Lame 4: Suppose f is cts in a planedoman DCC and trust & closed path & CD we have $\int f(z) dz = 0. Then f has a principle F$

Proof: take fixed W. \in D, and $\forall z$ a pws path a from w. \leftrightarrow 2 contained entirely in D.

Define $F(z) = \int f(z') \partial z'$

This is uniquely defined be if palso from we to a

then
$$\int_{\alpha}^{\alpha} f(z') \partial z' - \int_{\alpha}^{\alpha} f(z') \partial z' = \int_{\alpha}^{\alpha} f(z') \partial z' = 0.$$

Now Need to show $F'(z_0) = f(z_0)$. Since D is a domain, $J \Delta(z_0, s) \leq D$. We take

we know $G(z) = \int_{3}^{2} f(z') \delta z'$ is a printing for f in Δ . i.e. G'(z) = f(z) (by last Lemma) So F'(z) = 0 + G'(z) = f(z).

Local eauchy Theorem:

Suppose Δ is an open disk in C where f is continuous A Annytic in Δ \{Zo3. Then Y pwsc Y, $\int_{Y} f(z) dz = 0$.

Proof from lemma 2, $\int f(z) dz = 0$. So Lemm 3 says $\exists F$ a primitive for $\exists S.t. F'(z) = f(z)$. Thus $\int f(z) dz = 0$.

I at where R is a rectangle w/ Zo at the OR center.

Choose a circle as shown. Can subtract off bits to show the integral is $\int \frac{1}{z-z_0} dz = i2\pi$

)Z-Z₀|=1