AER210 VECTOR CALCULUS and FLUID MECHANICS

Midterm Test # 2

Duration: 1 hour, 50 minutes

1 December 2022

Closed Book, no aid sheets, but non-programmable calculators are allowed

Instructor: Prof. Alis Ekmekci

Family Name:		
Given Name:	Ship's and	
Student #:	WIUMIANS	
TA Name/Tutorial #	#:	

Question	Marks	Earned
1,	15	
2 •	11	
3 .	8	
4 .	20	
5	8	
6	10	
7,	18	
8 🛂	10	
TOTAL	100	

$$\tau = \mu \frac{du}{dy}$$
 $-\nabla p + \rho \vec{g} = \rho \vec{a}$ $\frac{p}{\rho} + \frac{V^2}{2} + gz = constant$ (Bernoulli equation)

The gravitational acceleration: $g = 10 m/s^2$

 $\frac{dB_{sys}}{dt} = \frac{dB_{CV}}{dt} + \dot{B}_{out} - \dot{B}_{in} \text{ (Reynolds Transport Theorem for a mass-dependant property } B)$

- 1) a) [12 points] Indicate true (T) or false (F):
- In Newtonian fluids, the shear stress varies linearly with the deformation rate.
- ____ In a room, for air at rest, the pressure variation with an elevation change is negligibly small.
- In flow regions close to solid surfaces (i.e., in the boundary layer regions), the viscous effects are negligible.
- No shear stresses exist in a hydrostatic fluid.
- In a steady fluid, flow properties (such as velocity, pressure, and density) are independent of time as well as location.
- For an object immersed in a hydrostatic fluid, the buoyant force acting on the object is independent of the density of the object.
- In an unsteady flow, dye/smoke injection into a fluid flow reveals streamlines.
- Force equals mass times acceleration is Newton's 2nd law written in the Lagrangian form.
- A tiny neutrally buoyant electronic pressure probe is released into the inlet of a water pump and transmits 2000 pressure readings per second as it passes through the pump. This is an Eulerian measurement.
- E Bernoulli equation is valid in unsteady, compressible, frictionless flows along a streamline.
- Mass in a fluid system is always constant, even in an unsteady flow.
- Reynolds Transport Theorem can be applied to both steady and unsteady flows.
- b) [3 points] Please connect the flowline names on the left to their definitions on the right with a line.

a line that connects the particles that have passed through the same point at a previous time

a line tangent to the velocity vectors

a line traced out by a particle as it moves from one point to another in the flow

2) a) [4 points] The U-tube manometer shown below has two fluids, water and oil, and both ends of the manometer are exposed to atmospheric pressure. If ρ_{oil} is the density of oil and ρ_{water} is the density of water, $\rho_{oil} = 0.8 \, \rho_{water}$. Find the height difference between the free water surface and the free oil surface. $\Delta h = ?$

$$0+80i1.9.(0.1) - 9water 9.h = 0$$

$$h=(0.1)\frac{90i1}{9water} = 0.08m = 8cm$$

$$\Delta R = 10 - 8 = 2cm$$

b) [3 marks] Bernoulli equation is given below. Indicate the meaning of each term on the lefthand side:

$$\frac{p}{\rho} + \frac{V^2}{2} + gz = constant$$

 $\frac{\rho}{S}$; energy due to pressure per unit mass $\frac{V^2}{2}$: kinetic energy per unit mass ge: potential energy per unit mass

c) [4 points] The sled shown in the figure below slides along on a thin horizontal layer of water, which is sandwiched between the ice on the ground and the sled runners. The total horizontal force the water puts on the runners equals F = 5 N when the sled's speed is 5 m/s. The total area of the runners in contact with the water is 0.01 m^2 , and the viscosity of the water is $\mu = 10^{-3} \text{ Pa.s.}$ Assuming a linear velocity distribution in the water layer, determine the thickness of the water layer under the runners.

3) a) [4 points] An iceberg (with density $\rho_{iceberg} = 0.90 \text{ kg/m}^3$) floats in the ocean (with density $\rho_{ocean} = 1.025 \text{ kg/m}^3$). What percent of the volume of the iceberg is under water?

b) A golf ball manufacturer wants to study the effect of the dimple size on the distance a golf ball travels. A model ball five times larger than the size of a regular golf ball is installed in a wind tunnel (at the same pressure and temperature conditions). If the independent dimensionless parameter for this problem is the Reynolds number, $Re = \rho VD/\mu$, where ρ is the fluid density, V is the flow speed, D is the diameter of the ball and μ is the fluid viscosity:

 b_1) [2 points] What should the speed of the wind tunnel be to simulate a golf ball speed of 60 m/s?

b₂) [2 points] As a second test, the large-scale golf model generated for the wind tunnel is to be tested in a water flow tunnel. What should be the flow speed in this water tunnel?

