Geometría Proyectiva - 2° cuatrimestre 2016 PRÁCTICA 2

Recuerdo: Una curva parametrizada en el plano es un conjunto $\mathbb{C} \subset \mathbb{R}^2$ junto con una función α : $(a,b) \to \mathbb{R}^2$ tal que \mathbb{C} es la imagen de α . Decimos que \mathbb{C} es diferenciable (o C^k) si tiene una parametrización diferenciable (o C^k), y que es regular si tiene una parametrización diferenciable α tal que $\alpha'(t) \neq 0$ para todo $t \in (a,b)$.

1. Algunas curvas con nombre propio

- 1. Un disco circular de radio 1 contenido en el plano xy rueda sobre el eje x sin deslizar. La figura descripta por un punto fijo sobre la circunferencia del disco se llama cicloide.
 - Obtener una parametrización del cicloide y determinar sus puntos singulares.
 - Calcular la longitud de arco del cicloide correspondiente a una rotación completa del disco.

Demostración Notemos que $\alpha(t) = h(t) + \omega(t)$ donde h(t) = (t,1) y $\omega(t) = (-\sin(t), -\cos(t))$, por lo tanto $\alpha = (t - \sin(t), 1 - \cos(t))$, notemos que $\alpha(t) = (1 - \cos(t), \sin(t)) = 0$ si y sólo si $t = k\pi$.

Además $l(\alpha) = \int_0^{2\pi} ||\dot{\alpha}|| \, dt = \int_0^{2\pi} \sqrt{(1 - \cos(t))^2 + \sin(t)^2} \, dt = \int_0^{2\pi} \sqrt{2 - 2\cos(t)} \, dt = 2 \int_0^{2\pi} \sin(\frac{t}{2}) \, dt = -4[\cos(\frac{t}{2})]_0^{2\pi} = 8$

2. Sea $\alpha:(0,\pi)\to\mathbb{R}^2$ dada por

$$\alpha(\theta) = (\sin(\theta), \cos(\theta) + \log(\tan(\theta/2))).$$

La curva parametrizada por α es llamada tractriz.

- Probar que la función α es diferenciable pero no regular.
- Sea P un punto de la tractriz, L la recta tangente que pasa por P, y Q la intersección de L con el eje y. Probar que la distancia de P a Q es 1.
- **Demostración** Notemos que como $t \in (0, \pi)$ entonces $\frac{t}{2} \in (0, \frac{\pi}{2})$ y por lo tanto como sin, cos, log, tan son diferenciables allí se tiene que α es diferenciable. No obstante $\dot{\alpha}(t) = \left(\cos(t), -\sin(t) + \frac{1}{\sin(t)}\right)$ y por lo tanto si $t \to \frac{1}{2}$ se tiene que $\dot{\alpha}(t) = 0$. Por lo tanto α no es regular.
 - Sea $P = \alpha(t_0) = (\sin(t_0), \cos(t_0) + \log(\tan(t_0/2)))$, luego la recta tangente que pasa por P es $L = P + \dot{\alpha}(t_0)t = (\sin(t_0), \cos(t_0) + \log(\tan(t_0/2))) + t(\cos(t_0), -\sin(t_0) + \frac{1}{\sin(t_0)}) = (\sin(t_0) + t\cos(t_0), \cos(t_0) + \log(\tan(t_0/2)) t(-\sin(t_0) + \frac{1}{\sin(t_0)}))$ y son demsiadas cuentas esto...
- 3. Sea $\alpha: (-1, +\infty) \to \mathbb{R}^2$ dada por

$$\alpha(t) = \left(\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3}\right),\,$$

y sea C la curva que parametriza. Probar que:

- el origen pertenece a \mathbb{C} , y en ese punto su tangente es el eje x;
- se tiene que $\lim_{t\to +\infty} \alpha(t) = (0,0)$ y $\lim_{t\to +\infty} \alpha'(t) = (0,0)$;
- la recta x + y + a = 0 es una asíntota de \mathbb{C} .

La figura que se obtiene completando la curva con su simétrica respecto de la recta y = x se llama folio de Descartes.

