

NRQCD

David Barón Pablo Figueroa, Pedro Leal Diego Milanes January 27, 2022

Introduction

The decay rate into a quarkonium can be written as the sum of partial decay rates, to perform B's decay into charmonium $c\bar{c}$ we have:

$$\Gamma[n] = \Gamma_0 \left[C^2[1, 8] f[n](\eta) (1 + \delta_P[n]) + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 g_1[n](\eta) + 2C_{[1]} C_{[8]} g_2[n](\eta) + C_{[8]}^2 g_3[n](\eta) \right) \right] \langle O^H[n] \rangle$$
 (2.13)

$$\Gamma_0 = \frac{G_F^2 |V_{bc}|^2 m_b^3}{432\pi m_c} \quad (2.14)$$

Colour singlet channels

The Strict NLO calculations for ${}^1S_0^{(1)}$, ${}^3S_1^{(1)}$, ${}^3P_1^{(1)}$ leads to a negative and meaningless decay rate.

One should add to the term of order $\alpha_s C_{[1]} C_{[8]}$ all terms of order $\alpha_s^2 C_{[8]}^2$. Instead of it, it is approximated by adding:

$$\Gamma_0 \langle O^H[n] \rangle \left(\frac{\alpha_s(\mu)}{4\pi} \right)^2 C_{[8]}^2 \frac{g_2[n]^2}{f[n]}$$
 (3.10)

We will consider just the *improved* calculation: The NLO calculation with the term (3.10) added, but without the g_1 term.

David calculations

By using the threshold expansion and the covariant projectors method, we found:

$$\Gamma_{0D} = \frac{G_F^2 |V_{cb}|^2 m_b^3}{257\pi m_c}$$

And the penguin corrections:

David	Maltoni	n		
		/		
$\frac{1,96(3(C_3-C_5)+C_4-C_6)}{C_1}$	$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	$^{1}S_{0}^{(1)}$		
$\frac{1,96(3(C_3+C_5)+C_4+C_6)}{C_1}$	$\frac{2(3(C_3+C_5)+C_4+C_6)}{C_1}$	${}^3S_1^{(1)}$		
$\frac{1,96(3(C_3-C_5)+C_4-C_6)}{C_1}$	$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	$^{3}P_{1}^{(1)}$	$\delta_p[n]$	
$\frac{2,4(C_4-C_6)}{C_8}$	$\frac{4(C_4-C_6)}{C_8}$	$^{1}S_{0}^{(8)}$		
$\frac{2,4(C_4+C_6)}{C_8}$	$\frac{4(C_4+C_6)}{C_8}$	${}^3S_1^{(8)}$		
$\frac{2,4(C_4-C_6)}{C_8}$	$\frac{4(C_4-C_6)}{C_8}$	$^{3}P_{1}^{(8)}$		

Mathematica Implementation

We made a Mathematica code to compute in a systematical way the branching fractions

$$Br(B \to H + X) = N \sum_{n} \left\langle O^{H}[n] \right\rangle \left[C_{[1,8]}^{2} f[n](\eta) (1 + \delta_{P}[n]) + \frac{\alpha_{s}(\mu)}{4\pi} \left(C_{[1]}^{2} g_{1}[n](\eta) + 2C_{[1]} C_{[8]} g_{2}[n](\eta) + C_{[8]}^{2} g_{3}[n](\eta) \right) \right]$$
(4.3)

With
$$N = Br_{SL}^{exp} \frac{\Gamma_0}{\Gamma_{SL}^{th}} = 3.0 \cdot 10^{-2} \ GeV^{-3}$$

And
$$N_D = Br_{SL}^{exp} \frac{\Gamma_{0D}}{\Gamma_{Cr}^{th}} \approx 5.0 \cdot 10^{-2} \ GeV^{-3}$$

Mathematica Implementation

We compute 3 cases:

- ► *Our Maltoni*: We reproduce Maltoni results, using the parameters that he gave in his paper.
- ightharpoonup David: We implement the overall correction that David had found at LO in the LO and NLO. We also take into a count the penguin corrections and the N_D
- ightharpoonup David-Maltoni: We tried to implement the David's correction just a LO and the Γ from Maltoni at NLO, in order to make a comparison. Nevertheless, these results were meaningless.

