Discrete Maths - 2017 Exam

01 - (a)

$$f: [-2, 2] \rightarrow [-15, 1]$$

 $f(x) = x^2 + 3x - 10 \text{ for all } x [-2, 2]$

Injective?

No since for f to be injective each input must map to a **unique** output – if $f(x) = f(y) \Rightarrow x = y$ Whereas this is not the case.

$$- f(0) = -10$$

 $- f(-1) = -10$

Surjective?

No since for f to be surjective it must **map to all elements in the codomain** - [-15, 1]. This is not the case as there does not exist an x that maps to -15.

Q1 - (b)

Let Q denote the relation on the set Z of itegers, where integers x and y satisfy x Q y if and only if

$$x - y = (x - y)(x + 2y)$$

Reflexive?

For a relation to be reflexive, all x must satisfy x Q x.

This is true for Q since (x - x) will always be 0 and the product of 0 is always 0.

Symmetric?

For a relation to be symmetric, all x and y must satisfy x Q y = y Q x.

The relation does not hold for x Q y

The relation also does not hold for y Q x

Since both are false, the false relation holds and the relation Q is therefore transitive.

x Q y	y Q x	(x Q y) ^ (y Q x)	\rightarrow	Symmetric
F	F	F		TRUE

Transitive?

For a relation to be transitive for all x, y and z if x Q y and y Q z then x \mathbf{Q} z.

The relation does not hold for x Q y

The relation also does not hold for y Q z

Therefore the relation for x Q z also does not hold

x Q y	y Q z	$(x Q y) ^ (y Q z)$	\rightarrow	Transitive
F	F	F		TRUE

Anti-Symmetric?

For a relation to be anti-symmetric, for all x and y if x Q y and y Q x then $\mathbf{x} = \mathbf{y}$. This is true for Q since the only time x Q y = y Q x holds is in the case that x = y.

Equivalence Relation?

For a relation to be an equivalence relation, the relation must be **reflexive**, **symmetric and transitive**. As shown above, this is not the case therefore the relation Q is not an equivalence relation.

Partial Order?

For a relation to be a partial order, the relation must be **reflexive**, **anti-symmetric and transitive**. As shown above, the relation Q is not transitive and is therefore not a partial order.

Q2

Let $A = \{3^p \mid p \sim Z\}$ with the operation of multiplication.

a) Is (A, .) a Semigroup?

A Semigroup is a set endowed with an associative binary operation.

Since multiplication is an associative binary operation, the set A is therefore a semigroup.

b) Is (A, .) a Monoid?

A monoid is a set endowed with an associative binary operation * that has an identity element e.

An identity element is an element e for the binary operation * s.t

$$e * x = x * e = x$$

The set A has an identity element 1, so that for all x * 1 = x. Therefore the set A can be considered a monoid since it is a semigroup, and it contains an identity element e.

c) Is (A, .) a Group?

A group is a set in which every element is invertable.

Every element of A is invertable through logarithmic such as $(3^p)^{-1} = \log 3p$. Therefore the set A can be considered to be a Group defined under the notation:

$$(A, *, 1)$$

d) Is A finite, countably infitite or uncountably infinite?

The set A is definitely not finite as it is defined under the set of Integers (Z) which in themselves are infinite.

The set A can be considered countably infinite as it can be shown that all of the elements of A can be represented as a 1-1 correspondence with the set of Natural Numbers (N). Even negative rationals produced as a result of p being < 1 can be represented as some form of the natural numbers. This can be shown using Cantor's Zig Zag as found here https://bit.ly/2H6q7CV.

<u>03</u>

Let L be the language over the alphabet $A = \{a, l, p\}$ consisting of all words containing at least one of the substrings ala or pap.

a) Draw a Finite State Acceptor for the language L.

-Define States, Starting States, Finishing States, And Transition Table (See Below)

Example: Build a deterministic finite state acceptor for the regular language $L = \{0^m 1^n \mid m, n \in \mathbb{N}, m \geq 0, n \geq 0\}$

Accepting states in this examples: i, s_1, s_2

Non accepting states: s_3

Start states: i

Here
$$S = \{i, s_1, s_2, s_3\}$$
 $F = \{i, s_1, s_2\}$ $A = \{0, 1\}$ $t: S \times A \rightarrow S$ $t(i, 0) = s_1$ $t(i, 1) = s_2$ $t(s_1, 0) = s_1$ $t(s_1, 1) = s_2$ $t(s_2, 0) = s_3$ $t(s_2, 1) = s_2$

Let's process some strings:

b) Devise a regular grammar in normal form that generates the language L. Specify the start symbol, the non-terminals and all the production rules.

