Homework II: Directed Graphs

Figure 1: A directed graph.

Consider the graph shown in Figure 1:		
1.	Write down the edge set of the graph:	
2.	Who are the out-neighbors of node <i>A</i> ?	
3.	Who are the in-neighbors of node <i>D</i> ?	
4.	What is the intersection of the out-neighborhoods of nodes <i>D</i> and <i>A</i> ?	
5.	What is the intersection of the in-neighborhoods of nodes <i>D</i> and <i>F</i> ?	
6.	What is the union of the out-neighborhoods of nodes <i>E</i> and <i>A</i> ?	
7.	What is the union of the in-neighborhoods of nodes <i>D</i> and <i>F</i> ?	
8.	What is the out-degree of node <i>E</i> ?	
9.	What is the in-degree of node <i>D</i> ?	
10.	What is(are) the node(s) with the largest out-degree ?	

11.	What is(are) the node(s) with the largest in-degree ?
12.	What is(are) the node(s) with the smallest out-degree ?
13.	What is(are) the node(s) with the smallest in-degree ?
14.	Which is(are) the receiver node(s) in the graph?
15.	Which is(are) the transmitter node(s) in the graph?
16.	Write down the set of mutual dyads in the graph:
17.	What type of dyad is formed by the subgraph containing nodes <i>C</i> and <i>F</i> ?
18.	What type of dyad is formed by the subgraph containing nodes <i>B</i> and <i>C</i> ?
19.	What type of \mathbf{dyad} is formed by the subgraph containing nodes E and I ?

20.	How many mutual dyads are there in the graph?