

About mudskipper: mudskippers are amphibious fish, that use their pectoral fins and tail to walk on land and on mud.

Design: Use SolidWorks2022 to design mechanics.

Hardware

Hardware:

Part name	Qty.
LIPO Battery HeliCox Nano	1
KCD3 Rocker Switch	1
DC-DC Step Down Buck Converter	1
ESP-WROOM-32	1
MG996R Servo motor	6

Circuit diagram: Power the ESP32 and servo motor with the LIPO Battery HeliCox Nano.

- Step 1: As a circuit diagram, connect a switch to a LIPO Battery to power the ESP32 and servo motor.
- Step 2: Use a DC-DC Step Down Buck Converter to reduce the current from the LIPO Battery HeliCox Nano to 7.2A and the voltage to 5.5V.
- Step 3: Connect a signal and the GND of the servo motor to the ESP32, then connect to step 1 as shown.

ตารางบันทึกผลการทดลอง การปรับระยะความยาวของครีบอกและครีบหาง เพื่อบันทึกการเปลี่ยนแปลงของ ระยะทางที่เคลื่อนที่ในระยะเวลา 30 วินาที

รายการ		ระยะทางที่หุ่นยนต์ปลาตีนสามารถเคลื่อนที่ได้ในระยะเวลา 30 วินาที (cm)							
		ครั้งที่ 1 ครั้งที่ 2		ที่ 2	ครั้งที่ 3		ค่าเฉลี่ย		
		ระยะทาง	การกระจัด	ระยะทาง	การกระจัด	ระยะทาง	การกระจัด	ระยะทาง	การกระจัด
	ครีบหางปรับ step ที่1	407	381	313.3	304.8	335	311	351.77	332.27
ครีบอกปรับ step ที่1	ครีบหางปรับ step ที่2	313	311	327.5	317.5	327	301	322.50	309.83
	ครีบหางปรับ step ที่3	310.7	300	304	291	306	290	306.90	293.67
	ครีบหางปรับ step ที่1	333.5	320	333	316	311	298	325.83	311.33
ครีบอกปรับ step ที่2	ครีบหางปรับ step ที่2	304	292	304	290	285	272	297.67	284.67
	ครีบหางปรับ step ที่3	324.7	312	313	288	308	297.5	315.23	299.17
ครีบอกปรับ step ที่3	ครีบหางปรับ step ที่1	303	256	305	279	318	302	308.67	279.00
	ครีบหางปรับ step ที่2	313	297	338	321	313	296	321.33	304.67
	ครีบหางปรับ step ที่3	317.6	298.5	325.2	310.8	319.9	304.5	320.90	304.60

ตารางบันทึกผลการทดลองการเคลื่อนที่ในระยะเวลา 30 วินาที โดยปรับระยะความยาวของครีบอกและครีบหาง

กราฟแสดงผลการทดลอง

อภิปรายผลการทดลอง

เมื่อครีบอกอยู่ระดับที่1:

ครีบหางระดับที่ 1 ระยะทางเฉลี่ยเท่ากับ 351.77 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 332.27 เซนติเมตร ครีบหางระดับที่ 2 ระยะทางเฉลี่ยเท่ากับ 322.50 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 309.83 เซนติเมตร ครีบหางระดับที่ 3 ระยะทางเฉลี่ยเท่ากับ 306.90 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 293.67 เซนติเมตร เมื่อครีบอกอยู่ระดับที่ 2 :

ครีบหางระดับที่ 1 ระยะทางเฉลี่ยเท่ากับ 325.83 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 311.33 เซนติเมตร ครีบหางระดับที่ 2 ระยะทางเฉลี่ยเท่ากับ 297.67 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 284.67 เซนติเมตร ครีบหางระดับที่ 3 ระยะทางเฉลี่ยเท่ากับ 315.23 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 299.17 เซนติเมตร เมื่อครีบอกอยู่ระดับที่ 3 :

