Game theory

A course for the MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia@gmail.com

Static games of complete information

The simplest form of multi-player games

Game with multiple players

- How do multiple players interact? upon per giocolore

 We assume they have a payoff (utility) function
- Remember that rational players move to maximize of their own payoffs
- What is the simplest interaction like this?
 - certainly not sports or dices where most moves are random we will not see them in the course
 - not even board games they are closer, still they require some extensions

Static games of complete information

- Static (all players move together; they do not necessarily play simultaneously, but without knowledge of everybody else's move)
- Complete information (meaning anybody's payoff function is known)
 - most games within this class are actually "artificial" games (theoretical models)
 - examples of actual games: Odds & Evens,
 Matching pennies, Rock/paper/scissors

Static games of complete information

- Each player i in the game **simultaneously** and **independently** chooses an action from its own set of available actions A_i
- The combination of actions chosen by the n
 players determines the outcome of the game
- Outcome $(a_1, a_2, ... a_n)$ determines a payoff for each player through an individual utility function of player i: $u_i = u_i (a_1, a_2, ... a_n)$
- □ 3 ingredients = actions + outcome + utility

Action versus strategy

- As will be seen later, it is useful to think of strategies instead of actions
- A strategy is a plan of action a recorde di concirioni
 - e.g.: if these conditions are met, then my action is a, otherwise is either a' or a"
 - this plan can even be random (we will see why)
- Right now, we just need certain plans
- These are called pure strategies i.e.: a pure strategy is a deterministic plan of action

Normal-form representation

- Each player i simultaneously chooses a strategy from a set of pure strategies S_i
- This results in a given action chosen by each of the n players that ultimately determines a payoff for each player
- □ If any player i plays strategy $s_i
 subseteq S_i$, the combination of moves is $(s_1, s_2, ..., s_i, ..., s_n)$
- □ Player i gets payoff $u_i(s_1,s_2,...,s_i,...,s_n) \in \mathbb{R}$
- The **normal form** of the game is specified by $G = \{S_1, ..., S_n; u_1, ..., u_n\}$ and in the gradient is a sufficient of the gradient in the gradient is a sufficient of the specified by

Simultaneous and independent

- Simultaneous moves do not really need to happen at the same time
 - it is just that strategies are chosen without knowledge of everybody else's actions
- These two versions are both "simultaneous"
 - version A: two players are writing their strategy on opposite sides of a board at the same time
 - version B: player 1 is asked to write first, while he writes, player 2 is blindfolded; then the board is turned and player 2 writes

Common knowledge

- We say that E is common knowledge if:
 - everybody knows E
 - everybody knows that everybody knows E
 - and so on, ad infinitum

- This is a powerful but not obvious assumption
 - it requires not only full knowledge on information pertinent to myself, but also on what should be everybody else's concern

Common knowledge

- "Complete information" means that
 - all possible actions of all players
 - all possible outcomes resulting from these actions
 - the individual preferences of all players about these outcomes (i.e., their utilities about them) are common knowledge among the players
- Player rationality is common knowledge
 - which means that everybody is maximizing their own payoff and everybody knows that everybody is maximizing their payoff!

Matrix representation

- □ n -player games can be represented as functions in $S_1 \times S_2 \times ... \times S_n$
- □ If S_i s are discrete sets, a n-dimensional matrix can be used, where each cell contains again a n-dimensional value in \mathbb{R}^n
- Usually we have n = 2, so the representation is simply an ordinary matrix where we put a pair of real numbers in each cell (therefore called a bi-matrix)

Example of bi-matrix

Player 2 strategies

payoff of user 2

Example 1

- Player A has three strategies: {U, M, D}
- □ Player B has two strategies: {L, R}

	player B	
	L	R
⊌ U	8,0	0,5
player A U W c	1,0	4,3
pla D	0, 7	2,0

Example 2

- Player A has three strategies: {U, M, D}
- Player B has three strategies: {L, C, R}

		player B		
		L	C	R
A	U	0,5	4,0	7,3
player A	M	4,0	0,5	7,3
pla	D	3, 7	3, 7	9,9

Example 3: Odds & Evens

- Players Odd and Even bet 4 euros
- Player Odd has two strategies: {0,1}
- Player Even has two strategies: {0,1}

