

SEQUENCE LISTING

<110> Collmer, Alan
Alfano, James R.
Charkowski, Amy O.

<120> DNA MOLECULES AND POLYPEPTIDES OF PSEUDOMONAS SYRINGAE
HRP PATHOGENICITY ISLAND AND THEIR USES

<130> 19603/3243

<140>
<141>

<150> 60/194,160
<151> 2000-04-03

<150> 60/224,604
<151> 2000-08-11

<150> 60/249,548
<151> 2000-11-17

<160> 91

<170> PatentIn Ver. 2.1

<210> 1
<211> 30365
<212> DNA
<213> Pseudomonas syringae

<220>
<221> unsure
<222> (29734)
<223> n at any position is undefined

<400> 1
ggtaccgggc tctgtgacgc agagcgtcac gcaaggcatt ccactggagc gtgaggaacg 60
ataatccctga cgacaactat cgtgcgcacgc tccgcgtcggt catgccgttc tggacgctct 120
gcgtcctgtc ttgagaggtg cgccaagcgc aaagcacgggt aagtatcagg gaggggtgtta 180
taggagggtt gcaaggcggg aggtgttcat atcaaggcag tttcatgaa cccgttgc 240
ctgggctcat gaacacgttc ggcttacgcg gtcagtgcatttccctcgctc aaatggtcca 300
gccctgcacatcaactca tgccgggttga tgcgtccag gctggcgttag gaacccgggtt 360
tttcgttgc acgcgtccac accacaaaatgcg cgcgtcgtac gtccagaaac aggaagtatgt 420
gattgaaacg ctctgactcc ataaaacgtc gttgcagtgc atcacgcgt tgcgttgc 480
gcaacgcgcg gccttctatg tgcaaggcga tcccccaatc atgggtttcg cggcgactga 540
caaacgcgcac gccattggcc actggccata ctgctggct ctggcgccgca acctgagcgt 600

aaaatggca ctttccgtt acctaatac ttttaactgca cgacagtgt 660
atccccctca tggccccgtt cgtccagacc ttccgcgtat tcggcgcc accaaatgac 720
cagctcgccc ttgttgagt ccggcggtt gcaagcgttc cccgcacagc cgtgggtggc 780
acaccctgtc agcgttagcaa acagcaagag caagagcggtt aggctacgaa tcatacatgg 840
ttccgtccccc ggagcagtga cggcctgtt tctttggcca ttttagatat ctgcggctgg 900
cgcacagcga tgtacaccc tcattttca cccggctgca gccatgcgtt agggcaggcc 960
gcaacgcccga tgaccaggcg accggccgtt cggcttgcgt cgatacgtac cggcttgcgt 1020
gtgttgttac gcgcacaccac cacagcaaca ccccaagtctt ttttgacgaa ccactgcgag 1080
cgctgcccattt caagcgttagt accttcgccc ggatcacaca gacttcgtgt ttcaaaggcc 1140
agggtctggc cagcgcgcag gccttccggg gcggggccgt cgatcatgg ggtaaagact 1200
ttctggatgtt cggcccggtt tggcagtgcgg cctccgttac gtcgttccctt gatttcttc 1260
atctggtcat cgacgtcatg ggggttgcgg ttctgttacat agcgtgttgcg attgacactga 1320
tcgcccataca gtcgagggtt cagaatgaac agccgcgtc gctgactcag ttccgcactg 1380
cgggactgga acagcagctt gccgatatacg ggaatgtcgc ccaacagcgg gatcttgcgt 1440
atccctgtcat tggcttccag accgttggaaag ccggccgttac ccagcgcgacc gtgtcgcc 1500
atcaccgcctt ggggtctgtac attgcctcgcc cgcacactgg gttgggtgtc attgatcg 1560
gacacatcga tctggccatc ctcgtatgtcc acgtatcattt ggacctgagg ctggccatcg 1620
ttgtccagcg aacgcggaat cacttgaagg ctggtgcggc ccgtatggg cagaatgtca 1680
gcggcccgctt cggaaagtggg cgtcaggat tggcgtgcac tgaggttgcgacttgcaggc 1740
tgattctcca gggtcaggat cgacgggttgc gcatgtactg acgcagaacc attgccttca 1800
agcgcgttac accggcaga aaacttgcgtt ggttgcgttca agaacaacgt tgaactgggt 1860
ccgcccataaa acaggttggc acccacccgtt gacgttgcgg ggcattgaaa ttccagccga 1920
ctggacagttt cagccagttt accgggttgcg atgtcgagaa tgaccgcattt gatitcgatc 1980
agggttgcgcg gaacgttccag ctccgttgcgatc agtttctgtt acatggcctt gcgttgcgtt 2040
agggtcgtaaa tcaatacggc gttgttacgc acatcagcgc ttacgcggat attgccttgc 2100
ctgaggcatg acccttggca gtttttttgc tggttgaagttt caatacgcgg tgcaatgcgg 2160
ctgttgcgtt gctccgtat cgataccattt ggagcccgagg ttgttgaaggca ggccggggcc 2220
gcgcacacccgtt tgctgttggc aacactgttgc ccctggcccg ccaacaagttt caccgtgtca 2280
atgcgttgcg caccgttgcgtt gcttccaggc agtcttgcgtt gatactggc gacaccggcc 2340
accactaact gctggtcacg gtagcgttac gtcgttgcgtt ccgcgttggc gtatgggt 2400
ggcagcaca caacatcttgc ttttgcgttgc gcttttgcgtt ttcttgcgtt 2460
tagtcgcgcgca caaacatccac gtatttgcgtt ggaccacccaa ccagaaccac gccttcgtca 2520
ggcagcgcgcg cccagcccaaa acgttgcgttca acaagacccaa catcggttgc cggccgttgc 2580
agggtcgtaaa ccgcgttccgg cggacttgcg atgcgttgcgtt ccgttgcgtt gctggaaagg 2640
ctgacatataca gctgttgcgtt atagacgttac cacttgcgtt ggttgcgtt actcagccgc 2700
tcaagaaactt cttcagggtt ctgttgcgtt acatgttccat cgttgcgttcc ctggacaggc 2760
gacatgttgcgtt gctgttgcgtt gtttgcgtt gtttgcgtt ccgttgcgtt gtttgcgtt 2820
gtctgttgcgtt catcataggc gtaggttgcgtt tggttgcgtt gtttgcgtt gtttgcgtt 2880
gtggcagggtt tcacccgtt caacaataaa ggcaaccaca ttggccgtt gtttgcgtt 2940
caactccgtt tgccgttgcgtt tgaggatcgtt acgttgcgtt ccgttgcgtt gtttgcgtt 3000
aatagtgggtt tgcatcaggc tgtagcatgc cgcgttgcgtt ttggccgtt gtttgcgtt 3060
atcgagcagg tcacccgtt tgccgttgcgtt tgccatccat cgttgcgtt ccgttgcgtt 3120
ggtctgttgcgtt tcgttgcgtt gctgttgcgtt ccgttgcgtt gtttgcgtt 3180
gccaagcaag gcttcgttgcgtt gtttgcgtt ccgttgcgtt gtttgcgtt 3240
actgcaacgc accccgttgcgtt cgcgttgcgtt ccgttgcgtt gtttgcgtt 3300
gtccagcggc atcggttgcgtt gtttgcgtt ccgttgcgtt gtttgcgtt 3360
gaattccatc gatgtactgtt ttattgttac cgttgcgtt ccgttgcgtt gtttgcgtt 3420
caataccggc gacatcgttgcgtt ccgttgcgtt gtttgcgtt 3480

0
1
2
3
4
5
6
7
8
9

tgccactctc ggaggcttcc atcgctgcct ggtccatgtt ggtgtgagca cggttcaccg 3540
aattgtcgag atggcggtgc aagctgtga aactgatcat gtcctggtgc tccagcagaa 3600
gggttcaaacc cttgagtggc gcaaaccgc cgagcggttc catcatgcga tcaagtgagt 3660
gcagagagtg tgtatcaggc agcaggctcg acacccagca gccccttgcg caggtctgcc 3720
caagcgatat cgaacgcgcc attggcatcg cttagacgca agctgtccga ggcgatcg 3780
gcatcgcgct tgagttgcca gtgctcgaa aaacggctgt ctgcccagca ctcagccacg 3840
gggtcggcta tttgggggtg aacactgagc gtgcgaccg cttcatttagt ctggctggcg 3900
gccaggtttc tggccagcgc ccgcgcacgt tcggccagcg tgggtgcgtc taacaagtgc 3960
cgcaggatt cactcaacag ttcttctacg gcggtcattt cctgctcctg caacgcctcg 4020
cgctgcacct gaagctcgcc gagaaacgcg ttggcggttt cccagaactg cgccagcgc 4080
tgctgctgaa ggtgctcgcc ttctcttcgc tcaagggcca gtatctgcgt ggctgtcgtc 4140
cgcgctcgct ccaggatgtc ggcgcgcagc aggctgtcgg cgatgtctc gcggcgcaag 4200
atcggttcgc gcagcagcgt agcggccgtc agagcaatac tgcgtttggc gagcatggc 4260
gtattcctga tgcagagaag ctggttcggc ttcaaggcagc cgtgacgcgc cacatgatgg 4320
cctgccataa cgctogaagt ttgttttcgg gtgccttgcc ggggggtgtcg ggcacttcat 4380
tggcgccgca ctccagacac agtcgcgacc agtattgcgg cccaaaggcag ggcggccagca 4440
gaagacgcgc gtcctcgtgt tcaaactcca gccagacacc gggcgccagc gctttggta 4500
accccccagca ccattgaccg tcaggtccgt cgcttcgtt acggggagaag cagatgcact 4560
gcgcgcaggct tagcgctgc tcacgctgcg agggcgctcag cgccaaaccag cgacgcaccg 4620
gttccgcggg cgctggcgcc tgagccgggt caatgcccag actctgcaga aacacgcct 4680
gacggctggc catgagcgc tcgcagtcac tgaccgataa cccacgagcg ttggcgaatc 4740
ggtcatgcca ctccgaatgt gcccactgccc aggggttgca ccaccagtga atccagtgtat 4800
cctcggcaga aaggctcatc atgcacgtgc cggcagcgtt gaacgaccgc gactgccaaa 4860
cccgatccgt cgcaacagac tggcgccca gtcactgcgc accagcagtg caccgatcag 4920
caacaccaac gcaagaccga caggtgcccc ccagagcattc aggttccaga acggcaagtt 4980
cgtgctgtcc agcttgaagg gcccgaagct caccattgc gtggctctt ggaactctgc 5040
agcaggcaca aacacgatgg aaaactttt cgaatcgaca gattgcgtgg acataccggg 5100
aatactgctg gcgaccatct gttgaatacg tccgcgcaca ctgtcggat caagtgcagc 5160
agagtgcctg atgaacaccg cagcagaagc cggttgaaca gtttcgccc ggcgcgtgc 5220
ctcgggcagc accacatgca ccctggccac aatgactccg tcgatctgcg acagcgtggc 5280
ttcaagttcc tgggacaagg cgtagatgtc acgggcacgc tcttcaagcg gcgtcgaaat 5340
caccccttcc ttcttgaaaa tctcccccag cgtggcgcc gaggcccgag gcagaccgc 5400
agcgtcgagc acgcgcacgg cgcggttcat ttgcgtggc ggcacagtca cgacaacgc 5460
ggtttctcc agacgtttac ggcgcgtcat atgtgtatcg ggcaggcgcc ctacgaccc 5520
atttggaaatcc tgctcgacca agccagtgtaa caaatcgttc tcacactgc agccgccc 5580
cagcagcatg cacaacagca gcagccctgc gctcggaaaa ttacgaaa cctctactgc 5640
agggttgtca acttgcgtgg cgcctgagcg ctcttgcgtca cgaccttggt cgtcaacgc 5700
atttgcacac agcaactgcga caacgcggca ctcatctgcg cgatgtctcc aggtatccg 5760
gtgttgcaca ctttcttcat ctggcgtaat gcttgcgtgt aaagcttctc ggtactgccc 5820
agccgctcgg acagcgcact ggctatccgg tggacaggt ggcacgcgc tgccccgtg 5880
tcagggcgca tcggccatt gaataggtcg acatccgcct gaacgggttc ggagccgagc 5940
ccctgatgag cattctgccc aagctccggc gatacactt tcaaattgtc gagttggaa 6000
atggtcacac tggttctccg tcaggcggtc gtcagtcagg ccacagcctg gttagtcgt 6060
ttattgggtgc cttgcaacag cgcattgtatc agctgagctg ccacttgcgc agcgctcgat 6120
tgcagggtcg cgcgggttt gccagcatcc tgaagcggtc cttccagccc gcgttgcgc 6180
aagccgctca gcagttgacc caggtcctga ttggacacgt tgcccgtcg gttagccact 6240
ggcgtgcccac ctgtcggtcg cgtggaaatgg tcgaccgggt taccaagacc accacccgac 6300
gaaaccgact gcaaaccacg gtcgatgagt tgaccgatca gttgaccatc gtcgacgcgt 6360

gcattgccat tggccgcggg acctgtttg gcatcgattt caggattacc cagggagctg 6420
tcactcacgg gcgaacccag accgcccaca ctggtaacgc cactggcatac accttgttgc 6480
tggccgagct gttgaccaat gacgtcgaga gccaaacgaa actgagcggt ttccctgtca 6540
tccaggccat tgtttccctt cagctcggtt atccacgagc cgccgtcccc agtagggAAC 6600
tgggccttgt tgcgtccat gaactggca acttttcca gggtcggcat gtcataactg 6660
gaaaaggttggccatccaccactcggt gtcagcagat cgtccagcac ggcttgccg 6720
aggccgttca ggacctggct catcagatcg gattgcccgg cacccgcgtc gctgctcaga 6780
ccgcccaccga caccgaacc agaacccgca ccgccaatgc caccgcacc gccacccgcg 6840
ccgatgcccgg cagaggcacc gaaattgtcg ccgagcttt cgtggatcag cttgtcgagc 6900
gatgcagtga tgtcatcgat gctgttagcc gacttgccat ccgcagccat ggcttggcg 6960
agcatttgc cgagcggtga ggtttcatcg agctgcccac tttgggtcag cgcctgaacc 7020
agctgatcgatc acacaggaa caatgtgca gaggttgca acgaactgat gctgttaagt 7140
ctgttgagcg acacggggaa caatgtgca gaggttgca acgaactgat gctgttaagt 7140
gcttgcataa aacgcccata ccaaggttgc ggccccctt gatgaggggg caatcagaaaa 7200
taatttagtaa ctgatacatt tagcggtcg cgctgtggca ctgatcttct tggtggtaga 7260
gtcttcttgc ccggccttgc tggcggttag cacgtccatg gtctgcttct tcattgtttc 7320
ctggccctgc atcgcgatca gcttcgcgc gttggcgctg gactcttac tggccttggc 7380
ttgtgcatac accgacaggc tgcgtccggt gccaaaaga atgttttct gaagagtggc 7440
gttggaaagca accgtgttgc caccctgcaa tgcggccgcg acaccgcgg cggcgctgtt 7500
accaaggttgc gtaggtttgg aggttaatcc tgcaaattgc accatgattt gatgcccatt 7560
aagatttacc agcgtgatttgc cttggtaactc actagggtggc agcagccgtc gatacggttc 7620
cagcgtctt gcaaaaaatc agatctgcaa ttctttgatg cgtcgataga gctacgggc 7680
gtggcagtcc agttccaggc ttaccgaatc caaacaatttgc tcgtggcgct tgagcgactc 7740
ctgaatcagg gcttttcat caactcgca ttgcgatttg agcccacagg ccaagtgctc 7800
ttcgccctgc ggctcgccgc ccagcaagg gaaacccagc acatggcggt tggtcgagc 7860
cttgagctca cggatattgc cgggcccagtc gtggcccagc agcactttgt gcagcagtgg 7920
gcaaaacatcg ggaacggggaa caccgagctc cctcgccggc gcggccgtaa aacgtgtgaa 7980
caggggaaact atgcgatcgactggattacg tagcgagga agcttgatgt tcaggacgtt 8040
caggcgaaaa tacagatcgc gacgaaactc ccccgctcg acggcgctgt ccagcgagca 8100
ttggcgagg gcgatcagc agatatccag gttgatcgatc gacgtcgaac ccagccgttc 8160
aagcgtctgg gtttccagca ccctcagcaa tttggcttgc agggccagcg gcatgctatc 8220
gatctcatcc aggtacagcg tgccgcctt cgccgcttgc acataaccga ctctggagcg 8280
atcagcgccg gtgttaggcac cgctgaccac gccgaataac tcgctctcg cgagggactc 8340
cggaatggcc ggcgaattca tcgcccaccag gcgccttgc cgggctgaca tctcatgaat 8400
ccgtcgccgc atcgtgtctt tgccgtgca ggtctcaccg gatagcagca cgtcgatacc 8460
cagttgcggaa atacttcgg caactatccc cagattcgga acccgcttgc cgtccagatc 8520
atcctcaaac ctttcatcaa gactcatccc atgacccca ggacatcaac gttggataac 8580
cacacctcgatc acacagaccc cggacctcgatc agagtatcgatc cgctgcaact cccagtttgc 8640
tcatgcgtgtg atacagggtg cgtcttggca actccaaactc ctgaagcacc gctcgaaat 8700
tgtgcctgtg ccgttcaag gcatccttgc tgacgatttt ctcgatgtg cgcatttgc 8760
tgcgcagggc cgtggcagg tcaagcggtt ccacagggtc ggcgcggc aaggggaaagc 8820
cgagttacgaa ggcgttggct gcagacttca attcgccggat gttggccggc cagtcgtggc 8880
tgagcagcagc ctgcacacgc cccgttgc ggcgcaggagc gggacgttgc aactcgccag 8940
cgataaccctg ggtgaactgg tcgaacaatg gcaggatctg ttcacgacgt ttgcgcagg 9000
ctggcaagtgc aagcgtcagc acgttggagcc gaaaaaacag gtcgcgacgg aaaagtccctt 9060
gttccaccag ttcatccagt ggccgttggcc cggaggcaat gatccgcaga tccaccggga 9120
tgaattcggtt cgagcccaga cgctcgatc ctgcactctc caacacacgc agcagtttgg 9180
cctgcaggctt caacggcatg ctgtcgatattt catccaggta caaggtgcca ccactggagg 9240

cctctatgtta gcccctcgca gcccggcata cgcccggtgaa tgcaccgttg accacacccga 9300
ataactggct ctctgccagc gactcggaa tggccggcgc gttcatgccc acaaagggtc 9360
ccgacctgct ggacaactcg tgaatgcggt tggccagtgt gtcctgccc gtgcgggaaa 9420
ccccgcacaa cagcaagtcc atatccagaa acgcgttatt cattgcatt tgatgacccg 9480
ctgataatgc agttacgccc caacactctc ggacgtcctt atcgatgcct gtactcatcg 9540
ttgcactctc atgggtgggtg gcaagcggag tattaatacc acgtcttaca aggagaaaaat 9600
atattaatggt agttcccccgg gaaatgagaa aaagatcaca aagttgagaa ttactatcat 9660
attaatataca ccataccaag acgaccctac cgatagactc aggctttga gatgattgt 9720
ttaatctatc gttactccaa tgcgaaacaag cgcttacagc gtccatgcgc tggctcgccc 9780
cgcaagccat agggcctctc cacacccaa agcagctgtg atccgggaca agagcaggca 9840
ccttgagca gcaagcgcgc caaaatcgca caatgaaacg caactaactt ctcgtcaacta 9900
ctcgagagaa acatataaga cttttccaaa acaactaaag gggtcacaag taaggaagca 9960
gaagaaaaacc gaacacacaa aacaagaaaa ccaaacgggt ttagcggcg agctaaaga 10020
agcgaacaac aataacacga gaaaacaaaa aacagcctga cactaactat ttgcacttta 10080
gaacagtcga taccaccag cttagttccg ccccacgagc agtcggattt ccgaacaaca 10140
cagaggctt gatactggca aagcggtcat agccccgggt ttccggcacc actcagttact 10200
ggcatttagt catcatcgca ttcggcaatc cgaacaaaag cccacctgct tagactattt 10260
ccaggcacag ccatctaagg aatcgcggaa aggattcagc gtagcttaat accggaaaccg 10320
caggtttagt ttctgtgaac caggcggta atacgatcgat tgatcgcgtg ccatcaccta 10380
aatgtttctt aatgtgtgt aatcttcac ttacattcgg ctaaaaaagt tcataaaaat 10440
aatcatatgt agcgctctac atcatatggc taagcgcattt ctttagggtc caaaaaaaaacgg 10500
gtaacgctca ataaaagaag ttgtatttag gcatatcaat attgtccgac aacgagaaaa 10560
agcacaaaaa aagtgcgtt ttcagggggtt ttcaatagaa caatcgagta aaaccggggt 10620
tattggcgtg gatcactggc aaaaaccacg acgcgcggcc ccgtagggcag ctcgcgcgga 10680
ccgctgcgtat actcgctgtc atcacgctt cggggcagc aacggtcattt cctgatgcgg 10740
ggcaactgta tccgggtt aagcggatca gttccacaa caggtgcggaa ttggcgcata 10800
tctaccgcgg ggcgtgattt agctgcagga gctggctgta acgcctcagg ccgcgtggc 10860
tgctgagcca cggcaacgg ctgagccgtt ttggcgaag gcagggttcc ggctactgg 10920
ccgcactgca cggcgttggg cagcggcggaa cgctctgca cgcgcactgg acgctcagcc 10980
acaggcgcgg ggcgtggcag acgctcagcc gcccgtttca caatggctga aggggtgacc 11040
agcggatgc tggcgtcactt cggggactca cggtaatgc ggcgtatgtc ggtcgtgagc 11100
acgcgttctt gggttttagt tatcagcaga cgtccgggtt catcgaaagggtt ttttgcgc 11160
aggaatgcgg agttcagccg caacaactgg ccctcatcca caccggccgt ggccgcgagc 11220
tgggtcaggt ctacggcatg gttaaagctcg actacgtcaa aatacggcgt gttggcgcacc 11280
ggggtcagtt tcacaccgta ggcattgggg ttgcgcacaa ccatttagagag ccacaaacagt 11340
ctgggcacgt aatcctgggt ttccttgggt aaattcagat tccagtagtc cacaggcaga 11400
ccacgcgtc ggttggcctt aatcgccga ccgcgttgc cctccccgc gttataggcg 11460
gccagcgcacca gcaagccagtc attattgaac tgatcatgca agcgggtcag gtaatccatc 11520
ggcgcgttgc tgaggccac cacgtcacgg cgagcgttgtt aggtcgcgtt ttgatgcaga 11580
ttgaagctgc gccccgtgaa tggaaatgaat tgccacaaac ctgcgcgc ggcggagag 11640
ttggccatgg ggttataaga gctttcgatc atcgccgacca gtgcgcgtc cagcggcatg 11700
ttgcgtcgtt ccaggcgctc gacaataaaa tgcagataag ggctggcccg gacactggct 11760
cccggtataa atccgcgtt gctcagcaac cagtcgcgtt ggcgcgtt acgctcattt 11820
atgccttggc catcgaccag cctgcagcgc tggcaacacc gctgccacac gtcctcgccg 11880
ttataaacatg gcaagatcgaa gattttgtct gcaagccgcg aacccctt atcatctccc 11940
ccccaaataga ccagccccga caccagccgc ggcggacgtt cctgcacgcgg cggcgaatag 12000
tccacagact ggcagccccac acacaaggcg cccatagcga ggactgcgtt ttgaacagcg 12060
cgagccagca agcgtgggtt cgatacgggg aaggcgcacgg cggcgttggg cgggaatgtc 12120

ccaccctacg tggcacgctc gccgttacgg ttccatTTTaaaccgagat 12180
cgccgcacac aacgcattgc tgaatcctt cagccgtaaat ttttccgat ggaacccgct 12240
ggcattgcat gccactcatc ctgtgaagga atttcacgt ttggtatcag gcggctatca 12300
gacataaaat ggacagagag attcaccgt cagtcaccat cgatccaccg gaacaccgga 12360
agcatcattc agccaaccgt caccctgac gcacgtgctg caactgacct gcaggaaaga 12420
gccgaacaac ccaggcaacg ctttcgac tcgttgagca gtgtcggcaa gcggcgtc 12480
aaaagcgtcg gtaaattgtt ccagaaatcc aaagcgcgc agcagaaagc tgccacgc 12540
cccaccgcga aaaacgtcaa gacgcccccg cctgcttcaa atgtggctac gcccagaaac 12600
aaagcccgcg aatccggtt ttcaacacgc agcccgcaaa ataccatag ggcacccaag 12660
tggatttgc gtaaccaccc caaccaggcg agcagctcg ggcgcagac gcatgaaata 12720
caccggagg cagccccccg taaaaacctg cgcttaagggt ttgatctgcc gcaagaccgc 12780
ctttagcgca gcccgtcgta cctcgattca gacaacccga tgaccatgaa agaagcggc 12840
gcaaatgcca ctcgccaatt ccggtcaccc gacagtacc tgcaaggcgc tgacggta 12900
cgcatattcaa tgctggccac agatcctgat cagcccgca gctccggcag caaaatcggt 12960
gattcggacg gaccgattcc gccgcgcgag cccatgctgt ggcgcagcaaa cggaggccgt 13020
ttcgagctga aagacgaaaa actggttcgc aactcagagc cacaaggcag cattcagctg 13080
gatgccaagg gaaagcctga cttctccacg ttcaatacgc cccgcctggc tccattgctc 13140
gattccattc ttgccacacc caagcaaacc tacctggccc accaaagcaa agacggcgt 13200
cacgggcacc agttgttaca ggcacacggg cactttctgc acctggcgc agacgacagc 13260
tcgctggccg tgatccgtag cagcaacgaa gcactcctta tagaaggaaa gaaaccaccc 13320
gccgtaaaaa tggagcgtga agacggcaac attcacatcg acaccgcag cggccgcaaa 13380
acccaagagc tcccaggcaaa ggcacacatc gtcacattaa ccaatgtgt tctcagtc 13440
gacggcgcgac gtatgcgtgt gcatgaggac cgtctctatc agttcgaccc gataaggact 13500
cgctggaaaaa taccggaaagg cctggaggat accgccttca acagcctgac cactggcggc 13560
aacggctcggtt tttatgcaaa aagtgcacat gccgtgtcg acttgtcgag cccgttcatg 13620
ccgcacgtgg aagtcaaga cctgcagtca tttcagtcg cggccgacaa cagagcagcg 13680
ttgctcagcg gcaaaacgac ccaggcgatc ctactgactg acatgagccc ggtgattggc 13740
gggctgacgc cggaaaaaaac caaaggcctt gagctcgacg gcggcaaggc gcaggcggc 13800
gcggctcggtt tgagtggcga caagctgtt atcgttgaca ctcagggcag actttacagt 13860
gcggaccgta ggcattcga gggcgatgac cggaaattga agctgatgcc cgagcaggca 13920
aactttcagc tggaaaggcgtt gcccctcgga ggccacaacc gcgtaccggg attcatcaac 13980
ggggacgacg gcggtgttca cgcgctgatc aaaaacgcgc agggcgagac tcactcccac 14040
gcttagacg agcaaaagctc aaaactgcaaa agcggttgcg acctgaccaaa tgctggta 14100
ctgaacaaca atcgcggcctt gaccatgccc cgcaccacca cgcgcgtga cggctcaac 14160
ctcgatcgatc cggcctggat tggcctgagt gaaggacgc ttcaacgcgt ggacgcaac 14220
ccagaatgct gggaaagacgc aggcataaaaa gatatcgatc gcgtcaacgc cggccggac 14280
agcaatgctt atgtactcaa gggcgacag ctgcacgcac tcaagattgc ggcgaacac 14340
cccaacatgg cttttgaccg caacacagca ctggcccaga cgcacgcgc gacaaaagtc 14400
gaaatggcga aagagatcga aggctcgac gaccgagtga tcaaagcctt tgcaatggc 14460
agcaacaaac gcttcgtcgc ctcgtatgac cagaacaagc tgaccgcac cagtaaggat 14520
cacaaccccg tcacactcgatc cattcccggt ctggaggcg atatcaagag cctgtcgctg 14580
gacgaaaaac acaacactcgatc cgcgcctcacc agtaccggcg ggcttactg cctgcccac 14640
gaaggcctggc aatcgacaaa gctggggac cagttgcgag cccgcgtggc gccggttgc 14700
ctgccccggag ggcagccggat aaaggcactt ttccaccaacg acgacaacgt gctcagcgc 14760
cagatcgacg acgcccgggg caagggtctt atgcagctca aggcaggcga atggcaaaagg 14820
ttcgaacacgc gcccggtaga agaaaacgggt ttgaatgatg tgactcgac catcacaggt 14880
tcaaacaaga cctggcgaat tccaaaaacc gggctgacgc tcagaatggc cgtcaatac 14940
ttcggccgcga ggggtgttggaa gaaatccaaa aaagccacgca ccagcgagtt catccgc 15000

