Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

Contact during the exam: Kristian Gjøsteen 73 55 02 42

EXAM IN TMA4160 CRYPTOGRAPHY

English
Friday, December 21, 2012
Time: 0900-1300
Grades due: January 21, 2013

Any printed or hand-written material is allowed during the exam.

An approved, simple calculator is allowed.

All problems have equal weight. Show your work.

Problem 1 You have got hold of the cipher text

lqgbtnlyuolobbynvluxqgjnxclv

You think this is a message encrypted with the affine cipher. You also think baboons are somehow involved. Find the message.

Problem 2 Let $E: y^2 = x^3 + 48x + 12$ be an elliptic curve over the field \mathbb{F}_{61} .

- a) Show that the polynomial $x^3 + 48x + 12$ has three zeros over \mathbb{F}_{61} . How many points of order 2 are there on the elliptic curve?
- b) Show that the point Q = (15, 52) lies on the curve and has order 5.
- c) How many points are there on the curve? Is the group $E(\mathbb{F}_{61})$ cyclic?

Problem 3 Let q be a big prime power, let \mathbb{F}_q be the field with q elements and let x_1, x_2, \ldots, x_n be distinct, non-zero elements in \mathbb{F}_q .

a) Let $f(x) \in \mathbb{F}_q[x]$ have degree at most t, and let S be a subset of $\{1, 2, ..., n\}$. Suppose that $a_i = f(x_i)$ for $i \in S$. Prove that when |S| > t, then

$$f(x) = \sum_{i \in S} a_i e_i(x),$$
 where $e_i(x) = \prod_{j \in S \setminus \{i\}} \frac{x - x_j}{x_i - x_j}.$

b) Let $f(x) \in \mathbb{F}_q[x]$ have degree exactly t, and let S be a subset of $\{1, 2, ..., n\}$. Suppose you know t and $a_i = f(x_i)$ for $i \in S$, but otherwise you know nothing about f(x). Show that if $|S| \leq t$, then f(0) can take any value as far as you know, but if |S| > t, then you can compute f(0).

Let q = 11. Let $x_1 = 1$, $x_2 = 2$, $x_3 = 3$ and $x_4 = 4$.

c) Alice has a secret $k \in \mathbb{F}_{11}$. She has chosen a polynomial $f(x) \in \mathbb{F}_{11}[x]$ of degree at most 2 such that f(0) = k. The she has computed $a_i = f(x_i)$, i = 1, 2, 3, and given a_1 to Bob, a_2 to Carol and a_3 to David.

Given that $a_1 = 1$, $a_2 = 10$ and $a_3 = 1$, find k.

Alice has another secret $l \in \mathbb{F}_{11}$. She has chosen a polynomial $g(x) \in \mathbb{F}_{11}[x]$ of degree 1 such that g(0) = l. Then she has computed $b_i = g(x_i)$, i = 1, 2, 3, 4, and given b_1 to Bob, b_2 to Carol, b_3 to David and b_4 to Eve.

Bob says he got $b_1 = 9$, Carol says she got $b_2 = 4$, David says he got 0, and Eve says she got 7. Bob and Carol may be lying. What is l?

Problem 4 Let p and q be big primes such that (p-1)/2 and (q-1)/2 both are prime, and let n = pq. Let $g \in \mathbb{Z}_n$ have maximal order and Jacobi-symbol -1. We can now define a hash function $h : \mathbb{Z} \to \mathbb{Z}_n$ by

$$h(x) = g^x$$
.

a) Show that a collision in the hash function can be used to factor n.

Let n = 517 and g = 2.

- b) Compute h(26) and h(256) using a fast exponentiation algorithm.
- c) Use the collision you discovered above to factor n.