

# GPU



# Architectures

Francesco Andreucci SISSA

ICTP CIFRA Magurele School,
3/07/2025







LIGHTHOUSE CODES



DOMAIN EXPERTS & CODE DEVELOPERS



HPC EXPERTS & DATA CENTRES







cea















MAX coordination and management: Cnr - Modena, Italy

## Why GPUs?



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

## Why GPUs?



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

## Dennard scaling ('70/~05)



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

#### **Dennard Scaling:**

- Shrink transistor and decrease voltage
- -) Increase frequency
- -) Power density stays constant!

Moore law: The number of transistor per chip doubles every 2 yrs

## Dennard scaling ('70/~05)



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

#### **Dennard Scaling:**

- Shrink transistor and decrease voltage
- -) Increase frequency
- -) Power density stays constant!

Moore law: The number of transistor per chip doubles every 2 yrs

## Dennard scaling ('70/~05): constant E

- Model the transistor as an RC circuit kept at voltage V:
- $P = a * (CV^2) * f$



## Dennard scaling ('70/~05)



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

#### **Dennard Scaling:**

- Shrink transistor and decrease voltage
- -) Increase frequency
- -) Power density stays constant!

Moore law: The number of transistor per chip doubles every 2 yrs

Free lunch!

## The power wall



- When the voltage becomes too small the transistor is not reliable anymore
- 2. Scaling at fixed voltage yields an increase in power density
- We cannot increase frequency as before!

#### The power wall



When the voltage becomes too small the transistor is not reliable anymore

2. Scaling at

No more free lunch!

power density

3. We cannot

## Dennard scaling ('70/~05): constant V

• The transistor has capacitance C, resistance R, and is kept at voltage V:

• 
$$P = a * (CV^2) * f$$



#### So what?



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

#### More parallel:

Multicore CPUs

(but still at most 10<sup>2</sup>)

#### More smart:

- 1. ILP, vectorization, Branch predictor
- 2. Specialized units:
   (AES-NI)

#### More throttled:

Not all transistor are active at the same time (Dark silicon)

## Origins of GPU massive parallelism

GPUs were introduced in the 90s for 3D rendering

- On each point (~10^6) you apply ops (linear algebra) independently from other points
- Each op is independent on the others and they are performed in parallel at the same time



Large number of threads to process the data concurrently: order of processing is not important!

#### GPUs vs CPUs over the years



http://arxiv.org/pdf/1911.11313

#### Energy consumption (Perlmutter, 2023)



https://blogs.nvidia.com/blog/gpu-energy-efficiency-nersc/

## Top500: then (2009)....no GPUs

| Rank | System                                                                                                                                                      | Cores   | Rmax<br>(TFlop/s) | Rpeak<br>(TFlop/s) | Power<br>(kW) |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--------------------|---------------|
| 1    | Jaguar - Cray XT5-HE Opteron 6-core 2.6<br>GHz, Cray/HPE<br>DOE/SC/Oak Ridge National Laboratory<br>United States                                           | 224,162 | 1,759.00          | 2,331.00           | 6,950         |
| 2    | Roadrunner - BladeCenter QS22/LS21<br>Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC<br>1.8 GHz, Voltaire Infiniband, IBM<br>DOE/NNSA/LANL<br>United States    | 122,400 | 1,042.00          | 1,375.78           | 2,345         |
| 3    | Kraken XT5 - Cray XT5-HE Opteron 6-core<br>2.6 GHz, Cray/HPE<br>National Institute for Computational<br>Sciences/University of Tennessee<br>United States   | 98,928  | 831.70            | 1,028.85           | 3,090         |
| 4    | JUGENE - Blue Gene/P Solution, IBM Forschungszentrum Juelich (FZJ) Germany                                                                                  | 294,912 | 825.50            | 1,002.70           | 2,268         |
| 5    | Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/<br>E5450, ATI Radeon HD 4870 2, Infiniband,<br>NUDT<br>National SuperComputer Center in Tianjin/<br>NUDT<br>China | 71,680  | 563.10            | 1,206.19           |               |

