การบ้านการเขียนโปรแกรม 4: Neural Networks Learning

Thanks Andrew Ng for this beautiful programming exercise

ในการบ้านนี้เราจะทดลองเขียนโปรแกรมตามอัลกอริทีม backward propagation สำหรับสอน Neural networks โดยใช้ matrix operation ด้วย Octave/Matlab โดยทดลองทายตัวเลขอารบิกที่เขียนด้วยลายมือ เช่น เดียวกับการบ้านครั้งก่อน

ในpackage ประกอบด้วยไฟล์

- ex4.m สคริปต์เพื่อรันโปรแกรมส่วนแรก
- ex4data1.mat ชุดข้อมูลสำหรับสอนระบบส่วนแรก
- ex4weights.mat ค่าน้ำหนักเริ่มต้นของ neural networks
- displayData.m ฟังก์ชันเพื่อสร้างกราฟ
- fmincg.m ฟังก์ชันเพื่อหาค่าพารามิเตอร์ที่ดีที่สุด (เช่นเดียวกับ fminunc())
- sigmoid.m sigmoid function
- computeNumbericalGradient.m สำหรับคำนวณ gradient แบบ numeric
- checkNNGradient.m ฟังก์ชันสำหรับตรวจสอบ gradient
- debugInitializeWeights.m ฟังก์ชันสำหรับกำหนดค่าเริ่มต้นของ weights
- predict.m Neural networks Prediction Function
- sigmoidGradient.m* ฟังก์ชันคำนวณ sigmoidgradient
- randInitializeWeights.m* ฟังก์ชันทำหน้าที่สร้างการกำหนดค่าเริ่มต้นแบบสุ่ม
- nnCostFunction.m* cost function ของ Neural Networks.

ตลอดการทดสอบโค้ดของการบ้านครั้งนี้ให้สั่งรัน ex4 m เท่านั้น

1. Neural Networks

การบ้านนี้เน้นการเขียนตามอัลกอริทิม feedforward-backpropagation เพื่อสอน Neural Networks

1.1 แสดงผลภาพอินพุต

ในแพ็กเกจมีไฟล์ displayData.m เพื่อทำหน้าที่แสดงภาพอินพุต ซึ่งเป็นชุดข้อมูลเดียวกันกับการบ้านครั้ง ก่อน ซึ่งเป็นภาพขนาด 20 x 20 พิกเซล มีทั้งหมด 5000 ตัวอย่าง แต่ละอินพุตมีเอาท์พุตกำกับคือ ตัวเลข 0-9 โดย 0 คือ class ที่ 10 เพราะ Octave/Matlab เริ่มที่ 1

1.2 Model representation

โครงข่ายประสาทเทียมมีโครงสร้างดังภาพ โดยประกอบด้วย 3 ชั้น อินพุต เอาท์พุตและ hidden layer เนื่องจากแต่ละภาพมีขนาดเท่ากับเวกเตอร์ 400 (20x20) เป็นตัวกำหนดขนาดอินพุต และ ขนาดเอาท์พุตกำหนดด้วย เอาท์พุตมี 10 แบบ ส่วนชั้น hidden โจทย์ได้กำหนดมาให้เท่ากับ 25 โหนด

^{*} คือ ไฟล์ที่ต้องแก้ไขและส่ง

ภาพที่ 1 โครงข่ายประสาทเทียม

1.3 Feedforward and cost function

ในส่วนนี้ คุณต้องทำการแก้ไขโค้ดในไฟล์ nnCostFunction.m เพื่อคำนวณค่า cost ตามสมการ

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[-y_k^{(i)} \log((h_{\theta}(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_{\theta}(x^{(i)}))_k) \right]$$

$$y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots \text{ or } \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

