WDWR projekt

Jakub Ostrzołek

Zadanie 1

Założenia

Biorąc pod uwagę poniższe fakty:

- koszty pracy przedsiębiorstwa (magazynowania) są niezależne od zmiennej losowej R (dochodów jednostkowych produktów),
- liczba produkowanych produktów jest niezależna od zmiennej losowej R,

można uprościć złożone zadanie poszukiwania wartości oczekiwanej łącznych zysków z pracy przedsiębiorstwa. Zamiast tego wystarczy niezależnie obliczyć wartość oczekiwaną zmiennej losowej R i za pomocą przekształceń matematycznych uzyskać wartość oczekiwaną zysków. Dzięki temu nie ma potrzeby generowania próbek z rozkładu R i uśredniania wyniku końcowego metodą numeryczną, a zamiast tego można obliczyć analitycznie $\mathbb{E}(R)$ i użyć gotowej wartości przy rozwiązywaniu zadania optymalizacji.

$$\mathbb{E}(z) = \mathbb{E}(d-k)$$

$$= \mathbb{E}(d) - k$$

$$= \sum_{p \in P} \sum_{n \in N} \mathbb{E}(x_{pn} \cdot R_p) - k$$

$$= \sum_{p \in P} \sum_{n \in N} x_{pn} \cdot \mathbb{E}(R_p) - k$$

gdzie:

- z łączne zyski z pracy przedsiębiorstwa w rozważanym czasie [zł],
- d łączne dochody z pracy przedsiębiorstwa w rozważanym czasie [zł],
- k łączne koszty pracy przedsiębiorstwa w rozważanym czasie [zł],
- x_{pn} $p \in P, n \in N$ liczba sprzedanych produktów p w miesiącu n [szt],
- R_p $p \in P$ jednostkowy dochód za produkt p (zmienna losowa) [zł/szt],
- $P = \{P1, P2, P3, P4\}$ produkty,
- $N = \{1, 2, 3\}$ rozpatrywane miesiace.

Wyznaczanie średnich jednostkowych dochodów dla każdego z produktów

Rozkład t-Studenta jest ciągły, więc wartość oczekiwana na przedziale domkniętym jest taka sama jak wartość oczekiwana na przedziale otwartym.

$$R_1 \sim Tt_{(5;12)}(9, 16; 4)$$

 $R_2 \sim Tt_{(5;12)}(8, 9; 4)$
 $R_3 \sim Tt_{(5;12)}(7, 4; 4)$
 $R_4 \sim Tt_{(5;12)}(6, 1; 4)$

$$\mathbb{E}(R_1) = 9 + 4 \cdot \frac{\Gamma(3/2) \cdot ((4 + (-1)^2)^{-3/2} - (4 + (\frac{3}{4})^2)^{-3/2}) \cdot 4^2}{2(F_4(\frac{3}{4}) - F_4(-1))\Gamma(2)\Gamma(1/2)} = 8,63$$

$$\mathbb{E}(R_2) = 8 + 3 \cdot \frac{\Gamma(3/2) \cdot ((4 + (-1)^2)^{-3/2} - (4 + (\frac{4}{3})^2)^{-3/2}) \cdot 4^2}{2(F_4(\frac{4}{3}) - F_4(-1))\Gamma(2)\Gamma(1/2)} = 8,30$$

$$\mathbb{E}(R_3) = 7 + 2 \cdot \frac{\Gamma(3/2) \cdot ((4 + (-1)^2)^{-3/2} - (4 + (\frac{5}{2})^2)^{-3/2}) \cdot 4^2}{2(F_4(\frac{5}{2}) - F_4(-1))\Gamma(2)\Gamma(1/2)} = 7,61$$

$$\mathbb{E}(R_4) = 6 + 1 \cdot \frac{\Gamma(3/2) \cdot ((4 + (-1)^2)^{-3/2} - (4 + (6)^2)^{-3/2}) \cdot 4^2}{2(F_4(6) - F_4(-1))\Gamma(2)\Gamma(1/2)} = 6,42$$

