SPICE

Pravin Zode

Outline

- Introduction to Design
- Types of Analysis
- Scale factors
- Element Conventions
- Circuit Descriptions
- Examples

Introduction

- SPICE (Simulation Program with Integrated Circuit Emphasis)
- It is powerful circuit simulation tool that allows engineers to analyze and design electronic circuits with great accuracy
- SPICE allows for the creation of accurate circuit models to simulate real-world behavior
- Accurate prediction of circuit behavior without physical prototypes
- SPICE can perform a variety of analyses, including DC, AC, transient, and more
- Saves time and cost by detecting issues early in the design process.

Types of Analysis

- DC Analysis: SPICE can determine the steady-state behavior of analog circuits, such as bias points and power consumption
- AC Analysis: SPICE can simulate the frequency response of analog circuits, including gain, phase, and bandwidth
- Transient Analysis: SPICE can model the dynamic behavior of analog circuits, including response to step inputs and oscillations

Digital Circuit Simulation

- SPICE can accurately simulate the behavior of digital logic gates, including propagation delays and logic levels
- SPICE can model the behavior of flip-flops, registers, and other sequential logic circuits
- SPICE can perform timing analysis on digital circuits, ensuring proper operation and identifying potential timing issues

Advanced Simulation Features

- Monte Carlo Analysis: SPICE can perform statistical analysis
 to assess the impact of component variations on circuit
 performance
- Parametric Sweeps: SPICE allows for the simulation of circuits with varying parameter values, enabling design optimization
- Optimization Algorithms: SPICE can be coupled with optimization algorithms to automate the design process

Suffix	Name	Factor
T	Tera	10^{12}
G	Giga	10 ⁹
Meg	Mega	10^{6}
K	Kilo	10^{3}
mil	Mil	25.4×10^{-6}
m	milli	10^{-3}
u	micro	10^{-6}
n	nano	10^{-9}
p	pico	10^{-12}
f	femto	10^{-15}
a	atto	10^{-18}

Element Conventions

A	XSPICE code model
В	Behavioral (arbitrary) source
С	Capacitor
D	Diode
Е	Voltage-controlled voltage source (VCVS)
F	Current-controlled current source (CCCs)
G	Voltage-controlled current source (VCCS)
Н	Current-controlled voltage source (CCVS)
I	Current source
J	Junction field effect transistor (JFET)
K	Coupled (Mutual) Inductors
L	Inductor
M	Metal oxide field effect transistor (MOSFET)

N	Numerical device for GSS
О	Lossy transmission line
P	Coupled multiconductor line (CPL)
Q	Bipolar junction transistor (BJT)
R	Resistor
S	Switch (voltage-controlled)
T	Lossless transmission line
U	Uniformly distributed RC line
U	Basic digital building blocks using XSPICE
V	Voltage source
W	Switch (current-controlled)
X	Subcircuit
Y	Single lossy transmission line (TXL)
Z	Metal semiconductor field effect transistor (MESFET)

Circuit Description

- The first line in the input file must be the title, which is the only comment line that does not need any special character in the first place
- The last line must be .end, plus a newline delimiter
- Commands are specified by Dot Command (.dc, .ac etc)
- Node "0" is always the ground (reference) node.
- Components are identified by letters based on their type, followed by numbers (e.g., R1, C1, M1)
- Comments are declared followed by ;
- A line may be continued by entering a '+' (plus) in column 1 of the following line

Structure of SPICE Netlist

- Title
- Controls
- Sources
- Model
- Components
- Subcircuit

Example-01 (Netlist)

v(1) = 1.000000e+00 v(2) = 6.666667e-01vin#branch = -3.33333e-04

4-Jun-25 Pravin Zode 11

Example-02 (Node Name, op)

*#destroy all

*#run

*#print all
.op

Vin Vin 0 DC 1
R1 Vin Vout 1k
R2 Vout 0 2k
.end

$$v(1) = 1.000000e+00$$

 $v(2) = 6.666667e-01$
 $vin#branch = -3.33333e-04$

Example-03 (Transfer Function)

*#destroy all

*#run

*#print all

.op

Vin Vin 0 DC 1 R1 Vin Vout 1k

R2 Vout 0 2k

.end

```
.TF V(Vout,0) Vin
```

transfer_function = 6.666667e-01 output_impedance_at_v(vout,0) = 6.666667e+02 vin#input_impedance = 3.000000e+03

- "gain" of this voltage divider is 2/3
- Input resistance is 3k = (1k + 2k)
- Output resistance is 667= (1k||2k)

Example-04 (Transfer Function)

