Анализ свойств локальных моделей в задачах кластеризации точек квазипериодических временных рядов

Грабовой Андрей Валериевич

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2019г

Задача кластеризации точек временного ряда

Цель: предложить алгоритм поиска характерных квазипериодических сегментов внутри временного ряда.

Задачи

- Предложить признаковое описание точек временного ряда.
- Предложить функцию расстояния между точками временного ряда в новом признаковом описании, для их дальнейшей кластеризации.

Исследуемые проблемы

 Построение адекватного признакового описания точек временного ряда низкой размерности.

Методы решения

Алгоритм поиска характерных сегментов основывается на методе главных компонент для локального снижения размерности сегмента фазовой траектории в окрестности каждой точки временного ряда. Главные компоненты рассматриваются как признаковое описания точек временного ряда.

Список литературы

- A. P. Motrenko, V. V. Strijov Extracting fundamental periods to segment biomedical signals // Journal of Biomedical and Health Informatics, 2015, 20(6). P. 1466–1476.
- Y. G. Cinar and H. Mirisaee Period-aware content attention RNNs for time series forecasting with missing values // Neurocomputing, 2018. Vol. 312. P. 177–186.
- A. D. Ignatov, V. V. Strijov Human activity recognition using quasiperiodic time series collected from a single tri-axial accelerometer. // Multimedial Tools and Applications, 2015.
- A. Olivares, J. Ramirez, J. M. Gorris, G. Olivares, M. Damas Detection of (in)activity periods in human body motion using inertial sensors: A comparative study. // Sensors, 12(5):5791–5814, 2012.
- Д. Л. Данилова, А. А. Жигловский Главные компоненты временных рядов: метод "Гусеница". СПбУ, 1997.

Постановка задачи кластеризации точек

Задан временной ряд

$$\mathbf{x} \in \mathbb{R}^{N}, \quad \mathbf{x} = [\mathbf{v}_{1}, \dots, \mathbf{v}_{M}], \quad \mathbf{v}_{i} \in \mathcal{V},$$

где ${\cal V}$ множество сегментов в ряде ${f x}$.

Проекция фазовых траекторий на первые две главные компоненты.

Предположения:

- ullet число различных действий внутри временного ряда известно и равно K,
- \bullet для всех $\mathbf{v} \in \mathcal{V}$ выполняется $|\mathbf{v}| \leq T,$ где $|\mathbf{v}|$ длина сегмента,
- \bullet для всех iлибо $[\mathbf{v}_{i-1},\mathbf{v}_i]$ либо $[\mathbf{v}_i,\mathbf{v}_{i+1}]$ является цепочкой действий.

Постановка задачи кластеризации точек

Строится отображение

$$a: t \to \mathbb{Y} = \{1, \cdots, K\},\$$

где $t \in \{1, \cdots, N\}$ некоторый момент времени, на котором задан временной ряд. Требуется, чтобы отображение a удовлетворяло следующим свойствам:

$$\begin{cases} a\left(t_{1}\right)=a\left(t_{2}\right), & \text{если в моменты } t_{1},t_{2} \text{ совершается один тип действий,} \\ a\left(t_{1}\right)\neq a\left(t_{2}\right), & \text{если в моменты } t_{1},t_{2} \text{ совершаются разные типы действий.} \end{cases}$$

Пусть задана асессорская разметка точек временного ряда:

$$\mathbf{y} \in \{1, \cdots, K\}^N$$
.

Ошибка алгоритма a на временном ряде \mathbf{x} :

$$S = \frac{1}{N} \sum_{t=1}^{N} [y_t = a(t)],$$

где t — момент времени, y_t асессорская разметка t-го момента времени для заданого временного ряда.

Построение признакового описания точек

Фазовая траектория ряда х:

$$\mathbf{H} = {\mathbf{h}_t | \mathbf{h}_t = [x_{t-T}, x_{t-T+1}, \cdots, x_t], T \le t \le N},$$

где \mathbf{h}_t — точка фазовой траектории.

Множество сегментов фазовой траектории:

$$S = \{s_t | s_t = [h_{t-T}, h_{t-T+1}, \cdots, h_{t+T-1}], \ 2T \le t \le N - T\},\$$

где \mathbf{s}_t — это сегмент фазовой траектории в окрестности момента времени t.

Множество базисов, полученных методом главных компонент для каждого сегмента фазовой траектории:

$$\mathbf{W} = \{\mathbf{W}_t | \mathbf{W}_t = [\mathbf{w}_t^1, \mathbf{w}_t^2]\}, \quad \mathbf{\Lambda} = \{\boldsymbol{\lambda}_t | \boldsymbol{\lambda}_t = [\lambda_t^1, \lambda_t^2]\},$$

где $[\mathbf{w}_t^1, \mathbf{w}_t^2]$ и $[\lambda_t^1, \lambda_t^2]$ это базисные векторы и соответствующие им собственные числа для сегмента фазовой траектории \mathbf{s}_t . Далее \mathbf{W}_t и λ_t рассматриваются как признаковое описанием момента времени t.

