Data Preprocessing for the VQI TEVAR Dataset

Jennifer Ci, Thu Vu, Lily Hanyi Wang

Datasets Merging

Compare the data from July 2021 and September 2021. Keep the most updated ones.

There are 6 rows from LTF July data missing in September dataset. And also 6 missing from the PROC dataset.

Variables that exists in both LTF and PROC datasets are: PATIENTID, PRIMPROCID, DEAD, PROC_SURVIVALDAYS, IDE_OTHER. Merge by these variables.

Initially, there are in total 25211 objectives in the dataset.

Exclusion criteria:

- PRESENTATION: exclude rupture patients
- PATHOLOGY: exclude groups with pathology: 4 = trauma, 8 = Aortic Thrombus,9 = Other,10 = Aorto-esophageal Fistula,11 = Aorto-bronchial Fistula
- URGENCY: exclude rupture. (elective is the same as asymptomatic)
- PROXZONE DISEASE: exclude 0 and 1
- DISTZONE_DISEASE: exclude 0
- PROXZONE_DISEASE < DISTZONE_DISEASE: disease starting point should be earlier than ending point. 35 wrong data points with distal zone < proximal zone are excluded.

After exclsion, there are in total 15424 objectives in the final TEVAR dataset. 1995 participants have more than one records in this dataset.

Data Cleaning

Patient demographic and co-morbidities

- Comorbidity history variables: changed to Yes/No scale.
- PREOP_CREAT: merge PREOP_CREAT with retired R_CR_PRESENT (mg/dL)

Operative variables

- PATHOLOGY: merge levels PAU and IMH
- extent: type of TAAA based on certain criteria calculated by PROXZONE_DISEASE and DISTZONE_DISEASE. A lot of missing?
- ILIACDEV_END_R, ILIACDEV_END_L: $a\ lot\ of\ missing,\ merge\ LR$?
- ACCESS: from merging ACCESS_R, ACCESS_L: Percutaneous if both are Percutaneous, Open o.w.
- DEV_GTYPE: merge DEV1_GTYPE, DEV2_GTYPE, DEV3_GTYPE: If one device is 'Custom' or 'Physician modified', classified to this instead of 'Standard'

Filter FBVAR patients based on having at least one branch, re-leveled as following.

- lrenal: re-leveled BRANCH LRENAL TRT, merge with retired R LT RENAL
- rrenal: re-leveled BRANCH_RRENAL_TRT, merge with retired R_RT_RENAL
- sma: re-leveled BRANCH_SMA_TRT, merge with retired R_SMA
- celiac: re-leveled BRANCH CELIAC TRT, merge with retired R CELIAC
- lsub: re-leveled BRANCH LSUB TRT, merge with retired R L SUBCLAV

Retired levels: 0 = Patent, no intervention,1 = Chronically Occluded,2 = Purposely Occluded,3 = Debranch,4 = Stent Only,5 = Chimney,6 = Fen/scallop Only,7 = Stented-fen,8 = Fenestrated Stentgraft Branch (Branched TEVAR),9 = Side-arm Stent-graft Branch

Current levels: $0 = \text{None}, 1 = \text{Purposely covered}, 2 = \text{Unintentionally covered}, 3 = \text{Occluded} - \text{coil}, 4 = \text{Occluded} - \text{plug}, 5 = \text{Occluded} - \text{open}, 6 = \text{Stent}, 7 = \text{Stent-graft}, 8 = \text{Chimney}, 9 = \text{Scallop}, 10 = \text{Stented} \cdot \text{Scallop}, 11 = \text{Fenestration}, 12 = \text{Stented-fen}, 13 = \text{Fen branch}, 14 = \text{Side-arm branch}, 15 = \text{Surgical bypass}, 16 = \text{Thromboembolectomy}, 17 = \text{Iliac Device}$

How to map new and old levels?

Retired variables

- GENE: merge GENHIST with retired R_GENHIST
- POSTOP_SPINALDRAIN: merge POSTOP_SPINALDRAIN with retired R_SPINAL_DRAIN
- R_DISTATTZONE: Distal Attachment Zone Don't know which is the current variable
- R_GDPROXIMAL: Graft Diameter Proximal Don't know which is the current variable
- $\bullet\,$ R_GRFTCONFIG: Graft Configuration Don't know which is the current variable
- R_PRATTZONE: Prox. Attachment Zone Don't know which is the current variable

Among the whole dataset, we filtered out 3510 FBVAR patients for our study.

Outcomes

- R_ENDOLEAK_AT_COMPLETION, R_POSTOP_HEMATOMA,R_POSTOP_SITEOCC: changed to Yes/No scale
- Create POSTOP_AH: Combine POSTOP_AH, POSTOP_MI,POSTOP_DYSRHYTHMIA for post-procedure abnormal heart disease
- Create BRANCH_POST: BRANCH_XXX_POST changed to Yes/No scale. Then combine BRANCH_LSUB_POST, BRANCH_CELIAC_POST, BRANCH_SMA_POST, BRANCH_RRENAL_POST, BRANCH_LRENAL_POST, BRANCH_RCOMILI_POST, BRANCH_LCOMILI_POST

Retired variables

- R_ENDOLEAK_AT_COMPLETION: many LEAKATCOM_XXX variables, don't know how to pick
- R_POSTOP_HEMATOMA: corresponding to retired ACCESS_HEMATOMA_R ACCESS_HEMATOMA_L $Merge\ LR$?
- $\bullet \ \ \, \texttt{R_POSTOP_SITEOCC: corresponding to retired ACCESS_OCCLUSION_R + ACCESS_OCCLUSION_L \, Merge \, LR? }$
- R POSTOP SSI: corresponding to retired ACCESS INFECTION R+ ACCESS INFECTION L Merge LR?

a lot of variables related to Ischemia?

