Classifying Amazon Product Reviews

Riya Dholakia, Caroline Liongosari, Sowmya Sridharan, Alicia Yen

Problem Statement

Can we create a model that accurately predicts a 1 to 5 star rating given a review of an Amazon product?

Example Amazon review with a star rating of 1:

Relevance

Analyzing customers' sentiments on products is a core part of marketing analytics for improving products and services, thereby increasing sales and business growth

Why is our project interesting?

It goes beyond classifying positive vs negative sentiment and into more nuanced sentiments (2,3, and 4 stars), which is much trickier

Acquiring Data

- Used a dataset of Amazon fine food reviews from Stanford researchers *
- 140,000 reviews with equal # of ratings with 80% train, 10% dev, 10% test split

id	star_rating	review_body	Summary
154598	2	bought this	not strong
		recently	enough
		and will not	
		purchase	
		again. for	
		someone	
		who likes	
		strong cof-	
		fee this did	
		not do it for	
		me	

*Julian McAuley and Jure Leskovec. 2013. From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. pages 897–908

Past Works

- Taparia A. & Bagla, T (2020) first vectorized the review texts using TF-IDF and then implemented multinomial Naive Bayes, logistic regression, and linear SVC to classify 1-5 star ratings for Amazon reviews with resulting accuracies ranging from 49.2% to 54.1%
- Liu Z (2020) experimented with Count and TF-IDF vectorization on Yelp reviews and used logistic regression, multinomial Naive Bayes, and random forest getting results between 59.9% and 64.4%

Taparia, A., & Bagla, T. (2020). Sentiment Analysis: Predicting Product Reviews' Ratings using Online Customer Reviews. *Social Science Research Network*.

Baselines

	Accuracy	Avg. F1	RMSE
Average Rating	0.2	0.067	1.414
Random Rating	0.198	0.198	2.006
Naive Bayes w/ TF-IDF	0.491	0.492	1.165

Extension 1 - RNNs & CNNs

Models tried:

- LSTM (vanilla and bidirectional)
- GRU (vanilla and bidirectional)
- CNN

RNN architecture:

- Embedding layer
 - We used pre-trained word embeddings, which were fine-tuned during training
- 1 linear layer
- 1 GRU or LSTM layer
- Dropout layer

CNN architecture:

- Filter sizes e.g. [3,4,5]
- Number of filters e.g. [100,100,100] or [200,200,200]
- Dropout layer
- Max pooling

Extension 1 - RNN vs. CNN comparison

Results for the RNN and CNN architectures:

- Bidirectional LSTM/GRU outperformed their vanilla counterparts
 - Bi-LSTM is the best-performing model
- LSTM outperformed GRU in both cases
- CNN did not perform as well as the RNN models did

Model	Acc.	Avg. F1	RMSE	Training
				Time
LSTM	0.672	0.671	0.809	12 min
Bi-LSTM	0.679	0.680	0.774	18 min
GRU	0.660	0.658	0.787	10 min
Bi-GRU	0.667	0.666	0.783	15 min
CNN	0.627	0.627	0.928	5 min

Note: All results used minimal text preprocessing, word2vec embeddings, Adam optimizer, cross entropy loss, dropout rate of 0.3, and learning rate of 0.003

Extension 1 - Preprocessing methods

Results from comparing preprocessing methods:

- Minimal preprocessing worked the best
- Further preprocessing did not improve performance
- Additional preprocessing leads to potential information loss

Pre-processing Steps	Acc.	Avg. F1	RMSE
lowercase, remove numbers, remove punctuation,	0.6792	0.6798	0.7744
expand contractions			
lowercase, remove numbers, remove punctuation, ex-	0.6786	0.6785	0.7795
pand contractions, remove html tags, web addresses,			
emojis			
lowercase, remove numbers, remove punctuation, ex-	0.6761	0.6766	0.8016
pand contractions, lemmatize words			
lowercase, remove numbers, remove punctuation, ex-	0.6536	0.6528	0.9066
pand contractions, remove html tags, web addresses,			
emojis, remove stopwords, remove POS tags			

Note: All results used minimal text preprocessing, word2vec embeddings, Adam optimizer, cross entropy loss, dropout rate of 0.3, and learning rate of 0.003

Experiment 1: Case vs. Uncased

Models: Bert Base Cased vs. Bert Base Uncased

Pre-processing steps:

- 1. Remove stopwords, punctuation, HTML tags, & web addresses
- 2. Expand contractions and convert emojis to text
- 3. Remove numbers

Tokenization: Pre-trained Bert fast tokenizer with padding and truncation

Result: Bert Base Cased performed better

Experiment 2: Filter out words with certain POS tags

Models: Bert Cased with and without POS filtering

Filtered out words with the following POS tags:

• 'DT', 'PRP', 'CD', 'WDT', 'WP', 'TO', 'IN', 'CC', 'PRP\$', 'WRB'

Result: Bert Cased with POS filtering performed better

Experiment 3: Varying the number of attention heads

Models: Bert Cased with 12 (default), 24, and 32 attention heads

Query Size = embedding size / number of heads

Result: Bert Cased with 12 attention heads performed best

Experiment 4: Varying type of position embeddings

Models: Bert Cased with "absolute", "relative-key", and "relative-key-query" position type embeddings

- Absolute: Depends on the absolute position of words in a sequence
- Relative-key and relative-key-query: Depends on the relative position between words in a sequence

Result: Bert Cased with "absolute" position type embedding performed best

Experiment 5: Varying transformer types Models: Bert Base Cased, Distilbert Base Cased, and Roberta Base

DistilBERT

- Focused on inference speed by keeping 97% of the performance of BERT while only using half the number of parameters
- Reduced the training time to a quarter of the original amount.

