# CE 191: Civil and Environmental Engineering Systems Analysis

LEC 12 : Barrier & Penalty Functions

Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley

Fall 2014



#### **Gradient Descent**

- Does not explicitly account for constraints.
- Barrier and penalty functions approximate constraints by augmenting objective function f(x)

Consider constrained minimization problem

$$\min_{x} f(x),$$
s. to  $g(x) \le 0$ 

converted to

$$\min_{\mathbf{x}} f(\mathbf{x}) + \phi(\mathbf{x}; \varepsilon)$$

where  $\phi(\mathbf{x};\varepsilon)$  captures the effect of constraints & is differentiable, thus enabling gradient descent

# Two Methods for $\phi(x; \varepsilon)$ : Barrier & Penalty Functions

- **Barrier Function:** Allow the objective function to increase towards infinity as *x* approaches the constraint boundary from inside the feasible set. In this case, the constraints are guaranteed to be satisfied, but it is impossible to obtain a boundary optimum.
- **Penalty Function:** Allow the objective function to increase towards infinity as x violates the constraints g(x). In this case, the constraints can be violated, but it allows boundary optimum.

### Constrained vs. Unconstrained Optimization

Example: find the optimum of the following function within the range  $[0,+\infty)$ 



### Constrained vs. Unconstrained Optimization

Example: find the optimum of the following function within the range  $\left[0.5, 1.5\right]$ 



#### Main idea of barrier methods

Add a barrier function which is infinite outside of the constraint domain, i.e.  $\left[a,b\right]$ 



 $\mathbf{min:} \quad f(x) \\
\mathbf{s.t.} \quad x \le b \\
 \quad x \ge a$ 

#### Main idea of barrier methods

In practice, such continuous and smooth functions do not exist, so they have to be approximated







$$b(x) = -\varepsilon \log((x-a)(b-x)), \qquad \varepsilon = 1/2$$



$$b(x) = -\varepsilon \log((x-a)(b-x)), \qquad \varepsilon = 1/4$$



$$b(x) = -\varepsilon \log((x-a)(b-x)), \qquad \varepsilon = 1/8$$



$$b(x) = -\varepsilon \log((x-a)(b-x)), \qquad \varepsilon = 1/16$$







#### **Utilization of Barrier Function**

Add the barrier function b(x) to the objective function f(x)

- lacktriangle inside the constraint set, barrier  $\approx 0$
- outside the constraint set, barrier is infinite

If the barrier is almost zero inside the constraint set, the minimum of the function and the augmented function are almost the same.

#### Logarithmic barrier: $\varepsilon = 1$



min: f(x)s.t.  $x \in [a, b]$ 

min: f(x)s.t.  $x \le b$  $x \ge a$ 

Logarithmic barrier:  $\varepsilon = 1/2$ 



min: 
$$f(x)$$
  
s.t.  $x \in [a, b]$ 

min: 
$$f(x)$$
  
s.t.  $x \le b$   
 $x \ge a$ 

Logarithmic barrier:  $\varepsilon = 1/4$ 



min: f(x)s.t.  $x \in [a, b]$ 

min: f(x)s.t.  $x \le b$  $x \ge a$ 

Logarithmic barrier:  $\varepsilon = 1/8$ 



min: f(x)

 $\mathbf{s.t.} \qquad x \in [a,b]$ 

Logarithmic barrier:  $\varepsilon = 1/16$ 



min: f(x)s.t.  $x \in [a, b]$ 

Logarithmic barrier:  $\varepsilon = 1/32$ 



min: f(x)s.t.  $x \in [a, b]$ 

min: f(x)s.t.  $x \le b$  $x \ge a$ 

Make a guess inside the constraint set.

Start with epsilon not too small.

#### repeat

- minimize the augmented function (using e.g. gradient descent)
- use the result as the guess for the next step
- decrease the log barrier

Until barrier is almost zero inside the constraint set

One can prove that the result of this method converges to a minimum of the original problem

Logarithmic barrier:  $\varepsilon = 1$ 



Logarithmic barrier:  $\varepsilon = 1/2$ 



min: 
$$f(x)$$
  
s.t.  $x \in [a, b]$ 

min: 
$$f(x)$$
  
s.t.  $x \le b$   
 $x \ge a$ 

Logarithmic barrier:  $\varepsilon = 1/4$ 



min: f(x)s.t.  $x \in [a, b]$ 

min: f(x)s.t.  $x \le b$  $x \ge a$ 

Logarithmic barrier:  $\varepsilon = 1/8$ 



min: 
$$f(x)$$
  
s.t.  $x \in [a, b]$ 

Logarithmic barrier:  $\varepsilon = 1/16$ 



min: f(x)s.t.  $x \in [a, b]$ 

 $\mathbf{min:} \quad f(x) \\
\mathbf{s.t.} \quad x \le b \\
x \ge a$ 

Logarithmic barrier:  $\varepsilon = 1/32$ 



min: f(x)s.t.  $x \le b$  $x \ge a$ 

#### Formal description of the algorithm

Start with epsilon not too small

#### repeat: solve

$$\min_{x} f(x) - \varepsilon b(x)$$
  
s. to no constriants

use the result as the guess for the next step decrease the log barrier  $\varepsilon=\varepsilon=2$ , or similar

Until barrier is almost zero inside the constraint set

#### Generalization to multiple dimensions

Transformation of a constrained problem into an unconstrained problem

$$\min_{x} f(x),$$
s. to  $g(x) \le 0$ 

Introduce log barrier function

$$b(x) = \log(-g(x)) \tag{1}$$

Problem to solve becomes (in the limit  $\varepsilon$  goes to zero):

$$\min_{x} f(x) - \varepsilon b(x)$$

s. to no constraints

#### **Penalty Function Method**

Transformation of a constrained problem into an unconstrained problem

$$\min_{x} f(x),$$
s. to  $g(x) \le 0$ 

Introduce quadratic penalty function

$$\phi(x;\varepsilon) = \begin{cases} 0 & \text{if } g(x) \le 0\\ \frac{1}{2\varepsilon} (x - g(x))^2 & \text{otherwise} \end{cases}$$
 (2)

Problem to solve becomes (in the limit  $\varepsilon$  goes to zero):

$$\min_{x} f(x) + \phi(x; \varepsilon)$$

s. to no constraints

# **Additional Reading**