6. Принцип за сравняване на редове с неотрицателни членове. Критерий на Коши. Критерий на Даламбер

Принцип за сравняване на редове с неотрицателни членове

Теорема 1 (Пр. срв. редове)

Нека членовете на редовете

$$\sum_{n=1}^{\infty} a_n$$
 и $\sum_{n=1}^{\infty} b_n$

удовлетворяват условието

$$0 \le a_n \le b_n \quad \forall n \in \mathbb{N}. \tag{1}$$

- (a) ако $\sum_{n=1}^{\infty} b_n$ е сходящ, то и $\sum_{n=1}^{\infty} a_n$ също е сходящ,
- (б) ако $\sum_{n=1}^\infty a_n$ е разходящ, то и $\sum_{n=1}^\infty b_n$ също е разходящ.

Доказателство (а)

Отново ще използваме означенията:

$$A_n := a_1 + a_2 + \dots + a_n, \quad B_n := b_1 + b_2 + \dots + b_n.$$
 (2)

За да докажем, че $\sum_{n=1}^\infty a_n$ е сходящ, ще покажем, че $\{A_n\}$ е сходяща.

Първо забелязваме, че

$$a_n \ge 0 \quad \forall n \implies A_{n+1} \ge A_n \quad \forall n$$
 (3)

 \implies { A_n } е монотонно растяща.

Ако докажем, че $\{A_n\}$ е ограничена отгоре, то от т-мата за ограничените монотонни редици \Longrightarrow $\{A_n\}$ е сходяща

Знаем, че
$$\sum_{n=1}^{\infty} b_n$$
 е сходящ.

Това означава, че $\{B_n\}$ е сходяща.

$$\Longrightarrow$$
 { B_n } е ограничена (4)

$$\implies \exists C \in \mathbb{R}: B_n \leq C \forall n \in \mathbb{N}.$$
 (5)

От друга страна

$$a_n \le b_n \quad \forall n \implies A_n \le B_n \quad \forall n$$
 (6)

$$\stackrel{(5)}{\Longrightarrow} \quad A_n \le C \quad \forall n \in \mathbb{N}. \tag{7}$$

Така установихме, че $\{A_n\}$ е ограничена отгоре.

Доказателство (б)

Ако допуснем, че $\sum_{n=1}^{\infty} b_n$ е сходящ, от (а) ще следва и че $\sum_{n=1}^{\infty} a_n$ е сходящ.

Противоречие.

Еталонен ред

Обикновено си служим със следния ред при прилагането на Пр. за срв.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \tag{8}$$

Той се нарича обобщен хармоничен ред. $\alpha = 1 -$ хармоничен ред

Теорема 2

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ е сходящ} \quad \Longleftrightarrow \quad \alpha > 1.$$

Критерий на Коши

Теорема 3 (критерий на Коши)

Нека $\sum_{n=1}^{\infty} a_n$ е такъв, че $a_n \geq 0, n \in \mathbb{N}$, и съществува

$$\ell := \lim \sqrt[n]{a_n}$$
.

- (a) ако $\ell < 1$, то редът е сходящ,
- (б) ако $\ell > 1$, то редът е разходящ.

Помощно твърдение

Лема

$$\sum_{n=1}^{\infty} q^n$$
 е сходящ \iff $|q| < 1$.

Д-во: За частичните суми на реда имаме

$$S_n := q + q^2 + \dots + q^n = \begin{cases} q \frac{1 - q^n}{1 - q}, & q \neq 1, \\ n, & q = 1. \end{cases}$$
 (9)

$$\{S_n\}$$
 е сходяща \iff $|q|<1.$ (10)

Д-во на кр. на Коши

(a) Фиксираме число \boldsymbol{q} такова, че $\ell < \boldsymbol{q} < 1$.

$$\lim \sqrt[n]{a_n} = \ell < q \quad \Longrightarrow \quad \exists \ n_0 \in \mathbb{N} : \ \sqrt[n]{a_n} \le q \quad \forall n \ge n_0$$
 (11)

$$\sqrt[n]{a_n} \le q \quad \forall n \ge n_0 \quad \Longrightarrow \quad a_n \le q^n \quad \forall n \ge n_0$$
(12)

Лема
$$\Longrightarrow \sum_{n=n_0}^{\infty} q^n$$
 е сходящ (13)

Пр.срв.
$$\Longrightarrow \sum_{n=n_0}^{\infty} a_n$$
 е сходящ $\Longrightarrow \sum_{n=1}^{\infty} a_n$ е сходящ. (14)

(б) Използваме, че

$$\lim \sqrt[n]{a_n} = \ell > 1 \quad \Longrightarrow \quad \exists n_0 \in \mathbb{N} : \sqrt[n]{a_n} \ge 1 \quad \forall n \ge n_0$$
 (15)

$$\implies a_n \ge 1 \quad \forall n \ge n_0 \tag{16}$$

$$\Longrightarrow$$
 $\lim a_n \neq 0$ $\stackrel{\text{HV cx.p.}}{\Longrightarrow}$ $\sum_{i=1}^{\infty} a_n$ е разходящ. (17)

Пример

$$\sum_{n=1}^{\infty} \frac{2^n}{n^n} \tag{18}$$

разписан има вида

$$\frac{2^1}{1^1} + \frac{2^2}{2^2} + \frac{2^3}{3^3} + \dots + \frac{2^n}{n^n} + \dots$$
 (19)

Тук $a_n = \frac{2^n}{n^n}$.