*#destroy all

*#run

*#print all

.op

Vin Vin 0 DC 1 R1 Vin Vout 1k

R2 Vout 0 2k

.end

```
.TF V(Vout,0) Vin
```

transfer_function = 6.666667e-01 output_impedance_at_v(vout,0) = 6.666667e+02 vin#input_impedance = 3.000000e+03

- "gain" of this voltage divider is 2/3
- Input resistance is 3k = (1k + 2k)
- Output resistance is 667= (1k||2k)

Example-04 (Transfer Function)

- *#destroy all
- *#run
- *#print all

.TF I(Vmeas) Vin

Vin Vin 0 DC 1

R1 Vin Vout 1k

R2 Vout Vmeas 2k

Vmeas Vmeas 0 DC 0

.end

The gain is I(Vmeas)/Vin or 1/3k (= 333 μ mhos)

Example-05 (VCVS)

transfer_function = 7.666667e+00 output_impedance_at_v(vout,0) = 1.333333e+03 vin#input_impedance = 1.000000e+20

Example-06 (Ideal OpAmp)

 Ideal op-amp can be implemented in SPICE with a VCVS or with a voltage controlled current source (VCCS)

Voltage-Controlled Current Source (VCCS) G1 n3 n4 n1 n2 G

Example-07 (Sub Circuit)

*#destroy all

*#run

*#print all

.TF V(Vout,0) Vin Vin Vin 0 DC 1 Rin Vin Vm 1k Rf Vout Vm 3k X1 Vout 0 vm Ideal_op_amp .subckt Ideal_op_amp Vout Vp Vm G1 Vout Vm Vp 1MEG RL Vout 0 1 .ends .end

transfer_function = -2.99999e+00 output_impedance_at_v(vout,0) = 3.999984e-06 vin#input_impedance = 1.000003e+03

Example-08 (DC Analysis)

*#destroy all

*#run

*#plot Vin Vout
.dc Vin 0 1 1m
Vin Vin 0 DC 1
R1 Vin Vout 1k
R2 Vout 0 2k
.end

Example-09 (Plotting IV Curve)

- *#destroy all
- *#run
- *#let ID=-Vin#branch
- *#plot ID
- .dc Vin 0 1 1m
- Vin Vin 0 DC 1
- R1 Vin Vd 1k
- D1 Vd 0 mydiode
- .model mydiode D

end

Example-09 (DC Sweep)

- *#destroy all
- *#run
- *#let Ic=-Vce#branch
- *#plot Ic
- .dc Vce 0 5 1m lb 5u 25u 5u
- Vce Vce 0 DC 0
- Ib 0 Vb DC 0
- Q1 Vce Vb 0 myNPN
- .model myNPN NPN
- .end

Example-10 (Transient Analysis)

*#destroy all

*#run

*#plot vin vout

.tran 100p 100n

Vin Vin 0 DC 1 R1 Vin Vout 1k R2 Vout 0 2k .end

Example-11 (Transient Analysis)

*#destroy all

*#run

*#plot vin vout
.tran 1n 3u

Vin Vin 0 DC 0 SIN 0 1 1MEG
R1 Vin Vout 1k
R2 Vout 0 2k
.end

Example-12 (RC Circuit)

- *#destroy all
- *#run
- *#plot vin vout .tran 10u 16m Vin Vin 0 DC 0 SIN 0 1 200 R1 Vin Vout 1k
- CL Vout 0 1u
- .end

Example-13 (RC Circuit)

- *#destroy all *#run
- *#plot vin vout
 .tran 10u 16m
 Vin Vin 0 DC 0 SIN 0 1 200
 R1 Vin Vout 1k
 C1 Vin Vout 2u
 C2 Vout 0 1u
 .end

Example-14 (AC Analysis)

- *#destroy all
- *#run
- *#plot db(vout/vin) .ac dec nd fstart fstop
- *#set units=degrees
- *#plot ph(vout/vin)

.ac dec 100 1 10k

Vin Vin 0 DC 0 SIN 0 1 200 AC 1 R1 Vin Vout 1k CL Vout 0 1u

.end

We can add a phase shift of 45 degrees by using AC 1 45 in the statement.

Important Terms (AC)

- Decades: Multiplying or dividing a frequency by 10
 - Example: One decade above 23 MHz is 230 MHz.
 - Example: One decade below 1.2 kHz is 120 Hz.
- Octaves: Multiplying or dividing a frequency by 2.
 - Example: One octave above 23 MHz is 46 MHz.
 - Example: One octave below 1.2 kHz is 600 Hz.
 - Two octaves above 23 MHz would be 92 MHz (multiply by 4).
- Decibels (dB)Magnitude Changes:
 - Decreasing the magnitude response by a factor of 10 corresponds to a drop of 20 dB.
 - Increasing the magnitude by a factor of 10 corresponds to a rise of 20 dB.

