

Safe Platooning Headways on Girder Bridges

Joshua S. Steelman, Ph.D., P.E. Jay A. Puckett, Ph.D., P.E. Daniel G. Linzell, Ph.D., P.E. Bowen Yang IBC 21-13

What is Truck Platooning?

 Numerous companies (e.g., Plus.ai) are entering the autonomous truck market

- What are the benefits of truck platooning?
 - > Reduce fuel use
 - > Reduce carbon footprint
 - > Reduce labor costs

 Leverage benefits from <u>reduced uncertainties</u> with platoon operations

 Heavy loads are acceptable without compromising safety

Reliability Index, $\beta = 3.59$ Probability of failure = 0.0165 %

"Failure" occurs when g < 0

Reliability index: (simplified & approximate)

$$\beta = \frac{\overline{R} - \overline{Q}}{\sqrt{\sigma_R^2 + \sigma_Q^2}}$$

Reliability Index, $\beta = 4.01$ Probability of failure = 0.0032 %

$$\beta = \frac{\overline{R} - \overline{Q}}{\sqrt{\sigma_R^2 + \sigma_Q^2}}$$

Reliability Index, $\beta = 3.59$ Probability of failure = 0.0165 %

$$\beta = \frac{\overline{R} - \overline{Q}}{\sqrt{\sigma_R^2 + \sigma_Q^2}}$$

Objectives

- Provide a framework for determining how much load could potentially increase above legal limits, accounting for varying:
 - > Live load uncertainties
 - > Headways
- Establish platoon operation limitations and guidelines based on Strength I limit state

- Bridge parameters and ranges
 - Bridge types
 - Steel girder
 - Prestressed concrete girder
 - Bridge spans
 - Simple span
 - Two equal continuous spans

- Bridge parameters and ranges
 - Bridge span lengths
 - Steel: 30 ft 150 ft @ 30 ft increments, 200 ft
 - P/S: 30 ft 150 ft @ 30 ft increments
 - PCI Bridge Design Manual : Design charts for 30 ft 150 ft
 - Girder spacings
 - 8, 10, and 12 ft
 - Design lanes
 - 2 lanes

Vehicle types (GVW = 80 kips)

AASHTO Type 3-3 (80 kips GVW)

FHWA Class 9 (80 kips GVW)

Vehicle types (GVW = 80 kips)

NJTA Type 3S2 (80 kips GVW)

AASHTO NRL (80 kips GVW)

- Vehicles
 - Number of trucks
 - 2, 3, or 4
 - Headways
 - 5 to 50 ft (typ.)
 - Lanes

- Single-lane w/ adjacent traffic (heavy truck next to platoon)
- Single-lane w/o adjacent traffic (only platoon on bridge)

$$R_n = \frac{1.25DC + 1.5DW + 1.75L_n(1 + IM)(GDF_m)}{\phi}$$

- DC, DW for steel bridges → prelim design @ Strength I & Service II
- DC, DW for P/S bridges → PCI design charts
- Interior girder
- LL: HL-93 Loading with AASHTO LRFD IM
- GDF_m: AASHTO approximate multi-lane loaded GDF

- Dead load statistical parameters:
 - Consistent with NCHRP 20-07/186
 - Normal distribution

Component	λ_D	CoV _D
DC	1.05	0.10
DW	1.00	0.25

Resistance statistical parameters:

_	Consistent with
	NCHRP 20-07/186

Composite steel girders

Type of structures

Lognormal distribution

oono otoor giraoro

Shear

Moment

1.14

1.12

 λ_R

0.105

0.10

 CoV_R

Prestressed Concrete

Moment

Shear

1.05

0.140

Moi

1.15

0.140

0.075

- Live load effects:
 - Dynamic Amplification (IM)
 - Girder distribution factors (GDFs)
 - Multiple presence

$$LL = L(GDF)(1+IM) = L(GDF) + L(GDF)IM$$

- Live load statistical parameters:
 - Consistent with NCHRP 20-07/186
 - Bias = 1.0 for IM and GDFs

$$CoV_{GDF} = 0.12$$
 $CoV_{IM} = 0.80$ $\mu_{IM} = 0.10$

- Bias = 1.0 and CoV = 0 to 0.2 for platoons
- Platoon: Normal distribution
- Adjacent loads: Extreme type I distribution

- α scales platoon vehicle weights relative to legal load limits
- $\alpha = 1$ for an 80 kip platoon vehicle

- Example safe headways for a simple span bridge
- ► Target β = 2.5 ► Steel, 120 ft long ► Platoon w/ adjacent loads ► 3 Trucks

