

Added source term: $\int f^{\alpha \beta} \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}$		$3'10m'$ $3m\alpha\beta$ $3m\alpha\lambda$ $6m$ K $3m\alpha\lambda$ am K	$\frac{8}{8}$ $r_1 \frac{\partial^2 \omega}{\partial r_1} \frac{\partial^2 \omega}{\partial r_2} \frac{\partial^2 \omega}{\partial r_3} \frac{\partial^2 \omega}{\partial r_4} \frac{\partial^2 \omega}{\partial r_5} \frac{\partial \omega}{\partial$	$\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{\prime}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} -$	$\frac{1}{3}$ $\omega_{I\alpha}$ ω_{I} ω	$2 + \ldots \alpha \geq \kappa \leq 1 + 2 + \ldots \lambda \geq \kappa \leq 1 + 2 + 2 \alpha \leq \lambda \geq \kappa \leq 1$	$\frac{2}{3}t_3\omega_{\kappa\alpha}^{\alpha}\partial^\kappa f'_{} - \frac{2}{3}t_3\omega_{\kappa\lambda}^{\lambda}\partial^\kappa f'_{} - \frac{4}{3}t_3\partial^\alpha f_{\kappa\alpha}\partial^\kappa f'_{} + \frac{2}{3}t_3\partial_\kappa f^\lambda_{\lambda}\partial^\kappa f'_{} +$	
Source constraint SO(3) irreps		$\sigma_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#2}$ $\tau_{0^{+}}^{\#2}$ $\sigma_{0^{-}}^{\#1}$	† † †	(1: (1:	$ \sigma_{0}^{\#1} + \frac{1}{k^{2}k^{2}} $ $ \frac{i\sqrt{2}}{k^{2}k^{2}} + \frac{2k^{2}}{k^{2}} $ $ 0 $	$\frac{1}{k}$		
	raint:			0	' L			

 $r_5 \, \partial_\theta \omega_{\lambda}^{\ \alpha}_{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \, \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \theta} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_{\lambda}^{\ \alpha}_{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} -$

 $\frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}{}^\kappa\partial_\kappa\omega^{\alpha\beta\theta} + \frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}{}^\kappa\partial_\kappa\omega^{\theta\alpha\beta} - r_5\partial_\alpha\omega_{\lambda}{}^\alpha{}_\theta\partial_\kappa\omega^{\theta\kappa\lambda} +$

 $\frac{2}{3}t_3 \omega_i^{\alpha_i} \omega_{\kappa\alpha}^{\kappa} - r_5 \partial_i \omega_{\kappa}^{\kappa\lambda}$

 ${}^{\lambda}_{\kappa}\partial'\omega_{\lambda}^{\alpha}{}_{\alpha}-\frac{2}{3}r_{1}\partial^{\beta}\omega^{\theta\alpha}{}_{\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}$

Lagrangian density

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	0
	(n)#1	$f^{#1}$ *	÷1	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	0	0	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	$k^2 r_1$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$

Total #:	$\sigma_{2+}^{\#1\alpha\beta} == 0$	$\tau_{2+}^{\#1\alpha\beta} == 0$	$\sigma_{1+}^{\#2\alpha\beta} == 0$	$\tau_{1+}^{\#1}\alpha\beta == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1^{-}}^{\#2\alpha} + 2 i k \sigma_{1^{-}}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\sigma_{0^{-}}^{\#1} == 0$	SO(3) irreps	Source constraints
25	5	5	ω	ω	3	3	Н	1	1	#	

_	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	0

Quadratic pole

 $\frac{1}{r_1(r_1+r_5)(2r_1+r_5)p^2} > 0$ Pole residue:

Polarisations: 2

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$

(No massive particles)