256 MB Registered DDR SDRAM DIMM 32-Mword × 72-bit, 1-Bank Module (9 pcs of 32 M × 8 Components)

HITACHI

Preliminary Rev. 0.0 Jan. 25, 2000

Description

The HB54A2569F1 is a $32M \times 72 \times 1$ -bank Double Data Rate (DDR) SDRAM Module, mounted 9 pieces of 256-Mbit DDR SDRAM (HM5425801BTT) sealed in TSOP package, 1 piece of PLL clock driver, 2 pieces of register driver and 1 piece of serial EEPROM (2-kbit EEPROM) for Presence Detect (PD). Read and write operations are performed at the cross points of the CK and the CK. This high speed data transfer is realized by the 2-bit prefetch piplined architecture. Data strobe (DQS) both for read and write are available for high speed and reliable data bus design. By setting extended mode register, the on-chip Delay Locked Loop (DLL) can be set enable or disable. An outline of the products is 184-pin socket type package (dual lead out). Therefore, it makes high density mounting possible without surface mount technology. It provides common data inputs and outputs. Decoupling capacitors are mounted beside each TSOP on the module board.

Features

- 184-pin socket type package (dual lead out)
 - Outline: $133.35 \text{ mm (Length)} \times 43.18 \text{ mm (Height)} \times 4.00 \text{ mm (Thickness)}$
 - -Lead pitch: 1.27 mm
- 2.5 V power supply (V_{CC}/V_{CCO})
- SSTL-2 interface for all inputs and outputs
- Clock frequency: 100MHz (max)
- Data inputs, outputs and DM are synchronized with DQS
- 4 banks can operate simultaneously and independently (Component)
- Burst read/write operation
- Programmable burst length: 2/4/8
 - Burst read stop capability

Preliminary: The specifications of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specifications.

- Programmable burst sequence
 - Sequential
 - Interleave
- Start addressing capability
 - Even and Odd
- CAS latency: 3
- 8192 refresh cycles: 7.8 µs (8192 row/64 ms)
- 2variations of refresh
 - Auto refresh
 - Self refresh

Ordering Information

Type No.	Frequency	/CAS latency	Package	Contact pad		
HB54A2569F1-10B	100 MHz	3	184-pin dual lead out socket type	Gold		

Pin Arrangement

Pin No.	Pin name						
1	V_{REF}	47	DQS8	93	V _{SS}	139	V _{SS}
2	DQ0	48	A0	94	DQ4	140	DM8
3	V _{SS}	49	CB2	95	DQ5	141	A10
4	DQ1	50	V _{SS}	96	V _{CCQ}	142	CB6
5	DQS0	51	CB3	97	DM0	143	V _{CCQ}
6	DQ2	52	BA1	98	DQ6	144	CB7
7	V _{CC}	53	DQ32	99	DQ7	145	V _{SS}
8	DQ3	54	V _{CCQ}	100	Vss	146	DQ36
9	NC	55	DQ33	101	NC	147	DQ37
10	/RESET	56	DQS4	102	NC	148	Vcc
11	Vss	57	DQ34	103	NC	149	DM4
12	DQ8	58	V _{SS}	104	V _{CCQ}	150	DQ38
13	DQ9	59	BA0	105	DQ12	151	DQ39
14	DQS1	60	DQ35	106	DQ13	152	V _{SS}
15	V _{CCQ}	61	DQ40	107	DM1	153	DQ44
16	NC	62	V _{CCQ}	108	V _{CC}	154	/RAS
17	NC	63	WE	109	DQ14	155	DQ45
18	V _{SS}	64	DQ41	110	DQ15	156	V _{CCQ}
19	DQ10	65	/CAS	111	NC	157	/S0
20	DQ11	66	V _{SS}	112	V _{CCQ}	158	NC
21	CKE0	67	DQS5	113	NC	159	DM5
22	V _{CCQ}	68	DQ42	114	DQ20	160	V _{SS}
23	DQ16	69	DQ43	115	A12	161	DQ46
24	DQ17	70	Vcc	116	Vss	162	DQ47
25	DQS2	71	NC	117	DQ21	163	NC

Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
26	V _{SS}	72	DQ48	118	A11	164	V _{CCQ}
27	A9	73	DQ49	119	DM2	165	DQ52
28	DQ18	74	V _{SS}	120	V _{CC}	166	DQ53
29	A7	75	NC	121	DQ22	167	NC
30	Vccq	76	NC	122	A8	168	Vcc
31	DQ19	77	V _{CCQ}	123	DQ23	169	DM6
32	A5	78	DQS6	124	V _{SS}	170	DQ54
33	DQ24	79	DQ50	125	A6	171	DQ55
34	V _{SS}	80	DQ51	126	DQ28	172	V _{CCQ}
35	DQ25	81	V _{SS}	127	DQ29	173	NC
36	DQS3	82	V _{CCID}	128	V _{CCQ}	174	DQ60
37	A4	83	DQ56	129	DM3	175	DQ61
38	V _{CC}	84	DQ57	130	A3	176	V _{SS}
39	DQ26	85	V _{CC}	131	DQ30	177	DM7
40	DQ27	86	DQS7	132	V _{SS}	178	DQ62
41	A2	87	DQ58	133	DQ31	179	DQ63
42	V _{SS}	88	DQ59	134	CB4	180	V _{CCQ}
43	A1	89	V _{SS}	135	CB5	181	SA0
44	CB0	90	WP	136	V _{CCQ}	182	SA1
45	CB1	91	SDA	137	CK0	183	SA2
46	Vcc	92	SCL	138	/CK0	184	V _{CCSPD}

Pin Description

Pin name	Function
A0 to A12	Address input
	— Row addressA0 to A12
	— Column address A0 to A9
BA0, BA1	Bank select address
DQ0 to DQ63	Data input/output
CB0 to CB7	Check bit (Data input/output)
/RAS	Row address strobe command
/CAS	Column address strobe command
WE	Write enable
/S0	Chip select
CKE0	Clock enable
СКО	Clock input
CK0	Differential clock input
DQS0 to DQS8	Input and output data strobe
DM0 to DM8	Input mask
SCL	Clock input for serial PD
SDA	Data input/output for serial PD
WP	Write protect for serial PD
SA0 to SA2	Serial address input
V _{CC}	Power for internal circuit
V _{CCQ}	Power for DQ circuit
V _{CCSPD}	Power for serial EEPROM
V _{REF}	Input reference voltage
V _{SS}	Ground
Vccid	V _{CC} identification flag
/RESET	Reset pin (forces register inputs low)
NC	No connection

Block Diagram

Differential Clock Net Wiring (CK0, /CK0)

Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl be set to 0 ns (nominal).

- Input, output and feedback clock lines are terminated from line to line as shown, and not from line to ground.
- Only one PLL output is shown per output type. Any additional PLL outputs will be wired in a similar manner.
- 4. Termination resistors for both the PLL input and feedback path clocks are located after the pins of the PLL.

Physical Outline

Serial PD Matrix*1

Byte No.	Function described	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Hex value	Comments
0	Number of bytes utilized by module manufacturer	1	0	0	0	0	0	0	0	80	128
1	Total number of bytes in serial PD device	0	0	0	0	1	0	0	0	08	256 byte
2	Memory type	0	0	0	0	0	1	1	1	07	SDRAM DDR
3	Number of row address	0	0	0	0	1	1	0	1	0D	13
4	Number of column address	0	0	0	0	1	0	1	0	0A	10
5	Number of DIMM banks	0	0	0	0	0	0	0	1	01	1
6	Module data width	0	1	0	0	1	0	0	0	48	72 bit
7	Module data width continuation	0	0	0	0	0	0	0	0	00	0 (+)
8	Voltage interface level of this assembly	0	0	0	0	0	1	0	0	04	SSTL 2.5 V
9	DDR SDRAM cycle time, CL = X	1	0	1	0	0	0	0	0	A0	$CL = 2^{*5}$
10	SDRAM access from clock (t _{AC})	1	0	0	0	0	0	0	0	80	0.8 ns* ⁵
11	DIMM configuration type	0	0	0	0	0	0	1	0	02	ECC
12	Refresh rate/type	1	0	0	0	0	0	1	0	82	7.8 µs Self refresh
13	Primary SDRAM width	0	0	0	0	1	0	0	0	08	×8
14	Error checking SDRAM width	0	0	0	0	1	0	0	0	08	×8
15	SDRAM device attributes: Minimum clock delay back-to- back column access	0	0	0	0	0	0	0	1	01	1 CLK
16	SDRAM device attributes: Burst length supported	0	0	0	0	1	1	1	0	0E	2, 4, 8
17	SDRAM device attributes: Number of banks on SDRAM device	0	0	0	0	0	1	0	0	04	4

