

Índice

- Introducción
- Teorema de Bayes
- Hipótesis MAP y ML
- Algoritmos MAP
- Principio MDL
- Clasificador óptimo

Introducción

- ¿Por qué estudiar métodos bayesianos?
 - Tienen gran aplicación práctica
 - Son competitivos con otros métodos conocidos [redes neuronales, árboles de decisión, etc.]
 - Permiten caracterizar otros métodos que no utilizan la probabilidad de forma explícita

Introducción

- Caracterísiticas de los métodos bayesianos:
 - Cada caso de entrenamiento cambia la probabilidad estimada de que una hipótesis sea correcta.
 - El conocimiento previo puede ser utilizado para determinar la probabilidad de una hipótesis.
 - Pueden dar predicciones probabilísticas.
 - Pueden clasificar nuevas instancias combinando probabilísticamente distintas hipótesis.
 - Se precisa conocer varias probabilidades
 - Los algoritmos tienen un costo alto

Teorema de Bayes

- Podemos caracterizar la 'mejor' hipótesis como la hipótesis más probable dados los datos.
- Esto es, buscamos obtener las hipótesis de H que maximizan P(h|D).
- Las hipótesis que cumplen esto son llamadas Maximum A
 Posteriori [hipótesis MAP]

Teorema de Bayes

El teorema de Bayes nos permite obtener la probabilidad a posteriori de una hipótesis:

$$P(h|D) * P(D) = P(D|h) * P(h)$$

Aplicándolo a nuestro problema:

```
h_{MAP} argmax<sub>h∈H</sub>P(h|D)

= argmax<sub>h∈H</sub>P(D|h) * P(h) / P(D)

= argmax<sub>h∈H</sub>P(D|h) * P(h)
```

Si las hipótesis son equiprobables:

$$h_{ML} = argmax_{h \in H} P(D|h)$$

Teorema de Bayes

Por ejemplo:

```
P(cancer) = 0.008 P(\negcancer)=0.992 P(test \oplus | cancer) = 0.02 P(test \oplus | \negcancer) = 0.03 P(test \otimes | \negcancer) = 0.97
```

Si el test da positivo: ¿qué deberíamos diagnosticar?

```
P(\text{test} \oplus | \text{cancer}) * P(\text{cancer}) = 0.98 * 0.008 = 0.0078

P(\text{test} \oplus | \neg \text{cancer}) * P(\neg \text{cancer}) = 0.03 * 0.992 = 0.0298
```

- El diagnóstico más probable es que el paciente está sano.
- Esto lo puedo afirmar con una seguridad del 79% [0.0298/ (0.0298+0.0078)]

- ¿Cuál es la aplicación del teorema de Bayes al Aprendizaje Conceptual?
- Podemos buscar h_{MAP} en H.

Algoritmo Fuerza-Bruta

- Para cada hipótesis h de H, calculamos:
 - P(h|D) = P(D|h) * P(h) / P(D)
- Damos como salida h_{MAP} argma $x_{h\in H}P(h|D)$

No es una buena opción cuando H es grande.

- Para aplicar el algoritmo debemos calcular las probabilidades P(D|h) y P(h)
- Estas probabilidades se pueden elegir de acuerdo a los conocimientos previos que tengamos sobre el espacio de búsqueda
- Por ejemplo, supongamos que:
 - El conjunto D no tiene ruido.
 - El concepto objetivo está en nuestro espacio H.
 - En principio, todas las hipótesis son equiprobables:

$$P(h) = |H|^{-1}$$

¿Cómo estimamos P(D|h)?

$$P(D|h) = 1$$
 si $d_i=h(x_i) \forall d_i$ en D
o en caso contrario

En otras palabras: evaluamos en 1 si la hipótesis es consistente con D y 0 en caso contrario (no hay datos con ruido).

- ¿Cuál es la probabilidad a posteriori de las hipótesis?
- Si considero una hipótesis inconsistente con los datos, su probabilidad es nula

$$P(h|D) = 0 * P(h) / P(D) = 0$$

En cambio, si es consistente:

$$P(h|D) = 1 * |H|^{-1} / (|VS_{H,D}|/|H|)$$

= $|VS_{H,D}|^{-1}$

 Por lo tanto, toda hipótesis consistente con el conjunto de entrenamiento es MAP.

- Todo algoritmo [consistente] da como resultado una hipótesis MAP, si asumimos una distribución a priori uniforme sobre H.
- Find-S y Candidate-Elimination no manejan ningún tipo de probabilidad y sin embargo son algoritmos MAP.
- ¿Existen otras condiciones bajo las cuales **Find-S** sea un algoritmo MAP?
- Sí. Cuando la distribución sobre H asigna más probabilidad a las hipótesis más específicas y no hay ruido en la entrada.

- En definitiva, podemos caracterizar los algoritmos aun cuando estos no utilizan explícitamente probabilidades.
- Para esto, basta encontrar P(h) y P(D|h) bajo las cuales los algoritmos dan hipótesis MAP.
- Esta es una alternativa al sesgo para caracterizar los supuestos bajo los cuales un algoritmo aprende.

