Transformer as Symbolic Logic Rule-Base

King Yin Yan $^{1[0009-0007-8238-2442]}$ and Ziyu Zhou 2

Abstract. This short paper shows that Transformers [4] can implement a certain flavor of symbolic-logic rules engine. As Transformers are shown to be Turing universal[3], this should come as no surprise, but such an insight could be a cornerstone for neuro-symbolic AGI.

Keywords: Transformer · Self-Attention · symbolic logic · neurosymbolic AI

Fig. 1 shows a schematic diagram of Transformer Self-Attention, assuming the reader is familiar with its workings.

 ${\bf Fig.\,1.}$ Schematic of the Transformer Self-Attention

"Input" tokens are translated to Q, K, V (query, key, value)'s via matrix multiplication, which can be regarded as a kind of table look-up, or **memory store** (Fig. 2a). From an abstract point of view, the Transformer has the structure of Fig. 2a, which gives rise to its **equivariance** property (if input elements are swapped in a certain order, the output elements changes the same way).

 $^{^{1}\,}$ general.intelligence, subfishzhou @gmail.com $^{2}\,$ University of Science and Technology Beijing

Fig. 2. A: Q, K, V as lookup tables. B: abstract self-attention

The equivariance property corresponds to the $\mathbf{exchangeability}$ of logic propositions:

$$A \wedge B \Leftrightarrow B \wedge A$$
 (1)

For example:

it's raining
$$\land$$
 I'm heart-broken \Leftrightarrow I'm heart-broken \land it's raining (2)

Propositions are made up of **atomic concepts**, but at this sub-propositional level, atoms cannot be permuted freely, eg:

$$I \cdot love \cdot her \neq she \cdot loves \cdot me$$
 (3)

otherwise there would be no such things as heart-breaks.

Now recall some basic notions of **classical logic-based AI**. Its basic architecture is as in Fig. 3.

Fig. 3. Basic architecture of classical logic-based AI

There would be a huge number of rules in the Knowledge Base, and the system needs to match these rules one by one against propositions in the system's **state** (= working memory) (Fig. 4).

Fig. 4. Vastness of rules matching

For the Transformer, it is a kind of memory stored **between** input elements (stored as the Q, K, V matrices), and it **implicitly** plays the role of a logic rule-base (Fig. 5). This is similar to message-passing in a graph.

Fig. 5. Self-Attention as a kind of rules-matching mechanism

A crucial insight is that the **Self-Attention** mechanism had its origin in NTMs (**Neural Turing Machines**) [2]. The Turing machine needs to have a "memory tape" but in the neural setting this memory must be differentiable. If the memory is addressed by an index $i \in \mathbb{N}$, then it won't be differentiable. So they came up with a **content-addressable** memory mechanism where a memory matrix is looked up using the "query-key-value" method. A nice explantion of NTMs can be found in the book Fundamentals of Deep Learning [1].

Now consider LLMs (**Large Language Models**) such as BERT or GPT. Given a natural-language sentence, we'd like to convert or **decompose** it into a list of logic propositions (Fig. 6). The structure on the right of Fig. 6 is the

Fig. 6.

mental state of a logical AI system. It is composed of (exchangeable) propositions, which are in turn made up of atomic concepts. This 2-level structure is

4 Yan et al.

characteristic of all **logical** systems. Surprisingly, I found that the Transformer completely satisfies this 2-level logic structure.

On the **first layer**, a Transformer transforms each input word token into one proposition (Fig. 7(A)). The crucial point here is that the propositions are

Fig. 7.

composed of atoms (), this can be achieved in the Transformer by vector **addition**, ie, **superposition** of atomic concepts. Note also that the Transformer is equivariant, so we must add "positional encoding" to each word, to indicate their ordering.

At **higher layers**, there is no need for positional encoding, and logic propositions can be freely exchanged, exactly as what happens in Transformers (Fig. 7®).

Note that in the above, every \uparrow arrow uses the same (Q, K, V) matrices as "rule-base", that may limit the number of rules that can be represented. To circumvent this, **Multi-Head Attention** allows to use different (Q, K, V) matrices on the same layer.

References

- [1] Nikhil Buduma and Nicholas Locascio. Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms. 1st. O'Reilly Media, Inc., 2017. ISBN: 1491925612.
- [2] Alex Graves, Greg Wayne, and Ivo Danihelka. "Neural Turing Machines". In: CoRR abs/1410.5401 (2014). arXiv: 1410.5401. URL: http://arxiv.org/abs/1410.5401.
- [3] Jorge Pérez, Pablo Barceló, and Javier Marinkovic. "Attention is turing complete". In: *The Journal of Machine Learning Research* 22.1 (2021), pp. 3463–3497.
- [4] Vaswani et al. "Attention is all you need". In: (2017). https://arxiv.org/abs/1706.03762.