Assignment # 2: Appendix

Ian Jaeyeon Kim

1 Question 5, part (b)

- 1. $N_t \in \{1, 2, 3, 4, 5\} \rightarrow N_{t+1} \in \{1, 2, 3, 4, 5\} | x_t, d_{it} = 1$
 - First Row
 - $\mathbb{P}(1 \to 1 | x_t, d_{it} = 1) = 1 \Phi(\overline{\gamma}(1, x_t); \theta_{\gamma})$ # no entry
 - $\mathbb{P}(1 \to 2 | x_t, d_{it} = 1) = \Phi(\overline{\gamma}(1, x_t); \theta_{\gamma})$ # one entry
 - $\mathbb{P}(1 \to 3|x_t, d_{it} = 1) = \mathbb{P}(1 \to 4|x_t, d_{it} = 1) = \mathbb{P}(1 \to 5|x_t, d_{it} = 1) = 0$
 - Second Row
 - $\mathbb{P}(2 \to 1|x_t, d_{it} = 1) = [1 \Phi(\overline{\gamma}(2, x_t); \theta_{\gamma})] \times [1 \Phi(\overline{\mu}(2, x_t); \theta_{\mu})] \#$ no entry, one exit
 - $\mathbb{P}(2 \to 2|x_t, d_{it} = 1) = [1 \Phi(\overline{\gamma}(2, x_t); \theta_{\gamma})] \times [\Phi(\overline{\mu}(2, x_t); \theta_{\mu})] \# \text{ no entry, no exit}$ + $[\Phi(\overline{\gamma}(2, x_t); \theta_{\gamma})] \times [1 - \Phi(\overline{\mu}(2, x_t); \theta_{\mu})] \# \text{ one entry, one exit}$
 - $\mathbb{P}(2 \to 3|x_t, d_{it} = 1) = [\Phi(\overline{\gamma}(2, x_t); \theta_{\gamma})] \times [\Phi(\overline{\mu}(2, x_t); \theta_{\mu})] \#$ one entry, no exit
 - $\mathbb{P}(2 \to 4|x_t, d_{it} = 1) = \mathbb{P}(2 \to 5|x_t, d_{it} = 1) = 0$
 - · Third Row
 - $\mathbb{P}(3 \to 1 | x_t, d_{it} = 1) = [1 \Phi(\overline{\gamma}(3, x_t); \theta_{\gamma})] \times [1 \Phi(\overline{\mu}(3, x_t); \theta_{\mu})]^2 \# \text{ no entry, two exits}$
 - $\mathbb{P}(3 \to 2|x_t, d_{it} = 1) = [\Phi(\overline{\gamma}(3, x_t); \theta_{\gamma})] \times [{}_2C_2 \cdot (1 \Phi(\overline{\mu}(3, x_t); \theta_{\mu}))^2] \#$ one entry, two exits $+[1 \Phi(\overline{\gamma}(3, x_t); \theta_{\gamma})] \times [{}_2C_1 \cdot \Phi(\overline{\mu}(3, x_t); \theta_{\mu}) \cdot (1 \Phi(\overline{\mu}(3, x_t); \theta_{\mu}))] \#$ no entry, one exit
 - $\mathbb{P}(3 \to 3 | x_t, d_{it} = 1) = [1 \Phi(\overline{\gamma}(3, x_t); \theta_{\gamma})] \times [{}_2C_2 \cdot (\Phi(\overline{\mu}(3, x_t); \theta_{\mu}))^2] \# \text{ no entry, no exits} + [\Phi(\overline{\gamma}(3, x_t); \theta_{\gamma})] \times [{}_2C_1 \cdot \Phi(\overline{\mu}(3, x_t); \theta_{\mu}) \cdot (1 \Phi(\overline{\mu}(3, x_t); \theta_{\mu}))] \# \text{ one entry, one exit}$
 - $\mathbb{P}(3 \to 4|x_t, d_{it} = 1) = [\Phi(\overline{\gamma}(3, x_t); \theta_{\gamma})] \times [\Phi(\overline{\mu}(2, x_t); \theta_{\mu})]^2 \#$ one entry, no exit
 - $\mathbb{P}(3 \to 5 | x_t, d_{it} = 1) = 0$
 - Fourth Row (Keep in mind the binomial..)
 - $\mathbb{P}(4 \to 1 | x_t, d_{it} = 1) = \mathbb{P}(\text{no entry} \cap \text{three exit})$
 - $\mathbb{P}(4 \to 2 | x_t, d_{it} = 1) = \mathbb{P}(\text{no entry} \cap \text{two exit \& one remain}) + \mathbb{P}(\text{one entry} \cap \text{three exit})$
 - $\mathbb{P}(4 \to 3 | x_t, d_{it} = 1) = \mathbb{P}(\text{no entry} \cap \text{one exit \& two remain}) + \mathbb{P}(\text{one entry} \cap \text{two exit \& one remain})$