Model rozwiązania

Zbiory:

- $P = \{P1, P2, P3, P4\}$ produkty
- $M=\{SZ,WV,WH,FR,TO\}$ maszyny (odpowiednio: szlifierki, wiertarki pionowe, wiertarki poziome, frezarki, tokarki)
- $G = \{G1, G2\}$ grupy produktów, z których tylko jedną można magazynować w danym miesiącu
- $GP = \{(G1, P1), (G1, P2), (G2, P3), (G2, P4)\}$ przypisania produktów do grup
- $N = \{1, 2, 3\}$ rozpatrywane miesiące

Parametry:

- $n_m \quad m \in M$ liczba dostępnych maszyn m [brak jednostki]
- t_{mp} $m \in M, p \in P$ jednostkowy czas produkcji produktu p na maszynie m [h/szt]
- $\mathbb{E}(R_p)$ $p \in P$ średni jednostkowy dochód za produkt p [zł/szt] (wartości obliczone powyżej)
- x_{pn}^{max} $p \in P, n \in N$ maksymalna sprzedaż produktu p w miesiącu n [szt]

- $c^{mag} = 1$ cena magazynowania jednostki produktu przez miesiąc [zł/szt]
- $m^{max} = 200$ maksymalna liczba zmagazynowanych jednostek danego produktu na miesiac [szt]
- m_p^{start} $p \in P$ liczba zmagazynowanych produktów p na start (na koniec grudnia) [szt]
- $h^{rob} = 24 \cdot 8 \cdot 2 = 348$ liczba godzin roboczych w miesiącu [h]

Zmienne:

- $x_{pn} \in \mathbb{Z} \quad p \in P, n \in N$ liczba sprzedanych produktów pw miesiącu n
- $p_{pn} \in \mathbb{Z}$ $p \in P, n \in N$ liczba wyprodukowanych produktów p w miesiącu n [szt]
- $m_{pn} \in \mathbb{Z} \quad p \in P, n \in (\{0\} \cup N)$ liczba zmagazynowanych produktów pna koniec miesiaca n [szt]
- $u_{qn} \in \{0,1\}$ $g \in G, n \in N$ czy grupa produktów g jest magazynowana w miesiacu n (0 – nie, 1 – tak)

Ograniczenia:

- $x_{pn} \ge 0 \quad \forall p \in P, n \in N$ sprzedaż nieujemna
- $p_{pn} \ge 0$ $\forall p \in P, n \in N$ produkcja nieujemna
- $m_{pn} \geq 0$ $\forall p \in P, n \in N$ stan magazynu nieujemny $\sum_{p \in P} p_{pn} \cdot t_{mp} \leq h^{rob} \cdot n_m$ $\forall m \in M, n \in N$ łączny czas użycia maszyny m w miesiącu n nie przekracza liczby roboczych godzin
- $x_{pn} \leq x_{pn}^{max} \quad \forall p \in P, n \in N$ sprzedaż produktu p nie przekracza rynkowego limitu na miesiąc n
- $m_{p0}=m_p^{start}$ $\forall p\in P$ początkowy stan magazynu dla produktu p $\sum u_{gn}\leq 1$ $\forall n\in N$ w miesiącu n może być wybrana maksymalnie jedna grupa produktów g do magazynowania
- $\sum_{\{p:(g,p)\in GP\}}$ $m_{pn} \leq m^{max} \cdot u_{gn} \quad \forall g \in G, n \in N$ – produkt p należący do grupy g może być magazynowany maksymalnie w liczbie c^{max} szt, jeśli grupa g jest wybrana do magazynowania, lub w liczbie 0 szt w przeciwnym wypadku
- $p_{pn} + m_{p(n-1)} = x_{pn} + m_{pn}$ $\forall p \in P, n \in N$ dla każdego miesiąca n i produktu p sztuki wyprodukowane i pozostałe w magazynach z poprzedniego miesiąca muszą zostać sprzedane lub powtórnie zmagazynowane

