EE263 Autumn 2015 S. Boyd and S. Lall

Recursive estimation

Growing sets of measurements

least-squares problem in 'row' form

$$\text{minimize} \quad \|Ax-y\|^2 = \sum_{i=1}^m (a_i^\mathsf{T} x - y_i)^2$$

where a_i^T are the *rows* of A ($a_i \in \mathbb{R}^n$)

- $\mathbf{x} \in \mathbb{R}^n$ is some vector to be estimated
- \blacktriangleright each pair a_i , y_i corresponds to one measurement
- solution is

$$x_{\mathsf{ls}} = \left(\sum_{i=1}^{m} a_i a_i^{\mathsf{T}}\right)^{-1} \sum_{i=1}^{m} y_i a_i$$

ightharpoonup recursive estimation: a_i and y_i become available sequentially, i.e., m increases with time

Recursive least-squares

we can compute
$$x_{\mathsf{ls}}(m) = \left(\sum_{i=1}^m a_i a_i^\mathsf{T}\right)^{-1} \sum_{i=1}^m y_i a_i$$
 recursively

the algorithm is

$$P(0) = 0 \in \mathbb{R}^{n \times n}$$

 $q(0) = 0 \in \mathbb{R}^{n}$
for $m = 0, 1, \dots,$
 $P(m+1) = P(m) + a_{m+1}a_{m+1}^{\mathsf{T}}$
 $q(m+1) = q(m) + y_{m+1}a_{m+1}$

- ▶ if P(m) is invertible, we have $x_{ls}(m) = P(m)^{-1}q(m)$
- ▶ P(m) is invertible $\iff a_1, \dots, a_m$ span \mathbb{R}^n (so, once P(m) becomes invertible, it stays invertible)

Fast update for recursive least-squares

we can calculate

$$P(m+1)^{-1} = \left(P(m) + a_{m+1}a_{m+1}^{\mathsf{T}}\right)^{-1}$$

efficiently from $P(m)^{-1}$ using the rank one update formula

$$(P + aa^{\mathsf{T}})^{-1} = P^{-1} - \frac{1}{1 + a^{\mathsf{T}}P^{-1}a}(P^{-1}a)(P^{-1}a)^{\mathsf{T}}$$

- ightharpoonup valid when $P = P^{\mathsf{T}}$, and P and $P + aa^{\mathsf{T}}$ are both invertible
- gives an $O(n^2)$ method for computing $P(m+1)^{-1}$ from $P(m)^{-1}$
- lacktriangle standard methods for computing $P(m+1)^{-1}$ from P(m+1) are $O(n^3)$

Verification of rank one update formula

$$(P + aa^{\mathsf{T}}) \left(P^{-1} - \frac{1}{1 + a^{\mathsf{T}} P^{-1} a} (P^{-1} a) (P^{-1} a)^{\mathsf{T}} \right)$$

$$= I + aa^{\mathsf{T}} P^{-1} - \frac{1}{1 + a^{\mathsf{T}} P^{-1} a} P(P^{-1} a) (P^{-1} a)^{\mathsf{T}}$$

$$- \frac{1}{1 + a^{\mathsf{T}} P^{-1} a} aa^{\mathsf{T}} (P^{-1} a) (P^{-1} a)^{\mathsf{T}}$$

$$= I + aa^{\mathsf{T}} P^{-1} - \frac{1}{1 + a^{\mathsf{T}} P^{-1} a} aa^{\mathsf{T}} P^{-1} - \frac{a^{\mathsf{T}} P^{-1} a}{1 + a^{\mathsf{T}} P^{-1} a} aa^{\mathsf{T}} P^{-1}$$

$$= I$$