Demostración a) Calculemos $\dot{\alpha} = \left(\frac{3a(1+t^3)-9at^3}{(1+t^3)^2}, \frac{6at(1+t^3)-9at^4}{(1+t^3)^2}\right)$ De allí notemos que $(0,0) = \alpha(0)$ y que $\dot{\alpha}(0) = (3a,0)$, por lo tanto el origen pertence a la curva

v en el origen la tangente es el eje x

- b) Clarísimo
- c) Notemos que $x + y + a = \frac{3at + 3at^2 + a + at^3}{1 + t^3} = a \frac{3t + 3t^2 + 1 + t^3}{1 + t^3} = a \frac{(1+t)^3}{(1-t+t^2)(1+t)} = a \frac{3t + 3t^2 + a + at^3}{1 + t^3} = a \frac{(1+t)^3}{(1-t+t^2)(1+t)} = a \frac{3t + 3t^2 + a + at^3}{1 + t^3} = a \frac{(1+t)^3}{(1-t+t^2)(1+t)} = a \frac{3t + 3t^2 + a + at^3}{1 + t^3} = a \frac{(1+t)^3}{(1-t+t^2)(1+t)} = a \frac{3t + 3t^2 + a + at^3}{1 + t^3} = a \frac{(1+t)^3}{(1-t+t^2)(1+t)} = a \frac{3t + 3t^2 + a + at^3}{1 + t^3} = a \frac{(1+t)^3}{(1-t+t^2)(1+t)} = a \frac{(1+t)^3}{(1-t+t^2)(1+t^2)} = a \frac{(1+t)^3}{(1-t+t^2)(1+t^2)} = a \frac{(1+t)^3}{(1-t+t^2)(1+t^2)} = a \frac{(1+t)^3}{(1-t$ $a\frac{(1+t)^2}{(1-t+t^2)} \to 0$ cuando $t \to -1$ por lo tanto la asiíntota es x+y+a.
- 4. Sean b < 0 < a, y consideremos la función $\alpha: (0, +\infty) \to \mathbb{R}^2$ dada por

$$\alpha(t) = (ae^{bt}\cos(t), ae^{bt}\sin(t)).$$

La curva parametrizada por esta función se llama espiral logarítmica.

- Probar que $\lim_{t\to +\infty} \alpha(t)=(0,0)$, y que cuando $t\to +\infty$ la curva sigue una trayectoria que envuelve al origen infinitas veces (sí, el enunciado es vago... parte del ejercicio es precisar esta noción de "envolver el origen").
- Probar que $\lim_{t\to +\infty} \alpha'(t) = (0,0)$ y $\lim_{t\to +\infty} \int_0^t |\alpha'(\tau)| d\tau$ es finito. Concluir que la espiral logarítmica tiene longitud de arco finita-
- **Demostración** a) Es claro que $\lim_{t\to\infty}\alpha=(0,0)$, veamos la siguiente proposición. Sea $c>0,\ L=\{(x,y)\ /\ y=ax\}$ y consideremos $t_1=\min(t\in\mathbb{R}_+\ /\ \alpha(t)\in L)$, es claro que t_1 esta bien definido pues como α es continua y $\alpha(\frac{\pi}{2}) = (0, y_1)$ entonces debe existir $t^* \in (0, \pi/2)$ tal que $\alpha(t^*) \in L$. Notemos ahora que $\alpha(\frac{3\pi}{2}) = (0, y_2)$ con $y_2 < y_1$, luego por inducción si consideramos $t_n =$ $min(t \in (t_{n-1}, \infty) / \alpha(t) \in L$ se tiene que $\{t_n\}_{n \in \mathbb{N}}$ está bien definido y es una sucesión creciente. Tomemos $a_n \alpha(t_n)$ y veamos que $a_n \to (0,0)$, esto es simple pues si $t_n \to t^* < \infty$ si tomamos $k = min(n \in \mathbb{N} / (2n+1)\pi/2 > t^*)$ entonces $\alpha(\frac{(2k+1)\pi}{2}) = (0,y)$ con $y < y_n$ para todo $n \in \mathbb{N}$, y por continuidad no existe $y^* < y / (0, y^*) \in Im(\alpha)$. Como $\alpha(\frac{(2(k+1)+1)\pi}{2})$ cumple se tiene que $t_n \to \infty$. Luego como a era arbitrario probamos que para toda recta que sale del origen si consideramos la sucesión a_n dada por las intersecciones de la recta con la curva se tiene que (0,0)es un punto de acumulación de a_n y por lo tanto la curva envuelve a (0,0) infinitas veces.
 - b) Notemos que $\alpha'(t) = \left(ae^{bt}(b\cos(t) \sin(t)), ae^{bt}(b\sin(t) + \cos(t))\right) \to (0,0)$ cuando $t \to \infty$ pues los términos trigonométricos están acotados. Por otro lado $\int_0^t |\alpha'(\tau)| d\tau = a^2 \int_0^t e^{2bt} (b^2 + 1) = a^2 (b^2 + 1) \frac{e^{2bt}}{2b} \to 0$ cuando $t \to \infty$.
- 5. Sea $\alpha: \mathbb{R} \to \mathbb{R}^2$ la función

