Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6679 Mechanics			Paper: M3
	Question number	Scheme	Marks
- 1			

Question number	Scheme	Marks
1.	$1000 \text{ r.p.m.} = \frac{1000 \text{x} 2\pi}{60} \text{ rad/s}$ $v = 0.035 \text{x} \frac{1000 \text{x} 2\pi}{60} = 3.67 \text{ms}^{-1} (3 \text{ SF})$	B1 M1 A1 ③
	MI their r χ their ω	
2.	Extr at bottom = $\frac{a}{\cos \alpha} - a = \frac{2a}{3}$ (0.67a or better)	M1 A1
	Energy: $mga \tan \alpha = \frac{2\lambda \left(\frac{2a}{3}\right)^2}{2a}$ $3mg = \lambda$	→ M1 A1 A1 f.t.
	Second M0 if treated as equilibrium. Third M1 for solving for λ .	
3.(a)	$mg\sin 30^{o} - mx^{2} = ma$	M1 A1
	$\frac{g}{2} - x^2 = v \frac{dv}{dx} \text{or } \frac{d(\frac{1}{2}v^2)}{dx}$ $\frac{gx}{2} - \frac{x^3}{2} + (+C) = \frac{v^2}{2}$	→M1 dep. – M1A1
	$\frac{gx}{2} - \frac{x^3}{3} (+C) = \frac{v^2}{2}$ $x = 2: g - \frac{g}{3} = \frac{v^2}{2}$	dep. — M1
	$v = 3.8 \text{ms}^{-1}$ (3.78)	A1 (7)
	Third M1 for attempting to integrate	
(b)	$v = 0: \frac{gx}{2} - \frac{x^3}{3} = 0$ $x^2 = \frac{3g}{2} \Rightarrow x = 3.8, (3.83), \sqrt{\frac{3g}{2}}$	dep. M1 A1 c.s.o. (3)
	Must have integrated for first MI	

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6679 Mechanics

Paper: M3

Question number	Scheme	Marks	
	Scheme $(\uparrow), R = mg$ $m \frac{4a}{3} \omega^{2} \leq \frac{3}{2} mg$ $\Rightarrow \omega^{2} \leq \frac{9g}{20a} $ $T = \frac{2mg}{a} \frac{a}{3} = \frac{2mg}{3}$ $(\rightarrow), \frac{3}{5} mg + \frac{2mg}{3} \geq \frac{4a}{3} \omega_{\text{max}}^{2}$ $\frac{19g}{20a} = \omega_{\text{max}}^{2}$ $(\rightarrow), -\frac{3}{5} mg + \frac{2mg}{3} \leq \frac{4a}{3} \omega_{\text{min}}^{2}$ $\frac{g}{20a} = \omega_{\text{min}}^{2}$	Marks B1 B1 M1 A1 c.s.o. (4) B1 M1 A1 f.t. A1 M1 A1 f.t. A1 (7)	
	If only one answer, must be clear whether max or n	uin for final A1	

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6679 Mechanics				Paper: M3		
Question number Scheme				Marks		
5. (a) mass ra	cylinder (361173)	cone (12πτ³) 1	toy (48πr³) 4		B1	
dist. fro	om <i>O</i> 2 <i>r</i>	(-) r	\overline{x}		B 1	
ĺ	(3 x 2r) - r	$= 4\overline{x}$		M1 A1	
MI for If distar	clear attempt at nces not measure	$\sum mx = \bar{x}\sum m -$	$\frac{5r}{4} = \overline{x}$ $correct no. of term \\ 21M1A1 available$	ns.	A1	(5)
(b)	/ ~:_# 11	$G \text{ vertical, see}$ $\ln \theta = \frac{3r}{4r - \bar{x}}$	n or implied		M1 M1 A1	
		$\theta = 47.50 \ ($	1 d.p.)		A 1	(4)
Second	MI for use of tar	ı				
(c)	si	m Δ 's: $\frac{OX}{3r} =$	$\frac{3r}{4\pi}$ (=tan α)		M1	
	X	$\Rightarrow OX = \frac{1}{2}$	OX	į	A1 C H	s is Vo ternetives
	Z V	⇒won't	topple		A1 c.s.o.	(4)
Note the	at second M1 is in	ndependent, fo	r the general idea.			(13)
ļ						

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6679 Mechanics

Paper:	M3

Question number	Scheme	Marks	
	All M marks require correct number of terms with appropriate terms resolved.		
6.(a)	B to C: $\frac{1}{2}mv^2 - \frac{1}{2}m20^2 = mg.50(1-\sin 30^\circ)$	M1 A1	
	$v = 30 \text{ms}^{-1}(29.8)$	A1 (3)	
(b)	(\uparrow) at C, $R-mg=m\frac{890}{50}$	M1 A1 ft	
	R = 1900 N (1930 N)	A1 (3)	
(c)	$C \text{ to } D: \frac{1}{2}m890 - \frac{1}{2}mw^2 = mg.50(1 - \cos 30^\circ)$	M1 A1 ft	
	$w=28 \text{ms}^{-1}(27.5)$	A1 (3)	
(d)	Before: $R=mg c \in \Theta$	B1	
	After: $R=mg\cos\Theta+m\frac{20^2}{50}$	M1 A1	
	Change = $70.\frac{20^2}{50}$ = 560 N	A1 د.ه.ه (4)	
(e)	lower speed at $C \Rightarrow R$ reduced	M1 A1 (2)	
		(5)	

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6679 Mechanics

Paper: M3

,	JOOL 0075 17200Hames	Tuper: NZe	
Question number	Scheme	Marks	
7.(a)	$(-)\frac{21.6x}{2} = 0.3x$	M1 A1	
	-36x = x	M1	
	S.H.M., period = $\frac{2\pi}{\sqrt{36}} = \frac{\pi}{3}$	A1 c.s.o. (4)	
(b)	At A: $v = a\omega = 1.5 \text{ x } 6 = 9 \text{ ms}^{-1}$	M1 A1 (2)	
(c)	$x = a\cos\omega t$ $0.75 = 1.5 \cos 6 +$	genoon. → M1	
	$\frac{\pi}{3} = 6t \Rightarrow t = \frac{\pi}{18}$ (no decimals)	depM1 A1 (3)	
(d)	$(-)\frac{21.6x}{2} = 0.5\dot{x}$	M1 A1	
	$-21.6x = \overset{\iota_{\star}}{x} \Rightarrow \text{S.H.M.}, \ \omega = \sqrt{21.6}$	A1	
	At collision: CLM: $0.3 \times 9 = 0.5v \implies v = 5.4$	MI AI f.t.	
	$a \times \sqrt{21.6} = 5.4$	L_{M1}	
	a = 1.16 m (3SF)	A1 (7)	
		16	

MJJ. 26.5.04