aacatctaca aaaacaccgc agaaacgccc cgctggatga agaacgtagg tgaccatatt 15060
cagcatcgct accagggtcg cctgggtctg aaagaggtt atgaaaaccga gtcgatgctg 15120
ttcaagcaac tggagctgat ccatgagtc ggggaaggc ctccggcacg gggtaagac 15180
ctgaaagcgc gcatcaccgc actggaaagca aaactggggc ctcaaggcgc tacgctggc 15240
aaggaactgg aaaccctgcg cgacgagctg gaaaatcaca gctacaccgc gctgatgctg 15300
atcggtcaga gctatggcaa ggcgaaaaac cttaaacagc aggacggcat tctcaaccag 15360
catggcgagc tggccaagcc gtcggtgccg atcgagttt gcaagaagct tgctgatctg 15420
ggcacaaagc tcaacttcaa aagctcttgg catgacttgg tcaaggagct gcaggatgcc 15480
ttgactcaag tggctccgtc tgctgaaaac cccaccaaaa agttgctcg gacgctgaag 15540
catcaaggc tgaaacttag ccaccagaaa gccgacatac ctttggaca gcccgcgat 15600
gccagcggagg atcatggcct gagcaaagcg cgcttggcgc tggatcttgt cacactgaaa 15660
agccttggcg cgctgctcgaa ccaggtcgaa cagctaccgc cgcaaaagcga catagagccg 15720
ttacaaaaaa agctggcgac gctgcgtat gtgacttacg gcgaaaaccc ggtcaaggtg 15780
gtcacagaca tgggtttac cgataacaaa gcgttgaaa gcgttacga atcggtcaag 15840
acattcctca agtcgttcaa aaaagcgcgac catgcccgtca gcgtcaatat ggcgcagcc 15900
acaggcagca aggaccaggc cgagctggcc ggaaaattca aaagcatgct caagcaactg 15960
gagcatggcg acgacgaagt cgggctcgacg cgcaagctacg gagtgaacct caccaccccg 16020
ttcatcatttc ttgcccacaa ggctacaggg ctctggccaa cggcagggtgc caccggtaac 16080
cgtaactaca tactcaatgc cgagcggtgc gagggcggcg ttacgctgtc cctcatttagc 16140
gaaggtgcgg gaaacgttag cggcggttgc ggtgccggca aagactactg gccgggcttt 16200
tttgacgcaaa ataatcctgc acgcagtgtt gatgtcggca acaaccgcac actgaccccc 16260
aactttcgcc tggcggtgaa cgtgaccggcc accgtcgccg ccagccagcg cgccgggggtg 16320
gtcttcaatg ttccggatga agacatcgac gcattcgctg acgacctgtt tgaaggtcag 16380
ttgaatccat tgcaggtgct gaaaaaaagca gtgaccatg agagctacga ggctcgccg 16440
ttcaacttcg acctcacggc aggttggact gccatatac gcccggaaat aaacctgacc 16500
gaagaccgag acccgaaatgc cgaccccaac agcgattcgt tttctcggtt agtgcgcggc 16560
ggattcgctg cgaacatcac cgttaacctg atgacctaca ccgattattc gttgacccag 16620
aaaaacgaca agaccgaact gaaggaaggc ggtaaaaacc gcccgcgtt tttgaataac 16680
gtgacggccg gcgcccgact tcgcgtctcgt atcgccggca gcccacacggc ccccacaggc 16740
acaccgcct ccgccccagg ccccactccc gcacatcaaaa cagccgc当地 caacttggc 16800
ggagcgctca atttcagtgt gaaaaacagg acgtcaaac ggatcaagtt tcgttacaac 16860
gtcgccaaagc cgataacgc tgaaggtctg agcaaattgt cgaagggcct tggggaaagcg 16920
ttcctggaca acacgaccaa agcaaaaactg gcggagctgg ccgaccctct gaatgcacgc 16980
tacacaggca agaaaccgga tgaggtatt caggcgcaac tcgacgggtc tgaagaactg 17040
tttgccgaca taccaccggcc caaagacaac gacaaggact acaaggcatt ggcgcacttg 17100
aaacgcgcgg cggtcgagca tcgggcatca gccaacaaggc acagcgtat ggcacaacgc 17160
cgctttgaaa ccagcaaaaac caacctctcc ggctgttca gtgaaagcat acttaccaaa 17220
ataatgagtt ccgtcgccgca cgcgagcgcc ccgggcaatg cgacaagagt tgccgaattc 17280
atgcgcagg acccgaaact tcgcgcctatg ctcaaggaga tggaggcag tatcgccgacg 17340
ctggcacgcg tacggctgga accgaaggac tcactggctg acaagatcga tgaaggcagc 17400
ctcaacggca ccatgactca aagcgaccc tcagcatgc tggaggatcg caacgagatg 17460
cgcatcaagc gtctgggtgtt attccacacc gcgacccagg ctgaaaactt cacctcacca 17520
acaccgttgg tcagctataa cagtgagcg aatgtgagcg tcactaaaac actggggcgc 17580
atcaacttcg tttatggcgc agaccaggac aagccgattt gttacaccc ttgcacggc 17640
ttgtcagcgc catcgccatc gctcaaggaa gcggctggcg acttgaagaa agaggggttc 17700
gaactgaaga gctaataacg aaaacagtaa aaaaagcgc当地 gcattgaagt ggcgttttt 17760
tattcaagcc tggaaaaaaag cacgcgccttc acgtgcctgg gaaatgaacc cgccgcgtc 17820
gtcacaaaaac gctggctcat cgagtggc cagttcacgc tgccgc当地 gacggacatc 17880

tccctgatcg accgcaaacc agcagccatg caagcgcgt acgtcaagt tcagactcaa 17940
cagacgcagc aaatcggggg ctcgttccgg gcagcggcca atgcggcaat gaaagatgac 18000
catctcactg tgctcggca attcaatgat cgccgcttcg ttgttctgac cgtcataaag 18060
agcgcatacg ccgtctgca aggtcaagtga cgtgcccggc tgggcggcca gagaattgat 18120
gaagcggcg aaatcggtt gcgaagttt catcgctata gtccttaag gttaaaacag 18180
catgaagcat gccggacagc aggcgcctgc agcctgtgtc cggcgcggg attaacgcgg 18240
gtcaagcaag ccctttcaa gtgcctcaa tgcgtcatcg tctttgtcg gctgcttaag 18300
cgccctcggt gctgacgcga ctgcgttcaa cacacctca tccacgaccc gaaccgtatc 18360
cacggccatc tgggtaggca actgcaatgc gcctcgtccc atgtgatagg cggttccgc 18420
gactcgtggg ataccgctca acgtgcttctt ctggaacgta tgtggcagag actccctgtt 18480
cgatgacgg atgttattca aagcgtctcg gtacggtcca gcatagggtg tgcaccgccc 18540
atgcctccg ctttcaacgc cttggcttgc gcgtaaccg actggttggt gtacaacgtg 18600
gacagatagg acaccgaacc cgtcgctgcc agggccatgt tgccaaaat agcccccgca 18660
ctgagcgtgc cacttgcgcc ttcaagctga gcggtcacag gcccgcgtc cgaggctagt 18720
gcagaactct gaatacccgaa aagagccttg ctgtagaacg tggtgctac cgacggctcg 18780
cgccaggcca taccttttag caggtccctt ttcaagatcgc tctcggcgcg gtccgggta 18840
aataccggaa ttttgcgcc ttgcgggtcg acataattcg acttcaattt cagcagcggt 18900
tgcgaactgg cagacaccgc cccgcggaaa ccgatgcca gagctcttc actcagcgtc 18960
tgcccattga tctggtgaac atcggtgagc atctggcgca cagcctgaga accaccgaag 19020
gcactgttaag ccattcagctc acctaccggaa tgggtggacg aaccctgaac cttttctgg 19080
ttcagcagcg cgcgttcaact tttcacgaac gccttgcct gagcgtactc ctcggcggtt 19140
ttttttagcca gctcaccgtg ttgcgttttca agctcgaagg ggtcaggaaat aaccgtattt 19200
gtatccacag ctttcatgtt caccatgttca agggttcgt tgaggccagt cttctgcaag 19260
gcggcctgaa acatcggtt gaccacgtg ttgaccgtct cgtgagcaat gcccgcacc 19320
atcccgatta tcgaaggcctt gagcatgttgc gctcgctgc tggctcggg aatcggtct 19380
cgcagcttgt cgctgggtggaa caaacgcaca taacccaaat gtgtcattga agacaagaac 19440
tgccgaaccg cagccgcgc aatcggttgc gaccccttcc agccacccac cgtgttacgg 19500
gcagtgcga gatcgctgac gacgttgcc agtgcgtat gtgcggcgac cgaagcaagg 19560
cgcttggcct ccggcgactt gacgaaatcg gcgtgaaac ctaccagggt gttttggcg 19620
tcgaccagcg cctgcgtgc agcgtgcaga gactccttgt tgccctgttgc ggcattttgc 19680
agagttagat ccagcgcact gatgtgtca tccagcgacg cgatgtgtt gtcaggcct 19740
tcgcccatttgc ctttgcgttgc acgaccggcg tattcgccaa gggcagtctg actgacggca 19800
agcgtcgctt tgtccgttt tgcgtgttgc cttaccgttgc cggcgaaatc gtcattgtatc 19860
agttgaaatgt gtcgttgtt atcagcgacc gactgagcaa aaccctgtat cagttggccg 19920
accccggtt tatccggat tgcgtgttgc acgaccggcg tggcgaaatt tttccagccg ctgctgcaag 19980
tccgagccct gaaactgtttt cagttgtatcg cgctcaggag acaatttctc ggcattgtact 20040
tcaaaaggca aaggctcgcc ctgcagcaga ctaccgtatca acaacgcgc acgcgaactg 20100
atcatcgccg cggcgctgac cggagccgtc ccatgtctcag ctttgcgttgc ctgcaaaagc 20160
tgtgtgtgtc gagccgcgc attcagccgc gcccgcggc cagacgagct ttctgtcg 20220
tgtgacccttgc actgatcggttgc agtgcgttgc ggatttgcgtc ctgcgttgc tgattttggg 20280
tgagctgtct gggcgaaatcg agtgcgttgc tgctggtttca cccggcttgc gtttgcgttgc 20340
ccggccccgc cgatccgcga actgatcattt ggaatctccc aggagccaa aggcttcgc 20400
gtttggctgc tggggcaaca ggttggtccg tcgaggagcc tgcgttgttgc gctgccccca 20460
tgaatccatg ctcgcgcac tctttggcca ggtcgaaaaa cgacttcatc aacaacagca 20520
cgccctcggtc agaggctgt tcaaggccca cagagccat cagcagcaca cgaccggct 20580
gcccattaaa ggaaaatgcg gggctgtggg cggccgcgaa catgtgaaat ttgtatgttca 20640
tcaacgcgcag caacgcgc tcaacggccgc gcccggccaa cgcccccattgc tcaccgtaga 20700
tcagaacggc acggccctcg tcgcgttgc gaaactgcgtc ggtgaagtcc acttcgttgc 20760

ttttgaaatt ggcagattca tagaaacgtt caggtgtgga aatcaggctg agtgcgcaga 20820
tttcgttgat aagggtgtgg tactggcat tttggctcat ttcaaggcct ctgagtgccg 20880
tgcggaccaa taccagtctt cctgctggcg tgtcacact gagtcgcagg cataggcatt 20940
tcagttcctt gcgttggttg ggcataataaa aaaaggaact tttaaaaaca gtcaatgag 21000
atgccggcaa aacgggaacc ggtcgctgcg cttgccact cacttcgagc aagctcaacc 21060
ccaaacatcc acatccatat cgaacggaca gcgatacggc cacttgcctt ggttaaccct 21120
ggagctggcg tcggtccaat tgcccactt gcgaggttaac gcagcatgag catcgccatc 21180
acacccccggc cgcaacacagac caccacgcca ctgcattttt cggcgctaag cggcaagagt 21240
cctcaaccaa acacgttcgg cgagcagaac actcagcaag cgatcgaccc gagtgcactg 21300
ttgttcggca gcgacacaca gaaagacgtc aacttcggca cgcccgacag caccgtccag 21360
aatccgcagg acgcccagca gcccaacgac agccagtc acatcgctaa attgatcagt 21420
gcattgatca tgcgttgtct gcagatgctt accaacttca ataaaaagca ggacaccaat 21480
caggaacacgc ctgatagcca ggctccttgc cagaacaacgc gcgggctcg tacaccgtcg 21540
gccgatacgcg gggcgccgg tacaccggat gcgacagggtg gcggcgccgg tgatacgcca 21600
agcgcaacag gcggtggcg cggtgataact ccgaccgca caggcggtgg cggcagcggt 21660
ggcggcgccgca caccactgc aacagggtggc ggcaaggcggtg gcacacccac tgcaacaggc 21720
ggtggcgagg gtggcgtaac accgcaaattc actccgcagt tggccaaccc taaccgtacc 21780
tcaggtactg gctcggtgtc ggacaccgca ggttctaccg agcaaggcg caagatcaat 21840
gtggtgaaag acaccatcaa ggtcgccgt ggcgaagtct ttgacgcca cggcgcaacc 21900
ttcactgccc acaaatttat gggtaacgga gaccaggcgaaaatcagaa gcccatttc 21960
gagctggcg aaggcgctac gttgaagaat gtgaacctgg gtgagaacga ggtcgatggc 22020
atccacgtga aagccaaaaa cgctcaggaa gtaccattt acaacgtgca tgcccagaac 22080
gtcggtgaag acctgattac ggtcaaaaggc gagggaggcg cagcggtcac taatctgaac 22140
atcaagaaca gcagtgc当地 aaggcagac gacaagggtt tccagctcaa cgccaaacact 22200
cacttgaaaa tcgacaactt caaggccgac gatttcggca cgatgggtcg caccaacgg 22260
ggcaaggcgtt tgatgacat gagcatcgag ctgaacggca tcgaagctaa ccacggcaag 22320
ttcggccctgg tgaaaagcga cagtgcacat ctgaagctgg caacggcaa catcgccatg 22380
accgacgtca aacacgccta cgataaaacc caggcatcga cccaaacacac cgagcttga 22440
atccagacaa gtagcttcaa aaaaggggt ggactcgctg agtccacccc cttttactg 22500
tttagctaca gctcacagat tgcttacgac cgcataaggcc gaaacgttat ttcaacttgg 22560
gaagccggcc tgccccccctc ttctatatac gcttcacgag ccggcggtt acgcaggta 22620
ttgaccgtat tgcgcaagct ggccgggtt tgggtgatcg cctcccccgc catgtcttg 22680
acggtcttcg ccagtttgc ggtctggctg gctacgtacg ctgtggtaact ggtgcagtc 22740
gatttcacccg tgcctgtat gaacgactcg gctttttca ccgcgggatc ggttgcagc 22800
gcggccgtgg tccagcctgc gaaaacggct gccaacactg ccagggttggt caactgactg 22860
accggggct tggcgccgg gtcggtgata ttttcgtcg ccattctccgt caacttgcc 22920
accctgcaa agccacccgc caggccaga ccgtttggg tcaggctgga cgctgacacc 22980
aggcttctta ccgcacccat tgcgtcggtc gccatatac gttggcagacc ggcacccgc 23040
ttgcccacgt tgagcgccgc acccgagtag ctggccgatt tgattgtctt ataagcctcg 23100
agccagtcgt tttttcgct cagttgagcc ttgggtctt tatccttcaa accgagcact 23160
aatgcacccgc cacgctgggt atcacgcac tgacactga gcaggcggtt gccaaaggct 23220
gcgttggcag ccagaccacc cgcacatcgat acaccaaggc ccacagcacc ctgcacggcg 23280
ggtctggacg ccagtgcggg agccaatacg gtacgtacgg cgttgcgcgc cgagtacgtc 23340
tgaaccgcaa ccccccgtgtc cagaacctgt cgagcaaggc ttggcgagt ggcgttcacc 23400
gaagcggccca tcgcacatcg gagecctgtcc ggcaaggcg tcaggtaatg cagatcaccc 23460
gtcgccgggtt ccacatctt ggtcccacc tggccatgg cggccggacag cgctccggaa 23520
atgagcgggg tcaagcggtt gagcggagcc ggcagccaaat cggccctgtt gatcgccaggc 23580
tgcacatgtact gaagcaacga ggcacccgc aaggcggtc cccgcaacgc gcctgatgta 23640

gtcgtcgcca atcggtcgag ctttccgcc ttggcgaagg tgcggcgat gtttgcggg 23700
gtttccctt cgaagtgcg gcgctggcg cgctctcg tcagcgcagt gatctgcga 23760
tttgtacgt caactgcgc ttggccatca gccaatcg ggccgcgc tttatgcga 23820
gccaacacat gatctgtcag gtaatcgca atcgcattt tctcgcttg ctgatcgag 23880
ctgacagatc gcacagagct ggaggcaaga gacgcgtcg acgctgtccg aaagctatcc 23940
gtcgcagtca caggcggtt ttggacgcgt cggttgcgt gcatggaaat tccctctcg 24000
tctacggaaag tttgaacagc gcagtgcgt agcgggcgtg tccggagcga ctacttgcgt 24060
gaaagcaata cagtgaactg tcgatcaaac agcgcagaa acagcgaac gtccggcg 24120
ccgcccgtt aaaaggatcg acgaaggctg tgggtccccg gatcggttga cggttccact 24180
gaataatctg cgtacgccc ctaccaagga ctgcgcgaa aaatcaccgt cggttgcgtt 24240
gcagattacg caaattgaaa ttaagcgc ttaaggatg gcaagcgtaa ttcacaacat 24300
ggcttggcgc ttagcgcgta agcgccttcc tccaaaccag caaaggagtg ccgcaatgtc 24360
tggtccttc gagaaaaat ggccgtgtt caccgcgaa accgttacg tggctggc 24420
gctgttctgg ctctgcgtt gggacgtggc cgtcaccgtg gacgtcatgc tgatagaagg 24480
caaaggcatc gacttcccc ttagtgcctt cacgttgc tgcgcgc tgcgtgtc 24540
gatcagctt cgcactcgca gtgcctataa ccgttgggtt gaagcgcgc cttgtgggg 24600
cgcaatggtc aacacttcac gcagttttgg ccggcaggta ctgacgcgtg tcgatggcga 24660
acgggatgac ctcaacaacc ctgtcaaaagc catactctt caacgtcatg tggcttactt 24720
gcgtgcctg cgcgcgcacc tcaaaggcga cgtcaaaaca gcaaaactcg acgggttact 24780
gtcgcccgac gagattcagc ggcgcagcc gagcaacaac ttcccaatg acatcctcaa 24840
tggctctgct gcggttatct cgcaagcct tgccgcggc cagttcgaca gcatccgtc 24900
gaccgcctg gaatcgacca tggtcgatct gtccaaactgt cagggcggca tggagcgc 24960
cgccaaacacg ccactgcctt acccctacgt ttatccca cggctttca gcaacgtgtt 25020
ctgcacccctg atgcccgtg gcatggtc acccctggc tggttcaccc cggcgatctc 25080
cacggtgta ggctgcgtgc tgctggcaat ggaccgcgc ggtacagacc tgcaagcccc 25140
gttcggcaac agtcagcacc ggatccgc ggaagacctg tgcaacacca tcgaaaagaa 25200
cctgcaatcg atgttctt cggcagagag gcaaggcgtg ctggctgacc tgaaaagccc 25260
cgtaccgtgg cgctggcca acgcatcaat tggcggtctg agcaggcaga aaaacagggtt 25320
aggggaaggc gcgaggctt tcgcaagtga aagtctgc tggcaccat ttgcgtcgt 25380
tgccagacgtt gctccgtgcc acgcccgtgc gtacctacgt cgcgttgcgaa cacatcagca 25440
aaaaaatggc tcatgttgc gaaagctgtc gcctgaacca cgccaaaaag aggatcaaaa 25500
aaatgcagac atccctgact gtcctgtgc agagccatcg catggctatc actcaaaaac 25560
agaagcatct ggtcttacc gggctgcaac actgcttgc gatcgcgatc aaggtttcc 25620
agagcaaccg catagtgcgc gtgtgtgc ctggccagcc ctttccaag tgtcatgccc 25680
aacttggaa gtgtgtccag aagcataggt gctgcgttgc gcaactgtt tgaataggcc 25740
tgctgctcga tatgctggaa gcccattacc ctgggttagca atgcacgcgc ctgatagtcc 25800
tccagtttgt gaaagaaggc ctcatccgac tgcccttttgc acggctctg acaccaattt 25860
actgatagcc ccagacaaggc gtgcccgtcg ccacccgcgc ggccatagtc agcagcaaac 25920
gctctatcat cgatagttt ttcaaataga aatttgcgtt ggtgaaacgg gtggacaagg 25980
tgacagccgt gctcttggc aatcttctt ttggcttgc tggtcgact cgcgcctatg 26040
ctgttgtccg ccatagcctt gattctggc ttgtatgtt gctggcgcc gtcacgtaat 26100
gaggcgatag agaccatcg atccggtagc aggtacgc acgaatgaag ctgggttgc 26160
acctgctcgg gactggaaatcagcggca tcgaccgcgaaaaggaa ggcgcacatcg 26220
aaaaagaccc cttcatgccc ctccaatggg acaaaggcgc cgccttttc gggatgaaaa 26280
cgccgcgaacg catccgacga accggggcg agtccggaca atgacgaggg cttatcggt 26340
tgctgttttag cgccaaaccc tgattggcg ccagattgtt ggtatatacat aaaccgcct 26400
ctgtcaggc atgaacgttc gtggggcgt atggacagcc ggtaaaggacc gaggctttt 26460
ctggcggtt tttccggctt gctccgtgc tcgataatct tccagatagc gctgcaacga 26520

gtgctaattc gcgtcatgag gtatcaagt ccggctctat ccagatccgc 26580
cattgagtgc acactgcgc acaacagttc cttgaatca gggttatacg caagcgcgc 26640
gccacctgtg cgaggcaggct ccagatttag cgccattgcc agaatcaaaa tgacgttg 26700
ctgcggcatc gtacgcctt cgatctgtgt gaagatgaac aacgaagtgt cctgttctgg 26760
caaccagagc agacactcgc ttccatttcgc ggtccttaac ttgtggcg 26820
cgcatcgatg cctcgattgc gcagccactg ataaagccg tctttgcct cgacaggccc 26880
catggaaatt ccccgcttgt ttaacgatga ttttcctctg tggttcaaga cgtgatgcgg 26940
ttcccttttag ggtttgcact aatatcaatg cgattcttgc aaaaatcgac tcgtgagtgc 27000
cgccgatggc aaaggtaacg ggtatggcgag cgagttttt gtaacgttgc cgttggcg 27060
gggttgaatt tttttgggtga cgttaaaacg aaggaatgtt tgctaaaaaa atgcctgc 27120
ctggttatataat caatgtcact tggcggctgc tggagcctga tgattcatct ggacggcg 27180
cgttgcacatc atccccggcac tcgccaaggt tggcgctgg gaaccataa cggagggcag 27240
agttggccca tacttataga cgtgccgtt tccctcgct tggacacact gctgctgccc 27300
tacgacctca ccgctttct gcccggaaat ctggcggtg atgaccgca atgtcagttc 27360
agtggaggat tgaacgtgtc cggttgcattt atattttac tgcgacagaa gagtgcggcc 27420
ccgacgcctt tggagagcac accaggattt caaaccgc 27480
gcatgcaccc ctgtcaactgc ctgaaaagccg caacgtaaatg aaaatttgc tccgctcg 27540
gtatcagtga acaggcgcac ggccggaaat tccctgogccg catgctccac aagtcgattc 27600
accagagtct ttccaaaggcc ttgacccctt gatgcgttgc cgacgtataa ccgtcgtagc 27660
ctgcccataat caccggggc atgcggatca cgcgaaaggc ctccgataacc tgccagagcg 27720
ccgtccagaa gtacgaccat gaggcattca cccttggccct cgaatcgatt cttccggac 27780
ctccactcct cgtcaagcg ggtaaagaaac ctgaagccct ctgctactgc ctcttgctcc 27840
aggatcagaa cctgacaagg caattcagta atgatctgga cttctacctg tttcatctaa 27900
tgacccatc cacagtggc tgcgtggc gaaaacacga gcaggctgg acagaatgca 27960
tatgcaacag caaaggctgc aaccagtgc caccaccaga accgggttcg acagttaa 28020
tgatatcatt caagcacctg caagccagttt agaagcacat gaaccgtcgc aagaaaatac 28080
agcaactgtt aaaggctcat gccaagaaag ccagcgttac actggcaccg gcaaacaat 28140
ccagctacgt gagcaaggctt gatcggttga agctggcgcc agagtcggc aacgaccgc 28200
tcagttccgt cgaggactga acagcgttac ttacgcgc 28260
attccgatgg agcgtattgc aaggagcctt ttcaacagct cacttacttc gcaaaccg 28320
actcaccgc ctgctccgc gcctggcgat acgcaggctt ttccctggcat cgttgc 28380
aggctgcaag gtttagatgc ggctgcagca ttccctgc 28440
agctcatctg aatatcccgcc ccactcaatt cgtcgcc 28500
gagtttcatt cagatagcccc agatagttgg ccagttcaga gtgaatgcgc ggtatgca 28560
gcgcgccccgc gtcacccagg cgaccgacgt acaggtttag catcagcggc agaatggcc 28620
aaccttcggc gaagtgcagc cattgtacgt actcatcgta ggtggcgctg gcaggatcc 28680
gttgcaggcg gccgtcgcc tgcggcg 28740
taaccacatg gggaccgtt tcgatcaccg gggatttgc cagcggatga atggccttca 28800
gctcaggcg cgccgggtt gtttcgggt cgccgtggta gcgttttac tcgtacggca 28860
ggccaagttc ttcgagtaac cacagaatgc gctgcgaacg tgagttgttc aggtgggtg 28920
caataatcat gtgggtctcc gctgggttag agtggatgt ctagaaaaag actgctggc 28980
cgccgttagag tggcgatgc cgaatgtcct ctggcgaccc cagacgcgtc tgcggcg 29040
gagcgtcgcc gactcaccgc gaagctgacg ctccactgc gctttatcga ttaccgacca 29100
aacccgcattt atcttgcatt cgtgtatgt gttagaacaca ttttggaaaa aggtgtatgc 29160
ccgtccctgt gtgtccgtcc ccagaaatcg accctgtggc gaggcgttga agaccaggcc 29220
ggcaggcacc tgggtgttcaacgaccag cccatcgatc ttgaaacgc 29280
aatcctgacg tgcgtttcca gcattgtttt gtagccggaa aggctgtatca gctcaccgtt 29340
gtaatgcaca ttgtcatcga cgaatgtgc caactgggtc caactacggc 29400

ggcgatgtaa gccccatagt gatcggtcag gttcatggcg cgccctcctt caggtgctca 29460
aaggactcac tgtcaatcat ccagataacc cgacagtt taacagagtc atagggact 29520
cgtgcggccg acatcgccct aaggctcaca tctatgtact ggccgcacgc tggttcaag 29580
cgaaggactt cagattcatg tcttcaagta gcactacagc agcggctgac acgcaaggtc 29640
ggcaaaaacgc ctcgcctaac cgactgattt tcacatccgt acttgtggca accatggcg 29700
cgctcgctt tggttatgac accggattta tcgnccgcgc attgcccttc atgacgctgc 29760
cggccgatca gggcgggctg ggttgaatg cctacagcga agggatgatc acggcttcgc 29820
tgatcgctgg tgcagccttc ggctcactgg ccagtggcta tatttccgac cggttccggac 29880
gacgcctgac cctgcgcctc ctgtcggtgc tgttcatcgc gggtgcgcgt ggtacggcca 29940
ttgcgcgcgc cattccgttc atggtcgccc cgccgttctt gctgggtatc gcggtgggtg 30000
gcggctcgcc gacggtgccc gtgttcattt ccgaaatcgc cggccctcg cgctcgctgc 30060
ggctggtcag ccgcaacgaa ctgatgatcg tcagcggcca gttgctcgcc tatgtgctca 30120
gcgcggctcat ggccgcgcgt ctgcacacgc cggcatctg ggcctatatg ctggcgatcg 30180
cgatggtgcc ggggggttgc ctgctgatcg gcaccttctt cgtacccctt tcgcccngct 30240
ggctggcgctc caaaggccgt tttgacgaag ctcaggatgt gctggagcaa ctgcgcagca 30300
acaaggacga tgcgcancgt gaagtggacg aaatgaaagc tcacatgacgag caggcgcgc 30360
atcgt 30365

