

Une brève histoire

– de la –

BIOINFORMATIQUE

PARTIE I (1950-1970)

FACTEURS LIMITANTS EN RECHERCHE... ...en 2015

"Analyser les données"

CROISSANCE EXPONENTIELLE DE LA QUANTITÉ DE SÉQUENCES D'ADN PUBLIÉES!

PROBLÈMES: 1) Notre capacité de calcul

PROBLÈMES: 2) Surcharge de données brutes

...le cerveau humain ne suffit pas à la tâche!

TOUT PORTE À CROIRE QUE...

...la bioinformatique serait une discipline récente, venue prêter main forte à l'analyse de milliers de séquences d'ADN.

Est-ce vraiment le cas? Pour le savoir...

1950 ON SAIT QUE... PEU DE CHOSES SUR LA STRUCTURE DE L'ADN.

- DÉSOXYRIBOSE
- PHOSPHATE
- QUATRE BASES AZOTÉES (A-T-C-G)

...et c'est presque tout.

CHARGAFF (1950)

1952
ON SAIT QUE... L'ADN PORTE L'INFORMATION GÉNÉTIQUE.
DÉBAT CLOS PAR HERSHEY ET CHASE (1952)

1952 ON SAIT QUE... PEU DE CHOSES SUR LA STRUCTURE DE L'ADN.

IL FAUDRA ATTENDRE:

- 1 an avant de connaître la structure de l'ADN; (Watson et Crick 1953)
- 13 ans avant d'en déchiffrer le code; (Nirenberg, Leder et al. 1965)
- 25 ans pour séquencer une molécule d'ADN. (Gilbert et al. 1976 ; Sanger et al. 1977)

1955 MAIS NOUS EN SAVIONS BEAUCOUP PLUS SUR... LES <u>PROTÉINES</u>.

1955 MAIS NOUS EN SAVIONS BEAUCOUP PLUS SUR... LES <u>PROTÉINES</u>.

Hagen 2000 Nat Rev Genet

```
1970
1965
1960
1955
1950
```

1955 MAIS NOUS EN SAVIONS BEAUCOUP PLUS SUR... LES <u>PROTÉINES</u>.

Découverte de la structure primaire de l'insuline (Sanger et al. 1955)

DÉBAT SUR LA NATURE POLYPEPTIDIQUE DES PROTÉINES: CLOS.

1956-1960 OPTIMISATION DU SÉQUENÇAGE DES PROTÉINES.

RÉACTION DE DÉGRADATION D'EDMAN

= Séquençage à 1 a.a. à la fois, à partir du côté N-terminal.

... MAINTENANT SEMI-AUTOMATISÉE!

1960-1965 OPTIMISATION DU SÉQUENÇAGE DES PROTÉINES.

Dégradation d'Edman + Automatisation =

PUBLICATION MASSIVE DE SÉQUENCES DE PROTÉINES.

1960-1965 L'APOGÉE DU "PARADIGME DES PROTÉINES"

STRUCTURE → FONCTION

1960-1965 L'APOGÉE DU "PARADIGME DES PROTÉINES"

SÉQUENCE → STRUCTURE → FONCTION

1960-1965 L'APOGÉE DU "PARADIGME DES PROTÉINES"

SÉQUENCE → STRUCTURE → FONCTION

```
1970
1965
1960
1955
1950
```

SÉQUENCE → STRUCTURE → FONCTION

AUTRE CONSTAT INTÉRESSANT...

>MYOGLOBINE

Humain NH₃-MIKTHECATATETHERATINTHEHAT...

```
1970
1965
1960
1955
1950
```

SÉQUENCE → STRUCTURE → FONCTION

AUTRE CONSTAT INTÉRESSANT...

>MYOGLOBINE
Humain NH₂-MIKTHECATATETHERATINTHEHAT...
Gorille NH₃-MIKTHDCATATETHERGTINTHEHAT...

```
1970
1965
1960
1955
1950
```

SÉQUENCE → STRUCTURE → FONCTION

```
1970
1965
1960
1955
1950
```

SÉQUENCE → STRUCTURE → FONCTION

```
>MYOGLOBINE
Humain
Gorille
Chat
Fourmi

>MYOGLOBINE
NH2-MIKTHECATATETHERATINTHEHAT...
NH2-MIKTHDCATATETHERGTINTHEHAT...
NH2-MIKTHDCATATDTHERGTINTHEHAT...
NH2-MLKTHDCATGTDTH-RGTIQTH--AT...
```

```
1970
1965
1960
1955
1950
```

SÉQUENCE → STRUCTURE → FONCTION

```
1970
1965
1960
1955
1950
```

SÉQUENCE → STRUCTURE → FONCTION

SÉQUENCE → STRUCTURE → FONCTION

Emile ZUCKERKANDL

Linus PAULING

1960-1965 L'APOGÉE DU "PARADIGME DES PROTÉINES"

SÉQUENCE → STRUCTURE → FONCTION

Emile Linus ZUCKERKANDL PAULING

1960-1965 L'APOGÉE DU "PARADIGME DES PROTÉINES"

SÉQUENCE → STRUCTURE → FONCTION

AUTRE CONSTAT INTÉRESSANT...

