Química

Geral

Hexagonal

- ⇒ Estados de Agregação
 - Cúbico de Corpo Centrado
 - Cúbico de Face Centrada
- ⇒ Equações de Gases
 - Perfeitos: pV = nRT
 - Reais: $\left(p + a\left(\frac{n}{V}\right)^2\right)(V nb) = nRT$
- ⇒ Propriedades Extensivas e Intensivas
 - Extensivas: dependem da quantidade de substância.
 - Intensivas: não dependem.
- ⇒ Ordem de Grandeza da Razão Átomo-Núcleo
 $\frac{Raio\ do\ Núcleo}{Raio\ do\ Átomo} = \frac{1}{10^5}$
- ⇒ Lei de Graham
 - $\bullet \quad \frac{v_A}{v_B} = \sqrt{\frac{MM_B}{MM_A}}$
- ⇒ Normalidade
 - $1 Eqg = \frac{1 mol}{x}$, $x pode ser |NOX|, H^+, OH^-, carga (+)ou (-)$.
 - \bullet N = Mx

<u>Orbitais</u>	<u>Superfície Nodal</u>	<u>Regiões de μe</u>
S	0	0
P	1	2
D	2	4
F	3	8

⇒ Lei de Henry

- $s = k.p_{g\acute{a}s}$
- $v_{g\acute{a}s} = \sqrt{\frac{3RT}{MM}}$

⇒ Leis e Descobertas

- Thomson (1896): Relação carga/massa do elétron
- Millikan (1911): Carga do elétron; Experiência da gota de óleo.
- Eugene Goldstein: Próton
- James Chadwick (1932): Nêutron
- Dalton: Lei das proporções múltiplas.
- Richter: Lei das proporções recíprocas ou das equivalentes.
- Proust: Lei das proporções fixas ou definidas.
- Gay-Lussac: Lei volumétrica.
- Em 1920: Spin do elétron
- Lewis (1902): Elétron em mesma camada, propriedades semelhantes.
- Friedrich Kohlrausch: Auto-ionização da água.
- Lei de Boyle: P_oV_o=P₁V₁
- Lei de Charles: T₀V₁=T₁V₀

⇒ Isomeria

- Plana:
- ◆ Cadeia
- ♦ Posição
- ♦ Função

- ♦ Metameria ou Compensação
- ♦ Tautomeria

- Cis-Trans:
 - a Derivados do acetileno (eteno);
 - b Ciclos (Isomeria Bayeriana).
 - Óptica:
 - a Presença de carbono quiral (quatro ligantes diferentes);
 - b Derivados do aleno (propadieno);
 - c Carbono em ciclo sem eixo de simetria.

⇒ Tabela Periódica

- Elétrons em cada
 - a Nível: $2n^2$
 - b Subnível: 4l + 2

⇒ Propriedades

- Ferromagnéticas: os spins dos elétrons se alinham na mesma direção.
- Diamagnéticas: repelidas por ímã forte (elétrons emparelhados).
- Paramagnéticas: atraídas por ímã (elétrons desemparelhados).

- I. Caráter metálico/Raio atômico AUMENTA,
 Eletronegatividade/Potencial de Ionização/Afinidade Eletrônica DIMINUI;
- II. Densidade AUMENTA, $d = \frac{p.MM}{RT}$;
- III. Ponto de Ebulição/Ponto de Fusão AUMENTA.
 - Energia de Ionização: energia necessária para remover um elétron de um átomo na fase gasosa.
 - Afinidade Eletrônica: energia liberada por um átomo na fase gasosa ao receber um elétron.

⇒ Distribuição Eletrônica por Subnível

- Princípio da Exclusão de Pauli (1925):
 Dois elétrons em um mesmo átomo não podem ter os mesmos números quânticos.
- Regra de Hund: Colocar elétrons em orbitais semipreenchidos.

⇒ Teste de Chama

<u>Presença de</u>	<u>Símbolo</u>	<u>NOX</u>	<u>Cor da chama</u>
Potássio	К	+1	Violeta/Lilás
Sódio	Na	+1	Amarelo Intenso
Cálcio	Са	+2	Avermelhada
Magnésio	Mg	+2	Branco Brilhante
Chumbo	Pb	+1/+2	Azul
Zinco	Zn	+2	Verde Turquesa
Cobre	Cu	+1	Azulada
Cobre	Cu	+2	Verde
Ferro	Fe	+2/+3	Dourada
Manganês	Mn	+2	Verde-amarelado
Fósforo	Р	+5	Dourada
Lítio	Li	+1	Magenta

⇒ Reatividade

Metais

<-------Cs>K>Ca>Na>Mg>Al>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Pd>Pt>Au

Ametais

<-----REDUÇÃO------F>0>Cl>Br>I>S>H

- Metais Comuns
 - Reagem com ácidos.
- Bi/Cu/Hg/Ag
 - o Reagem com HNO₃ (conc.), HNO₃ (dil.) e H₂SO₄:

- $Cu + 2H_2SO_4 \xrightarrow{\Delta} CuSO_4 + SO_2 + H_2O$
- $Cu + 4HNO_{3(conc.)} \rightarrow CuNO_3 + 2NO_2 + 2H_2O$
- $3Cu + 4HNO_{3(dil.)} \rightarrow 3CuNO_3 + NO + 2H_2O$
- Au/Pt
 - Reagem <u>apenas</u> com <u>água régia</u> (HCl+ HNO₃):
 - $Au + 4HCl + HNO_3 \rightarrow HAuCl_4 + NO + 2H_2O$
 - $3Pt + 18HCl + 4HNO_3 \rightarrow 3H_2PtCl_6 + 4NO + 8H_2O$

 $\underline{\rm OBS:} \ \ PtCl_4 + 2Cl^- \rightarrow [PtCl_6]^{2-}, octa\'edrico, muito\ est\'avel.$

 H_2PtCl_6 , ácido forte.

EXTRA: $Cr^{2+} < Cr^{3+} < Cr^{6+}$, caráter covalente; acidez.

