Model Evaluation

Contents

Overview
Overall Model
Transformation of Response Variable
Evaluate the Fit of the Model
TELEVOTE MODEL
Transformation of Response Variable
Evaluate the Fit of the Model
JURY MODEL
Transformation of Response Variable
Evaluate the Fit of the Model
Overview
This section evaluates the fit of the model's using the car package MLR requires the residuals to be \sim IID N(0, sigma^2) the residuals will be standardized for the assessment Normality Assumptions will be accessed using: i. Normality tests from the nortest package ii. Visualizations such as histograms, QQ-plots, Residual Plots and Add Variable Plots Constant Variance will be accessed using: i. non-constant variance test Multicollinearity will be accessed using: i. Variance inflation factors Outliers will be accessed using: i. Cooks Distance
<pre># load relevant libraries library(rmarkdown) library(knitr) library(car)</pre>
Loading required package: carData
library(MASS) library(nortest) library(lmtest)
<pre>## Loading required package: zoo ##</pre>
Attaching package: 'zoo'

```
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
##
       select
## The following object is masked from 'package:car':
##
##
       recode
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
#-- Data --#
# load in the historic voting data for deriving the voting blocs
processed_data <- read.csv(file = "./data/processed_data.csv", header = T)</pre>
# split the televote data
televote_data <- processed_data %>% filter(Voting_Method_J == 0)
# split out the jury vote data
jury_data <- processed_data %>% filter(Voting_Method_J == 1)
```

Overall Model

```
# load final overall model
my_model_overall <- readRDS("./models/overall_final_model.RDS")
# extract out the model coefficients
overall_model_coeff <- names(my_model_overall$coefficients)[-1]
# recreate the model formula
overall_final_model_form<- as.formula(paste('Points ~', paste(overall_model_coeff, collapse = ' + ')))
# generate model summary
summary(my_model_overall)

##
## Call:
## lm(formula = overall_final_model_form, data = processed_data)
##</pre>
```

```
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -9.5505 -2.3301 -0.2858 2.1846 7.8517
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     3.7244
                                0.6169 6.037 2.64e-09 ***
## Average_Points
                     0.4798
                                0.1253
                                         3.830 0.000141 ***
## acousticness
                     0.6959
                                0.1302
                                         5.344 1.26e-07 ***
## speechiness
                     0.6973
                                0.1362
                                         5.119 4.05e-07 ***
## METRIC_Citizens
                     0.3251
                                0.1399
                                         2.324 0.020438 *
## TC_PerfType_Solo
                                         2.568 0.010457 *
                     1.4412
                                0.5613
                                0.4516
                                        2.861 0.004353 **
## key_0
                     1.2923
## CAP_DIST_km
                                0.1280 2.309 0.021260 *
                     0.2956
## OOA
                     1.2837
                                0.4512
                                         2.845 0.004579 **
## FC_NonCOB
                     0.3604
                                0.1391
                                         2.592 0.009766 **
## ComSONGLAN
                     0.2760
                                0.1287
                                         2.145 0.032338 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 3.074 on 647 degrees of freedom
## Multiple R-squared: 0.1762, Adjusted R-squared: 0.1635
## F-statistic: 13.84 on 10 and 647 DF, p-value: < 2.2e-16
```

Transformation of Response Variable

```
# Apply box-cox transformation on the model to improve the normality assumptions
# box-cox transformation using car
bct <- MASS::boxcox(object = my_model_overall)</pre>
```



```
# find optimal box-cox power transformation power
p \leftarrow bct$x[which.max(x = bct$y)]
# transform points using the optimal power transformation
bctPoints <- (((processed_data$Points)^p) - 1)/(p)</pre>
# recreate the model formula
overall_final_model_bct_form<- as.formula(paste('bctPoints ~', paste(overall_model_coeff, collapse = '</pre>
# refit final model with with box-cox power transformation
my_model_overall <- lm(formula = overall_final_model_bct_form, data = processed_data)</pre>
# generate model summary
summary(my_model_overall)
##
## Call:
## lm(formula = overall_final_model_bct_form, data = processed_data)
##
## Residuals:
##
                1Q
                    Median
                                        Max
   -4.7417 -1.0276 0.0449
                            1.1112 3.3083
##
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
                                 0.29239
                                            5.856 7.55e-09 ***
## (Intercept)
                      1.71220
## Average_Points
                      0.20209
                                 0.05938
                                            3.403 0.000706 ***
## acousticness
                      0.34061
                                 0.06173
                                            5.518 4.96e-08 ***
## speechiness
                      0.33666
                                 0.06456
                                            5.215 2.48e-07 ***
```

1.851 0.064672 .

