CHANGE NUMBERS WHERE IT IS BLUE COLOR			
8 40 40 1.16 1.16 1.16 1.16 1.16 0.98 2.9569 2.95696 0.02141 THRU-P 22.395 THRU-P 22.395 THRU-P 1.59964 3000 4.79892 N) 5.33213 22.1859 0.02219 9842.52 dlameter 0.0762 67.1849 22.852 5013.54 50.1354 DR@(0.0025 0.0075 0.0075 0.0075 11814 61.1814 8.6E-07 3143.9 6.56634 21.4101			
8 40 40 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.1			
1.16 1.16 1.16 1.16 1.19.7 0.98 2.95969 2.95969 2.2395 THRU-P 22.395 THRU-P 22.395 THRU-P 22.395 THRU-P 22.395 THRU-P 3000 4.79892 0.02219 0.02219 0.0762 0.0762 0.0762 0.0762 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.1314 0.1101 0.21141 0.21141 0.21141 0.21141 0.21141			
1.16 1.4 19.7 0.98 2.95969 2.95969 0.01141 THRU-P 0.21141 THRU-P 0.21395 THRU-P 1.59964 1.59964 1.59964 1.59964 1.59964 0.02219 0.02219 0.02219 0.0762 0.0762 0.0762 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.14101 0.21141 0.214101 0.214101			
14 19.7 0.38 2.95969 0.21141 THRU-P 0.21141 THRU-P 0.21141 THRU-P 0.21395 THRU-P 0.21395 THRU-P 0.21395 THRU-P 0.02219 0.02219 0.02219 0.02219 0.0225 0.025 0.0075			
19.7 0.98 2.95969 0.21141 THRU-P 22.395 THRU-P 22.395 THRU-P 1.59964 1.59964 1.59964 1.59964 1.59964 22.395 THRU-P 22.395 THRU-P 22.395 THRU-P 22.395 THRU-P 3000 0.0219 0.02219 0.0762 0.0762 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.11814 61.1814 9.6E-07 10.3343.9 4 fil dia,) 34.3462			
0.98 2.95969 0.21141 THRU-P 22.395 THRU-P 22.395 THRU-P 3000 4.79892 0.02219 0.02219 0.02219 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0763 0.0763 0.0763 0.0763 0.0764 0.0764 0.0765 0.0765 0.0766 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.077 0.			
2.95969 2.2395 THRU-P 22.395 THRU-P 22.395 THRU-P 3000 4.79892 4.79892 0.02219 0.02219 0.02219 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0762 0.0025 0.0025 0.0075 0.0075 0.0075 0.21141 0.21141 0.21141 0.21141 0.21141 0.21141 0.21141 0.21141 0.21141 0.21141 0.21141 0.21141			
0.21141 THRU-P 22.395 THRU-P 1.59964 3000 4.79892 4.79892 4.79892 0.02219 0.02219 0.02219 0.0325 0.0762 67.1849 67.1849 60.1354 DR@(0.0025 0.0025 0.0075 0.21141 61.1814 61.1814 61.1814 61.1814 61.1814 61.1814 70.214101			
22.395 THRU-F 1.59964 3000 4.79892 A.79892	THRU-PUT PER FIL(GMS/MIN)	1.5982	
1.59964 3000 4.79892 NDRAWN) 5.33213 22.1859 0.02219 0.02219 0.02219 0.03250 0.0762	THRU-PUT(GMS/MIN)	22.395	
3000 4.79892 NDRAWN) 5.33213 22.1859 0.02219 0.02219 0.0762 dlameter 0.0762 67.1849 67.1849 60.1354 DR@(0.0025 0.0075 0.0075 0.0075 0.13143.9 61.61401 21.4101 411 dfa,) 34.3462			
NDRAWN)	FROM FTMIN TO MMIN	0.3048	
NDRAWN)			
d fil dia.)		22.186	
(GMS)			
Spinnerette Composition of the Property CAMIN) FELOCITY (CAMIN) FELOCITY (MeterMIN) CAPILLARY RADIUS (FT) CAPILLARY LENGTH (FT) LPUT PER FIL (LBM/HR) SITY (LBM/FT3) N RATE(FT3/SEC.) OSITY (LBK/SEC/FT2) A PRESSURE(PS) A PRESSURE(PS)		. 4	
NEATE(CC/MIN) FELOCITY (CM/MIN) FELOCITY (CM/MIN) CAPILLARY RADIUS (FT) CAPILLARY LENGTH (FT) L-PUT PER FIL (LBm/HR) SITY (LBm/FT3) N RATE(FT3/SEC.) OSITY (LBf.SEC/FT2) A PRESSURE(PS) A PRESSURE(PS) COTAM (calc. From sprt hole dia. And fil dia.)	hength	3	AREA
N PATE(CC/MIN) YELOCITY (CM/MIN) TELOCITY (CM/MIN) CAPILLARY LENGTH (FT) CAPILLARY LENGTH (FT) PUT PER FIL(LBm/HR) SITY (LBm/FT3) A RATE(FT3/SEC.) A PRESSURE(PSI) A PRESSURE(PSI) A PRESSURE(PSI) A PRESSURE(PSI)	60.0	3	0.0007065
	0.2286	6	0.00455806
3 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DR @ (TAKE-UP ROLL)		59.8379407
3 7 8 8 8 8			
		_	,
		-	
FINAL REQUIRE DENIER AFTER DRAWIN			
DRAWING DRAW RATIO			

Semple LD.	Conditions	#	Ž,	ន	7	#5	2	#7	82
				MBM 10%	*01 MBM	MBM 10%	MBM 10%	MBM 10%	MBM 10%
POLYMER TYPE	MBM	MBM .		Lectam	Lactam	Lactam	Lactam	Lactam	Lactam
Feeder Setting	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96
	1		. :	1 1 1	11) }			
water on feeding zone	8	uo	8	8	8	vo	5	ક	5
zone 1 Temp. (deg c)	245	270	250	250	245	240	236	230	2
zone 2 Temp. (deg c)	245	092	250	250	245	240	235	983	552
zone 3 Temp. (deg c)	245	082	250	250	245	240	235	530	226
zone 4 Temp. (deg c)	245	082	250	250	245	240	522	230	225
zone 5 Temp. (deg c)	245	280	250	250	245	240	235	230	522
zone 6 Temp. (deg c)	245	280	250	250	245	240	235	530	225
zone 7 Temp. (deg c)	245	280	250	250	245	240	235	230	225
8 Connecting Plate Temp. (deg. C)	245	280	250	250	245	240	238	230	225
9 Block Temp. (deg.C)	245	280	250	250	245	240	235	230	22
10 Spin Pump Temp. (deg.C)	245	280	250	250	245	240	235	230	22
11 Top Cap (deg.C)	245	280	250	250	245	240	235	230	522
12 Spin Pack Temp. (deg.C)	245	280	250	250	245	240	235	230	225
Top Heated Steeve Length (Inches)	XXX	XXX	xxx	xxx	XXX	xxx	XXX	XXX	XXX
Top Heated Sleeve Temp. (deg. c)	χοαχ	XXX) XXXX	XXX	XXX	XXX	χοα	XXX	XX
Bottom Heated Sleeve Length (Inches)	XXXX	XXX	χρακ	XXX	xxx	xxx	XX	хоох	: XX
Bottom Heated Sleave Temp. (deg. c)	XXXX	XXX	XXX	XXX	XXX	XXX	- 500	XXX	: XX
Barrel Melt Temp. (deg. c)	252	288	256	257	251	246	240	235	ឆ្ល
Melt Pump Inlet Preseure (psl)	nn	420	10	200	\$	ţ.	10	2	 <u> </u>
Melt Pump Outlet Pressure (psi)	nn	200	470	250	250	310	260	360	9
Extruder (rpm)	200	200	200	200	200	200	500	200	88
Spinneret: no. of holes / Shape	14 R	14 R	14 R	14 R	7 T T	14 R	14 R	14 R	14 R
Spinneret: capitary diameter & depth	.024 X 0.072	.024 X 0.072	.024 X 0.072	.024 X 0.072	.024 X 0.072				
Metering pump size (cc/rev)	1.16	1.16	1.18	1.16	1.16	1.16	1.16	1.16	1.16
Metering pump (rpm)	16.7	19.3	19.8	19.8	19.8	19.8	19.7	19.7	19.7
Thruput (lbs/hr/)	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.87
Filter type	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN				
Monomer Exhaust Reading (inches water)		T80	тво	TBO	TBD	TBC			
Quench air Flow rate (CF/M)	14.2	14.2	14.2	14.2	14.2	14.2	15.5	15.9	14.9
Qench air Temp. (deg. c)	19	19	- 19	19	19	19	19.3	19.6	19.7
Quench air Humidity %	40.8	40.8	40.8	40.8	40.8	40.8	39.8	39.5	æ
, % Torque	02	25	29	22	20	21	20	24	24
Nitrogen in Hoper	3	က	ო	က	၈	3	က	6	67
Need: polymer chips moisture	, Yes .							yas	

