

DTE-2502 Neural Networks: Perceptron model

Kalyan Ram Ayyalasomayajula, PhD Associate professor, UiT Narvik Email: kay001@post.uit.no

Overview

- Introduction
- Basic Termnology
- Neuron model
- Perceptron
- Multilayer Perceptron

AI, ML and Deep learning

Artificial Intelligence is the theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.

Artificial neural networks are machine learning techniques that simulate the mechanism of learning in biological organisms.

Regression vs Classification

Given a training set $X^l = (x_i, y_i)_{i=1}^l$, objects $x_i \in \mathbb{R}^n$, responses y_i

Classification

- $Y = \{\pm 1\}, y_i \in Y$
- $a(x, w) = sign(\langle w, x_i \rangle)$
- $Q(w; X^l) = \sum_{i=1}^l [\langle w, x_i \rangle y_i < 0] \rightarrow \min_{w}$

Regression

- $Y = \mathbb{R}, y_i \in Y$
- $a(x, w) = \sigma(\langle w, x_i \rangle)$
- $Q(w; X^l) = \sum_{i=1}^l (\sigma(w, x_i) y_i)^2 \rightarrow \min_w$

- Regression: Curve fitting
- Classification: Decision making

Neuron model

Given n numerical features x_j , j = 1, ..., n

 $a(x,w)=\sigma(\langle w,x\rangle)=\sigma(\sum_{j=1}^n w_jx_j-w_0)$, where $w_0,w_1,...,w_n\in\mathbb{R}$ are feature weights,

$$\sigma(z)$$
 is an activation function, for example, $sign(z) = \begin{cases} +1 \text{ if } x \geq 0 \\ -1 \text{ if } x < 0 \end{cases}$ sigmoid $(z) = \frac{1}{1 + e^{-z}}$

$$\operatorname{sigmoid}(z) = \frac{1}{1 + e^{-z}}$$

Linear neuron model (McCulloch and Pitts, 1943)

https://en.wikipedia.org/wiki/Neuron#/media/File:Complete_neuron_cell_diagram_en.svg

Example (1)

Neural representation of logic functions

AND

x_1	x_2	out
0	0	0
0	1	0
1	0	0
1	1	1

OR

x_2	out
0	0
1	1
0	1
1	1
	0 1 0

Example (2)

XOR

x_1	x_2	out
0	0	0
0	1	1
1	0	1
1	1	0

• Adding a non-linear feature

$$x_1 + x_2 - 2x_1x_2 - \frac{1}{2} > 0$$

 Making a two-layer network of functions AND, OR, NOT

$$(x_1 \lor x_2) - (x_1 \land x_2) - \frac{1}{2} > 0$$

Perceptron model

The perceptron is a collection of neurons together with a set of inputs and weights to fasten the inputs to the neurons.

Weights w_{ij} , i = 1, ..., n, j = 1, ..., M

The rule for updating a weight w_{ij}

$$w_{ij} \coloneqq w_{ij} - \mu(a_j - y_j) \cdot x_i$$

where y_j is a target value, μ is a learning rate (typically $0.1 < \mu < 0.4$)

Perceptron learning algorithm

Initialization

Set all the weights w_{ij} to small positive and negative random values

Training phase

for *T* iterations or until all the outputs are correct

for each input vector

compute the activation of each neuron using activation function σ

$$a_{j} = \sigma(\sum_{i=0}^{M} w_{ij} x_{i}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{M} w_{ij} x_{i} > 0 \\ 0 & \text{if } \sum_{i=0}^{M} w_{ij} x_{i} \le 0 \end{cases}$$

update each of the weights individually using

$$w_{ij} := w_{ij} - \mu(a_i - y_j) \cdot x_i$$

Recall phase

compute the activation of each neuron as $a_j = \sigma(\sum_{i=0}^M w_{ij} x_i) = \begin{cases} 1 & \text{if } \sum_{i=0}^M w_{ij} x_i > 0 \\ 0 & \text{if } \sum_{i=0}^M w_{ij} x_i \leq 0 \end{cases}$

Implementation

```
def sigma(x, w):
    activation = -1.0 * w[-1] #bias
    for i in range(len(x) - 1):
        activation += w[i] * x[i]
    return 1.0 if activation >= 0 else 0.0
def training(data, w0, mu, T):
    w = w0
    for idx in range(T):
        for x in data:
            activation = sigma(x, w)
            error = x[-1] - activation
            w[-1] += -1.0* mu * error
            for i in range(len(x) - 1):
                w[i] += mu * error * x[i]
    return w
Run Cell | Run Above | Debug Cell | Go to [57]
# initialization
dataset = [[0, 0, 0],
           [1, 0, 1],
           [0, 1, 1],
           [1, 1, 1],
weights = [0.02, -0.03, -1.05]
#training
weights = training(dataset, weights, 0.2, 15)
for sample in dataset:
    a = sigma(sample, weights)
    print(f"Target: {sample[-1]}, prediction: {a}")
print(f"Final weights: {weights}")
```

$$a_j = \sigma\left(\sum_{i=0}^M w_{ij}x_i\right) = \begin{cases} 1 \text{ if } \sum_{i=0}^M w_{ij}x_i > 0 \\ 0 \text{ if } \sum_{i=0}^M w_{ij}x_i \leq 0 \end{cases}$$

$$\text{Target: 0, prediction: 0.0}$$

$$\text{Target: 1, prediction: 1.0}$$

$$\text{Target: 1, prediction: 1.0}$$

$$\text{Target: 1, prediction: 1.0}$$

$$\text{Target: 1, prediction: 1.0}$$

$$\text{Final weights: [0.22, 0.17]}$$

$$w_{ij} \coloneqq w_{ij} - \mu(a_j - y_j) \cdot x_i$$

Neural Networks as function approximators

- Two-layer network in $\{0,1\}^n$ approximates an arbitrary boolean function
- Two-layer network in \mathbb{R}^n approximates an arbitrary convex polyhedron
- The combination of linear operators and one non-linear activation function approximates any continuous function to any desired precision
- In practice, two/three layers are sufficient
- Deep neural networks are multilayer due to automatic feature extraction from complex data

Multilayer perceptron

Let for simplicity a network scheme contains two layers: one *hidden* with H neurons and one *output* with M neurons. Parameter vector $w = (w_{jh}, w'_{hm}) \in \mathbb{R}^{Hn+H+MH+M}$

