BagelFit Release 1.0

Neelesh Soni

CONTENTS:

1	Bage	elFit	1
	1.1	BagelFitter	1
	1.2	Examples	
	1.3	version	6
2	Indic	ces and tables	7
Рy	thon I	Module Index	9
In	dex		11

BAGELFIT

1.1 BagelFitter

1.1.1 BagelFitter Class

```
class src.BagelFitter.BagelFitter
     Bases: object
     Fits a torus onto a nuclear membrane by searching for the best parameters.
     best_torus
           The best-fitting torus found during the fitting process.
               Type
                   Torus
     dmap
           Input density map of the nuclear membrane.
               Type
                   IMP.em.DensityMap
     dmap_out
           Output density map after fitting.
               Type
                   IMP.em.DensityMap
     dmap_out_binary_flag
           Flag indicating if the density map is binary.
               Type
                   bool
     input_map_path
           Path to the input density map file.
               Type
     voxel_size
           Size of each voxel in the density map (default is 10).
               Type
```

int

$calculate_dice_coefficient(dmap1: DensityMap, dmap2: DensityMap) \rightarrow float$

Computes the Dice Coefficient (F1 Score) for binary overlap between two density maps.

Parameters

- dmap1 (IMP.em.DensityMap) First density map.
- dmap2 (IMP.em.DensityMap) Second density map.

Returns

Dice Coefficient representing the overlap of the two maps.

Return type

float

$create_blank_density_map(n_voxels: int) \rightarrow DensityMap$

Creates an empty density map centered at (0,0,0).

Parameters

n_voxels (*int*) – Number of voxels in each dimension.

Returns

A blank density map with specified voxel size.

Return type

IMP.em.DensityMap

$fill_binary_density(torus: Torus) \rightarrow None$

Generates a binary density map based on the torus parameters.

Parameters

torus (Torus) – Torus object used to define the density map.

$fill_nonbinary_density(torus: Torus) \rightarrow None$

Generates a non-binary density (extracted from the input map) map based on the torus parameters.

Parameters

torus (Torus) – Torus object used to define the density map.

```
fit_binary_torus (tor_R-range: tuple = (670, 680, 10), tor_r-range: tuple = (160, 180, 20), tor_th-range: tuple = (85.0, 95, 10), extension: float = 0.0) \rightarrow Torus
```

Fits a binary torus to the density map by searching for optimal parameters.

Parameters

- tor_R_range (tuple, optional) Range of major radius values (start, stop, step).
- tor_r_range (tuple, optional) Range of minor radius values (start, stop, step).
- tor_th_range (tuple, optional) Range of thickness values (start, stop, step).
- **extension** (*float*, *optional*) Additional extension factor (default is 0.0).

Returns

Best-fitting torus object based on maximum cross-correlation coefficient.

Return type

Torus

```
fit_nonbinary_torus (tor_R_range: tuple = (670, 680, 10), tor_r_range: tuple = (160, 180, 20), tor_th_range: tuple = (85.0, 95, 10), extension: float = 0.0) \rightarrow Torus
```

Fits a non-binary torus to the density map by searching for optimal parameters.

Parameters

- tor_R_range (tuple, optional) Range of major radius values (start, stop, step).
- tor_r_range (tuple, optional) Range of minor radius values (start, stop, step).
- tor_th_range (tuple, optional) Range of thickness values (start, stop, step).
- **extension** (*float*, *optional*) Additional extension factor (default is 0.0).

Returns

Best-fitting torus object based on maximum cross-correlation coefficient.

Return type

Torus

```
generate_binary_torus(tor_n: float, tor_n: float, tor_n: float, extension: float = 0.0, boundingbox_length: float = 2240, voxel_size: float = 10, outmap_fname: str = torus_y east_fitted_mrc') \rightarrow Torus
```

Generates and writes a binary torus density map based on input parameters.

Parameters

- tor_R (float) Major radius of the torus.
- tor_r (float) Minor radius of the torus.
- tor_th (float) Thickness of the bilipid layer.
- extension (float, optional) Additional extension factor (default is 0.0).
- **boundingbox_length** (*float*, *optional*) Length of the bounding box for Torus centered at (0,0,0). Default value 2240 Å.
- voxel_size (float, optional) Individual voxel size in the output map file. Default value 10 Å.
- **outmap_fname** (*str*, *optional*) Output map file name of the torus. Default is "torus_yeast_fitted.mrc" in the current directory.

Returns

Torus object based on input parameters.

Return type

Torus

 $\textbf{load_exprimental_map}(\textit{input_map_path: str, voxel_size: int} \mid \textit{None} = \textit{None}) \rightarrow \textit{None}$

Loads an experimental density map for processing.

