Logarithms

A refresher

What are logarithms? And why do we care?

 Logarithms are incredibly important in the study of algorithms—you really do need to be very familiar with them and their properties.

First, some discussion of notation

- In the ISO standard (and, in particular, in China):
 - lg(x) is the same as $log_{10}(x)$
- Here in the US, we don't believe in international standards, so:
 - Ig(x) is the same as log₂(x)
- Fortunately, everywhere:
 - In(x) is the same as log_e(x)
- The shape of the logarithm function is always the same. The base merely changes scale, i.e. a different constant.

What is a logarithm?

- The (natural) log of x is the integral of the reciprocal of x, with respect to x and integrated over all possible positive values of x:
 - $ln(x) = \int 1/x dx$
- Keep in mind the series:
 - $x^2 = 1/2$ $\int x \, dx$, i.e. $dx^2/dx = 2x$
 - $x = \int 1 dx$, i.e. dx/dx = 1
 - $ln(x) = \int 1/x \, dx$, i.e. $d ln(x)/dx = x^{-1}$
 - $1/x = -\int 1/x^2 dx$, i.e. $dx^{-1}/dx = -x^{-2}$
- Clearly, the formula $dx^k/dx = k x^{k-1}$ breaks down when k = 0

Useful identities

- $b^{\log b(x)} = x$
- $log_b xy = log_b x + log_b y$
- $log_b x^p = p log_b x$
- $log_b x = log_k x / log_k b$

Application to algorithms

- By far the most common and most effective way
 of speeding up an algorithm is to replace a O(N)
 growth rate with an O(log N) growth rate.
- N is the integral of dx over x=0..N
 - That's to say that it's the total cost when every element contributes equally to the cost.
- log N is the integral of 1/x dx over x=0...N
 - That's to say that it's the total cost when every element contributes an increasingly smaller cost to the total.

How do we achieve this?

- Normally, we achieve a reduction from N to log N by introducing an extra degree of freedom to our data structure:
 - instead of a linear structure, we form a tree where, at each node of the tree, we can make a choice based on a comparison.
 - To navigate such a structure (searching for an element), we take (max) 1 + log_k N steps instead of (max) N steps, assuming that at each node/ comparison, we have k choices.

One further identity

- $\int \ln x \, dx = x \ln x x$
 - So, you can see how we might get polynomials which include both N and N log N terms

Conversion factors

- Given a number x, the numerical value of ln x will be smaller than the numerical value of lg x by a factor of 1.44 (i.e. lg e)
- Given a number x, the numerical value of lg x will be larger than the numerical value of ln x by a factor of 1.39 (i.e. ln 2)