$\mathrm{CSE}\ 397$ / $\mathrm{EM}\ 397$ - Stabilized and Variational Multiscale Methods in CFD

Homework #2 - Solution

Thomas J.R. Hughes, Frimpong A. Baidoo, and Geonyeong Lee,

Oden Institute for Computational Engineering and Sciences, University of Texas at Austin

Spring 2024

Exercise 2.3 (25 points) Some simple interpolation estimates in the "max norm"

Consider piecewise linear finite elements. Given $u \in C^2(]0, L[)$, obtain a bound for the interpolation error $\eta = \tilde{u}^h - u$ and its derivative $\eta_{,x}$.

Solution

Let us the mesh parameter $h_A = x_{A+1} - x_A$ for all $0 \le A \le N - 1$ in which N is the number of nodes. The nodally exact piecewise linear element for $x \in]x_A, x_{A+1}[$ can be written as

$$\tilde{u}^{h}(x) = \frac{x_{A+1} - x}{h_A} u_A + \frac{x - x_A}{h_A} u_{A+1} \tag{1}$$

Since $\tilde{u}^h(x)$ is nodally exact, $u_A = u(x_A)$ and $u_{A+1} = u(x_{A+1})$. Let us consider $u \in C^2(]x_A, x_{A+1}[)$, we can use the finite Taylor expansion at $x \in]x_A, x_{A+1}[$; that is, there exist $\xi_A \in]x_A, x[$ and $\xi_{A+1} \in]x, x_{A+1}[$ such that

$$u_A = u(x_A) = u(x) + u'(x)(x_A - x) + \frac{1}{2}u''(\xi_A)(x_A - x)^2$$

$$u_{A+1} = u(x_{A+1}) = u(x) + u'(x)(x_{A+1} - x) + \frac{1}{2}u''(\xi_{A+1})(x_{A+1} - x)^2$$
(2)

Therefore, the piecewise interpolation can be rewritten as

$$\tilde{u}^{h}(x) = \frac{x_{A+1} - x}{h_{A}} \left[u(x) + u'(x)(x_{A} - x) + \frac{1}{2}u''(\xi_{A})(x_{A} - x)^{2} \right]
+ \frac{x - x_{A}}{h_{A}} \left[u(x) + u'(x)(x_{A+1} - x) + \frac{1}{2}u''(\xi_{A+1})(x_{A+1} - x)^{2} \right]
= u(x) \frac{x_{A+1} - x_{A}}{h_{A}} + u'(x) \frac{(x_{A+1} - x)(x_{A} - x) + (x - x_{A})(x_{A+1} - x)}{h_{A}}
+ \frac{1}{2h}u''(\xi_{A})(x_{A+1} - x)(x - x_{A})^{2} + \frac{1}{2h}u''(\xi_{A+1})(x_{A+1} - x)^{2}(x - x_{A})
= u(x) + \frac{(x - x_{A})(x_{A+1} - x)}{2} \left[u''(\xi_{A}) \frac{x - x_{A}}{h_{A}} + u''(\xi_{A+1}) \frac{x_{A+1} - x}{h_{A}} \right]$$
(3)

^{*}hughes@oden.utexas.edu

[†]fabaidoo@utexas.edu

[‡]geon@utexas.edu

Since $u'' \in C^0([x_A, x_{A+1}[)])$ and

$$\min\left(u''(\xi_A), u''(\xi_{A+1})\right) < u''(\xi_A)\frac{x - x_A}{h_A} + u''(\xi_{A+1})\frac{x_{A+1} - x}{h_A} < \max\left(u''(\xi_A), u''(\xi_{A+1})\right), \tag{4}$$

we can use the intermediate value theorem, i.e., there exists $\xi \in]\xi_A, \xi_{A+1}[\subset]x_A, x_{A+1}[$ such that

$$u''(\xi_A)\frac{x - x_A}{h_A} + u''(\xi_{A+1})\frac{x_{A+1} - x}{h_A} = u''(\xi)$$
 (5)

Hence, the interpolation error for $x \in]x_A, x_{A+1}[$ becomes

$$\eta(x) = \tilde{u}^{h}(x) - u(x)
= \frac{(x - x_{A})(x_{A+1} - x)}{2} \left[u''(\xi_{A}) \frac{x - x_{A}}{h_{A}} + u''(\xi_{A+1}) \frac{x_{A+1} - x}{h_{A}} \right]
= \frac{(x - x_{A})(x_{A+1} - x)}{2} u''(\xi),$$
(6)

The L^{∞} -norm of the interpolation error is

$$\sup_{x \in]x_A, x_{A+1}[} |\eta(x)| \le \sup_{x \in]x_A, x_{A+1}[} \frac{|x - x_A||x_{A+1} - x|}{2} \sup_{\xi \in]x_A, x_{A+1}[} |u''(\xi)| \tag{7}$$

By the Young's inequality,

$$\frac{|x - x_A| + |x_{A+1} - x|}{2} = \frac{h_A}{2} \ge \sqrt{|x - x_A| |x_{A+1} - x|}$$
(8)

we have

$$|x - x_A| |x_{A+1} - x| \le \frac{h_A^2}{4} \tag{9}$$

Therefore, the interpolation error becomes

$$\sup_{x \in]x_A, x_{A+1}[} |\eta(x)| \le \frac{h_A^2}{8} \sup_{\xi \in]x_A, x_{A+1}[} |u''(\xi)| \tag{10}$$

In other words, for $x \in]x_A, x_{A+1}[$ there exists $\xi \in]x_A, x_{A+1}[$ such that

$$\|\eta(x)\|_{L^{\infty}(]x_{A},x_{A+1}[)} \le \frac{h_{A}^{2}}{8} \|u''(\xi)\|_{L^{\infty}(]x_{A},x_{A+1}[)}$$
(11)

Likewise, we can obtain the interpolation error of the other elements. The global L^{∞} -norm of the interpolation error can be obtained as follows:

$$\|\eta(x)\|_{L^{\infty}([0,L])} \le \frac{1}{8} \max_{0 \le A \le N-1} h_A^2 \|u''(\xi)\|_{L^{\infty}(]x_A, x_{A+1}[)}$$
(12)