

Stark 101: Part 1

Statement, LDE and Commitment

FibonacciSq

(Fibonacci Square)

FibonacciSq (Fibonacci Square)

FibonacciSq:

$$a_{n+2} = a_{n+1}^2 + a_n^2$$

- Represented as: a_0 , a_1 , a_2 , a_3 , ...
- Determined by first two elements
- Example:
 - 1, 3, 10, 109, 11981, 143556242,...

Tiny Problem

 α_{10} =10585384481491331545443435980195330168085

FibonacciSq Mod Prime

FibonacciSq mod prime: $a_{n+2} = a_{n+1}^2 + a_n^2 \mod prime$

Example:

1, 3, 10, 109, 11981, 143556242,...

mod 7:

0 1, 3, 3, 4, 4, 4, ...

FibonacciSq Mod Prime

FibonacciSq mod prime: $a_{n+2} = a_{n+1}^2 + a_n^2 \mod prime$

- Example mod 7:
 - 0 1, 3, 3, 4, 4, 4, ...

We use $prime = 3 \cdot 2^{30} + 1 = 322122547$

Finite field *F*

Statement

Statement to Prove

There is a number *x* such that:

For the FibonacciSq mod 3221225473 with

- $a_0 = 1$
- $\alpha_1 = x$

we have $a_{1022} = 2338775057$

$$X = 3141592$$

STARK Protocol

STARK Protocol - Part I

- LDE Low Degree Extension
- Commitment

Low Degree Extension (LDE)

LDE in 3 Steps

- 1. Generate input
- 2. Interpolate
- 3. Extend

LDE - General

LDE Step 1 - Generate Input

Input: $y_0, y_1, y_2, y_3, y_4, ...$

Choose: $X_0, X_1, X_2, X_3, X_4, ...$

X	у
x ₀	<i>y</i> ₀
X ₁	<i>y</i> ₁
x ₂	<i>y</i> ₂
<i>X</i> ₃	<i>y</i> ₃
X ₄	<i>Y</i> ₄

LDE Step 2 - Interpolate Polynomial

Interpolate a polynomial *f*:

For each
$$i: f(x_i) = y_i$$

X	f(x)
x ₀	<i>y</i> ₀
X ₁	<i>Y</i> ₁
<i>X</i> ₂	y ₂
<i>x</i> ₃	y ₃
X ₄	<i>y</i> ₄

LDE Step 3 - Extend

- Pick a larger evaluation domain $\{x_i^*\}$
- Output: $\{f(x_j)\}$

х`	f(x`)
x` ₀	$f(x_0)$
x` ₁	f(x` ₁)
x` ₂	f(x `2)
<i>x</i> ` ₃	f(x `3)

LDE in STARK

LDE for STARK Step 1 - Generate Input

Input: a_0 , a_1 , a_2 ,..., a_{1022} The **Trace**

We choose: 1, g, g^2 , g^3 , ..., g^{1022}

g - element from F

LDE for STARK Step 1 - Generate Input

Input: a_0 , a_1 , a_2 ,..., a_{1022}

We choose: 1, g, g^2 , g^3 , ..., g^{1022}

X	f(x)
g^0	a ₀
g ¹	a ₁
g ²	a ₂
g ¹⁰²²	a ₁₀₂₂

LDE for STARK Step 2 - Interpolate Poly

Interpolate a polynomial *f*:

for each
$$i: f(g^i) = a_i$$

X	f(x)
g^0	a ₀
g ¹	a ₁
g ²	a ₂
g ¹⁰²²	a ₁₀₂₂

LDE for STARK Step 3 - Extend

- Pick a larger evaluation domain (8k)
- $\{x_i^{\dagger}\} = w, w \cdot h, w \cdot h^2, ..., w \cdot h^{8191}$

w, h - elements from F

• Result: f(w), $f(w \cdot h)$, $f(w \cdot h^2)$, ...

Reed-Solomon codeword

LDE for STARK Step 3 - Extend

X	f(x)
w·h ⁰	f(w·h ⁰)
w·h¹	$f(w \cdot h^1)$
w∙h²	$f(w \cdot h^2)$
•••	•••
w∙h ⁸¹⁹¹	f(w·h ⁸¹⁹¹)

Commitment

Commit on LDE

Merkle Tree

Summary

- Statement
 - There is x s.t. a_{1022} = 2338775057 in FibonacciSq mod prime
- STARK protocol part I:
 - LDE Low Degree Extension
 - Commitment Merkle Tree

What's Next?

Part 2 - polynomial constraints

But first - coding.....

- 1) Trace, LDE
- 2) Commit LDE Trace.

google:

'github stark 101'

Thank you

