Usando análises químicas, determine a origem dos vinhos

Esses dados são o resultado de uma análise química de vinhos cultivados na mesma região da Itália, mas derivados de três cultivares diferentes. A análise determinou as quantidades de 13 constituintes encontradas em cada um dos três tipos de vinhos.

Classe: Se refere a classificação do Vinho.

Álcool: O álcool no vinho é resultado da fermentação do açúcar presente nas uvas. Ele afeta o sabor, a textura e o corpo do vinho, bem como tem um efeito psicoativo.

Ácido málico: Um dos ácidos presentes nas uvas. Seu nível afeta a acidez do vinho, contribuindo para o sabor fresco e a sensação de boca.

Cinza: Também conhecida como "minerais", a cinza refere-se a uma variedade de minerais presentes no vinho que podem afetar sua estrutura e sabor.

Alcalinidade das cinzas: Mede a quantidade de minerais alcalinos na cinza do vinho, o que pode influenciar a sensação de boca.

Magnésio: Um dos minerais presentes no vinho, que pode ter efeitos sutis no sabor e na textura.

Fenóis totais: Um grupo de compostos antioxidantes que afetam a cor, sabor e estrutura do vinho, contribuindo para o seu envelhecimento.

Flavanoides: Subgrupo de fenóis que contribuem para a cor e os sabores do vinho, além de terem propriedades antioxidantes.

Fenóis não flavonoides: Outro grupo de fenóis que podem ter efeitos sobre o sabor, a textura e a longevidade do vinho.

Proantocianinas: São uma classe específica de flavonoides que contribuem para a cor e para a adstringência do vinho.

Intensidade da cor: Mede a profundidade da cor do vinho, o que pode indicar o tipo de uvas utilizadas e o potencial de envelhecimento.

Tonalidade: Refere-se à tonalidade da cor do vinho, que pode fornecer informações sobre seu estágio de maturidade e variedade de uva.

OD280/OD315 dos vinhos diluídos: Essa relação de absorbância de luz em diferentes comprimentos de onda pode ser usada para estimar a concentração de compostos específicos, como proteínas e fenóis.

Prolina: Um aminoácido que pode ser usado como indicador da maturidade das uvas e da quantidade de nitrogênio no mosto, que afeta o desenvolvimento das leveduras na fermentação.

Primeira etapa será de importação da biblioteca Pandas e da base de dados dos vinhos.

```
import pandas as pd
    df = pd.read_csv(r"C:\Users\Dell\Desktop\Ciencia de Dados\Projetos\wine.data")
    columns = ['class', 'alcool', 'acido_malico','cinzas', 'alcalinidade_das_cinzas','magnesio','total_fenol', 'flavenoides', 'Nãoflavanóides_f
    df.columns = columns
```

Visualizando o tamanho do Dataframe junto com as 5 primeiras e 5 ultimas linhas.

```
In [3]: print(f'Linhas: {df.shape[0]} \nColunas: {df.shape[1]}')
    display(df.head())
    display(df.tail())
```

Linhas: 177 Colunas: 14

	class	alcool	acido_malico	cinzas	alcalinidade_das_cinzas	magnesio	total_fenol	flavenoides	Nãoflavanóides_fenóis	proantocianidinas	Intensidade_cor	cor	dil
0	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	
1	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	
2	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	
3	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	
4	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.75	1.05	

	class	alcool	acido_malico	cinzas	alcalinidade_das_cinzas	magnesio	total_fenol	flavenoides	Nãoflavanóides_fenóis	proantocianidinas	Intensidade_cor	cor
172	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.7	0.64
173	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.3	0.70
174	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.2	0.59
175	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.3	0.60
176	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.2	0.61

A seguir é possivel verificar o tipo de dados de cada coluna e quantidade de valores nulos.

A base de dados possui um total de 177 linhas e nenhum valor nulo.

