EEE 431: Telecommunications 1

Quiz 1

February	18,	2016,	18:30-19:40.
----------	-----	-------	--------------

Instructor: Sinan Gezici

Name:		
Signature:		
Bilkent ID: _		

Prob. 1: _____ / 13 Prob. 2: _____ / 12

Prob. 3: ______ / 24

Prob. 4: _____ / 23

Prob. 5: ______ / 28

Total: ______ / 100

Problem 1 Consider a signal x(t) which is band limited to W Hz. That is, X(f) = 0 for $|f| \ge W$. Then, define $y(t) = x(t) \cos(\pi W t)$. What is the minimum sampling frequency for signal y(t) so that it can perfectly be reconstructed from its samples?

Problem 2 Consider a discrete memoryless source (DMS) consisting of 4 symbols, $\{s_1, s_2, s_3, s_4\}$, in its alphabet with probabilities p_1 , p_2 , p_3 , and p_4 , respectively.

- (a) For what values of p_1 , p_2 , p_3 , and p_4 is the minimum entropy achieved? What is the resulting entropy? (proof is not required)
- (b) For what values of p_1 , p_2 , p_3 , and p_4 is the maximum entropy achieved? What is the resulting entropy? (proof is not required)

<u>Hint:</u> The entropy of a DMS is given by $H = -\sum_{i=1}^{N} p_i \log_2(p_i)$.

Problem 3 Consider a discrete memoryless source (DMS) consisting of 6 symbols, $\{s_1, s_2, s_3, s_4, s_5, s_6\}$, in its alphabet with probabilities 0.12, 0.33, 0.08, 0.25, 0.14, and 0.08, respectively. Perform Huffman coding for this DMS and list the codewords. Calculate the average codeword length.

Problem 4 Let X denote a Gaussian random variable with mean 2 and variance 9, and Y be defined as $Y = X^2 + 2X$. Obtain an expression (in terms of the Q-function(s)) for the probability that Y is greater than or equal to 3, and simplify it as much as possible.

<u>Hint:</u> The probability density function (PDF) of a Gaussian random variable with mean μ and variance σ^2 is given by $f_X(x) = (1/\sqrt{2\pi}\sigma) \, e^{-(x-\mu)^2/(2\sigma^2)}$, and the Q-function is defined as $Q(x) = (1/\sqrt{2\pi}) \int_x^\infty e^{-t^2/2} \, dt$.

Problem 5 Consider two random variables X and Y, which are distributed according to the following joint probability density function (PDF):

$$f_{X,Y}(x,y) = \begin{cases} (1/\pi) \, e^{-(x^2+y^2)/2} \;, & \text{if } x \ge 0 \text{ and } y \ge 0 \\ (1/\pi) \, e^{-(x^2+y^2)/2} \;, & \text{if } x < 0 \text{ and } y < 0 \\ 0 \;, & \text{otherwise} \end{cases}$$

- (a) Find the marginal PDF of X, and the marginal PDF of Y.
- **(b)** Are X and Y independent? Why/why not?
- (c) Are X and Y jointly Gaussian? Why/why not?
- (d) Find the conditional PDF of X given Y.

<u>Hint:</u> For a Gaussian random variable Z, its marginal PDF is given by $f_Z(z) = (1/\sqrt{2\pi}\sigma) e^{-(z-\mu)^2/(2\sigma^2)}$, where μ is the mean and σ^2 is the variance.

1)
$$y(t) = x(t) \cos(2\pi \frac{w}{2}t) \Rightarrow y(t) = \frac{1}{2} x(t - \frac{w}{2}) + \frac{1}{2} x(t + \frac{w}{2})$$

$$\frac{\chi(4)}{\sqrt{1.5}} \Rightarrow \frac{\chi(4)}{\sqrt{1.5}} f \Rightarrow 3 V$$

2) a)
$$P_1=1$$
, $P_2=P_3=P_4=0 \Rightarrow H=0$

b)
$$P_1 = P_2 = P_3 = P_4 = \frac{1}{4} \Rightarrow H = -\frac{4}{2} + \log_2 \frac{1}{4} = \frac{1}{2} = \frac{1}{2}$$

3)
$$00 \quad S_{2}: 0.33$$

$$10 \quad S_{4}: 0.25$$

$$010 \quad S_{5}: 0.14 \quad 0.26$$

$$011 \quad S_{1}: 0.12$$

$$110 \quad S_{3}: 0.08 \quad 0.16$$

$$111 \quad S_{6}: 0.08$$

$$R = 2(0.33 + 0.25) + 3(0.14 + 0.12 + 0.08 + 0.08)$$

$$= (2.42 \text{ bits/symbol})$$

4)
$$\times N(2,3)$$
 $Y = X^2 + 2X$

$$P(Y \geqslant 3) = P(X^{2} + 2X - 3 \geqslant 0) = P((X + 3)(X - 1) \geqslant 0) = P(X \geqslant 1 \text{ or } X \leqslant -3)$$

$$P(Y \geqslant 3) = P(X^{2} + 2X - 3 \geqslant 0) = P((X + 3)(X - 1) \geqslant 0) = P(X \geqslant 1 \text{ or } X \leqslant -3)$$

$$= P((X - 2) \Rightarrow 1 - 2 \text{ or } X = -3 - 2 \text{ or } X =$$

$$f_{X}(x) = \begin{cases} \frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{(x^{2}+y^{2})}{2}} dy, & \text{if } x \ge 0 \\ \frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{(x^{2}+y^{2})}{2}} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{0}^{\infty} e^{-y^{2}/2} dy, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{e^{-x^{2}/2}}{\pi} \int_{$$

By a similar derivation:

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi}} e^{-y^{2}/2}, y \in \mathbb{R}$$
Gaussian $Y \cap N(0,1)$

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{\pi} e^{-y^{2}/2} dy = \frac{1}{2} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\pi} e^{-y^{2}/2} dy \qquad K(0,1)$$

- b) No. fx, y(x,y) + fx(x) fy(y).
- c) No. Although X & Y are marginally Gaussian, they are not jointly Gaussian since fx, y(x,y) is not in the form of jointly Gaussian PDF, which is non-zero for all (x,y) ETR2, (but the given joint PDF is zero in some regions).

d)
$$f_{X|Y}(x|y) = \frac{f_{X|Y}(x,y)}{f_{Y}(y)} = \frac{\frac{1}{\pi}e^{-(x^{2}+y^{2})/2}}{\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}}$$
, for $x > 0$ if $y > 0$ if $y > 0$, $f_{X|Y}(x|y) = \frac{f_{X|Y}(x,y)}{f_{Y}(y)} = \frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}$, for $f_{Y}(x) = \frac{f_{X|Y}(x,y)}{f_{Y}(x)} =$