বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

 λ . ${}_{1}X, {}_{7}Y, {}_{21}Y$

[এখানে X, Y, Z প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়।]

- (ক) প্রতীক কাকে বলে?
- (খ) ক্রিপ্টন একটি নিষ্ক্রিয় মৌল ব্যাখ্যা কর।
- (গ) ইলেকট্রন বিন্যাসের সাহায্যে পর্যায় সারণিতে 'Z' মৌলের অবস্থান নির্ণয় কর।
- (ঘ) 'X' এবং 'Y' দ্বারা গঠিত যৌগটির জলীয় দ্রবণ কোন প্রকৃতির? যৌগটির বন্ধন গঠনসহ ব্যাখ্যা কর।

<u>১</u> নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে মৌলের প্রতীক বলে।
- (খ) ক্রিন্টন (Kr) একটি নিষ্ক্রিয় মৌল। কারণ ক্রিন্টন এর ইলেক্ট্রন বিন্যাস- $Kr(36) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$ । যোজ্যতা স্তরের ইলেক্ট্রন বিন্যাস $ns^2 np^6$ । অর্থাৎ যোজ্যতা স্তরে ৪টি ইলেক্ট্রন থাকে বলে এটি অন্য কোনো মৌলের সাথে বিক্রিয়া করে না। অর্থাৎ বহিঃস্থ স্তরের সুবিন্যস্ত ইলেক্ট্রন বিন্যাসের কারণে কৎ নিষ্ক্রিয়
- (গ) উদ্দীপকের Z মৌলটি Sc(21), কারণ ঝপ এর পারমাণবিক সংখ্যা 21। Sc এর ইলেক্ট্রন বিন্যাস-

 $Sc(21) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$

পর্যায় নির্ণয় : ইলেকট্রন বিন্যাস চারটি স্তরে বিন্যস্ত হওয়ায় এটি ৪র্থ

ঞ্চপ নির্ণয় : সর্বশেষ ইলেকট্রন d অরবিটালের প্রবেশ করায় (n-1)d ও ns অরবিটালের মোট ইলেকট্রন গ্রুপ নির্দেশ করে। অর্থাৎ 1+2=3 নং গ্রুপে Sc মৌলটি অবস্থিত।

অতএব, Z মৌলটি ৪র্থ পর্যায়ের গ্রুপ 3 এর মৌল।

- (ঘ) উদ্দীপকের তথ্য অনুসারে, X ও Y মৌলদ্বয় যথাক্রমে H ও N এবং এদের দ্বারা গঠিত যৌগ NH3। NH3 এর জলীয় দ্রবণের প্রকৃতি ক্ষারধর্মী। নিচে যৌগটির বন্ধন গঠনসহ ব্যাখ্যা করা হলো-
 - জানা আছে, দুটি অধাতব পরমাণু ইলেকট্রন শেয়ারের মাধ্যমে নিকটস্থ নিঞ্জিয় চরিত্র অর্জনের উদ্দেশ্যে যে বন্ধন গঠন করে তা-ই মূলত সমযোজী বন্ধন। আবার সমযোজী বন্ধনের মাধ্যমে যে যৌগ গঠিত তা হচ্ছে সমযোজী যৌগ।

N এর ইলেক্ট্রন বিন্যাস, $N(7) \rightarrow 1s^2 2s^2 2p_x^{-1} 2p_y^{-1} 2p_z^{-1}$ H এর ইলেক্ট্রন বিন্যাস, $H(1) \rightarrow 1s^1$

ইলেকট্রন বিন্যাস হতে দেখা যায়, N এর যোজনী শেলে 3 টি বিজোড় ইলেকট্রন আছে। N-পরমাণু তার 3টি বিজোড় ইলেকট্রন 3টি H। পরমাণুর $1s^1$ অরবিটালের ইলেকট্রনের সাথে শেয়ার করে তিনটি N-H সমযোজী বন্ধন গঠনের মাধ্যমে, NH_3 সমযোজী যৌগ গঠন করে। নিচে ডায়াগ্রামের সাহায্যে NH_3 অণুর বন্ধন গঠন প্রক্রিয়া দেখানো হলো

চিত্র : NH3 অণুর সমযোজী বন্ধন গঠন

সুতরাং বলা যায়, N ও H অধাতব পরমাণুদ্বয় দ্বারা গঠিত NH_3 যৌগটি সমযোজী যৌগ।

আবার NH_3 এর জলীয় দ্রবণ NH_4OH যা ক্ষারধর্মী। এ কারণে NH_4OH এসিডের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে।

$$NH_4OH + HCI \longrightarrow NH_4Cl + H_2O$$
ফার এসিড লবণ পানি

মৌল	ভর সংখ্যা	নিউট্ৰন সংখ্যা
X	12	6
Y	35	18
Z	23	12

[X, Y, Z প্রচলিত মৌলের প্রতীক নয়।]

[সিলেট বোর্ড ২০২৪]

- (ক) মোলারিটি কাকে বলে?
- (খ) জৈব ও অজৈব যৌগের মধ্যে পার্থক্য লেখ।
- (গ) উদ্দীপকের "Z" হতে "Y" এর আয়ণিকরণ শক্তি বেশি কেন? ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের মৌল দ্বারা গঠিত XY4 এবং ZY যৌগের একটি পানিতে দ্রবণীয় হলেও অপ্রটির অদ্রবণীয় বিশ্লেষণ কর।

২ নং প্রশ্নের উত্তর

- (ক) নির্দিষ্ট তাপ<mark>মাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত</mark> দ্রবের গ্রাম আণবিক ভর বা মোল সংখ্যাকে ঐ দ্রবণের মোলারিটি বলে।
- (খ) জৈব এবং অজৈব যৌগের মধ্যে পার্থক্য নিমুরূপ:

7	জব যৌগ		4		অজৈব	যৌগ	TA.
সাধারণত যৌগ গঠি	কাৰ্বন দ ত।	ারা জৈব	۵.	কার্বন যৌগই		াণুবিহীন যৌগ।	সকল
জৈব যৌ অনেক বে	গের সংখ্যা শি।		'n	•	জৈব	মজৈব যৌগ	যৌগের অপেক্ষা
 জৈব ধীরগতির	<i>যৌগের</i> ।	বিক্রিয়া	9.	অজৈব দ্রুতগতি		ীগের ।	বিক্রিয়া

- (গ) উদ্দীপকের তথ্যমতে, Y ও Z মৌলদ্বয় যথাক্রমে Cl(17) ও Na(11); যাদের পারমাণবিক ভর যথাক্রমে 35 ও 23। Cl এর আয়নীকরণ শক্তি Na অপেক্ষা বেশি। নিচে এর কারণ ব্যাখ্যা করা হলো-
 - গ্যাসীয় অবস্থায় কোনো মৌলের 1 মোল গ্যাসীয় পরমাণু থেকে 1 মোল ইলেকট্রন অপসারণ করে 1 মোল ধনাত্মক আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন হয় তাকে আয়নিকরণ পটেনসিয়াল বা আয়নিকরণ শক্তি বলে।

জানা আছে, আয়নিকরণ শক্তি একটি পর্যায়বৃত্ত ধর্ম। যেকোনো পর্যায়ে যতই ডানদিকে যাওয়া যায় অর্থাৎ পারমাণবিক সংখ্যা যতই বাড়ে আয়নিকরণ শক্তি ততই বেড়ে যায়। কারণ পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে কেন্দ্রের সাথে সর্ববহিঃস্থ ইলেকট্রনের আকর্ষণ বেড়ে যায়। ফলে সর্ববহিঃস্থ একটি ইলেকট্রন অপসারণ করতে বেশি শক্তির প্রয়োজন হয়। অর্থাৎ আয়নিকরণ শক্তির মান বেশি হয়।

উদ্দীপকের Na ও Cl এর ইলেক্ট্রন বিন্যাস-

 $Na(11) = 1s^2 2s^2 2p^6 3s^1$ (৩য় পর্যায়, গ্রুপ-1)

 $Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$ (তয় পর্যায়, গ্রুপ-17)

দেখা যাচ্ছে, Na মৌলটি ৩য় পর্যায়ের সর্ববামে এবং Cl মৌলটি ৩য় পর্যায়ের সর্বভানে অবস্থিত। সুতরাং Cl মৌলটি সর্বভানে অবস্থিত বলে Cl এর আয়নীকরণ শক্তি Na অপেক্ষা বেশি হয়।

(ঘ) উদ্দীপকের তথ্যমতে, X, Y, Z হলো C, Cl ও Na । এজন্য XY_4 ও ZY যৌগদ্বয় যথাক্রমে CCl_4 ও NaCl । NaCl পানিতে দ্রবণীয় হলেও CCl_4 পানিতে অদ্রবণীয় । নিচে তা বিশ্লেষণ করা হলো-

www.schoolmathematics.com.bd

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

NaCl একটি আয়নিক যৌগ। পোলার দ্রাবক পানিতে আয়নিক যৌগ NaCl দ্রবীভূত হয়। কারণ পানির অণুর দুই প্রান্তে দুটি মেরু থাকে। NaCl এর কেলাস দ্রবীভূত করার সময় পানির ঋণাত্মক মেরু NaCl এর ধনাতাক আয়নের (Na^+) দিকে এবং পানির ধনাতাক মেরু NaClএর ঋণাত্মক আয়নের (Cl) দিকে আবর্তিত হয়। ফলে NaCl এর Na^+ ও Cl আয়নসমূহ পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে । Na^+ ও Cl^- আয়নসমূহ দ্রবণে পুরোপুরি মুক্ত থাকে না। দ্রাবক পানি অণুর সাথে সংযোজিত থাকে (solvated)। জলীয় দ্রবণে আয়নিক যৌগের আয়নসমূহের এরূপে অণু সংযোজিত হওয়ার প্রক্রিয়াকে পানিযোজন বা হাইড্রেশন (Hydration) বলা হয়। পানিযোজন হলো তাপোৎপাদী প্রক্রিয়া। ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপ শক্তির প্রভাবে NaCl এর কেলাস-ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়ে থাকে।

পানি অণু সংযোজিত Na^+ আয়ন পানি সংযোজিত Cl^- আয়ন চিত্র: পানিতে NaCl যৌগের দ্রবণীয়তা

অপরদিকে, CCl4 একটি অপোলার যৌগ। এটি বিয়োজিত হয়ে ক্যাটায়ন ও অ্যানায়ন তৈরি করতে পারে না। ফলে এটি পানিতে দ্রবীভূত হয় না। সুতরাং দেখা যায়, NaCl যৌগটি পানিতে দ্রবীভূত হলেও CCl4 যৌগটি পানিতে দ্রবীভূত হয় না।

২.

[X, Y, Z প্রচলিত প্রতীক নয়]

[দিনাজপুর বোর্ড ২০২৪]

Y

- (ক) pH কাকে বলে?
- (খ) গাঢ় নাইট্রিক এসিডের রঙিন বোতলে রাখা হয় কেন?
- (গ) ইলেকট্রন বিন্যাসের সাহায্যে 'Z মৌলের অবস্থান পর্যায় সারণিতে নির্ণয় কর।
- (ঘ) 'X' ও 'Y' এবং 'Z' ও 'Y' দ্বারা গঠিত যৌগদ্বয়ের মধ্যে একটি পানিতে দ্রবীভূত হলেও অপরটি দ্রবীভূত হয় না – বিশ্লেষণ কর।

৩ নং প্রশ্নের উত্তর

- (ক) কোনো দ্রবণের pH হলো ঐ দ্রবণের উপস্থিত হাইড্রোজেন আয়নের (H⁺) ঘনমাত্রার ঋণাত্মক লগারিদম।
- (খ) গাঢ় নাইট্রিক এসিডের বোতলের মুখ খুললে হালকা কুয়াশা সৃষ্টি হয় এবং তীব্র ঝাঁঝালো গন্ধ পাওয়া যায়। গাঢ় নাইট্রিক এসিড বিযোজিত হয়ে বাদামি বর্ণের নাইট্রোজেন ডাই অক্সাইড (NO2) গ্যাস উৎপন্ন করার প্রবণতা রয়েছে। এ কারণে গাঢ় নাইট্রিক এসিডকে বাদামি রঙের বোতলে 👂 . নিচের উদ্দীপকের আলোকে প্রশ্নগুলোর উত্তর দাও :

সংরক্ষণ করা হয়। এছাড়া আলোর উপস্থিতিতে নাইট্রিক এসিডের বিযোজন হার বেডে যায়। এজন্য একে অন্ধকারে তথা বাদামী বর্ণের বোতলে রাখা হয়।

(গ) উদ্দীপকের তথ্যমতে, Z হলো Ca; কেননা একই পর্যায়ের এর পরের মৌলটি $_{20}\mathrm{Ca}$ । নিচে ইলেকট্রন বিন্যাসের সাহায্যে Ca মৌলের অবস্থান পর্যায় সারণিতে নির্ণয় করা হলো-

Ca মৌল এর ইলেক্ট্রন বিন্যাস-

 $Ca(20) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

পর্যায় নির্ণয়: Ca এর ইলেকট্রনসমূহ 4টি স্তরে বিন্যস্ত হওয়ায় Ca ৪র্থ । পর্যায়ের মৌল।

গ্রুপ নির্ণয়: Ca এর ইলেক্ট্রন বিন্যাসে সর্বশেষ স্তরের s অরবিটালে 2টি <mark>ইলেকটন রয়েছে। তাই এটি 2নং গ্রুপের মৌল।</mark>

সুতরাং বলা যায়, Z মোলটি তথা Ca মৌলটি পর্যায় সারণির ৪র্থ প্র্যায়ের <mark>2নং</mark> গ্রুপে অবস্থিত।

(ঘ) উদ্দীপ<mark>কের তথ্যমতে, X</mark>, Y, Z মৌল তিনটি যথাক্রমে P, C ও এবং Ca ; কেননা একই পর্যায়ের $_{16}\mathrm{S}$ এর পূর্বের মৌলটি এবং পরের মৌলটিঈও X ও Y দ্বারা গঠিত যৌগ PCl₃, যা পানিতে অদ্রবণীয় কিন্তু Z ও Y দ্বারা গঠিত যৌগ CaCl পানিতে দ্রবণীয়। নিচে তা বিশ্লেষণ করা হলো-

 $CaCl_2$ যৌগে Ca প্রমাণু 2টি ইলেক্ট্রন দান করে। অপরদিকে Clপরমাণু একটিমাত্র ইলেকট্রন গ্রহণে সমর্থ হওয়ায় প্রতিটি Ca পরমাণুর জন্য 2টি Cl পরমাণুর প্রয়োজন হয়। এরূপে Ca^{2+} ও Cl^- আয়ন সৃষ্টি হয়। CaCl₂ কে পানিতে দ্রবীভূত করার সময় H₂O এর ধনাত্মক মেরু CaCl2 এর ঋণাতাক আয়নের দিকে এবং H2O এর ঋণাতাক আয়ন $CaCl_2$ এর ধনাতাক আয়নের দিকে আবর্তিত হয়। ফলে $CaCl_2$ এর Ca^{2+} আয়ন ও Cl^- আয়নসমূহ পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্বণে চলে আসে।

 ${
m Ca}^{2+}$ ও ${
m Cl}^-$ আয়নসমূহ দ্রবণে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানি অণুর সাথে সং<mark>যোজিত থাকে। জলীয় দ্রবণে আয়নিক যৌগের</mark> আয়নসমূহের এরূপে পানি অণু সংযোজিত হওয়ার প্রক্রিয়াকে পানি যোজন বা হাইড্রে<mark>শন বলা হয়। ধনাত্মক</mark> ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপ<mark>শক্তির প্রভাবে CaCl₂ এর কেলাস-ল্যাটিস থেকে আয়নগুলো পৃথক</mark> <mark>হয়ে পানিতে দ্ৰবীভূত হ</mark>য়।

চিত্র: CaCl₂ এর পানিতে দ্রবণীয়তা

অপরদিকে PCl_3 একটি অপোলার সমযোজী যৌগ। এটি ক্যাটায়ন বা অ্যানায়নে বিভক্ত হতে পারে না বলে পানির অণু কর্তৃক আকৃষ্ট হয় না। এজন্য PCl3 পানিতে অদ্রবণীয়।

সুতরাং দেখা যাচ্ছে, PCl_2 পানিতে দ্রবণীয় কিন্তু PCl_3 পানিতে অদ্রবণীয়।

www.schoolmathematics.com.bd

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

[এখানে, A, B, C প্রতীকী অর্থে ব্যবহৃত]

[ময়মনসিংহ বোর্ড ২০২৪]

- (ক) গাঠনিক সংকেত কাকে বলে?
- (খ) SO₃ যৌগে সালফারের সুপ্ত যোজনী ব্যাখ্যা কর।
- (গ) উদ্দীপকের A এবং C মৌলের মধ্যে কোন ধরনের বন্ধন ঘটে? ডট ও ক্রস চিহ্ন দ্বারা ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের AC এবং BC উভয় যৌগই একই কৌশলে পানিতে দ্রবীভূত হবে কি? যুক্তিসহ বিশ্লেষণ কর।

৪ নং প্রশ্নের উত্তর

- (ক) একটি অণুতে মৌলের পরমাণুগুলো যেভাবে সাজানো থাকে প্রতীক এবং বন্ধনের মাধ্যমে তা প্রকাশ করাকে গাঠনিক সংকেত বলে।
- (খ) জানা আছে, কোনো মৌলের সর্বোচ্চ যোজনী ও সক্রিয় যোজনীর পার্থক্যকে ঐ মৌলের সুপ্ত যোজনী বলে। SO_3 যৌগে সালফার (S) এর সক্রিয় যোজনী 6 এবং S এর সর্বোচ্চ যোজনীও 6। সুতরাং, SO_3 যৌগে সালফার (S) এর সুপ্ত যোজনী =6-6=0।
- (গ) উদ্দীপকের তথ্যমতে, A ও C মৌলদ্বর যথাক্রমে H ও F এবং এদের দারা গঠিত যৌগ HF। HF অপুটি সমযোজী বন্ধনের মাধ্যমে সালফার গঠিত। নিচে এর গঠন ডট (.) ও ক্রস (×) চিহ্নু দারা ব্যাখ্যা হাইড্রোজেন (H) ও ফ্লোরিন (F) এর ইলেকট্রন বিন্যাস-

 $_1 H \longrightarrow 1 s^2$; বহিঃস্থ স্তরে ইলেকট্রন সংখ্যা 7।

 $_6F \longrightarrow 1 s^2 \ 2 s^2 \ 2 p^5$; বহিঃস্থ স্তরে ইলেকট্রন সংখ্যা 7। H এর বহিঃস্থ শেলে 1টি অযুগা ইলেকট্রন রয়েছে। অপরদিকে F এর বহিঃস্থ শেলে 7টি ইলেকট্রন, যা নিদ্ধিয় ইলেকট্রনীয় কাঠামো অপেক্ষা 1টি e^- কম রয়েছে। এক্ষেত্রে H ও F উভয়েই 1টি করে e^- শেয়ার করে নিদ্ধিয় চরিত্র অর্জন করে এবং সমযোজী যৌগ HF গঠন করে।

চিত্র : HF অণুর গঠন

(ঘ) উদ্দীপকের A, B, C মৌল তিনটি যথাক্রমে H, Na ও F; কেননা মৌলগুলোর প্রোটন সংখ্যা যথাক্রমে। H ও F দ্বারা গঠিত যৌগ HF এবং Na ও F দ্বারা গঠিত যৌগ NaF। এরা একই কৌশলে পানিতে দ্রবীভূত হবে না। নিচে তা যুক্তিসহ বিশ্লেষণ করা হলো-

NaF এর পানিতে দ্রবণীয়তা : সাধারণত আয়নিক যৌগগুলো পানিতে দ্রবীভূত হয়। আয়নিক যৌগগুলো পানিতে দ্রবীভূত করলে ধনাত্মক আয়ন পানির ঋণাত্মক মেরুর দিকে এবং যৌগের ঋণাত্মক আয়ন পানির ধনাত্মক মেরুর দিকে আবর্তিত হয়ে পারস্পরিক আকর্ষণ অনুভব করে। ফলে ল্যাটিসের আয়নসমূহের মধ্যকার কুলম্ব আকর্ষণ বল কমতে থাকে এবং আয়নগুলো দ্রাবক পানির অণু দ্বারা বেষ্টিত অবস্থায় ল্যাটিস হতে বিচ্ছিন্ন হয়ে দ্রাবকে দ্রবীভূত হয়। নিচের চিত্রে NaF এর দ্রবণীয়তা দেখানো হলো-

