Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Ігрова фізика»

«Визначення коєфіцієнта в'язкості рідини методом Стокса»

Виконав(ла)	ІП-11 Панченко Сергій Віталійович	
	(шифр, прізвище, ім'я, по батькові)	
Перевірив(ла)	Скирта Юрій Борисович	
	(прізвище, ім'я, по батькові)	

Теоретичний конспект

На рухоме тіло у в'язкій рідині діє сила опору, яка залежить від форми тіла, характеру обтікання, коефіцієнта в'язкості рідини тощо. Характер обтікання тіла рідиною визначається числом Рейнольдса (Re). Повна сила опору складається з опору тертя та опору тиску, а їхній відносний внесок визначається значенням Re. Обтікання буде ламінарним за виконання умови: $Re < Re_{\kappa p}$, де Rekp — критичне значення числа Рейнольдсаю Під час обтікання кульки необмеженою в'язкою рідиною та виконанні нерівності $Re = \frac{vr \rho_1}{\eta} \ll 1$. Сила опору FC визначається формулою Стокса: $F_c = 6\pi r \, \eta \, v (\text{мість піруетів})$, де η, ρ_1 - коефіцієнт в'язкості та густина рідини, v — швидкість кульки, r — її радіус. З'ясувавши характер руху кульки під час повільного падіння у необмеженій в'язкій рідині, отримаємо рівняння: $v(t) = Ce^{-\frac{696pir \eta}{\rho V}} + \frac{Vg(\rho - \rho_1)}{6\pi r \, \eta}$. Проаналізувавши розв'язок, отримаємо, що при $t \to \infty$ маємо $v \to v_{ycm} = \frac{Vg(\rho - \rho_1)}{6\pi r \, \eta}$, де умова $t \to \infty$ з фізичної точки зору означає, що $t \gg \tau$, де $\tau = \frac{\rho V}{6\pi r \, \eta}$ — так званий час релаксації, тобто час, протягом якого рух кульки набуде усталеного характеру. Графіки залежності швидкості від часу виглядають так:

Вимірюючи усталену швидкість падіння кульки v_{ycm} та величини r, ρ, ρ_1 , можна визначити коефіцієнти в'язкості рідини за формулою: $\eta = \frac{2}{9} g \, r^2 \frac{\rho - \rho_1}{v_{ycm}} \ . \ \ \text{У лаборатоній роботі визначимо коефіцієнт в'язкості гліцерину. Гліцерин змінює коефіцієнт в'язкості від рівня нагрітості.$

Результати дослідів

Густина матеріалу кульок	11,3·10³ кг/м³
Густина гліцерину	1,2·10³ кг/м³
Відстань між позначками	const
Температура гліцерину	25.4°

	d	1	t			$\eta i - \langle \eta \rangle$	$(\eta i - \langle \eta \rangle)2$
N₂	(мм)	(м)	(c)	vycm (м/c)	η (Па·с)	(Па·с)	(Па∙с)2
1	1.6	1.011	29.047	0.03480566	0.40445019	0.01723997	0.00029722
2	2.4	0.988	12.109	0.08159220	0.38819395	0.00098374	0.00000097
3	1.8	1.01	23.109	0.04370592	0.40764276	0.02043255	0.00041749
4	2.6	0.984	9.922	0.09917355	0.37482260	-0.01238762	0.00015345
5	2.7	1.005	9.719	0.10340570	0.38766625	0.00045604	0.00000021
6	2.9	1.015	8.61	0.11788618	0.39229073	0.00508052	0.00002581
7	2.1	1.052	16.172	0.06505070	0.37278766	-0.01442255	0.00020801
8	1.7	1.007	23.562	0.04273831	0.37183945	-0.01537076	0.00023626
9	2.5	1.009	11.641	0.08667640	0.39650995	0.00929973	0.00008649
1							
0	2.2	1.01	14.265	0.07080266	0.37589860	-0.01131161	0.00012795
				<n></n>	0.38721021		

Формули для обчислення:

$$v = \frac{l}{t}; \eta = \frac{2}{9} \frac{gr^2(\rho - \rho_1)}{v_{ycm}}; \langle \eta \rangle = \frac{\sum_{i=1}^{n} \eta_i}{n} = \frac{\sum_{i=1}^{10} \eta_i}{10} \approx 0.38721$$

Отже, провівши розрахунки, було визначено, що вміст гліцерину скаладає 95% його маси згідно з таблицею 5.1, де n = 387,21 [Па * c] лежить блтзько до 365.0 [Па * c].

