S&DS 365 / 665 Intermediate Machine Learning

Smoothing and Density Estimation

September 11

Topics for today

- Continue: Smoothing kernels
- Kernel density estimation
- Bias-variance decomposition and COD
- Intro to Mercer kernels

Some reminders

- Quiz 1: Great job!
- Assn 1 posted on Wednesday
- Topics: Lasso, smoothing, Mercer kernels, LOOCV
- Recordings
- Questions?

Notes

- Notes posted to course page http://interml.ydata123.org
 - Notes on lasso optimization posted last week
- Readings from "Probabilistic Machine Learning: An Introduction"
- https://probml.github.io/pml-book/book1.html

Nonparametric Regression

Given $(X_1, Y_1), \dots, (X_n, Y_n)$ predict Y from X.

Assume only that $Y_i = m(X_i) + \epsilon_i$ where where m(x) is a smooth function of x.

The most popular methods are *kernel methods*. However, there are two types of kernels:

- Smoothing kernels
- 2 Mercer kernels

Smoothing kernels involve local averaging. Mercer kernels involve regularization.

Smoothing Kernels

Smoothing kernel estimator:

$$\widehat{m}_h(x) = \frac{\sum_{i=1}^n Y_i K_h(X_i, x)}{\sum_{i=1}^n K_h(X_i, x)}$$

where $K_h(x, z)$ is a *kernel* such as

$$K_h(x,z) = \exp\left(-\frac{\|x-z\|^2}{2h^2}\right)$$

and h > 0 is called the *bandwidth*.

- $\widehat{m}_h(x)$ is just a local average of the Y_i 's near x.
- The bandwidth h controls the bias-variance tradeoff: Small h = large variance while large h = large bias.

Example: Some Data – Plot of Y_i versus X_i

Example: $\widehat{m}(x)$

8

$\widehat{m}(x)$ is a local average

$\widehat{m}(x)$ is a local average

The estimator minimizes a weighted least squares criterion

$$\widehat{m}(x) = \underset{c}{\arg\min} \sum_{i=1}^{n} K(x, x_i) (y_i - c)^2$$

Effect of the bandwidth h

very small bandwidth

small bandwidth

medium bandwidth

large bandwidth

Let's go to the notebook

Smoothing Kernels

Risk =
$$\mathbb{E}(Y - \widehat{m}_h(X))^2 = \text{bias}^2 + \text{variance} + \sigma^2$$
.

 $\sigma^2 = \mathbb{E}(Y - m(X))^2$ is the unavoidable prediction error.

small h: low bias, high variance (undersmoothing)

large h: high bias, low variance (oversmoothing)

Risk Versus Bandwidth

Estimating the Risk: Cross-Validation

To choose h we need to estimate the risk R(h). We can estimate the risk by using *cross-validation*.

- ① Omit (X_i, Y_i) to get $\widehat{m}_{h,(i)}$, then predict: $\widehat{Y}_{(i)} = \widehat{m}_{h,(i)}(X_i)$.
- 2 Repeat this for all observations.
- 3 The cross-validation estimate of risk is:

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_{(i)})^2.$$

Shortcut formula: Whenever $\hat{Y} = LY$ we can use the shortcut

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i}{1 - L_{ii}} \right)^2.$$

In this case $L_{ii} = K_h(X_i, X_i) / \sum_t K_h(X_i, X_t)$.

14

Summary so far

- **1** Compute \widehat{m}_h for each h
- ② Estimate the risk $\widehat{R}(h)$ using LOOCV
- 3 Choose bandwidth \hat{h} to minimize $\hat{R}(h)$
- 4 Let $\widehat{m}(x) = \widehat{m}_{\widehat{h}}(x)$

Example

The curse of dimensionality

The method is easily applied in high dimensions — but it doesn't work well.

- The squared bias scales as h^4 and the variance scales as $\frac{1}{nh^p}$
- As a result, the risk goes down no faster than $n^{-4/(4+p)}$
- Suppose we want to make this small, of size ϵ —how many data points do we need?

$$n \geq \left(\frac{1}{\epsilon}\right)^{1+p/4}$$

Grows exponentially with dimension—the curse of dimensionality

Kernel density estimation

To estimate a density, use the same idea behind kernel smoothing:

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_h(X_i, x)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{X_i - x}{h}\right)$$

We require that $\int K(u) du = 1$ and $K \ge 0$ is symmetric around zero (an even function).

This places a "bump function" around each data point, and averages them (a mixture model)

18

Kernel density estimation

In p dimensions:

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_h(X_i, x)$$
$$= \frac{1}{n h^p} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

We require that $\int K(u) du = 1$ and K is symmetric around zero.

This places a "bump function" around each data point, and averages them (a mixture model)

KDE demo: Fiji earthquakes

Kernel density estimation

The bias-variance tradeoff:

$$bias^{2}(x) \approx h^{4}$$
$$var(x) \approx \frac{1}{n h^{p}}$$

Note that the variance scales according to the expected number of data points in a cube of side length h in p-dimensions.

We'll go through the calculation of this on the board. Notes are posted to http://interml.ydata123.org

Back to regression

Using a kernel density estimator, the "plug-in" regression estimate gives us back the kernel smoother:

$$\widehat{m}(x) = \int y \, \widehat{f}(y \mid x) \, dy$$

$$= \frac{\int y \, \widehat{f}(x, y) \, dy}{\widehat{f}(x)}$$

$$= \frac{\sum_{i} Y_{i} K_{h}(X_{i}, x)}{\sum_{i} K_{h}(X_{i}, x)}$$

- A density estimate is a generative model
- We can sample from the density to "generate" a new data point
- What is an algorithm for sampling from the estimated distribution?

- Sample an index i uniformly from 1 to n
- 2 Sample a point x from a Gaussian with mean X_i and variance h^2

Some recent generative models for images:

Some recent generative models for images:

As we'll see later in the course, Transformers can be naturally seen as a form of kernel density estimation.

Summary

- Smoothing methods compute local averages, weighting points by a kernel
- Shape of the kernel doesn't matter (much)
- KDE places a density around each data point, and averages
- The COD limits use of both approaches to low dimensions