চিত্র: NaF এর পানিতে দ্রবণীয়তা

NaF এর ধনাত্মক Na $^+$ আয়ন পানির ঋণাত্মক মের OH $^-$ দারা এবং NaF এর ঋণাত্মক F^- আয়ন পানির ধনাত্মক মের H^+ দারা পরিবেষ্টিত হয়। ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে NaF এর কেলাস ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়। HF যৌগের পানিতে দ্রবনীয়তা : সমযোজী বন্ধনে আবদ্ধ অধাতব মৌলের পরমাণু দুটির তড়িং ঋণাত্মকতার পার্থক্য 0.5 অপেক্ষা বেশি হলে সংশ্লিষ্ট অণুটি পোলার হবে। HF একটি সমযোজী যৌগ। HF এর ক্ষেত্রে H ও F এর তড়িং ঋণাত্মকতার পার্থক্য (4-2.1)=1.9। যেহেতু HF অণুতে পরমাণুসমূহের তড়িং ঋণাত্মকতার মান 0.5 অপেক্ষা বেশি, সেহেতু HF পোলার অণু। অপরদিকে H_2O হলো একটি পোলার দ্রাবক। জানা আছে, পোলার অণুসমূহ পোলার দ্রাবকে দ্রবীভূত হয়। এ কারণে HF সমযোজী যৌগ হওয়া সত্ত্বেও পোলার দ্রাবক পানিতে দ্রবীভূত হয়।

চিত্র : পানি অণু সংযোজিত H⁺ ও F⁻

সুতরাং দেখা যাচ্ছে, NaF <mark>আয়নিক যৌগ হ</mark>ওয়ায় হাইড্রোজেন শক্তির মাধ্যমে পানিতে দ্রবীভূত হলেও HF সমযোজী যৌগ হওয়ায় পোলারিটির মাধ্যমে পানিতে দ্রবীভূত হয় অর্থাৎ পানিতে দ্রবণীয়তার কৌশল ভিন্ন।

- 8. (i) $C + 2R \rightarrow CS_2$
 - (ii) $2P + 3Cl_2 \rightarrow 2PCl_3$

[রাজশাহী বোর্ড ২০২৪]

- (ক) প্রতীক কাকে বলে?
- (খ) Ca মৃৎক্ষার ধাতু ব্যাখ্যা কর।
- (গ) উদ্দীপকের i নং এর উৎপাদন যৌগটির একটির অণুর ভর নির্ণয় কর।
- (घ) উদ্দীপকের 'R' মৌলটি এশাধিক যোজনী প্রদর্শনে সক্ষম বিশ্লেষণ কর।

৫ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে মৌলের প্রতীক বলে।
- (খ) ক্যালসিয়ামকে (Ca)-কে মৃৎক্ষার ধাতু বলা হয়; এর কারণ হলো এটি গ্রুপ-2 এর মৌল এবং এদের অক্সাইডসমূহ পানিতে ক্ষারীয় দ্রবণ তৈরি করে। এছাড়া মৌলটি বিভিন্ন যৌগ হিসেবে মাটিতে থাকে।

বিক্রিয়া :
$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2(g)$$
 ফ্রার

(গ) উদ্দীপকের (i) নং এর উৎপাদ যৌগটি CS_2 । CS_2 এর আণবিক ভর = $12+(32\times 2)=76$

Prepared by: SAJJAD HOSSAIN

সুতরাং,
$$CS_2$$
 এর একটি অণুর ভর $=rac{$ আণবিক ভর $}{6.023 imes 10^{26}}$ $=rac{76}{6.023 imes 10^{23}}$ $=1.26 imes 10^{-22}~\mathrm{g}$

(ঘ) উদ্দীপকের (i) নং বিক্রিয়াটি-

$$\begin{array}{c} C+2S \rightarrow CS_2 \\ (R) \end{array}$$

: R হলো সালফার (S)। সালফার একাধিক যোজনী প্রদর্শনে সক্ষম। নিচে তা বিশ্লোষণ করা হলো-

জানা আছে, অধাতব মৌলের যোজ্যতা স্তরের বিজোড় ইলেকট্রন সংখ্যাকে ঐ মৌলের যোজনী বলে। সালফার পরিবর্তনশীল যোজনী প্রদর্শন করে। সালফার এর স্বাভাবিক ও উত্তেজিত অবস্থায় ইলেকট্রন বিন্যাস নিমুরূপ- $S(16)=1s^2\,2s^2\,2p^6\,3s^2\,3p_x^2\,3p_y^{\ 1}\,3p_z^{\ 1};$ যোজনী 2

 $S(16)=1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p_x^2\ 3p_y^1\ 3p_z^1;$ যোজনী $2*S(16)=1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p_x^1\ 3p_y^1\ 3p_z^1\ 3p_{yz}^1;$ যোজনী $4*S(16)=1s^2\ 2s^2\ 2p^6\ 3s^1\ 3p_x^1\ 3p_y^1\ 3p_z^1\ 3p_{yz}^1;$ যোজনী 6 সাভাবিক অবস্থায় সালফারের যোজনী-2 হলেও উত্তেজিত অবস্থায় যোজনী $4,\ 6$ হয়। যে মৌলের একাধিক যোজনী বিদ্যমান সে মৌল পরিবর্তনশীল যোজনী প্রদর্শন করে। এজন্য সালফার পরিবর্তনশীল যোজনী আছে।

৫. $X = -ns^2np^2 [n = 2]$ Y = প্যায় 4 এবং ফ্রন্স 11 $Z = -ns^2np^5 [n = 3]$

Z = — ns²np³ [n = 3] [এখানে X, Y এবং Z মৌলের প্রতীকী অর্থে ব্যবহৃত]

[যশোর বোর্ড ২০২৪]

- (ক) পাতন কাকে বলে?
- (খ) ইলেকট্রন বিন্যাসই পর্যায় সারণির মূল ভিত্তি ব্যাখ্যা কর।
- (গ) Y- এর ইলেকট্রন বিন্যাস স্বাভাবিক নিয়েমের ব্যতিক্রম ব্যাখ্যা
- (ঘ) Y এবং Z দ্বারা গঠিত যৌগ পানিতে দ্রবনীয় হলেও X দ্বারা গঠিত যৌগ পানিতে অদ্রবণীয় – বিশ্লেষণ কর।

৬ নং প্রশ্নের উত্তর

- (ক) কোনো তরলকে তাপ প্রদানে বাষ্পে পরিণত করে তাকে পুনরায় শীতলীকরণের মাধ্যমে তরলে পরিণত করার পদ্ধতিকে পাতন বলে।
- (খ) ইলেকট্রন বিন্যাসের মাধ্যমে কোন মৌলটির কত নম্বর পর্যায় ও কত নম্বর গ্রুপ তা নির্ণয় করা যায়। পারমাণবিক ভর দ্বারা পর্যায় সারণিতে মৌলের অবস্থান নির্ণয় করলে K (পা : ভর 39) ও Ar (পাঃ ভর 40) সহ অনেক মৌলের ক্ষেত্রে সমস্যা দেখা যায়। কিন্তু ইলেকট্রন বিন্যাস দ্বারা মৌলের অবস্থান নির্ণয় করলে সে সমস্যা দূর হয়। এজন্য ইলেকট্রন বিন্যাসই পর্যায় সারণির মূল ভিত্তি।
- (গ) উদ্দীপকের তথ্যমতে, \hat{Y} মৌলটি কপার (Cu)। কেননা পর্যায় সারণির ৪র্থ পর্যায়ের 11 নং ঞপের মৌলটি Cu।

Cu এর ইলেকট্রন বিন্যাস সাধারণ নিয়মের ব্যতিক্রম। নিচে এর ব্যাখ্যা করা হলো।

ইলেকট্রন বিন্যাসের সাধারণ নিয়ম অনুসারে, পরমাণুতে ইলেকট্রনসমূহ বিভিন্ন অরবিটালে (উপশক্তিভরে) তাদের শক্তির নিম্নক্রম থেকে উচ্চক্রম অনুসারে প্রবেশ করে। এ নিয়ম অনুযায়ী অরবিটালসমূহের শক্তিক্রম নিম্নরূপ:

1s < 2s < 2p < 3s < 3p < 4p < 3d < 4p < 5s < 4d < 5p < 6s... ইত্যাদি।

সাধারণ নিয়ম অনুসারে, প্রধান শক্তিস্তরের সকল উপস্তরকে পাশাপাশি লিখে $_{29}\mathrm{Cu}$ মৌলের ইলেকট্রন বিন্যাস দাঁড়ায়-

$$_{29}$$
Cu $\rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$

কিন্তু সাধারণভাবে দেখা গেছে যে, হুন্ডের নীতি অনুসারে সমশক্তিসম্পন্ন অরবিটালসমূহ অর্ধপূর্ণ বা সম্পূর্ণরূপে পূর্ণ হলে সে ইলেক্ট্রন বিন্যাস অধিকতর সুস্থিতি অর্জন করে। এর ফলে d^9s^2 এর পরিবর্তে $d^{10}s^1$ বিন্যাস অধিকতর স্থায়ী হয়। কারণ $3d^9s^2$ এর বেলায় d অরবিটালঅর্ধপূর্ণ বা পূর্ণ কোনো অবস্থায় পড়ে না। তাই 4s থেকে 1টি ইলেক্ট্রন $3d^9$ এ চলে এসে $3d^{10}$ হয়, যা পূর্ণ। এটি অধিকতর স্থায়ী হয়। এ কারণেই $_{29}Cu$ মৌলের ইলেক্ট্রন বিন্যাস ব্যতিক্রম নিয়মে হয়। এ নিয়ম অনুযায়ী $_{29}Cu$ এর ইলেক্ট্রন বিন্যাস নিমুরূপ:

$$_{29}$$
Cu $\rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$

(ঘ) উদ্দীপকের তথ্যমতে, X, Y, Z মৌল তিনটি যথাক্রমে C, Cu ও Cl । C ও Cl দারা গঠিত যৌগ CCl4 যা পানিতে অদুবণীয় এবং Cu ও Cl দারা গঠিত যৌগ CuCl2, যা পানিতে দ্রবণীয়। নিচে তা বিশ্লেষণ করা হলো-

CuCl $_2$ একটি আয়নিক যৌগ। যৌগটি পানিতে দ্রবীভূত হওয়ার সময় Cu $_2^{2+}$ ও Cl $_1^{-}$ আয়ন যথাক্রমে পানির ঋণাত্মক ও ধনাত্মক অংশ দ্বারা আকৃষ্ট হয় এবং কেলাস ল্যাটিশ থেকে ক্রমশ দ্রবণে চলে আসে। $_1^{-}$ ও Cl $_1^{-}$ আয়নসমূহ পানিতে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানির অণুর সাথে যুক্ত অবস্থায় থাকে। জলীয় দ্রবণে আয়নিক যৌগের ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানির অণু সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তির বলে। $_1^{-}$ যৌগের হাইড্রেশন শক্তির মান ল্যাটিশ ভাঙার শক্তির চেয়ে বেশি হয়। ফলে হাইড্রেশন শক্তির প্রভাবে CuCl $_2^{-}$ এর কেলাস ল্যাটিশ থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

চিত্র : CuCl₂ যৌগের পানিতে দ্রবণীয়তা

অপরদিকে, $CuCl_4$ অণুটি অপোলার সমযোজী যৌগ। এটি আয়নিত হতে পারে না বলে পানির অণু দ্বারা আকৃষ্ট হয় না। এজন্য $CuCl_4$ পানিতে অদ্রবণীয়।

৬. নিচের উদ্দীপকের আলোকে প্রশ্নগুলোর উত্তর দাও:

মৌল	পর্যায়	শ্ৰেণি
A	8र्थ	8
D	২য়	16

[কুমিল্লা বোর্ড ২০২৪]

- (ক) নিষ্ক্রিয় গ্যাস কাকে বলে?
- (খ) ধাতু নিষ্ক্রিয় একটি বিজারণ প্রক্রিয়া ব্যাখ্যা কর।
- (গ) D2 এর বন্ধন গঠন ব্যাখ্যা কর।
- (ঘ) A থেকে D এর সাথে বন্ধন গঠনে এশাধিক যোজনী প্রদর্শন করে বিশ্লেষণ কর।

৭ নং প্রশ্নের উত্তর

- (ক) পর্যায় সারণির গ্রুপ 18 এ অবস্থিত He, Ne, Ar, Kr, Xe, Rn এই 6িট গ্যাসীয় মৌলকে নিষ্ক্রিয় গ্যাস বলে।
- (খ) সাধারণত ধাতুসমূহ প্রকৃতিতে তাদের অক্সাইড বা লবণ হিসেবে পাওয়া যায়। লবণ হতে ধাতু নিদ্ধাশনের সময় ধাতু আয়ন প্রয়োজনীয় সংখ্যক ইলেকট্রন গ্রহণ করে তড়িং নিরপেক্ষ ধাতু পরমাণুতে রূপান্তরিত হয়।

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

আমরা জানি, ইলেকট্রন গ্রহণ হচ্ছে বিজারণ; কোন বিজারক ইলেকট্রন প্রদান করে। উদাহরণস্বরূপ, জিঙ্ক প্রকৃতিতে জিঙ্ক সালফাইড ZnS বা Zn^{2+} S^- জিঙ্ক কার্বনেট $ZnCO_2$ বা Zn^{2+} CO_3^{2-} এবং জিঙ্ক অক্সাইড ZnO বা Zn^{2+} O^{2-} হিসেবে থাকে। নিষ্কাশনের প্রথম দিকের ধাপসমূহে তাদেরকে জিঙ্ক অক্সাইডে রূপান্তরিত করা হয়। অতঃপর কার্বন দ্বারা বিজারণ করে জিঙ্ক ধাতু মুক্ত করা হয়। অর্থাৎ, ধাতু নিষ্কাশন একটি বিজারণ প্রক্রিয়া।

(গ) উদ্দীপকের তথ্যমতে, D_2 মৌলটি অক্সিজেন (O_2) । নিচে O_2 অণুর কন্ধন গঠন ব্যাখ্যা করা হলো-

অক্সিজেনের ইলেকট্রন বিন্যাস : $O(8)
ightarrow 1 s^2 \, 2 s^2 \, 2 p^4$

বসায়ন

ইলেকট্রন বিন্যাস হতে দেখা যায়, এর যোজ্যতা স্তরের ইলেকট্রন সংখ্যা 6 এবং নিকটবর্তী নিদ্ধিয় গ্যাস নিয়নের চেয়ে দুটি ইলেকট্রন কম আছে। অর্থাৎ অস্টক বিন্যাস থেকে অক্সিজেনের দুটি ইলেকট্রন ঘাটতি থাকে। তাই একটি অক্সিজেন পরমাণু (O) অপর একটি অক্সিজেন পরমাণুর সাথে দুটি করে ইলেকট্রন শেয়ার করে অক্সিজেন অণু গঠন করে, যা দিপরমাণুক মৌলিক অণু । ফলে অক্সিজেন অণুতে দ্বিক্ষন দেখা যায়।

চিত্র : ইলেকট্রন শেয়ারের মাধ্যমে O2 দ্বিপরমাণুক অণুর গঠন

(ঘ) উদ্দীপকের তথ্যমতে, A মৌলটি Fe এবং D <mark>মৌলটি</mark> O(4)। Fe মৌল O এর সাথে বন্ধন গঠনে Fe ধাতু 2 ও 3 অর্থাৎ একাধিক যোজনী প্রদর্শন করে। নিচে তা বিশ্লেষণ করা হলো-

যদি কোনো মৌলের একাধিক যোজনী থাকে তবে সেই <mark>মৌ</mark>লের যোজনীকে পরিবর্তনশীল যোজনী বলে।

Fe এর ইলেক্ট্রন বিন্যাস : $Fe(26) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

Fe এর যোজ্যতা স্তরে $2\overline{b}$ মাত্র ইলেকট্রন আছে। এজন্য Fe ধাতু অক্সিজেন (O) পরমাণুর সাথে যৌগ গঠনের জন্য $2\overline{b}$ ইলেকট্রন দান করে Fe^{2+} আয়নে পরিণত হয় এবং ঐ অক্সিজেন $2\overline{b}$ ইলেকট্রন গ্রহণ করে O^{2-} আয়নে পরিণত হয়।

Fe $(26) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^0$ (যোজনী-2)

ফলে Fe^{2+} ও O^{2-} এর মধ্যে FeO আয়নিক বন্ধন তৈরি হয়। FeO যৌগে Fe এর যোজনী 2।

আবার Fe^{2+} আয়নের যোজ্যতা স্তরের 3d অরবিটালে 6টি ইলেকট্রন আছে। এজন্য Fe^{2+} আয়ন স্থিতিশীলতার জন্য (অর্ধপূর্ণ অরবিটাল) আরও 1টি ইলেক্ট্রন ত্যাগ করে Fe^{3+} আয়নে পরিণত হয়।

Fe³⁺ (26) = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ (যোজনী-3)

 Fe^{2+} এর ত্যাগ করা ইলেকট্রন ও অক্সিজেন পরমাণু গ্রহণ করে O^{2-} আয়নে পরিণত হয়। ফলে সৃষ্ট Fe_2O_3 যৌগে Fe এর যোজনী 3। সুতরাং দেখা যাচ্ছে, Fe ধাতু O এর সাথে যৌগ গঠনে একাধিক যোজনী প্রদর্শন করে।

[এখানে, P, Q, R, S প্রচলিত কোনো মৌলের প্রতীক নয়] [চট্টগ্রাম বোর্ড ২০২৪]

- (ক) তড়িৎ ঋণাত্মকতা কাকে বলে?
- (খ) দস্তার যোজনী ও যোজ্যতা ইলেকট্রন সমান হবে কি? ব্যাখ্যা কর।
- (গ) 'P'ও 'Q' মৌল দ্বারা গঠিত যৌগের বন্ধন গঠন প্রক্রিয়া ব্যাখ্যা কর।
- (ঘ) 'R' ও 'S' মৌলের বন্ধন গঠনকালে এর একটি যৌগের ক্ষেত্রে অষ্টক নিয়ম ভঙ্গ করে – বিশ্লেষণ কর।

৮ নং প্রশ্নের উত্তর

- (ক) দুটি পরমাণু যখন সমযোজী বন্ধনে আবন্ধ হয়ে অণুতে পরিণত হয় তখন অণুর পরমাণুগুলো বন্ধনের ইলেকট্রন দুটিকে নিজের দিকে আকর্ষণ করে, এই আকর্ষণকে তড়িৎ ঋণাতাকতা বলে।
- (খ) দস্তার (Zn) যোজনী ও যোজ্যতা ইলেকট্রন সমান হবে। কারণ Zn এর ইলেকট্রন বিন্যাস-

 $Zn(30) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$

 Z_n এর যোজ্যতা স্তরে 2^{T} ইলেকট্রন আছে। এজন্য Z_n এর যোজ্যতা ইলেকট্রন 2। আবার Z_n ধাতু হওয়ায় এর যোজ্যতা স্তরের মোট ইলেকট্রনই হচ্ছে এর যোজনী। এজন্য Z_n এর যোজনী ও যোজ্যতা ইলেকট্রন সমান।

(গ) উদ্দীপকের তথ্যমতে, P ও Q মৌলদ্বয় যথাক্রমে O(8) ও Na(11) এবং এদের দ্বারা গঠিত যৌগ Na₂O। নিচে Na₂O যৌগের কখন গঠন প্রক্রিয়া ব্যাখ্যা করা হলো-

Na ও O এর ইলেকট্রন বিন্যাস নিয়ে পাই.

 $Na(11) \longrightarrow 1s^2 2s^2 2p^6 3s^1$

 $O(8) \longrightarrow 1s^2 2s^2 2p^4$

Na পরমাণু যোজ্যতা স্তরের একটি ইলেকট্রন বর্জন করে নিদ্রিয় গ্যাস নিয়নের স্থায়ী অষ্টক বিন্যাস লাভ করে এবং অক্সিজেন পরমাণু যোজ্যতা স্তরের 2টি ইলেকট্রন গ্রহণ করে নিয়নের যোজ্যতা স্তরের স্থায়ী অষ্টক বিন্যাস লাভ করে। এক্ষেত্রে সোডিয়াম পরমাণু Na^+ আয়নে এবং অক্সিজেন পরমাণু O^{2-} আয়নে পরিণত হবে। যেমন : $2Na \longrightarrow Na^+ + 2e^-[e^-$ ত্যাগ]

2O + 2e⁻ → O²⁻ [e⁻ গ্ৰহণ]

এভাবে সৃষ্ট ধনাত্মক ও ঋণাত্মক আয়নসমূহ স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা সংযুক্ত হয়ে আয়নিক যৌগ Na₂O গঠন করে।

(ঘ) উদ্দীপকের তথ্যমতে, R ও S মৌলদ্বয় যথাক্রমে P ও $Cl \mid P$ ও C' মৌলদ্বয় দ্বারা যৌগ গঠনকালে একটি যৌগ অর্থাৎ PCl_5 এর ক্ষেত্রে অষ্টক নিয়ম ভঙ্গ করে। কিন্তু PCl_5 যৌগটির ক্ষেত্রে অষ্টক নিয়ম অনুসৃত হয়। নিচে তা বিশ্লেষণ করা হলো-

ফসফরাস (P) এর পারমাণবিক সংখ্যা 15। ফসফরাসের ইলেকট্রন বিন্যাস করলে পাই,

 $P(15) \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p_x^1 \ 3p_y^1 \ 3p_z^1$ উত্তেজিত অবস্থায়,

٩.