Cel:

• max $\sum_{n\in N}\sum_{p\in P}(x_{pn}\cdot\mathbb{E}(R_p)-m_{pn}\cdot c^{mag})$ – maksymalizacja łącznego zysku, czyli różnicy dochodu ze sprzedaży produktów i wydatków na magazynowanie produktów na przestrzeni rozpatrywanych miesięcy (koszty magazynowania na miesiąc grudzień pominięte)

Wyniki działania modelu

Powyższy model został zaimplementowany w języku AMPL i uruchomiony przy użyciu solwera CPLEX. Implementacja znajduje się w plikach: src/z1.{dat,mod,run}. Poniżej wyniki działania.

Wartość funkcji celu:

$$\sum_{n \in N} \sum_{p \in P} (x_{pn} \cdot \mathbb{E}(R_p) - m_{pn} \cdot c^{mag}) = 14531 \ [zt]$$

• x_{pn}, p_{pn}, m_{pn} $p \in P, n \in N$ – liczba sprzedanych, wyprodukowanych i zmagazynowanych produktów p w miesiącu n [szt]

$$-n=1$$
 (styczeń)

m_r	20		
r_{I}	p_{p1}	x_{p1}	p
0	200	200	P1
0	0	0	P2
0	100	50	P3
0	200	150	P4
0 0 0	200 0 100	200 0 50	P1 P2 P3

$$-n=2$$
 (luty)

p	x_{p2}	p_{p2}	m_{p2}
P1	300	300	0
P2	100	100	0
P3	200	200	0
P4	200	200	0

$$-n=3$$
 (marzec)

p	x_{p3}	p_{p3}	m_{p3}
P1	0	0	0
P2	300	300	0
P3	100	100	0
P4	200	200	0

• u_{gn} $g \in G, n \in N$ – czy grupa produktów g jest magazynowana w miesiącu n (zmienna binarna: 0 – nie, 1 – tak)

$g \setminus n$	1	2	3
G1	0	0	0
G2	1	1	1

Wnioski z wyników

- Ograniczenia na maksymalny obrót produktem zostały w całości wykorzystane.
- Żadne z ograniczeń na maksymalny czas użycia maszyn nie miało znaczenia, rzeczywiste wykorzystanie maszyn było zawsze dużo mniejsze niż limit.
- Z poprzedniego punktu wynika, że magazynowanie było zbędne (nie licząc stanu magazynu na koniec grudnia). Sama produkcja wysyciła limit na obrót każdym z produktów, więc nie było sensu dopłacać za magazynowanie produktów.
- Koszty produkcji są zerowe (brak magazynowania; koszty materiałów nie są rozważane w zadaniu).

Zadanie 2

Założenia

Tym razem model będzie rozważał również miarę ryzyka przy generacji rozwiązań. Nie uda się zatem uniknąć generacji próbek (scenariuszy) z rozkładu zmiennej losowej R jak w przypadku pierwszego zadania, bo nie byłoby sposobu na obliczenie wartości miary ryzyka.

Rozwiązywane zadanie jest wielokryterialne, należy zatem zastosować jedną z metod generacji rozwiązań efektywnych dla zadań wielokryterialnych.

Początkowym moim pomysłem było podejście progowe (ograniczenie ryzyka do kolejnych konkretnych wartości i maksymalizowanie wartości oczekiwanej zysków). Niestety takie podejście, o ile w tym przypadku zdawało się dawać zadowalające wyniki, to nie gwarantuje generacji wyłącznie rozwiązań efektywnych. Wynika to z faktu, że nic nie stoi na przeszkodzie, żeby wygenerowany punkt nie był zdominowany przez inny punkt o takiej samej wartości oczekiwanej profitu, ale nieco mniejszym ryzyku.