| 6  | Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0<br>GHz/Nehalem EP 2.93 Ghz, HPE<br>NASA/Ames Research Center/NAS<br>United States                                   | 56,320  | 544.30 | 673.26 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|
| 7  | BlueGene/L - eServer Blue Gene Solution, IBM DOE/NNSA/LLNL United States                                                                                         | 212,992 | 478.20 | 596.38 |
| 8  | Intrepid - Blue Gene/P Solution, IBM<br>DOE/SC/Argonne National Laboratory<br>United States                                                                      | 163,840 | 458.61 | 557.06 |
| 9  | Ranger - SunBlade x6420, Opteron QC 2.3<br>Ghz, Infiniband, Oracle<br>Texas Advanced Computing Center/Univ. of<br>Texas<br>United States                         | 62,976  | 433.20 | 579.38 |
| 10 | Red Sky - Sun Blade x6275, Xeon X55xx 2.93<br>Ghz, Infiniband, Oracle<br>Sandia National Laboratories / National<br>Renewable Energy Laboratory<br>United States | 41,616  | 423.90 | 487.74 |

## Top500: ...and now (2025)

| Rank | System                                                                                                                                                                                      | Cores      | Rmax<br>(PFlop/s)    | Rpeak<br>(PFlop/s) | Power<br>(kW) | 6  | HPC6 - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL 8.9, HPE Eni S.p.A. Italy  Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu | 3,143,520 | 477.90 | 606.97 | 8,461  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|--------------------|---------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|--------|
| 1    | El Capitan - HPE Cray EX255a, AMD 4th<br>Gen EPYC 24C 1.8GHz, AMD Instinct<br>MI300A, Slingshot-11, TOSS, HPE                                                                               | 11,039,616 | 1,742.00             | 2,746.38           | 29,581        |    |                                                                                                                                                                                                                                    | AMD       |        |        |        |
|      | DOE/NNSA/LLNL<br>United States                                                                                                                                                              | AM         | DA                   |                    |               | 7  |                                                                                                                                                                                                                                    | 7,630,848 | 442.01 | 537.21 | 29,899 |
| 2    | Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE                                                                              | 9,066,176  | 1,353.00             | 2,055.72           | 24,607        |    | RIKEN Center for Computational Science Japan  Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.16Hz, NVIDIA GH200 Superchip, Slingshot-11, HPE Cray OS, HPE Swiss National Supercomputing Centre                                         |           |        |        |        |
|      | Cray OS, HPE<br>DOE/SC/Oak Ridge National Laboratory<br>United States                                                                                                                       | AM         | DΠ                   |                    |               | 8  |                                                                                                                                                                                                                                    | 2,121,600 | 434.90 | 574.84 | 7,124  |
| 3    | <b>Aurora</b> - HPE Cray EX - Intel Exascale<br>Compute Blade, Xeon CPU Max 9470 52C                                                                                                        | 9,264,128  | 1,012.00             | 1,980.01           | 38,698        |    | (CSCS) Switzerland  9 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland                                                                               | NVIDI     | Α      |        |        |
|      | 2.4GHz, Intel Data Center GPU Max,<br>Slingshot-11, Intel<br>DOE/SC/Argonne National Laboratory<br>United States                                                                            | int        | el.                  |                    |               | 9  |                                                                                                                                                                                                                                    | 2,752,704 | 379.70 | 531.51 | 7,107  |
| 4    | JUPITER Booster - BullSequana XH3000,<br>GH Superchip 72C 3GHz, NVIDIA GH200<br>Superchip, Quad-Rail NVIDIA InfiniBand<br>NDR200, RedHat Enterprise Linux, EVIDEN<br>EuroHPC/FZJ<br>Germany | 4,801,344  | 793.40<br><b>DIA</b> | 930.00             | 13,088        | 10 | Leonardo - BullSequana XH2000, Xeon<br>Platinum 8358 32C 2.6GHz, NVIDIA A100<br>SXM4 64 GB, Quad-rail NVIDIA HDR100<br>Infiniband, EVIDEN<br>EuroHPC/CINECA<br>Italy                                                               | 1,824,768 | 241.20 | 306.31 | 7,494  |

