Извличане на данни от множество таблици

Temporary tables (временни таблици)

- Local temporary table имената им започват със знака #
- Global temporary table имената им започват със знака ##
- Различия от постоянните таблици в БД:
 - Място на съхранение съхраняват се в системната база от данни tempdb
 - Време на съществуване
 - Автоматично премахване

Пример:Извличане на данни за клиентите от London и съхраняването им в локална временна таблица (local temporary table)

```
USE Northwind
GO
/* създаване на локална временна таблица */
SELECT *
INTO #Customers_London
FROM dbo.Customers
WHERE City LIKE '%London%'
```

Локалната временна таблицата се създава в БД tempdb и съществува до затваряне на конекцията на потребителя; тя е достъпна само в текущата конекция на текущия потребител.

Пример:Извличане на данни за клиентите от London и съхраняването им в глобална временна таблица (global temporary table)

```
USE Northwind
GO
/* създаване на глобална временна таблица */
SELECT *
INTO ##Customers_London
FROM dbo.Customers
WHERE City LIKE '%London%'
```

Глобалната временна таблицата се създава в БД tempdb и съществува до затваряне на всички конекции със сървъра; тя е достъпна от всички отворени конекции от други потребители.

Извличане на данни от множество таблици в SQL

- ▶ Комбиниране на данни от множество таблици – чрез съединяване (клауза Join в оператор Select)
- Комбиниране на данни от множество резултатни набори – чрез обединяване, разлика и сечение на резултатните набори, получени от Select

Комбиниране на данни от множество таблици чрез Join

- ▶ Въведение в съединяването (Join)
- Използване на Inner Joins
- Използване на Outer Joins
- Съединяване на таблица сама със себе си
- Използване на Cross Joins
- Съединяване на повече от две таблици

Пример на SELECT с клауза Join

Извеждане данни за клиентите (код, име) и направените от тях поръчки (номер и дата):

USE Northwind
SELECT C.CustomerId, CompanyName,
OrderId, OrderDate
FROM Customers C INNER JOIN Orders OD
ON C.CustomerId = OD.CustomerId
GO

Частичен синтаксис на SELECT с клауза Join

```
SELECT [ ALL | DISTINCT ]
 [ TOP expression [PERCENT]] < select_list>
   FROM  [[AS] table_alias]
   <join type>JOIN
         [AS table_alias]
   ON < search_condition>
[ WHERE search_condition ]
[ ORDER BY order_expression
            [ ASC | DESC ][,...] ]
```

SELECTJOIN.....ON

- <select_list> списък за избор (определя колоните, които ще бъдат селектирани в резултатния набор)
- Ключовата дума JOIN специфицира таблиците, които ще се съединяват и как ще се съединяват
- Ключовата дума ON задава условието на съединяването

SELECTJOIN.....ON

- Условието за съединяване на таблиците се задава въз основа на
 - общи колони от таблиците
 - първични и външни ключове
- Ако първичният ключ е съставен, в ОN клаузата се задават условия за съединяване на всяка негова част, свързани с AND

Използване псевдоними (Aliases) за имената на таблиците

- Псевдонимът се задава след името на таблицата с ключовата дума AS или директно
 - Products AS P или Products P
- Псевдонимите се използват при задаване на уточнените имена на колоните от таблиците
 - P.ProductID равнозначно на Products.ProductId
- Изполването на псевдонимите повишава читаемостта на скриптовите и опростява писането на комплексни заявки

- Вътрешно съединяване (съединяване по равенство) INNER JOIN
- Външно съединяване OUTER JOIN
 - Ляво външно съединяване LEFT OUTER JOIN
 - Дясно външно съединяване RIGHT OUTER JOIN
 - Пълно външно съединяване FULL OUTER JOIN

Типове съединяване (join type)

- ► Картезианско (Декартово) съединяване CROSS JOIN
 - Всеки ред от едната таблица се съединява с всеки ред от другата таблица
- Съединяване на таблицата сама със себе си (self join)
 - Изисква таблицата да съдържа колона, която съответства на нейния първичен ключ или на алтернативен ключ.

Използване на Inner Join

- Вътрешното съединяване INNER JOIN комбинира редовете от таблиците, като сравнява стойностите в колоните, които са общи за двете таблици и връща само тези редове, за които е изпълнено зададеното условие
- ► INNER JOIN е тип на съединяване по подразбиране и може да се задава само с ключовата дума JOIN

Използване на Inner Join ²

- Колоните в списъка за избор и в условието за съединяване се задават с уточнени имена, ако има опасност от двусмислие
- В условието за съединяване не се препоръчва да се включват колони, които съдържат неопределени стойности (null values), тъй като те не са равни на нито една друга стойност
- Чрез WHERE могат да се ограничат редовете, които се включват в резултата

Пример: Извеждане на данни за стоките и техните поръчки (SQLQuery_join_Products.sql) **USE Northwind** GOSELECT P.ProductID, ProductName , OrderID, Quantity, O.UnitPrice , Quantity*O.UnitPrice AS Total FROM Products P INNER JOIN [Order Details]O ON P.ProductID = O.ProductID

Какъв е резултатът, извеждан от SELECT?