Sample I.D.	2	94	=	25		=	2	#16	-
		BHS 10%		135 10%					
POLYMER TYPE	SHB.	Lectern	Lactem	Lectern	Lactem	Lactem	Lactam	135	Lactam
Feeder Setting	2.96	2.96	2.96	2.96	2.98	2.96	2.96	2.96	2.96
water on feeding zone	50	8	ю	UO	8	ь	ક	8	5
zone 1 Temp. (deg c)	252	252	247	242	237	232	227	280	
zone 2 Temp. (deg c)	252	252	247	242	237	232	227	8	260
zone 3 Temp. (deg c)	252	252	247	242	723	232	722	280	260
zone 4 Temp. (deg c)	252	252	247	242	237	2 22	227	260	260
zone 5. Temp. (deg c)	385	255	247	243	237	22	727	280	. 280
zone 6 Temp. (deg c)	252	262	247	242	237	232	122	780	8
zone 7 Temp. (deg c)	252	252	247	242	237	232	227	260	260
8 Connecting Plate Temp. (deg. C)	252	252	247	242	237	232	227	260	5 80
9 Block Temp. (deg.C)	252	252	247	242	237	232	227	5 60	580
10 Spin Pump Temp. (deg.C)	252	252	247	242	237	232	227	260	88
11 Top Cap (deg.C)	252	252	247	242	237	232	227	260	260
12 Spin Pack Temp. (deg.C)	252	252	247	242	237	232	227	260	260
Top Heated Sleeve Length (inches)	XXX	xxx	xxx)DOOK	xxx	χοοχ	χοοα	XXX	χοα
Top Heated Sleeve Temp. (deg. c)	хоох	xxx	XXX	χοα	XXXX	XXX	хоох	XXXX	XXX
Bottom Heated Steeve Length (Inches)	XXXX	xxx	xxx	XXX	XXX	XXX	χα	X	χοοα
Bottom Heated Sleeve Temp. (deg. c)	xxx	XXX	XXXX	XXX	XXXX	χοοχ	XXX	χοαχ	X
Barrel Melt Temp. (deg. c)	259	260	754	249	245	240	235	270	569
Mait Pump Iniet Pressure (psi)	40	8	097	280	180	i	20	1200	300
Melt Pump Outlet Pressure (pst)	970	620	920	610	740	790	3	1600	1040
Extruder (rpm)	200	200	200	200	200	i	500	200	200
Spinneret: no. of holes / Shape	14 R	14R	4 7	14 R	14 R				
Spinneret: capilary diameter & depth	.024 X 0.072	024 X 0.072	.024 X 0.072						
Metering pump size (colrev)	1.16	1.18	1.18	1.16	1.16	1.18	1.16	1.16	1.16
Metering pump (rpm)	19.7	19.7	19.7	. 19.7	19.7		19.7	19.7	19.7
Thruput (ibs/hr)	2.97	2.97	2.97	2.97	2.97		2.97	2.97	2.97
Filter type	STD SCREEN	STD SCRE	STD SCREEN	STD SCREEN	STD SCREEN				
Monomer Exhaust Reading (inches water)	TBO	TB0	TBD	TBD	тво		3.		!
Quench air Flow rate (CFRI)	14.6	14.5	14.6	14.9	15	14.6	6.4	2.	15.1
Qench air Temp. (deg. c)	18.5	18.9	19.2	19.2	18.7	19	19.4	18.5	19.2
Quench air Humidity %	38.7	39.3	39.7	41.6	39.7	40.3	39.4	38.6	41.1
% Torque	42	27	82	8	8	ຊ:	53	S S	37
Nitrogen in Hoper	3	3	8	3	9	6	en	es :	m
Need: polymer chips moisture							:		:
Need: Free fall samples for FAV, COOH							: 		.:

C) elomas	#10	· #19	8	2	100	573	5	3	
		135 10%		135 10%	135 10%	135 10%	135 10%		195 10%
POLYMER TYPE	135 10% Lactern	Lacter	135 10% Lactam	Lactam	Lectam	Lactam	Lactam	195	Lactam
Feader Setting	2.96	2.96	2.96	2.98	2.98	2.96	2.96	2.96	2.96
	September 1	A. S. S. S.	, y	***		ç .	b.		! ! !!
water on feeding your	8	ક	ક	8	£	8	8	6	uo
Town of Town (day of	25.5	250	246	240	235	230	225	300/289	280273
Zone 2 Temp (den c)	25.5	250	245	240	235	230	225	300	8
(a Roa) while I will	255	250	245	240	235	230	225	300	290
Some Temp (deg c)	255	250	245	240	235	230	225	300	:
to floor to the control of	3,5	250	246	240	235	230	228	360	
ZANS O Temp. (deg C)	28.5	250	245	240	235	230	225	8	290
Total Term (des c)	255	250	245	240	235	230	225	88	
Connection Dieta Term (des C)	25.5	250	245	240	235	230	225	300	
O Glock Town (deep C)	255	250	245	240	236	230	225	300	
40 Colo Dieno Tomo (Aca C)	25.5	250	245	240	235	230	225	300	
44 Too Can (dea C)	355	250	245	240	235	230	226	300	i
49 Only Town Man Ch	32	250	245	240	235	230	225	300/300	į
Ten Heated Cleans (math (laster)	2 2	NO.	XXX	XX	XXX	XXX	XXX	XXX	i
Ton Marked Cleans Terms (des of		XOOX) DOO	XX	XXX	XXX	XXXX	XXX	
Rottom Heated Steam enough (Inches)	and a	XXX	XXX	XXX	XXX	XXX	XXXX	XXX	
Rotters Heated Cleans Terms (Acc a)	2004	XXX	XXX	XXX	XXX	XXX	XXX	XXX	
Remai Mais Tomo (deo c)	284	259	253	248	243	238	232	312	
Mate Pump Inlet Presence (rell	930	470	450	630	800	280	190	48	
Man Diversity Control (net)	Cac	1140	1280	1280	1330	1480	1700	1280	_1
Extractor (man)	200	200	200	200	200	200	200	200	
Saloneset: no of holes / Shane	148	14.8	14.R	14 R	14 R	14 R	7 2	14 R	
Solnment: cardary clameter & denth	024 X 0.072	024 X 0.072	.024 X 0.072	.024 X 0.072	.024 X 0.072	.024 X 0.072	.024 X 0.072	.024 × 0.072	<u>.</u>
Metadon pump atta (colora)	ıш	1.16	1,16	1.18	1.16	1.18	1.18	1.16	:
Metering pump (ram)	19.7	19.7	19.7	19.7	19.7	19.7	19.7	78.	<u>.</u>
Thorout (ibs/he)	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.87 1.275 SOUTH	: .
Filter type	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN	STD SCHEEN	ואים אים היים	
Monomer Exhaust Reading (inches water)	101	TBD	TBD	TBO	TBO	35			15
Ovench air Flow rate (CF/M)	15.2	14.9	14.5	14.4	14.9	4	74.5	:	
Oench air Temo. (deg. c)	20.1	19.5	18.7	18	18.9	19.1	200	0 9	
Ovench air Humidity %	39.4	40.7	39.7	1.04	41.3	38.7	- 	8 5	3:2
% Torrane	39	38	40	37	38	₹!	· •	, c	} «
Nitrogen in Hoper	8	3	3	6		n!	·	, 	· •
Need: polymer chips moisture			·						
Need : Free fall samples for FAV, COOH							! ! 	!	:
						_			