ครีบหางระดับที่1 ระยะทางเฉลี่ยเท่ากับ 308.67 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 279.00 เซนติเมตร ครีบหางระดับที่2 ระยะทางเฉลี่ยเท่ากับ 321.33 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 304.67 เซนติเมตร ครีบหางระดับที่3 ระยะทางเฉลี่ยเท่ากับ 320.90 เซนติเมตร การกระจัดเฉลี่ยเท่ากับ 304.60 เซนติเมตร

สรุปผลการทดลอง

จากข้อมูลข้างต้นแสดงให้เห็นว่าการปรับระยะความยาวของครีบอกและครีบหาง มีผลต่อระยะทางที่เคลื่อนที่ใน ระยะเวลา 30 วินาที โดยระยะทางที่เคลื่อนที่ได้จะมีค่าต่างกัน ตามการปรับระยะความยาวของครีบในแต่ละครั้ง และจากการ ทดลองสรุปผลได้ว่าในเวลาที่ 30 วินาทีเท่ากัน ระยะทางเฉลี่ยที่มากที่สุด คือ ครีบอกอยู่ระดับที่1 และครีบหางระดับที่1

ตารางบันทึกผลการทดลองการเปรียบเทียบลักษณะการเคลื่อนที่เข้าสู่จุดหมาย โดยการวัดค่า Displacement แบ่งเป็น 4 การทดลอง

โดยการหาค่า Displacement Index อ้างอิงจากสูตร

តូពី
$$Displacement = \frac{|\triangle x|}{\triangle s} \cdot \frac{|\triangle x|}{\parallel \triangle r \parallel}$$

∆x คือ ระยะที่กำหนด

∆s คือ Pathway ที่หุ่นยนต์เดินทางได้

$$\| \triangle \mathbf{r} \| = \sqrt{x^2 + y^2}$$

Displacement Index คือ ดัชนีวัดประสิทธิภาพในการเคลื่อนที่ของ หุ่นยนต์

1. หาค่า displacement แบบเคลื่อนที่โดยไม่ใช้หาง ในระยะทางที่กำหนดเท่ากับ 100 cm

บันทึกผลการทดลอง							
ระยะทางที่กำหนด		ระยะทางการเคลื่อนของหุ่นยนต์	Y	r	Displacement Index		
ระยะทาง 100 cm ไม่ใช้หาง	ครั้งที่ 1	100.800	1.00	100.005	0.992		
	ครั้งที่ 2	101.200	7.50	100.281	0.985		
	ครั้งที่ 3	101.500	9.40	100.441	0.981		
	ครั้งที่ 4	102.700	13.00	100.841	0.966		
	ครั้งที่ 5	100.600	1.00	100.005	0.994		
	ครั้งที่ 6	100.900	0.80	100.003	0.991		

ตารางบันทึกผลการทดลองหาค่า displacement แบบเคลื่อนที่โดยไม่ใช้หาง และระยะทางที่กำหนดเท่ากับ 100 cm

กราฟแสดงผล

อภิปรายผลการทดลอง : หาค่า displacement แบบเคลื่อนที่โดยไม่ใช้หาง ในระยะทางที่กำหนดเท่ากับ 100 cm

การทดลองครั้งที่ 1 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 100.80 cm, ค่า || r || = 100.005 cm, และค่า Displacement คือ 0.992 การทดลองครั้งที่ 2 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 101.20 cm, ค่า || r || = 100.218 cm, และค่า Displacement คือ 0.985 การทดลองครั้งที่ 3 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 101.50 cm, ค่า || r || = 100.441 cm, และค่า Displacement คือ 0.981 การทดลองครั้งที่ 4 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 102.70 cm, ค่า || r || = 100.841 cm, และค่า Displacement คือ 0.966 การทดลองครั้งที่ 5 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 100.60 cm, ค่า || r || = 100.005 cm, และค่า Displacement คือ 0.994 การทดลองครั้งที่ 6 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 100.90 cm, ค่า || r || = 100.003 cm, และค่า Displacement คือ 0.991

