Engineering Projects Portfolio - II

Programming, Simulation & Analysis

Yohann Panthakee

(MSc Motorsport Engineering Graduate, Cranfield University)

Introduction

AIM: The idea behind creating this Simulation and Programming Portfolio is to give the reader a deeper insight into my engineering simulation and software skills which I have self-learnt over the last 5+ years. Most of these Simulation projects were in fact created, well before I started my Automotive Engineering degree at Coventry University. I strongly believe that this differentiating presentation will allow the reader to objectively assess my engineering skills and abilities which would be relevant to your company. I would be delighted to be given the opportunity to discuss this portfolio in more detail, in person and I can be reached through the contact information on the front page.

Contents

Excel Projects	
Electric Power Calculator	Page 4
Gearbox Design Calculator	Page 5
Vehicle Dynamics Calculator	Page 9
ANSYS Simulation Projects	
Vertical Wind Turbine Simulation	Page 13
Fluent 6DOF Induced Wheel Spin	Page 16
Rigid Body Dynamics Beam Engine	Page 19
Explicit Dynamics Impact	Page 21
MATLAB Projects	
Colour Tracking Algorithm	Page 23
Automated Generation of Synthetic Training Data	Page 25
Transfer Learning Image Classification Algorithm using a CNN Model	Page 28
Transfer Learning Image Classification Algorithm using a RCNN Model	Page 29
Using either CNN or RCNN with Live Image Acquisition	Page 30
Python Projects	
Engineering Coursework in Python	Page 31
Drawing App	Page 33
Lane Detection	Page 34
	D 25

Electric Powertrain Calculator

- Software: Excel
- Aim: To develop a excel calculator to calculate the required motor power for electric vehicle applications.
- **Challenges:** Applying my theoretical knowledge.

Solution:

4.11							
es to fill in green							
Mass, kg	800	F(aero)	F(rolling)	T(resistance)	F(ma)	Torque	
p(air), kg/m3	1.225	17.48	235.44	1147.00	894.08	92.62	
Area(front), m2	2.38	21110	200777	2211100	051100	74.72	
V (m/s)	4.47	Max shear stress, Pa	87500000				
Cd	0.6						
Crr	0.03						
Gear Ratio	3.46		Torque, Nm	Radius, mm	Rotation speed, rad/s		
Radius_wheel, m	0.2794	Shaft 1	92.62	8.77	50.90		
		Shaft 2	280.63	12.69	48.48		
Factor of safety	2	Shaft 3	294.66	12.90	16.00		
Yield stress for the	350000000						
material, Pa	33000000						
		Power of the motor, kW	4.71				
Coefficient of f	0.9	Final Velocity (m/s)	4.4704		Target Speed (Mph)	10	
Mg	7848	Initial Velocity (m/s)	0		Circumfrence (meters)	1.76	
		Time (s)	4		speed (Meters per min)	268.22	
		Aceleration Force (N)	894.08				
Tourstine forms (N)	7063.20	Down (local)	0.10		146151(DDM)	152.70	
Tractive force (N)	7063.20	Power (kw)	9.12		Wheel Speed (RPM)	152.79	
Ratio	3.46						
N ratio	3.03						
PG Ratio	1.05]		

Gearbox Design Calculator

- Software: Excel
- Aim: To develop an excel calculator to optimise a 5 speed transmission based on set gear and final drive ratios.
- Challenges: Making it user friendly to use.
- Solution: Added drop down menus making it quick and simple to update parameters.

Gearbox Design Calculator

Transmissi	on Data	•	Input Output				
Gear Ratios	Ratio	Spur gear (input)	Pinion gear (output)	Drop (in %			
1st	2.071	14	29	0.00%			
2nd	1.706	17	29	17.62%			
3rd	1.471	17	25	13.77%			
4th	1.263	19	24	14.14%			
Sah	1.095	21	23	13.30%			
6th				100.00%			
Differential ratio	3.62		Qualfe				
	Ve	hicle Data					
Vehicle Mass	955	Kg					
Frontal Area	2.31	m²					
Rolling Resistance Coeff	0.01						
Aerodynamic Resistance Coeff	0.6						
Weight Distribution (Front)	0.45	%					
Weight Distribution (Rear)	0.55	%					
Weight Dirstibution			X	¥			
Front Weight Dirstribution	4215.85		0.00	4215.8475			
Tront Height Character	4640700	Kg	254.01	4215.8475			
Rear Weight Diretribution	5152.70	6	0.00	5152.7025			
Trongin on solution			261.70	5152.7025			
Wheel Data							
Wheel Diameter	0.6	M					
Wheel effective radius	0.3	М					
Wheel Circumference	2.03	М					
Vehicle Resistance	•						
Rolling Resistance	93.69	N					
Gradient Resistance (Angle)	0.00	N					
Gradient Resistance (%)	0.00	N					

