Correction

Partie I

1.a $S_n = n$ donc (S_n) diverge.

1.b
$$S_n = q \frac{1-q^n}{1-q}$$
. (S_n) converge ssi (q^n) converge i.e. ssi $|q| < 1$.

2.a L'étude des variations sur \mathbb{R}^+ de la fonction différence $\delta: x \mapsto \ln(1+x) - x$ donne $\forall x \in \mathbb{R}^+, \ln(1+x) \leq x$.

Pour x=1/n , cela fournit $\frac{1}{n} \geq \ln(1+1/n) = \ln(n+1) - \ln n$.

- 2.b En sommant l'inégalité précédent : $S_n = \sum_{k=1}^n \frac{1}{k} \ge \sum_{k=1}^n \ln(k+1) \ln k = \ln(n+1) \ln 1 = \ln(n+1)$. Puisque $\ln(n+1) \xrightarrow{n\infty} +\infty$, on peut affirmer par comparaison que (S_n) diverge.
- 3.a $\frac{1}{n-1} \frac{1}{n} = \frac{1}{n(n-1)} \ge \frac{1}{n^2}$.
- 3.b En sommant l'inégalité précédente : $S_n = \sum_{k=1}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \left(\frac{1}{k-1} \frac{1}{k} \right) = 2 \frac{1}{n} \le 2$.
- 3.c $S_{n+1}-S_n=\frac{1}{(n+1)^2}\geq 0$. La suite (S_n) est croissante et majorée donc convergente. On peut montrer, mais c'est difficile, que sa limite vaut $\pi^2/6$.
- $\begin{aligned} 4.a & S_{2n+1} S_{2n-1} = \frac{-1}{2n+1} + \frac{1}{2n} \geq 0 \ \, \text{donc} \, \, (S_{2n-1}) \ \, \text{est croissante.} \\ & S_{2n+2} S_{2n} = \frac{1}{2n+2} \frac{1}{2n+1} \leq 0 \ \, \text{donc} \, \, (S_{2n}) \ \, \text{est décroissante.} \\ & S_{2n} S_{2n-1} = \frac{1}{2n} \to 0 \ \, \text{donc on peut affirmer que les suites} \, \, (S_{2n-1}) \ \, \text{et} \, \, (S_{2n}) \ \, \text{sont adjacentes.} \end{aligned}$
- 4.b Les suites (S_{2n-1}) et (S_{2n}) convergent vers une même limite. Etant exhaustives, on peut affirmer que (S_n) converge aussi vers cette limite. On peut montrer que celle-ci vaut $\ln 2$.

Partie II

- 1. $u_n = S_n S_{n-1}$ donc si (S_n) converge vers ℓ alors $u_n \to \ell \ell = 0$. Pour la suite de terme général $u_n = 1/n$ on obtient un contre exemple à la réciproque.
- 2. (S_n) est croissante car $S_{n+1} S_n = u_{n+1} \ge 0$.
- 3.a Par sommation de l'inégalité $u_k \leq v_k$ pour k allant de n_0 à $n: S_n S_{n_0-1} = T_n T_{n_0-1}$. Ainsi $S_n \leq T_n + k$ avec $k = S_{n_0-1} T_{n_0-1}$.
- 3.b Si (T_n) converge alors (T_n) est majorée et donc (S_n) aussi. Cette suite étant croissante et majorée, elle est donc convergente.
- 3.c Si $n^2 u_n \to \ell$ alors pour n assez grand $n^2 u_n \le \ell + 1$ et donc $u_n \le \frac{\ell + 1}{n^2}$.

On conclut en appliquant l'étude précédente à $v_n = \frac{\ell+1}{n^2}$ pour laquelle (T_n) converge compte tenu des résultats de la partie I.

4.a $u_n = u_n^+ - u_n^- \text{ et } |u_n| = u_n^+ + u_n^-.$

4.b $S_n^+, S_n^- \le T_n \text{ avec } T_n = \sum_{k=1}^n |u_k|.$

Comme vu à la question II.3, la convergence de (T_n) entraı̂ne celle de (S_n^+) et (S_n^-) .

- 4.c $S_n = S_n^+ S_n^-$ converge par opération.
- 5. Si (n^2u_n) converge alors $(n^2|u_n|)$ aussi et on peut conclure.