• R_POSTOP_BOWELISCH: Bowel Ischemia

• R_POSTOP_RENAL: change of renal function

Others

Variables we cleaned but are not needed after discussion goes here.

Volume variables

Store a new dataset for further study

Select the variable related to our study. Give them labels for better-looking tables. Finally store the new dataset as a seperate csv file, so that we could use the cleaned dataset in the future modeling.

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE,message = FALSE,warning = FALSE)
library(tidyverse)
library(table1)
library(Hmisc)
library(ggplot2)
## ----- working directories for Lily -----
wd_lily = '/Users/hanyiwang/Desktop/Comparative-analysis-of-treatments-of-CAA'
path_lily = c(
 "../data/TEVAR_International_20210712/TEVAR_International_LTF_r12_2_14_20210701.csv",
 "../data/TEVAR_International_20210712/TEVAR_International_PROC_r12_2_14_20210701.csv",
 "../data/TEVAR_International_20210901/TEVAR_International_LTF_r12_2_14_20210901.csv",
 "../data/TEVAR International 20210901/TEVAR International PROC r12 2 14 20210901.csv",
 "../data/FBVAR.csv")
## ----- working directories for Jenn ------
#wd_jenn = '/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA'
#path_jenn = c(
\# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210712/TE
# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210712/TE
# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210901/TE
# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210901/TE
## ----- read data -----
setwd(wd_lily)
TEVAR_LTF_07 = read.csv(path_lily[1])
TEVAR_PROC_07 = read.csv(path_lily[2])
TEVAR_LTF_09 = read.csv(path_lily[3])
TEVAR_PROC_09 = read.csv(path_lily[4])
#setwd(wd_jenn)
\#TEVAR\_LTF\_07 = read.csv(path\_jenn[1])
\#TEVAR\_PROC\_07 = read.csv(path\_jenn[2])
\#TEVAR\_LTF\_09 = read.csv(path\_jenn[3])
#TEVAR_PROC_09 = read.csv(path_jenn[4])
## ----- merge July and September data -----
# find data in LTF July data but not in LTF September data by `PATIENTID`
# add these data points to the September data
TEVAR_LTF <- rbind(TEVAR_LTF_07[! TEVAR_LTF_07$PATIENTID %in% TEVAR_LTF_09$PATIENTID,],
                  TEVAR_LTF_09)
# Similar for PROC data
TEVAR_PROC <-rbind(TEVAR_PROC_07[! TEVAR_PROC_07$PATIENTID %in% TEVAR_PROC_09$PATIENTID,],
                  TEVAR_PROC_09)
## ----- merge LTF and PROC data----
# same variables in LTF and PROC data
#colnames(TEVAR_PROC) [colnames(TEVAR_PROC) %in% colnames(TEVAR_LTF)]
TEVAR <- merge(TEVAR_LTF, TEVAR_PROC, all = TRUE,
              by=c("PATIENTID", "PRIMPROCID", "DEAD", "PROC SURVIVALDAYS", "IDE OTHER"))
```

