

支持 PD3.1 等多种快充输入输出协议、支持 2~6 节串联电池 集成升降压驱动 最大充放电功率 140W 的电源管理芯片

1 特性

• 充放电规格

- ◆ 集成BUCK-BOOST升降压功率NMOS驱动
- ◆ 充放电功率最大 140W
- ◆ 自适应充电电流调节
- ◆ 外接电阻可设置电池类型,充满电压为 3.65V/4.1V/4.2V/4.35V/4.4V
- ◆ 外接电阻设置电池串联节数: 2/3/4/5/6
- ◆ 外接电阻可设置最大充放电功率,最大支持 140W 充放电

• 快充规格

- ◆ 集成 FCP 输入输出快充协议
- ◆ 集成 AFC 输入输出快充协议
- ◆ 集成 SCP 输入输出快充协议
- ◆ 集成 DRP Try.SRC 协议, PD3.1 输入输出快充协议
- ◆ 集成 QC2.0/QC3.0/QC3.0+ 输出快充协 议

• 其他功能

- ◆ 4/2/1LED 电量指示灯
- ◆ 定制支持 I2C 功能
- ◆ 待机功耗 5µA
- ◆ EN 唤醒功能

• 多重保护、高可靠性

- ◆ 输入过压、欠压保护
- ◆ 输出过流、短路保护
- ◆ 电池过充、过放、过流保护
- ◆ IC 过温保护
- ◆ 充电电池温度 NTC 保护
- ◆ ESD 4KV, 输入(含 CC1/CC2 引脚)耐 压 30V
- 封装规格: 5mm × 5mm 0.4pitch QFN40

2 应用产品

2~6 串锂电池/磷酸铁锂电池充放电

3 简介

IP2366 是 一 款 集 成 AFC/FCP/PD2.0/PD3.0/PD3.1 等输入输出快充协议和同步升降压转换器的锂电池充放电管理芯片,充放电功率高达140W:

IP2366 的高集成度与丰富功能,只需一个电感实现同步降升压功能,在应用时仅需极少的外围器件,有效减小整体方案的尺寸,降低 BOM 成本。

IP2366 支持 2/3/4/5/6 节串联电芯,可通过外接电阻设置选择电池串联节数; IP2366 支持外接电阻可设置电池类型,充满电压为 3.65V/4.1V/4.2V/4.35V/4.4V

IP2366 内置 IC 温度、电池 NTC 温度和输入电压控制检测环路,可以根据识别到的充电器功率,智能调节充电电流。

IP2366 支持低功耗模式,进入低功耗模式后, 待机电流降低到 5μA。进入低功耗模式后,插入充 电器可自动唤醒充电,需要短按按键来唤醒对外放 电.

IP2366 内置 14bit ADC,可以精确测量输入电压和电流,电池电压和电流等。可通过 I2C 获取 IP2366 充放电电压、充电电流等信息。

IP2366 支持 4 个电量指示灯,可显示电量和充放电状态。

目录

1 特性	
2 应用产品	
3 简介	1
4 修改记录	
5 简化应用原理图	
6 引脚定义	
6.1 引脚说明	
7 芯片内部框图	
8 极限参数	
9 推荐工作条件	
10 电气特性	
11 功能描述	
	12
11.2 放电功能	
11.3 状态转换说明	14
11.4 输入输出最大功率设定	15
11.5 电池串联数量设定	
11.6 电池类型设定	
11.7 NTC 功能	
11.8 灯显功能	
11.9 CC_BDO 设置	
11.10 按键功能	
12 应用原理图	21
13 BOM	23
14 封装信息	
15 丝印说明	25
16 责任及版权申明	

4 修改记录

备注: 以前版本的页码可能与当前版本的页码不同。

更改版本 V1.11 至 V1.12 (2023 年 5 月)	页码
● 增加 NTC 功能说明	17
更改版本 V1.10 至 V1.11 (2023 年 3 月)	页码
● 修改应用原理图中固态电容和电感参数	20
● 修改 bom 中固态电容和电感参数	22
更改版本 V1.00 至 V1.10 (2023 年 3 月)	页码
● 增加 PIN 选功能设置最大功率、电池串数、电池类型说明	15
● 增加灯显、NTC、按键功能说明	16
● 增加标准型号和 I2C 型号应用原理图	19
初版释放 V1 00(2022 在 11 日)	

