Lecture 7

Perfect - Matching Polytope in Bip. Graphs

{ xuy : (u,v) & G

 $\forall u : \sum_{x \in A} x_{nv} = 1$ (PM)

∀r: ∑ xw = 1

Thm: Polytope PM is integral.

Pf:- Let x be any basic fearible solution. We want to prove xur € {0,1}.

Let B be the set of inequalities that x satisfies with equality. We know.

Rank (B) = m < # of edges.

Let F := {uv | 0 < xuv < 13.

Suppose |F| = k > 0. Let $I = E \setminus F$ be the remaining integral vars.

Finally, let us order columns of B to obtain the following:

Corresponds

to $\sum x_{uv} = 1$ BF Identity matrix B Ineq. corr. = {

Ineq. corr.
$$=$$
 $\frac{1}{2}$ $\frac{1}{2}$

Observe: rank (B) = rank (BF) + m-k
Convince yourself of this.

:. rank (BF) = k "The rank of the matrix frac vars = # of fac vars

let's focus on BF

- Many conn. components - Correspond to "Square" Submatrices of BF

n, { \ n,

Why should conn comp. Egnel # on both Sides ?

- Vank (BF) = 2n; -1 ···· rows of the two ni halves sun .: rank (BF) = 2 \(\sum_{i} - t \)

- However, IFI > 2 In; => rank(BF) < k-t k = 0 \Rightarrow k = 0

Makespan Minimization on Unrelated Machines

Makespan Minimization on Unrelated Machines
Input: m - machines n - jobs Pij - proc time of job j on machine i
Output: Assignment of jobs to machines
Objective! - To minimize makespar = max Zi Pij
Special Case: P: = {P: , 03}
Each job has intrinsic proc time P; but is restricted and a some machines.
Special Case: Pi = {Pi, , 00} Each job has intrinsic proctime p; but is restricted only on some machines. (Restricted Assignment Makespan Miningation)
LP-telaxation
Min T
∀i=1m, T - ZPij×ij ≥0
$\forall j=1,n, \sum_{i} \times ij = 1$
As stated above, this LP is bad.
Example: District Pi=m vij = /m vi
- T = 1 $ - OPT = m$
"Guess" the optimum T > Pmax.

- No job has degree 1.
There exists a 'matching' assigning all jobs.
- In the cycle go in any order
There exists a 'matching' assigning all jobs. - In the cycle go in any order - Shrink cycle togt a rooted tree - Assign job arb. to any child m/c
Job start and
For all jobs j, assign to machine matchel.
Analysis - Fix machine i - It gets either j st x ij = 1 or (one job in step 2
- It gets either j st x ij = 1
or some job in step 2
: Total load on m/c i \ \frac{2}{jess Pij x ij + Pmax
∫est 5 5 ≤ 27
_
Tree Augmentation Problem (TAP)
$T_{1}+.$ A_{2} A_{3} A_{4} A_{4} A_{5} A_{5}
Input: - A rooted tree T = (V, E) - Collection of F = V × V "links"
- Collection of F=VXV "links" - Cost Cf +f & F
Output: - ACF s.t. T+A is 2-edge-conn.
Objective: Minimize c(A)
LP-relaxation
Min Z Cfxf

Min ZCfxf

Thm: Let x be a bfs for the above UP. Then $\exists f : x_f \geqslant \frac{1}{2}$

Assuming the above theorem, TAP has a 2-appx Pick for st xfor, I . This leads to a residual problem. (T', F') where T' is obtained by shrinking all cedges cof T with f & Fe and deleting all f' which have epts immy the edges deleted. Note, the old LP solu $n_f \forall f \in F'$ is a few. solu. $\therefore LP(T,F) \geq LP(T',F') + \sum_{f \in F'} C_f \chi_f$

By "induction",

> LP(T',F') + 1 Cp* ne can find ALG(T', F') \le 2. LP(T', F') ALG (T,F) = ALG(T',F') - 1 C+ < 2LP(T,F)

Pf: Suppose not.

Clever Charging scheme:

Put a charge on (u, parent (u))

1-2×1 Lca (u,v) For each $f = (u,v) \in F$, $u \in A$ in the thire is the second be $u \in A$ and $u \in A$.

of x_f Since $ax_f < \frac{1}{2}$ all this charge

$$= Sum of rows Corr to (u,u;)'s.$$

$$\Rightarrow (u,v) \not\in B. \rightarrow \times$$

$$\textcircled{2} \quad (u,v) \not\in B. \quad (u,v)'s.$$

$$A: \{f \mid f \in F_{u,v} \notin one ept is u \}$$

$$B: \{f \mid f \in F_{u,u} : unith ept in u, u\}$$

$$D: \{f \mid f \in F_{u,u} : unith ept in u, u\}$$

$$x(F_{u,v}) = | \Rightarrow x(A) + x(D) = |$$

$$x(A) + x(D) = |$$

$$x(F_{u,u_i}) = | \Rightarrow x(A) + x(A) + x(C)$$

$$= \sum_{e \in B} (1 - 2x_e) + x(A) + \sum_{e \in C} (1 - x_e) + x(C)$$

$$= |B| + |C| + 1 - (x(D) + 2x(B) + x(C))$$

$$= |B| + |C| + 1 - |C| = Z$$

