

Краткое резюме задачи

Каждая задача состоит из двух частей: конвертация и тестирование.

- (0,1,3,9) Приведение shuffle-регулярных выражений к академическим.
- (2,4,5) Оптимизация неэффективностей в академических регулярных выражениях.
- (6,7,8) Приведение lookahead-регулярных выражений к академическим.

Тестирование основано на принципе фаззинга: порождения случайных выражений и строк, которые должны распознаваться результатом преобразования точно так же, как и исходным выражением. В п.2 фазз-тестирование дополнительно использует принцип «malicious pump» — злонамеренной накачки.

Синтаксис входа

Синим помечены варианты синтаксиса, актуальные только для lookahead-задачи. Зелёным — только для варианта с shuffle. Красным — элементы входного языка, которые могут быть у всех вариантов.

Только у lookahead-варианта ограничители начала и конца строки указываются явно, т.к. они меняют семантику в lookahead-блоках. У остальных они подразумеваются по умолчанию, но не приводятся. Дополнительные ограничения синтаксиса lookahead и обычных регулярок описаны в соответствующих разделах.

Fuzz-модуль

В fuzz-модуле должны быть следующие составляющие:

- Генератор регулярок
- Генератор строк
- Сравнительный парсинг строки по регуляркам

Генератор строк использует автоматное представление выражения — поэтому даже вариантам 2,4,5 без построения автомата по регулярке не обойтись. У остальных эта опция и так является частью задачи.

В последнем пункте предпочтительно пользоваться библиотеками регулярных выражений. У варианта 0,1,3,9 для регулярок с shuffle-операцией такой возможности не будет, поэтому придётся написать парсер: по автомату Брзозовски будет просто, по автомату Антимирова — чуть хуже, потому что придётся отслеживать пути недетерминированно.

Рандомизация регулярок

Следующие параметры должны быть вынесены в макросы или ключи:

- размер алфавита (можно предполагать, что он не больше 5 т.к. автоматы для больших алфавитов превратятся в «ёжики» без факторизации по классам букв, а в этом году задача не про неё);
- звёздная высота (число вложенных квантификаторов итераций);
- **③** (для вариантов 6,7,8) число lookahead-ов;
- максимальное число букв в регулярке.

Предполагаем для простоты, что выражения (а |) (т.е. такие, у которых аргументом альтернативы является пустое выражение) невозможны, как невозможны и выражения вида ()* (итерация над пустым выражением). Дальше на каждом шаге генерации можно рандомно выбирать очередной применяемый оператор (если в запасе есть хотя бы 2 буквы) либо константу, либо итерацию, а затем рекурсивно делать генерацию по его аргументам, учитывая, что запас свободных букв при генерации очередной бинарной операции заведомо уменьшается хотя бы на 1.

4/12

Генератор строк

Случайные строки с вероятностью почти 1 интереса для фазз-тестирования не представляют. Обычно такие генераторы используют генетические алгоритмы, порождающие «правдоподобные» вводы, но мы ограничимся комбинаторным подходом.

- Строится матрица достижимости в автомате, построенном на базе регулярного выражения.
- В рамках отношения достижимости выбирается случайная последовательность состояний $\{q_i\}$ таких, что q_{i+1} достижимо из q_i, q₀ — стартовое, последнее состояние — финальное.
- Посредством, например, BFS строятся слова на путях из q_i в q_{i+1} . Если автомат недетерминированный, рекомендуется использовать недетерминированные структуры данных.
- К полученным отрезкам применяются случайные мутации: перестановка букв, перестановка фрагментов, повторение букв, повторение фрагментов, удаление букв, удаление фрагментов (либо не применяется никаких).

Схема преобразования Shuffleвыражений

- Построить автомат Брзозовски или Антимирова для shuffle-регулярного выражения.
- Преобразовать его в классическое регулярное выражение.

Правила задания shuffle-операции и производной для неё следующие:

$$r\#\epsilon=r$$
 $r\#\varnothing=\varnothing$ $ar_1\#br_2=a(r_1\#br_2)\mid b(ar_1\#r_2)$ Производная Брзозовски: $a^{-1}(r_1\#r_2)=a^{-1}(r_1)\#r_2\mid r_1\#a^{-1}(r_2)$ Производная Антимирова: $\alpha_\alpha(r_1\#r_2)=\{\alpha_\alpha(r_1)\#r_2\}\cup\{r_1\#\alpha_\alpha(r_2)\}$

АСІ-нормализация

В случае построения автомата Брзозовски регулярные выражения требуется упрощать по АСІ (ассоциативности, коммутативности, идемпотентности) альтернативы.

