

Ensembles de nombres et calculs

I. Introduction aux différents ensembles de nombres :

1. L'ensemble des réels :

Définition :

L'ensemble de tous les nombres se nomme l'ensemble des réels.

On le note \mathbb{R} (de l'allemand real)

EXEMPLES:

Les nombres suivants sont des nombres réels :

$$0;1;-3;\sqrt{2};\frac{3}{5};\pi$$

2. L'ensemble des entiers naturels :

Définition:

c'est l'ensemble de tous les entiers positifs ou nul.

On le note \mathbb{N} (de l'italien naturale)

REMARQUE:

 $\mathbb{N} = 0; 1; 2; 3; 4; \dots$

3. L'ensemble des entiers relatifs :

Définition:

c'est l'ensemble de tous les entiers positifs, négatifs et nul.

On le note \mathbb{Z} (de l'allemand zahlen : compter)

REMARQUE:

$$\mathbb{Z} = \dots; -3; -2; -1; 0; 1; 2; 3; 4; \dots$$

4. L'ensemble des nombres décimaux :

Définition:

C'est l'ensemble des nombres qui peuvent s'écrire avec un nombre fini de décimales.

On le note $\mathbb D$ (du français décimale) .

EXEMPLES:

Les nombres suivants sont des nombres décimaux :

$$0; 1; -3, 2; 5, 689; \frac{4}{5}$$

par contre 0,333333..... n'est pas un nombre décimal puisque sa partie décimale est infinie.

5. L'ensemble des nombres rationnels :

Définition:

c'est l'ensemble des nombres pouvant s'écrire sous la forme d'une fraction d'entiers relatifs.

On le note \mathbb{Q} (de l'italien quotienté) .

EXEMPLES:

Les nombres suivants sont des nombres rationnels :

$$0; 1; -3, 2; 7, 069; \frac{4}{5}$$

6. L'ensemble des nombres irrationnels :

Définition:

c'est l'ensemble des nombres qui ne sont pas rationnels ; que l'on ne peut donc pas écrire sous forme de fraction.

On le note $\mathbb{R}\%5C\mathbb{Q}(l'ensemble des réels privé des rationnels) .$

EXEMPLES:

Les nombres suivants sont des nombres irrationnels :

$$\pi$$
; $\sqrt{2}$; $\sqrt{3}$

BILAN:

II. Règles de calculs :

1. Les fractions:

Propriété:

Soient a,b,c,d quatre nombres réels tels que $b \neq 0$; $d \neq 0$.

$$\bullet \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

$$\bullet \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}.$$

$$\bullet \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}.$$

$$\bullet \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}.$$

2. Les racines carrées :

Définition :

Soit x un nombre réel positif, la **racine carrée** de x est le nombre positif dont le carré est égal à x.

Ce nombre est noté : \sqrt{x} .

A Invalid Equation

Définition:

• Si
$$a \ge 0$$
 , $\sqrt{a^2} = a$.

• Si
$$a \ge 0$$
 $b \ge 0$: $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$.

• Si
$$a \ge 0$$
 $b > 0$:, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

EXEMPLES:

Simplifier les expressions suivantes :

$$\bullet A =$$

$$\bullet B =$$

REMARQUE:

 $ullet 3 - \sqrt{5}$ s'appelle **la quantité conjuguée** de l'expression $3 + \sqrt{5}$.

3. Les puissances :

Définition:

Propriété:

• Si
$$a \neq 0$$
, $a^{-n} = \frac{1}{a^n} a^0 = 1$.

$$\bullet \frac{a^m}{a^n} = a^{m-n}.$$

$$\bullet (a^m)^n = a^{mn}, (ab)^n = a^n \times b^n.$$

$$\bullet \; \mathrm{Si} \; b \neq \; 0 \, , \, \big(\frac{a}{b}\big)^n = \frac{a^n}{b^n}.$$