UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

TEORIA ELECTROMAGNÉTICA II EXAMEN PARCIAL #3

Fecha:	Facilitador: Ing. Abel Rodríguez B.
Nombre:	Puntos obtenidos:
Cédula:	Calificación:
Resuelva los siguientes problemas. Sea or	denado y claro, no se admitirán tachones ni borrones.

- 1. Sea $\mu = 3x10^{-5}$ H/m, $\epsilon = 102x10^{-10}$ F/m y $\sigma = 0$ en cualquier otro lado. Si $H = 2\cos(10^{10}t \beta x)az$ A/m, utilizar las ecuaciones de Maxwell para obtener expresiones para **B**, **D**, **E** y β .
- 2. En el espacio vacío, $\mathbf{D} = D_m sen(wt+\beta z) \mathbf{a} \mathbf{x}$. Utilizando las ecuaciones de Maxwell, demuestre que $\mathbf{B} = -(w\mu_0 D/\beta) sen(wt + \beta z) \mathbf{a}_y$. Dibuje los campos en t=0 a lo largo del eje z, suponiendo que $D_m > 0$, $\beta > 0$.
- 4. Un buen conductor tiene forma plana y transporta una onda plana uniforme que tiene una longitud de onda de 0.3mm y una velocidad de $3x10^5$ m/s. Suponiendo que el conductor no es magnético, determine su frecuencia y conductividad.
- 5. Encontrar la amplitud de la densidad de la corriente de desplazamiento: a) adyacente a una antena de automóvil donde la intensidad de campo magnético de una señal FM es $H_x = 0.15cos(3.12(3x10^8t-y))$ A/m; b) en el espacio libre en un punto dentro de un transformador de distribución de gran potencia done $\mathbf{B} = 08cos(\mu_0(3x10^8t-x))\mathbf{a}_y$ T; c) dentro de un capacitor de potencia grande lleno de aceite donde $\varepsilon_r = 5$ y $\mathbf{E} = 0.9cos(\mu_0(3x10^8t-z5^{1/2}))\mathbf{a}_x$ MV/m; d) en un conductor metálico de 60Hz, si $\varepsilon = \varepsilon_0$, $\mu = \mu_0$, $\sigma = 5.8x10^7$ S/m y $\mathbf{J} = sen(377t-117.1z)\mathbf{a}_x$ MA/m^2 .