```
## ----- exclusion-----
TEVAR = TEVAR %>%
  filter(PRESENTATION !=2) %>%
  filter(PATHOLOGY %in% c(1,2,3,5,6,7)) %>%
 filter(URGENCY %in% c(1,2,3)) %>%
  filter(PROXZONE_DISEASE %in% c(2,3,4,5,6,7,8,9)) %>%
  filter(DISTZONE_DISEASE > PROXZONE_DISEASE)
n occur <- data.frame(table(TEVAR$PATIENTID))</pre>
#n_occur[n_occur$Freq > 1,]%>%n_distinct
## ----- variables cleaning, patient demographic and co-morbidities---
TEVAR = TEVAR %>%
  mutate(AGECAT = factor(AGECAT, levels = c(1,2,3,4,5,6,7),
                         labels = c('<40','40-49','50-59','60-69','70-79','80-89','>89'))) %>%
  mutate(PROXZONE_DISEASE=factor(PROXZONE_DISEASE)) %>%
  mutate(URGENCY=factor(URGENCY,levels = c(1,2,3),labels = c('Elective','Urgent','Emergent'))) %%
  mutate(GENDER=factor(GENDER,levels=c(1,2),labels=c('male','female'))) %%
  mutate(ETHNICITY = factor(ETHNICITY,levels=c(0,1),
                            labels = c('None Hispanic or Latino','Hispanic or Latino'))) %>%
  mutate(RACE=factor(RACE, levels = c(5,3,2,1,4,6,7),
                     labels = c('White','Black or African American','Asian',
                                'American Indian or Alaskan Native',
                                'Native Hawaiian or other Pacific Islander', 'More than 1 race',
                                'Unknown/Other'))) %>%
  mutate(TRANSFER=factor(TRANSFER,levels = c(0,1,2),labels = c('No','Hospital','Rehab Unit'))) %%
  mutate(PRIMARYINSURER=factor(PRIMARYINSURER,levels=c(1,2,3,4,5,6),
                               labels = c('Medicare','Medicaid','Commercial', 'Military/VA',
                                          'Non US Insurance', 'Self Pay'))) %>%
  mutate(LIVINGSTATUS=factor(LIVINGSTATUS,levels=c(1,2,3),
                             labels=c('Home','Nursing home','Homeless'))) %>%
  mutate(PREOP_FUNCSTATUS=factor(PREOP_FUNCSTATUS,levels = c(0,1,2,3,4),
                                 labels = c('Full','Light work','Self care','Assisted care',
                                            'Bed bound'))) %>%
  mutate(PRIOR_CVD = factor(PRIOR_CVD,levels =c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(PRIOR_CAD = factor(PRIOR_CAD,levels =c(0,1,2,3,4,5),
                            labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(PRIOR CHF = factor(PRIOR CHF, levels = c(0,1,2,3,4),
                            labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(COPD = factor(COPD,levels = c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(DIABETES=factor(DIABETES,levels = c(0,1,2,3),labels = c('No','Yes','Yes'))) %>%
  mutate(PREOP_DIALYSIS=factor(PREOP_DIALYSIS,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %%
  mutate(HTN=factor(HTN,levels = c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(PREOP_SMOKING=factor(PREOP_SMOKING,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %%
  mutate(PRIOR_CABG = factor(PRIOR_CABG,levels = c(0,1,2),labels = c('No','Yes','Yes'))) %%
  mutate(PRIOR_PCI = factor(PRIOR_PCI,levels = c(0,1,2),labels = c('No','Yes','Yes'))) %>%
  mutate(PRIOR_ANEURREP = factor(PRIOR_ANEURREP,levels =c(0,1,2,3,4,5),
                                 labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(STRESS = factor(STRESS,levels =c(0,1,2,3,4),
                         labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(DC\_ASA = factor(DC\_ASA, levels = c(0,1,2,3), labels = c('No', 'Yes', 'No', 'No'))) %>%
  mutate(DC_P2Y = factor(DC_P2Y, levels = c(0,1,2,3,4,5,6,7),
                         labels = c('No','Yes','Yes','Yes','Yes','Yes','No','No'))) %>%
```

```
mutate(DC_STATIN = factor(DC_STATIN,levels = c(0,1,2,3),labels = c('No','Yes','No','No'))) %>%
  ## merge PREOP_CREAT, R_CR_PRESENT
  mutate(PREOP_CREAT = coalesce(PREOP_CREAT,R_CR_PRESENT))
## ----- variables cleaning, operative variables-----
TEVAR = TEVAR %>% mutate(
  PRESENTATION = factor(PRESENTATION, levels = c(0,1), labels = c('Asymptomatic', 'Symptomatic')),
  ## extent
  extent = ifelse((PROXZONE_DISEASE %in% c(2,3)) & DISTZONE_DISEASE<6, 1,</pre>
                  ifelse((PROXZONE_DISEASE %in% c(2,3)) & DISTZONE_DISEASE>=8, 2,
                         ifelse((PROXZONE_DISEASE %in% c(4,5)) & DISTZONE_DISEASE>8, 3,
                                ifelse((PROXZONE_DISEASE %in% c(6,7)) & DISTZONE_DISEASE>=8,4,
                                       ifelse((PROXZONE_DISEASE %in% c(4,5)) & DISTZONE_DISEASE<9, 5,
                                              ifelse( DISTZONE_DISEASE==8 & DISTZONE_DISEASE>8, 6,
                                                      ifelse( DISTZONE_DISEASE==9 & DISTZONE_DISEASE>9,
                                                              7,NA))))))) %>%
  mutate(extent = factor(extent,levels=c(1,2,3,4,5,6,7),
                         labels = c("Type 1 TAAA", "Type 2 TAAA" ,"Type 3 TAAA" ,"Type 4 TAAA" ,
                                    "Type 5 TAAA" , "Suprarenal AAA" , "Infrarenal/Juxtarenal AAA"))) %>%
  ## PATHOLOGY
  mutate(PATHOLOGY=factor(PATHOLOGY,levels=c(1,2,3,5,6,7),
                          labels = c('Aneurysm','Dissection','Aneurysm from dissection',
                                     'PAU/IMH', 'PAU/IMH', 'PAU/IMH'))) %>%
  mutate(PRIOR AORSURG=factor(PRIOR AORSURG,levels=c(0,1,2,3,4),
                              labels=c('None','Open','Endo','Both','Other'))) %>%
  mutate(PATHOLOGY ANEURYSM TYPE=
           factor(PATHOLOGY_ANEURYSM_TYPE,levels = c(1,2,3,4,5),
                  labels = c('Degenerative, fusiform','Degenerative, saccular','Anastomotic',
                              'Prior trauma', 'Intercostal or visceral patch'))) %>%
  mutate(PATHOLOGY_DISSECT_TYPE=
           factor(PATHOLOGY_DISSECT_TYPE,levels = c(1,2),
                  labels = c('Acute, <= 30 days','Chronic, >30 days'))) %>%
  ## merge GENHIST, R_GENHIST
  mutate(GENHIST = factor(GENHIST,levels = c(0,1,2,3,4,5),
                          labels = c('None', 'Marfans', 'Ehlers-Danlos', 'Loeys-Dietz',
                                     'Non-specific','Other'))) %>%
  mutate(R_GENHIST = factor(R_GENHIST, levels = c(0,1,2,3),
                            labels = c('None','Marfans','Ehlers-Danlos','Other'))) %>%
  mutate(GENE=coalesce(GENHIST,R GENHIST)) %>%
  mutate(PROXZONE_DISEASE=factor(PROXZONE_DISEASE)) %>%
  mutate(DISTZONE DISEASE=
           factor(DISTZONE DISEASE, levels = c(0:15),
                  labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L','10B','11R','11L','11B'))) %>%
  mutate(ANESTHESIA=factor(ANESTHESIA,levels = c(1,2,3),labels = c('Local', 'Regional', 'General')))%%
  mutate(IVUSTEE=factor(IVUSTEE,levels = c(0:5),labels = c('No','IVUS','TEE','Both','No','IVUS')))%%
  ## merge ACCESS_L and ACCESS_R
  mutate(ACCESS = ifelse(ACCESS_L == 1 & ACCESS_R ==1, 'Percutaneous', 'Open')) %>%
  mutate(ACCESS=factor(ACCESS)) %>%
  mutate(ARMNECK_ACCESS=factor(ARMNECK_ACCESS,levels =c(0,1,2,3),
                                labels = c('No','For branch treatment',
                                          'For femoral-brachial wire', 'For both')))%>%
  mutate(AORDEV_NUM=factor(AORDEV_NUM))%>%
```

