课时目标	对应单元目标	目标内容
K0101001B	D01001B	通过具体的例子理解集合的含义,理解元素与集合的"属于"
		关系, 并能用符号表示.
K0101002B	D01001B	理解有限集、无限集、空集的含义.
K0101003B	D01001B	熟悉常用数集的符号,能在具体的情境中认识和运用.
K0101004B	D01001B	知道集合相等的定义.
K0102001B	D01001B	能在具体情境中用列举法描述集合.
K0102002B	D01001B	能在具体情境中用描述法描述集合.

K0102003B	D01001B	会选择合适的表示集合的方式,会正确地进行表示方式的切
		换.
K0102004B	D01001B	会用区间表示一些实数集合.
K0103001B	D01001B	理解集合之间包含的概念,能识别给定集合的子集.
K0103002B	D01001B	能用文氏图表示集合以及集合之间的包含关系.
K0103003B	D01001B	能在简单的情境中, 证明集合间的子集关系.
K0103004B	D01001B	理解集合的包含关系具有传递性.
K0103005B	D01001B	理解真子集的概念,能在具体的例子中证明给定集合间的真
		子集关系.

K0104001B	D01001B	理解两个集合的交集的含义,在具体数学情境中,能求两个集
		合的交集.
K0104002B	D01001B	能用文氏图反映两个集合的交集.
K0104003B	D01001B	理解两个集合的并集的含义,在具体数学情境中,能求两个集
		合的并集.
K0104004B	D01001B	能用文氏图反映两个集合的并集.
K0104005B	D01001B	了解全集的含义.
K0104006B	D01001B	理解在给定集合中一个子集的补集的含义,在具体数学情境
		中, 能求给定集合中一个子集的补集.

K0104007B	D01001B	能用文氏图反映一个集合的补集.
K0105001B	D01002B	结合集合之间的包含关系,理解推出关系的含义以及推出关
		系的传递性.
K0105002B	D01002B	理解命题的定义,能在熟悉的情境中运用推出关系判断条件
		命题的真假.
K0106001B	D01002B	知道充分条件、必要条件的定义, 充要条件的含义.
K0106002B	D01002B	通过对典型数学命题的梳理与学习,理解性质定理与必要条
		件的关系、判定定理与充分条件的关系,以及数学定义与充
		要条件的关系.

K0106003B	D01002B	能基于推出关系有理有据地判定熟悉的陈述句之间的必要条
		件关系、充分条件关系和充要条件关系.
K0107001B	D01002B	知道一些常用的否定形式,能正确使用存在量词对全称量词
		命题进行否定,能正确使用全称量词对存在量词命题进行否
		定.
K0107002B	D01002B	能对比较熟悉的陈述句进行否定.
K0107003B	D01002B	了解反证法的思想以及表达方式,能正确使用反证法证明一
		些简单的数学命题.
K0108001B	D01004B	知道等式的加法性质、乘法性质和传递性.

K0108002B	D01004B	知道方程、方程的解、方程的解集的定义.
K0108003B	D01004B	会用集合表示一元一次方程、二元一次方程组的解集.
K0109001B	D01004B	会用集合表示一元二次方程的解集.
K0109002B	D01004B	知道恒等式成立的意义, 会用赋值法处理恒等式.
K0109003B	D01004B	知道并会用因式分解法证明一元二次方程根与系数的关系.
K0109004B	D01004B	在给定二次方程的前提下,能计算用根表示的简单二元对称
		多项式的值.
K0110001B	D01003B	理解不等式的含义,通过等式的性质类比并证明不等式的性
		质 (传递性、加法性质、乘法性质).

K0110002B	D01003B	经历不等式的移项法则、不等式的同向可加性的证明过程.
K0111001B	D01003B	经历不等式的同正同向的可乘性、乘方性质、开方性质 (方根
		在第三章出现,同一个意思,不同表达形式)的证明过程.
K0111002B	D01003B	掌握常用不等式 $a^2+b^2\geq 2ab$ 的证明过程及等号成立的条
		件.
K0111003B	D01003B	会用不等式的性质、作差法证明一些简单的不等式.
K0112001B	D01004B	会求解(含有参数的)一元一次不等式(组),并能用集合表
		示一元一次不等式 (组) 的解集.

K0112002B	D01004B	经历从实际情境中抽象出一元二次不等式的过程,了解一元
		二次不等式的现实意义.
K0113001B	D01004B	会用因式分解后两部分符号的讨论求解一元二次不等式.
K0113002B	D01004B	建立一元二次不等式与相应的一元二次方程的联系,通过对
		方程判别式分类讨论的方式求解一元二次不等式.
K0114001B	D01004B	掌握结合一元二次函数的图像求解一元二次不等式的方法.
K0115001B	D01004B	能通过对判别式讨论的方法解决含参一元二次(可能是一元
		一次,可能不含未知数)不等式的恒成立问题.

K0115002B	D01004B	在已知解集的情形下,会求解含参一元二次不等式系数所满
		足的关系或者系数值.
K0116001B	D01004B	结合分类讨论,会用不等式(组)解一些简单的分式不等式.
K0116002B	D01004B	会用转化为整式不等式(组)解一些简单的分式不等式.
K0117001B	D01004B	会用绝对值的几何意义求解一些基本的含绝对值的不等式.
K0117002B	D01004B	会用分类讨论的思想求解一些基本的含绝对值的不等式.
K0118001B	D01003B	知道算术平均值和几何平均值的概念.
K0118002B	D01003B	经历平均值不等式的证明过程, 理解取等号的条件.
K0118003B	D01003B	能运用平均值不等式比较大小、证明一些简单的不等式.

K0119001B	D01003B	会运用平均值不等式求解较简单的最大值和最小值问题.
K0119002B	D01003B	会运用平均值不等式解决一些实际语境中的最大值和最小值
		问题.
K0120001B	D01003B	经历三角不等式的证明过程, 理解取等号的条件.
K0120002B	D01003B	会运用三角不等式证明一些简单的不等式.
K0120003B	D01003B	会运用三角不等式求解一些简单的最大值或最小值问题.
K0201001B	D02001B	理解零次幂与负整数幂的定义及运算性质.
K0201002B	D02001B	理解根式及其相关的概念.
K0201003B	D02001B	会根据定义求实数的 n 次方根.

K0201004B	D02001B	理解底数为正实数 a 的有理数指数幂的定义 $a^{m/n}=(a^m)^{1/n}$,
		经历等价定义 $a^{m/n} = (a^{1/n})^m$ 的推导过程.
K0202001B	D02001B	经历在个别情形下验证底数为正实数的有理数指数幂的三条
		运算性质的过程.
K0202002B	D02001B	会运用底数为正实数的有理数指数幂的定义及运算性质进行
		幂与根式的互化以及解决相关的化简、计算等问题.
K0202003B	D02001B	理解底数为负实数的有理数指数幂的定义,进而理解底数为
		实数的有理数指数幂的定义。
K0203001B	D02001B	知道底数为正实数的无理数指数幂的定义.

K0203002B	D02001B	熟记底数为正实数的实数指数幂的三条运算性质.
K0203003B	D02001B	经历有理数指数幂的基本不等式: "当实数 $a > 1$, 有理数
		$s>0$ 时,不等式 $a^s>1$ 成立"的推导过程.
K0203004B	D02001B	知道幂的基本不等式: "当 $a > 1$, $s > 0$ 时, $a^s > 1$."
K0203005B	D02001B	会应用底数为正实数的实数指数幂的定义、运算性质以及幂
		的基本不等式,解决底数为正实数的实数指数幂的较复杂的
		表达式的化简、不等式的证明等问题.
K0204001B	D02001B	理解对数的定义

K0204002B	D02001B	会理解、熟记并应用一些常用的对数等式: " $a^{\log_a N} = N$,
		$\log_a 1 = 0, \ \log_a a = 1$ ".
K0204003B	D02001B	知道常用对数、常数 e 以及自然对数的含义.
K0204004B	D02001B	会进行指数式与对数式的互化,以及对数式的化简.
K0205001B	D02001B	经历推导对数运算性质 1 : "当 $M>0, N>0$ 时, $\log_a(MN)=$
		$\log_a M + \log_a N$ ";性质 2 :"当 $M>0, N>0$ 时, $\log_a (M/N)=$
		$\log_a M - \log_a N$ ";性质 3:"当 $N>0$ 时,对任何给定的实
		数 c , $\log_a(N^c) = c \log_a N$ "的过程,并熟记这三条运算性质.

K0205002B	D02001B	会运用对数的定义以及运算性质解决简单的求值、化简以及
		生活实际问题.
K0206001B	D02001B	经历推导对数换底公式的过程.
K0206002B	D02001B	会运用对数的运算性质以及换底公式解决较复杂的求值、化
		简以及证明等相关问题.
K0206003B	D02001B	会推导并会运用例 7 的结论: "当 $a>0$, $a\neq 1$, 且 $N>0$,
		$m \neq 0$ 时, $\log_a^m N^n = n/m \log_a N$."
K0207001B	D02002B	理解幂函数的定义(包含幂函数定义域的概念).
K0207002B	D02002B	会根据具体的幂指数 a 求解幂函数 $y = x^a$ 的定义域.

K0207003B	D02002B	会根据函数定义域,利用计算器合理采点,并能通过描点法
		作出幂函数 $y=x^{1/2},y=x^3,y=x^{-2/3}$ 的大致图像.
K0207004B	D02002B	会用图像上任意一点关于原点(或关于 y 轴)的对称点仍落
		在图像上证明函数的图像关于原点(或 y 轴)对称.
K0208001B	D02002B	会用不等式的常用性质证明当 $x > 0$ 时,幂函数的函数值总
		大于 0.
K0208002B	D02002B	会经历作图猜想证明具体的幂函数图像在第一象限的单调
		性.
K0208003B	D02002B	知道幂函数的图像过定点 (1,1).

K0208004B	D02002B	会用幂函数的单调性判断两个幂的大小.
K0208005B	D02002B	理解函数图像的平移与解析式的关系,并会以此为依据作出
		分式线性函数的大致图像.
K0209001B	D02002B	理解指数函数的定义(包含指数函数定义域为 R).
K0209002B	D02002B	会求解有关指数型函数的定义域.
K0209003B	D02002B	会根据函数定义域,利用计算器合理采点,并能通过描点法
		作出指数函数 $y = 2^x$, $y = 3^x$, $y = (1/2)^x$ 的大致图像.
K0210001B	D02002B	会结合图像,了解指数函数函数值恒大于 0.
K0210002B	D02002B	知道指数函数图像过定点 (0,1).

K0210003B	D02002B	会证明指数函数 $y=a^x$ 与 $y=(1/a)^x$ ($a>0$ 且 $a\neq 1$) 的
		图像关于 y 轴对称.
K0210004B	D02002B	会利用幂的基本不等式证明指数函数的单调性.
K0210005B	D02002B	会作出指数函数的大致图像,能根据其图像特征叙述其函数
		性质.
K0210006B	D02002B	会利用指数函数的单调性判断两个数的大小.
K0211001B	D02002B	会利用指数函数的单调性解决相关不等式等问题.
K0211002B	D02002B	会利用指数函数的性质解决其他如最值问题等数学问题和实
		际生活问题.

K0212001B	D02002B	理解对数函数的定义(包含对数函数定义域为 $(0,+\infty)$).
K0212002B	D02002B	会求解有关对数型函数的定义域.
K0212003B	D02002B	会根据函数定义域,利用计算器合理采点,并能通过描点法
		作出对数函数 $y = \log_2 x, y = \log_3 x, y = \log_{1/2} x$ 的大致图像.
K0213001B	D02002B	会利用对数运算性质,证明函数 $y = \log_a x, y = \log_{1/a} x$ 的图
		像关于 x 轴对称.
K0213002B	D02002B	知道对数函数的图像过定点 (1,0).
K0213003B	D02002B	会联系幂的基本不等式,利用反证法证明对数的基本不等式.

K0213008B	D02002B	会利用对数函数的单调性判断两个数的大小.
		质.
K0213007B	D02002B	会作出对数函数的大致图像,能根据其图像特征叙述函数性
K0213006B	D02002B	了解逆运算和反函数的概念.
		y = x 对称.
		对数函数 $y = log_a x$ 和指数函数 $y = a^x$ 的图像关于直线
K0213005B	D02002B	会结合图像以及指数与对数互为逆运算的性质,探究并证明
		明对数函数的单调性.
K0213004B	D02002B	会类比指数函数的单调性的证明,利用对数的基本不等式证

K0214001B	D02002B	会利用对数函数的单调性估算对数型无理数(如 log ₂ 3).
K0214002B	D02002B	会利用对数函数的单调性解决其他相关不等式等数学问题和
		生活中的实际问题.
K0215001B	D02003B	理解函数的概念,体会函数即数与数之间的对应关系,理解
		函数的定义(包含自变量、函数值、定义域、值域的概念).
K0215002B	D02003B	知道定义域和对应关系为函数的两个要素.
K0215003B	D02003B	会求函数的自然定义域.
K0215004B	D02003B	理解两个函数相同的定义,并会判断两个函数是否是同一函
		数.