RoBERTa

- Retrained BERT using dynamic masking: the masked token changes during the training epochs.
- Removed next sentence prediction objective
- Used significantly more text than BERT for training (16 GB for original BERT vs 160 GB with RoBERTa)

Result: Roberta Base performed best

Result: Roberta performed best on the development set Test set metrics: **0.684** accuracy, **0.683** F1, **0.705** RMSE

	# of attention heads	Position Embedding Type	Accuracy	Average F1	RMSE	Training Time
BERT - cased (no POS tagging)	12	Absolute	0.668	0.663	0.745	3.5 hrs
BERT - uncased (no POS tagging)	12	Absolute	0.665	0.665	0.744	3.5 hrs
BERT - cased*	12	Absolute	0.679	0.678	0.723	3.5 hrs
BERT - cased	24	Absolute	0.667	0.792	0.667	4.5 hrs
BERT - cased	12	Relative Key	0.605	0.605	0.924	4 hrs
BERT - cased	12	Relative Key Query	0.610	0.610	0.925	4 hrs
DistilBERT - cased	12	Absolute	0.661	0.661	0.797	2 hrs
RoBERTA - cased	12	Absolute	0.680	0.678	0.739	3.5 hrs

Conclusion - Results on Test Set

	Accuracy	Avg. F1	RMSE
Average Rating	0.2	0.067	1.414
Random Rating	0.198	0.198	2.006
Naive Bayes w/ TF-IDF	0.491	0.492	1.165
RoBERTa	0.684	0.693	0.705
Bi-LSTM	0.676	0.677	0.783

Thank You!

Appendix

Experiment 5: Varying transformer types

Models: Bert Base Cased, Distilbert Base Cased, and Roberta Base

DistilBERT focused on inference speed by keeping 97% of the performance of BERT while only using half the number of parameters (66 million parameters vs original 110 million) and reducing the training time to a quarter of the original amount.

RoBERTa improved on BERT by changing the training methodology such that it retrained BERT using dynamic masking: the masked token changes during the training epochs. It also removed next sentence prediction objective. It also used significantly more text than BERT for training (16 GB for original BERT vs 160 GB with RoBERTa)

Result: Roberta Base performed best

Extension 2 - Word embeddings

Results from comparing pre-trained word embeddings:

- Word2Vec worked best
- All results below used the minimal preprocessing method
- All results below used a dropout rate of 0.3 and a learning rate of 0.003

Model	Word Emb.	Acc.	Avg. F1	RMSE
Bi-LSTM	Glove	0.676	0.676	0.784
Bi-LSTM	$\mathbf{Word2Vec}$	0.679	0.680	0.774
Bi-LSTM	Fasttext	0.645	0.643	0.881

Error Analysis of Best Model

Category 1: Mixed messaging between product review and experience review

 The system is confused when the text combines the review for the product ("favorite taste") with the experience ("stale cookies")

Review	Actual	Pred.
Stale cookies cookies al-	3	1
ways favorite taste Fa-		
mous Amos cookies How-		
ever ordered amazon bag		
stale even expiration date		
taste super dissapointed		
even prevented ever buy-		
ing		
Melted could give gift	3	2
friend loves could give gift		
melted plastic really stuck		
carmal bought waybr br		
dissapointed		
opened package Ordered	2	1
boxes Jolly Rancher candy		
box opened sent entired or-		
der back never order candy		
online		

Error Analysis of Best Model

Category 2: Confusion due to possible information loss

- Text preprocessing can lead to information loss
- In row 1, "amazing" is mentioned 3 times along with "wow"
- However, something must be missing since this review has a score of 3

Review	Actual	Pred.
amazing Have putting beet	3	5
grill fry amazing Took		
deer camp last week put		
fresh deer steaks wow		
amazing Even better sprin-		
kle little bit salads		
Mocha Capp Breakfast	3	4
Cookie individually		
wrapped cookies came		
good condition Mocha		
Capp favorite flavor		
nice change smells great		
toaster oven		
banana pancake mix love	4	5
pancakes trying different		
flavors kept taste buds go-		
ing		

Error Analysis of Best Model

Category 3: Confusion between classes that share similar sentiment

- In these examples, the model is able to accurately capture sentiment
- However, it is difficult to distinguish between 4 star vs. 5 star, or 1 star vs. 2 star

Review	Actual	Pred.
husband LOVES coffee	4	5
Weve tried loved flavored		
coffees little worried		
Melitta version would		
good costs much lessbr		
br pleasantly surprised		
coffee smooth rich blend		
husband loves hazelnut		
creamer absolutely en-		
amored Creme Brulee		
Hazelnut flavor Im fan		
nutty-flavored coffee		
favorite cant wait try		
Melitta versions Vanilla		
Bean		
Really bad coffee bought	2	1
coffee wouldnt go way		
go specialized coffee shop		
Big mistake strong flavor-		
ful coffee expect Kona		
beans taste theyve sitting		
around months probably		
reality waste money better		
Starbucks beans		

Types of position Embeddings

Attention Weights: eij

Absolute:

Input Embedding: xi = ti + si + wi , attention weight:

Absolute Position Weights: wi

$$e_{ij} = rac{(x_i W^Q)(x_j W^K)^T}{\sqrt{d_z}}$$

Relative-Key:

Relative Position Weights: aij = w(j-i)

$$e_{ij} = \frac{(x_i W^Q)(x_j W^K + a_{ij})^T}{\sqrt{d_z}}.$$

Relative-Key-Query:

Relative Position Weights: aij = w|j-i|

$$e_{ij} = \frac{(x_i W^Q)(x_j W^K)^T a_{ij}}{\sqrt{d_z}}.$$