MATH 220A

Name: Quin Darcy Due Date: 3/14/21 Instructor: Dr. Martins Assignment: Homework 3

6. Let A, B and A_{α} denote subsets of a space X. Prove the following:

(a) If $A \subset B$, then $\overline{A} \subset \overline{B}$.

Proof. Let $x \in \overline{A}$. Then either $x \in A$ or $x \in A'$. If $x \in A$, then as $A \subset B$, it follows that $x \in B \subset \overline{B}$. If instead, $x \in A'$, then since x is a limit point of A, we have for every neighborhood, U, of x, there exists $a \in U$ such that $a \neq x$ and $a \in A$. Since $A \subset B$, then it follows that for every neighborhood of x, there exists $a \in U$ such that $a \neq x$ and $a \in B$. Hence, $x \in A$ is a limit point of $A \in A$. Thus, $A \in A \cap A$ is a limit point of $A \in A$. Thus, $A \in A \cap A$ is a limit point of $A \in A$. Therefore, $A \in B \cap A$ is a limit point of $A \in A$.

(b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Proof. Let $x \in \overline{A \cup B}$. Then either $x \in A \cup B$ or $x \in (A \cup B)'$. In the former case, it follows from $A \subset \overline{A}$ and $B \subset \overline{B}$, that $x \in A \cup B \subset \overline{A} \cup \overline{B}$. If $x \in (A \cup B)'$, then for any neighborhood, U, of x, there exits $y \in U$ such that $y \neq x$ and $y \in A \cup B$. This implies that for every neighborhood, U, of x, there exists $y \in U$ such that $y \neq x$ and $y \in A$ or $y \in B$. Thus x is a limit point of either A or B. Hence, $x \in A' \cup B' \subset \overline{A} \cup \overline{B}$. Thus $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

Let $x \in \overline{A} \cup \overline{B}$. Then $x \in \overline{A}$ or $x \in \overline{B}$. If $x \in \overline{A}$, then either $x \in A$ or $x \in A'$. If $x \in A$, then $x \in A \cup B \subset \overline{A \cup B}$. If $x \in A'$, then for every neighborhood, U, of x, there exists $y \in U$ such that $y \neq x$ and $y \in A \subset A \cup B$. Hence, x is a limit point of $A \cup B$ and so $x \in (A \cup B)' \subset \overline{A \cup B}$. An identical argument can be used if we take $x \in \overline{B}$. Hence, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Therefore, $\overline{A} \cup \overline{B} = \overline{A} \cup \overline{B}$.

(c) $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$; give an example where equality fails.

Proof. Let $x \in \bigcup \overline{A}_{\alpha}$. Then for some particular α , we have that $x \in \overline{A}_{\alpha}$. This implies that either $x \in A_{\alpha}$ or $x \in A'_{\alpha}$. If $x \in A_{\alpha}$, then $x \in \bigcup A_{\alpha} \subset \overline{\bigcup A_{\alpha}}$. If $x \in A'_{\alpha}$, then for any neighborhood, U, of x, there exists $a \in U$ such that $a \neq x$ and $a \in A_{\alpha} \subset \bigcup A_{\alpha}$. This implies that x is a limit point of $\bigcup A_{\alpha}$. Hence, $x \in (\bigcup A_{\alpha})' \subset \overline{\bigcup A_{\alpha}}$. Therefore $\bigcup \overline{A}_{\alpha} \subset \overline{\bigcup A_{\alpha}}$.

For an example where equality fails, consider the following: Take $q \in \mathbb{Q}$ and let $U_q = \{q\}$. Then as any finite set is closed, it follows that $\overline{U_q} = U_q$ and thus

$$\bigcup_{q\in\mathbb{Q}}\overline{U}_q=\mathbb{Q},$$

whereas

$$\overline{\bigcup_{q\in\mathbb{O}}U_q}=\overline{\mathbb{Q}}=\mathbb{R}.$$

MATH 220A Darcy

13. Show that X is Hausdorff if and only if the **diagonal** $\Delta = \{x \times x \mid x \in X\}$ is closed in $X \times X$.

Proof. Assume that X is Hausdorff. Then we want to show that Δ contains all of its limit points. So then let $a \times b$ be a limit point of Δ and assume that $a \neq b$. Then since X is Hausdorff, there exists neighborhoods U_1 , U_2 such that $U_1 \cap U_2 = \emptyset$ and $a \in U_1$ and $b \in U_2$. As open sets, we have that $U_1 \times U_2$ is itself an open set containing $a \times b$. Moreover, since $a \times b$ is a limit point of Δ , then there exists some $x \times x \in U_1 \times U_2$ such that $x \times x \in \Delta$. However, this implies that $x \in U_1 \cap U_2$, which is a contradiction. Therefore, a = b and $a \times b \in \Delta$. Thus Δ contains all of its limit points.