$$\alpha(t) = \left(\frac{(1+t^2)t}{1+t^4}, \frac{(1-t^2)t}{1+t^4}\right).$$

La curva parametrizada por α se llama lemniscata.

- Probar que la función α es diferenciable, regular y simple.
- \blacksquare Determinar $\lim_{t\to -\infty}\alpha(t)$ y $\lim_{t\to +\infty}\alpha(t)$ y concluir que α no es un homeomorfismo entre $\mathbb R$ y la lemniscata.

Demostración Si consideramos $\alpha(t) = (\sin(t), \sin(2t))$ es uan reparametrización de la lemniscata mucho mas amigable donde todo queda trivial.

2. Normales, tangentes y curvaturas

Sea $\mathbb C$ una curva parametrizada por longitud de arco por la función α . El vector tangente a $\mathbb C$ en $P = \alpha(s)$ es $\mathbf t(s) = \alpha'(s)$; el vector normal a $\mathbb C$ en P es el único vector unitario $\mathbf n(s)$ tal que $\{\mathbf t(s),\mathbf n(s)\}$ forma una base ortonormal orientada de $\mathbb R^2$. Finalmente, la curvatura de $\mathbb C$ en P es igual a $\kappa(s) = |\alpha''(s)|$.

Todas las curvas de aquí en adelante son parametrizables.

6. Calcular la curvatura de un círculo de radio r.

Demostración Sea $\alpha(t) = (r\cos(t), r\sin(t))$ una parametrización del círculo de radio r. Luego $\dot{\alpha}(t) = (-r\sin(t), r\cos(t))$ y $|\dot{\alpha}| = r$, finalmente $\ddot{\alpha}(t) = (-r\cos(t), -r\sin(t))$ por lo que $K_C = \frac{\langle (-r\cos(t), -r\sin(t)), (-r\cos(t), -r\sin(t))\rangle}{r^3} = \frac{1}{r}$.

Notemos que si reparametrizamos α por longitud de arco $\alpha(s) = (r\cos(s/r), r\sin(s/r))$, luego $K_C = |\ddot{\alpha}| = \left|(-\sin(s/r), \cos(s/r)\right| = \left|(\frac{-11}{r}\cos(s/r), \frac{-1}{r}\sin(s/r)\right| = \frac{1}{r}$.

7. Sea $\mathbb C$ una curva que no pasa por el origen y sea P el punto de $\mathbb C$ más próximo al origen. Probar que la tangente a $\mathbb C$ en P es ortogonal al vector P.

Demostración Sea $f(t) = |\alpha(t)|^2$, luego la hipótesis es que existe $t_0 = min(f)$ y $P = \alpha(t_0)$, luego si $\alpha = (x(t), y(t))$ entonces $\dot{f}(t_0) = 2x\dot{x} + 2y\dot{y}|_{t_0} = 2(x(t_0)\dot{x}(t_0) + y(t_0)\dot{y}(t_0)) = 2\langle \alpha(t_0), \dot{\alpha}(t_0)\rangle = 2\langle P, \mathbf{t}_P \rangle = 0$.

8. Probar que si todas las normales a una curva pasan por un punto fijo entonces la curva está contenida en un círculo.

Demostración Sea $\alpha(s)$ la curva dada reparametrizada por longitud de arco, luego para cada $s \in I$ existe r_s tal que $P = \alpha(s) + r_s \mathbf{n}(s)$. Como $r_s = \langle P - \alpha, \mathbf{n} \rangle$ se tiene que r es diferenciable en s, luego $\frac{d}{dt} |P - \alpha(s)|^2 = 2\langle P - \alpha(s), -\dot{\alpha}(s) \rangle = 2\langle r(s)\mathbf{n}(s), \dot{\alpha}(s) \rangle = 0$, por lo que la distancia de P a $\alpha(s)$ es constante y entonces $\alpha(I) \subseteq S^1$.

