ÓPTICA

3.28 (b) Comproveu que la rotació d'un mirall un angle φ fa girar el raig reflectit un angle de 2φ.

3.29 (b) Usant l'equació de la paràbola y² = 4fx, on l'eix x coincideix amb l'eix de la paràbola, i on f és la distància focal:

b) Raoneu que, quan un front d'ona lluminós perpendicular a l'eix x incideix sobre un mirall parabòlic, tots els fronts d'ona circulars reflectits arriben simultàniament al focus

3.30 (b) Un raig incideix en una cara d'una placa de vidre. Dibuixeu els primers raigs que emergeixen d'ambdues cares i demostreu que els raigs que emergeixen per l'altra cara són paral·lels al raig incident.

3.31 (o) Un raig surt del vidre per entrar en l'aire. L'índex de refracció del vidre val 1,5:

- a) Dibuixeu qualitativament la gràfica de l'angle de refracció en funció del d'incidència.
- **b)** Calculeu l'angle crític θ_c .

c) Calculeu la desviació que pateix un raig que hi incideix a 45.

b)
$$\theta_c = 41.8$$
 c) $\theta = 16.9$

3.32 (o) Mentre el Sol es pon, un objecte sura en la superfície d'una piscina de 2,00 m de profunditat. Si l'índex de refracció de l'aigua és 1,34, calculeu la distància d que hi ha entre l'ombra de l'objecte i el punt del fons de la piscina situat a sota seu.

d) 2,24 m

3.33 (c) PRINCIPI DE FERMAT.

A partir del principi de Fermat i utilitzant el càlcul diferencial, deduïu:

- a) La llei de la reflexió de la llum en un mirall pla.
- **b)** La llei d'Snell.

3.34 (o) Projectem una diapositiva de 25 mm per 35 mm sobre una pantalla situada a una distància s'=4,00 m de la lent, i es forma una imatge de 50 cm per 70 cm quan hi ha enfocament.

- a) Dibuixeu el diagrama de raigs i digueu si la imatge és real i invertida.
- **b)** Quin és l'augment lateral m?
- c) Quina és la distància s de la diapositiva a la lent?
- d) Quina distància focal f té la lent?

b) m = -20 c) s = 20 cm d) f = 400/21 cm

3.35 (c) FÒRMULA DE NEWTON.

Demostreu que per a una lent prima es compleix (x / f)(x'/ f) = 1, on x = s - f és la distància de l'objecte al primer focus, i x' = s' - f és la distància de la imatge al segon focus.

Proveu que la separació mínima entre l'objecte i la imatge per a una lent positiva (convergent) és quatre cops la distància focal.

3.36 (c) FÒRMULA DE GAUSS.

Representeu gràficament la funció que relaciona les distàncies al centre d'una lent d'un objecte i de la seva imatge quan les normalitzem respecte de la distància focal (magnituds s/f i s'/f de la fórmula de Gauss o fórmula de les lents primes).

- **3.37** (o) Disposem una col·lecció de lents primes fetes amb un vidre d'índex de refracció n = 1,5. Feu un esquema de cada lent i trobeu les distàncies focals en l'aire per als casos següents:
 - **a)** Biconvexa $r_1 = 10$ cm i $r_2 = -20$ cm.
 - **b)** Plano convexa $r_1 = \infty$ i $r_2 = -10$ cm.
 - **c)** Biconcava $r_1 = -10$ cm i $r_2 = 10$ cm.
 - **d)** Plano còncava $r_1 = \infty$ i $r_2 = 20$ cm.

a)
$$f = 13.3$$
 cm b) $f = 20$ cm c) $f = -10$ cm d) $f = -40$ cm

- **3.38** (o) La distància focal f d'una lent plano-convexa en l'aire és de 24 cm. Si l'índex de refracció del vidre és 1,5, calculeu:
 - **a)** El seu radi de curvatura ρ.
 - **b)** La seva nova distància focal f_1 quan la submergim en l'aigua, l'índex de refracció de la qual val $n_1 = 1,34$.
 - c) Calculeu la diferència entre les distàncies focals f d'aquesta lent en l'aire per a una llum vermella (n = 1,47) i blava (n = 1,53). Utilitzeu aproximacions raonables tenint en compte que el canvi relatiu d'índex és petit.

