

Computational Physics (PHYS6350)

Lecture 8: Numerical Derivatives

$$\frac{\mathrm{d}f}{\mathrm{d}x} \simeq \frac{f(x+h) - f(x)}{h}$$

February 9, 2023

Instructor: Volodymyr Vovchenko (<u>vvovchenko@uh.edu</u>)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics

Numerical differentiation

Generic problem: evaluate

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

We need numerical differentiation when

- Function f is known at a discrete set of points
- Too expensive/cumbersome to do directly
 - E.g. when f(x) itself is a solution to a complex web of non-linear equations, calculating f'(x) explicitly will require rewriting all the equations

References: Chapter 5 of Computational Physics by Mark Newman

Forward difference

Simply approximate

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

by

$$\frac{\mathrm{d}f}{\mathrm{d}x} \simeq \frac{f(x+h) - f(x)}{h}$$

where *h* is finite

Taylor theorem:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \dots$$

gives the approximation error estimate of

$$R_{\text{forw}} = -\frac{1}{2}hf''(x) + \mathcal{O}(h^2)$$

Backward difference

Backward difference

$$\frac{\mathrm{d}f}{\mathrm{d}x} \simeq \frac{f(x) - f(x - h)}{h}$$

Taylor theorem:

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) + \dots$$

gives the approximation error estimate of

$$R_{\text{back}} = \frac{1}{2}hf''(x) + \mathcal{O}(h^2)$$

Central difference

Recall the forward and backward difference and their errors

$$\frac{\mathrm{d}f}{\mathrm{d}x} \simeq \frac{f(x+h) - f(x)}{h}$$

$$\frac{\mathrm{d}f}{\mathrm{d}x} \simeq \frac{f(x) - f(x - h)}{h}$$

$$R_{\text{forw}} = -\frac{1}{2}hf''(x) + \mathcal{O}(h^2)$$

$$R_{\text{back}} = \frac{1}{2}hf''(x) + \mathcal{O}(h^2)$$

Taking the average of the two cancels out the O(h) error term

$$\frac{df}{dx} \simeq \frac{f(x+h) - f(x-h)}{2h}$$

Error estimate:

$$R_{\text{cent}} = -\frac{f'''(x)}{6}h^2 + \mathcal{O}(h^3)$$

High-order central difference

To improve the approximation error use more than two function evaluations, e.g.

$$rac{df}{dx} \simeq rac{Af(x+2h)+Bf(x+h)+Cf(x)+Df(x-h)+Ef(x-2h)}{h}+O(h^4)$$

Determine A, B, C, D, E using Taylor expansion to cancel all terms up to h^4

$$\frac{df}{dx} \simeq \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h} + \frac{h^4}{30}f^{(5)}(x)$$

High-order terms:

Derivative	Accuracy	-5	-4	-3	-2	-1	0	1	2	3	4	5
1	2					-1/2	0	1/2				
	4				1/12	-2/3	0	2/3	-1/12			
	6			-1/60	3/20	-3/4	0	3/4	-3/20	1/60		
	8		1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280	

If *h* is too small, round-off errors become important

• cannot distinguish x and x+h and/or f(x+h) and f(x) with enough accuracy

As a rule of thumb, if ε is machine precision and the truncation error is of order $O(h^n)$, then h should not be much smaller than $h \sim^{n+1} \sqrt{\varepsilon}$

The higher the finite difference order is, the larger h should be

Let
$$f(x) = \exp(x)$$

Calculate the derivatives at x = 0

```
def f(x):
    return np.exp(x)

def df(x):
    return np.exp(x)
```

Forward difference O(h):

Optimal $h \sim \sqrt[2]{10^{-16}} \sim 10^{-8}$

Let
$$f(x) = \exp(x)$$

Calculate the derivatives at x = 0

```
def f(x):
    return np.exp(x)

def df(x):
    return np.exp(x)
```

Backward difference O(h):

Optimal $h \sim \sqrt[2]{10^{-16}} \sim 10^{-8}$

Let
$$f(x) = \exp(x)$$

Calculate the derivatives at x = 0

```
def f(x):
    return np.exp(x)

def df(x):
    return np.exp(x)
```

Central difference O(h²):

Optimal $h \sim \sqrt[3]{10^{-16}} \sim 10^{-5}$

Let
$$f(x) = \exp(x)$$

Calculate the derivatives at x = 0

```
def f(x):
    return np.exp(x)

def df(x):
    return np.exp(x)
```

Central difference O(h⁴):

Optimal $h \sim \sqrt[5]{10^{-16}} \sim 10^{-3}$

High-order derivatives

Central difference

$$\frac{df}{dx}(x) \simeq \frac{f(x+h/2) - f(x-h/2)}{h}$$

Now apply the central difference again to f'(x+h/2) and f'(x-h/2)

$$f''(x) \simeq \frac{f'(x+h/2) - f'(x-h/2)}{h}$$

$$= \frac{[f(x+h) - f(x)]/h - [f(x) - f(x-h)]/h}{h}$$

$$= \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

General formula (to order h)

$$f^{(n)}(x) = \frac{1}{h^n} \sum_{k=0}^{n} (-1)^k \binom{n}{k} f[x + (n/2 - k)h] + O(h^2)$$

Second derivative

```
def d2f_central(f,x,h):
    return (f(x+h) - 2*f(x) + f(x-h)) / (h**2)
```

$$f(x) = exp(x)$$

```
def f(x):
    return np.exp(x)

def df(x):
    return np.exp(x)

def d2f(x):
    return np.exp(x)
```

Optimal $h \sim \sqrt[4]{10^{-16}} \sim 10^{-4}$

Partial derivatives

Let us have f(x,y)

Use central difference to calculate first-order derivatives

$$\frac{\partial f}{\partial x} = \frac{f(x+h/2,y) - f(x-h/2,y)}{h}$$
$$\frac{\partial f}{\partial y} = \frac{f(x,y+h/2) - f(x,y-h/2)}{h}$$

Reapply the central difference to calculate $\partial^2 f(x,y)/\partial x \partial y$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{f(x+h/2, y+h/2) - f(x-h/2, y+h/2) - f(x+h/2, y-h/2) + f(x-h/2, y-h/2)}{h^2}$$

Summary: Numerical differentiation

- Forward/backward differences
 - Useful when we are given a grid of function values
 - Have limited accuracy (linear in h)
- Central difference
 - More precise than forward/backward differences (quadratic in h)
 - Gives f'(x) estimate at the midpoint of function evaluation points
- Higher-order formulas are obtained by using more than two function evaluations
 - Can be used when limited number of function evaluations available
- Straightforwardly extendable to high-order and partial derivatives
- Balance between truncation and round-off error must be respected
 - h should not be taken too small

Numerical derivative and ordinary differential equations

Ordinary differential equation

$$\frac{dx}{dt}=f(x,t),$$

with initial condition

$$f(x,t_0)=f_0$$

Use the forward difference to approximate dx/dt

$$\frac{dx}{dt} pprox \frac{x(t+h)-x(t)}{h}$$

gives the **Euler method** of solving the equation for x(t)

$$x(t+h) = x(t) + h f[x(t), t]$$