- Все ассоциативности делаем либо левосторонними (если используется бинарное дерево), либо плоскими (если используется произвольное дерево либо Рефал-стиль).
- Сортируем аргументы альтернативы по лексикографическому возрастанию.
- Удаляем одинаковые аргументы альтернатив.

____ Схема нормализации regex

- Сделать SSNF-преобразование.
- Вынести общие множители за скобки слева и справа (рекурсивно). То есть до исчерпания применить правила DSTR (левое и правое) алгебры Клини к выражениям, нормализованным по ACI (см. предыдущий вариант).
- В фазз-тестировании оценить сравнительное быстродействие результатов.

Сильная звёздная нормальная форма

Алгоритм приведения в SSNF определяется рекурсивно:

- $\beta = \varepsilon \Rightarrow ssnf(\beta) = \varepsilon$;
- $\beta = \alpha \Rightarrow ssnf(\beta) = \alpha$;
- $\beta = A \mid B \Rightarrow ssnf(\beta) = ssnf(A) \mid ssnf(B)$;
- $\beta = AB \Rightarrow ssnf(\beta) = ssnf(A) ssnf(B);$
- $\beta = A^* \Rightarrow \operatorname{ssnf}(\beta) = \operatorname{ss}(A)^*$.

Для преобразования подзвездного выражения используется следующий алгоритм (запись вида β_{ϵ} означает, что регулярное выражение β порождает пустое слово ϵ):

- $\beta = \varepsilon \Rightarrow ss(\beta) = \emptyset$;
- $\beta = \alpha \Rightarrow ss(\beta) = \alpha$;
- $\beta = A \mid B \Rightarrow ss(\beta) = ss(A) \mid ss(B);$
- $\beta = A_{\varepsilon}B_{\varepsilon} \Rightarrow ss(\beta) = ss(A_{\varepsilon}) \mid ss(B_{\varepsilon});$
- $\beta = AB \Rightarrow ss(\beta) = ssnf(A) ssnf(B);$
- $\beta = A^* \Rightarrow ss(\beta) = ss(A)$.

Злонамеренная накачка

- Построить автомат Глушкова для регулярного выражения (рекомендуется, чтобы не мучиться потом с ε-переходами).
- Реализовать стандартный фазз-тест на эквивалентность языков.
- Породить фрагменты путей: q_0 , q_1 , q_2 , q_2 (q_i здесь не обязаны быть различными). То есть при выборе состояний q_i брать только те, которые достижимы из себя. Соответствующие фрагменты это A_{01} , A_{11} , A_{12} , A_{22} . Если состояний, которые достижимы из себя, нет, то объявить, что регулярка нециклическая.
- Построить «злонамеренную накачку»: слово $\Theta = A_{01}A_{11}^{100}A_{12}A_{22}\gamma$, где γ — буква, которой нет в алфавите регулярки.
- Запустить стандартный метод сопоставления по регулярному выражению на старой и новой регулярке, используя строку Θ , и сравнить время его исполнения.

Преобразование lookahead-выражений

- Блочная сборка автомата-распознавателя из подавтоматов с использованием алгоритма пересечения автоматов.
- Преобразование автомата обратно в регулярное выражение.

Для простоты вводятся следующие ограничения синтаксиса:

- lookahead нельзя использовать внутри альтернативы, вслед за которой есть конкатенация (то есть если в альтернативе есть lookahead, то за этой альтернативой может идти только конец строки).
- нельзя использовать lookahead под итерацией.

То есть выражение

^ab((? = .*(aa|b)\$)(a|ab)* | (? = .*(ba|aa)\$)(b|ba)*)\$) допустимо в качестве входного выражения, а
$$^{(? = .*(aa|b)$)(a|ab)* | (? = .*(ba|aa)$)(b|ba)*)ab$ нет, из-за суффикса аb после альтернативы, содержащей lookahead.$$

Блочная сборка НКА по выражению

- Фрагменты выражения, не содержащие lookahead (в том числе выражения внутри lookahead-фрагментов), преобразуются к автоматам Глушкова.
- Реализуются операции конкатенации, объединения и пересечения НКА без ε-переходов и без переходов в начальное состояние (в случае конкатенации и объединения можно пользоваться матричной схемой сборки автомата Глушкова).
- Рассмотрим выражение $r = r_1(? = r_2)r_3$, где r_1 не содержит lookahead-операций. Пусть префикс r_1 преобразован в \mathcal{A}_1 , lookahead выражение r_2 в \mathcal{A}_2 , а остаток r_3 в автомат \mathcal{A}_3 . Тогда НКА для выражения r это автомат $\mathcal{A}_1(\mathcal{A}_2 \cap \mathcal{A}_3)$.