Example safe headways for a simple span bridge

			•				,		- <			J	,	
0	0	þe	a CoV	0	0.02	0.04	0.06	0.08	(0.1)	0.12	0.14	0.16	0.18	0.2
Control	Control	nrestricted	0.8	5	5	5	5	5	5	5	5	5	5	5
Ö	Ō	Ξ.	0.9	5	5	5	5	5	5	5	5	5	5	5
0		SO O	1	5	5	5	5	5	5	5	5	5	5	5
CoV	á	ے	1.1	5	5	5	5	5	5	5	5	5	5	5
$\ddot{\circ}$	⋛	5 ₹	1.2	5	5	5	5	5	5	5	5	5	5	5
જ	Headway		1.3	5	5	5	5	5	5	5	5	5	5	6
	<u>ĕ</u>		1.4	5	5	5	5	5	\$	5	6	8	9	11
Headway			1.5	5	5	6	6	8	9	10	11	12	14	15
⋛	<u>`</u>		1.6	10	10	10	11	12	1 <mark>3</mark>	14	15	17	18	19
ă			1.7	13	14	14	15	15		18	19	20	21	23
٣	Max		(1.8 ▶	17	17	17	18	19	20	21	23	24	25	28
<u>`</u>	_		T.9	20	20	21	22	22	24	25	26	29	31	34
>			2	24	24	24	25	26	27	30	32	35	39	41
×	Ų		2.1	28	28	29	30	31	34	37	40	42	45	48
Мах			2.2	34	34	34	37	39	41	43	45	49	Fail	Fail
			2.3	40	40	41	42	44	47	49	Fail	Fail	Fail	Fail
Ų	,		2.4	46	45	47	49	50	Fail	Fail	Fail	Fail	Fail	Fail
			2.5	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail

Example safe headways for simple span bridges

_	eq -	γ Ι	30 ft	60 ft	90 ft	120 ft	150 ft	200 ft
Max w/ Headway Control	Unrestricted	0.8	5	5	5	5	5	5
o	ţ	0.9	5	5	5	5	5	5
\circ	Se	1	5	5	5	5	5	5
\gtrsim	=	1.1	5	5	5	5	5	5
8	5 V	1.2	5	5	5	5	5	5
ğ	'	1.3	5	5	5	5	6	5
es		1.4	5	5	5	9	14	13
I		1.5	5	5	7	14	20	23
>		1.6	5	5	10	18	25	32
>		1.7	5	5	12	21	31	39
ි ති	<u> </u>	1.8	5	7	17	25	34	46
≥		1.9	5	10	23	31	39	Fail
		2	5	13	27	39	47	Fail
		2.1	Fail	15	32	45	Fail	Fail
		2.2	Fail	18	36	Fail	Fail	Fail
		2.3	Fail	Fail	40	Fail	Fail	Fail
7		2.4	Fail	Fail	45	Fail	Fail	Fail
	_	2.5	Fail	Fail	Fail	Fail	Fail	Fail

- ightharpoonup Target $\beta = 2.5$ ightharpoonup CoV = 0.18
- Platoon w/ adjacent > 3 Trucks
- ightharpoonup At an α = 2.0, the headway must increase to...
 - 13 ft for a 60-ft span
 - 27 ft for a 90-ft span
 - 39 ft for a 120-ft span, and
 - 47 ft for a 150-ft span.

Selected Spans

Max w/ Headway &

- What if a platooning operator wants to send a 3-truck platoon with α = 2.7 over a 120 ft simple span bridge?
 - Is tightening uncertainty and spacing out trucks enough?

Example safe headways for a simple span bridge

	CoV	0	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18	0.2
0.8	201	5	5	5	5	5	5	5	5	5	5	5
		5		5	-	_		5		5	5	5
0.9		5	5	5	5	5	5	5	5	3	-	5
1		5	5	5	5	5	5	5	5	5	5	5
1.1		5	5	5	5	5	5	5	5	5	5	5
1.2		5	5	5	5	5	5	5	5	5	5	5
1.3		5	5	5	5	5	5	5				
1.4		5	5	5	5	5	5	5				17/1
1.5		5	5	6	6	8	9	10				
1.6		10	10	10	11	12	13	14	117	117		
1.7		13	14	14	15	15	17	18			i iii i	
1.8		17	17	17	18	19	20	21	7777			
1.9		20	20	21	22	22	24	25	i i i i i i i i i i i i i i i i i i i			
2		24	24	24	25	26	27	30 🚣				
2.1		28	28	29	30	31	34	37	N The state of the		111-1	
2.2		34	34	34	37	39	41	43		Ann	No.	1
2.3		40	40	41	42	44	47	49	ran	rall	rall	Fall
2.4		46	45	47	49	50	Fail	Fail	Fail	Fail	Fail	Fail
(2.5)]	Fail	Fail	Fail	Fail							

