

### Optical Music Recognition with Human Labeled Constraints

Christopher Raphael, Liang Chen, Yucong Jiang, Rong Jin, Erik Stolterman. Indiana University Bloomington

#### What is Optical Music Recognition (OMR)

OMR system is aimed to convert digital music score images to sybolic music data (e.g. MusicXML or MIDI).

#### **Existing Optical Music Systems:**

Notescan, Midiscan, Photoscore, Smartscore, Sharpeye, Audiveris, etc.

#### **Challenges:**

- 1, A heavy tail of rare symbols and execptional configurations that downgrade the performance of automatic recognition.
- 2, Lack of paradigm to identify measure-level symbol structures.
- 3, Hard to incorporate higher-level music knowledge into recognition.
- 4, Image degradation due to noise, distortion, or illumination.

#### **Current state of the art:**

- 1, Unstable performance in terms of accuracy and usability.
- 2, Require a considerable amount of human labor for post-processing.

#### Model for Automatic Recognition:

#### 1, Template Matching for symbol primitive detection



Each primitive template is partitioned into several different states: inside (black), outside (white), or unknown (background), etc.

We evaluate the goodness of a primitive model by measuring the likelihood normalized by background model.

$$H(B, W) = \sum_{x \in B} \log \frac{p_B(g(x))}{p_U(g(x))} + \sum_{x \in W} \log \frac{p_W(g(x))}{p_U(g(x))}$$

## 2, Represent composite symbols via graphical model

In the clef-key graph, for instance, each node represents a state, and the arrows define legitimate transitions between states. (Start)



#### What we are doing

Instead of pinning our hope on fully automatic system, we design an interactive one which combines the power of both human and machine intelligence.

We construct a computational loop, in which machine takes human feedback as extra contraints for re-recognition. This loop continues until it converges to the correct recognition result.



#### Idea of human-in-the-loop recognition

- 1, Label Constraints: user imposes pixel labels on the image, and machine re-recognize symbols subject to these constraints.
- 2, Model Constraints: user toggles switches on the interface making recognition engine change its underlying symbol graph.



#### **Example of Label Constraint**

# Original Measure Initial Recognition Final Recognition



#### **Example of Model Constraint**



Beam using grand staff

#### **User Study**



#### **Application: Renotation**

Renotation on the first page of the Breitkopf and Hartel 1862-90 edition of Beethoven's Piano Sonata No. 23, (the "Appassionata").