- ⇒ Dipolo-dipolo
 - Induzido/não-permantente OU Van-der-Waals OU London: Moléculas Apolares
 - Permantente OU Keemsom: Moléculas Polares
- ⇒ Abundância
 - 0>Si>Al>Fe>Ca>Na>Mg>K>Ti>H
- ⇒ Radioatividade
 - Partículas

- Séries

 - $\begin{array}{lll} {\rm a} & ^{206}_{82}Pb \to 4A + 2 & {\rm c} & ^{208}_{82}Pb \to 4A \\ {\rm b} & ^{207}_{82}Pb \to 4A + 1 & {\rm d} & ^{209}_{83}Bi \to 4A 1 \end{array}$
- Fórmulas
 - a $\frac{m_o}{m} = 2^{\frac{t}{T}}$
 - b $A_{tividade} = k. N_{\text{úmero de entidades}}$
 - c kT = ln2

OBS: k é expresso em dps, dpm, Bq (Bequerel) ou Ci (Curie);

1Bq=1dps e 1Ci=3,7x1010dps

- d $\frac{N_o}{N} = e^{kt}$
- e $k=(V_m)^{-1}$
- Leis de Radioatividade
 - a Primeira Lei de Soddy: emissão de partículas alfa;
 - b Segunda Lei de Soddy: emissão de partículas beta.
- História da Radioatividade
 - a 1896: Bequerel usa urânio, U, e uma chapa fotográfica, que fica manchada.
 - 1897: Marie Curie estuda diversos elementos radioativos e descobre Tório, Polônio e Rádio (Th, Po e Ra) e a relação de dependência entre os efeitos radioativos e a quantidade.
 - c 1898: Rutherford descobre a existência de partículas alfa e beta.
 - d 1899: Debierne descobre o Actínio (Ac).
 - 1900: Villarel descobre a radiação gama.
- Fusão e Fissão
 - Fusão: fonte de energia das estrelas, átomos leves geram átomos maiores;
 - Fissão: átomo pesado é bombardeado com nêutrons, quebrando-se em átomos mais leves e liberando mais nêutrons.

⇒ Ligações Químicas

<u>Valence Shell Eletronic Pair Repulsion - VESPER- AL</u>		
<u>M+N</u> <u>Geometria</u>		<u>Hibridização</u>
2	Linear	sp
3	Trigonal Plana	sp ²
4	Tetraédrica	sp ³
5	Bipirâmide Trigonal	sp³d
6	Octaédrica	sp³d²
7	Bipirâmide Pentagonal	sp³d³

Iônicas

Pelo menos um elétron transferido de um átomo para o outro, criando íons positivos, cátions, e íons negativos, ânions:

- a Bastante exotérmicas;
- b Sólidos;
- c Ponto de Ebulição e Ponto de Fusão altos, se existirem;
- d Péssimos condutores no estado sólido;
- e Bons condutores no estado líquido.
 - σ , sigma: Sobreposição de dois orbitais, um de cada átomo; A μe^- é maior no eixo da ligação.
 - π, pi: Sobreposição lateral dos orbitais atômicos p;
 A μe⁻ é maior acima e abaixo do eixo da ligação.

Teorias

-	<u>Teórico</u>	Arrhenius	<i>Brønsted-Löwry</i>	Lewis
	<u>Ácidos</u>	Libera H+	Libera H+	Ganha e-
ĺ	<u>Bases</u>	Libera OH ⁻	Recebe H+	Doa e⁻

Covalentes

Envolve o compartilhamento de elétrons de valência entre os átomos.

⇒ Ligas Metálicas

- Aço: Fe + C + Cr/Mn (com Cr faz-se facas, com Mn faz-se trilhos de trem)
- Aço Inoxidável: Fe + C + Cr + Ni
- Latão: Zn + Cu
- Bronze: Sn + Cu
- Ouro 24k: NÃO É LIGA, trata-se de ouro puro.
- Ouro 18k: Au + (Ag + Cu)
- Amálgama: Hg_(liq.) + Ag_(sol.) forma uma única solução (liq/sol) homogênea.
- Alnico V: Al(8%), Ni(14%), Co(24%), Cu(3%) e Fe(51%), ímãs para auto-falantes, magnetismo permanente.

\Rightarrow Semicondutores

• Tipo P: + 3A

• Tipo N: - 5A

⇒ Número de Oxidação

•	manifer o de omidação	•
	<u>Família 1A e Ag</u>	+1
	<u>Família 2A, Zn e Cd</u>	+2
	<u>Família 3A</u>	+3
	<u>Fe, Co e Ni</u>	+2/+3
	<u>Mn</u>	+2/+3/+4/+6/+7

<u>Cr</u>	+2/+3/+6
<u>Au</u>	+1/+3
<u>Cu e Hg</u>	+1/+2
<u>Tl</u>	+1(iôn.)/+3(cov.)
Lantanídeos(terras raras)	+3

⇒ Bases Solúveis

• Família 1A e TlOH

⇒ Amideto

• $NH_3 \rightleftharpoons H^+ + NH_2^-$

• $K = 10^{-30}$

• Bases Fortes

⇒ Ácidos Diferentemente Hidratados

• P, As, Sb, B e Si

a Meta: 1 H₂O

b Piro: 2 H₂O

c Orto: 3 H₂O

⇒ Colóides

-	<u>Dispersão</u>	<u>Dispergente</u>	<u>Disperso</u>
Ī	Gel	Sólido	Líquido
[¹Emulsão	Líquido	Líquido
:	² Espuma Sólida	Sólido	Gás
Ī	Espuma Líquida	Líquido	Gás
-	³ Aerossol Líquido	Gás	Líquido
Ī	Sol	Líquido	Sólido

1: Creme de leite; Maionese; Poliestireno expandido; Goma arábica;

Gelatina(proteína+H₂O); Pérolas(CaCO₃+H₂O).

²: Pedra-pomes; Maria-mole.

³: Neblina; Spray.

- Graham
 - a Sol: dispersão de uma substância sólida em um fluído.
 - b Gel: dispersão que impede sua mobilidade.
- Efeito Tyndall
- Sabão

- a MM elevadíssimas:
- b Partículas grandes, mas não tanto a ponto de decantarem.
- ⇒ Reação Importante
 - $C_6H_{12}O_6 + KClO_3 \rightarrow CO_2 + H_2O + KCl$
- ⇒ Processos Endotérmicos ou Exotérmicos

- Velocidade AUMENTA se a temperatura AUMENTA.
- ΔS>0: MENOR pressão, MAIOR velocidade, MAIOR estabilidade;
- ΔS<0: MENOR mobilidade das moléculas, MAIOR organização estrutural.
- MENOR massa molar e MAIOR temperatura: MAIOR pressão de vapor.
- Quartzo: (SiO₂)_n
- ⇒ Propriedades Coligativas
 - Osmoscopia: $\pi = M.R.T$
 - Tonoscopia: $P_{mistura} = X_a P_a + X_b P_b$
 - Ebuliometria: $\Delta T_e = k_e$. W. i
 - Criometria: $\Delta T_c = k_c . W. i$