HB54	A2569F1-10B										
Byte No.	Function described	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Hex value	Comments
18	SDRAM device attributes: CAS latency	0	0	0	0	0	1	0	0	04	2
19	SDRAM device attributes: CS latency	0	0	0	0	0	0	0	1	01	0
20	SDRAM device attributes: WE latency	0	0	0	0	0	0	1	0	02	1
21	SDRAM module attributes	0	0	1	0	0	1	1	0	26	Registered
22	SDRAM device attributes: General	0	0	0	0	0	0	0	0	00	± 0.2 V
23	Minimum clock cycle time at CLX - 0.5	0	0	0	0	0	0	0	0	00	
24	Maximum data access time (t _{AC}) from clock at CLX - 0.5	0	0	0	0	0	0	0	0	00	

3C

20 ns

15 ns

20 ns

50 ns

1 bank 256MB

Minimum clock cycle time at

Minimum row precharge time

Minimum row active to row

Minimum RAS to CAS delay

Minimum active to precharge

from clock at CLX - 1

active delay (t_{RRD})

Module bank density

time (t_{RAS})

Maximum data access time (t_{AC}) 0

CLX - 1

 (t_{RP})

Byte No.	Function described	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Hex value	Comments
32	Address and command setup time before clock (tis)	1	1	0	0	0	0	0	0	C0	1.2 ns* ⁵
33	Address and command hold time after clock (t _{IH})	1	1	0	0	0	0	0	0	C0	1.2 ns* ⁵
34	Data input setup time before clock (t _{DS})	0	1	1	0	0	0	0	0	60	0.6 ns* ⁵
35	Data input hold time after clock (t _{DH})	0	1	1	0	0	0	0	0	60	0.6 ns* ⁵
36 to 61	Superset information	0	0	0	0	0	0	0	0	00	Future use
62	SPD revision	0	0	0	0	0	0	0	0	00	Initial
63	Checksum for bytes 0 to 62	0	1	1	1	0	1	0	1	75	117
64	Manufacturer's JEDEC ID code	0	0	0	0	0	1	1	1	07	HITACHI
65 to 71	Manufacturer's JEDEC ID code	0	0	0	0	0	0	0	0	00	
72	Manufacturing location	×	×	×	×	×	×	×	×	××	*2 (ASCII- 8bit code)
73	Module part number	0	1	0	0	1	0	0	0	48	Н
74	Module part number	0	1	0	0	0	0	1	0	42	В
75	Module part number	0	0	1	1	0	1	0	1	35	5
76	Module part number	0	0	1	1	0	1	0	0	34	4
77	Module part number	0	1	0	0	0	0	0	1	41	А
78	Module part number	0	0	1	1	0	0	1	0	32	2
79	Module part number	0	0	1	1	0	1	0	1	35	5
80	Module part number	0	0	1	1	0	1	1	0	36	6
81	Module part number	0	0	1	1	1	0	0	1	39	9

Byte No.	Function described	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Hex value	Comments
82	Module part number	0	1	0	0	0	1	1	0	46	F
83	Module part number	0	0	1	1	0	0	0	1	31	1
84	Module part number	0	0	1	0	1	1	0	1	2D	_
85	Module part number	0	0	1	1	0	0	0	1	31	1
86	Module part number	0	0	1	1	0	0	0	0	30	0
87	Module part number	0	1	0	0	0	0	1	0	42	В
88 to 90	Module part number	0	0	1	0	0	0	0	0	20	(Space)
91	Revision code	0	0	1	1	0	0	0	0	30	Initial
92	Revision code	0	0	1	0	0	0	0	0	20	(Space)
93	Manufacturing date	×	×	×	×	×	×	×	×	××	Year code (BCD)
94	Manufacturing date	×	×	×	×	×	×	×	×	××	Week code (BCD)
95 to 98	Module serial number	*3									
99 to 127	Manufacturer specific data	*4									

Notes: 1. All serial PD data are not protected. 0: Serial data, "driven Low", 1: Serial data, "driven High" These SPD are based on JEDEC Committee Ballot JC-42.5-99-129.

- 2. Byte72 is manufacturing location code. (ex: In case of Japan, byte72 is 4AH. 4AH shows "J" on ASCII code.)
- 3. Bytes 95 through 98 are assembly serial number.
- 4. All bits of 99 through 127 are not defined ("1" or "0").
- 5. These specifications are defined based on component specification, not module.