- 9. Sea \mathbb{C} una curva y α una parametrización por longitud de arco.
 - Probar que $\alpha''(s)$ es ortogonal a $\alpha'(s)$ para todo $s \in (a, b)$. En particular $\mathbf{t}'(s) = \alpha''(s)$ es paralelo al vector normal $\mathbf{n}(s)$.
 - Sea k(s) el único escalar tal que $\mathbf{t}'(s) = k(s)\mathbf{n}(s)$. Probar que $|k(s)| = \kappa(s)$.
 - Probar que $\kappa(s)$ es el área del rectángulo formado por el par de vectores $\mathbf{t}(s)$, $\mathbf{t}'(s)$.
 - Probar que si κ es constante e igual a 1/r entonces $\mathbb C$ está contenida en una circunferencia de radio r.

Demostración a) Como α esta parametrizada por longitud de arco, entonces $|\dot{\alpha}| = 1$, luego $0 = \frac{d}{dt}\langle\dot{\alpha},\dot{\alpha}\rangle = 2\langle\dot{\alpha},\ddot{\alpha}\rangle$. Como $\{\mathbf{t},\mathbf{n}\}$ es una base de $\mathbb{R}^2_{\alpha(s)}$ para todo s se tiene que $\mathbf{t}'(s) = a(s)\mathbf{n}(s)$.

 $|k(s)| = |\ddot{\alpha}| = \kappa(s)$

c) Notemos que
$$det \begin{pmatrix} \mathbf{t} \\ \dot{\mathbf{t}} \end{pmatrix} = det \begin{pmatrix} \mathbf{t} \\ k(s)\mathbf{n} \end{pmatrix} = |k(s)| det \begin{pmatrix} \mathbf{t} \\ \mathbf{n} \end{pmatrix} = \kappa(s)$$

- d) Inspirados en 8 veamos si la curva $P(s) = \alpha(s) + \frac{1}{\kappa} \mathbf{n}(s)$ es constante, luego como todas las normales se cruzarían en un punto fijo se tiene por 8 que $\alpha(I) \subseteq S^1$. Notemos que $\dot{P} = \dot{\alpha} + \frac{1}{\kappa} \dot{\mathbf{n}} = \mathbf{t} + \frac{1}{\kappa} (-\kappa \mathbf{t})$ por las ecuaciones de Frenet Serret; luego $\dot{P} = 0$ y por 8 se tiene que α esta contenida en un círculo.
- 10. Sea $\mathbb C$ una curva y sea α una parametrización cualquiera (no necesariamente por longitud de arco). Demostrar que la curvatura de $\mathbb C$ está dada por

$$k = \frac{\alpha_1' \alpha_2'' - \alpha_2' \alpha_1''}{[(\alpha_1')^2 + (\alpha_2')^2]^{3/2}}.$$

Demostración Por un lado por definición $\dot{\mathbf{t}} = \frac{d}{dt} \frac{\dot{\alpha}}{|\dot{\alpha}|} = \frac{d}{dt} (\frac{1}{|\dot{\alpha}|}) \dot{\alpha} + \frac{\ddot{\alpha}}{|\dot{\alpha}|}$, pero por el otro existe $\theta: I \to \mathbb{R}$ tal que $\mathbf{t} = (\cos(\theta), \sin(\theta))$ por lo que $\dot{\theta}(-\sin(\theta), \cos(\theta)) = \frac{d}{dt} (\frac{1}{|\dot{\alpha}|}) \dot{\alpha} + \frac{\ddot{\alpha}}{|\dot{\alpha}|}$.

Si J es el operador rotación en $\pi/2$ se tiene que $\dot{\theta} |\dot{\alpha}| = \langle \dot{\mathbf{t}}, J(\dot{\alpha}) \rangle = \frac{1}{|\dot{\alpha}|} \langle \ddot{\alpha}, J(\dot{\alpha}) \rangle$. Y por lo tanto $\dot{\theta} = \frac{1}{|\dot{\alpha}|^2} \langle \ddot{\alpha}, J(\dot{\alpha}) \rangle$.