				Engin	e Data				
Aax Power (BHP)		RPM	Engine Speed (EPM)		Torque (N/m)				
Max Power (BHP)		7200	Engine speed (ro-se)	Engine Torque (N)	Test Engine Data				
Max Torque (Nm)	390	5750	3500	255	281				
RPM Limit	-8	3500	4000	342	301				
			4500	364	352				
			5000	366	363				
			5500	394	389				
			6000	384	360				
			6500	392	365				
			7000	428	355				
			7500	431	321				
			7750	425					
			8000	390	303				
			8250	310	207				
			8500	197	196				
		_							

Gearbox Design Calculator

6	ilven Transm	ission Ratio	05		Diff Ratio	Gear Ratio Map														
Ratio O/I	Ratio I/O	Input	Output	Ratio	Manufacturer	Ratio Values			Test f	ingine					File	nal Engin	e			
2.692	0.371	13	35	3.06	Merceades 360 Coupe	NACIO VAIGES	Scenario 1	Scenario 2	Scenario I	Scienario 4	Scenario 5	Final	Scenario 1	Scenario 2	Scenario II	Scenario 4	Scenario 5	Spenario 6	Scenario 7	Final
2.214	0.452	14	31	3.07	M3 Diff	2.692			1											
2.071	0.483	3.4	29	3.35	BMW	2.214		1			1					1				
1.900	0.517	15	29	3.25	BMW M3 Diff E92	2.071	- 1		2	1		- 1	1							1
1.813	0.552	26	29	3.25	M3 Diff	1.933											1	1	1	
1.706	0.586	1.7	29	3.46	M3 Diff	1.813		2			2			1	1	2				
1.611	0.621	18	29	3.538	Nissan 350z	1,706	2			2		2	2				2	2		2
1.556	0.643	18	28	3.62	Quarfe	1.611								2	2				2	
1.471	0.68	17	25	3.73	M3 Diff	1.556			3		3									
1.421	0.704	19	27	3.91	M3 Diff	1.471		3								3	3	3		
1.381	0.724	22	29	- 4	M3 Diff	1.421	3			3		3	3							3
1.35	0.741	20	27	4.06	Ford Focus ST	1.381								3	3					
1.326	0.76	19	25	4.083	Nissan 200sx	1.35													3	
1.286	0.778	21.	27	4.11	Quarfe	1.316														
1.260	0.792	19	24	4.44	Subaru	1.296														
1.298	0.808	22	26			1.263											- 4	4		
1.311	0.826	29	23			1.238			- 4											
1.182	0.846	22	26			1.211		- 4			- 4					- 4				
1.167	0.857	24	28			1.182	- 4			- 4		- 4	4							4
1.143	0.875	21	24			1.167														
1.12	0.893	25	28			1.143								4	4				4	
1.095	0.913	22	23			1.12														
1.077	0.929	26	28			1.095												- 5		
1.053	0.95	29	20			1.077											- 5			
1.038	0.963	26	27			1.053					- 6					- 6				- 6
1	1	24	24			1.038														
						1.	- 5	5	- 5	5		- 5	- 5	- 5	- 5				- 5	
						notes and		2.02	2.42		2.55		2.50			2.55				
						Diff Retie	3.15	3.62	3.62	3.62	3.62	3.62	3.62	3.51		3.62	3.46	3.46	4.44	4.44

Gearbox Design Calculator

Vehicle Dynamics Calculator

- Software: Excel
- Aim: To create an excel calculator to develop and analyse vehicle dynamic systems for motorsport applications.
- Challenges: Understanding the background theory, developing the dynamic 2D suspension models and having them updated in real time.
- Solution: I did a lot of research to build upon the basics learnt in my university course. My key information sources were books such as "Race Car Design" by Derek Seward & "Vehicle Dynamics" by Martin Meywerk.