- $\mathbb{P}(4 \to 4|x_t, d_{it} = 1) = \mathbb{P}(\text{no entry} \cap \text{no exit}) + \mathbb{P}(\text{one entry} \cap \text{one exit } \& \text{ three remain})$
- $\mathbb{P}(4 \to 5 | x_t, d_{it} = 1) = \mathbb{P}(\text{one entry} \cap \text{no exit})$
- Fifth Row (Keep in mind the binomial and entry is not allowed..)
- $\mathbb{P}(5 \to 1 | x_t, d_{it} = 1) = \mathbb{P}(\text{four exit})$
- $\mathbb{P}(5 \to 2|x_t, d_{it} = 1) = \mathbb{P}(\text{three exit \& one remain})$
- $\mathbb{P}(5 \to 3 | x_t, d_{it} = 1) = \mathbb{P}(\text{two exit \& two remain})$
- $\mathbb{P}(5 \to 4 | x_t, d_{it} = 1) = \mathbb{P}(\text{one exit \& three remain})$
- $\mathbb{P}(5 \to 5|x_t, d_{it} = 1) = \mathbb{P}(\text{no exit})$
- 2. $N_t \in \{0, 1, 2, 3, 4\} \rightarrow N_{t+1} \in \{1, 2, 3, 4, 5\} | x_t, e_{it} = 1$

Calculating procedure is essentially same with the above, except for the fact that we only care about incumbent's decision in this part (since entrant's decision is already decided as $e_{it} = 1$). Still keep in mind the binomial coefficients.

- First Row
- $\mathbb{P}(0 \to 1 | x_t, e_{it} = 1) = 1$
- $\mathbb{P}(0 \to 2 | x_t, e_{it} = 1) = \mathbb{P}(0 \to 3 | x_t, e_{it} = 1) = \mathbb{P}(0 \to 4 | x_t, e_{it} = 1) = \mathbb{P}(0 \to 1 | x_t, e_{it} = 5) = 0$
- Second Row
- $\mathbb{P}(1 \to 1 | x_t, e_{it} = 1) = \mathbb{P}(\text{the one and only incumbent exits})$
- $\mathbb{P}(1 \to 2 | x_t, e_{it} = 1) = \mathbb{P}(\text{the one and only incumbent does not exit})$
- $\mathbb{P}(1 \to 3 | x_t, e_{it} = 1) = \mathbb{P}(1 \to 4 | x_t, e_{it} = 1) = \mathbb{P}(1 \to 5 | x_t, e_{it} = 1) = 0$
- Third Row
- $\mathbb{P}(2 \to 1 | x_t, e_{it} = 1) = \mathbb{P}(\text{all the two incumbents exit})$
- $\mathbb{P}(2 \to 2 | x_t, e_{it} = 1) = \mathbb{P}(\text{one of the two incumbents exits } \& \text{ the other remains})$
- $\mathbb{P}(2 \to 3 | x_t, e_{it} = 1) = \mathbb{P}(\text{all the two incumbents remain})$
- $\mathbb{P}(2 \to 4 | x_t, e_{it} = 1) = \mathbb{P}(2 \to 5 | x_t, e_{it} = 1) = 0$
- Fourth Row
- $\mathbb{P}(3 \to 1 | x_t, e_{it} = 1) = \mathbb{P}(\text{all the three incumbents exit})$
- $\mathbb{P}(3 \to 2 | x_t, e_{it} = 1) = \mathbb{P}(\text{two of the three incumbents exit } \& \text{ the other one remains})$
- $\mathbb{P}(3 \to 3 | x_t, e_{it} = 1) = \mathbb{P}(\text{one of the three incumbents exits } \& \text{ the other two remain})$
- $\mathbb{P}(3 \to 4 | x_t, e_{it} = 1) = \mathbb{P}(\text{all the three incumbents remain})$
- $\mathbb{P}(3 \to 5 | x_t, e_{it} = 1) = 0$

