Numerical Analysis

June 19

2012

The aim of this assignment is to compare and analyze the behavior of different numerical methods studied in class for solving Simultaneous Linear Equations (Gaussian elimination with and without pivoting, LU Decomposition, the Jacobi and Gauss-Seidel Methods)

Solving linear system of equations

Contributors

1- Ahmed Magdy	(11)
2- Ahmed Hesham	(15)
3- Ashraf Saleh	(20)
4- A'amer Mohamed Attia	(21)
5- Raed Ahmed Selim	(35)

Table of Contents

1- Problem statement	2
2- Pseudo Code	3
a- Forward elimination pseudo code	3
b- back substitution pseudo code	4
c- forward substitution pseudo code	4
d- LUdecomposition pseudo code	5
e- LU solve pseudo code	6
f- Gauss Seidel pseudo code	6
g- Jacobi pseudo code	7
3- Analysis	8
a- Ex1	8
b- Ex2	9
c- Ex3	10
d- Ex4	11
e- Ex5	12
f- Ex6	13
4- Conclusions from analysis	14
5- Each method analysis	16
6- Data structure used	18
7 Hear Chida	10

1- Problem statement

The aim of this assignment is to compare and analyze the behavior of different numerical methods studied in class for solving Simultaneous Linear Equations (Gaussian elimination with and without pivoting, LU Decomposition, the Jacobi and Gauss-Seidel Methods)

Required

- Implementation of the above methods
- Analysis of performance for each method
- Analysis of solved examples using each method

2-Pseudo Code

a- Forward elimination pseudo code

```
Input: augmented matrix A, boolean pivoting
Output: vector x
For k = 1 \dots m:
    if pivoting = true
        //Find pivot for column k
        r max := k
        for r := k+1 \dots m do
            if abs(A[r,c]) > abs(A[r max,c]) then
                r max := r
            end if
        end for
        //swap rows
        swap rows(k, r max)
    end if
    if A[k, k] = 0
        error "Matrix is singular!"
    //Do for all rows below pivot:
    for r = k + 1 ... m:
        //Do for all remaining elements in current row:
        for c = k \dots n:
        A[r, c] :=
            A[r, c] - A[k, c] * (A[r, k] / A[k, k])
end for
```

b- back substitution pseudo code

c- forward substitution pseudo code

```
Input : coefficient matrix A , right hand side vector b Output : solution vector x  \text{nrow} := \text{size}(A)   \text{for i} = 1 \quad \text{to} \quad \text{nrow}   \text{x[i]} := \frac{b[i] - \sum_{k=1}^{i+1} x[k]*A[i,k]}{A[i,i]}  end for
```

d- LUdecomposition pseudo code

```
Input : matrix A
Output : lower matrix L , upper matrix U
//initialize L and U to zeros:
for r = 1...m
    for c = 1...n
        U[r, c] = 0
        if r = c
           L[r, c] = 1
        else
           L[r, c] = 0
    end for
end for
for k = 1 \dots m
    //Find pivot for column k
    r max := k
    for r := k+1 \dots m do
        if abs(A[r,c]) > abs(A[r max,c]) then
            r max := r
        end if
    end for
    swap rows(k, r max)
    if A[k, k] = 0
        error "Matrix is singular!"
    //Do for all rows below pivot:
    for r = k + 1 ... m:
        //set the U matrix
        L[r,k] := A[r, k] / A[k, k]
        //Do for all remaining elements in current row
        for c = k \dots n:
            U[r, c] :=
                 A[r, c] - A[k, c] * (A[r, k] / A[k, k])
```

e- LU solve pseudo code

```
Input : matrix A
output : solution vector x

L,U = LUdecomposition(A)
Z = forward substitution(L, C)
X = backward substitution(U, Z)
```

f- Gauss Seidel pseudo code

```
Input: matrix A , int MaxIteration , int maxError
Output: solution vector x
//Rearranging matrix A to be diagonally dominant:
Diagonal = rearrange(A)
If(diagonal = false)
    Error "not diagonally dominant"
While( itr < MaxIteration)</pre>
    For i = 1 to nrow
         err = 0
         \text{newX[i]} \quad \mathbf{:} = \quad \frac{b[i] - \sum_{k=1}^{i+1} x[k] * A[i,k]}{\text{Afi}}
         err = max(err , (newX[i]-x[i]) / x[i])
         newX[i] = x[i]
    end for
    if(error < maxError)</pre>
         return
    end if
end while
```