User Input

Vehicle Dynamics Calculator

Vehicle Dynamics Calculator

Vehicle Dynamics Calculator

					Backrou	nd Calculati	ons									
Left Co.	ntrol Arm						Left Wheel						ight Whee	,		
Left Control Arms Original Rotated					Ori			Rotal	ad .		Original	ignt whee		ated		
Ongmar	x	v	X	v		Original x y			x	v	×	V		x	y	
Lower outer suspension hard point	160.00	215.50	160	385.5		-100	-300.5		ô	0	-100	-300.5	1 1	1400	0	
Lower inner forward suspension hard point	600.00	35.00	160	215.5		100	-300.5		200	0	100	-300.5	1	1600	0	
Loner liller formatio suspension flato politic	000.00	33.00	100	213.3		100	-190.50		200	110	100	300.5	1 1	1600	601	
Translate			110	300.5		0	-190.50		100	110	-100	300.5		1400	601	
110101010			110	500.5		0	190.50		100	491	-100	190.5		1400	491	
Original	Original					100	190.50	-	200	491	0	190.5		1500	491	
5.1gmu	x	v				100	300.50		200	601	0	-190.5	1 1	1500	110	
Upper outer suspension hard point	160.00	385.50				-100	300.50		0	601	-100	-190.5	1 1	1400	110	
Upper inner forward suspension hard point	425.00	300.00				-100	-300.5		0	0	-100	-300.5000		1400	0	
opportunities and adoption in the point	120.00						555.5				200	000,000		2100	Ť	
Right Co	ontrol Arm					Translate			100 300.5		Translate			1500	300.5	
Original			Rota	ated												
	×	v	×	Y												
Lower outer suspension hard point	1175.00	300.00	1440	385.5			Left Upright					Right Upright				
Lower inner forward suspension hard point	1440.00	385.50	1440	215.5			, , , ,					-				
						orij	ginal		Rotat	ted		original		Rotated		
Translate			1490	300.5		×	Y		x	Y	×	Υ	1 [x	Y	
						0	-76.25		110	224.25	0	-76.25	1 1	1490	224.25	
Original						50	-152.5		160	148	50	-152.5		1440	148	
	×	у				70	-152.5		180	148	70	-152.5		1420	148	
Upper outer suspension hard point	1000.00	35.00				70	152.5		180	453	70	152.5		1420	453	
Upper inner forward suspension hard point	1440.00	215.50				50	152.5	1	160	453	50	152.5		1440	453	
						0	76.25	;	110	376.75	0	76.25		1490	376.75	
						0	-76.25	;	110	224.25	0	-76.25		1490	224.25	
						76.25	52.5	18	36.25	353	76.25	52.5		186.25	353	
							Translate	-	110	300.5		Translate		1490	300.5	
							1101131010		-20	500.5		- remailed		1490	300.5	

Vertical Wind Turbine Simulation

- Software: ANSYS, Solidworks
- Aim: This is an ANSYS simulation where I was studying the effects of the air, surrounding a rotating VAWT by a specified RPM. This was a dynamic 3D CFX simulation using the transient blade rotor function, thus allowing me to easily visualise the effects of the pressure and velocity of the surrounding air.
- Challenges: The main challenge that I faced was learning how to use the software and the specific preprocessing and setup steps before running the simulation.
- Solution: I followed a useful tutorial online and read different PowerPoint presentations around the specific toolbox that I was using and what the requirements were for a successful simulation. Through this project, I was constantly learning new concepts and theories which would be useful for my university projects and future career.

Simulation Results 2D View

ANSYS Simulation Project

Vertical Wind Turbine Simulation

ANSYS Simulation Project

Vertical Wind Turbine Simulation

Fluent 6DOF Induced Wheel Spin

- Software: ANSYS, Solidworks
- Aim: This was an ANSYS simulation where I was studying the spin of a wheel induced by a specified inlet velocity. During this simulation, I used the dynamic mesh tool which was one of the three choices one has in ANSYS Fluent. Unlike my prior simulation where I used the sliding mesh technique, this was a new method of using ANSYS fluent and a different approach to a problem.
- Challenges: The main challenge that I faced was learning how to use the software and the specific preprocessing and setup steps before running the simulation.
- Solution: I followed a useful tutorial online and read different PowerPoint presentations around the specific toolbox that I was using and what the requirements were for a successful simulation. Through this project, I was constantly learning new concepts and theories which would be useful for my university projects and future career.

Fluent 6DOF Induced Wheel Spin Results

ANSYS Simulation Project

Fluent 6DOF Induced Wheel Spin

ANSYS Simulation Project

Fluent 6DOF Induced Wheel Spin

Rigid Body Dynamics Beam Engine

- Software: ANSYS, Solidworks
- Aim: This was an ANSYS rigid dynamic simulation where it was simulating a beam engine. This was a new component of the Ansys software that I was currently learning and I plan to do more complex ones in the future. This method of analysing a mechanism was very handy because during the setup, one had to define every joint and joint type; therefore, allowing one to fully understand the mechanism by having to break it down into its parts and see how they interact with each other.
- Challenges: The main challenge that I faced was learning how to use the software and the specific preprocessing and setup steps before running the simulation.
- different PowerPoint presentations around the specific toolbox I was using and what the requirements were for a successful simulation. Through this project, I was constantly learning new concepts and theories which would be useful for my university projects and future career.

ANSYS Rigid Body Dynamics Beam Engine Results

ANSYS Simulation Project

Rigid Body Dynamics Beam Engine

Explicit Dynamic Impact

- Software: ANSYS, Solidworks
- Aim: This was an ANSYS simulation where I was studying the impact of an aluminium tube when it smashes into a support structure. During this simulation, I added the plastic strain failure parameter from the material toolbox which added a point of failure for the material. This clarified whether the aluminium tube would fail after the collision. This was a new method of using ANSYS Explicit Dynamic and a different approach to a problem.
- Challenges: The main challenge that I faced was learning how to use the software and the specific preprocessing and setup steps before running the simulation.
- different PowerPoint presentations around the specific toolbox I was using and what the requirements were for a successful simulation. Through this project, I was constantly learning new concepts and theories which would be useful for my university projects and future career.

