Math 310

Homework 8

Due: 11/26/2024

Name: Gianluca Crescenzo

Exercise 1. Recall that a subset $U \subseteq \mathbb{R}$ is **open** if:

$$(\forall x \in U)(\exists \epsilon > 0) : V_{\epsilon}(x) \subseteq U.$$

Prove that the mapping $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if $f^{-1}(U) \subseteq \mathbb{R}$ is open for every open $U \subseteq \mathbb{R}$.

Proof. (⇒) Let U ⊆ ℝ be open and suppose $c ∈ f^{-1}(U)$. Then f(c) ∈ U. Since U is open, there exists ε > 0 with $V_ε(f(c)) ⊆ U$. Since f is continuous at c, there exists ε > 0 such that $ε ∈ V_ε(f(c))$ implies $f(x) ∈ V_ε(f(c))$. Thus $f(V_ε(f(c))) ⊆ V_ε(f(c))$, whence $V_ε(f(c)) ⊆ f^{-1}(U)$. Thus $f^{-1}(U)$ is open.

 (\Leftarrow) Let $c \in \mathbb{R}$ and $\varepsilon > 0$. Note that $f^{-1}(V_{\varepsilon}(f(c)))$ is open. So there exists $\delta > 0$ such that $V_{\delta}(c) \subseteq f^{-1}(V_{\varepsilon}(f(c)))$. Moreover, $U \cap V_{\delta}(c) \subseteq f^{-1}(V_{\varepsilon}(f(c)))$. Hence $f(U \cap V_{\delta}(c)) \subseteq V_{\varepsilon}(f(c))$. Thus f(U) = 0 is continuous.

Exercise 2. Let f, $g : D \to \mathbb{R}$ be continuous. Show that the product fg is continuous.

Proof. Since f, g are continuous functions, $(x_n)_n \to c$ implies $(f(x_n))_n \to c$ and $(g(x_n))_n \to c$. Whence $((fg)(x_n))_n = (f(x_n)g(x_n))_n \to f(c)g(c) = (fg)(c)$.

Exercise 3. Let $f : D \to \mathbb{R}$ and $g : E \to \mathbb{R}$ be continuous mappings with Ran(f) \subseteq E. Show that $g \circ f$ is continuous.

Proof. Let $c \in D$ be arbitrary. Given $\delta_1 > 0$, there exists $\delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \delta_1$. Now since g is continuous, it is continuous at f(c). Hence given $\epsilon > 0$, we have $|f(x) - f(c)| < \delta_1$ implies $|g(f(x)) - g(f(c))| < \epsilon$. Thus $g \circ f$ is continuous.

Exercise 4. Show that the following functions are Lipschitz.

- (1) $f: [-M, M] \rightarrow \mathbb{R}$ given by $f(x) = x^2$.
- (2) $g:[1,\infty)\to\mathbb{R}$ given by $g(x)=\frac{1}{x}$.
- (3) $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = \sqrt{x^2 + 4}$.

Proof. Observe that:

$$|f(u) - f(v)| = |u^2 - v^2|$$

$$= |(u + v)(u - v)|$$

$$\leq |u + v||u - v|$$

$$\leq M^2|u - v|.$$

1

$$|g(u) - g(v)| = \left| \frac{1}{u} - \frac{1}{v} \right|$$
$$= \frac{|u - v|}{uv}$$
$$\leq |u - v|.$$

$$\begin{split} |h(u)-h(v)| &= |\sqrt{u^2+4}-\sqrt{v^2+4}| \\ &= \frac{|\sqrt{u^2+4}-\sqrt{v^2+4}|\sqrt{u^2+4}+\sqrt{v^2+4}|}{|\sqrt{u^2+4}-\sqrt{v^2+4}|} \\ &= \frac{|u^2+v^2|}{|\sqrt{u^2+4}+\sqrt{v^2+4}|} \\ &\leqslant \frac{|u-v||u+v|}{|u|+|v|} \\ &\leqslant \frac{|u-v|(|u|+|v|)}{|u|+|v|} \\ &\leqslant |u-v|. \end{split}$$

Exercise 5. Show that the following functions are **not** Lipschitz.

- (1) $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$.
- (2) $g:(0,\infty)\to\mathbb{R}$ given by $g(x)=\frac{1}{x}$.

