Papers Reviewing

An Efficient Edge Detection Approach to Provide Better Edge Connectivity for Image Analysis

MAMTA MITTAL, AMIT ERMA, IQBALDEEP KAUR, BHAVNEET KAUR, MEENAKSHI SHARMA, LALIT MOHAN GOYAL, SUDIPTA ROY, AND TAI-HOON KIM

Date of publication March 13, 2019; *IEEE*

Outline:

PROBLEM CONSTRAIN

02

Edge detection techniques

Canny Edge Detection Algorithm:

- 1. Smooth image (only want "real" edges, not noise).
- 2. Calculate gradient direction and magnitude.
- 3. Non-maximum suppression perpendicular to edge.
- 4. Threshold into strong, weak, no edge.
- 5. Connect together components.

Limitations of spatial domain methods

Operator	Technique	Pros				Cons			
Sobel	SPO1	Simplicity	DEO	NN	NN	SN	Inaccurate	NN	NN
Laplacian	SPO2 /ZC	DEO	FCD	NN	NN	RFEE	SN	NN	LAPLACIAN
Canny	GAUSSIAN	PERROR	LR	ISNR	BDSNC	Complex	Computations	FCD	TC

SPO)- Spatial First Order, SPO2-Spatial Second Order ZC Zero Crossing, DEO Detection of edges and their orientation, SN- Sensitivity to noise FCD-Fixed characteristics in all directions, RFEE -Respond to few existing edges, PERROR Use probability for error rate finding LR -Localization and response, ISNR-Improved signal to noise ratio BDSNC-Better detection specially in noisy conditions, FZO-False zero crossing, TC-Time consumption.

Improved Canny Edge Detection Algorithm (ICA)

- 1. Image Gradient Calculation.
- 2. Adaptive thresholding.

Traditional Canny Edge a 2 × 2 neighboring area operator

$$G_{x} = \begin{bmatrix} -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}}{4} \\ -1 & 0 & -1 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}}{4} \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} \frac{\sqrt{2}}{4} & 1 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & -1 & -\frac{\sqrt{2}}{4} \end{bmatrix}.$$

Improved Canny Edge Detection Algorithm (ICA)

- 1. Image Gradient Calculation.
- 2. Adaptive thresholding.

There are two types of typical images:

- 1. Images with Less edge information.
- 2. Images with Rich edge information.

The threshold selection greatly correlated with the mean of gradient magnitude and standard deviation.

PROPOSED ALGORITHM

ALGORITHM B- EDGE

Consist of 6 Step

Step 1: Read image

Step 2: Graythresh and Threshold Computation Phase):

$$\psi = \frac{\left(\sum_{\alpha=1}^{n} \sum_{\beta=1}^{m} ara\right)}{m \cdot n}$$

m and n depict the pixel dimensions and ara is an array of an input image.

Gray thresh provides an average of an image

Step 3: (Intensity Adjustment Phase):

The corresponding threshold value (ϕ) of an image is then computed by

$$Phi = \frac{\psi \cdot 20}{8.33}$$

Step 3: (Intensity Adjustment Phase):

** a value greater than 20/8.33 —> results to a higher (φ) value.

Lead to implementation of blurriness with a high magnitude which results in high smoothness and reduction in edge information.

** a lesser value than 20/8.33, results to a lower (φ) value.

This leads to implementation of blurriness with a low magnitude which results in double edges and automatic noise generation.

Step 4: (Grayscale Conversion Phase):

grayscale image technically --> variates in an intensity range of 0-255 Multiple threshold approach

Step 4: (Grayscale Conversion Phase):

Multiple threshold approach -->threshold selection is based on automatic simulated results

- Intensity 64 is represent low intensities and high intensities (lower than 64 and grater than 220)
- Intensity 85 represent the grayscale shade (values between 70 -120.)
- Intensity 170 changes on intensity that lead to creation of double edges.

Step 5 : (Best Solution Selection)

Step 5 : (Best Solution Selection)

Initialize a zero array 0 to any user defined size [α , β].