<210> 2
<211> 1872
<212> DNA
<213> Pseudomonas syringae

<400> 2
atgatcagtt cgccggatcgg cggggccgg ggcgtcaaac tcagccgggt aaaccagcag 60
cacgatactg ttcccgccca gacagctcac ccaaattgcag tcactgcagg catgaatccg 120
ccgctgactc ccgatcagtc agggtcacac gcacagaaaa gctcgctgc cggcgcggcg 180
cggtctaatg tcgcggctcg acacacacag ctttgcagg cttcaaggc tgacatggg 240
acggctccgg tcagcggcgc gcccgtatc agttcgctgt ctgcgttgcgt gatcggtatg 300
ctgctgcagg ccgagcctt gccttttgaat gtcacggccg agaaattgtc tcctgagcgc 360
tatcaactga agcgtttca gggctcgac ttgcacgcgc ggctggaaaa attcgcccag 420
ccgggtcaga taccggataa agccgaggc gggcaactga tcaagggttt tgctcagtcg 480
gtcgctgatc aactggagca ctttcaactg atgcacgtacg ctgcgtccgc aacggtaggc 540
cagcatgca aagcggacaa ggcgacgctt gccgtcagtc agactgcct tggcgaatac 600
gccggctgtg caagcaaggc aatcggcgaa ggctgagaca acagcatcgc gtcgctggat 660
gagcacatca gtgcgttggc ttcactctg caagatgcgg aacaggcggaa caaggagtct 720
ctgcacgctg acaggcaggc gtcggctgac gccaaaacca ccctggtagg tttgcacgccc 780
gatttcgtca agtcggcgaa ggccaagcgc ctgcgttgcgg tcgcccaca tacgcaactg 840
gacaacgtcg tcagcgatct cgtcactgcg cgttaacacagg tgggtggctg gaaagggtc 900
ggccgattt tcgcggctgc ggttccgcag ttcttgcgtt caatgacaca cttgggttat 960
gtgcgtttgt ccaccagcga caagctgcga gacacgattc cccgagaccag cagcgacgcc 1020
aacatgctca aggcttcgt aatcgggtt gtcggcgaa ttgcgtcacga gacggtcaac 1080
agcgtggtca agccgtatgtt tcaggccgc ttgcagaaga ctggcctcaa cgaacgcctg 1140
aacatgggtc caatgaaaggc tgcgttgcgtt aatacggtt ttgcgttgcggcc cttcgagctg 1200
aaaagcgaac acgggtgagct ggtcaaaaaa acgcccggagg aagtcgctca ggacaaggcg 1260
ttcgtgaaaa gtgaacgcgc gtcgttgcgtt cagaagaagg ttgcgttgcgtt gtcacccat 1320
ccggtaggtt agctgtatggc ttacagtgcg ttcgggtt ctcaggctgt gcccggatg 1380

ctcaacgatg ttcaccagat caatggcag acgctgagtg caagagctct ggcacatccgg 1440
tttggcgggg cggtgtctgc cagttcgcaa acgctgctgc aattgaagtc gaattatgtc 1500
gaccgcagaag ggcgcaaaat tccggattt accccggacc gcgcccagag ccatctgaaa 1560
aaggacctgc tcaaaggatggat ggacctgcgc gagccgtcgg tacgcaccac gttctacagc 1620
aaggctctt cgggtattca gagttctgca ctgacctcgg cactgcccgc tgtgaccgct 1680
caggctgaag ggcgcaagtgg cacgctcagt gcgggggcta ttttgcgcaa catggccctg 1740
gcagcgacgg gttcgggtgtc ctagtctgtcc acgttgtaca ccaaccagtc gtttaccgca 1800
gaagccaagg cggtgaaagc ggcaggcatg ggccgtgcaa cacctatgtct ggaccgtacc 1860
gagacgcttt ga 1872

<210> 3
<211> 623
<212> PRT
<213> Pseudomonas syringae

<400> 3
Met Ile Ser Ser Arg Ile Gly Gly Ala Gly Gly Val Lys Leu Ser Arg
1 5 10 15

Val Asn Gln Gln His Asp Thr Val Pro Ala Gln Thr Ala His Pro Asn
20 25 30

Ala Val Thr Ala Gly Met Asn Pro Pro Leu Thr Pro Asp Gln Ser Gly
35 40 45

Ser His Ala Thr Glu Ser Ser Ala Gly Ala Ala Arg Leu Asn Val
50 55 60

Ala Ala Arg His Thr Gln Leu Leu Gln Ala Phe Lys Ala Glu His Gly
65 70 75 80

Thr Ala Pro Val Ser Gly Ala Pro Met Ile Ser Ser Arg Ala Ala Leu
85 90 95

Leu Ile Gly Ser Leu Leu Gln Ala Glu Pro Leu Pro Phe Glu Val Met
100 105 110

Ala Glu Lys Leu Ser Pro Glu Arg Tyr Gln Leu Lys Gln Phe Gln Gly
115 120 125

Ser Asp Leu Gln Gln Arg Leu Glu Lys Phe Ala Gln Pro Gly Gln Ile
130 135 140

Pro Asp Lys Ala Glu Val Gly Gln Leu Ile Lys Gly Phe Ala Gln Ser
145 150 155 160

Val Ala Asp Gln Leu Glu His Phe Gln Leu Met His Asp Ala Ser Pro

	165	170	175
Ala Thr Val Gly Gln His Ala Lys Ala Asp Lys Ala Thr Leu Ala Val			
180	185	190	
Ser Gln Thr Ala Leu Gly Glu Tyr Ala Gly Arg Ala Ser Lys Ala Ile			
195	200	205	
Gly Glu Gly Leu Ser Asn Ser Ile Ala Ser Leu Asp Glu His Ile Ser			
210	215	220	
Ala Leu Asp Leu Thr Leu Gln Asp Ala Glu Gln Gly Asn Lys Glu Ser			
225	230	235	240
Leu His Ala Asp Arg Gln Ala Leu Val Asp Ala Lys Thr Thr Leu Val			
245	250	255	
Gly Leu His Ala Asp Phe Val Lys Ser Pro Glu Ala Lys Arg Leu Ala			
260	265	270	
Ser Val Ala Ala His Thr Gln Leu Asp Asn Val Val Ser Asp Leu Val			
275	280	285	
Thr Ala Arg Asn Thr Val Gly Gly Trp Lys Gly Ala Gly Pro Ile Val			
290	295	300	
Ala Ala Ala Val Pro Gln Phe Leu Ser Ser Met Thr His Leu Gly Tyr			
305	310	315	320
Val Arg Leu Ser Thr Ser Asp Lys Leu Arg Asp Thr Ile Pro Glu Thr			
325	330	335	
Ser Ser Asp Ala Asn Met Leu Lys Ala Ser Ile Ile Gly Met Val Ala			
340	345	350	
Gly Ile Ala His Glu Thr Val Asn Ser Val Val Lys Pro Met Phe Gln			
355	360	365	
Ala Ala Leu Gln Lys Thr Gly Leu Asn Glu Arg Leu Asn Met Val Pro			
370	375	380	
Met Lys Ala Val Asp Thr Asn Thr Val Ile Pro Asp Pro Phe Glu Leu			
385	390	395	400
Lys Ser Glu His Gly Glu Leu Val Lys Lys Thr Pro Glu Glu Val Ala			
405	410	415	
Gln Asp Lys Ala Phe Val Lys Ser Glu Arg Ala Leu Leu Asn Gln Lys			

420	425	430
Lys Val Gln Gly Ser Ser Thr His Pro Val Gly Glu Leu Met Ala Tyr		
435	440	445
Ser Ala Phe Gly Gly Ser Gln Ala Val Arg Gln Met Leu Asn Asp Val		
450	455	460
His Gln Ile Asn Gly Gln Thr Leu Ser Ala Arg Ala Leu Ala Ser Gly		
465	470	475
Phe Gly Gly Ala Val Ser Ala Ser Ser Gln Thr Leu Leu Gln Leu Lys		
485	490	495
Ser Asn Tyr Val Asp Pro Gln Gly Arg Lys Ile Pro Val Phe Thr Pro		
500	505	510
Asp Arg Ala Glu Ser Asp Leu Lys Lys Asp Leu Leu Lys Gly Met Asp		
515	520	525
Leu Arg Glu Pro Ser Val Arg Thr Thr Phe Tyr Ser Lys Ala Leu Ser		
530	535	540
Gly Ile Gln Ser Ser Ala Leu Thr Ser Ala Leu Pro Pro Val Thr Ala		
545	550	555
Gln Ala Glu Gly Ala Ser Gly Thr Leu Ser Ala Gly Ala Ile Leu Arg		
565	570	575
Asn Met Ala Leu Ala Ala Thr Gly Ser Val Ser Tyr Leu Ser Thr Leu		
580	585	590
Tyr Thr Asn Gln Ser Val Thr Ala Glu Ala Lys Ala Leu Lys Ala Ala		
595	600	605
Gly Met Gly Gly Ala Thr Pro Met Leu Asp Arg Thr Glu Thr Leu		
610	615	620

<210> 4

<211> 495

<212> DNA

<213> Pseudomonas syringae

<400> 4

atgaccaaca atgaccagta ccacaccctt atcaacgaaa tctgcgcact cagcctgatt 60
 tcccacacctg aacgtttcta tgaatctgcc aatttcaaaa tcagcgaagt ggacttcacc 120
 ctgcagtttc aggaccgcga cgaaggccgt gccgttctga tctacggta catggcgcg 180

ttgcccgcgc gcggccgtga gagcgcgttga ctggcgttga tggacatcaa cttcacatg 240
ttcgccggcg cccacagccc ggcatttcc ttaatgcgc agaccggcg tgtgctgctg 300
atgggctctg tggcccttga acgagcctct gccaaaggcg tgctgttgtt gatgaagtgc 360
ttttccgacc tggccaaaga gtggcgcgag catggattca tggggcaggc cacaactgca 420
ggctcctcga cgaccaacc tgttgccccca gcagccaaac gcgagagcct ttccggctcct 480
gggagattcc aatga 495

<210> 5
<211> 164
<212> PRT
<213> *Pseudomonas syringae*

<400> 5
Met Thr Asn Asn Asp Gln Tyr His Thr Leu Ile Asn Glu Ile Cys Ala
1 5 10 15

Leu Ser Leu Ile Ser Thr Pro Glu Arg Phe Tyr Glu Ser Ala Asn Phe
20 25 30

Lys Ile Ser Glu Val Asp Phe Thr Leu Gln Phe Gln Asp Arg Asp Glu
35 40 45

Gly Arg Ala Val Leu Ile Tyr Gly Asp Met Gly Ala Leu Pro Ala Arg
50 55 60

Gly Arg Glu Ser Ala Leu Leu Ala Leu Met Asp Ile Asn Phe His Met
65 70 75 80

Phe Ala Gly Ala His Ser Pro Ala Phe Ser Phe Asn Ala Gln Thr Gly
85 90 95

Arg Val Leu Leu Met Gly Ser Val Ala Leu Glu Arg Ala Ser Ala Glu
100 105 110

Gly Val Leu Leu Leu Met Lys Ser Phe Ser Asp Leu Ala Lys Glu Trp
115 120 125

Arg Glu His Gly Phe Met Gly Gln Ala Thr Thr Ala Gly Ser Ser Thr
130 135 140

Asp Gln Pro Val Ala Pro Ala Ala Lys Arg Glu Ser Leu Ser Ala Pro
145 150 155 160

Gly Arg Phe Gln

<210> 6
<211> 1461
<212> DNA
<213> Pseudomonas syringae

<400> 6
atgcacatca accgacgcgt ccaacaaccg cctgtgactg cgacggatag cttdcgaca 60
gcgtccgacg cgtctcttgc ctccagctct gtgcgatctg tcagctccga tcagcaacgc 120
gagataaaatg cgattgccga ttacctgaca gatcatgtgt tcgctgcgca taaaactgccc 180
ccggccgatt cggctgatgg ccaagctgca gttgacgtac acaatgcgca gatcactgcg 240
ctgatcgaga cgccgcgcagg ccgcctgcac ttcaaggaaa aaaccccccgc aaccatcgcc 300
gacaccttcg ccaaggcggaa aaagctcgac cgattggcga cgactacatc aggcgcgttg 360
cgggcgacgc ccttgccat ggcctcggtt cttagtaca tgcagctgc gatcaacaag 420
ggcgattggc tgccggctcc gtc当地accg ctgacccgc tcatttccgg agcgctgtcg 480
ggcgc当地gg accaggtggg caccaagatg atggacgcg cgacgggtga tctgcattac 540
ctgagcgcct cgc当地ggacag gctccacat gcgatggccg cttagtgc当地 gccc当地ctcg 600
ccaagccttgc ctc当地acaggat tctggacacg ggggttgc当地 ttcaagacgta ctc当地gc当地 660
aacgc当地gtac gtaccgtatt ggctccggca ctggcgtcca gacccggc当地 gc当地gggtgct 720
gtggaccttgc gtgtatcgat ggccgggttgc当地 acgc当地ggctt tggcaaccgc 780
ctgctcagtg tgc当地tc当地gt tgatcaccag cttggc当地gttgc当地 cattagtgc当地 cggtttgaag 840
gataaaagagc ccaaggctca actgagc当地aa gaaaacgact ggctcgaggc ttataaagca 900
atcaaatacg ccaagctactc gggtgccgca ctc当地acgctg gcaagcggat ggccggctcg 960
ccactggata tggc当地accg cgc当地atgggt gcgtaagaa gc当地gggtgc当地 agc当地tccaggc 1020
ctgacccaaa acggcttgc当地 cctggc当地gg ggcttgc当地 gggttaggcaa gttgc当地aggag 1080
atggc当地acgca aaaatatcac cgc当地ccggc当地 accaaggccg cggc当地agtc当地 gttgaccaac 1140
ctggc当地aggat cggc当地aggccg tttc当地caggc tggaccacgg cgc当地gtc当地 aaccgatccc 1200
gc当地ggtaaaaa aagccgagtc gttc当地atacag gacacggtga aatcgactgc atccagtaacc 1260
acaggctacg tagccgacca gaccgtcaaa ctggc当地aga cgc当地aaaga catggccggg 1320
gaggc当地atca cccataccgg cgc当地aggcttgc当地 cgc当地atacgg tcaataacct ggc当地caacgc 1380
ccggctc当地gtg aagctgatata agaagagggg ggc当地acggc当地 cttctccaag tggaaataccg 1440
tttccggc当地ta tgc当地ggctcgta a 1461

<210> 7
<211> 486
<212> PRT
<213> Pseudomonas syringae

<400> 7
Met His Ile Asn Arg Arg Val Gln Gln Pro Pro Val Thr Ala Thr Asp
1 5 10 15

Ser Phe Arg Thr Ala Ser Asp Ala Ser Leu Ala Ser Ser Ser Val Arg
20 25 30

Ser Val Ser Ser Asp Gln Gln Arg Glu Ile Asn Ala Ile Ala Asp Tyr
35 40 45

Leu	Thr	Asp	His	Val	Phe	Ala	Ala	His	Lys	Leu	Pro	Pro	Ala	Asp	Ser
50															60
Ala	Asp	Gly	Gln	Ala	Ala	Val	Asp	Val	His	Asn	Ala	Gln	Ile	Thr	Ala
65															80
Leu	Ile	Glu	Thr	Arg	Ala	Ser	Arg	Leu	His	Phe	Glu	Gly	Glu	Thr	Pro
															95
Ala	Thr	Ile	Ala	Asp	Thr	Phe	Ala	Lys	Ala	Glu	Lys	Leu	Asp	Arg	Leu
															100
Ala	Thr	Thr	Thr	Ser	Gly	Ala	Leu	Arg	Ala	Thr	Pro	Phe	Ala	Met	Ala
															115
Ser	Leu	Leu	Gln	Tyr	Met	Gln	Pro	Ala	Ile	Asn	Lys	Gly	Asp	Trp	Leu
															130
Pro	Ala	Pro	Leu	Lys	Pro	Leu	Thr	Pro	Leu	Ile	Ser	Gly	Ala	Leu	Ser
															145
Gly	Ala	Met	Asp	Gln	Val	Gly	Thr	Lys	Met	Met	Asp	Arg	Ala	Thr	Gly
															165
Asp	Leu	His	Tyr	Leu	Ser	Ala	Ser	Pro	Asp	Arg	Leu	His	Asp	Ala	Met
															180
Ala	Ala	Ser	Val	Lys	Arg	His	Ser	Pro	Ser	Leu	Ala	Arg	Gln	Val	Leu
															195
Asp	Thr	Gly	Val	Ala	Val	Gln	Thr	Tyr	Ser	Ala	Arg	Asn	Ala	Val	Arg
															210
Thr	Val	Leu	Ala	Pro	Ala	Leu	Ala	Ser	Arg	Pro	Ala	Val	Gln	Gly	Ala
															225
Val	Asp	Leu	Gly	Val	Ser	Met	Ala	Gly	Gly	Leu	Ala	Ala	Asn	Ala	Gly
															245
Phe	Gly	Asn	Arg	Leu	Leu	Ser	Val	Gln	Ser	Arg	Asp	His	Gln	Arg	Gly
															260
Gly	Ala	Leu	Val	Leu	Gly	Leu	Lys	Asp	Lys	Glu	Pro	Lys	Ala	Gln	Leu
															275
Ser	Glu	Glu	Asn	Asp	Trp	Leu	Glu	Ala	Tyr	Lys	Ala	Ile	Lys	Ser	Ala
															290
															295
															300

Ser Tyr Ser Gly Ala Ala Leu Asn Ala Gly Lys Arg Met Ala Gly Leu
 305 310 315 320

 Pro Leu Asp Met Ala Thr Asp Ala Met Gly Ala Val Arg Ser Leu Val
 325 330 335

 Ser Ala Ser Ser Leu Thr Gln Asn Gly Leu Ala Leu Ala Gly Gly Phe
 340 345 350

 Ala Gly Val Gly Lys Leu Gln Glu Met Ala Thr Lys Asn Ile Thr Asp
 355 360 365

 Pro Ala Thr Lys Ala Ala Val Ser Gln Leu Thr Asn Leu Ala Gly Ser
 370 375 380

 Ala Ala Val Phe Ala Gly Trp Thr Thr Ala Ala Leu Thr Thr Asp Pro
 385 390 395 400

 Ala Val Lys Lys Ala Glu Ser Phe Ile Gln Asp Thr Val Lys Ser Thr
 405 410 415

 Ala Ser Ser Thr Thr Gly Tyr Val Ala Asp Gln Thr Val Lys Leu Ala
 420 425 430

 Lys Thr Val Lys Asp Met Gly Gly Glu Ala Ile Thr His Thr Gly Ala
 435 440 445

 Ser Leu Arg Asn Thr Val Asn Asn Leu Arg Gln Arg Pro Ala Arg Glu
 450 455 460

 Ala Asp Ile Glu Glu Gly Gly Thr Ala Ala Ser Pro Ser Glu Ile Pro
 465 470 475 480

 Phe Arg Pro Met Arg Ser
 485

<210> 8
 <211> 1074
 <212> DNA
 <213> *Pseudomonas syringae*

<400> 8
 atgtctggtc ctttcgagaa aaaatggcgg tggccaccc gaaccgtgac ctacgttggc 60
 tggtcgctgt tctggcttct gctctggac gtggccgtca ccgtggacgt catgctgata 120
 gaaggcaaag gcatcgactt cccccgtatg cccctcacgt tgctttgctc ggactgtac 180
 gtgctgatca gctttcgcaa ctcgagtgcc tataaccgtt ggtggaaagc ggcaccc 240
 tggggcgcaa tggtaaacac ttcacgcagt tttggccggc aggtactgac gctgatcgat 300

ggcgaacggg atgacctcaa caaccctgtc aaagccatac tctttcaacg tcatgtggct 360
tacttgcgtg ccctgcgcgc gcacacctaaa ggcgacgtca aaacagcaaa actcgacggg 420
ttactgtcgc ccgacagat tcagcgcgc agccagagca acaacttccc caatgacatc 480
ctcaatggct ctgtgcgggt tatctcgcaa gccttgccg cggccagtt cgacagcatc 540
cgtctgaccc gccttggaaatc gaccatggtc gatctgtcca actgtcaggg cggcatggag 600
cgcatcgcca acacgccact gccctacccc tacgtttatt tcccacggct gttcagcacg 660
ctgttctgca tcctgatgcc gctgagcatg gtcaccaccc tgggctgggtt caccccgccg 720
atctccacgg tggtaggctg catgctgctg gcaatggacc gcatcggtac agacctgcaa 780
gccccgttcg gcaacagtca gcacccgatc cgcatggaag acctgtgcaa caccatgaa 840
aagaacctgc aatcgatgtt ctttcgcca gagaggcagc cgctgctggc tgacctgaaa 900
agccccgtac cgtggcgcgt ggccaacgca tcaattggcg gtctgagcag gcagaaaaac 960
aggtagggg aaggcgcgag gcttatcgca agtggaaatgc tgctctggc accatttcgc 1020
tcagttgcag acgttgctcc gtgccacgccc agtgcgtacc tacgtcgccg ttga 1074

<210> 9
<211> 357
<212> PRT
<213> *Pseudomonas syringae*

<400> 9
Met Ser Gly Pro Phe Glu Lys Lys Trp Arg Cys Phe Thr Arg Thr Val
1 5 10 15

Thr Tyr Val Gly Trp Ser Leu Phe Trp Leu Leu Leu Trp Asp Val Ala
20 25 30

Val Thr Val Asp Val Met Leu Ile Glu Gly Lys Gly Ile Asp Phe Pro
35 40 45

Leu Met Pro Leu Thr Leu Leu Cys Ser Ala Leu Ile Val Leu Ile Ser
50 55 60

Phe Arg Asn Ser Ser Ala Tyr Asn Arg Trp Trp Glu Ala Arg Thr Leu
65 70 75 80

Trp Gly Ala Met Val Asn Thr Ser Arg Ser Phe Gly Arg Gln Val Leu
85 90 95

Thr Leu Ile Asp Gly Glu Arg Asp Asp Leu Asn Asn Pro Val Lys Ala
100 105 110

Ile Leu Phe Gln Arg His Val Ala Tyr Leu Arg Ala Leu Arg Ala His
115 120 125

Leu Lys Gly Asp Val Lys Thr Ala Lys Leu Asp Gly Leu Leu Ser Pro
130 135 140

Asp Glu Ile Gln Arg Ala Ser Gln Ser Asn Asn Phe Pro Asn Asp Ile
 145 150 155 160

 Leu Asn Gly Ser Ala Ala Val Ile Ser Gln Ala Phe Ala Ala Gly Gln
 165 170 175

 Phe Asp Ser Ile Arg Leu Thr Arg Leu Glu Ser Thr Met Val Asp Leu
 180 185 190

 Ser Asn Cys Gln Gly Gly Met Glu Arg Ile Ala Asn Thr Pro Leu Pro
 195 200 205

 Tyr Pro Tyr Val Tyr Phe Pro Arg Leu Phe Ser Thr Leu Phe Cys Ile
 210 215 220

 Leu Met Pro Leu Ser Met Val Thr Thr Leu Gly Trp Phe Thr Pro Ala
 225 230 235 240

 Ile Ser Thr Val Val Gly Cys Met Leu Leu Ala Met Asp Arg Ile Gly
 245 250 255

 Thr Asp Leu Gln Ala Pro Phe Gly Asn Ser Gln His Arg Ile Arg Met
 260 265 270

 Glu Asp Leu Cys Asn Thr Ile Glu Lys Asn Leu Gln Ser Met Phe Ser
 275 280 285

 Ser Pro Glu Arg Gln Pro Leu Leu Ala Asp Leu Lys Ser Pro Val Pro
 290 295 300

 Trp Arg Val Ala Asn Ala Ser Ile Gly Gly Leu Ser Arg Gln Lys Asn
 305 310 315 320

 Arg Leu Gly Glu Gly Ala Arg Leu Ile Ala Ser Glu Ser Leu Leu Trp
 325 330 335

 Ala Pro Phe Arg Ser Val Ala Asp Val Ala Pro Cys His Ala Ser Ala
 340 345 350

 Tyr Leu Arg Arg Ala
 355

<210> 10
 <211> 1053
 <212> DNA
 <213> *Pseudomonas syringae*

<400> 10

atgtatatcc agcaatctgg cgcccaatca ggggttgcgg ctaagacgca acacgataag 60
ccctcgcat tgtccggact cgccccggc tcgtcgatg cgttcgcccg ttttcattccc 120
gaaaaggcgg gcgcctttgt cccattggag gggcatgaag aggtctttt cgatgcgcgc 180
tcttcctttt cgtcggtcga tgccgctgat cttccagtc ccgagcaggta acaacccag 240
cttcattcgt tgcgtaccct gctaccggat ctgatggtct ctatgcctc attacgtgac 300
ggcgccacgc aatacatcaa gaccagaatc aaggctatgg cgagacaacag cataggcgcg 360
actgcgaaca tcgaagccaa aagaaaagatt gcccaagagc acggctgtca gcttgtccac 420
ccgtttcacc agagcaaatt tcttatttcaa aaaactatcg atgatagagc gtttgctgct 480
gactatggcc gcgcgggtgg cgacggcac gcttgtctgg ggctatcagt aaattggtgt 540
cagagccgtg caaaaggcga gtcggatgag gccttcttc acaaacttggaa ggactatcag 600
ggcgatgcatt tgcttacccag ggtaatgggc ttccagcata tcgagcagca ggcttattca 660
aacaagttgc agaacgcagc acctatgtt ctgacacac ttcccaagtt gggcatgaca 720
cttggaaaag ggctggcag agcacagcac ggcactatg cggttgcgtt ggaaaacctt 780
gatcgcgatc tcaaaggcgt gttgcagccc ggtaaagacc agatgcttct gtttttgagt 840
gatagccatg cgatggctct gcatcaggac agtcaggat gtctgcattt ttttgatcct 900
cttttggcg tggttcaggc agacagcttca agcaacatgaa gccatttct tgctgatgtg 960
ttcaagcgcg acgttaggtac gcaactggcgt ggcacggagc aacgtctgca actgagcga 1020
atggtgccca gagcagactt tcacttgcga taa 1053

<210> 11

<211> 350

<212> PRT

<213> *Pseudomonas syringae*

<400> 11

Met Tyr Ile Gln Gln Ser Gly Ala Gln Ser Gly Val Ala Ala Lys Thr
1 5 10 15

Gln His Asp Lys Pro Ser Ser Leu Ser Gly Leu Ala Pro Gly Ser Ser
20 25 30

Asp Ala Phe Ala Arg Phe His Pro Glu Lys Ala Gly Ala Phe Val Pro
35 40 45

Leu Glu Gly His Glu Glu Val Phe Phe Asp Ala Arg Ser Ser Phe Ser
50 55 60

Ser Val Asp Ala Ala Asp Leu Pro Ser Pro Glu Gln Val Gln Pro Gln
65 70 75 80

Leu His Ser Leu Arg Thr Leu Leu Pro Asp Leu Met Val Ser Ile Ala
85 90 95

Ser Leu Arg Asp Gly Ala Thr Gln Tyr Ile Lys Thr Arg Ile Lys Ala
100 105 110

Met Ala Asp Asn Ser Ile Gly Ala Thr Ala Asn Ile Glu Ala Lys Arg			
115	120	125	
Lys Ile Ala Gln Glu His Gly Cys Gln Leu Val His Pro Phe His Gln			
130	135	140	
Ser Lys Phe Leu Phe Glu Lys Thr Ile Asp Asp Arg Ala Phe Ala Ala			
145	150	155	160
Asp Tyr Gly Arg Ala Gly Gly Asp Gly His Ala Cys Leu Gly Leu Ser			
165	170	175	
Val Asn Trp Cys Gln Ser Arg Ala Lys Gly Gln Ser Asp Glu Ala Phe			
180	185	190	
Phe His Lys Leu Glu Asp Tyr Gln Gly Asp Ala Leu Leu Pro Arg Val			
195	200	205	
Met Gly Phe Gln His Ile Glu Gln Gln Ala Tyr Ser Asn Lys Leu Gln			
210	215	220	
Asn Ala Ala Pro Met Leu Leu Asp Thr Leu Pro Lys Leu Gly Met Thr			
225	230	235	240
Leu Gly Lys Gly Leu Gly Arg Ala Gln His Ala His Tyr Ala Val Ala			
245	250	255	
Leu Glu Asn Leu Asp Arg Asp Leu Lys Ala Val Leu Gln Pro Gly Lys			
260	265	270	
Asp Gln Met Leu Leu Phe Leu Ser Asp Ser His Ala Met Ala Leu His			
275	280	285	
Gln Asp Ser Gln Gly Cys Leu His Phe Phe Asp Pro Leu Phe Gly Val			
290	295	300	
Val Gln Ala Asp Ser Phe Ser Asn Met Ser His Phe Leu Ala Asp Val			
305	310	315	320
Phe Lys Arg Asp Val Gly Thr His Trp Arg Gly Thr Glu Gln Arg Leu			
325	330	335	
Gln Leu Ser Glu Met Val Pro Arg Ala Asp Phe His Leu Arg			
340	345	350	

