SQL

Prof. Edson Kaneshima

Esquema HR

Instruções Básicas de SQL

- O SQL é a linguagem padrão ANSI para acesso a banco de dados relacionais e engloba tanto uma DDL quanto uma DML.
- É uma linguagem baseada em conjunto, isto é, com um simples comando recuperamos um conjunto de registros, sem precisarmos efetuar leituras registro a registro.

Consultas em múltiplas tabelas

- Para consultar dados de mais de uma tabela, você precisa identificar colunas comuns entre as duas tabelas.
 - Um exemplo seria a coluna DEPARTMENT_ID na tabela de EMPREGADO que corresponde a coluna de mesmo nome (DEPARTAMENT_ID) na tabela de DEPARTAMENTO.
- Na cláusula WHERE, você define a relação entre as tabelas listadas na cláusula FROM usando operadores de comparação.
 - Normalmente o operador de igualdade (=) é o utilizado.
- Veremos que ao invés de utilizarmos o WHERE, podemos indicar a correspondência entre duas tabelas utilizando a cláusula JOIN.
 - A consulta entre múltiplas tabelas sem correspondência ou colunas em comum é conhecida como produto cartesiano.

Junções Simples

- Uma junção simples é conhecida como inner join, pois ela retorna somente as linhas que satisfazem as condições de junção.
 - Um exemplo seria a busca do código e nome dos departamentos e suas respectivas cidades. Esta informação não consta em uma única tabela, bastando uma junção simples.
 - select DEPARTMENTS.DEPARTMENT_ID,

 DEPARTMENTS.DEPARTMENT_NAME, LOCATIONS.CITY

 from DEPARTMENTS, LOCATIONS

 where DEPARTMENTS.LOCATION_ID = LOCATIONS.LOCATION_ID
 - O resultado é algo como abaixo:

ID_DEPARTAMENTO	NOME_DEPARTAMENTO	CIDADE
10	Administration	Seattle
20	Marketing	Toronto
• • •	•••	• • •
270	Payroll	Seattle

Junções Complexa

- Uma junção complexa é uma junção simples que contém na cláusula WHERE, além da condição de junção, uma outra condição para filtrar as linhas retornadas.
 - Um exemplo seria a busca do código e nome dos departamentos e suas respectivas cidades fora dos Estados Unidos.
 - select DEPARTMENTS.DEPARTMENT_ID, DEPARTMENTS.DEPARTMENT_NAME, LOCATIONS.CITY from DEPARTMENTS, LOCATIONS where DEPARTMENTS.LOCATION_ID = LOCATIONS.LOCATION_ID and LOCATIONS.COUNTRY ID <> 'US'
 - O resultado é algo como abaixo:

ID_DEPARTAMENTO	NOME_DEPARTAMENTO	CIDADE
20	Marketing	Toronto
	• • •	• • •
80	Sales	Oxford

Criando aliases para tabelas

- Observe a consulta do slide anterior reescrita usando "apelidos", como o seguinte:
 - select d.DEPARTMENT_ID, d.DEPARTMENT_NAME, I.CITY from DEPARTMENTS d, LOCATIONS I where d.LOCATION_ID = I. LOCATION_ID and I.COUNTRY_ID <> 'US'
- Apelidos de tabela aumentam a legibilidade da consulta. Eles são muito utilizados para reduzir grandes nomes de tabelas em curtos apelidos.

NATURAL JOIN

- No natural join, a junção é realizada por todas as colunas que possuem o mesmo nome em ambas as tabelas.
- Neste tipo de junção não se deve qualificar o nome das colunas com o nome da tabela ou com o "apelido" da tabela.
- Sintaxe:
 - <nome-da-tabela> NATURAL [INNER] JOIN <nome-da-tabela>
- Vamos refazer o exemplo da busca do código e nome dos departamentos e suas respectivas cidades.
 - select DEPARTMENT_ID, DEPARTMENT_NAME, CITY
 from DEPARTMENTS natural join LOCATIONS

JOIN ... USING

- Neste tipo de junção, a junção é realizada pelas colunas indicadas e que possuem o mesmo nome em ambas as tabelas.
- A cláusula USING especifica os nomes das colunas que devem ser utilizadas para realizar a junção das tabelas.
- Também neste tipo de junção não se deve qualificar o nome das colunas com o nome da tabela ou com o "apelido" da tabela.
- Sintaxe:
 - <nome-da-tabela> [INNER] JOIN <nome-da-tabela> USING (<colunas>)

JOIN ... USING

- Vamos refazer o exemplo da busca do código e nome dos departamentos e suas respectivas cidades.
 - select DEPARTMENT_ID, DEPARTMENT_NAME, CITY from DEPARTMENTS join LOCATIONS
 using (LOCATION_ID)

JOIN ... ON

- Quando não se tem nomes de colunas comuns entre tabelas para fazer uma junção ou deseja-se especificar condições de junções arbitrárias, este é o tipo de junção a ser utilizado.
- Neste tipo de junção pode-se e deve-se qualificar o nome das colunas com o nome da tabela ou com o "apelido" da tabela.
- Sintaxe:
 - <nome-da-tabela> [INNER] JOIN <nome-da-tabela> ON <condição>

