NLSeer: Nuclear Localization Signal Prediction Project

Erdős Data Science Boot Camp Spring 2024 Scott Auerbach, Ukamaka Nnyaba, Ming Zhang, Yingyi Guo, Hemaa Selvakumar, Çisil Karagüzel April 26, 2024

Why nuclear localization signals?

- Nuclear localization signals are sequences within a protein that directs it towards the nucleus
- Cellular processes require certain proteins to move to nucleus at the right time
- Losing/gaining this ability dysregulates these processes and can lead to cancer (example: TRPS1 in triple negative breast cancer)
- Goal: For any given protein, identify potential NLS

What does a NLS look like?

- Set of amino acids represented by letters, can vary in length from several to couple dozen
- They can vary considerably, but tend to have fairly consistent patterns, thus making them a potent feature for prediction tools

Class 1

A37 LPKKRKFSEISS (6) A4 KRKRWENDIP (4) A24 KRKRWENDIP (4) B113 TGGVMKRKRGSV B31 PILPLKRRRGSP B161 TYSGVKRKRNVV B199 THIGYKRKRDSV B121 LSGTKRKRAYFI B5 QRRLLKRKRGSL B192 QIGKKRKRDYLD B2 KRGKRKLVRPW (38) B241 KKGKRKRLVRPW (38) B4 PSRKRKESDHI B201 PSRKRKRBHYAV B248 ISRKRKRDLEFV B133 TTRKRKRDLEFV B133 TTRKRKRDLVFT B163 EPNPRKRKSEL B132 TSPSRKRKWDQV (2) B10 TLERKKLAVLY ARRKRRREWEDF (2) B16 HRYCGKRRRTR

Class 2

a79	SVLGKRSRTWE	(2
b194	YGRVSKRPRYQF	
b198	RKRGRKRFRSV	

Class 4

a2	KRKYAVFLESQN	(6)	
a23	KRKYSIYLGSQS		
a16	KRKWMAFVMGDP	(3)	
a6	KRKCAVFLEGQN		
a139	IPRKRSFAELYD		
a26 RLTPRKRAFSEV			

Class 3

a132	KRSWSMAFC	(4)
a103	KRTWAQAFTE	(2)
a18	KRPYSIAFPL	GQ
a21 R	RRSVLKRSWSVAF	(4)
a19	KRRYSDAFRL	PV
a20	KRKYSDAFGL	PV
a28	IGRKRGYSVAFG	(32)
a125	IGRKRVWAVAFY	
a58	WAGRKRTWRDAF	
b6	SSHRKRKFSDAF	(34)
b120	PSHRKRKFSDAF	(7)
b246	TAHRKRKFSDAF	
b141	RVQRKRKWSEAF	(4)
b227	RLTRKRKYDCAF	
a44	LVNRKRRYWEAF	

Class 5

a72 LGKRYDRDWDYK			
a65 RSSGILGKRKFE			
a89 VH	KTVLGKRKYW	(2)	
b94	SILGKRKNRDPS		
b237 (QSVLGKRKSRPF		
b43 5	PVHLGKRRLRPW		
b45	RVLGKRKTGRSP		
a46	VLGKRKRDDCW		
a67 HGI	RQVLGKRKR		
b54	SVLGKRKRHPKV	(3)	
b153	SVLGKRKRHHLD		
b112	PVLGKRKRSLSS		
b167	RVLGKRKREDRP		
b223	ILGKRKRSHHPY	(2)	
b75	PILGKRKRHLFL		
b262	LLGKRKRPSIEH		
b8	SMLGKRKRCIIS		
b104	TLGKRKRISCVT		
b117 I	DTRLGKRKRRPW		

Source for image:

https://www.novoprolabs.com/support/articles/will-nuclear-localization-signal-nls-be-removed-after-protein-maturation-201902221563.html

Datasets

- Main dataset is curated collection of proteins with NLS compiled by Yamagishi et al.
 - ~1,400 proteins, some of which had multiple NLS inside the same sequence
 - This dataset was later padded with an additional 1,400 randomly selected non-NLS proteins from UniProt
- For later classification, additional dataset from DeepLoc (another prediction tool for general localization) was used
 - This DeepLoc dataset contained several types of sorting signals, including NLS

Methodology: Position specific scoring matrix (PSSM)

NLS PSSM heatmap

- PSSM with 18 rows and 20 columns for amino acid scoring in NLSs.
- Utilizing PSSM to evaluate the likelihood of a protein region starting a NLS.
- Applying traditional machine learning models like Random Forest to predict NLS presence based on PSSM scores.

Methodology: Convolutional Neural Network (CNN) + XGBoost

- One-hot encoding amino acids: Representing amino acids as binary values to indicate the presence or absence of desired signals.
- Enhancing feature sets with PSSM scores for a richer analysis.
- Processing the encoded data through a Convolutional Neural Network and then combining it with XGBoost for refined predictions.

Methodology: Long Short-term memory (LSTM) model

- LSTM is a variant of recurrent neural network (RNN) that is capable of learning dependencies.
- LSTM has edge over the conventional feed-forward NN and RNN because it selectively remembers patterns for long duration of time.

Architecture of the Model

```
LSTMModel(
   (lstm): LSTM(20000, 200)
   (fc): Linear(in_features=200,
   out_features=1, bias=True)
   (sigmoid): Sigmoid()
)
```

Results: Accuracy Table

Method	Training_Test Dataset (main dataset)	Holdout Dataset (DeepLoc dataset)
PSSM + Random Forest	76%	89%
PSSM + CNN + XGBoost	91%	73.5%
LSTM	91.2%	85.5%

Flask Web Application: Interface and Results

Nuclear Localization Sequence Predictor by NLSeer

MHTVGEKVIVDFAGSSKLRFRLGYHAIPSMSHVHLHVISQDFDSPCLKNK
KHWNSFNTEY
FLESQAVIEMVQEAGRVTVRDGMPELLKLPLRCHECQQLLPSIPQLKEHLR
KHWTQ

Prediction Result

Future Directions

- Graph convolutional network to incorporate vectorized nodes of graph embedded 3-D structures as feature alongside PSSM and sequence
- ProtBERT pretrained NLP model adapted to parse through amino acid sequences without prior labelling

AlphaFold 3-D structure of calreticulin (left) and its graph embedding generated by Networkx (right)

Acknowledgements:

- Roman Holowinsky
- Steven Gubkin
- Alexis Johnson
- Rost Lab at the Technical University of Munich
- Ryosuke Yamagishi and Hiroki Kaneko at Nihon University
- Danish Department of Health Technology (DeepLoc)