```
mutate(AORDEV_CMOD=factor(AORDEV_CMOD,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(STAGEDAORTRT=factor(STAGEDAORTRT,levels=c(0,1),labels=c('No','Yes'))) %>%
## DEV_GTYPE: merge DEV1_GTYPE, DEV2_GTYPE, DEV3_GTYPE
mutate(DEV GTYPE = case when(DEV1 GTYPE==2|DEV2 GTYPE==2|DEV3 GTYPE==2 ~ 'Custom',
                              DEV1_GTYPE==3|DEV2_GTYPE==3|DEV3_GTYPE==3 ~ 'Physician modified',
                              TRUE ~ 'Standard')) %>%
mutate(ILIACDEV_END_R= factor(ILIACDEV_END_R, levels = c(0,1,2,3),
                             labels = c('None','Common',
                                        'External, Intended', 'External, Unintended'))) %>%
mutate(ILIACDEV_END_L= factor(ILIACDEV_END_L, levels = c(0,1,2,3),
                             labels = c('None','Common',
                                        'External, Intended', 'External, Unintended'))) %>%
mutate(BRANCH_STAGED=factor(BRANCH_STAGED,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_LSUB=factor(BRANCH_LSUB,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_CELIAC=factor(BRANCH_CELIAC,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_SMA=factor(BRANCH_SMA,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_RRENAL=factor(BRANCH_RRENAL,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_LRENAL=factor(BRANCH_LRENAL,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_INNO_POST=factor(BRANCH_INNO_POST,levels=c(1,2,3),
                               labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
mutate(BRANCH_LSUB_VERTPAT=
         factor(BRANCH_LSUB_VERTPAT,levels=c(1:7),
                labels=c('Patent bilat','Patent bilat, L dominant','Patent bilat, R dominant',
                         'Occluded L, patent R', 'Occluded R, patent L', 'Occluded bilat',
                         'Not imaged'))) %>%
mutate(ANESTHESIA GEN TIMEEXT=factor(ANESTHESIA GEN TIMEEXT,levels=c(1,2,4,5),
                                     labels=c('In OR','<12 hrs','12-24 hrs','>24 hrs'))) %>%
## POSTOP SPINALDRAIN
mutate(R_SPINAL_DRAIN=factor(R_SPINAL_DRAIN,levels=c(0,1,2),
                         labels=c('None','Pre-op','Post-op'))) %>%
mutate(POSTOP_SPINALDRAIN=factor(POSTOP_SPINALDRAIN,levels=c(0,1,2,3),
                                 labels=c('None','Pre-op','Post-op, prophylactic',
                                          'Post-op for spinal ischemia'))) %>%
mutate(POSTOP_SPINALDRAIN = coalesce(POSTOP_SPINALDRAIN,R_SPINAL_DRAIN)) %>%
mutate(R_PRATTZONE=factor(R_PRATTZONE)) %>%
mutate(R_GRFTCONFIG=factor(R_GRFTCONFIG,levels=c(1,2,3),
                       labels=c('Standard','Plus Bare Stent','Branched/fenestrated'))) %>%
## retired branch variables
mutate(R_CELIAC=factor(R_CELIAC,levels=c(0:9),
                       labels=c('Patent, no intervention','Chronically Occluded',
                                'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                'Fen/scallop Only', 'Stented-fen',
                                'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                'Side-arm Stent-graft Branch'))) %>%
mutate(R_LT_RENAL=factor(R_LT_RENAL,levels=c(0:9),
                         labels=c('Patent, no intervention','Chronically Occluded',
                                  'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                  'Fen/scallop Only', 'Stented-fen',
                                  'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                  'Side-arm Stent-graft Branch'))) %>%
mutate(R_RT_RENAL=factor(R_RT_RENAL,levels=c(0:9),
```