Разглеждаме редицата с общ член

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{2^n}{n^n}} = \frac{2}{n} \tag{20}$$

За нея имаме

$$\lim \sqrt[n]{a_n} = \lim \frac{2}{n} = 0 < 1 \tag{21}$$

Kp. на Коши $\implies \sum_{n=1}^{\infty} \frac{2^n}{n^n}$ е сходящ.

Критерий на Даламбер

Теорема 4 (критерий на Даламбер)

Нека $\sum_{n=1}^{\infty} a_n$ е такъв, че $a_n > 0$, $n \in \mathbb{N}$, и съществува

$$\ell:=\lim\frac{a_{n+1}}{a_n}.$$

- (a) ако $\ell < 1$, то редът е сходящ,
- (б) ако $\ell > 1$, то редът е разходящ.

Доказателство

(a) Фиксираме число \boldsymbol{q} такова, че $\ell < \boldsymbol{q} < 1$.

$$\lim \frac{a_{n+1}}{a_n} = \ell < q \quad \Longrightarrow \quad \exists \, n_0 \in \mathbb{N} : \, \frac{a_{n+1}}{a_n} \le q \quad \forall n \ge n_0$$
 (22)

$$a_{n+1} \le qa_n \quad \forall n \ge n_0 \tag{23}$$

Прилагайки това неравенство за

$$\emph{n} = \emph{n}_0, \emph{n}_0 + 1, \ldots, \emph{n}_0 + \emph{k} - 1, \quad \emph{k} \in \mathbb{N}$$
 , получаваме

$$a_{n_0+1} \leq qa_{n_0},$$
 $a_{n_0+2} \leq qa_{n_0+1},$
...
 $a_{n_0+k-1} \leq qa_{n_0+k-2},$
 $a_{n_0+k} \leq qa_{n_0+k-1}.$
(24)

$$\implies a_{n_0+k} \le a_{n_0} q^k \quad \forall k \in \mathbb{N}$$
 (25)

$$a_{n_0+k} \le a_{n_0} q^k \quad \forall k \in \mathbb{N}$$
 (25)

Използваме, че

$$\sum_{k=1}^{\infty} q^k$$
 е сходящ $\Longrightarrow \sum_{k=1}^{\infty} a_{n_0} q^k$ е сходящ. (26)

Предвид (25),

Пр.срв.
$$\Longrightarrow \sum_{k=1}^{\infty} a_{n_0+k}$$
 е сходящ (27)

т.е.
$$\sum_{n=n_0+1}^{\infty} a_n$$
 е сходящ $\Longrightarrow \sum_{n=1}^{\infty} a_n$ е сходящ. (28)

←□ → ←□ → ← □ → ← □ → へ○ ○

(б) Използваме, че

$$\lim \frac{a_{n+1}}{a_n} = \ell > 1 \quad \Longrightarrow \quad \exists \, n_0 \in \mathbb{N} : \, \frac{a_{n+1}}{a_n} \ge 1 \quad \forall n \ge n_0$$
 (29)

$$\implies a_{n+1} \ge a_n \quad \forall n \ge n_0 \tag{30}$$

$$\implies a_n \ge a_{n_0} > 0 \quad \forall n \ge n_0 \tag{31}$$

$$\Longrightarrow$$
 $\lim a_n \neq 0$ $\stackrel{\text{H.V. cx. p.}}{\Longrightarrow}$ $\sum_{n=1}^{\infty} a_n$ е разходящ. (32)

Пример 1

$$\sum_{n=1}^{\infty} \frac{2^n}{n^n}, \quad a_n = \frac{2^n}{n^n} \tag{33}$$

Разглеждаме редицата с общ член

$$\frac{a_{n+1}}{a_n} = \frac{\frac{2^{n+1}}{(n+1)^{n+1}}}{\frac{2^n}{n^n}} = \frac{2}{n+1} \left(\frac{n}{n+1}\right)^n \tag{34}$$

За нея имаме

$$\frac{a_{n+1}}{a_n} = \frac{2}{n+1} \left(\frac{n}{n+1}\right)^n$$

$$\downarrow \qquad \downarrow \qquad n \to \infty$$

$$0 \qquad e^{-1}$$

$$\implies \lim \frac{a_{n+1}}{a_n} = 0 < 1 \quad \stackrel{\text{кр. Д.}}{\Longrightarrow} \quad \sum_{n=1}^{\infty} \frac{2^n}{n^n} \text{ е сходящ.} \tag{35}$$

Пример 2

$$\sum_{n=1}^{\infty} \frac{2^n}{n!} \tag{36}$$

Тук $a_n = \frac{2^n}{n!}$.

Разглеждаме редицата с общ член

$$\frac{a_{n+1}}{a_n} = \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} = \frac{2}{n+1}$$
 (37)

За нея имаме

$$\lim \frac{a_{n+1}}{a_n} = \lim \frac{2}{n+1} = 0 < 1 \tag{38}$$

Кр. на Даламбер
$$\implies \sum_{n=1}^{\infty} \frac{2^n}{n!}$$
 е сходящ.