ANSYS Explicit Dynamic Impact Results 1

ANSYS Simulation Project

Explicit Dynamic Impact

Colour Tracking Algorithm

- Software: Matlab
- Aim: To develop an algorithm to track a specified colour and using live image acquisition to locate the point of centre of mass and plot a circle. As the program ran over time, the centre of mass coordinate was plotted on a dynamic graph.
- Challenges: The main challenge that I faced was learning how to use the computer vision toolbox within MATLAB software and the specific functions associated with it.
- **Solution:** : I followed a useful tutorial online and read different PowerPoint presentations around the specific toolbox I was using and what the requirements were for a successful program.

Colour Tracking Real Time

Colour Tracking Plot

Colour Tracking Algorithm

Continued

```
WebcamTrack.m × +
       AtClean up any left over variables
       clear, clc
       * Create a video device to acquire data from a camera
       if -exist('myCam', 'var')
         myCam = imaq.VideoDevice('winvideo',1,'MJPG_640x360','ReturnedDataType','bint5');
       & Create video player for visualization
       vidPlayer = vision.DeployableVideoPlayer;
12
       AEdge Detection = vision.DeployableVideoPlayer;
13
14
       & Define the time for the simulation
       Time = 200;
17
18
       99 LOOP
       for 1 = liTime
20
           & Grab images
           img = step(myCam);
22 -
           resizeScale = 0.5:
23
24
           4% Load all the color models
25 -
           [B_centerX, B_centerY, B_circleSize] = DetectPenBlue(img, resizeScale);
26
           %[Y_centerX,Y_centerY,Y_circleSize] = DetectPenYellow(img,resizeScale);
27
           *[G centerX,G centerY,G circleSize] = DetectPenGreen(img,resizeScale);
28
29
           ** VISUALIZE Color
30
31 -
            B_img = insertObjectAnnotation(img, 'circle', [B_centerX B_centerX B_circleSize/2], 'Blue thing', 'lineWidth', 4, 'Color', 'Blue', 'TextColor', 'black', 'FontSize', 20, 'TextBoxOpacity', 0);
32
            WY img = insertObjectAnnotation(img, 'circle', [Y_centerX Y_centerX Y_circleSize/2], 'Yellow thing', 'LineWidth', 4, 'Color', 'Yellow', 'TextColor', 'black', 'TextColor', 'black', 'ToxtSize', 20
33
            46 img = insertObjectAnnotation(img, 'circle', [6 centerY 6 circleSize/2], 'Green thing', 'LineWidth', 4, 'Color', 'Green', 'TextColor', 'black', 'TextColor', 'black', 'FontSize', 20, '
34
35
           %% Update the video player
           step(vidPlayer, B img);
           %step(VidPlayer, Y img) !
           %step(vidPlayer, G_img);
39
           *Edge Detection
           %Edge Detect = edge(rgblgray(img), 'canny');
           %step (Edge Detection, Edge Detect) ;
```

Colour Tracking Code

Automated Synthetic Training Data Generator

- Software: Matlab
- Aim: To develop different programs to generate synthetic training data to train Machine Learning algorithms.
 - Program 1: To split an input video into separate frames.
 - Program 2: To load all the images from program 1 and using a "for loop" to rename all the images and save them to a new folder.
 - Program 3: Using various image processing techniques, the program first takes an image, then re-sizes and randomly rotates it, then randomly translates the image and finally saves it into a new folder. Then, using pre-defined labels, it concatenates the images and the relevant labels into a training data folder which can be parsed into the function to train the Machine Learning algorithm.
- Challenges: The main challenge that I faced was learning how to use the computer vision toolbox within MATLAB software and the specific functions associated with it.
- Solution: I followed a useful tutorial online and read different PowerPoint presentations around the specific toolbox I was using and what the requirements were for a successful program.

Program 1: Video Frame Extraction

```
VF_Extraction.m × Loop_Rename_IMG.m × Multi_Image_Processing.m ×
       %% Extract the frames from a video
       $Load the video into the script
       [file,path] = uigetfile({"*.avi";"*.MP4"});
       Vid = VideoReader(file);
       % User selects the path to save the images
       S folder = uigetdir('C:\');
10
       %%For loop to iterate through the video
      for i = 1: Vid. NumberOfFrames
12 -
           filename = strcat('Image frame',' ',num2str(i),'.jpg');
13 -
           b = read(Vid,i);
14 -
           fullFileName = fullfile(S folder, filename);
15
           imwrite(b, fullFileName);
```

Program 1 Code

```
Command Window
  Image frame326.jpg
  Image frame327.jpg
  Image frame328.jpg
  Image frame329.jpg
  Image frame330.jpg
  Image frame331.jpg
  Image frame332.jpg
  Image frame333.jpg
  Image frame334.jpg
  Image frame335.jpg
  Image frame336.jpg
  Image frame337.jpg
  Image frame338.jpg
  Image frame339.jpg
  Image frame340.jpg
  Image frame341.jpg
  Image frame342.jpg
  Image frame343.jpg
```