g- Jacobi pseudo code

```
Input: matrix A , int MaxIteration , int maxError
Output: solution vector x
//Rearranging matrix A to be diagonally dominant:
Diagonal = rearrange(A)
If(diagonal = false)
    Error "not diagonally dominant"
While( itr < MaxIteration)</pre>
    For i = 1 to nrow
         err = 0
         \text{newX[i]} := \frac{b[i] - \sum_{k=1}^{i+1} x[k] * A[i,k]}{A[i,i]}
         err = max(err, (newX[i]-x[i]) / x[i])
    end for
    x[1:n] = newX[1:n]
    if(error < maxError)</pre>
         return
    end if
end while
```

3- Analysis

All the analysis done in double precision R = real solution, C = calculated solution

a- Ex1

X1	X2	X3	В
0	-7	0	7
-3	2.099	6	3.901
5	-1	5	6

R	
0	
-1	
1	

Method	X	Error = $\frac{ R-C }{R}$	Time ms
Gaussian	X1		
Elimination	X2 Can't be solved		
	X3		
Pivoting	X1 0.0	0%	
	X2 -1.000000000000002	≈ 0%	0.029434
	X3 1.0	0%	
LU	X1 0.0	0%	
decomposition	X2 -1.000000000000002	≈ 0%	0.878948
	X3 1.0	0%	
Jacobi	X1 ∞		
	X2 ∞		0.028981
	X3 -∞		
	after 3 iterations, $X0 = [1, 0, 0]$	0]T, accuracy = 0	0.01
Gauss-seidel	X1 ∞		
	X2 ∞		0.017208
	X3 NaN		
	After 2 iterations, $X0 = [1, 0, 0]$	0]T, accuracy =	0.01

LU inverse	-0.052365079	-0.1111111112	0.1333333336
	-0.1428571428	0.0	0.0
	0.02379365079	0.11111111112	0.0666666667
	executed in 0.878948 n	ns	

b- Ex2

X1	X2	X3	В
3	7	13	76
1	5	3	28
12	3	-5	1

R	
1	
3	
4	

Method	X		$Error = \frac{ R - C }{R}$	Time ms
Gaussian	X1	1.0	0%	
Elimination	X2	2.9999999999999	1.3 * 10 ⁻⁹ %	0.017208
	X3	4.0	0%	
Pivoting	X1	0.9999999999994	6 * 10 ⁻⁹ %	
	X2	3.000000000000013	$4.3 * 10^{-9} \%$	0.029434
	X3	3.99999999999996	1 * 10 ⁻⁸ %	
LU	X1	1.0	0%	
decomposition	X2	3.0	0%	0.187473
	X3	4.0	0%	
Jacobi	X1	3.101564760026298	210.156%	
	X2	6.977100591715977	132.57%	0.037132
	X3	-4.588934911242604	214.72%	
	afte	r 5 iterations, X0 = [1, 0, 0]]T, accuracy = 0.3	
Gauss-seidel	X1	2.6460442691211923	164.6%	
	X2	7.82787201402586	160.929%	0.026717
	X3	-4.748710531195739	218.7%	
	afte	x = 4 iterations, $x = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =$]T, accuracy $= 0.3$	3

	executed in 0.187473 n	ns	
	0.102517985611	-0.13489208633	-0.01438848920
	-0.07374100719	0.307553956834	-0.00719424460
LU inverse	0.06115107913	-0.13309352517	0.07913669064

X1	X2	X3	В
12	3	-5	1
1	5	3	28
3	7	13	76

R	l
1	
3	
4	

Method	X		$Error = \frac{ R - C }{R}$	Time ms
Gaussian	X1	0.9999999999994	6 * 10 ⁻⁹ %	
Elimination	X2	3.000000000000013	$4.3 * 10^{-9} \%$	0.016754
	X3	3.9999999999999	$2.5 * 10^{-10} \%$	
Pivoting	X1	0.9999999999994	$6*10^{-9}\%$	
	X2	3.000000000000013	$4.3 * 10^{-9} \%$	0.016755
	X3	3.9999999999996	$1*10^{-7}$ %	
LU	X1	1.0	0%	
decomposition	X2	3.0	0%	0.16936
	X3	4.0	0%	
Jacobi	X1	1.010834976988823	1.083%	
	X2	2.8069822485207103	6.433%	0.039397
	X3	3.7172781065088754	7.06%	
	afte	r 5 iterations, X0 = [1, 0, 0]]T, accuracy = 0.3	
Gauss-seidel	X1	0.9318101976530846	6.81%	
	X2	3.0356901022789216	1.189%	0.032604
	X3	3.9965183608529458	0.087%	
	afte	r 5 iterations, X0 = [1, 0, 0]]T, accuracy = 0.3	