K0215005B	D02003B	会根据已学习过的一些简单函数的值域,利用复合求解稍为
		复杂函数的值域.
K0216001B	D02003B	知道函数可以用解析式、图像、列表等方式表示.
K0216002B	D02003B	理解函数的图像的概念.
K0216003B	D02003B	会合理利用计算器采点,通过描点法作出不熟悉函数的大致
		图像.
K0216004B	D02003B	会利用函数的定义判断坐标系中的图像是否为函数图像.
K0216005B	D02003B	了解并能根据实际情况运用函数的分段表示法.
K0216006B	D02003B	知道取整符号 [x] 的含义,并作出取整函数的大致图像.

K0217001B	D02003B	知道基于点集的图形关于直线成轴对称的定义.
K0217002B	D02003B	会推导"函数的图像关于 y 轴成轴对称"的等价的代数表达
		形式,即偶函数的定义.
K0217003B	D02003B	会类比偶函数的定义得到"函数的图像关于原点成中心对称"
		的等价的代数表达形式,即奇函数的定义.
K0217004B	D02003B	会运用奇函数、偶函数的定义,证明一些较为简单的函数是
		奇函数或是偶函数.
K0218001B	D02003B	会运用奇函数、偶函数的定义,通过赋值法或分析定义域,判
		断较为复杂(如含参数)的函数的奇偶性问题.

K0219001B	D02003B	理解单调函数、单调区间的定义.
K0219002B	D02003B	会运用函数单调性的定义证明一次函数、二次函数、反比例
		函数的单调性.
K0219003B	D02003B	会运用函数单调性的定义以及已知的基本初等函数的单调
		性,判断较为复杂的函数单调性.
K0220001B	D02003B	理解单调函数、单调区间的定义
K0220002B	D02003B	会求函数的单调区间.
K0220003B	D02003B	能直观地感知奇偶性可用于分析单调性并能说理.
K0221001B	D02003B	理解函数最大值、最小值的定义.

Transcrape T	Daggar	
K0221002B	D02003B	会运用最值的定义,解决函数的最值问题,以及含参数的函
		数最值问题(函数对应关系含参数或者定义域含参数)的数
		学问题.
K0222001B	D02004B	会将现实情境转化为数学模型,并能分析其中量与量之间的
		关系.
K0222002B	D02004B	在建立好的数学模型中,能合理选取变量,建立变量之间的
		函数关系,并能结合实际写出函数的定义域.
K0222001P	D02004B	加送高粉蛋片的空火
K0223001B	D02004B	知道函数零点的定义.
K0223002B	D02004B	会用函数的观点求解一元二次方程.

K0223003B	D02004B	会用函数的观点求解一元二次不等式.
K0223004B	D02004B	会用函数的观点求解较为复杂的方程.
K0223005B	D02004B	会用函数的观点求解较为复杂的不等式.
K0224001B	D02004B	知道零点存在定理,会用零点存在定理判断连续函数在区间
		上存在零点.
K0224002B	D02004B	理解并会运用二分法寻求连续函数在某个区间上的零点的近
		似值
K0625001X	D02005X	经历现实情境中变速运动的平均速度与瞬时速度的定义,感
		悟极限思想.

K0625002X	D02005X	计算已知位移表达式的运动过程中平均速度的极限,得到某
		一时刻的瞬时速度, 理解瞬时速度的含义.
K0625003X	D02005X	从瞬时速度的计算过程中抽象出导数的定义,理解位移在某
		一时刻的导数就是该时刻的瞬时速度.
K0625004X	D02005X	结合导数理解函数的瞬时变化率的概念.
K0625005X	D02005X	会对不超过二次的多项式函数通过定义求在自变量取具体值
		时的导数.
K0626001X	D02005X	了解一般曲线的切线可定义为割线的极限情形.

K0626002X	D02005X	在具体的情境中, 直观地通过列举斜率数据, 验证圆上一点处
		用割线极限定义的切线与平面几何中定义的切线是一致的.
K0626003X	D02005X	用代数语言描述函数图像上某点处割线斜率的极限,进而结
		合导数的定义, 理解切线的斜率就是函数在该点处的导数.
K0626004X	D02005X	会通过求导,求得不超过二次的多项式函数在图像上一点处
		的切线方程.
K0626005X	D02005X	理解驻点的概念,理解函数图像在驻点处的切线是一条水平
		直线.

K0627005X	D02005X	会利用已知的导数求函数的驻点.
		导数.
K0627004X	D02005X	了解幂函数, $f(x) = e^x$, $f(x) = \ln x$, 正弦函数与余弦函数的
		方法.
K0627003X	D02005X	会通过定义求 $f(x) = x^{\frac{1}{2}}$ 的导数,掌握其中的分子有理化的
		x^{-1} 的导数.
K0627002X	D02005X	会通过定义求常数函数,一次函数,幂函数 $f(x) = x^2$, $f(x) =$
		量和其导数的对应关系, 理解导函数 (也成为导数) 的概念.
K0627001X	D02005X	将导数的概念一般化,理解求一点处导数的结果能引出自变

K0627006X	D02005X	了解基本初等函数的概念.
K0628001X	D02005X	经历和的求导公式的代数推导过程, 掌握和与差的求导公式.
K0628002X	D02005X	掌握并熟记积与商的求导公式.
K0628003X	D02005X	会用积的求导公式推导数乘的求导公式.
K0628004X	D02005X	会将简单的初等函数表达为若干个基本初等函数的四则运
		算,并用导数的四则运算法则求导.
K0628005X	D02005X	会用换底公式求得一般对数函数的导数.
K0629001X	D02005X	通过实例直观地了解复合函数的概念.

K0629002X	D02005X	经历函数 $y = f(ax + b)$ 的求导公式的推导过程, 会借助中间
		变量 u 记忆 $f(ax + b)$ 型复合函数的求导法则.
K0629003X	D02005X	会结合使用 $f(ax+b)$ 型复合函数的求导法则及四则运算的
		求导法则求初等函数的导数.
K0629004X	D02005X	会通过代数变形将 a^x 转换成底为 e 的函数, 进而求得一般指
		数函数的导数.
K0630001X	D02006X	了解根据区间上导数的正负号可以用于判断函数在该区间上
		的单调性.

K0630002X	D02006X	会根据驻点进行分段,用导数的正负性研究一些初等函数的
		单调性.
K0630003X	D02006X	通过具体的实例 $(\mathbf{m}\ f(x) = x^3)$ 了解驻点不一定是单调性的
		分界点, 以及在函数严格递增处导数也不一定恒为正.
K0630004X	D02006X	了解导数的数值可以判断函数变化速度的快慢,直观地反映
		为曲线的倾斜程度.
K0631001X	D02006X	结合图像直观,理解极大值与极大值点,极小值与极小值点、
		极值与极值点的定义.

K0631002X	D02006X	结合图像直观,理解根据驻点周围导数的符号确定驻点为极
		大 (小) 值点的充分条件.
K0631003X	D02006X	会通过求导求得不超过三次的多项式函数与简单三角函数的
		极值点与极值.
K0632001X	D02006X	能说出极值与最值的联系与区别.
K0632002X	D02006X	结合图像直观,知道比区间上的连续函数一定存在最大值和
		最小值.
K0632003X	D02006X	对于导数存在的函数而言,会通过分析驻点和定义域端点的
		函数值求得其最大值与最小值.

	T	
K0632004X	D02006X	经历用导数研究一般二次函数单调性的过程.
K0632005X	D02006X	理解能通过导数分析相应函数单调性,结合相应方程的零点
		求得不等式的解集.
K0633001X	D02006X	在现实情境的问题中,能通过建模,求导,解决现实中的最大
		值或最小值问题.
K0301001B	D03001B	理解任意角的概念及相关概念.
K0301002B	D03001B	会判断角在平面直角坐标系中的位置.
K0301003B	D03001B	角的加减运算与角终边的旋转之间的关系.
K0301004B	D03001B	终边有特殊位置关系的角之间的等量关系.

K0302001B	D03001B	了解弧度制,能进行一般的角度制与弧度制的转化.
		4 /// 4/m/// hd 4 // // // // // // // // // // // // /
K0302002B	D03001B	掌握弧度制下扇形的弧长和面积公式.
K0302003B	D03001B	在弧度制下会用代数方法表示和研究角.
K0303001B	D03001B	掌握任意角的用比值给出的正弦、余弦、正切、余切的定义.
K0303002B	D03001B	掌握不同象限的角的正弦、余弦、正切和余切的符号.
K0304001B	D03001B	理解角的终边和单位圆的交点的坐标与角的正弦、余弦、正
		切和余切的关系.
K0304002B	D03001B	经历 $sin^2\alpha + cos^2\alpha = 1; tan\alpha = \frac{sin\alpha}{cos\alpha}; cot\alpha = \frac{cos\alpha}{sin\alpha}; tan\alpha *$
		$cot \alpha = 1$ 的推导.

K0304003B	D03001B	会用 $sin^2\alpha + cos^2\alpha = 1; tan\alpha = \frac{sin\alpha}{cos\alpha}; cot\alpha = \frac{cos\alpha}{sin\alpha}; tan\alpha *$
		$cot\alpha = 1$ 解决"已知一个三角比的值,求其他三角比的值"
		的问题.
K0305001B	D03001B	会用同角三角函数的基本关系式 $(sin^2\alpha + cos^2\alpha = 1; tan\alpha =$
		$\frac{sin\alpha}{cos\alpha};$ $cot\alpha=\frac{cos\alpha}{sin\alpha};$ $tan\alpha*cot\alpha=1)$,在熟悉的情境中,解决
		一些三角恒等式的化简与证明问题.
K0306001B	D03002B	借助单位圆的对称性,经历利用定义推导出第一组诱导公式
		$($ 有关 $k\pi \pm \alpha)$ 的正弦、余弦、正切和余切的过程.

K0306002B	D03002B	会利用第一组诱导公式 $(有关 k\pi \pm \alpha)$ 进行简单的求值、化
		简与证明.
K0307001B	D03002B	借助单位圆的对称性,经历利用定义推导出第二组诱导公式
		$($ 有关 $(k+\frac{1}{2})\pi\pm\alpha)$ 的正弦、余弦、正切和余切的过程.
K0307002B	D03002B	会通过"奇变偶不变,符号看象限"来记忆诱导公式。
K0307003B	D03002B	会利用第二组诱导公式 $(有关 (k+\frac{1}{2})\pi\pm\alpha)$ 进行简单的求值、
		化简与证明.
K0307004B	D03002B	理解可以通过终边的旋转、对称等方式,利用诱导公式研究
		平面上的坐标变换.

K0309002B	D03002B	两角差的余弦推导两角和的余弦.
		余弦公式的意义.
K0309001B	D03002B	经历两角差的余弦公式的坐标法的推导过程,知道两角差的
K0308005B	D03002B	会解具体的最简三角方程.
K0308004B	D03002B	借助单位圆,能用反三角符号表示的锐角表示一般角
K0308003B	D03002B	掌握锐角的反三角函数表示,并能用计算器求出近似值.
K0308002B	D03002B	能借助角的三角比的特殊值解简单的三角方程.
		合,并能简单应用.
K0308001B	D03002B	能够从已知特殊三角值的角的正弦、余弦、正切值求角的集

K0309003B	D03002B	会灵活选择角,用两角和差的余弦公式求值及化简.
K0310001B	D03002B	了解两角差的余弦公式推导两角和与差的正弦、正切公式的
		路径,并经历推导过程.
K0310002B	D03002B	会灵活选择角,用两角和、差的正弦和正切公式求值及化简.
K0311001B	D03002B	理解可以通过终边的旋转、对称等方式,利用两角和、差的
		正弦、余弦公式研究平面上的坐标变换.
K0311002B	D03002B	会用辅助角公式将 $a\sin\alpha + b\cos\alpha$ 型的表达式整理为
		$A\sin(\alpha+\phi)$ 及 $A\cos(\alpha+\phi)$ 的形式,并能明确给出辅助角 ϕ
		的正弦与余弦值.

