Face Social Traits and Political Election Analysis by SVM

STAT 231

Vaishnavi Ravindran | UID: 805227216

Part 1: Face Social Traits Classification (or Regression)

1.1 **CLASSIFICATION BY LANDMARKS** OBJECTIVE:

In this part of the project, we train 14 SVRs- one for each social attribute (*Old, Masculine, Baby-faced, Competent, Attractive, Energetic, Well-groomed, Intelligent, Honest, Generous, Trustworthy, Confident, Rich, Dominant*). The features to be used are only landmarks.

OBSERVATIONS:

- 1. A split of the data set was done to get train and test sets. The split ratio was 9:1 (respectively).
- 2. For each of the 14 models, k-fold cross validation was done with k=5 to find the best SVM parameters. The parameters that were tuned here were: C, Gamma, and epsilon.
- 3. With the best parameters chosen, we can see that each model does better than chance. In fact we can achieve a test accuracy and test precision above 55% for all the models.

RESULTS:

Tabulated results:

Table 1: The svm parameters that were hyper-tuned for 14 models using landmarks as features:

Param	Model 1	Mod	Mode	Model 4	Model 5	Mod	Mod	Mod	Mode	Model 10	Mod	Mod	Model 13	Mode
eter		el 2	13			el 6	el 7	el 8	19		el	el		1 14
											11	12		
C	128	32	10	8	0.1	32	1000	32	1	1024	32	32	64	10
Gamm	0.000244140625	0.01	0.005	0.0001220703	0.1	0.01	1	0.01	0.01	1.52587890625e-	0.01	0.01	3.0517578125e-	0.001
a				125						05			05	
Epsilo	0.001953125	0.1	0.1	0.03125	0.1	0.1	0.1	0.1	0.001	0.015625	0.1	0.1	0.0078125	0.1
n														

Table 2: Average Train and test accuracies for 14 models using landmarks as features:

Metric	Model 1	Model 2	Model 3	Model 4	Model 5	Mod el 6	Mod el 7	Mod el 8	Mod el 9	Model 10	Model 11	Mod el 12	Model 13	Mode 1 14
Average Training accuracy	0.6870	0.7755	0.7482	0.61224	0.6802 72	0.825 3968	0.843 537	0.768 7074	0.70 521 5	0.68707	0.77097	0.77 324 2	0.639455	0.637 188
Average Test accuracy	0.6	0.62	0.58	0.56	0.68	0.72	0.56	0.64	0.56	0.64	0.62	0.6	0.56	0.56

Table 3: Average Train and test precisions for 14 models using landmarks as features:

Metric	Model 1	Mod	Mode	Model 4	Model 5	Mod	Mod	Mod	Mod	Model 10	Model 11	Mod	Model 13	Mode
		el 2	13			el 6	el 7	el 8	el 9			el		1 14
												12		
Average	0.6260	0.71	0.698	0.56916	0.601683	0.77	0.82	0.69	0.65	0.63951	0.716455	0.68	0.59438775	0.578
Training		533	6			035	5250	792	811			458		94
precision		7				603	3	5				7		
Average Test	0.5052	0.51	0.592	0.569093	0.5907246	0.62	0.45	0.63	0.57	0.58580	0.61168	0.62	0.533333	0.601
precision		63	9			393	6363	682	75			095		78
-						19		5						

Table 4: Average Train and test MSE for 14 models using landmarks as features:

Metric	Model 1	Mod el 2	Mode 13	Model 4	Model 5	Mod el 6	Mod el 7	Mod el 8	Mod el 9	Model 10	Model 11	Mod el	Model 13	Mode 114
Average Training mse	0.15131	0.06 91	0.093 69	0.066756	0.099228	0.04 128 8	0.00 8399	0.03 893 337	0.04 984 4	0.042385	0.03256510	0.04 560	0.067162	0.075 583
Average Test mse	0.2193	0.10 46	0.150 7	0.063934	0.133773	0.06 732 29	0.09 4299 2	0.05 700 4	0.06	0.05244	0.056574	0.06 908	0.0642579	0.088 633

Graphs:

Fig 1. Average train and test accuracies for poor features for 14 models:

Fig 2. Average train and test precisions for poor features for 14 models:

Fig 3. Average train and test MSE for poor features for 14 models:

1.2 CLASSIFICATION BY RICH FEATURES OBJECTIVE:

In this part of the project, we train 14 SVRs- one for each social attribute (*Old, Masculine, Baby-faced, Competent, Attractive, Energetic, Well-groomed, Intelligent, Honest, Generous, Trustworthy, Confident, Rich, Dominant*). The features to be used are both landmarks and hog features.