```
labels=c('Patent, no intervention','Chronically Occluded',
                                    'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                    'Fen/scallop Only', 'Stented-fen',
                                    'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                    'Side-arm Stent-graft Branch'))) %>%
  mutate(R_SMA=factor(R_SMA,levels=c(0:9),
                          labels=c('Patent, no intervention','Chronically Occluded',
                                    'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                    'Fen/scallop Only', 'Stented-fen',
                                    'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                    'Side-arm Stent-graft Branch')))
## ----- BRANCH_TRT filtering-----
TEVAR<-TEVAR %>%
  mutate(lrenal = ifelse(BRANCH_LRENAL_TRT %in% c(0,6,7), 0,
                        ifelse(BRANCH_LRENAL_TRT %in% c(9,10,11,12,13,14), 1,
                                ifelse(BRANCH_LRENAL_TRT %in% c(1,2,3,4), 2,
                                       ifelse(BRANCH_LRENAL_TRT == 8, 3,NA)))),
         rrenal = ifelse(BRANCH_RRENAL_TRT %in% c(0,6,7), 0,
                         ifelse(BRANCH_LRENAL_TRT %in% c(9,10,11,12,13,14), 1,
                                ifelse(BRANCH_LRENAL_TRT %in% c(1,2,3,4), 2,
                                       ifelse(BRANCH_LRENAL_TRT == 8, 3,NA)))),
         sma = ifelse(BRANCH_SMA_TRT %in% c(0,6,7), 0,
                      ifelse(BRANCH_SMA_TRT %in% c(9,10,11,12,13,14), 1,
                             ifelse(BRANCH SMA TRT %in% c(1,2,3,4), 2,
                                    ifelse(BRANCH SMA TRT == 8,3,NA)))),
         celiac = ifelse(BRANCH CELIAC TRT %in% c(0,6,7), 0,
                         ifelse(BRANCH_CELIAC_TRT %in% c(9,10,11,12,13,14), 1,
                                ifelse(BRANCH_CELIAC_TRT %in% c(1,2,3,4), 2,
                                       ifelse(BRANCH_CELIAC_TRT == 8,3,NA)))),
         lsub = ifelse(BRANCH_LSUB_TRT %in% c(0,6,7), 0,
                       ifelse(BRANCH_LSUB_TRT %in% c(9,10,11,12,13,14), 1,
                              ifelse(BRANCH_LSUB_TRT %in% c(1,2,3,4), 2,
                                     ifelse(BRANCH_LSUB_TRT == 8,3,NA)))))
## ----- FBVAR filtering-----
TEVAR = TEVAR %>%
  filter(lrenal == 1 | rrenal== 1 | sma== 1 | celiac== 1 | lsub== 1)
TEVAR = TEVAR %>%
  mutate(lrenal=factor(lrenal,levels=c(0,1,2,3),
                          labels=c('None', 'Scallop/Fen/Branch', 'Occluded/Covered', 'Chimney'))) %>%
 mutate(rrenal=factor(rrenal,levels=c(0,1,2,3),
                          labels=c('None','Scallop/Fen/Branch','Occluded/Covered','Chimney')))%>%
 mutate(sma=factor(sma,levels=c(0,1,2,3),
                          labels=c('None','Scallop/Fen/Branch','Occluded/Covered','Chimney')))%>%
  mutate(celiac=factor(celiac,levels=c(0,1,2,3),
                          labels=c('None','Scallop/Fen/Branch','Occluded/Covered','Chimney')))%>%
  mutate(lsub=factor(lsub,levels=c(0,1,2,3),
                          labels=c('None','Scallop/Fen/Branch','Occluded/Covered','Chimney')))
## ----- variables cleaning, outcomes-----
```