Program 1 Console Output

Automated Synthetic Training Data Generator

Continued

Program 2: Image Rename

Program 2 User Input

```
Command Window
  CalculatorIMG 68.jpg
  CalculatorIMG 69.jpg
  CalculatorIMG 70.jpg
  CalculatorIMG 71.jpg
  CalculatorIMG 72.jpg
  CalculatorIMG 73.jpg
  CalculatorIMG 74.jpg
  CalculatorIMG 75.jpg
  CalculatorIMG 76.jpg
  CalculatorIMG 77.jpg
  CalculatorIMG 78.jpg
  CalculatorIMG 79.jpg
  CalculatorIMG 80.jpg
```

Program 2 Console Output

MATLAB Project

Automated Synthetic Training Data Generator

Continued

Program 3: Image Processing

Program 3 User Input

```
Command Window
  CalcRT 20 9.jpg
  CalcRT 20 10.jpg
  CalcRT 20 11.jpg
  CalcRT 20 12.jpg
  CalcRT 20 13.jpg
  CalcRT 20 14.jpg
  CalcRT 20 15.jpg
  CalcRT 20 16.jpg
  CalcRT 20 17.jpg
  CalcRT 20 18.jpg
  CalcRT 20 19.jpg
  CalcRT 20 20.jpg
fx >>
```

Program 3 Console Output

```
clear
clo
%% User input Master file
uiwait(magbox('Pick a starting folder'));
Master = uigetdir:
fileInfol = dir(fullfile(Master, ''. jpg'));
%% User inpot
uiwait(magbox('Fick a save folder'));
S folder = uigetdir('C:\');
Question1 = 'What index name would you like the images to have: ';
Question2 = 'What file extension would you like the images to have: .png or .jpg';
Question3 1 = 'Rotate';
Question3_2 = 'Rotate Translate';
Question3 = ['What method of Image Processing: ',newline,Question3_1,mewline,Question
Question4 - 'Now many images in the master folder: ';
prompt = (Question), Question2, Question3, Question4);
digtitle = 'Input';
dims = [1 40];
%% Data from User input
answer = inputdlg(prompt,dlgtitle,dima);
Ans2 = string(answer(2));
Method = string(answer(3));
Master_Number = str2double(cel12mat(answer(4)));
Angle = linspace(1,360, Master Number);
rect = 0;
rect2 = [];
Numb Values = Master Number^2;
counter = 0:Master Number:Numb Values;
     if stromp (Method, 'Rotate Translate')
          for ii = 1: Master Number
              RendNUM = rand1([1 150],1,2)/
              newImage(k) = imrotate(load_image(k),Angle(ii),'crop','bilinear');
              newrotateImg = newImage(k):
              newImage(k) = imtranslate(newrotateImg, (RandNUM(1) RandNUM(2)), FillValues', 255, 'OutputView', 'full');
              newtranslateImg = newImage(k);
              newtranslateImg(newtranslateImg == 0) = 255;
              index = num2str(k);
              index2 = num2str(ii);
              Str = [answer(1),index,index2];
              String - strjoin(Str, ' ');
              filename = stroat(String, Ans2);
              fullFileName = fullfile(S folder, filename);
              imwrite (newtranslateImg, fullFileName);
              sources((counter(k)+ii),i) = fullfile(S folder, filename);
              disp(filename)
             bldsl = [(rect(1) *RandNUM(1)) (rect(2) *RandNUM(2)) rect(3) rect(4)];
             blds((counter(k)+ii),l) = [(rect(l)+RandNUM(l)) (rect(2)+RandNUM(2)) rect(3) rect(4)];
             LabelData = table(blds);
              blds = table2cell(LabelData);
             Training Data = table(sources, blds);
                detectedImg = insertObjectAnnotation(newtranslateImg, 'rectangle', bldsi, filename,...
                    'TextBoxOpecity', 0.9, 'FontSize', 18);
                fullFileName = fullfile(S folder2, filename);
                invrite(detectedImg, fullFileName);
```