Emile ZUCKERKANDL

Linus PAULING

Divergence entre séquences orthologues

Histoire évolutive des protéines (et des espèces)?

AU COEUR DE CETTE CHIMIE...

... SE TROUVE UNE FEMME.

19**7**0 --

_

1965

-

_

1960

_

-

1955

_

-

-

1950

1960-1965 GÉNÈSE DE LA " BIOLOGIE COMPUTATIONNELLE "

MARGARET OAKLEY DAYHOFF

(1925-1983)

"... the mother and father of bioinformatics" - David Lipman (NCBI)

- Directrice adjointe du National Biomedical Research Foundation (NBRF)
- A utilisé de manière extensive l'informatique lors de son Ph.D. en électrochimie.
- Voyait le potentiel de l'informatique en PALÉOGÉNÉTIQUE.

1960-1965 GÉNÈSE DE LA "BIOLOGIE COMPUTATIONNELLE"

PRINCIPALES CONTRIBUTIONS DE M.O. DAYHOFF

DÉGRADATION D'EDMAN: PROBLÈME

- Rendement: 98% = 50 a.a. MAX
- Une protéine > 50 a.a. doit être dégradée en plus petits peptides, qui eux seront séquencés.

Séquence de la protéine complète?

1960-1965 GÉNÈSE DE LA " BIOLOGIE COMPUTATIONNELLE "

PRINCIPALES CONTRIBUTIONS DE M.O. DAYHOFF

1- Le premier "outil bioinformatique" (1962)

COMPROTEIN: A COMPUTER PROGRAM TO AID PRIMARY PROTEIN STRUCTURE DETERMINATION*

Margaret Oakley Dayhoff and Robert S. Ledley National Biomedical Research Foundation Silver Spring, Maryland

KTHECAT	Peptide		
		Peptide	
ATATI	ATATETH		
ATI	Peptide		
ERAT		Peptide	
	Peptide		
MIK	Peptide		
MIKTHECATATI	Protein		

1960-1965 GÉNÈSE DE LA "BIOLOGIE COMPUTATIONNELLE "

_

1965

-

-

-

1960

_

-

_

_

1955

_

1950

1960-1965 GÉNÈSE DE LA " BIOLOGIE COMPUTATIONNELLE "

Ordinateur typique de l'époque (IBM 7090)

_

_

1965

_

1960

-

-

_

-

1955

-

-

_

1950

1960-1965 GÉNÈSE DE LA "BIOLOGIE COMPUTATIONNELLE "

Ordinateur typique de l'époque (IBM 7090)

Une ligne de code en 1962 (FORTRAN)

-

1965

-

-

1960

_

-

1955

_

_

-

1950

1960-1965 GÉNÈSE DE LA " BIOLOGIE COMPUTATIONNELLE "

Ordinateur typique de l'époque (IBM 7090)

Une ligne de code en 1962 (FORTRAN)

Code source d'un programme

1950

1965 GÉNÈSE DE LA "BIOLOGIE COMPUTATIONNELLE "

PRINCIPALES CONTRIBUTIONS DE M.O. DAYHOFF

2- La première "base de données" de séquences de protéines...

BOVINE GROWTH HORMONE 5 10 15 20 25 30 1 A F P A M S L S G L F A N A V L R A Q H L H Q L A A D T F K 31 E F E R T Y I P E G Q R Y S I Q N T Q V A F C F S E T I P A 61 P T G K N E A Q Q K S D L E L L R I S L L L I Q S W L G P L 91 Q F L S R V F T N S L V F G T S D R V Y E K L K D L E E G I 121 L A L M R E L E D G T P R A G Q I L K Q T Y D K F D T N M R 151 S D D A L L K N Y G L L S C F R K D L H K T E T Y L R V M K 181 C R R F G E A S C A R

COMPOSITION

15	ALA	Α	11	GLN	Q	27	LEU	L	13	SER	S	
13	ARG	R	13	GLU	E	11	LYS	K	12	THR	Т	
6	ASN	N	10	GLY	G	4	MET	М	1	TRP	W	
10	ASP	D	3	HIS	Н	13	PHE	F	6	TYR	Υ	
4	CYS	С	7	ILE	I	6	PRO	P	6	VAL	٧	

MOL. WT. = 21,816 NUMBER OF RESIDUES = 191

-

1965

-

_

1960

-

-

-

1955

-

_

_

1950

1965 GÉNÈSE DE LA " BIOLOGIE COMPUTATIONNELLE "

PRINCIPALES CONTRIBUTIONS DE M.O. DAYHOFF

2- La première "base de données" de séquences de protéines...

Au début...