 $\rho_{air} = 1.23 \text{ kg/m}^3, \, \rho_{water} = 1000 \text{ kg/m}^3, \, \mu_{air} = 1.8 \times 10^{-5} \text{ N.s/m}^2, \, \mu_{water} = 1.1 \times 10^{-3} \text{ N.s/m}^2.$

Method 2

bz) One could also solve this by ensuring similarity between the prototype (original) ball and the model in water timel.

$$= \frac{1.23}{1000} 60. \frac{1}{5} \cdot \frac{1.1 \times 10^{-3}}{1.8 \times 10^{-5}}$$

Conpungation of

- 4) For the rectangular gate placed between the fixed top wall and the bottom floor, as shown in the figure below, $\alpha = 45^{\circ}$, $y_1 = 1$ m, $y_2 = 3$ m, gate width w = 1 m. Determine the **closing moment** under the action of the hydrostatic forces when the gate is at $\alpha = 45^{\circ}$ using:
- a) [8 points] the pressure-prism method
- b) [8 points] the integration method
- c) [2 points] Determine the opening moment if the gate itself weighs 90 kN.
- (a) [2 points] Will the gate fall or stay in position under the action of the hydrostatic and gravity forces?

The density of the water is $\rho = 1000 \text{ kg/m}^3$, and the gravitational acceleration is $g = 10 \text{ m/s}^2$.

FR. XR = F. 42 +F2. 42 => | XR = 1.697m

EXTRA PAGE

Mclosing = FR. XR = (106,066). (1.69) = 180,000 N.M Mclosing = | gg (y, +xsin45).w. (P-x)dx = ggw (y, l-xy, + exsin45 - x2 sin45) dx = $ggw \left[y_1 lx - \frac{n^2}{2} y_1 + l \frac{n^2}{2} sin 45 - \frac{n^3}{3} sin 45 \right] l^2$ = 9gw y, l2 - 12y, + 13 sin 45 - 13 sin 45] =(000)(10)(1). $1.(312)^2-(312)^2.1+(312)^3.1-(312)^3.1$ = 180,000 Nm

put the origin of the naxis on (x(y,+y2)-x25,045)dx = gg [2 (y,+y2) - 23 sin 45]

Mclosing =
$$gg\left(\frac{y_2^2}{(s_m 45)^2}, \frac{1}{2}(y_1 + y_2) - \frac{y_2^3}{(s_m 45)^3}, \frac{1}{3}, s_m 4s\right)$$

$$= ((000)(10) \left[\frac{3^{2}}{2} \cdot \pm (4) - \frac{3^{3}}{2} \cdot \pm (\frac{1}{2}) \right]$$

$$= ((000)(10) \left[\frac{3^{2}}{2} \cdot \pm (4) - \frac{3^{3}}{2} \cdot (\frac{1}{2}) \right]$$

$$= ((000)(10) \left[\frac{3^{2}}{2} \cdot \pm (4) - \frac{3^{3}}{2} \cdot (\frac{1}{2}) \right]$$

= 180,000 N.M

Mopening = W sights.
$$\left(\frac{y_2}{sights}\right)^{\frac{1}{2}} = W. \frac{y_2}{2} = \frac{90,000.3}{2} = 135,000 \text{ N.m.}$$

Continuation to

5) [8 points] In the water contraction shown in the picture below, water flows steadily with a velocity $V_1 = 0.5$ m/s and $V_1 = 0.125$ m/s. Two piezometer tubes are attached to the pipe at sections 1 and 2. Neglecting any frictional losses during contraction, determine the height H.

P_1=9g. (0.25)] plugging these into the Bernalli P_2=9gH] we get the following:

$$\frac{89(0,25)}{8} + \frac{V_1^2}{2} = \frac{89H}{8} + \frac{V_2^2}{2}$$

$$H = 0.25 + \frac{(V_1^2 - V_2^2)}{2q}$$

$$H = 0.25 + (0.5^2 - 1.125^2)$$

6) [10 points] A solid particle falls through a viscous liquid. The falling velocity, V, is believed to be a function of the fluid density, ρ_f , the particle density, ρ_p , the fluid viscosity, μ , the particle diameter, D, and the acceleration due to gravity, g. Apply dimensional analysis choosing the repeating variables as ρ_f , D, g to determine the dimensionless (π) groups for this problem and re-write the relationship between the dimensional variables in dimensionless form.