Important Terms (AC)

Frequency Roll-Off:

- For every increase in frequency by 10, the magnitude response decreases by 10.
- **Example**: Above 159 Hz, the response rolls off at 20 dB/decade.
- For every doubling (x2) in frequency, the magnitude response decreases by 2
- **Example :** response rolls off at 6 dB/octave above 159 Hz.

Comparison of Roll-Off Rates

- 6 dB/octave = 20 dB/decade.
- For a roll-off rate of 40 dB/decade, every frequency increase by 10 leads to a magnitude drop by 100.
- Similarly, at 12 dB/octave, doubling the frequency results in a magnitude drop by 4.

Example-15 (Pulse Statement)

0

.tran 100p 30n

 Vin
 Vin
 0
 DC

 R1
 Vin
 Vout
 1k

 C1
 Vout
 0
 1p

pulse vinit vfinal td tr tf pw per

pulse 0 1 6n 0 0 3n 10n

Example-15 (Step Response –Positive Going)

Example-15 (Step Response – Negative Going)

Example-16 (Piece-Wise Linear Source)

The piece-wise linear (PWL) source specifies arbitrary waveform shapes

pwl t1 v1 t2 v2 t3 v3 ... <rep>

pwl 0 0.5 3n 1 5n 1 5.5n 0 7n 0

Example-17 (Switches)

- The switch is closed when the node voltage controlp is greater than the node voltage controlm
- Switch is modeled using the .model statement
- On Series resistance of the switch to 1k can be set

s1 node1 node2 controlp controlm switmod .model switmod sw ron=1k

s1 node1 node2 controlp controlm switmod

$$\frac{1}{s1} \frac{1}{ron} \frac{1}{ron} node2$$

Example-18 (Initial Condition - Capacitor)

SPICE "use initial conditions" or skip an initial operating

- *#destroy all
- *#run
- *#plot vout

.tran 100p 8n UIC

Vclk clk 0 pulse -1 1 2n Vin Vin 0 DC 5 S1 Vin Vouts clk 0 switmodel R1 Vouts Vout 1k C1 Vout 0 1p IC=2

.model switmodel sw ron=0.1

.end

.ic v(vout)=2

Example-19 (Initial Condition - Inductor)

- *#destroy all
- *#run
- *#plot vout

.tran 100p 8n UIC

Vclk clk 0 pulse -1 1 2n Vin Vin 0 DC 5 R1 Vin Vouts1k S1 Vouts Vout 0 clk switmodel R2 Vout 0 1k L1 Vout 0 10u IC=5m

- .model switmodel sw ron=0.1
- .end

Example-20 (Q of an LC Tank)

$$Q = \frac{f_{center}}{BW} = \frac{f_{center}}{f_{3dBhigh} - f_{3dBlow}}$$

- *#destroy all
- *#run
- *#plot db(vout)

.AC lin 100 400MEG 600MEG

lin Vout 0 DC 0 AC 1 R1 Vout 0 1k L1 Vout 0 10n C1 Vout 0 10p

.end

Example-21 (Integrator Response)

- *#destroy all
- *#run
- *#plot db(vout/vin)
- *#set units=degrees
- *#plot ph(vout/vin)

.ac dec 100 1 10k

Vin Vin 0 DC 1 AC 1 Rin Vin vm 1k Cf Vout vm 1u

X1 Vout 0 vm Ideal_op_amp
.subckt Ideal_op_amp Vout Vp Vm
G1 Vout 0 Vm Vp 1MEG
RL Vout 0 1
.ends
.end

Example-22 (Integrator Time Domain)

$$V_{out} = \frac{1}{C} \int \frac{V_{in}}{R} \cdot dt$$

*#destroy all

*#run

*#plot vout vin

$$V_{out}(t) = \frac{V_{in}}{RC} = \frac{1}{1 \ ms}$$

.tran 10u 10m

.ic v(vout)=0

Vin Vin 0 DC 1 + pulse -1 1 0 1u 1u 2m 4m Rin Vin vm 1k Cf Vout vm 1u

X1 Vout 0 vm Ideal_op_amp
.subckt Ideal_op_amp Vout Vp Vm
G1 Vout 0 Vm Vp 1MEG
RL Vout 0 1
.ends
.end

Summary

- Key for Circuit Validation: SPICE simulates circuit behavior, reducing errors before fabrication
- Accurate Modeling: Provides realistic predictions of performance and reliability
- Enables Optimization: Guides efficient design adjustments for power, speed, and area
- Flexible Convergence: Adjustable settings aid simulations of complex VLSI circuits.

Thank you! Happy Learning