Fiche de synthèse : Énergie mécanique et travail des forces Benjamin L'Huillier

1 Travail d'une force constante

Definition 1.1: Travail d'une force constante

Le travail $W_{A\to B}(\overrightarrow{F})$ d'une force constante \overrightarrow{F} lors d'un déplacement du point A au point B (de vecteur \overrightarrow{AB}) est donné par :

$$W_{A \to B}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{AB} = ||\overrightarrow{F}|| \cdot ||\overrightarrow{AB}|| \cdot \cos(\theta)$$

avec θ l'angle entre \overrightarrow{F} et \overrightarrow{AB} .

Remarque 1.1: Signe du travail

- Si $W_{A\to B}(\overrightarrow{F}) > 0$: la force est motrice.
- Si $W_{A\to B}(\overrightarrow{F}) < 0$: la force est résistante.
- Si $W_{A\to B}(\overrightarrow{F})=0$: la force est orthogonale au déplacement.

2 Énergie cinétique

Definition 2.1: Énergie cinétique

L'énergie cinétique d'un corps de masse m et de vitesse v en un point A est donnée par :

$$\mathcal{E}_{c,A} = \frac{1}{2}mv^2$$

3 Théorème de l'énergie cinétique

Propriété 3.1: Théorème de l'énergie cinétique

La variation de l'énergie cinétique entre deux instants A et B est égale à la somme des travaux des forces appliquées :

$$\mathcal{E}_{c,B} - \mathcal{E}_{c,A} = \sum W_{A \to B}(\overrightarrow{F})$$

4 Force conservative

Definition 4.1: Force conservative

Une force conservative est une force dont le travail ne dépend que des positions initiale et finale :

$$W_{A \to B}(\overrightarrow{F})$$
ne dépend que de A et B

Une force conservative admet une énergie potentielle associée.

Remarque 4.1: Exemples de forces conservatives

- Le poids (force de pesanteur) est une force conservative.
- La force de rappel d'un ressort est également conservative.
- Les forces de frottement ne sont pas conservatives.

5 Énergie potentielle

Definition 5.1: Variation d'énergie potentielle

Si une force \overrightarrow{F} est conservative, on lui peut associer une énergie potentielle \mathcal{E}_p telle que sa variation entre un point A et B est:

$$\Delta \mathcal{E}_{p,A \to B} = \mathcal{E}_{p,B} - \mathcal{E}_{p,A} = -W_{A \to B}(\overrightarrow{F})$$

Definition 5.2: Énergie potentielle de pesanteur

Le poids $\overrightarrow{P} = m\overrightarrow{g}$ est une force conservative, ,il a donc une énergie potentielle associée : l'énergie potentielle de pesanteur \mathcal{E}_{pp} . On a

$$\Delta \mathcal{E}_{p,A \to B} = -W_{A \to B}(\overrightarrow{P}) = mg(z_B - z_A)$$

et, par convention si $z_A = 0$, on pose :

$$\mathcal{E}_{p,B} = mgz_B$$

Remarque 5.1: Remarques

- L'énergie potentielle dépend uniquement de l'altitude.
- Le niveau de référence peut être choisi librement.

6 Énergie mécanique

Definition 6.1: Énergie mécanique

L'énergie mécanique d'un système en un point A est la somme :

$$\mathcal{E}_{m,A} = \mathcal{E}_{c,A} + \mathcal{E}_{p,A}$$

Remarque 6.1: Interprétation

- \mathcal{E}_c représente l'énergie liée au mouvement, \mathcal{E}_p à la position.
- Si toutes les forces sont conservatives, \mathcal{E}_m est constante.

7 Conservation de l'énergie mécanique

Propriété 7.1: Conservation de l'énergie mécanique

On note:

$$\Delta \mathcal{E}_{m,A\to B} = \mathcal{E}_{m,B} - \mathcal{E}_{m,A}$$

• Cas 1 : toutes les forces sont conservatives

$$\Delta \mathcal{E}_{m,A \to B} = 0 \iff \mathcal{E}_{m,B} = \mathcal{E}_{m,A}$$

- Cas 2 : il existe des forces non conservatives $\overrightarrow{F}_{\mathbf{NC},i}$

$$\Delta \mathcal{E}_{m,A \to B} = \sum_{i} W_{A \to B}(\overrightarrow{F}_{\text{NC},i})$$

Fiche mémo: à retenir

•
$$W_{A \to B}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{AB} = F \cdot AB \cdot \cos(\theta)$$

•
$$\mathcal{E}_{c,A} = \frac{1}{2}mv^2$$
, $\Delta \mathcal{E}_{c,A \to B} = \sum W_{A \to B}(\overrightarrow{F})$

•
$$\Delta \mathcal{E}_{p,A \to B} = -W_{A \to B}(\overrightarrow{F}_{\text{cons.}})$$

•
$$\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p$$

• Si toutes les forces sont conservatives : $\mathcal{E}_m = \text{constante}$

• Si certaines forces sont non conservatives : $\Delta \mathcal{E}_{m,A\to B} = \sum W_{A\to B}(\overrightarrow{F}_{NC})$