OBSERVATIONS:

- 1. The hog features are extracted for the images using the following configurations:
 - Number of bins: 32
 - pixels_per_cell=(16, 16),
 - cells per block=(1, 1)
- 2. A split of the data set was done to get train and test sets. The split ratio was 9:1 (respectively).
- 3. For each of the 14 models, k-fold cross validation was done with k= 5 to find the best SVM parameters. The parameters that were tuned here were: C, Gamma, and epsilon.
- 4. With the best parameters chosen, we can see that each model does better than chance. In fact we can achieve a test accuracy and test precision above 55% for all the models.
- 5. We perform a comparison using the accuracies and precisions between the poor features (only landmarks) and the rich features (landmarks+hog), and observe that the models trained using rich features perform better.

RESULTS:

Tabulated results:

Table 5: The svm parameters that were hyper-tuned for 14 models using landmarks and hog as features:

Parameter	Model 1	Model 2	Model 3	Model 4	Model 5	Model	Model	Model						
						6	7	8	9	10	11	12	13	14
C	1024	4	16	2	32.0	32	32.0	32.0	32.0	32.0	32.0	32.0	1	8
Gamma	9.536743164	0.00048828	0.00012207	0.00048	3.814697265	3.8146	3.8146	3.8146	3.8146	3.8146	3.8146	3.8146	0.001	0.0004
	0625e-07	125	03125	828125	625e-06	97265	97265	97265	97265	972656	97265	97265		88281
						625e-	625e-	625e-	625e-	25e-06	625e-	625e-		25
						06	06	06	06		06	06		
Epsilon	0.125	0.015625	0.00390625	0.0625	0.00390625	0.0039	0.0039	0.0039	0.0039	0.0039	0.0039	0.0039	0.1	0.0156
						0625	0625	0625	0625	0625	0625	0625		25

Table 6: Average Train and test accuracies for 14 models using landmarks and hog as features:

Metric	Model 1	Model 2	Model 3	Model 4	Mo	Mod	Mod	Mod	Mod	Model 10	Model 11	Mod	Model 13	Mode
					del	el 6	el 7	el 8	el 9			el		1 14
					5							12		
Average	0.88662	0.990929	0.997732	0.87074	0.84	0.91	0.92	0.94	0.91	0.9342403	0.913832	0.88	0.8458049	0.76
Training				8	807	156	0634	557	609			435		
accuracy							9		9			3		
Average Test	0.68	0.68	0.66	0.56	0.68	0.78	0.7	0.74	0.6	0.66	0.7	0.66	0.58	0.76
accuracy														

Table 7: Average Train and test precisions for 14 models using landmarks and hog as features:

Metric	Model 1	Mod el 2	Mode 13	Model 4	Model 5	Mod el 6	Mod el 7	Mod el 8	Mod el 9	Model 10	Model 11	Mod el	Model 13	Mode 114
												12		
Average	0.8423298	0.98	0.997	0.82271	0.78571	0.87	0.89	0.92	0.88	0.90266	0.87521532	0.84	0.792303	0.965
Training		864	842			105	368	616	08			412		5
precision		17				3						03		
Average Test	0.569155	0.56	0.641	0.57116	0.5882	0.72	0.58	0.66	0.59	0.598823	0.6294117	0.51	0.548	0.778
precision		409	538			140	466	5	428			761		5714
		09				3						90		

Table 8: Average Train and test MSE for 14 models using landmarks and hog as features:

Metric	Model 1	Mod el 2	Mode 13	Model 4	Model 5	Mod el 6	Mod el 7	Mod el 8	Mod el 9	Model 10	Model 11	Mod el 12	Model 13	Mode 114
Average Training mse	0.023614	0.00 090 810	0.000 384	0.00490	0.07279	0.05 902 9	0.04 7696	0.03 51	0.03 318	0.0313	0.036079	0.05 025	0.009905	0.000 238
Average Test mse	0.1642350	0.09 469 847 54	0.125 40	0.05053	0.12445	0.09 831 0	0.07 7856	0.06 97	0.06 037	0.05049	0.047166	0.07 15	0.0513261	0.072 95

Graphs:

Fig 4. Average train and test accuracies for rich features for 14 models:

Fig 5. Average train and test precisions for rich features for 14 models:

Fig 6. Average train and test MSE for rich features for 14 models:

We now compare the accuracies and precisions between the poor features (only landmarks) and the rich features (landmarks+hog):

Fig 7. Comparison of average train and test accuracies between poor and rich features for 14 models:

Fig 8. Comparison of average train and test precisions between poor and rich features for 14 models:

Part 2: Election Outcome Prediction

2.1 DIRECT PREDICTION BY RICH FEATURES OBJECTIVE:

In this part of the project, we train 2 rank syms to predict the election outcome for senators and governors. The features used here are both landmarks and hog features of the senators and governors respectively.

