Homework 3, Part B

Problem 1

Kalman filter Equations:

 \overline{S}_t is the estimate value of state,

 \hat{S}_t is a posteriori value of state.

Prediction:

Frediction:

$$\overline{S_t} = \hat{S}_{t-1} + \mu_{\epsilon} = \hat{S}_{t-1}$$

$$R_t = \Theta_{\epsilon} + \hat{R}_{t-1}$$

Update based on observation:

opdate based on observation
$$K_t = R_t A^T (A R_t A^T + \Theta_r)$$

$$\hat{S}_t = \overline{S}_t + K_t (O_t - A S_t - \mu_r)$$

$$\hat{R}_t = (I - K_t A) R_t$$

$$\hat{S}_t = \overline{S}_t + K_t(O_t - AS_t - \mu_r)$$

$$\hat{R}_t = (I - K_t A) R_t$$

State

	1	2	3	4	5	6	7	8	9	10	11
Clinto n	45.00	45.82	45.63	45.68	43.95	42.48	42.05	42.45	43.07	40.91	41.35
Trump	45.00	41.95	39.74	39.15	40.87	40.14	38.66	37.59	37.31	37.63	36.98
Johns on	5.00	5.03	5.80	6.48	7.56	7.88	8.86	8.84	8.02	7.97	7.34

Final State Uncertainty

0.26	0.00	0.00
0.00	0.22	0.00
0.00	0.00	0.19

Problem 2

The accuracy is 86.41%.