Prepared by: SAJJAD HOSSAIN

 $P^*(15) \rightarrow 1s^2 \, 2s^2 \, 2p^6 \, 3s^1 \, 3p_x^{\ 1} \, 3p_y^{\ 1} \, 3p_z^{\ 1} \, 3d_{xy}^{\ 1}$ অন্যদিকে ক্লোরিনের (CI) ইলেক্ট্রন বিন্যাস,

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1$

P এর যোজ্যতা স্তরে একটি ইলেকট্রন উদ্দীপিত অবস্থায় $3d_{xy}$ অরবিটালে উন্নীত হয়। ফলে P এর যোজ্যতা স্তরে 5টি বিজোড় ইলেকট্রন 5টি Cl পরমাণুর সাথে বন্ধন গঠনের মাধ্যমে PCl_5 যৌগ উৎপন্ন করে। ফলে ফসফরাসের বহিঃস্থ স্তরে ইলেকট্রন সংখ্যা বৃদ্ধি পেয়ে 10 হয়। অর্থাৎ ফসফরাসের অষ্টক সম্প্রসারণ ঘটে।

চিত্ৰ: PCl₅ যৌগ গঠন

সুতরাং, PCl5 যৌগ গঠনের সময় অষ্টক নিয়ম ভঙ্গ করে।

- b. (i) SO3
 - (ii) CaCl₂

[ঢাকা বোর্ড ২০২৩]

- (ক) যৌগমূলক কাকে বলে?
- (খ) অ্যানায়ন কীভাবে গঠিত হয়?
- (গ) (ii) নম্বর অণুটির বন্ধন গঠন প্রক্রিয়া ব্যাখ্যা করো।
- (ঘ) (i) নম্বর অণুটির বন্ধন গঠনের ক্ষেত্রে অষ্টক এবং দুই এর নিয়মের মধ্যে কোনটি প্রযোজ্য হবে, যুক্তিসহ বিশ্লেষণ করো।

৯ নং প্রশ্নের উত্তর

- (ক) একাধিক মৌলের একাধিক পরমাণুর সমন্বয়ে গঠিত একটি পরমাণু গুচ্ছ, যা একটি আয়নের ন্যায় আচরণ করে তাকে যৌগমূলক বলে।
- (খ) ঋণাত্মক চার্জযুক্ত পরমাণুকে অ্যানায়ন বলে। যেসব মৌলের সর্বশেষ শক্তিস্তরে অন্টক অপেক্ষা সাধারণত 1, 2 কিংবা 3টি ইলেকট্রন কম থাকে, এরা সেই সংখ্যক ইলেকট্রন গ্রহণ করে সহজেই নিদ্ধিয় গ্যাসের স্থিতিশীল ইলেকট্রন বিন্যাস লাভ করে। অন্যভাবে বলা যায়, এদের ইলেকট্রন আসক্তির মান বেশি। ইলেকট্রন গ্রহণের ফলে এদের নিউক্লিয়াসে অবস্থিত ধনাত্মক প্রোটন সংখ্যার চেয়ে ঋণাত্মক আধানবিশিষ্ট ইলেকট্রনের সংখ্যা বেশি হয়। ফলে মৌল ঋণাত্মক আধানবিশিষ্ট হয়। এভাবে ঋণাত্মক আধানবিশিষ্ট পরমাণু বা অ্যানায়ন গঠিত হয়।
- (গ) উদ্দীপক হতে, (ii) নম্বর অণু $CaCl_2$ এর বন্ধন গঠন প্রক্রিয়া নিচে ব্যাখ্যা করা হলো-

Ca ও Cl এর e⁻ বিন্যাস নিয়ে পাই-

 $Ca(20) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$

ইলেকট্রন বিন্যাস হতে, সর্ববহিঃস্থ স্তরে Ca এর 2টি এবং Cl এর 7টি

রাসায়নিক বিক্রিয়ার সময় C_a পরমাণু তার সর্ববহিঃস্থ স্তরের e^- 2টি C_1 পরমাণুকে দান করে অষ্টক পূরণ করে এবং নিকটস্থ নিষ্ক্রিয় মৌল A_r এর নিষ্ক্রিয় চরিত্র অর্জন করে। যার ফলে C_a পরমাণু C_a^{2+} ক্যাটায়নে পরিণত হয়।

অন্যদিকে, 2টি Cl পরমাণুর প্রত্যেকে 1টি করে Ca এর দানকৃত e^- গ্রহণ করে অন্তক পূরণ করে এবং নিকটস্থ নিদ্ধিয় মৌল Ar এর নিদ্ধিয় চরিত্র অর্জন করে। এক্ষেত্রে Cl পরমাণু Cl^- নায়নে পরিণত হয়। এখন বিপরীতধর্মী ধনাত্মক Ca^{2+} আয়ন এবং 2টি ঋণাত্মক Cl^- আয়ন স্থির বৈদ্যুতিক আকর্ষণের দ্বারা আবদ্ধ হয়ে $CaCl_2$ আয়নিক যৌগ গঠন করে।

চিত্র : CaCl2 এর আয়নিক বন্ধন গঠন

(ঘ) উদ্দীপকের (i) নম্বর অণুটির কখন গঠনের ক্ষেত্রে অষ্টক এবং দুই এর নিয়মের মধ্যে 'দুই' এর নিয়ম প্রযোজ্য। নিচে যুক্তিসহ তা বিশ্লেষণ করা হলো:

S ও O এর ইলেক্ট্রন বিন্যাস নিয়ে পাই,

 $S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^4$

 $O(8) \rightarrow 1s^2 2s^2 2p^4$

জানা আছে, অণু গঠনকালে কোনো মৌল ইলেকট্রন গ্রহণ, বর্জন অথবা ভাগাভাগির মাধ্যমে এর সর্বশেষ শক্তিস্তরে ৪টি করে ইলেকট্রন ধারণের মাধ্যমে নিদ্রুয় গ্যাসের ইলেকট্রন বিনাস লাভ করে। একেই অস্টক নিয়ম বলে। আবার, অণু গঠনে কোনো পরমাণুর সর্বশেষ শক্তিস্তরে এক বা একাধিক জোড়া ইলেকট্রন বিদ্যমান থাকবে, এটিই হচ্ছে দুই এর নিয়ম। উদ্দীপকের (i) নম্বর অণুর গঠন নিমুক্রপ:

চিত্র: SO3 অণুর গঠন

ইলেকট্রন বিন্যাস হতে, S এর যোজ্যতা স্তরে 6টি ইলেকট্রন রয়েছে। নিকটস্থ নিদ্ধিয় মৌল Ar অপেক্ষা 2টি e^- কম আছে। অন্যদিকে O এর যোজ্যতা স্তরে 6টি e^- রয়েছে। S ও O এর অস্টক পূরণের জন্য 2টি e^- প্রয়োজন। অর্থাৎ উভয়েরই নিদ্ধিয় চরিত্র অর্জনের ক্ষেত্রে যোজ্যতা স্তরে ইলেকট্রনের ঘাটতি রয়েছে। এজন্য উভয়ই যোজ্যতা স্তরে ইলেকট্রন শেয়ারে মাধ্যমে SO_3 যৌগ গঠন করে।

এক্ষেত্রে প্রদত্ত যৌগটির (SO₃) গঠন হতে দেখা যাচ্ছে-

O এর শেষ কক্ষপথে 8টি করে e^- বিন্যাস লাভ করলেও কেন্দ্রীয় পরমাণু S এর শেষ কক্ষপথে 12টি ইলেক্ট্রন বিন্যাস লাভ করে। অর্থাৎ, অষ্টক সম্প্রসারণ ঘটেছে। তাই বলা যায় SO_3 এর বন্ধন গঠনের ক্ষেত্রে অষ্টক নিয়ম প্রযোজ্য নয়।

আবার SO_3 যৌগটির গঠন অন্যভাবে বিশ্লেষণ করলে দেখা যাচ্ছে, কেন্দ্রীয় পরমাণু S এর যোজ্যতা স্তরে একাধিক জোড়া ইলেকট্রন বিদ্যমান। অন্যদিকে প্রত্যেক O এর যোজ্যতা স্তরেও একাধিক জোড়া e^- বিদ্যমান। অর্থাৎ, এক্ষেত্রে 'দুই' এর নিয়ম অনুসৃত হয়েছে।

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

সুতরাং বলা যায়, (i) নম্বর তথা SO_3 অণুটির গঠনের ক্ষেত্রে অষ্টক ও দুই এর নিয়মের মধ্যে শুধুমাত্র 'দুই' এর নিয়ম প্রযোজ্য হবে।

৯. NaCl একটি যৌগ যার গলনাংক 801°C এবং স্ফুটনাঙ্ক 1465°C অপর একটি যৌগ HCl।

[ঢাকা বোর্ড ২০২৩]

- (ক) উর্ধ্বপাতন কাকে বলে?
- (খ) লোহার মরিচা পড়া একটি রাসায়নিক পরিবর্তন ব্যাখ্যা করো।
- (গ) ১ম যৌগটিতে তাপ প্রদানের লেখচিত্র অংকনসহ ব্যাখ্যা করো।
- (ঘ) ১ম ও ২য় যৌগ দুটির বন্ধন প্রকৃতি ভিন্ন হওয়া সত্ত্বেও এরা জলীয় দুবণে বিদ্যুৎ পরিবহন করে – যুক্তিসহ বিশ্লেষণ করো।

১০ নং প্রশ্নের উত্তর

- (ক) যদি কঠিন পদার্থকে তাপ দিলে তা সরাসরি গ্যাসে পরিণত হয় এবং ঠাভা করলে তা সরাসরি কঠিনে রূপান্তরিত হয়় তবে উত্ত । প্রক্রিয়াকে উর্ধ্বপাতন বলে ।
- (খ) লোহায় মরিচা ধরা- এতে রাসায়নিক বিক্রিয়া ঘটে। নিম্নে তা ব্যাখ্যা করা হলো-
 - বিশুদ্ধ লোহা জলীয়বাম্পের উপস্থিতিতে বায়ুর অক্সিজেনে<mark>র সাথে</mark> রাসায়নিক বিক্রিয়ার মাধ্যমে পানিযুক্ত ফেরিক অক্সাইড (Fe₂O₃. nH₂O) উৎপন্ন করে যা মরিচা নামে পরিচিত।
 - বিক্রিয়ার মাধ্যমে উৎপন্ন মরিচার উপাদান ও ধর্ম লোহা, পানি ও অক্সিজেনের উপাদান ও ধর্ম হতে সম্পূর্ণ ভিন্ন। যেমন লোহা চুম্বক দ্বারা আকৃষ্ট হয়; কিন্তু মরিচা আকৃষ্ট হয় না। অর্থাৎ সম্পূর্ণ নতুন যৌগ মরিচা উৎপন্ন হয়েছে। সুতরাং লোহায় মরিচা পড়া একটি রাসায়নিক পরিবর্তন।
- (গ) উদ্দীপকের NaCl এর গলনাম্ব 801°C এবং স্ফুটনাম্ব 1465°C। নিচে NaCl এর তাপ প্রদান লেখচিত্র অঙ্কন করে ব্যাখ্যা করা হলো-

চিত্র : NaCl-এ তাপ প্রদানের বক্ররেখা

তাপ বৃদ্ধির ফলে বস্তুটি কঠিন থেকে গ্যাসীয় অবস্থার দিকে ধাবিত হয়। উদ্দীপকের লবণটি $801~^{\circ}$ C তাপমাত্রা পর্যন্ত কঠিন অবস্থায় থাকে, যাকে (A-B) রেখা দ্বারা চিহ্নিত করা হয়েছে। $801~^{\circ}$ C তাপমাত্রায় লবণটি গলতে থাকে যা হচ্ছে গলনাঙ্ক। চিত্রে $801~^{\circ}$ C তাপমাত্রা হলো লবণটির গলনাঙ্ক। আবার $1465~^{\circ}$ C তাপমাত্রা হলো NaCl এর স্ফুটনাঙ্ক। অর্থাৎ, $801~^{\circ}$ C থেকে $1465~^{\circ}$ C তাপমাত্রা পর্যন্ত লবণটি তরল অবস্থায় থাকে যাকে C-D রেখা দ্বারা চিহ্নিত করা হয়। $1465~^{\circ}$ C তাপমাত্রায় লবণটি স্ফুটন অবস্থায় থাকে, যাকে স্ফুটনাঙ্ক বলা হয়। $1465~^{\circ}$ C তাপমাত্রার রেখাটি হলো DE এবং $1465~^{\circ}$ C তাপমাত্রা রেখাটি হলো DE এবং $1465~^{\circ}$ C তাপমাত্রা হলো লবণটির স্ফুটনাঙ্ক।

(ঘ) উদ্দীপকের ১ম যৌগ NaCl ও ২য় যৌগ HCl। NaCl আয়নিক যৌগ ও HCl সমযোজী যৌগ। যৌগ দুটির বন্ধন প্রকৃতি ভিন্ন হলেও এরা জলীয় দ্রবণে বিদ্যুৎপরিবহন করে। নিচে তা বিশ্লেষণ করা হলো-

NaCl আয়নিক যৌগ হওয়ায় কঠিন অবস্থায় এর ধনাত্মক ও ঋণাত্মক আয়নসমূহ কেলাস ল্যাটিসে নির্দিষ্ট স্থানে অবস্থান করে বলে এরা বিদ্যুৎ অপরিবাহী। কিন্তু জলীয় দ্রবণ বা দ্রবীভূত অবস্থায় আয়নসমূহ কেলাস ল্যাটিস থেকে মুক্ত হয়ে ইতঃস্তত পরিদ্রমণ করে।

 $NaCl(s) + aq \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

NaCl এর দ্রবণে দুটি ইলেকট্রোড প্রবেশ করালে ঋণাত্মক আয়ন (Cl) অ্যানোডের দিকে এবং ধনাত্মক আয়ন (Na) ক্যাথোডের দিকে আকৃষ্ট হয়।

চিত্র : NaCl দ্রবণের তড়িৎ বিশ্লেষণ

 Na^+ ক্যাথোডে পৌঁছার পর তা থেকে 1টি ইলেক্ট্রন গ্রহণ করে চার্জ নিরপেক্ষ ধাতৃতে পরিণত হয়।

বিজারণ প্রক্রিয়া : $Na^+ + e^- \rightarrow Na$

অপরদিকে Cl^- অ্যানোডে পৌছে 1টি e^- দান করে প্রথমে চার্জ নিরপেক্ষ হয়। পরে নিজেদের মধ্যে যুক্ত হয়ে Cl_2 গ্যাসে পরিণত হয়।

জারণ প্রক্রিয়া :
$$Cl^- o Cl + e^ Cl + Cl o Cl_2$$

এভাবে NaCl যৌগটির অ্যানোডে জারণ ও ক্যাথোডে বিজারণ ঘটে এবং দ্রবণে বিদ্যুৎ পরিবহন করে।

অন্যদিকে HCl যৌগস্থিত H ও Cl এর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য [Cl(3.5) – H(2.1) = 1.4] অনেক বেশি হয়। এ কারণে HCl একটি পোলার সমযোজী যৌগ। পোলার সমযোজী যৌগ HCl জলীয় দ্রবণে নিম্নরূপে বিয়োজিত হয়।

 $HC1 \xrightarrow{H_2O} H^{\delta^+}$ $(aq) + Cl^{\delta^-}$ (aq) অর্থাৎ জলীয় দ্রবণে H পরমাণু 1টি ইলেকট্রন দান করে H^+ এবং F পরমাণু 1টি ইলেকট্রন গ্রহণ করে Cl^- আয়নে পরিণত হয়।

চিত্র : HCl এর তড়িৎ পরিবাহিতা

তড়িৎ বিশ্লেষণকালে H^{+} আয়ন ক্যাথোড দ্বারা এবং Cl^{-} আয়ন অ্যানোড দ্বারা আকৃষ্ট হয়ে H_2 ও Cl_2 গ্যাসে পরিণত হয়। যেহেতু জলীয় দ্রবণে HCl যৌগে ইলেকট্রন স্থানান্তর হয়, সেহেতু HCl এর জলীয় দ্রবণ তড়িৎ বা বিদ্যুৎ পরিবাহী।

সুতরাং NaCl ও HCl যৌগ দুটির কখন প্রকৃতি ভিন্ন হলেও জলীয় দ্রবণে বিদ্যুৎ পরিবহন করে।

১০. Q, R ও T মৌল তিনটির পারমাণবিক সংখ্যা যথাক্রমে 12, 14, 17। [Q, R ও T প্রতীকী অর্থে ব্যবহৃত]

[ময়মনসিংহ বোর্ড ২০২৩]

- (ক) বাষ্পীভবন কাকে বলে
- (খ) কণার গতিতত্ত্ব ব্যাখ্যা করো।
- (গ) O মৌলটির বিদ্যুৎ পরিবাহিতা ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের একটি মৌল একাধিক উপায়ে স্থিতিশীলতা অর্জন করে –
 বিশ্লেষণ করো।

১১ নং প্রশ্নের উত্তর

(ক) কোনো তরলকে তাপ প্রদান করে বাষ্প্রেপ পরিণত করার প্রক্রিয়াকে বাষ্পীভবন বলে।

বুসায়ুৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

- (খ) সকল পদার্থই ক্ষুদ্র ক্ষুদ্র কণা দ্বারা গঠিত। এই কণাগুলো একে অপরকে আকর্ষণ করে থাকে. যাকে আন্তঃকণা আকর্ষণ শক্তি বলা হয়। আবার কণাগুলোর গতিশক্তিও রয়েছে। আন্তঃকণা আকর্ষণ শক্তি এবং কণাগুলোর গতিশক্তি দিয়ে পদার্থের কঠিন, তরল ও গ্যাসীয় অবস্থা ব্যাখ্যা করার তত্ত্বকেই কণার গতিতত্ত্ব বলা হয়।
- (গ) উদ্দীপকের Q মৌলটির পারমাণবিক সংখ্যা 12 হওয়ায় মৌলটি ম্যাগনেসিয়াম (Mg)। নিচে Mg মৌলটির বিদ্যুৎ পরিবাহিতা ব্যাখ্যা করা হলো-

ম্যাগনেসিয়াম (Mg) একটি ধাতু। এ কারণে এটি বিদ্যুৎ সুপরিবাহী। Mg ধাতব খন্ডে মুক্তভাবে সঞ্চারণশীল ইলেকট্রনগুলো। বিদ্যুৎ পরিবহনের কাজটি করে থাকে। একটি Mg খণ্ডের দুই প্রান্তের সাথে ব্যাটারির ধনাতাক (+) ও ঋণাতাক (-) প্রান্ত সংযুক্ত করলে ইলেকট্রনগুলো, ঋণাত্মক প্রান্ত থেকে ধনাত্মক প্রান্তের দিকে প্রবাহিত হয়। অর্থাৎ ধনাত্মক প্রান্ত থেকে ঋণাত্মক প্রান্তের দিকে বিদ্যুৎ প্রবাহিত হয়। সঞ্চারণশীল ইলেকট্রন না থাকলে Mg এর মধ্যে বিদ্যুৎ পরিবহন হতো

চিত্র : Mg ধাতুর বিদ্যুৎ পরিবাহিতা

(ঘ) উদ্দীপকের তথ্যমতে, Q. R, T মৌল তিনটি যথাক্রমে 12Mg, 14Si ও $_{17}Cl$ । এদের মধ্যে Cl(17) মৌলটি একাধিক উপায়ে স্থিতিশীলতা অর্জন করে। নিচে তা বিশ্লেষণ করা হলো-