2. หาค่า displacement แบบเคลื่อนที่โดยใช้หาง และระยะทางที่กำหนดเท่ากับ 100 cm

บันทึกผลการทดลอง							
ระยะทางที่กำหนด		ระยะทางการเคลื่อนของหุ่นยนต์	Y	r	Displacement Index		
ระยะทาง 100 cm ใช้หาง	ครั้งที่ 1	104.600	23.00	102.611	0.932		
	ครั้งที่ 2	104.000	19.80	101.941	0.943		
	ครั้งที่ 3	102.700	15.50	101.194	0.962		
	ครั้งที่ 4	102.000	12.90	100.829	0.972		
	ครั้งที่ 5	101.400	4.80	100.115	0.985		
	ครั้งที่ 6	101.200	7.00	100.245	0.986		

ตารางบันทึกผลการทดลองหาค่า displacement แบบเคลื่อนที่โดยใช้หาง และระยะทางที่กำหนดเท่ากับ 100 cm

กราฟแสดงผล

อภิปรายผลการทดลอง : หาค่า displacement แบบเคลื่อนที่โดยใช้หาง ในระยะทางที่กำหนดเท่ากับ 100 cm

การทดลองครั้งที่ 1 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 104.60 cm, ค่า || r || = 102.611 cm, และค่า Displacement คือ 0.932 การทดลองครั้งที่ 2 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 104.00 cm, ค่า || r || = 101.941 cm, และค่า Displacement คือ 0.943 การทดลองครั้งที่ 3 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 102.70 cm, ค่า || r || = 101.194 cm, และค่า Displacement คือ 0.962 การทดลองครั้งที่ 4 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 102.00 cm, ค่า || r || = 100.829 cm, และค่า Displacement คือ 0.972 การทดลองครั้งที่ 5 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 101.40 cm, ค่า || r || = 100.115 cm, และค่า Displacement คือ 0.985 การทดลองครั้งที่ 6 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 101.20 cm, ค่า || r || = 100.245 cm, และค่า Displacement คือ 0.986

สรุปผลการทดลอง

จากการทดลองหาค่า displacement แบบเคลื่อนที่โดยใช้หาง ในระยะทาง 100 cm เห็นได้ว่าระยะทางที่หุ่นยนต์ เคลื่อนที่ (Pathway) และค่า $\parallel r \parallel$ ที่คำนวณได้ในแต่ละครั้งของการทดลองมีค่าความห่างกันมากสุด 1.859 cm และค่า displacement คือ 0.966 ในขณะที่การทดลองที่มีค่าความห่างกันน้อยที่สุดประมาณ 0.595 cm และค่า displacement คือ 0.994

เมื่อเปรียบเทียบกับการทดลองหาค่า displacement แบบเคลื่อนที่โดยใช้หาง ในระยะทาง 100 cm เท่ากัน ระยะทางที่ หุ่นยนต์เคลื่อนที่ (Pathway) และค่า || r || ที่คำนวณได้ในแต่ละครั้งของการทดลองมีค่าความห่างกันมากสุด 2.059 cm และค่า displacement คือ 0.932 ในขณะที่การทดลองที่มีค่าความห่างกันน้อยที่สุดประมาณ 0.955 cm และค่า displacement คือ 0.986

3. หาค่า displacement แบบเคลื่อนที่โดยไม่ใช้หาง และระยะทางที่กำหนดเท่ากับ 200 cm

บันทึกผลการทดลอง							
ระยะทางที่กำหนด		ระยะทางการเคลื่อนของหุ่นยนต์	Y	r	Displacement Index		
ระยะทาง 200 cm ไม่ใช้หาง	ครั้งที่ 1	206.500	25.50	201.619	0.961		
	ครั้งที่ 2	208.200	33.70	202.819	0.947		
	ครั้งที่ 3	206.500	24.00	201.435	0.962		
	ครั้งที่ 4	205.000	27.00	201.814	0.967		
	ครั้งที่ 5	206.800	23.20	201.341	0.961		
	ครั้งที่ 6	203.900	14.50	200.525	0.978		

