

Super-Sampling and Anti-Aliasing

Supersampling

We can approximate the effect of the 1-pixel box filter by sampling multiple locations within a pixel and averaging their values:

4x4 supersampling

Point Sampling: One Sample Per Pixel

Super-sampling: Step 1

Take NxN samples in each pixel.

2x2 supersampling

Supersampling: Step 2

Average the NxN samples "inside" each pixel.

Averaging down

Supersampling: Step 2

Average the NxN samples "inside" each pixel.

Averaging down

Supersampling: Step 2

Average the NxN samples "inside" each pixel.

Supersampling: Result

This is the corresponding signal emitted by the display

		75%		
	100%	100%	50%	
25%	50%	50%	50%	

raw sampling

4x4 up-sampling

Visibility / Occlusion

Painter's Algorithm

- Inspired by how painters paint
- Paint from back to front, overwrite in the framebuffer

[Wikipedia]

Painter's Algorithm

- Requires sorting in depth (O(n log n) for n triangles)
- Can have unresolvable depth order

Z-Buffer

- Idea:
 - Store current min. z-value for <u>each</u> sample (pixel)
- IMPORTANT: For simplicity we suppose
 z is always positive
 (smaller z -> closer, larger z -> further)

Z-Buffer Example

Rendering

Depth / Z buffer

Z-Buffer Algorithm

Initialize depth buffer to ∞

Z-Buffer Algorithm