De allí concluímos que
$$\kappa = \frac{\dot{\theta}}{|\dot{\alpha}|} = \frac{1}{|\dot{\alpha}|^3} \langle \ddot{\alpha}, J(\dot{\alpha}) \rangle = \frac{\ddot{y(t)}\dot{x(t)} - \ddot{x(t)}\dot{y(t)}}{|\dot{\alpha}|^3}$$

11. Sea $k: I \to \mathbb{R}$ una función diferenciable definida sobre un intervalo abierto $I \subseteq \mathbb{R}$. Fijemos $s_0 \in I$ y definamos una nueva función $\theta: I \to \mathbb{R}$ como $\theta(s) = \int_{s_0}^s k(\sigma) d\sigma$ para cada $s \in I$. Probar que la curva \mathbb{C} parametrizada por $\alpha: I \to \mathbb{R}^2$, donde

$$\alpha(s) = \left(\int_{s_0}^s \cos \theta(\sigma) \, d\sigma, \int_{s_0}^s \sin \theta(\sigma) \, d\sigma \right)$$

tiene curvatura k, y que cualquier otra curva cuya curvatura esté dada por k es congruente a \mathbb{C} (es decir, se obtiene aplicando una transformación lineal ortogonal que preserva orientación y una traslación a \mathbb{C}).

Demostración Es claro que $\dot{\alpha}=(\cos(\theta),\sin(\theta)\ y$ por la unicidad de la función arco se tiene que $\kappa=\frac{\dot{\theta}}{|\dot{\alpha}|}=\dot{\theta}=k$. Supongamos ahora que g es otra curva parametrizada por longitud de arco tal que $K_g=K_C=k$, sean $\{e_1,e_2\}$ la referencia movil de α y $\{u_1,u_2\}$ la de g; finalmente sea $B:I\to\mathbb{R}^{2\times 2}$ tal que $Be_i=u_i$ que es claro que es diferenciable. Luego $\frac{d}{dt}(Be_1)=\dot{B}e_1+B\dot{e}_1=\dot{B}e_1+Bke_2=\dot{B}e_1+ku_2=\dot{u}_1=ku_2$, por lo que $\dot{B}e_1=0$ y análogamente $\dot{B}e_2=0$ y como $\{e_1,e_2\}$ es una base de \mathbb{R}^2 para todo s se tiene que $B(s)=B\in M_s(\mathbb{R})$. Notemos además que como B lleva una base orientada positivamente a otra, por Lineal se tiene que $B\in O(2)$, por lo tanto por Frenet-Serret tenemos $B\dot{\alpha}=\dot{g}$ con lo que $B\alpha-g=p$, si consideramos f=Bx-p se tiene que f es un isomorfismo afín tal que $f(\alpha)=g$.

12. Consideremos una curva dada en coordenadas polares por la ecuación $\rho = \rho(\theta)$, con $\rho : [a, b] \to \mathbb{R}$ una función suficientemente diferenciable. Probar que la longitud de la curva es

$$\int_{a}^{b} \sqrt{\rho(\theta)^{2} + \rho'(\theta)^{2}} \, \mathrm{d}\theta$$

y que su curvatura, como función de θ , es

$$k = \frac{2\rho'^2 - \rho\rho'' + \rho^2}{(\rho'^2 + \rho^2)^{\frac{3}{2}}}.$$

Demostración Sea $\alpha(\theta) = (x(\theta), y(\theta))$ una parametrización de la curva definida por ρ , donde $x = \rho(\theta) \cos(\theta)$ e $y = \rho(\theta) \sin(\theta)$. Por lo tanto:

$$\dot{\alpha} = \left(\frac{dx}{d\theta}, \frac{dy}{d\theta}\right)$$

$$= \left(\dot{\rho}\cos(\theta) - \rho\sin(\theta), \dot{\rho}\sin(\theta) + \rho\cos(\theta)\right)$$