ক্লোরিন (Cl) এর ইলেকট্রন বিন্যাস নিয়ে পাই-

$$Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$$

দেখা যাচেছ, ইলেকট্রন বিন্যাসের যোজ্যতা স্তরে 7টি ইলেক<mark>ট্রন আ</mark>ছে। এজন্য Cl পরমাণু খুব সহজে ধাতব পরমাণু থেকে 1টি ইলেক্ট্র<mark>ন গ্র</mark>হণ করে ধাতব পরমাণুর সাথে আয়নিক বন্ধন গঠন করে স্থিতিশীলতা লাভ করে।

$$Na \longrightarrow Na^+ + e^-$$

$$Cl + e \longrightarrow Cl^-$$

অপরদিকে Cl পরমাণু হাইড্রোজেন (H) পরমাণু অথবা অন্য কোনো অধাতব প্রমাণু, এমনকি Cl প্রমাণুর সাথে ইলেক্ট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন গঠন করে স্থিতিশীলতা লাভ করে।

চিত্র : HCl অণুর সমযোজী বন্ধন গঠন

সুতরাং দেখা যাচেছ, Cl প্রমাণু সমযোজী ও আয়নিক বন্ধন গঠনে অর্থাৎ একাধিক উপায়ে স্থিতিশীলতা লাভ করছে।

অপরদিকে, Si ও Mg এর ইলেক্ট্রন বিন্যাস নিয়ে পাই-

$$Mg(12) = 1s^2 2s^2 2p^6 3s^2$$

$$Si(4) = 1s^2 2s^2 2p^6 3s^2 3p^2$$

দেখা যাচ্ছে, Mg এর যোজ্যতা স্তরে 2টি মাত্র ইলেকট্রন থাকায় এটি দুটি ইলেকট্রন দান করে ${
m Mg}^{2+}$ আয়ন গঠন করে এবং কেবল আয়নিক বন্ধন গঠন করে। Si এর ক্ষেত্রে যোজ্যতা স্তরে 4টি ইলেকট্রন থাকায় এটি শুধু ইলেকট্রন শেয়ারের মাধ্যমে স্থিতিশীলতা লাভ করে।

অতএব, মৌল তিনটির মধ্যে কেবল Cl একাধিক উপায়ে স্থিতিশীলতা অর্জন করে।

মৌল	পর্যায়	গ্রুপ
A	2	1
В	2	17
С	3	15
D	3	17

[রাজশাহী বোর্ড ২০২৩]

- (ক) লা-শাতেলিয়ার নীতিটি বিবৃত করো।
- (খ) পিঁপড়ার কামড়ে ক্ষতস্থানে চুন ব্যবহার করা হয় কেন?
- <mark>(গ) A ও B মৌলদ্বয় দ্বারা গঠিত যৌগের বন্ধন গঠন প্রক্রিয়া</mark> <mark>ডায়াগ্রামের সাহায্যে ব্যাখ্যা করো।</mark>
- (ঘ) C ও D দ্বারা গঠিত যৌগের পোলার দ্রাবকে দ্রবণীয়তা বিশ্লেষণ করো।

১২ নং প্রশ্নের উত্তর

- (ক) লা-শাতেলিয়ার নীতিটি হচ্ছে- উভমুখী বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ার যেকোনো একটি নিয়া<mark>মক (তাপমাত্রা/চাপ/বি</mark>ক্রিয়কের ঘনমাত্রা) পরিবর্তন করলে বিক্রিয়ার সাম্যাবস্থা এমনভাবে পরিবর্তিত হয় যেন নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।
- (খ) পিপড়ার কামড়ে ক্ষতস্থা<mark>নে চুন লাগানো</mark> হয়। কারণ পিঁপড়ার কামড়ের ক্ষতস্থানে পিপড়ার শরী<mark>র থেকে যে বিষ প্রবেশ</mark> করে তাতে অশ্লীয় উপাদান থাকে। মানুষ পিপড়ার কা<mark>মড়ের জ্বালাযন্ত্রণা নি</mark>বারণ করার জন্য ক্ষতস্থানে চুন ব্যবহার করে। কারণ, চুন ক্ষারকধর্মী পদার্থ। এটা অম্লীয় উপাদানের সাথে প্রশমন বিক্রিয়া করে। <mark>তাই পিঁপড়ার কামড়ের ক্ষতস্থানে চুন</mark> প্রয়োগ করা হয়।
- (গ) উদ্দীপকের তথ্যমতে, A ও B মৌলম্বয় যথাক্রমে লিথিয়াম (3Li) ও ফ্লোরিন (9F)। Li ও F <mark>দারা গঠিত যৌগ L</mark>iF। নিচে LiF এর বন্ধন গঠন প্রক্রিয়া ডায়াগ্রামের সাহায্যে ব্যাখ্যা করা হলো-

লিথিয়াম (Li) একটি ধাতু এবং ফ্লোরিন (F) একটি অধাতু। ধাতু ও অধাতুর সমন্বয়ে ই<mark>লেকট্রন আদান-প্রদানে</mark>র মাধ্যমে আয়নিক বন্ধন গঠিত

Li ও F প্রমাণুর ইলেক্ট্রন বিন্যাস নিম্নরূপ:

$$Li(3) \longrightarrow 1s^2 2s$$

$$Li(3) \longrightarrow 1s^{2} 2s^{1}$$

$$F(9) \longrightarrow 1s^{2} 2s^{2} 2p^{6}$$

দেখা যাচ্ছে, Li পরমাণুর যোজ্যতা স্তরে 1টি মাত্র ইলেক্ট্রন থাকায় এটি সহজেই 1টি <mark>ইলেকট্রন ত্যাগ</mark> করে নিকটস্থ নিষ্ক্রিয় গ্যাস He এর কাঠামো <mark>অর্জন করে Li^+ আয়নে পরিণত হয়। অপরদিকে F পরমাণুর যোজ্যতা</mark> বারে 7টি ইলেকট্রন আছে। নিকটতম নিষ্ক্রিয় গ্যাস Ne অপেক্ষা 1টি ইলেক্ট্রন কম আছে। তাই প্রমাণু Li প্রমাণুর ত্যাগ করা ইলেক্ট্রন গ্রহণ করে F^- আয়নে পরিণত হয়। পরে Li^+ ও F^- আয়নদ্বয়ের মধ্যে স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে LiF যৌগ সৃষ্টি হয়।

বুসামূল ৫ম অধ্যাম

<u>বাসা</u>য়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

চিত্র : LiF আয়নিক যৌগের গঠন

(ঘ) উদ্দীপকের C ও D মৌলদ্বয় যথাক্রমে ফসফরাস (15P) ও ক্লোরিন
 (Cl)। কেননা ফসফরাস (P) হলো ৩য় পর্যায়ের 15নং গ্রুপের এবং
 ক্লোরিন (Cl) হলো ৩য় পর্যায়ের 17নং গ্রুপের মৌল।

P ও Cl দ্বারা গঠিত যৌগ হলো PCl_3 ও PCl_5 , যা পোলার দ্রাবকে অদ্রবণীয়। নিচে তা বিশ্লেষণ করা হলো-

পোলার দ্রাবক পানিতে বিদ্যমান অক্সিজেন অধিক তড়িৎ ঋণাত্মক বিধায় অক্সিজেন ও হাইড্রোজেনের মধ্যকার ইলেকট্রন যুগল অক্সিজেন প্রমাণুর দিকে অধিক আকৃষ্ট হয়। ফলে অক্সিজেনে আংশিক ঋণাত্মক ও হাইড্রোজেনে আংশিক ধনাত্মক প্রান্তের সৃষ্টি হয়।

অপরদিকে PCl_3 ও PCl_5 হলো অপোলার সমযোজী যৌগ। অর্থাৎ PCl_3 ও PCl_5 এর ক্ষেত্রে ধনাত্মক ও ঋণাত্মক আয়নের সৃষ্টি হয় না। ফলে হাইড্রেশন শক্তি কেলাস ল্যাটিস ভাঙার শক্তির চেয়ে কম হয়। ফলে PCl_3 ও PCl_5 যৌগ পোলার দ্রাবকে অদ্রবণীয়।

١٤.

						F
Na	T	Al	Si	P	S	Е
		127	~ V .	0.00		Q

[T, E, Q কোনো মৌলের প্রতীক নয়, প্রতীকী অর্থে ব্যবহৃত।]
[দিনাজপুর বোর্ড ২০২৩]

- (ক) অবস্থান্তর মৌল কাকে বলে?
- (খ) আপেক্ষিক পারমাণবিক ভরের একক থাকে না কেন? ব্যাখ্যা করো।
- (গ) 'T'এবং 'E' দ্বারা গঠিত যৌগের জলীয় দ্রবণের তড়িৎ পরিবাহীতা ব্যাখ্যা করো।
- (ঘ) T, E, Q মৌলগুলোর ইলেকট্রন আসক্তির ক্রম বিশ্লেষণ করো।

১৩ নং প্রশ্নের উত্তর

- (ক) যেসব ধাতব মৌলের স্থিতিশীল আয়নের ইলেকট্রন বিন্যাসে d অরবিটাল আংশিকভাবে ইলেকট্রন দ্বারা পূর্ণ থাকে তাদেরকে অবস্থান্তর মৌল বলে।
- (খ) দুটি একই রকম রাশি অনুপাত আকারে, থাকলে এর কোনো একক থাকে না। কোনো মৌলের আপেক্ষিক পারমাণবিক ভরকে নিমুরূপে প্রকাশ করা হয়-

মৌলের আপেক্ষিক পারমাণবিক ভর

মৌলের একটি পরমাণুর ভর

= একটি কার্বন-12 আইসোটোপের ভরের $\frac{1}{12}$ অংশ

সুতরাং, দেখা যায় যে, আপেক্ষিক পারমাণবিক ভর দুটি পৃথক ভরের অনুপাত (kg/kg বা g/g)। তাই এর কোনো একক নেই।

(গ) 'T' হচ্ছে পর্যায় সারণির ৩য় পর্যায়ের Na এর পরের মৌল Mg এবং 'E' হচ্ছে গ্রুপ-17 এর F এর পরের মৌল Cl।

নিম্নে 'T' এবং 'E' দ্বারা গঠিত $MgCl_2$ যৌগের জলীয় দ্রবণের তড়িৎ পরিবাহিতা ব্যাখ্যা করা হলো :

আমরা জানি, আয়নিক যৌগসমূহ গলিত ও দ্রবীভূত অবস্থায় বিদ্যুৎ পরিবহন করে। কারণ, কঠিন অবস্থায় আয়নিক যৌগে আয়নসমূহ নির্দিষ্ট স্থানে অবস্থান করে। কিন্তু গলিত অবস্থায় এবং জলীয় দ্রবণে আয়নসমূহ কেলাস ল্যাটিস থেকে মুক্ত হয়ে ইতস্তত পরিভ্রমণ করে। তরল আয়নিক যৌগের দ্রবণে দুটি ইলেকট্রোড প্রবেশ করালে ঋণাত্মক আয়নসমূহ অ্যানোডের দিকে এবং ধনাত্মক আয়নসমূহ ক্যাথোডের দিকে ধাবিত হয়। এখন আয়নিক যৌগ $MgCl_2$ এর ধনাত্মক আয়ন (Mg^{2+}) ঋণাত্মক ইলেকট্রোড বা ক্যাথোডে পৌছে তা থেকে ইলেকট্রন গ্রহণ করে চার্জ নিরপেক্ষ ধাতুতে (Mg) পরিণত হয়।

$$Mg^{2+} + 2e^- \longrightarrow Mg$$

অপরদিকে ঋণাত্মক আয়ন (Cl) ধনাত্মক ইলেকট্রোড বা অ্যানোডে ইলেকট্রন দান করে চার্জ নিরপেক্ষ পরমাণতে পরিণত হয়।

$$C1^- \longrightarrow C1 + e^-$$

এভাবে আয়নিক যৌগ ${
m MgCl}_2$ জলীয় দ্রবণে বিদ্যুৎ পরিবহন করে।

(ঘ) T, E এবং Q মৌলগুলো যথাক্রমে Mg, Cl এবং Br। আমরা জানি, পর্যায় সারণীর বাম থেকে ডানে গেলে ইলেকট্রন আসক্তির মান বৃদ্ধি পায়। তাই Mg এর চেয়ে Cl এর ইলেকট্রন আসক্তির মান বেশি। আবার একই গ্রুপে উপর থেকে নীচে গেলে ইলেকট্রন আসক্তির মান কমে। তাই Cl এর চেয়ে Br এর ইলেকট্রন আসক্তির মান কম।

সুতরাং, তিনটি মৌলের ই<mark>লেকট্রন আ</mark>সক্তির মানের ক্রম হলো Mg < Br < Cl।

٥٥.

মৌল	বহিঃস্ত স্তরের ইলেকট্রন বিন্যাস	সর্ববহিঃস্থ শক্তিস্তরের
		(n) মান
P	ns ² np ¹	3
Q	ns^2	3
R	ns ¹	1
S	ns^2np^3	3

[P, Q, R S প্রতীকী অর্থে ব্যবহৃত।]

[কুমিল্লা বোর্ড ২০২৩]

- (ক) পারমাণবিক শাঁস কাকে বলে?
- (খ) Li এ<mark>র যোজনী এবং যো</mark>জ্যতা একই ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'P' এর বিদ্যুৎ পরিবহনের কৌশল বর্ণনা করো।
- (ঘ) QS_2 ও R_2 এর মধ্যে কোনটি পানিতে দ্রবণীয় হবে? বিশ্লেষণ করো।

১৪ নং প্রশ্নের উত্তর

- (ক) ধাতুতে পরমাণুসমূহ তার সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রনকে ত্যাগ করে ধনাত্মক আয়নে পরিণত হয়; এই ধনাত্মক আয়নকে পারমাণবিক শাঁস বলা হয়।
- (খ) পরমাণু সমূহের শেষ কক্ষপথের ইলেকট্রন সংখ্যাকে যোজ্যতা ইলেকট্রন বলে। ${\rm Li}(3) \to 1{
 m s}^2\ 2{
 m s}^1$ শেষ কক্ষপথে 1টি ইলেকট্রন আছে তাই যোজ্যতা ইলেকট্রন 1, আবার, পরমাণু তার শেষ কক্ষপথে নিকটতম নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করতে যে কয়টি ইলেকট্রন ত্যাগ বা গ্রহণ অথবা শেয়ার করে সেই সংখ্যাকে ঐ পরমাণুর যোজনী বলে। ${\rm Li}(3) \to 1{
 m s}^2\ 2{
 m s}^1$ শেষ কক্ষপথে 1টি ইলেকট্রন আছে। এর নিকটতম নিষ্ক্রিয় গ্যাস নিয়ন

www.schoolmathematics.com.bd

বসায়ৰ

৫ম অধ্যায়

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

[কুমিল্লা বোর্ড ২০২৩]

 $Li - e^- \rightarrow Li^+ = 1s^2 = He(2)$

He এর ইলেকট্রন বিন্যাস অর্জন করতে লিথিয়াম কে 1টি ইলেকট্রন ত্যাগ করতে হয়। তাই লিথিয়ামের যোজনী 1।

সুতরাং, লিথিয়ামের যোজনী = 1 এবং যোজ্যতা ইলেকট্রন = 1। অর্থাৎ, লিথিয়ামের যোজনী এবং যোজ্যতা ইলেকট্রন একই।

(গ) উদ্দীপক অনুসারে, 'P' মৌলটির সর্ববহিঃস্থ শক্তিস্তরে ইলেকট্রন বিন্যাস: $3s^2\ 3p^1$ । সুতরাং উদ্দীপকের 'P' মৌলটি অ্যালুমিনিয়াম (Al)। উদ্দীপকের 'P' মৌল অর্থাৎ Al ধাতু বিদ্যুৎ সুপরিবাহী।

Al ধাতুর বিদ্যুৎ পরিবাহিতা : Al ধাতুর ক্ষটিকে মুক্তভাবে বিচরণশীল ইলেকট্রনগুলো বিদ্যুৎ পরিবহনের কাজটি করে থাকে। একটি Al খন্ডের দুই প্রান্তের সাথে ব্যাটারির ধনাত্মক (+) ও ঋণাত্মক (-) প্রান্ত সংযুক্ত করলে ইলেকট্রনগুলো ঋণাত্মক প্রান্ত থেকে ধনাত্মক প্রান্তের দিকে প্রবাহিত হবে। অর্থাৎ, ধনাত্মক প্রান্ত থেকে ঋণাত্মক প্রান্তের দিকে বিদ্যুৎ প্রবাহিত হবে। সঞ্চরণশীল ইলেকট্রন না থাকলে Al ধাতুর মধ্যে বিদ্যুৎ প্রবাহিত হতো না।

চিত্র: Al ধাতুর বিদ্যুৎ পরিবহনের কৌশল

(ঘ) উদ্দীপকের Q, R ও S মৌলের সর্ববহিঃস্থ শক্তিস্তরে ইলেকট্রন বিন্যাস নিমুরূপ-

 $O \rightarrow 3s^2$

 $R \rightarrow 1s^1$

 $S \rightarrow 3s^2 3p^5$

সুতরাং, Q, R ও S মৌল তিনটি যথাক্রমে ম্যাগনেসিয়াম (Mg), হাইড্রোজেন (H) ও ক্লোরিন (Cl)।

এখন, উদ্দীপক অনুসারে QS_2 যৌগটি $MgCl_2$ (ম্যাগনেসিয়াম ক্লোরাইড) এবং R_2 অণুটি H_2 (হাইড্রোজেন) ।

 QS_2 অর্থাৎ $MgCl_2$ সাধারণত একটি আয়নিক যৌগ। কারণ Mg ও Cl যখন বিক্রিয়া করে তখন Mg দুটি ইলেকট্রন ত্যাগ করে Mg^{2+} এবং ঐ দুইটি ইলেকট্রন দুইটি ক্লোরিন পরমাণু গ্রহণ করে $2Cl^-$ আয়নে পরিণত হয়। বিপরীতধর্মী এই দুটি আয়ন পরস্পরকে স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা আকর্ষণ করার মাধ্যমে আয়নিক বন্ধন তৈরি করে। $MgCl_2$ আয়নিক যৌগ হওয়ায় এরা পোলার দ্রাবক পানিতে দ্রবণীয়। কারণ, $MgCl_2$ যখন পানির সংস্পর্শে আসে তখন ধনাত্মক Mg^{2+} আয়ন পানির ঋণাত্মক (O^{2-}) আয়নের প্রতি আকৃষ্ট হয় এবং ঋণাত্মক Cl আয়ন দ্রাবকের ধনাত্মক (H^+) আয়নের প্রতি আকৃষ্ট হয়ে পানিতে দুবীভূত হয়।

কিন্তু R_2 অর্থাৎ, H_2 অণুটি ইলেক্ট্রন শেয়ারের মাধ্যমে গঠিত বিশুদ্ধ সমযোজী যৌগ। বিশুদ্ধ সমযোজী অণু হওয়ায় R_2 অর্থাৎ H_2 পানিতে দ্রবীভূত হয়না। তাই বলা যায়, উদ্দীপকের QS_2 অর্থাৎ $MgCl_2$ যৌগটি আয়নিক হওয়ায় এটি পানিতে দ্রবীভূত হয় কিন্তু R_2 অর্থাৎ H_2 বিশুদ্ধ সমযোজী অণু হওয়ায় তা পানিতে অদ্রবণীয়।

১৪. 14L, 16M, 20N; 17K [এখানে, L, M, N, K প্রতীকী অর্থে ব্যবহৃত] (ক) জারণ সংখ্যা কাকে বলে?

