sockets RMI

# distribuidos

## introducción

#### Contenido

introducción computación arquitecturas comunicación conclusiones

## introducción

# Prupon www.dtic.ua.es/grupom

## introducción

contexto

#### Contenido

introducción computación arquitecturas comunicación conclusiones

## Programación SD

| programación                              | T |
|-------------------------------------------|---|
| 1. Fundamentos de computación distribuida | 6 |
| 2. Tecnologías Web y middleware           | 4 |
| 3. Servicios de nombres                   | 1 |
| 4. Sistemas de establecimiento de tiempo  | 2 |
| 5. Seguridad                              | 6 |
| 6. Coordinación distribuida               | 4 |
| 7. Sistemas de archivos distribuidos      | 4 |
|                                           |   |

# distribuidos

### introducción

#### resultados de aprendizaje

#### Contenido

- Comprender los conceptos de heterogeneidad, extensibilidad, escalabilidad, seguridad, concurrencia, tolerancia a fallos y transparencia en el contexto de los sistemas distribuidos.
- Describir los principales paradigmas de computación distribuida, las características propias de cada modelo y sus aplicaciones.
- Justificar el uso de los diferentes mecanismos de comunicación en entornos distribuidos e internet en función de los requisitos y necesidades del problema.
- Diseñar la arquitectura de un sistema distribuido en función de los requisitos establecidos combinando paradigmas de computación distribuida y mecanismos de comunicación.
- Implementar protocolos de aplicación mediante la interfaz de sockets.
- Implementar aplicaciones distribuidas basadas en las tecnologías RMI y de Servicios Web utilizando frameworks y plataformas de terceros.

contenido

#### Contenido

introducción computación arquitecturas comunicación conclusiones

### © Fundamentos de computación distribuida

- Introducción a la computación distribuida
  - Evolución de los modelos de computación distribuida
  - Definiciones y propiedades
- Enfoques de sistemas distribuidos
  - SOR, SOD y Middleware
- Paradigmas de computación distribuida
  - C/S, P2P, MOM, SOA, agentes, colaborativos
- Mecanismos de comunicación distribuida
  - Recursos: IPC, sockets, RPC, RMI, ORB

#### bibliografía

#### Contenido

introducción computación arquitecturas comunicación conclusiones

- Sistemas Distribuidos. Conceptos y Diseño G. Coulouris et al Addison Wesley, 2001, 2012 Temas 4 y 5
- Sistemas Distribuidos. Principios y paradigmas A.S. Tanenbaum
  Distribuidos. Principios y paradigmas

Prentice Hall, 2008 Temas 1 y 2

© Computación Distribuida. Fundamentos y Aplicaciones

M.L. Liu

Porson Education

Person Education, 2004

Temas 2,3,4,5,7 y 12

Service-Oriented Architecture: Concepts, technology and Design

T. Erl

Prentice Hall, 2005

Temas 3,4,5 y 8

## paradigmas de computación

#### **Contenido**

introducción computación arquitecturas comunicación conclusiones

# paradigmas de computación

## paradigmas de computación

#### **Contenido**

- ② Sistema Distribuido → Elementos de computación independientes, interconectados, que comunican y coordinan sus acciones a través de una red de comunicaciones
- © Ejemplos de SD: Internet, intranets privadas, computación ubicua
- © Computación Distribuida → La que se desarrolla en un SD: servicios y aplicaciones de red

# distributos

### introducción

elementos de un sistema distribuido

#### Contenido



características básicas

#### **Contenido**

introducción computación arquitecturas comunicación conclusiones

## • Heterogeneidad

 Capacidad de los SD para estar compuestos por una variedad (de diferentes tipos) de componentes

| <ul> <li>Estandarización</li> </ul> | <ul><li>Integración</li></ul>            |  |
|-------------------------------------|------------------------------------------|--|
| Representación de dat               |                                          |  |
| Representación de código            |                                          |  |
| -                                   | Representación de objetos Windows        |  |
| <ul><li>Protocolos</li></ul>        | Williaows                                |  |
| Hardware                            | <ul> <li>Representación datos</li> </ul> |  |
| <b>D</b> 1                          |                                          |  |
| Red                                 | ■ Ethernet, 802.11, ATM                  |  |