BEAUCOUP de variants interspécifiques d'une DIZAINE de protéines.

```
>PROT1
Humain NH<sub>2</sub>-MIKTHECATATETHERATINTHE...-COOH
Gorille NH<sub>2</sub>-MIKTHDCATATETHERGTINTHE...-COOH
Chat NH<sub>2</sub>-MIKTHDCATATDTHERGTINTHE...-COOH
Fourmi NH<sub>2</sub>-MLKTHDCATGTDTHRGTIQTHAT...-COOH
Pieuvre NH<sub>2</sub>-MLKTHDTGTGTDTHRGTIQTHAS...-COOH
...
S. cerev NH<sub>2</sub>-MLKNHDTGTGTDTHRGTIQTHAS...-COOH
NH<sub>2</sub>-MLKTHNDTGTGARQTGTIQTHAS...-COOH
```

19**7**0 -

_

_

1965

_

-

1960

-

-

_

1955

-

_

-

_

1950

1965 GÉNÈSE DE LA "BIOLOGIE COMPUTATIONNELLE"

PRINCIPALES CONTRIBUTIONS DE M.O. DAYHOFF

2- La première "base de données" de séquences de protéines...

Données idéales pour...


```
1970
1965
1960
1955
```

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

Exemple...

Protéine 1 AVQH Protéine 2 ALQH Protéine 3 AIQH

```
1970
1965
1960
1955
1950
```

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

Exemple...

```
Protéine 1 AVQH
Protéine 2 ALQH
Protéine 3 AIQH
```

Phylogénie? Trois possibilités:

Quelle hypothèse est la bonne?

Vérifions la distance entre les séquences À L'AIDE D'ALIGNEMENTS.

```
1970
1965
1960
1955
```

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

PROBLÈME:

Prot1	A <mark>V</mark> QH
Prot2	ALQH
Prot3	AIQH
Prot2	ALQH
Prot3	AIQH
Prot1	AVQH

Tous ces alignements sont "ÉQUIVALENTS"

A.A. similaires, mais non-identiques.

Comment alors quantifier la distance entre
Prot1, Prot2 et Prot3?

1950

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

Vu que...

Séquence => Structure => Fonction

Certaines mutations ponctuelles ont plus de chance de se produire que d'autres.

_

-

_

-

1965

_

1960

-

-

-

-

1955

-

-

-

1950

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

CECI IMPLIQUE QUE...

Plus deux séquences comportent de substitutions rares, plus elles sont dissimilaires.

= POSSIBLE de discriminer des ALIGNEMENTS ÉQUIVALENTS.

1966DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

PRINCIPALES CONTRIBUTIONS DE M.O. DAYHOFF

3- MATRICES DE SUBSTITUTION

10⁴ x P (Arg > Cys)

PAM (complétée en 1978!) À partir de 1572 substitutions observées dans 71 familles de protéines partagent >85% d'identité

a.a. original

	А	R	N	D	C
	Ala	Arg	Asn	Asp	C
Α	9867	2	9	10	3
R	1	9913	1	0	1
N	4	1	9822	36	0
D	6	0	42	9859	0
C	1	1	0	0	9
\overline{O}	3	9	4	5	0

DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

Prot1	A <mark>V</mark> QH
Prot2	ALQH
Prot3	AIQH
Prot2	ALQH
Prot3	AIQH
Prot1	A <mark>V</mark> QH

```
1970
```

-

_

1965

-

_

1960

_

-

-

1955

_

-

1950

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

Prot1	A <mark>V</mark> QH
Prot2	ALQH
Prot3	AIQH
Prot2	ALQH
Prot3	AIQH
Prot1	AVQH

$$P(V > L) = 0.0015$$

 $P(L > V) = 0.0011$

$$P(I > L) = 0.0022$$

 $P(L > I) = 0.0009$

$$P(I > V) = 0.0057$$

 $P(V > I) = 0.0033$

```
1970
```

-

_

1965

-

-

1960

_

-

1955

_

_

-

1950

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

Prot1	A <mark>V</mark> QH
Prot2	ALQH
Prot3	AIQH
Prot2	ALQH
Prot3	AIQH
Prot1	A <mark>V</mark> QH

$$P(V > L) = 0.0015$$

 $P(L > V) = 0.0011$

$$P(I > L) = 0.0022$$

 $P(L > I) = 0.0009$

$$P(I > V) = 0.0057$$

 $P(V > I) = 0.0033$

-

-

1955

_

-

-

1950

1966 DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

RETOURNONS À NOS TROIS PROTÉINES... Calcul des probabilités de substitution avec PAM1

$$P(V > L) = 0.0015$$

 $P(L > V) = 0.0011$

$$P(I > L) = 0.0022$$

 $P(L > I) = 0.0009$

$$P(I > V) = 0.0057$$

 $P(V > I) = 0.0033$

LES PLUS SIMILAIRES

DÉBUTS DE LA PHYLOGÉNIE MOLÉCULAIRE

La session prochaine...

PARTIE II (1971-1990)

- MINIATURISATION DE L'INFORMATIQUE;
- · ARRIVÉE DU SÉQUENÇAGE DE L'ADN;
- PREMIERS RÉSEAUX D'ORDINATEURS;
- DÉBUTS DE L'ÈRE GÉNOMIQUE.

