Machine Learning for Industry

Lecture 1 - Introduction to ML and Regression

Mattias Villani

Department of Computer and Information Science Linköping University

> Department of Statistics Stockholm University

Course overview

- Topic 1 Basic ML and Regularized regression
- Topic 2 Classification and Unsupervised learning
- Topic 3 Neural networks and Deep learning
- Topic 4 Reinforcement learning

Topic 1 - Basic ML and regularized regression

- Lecture block 1 Basic ML and Regularized regression
 - Intro to Machine Learning
 - ► Linear and Nonlinear Regression
 - ▶ Bias-Variance trade-off
 - Regularization
- Lecture block 2 Regression trees and extensions
 - Regression trees
 - Random forest
 - Boosted tree ensembles

Topic 2 - Classification and unsupervised learning

Lecture block 3 - Classification

- ► Likelihood and Bayesian learning
- Discriminative classification models
- Generative classification models

■ Lecture block 4 - Unsupervised learning

- Clustering methods
- Mixture models
- Visualizing data using t-SNE

What is machine learning?

- Machine learning is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead.
- It is seen as a subset of **artificial intelligence**. Machine learning algorithms build a mathematical model based on sample data to make predictions or decisions.
- Machine learning is closely related to computational statistics.
- Data mining is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised learning.
- In its application across business problems, machine learning is also referred to as **predictive analytics**.
- Data science?

Labeling distinctions

- Availability of labels
 - ► Supervised learning: labeled training data.
 - ► Unsupervised learning: unlabeled training data.
 - ▶ Semi-supervised learning: labels for a subset of training data
 - ▶ Reinforcement learning: sequential learning with incremental rewards for good behavior.
- Types of labels
 - ► Regression labels are real numbers
 - ► Classification labels are discrete

Data distinctions

- Regression data
 - Real valued
 - Counts
 - Proportions
- Categorical data (binary, multi-class)
- Time series (sensor data over time)
- Spatial data (sensors at different locations, images)
- Survival data (lifetime of hard drives)
- Longitudinal data (one short time series for many objects)
- Specialized structure
 - Images
 - Text
 - Sound
 - **...**

Modeling distinctions

- Approach
 - Probabilistic
 - **▶** Algorithmic
- Type of probability model
 - Generative
 - Discriminative

Why probability models?

- Probability models and statistical inference is a framework.
- Principled way to think about any problem in ML.
- Can better evaluated and critiqued.
- Quantify uncertainties. Crucial for Decision making.

As robotics is now moving into the open world, the issue of uncertainty has become a major stumbling block for the design of capable robot systems. Managing uncertainty is possibly the most important step towards robust real-world robot systems.

from the book Probabilistic Robotics by Thrun et al.

The machine learning work flow

Regression

- Continuous response data: y.
- Explanatory variables, features, covariates: $x_1, ..., x_p$
- Linear regression with Gaussian (normal) errors

$$y = w_0 + w_1 x_1 + ... + w_p x_p + \varepsilon, \ \varepsilon \sim N(0, \sigma^2).$$

For a sample of *n* data points

$$\mathbf{y} = \mathbf{X} \mathbf{w} + \mathbf{\varepsilon}, \\ (\mathbf{n} \times 1) = (\mathbf{n} \times (\mathbf{p} + 1))((\mathbf{p} + 1) \times 1) + (\mathbf{n} \times 1),$$

where $\mathbf{y} = (y_1, ..., y_n)^T$, $\mathbf{w} = (w_0, w_1, ..., w_p)^T$ etc.

■ The Least Squares (LS) estimator

$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

minimizes the sum of squared errors (SSE)

$$\sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2 = (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}).$$

Bike share data

Bike share data

Linear regression in scikit-learn

```
from sklearn import linear_model
regModel = linear_model.LinearRegression()
regModel.fit(X = X, y = y)
print(regModel.coef_)
```


Prediction in Regression

Prediction for a new set of features: $\mathbf{x}^* = (x_1^*, ..., x_n^*)^T$

$$\hat{y}_{\star} = \hat{w}_0 + \hat{w}_1 x_1^{\star} + ... + \hat{w}_p x_p^{\star}.$$

Also possible to derive 95% prediction intervals

$$\hat{y}_{\star} \pm 1.96 \cdot s_{\hat{y}_{\star}}$$

where the formula for prediction standard error, $s_{\hat{v}_{+}}$, is given in standard statistics textbooks.

