МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студентка гр. 3343	Ермолаева В. А.
Преподаватель	Иванов Д. В.

Санкт-Петербург 2023

Цель работы

Изучить принцип работы машины Тьюринга и научиться его применять для решения задач.

Задание

Вариант 3.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}. Напишите программу, которая заменяет в исходной строке символ, предшествующий первому встретившемуся символу 'c' на символ, следующий за первым встретившимся символом 'a'. Если первый встретившийся символ 'a' в конце строки, то используйте его в качестве заменяющего.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

- a
- b
- C
- " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
- 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчет включите таблицу состояний. Отдельно кратко опишите каждое состояние, например:

q1 - начальное состояние, которое необходимо, чтобы найти первый встретившийся символ 'c'.

Выполнение работы

Таблица состояний машины Тьюринга представлена в табл. 1.

Таблица 1 – Состояния машины Тьюринга

таолица 1 — Состояния машины тьюринга					
Состояние	a	b	С	" "	
q1	"a", "R", "q2"	"b", "R", "q1"	"c", "R", "q1"	" ", "R", "q1"	
q2	"a", "L", "q6"	"b", "L", "q3"	"c", "L", "q9"	" ", "L", "q12"	
q3	"a", "L", "q3"	"b", "L", "q3"	"c", "L", "q3"	" ", "R", "q4"	
q4	"a", "R", "q4"	"b", "R", "q4"	"c", "L", "q5"	" ", "R", "qT"	
q5	"b", "N", "qT"	"b", "N", "qT"	"b", "N", "qT"	"b", "N", "qT"	
q6	"a", "L", "q6"	"b", "L", "q6"	"c", "L", "q6"	" ", "R", "q7"	
q 7	"a", "R", "q7"	"b", "R", "q7"	"c", "L", "q8"	" ", "R", "qT"	
q8	"a", "N", "qT"	"a", "N", "qT"	"a", "N", "qT"	"a", "N", "qT"	
q 9	"a", "L", "q9"	"b", "L", "q9"	"c", "L", "q9"	" ", "R", "q10"	
q10	"a", "R", "q10"	"b", "R", "q10"	"c", "L", "q11"	" ", "R", "qT"	
q11	"c", "N", "qT"	"c", "N", "qT"	"c", "N", "qT"	"c", "N", "qT"	
q12	"a", "L", "q12"	"b", "L", "q12"	"c", "L", "q12"	" ", "R", "q13"	
q13	"a", "R", "q13"	"b", "R", "q13"	"c", "L", "q14"	" ", "R", "qT"	
q14	"a", "N", "qT"	"a", "N", "qT"	"a", "N", "qT"	"a", "N", "qT"	

Описание состояний:

- q1 начальное положение, поиск первого символа а
- q2 найден символ следующий за первым встретившимся символом а
- q3 предшествующим был символ b, возвращение в начало ленты
- q4 поиск символа с
- q5 заменяется символ, предшествующий символу c, на b
- q6 предшествующим был символ a, возвращение в начало ленты

- q7 поиск символа с
- q8 заменяется символ, предшествующий символу с, на а
- q9 предшествующим был символ с, возвращение в начало ленты
- q10 поиск символа с
- q11 заменяется символ, предшествующий символу с, на с
- q12 предшествующим был символ " ", возвращение в начало ленты
- q13 поиск символа с
- q14 заменяется символ, предшествующий символу с, на а

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	abcabc	abcabc	Выходные данные
			соответствуют ожиданиям.
2.	cbbaa	acbbaa	Выходные данные
			соответствуют ожиданиям.
3.	aaaaaabc	aaaaaaac	Выходные данные
			соответствуют ожиданиям.

Выводы

В ходе выполнения лабораторной работы были изучены и освоены необходимые навыки для создания машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
table = {
"q1" : {"a": ["a", "R", "q2"], "b": ["b", "R", "q1"], "c": ["c", "R", "q1"], " ": [" ", "R", "q1"]},
"q2" : {"a": ["a", "L", "q6"], "b": ["b", "L", "q3"], "c": ["c", "L", "q9"], " ": [" ", "L", "q12"]},
"q3" : {"a": ["a", "L", "q3"], "b": ["b", "L", "q3"], "c": ["c", "L", "q3"], " ": [" ", "R", "q4"]},
"q4" : {"a": ["a", "R", "q4"], "b": ["b", "R", "q4"], "c": ["c", "L", "q5"], " ": [" ", "R", "qT"]},
"q5" : {"a": ["b", "N", "qT"], "b": ["b", "N", "qT"], "c": ["b", "N", "qT"], "c": ["b",
"q6" : {"a": ["a", "L", "q6"], "b": ["b", "L", "q6"], "c": ["c", "L", "q6"], " ": [" ", "R", "q7"]},
"q7" : {"a": ["a", "R", "q7"], "b": ["b", "R", "q7"], "c": ["c", "L", "q8"], " ": [" ", "R", "qT"]},
"q8" : {"a": ["a", "N", "qT"], "b": ["a", "N", "qT"], "c": ["a", "N", "qT"], "c": ["a",
"q9" : {"a": ["a", "L", "q9"], "b": ["b", "L", "q9"], "c": ["c", "L", "q9"], " ": [" ", "R", "q10"]},
"q10" : {"a": ["a", "R", "q10"], "b": ["b", "R", "q10"], "c": ["c", "L", "q11"], " ": [" ", "R", "qT"]},
"q11" : {"a": ["c", "N", "qT"], "b": ["c", "N", "qT"], "c": ["c", "N", "qT"], "c": ["c", "N", "qT"]],
                                                                                                                       "N", "aT"], "c": ["c",
"q12" : {"a": ["a", "L", "q12"], "b": ["b", "L", "q12"], "c": ["c", "L", "q12"], " ": [" ", "R", "q13"]},
"q13" : {"a": ["a", "R", "q13"], "b": ["b", "R", "q13"], "c": ["c", "L", "q14"], " ": [" ", "R", "qT"]},
"q14" : {"a": ["a", "N", "qT"], "b": ["a", "N", "qT"], "c": ["a", "N", "qT"], " ": ["a", "N", "qT"]},
memory = list(input())
state = "q1"
states = [state]
index = 0
while state != "qT":
symbol = memory[index]
new_symbol, delta, state = table[state][symbol]
memory[index] = new_symbol
if delta == "R":
index += 1
elif delta == "L":
index -= 1
print("".join(memory))
```