5 简化应用原理图

图 1 IP2366 简化应用原理图

6 引脚定义

图 2 IP2366 引脚图

6.1 引脚说明

Pin Num	Pin Name	PIN 定义说明	
1	TEST2	测试点,悬空 NC	
2	TEST3	测试点,悬空 NC	
3	TEST4	测试点,悬空 NC	
4	TEST5	测试点,悬空 NC	
5	5 VBUS WBUS 输入检测引脚		
6	VBUSG VBUS 输入路径 NMOS 控制引脚		
7	7 VBUSI VBUS 输入路径电流检测引脚		
8	VIO 电源输入端引脚		
9	9 CSP1 输入电流采样正端		
10 CSN1 输入电流采样负端		输入电流采样负端	
11	PCIN	输入峰值电流采样引脚	
12	HG1	H桥功率管输入端上管控制引脚	

13	BST1	H桥功率管输入端自举电压引脚	
14	LX1	输入端电感连接引脚	
15	LG1	H桥功率管输入端下管控制引脚	
16	LG2	H 桥功率管输出电池端下管控制引脚	
17	LX2	电池端电感连接引脚	
18	BST2	H 桥功率管电池端自举电压引脚	
19	HG2	H 桥功率管电池端上管控制引脚	
20	PCON	电池端峰值电流采样引脚	
21	CSN2	电池端平均电流采样负端	
22	CSP2	电池端电流采样正端	
23	BAT	电池端供电引脚	
24	CC_BDO	待机时 TYPEC 模式选择,接地默认放电 DFP,悬空或接高 默认充电 UFP;	
25	VCC5V	系统 5V 供电电源,给 IC 内部模拟电路供电	
26	AGND	模拟地	
27	GPIO4	BAT_NUM 设定电池串联数量,接电阻到地	
28	VCCIO	系统 3.3V 供电电源,给 IC 内部数字电路供电	
29	GPIO3	PSET 设定系统充放电最大功率,接电阻到地	
30	GPIO2	VSET 设定单串电池充饱电压,接电阻到地	
31	GPIO1	LED3(I2C 型号作为 I2C_INT)	
32	GPIO0	NTC 设定保护温度,接 NTC 电阻	
33	EN	EN唤醒引脚,接按键实现开机唤醒和关机	
34	CC2	USB C 口检测和快充通信引脚 CC2	
35	DPC	USB € 口快充智能识别 DP	
36	DMC	USB C 口快充智能识别 DM	
37	CC1	USB C 口检测和快充通信引脚 CC1	
38	GPIO19	LED2(I2C 型号作为 I2C_SDA)	
39	GPIO20	LED1(I2C 型号作为 I2C_SCL)	
40	TEST1	测试点,悬空 NC	
41	GND	系统地和散热地,需要保持与 GND 良好接触	

7 芯片内部框图

图 3 芯片内部框图

8 极限参数

参数	符号	值	单位
BAT 电压范围	V_{BAT}	-0.3 ~ 35	V
VBUS 电压范围	V _{VBUS}	-0.3 ~ 30	V
BST1/HG1-LX1 电压范围	V _{BST1/HG1-LX1}	-0.3 ~ 6	V
BST2/HG2-LX2 电压范围	V _{BST2} /HG2-LX2	-0.3 ~ 6	V
VIO 电压范围	V _{VIO}	-0.3 ~ 30	V
LX1/BST1/HG1/LX2/BST2/HG2	V _{LX1/BST1/HG1}	-0.3 ~ 50	V
电压范围	V _{LX2/BST2/HG2}	-0.0	•
CSP2/CSN2/PCIN	Vcsp2/csn2/pcin	-0.3 ~ 35	V
电压范围			
CSP1/CSN1/PCON	Vcsp1/csn1/pcon	-0.3 ~ 30	V
电压范围			
CC1/CC2	V _{CC1/CC2}	-0.3 ~ 30	v
电压范围			
DMC/DPC	V _{DMC/DPC}	-0.3 ~ 22	v
电压范围	DINICIDEC	0.0 22	
数字 GPIO 电压范围	V _{GPIO}	-0.3 ~ 8	V
结温范围	TJ	-40 ~ 125	C
存储温度范围	Tstg	-60 ~ 150	C
热阻(结温到环境)	θја	45	°C/W
人体模型(HBM)	ESD	4	KV