LU inverse	0.07913669064	-0.13309352517	0.06115107913
	-0.0071942446	0.307553956834	-0.0737410071
	-0.01438848920	-0.13489208633	0.1025179856
	executed in 0.16936 ms	S	

d- Ex4

X1	X2	X3	В
1	1	1	3
2	3	4	9
1	7	1	9

R	
1	
1	
1	

Method	X	$Error = \frac{ R - C }{R}$	Time ms
Gaussian	X1 1.0	0%	
Elimination	X2 1.0	0%	0.016755
	X3 1.0	0%	
Pivoting	X1 1.0	0%	
	X2 1.0	0%	0.029434
	X3 1.0	0%	
LU	X1 1.0	0%	
decomposition	X2 1.0	0%	0.128152
	X3 1.0	0%	
Jacobi	X1 -∞		
	X2 -∞		1.945823
	X3 -∞		
	after 561 iterations, $X0 = [1, 0]$, 0]T, accuracy	= 0.01
Gauss-seidel	X1 NaN		
	X2 NaN		0.704155
	X3 NaN		
	after 391 iterations, $X0 = [1, 0]$, 0]T, accuracy	= 0.01

LU inverse	2.08333333335	-0.5	-0.083333331
	-0.1666666669	0.0	0.166666666
	-0.9166666667	0.5	-0.083333334
	executed in 0.128152 n	ns	

X1	X2	X3	В
5	2	3	3
2	5	3	10
2	3	5	11

R
$-\frac{61}{60} = -1.0167$
$\frac{79}{60} = 1.3167$
$\frac{109}{60} = 1.8167$

Method	X	Error = $\frac{ R-C }{R}$	Time ms
Gaussian	X1 -1.0166666666666667	0%	
Elimination	X2 1.316666666666669	0%	0.010868
	X3 1.816666666666669	0%	
Pivoting	X1 -1.016666666666667	0%	
	X2 1.316666666666669	0%	0.020378
	X3 1.816666666666669	0%	
LU	X1 -1.01666666666668	0%	
decomposition	X2 1.31666666666669	0%	0.129963
	X3 1.8166666666666667	0%	
Jacobi	X1 Out of memory		
	X2 Out of memory		
	X3 Out of memory		
	after iterations, $X0 = [1, 0,$	0]T, accuracy =	0.01
Gauss-seidel	X1 -1.0183261229154303	0.16%	
	X2 1.3292976988264855	0.959%	0.009962
	X3 1.8097518298702808	0.38%	
	after 7 iterations, $X0 = [1, 0, 0]$	$\overline{0]T}$, accuracy = 0	0.01

LU inverse	0.26666666667	-0.016666666663	-0.15
	-0.066666666667	0.31666666665	-0.15
	-0.066666666667	-0.18333333338	0.350000003
	executed in 0.129963 n	ns	_

f- Ex6

X1	X2	X3	В
6	2	3	5
2	5	3	10
2	3	5	11

R
$-\frac{61}{76} = -0.8$
$\frac{24}{19} = 1.26$
$\frac{67}{38} = 1.76$

Method	X	Error = $\frac{ R-C }{R}$	Time ms	
Gaussian	X1 -0.8026315789473685	0%		
Elimination	X2 1.2631578947368423	0%	0.016755	
	X3 1.763157894736842	0%		
Pivoting	X1 -0.8026315789473685	0%		
	X2 1.2631578947368423	0%	0.020831	
	X3 1.763157894736842	0%		
LU	X1 -0.8026315789473685	0%		
decomposition	X2 1.2631578947368423	0%	0.169812	
	X3 1.763157894736842	0%		
Jacobi	X1 -0.6896163396177828	14%		
	X2 1.3920821814269844	10.2%	0.025812	
	X3 1.8920819971987175	7.3%		
	after 30 iterations, $X0 = [1, 0, 0]T$, accuracy = 0.2			
Gauss-seidel	X1 -0.80203377777778	0.07%		
	X2 1.3402183111111111	6.1%	0.004528	
	X3 1.7166825244444446	2.6%		
	after 5 iterations, $X0 = [1, 0, 0]T$, accuracy = 0.2			