⇒ Cinética Química

Primeira Ordem

a
$$V = k . [A]$$

b
$$[A] = [A_o] \cdot e^{-kt}$$

 $c kT_{\frac{1}{2}} = \ln 2$

$$d t_p = \frac{ln(\frac{100}{p})}{k}$$

b $T_{\frac{1}{2}} = \frac{1}{k[A]}$

• Segunda Ordem

$$a \quad \frac{1}{[A]} = \frac{1}{[A_o]} + kt$$

Arrhenius

a
$$k = A \cdot e^{-\frac{E_a}{RT}} A$$

b $\ln k = \ln A - \frac{E_a}{RT}$

⇒ Eletroquímica

Eletrólise Ígnea

a Semi-Reação Catódica: Redução $2Na^{+} + 2e^{-} \rightarrow 2Na_{(s)}$

b Semi-Reação Anódica: Oxidação $2Cl^{-} \rightarrow Cl_{2(g)} + 2e^{-}$

c Reação Global: $2NaCl \rightarrow Cl_{2(g)} + 2Na_{(s)}$

Eletrólise Aquosa

Cátions que não descarregam em água: Família 1A, família 2A e Al.

b Ânions que não descarregam em água: F- e ânions oxigenados.

Exceções: HSO₄- e orgânicos.

Descarga da Água

$$\begin{array}{l} 2H_2O_{(l)} + 2e^- \rightarrow H_{2(g)} + 2OH^-{}_{(aq)} \\ 2H_2O_{(l)} \rightarrow O_{2(g)} + 4H^+{}_{(aq)} + 4e^- \\ 2H_2O_{(l)} \rightarrow O_{2(g)} + 2H_{2(g)} \end{array}$$

• 1 Mol de $e^- = 1F = 96500C$

• Equação de Nernst

a
$$E = E_o - \frac{RT}{nF} \ln Q$$

b $E = E_o - \frac{0.0592}{m} \ln Q$

Pilhas de Concentração

a
$$E = E_o - \frac{0,0592}{n} \ln \frac{[DILUÍDA]}{[CONCENTRADA]}$$

Pilhas

a Catodo: redução (+)

b Anodo: oxidação (-)

c Regrinha do PÃO

d ΔE NÃO É ADITIVO!

♦ Primária: não-recarregável.

♦ Secundária: recarregável.

⇒ Equilíbrio Químico

• $aA + bB \rightleftharpoons cC + dD$

 $\bullet \quad k_p = \frac{p^d D. p^c C}{n^{b_B} n^{a_A}}$

• $p_{g\acute{a}s} = X_{g\acute{a}s}$. p_{total} • $k_p = k_c (RT)^{\Delta n}$

• $\Delta n = (c + d) - (a + b)$

• $\Delta G = \Delta G_o + RT \ln k_p$

- Princípio de Le Chatelier
 - a MENOR volume ou MAIOR pressão: MENOR número de mols.
 - b ADIÇÃO de calor: endotérmica; varia o k.
- Gás Inerte: Não altera o equilíbrio.
- $\log \frac{k_{p_1}}{k_{n_2}} = -\frac{\Delta H}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$
- ⇒ Equilíbrio Iônico
 - $\bullet \quad k_a = \frac{M\alpha^2}{1-\alpha}$
 - $\bullet \quad k_b = \frac{M\alpha^2}{1-\alpha}$
 - $k_w = 10^{-14}$, $a \ 25^{\circ}C$.
 - Ácido e Base Fracos: $k_h = \frac{k_W}{k_B \cdot k_B}$

- $pH = -\log[H^+]$
- $pOH = -\log[OH^-]$
- pH + pOH = 14
- Ácido Fraco: $k_h = \frac{k_w}{k_a}$
- Base Fraca: $k_h = \frac{k_w}{k_h}$

- Solução Tampão
 - a Ácido fraco + sal derivado (íon comum)
 - Equação de Henderson-Haselbach para tampão ácido:

$$pH = pk_a + \log \frac{[Sal]}{[\acute{A}cido]}$$

- b Base fraca + sal derivado (íon comum):
 - Equação de Henderson-Haselbach para tampão básico:

$$pOH = pk_b + \log \frac{[Sal]}{[Base]}$$

- Polimerização
 - a Condensação: saturada; eliminação de molécula pequena (H2O, NH3, HCl).
 - b Adição: insaturada.
- $\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$
- ⇒ Lista de Polímeros
 - Etileno: garrafas; sacos; brinquedos; isolamento elétrico.
 - Propileno: garrafas; filmes; carpetes.
 - PVC: pisos; tubos.
 - Orlon e Acrilan: tapetes; tecidos.
 - Poliestireno: caixas térmicas; material de construção.
 - PVA: tintas látex; adesivos.

 - Teflon: revestimento de panelas.
 Poli(Metacrilato de Metila): tintas e lentes.
 - Gosma: $H_3BO_3 + \underbrace{(CH_2 CH OH)_n}_{\text{álcool polivinílico}}$, muito viscosa.
 - Bola de Tênis: borracha guta-percha (poliisopropeno-trans)
 - PET: poli(tereftalato de etileno)

• Nylon: — (GH₂)₄ C — N (CH₂)₆ N — H

- Resina: poli(acetato de vinila)
- Garan: 1,1dicloroetileno + cloroetileno.

⇒ Coisas Importantes

- $CO_2 + 2NH_3 \rightarrow \underbrace{NH_2CONH_2}_{Ur\acute{e}ia} + H_2O$
- FeS₂: Pirita, ouro dos tolos (S⁰_{amarelo}, S²-, Fe²⁺)
- CSi: Carborundum, amolador de feira.
- PbSO₄: Sólido branco e insolúvel.
- Ferrugem: porosa e marrom.
- Alumina: transparente.
- $2SO_2 + 2CaCO_3 + O_2 \rightarrow 2CaSO_4 + 2CO_2$
- Impedir chuva ácida: Tratar SO₂ com MgO.
- Gás antigo: Gás d'água: $C_{(s)} + H_2 O_{(g)} \stackrel{\Delta}{\rightarrow} C O_{(g)} + H_{2(g)}$
- Mercaptam: Tioéter; misturar ao gás de cozinha em 2%; H₃C-S-CH₃.
- Iodo(I₂):
 - a Em amido é azul;
 - b Em água é marrom;
 - c Em álcool é incolor.
- H₄[Fe(CN)₆]: Ácido ferr<u>o</u>cianídrico.
- H₃[Fe(CN)₆]: Ácido ferr<u>i</u>cianídrico.
- Ustulação: *2FeS*₂ + 70₂ → 2FeO₃ + 4SO₂
- Diabetes: Acúmulo de acetona no sangue, acetona responsável pelo odor no hálito.
- Álcool hidratado \xrightarrow{cao} Álcool anidro
- Ácido Benzóico: Frutas silvestres.
- Gases ou Misturas Incolores: brilham ao passar corrente:

<u>Не</u>	Branco-amarelado
<u>Ne</u>	Laranja-avermelhado
<u>Ar</u>	Azul

<u> He + Ar</u>	Alaranjado
<u>Ne + Ar</u>	Lilás escuro

- Chuva ácida natural:
 - a $N_2 + O_2 \xrightarrow{5/i} 2NO$
 - b $2NO + O_2 \rightarrow 2NO_2$
 - $c \quad 2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
 - $d 3HNO_2 \rightarrow HNO_3 + 2NO + H_2O$
- Plasma
 - a Gás ionizado;
 - b Enorme entropia: $S \rightarrow P > G > L > S$;
 - c Emite luz quando: Em contato com corrente elétrica ou campo magnético;
 - d Eletricamente neutro;
 - e Aurora polar, TV de plasma, fusão nuclear, propulsor iônico.