ตารางบันทึกผลการทดลองหาค่า displacement แบบเคลื่อนที่โดยไม่ใช้หาง และระยะทางที่กำหนดเท่ากับ 200 cm

กราฟแสดงผล

อภิปรายผลการทดลอง : หาค่า displacement แบบเคลื่อนที่โดยไม่ใช้หาง ในระยะทางที่กำหนดเท่ากับ 200 cm

การทดลองครั้งที่ 1 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 206.50 cm, ค่า || r || = 201.619 cm, และค่า Displacement คือ 0.961 การทดลองครั้งที่ 2 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 208.20 cm, ค่า || r || = 202.819 cm, และค่า Displacement คือ 0.947 การทดลองครั้งที่ 3 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 206.50 cm, ค่า || r || = 201.435 cm, และค่า Displacement คือ 0.962 การทดลองครั้งที่ 4 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 205.00 cm, ค่า || r || = 201.814 cm, และค่า Displacement คือ 0.967 การทดลองครั้งที่ 5 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 206.80 cm, ค่า || r || = 201.341 cm, และค่า Displacement คือ 0.961 การทดลองครั้งที่ 6 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 203.90 cm, ค่า || r || = 200.525 cm, และค่า Displacement คือ 0.978

4. หาค่า displacement แบบเคลื่อนที่โดยใช้หาง และระยะทางที่กำหนดเท่ากับ 200 cm

บันทึกผลการทดลอง							
ระยะทางที่กำหนด		ระยะทางการเคลื่อนของหุ่นยนต์	Y	r	Displacement Index		
ระยะทาง 200 cm ใช้หาง	ครั้งที่ 1	204.000	14.40	200.518	0.978		
	ครั้งที่ 2	203.000	9.00	200.202	0.984		
	ครั้งที่ 3	203.300	4.30	200.046	0.984		
	ครั้งที่ 4	204.500	2.50	200.016	0.978		
	ครั้งที่ 5	205.200	28.30	201.992	0.965		
	ครั้งที่ 6	209.700	49.00	205.915	0.926		

ตารางบันทึกผลการทดลองหาค่า displacement แบบเคลื่อนที่โดยใช้หาง และระยะทางที่กำหนดเท่ากับ 200 cm

กราฟแสดงผล

อภิปรายผลการทดลอง : หาค่า displacement แบบเคลื่อนที่โดยใช้หาง ในระยะทางที่กำหนดเท่ากับ 200 cm

การทดลองครั้งที่ 1 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 204.00 cm, ค่า || r || = 200.518 cm, และค่า Displacement คือ 0.978 การทดลองครั้งที่ 2 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 203.00 cm, ค่า || r || = 200.202 cm, และค่า Displacement คือ 0.984 การทดลองครั้งที่ 3 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 203.30 cm, ค่า || r || = 200.046 cm, และค่า Displacement คือ 0.984 การทดลองครั้งที่ 4 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 204.50 cm, ค่า || r || = 200.016 cm, และค่า Displacement คือ 0.978 การทดลองครั้งที่ 5 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 205.20 cm, ค่า || r || = 201.992 cm, และค่า Displacement คือ 0.965 การทดลองครั้งที่ 6 : ระยะทางที่หุ่นยนต์เคลื่อนที่ = 209.70 cm, ค่า || r || = 205.915 cm, และค่า Displacement คือ 0.926

