Gliederung (vorläufig)

- Motivation
- Prozesse und Prozess-Management
 - Geschäftsprozesse, Workflow-Prozesse
 - Prozessdesign, Prozessverbesserungen
- Prozess-Modellierung
 - Zweck, Modellierungselemente und –sprachen
 - Petri-Netze, EPKs, BPMN, ...
- Prozess-Analyse
 - Struktur-, Verhaltens-, Erreichbarkeits- und Performance-Analysen
 - Simulation
- Workflow-Management-Systeme
 - Historie, Infrastruktur, Implementierungen, Standards

Gliederung (vorläufig)

- Motivation
- Prozesse und Prozess-Management
 - Geschäftsprozesse, Workflow-Prozesse
 - Prozessdesign, Prozessverbesserungen
- Prozess-Modellierung
 - Zweck, Modellierungselemente und –sprachen
 - Petri-Netze, EPKs, BPMN, ...
- Prozess-Analyse
 - Struktur-, Verhaltens-, Erreichbarkeits- und Performance-Analysen
 - Simulation
- Workflow-Management-Systeme
 - Historie, Infrastruktur, Implementierungen, Standards

Prozessmodellierung

Gliederung:

- 1. Einführung in die Modellierung,
- 2. Geschäftsprozess-Modellierung
- 3. Grundregeln der Modellierung mit Petrinetzen,
- 4. Petrinetze formal,
- 5. High-level Petrinetze,
- 6. Grundregeln der EPK-Modellierung,
- 7. Verknüpfungsoperatoren bei EPK,
- 8. Erweiterte EPK und ARIS,
- 9. EPK vs. Petrinetze,
- 10.BPMN.

Prozessmodellierung

Gliederung:

- 1. Einführung in die Modellierung,
- 2. Geschäftsprozess-Modellierung
- 3. Grundregeln der Modellierung mit Petrinetzen,
- 4. Petrinetze formal,
- 5. High-level Petrinetze,
- 6. Grundregeln der EPK-Modellierung,
- 7. Verknüpfungsoperatoren bei EPK,
- 8. Erweiterte EPK und ARIS,
- 9. EPK vs. Petrinetze,
- 10.BPMN.

Was ist ein gutes Modell? Beispiel: Deutschland

- geringer Informationsgehalt,
- ungemessene Grafik,
- Zur Navigation nicht verwendbar ... außer für Astronauten ☺

Was ist ein gutes Modell? Beispiel: Deutschland

- klare Landesgrenze,
- Übersicht großer Städte,
- wichtigste Strassen (Autobahnen).

- Definition: Ein Modell ist ein vereinfachtes Abbild der Realität oder eines Ausschnitts der Realität. Es dient zur Beschreibung, Erklärung oder Gestaltung der Realität. Es betont einige Aspekte; ignoriert andere.
- Oft ist ein System zu komplex, um es gedanklich vollständig zu erfassen und zu untersuchen,
- Man konzentriert sich daher bei der Modellierung auf die wesentlichen Parameter und Wechselwirkungen des Systems,
- Definition: Modellierung ist die Abbildung der Realität in ein Modell auf Grundlage der Analyse und Strukturierung der Informationen über die Realität.

Prinzip der Modellierung

Warum Modellierung?

- Modelle bilden die Realität ab,
- Modelle vermitteln zwischen "Welten",
- Modelle können ausgeführt / simuliert werden,
- Modelle können analysiert / verifiziert werden,
- Modellierung abstrahiert, strukturiert,
- Modellierung ist Kernanliegen im WfM,
- Modellierung ist ein kreativer Prozess.

Schema der Modellierung

- 2 Rollen, d.h. Wissensträger und Modellierer,
- Wissensträger = Person, welche das Wissen über den zu modellierenden Gegenstand oder Bereich hat,
- Modellierer = Person, die das Modell erstellt,
- In jeder Rolle kann es mehrere Personen geben, eine Person kann auch beiden Rollen gleichzeitig angehören.

Modelle, die in der Entwicklung und Nutzung von Software anzutreffen sind:

- Anforderungsmodelle,
 - Beschreibung funktionaler Anforderungen durch ein problemorientiertes Modell,
- Architekturmodelle,
 - Beschreibung einer Systemarchitektur durch ein lösungsorientiertes, konzeptionelles Modell,
- Prozessmodelle,
 - Beschreibung von Arbeitsschritten, verwendeten Ressourcen (Materialen, Personen, ...),
- Interaktionsmodelle,
 - Beschreibung der Interaktion zwischen Mensch und Rechner (sind problem- und lösungsorientiert),
- Entwurf- und Codierungsmodelle,
 - Lösungsorientierte Beschreibungen der Strukturen von Daten und Programmen,

