МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южный федеральный университет»

Институт математики, механики и компьютерных наук им. И.И. Воровича

Кафедра алгебры и дискретной математики

КУРСОВАЯ РАБОТА

по предмету: «Теория автоматов и формальных языков»

Выполнил:

Студент 3 курса, 9 группы

Стребежев Игорь

Проверил:

к.т.н., ст. преп. кафедры АДМ

Е.В. Алымова

Задание 1

Вариант 18. Язык над алфавитом $\Sigma = \{0,1\}$, состоящий из всех слов, в которых после третьей слева единицы стоит четное число групп вида 01.

(i) Построить ПЛ-грамматику G, порождающую L.

$$S \to 0S \mid 1A,$$

 $A \to 0A \mid 1B,$
 $B \to 0B \mid 1C \mid 1,$
 $C \to 0101C \mid 0101;$ (1)

(ii) Доказать вложения $L \subseteq L(G), L(G) \subseteq L$.

 $L \subseteq L(G)$: Рассмотрим дерево выводов грамматики.

 $S \implies 0S \implies 00S \implies 000S \implies \dots$ нули разрешены в начале слов в L.

 $S \implies 1A \implies 10A \implies 100A \implies \dots$ — генерация первой единицы и последовательности нулей.

Первые три правила грамматики одинаковы и образуют три пары из последовательности (возможно пустой) нулей и единицы. Что также удовлетворяет описанию языка L.

 $11B \implies 111$ — в таком случае количество групп вида 01 будет равно нулю (чётно), принадлежит языку.

 $11B \implies 111C \implies 111\ 0101$ — генерация пары групп.

 $11B \implies 111C \implies 111\ 0101C \implies 111\ 0101\ 0101$ — всегда чётное количество групп.

Таким образом все слова, порождаемые грамматикой G принадлежат языку L, то есть $L \subseteq L(G)$.

- $L(G) \subseteq L$: Язык L имеет структуру (0*1)(0*1)(0*1)(1010)*, каждая цепочка этого языка описывает все терминальные выводы из правил грамматики, как показано в предыдущем пункте, что и доказывает вложение.
- (iii) Путём решения системы линейных уравнений с регулярными коэффициентами построить регулярное выражение, описывающее L.

$$S = 0S + 1A,$$

$$A = 0A + 1B,$$

$$B = 0B + 1C + 1,$$

$$C = 0101C + 0101;$$

$$C = (0101)^*0101 = 0101^+,$$

$$B = 0B + 1(0101^+ + \varepsilon) = 0^*1(0101^+ + \varepsilon),$$

$$A = 0A + 1(0^*1(0101^+ + \varepsilon)) = 0^*1(0^*1(0101^+ + \varepsilon)),$$

$$S = 0S + 1(0^*1(0^*1(0101^+ + \varepsilon))) = 0^*1(0^*1(0^*1(0101^+ + \varepsilon)));$$

$$0^*1(0^*1(0^*1(0101^+ + \varepsilon))) = (0^*1)(0^*1)(0101)^*.$$
(2)

(iv) Построить НКА или e-НКА M^{ND} , распознающий язык L, предъявить его граф.

(v) Построить ДКА M^D путём детерминизации $M^{ND},$ предъявить его граф.

Построим таблицу переходов M^{ND} .

δ'	S	A	В	C	K^0	K^{01}	K^{010}	E^0	E^{01}	E^{010}	E	\overline{F}
0	S	A	В	$\{K^0, E^0\}$	_	K^{010}	_	_	E^{010}	_	_	
1	A	B	$\{C, F\}$	_	K^{01}		C	E^{01}	_	E		_

Расширим таблицу при приведении автомата в M^D .

δ'	S	A	В	$\{C,F\}$	$\{K^0, E^0\}$	$\{K^{01}, E^{01}\}$	$\{K^{010}, E^{010}\}$	$\{C,E\}$
0	S	A	B	$\{K^0, E^0\}$	_	$\{K^{010}, E^{010}\}$	_	$\{K^0, E^0\}$
1	A	B	$\{C,F\}$	_	$\{K^{01}, E^{01}\}$	_	$\{C, E\}$	_

Отобразим этот автомат на диаграмме.

Задание 2

Вариант 29. $\Sigma = \{0, 1, 2, 3, 4, 5\}, A = \{53150, 53555, 5510, 0001\}.$

- 1. Для каждого слова $w_i \in A$ построить НКА M_i^{ND} , распознающий наличие в произвольной строке $s \in \Sigma^*$ подстроки w_i .
- 2. Для каждого НКА M_i^{ND} построить соответствующий ДКА M_i^D .

Слово 53150.

Слово 53555.

Слово 5510.

Слово 0001.

Задание 3

 $L_1 = b^*bba^*(ab+b)^*, L_2 = a^*ba^*ab.$

(i) Вычислить регулярное выражение, определяющее язык $L_1 \cap L_2$.

Рассмотрим множество слов из L_2 таких, что их первая буква равна a, $M=\{w\mid w\in L_2, w^0=a\}$. Очевидно, что $L_1\cap M=\varnothing$, так как слова из L_1 начинаются с буквы b. Уберём это множество из рассмотрения, пусть $L_2'=ba^*ab$, где $L_2'\cup M=L_2$.

В множестве L_2' все слова начинаются со строки "ba", а в множестве L_1 — "bb".

Из этого следует, что L_1 и L_2' не пересекаются, а значит $L_1 \cap L_2 = \varnothing$.

(ii) Вычислить регулярное выражение, определяющее язык $L_1 \triangle L_2$.