สรุปผลการทดลอง

จากการทดลองหาค่า displacement แบบเคลื่อนที่โดยไม่ใช้หาง ในระยะทาง 200 cm เห็นได้ว่าระยะทางที่หุ่นยนต์ เคลื่อนที่ (Pathway) และค่า $\parallel r \parallel$ ที่คำนวณได้ในแต่ละครั้งของการทดลองมีค่าความห่างกันมากสุด 1.859 cm และค่า displacement คือ 0.966 ในขณะที่การทดลองที่มีค่าความห่างกันน้อยที่สุดประมาณ 0.595 cm และค่า displacement คือ 0.994

เมื่อเปรียบเทียบกับการทดลองหาค่า displacement แบบเคลื่อนที่โดยใช้หาง ในระยะทาง 200 cm เท่ากัน ระยะทางที่ หุ่นยนต์เคลื่อนที่ (Pathway) และค่า || r || ที่คำนวณได้ในแต่ละครั้งของการทดลองมีค่าความห่างกันมากสุด 3.785 cm และค่า displacement คือ 0.926 ในขณะที่การทดลองที่มีค่าความห่างกันน้อยที่สุดประมาณ 2.798 cm และค่า displacement คือ 0.984

กราฟเปรียบเทียบค่า displacement ระหว่างใช้หางและไม่ใช้หางในระยะ 100 cm และ 200 cm

จากกราฟ การเปรียบเทียบ Displacement Index ของการเคลื่อนที่ 100 cm การเคลื่อนที่ไม่ใช้หางมีค่า Displacement Index ที่ดีกว่าการเคลื่อนที่ที่ใช้หางช่วย ในการกราฟการเทียบเทียบ Displacement Index ของการเคลื่อนที่ 200 cm การเคลื่อนที่ที่ใช้หางช่วยมีค่า Displacement Index ที่ดีกว่าการเคลื่อนที่ที่ไม่ใช้หาง

ปัญหาที่พบ :

การเปลี่ยนระดับครีบหางและครีบอก

จากผลการสรุปการทดลองการเปลี่ยนระดับครีบหางและครีบอก ตามทฤษฎีแล้ว ถ้าเพิ่มระยะของครีบอกหรือครีบหาง จะทำให้ระยะการเคลื่อนเพิ่มขึ้น เนื่องจากพื้นที่หน้าสัมผัสกับพื้นมากขึ้น แต่จากการทดลองไม่เป็นไปตามทฤษฎีอาจเป็นเพราะมี ปัจจัยอื่นมาเกี่ยวข้องในการเคลื่อนที่ เช่น พื้นผิวในการทดสอบ, สมดุลของหุ่นขณะเคลื่อนที่เมื่อขยายครีบ, แรงกระแทกกับพื้นเมื่อ หุ่นเคลื่อนที่ ทำให้ทิศทางการเคลื่อนที่เปลี่ยนแปลงจากเดิม

การวัดค่า Displacement

จากการทดลองการวัดค่า Displacement ในระยะ 100 cm และ 200 cm วิธีการบันทึกระยะทางการเคลื่อนที่ของ หุ่นยนต์ไม่เสถียร

ข้อเสนอแนะ :

การเปลี่ยนระดับครีบหางและครีบอก

1.ควรเพิ่มตัวแปรควบคุมในการทดลอง เช่น ชนิดพื้นผิวในการทดลองให้มีความหลากหลายมากขึ้น

2.ควรทดลองเปลี่ยนวัสดุที่ทำครีบเพื่อการเคลื่อนที่ที่ดีขึ้น โดยมีแรงบันดาลจากปลาตีนมากขึ้นอีก

3.เพิ่มเซ็นเซอร์ในการรับรู้สภาพแวดล้อม เพื่อให้การเคลื่อนที่มีประสิทธิภาพมากขึ้น

การวัดค่า Displacement

1.ควรมีวิธีการในการบันทึกการเคลื่อนที่ของหุ่นยนต์ที่ไม่ส่งผลต่อการเคลื่อนที่ของหุ่นยนต์เอง