USE Northwind GOSELECT O.OrderID, P.ProductID, P.ProductName, O.Quantity, O.UnitPrice ,O.Quantity*O.UnitPrice AS Total FROM Products P JOIN [Order Details] O ON P.ProductID = O.ProductIDWHERE ProductName like '%Chocolade%' ORDER BY O.OrderID

Използване на OUTER JOIN

OUTER JOIN

- Комбинира редовете от двете таблици, които отговарят на зададеното чрез ON условие
- Включва и всички редове от едната от тях (лявата или дясната таблица), за които липсват съответни редове в другата таблица
- Редовете, които не срещат редове в другата таблица съдържат стойности NULL в колоните от нея

- Таблицата се определя като лява или дясна взависимост от мястото, което заема по отношение на ключовата дума JOIN
- Ляво външно съединяване LEFT OUTER JOIN

от лявата таблица се вземат всички редове и се комбинират с редове от дясната таблица, само тези от тях, за които е изпълнено условието

Използване на OUTER JOIN

- Дясно външно съединяване RIGHT OUTER JOIN
 от дясната таблица се вземат всички редове и се комбинират с редове от лявата таблица само тези от тях, за които е изпълнено условието
- OUTER може да се изпусне, т. е. да се зададе само LEFT JOIN или RIGHT JOIN
- OUTER JOIN може да се използва само за съединяване на две таблици

Данни за поръчките на стоките

SELECT

P.ProductID, P.ProductName,
OD.OrderID, Quantity, OD.UnitPrice
FROM Products P
INNER JOIN [Order Details] OD
ON P.ProductID = OD.ProductID

Данни за всички стоки, независимо дали са поръчани

SELECT P.ProductID, P.ProductName ,OD.OrderID, Quantity, OD.UnitPrice FROM Products AS P LEFT JOIN [Order Details] OD ON P.ProductID = OD.ProductID

Лявото външно съединяване на таблиците извлича всички редове от таблицата Products, а от Order Details се присъединяват данни само за стоките, за които има поръчки.

Стоки, които не са поръчани

 В резултата за стоките, които не са поръчвани, в колоните OrderID (номер на поръчката) и количество (Quantity) липсват стойности.

SELECT P.ProductID, ProductName, OD.OrderID, Quantity, OD.UnitPrice FROM Products AS P

LEFT JOIN [Order Details] OD
ON P.ProductID = OD.ProductID
WHERE ((OD.OrderID) Is Null)

Данни за всички стоки, независимо дали са поръчани с използване на RIGHT JOIN

SELECT P.ProductID, ProductName , OrderID, Quantity, OD.UnitPrice FROM [Order Details] OD RIGHT JOIN Products AS P ON P.ProductID = OD.ProductID

Пълно външно съединение FULL OUTER JOIN

- В резултата се включват всички редове от двете таблици А и В, като се комбинират тези от тях, за които е изпълнено условието за съединяване
- Ако ред от таблицата А не среща съответен ред в таблица В, полетата от таблицата В, които се извеждат в резултатния набор приемат стойности Null
- Ако ред от таблицата В не среща съответен ред в таблица А, полетата от таблицата А, които се извеждат в резултатния набор приемат стойности Null

Съединяване на таблицата сама със себе си (SELF JOIN)

 Изискване: таблицата трябва да съдържа колона (FK), която е обща с друга колона от нея (РК или алтернативен ключ)

Особености:

- В JOIN се съединяват две копия на таблицата, за които се задават различни псевдоними
- Всеки ред от таблицата се среща и със себе си и в резултата могат да се получат редове с дублирано съдържание; за да се отстранят се използва клауза WHERE

Пример: Справка за кодовете и имената на служителите и имената и длъжностите на техните преки ръководители

```
SELECT E1.EmployeeID, E1.FirstName
 , E1.LastName
 , (E2.FirstName + ' ' + E2.LastName)
                         AS Supervisor
 , E2.Title AS Supervisor_title
 FROM Employees E1
          INNER JOIN Employees AS E2
          ON E1.[ReportsTo] = E2.EmployeeID
 ORDER BY 4
```

 За ръководителите от най-високо ниво не се извеждат данни.

Пример: Справка за кодовете, имената и длъжностите на служителите-ръководители и имената и длъжностите на техните подчинени

```
USE Northwind
GO
SELECT (E1.FirstName + ' ' + E1.LastName)
         AS Supervisor, E1. Title
          , E2.EmployeeID, E2.FirstName
          , E2.LastName, E2.Title
    FROM Employees E1
    INNER JOIN Employees AS E2
    ON E1.EmployeeID = E2.[ReportsTo]
```


Справка за служителите с една и съща длъжност

- SELECT E1.EmployeeID, E1.LastName
 - , Left(E1.Title,10) AS Title_1
 - , E2.EmployeeID, E2.LastName
 - , Left(E2.Title, 10) AS Title_2
 - FROM Employees AS E1 INNER JOIN Employees AS E2

ON E1.Title = E2.Title WHERE NOT E1.EmployeeID=E2.EmployeeID ORDER BY E1.EmployeeID, E2.EmployeeID

