ANOVA Análise de Variância

Profa Ana Amélia Benedito Silva aamelia@usp.br

Análise de Variância

- Teste de comparação de médias de mais de duas populações
- Exige que a variável dependente seja quantitativa
- <u>Exige</u> que a distribuição da variável dependente siga uma distribuição normal dentro de cada grupo
- Exige que as variâncias dos grupos sejam semelhantes

Exemplo 1

 Verificar se há diferença no volume de urina entre 4 grupos de pacientes que tomaram 4 diferentes diuréticos A, B, C, D

Exemplo 1

	A	В	С	D	
	11	8	5	4	
	8	5	7	4	
	5	2	3	2	
	8	5	3	0	
	8	5	7	0	
médias	8	5	5	2	média geral = 5
variâncias	4,5	4,5	4	4	
tamanho da amostra	5	5	5	5	

Qual o melhor teste de hipóteses?

- 1) Determinação da variável em estudo volume de urina
- 2) Tipo da variável dependente quantitativa contínua
- 3) N° de Amostras 4 amostras
- 4) Relacionamento entre as amostras Independentes

TABELA DE ORIENTAÇÃO NA ESCOLHA DE TESTES ESTATÍSTICOS

	Uma variável					Duas variáveis
Tipo da variável	Uma	Duas	amostras	Mais de du	ias amostras	Medidas de
dependente	amostra	relacionadas	independentes	relacionadas	independentes	correlação
Qualitativa nominal ou ordinal	binomial ou X ²	McNemar	X ² ou Fischer	Prova Q de Cochran	X ² para várias amostras	coeficiente de contigência C
Quantitativa discreta ou contínua (dados não seguem curva de Gauss)	Kolmogorov Smirnov	Wilcoxon ou Prova dos sinais	Mann-Whitney Ou Prova da Mediana	Prova de Friedman	Kruskal-Wallis ou Prova da mediana	correlação de Spearman
Quantitativa discreta ou contínua (dados seguem curva de Gauss)	teste de proporções	teste t de Student pareado	teste t de Student para amostras independentes	ANOVA para medidas repetidas	ANOVA para grupos independentes	correlação de Pearson

Testes não-paramétricos

Exemplo 2: hemoglobina glicada em gestantes

Situação

Um pesquisador na área da endocrinologia acredita que a hemoglobina glicada é diferente entre 3 grupos de gestantes:

- com diabetes (CD)
- com diabetes gestacional (DG)
- sem diabetes (SD)

• Evidência amostral

Para verificar se o pesquisador está correto, foram selecionadas 30 gestantes:

- 10 com diabetes (CD)
- 10 com diabetes gestacional (DG)
- 10 sem diabetes (SD)

	Grupo SD	Grupo DG	Grupo CD	
	7,86	6,20	9,67	
	6,38	7,82	8,08	
	6,90	8,50	9,25	
	7,78	6,50	8,20	
	8,17	8,09	8,64	
	6,26	6,90	9,67	
	6,30	7,82	9,23	
	7,86	7,45	10,43	
	7,42	7,75	9,97	
	8,63	7,43	9,59	
Média	7,36	7,45	9,27	média geral=8,02
Variância	0,717	0,516	0,580	
Nº pacientes	10	10	10	

Qual o melhor teste de hipóteses?

- 1) Determinação da variável dependente hemoglobina glicada
- 2) Tipo da variável dependente quantitativa contínua
- 3) N° de Amostras 3 amostras
- 4) Relacionamento entre as amostras Independentes

TABELA DE ORIENTAÇÃO NA ESCOLHA DE TESTES ESTATÍSTICOS

	Uma variável					Duas variáveis
Tipo da variável	Uma	Duas	amostras	Mais de du	ias amostras	Medidas de
dependente	amostra	relacionadas	independentes	relacionadas	independentes	correlação
Qualitativa nominal ou ordinal	binomial ou X ²	McNemar	X ² ou Fischer	Prova Q de Cochran	X ² para várias amostras	coeficiente de contigência C
Quantitativa discreta ou contínua (dados não seguem curva de Gauss)	Kolmogorov Smirnov	Wilcoxon ou Prova dos sinais	Mann-Whitney Ou Prova da Mediana	Prova de Friedman	Kruskal-Wallis ou Prova da mediana	correlação de Spearman
Quantitativa discreta ou contínua (dados seguem curva de Gauss)	teste de proporções	teste t de Student pareado	teste t de Student para amostras independentes	ANOVA para medidas repetidas	ANOVA para grupos independentes	correlação de Pearson