Похибки вимірювань (коефіцієнт надійності α=0,9)

$$S_{\langle \eta \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\eta_i - \langle \eta \rangle)^2} \approx 0.00415512 (\Pi a * c)$$

$$\eta = \langle \, \eta \rangle \pm t_{\alpha,n} * S_{\langle \, \eta \rangle} = 0.38721 \pm 1.73 * 0.00415512 = 0.38721 \pm 0.00718835 \big(\, \Pi a * c \big)$$

Висновок

Під час лібораторної роботи, було опрацьовано теоретичний матеріал, проведено 10 дослідів, де значення бралися з відповідного імітатора Stocks.exe. Було знайдено швидкост падіння, довжину шляху, значення коефіціжнта в'язкості гліцерину, середнє арифметичне, інтервали довіри до нього, вміст гліцерину у водному розчині. Як результат, бачимо, що коефіцієнт в'язкості не залежить від маси кульки.

Контрольні запитання

1. Ламінарний і турбулентний рух. Число Рейнольдса.

Число Рейнольдса – це числова характеристика обтікання тіла рідиною, яка визначається за формулою:

$$Re = \frac{\rho ul}{\eta}$$

, де ρ – густина рідини, u – швидкість, l– довжина, η – в'язкість.

Ламінарний рух течії - це такий рух, за якого сусідні шари рідини не змішуються. Він відбувається за умови що число Рейнольдса буде меншим за критичне число Рейнольдса, тобто Re < Rekp. Натомість турбулентний рух — це рух течії, що супроводжується утворенням вихорів (сусідні шари рідини змішуються). Він відбувається, коли число Рейнольдса більше за критичне число Рейнольдса, тобто Re > Rekp.

Отже, **критичне число Рейнольдса Reкр** – це така границя числа Рейнольдса для рідини, при якій ламінарний рух її течії переходить в турбулентний.

2.Формула Стокса. Умова її застосовності

Формула Стокса (або сили опору рідини):

$$F_c = 6 \pi r \eta v$$

застосовується, коли кульку обтікає необмежена в'язка рідина і виконується умова:

$$Re = \frac{vr\rho_1}{\eta} \ll 1$$
 ,

де η – коефіцієнт в'язкості рідини, υ – швидкість кульки, г – радіус кульки, р1 - густина рідини, Re – число Рейнольдса.

3. Ідея вимірювання коефіцієнта в'язкості рідини методом Стокса.

Ідея вимірювання коефіцієнта в'язкості рідини методом Стокса полягає у тому, що визначення в'язкості проводиться шляхом приблизного вимірювання швидкості усталеного руху кульки у в'язкій рідині, і знаючи яку, а також густину, радіус кульки та густину рідини, можна визначити коефіцієнт в'язкості рідини за формулою:

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_1}{v_{ycm}} ,$$

де r – радіускульки, p – густина кульки, p1 – густина рідини, g – прискорення вільного падіння, vycт – усталена швидкість руху.

4. Які кульки потрібно використовувати для вимірювань?

Радіуси кульок мають задовольняти умову:

$$r^3 \ll \frac{9}{2} \frac{\eta^2}{(\rho - \rho_1)\rho_1 g}$$
 ,

де η – коефіцієнт в'язкості рідини, р – густина кульки, р1 – густина рідини, q – прискорення вільного падіння.

5. На якій відстані від відкритої поверхні гліцерину слід наносити верхню позначку?

Мінімальна відстань від відкритої поверхні рідини, на якій треба розміщувати верхню позначку, визначається за формулою:

$$S\!pprox\!rac{8}{81}gr^4rac{
ho(
ho\!-\!
ho_1)}{\eta^2}$$
 ,

де r – радіус кульки, p – густина кульки, p1 – густина рідини, g – прискорення вільного падіння, η – коефіцієнт в'язкості рідини.

Підставивши густину гліцерину $\rho_1 = 1200 \frac{\kappa z}{M^3}$, отримаємо:

$$S \approx \frac{8}{81} gr^4 \frac{\rho(\rho - 1200)}{n^2}$$