Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1

What is the "cache" used for in our implementation of forward propagation and backward propagation?

Correct

Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.

It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
It is used to cache the intermediate values of the cost function during training.
We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.

1/1 points

2.

Among the following, which ones are "hyperparameters"? (Check all that apply.)

number of layers \boldsymbol{L} in the neural network

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

size of the hidden layers $n^{[l]}$
weight matrices $W^{[l]}$ Un-selected is correct
learning rate α
activation values $a^{[l]}$ Un-selected is correct
bias vectors $oldsymbol{b}^{[l]}$
number of iterations Correct
1 / 1 points
3. Which of the following statements is true?
The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. Correct

The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

1/1 points

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]}), z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},...$) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]}), z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},...$).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x$, 4,3,2,1]. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
Key concepts on Deep Deutral Netwo(ik, Sr_dims))):

2     parameter['w' + str(i)] = np.random.randn(layers[i], layers[i-1])) *

Quiz, 10 questions

0.01

3     parameter['b' + str(i)] = np.random.randn(layers[i], 1) *

0.01
```

Correct

1/1 points

6.

Consider the following neural network.

How many layers does this network have?

 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The number of layers L is 4. The number of hidden layers is 3. \\ \hline \end{tabular}$

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- The number of layers L is 4. The number of hidden layers is 4.
- The number of layers L is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.).

Key concepts on Deep Neural Hetworks ng backward function also needs too/10 points (100%)

Quiz, 10	questions
----------	-----------

know what is the activation function for layer l, since the gradient depends on it. True/False?

0	

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

1/1 points

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

Correct

False

1/1 points

9.

Consider the following 2 hidden layer neural network:

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

Which of the following statements are True? (Check all that apply).

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$$oxed{b^{[1]}}$$
 will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

Un-selected is correct

Un-selected is correct

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[2]}$ will have shape (1, 1)

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

 $oxed{ } W^{[2]}$ will have shape (3, 1)

Un-selected is correct

 $igcup b^{[2]}$ will have shape (3, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

 $W^{[3]}$ will have shape (3, 1)

Un-selected is correct

 $oxed{b}^{[3]}$ will have shape (1, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

 $oxed{ \ \ \ \ \ \ \ \ \ \ \ \ } W^{[3]}$ will have shape (1, 3)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $igcup b^{[3]}$ will have shape (3, 1)

Un-selected is correct

1/1 points

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

Correct

Key concepts & Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

- $igcap W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$
- $igcolon W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