Choose repeating variables as: Sp, D, & T = V Bf) (D) (q) c M°L°T° = 4 M9 Lb LC T2a M°L°T°= L1-3a+b+c Ma T-1-2c

$$\begin{array}{c}
(a=0) \\
-1-2c=0 \Rightarrow (c=-\frac{1}{2}) \\
\hline
\Pi_{2} = Sp(Sp)^{a}D^{b}g^{c} \\
\rho_{1}\rho_{7} = M \underline{M}^{a}\underline{L}^{b}\underline{L}^{c} \\
\underline{L}^{3}\underline{L}^{3}\underline{a}\underline{L}^{b}\underline{L}^{c} \\
= M^{1+a}\underline{L}^{-3-3a+b+c}\underline{L}^{-2c}$$

$$\begin{array}{c}
|-3a+b+c=0| \Rightarrow b=-1+3a-c=-1+0+\frac{1}{2} \Rightarrow b=-\frac{1}{2} \\
\hline
(a=0) \\
-1-2c=0 \Rightarrow c=-\frac{1}{2}
\end{array}$$

$$\begin{array}{c}
T_{1}=V \\
\hline
VgD
\end{array}$$

EXTRA PAGE

$$\begin{vmatrix}
1+a=0 & \rightarrow \boxed{a=-1} \\
-3-3a+b+c=0 & \rightarrow & -3+3+b+0=0 & \Rightarrow \boxed{b=0}
\end{vmatrix}$$

$$\begin{vmatrix}
T_2 & g_p \\
F_2 & g_p
\end{vmatrix}$$

$$T_3 = \mu(g_f)^a(D)^b(g)^c$$
 $M^oL^oT^o = \frac{M}{LT} \cdot \frac{M^a}{L^3a} \cdot \frac{L^b}{T^{2c}}$
 $= M^{1+a} \cdot L^{-1-3a+b+c} - 1-2c$

$$\frac{\sqrt{gD}}{\sqrt{gD}} = f_2 \left(\frac{3p}{s_f}, \frac{\mu}{s_f} \right) \frac{\sqrt{gD}}{\sqrt{gD}} = f_2 \left(\frac{3p}{s_f}, \frac{\mu}{\sqrt{gD}} \right)$$

Continuation to page: 8 7) [18 points] The tank shown in figure (a) below is accelerated to the right with a constant acceleration a_x . As shown in the figure, this tank has a small air hole at its top right corner. The tank has a height of 1.2 m, a length of 2 m (which is the distance between points A and B in the figure), and a width of 1 m (which is the dimension into the page). Before the start of the motion, the height of the still water in the tank is 1 m, and the height of the air is 0.2 m, as also depicted in figure (a).

- a. (8 marks) Starting from the equation $-\nabla p + \rho \vec{g} = \rho \vec{a}$ and showing how you arrive at the result, calculate the acceleration a_x needed to cause the free surface to touch the point A, as shown in figure (b) below.
- b. (4 points) Find the pressure at point B for the situation depicted in figure (b) below.
- c. (6 points) Determine the total force acting on the bottom of the tank again for the situation depicted in figure (b) below.

The density of water: $\rho = 1000 \frac{kg}{m^3}$, the gravitational acceleration: $g = 10 \frac{m}{s^2}$.

<u>Hints:</u> #1) As no water spills out, equating the air volume before and during the motion would give you the distance x marked in figure (b). #2) Note that pressure equals 0 Pa (gage pressure) at the free water surface.

- I selected to place the origin of the coordinate system at B. (personal chance $-\overline{\nabla}p + g\overline{g} = g\overline{a}$ $-\left(\frac{\partial p}{\partial x}\overline{i} + \frac{\partial p}{\partial y}\overline{j} + \frac{\partial p}{\partial z}\overline{k}\right) - gg\overline{k} = gax\overline{i}$ $\overline{i}: \frac{\partial p}{\partial x} = -gax$ $\overline{j}: \frac{\partial p}{\partial y} = 0$ $\overline{k}: \frac{\partial p}{\partial z} = -gg$ $\overline{k}: \frac{\partial p}{\partial z} = -gg$

EXTRA PAGE

- As no water spills out, equating the air volume before and during the motion would give the distance x.

$$(Vair)$$
 stationary = $(Vair)$ in motion
 $(0.2)(1)(1) = (1.2)(2)(1) \Rightarrow x = \frac{2}{3}m = 0.667m$

.. The wordinates of point A: x=2, 2=0

:. The wordinates of part C: $x = 2 - x = 2 - \frac{2}{3} = 1.334$, z = 1.2.

