1 Miscellaneous

1.1 Semi-colon and spacing

```
Same spacing around the semi-colon in A(x;y). So cute!
Same spacing around the semi-colon in A(x;y). So cute!
```

2 Sets

2.1 Different kind of sets

2.1.1 Sets for geometry

Example of use

Technical IDs

```
\geoset (1 Argument)

— Argument #1: one single ASCII letter indicating a geometrical set.
```

2.1.2 Sets for probability

Example of use

```
You can semantically write \operatorname{sprobaset}\{E\}\ and \operatorname{gprobaset}\{G\}\ but you can't write things like \operatorname{gprobaset}\{ABC\}\+.

You can semantically write \mathcal E and \mathcal G but you can't write things like \operatorname{gprobaset}\{ABC\}\.
```

Technical IDs

```
\probaset (1 Argument)
```

— Argument #1: one single ASCII upper letter indicating a probabilistic set.

2.1.3 Sets for rings and fields theory

Example of use

You can semantically write \$\fieldset{A}\$, \$\fieldset{K}\$, \$\fieldset{h}\$ and \$\fieldset{k}\$ but you can't write things like \verb+\$\fieldset{ABC}\$+.

You can semantically write A, K, h and k but you can't write things like \$\fieldset{ABC}\$.

Technical IDs

\fieldset (1 Argument)

— Argument #1: either one of the letters h and k, or one single ASCII upper letter indicating a field or ring like set.

2.1.4 Classical sets

You can directly use \nullset , \NN , \ZZ , \DD , \QQ , \RR , \CC , \HH and \OO .

You can directly use \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{D} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{H} and \mathbb{O} .

2.1.5 Classical sets with suffixes

It is easy to type \RRn , \RRp , \RRs , \RRs , and \RRs .

It is easy to type \mathbb{R}_- , \mathbb{R}_+ , \mathbb{R}^* , \mathbb{R}_-^* and \mathbb{R}_+^* .

We have used suffixes n for Negative, p for Positive, and s for Star with the additional composite suffixes sn et sp.

Note that you can't use CCn for C because the set C doesn't have any standard powerful ordered structure. Take a look at the next section to see how to write C if you need it.

The following table shows when you can add one of the suffixes n, p, s, sn and sp.

Table 1 – Suffixes

	n	р	s	sn	sp
N		_	X		_
Z	×	×	×	×	×
D	×	×	×	×	×
Q	×	×	×	×	×
R	×	×	×	×	×
С			×		
Н			×		
0			×		

2.1.6 Suffixes on demand

Example of use

You can indeed write things like $\s \c \CC}{n}\$ or $\s \HH}{sp}\$. There is also $\s \$ with another formatting.

You can indeed write things like \mathbb{C}_{-} or \mathbb{H}_{+}^{*} . There is also $\mathcal{P}_{\leq 0}$ with another formatting.

Technical IDs

```
\specialset (2 Arguments)
\specialset* (2 Arguments)
```

- Argument #1: the set to be "suffixed".
- Argument #2: one of the suffixes n, p, s, sn and sp.

2.2 Intervals

2.2.1 Real intervals - French (?) notation

Example of use

In $\frac{0}{a}{b} = a ; b] = \frac{0}{a}{b}$, you can see that the macro used solves a spacing problem, and that the delimiters are a little bigger.

% The syntax refers to O-pened and C-losed but CC and OO are reduced to C and O.

\medskip

You can use the star version of a macro if you want the delimiters to stretch vertically.

 $\displaystyle \frac{1}{2} }{ 1^{2^{3}} }$

- $= [\frac{1}{2} ; 1^{2^{3}}]$
- = \intervalC*{ \frac{1}{2} }{ 1^{2^{3}} }\$

In [a;b] = [a;b] = [a;b], you can see that the macro used solves a spacing problem, and that the delimiters are a little bigger.

You can use the star version of a macro if you want the delimiters to stretch vertically.

$$\left[\frac{1}{2};1^{2^3}\right] = \left[\frac{1}{2};1^{2^3}\right] = \left[\frac{1}{2};1^{2^3}\right]$$

Technical IDs

For all the macros above, the star version produces intervals with delimiters that fit vertically with the bounds of the interval.

```
\intervalCO (2 Arguments)
\intervalCO* (2 Arguments)
```

```
— Argument #1: lower bound a of the interval [a;b[.

— Argument #2: upper bound b of the interval [a;b[. \intervalC (2 Arguments)

— Argument #1: lower bound a of the interval [a;b].

— Argument #2: upper bound b of the interval [a;b].

\intervalO (2 Arguments)

\intervalO* (2 Arguments)

— Argument #1: lower bound a of the interval [a;b].

— Argument #2: upper bound b of the interval [a;b].

\intervalOC (2 Arguments)

\intervalOC* (2 Arguments)

— Argument #1: lower bound a of the interval [a;b].

— Argument #1: lower bound a of the interval [a;b].

— Argument #2: upper bound a of the interval [a;b].
```