Transfer Learning Image Classification Algorithm using a CNN Model

- Software: Matlab
- Aim: To develop CNN Machine Learning algorithm to read an image, classify objects within that image and then output what that object is.
- Challenges: The main challenge that I faced was learning how to use the computer vision toolbox within MATLAB software and the specific functions associated with it.
- Solution: I followed a useful tutorial online and read different PowerPoint presentations around the specific toolbox I was using and what the requirements were for a successful program.

```
CNN.m × +
       % Clear the workspace of all variables
       %% Load AlexNet
       net = alexnet;
       layers = net.Layers;
       inlayer = net.Layers(1);
       insz = inlayer.InputSize;
       Neurons = 1;
       %% Create a Data store of all the images
       imds = imageDatastore("Video Frame Extraction", 'IncludeSubfolders', true, 'LabelSource', 'foldernames', 'FileExtensions', {'.jpg'});
       fname = imds.Labels;
       numTrainFiles = length(fname);
15
       %% Split the data into training and testing
       [TrainIMG, TestIMG] = splitEachLabel(imds, 0.7);
17
       %% Resize all the images to a suitable size
       augTrain = augmentedImageDatastore([227 227],TrainIMG);
       augTest = augmentedImageDatastore([227 227],TestIMG);
       %% Adjust the new network Arcitecture
       fc = fullyConnectedLayer(Neurons);
23 -
       layers(23) = fc;
       layers(end) = classificationLayer;
25
26 -
       options = trainingOptions('sgdm', 'InitialLearnRate', 0.01, ...
27
           'Plots', 'training-progress'....
            'Shuffle', 'every-epoch');
29
30
       %% Train the new network and validate
31 -
       [newnet,info] = trainNetwork(augTrain,layers,options);
32
33
       %% Test the CNN
34 -
       NetPreds = classify(newnet,augTest);
35
36 -
       plotconfusion (TestIMG.Labels, NetPreds)
       save('CNN_Network', 'newnet')
```

CNN Model Code

Transfer Learning Image Classification Algorithm using a RCNN Model

- Software: Matlab
- Aim: To develop RCNN Machine Learning algorithm to read an image, classify objects within that image and then output what that object is and where it is located within the image.
- Challenges: The main challenge that I faced was learning how to use the computer vision toolbox within MATLAB software and the specific functions associated with it.
- **Solution:** I followed a useful tutorial online and read different PowerPoint presentations around the specific toolbox I was using and what the requirements were for a successful program.

```
RCNN.m × Untitled2* × +
       %% Clear the workspace of all variables
       clear
       %% Load AlexNet
       net = alexnet;
       layers = net.Layers;
       inlayer = net.Layers(1);
       insz = inlayer.InputSize;
9
10
       %% Load gTruth data and Add the image directory to the MATLAB path.
11 -
       load ('Training Data.mat')
12
13
       %% Adjust the new network Arcitecture
       Neurons = width (Training Data);
15 -
       fc = fullyConnectedLayer(Neurons);
       layers(23) = fc;
       layers(end) = classificationLayer;
18
19 -
       options = trainingOptions('sgdm','InitialLearnRate',0.001,'MiniBatchSize',1,'MaxEpochs',10,'ExecutionEnvironment','auto');
20
21
       %% Train the new network and validate
       detector = trainFastRCNNObjectDetector(Training_Data, layers, options)
```

RCNN Model Code

Using either the CNN or RCNN with Live Image Acquisition

- Software: Matlab
- Aim: To develop a script which uses live image acquisition and a "For loop" to feed data into a Machine Learning model. If the CNN is used, there will be a title of object class suggesting the model has been classified. If the RCNN is used, a labelled bounding box will surround the object and track it in real time.
- Challenges: The main challenge that I faced was learning how to use the computer vision toolbox within MATLAB software and the specific functions associated with it.
- Solution: I followed a useful tutorial online and read different PowerPoint presentations around the specific toolbox I was using and what the requirements were for a successful program.

```
WebcamTrack.m × +
       % Clean up any left over variables
       %% Load the CNN
       load CNN Network
       %% Create a video device to acquire data from a camera
       if ~exist('myCam','var')
         myCam = imaq.VideoDevice('winvideo',1,'MJPG_640x360','ReturnedDataType','uint8');
       * Create video player for visualization
       vidPlayer = vision.DeployableVideoPlayer;
       %% Define the time for the simulation
       Time = 200;
       %% Loop to Run CNN in real Time
      for i = 1:Time
           img = step(myCam);
           picture=imresize(img,[227,227]);
           label = classify(newnet,picture);
           image (picture);
           title(char(label));
           step(vidPlayer,img);
           i = 1+i;
29 -
       %% Clean and release
       release (myCam)
       release (vidPlayer)
```

Real Time CNN Code

```
** Clean up any left over variables
        clear, clc
        69 Load the CNN
        load Detector
        %% Create a video device to acquire data from a camera
        % if -exist('myCam', 'var')
        myCam = imaq.VideoDevice('winvideo',1,'MJPG 320x240','ReturnedDataType','uint8');
        vidDevice = imaq.VideoDevice('winvideo', 1, 'YUY2 320x240', ...
                                      'ReturnedColorSpace', 'rgb', ...
                                      'DeviceProperties.Brightness', 130, ...
13
                                      'DeviceProperties. Sharpness', 7);
14
        & Create video player for visualization
        vidPlayer = vision.DeployableVideoPlayer;
17
18
        %% Loop to Run CNN in real Time
19 -
        tic.
20
21 -
      E while toc < 10
              img = step (myCam) ;
            img = vidDevice();
              img = imresize(img, [227, 227]);
            [bbox, score, label] = detect(detector, img);
            annotation = ['Confidence: ' num2str(round((score*100),2)),'%'];
            detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation,...
                'TextBoxOpacity', 0.9, 'FontSize', 18);
29 -
            step (vidPlayer, detectedImg);
30 -
31
        %% Clean and release
32 -
        release (myCam)
        release (vidDevice)
```

