REAL-TIME CUSTOMER PURCHASING TENDENCY PREDICTION

SharkyData

Buyan Li, Yun Lin, Yu-Yuan Chang, Yafei Dong

Table of contents

01

Introduction

Our Focus

Predicting the likelihood that customer will purchase during the shopping section in real-time

Analyzing the customer behaviors: page views, search history, and promo-code usage ect.

The implications for businesses seeking to optimize their e-commerce strategy

EXPLORATION & VISUALIZATIONS

Yun Lin

Initial Selection

From the original dataset, we selected 17 features:

```
'visitid','pageurl','pagename', 'pageeventvar2',
'pagetype', 'visitdatetime', 'hit_time_gmt',
'productlist', 'searchterms', 'searchresults',
'newvisit', 'post_evar27', 'evar28', 'evar83',
'promocode', 'devicetype', and 'ordernumber'
```


Promo code & device Type groupby 'visitid'

Behavior Score (Evar83)

FEATURE ENGINEERING

Adding memory features

- What are "memory" Features and why do we need them?
 - Store information from previous server calls within the same visit
 - Needed for generating a prediction for each server call

Adding memory features

Before adding memory features

After adding memory features

Adding memory features

Memory features added:

avg_cart avg_prod

min_cart min_prod

max_cart max_prod

Adding other features

Other features added:

Timedelta: Time between this server call and the previous one

Pg_cat: Category of the current page

Session_time: Total time spent since the start of this visit

Pg_count: Total server calls generated since the start of this visit

Correlation matrix

before & after one-hot encoding

Model Building

- 1. Random forest
- 2. Gradient Boosting Classifier
- 3. Logistic Regression
- 4. SVM
- 5. KNN

Random Forest

Accuracy:	0.9624
Precision:	0.9806
Recall:	0.8765
F1-Score:	0.9256

Random Forest

- 1. **Parameter tuning**: criterion: "entropy" and "gini". max_depth: [10, 20, 30]
- 2. Cross-Validation:5 folds
- 3. Performance the best!!

Result: Feature Importances

Feature Importance:

- 1. Promo code
- 2. Session time
- 3. Page count (Number of action)

Gradient Boosting Classifier

Accuracy	0.8963
Precision	O.9314
Recall	0.6597
F1-Score	0.7724

Gradient Boosting Classifier

Parameter tuning:

Learning rate: [0.01, 0.1, 0.5, 1] n_estimator: [10, 50, 100, 150, 200]

2. Cross-Validation:

5 folds

GB: Feature Importances

Feature Importance:

- 1. Promo code
- 2. max_cart
- 3. pg_cat_checkout (Number of action)

Logistic Regression

Accuracy	O.7465
Precision	0.5550
Recall	0.2508
F1-Score	0.3454

Logistic Regression

- 1. **Parameter tuning**: penality: 'l1', 'l2', 'elasticnet', None
- 2. Cross-Validation:5 folds
- 3. Did not performance well

SVM

Accuracy	0.7366
Precision	0.5976
Recall	0.0992
F1-Score	0.1702

SVM

- Parameter tuning: kernel: "linear", "poly" and "rbf"
- 2. Cross-Validation:5 folds
- 3. Only use 1% of the sample.
- 4. Did not performance well

Summary

- 1. Analyzing the frequency of pageviews for a particular product.
- Design new feature and construct model.
- 3. Being able to provide insights into customer preferences and forecast which products are likely to be purchased in the future.

Future Work

- Factors external: economic conditions, weather, promo code and social.
- 2. Recommendation system
- 3. We can limited our model into first few click/pages

Limitation

- Features Mapping were not consistent
- Not sure when 'Promocode' applied
- 3. The data is during Holiday season
- 4. The data contains only one week timeframe

Thanks for listening

Backup slides

NewVisit → **NewVisitor**

	visitid	newvisit
0	001	0
2	001	0
3	001	0
4	001	0
5	001	0
6458604	999838842448347828201007282656244896618	1
6458605	99997363407775132790292379433452812751	1
6458606	99997363407775132790292379433452812751	0
6458607	93997363407775132790292379433452812751	0

	visitid	newvisit
0	001	0
2	001	0
3	001	0
4	001	0
5	001	0
6458604	999838842448347828201007282656244896618	1
6458605	99997363407775132790292379433452812751	1
6458606	99997363407775132790292379433452812751	1)
6458607	93997363407775132790292379433452812751	1

Promocode → checkout?

So we assume promo code applied in cart

s.eVar82

Promo Code Errors in Checkout (eVar 82)

eVar82 is empty

Back Up Slides

Variable Importance for RF

1. Mean Decrease in Impurity (MDI)

- Same as Bagging.
- Calculate the total amount that the MSE (for regression) or Gini index (for classification) is decreased due to splits over a given predictor in different nodes (weighted by the probability of reaching that node (which is approximated by the proportion of samples reaching that node)).
- The weighted decrease in purity as a result of the splits over a given predictor is averaged over all trees, and is used as a measure of the importance of variable *j* in the random forest.
- The default in Scikit-learn feature_importances_

Random Forest

Gradient Boosting

Logistic Regression

F1-Score: 0.9256

F1-Score: 0.7724

F1-Score: 0.3454

Resources

Slide template: www.slidesgo.com