Solutions to Book Of Proof

Son To <son.trung.to@gmail.com>

Fazer Oy, Arcada Ammattikorkeakoulu January 15, 2020

Preface

An attempt at solving all the exercises.

Helsinki, Finland $11^{\rm th}$ January, 2020

Contents

P	refac	\mathbf{e}		i
C	onter	$_{ m nts}$		ii
Ι	Fur	ndame	ntals	1
1	Sets	S		3
	1.1	Introd	luction to sets	3
		1.1.1		3
		1.1.2		3
		1.1.3		3
		1.1.4		3
		1.1.5		3
		1.1.6		3
		1.1.7		3
		1.1.8		3
		1.1.9		4
		1.1.10		4
		1.1.11		4
		1.1.12		4
		1.1.13		4
		1.1.14		4
		1.1.15		4
		1.1.16		4
		1.1.17		4
		1.1.18		4
		1.1.19		5
		1.1.20		5
		1.1.21		5
		1.1.22		5
		1.1.23		5
		1 1 94		5

CONTENTS iii

	1.1.25															5
	1.1.26															5
	1.1.27															5
	1.1.28															5
	1.1.29															5
	1.1.30															5
	1.1.31															6
	1.1.32															6
	1.1.33															6
	1.1.34															6
	1.1.35															6
	1.1.36															6
	1.1.37															6
	1.1.38															6
	1.1.39															6
	1.1.40															7
	1.1.41															7
	1.1.42															7
	1.1.43															7
	1.1.44															8
	1.1.45															8
	1.1.46															9
	1.1.47															9
	1.1.48															9
	1.1.49															10
	1.1.50															10
	1.1.51															10
	1.1.52															11
1.2	The Cart	tesian	Pro	oduo	ct											12

Part I Fundamentals

Chapter 1

Sets

1.1 Introduction to sets

1.1.1

 $\{\ldots -16, -11, -6, -1, 4, 9, 14, \ldots\}.$

1.1.2

 $\{\ldots -7, -4, -1, 2, 5, 8, 11, \ldots\}.$

1.1.3

 $\{-2, -1, \dots, 6\}.$

1.1.4

 $\{1, 2, \dots, 7\}.$

1.1.5

 $\{\pm\sqrt{3}\}.$

1.1.6

 $\{\pm 3\}.$

1.1.7

 $\{-2, -3\}.$

1.1.8

 $\{0, -2, -3\}.$

 $\mathbb{Z}.$

1.1.10

 $\{2\pi x:x\in\mathbb{Z}\}.$

1.1.11

 $\{-4, -3, \dots, 4\}.$

1.1.12

 $\{-2, -1, \dots, 2\}.$

1.1.13

 $\{0\}.$

1.1.14

$$\{-20, -15, -10, \dots, 10, 15, 20\}.$$

1.1.15

Let's call the set S. It's clear that every member of S is an integer. Conversely, note that n = 5n + 2(-2n), $n \in \mathbb{Z}$. Therefore, $S = \mathbb{Z}$.

1.1.16

The reasoning is similar, but note that there exists no $a, b \in \mathbb{Z}$ such that either n = 6n + 2b or n = 6a + 2b, $n \in \mathbb{Z}$. Also, note that 6a + 2b = 2(3a + b), in which n = 3n - 2n. Therefore, S is the set of even integers in \mathbb{Z} .

$$S = \{2n : n \in \mathbb{Z}\} \subset \mathbb{Z} \tag{1.1}$$

1.1.17

 $\{2^n:n\in\mathbb{N}\}.$

1.1.18 Unsolved

Observation: Successive difference of each couple of numbers: $4, 12, 20, 28, 36, \ldots$ (a difference of 8 each).

1.1. INTRODUCTION TO SETS

5

1.1.19

 ${3n:n\in\mathbb{Z}}.$

1.1.20

 $\{5n+2:n\in\mathbb{Z}\}.$

1.1.21

 ${n^2:n\in\mathbb{Z}}.$

1.1.22 Unsolved

My first conjecture was $2^n + n$, but it is wrong for the fourth number.

1.1.23

 ${n \in \mathbb{N} : 3 \le n \le 8}.$

1.1.24

 $\{n \in \mathbb{Z} : -4 \le n \le 2\}.$

1.1.25

 $\{2^n:n\in\mathbb{Z}\}.$

1.1.26

 ${3^n:n\in\mathbb{Z}}.$

1.1.27

 $\{\frac{n\pi}{2}:n\in\mathbb{Z}\}.$

1.1.28

 $\{\frac{3}{4}n:n\in\mathbb{Z}\}.$

1.1.29

3. Namely, $\{1\}$, $\{2,\{3,4\}\}$, \emptyset .

1.1.30

5. Namely, $\{1,4\}$, $a, b, \{\{3,4\}\}, \{\emptyset\}$.

1. Namely, the biggest set that includes all the others.

1.1.32

1. Same as above.

1.1.33

19. Namely, $-9, -8, \dots, 8, 9$.

1.1.34

9. Namely, $1, \ldots, 9$.

1.1.35

7. Namely, -3, ..., 3.

1.1.36

3. Namely, 1, 2, 3.

1.1.37

0. Namely, \emptyset .

1.1.38

4. Namely, 1, 2, 3, 4.

1.1. INTRODUCTION TO SETS

7

1.1.40

1.1.41

1.1.42

1.1. INTRODUCTION TO SETS

9

1.1.46

1.1.48

1.1.49

1.1.51

1.2 The Cartesian Product