K0312001B	D03002B	经历利用两角和公式,推导出二倍角的正弦、余弦、正切公
		式的过程,并了解它们的内在联系.
K0312002B	D03002B	熟悉二倍角余弦公式的三种不同形式.
K0312003B	D03002B	利用二倍角公式,进行求值、化简和证明.
K0313001B	D03002B	能运用所学公式进行简单的恒等变换,推导半角公式.
K0313002B	D03002B	能运用所学公式进行简单的恒等变换,推导积化和差公式.
K0313003B	D03002B	能运用所学公式进行简单的恒等变换,推导和差化积公式.
K0314001B	D03003B	经历用坐标法推导三角形面积公式 $S = \frac{1}{2}ab\sin C$ 等的过程.
K0314002B	D03003B	利用三角形面积公式推导得到正弦定理.

K0314003B	D03003B	会用正弦定理解决 "ASA" 型的解三角形问题.
K0314004B	D03003B	会用正弦定理及面积公式证明三角形中关于边、角和面积的
		恒等式.
K0314005B	D03003B	理解圆周角和圆心角的 2 倍关系.
K0314006B	D03003B	利用圆周角均相等推导含 2R 的正弦定理的过程.
K0315001B	D03003B	经历用坐标法推导余弦定理的过程.
K0315002B	D03003B	熟悉并记忆余弦定理.
K0315003B	D03003B	会用余弦定理解 "SSS""SAS" 型的解三角形问题.

K0315004B	D03003B	能够灵活运用正弦定理、余弦定理解决 "SSA" 型的解三角形
		问题,并能正确取舍解得结果.
K0316001B	D03003B	会灵活运用正弦定理和余弦定理证明三角形中的等式.
K0316002B	D03003B	会灵活运用正弦定理和余弦定理判断三角形的形状.
K0317001B	D03003B	能用正弦定理、余弦定理解决简单的实际问题.
K0317002B	D03003B	能将有关测量的问题转化为解三角形问题,并灵活运用正弦
		定理和余弦定理求解.
K0318001B	D03004B	建立正弦函数的概念.
K0318002B	D03004B	经历描点,平移绘制正弦函数图像的过程.

K0318003B	D03004B	会用五点法绘制正弦函数、与正弦函数相关的函数的大致图
		像.
K0319001B	D03004B	结合诱导公式理解正弦函数的周期性.
K0319002B	D03004B	直观地理解周期函数的定义.
K0319003B	D03004B	能用"数学语言"准确地给出周期函数的定义.
K0319004B	D03004B	会证明正弦函数的最小正周期是 2π.
K0319005B	D03004B	了解函数 $y = A\sin(\omega x + \varphi)$ 的周期,并会粗略地说明道理.
K0320001B	D03004B	借助单位圆理解正弦函数的值域与最值.

K0320002B	D03004B	能运用正弦函数的值域与最值解决简单的正弦型函数的相应
		问题.
K0320003B	D03004B	会将与正弦有关的现实情境中的问题转化为正弦函数的最值
		问题,并加以解决.
K0321001B	D03004B	会判断并证明与正弦函数相关的函数的奇偶性.
K0321002B	D03004B	会借助单位圆及函数图像,直观地理解正弦函数的单调性.
K0321003B	D03004B	能求 $y = A\sin(\omega x + \varphi)$ 型函数的单调区间,其中 $A > 0$,
		$\omega > 0$.

K0321004B	D03004B	能求 $y = A\sin(\omega x + \varphi)$ 型函数的单调区间,其中 A 与 ω 不
		全大于零.
K0322001B	D03004B	建立余弦函数的概念.
K0322002B	D03004B	借助正弦函数的相关性质,掌握余弦函数的奇偶性、周期性、
		单调性、值域与最值等性质及其图像特征.
K0322003B	D03004B	会将与余弦函数有关的问题借助第二诱导公式转化为正弦函
		数有关的问题.
K0323001B	D03004B	结合具体实例,了解函数 $y=A\sin(\omega x+\phi)$ 以及表达式中参
		数 A 、 ω 、 ϕ 的实际意义及名称.

K0323002B	D03004B	会用三角函数解决简单的与周期变化有关的实际问题,体会
		可利用三角函数构建刻画周期变化事物的数学模型.
K0323003B	D03004B	了解函数 $y=A\sin(\omega x+\varphi)$ 参数的变化对函数图像的影响.
		会用五点作图法作出函数的大致图像.
K0324001B	D03004B	类比正弦函数,建立正切函数的概念.
K0324002B	D03004B	类比正弦函数,借助单位圆画出正切函数的图像.
K0324003B	D03004B	直观地掌握正切函数的图像特征.
K0324004B	D03004B	直观地理解正切函数的周期性与值域.
K0324005B	D03004B	会用代数语言表示正切函数的奇偶性及单调性.

K0324006B	D03004B	能借助正切函数的单调性求 $y = A \tan(\omega x + \varphi)$ 的单调区间.
K0401001X	D04001X	了解数列、数列的项、项的序数的概念.
K0401002X	D04001X	经历从具体的问题情境中抽象出等差数列定义的过程,理解
		等差数列的概念, 知道公差及等差中项的概念.
K0401003X	D04001X	经历由等差数列的定义得到其通项公式的过程,建立等差数
		列的通项公式.
K0401004X	D04001X	掌握等差数列的项与序数间的联系,明白等差数列与一次函
		数间的关联.

K0401005X	D04001X	能根据等差数列的通项公式判断某数是否为该数列的项,并
		加以证明.
K0401006X	D04001X	能根据数列的通项公式判断某数列是否为等差数列,并加以
		证明.
K0401007X	D04001X	能在具体的生活情境中,发现数列的等差关系,并能简单运用
		所学知识解决相应的问题.
K0402001X	D04001X	经历从特殊到一般推导等差数列前 n 项和公式的过程, 掌握
		等差数列的前 n 项和公式的推导方法.
K0402002X	D04001X	明白求和符号 Σ 的意义.

K0402003X	D04001X	掌握等差数列前 n 项和公式的两种形式, 关注公式中所涉及
		的基本量,能够根据实际情况合理选择并运用公式解决有关
		问题.
K0402004X	D04001X	建立等差数列的前 n 项和与解方程之间的联系, 体会方程的
		思想.
K0402005X	D04001X	理解等差数列的通项公式与前 n 项和公式间的联系, 能够根
		据数列的前 n 项和公式推出数列的通项公式.
K0402006X	D04001X	知道等差数列前 n 项和公式与二次函数间的关联.

K0403001X	D04002X	从具体问题情境中感受等比关系,在此基础上类比等差数列
		的定义得到等比数列的定义, 掌握公比及等比中项的概念.
K0403002X	D04002X	类比等差数列的通项公式的得出过程,经历由等比数列的定
		义得到其通项公式的过程,建立等比数列的通项公式。
K0403003X	D04002X	掌握等比数列的项与序数间的联系,明白等比数列与指数函
		数间的关联.
K0403004X	D04002X	能在具体的问题情境中,发现数列的等比关系,并能简单运用
		所学知识解决相应的问题.

K0403005X	D04002X	体会等差数列和等比数列的项与项之间的特殊联系,感悟等
		差数列与正项等比数列之间可以灵活转化.
K0404001X	D04002X	将实际问题转化为数学问题, 体会引入等比数列前 n 项和公
		式的必要性.
K0404002X	D04002X	经历从特殊到一般推导等比数列前 n 项和公式的过程, 掌握
		等比数列的前 n 项和公式的推导方法.
K0404003X	D04002X	掌握等比数列前 n 项和公式的两种形式, 关注公式中所涉及
		的基本量,能够根据实际情况合理选择并运用公式解决有关
		问题.

K0404004X	D04002X	理解等比数列的通项公式与前 n 项和公式间的联系, 能够根
		据数列的前 n 项和公式推出数列的通项公式.
K0404005X	D04002X	知道等比数列前 n 项和公式与 $Aq^n+B(q\neq 0$ 且 $q\neq 1)$ 型
		函数的关联.
K0405001X	D04002X	借助实例, 理解直观描述下的数列极限的意义.
K0405002X	D04002X	知道符号 $\sum\limits_{i=1}^{+\infty}a_i$ 、 $\lim\limits_{n o\infty}a_n$ 均表示无穷等比数列 a_n 前 n 项和
		的极限.
K0405003X	D04002X	从特殊到一般,掌握公比 q 满足 $0 < q < 1$ 的无穷等比数列
		前 n 项和的极限.

K0405004X	D04002X	知道无限循环小数本质上就是无穷等比数列的前 n 项和的极
		限, 掌握将无限循环小数化为分数的方法.
K0405005X	D04002X	能在具体问题情境中发现并证明等比关系,并会利用等无穷
		等比数列的前 n 项和的极限解决有关问题.
K0406001X	D04003X	从具体生活与数学情境中抽象概括数列的概念,理解数列的
		概念.
K0406002X	D04003X	知道有穷数列与无穷数列概念及分类依据.
K0406003X	D04003X	理解数列的通项公式,知道数列是一种特殊的函数.
K0406004X	D04003X	会用通项公式、列表等方式表示数列.

K0406005X	D04003X	理解单调数列的定义,能根据定义判断简单数列的单调性,并
		能依据单调性求解简单数列的最大项、最小项.
K0407001X	D04003X	结合等差数列与等比数列这两类特殊的数列,理解递推公式
		是表示数列的一种方法.
K0407002X	D04003X	会用数列的递推公式表示一个数列,并能在一些特殊的情形
		下根据数列的递推公式求其通项公式.
K0407003X	D04003X	能在具体的问题情境中发现并建立数列的递推关系并解决相
		应问题,体会在实际问题中寻找数列的递推关系有时比直接
		建立通项公式更容易。

K0408001X	D04004X	知道通过根据有限的特殊事例 (不完全) 归纳得到的结论是
		有待证明的.
K0408002X	D04004X	知道数学归纳法是一种证明与自然数有关的命题的方法,理
		解数学归纳法的基本原理.
K0408003X	D04004X	初步掌握数学归纳法证明与自然数有关命题的一般步骤,会
		用数学归纳法证明一些与自然数有关的一些简单命题。
K0409001X	D04004X	经历先猜想后证明的过程,体会"归纳—猜想—证明"的思想
		方法.

K0409002X	D04004X	深化对数学归纳法的原理的理解,进一步掌握数学归纳法的
		一般步骤.
K0409003X	D04004X	会用"先猜想, 后证明"的方式借助数学归纳法证明与自然数
		有关的一些简单命题.
K0410001X	D04005X	在求 $\sqrt{2}$ 的近似值的例子中,了解基于用递推公式表示的近
		似计算的迭代算法.
K0410002X	D04005X	通过对巴比伦算法以及另一迭代算法的迭代的收敛速度的比
		较,体会算法优劣的评价方式.
K0410003X	D04005X	通过日常生活及数学中的实例, 感受算法的作用.

K0501001B	D05001B	理解向量的描述性定义.
The Total Conf.	David	
K0501002B	D05001B	掌握向量的表示方法.
K0501003B	D05001B	懂得向量的模的概念,并会解决简单的问题。
K0501004B	D05001B	理解平行向量的概念,并会解决简单的问题.
K0501005B	D05001B	理解相等向量的概念,并会解决简单的问题.
K0501006B	D05001B	理解负向量的概念,并会解决简单的问题.
K0502001B	D05001B	理解向量加法的平行四边形法则,能利用它熟练进行向量的
		加法运算.

K0502002B	D05001B	理解向量加法的三角形法则,能利用它熟练进行向量的加法
		运算.
K0502003B	D05001B	类比实数的加法运算律猜想并验证向量加法的运算律.
K0502004B	D05001B	理解向量的减法可以转化为向量的加法,能熟练进行向量的
		减法运算.
K0503001B	D05001B	理解实数与向量乘法的概念.
K0503002B	D05001B	掌握实数与向量相乘的运算律, 能熟练进行向量的数乘运算.
K0503003B	D05001B	能熟练运用向量的线性运算(加法、减法、实数与向量的乘
		法) 解决简单的问题.

K0504001B	D05001B	理解投影向量的概念.
K0504002B	D05001B	理解数量投影的概念.
K0504003B	D05001B	知道投影向量与数量投影两个概念的区别和联系.
K0504004B	D05001B	理解向量数量积的概念.
K0504005B	D05001B	知道数量积与数量投影的联系.
K0505001B	D05001B	会用向量的数量积判断两个平面向量的垂直关系和平行关
		系, 初步了解向量的数量积在几何上的应用.
K0505002B	D05001B	掌握数量积的运算律.