^{*}高于绝对最大额定值部分所列数值的应力有可能对器件造成永久性的损害,在任何绝对最大额定值条件下暴露的时间过长都有可能影响器件的可靠性和使用寿命

9 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
输入输出电压	VBUS	4.5		28	V
电池电压	VBAT			32	V
工作环境温度	T _A	-40		85	$^{\circ}$

^{*}超出这些工作条件,器件工作特性不能保证。

10 电气特性

除特别说明, TA=25℃, L=10µH

际特别说明, 多数	符号	测试	 条件	最小值	典型值	最大值	单位
充电系统							
输入电压	V _{BUS}			4.5	5/9/12/15/ 20/28	30	V
输入过压电压	V_{BUS}	上升电压		28.5	29	30	٧
峰值电流	I _{L_PK}	电感峰值限流				15	Α
 涓流充电电流	I _{TRKL}	V _{VBUS} =5V, V _{BAT} <2.5	V	30	50	70	mA
THANK JURE PEAK	TIRKL	V _{VBUS} =5V, 2.5V<=V	BAT <vtrkl< td=""><td>100</td><td>200</td><td>300</td><td>mA</td></vtrkl<>	100	200	300	mA
 涓流截止电压	V _{TRKL}	电池节数为 N, V _{TR}	_{GT} 非 3.65V	N*2.9	N*3	N*3.1	V
1月10世纪11年11年	VIRKL	电池节数为 N, V _{TR}	_{GT} =3.65V	N*2.7	N*2.75	N*2.85	V
		电池节数为 N, R _{vs}	_{ET} = 18K	N*4.36	N*4.40	N*4.44	V
		电池节数为 N, R _{vs}	_{ET} = 13K	N*4.21	N*4.35	N*4.39	V
充电恒压电压	V _{CV}	电池节数为 N, R _{vs}	_{ET} = 9.1K	N*4.16	N*4.20	N*4.24	V
		电池节数为 N, R _{vs}	$\overline{}$	N*4.06	N*4.10	N*4.14	V
		电池节数为 N,R _{vs}	_	N*3.6	N*3.65	N*3.7	V
		VBUS=5V,输入电	流	2.7	3.0	3.3	Α
		VBUS=9V,PD 快 充, 输入电流	PMAX>=30W	2.7	3.0	3.3	Α
		VBUS=9V, 非 PD 快充, 输入电流	FIVIAX>=30VV	1.8	2.0	2.2	Α
		VBUS=12V , PD 快充,	PMAX=30W	2.0	2.25	2.5	Α
		输入电流	PMAX>=45W	2.7	3.0	3.3	Α
充电电流	I _{CHRG}	VBUS=12V , 非 PD 快充, 输入电流	PMAX>=27W	1.3	1.5	1.7	Α
		VBUS =15V,PD 和非 PD,输入电	PMAX=30W	1.8	2.0	2.2	Α
		流	PMAX>=45W	2.7	3.0	3.3	Α
			PMAX=30W	1.3	1.5	1.7	Α
•		\/DLIC =00\/ DD	PMAX=45W	2.0	2.25	2.5	Α
		VBUS =20V,PD 快会 输入电流	PMAX=60W	2.7	3.0	3.3	Α
		快充,输入电流	PMAX=65W	3.0	3.25	3.6	Α
			PMAX>=100W	4.3	4.7	5.1	Α
		VBUS=20V,非	PMAX=30W	1.3	1.5	1.7	Α
		PD 快充,输入电	PMAX=45W	2.0	2.25	2.5	Α

