Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Recap and agenda for today's class

- Discussed the following in the last lecture
 - Systematically calculated N(A) of matrix A

Recap and agenda for today's class

- Discussed the following in the last lecture
 - Systematically calculated N(A) of matrix A
- Discuss the following today
 - ullet Systematically calculate complete solution of $A{f x}={f b}$

• Recall while calculating elimination converted $A\mathbf{x} = 0$ to $R\mathbf{x} = 0$

¹Chap 3.4 of the book

- Recall while calculating elimination converted $A\mathbf{x} = 0$ to $R\mathbf{x} = 0$
 - Free variables were given special values (one and zero)

¹Chap 3.4 of the book

- Recall while calculating elimination converted $A\mathbf{x} = 0$ to $R\mathbf{x} = 0$
 - Free variables were given special values (one and zero)
 - Pivot variables were found by back substitution

¹Chap 3.4 of the book

- Recall while calculating elimination converted $A\mathbf{x} = 0$ to $R\mathbf{x} = 0$
 - Free variables were given special values (one and zero)
 - Pivot variables were found by back substitution
 - Solution x was in the nullspace of A

¹Chap 3.4 of the book

- Recall while calculating elimination converted $A\mathbf{x} = 0$ to $R\mathbf{x} = 0$
 - Free variables were given special values (one and zero)
 - Pivot variables were found by back substitution
 - Solution x was in the nullspace of A
- We paid no attention to the right side b because it stayed at zero

¹Chap 3.4 of the book

- Recall while calculating elimination converted $A\mathbf{x} = 0$ to $R\mathbf{x} = 0$
 - Free variables were given special values (one and zero)
 - Pivot variables were found by back substitution
 - Solution x was in the nullspace of A
- We paid no attention to the right side b because it stayed at zero
- Now **b** is not zero. Row operations on left side must act also on the right side

¹Chap 3.4 of the book

- Recall while calculating elimination converted $A\mathbf{x} = 0$ to $R\mathbf{x} = 0$
 - Free variables were given special values (one and zero)
 - Pivot variables were found by back substitution
 - Solution x was in the nullspace of A
- We paid no attention to the right side b because it stayed at zero
- Now **b** is not zero. Row operations on left side must act also on the right side
- One way is to create an augmented matrix [A b]

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 1 & 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 7 \end{bmatrix} \quad \text{has the} \quad \begin{bmatrix} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 & 6 \\ 1 & 3 & 1 & 6 & 7 \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix}$$

¹Chap 3.4 of the book

ullet Apply elimination steps to $[A\ {f b}]$, system reduces to $[R\ {f x}]$

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

• Apply elimination steps to $[A \ \mathbf{b}]$, system reduces to $[R \ \mathbf{x}]$

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

• In this example we subtract row 1 from 3, and the row 2 from 3

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

- In this example we subtract row 1 from 3, and the row 2 from 3
- Last zero is crucial, third equation has become 0 = 0

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

- In this example we subtract row 1 from 3, and the row 2 from 3
- Last zero is crucial, third equation has become 0 = 0
 - Equations are consistent on LHS and RHS, and hence can be solved

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

- In this example we subtract row 1 from 3, and the row 2 from 3
- Last zero is crucial, third equation has become 0 = 0
 - Equations are consistent on LHS and RHS, and hence can be solved
- For a particular solution \mathbf{x}_p , choose free variables as zero: $x_2 = x_4 = 0$

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix } \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

- In this example we subtract row 1 from 3, and the row 2 from 3
- Last zero is crucial, third equation has become 0 = 0
 - Equations are consistent on LHS and RHS, and hence can be solved
- For a particular solution x_p , choose free variables as zero: $x_2 = x_4 = 0$
 - Two nonzero equations give two pivot variables $x_1 = 1$ and $x_3 = 6$

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

- In this example we subtract row 1 from 3, and the row 2 from 3
- Last zero is crucial, third equation has become 0 = 0
 - Equations are consistent on LHS and RHS, and hence can be solved
- For a particular solution \mathbf{x}_p , choose free variables as zero: $x_2 = x_4 = 0$
 - Two nonzero equations give two pivot variables $x_1 = 1$ and $x_3 = 6$
 - Our particular solution to $A\mathbf{x} = b$ (and also $R\mathbf{x} = \mathbf{d}$) is $x_p = (1, 0, 6, 0)$