At point A $\Rightarrow p(x=2, 2=0)=0 \Rightarrow 0=-ga_{x}(2)-gg(0)+C' \Rightarrow C=2ga_{x}$

At point $C \Rightarrow P(x=2-\frac{2}{3},z=1:2)=0 \Rightarrow 0=-ga_{x}(2-\frac{2}{3})-gg(1:2)+C$

$$0 = -\beta \alpha_{x} \left(2 - \frac{2}{3}\right) - \beta g \left(1.2\right) + 2 \beta \alpha_{x}$$

$$0 = a_n \left(2 + \frac{2}{3} + \frac{2}{3} \right) - 1.29$$

$$a_x = \frac{1.2.9.3}{2} = \frac{1.2.10.3}{2}$$

$$a_x = 18 \text{ m/s}^2$$

b) pressure at point B =?

P=-gann-ggz+2gan & the coordinates of B: x=0, 2=0

$$P_B = p(x=0,2=0) = -gar.tol - gg(o) + 2gar$$

c) Total force acting on the bottom of the tank =
$$F_{BA} = ?$$

$$p(x_1 z) = -g a_x x - g g z + 2 g a_x$$
Along $BA \Rightarrow z = 0$

$$\Rightarrow f_{BA} = p(x_1, z = 0) = -g a_x x - g g(0) + 2 g a_x$$

$$F_{BA} = \int_{BA} P_{BA} \cdot w \, dx = \int_{A=0}^{\infty} g a_x (2-x) \, dx$$

$$= g a_x w \int_{A=0}^{\infty} (2-x) \, dx$$

$$= g a_x w \left[2x - \frac{x^2}{2} \right]_{x=0}^{x=2}$$

$$= g a_x w \left[4 - 2 \right]$$

$$= g a_x w \left[4 - 2 \right]$$

$$= g a_x w \left[4 - 2 \right]$$

$$= g a_x w \left[4 - 2 \right]$$

Name:		

8) a) [5 points] Using the Reynolds Transport theorem, derive the conservation of mass equation for a control volume (in other words, derive the Eulerian form of the continuity equation).

<u>Hint</u>: Start with the conservation of mass equation for a fluid system. Then, use the Reynolds Transport Theorem to convert the conservation of mass equation from a form applicable to a system to a form applicable to a control volume. Remember that the Reynolds Transport Theorem for a mass-dependant fluid parameter $\mathbf{B} = \mathbf{mb}$ can be written as:

$$\frac{dB_{sys}}{dt} = \frac{dB_{cv}}{dt} + \dot{B}_{out} - \dot{B}_{in}$$

$$\frac{dM_{sys}}{dt} = \frac{dM_{cv}}{dt} + \dot{M}_{out} - \dot{M}_{in}$$

$$\frac{dM_{sys}}{dt} = 0 \quad \text{(conservation of mass for a fluid oystem)}$$

$$\frac{dM_{cv}}{dt} + \dot{M}_{out} - \dot{M}_{in} = 0$$
There may be a second version of this solution which can be found in the rest page

b) [5 points] Water flows in and out of a device as shown in the figure below. Calculate the rate of change of the mass of water (dm/dt) in the device. Note that the pipes carrying the water in and out of the device have circular cross-section. As shown in the figure, the following are given: the velocity is $V_1 = 10$ m/s and the pipe diameter is $d_1 = 8$ cm for section 1, the mass flow rate is $m_2 = 4$ kg/s for section 2, and the volume flow rate is $\dot{V}_3 = 0.008$ m³/s for section 3. The density of water is $\rho = 1000$ kg/m³.

$$V_1=10m/s$$
Device
 $V_3=0.008 \text{ m}/s$
 $m_2=4 \text{ kg/s}$

 $\frac{dmev}{dt} + mout - m_{in} = 0 \quad (continuity)$ $m_{i} = 9. V_{i} A = 1000.10. T(0.04)^{2}$ $m_{i} = 50.26 \quad kg/m^{3}$ $m_{2} = 4 kg/s \quad (given)$ $m_{3} = 9 \dot{4}_{3} = (1000) (0.008) = 8 kg/s = m_{3}$

dmcv + mn2 + m3 - m, =0 \Rightarrow dmcv + 4+8 -50, 26 = \Rightarrow dmcv = 38, 26 kg Page 11 of 11

8) a) Second Method:

The following is also acceptable as an answer:

d(msys)=0 (conservation of mass for a fluid oystem

B=mt 1

dmsys = dmay + (gv.dA

Continuation to