

SHAPE REPRESENTATIONS

e glizela taino Duke yixin lin

mark moyou

adrian peter

SHAPE RETRIEVAL

REFRESHER

QUERY SHAPE

DATABASE

PROBLEM STATEMENT

SHAPE REPRESENTATION

FEATURE REPRESENTATION

RETRIEVAL MECHANICS

ROADMAP FOR FEATURE REPRESENTATION

WAVELETS

WHY WAVELETS

WAVELET DENSITY ESTIMATION

WAY, ELORSMALLY

$$\sqrt{p(x)} = \sum_{j_0,k} \frac{\alpha_{j_0,k}}{\sum_{\substack{\text{Scaling Scaling Basis Coefficient Function}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Function Father}}} + \sum_{\substack{j \geq j_0,k}}^{\infty} \beta_{j,k} \frac{\psi_{j,k}(x)}{\text{Wavelet Basis Coefficient Function Mother}}$$

$$\phi \alpha_{j_o,\mathbf{k}} = \frac{1}{N} \frac{\sum_{i=1}^{N} \phi_{j_o,\mathbf{k}}(\mathbf{x})}{\sqrt{p(\mathbf{x})}} ^{2}$$

$$\psi_{j,\mathbf{k}}^{2}(\mathbf{x}) = 2^{j} \psi \int \frac{\sqrt{p(\mathbf{x})}}{\sqrt{p(\mathbf{x})}} \phi_{j_o,k}(x) dx$$

$$\psi_{j,\mathbf{k}}^{3}(\mathbf{x}) = 2^{j} \psi \mathcal{E} \left[\frac{\phi_{j_o,k}(\mathbf{x})}{\sqrt{p(\mathbf{x})}} \right] .$$

WAVELET DENSITY ESTIMATION

NEGATIVE LOG LIKELIHOOD

$$-\log p(X; \{\alpha_{j_0,k}, \beta_{j,k}\}) = -\frac{1}{N} \log \prod_{i=1}^{N} \left[\sqrt{p(x_i)} \right]^2$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \log \left[\sum_{j_0,k} \alpha_{j_0,k} \phi_{j_0,k}(x_i) + \sum_{j \ge j_0,k}^{j_1} \beta_{j,k} \psi_{j,k}(x_i) \right]^2$$

$$\sum_{j_0,k} \alpha_{j_0,k}^2 + \sum_{j \ge j_0,k}^{j_1} \beta_{j,k}^2 = 1.$$

WAVELET DENSITY ESTIMATION

WAVELEDIDIEMISTATIESTIMATION

Database
MPEG7

Translations **576**

INITIALIZE COEFFICIENTS PROBLEM

$$\alpha_{j_o, \mathbf{k}} = \frac{1}{N} \frac{\sum_{i=1}^{N} \phi_{j_o, \mathbf{k}}(\mathbf{x})}{\sqrt{p(\mathbf{x})}}$$

576 wpwettifunctions

× 4007 samples

2,308,032 operations

INITIALIZE COEFFICIENTS SOLUTION

$$\alpha_{j_o, \mathbf{k}} = \frac{1}{N} \frac{\sum_{i=1}^{N} \phi_{j_o, \mathbf{k}}(\mathbf{x})}{\sqrt{p(\mathbf{x})}}$$

INITIALIZE COEFFICIENTS

NEGATIVE LOG LIKELIHOOD

 0.0000
 0.0000

 0.0000
 0.0000

 0.0000
 0.0000

 0.0000
 0.0000

 0.0000
 0.0000

 0.0000
 0.0000

LINEAR ASSIGNMENT

LINEAR ASSIGNMEDIRMALLY

$$\mathrm{s}X,Y$$
 $|=|Y|$ $C:X imes Y o \mathbb{R}$ $X o Y$

JONKER-VOLGENANT

COST MATRIX

OPTIMIZATION FOR JONKER-VOLGENANT

DIFFERENT SHAPE WARP

SAME SHAPE WARP

RESULTS ON DATASETS

FUTURE RESEARCH

- Optimization
 - Optimize multi-resolution
 - Extend to different dimensions
- Shape L'Ane Rouge
 - Optimize λ
 - Test on datasets
- Find better feature representations
- · Investigate high-dimension visualization

FEATURE REPRESENTATION

THANKYOU