0.06630

0.12269

METRIC_Citizens

```
## TC_PerfType_Solo 0.69660
                                0.26601
                                          2.619 0.009035 **
                     0.65422
                                0.21405
                                          3.056 0.002332 **
## key_0
## CAP DIST km
                     0.12426
                                0.06069
                                          2.048 0.041007 *
## 00A
                     0.62781
                                0.21385
                                          2.936 0.003446 **
## FC_NonCOB
                     0.18387
                                0.06591
                                          2.790 0.005428 **
## ComSONGLAN
                     0.14046
                                0.06099
                                          2.303 0.021585 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.457 on 647 degrees of freedom
## Multiple R-squared: 0.169, Adjusted R-squared: 0.1562
## F-statistic: 13.16 on 10 and 647 DF, p-value: < 2.2e-16
```

Evaluate the Fit of the Model

```
# create standardize residuals
sresid <- studres(my_model_overall)
# Residual vs fits plot
plot(x = my_model_overall$fitted.values, y = sresid, main = "Standardised Residuals vs Fitted Values", #
# add red horizontal line through y-axis 0
abline(h = 0, col = "red")</pre>
```

Standardised Residuals vs Fitted Values

QQ Plot

[1] 241 487

leverage plots
leveragePlots(my_model_overall)

Leverage Plots

Added variable Plots
avPlots(my_model_overall)

Added-Variable Plots

Residual Plots
residualPlots(my_model_overall)

Test stat Pr(>|Test stat|)

##

```
## Average_Points
                       2.2247
                                      0.026443 *
## acousticness
                       0.5338
                                       0.593682
## speechiness
                                       0.671259
                      -0.4246
## METRIC_Citizens
                      -2.7460
                                      0.006201 **
## TC_PerfType_Solo
                       0.7835
                                       0.433605
## key_0
                       0.5665
                                      0.571238
## CAP_DIST_km
                       1.8086
                                       0.070981 .
## OOA
                      -2.4388
                                       0.015004 *
## FC_NonCOB
                      -2.2184
                                       0.026874 *
## ComSONGLAN
                                       0.199719
                       1.2837
## Tukey test
                      -0.0599
                                      0.952216
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Cook's D plot
# identify D values > 4/(n-k-1)
cutoff <- 4/((nrow(processed_data)-length(my_model_overall$coefficients)-2))</pre>
# Crooks Distance plot
plot(my_model_overall, which = 4, cook.levels = cutoff)
```



```
# Influence Plot
influencePlot(my_model_overall, id.method = "identify", main = "Influence Plot", sub = "Circle size is :
## Warning in plot.window(...): "id.method" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "id.method" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## Warning in box(...): "id.method" is not a graphical parameter
## Warning in title(...): "id.method" is not a graphical parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "id.method" is not a
## graphical parameter
```

Influence Plot

Circle size is proportial to Cook's Distance

Normality Test Ho: The data is normally distributed Ha: the data is not normally distributed

```
# Normality Test
shapiro.test(sresid)

##
## Shapiro-Wilk normality test
##
## data: sresid
## W = 0.99127, p-value = 0.0006293

ad.test(sresid)

##
## Anderson-Darling normality test
##
```

cvm.test(sresid)

data: sresid

A = 1.173, p-value = 0.004584

##

```
## Cramer-von Mises normality test
##
## data: sresid
## W = 0.16383, p-value = 0.01564
lillie.test(sresid)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: sresid
## D = 0.032825, p-value = 0.08898
pearson.test(sresid)
##
## Pearson chi-square normality test
##
## data: sresid
## P = 37.024, p-value = 0.04352
sf.test(sresid)
##
## Shapiro-Francia normality test
##
## data: sresid
## W = 0.99178, p-value = 0.001487
# the data is not normally distributed
# Histogram of residuals
hist(sresid, freq = FALSE, main = "Distribution of Standardised Residuals", ylim = c(0,0.4), xlim = c(
xfit <- seq(min(sresid, na.rm = TRUE), max(sresid, na.rm = TRUE), length = 40)
yfit <- dnorm(xfit)</pre>
lines(xfit, yfit)
```

