Anwendungen von Wortvektoren

Benjamin Roth

Centrum für Informations- und Sprachverarbeitung Ludwig-Maximilian-Universität München beroth@cis.uni-muenchen.de

Quiz

• sli.do

Wort-Vektoren

- "Wortvektoren":
 - Sparse:
 - ★ aus PPMI-gewichteter Co-okkurrenz-Matrix
 - ★ aus TF-IDF-gewichteter Term-Dokument-Matrix
 - Dense:
 - ★ durch Singular Value Decomposition der PPMI (oder TF-IDF) Matrix
 - durch gradienten-basierte maschinelle Lernverfahren (Word2Vec, GloVe, ...)
- Was sind Vorteile und Anwendungsmöglichkeiten von Wort-Vektoren?

Vorteil: Universelle Merkmale

- Wortvektoren repräsentieren alle Wörter im selben Merkmalsraum.
- Diese Merkmale können zur Vorhersage von Wort-Eigenschaften verwendet werden, und vom Klassifikator je nach Aufgabe gewichtet werden.
- Beispiele:
 - Wortarten
 - ▶ Eigennamen-Typen (Person, Location, Organization, ...)
 - Fein-granulare Nomen-Typisierung (software, award, politician, food, ...)
 - ▶ Wort-Sentiment ("great" vs. "lame")
 - .

Vorteile von Dense-Repräsentationen: Generalisierung

- Dense-Repräsentationen: 50-1000 Dimensionen (SVD, Word2Vec, Glove, ...)
- Indirekte Ähnlichkeit: Weil das Modell die Ko-okkurrenz-Information komprimieren muss, werden Wörter ähnlich repräsentiert die wiederum mit ähnlichen (aber nicht unbedingt denselben) Wörtern Co-okkurrieren.
 - ⇒ Bessere Generalisierung
- Werden nur wenige (50-1000) Merkmale benutzt, besteht weniger Gefahr des Overfitting eines Klassifikators (im Vergleich zur Verwendung der PPMI-Vektoren)

Vorteil: Unsupervised (Nicht-Überwacht)

- Um Wort-Vektoren zu berechnen, benötigt man keinerlei Annotationen, es reicht eine genügend große Textmenge (z.B. Wikipedia).
- Klassifikatoren können dann mit wenigen annotierten Daten trainiert werden, unter Benutzung der zuvor gewonnenen Wort-Vektoren.

Beispiel: Wort-Sentiment

Wort	Vektor	Labe
absurd	[-0.4, 0.2,0.2,]	NEG
accurate	[-0.1,-1.2,0.1,]	POS
proper	[0.2,-0.1,0.2,]	POS
racist	[-0.5, 0.5,0.1,]	NEG

Einfacher Anwendungsfall:

. . .

- ▶ Der Klassifikator kann auf einem annotierten Sentiment-Lexikon trainiert werden, und dann die Polarität für neue Wörter vorhersagen (d.h. das ursprüngliche Lexikon erweitern).
- Das erweiterte Lexikon könnte dann zur Bestimmung des Sentiment von Texten verwendet werden (Verhältnis positiver ggü negativer Wörter).
- Hinweis: Die Information aus den Wortvektoren kann mit Neuronalen Netzen noch effektiver verwertet werden.
- Im Beispiel: Welchen Merkmalen würde der Klassifikator positive Merkmalsgewichte geben, welchen negative, wo wäre das Gewicht neutral (ungefähr 0)?

Beispiel: Wort-Sentiment

Wort	Vektor	Label
absurd	$[-0.4, 0.2, 0.2, \dots]$	NEG
accurate	[-0.1,-1.2,0.1,]	POS
proper	[0.2,-0.1,0.2,]	POS
racist	$[-0.5, 0.5, 0.1, \dots]$	NEG

 Im Beispiel: Welchen Merkmalen würde der Klassifikator positive Merkmalsgewichte geben, welchen negative, wo wäre das Gewicht neutral (ungefähr 0)?