OBSERVATIONS:

1. Rank SVM is used for the prediction. The formula for a rank svm is given by :

$$\begin{aligned} & \text{Minimize}: \ ^{1}\!\!/_{2} \mid \mid \! w \mid \mid^{2}_{2} + C \sum \zeta_{i,j} \\ & \text{Subject to: } w^{t} f(I_{i}) \geq w^{t} f(I_{j}) +_{1} - \zeta_{i,j} \\ & \zeta_{i,j} \geq o, \text{ for all } (i,j) \in D \end{aligned}$$

2. A linear sym can be used for rank rym using the following trick:

- 3. For both the models, k-fold cross validation was done with k= 5 to find the best SVM parameters. The parameters that were tuned here were: C.
- 4. With the best parameters chosen, we can see that each model does better than chance. In fact we can achieve a test accuracy above 55% for both the models.

RESULTS:

Table 9: Average Train and test accuracies for governors and senator models using landmarks and hog as features:

Metric	Governors	Senators
Average Training	0.931818181 8181818	0.981818181818 1818
Average Test accuracy	0.583333333 3333334	0.666666666666666666666666666666666666

Table 10: Best parameter values for governors and senator models chosen after k-fold cross validation:

Paramter	Governors	Senators
'C'	1e-09	1

2.2 PREDICTION BY FACE SOCIAL TRAITS

OBJECTIVE:

In this part of the project, we use two-layer-model in which we first project each facial image in a 14-dimensional attribute space and second perform binary classification of the election outcome in the obtained feature space. We use the 14 svrs trained in 1.2 to get the 14 features for each governors and senators and then then train 2 linear svms to predict the election outcome

OBSERVATIONS:

- 1. Rank SVM is used for the prediction.
- 2. For both the models, k-fold cross validation was done with k= 5 to find the best SVM parameters. The parameters that were tuned here were: C.
- 3. With the best parameters chosen, we can see that each model does better than chance. In fact we can achieve a test accuracy above 55% for both the models.
- 4. Comparing the test accuracies between the direction prediction (using rich features of hog+landmarks) in 2.1 and the prediction using the 14 attributes in 2.2, we see that 2.2 does better than the direct features since we are use a two-layer model here.

RESULTS:

Table 11: Average Train and test accuracies for governors and senator models using the 14 social attributes as features:

Metric	Governors	Senators
Average Training accuracy	0.68	0.7115384615384616

Average	0.66666666	0.6666666666666666666666666666666666666
Test	66666666	
accuracy		

Table 12: Best parameter values for governors and senator models chosen after k-fold cross validation:

Paramter	Governors	Senators
'C'	1	1000.0

Table 13: Comparison of average test accuracies with direct features predicted in 2.1:

Model	Test accuracy – direct using hog+landmarks features (2.1)	Test accuracy – 14 features in 2.2
Governor	0.5833333333333334	0.6666666666666666
Senator	0.6666666666666666666666666666666666666	0.666666666666666

4.3 Analysis of Results

OBJECTIVE:

In this part of the project, we show the correlations between the facial attributes and the election outcomes.

OBSERVATIONS:

- 1. We calculate the correlation coefficient between the absolute values of the voting share differences and the 14 features that were used in 2.2 to predict the election outcomes.
- 2. From the radar plot shown below we can see that, Energetic, Well-groomed, Masculine, Intelligent, and Rich lead to electoral success (positive correlation). Whereas the attributes, Old, baby-faced, attractive, Generous, and honest lead to negative election results (negative correlation).

(Please scroll to the next page)

Fig 9. Radar plot of correlation co-efficient r

Table 14: values of the correlation-coefficient for senator and governor.

Attribute	Senator	Governor
Old	-0.026074494	-0.112037946
Masculine	0.139274805	0.147386306
Baby-faced	-0.064274445	-0.155340548
Competent	0.092779132	0.071235376
Attractive	-0.007684438	-0.002586516
Energetic	0.124771796	0.1843895
Well-	0.131028093	0.348308024
groomed		
Intelligent	0.145914859	0.157924263
Honest	-0.091647045	-0.148528075
Generous	-0.091647045	-0.068587209
Trustworthy	-0.041958291	-0.064920471
Confident	0.120578215	0.180556404
Rich	0.113544316	0.167415552
Dominant	0.021165352	0.059738813