- (খ) বেনজিন একটি অ্যারোমেটিক যৌগ ব্যাখ্যা করো।
- (গ) K_2 এর বন্ধন গঠন প্রক্রিয়া বর্ণনা করো।
- (ঘ) উদ্দীপকের মৌলগুলোর আয়নিকরণ শক্তির ক্রম বিশ্লেষণ করো।

১৫ নং প্রশ্নের উত্তর

- (ক) যৌগ গঠনের সময় কোনো মৌল যত সংখ্যক ইলেকট্রন বর্জন করে ধনাত্মক আয়ন উৎপন্ন করে অথবা যত সংখ্যক ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়ন উৎপন্ন করে তাকে ঐ মৌলের জারণ সংখ্যা বলে।
- (খ) অ্যারোমেটিক যৌগসমূহ সাধারণত 5, 6 বা 7 সদস্যের সমতলীয় চাক্রিক যৌগ। এতে একান্তর দ্বিবন্ধন থাকে অর্থাৎ পর্যায়ক্রমে কার্বন- কার্বন একটি একক এবং একটি দ্বি-বন্ধন থাকে।

বেনজিন হলো ছয় কার্বনবিশিষ্ট সমতলীয় চাক্রিক যৌগ। এতে তিনটি একান্তর দ্বি-বন্ধন বিদ্যমান। সুতরাং, বর্ণনানুসারে বেনজিন একটি অ্যারোমেটিক যৌগ।

(গ) উদ্দীপকের K মৌলটির পারমাণবিক সংখ্যা 17 বিধায় মৌলটি হলো ক্লোরিন (C1)।

ক্লোরিন পরমাণুর ইলেকট্রন বিন্যাস নিমুরূপ-

 $_{17}\text{Cl} \longrightarrow 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^5$

উপরিউক্ত ইলেকট্রন বিন্যাস থেকে দেখা যায়, ক্লোরিন পরমাণুর সর্বশেষ কক্ষপথে 7টি ইলেকট্রন বিদ্যমান। অষ্টক পূর্ণতার জন্য দুটি ক্লোরিন পরমাণুর প্রত্যেকে একটি করে ইলেকট্রন প্রদান করে এক জোড়া ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন গঠনের মাধ্যমে একটি ক্লোরিন অণু (Cl₂) গঠন করে। ফলে প্রতিটি ক্লোরিন পরমাণু নিকটবর্তী নিষ্ক্রিয় গ্যাস আর্গনের ইলেকট্রন বিন্যাস অর্জন করে।

চিত্র: Cl₂ অণুর বন্ধন গঠন।

(ঘ) উদ্দীপকে উল্লিখিত মৌলসমূহের পারমাণবিক সংখ্যা যথাক্রমে 14, 16, 20 এবং 17। সুতরাং, মৌলগুলো হবে যথাক্রমে Si, S, Ca এবং Cl। মৌলগুলোর আয়নিকরণ শক্তির ক্রম নিম্নে বিশ্লেষণ করা হলো- গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল গ্যাসীয় পরমাণু থেকে এক মোল ইলেকট্রন অপসারণ করে এক মোল ধনাত্মক আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন তাকে ঐ মৌলের আয়নিকরণ শক্তি বলে। Si, S, Ca এবং C' এর ইলেকট্রন বিন্যান নিম্নরপ-

Si(14) = $1s^2$ $2s^2$ $2p^6$ $1s^2$ $2p^6$ $3s^2$ S (16) $2s^2$ Ca(20) = $1s^2$ $4s^2$ $1s^2$ C1(17) =আমরা জানি, একই গ্রুপে যখন উপর থেকে নিচের দিকে যাওয়া যায় তখন নতুন প্রধান শক্তিস্তর যুক্ত হওয়ায় পরমাণুর আকার বাড়ে ফলে

নিউক্লিয়াসের সাথে শেষ কক্ষপথের ইলেকট্রনের আকর্ষণ কমে। তাই মৌলটি সহজে শেষ কক্ষপথের ইলেকট্রন ত্যাগ করতে পারে।

৫ম অধ্যায়

বুসামূল

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

অর্থাৎ ইলেকট্রন ত্যাগ করতে কম শক্তির প্রয়োজন হয়। তাই একই গ্রুপের উপর থেকে নিচে আয়নিকরণ শক্তির মান কমতে থাকে।

আবার, একই পর্যায়ে বাম থেকে ডানে গেলে মৌলগুলোর আকার ছোট হতে থাকে। ফলে নিউক্লিয়াসের সাথে শেষ কক্ষপথের ইলেকট্রনের আকর্ষণ বাড়ে। তাই ইলেকট্রন ত্যাগ করতে বেশি শক্তির প্রয়োজন হয়। অর্থাৎ একই পর্যায়ে বাম থেকে ডানে গেলে মৌলগুলোর আয়নিকরণ শক্তির মান বাড়ে। উদ্দীপকের Si, S, Cl মৌলগুলো তয় পর্যায়ের ক্রমান্বয়ে বাম থেকে ডানে অবস্থিত মৌল। সুতরাং উদ্দীপকের তয় পর্যায়ের মৌলগুলোর আয়নিকরণ শক্তির ক্রম:

Si < S < Cl

আবার, Ca চতুর্থ পর্যায়ের মৌল হওয়ায় এর আয়নিকরণ শক্তি সবচেয়ে কম হবে।

ফলে উদ্দীপকের মৌল চারটির আয়নিকরণ শক্তির ক্রম:

Ca < Si < S < Cl

অর্থাৎ, $_{20}$ N < $_{14}$ L < $_{16}$ M < $_{17}$ K

50.

মৌল	A	В	С	D
প্রোটন সংখ্যা	1	6	11	17

[এখানে, A, B, C, D প্রচলিত মৌলের প্রতীক নয়]

[চউগ্রাম বোর্ড ২০২৩]

- (ক) যৌগমূলক কাকে বলে?
- (খ) Mg এর যোজ্যতা ২ ব্যাখ্যা করো।
- (গ) CA যৌগের বন্ধন গঠন প্রক্রিয়া ডায়াগ্রাম<mark>সহ ব্যাখ্যা করো।</mark>
- (ঘ) BA4 এবং AD একই ধরনের যৌগ কিন্তু একটি পানিতে দ্রবণীয় অন্যটি অদুবণীয় বিশ্লেষণ করো।

১৬ নং প্রশ্নের উত্তর

- (ক) একাধিক মৌলের কতিপয় পরমাণু পরস্পরের সাথে মিলিত হয়ে ধনাত্মক বা ঋণাত্মক আধান বিশিষ্ট একটি পরমাণুগুচ্ছ তৈরি করে, যা একটি মৌলের ন্যায় আচরণ করে তাকে যৌগমূলক বলে।
- (খ) পরমাণু তার শেষ কক্ষপথে নিকটতম নিদ্ধিয় গ্যাসের স্থিতিশীল ইলেকট্রন বিন্যাস অর্জনপূর্বক বন্ধন গঠনের জন্য যে কয়টি ইলেকট্রন ত্যাগ, গ্রহণ অথবা শেয়ার করে সেই সংখ্যাকে ঐ মৌলের যোজনী বলে। Mg এর ইলেকট্রন বিন্যাস হলো : $Mg(12) \to 1s^2\ 2s^2\ 2p^6\ 3s^2$ । ইলেকট্রন বিন্যাস হতে দেখা যায়, Mg এর সর্ববহিঃস্থ শক্তিস্তরে দুটি ইলেকট্রন বিদ্যমান। Mg তার এই দুটি ইলেকট্রন ত্যাগ করে এর নিকটতম নিদ্ধিয় গ্যাস নিয়ন (Ne) এর ইলেকট্রন বিন্যাস ($Ne(10) \to 1s^2\ 2s^2\ 2p^6$) অর্জন করে ($Mg \to Mg^{2+} + 2e^-$)। তাই Mg এর যোজ্যতা 2।
- (গ) উদ্দীপকে উল্লিখিত C ও A মৌলম্বয়ের প্রোটন সংখ্যা যথাক্রমে 11 ও 1। পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যাক্রম অনুযায়ী মৌলদ্বয় যথাক্রমে Na ও H। কাজেই, এদের দ্বারা গঠিত যৌগটি হবে সোডিয়াম হাইজ্রাইড (NaH)।

সোডিয়ামের ইলেকট্রন বিন্যাস:

 $Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$ এবং হাইড্রোজেনের ইলেকট্রন বিন্যাস :

 $H(1) \rightarrow 1s^2$

ইলেকট্রন বিন্যাস হতে এটা স্পষ্ট যে, সোডিয়াম পরমাণু তার ধাতব বৈশিষ্ট্যের আধিক্যের কারণে সর্ববহিঃস্থ শক্তিস্তরের ইলেকট্রনটি হাইড্রোজেন (H) পরমাণুকে দান করে নিকটস্থ নিষ্ক্রিয় গ্যাস নিয়নের (Ne) ইলেকট্রন বিন্যাস অর্জন করে। অপরদিকে, H পরমাণু তার সর্ববহিঃস্থ শক্তিস্তরে উক্ত ইলেকট্রনটি গ্রহণ করার মাধ্যমে নিষ্ক্রিয় গ্যাস He এর ইলেকট্রন বিন্যাস অর্জন করে। এভাবে Na ও H পরস্পর স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে আয়নিক যৌগ সোডিয়াম হাইড্রাইড গঠন করে।

[Naj [H] -- NaH.

(ঘ) উদ্দীপকে উল্লিখিত সারণিতে B ও ও D মৌলের প্রোটন সংখ্যা যথাক্রমে 6 ও 17। কাজেই, পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যাক্রম অনুযায়ী মৌলদ্বয় যথাক্রমে কার্বন (C) এবং ক্লোরিন (Cl)। কাজেই BA_4 ও AD যৌগদ্বয় হলো যথাক্রমে CH_4 এবং HCl। এরা মূলত সমযোজী যৌগ।

কোনো সমযোজী যৌগকে পানিতে দ্রবীভূত করলে যৌগটি প্রথমে ধনাত্মক ও ঋণাত্মক আয়নে বিয়োজিত হবে। এক্ষেত্রে সমযোজী যৌগের ধনাত্মক প্রান্তটি পানির অণুর ঋণাত্মক প্রান্ত তথা অক্সিজেন দ্বারা আকর্ষিত হবে। অপরদিকে, সমযোজী যৌগের ঋণাত্মক প্রান্তটি পানির ধনাত্মক তথা হাইড্রোজেন প্রান্ত দ্বারা আকর্ষিত হবে। ফলে সমযোজী যৌগটি পানিতে দ্রবীভূত হবে।

মিথেন (CH₄) অণুর বন্ধনের ক্ষেত্রে:

C এর ইলেক্ট্রন বিন্যাস-

 $C(6) \rightarrow 1 {
m s}^2 \, 2 {
m s}^2 \, 2 {
m p}^2$ বা, $1 {
m s}^2 \, 2 {
m s}^2 \, 2 {
m p_x}^1 \, 2 {
m p_y}^1 \, 2 {
m p_z}^0$ উত্তেজিত অবৃস্থায় \underline{C} এর ইলেকট্রন বিন্যাস- $C^*(16) \rightarrow 1 {
m s} \, 2 {
m s}^1 \, 2 {
m p_x}^1 \, 2 {
m p_y}^1 \, 2 {
m p_z}^1$

এই অবস্থায় কার্বনের সর্বশেষ শক্তিস্তরের চারটি বিজোড় ইলেক্ট্রন চারটি H পরমাণুর $1s^2$ অরবিটালের ইলেক্ট্রনের সাথে বন্ধন গঠনের মাধ্যমে সমযোজী যৌগ মিথেন (CH_4) গঠন করে। এই বন্ধনে অধিক তড়িং ঋণাত্মক মৌলের অনুপস্থিতির দরুন পোলারিটি সৃষ্টি হয় না। ফলে CH_4 অণু পানির H ও O প্রমাণুর দ্বারা আকর্ষণের মাধ্যমে বিশিষ্ট হয়ে পানিতে দ্রবীভূত হয় না।

অপরদিকে, HCl এর অণুতে H এবং Cl এর শেয়ারকৃত বন্ধন ইলেকট্রনযুগল উভয় পরমাণু সমানভাবে শেয়ার করার কথা থাকলেও তড়িৎ ঋণাত্মকতার পার্থক্যের কারণে ক্লোরিন কর্তৃক ইলেকট্রন মেঘ বেশি আকর্ষিত হয়। ফলে বন্ধন ইলেকট্রন মেঘ ক্লোরিনের দিকে অধিক স্থানান্তরিত হয় এবং এর ফলে ইলেকট্রন ঘনত্বের তারতম্যের সৃষ্টি হয়। ফলে ক্লোরিনে আংশিক ঋণাত্মক প্রান্ত এবং হাইড্রোজেনে আংশিক ধনাত্মক প্রান্তের সৃষ্টি হয়। এ ঘটনাকে সমযোজী যৌগের পোলারিটি এবং যৌগকে পোলার যৌগ বলে। তাই HCl একটি পোলার যৌগ। সৃষ্ট বিপরীত চার্জযুক্ত পারমাণু দুটি পানির বিপরীত চার্জযুক্ত আয়ন দ্বারা আকর্ষিত হয়ে আয়নিক যৌগের ন্যায় HCl পানিতে দ্রবীভূত হয়।

চিত্র: পানি অণু সংযোজিত H⁺ ও Cl⁻ আয়ন

১৬. A মৌলের দুইটি আইসোটোপ যথাক্রমে ^{35}A ও $^{37}A'$ । A মৌলের আপেক্ষিক পারমাণবিক ভর 35.5। অন্য একটি মৌল B যার পারমাণবিক সংখ্যা 19.

[সিলেট বোর্ড ২০২৩]

৫ম অধ্যায় বুসায়ুৰ

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

- (ক) পাতন কাকে বলে?
- (খ) বডি স্প্রেতে আগে নিঃসরণে এবং পরে ব্যাপন ঘটে ব্যাযখ্যা
- (গ) A মৌলের আইসোটোপ দুইটির শতকরা প্রাপ্যতার পরিমাণ নির্ণয়
- (ঘ) A মৌলটি আয়নিক ও সমযোজী উভয় বন্ধন গঠন করে কিন্তু B মৌল শুধ আয়নিক বন্ধন গঠন করে - বিশ্লেষণ করো।

১৭ নং প্রশ্নের উত্তর

- (ক) কোনো তরলকে তাপ প্রদানে বাষ্পে পরিণত করে তাকে পুনরায় শীতলীকরণের মাধ্যমে তরলে পরিণত করার পদ্ধতিকে পাতন বলে।
- (খ) বিড স্প্রেতে আগে নিঃসরণ এবং পরে ব্যাপন ঘটে। নিচে তা ব্যাখ্যা করা হলো-

বিডি স্প্রেতে বিদ্যমান উপাদানগুলোর চাপ বিডি স্প্রে এর ভিতর ও বাহিরে সমান নয়। বডি স্প্রের ভেতরে চাপ বেশি থাকে। সরু ছিদ্রপথে যখন গ্যাসের অণুসমূহ উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসে তখন নিঃসরণ প্রক্রিয়া ঘটে। চাপ দিলে বডি স্প্রেতে বিদ্যমান পদার্থ ছিদ্রপথে বেরিয়ে পড়ে। বডি স্পের ছিদ্রপথে অণুর স্বতঃস্কৃর্ত গতিকে বাধা দেয়। ছিদ যত বড় হতে থাকে স্বতঃস্কুৰ্ততা তত বদ্ধি পেতে থাকে। যখ<mark>ন সম্পূৰ্ণ</mark> চাপমুক্ত হয় তখন ব্যাপনে রূপান্তরিত হয়। এজন্য বডি স্প্রে<mark>তে আ</mark>গে নিঃসরণ এবং পরে ব্যাপন ঘটে।

(গ) ধরি, $^{35}{
m A}$ এর শতকরা পরিমাণ ${
m x}\%$ এবং $^{37}{
m A}$ এর শতকরা পরিমাণ (100 - x%) +

এখানে, A মৌলের-

আপেক্ষিক পারমাণবিক ভর
$$= \frac{(\mathrm{x} \times 35) + (100 - \mathrm{x}) \times 37}{100}$$

$$\therefore 35.5 = \frac{35x + 3700 - 37x}{100}$$

বা, 3700 - 2x = 3550

$$7, 2x = 3700 - 3550 = 150$$

 $\therefore x = 75\%$

সুতরাং, $^{35}{
m A}$ এর শতকরা পরিমাণ 75% এবং $^{37}{
m A}$ এর শতকরা পরিমাণ (100 - 75)% = 25%।

- (ঘ) উদ্দীপকের A ও B মৌল দুটি যথাক্রমে ক্লোরিন (Cl) ও পটাশিয়াম (K)। কেননা, C1 এর পারমাণবিক ভর 35.5 এবং K এর পারমাণবিক সংখ্যা 19।
 - Cl মৌল K মৌলের সাথে যুক্ত হয়ে KCl আয়নিক যৌগ ও দুটি Cl পরমাণু যুক্ত হয়ে সমযোজী অণু Cl_2 গঠন করে কিন্তু K মৌল Clমৌলের সাথে যুক্ত হয়ে শুধুমাত্র আয়নিক যৌগ KCl গঠন করে। নিচে তা বিশ্লেষণ করা হলো-

KCl যৌগ গঠন:

K ও Cl এর ইলেক্ট্রন বিন্যাস নিয়ে পাই,

$$K(19) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

 $Cl(17) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$

K পরমাণু তার সর্ববহিঃস্থ শক্তিস্তরের $(4{
m s}^1)$ একটি ইলেক্ট্রন ত্যাগ করে নিকটস্থ নিষ্ক্রিয় গ্যাস আর্গনের স্থিতিশীল অষ্টক কাঠামো লাভ করে এবং \mathbf{K}^+ আয়নে পরিণত হয়। অপরদিকে $\mathbf{C}\mathbf{1}$ পরমাণু তার সর্ববহিঃস্থ ৩য় শক্তিস্তরে 1টি ইলেকট্রন গ্রহণ করে আর্গনের স্থিতিশীল অষ্টক কাঠামো লাভ করে এবং Cl আয়নে পরিণত হয়। এভাবে সৃষ্ট K^+ ও Cl^- আয়নদ্বয় বিপরীত আধানযুক্ত হওয়ায় তারা পরস্পর স্থির বৈদ্যুতিক আকর্ষণ শক্তির দারা যুক্ত হয়ে KCl আয়নিক যৌগ গঠন করে।

চিত্র : আয়নিক বন্ধনের মাধ্যমে KCl যৌগ গঠন প্রক্রিয়া

Cl2 অণু গঠন:

Cl এর ইলেকট্রন বিন্যাস, $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$ <mark>ইলেকট্রন বি</mark>ন্যাস হতে দেখা যায়, Cl এর শেষ কক্ষপথে 7টি ইলেকট্রন বিদ্যমান। ফলে অষ্টক পুরণের জন্য এর একটি ইলেকট্রন প্রয়োজন। এক্ষেত্রে দুটি ক্লোরিন (C1) পরমাণু পরস্পর একটি করে ইলেক্ট্রন শেয়ার করে নিকটবর্তী নিদ্ধিয় গ্যাস Ar(18) এর ইলেকট্রন বিন্যাস $(1s^2\ 2s^2)$ $2
m p^6~3 s^2~3
m p^6$) লাভ করে এবং $m Cl_2$ অণু গঠন করে।

চিত্র : Cl₂ অণু গঠন প্রক্রিয়া

সুতরাং বলা যায় যে, A <mark>মৌল তথা ক্লোরিন</mark> (Cl) আয়নিক ও সমযোজী উভয় বন্ধন গঠন করে কিন্তু B মৌল তথা পটাশিয়াম (K) শুধু আয়নিক বন্ধন গঠন করে।

١٩.

