初期過程

田屋英俊

(東大駒場 ⇒ 理研)

復習:現状の理解

グルーオン飽和(CGC)

→ 摂動論的QCD

強いカラー電磁場(Glasma)

➡ 古典場の方程式

パートン物質

→ 運動学的方程式

クォークグルーオンプラズマ

→ 流体力学

復習:現状の理解

- ✓ 古典場の方程式は、運動学的 方程式に滑らかにつながる
- √ ボトムアップ的な描像を支持 [BMSS; Baier et al., (2001)]

強いカラー電磁場(Glasma)

➡ 古典場の方程式

- √ 縦方向に強いカラー電磁場: gE,gB ~ Qs² ~ O(1) GeV²
- √ 強い非等方性:

$$\begin{split} P_T &= \frac{E_L^2 + B_L^2}{2} > 0 \\ P_L &= \frac{E_T^2 + B_T^2 - E_L^2 - B_L^2}{2} \sim -P_T < 0 \end{split}$$

- ✓ 運動学的方程式は、流体計算に滑らかにつながる
- ec V「非等方でも流体が使える」と思えば、 時間スケールは短い: $au \sim O(1)~{
 m fm}/c$
 - 時间入り一ルは短い・ $au \sim U(1) \text{ fm/}c$
- √ 「流体化」と「等方化」「熱化」を区別する必要?
- パートン物質
- ➡ 運動学的方程式

クォークグルーオンプラズマ

→ 流体力学

復習:現状の理解

(パッチワークだし、流体化など不満・疑問は残るが)

理論は着実に発展している

問題意識

(1) 観測量との関連を考えよう

(2) おもしろい現象を探そう

(1) 観測量との関連を考えよう

- ・流体模型の初期条件の構築 Schlichting / Mazeliauskas
- ・初期過程からの光子生成量の概算 丹治
- ・観測量から初期過程の情報を抽出する Bernhard

(2) おもしろい現象を探そう

- ・過渡的なBEC形成の可能性 筒井(ポスター)
- ・初期過程におけるスファレロン遷移 Mace(ポスター)
- ・初期過程の非平衡発展を考慮したCME/CSEの評価 Muller / Huang(ポスター)

- ・流体化とは?流体力学が適用できる条件は? Romatschke / Noronha
- ・パッチワークでない、クォーク・グルーオン生成と熱化の記述 田屋(ポスター)

(1) 観測量との関連を考えよう

- ・流体模型の初期条件の構築 Schlichting / Mazeliauskas
- ・初期過程からの光子生成量の概算 丹治
- ・観測量から初期過程の情報を抽出するBernhard

(2) おもしろい現象を探そう

- ・過渡的なBEC形成の可能性 筒井(ポスター)
- ・初期過程におけるスファレロン遷移 Mace(ポスター)
- ・初期過程の非平衡発展を考慮したCME/CSEの評価 Muller / Huang(ポスター)

- ・流体化とは?流体力学が適用できる条件は? Romatschke / Noronha
- ・パッチワークでない、クォーク・グルーオン生成と熱化の記述 田屋(ポスター)

(1) 観測量との関連を考えよう

- ・流体模型の初期条件の構築 Schlichting / Mazeliauskas
- ・初期過程からの光子生成量の概算 丹治
- ・観測量から初期過程の情報を抽出するBernhard

(2) おもしろい現象を探そう

- ・過渡的なBEC形成の可能性 筒井(ポスター)
- ・初期過程におけるスファレロン遷移 Mace(ポスター)
- ・初期過程の非平衡発展を考慮したCME/CSEの評価 Muller / Huang(ポスター)

- ・流体化とは?流体力学が適用できる条件は? Romatschke / Noronha
- ・パッチワークでない、クォーク・グルーオン生成と熱化の記述 田屋(ポスター)

IP-Glasma模型

CGC(IP-sat)+古典YM

IP-Glasma模型 CGC(IP-sat)+古典YM パートンレベルの運動学的な 非平衡発展も取り込んだ

① IP-Glasma模型に よる初期条件 _I

CGC(IP-sat)+古典YM

① IP-Glasma模型に よる初期条件 』

CGC(IP-sat)+古典YM

Mazeliauskas

基本的な戦略

・サークルの領域だけに注目する

・サークルの領域だけに注目する

→ 『一様分布 + (横平面の)小さなゆらぎ』がよい近似

・サークルの領域だけに注目する

- → 『一様分布 + (横平面の)小さなゆらぎ』がよい近似
- ightharpoonup 分布関数を $f = \bar{f}(- \cline{k}) + \delta f($ ゆらぎ) と分解

