Parser LL(1)

Lunedì 12 Novembre

Parser LL(1)

Il termine LL(1) ha il seguente significato:

- 1. la prima L, significa che l'input è analizzato da sinistra verso destra
- 2. la seconda L, significa il parser costruisce una derivazione leftmost per la stringa di input
- 3. il numero 1, significa che l'algoritmo utilizza soltanto un solo simbolo dell'input per risolvere le scelte del parser (ci sono varianti con k simboli)

S

က

Esempio

```
Il linguaggio delle parentesi bilanciate
S \rightarrow (S)S
S \rightarrow \epsilon
e vediamo come opera il parser LL(1)
per riconoscere la stringa "()"
Il parser consiste di una pila, che contiene inizialmente il
  simbolo "$" (fondo della pila), ed un input, la cui fine è
  marcata dal simbolo "$"
(EOF generato dallo scanner)
                pila input azione
                        ()$
```

-il parsing inizia inserendo il simbolo iniziale in testa alla pila pila input azione

\$ 5 () \$

- il parser **accetta** una stringa di input se, dopo una sequenza di azioni, la pila contiene "\$" e la stringa di input è "\$"

pila input azione
...
\$ accept

- ogni volta che in testa alla pila c'è un simbolo non terminale X, lo si espande secondo una produzione $X \to \gamma$, che viene scelta a seconda del simbolo in testa all'input e ai valori di una tabella (la parte destra della produzione viene invertita sulla pila)

pila input azione $5 \rightarrow (5) 5$

-ogni volta che sulla pila c'è un simbolo terminale **t**, si controlla che in testa all'input ci sia anche lo stesso simbolo, nel qual caso lo si elimina sia dalla pila che dall'input; altrimenti è **errore**

per costruire un parser **LL(1)**, bisogna costruire una tabella – la *tabella* **LL(1)** – che determina la regola da usare per l'espansione, dati il simbolo non-terminale e il carattere in input

pila	input	azione
\$ 5	()\$	$S \rightarrow (S)S$
\$5)5(()\$	match
\$5)5) \$	$\mathbf{S} \to \mathbf{\epsilon}$
\$5)) \$	match
\$ 5	\$	$\mathbf{S} \to \mathbf{\epsilon}$
\$	\$	accept

Se l'input è generato dalla grammatica questo parsing fornisce una derivazione leftmost, altrimenti produce un'indicazione d'errore.

I Parser LL(1) sono parser discendenti non ricorsivi

Costruzione della parsing table di un LL(1)

- 1. la tabella ha simboli non-terminali come righe, e simboli terminali come colonne
- 2. per ogni regola $X \to \gamma$ di G, si inserisce tale regola nella casella (X, t), per ogni t tale che $\gamma \Rightarrow^* t \beta$
- 3. per ogni regola $X \to \gamma$ di G, per cui $\gamma \Rightarrow^* \epsilon$, si inserisce nella casella (X, t) tale regola, per ogni t tale che $S \Rightarrow^* \beta X t \alpha$

(Bisogna conoscere questi simboli **t** in grado di far effettuare la scelta della produzione

le regole 2 e 3 sono difficili da implementare: gli algoritmi per risolverle sono discussi in seguito vedi **FIRST** e **FOLLOW**)

per esempio: la tabella per la grammatica

$$S \rightarrow (S)S, S \rightarrow \epsilon$$
() \$
 $S \rightarrow (S)S$ $S \rightarrow \epsilon$ $S \rightarrow \epsilon$

First

☐ E' una funzione che consente di costruire le entries della tabella, quando possibile.

FIRST(γ): insieme dei simboli terminali che si trovano all'inizio delle stringhe derivate da γ (γ è una stringa di simboli terminali e non)

First

aggiungi ε a **FIRST**(γ)

```
1. se X è un terminale, allora FIRST(X) = { X },
2. se X-> \epsilon appartiene alla grammatica, allora aggiungi \epsilon a FIRST(X),
3. se X \rightarrow Y_1Y_2...Y_k appartiene alla grammatica, allora:
   - se a∈ FIRST(Y<sub>i</sub>) per qualche i ed ε sta in FIRST(Y<sub>1</sub>),
   FIRST(Y<sub>2</sub>),...,FIRST(Y<sub>i-1</sub>), aggiungi a in FIRST(X);
   - se tutti gli insiemi FIRST(Y_1), FIRST(Y_2),...,FIRST(Y_k), contengono \varepsilon,
   aggiungi \varepsilon a FIRST(X);
4. per definire l'insieme FIRST(\gamma), dove \gamma = X_1X_2...X_k (una stringa di
   terminali e non), si procede reiterando le regole seguenti:
   - aggiungi FIRST(X_1) \ { \varepsilon } a FIRST(\gamma)
   - se per qualche i<k , tutti gli insiemi FIRST(X<sub>1</sub>), . . . , FIRST(X<sub>i</sub>)
   contengono \varepsilon, allora aggiungi FIRST(X_{i+1}) \ { \varepsilon } a FIRST(\gamma)
```

