GraphSage MPNNs Graphormer

Методы работы с графами

Предшественники GraphSage

- 1)Методы используемые до GraphSage для получения эмбедингов вершин графа:
- 2)Node2Vec: применяется алгоритм обхода узлов с целью создания эмбеддингов

3)DeepWalk: подобно Node2Vec, DeepWalk также использует методы обхода узлов, но с целью создания эмбеддингов узлов графа на основе случайного блуждания.

Предпосылки к созданию GraphSage

Проблемы предыдущих алгоритмов:

- 1)Неприменимость к большим графам
- 2)Ограничения на обучение на неподвижных графах

Принцип работы GraphSAGE(Graph Sample and AggregatE) заключается в следующих трех этапов которые повторяются

Принцип работы GraphSAGE(Graph Sample and AggregatE) заключается в следующих трех этапов которые повторяются

1)Выборка соседей: Для каждой вершины выбираются подмножество её соседей

1. Sample neighborhood

Принцип работы GraphSAGE(Graph Sample and AggregatE) заключается в следующих трех этапов которые повторяются

2) Агрегация признаков: Используется механизм агрегации, чтобы объединить признаки выбранных соседей в один вектор признаков.

2. Aggregate feature information from neighbors

Принцип работы GraphSAGE(Graph Sample and AggregatE) заключается в следующих трех этапов которые повторяются

3)Обновление признаков: Новые признаки, используются для обновления признаков исходных вершин в графе.

3. Predict graph context and label using aggregated information

Примеры функций агрегации:

- 1. Усреднение (mean aggregation): Для каждого узла алгоритм усредняет представления его соседних узлов, чтобы получить обобщенное представление.
- 2. Конкатенация (concatenation aggregation): Здесь для каждого узла представления его соседних узлов конкатенируются в один вектор, который после этого используется для обновления представления узла.
- 3. Пулинг (pooling aggregation): Эта функция агрегации объединяет представления соседних узлов посредством операции пулинга, например, максимального или среднего пулинга.

Применение Graphsage на примере мультиграфа взаимодействий белков

r₁ Gastrointestinal bleed side effect \triangle Drug-protein interaction

r₂ Bradycardia side effect

Protein-protein interaction

GNN(Графовые нейронные сети)

- •Сверточные сети (GCN)
- •Gated Graph Neural Networks (GGNN)
- •Сети обмена сообщениями (MPNN)
- •Трансформеры(Graphormer)

- MPNN принцип работы:
- •Message passing: Каждый узел обменивается сообщениями с соседними узлами о своем состоянии и окружении.
- •Обновление состояний узлов: Каждый узел обновляет свое состояние на основе полученных сообщений от соседних узлов.
- •Глобальное предсказание: после нескольких итераций передачи сообщений и обновления состояний узлов, данные об узлах объединяются для предсказания. $\qquad \qquad \qquad ^{mij \,=\, f_e(h_i,\,h_j,\,e_{ij})}$

MESSAGE PASSING PHASE

Table 2. Comparison of Previous Approaches (left) with MPNN baselines (middle) and our methods (right)

Target	BAML	BOB	CM	ECFP4	HDAD	GC	GG-NN	DTNN	enn-s2s	enn-s2s-ens5
mu	4.34	4.23	4.49	4.82	3.34	0.70	1.22	-	0.30	0.20
alpha	3.01	2.98	4.33	34.54	1.75	2.27	1.55	-	0.92	0.68
HOMO	2.20	2.20	3.09	2.89	1.54	1.18	1.17	-	0.99	0.74
LUMO	2.76	2.74	4.26	3.10	1.96	1.10	1.08	-	0.87	0.65
gap	3.28	3.41	5.32	3.86	2.49	1.78	1.70	-	1.60	1.23
R2	3.25	0.80	2.83	90.68	1.35	4.73	3.99	-	0.15	0.14
ZPVE	3.31	3.40	4.80	241.58	1.91	9.75	2.52	-	1.27	1.10
UO	1.21	1.43	2.98	85.01	0.58	3.02	0.83	-	0.45	0.33
U	1.22	1.44	2.99	85.59	0.59	3.16	0.86		0.45	0.34
H	1.22	1.44	2.99	86.21	0.59	3.19	0.81	-	0.39	0.30
G	1.20	1.42	2.97	78.36	0.59	2.95	0.78	.842	0.44	0.34
Cv	1.64	1.83	2.36	30.29	0.88	1.45	1.19	-	0.80	0.62
Omega	0.27	0.35	1.32	1.47	0.34	0.32	0.53	-	0.19	0.15
Average	2.17	2.08	3.37	53.97	1.35	2.59	1.36	-	0.68	0.52

- •MPNN была успешно применена для:
- моделирования взаимодействия атомов в молекуле
- предсказывание свойств атомов
- прогнозирование молекулярной энергии
- определение структуры молекулы

Graphormer архитектура

Проблема стандартного attention блока в том что в нем не учитывается структурная информация

Graphormer архитектура

Добавление структурной информации

Graphormer сравнение качества

Table 1: Results on PCQM4M-LSC. * indicates the results are cited from the official leaderboard [21].

method	#param.	train MAE	validate MAE	
GCN [26]	2.0M	0.1318	0.1691 (0.1684*)	
GIN [50]	3.8M	0.1203	0.1537 (0.1536*)	
GCN-vn [26, 15]	4.9M	0.1225	0.1485 (0.1510*)	
GIN-vn [50, 15]	6.7M	0.1150	0.1395 (0.1396*)	
GINE-VN [5, 15]	13.2M	0.1248	0.1430	
DeeperGCN-vn [30, 15]	25.5M	0.1059	0.1398	
GT [13]	0.6M	0.0944	0.1400	
GT-Wide [13]	83.2M	0.0955	0.1408	
Graphormer _{SMALL}	12.5M	0.0778	0.1264	
Graphormer	47.1M	0.0582	0.1234	

Table 2: Results on MolPCBA.

method	#param.	AP (%)	
DeeperGCN-VN+FLAG [30]	5.6M	28.42±0.43	
DGN [2]	6.7M	28.85±0.30	
GINE-VN [5]	6.1M	29.17±0.15	
PHC-GNN [29]	1.7M	29.47±0.26	
GINE-APPNP [5]	6.1M	29.79±0.30	
GIN-vn[50] (fine-tune)	3.4M	29.02±0.17	
Graphormer-FLAG	119.5M	31.39±0.32	

Table 4: Results on ZINC.

method	#param.	test MAE
GIN [50]	509,549	0.526±0.051
GraphSage [18]	505,341	0.398 ± 0.002
GAT [47]	531,345	0.384±0.007
GCN [26]	505,079	0.367±0.011
GatedGCN-PE [4]	505,011	0.214±0.006
MPNN (sum) [15]	480,805	0.145±0.007
PNA [10]	387,155	0.142±0.010
GT [13]	588,929	0.226±0.014
SAN [28]	508, 577	0.139±0.006
Graphormer _{SLIM}	489,321	0.122±0.006

Table 3: Results on MolHIV.

method	#param.	AUC (%)
GCN-GraphNorm [5, 8]	526K	78.83±1.00
PNA [10]	326K	79.05±1.32
PHC-GNN [29]	111K	79.34±1.16
DeeperGCN-FLAG [30]	532K	79.42±1.20
DGN [2]	114K	79.70±0.97
GIN-vn[50] (fine-tune)	3.3M	77.80±1.82
Graphormer-FLAG	47.0M	80.51±0.53