

Aula 6 - Testes estatísticos

Fizemos uma breve revisão dos testes paramétricos que tínhamos visto e começamos com o princípio da ANOVA

ANOVA

Vamos reviver a história da patricinha? Que nos ajudou a gerar sentimentos para a variância e desvio padrão?

A patricinha tem o gasto dela, e chegamos na conclusão de que a média seria o melhor chute para esse contexto de negócio, certo?

A média é tão sensual, pois é a úncia medida que consegue está perto de todos os pontos ao mesmo tempo

gasto perfil-idade 4 5 5 5 6 5 12 A 14 A 8 T 9 T

Relembramos que o vamos estimar é nosso **Y** e a variável que nos dá suporte, é nosso **X** Neste caso, o gasto é o Y e o perfil_idade é nosso X

Vimos que o gráfico que melhor nos mostra o comportamento dessa variável Y para cada um desses X é o **boxplot** e com isso, tiramos alguns sentimentos!

Começamos a ver o princípio de um modelo e entender que a ANOVA é um modelo e também é um teste. Com isso, fizemos nosso chute sofisticado, que nada mais é que a média de cada perfil

adsto	-perfil-idade	â
4	5	5
4 5	2	5
6	5	5
12	A	13
13	A	13
14	A-	13
	エ	9
8	生	19
9		1
70	T	9
		J

Como isso é um princípio de modelo, vamos fazer uma equação para calcular nosso chute. E para essa equação, vamos usar o princípio das **Dummies** .

A variável Dummy é utilizada para verificar a **presença** ou **ausência** de algo. è uma variável binária (0 ou 1)

45623489	perfil-idade 5 5 A A T T	1555333999	NO SEX REI 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1
10	T	9	0 0 1

Com isso, chegamos na seguinte equação:

Porém, vimos que ela não está correta, pois existe o **Princípio da Parcimônia**, onde precisamos fazer a mesma coisa menos, ou seja, usaremos menos dummies (sempre n-1). Essa premissa na Estatística é **REGRA**

Durante a aula, ficamos um bem tempo tentando e entendendo como fazer as equações. É de extrema importância entender bem esse conceito, por isso, reveja a aula para pegar o sentimento!!!

Depois de algumas discussões, chegamos nas seguintes equações:

Tisando a Dummie Josem:

$$g = 5 + 4 De_{-}I + 8 De_{-}A$$

Tisando a Dummie Idoso:

 $g = 9 + 4 De_{-}A - 4 De_{-}J$

Pisando a Dummie Adulta:

 $g = 13 - 8 De_{-}J - 4 De_{-}I$

Portanto, vimos que o teste estatístico da ANOVA 1 fator é:

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k \\ H_1: pelo \ menos \ um \ \acute{e} \neq \end{cases}$$

Mas ainda não acabou!! Em relação à parte do modelo, foram feitas mais três perguntas:

1.E se eu perguntasse o quanto meu modelo "média" erra? Que conta eu poderia fazer?

2. O quanto o meu modelo sofisticado é melhor do que a média geral?

3. O quanto o meu modelo erra?

É fato que:

SQT = SQM + SQE

No final da aula, criamos uma medida que nos diz o quão bom o nosso modelo é, ela é o R^2, que é dado por:

R^2 = SQM/SQT

Esse número varia de 0 a 1, e quanto maior, melhor é nosso modelo.

Mas para frente, em Regressão Linear, vamos entender melhor essas medidas, então, fique tranquilo!! Reveja essa aula e sinta as medidas :)