POLYMER TYPE	Sample LD.	/74	7.50	art. o	
185 10% Lectum Lactam 186 10% Lactam 2.96 2.96 2.96 2.96 1. 2.96 2.96 2.96 1. 0n 0n 0n 2.96 2.96 2.96 2.96 2.95 2.96 2.96 2.96 2.85 2.80 275 275 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.75 2.85 2.80 2.75 2.84 2.85 2.80 2.75 2.84 2.85 2.80 2.75 2.84 2.86 2.80 2.80 2.84 2			195 10%		195 10%
2.96 2.96 2.96 1.1.6 1.16 1.16 on on on ses 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 289 284 1250 50 80 280 280 30 280 280 30 280 280 30 280 280 30 281 41.7 41.2	POLYMER TYPE	195 10% Lactern	Lactam	196 10% Lactam	Lactam
on on on on on on or on on 204 285 280 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 280 284 1250 60 860 860 890 970 14 R 14 R 14 R 14 B 1.16 1.16 14 B 1.16 1.16 14 B 1.16 1.16	Foeds: Setting	2.96	2.96	2.96	2.96
on on on 286/270 280/286 275/263 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 280 275 1250 50 80 200 200 200 14 R 14 R 14 R 14 B 1.16 1.16 14 C 1.16 1.16 14 C 1.16	18 1 18 1		· Glass	7 44.	4 t t
265/270 280/286 275/263 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 289 284 1250 50 860 860 896 90 860 896 90 860 896 90 860 896 90 860 896 90 14 R 14 R 14 B 14 B 1.16 1.16 14 B 1.16 <t< td=""><td>water on feeding zone</td><td>8</td><td>G</td><td>ક</td><td>5</td></t<>	water on feeding zone	8	G	ક	5
285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 289 284 1250 50 860 860 890 970 860 890 970 14 R 14 R 14 B 14 B 1.16 1.16 14 B 1.16	zone 1 Temp. (deg c)	285/270	280/268	275/283	270/258
285 280 775 285 280 275 285 280 275 286 280 275 285 280 275 286 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 200 200 200 200 200 200 200 200 14 B 1.16 1.16 14.7 14.7 14.2 14.7 14.7 14.2 19.7 14.7 14.2 19.7 14.7 41.2 46.1 41.5	zone 2 Temp. (deg c)	285	280	275	22
285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 289 284 1250 50 860 860 890 970 200 200 200 148 148 148 148 148 146 148 148 146 148 148 146 140 140 207 207 207 207 147 147 142 147 147 142 141 28 37 3 3 3 </td <td>zone 3 Temp. (deg č)</td> <td>582</td> <td>280</td> <td>275</td> <td>22</td>	zone 3 Temp. (deg č)	582	280	275	22
285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 289 284 1250 860 860 860 860 860 860 860 860 1250 209 970 200 200 200 14 R 14 R 14 B 14 B 14 B 14 B 14 C 14 B <td>zone 4 Temp. (deg c)</td> <td>285</td> <td>280</td> <td>275</td> <td>270</td>	zone 4 Temp. (deg c)	285	280	275	270
285 280 275 286 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 289 284 1250 850 850 860 890 970 204 207 204 14 R 14 R 14 B 14 B 14 B 14 B 15 T 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 29.7 29F 29F 29 29F 14.7 14.2 19.2 19.7 41.2 46.1 41.5 43.1 41.5 3.7 <td>zone 5 Temp. (deg c)</td> <td>285</td> <td>280</td> <td>275</td> <td>270</td>	zone 5 Temp. (deg c)	285	280	275	270
285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 280 275 287 289 284 1250 850 860 860 890 970 200 200 200 148 148 146 148 148 146 147 147 142 147 147 147 147 147 142 192 193 20 194 147 14.2 195 197 20 196 147 14.2 197 14.7 14.2 197 33 3 3 3 3	zone 6 Temp. (deg c)	285	280	275	270
285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 286 289 284 1250 850 850 860 890 970 200 200 200 14 R 14 R 14 R 14 B 14 B 14 B 197 197 197 197 197 197 197 197 197 197 197 197 197 197 297 296n 0pen 0pen 192 197 2.97 192 193 2.0 46.1 41.3 43.1 41.3 3.7 3 3 3 <td>zone 7 Temp. (deg c)</td> <td>285</td> <td>280</td> <td>275</td> <td>270</td>	zone 7 Temp. (deg c)	285	280	275	270
285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 285 280 275 280 280 275 280 289 284 1250 60 860 860 890 970 1480 289 970 1480 148 148 1487 148 148 1487 148 148 187 197 197 187 187 297 296 996 970 147 147 14.2 192 193 20 192 193 37 193 3 3	8 Connecting Plate Temp. (deg. C)	285	280	275	270
285 280 275 289 280 275 289 280 275 289 280 275 280 280 275 280 280 284 280 289 284 280 289 284 280 280 970 860 890 970 1250 60 860 860 890 970 14R 14R 14R 14B 14R 14R 14B 14R 14R 14B 14B 14B 14A 14A 14A 16A 14A 14A	9 Block Temp. (deg.C)	285	280	275	270
285 280 275 285 280 275 285 280 275 280 280 275 280 280 284 296 289 284 296 289 284 290 200 800 300 370 800 31 14 R 14 R 14 R 1.16 1.16 1.16 1.16 1.16 1.15 1.16 1.16 1.16 1.16 1.15 1.17 1.16 1.16 1.16 1.18 1.16 1.16 1.16 1.16 1.17 1.17 1.17 1.17 1.16 1.18 1.16 1.16 1.16 1.16 1.18 1.16 1.16 1.16 1.16 1.18 1.17 1.17 1.17 1.17 1.18 1.17 1.17 1.17 1.17 1.18	10 Spin Pump Temp. (deg.C)	285	280	275	270
285 286 275 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 286 289 284 286 289 284 280 850 860 860 890 970 200 200 200 14 R 14 R 14 R 1.16 1.16 1.16 1.15 1.16 1.16 1.15 1.16 1.16 1.15 1.17 1.15 1.16 1.16 1.16 1.17 1.17 1.17 1.18 2.97 2.97 STD SCREEN STD SCREEN 0pen 0pen 0pen 46.1 41.5 43.1 46.1 41.5 43.1 41.3 37 3 3 3	11 Top Cap (deg.C)	\$82	280	275	270
χοοκ χοοκ χοοκ χοοκ χοοκ χοοκ χοοκ χοοκ χοοκ χοοκ χοοκ χοοκ 1250 50 860 860 860 860 870 80 860 890 970 200 14 R 14 R 14 R 11 B 14 B 14 B 11 B 14 B 14 B 12 B 19 T 19 T 18 J 19 J 19 T 18 J 14 J 14 J 18 J 14 J 14 J 18 J 14 J 14 J 18 J 18 J 20 D 18 J 18 J 20 D 18 J 18 J 20 D 46 J 41 J 28 J 3 J 3 J 3	12 Spin Pack Temp. (deg.C)	285	280	275	270
XXXX XXXX XXXX	Top Heated Sieeve Length (Inches)	χοα	XXX	XXX	XXX
XXXX XXXX XXXX XXXX XXXX XXXX ZYXX ZYXX ZXXX ZXXX ZXXX ZXXX<	Top Heated Sleeve Temp. (deg. c)	XXX	XXX	2000	XXX
χοας χοας χοας 298 289 284 1250 50 860 860 860 890 970 200 200 200 200 200 200 200 14 R 14 R 14 R 14 R 1.16 1.16 1.16 1.16 1.17 1.16 1.16 1.16 1.17 1.16 1.16 1.16 1.17 1.16 1.16 1.16 1.18 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 14.2 14.2 14.7 14.7 14.2 14.2 46.1 41.5 43.1 43.1 41 28 37 3 3 3 3 3	Bottom Heated Sleeve Length (Inches)	XXX	XXX	XXX	XXX
298 284 284 1250 60 860 860 860 860 860 870 200 200 200 200 200 200 200 200 14 R 14 R 14 R 14 R 14 R 19.7 19.7 19.7 19.2 19.7 19.2 19.7 19.2 19.7 19.2 19.7 14.7 14.2 19.2 19.7 19.2 19.7 14.7 14.7 14.5 19.2 19.7 2.0 41.5 43.1 41.5 3 3 3	Bottom Heated Sleeve Temp. (deg. c)	xxx	XXX	xxx	XXX
1250 50 860 860 890 970 200 200 200 200 200 200 200 14 R 14 R 14 R .024 X 0.072 .024 X 0.072 1.16 1.16 1.16 19,7 19,7 19,7 2.97 2.97 2.97 STD SCREEN STD SCREEN open open open 41.7 14.2 14.7 14.7 14.2 19.2 19.7 20 46.1 41.5 43.1	Barrel Melt Temp, (deg. c)	967	289	787	279
860 890 970 200 200 200 200 200 200 201 14 R 16 R 16 R 17 R 19	Melt Pump Inlet Pressure (psl)	1250	90	098	1060
200 200 200 200 14 R 14	Melt Pump Outlet Pressure (psl)	098	890	026	1100
14 R	Extruder (rpm)	200	200	200	88
.024 X 0.072	Spinneret: no. of holes / Shape	14R	14 R	7 7	14 R
1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.17 19.7 19.7 2.97 2.97 2.97 2.97 2.97 0pen open open open 46.1 14.7 14.7 14.2 19.2 19.2 19.7 20 41.5 43.1 41.5 43.1 3 3 3	Spinneret: capitary diameter & depth	.024 X 0.072	.024 X 0.072	.024 X 0.072	.024 X 0.072
19.7 19.7 19.7 19.7 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2	Metering pump size (cc/rev)	1.18	1.18	1.16	1.18
2.97 2.97 2.97 2.97 2.97 SCREEN STD SCREEN Open open open open open 46.1 44.7 44.2 49.2 49.1 41.5 43.1 41.5 43.1 3 3 3	Metering pump (rpm)	19.7	19.7	18.7	19.7
STD SCREEN STD SCREEN STD SCREEN 14.7 14.7 14.2 19.2 19.7 20 46.1 41.5 43.1 41 28 37 3 3 3	Thruput (ibs/hr)	2.97	2.97	2.97	2.97
14.7 14.7 14.2 19.2 19.2 19.7 20 46.1 41.5 43.1 41.5 43.1 37 3 3 3	Filter type	STO SCREEN	STD SCREEN	STD SCREEN	STD SCREE!
14.7 14.7 14.2 19.2 18.7 20 46.1 41.5 43.1 41 28 37 3 3 3	Monomer Exhaust Reading (Inches water)	ивфо	open	uado	apen
19.2 19.7 20 46.1 41.5 43.1 41 28 37 3 3 3	Quench air Flow rate (CF/M)	14.7	14.7	14.2	13.9
46.1 41.5 43.1 41 28 37 3 3 3	Qench air Temp. (deg. c)	19.2	18.7	20	18.7
41 28 37 3 3 3	Quench air Humidity %	46.1	41.5	43.1	39.4
3	% Torque	41	28	28	41
	Nitrogen in Hoper	6	3	£	ဇ