LU inverse	0.21052631578	-0.0131578947	-0.1184210526
	-0.0526315789	0.31578947368	-0.1578947368
	-0.0526315789	-0.1842105263	0.34210526315
	executed in 0.169812 ms		

4- Conclusions from analysis

1- From ex1

a. Partial pivoting avoids division by zero

2- From ex2 to ex6

- a. Partial pivoting decreases round off error
- b. Partial pivoting solution nearly equal to forward elimination solution
- c. Forward elimination executes faster than partial pivoting

3- From ex1 to ex6

- a. LU solves all the matrices
- b. All matrices as notice have AA-1 = 1 property and we can get A-1 by using LU decomposition as shown in the examples
- c. LU is slower than forward elimination and partial pivoting but more accurate than both

4- From ex1, ex2, ex4

- a. Gauss and Jacobi failed to converge because the matrices are not strictly diagonal matrix SDD
 - SDD for Matrix A means this:

$$|a_{ii}| \ge \sum_{\substack{j=1\\j!=i}}^{n} |a_{ij}| \& |a_{ii}| > \sum_{\substack{j=1\\j!=i}}^{n} |a_{ij}| \text{ for at least one}$$

5- From ex3

a. The matrix is in SDD format so Gauss and Jacobi converge to true solution with reasonable error as

$$|a_{ii}| > \sum_{\substack{j=1\\j!=i}}^{n} |a_{ij}|$$
 for all i

6- From ex5

- a. When the matrix is DD only
 - Jacobi overflows the memory and terminates with no solution
 - Gauss converge with reasonable error
 - Diagonal Dominant matrix DD means that

$$|a_{ii}| = \sum_{\substack{j=1 \ j \, ! = i}}^{n} |a_{ij}| \quad for \ all \ i$$

7- From ex6

- a. When the matrix SDD Gauss and Jacobi converges to true solution with reasonable error
- 8- So for Gauss and Jacobi when matrix SDD then Gauss and Jacobi tends to converge but if the matric DD then Gauss and Jacobi probably converge or not while if matrix not SDD then Gauss and Jacobi doesn't converge at all

5- Each method analysis

No. of Equations Vs Time (ms)

Gaussian Elimination

Jacobi and Gauss Seidel

LU Decomposition

No. of Equations Vs Time (ms) and number of B's is the same as the number of equations

Comment:

Gaussian Elimination takes more time and to solve higher order of equations takes much time in comparison to other methods. Other methods have a linear order and Gaussian Elimination has a quadratic and that's the same as the result that was concluded in theoretical analysis.

6- Data structure used

1- Arrays

Array gives a better performance and time.

2- ArrayList

ArrayList gives a bit better performance and time and it's extendable.

3- LinkedList

LinkedList gives less performance but it's extendable and we used to save things and not to operate on its content.

7-User Guide

How to run?!!

- 1- Set the # Eqns to the number of equations you have in the system
- 2- Choose the appropriate method to solve with
- 3- Set the rest of the fields according to this table

Method	Appropriate fields to set	
	Pivoting: use pivoting or not	
Gaussian	Precession field: ignore	
Elimination	MaxIt field: ignore	
	# B : ignore	
	Pivoting: ignore	
LUDacamacitica	Precession field : ignore	
LU Decomposition	MaxIt field: ignore	
	#B : you can set number of solutions	
	Pivoting: ignore	
Jacobi/Gauss-	Precession field : set precession	
Seidel	MaxIt field: set max number of iterations	
	# B : ignore	

- 4- Choose either to Load from file or Insert into table
- 5- Choose the precision double is default can be overridden with float
- 6- Click **next** after setting everything and it will take you to the tabulated data like the figure below

7- Click **next** again to see the solution in a window like the figure below

8- Keep in mind that for Jacobi or Gauss-Seidel there is output file to show the iterations performed