Welding Technology ME692

Dr. Virkeshwar Kumar NL1-115R, Manufacturing Science Lab

Department of Mechanical Engineering IIT Kanpur

Email: virkeshwar@iitk.ac.in

Phone: 0512-259-2334

Thermal analysis in welding

Welding simulation

Welding simulation

Welding simulation

Source/Sink in Welding

Heat transfer with heat sources or sinks

Sources of constant heat production rate:

Point heat Source of Constant heat Production Rate

Consider a body of large extent posseriy
a very small region (point) that broduce
heat Continuously at a constant rate (Quet)

Given that body was initially maintains at T=T00

$$\frac{1}{y^{2}} \frac{3}{3y} \left(\begin{array}{c} y^{2} \frac{30}{3y} \end{array} \right) = \frac{1}{z} \frac{30}{3t} - 12$$

$$8.c. \quad y \rightarrow 0, \quad -4\pi y^{2} \times \frac{30}{3y} = Q \quad 2A$$

$$y \rightarrow 0, \quad 0 = 0 \quad -3A$$

$$7.c. \quad + = 0, \quad Q = 0, \quad -4A$$

$$\therefore \quad U = y \left(T - T_{\infty} \right) = y O$$

$$\frac{\partial f}{\partial h} = \frac{\partial f}{\partial h} - \frac{\partial f}{\partial h}$$

$$\left(\frac{30}{34} = \frac{1}{7} \frac{34}{34} - 5A\right)$$

$$\frac{20}{38} = \frac{1}{8} \left(\frac{34}{38} - 0 \right)$$

$$\frac{\partial^2 u}{\partial u} = 2 \frac{\partial^2 u}{\partial u} + \frac{\partial u}{\partial u}$$

$$\frac{\partial^{2} y}{\partial x^{2}} = \frac{1}{2} \frac{\partial y}{\partial +} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial +} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = \frac{\partial y$$

$$A = \frac{Q}{\sqrt{11}K}$$

$$B = -\frac{Q}{\sqrt{11}K}$$

Consider a body of large extent brokering a small region (point) that explosed Eo energy at t =0 at centre.

- John of body 2 it is independent of time.
- -> Due to Diffusion

B.C.
$$\gamma \rightarrow \infty$$
, $T \rightarrow T_{\infty}$

Condition: - Energy Balance

Condition: - Energy Balance

$$0 = T - T_{\infty}$$

$$\frac{1}{\sqrt{2}} \frac{3}{\sqrt{3}} \left(\sqrt{2} \frac{30}{\sqrt{3}} \right) = \frac{1}{\sqrt{3}} \frac{30}{\sqrt{4}} - \frac{14}{\sqrt{4}}$$

$$\int_{0}^{\infty} 4\pi r^{2} \rho \varphi \ 0 \ dr = E_{0} - \frac{24}{\sqrt{4}}$$

$$7 + \infty, \quad 0 = 0, \quad -\frac{3}{\sqrt{4}}$$

$$4 = 0, \quad 0 = 0, \quad -\frac{4}{\sqrt{4}}$$

$$4 = 70 = 7(T - T_{\infty})$$

$$\frac{\partial^{4}}{\partial t} = \sqrt[8]{\frac{\partial^{6}}{\partial t}} \qquad \boxed{D} \qquad \boxed{D}$$

$$\frac{3y}{3y} = \frac{3y}{30} + 0 - 6$$
 $\frac{3y}{30} = \frac{1}{12} \left(\frac{3y}{4} - 0 \right) - 6A$

$$\frac{\partial^2 y}{\partial r^2} = y \frac{\partial^2 0}{\partial r^2} + 2 \frac{\partial 0}{\partial r} - (7)$$

$$\frac{1}{8^{2}} \frac{1}{3^{2}} \left(\frac{x_{30}^{20}}{3^{2}} \right) = \frac{1}{2} \frac{30}{34}$$

$$\frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \left(\frac{x_{30}^{20}}{3^{2}} \right) = \frac{1}{2} \frac{30}{34}$$

$$\frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}}$$

$$\frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}}$$

$$\frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}} \frac{1}{3^{2}}$$

$$\frac$$

$$U = A + B ert (n)$$

$$= A + B$$

$$e^{q^{4}} \underbrace{Q} \quad 4 \pi P C_{P} \int_{Q} 4 r dr = E_{Q}$$

$$U = U^{2} = \frac{BY}{2 \sqrt{\pi} |x|^{3} / 2} e^{\chi P} \left(\frac{-Y^{2}}{4 \times 4} \right) - (Y)$$

$$4 \pi P C_{P} \int_{Q} \frac{-BY}{2 \sqrt{\pi} |x|^{3} / 2} e^{\chi P} \left(\frac{-Y^{2}}{4 \times 4} \right) Y dY = E_{Q}$$

$$Z = \frac{Y^{2}}{4 \times 4} \qquad 2 z dz = \frac{2Y dY}{4 \times 4}$$

$$Z = \frac{Y}{\sqrt{4 \times 4}} \qquad 4z = \frac{dY}{\sqrt{4 \times 4}}$$

$$\int_{0}^{\infty} \frac{-2BY^{2}}{(4x+)\sqrt{11x}} exp(-2^{2}) dY = \frac{E_{0}}{417PC_{p}}$$

