DE 42 35 996 A1

Beschreibung

Die Erfindung betrifft flammenhydrolytisch hergestelltes Titandioxid-Mischoxid, das Verfahren zu seiner Herstellung und seine Verwendung.

Es ist bekannt, Titandioxid-Mischoxid auf hydrolytischem Wege in der Gasphase herzustellen. So wird in der DE-A 9 52 891 ein Verfahren zur Herstellung von Mischoxiden von Aluminium und Titan oder Titan und Silicium beschrieben, bei welchem eine Spalttemperatur im Bereich zwischen 250 und 650°C eingehalten wird.

Die DE-A 29 31 810 beschreibt ein auf flammenhydrolytischem Wege hergestelltes Siliciumdioxid-Titandioxid-Mischoxid, welches 99,9 bis 91,1 Gew.-% Siliciumdioxid und 0,1 bis 9,9 Gew.-% Titandioxid enthält.

Die DE-A 36 11 499 beschreibt ein flammenhydrolytisch hergestelltes Aluminiumoxid-Titandioxid-Mischoxid, welches 56 Gew.-% Aluminiumoxid und 44 Gew.-% Titandioxid enthält.

Gegenstand der Erfindung ist ein flammenhydrolytisch hergestelltes Titandioxid-Mischoxid mit einer BET-Oberfläche von 10 bis 150 m²/g, welches 1 bis 30 Gew.-% Aluminiumoxid oder 1 bis 30 Gew.-% Siliciumdioxid als Bestandteil des Mischoxides enthält.

In einer bevorzugten Ausführungsform der Erfindung kann das Titandioxid-Mischoxid die folgenden physikalisch-chemischen Kenndaten aufweisen:

	Al ₂ O ₃ -Gehalt (Gew%)	1-30
	SiO ₂ -Gehalt (Gew%)	1-30
20	Spezifische Oberfläche (m²/g)	10-150
	Primärteilchengröße (nm)	5-100
	Stampfdichte (g/l)	50-400
	Glühverlust (2 h bei 1000°C) (Gew%)	0.55
25	Chloridgehalt (Gew%)	<1
	Rutilgehalt (%)	20-90

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung des flammenhydrolytisch hergestellten Titandioxid-Mischoxides nach Anspruch 1, welches dadurch gekennzeichnet ist, daß man wasserfreies Aluminiumchlorid oder Siliciumtetrachlorid verdampft, zusammen mit einem Inertgas, z. B. Stickstoff, in die Mischkammer eines bekannten Brenners überführt, dort mit Wasserstoff, Luft und gasförmigem Titantetrachlorid in einem derartigen Verhältnis, daß das entsprechend zusammengesetzte Al₂O₃/TiO₂-Mischoxid oder SiO₂/TiO₂-Mischoxid ergibt, vermischt, das 4-Komponentengemisch in einer Reaktionskammer verbrennt, danach das feste Titandioxid-Mischoxid von den gasförmigen Reaktionsprodukten abtrennt und gegebenenfalls in feuchter Luft von anhaftendem Chlorwasserstoff befreit.

Die erfindungsgemäße flammenhydrolytische Umsetzung kann bei Temperaturen von 1000 bis 3000°C durchgeführt werden.

Das erfindungsgemäße Titandioxid-Mischoxid kann zur Herstellung von Katalysatoren, Katalysatorträgern, Photokatalysatoren, Keramiken, Autolacken und kosmetischen Artikeln (insbesondere als UV-Absorber in Sonnenschutzmitteln) und als Hitzestabilisator in Siliconkautschuken eingesetzt werden.

Das erfindungsgemäße Titandioxid-Mischoxid weist vorteilhafterweise eine höhere Temperaturbeständigkeit der Oberfläche auf. Es ist feinteilig, sehr homogen, sehr rein und weist eine hohe Dispergierbarkeit auf.

Beispiele

45

55

60

65

AlCl₃ und TiCl₄ oder SiCl₄ und TiCl₄ werden in zwei getrennten Verdampfern verflüchtigt (Verdampfertemperaturen: AlCl₃ 250°C, SiCl₄ 100°C, TiCl₄ 200°C) und die Chloriddämpfe mittels Stickstoff in die Mischkammer eines Brenners geleitet. Dort werden sie mit Wasserstoff und getrockneter Luft und/oder Sauerstoff vermischt und in einer Reaktionskammer verbrannt. In der Koagulationsstrecke werden die Reaktionsprodukte auf etwa 110°C abgekühlt. Die Mischoxide werden anschließend mit einem Filter abgeschieden. Durch eine Behandlung der Pulver mit feuchter Luft bei Temperaturen zwischen 500 und 700°C wird anhaftendes Chlorid entfernt.