Proof. (1) Let $u_n = n$ and $v_n = n + \frac{1}{n}$. Then:

$$|u_n - v_n| = \left| n - \left(n + \frac{1}{n} \right) \right| = \frac{1}{n}.$$

Hence $(u_n - v_n)_n \to 0$. But observe that:

$$|f(u_n) - f(v_n)| = \left| n^2 - \left(n + \frac{1}{n} \right)^2 \right|$$
$$= \left| n^2 - n^2 - 2 - \frac{1}{n^2} \right|$$
$$= 2 + \frac{1}{n^2}$$
$$\ge 2.$$

Set $\epsilon_0 = 2$, $u_n = n$, and $v_n = n + \frac{1}{n}$. Then by the work above, f is not uniformly continuous. Hence f is not Lipschitz.

(2) Let $u_n = \frac{1}{n}$ and $v_n = \frac{1}{n+1}$. Then:

$$|u_n - v_n| = \left| \frac{1}{n} - \frac{1}{n+1} \right| = \frac{1}{n(n+1)} \le \frac{1}{n}.$$

Since $\left(\frac{1}{n}\right)_n \to 0$, we have $(u_n - v_n)_n \to 0$. But observe that:

$$|f(u_n) - f(v_n)| = |n - (n+1)| = 1.$$

Set $\epsilon_0 = 1$, $u_n = \frac{1}{n}$, and $v_n = \frac{1}{n+1}$. Then by the work above, f is not uniformly continuous. Hence f is not Lipschitz.

Exercise 6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and for some $C \ge 0$ we have $|f(q)| \le C$ for all $q \in \mathbb{Q}$. Show that $||f||_{\mathbb{R}} \le C$.

Proof. Let $\alpha \in \mathbb{R}$ be arbitrary. By the density of \mathbb{Q} , there exists a sequence $(q_n)_n$ in \mathbb{Q} with $(q_n)_n \to \alpha$. Since f is continuous, $(q_n)_n \to \alpha$ implies $(f(q_n))_n \to f(\alpha)$. Moreover, $(|f(q_n)|)_n \to |f(\alpha)|$. Since $|f(q)| \le C$ for all $q \in \mathbb{Q}$, it must be that $|f(\alpha)| \le C$. Hence $||f||_{\mathbb{R}} \le C$.

Exercise 9. Let p be a polynomial of odd degree. Show that p has a real root.

Proof. Without loss of generality, let the leading term of p be positive. Since deg(p) is odd:

$$\lim_{x \to \infty} \operatorname{p}(x) = \infty$$
$$\lim_{x \to -\infty} \operatorname{p}(x) = -\infty.$$

For M = 1, there exists α such that $x \ge \alpha$ implies $p(x) \ge 1$. Similarly, there exists β such that $x \le \beta$ implies $p(x) \le -1$. So there exists x_1, x_2 with $x_1 < x_2$ and $p(x_1)p(x_2) < 0$. By the Location of Roots lemma, there exists c such that p(c) = 0. Hence p has a real root.

Exercise 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function that vanishes at infinity, that is,

$$\lim_{x \to \pm \infty} f(x) = 0.$$

Show that f is bounded.

Proof. Let ε be given. Since $\lim_{x\to-\infty} f(x)=0$, there exists α_1 such that for all $x\in\mathbb{R}$, $x<\alpha_1$ implies $|f(x)|<\varepsilon$. Since $\lim_{x\to\infty} f(x)=0$, there exists α_2 such that for all $x\in\mathbb{R}$, $x>\alpha_2$ implies $|f(x)|<\varepsilon$.

Since f is continuous, it is bounded on $[\alpha_1, \alpha_2]$. So there exists c such that $|f(x)| \le c$ for all $x \in [\alpha_1, \alpha_2]$.

Let $M = \max\{\varepsilon, c\}$. Then $|f(x)| \le M$ for all $x \in \mathbb{R}$. Hence f is bounded.

Exercise 12. Let $f : [a, b] \to \mathbb{R}$ be a continuous function satisfying the following property:

$$(\forall x \in [a,b])(\exists y \in [a,b]) : |f(y)| \leqslant \frac{1}{2}|f(x)|.$$

Show that there is a $c \in [a, b]$ with f(c) = 0.

Proof. Let $x \in [a, b]$ be given. By the above property, we can inductively obtain a sequence $(y_n)_n$ such that $|f(y_n)| \le \frac{1}{2^n} |f(x)|$. Whence $(f(y_n))_n \to 0$.

Moreover, since $(y_n)_n \in [a, b]^N$, by Bolzano-Weierstass there exists a convergent subsequence $(y_{n_k})_k \to c$. Since f is continuous, we have that $(f(y_{n_k}))_k \to f(c)$. Whence f(c) = 0.