03

Then scanning over the pixels
horizontal direction is applied and
detected edge pixels of the object
will be updated in the empty array
0

Once the three thresholds are identified from step
4

Finally, the array is called and the resultant edged image is revealed. It is performed

Step 6 : repeat step 5 vertical

Results

04

SIMULATION RESULTS WITH PERFORMANCE ANALYSIS

QUALITATIVE ANALYSIS

QUANTITATIVE ANALYSIS

03 ENTROBY

04 MSE (Mean Squares Error)

Berkeley dataset (BSDS500)

Training

170 200

Testing

23

Qualitative analysis

- Prewit's and Sobel's results are marginally similar to the ground truth as less continuity in the detected edges
- Many more enhancements have been observed from the Canny's results, but It have more connected edges.
- B-edge has success- fully identified the object's edges

Qualitative analysis

Qualitative analysis

QUANTITATIVE ANALYSIS

O1 ENTROBY

MSE (Mean Squares Error)

ENTROPY

$$H(I) = -\sum_{i=0}^{L} p_i \log p_i$$

MSE (MEAN SQUARE ERROR):

$$MSE = \frac{1}{mn} \sum_{0}^{m-1} \sum_{0}^{m-1} ||O(s, t) - P(s, t)||^{2}$$

MSE (MEAN SQUARE ERROR):

Images	Prewitt	Sobel	Canny	ICA	B-Edge
IM-1	0.15597	0.15673	0.17082	0.32940	0.14685
IM-2	0.14734	0.14729	0.15686	0.28950	0.09797
IM-3	0.15931	0.16111	0.13635	0.31830	0.09585
IM-4	0.16223	0.16199	0.11671	0.36080	0.11524
IM-5	0.13330	0.13354	0.08525	0.28010	0.04550
IM-6	0.13530	0.13503	0.07159	0.13810	0.07078
IM-7	0.15850	0.15745	0.14240	0.13470	0.14175
IM-8	0.15142	0.15170	0.10331	0.14199	0.09075
IM-9	0.16933	0.16949	0.14372	0.14160	0.13991
IM-10	0.13170	0.13143	0.08902	0.14100	0.04619
IM-11	0.14164	0.14230	0.09997	0.11270	0.06220 8
IM-12	0.15579	0.15653	0.15114	0.15200	0.13701
IM-13	0.14470	0.14488	0.09821	0.14520	0.08516
IM-14	0.13745	0.13782	0.12766	0.19240	0.06650
IM-15	0.13226	0.13311	0.07231	0.15140	0.03703
IM-16	0.14093	0.14152	0.10654	0.12181	0.05531
IM-17	0.13260	0.13262	0.07763	0.13727	0.03714
IM-18	0.15371	0.15402	0.10484	0.11311	0.10098
IM-19	0.15486	0.15424	0.24302	0.20833	0.09355
IM-20	0.15150	0.15168	0.11152	0.11736	0.08903
IM-21	0.13160	0.13225	0.08714	0.13462	0.05459
IM-22	0.14333	0.14358	0.09447	0.11602	0.06180
IM-23	0.14650	0.14631	0.10521	0.16043	0.08690
IM-24	0.17968	0.18210	0.17828	0.19799	0.14607
IM-25	0.13620	0.13629	0.12181	0.13122	0.04835
IM-26	0.14567	0.14574	0.14651	0.14984	0.05902
IM-27	0.15342	0.15339	0.15869	0.15590	0.11985
IM-28	0.14225	0.14247	0.12469	0.13431	0.04878
IM-29	0.15356	0.15391	0.12315	0.17359	0.04448
IM-30	0.15043	0.15093	0.12708	0.15352	0.06144

Conclusion

05

Conclusion

Advantages

- The algorithm is efficient for detecting the object edge with less noise
- It provides a better entropy value.

Drawbacks

- Data set used is very small to detect the efficiency of the algorithm
- The algorithm is not appropriate for some medical image
- The time computation needs to be improved.

THANKS!

Do you have any questions?

THE TEAM:

RAHAF ALRUWAITH MSc: Computer Science

HADEEL Alshehri MSc: Artificial Intelligence

