卒業論文

視覚と行動の end-to-end 学習により 経路追従行動をオンラインで模倣する手法の提案 (目標方向による経路選択機能の追加と検証)

A proposal for an online imitation method of path-tracking

behavior by end-to-end learning of vision and action

(Addition of path selection function and verification by target direction)

2022年12月29日提出

指導教員 林原 靖男 教授

千葉工業大学 先進工学部 未来ロボティクス学科 19C1101 藤原 柾

概要

視覚と行動の end-to-end 学習により 経路追従行動をオンラインで模倣する手法の提案 (目標方向による経路選択機能の追加と検証)

近年、カメラ画像に基づいた自律走行の研究が行われている。本研究室でも、測域センサを用いた自律移動システムの出力を教師信号として与えることでロボットの経路追従行動をオンラインで模倣する手法を提案されている。また、実験によりカメラ画像に基づいた自律走行で、一定の経路を周回することが可能であると示されている。本研究では、目標の進行方向をデータセットと学習器の入力に加えることで、「直進」や「左折」などの経路が選択できる分岐路において、任意の経路を選択可能にする機能の追加を提案する。提案手法では、測域センサを用いた自律移動システムの出力をカメラ画像と目標とする進行方向を示すデータ(以下、「目標方向」と称する)を用いて模倣学習を行う。学習後、カメラ画像と目標方向に基づいて任意の経路を選択可能な自律走行を行う。我々が行ってきた実験の新たに顕在化した課題点について、議論を行った。また、シミュレータを用いた実験と実環境での実験を行い、提案手法の有効性を検証した。

キーワード: end-to-end 学習, Navigation, 目標方向

abstract

A proposal for an online imitation method of path-tracking behavior by end-to-end learning of vision and action (Addition of path selection function and verification by target direction)

In recent years, research on autonomous driving based on camera images has been conducted. In this research laboratory, a method of online imitation of robot path following behavior by giving the output of an autonomous moving system using range sensor as a teacher signal has been proposed. Furthermore, experiments have shown that it is possible to circulate a certain route based on autonomous driving using camera images. In the proposed method, by adding the target progress direction to the input of the dataset and the learning machine, it is possible to add a function that enables the selection of arbitrary routes at branching roads where routes such as "straight ahead" and "turn left" can be selected. In the proposed method, we propose to learn the imitation of camera images and target direction using the output of the autonomous moving system using range sensor. After learning, autonomous driving that can select arbitrary routes based on camera images and target direction is performed. In addition, the effectiveness of the proposed method was verified by experiments using a simulator and experiments in an actual environment. As a result, it was confirmed that arbitrary routes can be selected and autonomous driving based on camera images can be performed.

keywords: End-to-end learning, Navigation, Target direction

目次

第1章	序論	1
1.1	背景	1
1.2	目的.....................................	7
1.3	論文構成	7
第2章	要素技術	8
2.1	Deep learning	8
2.2	end-to-end 学習	9
2.3	Convolution Neural Network	10
2.4	地図を用いたルールベースの制御器	12
2.5	従来手法	13
	2.5.1 学習フェーズ	14
	2.5.2 テストフェーズ	15
第3章	提案手法	16
3.1	提案手法の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
3.2	学習フェーズ	17
3.3	テストフェーズ	18
3.4	目標方向	19
3.5	ネットワーク構造	20
第4章	実験	21
11	宝脸西	91

<u>目次</u>			vi
	4.1.1	実験装置 (シミュレータ)	22
	4.1.2	実験方法	23
4.2	課題点	と 2 つのアプローチによる実験	25
	4.2.1	従来の実験	25
	4.2.2	アプローチ 1:データセットに加えるデータの割合変更	28
	4.2.3	アプローチ 2:学習フェーズにおける積極的な蛇行	30
	4.2.4	実環境に似たシミュレータ環境による実験	35
参考文献			36
付録			38
謝辞			39

