```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings('ignore')
data=pd.read_csv("/home/placement/Downloads/Advertising.csv")
```

In [2]: data.describe()

Out[2]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [3]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	radio	200 non-null	float64
3	newspaper	200 non-null	float64
4	sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

```
In [4]: list(data)
Out[4]: ['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales']
In [5]: data1=data.drop(['Unnamed: 0'],axis=1)
          data1
Out[5]:
                 TV radio newspaper sales
             0 230.1
                      37.8
                                 69.2
                                       22.1
                44.5
                      39.3
                                 45.1
                                      10.4
             2 17.2
                      45.9
                                 69.3
                                        9.3
             3 151.5
                                       18.5
                      41.3
                                 58.5
             4 180.8
                      10.8
                                 58.4
                                       12.9
                38.2
           195
                       3.7
                                 13.8
                                        7.6
           196
                94.2
                       4.9
                                  8.1
                                        9.7
           197 177.0
                       9.3
                                       12.8
                                  6.4
           198 283.6
                                 66.2
                                       25.5
                      42.0
           199 232.1
                       8.6
                                  8.7 13.4
          200 rows × 4 columns
In [6]:
         cor=data1.corr()
          cor
Out[6]:
                          TV
                                 radio newspaper
                                                    sales
                 TV 1.000000 0.054809
                                         0.056648 0.782224
               radio 0.054809 1.000000
                                         0.354104 0.576223
           newspaper 0.056648 0.354104
                                         1.000000 0.228299
               sales 0.782224 0.576223
                                         0.228299 1.000000
```

```
In [7]: import seaborn as sns
         sns.heatmap(cor,vmax=1,vmin=-1,annot=True,cmap='bwr')
Out[7]: <Axes: >
                                                                      1.00
          ≥
                             0.055
                                          0.057
                                                       0.78
                                                                     - 0.75
                                                                     - 0.50
          radio
                 0.055
                               1
                                           0.35
                                                       0.58
                                                                     - 0.25
                                                                     - 0.00
          newspaper
                 0.057
                              0.35
                                                       0.23
                                                                      - -0.25
                                                                       -0.50
In [8]: y=data1["sales"]
         x=data1.drop(['sales'],axis=1)
In [9]: from sklearn.model_selection import train_test_split
        x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
```

linear

```
In [10]: from sklearn.linear model import LinearRegression
         reg=LinearRegression()#creating object of LinearRegression
         reg.fit(x train.v train)#training and fitting LR object using training data
Out[10]: LinearRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [11]: ypred=reg.predict(x test)
         vpred
Out[11]: array([16.58673085, 21.18622524, 21.66752973, 10.81086512, 22.25210881,
                13.31459455, 21.23875284, 7.38400509, 13.43971113, 15.19445383,
                 9.01548612, 6.56945204, 14.4156926, 8.93560138, 9.56335776,
                12.10760805, 8.86091137, 16.25163621, 10.31036304, 18.83571624,
                19.81058732, 13.67550716, 12.45182294, 21.58072583, 7.67409148,
                 5.67090757, 20.95448184, 11.89301758, 9.13043149, 8.49435255,
                12.32217788, 9.99097553, 21.71995241, 12.64869606, 18.25348116,
                20.17390876, 14.20864218, 21.02816483, 10.91608737, 4.42671034,
                 9.59359543, 12.53133363, 10.14637196, 8.1294087, 13.32973122,
                 5.27563699, 9.30534511, 14.15272317, 8.75979349, 11.67053724,
                15.66273733, 11.75350353, 13.21744723, 11.06273296, 6.41769181,
                 9.84865789, 9.45756213, 24.32601732, 7.68903682, 12.30794356,
                17.57952015, 15.27952025, 11.45659815, 11.12311877, 16.60003773,
                 6.906114781)
In [12]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[12]: 0.8555568430680086
In [13]: from sklearn.metrics import mean squared error#calculating MSE
         mean squared error(ypred,y test)
Out[13]: 3.7279283306815105
```

elastic

In [14]: from sklearn.model_selection import GridSearchCV
from sklearn.linear model import ElasticNet

```
elastic = ElasticNet()
         parameters = { 'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train, y_train)
Out[14]: GridSearchCV(estimator=ElasticNet(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 201})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [15]: elastic regressor.best params
Out[15]: {'alpha': 1}
In [16]: elastic=ElasticNet(alpha=1)
         elastic.fit(x train,y train)
         v pred elastic=elastic.predict(x test)
In [17]: from sklearn.metrics import mean squared error#calculating MSE
         elastic Error=mean squared error(y pred elastic,y test)
         elastic Error
Out[17]: 3.678636493022797
In [19]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[19]: 0.8574667157937812
```

```
In [21]: x_test
```

0+1	[7 1 1	١.
uul	[LL]	

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
97	184.9	21.0	22.0
31	112.9	17.4	38.6
12	23.8	35.1	65.9
35	290.7	4.1	8.5
119	19.4	16.0	22.3

66 rows × 3 columns