			2.25	2-50	3-25	3-50	4-25	4-50	5-25	2-50	6-25	6-50	7-25	7-50
Sample I.D.	9	20-			23,000			1001000	12.5 %MBM	12.5 %MBM	5 %MBM.	6 %MBM	12.5.%MBM	12.5 %MBM
		20 KMBM 70% Technio •	-	5%MBM 85% Technic •	70% Technic	70% Technic +	75% Technic +	75% Technic +	70% Technic + 17.5% Lectern	70% Technio + 17.5% Lectem	77.5% Technio • 17.5% Lactam	77.5% Technic + 17.5% Lectem	77.5% Technic •	10% Lactam
POLYMER TYPE Polymer Type/Blend ID:	Blend 1	Blend 1.	Blend 2	Blend 2	Blend 3	Blend 3	Blend 4	Blend 4	Blend 5	Blend 5	Blend 6	Blend 6	Blend 7	Nend 7
ALIT TOATS STONES	, ,		₹		P I	÷.	i	: •	•	2.27				
SAMPLE FINISH TIME				;			4	46	45	. 6	45	45	45	5
Run time (min)	5	45	45	4 to 7 to	5 L	5.437	F-437	F-137	F-137	F-137	F-137	F-137	F-137	F-137
Finish type	F-137	F-137	<u>}</u> ~		2 6			3.5	ဇာ	3.5	en (3.5	60 g	2.58
Weilst for Star	. E	200	5.16	3.28	5.16	3.28	5.16	3.28	5.16	3.28	3001	3901	3901	3901
Roll # 1 Speed (m/min.) RXT-2	3680	380	3680	3680	3680	3680	3680	3680	3680	2000	2005	3801	3901	3901
LARGE Roll # 4 SPEED (m/min.) RXT-1	3680	3680	3680	3680	3680	3680	3680	3680	3080	280				
Entangling					:									
let type	;			.*			- :	-0	0.					, voc.
air to jet (pei)	\$ 1		0,07	4201	4331	4334	4291	4331	4331	4291	4291	4174	4291	200
Winder grove roll: Speed (m/min.)	4453	4372	4048	\$	849	8 9	4048	4048	4048	3901	3901	3901	3901 26	- OF OF
Winger anyeroif: Speed invinin.	25.	ş ç	52	ିୟ	8	ଜ	25	= .03	 52	8	Q	2	Q.	}
	3	3						=			,	*	97	•
Feeder Setting	6.	n	1. 6	m	1 .5	es	_	m	9.	en (2.5	•	} ;	Đ
•		1	Seasons.						í L	7	2	5	7	**22/4/03
water on feeding zone	Б	ક	8	6	5 5	5	8	6	8	8	3	6	ક	6
zone 1 Temp. (deg c)	215	218	215	216	215	215	216	215	215	215	215	215	215	215
zone 2 Temp. (deg c)	215	215	215	215	215	215	215	215	215	215	215	216	215	215
zone 3 Temp. (deg c)	215	215	215	215	215	215	215	215	215	215	215	215	215	215
zone 4 Temp. (deg c)	215	215	215	215	215	. 512	215	215	215	215	215	215	215	215
zone 5 Temp. (deg c)	215	215	215	215	215	215	215	215	215	215	215	215	215	215
zone 6 Temp. (deg c)	210	210	210	210	210	210	210	210	210	210	210	210	210	210
zone 7 Temp. (deg c)	210	210	210	210	210	210	210	210	210	210	210	210	210	210
Connecting Plate Temp. (deg. C)	213	213	213	213	213	213	213	213	213	213	213	213	213	213
Block Temp. (deg.C)	213	213	213	213	213	213	213	213	213	213	213	213	213	213
Spin Pump Temp. (deg.C)	215	215	215	215	215	215	215	215	215	215	215	215	215	215
Top Cap (deg.C)	215	215	215	215	215	215	215	215	215	215	215	215	215	215
Spin Pack Temp. (deg.C)	216	216	216	218	216	216	218	216	216	218	216	218	216	218
Barrel Melt Temp. (deg. c)	217	. 218	218	218	217	217	217	217	217	217	217	217	217	217
Melt Pump Inlet Pressure (psl)	430	1490	320	80	200	1040	360	870	610	05 E	100	90	9	8 9
Melt Pump Outlet Pressure (psi)		8 3	8 1	4 5	o (₽ {	8 §	2 2	3 8	2 2	3 8	<u> </u>	0.5	3 8
Extruder (rpm)	220	022	R.	77	8	7	8	770	8	87	77	777	3 .	3
Monomer Exhaust Inches water		Ş	Ş	200	9	9	90	12.8	8 61	9 61	a 61	8.01	12 B	12 B
Spinnered: no. of notes / ordpe	3	12.0		177 × 0 081	0.0177 × 0.081	0.0177 × 0.061	8	8	00177 × 0.061	0 0177 × 0.061	0.0177 × 0.061	0.0177 × 0.061	0.0177 × 0.061	0.0177 × 0.061
Spinnerer: Capitary diameter & uepui	0.0177 × 0.061	4 16		4.46	1.16	116			1.18	1.16	1.16	1.18	1.16	1.18
(Approximate Company)		£ #	, ru	81	9.5	81	9.5	8	9.5	18	8.5	18	9.5	16
(ma) Ama American	, t	? •	5.1	! m	. <u>1</u>	'n	8;		5.	6	1.5	60	1.5	n
Filter type	Ž	EEN	STD SCREEN	STD SCREEN	Ž	STD SCREEN	STD SCREEN	Z.	Ë	EE	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN
Quench air Flow rate (CF/M)	7.1		6.6	7.3		6.9	6.9		8.8		6.9	6.7	8.8	7.7
Oench air Temp. (deg. c)		19.8	18.5	20.3	18.1	18.7	19.5	18.9	20.1	18.5	18.1	19.7	18.9	19.1
Quench air Humidity %	412	40.1	42.7	43.1	41.8	39.2	40.4	42	43.1	39.7	40.2	38.9	41.2	40.3
% Torque		ន	11	27	5	18	7	8	16	11	92	8	16	21
Nitrogen in Hopper		6	e	6	e	6	e	ы	6	ю	9	e	6	e
		•	•	•		,			;	,	•	•	Š	•
Estimated lbs of Host + Binder Fiber (lb)	2	•	•	~	0.5		10.8	10. 10.	27	9	9.1	9.1	9.00	4.01