```
TEVAR = TEVAR %>%
  mutate(DEAD=factor(DEAD,levels=c(0,1),labels = c('No','Yes'))) %>%
  mutate(AORDEV_TECHSUCC=factor(AORDEV_TECHSUCC,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(CONVTOOPEN=factor(CONVTOOPEN,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(R_ENDOLEAK_AT_COMPLETION=
           factor(R_ENDOLEAK_AT_COMPLETION,levels=c(0:4),
                  labels=c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP VASO=factor(POSTOP VASO,levels=c(0,1,2,3),labels=c('No','Yes','Yes','Yes'))) %%
  mutate(POSTOP_COMPLICATIONS=factor(POSTOP_COMPLICATIONS,levels=c(0,1),labels=c('No','Yes'))) %%
  mutate(R_POSTOP_HEMATOMA=factor(R_POSTOP_HEMATOMA,levels=c(0,1,2,3,4),
                                  labels=c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(R_POSTOP_SITEOCC=factor(R_POSTOP_SITEOCC,levels=c(0:5),
                                  labels=c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_RESPIRATORY=factor(POSTOP_RESPIRATORY,levels = c(0:3),
                                   labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_DIALYSIS=factor(POSTOP_DIALYSIS,levels = c(0:2),
                                labels = c('No','Yes','Yes'))) %>%
  mutate(POSTOP_ARMEMBO=factor(POSTOP_ARMEMBO,levels = c(0:5),
                               labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_LEGEMBO=factor(POSTOP_LEGEMBO,levels = c(0:5),
                               labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_LEGCOMPART=factor(POSTOP_LEGCOMPART,levels = c(0:4),
                                  labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(R_POSTOP_BOWELISCH=factor(R_POSTOP_BOWELISCH,levels = c(0:2),labels = c('No','Yes','Yes'))) %>
  mutate(POSTOP RENALISCH=factor(POSTOP RENALISCH,levels = c(0:3),
                                 labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(R_POSTOP_SSI=factor(R_POSTOP_SSI,levels = c(0:4),labels = c('No','Yes','Yes','Yes','Yes'))) %>
  mutate(POSTOP_SPINAL_ISCHEMIA=factor(POSTOP_SPINAL_ISCHEMIA,levels = c(0:2),
                                       labels = c('No','Yes','Yes'))) %>%
  mutate(DC_STATUS=factor(DC_STATUS,levels = c(1:6),
                          labels = c('Home', 'Rehab Unit', 'Nursing Home',
                                     'Dead', 'Other Hospital', 'Homeless'))) %>%
  mutate(R_LE_ISCH=factor(R_LE_ISCH,levels = c(0,1),labels = c('No','Yes'))) %>%
  mutate(R_POSTOP_RENAL=factor(R_POSTOP_RENAL,levels = c(0:5),
                               labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  ## POSTOP_AH: merge POSTOP_MI,POSTOP_DYSRHYTHMIA,POSTOP_CHF
  mutate(POSTOP_MI=factor(POSTOP_MI,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %>%
  mutate(POSTOP_DYSRHYTHMIA=factor(POSTOP_DYSRHYTHMIA,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(POSTOP_CHF=factor(POSTOP_CHF,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(POSTOP_AH=case_when(POSTOP_MI=='Yes'|POSTOP_DYSRHYTHMIA=='Yes'|POSTOP_CHF=='Yes' ~ "Yes",
                             POSTOP_MI=='No'|POSTOP_DYSRHYTHMIA=='No'|POSTOP_CHF=='No' ~ "No")) %>%
  ## BRANCH XXX POST
  mutate(BRANCH_LSUB_POST=factor(BRANCH_LSUB_POST,levels=c(1,2,3),
                                 labels=c('No','Yes','Yes'))) %>%
  mutate(BRANCH_CELIAC_POST=factor(BRANCH_CELIAC_POST,levels=c(1,2,3),
                                 labels=c('No','Yes','Yes'))) %>%
  mutate(BRANCH_SMA_POST=factor(BRANCH_SMA_POST,levels=c(1,2,3),
                                 labels=c('No','Yes','Yes'))) %>%
  mutate(BRANCH_RRENAL_POST=factor(BRANCH_RRENAL_POST,levels=c(1,2,3),
                                 labels=c('No','Yes','Yes'))) %>%
  mutate(BRANCH_LRENAL_POST=factor(BRANCH_LRENAL_POST,levels=c(1,2,3),
```

```
labels=c('No','Yes','Yes'))) %>%
  mutate(BRANCH_RCOMILI_POST=factor(BRANCH_RCOMILI_POST,levels=c(1,2,3),
                                 labels=c('No','Yes','Yes'))) %>%
  mutate(BRANCH_LCOMILI_POST=factor(BRANCH_LCOMILI_POST,levels=c(1,2,3),
                                 labels=c('No','Yes','Yes'))) %>%
  ## BRANCH_POST: merge BRANCH_XXX_POST
  mutate(BRANCH POST=case when (BRANCH LSUB POST=="Yes"|BRANCH CELIAC POST=="Yes"|BRANCH SMA POST=="Yes"
  ## RETX R RTOR: merge RETX, R RTOR
  mutate(RETX=factor(RETX,levels = c(0:2),labels = c('No','Yes','Yes'))) %>%
  mutate(R_RTOR=factor(R_RTOR,levels = c(0:5),labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate (RETX_R_RTOR=case_when(RETX=="Yes"|R_RTOR=="Yes" ~ "Yes",
                                RETX=="No" & R_RTOR=="No" ~ "No",
                                RETX=="No"&is.na(R_RTOR) ~ "No",
                                R_RTOR=="No"&is.na(RETX) ~ "No",
                                is.na(R_RTOR) & is.na(RETX) ~ NA_character_))
TEVAR = TEVAR %>%
  mutate(R_PREOP_AMBUL = factor(R_PREOP_AMBUL,levels = c(1,2,3,4),
                                labels=c("Amb", "Amb w/ Assistance", "Wheelchair", "Bedridden"))) %>%
  mutate(SURGYEAR=factor(SURGYEAR)) %>%
  mutate(PRIOR_AORSURG_OPENLOC1=factor(PRIOR_AORSURG_OPENLOC1,
                                      levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR AORSURG OPENLOC2=factor(PRIOR AORSURG OPENLOC2,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR AORSURG OPENLOC3=factor(PRIOR AORSURG OPENLOC3,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_OPENLOC4=factor(PRIOR_AORSURG_OPENLOC4,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_ENDOLOC1=factor(PRIOR_AORSURG_ENDOLOC1,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_ENDOLOC2=factor(PRIOR_AORSURG_ENDOLOC2,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_ENDOLOC3=factor(PRIOR_AORSURG_ENDOLOC3,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_ENDOLOC4=factor(PRIOR_AORSURG_ENDOLOC4,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(ARMNECK_ACCESS_LOC=factor(ARMNECK_ACCESS_LOC,levels =c(1:7),
                                labels = c('Right arm','Left arm','Right axillary',
                                          'Left axillary', 'Right carotid',
                                          'Left carotid', 'Multiple')))
## ----- DEV PROXZONE and DEV DISTZONE filtering-----
TEVAR<-TEVAR %>%
  mutate(distal_seal= DEV1_DISTZONE,prox_seal= DEV1_PROXZONE)
for (i in 1:nrow(TEVAR)){
  if ((!(is.na(TEVAR$DEV2_DISTZONE[i])) && (!is.na(TEVAR$DEV2_DISTZONE[i]>TEVAR$DEV1_DISTZONE[i]))&&
       (TEVAR$DEV2_DISTZONE[i]>TEVAR$DEV1_DISTZONE[i]))) {
   TEVAR$distal_seal[i] = TEVAR$DEV2_DISTZONE[i]}
  else if((is.na(TEVAR$DEV1_DISTZONE[i])) && (!(is.na(TEVAR$DEV2_DISTZONE[i])))){
```

