AVMf

An Open-Source Implementation of the Alternating Variable Method

Gregory M. Kapfhammer
Phil McMinn

SSBSE 2016

October 9, 2016

Application Domains

$$\vec{X} = (x_1, x_2, \dots, x_n)$$

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Objective Function

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Exploratory Moves

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Exploratory Moves

Positive or negative "direction"?

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Pattern Moves

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Pattern Moves

Improve objective value?

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Pattern Moves

Improve objective value?

Yes! pattern or Nol explore

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Pattern Moves

Improve objective value?

Yes! pattern or No! explore

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Input Vector

$$= (x_1, x_2, \ldots, x_n)$$

Exploratory and Pattern Moves

Input Vector

$$\vec{X} = (X_1, X_2, \ldots, X_n)$$

Exploratory and Pattern Moves

Consider all input vector variables

Input Vector

$$\vec{X} = (X_1, X_2, \ldots, X_n)$$

Exploratory and Pattern Moves

Consider all input vector variables

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Exploratory and Pattern Moves

Revisit each x_i in the input vector

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Exploratory and Pattern Moves

Restart for local optimum

Input Vector

$$\vec{X} = (X_1, X_2, \dots, X_n)$$

Exploratory and Pattern Moves

Continue until termination condition

Search Algorithms

Better search for many landscapes

Representations

Missing Features

Missing Features

Key Challenge

Prior AVMs lack provably faster methods!

Test Generation

Extracting AVM

Extracting AVM

Extracting AVM

Key Challenge

Hard to extract AVM from custom software!

Original AVM plus enhancements for data and search

Clear implementa – tion of core algorithms

Adheres to the principles of object-oriented design

Free and open-source soft-ware from avmframework.org

New Application Domain

New Search Algorithm

Configure

Configure

Represent

Objective

Objective

oort

See the paper for more design and implementation details

The tool's website contains extensive documentation

java org.avmframework. examples.Quadratic

java org.avmframework. examples.StringOptimization

java org.avmframework. examples.GenerateInputData

Input → Output Stochastic Behavior

Already run: git clone & mvn package

Overcomes the challenges of using AVM

Provably faster searches and new data types

Accessible object-oriented and algorithmic design

Open-source download from avmframework.org