図目次

1.1	Training the neural network from [1]	1
1.2	The trained network is used generate steering commands from a single	
	front-facing center camera from [1]	2
1.3	Structure of the proposed system from [2]	2
1.4	A robot that follows a path using vision based on the proposed method	
	from [2]	3
1.5	A fork in the road where the direction of travel is not unique	3
1.6	Overall flow of the proposed method	4
1.7	Topological map	4
1.8	Two network architectures for command-conditional imitation learning	
	from [3]	5
1.9	End-to-end driving via conditional imitation learning from [3]	5
1.10	Model structure from [4]	6
2.1	Neural network	8
2.2	Structure of end-to-end learning	9
2.3	AlexNet from [5]	10
2.4	VGG from [5]	11
2.5	A rule-based controller using a map	12
2.6	Learning phase of conventional method	13
2.7	Output of rule-based controller using a map and actual robot behavior	
	from [2]	14

図目次	·	viii
2.8	Test phase of conventional method	15
3.1	Learning phase system of proposed method	17
3.2	Learning phase system of proposed method	18
3.3	Target direction	19
3.4	Method network	20
4.1	TurtleBot3 waffle_pi with 3 cameras	22
4.2	Experimental environment of simulator	22
4.3	Characteristics of passages in the experimental environment on the simulator	23
4.4	Moving pattern at points A and B	23
4.5	Moving pattern at points A and B	24
4.6	Experimental results for each moving pattern from [6]	26
4.7	Number of data per command per 10000steps in conventional experiments	28
4.8	Experimental results for each moving pattern	29
4.9	Moving on the target path	30
4.10	Robot behavior	30
4.11	Moving on the target path attempting approach 2	31
4.12	Experimental results for each moving pattern	31
4.13	Ratio of data by distance from target path in learning phase	33
4.14	Ratio of data by distance from target path in test phase	33
4.15	Simple simulator environment	35

表目次

2.1	Angular velocity offset	14
3.1	Target direction list	19
3.2	Parameters of network	20
4.1	Experimental results	26
4.2	Experimental results	29
43	Experimental results	32

第1章

序論

1.1 背景

近年,機械学習を用いた自律走行に関する研究が盛んにされており,その中でカメラ画像を用いてロボットへ自律走行を行わせる研究もされている。Bojarski ら [1] は Fig. 1.1 に示すシステムで,人間のドライバーが操作するステアリング角度と前方カメラ画像を用いて模倣学習を行った。また,Fig. 1.2 に示すように,訓練したネットワークに画像を入力し,生成される操舵指令を用いて走行を行う手法を提案した.

Fig. 1.1: Training the neural network from [1]

Fig. 1.2: The trained network is used generate steering commands from a single front-facing center camera from [1]

本研究室においても、岡田ら [2][7] は Fig. 1.3 に示すようなシステムを用いて Fig. 1.4 のように経路追従行動を模倣学習し、カメラ画像に基づいた経路追従行動を獲得した。このシステムでは、LiDAR、オドメトリを入力としたルールベース制御器 (後述する "地図を用いたルールベース制御器")による経路追従行動を前方カメラ画像を用いて end-to-end で模倣学習した.

Fig. 1.3: Structure of the proposed system from [2]

Fig. 1.4: A robot that follows a path using vision based on the proposed method from [2]

上記の研究により、カメラ画像に基づいてロボットが学習した経路を周回可能であることが確認されている。次に岡田らの研究(以下、「従来手法」と称する)をベースに、Fig. 1.5 のような分岐路において、任意の経路を選択する機能の追加を検討する。

Fig. 1.5: A fork in the road where the direction of travel is not unique

本研究では、従来手法をベースに「直進」、「左折」、「右折」の目標とする進行方向の情報(以下、「目標方向」と称する)をデータセットと学習器へ与える. これにより、訓練済みの学習器の出力を用いた走行において、目標方向により任意の経路を選択可能とする機能の追加を提案する. 提案手法全体の流れを Fig. 1.6 に示す.

Fig. 1.6: Overall flow of the proposed method

最終的にはカメラ画像を入力として、トポロジカルマップによって生成される目標方向に従って、目的地まで移動する自律走行の手法を提案することを検討する。トポロジカルマップとは Fig. 1.7 に示すように、重要な情報のみを残し、分岐路などの目印(ノード)とつながり(エッジ)を持つ簡略化された地図である.