Distribution of Standardised Residuals

QQ-plot of the data
qqPlot(my_model_overall, ylab = "Standardised Residuals", main = "QQ-Plot of Overall Model Standardised

QQ-Plot of Overall Model Standardised Residuals

[1] 241 487

Non-Constant Error Variance Test

Non-Constant Error Variance Test Ho: constant error variance Ha: Non-constant error Variance

```
ncvTest(my_model_overall)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.03663296, Df = 1, p = 0.84821

bptest(my_model_overall)

##
## studentized Breusch-Pagan test
##
## data: my_model_overall
## BP = 12.715, df = 10, p-value = 0.2401

## plot studentized residuals vs. fitted values
spreadLevelPlot(my_model_overall, main = "Spread-Level Plot for Overall Model")
```

Spread-Level Plot for Overall Model

Suggested power transformation: 1.282955

Variance Inflation Factors vif(my_model_overall)

	A D : .		1 .	MEMBER OF THE
##	${ t Average_Points}$	acousticness	speecniness	METRIC_Citizens
##	1.091139	1.179141	1.289927	1.360161
##	TC_PerfType_Solo	key_0	CAP_DIST_km	AOO
##	1.104542	1.246838	1.139690	1.188927
##	FC_NonCOB	ComSONGLAN		
##	1.344230	1.150996		

sqrt(vif(my_model_overall)) > 2

##	Average_Points	acousticness	speechiness	METRIC_Citizens
##	FALSE	FALSE	FALSE	FALSE
##	TC_PerfType_Solo	key_0	CAP_DIST_km	AOO
##	FALSE	FALSE	FALSE	FALSE
##	FC_NonCOB	ComSONGLAN		
##	FALSE	FALSE		

TELEVOTE MODEL

```
# load final televote model
my_model_tele <- readRDS("./models/televote_final_model.RDS")</pre>
# extract out the model coefficients
tele_model_coeff <- names(my_model_tele$coefficients)[-1]</pre>
# recreate the model formula
televote_final_model_form<- as.formula(paste('Points ~', paste(tele_model_coeff, collapse = ' + ')))</pre>
# generate model summary
summary(my model tele)
##
## Call:
## lm(formula = televote_final_model_form, data = televote_data)
## Residuals:
      Min
               10 Median
                               30
## -7.3561 -1.9688 -0.0461 1.7443 6.7011
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    5.1314 0.3466 14.806 < 2e-16 ***
## METRIC_Citizens 0.5344
                               0.1555 3.436 0.000668 ***
                               0.1607 5.057 7.22e-07 ***
## Average_Points
                    0.8126
## TC_NumNeigh
                    0.7464
                             0.1742 4.286 2.42e-05 ***
## speechiness
                    0.5175
                               0.1656 3.125 0.001943 **
## acousticness
                    0.4804
                               0.1681 2.858 0.004550 **
## FC NonCitzens
                    0.6452
                               0.1767
                                       3.652 0.000304 ***
## VBlocs1_TC_13
                               2.1841 -3.121 0.001968 **
                   -6.8165
## 00A
                    0.8913
                               0.6028 1.479 0.140203
                               0.1726 1.755 0.080254 .
## CAP_DIST_km
                    0.3029
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 2.772 on 317 degrees of freedom
## Multiple R-squared: 0.3384, Adjusted R-squared: 0.3196
## F-statistic: 18.02 on 9 and 317 DF, p-value: < 2.2e-16
```

Transformation of Response Variable

```
# Apply box-cox transformation on the model to improve the normality assumptions
# box-cox transformation using car
bct <- boxCox(object = my_model_tele)</pre>
```