K0505003B	D05001B	理解数的乘法、数与向量的乘法以及向量的数量积之间的差
		别.
K0505004B	D05001B	会用数量积及其运算律解决相应问题.
K0506001B	D05002B	会正确表述向量基本定理并进行证明.
K0506002B	D05002B	理解向量基本定理的本质.
K0506003B	D05002B	会用向量基本定理解决一些简单的问题.
K0507001B	D05002B	知道向量的分解的概念.
K0507002B	D05002B	知道向量的正交分解的概念.
K0507003B	D05002B	知道向量的坐标分解的概念.

K0507004B	D05002B	知道位置向量的概念.
K0507005B	D05002B	理解向量的坐标表示.
K0507006B	D05002B	能根据所给向量的坐标进行向量的加法运算.
K0507007B	D05002B	能根据所给向量的坐标进行向量的减法运算.
K0507008B	D05002B	能根据所给向量的坐标进行向量的模的运算.
K0507008B	D05002B	能根据所给向量的坐标进行向量的模的运算
K0508001B	D05002B	会推导向量数量积的坐标表示.
K0508002B	D05002B	会推导向量夹角的坐标表示.

K0508003B	D05002B	会用坐标形式的向量夹角公式推导两个向量垂直的充要条
		件.
K0508004B	D05002B	会用坐标形式的向量夹角公式推导两个向量平行的充要条
		件.
K0508005B	D05002B	会用向量数量积与夹角的坐标表示解决相关问题.
K0509001B	D05003B	会用向量的线性运算证明平面几何中的相关问题.
K0509002B	D05003B	会用向量的坐标证明定比分点公式.
K0509003B	D05003B	会用向量的定比分点公式求解三角形重心的坐标。
K0509004B	D05003B	会用向量的数量积和坐标证明三角形的一个面积公式.

	1	
K0510001B	D05003B	会用向量的数量积证明两角差的余弦公式.
K0510002B	D05003B	理解向量是解决三角、几何等问题的重要工具.
K0510003B	D05003B	会用向量解决一些实际问题.
K0510004B	D05003B	会用向量解决一些物理问题.
K0511001B	D05004B	知道引入复数的必要性.
K0511002B	D05004B	知道虚数单位的定义.
K0511003B	D05004B	知道复数的定义.
K0511004B	D05004B	理解复数相等的含义.

K0511005B	D05004B	掌握复数的四则运算的公式,能正确运用公式进行复数的四
		则运算.
K0511006B	D05004B	会推导复数加法、乘法的运算律.
K0511007B	D05004B	了解复数的整数次幂及运算规则.
K0511008B	D05004B	掌握虚数单位的整数次幂的运算规律.
K0512001B	D05004B	掌握复数的代数形式的概念.
K0512002B	D05004B	掌握复数的实部和虚部的概念.
K0512003B	D05004B	会根据复数的代数形式对复数加以分类。
K0512004B	D05004B	会运用复数的分类解决相关问题.

K0512005B	D05004B	理解共轭复数的概念.
K0512006B	D05004B	掌握共轭复数的性质.
K0513001B	D05004B	知道复平面的概念
K0513002B	D05004B	知道实轴、虚轴的概念.
K0513003B	D05004B	理解复数与复平面上点的对应关系.
K0513004B	D05004B	理解复数与复平面上向量间的对应关系.
K0513005B	D05004B	掌握复数加法的平行四边形法则.
K0513006B	D05004B	掌握复数减法的平行四边形法则.
K0514001B	D05004B	掌握复数模的概念.

K0514002B	D05004B	懂得复数模的几何意义.
K0514003B	D05004B	会证明复数的模的性质.
K0514004B	D05004B	能运用复数的模的性质解决简单的问题.
K0514005B	D05004B	知道复数模的三角不等式.
K0514006B	D05004B	理解复数的差的模的几何意义,并能应用它解决相关问题.
K0515001B	D05004B	了解复数范围内实数的平方根的概念, 知道其与实数范围内
		相应问题的异同.
K0515002B	D05004B	会求实数在复数范围内的平方根.
K0515003B	D05004B	理解复数范围内实系数一元二次方程根的情况, 并会求其根.
170919009D	D00004D	建州及双池凹的关尔 效 儿—仍月性似时间机, 并宏水共恢.

K0515004B	D05004B	理解韦达定理对任意实系数一元二次方程均成立.
K0515005B	D05004B	能运用韦达定理解决一些简单的实系数一元二次方程的问
		题.
K0516001B	D05005B	知道复数的辐角的概念.
K0516002B	D05005B	知道复数的辐角主值的概念.
K0516003B	D05005B	理解复数的三角形式,懂得其与复数的代数形式的区别与联
		系.
K0516004B	D05005B	会用复数的模和辐角表示复数.
K0517001B	D05005B	会推导三角形式下复数的乘法公式。

D05005B	掌握三角形式下复数的乘法公式.
D05005B	了解三角形式下复数乘法运算的几何意义.
D05005B	懂得三角形式下复数的除法公式的推导过程。
D05005B	掌握用复数三角形式表示的复数的除法运算公式.
D05005B	掌握三角形式下复数的乘方运算公式,并能进行简单的运算.
D05005B	掌握三角形式下复数的开方运算公式,并能进行简单的运算.
D06001B	经历从现实情境中抽象平面特征的过程, 会用图形和符号表
	示平面.
	D05005B D05005B D05005B D05005B

K0601002B	D06001B	直观认识和理解空间中点与直线的位置关系,并能用文字、图
		形和符号表示.
K0601003B	D06001B	直观认识和理解空间中点与平面的位置关系,并能用文字、图
		形和符号表示.
K0601004B	D06001B	借助集合的包含关系,直观认识和理解空间中直线与平面的
		位置关系,并能用文字(如直线在平面上、平面经过直线等)、
		图形和符号表示.
K0601005B	D06001B	以长方体等较为熟悉的几何体作为载体, 理解公理 1, 并能用
		文字、图形及符号语言表示.

K0601006B	D06001B	会在简单情形下利用公理 1 说明直线在平面上.
K0601007B	D06001B	知道公理与命题的区别.
K0602001B	D06001B	通过对现实情境的观察和实验操作,正确理解公理 2, 会用文
		字、图形语言表述公理 2.
K0602002B	D06001B	掌握三个确定平面的推论的内容,能用文字、图形和符号语
		言表示三个推论, 并能证明三个推论.
K0602003B	D06001B	知道公理 2 及推论均为确定平面的依据, 会在简单情形下运
		用它们判断或证明点或直线共面的问题.

K0603001B	D06001B	借助实例理解感受空间中相交平面的位置关系, 理解公理 3,
		并能用文字、图形及符号语言表示.
K0603002B	D06001B	借助实例感受空间中两个不同平面的位置关系,会用图形和
		符号语言表示两个不同平面的两种位置关系.
K0603003B	D06001B	能在简单情形下,通过确定交集中的不同两点画出两相交平
		面的交线,并会用文字或符号语言加以说明.
K0603004B	D06001B	会在简单情形下运用公理 3 证明三点共线.
K0603005B	D06001B	能作出给定平面与正方体表面的交线.
K0604001B	D06001B	回顾并掌握斜二测画法的画图规则及步骤.

K0604002B	D06001B	能用斜二测画法画出简单直线型平面图形的直观图.
K0604003B	D06001B	能用斜二测画法画出简单直线型空间图形的直观图.
K0605001B	D06002B	观察实际情境,类比平面上平行线的传递性,将两条直线平行
		关系的传递性从平面推广到空间, 进而理解公理 4.
K0605002B	D06002B	会用符号语言表达公理 4.
K0605003B	D06002B	能在简单的情形下用公理 4 证明空间两条直线平行.
K0605004B	D06002B	经历等角定理的证明过程,掌握等角定理及其两个推论.
K0605005B	D06002B	理解并能运用等角定理证明空间两个角相等.
K0605006B	D06002B	知道空间四边形的相关概念.

K0606001B	D06002B	通过观察生活实景与长方体模型,抽象形成异面直线的概念。
K0606002B	D06002B	会用反证法证明两条直线是异面直线.
K0606003B	D06002B	知道空间直线与直线的位置关系的分类.
K0606004B	D06002B	掌握两条异面直线的一般画法.
K0606005B	D06002B	理解并能证明异面直线判定定理.
K0606006B	D06002B	会用异面直线判定定理证明两条直线是异面直线.
K0606007B	D06002B	知道四面体的相关概念.
K0607001B	D06002B	经历异面直线所成角概念的形成过程, 理解异面直线所成角
		的定义,知道等角定理在定义异面直线所成角时所起的作用.

K0607002B	D06002B	知道异面直线所成角的范围.
K0607003B	D06002B	知道异面直线相互垂直的定义及推广的两直线垂直的符号表
		示.
K0607004B	D06002B	会在简单的情形中通过平移(如在长方体表面平移及借助中
		位线) 求两条异面直线所成角的大小, 初步体会将空间问题
		转化为平面问题的思想方法.
K0608001B	D06003B	通过对现实情境及熟悉的空间几何体的观察,感知并用反证
		法证明直线与平面平行的判定定理,并能用符号语言表示该
		判定定理.

K0608002B	D06003B	能在具体的情境中用直线与平面平行的判定定理证明简单的
		相关问题.
K0608003B	D06003B	理解并证明直线与平面平行的性质定理,并能用符号及图形
		语言表示该性质定理。
K0608004B	D06003B	能在具体的情境中用直线与平面平行的性质定理证明简单的
		相关问题(如借助平面交线作已知直线的平行线).
K0609001B	D06003B	从现实情境中抽象、形成直线与平面垂直的概念,并能用图
		形和符号语言表示.

K0609002B	D06003B	通过实验操作与实际经验,发现并理解直线与平面垂直的判
		定定理.
K0609003B	D06003B	在简单情境中,能运用直线与平面垂直的判定定理证明直线
		与平面的垂直关系.
K0609004B	D06003B	理解并经历用反证法证明直线与平面垂直的性质定理的过
		程, 能用符号语言表示该性质定理.
K0609005B	D06003B	直观上感受过空间一点作已知直线的垂面的存在性与唯一
		性.

K0609006B	D06003B	直观上感受过空间一点作已知平面的垂线的存在性与唯一
		性.
K0609007B	D06003B	知道点到平面的距离的概念,并能解决简单的相关问题.
K0609008B	D06003B	知道直线到与它平行的平面的距离的概念,理解定义中距离
		与点的选取无关的原因, 并能解决简单的相关问题.
K0610001B	D06003B	知道直线与平面斜交的相关概念, 会用图形语言表示.
K0610002B	D06003B	知道直线、线段在平面上的投影 (射影) 的概念.
K0610003B	D06003B	经历直线与平面所成角的概念的形成过程,知道直线与平面
		所成角的概念.

K0610004B	D06003B	继续感悟用平面方法解决空间问题的思想,能在具体的情形
		下求出直线与平面所成角的大小.
K0610005B	D06003B	会用数学语言求解论证直线与平面所成角的图形中线段与角
		的相关问题.
K0611001B	D06003B	理解三垂线定理,能用符号及图形语言表示该定理并加以证
		明.
K0611002B	D06003B	会用三垂线定理论证异面直线间的垂直关系.
K0611003B	D06003B	继续感悟用平面方法解决空间问题的思想,能在实际情境中
		运用三垂线定理解决一些简单的问题.

K0612001B	D06004B	经历由直线间或线面间的平行关系出发探索两个平面的平行
		关系的过程, 发现并证明两个平面平行的判定定理.
K0612002B	D06004B	能在具体的情形中运用两个平面平行的判定定理证明简单的
		相关问题.
K0612003B	D06004B	理解并能证明两个平面平行的性质定理.
K0612004B	D06004B	能在具体的情形中运用两个平面平行的性质定理证明简单的
		相关问题.

K0612005B	D06004B	经历类比点到平面的距离与直线到平面的距离的定义获得两
		个平行平面间的距离的定义的过程,掌握并能运用两个平行
		平面间的距离的定义解决简单的相关问题.
K0613001B	D06004B	结合现实情境中的实例,抽象形成二面角的概念,能用图形及
		符号语言表示二面角.
K0613002B	D06004B	知道二面角的平面角的概念,并能作出二面角的平面角.
K0613003B	D06004B	知道二面角的取值范围.
K0613004B	D06004B	了解平面与平面垂直的概念,并能用图形及符号语言表示。

K0613005B	D06004B	经历面面垂直的判定定理与性质定理的发现与证明的过程,
		并能用定理证明简单的相关命题.
K0614001B	D06005B	通过猜测、归纳、论证的探究过程认识和理解两条异面直线
		的公垂线及公垂线的存在性与唯一性.
K0614002B	D06005B	加送西久县西古外的职党的概念
K0014002B	D000009B	知道两条异面直线的距离的概念.
K0614003B	D06005B	能在简单的情形中识别出异面直线的公垂线段并求出两异面
		直线的距离.
K0614004B	D06005B	能在简单的情形中将求异面直线距离的问题转化为求线面距
		离、面面距离的问题.