		Even 0 1	
pp	0	-4, 4	4, -4
Ŏ	1	4, -4	-4, 4

 "Similar" to: matching pennies (head/tails), penalty kick (left/right), poker (bluff/bet)

Example 4: rock/paper/scissors

- Players A and B bet 4 euros
- Player A has two strategies: {R,P,S}
- Player B has two strategies: {R,P,S}

	R	player B P	S
ĸ R	0,0	-4, 4	4,-4
player 2 4	4, -4	0,0	-4, 4
Ω S	-4, 4	4, -4	0,0

Example 5: Battle of Sexes

- Ann and Brian are partners who agreed to meet at a movie theater not knowing that 2 movies are available: romance (R) or sci-fi (S)
- Main goal of both is to see the other, but Ann prefers movie R and Brian prefers S

	R Brian S		
R Ħ	2, 1	0,0	
Ann	0,0	1,2	

Example 6: Prisoners' Dilemma

Simple version: both Al and Bob can choose between (M) "lose 1\$" or (F) "let the other pay 20\$"

Example 6: Prisoners' Dilemma

- Original version: involves a theft Al and Bob committed together. Caught by police, they can choose between (M)um and (F)ink
- Their (negative) payoff is the number of months they will spend in jail

Pareto efficiency

A joint strategy s is **Pareto dominated** by

another joint strategy
$$s'$$
 if

 $u_i(s') \ge u_i(s)$ for every player i
 $u_i(s') > u_i(s)$ for some player i
 $u_i(s') > u_i(s)$ for some player i

- A joint strategy s not Pareto dominated by any joint strategy s', is said to be **Pareto efficient**
- There may be more than one Pareto efficient strategy, none of which dominates the others

Strict dominance

a comparison of strategies

Strictly dominated strategy

- □ Consider game $G = \{S_1, ..., S_n; u_1, ..., u_n\}$
- If $s_i, s_i' \in S_i$, we say that s_i is **strictly dominated** by s_i' if i 's payoff when playing s_i' is greater than when playing s_i for any other move of the other players, i.e.

$$u_{i}(s_{1},s_{2},...,s_{i}',...,s_{n}) > u_{i}(s_{1},s_{2},...,s_{i},...,s_{n})$$

$$\forall (s_1,...,s_{i-1},s_{i+1},...,s_n) \in S_1 \times ... S_{i-1} \times S_{i+1} \times ... \times S_n$$

Rational players do not play such strategies

Strategy D is strictly dominated by M

 Other strictly dominated strategies are found: first L for player B (dominated by R)
 then U for player A (dominated by M)

rational players play (M, R), with result (4,3)

- F dominates M for both Al and Bob.
- □ The only playable strategies give outcome = F,F

This justifies the "Dilemma" name

The result does not seem that efficient

revionalité rispetlata, ma risultato rimostos non e leverto afficiente

Solving problems via IESDS

- This procedure is called 'iterated elimination of strictly dominated strategies" (IESDS)
- Sometimes can find the outcome of a game, and is useful to obtain a "smaller" game by relying on common knowledge
- However, in <u>several cases</u>, it does <u>not provide</u> any solution

- Here, no dominated strategy can be found.
- □ However, (D,R) seems to be a good choice.

		player B		
		L	C	R
A	U	0,5	4,0	7,3
player A	M	4,0	0,5	7,3
ple	D	3, 7	3, 7	9,9

- Neither 0 or 1 strictly dominates the other
- □ There seems not to be any "better" strategy

		Even l	
pp	0	-4, 4	4, -4
Ŏ	1	4, -4	-4, 4

- Here, there are two strategies that seem to be "good" for rational players, (R,R) and (S,S)
- But again, no dominated strategy to eliminate

	Brian		
	R	S	
Ann	2, 1	0,0	
K S	0,0	1,2	