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 177 entries, 0 to 176
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype

0	class	177 non-null	int64
1	alcool	177 non-null	float64
2	acido_malico	177 non-null	float64
3	cinzas	177 non-null	float64
4	alcalinidade_das_cinzas	177 non-null	float64
5	magnesio	177 non-null	int64
6	total_fenol	177 non-null	float64
7	flavenoides	177 non-null	float64
8	Nãoflavanóides_fenóis	177 non-null	float64
9	proantocianidinas	177 non-null	float64
10	Intensidade_cor	177 non-null	float64
11	cor	177 non-null	float64

177 non-null

177 non-null

float64

int64

dtypes: float64(11), int64(3)

memory usage: 19.5 KB

12 diluicao

13 prolina

Visualizando dados estatísticos

In [5]: df.describe()

Out[5]:

:		class	alcool	acido_malico	cinzas	$alcalinidade_das_cinzas$	magnesio	total_fenol	flavenoides	Nãoflavanóides_fenóis	proantocianidinas	Inten
cc	ount	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	
m	ean	1.943503	12.993672	2.339887	2.366158	19.516949	99.587571	2.292260	2.023446	0.362316	1.586949	
	std	0.773991	0.808808	1.119314	0.275080	3.336071	14.174018	0.626465	0.998658	0.124653	0.571545	
	min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	
2	25%	1.000000	12.360000	1.600000	2.210000	17.200000	88.000000	1.740000	1.200000	0.270000	1.250000	
!	50%	2.000000	13.050000	1.870000	2.360000	19.500000	98.000000	2.350000	2.130000	0.340000	1.550000	
7	75%	3.000000	13.670000	3.100000	2.560000	21.500000	107.000000	2.800000	2.860000	0.440000	1.950000	
	max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	

A seguir foi plotado um mapa de calor com a correlação de cada variavel.

```
import plotly.express as px

fig = px.imshow(df.corr(), text_auto= True , aspect='auto')
fig.update_layout( width=1000, height = 900)
fig.show()
```

class	1	-0.3212375	0.4361274	-0.04826034	0.5139632	-0.1989436	-0.7179328	-0.8464853	0.4872146	-0.4948866	0.2685622	-0.61769	-0.7864277	-0.6312272
alcool	-0.3212375	1	0.099963	0.2109644	-0.3033499	0.2587423	0.284543	0.2301333	-0.1514454	0.1275607	0.5478829	-0.07537498	0.05741673	0.6410676
acido_malico	0.4361274	0.099963	1	0.164955	0.2861477	-0.04904903	-0.3335118	-0.4093241	0.2915005	-0.217975	0.2500531	-0.560854	-0.3667196	-0.1895117
cinzas	-0.04826034	0.2109644	0.164955	1	0.4466978	0.2871071	0.1281756	0.1140835	0.187354	0.008081623	0.2586429	-0.07518101	0.001503349	0.2229793
alcalinidade_das_cinzas	0.5139632	-0.3033499	0.2861477	0.4466978	1	-0.07170686	-0.3175826	-0.3469221	0.3593951	-0.1907788	0.02047823	-0.2727186	-0.2681856	-0.4368578
magnesio	-0.1989436	0.2587423	-0.04904903	0.2871071	-0.07170686	1	0.2082004	0.1871014	-0.2520911	0.2265039	0.1993369	0.05204238	0.04696129	0.3875416
total_fenol	-0.7179328	0.284543	-0.3335118	0.1281756	-0.3175826	0.2082004	1	0.8640455	-0.4483005	0.6105327	-0.05640137	0.4329874	0.6995664	0.4958392
flavenoides	-0.8464853	0.2301333	-0.4093241	0.1140835	-0.3469221	0.1871014	0.8640455	1	-0.5363259	0.650254	-0.1744106	0.5432075	0.786372	0.4911803
Nãoflavanóides_fenóis	0.4872146	-0.1514454	0.2915005	0.187354	0.3593951	-0.2520911	-0.4483005	-0.5363259	1	-0.3632684	0.1401924	-0.2617087	-0.5018594	-0.3088858
proantocianidinas	-0.4948866	0.1275607	-0.217975	0.008081623	-0.1907788	0.2265039	0.6105327	0.650254	-0.3632684	1	-0.02711186	0.2943969	0.5134152	0.3257315
Intensidade_cor	0.2685622	0.5478829	0.2500531	0.2586429	0.02047823	0.1993369	-0.05640137	-0.1744106	0.1401924	-0.02711186	1	-0.5226155	-0.435744	0.3156321
cor	-0.61769	-0.07537498	-0.560854	-0.07518101	-0.2727186	0.05204238	0.4329874	0.5432075	-0.2617087	0.2943969	-0.5226155	1	0.5673953	0.2348793
diluicao	-0.7864277	0.05741673	-0.3667196	0.001503349	-0.2681856	0.04696129	0.6995664	0.786372	-0.5018594	0.5134152	-0.435744	0.5673953	1	0.3060313