<210> 12
<211> 480

<212> DNA

<213> Pseudomonas syringae

<400> 12

atgcggcctg tcgaggcaaa agatcggtt tatacggtgc tgccaaatcg aggcatcgat 60
gcgcaggagg gtcaacgcca caacgttaagg accgcgaatg gaagcgagtgc tctgctctgg 120
ttgccagaac aggacacttc gttgttcatc ttccacacaga tcgaaaggct gacgatgccg 180
caggacaacg tcattttgtat ctggcaatgc gcgcgtgaatc tggagcctgc tcgcacaggt 240
ggcgctgcgc ttggctataa ccctgattca aggaactgt tggcgccag tggcgactca 300
atggcggatc tggatgagac cggacttgcatcacatgc cgcgaattag cacattggcc 360
gtctcggtgc agcgctatct ggaagattat cgacgccagg agcaagccgg aaaaaccgcc 420
cagaaagagc ctcgggttaccggctgtc catctgaccc cacgaacgtt catgacctga 480

<210> 13

<211> 159

<212> PRT

<213> Pseudomonas syringae

<400> 13

Met Arg Pro Val Glu Ala Lys Asp Arg Leu Tyr Gln Trp Leu Arg Asn
1 5 10 15

Arg Gly Ile Asp Ala Gln Glu Gly Gln Arg His Asn Val Arg Thr Ala
20 25 30

Asn Gly Ser Glu Cys Leu Leu Trp Leu Pro Glu Gln Asp Thr Ser Leu
35 40 45

Phe Ile Phe Thr Gln Ile Glu Arg Leu Thr Met Pro Gln Asp Asn Val
50 55 60

Ile Leu Ile Leu Ala Met Ala Leu Asn Leu Glu Pro Ala Arg Thr Gly
65 70 75 80

Gly Ala Ala Leu Gly Tyr Asn Pro Asp Ser Arg Glu Leu Leu Leu Arg
85 90 95

Ser Val His Ser Met Ala Asp Leu Asp Glu Thr Gly Leu Asp His Leu
100 105 110

Met Thr Arg Ile Ser Thr Leu Ala Val Ser Leu Gln Arg Tyr Leu Glu
115 120 125

Asp Tyr Arg Arg Gln Glu Gln Ala Gly Lys Thr Ala Gln Lys Glu Pro
130 135 140

Arg Phe Leu Pro Ala Val His Leu Thr Pro Arg Thr Phe Met Thr

145

150

155

<210> 14
<211> 288
<212> DNA
<213> Pseudomonas syringae

<400> 14
atgcttaaaa aatgcctgct actggttata tcaatgtcac ttggcggttg ctggagcctg 60
atgattcatc tggacggcga gcgttgcatt tatcccgca ctcgccaagg ttgggcgtgg 120
ggaaccata acggagggca gagttggccc atacttatac acgtgccgtt ttccctcgcg 180
ttggacacac tgctgctgcc ctacgaccc accgctttc tgcccgaaaa tcttggcggt 240
gatgaccgca aatgtcagtt cagtggagga ttgaacgtgc tcgggttga 288

<210> 15
<211> 95
<212> PRT
<213> Pseudomonas syringae

<400> 15
Met Leu Lys Lys Cys Leu Leu Leu Val Ile Ser Met Ser Leu Gly Gly
1 5 10 15

Cys Trp Ser Leu Met Ile His Leu Asp Gly Glu Arg Cys Ile Tyr Pro
20 25 30

Gly Thr Arg Gln Gly Trp Ala Trp Gly Thr His Asn Gly Gln Ser
35 40 45

Trp Pro Ile Leu Ile Asp Val Pro Phe Ser Leu Ala Leu Asp Thr Leu
50 55 60

Leu Leu Pro Tyr Asp Leu Thr Ala Phe Leu Pro Glu Asn Leu Gly Gly
65 70 75 80

Asp Asp Arg Lys Cys Gln Phe Ser Gly Gly Leu Asn Val Leu Gly
85 90 95

<210> 16
<211> 447
<212> DNA
<213> Pseudomonas syringae

<400> 16
atgaaacagg tagaagtcca gatcattact gaattgcctt gtcaggttct gatcctggag 60

caagaggcag tagcagaggg cttcaggtt cttacccgct tgatcgagga gtggagggcc 120
ggaaaagaatc gattcgaggc caagggtgaa tgcctcatgg tcgtacttct ggacggcgct 180
ctggcaggta tcggaggcct ttgcgtgtat ccgcataccc ggggtgatat gggcaggcta 240
cgacggttat acgtcgcaag cgcatcaaga ggtcaaggcc ttggaaagac tctggtgaat 300
cgacttgtgg agcatgcggc gcaggaattt ttgcgtgtgc gcctgttcac tgataactccg 360
agcggagcaa aattttactt acgttgccgc tttcaggcag ttgacgaggt gcatgccacg 420
catataaaagc ttttaaggcg ggttta 447

<210> 17
<211> 148
<212> PRT
<213> *Pseudomonas syringae*

<400> 17
Met Lys Gln Val Glu Val Gln Ile Ile Thr Glu Leu Pro Cys Gln Val
1 5 10 15

Leu Ile Leu Glu Gln Glu Ala Val Ala Glu Gly Phe Arg Phe Leu Thr
20 25 30

Arg Leu Ile Glu Glu Trp Arg Ser Gly Lys Asn Arg Phe Glu Ala Lys
35 40 45

Gly Glu Cys Leu Met Val Val Leu Leu Asp Gly Ala Leu Ala Gly Ile
50 55 60

Gly Gly Leu Ser Arg Asp Pro His Ala Arg Gly Asp Met Gly Arg Leu
65 70 75 80

Arg Arg Leu Tyr Val Ala Ser Ala Ser Arg Gly Gln Gly Leu Gly Lys
85 90 95

Thr Leu Val Asn Arg Leu Val Glu His Ala Ala Gln Glu Phe Phe Ala
100 105 110

Val Arg Leu Phe Thr Asp Thr Pro Ser Gly Ala Lys Phe Tyr Leu Arg
115 120 125

Cys Gly Phe Gln Ala Val Asp Glu Val His Ala Thr His Ile Lys Leu
130 135 140

Leu Arg Arg Val
145

<210> 18
<211> 11458

<212> DNA
<213> *Pseudomonas syringae*

<220>
<221> unsure
<222> (10940)
<223> n at any position is undefined

<400> 18

gatccacggc ggttgcgtt gcccggcagg taatccagca cttgtatcat ctctgtctg 240
ggctcgcca ccgacagacc gccaatcgcc aggccgtcaa agccgatctc atccaggcct 300
tcgagcgaac gcttgcgcag gttctcgatgc atgccaccct gaacaatgcc gaacagcg 360
cgagtgttt cgccgtgcgc gaccttgag cgcttggccc agcgcAACGA cagctccatg 420
gagacacgtg ctacgtctc gtcggccggg tacggcgtgc actcatcgaa aatcatcactg 480
acgtccgaac ccaggtcacg ctggacactgc atcgactctt ccggggccat gaacaccctt 540
gcaccatcga cggagaggc gaaggtcagc ccctccctct tgcattgcg catggcgccc 600
aggctgaaca cctgaaaacc gccagagtcg gtcagaatcg gcccattcca ctgcattgaaa 660
tcgtgcaggt cgccgtggcc ctgtatgacc tcgggtccccg gacgcagcca caagtggaaag 720
gtgttgcaca gaatcatctg cgcaccgtg gcctcgatata cacgcggcaa catgcccattt 780
accgtgccgt aggtgcccac cgcatgaac gcccgggtct cgaccacgac acgcggaaag 840
gtcaggcgac cgccacggc ctgcgtcg gtggccaaca actcgaaaga catacgacag 900
tgcgactca tgcgtatcc tctggtgcgc attcctgtgg ggccgtcg gcgggatttc 960
gggtgatgaa catggcatca ccgtaactga agaagcggtt cccgttgcg atggccgccc 1020
cgtaggccgc catggtttcg ggataaccgg cgaacgcccga aaccagcatc aacagcg 1080
attcaggcaa atgaaaatta gtcaccaggc catcgaccac atgaaacggc cgccccggat 1140
agatgaagat gtcgggtcg ccgctaaacg gttcaactg gccatcacgc gcggcactct 1200
ccagcgaacg cacgttgtg gtcggaccg caatcacccg cccgccccgc gcacggcactg 1260
ccgcccacggc atcgaccacg tctggctga ctccagcca ttgcgtgtc atgtggat 1320
cttcgatctg ctcgacacgc accggctgga acgtacccgc gccgacgtgc agagtgacaa 1380
aagcagtctc gacgcccattt gcccggcaattt ctccatcaa cggctggcgaa aatgcaggc 1440
cgccagtcgg cgccggccaca gcaaccggcgc gctggcgta aacggcttga taacgctcgc 1500
ggtcggcacc ttctggccgg cggcttatata aaggaggcata cggcatatgg ccgacacgat 1560
ccagcaacgg cagcacttct tcggcaaaggc gcaactcgaa cagcgcgtca tgccgcgc 1620
ccatctcgcc tctggccggc ccatcgatca ggatcgacga gcccggctt ggcgacttgc 1680
tggcacgcac gtgcggcagc acacgtggc tgtccagcac ggcgtcgacc agaatctcca 1740
gcttgcgcgc ggacgccttc tgccggaaaca aacgtgcggg aatgacacgg gtattgtt 1800
acaccatcaa gtcggccggag cgcaaatgct cgagcaaattt ggtgaatttga cgatgtgc 1860
gcccggccgt cggccatca agggtcaaca gacgactgct ggcacgctcg gccaacgggt 1920
gacgagcaat caggaaatcg gggagtcg agttaaagtc agcgcacgcgc atgatcggt 1980
tcgttttagca gggccggaa gtttacccgg ttgcggca ttagtaaaaa acctgcgtt 2040
atccctgttt accaacggaa aactcatctt tatacttcgc cgccatttgcg ccctgtatggc 2100
ggaatttggta gacgcggcgg attcaaaatc cggtttcgaa agaagtgggaa gttcgattt 2160
ccctcgggc accaccattt agaaaagacc ttgaaattca aggtctttt ttcgtctgg 2220
tggaaagtgg tctgactgag gctgcgtatct accccacctg cccggaaattt gccgcggagc 2280
gcccaggact gccttccagc gcagagcgtc ggtacccggta tcacacgacc aaggataacg 2340

ctatgaacaa gatcgctac gtaaaaagctt acttcaaacc cattggggag gaagtctcg 2400
ttaaaagtacc tacaggcgaa attaaaaagg gcttttcgg cgacaaggaa atcatgaaaa 2460
aagagaccca gtggcagcaa accgggtggt ctgattgtca gatagacggt gaacggctat 2520
cggaaagacgt cgaagacgca gtggcgcaac tcaatgctga cggttatgag attcaaacgg 2580
tattgcctat attgtccggg gcttatgatt atgcgctcaa ataccgatac gaaatacgtc 2640
acaatagaac tgaactaagc ccaggagacc agtcttatgt cttcggctat ggctacagct 2700
tcaccgaagg cgtgacgctg gtggcgaaaa aatttcagtc gtctgcaagc tgaataatag 2760
tgacctcgta ccacggacgc cgctctgccc cctgatacga aaacgccttc ctcaacaaga 2820
ggcaggcgta ctaacgtgca caagacctgc cctgatcagc aagcgcaaga cgctcgcc 2880
cacgaaataa cacgttaggt cgcgttgcata ctttttagcg gcagacggcg tgccgttgta 2940
gttgcgggtt ttgttgcgt tatcaagatc gcggtcattt ccaccgaaaag ccgcattcggt 3000
tttgcgtcg ttgtcgagat ctttgcgtt accgcacaaac gctgcattccg tatggtgatc 3060
gttgcgtccagg tccttgcgt taccggggaa tgccgcgtcg gtgtgggtt cattgtccat 3120
atccctgtcg ttgcgcgcaaa atgcccgcgc agtacacgttgc tcgttatcca gatccttg 3180
gttgcgcgca cacgtggcac cgggtctgtt gtcgttgc agatcacaat cgtttacggc 3240
aaatgcaggc agcgaagtgc caatgatcgt cagcgcaagc agaaagccgc cgatcttgc 3300
cgtaggtt ttatacgcgc gcatcagggtt ttccggata agtggaaatg atgaagcaag 3360
gttactgaa cacgttgcgt cagtactaa aacagtatgt aactgcagcc ttctgcaaga 3420
ccgacagagg tcgacccaaac tgcagccgtt ttcataccca tcaatttcta tagcgaccgt 3480
tcacacgact tccttaccga tgctggagt accaaaaaac ttccgcactg cattttttt 3540
cagtgtcgga tgggttgcacc ggttttgggg agaattgctc aaacggagaa cgatgagttt 3600
tttgcgtcg ggcattgttca tcgatacatt tatcagtgtg tgatgcggta tggcagcttc 3660
atgcctccgt caaatagtg acgccagtc cgttgcataa aacctgacgt cactccaaaa 3720
aaggctacgc acgaggacat tgctgagatt cggctggca tttcgctgt ttacacagg 3780
atcgagcaga acgcggccat gccagccacc cgttaactca attgtcttt gcctgaaaa 3840
caacaatccc tggctttcc gatacatagt ccagaaaaagg caaatccatc acctttctgt 3900
tttctttcg tgaagatgca tttcgcaaga cagggcctt atccgtcactg ataaagaaa 3960
cgacgtgtgt cacatccgc cccggaaagcg ggggtgtaaa tgccaatgta atcaccgggt 4020
cgccagggtgc tcaccacccgt actgtcgaca aggccgctcg ggatatacgt catgtacgc 4080
tcaaccacag gcaaccctgg cagatagact ttgcctttgg cccttcatt aaggcg 4140
ctgacactta ccgcaccggg gcttatctgc gcgtaatgt catccgcac agggatgcc 4200
gttccgttaag cccaatccgt gaaaaagtgc ttgcgttca aaaagtcaac atgccaccc 4260
ttgttaacgaa cctgaacccgag attcctcaca aaatccgttgc gcgatgttgc tcttcgaaac 4320
gcttcgacgt aatccagata agcaaaaaca tccagaccc tgaagtcgt gactaattgt 4380
tcaggtacat tcgctgagcc caccacatg tttgagcggt acgggtttcc taaaaacgct 4440
cctgatacaa ggtcgatcag ctgaccccttta ttcatataac ttttgcgttgc gcgggcttc 4500
agcacagcat ccagggtttt tgaggtgttag gcatccagat ttagtttac ggggttttc 4560
atctctgcct gggcaccctg aatatcactt cccggcgccg gccccgaaac cccacaccct 4620
gccaacattg caaaggctaa agcccatagg gtcgtttttt gcatctgatt caccgttaatt 4680
ccaaagcgcc gtcggacccgtt attgtggctc gcgatacgcg agcaggctgc tccattcc 4740
cgagatcgccg cattgggttag ctcaatcactg gcgcaactt taccacgtgt catcggttgc 4800
gtcatcggtt gggagcatca gttggcaatg cattcgccgt ctccgcctca gcagacgctg 4860
gttagtgccttca gagtcgttgc gaccagcggtt ccggccatcgaa gggccggccca gaggccgccc 4920
agcgataccgg attcggttgc ggcaggggcc atgcccgttca ttgaatcgcc tgactggccc 4980
gtgatcaaagg cctgtatgcct cagtacgcca cctggcttac aggcgggttgc catttgcataa 5040
ggtctataacc ttttgcataagg ttaacgact gtcataaaaa aacatggaaag cacaatcaga 5100
aaaaagaccccttac tggatccaa ggtttttt cgtttggta aaagtgtatct gactcaaccc 5160
cgatcttac cctcccttac tcgggttggc cgtagcacc caaagctacc ttccgtcg 5220

aatgcttgtt tcgttatggg catggcgtga tacaagcggt aggcgtacag caggtccatg 5280
agtctcgga acctgattga gagccgctct gcgcgttacc cccctggcct gagccactgt 5340
tcaaggcac gcttccctga cctttagcac cacttagctg ggcccacca tcggcatgca 5400
ccaaaggcat ttgcagagag aggacagcaa agctggccaa tgcaatgaat ttttttttag 5460
agcagatatac tttaagtttc ataacaacca ccttggattga tcagaattgt tgaagaaatc 5520
atgagtcacg ctatgtgtg gcgactcatc gaaatcggtt ccaatgcag atgggatttt 5580
tacgtccggc ctatccgtg atggcgatgc tgccgattca cctgatgcag aactggttt 5640
attacagcga tccggcgatg gaggaagcac tttacgagac aacgatcctg cgccagttcg 5700
cagggtttag tctgatcga atcgccgatg aaaccacat tctcaatttc cggcgctgc 5760
tggaaaagca tgagttggca ggcgggattt tgcaggtcat caatggctat ctgggtgatc 5820
gaggtttgat gctgcgcca ggtatggtgg tcgatgcac gatcattcat gcggcgagct 5880
cgaccaagaa caagacggc aaacgcgatc ccgaaaatgc tcagacgaag aaaggaaacc 5940
agtatttctt cggcatgaaa gcgcataatcg gogtcgatgc cgagtcgggt ttagtccata 6000
gcctgggtgg tactgcggcg aatgtggcg acgtgactca ggtcgatcaa ctgctgcaca 6060
gtgagggaaac ctatgtcagc ggtgatgcgg gctacaccgg cgtggacaag cgtgcggagc 6120
atcaggatcg ccagatgatc tggtaatttgc cggcacgccc aagccgttat aaaaagcatg 6180
gcgagaaaaag tttgatcga cgggtctatc gcaaaatcga gttcacgaaa gcccagttgc 6240
ggcgaaggt tgaacatccg cttcgcgtga tcaagcgcca gtttggttat acgaaagtcc 6300
gtttcgcgg gctgctaaa aacaccgcgc aacaggctac tctgtttgcc ttgtcgaacc 6360
tttggatggt gcaaaaacgg ctgctggcga tggagaggt ggcgcgttgc tgccggaaaa 6420
cgccctggaa aggtgctgtt tgaaggaaaa tcgatgagtt aacagcgcaaa aaacgtctga 6480
ctatctgatc gggcgagttt ttttgaacct caggccatga aggcatcaaa aatcgatgct 6540
tacttcagac cttccctaacc ctcagtagcg aggccggata aacgagtc 6600
gctgtttcca gttaactgac aaatttcatg cactgcgc cgcgttca agcgtcaga 6660
ccttatagga aagcctcagc tctggattca gcttgcgc gtagttttc acattgat 6720
cgacggtcgc tcggacttg agggccagat catcgatcac cagactgcgt accccatgca 6780
actctgc当地 ccctggact ccgtcacagg aagtggcgtg cttgcgc acaaaagcga 6840
cccacttacc ttccggtttgc ctcagccta tttttctgc tgcgtatcaa ttcatggc 6900
gggcacgctt tatctcagct ttctccgggg ccatataggt ggacgttgc tccagcgaga 6960
caacgc当地 cccggcgtgc ttggccgc当地 ccaccaaggt ggtgaagtt tatttcgtgt 7020
ggagctcttc cggggcctga tgaccctgac tctgcaaattc gaggtatgtt ttca gcttgc 7080
caggcatcgg actgcctttg ggcgcgtca ggtatttatt gagcgccttgc tcatgtgact 7140
cgccgc当地 gtcgatccata aaaagcgtgg tcacgcccact ggccttcaag ctcttcatgt 7200
tattgatcag ttacgc当地 ctggacgttgc aattgtgacc ctcaccaata acaagcccc 7260
gcfgcatcagc taacagctcg cgc当地 gacac cggactgtc cttgc当地 atcttcgtca 7320
acggc当地 ccagc当地 ctcaggtaa ttttgc当地 cgttgc当地 tggatcatac aaaataacgc gctgc当地 7380
caatcagtt ctgtcatta ctgtcagggtg cccatcaaacc cttggacgtc cccagacaac 7440
tgtccatttc aaggtatattt agatttataat gaaggtggc cgc当地 ttcccttgc gagacaacaa 7500
cggtccggccag cttgagaccc tggcctcaaa ggcgttgc aaggccgtgc ttgc当地 7560
gcaacaggat gtc当地 aacaaca tttgc当地 gacaa gttggc当地 tttccctgc gctttgagg 7620
gtgccagcgc ataggggcgc gggc当地 ctcac accagcgc当地 gagctggc a gatcgctcg 7680
ccttgc当地 aatgc当地 ttgc当地 tttgagctga agccgaggc gagggccacgc 7740
tctggccgc当地 gtgc当地 atgc当地 ctgtgc当地 ctgc当地 cttacgc当地 ctgggtgtgc 7800
ttacgc当地 ctttccgc当地 ggctccgc当地 cctc当地 gatttt cagccgata tttcttcatct 7860
tcataatccgg atagcgc当地 gctggaaagc gttcaggc cccagcatt ggagtctctg 7920
gcfgcaacgc当地 ggctgc当地 gaggaactgg cctgtgaaga tcggccgc当地 tcgttccctg 7980
cagcttgc当地 agtgggacgc tcagctcat agttggc当地 ataatgcct ggagccggc当地 8040
caccgacggg tctcatgatt gaatctccgc gtacgaaaaa tagtgc当地 gag cccggc当地 8100

aacgctgcccggccccgaca tttcagtcaa tcaatgcgcc ttgcgaatcc cgaactgatc 8160
aaggcaccgga tcaacgttat ggtcgaacgc cttctgcgcc ttatgcttt tcacagcatc 8220
aatgatcatg gaaataccga aacacctaccgc cagggcgcca tcgattgccc agccgaccac 8280
tggaaatcgcg ggcgccttaggg cgccacctgc ggcaaggccg gtggcttac cgccaaccat 8340
ggccgacggcg cgaccgatca tctgtccgcc cagacgcctt aggccggctg aggttcgcg 8400
gccccatcatc ttccgcggcg cgatcgatcc accttaatg gcctcggcg ccatacctcg 8460
gctgtcgtaa atggcctggg ttgcgccaag ctgtcgcca tgagcgatca ggctggacac 8520
tgaagcaaag cccacgatcg agttgagcgc ctgcgcgc acgcccgc cggcgagctg 8580
agtcaacatg gacggtccgc cctcatcgct ttgccttcc agaagctgc ggccctttt 8640
ggagtcttgc agcgtaccca acgtgctgtt catgtagtt tcatgctgat ttgcgtgaa 8700
atcagggggc agcacgctgt cgtaaatggc ttgcgttgc tcggcggtt gcagagactg 8760
gctggcatca gacttttgc ggcaagcag ctgcgttgc gcaccgcctt cgctgaagtt 8820
ggtcacgtag gacgtggcaa ttgcgttgc cagatcggtt ttgtttcaa gcacctgatt 8880
ggttagtgggt actttggaaat cggggaaacag gtcttttgc agttgcaact gggcgacaa 8940
accgcgtatg ggcgcgtgt aatcggttgc cggattatgt ttgttgcacgg cttgtccgc 9000
tttgtccata tcagtctgca ggcgttgcac gctattgacg ttttcgttgc gctcgacgac 9060
tgcctttgc agcgaggcat cactgcgcac cagattgcgc tcctgctcg gaatgtttt 9120
attgaggtac gcttgtaatc caggatcagc ctgtagctgg gaaatccggc cgttcaaacc 9180
ctgctcggtc ttgtcggttgc tgccgcggcataacgc ttttcgttgc gctgggtctg 9240
ctgcaacttgc accatgacgg cgcgttgcac taagacttgg ttgttgcgaa 9300
tacgtccttgc tccagcttgc tgatatatcaat cccggccacc gcattgagcgc tcgcagaatc 9360
gctgagcatg ctggcgaact ggccgcgtt ggtgggtgcg ctttcttgc tccactact 9420
cagattttc gcgtcgaaca tcttacgttgc gctgtgcgc gccttcttgc gccccgacat 9480
gcccgcgttgc tctaccttgc ccaaaaagcc tgggtgcac caggtgcgtc aggactgttt 9540
gagcgctccg gacaaccctg ggttactttg tgccaaacccc ttcaaggctt ctgcgtcgc 9600
attaccgttca actttggctt tgcgttgcac atccacttgc tgatgtgggt cggcagcaat 9660
cgccagtggc atattggctc gcatcactgc cgcgtgcgc accatttcca gtgactgcgg 9720
gtcagcgtcg ggttgcgttgc tgggttagtt ggccaagtcc ttgtcggtc tgctcggtc 9780
ctttccata tttttgcga aggttgcgttgc atctttgttgc tgatcttgc catctgcgtt 9840
gccaccaccc tgagcaacgt ccacggcggtt cttcagcgcgc ggttggcgt tgatgaaatc 9900
catggccttgc cggcatcgac ggccatcatc acgcgcacatc catgcgcgtt caatcggtc 9960
attgagcttgc ttcgcgcgtt gctcggtc ttcggcggtc agatggcaca ccacgttgc 10020
ccaaacgttgc agagtttgc gcgaggagta ttcaaggatgc tgagaaagg ctgcgttgc 10080
ggctttgggg gctgttggaaat cgtcggttgc atctgttgc tggtggactg cgacacttgc 10140
aaccggagcg gcccggcgac tgcgttgcgtt cggcgcggcc tcggcaggag aatctgcgc 10200
gggttgcggc tggacctgtat tattcacattt ggcattggca gctgcggcc cactgccttgc 10260
gagcaaaaga gccaggatag acgacgcgttgc ctgtcggttgc cctgtcggtc cgccgttgcgt 10320
gttgcggcc ggtcgaccgc actgcacgc ggcttgcgttgc cccgcacccca caggtgtcg 10380
caaggcttgc gcaagaggcg actcaacacgc cagagccagt tcgcccaggag tgggttgggtt 10440
cacgataacg aaggggagaac tggatatacg catgggtgatgc tgccatccgc gagtgagcga 10500
tggcaactgt gtgggttggaaat gtcgttgcgttgc gttccagaaaa aaatgtatgc gatcgccatt 10560
caggcgaacgc ggtcgatgttgc ctgtcggttgc tgaacccgcgc cgcggacac gctgtgacgc 10620
acggtgccaa tcggcgcgc gaggctgttgc gctgttgcgttgc gataatttgc gtcgttgcgtt 10680
agcgacactt ccagcactt ttgcgttgcgttgc gacggcaggac aatcaatggc ctgtatgtact 10740
cgccgcgttgc ggtcgatgcgc ctctacgttgc tgactgtatc caccgtgcgc ttccagctcg 10800
gaatgcactt cgttccatc gctttcgttgc tacggctgac gatacattttt gggaaagtgt 10860
ttgcggatca ggttgcgtgc gatgccacac agccaggatgc gctgttgcgttgc ggcgttgc 10920
aacattgtgttgc cgttacgcgc ggttcaaga aacacgcact ggagaatgtc atccacatca 10980

tcagggttca taccgcctt ttggataaac gccctgagca tctgaatctg atcgggcggc 11040
atttggcgaa ataccgcga cnaaaatggc tgacngggct gggttgagtc nangatcaca 11100
atctttgaa acatgggctt accctgatta atggngtaca aaccctatacg cgataaccat 11160
gccnncttaa aaaaanaaaa aactggntga tttatnaaaa aattttaaaa anngaaaattt 11220
tttgtataca aaacttgggc naccgnntt gcccggaaact tttgggcaaa aanatnggan 11280
ctttcanggg antgatccng gaccgnaacc cttanngaa taatccggtt aaancggcta 11340
tnaaanagng ttccnctata tggnaaaattt cggggggcca cccnntngaa ccttttggn 11400
accctttcaa tggatgtttt ncaaataagg gattnnccca aaaggtttng cttnnggg 11458

<210> 19
<211> 1401
<212> DNA
<213> *Pseudomonas syringae*

<400> 19
atgagaccgg tcgggtggacc ggctccaggc tattatccgc caacctatga agctgagcgt 60
cccactgcgc aagctgcagg aaacgatcgc gcccgcattt cacaggccag ttctctcca 120
gcagccagcg ttgcgcaga gactccaatg ctgggggacc tgaagcgctt tccagccggg 180
cgctatccgg atatgaaggt agaaaatatc cggtgaaaaa tcgaggggca ggagcctggc 240
ggaaaaggatg gcgtaaagca caccagaagg cgtaagccgg acgcagcagg cagcagtcat 300
gtgcacggcg gccagagcgt ggcctcgacc tcggcttcag ctcaaagcaa agcattgcag 360
gatacgaact tcaaggcgag cgatcttgc gagctcgccg gctggtgtga gagccgcac 420
ccctatgcgc tggcacccctc aaaagcagcg gggaaaagca gccaactgtc tgcaaatgtt 480
gtgagcatcc tggatgtcaaga aggcaagcac gcccctgaac agcgccttga ggctcaaggt 540
ctcaagctgg ccgacgttgt tggatgtcgaa ggtcgggacc accttcatat aaatctcaat 600
taccttggaaa tggacagttt tctggggacg tccaaagggtt tatgggcacc tgacagtaat 660
gacaagaaac tgattgccaa ggcagcgcgt tattttgtatg atttcaacgc gaaaaagttt 720
cctgagctgg cgccgttgac gaagatggaaa agcaaggaca gtctcggtgt catgcgcgag 780
ctgttacgtg atgcgcggg gcttggattt ggtgaggggtc acaattcaac gtccagcaag 840
cgtgaactga tcaataacat gaagagctt aaggccagtgc gctgtaccac gctttttatg 900
gagcacctct ggcggcggcgt acatgacaag ggcgtcaata attacctgag cgcccccgg 960
ggcagtcggc tgcctgcccag gctgaaaaac tacctcgatt tgcagagtc gggcatcag 1020
gccccggaaag agctccacac gaaatataac ttccaccac tggtggaagc ggccaagcac 1080
gccccgggttcgc gctgtgtctc gctggataca acgtccacac atatggccccc ggagaaaagct 1140
gagataaaagc gtgcggcaagc catgaattac tacgcagcag aaaaaataag gctgagcaaa 1200
ccggaaaggta agtgggtcgc ttttgcggg gcaacgcacg ccacttcctg tgacggagtc 1260
ccagggttgg cagagttgc tggggtacgc agtctgggtga tcgatgatct gggcctcaag 1320
tcccggcga ccgtcgatataatgtgaaa aactacggcg gcaagctgaa tccagacgtg 1380
aggcttcctcataaggtctg a 1401