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} R & d \end{bmatrix}.$$

- In this example we subtract row 1 from 3, and the row 2 from 3
- Last zero is crucial, third equation has become 0 = 0
 - Equations are consistent on LHS and RHS, and hence can be solved
- For a particular solution x_p , choose free variables as zero: $x_2 = x_4 = 0$
 - Two nonzero equations give two pivot variables $x_1 = 1$ and $x_3 = 6$
 - Our particular solution to $A\mathbf{x} = b$ (and also $R\mathbf{x} = \mathbf{d}$) is $x_p = (1, 0, 6, 0)$
- Two nullspace solutions to Rx = 0 come from two free columns of R

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \text{ has the augmented matrix} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}.$$

- In this example we subtract row 1 from 3, and the row 2 from 3
- Last zero is crucial, third equation has become 0 = 0
 - Equations are consistent on LHS and RHS, and hence can be solved
- For a particular solution \mathbf{x}_p , choose free variables as zero: $x_2 = x_4 = 0$
 - Two nonzero equations give two pivot variables $x_1 = 1$ and $x_3 = 6$
 - Our particular solution to $A\mathbf{x} = b$ (and also $R\mathbf{x} = \mathbf{d}$) is $x_p = (1, 0, 6, 0)$
- Two nullspace solutions to Rx = 0 come from two free columns of R
 - By reversing signs of 3, 2, and 4 which gives (-3,1,0,0) and (-2,0,-4,1)

Two solutions are given as

 $egin{array}{lll} x_{
m particular} & The {\it particular solution solves} & Ax_p = b \\ x_{
m nullspace} & The {\it n-r special solutions solve} & Ax_n = 0. \end{array}$

Two solutions are given as

• Complete solution $\mathbf{x}_p + \mathbf{x}_n$ to $A\mathbf{x} = b$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

• Consider an example system of equations

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

• Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable
- Create augmented matrix [A b] and apply elimination

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable
- ullet Create augmented matrix [A **b**] and apply elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable
- ullet Create augmented matrix [A **b**] and apply elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable
- Create augmented matrix [A b] and apply elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

Consider an example system of equations

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable
- Create augmented matrix [A b] and apply elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

• i) Subtracted row 1 of [A b] from row 2; ii) Added 2 times row 1 to row 3

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable
- Create augmented matrix [A b] and apply elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

- i) Subtracted row 1 of [A b] from row 2; ii) Added 2 times row 1 to row 3
- Last equation is 0 = 0 provided $b_3 + b_1 + b_2$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find condition on (b_1, b_2, b_3) for $A\mathbf{x} = \mathbf{b}$ to be solvable
- Create augmented matrix [A b] and apply elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

- i) Subtracted row 1 of [A b] from row 2; ii) Added 2 times row 1 to row 3
- Last equation is 0 = 0 provided $b_3 + b_1 + b_2$
 - Ax = b will be solvable

• Augmented matrix [A b] after elimination

• Augmented matrix [A b] after elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

• Augmented matrix [A b] after elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

• Example has no free variables as n-r=2-2, nullspace solution is $\mathbf{x}_n=0$

• Augmented matrix [A b] after elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

- Example has no free variables as n-r=2-2, nullspace solution is $\mathbf{x}_n=0$
- Particular solution to $A\mathbf{x} = \mathbf{b}$ and $R\mathbf{x} = \mathbf{d}$ is at the top of the final column \mathbf{d}

• Augmented matrix [A b] after elimination

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

- Example has no free variables as n-r=2-2, nullspace solution is $\mathbf{x}_n=0$
- Particular solution to $A\mathbf{x} = \mathbf{b}$ and $R\mathbf{x} = \mathbf{d}$ is at the top of the final column \mathbf{d}
- Complete solution is

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_n = \begin{bmatrix} 2b_1 - b_2 \\ b_2 - b_1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

• Earlier example of A is extremely important as A has full column rank

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

• Matrix is tall and thin (m > n),

• Earlier example of A is extremely important as A has full column rank

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

• Matrix is tall and thin (m > n), every column has a pivot

• Earlier example of A is extremely important as A has full column rank

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

• Matrix is tall and thin (m > n), every column has a pivot \Rightarrow rank is r = n

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

- Matrix is tall and thin (m > n), every column has a pivot \Rightarrow rank is r = n
- Every matrix A with full column rank (r = n) has all these properties:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

- Matrix is tall and thin (m > n), every column has a pivot \Rightarrow rank is r = n
- Every matrix A with full column rank (r = n) has all these properties:
 - All columns of A are pivot columns

