

Powertrain Calibration Optimisation

Future Trends In Calibration

What is the future for calibration?

Powertrain Calibration Optimisation

Powertrain Calibration Optimisation

Trends in the Calibration Process (1)

Improving engine test efficiency

- Integrating prior knowledge into the DoE process (SAE 2004-01-0139)
 - Bayesian approaches
- Model (physical) based calibration
- Taking data more efficiently
 - Test path design
 - Using transient tests
 - Using reference models

More test? More significance.

The Future

- Use of transient tests to rapidly estimate steady-state engine responses.
- Models running at the same time as testing (online) are used to;
 - Compensate for test system dynamics.
 - Determine optimal test path and establish test control.
 - Estimate system steady-state responses.
- MATEC outputs feed into existing calibration process.
 - No additional post processing
 - Little increase in operator skill requirement

Test

Data

The Future

- Significantly reduced test time.
- More information about the system.
 - Additional system states achievable.
 - Dynamic models for optimisation.
 - Required for characterisation of discontinuities i.e. VDE.
- Improved data efficiency
 - Data is collected from key-on.
 - More data is taken where needed, less where not.
 - Little/no stabilisation time.
- Data produced is more steady-state
 - Traditional steady-state tests are not undertaken in steady-state!
 - More repeatable data.

Ability to extend characterisation to areas of the operating space not previously possible.

Trends in the Calibration Process (3)

Widening the scope of the test programme

- Increased 'calibration' space through RDE
- Transient behaviour needs to be considered more carefully

An integrated approach to calibration and control

- Deliberate focus on calibration friendly control
- Multi-variable control
- More feedback

Trends in the Calibration Process (2)

Optimisation in real time in the vehicle

- Adaptive calibration adaptation of existing calibration
 - Model predictive control
- Self-calibration / learning control birthing test for engines
 - Issues for certification?
 - How to initialise the system?
 - Machine learning opportunities

Trends in the Calibration Process (4)

- Better understanding of emissions generation
 - Particulate formation and evolution
 - Use of surrogate models in development
- Use of better measurement technologies in the lab (and on vehicle)
 - Test cell observer use
 - More capable sensors
 - Fast response
 - Optical techniques
- System level (dynamic) optimisation
 - Model based optimisation (Mobeo type concepts)
 - Working across the normal system boundaries to get better overall behaviour

Conclusions

- Global CO2 & toxic emissions legislation & rapid development of Electrified, Autonomous & Connected vehicles will drive major technological changes & increasing complexity including Calibration
- This presents challenges for the containability of development costs hence need for improved Development Processes
- Calibration Techniques
 - New technologies will require optimisation requiring similar approaches to emissions DOE techniques learned on course
 - Inevitably more automated processes will be introduced over the coming years to cope with the growth in technical demands and world-wide markets
- The key role of the engine calibrator is assured for many decades to come and the some of the products you'll be working on will be pretty amazing.