Parameters

- **input_map_path** (*str*) Path to the input density map file.
- **voxel_size** (*int*, *optional*) Size of each voxel (default is determined from the map).

$plot_voxel_values() \rightarrow None$

Plots the histogram of voxel intensity values in the density map.

```
score_torus_maps(map1: str, map2: str) \rightarrow float
```

Computes the cross-correlation coefficient between two torus maps.

Parameters

- map1 (str) Path to the first torus density map.
- map2 (str) Path to the second torus density map.

1.1. BagelFitter 3

Returns

Cross-correlation coefficient indicating similarity between the two maps.

Return type

float

```
write\_torusmap\_to\_file(outmap\_fname: str) \rightarrow None
```

Saves the torus density map to a file.

Parameters

outmap_fname (str) – Filename to save the torus density map.

1.1.2 Torus Class

```
Summary
```

```
class src.Torus.Torus(R: float, r: float, thickness: float, extension: float = 0.0)
```

Bases: object

Represents a toroidal shape characterized by its major radius (R), minor radius (r), and thickness.

R

Major radius of the torus.

Type

float

r

Minor radius of the torus.

Type

float

thickness

Thickness of the torus.

Type

float

extension

Optional extension parameter (default is 0.0).

Type

float

eps

Small constant to avoid division by zero errors.

Type

float

dmap

Data map for storing computed values (if applicable).

Type

Any

```
contains_point(x: float, y: float, z: float) \rightarrow bool
```

Determines whether a point (x, y, z) lies within the toroidal volume.

Parameters

- **x** (*float*) X-coordinate of the point.
- **y** (*float*) Y-coordinate of the point.
- **z** (*float*) Z-coordinate of the point.

Returns

True if the point is inside the torus, False otherwise.

Return type

bool

```
contains_point2(x: float, y: float, z: float) \rightarrow bool
```

Alternative method to check if a point (x, y, z) lies within the toroidal volume.

Parameters

- **x** (*float*) X-coordinate of the point.
- **y** (*float*) Y-coordinate of the point.
- **z** (*float*) Z-coordinate of the point.

Returns

True if the point is inside the torus, False otherwise.

Return type

bool

```
distance(x: float, y: float, z: float, d2\_xy: float) \rightarrow float
```

Computes the shortest distance from a point (x, y, z) to the torus.

Parameters

- **x** (*float*) X-coordinate of the point.
- **y** (*float*) Y-coordinate of the point.
- **z** (*float*) Z-coordinate of the point.
- **d2_xy** (*float*) Squared distance from the torus center in the xy-plane.

Returns

Shortest distance from the given point to the torus.

Return type

float

1.2 Examples

1.2.1 examples

Example script for generating and scoring torus maps in nuclear membrane fitting.

1.2. Examples 5

examples.examples.generate_bestfit_torus_map()

Fits several torus models onto the nuclear membrane and saves the best fit.

Returns

None

examples.examples.generate_binary_torus_map()

Generates a binary torus map using predefined torus parameters and saves it to a file.

Returns

None

examples.examples.score_torus_map_with_experimental_map()

Compares a generated torus map with an experimental map using a scoring function.

Returns

None

1.3 version

This function provides the BagelFit version number

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
examples.examples, 5

S
src.BagelFitter, 1
src.Torus, 4

V
version, 6
```

10 Python Module Index

INDEX

BagelFitter (class in src.BagelFitter), 1 best_torus (src.BagelFitter.BagelFitter attribute), 1	<pre>generate_binary_torus_map() (in module exam-</pre>
C calculate_dice_coefficient() (src.BagelFitter.BagelFitter method), 1 contains_point() (src.Torus.Torus method), 4 contains_point2() (src.Torus.Torus method), 5 create_blank_density_map() (src.BagelFitter.BagelFitter method), 2	<pre>input_map_path (src.BagelFitter.BagelFitter attribute),</pre>
D distance() (src.Torus.Torus method), 5 dmap (src.BagelFitter.BagelFitter attribute), 1 dmap (src.Torus.Torus attribute), 4 dmap_out (src.BagelFitter.BagelFitter attribute), 1 dmap_out_binary_flag (src.BagelFitter.BagelFitter attribute), 1 E	<pre>module examples.examples, 5 src.BagelFitter, 1 src.Torus, 4 version, 6 P plot_voxel_values() (src.BagelFitter.BagelFitter method), 3</pre>
eps (src.Torus.Torus attribute), 4 examples .examples module, 5 extension (src.Torus.Torus attribute), 4	R (src.Torus.Torus attribute), 4 r (src.Torus.Torus attribute), 4
F fill_binary_density() (src.BagelFitter.BagelFitter	S score_torus_map_with_experimental_map() (in module examples.examples), 6
F	S score_torus_map_with_experimental_map() (in

12 Index