K0614005B	D06005B	能在简单的情形中将空间问题转化为平面问题,构造出异面
		直线的公垂线段并求出异面直线的距离.
K0615001B	D06006B	了解多面体的概念 (含面, 棱, 顶点).
K0615002B	D06006B	理解棱柱的概念, 能用数学语言刻画棱柱的特征.
K0615003B	D06006B	了解和棱柱有关的名称,含底面,侧面,侧棱,高.
K0615004B	D06006B	理解根据侧棱和底面是否垂直能将棱柱分为斜棱柱与直棱
		柱, 知道正棱柱的概念.
K0615005B	D06006B	知道棱柱的按底面边数的分类方法,能用符号规范地表示棱
		柱.

K0615006B	D06006B	在棱柱中能进行简单的线线关系,线面关系的分析和论证.
K0615007B	D06006B	了解圆柱及相关概念(含轴,底面,侧面,母线,高),能用数学
		语言刻画圆柱的形成过程.
K0615008B	D06006B	直观感知圆柱的过轴与垂直于轴的截面的形状,并经历根据
		圆柱的形成简要证明这两类截面形状的过程.
K0616001B	D06006B	借助实物直观地了解祖暅原理的内容,能脱离文本独立复述
		祖暅原理.
K0616002B	D06006B	经历利用祖暅原理和已知的长方体体积公式推导一般柱体体
		积公式的过程.

K0616003B	D06006B	会用柱体的体积公式计算直棱柱,圆柱与斜棱柱(已知母线
		长及母线与底面的夹角) 的体积.
K0616004B	D06006B	会将现实情境中的物体合理抽象为柱体 (或柱体的组合) 计
		算体积.
K0617001B	D06006B	直观上了解空间几何体的表面积的概念.
K0617002B	D06006B	知道直柱体的侧面可以展开为矩形.
K0617003B	D06006B	掌握直棱柱的侧面积公式和表面积公式的推导.
K0617004B	D06006B	能用直棱柱的侧面积公式和表面积公式计算数学情境或现实
		情境中的直棱柱的侧面积与表面积.

K0617005B	D06006B	掌握圆柱的侧面积公式和表面积公式的推导.
K0617006B	D06006B	能用直圆柱的侧面积公式和表面积公式计算数学情境或现实
		情境中的直棱柱的侧面积与表面积.
K0617007B	D06006B	能通过分割与拼接计算简单的由若干个直柱体与圆柱组成的
		组合体的表面积.
K0618001B	D06006B	理解棱锥的概念, 能用数学语言刻画棱锥的特征.
K0618002B	D06006B	了解和棱锥有关的名称、含底面、侧面、侧棱、顶点、高、正棱
		锥.

K0618003B	D06006B	知道棱锥的按底面边数的分类方法,能用符号规范地表示棱
		锥.
K0618004B	D06006B	在棱锥中能进行简单的线线关系,线面关系的分析和论证.
K0618005B	D06006B	了解圆锥及相关概念(轴,顶点,底面,侧面,母线,高),能用
		数学语言刻画圆锥的形成过程.
K0618006B	D06006B	直观感知圆锥垂直于轴的截面的形状,并经历根据圆锥的形
		成确定截面形状的过程.
K0618007B	D06006B	了解台体的概念及相关名称(圆台, 棱台, 正棱台), 知道台体
		的问题可以转换为锥体解决.

K0619001B	D06006B	经历将三棱锥补完为三棱柱,利用祖暅原理说明三棱锥的体
		积是同底同侧棱的三棱柱的体积的 1/3 的过程.
K0619002B	D06006B	利用祖暅原理和三棱锥的体积公式,推导一般锥体的体积公
		式.
K0619003B	D06006B	能合理选择底面和高, 在数学情境中计算锥体的体积.
K0619004B	D06006B	会用体积算两次的方法求一些难以作出垂线的三棱锥的高.
K0619005B	D06006B	经历从锥体的体积公式推导台体的体积公式的过程.
K0620001B	D06006B	了解棱锥的侧面积及表面积的计算方法.

K0620002B	D06006B	了解棱锥的侧面能展开为一个扇形,其圆心角由底面周长与
		母线长的比值确定.
K0620003B	D06006B	掌握圆锥的侧面积公式和表面积公式的推导.
K0620004B	D06006B	会在简单的具体情境中计算锥体的表面积.
K0620005B	D06006B	能利用圆锥的侧面展开图研究圆锥表面的最短距离问题.
K0621001B	D06006B	了解多面体的概念及命名方式.
K0621002B	D06006B	会用反证法证明面数最少的多面体是四面体.
K0621003B	D06006B	能复述正多面体的概念.

K0621004B	D06006B	知道正多面体有且仅有五种,直观了解每种正多面体的空间
		形象.
K0621005B	D06006B	了解旋转体的概念与相关概念(轴,旋转面),理解旋转体和多
		面体的区别.
K0622001B	D06006B	从旋转体的角度理解球的概念与相关的概念 (球面, 球心, 半
		径, 直径).
K0622002B	D06006B	知道球有丰富的对称性,类比圆理解球的用距离刻画的等价
		定义.
K0622003B	D06006B	只管感知平面截球所得的截面是圆面,并能论证该结果.

K0622004B	D06006B	知道球面的大圆和小圆的概念.
K0622005B	D06006B	会根据球心到平面的距离确定小圆的半径.
K0622006B	D06006B	将地球表面抽象为球面,通过对线线,线面关系的分析理解经
		纬度的数学含义分别是二面角与线面角的大小.
K0623001B	D06006B	经历利用祖暅原理、构造一个与半球体积相等的几何体推导
		得到球的体积公式的过程.
K0623002B	D06006B	熟记球体的体积公式,并能用球体的体积公式计算数学情境
		与现实情境中球体的体积.

K0623003B	D06006B	类比圆的面积与周长的关系,初步经历用剖分为以球心为顶
		点的小锥体的方式得到球面的表面积这一极限过程.
K0623004B	D06006B	熟记球的表面积公式,能用球的表面积公式计算数学情境与
		现实情境中球的表面积.
K0624001X	D06007X	理解空间向量共面的概念,知道两个向量总是共面的,对更多
		共面的空间向量的研究可以转化为对同一平面上的向量的研
		究.

	T	
K0624002X	D06007X	通过平面向量的复习,建立起平面向量和空间向量的密切联
		系,把平面向量上已经建立起来的向量的有关概念及向量的
		线性运算和运算律迁移到空间向量.
K0624003X	D06007X	会在典型空间几何体中用向量的线性组合表示其他向量.
K0625001X	D06007X	理解空间两个向量的数量积的定义可转化为平面上两个向量
		的数量积.
K0625002X	D06007X	知道空间向量的数量积的交换律,与实数相乘后的结合律以
		及分配律依然成立.

K0625003X	D06007X	理解空间中两个向量垂直和平行的充要条件,并能使用该条
		件解决与垂直或平行有关的问题.
K0625004X	D06007X	在简单的空间几何体中类比平面向量的应用,运用空间向量
		的数量积运算及线性运算解决一些立体几何问题.
K0626001X	D06008X	经历从平面向量基本定理到向量共面的充要条件转化的过
		程.
K0626002X	D06008X	会用向量共面的充要条件,用向量方法证明直线与平面垂直
		的判定定理.

K0626003X	D06008X	经历向量基本定理从平面推广到空间的过程,掌握空间向量
		基本定理.
K0626004X	D06008X	在熟悉的空间图形中,能把向量在不同的基下进行线性表示,
		初步经历基变换的过程.
K0627001X	D06008X	类比平面直角坐标系,了解空间直角坐标系,并知道相关概念
		(坐标原点, 横轴, 纵轴, 竖轴, 坐标平面, 卦限 (不作第几卦限
		的区分)).
K0627002X	D06008X	会通过构造长方体的方式确定空间一点的坐标.

K0627003X	D06008X	理解坐标有密切联系的两个点在空间直角坐标系中的位置关
		系 (关于坐标平面对称).
K0627004X	D06008X	类比平面向量的坐标表示, 了解位置向量的概念, 掌握空间向
		量的坐标表示.
K0627005X	D06008X	类比平面向量在坐标表示下的运算规则,推导并熟记空间向
		量在坐标表示下的运算规则.
K0627006X	D06009X	掌握空间坐标表示下向量垂直和平行的充要条件.
K0627007X	D06009X	能用空间坐标表示下的向量方法求两直线的夹角及证明直线
		垂直.

K0628001X	D06009X	知道直线的方向向量和平面的法向量的概念,理解刻画直线
		和平面方向时的异同.
K0628002X	D06009X	能将直线的夹角问题转化为方向向量的夹角问题.
K0628003X	D06009X	经历用空间向量方法证明三垂线定理的过程.
K0628004X	D06009X	了解用空间向量刻画直线与平面垂直、平行的方式,并能应
		用于熟悉的几何体.
K0628005X	D06009X	了解用空间向量刻画平面与平面垂直、平行的方式,并能应
		用于熟悉的几何体.

K0629001X	D06009X	经历利用投影向量的概念推导空间点到平面距离公式的过
		程, 掌握点到平面的距离公式.
K0629002X	D06009X	会通过解方程,在已知平面上三点的坐标的情境中求平面的
		法向量.
K0629003X	D06009X	能建立空间直角坐标系,用点到平面的距离公式求空间中点
		到平面, 直线到平行平面, 平面与平行平面的距离.
K0630001X	D06009X	经历利用直线的方向向量推导空间中直线与直线所成角的公
		式的过程.

K0630002X	D06009X	会建立空间直角坐标系,用两直线的夹角公式求熟悉的几何
		体中两直线所成的角的大小.
K0630003X	D06009X	经历利用直线的方向向量、平面的法向量推导空间中直线与
		平面所成角的公式的过程.
K0630004X	D06009X	会建立空间直角坐标系,用直线与平面的夹角公式求熟悉的
		几何体中直线与平面所成的角的大小.
K0631001X	D06009X	知道两个平面所称的锐二面角的概念,通过分情况讨论理解
		锐二面角与法向量夹角的关系.

K0631002X	D06009X	会用向量方法求两个平面所成的二面角的大小(一般有两个
		不同的大小).
K0631003X	D06009X	会结合直观在两个平面所成的两个二面角中选择恰当的一个
		作为两个半平面的二面角.
K0701001X	D07001X	经历在平面直角坐标系中探索确定直线位置的几何要素,理
		解直线的倾斜角和斜率的概念.
K0701002X	D07001X	能对直线的倾斜角与斜率进行互化.
K0701003X	D07001X	经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜
		率的计算公式.

K0701004X	D07001X	知道一次函数的一次项系数就是其对应直线的斜率.
K0702001X	D07001X	知道截距的概念.
K0702002X	D07002X	能根据确定一条直线的几何要素,掌握直线的点斜式方程及
		其使用范围.
K0702003X	D07002X	能在具体的平面几何问题中求直线的点斜式方程.
K0702004X	D07002X	知道直线的斜截式方程是点斜式方程的特例,并能在具体的
		平面几何问题中求直线的斜截式方程.
K0702005X	D07002X	在具体实例中,能利用直线的点斜式方程、斜截式方程判断
		给定的点是否在已知直线上.

K0703001X	D07002X	能根据确定一条直线的几何要素,掌握直线的两点式方程及
		其使用范围.
K0703002X	D07002X	能在具体的平面几何问题中求直线的两点式方程.
K0704001X	D07002X	通过具体实例,知道直线的方程是一个二元一次方程,并且任
		意一个二元一次方程都能表示一条直线.
K0704002X	D07002X	掌握直线的一般式方程及其使用范围.
K0704003X	D07002X	能在具体的实例中研究含参数的一般式方程所对应直线的性
		质.
K0705001X	D07002X	了解平面上直线的法向量的概念.

