3.11 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ des suites de Fibonacci et $\alpha\in\mathbb{R}$.

Par hypothèse, $u_{n+2}=u_n+u_{n+1}$ et $v_{n+2}=v_n+v_{n+1}$ pour tout $n\in\mathbb{N}.$

1) Posons $(w_n)_{n\in\mathbb{N}} = (u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}} = (u_n + v_n)_{n\in\mathbb{N}}.$ $w_{n+2} = u_{n+2} + v_{n+2} = (u_n + u_{n+1}) + (v_n + v_{n+1}) = (u_n + v_n) + (u_{n+1} + v_{n+1}) = w_n + w_{n+1}$ pour tout $n \in \mathbb{N}$.

La suite $(w_n)_{n\in\mathbb{N}}$ est donc aussi une suite de Fibonacci.

2) Posons $(w_n)_{n\in\mathbb{N}} = \alpha \cdot (u_n)_{n\in\mathbb{N}} = (\alpha u_n)_{n\in\mathbb{N}}.$ $w_{n+2} = \alpha u_{n+2} = \alpha (u_n + u_{n+1}) = \alpha u_n + \alpha u_{n+1} = w_n + w_{n+1}$ pour tout $n \in \mathbb{N}.$

La suite $(w_n)_{n\in\mathbb{N}}$ est ainsi également une suite de Fibonacci.