- In more complex models: use simulation to get intervals (see also Bayesian learning later in the course).
- Prediction method for sklearn model objects

regModel.predict(Xnew)

where Xnew is a $n_{\text{pred}} \times (p+1)$ matrix with n_{pred} new examples.

Polynomial regression in scikit-learn

Polynomial regression

$$y = w_0 + w_1 x + w_2 x^2 + ... + w_p x^p + \varepsilon, \ \varepsilon \sim N(0, \sigma^2).$$

Linear in the weights. LS applies. Features: $(1, x, x^2, ..., x^p)$.

```
from sklearn import linear_model
from sklearn.preprocessing import PolynomialFeatures
regModel = linear_model.LinearRegression()
poly = PolynomialFeatures(degree=3, include_bias=False)
XBasis = poly.fit_transform(X)
regModel.fit(X = XBasis, y = y)
```


Feature engineering

- Not all data comes as a nice $n \times p$ matrix.
- Image, text, sound.
- **Categorical variables**. 'man'/'woman'. seasons.
- sklearn.preprocessing.OneHotEncoder()
- Basis functions.
 - ▶ Polynomial $x^2, x^3, ...$
 - Splines (local polynomials)
 - ▶ Interactions, x₁x₂.
- Transformations.
 - ▶ log(y) for positive data
 - ▶ logit(y) = log(y/(1-y)) för proportions.
- Missing data.
- See PDSH Feature construction.

Bike share data - categorical variables

	dteday	weekday	workingday	weathersit	feelTemp	hum	windspeed	nRides
0	2011-01-01	6	0	2	0.363625	0.805833	0.160446	985
1	2011-01-02	0	0	2	0.353739	0.696087	0.248539	801
2	2011-01-03	1	1	1	0.189405	0.437273	0.248309	1349
3	2011-01-04	2	1	1	0.212122	0.590435	0.160296	1562
4	2011-01-05	3	1	1	0.229270	0.436957	0.186900	1600
5	2011-01-06	4	1	1	0.233209	0.518261	0.089565	1606
6	2011-01-07	5	1	2	0.208839	0.498696	0.168726	1510
7	2011-01-08	6	0	2	0.162254	0.535833	0.266804	959
8	2011-01-09	0	0	1	0.116175	0.434167	0.361950	822
9	2011-01-10	1	1	1	0.150888	0.482917	0.223267	1321

Bike share data - one-hot

	weekday_1	weekday_2	weekday_3	weekday_4	weekday_5	weekday_6	weathersit_2	weathersit_3	feelTemp	hum	windspeed	nRides
0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.363625	0.805833	0.160446	985
1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.353739	0.696087	0.248539	801
2	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.189405	0.437273	0.248309	1349
3	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.212122	0.590435	0.160296	1562
4	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.229270	0.436957	0.186900	1600
5	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.233209	0.518261	0.089565	1606
6	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.208839	0.498696	0.168726	1510
7	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.162254	0.535833	0.266804	959
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.116175	0.434167	0.361950	822
9	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.150888	0.482917	0.223267	1321

Generalization and Training-Test splits

- Generalization: how well will the model predict unseen data?
- Split the data examples $S = \{1, ..., n\}$ into two parts:

$$S = S_{training} \cup S_{test}$$

- ▶ Training data to estimate the model parameters (e.g. w)
- ▶ Test data to estimate the generalization performance.
- **■** Evaluation metrics:
 - ▶ Regression: RMSE_{test} = $\sqrt{n_{\text{test}}^{-1} \sum_{i \in \mathcal{S}_{\text{test}}} (y_i \hat{y}_i)^2}$
 - ► Classification: Percentage of misclassified examples.
- How to make the split:
 - Randomly
 - ▶ Systematic (time series: most recent data in test set).

```
from sklearn.model selection import train_test_split
xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size = 0.5)
```

Bias and Variance

True relationship (ex. sin(x))

$$y = f(\mathbf{x}) + \varepsilon$$
.

- Estimated model $\hat{f}(\mathbf{x})$ (ex. linear regression $\hat{f}(\mathbf{x}) = \mathbf{x}^T \hat{\mathbf{w}}$).
- Bias

$$\operatorname{Bias} \hat{f}(\mathbf{x}) = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] - f(\mathbf{x})$$

- Bias = how correct on average, over all possible datasets?
- Variance

$$\mathbb{V}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - \mathbb{E}\left[\hat{f}(\mathbf{x})\right]\right)^{2}\right].$$

Mean Squared Error (MSE)

$$MSE = \mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{V}\left[\hat{f}(\mathbf{x})\right] + \left(Bias\hat{f}(\mathbf{x})\right)^{2}$$

MSE = expected squared deviation from f(x), in a given dataset.