- Vidro
 - a "Sólido" amorfo; líquido de alta viscosidade;
 - b SiO₂: Sílica, praticamente todo tipo de vidro;
 - c $Na_2CO_3 + CaCO_3$
 - d $4HF + SiO_2 \rightarrow SiF_4 + 2H_2O$
 - e Frágil, mas bom isolante térmico.
- Compostos Orgânicos Importantes:

Europo	_ <u>`</u>	
Furano		
Tiofeno	()	
Pirrol		
Piridina		N
Ácido Oxálico	H00C-	-соон
Ácido Fumárico	HOOC	COOH
Ácido Malêico	HOOC	COOH

Ácido Aspártico	ноос КН ₂
Ácido Tereftálico	H00C-()-C00H
Ferantreno	
Antraceno	
Ácido Lático	çн³ н − С −Соон он
Ácido Tartárico	HOOC OH COOH
Ácido Capróico	Ácido Hexanóico; Odor do suor humano.

⇒ Processo de Fabricação da Amônia – Harber

1	Trocador de Calor
<u>2</u>	Catalisador (Fe ₃ O ₄ , KOH, SiO ₂)
<u>3</u>	Serpentina de Aquecimento
<u>4</u>	Bomba de Recirculação
<u>5</u>	Serpentina de Resfriamento
<u>a</u>	$N_2 + H_2$
<u>b</u>	NH_3
	Amônia Líquida

⇒ Titulações Ácido-Base

• Ácido e Base Fortes

• Ácido Fraco e Base Forte

- pH de Ácido + Base
 - a Ácido FORTE + Base FORTE: pH=7
 - b Ácido FORTE + Base FRACA: pH<7
 - c Ácido FRACO + Base FORTE: pH>7
- Ácido Poliprótico Fraco (H₂X)

⇒ Princípios da Reatividade

- ΔS>0: Processos espontâneos; dispersão de matéria e energia.
- ΔS<0: Processos não espontâneos.
- O estado final mais provável de um sistema:
 - a Átomos mais desordenados;
 - b Energia dispersada entre mais átomos.
- MAIOR desordem, MAIOR S (entropia).
- ΔS: Só depende do estado final e inicial.
- Sgrande > Spequeno
- $S_{complexo} > S_{simples}$
- $S_{plasma} > S_{gás} > S_{líquido} > S_{sólido}$
- Processo reversível: ida e volta sem alterar a vizinhança;
- Processo irreversível: realizar trabalho sobre o sistema (processos espontâneos).
- $\bullet \quad \Delta G = \Delta H T \Delta S$
- $T\Delta S_{universo} \rightarrow \Delta G$
- $\frac{\Delta H_{Sistema}}{T}
 ightarrow \Delta S_{vizinhança}$
- $\Delta S_{universo} = \Delta S_{vizinhança} + \Delta S_{sistema}$
- $\Delta G = -nFE_0$

⇒ Células Voltaicas Simples

- Baterias Primárias: REDOX; não recarregáveis.
 - a Pilha Seca:
 - ♦ Catodo: $2NH_4^+_{(aq)} + 2e^- \rightarrow 2NH_{3(g)} + H_{2(g)} * Provocam aumento de pressão!$
 - \bullet Anodo: $Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$
 - $*Zn^{2+}_{(aq)} + 2NH_{3(g)} + 2Cl_{(aq)} \rightarrow Zn(NH_3)_2Cl_{2(s)}$
 - * $MnO_{2(s)} + H_{2(g)} \rightarrow Mn_2O_{3(s)} + H_2O_{(1)}$
 - b Pilha Alcalina: dura 50% mais que a seca.

- ♦ Catodo: $2MnO_{2(s)} + H_2O_{(l)} + 2e^- \rightarrow Mn_2O_{3(s)} + 2OH^-_{(aq)}$
- Anodo: Zn_(s) + 20H-_(aq) → ZnO_(s) + H₂O_(l) + 2e *O potencial não diminui com o aumento da corrente, pois não há gases!
- c Células de Hg: calculadoras, relógios, marca-passos.
 - ♦ Catodo: $HgO_{(s)} + H_2O_{(l)} + 2e^- \rightarrow Hg_{(l)} + 2OH^-_{(aq)}$
 - ♦ Anodo: $Zn_{(s)} + 2OH_{(aq)} \rightarrow ZnO_{(s)} + H_2O_{(l)} + 2e^{-}$
- Baterias Secundárias: Armazenamento.
 - a Bateria de Chumbo:
 - ♦ Catodo: $PbO_{2(s)} + 4H^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + 2e^{-} \rightarrow PbSO_{4(s)} + 2H_{2}O_{(1)}$
 - ♦ Anodo: $Pb_{(s)} + SO_4^{2-}(aq) \rightarrow PbSO_{4(s)} + 2e^{-}$
 - ♦ Global: $Pb_{(s)} + PbO_{2(s)} + H_2SO_4^{2-}(aq) \rightarrow PbSO_{4(s)} + 2H_2O_{(l)}$
 - Quando a densidade diminui é necessário recarregar!
 - Recarga: $PbSO_{4(s)} + 2H_2O_{(1)} \xrightarrow{1} Pb_{(s)} + PbO_{2(s)} + H_2SO_{4^2-(aq)}$
 - Os compostos da recarga se encontram presos à superfície do eletrodo!
 - Não pode mais ser recarregada: Reagentes e produtos se depositam!
 - b Baterias de Ni-Cd: dispositivos sem fio.
 - ♦ Catodo: $NiO(OH)_{(s)} + H_2O_{(l)} + e^- \rightarrow Ni(OH)_{2(s)} + OH^-_{(aq)}$
 - ♦ Anodo: $Cd_{(s)} + 2OH_{(aq)} \rightarrow Cd(OH)_{2(s)} + 2e^{-}$
- Células de Combustível: foguetes.
 - ♦ Catodo: $O_{2(g)} + 2H_2O_{(1)} + 4e^- \rightarrow 4OH^{-}_{(aq)}$
 - \bullet Anodo: $H_{2(g)} \rightarrow 2e^- + 2H^+_{(aq)}$
- ⇒ Aplicações da Química Nuclear
 - Criação de imagens do corpo humano (T.C. ou T.E.P.);
 - Radioterapia: tratamento do câncer;
 - Determinar o destino de compostos no meio-ambiente;
 - Diluição isotópica;
 - Análise por ativação neutrônica;
 - Irradiação de alimentos: aumentar a vida útil dos alimentos.
- ⇒ Produção do Ácido Nítrico Industrial