In den Tabellen 1 und 2 sind die Reaktionsbedingungen und die Produkteigenschaften für verschiedene Mischoxide zusammengestellt.

Temperaturbeständigkeit der spezifischen Oberfläche

Beispielhaft wurde die spezifische Oberfläche der Mischoxide 4 und 9 nach einer Kalzination bei Temperaturen zwischen 500 und 800°C bestimmt. Die Haltezeit betrug jeweils 4 Stunden. Als Vergleichsmaterial wurde das undotierte pyrogene Titanoxid P 25 (BET 50 m²/g) verwendet. Die Ergebnisse sind in Fig. 1 dargestellt.

- Die spezifische Oberfläche von P 25 bricht ab 600° C stark ein.
- Die Dotierung mit Aluminiumoxid liefert ein Material mit deutlich stabilerer Oberfläche (800°C: 30 m²/g anstatt 12 m²/g bei P 25).
- Durch Zusatz von Siliciumdioxid wird ein Pulver erhalten, dessen Oberfläche über den untersuchten Temperaturbereich stabil ist.

Die neuen Materialien können bei hohen Temperatur eingesetzt werden und sind somit besonders für die Herstellung von Katalysatoren und Katalysatorträgern geeignet.

Chlorid-	halt (%)	0.06	0,0	0 0	0.70	0,15
G1üh-	- 6 G	1.6	1.7	•	7.0	1,0
Stampf-	dichte (g/l)	159	145	308	329	272
BET	(m ² /g)	l .	103	56	47	58
A1203	(%)	6,1	16,2	9,9	11,2	16,7
Luft	(1/h)	1643	1643	1276	1276	1276
H ₂	(g/h) (1/h)	!	236	448	448	448
AlC13		19	20	114	188	285
Tic14	(g/h)		m		1363	1292
Nr.	11 11 11	-	7	m	4	2

Tabelle 1: Al₂O₃/TiO₂-Mischoxide

Tabe	Tabelle 2: 8	SiO2/T1O2	iO2/TiO2-Mischoxide	ide					
Nr.	TiC14	Sic1 ₃	H2	Luft	S10 ₂	BET	Stampf-	-qin	Chlorid-
į	(g/h)	(d/b)	(g/h) (1/h)	\sim	(&)	=	σ σ	verlust (%)	gehalt (%)
	268	17	236		5,0	!! !! !!	II II II		
7	231	54	236	1643	16,5	112	151	10	20,0
œ	1423	118	448	1276	6,5	47	287) r	700
<u>ص</u>	Ť	208	448	1276	5,0	49	274) C	700
10	1258	296	448	1276	16,5	48	258	27-	

Patentansprüche

1. Flammenhydrolytisch hergestelltes Titandioxid-Mischoxid mit einer BET-Oberfläche von 10 bis 150 m²/g, welches 1 bis 30 Gew.-% Aluminiumoxid oder 1 bis 30 Gew.-% Siliciumdioxid als Bestandteil des Mischoxides enthält.

^{2.} Verfahren zur Herstellung des flammenhydrolytisch hergestellten Titandioxid-Mischoxides nach Anspruch 1, dadurch gekennzeichnet, daß man wasserfreies Aluminiumchlorid oder Siliciumtetrachlorid verdampft, zusammen mit einem Intertgas, z. B. Stickstoff, in die Mischkammer eines bekannten Brenners überführt, dort mit Wasserstoff, Luft und gasförmigem Titantetrachlorid in einem derartigen Verhältnis, daß das entsprechend zusammengesetzte Al₂O₃/TiO₂-Mischoxid oder SiO₂/TiO₂-Mischoxid ergibt, vermischt,

BEST AVAILABLE COU

DE 42 35 996 A1

das 4-Komponentengemisch in einer Reaktionskammer verbrennt, danach das feste Titandioxid-Mischoxid von den gasförmigen Reaktionsprodukten abtrennt und gegebenenfalls in feuchter Luft von anhaftendem Chl rwasserstoff befreit.

3. Verwendung des flammenhydrolytisch hergestellten Titandioxid-Mischoxides nach Anspruch 1 zur Herstellung von Katalysatoren, Katalysatorträgern, Photokatalysatoren, Keramiken, Autolacken und kosmetischen Artikeln (insbesondere von Sonnenschutzmitteln) und als Hitzestabilisator in Siliconkautschuken.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁵: Off nlegungstag:

DE 42 35 996 A1 C 01 G 23/04 28. April 1994

Temperaturstabilität der spezifischen Oberfläche Haltezeit 4 h

408 017/291