$$\begin{cases} u_0 = 2\\ u_{n+1} = 2u_n - n \end{cases}$$

Démontrer par récurrence que pour tout entier naturel n on a :

$$u_n = 2^n + n + 1.$$

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 6 \\ u_{n+1} = 2u_n - 5 \end{cases}$$

Démontrer par récurrence que pour tout entier naturel n on a :

$$u_n = 2^n + 5.$$

Soit (w_n) la suite arithmétique de raison r et de premier terme w_0 .

Démontrer que : $\forall n \in \mathbb{N}, w_n = w_0 + nr$.

- Soit la suite (w_n) définie par $w_0 = 0$ et pour tout entier naturel n, $w_{n+1} = 3w_n 2n + 3$. Démontrer que pour tout entier naturel n on a : $w_n \ge n$.
- Soit la suite (v_n) définie par $v_0 = 3$ et pour tout entier naturel n, $v_{n+1} = \frac{1}{3}v_n + 4$.
 - 1. Calculer v_1 .
 - 2. Montrer par récurrence que pour tout entier naturel n, on a $v_{n+1} \ge v_n$.
 - 3. En déduire la monotonie de la suite (v_n) .
- Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\begin{cases} u_1 = 0 \\ u_{n+1} = \frac{1}{2 - u_n} \end{cases}$$

- 1. Calculer u_2 , u_3 et u_4 .
- 2. Conjecturer l'expression de u_n en fonction de n.
- 3. Démontrer cette conjecture par récurrence puis en déduire u_{2022} .
- Soit la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 2x^2 + x 2$ et on considère la suite (u_n) définie par $u_0 = 1$ et la relation $u_{n+1} = f(u_n)$ pour tout entier naturel n.
 - 1. Calculer f'(x) puis en déduire les variations de f sur \mathbb{R} .
 - 2. (a) Justifier que $u_1 = -1$.
 - (b) Montrer par récurrence que la suite (u_n) est décroissante.

- Soit \mathscr{P}_n la proposition « 2^n est un multiple de 3 ».
 - 1. Démontrer que \mathscr{P}_n est héréditaire.
 - 2. \mathscr{P}_n est-elle vraie pour tout entier naturel n?
- Soit \mathscr{P}_n la proposition « $10^n 1$ est un multiple de 9 ».
 - 1. Démontrer que \mathcal{P}_n est héréditaire.
 - 2. \mathscr{P}_n est-elle vraie pour tout entier naturel n?
- Soit la suite u définie pour tout entier naturel n par :

$$\begin{cases} u_0 = 0, 7 \\ u_{n+1} = \frac{3u_n}{1 + 2u_n} \end{cases}$$

- 1. Soit la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{3x}{1+2x}$.
 - (a) Étudier les variations de f sur $[0; +\infty[$.
 - (b) En déduire que si $x \in [0; 1]$ alors :

$$f(x) \in [0; 1].$$

2. Démontrer que pour tout entier naturel n,

$$0 \leqslant u_n \leqslant 1.$$

- 3. Étudier la monotonie de la suite (u_n) .
- Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 0,3\\ u_{n+1} = 0,9u_n\left(1-u_n\right) \end{cases}$

On admet que, pour tout entier naturel n, u_n et $1 - u_n$ appartiennent à l'intervalle [0; 1].

1. Montrer que, pour tout entier naturel n:

$$0 \leqslant u_{n+1} \leqslant 0, 9u_n.$$

2. Montrer que, pour tout entier naturel n,

$$0 \le u_n \le 0, 3 \times 0, 9^n$$
.

Soit n un entier naturel et $a_0, a_1, a_2 \ldots, a_{n+1}$ des nombres réels.

Démontrer que pour tout entier naturel n,

$$\sum_{k=0}^{n} (a_{k+1} - a_k) = a_{n+1} - a_0$$

Soit n un entier naturel et $a_0, a_1, a_2 \ldots, a_{n+1}$ des nombres réels non nuls.

Démontrer que pour tout entier naturel n,

$$\prod_{k=0}^{n} \frac{a_{k+1}}{a_k} = \frac{a_{n+1}}{a_0}$$

Soit n un entier naturel non nul.

Démontrer par récurrence que pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$