・サークルの領域だけに注目する

- → 『一様分布 + (横平面の)小さなゆらぎ』がよい近似
- \rightarrow 分布関数を $f = \bar{f}(- \bar{k}) + \delta f(\phi \delta \tilde{s})$ と分解
- ightharpoonup Boltzman方程式を解く。 δf (ゆらぎ) は線形化する

$$\partial_{\tau} f + \frac{\mathbf{p}}{|p|} \cdot \nabla f - \frac{p_z}{\tau} \partial_{p_z} f = - \underbrace{\mathcal{C}_{2\leftrightarrow 2}[f]}_{\mathbf{g}} - \underbrace{\mathcal{C}_{1\leftrightarrow 2}[f]}_{\mathbf{g}}$$

結果: エネルギー分布

√ 流体と運動学的な記述は、overlapする領域があるので、初期時刻に敏感でない

参考: free streamingの場合

✓ 流体とfree streamingは、consistentでないので、初期時刻の依存する

(1) 観測量との関連を考えよう

- ・流体模型の初期条件の構築 Schlichting / Mazeliauskas
- ・初期過程からの光子生成量の概算
 円治
- ・観測量から初期過程の情報を抽出するBernhard

(2) おもしろい現象を探そう

- ・過渡的なBEC形成の可能性 筒井(ポスター)
- ・初期過程におけるスファレロン遷移 Mace(ポスター)
- ・初期過程の非平衡発展を考慮したCME/CSEの評価 Muller / Huang(ポスター)

- ・流体化とは?流体力学が適用できる条件は? Romatschke / Noronha
- ・パッチワークでない、クォーク・グルーオン生成と熱化の記述 田屋(ポスター)

- ・ 初期過程からの光子生成は十分に検討されていない
- ・時空間体積は小さい。が、エネルギー密度は高い。 なので、収量が無視できるかは非自明
 - → 初期過程からの光子生成量を概算 (ボトムアップ的な描像(BMSS)の概算に基づき)
 - ➡ thermal QGPからの収量の概算と比較

Step1: 光子生成率

Production rate via the annihilation and Compton processes

$$E\frac{dN}{d^4Xd^3p} = \frac{1}{2(2\pi)^3} \int_{p_1,p_2,p_3} |\mathcal{M}|^2 (2\pi)^4 \delta^4(P_1 + P_2 - P_3 - P) f_1(p_1) f_2(p_2) \left[1 \pm f_3(p_3)\right]$$

1 2 対消滅 Compton

Step1: 光子生成率

Production rate via the annihilation and Compton processes

$$E\frac{dN}{d^4Xd^3p} = \frac{1}{2(2\pi)^3} \int_{p_1,p_2,p_3} |\mathcal{M}|^2 (2\pi)^4 \delta^4(P_1 + P_2 - P_3 - P) f_1(p_1) f_2(p_2) \left[1 \pm f_3(p_3)\right]$$

 f_i : 熱的

$$f_1 f_2 \sim e^{-(E_1 + E_2)/T}$$
 (古典近似)

Thermal phase

$$E\frac{dN^{\rm th}}{d^4xd^3p} = \frac{5}{9}C\frac{\alpha\alpha_s}{2\pi^2}T^2e^{-E/T} \qquad C \sim \log\left(1/\alpha_s\right) \qquad \qquad \text{Kapsta, Lichard, Seibert (1991)}$$

Ideal 1+1d expansion $T(\tau) = T_{\rm th} \left(\frac{\tau_{\rm th}}{\tau}\right)^{1/3}$

small angle approx.

Step1: 光子生成率

Production rate via the annihilation and Compton processes

$$E\frac{dN}{d^4Xd^3p} = \frac{1}{2(2\pi)^3} \int_{p_1,p_2,p_3} |\mathcal{M}|^2 (2\pi)^4 \delta^4(P_1 + P_2 - P_3 - P) f_1(p_1) f_2(p_2) \left[1 \pm f_3(p_3)\right]$$

 f_i : 熱的

 $f_1 f_2 \sim e^{-(E_1 + E_2)/T}$ (古典近似)

Thermal phase

$$E \frac{dN^{ ext{th}}}{d^4xd^3p} = \frac{5}{9}C \frac{\alpha\alpha_s}{2\pi^2}T^2e^{-E/T}$$
 $C \sim \log\left(1/\alpha_s\right)$ Kapsta, Lichard, Seibert (1991)

Ideal 1+1d expansion $T(\tau) = T_{\rm th} \left(\frac{\tau_{\rm th}}{\tau}\right)^{1/3}$