#### CPU vs GPU



#### GPU architecture



#### SMs over the years





#### Levels of parallelism on the GPU

## Software Hardware Scalar Thread Processor Thread Multiprocessor Block

Device

Grid

Threads are executed by scalar processor

Thread blocks are executed by SM

Thread block do not migrate

Several blocks share the resources of the SM

A Kernel is launched spawning a **grid** of thread blocks

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

#### Memory structure





- Registers (fast up to availability)
  - Limited num. registers available per block
- Shared Memory: per-block
  - Shared by threads of the same block
  - Fast inter-thread communication
- Global Memory: per-application
  - Shared by all threads
  - Inter-Grid communication



#### Coalesced access

Global memory access can only happen in transactions of 32/128B (The hardware will try to request as few transactions as possible)

Example: assume the warp needs 32 integers (4 bytes each)





The data are scattered on the global memory: 32\*128 bytes loaded but 128 needed (at worst)

The data are contiguous on the global memory: 128 bytes loaded and 128 needed

Another possibility is loading the data on the shared memory !

#### Warps



- Blocks are processed in units of 32 threads, called Warps
- SM executes warps coming from different blocks
- Warps are executed in a SIMD-like fashion:
  - -) All threads execute the same instruction
  - -) If one thread stalls, all 32 stall (and another warp is scheduled)

#### Warps: context switch

On the CPU for the OS is very expensive to swap threads (saving state of the current thread+restoring another one)

On the GPU the scheduler can switch warps with very little overhead (resources are all inside the SM) Thread 2 Thread 3 Thread 1 **CPU** time Context switch Warp 1 Waiting for data **GPU** Warp 2 Warp 3 Data arrives from

memory

#### Warps: SIMD vs SIMT

#### Single Instruction Multiple Data:

• Vector instruction:same instruction on contiguous data

## Single Instruction Multiple Threads:

 Hardware enables parallel scalar instructions on not necessarily contiguous data



#### GPU-CPU interconnection (Leonardo numbers)



#### What do we need to use a GPU?





#### What do we get?

#### **NVIDIA HPC SDK**







https://developer.nvidia.com/hpc-sdk

There is also a python CUDA implementation: <a href="https://cupy.dev/">https://cupy.dev/</a>

## How write a code that exploits a GPU

#### Your application

Libraries (cuFFT...)

Directives (openACC/MP) Programming languages (CUDA, HIP)

Replace functions Guaranteed perf Fixed interface Custom code Portable Compiler helps High flexibility
Max perf
"Low" level

**Effort** 

#### Basics of CUDA (Compute Unified Device Architecture)

- Computation partitioning:
  - On definition: \_\_host\_\_ \_global\_\_ \_device\_\_

|             | host | device | global |
|-------------|------|--------|--------|
| Called from | СРИ  | GPU    | СРИ    |
| Executed on | СРИ  | GPU    | GPU    |

- Data management, copy from/to device/host:
  - cudaMemcpy(h\_data, d\_data, size, CudaMemcpyDeviceToHost)
- ...and much more (asynchronous programming.....)