Функция расстояния (общий случай)

Для кластеризации точек временного ряда, вводится расстояние в предложенном признаковом описании данного ряда. Расстояние между элементами $\mathbf{W}_{t_1}, \mathbf{W}_{t_2}$:

$$\rho\left(\mathbf{W}_{t_1}, \mathbf{W}_{t_2}\right) = \max\left(\max_{\mathbf{e}_2 \in \mathbf{W}_{t_2}} d_1\left(\mathbf{e}_2\right), \max_{\mathbf{e}_1 \in \mathbf{W}_{t_1}} d_2\left(\mathbf{e}_1\right)\right),$$

где \mathbf{e}_i это базисный вектор пространства \mathbf{W}_i , а $d_i\left(\mathbf{e}\right)$ является расстоянием от вектора \mathbf{e} до пространства \mathbf{W}_i .

Функция расстояния (двумерный случай)

Расстояние между элементами $\mathbf{W}_{t_1}, \mathbf{W}_{t_2}$:

$$\rho\left(\mathbf{W}_{t_{1}}, \mathbf{W}_{t_{2}}\right) = \max_{\left\{\mathbf{a}, \mathbf{b}, \mathbf{c}\right\} \subset \mathbf{W}_{t_{1}} \cup \mathbf{W}_{t_{2}}} V\left(\mathbf{a}, \mathbf{b}, \mathbf{c}\right),$$

где $\mathbf{W}_{t_1} \cup \mathbf{W}_{t_2}$ это объединение базисных векторов первого и второго пространства, $V(\mathbf{a}, \mathbf{b}, \mathbf{c})$ — объем параллеленинеда построенного на векторах \mathbf{a} , \mathbf{b} , \mathbf{c} , которые являются столбцами матрицы $\mathbf{W}_{t_1} \cup \mathbf{W}_{t_2}$.

Расстояние между элементами \mathcal{L} :

$$\rho\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right) = \sqrt{\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)^{\mathsf{T}}\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)}.$$

Расстояние между точками временного ряда:

$$\rho(t_1, t_2) = \rho(\mathbf{W}_1, \mathbf{W}_2) + \rho(\lambda_1, \lambda_2).$$

Матрица попарных растояний:

$$\mathbf{M} = \mathbb{R}^{N \times N}.$$

Описание временных рядов в эксперименте

- \bullet Physical Motion реальные временные ряды, которые получены при помощи мобильного акселерометра.
 - Характерные действия: ходьба, бег, приседания.
- Synthetic синтетические временные ряды, которые были построены при помощи нескольких первых слагаемых ряда Фурье со случайными коэффициентами из стандартного нормального распределения.

Ряд, х	Длина, <i>N</i>	Сегментов, K	Длина, Т	Ошибка, S
Phys. Motion 1	900	2	40	0.06
Phys. Motion 2	900	2	40	0.03
Synthetic 1	2000	2	20	0.04
Synthetic 2	2000	3	20	0.03

- \bullet N число точек во временном ряде,
- \bullet K число различных действий во временном ряде,
- Т максимальная длина сегмента,
- \bullet S точность кластеризации.

Пример временных рядов

Временные ряды построенные синтетически, а также при помощи мобильного акселерометра.

Матрица попарных расстояний М

Матрицы попарных расстояний для временных рядов, построенных синтетически, а также при помощи мобильного акселерометра.

Проекция точек фазовой траектории на плоскость

Иллюстрация проекции признакового описания точек временного ряда на плоскости для временных рядов, построенных синтетически, а также при помощи мобильного акселерометра.

Кластеризация точек временного ряда

Результат кластеризации точек временных рядов, построенных синтетически, а также при помощи мобильного акселерометра.

Сегментация временных рядов

Результат сегментации временных рядов, в случае двух синусоидальных сигналов в произвольной частотой и амплитудой, а также в случае реальных данных, полученных при помощи акселерометра.

Выносится на защиту

- Предложен алгоритм поиска характерных сегментов, который основывается на методе главных компонент для локального снижения размерности
- Введена функция расстояния между локальными базисами в каждый момент времени, которые интерпретировались как признаковое описание точки временного ряда. Данная функция является метрикой.
- В ходе эксперимента, на реальных показаниях акселерометра, а также на синтетических данных, было показано, что предложенный метод измерение расстояния между базисами хорошо разделяет точки которые принадлежат различным действиям, что приводит к хорошей кластеризации объектов.
- Также в эксперименте была проведена полная сегментация временных рядов для каждого кластера по отдельности.

Планируется решить задачу нахождения минимального размера фазового пространства, для которого фазовая траектория не имеет самопересечений.

Публикации и выступления

- Грабовой А. В., Стрижов В. В. Анализ свойств локальных моделей в задачах кластеризации квазипериодических временных рядов // (в процессе)
- Грабовой А. В., Бахтеев О. Ю., Стрижов В. В. Определение релевантности параметров нейросети // Информатика и ее применения, 2019, 13(2).
- Фучнев Т. Т., Грабовой А. В., Гадаев Т. Т., Стрижов В. В. Ранее прогнозирование достаточного объема выборки для обобщенно линейной модели // (в процессе)
- 12 октября 2018. ИОИ-2018. Автоматическое определение релевантности параметров нейросети.
- 29 ноября 2019. 61-я Всероссийская научная конференция МФТИ. Поиск оптимальной модели при помощи алгоритмов прореживания.