Optimalizace parametrů evoluce ohnutých booleovských funkcí

Karel Ondřej

Fakulta informačních technologií Vysokého učení technického v Brně
Božetěchova 1/2. 612 66 Brno - Královo Pole

x ondre 09 @ stud. fit. vutbr. cz

- Číslo zadání: 03
- Vedoucí: Ing. Jakub Husa
- Vlastní výběr evolučního algoritmu.
- Hledání booleovských funkcí o 10 vstupech dosahujících maximální možné nelinearity.
- Experimentovat s dvěma zvolenými parametry algoritmu.
- Zhodnocení výsledků experimentů ve formě tabulky.

Motivace

- Booleovské ohnuté funkce se využívají v kryptografii.
- Pro booleovské funkce o 10 vstupech existuje 2¹⁰ afinních funkcí (lineární funkce a jejich komplementy).
- Nelinearita je nejmenší Hammingova vzdálenost mezi libovolnou afinní funkcí.

- Genetické programování.
 - Parametry: hloubka stromu, velikost populace.
 - Množina operací: and, nand, or, nor, xor, nxor.
 - Inicializace populace: Ramped-half-and-half.
 - Výběr pomocí turnaje.
 - Jeden operátor křížení.
 - Dva operátory mutace.
- Programovací jazyk:
 - Python,
 - C++,
 - Framework¹.

¹ECF - Evolutionary Computation Framework (http://ecf.zemris.fer.hr/).

Experimentování

- Hloubka stromu {4, 6, 7, 8, 9, 10}.
- Velikost generace {50, 100, 200, 500, 1000, 2000, 5000, 10000}.
- Pro každou kombinaci parametrů 50 běhů.
- Ukončení po $0,5\cdot 10^6$ evaluací nebo nalezení maximální možné nelinearity $N_f=496$.

Výsledky experimentu – Heatmap

		Min					Max	
Populace	50	496.00	496.00	495.52	487.18	479.28	476.20	
	100	496.00	496.00	494.82	481.28	478.20	476.20	
	200	496.00	496.00	496.00	481.84	477.16	475.46	
	500	496.00	496.00	496.00	486.42	477.76	475.38	
	1000	496.00	496.00	496.00	486.66	477.82	476.76	
	2000	496.00	496.00	496.00	491.24	484.68	476.94	
	5000	496.00	496.00	496.00	494.36	486.84	479.40	
	10000	496.00	496.00	496.00	496.00	489.92	483.30	
		4	6	7	8	9	10	
		Max. hloubka						

Výsledky experimentu – Graf

Ovládání


```
./bin-gp $1 $2 $3 $4 $5
```

- \$1 Minimální hloubka stromu. \$2 Maximální hloubka stromu. \$3 Velikost populace.
- \$4 Počet běhů.
- \$5 Maximální počet evaluací.

Formát výstupu


```
<?xml version="1.0" encoding="UTF-8"?>
ct>
 <batch population.size="50" deep.max="4" ... >
   <run number="1">
     <individual fitness="496" ... >
       <tree size="31" deep="4" notation="postfix">
       </tree>
     </individual>
   </run>
 </batch>
</project>
```

Zhodnocení

- Implementován evoluční algoritmus genetické programování pro hledání funkcí s velkou nelinearitou.
- Provedeny experimenty s parametry: velikost populace, maximální hloubka stromu.
- Maximální hloubka stromu má oproti velikosti populace významný vliv na kvalitu řešení.
- Ohodnocení jedince je časově náročné.