- 1: $2NH_3 + \frac{1}{2}O_2 \rightarrow 2NO + 3H_2O$
- 2: NO + $\frac{1}{2}$ O₂ \rightarrow NO₂
- 3: $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
- 3: $3HNO_2 \rightarrow HNO_3 + 2NO + H_2O$
- ⇒ Química dos Elementos
 - Hidrogênio: amônia, metanol. (300x109 L/ano)
 - a $C_{(s)} + H_2O_{(g)} \rightarrow H_{2(g)} + CO_{(g)}$
 - b Indústria: $CH_{4(g)} + H_2O_{(g)} \rightarrow 3H_2O_{(g)} + CO_{(g)}$
 - c Indústria: $H_2O_{(g)} + CO_{(g)} \rightarrow H_{2(g)} + CO_{2(g)}$

- d Laboratório: **Metal** + **Ácido** → **Sal** + H₂
- e Laboratório: Metal + H₂O ou Base → Hidreto ou Óxido + H₂
- f Laboratório: **Hidreto + H₂O → Hidróxido + H₂**
- Sódio e Potássio
 - a $2\text{NaCl}_{(s)} \xrightarrow{\frac{1}{7}} 2\text{Na}_{(s)} + \text{Cl}_{2(g)}$
 - b $2KCl_{(s)} \stackrel{4/i}{\rightarrow} 2K_{(s)} + Cl_{2(g)}$, K é solúvel em KCl e, portanto, é difícil separar!

Bizuário

- c $Na_{(g)} + KCl_{(l)} \rightleftharpoons K_{(g)} + NaCl_{(l)}$
 - \bullet 4KO_{2(s)} + 2CO_{2(g)} \rightarrow 2K₂CO_{3(s)} + 3O_{2(g)}
 - ♦ $2NaCl_{(aq)} + 2H_2O_{(g)} \rightarrow Cl_{2(g)} + 2NaOH_{(aq)} + H_{2(g)}$
- Magnésio e Cálcio

Magnésio: ligas leves, resistentes à corrosão

- a $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$ (conchas de ostras)
- b $CaO + H_2O \rightarrow Ca(OH)_2$
- c $Ca(OH)_2 + MgCl_2 \rightarrow Mg(OH)_2 + CaCl_2$, filtrando e decantando, separa-se $Mg(OH)_2$. Cálcio:
 - d CaF₂, [CaF₂.3Ca₃(PO₄)₂] fornece flúor, usado para preparar ferro bruto.
 - e Calcário usado na agricultura; neutralização do solo; fornecedor de Ca²⁺.
 - f Cal argamassa.
- Alumínio: ligas (baixo custo, fácil manuseio, inércia à corrosão).
 - a $Al + O_2 \rightarrow Al_2O_3$, Al_2O_3 é chamado de alumina ou barreira.
 - b Bauxita: Al₂O₃ (+Na₃AlF₆, diminui o ponto de fusão, PF≈980°C).
 - c $Al_2O_3 \xrightarrow{\frac{4}{10}} Al + O_2$: células de grafite (V \approx 5,0Volts; i \approx 100.000A).
- Silício: segundo elemento mais abundante na crosta terrestre; quartzo; tijolos, cerâmica, chips, células solares; semicondutores.
 - a $SiO_{2(s)} + 2C_{(s)} \rightarrow Si_{(l)} + 2CO_{(g)}$
 - b $SiO_{2(s)} + 4HF_{(l)} \rightarrow SiF_{4(g)} + 2H_2O_{(l)}$
 - c $SiO_{2(s)} + 2NaCO_{3(l)} \rightarrow Na_4SiO_{4(s)} + 2CO_{2(g)}$

Silicone:

- d $Si_{(s)} + 2CH_3Cl_{(g)} \rightarrow (CH_3)_2SiCl_{2(l)}$
- e $(CH_3)_2SiCl_{2(1)} + 2H_2O \rightarrow (CH_3)_2Si(OH)_2 + 2HCl$
- f $[(CH_3)_2SiO]_n$ é conhecido como silicone.
- Nitrogênio e Fósforo

Nitrogênio: ar atmosférico; proteínas; ácidos nucléicos.

- a Hidrazina (N₂H₄): reduz o CrO₂²⁻ e impede que o cromo vá para o meio-ambiente.
- b N_2O : gás hilariante, anestésico, "nitro"; incolor.

NO: processos bioquímicos; gás incolor, paramagnético.

 N_2O_3 : sólido azul; $N_2O_3 \rightleftharpoons NO + NO_2$.

NO2: poluição; gás castanho, paramagnético.

N₂O₄: gás incolor.

*N*₂*O*₅: sólido incolor.

c $HNO_3 + NH_3 \rightarrow NH_4NO_3$

Método antigo: $2NaNO_{3(s)} + H_2SO_{4(aq)} \rightarrow 2HNO_{3(aq)} + Na_2SO_{4(s)}$

Fósforo: ácidos nucléicos; fosfolipídeos.

- d $2Ca(PO_4)_{2(s)} + 10C_{(s)} + 6SiO_{2(g)} \rightarrow P_{4(g)} + 6CaSiO_{3(s)} + 10CO_{(g)}$
- Oxigênio e Enxofre

Oxigênio: 50% em massa na crosta terrestre.

- a Indústria: fracionamento do ar, gerando O_2 (3º lugar em produtos químicos).
- b Laboratório: $2KCLO_{3(s)} \xrightarrow{Catalizador} 2KCL_{(s)} + 3O_{2(g)}$
- c $H_2O \xrightarrow{4/i} H_2 + \frac{1}{2}O_2$
- d $3O_2 \xrightarrow{4/i + U.V.} 2O_3$: O_2 -é incolor, paramagnético; O_3 -azul, diamagnético, de odor forte.

