Introduction

如何在現有的音樂類型、基礎上,生成獨特的音樂。各式類型的音樂都是由少數幾個音符透過排列、重組等方式而產生出,僅僅幾個音符就能製造出如此多種的音樂類型,於是我們想從音樂的基礎音符出發,來產出背景音樂。因我們這組有位組員平時會剪片上傳Youtube,但每次都要煩惱該用何種背景音樂,無版權的背景音樂大家都聽到膩了而有版權的又會沒收益,於是我們打算實際做一個能產生音樂的程式。

Literature Review/related Work

S.Mangal, R.Modak, P.Joshi "LSTM Based Music Generation System"

A. Deep Neural Network Design

將音符與出現時間點做連結‧對音符與出現概率做分佈並使模型學習‧利用該模型生成音符序列‧ Activation Layer決定了LSTM中哪些神經元需要被使用‧或是該神經元的資訊在訓練模型時是否相 干。LSTM其中的Dropout設為0.75。

B. SoftwareDesign

Note, Note Velocity, time interval of note構成了音符矩陣·其中·Note Velocity指的是音量大小,這個矩陣經過一些簡單的處理後,再丟入model中操作。

上圖為簡易的data Bow

我們使用了不一樣的資料處理方式,遍歷過所有的輸入後,將使用頻率過少的音符移除,能減少錯誤發生並加快模型訓練速度,取model的layer也採用了不同的堆疊方式及參數。除了LSTM之外,我 們還額外使用了其他兩種方式來生成音樂,分別是Conv1D與Conv1D和LSTM的結合。

Dataset

Input: MIDI files with some artists' piano music.(Basically from : http://www.piano-midi.de) 但下載的資源有些已損壞,於是我們手動移除。

Output:Melody generated by three model.

Baseline

相較於複雜的神經網路,使用隨機或有簡單規則的方法生成音符,在輸入的資料庫當中,使用出現頻率較高的音符作為輸出的原型。

Test Feasibility

Check_qpu.py這個檔案用來檢查qpu的資源是否可讓我們使用。

Data Fetch(Optional)

在loading_data.py這個檔案中·提供了另一種input data的方式·使用者輸入yt連結·該程式會將連結裡面的歌曲轉換成midi檔供主程式使用。

Main Approach

在主程式的起始,就給使用者兩個選項,從原有的資料庫中汲取資源抑或是從網路上抓取,這邊data一律統一用loading_data.py抓取。

```
#Choose your Dataset

24    option = int(input("Do you want to load dataset online? Please enter 1 if yes, otherwise 0 :"))

25

26    #Getting the list of notes as Corpus

27    all_midis= loading_data.capture_data(option)

28    Corpus= loading_data.extract_notes(all_midis)

29    print("Total notes in all the Chopin midis in the dataset:", len(Corpus))

30    print("First one hundred values in the Corpus:", Corpus[:100])
```

資料前處理

```
#Getting a list of rare chords & Eleminating them
for index, (key, value) in enumerate(count_num.items()):
    if value < 10:
        m = key
        rare_note.append(m)
print("Total number of notes that occur less than 10 times:", len(rare_note))

for element in Corpus:
    if element in rare_note:
        Corpus.remove(element)
print("Length of Corpus after elemination the rare notes:", len(Corpus))</pre>
```

將出現次數<10的音符移除,以利模型更快速的訓練並減少錯誤機率。

```
#Building dictionary to map an unique note to a number (ex:'E2': 115), and its reverse
mapping = dict((c, i) for i, c in enumerate(symbols))
reverse_mapping = dict((i, c) for i, c in enumerate(symbols))

print("Total number of notes:", corpus_length)
print("Number of unique notes:", symbol_length)
```

使音符以數字型態儲存,方便使用。

LSTM細節

我們的模型將依照以下順序進行建構:

- 1.LSTM Layer: 具有512個unit,輸入型式為(X.shape[1],X.shape[2]),並做為下一層的輸入
- 2. Dropout Layer: 有0.1的機率將輸入設為0·防止特殊特徵間有合作關係·使其用不完整的神經網路來學習。
- 3. LSTM Layer: 具有256個unit, 輸出向量。
- 4.Dense Layer:將輸入映射到輸出。
- 5. Dropout Layer: 再次以0.1的機率使輸入設為0。
- 6.Dense Layer:具有y.shape[1]個unit,並使用softmax來進行多類別分類。

最後使用Adamax優化器來進行訓練。

這幾層能有效的使模型了解音符的結構信息,並減少overfit的風險。

Conv1D細節(在時間維度上應用卷積操作,用於捕捉序列數據中的局部特徵)

1.Conv1D Layer:擁有256個濾波器·kernel_size=3·並使用ReLU作為激活函數。使用ReLU:非線性轉換使複數輸入轉換為0·計算效率較高·減輕梯度消失問題。