Con lo que:

$$|\dot{\alpha}|^2 = (\dot{\rho}\cos(\theta) - \rho\sin(\theta))^2 + (\dot{\rho}\sin(\theta) + \rho\cos(\theta))^2$$

$$= \dot{\rho}^2\cos^2(\theta) + \rho^2\sin^2(\theta) + \dot{\rho}^2\sin^2(\theta) + \rho^2\cos^2(\theta)$$

$$= \dot{\rho}^2 + \rho^2$$

Concluímos que $l(\alpha) = \int_a^b |\dot{\alpha}| \, d\theta = \int_a^b \sqrt{\rho^2 + \dot{\rho}^2} \, d\theta$

Por otro lado notemos que $\ddot{\alpha} = (\ddot{\rho}\cos(\theta) - 2\dot{\rho}\sin(\theta) - \rho\cos(\theta), \ddot{\rho}\sin(\theta) + 2\dot{\rho}\cos(\theta) - \rho\sin(\theta))$ y por lo tanto:

$$\kappa = \frac{(\ddot{\rho}\sin(\theta) + 2\dot{\rho}\cos(\theta) - \rho\sin(\theta))(\dot{\rho}\cos(\theta) - \rho\sin(\theta)) - (\ddot{\rho}\cos(\theta) - 2\dot{\rho}\sin(\theta) - \rho\cos(\theta))(\dot{\rho}\sin(\theta) + \rho\cos(\theta))}{|\dot{\alpha}|^3}$$

$$= \frac{2\dot{\rho}^2 - \ddot{\rho}\rho + \rho^2}{(\rho^2 + \dot{\rho}^2)^{3/2}}$$

3. Centros de curvatura

Sea \mathbb{C} una curva cuya curvatura nunca se anula y sea $\alpha:(a,b)\to\mathbb{R}^2$ una parametrización por longitud de arco. Si $s\in(a,b)$, se llama centro de curvatura de \mathbb{C} en $P=\alpha(s)$ al punto

$$x(s) = \alpha(s) + \frac{1}{\kappa(s)}\mathbf{n}(s)$$

y se llama círculo osculador a α en s al círculo centrado en x(s) cuyo radio es $\kappa(s)^{-1}$.

13. Mostrar que la curva $\mathbb C$ y el círculo osculador se cortan en P, y en ese punto tienen la misma tangente y la misma curvatura.

Demostración Sea s fijo y $P = \alpha(s)$, luego una parametrización del círculo osculador de α en P es $c(t) = \alpha(s) + \frac{1}{\kappa(s)} \mathbf{n}(s) + \frac{1}{\kappa(s)} (\cos(t), \sin(t))$

Luego como $\{\mathbf{t}(s), \mathbf{n}(s)\}$ es una base se tiene que $(\cos(t), \sin(t)) = x(t)\mathbf{t}(s) + y(t)\mathbf{n}(s)$ y luego como $\mathbf{n}(s) \in S^1$ existe un único $t^* \in (0, 2\pi)$ tal que $-\mathbf{n}(s) = (\cos(t^*), \sin(t^*))$. Por lo tanto $c(t^*) = \alpha(s)$ y el círculo osculador y la curva se tocan en P

Notemos que $\dot{c}(t) = \frac{1}{\kappa(s)}(-\sin(t),\cos(t))$ y por lo tanto por un lado $|\dot{c}| = \frac{1}{\kappa(s)}$ y por el otro $\dot{c}(t^*) = \frac{1}{\kappa(s)}(-\sin(t^*),\cos(t^*)) = \frac{1}{\kappa(s)}J(-\mathbf{n}(s)) = \frac{1}{\kappa(s)}\mathbf{t}(s)$. Concluímos que la tangente al círculo osculador $\mathbf{t}_C(t^*) = \frac{\dot{c}}{|\dot{c}|}(t^*) = \frac{\frac{1}{\kappa(s)}\mathbf{t}(s)}{\frac{1}{\kappa(s)}} = \mathbf{t}(s)$ y por lo tanto el círculo osculador y la curva tienen la misma

tangente.

Finalmente al ser un círculo de radio $\frac{1}{\kappa(s)}$ es claro que la curvatura de c es $\kappa(s)$ por 6.