Testes não-paramétricos

Exemplo 3: hemoglobina glicada em gestantes

Hipóteses estatísticas:

 $\begin{cases} H_0: \mu_{SD} = \mu_{DG} = \mu_{CD} \\ H_1: \text{as médias não são todas iguais entre si} \end{cases}$

Fixa-se α

	Grupo SD	Grupo DG	Grupo CD	
	7,86	6,20	9,67	
	6,38	7,82	8,08	
	6,90	8,50	9,25	
	7,78	6,50	8,20	
	8,17	8,09	8,64	
	6,26	6,90	9,67	
	6,30	7,82	9,23	
	7,86	7,45	10,43	
	7,42	7,75	9,97	
	8,63	7,43	9,59	
Média	7,36	7,45	9,27	média geral=8,02
Variância	0,717	0,516	0,580	
Nº pacientes	10	10	10	

Voltando ao exemplo das	Grupo SD	Grupo DG	Grupo CD
gestantes	$y_{SD,1} = 7,86$	$y_{DG,1} = 6,20$	$y_{CD,1} = 9,67$
	$y_{SD,2} = 6.38$	$y_{DG,2} = 7,82$	$y_{CD,2} = 8,08$
	$y_{SD,3} = 6,90$	$y_{DG,3} = 8,50$	$y_{CD,3} = 9,25$
	$y_{SD,4} = 7,78$	$y_{DG,4} = 6,50$	$y_{CD,4} = 8,20$
	$y_{SD,5} = 8,17$	$y_{DG,5} = 8,09$	$y_{CD,5} = 8,64$
	$y_{SD,6} = 6,26$	$y_{DG,6} = 6,90$	$y_{CD,6} = 9,67$
	$y_{SD,7} = 6,30$	$y_{DG,7} = 7,82$	$y_{CD,7} = 9,23$
	$y_{SD,8} = 7,86$	$y_{DG,8} = 7,45$	$y_{CD,8} = 10,43$
	$y_{SD,9} = 7,42$	$y_{DG,9} = 7,75$	$y_{CD,9} = 9,97$
	$y_{SD,10} = 8,63$	$y_{DG,10} = 7,43$	$y_{CD,10} = 9,59$
média	$\overline{y_{SD}} = 7,36$	$\overline{y_{DG}} = 7,45$	$\overline{y_{CD}} = 9,27$ $\overline{y_{geral}} = 8,02$
variância	$s_{SD}^2 = 0,717$	$s_{DG}^2 = 0,516$	$s^2_{CD} = 0,580$

Modelo da ANOVA g = 3 grupos

tratamento

$$y_{12}$$
 y_{22} y_{32}

$$y_{1n}$$
 y_{2n} y_{3n}

Média global:

$$\overline{y}_1$$
, \overline{y}_2 , \overline{y}_3 , \overline{y}_4

$$\overline{y}_{3.}$$

(3)

$$\overline{y}_{..}$$

$$y_{ij} = \mu + \tau_i + e_{ij}$$
 $j = 1, 2, 3$ $j = 1, 2, ..., n$

observação

média global erro aleatório

efeito do tratamento i

$$\mu_i = \mu + au_i$$
 = média do fator i

Análise de variância (ANOVA) com um fator

		Tratamento				
Replicação	1	2		g		
1	y_{11}	y_{21}		y_{g1}		
2	y_{12}	y_{22}		y_{g2}		
n	y_{1n}	y_{2n}		y_{gn}		
Soma	$y_{1.}$	y _{2.}		$y_{g.}$	$y = \sum_{i} y$	
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$		$\overline{y}_{g.}$	$\overline{y}_{\cdot \cdot} = \frac{1}{g} \sum_{i} y_{i}$	

Soma de quadrados total:

Graus de liberdade:

$$SQ_{Tot} = \sum_{i=1}^{g} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^2$$

$$gl = N - 1$$
 onde: $N = ng$

SQ_{Tot}: Soma dos Quadrados Total

Análise de variância (ANOVA) com um fator

		Tratamento			
Replicação	1	2		g	
1	y_{11}	y_{21}		y_{g1}	
2	y_{12}	y_{22}		y_{g2}	
n	y_{1n}	y_{2n}		y_{gn}	
Soma	$y_{1.}$	y _{2.}		$y_{g.}$	$y = \sum_{i} y_{i}$
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$		$\overline{y}_{g.}$	$\overline{y}_{\cdot \cdot} = \frac{1}{g} \sum_{i} y_{i}$

Soma de quadrados dos tratamentos:

$$SQ_{Trat} = \sum_{i=1}^{g} \sum_{j=1}^{n} (\overline{y}_{i.} - \overline{y}_{..})^2 = n \sum_{i=1}^{g} (\overline{y}_{i.} - \overline{y}_{..})^2$$

Graus de liberdade:

$$gl = g - 1$$

SQ_{Trat}: Soma dos Quadrados entre **Trat**amentos (ou grupos)

Análise de variância (ANOVA) com um fator

		Tratamento				
Replicação	1	2		g		
1	y_{11}	y_{21}		y_{g1}		
2	y_{12}	y_{22}		y_{g2}		
n	y_{1n}	y_{2n}		y_{gn}		
Soma	<i>y</i> _{1.}	$y_{2.}$		$y_{g.}$	$y_{\cdot \cdot} = \sum_{i} y_{i \cdot}$	
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$		$\overline{y}_{g.}$	$\overline{y}_{\cdot \cdot} = \frac{1}{g} \sum_{i} y_{i \cdot}$	

Soma de quadrados do erro:

$$SQ_{Erro} = \sum_{i=1}^{g} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^2$$

$$gl = N - g$$

SQ_{Erro} : Soma de Quadrados do Erro (intra tratamentos ou resíduos)

Análise de variância de um fator

Fonte de variação	Soma de quadrados	gl: graus de liberdade	Quadrados médios	Razão F
Entre tratamentos	$\mathrm{SQ}_{\mathrm{Trat}}$	g - 1	$QM_{trat} = SQ_{trat}/(g-1)$	$F = QM_{trat} / QM_{Erro}$
Erro (intra- tratamentos ou resíduos)	$\mathrm{SQ}_{\mathrm{Erro}}$	N - g	$QM_{Erro} = SQ_{Erro}/(N-g)$	
Total	SQT	N-1		

Estatística do teste: F

Exemplo 2: hemoglobina glicada em gestantes

$$F = \frac{\frac{\text{desvio quadráticos entre grupos}}{\text{número de grupos}}}{\frac{\text{desvio quadrático intra os grupos}}{\text{número total de sujeitos – número de grupos}}$$

$$F = \frac{\frac{SQ17}{k-1}}{\frac{SQR}{número total de sujeitos – número de grupos}}$$

F corresponde à razão entre a variância entre-grupos e a variância intra-grupos

Teste F

A estatística F tem distribuição F com (g-1) graus de liberdade no numerador e (N-g) graus de liberdade no denominador*

^{*} Ver livro Barbetta – Tabela 6

Voltando ao exemplo das	Grupo SD	Grupo DG	Grupo CD
gestantes	$y_{SD,1} = 7,86$	$y_{DG,1} = 6,20$	$y_{CD,1} = 9,67$
	$y_{SD,2} = 6.38$	$y_{DG,2} = 7,82$	$y_{CD,2} = 8,08$
	$y_{SD,3} = 6,90$	$y_{DG,3} = 8,50$	$y_{CD,3} = 9,25$
	$y_{SD,4} = 7,78$	$y_{DG,4} = 6,50$	$y_{CD,4} = 8,20$
	$y_{SD,5} = 8,17$	$y_{DG,5} = 8,09$	$y_{CD,5} = 8,64$
	$y_{SD,6} = 6,26$	$y_{DG,6} = 6,90$	$y_{CD,6} = 9,67$
	$y_{SD,7} = 6,30$	$y_{DG,7} = 7,82$	$y_{CD,7} = 9,23$
	$y_{SD,8} = 7,86$	$y_{DG,8} = 7,45$	$y_{CD,8} = 10,43$
	$y_{SD,9} = 7,42$	$y_{DG,9} = 7,75$	$y_{CD,9} = 9,97$
	$y_{SD,10} = 8,63$	$y_{DG,10} = 7,43$	$y_{CD,10} = 9,59$
média	$\overline{y_{SD}} = 7,36$	$\overline{y_{DG}} = 7,45$	$\overline{y_{CD}} = 9,27$ $\overline{y_{geral}} = 8,02$
variância	$s_{SD}^2 = 0,717$	$s_{DG}^2 = 0,516$	$s^2_{CD} = 0,580$