IP2366

		流	PMAX>=60W	2.7	3.0	3.3	Α
		VBUS=28V,非 PD 快充,输入电 流	PMAX=140W	4.3	5.0	5.3	А
充电停充电流	I _{STOP}				100		mA
再充电阈值	V _{RCH}	电池节数为 N	电池节数为 N		V _{TRGT} – N*0.1		V
充电截止时间	T _{END}				48	1.	Hou
 放电系统	•			•			
电池工作电压	V _{BAT}	电池节数为 N		N*2.75		N*4.5	V
开关工作电池 输入电流	I _{BAT}	VBAT=6*3.7V, VOUT=5.0V, fs=250kHz, lout=0n	nA	- (12		mA
	0000	V _{OUT} =5V@1A		4.75	5.00	5.25	V
	QC2.0	V _{OUT} =9V@1A		8.70	9	9.30	V
	V _{OUT}	V _{OUT} =12V@1A		11.60	12	12.40	V
DC 输出电压	QC3.0/ QC3+ V _{OUT}	@1A	V	3.6		12	V
	QC3.0 Step				200		mV
	QC3+ Step				20		mV
松山 古 云 公 孙		VBAT=6*3.7V, fs=250KHz, lout=1/	VOUT=5.0V,		150		mV
输出电压纹波	ΔV _{OUT}	VBAT=6*3.7V, fs=250KHz, lout=1A	VOUT=9.0V ,		150		mV
		VBAT=6*3.7V, VOUT=12V, fs=25	0KHz, lout=1A		150		m∨
松山市区公外		VBAT=6*3.7V, VOUT=15V, fs=25	0KHz, lout=1A		150		m∨
输出电压纹波	ΔV _{OUT}	VBAT=6*3.7V, VOUT=20V, fs=25	0KHz, lout=1A		150		mV
		VBAT=6*3.7V, VOUT=28V, fs=25	0KHz, lout=1A		200		mV
放电系统最大 输出功率	Pmax	PD 协议下				140	W
放电系统效率	η _{out}	V _{BAT} =6*3.0V, V _{OUT} =.	28V,		96.0		%