Profile Log-likelihood


```
# find optimal box-cox power transformation power
p \leftarrow bct$x[which.max(x = bct$y)]
# transform points using the optimal power transformation
bctPoints <- (((televote_data$Points)^p) - 1)/(p)</pre>
# recreate the model formula
televote_final_model_bct_form <- as.formula(paste('bctPoints ~', paste(tele_model_coeff, collapse = ' +</pre>
# refit final model with with box-cox power transformation
my_model_tele <- lm(formula = televote_final_model_bct_form, data = televote_data)
# generate model summary
summary(my_model_tele)
##
## Call:
## lm(formula = televote_final_model_bct_form, data = televote_data)
##
## Residuals:
##
                1Q Median
  -4.6127 -1.0874 0.0907
                            1.1155 3.5345
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
```

0.20088 13.708 < 2e-16 ***

3.116 0.002000 **

4.725 3.47e-06 ***

4.446 1.21e-05 ***

3.163 0.001711 **

0.09013

0.09313

0.10095

0.09599

(Intercept)

TC_NumNeigh

speechiness

Average_Points

METRIC_Citizens 0.28085

2.75365

0.44003

0.44883

0.30365

```
## acousticness
                   0.28053
                              0.09743
                                        2.879 0.004257 **
## FC_NonCitzens
                   0.35982
                              0.10241
                                        3.514 0.000506 ***
## VBlocs1_TC_13
                              1.26592
                  -3.80137
                                       -3.003 0.002888 **
                   0.52110
## 00A
                              0.34938
                                        1.492 0.136818
## CAP DIST km
                   0.19110
                              0.10006
                                        1.910 0.057054 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.607 on 317 degrees of freedom
## Multiple R-squared: 0.3246, Adjusted R-squared: 0.3054
## F-statistic: 16.92 on 9 and 317 DF, p-value: < 2.2e-16
```

Evaluate the Fit of the Model

```
# create standardize residuals
sresid <- studres(my_model_tele)
# Residual vs fits plot
plot(x = my_model_tele$fitted.values, y = sresid, main = "Standardised Residuals vs Fitted Values", xla
# add red horizontal line through y-axis 0
abline(h = 0, col = "red")</pre>
```

Standardised Residuals vs Fitted Values


```
# Assessing Outliers
# Bonferonni p-value for most extreme obs
outlierTest(my_model_tele)
```

```
## No Studentized residuals with Bonferroni p < 0.05  
## Largest |rstudent|:  
## rstudent unadjusted p-value Bonferroni p  
## 56 -2.970711  
0.0031989  
NA
```

```
#qq plot for studentized residuals
qqPlot(my_model_tele, main = "QQ Plot")
```

QQ Plot

[1] 38 56

leverage plots
leveragePlots(my_model_tele)

Added variable Plots
avPlots(my_model_tele)

Residual Plots
residualPlots(my_model_tele)


```
2.378e-05 ***
## METRIC_Citizens
                   -4.2900
## Average_Points
                      1.8891
                                     0.059792 .
## TC_NumNeigh
                                     0.439702
                     -0.7737
## speechiness
                      0.8468
                                     0.397722
## acousticness
                     1.3501
                                     0.177938
## FC_NonCitzens
                                     0.122130
                     -1.5501
## VBlocs1_TC_13
                     0.8875
                                     0.375504
## 00A
                     -1.9812
                                     0.048437 *
## CAP_DIST_km
                      0.5182
                                     0.604654
## Tukey test
                     -3.2247
                                     0.001261 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# Cook's D plot
# identify D values > 4/(n-k-1)
cutoff <- 4/((nrow(processed_data) - length(my_model_tele$coefficients) - 2))</pre>
# Crooks Distance plot
plot(my_model_tele, which = 4, cook.levels = cutoff)
```

Test stat Pr(>|Test stat|)


```
# Influence Plot
influencePlot(my_model_tele, id.method = "identify", main = "Influence Plot", sub = "Circle size is pro
## Warning in plot.window(...): "id.method" is not a graphical parameter

## Warning in plot.xy(xy, type, ...): "id.method" is not a graphical parameter

## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## a graphical parameter

## Warning in box(...): "id.method" is not a graphical parameter

## Warning in title(...): "id.method" is not a graphical parameter

## Warning in plot.xy(xy.coords(x, y), type = type, ...): "id.method" is not a
## graphical parameter
```