14. Determinar los centros de curvatura y los círculos osculadores de la elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Sea $\alpha(t) = (a\cos(t), b\sin(t))$ una parametrización de la elipse, luego $\dot{\alpha}(t) = (-a\sin(t), b\cos(t))$ y $|\dot{\alpha}|^2 = a^2\sin^2(t) + b^2\cos^2(t)$. Por lo tanto se tiene que $\mathbf{t}(t) = \frac{(-a\sin(t), b\cos(t))}{\sqrt{a^2\sin^2(t) + b^2\cos^2(t)}}$ y $\mathbf{n}(t) = J(\mathbf{t}(s))$.

Como $\alpha(t)$ no esta parametrizada por longitud de arco calculemos la curvatura por 10, y para eso sea $\ddot{\alpha} = (-a\cos(t), -b\sin(t))$, luego:

$$\kappa_C = \frac{\ddot{y(t)}\dot{x(t)} - \ddot{x(t)}\dot{y(t)}}{\frac{|\dot{\alpha}|^3}{|\dot{\alpha}|^3}}$$
$$= \frac{ab}{|\dot{\alpha}|^3}$$

Por lo tanto los centros de curvatura $\chi(t) = (a\cos(t), b\sin(t)) + ab |\dot{\alpha}|^2 (-b\cos(t), -a\sin(t)) = ((a-abb(a^2\sin^2(t)+b^2\cos^2(t)))\cos(t), (b-aba(a^2\sin^2(t)+b^2\cos^2(t)))\sin(t))$ y dado t fijo los circulos osculadores son $c_t(s) = (a\cos(t), b\sin(t)) + ab |\dot{\alpha}|^2 (-b\cos(t), -a\sin(t)) + \frac{|\dot{\alpha}|^3}{ab} (\cos(s), \sin(s))$. (Me maree en las cuentas...)

- 15. La evoluta de \mathbb{C} , que notamos $e(\mathbb{C})$, es la curva formada por los centros de curvatura de \mathbb{C} ; la función x(s) es una parametrización de $e(\mathbb{C})$.
 - Probar que la tangente a $e(\mathbb{C})$ en Q = x(s) es paralela a la normal a \mathbb{C} en $P = \alpha(s)$.
 - Supongamos que la curvatura de \mathbb{C} es monótona. Probar que la longitud de arco de $e(\mathbb{C})$ entre dos puntos Q y Q' es igual a la diferencia de los radios de curvatura en los correspondientes puntos P y P' de \mathbb{C} .

Demostración a) Sea $x(s) = \alpha(s) + \frac{1}{\kappa(s)} \mathbf{n}(s)$ una parametrización de la evoluta de \mathbb{C} , luego $\dot{x}(s) = \dot{\alpha}(s) + \frac{d}{dt} \left(\frac{1}{\kappa(s)}\right) \mathbf{n}(s) + \frac{1}{\kappa(s)} \dot{\mathbf{n}}(s)$. Como α esta parametrizada por longitud de arco se tiene que $\dot{\alpha}(s) = \mathbf{t}(s)$ y por Frenet Serret $\dot{\mathbf{n}}(s) = -\kappa(s)\mathbf{t}(s)$ y entonces $\dot{x}(s) = \mathbf{t}(s) + \frac{d}{dt} \left(\frac{1}{\kappa(s)}\right) \mathbf{n}(s) - \mathbf{t}(s) = \frac{d}{dt} \left(\frac{1}{\kappa(s)}\right) \mathbf{n}(s)$. Luego $\mathbf{t}_x(s) / / \mathbf{n}(s)$

b) NOtemos que por el item anterior se tiene que si llamamos Q = x(s) y Q' = x(s') entonces la longitud de arco entre esos dos puntos es $l_x(Q,Q') = \int_s^{s'} \left| x(\eta) \right| d\eta = \int_s^{s'} \left| \frac{d}{d\eta} \left(\frac{1}{\kappa(\eta)} \right) \mathbf{n}(\eta) \right| d\eta$. Como κ es monotona entonces $\frac{1}{\kappa}$ también lo es y entonces $\frac{d}{ds} \left(\frac{1}{\kappa(s)} \right)$ tiene signo constante para todo s, supongamos que es positivo. Luego se tiene que $l_x(Q,Q') = \int_s^{s'} \frac{d}{d\eta} \left(\frac{1}{\kappa(\eta)} \right) d\eta = \frac{1}{\kappa(\eta)} |_s^{s'} = \frac{1}{\kappa(s')} - \frac{1}{\kappa(s)}$ como pide el enunciado.