Fig. 1.7: Topological map

カメラ画像とステアリング角度に、条件を加えて学習を行う条件付き模倣学習によって、自 律移動を行う研究を述べる。 Felipe ら [3] は前方カメラ画像、ステアリング角度、加速度と 「continue」、「left」、「straight」、「right」からなるコマンドを入力とした Fig. 1.8 のよう なネットワークを用いて、Fig. 1.9 に示すような実環境と都市環境のシミュレータ上で、模倣 学習のテスト時においてもコマンドによって制御可能であることを確認している。

Fig. 1.8: Two network architectures for command-conditional imitation learning from [3]

Fig. 1.9: End-to-end driving via conditional imitation learning from [3]

また、Hawke ら [4] は Fig. 1.10 のような、3 つの前方カメラ画像と「go-straight」、「turn-left」、「turn-right」からなるコマンドを入力とする構造のモデルを用いて、実環境での複雑な都市環境というシナリオで、意思決定が可能なモデルをわずか 30 時間の学習データで学習可能であることを示している。

Fig. 1.10: Model structure from [4]

1.2 目的

本研究では、岡田らの従来手法をベースとして、分岐路において「直進」、「左折」などのコマンドによる制御で任意の経路を選択可能にする機能の追加を提案する。さらに、実験を行い、実環境における提案手法の有効性を検証することを目的とする。

1.3 論文構成

1章では、本研究における背景、及び目的を述べた。2章では、本研究で用いた深層学習の要素技術とベースとする従来手法について述べる。3章では、従来手法をベースにした提案手法を述べる。4章では、シミュレータと実環境での実験を行う。5章では、本研究の結論を述べる。

第2章

要素技術

本章では、本研究で用いた深層学習に関連した要素技術と、ベースとなる従来手法にていて 述べる.

2.1 Deep learning

Deep learning は、画像や音声などのデータに特に適しており、近年では自然言語処理などさまざまな分野で活用されている。人間の脳のような深い層の構造を持つ人工ニューラルネットワークに基づく機械学習手法である。人工ニューラルネットワークは、入力データから出力データを予測するために、多数のニューロンを用いて情報を処理する。この人工ニューラルネットワークを多層構造にすることで、より深い情報処理を行うことができる。これにより、高度な識別や分類タスクなどを行うことを可能にしている。一般的な構造を Fig. 2.1 に示す。

Fig. 2.1: Neural network

2.2 end-to-end 学習

end-to-end 学習とは、人工ニューラルネットワークを使用して、入力データから出力を直接 生成する方法のことを指す。

実世界における自動運転を例に挙げる. end-to-end 学習を用いない場合, 人物や障害物などの物体認識, 車線の検出, 経路計画, ステアリングの制御など, 多くのタスクを解決する必要がある. しかし, end-to-end を用いることで, 先程のタスクを解決することなく, 車両が撮影したカメラ映像から直接, 運転操作を行うことができる.

Fig. 2.2: Structure of end-to-end learning

2.3 Convolution Neural Network

畳み込みニューラルネットワーク (convolutional neural network:CNN) は人工ニューラルネットワークのモデルの一種である。このモデルは、画像や音声などの多次元の配列で表される複雑なデータを処理するために特別に設計されている。CNN は次のような特徴を持つ層で構成されている。

1. 畳み込み層

入力データをフィルタ(カーネル)を用いて特徴を抽出する.

2. プーリング層

特徴を残しつつ、畳み込み層の出力を圧縮する.これにより、画像であればピクセル数が減少し、計算量が大幅に減らすことができる.

3. 全結合層

畳み込み層とプーリング層の出力をまとめて処理する.

Krizhevsky ら [5] は Fig. 2.3 で示すような、8 層のネットワークを用いて、画像分類タスクをエラー率 15.3% で達成し、画像分類コンペティションである ILSVRC(ImageNet Large Scale VisualRecognition Competition)2012 で優勝した.

Fig. 2.3: AlexNet from [5]

Simonyan らは CNN の層の深さが精度に与える影響を調査した。最大 19 層の深い畳み込みネットワークを評価した結果、モデルを深層にすることが分類精度に有利であることが示された。ILSVRC2012 の優勝モデルである AlexNet は 8 層、ILSVRC2013 で提案された ZFNet は同様の 8 層であることから、当時の CNN としては圧倒的に深い層を持つモデルであった。このような深い畳み込みネットワークは、深層学習における重要な発展の一つとされている。

ConvNet Configuration						
A	A-LRN	В	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	iı	nput (224×2	24 RGB image	5)		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool	_		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
conv3-512						
maxpool						
FC-4096						
FC-4096						
	FC-1000					
soft-max						

