Многомерная линейная регрессия

Гирдюк Дмитрий Викторович

02 ноября 2024

СП6ГУ, ПМ-ПУ, ДФС

Многомерная линейная регрессия

• Многомерная линейная регрессия

$$y = h(\boldsymbol{x}; \boldsymbol{\theta}) = \theta_0 + \sum_{j=1}^p \theta_j \tilde{x}_j = \boldsymbol{\theta}^T \boldsymbol{x}$$

где вектор $x = [1, x_1, \dots, x_p]^T$ дополнен единицей.

• Сильный "inductive bias" и интерпретируемость.

1

Метод наименьших квадратов і

• Используя выборку $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$, обучим модель методом наименьших квадратов:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y^{(i)} - h(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}) \right)^{2} = \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)} \right)^{2} =$$

$$= ||\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta}||_{2}^{2} = (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta})^{T} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta}) =$$

$$= \boldsymbol{y}^{T} \boldsymbol{y} - \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y} - \boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta} =$$

$$= \boldsymbol{y}^{T} \boldsymbol{y} - 2 \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y} + \boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}$$

Метод наименьших квадратов іі

• Необходимое условие минимума

$$\implies \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = -2\boldsymbol{X}^T \boldsymbol{y} + 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta}$$

$$\implies -2\boldsymbol{X}^T \boldsymbol{y} + 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} = 0$$

$$\implies \boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

• Значение лосса

$$\mathcal{L}(\boldsymbol{\theta^*}) = ||\boldsymbol{y} - \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}||_2^2$$

где $P = \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$ есть проекционная матрица.

Метод наименьших квадратов ііі

• Геометрический смысл МНК: опускание перпендикуляра из вектора откликов y на подпространство, образованное столбцами матрицы X.

Рис. 1: Геометрическая интерпретация МНК [1]

Оценки качества модели і

- Если линейная модель адекватно представляет данные, то график остатков $\hat{y}^{(i)} = y^{(i)} \pmb{\theta}^T \pmb{x}^{(i)}$ будет выглядеть как облако точек достаточно симметрично распределенных относительно прямой y=0.
- RSS (residual sum of squares)

$$RSS(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y^{(i)} - \widehat{y}^{(i)} \right)^2$$

• RMSE (root mean squared error)

$$RMSE(\boldsymbol{\theta}) = \sqrt{\frac{1}{N}RSS(\boldsymbol{\theta})}$$

Оценки качества модели іі

ullet Коэффициент детерминации R^2

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \left(y^{(i)} - \widehat{y}^{(i)} \right)}{\sum_{i=1}^{N} \left(y^{(i)} - \overline{y} \right)} = 1 - \frac{RSS}{TSS}$$

где
$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)}$$
.

• Вопрос: каково множество значений коэффициента детерминации и как его интерпретировать?

Проблемы

- Вопрос: всегда ли решение единственно?
- Число обсловленности матрицы:

$$\mu(\boldsymbol{A}) = ||\boldsymbol{A}||||\boldsymbol{A^{-1}}|| = \frac{\lambda_{max}}{\lambda_{min}}$$

- Умножаем вектор на обратную матрицу A^{-1} относительная погрешность усиливается в $\mu(A)$ раз.
- Если матрица ${m X}^T{m X}$ плохо обусловлена, то решение ${m heta}^*$ неустойчиво, норма $||{m heta}^*||$ велика, возникает переобучение.

Решения

- Попытаться побороть это можно следующим образом: либо производим отбор признаков, либо эти признаки преобразуем в другие признаки, либо добавляем дополнительное условие на θ .
- Накладывание условий на вектор параметров называется регуляризацией.
- Замечание. В реальности никто не обращает матрицу X^TX в лоб. Используют SVD или QR разложения этой матрицы, или вовсе используют итеративные алгоритмы (например, метод сопряженных градиентов) [2].

Гребневая регрессия

ullet Дополним рассмотренный функционал ${\cal L}$ штрафом на увеличение L_2 нормы весов ${m heta}$

$$\mathcal{L}_{\mathsf{ridge}}(oldsymbol{ heta}) = ||oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}||_2^2 + \lambda ||oldsymbol{ heta}||_2^2$$

• Замечание:

$$||\boldsymbol{\theta}||_2 = \sqrt{\sum_{j=1}^D |\theta_j|^2} = \sqrt{\boldsymbol{\theta}^T \boldsymbol{\theta}}$$

• Данная техника в общем случае называется L_2 -регуляризацией (weight decay).