Assume that Δ is closed in $X \times X$. Consider $a, b \in X$ such that $a \neq b$. Since Δ is closed, then its complement is open and $a \times b$ is an element of the complement. Thus there exists U_1 and U_2 such that $a \times b \in U_1 \times U_2$ and $U_1 \times U_2 \subset \Delta^c$. Suppose that $U_1 \cap U_2 \neq \emptyset$, then there exists $u \times u \in U_1 \times U_2$. However, $u \times u \in \Delta$ and so $\Delta \cap \Delta^c \neq \emptyset$, which is a contradiction. Therefore, $U_1 \cap U_2 = \emptyset$ and thus X is Hausdorff. \square

19. If $A \subset X$, we define the **boundary** of A by the equation

$$\mathrm{Bd}A = \overline{A} \cap (\overline{X - A}).$$

(a) Show that Int A and BdA are disjoint, and $\overline{A} = Int A \cup BdA$.

Proof. By definition, we may write

$$\operatorname{Int} A = \bigcup_{U \subset A} U$$
, U is open in A .

For contradiction, assume that $x \in \operatorname{Int} A \cap \operatorname{Bd} A$. Then for some set, U, open in A, we have that $x \in U$ and so $x \in A$. Additionally, we have that $x \in \overline{A}$ and $x \in (\overline{X} - A)$. The first implying the either $x \in A$ or $x \in A'$. However, we know that $x \in U \subset A$. Moreover, with $x \in (\overline{X} - A)$, we get that either $x \in X - A$ or $x \in (X - A)'$. As $x \in X - A$ is not possible, then we conclude that $x \in (X - A)'$. In summary, we have shown that x is contained in an open set, U, of A and that x is a limit point of X - A. Being an element U implies that there exists a neighborhood, N of x such that $N \subset U$. Also, being a limit point of X - A, we have that for any neighborhood, say N, there exists a point $y \in N$ such that $x \neq y$ and $y \in X - A$. However, this would imply that $N \not\subset U$, which is a contradiction. Therefore, $\operatorname{Int} A \cap \operatorname{Bd} A = \varnothing$.

Now assume that $x \in \overline{A}$. Then either $x \in A$ or $x \in A'$. If $x \in A$, then there are two possibilities: x is an isolated point, i.e., it is an element of A but not contained in any neighborhood, or there is some neighborhood $U \subset A$ which contains x. The latter implies that x is in the interior of A and we are done. Otherwise, if x is an isolated point, then for every neighborhood U containing x, there exists $y \in U$ such that $y \neq x$ and $y \in X - A$. Thus $x \in (\overline{X} - \overline{A})'$. Hence, $x \in \operatorname{Bd}A$. In short, if $x \in A$, then $x \in \operatorname{Int}A \cup \operatorname{Bd}A$.

MATH 220A Darcy

If $x \in A'$ and there exists $U \subset A$ such that $x \in U$, then $x \in \text{Int}A$. Otherwise, if for every neighborhood, U, of x, we have that $U \not\subset A$ and $U \cap A \neq \emptyset$, then as before, every neighborhood of x contains points not in A and thus making x a limit point of X - A. Hence, if $x \in A'$, then $x \in \text{Int}A \cup \text{Bd}A$. And so $\overline{A} \subset \text{Int}A \cup \text{Bd}A$.

Assume that $x \in \text{Int} A \cup \text{Bd} A$. If $x \in \text{Int} A$, then $x \in U \subset A \subset \overline{A}$, for some open set U. If $x \in \text{Bd} A$, then by definition, $x \in \overline{A}$. Therefore, $\text{Int} A \cup \text{Bd} A \subset \overline{A}$.

(b) Show that $BdA = \emptyset \Leftrightarrow A$ is both open and closed.

Proof. Assume that $\operatorname{Bd} A = \emptyset$, then every point of A is an interior point. Meaning, for every $x \in A$, there exists an open set $U \subset A$ such that $x \in U$. Thus A is open. On the other hand, if x is a limit point of A, then $x \in \overline{A}$, and for any neighborhood, U, of x we have that if there exists $y \in U$ such that $y \notin A$, then that implies x is a limit point of X - A, which would imply that $x \in \overline{X} - \overline{A}$ and hence $x \in \overline{A} \cap (\overline{X} - \overline{A})$, a contradiction. Therefore, A contains all of its limit points and A is thereby closed.

Assume that A is both open and closed. Since A is open, then for every point, x, in A, there exists a neighborhood, U, of x such that $U \subset A$. Hence A = IntA, and since, by (a), the interior and boundary are disjoint, then it follows that $\text{Bd}A = \emptyset$.

(c) Show that U is open $\Leftrightarrow \operatorname{Bd} U = \overline{U} - U$.

Proof. Assume that U is open. Then X-U is closed. Thus $\overline{X-U}=X-U$ and so $\mathrm{Bd}U=\overline{U}\cap (X-U)$. Then if $x\in\mathrm{Bd}U$, we have that $x\in\overline{U}$ and $x\notin U$. Hence, $x\in\overline{U}-U$.