Г	মৌল	পর্যায়	সর্ববহিঃস্তরের ইলেক্ট্রন
	X	2	ns ² np ²
	Y	3	ns ² np ⁵
	Z	3	ns ¹

X, Y, Z প্রচলিত প্রতীক নয়

[সিলেট বোর্ড ২০২৩]

- (ক) আপেক্ষিক পার<mark>মাণবিক ভ</mark>র কাকে বলে?
- (খ) ডোবেরাইনার ত্রয়ী সূত্রটি ব্যাখ্যা করো।
- (গ) Y মৌলের <mark>অণুর বন্ধন গঠন</mark> প্রক্রিয়া ডায়াগ্রাম চিত্রসহ বর্ণনা করো।
- <mark>(ঘ) X ও Y মৌল দ্বারা গঠিত যৌগ পানিতে দ্রবীভূত হয় না কিন্তু Y ও</mark> Z মৌল দ্বারা গঠিত যৌগ পানিতে দ্রবীভূত হয় কেন? বিশ্লেষণ

১৮ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের একটি পরমাণুর ভর এবং একটি কার্বন-12 পরমাণু ভরের $\frac{1}{12}$ অংশের অনুপাতকে ঐ মৌলের আপেক্ষিক পারমাণবিক ভর
- (খ) জানা আছে, পারমাণবিক ভর অনুসারে তিনটি করে মৌলকে সাজালে দিতীয় মৌলের পারমাণবিক ভর প্রথম ও তৃতীয় মৌলের পারমাণবিক ভরের যোগফলের অর্ধেক বা তার কাছাকাছি, যাকে ডোবেরাইনারের এয়ীসূত্র বলা হয়। যেমন : $^9{
 m Li}$ ও $^{39}{
 m K}$ এর পারমাণবিক ভরের গড় = $rac{7+39}{2}$ = 23; যা $^{23}{
 m Na}$ এর পারমাণবিক ভর 23 এর সমান।

www.schoolmathematics.com.bd

বসায়ৰ

৫ম অধ্যায়

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

(গ) উদ্দীপকের Y মৌলটি হলো ক্লোরিন (Cl)। কারণ এটি তৃতীয় পর্যায়ের মৌল এবং সর্বশেষ শক্তিস্তরে ইলেকট্রন সংখ্যা 7টি। Y মৌল তথা Cl মৌলের অণু হলো Cl_2 । নিচে Cl_2 অণুর বন্ধন গঠন প্রক্রিয়া ডায়াগ্রাম চিত্রসহ বর্ণনা করা হলো-

 Cl_2 গঠর গঠন : Cl এর ইলেকট্রন বিন্যাস, Cl $(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$ ইলেকট্রন বিন্যাস হতে দেখা যায়, Cl এর শেষ কক্ষপথে 7টি ইলেকট্রন বিদ্যমান। ফলে অষ্টক পূরণের জন্য এর একটি ইলেকট্রন প্রয়োজন। এক্ষেত্রে দুটি ক্লোরিন (Cl) পরমাণু পরস্পর একটি করে ইলেকট্রন শেয়ার করে নিকটবর্তী নিদ্রিয় গ্যাস Ar(18) এর ইলেকট্রন বিন্যাস $(1s^2 2s^2 2p^6 3s^2 3p^6)$ লাভ করে এবং Cl_7 অণু গঠন করে।

চিত্র : Cl2 অণু গঠন প্রক্রিয়া

(ঘ) উদ্দীপকের X, Y ও Z মৌল তিনটি হলো যথাক্রমে কার্বন (C), ক্লোরিন (Cl) ও সোডিয়াম (Na)। কেননা-

 $C(6) \rightarrow 1s^2 2s^2 2p^2$; ২য় পর্যায়

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$; ৩য় পর্যায়

 $Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$; তয় পর্যায়

এখন C ও Cl দ্বারা গঠিত যৌগ CCl4 এবং Cl ও Na দ্বা<mark>রা গ</mark>ঠিত যৌগ NaCl । NaCl পানিতে দ্রবীভূত হলেও CCL4 পানিতে দ্রবীভূত হয় না- নিচে বিশ্লেষণ করা হলো-

NaCl যৌগটিতে ধনাত্মক ও ঋণাত্মক প্রান্ত বিদ্যুমান। পোলার দ্রাবক পানির ধনাত্মক ও ঋণাত্মক দুটি মেরু আছে। আয়নিক যৌগ পানিতে দ্রবীভূত করলে যৌগটির ধনাত্মক আয়ন পানির ঋণাত্মক মেরুর দিকে এবং যৌগের ঋণাত্মক আয়ন পানির ধনাত্মক মেরুর দিকে আবর্তিত হয়ে পারস্পরিক আকর্ষণ অনুভব করে। ফলে ল্যাটিসের আয়নসমূহের মধ্যকার কুলম্ব আকর্ষণ কমতে থাকে এবং আয়নগুলো দ্রাবক পানির অণু দ্বারা বেষ্টিত অবস্থায় ল্যাটিস হতে বিচ্ছিন্ন হয়ে দ্রাবকে দ্রবীভূত হয়। নিচের চিত্রে পানিতে NaCl এর দ্রবণীয়তা দেখানো হলো-

চিত্র: পানিতে আয়নিক যৌগ NaCl এর দ্রবণীয়তা

পানির ডাইপোলগুলো Na^+ ও Cl^- আয়নগুলোকে ল্যাটিস হতে আকর্ষণ বল দ্বারা বিচ্ছিন্ন করে পরিবেষ্টিত অবস্থায় নিজের মধ্যে দ্রবীভূত করে। অপরদিকে, CCl_4 এর ক্ষেত্রে সমযোজী যৌগ হওয়ায় ধনাত্মক ও ঋণাত্মক আয়নের সৃষ্টি হয় না। ফলে হাইড্রেশন শক্তি কেলাস ল্যাটিস ভাঙার শক্তির চেয়ে কম হয়। ফলে CCL_4 পানিতে দ্রবীভূত হয় না।

১৮. একটি পরমাণুর ভর $10.541 \times 10^{-23} \mathrm{g}$. উহার একটি পরমাণুতে 34টি নিউট্রন আছে।

[যশোর বোর্ড ২০২৩]

- (ক) সংকেত কাকে বলে?
- (খ) পটাশিয়ামকে ক্ষারধাতু বলা হয় কেন? ব্যাখ্যা করো।
- (গ) গাণিতিকভাবে মৌলটি নির্ণয় করো।
- (ঘ) উদ্দীপকের মৌলটি বিদ্যুৎপরিবাহী এবং তার ইলেকট্রন বিন্যাস সাধারণ নিয়মের ব্যতিক্রম। – বিশ্লেষণ করো।

১৯ নং প্রশ্নের উত্তর

- (ক) নির্দিষ্ট প্রতীক ও নির্দিষ্ট নিয়মের মাধ্যমে একটি বস্তু বা পদার্থকে সংক্ষিপ্ত আকারে পূর্ণভাবে প্রকাশের রূপকে সংকেত বলে।
- (খ) যেসব মৌল পানির সাথে তীব্রভাবে বিক্রিয়া করে তীব্রক্ষার ও হাইড্রোজেন তৈরি করে সেগুলোকে ক্ষার ধাতু বলে। হাইড্রোজেন ব্যতীত পর্যায় সারণির 1নং গ্রুপের সকল মৌলকেই ক্ষার ধাতু বলে। ক্ষার ধাতুসমূহের পরমাণুর সর্ববহিঃস্থ শক্তিস্তরে 1টি ইলেকট্রন থাকায় তা খুব সহজেই অন্য কোনো অধাতব মৌলকে দান করার মাধ্যমে ধাতব আয়নে পরিণত হতে পারে। ফলে ক্ষারধাতুসমূহের রাসায়নিক সক্রিয়তা অনেক বেশি হয়। পটাসিয়াম পর্যায় সারণির 1নং গ্রুপে অবস্থিত। এটি পানির সাথে বিক্রিয়া করে H_2 গ্যাস ও KOH এর ক্ষার দ্রবণ তৈরি করে। সর্ববহিঃস্থ শক্তিস্তরে অবস্থিত একমাত্র ইলেকট্রনটি অধাতুকে প্রদান করে পটাসিয়াম আয়নিক যৌগ তৈরি করে। H_2O এর সাথে ক এর বিক্রিয়া হলো-

$$2K + 2H_2O \longrightarrow 2KOH + H_2$$

সু<mark>তরাং, পটাসিয়াম ক্ষার দ্র</mark>বণ তৈরি করে বলে একে ক্ষার ধাতু বলা হয়।

(গ) উদ্দীপক মতে,

মৌলটির একটি পরমাণুর ভর = $10.541 \times 10^{-23} \, \mathrm{g}$

নিউট্রন সংখ্যা = 34

আমরা জানি, মৌলের আপেক্ষিক পারমাণবিক ভর

মৌলের একটি পরমাণুর ভর

: 1টি কার্বন-12 <mark>আইসোটোপের ভরের $\dfrac{1}{2}$ অংশ</mark>

আমরা জানি, 1টি কার্বন-12 আইসোটোপের ভরের $\frac{1}{12}$ অংশের ভর হলো = $1.66 \times 10^{-24} \, \mathrm{g}$

অতএব, মৌলটির আপেক্ষিক পারমাণবিক ভর = $\frac{10.541 \times 10^{-23} \text{ g}}{1.66 \times 10^{-24} \text{ g}}$

আবার, ভরসংখ্যা = প্রোটন + নিউটন সংখ্যা

বা, প্রোটন সংখ্যা = ভরসংখ্যা – নিউট্রনসংখ্যা

$$= 63.5 - 34$$

= $29.5 \approx 29$

সুতরাং, মৌলটি Cu।

(ঘ) "গ" হতে প্রাপ্ত মৌলটি হলো- কপার (Cu)।

কপার বিদ্যুৎ পরিবাহী এবং এর ইলেকট্রন বিন্যাস সাধারণ নিয়মের ব্যতিক্রম, নিচে তা বিশ্লেষণ করা হলো-

কপার মূলত একটি ধাতু। সকল ধাতুরই সর্বশেষ শক্তিস্তরে কম সংখ্যক ইলেকট্রন নিউক্লিয়াসের সাথে দুর্বলভাবে আকর্ষণ বল নিয়ে থাকে।

ফলে, ধাতব কেলাসে এই ইলেকট্রনগুলো পরমাণুর কক্ষপথ থেকে বের হয়ে সমগ্র ধাতবখন্ডে মুক্তভাবে চলাচল করে। বিমুক্ত ইলেকট্রনগুলো কোনো নির্দিষ্ট পরমাণুর অধীনে থাকে না। বরং সমগ্র ধাতব খন্ডের হয়ে যায়। ফলে ইলেকট্রন হারিয়ে ধাতুর পরমাণুগুলো ধনাত্মক আয়নে পরিণত হয়ে এক বিশাল আকৃতির ত্রিমাত্রিক কেলাসে পরিণত হয়। তখন এক ইলেকট্রন সাগরে আয়নগুলো নিমজ্জিত আছে বলে মনে হয়। মুক্ত ইলেকট্রনসমূহ সমস্ত ধাতব খন্ডে সঞ্চরণশীল থাকে। এই সঞ্চরণশীল ইলেকট্রনের কারণেই ধাতু বিদ্যুৎ পরিবহন করে।

Cu এর ইলেক্ট্রন বিন্যাস স্বাভাবিক নিয়মের ব্যতিক্রম হয়। নিম্নে এর কারণ বিশ্লেষণ করা হলো:

সমশক্তি সম্পন্ন অরবিটালসমূহ অর্ধপূর্ণ বা সম্পূর্ণরূপে পূর্ণ হলে সে ইলেকট্রন বিন্যাস অধিকতর সুস্থিতি অর্জন করে। অর্থাৎ $np^3,\ np^6,\ nd^5,\ nd^{10},\ nf^{14},\ nf^{14}$ সবচেয়ে সুস্থিত হয়। এর ফলেই $d^{10}s^2$ ও d^4s^2

৫ম অধ্যায়

বসায়ৰ

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

ইলেকট্রন বিন্যাস d^9s^2 ও d^4s^2 এর তুলনায় অধিকতর স্থিতিশীল। Cu(29) এর ক্ষেত্রে 4s অরবিটালে দুটি ইলেকট্রন এবং 3d অরবিটালে 9টি ইলেকট্রন থাকা বাপ্স্থনীয় ছিল। অর্থাৎ, Cu এর ইলেকট্রন বিন্যাস হওয়া উচিত ছিল-

 $Cr(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$ (ভুল পদ্ধতি) সৃষ্টিত বিন্যাসের জন্য ইলেকট্রন বিন্যাস-

 $Cu(29) \to 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^1$ (সঠিক পদ্ধতি) সুতরাং, Cu ব্যতিক্রমধর্মী ইলেক্ট্রন বিন্যাস প্রদর্শন করে।

১৯.

মৌল	পারমাণবিক
A	20
В	16
D	6

[A, B, D প্রকৃত কোনো মৌল নয়, প্রতীকী অর্থে ব্যবহৃত ।]

[যশোর বোর্ড ২০২৩]

- (ক) নিঃসরণ কাকে বলে?
- (খ) ${}^{1}_{1}H$ এবং ${}^{3}_{1}H$ পরস্পর আইসোটোপ ব্যাখ্যা করো।
- (গ) A ও B এর মধ্যে কোন ধরনের বন্ধন গঠিত হয়? বর্ণনা করো।
- (ঘ) A এর হ্যালাইড পানিতে দ্রবণীয় হলেও D এর হ্যালাইড <mark>পা</mark>নিতে অদ্রবণীয় বিশ্লেষণ করো।

২০ নং প্রশ্নের উত্তর

- (ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- থে) 1_1H এবং 3_1H পরস্পর আইসোটোপ। জানা আছে, যে সব পরমাণুর প্রোটন সংখ্যা একই কিন্তু ভর সংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে পরস্পর আইসোটোপ বলে। 1_1H এবং 3_1H পরমাণুদ্বয়ের প্রোটন সংখ্যা 1। এদের ভরসংখ্যা ভিন্ন $(1\ {}^3)$ এবং নিউট্রন সংখ্যা ভিন্ন $(0,\ 2)$ । এজন্য 1_1H এবং 3_1H পরস্পরের আইসোটোপ।
- (গ) উদ্দীপকের তথ্য মতে, A ও B মৌলদ্বয় যথাক্রমে ক্যালসিয়াম (Ca) ও সালফার (S)। এদের দ্বারা গঠিত যৌগ CaS। CaS এর মধ্যে আয়নিক বন্ধন বিদ্যমান। নিচে তা বর্ণনা করা হলো-

Ca ও S এর ইলেক্ট্রন বিন্যাস নিয়ে পাই-

 $Ca(20) = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

 $S(16) = 1s^2 2s^2 2p^6 3s^2 3p^4$

দেখা যাচ্ছে, Ca এর যোজ্যতা স্তরে 2টি ইলেকট্রন আছে এবং S এর যোজ্যতা স্তরে 6টি ইলেকট্রন আছে। এজন্য Ca পরমাণু 2টি ইলেকট্রন দান করে Ca^{2+} আয়ন এবং S পরমাণু 2টি ইলেকট্রন গ্রহণ করে S^{2-} । আয়নে পরিণত হয়।

 $Ca \rightarrow Ca^{2+} + 2e^-$ (ইলেকট্রন ত্যাগ)

 $S+2e^- \rightarrow S^{2-}$ (ইলেক্ট্রন গ্রহণ)

 $Ca + S \rightarrow CaS$

পরে Ca^{2+} ও S^{2-} আয়নদ্বয় পরস্পর স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে CaS আয়নিক যৌগ গঠন করে।

চিত্র : CaS যৌগের আয়নিক বন্ধন গঠন

(ঘ) A মৌলটি Ca এবং এর হ্যালাইড CaX_2 ; যেমন $CaCl_2$, যা পানিতে দ্রবণীয়। অপরদিকে মৌলটি কার্বন (C) এর হ্যালাইড CX_4 ; যেমন CCl_4 , যা পানিতে অদ্রবণীয়। নিচে তা বিশ্লেষণ করা হলো-

 $CaCl_2$ যৌগে Ca পরমাণু 2টি ইলেকট্রন দান করে। অপরদিকে Cl পরমাণু একটিমাত্র ইলেকট্রন গ্রহণে সমর্থ হওয়ায় প্রতিটি Ca পরমাণুর জন্য 2টি Cl পরমাণুর প্রয়োজন হয়। এরূপে Ca^{2+} ও Cl^- আয়ন সৃষ্টি হয়। $CaCl_2$ কে পানিতে দ্রবীভূত করার সময় H_2O এর ধনাত্মক মেরু $CaCl_2$ এর ঋণাত্মক আয়নের দিকে এবং H_2O এর ঋণাত্মক আয়ন $CaCl_2$ এর ধনাত্মক আয়নের দিকে আবর্তিত হয়। ফলে $CaCl_2$ এর Ca^{2+} আয়ন ও Cl আয়নসমূহ পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে।

Ca²⁺ ও Cl⁻ আয়নসমূহ দ্রবণে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে। জলীয় দ্রবণে আয়নিক যৌগের আয়নসমূহের এরূপে পানি অণু সংযোজিত হওয়ার প্রক্রিয়াকে পানি যোজন বা হাইড্রেশন বলা হয়। ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে CaCl₂ এর কেলাস-ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

চিত্র : CaCl2 এর পানিতে দ্রবণীয়তা

অপরদিকে CCl4 একটি অপোলার সমযোজী যৌগ হওয়ায় এটি ধনাত্মক বা ঋণাত্মক চার্জে চার্জিত হতে পারে না। এজন্য পোলার পানির অণুতে CCl4 দ্রবীভূত হতে পারে না।

২٥.

মৌল	গ্রুপ	পর্যায়
A	1	3
В	2	3
C	16	3
D	17	3

্রিখানে A, B, C ও D প্রতীকী অর্থে ব্যবহৃত।

[বরিশাল বোর্ড ২০২৩]

- (ক) পাতন কাকে বলে?
- (খ) NH4 একটি যৌগমূলক ব্যাখ্যা করো।
- (গ) B ও D মৌল দ্বারা গঠিত যৌগের গঠন বর্ণনা করো।
- (ঘ) উদ্দীপকের A, C ও D মৌলগুলোর পারমাণবিক ব্যাসার্ধ এবং তড়িৎ ঋণাত্মকতার ক্রম একই হবে কিনা? বিশ্লেষণ করো।

২১ নং প্রশ্নের উত্তর

- (ক) তাপ প্রয়োগে তরলকে বাম্পে রূপান্তর ও শীতলকরণে ঘনীভূত হয়ে একই তরল পদার্থে পরিণত হওয়ার প্রক্রিয়াকে পাতন বলে।
- (খ) যা যদি একাধিক মৌলের এক বা একাধিক পরমাণু পরস্পরের সাথে যুক্ত হয়ে একটি পরমাণুগুচ্ছ তৈরি করে যা বিভিন্ন বিক্রিয়ায় একটি মৌলের বা আয়নের ন্যায় আচরণ করে তবে তাকে যৌগমূলক বলে।

 ${
m NH_4}^+$ বিভিন্ন যৌগে 1টি পরমাণুর ন্যায় আচরণ করে যেমন- ${
m NH_4Cl}$ এবং ${
m NaNO_3}$ এর বিক্রিয়ায় ${
m NH_4NO_3}$ এবং ${
m NaCl}$ উৎপন্ন হয়। ${
m NH_4Cl}+{
m NaNO_3}\to {
m NH_4NO_3}+{
m NaCl}$

বুসায়ৰ ৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

এখানে বিক্রিয়ার পূর্বে এবং পরে NH_4^+ এর গঠনের কোনো পরিবর্তন হয়নি। তাই NH_4^+ একটি যৌগমূলক। আবার NH_4^+ এর চার্জ সংখ্যা $^+$ ওওয়ায় এটি একটি একযোজী ধনাত্মক যৌগমূলক।

(গ) উদ্দীপকে উল্লিখিত B ও D মৌলগুলো হচ্ছে পর্যায় সারণির গ্রুপ-2; পর্যায়-3 এর মৌল M_g এবং D হচ্ছে গ্রুপ-17; পর্যায়-3 এর মৌল Cl। কাজেই B ও D মৌল দ্বারা গঠিত যৌগটি $MgCl_2$ ।

MgCl2 এর গঠন প্রক্রিয়া:

Mg এর ইলেক্ট্রন বিন্যাস নিমুরূপ-

 $Mg(12) = 1s^2 2s^2 2p^6 3s^2$

যেহেতু মৌলটির সর্ববহিঃস্থ কক্ষপথে 2টি ইলেক্ট্রন আছে তাই মৌলটি একটি ধাতু। আবার, ক্লোরিন এর পারমাণবিক সংখ্যা 17 এবং ইলেক্ট্রন বিন্যাস $Cl(17) \to 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$; অষ্ট্রক পূরণের জন্য মৌলটির সর্ববহিঃস্থ কক্ষপথে 1টি ইলেক্ট্রন প্রয়োজন। তাই মৌলটি অধাতু।

ধাতু এবং অধাতুর মধ্যে বিক্রিয়ার মাধ্যমে আয়নিক যৌগ গঠিত হয়। কাজেই, Mg মৌল Cl মৌলের সাথে বিক্রিয়ার সময় আয়নিক যৌগ গঠন করে।

বন্ধন গঠনের সময় Mg পরমাণু এর সর্ববহিঃস্থ কক্ষপথের দুটি ইলেকট্রন ত্যাগ করে, তড়িৎ ধনাত্মক Mg আয়নে পরিণত হবে ও নিকটস্থ নিদ্ধিয় গ্যাস নিয়নের ইলেকট্রন বিন্যাস অর্জন করবে। ত্যাগকৃত ইলেকট্রন দুটি, ক্লোরিনের দুটি পরমাণু গ্রহণের মাধ্যমে ঋণাত্মক Cl^- আয়নের সৃষ্টি করে এবং আর্গনের ইলেকট্রন বিন্যাস অর্জন করবে। সৃষ্ট ধনাত্মক ও ঋণাত্মক আয়নের মধ্যে স্থির বৈদ্যুতিক আকর্ষণ বলের মাধ্যমে আয়নিক বন্ধন গঠিত হয়। এভাবে, $MgCl_2$ আয়নিক যৌগ গঠিত হয়।

(घ) উদ্দীপকের A, C ও D হলো যথাক্রমে Na, S এবং Cl।

আমরা জানি, একই পর্যায়ে বাম থেকে ডানে গেলে শক্তিস্তর বাড়েনা কিন্তু প্রোটন ও ইলেকট্রন সংখ্যা বৃদ্ধি পাওয়ার কারণে আকর্ষণ বৃদ্ধি পায় তাই শক্তিস্তর নিউক্লিয়াসের তুলনামূলক কাছে চলে আসে। তাই আকার ছোট হয়ে যায়। যেহেতু N_a এর গ্রুপ-1 তাই এর আকার সবচেয়ে বড় এবং S এর আকার তার চেয়ে ছোট। C1 এর আকার সবচেয়ে ছোট (যেহেতু এটি সর্ব ডানের গ্রুপে অবস্থিত)। আবার বাম থেকে ডানে গেলে তড়িং ঋণাত্মকতা বৃদ্ধি পায়। তাই N_a এর তড়িং ঋণাত্মকতা হবে সবচেয়ে কম এবং C1 এর হবে সবচেয়ে বেশি।

পারমাণবিক ব্যাসার্ধের ক্রম : Na > S > Cl তড়িং ঋণাত্মকতার ক্রম : Cl > S > Na

সুতরাং, পারমাণবিক ব্যাসার্ধের ক্রম এবং তড়িৎ ঋণাত্মকভাবে ক্রম একই হবে না।

$$\mathbf{35.} \ \mathrm{Mg(NO_3)_2} \xrightarrow{\Delta} \mathrm{A(g)} + \mathrm{B(g)} + \mathrm{O_2(g)}$$

[বরিশাল বোর্ড ২০২৩]

(ক) অবস্থান্তর মৌল কাকে বলে?

