1 Sottospazi topologici

Definizione 1.1 (Topologia di sottospazio).

Sia X uno spazio topologico e $Y \subseteq X$.

La topologia indotta su Y detta topologia di sottospazio è la topologia meno fine che rende continua l'inclusione $i:X\hookrightarrow Y$

Osservazione 1. La definizione è ben posta perchè l'intersezione di topologie che rendono i continua è una topologia (meno fine) che rende i continua

Osservazione2. Sia τ_Y una topologia su Y

$$i \text{ continua } \Leftrightarrow U \cap Y = i^{-1}(U) \in \tau_Y \quad \forall U \in \tau_X$$

Proposizione 1.1. Sia $Y \subseteq X$ sottospazio topologico.

$$A \subseteq Y \ aperto \Leftrightarrow A = U \cap Y \ con \ U \subseteq X \ aperto$$

 $Dimostrazione. \Rightarrow i^{-1}(U) = U \cap Y = A$ e dalla continuità di i segue che A è aperto.

 \Rightarrow In modo ovvio si verifica che $\tau = \{U \cap Y \mid U \subseteq X \text{ aperto }\}$ è una topologia, tale topologia rende continua i.

Dalla definizione di topologia di sottospazio si ha $\tau_{ssp} < \tau$ dunque $\forall A \in \tau_{ssp}$ si ha $A \in \tau$ ovvero $A = U \cap Y$ con U aperto di X

Osservazione 3. Supponiamo $\mathfrak B$ base per la topologia su X.

Allora $\mathfrak{B}' = \{B \cap Y \mid B \in \mathfrak{B}\}$ è una base per la topologia di sottospazio su Y

Proposizione 1.2. Sia (X, d) metrico $e Y \subseteq X$.

Allora $(Y, d_{Y \times Y})$ é uno spazio metrico.

 $La\ topologia\ di\ sottospazio\ su\ Y\ coincide\ con\ la\ topologia\ indotta\ dalla\ restrizione\ della\ distanza.$

Definizione 1.2. Sia $Y \subseteq X$ sottospazio metrico.

Allora diciamo che Y è discreto se la topologia di sottospazio di Y è quella discreta.

In modo equivalente: $\forall y \in Y \quad \exists U \subseteq X \text{ aperto tale che } U \cap Y = \{y\}$

Proposizione 1.3 (Proprietà universale delle immersioni).

Sia $Y \subseteq X$ un sottospazio topologico, Z uno spazio topologico, $f: Z \to Y$ allora

f continua $\Leftrightarrow i \circ f$ continua

 $Dimostrazione. \Rightarrow$ la funzione i è continua per definizione, inoltre composizione di funzioni continue è continua da cui la tesi.

 \Leftarrow Sia $i \circ f$ continua.

Sia $A \subseteq Y$ un aperto allora $\exists U \subseteq X$ aperto tale che $A = U \cap Y$

$$f^{-1}(A) = f^{-1}(U \cap Y) = f^{-1}(i^{-1}(U)) = (i \circ f)^{-1}(U)$$

che è aperto per ipotesi

Il prossimo teorema ci fornisce il motivo per cui la propietà è detta universale

Teorema 1.4. La proprietà universale caratterizza in modo unico la topologia di sottospazio di $Y \subset X$.

Vale a dire:

La topologia di sottospazio è l'unica topologia si Y con la proprietà:

$$\forall Z \ spazio \ topologico \ \ \forall f: Z \rightarrow Y$$

$$f \ continua \Leftrightarrow i \circ f \ continua$$

Dimostrazione. Abbiamo dimostrato che la topologia di sottospazio verifica la proprietà universale dobbiamo provare che è unica.

Indichiamo con τ_X la topologia su X e con τ_{ssp} la topologia di sottospazio su Y.

Sia τ_Y una topologia su Y che verifica la proprietà universale, abbiamo dunque il seguente diagramma

$$(Z, \tau_Z) \xrightarrow{f} (Y, \tau_Y)$$

• Prendiamo $(Z, \tau_Z) = (Y, \tau_{ssp})$ e $f = Id_Y$ ottenendo

$$(Y, \tau_{ssp}) \xrightarrow{id_Y} (Y, \tau_Y)$$

Ora per definizione di topologia di sottospazio $i:(Y,\tau_{ssp})\hookrightarrow (X,\tau_X)$ è continua dunque $id_Y:(Y,\tau_{ssp})\to (Y,\tau_Y)$ è continua dunque $\tau_Y<\tau_{ssp}$

• Prendiamo $(Z, \tau_Z) = (Y, \tau_Y)$ e $f = Id_Y$ ottenendo

$$(Y, \tau_Y) \xrightarrow{id_Y} (X, \tau_X)$$

$$(Y, \tau_Y) \xrightarrow{id_Y} (Y, \tau_Y)$$

Ora $id_Y: (Y, \tau_Y) \to (Y, \tau_Y)$ è continua quindi per la proprietà universale risulta continua anche $i: (Y, \tau_Y) \hookrightarrow (X, \tau_X)$ dunque poiché τ_{ssp} è la meno fine topologia che rende continua l'inclusione sicuramente $\tau_{ssp} < \tau_Y$