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

Para o modelo iremos considerar apenas as colunas que possui um grau de correlação acima de 0.5 (Positivo e Negativo)

```
In [7]: corr = df.corr()
top_features = corr[abs(corr['class']) > 0.5].index # Considerado valores absolutos (+, -)
dados = df[top_features]
```

Imprimindo um gráfico de disperção para melhor visualização

```
In [8]: dimensoes_excluidas = [coluna for coluna in dados.columns if coluna != "class"] # oculta a coluna class
fig = px.scatter_matrix(dados, color='class', dimensions= dimensoes_excluidas)
fig.update_layout( width=1000, height = 900)
fig.show()
```

C:\Users\Dell\anaconda3\lib\site-packages\plotly\express_core.py:279: FutureWarning:

iteritems is deprecated and will be removed in a future version. Use .items instead.


```
In [9]: x = dados.drop('class', axis=1)
          y = dados['class']
         from sklearn.model selection import train test split
In [10]:
          x train, x test, y train, y test = train test split(x, y , test size=0.33 , random state=42)
         from sklearn.naive bayes import GaussianNB
In [11]:
          clf = GaussianNB()
          clf.fit(x_train, y_train)
Out[11]:
          ▼ GaussianNB
         GaussianNB()
          clf.score(x test, y test)
In [12]:
          0.9322033898305084
Out[12]:
In [14]:
          import numpy as np
          def modelo_previsao(alcalinidade_das_cinzas, total_fenol, flavenoides, cor, diluicao, prolina):
             x = [alcalinidade das cinzas, total fenol, flavenoides, cor, diluicao, prolina]
              return clf.predict([x])[0]
          df.rename(columns={'class': 'y true'}, inplace=True)
          df['y_predict'] = df.apply(lambda x:modelo_previsao(x['alcalinidade_das_cinzas'],x['total_fenol'], x['flavenoides'],x['cor'], x['diluicao']
         from sklearn.metrics import confusion_matrix
In [16]:
          y_true = df['y_true']
          y_predict = df['y_predict']
          confusion_matrix(y_true , y_predict, labels=[1,2,3])
```

```
array([[56, 2, 0],
Out[16]:
                [ 4, 66, 1],
                [ 0, 0, 48]], dtype=int64)
           • V1 = 56 F1 = 2 F1 = 0
           • F2 = 4 V2 = 66 F2 = 1
           • F3 = 0 F3 = 0 V3 = 48
        # Acuracidade do modelo
In [17]:
          from sklearn.metrics import accuracy score
          accuracy_score(y_true , y_predict)
         0.96045197740113
Out[17]:
         # Precisao do modelo
In [18]:
          from sklearn.metrics import precision score
          precision score(y true , y predict, average= None, labels=[1,2,3])
         array([0.93333333, 0.97058824, 0.97959184])
Out[18]:
In [19]: teste = df[['y_predict','y_true']]
          teste = teste[teste['y predict'] != 2]
          display(teste.loc[teste['y_true'] == 2])
              y_predict y_true
           65
           69
          73
                    1
                           2
           94
                    1
                           2
          108
In [20]:
          # recall do modelo
          from sklearn.metrics import recall_score
          recall_score(y_true, y_predict, average=None, labels=[1,2,3])
```

Out[20]: array([0.96551724, 0.92957746, 1.])