JOIN ... ON

- Vamos refazer o exemplo da busca do código e nome dos departamentos e suas respectivas cidades.
 - select d.DEPARTMENT_ID, d.DEPARTMENT_ID, I.CITY
 from DEPARTMENTS d join LOCATIONS I
 on (d.LOCATION_ID = I.LOCATION_ID)

Junções em múltiplas tabelas

- Vamos fazer o exemplo da busca do primeiro nome do empregado, nome do seu departamento, nome da cidade do seu departamento.
 - select e.FIRST_NAME, d.DEPARTMENT_NAME, I.CITY from EMPLOYEES e
 JOIN DEPARTMENTS d
 on (e.DEPARTMENT_ID = d.DEPARTMENT_ID)
 JOIN HR.LOCATIONS I
 on (d.LOCATION_ID = I. LOCATION_ID)

- Até agora, vimos inner joins, que retornam somente as linhas correspondentes entre ambas as tabelas, e produtos cartesianos, que retornam uma combinação de todas as linhas de ambas as tabelas.
- Em alguns casos, deseja-se ver os dados de uma tabela, mesmo que não haja uma linha correspondente na tabela de junção.
- Para o problema acima, existe a junção do tipo outer join. Ele retorna valores baseados nas condições de inner join, como também linhas não relacionadas de um ou dos dois lados das tabelas.

- Na sintaxe do Oracle, o símbolo + envolvido por parênteses, é uma notação de outer join na consulta.
- Digite (+) próximo a coluna da tabela onde pode não haver linhas correspondentes.
- Um exemplo é buscar a lista de nomes de todos os países e cidades em que possuem departamentos localizados. Caso o país não tenha nenhum departamento localizado, deseja-se exibi-lo mesmo assim.
 - select p.COUNTRY_NAME, I.CITY from COUNTRIES p, LOCATIONS I where p. COUNTRY_ID = I.COUNTRY_ID (+)

- O exemplo da página anterior pode ser reescrito das seguintes formas:
 - select p.COUNTRY_NAME, I.CITY
 from COUNTRIES p left outer join LOCATIONS I
 on p.COUNTRY_ID = I. COUNTRY_ID
 - select p.COUNTRY_NAME, I.CITY
 from COUNTRIES p left outer join LOCATIONS I
 using (COUNTRY_ID)
 - select p. COUNTRY_NAME, I.CITY
 from COUNTRIES p natural left outer join LOCATIONS I

- Um exemplo inverso é buscar a lista de todas as cidades que possuem departamentos e os seus países. Caso a cidade não esteja vinculada a um país, deseja-se exibí-la mesmo assim.
 - select p.COUNTRY_NAME, I.CITY from COUNTRIES p, LOCATIONS I
 where p.COUNTRY_ID (+) = I. COUNTRY_ID

- O exemplo da página anterior pode ser reescrito das seguintes formas:
 - select p.COUNTRY_NAME, I.CITY
 from COUNTRIES p right outer join LOCATIONS I
 on p.COUNTRY_ID = I. COUNTRY_ID
 - select p.COUNTRY_NAME, I.CITY
 from COUNTRIES p right outer join LOCATIONS I
 using (COUNTRY_ID)
 - select p.COUNTRY_NAME, I.CITY
 from COUNTRIES p natural right outer join LOCATIONS I

- Uma subquery é um consulta dentro de uma consulta.
- Quando você tem várias subqueries, a subquery mais interna é avaliada primeiro.
- Podem ser usadas com todas as instruções DML.

- Buscar o primeiro e o último nome e o salário do empregado com o maior salário.
 - select e.FIRST_NAME, e.LAST_NAME, e.SALARY
 from EMPLOYEES e
 where e.SALARY =
 (select max(SALARY) from EMPLOYEES)

Resultado:

PRIMEIRO_NOME	ULTIMO_NOME	SALARIO
Steven	Kina	24000

- Buscar o primeiro e o último nome dos empregados e o código do departamento cujo nome do departamento comece com a letra 'A'.
 - select e.FIRST_NAME, e.LAST_NAME, e.DEPARTMENT_ID from EMPLOYEES e where e.DEPARTMENT_ID IN
 (select DEPARTMENT_ID from DEPARTMENTS where DEPARTMENT_NAME like 'A%')

Resultado:

PRIMEIRO_NOME	ULTIMO_NOME	ID_DEP
Jennifer	Whalen	10
Shelley	Higgins	110
William	Gietz	110

- Buscar o código do departamento, o primeiro e o último nome e o salário do empregado com o maior salário do seu departamento.
 - select e.DEPARTMENT_ID,

e.FIRST_NAME, e.LAST_NAME, e.SALARY

from EMPLOYEES e

where e.SALARY =

(select max(ei.SALARY) from EMPLOYEES ei

where ei.DEPARTMENT_ID = e.DEPARTMENT_ID)

Resultado:

ID_DEP	PRIMEIRO_NOME	ULTIMO_NOME	SALARIO
90	Steven	King	24000
60	Alexander	Hunold	9000
100	Nancy	Greenberg	12000
30	Den	Raphaely	11000
50	Adam	Fripp	8200
80	John	Russell	14000
10	Jennifer	Whalen	4400
20	Michael	Hartstein	13000
40	Susan	Mavris	6500
70	Hermann	Baer	10000
110	Shelley	Higgins	12000