatory.
- Zasilanie dla 5V dla układów logicznych zapewniane jest przez dwa liniowe stabilizatory napięcia - jeden na 12V oraz drugi na 5V. Zastosowaliśmy dwa stabilizatory z obawy, iż pojedynczy układ mógłby się spalić.

Rys. 3.8 - Sekcja zasilania.

 Użyliśmy 3-cyfrowych wyświetlaczy 7-segmentowych ze wspólną anodą. Sterowanie anodami realizowane za pomocą tranzystorów bipolarnych, katody podłączone są pod piny STM32.

Rys. 3.9 - Sterowanie wyświetlaczami 7-segmentowymi.

 Model płytki wykonaliśmy w EAGLE. Płytka jest jednowarstwowa z przelotkami po drugiej stronie płytki.

Rys. 3.10 - Projekt obwodu drukowanego.

Zaprojektowano obudowę w celu wydrukowania jej w drukarce 3D.
Wykorzystano do tego oprogramowanie SketchUp

Rys. 3.11 - Panel przedni obudowy.

Rys. 3.12 - Tył obudowy.

 Ostatnim krokiem było wykonanie obwodu PCB. Planowaliśmy wykonać PCB za pomocą frezarki CNC, jednak napotkaliśmy problem z obwodem sterowników tranzystorów MOSFET IR2101. Podczas testów tego obwodu na płytkach prototypowych zaobserwowaliśmy, że sterownik nie podaje żadnych sygnałów sterujących na bramki tranzystorów. Z tego względu zdecydowaliśmy wstrzymać się z wykonaniem PCB dopóki nie uda nam się naprawić obwodu.