```
TEVAR$distal_seal[i] = TEVAR$DEV2_DISTZONE[i]}
  if ((!(is.na(TEVAR$DEV3_DISTZONE[i])) && (!is.na(TEVAR$DEV3_DISTZONE[i]>TEVAR$DEV2_DISTZONE[i]))&
       (TEVAR$DEV3_DISTZONE[i]>TEVAR$DEV2_DISTZONE[i]))) {
    TEVAR$distal seal[i] = TEVAR$DEV3 DISTZONE[i]}
  if ((!(is.na(TEVAR$DEV4_DISTZONE[i])) && (!is.na(TEVAR$DEV4_DISTZONE[i]>TEVAR$DEV3_DISTZONE[i]))&&
       (TEVAR$DEV4 DISTZONE[i]>TEVAR$DEV3 DISTZONE[i]))) {
    TEVAR$distal_seal[i] = TEVAR$DEV4_DISTZONE[i]}
  if ((!(is.na(TEVAR$DEV5 DISTZONE[i])) && (!is.na(TEVAR$DEV5 DISTZONE[i]>TEVAR$DEV4 DISTZONE[i]))&&
       (TEVAR$DEV5 DISTZONE[i]>TEVAR$DEV4 DISTZONE[i]))) {
    TEVAR$distal seal[i] = TEVAR$DEV5 DISTZONE[i]}
  if ((!(is.na(TEVAR$DEV6 DISTZONE[i])) && (!is.na(TEVAR$DEV6 DISTZONE[i]>TEVAR$DEV5 DISTZONE[i]))&&
       (TEVAR$DEV6 DISTZONE[i]>TEVAR$DEV5 DISTZONE[i]))) {
    TEVAR$distal seal[i] = TEVAR$DEV6 DISTZONE[i]}
  }
for (i in 1:nrow(TEVAR)){
  if ((!(is.na(TEVAR$DEV2_PROXZONE[i])) && (!is.na(TEVAR$DEV2_PROXZONE[i]<TEVAR$DEV1_PROXZONE[i]))&&</pre>
       (TEVAR$DEV2_PROXZONE[i] < TEVAR$DEV1_PROXZONE[i]))) {
    TEVAR$prox_seal[i] = TEVAR$DEV2_PROXZONE[i]}
  else if((is.na(TEVAR$DEV1_PROXZONE[i])) && (!(is.na(TEVAR$DEV2_PROXZONE[i])))){
       TEVAR$prox seal[i] = TEVAR$DEV2 PROXZONE[i]}
  if ((!(is.na(TEVAR$DEV3_PROXZONE[i])) && (!is.na(TEVAR$DEV3_PROXZONE[i]<TEVAR$DEV2_PROXZONE[i]))&&</pre>
       (TEVAR$DEV3 PROXZONE[i]<TEVAR$DEV2 PROXZONE[i]))) {
    TEVAR$prox_seal[i] = TEVAR$DEV3_PROXZONE[i]}
  if ((!(is.na(TEVAR$DEV4 PROXZONE[i])) && (!is.na(TEVAR$DEV4 PROXZONE[i]<TEVAR$DEV3 PROXZONE[i]))&&
       (TEVAR$DEV4 PROXZONE[i]<TEVAR$DEV3 PROXZONE[i]))) {
    TEVAR$prox seal[i] = TEVAR$DEV4 PROXZONE[i]}
  if ((!(is.na(TEVAR$DEV5 PROXZONE[i])) && (!is.na(TEVAR$DEV5 PROXZONE[i]<TEVAR$DEV4 PROXZONE[i]))&&
       (TEVAR$DEV5 PROXZONE[i]<TEVAR$DEV4 PROXZONE[i]))) {
    TEVAR$prox seal[i] = TEVAR$DEV5 PROXZONE[i]}
  if ((!(is.na(TEVAR$DEV6_PROXZONE[i])) && (!is.na(TEVAR$DEV6_PROXZONE[i]<TEVAR$DEV5_PROXZONE[i]))&&</pre>
       (TEVAR$DEV6 PROXZONE[i]<TEVAR$DEV5 PROXZONE[i]))) {
    TEVAR$prox_seal[i] = TEVAR$DEV6_PROXZONE[i]}
  }
## ----- variables cleaning, volume variables-----
TEVAR = TEVAR %>%
  mutate(REGIONID=factor(REGIONID)) %>%
  mutate(CENTERID=factor(CENTERID)) %>%
  mutate(PHYSICIANID=factor(PHYSICIANID))
## -----variables selection-----
FBVAR = TEVAR %>% select(
  # Patient demographic and co-morbidities
  AGE, AGECAT, GENDER, PROXZONE DISEASE, URGENCY, ETHNICITY, RACE, TRANSFER, PRIMARYINSURER,
  LIVINGSTATUS, PREOP_FUNCSTATUS, PRIOR_CVD, PRIOR_CAD, PRIOR_CHF, COPD, DIABETES,
  PREOP_DIALYSIS, HTN, PREOP_SMOKING, PRIOR_CABG, PRIOR_PCI, PRIOR_ANEURREP, STRESS,
  PREOP CREAT, DC ASA, DC P2Y, DC STATIN, PREOP CREAT,
  lrenal, rrenal, sma, celiac, lsub,
  #operative variables
  PRESENTATION, PRIOR_AORSURG, PRIOR_AORSURG_OPENLOC1, PRIOR_AORSURG_OPENLOC2, PRIOR_AORSURG_OPENLOC3,
  PRIOR_AORSURG_OPENLOC4, PRIOR_AORSURG_ENDOLOC1, PRIOR_AORSURG_ENDOLOC2,
```