Influence Plot

Hat–Values Circle size is proportial to Cook's Distance

Normality Test Ho: The data is normally distributed Ha: the data is not normally distributed

```
# Normality Test
shapiro.test(sresid)
##
##
    Shapiro-Wilk normality test
##
## data: sresid
## W = 0.99075, p-value = 0.03758
ad.test(sresid)
##
##
    Anderson-Darling normality test
##
## data: sresid
## A = 0.59623, p-value = 0.1186
cvm.test(sresid)
```

##

```
## Cramer-von Mises normality test
##
## data: sresid
## W = 0.075916, p-value = 0.2334
lillie.test(sresid)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: sresid
## D = 0.038096, p-value = 0.2959
pearson.test(sresid)
##
## Pearson chi-square normality test
##
## data: sresid
## P = 21.138, p-value = 0.2725
sf.test(sresid)
##
## Shapiro-Francia normality test
##
## data: sresid
## W = 0.99202, p-value = 0.07153
# the data is not normally distributed
# Histogram of residuals
hist(sresid, freq = FALSE, main = "Distribution of Studentised Residuals")
xfit <- seq(min(sresid, na.rm = TRUE), max(sresid, na.rm = TRUE), length = 40)
yfit <- dnorm(xfit)</pre>
lines(xfit, yfit)
```

Distribution of Studentised Residuals

QQ-plot of the data qqPlot(my_model_tele, ylab = "Standardised Residuals", main = "QQ-Plot of Televote Model Standardised R

QQ-Plot of Televote Model Standardised Residuals

[1] 38 56

Non-Constant Error Variance Test Ho: constant error variance Ha: Non-constant error Variance

```
# Non-Constant Error Variance Test
ncvTest(my_model_tele)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.05524184, Df = 1, p = 0.81418

# plot studentized residuals vs. fitted values
spreadLevelPlot(my_model_tele, main = "Spread-Level Plot for Televote Model")
```

Spread-Level Plot for Televote Model


```
##
## Suggested power transformation: 1.174411
```

```
# Variance Inflation Factors
vif(my_model_tele)
                                                                        acousticness
## METRIC_Citizens Average_Points
                                        TC_NumNeigh
                                                         speechiness
##
          1.440215
                           1.072688
                                           1.440252
                                                            1.231842
                                                                            1.059780
     FC_NonCitzens
                     VBlocs1_TC_13
                                                         CAP_DIST_km
##
                                                OOA
          1.599009
                           1.233766
                                           1.147115
                                                            1.291723
sqrt(vif(my_model_tele)) > 2
                                        TC_NumNeigh
## METRIC_Citizens
                    Average_Points
                                                         speechiness
                                                                        acousticness
                                              FALSE
##
             FALSE
                             FALSE
                                                               FALSE
                                                                               FALSE
##
     FC_NonCitzens
                     VBlocs1_TC_13
                                                OOA
                                                         CAP_DIST_km
             FALSE
                             FALSE
                                              FALSE
                                                               FALSE
##
```

JURY MODEL

No signs of collinearity

```
# load final televote model
my_model_jury <- readRDS("./models/jury_final_model.RDS")</pre>
# extract out the model coefficients
jury_model_coeff <- names(my_model_jury$coefficients)[-1]</pre>
# recreate the model formula
jury_final_model_form<- as.formula(paste('Points ~', paste(jury_model_coeff, collapse = ' + ')))</pre>
# generate model summary
summary(my model jury)
##
## Call:
## lm(formula = jury_final_model_form, data = jury_data)
##
## Residuals:
     Min
             1Q Median
                            3Q
                                 Max
## -6.136 -2.494 -0.291 2.024 8.297
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                        4.0865
                                   0.4637 8.812 < 2e-16 ***
## CAP_DIST_km
                        0.6617
                                   0.1854
                                            3.568 0.000414 ***
## acousticness
                        0.5032
                                   0.1747 2.880 0.004247 **
                                   0.2004 4.457 1.15e-05 ***
## speechiness
                        0.8932
## TC_PerfType_Mixed
                       -9.6005
                                   3.2765 -2.930 0.003632 **
## TC LANGFAM Armenian -3.1767
                                   0.9880 -3.215 0.001435 **
## VBlocs1 TC 1
                        3.0611 0.6177 4.956 1.17e-06 ***
## ComVBlocs1_y
                                   0.6857 -3.318 0.001011 **
                       -2.2750
## VBlocs1_FC_1
                        0.8442
                                   0.4283
                                            1.971 0.049601 *
                                   0.4794
                                            3.205 0.001484 **
## VBlocs2_TC_1
                        1.5367
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 3.027 on 321 degrees of freedom
## Multiple R-squared: 0.2132, Adjusted R-squared: 0.1912
## F-statistic: 9.667 on 9 and 321 DF, p-value: 4.405e-13
```