IP2366

VBAT=6*3.7V, VouT=28V, IouT=5A 96.5 96.5	% % % %
Iout=5A	% % %
Iout=5A 96.5 VBAT=6*3.0V, Vout=20V, Iout=5A 96.0 VBAT=6*3.7V, Vout=20V, Iout=5A 96.5 VBAT=6*4.2V, Vout=20V, Iout=5A 96.5 VBAT=N*3.7V,输出 5V 3.0 3.3 3.6 VBAT=N*3.7V,输出 9V,非 PD 状态 2.4 2.7 3.0	%
Iout=5A	%
I _{OUT} =5A 96.0 V _{BAT} =6*3.7V, V _{OUT} =20V, 96.5 V _{BAT} =6*4.2V, V _{OUT} =20V, 96.5 V _{BAT} =6*4.2V, V _{OUT} =20V, 96.5 V _{DUT} =5A V _{DUT} =5	%
IOUT=5A VBAT=6*3.7V, VOUT=20V, IOUT=5A 96.5 VBAT=6*4.2V, VOUT=20V, IOUT=5A 96.5 VBAT=N*3.7V,输出 5V 3.0 3.3 3.6 VBAT=N*3.7V,输出 9V, 非 PD 状态 2.4 2.7 3.0	%
IOUT=5A 96.5 VBAT=6*4.2V, VOUT=20V, IOUT=5A 96.5 VBAT=N*3.7V,输出 5V 3.0 3.3 3.6 VBAT=N*3.7V,输出 9V, 非 PD 状态 2.4 2.7 3.0	%
Iоит=5A V _{ВАТ} =6*4.2V, V _{ОИТ} =20V, I _{ОИТ} =5A 96.5 VВАТ=N*3.7V,输出 5V 3.0 3.3 3.6 VВАТ=N*3.7V,输出 9V, 非 PD 状态 2.4 2.7 3.0	%
IOUT=5A 96.5 VBAT=N*3.7V,输出 5V 3.0 3.3 3.6 放电系统过流 VBAT= N*3.7V,输出 9V,非 PD 状态 2.4 2.7 3.0	
Ιουτ=5Α VBAT=N*3.7V,输出 5V 3.0 3.3 3.6 放电系统过流 VBAT= N*3.7V,输出 9V,非 PD 状态 2.4 2.7 3.0	
放电系统过流 VBAT= N*3.7V,输出 9V,非 PD 状态 2.4 2.7 3.0	$\overline{}$
chut lehut	<u> </u>
关斯由流	Α
	Α
VBAT= N*3.7V,输出 PD 状态 PDO * 1.1	Α
负载过流检测 - 松小小屋片体体工 - 44	
T _{UVD} 输出电压持续低于 2.4V 30	ms
负载短路检测	
Tocb 输出电压持续低于 2.2V 40 40	μs
控制系统	
放电开关频率 250	kHz
开关频率 fs 充电开关频率 250	kHz
VCC5V 输出	
电压 V _{CC5V} 4.75 5 5.25	V
VCC5V 输出	
电流 30	mA
VCCIO 输出 V	V
电压 Vccio 3.15 3.3 3.45	_ v
VCCIO 输出	
电流 lcoio 30	mA
电池端待机电 I _{STB} VBAT=22V, 关机 1 分钟后的平均电流 5 10	
Istal VBAT=22V,关机 1 分钟后的平均电流 5 10	μA
LED显示驱动 l ₁ 电压下降 10% 5	mA
电流 I _{L2} 电压下降 10 / 0	111/7
热关断温度 T _{OTP} 上升温度 110 125 140	$^{\circ}\mathbb{C}$
热关断温度迟 ΔT _{OTP} 40	$ $ $^{\circ}$

11 功能描述

11.1 充电功能

IP2366 拥有一个支持同步升降压开关结构的恒流、恒压锂电池充电管理系统。

IP2366 采用开关充电技术,开关频率 250kHz。

IP2366 可以通过外接电阻设置不同的电池类型、充满电压和充电功率,可以支持 2/3/4/5/6/串电池的设置,可以支持充满电压为 3.65V/4.1V/4.2V/4.35V/4.4V 的不同类型电池;最大输入充电功率可以达到 28V/5A(140W),充电效率最高到 96%;

IP2366 支持涓流-恒流-恒压充电的过程:

当电池电压 VBAT≤ 2.5V 时,为小电流涓流充电,电池充电电流 50mA 左右;

当电池电压 2.5V <VBAT≤ VTRKL 时,为涓流充电,电池充电电流 200mA 左右;

当电池电压 VTRKL<VBAT< VCV时,为恒流充电,按设置的恒流充电电流对电池充电;

当电池电压 $V_{BAT} = V_{CV}$ 时,电池电压上升到接近充满电压时,充电电流会缓慢下降,进入恒压充电;进入恒压充电后,当电池充电电流小于 I_{STOP} 且电池电压接近恒压电压时,停止充电,进入充饱状态。

进入充饱状态后,会继续检测电池电压,当电池电压低于 VBAT < VRCH后,会重新开始充电;

图 4 电池充电过程示意图

IP2366 集成有 AFC/FCP/PD2.0/PD3.0/PD3.1 输入快充协议,可以通过 Type-C 口上的 DPC/DMC/CC1/CC2 来向快充充电器申请快充电压,会自动调节充电电流大小,来适应不同负载能力的充电器。

当用没有快充的充电器或直流电源供电充电时, IP2366 会根据输入电压来设置充电电流:

输入电压	恒流充电时的最大输入电流
4.5 <vbus≤6.5v< td=""><td>3A</td></vbus≤6.5v<>	3A
6.5 <vbus≤9.5v< td=""><td>2A</td></vbus≤9.5v<>	2A
9.5 <vbus≤13.5v< td=""><td>1.5A</td></vbus≤13.5v<>	1.5A
13.5 <vbus≤16.5v< td=""><td>5A</td></vbus≤16.5v<>	5A
16.5 <vbus≤24v< td=""><td>5A</td></vbus≤24v<>	5A
24 <vbus≤29v< td=""><td>5A</td></vbus≤29v<>	5A

注:实际充电功率大于设置的最大输入功率限制时,也会降低充电电流;

IP2366 支持华为 FCP、SCP 和三星 AFC 快充输入协议,当用支持华为 FCP、SCP 和三星 AFC 的充电器输入充电时,IP2366 会申请最高的输入电压,恒流充电电流按上面的输入电压增位来设置;

IP2366 支持 PD2.0/PD3.0/PD3.1 输入协议,当用 PD 快充适配器充电时,IP2366 会读取适配器发过来的 PD 信息包,然后根据收到的 PD 信息包来申请充电电压和设置充电电流;当收到的 PD 包功率小于设置的充电需求的功率时,会主动降低充电电流,使输入端的最大功率小于等于适配器给出的 PD 广播功率;

11.2 放电功能

IP2366 集成 USB Type_C 输入、输出识别接口,自动切换内置上下拉电阻,自动识别插入设备的充放电属性。带有 Try.SRC 功能,当连接到对方为 DRP 设备时,可优先给对外放电给对方充电。

IP2366 支持多种规格的快充形式: PD2.0/PD3.0/PD3.1、 QC2.0/QC3.0/QC3+、FCP、AFC、SCP、Apple。

IP2366 支持 EMARK 线缆的识别,

IP2366 支持 PD2.0/PD3.0/PD3.1 输出协议,最大支持 140W 功率输出;

IP2366 支持 EMARK 线缆的识别,会根据识别到的线缆信息,对外广播不同的 PD 信息包,不同功率设置下对外广播的 PD 信息包如下:

设置的最 大输出功 率	没有识别到 EMARK 线缆	识别到 MARK 线缆后
140W	5V/3A,9V/3A,12V/3A,15V/3A,20V/3A	5V/3A,9V/3A,12V/3A,15V/3A,20V/5A,28V/5A
100W	5V/3A,9V/3A,12V/3A,15V/3A,20V/3A	5V/3A,9V/3A,12V/3A,15V/3A,20V/5A
65W	5V/3A,9V/3A,12V/3A,15V/3A,20V/3A	5V/3A,9V/3A,12V/3A,15V/3A,20V/3.25A
60W	5V/3A,9V/3A,12V/	3A,15V/3A,20V/3A
45W	5V/3A,9V/3A,12V/3	A,15V/3A,20V/2.25A
30W	5V/3A,9V/3A,12V/2.	5A,15V/2A,20V/1.5A

IP2366 可通过 DP/DM 管脚支持 QC2.0/QC3.0/QC3+、FCP、AFC、SCP,以及苹果手机 2.4A 模式、BC1.2 普通 Android 手机 1A 模式。

11.3 状态转换说明

11.4 输入输出最大功率设定

IP2366 通过判断 PSET 引脚连接的阻值来设定系统输入输出的最大功率。

RPSET	对应设定的最大功率 PMAX
27k	140W
18k	100W
13k	65W
9.1k	60W
6.2k	45W
3.6k	30W

11.5 电池串联数量设定

IP2366 通过判断 BAT NUM 引脚连接的阻值来设定电池串联数量。

# 1000 (C) (44) 10 m = 10 m 4/1/10 (M) (1 m m) (M) (1 m) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M					
RBAT_NUM	对应设定的电池串联数量				
27k	6 串				
18k	6 串				
13k	5 串				
9.1k	4 串				
6.2k	3 串				
3.6k	2 串				

