INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.13 ELECTRÓNICA III

Trabajo Práctico de Laboratorio Nº 1

Grupo 5:

John SMITH Leg. 66666

John SMITH Leg. 66666

John Smith Leg. 66666

John Smith Leg. 66666 Profesor:

Kevin DEWALD

Entregado: 6 de Septiembre de 2018

1. EJERCICIO 2

1.1. Introducción

Se tiene una función dada por:

$$f(d, c, b, a) = \prod (M_0, M_1, M_5, M_7, M_8, M_{10}, M_{14}, M_{15})$$

A partir de esto se construyó la siguiente tabla de verdad, completando únicamente los máxterminos de aquellos estados en los que la función valía 0, ya que éstos son los que nos serán de utilidad:

i	$d = X_1$	$c = X_2$	$b = X_3$	$a = X_4$	f = ()	M_i
0	0	0	0	0	0	$X_1 + X_2 + X_3 + X_4$
1	0	0	0	1	0	$X_1 + X_2 + X_3 + \overline{X_4}$
2	0	0	1	0	1	-
3	0	0	1	1	1	-
4	0	1	0	0	1	-
5	0	1	0	1	0	$X_1 + \overline{X_2} + X_3 + \overline{X_4}$
6	0	1	1	0	1	-
7	0	1	1	1	0	$X_1 + \overline{X_2} + \overline{X_3} + \overline{X_4}$
8	1	0	0	0	0	$\overline{X_1} + X_2 + X_3 + X_4$
9	1	0	0	1	1	-
10	1	0	1	0	0	$\overline{X_1} + X_2 + \overline{X_3} + X_4$
11	1	0	1	1	1	-
12	1	1	0	0	1	-
13	1	1	0	1	1	-
14	1	1	1	0	0	$\overline{X_1} + \overline{X_2} + \overline{X_3} + X_4$
15	1	1	1	1	0	$\overline{X_1} + \overline{X_2} + \overline{X_3} + \overline{X_4}$

Cuadro 1.1: Tabla de verdad de la función dada.

De esta manera, la función está dada por productos de sumas de las variables (máxterminos).

1.2. SIMPLIFICACIÓN APLICANDO ÁLGEBRA BOOLEANA

Se tiene entonces:

$$f(d,c,b,a) = M_0 * M_1 * M_5 * M_7 * M_8 * M_{10} * M_{14} * M_{15}$$
(1.1)

Que es equivalente a:

$$f(d,c,b,a) = (X_1 + X_2 + X_3 + X_4) * (X_1 + X_2 + X_3 + \overline{X_4}) * (X_1 + \overline{X_2} + X_3 + \overline{X_4}) * (X_1 + \overline{X_2} + \overline{X_3} + \overline{X_4})$$

$$* (\overline{X_1} + X_2 + X_3 + X_4) * (\overline{X_1} + X_2 + \overline{X_3} + X_4) * (\overline{X_1} + \overline{X_2} + \overline{X_3} + X_4) * (\overline{X_1} + \overline{X_2} + \overline{X_3} + \overline{X_4})$$

$$(1.2)$$

Utilizando la propiedad del álgebra booleana $(x + y)(x + \overline{y} = x)$ sobre los pares de términos $(M_0, M_1); (M_5, M_7); (M_8, M_{10}); (M_{14}, M_{15})$ se llegó a la siguiente expresión simplificada.

$$f(d,c,b,a) = (X_1 + X_2 + X_3) * (\overline{X_1} + \overline{X_2} + \overline{X_3}) * (X_1 + \overline{X_2} + \overline{X_4}) * (\overline{X_1} + X_2 + X_4)$$
(1.3)

Cuadro 1.2: Mapa de Karnaugh de la función dada.

X_1, X_2	0 0	0 1	11	10		X_1, X_2 X_3, X_4	0 0	01	11	10
0 0	M_0	M_4	M_{12}	M_8		0	0	1	1	0
0 1	M_1	M_5	M_{13}	M_9	 →	0 1	0	0	1	1
1 1	M_3	M_7	M_{15}	M_{11}		1 1	1	0	0	1
1 0	M_2	M_6	M_{14}	M_{10}		1 0	1	1	0	0

1.3. SIMPLIFICACIÓN APLICANDO MAPAS DE KARNAUGH

Nos es de interés para simplificar aplicando mapas de Karnaugh aquellos máxterminos en los que la función vale 0, agrupándolos de a 8, 4, 2 ó 1, según se pueda e intentando que los grupos sean lo más grande posible. Si tomamos 4 grupos de a 2 verticales, como muestra la tabla

Cuadro 1.3: Mapa de Karnaugh de la función dada.

X_1, X_2 X_3, X_4	0 0	01	11	10	
0 0	0	1	1	0	
0 1	0	0	1	1	
1 1	1	0	0	1	
1 0	1	1	0	0	

1.4. CIRCUITO LÓGICO RESULTANTE

1.4.1. UTILIZANDO COMPUERTAS AND, OR, NOT.

1.4.2. UTILIZANDO COMPUERTAS NOR.