- (খ) Be একটি মৃৎক্ষার ধাতু ব্যাখ্যা করো।
- (গ) উদ্দীপকে 'A' যৌগ গলিত অবস্থায় বিদ্যুৎ পরিবহন করে বর্ণনা করো।
- (ঘ) উদ্দীপকের গ্যাসদ্বয়ের ব্যপনের হার একই হবে কি? গাণিতিকভাবে বিশ্লেষণ করো।

২২ নং প্রশ্নের উত্তর

- (ক) যেসব ধাতব মৌলের স্থিতিশীল আয়নের ইলেকট্রন বিন্যাসে d অরবিটাল আংশিকভাবে ইলেক্ট্রন দ্বারা পূর্ণ থাকে তাদেরকে অবস্থান্তর মৌল বলে।
- খে) যা যে সকল ধাতু মাটিতে যৌগ হিসেবে পাওয়া যায় এবং পানির সাথে বিক্রিয়া করে ক্ষার তৈরি করে তাদেরকে মৃৎক্ষার ধাতু বলা হয়। বৈশিষ্ট্য অনুসারে গ্রুপ-2 এর মৌলসমূহকে মৃৎক্ষার ধাতু বলে। ম্যাগনেসিয়াম (Mg) পর্যায় সারনির দ্বিতীয় গ্রুপে অবস্থিত একটি মৌল। মৌলটি মূলত মাটিতে পাওয়া যায় এবং পানির সাথে বিক্রিয়া করে দুর্বল ক্ষার Mg(OH)2 গঠন করে। তাই ম্যাগনেসিয়াম (Mg) কে মৃৎক্ষার ধাতু বলা হয়।
- (গ) উদ্দীপকের বিক্রিয়াটি:

 $Mg(NO_3)_2 \xrightarrow{\Delta} A(g) + B(g) + O_2(g)$

উদ্দীপকের 'A' যৌগটি MgO। ম্যাগনেসিয়াম ও অক্সিজেনের মধ্যকার যৌগ MgO (ম্যাগনেসিয়াম অক্সাইড) একটি আয়নিক যৌগ। আমরা জানি, আয়নিক যৌগসমূহ গলিত ও দ্রবীভূত অবস্থায় বিদ্যুৎ পরিবহন করে। কারণ, কঠিন অবস্থায় আয়নিক যৌগে আয়নসমূহ নির্দিষ্ট স্থানে অবস্থান করে। কিন্তু গলিত অবস্থায় এবং জলীয় দ্রবণে আয়নসমূহ কেলাস ল্যাটিস থেকে মুক্ত হয়ে ইতস্তত পরিভ্রমণ করে। তরল আয়নিক যৌগের দ্রবণে দুটি ইলেকট্রোড প্রবেশ করালে ঋণাত্মক আয়নসমূহ অ্যানোডের দিকে এবং ধনাত্মক আয়নসমূহ ক্যাথোডের দিকে ধাবিত হয়।

এখন আয়নিক যৌগ ${
m MgO}$ এর ${
m Mg}$ ও ${
m O}$ এর ইলেকট্রন বিন্যাস-

 $Mg(12) = 1s^2 2s^2 2p^6 3s^2$,

 $O(8) = 1s^2 2s^2 2p^4$

Mg পরমাণু তার যোজ্যতাস্তরের দুটি ইলেকট্রন ত্যাগ করে Mg^{2+} আয়নে এবং O পরমাণু ঐ ত্যাগকৃত ইলেকট্রন গ্রহণ করে O^{2-} আয়ন গঠনের মাধ্যমে উভয়েই নিষ্ক্রিয় গ্যাস Ne এর স্থিতিশীল ইলেকট্রন বিন্যাস লাভ করে।

এভাবে বিপরীত চার্জ বিশিষ্ট এই দুই আয়ন স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা যুক্ত হয়ে আয়নিক যৌগ MgO এ পরিণত হয়। সুতরাং, উদ্দীপকের A যৌগ গলিত অবস্থায় বিদ্যুৎ পরিবহণ করে।

চিত্র : MgO যৌগ গঠন প্রক্রিয়া

(ঘ) উদ্দীপকে বর্ণিত গ্যাসদ্বয় হচ্ছে NO_2 ও O_2 । গ্রাহামের ব্যাপন সূত্রানুযায়ী যার আণবিক ভর যত কম তার ব্যাপন হার তত বেশি।

$$\frac{r_{\rm O_2}}{r_{\rm NO_2}} = \sqrt{\frac{M_{\rm NO2}}{M_{\rm NO2}}}$$

 $r_{\mathrm{NO}_2} = \mathrm{O}_2$ এর ব্যাপন হার $r_{\mathrm{O}_2} = \mathrm{NO}_2$ এর ব্যাপন হার

www.schoolmathematics.com.bd

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

$$\Rightarrow rac{r_{O_2}}{r_{NO_2}} = \sqrt{rac{46}{32}}$$
 $M_{NO_2} = NO_2$ এর আণবিক ভর $m_{O_2} = 1.199 imes r_{NO_2}$ $M_{O_2} = O_2$ এর আণবিক ভর সুতরাং, উভয়ের ব্যাপন হার একই হবে না ।

- ২২. P, Q, R, S মৌল চারটি ইলেকট্রন বিন্যাসের স্তর সংখ্যা যথাক্রমে 2, 2, 3, 3 এবং সর্বশেষ স্তরের ইলেকট্রন সংখ্যা যথাক্রমে 3,4,1,7।
 [বরিশাল বোর্ড ২০২৩]
 - (ক) বিক্রিয়ার হার কাকে বলে?
 - (খ) CH₃OH একটি পোলার যৌগ ব্যাখ্যা করো।
 - (গ) PS3 যৌগটির গঠন দুই এর নিয়ম অনুসরণ করে -বর্ণনা করো।
 - (ঘ) QS_4 এবং RS যৌগ দুটি পানিতে দ্রবীভূত হবে কিনা? উত্তরের স্বপক্ষে যুক্তি দাও।

২৩ নং প্রশ্নের উত্তর

- (ক) একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় তাকে বিক্রিয়ার হার বলে।
- (খ) মিথানলে (CH3OH) O এবং H এর তড়িৎ ঋণাত্মকতা যথাক্রমে 3.5 এবং 2.1। সুতরাং, CH3OH এ O এবং H এর তড়িৎ ঋণাত্মকতার পার্থক্য 3.5-2.1=1.4। ফলে CH3OH এর O পরমাণুতে আংশিক ঋণাত্মক প্রান্ত এবং H পরমাণুতে আংশিক ধনাত্মক প্রান্ত তৈরি হয়।

 $CH_3O^{\delta-}\dots\dots H^{\delta^+}$

আংশিক ধনাতাক ও ঋণাতাক প্রান্ত তৈরি হওয়ায় CH_3OH পোলার যৌগ।

(গ) উদ্দীপকে উল্লিখিত P ও S মৌলদ্বয় যথাক্রমে বোরন (B) ও ক্লোরিন (Cl)। সুতরাং, PS₃ যৌগটি হলো BCl₃ (বোরন ট্রাইক্লোরাইড)। BCl₃ যৌগে B ও Cl এর ইলেকট্রন বিন্যাস হলো-

 $\mathrm{B}(5) \to 1\mathrm{s}^2\ 2\mathrm{s}^2\ 2\mathrm{p}^1$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$ উত্তেজিত অবস্থায় B এর ইলেকট্রন বিন্যাস হলো-

 $B(5) \rightarrow 1s^2 2s^1 2p_x^1 2p_y^1 23p_z^0$

তাহলে, একটি বোরন প্রমাণুর তিনটি বিজোড় ইলেকট্রন তিনটি ক্লোরিন পরমাণুর বিজোড় ইলেকট্রনের সাথে শেয়ার করে তিনটি সমযোজী বন্ধন গঠন করে। বন্ধন গঠন প্রক্রিয়াটি নিমুরূপ-

উপরিউক্ত ভায়াগ্রাম অনুযায়ী কেন্দ্রীয় পরমাণু বোরনের চারদিকে বা সর্বশেষ শক্তিন্তরে 6টি ইলেকট্রন আছে যা অষ্টক নিয়ম মানে না। কিন্তু BCl_3 যৌগের প্রতিটি মৌলের সর্বশেষ শক্তিন্তরে এক বা একাধিক জোড়া ইলেকট্রন বিদ্যমান যা দুই এর নিয়ম অনুসরণ করে।

সুতরাং, উদ্দীপকের PS_3 অর্থাৎ, BCl_3 যৌগের গঠন ব্যাখ্যায় অষ্টক নিয়মের চেয়ে দুই এর নিয়ম অধিক শ্রেয়।

- (ঘ) উদ্দীপকের $P,\,Q,\,R,\,S$ মৌল চারটি যথাক্রমে বোরন (B), কার্বন (C), সোডিয়াম (Na), ক্লোরিন (Cl)।
 - সুতরাং, উদ্দীপকের QS_4 যৌগটি CCl_4 এবং RS যৌগটি $NaCl_1$ $NaCl_2$ যৌগটিতে ধনাত্মক ও ঋণাত্মক প্রান্ত বিদ্যমান। পোলার দ্রাবক পানির ধনাত্মক ও ঋণাত্মক দুটি মেরু আছে। আয়নিক যৌগ পানিতে

দ্রবীভূত করলে যৌগটির ধনাত্মক আয়ন পানির ঋণাত্মক মেরুর দিকে এবং যৌগের ঋণাত্মক আয়ন পানির ধনাত্মক মেরুর দিকে আবর্তিত হয়ে পারস্পরিক আকর্ষণ অনুভব করে। ফলে ল্যাটিসের আয়নসমূহের মধ্যকার কুলম্ব আকর্ষণ কমতে থাকে এবং আয়নগুলো দ্রাবক পানির অণু দ্বারা বেষ্টিত অবস্থায় ল্যাটিস হতে বিচ্ছিন্ন হয়ে দ্রাবকে দ্রবীভূত হয়। নিচের চিত্রে পানিতে NaCl এর দ্রবণীয়তা দেখানো হলো-

চিত্র : পানিতে আয়নিক যৌগ NaCl এর দ্রবণীয়তা

পানির ডাইপোলগুলো Na^+ ও Cl^- আয়নগুলোকে ল্যাটিস হতে আকর্ষণ বল দ্বারা বিচ্ছিন্ন করে পরিবেষ্টিত অবস্থায় নিজের মধ্যে দ্রবীভূত করে। অপরদিকে, CCl_4 এর ক্ষেত্রে সমযোজী যৌগ হওয়ায় ধনাত্মক ও ঋণাত্মক আয়নের সৃষ্টি হয় না। ফলে হাইড্রেশন শক্তি কেলাস ল্যাটিস ভাঙার শক্তির চেয়ে কম হয়। ফলে CCL_4 পানিতে দ্রবীভূত হয় না।

২৩. নিচের তথ্যসমূহ লক্ষ করে সংশ্লিষ্ট প্রশ্লের উত্তর দাও:

[ঢাকা বোর্ড ২০২২]

- (ক) হাইড্রোকার্বন কাকে বলে?
- (খ) নিশাদলকে উর্ধ্বপাতিত বস্তু বলা হয় কেন?
- (গ) 'খ' বেলুনে রক্ষিত গ্যাসের <mark>বন্ধনজোড় ই</mark>লেকট্রন সংখ্যা ডায়াগ্রাম এঁকে নির্ণয় করো।
- (ঘ) উদ্দীপকের 'ক' 'খ' এবং 'গ' বেলুনের গ্যাসসমূহকে ব্যাপনহারের অধঃক্রম অনুসারে সাজিয়ে কারণ ব্যাখ্যা করো।

২৪ নং প্রশ্নের উত্তর

- (ক) কার্বন ও হাইড্রোজে<mark>ন দ্বারা গঠিত যৌগকে</mark> হাইড্রোকার্বন বলে।
- (খ) যেসব কঠিন পদার্থকে তাপ দিলে বা স্বাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা সরাসরি কঠিন হতে গ্যাসীয় অবস্থায় পরিণত হয় তাদেরকে উর্ধ্বপাতিত পদার্থ বলে। নিশাদলকে তাপ দিলে বা স্বাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা কঠিন থেকে তরলে পরিণত না হয়ে সরাসরি বাম্পে পরিণত হয়। এজন্য নিশাদলকে উর্ধ্বপাতিত পদার্থ বলা হয়।
- (গ) 'খ' বেলুনে রক্ষিত গ্যাসটি হলো N_2 । নাইট্রোজেন পরমাণুর ইলেকট্রন বিন্যাস হলো-

$$_{7}N \rightarrow 1s^{2} 2s^{2} 2p^{3}$$

অর্থাৎ, এর শেষ কক্ষপথে পাঁচটি ইলেক্ট্রন বিদ্যমান। এখন, N_2 অণু গঠনকালে দুইটি নাইট্রোজেন পরমাণু তাদের যোজ্যতা স্তরের তিনটি করে ইলেক্ট্রন শেয়ার করে ত্রি-বন্ধন গঠন করে।

চিত্র: নাইট্রোজেন অণুতে সমযোজী বন্ধন গঠন।

উপরের ডায়াগ্রাম থেকে দেখা যায় যে, প্রতিটি N-পরমাণুতে এক জোড়া করে মুক্তজোড় ইলেকট্রন রয়েছে।

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

আবার প্রতিটি N পরমাণুতে তিনটি করে বন্ধনজোড় ইলেকট্রন বিদ্যমান। অর্থাৎ, মোট বন্ধনজোড় ইলেকট্রনের সংখ্যা = (2 × 3) = 6 টি।

(ঘ) কোনো মাধ্যমে কঠিন, তরল বা গ্যাসীয় বস্তুর স্বতঃস্ফূর্ত ও সমভাবে পরিব্যপ্ত হওয়ার প্রক্রিয়াকে ব্যাপন বলে।

সাধারণত বস্তুসমূহ অতিক্ষুদ্র কণার সমন্বয়ে গঠিত, যার নাম অণু বা পরমাণু। ব্রাউনিয়ার গতি অনুযায়ী, গতিশীল অবস্থায় কণাগুলো পরস্পরকে ধাকা দেয় এবং তারা সংঘর্ষে লিপ্ত হয়। এই ধাকার ফলে কণাগুলো চারদিকে ছডিয়ে পড়ে এবং ব্যাপন ঘটে।

গ্রাহামের গ্যাস ব্যাপন সূত্রানুসারে, নির্দিষ্ট তাপমাত্রা ও চাপে কোনো গ্যাসের ব্যাপন হার ঐ গ্যাসের ঘনত্বের বর্গমূলের ব্যাস্তানুপাতিক। অর্থাৎ, r কোনো গ্যাসের ব্যাপন হার এবং d যদি এর ঘনত্ব হয় তবে গ্রাহামের ব্যাপন সূত্র অনুযায়ী.

$$r \propto \frac{1}{\sqrt{d}}$$
 বা, $r = \frac{k}{\sqrt{d}}$

যেহেছু, $d=\frac{m}{2}$ কাজেই $r \propto \frac{1}{\sqrt{m}}$ হয় অর্থাৎ, কোনো গ্যাসের ব্যাপন

হার এর আণবিক ভরের ও কোনো গ্যাসের ব্যাপন হার এর <mark>আণবিক</mark> ভরেরও বর্গমূলের ব্যস্তানুপাতিক হয়।

অর্থাৎ, গ্যাসের আণবিক ভর যত কম হয় তার ব্যাপন হার তত বেশি হয়। উদ্দীপকের 'ক' 'খ' ও 'গ' গ্যাস তিনটি হলো যথাক্রমে CO_2 , N_2 ও SO_2 । এখন, গ্যাস তিনটির আণবিক ভর-

 ${
m CO_2}$ এর আণবিক ভর, ${
m M_{CO_2}}=12+16\times 2=44$ ${
m N_2}$ এর আণবিক ভর, ${
m M_{N_2}}=2\times 14=28$

 $m SO_2$ এর আণবিক ভর, $m M_{SO_2}=32+16\times 2=64$ অর্থাৎ তাদের আণবিক ভরের অধঃক্রম হবে $m M_{SO_2}>M_{CO_2}>M_{N_2}$ সুতরাং, ব্যাপনহারের অধঃক্রমটি হবে:

$$r_{N_2} > r_{CO_2} > r_{SO_2}$$

28.

