

Linear algebra and analytical geometry II, Lab 1

Warm up

Rewrite the following system in the matrix form:

$$\begin{cases} 3x + 4y - 2z = 1 \\ 3y - 2z + x = -2 \\ 5x - 7z - 2y = 3 \end{cases}$$

Describe geometricaly (line, plane, or whole space) all linear combinations of:

- 1. $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$
- 2. 0 and 2 3
- 3. $\begin{vmatrix} 2 & 0 & 2 \\ 0 & 2 & and \\ 2 & 3 \end{vmatrix}$

Draw
$$v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ and $v + w$, $v - w$ in a single xy plane

Explain, why the system

$$\begin{cases} u+v+w=2\\ u+2v+3w=1\\ v+2w=0 \end{cases}$$

is singular?

What value should replace that last zero on the right side, to allow the equations to have solutions, and what is one of the solutions?

What does it mean, singular?

Lec 1, page 11

Example 2. Singular (incurable)

$$\begin{cases} u+v+w = \\ 2u+2v+5w = \\ 4u+4v+8w = \end{cases} \Rightarrow \begin{cases} u+v+w = \\ 3w = \\ 4w = \end{cases}$$

There is no exchange of equations that can avoid zero in the second pivot position. The equations themselves may be solvable or unsolvable. If the last two equations are 3w=6 and 4w=7, there is no solution. If those two equations happen to be consistent as in 3w=6 and 4w=8 then this singular case has an infinity of solutions. We know that w=2, but the first equation cannot decide both u and v.

Explain, why the system

$$\begin{cases} u + v + w = 2 \\ u + 2v + 3w = 1 \\ v + 2w = 0 \end{cases}$$

is singular?

What value should replace that last zero on the right side, to allow the equations to have solutions, and what is one of the solutions?

- 1. Choose a coefficient *b* that makes this system singluar.
- 2. Then choose a right-hand side *g* that makes it solvable.
- 3. Find two solutions in that singular case.

$$\begin{cases} 2x + by = 16 \\ 4x + 8y = g \end{cases}$$

Give 3x3 examples (not just the zero matrix):

- 1. a diagonal matrix: $a_{ij} = 0$, if $i \neq j$;
- 2. a symmetric matrix: $a_{ij} = a_{ji}$ for all i and j;
- 3. an upper trianglular matrix: $a_{ij} = 0$, if i > j;
- 4. a skew-symmetric matrix: $a_{ij} = -a_{ji}$ for all i and j.

Make a rref of

$$\begin{cases} 2u + 3v + 0w = 0 \\ 4u + 5v + w = 3 \\ 2u - 1v - 3w = 5 \end{cases}$$

Reference material

• Lectures 1 – 3