BAREME SIMULARE BACALAUREAT mai. 2013

FIZICA PRODUCEREA SI UTILIZAREA CURENTULUI CONTINUU

SUBIECTUL I

Răspunsuri: 1-a; 2-a; 3-d; 4-c; 5-d. TOTAL SUBIECT I: 15p

SUBIECTUL II	SOLUTIE	PUNCTAJ
a.	$E=8E_1=80V, r=8r_1=8\Omega$	1p
	$I=E/(R_1+r)=2A$.	1p
b.	$R_{AC}/R_{CB}=1/3; R_{AC}+R_{CB}=R_1$	1,5p
	$R_{AC}=8\Omega$ $R_{CB}=24\Omega$	1 p
	$U_{PN}=IR_{AC}=16V.$	1p
c.	$R_P = R_{AC}R_2/(R_{AC} + R_2) = 4\Omega$	1p
	$R_{ech}=R_P+R_{CB}=28\Omega$	1p
	$I_1 = E/(R_{ech} + r) = 2,22A$	1p
	$u=I_1r=17,76V$	1 p
	$I_2R_2=I_{AC}R_{AC}; I_2+I_{AC}=I_1$	1,5p
	$I_2=1,11A.$	1 p
	Sau : $U_{AC}=I_1R_P=8,88V$; $I_2=U_{AC}/R_2=11.11A$	
d.	$\rho_{100} = \rho_0(1+\alpha t)$; înmulțim cu l/S:	1 p
	$R_{100}=R_1(1+\alpha t)$	1 p
	$R_{100}=44,8\Omega.$	1p
TOTAL SUBIECT	ГП	15 puncte

SUBIECTUL	SOLUTIE	PUNCTAJ
a.	[(E/(R ₁ +r)] ² R ₁ =[(E/(R ₂ +r)] ² R ₂ R ₁ R ₂ =r ² r=2 Ω . P=[(E/(R ₁ +r)] ² R ₁ =11,11W	1,5p 1p 1p 0,5p
b.	$R_s=R_1+R_2$ $I=E/(R_s+r)=1,428A$ $P=[(E/(R_s+r)]^2R_s=I^2R_s$ P=10,2W W=EIt=856,8J.	0,5p 1p 1p 0,5p 1p
C.	$P_{max}=E^2/4r$ $P_{max}=12,5W$ $R=r; I_0=E/2r=2,5A;$ $\eta_0=R/2R=50\%.$	1p 1p 1p 1p
d.	$\begin{split} \eta_s = &R_s/(R_s + r_1) = 5/(5 + r_1); \ R_s = 5\Omega; \\ R_p = &R_1R_2/(R_1 + R_2) = 4/5\ \Omega; \ \eta_p = &R_p/(R_p + r_1) = 4/(4 + 5r_1); \\ \eta_s = &2\eta_p\ ; \ r_1 = 20/17 = 1,176\ \Omega. \\ \textbf{Explicaţie:} \ \text{In această situaţie puterile disipate pe} \\ R_1\ \text{şi } R_2\ \text{nu mai sunt egale, sursa nemaiavând} \\ \text{rezistenţa internă } r = &2\ \Omega\ \text{ca la pct. (a) } \text{şi} \\ \text{condiţia } R_1R_2 = r^2\ \text{nemaifiind îndeplinită.} \end{split}$	1p 1,5p 1,5p
TOTAL SUB	ECT III	15 puncte

Simulare- Examen de bacalaureat 2013 Proba E. d) Proba scrisă la FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

B. ELEMENTE DE TERMODINAMICĂ

(45 de puncte)

Subjectul I

Nr. Item	Soluție, rezolvare	Punctaj
I.1	b.	3p
2	b.	3p
3	c.	3p
4	d.	3p
5	a.	3 p
TOTAL	pentru subiectul I	15p

B. Subjectul al II - lea

D. Suble	ctul al II - lea		
II.a.	$\frac{m_0}{\mu_{N_2}} = \frac{1}{N_A}$	1p	3 p
	$m_0=rac{\mu_{N_2}}{N_A}$	1p	
	$m_0 = 4,65 \cdot 10^{-26} \text{Kg}$	1p	
b.	$p\frac{V}{2} = \frac{m}{\mu_{O_2}} RT_1 \qquad p\frac{V}{2} = \frac{m}{\mu_{N_2}} RT_2$	2p	4 p
	$rac{T_1}{T_2} = rac{\mu_{N_2}}{\mu_{O_2}}$	1p	
	$\frac{T_1}{T_2} = 0.875$	1p	
c.	Condiția de echilibru pentru piston este: $p_1 = p_2$	1p	5p
	$p_1 S\left(\frac{L}{2} + x\right) = \frac{m}{\mu_{N_2}} RT_1$ $p_2 S\left(\frac{L}{2} - x\right) = \frac{m}{\mu_{O_2}} RT_1$	2p	
	$x = \frac{L}{2} \cdot \frac{\mu_{O_2} - \mu_{N_2}}{\mu_{O_2} + \mu_{N_2}} = 5cm$	1p	
	Deplasarea se realizează spre compartimentul care avea ințial temperatura		
	T_2 .	1p	
d.	$\frac{m_{amestec}}{\mu_{amestec}} = \frac{N_{amestec}}{N_A}$	1p	3р