ภาพที่ 2 เอาท์พุตเวกเตอร์

ค่า cost (J) ที่คำนวณได้ควรเป็นค่าผลรวม error ของทุกชุดข้อมูล โดยที่จำนวนข้อมูลจะเท่ากับเท่าไรโปรแกรมก็ยัง ทำงานได้ และจำนวนแบบของผลลัพธ์ (K) เช่นกัน เมื่อสั่งรัน ex4 โปรแกรมควรแสดงค่า cost ที่คาดหมายคือ 0.287629

1.4 Regularized cost function

จากค่า cost ก่อนหน้า ในขั้นตอนนี้เราจะปรับค่าโดยเพิ่มขั้นตอน regularization ดังสมการ

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[-y_k^{(i)} \log((h_{\theta}(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_{\theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \left[\sum_{j=1}^{25} \sum_{k=1}^{400} (\Theta_{j,k}^{(1)})^2 + \sum_{j=1}^{10} \sum_{k=1}^{25} (\Theta_{j,k}^{(2)})^2 \right].$$

ในขั้นตอนนี้ ให้เขียนโค้ดสำหรับโครงข่ายประสาทเทียมตามภาพที่ 1 คือมี 3 ชั้น โดยไม่ต้องรองรับโครงสร้าง อื่นใด แต่อย่างไรก็ตาม โค้ดที่เขียนไม่ควรยึดติดกับขนาดของ Theta1, Theta2 ควรรองรับ Theta ได้ทุกขนาด

โค้ดนี้ให้แก้ไขใน nnCostFunction.m โดยเป็นการคำนวณเพิ่มจากค่า J เดิม เมื่อสั่งรัน ex4.m ควรได้ค่า cost จากการทำ regularization เป็น 0.383770

2. Backpropagation

ในขั้นตอนนี้ คุณต้องเขียนโค้ดเพื่อทำ parameter learning ตามอัลกอริทึม backpropagation ค่าที่ได้ จากการคำนวณ คือ gradient ในตัวแปร grad เพื่อส่งต่อให้ฟังก์ชัน fmincg() ทำหน้าที่หาพารามิเตอร์ที่ดีที่สุด

โดยแบ่งเป็น 2 ขั้นตอนย่อยคือ คำนวณ gradient และตรวจสอบความถูกต้อง หลังจากนั้นจึงทำ regularized gradient

2.1 Sigmoid gradient

ฟังก์ชันย่อยที่จำเป็นต้องสร้างขึ้น เพื่อคำนวณ g'(z) ดังสมการ

$$g'(z) = \frac{d}{dz}g(z) = g(z)(1 - g(z))$$

โดย g(z) คือ sigmoid function เดิม (sigmoid.m) ที่เคยทำในการบ้านครั้งก่อนๆ ให้แก้ไขโค้ดลงในไฟล์ sigmoidGradient.m เพื่อหาค่า g'(z) โดยเรียกใช้ sigmoid() เมื่อทดลองเรียก ใช้งานฟังก์ชันนี้ ที่หน้าจอ command line เช่น sigmoidGradient(0) ควรได้ค่าเท่ากับ 0.25

2.2 Random initialization

คุณต้องแก้ไขโค้ดในไฟล์ randInitializeWeights.m เพื่อกำหนดค่าเริ่มต้นแบบสุ่ม โดยพิมพ์โค้ดตามภาพ ที่ 3 ลงไป

```
% Randomly initialize the weights to small values
epsilon_init = 0.12;
W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;
```

ภาพที่ 3 โค้ดเพื่อสุ่มค่าเริ่มต้น

2.3 Backpropagation

ในขั้นตอนนี้คุณต้องเขียนโค้ดเพื่อทำตามอัลกอริทึม backpropagation โดยเขียนเพิ่มลงใน nnCostFunction.m ดูภาพขั้นตอนจากขวามาซ้ายได้ในภาพที่ 4

