Instructor/Section: C	ircle one		
Prof. Zhang - Section 10 Prof. Zhang - Section 11 Prof. Wu - Section 12, M Prof. Coll - Section 13, 7 Prof. Weintraub - Section Prof. Recio-Mitter - Section	, MW 1325-1440 MW 1500-1615 ΓR 1210-1325 on 14, TR 1045-1200		
	no work is shown. You n	nay use the back or	may receive no credit, even the extra page at the end if do.
You may not use any electronic device, calculator, computer, the assistance of any other students, any notes, crib sheets, or texts during this exam. All cellphones must be silenced and out of sight.			
This exam has 11 pages. <i>Make sure</i> your exam is complete.			
You have 60 minutes to complete this exam.			
Do not turn to the next page until you are instructed to do so.			
Grading:			
1/12		5	_/20
2			
3		6	_/36
4/16			
Total	_/100		

(1) Let A be the matrix

$$A = \left[\begin{array}{ccccc} 1 & 2 & 0 & 3 & 4 \\ 3 & 6 & 1 & 10 & 14 \\ 7 & 14 & 2 & 23 & 33 \end{array} \right].$$

A has reduced row-echelon form

$$R = \left[\begin{array}{ccccc} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right].$$

(a) (6 points) Find a basis for the nullspace of A.

(b) (6 points) Find a basis for the column space of A.

(2) Let V be a 2-dimensional vector space with basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Let $T: V \longrightarrow V$ be a linear transformation with

$$T(\mathbf{v}_1) = 3\mathbf{v}_1 + 2\mathbf{v}_2,$$

$$T(\mathbf{v}_2) = 5\mathbf{v}_1 - 4\mathbf{v}_2.$$

(a) (4 points) Find $T(2\mathbf{v}_1 + \mathbf{v}_2)$.

(b) (4 points) Find $[T]_{\mathcal{B}}$, the matrix of T in the basis \mathcal{B} .

(3) Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 3\\7\\14 \end{bmatrix} \right\}.$$

We know that $W = \operatorname{Span}(\mathcal{B})$ is a subspace of \mathbb{R}^3 , and then \mathcal{B} is a basis of W. Let

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$.

(a) (4 points) Is \mathbf{u}_1 in W? If so, find the coordinate vector $[\mathbf{u}_1]_{\mathcal{B}}$.

(b) (4 points) Is \mathbf{u}_2 in W? If so, find the coordinate vector $[\mathbf{u}_2]_{\mathcal{B}}$.

(4) Let

$$\mathcal{B} = \left\{ \left[\begin{array}{c} 2\\7 \end{array} \right], \left[\begin{array}{c} 3\\10 \end{array} \right] \right\}.$$

$$\mathcal{B}$$
 is a basis of \mathbb{R}^2 .

(a) (4 points) If $[\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, find \mathbf{w} .

(b) (4 points) If
$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, find $[\mathbf{v}]_{\mathcal{B}}$.

(c) (8 points) Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation $T(\mathbf{x}) = A\mathbf{x}$, where A is the matrix

$$A = \left[\begin{array}{cc} 11 & 13 \\ 17 & 19 \end{array} \right].$$

Find $[T]_{\mathcal{B}}$. (You may leave your answer expressed as a product of matrices and their inverses.)

(5) (20 points) Let A be the matrix

6

$$A = \left[\begin{array}{ccc} 3 & 0 & 2 \\ 1 & 3 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

A has characteristic polynomial $-(\lambda-1)(\lambda-2)(\lambda-4)$. Find an invertible matrix P and a diagonal matrix D with $D=P^{-1}AP$.

More space for the answer to problem 5.

7

(6) (36 points) Solve each of the following differential equations/initial value problems: (a) y'''' + 2y''' - 5y'' - 6y' = 0.

(In operator notation, this is the differential equation $(D^4+2D^3-5D^2-6D)y=0$. Note that $D^4+2D^3-5D^2-6D=D(D+1)(D-2)(D+3)$.)

(b) y'''' - 13y''' + 60y'' - 122y' + 64y = 0. (In operator notation, this is the differential equation $(D^4 - 13D^3 + 60D^2 - 112D + 64)y = 0$. Note that $D^4 - 13D^3 + 60D^2 - 112D + 64 = (D-1)(D-4)^3$.)

(c) y'' - 4y' + 29y = 0. (In operator notation, this is the differential equation $(D^2 - 4D + 29)y = 0$.)

(d) y''-4y'+3y=0, y(0)=3, y'(0)=7. (In operator notation, this is the differential equation $(D^2-4D+3)y=0$. Note that $(D^2-4D+3)=(D-1)(D-3)$.)

(e) $y'' + 4y' + 3y = 60e^{2x}$. (In operator notation, this is the differential equation $(D^2 + 4D + 3)y = 60e^{2x}$. Note that $(D^2 + 4D + 3) = (D + 1)(D + 3)$.)

(f) $y''-4y=12e^{2x}$. (In operator notation, this is the differential equation $(D^2-4)y=12e^{2x}$. Note that $(D^2-4)=(D-2)(D+2)$.)

Extra page for additional work, if needed. $\,$

11