A Comparative Study on Schema-guided Dialog State Tracking

NAACL 2021 Jie Cao, Yi Zhang

UNIVERSITY OF UTAH

Outlines

- Motivation
- Task Description and Datasets
- Three Comparative Studies
- Encoder Architectures
- ii. Supplementary training
- iii. Impact of Schema Description Style
- Q&A

Motivation

Challenges of Virtual Assistants (Task-oriented)

- Increasing number of **new services and APIs** → (new annotation, new model retraining)
- tunctionalities. Heterogeneous Interfaces for similar services, precisely understanding overlapping
- How to integrate common sense and world knowledge?

depart destination = NewYork depart depart = June 10 is_overnight = False is_direct = True		seating_class destination = NewYork	Intents: SearchFlight: SearchFlight: Seating_class = economic origin = Seattle	Flight User Service 1
OK. What about Delta Airlines from Seattle to NewYork departing at 10:00 am June 10?	Leaving at June 10, no overnight or layovers please.	Sure. When do you want to leave?	Seattle to NewYork.	
dest_city = NewYork depart_date = June 10 is_redeye = False num_stops = 0	FindFlight: flight_class = economic origin_city = Seattle	dest_city = NewYork	FindFlight: flight_class = economic origin_city = Seattle	System Flig Serv
depart_date	origin_city dest_city num_stops	Slots: flight_class	Intents: FindFlight ReserveFlight	Flight Service 2

Schema-guided Dialogue State Tracking

tags in unseen domains. Using Natural language description to explain the functionalities of tags, to help generalizing to unseen

Flight Service 1

between cities for a given date", "description": "Find a flight itinerary "name": "SearchFlight" "required_slots":

desitinaion",

"required_slots":.....

"description": "Search for flights to a

"name": "FindFlight"

Adding Intent

Description

Flight Service 2

```
Possible values
                                                      Description,
                                                                                     Adding Slot
                                                   directly arrive without any stop'
                                                                              "description": "Whether the flight
 "possible_values": ["true", "false"]
                                                                                                          "name": "is_direct"
                           "is_categorical": True
                                                    in the flight",
                                                                            "description": "Number of layovers
"possible_values": ["0","1","2"]
                                                                                                           "name": "num stops"
                           "is_categorical": true
```

Type

Schema-guided Dialogue State Tracking

Given service schema with description and dialogue history, predict dialog states after each user turn.

Schema

```
"description": "A leading provider for restaurant search and reservations"
                                                                                                                                                                                                                                                                                                                                                                                               "service_name": "Restaurants_1"
                                                                                                       "optional_slots": {
                                                                                                                                                                               particular cuisine in a city"
                                                                                                                                                                                                                     "description": "Find a restaurant of a
                                                                                                                                                                                                                                                         "name": "FindRestaurants"
                                                                                                                                          "required_slots": ["cuisine","city"],
                                  "serves_alcohol": "dontcare"
                                                                        "has_live_music": "dontcare",
                                                                                                                                                                                                                                                                                                           Intents
                                                                                                                                                                                                                                                                                                                                                                                                                                               Services
                                                                                                                                                                                                                  "description": "Name of the restaurant"
                                                                                                                                                                                                                                                      "name": "restaurant_name"
                                                                   restaurant has live music"
                                  "is_categorical": true
                                                                                                       "description": "Boolean flag indicating if the
                                                                                                                                              "name": "has_live_music"
"possible_values": ["True","False"]
                                                                                                                                                                                                                                                                                                           Slots
```

Schema-guided Dialogue State Tracking

Dialogue

User: I am looking for Asian food in SFO

System: I found 10 restaurants in San Francisco.

User: Any popular one? By the way, I also want to buy a drink.

System: There is a nice restaurant called Butterfly Restaurant

User: Do they have live music? Where are they located?

