Université de Monastir Institut Supérieur D'Informatique et de Mathématiques de Monastir Dépt. de Mathématiques

A.U: 2024-2025 L1 INFO 17 Mars 2025 Durée 1 heure

Devoir Surveillé - Algèbre 2

L'usage de la calculatrice est interdit.

 $\mathcal{M}_2(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées d'ordre 2 à coefficients réels.

1. On considère l'ensemble:

$$E = \left\{ A = \left(\begin{array}{cc} a - b & b - c \\ c - a & -a \end{array} \right) \in \mathcal{M}_2(\mathbb{R}), \, a, b, c \in \mathbb{R} \right\}$$

- (a) Montrer que E est sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et préciser sa dimension.
- (b) Donner un supplémentaire F de E dans M₂(ℝ).
- (c) Donner une base B de $\mathcal{M}_2(\mathbb{R})$ adaptée à la décomposition $\mathcal{M}_2(\mathbb{R}) = E \oplus F$.
- (d) Ecrire les coordonnées de la matrice identité I_2 dans la base B.
- 2. On considère $B_1=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et $B_2=(E_{1,1},\,E_{1,2},\,E_{2,1},\,E_{2,2})$ la base canonique de $\mathcal{M}_2(\mathbb{R})$. Soit f l'application linéaire de \mathbb{R}^3 dans $\mathcal{M}_2(\mathbb{R})$ définie par:

$$orall (x,y,z) \in \mathbb{R}^3, \,\, f(x,y,z) = \left(egin{array}{cc} x-y & y-z \ z-x & -x \end{array}
ight).$$

- (a) Ecrire $A = mat(f, B_1, B_2)$.
- (b) Déterminer le rang de A par la méthode du pivot de Gauss.
- (c) Effectuer, lorsque cela est possible, les opérations suivantes: $(A-4I_3)\;,\quad det(A)\;,\quad A.\ ^tA\;,\quad A.(\ ^tA+A)\;,\quad tr(^tA\;.A)\;,\quad tr(A\;.^tA+I_3).$ On considère les vecteurs: $u_1=e_1+e_2,\;u_2=e_3,\;u_3=e_1$ et les vecteurs $v_1=3E_{2,1},\;v_2=E_{1,1},\;v_3=-E_{2,2},\;v_4=E_{1,2}$
- (d) Vérifier que $B_1'=(u_1,u_2,u_3)$ est une base de \mathbb{R}^3 et $B_2'=(v_1,v_2,v_3,v_4)$ est une base de $\mathcal{M}_2(\mathbb{R})$.
- (e) Ecrire les matrices de passage $P = pass(B_1, B'_1)$ et $Q = pass(B_2, B'_2)$.
- (f) Déterminer $M = mat(f, B'_1, B'_2)$.
- (g) Ecrire la relation entre A et M à l'aide des matrices de passage P et Q. On considère $N=\frac{1}{3}$ (tA . $A-2I_3$) et g l'endomorphisme de \mathbb{R}^3 canoniquement associé à N.
- (h) Ecrire l'expression de g(x, y, z), pour tout $(x, y, z) \in \mathbb{R}^3$.
- (i) Calculer det(N) et justifier que g est un automorphisme de \mathbb{R}^3 .
- (j) Montrer que $(3N I_3)(9N^2 3I_3) = 0$ et déduire N^{-1} en fonction de I_3 , N et N^2 .