Package 'HEDA'

October 12, 2022

Title 'Hydropeaking Events Detection Algorithm'

Type Package

Version 0.1.5
Description This tool identifies hydropeaking events from raw time-series flow record, a rapid flow variation induced by the hourly-adjusted electricity market. The novelty of 'HEDA' is to use vector an gle instead of the first-order derivative to detect change points which not only largely improves the computing efficiency but also accounts for the rate of change of the flow variation. More details <doi:10.1016 j.jhydrol.2021.126392="">.</doi:10.1016>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 4.0), dplyr (>= 1.0.2), ggplot2 (>= 3.1.0), zoo (>= 1.8.7), lubridate (>= 1.7.4), rlang (>= 0.4.11)
RoxygenNote 7.1.1
NeedsCompilation no
Author Tingyu Li [aut, cre], Xiaotian Zou [aut], Gregory Pasternack [aut]
Maintainer Tingyu Li <styli@ucdavis.edu></styli@ucdavis.edu>
Repository CRAN
Date/Publication 2021-07-20 19:00:02 UTC
R topics documented:
Clean_conectD 2 Clean_position 3 Clean_Spt 3 HEDA_Tidy 4 HPK_frq_mgt 4 HPK_plot 6
1

Clean_conectD

	HPK_rt_dur HPK_SampleData . ReversalCount							 				 					8
Index																	10
Clear	n_conectD	Clean	_coi	1ec	tD												

Description

Evaluate difference between peaking and off-peaking discharge

Usage

```
Clean_conectD(df, alpha3 = 0.7, alpha4 = 0.5)
```

Arguments

df Dataframe to be processed

alpha3 Default value: 0.7 alpha4 Default value: 0.5

Details

Evaluate whether the difference in discharge between peaking and off-peaking points is qualified to be identified as hydropeaking events.

Value

The output will be a dataframe in the same form with the input.

```
## Not run:
# before running the function
HPK_SampleData$dateTime <- parse_date_time(HPK_SampleData$dateTime,"mdy HM")
hpk_flow_cln <- HEDA_Tidy(HPK_SampleData, season = c(6,7,8,9))
hpk_flow_cg <- ReversalCount(hpk_flow_cln)
hpk_flow_cg <- Clean_position(hpk_flow_cg)
hpk_flow_cg <- Clean_Spt(hpk_flow_cg)

# clean the unqualified peaking and off-peaking discharge
hpk_flow_cg <- Clean_conectD(hpk_flow_cg)

# or change the default values
hpk_flow_cg <- Clean_conectD(hpk_flow_cg, alpha3 = 0.7, alpha4 = 0.5)
## End(Not run)</pre>
```

Clean_position 3

Clean_position

Clean_position

Description

Change points are excluded if they are in the wrong position. For example, both point 3 and the peak pair represent the peaking discharge whose value (position) should be close to the daily maximum discharge. If the peaking discharge is close to the daily minimum discharge, change points will be removed since they are in the wrong positions

Usage

```
Clean_position(df, alpha2 = 0.3)
```

Arguments

df dataframe to be processed

alpha2 Default value: 0.3

Value

output will be a dataframe in the same form as the input

Examples

```
# before running the function
HPK_SampleData$dateTime <- parse_date_time(HPK_SampleData$dateTime,"mdy HM")
hpk_flow_cln <- HEDA_Tidy(HPK_SampleData, season = c(6,7,8,9))
hpk_flow_cg <- ReversalCount(hpk_flow_cln)
# running the function to clean unqualified change points
hpk_flow_cg <- Clean_position(hpk_flow_cg)
# default value is open to change
hpk_flow_cg <- Clean_position(hpk_flow_cg, alpha2 = 0.3)</pre>
```

Clean_Spt

Clean_Spt

Description

Clean repeated points

4 HEDA_Tidy

Usage

```
Clean_Spt(df, alpha3 = 0.7, alpha4 = 0.5)
```

Arguments

df Dataframe to be processed

alpha3 Default value: 0.7 alpha4 Default value: 0.5

Details

Evaluate whether the difference in discharge between peaking and off-peaking points is qualified to be identified as hydropeaking events

Value

Output file will be a dataframe in the same form as the input

Examples

```
# before running the function
HPK_SampleData$dateTime <- parse_date_time(HPK_SampleData$dateTime,"mdy HM")
hpk_flow_cln <- HEDA_Tidy(HPK_SampleData, season = c(6,7,8,9))
hpk_flow_cg <- ReversalCount(hpk_flow_cln)
hpk_flow_cg <- Clean_position(hpk_flow_cg)

# clean continuous points of the same type
hpk_flow_cg <- Clean_Spt(hpk_flow_cg)

# or change the default values
hpk_flow_cg <- Clean_Spt(hpk_flow_cg, alpha3 = 0.7, alpha4 = 0.5)</pre>
```

HEDA_Tidy

HEDA_Tidy

Description

Format flow record into hourly record; Split record by designated season; Interpolate and smooth the record.

