Interacting electrons on a Fibonacci chain at high temperature

Nicolas Macé, Nicolas Laflorencie, Fabien Alet

Laboratoire de Physique Théorique, Université Paul Sabatier, Toulouse

QUANTUM PARTICLES IN A QUASIPERIODIC (QP) ENVIRONMENT

Quantum particles: fermions

$$H = \sum_{i=1}^{L} \left[J(c_i^{\dagger} c_{i+1} + \text{h.c}) - h_i n_i \right]$$

Multifractal (scale invariant) states

MOTIVATION: QUASIPERIODICITY + INTERACTING ELECTRONS

• Fast transport • Anomalous transport

• No transport

Quasiperiodicity (QP) + interactions between particles?

Naively: delocalisation, fast transport **Results**:

- weak QP: delocalisation, fast transport
- strong QP: many-body localisation, no transport

OUTLINE

- 1 Many-body localisation
- 2 Free Fibonacci chain at high energy
- 3 Interacting Fibonacci chain

Many-body localisation

Isolated quantum system, strong interactions, disorder or quasiperiodicity

- Usual: ergodic dynamics, transport, eigenstate thermalisation hypothesis (ETH),
- 2 Unusual: non-ergodicity, no transport, many-body localisation (MBL).

[Choi et al 16]

Experiments: cold ions/atoms [Schreiber *et al* 15; Smith *et al* 15; Bordia *et al* 17].

Motivations:

- ETH/MBL phase transition,
- MBL in more than 1D,
- Ingredients for MBL (this talk).

A MODEL FOR MBL

Chain of interacting spinless fermions (nb: no phonons):

$$H = \sum_{i=1}^{L} \left[J(c_i^{\dagger}c_{i+1} + \mathrm{h.c}) + \Delta n_i n_{i+1} - h_i n_i \right]$$

Generic model: fermions, $\frac{1}{2}$ spins, hardcore bosons.

0000

MBL PHENOMENOLOGY

Phase diagram at $\Delta = 1$ [Luitz et al 15]

ETH:

- Transport, thermal observables
- High entanglement
- Non-integrability

Fermion density at $\epsilon = 0.5$

MBL:

- No transport, non-thermal observables
- Low entanglement
- Emergent integrability

INGREDIENTS FOR MBL

Usually:

- **1** $\Delta = 0$: **localized** (random, Aubry-André potential)
- **2** $\Delta \neq 0$: localization persists

This talk

- **1** $\Delta = 0$: **multifractal** (quasiperiodic potential)
- **2** $\Delta \neq 0$: localization appears

Interest

- MBL is **generic**
- Interplay between quasiperiodicity and MBL

Interacting fermions on the Fibonacci chain

Method: numerical exact diagonalization

- High energy + non-integrable: no analytical methods
- L/2 fermions on L sites: #states $\sim 2^L/\sqrt{L} \rightarrow$ memory is limiting State-of-the art: L = 24 [Pietracaprina *et al* 18]
- Fibonacci: **few samples**: L/2 non-equivalent systems of size L.

Nicolas Macé

9 / 18

FREE FERMIONS PROPERTIES

- Multifractal single particle wavefunctions [Ostlund; Kalugin; Kohmoto; ...]
- Anomalous transport [Mayou; Schreiber; Varma & Žnidarič; ...]

Single particle wavefunction at the Fermi level

Correlations of highly excited states [Macé et al 19]

Free Fermions entanglement

Entanglement entropy $S(\psi)$: a many-body **locality** probe

- $S(\psi) = \#\{\text{bits of information recoverable by local measurements}\}$
- $S(\psi)$ large: extended (entangled) state, $S(\psi)$ small: localized state.

Entanglement growth starting from localized fermions [Macé et al 19]

Fibonacci fermions: **anomalous** growth $S(t) \sim t^{\frac{1}{z}}, \ z > 1$ Compare with:

- Periodic system: z = 1 (ballistic growth),
- Disordered system: $z \to \infty$ (no growth).

Conclusion

Anomalous, intermediate prop. even at high energy.

THE ETH/MBL TRANSITION: 1) DYNAMICS

Imbalance experiment:

- Initally: fermions on even sites $|\psi(t=0)\rangle = |0101...\rangle$
- Imbalance: **distance** from initial state $I(t) = \frac{2}{I}(N_e(t) N_o(t))$

Properties:

- ETH: power-law decay $I(t) \sim t^{-\zeta}$
- MBL: saturation $I(t \to \infty) = \text{cst} > 0$ \to memory of the initial state [Luitz *et at* 15]

 $\zeta(h \ge 2.5) = 0 \rightarrow MBL$ phase transition.

Nicolas Macé

Interacting Fibonacci chain

•000000

THE ETH/MBL TRANSITION: 2) ENTANGLEMENT

Entanglement entropy:

■ ETH: coincides with thermodynamic entropy: **extensive** $\overline{S}_{\text{FTH}} \simeq L$

■ MBL: sub-extensive $\overline{S}_{MBL}/L \rightarrow 0$

Compatible with **ETH/MBL transition**, $h^* \simeq 3.5$.

THE ETH/MBL TRANSITION: 3) LOCAL OBSERVABLES

Expect: $\langle n_i \rangle_{\text{ETH}} = \frac{1}{2}$, $\langle n_i \rangle_{\text{MBL}} \simeq 0$ or 1.

ETH Fibonacci

MBL random [Lim, Sheng 15]

MBL Fibonacci

14 / 18

Fibonacci MBL: **extra structure** → link with QP geometry?

FIBONACCI MBL: LOCAL ENTANGLEMENT

Scrambled potentials \rightarrow peak suppression

OP induces local "cat states"

$$|\psi\rangle \propto \alpha \, |\text{01}\rangle + \beta \, |\text{10}\rangle$$

Peak ingredients:

- **Binary** modulation: A/B letters
- Correlated modulation (quasiperiodic)

Conclusion

Non-interacting Fibonacci fermions

- Geometry: intermediate complexity
- Multifractality even at high energy
- Intermediate, anomalous transport, even at the many-body level

Interacting Fibonacci fermions

- Weak quasiperiodicity: thermal phase (ETH)
- Strong quasiperiodicity: localized phase (MBL)
- MBL bears sign of **quasiperiodicity** (locally entangled states)
- \rightarrow anomalous transport in the ETH phase: why?
- → vicinity of the non-interacting point?

[Macé, Laflorencie, Alet, SciPost Phys. 6, 050 (2019)]

DYNAMICS: ENTANGLEMENT

ETH phase: expect $S(t) \propto t$

Fibonacci: **anomalous** $S(t) \propto t^{1/z}, z > 1$.

Usual explanation: rare regions [Vosk; Potter 15]

Fibonacci: no rare regions ...

Finite size effect? [Setiawan et al 17], initial state fluctuations? [Lüschen et al 17]

Interacting Fibonacci chain

000000

SPECTRAL PROPERTIES

Gap ratios [Oganesian, Huse]

$$r_n = \min\left(\frac{g_{n+1}}{g_n}, \frac{g_n}{g_{n+1}}\right)$$

- ETH: random matrix-like spectrum $\bar{r}_{\text{ETH}} \simeq 0.53$
- MBL: independent levels $\bar{r}_{\text{MBI}} \simeq 0.39$

Compatible with ETH/MBL transition, $h^* \sim 2.5$

Nicolas Macé May 27, 2019 18 / 18