Equivalencia y Minimización de Autómatas Finitos Deterministas

Matemáticas Computacionales (TC2020)

M.C. Xavier Sánchez Díaz

Tabla de contenidos

Equivalencia de AFDs

Definición de Equivalencia

Equivalencia de AFDs

Definición 1

Dos autómatas M_1 y M_2 son equivalentes, $M_1 \equiv M_2$, cuando aceptan exactamente el mismo lenguaje.

Equivalencia

Equivalencia de AFDs

¿Son estos dos autómatas equivalentes?

¿Cómo podemos probarlo? Equivalencia de AFDs

Sistemáticamente, probando con las palabras de $\sigma^* = \{\varepsilon, a, b, aa, ab, \dots\}$ ¿Qué pasa si no son equivalentes? Simplemente nunca acabaremos.

Podemos probar todas las posibilidades mediante un **árbol de estados in-**compatibles.

Árbol de comparación

Equivalencia de AFDs

¿Por qué simplificar AFDs?

Simplificación de AFDs

Una máquina M puede tener estados redundantes.

Eliminación de estados equivalentes Simplificación de AFDs

Borrar transiciones:

Eliminación de estados equivalentes

Simplificación de AFDs

Redirigir transiciones:

Deducción de estados distinguibles

- Dos estados son distinguibles si son incompatibles: uno es final y el otro es no final.
- Si tenemos transiciones $\delta(p_0,\sigma)=p$ y $\delta(q_0,\sigma)=q$, donde p,q son distinguibles, entonces también p_0 y q_0 son distinguibles.

Deducción de estados distinguibles

Deducción de estados distinguibles

Simplificación de AFDs

Formar clases de estados de un autómata que pudieran ser equivalentes.

Al seguir examinando las clases, podremos percatarnos de si es necesario volver a **dividirlas**.

Si las clases ya no pueden dividirse más, entonces hemos encontrado el autómata más pequeño.