K0705002X	D07002X	能根据确定一条直线的几何要素,掌握直线的点法式方程及
		其使用范围.
K0705003X	D07002X	能在具体的实例中运用直线的点法式方程解决简单的平面几
		何问题.
K0705004X	D07002X	能通过代数变形理解直线的一般式方程的系数与法向量的联
		系.
K0706001X	D07003X	理解二元一次方程组的解与两条相交直线的交点坐标之间的
		对应关系, 能用解方程组的方法求两条直线的交点坐标.

K0706002X	D07003X	能用代数方法(根据两条直线的方程的系数)讨论两条直线
		的位置关系 (相交、平行或重合).
K0706003X	D07003X	能用几何方法(根据两条直线的斜率、法向量)讨论两条直
		线的位置关系 (相交、平行或重合).
K0707001X	D07003X	掌握用系数表示的两条直线垂直的充要条件.
K0707002X	D07003X	掌握用斜率描述的两条直线垂直的充要条件及其适用范围.
K0707003X	D07003X	经历将两条直线的夹角转化为对应法向量的夹角的过程,掌
		握两条直线夹角的余弦公式.
K0707004X	D07003X	会用两条直线夹角的余弦公式求直线的夹角.

K0707005X	D07003X	会用两条直线夹角的余弦公式根据一条直线的方程及夹角反
		求另一条直线的方程.
K0708001X	D07003X	通过具体实例,利用法向量方向上的投影,探究并求解点到直
		线的距离, 掌握点到直线的距离公式.
K0708002X	D07003X	根据点到直线距离公式,推导及掌握两条平行线之间的距离
		公式.
K0708003X	D07003X	会用点到直线距离公式、两条平行线之间的距离公式求距离.
K0708004X	D07003X	会用平行线间的距离公式及一条直线的方程和距离反求另一
		条直线的方程.

K0709001X	D07004X	回顾直线方程的概念,结合具体的实例,理解曲线方程的概
		念.
K0709002X	D07004X	能在简单的情境中, 判断曲线与方程是否对应.
K0709003X	D07004X	在平面直角坐标系中,根据确定圆的几何要素,推导并掌握圆
		的标准方程.
K0709004X	D07004X	会类比求圆的标准方程求其他方式(直接用点的性质)定义
		的曲线的方程.
K0709005X	D07004X	会用横坐标、纵坐标的范围在圆上截取相应的圆弧.
K0709006X	D07004X	会结合圆的标准方程用垂径定理建立弦长与弦心距的联系.

K0709007X	D07004X	会用待定系数法及解方程(组)求圆的标准方程.
K0710001X	D07004X	通过对圆的标准方程展开整理,掌握圆的一般方程.
K0710002X	D07004X	知道不含 xy 项且含 x^2, y^2 的项系数相等的二元二次方程表
		示的曲线类型,推导并掌握该方程表示圆时系数满足的充要
		条件.
K0710003X	D07004X	能利用配方法将圆的一般方程化为标准方程.
K0710004X	D07004X	会用待定系数法及解方程(组)求圆的一般方程.
K0710005X	D07004X	能在具体实例中, 选择合适的方法求圆的方程.

K0710006X	D07004X	能用代数方法及韦达定理处理直线与圆相交所得交点的相关
		问题.
K0711001X	D07004X	在平面直角坐标系中,能根据给定直线、圆的方程,通过代数
		方法(一元二次方程的判别式)判断直线与圆的位置关系.
K0711002X	D07004X	在平面直角坐标系中,能根据给定直线、圆的方程,通过几何
		方法(点到直线的距离与半径的大小关系)判断直线与圆的
		位置关系.
K0711003X	D07004X	会用点法式表示圆心在原点的圆上一点处的切线,并将圆心
		推广至一般位置.

	T	
K0711004X	D07004X	会用待定系数法根据距离求过圆外一点圆的切线方程.
K0711005X	D07004X	掌握圆的过定点的弦的中点的轨迹的求法,知道轨迹的概念
		以及轨迹与轨迹方程的异同.
K0712001X	D07004X	知道两圆的位置关系基于直观的分类.
K0712002X	D07004X	在平面直角坐标系中, 会用圆心距与两圆半径的关系判断圆
		与圆的位置关系.
K0712003X	D07004X	在平面直角坐标系中,会用解方程组的方法判断圆与圆的位
		置关系.

K0712004X	D07004X	能推导相交两圆的公共弦及相切两圆过公共切点的公切线所
		在直线的方程,体会设而不求的思想。
K0712005X	D07004X	会将切线长转化为点到圆心的距离来解决与切线长有关的问
		题.
K0713001X	D07005X	经历从具体情境 (天文学、物理学等方面) 抽象出椭圆, 并借
		助信息技术等工具绘制出椭圆的这一过程,了解椭圆的直观
		图像.

K0713002X	D07005X	能用语言描述椭圆的定义,能根据椭圆的定义推导椭圆的标
		准方程,并掌握两种类型(中心在原点,焦点在坐标轴上)椭
		圆的标准方程.
K0713003X	D07005X	能根据椭圆的定义, 由关键的几何量写出椭圆的标准方程.
K0713004X	D07005X	能利用椭圆的定义,根据椭圆的焦点、椭圆上点的坐标求出
		椭圆的标准方程.
K0714001X	D07005X	能根据椭圆的标准方程用代数方法研究椭圆是否关于坐标
		轴、原点对称.

K0714002X	D07005X	知道用标准方程描述的椭圆关于两条坐标轴对称,关于原点
		对称且原点是其唯一的对称中心, 知道椭圆中心的概念.
K0714003X	D07005X	知道椭圆的顶点、长轴、短轴的概念,知道椭圆的长轴、短
		轴分别所在的直线是椭圆的两条对称轴.
K0714004X	D07005X	能根据椭圆的标准方程得到椭圆上点的横、纵坐标的范围.
K0714005X	D07005X	通过焦距与长轴长之比了解椭圆的离心率,知道离心率的大
		小对椭圆扁平程度的影响.
K0715001X	D07005X	了解椭圆在现实情境中的应用.

K0715002X	D07005X	能根据椭圆的标准方程,用代数方法研究椭圆上的动点到焦
		点的距离.
K0715003X	D07005X	会通过联立方程组研究直线与椭圆的公共点个数,从代数角
		度类比直线与圆的位置关系,并从形的角度掌握直线与椭圆
		的位置关系.
K0715004X	D07005X	从图形上理解直线与椭圆相切的含义,知道直线与椭圆相切
		的直观定义.
K0715005X	D07005X	了解椭圆的光学性质.

K0716001X	D07006X	经历从具体情境 (天文学、物理学等方面) 抽象出双曲线, 并
		借助信息技术等工具绘制出双曲线的局部的这一过程,了解
		双曲线的直观图像.
K0716002X	D07006X	能用语言描述双曲线的定义,能根据双曲线的定义推导双曲
		线的标准方程, 掌握两种类型 (中心在原点, 焦点在坐标轴上)
		双曲线的标准方程.
K0716003X	D07006X	能根据双曲线的定义,由关键的几何量写出双曲线的标准方
		程.
K0716004X	D07006X	会用坐标的范围表示双曲线的一支.

	T.	
K0717001X	D07006X	知道用标准方程描述的双曲线关于两条坐标轴对称,关于原
		点对称且原点是其唯一的对称中心,知道双曲线中心的概念.
K0717002X	D07006X	知道双曲线的顶点、实轴、虚轴的概念,知道双曲线实轴、虚
		轴分别所在的直线是双曲线的两条对称轴,了解等轴双曲线
		的概念.
K0717003X	D07006X	能根据双曲线的标准方程得到双曲线上点的横、纵坐标的范
		围.
K0717004X	D07006X	了解双曲线的渐近线的概念,能由双曲线的标准方程求出渐
		近线的方程.

K0717005X	D07006X	直观上了解双曲线与其渐近线的位置关系,并会用代数语言
		描述与论证.
K0717006X	D07006X	会根据渐近线的方程及双曲线上的一点求出双曲线的标准方
		程.
K0717007X	D07006X	通过焦距与实轴长之比了解双曲线的离心率,知道离心率的
		大小对双曲线开口大小的影响.
K0718001X	D07006X	会通过联立方程组研究直线与双曲线的公共点个数,并从形
		的角度掌握直线与双曲线的位置关系.

K0718002X	D07006X	在现实情境中能把与双曲线有关的问题抽象为数学模型,建
		立坐标系,应用双曲线的标准方程求解.
K0719001X	D07007X	经历从具体情境 (天文学、物理学等方面) 抽象出抛物线, 并
		借助信息技术等工具绘制出抛物线的这一过程,了解抛物线
		的直观图像.
K0719002X	D07007X	能用语言描述抛物线的定义,推导抛物线的标准方程,包括证
		明以所求方程的任意一组解为坐标的点都在该抛物线上.
K0719003X	D07007X	知道抛物线的焦点、准线的概念,掌握四种类型(顶点在原
		点, 焦点在坐标轴上) 抛物线的标准方程.

K0719004X	D07007X	在简单情境中,会根据焦点、准线或其他条件求出抛物线的
		标准方程.
K0719005X	D07007X	通过回顾初中熟知的"二次函数的图像是抛物线"这一结论,
		了解二次函数的图像经平移后符合四种标准类型抛物线之一
		的定义.
K0719006X	D07007X	会根据抛物线的定义将线段长度作转化证明一些平面几何的
		命题.
K0720001X	D07007X	知道用标准方程描述的抛物线关于其中一条坐标轴对称,知
		道抛物线顶点的概念,了解抛物线有且只有一条对称轴.

K0720002X	D07007X	能根据抛物线的标准方程得到抛物线上点的横、纵坐标的范
		围.
K0720003X	D07007X	会通过联立方程组研究直线与抛物线的公共点个数,并从形
		的角度掌握直线与抛物线的位置关系.
K0720004X	D07007X	在现实情境中能把与抛物线有关的问题抽象为数学模型,建
		立坐标系,应用抛物线的标准方程求解.
K0720005X	D07007X	了解抛物线的光学性质.
K0721001X	D07008X	通过具体的反例,进一步理解说明一个方程与一条曲线对应
		时, 需要进行正反两个方面的验证.

K0721002X	D07008X	掌握求简单的轨迹方程的三个基本步骤 (建立合适的坐标系,
		根据曲线的特征推导方程,验证以方程的解为坐标的点都在
		所求曲线上).
K0721003X	D07008X	在具体的问题中,了解如何根据图形的几何特征选取合适的
		坐标系.
K0721004X	D07008X	对于线段的定比分点的轨迹等问题, 能用"等价"符号简化曲
		线与方程对应的证明过程.
K0722001X	D07008X	借助具体的科学情境,理解用参数方程来描述曲线的优势。
K0722002X	D07008X	理解参数方程的概念和相关名词 (参数, 参变量, 普通方程).

K0722003X	D07008X	能通过问题中自然给出的参数将轨迹用参数方程表示.
K0722004X	D07008X	能通过消参 (x, y 中至少有一个变量是参数的一次函数) 将参
		数方程化为普通方程, 并解决曲线上的范围的界定问题.
K0722005X	D07008X	能借助圆或椭圆的参数方程,将含有一个约束条件的双变量
		的问题化为仅含一个自由变量的问题.
K0723001X	D07008X	联系复数的三角形式,了解用长度和方向表示点的极坐标的
		基本思想.
K0723002X	D07008X	理解极坐标系的概念及相关名词(极点,极轴,极坐标,极径,
		极角).

K0723003X	D07008X	了解直角坐标系下点和数对是一一对应的,而极坐标系下一
		个点有多个极坐标.
K0723004X	D07008X	了解相关的极坐标所表示的点的位置关系.
K0723005X	D07008X	了解如何通过限制极角和极径的取值范围使除极点外的点和
		极坐标形成一一对应.
K0723006X	D07008X	能根据点的位置写出其一个极坐标.
K0724001X	D07008X	了解极坐标系下曲线与方程 $F(\rho,\theta)=0$ 的对应关系.
K0724002X	D07008X	理解直角坐标系与极坐标系下方程与曲线对应方式的异同.

K0724003X	D07008X	会利用余弦的定义求圆心在极径上, 经过原点的圆的极坐标
		方程.
K0724004X	D07008X	会分情况讨论, 根据正弦定理推导不过原点的直线的极坐标
		方程.
K0724005X	D07008X	会结合物理意义推导等速螺线 (阿基米德螺线) 的极坐标方
		程.
K0725001X	D07008X	能根据正弦和余弦的定义,推导极坐标转换为直角坐标的公
		式.
K0725002X	D07008X	能用公式将具体点的极坐标转换为直角坐标.