- Looking forward further optimization can be achieved with smart vehicles and networked infrastructure
 - If tightening uncertainty and spacing out trucks is not adequate then optimize with traffic flow
 - Use smart corridors and/or on-board sensors to <u>avoid multiple presence</u> with routine traffic

- Example safe headways for a simple span bridge
- Target $\beta = 2.5$ > Steel, 120 ft long
- Single-lane loaded
- 3 Trucks

Example safe headways for a simple span bridge

														_	
$\overline{}$	α	CoV	0	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18	0.2	_	
Control	0	0.8	5	5	5	5	5	5	5	5	5	5	5		
Ξ	Ð	0.9	5	5	5	5	5	5	5	5	5	5	5		
ō	ਠ	1	5	5	5	5	5	5	5	5	5	5	5		
\circ	Ξ.	1.1	5	5	5	5	5	5	5	5	5	5	5		
_	St	1.2	5	5	5	5	5	5	5	5	5	5	5		
<u>(a)</u>	Ø	1.3	5	5	5	5	5	5	5	5	5	5	5		Increases from 1.2
Headway	Jurestricted	1.4	5	5	5	5	5	5	5	5	5	5	5		IIICICASCS IIOIII I.Z
Ó	$\overline{}$	1.5	5	5	5	5	5	5	5	5	5	5	5		
Ø	_	1.6	5	5	5	5	5	5	5	5	5	5	6		(+17%)
<u>a</u>		1.7	5	5	5	5	5	5	5	5	7	9	10		(1170)
エ		1.8	5	5	5	5	5	6	7	9	11	12	14		
``		1.9	5	6	7	7	8	10	11	13	14	16	17		
>		2	9	9	10	11	12	13	15	16	17	19	21		
×		2.1	13	13	13	14	15	16	17	19	20	22	24		
Мах		2.2	16	16	16	17	18	19	21	22	23	26	27		
\geq		2.3	18	18	19	19	21	22	23	25	27	30	32		
		2.4	21	21	21	22	23	25	26	29	32	35	40		
		2.5	24	24	24	25	26	28	31	34	38	41	45	>	Increases from 2.1
1	7	2.6	26	27	28	28	30	33	36	40	43	46	50		1110164363 110111 2.1
		2.7	30	30	32	33	36	39	41	45	49	Fail	Fail		(.040/)
		2.8	35	36	37	39	41	45	47	50	Fail	Fail	Fail		(+24%)
		2.9	40	41	42	44	46	48	Fail	Fail	Fail	Fail	Fail	1	lineración of frama O A
,		3	45	46	47	48	50	Fail	Fail	Fail	Fail	Fail	Fail		Increases from 2.4
		3.1	50	50	Fail										
		3.2	Fail		(+25%)										
														-	(+2370) 33

Max w/ Headway & CoV Control

Max w/ Span Length Control

Results

Example safe headways for simple span bridges

			- •	• •			. • .	•
		a	30 ft	60 ft	90 ft	120 ft	150 ft	200 ft
<u></u>	Q	0.8	5	5	5	5	5	5
tτ	Unrestricted	0.9	5	5	5	5	5	5
<u></u>	<u>්</u>	1	5	5	5	5	5	5
Q	 	1.1	5	5	5	5	5	5
\circ	လွ	1.2	5	5	5	5	5	5
<u>></u>	<u> </u>	1.3	5	5	5	5	5	5
ā	ㅁ	1.4	5	5	5	5	5	5
≨		1.5	5	5	5	5	5	5
Max w/ Headway Control	·	1.6	5	5	5	5	7	5
Ğ		1.7	5	5	5	9	13	13
エ		1.8	5	5	6	12	18	21
<u> </u>		1.9	5	5	9	16	22	28
>		2	5	5	10	19	26	34
×		2.1	5	5	13	22	31	40
<u>[a</u>		2.2	5	6	17	26	34	44
≥ ,		2.3	5	9	21	30	37	50
		2.4	5	11	25	35	41	Fail
		2.5	5	13	29	41	49	Fail
		2.6	5	16	32	46	Fail	Fail
		2.7	5	18	36	Fail	Fail	Fail
		2.8	Fail	20	39	Fail	Fail	Fail
		2.9	Fail	25	43	Fail	Fail	Fail
		3	Fail	Fail	47	Fail	Fail	Fail
		3.1	Fail	Fail	Fail	Fail	Fail	Fail