Valgono entrambe le inclusione dunque $\tau_Y = \tau_{ssp}$

Possiamo dare una nuova definizione, equivalente alla precedente

Definizione 1.3. La topologia di sottospazio è l'unica topologia su Y con la prooietà universale

2 Applicazioni aperte e chiuse

Definizione 2.1. Sia $f: X \to Y$ continua, allora

- f è detta mappa aperta se f(A) è un aperto $\forall A$ aperto
- f è detta mappa chiusa se f(C) è un chiuso $\forall C$ chiuso

Esempio 2.1. $Sia\ X = (a, b).$

 $(a,b) \hookrightarrow \mathbb{R}$ non è chiusa infatti (a,b) è un chiuso in X ma (a,b) (tutto l'insieme è sempre un chiuso) non è un chiuso in \mathbb{R} . La funzione è invece aperta

 $[a,b] \hookrightarrow \mathbb{R}$ in modo analogo è chiusa ma non aperta

 $[a,b) \hookrightarrow \mathbb{R}$ non è aperta e nemmeno chiusa

Osservazione 4. f continua e bigettiva $\Rightarrow f$ omeomorfismo

Osservazione 5. $f: X \to Y$ continua e bigettiva, allora

$$f$$
 omeomorfismo \Leftrightarrow f aperta \Leftrightarrow f chiusa

Dove il secondo ⇔ deriva dal fatto che gli assiomi di aperto e di chiuso sono tra loro equivalenti

3 Immersioni

Definizione 3.1 (Immersione).

Sia $f: X \to Y$ continua e iniettiva. f è detta immersione (topologica) se

$$A \subseteq X$$
 aperto $\Leftrightarrow \exists U \subseteq Y$ aperto $A = f^{-1}(U)$

in modo equivalente se

$$C \subseteq X$$
 chiuso $\Leftrightarrow \exists Z \subseteq Y$ chiuso $C = f^{-1}(Z)$

Esempio 3.1. Supponiamo $X \subseteq Y$ allora

$$i: X \hookrightarrow Y \ immersione \Leftrightarrow \tau_X = \tau_{ssn}$$

Osservazione 6. $f: X \to Y$ è un immersione se e solo se l'applicazione indotta $\tilde{f}: X \to f(X)$ è un omeomorfismo (f(X) è dotato della topologia di sottospazio)

Proposizione 3.2. Sia $f: X \to Y$ continua. Allora:

- 1. f chiusa e iniettiva $\Leftrightarrow f$ immersione chiusa $\Leftrightarrow f$ immersione con f(X) chiuso
- 2. f aperta e iniettiva $\Leftrightarrow f$ immersione aperta $\Leftrightarrow f$ immersione con f(X) aperto

Dimostrazione. Dimostriamo la proposizione 1 l'altra è analoga

• Chiaramente

f chiusa e iniettiva $\Leftarrow f$ immersione chiusa $\Rightarrow f$ immersione con f(X) chiuso

• f è iniettiva e chiusa $\Rightarrow f$ immersione chiusa. Sia $C \subseteq X$ chiuso.

Essendo f chiusa f(C) è un chiuso di Y.

Inoltre essendo f iniettiva $f^{-1}(f(A)) = A$ per $A \subseteq X$ dunque:

$$C \subseteq X$$
 chiuso $\Rightarrow \exists Z = f(C) \subseteq Y$ chiuso $f^{-1}(Z) = C$

Inoltre $f^{-1}(Z)$ con Z chiuso in Y è un chiuso di X essendo la funzione f continua

• f immersione con f(X) chiuso $\Rightarrow f$ immersione chiusa. Sia $C \subseteq X$ un chiuso, allora $f(C) = Z \cap f(X)$ con $Z \subseteq Y$ chiuso, infatti, dall'osservazione precedente

 $\tilde{f}:\,X\to f(X)$ è un omeomorfismo dove f(X) ha la topologia di sottospazio

Ora f(X), per ipotesi, è chiuso dunque anche $C = Z \cap f(X)$ è chiuso e quindi f è chiusa

4 Sottospazi e assiomi di numerabilità

Osservazione 7. Sia X uno spazio topologico e $Y \subseteq X$ con la topologia di sottospazio

- X secondo-numerabile $\Rightarrow Y$ secondo-numerabile. Segue dalla forma della base della topologia di sottospazio (Osservazione 3)
- X primo-numerabile $\Rightarrow Y$ primo-numerabile.
- X metrico separabile \Rightarrow Y metrico separabile. Segue dal fatto che X metrico separabile \Leftrightarrow X secondo-numerabile e X secondo numerabile \Rightarrow Y secondo-numerabile
- X separabile $\not\Rightarrow Y$ separabile. Consideriamo \mathbb{R}^2 con la topologia di Sorgenfrey: generata dagli insiemi $[a,b) \times [c,d)$. \mathbb{R}^2 con questa topologia è separabile infatti \mathbb{Q}^2 è numerabile e denso. Consideriamo l'insieme $Z = \{(x,-x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^2$. Osserviamo che ogni punto di Z è intersezione di Z con un aperto quindi Z con la topologia di sottospazio è omeomorfo a \mathbb{R} con la topologia discreta, per l'osservazione precedente Z non può essere separabile.