$$\int_{0}^{\infty} \frac{-2BY^{2}}{(4x+)\sqrt{11x}} exp(-2^{2}) dY = \frac{E_{0}}{417PC_{p}}$$

$$= \frac{E_{0}}{417PC_{p}}$$

$$\int_{0}^{\infty} \frac{-2BY^{2}}{(4x+)\sqrt{11x}} exp(-2^{2}) dY = \frac{E_{0}}{417PC_{p}}$$

$$-\frac{4B}{\sqrt{11}} \int_{0}^{\infty} Z^{2} e^{x\varphi(-Z^{2})} dZ = \frac{E_{0}}{\sqrt{11}} \int_{0}^{\infty} Z^{2} = W \cdot 1 Z = \int_{0}^{\infty} W \cdot 1 Z = \int_{0}^{\infty}$$

$$y^{1} \frac{\partial^{2}}{\partial x^{2}} = \frac{E_{0}}{\sqrt{\pi}} \int_{A}^{3} \frac{1}{\sqrt{\pi}} \int_{A}^{3$$

$$T = T_{\infty} + \frac{\varepsilon_0}{8 \left(T_{\infty} + \right)^{3/2} P(\rho)} \exp \left(\frac{-x^2}{4\alpha +} \right)$$

Assumil

$$C = \frac{T - T_{00}}{T_{c} - T_{00}}$$

Mon-dimergional temp.

Te= Reference temp.

Te= Tm= melting boint

$$T = T_{\infty} + \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$T - T_{\infty} = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$T_{\varepsilon} = T_{\infty}$$

$$T_{\varepsilon} = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$U = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} \left(T_{\varepsilon} - T_{\infty}\right) e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$U = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} \left(T_{\varepsilon} - T_{\infty}\right) e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$U = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} \left(T_{\varepsilon} - T_{\infty}\right) e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$U = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} \left(T_{\varepsilon} - T_{\infty}\right) e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$U = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} \left(T_{\varepsilon} - T_{\infty}\right) e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$U = \frac{\varepsilon_{0}}{4 \beta(\rho (\pi \alpha +)^{3})^{2}} \left(T_{\varepsilon} - T_{\infty}\right) e^{x\rho} \left(-\frac{y^{2}}{4 \alpha +}\right)$$

$$0 = \frac{E_0}{4 DH \left(\frac{\pi \alpha + i}{t_i} \right)^{3/2}} e^{xp} \left(\frac{\pi \alpha + i}{t_i} \right)^{3/2} e^{x$$

		Fus	ion w	elding	: ther	mal a	nalysi	S
						0 = n	T emp (· (1)
	X_ti	sigma^2_0	sigma^2_0.25	sigma^2_0.5	sigma^2_0.75	sigma^2_1	sigma^2_1.5	sigma^2_2
	0.	31.622776	2.595756	0.213073	0.01749	0.001436	9.67348E-06	6.51794E-08
	0.2	11.1803398	3.203221	0.917738	0.262936	0.075333	0.006183671	0.000507587
	0.3	6.08580619	2.64488	1.14946	0.499553	0.217105	0.04100584	0.007745003
	0.4	3.95284707	2.115807	1.13251	0.606189	0.324469	0.092962053	0.026634074
	0.5	2.828427125	- 1.715528	1.04052	0.631107	0.382786	0.140819095	0.05180445
	0.6	2.151657415	1.41846	0.935106	0.61646	0.406396	0.176618796	0.076758212
	0.7	1.707469442	1.194669	0.835877	0.58484	0.409197	0.200318891	0.098064442
	0.8	1.397542486	1.022464	0.748051	0.547286	0.400403	0.214320082	0.114717273
	0.9	1.171213948	0.887154	0.671988	0.509007	0.385555	0.221213741	0.12692214
	1	1	0.778801	0.606531	0.472367	0.367879	0.22313016	0.135335283
	1.5	0.544331054	0.460766	0.39003	0.330153	0.279469	0.200248204	0.143484108
	2	0.353553391	0.31201	0.275348	0.242993	0.214441	0.167006796	0.130065024
	2.5	0.252982213	0.228908	0.207124	0.187414	0.169579	0.138839582	0.113672236
	3	0.19245009	0.177063	0.162905	0.14988	0.137897	0.11672688	0.098807171
	3.5	0.15272071	0.142193	0.13239	0.123264	0.114766	0.099488235	0.086244152
	4	0.125	0.117427	0.110312	0.103629	0.09735	0.08591116	0.075816332
	4.5	0.10475656	0.099095	0.09374	0.088675	0.083882	0.075061355	0.067167852
	5	0.089442719	0.085081	0.080931	0.076984	0.07323	0.066260796	0.059955248
- 1								

0.060046

0.048509

0.040239

0.034076

0.029338

0.068041382

0.053994925

0.044194174

0.037037037

0.031622777

9

10

0.065265

0.052101

0.042834

0.036022

0.030842

0.062601

0.050273

0.041517

0.035036

0.030081

0.057596

0.046807

0.039001

0.033142

0.028613

0.052990681

0.043580262

0.036638257

0.031351175

0.027217976

0.04875378

0.04057596

0.034418457

0.029656941

0.02589054