2.2.2 Real intervals - American notation

Example of use

```
A semi-closed interval \alpha = a ; b and an opened one \alpha = a ; b and an opened one \alpha = a ; b.

We then \alpha = a ; b and an opened one \alpha = a ; b.

A semi-closed interval \alpha = a ; b and an opened one \alpha = a ; b.
```

Technical IDs

For all the macros above, the star version produces intervals with delimiters that fit vertically with the bounds of the interval.

```
\intervalCP (2 Arguments)
\intervalCP* (2 Arguments)

— Argument #1: lower bound a of the interval [a; b).

— Argument #2: upper bound b of the interval [a; b).
\intervalP (2 Arguments)
\intervalP* (2 Arguments)

— Argument #1: lower bound a of the interval (a; b).

— Argument #2: upper bound b of the interval (a; b).
\intervalPC (2 Arguments)
\intervalPC* (2 Arguments)

— Argument #1: lower bound a of the interval (a; b].

— Argument #2: upper bound b of the interval (a; b].
```

2.2.3 Discrete intervals of integers

Example of use

Technical IDs

```
\ZintervalCO (2 Arguments)
\ZintervalCO* (2 Arguments)
— Argument #1: lower bound a of the interval ||a;b||.
— Argument #2: upper bound b of the interval ||a;b||.
\ZintervalC (2 Arguments)
\ZintervalC* (2 Arguments)
— Argument #1: lower bound a of the interval ||a;b||.
— Argument #2: upper bound b of the interval ||a;b||.
\ZintervalO (2 Arguments)
\ZintervalO* (2 Arguments)
— Argument #1: lower bound a of the interval ||a;b||.
— Argument #2: upper bound b of the interval |a;b|.
\ZintervalOC (2 Arguments)
\ZintervalOC* (2 Arguments)
— Argument #1: lower bound a of the interval ||a;b||.
— Argument #2: upper bound b of the interval ||a;b||.
```

3 Analysis

3.1 Constants

3.1.1 Classical constants

Complete list

```
List of all classical constants where \hat \tau = \frac{\pi}{2} is the youngest one: \eta, \pi, \tau, e, i, j and \eta.
```

Remark

Take care that {\Large \$\ppi \neq \pi\$} produces $\pi \neq \pi$. As you can see, the symbols are not the same. Indeed, this is true for all the greek constants.

3.1.2 User's latine constants

Example of use

```
It is easy to write cap x^2 + ct\{b\} x + ct\{c\}\ instead of ax^2 + bx + c such as to stress the fact that cap x^2 + bx + c instead of ax^2 + bx + c such as to stress the fact that a, b and c are constants.
```

Technical IDs

```
\ct (1 Argument)
```

— Argument #1: a latine text, and not a formula, indicated one constant.

3.2 Special functions

3.2.1 Some examples of use

3.2.2 Functions without parameter

All the following macros don't have any parameter.

\pgcd	\ppcm	\ch	\sh
\th	\ach	\ash	\ath
\arccosh	\arcsinh	\arctanh	\acos
\asin	\atan		

3.2.3 Functions with parameters

The complete list

All the following macros have at least one parameter.

```
\expb (1 parameter) \logb (1 parameter)
```

Technical IDs

```
\expb (1 Argument) \logb (1 Argument)
```

— Argument #1: the base of the exponential or the logarithm

3.3 Extended notations for special sequences

Example of use

```
Sometimes we need to write \scriptstyle F_{1}_{2} or \scriptstyle p_{1}_{2} and crazy men really (?) love \scriptstyle p_{1}_{2}. Sometimes we need to write \scriptstyle p_{1}_{2} or \scriptstyle p_{2}_{1} and crazy men really (?) love \scriptstyle p_{2}_{1}.
```

Technical IDs

```
\seqplus (2 Arguments)

— Argument #1: the right exponent like expression.

— Argument #2: the right indice.

\hypergeo (2 Arguments)

— Argument #1: the left indice.

— Argument #2: the right indice.

\suprageo (4 Arguments)

— Argument #1: the left indice.

— Argument #1: the left indice.

— Argument #2: the right indice.

— Argument #3: the right exponent.

— Argument #4: the left exponent.
```

3.4 Differential calculus

3.4.1 The ∂ and d operators

Example of use

```
You can write dx \text{ and } t, \text{ but also } dd[5]_{x} et pp[n]_{x}.
You can write dx \text{ and } \partial t, \text{ but also } d^5x \text{ et } \partial^nx.
```

Technical IDs

```
\dd [1 Option] (1 Argument)
\pp [1 Option] (1 Argument)
Option #1: if used, this argument will be the exponent of the symbol ∂ or d.
Argument #1: the variable of differentiation at the right of the symbol ∂ or d.
```

3.4.2 Total derivation

Example of use

```
$\displaystyle cos' a = \derpow{\cos} (a) = \derfrac{\cos}{x} (a)$ and $\displaystyle cos'', a = \derpow[3]{\cos} (a) = \derfrac[3]{\cos}{x} (a)$  \cos' a = \cos^{(1)}(a) = \frac{\mathrm{d}\cos}{\mathrm{d}x}(a) \text{ and } \cos''' a = \cos^{(3)}(a) = \frac{\mathrm{d}^3\cos}{\mathrm{d}x^3}(a)
```

Technical IDs

\derpow [1 Option] (1 Argument)

- Option #1: if used, this argument will be the exponent of derivation put inside braces.
- Argument #1: the function to be differenciated.

