

WHAT IS BERT?

BERT stands for **Bidirectional Encoder Representations from Transformers**. It's a model created by Google AI in 2018 to help computers understand human language better. It was a big breakthrough in the field of Natural Language Processing (NLP), which is all about teaching computers to read, understand, and respond to human language.

What is BERT?

WHAT IS BERT?

BERT WAS TRAINED ON:

- THE ENTIRETY OF WIKIPEDIA
- 10s of thousands of books with a total of 3.3
 Billion Words

Why BERT?

AFTER

WHY BERT?

- Previous models read text one way (leftto-right or right-to-left)
- BERT reads text both ways for better context understanding
- Example: 'The bank is near the river'
 Left to right misinterpretation

How Does BERT Work?

2019 brazil traveler to usa need a visa

do estheticians stand a lot at work

1996-2019 The Washington Post.

BEFORE

also stand-alone esthetics schools as well

google.com

G Chron.com + work

Medical Esthetician Vs. Spa Esthetician - Work - Chron.com

Jul 1, 2018 - The type of business in which an esthetician works can have an impact on her earnings, ... schools offer esthetics programs, though there are

HOW DOES BERT WORK?

- Based on Transformer architecture (Good at analyzing text)
- Uses 'attention' to focus on important parts of sentences
- Reads text in both directions simultaneously (bidirectional)

Pretraining and Fine-tuning

```
position: absolute;
              top: 50%; Slide 05
              left: 50%;
             transform: translate(-50%,-
             width: 400px;
             padding: 40px;
             background: 🗆 rgba(0, 0, 0,
            box-sizing: border-box;
            box-shadow: 0 15px 25px Dr
            border-radius: 10px;
   19
   20
        .box h2{
           margin: 0 0 30px;
           padding: 0;
          color: #fff;
          text-align: center;
  25
  26
      .box h3{
 27
         margin: 0 0 10px;
 28
         padding: 0;
 29
         color: #fff;
 30
        text-align: center;
31
32
    .box .inputBox{
33
       position: relative;
34
```

PRETRAINING AND FINE-TUNING

- Pretraining: Learns basic language patterns from large text data
- Fine-tuning: Adjusted for specific tasks (e.g., sentiment analysis)
- Adaptable to various NLP applications

Applications of BERT

APPLICATIONS OF BERT

- Question Answering
- Text Classification (e.g., spam detection)
- Named Entity Recognition (NER)
- Sentiment Analysis

Why BERT is Special

WHY BERT IS SPECIAL

- Bidirectional reading enables deeper understanding
- Attention mechanism focuses on key words and relationships
- Pretrained on large datasets; adaptable to new tasks

Using BERT in Codepace

USING ERTS (Node-starter) YOUR CODEPA Charles into the starter of them the starter of them the starter of the s

Installation

!pip install transformers torch

Import Libraries and Load BERT

from transformers import pipeline

```
# Load the sentiment-analysis pipeline
classifier = pipeline("sentiment-analysis")

# Test the classifier
text = "I really love this product! It works perfectly."
result = classifier(text)
print(f"Input: {text}\nSentiment: {result[0]['label']}, Score: {result[0]['score']:.2f}")
```

Input: I really love this product! It works perfectly.

Sentiment: POSITIVE, Score: 1.00

QUESTION ANSWERING

```
# Load the question-answering pipeline
qa_pipeline = pipeline("question-answering")

# Define a context passage

context = """

BERT is a model developed by Google that understands language in both directions.

It was a breakthrough in NLP and is widely used for tasks like question answering and sentiment analysis.

"""

# Ask a question based on the context
question = "Who developed BERT?"

result = qa_pipeline(question=question, context=context)
print(f"Question: {question}\nAnswer: {result['answer']}")
```

Question: Who developed BERT?

Answer: Google

QUESTION ANSWERING # Load the question-answering pipeline 4 qa_pipeline = pipeline(" pipeline")

```
# Load the question-answering pipeline
qa_pipeline = pipeline("question-answering")

# Define a context passage
context = """

BERT is a model developed by Ahmed Oraby that understands language in both directions.

It was a breakthrough in NLP and is widely used for tasks like question answering and sentiment analysis.

"""

# Ask a question based on the context
question = "Who developed BERT?"
result = qa_pipeline(question=question, context=context)
print(f"Question: {question}\nAnswer: {result['answer']}")
```

Question: Who developed BERT?

Answer: Ahmed Oraby

Load the feature-extraction pipeline to get sentence embeddings # Load the feature-extraction pipeline to get sentence embeddings

```
# Define two sentences
    sentence1 = "BERT is a powerful model for NLP."
    sentence2 = "BERT is great for understanding language."
10
    # Get embeddings for each sentence
     embedding1 = feature_extractor(sentence1)[0]
11
     embedding2 = feature_extractor(sentence2)[0]
12
13
14
     # Compute a simple similarity score (cosine similarity)
     import torch
15
    embedding1 = torch.tensor(embedding1).mean(dim=0)
16
     embedding2 = torch.tensor(embedding2).mean(dim=0)
17
     cosine_similarity = torch.nn.functional.cosine_similarity(embedding1, embedding2, dim=0)
18
19
    print(f"Similarity Score between sentences: {cosine_similarity.item():.2f}")
20
21
```

Similarity Score between sentences: 0.93