System: They do not have live music. They are at 33 The Embarcadero

Dialogue State Tracking

				cuisine	city	IOIS		req_slots	intent F	Use
	,			Asian	SFO	SIOt_values		N/A	FindRestanurants	User Turn 1
		alcohol	cuisine		city	9	۵.	req_slots	intent	U
1		TRUE	Asian	Dan Li ancisco	Con Francisco		slot values	N/A	FindRestanurants	User Turn 2
alcohol	cuisine		city		8		req_slots		intent	ر ر
TRUE	Asian	Odn Li diktor	Con Front	CID.	slot_values	"- "	etroot address	has_live_music,	FindRestanurants	User Turn 3

Four Subtasks Each Turn:

- Active Intent Classification
- Requested Slot
- . Categorical Slot Values
- ı. Boolean
- b. Predefined Values
- i. Numeric
- ii. Text
- Non-Categorical Slot Values

4.

a. Span-based Value

Two Datasets:

- Google SG-DST
- MultiWOZ 2.2

Datasets

Datacata	Cality	Diolog	Domain,	Comicos	Zero-shot	Zero-shot	Function	Collecting
Dalasels	епте	Borera	Бошашь	OCI VICES	Domains	Services	Overlapp	Method
	Train	16142	16	26	5	Ē		
SG-DST	Dev	2482	16	17	1	∞	Across-domain	M2M
	Test	4201	18	21	3	11	within-domain	
	Train	9617	3	3		Ē		
MULTIWOZ 2.2	Dev	2455	5	5	2	2	Across-domain	H2H
	Test	2969	∞	∞	5	5		

SG-DST has more overlapping functionalities than MultiWOZ 2.2

Challenges: Three Comparative Studies

Q1: How to encode the dialog and schema?

- For each turn, matching the same dialog history with all schema descriptions multiple times
- Sentence-pair(SNLI) and Token-level classification(QA)

Q2: How do different supplementary trainings help?

Zero-shot learning for unseen services

Q3: How the model performs on various description styles?

Unseen service may have heterogeneous styles

Q1: How to encode the dialog and schema? (Cross-Encoder)

Pros:

Accurate, each representation full-attention is contextualized via

Cons: a lot of recomputing, slow

- <u>ت</u> 5 Dialog encoded multiple times within the same turn
- Schema encoded multiple times across different turns.

Q1: How should the dialog and schema be encoded? (Dual-Encoder)

Pros:

percomputed once and cached. Fast inference Encoding dialog history and schema independently, can be

Cons:

- . Local self-attention
- b. inaccurate

Q1: How to encode the dialog and schema?

Still independent precomputing.

but a thin full-attention fusion layer for better performance

Moderate accuracy

Q1: How to encode the dialog and schema(for 4 subtasks)?

			SG-DST	T		Mυ	MULTIWOZ 2.2	2.2
Method/Task	Acc	F1		Joint Acc	3.50		Joint Acc	5.52
	Intent Req	Req	Cat	Cat NonCat	All	Cat	NonCat	All
			Seen S	Seen Services				
Dual-Encoder	94.51	99.62	94.51 99.62 87.92	47.77	43.20	79.20	79.34	65.64
Fusion-Encoder 94.90 99.69 88.94	94.90	99.69	88.94	48.78	58.52	81.37	80.58	67.43
Cross-Encoder	95.55	99.59	93.68	95.55 99.59 93.68 91.85	87.58	85.99	81.02	71.93
		J	Jnseen	Unseen Services	2200			
Dual-Encoder	89.73	95.20	42.44	89.73 95.20 42.44 31.62	19.51	56.92	50.82	31.83
Fusion-Encoder 90.47 95.95 48.79	90.47	95.95	48.79	35.91	22.85	57.01	52.23	33.64
Cross-Encoder	93.84	98.26	71.55	93.84 98.26 71.55 74.13	54.54	59.85	59.62	38.46

times faster than Cross-Encoder By caching the token embedding instead of the single CLS embedding, a simple partial-attention Fusion-Encoder can achieve much better performance than Dual-Encoder, while still infers two

Q2: How do different supplementary trainings help?

Q2: How do different supplementary trainings help?

				SG-DST	TSC			
0 35	Int	Intent	R	Req)	Cat	No	nCat
	seen	seen unseen	seen	unseen	seen	unseen	seen	unseen
$\Delta_{ ext{SNLI}}$	+0.02	+0.68	+0.38	+0.38 -0.38	-2.87	-1.23	-0.1	-6.25
Δ_{SQuAD} -0.17	-0.17	-1.32	-0.01	-0.01 -0.33 -3.02 -5.17	-3.02	-5.17	-1.79	+3.25

- SNLI only helps for Intent (emphasizing the whole sentence entailment), although Req and Cat are also sentence-pair classification tasks
- span-based retrieving **SQuAD** consistently helps for non-categorical slot identification tasks, due to
- Supplementary training helps more on unseen services

Q3: How the model performs on various description styles?

