Topology Qualifying Exam Fall 1992

- 1. Prove that the interval [0,1] with the usual topology is connected.
- 2. Prove or disprove: Every compact Hausdorff space is separable.
- **3.** Let $\pi_1: X \times Y \to X$ be the projection map, and let Y be compact. Prove π_1 is a closed map (where $X \times Y$ has the product topology).
- 4. Prove that a paracompact Hausdorff space is regular.
- **5.** Use Zorn's lemma to prove that for every set X and relation R there is maximal $A \subseteq X$ such that $A \times A \subseteq R$.
- **6.** Prove that the plane \mathbb{R}^2 is not a countable union of straight lines.
- 7. If Ω is the first uncountable ordinal, prove that $[0,\Omega]$ with the order topology is compact.
- 8. Prove that a connected normal Hausdorff space containing more than one point is uncountable.
- **9.** Let A be a connected subset of a connected space X, and let C be a component of X A. Prove that X C is connected.
- 10. Let C(X,Y) be the set of continuous functions from X to Y, given the compact-open topology. Let $e: C(X,Y) \times X \to Y$ be the evaluation map e(f,x) = f(x). Prove that if X is locally compact Hausdorff, then e is continuous.
- 11. Let $f: X \to Y$ be a continuous surjective map from a compact space X to a Hausdorff space Y. Prove that f is a quotient map.
- 12. Find an incorrect statement in the proof of the following theorem and prove that it is an incorrect statement.

Theorem. If $B^2 = \{(x_1, x_2) \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 1\}$ has the usual topology, then each continuous function $f: B^2 \to B^2$ has a fixed point.

Proof: Suppose that $f: B^2 \to B^2$ is a continuous function with no fixed points. Let $\pi_1: B^2 \times B^2 \to B^2$ be first projection, let

$$\Delta = \{(z, z) | z \in B^2\}$$

be the diagonal in $B^2 \times B^2$, and let

$$F = \{(z, f(z)|z \in B^2\}$$

be the graph of f. Since f is continuous, $\pi_1|_F: F \to B^2$ is a homeomorphism. Since B^2 is connected, F is therefore connected. However,

$$F \subseteq B^2 \times B^2 - \Delta$$

which is a contradiction since $B^2 \times B^2 - \Delta$ is disconnected.

13. Prove that the topologist's comb

$$C = \left(\bigcup_{n=1}^{\infty} \left\{ \frac{1}{n} \right\} \times [0, 1] \right) \cup ([0, 1] \times \{0\}) \cup (\{0\} \times [0, 1])$$

is **not** a retract of the square $S = [0, 1] \times [0, 1]$ (with both C and S having the usual Euclidean subspace topologies).