11.6 电池类型设定

IP2366 通过判断 VSET 引脚连接的阻值来设定电池类型。

RVSET	对应电池类型(单节电池充满电压)
27k	4.2V (打印)
18k	4.4V
13k	4.35V
9.1k	4.2V
6.2k	4.1V
3.6k	3.65V

注: ** RVSET 接入 27k 电阻后, VSET 脚会使能打印输出功能。

11.7 NTC 功能

IP2366 集成 NTC 功能,可检测电池温度。IP2366 工作时在 NTC 引脚上产生一个恒流源,与外部下拉的 NTC 温敏电阻产生电压,芯片通过内部检测 NTC 引脚的电压来判断当前电池的温度。

*在 NTC 引脚对 GND 并联的 100nF 电容, 电容要求靠近芯片引脚放置。

图 7 NTC 电压和放出电流关系

为了精准的区分电池 NTC 的温度,IP2363 采用电流切换型 NTC 检测模块。芯片内部检测 NTC 引脚输出的电流与外部下拉的 NTC 温敏电阻产生的电压来判断当前电池的温度。

当 NTC 引脚的输出电流为 $80\mu A$,并且检测到 NTC 引脚的电压高于 1.5V 时,NTC 引脚的输出电流则 调整为输出 $20\mu A$:

当 NTC 引脚的输出电流为 $20\mu A$,并且检测到 NTC 引脚的电压低于 0.25V 时,NTC 引脚的输出电流则调整为输出 $80\mu A$ 。

在充电状态下:

当 NTC 输出电流为 80μA, 且检测 NTC 引脚的电压低于 0.39V 时,表示电池温度高于 45℃,停止充电功能:

当 NTC 输出电流为 20μA, 且检测 NTC 引脚的电压高于 0.55V 时,表示电池温度低于 0℃,停止充电功能;

图 8 NTC 电压和 NTC 电阻阻值关系

如果方案不需要 NTC 功能, 需要在 NTC 引脚对地接 10kΩ电阻,不能将 NTC 引脚浮空或者直接接地。

11.8 灯显功能

IP2366 支持 4、2、1 颗电量显示灯方案,连接方式如下。

图 9 4、2、1 LED 连接方式

4 灯的显示方式为:

正常充电时

电量 C (%)	D1	D2	D3	D4
充满	亮	亮	亮	亮
75%≤C	亮	亮	亮	0.5Hz 闪烁
50%≤C<75%	亮	亮	0.5Hz 闪烁	灭
25%≤C<50%	亮	0.5Hz 闪烁	灭	灭
C<25%	0.5Hz 闪烁	灭	灭	灭

正常放电时

电量 C (%)	D1	D2	D3	D4
75%≤C	亮	亮	亮	亮
50%≤C<75%	亮	亮	亮	灭
25%≤C<50%	亮	亮	灭	灭

C<25%	亮	灭	灭	灭
C=0	闪烁 4 次	灭	灭	灭

闪烁 4 次(250ms 亮 250ms 灭)后停止放电。

2 灯模式 1 的显示方式为双色灯:

正常充电时

电量 C (%)	D1	D2
充满	灭	亮
66%≤C<100%	灭	0.5Hz 闪烁
33%≤C<66%	0.5Hz 闪烁	0.5Hz 闪烁
C<33%	0.5Hz 闪烁	灭

正常放电时

电量 C (%)	D1	D2
66%≤C<100%	灭	亮
33%≤C<66%	亮	亮
C<33%	亮	灭
C=0	闪烁 4 次	灭

闪烁 4 次(250ms 亮 250ms 灭)后停止放电。

2灯模式2的显示方式为:

充电中 D1 亮 D2 灭,充满后 D1 灭 D2 亮; 充电异常 D1 和 D2 同时闪烁(250ms 亮 250ms 灭)放电中 D1 常亮,C=0 时 D1 闪烁 4 次(250ms 亮 250ms 灭)后停止放电。

1 灯模式的显示方式为:

充电中 D1 闪烁(1s 亮 1s 灭),充满后,D1 常亮,充电异常 D1 快速闪烁(250ms 亮 250ms 灭)放电中 D1 常亮,C=0 时 D1 闪烁 4 次(250ms 亮 250ms 灭)后停止放电。