300	Rate (C/m	Rate (C/min):	20	Hold	Hold (min):	
		2	Peaks			Total
Onset	1st Tm		1st Tm-	2nd Tm	2nd Area	¥ F
(2)	(C)	(6/r)	onset	(C)	(J/g)	(g/C)
159.5	176.7	52.6	17.2	213.1	18.5	71.
165.6	178.8	54.0	13.2	214.5	17.5	71.4
162.6	177.8	53.3	15.2	213.8	18.0	71.3
161.9	172.4	9.95	10.5	209.2	4.7	61.2
159.7	170.1	47.6	10.4	208.5	2.9	50.5
160.8	171.3	52.1	10.5	208.9	3.8	55.9
137.2	165.4	65.0	28.2	202.3	3.7	68.7
136.9	162.0	65.8	25.1	202.9	4.2	669
137.1	163.7	65.4	26.7	202.6	3.9	69.3
156.1	176.1	53.1	20.0	212.9	9.6	62.5
151.9	171.9	0.73	20.0	210.8	12.6	9.69
154.0	174.0	55.0	20.0	211.9	11.0	66.1
156.5	175.5	55.1	19.0	213.4	19.7	74.8
157.4	174.9	52.1	17.5	212.6	19.1	71.2
157.0	175.2	53.6	18.3	213.0	19.4	73.0
150.7	167.4	56.3	16.7	205.7	4.7	609
142.8	169.2	71.9	26.4	209.0	4.1	76.0
146.8	168.3	64.1	21.6	207.4	4.4	68.4
165.6	177.2	43.0	11.6	213.8	17.2	90.7
165.1	177.0	49.5	11.9	213.9	18.5	0'89
165.4	177.1	46.2	11.8	213.9	17.9	64.1
169.2	188.4	39.1	19.2	217.4	33.0	72.1
175.0	189.5	44.4	14.5	217.7	32.4	76.8
172.1	189.0	41.8	16.9	217.6	32.7	74.4
163.7	173.7	56.5	10.0	211.2	5.9	62.4
163.8	172.0	52.5	8.2	210.1	5.9	61.4
163.8	172.9	56.0	9.1	210.7	5.9	61.9
127.0	160.2	44.6	33.2	201.2	29.7	74.4
127.0	162.7	49.9	35.7	202.6	37.5	87.4
127.0	161.5	47.2	34.5	201.9	33.6	80.9
157.9	174.3	42.4	16.4	212.1	15.1	57.5
157.0	173.7	54.2	16.7	212.7	17.5	71.7
157.5	174.0	48.3	16.6	212.4	16.3	64.6
139.3	174.4	67.8	35.1	211.6	17.1	84.9
142.4	173.7	62.2	31.3	212.6	16.6	78.
140.9	174.1	65.0	33.2	212.1	16.8	81.8
152.5	169.6	50.3	17.1	206.8	6.2	56.5
153.7	173.4	64.9	19.7	211.9	6.1	71.0
153.1	171.5	57.6	18.4	209,4	6.2	
167.8	176.8	40.5	9.0	214.2	14.6	:
164.3	177.0	54.3	12.7	214.3	17.4	
166.1	176 0	V 47 A	900	2112	١	

ns	Run	#	1	2	a c	- -	Ave	1	2	Ave	-	2	Ave	-	2	Ave	1	તા	Ave	- 0	Ave	<u> </u> -	2	Ave	-	2	Ave	-	2	Ave	-	7	PAY	-	2	Ave	-	~	Ave	- 0	N	Ave
Cycle Type: Scan Conditions		Sample ID	1-25	70/20/10		Ņ	85/5/10	3-25		/0/5/25	4-25	77.0	5	5-25	0143 E147	=	6-25	77 EIE117 E	11/0/01	7-25	77.5/12.5/10	1-50	200	01/02/0/	2-50	05/5/40	10.00	3-20	70/5/25	71010	4-50	75/10/15		2-20	2.20	(0/12.5/1/.5	9-20	7 EIEM	27.70	7-50	77 5/12 5/10	

: إذا ن

Sample I.D.	10	-	7	m	.4	ĸ	9	1	60	88	6	98	12
POLYNER TYPE MBM/secture &	Bland	Riend	Rlend	Rlond	Brook	Blond	Prod	Facia	i	Blend	Blend	Rlend	
ĺ	#10	#	#	£	#	£	\$	#	2 8 8 8	#88	£	#38	MBM
Feeder Setting 1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1 5	1 13	1.13	1.13	1.13	1,13
	· ·		 -					10		652	Succession	E(0.0%)	
water on feeding zone	Б	8	5	Б	5	6	5	6	5	8	6	์ อ	5
zone 1 Temp. (deg c) 215	220	215	215	215	215	215	215	215	215	215	215	223	258
	Ц	215	215	215	215	215	215	215	215	215	215	223	258
zone 3 Temp. (deg c) 215	220	215	215	215	215	215	215	215	215	215	215	223	258
		215	215	215	215	215	215	215	215	215	215	223	258
		215	215	215	215	.215	215	215	215	215	215	223	258
zone 6 Temp. (deg c) 210	220	210	210	210	210	210	210	210	210	210	210	218	258
zone 7 Temp. (deg c) 210		210	210	210	210	210	210	210	210	210	210	218	258
8 Connecting Plate Temp. (deg. C) 213	3 220	213	213	213	213	213 .	213	213	213	213	213	221	258
9 Block Temp. (deg.C) 213	_	213	213	213	213	213	213	213	213	213	213	220	.258
- 1	_	215	215	215	215	215	215	215	215	215	215	222	258
	220	215	215	215	215	215	215	215	215	215	215	222	258
12 Spin Pack Temp. (deg.C) 216	220	216	216	216	216	216	216	216	218	216	216	226/223	258
Barrel Melt Temp. (deg. c)	225	218	218	218	218	218	218	218	218	217	217	225	264
Wett Pump Inlet Pressure (psi)	220	850	1210	670	630	910	. 1340	920	450	260	470	1400	089
let Pressure (psi)	8	330	460	520	520	420	260	430	460	470	620	390	570
Extruder (rpm) 200	_	200	200	200	200	200	200	200	200	200	200	200	200
Monomer Exhaust Inches water													
Spinneret: no. of holes / Shape	6R	6R	9 8	6R	æ	88	eR B	eR.	g	68	6R	gg	gg
Spinneret: capilary diameter & depth	ह्न	.01778x.061	01778×.0	.01778x.061	01778x.0	.01778x.061	01778x.061	01778x.081	01778x 081	.0177x .061	1	0177x 061	0177x 061
Metering pump size (cc/rev)	١	1.16	1.16	1.16	1.16	1.18	1.18	1.16	1.16	1.16	1.16	1.16	1.16
Metering pump (rpm)	7.5	7.5	2.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Inreport (IDS/hr)	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1	1.13	1.13
Fitter type	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREI	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN	STD SCREEN	2	STD SCREEN	STD SCREEN
Quench air Flow rate (CF/M)	7.1	7.2	7.4	7.3	7.5	_	7.2	7	7.4	6.9	7	7.1	7.1
Gench air Temp. (deg. c)	20.1	19.9	18.3	19.5	19.3		18.5	18.4	18.5	19.9	1	18.2	18.5
Quench air Humidity %	54.5	52.2	45.2	51.1	52.5	49.7	50.4	52.4	53.6	51	39.4	52.1	36.8
% lordue	21	22	27	28	25	Г	53	22	21	22		28	23
Nitrogen in Hoper	3	9	3	3	3	Γ	6	6	3	9	1	3	6
Need : polymer chips moisture	yes										L		
										1			