W związku z powyższym, w końcowym rozwiązaniu zastosowałem zamiast tego metodę punktu odniesienia. Ma ona tę wadę, że parametry końcowego rozwiązania będą się z dużym prawdopodobieństwem nieco różnić od zadanych progów, jednak w zamian wygenerowane rozwiązanie będzie z pewnością rozwiązaniem efektywnym.

Do implementacji metody punktu odniesienia użyłem "inżynierskiej" wersji maksymalizacji leksykograficznej. Parametr ϵ reguluje wagę drugiego kryterium (sumy) w tej metodzie.

Model rozwiązania

Rdzeń modelu rozwiązania będzie identyczny jak w przypadku zadania 1. Zmiany beda dotyczyły:

- obliczania wartości oczekiwanej dochodów,
- dodania elementów związanych z ryzykiem,
- zmiany funkcji celu na taką zgodną z metodą punktu odniesienia dla kryteriów: zysku i ryzyka.

Zbiory:

- $S = \{1, 2, ..., 5000\}$ scenariusze
- $V = \{Z, R\}$ kryteria do optymalizacji (zyski i ryzyko)

Parametry:

- usunięto: $\mathbb{E}(R_p)$ $p \in P$
- R_{ps} $p \in P, s \in S$ jednostkowy dochód za produkt p dla scenariusza s [zł/szt]
- waga drugiego kryterium (sumy) w metodzie punktu odniesienia [brak jednostki]
- β waga dla wartości przekraczających aspiracje w metodzie punktu odniesienia [brak jednostki]
- $a_v \quad v \in V$ wartość aspiracji kryterium v w metodzie punktu odniesienia [zł]
- λ_v $v \in V$ waga kryterium v w metodzie punktu odniesienia [brak jednostki]

Zmienne:

- r_s $s \in S$ odchylenie zysków ze scenariusza s od średniej [zł]
- $r_s^+, r_s^ s \in S$ odpowiednio "nadmiar" i "niedobór" zysków ze scenariusza s w stosunku do średniej [zł]; służą do obliczenia wartości bezwzględnej we wzorze na odchylenie przeciętne
- $r^{\pm r}$ wartość odchylenia przeciętnego zysków (miara ryzyka) [zł]
- $z_s \quad s \in S$ łączny zysk dla scenariusza s [zł]
- $z^{\pm r}$ wartość oczekiwana łącznego zysku [zł]
- $f_v v \in V$ wartości do maksymalizacji w metodzie punktu odniesienia
- f^{min} minimum z wartości do maksymalizacji w metodzie punktu odniesienia

Ograniczenia:

- $r_s^+, r_s^- \geq 0 \quad \forall s \in S$ "nadmiary" i "niedobory" zysków są nieujemne
- $r_s = r_s^+ r_s^- \quad \forall s \in S$ odchylenie zysków ze scenariusza s od średniej składa się z "nadmiaru" i "niedoboru"
- $r_s = z^{\pm r} z_s$ $\forall s \in S$ obliczanie odchylenia zysków ze scenariusza s od średniej

- $r^{\pm r} = \sum_{s \in S} (r_s^+ + r_s^-) \cdot \frac{1}{|S|}$ obliczanie odchylenia przeciętnego; zakładam, że prawdopodobieństwa scenariuszy są jednakowe, dlatego we wzorze występuje dzielenie przez liczność scenariuszy
- puje dzielenie przez liczność scenariuszy $z_s = \sum_{n \in N} \sum_{p \in P} \left(x_{pn} \cdot R_{ps} m_{pn} \cdot c^{mag} \right) \quad \forall s \in S \text{ obliczanie łącznego zysku}$ dla scenariusza s; analogicznie jak funkcja celu w zadaniu 1, jednak zamiast wartości oczekiwanej zmiennej losowej R jest wartość konkretnej próbki
- $z^{\pm r} = \sum_{s \in S} z_s \cdot \frac{1}{|S|}$ obliczanie średniego łącznego zysku względem wszystkich scenariuszy
- ograniczenia z metody punktu odniesienia:
 - $-f_Z \leq \lambda_Z(z^{\acute{s}r} a_Z)$ obliczanie f_Z dla zysku poniżej aspiracji
 - $-\ f_Z \leq \beta \lambda_Z (z^{\pm r} a_Z)$ obliczanie f_Z dla zysku powyżej aspiracji
 - $-f_R \le -\lambda_R(r^{\pm r} a_R)$ obliczanie f_R dla zysku poniżej aspiracji (znak minus, ponieważ minimalizujemy ryzyko)
 - $-f_R \le -\beta \lambda_R (r^{\pm r}-a_R)$ obliczanie f_R dla zysku powyżej aspiracji (znak minus, ponieważ minimalizujemy ryzyko)
 - $-f^{min} \leq f_v \ \forall v \in V$ minimalna z wartości do maksymalizacji mniejsza od każdej z tych wartości