- 2.Dropout Layer:有0.1的機率使輸入設為0。
- 3.Dense Layer:將輸入映射到64維的輸出。
- 4.Dropout Layer:再一次以0.1的機率使輸入設為0。
- 5. Dense Layer:用於最後的分類操作,同樣使用softmax函數。
- 6. Global Max Pooling 1D Layer: 將序列維度的特徵壓縮為單一特徵,選擇每個特徵通道的最大值,提取最重要的特徵。

Merge Model細節

同時使用的LSTM與Conv1D的操作訓練模型。

```
#Start training data
model_LSTM.fit(X_train, y_train, batch_size=256, epochs=200)
model_Conv1D.fit(X_train, y_train, batch_size=256, epochs=200)
model_Merge.fit(X_train, y_train, batch_size=256, epochs=200)
```

將一樣的data丟入三個不同的model中做同樣次數的訓練。

下面以LSTM模型做輸出範例的解釋

```
def Malody_Generator_LSTM(Note_Count):
        seed = X_seed[np.random.randint(0,len(X_seed)-1)]
        Music = ""
        Notes_Generated=[]
        for i in range(Note_Count):
            seed = seed.reshape(1,fearture_length,1)
            prediction = model_LSTM.predict(seed, verbose=0)[0]
            prediction = np.log(prediction) / 1.0 #diversity
           exp_preds = np.exp(prediction)
            prediction = exp_preds / np.sum(exp_preds)
           index = np.argmax(prediction)
           index_N = index/ float(symbol_length)
           Notes_Generated.append(index)
           Music = [reverse_mapping[char] for char in Notes_Generated]
           seed = np.insert(seed[0],len(seed[0]),index_N)
            seed = seed[1:]
       #Now, we have music in form or a list of chords and notes and we want to be a midi file.
        Melody = loading_data.chords_n_notes(Music)
       Melody_midi = stream.Stream(Melody)
       return Music, Melody_midi
218 Music_notes_LSTM, Melody_LSTM = Malody_Generator_LSTM(300)
219 Melody_LSTM.write('midi','LSTM.mid')
```

197 Note Count:欲生成的音符數量

198 seed:隨機從X seed中選取一個當作生成起點

203:用LSTM模型對種子序列做預測,以獲取下個音符的概率分佈

204/205:進行對數轉換與指數轉換,用以增加生成音樂的豐富性

206:正規化預測結果,使其總和為1

207/208:找到概率分佈的最大值,作為生成音符參考

210:將型態轉換為實際音符

211/212:在序列末端插入生成的音符,並移除第一個元素,為下次生成做準備

213:轉換為樂譜型態

214使其方便寫入midi檔

最後,將不同模型產生的midi檔存入相對應的檔案名稱。

Evaluation Matrix

Categorical_crossentropy:

$$ext{Loss} = -\sum_{i=1}^{ ext{output size}} y_i \cdot \log \, \hat{y}_i \qquad \qquad egin{matrix} y_i & \hat{y}_i \ & & ext{True label} \end{cases}$$

根據true_label與pred_label的差距,差距越小代表模型能更精準地預測各個類別的概率分佈。

Result and Analysis

輸出的音檔在我們聽起來都是差不多的,可能是我們對音樂的鑑賞性不好,或是輸出的音樂鑑別度不佳,但至少有輸出東西來。但音樂就是音樂,並不會有什麼規則須依循,因此我們對輸出的結果沒什麼太大的問題,但要如何產出某特定類型或風格的音樂,這可能就需要修改程式架構或增加功能等才能達成。針對輸出的結果,我們沒辦法對此程式有什麼評價,只能由evaluation matrix使用的function來計算loss值,透過數據來評判這個model,但數據與真實輸出卻感覺也沒什麼太大的連結,畢竟我們原本就只想生成規避版權且與原有不同的音樂。

Error Analysis

生成的音檔鑑別度不高且輸入需具有一定的規格·難以使用多種不同的音樂當作輸入。 生成的音樂只會依照單一節奏(ex.BPM無法更改)·略顯單調。

Future Work

在模型的訓練上參考更多其他paper·調整layer架構且找到更好的參數設定·並試著使輸出能依照 使用者的需求更改類型。

使生成的音樂能以不同的節奏呈現,增加變化。

未來想嘗試使用AI生成嘻哈歌曲的beat·輸入的資源可能就要以嘻哈歌曲為主體·單一節奏的問題 也須修改·增加多樣性以朝AI beat maker為目標邁進。

Future Issue

畢竟我們的輸入是使用其他的製作的歌曲·輸出的結果可能會有侵權的疑慮產生·能否開啟收益這部分有待檢閱過相關法律條文或yt規範後再來進一步討論。

Code Link

https://github.com/chiafu2018/AI_generate_music

Reference

- 1. Yang, L.C., A.Lerch, :On the evaluation of generative models in music
- 2. S.Mangal, R.Modak, P.Joshi :LSTM Based Music Generation System