1

31st January, 2024 Shift-2

EE24BTECH11063 - Y.Harsha Vardhan Reddy

Single correct					
1	Let $A(a,b)$, $B(3,4)$ and $C(-6,-8)$ respectively denote the centroid, circumcentre and orthocentro of a triangle. Then, the distance of the point $P(2a+3,7b+5)$ from the line $2x+3y-4=0$ measure parallel to the line $x-2y-1=0$ is				
	a) $\frac{15\sqrt{5}}{7}$	b) $\frac{\sqrt{5}}{17}$	c) $\frac{17\sqrt{5}}{7}$	d) $\frac{17\sqrt{5}}{6}$	
2)	The temperature $T(t)$ of a body at a time $t = 0$ is 160° F and it decreases continuously as per the differential equation $\frac{dT}{dt} = -K(T - 80)$, where K is a positive constant. If $T(15) = 120^{\circ}$ F , then $T(45)$ is equal to				
	a) 85° F	b) 95° F	c) 90° F	d) 80° F	
3	3) The area of the region enclosed by the parabolas $y = 4x - x^2$ and $3y = (x - 4)^2$ is equal to				
	a) 6	b) 4	c) $\frac{32}{9}$	d) $\frac{14}{3}$	
4	4) The number of solutions, of the equation $e^{\sin x} - 2e^{-\sin x} = 2$, is:				
	a) 1		b) 2		
	c) more than 2		d) 0		
5)	5) If for some m,n: ${}^{6}C_{m} + 2({}^{6}C_{m+1}) + {}^{6}C_{m+2} > {}^{8}C_{3}$ and ${}^{n-1}P_{3}$: ${}^{n}P_{4} = 1: 8$, then ${}^{n}P_{m+1} + {}^{n+1}P_{m}$ is equal to				
	a) 380	b) 384	c) 376	d) 372	