- Fifth Row
- $\mathbb{P}(4 \to 1 | x_t, e_{it} = 1) = \mathbb{P}(\text{all the four incumbents exit})$
- $\mathbb{P}(4 \to 2|x_t, e_{it} = 1) = \mathbb{P}(\text{three of the four incumbents exit \& the other one remains})$
- $\mathbb{P}(4 \to 3 | x_t, e_{it} = 1) = \mathbb{P}(\text{two of the four incumbents exit } \& \text{ the other two remain})$
- $\mathbb{P}(4 \to 4|x_t, e_{it} = 1) = \mathbb{P}(\text{one of the four incumbents exits } \& \text{ the other three remain})$
- $\mathbb{P}(4 \to 5 | x_t, e_{it} = 1) = \mathbb{P}(\text{none of the four incumbents exits } \& \text{ all the four remain})$

2 Question 11, part (a) & (b)

From now on assume that a set of parameters $\theta := (\gamma, \sigma_{\gamma}^2, \mu, \sigma_{\mu}^2)$ is given from the outer loop.

- Initial Step: Calculate entry and exit threshold
- Step (a): Calculate the remaining decision's PDV under N and x
 - 1. Assume an initial state (N_0, x_0) where $N_0 \in \{1, 2, 3, 4, 5\}$
 - 2. At t = 0, i's exit decision is fixed as 0 (Keep in mind that we are calculating the PDV of remaining in the market).
 - (a) Decide $(N_0 1)$ many incumbents' exit decisions.
 - (b) Decide the potential entrant's entry decision.
 - (c) update $N_1 = N_0 (\# \text{ of exit decisions among } (N_0 1) \text{ incumbents}) + \mathbb{1}(\gamma_{e0} \leq \overline{\gamma}(N_0, x_0; \theta))$
 - (d) update x_1 using the markov transition matrix.
 - 3. From t = 1, i's exit decision is also endogenized.
 - (a) Decide *i*'s exit decision.
 - if $d_{it} = 0$ (i.e., i exits), break the procedure and store the scrap value.
 - else, move on to the next step.
 - (b) Conditional on i's remaining decision, decide $(N_t 1)$ many incumbents' exit decisions.
 - (c) Decide the potential entrant's entry decision.
 - (d) update $N_{t+1} = N_t (\# \text{ of exit decisions among } (N_t 1) \text{ incumbents}) + \mathbb{1}(\gamma_{et} \leq \overline{\gamma}(N_t, x_t; \theta))$
 - (e) update x_{t+1} using the markov transition matrix.
 - 4. If 3 doesn't break, do the step 3 until t hits 1,000.
 - 5. Do 1-4 for many times and get the average of the PDV outcomes.
- Step (b): Calculate the entry decision's PDV under N and x
 - 1. Assume an initial state (N_0, x_0) where $N_0 \in \{0, 1, 2, 3, 4\}$

- 2. At t = 0, e's entry decision is fixed as 1 (Keep in mind that we are calculating the PDV of entering the market).
 - (a) Decide N_0 many incumbents' exit decisions.
 - (b) update $N_1 = N_0 (\# \text{ of exit decisions among } N_0 \text{ incumbents}) + 1$
 - (c) update x_1 using the markov transition matrix.
- 3. From t = 1, e's exit decision is also endogenized.
 - (a) Decide e's exit decision.
 - if $d_{it}=0$ (i.e, e exits), break the procedure and store the scrap value.
 - else, move on to the next step.
 - (b) Conditional on e's remaining decision, decide $(N_t 1)$ many incumbents' exit decisions.
 - (c) Decide the potential entrant's entry decision.
 - (d) update $N_{t+1} = N_t (\# \text{ of exit decisions among } (N_t 1) \text{ incumbents}) + \mathbb{1}(\gamma_{et} \leq \overline{\gamma}(N_t, x_t))$
 - (e) update x_{t+1} using the markov transition matrix.
- 4. If 3 doesn't break, do the step 3 until t hits 1,000.
- 5. Do 1-4 for many times and get the average of the PDV outcomes.