Outline of Solutions

1. Divide the square into two triangles by drawing a line segment connecting P_0 and P_2 . We are given that clv is between f_0 and f_2 . First consider triangle $P_0P_2P_3$. There are 2 possible cases.

Case (i): $f_3 < clv$

If $clv < f_2$, then the contour cuts the edge P_2P_3 , and it does not cut the edge P_0P_3 since both f_0 and f_3 are smaller than clv. If $clv > f_2$, then $f_3 < clv < f_0$ and hence the contour cuts the edge P_0P_3 , and it does not cut the edge P_2P_3 since both f_2 and f_3 are smaller than clv.

Case (ii): $f_3 > clv$

Similar to case (i), if $clv > f_2$, then the contour cuts the edge P_2P_3 , and it does not cut the edge P_0P_3 since both f_0 and f_3 are bigger than clv. If $clv < f_2$, then $f_0 < clv < f_3$ and hence the contour cuts the edge P_0P_3 , and it does not cut the edge P_2P_3 since both f_2 and f_3 are bigger than clv.

The same argument applies to triangle $P_0P_1P_2$. In conclusion, the contour cuts exactly two edges of the square.

- - (b) Let Sx(3.5) = a. Then a = ppval(repSx,3.5). Let Sy(3.5) = b. Then b = ppval(repSy,3.5).
- 3. (a) $x_1 = 0$, and $Sp(0) = y_1$.

$$Sp(0) = 2b_1 \Rightarrow 2b_1 = y_1.$$

(b) $x_2 = 2$. The values of Sp(2) from the left and right are respectively:

$$Sp(2)_{\text{left}} = a_1 \frac{8}{12} + 2c_1$$

 $Sp(2)_{\text{right}} = a_1 \frac{1}{6} + b_2.$

Sp(x) continuous at x=2 implies

$$a_1 \frac{2}{3} + 2c_1 = a_1 \frac{1}{6} + b_2$$

 $a_1 (\frac{2}{3} - \frac{1}{6}) + 2c_1 - b_2 = 0.$

1

4. (Need not assume the base to be a certain number such as 10.) In floating point systems, the distance/spacing between floating numbers is the (absolute) floating point representation error, i.e.

distance
$$\approx |fl(x) - x|$$
.

On the other hand, the relative error is approximately the machine precision E:

$$rac{|fl(x)-x|}{|x|}pprox E.$$

From x = 300 and spacing 10^{-4} , we can estimate that $E \approx 10^{-4}/300$. Now,

distance between numbers near $0.03 = |0.03|E \approx 10^{-8}$, distance between numbers near $30000 = |30000|E \approx 10^{-2}$.

5. (a) Let $A^{(i)}$ be the sparse matrix of size x_i . Define the right-hand side $b^{(i)}$ a vector of all 1's and length x_i . Generate y_i =flop counts of Gaussian elimination for solving $A^{(i)}z^{(i)} = b^{(i)}$ by:

flops(0);

$$A^{(i)} \setminus b^{(i)};$$

 $y_i = \text{flops};$

Fit the function $f(x) = c_1 + c_2 x + c_3 x^{1.5}$ to the data (x_i, y_i) , i = 1, ..., m. Find the best fit coefficients (c_1, c_2, c_3) by solving the normal equations in part (b). The leading coefficient of flops(GE) is then given by c_3 .

(b) Let TSE be the total squared error function. The normal equations are obtained from setting:

$$\frac{\partial TSE}{\partial c_i} = 0 \qquad i = 1, 2, 3.$$

- 6. (a) $A = LU \to \text{flops} = \frac{2}{3}n^3$. Each forward + back solve $\to \text{flops} = 2n^2$. Since there are n right-hand sides, there are n forward + back solves $\to \text{flops} = 2n^3$. Total flops = $\frac{2}{3}n^3 + 2n^3 = \frac{8}{3}n^3$.
 - (b) $A^2x = b \to LULUx = b$. We solve for x by performing an ordered sequence of forward and back solves:

$$Ly_1 = b$$

$$Uy_2 = y_1$$

$$Ly_3 = y_2$$

$$Ux = y_3$$

(c) $A = LU \rightarrow \text{flops} = \frac{2}{3}n^3$. 2 forward solves $\rightarrow \text{flops} = 2n^2$. 2 back solves $\rightarrow \text{flops} = 2n^2$. Total flops $= \frac{2}{3}n^3 + 4n^2 \approx \frac{2}{3}n^3$.