K0725003X	D07008X	通过求解方程, 掌握将点的直角坐标转换为极坐标的公式, 理
		解其中极角的选取与正切值及点的具体位置均有关.
K0725004X	D07008X	能用公式将具体点的直角坐标转换为极坐标.
K0725005X	D07008X	会用 $x = \rho \cos \theta$, $y = \rho \sin \theta$ 代入的方法, 在熟悉的情境下将
		曲线的简单的直角坐标方程转化为极坐标方程.
K0725006X	D07008X	通过将 ρ^2 化为 x^2+y^2 , $\rho\cos\theta$ 化为 x , $\rho\sin\theta$ 化为 y , 在熟悉
		的情境下将曲线的极坐标方程转换为直角坐标方程.
K0725007X	D07008X	了解椭圆, 抛物线, 双曲线的方程在以其 (一个) 焦点为极点
		的极坐标系中能统一为相同的形式.

K0801001B	D08001B	通过具体事例,认识随机现象在自然界、社会中普遍存在,理
		解随机现象的概念.
K0801002B	D08001B	通过具体事例, 理解随机试验的概念.
K0801003B	D08001B	初步了解概率论的起源与发展历史,了解描述性的概率的概
		念.
K0801004B	D08001B	能够区分一个现象是随机现象还是确定性现象.
K0801005B	D08001B	通过具体情境, 了解随机试验中含有的随机性.
K0802001B	D08001B	了解样本空间,基本事件(或样本点)的定义,知道基本事件
		不能同时发生。

K0802002B
K0802003B
K0802004B
K0802005B
K0802006B
K0803001B
K0802004B K0802005B K0802006B

K0803002B	D08001B	通过具体实例, 理解古典概率模型的两个基本假设: 有限, 等
		可能. 会基于枚举计数计算古典概率模型中简单随机事件的
		概率.
K0803003B	D08001B	根据定义, 理解概率性质 $1(P(\Omega)=1,P(\varnothing)=0)$ 和概率性质
		$2(0 \le P(A) \le 1).$
K0804001B	D08001B	通过古典概型实例, 理解随着观察角度的不同, 并非所有的样
		本空间都有等可能性. 了解只有选取等可能的样本空间, 才
		能使得事件的概率如定义所示.
K0804002B	D08001B	会对多步独立的等可能随机试验构造等可能的样本空间.

K0805001B	D08001B	理解事件之间的子集关系, 会用集合语言表达.
K0003001B	D00001B	连脐事件之间的 1 果犬系, 云 用来 日 旧 日 农 <u>()</u>
K0805002B	D08001B	通过具体实例,掌握事件的交、并运算,懂得事件的运算的含
		义,并能够用集合语言表达.
K0805003B	D08001B	通过具体实例, 理解互斥事件的概念.
K0805004B	D08001B	理解两个事件 A 与 B 相互对立当且仅当: $A \cap B = \emptyset$, $A \cup B = \emptyset$
		Ω . 了解 A 的对立事件的符号表示 \overline{A} .
K0805005B	D08001B	在具体实例中, 能用语言描述简单的随机事件的对立事件.
K0805006B	D08001B	掌握公式 $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 及 $\overline{A \cup B} = \overline{A} \cap \overline{B}$, 并理解这两个
		公式对任意多个事件同样成立.

K0806001B	D08001B	在古典概率模型中,能够推导两个不同时发生的事件至少
		有一个发生的概率是这两个事件的概率之和,理解概率性质
		3(可加性).
K0806002B	D08001B	基于概率性质 $3(可加性)$, 理解 $B = \overline{A}$ 时的特殊情况, 掌握概
		率性质 $4(P(A) = 1 - P(\overline{A})).$
K0806003B	D08001B	了解在一般概率模型中概率的三个基本性质: $0 \le P(A) \le 1$;
		$P(\Omega) = 1;$ 若 $A \cap B = \emptyset$, 则 $P(A \cup B) = P(A) + P(B)$.
K0806004B	D08001B	能利用概率性质 3 与概率性质 4 解决简单的相关问题.

K0806005B	D08001B	经历两个事件的可加性推出任意有限个事件的可加性
		$(P(A_1 \cup A_2 \cup \cdots \cap A_n) = P(A_1) + P(A_2) + \cdots + P(A_n))$ 的过程.
K0807001B	D08001B	了解伯努利试验的概念,通过对实例的观察与分析初步理解
		伯努利试验中"独立地重复"的含义以及频率的意义.
K0807002B	D08001B	结合试验实例, 归纳并抽象出伯努利大数定律, 了解其意义.
K0807003B	D08001B	掌握事件频率的计算法则,了解频率也称经验概率. 会用频
		率估计概率,解决一些简单的实际问题.

K0808001B	D08002B	结合有限样本空间,通过具体事例,经历由对事件独立的直观
		判断到两个事件独立的严格定义 $(P(A \cap B) = P(A)P(B))$ 的
		形成过程. 在现实情境中理解多个随机试验独立的含义.
K0808002B	D08002B	结合古典概型,掌握两个独立事件积及多个独立试验中事件
		的积的概率计算方法.
K0808003B	D08002B	掌握事件独立性的性质: 如果 A 与 B 两个事件独立, 那么 A
		与 \overline{B} 也独立, 并了解其现实意义.
K0808004B	D08002B	会综合使用可加性与独立性求解相关的概率问题.

K0809001B	D08002B	会用两个事件相互独立的充要条件判断两个现实情境中的事
		件是否独立.
K0809002B	D08002B	会用事件 $A,B,A\cap B$ 表示事件 $A\cup B$, 并利用可加性求 $A\cup B$
		的概率.
K0809003B	D08002B	会用概率的思想分析现实情境中的问题,并通过建模,计算,
		给出解答.
K0810001X	D08003X	结合具体实例, 掌握分步计数原理 (乘法原理).
K0810002X	D08003X	理解乘法原理的应用条件.
K0810003X	D08003X	会利用乘法原理解决简单的相关计数问题.

	I	
K0811001X	D08003X	结合具体实例, 掌握分类计数原理 (加法原理).
K0811002X	D08003X	理解加法原理应用的条件,体会分类讨论的思想方法.
K0811003X	D08003X	能利用加法原理解决相关简单的计数问题.
K0811004X	D08003X	能够区分相关计数问题是分步计数还是分类计数问题.
K0811005X	D08003X	能利用加法原理与乘法原理解决较为复杂的计数问题.
K0812001X	D08003X	基于乘法原理,结合具体实例,引出排列的定义.
K0812002X	D08003X	理解排列的含义.
K0812003X	D08003X	会利用乘法原理求解具体的排列问题.
K0813001X	D08003X	结合具体实例, 理解排列数定义, 会规范地表示排列数.

K0813002X	D08003X	会利用乘法原理推导排列数公式,体会乘法原理在推导排列
		数公式上的作用.
K0813003X	D08003X	掌握排列数公式,并能利用排列数公式求解相关的排列问题.
K0813004X	D08003X	能合理分类,利用排列数公式以及乘法原理和加法原理求解
		较综合的计数问题.
K0813005X	D08003X	掌握借助计算器求排列数的方法.
K0814001X	D08003X	了解全排列的概念,及全排列数的符号表示,掌握全排列数的
		计算公式.

K0814002X	D08003X	了解阶乘的概念, 并能够用阶乘表示排列数公式. 了解 0! = 1
		的规定及其作用,领会全排列数 $P_n^n=n!$ 是排列数公式中
		m=n 的特殊情况.
K0814003X	D08003X	能用排列数表示连续的几个正整数相乘.
K0814004X	D08003X	能用排列数公式证明相关的简单恒等式, 如: $P_n^m = nP_{n-1}^{m-1}$;
		$P_n^m + mP_n^{m-1} = P_{n+1}^m.$
K0814005X	D08003X	会将含有排列数的方程化为整式方程.
K0815001X	D08003X	基于排列的定义, 理解组合的定义.

K0815002X	D08003X	理解排列与组合的区别,能够判断问题是排列问题还是组合
		问题.
K0815003X	D08003X	能够基于枚举求解简单的组合问题.
K0816001X	D08003X	结合排列数定义,理解组合数定义,并掌握组合数的符号表
		示.
K0816002X	D08003X	理解排列与相应的组合之间的对应关系,进而能利用排列数
		公式和乘法原理推导组合数公式.
K0816003X	D08003X	会利用由排列数构成的组合数公式, 计算组合数.
K0816004X	D08003X	在熟悉的情境中, 能够利用组合数公式求解相关的组合问题.

K0816005X	D08003X	掌握借助计算器计算组合数的方法.
K0817001X	D08003X	会利用公式 $P_n^m = \frac{n!}{(n-m)!}$ 推导出组合数公式: $C_n^m =$
		$\frac{n!}{m!(n-m)!}.$
K0817002X	D08003X	了解 $\mathrm{C}_n^0=1$ 的含义.
K0817003X	D08003X	会利用组合数公式证明: $C_n^m = \frac{m+1}{n-m}C_n^{m+1}$.
K0817004X	D08003X	会利用组合数公式证明组合数的两个基本性质: $\mathbf{C}_n^m = \mathbf{C}_n^{n-m}$;
		$C_{n+1}^m = C_n^m + C_n^{m-1}.$
K0817005X	D08003X	经历构造组合模型,证明组合数的两个基本运算性质的过程.

K08017006X	D08003X	会利用组合数公式及两个基本性质计算和转化含有组合数的
		问题.
K0818001X	D08003X	在古典概率模型中,能利用排列和组合求随机事件 A 包含的
		基本事件的个数 k , 并能结合公式 $P(A) = \frac{k}{n}$ 求概率.
K0818002X	D08003X	在具体实例中,能够合理分析计算难度,选择从事件本身或对
		立事件入手计算概率.
K0819001X	D08003X	通过具体的实例了解二项展开式的概念.
K0819002X	D08003X	通过具体实例的展开,归纳出对于任意正整数 n , $(a+b)^n$ 的
		二项展开式的规律.

K0819003X	D08003X	结合杨辉三角掌握二项展开式中各项系数的 3 个特点: 每一
		行的第一个数和最后一个数都是 1; 每一行中, 除了第一个数
		和最后一个数外,每个数等于它"肩上"的两数之和;当 n 为
		偶数时,最大的系数时中间一项,当 n 为奇数时,最大的系数
		是中间两项. 并能用组合数的形式表示前两个特点.
K0819004X	D08003X	掌握二项式定理,并能够利用数学归纳法证明二项式定理.
K0819005X	D08003X	能利用二项式定理展开具体的二项式,并能求其中具体的一
		项的系数.
K0819006X	D08003X	能利用二项式定理证明相关的数的整除问题.

	1	
K0820001X	D08003X	在二项式定理中,能利用赋值法证明一些有关系数的恒等式。
K0820002X	D08003X	了解 $C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$ 及 $C_n^0 - C_n^1 + C_n^2 - \dots + C_n^n$
		$(-1)^n \mathcal{C}_n^n = 0.$
K0820003X	D08003X	能利用分析数列单调性的方法研究二项展开式的系数的单调
		性, 并再次基础上能求系数的最值.
K0821001X	D08004X	理解条件概率的概念.
K0821002X	D08004X	能分辨条件概率与概率的异同.
K0821003X	D08004X	在熟悉的情境中能根据条件概率公式用除法计算条件概率.
K0821004X	D08004X	知道概率的乘法公式.

K0821005X	D08004X	能用概率的乘法公式求两事件积的概率.
K0821006X	D08004X	了解条件概率与独立事件之间的联系.
K0822001X	D08004X	了解加权平均的概念.
K0822002X	D08004X	理解全概率公式,会用概率乘法公式和可加性推导全概率公
		式.
K0822003X	D08004X	在熟悉的情境中,能合理地分拆事件,用全概率公式计算概
		率.
K0823001X	D08004X	会用概率乘法公式和条件概率公式推导贝叶斯公式.
K0823002X	D08004X	会用贝叶斯公式计算形如 $P(\Omega_k A)$ 的条件概率.

K0823003X	D08004X	了解先验概率和后验概率的概念.
K0823004X	D08004X	知道贝叶斯公式与机器学习有联系.
K0824001X	D08005X	理解随机变量是以样本空间的元素为自变量,以实数为函数
		值得函数 (这里推广了函数的概念).
K0824002X	D08005X	能列举一些随机变量的例子.
K0824003X	D08005X	理解随机变量的分布的概念,知道分布中所有可能取值的概
		率之和为 1, 取值互异.
K0824004X	D08005X	能读懂用数阵, 图或表来表示的分布.
K0824005X	D08005X	会在简单的情境中计算分布, 并规范地用数阵或图来表示.