Fig. 2.4: VGG from [5]

第 2 章 要素技術 $oxed{12}$

2.4 地図を用いたルールベースの制御器

従来手法と提案手法において、教師信号として用いる地図を用いたルールベース制御器について述べる。地図を用いたルールベース制御器は、ROS Navigation_stack[8] へ目標位置(waypoint) の指示を行う waypoint_nav[9] を組み合わせたものである。なお、後述するが提案手法では waypoint_nav の役割が増えている。ROS Navigation_stack では以下のような処理が行われる。

- ロボットの現在位置を推定する
- 移動目標地点までの経路を決定する
- 経路にしたがった行動をロボットに指示する

また、Fig. 2.5 に示すように、事前に作成した占有格子地図と測域センサ、オドメトリを用いて、地図上での自己位置を Particle_Filter を用いて近似することで推定する「amcl」. 障害物認識などによる局所的、または地図全体の大域的なコスト計算、その結果に基づいた経路計画、それに従ったモータ指令を行う「move_base」などのパッケージによって構成されている自律移動を行うためのメタパッケージである. 従来手法、提案手法ともにモータ指令を並進速度と角速度にわけた. なお、並進速度は一定とした.

Fig. 2.5: A rule-based controller using a map

2.5 従来手法

本研究のベースとなる岡田らの研究について述べる。先に述べたように、本論文では岡田らの手法を「従来手法」と呼ぶ。従来手法は、地図を用いたルールベース制御器による走行を模倣学習し、似た行動を画像を用いて行う手法である。

Fig. 2.6 に, 経路追従行動を視覚に基づいてオンラインで模倣するシステムを示す. 手法は模倣学習により, 学習器の訓練をする学習フェーズと訓練した結果を検証するテストフェーズにわかれる. なお, 両フェーズで用いる並進速度は一定の値を用いる.

Fig. 2.6: Learning phase of conventional method

第 2 章 要素技術 $oxed{14}$

2.5.1 学習フェーズ

学習フェーズは、模倣学習によって学習器の訓練を行うフェーズである。地図を用いたルールベース制御器に、測域センサとオドメトリのセンサ入力で自律移動する。具体的には、ROS navigation_stack パッケージを利用して、ロボットに自律移動させる。学習フェーズでは、ロボットの中央、左、右に傾けて取り付けた3つのカメラを用いて画像を取得する。一方で、テストフェーズでは、ロボットの中央に取り付けたカメラのみを用いて画像を取得する。

自律移動させる際に、取得するデータ量を増加させること及び、過学習の抑制を目的として、Table 2.1 に示すような処理を行う。また、地図を用いたルールベース制御器による走行をそのまま模倣学習するのではなく、少し蛇行するように自律移動させることで、経路に戻るような挙動も学習できるようになっている。Fig. 2.7 に示すように、実際にロボットを制御する行動と経路に従う行動を別に扱うことで、常に経路に従う行動をデータセットに加えることを可能にしている。

岡田らの手法では、データセットの収集方法に種類がある.本論文では、その中で最も経路追従の成功率が高い手法を用いて、ロボットに模倣学習をさせる.

 Table 2.1: Angular velocity offset

Left camera	Angular velocity of a rule-based controller using a map $+$ 0.2 rad/	
Center camera	Angular velocity of a rule-based controller using a map	
Right camera	Angular velocity of a rule-based controller using a map - 0.2 rad/s	

Fig. 2.7: Output of rule-based controller using a map and actual robot behavior from [2]

2.5.2 テストフェーズ

学習器の訓練後、Fig. 2.8 で示すテストフェーズへ移行する. このフェーズでは、学習器にカメラ画像を入力し、出力されるヨー方向の角速度を用いて自律移動することで、訓練後の学習結果を評価する. なお、テストフェーズでは中央のカメラのみを用いる.

Fig. 2.8: Test phase of conventional method

第3章

提案手法

本章では、従来手法をベースとする提案手法について概要、提案手法における学習フェーズ、 テストフェーズ、用いた目標方向とネットワーク構造についての 5 節にわけて述べる.

3.1 提案手法の概要

従来手法で用いていたデータセットと学習器の入力へ、「直進」「左折」などの目標方向を追加する.これにより、学習器の出力による自律移動において、経路を選択する機能の追加を行った.なお、追加した要素以外は従来手法と同様である.