- se tutti gli insiemi $FIRST(X_1), \ldots, FIRST(X_k)$ contengono ε , allora

Se X->* ϵ allora $\epsilon \in FIRST(X)(X)$ ed detto annullabile)

Esempio di calcolo di First

Nel caso della grammatica delle espressioni aritmetiche senza ricorsioni sinistre:

$$E \rightarrow E + T \mid T$$

$$E \rightarrow TE'$$

$$E' \rightarrow + TE' \mid \varepsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

```
\begin{split} & \mathsf{FIRST}(\mathbf{id}) \! = \! \{\mathbf{id}\} & \mathsf{FIRST}(() \! = \! \{(\} & \mathsf{FIRST}(+) \! = \! \{+\} & \mathsf{FIRST}(*) \! = \! \{*\} \\ & \mathsf{FIRST}(()) \! = \! \{)\} & \mathsf{FIRST}(F) \! = \! \{\mathbf{id}, (\} \\ & \mathsf{FIRST}(T) \! = \! \mathsf{FIRST}(E) \! = \! \mathsf{FIRST}(F) \\ & \mathsf{FIRST}(E') \! = \! \{+, \, \epsilon\} & \mathsf{FIRST}(T') \! = \! \{*, \, \epsilon\} \end{split}
```

algoritmo in pseudo-C per calcolare FIRST

```
for all terminals X and \varepsilon do FIRST(X) = {X};
for all non-terminals X do FIRST(X) = { };
while (there are changes to any FIRST(X)) do
   for each production X \rightarrow Y_1 Y_2 ... Y_k do
           i := 1 ; continue := true ;
           while (continue == true && i<=k) do
                      add FIRST(Y;)\{\varepsilon} to FIRST(X);
                      if (\varepsilon is not in FIRST(Y_i)) continue := false;
                      i := i+1;
           if (continue == true) add \varepsilon to FIRST(X);
```

FIRST può non bastare

Osservazione: se la grammatica contiene due produzioni

 $X \rightarrow \gamma_1$

 $X \rightarrow \gamma_2$

(stesso simbolo non-terminale a sinistra, due sequenze differenti a destra)

e **FIRST**(γ_1) \cap **FIRST**(γ_2) è non vuota.

Allora la grammatica non può essere analizzata col parsing top-down: se $\mathbf{t} \in \mathbf{FIRST}(\gamma_1) \cap \mathbf{FIRST}(\gamma_2)$ allora, il parsing discendente non saprà cosa fare quando il primo simbolo dell'input è \mathbf{t}

Follow

Dato un **non terminale** X, l'insieme **FOLLOW**(X) è l'insieme dei simboli terminali, eventualmente \$, che appaiono alla destra di X in qualche forma sentenziale ed è definito come segue:

- 1. se X è l'assioma, allora aggiungi \$ a FOLLOW(X)
- 2. se c'è una produzione A -> α X γ , allora aggiungi **FIRST**(γ)\{ ϵ } a **FOLLOW**(X)
- 3. se c'è una produzione $A \rightarrow \alpha X \gamma$ per cui $\epsilon \in FIRST(\gamma)$, allora aggiungi FOLLOW(A) a FOLLOW(X)

Osservazioni:

- 1. quando l'assioma non compare a destra delle produzioni, il "\$" è l'unico simbolo nel suo insieme FOLLOW
- 2. l'insieme FOLLOW non contiene mai "ε"
- 3. FOLLOW è definito soltanto per non-terminali: potremmo generalizzare la definizione ma ciò è inutile per la tabella LL(1)
- **4.** la definizione di **FOLLOW** lavora "alla destra" di una produzione, mentre quella di **FIRST** lavora "alla sinistra": una produzione $X -> \alpha$ non ha alcuna informazione su **FOLLOW**(X), se X non è presente in α

Algoritmo in pseudo-C per calcolare FOLLOW

```
 \begin{split} \text{FOLLOW}(\text{Axiom}) &= \{ \ \} \ ; \\ \text{for all (nonterminal(X) \&\& X != Axiom) do FOLLOW(X)=} \{ \}; \\ \text{while (there are changes to any FOLLOW set) do} \\ \text{for each production X -> Y }_1 \ Y_2 ... \ Y_k \ do \\ \text{for each nonterminal(Y }_i) \ do \ \{ \\ \text{add FIRST}(Y_{i+1} ... \ Y_k) \setminus \{ \ \epsilon \ \} \ to \ \text{FOLLOW}(Y_i) \ ; \\ \text{/* Note: if i=k then Y}_{i+1} ... \ Y_k = \epsilon^* / \\ \text{if $\epsilon$ is in FIRST}(Y_{i+1} ... \ Y_k) \\ \text{add FOLLOW}(X) \ to \ \text{FOLLOW}(Y_i); \\ \end{cases}
```