Now assume that $\operatorname{Bd} U = \overline{U} - U$ and let $x \in U$. Then x cannot be an isolated point since that would imply that $x \in \operatorname{Bd} U$ which implies $x \notin U$. Thus x is either an interior point or a limit point. If x is an interior point, then we are done. If x is a limit point, then $x \in U' = \overline{U} - U$ and this implies $x \notin U$. Hence, every point of U is an interior point. Therefore, U is open.

(d) If U is open, is it true that $U = \operatorname{Int}(\overline{U})$? Justify your answer.

Proof. This is not true. Suppose A is open. Then $A \subset \operatorname{Int} A$, since the interior is the union of all open sets containing A. By definition of interior, we also have that $\operatorname{Int} A \subset A$. Thus if A is open, then $A = \operatorname{Int} A$. Now the question is, if A is open does $\operatorname{Int} A = \operatorname{Int}(\overline{A})$. For a counter example, consider the set $A = (-1,0) \cup (0,1)$. We have that A is open and that $\operatorname{Int} A = A$. However, $\overline{A} = [-1,1]$ and so $\operatorname{Int}(\overline{A}) = (-1,1)$. Thus the two sets are not equal.

1. Find the boundary and interior of each of the following subsets of \mathbb{R}^2 .

(a)
$$A = \{x \times y \mid y = 0\}.$$

MATH 220A Darcy

Proof. We claim that $\operatorname{Int} A = \varnothing$ and that $\operatorname{Bd} A = A$. To show this we need to compute \overline{A} and $\overline{\mathbb{R}^2 - A}$. Consider $\mathbb{R}^2 - A = A^c = \{x \times y \mid y \neq 0\}$. Then for any $x \times y \in A^c$, if we let r = |y|/2, then the neighborhood with radius r, call it U_r contains $x \times y$ and $U_r \subset A^c$. Hence, A^c is open, which implies A is closed. Hence, $\overline{A} = A$. Moreover, for any $x \times 0 \in A$, we have that $\lim_{n \to \infty} x \times \frac{1}{n} = x \times 0$. Hence, every point of A is a limit point of $\mathbb{R}^2 - A$. Hence, for any $x \times 0 \in A$, we have that $x \times 0 \in \overline{A}$ and $x \times 0 \in \overline{\mathbb{R}^2 - A}$. Thus every point of A is a boundary point which implies $\operatorname{Bd} A = A$ and $\operatorname{Int} A = \varnothing$.

(b)
$$B = \{x \times y \mid x > 0 \text{ and } y \neq 0\}.$$

Proof. Similar to the process before, we will first compute \overline{B} . That is we need to find the limit points of B. Suppose that $u \times v$ is a limit point of B such that $u \times v \notin \operatorname{Int} B$. Then for every r > 0, the neighborhood U_r around $u \times v$, with radius r, contains a point $x \times y \in B$. Observe that if u < 0, then $u \times v$ could not be a limit point of B. Hence, $B' = \{x \times y \mid x \ge 0\}$ and so $\overline{B} = \{x \times y \mid x \ge 0\}$. Next, we observe that for any $x \times y \in B$, letting $r = \min\{|x|, |y|\}/2$, then $U_r(x \times y) \subset B$. Hence, B is open in \mathbb{R}^2 and so $\overline{\mathbb{R}^2 - B} = \mathbb{R}^2 - B$. This implies that

$$BdB = \overline{B} \cap (\mathbb{R}^2 - B) = \overline{B} - B$$

which consists of the points formed from the positive x-axis and the positive and negative y-axis.

(c) $C = A \cup B$.

Proof. The set C contains the entire right side of the cartesian plan, plus the points on the negative x-axis, and does not contain the points on the y-axis. This implies that $\overline{C} = \{x \times y \mid \underline{x \geq 0} \text{ or } y = 0\}$. We also have that $\mathbb{R}^2 - C = \{x \times y \mid x < 0 \text{ and } y \neq 0\}$. Thus $\overline{\mathbb{R}^2 - C} = \{x \times y \mid x \leq 0\}$. Thus the boundary of C is the set of points along the y-axis and the negative x-axis.

(d) $D = \{x \times y \mid x \text{ is rational}\}.$

Proof. Like before, we want to first compute the closure of D. As $\overline{\mathbb{Q}} = \mathbb{R}$ then $\overline{D} = \mathbb{R}^2$. Then as for the closure of the complement, we first observe that every irrational number can be expressed as the limit of a sequence of rational numbers and vice versa, therefore $\overline{\mathbb{R}^2 - D} = \mathbb{R}^2$. Hence, $\operatorname{Bd} D = \mathbb{R}^2 \cap \mathbb{R}^2 = \mathbb{R}^2$.

(e) $E = \{x \times y \mid 0 < x^2 - y^2 \le 1\}.$

Proof.

(f) $F = \{x \times y \mid x \neq 0 \text{ and } y \leq 1/x\}.$

Proof.