Enxofre: gás natural, petróleo, extraído de depósitos subterrâneos, gás amarelo, fabricação de H_2SO_4 (mais de 70% usado em fertilizantes).

• Cloro

a Indústria: Salmoura $\stackrel{4/i}{\rightarrow}$ Cl₂ + NaOH

*Anodo: Ti ativado.

*Catodo: Aço inoxidável ou Ni.

b $Cl_{2(g)} + 2H_2O_{(1)} \rightleftharpoons H_3O^+_{(aq)} + HClO_{(aq)} + Cl^-_{(aq)}$ HClO: alvejante; oxida os corantes coloridos em incolores. ClO_4 : oxidante superpoderoso.

NH₄ClO₄: primeiro estágio de propulsão dos foguetes.

⇒ Metalurgia

Ferro

- a $Fe_2O_{3(s)} + 3C_{(s)} \rightarrow 2Fe_{(l)} + 3CO_{(g)}$
- b $Fe_2O_{3(s)} + 3CO_{(s)} \rightarrow 2Fe_{(l)} + 3CO_{2(g)}$
- c Alto-Forno: adição de outros metais para fabricação de ligas.
- d <u>Purificação do Ferro:</u>

Forno Panela: O_{2(puro)} oxida o P, S e C à P₄O₁₀, SO₂ e CO₂, que reagem com CaO.

- Cobre: Minérios na forma de sulfetos (*Calcopirita:* CuFeS₂; *Calcocita:* Cu₂S; *Covalita:* CuS).
 - a $CuFeS_{2(s)} + 3CuCl_{2(aq)} \rightarrow 4CuCl_{(s)} + FeCl_2 + 2S$
 - b $CuCl_{(s)} + Cl^{-} \rightarrow [CuCl_{2}]^{-}$
 - c $2[CuCl_2] \rightarrow \underline{Cu_{(s)}} + CuCl_{2(aq)} + Cl_{(aq)}$
 - d $Cu^{2+}_{(aq)} + Fe_{(s)} \rightarrow Fe^{2+}_{(aq)} + \underline{Cu_{(s)}}$

⇒ Combustíveis

- Combustíveis fósseis: CH₄ (GNV).
- Energia Solar; Biomassa: Energia coletada recentemente.

• Hidrogênio: Boa forma de armazenar; 142kJ/g de H₂; células de combustíveis elétricas movidas a H₂; maior relação energia/massa.

⇒ Difusão e Efusão

- Difusão: Movimento aleatório de moléculas, de todos os gases e em todas as direções.
- Efusão: Movimento do gás através de uma minúscula abertura, passando de um recipiente de maior pressão para um de menor pressão.

⇒ Famílias de Elementos

- 1A: Metais alcalinos; muito reativos; encontrados em compostos.
- 2A: Metais alcalinos terrosos; Be não reage com H₂O.
- 3A: Alumínio é o metal mais abundante na crosta terrestre; Boro fluxo para trabalho em metal, agente de limpeza, anti-séptico.
- 4A: Carbono vem em forma grafite, diamante e fulereno; Silício vem em forma de argila, quartzo e ametista.
- 5A: Nitrogênio é presente na clorofila, nas proteínas, no DNA e em um terço da atmosfera; Fósforo é presente nos ossos e dentes, P_4 é o fósforo branco (+ $5O_2 \rightarrow P_4O_{10}$: H_3PO_4); P_8 é o fósforo vermelho, usado nos palitos de fósforo.

⇒ Elemento e Fonte

- Ferro: Fermentos; ovos. (Hemoglobina e mioglobina)
- Zinco: Castanha; frango.
- Cobre: Ostras; castanha. (Músculos)
- Cálcio: Queijo suíço; leite; brócolis.
- Selênio: Manteiga; vinagre.

⇒ Compostos Hidratados

- Compostos iônicos preparados em solução aquosa e depois isolados como sólidos, terão frequentemente moléculas de água presas no retículo cristalino.
 - a Azul de Cobre: CuCl₂.2H₂O
 - b CaCl₂.6H₂O: Vermelho, mas invisível na escrita; Anidro é azul e visível na escrita.
 - c NiCl₂.6H₂O: Verde.
 - d Gipso: CaSO₄.2H₂O

⇒ Solubilidade de Compostos em Água

- Solúveis
 - a Na+; K+; NH₄+.
 - b NO₃-; ClO₃-; ClO₄-; CH₃CO₂-.
 - c Cl⁻; Br⁻; I⁻(Exceção: Ag⁺, Hg₂²⁺, Pb²⁺).
 - d F- e SO₄- (Exceção: Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺).
- Insolúveis
 - a Exceto: Família 1A e NH₄+.
 - b Todos: CO₃²⁻, PO₄³⁻, C₂O₄²⁻, CrO₄²⁻.
 - c Maioria: S²⁻, OH⁻, M_{etal}O.

\Rightarrow Importantes

Flurita	CaF ₂
Água-marinha	Pedra semipreciosa azulada
CaCO3	Pedra calcária, corais, conchas, mármore, giz (calcita)
Galena	PbS
Rubi	$Al_2O_3 + Cr^{3+}$
Apatita	Ca ₂ (PO ₄) ₃ F
Celestita	SrSO ₄
Siderita	FeCO ₃
Aspartame	Adoçante artificial.
ВНА	Antioxidante de alimentos, hidroxianisol butilado ($C_{11}H_{16}O_2$).

Luwuru Cespeues Curi	ageorge Dizuario	Curty D. A. I innetto ju			
Acetonitrila	Coma do cometa (CH3CN).				
Ácido Succínico	Fungos e liquens ($C_2H_3O_2$).				
Eugenol	Óleo de cravo.				
Cadaverina	$C_5H_{14}N_{2.}$				
MMT	Aditivo para gasolina ($C_9H_7MnO_3$).				
Antiácido Estomacal	Subsalicilato de bismuto (C ₂₁ H ₁₅ Bi ₃	0_{12}).			
Millerita	Meteoritos (NiS)	Meteoritos (NiS)			
Sulfato de Tálio I	Pesticida (Tl ₂ SO ₄).	4			
Uréia	$CO_{2(g)} + NH_{3(g)} \rightarrow NH_{2}CONH_{2(s)} + H_{2}O_{(l)}$				
Ácido Benzóico	Frutas silvestres.				
Ta	Ligas resistentes à corrosão; equipa	mentos cirúrgicos e odontológicos.			
Am	Detectores de fumaça.				
Sacarina	500% mais doce que o açúcar (C ₇ H ₅ NO ₃ S), resíduo amargo e metálico				
	amplamente utilizado.				
Cisplatina	Agente de Quimioterapia	H ₃ N Pt NH ₃			
Aspirina	C ₉ H ₈ O ₄	H ₃ C OH			
Acroleína	Plásticos	ОН			
Epinafrina	Broncodilatador e antiglaucoma	HO OH N			
Furilmetanotiol	Aroma de Café	HSO			
Cinamaldeído	Óleo de Canela	Ů H			
Mentol	Sabões, perfumes, alimentos	ОН			
Carvona	O (R)	(S)			

\Rightarrow DNA

 Possuem, em cada hélice, um fosfato, uma molécula desoxirribose e uma base nitrogenada (A, G, T, C).