<210> 20
<211> 466
<212> PRT
<213> *Pseudomonas syringae*

<400> 20

Met	Arg	Pro	Val	Gly	Gly	Pro	Ala	Pro	Gly	Tyr	Tyr	Pro	Pro	Thr	Tyr
1				5				10				15			
Glu	Ala	Glu	Arg	Pro	Thr	Ala	Gln	Ala	Ala	Gly	Asn	Asp	Arg	Ala	Arg
		20					25					30			
Ser	Ser	Gln	Ala	Ser	Ser	Ser	Pro	Ala	Ala	Ser	Val	Ala	Pro	Glu	Thr
		35					40					45			
Pro	Met	Leu	Gly	Asp	Leu	Lys	Arg	Phe	Pro	Ala	Gly	Arg	Tyr	Pro	Asp
		50			55						60				
Met	Lys	Val	Glu	Asn	Ile	Arg	Leu	Lys	Ile	Glu	Gly	Gln	Glu	Pro	Gly
	65			70				75				80			
Gly	Lys	Asp	Gly	Val	Lys	His	Thr	Arg	Arg	Arg	Lys	Pro	Asp	Ala	Ala
	85				90						95				
Gly	Ser	Ser	His	Val	His	Gly	Gly	Gln	Ser	Val	Ala	Ser	Thr	Ser	Ala
	100				105						110				
Ser	Ala	Gln	Ser	Lys	Ala	Leu	Gln	Asp	Thr	Asn	Phe	Lys	Ala	Ser	Asp
	115				120						125				
Leu	Ala	Glu	Leu	Ala	Arg	Trp	Cys	Glu	Ser	Pro	His	Pro	Tyr	Ala	Leu
	130			135						140					
Ala	Pro	Ser	Lys	Ala	Ala	Gly	Lys	Ser	Ser	Gln	Leu	Ser	Ala	Asn	Val
	145				150					155			160		
Val	Ser	Ile	Leu	Leu	Gln	Glu	Gly	Lys	His	Ala	Leu	Glu	Gln	Arg	Leu
		165				170					175				
Glu	Ala	Gln	Gly	Leu	Lys	Leu	Ala	Asp	Val	Val	Val	Ser	Glu	Gly	Arg
		180				185						190			
Asp	His	Leu	His	Ile	Asn	Leu	Asn	Tyr	Leu	Glu	Met	Asp	Ser	Cys	Leu
	195				200						205				
Gly	Thr	Ser	Lys	Gly	Leu	Trp	Ala	Pro	Asp	Ser	Asn	Asp	Lys	Lys	Leu
	210				215						220				
Ile	Ala	Lys	Ala	Ala	Arg	Tyr	Phe	Asp	Asp	Phe	Asn	Ala	Gln	Lys	Leu
	225				230						235			240	
Pro	Glu	Leu	Ala	Pro	Leu	Thr	Lys	Met	Lys	Ser	Lys	Asp	Ser	Leu	Gly
	245					250						255			

Val Met Arg Glu Leu Leu Arg Asp Ala Pro Gly Leu Val Ile Gly Glu
260 265 270

Gly His Asn Ser Thr Ser Ser Lys Arg Glu Leu Ile Asn Asn Met Lys
275 280 285

Ser Leu Lys Ala Ser Gly Val Thr Thr Leu Phe Met Glu His Leu Cys
290 295 300

Ala Glu Ser His Asp Lys Ala Leu Asn Asn Tyr Leu Ser Ala Pro Lys
305 310 315 320

Gly Ser Pro Met Pro Ala Arg Leu Lys Asn Tyr Leu Asp Leu Gln Ser
325 330 335

Gln Gly His Gln Ala Pro Glu Glu Leu His Thr Lys Tyr Asn Phe Thr
340 345 350

Thr Leu Val Glu Ala Ala Lys His Ala Gly Leu Arg Val Val Ser Leu
355 360 365

Asp Thr Thr Ser Thr Tyr Met Ala Pro Glu Lys Ala Glu Ile Lys Arg
370 375 380

Ala Gln Ala Met Asn Tyr Tyr Ala Ala Glu Lys Ile Arg Leu Ser Lys
385 390 395 400

Pro Glu Gly Lys Trp Val Ala Phe Val Gly Ala Thr His Ala Thr Ser
405 410 415

Cys Asp Gly Val Pro Gly Leu Ala Glu Leu His Gly Val Arg Ser Leu
420 425 430

Val Ile Asp Asp Leu Gly Leu Lys Ser Arg Ala Thr Val Asp Ile Asn
435 440 445

Val Lys Asn Tyr Gly Gly Lys Leu Asn Pro Asp Val Arg Leu Ser Tyr
450 455 460

Lys Val
465

<210> 21
<211> 726
<212> DNA
<213> Pseudomonas syringae

<400> 21
atgcaaaaaga cgaccctatg ggcttagcc tttgcaatgt tggcagggtg tggggtttcg 60
gggcggcgc cggaaagtga tattcagggt gcccaggcag agatgaaaac acccgtaaa 120
ctaaatctgg atgcctacac ctaaaaaaaaa ctggatgctg tgctggaaagc ccgcaccaac 180
aaaagttata tgaataaagg tcagctgatc gaccttgtat caggagcggtt tttaggaaca 240
ccgttaccgct caaacatgtt ggtgggctca gcgaatgtac ctgaacaatt agtcatcgac 300
ttcagaggc tggattgttt tgcttatctg gattacgtcg aagcgtttcg aagatcaaca 360
tcgcagcagg attttgtgag gaatctcggtt cagggtcggtt acaagggtgg cgatgttgac 420
tttttgaatc gcaagcactt tttcacggat tggcttacg gaacggcata ccctgtggcg 480
gatgacatta ccgcgcagat aagccccggt gcggttaagtgc tcagaaaaacg ccttaatgaa 540
agggccaaag gcaaagtcta tctgccaggg ttgcctgtgg ttgagcgtag catgacgtat 600
atccccgagcc gccttgcga cagtcaggtg gtgagccacc tgccacccgg tgattacatt 660
ggcatttaca ccccgcttc ccggctgga tgtgacacac gtcggttct ttatcggtac 720
ggataa 726

<210> 22
<211> 241
<212> PRT
<213> *Pseudomonas syringae*

<400> 22
Met Gln Lys Thr Thr Leu Trp Ala Leu Ala Phe Ala Met Leu Ala Gly
1 5 10 15

Cys Gly Val Ser Gly Pro Ala Pro Gly Ser Asp Ile Gln Gly Ala Gln
20 25 30

Ala Glu Met Lys Thr Pro Val Lys Leu Asn Leu Asp Ala Tyr Thr Ser
35 40 45

Lys Lys Leu Asp Ala Val Leu Glu Ala Arg Thr Asn Lys Ser Tyr Met
50 55 60

Asn Lys Gly Gln Leu Ile Asp Leu Val Ser Gly Ala Phe Leu Gly Thr
65 70 75 80

Pro Tyr Arg Ser Asn Met Leu Val Gly Ser Ala Asn Val Pro Glu Gln
85 90 95

Leu Val Ile Asp Phe Arg Gly Leu Asp Cys Phe Ala Tyr Leu Asp Tyr
100 105 110

Val Glu Ala Phe Arg Arg Ser Thr Ser Gln Gln Asp Phe Val Arg Asn
115 120 125

Leu Val Gln Val Arg Tyr Lys Gly Gly Asp Val Asp Phe Leu Asn Arg
130 135 140

Lys His Phe Phe Thr Asp Trp Ala Tyr Gly Thr Ala Tyr Pro Val Ala
145 150 155 160

Asp Asp Ile Thr Ala Gln Ile Ser Pro Gly Ala Val Ser Val Arg Lys
165 170 175

Arg Leu Asn Glu Arg Ala Lys Gly Lys Val Tyr Leu Pro Gly Leu Pro
180 185 190

Val Val Glu Arg Ser Met Thr Tyr Ile Pro Ser Arg Leu Val Asp Ser
195 200 205

Gln Val Val Ser His Leu Arg Thr Gly Asp Tyr Ile Gly Ile Tyr Thr
210 215 220

Pro Ala Ser Arg Ala Gly Cys Asp Thr Arg Arg Phe Leu Tyr Arg Asp
225 230 235 240

Gly

<210> 23

<211> 417

<212> DNA

<213> Pseudomonas syringae

<400> 23

atgcgcgcgt ataaaaacct gacggcaaag atcggcggtt ttctgcttgc gctgacgatc 60
attggcactt cgctacctgc atttgccgta aacgattgtg atctggacaa cgacaacacgc 120
accgggtgcga cgtgtggcg caacgacaag gatctggata acgacaacgt gactgacgac 180
gcattttggcg gcaacgacaa ggatatggac aatgaccacc acaccgacgc ggcattttggg 240
ggttaacgaca aggacacctgga caacgatcac catacgatg cagcggttgg cggttaacgac 300
aaagatctcg acaacgacaa caaaaccgat gcggctttcg gtggaaatga ccgcgatctt 360
gataacgaca acaacaccga caactacaac ggcacgcccgt ctgccgtt aaagtag 417

<210> 24

<211> 138

<212> PRT

<213> Pseudomonas syringae

<400> 24

Met Arg Ala Tyr Lys Asn Leu Thr Ala Lys Ile Gly Gly Phe Leu Leu
1 5 10 15

Ala Leu Thr Ile Ile Gly Thr Ser Leu Pro Ala Phe Ala Val Asn Asp

20	25	30
Cys Asp Leu Asp Asn Asp Asn Ser Thr Gly Ala Thr Cys Gly Gly Asn		
35	40	45
Asp Lys Asp Leu Asp Asn Asp Asn Val Thr Asp Ala Ala Phe Gly Gly		
50	55	60
Asn Asp Lys Asp Met Asp Asn Asp His His Thr Asp Ala Ala Phe Gly		
65	70	75
Gly Asn Asp Lys Asp Leu Asp Asn Asp His His Thr Asp Ala Ala Phe		
85	90	95
Gly Gly Asn Asp Lys Asp Leu Asp Asn Asp Asn Lys Thr Asp Ala Ala		
100	105	110
Phe Gly Gly Asn Asp Arg Asp Leu Asp Asn Asp Asn Asn Thr Asp Asn		
115	120	125
Tyr Asn Gly Thr Pro Ser Ala Ala Lys Lys		
130	135	
<210> 25		
<211> 411		
<212> DNA		
<213> Pseudomonas syringae		
<400> 25		
atgaacaaga tcgtctacgt aaaagcttac ttcaaaccctt tgggggagga agtctcggtt 60		
aaagtacctt caggcgaaat taaaaaggcc tttttcggcg acaaggaaat catgaaaaaaaaa 120		
gagaccctgtt ggcagcaaac cgggtggctt gattgtcaga tagacgggtga acggctatcg 180		
aaagacgtcg aagacgcgtt ggcgcactc aatgctgacg gttatgagat tcaaacggta 240		
ttgcctataat tgtccggggc ttatgattat gcgcctaaat accgatacga aataacgtcac 300		
aatagaactg aactaaagccc aggagaccag tcctatgtct tcggctatgg ctacagcttc 360		
accgaaggcg tgacgctggt ggcgaaaaaaaaa ttgcgttgcgt ctgcaagctg a 411		
<210> 26		
<211> 136		
<212> PRT		
<213> Pseudomonas syringae		
<400> 26		
Met Asn Lys Ile Val Tyr Val Lys Ala Tyr Phe Lys Pro Ile Gly Glu		
1	5	10
		15

Glu Val Ser Val Lys Val Pro Thr Gly Glu Ile Lys Lys Gly Phe Phe
20 25 30

Gly Asp Lys Glu Ile Met Lys Lys Glu Thr Gln Trp Gln Gln Thr Gly
35 40 45

Trp Ser Asp Cys Gln Ile Asp Gly Glu Arg Leu Ser Lys Asp Val Glu
50 55 60

Asp Ala Val Ala Gln Leu Asn Ala Asp Gly Tyr Glu Ile Gln Thr Val
65 70 75 80

Leu Pro Ile Leu Ser Gly Ala Tyr Asp Tyr Ala Leu Lys Tyr Arg Tyr
85 90 95

Glu Ile Arg His Asn Arg Thr Glu Leu Ser Pro Gly Asp Gln Ser Tyr
100 105 110

Val Phe Gly Tyr Gly Tyr Ser Phe Thr Glu Gly Val Thr Leu Val Ala
115 120 125

Lys Lys Phe Gln Ser Ser Ala Ser
130 135

<210> 27
<211> 972
<212> DNA
<213> Pseudomonas syringae

<400> 27
atgggttgcg tatcgtcaaa agcatctgtc atttcttcgg acagctttcg cgccatcatat 60
acaaaactctc cagaggcatc ctcagtccat caacgagcca ggacgccaag gtgcggtag 120
cttcaggggc cccaagttag cagattgtat ccttaccaggc aggccgttagt aggtgtggcc 180
cgatggccctta atccgcattt taacaggcac gatgcgcccc accagatggta gtatggagaa 240
tcgttctacc ataaaagccg agagcttggt gcgtcggtcg ccaatggaga gatagaaaacg 300
tttcaggagc tctggagtga agctcggtat tggagagctt ccagagcagg ccaagatgct 360
cggctttta gttcatcgcg tgatccaaac tcttcacggg cgtttgttac gcctataact 420
ggaccataacg aattttaaa agatagattc gcaaaccgtt aagatggaga aaagcataaag 480
atgatggatt ttctcccaca cagcaatacg ttttaggttc atggaaaaat tgacggtag 540
cgacttcctc tcacactggat ctcgataagt tctgatcgat gtgccgacag aacaaaggat 600
ccttaccaaa ggttgcgcga ccaaggcatg aacgatgtgg gtgagcctaa tgtgatgtt 660
cacacccaaag ccgagttatgt gcccaaaatt atgcaacatg tggagcatct ttataaggcc 720
gctacggatg ctgcattgtc cgatgcaat gcgcgtaaaa aactcgacaga gatacattgg 780
tggacggtag aagctgttcc cgactttcgat ggaagtgcac ctaaggctga gctctgcgtg 840
cgctccatgt cccaggcaag gggcatgcac ctggccgcga tgagactcgg catcgtgcgg 900
gatctggaag cgcttacgtat gcctttgaaa gactttgtga aaagttacga agggttcttc 960
gaacataact ga 972

<210> 28
 <211> 323
 <212> PRT
 <213> *Pseudomonas syringae*

<400> 28
 Met Gly Cys Val Ser Ser Lys Ala Ser Val Ile Ser Ser Asp Ser Phe
 1 5 10 15

Arg Ala Ser Tyr Thr Asn Ser Pro Glu Ala Ser Ser Val His Gln Arg
 20 25 30

Ala Arg Thr Pro Arg Cys Gly Glu Leu Gln Gly Pro Gln Val Ser Arg
 35 40 45

Leu Met Pro Tyr Gln Gln Ala Leu Val Gly Val Ala Arg Trp Pro Asn
 50 55 60

Pro His Phe Asn Arg Asp Asp Ala Pro His Gln Met Glu Tyr Gly Glu
 65 70 75 80

Ser Phe Tyr His Lys Ser Arg Glu Leu Gly Ala Ser Val Ala Asn Gly
 85 90 95

Glu Ile Glu Thr Phe Gln Glu Leu Trp Ser Glu Ala Arg Asp Trp Arg
 100 105 110

Ala Ser Arg Ala Gly Gln Asp Ala Arg Leu Phe Ser Ser Ser Arg Asp
 115 120 125

Pro Asn Ser Ser Arg Ala Phe Val Thr Pro Ile Thr Gly Pro Tyr Glu
 130 135 140

Phe Leu Lys Asp Arg Phe Ala Asn Arg Lys Asp Gly Glu Lys His Lys
 145 150 155 160

Met Met Asp Phe Leu Pro His Ser Asn Thr Phe Arg Phe His Gly Lys
 165 170 175

Ile Asp Gly Glu Arg Leu Pro Leu Thr Trp Ile Ser Ile Ser Ser Asp
 180 185 190

Arg Arg Ala Asp Arg Thr Lys Asp Pro Tyr Gln Arg Leu Arg Asp Gln
 195 200 205

Gly Met Asn Asp Val Gly Glu Pro Asn Val Met Leu His Thr Gln Ala

210

215

220

Glu Tyr Val Pro Lys Ile Met Gln His Val Glu His Leu Tyr Lys Ala
225 230 235 240

Ala Thr Asp Ala Ala Leu Ser Asp Ala Asn Ala Leu Lys Lys Leu Ala
245 250 255

Glu Ile His Trp Trp Thr Val Gln Ala Val Pro Asp Phe Arg Gly Ser
260 265 270

Ala Ala Lys Ala Glu Leu Cys Val Arg Ser Ile Ala Gln Ala Arg Gly
275 280 285

Met Asp Leu Pro Pro Met Arg Leu Gly Ile Val Pro Asp Leu Glu Ala
290 295 300

Leu Thr Met Pro Leu Lys Asp Phe Val Lys Ser Tyr Glu Gly Phe Phe
305 310 315 320

Glu His Asn

<210> 29

<211> 1149

<212> DNA

<213> Pseudomonas syringae

<400> 29

atgagaattc acagttccgg tcatggcatc tccggaccag tatcctctgc agaaaaccgtt 60
gaaaaggccg tgcaatcatc ggcccaagcg cagaatgaag cgtctcacag cggtccatca 120
gaacatcctg aatcccgctc ctgtcaggca cgccccgaact acccttattc gtcagtcaaa 180
acacggttac cccctgttgc gtctgcaggg cagtcgtgtt ctgagacacc ctttcattt 240
cctggctacc tgctgttacg tcggcttgat cgtcgtccgc tggaccagga cgcaataaaag 300
gggcttatttctgctgatga agcagtgggc gaagcgcgcc gcgcgttgcc cttcggcagg 360
ggcaacatgg atgtggatgc gcaacgttcc aacctggaaa gcggggcccg cacgctcgcc 420
gcaagacgcc tgagaaaaaga cgccgagacg gcgggtcatg agccgatgcc cgagaacgaa 480
gacatgaact ggcatgtgtt ggttgcattt tcgggtcagg tgttcggggc tggcaactgt 540
ggcgaacatg cccgtatagc gagcttgc tacgggtcat cggctcagga aaaaggacgc 600
gctggcgatg aaaatattca tctggctgcg cagagcgggg aagatcatgt ctgggctgaa 660
acggatgatt ccagcgctgg ctcttcgcct attgtcatgg acccctggtc aaacggtcct 720
gccgttttttgcagaggacag tcgggttgatc aaagataggc gcgcggtaga gcaacggat 780
tcgttcacgc tttcaaccgc tgccaaagca ggcaagatta cacgagagac agccgagaag 840
gcgctgaccc aagcgaccag ccgtttgcag caacgtcttgc ctgatcagca ggcgcagtc 900
tcgcccgggttgc aaggtggtcg ctatcggcaa gaaaactcgg tgcttgcata tgcgttcgc 960
cgacgactca gtgacatgtt gaacaatgcc gatccacggc gtgcatttgc ggtggaaatc 1020
gaggcgtcccg gagttgcaat gtcgtgggt gcccaaggcg tcaagacggc cgtccgacag 1080

gccccaaaag tggtcaggca agccagaggc gtcgcacatctg ctaaaggat gtctccgcga 1140
gcaacctga 1149

<210> 30
<211> 382
<212> PRT
<213> Pseudomonas syringae

<400> 30
Met Arg Ile His Ser Ser Gly His Gly Ile Ser Gly Pro Val Ser Ser
1 5 10 15

Ala Glu Thr Val Glu Lys Ala Val Gln Ser Ser Ala Gln Ala Gln Asn
20 25 30

Glu Ala Ser His Ser Gly Pro Ser Glu His Pro Glu Ser Arg Ser Cys
35 40 45

Gln Ala Arg Pro Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro
50 55 60

Pro Val Ala Ser Ala Gly Gln Ser Leu Ser Glu Thr Pro Ser Ser Leu
65 70 75 80

Pro Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Gln
85 90 95

Asp Ala Ile Lys Gly Leu Ile Pro Ala Asp Glu Ala Val Gly Glu Ala
100 105 110

Arg Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln
115 120 125

Arg Ser Asn Leu Glu Ser Gly Ala Arg Thr Leu Ala Ala Arg Arg Leu
130 135 140

Arg Lys Asp Ala Glu Thr Ala Gly His Glu Pro Met Pro Glu Asn Glu
145 150 155 160

Asp Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly
165 170 175

Ala Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly
180 185 190

Ala Ser Ala Gln Glu Lys Gly Arg Ala Gly Asp Glu Asn Ile His Leu
195 200 205

Ala	Ala	Gln	Ser	Gly	Glu	Asp	His	Val	Trp	Ala	Glu	Thr	Asp	Asp	Ser
210															
															220
Ser	Ala	Gly	Ser	Ser	Pro	Ile	Val	Met	Asp	Pro	Trp	Ser	Asn	Gly	Pro
225															240
Ala	Val	Phe	Ala	Glu	Asp	Ser	Arg	Phe	Ala	Lys	Asp	Arg	Arg	Ala	Val
															245
															250
															255
Glu	Arg	Thr	Asp	Ser	Phe	Thr	Leu	Ser	Thr	Ala	Ala	Lys	Ala	Gly	Lys
															260
															265
															270
Ile	Thr	Arg	Glu	Thr	Ala	Glu	Lys	Ala	Leu	Thr	Gln	Ala	Thr	Ser	Arg
															275
															280
															285
Leu	Gln	Gln	Arg	Leu	Ala	Asp	Gln	Gln	Ala	Gln	Val	Ser	Pro	Val	Glu
															290
															295
															300
Gly	Gly	Arg	Tyr	Arg	Gln	Glu	Asn	Ser	Val	Leu	Asp	Asp	Ala	Phe	Ala
															305
															310
															315
															320
Arg	Arg	Val	Ser	Asp	Met	Leu	Asn	Asn	Ala	Asp	Pro	Arg	Arg	Ala	Leu
															325
															330
															335
Gln	Val	Glu	Ile	Glu	Ala	Ser	Gly	Val	Ala	Met	Ser	Leu	Gly	Ala	Gln
															340
															345
															350
Gly	Val	Lys	Thr	Val	Val	Arg	Gln	Ala	Pro	Lys	Val	Val	Arg	Gln	Ala
															355
															360
															365
Arg	Gly	Val	Ala	Ser	Ala	Lys	Gly	Met	Ser	Pro	Arg	Ala	Thr		
															370
															375
															380

<210> 31

<211> 1236

<212> DNA

<213> Pseudomonas syringae

<400> 31

atgaatatatct caggtccgaa cagacgtcag gggactcagg cagagaacac tgaaagcgct 60
 tcgtcatcat cggttaactaa cccaccgcta cagcgtggcg agggcagacg tctgcacgt 120
 caggatgcgc tgccaaacgga tatcagatac aacgccaacc agacagcgac atcaccccaa 180
 aacgcgcgcg cggcaggaag atatgaatca ggggccagct catccggcgc gaatgatact 240
 ccgcaggctg aaggttcaat gccttcgtcg tccgcccattt tacaatttcg cctcgccggc 300
 gggcggaacc attctgagct ggaaaatttt catactatga tgctgaactc accgaaagca 360
 tcacggggag atgctataacc tgagaagccc gaagcaatac ctaagcgct actggagaag 420

atggAACCGA ttaacctggc ccagtttagct ttgcgtgata aggatctgca tgaatatgcc 480
gtaatggtct gtaaccaagt gaaaaagggt gaaggtccga actccaatat tacgcaagga 540
gatatacaagt tactgcccgt gttcgccaaa gcggaaaata caagaaatcc cggcttgaat 600
ctgcatacat tcaaaagtca taaagactgt taccaggcga taaaagagca aaacaggat 660
attcaaaaaa acaagcaatc gctgagttatc cgggttgtt accccccatt caaaaagatg 720
ccagaccacc atatagcctt ggatatccaa ctgagatacg gccatcgacc gtgcattgtc 780
ggctttagt ctgcccctgg gaacattata gatgctgcag aaagggaaat actttcagca 840
ttaggcaacg tcaaaatcaa aatggtagga aattttcttc aataactcgaa aactgactgc 900
accatgttg cgcttaataa cgccctgaaa gctttaaac atcacgaaga atataccgcc 960
cgtctgcaca atggagaaaa gcaggtgcct atccggcga ccttcttcaa acatgctcag 1020
tcaaaaagct tagtggagaa tcacccggaa aaagatacca ccgtcactaa agaccaggc 1080
ggtctgcata tggaaacgct attacacaga aaccgtgcct accggggcga acgatctgcc 1140
ggtcagcacg ttacacttat tgaaggttc agaatgcagg aaataaagag agcaggtgac 1200
ttccttgccg caaacagggt ccggggccaag ccttga 1236

<210> 32
<211> 411
<212> PRT
<213> *Pseudomonas syringae*

<400> 32
Met Asn Ile Ser Gly Pro Asn Arg Arg Gln Gly Thr Gln Ala Glu Asn
1 5 10 15

Thr Glu Ser Ala Ser Ser Ser Val Thr Asn Pro Pro Leu Gln Arg
20 25 30

Gly Glu Gly Arg Arg Leu Arg Arg Gln Asp Ala Leu Pro Thr Asp Ile
35 40 45

Arg Tyr Asn Ala Asn Gln Thr Ala Thr Ser Pro Gln Asn Ala Arg Ala
50 55 60

Ala Gly Arg Tyr Glu Ser Gly Ala Ser Ser Ser Gly Ala Asn Asp Thr
65 70 75 80

Pro Gln Ala Glu Gly Ser Met Pro Ser Ser Ala Leu Leu Gln Phe
85 90 95

Arg Leu Ala Gly Gly Arg Asn His Ser Glu Leu Glu Asn Phe His Thr
100 105 110

Met Met Leu Asn Ser Pro Lys Ala Ser Arg Gly Asp Ala Ile Pro Glu
115 120 125

Lys Pro Glu Ala Ile Pro Lys Arg Leu Leu Glu Lys Met Glu Pro Ile
130 135 140

Asn	Leu	Ala	Gln	Leu	Ala	Leu	Arg	Asp	Lys	Asp	Leu	His	Glu	Tyr	Ala
145				150					155				160		
Val	Met	Val	Cys	Asn	Gln	Val	Lys	Lys	Gly	Glu	Gly	Pro	Asn	Ser	Asn
				165				170				175			
Ile	Thr	Gln	Gly	Asp	Ile	Lys	Leu	Leu	Pro	Leu	Phe	Ala	Lys	Ala	Glu
				180				185				190			
Asn	Thr	Arg	Asn	Pro	Gly	Leu	Asn	Leu	His	Thr	Phe	Lys	Ser	His	Lys
				195				200				205			
Asp	Cys	Tyr	Gln	Ala	Ile	Lys	Glu	Gln	Asn	Arg	Asp	Ile	Gln	Lys	Asn
				210			215				220				
Lys	Gln	Ser	Leu	Ser	Met	Arg	Val	Val	Tyr	Pro	Pro	Phe	Lys	Lys	Met
				225			230				235			240	
Pro	Asp	His	His	Ile	Ala	Leu	Asp	Ile	Gln	Leu	Arg	Tyr	Gly	His	Arg
				245				250				255			
Pro	Ser	Ile	Val	Gly	Phe	Glu	Ser	Ala	Pro	Gly	Asn	Ile	Ile	Asp	Ala
				260				265				270			
Ala	Glu	Arg	Glu	Ile	Leu	Ser	Ala	Leu	Gly	Asn	Val	Lys	Ile	Lys	Met
				275				280				285			
Val	Gly	Asn	Phe	Leu	Gln	Tyr	Ser	Lys	Thr	Asp	Cys	Thr	Met	Phe	Ala
				290			295				300				
Leu	Asn	Asn	Ala	Leu	Lys	Ala	Phe	Lys	His	His	Glu	Glu	Tyr	Thr	Ala
				305				310				315			320
Arg	Leu	His	Asn	Gly	Glu	Lys	Gln	Val	Pro	Ile	Pro	Ala	Thr	Phe	Leu
				325					330				335		
Lys	His	Ala	Gln	Ser	Lys	Ser	Leu	Val	Glu	Asn	His	Pro	Glu	Lys	Asp
				340				345				350			
Thr	Thr	Val	Thr	Lys	Asp	Gln	Gly	Gly	Leu	His	Met	Glu	Thr	Leu	Leu
				355				360				365			
His	Arg	Asn	Arg	Ala	Tyr	Arg	Ala	Gln	Arg	Ser	Ala	Gly	Gln	His	Val
				370				375				380			
Thr	Ser	Ile	Glu	Gly	Phe	Arg	Met	Gln	Glu	Ile	Lys	Arg	Ala	Gly	Asp
				385				390				395			400

