Theory of Computation: CS-202

Regular Expression

Outline

□ Regular Expressions

□ Regular Expression to Finite Automata

☐ Finite Automata to Regular Expression

Conversion from R.E. to finite Automata

Convert the following R.E. to finite Automata

1. R. E. r = (a+b)

2. R. E. r = (0+1)*

3. R. E. r = 0*1*

4. R. E. r= 0*1(0+1)*

Conversion from Finite Automata to R.E.

Convert the following FA to R.E.

R. E.
$$r = 01*0$$

2.

R. E.
$$r = (01)^*$$

3.

R. E. r = (0*+(10)*)* or ((0+10)*)

4.

R. E. r = 0*1 (0+10*1)*

Identities for Regular Expression

If P, Q and R are Regular Expression, then

1.
$$\Phi + R = R$$
 the identity for union

2.
$$\varepsilon R = R \varepsilon = R$$
 the identity for concatenation

3.
$$\Phi R + R \Phi = \Phi$$
 the annihilator for concatenation

4.
$$\varepsilon *= \varepsilon$$
 and $\Phi *=\varepsilon$

$$5. R+R=R$$

6.
$$R*R*=R*$$

7.
$$RR*=R*R$$

8.
$$(R^*)^*=R^*$$

9.
$$\varepsilon + RR^* = \varepsilon + R^*R = R^*$$

10.
$$(PQ)*P=P(QP)*$$

11.
$$(P+Q)^*=(P^*Q^*)=(P^*+Q^*)^*$$

12.
$$(P+Q)R=PR+QR$$
 & $R(P+Q)=RP+RQ$

Arden's Theorem:

Let P and Q be two R.E. over Σ . If P does not contain ϵ , then the equation R=Q+RP has a unique solution $R=QP^*$

The three equation for q1, q2 and q3 can be written as:

$$q_1 = q_1 0 + \varepsilon \dots (1)$$

$$q_2 = q_1 1 + q_2 1 \dots (2)$$

$$q_3 = q_2 0 + q_3 0 + q_3 1 \dots (3)$$

From eq. 1

$$q_1 = q_1 0 + \epsilon \dots (1)$$

$$q_1 = \varepsilon 0^*$$
 using Arden theorem

From eq. 2

$$q_2 = q_1 1 + q_2 1 \dots (2)$$

$$q_2 = \varepsilon 0 * 1 + q_2 1 = 0 * 1 + q_2 1$$

$$\Rightarrow$$
q₂ = (0* 1)1*

now from eq. 3 $q_3=q_20+q_30+q_31....(3)$

$$q_3 = (0*1)1*0+q_30+q_31 = (0*1)1*0+(0+1)q_3$$

As q_1 and q_2 are the final states, so we need not to go for state q_3 So, the require regular expression

$$R=q_1+q_2$$
 $R=\epsilon 0^* + (0^* 1)1^*$
 $R=0^* + (0^* 1)1^*$ by identity 3

$$R=0*+(0*1)1*$$

$$R=0*(\epsilon+11*)$$

$$R=0*(1*)$$
 by identity 9

$$R=0*1*$$

Practice Problems

- 1. Convert the R.E (a+bc*d)* to F.A.
- 2. Convert F.A to R.E using Arden's theorem.

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA

Thank you