K0824006X	D08005X	了解等可能分布 (均匀分布) 的概念.
K0824007X	D08005X	了解伯努利分布的概念.
K0825001X	D08005X	理解期望是随机变量取值的加权平均 (以概率为权), 也称数
		学期望或均值, 会规范地表示数学期望 (E[X]).
K0825002X	D08005X	会根据分布列计算期望.
K0825003X	D08005X	会用组合恒等式 $k\mathbf{C}_n^k=n\mathbf{C}_{n-1}^{k-1}$ 计算 $p=\frac{1}{2}$ 时二项分布的期
		望.
K0825004X	D08005X	知道期望的实际意义与大数次试验有关,是大数次试验的随
		机变量的平均值的趋势反映.

K0825005X	D08005X	知道期望的线性性质及性质适用的条件 (对事件之间的关系
		无要求).
K0825006X	D08005X	会证明期望的数乘性质.
K0825007X	D08005X	会用期望的线性性质计算随机事件的期望.
K0826001X	D08005X	了解方差是随机变量与其均值的差的平方的期望(知道计算
		方法).
K0826002X	D08005X	经历推导方差的第二个计算公式 $D[X] = E(X^2) - (E[X])^2$
		的过程.
K0826003X	D08005X	了解方差越大,分散程度越大,不确定性越大.

K0826004X	D08005X	会根据分布列计算方差.
K0826005X	D08005X	知道方差的数乘性质, 并会证明与使用这一性质.
K0826006X	D08005X	知道方差的可加性需要独立的条件,能用该性质计算两独立
		随机变量的和与差的方差.
K0826007X	D08005X	知道标准差是方差的算术根.
K0827001X	D08005X	知道什么是二项分布 $B(n,p)$, 会表示二项分布的分布列.
K0827002X	D08005X	知道二项分布的概率与二项展开式有联系.
K0827003X	D08005X	会利用期望的可加性计算二项分布的期望.
K0827004X	D08005X	会利用独立事件方差的可加性计算二项分布的方差.

	1	
K0827005X	D08005X	会计算符合二项分布模型的事件的概率.
K0828001X	D08005X	知道超几何分布来源于不放回摸球模型.
K0828002X	D08005X	理解超几何分布的定义及参数的实际意义.
K0828003X	D08005X	会用组合数表示超几何分布中的概率.
K0828004X	D08005X	经历将超几何分布模型分拆为多个二项分布模型,进而用可
		加性计算期望的过程.
K0828005X	D08005X	知道超几何分布的期望,知道超几何分布的方差不好算.
K0828006X	D08005X	了解二项分布与超几何分布的联系与区别.
K0829001X	D08005X	了解自然语境下正态分布的含义.

K0829002X	D08005X	知道数学意义下正态分布对应的概率密度函数.
K0829003X	D08005X	知道正态分布密度函数中 μ 表示随机变量的期望, σ^2 表示随
		机变量的方差.
K0829004X	D08005X	知道一个随机变量服从正态分布 $X \sim N(\mu, \sigma^2)$ 的数学含义.
K0829005X	D08005X	知道标准正态分布 $N(0,1)$ 的概念及其密度函数.
K0829006X	D08005X	会查表或用计算机根据 x 计算累积面积 $\Phi(x)$ 的值, 并能根
		据 $\Phi(x)$ 的值计算 x .
K0829007X	D08005X	理解 $\Phi(x) = 1 - \Phi(-x)$ 的来源.
K0829008X	D08005X	知道用 $X' = \frac{X - \mu}{\sigma}$ 可将一般正态分布转化为标准正态分布.

K0829009X	D08005X	知道 μ, σ 对正态分布密度函数的图像的影响.
100230037	D00000A	加色 μ, υ 内 止心力 和 缶 皮 函 数 时 图 像 时 家 岬 ·
K0829010X	D08005X	会根据 $\Phi(x)$ 的值求服从正态分布的随机变量取值在某范围
		内的概率.
K0829011X	D08005X	了解 3σ 原则, 知道对于服从正态分布的随机变量, 落在 [μ –
		$\sigma, \mu + \sigma$], $[\mu - 2\sigma, \mu + 2\sigma]$, $[\mu - 3\sigma, \mu + 3\sigma]$ 内的概率的大致大
		小.
K0901001B	D09001B	掌握总体、个体、总体的容量、样本和样本量 (样本容量) 的
		概念,理解总体和样本的关系.
K0901002B	D09001B	在具体的情境中能够准确表达出总体、样本、样本量.

K0901003B	D09001B	知道'达标率'、'优秀率'等用来描述样本特征的概括性数
		字度量,称为统计量,了解统计量的相关概念.
K0901004B	D09001B	了解统计活动的基本思想是通过分析样本的统计特征去推断
		总体的统计特征.
K0902001B	D09002B	能根据收集数据的不同方法,判断所收集的数据类型是观测
		数据还是实验数据.
K0902002B	D09002B	知道获取数据的基本途径,包括统计报表和年鉴、社会调查、
		试验设计、普查和抽样、互联网等.
K0902003B	D09002B	知道普查和抽样调查的优缺点.

K0902004B	D09002B	会判断样本能否反映总体的特征,即抽取的样本是否具有代
		表性.
K0903001B	D09003B	了解简单随机抽样的含义,了解简单随机抽样的特点,并能
		够根据简单随机抽样的特点判断一个抽取样本的方法是否是
		简单随机抽样.
K0903002B	D09003B	掌握两种简单随机抽样的方法:抽签法和随机数法.了解抽
		签法和随机数法的特点和适用范围.
K0903003B	D09003B	会用抽签法进行简单随机抽样.

K0903004B	D09003B	了解制作随机数表的过程,会利用计算机或计算器产生随机
		数,能够读懂随机数表,掌握利用随机数表抽取样本的基本
		步骤.
K0903005B	D09003B	了解分层随机抽样的特点和适用范围,掌握各层样本量比例
		分配的方法,会根据总体情况制定分层抽样的方案,了解每
		层应选样本不是整数时的调整方法.
K0903006B	D09003B	能根据实际问题的特点,选用恰当的抽样方法解决问题.

K0904001B	D09004B	知道极差(全距)的概念,会根据数据确定合理的组距与组
		数,并统计每组的频数及频率,了解除最后一组上下界均为
		闭外,每组中通常取下界为闭,上界为开的规则.
K0904002B	D09004B	会将未经处理的统计数据制作成频率分布表,掌握制作频数
		分布表的基本步骤,了解向上(向下)累积频数的概念.
K0904003B	D09004B	能够根据频率分布表规范地制作频率分布直方图.
K0904004B	D09004B	能够基于频率分布直方图制作频率分布折线图.
K0904005B	D09004B	能够读懂频率分布直方图,知道数据落在各小组内的频率可
		以用小矩形的面积来表示,且这些面积的总和为1.

K0904006B	D09004B	知道当组距取得足够小,频率分布折线图将趋于一条光滑的
		曲线.
K0904007B	D09004B	会用简单的语言描述统计图表呈现的频率大小分布的信息.
K0905001B	D09004B	理解茎叶图中"茎"、"叶"的具体含义,了解茎叶图的适用
		范围,会规范地制作茎叶图.
K0905002B	D09004B	能解读茎叶图中蕴含的数据分布信息,体会其中的分组思想.
K0905003B	D09004B	会制作散点图,并会通过散点图直观地发现数据之间的关系.

K0905004B	D09004B	在对数据进行分析和整理时,能够根据需要,选择恰当的统
		计图表,包括初中阶段学习的条形图、扇形图以及折线图等,
		了解各种统计图表的特点和适用范围.
K0905005B	D09004B	会信息技术绘制统计图表
K0906001B	D09005B	知道总体的分布指的是总体中不同范围或类型的个体所占的
		比例.
K0906002B	D09005B	能够根据样本的频率分布情况估计总体的大致分布.
K0906003B	D09005B	知道什么是总体分布密度曲线,了解通常总是用样本的频率
		分布折线图来估计与逼近总体分布密度曲线这样做的原因.

K0906004B	D09005B	知道数字特征的概念及典型的数字特征. 理解集中趋势参数
		的统计含义,会用平均数、中位数和众数描述样本的集中趋
		势,从而估计总体的集中趋势.
K0906005B	D09005B	理解离散程度参数统计含义,会用方差、标准差等描述样本
		的离散程度,从而估计总体的离散程度.
K0906006B	D09005B	认识求和符号 ∑,了解求和符号表示下的线性运算性质.
K0906007B	D09005B	熟悉使用求和符号 〉 ,会用求和符号表示平均数、方差、标
		准差等.

K0906008B	D09005B	会近似计算只提供了区间及频数的样本数据的平均数、方差、
		标准差等,知道此时可以用区间的中点值给区间内的每个数
		据赋值.
K0906009B	D09005B	能使用信息技术计算样本数据的数字特征.
K0906010B	D09005B	能根据多组样本的容量、平均数以及方差求全体样本数据的
		平均数及方差,比如提供了各自调查的样本均值和方差,如
		何得到所有数据的样本平均数和方差,进而估计总体平均数
		和方差.

K0907001B	D09005B	理解百分位数的定义,学会计算一组数据的第 k 百分位数
		Pk.
K0907002B	D09005B	知道四分位数的概念.
K0907003B	D09005B	会用样本百分位数来估计总体百分位数,体会样本估计总体
		的统计思想.
K0907004B	D09005B	了解统计活动的基本步骤,结合现实情境中的具体问题,经
		历完整的统计过程,积累统计活动经验.
K0908001X	D09006X	知道成对数据和相关分析的概念,并能够判断两组数据是否
		可以看作成对数据,是否可以进行相关分析.

K0908002X	D09006X	能够根据所给数据绘制数据的散点图,并依据散点图观察和
		初步分析两组数据的相关性,知道两组数据的线性相关系数
		是度量两个变量之间线性相关程度的统计量,了解两组数据
		的线性相关系数的公式(不要求记忆).
K0908003X	D09006X	知道相关系数的取值范围,并且知道相关系数的取值与两个
		变量的线性相关程度的关系.
K0908004X	D09006X	知道正相关、负相关的概念.
K0908005X	D09006X	会根据相关系数的公式计算相关系数.

K0908006X	D09006X	理解相关系数描述的是两个变量之间线性关系的方向与程
		度,是一种定量分析的方法,了解相关系数的特点.
K0909001X	D09006X	了解离差的概念,能够根据所给数据计算离差.
K0909002X	D09006X	了解拟合误差的概念和公式,能够根据所给数据计算离差,知
		道拟合误差是描述数据与函数贴合程度的指标.
K0909003X	D09006X	知道回归方程(回归模型)的概念,知道解释变量、反应变
		量的含义,知道回归直线、回归系数、一元线性回归分析等
		概念.

K0909004X	D09006X	知道最小二乘法、最小二乘估计的概念,会利用最小二乘法
		估计线性方程中的参数(不要求记忆公式),进而得到回归方
		程.
K0910001X	D09006X	了解建立一元线性回归模型的一般步骤,针对实际问题,会
		用一元线性回归模型进行预测.
K0910002X	D09006X	知道相关分析和回归分析是处理成对数据的两种基本统计方
		法,了解它们之间的联系与区别.
K0910003X	D09006X	知道除了具有线性关系的散点图以外,线性回归分析还可以
		通过先取对数处理呈指数分布性状的数据分布.

K0911001X	D09006X	知道分类变量的概念.
K0911002X	D09006X	知道2行×列列联表(简称2×2列联表,也称为四格表)
		的概念.
K0911003X	D09006X	知道要检验两个随机变量是否有关时,统计上一般先假设它
		们相互独立,再进行统计检验.知道原假设(也称零假设)、
		备择假设的概念.
K0911004X	D09006X	知道观察值、预期值的概念,会根据 2 × 2 列联表计算预期
		值.

K0911005X	D09006X	知道描述观察值与预期值之间的总体偏差的统计量 χ^2 的公
		式 $($ 不要求记忆 $)$,并会在具体的情境中计算统计量 χ^2 的值.
K0911006X	D09006X	知道并经历 2×2 列联表 χ^2 检验的计算公式和推导过程 (不
		要求记忆).
K0911007X	D09006X	知道显著性水平的概念.
K0911008X	D09006X	知道2 × 2列联表独立性检验的基本步骤.
K0911009X	D09006X	会利用取自两类变量的样本来判断它们是否相互独立.
K0912001X	D09006X	在具体的问题中,会用独立性检验研究两个因素是否相互影
		响.

K0912002X	D09006X	在具体的问题中,会用独立性检验判断两个对象是否有显著
		差异.