Phe Leu Ala Ala Asn Arg Val Arg Ala Lys Pro
405 410

<210> 33
<211> 363
<212> DNA
<213> Pseudomonas syringae

<400> 33
atgacgctgg aacggattga acagcaaaat acgctgtttg tttatctgtg cgtgggcacg 60
ctttctactc cagccagcag cacacttctg agcgatattc tggccgc当地 cctctttcat 120
tatgggtcca gcgatggggc ggccttc当地 ctggacgaaa aaaataatga agtgctgctt 180
tttcagcgtt ttgatccgtt acggattgtt gaggatcaact ttgtcagcgc ctgcgttc当地 240
atgatcgaag tggc当地aaat atggc当地ca aagtactgc atggccattc tgctccgctc 300
gcctc当地caa ccaggctgac gaaagccgg ttaatgctaa ccatggc当地 gactattcga 360
tga 363

<210> 34
<211> 120
<212> PRT
<213> Pseudomonas syringae

<400> 34
Met Thr Leu Glu Arg Ile Glu Gln Gln Asn Thr Leu Phe Val Tyr Leu
1 5 10 15

Cys Val Gly Thr Leu Ser Thr Pro Ala Ser Ser Thr Leu Leu Ser Asp
20 25 30

Ile Leu Ala Ala Asn Leu Phe His Tyr Gly Ser Ser Asp Gly Ala Ala
35 40 45

Phe Gly Leu Asp Glu Lys Asn Asn Glu Val Leu Leu Phe Gln Arg Phe
50 55 60

Asp Pro Leu Arg Ile Asp Glu Asp His Phe Val Ser Ala Cys Val Gln
65 70 75 80

Met Ile Glu Val Ala Lys Ile Trp Arg Ala Lys Leu Leu His Gly His
85 90 95

Ser Ala Pro Leu Ala Ser Ser Thr Arg Leu Thr Lys Ala Gly Leu Met
100 105 110

Leu Thr Met Ala Gly Thr Ile Arg

115

120

<210> 35
<211> 1128
<212> DNA
<213> Pseudomonas syringae

<400> 35
gtgaacccta tccatgcacg cttctccagc gtagaagcgc tcagacattc aaacgttgat 60
attcaggcaa tcaaattccga gggtcagttg gaagtcaacg gcaaggctta cgagattcgt 120
gccccgcgtg acggctcaat cgcggccctc agacccgatc aacagtccaa agcagacaag 180
ttcttcaaag gcgcagcgca tcttattggc ggacaaagcc agcgtgccca aatacgccag 240
gtactcaacg agaaaagcggc ggcagttcca cgcctggaca gaatgttggg cagacgcttc 300
gatctggaga agggcggaaag tagcgcgttg ggcggcccaa tcaaggctgc cgacagccga 360
ctgacatcaa aacagacatt tgccagcttc cagcaatggg ctgaaaaagc tgaggcgctc 420
ggcgataacc gaaatcggtt tctacatgtat ctacaagagg gacacgcccag acacaacgccc 480
tatgaatgcg gcagagtcaa gaacattacc tggaaaacgct acaggctctc gataacaaga 540
aaaaccttat catacgcccc gcagatccat gatgatcgaa aagaggaaga gcttgatctg 600
ggccgataaca tcgctgaaga cagaaatgcc agaaccggct tttttagaat ggttcctaaa 660
gaccaacgcg cacctgagac aaactcgga cgacttacca ttgggtttaga acctaaatat 720
ggagcgcagt tggccctcgc aatggcaacc ctgatggaca agcacaaatc tgtgacacaa 780
gtttaagtctg tcggccggc aaaatatggc cagcaaactg actctgcccatt tctttacata 840
aatggtgatc ttgcaaaagc agtaaaaactg ggcgaaaagc tgaaaaagct gagcgggtatc 900
cctcctgaag gattcgtcga acatacaccg ctaagcatgc agtcgacggg tctcggcttt 960
tcttatgccc agtcgggtga agggcagcct tccagccacg gacaggcgag aacacacgtt 1020
atcatggatg cttgaaagg ccagggcccc atggagaaca gactcaaaat ggcgctggca 1080
gaaagaggct atgacccgga aaatccggcg ctcagggcgc gaaactga 1128

<210> 36
<211> 375
<212> PRT
<213> Pseudomonas syringae

<400> 36
Val Asn Pro Ile His Ala Arg Phe Ser Ser Val Glu Ala Leu Arg His
1 5 10 15

Ser Asn Val Asp Ile Gln Ala Ile Lys Ser Glu Gly Gln Leu Glu Val
20 25 30

Asn Gly Lys Arg Tyr Glu Ile Arg Ala Ala Ala Asp Gly Ser Ile Ala
35 40 45

Val Leu Arg Pro Asp Gln Gln Ser Lys Ala Asp Lys Phe Phe Lys Gly
50 55 60

Ala	Ala	His	Leu	Ile	Gly	Gly	Gln	Ser	Gln	Arg	Ala	Gln	Ile	Ala	Gln
65					70				75						80
Val	Leu	Asn	Glu	Lys	Ala	Ala	Ala	Val	Pro	Arg	Leu	Asp	Arg	Met	Leu
					85				90						95
Gly	Arg	Arg	Phe	Asp	Leu	Glu	Lys	Gly	Gly	Ser	Ser	Ala	Val	Gly	Ala
					100				105						110
Ala	Ile	Lys	Ala	Ala	Asp	Ser	Arg	Leu	Thr	Ser	Lys	Gln	Thr	Phe	Ala
					115				120						125
Ser	Phe	Gln	Gln	Trp	Ala	Glu	Lys	Ala	Glu	Ala	Leu	Gly	Arg	Tyr	Arg
					130				135						140
Asn	Arg	Tyr	Leu	His	Asp	Leu	Gln	Glu	Gly	His	Ala	Arg	His	Asn	Ala
					145				150						160
Tyr	Glu	Cys	Gly	Arg	Val	Lys	Asn	Ile	Thr	Trp	Lys	Arg	Tyr	Arg	Leu
					165				170						175
Ser	Ile	Thr	Arg	Lys	Thr	Leu	Ser	Tyr	Ala	Pro	Gln	Ile	His	Asp	Asp
					180				185						190
Arg	Glu	Glu	Glu	Glu	Leu	Asp	Leu	Gly	Arg	Tyr	Ile	Ala	Glu	Asp	Arg
					195				200						205
Asn	Ala	Arg	Thr	Gly	Phe	Phe	Arg	Met	Val	Pro	Lys	Asp	Gln	Arg	Ala
					210				215						220
Pro	Glu	Thr	Asn	Ser	Gly	Arg	Leu	Thr	Ile	Gly	Val	Glu	Pro	Lys	Tyr
					225				230						240
Gly	Ala	Gln	Leu	Ala	Leu	Ala	Met	Ala	Thr	Leu	Met	Asp	Lys	His	Lys
					245				250						255
Ser	Val	Thr	Gln	Gly	Lys	Val	Val	Gly	Pro	Ala	Lys	Tyr	Gly	Gln	Gln
					260				265						270
Thr	Asp	Ser	Ala	Ile	Leu	Tyr	Ile	Asn	Gly	Asp	Leu	Ala	Lys	Ala	Val
					275				280						285
Lys	Leu	Gly	Glu	Glu	Lys	Leu	Lys	Leu	Ser	Gly	Ile	Pro	Pro	Glu	Gly
					290				295						300
Phe	Val	Glu	His	Thr	Pro	Leu	Ser	Met	Gln	Ser	Thr	Gly	Leu	Gly	Leu
					305				310						320

Ser Tyr Ala Glu Ser Val Glu Gly Gln Pro Ser Ser His Gly Gln Ala
325 330 335

Arg Thr His Val Ile Met Asp Ala Leu Lys Gly Gln Gly Pro Met Glu
340 345 350

Asn Arg Leu Lys Met Ala Leu Ala Glu Arg Gly Tyr Asp Pro Glu Asn
355 360 365

Pro Ala Leu Arg Ala Arg Asn
370 375

<210> 37

<211> 336

<212> DNA

<213> Pseudomonas syringae

<400> 37

atggagatgc ccgccttggc gtttgacgat aagggtgcgt qcaacatgtat catcgacaag 60
gcattcgctc tgacgctgtt gcgcgacgac acgcatcaac gtttgttgcgt gattggctcg 120
cttgagccac acgaggatct acccttgcag cgccctgttgg ctggcgctct caacccccctt 180
gtgaatgcccggcat tggctggat gagcaaagcg gcctgtacca cgcttaccaa 240
agcatcccgccggaaatggat cagcgtggag atgctgaagc tcgaaattgc aggattggtc 300
gaatggatga agtggatgc agaagccgc acgtga 336

<210> 38

<211> 111

<212> PRT

<213> Pseudomonas syringae

<400> 38

Met Glu Met Pro Ala Leu Ala Phe Asp Asp Lys Gly Ala Cys Asn Met
1 5 10 15

Ile Ile Asp Lys Ala Phe Ala Leu Thr Leu Leu Arg Asp Asp Thr His
20 25 30

Gln Arg Leu Leu Leu Ile Gly Leu Leu Glu Pro His Glu Asp Leu Pro
35 40 45

Leu Gln Arg Leu Leu Ala Gly Ala Leu Asn Pro Leu Val Asn Ala Gly
50 55 60

Pro Gly Ile Gly Trp Asp Glu Gln Ser Gly Leu Tyr His Ala Tyr Gln
65 70 75 80

Ser Ile Pro Arg Glu Lys Val Ser Val Glu Met Leu Lys Leu Glu Ile
85 90 95

Ala Gly Leu Val Glu Trp Met Lys Cys Trp Arg Glu Ala Arg Thr
100 105 110

<210> 39

<211> 1143

<212> DNA

<213> Pseudomonas syringae pv. angulata

<400> 39

atgagaattc acagtgcctgg tcacagccctg cctgcgccag gccctagcgt gaaaccact 60
gaaaaggctg ttcaatcatc atcgccccag aaccccgctt cttacagttc acaaacagaa 120
cgtcctgaag ccgttcgac tcaagtgcga ctgaactacc cttactcatc agtcaagaca 180
cgcttgcac ccgtttcttc tacagggcag gccattctg ccacgcccattt ttcattgccc 240
gtttacctgc tgttacgtcg gctcgaccga cgtccactgg atgaagacag tatcaaggct 300
ctgggtccgg cagacgaagc ggtgcgtgaa gcacgcccgg cggtgcctt cggcaggggc 360
aacattgtatg tggatgcaca acgtacccac ctgcaaaagcg ggcgtcgccg agtcgctgca 420
aagcgcttga gaaaagatgc cgagcgcgtt ggccatgagc cgatgcccgg gaatgatgag 480
atgaactgatc atgttcttgtt cggccatgtca gggcagggtgt ttggcgctgg caactgtggc 540
gaacatgctc gtatacgcaag cttcgcttac ggggcccctgg ctcaggaaag cggcgttagt 600
cccccgcaaa agattcattt ggccgagcag cccggaaaag atcacgtctg ggctgaaacg 660
gataattcca gcgcgtggctc ttcgccccatc gtcatggacc cgtggctaa cggcgcagcc 720
attttggcgg aggacagccg gtttgccaaa gatcgcagta cggtagagcg aacatattca 780
ttcaccccttgc caatggcagc tgaagccggc aaggttacgc gtggaaaccgc cgagaacgtt 840
ctgacccaca cgacaagccg tctgcagaaaa cgtcttgcgtt atcagttgccgaaacgtctca 900
ccgcttgaag gaggccgcta tcagcaggaa aagtcgggtgc ttgtatgaggc gttcgcccg 960
cgagtgagcg acaagttgaa tagtgcacat ccacggcgtt cgttgcagat gaaattgaa 1020
gctgttgggtt ttgcaatgtc gctgggtgccgaaaggcgtca agacggcgtc cggacaggcg 1080
ccaaagggtgg tcaggcaagc cagaaggcgtc gcgtcgtcta aaggcatgcc tccacgaaga 1140
taa 1143

<210> 40

<211> 380

<212> PRT

<213> Pseudomonas syringae pv. angulata

<400> 40

Met Arg Ile His Ser Ala Gly His Ser Leu Pro Ala Pro Gly Pro Ser
1 5 10 15

Val Glu Thr Thr Glu Lys Ala Val Gln Ser Ser Ser Ala Gln Asn Pro
20 25 30

Ala Ser Tyr Ser Ser Gln Thr Glu Arg Pro Glu Ala Gly Ser Thr Gln

35	40	45
Val Arg Leu Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro Pro		
50	55	60
Val Ser Ser Thr Gly Gln Ala Ile Ser Ala Thr Pro Ser Ser Leu Pro		
65	70	75
Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Glu Asp		
85	90	95
Ser Ile Lys Ala Leu Val Pro Ala Asp Glu Ala Val Arg Glu Ala Arg		
100	105	110
Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Arg		
115	120	125
Thr His Leu Gln Ser Gly Ala Arg Ala Val Ala Ala Lys Arg Leu Arg		
130	135	140
Lys Asp Ala Glu Arg Ala Gly His Glu Pro Met Pro Gly Asn Asp Glu		
145	150	155
160		
Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala		
165	170	175
Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala		
180	185	190
Leu Ala Gln Glu Ser Gly Arg Ser Pro Arg Glu Lys Ile His Leu Ala		
195	200	205
Glu Gln Pro Gly Lys Asp His Val Trp Ala Glu Thr Asp Asn Ser Ser		
210	215	220
Ala Gly Ser Ser Pro Ile Val Met Asp Pro Trp Ser Asn Gly Ala Ala		
225	230	235
240		
Ile Leu Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser Thr Val Glu		
245	250	255
Arg Thr Tyr Ser Phe Thr Leu Ala Met Ala Ala Glu Ala Gly Lys Val		
260	265	270
Thr Arg Glu Thr Ala Glu Asn Val Leu Thr His Thr Thr Ser Arg Leu		
275	280	285
Gln Lys Arg Leu Ala Asp Gln Leu Pro Asn Val Ser Pro Leu Glu Gly		

290	295	300
Gly Arg Tyr Gln Gln Glu Lys Ser Val Leu Asp Glu Ala Phe Ala Arg		
305	310	315
Arg Val Ser Asp Lys Leu Asn Ser Asp Asp Pro Arg Arg Ala Leu Gln		
325	330	335
Met Glu Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Ala Glu Gly		
340	345	350
Val Lys Thr Val Ala Arg Gln Ala Pro Lys Val Val Arg Gln Ala Arg		
355	360	365
Ser Val Ala Ser Ser Lys Gly Met Pro Pro Arg Arg		
370	375	380
<210> 41		
<211> 1143		
<212> DNA		
<213> <i>Pseudomonas syringae</i> pv. <i>glycinea</i>		
<400> 41		
atgagaattc acagtgcgtgg tcacagccctg cccgcgccag gcccctagcgt ggaaaccact 60		
gaaaaggctg ttcaatcatc atcggccctag aaccccgctt cttgcagttc acaaacagaa 120		
cgtcctgaag ccgggttcgac tcaagtgcga ccgaactacc cttaactcatc agtcaagaca 180		
cgtttccac ccgtttcttc cacagggcag gccattctg acacgccatc ttcatgttcc 240		
gtttacctgc tgttacgtcg gctcgaccga cgtccactgg atgaagacag tatcaaggct 300		
ctgggttccgg cagacgaagc gttgcgtgaa gcacgcccgc cggtgcctt cggcaggggc 360		
aacattgtatg tggatgcaca acgtacccac ctgcaaagcg ggcgcgcgc agtcgctgca 420		
aagcgcttga gaaaagatgc cgagcgcgcgc ggccatgagc cgatgcccga gaatgtatgag 480		
atgaactggc atgttcttgt cgccatgtca gggcagggtgt ttggcgctgg caactgtggc 540		
gaacatgctc gtatagcaag ctgcgtttac ggggccttg ctcaggaaag cgggcgttagt 600		
cccccgaaaa agattcattt ggccgagcag cccggaaaag atcacgtctg ggctgaaacg 660		
gataattcca ggcgcggcgc ttgccttcatc gtcatggacc cgtggctaa cggcgttagcc 720		
attttggcg aggacagccg gtttgccaaa gatgcgcgtg cggtagagcg aacatattca 780		
ttcaccccttgc caatggcgc tgaagccggc aagggtgcgc gtgaaaccgc cgagaacgtt 840		
ctgacccaca cgacaagccg tctgcagaaa cgtcttgcgt atcagttgcc gaacgtctca 900		
ccgcttgaag gagggcgcta tcagccggaa aagtcgggtgc ttgatgaggc gttcgcccga 960		
cgagtgagcg acaagttgaa tagtgcacat ccacggcgtg cgttgcagat ggaaattgaa 1020		
gctgttggtg ttgcaatgtc gctgggtgcc gaaggcgtca agacggcgc cccacaggcg 1080		
ccaaagggtgg tcagggcaagc cagaaggcgtc gcgtcgtcta aaggcatgcc tccacgaaga 1140		
taa		1143

<210> 42
<211> 380

<212> PRT

<213> Pseudomonas syringae pv. glycinea

<400> 42

Met Arg Ile His Ser Ala Gly His Ser Leu Pro Ala Pro Gly Pro Ser

1

5

10

15

Val Glu Thr Thr Glu Lys Ala Val Gln Ser Ser Ser Ala Gln Asn Pro
20 25 30

Ala Ser Cys Ser Ser Gln Thr Glu Arg Pro Glu Ala Gly Ser Thr Gln
35 40 45

Val Arg Pro Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro Pro
50 55 60

Val Ser Ser Thr Gly Gln Ala Ile Ser Asp Thr Pro Ser Ser Leu Ser
65 70 75 80

Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Glu Asp
85 90 95

Ser Ile Lys Ala Leu Val Pro Ala Asp Glu Ala Leu Arg Glu Ala Arg
100 105 110

Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Arg
115 120 125

Thr His Leu Gln Ser Gly Ala Arg Ala Val Ala Ala Lys Arg Leu Arg
130 135 140

Lys Asp Ala Glu Arg Ala Gly His Glu Pro Met Pro Glu Asn Asp Glu
145 150 155 160

Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala
165 170 175

Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala
180 185 190

Leu Ala Gln Glu Ser Gly Arg Ser Pro Arg Glu Lys Ile His Leu Ala
195 200 205

Glu Gln Pro Gly Lys Asp His Val Trp Ala Glu Thr Asp Asn Ser Ser
210 215 220

Ala Gly Ser Ser Pro Ile Val Met Asp Pro Trp Ser Asn Gly Val Ala
225 230 235 240

Ile Leu Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser Ala Val Glu
 245 250 255

 Arg Thr Tyr Ser Phe Thr Leu Ala Met Ala Ala Glu Ala Gly Lys Val
 260 265 270

 Ala Arg Glu Thr Ala Glu Asn Val Leu Thr His Thr Ser Arg Leu
 275 280 285

 Gln Lys Arg Leu Ala Asp Gln Leu Pro Asn Val Ser Pro Leu Glu Gly
 290 295 300

 Gly Arg Tyr Gln Pro Glu Lys Ser Val Leu Asp Glu Ala Phe Ala Arg
 305 310 315 320

 Arg Val Ser Asp Lys Leu Asn Ser Asp Asp Pro Arg Arg Ala Leu Gln
 325 330 335

 Met Glu Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Ala Glu Gly
 340 345 350

 Val Lys Thr Val Ala Arg Gln Ala Pro Lys Val Val Arg Gln Ala Arg
 355 360 365

 Ser Val Ala Ser Ser Lys Gly Met Pro Pro Arg Arg
 370 375 380

<210> 43
 <211> 1143
 <212> DNA
 <213> *Pseudomonas syringae* pv. *tabaci*

<400> 43
 atgagaattc acagtgttgc tcacagccctg cctgcgccag gcccttagcggt ggaaaccact 60
 gaaaaggctg ttcaatcatc atcggccctag aaccccgctt cttgcagttc acaaacagaa 120
 cgtcctgaag ccgggttcgac tcaagtgcga ccgaactacc cttaactcatc agtcaagaca 180
 cgcttgccac ccgtttcttc tacagggcag gccatttctg acacgcccattt ttcattgccc 240
 gtttacctgc tggttacgtcg gctcgaccga cgtccactgg atgaagacag tatcaaggct 300
 ctgggtccgg cagacgaagc ggtgcgtgaa gcacgcccgg cggtgcctt cggcaggggc 360
 aacattgtatc tggatgcaca acgttacccac ctgcaaaagcg ggcgcgtgc agtcgtgc 420
 aagcgcttgc gaaaagatgc cgagcgccgt ggcattgagc cgatgcccgg gaatgtatc 480
 atgaactggc atgttcttgtt cgcctatgtca gggcagggtgt ttggcgctgg caactgtggc 540
 gaacatgttc gtatacgcaag ctgcgttac gggccctgg ctcaggaaag cgggcgttagt 600
 cccccgcggaa agatccattt ggccgagcag cccggaaaag atcacgtctg ggctgaaacg 660
 gataattcca ggcgtggctc ttgcggccatc gtcatggacc cgtggctaa cggcgcagcc 720
 attttggccgg aggacagccg gtttgccaaa gatcgcagtg cggtagagcg aacatattca 780

ttcaccccttg caatggcagc tgaagccggc aaggttacgc gtgaaaactgc cgagaacgtt 840
ctgaccacaca cgacaaagccg tctgcagaaaa cgtcttgctg atcagtgcgc gaacgtctca 900
ccgcttgaag gaggccgcta tcagcagggaa aagtccgtgc ttgatgaggg gttcgcccga 960
cgagtgagcg acaagttgaa tagtgacgat ccacggcgtg cgttgcagat gggaaattgaa 1020
gctgttgggtt ttgcaatgtc gctgggtgcc gaaggcgtca agacggtcgc ccgacaggcg 1080
ccaaagggtgg tcaggcaagc cagaaggcgtc gcgtcgtcta aaggcatgcc tccacgaaga 1140
taa 1143

<210> 44

<211> 380

<212> PRT

<213> *Pseudomonas syringae* pv. *tabaci*

<400> 44

Met Arg Ile His Ser Ala Gly His Ser Leu Pro Ala Pro Gly Pro Ser
1 5 10 15

Val Glu Thr Thr Glu Lys Ala Val Gln Ser Ser Ser Ala Gln Asn Pro
20 25 30

Ala Ser Cys Ser Ser Gln Thr Glu Arg Pro Glu Ala Gly Ser Thr Gln
35 40 45

Val Arg Pro Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro Pro
50 55 60

Val Ser Ser Thr Gly Gln Ala Ile Ser Asp Thr Pro Ser Ser Leu Pro
65 70 75 80

Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Glu Asp
85 90 95

Ser Ile Lys Ala Leu Val Pro Ala Asp Glu Ala Val Arg Glu Ala Arg
100 105 110

Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Arg
115 120 125

Thr His Leu Gln Ser Gly Ala Arg Ala Val Ala Ala Lys Arg Leu Arg
130 135 140

Lys Asp Ala Glu Arg Ala Gly His Glu Pro Met Pro Gly Asn Asp Glu
145 150 155 160

Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala
165 170 175

Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala
 180 185 190
 Leu Ala Gln Glu Ser Gly Arg Ser Pro Arg Glu Lys Ile His Leu Ala
 195 200 205
 Glu Gln Pro Gly Lys Asp His Val Trp Ala Glu Thr Asp Asn Ser Ser
 210 215 220
 Ala Gly Ser Ser Pro Ile Val Met Asp Pro Trp Ser Asn Gly Ala Ala
 225 230 235 240
 Ile Leu Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser Ala Val Glu
 245 250 255
 Arg Thr Tyr Ser Phe Thr Leu Ala Met Ala Ala Glu Ala Gly Lys Val
 260 265 270
 Thr Arg Glu Thr Ala Glu Asn Val Leu Thr His Thr Thr Ser Arg Leu
 275 280 285
 Gln Lys Arg Leu Ala Asp Gln Leu Pro Asn Val Ser Pro Leu Glu Gly
 290 295 300
 Gly Arg Tyr Gln Gln Glu Lys Ser Val Leu Asp Glu Ala Phe Ala Arg
 305 310 315 320
 Arg Val Ser Asp Lys Leu Asn Ser Asp Asp Pro Arg Arg Ala Leu Gln
 325 330 335
 Met Glu Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Ala Glu Gly
 340 345 350
 Val Lys Thr Val Ala Arg Gln Ala Pro Lys Val Val Arg Gln Ala Arg
 355 360 365
 Ser Val Ala Ser Ser Lys Gly Met Pro Pro Arg Arg
 370 375 380

 <210> 45
 <211> 1143
 <212> DNA
 <213> *Pseudomonas syringae* pv. *tabaci*

 <400> 45
 atgagaattc acagtgcgtt tcacagcctg cctgcgccag gccctagcgt ggaaaccact 60
 gaaaaggctg ttcaatcatc atcggcccg aaccccgctt cttgcagttc acaaacagaa 120

cgtcctgaag ccgggttcgac tcaagtgcga ccgaactacc cttactcatc agtcaagaca 180
cgcttgcac ccgtttcttc tacagggcag gccattctg acacgccatc ttcatggccc 240
ggttacctgc tggtacgtcg gctgaccga cgtccactgg atgaagacag tatcaaggct 300
ctgggtccgg cagacgaagc ggtgcgtgaa gcacgcccgc cggtgcctt cggcaggggc 360
aacattgatg tggatgcaca acgtacccac ctgcaaagcg gcgctcgcc agtcgctgca 420
aagcgcttga gaaaagatgc cgagcgcgt ggccatgagc cgatgcccgg gaatgtatgag 480
atgaactggc atgttcttgt cgccatgtca gggcaggtgt ttggcgttgg caactgtggc 540
gaacatgctc gtatacgaa cttcgcttac ggggcccctgg ctcagggaaag cggcgtagt 600
cccccgcaaa agattcattt ggccgagcag cccggaaaag atcacgtctg ggctgaaacg 660
gataattcca gcgctggctc ttcccccattt gtcattggacc cgtggcttaa cggcgagcc 720
attttggccgg aggacagccg gtttgcctaa gatcgactg cggtagagcg aacatattca 780
ttcacccctt caatggcagc tgaagccggc aaggttacgc gtgaaactgc cgagaacgtt 840
ctgacccaca cgacaagccg tctgcagaaaa cgtcttgctg atcagttgcc gaacgtctca 900
ccgcttgaag gaggccgcta tcagcagggaa aagtccgtgc ttgtatggc gttcgcccga 960
cgagtggcg acaagttgaa tagtgcacat ccacggcgtg cggtgcagat ggaaattgaa 1020
gctgttggtg ttgcaatgtc gctgggtgcc gaaggcgtca agacggcgc cccgacaggcg 1080
ccaaagggtgg tcaggcaagc cagaaggcgtc gcgtcgtcta aaggcatgcc tccacgaaga 1140
taa 1143

<210> 46

<211> 380

<212> PRT

<213> *Pseudomonas syringae* pv. *tabaci*

<400> 46

Met Arg Ile His Ser Ala Gly His Ser Leu Pro Ala Pro Gly Pro Ser
1 5 10 15

Val Glu Thr Thr Glu Lys Ala Val Gln Ser Ser Ser Ala Gln Asn Pro
20 25 30

Ala Ser Cys Ser Ser Gln Thr Glu Arg Pro Glu Ala Gly Ser Thr Gln
35 40 45

Val Arg Pro Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro Pro
50 55 60

Val Ser Ser Thr Gly Gln Ala Ile Ser Asp Thr Pro Ser Ser Leu Pro
65 70 75 80

Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Glu Asp
85 90 95

Ser Ile Lys Ala Leu Val Pro Ala Asp Glu Ala Val Arg Glu Ala Arg
100 105 110

Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Arg

115 120 125

Thr His Leu Gln Ser Gly Ala Arg Ala Val Ala Ala Lys Arg Leu Arg
130 135 140

Lys Asp Ala Glu Arg Ala Gly His Glu Pro Met Pro Gly Asn Asp Glu
145 150 155 160

Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala
165 170 175

Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala
180 185 190

Leu Ala Gln Glu Ser Gly Arg Ser Pro Arg Glu Lys Ile His Leu Ala
195 200 205

Glu Gln Pro Gly Lys Asp His Val Trp Ala Glu Thr Asp Asn Ser Ser
210 215 220

Ala Gly Ser Ser Pro Ile Val Met Asp Pro Trp Ser Asn Gly Ala Ala
225 230 235 240

Ile Leu Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser Ala Val Glu
245 250 255