Transformation of Response Variable

```
# transform points using the optimal power transformation
ptPoints <- jury_data$Points^(3/4)
# Note: weird bug occuring for row name 177 / row index 88 (possibly due to column with near all zero v
jury_coeff_data <- jury_data %>% subset(select = jury_model_coeff)
jury_coeff_zero_prop <- apply(X = jury_coeff_data, MARGIN = 2, FUN = function(x) sum(x == 0)/length(x)*
jury_model_coeff <- names(which(jury_coeff_zero_prop < 99))
# recreate the model formula
jury_final_model_pt_form <- as.formula(paste('ptPoints ~', paste(jury_model_coeff, collapse = ' + ')))
# refit final model with power transformation of 3/4
# NOTE: a box cox transformation resulted in normality but also non-constant variance
my_model_jury <- lm(formula = jury_final_model_pt_form, data = jury_data)
# generate model summary
summary(my_model_jury)</pre>
```

```
##
## Call:
## lm(formula = jury_final_model_pt_form, data = jury_data)
## Residuals:
##
    Min
           1Q Median
                         3Q
                              Max
## -4.051 -1.185 -0.045 1.071 3.804
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     2.73582    0.23066    11.861    < 2e-16 ***
                               0.09104 3.840 0.000148 ***
## CAP_DIST_km
                     0.34953
                     ## acousticness
## speechiness
                     ## TC_LANGFAM_Armenian -1.49410
                             0.49134 -3.041 0.002553 **
## VBlocs1_TC_1
                     1.41307
                               0.30606 4.617 5.63e-06 ***
## ComVBlocs1_y
                               0.34079 -3.039 0.002569 **
                    -1.03563
## VBlocs1 FC 1
                     0.41954
                               0.21305 1.969 0.049787 *
## VBlocs2_TC_1
                     0.81313
                               0.23839 3.411 0.000730 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.506 on 322 degrees of freedom
## Multiple R-squared: 0.1852, Adjusted R-squared: 0.165
## F-statistic: 9.149 on 8 and 322 DF, p-value: 2.378e-11
```

Evaluate the Fit of the Model

```
# create standardize residuals
sresid <- studres(my_model_jury)
# Residual vs fits plot
plot(x = my_model_jury$fitted.values, y = sresid, main = "Standardised Residuals vs Fitted Values", xl
# add red horizontal line through y-axis 0
abline(h = 0, col = "red")</pre>
```

Standardised Residuals vs Fitted Values

```
0
                     0
                         0
Standardised Residuals
                                                                    00 000 00
                       0
                                    0 o
                                                                       00000
                                                                                                    @
                                                    000000
                                    \circ \circ
                         0
                     000000
                                                    OO
                                   ∞∞
                                                                                                      0
                                             0
                     00000
                                           <del>000</del>
        0
                                         \mathbf{Q} \circ \mathbf{Q} \circ \mathbf{Q} \circ \mathbf{Q}
                                                                      \infty \circ
                                                                                                    0
                                                            \infty_{0}
                               000000
                                               0 00 00 0000
                                                              0000000
                                                                                                                       0
                             \mathbb{Q}_{\mathbb{Q}} \mathbb{Q}_{\mathbb{Q}} \mathbb{Q}_{\mathbb{Q}} \mathbb{Q}_{\mathbb{Q}} \mathbb{Q}_{\mathbb{Q}}
                                                                                                      O O
        7
                         \circ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
                                                                                                      0
                                                            o o@
                                                                                                                        0
                                                    0000000
        7
                                                                           0
        က
                                                                                                                            0
                                   3.0
                   2.5
                                                   3.5
                                                                   4.0
                                                                                   4.5
                                                                                                   5.0
                                                                                                                   5.5
                                                               Fitted Values
```

