MAT 345 - Homework 6

Due Wednesday, November 7, 2018, in class

- 1. (1 point) Suppose we run linear regression on a data set \mathcal{D} and find a weight vector \mathbf{w} for which $E_{\text{in}}(\mathbf{w}) = 0$. What does this say about the data set \mathcal{D} ?
- 2. (5 points). Consider the following data set

- (a) Draw a scatter plot for this data to convince yourself that the points are approximated by a circle with center (a, 0) for some a.
- (b) Suppose the circle from (a) has center (a,0) and radius R. Then each data point (x,y) satisfies

$$(x-a)^2 + y^2 \approx R^2 \implies y^2 \approx -x^2 + 2ax - a^2 + R^2.$$

Note that we cannot use linear regression at this time. However, using a transformation, as discussed in class, will allow us to use regression as follows.

- -let $y_2 = y^2$ for each data point.
- -let $x_0 = 1$ for each data point.
- -let $x_1 = x$ for each data point.
- -let $x_2 = x^2$ for each data point.

Re-write the given data in this notation:

(c) Use linear regression to find the weight vector $\mathbf{w} = [w_0, w_1, w_2]^T$ that best approximates

$$y_2 \approx w_0 x_0 + w_1 x_1 + w_2 x_2 = \mathbf{w}^T \mathbf{x}$$

- (d) Write the equation of the circle observed in (a).
- 3. (4 points) Use logistic regression to find the weight vector w that best approximates the probability

$$P(y | \mathbf{x}) \approx \theta(y \mathbf{w}^T \mathbf{x}) = \frac{e^{y \mathbf{w}^T \mathbf{x}}}{1 + e^{y \mathbf{w}^T \mathbf{x}}}$$

for the following data set:

x_1	32	45	60	53	25	68	82	38	67	92	72	21	26	40	33	45	61	16	18	22
x_2	3	2	2	1	4	1	2	5	2	2	3	5	3	4	3	1	2	3	4	6
\overline{y}	-1	-1	1	-1	-1	1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	1	-1