ภาพที่ 4 การอัพเดทค่าจาก backpropagation

backpropagation ตามหลักการคือ คำนวณความผิดพลาด (error) ที่เกิดขึ้นในแต่ละโหนด โดยเริ่มจาก ชั้นเอาท์พุต ค่าผิดพลาดเขียนแทนด้วย δ_j^(l) อัลกอรีทึมนี้จะรันลูปไปทุกชุดข้อมูล (x⁽ⁱ⁾,y⁽ⁱ⁾) ซึ่งประกอบด้วย 4 ชั้นตอน ดังนี้

- 1) กำหนดค่าอินพุต a(1) = x และรัน feedforward ไปทุกชั้น อย่าลืมเติม bias unit a₀ ให้กับทุก a ด้วย
 - 2) สำหรับแต่ละเอาท์พุตในชั้นเอาท์พุต ให้คำนวณ error จากสมการ $\delta_k^{(3)} = (a_k^{(3)} y_k),$

3) สำหรับ hidden layer l=2 หาค่า error ได้จาก
$$\delta^{(2)} = \left(\Theta^{(2)}
ight)^T \delta^{(3)}. * g'(z^{(2)})$$

4) รวมค่า gradient ของแต่ละชั้นได้จาก

$$\Delta^{(l)} = \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T$$

หลังรวมทุกชุดข้อมูลหาค่าผลรวม unregularized gradient ได้จาก

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)}$$

2.4 Gradient checking

ในส่วนนี้ เราเขียนฟังก์ชันมาให้คุณแล้วในไฟล์ computeNumericalGradient.m คุณไม่ต้องทำอะไร โค้ดส่วนนี้มีไว้เพื่อตรวจสอบผลลัพธ์ค่า gradient จากโค้ดของคุณกับค่าที่ถูกต้อง ควรมีความแตกต่างน้อยกว่า 1e-9

2.5 Regularized Neural Networks

เมื่อคุณคำนวณค่า gradient ตามอัลกอริทีม backpropagation เรียบร้อย ให้คำนวณ regularized เพิ่ม ลงไปด้วย โดยสามารถคำนวณแยกเทอมเฉพาะ regularization และนำค่าไปบวก ค่า regularization คำนวณได้ ตามสมการ

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)} \qquad \text{for } j = 0$$

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)} \qquad \text{for } j = 0$$

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)} + \frac{\lambda}{m} \Theta_{ij}^{(l)} \qquad \text{for } j \ge 1$$

อย่าลืมว่า การทำ regularization นี้เราจะทำเฉพาะ j ≥ 1 ซึ่งก็คือ คอสัมน์แรกของ theta (I) ซึ่งก็คือค่า bias ถ้าโค้ดที่คุณเขียนถูกต้อง จะพบว่า relative difference มีค่าน้อยกว่า 1e-9

2.6 Learning parameters โดยใช้ fmincg

ในการบ้านนี้เราใช้ fmincg() ที่มีาให้เพื่อทำ optimization การเรียกใช้งาน fmincg เราได้เขียนมาให้แล้ว ถ้าทุกขั้นตอนถูกต้อง คุณควรเห็นรายงานความถูกต้องของการทำนายบนชุดข้อมูลได้ 95.3% คุณอาจลองเปลี่ยนจำนวนรอบดู เพื่อดูว่าค่าความถูกต้องเพิ่มขึ้นหรือไม่ (ตัวแปร Maxiter) แต่การตรวจการบ้านไม่ ได้ขึ้นกับผลความถูกต้องของการทดลองเพิ่มรอบการรันนี้

ตารางคะแนน

ที่	งานที่ต้องทำ	ไฟล์ที่ต้องส่ง	คะแนน
1 2	Feedforward and Cost Function Regularized Cost Function	nnCostFunction.m nnCostFunction.m	30 15
3	Sigmoid Gradient	sigmoidGradient.m	5
4	Random Initialization	randInitializeWeights.m	5
5 6	Neural networks Gradient Regularized Gradient	nnCostFunction.m nnCostFunction.m	30 15
	คะแนนรวม		100