Cel:

• $lexmax\ (f^{min}, \epsilon\sum_{v\in V}f_v)$ – funkcja celu dla metody punktu odniesienia: maksymalizacja w pierwszej kolejności minimum z wartości, a w drugiej kolejności sumy wszystkich wartości. Funkcja lexmax jest realizowana metodą "inżynierską" w następujący sposób:

$$\max f^{min} + \epsilon \sum_{v \in V} f_v$$

Generacja scenariuszy

W celu otrzymania próbek zmiennej losowej R dla poszczególnych scenariuszy, znalazłem bibliotekę $Truncated\ Normal\ and\ Student's\ t-distribution\ toolbox\ do$ programu MatLab, która pozwala na generację próbek z wielowymiarowego rozkładu t-Studenta z ograniczoną dziedziną. Kod generujący próbki znajduje się w pliku $src/generate_samples.m$, a wynik jego działania jest w plikach out/z2-samples.csv.

Próbki należało również przekształcić do formatu .dat w celu odczytania przez AMPL, dlatego napisałem też skrypt src/samples_to_dat.py, który na podstawie pliku .csv generowanego z *MatLaba* tworzy plik .dat.

Wyniki działania modelu

Powyższy model został zaimplementowany w języku AMPL i uruchomiony przy użyciu solwera CPLEX. Implementacja znajduje się w plikach:

src/z2- $\{$ dat,mod,run $\}$. Dodatkowo pliki src/z2-a.run i src/z2-c.run uruchamiają model dla kilku wartości aspiracji a_R na potrzeby podpunktów a i c. Ze względu na dużą liczbę scenariuszy, generacja rozwiązań efektywnych może zająć trochę czasu. Na mojej maszynie jest to ok. 30-40 min.

Nastawy parametrów metody punktu odniesienia z wyjątkiem a_R są dla każdego uruchomienia stałe i równe:

- $\epsilon = 0.0001$ wyznaczony eksperymentalnie tak, by drugie kryterium nie zakłócało działania pierwszego
- $\beta=0.001$ w moim zastosowaniu nie ma dużo znaczenia, bo i tak zawsze wartości aspiracji są nieosiągalne
- $\lambda_R = 1000$, $\lambda_Z = 0.001$ większa waga dla miary ryzyka zapewnia, że ustawiona wartość aspiracji odchylenia przeciętnego będzie bardzo blisko faktycznej wartości odchylenia przeciętnego dla rozwiązania
- $a_Z = 100000$ nieosiągalna wartość zysków, dzięki czemu algorytm będzie maksymalizował zyski dla ustalonego ryzyka

Zbiór rozwiązań efektywnych W celu wyznaczenia zbioru rozwiązań efektywnych w przestrzeni ryzyko-zysk, uruchomiłem model dla różnych wartości aspiracji a_R . Wyniki dla $a_R \geq 765$ zaczynają się powtarzać, co oznacza że w tym przypadku średni zysk osiągnął już swoją maksymalną wartość.