Modelle, die in der Entwicklung und Nutzung von Software anzutreffen sind:

- Datenmodelle,
 - Beschreibung der Struktur und Zusammenhänge der Daten eines Systems,
- Funktionsmodelle,
 - Beschreibung der Funktionalität eines Systems (Funktionen und Datentransformationen),
- Verhaltensmodelle,
 - Beschreibung des dynamischen Systemverhaltens,
- Objekt- und Klassenmodelle,
 - Beschreibung der Struktur und des Verhaltens eines Systems in seinem Aufgabenumfeld,
- Qualitätsmodelle.
 - Beschreibung von Qualitätszielen und Konzepten zu Messung und Erreichung dieser Ziele.

Modellierung: Durch wen, für wen und wofür?

- z.B. durch:
 - Systemanalytiker,
 - Externe Berater,
 - Endanwender, Sachbearbeiter,
 - Sehr oft: Kombination obiger Personen.
- Modellierung ist stets abhängig von:
 - einer Domäne,
 - einer bestimmten Aufgabe (Herstellung vs. Verkauf).
- Daraus ergeben sich die Fragen:
 - Was ist relevant für die Modellbildung?
 - Welche Konzepte und welche Beziehungen?
 - Wie fein muss das resultierende Modell sein?

Merke: Es gibt nicht DAS richtige Modell!

- z.B. für:
 - Programmierer/Systementwickler,
 - Management,
 - Endanwender/Sachbearbeiter,
 - Systemanalytiker.

Wozu Modellierung von Unternehmen und Geschäftsprozessen?

- zur Analyse und Reorganisation,
- zur Kommunikation mit Endbenutzer und Prozessverantwortlichem,
- zu Dokumentationszwecken,
- zu Entwurfs- und Wartungszwecken,
- zur Planung des Ressourcen-Einsatzes,
- als Basis für den Einsatz von Workflow-Managementsystemen bzw. von Standard-Software,
- zur Überwachung und Steuerung,

. . . .

Wozu Modellierung von Unternehmen und Geschäftsprozessen?

Analyse des Prozessmodells verfolgt 3 Ziele:

Validierung

- Ist das Modell richtig bzgl. der Realität/Vorstellung?,
- z.B. Kundenbezug, Medien- und Organisationsbrüche,
- Verifikation
 - Nachweis der Korrektheit des Geschäftsprozesses,
 - Struktur (z.B. Vor- und Nachbedingungen für alle Aufgaben),
 - Verhalten (z.B. Deadlocks, nie ausgeführte Aufgaben),
- Leistungsbewertung
 - Leistungsfähigkeit des Geschäftsprozesses,
 - z.B. Durchlaufzeit, Kostenrechnung, Ressourcenauslastung.

Was muss modelliert werden?

- Aufgaben,
- Ablaufstrukturen,
- Ressourcen,
- Rollen und Organisationsstrukturen,

- Zeit- und Kostenaspekte,
- Datenobjekte,
- Prioritäten,
- Begriffe und Beziehungen,
- Kommunikationsstrukturen,
- Geschäftsregeln: allgemeingültige Regeln,
- Ausnahmesituationen,
- Qualitätsanforderungen an zu erzeugende Produkte,
- Sicherheitsanforderungen.

- Sequenz,
- Alternative,
- Wiederholung,
- Parallelität,
- Unabhängigkeit.
- Zuständigkeiten,
- Verantwortlichkeiten,
- Kompetenzen.

Anforderungen an Modellierungssprachen

- Ausdrucksmächtigkeit,
 - alle relevanten Aspekte müssen modellierbar sein,
 - Adäquatheit/Angemessenheit der Modellierungskonstrukte.
- Erweiterbarkeit,
 - später benötigte Konstrukte müssen hinzuzufügen sein,
- dynamische Anpassbarkeit,
 - zur Reaktion auf veränderte Marktbedingungen,
- Wiederverwendbarkeit,
 - zur Vermeidung aufwändiger Neuentwicklungen,
- Offenheit,
 - zur Integration von existierenden und neuen Anwendungssystemen,
- Einfachheit, Verständlichkeit,
 - Leicht zu lernen, Leicht zu benutzen,
- Formalisierungs- bzw. Präzisierungsgrad
 - flexible Anpassbarkeit an das Ziel der Modellierung, die Zielgruppe des Modells.