QQ Plot of Studentised Residuals for Jury Vote Model

[1] 3 88

leverage plots
leveragePlots(my_model_jury)

Added variable Plots
avPlots(my_model_jury)

Residual Plots
residualPlots(my_model_jury)


```
# Influence Plot
influencePlot(my_model_jury, id.method = "identify", main = "Influence Plot", sub = "Circle size is pro
## Warning in plot.window(...): "id.method" is not a graphical parameter

## Warning in plot.xy(xy, type, ...): "id.method" is not a graphical parameter

## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## a graphical parameter

## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## a graphical parameter

## Warning in box(...): "id.method" is not a graphical parameter

## Warning in title(...): "id.method" is not a graphical parameter

## Warning in plot.xy(xy.coords(x, y), type = type, ...): "id.method" is not a
## graphical parameter
```

Influence Plot

Circle size is proportial to Cook's Distance

Normality Test Ho: The data is normally distributed Ha: the data is not normally distributed

```
# Normality Test
shapiro.test(sresid)
##
    Shapiro-Wilk normality test
##
##
## data: sresid
   W = 0.99153, p-value = 0.05511
ad.test(sresid)
##
##
    Anderson-Darling normality test
##
## data: sresid
  A = 0.89016, p-value = 0.02271
cvm.test(sresid)
```

##

```
## Cramer-von Mises normality test
##
## data: sresid
## W = 0.13742, p-value = 0.03478
lillie.test(sresid)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: sresid
## D = 0.047301, p-value = 0.0716
pearson.test(sresid)
##
## Pearson chi-square normality test
##
## data: sresid
## P = 30.568, p-value = 0.03228
sf.test(sresid)
##
## Shapiro-Francia normality test
##
## data: sresid
## W = 0.99221, p-value = 0.07562
# the data is not normally distributed
# Histogram of residuals
hist(sresid, freq = FALSE, main = "Distribution of Studentised Residuals", ylim = c(0, 0.4))
xfit <- seq(min(sresid, na.rm = TRUE), max(sresid, na.rm = TRUE), length = 40)
yfit <- dnorm(xfit)</pre>
lines(xfit, yfit)
```

Distribution of Studentised Residuals

QQ-plot of the data
qqPlot(my_model_jury, ylab = "Standardised Residuals", main = "QQ-Plot of Jury Vote Model Standardised Stand

QQ-Plot of Jury Vote Model Standardised Residuals

[1] 3 88

Non-Constant Error Variance Test Ho: constant error variance Ha: Non-constant error Variance

spreadLevelPlot(my_model_jury, main = "Spread-Level Plot for Jury Vote Model")

plot studentized residuals vs. fitted values

```
# Non-Constant Error Variance Test
ncvTest(my_model_jury)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.2153073, Df = 1, p = 0.64264
```

Spread-Level Plot for Jury Vote Model

##
Suggested power transformation: 1.091406

Variance Inflation Factors vif(my_model_jury)

##	CAP_DIST_km	acousticness	speechiness	${\tt TC_LANGFAM_Armenian}$
##	1.181514	1.220899	1.187223	1.523284
##	VBlocs1_TC_1	ComVBlocs1_y	VBlocs1_FC_1	VBlocs2_TC_1
##	3.249223	2.641876	1.654895	2.067919

sqrt(vif(my_model_jury)) > 2

##	CAP_DIST_km	acousticness	speechiness	TC_LANGFAM_Armenian
##	FALSE	FALSE	FALSE	FALSE
##	VBlocs1_TC_1	ComVBlocs1_y	VBlocs1_FC_1	VBlocs2_TC_1
##	FALSE	FALSE	FALSE	FALSE

No signs of collinearity