Согласно определению симметрической разности имеем:

 $L_1 \triangle L_2 = (L_1 \cup L_2) \setminus (L_1 \cap L_2) = L_1 \cup L_2 = b^*bba^*(ab+b)^* + a^*ba^*ab.$

(iii) Определить: совпадают ли языки L_1 и L_2 , является ли L_1 дополнением L_2 . Так как $L_1 \cap L_2 = \emptyset$, то $L_1 \neq L_2$.

Предположим, L_1 является дополнением L_2 . Рассмотрим слово w="ba". Видно, что $w \notin L_1, \ w \notin L_2 \Rightarrow$ наше предположение неверно.

(iv) Построить e-НКА, распознающий один из языков L_1^R или L_2^R .

Построим L_2 :

Построим L_2^R :

(v) Вычислить регулярное выражение по построенному е-НКА.

Упростим построенный в предыдущем пункте автомат, используя метод исключения.

Опишем заключающее состояние в вершине 8: $R = a^*ba^*ab(a+b)^+$.

Уберём вершину 8, опишем состояние в вершине 4: $R = a^*ba^*a \ (\varepsilon + b(a+b)^+)$.

Уберём вершины 4, 6, опишем состояние в вершине 2: $R = a^*ba^* \ (\varepsilon + b(a+b)^* + a(\varepsilon + b(a+b)^+)).$

Данный автомат можно описать выражением $\varepsilon + a^* + a^*b + a^*ba^* = a^*(b+\varepsilon)a^*.$

Otbet: $R = a^*(b+\varepsilon)a^*$ $(\varepsilon + b(a+b)^* + a(\varepsilon + b(a+b)^+)).$

(vi) Построить ε -НКА, распознающий L_1L_2 . q0=S, остальные состояния пронумерованы от 1 до 9 (q1-q9).

(vii) Детерминизировать один из построенных ε -НКА. Верхние индексы для удобства.

δ'	S^0	$S1^1$	$S12356^{2}$	23456^{3}	$S123567^4$	3567^{5}	234568^{6}	468^{7}
					234568^6 $S123567^4$			

δ'	35679^{8}	68 ⁹	79^{10}	8 ¹¹	9^{12}
$\begin{array}{c c} \hline a & \\ b & \end{array}$	648^{7} 3567^{5}	68^9 79^{10}	8 ¹¹	8^{11} 9^{12}	_

Финальные состояния: 8, 10, 12.

Задание 1

(vi) Доказать, что $L(M^{ND}) = L(M^D) = L$.

Так как мы получили M^D путём детерминизации M^{ND} , то по теореме о редукции языки этих автоматов эквивалентны. Построение M^{ND} производилось по регулярной грамматике, и по теореме Клини следует, что $L(G) = L(M^{ND})$. Равенство же L(G) = L было доказано во втором пункте первого задания. Таким образом тождество доказано.

Фактическое совпадение языков можно продемонстрировать следующим способом: в пункте (iii) мы вывели регулярное выражение для грамматики, а в пункте (viii) методом исключения получили регулярное выражение, описывающее язык автомата. Так как выражения совпадают, языки эквивалентны.

(vii) Мимимизировать полученный конечный автомат, распознающий язык L, или доказать его минимальность.

Рассмотрим M^D . Конечные состояния CF и CE являются эквивалентными, поэтому их можно совместить. Все остальные состояния различимы.

Отобразим этот автомат на диаграмме. (101 — два состояния с тремя дугами.)

(viii) Методом последовательного исключения состояний выписать регулярные выражения для $L(M^{ND}), L(M^{D}).$

 M^D : Петли с нулём заменим на 0^* , а цикл CF-KE на $(1010)^*$, $L(M^D)=0^*1\ 0^*1\ 0^*1\ (0101)^*$;

 M^{ND} : Стянем вершину C, после чего разобьём SB на два пути: SE, SF. $L(M^{ND}) = (0^*1\ 0^*1\ 0^*1) + (0^*1\ 0^*1\ 0^*1\ (0101)^+) = 0^*1\ 0^*1\ 0^*1\ (0101)^*$.

(ix) Построить ДКА, распознающий дополнение !L к языку L, записать !L в виде регулярного выражения.

Доопределим автомат до полного, преобразуем его в дополнение.

Построим грамматику, порождающую этот автомат.

$$S \rightarrow \varepsilon \mid 0S \mid 1A,$$

$$A \rightarrow \varepsilon \mid 0A \mid 1B,$$

$$B \rightarrow \varepsilon \mid 0B \mid 1CF,$$

$$CF \rightarrow 0KE \mid 1C,$$

$$KE \rightarrow \varepsilon \mid 1KU \mid 0C,$$

$$KU \rightarrow \varepsilon \mid 0KL \mid 1C,$$

$$KL \rightarrow \varepsilon \mid 1CF \mid 0C,$$

$$C \rightarrow \varepsilon \mid 1C \mid 0C;$$
(3)

Решим систему уравнений:

$$KE = 101CF + 1 + 10 + (0 + 11 + 100)(0 + 1)^* + \varepsilon,$$

$$CF = 0101CF + 0 + 01 + 010 + (1 + 00 + 011 + 0100)(0 + 1)^* + \varepsilon,$$

$$CF = (0101)^*(0 + 01 + 010 + (1 + 00 + 011 + 0100)(0 + 1)^* + \varepsilon),$$

$$S = 0^*(\varepsilon + 10^*(\varepsilon + 10^*(\varepsilon + 1CF))) = 0^* + 0^*10^* + 0^*10^*1 CF$$
Other: $0^* + 0^*10^* + 0^*10^*1(0101)^*(0 + 01 + 010 + (1 + 00 + 011 + 0100)(0 + 1)^* + \varepsilon).$