Anforderungen an Modellierungssprachen

- Visualisierungsmöglichkeiten,
 - graphische Darstellung (leichte Handhabbarkeit, Lesbarkeit, Abstraktion),
 - unterschiedliche Sichten, Modularisierbarkeit, Detaillierungsgrad.
- Entwicklungsunterstützung,
 - methodische Unterstützung für die Modellierung,
 - Werkzeugunterstützung.
- Analysierbarkeit, Ausführbarkeit/Simulierbarkeit,
 - Validierung, Verifikation, Leistungsbewertung,
 - formale Repräsentation,
 - Prüfung syntaktischer Eigenschaften (isolierte Elemente, Zyklen, ...),
 - Konsistenz des Modells,
 - Analyse anwendungsbezogener Aspekte (Durchlaufzeiten, Reaktionszeit, ...),
 - inhaltliche Richtigkeit (entspricht Modell der Realität).
- Unabhängigkeit von Herstellern.

Adäquatheit der Modellierungskonstrukte

- abhängig zum einen von der Sichtweise:
 - Kunde oder Anwender,
 - Analytiker,
 - Designer,
 - Programmierer.
- zum anderen vom Zweck:
 - zur Anforderungsanalyse,
 - zu Entwurfszwecken,
 - zur Codierung,
 - zur Dokumentation.
- verschiedene Abstraktionsgrade der Modellierung, z.B. bei Datenmodellen:
 - konzeptuelles Modell,
 - logisches Modell.

Unterschiedliche Ansätze zur Modellierung

- verschiedene Modellierungsansätze
 - funktionale,
 - objektorientierte,
 - agentenorientierte,
 - prozessorientierte.

Funktionale Modellierung

- Beschreibung der Welt durch funktionale Blöcke,
- Hierarchische Verfeinerung dieser Blöcke,
- Zuordnung von Daten und Ressourcen zu Blöcken,
- Verknüpfung der Blöcke durch Funktionsaufrufe.

Funktionale Modellierung

 Traditionell statische Aufbau-Organisation im Unternehmen.

Geschäftsleitung

Produktion ReWe Vertrieb

Stelle Stelle Stelle

Stelle Stelle

Stelle Stelle

 Funktionen liegen quer zur Aufbau-Organisation.

Funktionale Modellierung (Eigenschaften)

- hohe Arbeitsteilung,
- viele Schnittstellen in der Bearbeitungsfolge,
- lange Bearbeitungszeiten,
- hoher Koordinationsbedarf,
- starre Hierarchiegrenzen und Ablaufgrenzen

Objektorientierte Modellierung

- Beschreibung der Welt durch Objekte mit
 - Eigenschaften,
 - Fähigkeiten,
- Konstruktion komplexer Objekte aus einfachen,
- Spezialisierung / Generalisierung von Objekten,
- Bereitstellung von Schnittstellen,
- Kapselung der Interna.

Agentenorientierte Modellierung

- Beschreibung der Welt durch Agenten mit:
 - Fähigkeiten,
 - Wissen,
 - Zielen.
- Dezentrale Funktionalität und Kontrolle,
- Strukturierung durch Sub-Agenten,
- Interaktion durch Kommunikation.

Kunde Mitarb. Zentrale

Prozessorientierte Modellierung

- Beschreibung der Welt durch Aktivitäten und deren Ordnung
- Hierarchische Verfeinerung der Aktivitäten,
- Modellierung von Daten und Ressourcen als Bedingungen,
- Einbindung der Umgebung mit externen Aktivitäten.

Prozessorientierte Modellierung (Vorteile)

- Ganzheitliche Betrachtung der Prozesse,
- Trennung von Prozesslogik und Applikationen,
- Fokussierung auf dynamische Aspekte,
- Simulierbarkeit operationaler Modelle,
- Integration von Informationen und Ressourcen,
- Quasi-Standard in der WFMC.

Überblick

- Flussdiagramme (Flowcharts)
- Activity-Diagramme,
- Datenflussdiagramme (DFD),
- Use-Case-Diagramme,
- Transitionssysteme, Zustandsdiagramme (State Chart),
- Warteschlangen-Modelle, Markov-Ketten,
- Prozess-Algebren,
- Interaktionsdiagramme,
- Ereignisgesteuerte Prozessketten (EPK),
- Petrinetze.

Beispiel: Urlaubsbeantragung

Beispiel: Urlaubsantrag als *Flowchart* (DIN 66001)

Beispiel: Alternativrealisierung durch ein Activity-Diagramm

Beispiel: Urlaubsbeantragung als Use Case Diagramm

Beispiel: Urlaubsbeantragung als State Chart

Beispiel: Urlaubsantrag, modelliert in BPMN (mit intalio BPMS)

- Flow Objects Knoten in den Geschäftsprozessdiagrammen,
- Connecting Objects verbindende Kanten in den Geschäftsprozessdiagrammen,
- Swimlanes die Bereiche, mit denen Aktoren und Systeme dargestellt werden,
- Artifacts weitere Elemente wie Data Objects, Groups und Annotations.