Prof. Uwe Hahne Wintersemester 2024/25

Digitale AV-Technik - Aufgabenblatt 08

Thema: Fehlererkennung und -korrektur Ziele:

- Rechnen mit XOR üben und Parität verstehen
- Prüfsummen kennen lernen
- Verständnis der Hamming-Code-Struktur und der Platzierung von Daten- und Paritätsbits.

Aufgabe 1: Paritäten ermitteln

• 11010110010

Ermitteln Sie	die	(gerade)) Parität (der fol	genden	Bitketten:

•		0	1	0(0	0	10)()																																							
																	 	 														 							 					 				 ,
	_					_				 _	 _	_	_			_	 	 	_		_	_		_	_	_	_	 			_	 				_	 _		 		_	_	_	 	 	_	_	

Prüfen Sie ob man mit dem folgenden Python-Code parity.py die Parität ermitteln kann:

```
def compute_parity(binary_string):
parity = 0
for bit in binary_string:
    parity ^= int(bit)
return parity
```

Aufgabe 2: EAN Prüfziffer

Ermitteln Sie online wie die Prüfziffer beim EAN Code berechnet wird und prüfen Sie nach ob diese auf dem folgenden Bild korrekt ist.

Aufgabe 3: CRC ermitteln

Ermitteln Sie für die Bitfolge 11011 und das Prüfpolynom

$$x^5 + x^4 + x^2 + 1$$

den Restwert, der an die Bitfolge angehängt wird.

Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:	Rahmen 1101100000 (Bitfolge um n-1 = 5 0en verlängert). Anschließend wird der Rahme durch das Generatorpolynom dividiert.	ın
Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
Das Ergebnis hat nun nur noch drei relevante Stellen, also werden die letzten n-1 (=5) Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Sie eine Polynomdivision mit dem Rahmen und dem Prüfwert durchführen:		
	Stellen als CRC-Wert übernommen. Die Bitfolge und der Rest ergeben die zu übertragenden Daten. Verifizieren Sie als Empfänger die Korrektheit der Daten, indem Si	е

Hinweis: Die Lösung dieser Aufgabe findet sich hier.

Aufgabe 4: Fülle den Hamming-Block korrekt aus

Ein **Hamming(15,11)-Code** erweitert **11** Datenbits mit 4 Paritätsbits also insgesamt **15** Bits, um Fehler erkennen und korrigieren zu können. In dieser Aufgabe sollst du lernen, wie man den **Hamming-Block** korrekt mit Daten- und Paritätsbits füllt. Diese Aufgabe wird auch im Video von 3blue1brown gestellt.

Hinweis: Verwende immer das **Even Parity-Verfahren** (gerade Anzahl von 1en). **Gegeben sind die folgenden 11 Datenbits**:

010011011000

Platziere diese Datenbits an den richtigen Positionen im Hamming-Block und ergänze d	lie
Paritätsbits so, dass der Code fehlerfrei übertragen werden kann.	

Jedes Paritätsbit prüft eine bestimmte Gruppe von Bits. Führe die Berechnungen für die Paritätsbits an den Stellen 1, 2, 4 und 8 durch.

Um dir klarzuwerden, welches Paritätsbit welchen Bereich überprüft, schreibe die Indizes aller Zellen in binärer Form auf.

Prüfe, wie der Hamming-Code auf einen Bitfehler reagiert.

- Nimm an, dass das Bit an Position 6 fehlerhaft übertragen wurde.
- Berechne das **Syndrom**, um den Fehler zu erkennen.
- Korrigiere den Fehler im Hamming-Code.

Zur Überprüfung deiner Lösung kannst Du den Python Code hamming_3b1b.py verwenden und dir den zweiten Teil des Videos von 3blue1brown anschauen.