• "Esqueleto":

a Adenina (C₅H₅N₅)

b Guanina (C₅H₅N₅O)

c Timina (C₅H₆N₂O₂)

d Citosina (C₄H₅N₃O)

⇒ Estereoisômeros

• Compostos que apresentam isomeria.

⇒ Ácidos carboxílicos

OBS: Ácido úrico, parte do metabolismo das proteínas, não é ácido carboxílico!

Cítrico

Málico

Oléico

$$H \longrightarrow \begin{bmatrix} H \\ | \\ C \\ | \\ H \end{bmatrix} \xrightarrow{H} \begin{array}{c} H \\ | \\ C \\ C \end{array} \longrightarrow \begin{bmatrix} C \\ C \\ | \\ H \end{bmatrix} \xrightarrow{OH} O$$

• Oxálico (espinafre, repolho, tomate)

Esteárico

Valérico

- ⇒ Air Bag
 - $2NAN_{3(s)} \rightarrow 2NA_{(s)} + 3N_{2(g)}$
- ⇒ Tensão Superficial
 - Resistência da "pele" de um líquido, energia para atravessar a superfície ou vencer a resistência de uma gota de líquido e espalhá-lo em uma superfície na forma de filme.
- ⇒ Ação Capilar
 - Forças de coesão entre o líquido e a superfície.
- ⇒ Viscosidade
 - Resistência dos líquidos ao escoamento.
- ⇒ Observações sobre Ligações Químicas

<u>Tipos de</u> <u>Ligações</u>	Exemplos	<u>Unidades</u> <u>Estruturais</u>	<u>Forças</u> <u>Intermoleculares</u>	<u>Propriedades</u>
Iônico	NaCl, K ₂ SO ₄ , CaCl ₂ .	Íons positivos e negativos. Não há moléculas separadas.	Atração entre íons positivos e negativos.	Duro, quebradiço, condutividade baixa quando sólido e boa quando líquido.
Metálico	Fe, Ag, Cu, ligas.	Íons metálicos com elétrons deslocalizados.	Atração entre íons metálicos e elétrons.	Maleável, dúctil, alta condutividade líquido ou sólido, alto ponto de fusão e nível de dureza.
Molecular	H ₂ , H ₂ O.	Moléculas.	Forças de dispersão, dipolo-dipolo, pontes de hidrogênio.	Macio, baixa condutividade sólido ou líquido, pontos de fusão e ebulição relativamente baixos.
Reticular	Diamante, grafite, mira, quartzo.	Átomos presos em uma rede 2D ou 3D.	Covalente, ligações de pares de elétrons	Grande dureza e alto ponto de fusão, condutividade baixa.
Amorfo	Vidro, nylon, polietileno.	Redes ligadas covalentemente sem regularidade.	Covalente, ligações de pares de elétrons	Não cristalino, alto ponto de fusão e baixa condutividade.

- ⇒ Algumas Reações Importantes
 - $(XO_3^-)_{(s)} \xrightarrow{\Delta} (X^-)_{(s)} + O_{2(g)}, \underline{X \text{ \'e um halogênio}}.$
 - $(CO_3^{2-})_{(s)} \xrightarrow{\Delta} M_x O_{y(s)} + CO_{2(g)}$, exceção quando M é metal alcalino.
 - $(HCO_{3}^{-})_{(s)} \xrightarrow{\Delta} CO_{3}^{2-}_{(s)} + H_{2}O_{(g)} + CO_{2(g)}$
 - $\bullet \quad NO_3^- \xrightarrow{\Delta} M_xO_y + NO_2 + O_2$
 - $NO_3^- \xrightarrow{\Delta} NO_2^- + O_2$, metal ligado ao nitrato é alcalino.
 - $\bullet \quad SO_4^{2\text{-}} \xrightarrow{\Delta} M_x O_{y(s)} + SO_{3(g)}$
 - $NH_4^+ \xrightarrow{\Delta} NH_{3(g)} + H_2O_{(g)}$

Bizuário

- $\operatorname{NaCl}_{(s)} \to \operatorname{Na+}_{(g)} + \operatorname{Cl-}_{(g)} \Delta H > 0.$
- $2H_2O_{(1)} \rightarrow H_2O_{(1)} + H_2O_{(1)} \Delta H > 0$.
- $Na^{+}_{(g)} + H_2O_{(l)} \rightarrow Na^{+}_{(aq)}, \Delta H < 0.$
- $Cl^{-}(g) + H_2O_{(1)} \rightarrow Cl^{-}(aq), \Delta H < 0.$

As moléculas da água, como moléculas polares, sofrem atração eletrostática pelos íons do sal, formando uma espécie de blindagem que impede a formação de cristais.