1. JΨ

$Br(B \to \Psi(nS) + X)$	$\langle O_1^{\Psi}(^3S_1)\rangle$	$\langle O_8^{\Psi}(^3S_1)\rangle$	$\langle O_8^{\Psi}(^1S_0)\rangle$	$\left\langle O_8^{\Psi}(^3P_0)\right\rangle/m_c^2$
Maltoni	$ \begin{cases} -0.741 \\ 0.0754 \\ -0.254 \end{cases} 10^{-2} $	0.195	0.342	1.06
Our Maltoni		0.193	0.338	1.05
Γ_{0D} Lo and NLO		0.3331	0.5676	1.760
Γ_{0D} Lo and Γ_0 NLO		0.286	0.4949	1.607

2. η_c

$Br(B \to \eta_c + X)$	$\langle O_1^{\eta_c}(^1S_0)\rangle$	$\langle O_8^{\eta_c}(^1S_0)\rangle$	$\langle O_8^{\eta_c}(^3S_1)\rangle$	$\left\langle O_8^{\eta_c}(^1P_1)\right\rangle/m_c^2$
Maltoni		0.342	0.195	-0.0468
Our Maltoni		0.338	0.193	-0.0464
Γ_{0D} Lo and NLO		0.5676	0.333	-0.0780
Γ_{0D} Lo and Γ_{0} NLO		0.4949	0.286	-0.0464

 $3.1 \chi_{c0}$

$Br(B \to \chi_{c0} + X)$	$\left\langle O_1^{\chi_{c0}}(^3P_0)\right\rangle/m_c^2$	$\langle O_8^{\chi_{c0}}(^3S_1)\rangle$
Maltoni	-0.0148	0.195
Our Maltoni	-0.0147	0.193
Γ_{0D} Lo and NLO	-0.0247	0.333
Γ_{0D} Lo and Γ_{0} NLO	-0.0147	0.286

 $3.2 \chi_{c1}$

$Br(B \to \chi_{c1} + X)$	$\langle O_1^{\chi_{c1}}(^3P_1)\rangle/m_c^2$	$\langle O_8^{\chi_{c1}}(^3S_1)\rangle$
Maltoni	$ \begin{cases} -2.14 \\ -0.783 \\ -1.21 \end{cases} 10^{-2} $	0.195
Our Maltoni		0.193
Γ_{0D} Lo and NLO		0.333
Γ_{0D} Lo and Γ_{0} NLO		0.286

 $3.3 \chi_{c2}$

$Br(B \to \chi_{c2} + X)$	$\langle O_1^{\chi_{c2}}(^3P_2)\rangle/m_c^2$	$\langle O_8^{\chi_{c2}}(^3S_1)\rangle$
Maltoni	-0.0120	0.195
Our Maltoni	-0.0119	0.193
Γ_{0D} Lo and NLO	-0.0199	0.333
Γ_{0D} Lo and Γ_0 NLO	-0.0119	0.286

Branching fractions χ_{CJ}

As we see before the branching fraction of the X_{cJ} production $B \to \chi_{cJ} X$ are expressed, in general, as:

$$Br(B \to \chi_{c0} + X) = A \frac{\langle O_1^{\chi_{c0}}(^3P_0) \rangle}{m_c^2} + B \langle O_8^{\chi_{c0}}(^3S_1) \rangle$$

$$Br(B \to \chi_{c1} + X) = C \frac{\left\langle O_1^{\chi_{c1}}(^3 P_1) \right\rangle}{m_c^2} + D \left\langle O_8^{\chi_{c1}}(^3 S_1) \right\rangle$$

$$Br(B \to \chi_{c2} + X) = E \frac{\langle O_1^{\chi_{c2}}(^3P_2) \rangle}{m_c^2} + F \langle O_8^{\chi_{c2}}(^3S_1) \rangle$$

Branching fractions χ_{CJ}

Spin symmetry relations for the χ_{cJ} :

$$O_1 \equiv \left\langle O_1^{\chi_{c0}}(^3P_0) \right\rangle / m_c^2$$

$$O_8 \equiv \left\langle O_8^{\chi_{c0}}(^3S_1) \right\rangle$$

$$\left\langle O_1^{\chi_{cJ}}(^3P_J)\right\rangle/m_c^2=(2J+1)O_1$$

$$\left\langle O_8^{\chi_{cJ}}(^3S_1)\right\rangle = (2J+1)O_8$$

Branching fractions χ_{CJ}

We can write the Branching fractions for χ_{c1} , χ_{c2} in terms of the same operators of χ_{c0} :