Avaliação das suposições

1. A distribuição da variável dependente segue uma distribuição normal dentro de cada grupo?

Deve-se aplicar o teste de normalidade de Shapiro-Wilks

H₀: distribuição da variável dependente segue uma normal (em cada grupo)

H₁: distribuição da variável dependente **não** segue uma normal (em cada grupo)

Resultado: Como p>0,05, aceito H₀.

Avaliação das suposições

As variâncias dos grupos são semelhantes?
 Deve-se aplicar o teste de homoscedasticidade de Levene

H₀: variâncias dos 3 grupos são semelhantes

H₁: variâncias dos 3 grupos não são semelhantes

Resultado: Como p>0,05, aceito H_0 .

Soma dos Quadrados Total

Análise de variância (ANOVA) com um fator

		Tratamento				
Replicação	1	2		g		
1	y_{11}	y_{21}		y_{g1}		
2	y_{12}	y_{22}		y_{g2}		
n	y_{1n}	y_{2n}		y_{gn}		
Soma	$y_{1.}$	y _{2.}		$y_{g.}$	$y_{\cdot \cdot} = \sum_{i} y_{i \cdot}$	
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$		$\overline{y}_{g.}$	$\overline{y}_{\cdot \cdot} = \frac{1}{g} \sum_{i} y_{i \cdot}$	

Soma de quadrados total:

$$SQ_{Tot} = \sum_{i=1}^{g} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^2$$

Graus de liberdade:

$$gl = N - 1$$
 onde: $N = ng$

Cálculo de SQ_{total}: soma dos quadrados total

 $SQ_{total} = 39,72$

Soma de Quadrados dos Tratamentos (grupos)

Análise de variância (ANOVA) com um fator

		Tratam	ento		
Replicação	1	2		g	
1	y_{11}	y_{21}		y_{g1}	
2	y_{12}	y_{22}		y_{g2}	
n	y_{1n}	y_{2n}		y_{gn}	
Soma	$y_{1.}$	<i>y</i> _{2.}		$y_{g.}$	$y = \sum_{i} y_{i}$
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$		$\overline{y}_{g.}$	$\overline{y}_{\cdot \cdot} = \frac{1}{\sigma} \sum_{i} y_{i}$

Soma de quadrados dos tratamentos:

$$SQ_{Trat} = \sum_{i=1}^{g} \sum_{j=1}^{n} (\overline{y}_{i.} - \overline{y}_{..})^2 = n \sum_{i=1}^{g} (\overline{y}_{i.} - \overline{y}_{..})^2$$

Graus de liberdade:

$$gl = g - 1$$

SD	DG	CD
7,86	6,20	9,67
6,38	7,82	8,08
6,90	8,50	9,25
7,78	6,50	8,20
8,17	8,09	8,64
6,26	6,90	9,67
6,30	7,82	9,23
7,86	7,45	10,43
7,42	7,75	9,97
8,63	7,43	9,59
7,36	7,45	9,27

$$SQ_{Trat} = \sum_{i=1}^{g} \sum_{j=1}^{n} (\overline{y}_{i.} - \overline{y}_{..})^2 = n \sum_{i=1}^{g} (\overline{y}_{i.} - \overline{y}_{..})^2$$

Média grupos

média geral = 8,02

$$SQ_{trat} = 10*(7,36-8,02)^2 + 10*(7,45-8,02)^2 + 10*(9,27-8,02)^2 = 23,40$$

Soma de Quadrados do Erro

Análise de variância (ANOVA) com um fator

		Tratan	nento		
Replicação	1	2		g	
1	y_{11}	y_{21}		y_{g1}	
2	y_{12}	y_{22}		y_{g2}	
n	y_{1n}	y_{2n}		\mathcal{Y}_{gn}	
Soma	$y_{1.}$	y _{2.}		$y_{g.}$	$y = \sum_{i} y_{i}$
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$		$\overline{y}_{g.}$	$\overline{y}_{\cdot \cdot} = \frac{1}{\sigma} \sum_{i} y_{i}$