МНК для гребневой регрессии

• Аналогичное аналитическое решение

$$\begin{split} \frac{\partial \mathcal{L}_{\mathsf{ridge}}}{\partial \boldsymbol{\theta}} &= -2\boldsymbol{X}^T\boldsymbol{y} + 2\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\theta} + 2\lambda\boldsymbol{\theta} \\ \Longrightarrow -2\boldsymbol{X}^T\boldsymbol{y} + 2\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\theta} + 2\lambda\boldsymbol{\theta} &= 0 \\ \Longrightarrow \boldsymbol{\theta} &= \left(\boldsymbol{X}^T\boldsymbol{X} + \lambda I_D\right)^{-1}\boldsymbol{X}^T\boldsymbol{y}. \end{split}$$

Подбор λ

- Тестировать разные значения (например, 0.001, 0.01, 0.1 и т.п.) на валидационной выборке (не путать с тренировочной). Кросс-валидация (изучим в следующий раз).
- Можно начать с некоторого достаточно большого значения и постепенно снижать его.

Рис. 2: Коэффициенты гребневой регрессии на данных по раку простаты по отношению к максимальному значению нормы $||\theta||_2$ [2].

Лассо Тибширани

 Лассо Тибширани (LASSO – Least Absolute Shrinkage and Selection Operator)

$$\mathcal{L}_{\mathsf{lasso}}(oldsymbol{ heta}) = ||oldsymbol{y} - oldsymbol{X} oldsymbol{ heta}||_2^2 + \mu ||oldsymbol{ heta}||_1$$

где
$$||oldsymbol{ heta}||_1 = \sum_{j=1}^D | heta_j| - L_1$$
 норма.

 Целевая функция выше – лагранжиан. Эквивалентная оптимизационная задача выглядит так

$$\min_{\boldsymbol{\theta}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2, \quad ||\boldsymbol{\theta}||_1 \leqslant C$$

 Основная идея – занулять коэффициенты у малозначимых признаков.

Почему коэффициенты зануляются? [2]

• Еще раз взглянем на оптимизационную задачу

$$\min_{\boldsymbol{\theta}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2, \quad ||\boldsymbol{\theta}||_1 \leqslant C$$

• Аналогично для гребневой регрессии

$$\min_{\boldsymbol{\theta}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2, \quad ||\boldsymbol{\theta}||_2^2 \leqslant C$$

• Вообще, зануление коэффициентов будет происходить и у $L_p, p < 1$ норм, однако для них оптимизационная задача теряет выпуклость.

Лассо Тибширани: решение

- Алгоритмов для решения данной оптимизационной задачи хватает: метод покоординатного спуска, метод проксимального градиента, можно использовать вариацию градиентного спуска с учетом ограничений (projected gradient descent).
- У последнего подход следующий: сделаем замену переменных $\pmb{\theta} = \pmb{\theta}^+ \pmb{\theta}^-$, где $\theta_j^+ = \max\{\theta_j, 0\}$ и $\theta_j^- = -\min\{\theta_j, 0\}$.
- Тогда $||\boldsymbol{\theta}||_1 = \sum_{j=1}^D \left(\theta_j^+ + \theta_j^-\right) \leqslant C$. Причем $\boldsymbol{\theta}^+ \geq \mathbf{0}$ и $\boldsymbol{\theta}^- \geq \mathbf{0}$.

Подбор μ [2]

• Те же идеи, что и для гребневой регрессии

Рис. 3: Коэффициенты лассо Тибширани на данных по раку простаты по отношению к $\mu=\frac{1}{C}$ [2].

Еще про регуляризацию

• Elastic net – комбинация L_1 и L_2 норм

$$\mathcal{L}_{\mathsf{elastic_net}}(\boldsymbol{\theta}) = ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \mu ||\boldsymbol{\theta}||_1 + \lambda ||\boldsymbol{\theta}||_2^2$$

• Групповое лассо: хотим обнуления коэффициентов у группы признаков. Например, после one-hot-endocing'а отбросить бинарные столбцы, относящиеся к одному категориальному признаку.

Линейная регрессия в scikit-learn

- scikit-learn предлагает кучу всего: LinearRegression, Ridge, Lasso, ElasticNet и другие обобщения регрессии с регуляризаторами.
- LinearRegression обертка над scipy.linalg.lstsq, который, в свою очередь, использует небезызвестный LAPACK (QR-разложение по умолчанию).
- Для Ridge есть выбор из кучи оптимизационных алгоритмов на все случаи жизни: на основе сингулярного разложения (SVD, рассмотрим чуть позже), на основе разложения Холецкого, L-BFGS-B и другие.
- ullet Lasso использует имплементацию ElasticNet с занулением коэффициента при L_2 норме. В scikit-learn решают задачу, используя собственную реализацию покоординатного спуска на Cython'e.

Использованные источники і

- 1. Воронцов К. Презентация по многомерной линейной регрессии из курса лекций Воронцова К.В. URL: http://www.machinelearning.ru/wiki/images/a/a2/Voron-ML-regression-slides.pdf.
- 2. Murphy K. P. Probabilistic Machine Learning: An introduction. MIT Press, 2022. URL: probml.ai.