$\overline{a_R}$	$r^{\pm r}$	$z^{\pm r}$	a_R	$r^{\pm r}$	$z^{\pm r}$
0	0.00	-300.0	630	629.33	12990.7
15	15.00	229.82	645	644.71	13144.7
30	30.02	691.63	660	659.80	13289.0
45	44.92	1109.61	675	675.04	13432.1
60	60.05	1533.73	690	689.56	13559.5
75	75.02	1953.56	705	704.56	13686.8
90	89.96	2373.05	720	719.76	13806.8
105	104.93	2792.86	735	735.06	13933.0
120	119.76	3209.00	750	749.36	14043.3
135	134.95	3634.97	765	752.70	14068.8
	149.96	4054.83	780	752.70	14068.8

Następnie otrzymane wyniki naniosłem na wykres. Na wykresie odwróciłem oś OX, żeby kierunek optymalizacji był skierowany intuicyjnie, w stronę pierwszej ćwiartki układu współrzędnych (ryzyko jest minimalizowane).

Rysunek 1: Zbiór rozwiązań efektywnych zadania w przestrzeni ryzyko-zysk

Widać, że żadne z wyliczonych rozwiązań nie dominuje żadnego innego, co sugeruje, że zadanie się udało.

Rozwiązanie maksymalnego zysku znajduje się na wykresie na lewym krańcu zbioru. Posiada ono wartość średniego zysku $z^{\pm r}=14068.8$ zł zbliżoną do wyniku z pierwszego zadania, co sugeruje poprawność wykonania obu zadań. Wtedy ryzyko wynosi ok. $r^{\pm r}=752.70$ zł.

Rozwiązanie minimalnego ryzyka znajduje się na wykresie na prawym krańcu zbioru. Posiada ono ujemną wartość średniego zysku $z^{\pm r}=-300$ zł przy zerowym ryzyku. Oznacza to, że dla każdego ze scenariuszy zysk wynosi -300 zł. Takie rozwiązane, o ile efektywne w zadanym problemie wielokryterialnym, jest oczywiście całkowicie niedopuszczalne dla każdego rozsądnego decydenta i zdominowane w sensie FSD przez wiele innych rozwiązań. Prawdopodobnie w wyznaczonym zbiorze istnieje więcej takich problematycznych przypadków.

Analiza dominacji FSD została przeprowadzona dla 3 rozwiązań. Ich punkty aspiracji ryzyka to: 100, 400 i 740. Rozwiązania oznaczę odpowiednio R1, R2 i R3. Dzięki analizie FSD można sprawdzić, czy któreś z nich jest zdominowane przez inne.

Poniżej fragment tabeli posortowanych niemalejąco ocen dla wybranych rozwiązań.

$\overline{R1}$	R2	R3
2246.26	7904.41	10159.3
2247.94	7928.13	10203.0
2266.48	8058.30	10280.3
2269.86	8061.10	10313.1
2289.78	8079.48	10375.5
2298.24	8092.72	10441.8
3052.70	11078.6	14975.6
3058.01	11137.9	15000.1
3070.03	11210.5	15167.0
3070.12	11240.9	15279.7
3077.59	11479.9	15386.3
3097.90	11484.4	15412.4

Po przeanalizowaniu całości tabeli widać, że $R1 \prec_a R2 \prec_a R3$, bo $y_{R1} \leq y_{R2} \leq y_{R3}$. Jako że zadanie jest sprowadzalne do problemu wyboru jednakowo prawdopodobnych loterii, to można wywnioskować, że również $R1 \prec_{FSD} R2 \prec_{FSD} R3$, jednak poniższy wykres dystrybuanty zysków pokazuje to lepiej.

Rysunek 2: Dystrybuanta zysków wybranych rozwiązań efektywnych zadania

Dystrybuanta również jednoznacznie pokazuje, że $R1 \prec_{FSD} R2 \prec_{FSD} R3$. Aby

otrzymywać jedynie rozwiązania FSD-efektywne, należałoby zmienić podejście generacji rozwiązań lub w jakiś sposób odfiltrować rozwiązania nie-FSD-efektywne.