Performanzanalyse von Key-Value-Datenspeichern

Kei Wai Lam st159708@stud. uni-stuttgart.de Alexander Schäfer st154880@stud. uni-stuttgart.de

Motivation

Motivation

Vergleich von Benchmarks

Benchmark	Fokus	Letztes Update	Funktionen	Vorteile	Nachteile
InfluxDB	Dokumenten- orientiert	Juli 2021	WriteGetDelete	VergleichtLevelDBDelete	Keine weiteren Key-Value Datenbanken
RocksDB Benchmark	RocksDB	Juli 2021	ReadRange scanWrite	Änderung pro Release sichtbar	Keine anderen Datenbanken
LMDBJava	Java Key-Value Datenbanken	Juni 2020	WriteGet(key)Get(reverse/ forward iterator)	Nur Key-Value Datenbanken	Letztes Update
Yahoo! Cloud Serving Benchmark	NoSQL Systeme	Februar 2021	ReadWriteInsertScan	Unterstützt viele NoSQL Systeme	Schlechte Dokumentation

Paper

Vorteile:

- neben den "Standard"- Workloads wird zusätzlich Skalierbarkeit untersucht
- "Vorbereitungsphase" wird getestet
- Delete wird getestet

Nachteile:

- wenig (persistente) Key-Value-Datenbanken werden untersucht
- Verfügbarkeit (Availability) wird nicht untersucht
- Replizierbarkeit wird nicht untersucht
- Implementierungsstrategie wird nicht beachtet

Gewählte Datenbanken

Bibliothek(1):

- MapDB
- MVStore

Skalierbarer Prozess(2):

- Voldemort
- Riak
- Aerospike

Mischform aus (1) + (2):

RocksDB + Rocksplicator

Eigenschaften der Datenbanken

Datenbank	Clusterfähigkeit	Integrations- Komplexität	Skalierbarkeit	Replizierbarkeit
MapDB	-	direkt einbindenz.B als MavenDependency	basiert auf den Java Collections (Threads)	_
MVStore	_	direkt einbindenz.B als MavenDependency	basiert auf denJava Collections(Threads)	-

Eigenschaften

Datenbank	Clusterfähigkeit	Integrations- komplexität	Skalierbarkeit	Replizierbarkeit
Voldemort	√	Mittel – Server kann entweder im	Reads undWrites skalierenhorizontal	ConsistentHashingMulti-version
		Programm, durch Kommandozeile oder durch war Datei gestartet werden		concurrency control
Riak	√	Hoch (für Windows zusätzliche Virtualisierung nötig)	– Riak Ring	– Multi-ClusterReplikation

Eigenschaften

Datenbank	Clusterfähigkeit	Integrations- komplexität	Skalierbarkeit	Replizierbarkeit
Aerospike		– Docker nutzen	 Multi-threaded, eine oder mehrere Instanzen können auf mehrere Cores verteilt werden 	 Master-Slave Zuweisung synchronisierte Replikation Rack-Awareness

Eigenschaften

Datenbank	Clusterfähigkeit	Integrations- komplexität	Skalierbarkeit	Replizierbarkeit
RocksDB	✓	 Docker nutzen 	 Auf mehreren 	1. Asynchron
+ Rocksplicator		direkt einbinden	Cores laufen	2. Semi-synchron
		z.B als Maven	lassen um	3. Synchron
		Dependency	Workloads zu	
			verteilen	

Testablauf

Generierung von Testdaten:

- Key ist 4 Bytes lang
- Key → Hashwert
- Value → Komma getrennter String

Beispiel:

Key = 1

Value = 1,1,1,1... bis 4KB Größe erreicht ist

Testablauf

Ausblick

Ausblick

Ausblick

Vielen Dank für Ihre Aufmerksamkeit!

Quellen

Benchmarks:

- InfluxDB <u>influxdata/influxdb-comparisons</u>: <u>Code for comparison write ups of InfluxDB and other solutions (github.com)</u> (letzter Zugriff: 01.08.2021)
- RocksDB <u>Performance Benchmarks · facebook/rocksdb Wiki · GitHub</u> (letzter Zugriff: 01.08.2021)
- LMDBJava <u>GitHub Imdbjava/benchmarks: Benchmark of open source, embedded, memory-mapped, key-value stores available from Java (JMH)</u> (letzter Zugriff: 01.08.2021)
- YSCB <u>brianfrankcooper/YCSB: Yahoo! Cloud Serving Benchmark (github.com)</u> (letzter Zugriff: 01.08.2021)

Quellen

Paper:

- Benchmarking cloud serving systems with YCSB (acm.org)
- (PDF) A Study over NoSQL Performance (researchgate.net)
- A performance comparison of SQL and NoSQL databases | IEEE Conference Publication | IEEE
 Xplore
- https://www.researchgate.net/publication/330653733_Performance_Benchmarking_of_Key-Value_Store_NoSQL_Databases
- https://www.researchgate.net/publication/330653733 Performance Benchmarking of Key-Value Store NoSQL Databases
- https://www.researchgate.net/publication/292025334 Which NoSQL Database A Performance Overview
- https://www.researchgate.net/publication/275033854 Performance Evaluation of NoSQL Da tabases A Case Study
- https://www.researchgate.net/publication/265964446 Performance Study of SQL and NoSQ L Solutions for Analytical Loads