características básicas

#### Contenido

- Heterogeneidad
- Extensibilidad
  - Capacidad de un SD de poder ser extendido pudiendo incorporar nuevos componentes:
    - Hardware
      - Redes
      - Computadores
    - Software
      - Aplicaciones
      - Servicios
      - Módulos

características básicas

#### Contenido

- Heterogeneidad
- Extensibilidad
- Escalabilidad
  - Un SD es escalable si puede trabajar de forma correcta aunque se incrementen el número de:
    - Usuarios que lo utilizan
    - Recursos que se usan
    - Peticiones que se realizan a un servicio
    - Requerimientos de las aplicaciones
    - ...
  - ¿Cómo se consigue?
    - Incorporación de forma dinámica de nuevos recursos HW/SW

características básicas

#### Contenido

- Weterogeneidad
- Extensibilidad
- Escalabilidad
- Seguridad
  - Entornos proclives a ataques externos
  - Confidencialidad
  - Integridad
  - Disponibilidad
  - Firewalls, SSL, HTTPS, Radius, Kerberos

características básicas

#### Contenido

- Heterogeneidad
- Extensibilidad
- Escalabilidad
- Seguridad
- © Concurrencia y sincronización
  - Posibilidad de que dos elementos del SD accedan de forma simultánea a un mismo recurso compartido
  - Hay que garantizar el acceso concurrente para evitar inconsistencias
    - Acceso de forma controlada / exclusiva
    - Prioridad en los accesos a recursos
    - Secuenciación de las operaciones concurrentes

características básicas

#### Contenido

- Heterogeneidad
- Extensibilidad
- © Escalabilidad
- Seguridad
- Redundancia de componentes
- Sistemas de respaldo
- © Concurrencia y sincronización
- Tolerancia a fallos
  - Es necesario garantizar que el SD sea capaz de funcionar cuando uno de sus elemento falla – QoS (24x7)

características básicas

# introducción computación arquitecturas comunicación

conclusiones

- Heterogeneidad
- © Extensibilidad
- De acceso: a recursos remotos como si fueran locales
- De ubicación/localización: a recursos remotos sin conocer su ubicación
- De movilidad: recurso cambia de ubicación sin que el usuario sea consciente
- De escalabilidad: el sistema crece en recursos sin que el usuario sea consciente
- Frente a fallos: el usuario no es consciente de fallos en HW/SW
  - Concurrencia y sincronización
  - Tolerancia a fallos
  - Transparencia

# distribuidos

# paradigmas de computación evolución

#### Contenido



## paradigmas de computación

#### evolución

#### **Contenido**



## paradigmas de computación

### evolución

#### **Contenido**



#### **Contenido**



#### **Contenido**



#### **Contenido**



## paradigmas de computación

evolución

#### **Contenido**



## paradigmas de computación

### evolución

#### **Contenido**



#### **Contenido**



#### sistemas operativos en red

- Ubicación en el SO
- Heterogéneo → Específico del SO
- •Ejemplos:
  - Linux, Windows, Novell NetWare
- Ventajas
  - Flexibilidad
  - SO → técnicas maduras
- Desventajas
  - Falta de transparencia
  - Mayor esfuerzo de integración





#### sistemas operativos distribuidos

- Ubicación en el SO
- Homogéneo → SO global
- •Ejemplos:
  - Mach, Amoeba
- Ventajas
  - Transparencia
  - Escalabilidad
  - Facilidad de integración
- Desventajas
  - Técnicas complejas
  - Comunicaciones de alta velocidad
  - Competencia de mercado





#### middleware

- Enfoque mixto
  - Modelo conceptual → SOD
  - Infraestructuras → SOR
- •Capa por encima del SO
- •Homogéneo
- •Ejemplos:
  - CORBA,
  - **J2EE**
  - Net Framework
- Ventajas
  - Flexibilidad
  - Transparencia
  - Integración
  - Madurez
  - Escalabilidad
- Desventajas
  - Plataformas heterogéneas
  - Necesidad de estandarización





## modelos arquitectónicos

#### **Contenido**

introducción computación arquitecturas comunicación conclusiones

# modelos arquitectónicos

## modelos arquitectónicos

contenido

#### **Contenido**

- @Cliente/Servidor
- Peer-to-Peer
- Middleware orientado a mensajes
- Arquitectura orientada a servicios
- Cluster y grid

## modelos arquitectónicos

contenido

#### **Contenido**

- @Cliente/Servidor
- Peer-to-Peer
- Middleware orientado a mensajes
- Arquitectura orientada a servicios
- Cluster y grid

#### cliente/servidor

- Sobre el paradigma de pasos de mensajes
- Abstracción del acceso de recursos remoto -> servicios de red
- Gestión centralizada
  - Mayor control
- Procesos → roles
  - Servidor (Proveedor de servicio en espera pasiva)
  - Cliente (Solicita servicio)
- Aspectos
  - Mecanismos de concurrencia
  - Mantenimiento de sesión
  - Mecanismos de escalabilidad
- Ejemplo: HTTP, DNS, FTP, SMTP, ...