⇒ Reações de Íons

- Alumínio, NOX +3:
 - a $Al^{3+} + NH_4OH \rightarrow Al(OH)_3$ precipitado branco gelatinoso.
 - b $Al^{3+} + NaOH \rightarrow Al(OH)_3$ precipitado branco gelatinoso.
 - c $Al^{3+} + (NH_4)_2 S \rightarrow Al(OH)_3$ precipitado branco gelatinoso.
 - d $Al^{3+} + Na_2HPO_4 \rightarrow AlPO_4$ precipitado branco gelatinoso.
 - e $Al^{3+} + Na_2CO_3 \rightarrow Al(OH)_3$ precipitado branco gelatinoso.
- Bário, NOX +2:
 - a $Ba^{2+} + (NH_4)_2CO_3 \rightarrow BaCO_3$ precipitado branco.
 - b $Ba^{2+} + (NH_4)_2C_2O_4 \rightarrow BaC_2O_4$ precipitado branco.
 - c $Ba^{2+} + H_2SO_{4(dil.)} \rightarrow BaSO_4$ precipitado branco.
 - d $Ba^{2+} + CaSO_{4(sat.)} \rightarrow BaSO_4$ precipitado branco.
 - e $Ba^{2+} + K_2CrO_4 \rightarrow BaCrO_4$ precipitado amarelo.
- Cálcio, NOX +2:
 - a $Ca^{2+} + (NH_4)_2CO_3 \rightarrow CaCO_3$ precipitado branco amorfo.
 - b $Ca^{2+} + H_2SO_{4(dil.)} \rightarrow CaSO_4$ precipitado branco amorfo.
 - c $Ca^{2+} + (NH_4)_2C_2O_4 \rightarrow CaC_2O_4$ precipitado branco amorfo.
- Carbonato, NOX -2:
 - a $CO_3^{2-} + Ca^{2+}$ ou Ba^{2+} citada em itens anteriores.
 - b $CO_3^{2-} + HCl_{(dil.)} \rightarrow CO_{2(g)}$
 - c $CO_3^{2-} + Ag^+ \rightarrow Ag_2CO_3$ precipitado branco.
- Cobre, com NOX +2:
 - a $Cu^{2+} + H_2S \rightarrow CuS$ precipitado preto.
 - b $Cu^{2+} + NaOH \rightarrow Cu(OH)_2$ azul $\stackrel{\Delta}{\rightarrow} CuO$ preto.
 - c $Cu^{2+} + NH_4OH \rightarrow$
 - d $Cu^{2+} + K_4 Fe(CN)_6 \rightarrow Cu[Fe(CN)_6]$ marrom-avermelhado; azul se em NH_4OH .
 - e $Cu^{2+} + KI \rightarrow CuI_2$ marrom $\stackrel{\Delta}{\rightarrow} Cu_2I_2$ precipitado branco.
- Ferro, com NOX +2:
 - a $Fe^{2+} + NaOH \rightarrow Fe(OH)_2$ precipitado branco.
 - b $Fe^{2+} + (NH_4)_2S \rightarrow FeS$ precipitado preto.
 - c $Fe^{2+} + KCN \rightarrow Fe(CN)_2$ precipitado marrom-avermelhado.
 - d $Fe^{2+} + K_3Fe(CN)_6 \rightarrow Fe_3[Fe(CN)_6]$
- Ferro, com NOX +3:
 - a $Fe^{3+} + NH_4OH \rightarrow Fe(OH)_3$ precipitado marrom-avermelhado.
 - b $Fe^{3+} + NaOH \rightarrow Fe(OH)_3$ precipitado marrom-avermelhado.
 - c $Fe^{3+} + (NH_4)_2 S \xrightarrow{meio \acute{a}cid\acute{o}} FeS + S$ precipitado preto.
 - d $Fe^{3+} + (NH_4)_2 S \xrightarrow{meio \ b\'{a}sico} Fe_2 S_3$ precipitado preto.
 - e $Fe^{3+} + K_3 Fe(CN)_6 \rightarrow Fe[Fe(CN)_6]$ solução marrom.
 - f $Fe^{3+} + CH_3COONa \rightarrow Fe(C_2H_3O_2)_3$ solução marrom-avermelhada.
 - g $Fe^{3+} + NH_4CNS \rightarrow [Fe(CNS)_6]^{3-}$ solução vermelho-escura.
- Magnésio, NOX +2:

- a $Mg^{2+} + NH_4OH \rightarrow Mg(OH)_2$ precipitado branco.
- b $Mg^{2+} + NaOH \rightarrow Mg(OH)_2$ precipitado branco.
- c $Mg^{2+} + Na_2CO_3 \rightarrow MgCO_3$. $Mg(OH)_2$. $5H_2O$ precipitado branco.
- d $Mg^{2+} + Na_2HPO_4 \rightarrow Mg(NH_4)PO_4$ precipitado branco cristalino.
- Mercúrio, com NOX +2:
 - a $Hg^{2+} + H_2S \rightarrow HgS$ precipitado preto.
 - b $Hg^{2+} + NaOH \rightarrow HgO$ precipitado amarelo.
 - c $Hg^{2+} + NH_4OH \rightarrow Amino mercúrico$ precipitado branco.
 - d $Hg^{2+} + SnCl_2 \rightarrow Hg_2Cl_2$ precipitado branco $\rightarrow Hg_{(l)}$ cinza.
 - e $Hg^{2+} + KI \rightarrow HgI_2$ precipitado vermelho.
- Mercúrio, com NOX +1:
 - a $Hg_2^{2+} + HCl_{(dil.)} \rightarrow Hg_2Cl_2$ precipitado branco.
 - b $Hg_2^{2+} + KI_{(aq.)} \to Hg_2I_2$
 - c $Hg_2^{2+} + K_2CrO_{4(ag_1)} \rightarrow Hg_2CrO_4$ vermelho.
 - d $Hg_2^{2+} + H_2S \rightarrow HgS \ e \ Hg$ precipitado preto.
 - e $Hg_2^{2+} + NaOH \rightarrow Hg_2O$ precipitado preto.
 - f $Hg_2^{2+} + NH_4OH \rightarrow Amino mercúrico (EX.: Hg_2O(NH_2)NO_3)$
 - $g Hg_2^{2+} + SnCl_2 \rightarrow Hg$
- Chumbo, com NOX +2:
 - a $Pb^{2+} + HCl_{(dil.)} \rightarrow PbCl_2$ precipitado branco.
 - b $Pb^{2+} + KI_{(aq.)} \rightarrow PbI_2$ precipitado amarelo.
 - c $Pb^{2+} + H_2SO_{4(conc.)} \rightarrow PbSO_4$ precipitado branco.
 - d $Pb^{2+} + K_2CrO_4 \rightarrow PbCrO_4$ precipitado amarelo.
 - e $Pb^{2+} + H_2S \rightarrow PbS$ precipitado preto.
 - f $Pb^{2+} + NaOH_{(aa.)} \rightarrow Pb(OH)_2$ precipitado branco.

⇒ Indicadores Ácido-Base

<u>Indicador</u>	Meio "Ácido"	Meio "Neutro"	"Meio Básico"
<u>Fenolftaleína</u>	Incolor (pH<8,2)	Rosa (8 <ph<10)< td=""><td>Roxo (10<ph<12)< td=""></ph<12)<></td></ph<10)<>	Roxo (10 <ph<12)< td=""></ph<12)<>
<u>Alaranjado de Metila</u>	Vermelho (pH<3,1)	Amarelo (pH>4,4)	Amarelo
<u>Azul de Tornassol</u>	Vermelho (pH<4,5)	Violeta	Azul (pH>8,3)
<u>Azul de Bromotimol</u>	Amarelo (pH<6,6)	Esverdeado	Azul (pH>7,6)
<u>Vermelho de Metila</u>	Vermelho (pH<4,4)	Amarelo (pH>6,2)	Amarelo
<u>Violeta de Metila</u>	Amarelo (ph<1,6)	Violeta (pH>1,6)	Violeta