ロバストな半教師あり異常検知のための Positive-Unlabeled Autoencoder

高橋大志,岩田具治,熊谷充敏,山中友貴

1. 問題設定

- 半教師あり異常検知は、ラベルなしデータ $U = \{x_1, ..., x_N\}$ に 加えて少量の異常データ $\mathcal{A} = \{\tilde{\mathbf{x}}_1, ..., \tilde{\mathbf{x}}_M\}$ を用いて、検出性能 の向上を目指している
- 既存手法では、ラベルなしデータを全て正常データと仮定し、 ラベルなしデータに対する異常スコアを最小化、異常データ に対する異常スコアを最大化するようにモデルを学習する
- しかし、ラベルなしデータは異常を含んでいることが多く、 モデルの性能が低下してしまう問題がある

MNISTによる例(1が正常・他が異常)

ラベルなし(学習)

異常 (学習)

正常 (テスト) 異常 (テスト)

2. 既存手法: Autoencoder

- Autoencoder (AE)¹ はデータ x を低次元の表現 z に変換する エンコーダ $E_{\theta}(\mathbf{x})$ と、 \mathbf{z} から \mathbf{x} を再構成するデコーダ $D_{\theta}(\mathbf{z})$ の二つの二ューラルネットワークから構成される
- AEは、各データに対して下記の再構成誤差を最小化するよう にパラメータ θ を学習する:

$$\ell(\mathbf{x}; \theta) = ||D_{\theta}(E_{\theta}(\mathbf{x})) - \mathbf{x}||$$

• AEは、学習データの再構成には成功するが、学習していない データの再構成は失敗するため、再構成誤差は異常スコアと して用いることができる

3. 既存手法: Autoencoding Binary Classifier

• Autoencoding Binary Classifier (ABC)² はデータ x が正常 (y=0) もしくは異常 (y=1) である条件付き確率 $p_{ heta}(y|\mathbf{x})$ を、 再構成誤差を用いて下記で定義する:

$$p_{\theta}(y|\mathbf{x}) = \begin{cases} \exp(-\ell(\mathbf{x};\theta)) & (y=0) \\ 1 - \exp(-\ell(\mathbf{x};\theta)) & (y=1) \end{cases}$$

- 再構成誤差が小さい時 $p_{\theta}(y=0|\mathbf{x})$ が大きくなり、再構成誤差 が大きい時 $p_{\theta}(y=1|\mathbf{x})$ が大きくなる
- この条件付き確率を用いて、下記の損失を導入する:

$$\ell_{\text{BCE}}(\mathbf{x}, y; \theta) = -\log p_{\theta}(y|\mathbf{x})$$

$$= (1 - y)\ell(\mathbf{x}; \theta) - y\log(1 - \exp(-\ell(\mathbf{x}; \theta)))$$

再構成誤差の最小化再構成誤差の最大化

• ABCでは、下記の目的関数を最小化するように学習する:

$$\mathcal{L}_{ABC}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \ell_{BCE}(\mathbf{x}_n, 0; \theta) + \frac{1}{M} \sum_{m=1}^{M} \ell_{BCE}(\tilde{\mathbf{x}}_m, 1; \theta)$$
異常データ

• しかし、ラベルなしデータは異常を含んでいることが多く、 モデルの性能が低下してしまう

4. 提案手法

- この問題を解決するため、PU Learning³ とABCに基づく Positive-Unlabeled Autoencoder (PUAE) を提案する
- まず最初に、 $p_{\mathcal{N}}(\mathbf{x})$, $p_{\mathcal{A}}(\mathbf{x})$, $p_{\mathcal{U}}(\mathbf{x})$ を、それぞれ正常、異常、 ラベルなしデータの確率分布として導入し、データセットuと \mathcal{A} はそれぞれ $p_{\mathcal{U}}(\mathbf{x})$ と $p_{\mathcal{A}}(\mathbf{x})$ に従うと仮定する
- $p_u(\mathbf{x})$ は、異常の発生率を表すハイパーパラメータ $0 \le \alpha \le 1$ を用いて、下記で表現できると仮定する:

$$p_{\mathcal{U}}(\mathbf{x}) = \alpha p_{\mathcal{A}}(\mathbf{x}) + (1 - \alpha)p_{\mathcal{N}}(\mathbf{x})$$

• したがって、 $p_{\mathcal{N}}(\mathbf{x})$ は下記で表現できる:

$$(1 - \alpha)p_{\mathcal{N}}(\mathbf{x}) = p_{\mathcal{U}}(\mathbf{x}) - \alpha p_{\mathcal{A}}(\mathbf{x})$$

もし $p_{\mathcal{N}}(\mathbf{x})$ にアクセスできる場合、下記の理想的な目的関数 を最小化するうことで、モデルを学習できる

$$\mathcal{L}_{PN}(\theta) = \alpha \mathbb{E}_{p_{\mathcal{A}}}[\ell_{BCE}(\mathbf{x}, 1; \theta)] + (1 - \alpha) \mathbb{E}_{p_{\mathcal{N}}}[\ell_{BCE}(\mathbf{x}, 0; \theta)]$$