Beispiel 2: Typ-Vorhersage

Wort/Nomen-Phrase Schleswig-Holstein London Symphony Orchestra Clint Fastwood

Typen

location, administrative division award winner, artist, employer award winner, actor, producer, director, artist

• • •

- Gegeben eine Nomen-Phrase, sage die möglichen Typen der beschriebenen Entität voraus.
- Anwendungsfälle?

Beispiel 2: Typ-Vorhersage

Wort/Nomen-Phrase

Schleswig-Holstein London Symphony Orchestra Clint Fastwood

Typen

location, administrative area award winner, artist, employer award winner, actor, producer, director, artist

٠..

- Gegeben eine Nomen-Phrase, sage die möglichen Typen der beschriebenen Entität voraus.
- Anwendungsfälle?
 - Question Answering: Which administrative area does Kiel belong to? What actors starred in Gran Torino?
 - ▶ Knowledge Graph Construction: Finde alle Möglichen Entitäten in einer großen Textmenge, sage in einem ersten Schritt deren Typen voraus, und in einem zweiten Schritt, welche Relationen zwischen ihnen bestehen.

Knowledge Graph Construction

- Finde alle möglichen Entitäten in einer großen Textmenge
- 2 Sage die Typen voraus
- Finde Relationen zwischen ihnen (in Abhängigkeit der Typen)

Beispiel 2: Typ-Vorhersage

Wort/Nomen-Phrase Schleswig-Holstein

London Symphony Orchestra Clint Eastwood

Typen

location, administrative area award winner, artist, employer award winner, actor, producer, director, artist

٠..

- Unterschiede zu Wort-Polarität:
 - Instanz betsteht möglicherweise aus mehreren Wörtern, nicht nur aus einem.
 - Instanz kann mehrere Typen haben, es gibt nicht nur ein richtiges Label.
 - Mögliche Lösungen?

Beispiel 2: Typ-Vorhersage

- Unterschiede zu Wort-Polarität:
 - Instanz betsteht möglicherweise aus mehreren Wörtern, nicht nur aus einem.
 - * Möglichkeit 1: Trainiere mit Einzelwörtern, und kombiniere die Vektoren nach dem Training. (Durschschnittsvektor, Neuronales Netzwerk).
 - ★ Möglichkeit 2: Füge Entitäten-Phrasen vor dem Training zu Pseudo-Wörtern zusammen (Clint_Eastwood)¹. Phrasen können durch einen Tagger, oder durch Co-Okkurrenz (PPMI) gefunden werden. Vorteil: Vektor genau für diese Phrase. Nachteil: Nicht kompositionell. Ich muss Phrasen vor dem Training wissen, oder es gibt ein Abdeckungsproblem.
 - Instanz kann mehrere Typen haben, es gibt nicht nur ein richtiges Label.
 - ⇒ Lösung: Vorhersage für jeden möglichen Typ (multi-label classification). Jeder Typ wird in einem Label-Vektor an einer anderen Stelle codiert.

¹Mikolov et al. (2013): Distributed Representations of Words and Phrases and their Compositionality

Praktische Hinweise

Praktische Hinweise

- Effiziente Implementierungen von Word2Vec, z.B.:
 https://radimrehurek.com/gensim/models/word2vec.html
- Vortrainierte GloVe Vektoren: https://nlp.stanford.edu/projects/glove/
- Multilabel Klassifikation mit Scikit-learn:
 - X: Trainingsdaten/Merkmale, Matrix (n_samples × n_features)
 - Y: Trainingsdaten/Labels, 0-1 Matrix (n_samples × n_classes) from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC

```
classif = OneVsRestClassifier(SVC(kernel='linear'))
classif.fit(X, Y)
```

- Statt SVC können auch andere Klassifikatoren (LogisticRegression...) gewählt werden.
- Vorhersage ist wieder (n_samples × n_classes) 0-1 Matrix classif.predict(X_test)

Auswahl der Anzahl der Dimensionen für einen Embedding-Space

Klassische Statistik: Anteil der erklärten Varianz

- z.B. bei trunkierter SVD
- Wie nahe ist die Rekonstruktion an der originalen PPMI Matrix?
 - ▶ 0% ⇔ immer Vorhersage des Mittelwertes (aller Einträge in der Matrix)
 - ▶ 100% ⇔ perfekte Rekonstruktion der Matrix
- Eine Möglichkeit ist dann, zu schauen wo der zusätzliche Erklär-Nutzen abnimmt ("Knick" in der Kurve), und nur die Singulärwerte/Dimensionen bis zu diesem Punkt zu verwenden.