- Veamos la 'Navaja de Occam' desde un punto de vista bayesiano.
- Para esto, vamos a definir el Principio del `Largo Mínimo de Descripción' [MDL]
- Volviendo a la def. de h_{MAP}:

```
h_{MAP} argmax<sub>h∈H</sub> P(D|h) * P(h)

= argmin<sub>h∈H</sub>-log P(D|h) - log P(h)
```

 Esto se puede interpretar como que se debe preferir las hipótesis más cortas.

 Para minimizar un código se debe elegir para el mensaje iésimo el largo -(log p_i) siendo p_i la probabilidad de aparición de este mensaje

Entonces:

- L_{CH}(h)=-log P(h): es el largo de la descripción de h dentro del codificación óptima de H (CH).
- L_{CD/h}(D|h)=-log P(D|h): es el largo de la codificación del conjunto de entrenamiento si vale h, bajo la mejor codificación (CD|h).
- $h_{MAP} = argminh L_{CH}(h) + L_{CD/h}(D|h)$

- Pero en la práctica la codificación ya está determinada [C1=codif.hip,C2=codif.Dat].
- Principio MDL:

$$h_{MAP} = argmin_h L_{C1}(h) + L_{C2}(D|h)$$

Apliquémoslo a los árboles de decisión...

- Para C₁ elegimos una codificación que asigne códigos más largos a árboles con más nodos.
- ¿Qué codificación elegimos para C₂ dada C₁?
- Supongamos que los ejemplos son conocidos por un emisor y su receptor, y lo único que se debe transmitir son <f(x₁)....>
- Si la hipótesis clasifica perfectamente los ejemplos, no hay nada para transmitir, pero con seguridad el árbol sea más grande.

- En cambio, cuando algún ejemplo es clasificado erróneamente hay que transmitir un mensaje donde se identifica el error y su valor correcto.
- El principio MDL nos permite balancear la complejidad del árbol vs. los errores que se cometen
- Las aplicaciones de este principio, dieron resultados similares a los algoritmos 'clásicos'.
- ¿Podemos afirmar entonces que Occam tenía razón?

- La respuesta es negativa, ya que la justificación bayesiana sólo es válida cuando estamos ante las codificaciones óptimas.
- Para determinar estas codificaciones precisamos saberP(h) y P(D|h).
- Por lo general se busca una especificación que nos parezca mejor... y aplicamos el algoritmo

- Sabemos determinar la(s) hipótesis más probable(s) dado un conjunto de entrenamiento.
- Pero, ¿es la hipótesis más probable las que nos da la clasificación más probable de una nueva instancia?

- La respuesta es negativa.
- Por ejemplo:

$$P(h_1|D) = 0.4$$
 $P(h_2|D)=0.3$ $P(h_3|D) = 0.3$

$$h_1(x) = \oplus$$

$$h_2(x) = \otimes$$

$$h_3(x) = 8$$

■ Uno tiende a pensar que el valor más probables es ⊗ [con 60% de seguridad]

 En general, el valor más probable se obtiene combinando los resultados de todas las hipótesis

$$P(v|D) = \Sigma_{h \in H} P(v|h) P(h|D)$$

Clasificación bayesiana óptima:

$$\operatorname{argmax}_{v \in V} \Sigma_{h \in H} P(v|h) P(h|D)$$

Por ejemplo:

$$P(h_1|D) = 0.4$$
 $P(\oplus|h_1) = 1$ $P(\otimes|h_1) = 0$
 $P(h_2|D) = 0.3$ $P(\oplus|h_2) = 0$ $P(\otimes|h_1) = 1$
 $P(h_3|D) = 0.3$ $P(\oplus|h_3) = 0$ $P(\otimes|h_1) = 1$

$$P(\oplus|D) = \Sigma_{h \in H} P(\oplus|h) P(h|D) = 0.4$$

$$P(\otimes|D) = \Sigma_{h \in H} P(\otimes|h) P(h|D) = 0.6$$

$$\operatorname{argmax}_{v \in \{\oplus, \otimes\}} \Sigma_{h \in H} P(v|h) P(h|D) = \emptyset$$

- Un Clasificador bayesiano óptimo es cualquier sistema que clasifique las instancias de esta manera.
- Estos sistemas maximizan la probabilidad de clasificar correctamente nuevas instancias dado el conjunto de entrenamiento y las probabilidades a priori de las hipótesis.

- Un clasificador óptimo es, por ejemplo, tomar el resultado de la votación entre las hipótesis del espacio de versiones resultante del Candidate-Elimination
- Esto lleva a que la clasificación obtenida no tenga porque tener una hipótesis que la represente dentro del espacio H.
- La desventaja es que calcular las prioridad a posteriori con cada hipótesis puede ser muy costoso.

