- **Ex 1** Soit $(x,y) \in \mathbb{R}^2_+$. Montrer que $\frac{x}{y+1} = \frac{y}{x+1} \Rightarrow x = y$
- **Ex 2** Soit $m \in \mathbb{R}$ et $f: x \mapsto mx + 1$. Montrer que f garde un signe constant si et seulement si m = 0
- **Ex 3** Soit $(a,b) \in \mathbb{R}^2$, et $f: x \mapsto ax + b$. Montrer que f est la fonction nulle si et seulement si a = b = 0
- **Ex 4** Soit $n \in \mathbb{N}$. Montrer que n est pair $\iff n^2$ est pair

Raisonnements par l'absurde et par contraposée

- **Ex 5** Montrer que $\sqrt{2}$ est irrationnel.
- **Ex 6** Soit $x \in \mathbb{R}_+$. On suppose que $\forall \varepsilon > 0, \ x \leqslant \varepsilon$. Montrer que x = 0.
- **Ex 7** Soient a et b deux réels. On suppose que $a \in \mathbb{Q}^*$ et $b \notin \mathbb{Q}$. Montrer que ab est irrationnel
- **Ex 8** Montrer que si x est irrationnel et positif, alors \sqrt{x} est irrationnel.
- Ex 9 Principe des tiroirs : démontrer que si l'on range n+1 pulls dans n tiroirs distincts, alors il y a au moins un tiroir contenant au moins 2 pulls.
- **Ex 10** Soit $n \in \mathbb{N}^*$. On se donne n+1 réels x_0, x_1, \ldots, x_n de [0,1] vérifiant $0 \le x_0 \le x_1 \le \cdots \le x_n \le 1$. On veut démontrer la propriété P suivante : "deux de ces réels sont distants de moins de 1/n".
 - a) Ecrire à l'aide de quantificateurs et des valeurs $x_i x_{i-1}$ une formule logique équivalente à P puis sa négation.
 - b) Rédiger une démonstration par l'absurde de la propriété P (on pourra montrer que $x_n x_0 > 1$).
 - c) Donner une autre preuve de P en utilisant le principe des tiroirs.

Raisonnement par analyse et synthèse

- Ex 11 Montrer que toute fonction $f: \mathbb{R} \to \mathbb{R}$ s'écrit de manière unique f = g + h, où g est une fonction paire et h une fonction impaire.
- **Ex 12** Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que $\forall (x,y) \in \mathbb{R}^2, \ f(x) f(y) = f(xy) + x + y$

Raisonnement par récurrence

- Ex 13 Montrer que $H(n): 10^n + 1$ est multiple de 9 est héréditaire. A-t-on H(n) vraie pour tout n?
- **Ex 14** Montrer que $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |\sin(nx)| \le n |\sin(x)|$
- **Ex 15** Montrer que $\forall (x_1, \dots, x_n) \in]0,1[^n, \prod_{k=1}^n (1-x_k) \geqslant 1-\sum_{k=1}^n x_k.$
- **Ex 16** Soit (u_n) la suite définie par $\left\{ \begin{array}{l} u_0=2 \;,\; u_1=3 \\ \forall n\in\mathbb{N} \;,\; u_{n+2}=3u_{n+1}-2u_n \end{array} \right. .$ Trouver le terme général de (u_n) (on conjecturera le résultat)
- **Ex 17** On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} a_0=a_1=1\\ \forall n\geqslant 1,\ a_{n+1}=a_n+\frac{2}{n+1}a_{n-1} \end{cases}$ Démontrer que, pour tout $n\in\mathbb{N}^*, 1\leqslant a_n\leqslant n^2.$
- **Ex 18 Suite de Fibonacci**: soit (u_n) définie par $\begin{cases} u_0 = u_1 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n \end{cases}$.
 - a) Etablir que $\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n u_{2k-1} = u_{2n} 1$
 - b) Démontrer que $\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} u_k = u_{n+2} 1$
 - c) On pose $\Phi > \Psi$ les racines de l'équation $x^2 x 1 = 0$. Montrer que $\forall n \in \mathbb{N}, \ u_n = \frac{5 + \sqrt{5}}{10} \Phi^n + \frac{5 \sqrt{5}}{10} \Psi^n$

PCSI 1 Thiers 2019/2020

Ex 19 Soit
$$x \in \mathbb{R}$$
 tel que $x + \frac{1}{x} \in \mathbb{Z}$. Montrer que pour tout $n \in \mathbb{Z}, \ x^n + \frac{1}{x^n} \in \mathbb{Z}$ Indication : on pourra calculer : $\left(x^n + \frac{1}{x^n}\right)\left(x + \frac{1}{x}\right)$

- **Ex 20** On définit la suite $(u_n)_{n\geqslant 0}$ par : $u_0>0$ et $\forall n\in\mathbb{N},\ u_{n+1}=\ln{(1+u_0\cdots u_n)}.$ Montrer que la suite $(u_n)_{n\geqslant 0}$ est bien définie et vérifie : $\forall n\in\mathbb{N},\ u_n>0.$
- **Ex 21** Démontrer que tout entier $n \in \mathbb{N}^*$ peut s'écrire de façon unique sous la forme $n = 2^p (2q + 1)$ où $(p, q) \in \mathbb{N}$.
- Ex 22 Démontrer que tout entier $n \ge 1$ peut s'écrire comme somme de puissances de 2 toutes distinctes.
- Ex 23 Soit A une partie de \mathbb{N}^* possédant les trois propriétés suivantes :

$$\left\{ \begin{array}{l} \mbox{(i) } 1 \in A \\ \mbox{(ii) } \forall n \in \mathbb{N}^*, \ n \in A \Rightarrow 2n \in A \\ \mbox{(iii) } \forall n \in \mathbb{N}^*, \ n+1 \in A \Rightarrow n \in A \end{array} \right.$$

Démontrer que $A = \mathbb{N}^*$.