Glasma phase

$$E\frac{dN}{d^4Xd^3p} = \frac{40}{9\pi^2}\alpha\alpha_s \mathcal{L} f_q(\mathbf{p}) \int \frac{d^3p'}{(2\pi)^3} \frac{1}{p'} \left[f_g(\mathbf{p'}) + f_q(\mathbf{p'}) \right] \qquad \mathcal{L} \sim \log(1/\alpha_s)$$

Step1: 光子生成率

Production rate via the annihilation and Compton processes

$$E\frac{dN}{d^4Xd^3p} = \frac{1}{2(2\pi)^3} \int_{p_1,p_2,p_3} |\mathcal{M}|^2 (2\pi)^4 \delta^4(P_1 + P_2 - P_3 - P) f_1(p_1) f_2(p_2) \left[1 \pm f_3(p_3)\right]$$

f_i: 熱的

 $f_1 f_2 \sim e^{-(E_1 + E_2)/T}$ (古典近似)

Thermal phase

$$E\frac{dN^{\rm th}}{d^4xd^3p} = \frac{5}{9}C\frac{\alpha\alpha_s}{2\pi^2}T^2e^{-E/T} \qquad C \sim \log\left(1/\alpha_s\right) \qquad \qquad {\rm Kapsta,\,Lichard,\,Seibert\,(1991)}$$

Ideal 1+1d expansion $T(\tau) = T_{\rm th} \left(\frac{\tau_{\rm th}}{\tau}\right)^{1/3}$

Glasma phase

$$E\frac{dN}{d^4Xd^3p} = \frac{40}{9\pi^2}\alpha\alpha_s \mathcal{L} f_q(\mathbf{p}) \int \frac{d^3p'}{(2\pi)^3} \frac{1}{p'} \left[f_g(\mathbf{p'}) + f_q(\mathbf{p'}) \right] \qquad \mathcal{L} \sim \log(1/\alpha_s)$$

生成率を時空間で積分すると収量求まる

→ Thermal/Glasma相の持続時間は?(Step2)

Step2: 持続時間の推定

仮定(1): ボトムアップ的なシナリオの推定 [BMSS; Baier et al., (2001)]

thermalization time
$$au_{
m th} = c_{
m eq} lpha_s^{-13/5} Q_s^{-1}$$

temperature at that time $T_{\rm th} = c_{\rm eq} c_T \alpha_s^{2/5} Q_s$ $(c_T \sim 0.18, c_{eq}: {\rm unknown})$

仮定(2): QGPのエントロピーを自由ガスで近似

$$\frac{dS_{\text{QGP}}}{d\eta} = d_{\text{DoG}} \times \frac{2\pi^2}{45} T^3 \times \tau S_{\perp} \quad (d_{\text{DoG}} = 37 \text{ for } N_c = 2, N_f = 2)$$

仮定(3): QGP生成以降は、エントロピーが保存

$$\frac{dS_{\text{QGP}}(\tau_{\text{th}})}{d\eta} = \frac{dS_{\text{QGP}}(\tau_{\text{c}})}{d\eta} = \frac{dS_{\text{hadron}}}{d\eta}$$

Step2: 持続時間の推定

仮定(1): ボトムアップ的なシナリオの推定 [BMSS; Baier et al., (2001)]

thermalization time
$$au_{
m th}=c_{
m eq}lpha_s^{-13/5}Q_s^{-1}$$
 temperature at that time $T_{
m th}=c_{
m eq}c_Tlpha_s^{2/5}Q_s$ $(c_T\sim 0.18,c_{eq}:{
m unknown})$

仮定(2): QGPのエントロピーを自由ガスで近似

$$\frac{dS_{\text{QGP}}}{d\eta} = d_{\text{DoG}} \times \frac{2\pi^2}{45} T^3 \times \tau S_{\perp} \quad (d_{\text{DoG}} = 37 \text{ for } N_c = 2, N_f = 2)$$

仮定(3): QGP生成以降は、エントロピーが保存

 $\rightarrow \tau_{\rm th}, \tau_{\rm c}$ を $dS_{\rm hadron}/d\eta$ の関数として書ける

観測量から推定できる:
$$rac{dS_{
m hadron}}{d\eta} = k rac{dN_{
m ch}}{d\eta}$$
 $k \simeq 7.2$ Pal, Pratt (2004)

Step2: 持続時間の推定

仮定(1)-(3)と観測量から推定した $au_{ ext{th}}, au_{ ext{c}}$

- √ QGPの寿命は、中心度 and/or 衝突エネルギーが高いと長い
- imes $au_{ ext{th}}$ の依存性は弱い

結果: RHIC/LHCでの光子収量

- For lower collision energy,
- · For less central collisions,

the Glasma contribution is relatively more important.