Real Time RCNN Code

Engineering Coursework in Python

- Software: Python
- Aim: I was given programming problems that I was required to complete in MATLAB. However, as a personal challenge, I completed the course work a second time using Python.
 - 1. Task one was to use loops, functions and plots based off predefined equations.
 - 2. Task two was to develop a function for matrix indexing.
- Challenges: Since this was my first program in Python, nearly everything was a challenge. However, understanding different data types and the use of loops was particularly challenging.
- Solution: I planned out what my program was going to do beforehand and learnt as I went along.

Engineering Coursework in Python

Continued

Task 1 Code:

```
import matplotlib.pyplot as plt
import numpy as np
   Phi 1 = np.radians(sum(SID))
   Phi 2 = np.radians((np.pi)/4)
   time step = T2/ts
   times = np.arange(0,3*T1,time step)
   new = []
   for i, time in enumerate(times):
       y1.append( A * np.sin((((2*np.pi)/T1)*time)-Phi_1) )
       y2.append( B * np.cos((((2*np.pi)/T2)*time)-Phi 2) )
   for (a,b) in zip(y1,y2):
       y3.append(a+2*b)
   for values in v3:
       if values \Rightarrow \max(y3)/2:
```

```
plt.plot(y1, "k--", label='y1')
plt.plot(y2,label='y2')
plt.plot(y3,label='y3')
plt.xlabel('Time Step')
plt.ylabel('Signal Frequency')
plt.title('Line Plot of Frequency of Signals')
plt.legend(loc='upper right')
plt.plot(times,new,"k--",label='Logic array')
plt.xlabel('Time Step')
plt.ylabel('Signal Frequency')
plt.title('Line Plot of Frequency of Signals')
plt.legend(loc='upper right')
function(SID,ts)
```

Task 2 Code:

```
import numpy as np
def Indexing(m row,m col,row,col):
    matrix = np.random.randint(5, size=(m row,m col))
    print('The randomly generated matrix: \n \n {}'.format(matrix))
   Method_1 = matrix[row-1,col-1]
    M1 string = "The value in row: {} col: {} = {}".format(row,col,Method 1)
   print("")
    print(M1 string)
    Method 2 = []
    for c val in range(6):
       for r_val in range(4):
           if matrix[r_val,c_val] == matrix[row-1,col-1]:
                matrix[r_val,c_val] = matrix[row-1,col-1]
                Method 2.append(matrix[r val-1,c val-1])
    print('All the indexed values in the matrix: \n \n {}'.format(matrix))
Indexing(m_row=4,m_col=6,row=4,col=3)
```

Drawing App

- Software: Python & OpenCV
- Aim: To develop a simple drawing GUI using Python.
- **Challenges:** Understanding the key capture events and how to manipulate them to suit my application.
- Solution: Followed a similar example online and adapted it to suit my application.

```
as)

Python

Python

Python

Python

Python

Python

Python

Python

Python

Python
```

Main Script Code Snippet

```
import numpy as np
import cv2
Canvas = np.ones([500,500,4])*255
color = (0, 255, 0)
line_width = 3
radius = 3
point = (0,0)
pressed = False
def click(event, x, y, flags, param):
    global pressed
    if event == cv2.EVENT_LBUTTONDOWN:
        cv2.circle(Canvas, (x,y),radius,color,-1)
        pressed = True
    elif event == cv2.EVENT_MOUSEMOVE and pressed == True:
        cv2.circle(Canvas, (x,y),radius,color,-1)
    elif event == cv2.EVENT_LBUTTONUP:
        pressed = False
cv2.namedWindow("Canvas")
cv2.setMouseCallback("Canvas", click)
```

```
cv2.namedWindow("Canvas")
cv2.setMouseCallback("Canvas", click)
while True:
    cv2.imshow("Canvas", Canvas)
    ch = cv2.waitKey(1)
    if ch & 0xFF == ord('q'):
        break
    elif ch & 0xff ==ord('b'):
        color = (255,0,0)
    elif ch & 0xff == ord('r'):
        color = (0,0,255)
    elif ch & 0xff == ord('1'):
        radius = 10
    elif ch & 0xff == ord('2'):
        radius = 30
    elif ch & 0xff == ord('3'):
        radius = 50
    elif ch & 0xff == ord('4'):
        radius = 100
cv2.destroyAllWindows()
```

Lane Detection

- Software: Python & OpenCV
- Aim: To create a Python program to take an input image and using thresholding to detect the while lanes in an image.
- Challenges: Since this was my first Computer Vision program in Python, learning the Python module was a challenge. However, understanding how to correctly process an image especially dynamically was particularly challenging.
- Solution: I planned out what my program was going to do beforehand and learnt as I went along.