Esempio di calcolo di Follow

Nel caso della grammatica delle espressioni aritmetiche senza ricorsioni sinistre:

```
E \rightarrow E + T \mid T
                                   E \rightarrow TE'
T \rightarrow T*F \mid F
                   E' \rightarrow +TE' \mid \varepsilon
F \rightarrow (E) lid
                                   T \rightarrow FT'
                                    T' \rightarrow *FT' \mid \varepsilon
                                    F \rightarrow (E) lid
FIRST(id) = \{id\} \qquad FIRST('(') = \{'(')\} \qquad FIRST('+') = \{+\} \qquad FIRST(*) = \{*\}
FIRST(')')={')'}
                                    FIRST(F)={id,'('}
FIRST(T)=FIRST(E)=FIRST(F)
FIRST(E')=\{+, \epsilon\} FIRST(T')=\{*, \epsilon\}
FOLLOW(E)=\{\$,\} FOLLOW(E')=\{\$,\}
FOLLOW(T) = \{\$, \} FOLLOW(T') = \{\$, \}
FOLLOW(F)={$,),+,*}
```

Grammatica LL(1)

Una grammatica è LL(1) se e solo se per ogni produzione del tipo $A -> \alpha \mid \beta$ si ha:

- α e β non derivano stringhe che cominciano con lo stesso simbolo a.
- Al più uno tra i due può derivare la stringa vuota.
- Se β ->* ϵ allora α non deriva stringhe che cominciano con terminali che stanno in FOLLOW(A). Analogamente per α

Equivalentemente affinchè una grammatica sia LL(1) deve avvenire che per ogni coppia di produzioni $A\rightarrow\alpha|\beta$

- 1. $FIRST(\alpha)$ e $FIRST(\beta)$ devono essere disgiunti
- 2. Se ϵ è in FIRST(β) allora FIRST(α) e FOLLOW (A) devono essere disgiunti.

Come costruire la tabella?

- 1. Per ogni regola X -> α di G, si inserisce nella casella (X, t) la regola X -> α , per ogni t tale che $t \in FIRST(\alpha)$
- 2. Per ogni regola $X \rightarrow \alpha$ di G, per cui $\alpha \Rightarrow^* \epsilon$ ($\epsilon \in FIRST(\alpha)$), si inserisce nella casella (X, t) la regola $X \rightarrow \alpha$, per ogni t tale che $t \in FOLLOW(X)$. Se $\epsilon \in FIRST(\alpha)$ and $\xi \in FOLLOW(X)$, si inserisce la regola $X \rightarrow \alpha$ in (X, ξ) .
- 3. Le caselle non definite definiscono un errore.

NOTA: Se G è ricorsiva sinistra o ambigua, la tabella avrà caselle con valori multipli.

Altra definizione di Grammatica LL(1)

Una grammatica la cui tabella **LL(1)** non contiene più di un elemento nelle caselle è detta **LL(1)**

Osservazione: per costruzione una grammatica LL(1) non è ambigua, né ricorsiva sinistra

Algoritmo di parsing LL(1)

```
LL1 parser( stack p, input i, LL1 table M, initial S ) {
/* p, i sono pile, S è l'assioma*/
int error = 0 ; p = push(p, $) ;
p = push(p, S);
while (top(p) \neq \$ \&\& top(i) \neq \$ \&\& !error){
             if isterminal(top(p)) {
                          if top(p) == top(i) \{ p = pop(p) ; i = avanza(i) ; \}
                          else error = 1;}
             else {/* top(p) è un non-terminale, bisogna espandere */
                          if isempty(M[top(p),top(i)]) error = 1;
                          else { /* M[top(p),top(i)] == X -> X_1 ... X_n; */
                                       p = pop(p);
                                       for (j = n ; j > 0 ; j = j-1)
                                       p = push(p, X_i); \}
   if (!error) accept();
   else raise error();
```

Complessità di calcolo del parser LL(1)

E' lineare nella lunghezza n della stringa sorgente, poiché viene consumato un carattere per volta.

ESEMPIO: costruire il parser LL(1) per la grammatica

$$S \rightarrow (S)$$

$$S \rightarrow [S]$$

$$S \rightarrow (S)$$
 $S \rightarrow [S]$ $S \rightarrow \{S\}$

$$S \rightarrow \epsilon$$

insiemi FIRST, FOLLOW:

FIRST

FOLLOW

S

(,[,{ε

),],},\$

la tabella LL(1):

)] }

S

 $S \rightarrow (S)$ $S \rightarrow [S]$ $S \rightarrow \epsilon$ $S \rightarrow \epsilon$ $S \rightarrow \epsilon$ $S \rightarrow \epsilon$

 $S \rightarrow \epsilon$