```
PRIOR AORSURG ENDOLOC3, PRIOR AORSURG ENDOLOC4, PATHOLOGY, PREOP MAXAAADIA, URGENCY,
  PATHOLOGY_ANEURYSM_TYPE, PATHOLOGY_DISSECT_TYPE, PATHOLOGY_DISSECT_ONSET_DAYS, GENE,
  PROXZONE DISEASE, DISTZONE DISEASE, ANESTHESIA, CONTRAST, EBL, FLUOROTIME, INTRAOP PRBC,
  TOTALPROCTIME, IVUSTEE, ACCESS, #ACCESS R, ACCESS L, LRGST SHEATH SIZE R, LRGST SHEATH SIZE L,
  ARMNECK ACCESS, ARMNECK ACCESS LOC, AORDEV NUM,
  AORDEV CMOD, #AORDEV TECHSUCC, CONVTOOPEN, R ENDOLEAK AT COMPLETION, STAGEDAORTRT,
  DEV GTYPE, #DEV1 GTYPE, DEV2 GTYPE, DEV3 GTYPE,
  DEV1 GRAFTDET, ILIACDEV END_R, ILIACDEV_END_L, BRANCH_STAGED, BRANCH_LSUB,
  BRANCH_CELIAC, BRANCH_SMA, BRANCH_RRENAL, BRANCH_LRENAL,
  #BRANCH INNO POST,
  #BRANCH_LSUB_POST, BRANCH_CELIAC_POST, BRANCH_SMA_POST,
  #BRANCH_RRENAL_POST, BRANCH_LRENAL_POST, BRANCH_RCOMILI_POST, BRANCH_LCOMILI_POST,
  #BRANCH_LSUB_VERTPAT,
  ANESTHESIA GEN TIMEEXT, ICUSTAY, POSTOP PRBC, POSTOP SPINALDRAIN,
  #POSTOP VASO,
  POSTOP_HIGHCREAT, POSTOP_COMPLICATIONS, #R_POSTOP_HEMATOMA, R_POSTOP_SITEOCC,
  #POSTOP MI, POSTOP DYSRHYTHMIA, POSTOP CHF,
  POSTOP_CEREBROSX, POSTOP_RESPIRATORY,
  POSTOP DIALYSIS, POSTOP ARMEMBO, POSTOP LEGEMBO, POSTOP LEGCOMPART, POSTOP INTISCH,
  R POSTOP BOWELISCH, POSTOP RENALISCH, R POSTOP SSI, POSTOP SPINAL ISCHEMIA, #RETX,
  DC STATUS.
  DC ASA, DC P2Y, DC STATIN, R CELIAC, #R CR PRESENT,
  R DISTATTZONE, R GDPROXIMAL, R GRFTCONFIG,
  R_LE_ISCH,R_LT_RENAL,R_PRATTZONE,R_POSTOP_RENAL,R_RT_RENAL,#R_RTOR,
  R SMA, #R SPINAL DRAIN,
  # outcomes
  DEAD, PROC_SURVIVALDAYS, TOTAL_LOS, POSTOP_LOS, AORDEV_TECHSUCC, CONVTOOPEN,
  R_ENDOLEAK_AT_COMPLETION, BRANCH_POST, #BRANCH_LSUB_POST, BRANCH_CELIAC_POST, BRANCH_SMA_POST,
  #BRANCH_RRENAL_POST, BRANCH_LRENAL_POST, BRANCH_RCOMILI_POST, BRANCH_LCOMILI_POST,
  ICUSTAY, POSTOP_PRBC, POSTOP_VASO, POSTOP_HIGHCREAT, POSTOP_COMPLICATIONS, R_POSTOP_HEMATOMA,
  R_POSTOP_SITEOCC, #POSTOP_MI, POSTOP_DYSRHYTHMIA, POSTOP_CHF,
  POSTOP AH, POSTOP CEREBROSX, POSTOP RESPIRATORY,
  POSTOP_DIALYSIS, POSTOP_ARMEMBO, POSTOP_LEGEMBO, POSTOP_LEGCOMPART, POSTOP_INTISCH,
  R POSTOP BOWELISCH, POSTOP RENALISCH, R POSTOP SSI, POSTOP SPINAL ISCHEMIA, #RETX,
  DC_STATUS,R_LE_ISCH,#R_POSTOP_RENAL,#R_RTOR,
  RETX R RTOR,
  # clustering
  REGIONID, CENTERID, PHYSICIANID)
## ----- variables labels-----
#var.labels = c(AGE="Age (years)", AGECAT="Age (category)")
#label(FBVAR) = as.list(var.labels[match(names(FBVAR), names(var.labels))])
## ----- store as new dataset 'FBVAR' to ensure easier access for modelling----
# FBVAR = TEVAR
write.csv(FBVAR,path_lily[5])
```