Main Script Code Snippet

```
import cv2
import numpy as np
import matplotlib
img = cv2.imread("straight lines2.jpg")
   hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
   lower = np.array([0,190,0])
   upper = np.array([255, 255, 255])
   yellower = np.array([10,0,90])
   yelupper = np.array([50,255,255])
   yellowmask = cv2.inRange(hls, yellower, yelupper)
   whitemask = cv2.inRange(hls, lower, upper)
   mask = cv2.bitwise or(yellowmask, whitemask)
   masked = cv2.bitwise and(hls, hls, mask = mask)
   return masked
while(True):
   masked = color_filter(img)
   cv2.imshow("Lane Detection", masked)
   cv2.imshow("Original",img)
   if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
```

Colour Tracking Algorithm using Image Thresholding

- Software: Python & OpenCV
- Aim: Developed a program to take a snapshot from a webcam, then dynamically threshold it in the HSV colour space and finally track the object in real time.
- Challenges: Since this was my first Computer Vision program in Python, learning the python module was a challenge. However, understanding how to correctly process an image especially dynamically was particularly challenging.
- Solution: I planned out what my program was going to do beforehand and learnt as I went along.

Colour Tracking Algorithm using Image Thresholding

Continued

Main Script Code Snippet

```
import numpy as np
from Image Threshold import *
import numpy as np
def img_res(img, scale):
   dim - (width, height)
   resized img = cv2.resize(img, dim)
   return resized img
def Alert limit zones(Centre Point, Lower Limit, Upper Limit):
   above = []
   for i in range(Lower Limit, Upper Limit):
       above.append(Centre Point+i)
   limits.extend(below)
   limits.extend(above)
```

```
print (i)
       time.sleep(0.5)
   print("taking snap say Cheese :)")
   Res_Frame = img_res(frame, 80)
   Lower lim, Upper lim - Dynamic thresh(Res Frame)
print("This is the Min val Lower: {}".format(Lower lim[0]))
print("This is the Mid val Lower: {}".format(Lower lim[1]))
print("This is the Max val Lower: ()".format(Lower lim[2]))
print("This is the Min val Upper: {}".format(Upper lim[0]))
print("This is the Mid val Upper: {}".format(Upper lim[1]))
print("This is the Max val Upper: {}".format(Upper lim[2]))
   Res_frame = img_res(frame, + 85)
   height = Res_frame.shape[0]
   mask = img_thresh(Res_frame,Lower_lim,Upper_lim)
   x, y, w, h = cv2.boundingRect(mask)
   bbox = cv2.rectangle(Res_frame,(x,y),(x+w,y+h),(0,255,0),3)
   Centre CodX bbox = int(x+(w/2))
   Centre_CodY_bbox = int(y+(h/2))
```

Colour Tracking Algorithm using Image Thresholding

Continued

```
import numpy as np
import matplotlib.pyplot as plt
def Dynamic_thresh(img):
    def nothing(x):
    cv2.namedWindow('Lower Threshold')
    cv2.resizeWindow('Lower Threshold', 500,150)
    cv2.namedWindow('Upper Threshold')
    cv2.resizeWindow('Upper Threshold', 500,150)
    cv2.createTrackbar("Hue", "Lower Threshold",0,255,nothing)
    cv2.createTrackbar("Sat", "Lower Threshold",0,255,nothing)
    cv2.createTrackbar("Val", "Lower Threshold",0,255,nothing)
    cv2.createTrackbar("Hue", "Upper Threshold",0,255,nothing)
    cv2.createTrackbar("Sat", "Upper Threshold",0,255,nothing)
    cv2.createTrackbar("Val", "Upper Threshold",0,255,nothing)
    while(1):
        Saturation_A_Lower = []
        Value A Lower = []
        Hue_Lower = cv2.getTrackbarPos("Hue", "Lower Threshold")
        sat Lower = cv2.getTrackbarPos("Sat", "Lower Threshold")
        val_Lower = cv2.getTrackbarPos("Val", "Lower Threshold")
        Hue A Lower.append(Hue Lower)
        Saturation_A_Lower.append(sat_Lower)
```

```
Value_A_Upper.append(val_Upper)
    lower_limit = np.array([Hue_Lower, sat_Lower, val_Lower])
    upper_limit = np.array([Hue_Upper, sat_Upper, val_Upper])
    mask = cv2.inRange(hsv, lower limit, upper limit)
    cv2.imshow("object", cv2.bitwise_and(hsv,hsv, mask=mask))
    key = cv2.waitKey(1) & 0xFF
    if key = ord("q"):
return Lower_lim, Upper_lim
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
upper_limit = np.array([Upper_lim[0], Upper_lim[1], Upper_lim[2]])
mask = cv2.inRange(hsv, lower_limit, upper_limit)
return mask
```

Threshold Function Code Snippet