$\mu_{amestec} = rac{2\mu_{N_2}\mu_{O_2}}{\mu_{N_2} + \mu_{O_2}}$	1p	
$\mu_{amestec} = 29,86g / mol$	1p	
TOTAL pentru subiectul al II -lea		15p

B. Subiectul al III- lea

III.a.	Graficul este cel din figura :	3p
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
b.	$U_{\text{max}} = U_3 = \nu C_V T_3 $ 1p	6 p
	$U_{\min} = U_1 = \nu C_V T_1 $ 1p	
	$\frac{U_{\text{max}}}{U_{\text{min}}} = \frac{T_3}{T_1}$	
	$p_3V_3 = \nu RT_3 $ 1p	
	$3p_1 2V = \nu RT_3 $ 1p	
	$\Rightarrow T_3 = 6T_1 $ 1p	
	$\frac{U_{\text{max}}}{U_{\text{min}}} = 6$	
	$U_{ m min}$	
c.	$L = (p_2 - p_1)(V_4 - V_1) = 2p_1V = 2\nu RT_1$ 2p	3p
	L = 4986 J 1p	
d.	$Q = \Delta U + L $ 1p	3 p
	$\Delta U = 0 \qquad 1p$	
	Q = L = 4986 J 1p	
TOTAL p	entru subiectul al III -lea	15p

Examenul de bacalaureat 2013 - Simulare 2 Proba E. d) Proba scrisă la FIZICĂ

BA	REM	DE I	EVAL	.UARE	ŞI DE	NOTARE

				rezolvare		

□ Nu se acordă fracţiuni de punct.
□ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte)

A. Subiectul I

Nr.	Rezolvare, soluție		Punctaj
item	,		
l.1. 2	b d		2
3	C		2
4	C		4
5	b		5
_	pentru Subiectul I		15
II.a.	Pentru:		
	$a = \frac{F_{\chi} - F_f}{T}$	1p	
	m	•	4p
	$F_x = F \cdot \cos \beta$; $F_f = \mu \cdot N$; $N = G - F_y$; $F_y = F \cdot \sin \beta$ Rezultat final: $\alpha = 2.87 \text{m/s}^2$	2p	
b	Pentru:	1p	
D	$F_t = G_t + F_t$;	1p	
	$F_t = F \cdot \cos \beta$; $G_t = G \cdot \sin \alpha$; $F_f = \mu(G_n - F_n)$; $G_n = G \cdot \cos \alpha$; $F_n = F \cdot \sin \beta$		
	$F = \frac{G_t + F_f}{\cos \beta}$	•	4p
	-	1p	
	Rezultat final: $F = 151,25 \text{ N}$	1p	
С	Pentru:		
	$N = G_n - F_n = 0;$	1p	20
	$F_{min} = \frac{G \cdot \cos\alpha}{\sin\beta}$	1р	3р
	Rezultat final: $F_{min} = 245,39N$	1p	
d	Pentru:		
	$a = \frac{F_t' - (G_t + F_f')}{\cdots}$	4	
		1p	4p
	$a = \frac{F^{'}(\cos\beta + \mu\sin\beta) - G(\sin\alpha + \mu\cos\alpha)}{F^{'}(\cos\beta + \mu\sin\beta) - G(\sin\alpha + \mu\cos\alpha)}$	2р	٠,٣
	Rezultat final: $a = 1,89 \text{ m/s}^2$	1p	
ΤΟΤΔΙ	- pentru Subiectul II	тр	15p
III.a	Pentru:		136
III.a	L = mg(2R - h)	2p	3р
	Rezultat final: L = 0,032J	-р 1р	٥٦
b	Pentru:		
	$\Delta E_c = E_{cB} - E_{cA} = L_G$	2p	4n
	$E_{cA} = 0,$	1p	4p
	Rezultat final: Ec _B = 0,032J	1p	
С	Pentru:		
	$v = 2\sqrt{gR}$	2p	3р
	Rezultat final: $v = 4,38$ m/s	1p	
d	Pentru:		
	E_t =const.; $E_t = E_{cA} + E_{pA}$	2p	5р
		2p	٦
TOTAL		1p	45
TOTAL	pentru Subiectul III		15p

BAREM – OPTICA

b.
$$C=1/f=2$$
 dioptri (3 puncte)

c. formula lentilelor
$$1/x_2 - 1/x_1 = 1/f$$
 (2 punct)

$$x_2 = 300 \text{ cm} = 3 \text{ m}$$
 (2 puncte)

d.
$$\beta = x_2/x_1$$
 (2 puncte)

$$\beta = -5$$
 (2 puncte)

III.
$$\upsilon_0 = c / \lambda_0 = 1,09*10^{15} \text{ Hz}$$
 (2 puncte)
 $L = h*\upsilon_0 = 7,2*10^{-19} \text{ J} = 4,5 \text{ eV}$ (3 puncte)

L=
$$h*v_0 = 7.2*10^{-19} J = 4.5 \text{ eV}$$
 (3 puncte)

$$h*c / \lambda = L + E$$
 (2puncte)

$$E=3.8*10^{-19} J$$

$$E = mv2/2 (3 puncte)$$

$$V = 9.1 *10^{5} \text{ m/s}$$
 (2 puncte)

$$U_s = E / e = 2,37 V$$
 (3 puncte)