Arg Thr Tyr Ser Phe Thr Leu Ala Met Ala Ala Glu Ala Gly Lys Val
260 265 270

Thr Arg Glu Thr Ala Glu Asn Val Leu Thr His Thr Thr Ser Arg Leu
275 280 285

Gln Lys Arg Leu Ala Asp Gln Leu Pro Asn Val Ser Pro Leu Glu Gly
290 295 300

Gly Arg Tyr Gln Gln Glu Lys Ser Val Leu Asp Glu Ala Phe Ala Arg
305 310 315 320

Arg Val Ser Asp Lys Leu Asn Ser Asp Asp Pro Arg Arg Ala Leu Gln
325 330 335

Met Glu Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Ala Glu Gly
340 345 350

Val Lys Thr Val Ala Arg Gln Ala Pro Lys Val Val Arg Gln Ala Arg
355 360 365

Ser Val Ala Ser Ser Lys Gly Met Pro Pro Arg Arg

370

375

380

<210> 47

<211> 1143

<212> DNA

<213> Pseudomonas syringae pv. glycinea

<400> 47

atgagaattc acagtgcctg tcacagccctg cccgcgccag gccctagcgt ggaaaccact 60
gaaaaggctg ttcaatcatc atcgccccag aaccccgctt cttgcagttc acaaacagaa 120
cgtcctgaag ccgggtcgac tcaagtgcga ccgaactacc cttaactcatc agtcaagaca 180
cgcttgcac ccgtttcttc cacagggcag gccatttctg acacgccatc ttcattgtcc 240
gttacactgc tggtacgtcg gctcgaccga cgtccactgg atgaagacag tatcaaggct 300
ctgggtccgg cagacgaagc gttgcgtgaa gcacgcccgc cggtgcctt cggcaggggc 360
aacatttgatg tggatgcaca acgtacccac ctgcaaagcg gcgcctcgcc agtcgctgca 420
aagcgcttga gaaaagatgc cgagcgcgcg ggcattgagc cgatgccga gaatgatgag 480
atgaactgac atgttcttgt cgccatgtca gggcagggtgt ttggcgttgc caactgtggc 540
gaacatgctc gtatacgcaag cttcgcttac ggggcctgg ctcaggaaag cggcgttagt 600
ccccgcgaaa agattcattt ggccgagcag ccggaaaaag atcacgtctg ggctgaaacg 660
gataattcca gcgcggctc ttgcggccatc gtcatggacc cgtggctaa cggcgttagcc 720
attttggccgg aggacagccg gttgcctaaa gatcgcagtg cggtagagcg aacatattca 780
ttcacccctt caatggcagc tgaagccggc aaggttgcgc gtgaaaccgc cgagaacgtt 840
ctgacccaca cgacaagccg tctgcagaaaa cgtcttgcgt atcagttgcc gaacgtctca 900
ccgcttgaag gaggccgcta tcagccggaa aagtcgggtc ttgatgaggc gttcggccga 960
cgagtgagcg acaagttgaa tagtgcacat ccacggcgtg cgttgcagat ggaaattgaa 1020
gctgttggtt ttgcaatgtc gctgggtgcc gaaggcgtca agacggcgc ccgacaggcg 1080
ccaaagggtgg tcaggcaagc cagaagcgtc gcgtcgtcta aaggcatgcc tccacgaaga 1140
taa 1143

<210> 48

<211> 380

<212> PRT

<213> Pseudomonas syringae pv. glycinea

<400> 48

Met Arg Ile His Ser Ala Gly His Ser Leu Pro Ala Pro Gly Pro Ser
1 5 10 15

Val Glu Thr Thr Glu Lys Ala Val Gln Ser Ser Ser Ala Gln Asn Pro
20 25 30

Ala Ser Cys Ser Ser Gln Thr Glu Arg Pro Glu Ala Gly Ser Thr Gln
35 40 45

Val Arg Pro Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro Pro
50 55 60

Val Ser Ser Thr Gly Gln Ala Ile Ser Asp Thr Pro Ser Ser Leu Ser
 65 70 75 80
 Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Glu Asp
 85 90 95
 Ser Ile Lys Ala Leu Val Pro Ala Asp Glu Ala Leu Arg Glu Ala Arg
 100 105 110
 Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Arg
 115 120 125
 Thr His Leu Gln Ser Gly Ala Arg Ala Val Ala Ala Lys Arg Leu Arg
 130 135 140
 Lys Asp Ala Glu Arg Ala Gly His Glu Pro Met Pro Glu Asn Asp Glu
 145 150 155 160
 Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala
 165 170 175
 Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala
 180 185 190
 Leu Ala Gln Glu Ser Gly Arg Ser Pro Arg Glu Lys Ile His Leu Ala
 195 200 205
 Glu Gln Pro Gly Lys Asp His Val Trp Ala Glu Thr Asp Asn Ser Ser
 210 215 220
 Ala Gly Ser Ser Pro Ile Val Met Asp Pro Trp Ser Asn Gly Val Ala
 225 230 235 240
 Ile Leu Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser Ala Val Glu
 245 250 255
 Arg Thr Tyr Ser Phe Thr Leu Ala Met Ala Ala Glu Ala Gly Lys Val
 260 265 270
 Ala Arg Glu Thr Ala Glu Asn Val Leu Thr His Thr Thr Ser Arg Leu
 275 280 285
 Gln Lys Arg Leu Ala Asp Gln Leu Pro Asn Val Ser Pro Leu Glu Gly
 290 295 300
 Gly Arg Tyr Gln Pro Glu Lys Ser Val Leu Asp Glu Ala Phe Ala Arg
 305 310 315 320

Arg Val Ser Asp Lys Leu Asn Ser Asp Asp Pro Arg Arg Ala Leu Gln
325 330 335

Met Glu Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Ala Glu Gly
340 345 350

Val Lys Thr Val Ala Arg Gln Ala Pro Lys Val Val Arg Gln Ala Arg
355 360 365

Ser Val Ala Ser Ser Lys Gly Met Pro Pro Arg Arg
370 375 380

<210> 49
<211> 1143
<212> DNA
<213> Pseudomonas syringae pv. phaseolicola

<400> 49
atgagaattc acagtgcgtgg tcacagccctg cccgcgcagg gcccctagcggt ggaaaccact 60
gaaaaggctg ttcaatcatc atcggccctag aaccccgctt cttgcagttc acaaacagaa 120
cgtcctgaag ccgggttcgac tcaagtgcga ccgaactacc cttaactcatc agtcaagaca 180
cgcttgcac ccgtttcttc cacagggcag gccatttctg acacgccttc ttcatggccc 240
gtttacctgc tgttacgtcg gctcgaccga cgtccactgg atgaagacag tatcaaggct 300
ctgggtccgg cagacgaagc gttgcgtgaa gcacgcccgc cggtgccctt cggcaggggc 360
aacattgtatg tggatgcaca acgttacccac ctgcacaaagcg ggcgctcgcc agtgcgtgca 420
aagcgcttga gaaaagatgc cgagcgcgt ggccatgagc cgatgcccga gaatgtatgag 480
atgaactggc atgttcttgt cgccatgtca gggcagggtgt ttggcgctgg caactgtggc 540
gaacatgctc gtatacgaaatg cttcgcttac gggggccctgg ctcaggaaag cggcgtagt 600
ccccgcgaaa agattcattt ggccgagcag cccggaaaag atcacgtctg ggctgaaacg 660
gataattcca ggcgctggctc ttccgccttcatc gtcatggacc cgtggctaa cggcgcagcc 720
attttggccgg aggacagccg gtttgccaaa gatcgcgttg cggttagagcg aacatattca 780
ttcaccccttg caatggcagc tgaagccggc aagggtgcgc gtgaaaccgc cgagaacgtt 840
ctgacccaca cgacaagccg tctgcagaag cgtcttgctg atcagttgcc gaacgtctca 900
cogcttgaag gaggccgcta tcagccggaa aagtccgtgc ttgatgaggc gttcgcccga 960
cgagtgagcg acaagttgaa tagtgcacat ccacggcgtg cgttgcagat ggaaattgaa 1020
gctgttggtg ttgcaatgtc gctgggtgcc gaaggcgtca agacggcgtgc cccgacaggcg 1080
ccaaagggtgg tcaggcaagc cagaagcgtc gcgtcgtcta aaggcatgcc tccacgaaga 1140
taa 1143

<210> 50
<211> 380
<212> PRT
<213> Pseudomonas syringae pv. phaseolicola

<400> 50

Met Arg Ile His Ser Ala Gly His Ser Leu Pro Ala Pro Gly Pro Ser
1 5 10 15

Val Glu Thr Thr Glu Lys Ala Val Gln Ser Ser Ser Ala Gln Asn Pro
20 25 30

Ala Ser Cys Ser Ser Gln Thr Glu Arg Pro Glu Ala Gly Ser Thr Gln
35 40 45

Val Arg Pro Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro Pro
50 55 60

Val Ser Ser Thr Gly Gln Ala Ile Ser Asp Thr Pro Ser Ser Leu Pro
65 70 75 80

Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Glu Asp
85 90 95

Ser Ile Lys Ala Leu Val Pro Ala Asp Glu Ala Leu Arg Glu Ala Arg
100 105 110

Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Arg
115 120 125

Thr His Leu Gln Ser Gly Ala Arg Ala Val Ala Ala Lys Arg Leu Arg
130 135 140

Lys Asp Ala Glu Arg Ala Gly His Glu Pro Met Pro Glu Asn Asp Glu
145 150 155 160

Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala
165 170 175

Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala
180 185 190

Leu Ala Gln Glu Ser Gly Arg Ser Pro Arg Glu Lys Ile His Leu Ala
195 200 205

Glu Gln Pro Gly Lys Asp His Val Trp Ala Glu Thr Asp Asn Ser Ser
210 215 220

Ala Gly Ser Ser Pro Ile Val Met Asp Pro Trp Ser Asn Gly Ala Ala
225 230 235 240

Ile Leu Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser Ala Val Glu
245 250 255

Arg Thr Tyr Ser Phe Thr Leu Ala Met Ala Ala Glu Ala Gly Lys Val
260 265 270

Ala Arg Glu Thr Ala Glu Asn Val Leu Thr His Thr Thr Ser Arg Leu
275 280 285

Gln Lys Arg Leu Ala Asp Gln Leu Pro Asn Val Ser Pro Leu Glu Gly
290 295 300

Gly Arg Tyr Gln Pro Glu Lys Ser Val Leu Asp Glu Ala Phe Ala Arg
305 310 315 320

Arg Val Ser Asp Lys Leu Asn Ser Asp Asp Pro Arg Arg Ala Leu Gln
325 330 335

Met Glu Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Ala Glu Gly
340 345 350

Val Lys Thr Val Ala Arg Gln Ala Pro Lys Val Val Arg Gln Ala Arg
355 360 365

Ser Val Ala Ser Ser Lys Gly Met Pro Pro Arg Arg
370 375 380

<210> 51

<211> 1143

<212> DNA

<213> Pseudomonas syringae pv. angulata

<400> 51

atgagaattc acagtgcgtgg tcacagccctg cctgcgccag gccctagcgt ggaaaccact 60
gaaaaggctg ttcaatcatc atcgccccag aaccccgctt cttacagttc acaaacagaa 120
cgtcctgaag ccgggttcgac tcaagtgcga ctgaactacc cttactcatc agtcaagaca 180
cgcttgccac ccgtttcttc tacagggcag gccatttctg ccacgcccattt ttcattgccc 240
ggttacctgc tggtacgtcg gctcgaccga cgtccactgg atgaagacag tatcaaggct 300
ctgggtccgg cagacgaagc ggtgcgtgaa gcacgcccgc cggtgcctt cggcaggggc 360
aacattgtatc tggatgcaca acgtacccac ctgcaaaagcg gcgctcgccg agtcgctgca 420
aagcgcttga gaaaagatgc cgagcgcgcg gccatgagc cgatgcccgg gaatgtatc 480
atgaactggc atgttcttgt cgccatgtca gggcagggtgt ttggcgctgg caactgtggc 540
gaacatgttc gtatacgcaag cttcgcttac gggccctgg ctcaggaaag cgggcgttagt 600
ccccgcggaa agattcattt ggccgagcag cccggaaaag atcacgtctg ggctgaaacg 660
gataattcca ggcgtggctc ttccatgttgc gtcgttgcattt cgtggctaa cggcgcagcc 720
attttggccgg aggacagccg gtttgccaaa gatcgcagta cggtagagcg aacatattca 780
ttcaccccttgc caatggccgc tgaagccgc aaggttacgc gtgaaaccgc cgagaacgtt 840
ctgacccaca cgacaagccg tctgcagaaa cgtcttgcgtt atcagttgcc gaacgtctca 900
ccgcttgcggaa gagggccgcta tcagcaggaa aagtcgggtgc ttgtatgaggc gttcgcccga 960
cgagtgagcg acaagttgaa tagtgcacat ccacggcggtt cgttgcagat ggaaattgaa 1020

gctgttggtg ttgcaatgtc gctgggtgcc gaaggcgtca agacggtcgc ccgacaggcg 1080
ccaaagggtgg tcaggcaagc cagaagcgtc gcgtcgtcta aaggcatgcc tccacgaaga 1140
taa 1143

<210> 52
<211> 380
<212> PRT
<213> *Pseudomonas syringae* pv. *angulata*

<400> 52
Met Arg Ile His Ser Ala Gly His Ser Leu Pro Ala Pro Gly Pro Ser
1 5 10 15

Val Glu Thr Thr Glu Lys Ala Val Gln Ser Ser Ser Ala Gln Asn Pro
20 25 30

Ala Ser Tyr Ser Ser Gln Thr Glu Arg Pro Glu Ala Gly Ser Thr Gln
35 40 45

Val Arg Leu Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg Leu Pro Pro
50 55 60

Val Ser Ser Thr Gly Gln Ala Ile Ser Ala Thr Pro Ser Ser Leu Pro
65 70 75 80

Gly Tyr Leu Leu Leu Arg Arg Leu Asp Arg Arg Pro Leu Asp Glu Asp
85 90 95

Ser Ile Lys Ala Leu Val Pro Ala Asp Glu Ala Val Arg Glu Ala Arg
100 105 110

Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Arg
115 120 125

Thr His Leu Gln Ser Gly Ala Arg Ala Val Ala Ala Lys Arg Leu Arg
130 135 140

Lys Asp Ala Glu Arg Ala Gly His Glu Pro Met Pro Gly Asn Asp Glu
145 150 155 160

Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala
165 170 175

Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala
180 185 190

Leu Ala Gln Glu Ser Gly Arg Ser Pro Arg Glu Lys Ile His Leu Ala

195	200	205
Glu Gln Pro Gly Lys Asp His Val Trp Ala Glu Thr Asp Asn Ser Ser		
210	215	220
Ala Gly Ser Ser Pro Ile Val Met Asp Pro Trp Ser Asn Gly Ala Ala		
225	230	235
Ile Leu Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser Thr Val Glu		
245	250	255
Arg Thr Tyr Ser Phe Thr Leu Ala Met Ala Ala Glu Ala Gly Lys Val		
260	265	270
Thr Arg Glu Thr Ala Glu Asn Val Leu Thr His Thr Thr Ser Arg Leu		
275	280	285
Gln Lys Arg Leu Ala Asp Gln Leu Pro Asn Val Ser Pro Leu Glu Gly		
290	295	300
Gly Arg Tyr Gln Gln Glu Lys Ser Val Leu Asp Glu Ala Phe Ala Arg		
305	310	315
Arg Val Ser Asp Lys Leu Asn Ser Asp Asp Pro Arg Arg Ala Leu Gln		
325	330	335
Met Glu Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Ala Glu Gly		
340	345	350
Val Lys Thr Val Ala Arg Gln Ala Pro Lys Val Val Arg Gln Ala Arg		
355	360	365
Ser Val Ala Ser Ser Lys Gly Met Pro Pro Arg Arg		
370	375	380

<210> 53
 <211> 1155
 <212> DNA
 <213> *Pseudomonas syringae* pv. *delphinii*

<400> 53
 atgaaaatac ataacgctgg cccaaaggatt ccgatgccccg ctccatcgat tgagagcgct 60
 ggcaagactg cgcaatcatc attggctcaa ccgcagagcc aacgagccac ccccgctctcg 120
 ccatcagaga cttctgatgc ccgtccgtcc agtgtgcgtta cgaactaccc ttattcatca 180
 gtcaaaacac ggttgcctcc cggtgcgtct gcagggcagc cactgtccgg gatgccgtct 240
 tcattaccgg gctacttgct gttacgtcgg cttgaccatc gtccactgga tcaagacgg 300
 atcaaagggtt tgattccagc agatgaagcg gtgggtgaag cacgtcgccg cttgccttc 360

gcaatggggca atatcgacgt ggatgcgcaa cgctccaact tggaaagcgg agccgcaca 420
ctcgccgcta ggcgttttagg aaaagatgcc gaggccgcgg gtcacgaacc aatgcctgca 480
aatgaagata tgaactggca tggttcttggt gcgatgtcag gacaggttt tggcgaggt 540
aactgcgggg aacatgcccgc catagcgagt ttgcgcctacg gtgcactggc tcaggaaaaa 600
gggcggaaacg ccgatgagac tattcatttg gctgcgcaac gcggtaaaga ccacgtctgg 660
gctgaaacgg acaattcaag cgctggatct tcaccgggtt tcacggatcc gtggcgaac 720
ggtcctgcca ttttgcgga ggatagtcgg tttgccaaag atcgaagtac ggtagaacgaa 780
acggattcct tcacgcttgc aactgctgct gaacgaggca agatcacgcg agagacggcc 840
gagaatgctt tgacacaggc gaccagccgt ttgcagaaac gtcttgctga tcagaaaacg 900
caagtctcgc cgcttgcagg agggcgctat cggcaagaaa attcggtgct tgatgacgcg 960
ttcgcggcggc gggcaagtgg caagttgagc aacaaggatc cgcggcatgc attacaggtg 1020
gaaatcgagg cggccgcagt tgcaatgtcg ctgggcgccc aaggcgtaaa agcggttgcg 1080
gaacaggccc ggacggtagt tgaacaagcc aggaaggctc catctccccca aggacacgcct 1140
cagcgagata cgtga 1155

<210> 54

<211> 384

<212> PRT

<213> *Pseudomonas syringae* pv. *delphinii*

<400> 54

Met Lys Ile His Asn Ala Gly Pro Ser Ile Pro Met Pro Ala Pro Ser
1 5 10 15

Ile Glu Ser Ala Gly Lys Thr Ala Gln Ser Ser Leu Ala Gln Pro Gln
20 25 30

Ser Gln Arg Ala Thr Pro Val Ser Pro Ser Glu Thr Ser Asp Ala Arg
35 40 45

Pro Ser Ser Val Arg Thr Asn Tyr Pro Tyr Ser Ser Val Lys Thr Arg
50 55 60

Leu Pro Pro Val Ala Ser Ala Gly Gln Pro Leu Ser Gly Met Pro Ser
65 70 75 80

Ser Leu Pro Gly Tyr Leu Leu Leu Arg Arg Leu Asp His Arg Pro Leu
85 90 95

Asp Gln Asp Gly Ile Lys Gly Leu Ile Pro Ala Asp Glu Ala Val Gly
100 105 110

Glu Ala Arg Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp
115 120 125

Ala Gln Arg Ser Asn Leu Glu Ser Gly Ala Arg Thr Leu Ala Ala Arg
130 135 140

Arg Leu Arg Lys Asp Ala Glu Ala Ala Gly His Glu Pro Met Pro Ala
145 150 155 160

Asn Glu Asp Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val
165 170 175

Phe Gly Ala Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala
180 185 190

Tyr Gly Ala Leu Ala Gln Glu Lys Gly Arg Asn Ala Asp Glu Thr Ile
195 200 205

His Leu Ala Ala Gln Arg Gly Lys Asp His Val Trp Ala Glu Thr Asp
210 215 220

Asn Ser Ser Ala Gly Ser Ser Pro Val Val Met Asp Pro Trp Ser Asn
225 230 235 240

Gly Pro Ala Ile Phe Ala Glu Asp Ser Arg Phe Ala Lys Asp Arg Ser
245 250 255

Thr Val Glu Arg Thr Asp Ser Phe Thr Leu Ala Thr Ala Ala Glu Ala
260 265 270

Gly Lys Ile Thr Arg Glu Thr Ala Glu Asn Ala Leu Thr Gln Ala Thr
275 280 285

Ser Arg Leu Gln Lys Arg Leu Ala Asp Gln Lys Thr Gln Val Ser Pro
290 295 300

Leu Ala Gly Gly Arg Tyr Arg Gln Glu Asn Ser Val Leu Asp Asp Ala
305 310 315 320

Phe Ala Arg Arg Ala Ser Gly Lys Leu Ser Asn Lys Asp Pro Arg His
325 330 335

Ala Leu Gln Val Glu Ile Glu Ala Ala Ala Val Ala Met Ser Leu Gly
340 345 350

Ala Gln Gly Val Lys Ala Val Ala Glu Gln Ala Arg Thr Val Val Glu
355 360 365

Gln Ala Arg Lys Val Ala Ser Pro Gln Gly Thr Pro Gln Arg Asp Thr
370 375 380

<210> 55
<211> 951
<212> DNA
<213> Pseudomonas syringae pv. delphinii

<400> 55
gtggttgagc gaaccggcac tgcataatcgaggcgtggag cagcctgctc gcgtatcacg 60
agccaaaatc aggtccgacg acgcatttgcattacggta atcagatcga aaagacgtcc 120
ctattggctt tggcctttgc aatcctggca ggggtgtgggg gttcggggca ggcgcgggg 180
agtgatattc agggtgccca ggcagagatg aaaacaccca ttaaaagttaga tctggatgcc 240
tacacactcaa aaaaacttga tgctgtgttgaagctcggttgc 300
aaaggtcaac tgatcgacct tgcgtcagggg gcgttttgg gaacaccgta cgcctcaaac 360
atgttggtggc acagagagga aatacctgaa cagtttgtca tcgacttttag aggtctggat 420
tgcgttgcattatggatta cgttagggcg ttgcgaagat caacatcgca gcaggatttt 480
gtgaggaatc tcggttcaggt tcggttacaag ggtgggtatgttgc 540
cacttttca cggattggc ttatggcaact acacacccgg tggcggatgatcatcaccacg 600
cagataagcc cccgtgcggtaatgttcaga aaacgcctta atgaaaggc caaaggcaaa 660
gtctatctgc caggtttgcc tgcgttgcgttgc 720
gtcgacagtc aggtggtaag ccacttgcc acaggtgatt acatcgcat ttacaccccg 780
cttccggc tggatgtgac gcacgtcggt ttcttatca tgacggataa aggccctgtc 840
ttgcgaaatg catcttcacg aaaagaaaaac agaaaggtaa tggatttgccttctggac 900
tatgtatcgg aaaagccagg gattgttgc ttcaggcaaa aagacaatttgc 951

<210> 56
<211> 316
<212> PRT
<213> Pseudomonas syringae pv. delphinii

<400> 56
Val Val Glu Arg Thr Gly Thr Ala Tyr Arg Arg Arg Gly Ala Ala Cys
1 5 10 15

Ser Arg Ile Thr Ser Gln Asn Gln Val Arg Arg Arg Phe Gly Ile Thr
20 25 30

Val Asn Gln Met Gln Lys Thr Ser Leu Leu Ala Leu Ala Phe Ala Ile
35 40 45

Leu Ala Gly Cys Gly Gly Ser Gly Gln Ala Pro Gly Ser Asp Ile Gln
50 55 60

Gly Ala Gln Ala Glu Met Lys Thr Pro Ile Lys Val Asp Leu Asp Ala
65 70 75 80

Tyr Thr Ser Lys Lys Leu Asp Ala Val Leu Glu Ala Arg Ala Asn Lys

85	90	95
Ser Tyr Val Asn Lys Gly Gln Leu Ile Asp Leu Val Ser Gly Ala Phe		
100		110
Leu Gly Thr Pro Tyr Arg Ser Asn Met Leu Val Gly Thr Glu Glu Ile		
115	120	125
Pro Glu Gln Leu Val Ile Asp Phe Arg Gly Leu Asp Cys Phe Ala Tyr		
130	135	140
Leu Asp Tyr Val Glu Ala Leu Arg Arg Ser Thr Ser Gln Gln Asp Phe		
145	150	155
Val Arg Asn Leu Val Gln Val Arg Tyr Lys Gly Gly Asp Val Asp Phe		
165	170	175
Leu Asn Arg Lys His Phe Phe Thr Asp Trp Ala Tyr Gly Thr Thr His		
180	185	190
Pro Val Ala Asp Asp Ile Thr Thr Gln Ile Ser Pro Gly Ala Val Ser		
195	200	205
Val Arg Lys Arg Leu Asn Glu Arg Ala Lys Gly Lys Val Tyr Leu Pro		
210	215	220
Gly Leu Pro Val Val Glu Arg Ser Met Thr Tyr Ile Pro Ser Arg Leu		
225	230	235
Val Asp Ser Gln Val Val Ser His Leu Arg Thr Gly Asp Tyr Ile Gly		
245	250	255
Ile Tyr Thr Pro Leu Pro Gly Leu Asp Val Thr His Val Gly Phe Phe		
260	265	270
Ile Met Thr Asp Lys Gly Pro Val Leu Arg Asn Ala Ser Ser Arg Lys		
275	280	285
Glu Asn Arg Lys Val Met Asp Leu Pro Phe Leu Asp Tyr Val Ser Glu		
290	295	300
Lys Pro Gly Ile Val Val Phe Arg Ala Lys Asp Asn		
305	310	315

<210> 57
<211> 396
<212> DNA

<213> Pseudomonas syringae pv. delphinii

<400> 57

atgaaaaact catttgatct tcttgcac gggttggcga aagactacag catgccaat 60
ttgccgaaca agaaaacacga caatgaagt tattgcttca cattccagag cggcgtcgaa 120
gtaaacattt atcaggacga ctgtcgatgg gtgcatttct ccgcccacaat cgacaaattt 180
caagacgcca gcaatgacac gtcagccac gcacttcaac tgaacaattt cagtcttgg 240
aagcccttct tcacccttgg aatgaacgga gaaaaggtcg gcgtacttca cacacgcgtt 300
ccgttgattt aaatgaatac cgttggaaatg cgcaaggatc tcgaggactt gctcgatgt 360
gcaggcggca tcagagcgtc attcaagctc agttaa 396

<210> 58

<211> 131

<212> PRT

<213> Pseudomonas syringae pv. delphinii

<400> 58

Met Lys Asn Ser Phe Asp Leu Leu Val Asp Gly Leu Ala Lys Asp Tyr
1 5 10 15

Ser Met Pro Asn Leu Pro Asn Lys Lys His Asp Asn Glu Val Tyr Cys
20 25 30

Phe Thr Phe Gln Ser Gly Leu Glu Val Asn Ile Tyr Gln Asp Asp Cys
35 40 45

Arg Trp Val His Phe Ser Ala Thr Ile Gly Gln Phe Gln Asp Ala Ser
50 55 60

Asn Asp Thr Leu Ser His Ala Leu Gln Leu Asn Asn Phe Ser Leu Gly
65 70 75 80

Lys Pro Phe Phe Thr Phe Gly Met Asn Gly Glu Lys Val Gly Val Leu
85 90 95

His Thr Arg Val Pro Leu Ile Glu Met Asn Thr Val Glu Met Arg Lys
100 105 110

Val Phe Glu Asp Leu Leu Asp Val Ala Gly Gly Ile Arg Ala Thr Phe
115 120 125

Lys Leu Ser
130

<210> 59

<211> 648

<212> DNA

<213> Pseudomonas syringae pv. delphinii

<400> 59

atgagacta tacctggcac ctggcgct caccgatt atagctaat ttccagccca 60
cgaaatatgt ctggctgcc cacaccgagt caccgtattt gcggggaaac cctgacacct 120
attcatcagc tctctgccag ccagagagaa caattctga atactcatga ccccatgaga 180
aaactcagga ttaacaatga tacgccactg tacagaacaa ccgagaagcg tttatacag 240
gaaggcaaac tggccggcaa tccaaagtct attgcacgtg tcaacttgca cgaagaactg 300
cagcttaatc cgctcgccag tatttttaggg aacttaccc acgaggcaag cgcttacttt 360
ccgaaaagcg cccgcgctgc ghatctgaaa gacccttcat tgaatgtaat gacaggctct 420
cgggcaaaaa atgctattcg cggctacgct catgacgacc atgtggcggt caagatgcga 480
ctggcgact ttcttgaaaa aggccgcaag gtgtacgcgg acacttcattc agtcatttgc 540
ggcggagacg aggccgagcgc gctgatcggtt acattgccta aaggacaaaa agttccagtc 600
gagattatcc ctaccataa cgacaacacgc aataaaggca gaggctga 648