#### Minimal (trivial) CUDA code example

```
__global__ void sum (int a, int b, int *sum) { *sum=a+b}
int main(){
    int *dev_sum, h_sum;
    cudaMalloc(&dev_sum, sizeof(int));
    sum<<<1,1>>>(1,2,dev_sum);
    cudaMemcpy(&h_sum, dev_sum, cudaMemcpyDeviceToHost);
    printf("%d\n", h_sum);
    cudaFree(dev_sum);
```

- Save the file with .cu extension
- Compile: nvcc test.cu Run: ./a.out

## Example of Cuda C code

```
int main(){
  int dim; int s=sizeof(int)*dim
  int * h_a = (int *) malloc(h_a,s);
  int * h_b = (int *) malloc(h_b,s);
  int * h_c = (int *) malloc(h_c,s);
  int *d_a, *d_b, *d_c;
 for(int i=0; i<dim;i++){
     h_a[i]=1; h_b[i]=2;
  cudaMalloc((void **)&d_a,s);
  cudaMalloc((void **)&d_b,s);
  cudaMalloc((void **)&d_c,s);
  cudaMemCpy(d_a, h_a, s, CudaMemcpyHostToDevice)
  cudaMemCpy(d_b, h_b, s, CudaMemcpyHostToDevice)
  add<<1,1>>(d_a,d_b,d_c,dim);
  cudaMemCpy(h_c,d_c,s,CudaMemcpyDeviceToHost)
  free(h_a); free(h_b); free(h_c);
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
```

```
int main(){
 int dim; int s=sizeof(int)*dim
 int * h_a = (int *) malloc(h_a,s);
 int * h_b = (int *) malloc(h_b,s);
 int * h_c = (int *) malloc(h_c,s);
 for(int i=0; i<dim;i++){
     h_a[i]=1; h_b[i]=2;
 for(int i=0; i<dim;i++){</pre>
     h_c[i]=h_a[i]+h_b[i];
 free(h_a); free(h_b); free(h_c);
```

#### Kernel calling syntax

myKernel <<<grid size, block size>>> (args)



grid\_size: number of blocks along x,y,z

block\_size:number of threads along x,y,z

e.g: grid\_size-->(3,2) block\_size-->(5,3)

Typically one uses the CUDA structure Dim3 to set the grid and block size

If grid and block are integers, then the runtime generates a 1d grid composed of 1d blocks

#### Kernel calling syntax

myKernel <<<grid size, block size>>> (args)



grid\_size: number of blocks along x,y,z
block\_size:number of threads along x,y,z

e.g: grid\_size=(3,2) block\_size=(5,3)

Each thread and block is identified by three indices:

(threadIdx.x, threadIdx.y, threadIdx.z)

(blockIdx.x, blockIdx.y, blockIdx.z)

#### Block execution



## Example of Cuda C code

```
int main(){
  int dim; int s=sizeof(int)*dim
  int * h_a = (int *) malloc(h_a,s);
  int * h_b = (int *) malloc(h_b,s);
  int * h_c = (int *) malloc(h_c,s);
  int *d_a, *d_b, *d_c;
 for(int i=0; i<dim;i++){
     h_a[i]=1; h_b[i]=2;
  cudaMalloc((void **)&d_a,s);
  cudaMalloc((void **)&d_b,s);
  cudaMalloc((void **)&d_c,s);
  cudaMemCpy(d_a.h_a.s.CudaMemcpyHostToDevice)
  cudaMemcpy(d_b,h_b,s,CudaMemcpyHostToDevice)
 add<<1,1>>(l_a,d_b,d_c,dim);
    (h_c,d_c,s,CudaMemcpyDeviceToHost)
  free(h_a); free(h_b); free(h_c);
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
```

```
int main(){
 int dim; int s=sizeof(int)*dim
 int * h_a = (int *) malloc(h_a,s);
 int * h_b = (int *) malloc(h_b,s);
 int * h_c = (int *) malloc(h_c,s);
 for(int i=0; i<dim;i++){
     h_a[i]=1; h_b[i]=2;
 for(int i=0; i<dim;i++){</pre>
     h_c[i]=h_a[i]+h_b[i];
 free(h_a); free(h_b); free(h_c);
```