再構成誤差の最大化

再構成誤差の最小化

実際には $p_{\mathcal{N}}(\mathbf{x})$ が未知なため第二項を直接計算できないが、 $p_{\mathcal{U}}(\mathbf{x})$ と $p_{\mathcal{A}}(\mathbf{x})$ を用いることで下記のように計算できる:

$$\frac{(1 - \alpha)\mathbb{E}_{p_{\mathcal{N}}}[\ell_{\mathrm{BCE}}(\mathbf{x}, 0; \theta)] = \mathbb{E}_{p_{\mathcal{U}}}[\ell_{\mathrm{BCE}}(\mathbf{x}, 0; \theta)] - \alpha\mathbb{E}_{p_{\mathcal{A}}}[\ell_{\mathrm{BCE}}(\mathbf{x}, 0; \theta)]}{p_{\mathcal{U}}(\mathbf{x}) - \alpha p_{\mathcal{A}}(\mathbf{x})}$$

• したがって、 $\mathcal{L}_{PN}(\theta)$ は U と \mathcal{A} を用いて下記で近似できる:

$$\mathcal{L}_{PN}(\theta) = \alpha \mathbb{E}_{p_{\mathcal{A}}} [\ell_{BCE}(\mathbf{x}, 1; \theta)] + \mathbb{E}_{p_{\mathcal{U}}} [\ell_{BCE}(\mathbf{x}, 0; \theta)] - \alpha \mathbb{E}_{p_{\mathcal{A}}} [\ell_{BCE}(\mathbf{x}, 0; \theta)]$$

$$\simeq \alpha \underbrace{\frac{1}{M} \sum_{m=1}^{M} \ell_{BCE}(\tilde{\mathbf{x}}_{m}, 1; \theta)}_{\mathcal{L}_{\mathcal{A}}^{+}(\theta)} + \underbrace{\frac{1}{N} \sum_{n=1}^{N} \ell_{BCE}(\mathbf{x}_{n}, 0; \theta)}_{\mathcal{L}_{\mathcal{U}}^{-}(\theta)} - \alpha \underbrace{\frac{1}{M} \sum_{m=1}^{M} \ell_{BCE}(\tilde{\mathbf{x}}_{m}, 0; \theta)}_{\mathcal{L}_{\mathcal{A}}^{-}(\theta)}$$

• 過学習を防ぐため、下記を最小化するように学習する³:

$$\mathcal{L}_{PUAE}(\theta) = \alpha \mathcal{L}_{\mathcal{A}}^{+}(\theta) + \max \left\{ 0, \mathcal{L}_{\mathcal{U}}^{-}(\theta) - \alpha \mathcal{L}_{\mathcal{A}}^{-}(\theta) \right\}$$

 $(1-\alpha)\mathbb{E}_{p_{\mathcal{N}}}[\ell_{\mathrm{BCE}}(\mathbf{x},0;\theta)]$ の近似で、本来は正だが負になり得る

5. 実験

トイデータによる比較

異常検知性能の定量評価 (AUROC)

	MNIST	FashionMNIST	SVHN	CIFAR10
IF	0.829 ± 0.089	0.911 ± 0.060	0.514 ± 0.013	0.561 ± 0.097
AE ¹	0.894 ± 0.056	0.823 ± 0.094	0.598 ± 0.027	0.532 ± 0.127
DeepSVDD	0.763 ± 0.060	0.667 ± 0.070	0.513 ± 0.014	0.556 ± 0.032
LOE	0.905 ± 0.050	0.860 ± 0.101	0.594 ± 0.028	0.533 ± 0.125
ABC ²	0.897 ± 0.055	0.826 ± 0.093	0.599 ± 0.027	0.533 ± 0.127
DeepSAD	0.795 ± 0.054	0.693 ± 0.072	0.514 ± 0.016	0.560 ± 0.033
SOEL	0.944 ± 0.034	0.896 ± 0.075	0.601 ± 0.032	0.535 ± 0.123
PU ³	0.943 ± 0.071	0.811 ± 0.180	0.500 ± 0.014	0.488 ± 0.066
PUAE	0.971 ± 0.019	0.940 ± 0.047	0.608 ± 0.030	0.554 ± 0.115
PUSVDD	0.922 ± 0.029	0.884 ± 0.060	0.538 ± 0.030	0.575 ± 0.037

- 1. Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." science 313.5786 (2006): 504-507.
- Yamanaka, Yuki, et al. "Autoencoding binary classifiers for supervised anomaly detection." PRICAI2019.
- 3. Kiryo, Ryuichi, et al. "Positive-unlabeled learning with non-negative risk estimator." NeurIPS2017.