	Blend	Plend	Blend	Blend	Blend	Blend	Blend	Blend	Blend		Blend	Blend	Blend	Blend	Blend	Blend	Blend	Blend	Bland
Sample I.D.	10-1	10-2	3	1	7	?	2	7	2-3		3	Į	5	ı	5.7	6.1	3	3	I
POLYMER TYPE Nyon Bland	5	0	5	-	Ŧ	+	2	2	2	Comments	40	40	*	10	40	•	•	. •	•
							-	-							†- 				
SAMPLE START TIME	13:35	14:25	14:25 15:15	8:30	8:38	9:20	10:19	90:	11:27	Hard to string up-	8.20	R-33	8.65	02:6	9:40	10:01	155	11:33	11.55
SAMPLE FINISH TIME	14:20	15.10	15:40	8:34	9:18	10:05	11:04	11:22	12:10	paramol	22	15.8	8-2B	9.35	8.48	10:52	133	11:53	12:14
Run time (min)	45	45	22	-	45	45	45	16	25	RxT-2 #1 rof to 2090	-	9	1. min	i.	t٠	45 min	25 mtn	20 min	19 min
Finish type F-137-10	무	F-137-10	F-137-10	137.1	F-137-1	F-137-1	F-137-1 F	F-137-10 F-137-1	F-137-10	m/min	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	200	E 437 40	10	07.42		12	F-137-10	F-137-1
Kiss roll (rpm)	3.0	3.0	0.4	3.4	3.4		Г	3.8	3.8	then reised back up to		200	2		200			187	187
Podets:			9.5%					T		4090 after number on	2.0	9.0	3.6	9	9	3.00	0.0	500	5
SMALL Roll #1 SPEED (m/min) RXT-2	4090	4090	4090	4090	4090	4080	4080	960	4090	winder	4000	7007	400	4000	50,7	4000	4090	0607	4090
SMALL Roll #2 SPEED (m/min)											3	Sept.	3		200				
ARGE Roll #3 SPEED (m/mln)							 						T						
LARGE Ros # 4 SPEED (m/min.) RXT-1	4090	4090	4090	0807	608	960	960	609	88		4090	400	600	4090	4090	6090	4090	4090	4090
Entangling						ĺ		T							T				
Jet type						l													ļ
afr to jet (pal)													Ī		1	ĺ			
Winder grove roll: Speed (m/min.)	4499	4499	488	4499	4499	4499	4488	4489	4199		4400	7780	4489	677	647	4489	4189	4499	4489
finder drive roll: Speed (mimin.	4090	6090	4090	4090	609	6090	4090	4080	80		4080	0807	4090	0807	0607	4090	600	4090	4090
Undrawn Denter	20.0			20.0	20.0	20.0		ľ							-	8			
														ľ		ľ			
Need: undrawn yarn Denier, instron								İ							1			ŀ	
, free fall FAV (after each run set)						-							Ī	T	1			Ī	
submit free fall and polymer for FAV					T	l		t									ľ	Ī	
Monther Exhance inches water																			

	Blend	Blend	F	F		F	_	Blend	Blend	Blend	Blend	Bland	Blend	Blend	Blend	Blend	Blend	Blend	Blend 7-10	Blend 7-11	Blend 9-1	Glend 8-2	Bend Bend	E 4	2 g	Bend 8-6
Semple I.D.	4	3.2	2	1	4-2	?	1	ī	7	7	72	23	7	92	?	2	?	?				-	-	-		
										,			,	,	,	•	_,		^	^	60		60	8	•	8
POLYMER TYPE Nyon Bland	6	3	9	4	*	•	•	1	_	-	-	1	+	+	†	+	1	Ţ								
:					┥	\dashv	-	+	7				j	1					14.41	15:05	9:15	10:10	10:20	10:30	10:45	10:55
SAMPLE START TIME	12:38	13:23	14:15	14:45	Н	Н	16:29	33	8	12:35	12:49	12:57	13:28	13:40	23.5	- !	14:25	20	5	15.10	8:38	10:16	10.25	10:38	10:51	11:05
SAMPLE FINISH TIME	1:15	14:08	14:25	14:54	15:52	16:23	18:50	7:42	5	12:46	12:55	13:06	13:38	13:44	14:00	┪	S S	9		į.	Sep.	8 min	1	•	E	Z HELD
Run time (min)	25 min	45 min	10 mlm	9 mth	45 min	18 mln	21 min ;	di L	25 mh	11 mln					-	-	-	13 min	6.437.40	ţ	F-137-10	F-137-10	Ю	6	F-137-10	F-137-10
Finish tyme F-137-10	F-137-10 F-137-10 F-137-10 F-137-10 F-137-10 F-137-10 F-137-10 F-137-10	137-10	-137-10 F	-137-10	-137-10	137-10	137-10 F	-137-10 F	-137-10	_	F-137-10	F-137-10	9	9	0	F-137-10 F	፸	F-137-10		-	187	٠.		3.67	3.67	3.67
E	3.8	3.8	3.8	3.8	3.8	3.8	3.6	3.8	2	3.67	3.67	3.67	3.67	3.67	3.67	3.67	3.67	3.07	100				-			
Codets		l		ŀ		_						-							4004	4004	4000	4090	4090	4080	980	8 Ş
SMALL Red of SPEED (m/min) RxT-2	4090	4090	4090	8	4090	0607	4090	4090	4080	4090	4090	4090	4090	4080	4080	4090	604	900	100							
SMALL Roll #2 SPEED (m/min)																										
LARGE Roll #3 SPEED (m/mth)			-				4		1							1			YOUY	909	4090	4090	4090	4090	\$ \$	4090
LARGE Roll # 4 SPEED (minuth.) RXT-1	900	4090	4080	4090	4090	4090	4090	4090	4080	4080	4090	4090	4090	4090	4090	4090	8	080					ľ	t		
Entangling		-																					-	ľ		
et type		- 					-	1				-						T					-			
atr to jet (pel)																+			4400	4499	4498	4499	4489	4499	28	4490
Winder grove roll: Speed (m/min.)	4499	4189	4499	4488	4489	4499	4499	4499	4498	4499	4499	4499	4489	4499	4499	4499	288	188	4000	4000	4090	4090	4090	4090	989	680
Whider drive roll: Speed Intritu.	0604	4090	4090	4080	4090	4080	4090	4090	4090	4090	4090	4080	4090	4090	4090	4080	980	86			200		r			
Undrawn Denter								_	20.0	2												1	ľ			
						-		-									-					1	1	T	T	
		l	r		 		-	T	Γ														ľ	1		
Meed: undrawn yam Denier, Instron			-																				1	1		
, free fall FAV (after each run set)		-																						Ī		
submit tree fall and polymer for FAV																		7					-			
Monomer Exhaust inches water																										