→ 1 block, 1 thd per block







Given M threads per block, a unique index is:

```
int idx = blockIdx.x * M + threadIdx.x
```



Given M threads per block, a unique index is:



Given M threads per block, a unique index is:

```
int idx = blockIdx.x * M + threadIdx.x
```

Multidimensional thread indexing follows the same spirit

## Thread Indexing: add kernel example

```
__global__ void add(int* A, int* B, int* C, int N)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < N)
        C[i] = A[i] + B[i];
}</pre>
```

# Blocks/threads parallelism

```
#define N 2048*2048
#define T 1024 //threads per block
int main(){
  int dim; int s=sizeof(int)*dim
  int * h_a = (int *) malloc(h_a,s);
  int * h_b = (int *) malloc(h_b,s);
  int * h_c = (int *) malloc(h_c,s);
  int *d_a, *d_b, *d_c;
  for(int i=0; i<dim;i++){</pre>
     h_a[i]=1; h_b[i]=2;
  cudaMalloc((void **)&d_a,s);
  cudaMalloc((void **)&d_b,s);
  cudaMalloc((void **)&d_c,s);
  cudaMemCpy(d_a, h_a, s, CudaMemcpyHostToDevice)
  cudaMemCpy(d_b, h_b, s, CudaMemcpyHostToDevice)
  add<<(int)ceil(N/T),T>>(d_a,d_b,d_c,dim);
  cudaMemCpy(h_c,d_c,s,CudaMemcpyDeviceToHost)
  free(h_a); free(h_b); free(h_c);
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
```

- The max number of threads/block, blocks/grid...are codified in the compute capabilities (cc)
- Leonardo: A100 cc=80

## Blocks/threads parallelism

- Finding the number of blocks/threads to maximize the GPU occupancy is not easy
- Threads are executed in warps, following the .x direction
- If the number of threads per block is not multiple of 32, a
   partially empty warp will be scheduled, hurting performance

```
Device 0 has compute capability 8.0.

Device 0 has maxThreadsPerBlock 1024

Device 0 has warpSize 32

Device 0 has maxThreadsPerMultiProcessor 2048

Device 0 has maxThreadsDim[3] (1024,1024,64)

Device 0 has maxGridSize[3] (2147483647,65535,65535)
```

#### <u>CudaGetDeviceProperties</u>



#### Unified Virtual Address



Pageable Data Transfer



Pinned Data Transfer



- Unified shared virtual address space for host/device
- Enables zero-copy memory access (but requires pinned memory)
- When you copy data between host/device you don't need to specify the direction

## Unified Memory (pre Grace-Hopper)



- Managed memory accessible in the same way from host/device
- Data are automatically copied to CPU/GPU as needed (there is also a prefetching API)
- Easier programming, but your own implementation could be faster

## Unified memory: Grace-Hopper configuration



## Unified memory: Grace-Hopper configuration



## Half-precision data (FP16 since Pascal)

Format of Floating points IEEE754



- GPU support low precision types
- ML does not require full FP64 precision (LLM, Image recognition..)
- ...many more types over the years (int4, int8, fp4...)

....with half precision you move twice the variables using the same amount of bytes!

### Tensor cores and matrix operations

Matrix Multiplication: fundamental operation in DL





## Tensor cores and matrix operations



| Precision | Operation       | Energy per FLOP<br>(Matrix Multiply) |
|-----------|-----------------|--------------------------------------|
| FP64      | FMA             | 2.5x                                 |
| FP32      | FMA             | 1.0x                                 |
| FP16      | FMA             | 0.5x                                 |
| FP64      | Tensor Core MMA | 1.5x                                 |
| FP16      | Tensor Core MMA | 0.12x                                |
| FP8       | Tensor Core MMA | 0.06x                                |
| INT8      | Tensor Core MMA | 0.04x                                |
|           |                 |                                      |

# THANK YOU

FOR YOUR ATTENTION!