Soma de quadrados do erro:

$$SQ_{Erro} = \sum_{i=1}^{g} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^2$$

Graus de liberdade:

$$gl = N - g$$

Soma de Quadrados dos Erros

SD	DG	CD	SD	DG	CD
$(7,86-7,36)^2$	$(6,20-7,45)^2$	$(9,67-9,27)^2$	0,25	1,55	0,16
$(6,3-7,36)^2$	$(7,82-7,45)^2$	$(8,08-9,27)^2$	0,95	0,14	1,42
$(6,90-7,36)^2$	$(8,50-7,45)^2$	$(9,25-9,27)^2$	0,21	1,11	0,00
$(7,78-7,36)^2$	$(6,50-7,45)^2$	$(8,20-9,27)^2$	0,18	0,89	1,15
$(8,17-7,36)^2$	$(8,09-7,45)^2$	$(8,64-9,27)^2$	0,66+	0,41 +	0,40 +
$(6,26-7,36)^2$	$(6,90-7,45)^2$	$(9,67-9,27)^2$	1,20	0,30	0,16
$(6,30-7,36)^2$	$(7,82-7,45)^2$	$(9,23-9,27)^2$	1,12	0,14	0,00
$(7,86-7,36)^2$	$(7,45-7,45)^2$	$(10,43-9,27)^2$	0,25	0,00	1,34
$(7,42-7,36)^2$	$(7,75-7,45)^2$	$(9,97-9,27)^2$	0,00	0,09	0,4
$(8,63-7,36)^2$	$(7,43-7,45)^2$	$(9,59-9,27)^2$	1,62	0,00	0,10
7,36	7,45	9,27	6,45	4 ,64	5,22

$$SQ_{Erro} = \sum_{i=1}^{g} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^{2}$$

SQR = 6,45+4,64+5,22 = 16,32

Análise de variância de um fator

Fonte de variação	Soma de quadrados	gl: graus de liberdade	Quadrados médios	Razão F
Entre tratamentos	$SQ_{Trat} = 23,40$	g-1 $(3-1)=2$	$QM_{trat} = SQ_{trat}/(g-1)$ (23,40/2) = 11,7	$F = \frac{QM_{trat}}{QM_{Erro}}$
Erro (intra- tratamentos ou resíduos)	$SQ_{Erro} = 16,32$	N - g $(30 - 3) = 27$	$QM_{Erro} = SQ_{Erro}/(N-g)$ (16,32/27) = 0,60	
Total	SQT = 39,72	N-1 $(30-1) = 29$		

Estatística do teste: F

Exemplo 2

$$F = \frac{\frac{SQ_{Trat}}{g - 1}}{\frac{SQ_{erro}}{N - g}} \qquad F = \frac{\frac{23,40}{(3-1)}}{\frac{16,32}{(30-3)}} = 19,5$$

graus de liberdade entre tratamentos (numerador) = (3-1) = 2 graus de liberdade intra tratamentos (denominador) = (30-3) = 27 F $_{alfa=0,05}$; $_{2,27} = 3,35$

Conclusão: como F _{calculado} > F _{tabelado}, há evidencias, a um nível de significância de 5%, que as médias dos grupos não são iguais, ou seja, rejeito Ho.

Teste F

A estatística F tem distribuição F com (g-1) graus de liberdade no numerador e (N-g) graus de liberdade no denominador*

^{*} Ver livro Barbetta – Tabela 6

Tabela 6 (Continuação). $\alpha = 0.05$

	Graus de liberdade no numerador									
gi denom.	1	2	3	4	5	6	7	8	9	10
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77	238,88	240,54	241,88
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,2
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,2
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19

Teste F

A estatística F tem distribuição F com (g-1) graus de liberdade no numerador e (N-g) graus de liberdade no denominador*

^{*} Ver livro Barbetta – Tabela 6

Obrigada