11.9 CC_BDO 设置

IP2366 的 CC_BDO 管脚,用于设置在低功耗状态时 CC1/CC2 的默认状态: CC_BDO 引脚悬空或为高电平时,CC1/CC2 默认下拉,IP2366 作为 SINK 设备; CC_BDO 引脚接 1K 电阻到地时,CC1/CC2 默认上拉,IP2366 作为 SOUCRE 设备。

11.10 按键功能

IP2366 支持按键功能,按键的连接方式如图 8 所示,

图 10 EN 按键连接方式

EN 脚电压大于 1.2V,持续时间大于 100ms,小于 2s,即为短按动作;进入低功耗模式后,短按会打开电量显示灯,并进入空载状态,如检测到有充放电设备则会进入对应充放电状态;空载状态下,持续 10s C 口都未检测到有充电或放电设备接入,就会进入低功耗状态。在空载状态下,在 1s 内连续进行 2 次短按操作,也会关机进入低功耗状态,关闭电量灯显和放电输出;

EN 脚电压大于 1.2V, 持续时间大于 10s, 则系统会进行复位。

EN 脚不能悬空,必须接 10K 电阻下拉到地。

12 应用原理图

I2C 型号应用原理图

13 BOM

序号	元件名称	型号&规格	位置	用量	备注
1	贴片 IC	QFN40 IP2366	U1	1	
2	贴片电容	0603 100nF 10% 50V	C3,C16,C17	3	
3	贴片电容	0603 1µF 10% 35V	C1,C2,	2	
4	贴片电容	0603 2.2µF 10% 35V	C12,C13	2	
5	贴片电容	1210 22µF 10% 35V	C4,C5,C10,C11	4	
6	固态电容	100µF 35V 10%	C7,C8	2	
7	贴片电阻	1206 0.005R 1%	R2,R4	2	采样电阻,要求用高 精度低温飘的金属膜 电阻
8	贴片电阻	0603 100R 5%	R32,R33,R17	3	I2C 型号 R32,R33 为 2K2 上拉到 VCCIO, R17 为 510K 下拉到 地
9	贴片 LED	0603 LED灯	D1,D2,D3,D4	4	I2C 型号省略
10	贴片电阻	0603 10R 1%	R7,R3	2	
11	升降压电感	10µH 15A R _{DC} <0.01R	L1	1	
12	USB C 座子	USB C 座子	USB	1	
13	贴片 MOS 管	AER4061BE	Q2,Q3,Q4,Q5	4	
14	贴片电阻	0603 43K	R34	1	
15	贴片电阻	0603 10K	R35	1	
16	贴片电阻	0603 2R	R6,R8,R9,R21,R22	5	
17	贴片电阻	0603 51R	R1	1	
18	贴片 MOS 管	RU3030M2	Q5	1	NC,过认证时贴 Q5,
19	贴片电阻	1206 0R	R5	1	过认证时 NC

14 封装信息

图 13 封装图

15 丝印说明

图 14 丝印图

16 责任及版权申明

英集芯科技有限公司有权对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的销售条款与条件。

英集芯科技有限公司对应用帮助或客户产品设计不承担任何义务。客户应对其使用英集芯的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全验证。

客户认可并同意,尽管任何应用相关信息或支持仍可能由英集芯提供,但他们将独力负责满足与其产品及在其应用中使用英集芯产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类关键应用中使用任何英集芯产品而对英集芯及其代理造成的任何损失。

对于英集芯的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。英集芯对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

英集芯会不定期更新本文档内容,产品实际参数可能因型号或者其他事项不同有所差异,本文档不作 为任何明示或暗示的担保或授权。

在转售英集芯产品时,如果对该产品参数的陈述与英集芯标明的参数相比存在差异或虚假成分,则会 失去相关英集芯产品的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。英集芯对任何此类虚假 陈述均不承担任何责任或义务。