Schalttechnik & Logikgatter Benjamin Tröster, HTW Berlin

Schalttechnik & Logikgatter

Fahrplan

Recap

Einleitung

Bool'sche Algebra nach Huntington (Wichtig!)

Definition

Die bool'sche Algebra nach Huntington ist definiert als Menge $\mathcal{V}:\{0,1\}$ mit den Verknüpfungen $\cdot(\wedge),+(\vee)$, sodass $\mathcal{V}\times\mathcal{V}\to\mathcal{V}$, also $\{0,1\}\times\{0,1\}\to\{0,1\}$.

- ► Kommutativgesetze (K): $a \cdot b = b \cdot a$ bzw. a + b = b + a
- ▶ Distributivgesetze (D): $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ bzw. $a + (b \cdot c) = (a + b) \cdot (a + c)$
- ▶ Neutrale Elemente (N): $\exists e, n \in \mathcal{V}$ mit $a \cdot e = a$ und a + n = a
- Inverse Elemente (I): $\forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e

Übernommen von [Bar13] bzw. [Hof20]

Notation und Operatorenbindung

- Syntactic Sugar (Ableitungen aus Basisverknüpfungen)
 - ► $(a \Rightarrow b)$ für $(\neg a \lor b)$ Implikation
 - ▶ $(a \Leftarrow b)$ für $(b \Rightarrow a)$ Inversion der Implikation
 - ▶ $(a \Leftrightarrow b)$ für $(a \Rightarrow b) \land (a \Leftarrow b)$ Äquivalenz
 - ▶ $(a \oplus b)$ für $\neg(a \Leftrightarrow b)$ Antivalenz oder Exklusiv-ODER/XOR
 - $ightharpoonup \neg (a \lor b) NOR$
 - $ightharpoonup \neg (a \land b) NAND$
- Bindung der Operatoren
 - ► ∧ bindet stärker als ∨
 - /\ Dilluet starker als v
 - → bindet stärker als ∧
- Klammerung
 - Gleiche Verknüpfungen: linksassoziativ zusammengefasst

Erfüllbarkeit

Definition (Erfüllbarkeit)

Sei φ ein beliebiger boolescher Ausdruck. φ heißt

- erfüllbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 1$.
- ightharpoonup widerlegbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 0$.
- unerfüllbar, wenn $\varphi(x_1,\ldots,x_n)$ immer gleich 0 ist.
- ▶ allgemeingültig, wenn wenn $\varphi(x_1, \ldots, x_n)$ immer gleich 1 ist.

Einen allgemeingültigen Ausdruck bezeichnen wir auch als **Tautologie**.

Negationstheorem

Theorem (Negationstheorem)

Sei $f(0, 1, x_1, ..., x_n, \land, \lor, \neg)$ ein boolescher Ausdruck, in dem neben den Konstanten 1 und 0 und den Variablen $x_1, ..., x_n$ die booleschen Operatoren \land, \lor und \neg vorkommen. Dann gilt:

$$\overline{f(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)}=f(1,0,\overline{x_1},\ldots,\overline{x_n},\vee,\wedge,\neg)$$

Dualitätsprinzip

Theorem

Sei

$$\varphi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)=\psi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra, in der neben Variablen und den Konstanten 0 und 1 ausschließlich die Elementarverknüpfungen \neg, \land und \lor vorkommen. Dann ist auch die duale Gleichung

$$\varphi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)=\psi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra.

Vollständige Operatorensysteme

Definition (Vollständige Operatorensystem)

 \mathcal{M} sei eine beliebige Menge von Operatoren. \mathcal{M} ist ein vollständiges Operatorensystem, wenn sich jede boolesche Funktion durch einen Ausdruck beschreiben lässt, in dem neben den Variablen x_1, \ldots, x_n ausschließlich Operatoren aus \mathcal{M} vorkommen.

- ▶ Die Elementaroperatoren \land, \lor und \neg bilden zusammen ein vollständiges Operatorensystem
- ▶ Die Operatoren NAND und NOR bilden jeder für sich bereits ein vollständiges Operatorensystem
- ▶ Die Implikation und die 0 bilden zusammen ebenfalls ein vollständiges Operatorensystem

Normalformdarstellungen

- Normalform beschreibt eine eindeutige Darstellung
- ▶ Vollform: Ausdruck, in dem jede Variable genau einmal vorkommt
- ▶ Literal: Teilausdruck, der entweder negierte oder unnegierte Variable darstellt
- Wahrheitstafeldarstellung ist eine Art der Normalformdarstellungen
- Bool'sche Ausdrücke hingegen sind keine Normalformdarstellung
 - ▶ Jede bool'sche Funktion durch unendlich viele Ausdrücke beschrieben werden

Disjunktive Normalform

- ▶ Die disjunktive Normalform (DNF) ist jene Darstellungsart, bei der eine Reihe von Vollkonjunktionen disjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
 - $(A \land \neg B \land C) \lor (A \land B \land C) \lor (\neg A \land \neg B \land C)$
- ▶ Die konjunktive Normalform (KNF) ist jene Darstellungsart, bei der eine Reihe von Volldisjunktionen konjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
 - $(\neg A \lor \neg B \lor \neg C) \land (A \lor B \lor C) \land (A \lor \neg B \lor \neg C)$
- ► Andere Bezeichnungen:
 - ► Kanonische disjunktive/konjunktive Normalform (KDNF/KKNF)
 - Vollständige disjunktive/konjunktive Normalform

Bitweise logische Operationen

A, B seien Bitvektoren, ∘ eine beliebige Verknüpfung

Dann erhalten wir als Ergebnis: $E = A \circ B$

Heute:

Quellen I

- Barnett, Janet Heine (2013). "Boolean algebra as an abstract structure: Edward V. Huntington and axiomatization". In: *Convergence*.
- Bewersdorff, Jörg (2007). "Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie, 3". In: *Aufl. Vieweg+ Teubner, Wiesbaden (2007, Juli)*.
- Hoffmann, Dirk W (2020). *Grundlagen der technischen Informatik*. Carl Hanser Verlag GmbH Co KG.
- Rautenberg, Wolfgang (2008). Einführung in die mathematische Logik. Springer.
- Sasao, Tsutomu (1999). "Lattice and Boolean Algebra". In: Switching Theory for Logic Synthesis. Springer, S. 17–34.

Quellen II

Teschl, Gerald und Susanne Teschl (2013). Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. Springer-Verlag.