3.2 学習フェーズ

提案手法で用いる学習フェーズを Fig. 3.1 に示す. 自律移動を行う地図を用いたルールベース制御器から目標方向を生成し、データセットに加えている. なお、厳密にはルールベース制御を構成する waypoint_nav により目標方向を生成している. 提案手法では、LiDAR とオドメトリを入力とする地図を用いたルールベース制御器による自律移動を、カメラ画像と目標方向を用いて模倣学習する.

Fig. 3.1: Learning phase system of proposed method

3.3 テストフェーズ

提案手法におけるテストフェーズでは Fig. 3.2 で示すように, 従来手法のシステムから新たに目標方向を学習器の入力へ追加した. なお, テストフェーズも学習フェーズと同様に, 地図を用いたルールベース制御器から目標方向を生成している. 本来ならば, 目的地までカメラ画像のみで自律移動するためには, 目標方向を画像から自動的に作成する仕組みが必要となる. カメラ画像と目標方向を入力した学習器の出力による自律移動をさせる際に, 目標方向によって任意の経路を選択する.

Fig. 3.2: Learning phase system of proposed method

3.4 目標方向

本研究で用いた目標方向と、そのデータ形式である目標方向指令について述べる。目標方向を Fig. 3.3 に示す。目標方向を経路と分岐路において「道なり」に走行(Go straight)、分岐路において「直進(Go straight)」、「左折(Turn left)」、「右折(Turn right)」の3つとする。なお、[6] では「道なり(continue)」、「直進(Go straight)」、「左折(Turn left)」、「右折(Turn right)」からなる4 つのコマンドを用いていたが、「道なり」と「直進」のコマンドに対応する行動がほぼ同一であったため、本研究ではコマンドを1 つ減らし、3 コマンドとしている。

Fig. 3.3: Target direction

学習器には、上記の3つの目標方向を要素数3、次元数1のint型の配列で表現した"目標方向指令"を入力する。目標方向指令のデータ形式をTable 3.1 に示す。

Table 3.1: Target direction list

Target Direction	Go straight	Turn left	Trun right
Data	[100, 0, 0]	[0, 100, 0]	[0, 0, 100]

3.5 ネットワーク構造

提案手法で用いた学習器のネットワークを Fig.~3.4 に示す。また、ハイパーパラメータについて table に示す。64x48 の RGB 画像を入力とする入力層 1 層、畳み込み層 3 層、全結合層 2 層を持つ 6 層の CNN と、この CNN の出力と目標方向指令を入力する入力層 1 層、全結合層 2 層、出力層 1 層の全 10 層から構成されている。出力はヨー方向の角速度である。

Fig. 3.4: Method network

Input data Image(64x48 pixels, RGB channels), Target direction

Optimizer Adam($alpha = 0.001, beta1 = 0.9, beta2 = 0.999, eps = 1e^{-1}$)

Loss function Softmax-cross-entropy

Output data Angular velocity

Table 3.2: Parameters of network

第4章

実験

この章では、1 節で以降の節で前提となる実験要件について述べる。2 節では、我々が行ってきた研究 [6] の実験(以下、「従来の実験」と称する)を実環境に移行する際に、新たに顕在化した課題点について述べる。また、課題を解決するための2 つのアプローチを提案し、実験と検証を行う。3 節では、実験に簡易的なシミュレータを用いる問題点を述べ、解決策を提示する。4 節では、実環境で実験を行い、実環境における提案手法の有効性を検証する。

4.1 実験要件

実験には下記のコンピュータとソフトウェアを用いた.

1. コンピュ**ー**タ

OS: Ubuntu 20.04 LTS

ROS: Noetic

CPU: intel Core i7-10700F(4.8GHz/8 コア/16 スレッド)

DRAM: 32GB DDR4(3200/8GB × 4)

2. nav_cloning(学習器, 統合環境)

https://github.com/open-rdc/nav_cloning

3. waypoint_nav(移動目標地点, 目標方向を出力)

https://github.com/open-rdc/waypoint_nav

4. turtlebot3 関連

https://github.com/open-rdc/turtlebot3

5. navigation(ナビゲーションパッケージ)

https://github.com/ros-planning/navigation

4.1.1 実験装置(シミュレータ)

ロボット

ロボットモデルは前報 [2][7] と同様, Fig. 4.1 に示すように, TurtleBot3 Waffle_pi へ 3 つのカメラを追加したモデルを用いる.