Декартово (картезианско) съединяване) CROSS JOIN

- CROSS JOIN извежда всяка комбинация от всички редове на двете таблици
- Не се изисква двете таблици да имат обща колона
- Не се задава клауза ON
- Броят на редовете в резултата е произведение от броя на редовете в двете таблици

Пример за CROSS JOIN

На основата на таблица с данни за футболните отбори от А група да се генерират комбинациите "Домакин-Гост".

```
/*Създаване на таблица с данни за футболните отбори от A група*/
CREATE TABLE Teams
(TeamsName NCHAR(25)
, City NCHAR(20)
CONSTRAINT PKey Primary Key(City,TeamsName))
```

Генериране на комбинации "Домакин – Гост"

SELECT H.TeamsName AS Home , A.TeamsName AS Guest FROM Teams H CROSS JOIN Teams A WHERE H.TeamsName != A.TeamsName

SELECT H.TeamsName AS Home
, A.TeamsName AS Guest
INTO Teams_Home_Guest
FROM Teams H CROSS JOIN Teams A
WHERE H.TeamsName != A.TeamsName

Съединяване на повече от 2 таблици

- В един SELECT могат да се съединяват произволен брой таблици
- Шаблони за съединения на няколко таблици:
 - JOIN верига
 - JOIN звезда една централна таблица и няколко други таблици по върховете на звездата, които се свързват с редовете на централната таблица

Пример на JOIN верига

 Да се изведат данни за поръчките на стоки, които включват код и име на категорията стоки, код и име на стоката, номер на поръчката и стойност на поръчаното количество.

Пример на съединяване на верига от 3 таблици: извеждане данни за поръчките на стоки и тяхната категория

USE Northwind GOSELECT C.CategoryID, CategoryName ,P.ProductID, ProductName,OD.OrderID OD.UnitPrice*Quantity AS Total FROM Categories C JOIN Products P ON C.CategoryID = P.CategoryID JOIN [Order Details] OD ON P.ProductID = OD.ProductID

Пример:Извеждане на данни за всички категории и всички продукти и за техните поръчки

USE Northwind GO **SELECT** C.CategoryID, CategoryName ,P.ProductID, ProductName ,OD.OrderID ,OD.UnitPrice*Quantity AS Total FROM Categories C LEFT JOIN Products P ON C.CategoryID = P.CategoryID LEFT JOIN [Order Details] OD ON P.ProductID = OD.ProductID ORDER BY 1, 4

Пример: Извеждане на данни за всички продукти – категория, номера на поръчките и тяхната стойност

USE Northwind GO SELECT C.CategoryID, CategoryName ,P.ProductID, ProductName ,OD.OrderID ,OD.UnitPrice*Quantity AS Total FROM Categories C JOIN Products P ON C.CategoryID = P.CategoryID LEFT JOIN [Order Details] OD ON P.ProductID = OD.ProductID ORDER BY 1, 4

Особеност при използване на външно съединение в JOIN верига

- Ако се използва LEFT JOIN за първата двойка във веригата, то този тип съединяване трябва да се зададе и за всяко от следващите съединявания във веригата.
- Ако се използва INNER JOIN за поредицата съединявания, то за последното съединяване от веригата може да се зададе външно съединяване (ляво или дясно зависи от случая).

Пример на JOIN верига от 4 таблици

Пример на съединяване на 4 таблици

```
SELECT C.CompanyName, OD.ProductID
, P.ProductName, P.UnitPrice
, OD.Quantity, O.OrderID, O.OrderDate
FROM Products AS P JOIN [Order Details] AS OD
ON P.ProductID = OD.ProductID
INNER JOIN Orders AS O
ON OD.OrderID = O.OrderID
INNER JOIN Customers AS C
ON O.CustomerID = C.CustomerID
ORDER BY C.CompanyName,O.OrderDate
```

Пример на JOIN звезда

За всяка направена поръчка да се изведат номер и дата на поръчката, име на клиента, двете имена на служителя, приел поръчката и името на търговеца-превозвач.

USE Northwind GO SELECT O.OrderID, OrderDate, C.CompanyName AS Customer , FirstName+"+LastName AS Employee Name , SH.CompanyName AS Shipper FROM Orders O JOIN Employees E ON O.EmployeeID = E.EmployeeID **JOIN Shippers SH** ON O.ShipVia = SH.ShipperID **JOIN Customers C** ON O.CustomerID = C.CustomerID **ORDER BY 3,1**

Данни за всички клиенти, направените от тях поръчки и търговците-превозвачи

(Използване на външно съединяване в JOIN звезда)

USE Northwind

GO

SELECT C.CompanyName AS Customer

, FirstName+"+LastName AS Employee_Name

, SH.CompanyName AS Shipper, O.OrderID, OrderDate

FROM Orders O

JOIN Employees E

ON O.EmployeeID = E.EmployeeID

JOIN Shippers SH

ON O.ShipVia = SH.ShipperID

RIGHT JOIN Customers C

ON O.CustomerID = C.CustomerID

ORDER BY I