Background:

- To compatible with previous tag-based DST system, many previous papers show simply adding question format to those **tags** may help.
- Is name-based description enough?
- b. Does question format helps?
- Unseen services may use different description style
- a. heterogeneous evaluation?

Type of the user account	Check the balance of the user's bank account	Orig-Para
What is the account type of the user?	Does the user want to check the amount of money in the bank account?	Q-Orig
The account type of the user	Check the amount of money in a user's bank account	Orig
What is the value of acctount_type?	Is the user intending to CheckBalance?	Q-Name
account_type	CheckBalance	NameOnly
slot_4	intent_1	Identifer
Slot Description	Intent Description	style

Q3: How the model performs on various description styles? (homogeneous)

Ct.1-\T-1-		SG	SG-DST		TUM	MULTIWOZ 2.2
Styleviask	Intent	Req	Cat	NonCat	Cat	NonCat
Identifer	61.16	91.48	62.47	30.19	34.25	52.28
NameOnly	94.24	98.84	74.01	75.63	53.72	56.18
Q-Name	93.31 98.86 74.36	98.86	74.36	74.86	54.19	56.17
	93.01	98.55	74.51	75.76	52.19	57.20
Q-Orig	93.42	98.51	76.64	76.60	53.61	57.80

Is named-based description enough?

- Most name are meaningful, and perform **not bad**, especially **on** Intent/Req subtasks
- tasks. Rich description outperforms the name-based on NonCat, but inconsistent on other

Q3: How the model performs on various description styles? (homogeneous)

Style/Dataset	SG	SG-DST	MULTI	MULTIWOZ 2.2
Style/Dalaset	seen	unseen	seen	unseen
Orig	-1.79	+3.25	-2.21	+4.27
Q-Orig	-2.01	+8.84	-1.28	+3.06
NameOnly	-1.49	-0.11	+0.58	+1.77
Q-Name	-2.98	+1.04	-0.32	+1.25

Is question-format helpful?

- It generally helps on Cat/NonCat
- supplementary training on unseen. However, not on MultiWOZ. Adding it to rich description will benefit more from SQuAD2

Q3: How the model performs on various description styles? (Heterogeneous)

					SG-DST	Т		
Style\Task		ntent(Acc)	Req(F1)	Ξ	Cat(Jo	Cat(Joint Acc)	NonCa	NonCat(Joint Acc
	mean	D	mean	D	mean	D	mean	D
NameOnly	82.47	82.47 -11.47 96.92 -1.64 61.37	96.92	-1.64	61.37	-5.54	56.53	-14.68
Q-Name	93.27	+0.58 97.88	97.88	-0.76	68.55	+2.63	62.92	-6.30
Orig	79.47	79.47 -12.70 97.42 -0.74	97.42	-0.74	68.58	-0.3	66.72	-3.11
Q-Orig	84.57	-8.24 96.70 -1.45 68.40	96.70	-1.45	68.40	-2.89	56.17	-15.00
	para	٥	para	▷	para	▷	para	٥
NameOnly	92.22	-1.74	-1.74 97.69 -0.87 67.39	-0.87	67.39	-0.7	67.17	-4.04
Orig	91.54	91.54 -0.63 98.42 +0.26 71.74	98.42	+0.26	71.74	+2.86	67.68	-2.16

What if unseen service in different description styles?

- For unseen styles, all tasks surfer from inconsistencies, though to varying degrees
- descriptions For paraphrased styles, richer description are relatively more robust than named-based

Takeaways

- Cross-Encoder > Fusion-Encoder > Dual-Encoder in accuracy, while opposite on interence speed
- supplementary training on different subtasks To support low-resource unseen services, we quantified the gain via
- ယ Simple named-based description are actually meaningful, and they perform not bad, but not as robust as rich description in most cases.
- cross-style schema-guided dialog modeling. All subtasks suffers from inconsistencies when using heterogeneous description on unseen services, which requires tuture work on more robust

Q&A?

Thanks