Fig. 4.1: TurtleBot3 waffle_pi with 3 cameras

● 環境

シミュレータ環境として、オープンソースの 3D ロボットシミュレータ Gazebo を用いる. Fig. 4.2 に示すような Gazebo 上で千葉工業大学 2 号館 3 階を模した実験環境を対象に実験を行う.

Fig. 4.2: Experimental environment of simulator

4.1.2 実験方法

Fig. 4.3 の A, B 地点において, Fig. 4.4 に示すように侵入する方向が 3 つあり, 進むことのできる方向が 2 つあることから, 1 箇所につき走行パターンが 6 つ存在する. また, A, B 地点では, 目標方向に従って任意の経路を選択することが求められる場所である. したがって, 実験では A, B 地点で合計 12 パターンの走行において, 与えた目標方向に従った行動が行えるのかを確認する.

Fig. 4.3: Characteristics of passages in the experimental environment on the simulator

Fig. 4.4: Moving pattern at points A and B

全ての走行パターンを網羅するように模倣学習を行うため、Fig. 4.5 に示すように a から f までの経路を繰り返し走行させる. なお、目標方向は waypoint_nav から生成され、データセットに加えられる. 学習終了後、テストフェーズに移行するが、学習時と同様に a から f までの順番で経路をロボットに走行させる. また、テストフェーズ時にロボットが壁に衝突した場合、経路の中央にロボットを移動させた後、走行を再開させる.

Fig. 4.5: Moving pattern at points A and B

4.2 課題点と2つのアプローチによる実験

我々が行ってきた研究では、簡易的なシミュレータ上で提案手法が有効だと確認されている。 そのため、次の段階として実環境における提案手法の有効性を検証することを試みた。そこで、 新たに顕在化した課題点は以下の2つの点である。

- 実験条件(主にカメラ画像に影響を及ぼす光である)を揃える関係上、実験を行う時間帯を光の変化が少ない夜間に固定する必要があるため、1日に実験を行える時間が少なく、1回の学習に何日も費やす必要がある
- 長時間の学習に耐えられるだけのバッテリ容量がロボットにない

これらの課題点から、学習時間の短縮が必要であると判断した。そのため、2 つのアプローチを提案し、学習量を削減する。

この節では、まず、従来の実験を簡単に紹介する。次に、2 つのアプローチについての詳細と行った実験を述べる。最後に、アプローチを試みる前と各アプローチによる実験結果を比較し、議論を行う。

4.2.1 従来の実験

- 実験目的
 - 簡易的なシミュレータ上で、提案手法の有効性の検証を行う
- 実験環境
 - 4.1.1 で述べた簡易的なシミュレータ環境で実験を行った
- 実験方法
 - 4.1.2 で示した経路を繰り返し走行させる. 学習を 60000step 実行後, テストフェーズに移行する. テストフェーズで正しい順序で経路を選択し, 走行を行えるか確認する. この一連の流れを 10 回繰り返し行う.

● 実験結果

実験結果を $Fig.\ 4.6$ に示す。この図は、それぞれの走行パターンにおいて正しく経路を選択し、走行できた回数を表している。 Table 4.1 に全パターンを合計した結果を示す。 なお、分母が 120 であるのはテストフェーズにおいて、全 12 パターンからなる経路を走行させ、評価を行うことを 10 回繰り返したためである。

Table 4.1 に示すように、目標方向に従って 113/120 回、正しい経路を選択する様子が見られた。

Fig. 4.6: Experimental results for each moving pattern from [6]

Table 4.1: Experimental results

Experiments	Step	Total result
Conventional	60000	113/120 ($94.2%$)

この従来の実験を基に、単に 60000step から 10000step に学習量を削減し、実験した結果を下記に示す.

第4章 実験 28

4.2.2 アプローチ 1: データセットに加えるデータの割合変更

従来の実験における 10000step ごとのコマンドごとのデータ数を Fig. 4.7 に示す. Fig. 4.7 (a) より, 直進コマンド時のデータ数が圧倒的に多いことがわかる. このデータ数の偏りを解消するため, Fig. 4.7 (b) に示すように, 左折と右折コマンドのデータ数を 7 倍にする. 7 倍にするのは, 左折と右折コマンドのデータ数を直進コマンドと同程度にするためである. なお, データ数を何倍にするのが望ましいのか本論文では議論しない. 実験により, データセットに加えるデータ数の割合変更が有効か検証する.