Sample 1.0. S8-1	~ 2			2	DIRECT DIRECT		Blend Blend Blend	- C	0	-	Ξ.	Ξ.	_		P			
PE Nylon Blend as seeses RT Title e.co (SIST TIME e.co (Mark 1) F-137-10 (1-		3	88-4	88-S 88-	88-6 8B-7		68-6 68-9 88-10 68-11 9-1	8B-10	11-6	_	3	I	2	ş	- 6	Comments	Sample I.D.	
RT TIME 6000 ISH TIME 820 ISH TIME 820 ISH TIME 140 IM 141																Temp.change up to 225	, Apr	Nyton Bland
SH TIME 8-00 14 14 14 14 14 14 14	3	8	8	8	8	8	8	8	8	-	•	•	•	·	•	naniana		- -
			+	+	1		1	t	\dagger	+	+	1	1	Ţ	1		GAMOI E CTADT TIME	!
15H TIME 8:20 1	9:29	9:40	10:05	10:05 10:15 10:20 10:30 10:50 11:10 11:30 11:40 13:20 13:30 14:00 14:25 15:00 15:15 16:00	10:30	10:50	9	9	9	33	2	14:2:	58	15.15	8		THE PLANT OF THE PERSON	
m) F-137-10 m) #1 SPEED (m/min) RXT-2 #2 SPEED (m/min)	9.32	9:50	10:10	8:32 8:50 10:10 10:18 10:24 10:45 10:55 11:35 11:37 11:51 13:35 13:58 14:13 14:46 15:09 15:44 16:01	10:43	10:55	11:25	11:37	15:1	3.25 13	2	3 14:46	15.09	15.44	5		SAMPLE FINISH TIME	
m) #1 SPEED (m/min) RXT-2 #2 SPEED (m/min)	-	9	•		5		2	-	=	5	82	٦	•	R	ŀ		Run time (min)	
#1 SPEED (m/min) RXT-2 #2 SPEED (m/min)			\vdash	\vdash	L			t			_	_	L		L		Finish type F-1	F-137-10
1 i l		-	H		-	1		-	t	-	-	<u> </u>	_		Ī		Kiss roll (rpm)	
i I		T	┝	-	L	Ĺ		T	\vdash	-	l	L	L				Godets:	
SMALL Roll #2 SPEED (m/min)		T	+	-	L				+	+	ŀ	ļ	L				SMALL Roll #1 SPEED (m/min) RXT	nin) RX
		r	-	-	L			T	t	+	ŀ	1	_	I	Ī	-	SMALL Roll #2 SPEED (m/min)	- (- (-
LARGE Roll #3 SPEED (m/min)		1	+	+	1	Ĺ	Ĺ	1	\dagger	╀	ł	1	L	I			LARGE Roll #3 SPEED (m/mln)	nin)
LARGE Roll # 4 SPEED (m/min.) RXT-1 4090			+	H	L	Ĺ		T	\vdash	L	ŀ	1	L		I		LARGE Roll # 4 SPEED (m/mln.)	n.) RX
Entangling		H	+	L	L			1	H	-	ŀ		<u> </u>		İ		Entangling	
		T	H	L	L	Ĺ		t	+	+	\mid	ŀ	L	Γ	I		Jet type	
air to jet (psl)		T	H	<u> </u>	L	L		İ	+	<u> </u>	I	-	L	L	I		air to jet (psi)	
Winder grove roll: Speed (m/min.) 4499		T	-	F	L			\vdash	H	+	-	1	L				Winder grove roll: Speed (m/min.)	ılır.)
Winder drive roll: Speed (m/min.				L	L	Ĺ	L	t	+	\vdash	-	L	L		ľ		Winder drive roll: Speed (m/min.	Ë
Undrawn Denier 20.0			-	H	L			t	f	H	H	-	L	Ĺ	Ę		Undrawn Danler	
			\vdash	L	L			1	+	+	\vdash	L	L					
		-	-	\vdash	L			\vdash	H	\vdash	L	L	L					
Need: undrawn yarn Denier, Instron			-	L	L	Ĺ		t	+	\vdash	H	-	L				Need: undrawn yarn Denier, Instron	Instron
, free fall FAV (after each run set)			\vdash	-	L	Ŀ			-	H	L	L	L				, free fall FAV (after each run set)	run set)
submit free fall and polymer for FAV		T	-	H	L			+	+	-	-	L	L		T		submit free fall and polymer for FAV	ξ¥
Monomer Exhaust Inches water			\vdash	\perp	L		İ	t	L	H	-	+	ŀ		T		Monomer Exhaust Inches water	iter

12-1 MBM

9B-1

9-1

8B-1

10-1

11-1

8-1

7

2-5

4-2

6-1

200	Rate (C/min):	<u>:</u>	70	לוווווו) חוסט		
			Melting Peaks			
Onset 1	1st Tm	ΔHf 1	Onset 2	2nd Tm	3rd Tm	ΔHf 2
(2)	(၁)	(J/g)	<u></u>	(2)	(c)	(G/C)
137.2	148.5	3.5	178.6	182.3	215.3	52.2
137.9	149.2	3.7	178.8	182.3	215.3	52.5
137.6	148	3.6	178.7	182.3	215.3	52.3
127.3		3.7	177.7	180.8	214.3	58.3
125.8		3.9	177.8	181.1	215.4	58.8
126.6		3.8	177.8	181.0	214.9	58.6
138.7		3.2	176.0	178.2	212.9	50.1
1383		3.2	175.9	178.0	213.5	51.5
138.5		3.2	176.0	178.1	213.2	50.8
135.3		3.9	179.1	183.1	215.7	56.3
137.2		4.0	179.1	183.0	215.6	57.2
1363		3.9	179.1	183.1	215.7	56.8
131 B		4.0	178.6	182.0	215.3	59.1
1201		42	179.9	184.9	216.2	57.5
130 5	1	4.1	179.3	183.5	215.8	58.3
442		5.2	180 4	187 6		63.0
140 6		2.5		187 4		67.0
		2		197 E	217 4	65.0
111.3		0.0		107.5	246.0	200
131.2		4.0		C. 101		
132.3		3.9		187.6		29.7
131.8	143.3	4.0		187.6		61.5
122.6	134.6	3.9		183.4		63.6
128.9	140.1	3.9		183.7		57.1
125.8	137.4			183.6	215.9	60.3
135.6	146.0	3.3	172.2	174.3		49.9
131.5			172.3	174.1		54.3
133.6			172.3	174.2		52.1
122 6				173.0		1.09
116.2				L		63.9
4194				173.2		62.0
118					215.5	62.
118.7			179.0	184.1	L	61.9
118.8					215.7	62.0
125.6	L			188.4	216.7	60.5
123.8			179.8	188.4		62.3
1247				188.4		61.4
1221	L	4.0		181.9	215.7	61.7
121 5				182.1	214.7	60.2
121 8						61.0
114 0					220.7	73.4
6.41						

Sample ID

1-2

2-1

3-1

RXT-2 Extrusion

Sample I.D.	9B	06	Q6	9E	9F
POLYMER TYPE MBM/technic & lactam blends	Blend #9	Blend #9	Blend #9	Blend #9	Blend #9
					i.
water on feeding zone	6	e o	o	o	г о
zone 1 Temp. (dea c)	220	230	240	250	260
zone 2 Temp. (deg c)	. 220	230	240	250	260
zone 3 Temp. (dea c)	220	230	240	250	260
zone 4 Temp. (dea c)	220	230	240	250	260
zone 5 Temp. (dea c)	220	230	240	250	260
zone 6 Temp. (dea c)	220	230	240	250	260
zone 7 Temp. (deg c)	220	230	240	250	260
8 Connecting Plate Temp. (deg. C)	220	230	240	250	260
9 Riock Temp. (dea.C)	220	230	240	250	260
10 Spin Pump Temp. (dea.C)	220	230	240	250	260
11 Ton Can (deg.C)	220	230	240	250	260
12 Spin Pack Temp. (deg.C)	220	230	240	250	260
Barrel Melt Temp. (deg. c)	225	235	245	255	265
Melt Pump Inlet Pressure (psi)					
Melt Pump Outlet Pressure (psi)		;		. 0	ć
Extruder (rpm)	200	200	200	200	200
Monomer Exhaust inches water	í	ç	. 0	0	0
Spinneret: no. of holes / Shape	Y9		אס	70	NO 102170
Spinneret: capilary diameter & depth	.01778x.061	.017	.01778x.061	.01778x.061	.017/8X.061
Metering pump size (cc/rev)	1.16	Ψ.	1.16	1.16	1.16
Metering pump (rpm)	7.5		7.5	7.5	7.5
Thrubut (lbs/hr)	1.13		1.13	1.13	1.13
Filter tyne	STD SCREEN		STD SCREEN	STD SCREEN	STD SCREEN
Ouench air Flow rate (CF/M)	7.1	7.1	7.1	7.1	7.1
Oench air Temp. (deg. c)	20.1		20.1	20.1	20.1
Quench air Humidity %	54.5		54.5	54.5	54.5
% Torque	21		21	21	21
Nitrogen in Hoper	ო		ო	ო	က
Need: polymer chips moisture	S O				

Q
\supset
4
Ž
–
_
À.

Sample I.D.			9B	36	О6	9	9 E	
POLYMER TYPE	Nylon Blend	end	6	6	6	თ	တ	
SAMPLE START TIME SAMPLE FINISH TIME Run time (min) Finish type Kiss roll (rpm)			5-10 min F-137-10 3.7	5-10 min F-137-10 3.7	5-10 min 5-10 min 5-10 min F-137-10 F-137-10 3.7 3.7 3.7	5-10 min F-137-10 3.7	5-10 min F-137-10 3.7	
Godets: SMALL Roll #1 SPEED (m/min)	(m/min)	RXT-2	4090	4090	4090	4090	4090	
SMALL K II #2 SPEED (III) III) LARGE ROII #3 SPEED (m/min) LARGE ROII # 4 SPEED (m/min.)	(m/min)	RXT-1	4090	4090	4090	4090	4090	
jet type air to jet (psi) Winder grove roll: Speed (m/min.) Winder drive roll: Speed (m/min.) Undrawn Denier	(m/min.) m/min.		4499 4090 20.0	4499 4090 20.0	4499 4090 20.0	4499 4090 20.0	4499 4090 20.0	•