\derfrac [1 Option] (2 Arguments)

- Option #1: if used, the exponent of derivation.
- Argument #1: the function to be differenciated.
- Argument #2: the variable used for the derivation.

3.4.3 Partial derivation

Example of use

Technical IDs

\partialfrac [1 Option] (2 Arguments)

- Option #1: if used, the exponent of ∂ associated to the function differenciated.
- Argument #1: the function to be partially differenciated.

— Argument #2: the variables used for the partial derivation. The syntax is particular: for example, $x // y^3 // \ldots$ indicates regarding to the variables x one time, y three times... and so on.

\partialsub (2 Arguments)
\partialprime (2 Arguments)

- Argument #1: the function to be partially differenciated.
- Argument #2: the variables used for the partial derivation. The syntax is particular: for example, $x // y^3 // \ldots$ indicates regarding to the variables x one time, y three times... and so on.

3.5 Integral calculus

3.5.1 The hook operator

Example of use

```
By definition, \frac{\sin^{b} \int_{a}^{b} f(x) dx} = \frac{F(x)}{a}{b} where \frac{F(x)}{a}{b} = \frac{F(x)}{a} where \frac{F(x)}{a} = F(b) - F(a).

By definition, \int_{a}^{b} f(x) dx = \left[F(x)\right]_{a}^{b} where \left[F(x)\right]_{a}^{b} = F(x)\Big|_{a}^{b} = F(b) - F(a).
```

Technical IDs

\hook (3 Arguments)

- Argument #1: the content inside the hooks.
- Argument #2: the lower bound displayed as an index.
- Argument #3: the upper bound displayed as an exponent.

\hook* (3 Arguments)

- Argument #1: the content before the vertical line | .
- Argument #2: the lower bound displayed as an index.
- Argument #3: the upper bound displayed as an exponent.

3.5.2 Several integrals

The package minimizes spacings between consecutive symbols of integration. Here is an example.

The default behavior is the following one : $\iint \int F(x;y;z) \, dx \, dy \, dz = \int_a^b \int_c^d \int_e^f F(x;y;z) \, dx \, dy \, dz.$

3.6 Asymptotic comparisons of sequences and functions

3.6.1 The \mathcal{O} and \mathcal{O} notations

Example of use

```
Let's see how to use the symbols \phi = 0 and \phi = 0. You can write \phi = 0 and \phi = 0 and \phi = 0. Let's see how to use the symbols \phi = 0 and \phi = 0 and \phi = 0. You can write \phi = 0 and \phi = 0.
```

Technical IDs

```
\bigO (1 Argument) 
\smallO (1 Argument)
```

— Argument #1: the content inside the braces after the symbol \mathcal{O} or \mathcal{O} .

3.6.2 The Ω notation

Example of use

```
Let's see how to use the symbol \sigma_{s} \simeq \{0, n_0\} created by Hardy and Littlewood. f(n) = \sigma_{s} \simeq \{0, n_0\}  such that f(n) = \sigma_{s} \simeq \{0, n_0\}  be the symbol \sigma_{s} \simeq \{0, n_0\}  and Littlewood. f(n) = \sigma_{s} \simeq \{0, n_0\}  be the symbol \sigma_{s} \simeq \{0, n_0\}  and Littlewood. f(n) = \sigma_{s} \simeq \{0, n_0\}  such that \sigma_{s} \simeq \{0, n_0\}  implies \sigma_{s} \simeq \{0, n_0\}  impli
```

Technical IDs

```
\bigomega (1 Argument)
```

— Argument #1: the content inside the braces after the symbol Ω .

3.6.3 The Θ notation

Example of use

```
Let's see how to use the symbol \bullet bigtheta{}$. 
 f(n) = \bigoplus_{n \in \mathbb{N}} \mathbb{Q}(n) means: \bigoplus_{n \in \mathbb{N}} \mathbb{Q}(n) such that f(n) \in \mathbb{Q}(n) begins to use the symbol \Theta. 
 f(n) = \Theta(g(n)) means: \exists (m, M, n_0) such that n \geqslant n_0 implies mg(n) \leqslant f(n) \leqslant Mg(n).
```

Technical IDs

\bigtheta (1 Argument)

— Argument #1: the content inside the braces after the symbol $\Theta.$