Usage

```
HEDA_Tidy(df, season)
```

HPK_frq_mgt 5

Arguments

df Dataframe to be processed season Subset data by season

Value

Output dataframe has 4 columns containing location id, datatime, parameter value, ann_thre is originally the mean annual discharge. If flow record is subset by season, ann_thre will be the mean discharge during the subset period

Examples

```
## Not run:
# format the time column to time column
HPK_Sample_data$dateTime <- parse_date_time(HPK_Sample_data$dateTime,"mdy HM")
# clean subset data by season
hpk_flow_cln <- HEDA_Tidy(HPK_Sample_data, season = c(6,7,8,9))
## End(Not run)</pre>
```

HPK_frq_mgt

HPK_frq_mgt

Description

Extract frequency and magnitude metrics

Usage

```
HPK_frq_mgt(df)
```

Arguments

df

Dataframe to be processed

Details

Extract Qpeak, offQpeak, pk_no and pkraio from the identified hydropeaking events

Value

Output dataframe includes time-series values of four metrics. Qpeak is the hydropeaking discharge, offQpeak isbase flow, pk_no is the daily number of rise and fall process, pkratio is the ratio of days with hydropeaking to thetotal number of days analyzed

6 HPK_plot

Examples

```
## Not run:
HpkFrqMgt <- HPK_frq_mgt(hpk_flow_cg)
## End(Not run)</pre>
```

HPK_plot

HPK_plot

Description

Plot hydrograph

Usage

```
HPK_plot(df)
```

Arguments

df

Dataframe to be processed

Details

Plot the hydrograph of the processed data with change points marked by different colors

Value

The plot will be presented under the "Plots" tab in RStudio. Users can determine whether to save out the diagram by themselves. The plot shows flow in m^3 /s

```
## Not run:
## subset the data
tt = hpk_flow_cg[13100:13400,]
## plot the hydrograph of the subset data
HPK_plot(tt)
## End(Not run)
```

HPK_rt_dur 7

 HPK_rt_dur HPK_rt_dur

Description

Extract rate of change and duration related metrics

Usage

```
HPK_rt_dur(df)
```

Arguments

df

Dataframe to be processed

Details

Extract rate of chane and duration related metrics: pk_rtn is the retention of peaking process. offpk_rtn is theretention of base flow. D_rampup/D_ramp is the duration of rise/fall process. RB_Indx_up/RB_Index_dw is theflashness of rise/fall process. Ramp_up/Ramp_dw is the rate of change of rise/fall process. Strange_up/Strange_dw is the standardized rise/fall amplitude

Value

Output dataframe includes time-series values of four metrics. Qpeak is the hydropeaking discharge, offQpeak isbase flow, pk_no is the daily number of rise and fall process, pkratio is the ratio of days with hydropeaking to thetotal number of days analyzed

```
## Not run:
HpkRtDur <- HPK_rt_dur(hpk_flow_cg)

## to extract the time-series of one metric withouth missing value
pk_rtn <- HpkRtDur[na.omit(HpkRtDur$pk_rtn),c("location_id","datetime","pk_rtn")]
## End(Not run)</pre>
```

8 ReversalCount

HPK_SampleData

HPK_SampleData

Description

Flow record of Cherry creek below Dion R Holm Powerhouse

Usage

```
data(HPK_SampleData)
```

Format

```
site_no identification number of gauge station
dataTime Date and time flow when discharge recorded
dateTime Date and time discharge recorded
```

Details

A data frame with 3 columns and 30000 flow records

Source

https://waterdata.usgs.gov/nwis/uv?site_no=11278400

Examples

```
data(HPK_SampleData)
```

ReversalCount

ReversalCount

Description

Detect hydropeaking events

Usage

```
ReversalCount(df, alpha1 = 0.03, theta = 60, gamma = 1.1)
```

Arguments

df	Dataframe to be processed
alpha1	Default value: 0.03

Default value: 60 degree for m³/s, 85 degree for cfs. theta

gamma default value: 1.1 m/s or 40 cfs. gamma

ReversalCount 9

Value

Output dataframe has six columns containing location id, datatime, parameter value, ann_thre, vt_degree and dgtag. ann_thre is originally the mean annual discharge. If flow record is subset by season, ann_thre will be the mean discharge of that period. vt_degree is the vector angle between two flow vectors. dgtag is the catogrized change points.

References

Li, T. and Pasternack, G.B., 2021. Revealing the diversity of hydropeaking flow regimes. Journal of Hydrology, 598, p.126392.

```
## Not run:
hpk_flow_cg <- ReversalCount(hpk_flow_cln)
hpk_flow_cg <- ReversalCount(hpk_flow_cln, alpha1 = 0.03, theta = 85, gamma = 40)
## End(Not run)</pre>
```

Index

```
Clean_conectD, 2
Clean_position, 3
Clean_Spt, 3
HEDA_Tidy, 4
HPK_frq_mgt, 5
HPK_plot, 6
HPK_rt_dur, 7
HPK_SampleData, 8
ReversalCount, 8
```