Rate (C/min):
l
∆Hf1
(J/g)
ı
ı
1
1
ı

us	Run	#	1	2	Ave	1	2	Ave	1	7	Ave	ı	7	Ave	1	2	Ave	1	2	Ave	-	2	Ave
Cycle Type: Scan C nditions		Sample ID		9 B			ပ			0 6		1	ш			ட		9 B Ac	? .	Received	9 F As	•	Received

RXT-2 Extrusion

Sample I.D.	8 6	S	Q ₆	36	9F
POLYMER TYPE MBM/technic &	Blend	Blend	Blend	Blend	Blend
lactam blends	6#	6#	6#	6#	6#
·	i i	c u.	. 1		3/11/2003
water on feeding zone	o	G	o	G	uo
zone 1 Temp. (deg c)	220	230	240	250	260
zone 2 Temp. (deg c)	220	230	240	250	260
zone 3 Temp. (deg c)	220	230	240	250	260
zone 4 Temp. (deg c)	220	230	240	250	260
zone 5 Temp. (deg c)	520	230	240	250	260
zone 6 Temp. (deg c)	220	230	240	250	260
zone 7 Temp. (deg c)	220	230	240	250	260
8 Connecting Plate Temp. (deg. C)	220	230	240	250	260
9 Block Temp. (deg.C)	220	230	240	250	260
10 Spin Pump Temp. (deg.C)	220	230	240	250	260
11 Top Cap (deg.C)	220	230	240	250	260
12 Spin Pack Temp. (deg.C)	220	230	240	250	260
Barrel Melt Temp. (deg. c)	225	235	245	255	265
Melt Pump Inlet Pressure (psi)					
Melt Pump Outlet Pressure (psi)					
Extruder (rpm)	200	200	200	200	200
Monomer Exhaust inches water					
Spinneret: no. of holes / Shape		88		SR S	6 R
Spinneret: capilary diameter & depth		.01778x.061	061	.01778x.061	.01778x.061
Metering pump size (cc/rev)	1.16	1.16		1.16	1.16
Metering pump (rpm)		7.5	7.5	7.5	7.5
Thruput (Ibs/hr)		1.13	1.13		1.13
Filter type	Ë	STD SCREEN	STD SCREEN	STD	STD SCREEN
Quench air Flow rate (CF/M)	7.1	7.1	7.1		7.1
Qench air Temp. (deg. c)	20.1	20.1	20.1		20.1
Quench air Humidity %	54.5	54.5	54.5		54.5
% Torque	21	21	21		21
Nitrogen in Hoper	က	က	က	ო	ო
Need: polymer chips moisture	o N				

RXT-1 Take-Up

Sample I.D.			86	36	Q6	9E	9F	
POLYMER TYPE	Nylon Blend	end	்	თ	თ	თ	თ	
SAMPLE START TIME SAMPLE FINISH TIME Run time (min) Finish type Kiss r II (rpm)			5-10 min F-137-10 3.7	5-10 min F-137-10 3.7	5-10 min 5-10 min 5-10 min F-137-10 F-137-10 3.7 3.7 3.7	5-10 min F-137-10 3.7	5-10 min F-137-10 3.7	
Godets: SMALL Roll #1 SPEED (m/min) SMALL Roll #2 SPEED (m/min)	(m/min) (m/min)	RXT-2	4090	4090	4090	4090	4090	
LARGE Roll #3 SPEED (m/min) LARGE Roll # 4 SPEED (m/min.) Entangling	(m/min) /min.)	RXT-1	4090	4090	4090	4090	4090	
jet type air t jet (psi) Winder gr ve roll: Speed (m/min.) Winder drive roll: Speed (m/min. Undrawn Denier	(m/min.) m/min.		4499 4090 20.0	4499 4090 20.0	4499 4090 20.0	4499 4090 20.0	4499 4090 20.0	

);	Run #	 2	4Ve	2	Ave	- 0	7	T -	2	Ave	1	2	Ave	1	2	Ave	-	2	2	2	Ave	-	2	Ave	- 0	Ave
Cycle Type: Scan Conditio	Sample ID	44		48		0,	ນ		2	ļ		က			4											

RXT-2 Extrusion

Sample I.D. Sample I.D. MBM/tect lactam by lactam by lactam by zone 1 Temp. (deg c) zone 2 Temp. (deg c) zone 3 Temp. (deg c) zone 4 Temp. (deg c) zone 5 Temp. (deg c) zone 5 Temp. (deg c) zone 6 Temp. (deg c) zone 7 Temp. (deg c) zone 7 Temp. (deg c) zone 7 Temp. (deg c) zone 7 Temp. (deg c) zone 7 Temp. (deg c) zone 7 Temp. (deg c) 2 Zone 7 Temp. (deg c) 2 Zone 7 Temp. (deg c) 2 Zone 7 Temp. (deg c) 2 Zone 7 Temp. (deg c) 2 Zone 7 Temp. (deg c) 2 Zone 7 Temp. (deg c) 3 Block Temp. (deg c) 11 Top Cap (deg.C) 12 Spin Pump Inlet Pressure (psi Welt Pump Outlet Pressure (psi Welt Pump Outlet Pressure (psi Welt Pump Outlet Pressure (psi Welt Pump Ump (rpm) Thruput (lbs/hr) Filter type Quench air Flow rate (CF/M) Qench air Temp. (deg: c) Quench air Humidity % % Torque	1 2 3 4	MBM/technic & Blend Blend Blend Blend Blend lactam blends #1 #2 #3 #4		State State	uo uo uo	253 253 253	253 253 253	253 253 253	253 253 253	253 253 253	248 248 248	248 248 248	p. (deg. C) 251 251 251	250 250 250	252 252 252	252 252 252	253 253	255 255 255	Melt Pump Inlet Pressure (psi)		200 .200 .200 .200		70 Y0		1.16 1.16 1.16	7.5 7.5 7.5		EN STD SCREEN STD SCREEN	7.1 7.1 7.1		54.5 54.5 54.5	21 21 21	3	
---	---------	---	--	---	----------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------------------	-------------	-------------	-------------	---------	-------------	--------------------------------	--	--------------------	--	----------	--	----------------	-------------	--	--------------------------	-------------	--	----------------	----------	---	--

		RXT.	RXT-1 Take-Up	ce-Up		
Sample I.D.		-	7	M	4	'n
POLYMER TYPE Nylon Blend	pue	· ·	7	ო	4	2
SAMPLE START TIME SAMPLE FINISH TIME						
Run time (min) Finish type		5-10 min F-137-10	5-10 min 5-10 min 5-10 min 5-10 min 5-10 min F-137-10 F-137-10 F-137-10	5-10 min F-137-10	5-10 min F-137-10	5-10 min F-137-10
Kiss r II (rpm)		3.7	3.7	3.7	3.7	3.7
	RXT-2	4090	4090	4090	4090	4090
SMALL Roll #2 SPEED (m/min) LARGE Roll #3 SPEED (m/min) LARGE Roll # 4 SPEED (m/min.)	RXT-1	4090	4090	4090	4090	4090
Entangling jet type						
Winder grove roll: Speed (m/min.)		4499	4499	4499	4499	4499
Winder drive roll: Speed (m/min. Undrawn Denier		4090	4090 20.0	4090 20.0	4090 20.0	4090 20.0

Need: undrawn yarn Denier, instron , free fall FAV (after each run set) submit free fall and polymer for FAV Monomer Exhaust inches water

在你們不知鄉的一個人的人的人的

Scan Conditions Sample ID # #	Cycle Type:		1st Heat Cycle
	Scan Conditio	Suc	
		ć	
	Sample ID	**************************************	
	#	2	
		Ave	
	#5	- 2	
		Ave	
	#3	2	
		Ave	
		1	
	#4	2	
		Ave	
		1	
	#2	2	
		Ave	
	#10	2	
4ve Ave Ave Ave Ave Ave Ave Ave		Ave	
2 Ave 2 Ave 2 Ave Ave		-	
Ave Ave Ave Ave Ave Ave		2	
4ve		Ave	
2 Ave 2 Ave 2 2 2 Ave			
Ave		2	
2 Ave		Ave	
2 Ave 2 Ave			
Ave 2 Ave		2	
2 Ave		Ave	
Ave		;	
AVE		7	
		Ave	

61.2 62.9 66.3 64.6 67.6 68.5

 Melting Peaks

 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)
 (C)

60.2 **60.0** 61.8 60.5

۸Hf

na

Hold (min):

20

61.3 51.8 49.9 50.8

61.5

61.1

68.1

218.1 219.7 219.5 219.5 218.0 218.3 218.3 218.3