Olimpiada Naţională de Matematică Etapa Finală, Târgu Mureş, 20 aprilie 2016

CLASA a VII-a - Soluții și bareme orientative

Problema 1. Determinați numerele naturale n pentru care numărul

$$\sqrt{n+3} + \sqrt{n+\sqrt{n+3}}$$

este natural.

Problema 2. Se consideră triunghiul ABC, în care $m(\not \triangleleft B) = 30^\circ$, $m(\not \triangleleft C) = 15^\circ$, iar M este mijlocul laturii [BC]. Fie punctul $N \in (BC)$ astfel încât $[NC] \equiv [AB]$. Arătați că [AN] este bisectoarea unghiului MAC.

Soluție. Fie P punctul de intersecție al mediatoarei segmentului [BC] cu AB. Atunci $m (\sphericalangle PCB) = 30^{\circ}, \ m (\sphericalangle PCA) = 15^{\circ}$ și $m (\sphericalangle MPC) = 60^{\circ}.$

Cu teorema bisectoarei, aplicată în triunghiul CPB, avem $\frac{AP}{AB} = \frac{CP}{CB}$.

Problema 3. Determinați numerele naturale p cu proprietatea că suma primelor p numere naturale nenule este un număr natural de patru cifre având descompunerea în factori primi $2^m \cdot 3^n \cdot (m+n)$, unde $m, n \in \mathbb{N}^*$.

Problema 4. Se consideră triunghiul dreptunghic isoscel ABC, cu $m(\not \triangleleft A) = 90^{\circ}$ și punctul $M \in (BC)$ astfel încât $m(\not \triangleleft AMB) = 75^{\circ}$. Pe bisectoarea interioară a unghiului MAC se ia un punct F astfel încât BF = AB. Arătați că:

- a) dreptele AM și BF sunt perpendiculare;
- b) triunghiul CFM este isoscel.