- \triangleright Target $\beta = 2.5$
- Only platoon live load
- > 3 Trucks
- \triangleright CoV = 0.18

Moment influence lines for <u>two equal span continuous</u> bridges

- Example safe headways for a two-span continuous bridge
- \triangleright Target β = 2.5 \triangleright Steel, 120 ft long \triangleright Platoon w/ adjacent loads \triangleright 4 Trucks

Example safe headways for a two-span continuous bridge

		•			•			•					•
\overline{c}	þ	α	CoV 0	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18	0.2
Contro	stricted	0.8	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50
Ţ	iti	0.9	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50
	(I)	1	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50
<u> </u>	nre	1.1	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50
≥	$ \supset $	1.2	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50	5 50
Headway		1.3	5 50	5 50	5 50	5 50	5 50	5 50	5 50	6 50	7 50	8 50	10 50
, T	?	1.4	5 50	6 50	6 50	6 50	7 50	8 50	9 50	11 50	12 50	13 50	15 50
		1.5	9 50	10 50	11 50	11 50	12 50	13 50	14 50	16 50	17 50	21 50	24 50
>		1.6	14 50	14 50	15 50	15 50	19 50	21 50	24 50	26 50	27 50	28 50	30 50
x Z		1.7	26 50	26 50	26 50	26 50	27 50	29 50	30 50	31 50	31 50	33 50	34 50
≥		1.8	30 50	30 50	31 50	32 50	32 50	33 50	34 50	35 50	36 50	37 50	40 50
	₩	1.9	34 50	35 50	35 50	35 50	36 50	36 50	37 50	38 50	40 50	43 50	47 50
		2	37 50	37 50	38 50	38 50	38 50	41 50	43 50	45 50	47 50	50 50	Fail
		2.1	40 50	41 50	42 50	43 50	45 50	47 50	49 50	50 50	Fail	Fail	Fail
↓		2.2	46 50	46 50	47 50	49 50	50 50	Fail	Fail	Fail	Fail	Fail	Fail
		2.3	Fail										

Max w/ Headway & CoV Control

Example safe headways for two-span continuous bridges

		•				,			•
_	~	α	L	30 ft	60 ft	90 ft	120 ft	150 ft	200 ft
Contro	Jnrestricted	0.8		5 50	5 50	5 50	5 50	5 50	5 50
딜	<u>:</u>	0.9		5 50	5 50	5 50	5 50	5 50	5 50
ပ္ပါ	str	1		5 50	5 50	5 50	5 50	5 50	5 50
	ĕ	1.1		5 50	5 50	5 50	5 50	5 50	6 50
Headway	\overline{L}	1.2		5 50	5 50	5 50	5 50	9 50	14 50
бl		1.3		5 50	5 50	10 50	8 50	13 50	19 50
ea		1.4		8 50	5 50	15 50	13 50	20 50	25 50
		1.5		11 50	6 50	19 50	21 50	26 50	30 50
>		1.6		14 50	9 50	22 50	28 50	31 10	40 50
×	7	1.7		16 50	11 50	24 50	33 50	41 50	47 50
Max		1.8		17 50	15 50	27 50	37 50	47 50	Fail
2		1.9		19 50	33 50	30 50	43 50	Fail	Fail
		2		20 50	39 50	34 50	50 50	Fail	Fail
		2.1		Fail	43 50	Fail	Fail	Fail	Fail
		2.2		Fail	47 50	Fail	Fail	Fail	Fail
		2.3		Fail	49 50	Fail	Fail	Fail	Fail
		2.4		Fail	Fail	Fail	Fail	Fail	Fail

- \triangleright Target β = 2.5
- $\sim CoV = 0.18$
- Platoon w/ adjacent lane loaded
- > 4 Trucks

Span Control

∞ಶ

Max w/ Headway

Conclusions

Simple & two	(CoV & Headways) _a	(CoV & Headways) _b
span bridges	% of Legal load limit	% of Legal load limit
With adjacent		
routine traffic		
Without adjacent		
routine traffic		

(CoV & Headways)_a: W/o any reduction in uncertainty and restrictions of headways

(CoV & Headways)_b: W/ restrictions of headways and w/ reduction in uncertainty

Future Research

- Policy for Platooning
 - Service performance
 - Fatigue life
 - Braking loads
 - Multiple presence calibration
- Disaster recovery

 Support from the Nebraska Department of Transportation is gratefully acknowledged.