A context-free grammar $(V, A, \le s >, P)$ is called a regular grammar if every production rule in P is of one of the three forms:

- $(i) < A > \rightarrow b < B >$
- $(ii) < A > \rightarrow b$
- (iii) $\langle A \rangle \rightarrow \varepsilon$

Start Symbol - <s>

Non-Terminals - <A> and

Production Rules

- $1. <S> \rightarrow a <A>$
- $2. <S> \rightarrow p $
- $3. < S \rightarrow \text{empty worod}$
- $4. <A> \rightarrow 1 <S>$
- $5. <A> \rightarrow \text{ empty word}$
- $6. \rightarrow a <S>$
- 7. $\langle B \rangle \rightarrow$ empty word
- c) Write down a regular expression that gives the language L and justify your answer.

$$A = \{ a, l, p \}$$

$$L = A^* \circ [((ala)^+ | (pap)^*) | ((ala)^* | (pap)^+)] \circ A^*$$

being concatenation

d) Consider the language L' over the alphabet $A = \{a, l, p\}$ consisting of all words of the form $a^m l^{2m} p^m$ for $m \in N^*$. Use the pumping lemma to show the language L' is not regular.

If L is a regular language, then there is a number p (the pumping length) where if w is any word in L of length at least p, then w = xuy for words x, y, and u satisfying:

Assume L is regular. Choose a string in terms of P that is easy to analyse. Let this string be:

$$w = a^P l^{2P} p^P$$

Now break w into three components, x, u, and y.

If $|xu| \le p$, then xu must consist of all a's as the first P characters in w. Also if |u| > 0, we must conclude $u = a^k$ for some k 0.

Therefore by the pumping lemma for all n, xu^ny . By choosing n=2, we obtain the string $a^ql^{2p}p^p$ with q>P. This string cannot be in L. Therefore we have found a contradiction and L is not regular.

- 1. |u| > 0, the length of u is positive;
- 2. $|xu| \leq p$;
- 3. $xu^n y \in L \ \forall \ n \geq 0$.

a)

i. What is meant by saying that a graph is complete?

A <u>complete graph</u> is a graph containing the <u>highest number of edges possible</u> for its given set of vertices.

ii. What is meant by saying a graph is regular?

A <u>regular graph</u> is a graph where <u>every vertex has the same degree</u>. A graph is considered to be k-regular if every vertex has a degree of k.

iii. What is the formula that relates the number of vertices of a tree with its number of edges?

The formula is as follows:

$$\#V = 2 * \#E$$

iv. What is a spanning tree of a graph (V, E)?

A <u>spanning tree</u> of a graph (V, E) is a subgraph that is a tree which <u>includes all of the vertices</u> of V with the <u>minimum possible number of edges.</u>

b) Let (V, E) be the graph with

$$V = a, b, c, d, e, f \text{ and } g.$$

 $E = ab, bc, cd, de, ae, cf, dg$

i. Write down it's incidence table and its adjacency table

Incidence Table

	Ab	Вс	Cd	De	Ae	Cf	dg
a	1				1		
b	1	1					
С		1	1			1	
d			1	1			1
е				1	1		
f						1	

g						1
---	--	--	--	--	--	---

Adjacency Table

	a	b	С	d	e	f	g
a	0	1			1		
b	1	0	1				
С		1	0	1		1	
d			1	0	1		1
е	1			1	0		
f			1			0	
g				1			0

ii. Is this graph connected? Justify your answer

A <u>connected graph</u> is a graph where there exists a <u>path in the graph from every u to every v</u>.

The given graph is not connected as there <u>does not exist a direct path between every vertice</u>. For example there does not exist a path between the vertex d and the vertex b.

iii. Is this graph bipartite?

A <u>bipartite graph</u> is a graph that contains two seperate unique subsets of vertices that when taking every edge into account, every edge will be of the form E = vw where v is from subset one and w is from subset 2.

Example:

$$V_1 = \{a, b\}$$

 $V_2 = \{c, d, e\}$
 $V = \{a, b, c, d, e\}$
 $E = \{ac, ad, ae, bc, bd, be\}$
is a complete bipartite graph.

iv. Does this graph have an Eulerian Trail?

An
Eulerian trail in a
graph is a trail
that traverses
every edge of that
graph. In other
words, an
Eulerian trail is a
walk that
traverses every
edge of the graph exactly once.

<u>Trail</u> \Rightarrow an edge is traversed at most once. <u>Eulerian</u> \Rightarrow every edge is traversed.

v. Does this graph have a Hamiltonian Circuit

A <u>Hamiltonian circuit</u> in a graph is a simple circuit that <u>passes through every vertex</u> of the graph.

vi. Is this graph a tree?

Let (V, E) be a tree, then #(E) = #(V) - 1, where #(E) is the number of edges of the tree and #(V) is the number of vertices.