Alphabet: A finite nonempty set of symbols eg

 $U = \{1\} \text{ or } \{0\} \text{ Unary }$

 $B = \{0,1\}$ Binary (will be our default alphabet)

 $D = \{0, 1, 2, ..., 9\}$ Decimal etc

Strings over an alphabet Σ : finite sequence x = (x1, x2, ..., xn) of symbols of Σ ie $xi \in \Sigma$. |x| = n – length of the string x. |x| may be zero for the empty string $\varepsilon = ()$ – a string over any alphabet.

Concatenation: If x = (x1, x2, ..., xm) and y = (y1, y2, ..., yn) then the concatenation of x and y is x o y or xy = (x1, x2, ..., xm, y1, y2, ..., yn). Clearly concatenation is associative (not commutative), |xy| = |x| + |y|, and $x \in x = x$.

Powers of a string : $x^0 = \varepsilon$, $x^1 = x$, $x^2 = xx$, $x^3 = x^2 x$ = $x x^2$ etc. Reversal: For x = (x1, x2, ..., xn), the reversal is the string $x^R = (xn, ..., x2, x1)$. X is a palindrome if $x = x^R$. $x x^R$ is an even palindrome or a palindrome of even length.

Set of all strings over Σ is denoted by Σ^* .

Language : A language L over Σ is a subset of Σ^* ie a set of strings over Σ .

Special Languages : φ , Σ^* , $\{\epsilon\}$ often denoted by ϵ . For a ϵ Σ , a can denote the symbol, or can denote the string of length 1 consisting of the single symbol a, or even the language $\{a\}$ (the meaning depends on the context).

Concatenation of Languages: For languages L1, L2 the concatenation L1 L2 is defined by L1 L2 = $\{w1\ w2\ |\ w1\ \in L1,\ w2\ \in L2\}$. Concatenation is associative and so we can define the powers: L^0 is ϵ , L^1 is L, L^2 is L L, L^3 is L^2 L or L L^2 etc.

We define the Kleene star operation $L^* = L^0 U L^1 U L^2 U L^3 U$ and $L^+ = L U L^2 U L^3 Hence <math>L^* = L^+ U \{\epsilon\}$ and $L^* = L^+$ iff $\epsilon \in L$.

Since languages are sets we have the operations L^c , L1 U L2, L1 \cap L2, L1 - L2 (= L1 \cap L2^c). L^R will denote {w^R | w \in L}.

Note that if $\Sigma 1$ is a subset of $\Sigma 2$, any string over $\Sigma 1$ is a string over $\Sigma 2$. Hence if L1 is a language over $\Sigma 1$ and L2 is a language over $\Sigma 2$, for the binary operations L1 U L2, L1 \cap L2 etc both L1, L2 are taken to be languages over $\Sigma 1$ U $\Sigma 2$.

Some examples of languages are Σ^* , φ , ε , a for $a \in \Sigma$, Σ , Σ^2 , Σ^3 ,..., $\{0^n1^n \mid n \ge 0\}$ $\{w \in \{0,1\}^* \mid no \text{ of } 0\text{ 's = no of 1's ie n0(w) = n1(w)}\}$, $\{0^n \mid n \text{ is a perfect square}\}$,

the set of binary strings which represent numbers which are 1 mod 4 ie {1, 101, 1001, 1101, 10001...}