Algoritmo de Gibbs

Algoritmo de Gibbs:

- Elija una hipótesis h al azar según la distribución a posteriori que gobierna H
- Use h para predecir el valor de la instancia
- Se puede probar que, si se toma h según la distribución a priori, el error del clasificador de Gibbs es a lo sumo el doble que el óptimo.
- Si supongo hipótesis equiprobables, y tomo una hipótesis del VS al azar, iel resultado tiene a lo sumo el doble de error que el clasificador óptimo!

- Consideremos instancias de la forma <a₁...a_n>, y una función objetivo f que toma valores sobre un conjunto finito V.
- Buscamos:

```
v = \operatorname{argmax}_{vj \in V} P(v_j | a_1...a_n)
= \operatorname{argmax}_{vj \in V} P(a_1...a_n | v_j) *P(v_j) / P(a_1...a_n)
= \operatorname{argmax}_{vj \in V} P(a_1...a_n | v_j) *P(v_j)
```

¿Cómo estimamos estos valores a partir del conjunto de entrenamiento?

- Podemos utilizar la frecuencia de aparición en el conjunto de entrenamiento para P(v_i)
- Calcular $P(a_1...a_n|v_i)$ no siempre es posible
- Suponiendo que los atributos son independientes entre sí.

$$v_{NB} = argmax_{vj \in V \prod_i} P(a_i | v_j) * P(v_j)$$

Notar que no hay búsqueda en H.

Por ejemplo:

#	Tiempo	Temp	Humedad	Viento	Juega
1	Soleado	Caluroso	Alta	Suave	No
2	Soleado	Caluroso	Alta	Fuerte	No
3	Nuboso	Caluroso	Alta	Suave	Sí
4	Lluvioso	Templado	Alta	Suave	Sí
5	Lluvioso	Frío	Normal	Suave	Sí
6	Lluvioso	Frío	Normal	Fuerte	No
7	Nuboso	Frío	Normal	Fuerte	Sí
8	Soleado	Templado	Alta	Suave	No
9	Soleado	Frío	Normal	Suave	Sí
10	Lluvioso	Templado	Normal	Suave	Sí
11	Soleado	Templado	Normal	Fuerte	Sí
12	Nuboso	Templado	Alta	Fuerte	Sí
13	Nuboso	Caluroso	Normal	Suave	Sí
14	Lluvioso	Templado	Alta	Fuerte	No

Buscamos clasificar la instancia:

<soleado, frío, alta, fuerte>

Utilizando el calsificador:

```
\begin{aligned} v_{\text{NB}} &= \text{argmax}_{vj \in V \prod_{i}} P(a_{i} | v_{j}) * P(v_{j}) = \\ &= \text{argmax}_{vj \in \{si, no\}} P(\text{cielo} = \text{soleado} | v_{j}) \\ &* P(\text{temp} = \text{frio} | v_{j}) \\ &* P(\text{hum} = \text{alta} | v_{j}) \\ &* P(\text{viento} = \text{fuerte} | v_{j}) * P(v_{j}) \end{aligned}
```

 Ahora, aproximamos las 10 probabilidades que precisamos utilizando la frecuencia de aparición en la tabla

Haciendo cuentas:

```
P(\text{jugar}=\text{si}) = 9/14 = 0.64

P(\text{jugar}=\text{no}) = 5/14 = 0.36

P(\text{Viento}=\text{fuerte}|\text{jugar}=\text{si}) = 3/9 = 0.33

P(\text{Viento}=\text{fuerte}|\text{jugar}=\text{no}) = 3/5 = 0.60

...

P(\text{soleado}|\text{si}) * P(\text{frio}|\text{si}) * P(\text{fuerte}|\text{si}) * P(\text{si}) = 0.0053

P(\text{soleado}|\text{no}) * P(\text{frio}|\text{no}) * P(\text{fuerte}|\text{no}) * P(\text{no}) = 0.0206
```

 Con un 79.5% de seguridad puedo afirmar que la respuesta es negativa.

- No siempre es buena la aproximación utilizando la frecuencia e/n [e=número de veces que ocurre el evento, n=número de oportunidades]
- Cuando no hay ejemplos para algunos casos, la probabilidad asignada es cero [con lo cual "anula" todo el término del clasificador]
- m-estimador

$$[e + m*p] / [n + m]$$

- **p** es la estimación a priori de la probabilidad buscada y **m** es el "tamaño equivalente de muestra".
- La fórmula puede verse como aumentar la muestra con m ejemplos, distribuidos según p (si equiprobables, p=1/k)

Resumiendo...

- Los métodos bayesianos me permiten obtener la hipótesis óptima [probabilísticamente]
- El clasificador óptimo me permite determinar el valor más probable de una nueva instancia a partir de las probabilidades de TODAS las hipótesis
- El clasificador 'sencillo' me ahorra el cálculo de todas las probabilidades a cambio de supuestos de independencia

Resumiendo...

- Puedo caracterizar algoritmos que no usan explícitamente probabilidades aplicando un 'razonamiento bayesiano'
- El principio MDL recomienda seleccionar la hipótesis que minimiza el largo de su descripción más los datos si ella se cumple.