Auswahl in Bezug auf Task

- Wenn man annotierte Entwicklungsdaten hat, kann man auf diesen verschieden Größen des Embedding-Raums durchprobieren.
- Benötigt eine Task-spezifische Kostenfunktion.
- Wähle Anzahl mit den geringsten Kosten (mit dem größten Nutzen)
- Aus dem original LSI-Papier:

Vergleich von Verfahren für Wortvektoren

Vergleichsaspekte

- **order**: wird die Reihenfolge der Kontext-wörter im Training berücksichtigt?
- time to train: Ist ein effizientes Training möglich?
- n > 1 lang's: Are embeddings in multiple languages comparable?
- **syntax**: Is the syntactic information (e.g. dependency relation) between words taken into account during training?

Weitere Vergleichsaspekte

- Wir haben einige Aspekte gesehen, nach denen man Modelle für Wortvektoren unterscheiden kann.
- compact: Ist das Modell kompakt (dense, niedrig-dimensional) oder nicht? (z.B. SVD vs. Wordspace)
- rare words: Können seltene oder nicht im Korpus vorgekommene Wörter gut repräsentiert werden? (z.B. fasttext vs. word2vec)
- units: Was sind die Repräsentationseinheitem im Training? Wörter
 (w), Buchstaben (characters, c), Absätze (paragraphs, p)

Kategorisierung nach Schütze

	compact	rare words	units	order	time to train	n>2 lang's	syntax	
WordSpace	-	0	W	_	+	_	-	
w2v skipgram	+	0	w/p	_	+	_	-	
w2v CBOW	+	-	W	_	+	_	-	
bengio&schwenk	+	?	W	+	-	_	_	
LBL	+	?	W	+	-	_	_	
CWIN	+	?	W	+	-	_	_	
wang2vec	+	?	W	+	-	_	_	
glove	+	?	W	_	+	+	_	
fasttext	+	+	c/w/p	_	+	_	_	
random	+	+	c/w/p	?	_	_	_	
CCA	+	?	W	+	_	_	_	
factorization	+				+	_	_	
multilingual	+		W		_	+	_	
dependencies	+		W			_	+	

Referenzen:

- WordSpace
 - Gerard Salton. Automatic Information Organization and Retrieval. 1968. McGraw Hill.
 - Hinrich Schütze. "Dimensions of meaning". ACM/IEEE Conference on Supercomputing. 1992.
- factorization, SVD
 - Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, Richard A. Harshman. "Indexing by Latent Semantic Analysis". JASIS 41:6. 1990.
 - Omer Levy, Yoav Goldberg. "Neural Word Embedding as Implicit Matrix Factorization". Advances in Neural Information Processing Systems. 2014.
- Word2vec skipgram, CBOW
 - ► Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. "Efficient estimation of word representations in vector space". ICLR. 2013.
 - ► Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean. "Distributed Representations of Words and Phrases and their Compositionality". NIPS. 2013.

Referenzen:

Fasttext

- ▶ Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov. "Enriching Word Vectors with Subword Information". TACL. 2017.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean. "Distributed Representations of Words and Phrases and their Compositionality". NIPS. 2013.
- Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov.
 "Enriching Word Vectors with Subword Information". TACL. 2017.

Glove

- ▶ Jeffrey Pennington, Richard Socher, Christopher D. Manning. "Glove: Global Vectors for Word Representation". EMNLP. 2014.
- CWINDOW / Structured Skip-Ngram
 - Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso "Two/Too Simple Adaptations of Word2Vec for Syntax Problems". NAACL/HLT. 2015.