Fig. 4.7: Number of data per command per 10000steps in conventional experiments

● 実験環境

4.1.1 で述べた簡易的なシミュレータ環境で実験を行った

● 実験方法

4.1.2 で示した経路を繰り返し走行させる. 学習を 10000step 実行後, テストフェーズに移行する. テストフェーズで正しい順序で経路を選択し, 走行を行えるか確認する. この一連の流れを 5 回繰り返し行う.

● 実験結果

実験結果を Fig.~4.8 に示す。この図は、それぞれの走行パターンにおいて正しく経路を選択し、走行できた回数を表している。 Table~4.2 に実験ごとに全パターンを合計した結果を示す。 Table~4.2 に示すように、目標方向に従って 48/60 回、正しい経路を選択する様子が見られた。

60000step の実験と成功率を比較すると 15% ほど差があり、アプローチ 1 を試みた結果では成功率が十分だとは言い難い、次に成功率を改善するため、後述するアプローチ 2 を試みた。

o:Robot ○:Goal →:Go straight →:Turn left →:Turn right

 $\textbf{Fig. 4.8:} \ \ \textbf{Experimental results for each moving pattern}$

Experiments	Step	Total results per 5 times
Conventional	60000	56.5/60 ($94.2%$)
Conventional	10000	/60 (%)
Approach1	10000	48/60 (80%)

Table 4.2: Experimental results

第4章 実験 30

4.2.3 アプローチ2: 学習フェーズにおける積極的な蛇行

清岡ら [10] により、目標経路上に加えて離れた状態を学習することが、テストフェーズでの 走行に大きな影響を与えるため、重要だとされている。そのため、より積極的に蛇行を行い、目 標経路から離れた状態を増加させることを検討する。

実験で用いているシステムの学習フェーズでは、Fig. 4.9 に示すようにロボットが目標経路上付近を走行している場合、訓練中の学習器へ画像を入力し、出力される角速度を用いて走行している。この場合に、目標経路から一定の距離離れると地図を用いたルールベース制御器の走行に切り替わり、強制的にロボットを目標経路上に戻すように制御を行う。

Fig. 4.9: Moving on the target path

訓練中の学習器へ画像を入力し、Fig. 4.10 のように出力される角速度を 1.5 倍にする. その結果、Fig. 4.11 に示すように蛇行する頻度が高くなり、目標経路から離れた状態をより多く学習できる可能性がある. なお、得られた角速度を何倍にするのが望ましいのか本論文では議論しない. 実験により、学習フェーズにおける積極的な蛇行が有効か検証する.

Fig. 4.10: Robot behavior

Fig. 4.11: Moving on the target path attempting approach 2

● 実験環境

4.1.1 で述べた簡易的なシミュレータ環境で実験を行った

● 実験方法

4.1.2 で示した経路を繰り返し走行させる. 学習を 10000step 実行後, テストフェーズに移行する. テストフェーズで正しい順序で経路を選択し, 走行を行えるか確認する. この一連の流れを 5 回繰り返し行う.

● 実験結果

実験結果を Fig.~4.12 に示す。この図は、それぞれの走行パターンにおいて正しく経路を選択し、走行できた回数を表している。 Table~4.3 に実験ごとに全パターンを合計した結果を示す。 Table~4.3 に示すように、目標方向に従って 54/60 回、正しい経路を選択する様子が見られた。

Fig. 4.12: Experimental results for each moving pattern

Experiments	Step	Total results per 5 times
Conventional	60000	56.5/60 ($94.2%$)
Conventional	10000	/60 (%)
Approach1	10000	48/60 (80%)
Approach1+2	10000	54/60 ($90%$)

Table 4.3: Experimental results

Table 4.3 からアプローチ 1 の実験より、成功率が改善していることがわかる。また、60000step の実験と成功率を比較した場合、約 4% ほどの差がある。以下に Fig. 4.12 における成功率が低い場所と要因を示す。

- f7
 - 4.1.2 で示した経路の最後であり、学習フェーズが終了する直前の三叉路である. そのため、データセットに f7 のデータが加えられてから十分な学習ができていない
- a7, b3, e1 これらは,全て右折する場所である. Fig. 4.7 より,他のコマンドのデータと比較して右折コマンドのデータが少ないことがわかる.このことから,右折コマンドのデータを十分に学習できていない

この 2 つの点から, 学習量を増加すると成功率が改善する可能性がある. そのため, 10000step から 20000step に学習量を増加した実験結果を後述する.

