Homework 2 Solutions

• Group Members: Yu Wang(wangy52 661834351)

• Collaborators: no

Problem 1

Similar to the analysis in "Differential Cryptanalysis" by Çetin Kaya Koç, because the permutation block has inverse operation, we only consider the substitution box and the XOR operator.

For two 4-bit inputs x_1 and x_2 and their corresponding outputs from the S_0 box y_1 and y_2 , let $x' = x_1 \oplus x_2$ and $y' = y_1 \oplus y_2$, Tab. 1 shows the relationship between x' and y'.

Input	Output y'				
x'	0	1	2	3	
0	16	0	0	0	
1	0	2	10	4	
2	0	10	6	0	
3	$\begin{vmatrix} 2\\2 \end{vmatrix}$	4	0	10	
4	2	4	8	2	
5	10	0	4	2	
6	0	2	2	12	
7 8	4	10	2	0	
	2	4	8	2	
9	8	2	2	4	
10	4	2	2	8	
11	2	8	4	2	
12	8	2	2	4	
13	2	4	8	2	
14	2	8	4	2	
15	4	2	2	8	

Table 1: S0 Differential Distribution Table

Suppose we know the two inputs are $S0_E = 1$ and $S0'_E = 2$ which XOR to $x' = S0_E \oplus S0'_E = 3$, and the outputs $S0_O = 0$ and $S0'_O = 1$ XOR to $y' = S0_O \oplus S0'_O = 1$.

• Step 1:

We search the pairs of inputs to the S0 box and find that (8, 11) and (9, 10) satisfy: XOR or inputs is 3 and XOR of outputs is 1. Recall that, $S0_E \oplus S0'_E = (S0_E \oplus S0'_E) \oplus (K \oplus K) = (S0_E \oplus K) \oplus (S0'_E \oplus K) = S0_I \oplus S0'_I$. That's why we search the inputs to the S0 box with x' = 3.

• Step 2:

For all possible inputs, we use property $K = S0_E \oplus (S0_I) = S0_E \oplus (S0_E \oplus K)$ to find the possible

keys.

$1 \oplus 8 = 9$	$2 \oplus 8 = 10$
$1 \oplus 9 = 8$	$2\oplus 9=11$
$1 \oplus 10 = 11$	$2\oplus 10=8$
$1 \oplus 11 = 10$	$2 \oplus 11 = 9$

We now conclude that, the true key $K \in \{8, 9, 10, 11\}$

The steps are illustrated in Fig. 1.

Repeat the process for inputs $S0_E = 3$ and $S0_E = 4$, we find that $K \in \{0, 1, 2, 3, 4, 5, 6, 7, 9, 14\}$. Intersect the two sets we found,

$$K \in \{8, 9, 10, 11\} \cap \{0, 1, 2, 3, 4, 5, 6, 7, 9, 14\} \Rightarrow K \in \{9\} \Rightarrow K = 9$$
 (1-1)

Figure 1: Use two known inputs to find candidate keys

Problem 2

The formula for conditional entropy is

$$\mathcal{H}(K|C) = \sum_{c \in C} \sum_{k \in K} p(c, k) \log \frac{p(c)}{p(c, k)}$$
(2-1)

Now our task turns to compute the marginal probability of p(c) and the joint probability of p(c, k). Also, cipher text c is a function (the encryption function) of plain text p and key k. We then have

• p(c) Use $\mathcal{R}(c)$ to denote all pairs of p and k such that $e_k(p) = c$. Then, apply the total probability formula,

$$p(c) = \sum_{\forall (p,k) \in \mathcal{R}(c) = c} p(p,k). \tag{2-2}$$

The selection of plain text p and key k is assumed to be independent, which means $p(p,k) = p(p) \cdot p(k)$

$$\begin{split} p_C(1) = & p_{PK}(P = a, K = k_1) + p_{PK}(P = c, K = k_2) \\ = & p_P(a)p_K(k_1) + p_P(c)p_K(k_2) \\ = & \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} = \frac{7}{24} \\ p_C(2) = & p_{PK}(P = b, K = k_1) + p_{PK}(P = c, K = k_1) + p_{PK}(P = a, K = k_2) \\ = & \frac{1}{6} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{4} = \frac{5}{12} \\ p_C(3) = & p_{PK}(P = b, K = k_2) + p_{PK}(P = a, K = k_3) \\ = & \frac{1}{6} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{8} \\ p_C(4) = & p_{PK}(P = b, K = k_3) + p_{PK}(P = c, K = k_3) \\ = & \frac{1}{6} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{6} \end{split}$$

• p(c,k) Conputing p(c,k) directly is not easy. Let's use $p(c,k) = p(c|k) \cdot p(k)$ and compute p(c|k) first.

$$\begin{split} p_{C|K}(C=1|K=k_1) &= p_{P|K}(P=a|K=k_1) = p_P(a) = \frac{1}{3} \\ p_{C|K}(C=2|K=k_1) &= p_{P|K}(P=b|K=k_1) + p_{C|K}(P=c|K=k_1) = p_P(b) + p_P(c) = \frac{1}{6} + \frac{1}{2} = \frac{2}{3} \\ p_{C|K}(C=3|K=k_1) &= 0 \\ p_{C|K}(C=4|K=k_1) &= 0 \\ p_{C|K}(C=1|K=k_2) &= p_{P|K}(P=c|K=k_2) = p_P(c) = \frac{1}{2} \\ p_{C|K}(C=2|K=k_2) &= p_{P|K}(P=a|K=k_2) = p_P(a) = \frac{1}{3} \\ p_{C|K}(C=3|K=k_2) &= p_{P|K}(P=b|K=k_2) = p_P(b) = \frac{1}{6} \\ p_{C|K}(C=4|K=k_2) &= 0 \\ p_{C|K}(C=1|K=k_3) &= 0 \\ p_{C|K}(C=2|K=k_3) &= 0 \\ p_{C|K}(C=3|K=k_3) &= p_{P|K}(P=a|K=k_3) = p_P(a) = \frac{1}{3} \\ p_{C|K}(C=3|K=k_3) &= p_{P|K}(P=a|K=k_3) = p_P(a) = \frac{1}{3} \\ p_{C|K}(C=4|K=k_3) &= p_{P|K}(P=a|K=k_3) = p_P(a) = \frac{1}{3} \\ p_{C|K}(C=4|K=k_3) &= p_{P|K}(P=b|K=k_3) + p_{P|K}(P=c|K=k_3) = p_P(b) + p_P(c) = \frac{2}{3} \end{split}$$

Then, we use $p(c,k) = p(c|k) \cdot p(k)$ and have Tab. 2.

$\overline{\mathrm{C} \backslash \mathrm{K}}$	k_1	k_2	k_3
1	$\frac{1/6}{1/3}$	1/8	0
2	1/3	1/12	0
3	0	1/24	1/12
4	0	0	1/6

Table 2: p(c, k)

Now, we apply the formula for conditional entropy and have

$$\mathcal{H}(K|C) = \sum_{c \in C} \sum_{k \in K} p(c,k) \log \frac{p(c)}{p(c,k)}$$

$$= \frac{1}{6} \log \frac{7/24}{1/6} + \frac{1}{3} \log \frac{5/12}{1/3} + \frac{1}{8} \log \frac{7/24}{1/8} + \frac{1}{12} \log \frac{5/12}{1/12}$$

$$+ \frac{1}{24} \log \frac{1/8}{1/24} + \frac{1}{12} \log \frac{1/8}{1/12} + \frac{1}{6} \log \frac{1/6}{1/6}$$

$$= 0.7029 \ bit$$
(2-3)