Cuello de botella



- Procesos → envían peticiones y prestan servicios
- Procesos de igual a igual
  - Cliente (envío de peticiones, recepción de respuesta)
  - Servidor (recepción de solicitudes, procesamiento de solicitudes, envío de respuesta, propagación de solicitudes)
- Gestión distribuida del recurso
  - Menor control
- Apropiado para aplicaciones tipo: mensajería instantánea, compartición de archivos, video conferencia y trabajo colaborativo
- Herramientas: JXTA IXIA



- Ejemplos:
  - Napster (centralizada) 🜍



Gnutella (descentralizada)



BitTorrent (Híbrida)





- MOM (Middleware Orientado a Mensajes)
  - Evolución del paso de mensajes
- Desacoplamiento
- Sistemas asíncronos
- Intermediario en el proceso de comunicación
- Herramientas:
  - JMS, MSMQ, MQSeries
- Dos tipos:
  - Punto a punto → 1:1
  - Publicación/suscripción → 1:M



#### middleware orientado a mensajes

- MOM (Middleware Orientado a Mensajes)
  - Evolución del paso de mensajes
- Desacoplamiento
- Sistemas asíncronos
- Intermediario en el proceso de comunicación
- Herramientas:
  - JMS, MSMQ, MQSeries
- Dos tipos:
  - Punto a punto → 1:1
  - Publicación/suscripción → 1:M



- Abstracción de acceso a actividades de negocio denominadas Servicios
  - → Infraestructura de servicios
- Principios
  - Localización, descubrimiento y publicación
  - Interoperabilidad
  - Composición
  - Autonomía y autocontenidos
  - Reusabilidad
  - Desacoplamiento
  - Contrato bien definido
  - Sin estado
- Componentes
  - Proveedor de servicios
  - Consumidor de servicios
  - Servicio de registro
- Herramientas:
  - Servicios Web, JINI, UPNP



- 1 Publicación
- Búsqueda
- 3 Descubrimiento
- 4 Consumo

### modelos arquitectónicos

cluster y grid: aspectos comunes

#### **Contenido**

- Infraestructuras hardware y software para ofrecer mayor capacidad de procesamiento y almacenamiento
- © Conjunto de computadores > un super computador
  - 1.000 computadores 1GHz →
     1 computador 1THz
  - 1.000 computadores 1GB RAM →
     1 computador 1TB RAM
  - 1.000 computadores 40GB HD → 1 computador 40TB HD

### Sistemas Istribuldos

### modelos arquitectónicos

#### Contenido

- Homogeneidad
- Red local de alta velocidad
- Entorno dedicado → Perdida de independencia
- Gestor de recursos centralizado
- Tipos
  - Alta disponibilidad
  - Balanceo de carga
  - Escalabilidad
  - Alto rendimiento
- Aplicaciones
  - Servidores Web y de aplicaciones
  - Sistemas de información
  - Supercómputo
    - MOSIX, OpenMosix, Heartbeat, Beowulf



#### grid

- Heterogeneidad → más flexible
- Internet → desacoplamiento
- Procesamiento y almacenamiento

 Respeto de políticas de seguridad y aplicaciones internas

- No pierde la independencia
  - Tiempos muertos
- OGSA (Open Grid Service Architecture)
  - Grid sobre tecnología Web
- Herramientas:
  - Globus Toolkit 4.0 (código abierto)
- Aplicaciones
  - Proyecto BIRN, ESGII, ...