第4章 実験 33

学習フェーズにおける目標経路からの距離によるデータの割合を Fig.~4.13 に示す. この図から、学習器から得られた角速度を 1.5 倍にした場合、データの割合が目標経路付近では減少し、目標経路から離れた場所では増加している。よって、アプローチ 2 を試みた結果、学習フェーズでは目標経路から離れる行動が増えた。すなわち、積極的に蛇行している可能性が高い.

Fig. 4.13: Ratio of data by distance from target path in learning phase

テストフェーズにおける目標経路からの距離によるデータの割合を Fig.~4.14 に示す。この図から、学習器から得られた角速度を 1.5 倍にした場合、データの割合が目標経路付近では増加し、目標経路から離れた場所では減少している。よって、アプローチ 2 を試みる前に比べ、より正確に経路追従行動を模倣している可能性が高い。

Fig. 4.14: Ratio of data by distance from target path in test phase

このアプローチ 1,2 の実験を基に、単に 10000step から 20000step に学習量を削減し、実験した結果を下記に示す.

4.2.4 実環境に似たシミュレータ環境による実験

これまでの実験では、簡易的なシミュレータ環境を用いてきた. しかし、実験に簡易的なシミュレータ環境を用いるには問題があり、以下の点である.

● Fig. 4.15 (a) に示すように、環境の大半が灰色や白のみで構成されているため、Fig. 4.15 (b) のように視覚による特徴が乏しい.

(a) A bird's eye view of the robot

(b) Robot Perspective

Fig. 4.15: Simple simulator environment

この問題は,

参考文献

- [1] Mariusz bojarski et al. "end to end learning for self-driving cars". arxiv: 1604.07316, 2016.
- [2] 岡田眞也, 清岡優祐, 上田隆一, 林原靖男" 視覚と行動の: end-to-end 学習により経路追従行動 をオンラインで模倣する手法の提案", 計測自動制御学会 si 部門講演会 sice-si2020 予稿集,pp.1147-1152(2020).
- [3] Felipe codevilla et al. "end-to-end driving via conditional imitation learning". arxiv: 1710.02410, 2018.
- [4] Jeffrey hawke et al. "urban driving with conditional imitation learning". arxiv: 1912.00177, 2019.
- [5] I. sutskever a. krizhevsky and g. e. hinton. imagenet classification with deep convolutional neural networks. pp. 2p1-j07. 一般社団法人 日本機械学会, 2017.
- [6] 春山健太, 藤原柾, 清岡優祐, 岡田眞也, 上田隆一, 林原靖男, "視覚と行動の end-to-end 学習により経路追従行動をオンラインで模倣する手法の提案 経路選択機能の追加 ", 日本機械学会ロボティクス・メカトロニクス講演会'22 予稿集,(2022).
- [7] 岡田眞也, 清岡優祐, 春山健太, 上田隆一, 林原靖男: " 視覚と行動の end-to-end 学習により経路追従行動 をオンラインで模倣する手法の提案-経路追従行動の修正のためにデータセットを動的に追加する手法の検討", 計測自動制御学会 si 部門講演会 sice-si2021 予稿集,pp.1066-1070(2021).
- [8] ros-planning, navigation レポジトリ. https://github.com/ros-planning/navigation. (Accessed on 12/6/2022).
- [9] waypoint_nav レポジトリ. https://github.com/open-rdc/waypoint_nav.git. (Accessed on 12/6/2022).

[10] 春山健太,藤原柾,清岡優祐,岡田眞也,上田隆一,林原靖男,"視覚と行動の end-to-end 学習により経路追従行動をオンラインで模倣する手法の提案 経路選択機能の追加 ",日本機械学会ロボティクス・メカトロニクス講演会²² 予稿集,(2022).

付録

謝辞

本研究を進めるにあたり、1年に渡り、熱心にご指導を頂いた林原靖男教授に深く感謝いた します.