(1) 観測量との関連を考えよう

- ・流体模型の初期条件の構築 Schlichting / Mazeliauskas
- ・初期過程からの光子生成量の概算 丹治
- ・観測量から初期過程の情報を抽出するBernhard

(2) おもしろい現象を探そう

- ・過渡的なBEC形成の可能性 筒井(ポスター)
- ・初期過程におけるスファレロン遷移 Mace(ポスター)
- ・初期過程の非平衡発展を考慮したCME/CSEの評価 Muller / Huang(ポスター)

- ・流体化とは?流体力学が適用できる条件は? Romatschke / Noronha
- ・パッチワークでない、クォーク・グルーオン生成と熱化の記述 田屋(ポスター)

実験データからHICの情報を引き出すのは難しい

HICの情報

衝突グルーオン分布 熱化時間 状態方程式 粘性 化学凍結温度 etc...

実験データ

Yield フロー RAA pTスペクトル 粒子組成 etc...

実験データからHICの情報を引き出すのは難しい

HICの情報実験データ衝突グルーオン分布
熱化時間
熱化時間
大態方程式
状態方程式
粘性
化学凍結温度
etc...Yield
フロー
RAA
prスペクトル
粒子組成
etc...

実験データからHICの情報を引き出すのは難しい

実験データ

etc...

衝突グルーオン分布 熱化時間 対態方程式 お性 化学凍結温度

etc...

HICの情報

実験データからHICの情報を引き出すのは難しい

HICの情報

実験データ

実験データからHICの情報を引き出すのは難しい

衝突グルーオン分布
熱化時間
大態方程式
お性
化学凍結温度
etc...Yield
フロー
RAA
prスペクトル
粒子組成
etc...

やったこと

実験データからHICの情報を引き出すのは難しい

- ・ベイズ統計が有用
- ・初期過程の情報などを引き出した

方法の大枠

(1) HICを適当にモデル化する

衝突直後 (エントロピー分布): TRENTO $(p, \sigma_{\text{fluct}}, k, w)$

初期過程: Free Streaming (τ_{fs})

QGP相:OSU VISH 2+1 $(\eta/s, \zeta/s)$

ハドロン相: UrQMD (T_{switch})

(2) 色んなパラメタセットで 計算して、実験と比較

(3) ベイズ推定に基づき、 尤もらしいパラメタを抽出

TRENTOのパラメタp

- ・TRENTO:初期のエントロピー密度sを

(T_{A R}:原子核A,Bの縦方向の厚さ(thickness function))

- ・特定の物理的な機構が念頭にある模型ではない
- ・pの値を変えると、他の物理的な模型 (wounded nuclei, EKRT, KLN, IP-Glasma, etc...) が予言するエントロピー密度に一致する

ightharpoonup pの決定で、初期のエントロピー分布, 模型 $\operatorname{and/or}$ 物理機構を制限できる

今回の Quark Matter

(1) 観測量との関連を考えよう

- ・流体模型の初期条件の構築 Schlichting / Mazeliauskas
- ・初期過程からの光子生成量の概算 丹治
- ・観測量から初期過程の情報を抽出するBernhard

(2) おもしろい現象を探そう

- ・過渡的なBEC形成の可能性 筒井(ポスター)
- ・初期過程におけるスファレロン遷移 Mace(ポスター)
- ・初期過程の非平衡発展を考慮したCME/CSEの評価 Muller / Huang(ポスター)

(3) 理論をもっと詰めよう

- ・流体化とは?流体力学が適用できる条件は? Romatschke / Noronha
- ・パッチワークでない、クォーク・グルーオン生成と熱化の記述 田屋(ポスター)

やったこと

流体力学の成立条件についての議論を喚起した 熱化や等方化は必要か?