<210> 60

<211> 215

<212> PRT

<213> Pseudomonas syringae pv. delphinii

<400> 60

Met Ser Thr Ile Pro Gly Thr Ser Gly Ala His Pro Ile Tyr Ser Ser
1 5 10 15

Ile Ser Ser Pro Arg Asn Met Ser Gly Ser Pro Thr Pro Ser His Arg
20 25 30

Ile Gly Gly Glu Thr Leu Thr Ser Ile His Gln Leu Ser Ala Ser Gln
35 40 45

Arg Glu Gln Phe Leu Asn Thr His Asp Pro Met Arg Lys Leu Arg Ile
50 55 60

Asn Asn Asp Thr Pro Leu Tyr Arg Thr Thr Glu Lys Arg Phe Ile Gln
65 70 75 80

Glu Gly Lys Leu Ala Gly Asn Pro Lys Ser Ile Ala Arg Val Asn Leu
85 90 95

His Glu Glu Leu Gln Leu Asn Pro Leu Ala Ser Ile Leu Gly Asn Leu
100 105 110

Pro His Glu Ala Ser Ala Tyr Phe Pro Lys Ser Ala Arg Ala Ala Asp
115 120 125

Leu Lys Asp Pro Ser Leu Asn Val Met Thr Gly Ser Arg Ala Lys Asn

130	135	140	
Ala Ile Arg Gly Tyr Ala His Asp Asp His Val Ala Val Lys Met Arg			
145	150	155	160
Leu Gly Asp Phe Leu Glu Lys Gly Gly Lys Val Tyr Ala Asp Thr Ser			
165	170	175	
Ser Val Ile Asp Gly Gly Asp Glu Ala Ser Ala Leu Ile Val Thr Leu			
180	185	190	
Pro Lys Gly Gln Lys Val Pro Val Glu Ile Ile Pro Thr His Asn Asp			
195	200	205	
Asn Ser Asn Lys Gly Arg Gly			
210	215		

<210> 61
<211> 1128
<212> DNA
<213> *Pseudomonas syringae* pv. *syringae*

<400> 61
gtgaacccta tccatgcacg cttctccagc gtagaagcgc tcagacattc aaacgttgat 60
attcaggcaa tcaaatccga gggtcagttg gaagtcaacg gcaagcgtaa cgagattcgt 120
gcggccgcgtg acggctaat cgcggtcctc agacccgatc aacagtccaa agcagacaag 180
ttcttcaaag gcgcagcgc tcttatttgc ggacaaagcc agcgtgccca aatagccccag 240
gtactcaacg agaaaagcggc ggcagttcca cgcctggaca gaatgttggg cagacgcctc 300
gatctggaga agggcggaaag tagcgtgtg ggccgcgc tcaaggctgc cgacagccga 360
ctgacatcaa aacagacatt tgccagcttc cagcaatggg ctgaaaaagc tgaggcgctc 420
gggcgcgata ccgaaatcgg tatctacatg atctacaaga gggacacgcc agacacaacg 480
cctatgaatg cggcagagca agaacattac ctggaaacgc tacaggctct cgataacaag 540
aaaaaccta tcatacgccc gcagatccat gatgatcggg aagaggaaga gcttgatctg 600
ggccgataca tcgctgaaga cagaaatgcc agaaccggct tttttagaat ggttcctaaa 660
gaccaacgcg cacctgagac aaactcggg cgcattacca ttggtgttaca acotaaatat 720
ggagcgcagt tggccctcgc aatggcaacc ctgatggaca agcacaaatc tgtgacacaa 780
ggtaaagtgc tcggtcggc aaaatatggc cagcaactg actctgcctat tctttacata 840
aatgggtatc ttgcaaaagc agtaaaactg ggcgaaaagc tgaaaaagct gagcggtatac 900
cctcctgaag gattcgtcga acatacaccc ctaagcatgc agtcgacggg tctcggtt 960
tcttatgccg agtcgggttga agggcagcct tccagccacg gacaggcgag aacacacgtt 1020
atcatggatg ccttggaaagg ccagggcccc atggagaaca gactcaaaat ggcgctggca 1080
gaaagaggtt atgacccggaa aatccggcg ctcaggcgca gaaactgaa 1128

<210> 62
<211> 375
<212> PRT

<213> Pseudomonas syringae pv. syringae

<400> 62

Val Asn Pro Ile His Ala Arg Phe Ser Ser Val Glu Ala Leu Arg His
1 5 10 15

Ser Asn Val Asp Ile Gln Ala Ile Lys Ser Glu Gly Gln Leu Glu Val
20 25 30

Asn Gly Lys Arg Tyr Glu Ile Arg Ala Ala Asp Gly Ser Ile Ala
35 40 45

Val Leu Arg Pro Asp Gln Gln Ser Lys Ala Asp Lys Phe Phe Lys Gly
50 55 60

Ala Ala His Leu Ile Gly Gly Gln Ser Gln Arg Ala Gln Ile Ala Gln
65 70 75 80

Val Leu Asn Glu Lys Ala Ala Ala Val Pro Arg Leu Asp Arg Met Leu
85 90 95

Gly Arg Arg Phe Asp Leu Glu Lys Gly Gly Ser Ser Ala Val Gly Ala
100 105 110

Ala Ile Lys Ala Ala Asp Ser Arg Leu Thr Ser Lys Gln Thr Phe Ala
115 120 125

Ser Phe Gln Gln Trp Ala Glu Lys Ala Glu Ala Leu Gly Arg Asp Thr
130 135 140

Glu Ile Gly Ile Tyr Met Ile Tyr Lys Arg Asp Thr Pro Asp Thr Thr
145 150 155 160

Pro Met Asn Ala Ala Glu Gln Glu His Tyr Leu Glu Thr Leu Gln Ala
165 170 175

Leu Asp Asn Lys Lys Asn Leu Ile Ile Arg Pro Gln Ile His Asp Asp
180 185 190

Arg Glu Glu Glu Glu Leu Asp Leu Gly Arg Tyr Ile Ala Glu Asp Arg
195 200 205

Asn Ala Arg Thr Gly Phe Phe Arg Met Val Pro Lys Asp Gln Arg Ala
210 215 220

Pro Glu Thr Asn Ser Gly Arg Leu Thr Ile Gly Val Glu Pro Lys Tyr
225 230 235 240

Gly Ala Gln Leu Ala Leu Ala Met Ala Thr Leu Met Asp Lys His Lys			
245	250	255	
Ser Val Thr Gln Gly Lys Val Val Gly Pro Ala Lys Tyr Gly Gln Gln			
260	265	270	
Thr Asp Ser Ala Ile Leu Tyr Ile Asn Gly Asp Leu Ala Lys Ala Val			
275	280	285	
Lys Leu Gly Glu Lys Leu Lys Lys Leu Ser Gly Ile Pro Pro Glu Gly			
290	295	300	
Phe Val Glu His Thr Pro Leu Ser Met Gln Ser Thr Gly Leu Gly Leu			
305	310	315	320
Ser Tyr Ala Glu Ser Val Glu Gly Gln Pro Ser Ser His Gly Gln Ala			
325	330	335	
Arg Thr His Val Ile Met Asp Ala Leu Lys Gly Gln Gly Pro Met Glu			
340	345	350	
Asn Arg Leu Lys Met Ala Leu Ala Glu Arg Gly Tyr Asp Pro Glu Asn			
355	360	365	
Pro Ala Leu Arg Ala Arg Asn			
370	375		

<210> 63
 <211> 1149
 <212> DNA
 <213> Pseudomonas syringae pv. atrofaciens

<400> 63
 atgaaccgcg tacaaaacgcg tttctcta ac gtcaaggcac tttagacattc agaggtggat 60
 gtacaggagc tcaaaggcaca cggtcaaata gaagtgggtg gcaaatgcta cgacattcgc 120
 gcggctgcca ataacgacct gactgtccag cgttctgaca aacagatggc gatgagcaag 180
 ttttcaaaa aagcagggtt aagtgggagt tccggcagtc agtccgatca aattgcgcag 240
 gtactgaatg acaagcgcgg ctctccgtt ccccgctta tacgccaggg gcagacccat 300
 ctgggccgta tgcaattcaa catcgaagag gggcaaggca gttcggccgc cactgtccgtc 360
 cagaacagca ggctgccccaa tggccgcttg gtaaacagca gtattttgca atgggtcgaa 420
 aaggcgaaag ccaatggcag cacaagtacc agtgcctttt atcagatcta cgcaaaagaa 480
 ctcccgcgtg tagaactgct gccacgcact gagcaccggg cgtgtctggc gcatatgtat 540
 aagctgaacg gtaaggacgg tatcagtatt tggccgcagt ttctggatgg cgtgcgcggg 600
 ttgcagctaa aacatgacac aaaagtgttc atgatgaaca accccaaagc agcggacgag 660
 ttctacaaga tcgaacgttc gggcacgcaaa tttccggatg aggctgtcaa ggcgcgcctg 720
 acgataaatg tcaaaccctca attccagaag gccatggtcg acgcagcggcgt caggttacc 780
 gctgagcgtc acgatatcat tactgccaaa gtggcaggc tcgcaaaagat tggcacgatt 840

acagatgcag cggtttcta tgtaagcgga gattttccg ctgcgcagac acttgcaaa 900
gagttcagg cactgctccc tgacgatgct tttatcaatc atacgccagc tggaatgcaa 960
tccatggca agggctgtg ttacgccagc cgtacaccgc aggacaggac aagccacgga 1020
atgtcgccgc ccagcataat cgagtccgca ctggcagaca ccagcaggc gtcactggag 1080
aagaagctgc gcaatgctt caagagcgcc ggataacaatc ccgacacaaccc ggcattcagg 1140
ttggaatga 1149

<210> 64
<211> 382
<212> PRT
<213> *Pseudomonas syringae* pv. *atrofaciens*

<400> 64
Met Asn Pro Ile Gln Thr Arg Phe Ser Asn Val Glu Ala Leu Arg His
1 5 10 15

Ser Glu Val Asp Val Gln Glu Leu Lys Ala His Gly Gln Ile Glu Val
20 25 30

Gly Gly Lys Cys Tyr Asp Ile Arg Ala Ala Ala Asn Asn Asp Leu Thr
35 40 45

Val Gln Arg Ser Asp Lys Gln Met Ala Met Ser Lys Phe Phe Lys Lys
50 55 60

Ala Gly Leu Ser Gly Ser Ser Gly Ser Gln Ser Asp Gln Ile Ala Gln
65 70 75 80

Val Leu Asn Asp Lys Arg Gly Ser Ser Val Pro Arg Leu Ile Arg Gln
85 90 95

Gly Gln Thr His Leu Gly Arg Met Gln Phe Asn Ile Glu Glu Gly Gln
100 105 110

Gly Ser Ser Ala Ala Thr Ser Val Gln Asn Ser Arg Leu Pro Asn Gly
115 120 125

Arg Leu Val Asn Ser Ser Ile Leu Gln Trp Val Glu Lys Ala Lys Ala
130 135 140

Asn Gly Ser Thr Ser Thr Ser Ala Leu Tyr Gln Ile Tyr Ala Lys Glu
145 150 155 160

Leu Pro Arg Val Glu Leu Leu Pro Arg Thr Glu His Arg Ala Cys Leu
165 170 175

Ala His Met Tyr Lys Leu Asn Gly Lys Asp Gly Ile Ser Ile Trp Pro

180	185	190
Gln Phe Leu Asp Gly Val Arg Gly Leu Gln Leu Lys His Asp Thr Lys		
195	200	205
Val Phe Met Met Asn Asn Pro Lys Ala Ala Asp Glu Phe Tyr Lys Ile		
210	215	220
Glu Arg Ser Gly Thr Gln Phe Pro Asp Glu Ala Val Lys Ala Arg Leu		
225	230	235
Thr Ile Asn Val Lys Pro Gln Phe Gln Lys Ala Met Val Asp Ala Ala		
245	250	255
Val Arg Leu Thr Ala Glu Arg His Asp Ile Ile Thr Ala Lys Val Ala		
260	265	270
Gly Pro Ala Lys Ile Gly Thr Ile Thr Asp Ala Ala Val Phe Tyr Val		
275	280	285
Ser Gly Asp Phe Ser Ala Ala Gln Thr Leu Ala Lys Glu Leu Gln Ala		
290	295	300
Leu Leu Pro Asp Asp Ala Phe Ile Asn His Thr Pro Ala Gly Met Gln		
305	310	315
Ser Met Gly Lys Gly Leu Cys Tyr Ala Glu Arg Thr Pro Gln Asp Arg		
325	330	335
Thr Ser His Gly Met Ser Arg Ala Ser Ile Ile Glu Ser Ala Leu Ala		
340	345	350
Asp Thr Ser Arg Ser Ser Leu Glu Lys Lys Leu Arg Asn Ala Phe Lys		
355	360	365
Ser Ala Gly Tyr Asn Pro Asp Asn Pro Ala Phe Arg Leu Glu		
370	375	380

<210> 65

<211> 1464

<212> DNA

<213> *Pseudomonas syringae* pv. *tomato*

<400> 65

atgcacatca accaatccgc ccaacaaccg cctggcgttg caatggagag ttttcggaca 60
 gcttccgacg cgtcccttgc ttcgagttct gtgcggctcg tcagcactac ctctgtgccgc 120
 gatctacaag ctattaccga ttatctgaaa catcacgtgt tcgctgcgca caggtttcg 180

gtaataggct caccggatga gcgtgatgcc gctttgcac acaacgagca gatcgatgcg 240
ttggtagaga cacgcgccaa ccgcctgtac tccgaagggg agacccccgc aaccatgcc 300
gaaacattcg ccaaggcggaa aaagttcgac cgtttggcga cgaccgcata aagtgtttt 360
gagaacacgc catttgcgc tgcctcggt cttaactaca tgcagcctgc gatcaacaag 420
ggcgattggc tagcaacgcc gctcaagccg ctgaccccccgc tcatttcgg agcgctgtcg 480
ggagccatgg accaggtggg cacaaaaatg atggatcgta cgaggggtga tctgcattac 540
ctgagcattt cgccggacaa gttgcatgtat gcgatggccg tatcggtgaa gcgccactcg 600
cctgcgcctt gtcgacacagggt tgtggacatg gggattgcag tgcagacgtt ctggcgcta 660
aatgttgtgc gtaccgtatt ggctccagca cttagcgtcca gaccgtcggt gcaggggtgt 720
gttattttt qcgatctac ggcgggtggc ttgggtgcga atgcaggctt tggcgaccgc 780
atgctcagg tgcaatcgcg cgatcaactg cgtggggggg cattcgtaact tggcatgaaa 840
gataaagagc ccaaggccgc gttgagtgaa gaaactgatt ggcttgatgc ttacaaagcg 900
atcaagtcgg ccagctactc aggtgcggcg ctcaatgcgg gcaagcggat ggcggccctg 960
ccactggacg tcgcgaccga cgggctcaag gcggtgagaa gtctgggtc ggcaccaggc 1020
ctgacaaaaaa atggcctggc ctagccgggt ggttacgccc gggtaagtaa gttcagaaaa 1080
atggcgacga aaaatatcac tgattcggcg accaaggctg cggttagtca gctgagcaac 1140
ctgggtgggtt cggtaggcgt tttcgcagggc tggaccaccg ctggactggc gactgaccct 1200
gcgggtaaga aagccgagtc gtttatacag gataagggtga aatcgaccgc atctagtacc 1260
acaagctatg ttgccgacca gaccgtcaaa ctggcgaaaa cagtcaagga catgagcggg 1320
gaggcgatct ccagcaccgg tgccagctt cgcaactg tcaataacct gcgtcatcg 1380
tccgctccgg aagctgatat cgaagaaggt gggatttcgg cgtttctcg aagtgaaaca 1440
ccgtttcagc tcaggcggtt gtaa 1464

<210> 66

<211> 487

<212> PRT

<213> *Pseudomonas syringae* pv. *tomato*

<400> 66

Met	His	Ile	Asn	Gln	Ser	Ala	Gln	Gln	Pro	Pro	Gly	Val	Ala	Met	Glu
1									10					15	

Ser	Phe	Arg	Thr	Ala	Ser	Asp	Ala	Ser	Leu	Ala	Ser	Ser	Ser	Val	Arg
									25					30	

Ser	Val	Ser	Thr	Thr	Ser	Cys	Arg	Asp	Leu	Gln	Ala	Ile	Thr	Asp	Tyr
									35				40		45

Leu	Lys	His	His	Val	Phe	Ala	Ala	His	Arg	Phe	Ser	Val	Ile	Gly	Ser
									50				55		60

Pro	Asp	Glu	Arg	Asp	Ala	Ala	Leu	Ala	His	Asn	Glu	Gln	Ile	Asp	Ala
									65				70		75

Leu	Val	Glu	Thr	Arg	Ala	Asn	Arg	Leu	Tyr	Ser	Glu	Gly	Glu	Thr	Pro
									85				90		95

Ala	Thr	Ile	Ala	Glu	Thr	Phe	Ala	Lys	Ala	Glu	Lys	Phe	Asp	Arg	Leu
100							105						110		
Ala	Thr	Thr	Ala	Ser	Ser	Ala	Phe	Glu	Asn	Thr	Pro	Phe	Ala	Ala	Ala
115							120						125		
Ser	Val	Leu	Gln	Tyr	Met	Gln	Pro	Ala	Ile	Asn	Lys	Gly	Asp	Trp	Leu
130							135					140			
Ala	Thr	Pro	Leu	Lys	Pro	Leu	Thr	Pro	Leu	Ile	Ser	Gly	Ala	Leu	Ser
145							150				155		160		
Gly	Ala	Met	Asp	Gln	Val	Gly	Thr	Lys	Met	Met	Asp	Arg	Ala	Arg	Gly
							165				170		175		
Asp	Leu	His	Tyr	Leu	Ser	Thr	Ser	Pro	Asp	Lys	Leu	His	Asp	Ala	Met
							180				185		190		
Ala	Val	Ser	Val	Lys	Arg	His	Ser	Pro	Ala	Leu	Gly	Arg	Gln	Val	Val
							195				200		205		
Asp	Met	Gly	Ile	Ala	Val	Gln	Thr	Phe	Ser	Ala	Leu	Asn	Val	Val	Arg
							210				215		220		
Thr	Val	Leu	Ala	Pro	Ala	Leu	Ala	Ser	Arg	Pro	Ser	Val	Gln	Gly	Ala
225							230				235		240		
Val	Asp	Phe	Gly	Val	Ser	Thr	Ala	Gly	Gly	Leu	Val	Ala	Asn	Ala	Gly
							245				250		255		
Phe	Gly	Asp	Arg	Met	Leu	Ser	Val	Gln	Ser	Arg	Asp	Gln	Leu	Arg	Gly
							260				265		270		
Gly	Ala	Phe	Val	Leu	Gly	Met	Lys	Asp	Lys	Glu	Pro	Lys	Ala	Ala	Leu
							275				280		285		
Ser	Glu	Glu	Thr	Asp	Trp	Leu	Asp	Ala	Tyr	Lys	Ala	Ile	Lys	Ser	Ala
							290				295		300		
Ser	Tyr	Ser	Gly	Ala	Ala	Leu	Asn	Ala	Gly	Lys	Arg	Met	Ala	Gly	Leu
305							310				315		320		
Pro	Leu	Asp	Val	Ala	Thr	Asp	Gly	Leu	Lys	Ala	Val	Arg	Ser	Leu	Val
							325				330		335		
Ser	Ala	Thr	Ser	Leu	Thr	Lys	Asn	Gly	Leu	Ala	Leu	Ala	Gly	Gly	Tyr
							340				345		350		

Ala Gly Val Ser Lys Leu Gln Lys Met Ala Thr Lys Asn Ile Thr Asp
355 360 365

Ser Ala Thr Lys Ala Ala Val Ser Gln Leu Ser Asn Leu Val Gly Ser
370 375 380

Val Gly Val Phe Ala Gly Trp Thr Thr Ala Gly Leu Ala Thr Asp Pro
385 390 395 400

Ala Val Lys Lys Ala Glu Ser Phe Ile Gln Asp Lys Val Lys Ser Thr
405 410 415

Ala Ser Ser Thr Thr Ser Tyr Val Ala Asp Gln Thr Val Lys Leu Ala
420 425 430

Lys Thr Val Lys Asp Met Ser Gly Glu Ala Ile Ser Ser Thr Gly Ala
435 440 445

Ser Leu Arg Ser Thr Val Asn Asn Leu Arg His Arg Ser Ala Pro Glu
450 455 460

Ala Asp Ile Glu Glu Gly Gly Ile Ser Ala Phe Ser Arg Ser Glu Thr
465 470 475 480

Pro Phe Gln Leu Arg Arg Leu
485

<210> 67

<211> 88

<212> DNA

<213> Pseudomonas syringae pv. tomato

<400> 67

gccctgatgg cggaatttgtt agacgcggcg gattcaaaat ccgtttcga aagaagtggg 60
agttcgattc tccctcgggg caccacca 88

<210> 68

<211> 85

<212> DNA

<213> Pseudomonas syringae pv. syringae

<400> 68

gccctgatgg cggaatttgtt agacgcggcg gattcaaaat ccgtttcga aagaagtggg 60
agttcgattc tccctcgggg cacca 85

<210> 69
 <211> 1065
 <212> DNA
 <213> Pseudomonas syringae pv. tomato

<400> 69
 atgcgcgtcg ctgactttac cttcgaactc cccgattccc tgattgctcg tcacccgttg 60
 gccgagcgtc gcagcagtgc tctgttggacc cttgatggc cgacgggcgc gctggcacat 120
 cgtcaattca ccgatttgct cgagcatttg cgctcgggcgc acttcatgtt gttcaacaat 180
 accccgtgtca ttccccacg tttgttcggg cagaaggcgt ccggcggcaa gctggagatt 240
 ctggcgtcgc gcgtgctgga cagccatcgt gtgctggcgc acgtgcgtgc cagcaagtgc 300
 ccaaagccgg gctcgatcgtat cctgatcgat ggcggcggcgg aggccgagat gggtggcgg 360
 catgacgcgc tgttcgagtt ggcgtttgcc gaagaagtgc tgccgttgc ggatcggtc 420
 gcccatatgc cggtgcctcc ttatatacgac cggccggacg aagggtccga cccgcgacgt 480
 tatcagacccg tttacgccc ggcgcgggt gctgtggcgg cggccactgc cggcctgcgt 540
 ttcgaccagc cggtgatgga agcaattgcc gccaaggcgc tcgagactgc ttttgtact 600
 ctgcacgtcg ggcgggtac gttccagccg gtgcgtgtcg agcagatcga agatcaccac 660
 atgcacagcg aatggctgga agtcagccag gacgtggcgt atgcgtggc ggcgtgccgt 720
 ggcggggcgg ggcgggtgat tgcggcggg accaccagcg tgcgttcgt ggagagtggc 780
 ggcgtgatg gccagttgaa gccgttagc ggcgacaccc acatcttcat ctatccgggg 840
 cggccgttc atgtggcgtga tgccctgggt actaatttc atttgcctga atccacgctg 900
 ttgatgttgg tttcggcggtt cccggattt cccgaaacca tggcggccta cggcggcggcc 960
 atcgaacacg ggtaccgctt cttcagttac ggtgatgcca tggtcatcac cccgaatccc 1020
 ggcggacgg cccacacgga atcggcacca gaggatcacy catga 1065

<210> 70
 <211> 354
 <212> PRT
 <213> Pseudomonas syringae pv. tomato

<400> 70
 Met Arg Val Ala Asp Phe Thr Phe Glu Leu Pro Asp Ser Leu Ile Ala
 1 5 10 15

Arg	His	Pro	Leu	Ala	Glu	Arg	Arg	Ser	Ser	Arg	Leu	Leu	Thr	Leu	Asp
20								25						30	

Gly	Pro	Thr	Gly	Ala	Leu	Ala	His	Arg	Gln	Phe	Thr	Asp	Leu	Leu	Glu
35							40						45		

His	Leu	Arg	Ser	Gly	Asp	Leu	Met	Val	Phe	Asn	Asn	Thr	Arg	Val	Ile
50					55					60					

Pro	Ala	Arg	Leu	Phe	Gly	Gln	Lys	Ala	Ser	Gly	Gly	Lys	Leu	Glu	Ile
65				70					75				80		

Leu Val Glu Arg Val Leu Asp Ser His Arg Val Leu Ala His Val Arg

85	90	95
Ala Ser Lys Ser Pro Lys Pro Gly Ser Ser Ile Leu Ile Asp Gly Gly		
100	105	110
Gly Glu Ala Glu Met Val Ala Arg His Asp Ala Leu Phe Glu Leu Arg		
115	120	125
Phe Ala Glu Glu Val Leu Pro Leu Leu Asp Arg Val Gly His Met Pro		
130	135	140
Leu Pro Pro Tyr Ile Asp Arg Pro Asp Glu Gly Ala Asp Arg Glu Arg		
145	150	155
Tyr Gln Thr Val Tyr Ala Gln Arg Ala Gly Ala Val Ala Ala Pro Thr		
165	170	175
Ala Gly Leu His Phe Asp Gln Pro Leu Met Glu Ala Ile Ala Ala Lys		
180	185	190
Gly Val Glu Thr Ala Phe Val Thr Leu His Val Gly Ala Gly Thr Phe		
195	200	205
Gln Pro Val Arg Val Glu Gln Ile Glu Asp His His Met His Ser Glu		
210	215	220
Trp Leu Glu Val Ser Gln Asp Val Val Asp Ala Val Ala Ala Cys Arg		
225	230	235
Ala Arg Gly Gly Arg Val Ile Ala Val Gly Thr Thr Ser Val Arg Ser		
245	250	255
Leu Glu Ser Ala Ala Arg Asp Gly Gln Leu Lys Pro Phe Ser Gly Asp		
260	265	270
Thr Asp Ile Phe Ile Tyr Pro Gly Arg Pro Phe His Val Val Asp Ala		
275	280	285
Leu Val Thr Asn Phe His Leu Pro Glu Ser Thr Leu Leu Met Leu Val		
290	295	300
Ser Ala Phe Ala Gly Tyr Pro Glu Thr Met Ala Ala Tyr Ala Ala Ala		
305	310	315
Ile Glu His Gly Tyr Arg Phe Phe Ser Tyr Gly Asp Ala Met Phe Ile		
325	330	335
Thr Arg Asn Pro Ala Pro Thr Ala Pro Gln Glu Ser Ala Pro Glu Asp		

340

345

350

His Ala

<210> 71
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 71
atgactcgag gcgtggattc aggcaaat

28

<210> 72
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 72
atgagaattc tgccgccgct ttctcggt

28

<210> 73
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 73
cgctctagac caaggactgc

20

<210> 74
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 74
ccagaagctt ctgttttga gtc 23

<210> 75
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 75
agttaggatcc tgaaatgtag gggcccg 28

<210> 76
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 76
agtaaaagctt atgatgctgt ttccagta 28

<210> 77
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 77
agttaggatcc tctcgaagga atggagca 28

<210> 78
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 78
agtaaaagctt cgtgaagatg catttcgc 28

<210> 79
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 79
agttaggatcc tagtcaactga tcgaacgt 28

<210> 80
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 80
agtactcgag ccacgaaata acacggta 28

<210> 81
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 81
agttaggatcc caggactgcc ttccagcg 28

<210> 82
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 82
agtactcgag cagagcggcg tccgtggc 28

<210> 83
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 83
agtaggatcc agaatttgtt aagaaaatc 28

<210> 84
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 84
agtaaagctt tgcgctgtta actcatcg 28

<210> 85
<211> 82
<212> DNA
<213> Pseudomonas syringae pv. tomato

<400> 85
ggggcaccac cattgagaaa agaccttcaa attcaaggtc tttttttcg tctggtgaa 60
agtggctga ctgaggctgc ga 82

<210> 86
<211> 82
<212> DNA
<213> Pseudomonas syringae pv. syringae

<400> 86
ggggcaccac atagcagtat ccagagggtcc caaccagccc cgcaacaccca gataaaccgg 60
cccacgagcc gtttttttg tg 82

<210> 87

<211> 81

<212> DNA

<213> Pseudomonas syringae pv. syringae

<400> 87

ggggcaccac cttaaaaaaa gacctgaaa ttcaaggctt ttttttcgt ctggtgaaa 60
gtgccttgcat ccaatccctcg c 81

<210> 88

<211> 82

<212> DNA

<213> Pseudomonas syringae pv. tomato

<400> 88

ccccgggcgt gacgctgccc gggcccccac atttcagtca atcaatgcgc cttcgcaatc 60
ccgaactgat caagcacccgg at 82

<210> 89

<211> 82

<212> DNA

<213> Pseudomonas syringae pv. syringae

<400> 89

gaaggcttag cattcagggc gtctgagccg actcaattca atcaatgcgc cttgtcaatc 60
ccgaactgat ccagcacccgg gt 82

<210> 90

<211> 82

<212> DNA

<213> Pseudomonas syringae pv. syringae

<400> 90

gaggaagagg cttaaaaaaag agttcaacct cttccctgct atcaatgcgc cctgtcaatc 60
ccgaactgat ccagcacccgg gt 82

<210> 91

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: human
immunodeficiency virus TAT protein, transduction
domain

<400> 91
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
1 5 10