a)
$$\rho = 12$$
 cm b) $f_1 = 1,00$ m c) $f = 2,9$ cm

- 3.39 (o) Una c mera fotogr fica que té una distància focal de 50 mm est enfocada a l'infinit. Calculeu:
 - a) La distància respecte del focus x' a qui es formar la imatge d'un objecte situat a s = 4 m.
 - b) La longitud l a qu haurem de desplaçar la lent perquè enfoqui aquest objecte.

a)
$$x' = 0.63 \text{ mm}$$
 b) $1 = 0.63 \text{ mm}$

 $P = -2 \text{ m}^{-1}$

3.40 (o) Una persona miop té un punt lluny de 50 cm (no pot enfocar els objectes que estan situats a una distància superior a 50 cm). Quina és la potència P en di ptries de les lents de contacte que ha de dur per col·locar a aquesta distància la imatge d'un objecte situat en l'infinit?

Indiqueu si la lent és convergent o divergent i dibuixeu el diagrama de raigs del sistema lent/ulls per a un objecte situat en l'infinit.

ÓPTICA 59

- **3.41** (o) Una persona amb un punt proper de s = 25 cm (no pot enfocar els objectes que estan situats a una distància inferior a 25 cm) observa un objecte de dimensió transversal y = 1 mm col·locat a aquesta distància.
 - a) Calculeu en miliradians l'angle θ_0 subtendit per l'objecte en l'ull. Si la persona utilitza una lent de 40 diòptries com a lupa i col·loca aquest objecte en el seu punt focal, calculeu:
 - **b)** El nou angle θ subtendit per l'objecte.
 - c) L'amplificació angular M que heu obtingut.

a)
$$\theta_0 = 4 \text{mrad}$$
; b) $\theta = 40 \text{ mrad}$; c) $M = 10$

- **3.42** (o) El diàmetre de la Lluna és de 3.500 km i la seva distància a la Terra és de 380.000 km. Calculeu:
 - a) L'angle θ_0 amb què es veu la Lluna des de la Terra.
 - **b)** El diàmetre de la imatge de la Lluna sobre la retina per a una persona que té una distància còrnia-retina de 2,5 cm.
 - c) El poder amplificador M d'un telescopi de refracció, si la distància focal del seu objectiu f_o és de 4,00 m i la del seu ocular és de f_e = 10 cm.
 - d) El diàmetre angular θ_e de la imatge de la Lluna formada per aquest telescopi.

a)
$$\theta_0 = 9.2 \text{ mrad} = 0.53 \text{ b) } 0.23 \text{ mm}$$
 c) $M = -40$ d) $\theta_e = 21.1$

3.43 (c) PODER DE RESOLUCIÓ.

Una persona amb un diàmetre de pupil·la aproximat d = 5 mm observa un objecte que té petits orificis separats l = 6,0 mm, i que est il·luminat amb llum verda d'una longitud d'ona de $\lambda=500$ nm. Perquè la persona pugui resoldre dos orificis contigus, calculeu:

- a) La separació angular mínima θ_{min} que han de presentar respecte de la persona.
- b) La distància sobre la retina de les imatges de dos orificis contigus quan la seva separació angular és la mínima. Compareu-la amb la distància entre dues cèl·lules contigües sensibles de la retina, que és de l'ordre d'una micra. Suposeu que la distància còrnia-retina és de 2,5 cm.
- c) La distància D màxima entre l'objecte i la persona.
- d) Podrien separar-se millor amb una llum vermella o blava?

a)
$$\theta_{min} = 10^{-4} \text{ rad}$$
 b) $\delta = 2.5 \ \mu\text{m}$ c) D = 60 m

- 3.44 (o) El telescopi de Monte Palomar té un diàmetre aproximat D = 5.0 m. Si un estel doble es troba a 8,0 anys llum, (un any llum = 9.5×10^{12} km), determineu la separació mínima d que hi ha d'haver entre els dos estels perquè les seves imatges puguin ser separades pel telescopi (λ =0.50 µm):
 - a) En nanoradians.
 - **b)** En milions de quilòmetres.

a)
$$\theta = 100 \text{ nrad b}$$
) $d = 7.6 \times 10^6 \text{ km}$