復習:"標準的"な理解

- ・流体力学の基礎づけの試みは、しばしば、系が(局所)熱平 (大学では、) (大学では、
 - * ここでは、(局所)熱平衡状態を分布関数が任意の点x周りで熱的 $(f_{LTE} \sim e^{-\beta(x)E_p})$ な状態、と定義する

復習:"標準的"な理解

- ・流体力学の基礎づけの試みは、しばしば、系が(局所)熱平 (大変を使用) (大変を使用
 - * ここでは、(局所)熱平衡状態を分布関数が任意の点x周りで熱的 $(f_{LTE} \sim e^{-\beta(x)E_p})$ な状態、と定義する

例1) Boltzmann方程式からの導出 (Chapman-Enskog展開)

- ightharpoonup 分布関数f ϵ (局所)熱平衡状態の周りで展開: $f=f_{
 m LTE}+\delta f$
- ightharpoonup Boltzmann方程式を δf を摂動として解くと、流体方程式が求まる

流体の成立条件 = 分布関数が(局所)熱平衡に近い (このとき、(局所)等方性も自動的に成立)

復習:"標準的"な理解

- ・流体力学の基礎づけの試みは、しばしば、系が(局所)熱平 (大変を使用) (大変を使用
 - * ここでは、(局所)熱平衡状態を分布関数が任意の点x周りで熱的 $(f_{LTE} \sim e^{-\beta(x)E_p})$ な状態、と定義する

例1) Boltzmann方程式からの導出 (Chapman-Enskog展開)

- ightharpoonup 分布関数f を(局所)熱平衡状態の周りで展開: $f = f_{\text{LTE}} + \delta f$
- ightharpoonup Boltzmann方程式を δf を摂動として解くと、流体方程式が求まる

流体の成立条件 = 分布関数が(局所)熱平衡に近い (このとき、(局所)等方性も自動的に成立)

例2) 長波長の有効理論として

- \rightarrow 保存則に守られた長波長モードであるエネルギーeや流速uに注目
- $ightharpoonup T^{\mu\nu}$ を長波長モードで微分展開: $T^{\mu\nu}=(e+P)u^{\mu}u^{\nu}+Pg^{\mu\nu}+$ (微分項)
- **→** *T^{μν}* の保存則が流体方程式

流体の成立条件 = 微分項が小さい ⇒ 系が(局所)等方に近い (分布関数が(局所)熱平衡であることは要求していない)

「予想」を裏切る反例がある!

反例1) Bjorken-likeな膨張をする系

t<0

 $0 \le t$

両端を引っ張って、 1次元的に膨張させる

「予想」を裏切る反例がある!

反例1) Bjorken-likeな膨張をする系

「予想」を裏切る反例がある!

反例1) Bjorken-likeな膨張をする系

反例2) 重イオン衝突初期過程(膨張系でのYM)

Romatschkeの主張 (1/6)

We <u>know:</u>
Hydro works even out of equilibrium

Romatschkeの主張 (2/6)

Hydro does not mean equilibrium

Romatschkeの主張 (3/6)

Do nuclear collisions equilibrate?

Let's check: use hydro to measure "nonequilibriumness"

Romatschkeの主張 (4/6)

Romatschkeの主張 (5/6)

We know: Nuclear collisions always out-ofequilibrium!

Not new: This has been known to all hydro practitioners for a decade

Romatschkeの主張 (6/6)

Does this mean we should all go home now?

- No equilibration, no problem:
- Can probe non-equilibrium QCD
- Extreme experimental hydrodynamics: flow in small systems (did anyone check e⁺ e⁻ yet?)
- Can study non-hydro modes in QCD

Nuclear collisions are much richer subject than expected a decade ago!

議論すべきこと

(1) 流体模型の成立条件

- ・(局所)熱平衡、等方化は本当に必要なのか?
- ・「真」に必要な条件は? _{cf. 局所Gibbs分布? [佐々, 日高, 本郷…]}

(2) HICで見えているのは、QGPなのか?

- ・格子QCDとかで見ているような平衡な相図上の QGPと本当に同じものか? cf. 関連して、small systemはQGPか?
- ・BESで平衡なQCD相図はプローブできるのか?
- ・非平衡QCDとして、何かおもしろいことはないのか?

今回の Quark Matter

(1) 観測量との関連を考えよう

- ・流体模型の初期条件の構築 Schlichting / Mazeliauskas
- ・初期過程からの光子生成量の概算 丹治
- ・観測量から初期過程の情報を抽出する Bernhard

(2) おもしろい現象を探そう

- ・過渡的なBEC形成の可能性 筒井(ポスター)
- ・初期過程におけるスファレロン遷移 Mace(ポスター)
- ・初期過程の非平衡発展を考慮したCME/CSEの評価 Muller / Huang(ポスター)

(3) 理論をもっと詰めよう

- ・流体化とは?流体力学が適用できる条件は? Romatschke / Noronha
- ・パッチワークでない、クォーク・グルーオン生成と熱化の記述 田屋(ポスター)

(地味かもしれないけど)着実な理論の発展が見られた