Referenzen:

- Embeddings based on syntactic dependencies
 - Omer Levy, Yoav Goldberg. "Dependency-Based Word Embeddings". ACL. 2014.
- Multilingual embeddings
 - ► Tomas Mikolov, Quoc V. Le, Ilya Sutskever. "Exploiting Similarities among Languages for Machine Translation". CoRR. 2013.

Rekursive Neuronale Netzwerke (RNNs)

Rekursive Neuronale Netzwerke: Motivation

Wie kann man ...

- ... am besten eine Sequenz von Wörtern als Vektor repräsentieren?
- ... die gelernten Wort-Vektoren effektive kombinieren?
- ... die für eine bestimmte Aufgabe relevante Information (bestimmte Merkmale bestimmter Wörter) behalten, unwesentliches unterdrücken?

Rekursive Neuronale Netzwerke: Motivation

Bei kurzen Phrasen: Durchschnittsvektor evtl. Möglichkeit:

Bei langen Phrasen problematisch.

The sopranos was probably the last best show to air in the 90's. its sad that its over

- Reihenfolge geht verloren.
- Es gibt keine Parameter, die schon bei der Kombination zwischen wichtiger und unwichtiger Information unterscheiden können. (Erst der Klassifikator kann dies versuchen).

Rekursive Neuronale Netzwerke: Idee

- Berechne für jede Position ("Zeitschritt", time step) im Text eine Repräsentation, die alle wesentliche Information bis zu dieser Position zusammenfasst.
- Für eine Position t ist diese Reträsentation ein Vektor $\boldsymbol{h}^{(t)}$ (hidden representation)
- $\mathbf{h}^{(t)}$ wird rekursiv aus dem Wortvektor $\mathbf{x}^{(t)}$ und dem hidden Vektor der vorhergehenden Position berechnet:

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)})$$

Rekursive Neuronale Netzwerke

- Der hidden Vektor im letzten Zeitschritt $h^{(n)}$ kann dann zur Klassifikation verwendet werden ("Sentiment des Satzes?")
- Als Vorgänger-Repäsentation des ersten Zeitschritts wird der 0-Vektor verwendet.

Rekursive Funktion f

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)})$$

- Die Funktion f nimmt zwei Vektoren als Eingabe und gibt einen Vektor aus.
- Die Funktion f ist in den meisten Fällen eine Kombination aus:
 - Vektor-Matrix-Multiplikation:
 - ★ Einfachste Form einen Vektor auf einen Vektor abzubilden.
 - ★ Zunächst werden die Vektoren $\boldsymbol{h}^{(t-1)}$ (k Komponenten) und $\boldsymbol{x}^{(t)}$ (m Komponenten) aneinander gehängt (konkateniert): Ergebnis $[\boldsymbol{h}^{(t-1)}; \boldsymbol{x}^{(t)}]$ hat k+m Komponenten.
 - * Gewichtsmatrix W (Größe: $k \times (k+m)$) wird beim Trainieren des RNN optimiert.
 - und einer nicht-linearen Funktion (z.B. logistic Sigmoid), die auf alle Komponenten des Ergebnisvektors angewendet wird.
 - * Diese ist notwendig, damit durch das Netzwerk qualitativ etwas anderes als den Durchschnittsvektor berechnen kann.

$$\mathbf{h}^{(t)} = \sigma(\mathbf{W}[\mathbf{h}^{(t-1)}; \mathbf{x}^{(t)}])$$

Zusammenfassung

- Vorteile von Wortvektoren
 - Dienen als Merkmale
 - Erlauben Generalisierung
 - Können nicht-überwacht gelernt werden
- Anwendungsbeispiele
 - Typ Vorhersage
 - Klassifikation von Wort-Sentiment
- Neuronale Netzwerke
 - Rekursive Berechnung der Hidden Layer
 - Nicht-Linearität erlaubt mächtigere Darstellung als Durchschnittsvektor