POLARIZATION FRACTION OF PLANCK GALACTIC COLD CLUMPS

AND FORECASTS FOR THE SIMONS OBSERVATORY

J. Clancy¹, G. Puglisi²,

S. E. Clark^{3,4}, G. Coppi^{5,6}, G. Fabbian^{7,8}, C. Hervías-Caimapo⁹, J. C. Hill¹⁰, F. Nati⁵, C. I. Reichardt¹

¹Melbourne Univ., ²Universita degli Studi di Catania, ³Stanford Univ., ⁴KIPAC, Stanford Univ., ⁵University of Milano-Bicocca, ⁶INFN, Sezione di Milano-Bicocca, ⁷Flatiron Institute, ⁸Cardiff Univ., ⁹Pontifica Universidad Catolica de Chile, ¹⁰Columbia Univ.

GALACTIC COLD CLUMPS

What are cold clumps?

- Dense and cold regions within interstellar molecular clouds
- Larger than 0.1 pc and can contain substructures
- Capable of star formation under self-gravitational collapse
- High dust content shields from external stellar heating

What are we looking for?

- How do magnetic fields impact cold clump formation and evolution?
- We need polarization information!

POLARIZATION

Mean-squared polarization

Contact Info

Paper & References on ArXiv

SIMONS OBSERVATORY & FORECASTS

- Angular resolution of order 1'
- Noise levels between 22 and 54 μK-arcmin at 220 & 280 GHz
- At > 5σ significance we predict at least 12,000 detections of cold clumps in intensity and ~430 in polarization
- This would represent a two orders of magnitude increase over Planck results