For χ_{c1} :

$$\left\langle O_1^{\chi_{c1}}(^3P_J)\right\rangle/m_c^2 = 3\cdot O_1$$

$$\left\langle O_8^{\chi_{c1}}(^3S_1)\right\rangle = 3\cdot O_8$$

For χ_{c2} :

$$\langle O_1^{\chi_{c2}}(^3P_J)\rangle/m_c^2 = 5 \cdot O_1$$

$$\langle O_8^{\chi_{c2}}(^3S_1)\rangle = 5 \cdot O_8$$

$\mathbf{B} \to \chi_0 + \mathbf{X} \mathsf{LAL}$

Figure: X^2 of χ_0 for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data in LAL.

$\mathbf{B} \to \chi_0 + \mathbf{X}$ New Data

Figure: X^2 of χ_0 for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data with the new experimental data .

$\mathbf{B} \to \chi_1 + \mathbf{X} \mathsf{LAL}$

Figure: X^2 of χ_1 for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data in LAL.

$\mathbf{B} \to \chi_1 + \mathbf{X}$ New Data

Figure: X^2 of χ_1 for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data with the new experimental data .

$\mathbf{B} \rightarrow \chi_2 + \mathbf{X} \mathsf{LAL}$

Figure: X^2 of χ_2 for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data in LAL.

$\mathbf{B} \to \chi_2 + \mathbf{X}$ New Data

Figure: X^2 of χ_2 for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data with the new experimental data .

$$\mathbf{B} \to \chi_{\mathbf{c}} + \mathbf{X} \quad \langle |\chi^2| \rangle \text{ LAL}$$

Figure: $\langle |\chi^2| \rangle$ of χ_c for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data in LAL.

${f B} ightarrow \chi_{f c} + {f X} \quad \langle |\chi^2| \rangle$ New Data

Figure: $\langle |\chi^2| \rangle$ of χ_c for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data with the new experimental data .

$\chi_{\mathbf{c}} \quad \langle |\chi^2| \rangle$ Minimum

			Χc			
LAL Data		New Data				
	minimum	<i>O</i> ₁	<i>O</i> ₈	minimum	<i>O</i> ₁	08
Maltoni	2.42237	0.0974	0.007057	2.84925	0.1016	0.00759
Our Maltoni	2.52425	0.10451	0.007527	2.9641	0.1083	0.00804
David	2.42986	0.06489	0.004626	2.85442	0.0674	0.00495

$$\mathbf{B} o rac{\chi_1 + \mathbf{X}}{\chi_0} \mathsf{LAL}$$

Figure: X^2 of $\frac{\chi_1}{\chi_0}$ for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data in LAL.

$\mathbf{B} o rac{\chi_1 + \mathbf{X}}{\chi_0}$ New Data

Figure: X^2 of $\frac{\mathcal{X}_1}{\mathcal{X}_0}$ for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data with the new experimental data .

$$\mathbf{B} o rac{\chi_2 + \mathbf{X}}{\chi_0}$$
 LAL

Figure: X^2 of $\frac{\chi_2}{\chi_0}$ for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data in LAL.

$\mathbf{B} o rac{\chi_2 + \mathbf{X}}{\chi_0}$ New Data

Figure: X^2 of $\frac{\chi_2}{\chi_0}$ for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data with the new experimental data .

$$\mathbf{B}
ightarrow rac{\chi_{\mathrm{c}} + \mathbf{X}}{\chi_{0}} \langle | \chi^{2} | \rangle \text{ LAL}$$

Figure: $\langle |\chi^2| \rangle$ of $\frac{\chi_c}{\chi_0}$ for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data in LAL.

$${f B}
ightarrow {\chi_{
m c} + {f X} \over \chi_0} \langle | \, \chi^2 \, |
angle$$
 New Data

Figure: $\langle |\chi^2| \rangle$ of $\frac{\chi_c}{\chi_0}$ for the Maltoni's description, the computational Maltoni and the implementation of David calculations with the experimental data with the new experimental data.

References

S. Barsuk, E. Kou, and A. Usachov.
Test of nrqcd with charmonium production in inclusive b-hadron decays.
2019.

M. Beneke, F. Maltoni, and I. Z. Rothstein. Qcd analysis of inclusive b decay into charmonium. Physical Review D, 59:054003, 1999.