Method of Moments Estimation

Suppose $X_1 \stackrel{iid}{\sim} Exp(\lambda)$ for $i = 1, \dots, n$.

- 1. Find the method of moments estimator for λ
- 2. If we observe data x = 2, 4, 7, 10, give the value for the method of moments estimate.

Answer:

1. Methods of Moments Since there's only one unknown parameter, we will just use the 1^{st} moment. The 1^{st} (population) moment is $u_t = E(X)$

$$\mu_1 = E(X) = \frac{1}{\lambda}$$
 (known for exponential distribution)

The 1^{st} sample moment is always $m_1 = \frac{\sum_{i=1}^n x_i}{n} = \bar{x}$

Set the 1^{st} (population) moment equal to 1^{st} sample moment, and solve for λ .

$$\mu_1 = E(X) \stackrel{set}{=} \bar{X} = m_1$$

$$\implies \frac{1}{\lambda} = \bar{x}$$

$$\implies \hat{\lambda}_{MoM} = \frac{1}{\bar{x}}$$

The method of moments estimator for λ is $\hat{\lambda}_{MoM} = \frac{1}{X}$

2. Based on our data, $\bar{x}=\frac{2+4+7+10}{4}=5.75$. Plugging this into our estimator, The method of moments estimate for λ is $\hat{\lambda}_{MoM}=\frac{1}{\bar{x}}=\frac{1}{5.75}=0.1739$