11.11 Sum-of-minterms form

Sum-of-minterms

Different equations may represent the same function. Ex: y = a + b, and y = a + a'b, represent the same function. The sameness is not obvious, so a standard equation form is desirable.

- A **canonical form** of a Boolean equation is a standard equation form for a function.
- Sum-of-minterms form is a canonical form of a Boolean equation where the right-side expression is a sum-of-products with each product a unique minterm.
- A **minterm** is a product term having exactly one literal for every function variable.
- A *literal* is a variable appearance, in true or complemented form, in an expression, such as b, or b'.

For a function of variables a and b, y = ab + a'b + a'b' is in sum-of-minterms form, but y = ab + a' is not because the second product term is missing variable b.

PARTICIPATION 11.11.1: Minterms.	
Given a function of a, b, c.	
1) Does abc have 3 literals? O Yes O No	
2) Does ab'c have 4 literals? O Yes	
O No 3) Is bc' a product term? O Yes	
O No 4) Is bc' a minterm? O Yes	
O No 5) Is ab'c a minterm? O Yes	
 No Is a(b + c') a minterm? Yes No 	
PARTICIPATION ACTIVITY 11.11.2: Sum-of-minterms form.	
Given a function of a, b, c, indicate if the equation is in sum-of-minterms form. 1) y = abc + a'b'c' O Yes	
O No 2) y = ab + abc O Yes	
O No 3) y = a(b + c) O Yes	
○ No 4) y = abc ○ Yes	
O No 5) y = ac	
○ Yes○ No6) y = abc + cb'a	
O Yes O No	
7) y = abc + abc O Yes	Ų

Transforming to sum-of-minterms

A sum-of-products equation can be transformed to sum-of-minterms by multiplying each product term by (v + v') for any missing variable v to create minterm (removing redundant minterms). v + v' is 1, so multiplying a term by (v + v') doesn't change a product term's functionality.

y = ab + a'	sum-of-products, but not sum-of-minterms
y = ab + a'(b + b')	
y = ab + a'b + a'b'	sum-of-minterms

An equation not initially in sum-of-products form can first be multiplied out. Thus, transforming an equation to sum-of-minterms is done by:

- Initially multiplying out to sum-of-products
- Transform each product term to a minterm
- Remove redundant minterms

PARTICIPATION ACTIVITY	11.11.3: Transforming to sum-of-minterms.	
Star	t 2x speed	
Give	en variables a, b, c. Convert y = a(b + bc') to sum-of-minterms.	
	y = a(b + bc')	
	= ab +abc'	
	=ab(1) + abc'	
	= ab(c + c') + abc'	
	= abc + abc' + abc'	
	= abc + abc'	
PARTICIPATION ACTIVITY	11.11.4: Transforming an equation already in sum-of-products form to sum-of minterms.	f
Given variables	s a, b. Order the steps to transform $y = ab + a'$ to sum of minterms.	
y = ab + a'(b	+ b') y = ab + a'b + a'b' y = ab + a'(1) y = ab + a'	
	Original equation	
	(1)	
	(2)	
	(3)	
	Reset	
PARTICIPATION ACTIVITY	11.11.5: Transforming a general equation to sum-of-minterms form.	
Given variables	s a, b, c. Order the steps to transform $y = (a + c)b$ to sum-of-minterms.	
y = ab + bc	y = (a + c)b $y = ab(c + c') + bc(a + a')$ $y = ab(1) + bc(1)$	
y = a'bc + ab	bc' + abc y = abc + abc' + abc + a'bc	
	Original equation	
	(1)	
	(2)	
	(3)	
	(4)	
	(5)	
	Reset	

Note: Transforming directly from ab to ab(c + c') is a common shortcut. The intermediate step, ab to ab(1), is often omitted.

Example: Determining if two equations represent the same function

Because sum-of-minterms is canonical, one can determine whether two equations represent the same function by transforming each to sum-of-minterms equations and checking if the equations are the same.

Compact function notation: Minterm numbers

O m4 + m0 O Cannot determine

A compact function notation represents each minterm by a number. Given that ab'c is 1 if a/b/c are 1/0/1, that minterm is represented as m_5 because 101 in binary is 5 in decimal. A 3-variable function thus has minterms numbered 0 to 7. Ex: f(a,b,c) = a'b'c' + ab'c + abc can be written compactly as f(a,b,c) = m0 + m5 + m7. An alternative notation is $f(a,b,c) = \sum_{i=1}^{n} (a_i,b_i,c_i) = a'b'c' + ab'c + abc$ can be

ao ((a,b,o)	3 - 1110 - 111		orrider v o	1101011011101(0,0,0)	2(0,0,7)		
PARTICIPATION ACTIVITY	11.11.8: Numbered minterms.						
Match the mi	nterms.						
m2 m1	m5	m6	m0				
				a'bc'			
				a'b'c'			
				a'b'c			
				ab'c			
				abc'			
						Reset	
PARTICIPATION ACTIVITY	11.11.9:	Compac	t functio	n notation.			
1) Given f(a, b, c) = a'bc + abc, the compact notation is: f(abc) = ?							
O m3+m7							

