Note: Justification for each question should not be more five lines.

- 1. Consider the vector space $\mathbb{V} = \{ f \in C[0,1] : f(1) = 0 \}$ over the field \mathbb{R} , where C[0,1] is the set of all continuous functions from [0,1] to \mathbb{R} . Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) V is finite dimensional.
 - (b) The cardinality of each basis of \mathbb{V} is countable.
 - (c) The cardinality of each basis of V is uncountable
- 2. Consider the vector space $\mathbb{V} = \mathbb{R}^n$ over the field \mathbb{R} . Let $||x|| = \max\{|x_1|, |x_2|, \dots, |x_n|\}$ for all $x \in \mathbb{R}^n$ be a norm on \mathbb{R}^n . Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) There is a unique inner product on \mathbb{R}^n which induces the above norm $\|\cdot\|$.
 - (b) There are infinitely many inner product on \mathbb{R}^n which induce the above norm ||.||
 - (c) There is no inner product on \mathbb{R}^n which induces the above norm $\|\cdot\|$.
- 3. Let \mathbb{V} be a vector space of dimension 2 over a filed \mathbb{F} and let $|\mathbb{F}| = 2$. Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) V has exactly one basis.
 - (b) V has infinitely many bases.
 - (c) V has exactly three bases.
 - (d) V has exactly four bases.
- 4. Consider the vector space $\mathbb{V} = \mathbb{M}_{3\times 2}(\mathbb{R})$ (set of all 3×2 real matrices) over the field \mathbb{R} . Let $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in \mathbb{R}^2 . Let $\mathbb{W} = \{A \in \mathbb{V} : Ax = 0\}$. Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) Dimension of W is 2.
 - (b) Dimension of W is 6.
 - (c) Dimension of \mathbb{W} is 3.
- 5. Let \mathbb{V} be a vector space over the filed \mathbb{R} . Let u_1 , u_2 and u_3 be linearly independent vectors in \mathbb{V} . Consider $v_1 = u_1 + 2u_2 + 3u_3$, $v_2 = au_2 + 5u_3$ and $v_3 = 2u_3$. Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) v_1, v_2 and v_3 are linearly independent if and only if a = 0.

- (b) v_1, v_2 and v_3 are linearly independent if and only if $a \neq 0$.
- (c) v_1, v_2 and v_3 are linearly independent if and only if a is any real number.
- 6. Consider the vector space $\mathbb{V} = \mathbb{M}_{n \times n}(\mathbb{R})$ over the field \mathbb{R} . Let $\langle A, B \rangle = trace(AB^t)$ be an inner product on \mathbb{V} . Consider $\mathbb{W} = \{A \in \mathbb{V} : A \text{ is an upper triangular and } trace(A) = 0\}$. Which of the following statement(s)is(are) correct?Justify your answer.
 - (a) Dimension of the orthogonal complement of \mathbb{W} is $n^2 n$.
 - (b) Dimension of the orthogonal complement of \mathbb{W} is $\frac{n^2-n}{2}$.
 - (c) Dimension of the orthogonal complement of W is $\frac{n^2+n-2}{2}$.
- 7. Let $(\mathbb{V}, \langle, \rangle)$ be an inner product space over the filed \mathbb{K} . Let $||x|| = \sqrt{\langle x, x \rangle}$ be the norm on \mathbb{V} induced by \langle, \rangle . Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) $||x + y||^2 = ||x||^2 + ||y||^2 \implies x$ is orthogonal to y
 - (b) $||x+y||^2 = ||x||^2 + ||y||^2 \implies x$ is orthogonal to y if $\mathbb{K} = \mathbb{C}$.
 - (c) $||x+y||^2 = ||x||^2 + ||y||^2 \implies x$ is orthogonal to y if $\mathbb{K} = \mathbb{R}$.
- 8. Consider the subspace $\mathbb{W} = \{(x_1, x_2, \dots, x_n\} : \sum_{i=1}^n x_i = 0\}$ of \mathbb{R}^n . Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) W has two virtually disjoint complements.
 - (b) W does not have virtually disjoint complements.
 - (c) Dimension of each complement of W is always greater than 1.
- 9. Let $(\mathbb{V}, \langle, \rangle)$ be a nontrivial inner product space over the filed \mathbb{K} . Which of the following statement(s) is(are) correct? Justify your answer.
 - (a) $\{\phi\}^{\perp} = \mathbb{V}$, $\{\phi\}$ is an empty set.
 - (b) $\{\phi\}^{\perp} = \{0\}, \{\phi\} \text{ is an empty set.}$
 - (c) $\{\phi\}^{\perp}$ is a proper subspace of $\mathbb{V},\,\{\phi\}$ is an empty set
- 10. Suppose C[-1,1] is the vector space of continuous real-valued functions on the interval [-1,1] with inner product given by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

Let $\mathbb{U} = \{ f \in C[-1,1] : f(0) = 0 \}$ be the subspace of C[-1,1]. Which of the following statement(s) is(are) correct? Justify your answer.

- (a) $C[-1,1] = \mathbb{U} \oplus \mathbb{U}^{\perp}$
- (b) $\mathbb{U}^{\perp} = \{0\}$
- (c) \mathbb{U}^{\perp} is a proper and non-trivial subspace of C[-1,1]