

Transmissive Optical Sensor with Phototransistor Output

Description

The TCST1103/1202/1300/2103/2202/2300 are transmissive sensors that include an infrared emitter and phototransistor, located face-to-face on the optical axes in a leaded package which blocks visible light. These part numbers include options for aperture width and mounting flanges.

Features

· Package type: Leaded

· Detector type: Phototransistor

Dimensions package A:

L 11.9 mm x W 6.3 mm x H 10.8 mm

 Dimensions package B: L 24.5 mm x W 6.3 mm x H 10.8 mm

• Gap: 3.1 mm

 Typical output current under test: I_C = 4 mA (TCST1103/2103)

 Typical output current under test: I_C = 2 mA (TCST1202/2202)

 Typical output current under test: I_C = 0.5 mA (TCST1300/2300)

- · Daylight blocking filter
- Emitter wavelength 950 nm
- Lead (Pb)-free soldering released
- Lead (Pb)-free component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Applications

- · Optical switch
- Photo interrupter
- Counter
- Encoder

Order Instructions

Part Number	Remarks	Resolution, Aperture	Minimum Order Quantity
TCST1103	Without mounting flange ^{A)}	0.6 mm, 1 mm	1020 pcs, 85 pcs/tube
TCST1202	Without mounting flange ^{A)}	0.4 mm, 0.5 mm	1020 pcs, 85 pcs/tube
TCST1300	Without mounting flange ^{A)}	0.2 mm, 0.25 mm	1020 pcs, 85 pcs/tube
TCST2103	With mounting flange ^{B)}	0.6 mm, 1 mm	1020 pcs, 85 pcs/tube
TCST2202	With mounting flange ^{B)}	0.4 mm, 0.5 mm	1020 pcs, 85 pcs/tube
TCST2300	With mounting flange ^{B)}	0.2 mm, 0.25 mm	1020 pcs, 85 pcs/tube

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Coupler

Parameter	Test condition	Symbol	Value	Unit
Total power dissipation	T _{amb} ≤ 25 °C	P _{tot}	250	mW
Operating temperature range		T _{amb}	- 55 to + 85	°C
Storage temperature range		T _{stg}	- 55 to + 100	°C
Soldering temperature	Distance to package: 2 mm; $t \le 5$ s	T _{sd}	260	°C

Document Number 83764 www.vishay.com

Rev. 1.8, 16-Aug-06

Vishay Semiconductors

Input (Emitter)

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V_R	6	V
Forward current		I _F	60	mA
Forward surge current	$t_p \le 10 \ \mu s$	I _{FSM}	3	A
Power dissipation	$T_{amb} \le 25^{\circ}C$	P _V	100	mW
Junction temperature		T _j	100	°C

Output (Detector)

Parameter	Test condition	Symbol	Value	Unit
Collector emitter voltage		V _{CEO}	70	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		I _C	100	mA
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	200	mA
Power dissipation	$T_{amb} \le 25^{\circ}C$	P _V	150	mW
Junction temperature		T _j	100	°C

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Coupler

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Current Transfer Ratio	V _{CE} = 5 V, I _F = 20 mA	TCST1103, TCST2103	CTR	10	20		%
		TCST1202, TCST2202	CTR	5	10		%
		TCST1300, TCST2300	CTR	1.25	2.5		%
Collector current	V _{CE} = 5 V, I _F = 20 mA	TCST1103, TCST2103	I _C	2	4		mA
		TCST1202, TCST2202	I _C	1	2		mA
		TCST1300, TCST2300	I _C	0.25	0.5		mA
Collector emitter saturation voltage	I _F = 20 mA, I _C = 1 mA	TCST1103, TCST2103	V _{CEsat}			0.4	V
	I _F = 20 mA, I _C = 0.5 mA	TCST1202, TCST2202	V _{CEsat}			0.4	V
	I _F = 20 mA, I _C = 0.1 mA	TCST1300, TCST2300	V _{CEsat}			0.4	V
Resolution, path of the shutter crossing the radiant sensitive zone	I _{Crel} = 10 to 90 %	TCST1103, TCST2103	S		0.6		mm
		TCST1202, TCST2202	S		0.4		mm
		TCST1300, TCST2300	S		0.2		mm

Input (Emitter)

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 60 mA	V_{F}		1.25	1.6	V
Junction capacitance	V _R = 0, f = 1 MHz	C _j		50		pF

www.vishay.com

Document Number 83764

Rev. 1.8, 16-Aug-06

Output (Detector)

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector emitter voltage	I _C = 1 mA	V_{CEO}	70			V
Emitter collector voltage	I _E = 10 μA	V_{ECO}	7			V
Collector dark current	$V_{CE} = 25 \text{ V}, I_F = 0, E = 0$	I _{CEO}			100	nA

Switching Characteristics

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Turn-on time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega$	t _{on}		10.0		μs
	(see figure 1)					
Turn-off time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega$	t _{off}		8.0		μs
	(see figure 1)					

Figure 1. Test circuit for t_{on} and t_{off}

Figure 3. Power Dissipation Limit vs. Ambient Temperature

Figure 2. Switching Times

www.vishay.com

Vishay Semiconductors

Typical Characteristics

T_{amb} = 25 °C, unless otherwise specified

Figure 4. Forward Current vs. Forward Voltage

Figure 5. Relative Current Transfer Ratio vs. Ambient Temperature

Figure 8. Collector Current vs. Collector Emitter Voltage

Figure 6. Collector Dark Current vs. Ambient Temperature

Figure 9. Current Transfer Ratio vs. Forward Current

Figure 10. Turn on/off Time vs. Collector Current

0.1 0.2 0.3 0.4 0.5

Figure 11. Relative Collector Current vs. Displacement

s - Displacement (mm)

- 0.5 - 0.4 - 0.3 - 0.2- 0.1 0

Figure 12. Relative Collector Current vs. Displacement

Figure 13. Relative Collector Current vs. Displacement

Vishay Semiconductors

Package Dimensions in mm

Tube Dimensions

With rubber stopper Tolerance: ±0.5mm Length: 575±1mm All dimensions in mm

Drawing-No.: 9.700-5100.01-4

Issue: 1; 25.02.00

20252

Document Number 83764 Rev. 1.8, 16-Aug-06

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

www.vishay.com Document Number 83764 Rev. 1.8, 16-Aug-06

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05