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

- Matrix is tall and thin (m > n), every column has a pivot \Rightarrow rank is r = n
- Every matrix A with full column rank (r = n) has all these properties:
 - All columns of A are pivot columns
 - There are no free variables or special solutions

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

- Matrix is tall and thin (m > n), every column has a pivot \Rightarrow rank is r = n
- Every matrix A with full column rank (r = n) has all these properties:
 - All columns of A are pivot columns
 - There are no free variables or special solutions
 - Nullspace N(A) contains only the zero vector $\mathbf{x} = 0$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & -3 \end{bmatrix}$$

- Matrix is tall and thin (m > n), every column has a pivot \Rightarrow rank is r = n
- Every matrix A with full column rank (r = n) has all these properties:
 - All columns of A are pivot columns
 - There are no free variables or special solutions
 - Nullspace N(A) contains only the zero vector $\mathbf{x} = 0$
 - If Ax = b has a solution (it might not) then it has only one solution

• Consider another system $A\mathbf{x} = \mathbf{b}$

$$x + y + z = 3$$
$$x + 2y - z = 4$$

• Has n = 3 unknowns but only m = 2 equations

• Consider another system $A\mathbf{x} = \mathbf{b}$

$$x + y + z = 3$$
$$x + 2y - z = 4$$

- Has n = 3 unknowns but only m = 2 equations
- Find \mathbf{x}_p and \mathbf{x}_n by elimination on $[A \ \mathbf{b}]$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [R \ \mathbf{d}]$$

• Consider another system $A\mathbf{x} = \mathbf{b}$

$$x + y + z = 3$$
$$x + 2y - z = 4$$

- Has n = 3 unknowns but only m = 2 equations
- Find \mathbf{x}_p and \mathbf{x}_n by elimination on $[A \ \mathbf{b}]$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [R \ \mathbf{d}]$$

• Particular solution has free variable $x_3 = 0$ and special solution has $x_3 = 1$

• Consider another system $A\mathbf{x} = \mathbf{b}$

$$x + y + z = 3$$
$$x + 2y - z = 4$$

- Has n = 3 unknowns but only m = 2 equations
- Find \mathbf{x}_p and \mathbf{x}_n by elimination on $[A \ \mathbf{b}]$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [R \ \mathbf{d}]$$

- Particular solution has free variable $x_3 = 0$ and special solution has $x_3 = 1$
 - $\mathbf{x}_p = (2, 1, 0)$ comes directly from **d**
 - $\mathbf{x}_n = (-3, 2, 1)$ comes from third (free) column

• Consider another system $A\mathbf{x} = \mathbf{b}$

$$x + y + z = 3$$
$$x + 2y - z = 4$$

- Has n = 3 unknowns but only m = 2 equations
- Find \mathbf{x}_p and \mathbf{x}_n by elimination on $[A \ \mathbf{b}]$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [R \ \mathbf{d}]$$

- Particular solution has free variable $x_3 = 0$ and special solution has $x_3 = 1$
 - $\mathbf{x}_p = (2, 1, 0)$ comes directly from **d**
 - $\mathbf{x}_n = (-3, 2, 1)$ comes from third (free) column

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_n$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [R \ \textbf{d}]$$

• We have the following system of equation from last slide

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [\textit{R} \ \textbf{d}]$$

• Every matrix A with full row rank (r = m) has all these properties:

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [\textit{R} \ \textbf{d}]$$

- Every matrix A with full row rank (r = m) has all these properties:
 - All rows have pivots, and R has no zero rows

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [\textit{R} \ \textbf{d}]$$

- Every matrix A with full row rank (r = m) has all these properties:
 - All rows have pivots, and R has no zero rows
 - Ax = b has a solution for every right side b

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [\textit{R} \ \textbf{d}]$$

- Every matrix A with full row rank (r = m) has all these properties:
 - All rows have pivots, and R has no zero rows
 - Ax = b has a solution for every right side b
 - Column space is the whole space \mathbf{R}^m

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} = [\textit{R} \ \textbf{d}]$$

- Every matrix A with full row rank (r = m) has all these properties:
 - All rows have pivots, and R has no zero rows
 - $A\mathbf{x} = \mathbf{b}$ has a solution for every right side \mathbf{b}
 - Column space is the whole space R^m
 - There are n r = n m special solutions in the nullspace of A