#### **Contenido**

introducción computación arquitecturas comunicación conclusiones

# mecanismos de comunicación

### mecanismos de comunicación contenido

#### Contenido

introducción computación arquitecturas comunicación conclusiones

### © Fundamentos de comunicación

- Mecanismos de comunicación entre procesos (IPC)
- Transmisión de información
- Protocolos
- Mecanismos de comunicación
  - Paradigma de mensajes
  - Llamada a procedimientos remotos
  - Invocación de métodos remotos
  - Intermediario de petición de objetos
  - Servicios Web

mecanismos ipc

#### **Contenido**

- Mecanismo básico de los sistemas distribuidos
  - > comunicación entre procesos distribuidos



intercambio de datos

#### Contenido

```
<agenda>
               <contacto>
                 <nombre>Virgilio</nombre>
@
                 <apellidos>Gilart Iglesias</apellidos>
                 <localidad>Alicante</localidad>
                 <teléfono>555 77 9999</teléfono>
                 <email>vgilart@dtic.ua.es
              </contacto>
             <contacto>
                 <nombre>Diego</nombre>
                 <apellidos>Marcos Jorque</apellidos>
                 <localidad>Elche</localidad>
œ
                 <teléfono>555 66 8888</teléfono>
                 <email>dmarcos@dtic.ua.es/email>
               </contacto>
            </agenda>
œ
          Archivo XML de ejemplo con la definición de una
                  agenda personal de contactos
```

# mecanismos de comunicación protocolos

#### Contenido

- Basados en texto o binario
  - HTTP, SMTP, POP3
  - LDAP, DNS
- Tipo de patrón de mensaje
  - Petición-Respuestas
    - FTP, HTTP, SMTP
  - Solicitud-Respuestas
  - Unidireccional
  - Notificación
- Técnicas de comunicación
  - Poll
  - Push
- Orientados o no a la conexión
  - HTTP, FTP
  - DNS, DHCP
- Con o sin estado
  - FTP
  - HTTP

## 5

### mecanismos de comunicación

contenido

#### Contenido

- Paso de mensaje (Sockets)
- Llamadas a procedimientos remotos (RPC)
- Invocación de métodos remotos (RMI)
- Intermediario de petición de objetos (ORB)
- Servicios Web (WS)

# mecanismos de comunicación paso de mensajes

#### **Contenido**

- Interfaz mínima requerida
  - Enviar/Recibir
- ②Interfaz dependientes de conexión
  - Conectar/Desconectar

sockets

#### Contenido

- Mecanismo IPC de intercambio de datos a través de un conector
  - Punto final de un enlace de comunicación
- Berkelev → BSD de UNIX



- Sin conexión
  - Datagrama
  - No confiable y sin orden



### modelos

#### **Cont** Funcionamiento de RPC

intro comp arquit

conc

- 1 Registro del servicio
- 2 Cliente realiza petición al servicio remoto
- 3 Portmap envía el puerto de conexión del ser
- 4) El cliente instancia un método remoto a trave
- 5 El proceso servidor devuelve el resultado

#### Registro de servicios

- Número de programa
- Número de versión
- Número de procedimiento
- Protocolo de transporte





### modelos de comunicación

invocación de métodos remotos

#### Contenido

introducción computación arquitecturas comunicación conclusiones RPC para lenguajes orientados a objetos



- Invocación desde el proceso 1 a un método perteneciente a un objeto remoto ubicado en el proceso 2

  - .NET Remoting (VS.NET)
    - Canales → TCP, HTTP
- Objetos de la misma plataforma

### modelos de comunicación



#### **Contenido**

introducción computación arquitecturas comunicación conclusiones

Abstracción del acceso a objetos heterogéneos



© Ejemplos: J2EE, .NET





servicios web

#### **Contenido**

introducción computación arquitec comunic conclus Abstracción del acceso a objetos



Modelo conceptual de los Servicios Web

decisiones de diseño

#### Contenido

- Abstracción frente a sobrecarga
- Escalabilidad
- Independencia de la plataforma
- © Criterios adicionales:
  - Madurez, estabilidad de la tecnología y disponibilidad de herramientas de desarrollo
  - Tolerancia a fallos ofrecida por la herramienta
  - Mantenibilidad y Reutilización de código

### Sistemas distribuidos

### conclusiones

#### Contenido

introducción computación arquitecturas comunicación conclusiones

### conclusiones

### conclusiones

#### Contenido

- © Conocer la evolución de los paradigmas de computación distribuida
- Dotar de transparencia a la integración de sistemas distribuidos y a su desarrollo
- Necesidad de conocer tecnologías y herramientas para seleccionar adecuadamente

sockets RMI

© frupon www.dtic.ua.es/grupon