ДЗ к блоку "НМ Кеплер+"

1. Сатурну больше не наливать

Допуск.

Допустим, вокруг каждой звёзды обращается планета с массой и орбитальным периодом Сатурна. Определите, у каких звёзд — тяжёлых или лёгких — будет проще обнаружить присутствие этой планеты, если измерять (a) её угловое отклонение от среднего положения на небе и (b) изменение её лучевой скорости.

Задача

Предположим, мауры, живущие вблизи αCen ($\delta = -60^{\circ}50', \alpha = 13h39m, \pi = 0.75''$), располагают инструментами, позволящими обнаружить Сатурн у Солнца на пределе своих возможностей обоими методами. Для каждого из методов определите, в пределах каких эклиптических широт и каких гелиоцентрических расстояний могут проживать цивилизации, которые, будучи развиты, как мауры, смогли бы эффективно применить имеющуюся технологию для поиска шестой планеты Солнечной системы. Орбиту Сатурна считать лежащей в плоскости эклиптики.

2. Свет софитов

Допуск.

Как относятся количества солнечного тепла, получаемого сферической кометой с эксцентриситетом орбиты e на двух смежных участках от фокального параметра до фокального параметра? (Один содержит точку перигелия, второй - афелия)

Задача.

Определите, за какое минимальное и за какое максимальное время комета Галлея $(q=0.586\,a.u.,Q=35.082\,a.u.)$ способна получить треть солнечного тепла, собираемого ею за полный орбитальный период.

3. Тело в отрыве

Допуск.

Сформулируйте подход к связыванию времени от пересечения перицентра и истинной аномалии ϕ тела, движущегося по произвольной орбите в кулоновском потенциале (выпишите уравнение Кеплера в любом удобном сходящемся виде)

Задача.

Определите, за какое время протуберанец, долетевший до Земли за (a) 2.2, (b) 61.7, (b) 64.6 суток, сможет достигнуть орбиты Юпитера

4. Тащите баян!

Допуск.

Мы хотим минимизировать стартовую скорость ракеты, летящей с северного полюса Земли в точку на её поверхности с полярным расстоянием $\phi \in [0^{\circ}, 180^{\circ}]$. Под каким углом к горизонту нам необходимо её запускать? Для какого полярного расстояния полёт по такой оптимальной траектории займёт наибольшее время?

Задача.

Определите эксцентриситет такой орбиты, максимальную высоту полёта ракеты, время полёта и момент, когда ракета появится из-за горизонта для наблюдателя в

точке назначения, а также то, на какое расстояние можно промахнуться, если при запуске не учесть вращение Земли.

5. Задача без названия, описывающего мой корпоратив

(кодовое - "Улёт", но это немножко не про него)

Допуск.

Свяжите орбитальный момент импульса тела с его орбитальными параметрами. Опишите зависимость его лучевой скорости в СО тяготеющего центра от истинной аномалии.

Задача.

Найдите минимальное гелиоцентрическое расстояние и максимальную гелиоцентрическую лучевую скорость, которую может обрести солнечный парус, запущенный с орбиты Земли, после серии своих открытий-закрытий.

6. Меня плющит (это конец)

Допуск.

Найдите столько значимых инвариантов при ортогональном проецировании кеплеровской орбиты, сколько сможете (ожидается три).

Задача.

На изображении ниже смоделирована орбита (чёрная линия) некоторого искуственного спутника Юпитера (оранжевый кружок) так, как она видна для земного наблюдателя. Определите эксцентриситет орбиты и период обращения спутника.

7. Рекомендуемая литература

1. Э.В.Кононович, В.И.Мороз, "Общий курс астрономии" – М.: ЛЕНАНД, 2015

- 2. Н.В.Распопова, А.А.Давыденко, "Задачи движения тел в космических системах" СПб.: "СОЛО", 2015
- 3^* . В.И.Арнольд, В.В.Козлов, А.И.Нейштадт, "Математические аспекты классической и небесной механики" М.: Едиториал УРСС, 2017
- 4*. Л.А.Парс, "Аналитическая динамика" М.: "Наука", 1971
- 5^* . У.М.Смарт, "Небесная механика" М.: Мир, 1965
- 6*. К.Мюррей, С.Дермотт, "Динамика Солнечной системы" М.: ФИЗМАТЛИТ, 2010
- 7. М.Б.Балк, В.Г.Демин, А.Л.Куницын, "Сборник задач по небесной механике и космодинамике" М.: "Наука", 1972.