

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 4.3.1 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА

Автор: Чикин Андрей Павлович Б05-304 **Цель работы**: исследовать являения дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

Установка

Рис. 1: Схема установки для наблюдения дифракции Френеля

 \mathbf{M} – микроскоп.

 Π – плоскость фокуса микроскопа.

 O_1 – линза с ф.р. f_1 .

 Π – лампа.

C – монохроматор.

 S_1, S_2 – щели.

Суммарная ширина m зон Френеля:

$$z_m = \sqrt{am\lambda} \tag{1}$$

Число Френеля:

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}} \tag{2}$$

Волновой параметр:

$$p = \frac{1}{\Phi^2} \tag{3}$$

А. Дифракция Френеля

Условие наблюдения дифракции:

$$\Phi \gtrsim 1$$
 (4)

Пусть m — число зон Френеля, укладывающихся на полуширине щели, тогда будет видно n=m-1 темных полос.

Б. Дифракция Фраунгофера на щели

Рис. 2: К фазовым соотношениям при дифракции Фраунгофера

$$\Delta \approx D\theta \tag{6}$$

Рис. 3: Схема установки для наблюдения дифракции Фраунгофера на щели

K схеме A добавляется линза O_2 с фокусным расстоянием f_2 .

Рис. 4: Распределение интенсивности при дифракции Фраунгофера на щели

$$X \approx f_2 \theta$$
 (7)

Положения темных полос:

$$\theta_m = \frac{m\lambda}{D}, \quad m \in \mathbb{N}$$
 (8)

$$X_m \approx m \frac{f_2 \lambda}{D} \tag{9}$$

В. Дифракция Фраунгофера на двух щелях

От схемы Б.

 S_2 заменяем на экран \Im с двумя щелями.

Положения темных полос:

$$\theta_m = m \frac{\lambda}{d} \tag{10}$$

$$X_m = m \frac{\lambda f_2}{d} \tag{11}$$

$$\delta X = \frac{\lambda f_2}{d} \tag{12}$$

Кол-во полос в главном максимуме:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta X} = 2\frac{d}{D} \tag{13}$$

Условие наблюдения дифракции:

$$b \leqslant f_1 \frac{\lambda}{d} \tag{14}$$

b — ширина входной щели S.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Рис. 5: Схема установки для исследования разрешающей способности оптического инструмента

От схемы Б.

 S_1 заменяем на экран \Im с двумя щелями.

$$\varphi = \frac{d}{f_1} \tag{15}$$

$$l = \varphi f_2 = d \frac{f_2}{f_1} \tag{16}$$

Рис. 6: Критерий разрешения по Рэлею

$$\varphi = \frac{\lambda}{D_0} = \frac{l}{f_2} = \frac{d}{f_1} \tag{17}$$

Теоретическая часть

Ход работы

Выводы