

Nội dung

- ✓ Thuật toán DIJKSTRA.
- ✓ Thuật toán FLOYD.

I. Thuật toán DIJKSTRA

Bài toán

- Xét đồ thị có hướng có trọng số liên thông G = (V, E). Bài toán đặt ra là tìm đường đi ngắn nhất (tổng trọng số nhỏ nhất) giữa 2 đỉnh bất kỳ cho trước.
- Trọng số cạnh $e = \overrightarrow{uv}$ ký hiệu là c(e)
- Ma trận trọng số C được xác định như sau:

$$C(u,v) = \begin{cases} c(e) & \text{n\'eu } e \in E \\ \infty & \text{n\'eu } e \notin E \end{cases}$$

Thuật toán DIJKSTRA

Bài toán đặt ra là tìm đường đi ngắn nhất từ đỉnh gốc v_0 đến đỉnh v bất kỳ.

Xây dựng hai hàm:

Hàm độ dài đường đi

$$\delta: V \to N$$

 $v \mapsto \delta(v)$: độ dài đường đi từ v_0 đến v

Hàm xác định đường đi

$$\pi: V \to V$$

 $v \mapsto \pi(v)$: đỉnh ngay trước v trên đường đi đến v

Thuật toán DIJKSTRA

- ■B1: Khởi tạo:
 - $L = \{v_0\}$
 - $\forall v \in V \backslash L$: $\begin{cases} \delta(v) = C(v_0, v) \\ \pi(v) = v_0 \end{cases}$
- B2: Nếu $V = L \rightarrow$ Dừng thuật toán
- B3: Tìm $v \in V \setminus L$ sao cho $\delta(v)$ nhỏ nhất. Đặt $v^* = v$ vào L, cập nhật lại hàm δ và π :

$$\forall v \in V \backslash L : \text{n\'eu } \delta(v) > \delta(v^*) + C(v^*, v) : \begin{cases} \delta(v) = \delta(v^*) + C(v^*, v) \\ \pi(v) = v^* \end{cases}$$

Ma trận trọng số

	В	С	D	E	F	G	Н	Chọn
$[\delta,\pi]$	[2, A]	[-, A]	[-, A]	[-, A]	[6, A]	[-, A]	[-, A]	В
		[9, B]	[10, B]	[5, B]	[6, A]	[-, A]	[-, A]	Ε
		[8, E]	[7, E]		[6, A]	[9, E]	[-, A]	F
		[8, E]	[7, E]			[9, E]	[-, A]	D
		[8, E]				[9, E]	[-, A]	С
						[9, E]	[10, C]	G
							[10, C]	Н

Cây thể hiện đường đi ngắn nhất từ A

	В	C	D	Е	F	G	Н	Chọn
$[\delta,\pi]$	[2, A]	[-, A]	[-, A]		[6, A]		[-, A]	В
		[9, B]	[10, B]	[5, B]	[6, A]	[-, A]	[-, A]	Ε
		[8, E]	[7, E]		[6, A]	[9, E]	[-, A]	F
		[8, E]	[7, É]			[9, E]	[-, A]	D
		[8, E]				[9, E]	[-, A]	С
						[9, E]	[10, C]	G
							[10, C]	Н

II. Thuật toán FLOYD

Thuật toán FLOYD

- Bài toán: Tìm đường đi ngắn nhất giữa 2 đỉnh bất kỳ
- Xây dựng 2 ma trận:

$$W = [w_{ij}]; \quad i,j = 1,...,n$$
: Thể hiện độ dài đường đi $P = [p_{ij}]; \quad i,j = 1,...,n$: Thể hiện đỉnh kế trên đường đi

- Thuật toán Floyd:
 - B1: Khởi tạo W^0 và P^0 :

o Với
$$i, j = 1, ... n$$
:
$$\begin{cases} w_{ij}^0 = c(vi, vj) \\ p_{ij}^0 = j \end{cases}$$

Thuật toán FLOYD

• B2: Tính toán W^k và P^k dựa trên W^{k-1} và P^{k-1} . Với k=1,...n

o Với
$$i,j=1,...n$$
:
 Nếu $w_{ij}^{k-1}>w_{ik}^{k-1}+w_{kj}^{k-1}$

$$\begin{cases} w_{ij}^{k}=w_{ik}^{k-1}+w_{kj}^{k-1}\\ p_{ij}^{k}=p_{ik}^{k-1} \end{cases}$$
 Ngược lại

$$\begin{cases} w_{ij}^{k}=w_{ij}^{k-1}\\ p_{ij}^{k}=p_{ii}^{k-1} \end{cases}$$

■ Ma trận [W, P]⁰

■ Ma trận [W, P]¹

■ Ma trận P]²

■ Ma trận [W, P]³

■ Ma trận [W, P]⁴

■ Ma trận [W, P]⁵

■ Ma trận [W,P]⁶

• Từ A đến F: 12

A----D----B----E----C

• Từ F đến A: 4

F----B----E----A

■ Ma trận [W, P]⁶

• Từ D đến C: 7

D----B----C

• Từ C đến D: 9

C----B----B----D

■ Ma trận [W, P]⁶

Tóm tắt

√Thuật toán DIJKSTRA:

Đường đi ngắn nhất từ 1 đỉnh cố định đến đỉnh bất kỳ

✓ Thuật toán FLOYD :

Đường đi ngắn nhất giữa 2 đỉnh bất kỳ