

Semester Project - Part 02

Table of Contents

- Global Lighting Evaluation
- Dual-Zone Lighting Evaluation
- Optical Flow

Global Lighting Evaluation

Global Lighting Evaluation - Methods

• Computed **statistical properties** between video frames

Global Lighting Evaluation - Methods

- Computed statistical properties between video frames
- Every 75 frames (3-second intervals)

Global Lighting Evaluation - Methods

- Computed statistical properties between video frames
- Every 75 frames (3-second intervals)
- Statistical evaluations
 - L1 Difference measuring the absolute differences in pixel values between consecutive frames
 - Mean Value Difference computing the average pixel value to track gradual changes
 - Brightness Offset Detection using histogram peak detection to pinpoint shifts in overall scene brightness
 - Earth Mover's Distance capturing the dissimilarity between two sequential frame histograms

Global Lighting Evaluation - Scene 05 Example

Global Lighting Evaluation - Scene 07 Example

Dual-Zone Lighting Evaluation

Dual-Zone Lighting Evaluation - Methods

 Segmenting the sky into light/dark zones using Otsu's method on L channel from LAB

Dual-Zone Lighting Evaluation - Methods

- Segmenting the sky into light/dark zones using Otsu's method on L channel from LAB
- Applied at Different Granularity (superpixel and pixel level)

Dual-Zone Lighting Evaluation - Methods

- Segmenting the sky into light/dark zones using Otsu's method on L channel from LAB
- Applied at Different Granularity (superpixel and pixel level)
- Statistical evaluations
 - Percentage of light pixels
 - Signed Difference in percentage of light pixels
 - L1 Difference between lighting masks
 - Mean Value Difference for light/dark areas

Superpixel-Level Lighting Analysis - Scene 05 Example

Superpixel-Level Lighting Analysis - Scene 07 Example

Optical Flow

Optical Flow - Farneback Algorithm

 Obtain optical flow vectors from consecutive frames using the L channel of the LAB color space

Optical Flow - Scene 05 Example

Optical Flow - Scene 07 Example