Bias-Variance trade-off

- More complex models always fit better: $RMSE_{training}(simple model) > RMSE_{training}(complex model)$
- But complex models may overfit the training data

$$RMSE_{training} \ll RMSE_{test}$$

- Too complex models overfit the data. High variance.
- Too simple models will underfit the data. Large bias.

Bias-Variance trade-off

Bias-Variance trade-off

■ See BiasVarianceIllustration.ipynb for the code.

Model complexity

Fitted values for linear models

$$\hat{\mathbf{y}} = \mathbf{X} \ \hat{\mathbf{w}} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{H} \mathbf{y}.$$

Hat matrix

$$\mathbf{H}_{n\times n} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T.$$

- The *i*th row of **H**: how \hat{y}_i depends on the *n* data points.
- A linear smoother is any fitting method of the form

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$$
.

- Ex: poly reg, splines, nearest neighbor, ridge regression ...
- **Degrees of freedom**, tr*H*, measures complexity of smoother.
- Sanity check: linear regression with p features: $tr \mathbf{H} = p$.

Ridge regression

- Many features $\Rightarrow \hat{\boldsymbol{w}}_{LS} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$ has high variance.
- $\hat{y} = X\hat{w}_{LS}$ can overfit the data. Poor prediction on test data.
- Regularization: "soft restrictions" on the estimated weights.
- Ridge estimator $\hat{\boldsymbol{w}}_{\mathrm{ridge}}(\lambda)$ minimizes L_2 -penalized SSE

$$\left(\mathbf{y} - \mathbf{X}\mathbf{w}\right)^{T} \left(\mathbf{y} - \mathbf{X}\mathbf{w}\right) + \lambda \left\|\mathbf{w}\right\|_{2}^{2}$$

where $\|\mathbf{w}\|_2^2 = \mathbf{w}^T \mathbf{w} = \sum_{j=1}^p w_j^2$ is L_2 -regularization.

Ridge regression estimator

$$\hat{\boldsymbol{w}}_{\text{ridge}}(\lambda) = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_n)^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

- $\hat{\boldsymbol{w}}_{\mathrm{ridge}}(\lambda)$ shrinks $\hat{\boldsymbol{w}}$ toward zero as $\lambda \to \infty$.
- Trades bias against variance.

Polynomial regression without regularization

Polynomial regression with L₂-regularization

Lasso regression

Lasso estimator $\hat{\boldsymbol{w}}_{lasso}(\alpha)$ minimizes L_1 -penalized SSE

$$\left(\mathbf{y} - \mathbf{X}\mathbf{w}\right)^{T} \left(\mathbf{y} - \mathbf{X}\mathbf{w}\right) + \alpha \left\|\mathbf{w}\right\|_{1}$$

where $\| \boldsymbol{w} \|_1 = \sum_{j=1}^p |w_j|$ is L_1 -regularization.

- Lasso can shrink weights all the way to zero ⇒variable selection.
- No explicit formula for $\hat{\boldsymbol{w}}_{lasso}(\alpha)$.
- LARS is a super-fast algorithm for computing the entire Lasso path.

Lasso regression - bike sharing data

Local-Global Regularization

- Ideal shrinkage:
 - hard shrinkage of weights on noise features
 - leave weights on signal features untouched
- Ridge: shrinks all weights similarly.
- Lasso: can allow some signal features to have larger weights.
- Both Ridge and Lasso apply global shrinkage.
- Better variable selection with global-local shrinkages
 - **Global shrinkage**, α , is baseline shrinkage for all features
 - **Local shrinkage**, τ_1, \ldots, τ_p , for each feature.
 - ► Total shrinkage on *j*th feature: $\alpha \tau_j$.
- Example: Horseshoe regularization.
- More on this in the Bayesian learning part of Lecture Block 2.

Hyperparameter learning by Cross-validation

- How to estimate the hyperparameter α in Lasso regression?
- Bad idea: Find α that minimizes prediction errors on test data.
- **Cross-validation**: estimate generalization from training data.

from sklearn.model_selection import cross_val_score
score = cross_val_score(regModel, X = XTrain, y = yTrain, cv=5, scoring='neg_mean_squared_error')

- 5-10 folds is common, but depends on model complexity.
- **Leave-one-out CV** uses n_{training} folds.

Hyperparameter learning for α in Lasso

See VariableSelection.ipynb for the data and code.