•	
মৌল	যৌগ
1A 6B	BA ₄
17C 20D	DC ₂

[এখানে A, B, C, D প্রতীকী অর্থে ব্যবহৃত]

[ঢাকা বোর্ড ২০২২]

- (ক) গাঠনিক সংকেত কাকে বলে?
- (খ) SO3 এ সালফারের সুপ্ত যোজনী শূন্য ব্যাখ্যা করো।
- (গ) DC2 যৌগের বন্ধন গঠন প্রক্রিয়া ডায়াগ্রামে এঁকে ব্যাখ্যা করো।
- (घ) BA_4 এবং DC_2 যৌগদ্বয়ের একটি গলনাস্ক কম হলে অপরটির অনেক বেশি বিশ্লেষণ করো।

২৫ নং প্রশ্নের উত্তর

- (ক) একটি অণুতে মৌলের পরমাণুগুলো যেভাবে সাজানো থাকে প্রতীক এবং বন্ধনের মাধ্যমে তা প্রকাশ করাকে গাঠনিক সংকেত বলে।
- (খ) কোনো মৌলের সর্বোচ্চ যোজনী ও সক্রিয় যোজনীর পার্থক্যকে ঐ মৌলের সুপ্ত যোজনী বলে । SO_3 যৌগে S এর সক্রিয় যোজনী 6 এবং S এর সর্বোচ্চ যোজনীও 6 ।

সুতরাং SO_3 যৌগে S এর সুপ্ত যোজনী =6-6=0।

(গ) উদ্দীপকের $_{17}$ C ও $_{20}$ D মৌলদ্বয় Cl ও Ca হওয়ায় DC_2 যৌগটি হবে $CaCl_2$ । নিচে $CaCl_2$ যৌগের কন্ধন গঠন প্রক্রিয়া ডায়াগ্রাম এঁকে ব্যাখ্যা করা হলো-

Ca এর ইলেকট্রন বিন্যাস : $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2$ । শেষ শক্তি স্তরে 2টি ইলেকট্রন বিদ্যমান। এ 2টি ইলেকট্রন ত্যাগ করে Ca তার নিকটবর্তী আর্গনের (Ar) ইলেকট্রন বিন্যাস অর্জন করে এবং Ca^{2+} আয়নে পরিণত হয়।

$$Ca - 2e^- \longrightarrow Ca^{2+}$$

অপরদিকে, ক্লোরিনের ইলেকট্রন বিন্যাস : $1s^2 2s^2 2p^6 3s^2 3p^5$ । শেষ কক্ষপথে 7টি ইলেকট্রন বিদ্যমান। এটি Ca এর ত্যাগ করা ইলেকট্রন গ্রহণ করে নিকটবর্তী নিষ্ক্রিয় গ্যাস আর্গন (Ar) এর ইলেকট্রন বিন্যাস অর্জন করে এবং Cl আয়নে পরিণত হয়।

$$Cl - e^- \longrightarrow Cl^-$$

এভাবে সৃষ্ট ক্যাটায়ন ও অ্যানায়নসমূহ পরস্পরের আকর্ষণে আয়নিক বন্ধনে আবদ্ধ হয়ে আয়নিক যৌগ $CaCl_2$ গঠন করে। নিচে ভায়াগ্রামের সাহায্যে দেখানো হলো-

চিত্র: CaCl2 এর আয়নিক বন্ধন গঠন

ঘে) উদ্দীপকের তথ্য মতে, BA_4 ও DC_2 যৌগদ্বয় যথাক্রমে CH_4 ও $CaCl_2$ । কেননা, 6 ও 1 পারমাণবিক সংখ্যাবিশিষ্ট মৌলদ্বয় যথাক্রমে C ও H। যৌগদ্বয়ের মধ্যে CH_4 এর গলনান্ধ কম এবং $CaCl_2$ এর গলনান্ধ বেশি হয়। নিচে তা বিশ্লেষণ করা হলো-

 $CaCl_2$ যৌগটি আয়নিক যৌগ এবং CH_4 যৌগটি সমযোজী যৌগ। আয়নিক যৌগের গলনান্ধ ও ক্ষুটনান্ধ সমযোজী যৌগ অপেক্ষা অনেক বেশি হয়। কারণ আয়নিক যৌগ $(CaCl_2)$ এ ধনাত্মক আয়ন (Ca^{2+}) এবং ঋণাত্মক। আয়ন $(Cl^{-}$ আয়ন) থাকে। এ আয়নদ্বয় পরস্পরের সাথে দৃঢ়ভাবে আবদ্ধ থাকে। $CaCl_2$ যৌগে এরূপ অসংখ্য ধনাত্মক Ca^{2+} আয়ন ও ঋণাত্মক Cl^{-} আয়ন পরস্পরের কাছাকাছি থেকে ত্রিমাত্রিকভাবে সুবিন্যস্ত হয়ে একটি ক্ষটিক তৈরি করে। এতে তাদের আন্তঃআণবিক বল অনেক বেশি হয়। ফলে এদেরকে একে অপরের কাছ থেকে দূরে সরিয়ে নিতে বা গলিয়ে ফেলতে অনেক বেশি তাপশক্তির প্রয়োজন। কাজেই আয়নিক যৌগ $CaCl_2$ এর গলনান্ধ অনেক বেশি হয়।

অপরদিকে CH_4 সমযোজী যৌগ হওয়ায় CH_4 অণুসমূহের মধ্যে আন্তঃআণবিক আকর্ষণ বল মূলত দুর্বল ভ্যান্ডারওয়ালস বলের কারণে হয়ে থাকে । কাজেই সমযোজী CH_4 যৌগের আন্তঃআণবিক আকর্ষণ বল অনেক কম হয় । এজন্য এদের সামান্য তাপ প্রদান করলে এরা পরস্পারের কাছ থেকে দূরে সরে যায় । অর্থাৎ গলনান্ধ কম হয় ।

উপরের আলোচনা মতে, $CaCl_2$ আয়নিক যৌগ হওয়ায় গলনাঙ্ক অনেক বেশি হয় এবং CH_4 সমযোজী যৌগ হওয়ায় গলনাঙ্ক কম হয়।

২৫.

٠.							
	M						Q
	Na	Mg	Al	Si	P	S	R
	N						Br

মিয়মনসিংহ বোর্ড ২০২২

- (ক) ভরসংখ্যা কাকে বলে?
- (খ) দ্রবণের ঘনমাত্রা তাপমাত্রার উপর নির্ভর করে কেন? ব্যাখ্যা করো।

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

- (গ) N ও R মৌল কী ধরনের বন্ধনে আবদ্ধ হয় তার বন্ধন প্রকৃতি চিত্রসহ বর্ণনা করো।
- (ঘ) M ও R এবং Q ও Q মৌলের মধ্যে বন্ধন কি একই প্রকৃতির যুক্তিসহ মতামত দাও।

২৬ নং প্রশ্নের উত্তর

- (ক) পরমাণুর নিউক্লিয়াসে অবস্থিত প্রোটন ও নিউট্রনের মোট সংখ্যাকে ভর সংখ্যা বলে।
- (খ) দ্রবণের ঘনমাত্রা নির্ণয়ের সূত্র : $S = \frac{1000 \ w}{MV}$ ।

এখানে V হলো দ্রবণের আয়তন। তাপমাত্রার পরিবর্তনে দ্রবণের আয়তনে উল্লেখযোগ্য হারে পরিবর্তন হয় বলে দ্রবণের ঘনমাত্রা তাপমাত্রার উপর নির্ভর করে।

(গ) উদ্দীপকের তথ্য মতে, N ও R মৌলদ্বয় যথাক্রমে K(19) ও ক্লোরিন (Cl)। K ও Cl দ্বারা গঠিত যৌগ KCl, যা আয়নিক বন্ধনে আবদ্ধ। নিচে KCl এর বন্ধন প্রকৃতি চিত্রসহ বর্ণনা করা হলো-

K ও Cl এর ইলেকট্রন বিন্যাস নিয়ে পাই,

$$K(19) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

 $Cl(17) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$

K পরমাণু তার সর্ববহিঃস্থ শক্তিস্তরের $(4s^1)$ একটি ইলেকট্রন ত্যাগ করে নিকটস্থ নিদ্ধিয় গ্যাস আর্গনের স্থিতিশীল অস্টক কাঠামো লাভ করে এবং K^+ আয়নে পরিণত হয়। অপরদিকে C1 পরমাণু তার সর্ববহিঃস্থ তয় শক্তিস্তরে 1টি ইলেকট্রন গ্রহণ করে আর্গনের স্থিতিশীল অস্টক কাঠামো লাভ করে এবং C1 আয়নে পরিণত হয়। এভাবে সৃষ্ট K^+ ও $C1^-$ আয়নম্বয় বিপরীত আধানযুক্ত হওয়ায় তারা পরস্পর স্থির বৈদ্যুতিক আকর্ষণ শক্তির দ্বারা যুক্ত হয়ে KC1 আয়নিক যৌগ গঠন করে।

চিত্র : আয়নিক বন্ধনের মাধ্যমে KCl যৌগ গঠন প্রক্রিয়া

(ঘ) উদ্দীপকের M ও R মৌলম্বয় Li(3) ও Cl(17) এবং এদের দ্বারা গঠিত যৌগ LiCl, যাঁতে আয়নিক বন্ধন বিদ্যমান। অপরদিকে Q মৌলটি ফ্রোরিন (F)। তাই Q ও Q মৌল দ্বারা গঠিত অণু F_2 যা সমযোজী বন্ধনের মাধ্যমে গঠিত। অর্থাৎ এদের বন্ধন প্রকৃতি একই নয়। নিচে যুক্তিসহ মতামত দেওয়া হলো-

LiCl যৌগের বন্ধন প্রকৃতি : লিথিয়াম (Li) একটি ধাতু এবং ক্লোরিন (Cl) একটি অধাতু। ধাতু ও অধাতুর সমন্বয়ে আয়নিক বন্ধন গঠিত হয়। Li ও Cl পরমাণুর ইলেক্ট্রন বিন্যাস-

$$Li(3) = 1s^2 2s^1$$

$$Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$$

দেখা যাচ্ছে, Li পরমাণুর যোজ্যতা স্তরে 1টি মাত্র ইলেকট্রন থাকায় এটি সহজেই 1টি ইলেকট্রন ত্যাগ করে Li^+ আয়নে পরিণত হয়। অপরদিকে Cl পরমাণুর যোজ্যতা স্তরে 7টি ইলেকট্রন আছে। নিকটতম নিদ্ধিয় গ্যাস Ne অপেক্ষা 1টি ইলেকট্রন কম আছে। তাই Cl পরমাণু Li পরমাণুর

ত্যাগ করা ইলেকট্রন গ্রহণ করে Cl^- আয়নে পরিণত হয়। পরে Li^+ ও Cl^- আয়নদ্বয়ের মধ্যে স্থির বিদ্যুতিক আকর্ষণের মাধ্যমে LiCl যৌগে আয়নিক বন্ধনের সৃষ্টি হয়।

চিত্র: LiCl যৌগের আয়নিক বন্ধন।

F₂ অণুর বন্ধন প্রকৃতি : F পরমাণুর ইলেক্ট্রন বিন্যাস :

 $F(9) = 1s^2 2s^2 2p^5$

ইলেকট্রন বিন্যাস থেকে দেখা যায়, ফ্রোরিনের শেষ কক্ষপথে 7টি ইলেকট্রন বিদ্যমান। ফলে অষ্টক পূরণের জন্য F এর 1টি ইলেকট্রন প্রয়োজন। এ ক্ষেত্রে দুটি F পরমাণু পরস্পর 1টি করে ইলেকট্রন শেয়ার করে সমযোজী বন্ধনের মাধ্যমে F_2 অণু গঠন করে নিকটতম নিষ্ক্রিয় গ্যাস Ne(10) এর ইলেকট্রন বিন্যাস লাভ করে।

চিত্ৰ: F₂ অণু গঠনে সমযোজী বন্ধন

সুতরাং দেখা যাচ্ছে, LiCl যৌগে আয়নিক কখন ও F_2 অণুতে সমযোজী বন্ধন বিদ্যমান, অর্থাৎ ভিন্ন প্রকৃতির বন্ধন রয়েছে।

২৬. $_6$ P, $_8$ Q, $_{12}$ R
[P, Q, R প্রতীকী অর্থে <mark>ব্যবহৃত]</mark>

[রাজশাহী বোর্ড ২০২২]

- (ক) অ্যালকোহল কাকে বলে?
- (খ) ফ্রোরিনের যোজনী এব<mark>ং যোজ্যতা ইলেকট্রন</mark> ভিন্ন কেন? ব্যাখ্যা করো।
- (গ) PQ2 যৌগে কোন ধরনের বন্ধন বিদ্যমান? ব্যাখ্যা করো।
- (ঘ) RQ এবং PQ2 উভয় যৌগদ্বয় পানিতে দ্রবীভূত হয় কি? উত্তরের সপক্ষে যুক্তি দাও।

২৭ নং প্রশ্নের উত্তর

- (ক) যে জৈব যৌগে তথা অ্যালিফেটিক হাইড্রোকার্বনে হাইড্রোক্সিল মূলক (— OH) বিদ্যমান থাকে তাকে অ্যালকোহল বলে।
- (খ) জানা আছে, অধাতব মৌলের সর্বশেষ শক্তিস্তরের বিজোড় ইলেকট্রন সংখ্যাকে যোজনী বলে এবং সর্বশেষ শক্তিস্তরের মোট ইলেকট্রন সংখ্যাকে যোজ্যতা ইলেকট্রন বলে।

ফ্লোরিন (F) <mark>এর ইলেকট্রন বিন্যাস্</mark> নিয়ে পাই,

 $F(9) \rightarrow 1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$

ইলেকট্রন বিন্যাস হতে দেখা যাচ্ছে, মৌলটির যোজ্যতান্তরে বিজোড় ইলেকট্রন সংখ্যা 1 হওয়ায় যোজনী 1 এবং যোজ্যতা স্তরের মোট ইলেকট্রন সংখ্যা 7 হওয়ায় যোজ্যতা ইলেকট্রন 7।

এজন্যই অধাতব মৌল F এর যোজনী ইলেকট্রন ও যোজ্যতা ইলেকট্রন যথাক্রমে $1 \le 7$ অর্থাৎ ভিন্ন ।

(গ) উদ্দীপক হতে, $_6P$ ও $_8Q$ মৌলদ্বয় যথাক্রমে কার্বন (C) ও অক্সিজেন (O)। কেননা 6 ও 8 পারমাণবিক সংখ্যাবিশিষ্ট মৌলদ্বয় যথাক্রমে C ও O।

C ও O উভয় মৌলই অধাতু। তাই C ও O মৌলদ্বয় দ্বারা গঠিত যৌগ CO_2 এ সমযোজী বন্ধন বিদ্যমান। নিচে তা ব্যাখ্যা করা হলো-

CO2 যৌগের গঠন :

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

 $_6$ C-এর ইলেকট্রন বিন্যাস : $1s^2\,2s^2\,2p^2\,_8$ O-এর ইলেকট্রন বিন্যাস : $1s^2\,2s^2\,2p^4\,_8$

 ${
m CO_2}$ যৌগ গঠনের সময় কোনো পরমাণুর পক্ষে ইলেকট্রন ত্যাগ করা সম্ভব নয় বলে উভয় পরমাণু পরস্পরের সাথে ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন গঠন করে। একটি ${
m C}$ পরমাণুর 4টি যোজ্যতা ইলেকট্রনের সাথে 2টি ${
m O}$ পরমাণু তাদের যোজ্যতা স্তরের 2টি করে ইলেকট্রন শেয়ার করে সমযোজী বন্ধনের মাধ্যমে ${
m CO_2}$ যৌগ গঠন করে। ${
m CO_2}$ এর অণুতে প্রতিটি অক্সিজেন পরমাণু ${
m C}$ পরমাণুর সাথে দ্বিবন্ধনে যুক্ত। এর বন্ধন ডায়াগ্রামিটি হলো,

চিত্ৰ: CO2-এ সমযোজী বন্ধন

(ঘ) উদ্দীপক হতে, $_6P$, $_{12}R$ ও $_8Q$ মৌলদ্বয় যথাক্রমে C, Mg ও O । কেননা 6, 12 ও 8 পারমাণবিক সংখ্যাবিশিষ্ট মৌলদ্বয় যথাক্রমে কার্বন (C), ম্যাগনেসিয়াম (Mg) ও অক্সিজেন (O) ।

R ও Q মৌলদ্বয় দ্বারা গঠিত যৌগ : RQ তথা MgO

অন্যদিকে, P ও Q মৌলদ্বয় দারা গঠিত যৌগ : PQ2 তথা CO2

MgO ও CO_2 যৌগন্বয়ের উভয়ই পানিতে দ্রবণীয়। নিচে তা যুক্তিসহ বিশ্লেষণ করা হলো-

আয়নিক যৌগ MgO পোলার দ্রাবক H_2O তে দ্রবণীয় কিন্তু CO_2 সমযোজী হওয়া সত্ত্বেও দ্রবণীয় । কারণ পোলার দ্রাবক পানির অণুর দুই প্রান্তে দুটি মেরু $(H^+\ \circ OH^-)$ থাকে । আয়নিক যৌগ MgO কে দ্রবীভূত করার সময় পানির ঋণাত্মক মেরু (OH^-) , MgO এর ধনাত্মক আয়ন (Mg^{2+}) এর দিকে এবং পানির ধনাত্মক মেরু (H^+) , MgO এর ঋণাত্মক আয়ন (O^{2-}) এর দিকে আবর্তিত হয় । ফলে MgO এর $Mg^{2+}\ \circ O^{2-}$ আয়নসমূহ পানির অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে । $Mg^{2+}\ \circ O^{2-}$ আয়নসমূহ দ্রবণে পুরোপুরি মুক্ত থাকে না । তারা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে । ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোজনের সময় নির্গত শক্তিকে হাইদ্রেশন শক্তি বলে । এ নির্গত তাপশক্তির প্রভাবে MgO এর কেলাস ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয় ।

চিত্র : MgO এর পানিতে দ্রবণীয়তা হওয়ার কৌশল

অন্যদিকে, কার্বন ডাইঅক্সাইড (CO_2) একটি সমযোজী যৌগ হওয়া সড়েও পোলারিটি প্রদর্শন করে। এর কার্বন এবং অক্সিজেন বন্ধন পোলার হলেও পানির হাইড্রোজেন ও অক্সিজেনের বন্ধনের মত শক্তিশালী পোলার নয়। তবে কার্বন ডাইঅক্সাইড এর আংশিক ধনাত্মক ও ঋণাত্মক প্রান্ত থাকায় পানির ধনাত্মক ও ঋণাত্মক আয়ন দ্বারা আবদ্ধ হয়ে পানিতে দ্রবীভূত হতে সক্ষম।

•	\sim
×	٦

মৌল	পর্যায়	শেষ কক্ষপথে ইলেকট্রন সংখ্যা
A	3	নিকটতম নিঞ্জিয় মৌল অপেক্ষা 3টি

		ইলেকট্রন কম।		
В	3	নিকটতম নিঞ্জিয় মৌল অপেক্ষা 1টি		
		ইলেকট্রন কম।		
С	4	নিকটতম নিষ্ক্রিয় মৌল অপেক্ষা 2টি		
		ইলেক্ট্রন কম।		

[এখানে A, B ও C প্রতীকী অর্থে ব্যববহৃত হয়েছে]

[দিনাজপুর বোর্ড ২০২২]

- (ক) নিঃসরণ কাকে বলে?
- (খ) Mg এর যোজনী ২ ব্যাখ্যা করো।
- (গ) 'B' অপেক্ষা 'A' এর আকার বড় ব্যাখ্যা করো।
- (घ) A ও B এবং B ও C দ্বারা গঠিত যৌগদ্বয়ের মধ্যে কোনটি পানিতে দ্রবণীয়, কৌশলসহ বর্ণনা করো।

২৮ নং প্রশ্নের উত্তর

- (ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- (খ) Mg এর যোজনী-2 এর ব্যাখ্যা নিমুরূপ:

জানা আছে, <mark>ধাতব মৌলের সর্ববহিঃস্থ শেলে s অ</mark>রবিটালে যে কয়টা e⁻ থাকে, সেটা হচ্ছে যোজনী।

12Mg এর ইলেক্ট্রন বিন্যাস নিয়ে পাই-

 $Mg(12) \rightarrow 1s^2 2s^2 2p^6 3s^2$

উক্ত ইলেকট্রন বিন্যাস থেকে দেখা যায়, Mম এর সর্ববহিঃস্থ শেলে 2টা আছে। তাই Mg এর যোজনী 2। অন্যভাবে বলা যায়, নিকটস্থ নিদ্ধিয় গ্যাসের ইলেকট্রনীয় কাঠামো অর্জন করতে প্রয়োজনীয় e^- সংখ্যাই হচ্ছে যোজনী। এক্ষেত্রে Mg এর নিকটস্থ নিদ্ধিয় মৌল Ne এর নিদ্ধিয় চরিত্র অর্জন করতে 2টা e^- ত্যাগ করতে হয়। তাই Mg এর যোজনী 2।

(গ) উদ্দীপকের তথ্যমতে, A ও B মৌলদ্বর যথাক্রমে ফসফরাস (P) ও ক্লোরিন (Cl)।

P(15) ও Cl(17) এর ইলেকট্রন বিন্যাস:

 $P(15) = 1s^2 2s^2 2p^6 3s^2 3p^3$; বহিস্থ শেলে 5টি e⁻,

যা <mark>নিকটতম নিষ্ক্ৰি</mark>য় ₁₈Ar অপেক্ষা 3e কম।

 $Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$; বহিস্থ শেলে 7টি e^- ,

যা নিকটতম নিদ্ৰিয় ₁₈Ar অপেক্ষা 1টা e কম।

Cl অপেক্ষা P এর আকার বড়। নিচে তা ব্যাখ্যা করা হলো-

পারমাণবিক আকার মৌলের একটি পর্যায়বৃত্ত ধর্ম। পর্যায় সারণির একই পর্যায়ের মৌলগুলোর ক্ষেত্রে দেখা যায় যে, বাম থেকে ডানদিকে অগ্রসর হলে পারমাণবিক সংখ্যা বৃদ্ধির সাথে পারমাণবিক আকার বা পারমাণবিক ব্যাসার্ধ ব্রাস পায়। এর কারণ হলো পারমাণবিক সংখ্যা বৃদ্ধির সাথে মৌলের পরমাণুর নিউক্লিয়াসে একটি করে প্রোটন যুক্ত হয় এবং সেই সাথে একটি করে ইলেকট্রনও যুক্ত হয়। তবে এ অতিরিক্ত ইলেকট্রনটি বহিঃস্থ একই শক্তিস্তরে যুক্ত হয় বলে ইলেকট্রনের স্তরের কোনো পরিবর্তন হয় না। নিউক্লিয়াসে প্রোটন সংখ্যা বৃদ্ধি পাওয়ায় বহিঃস্থ ইলেকট্রন মেঘ নিউক্লিয়াস কর্তৃক আরও দৃঢ়ভাবে আকৃষ্ট হয় এবং ফলস্বরূপ পরমাণুর আকারও ক্রমশ ব্রাস পায়।

উপরিউক্ত ইলেকট্রন বিন্যাস থেকে দেখা যাচ্ছে, $P \circ Cl$ একই পর্যায়ের যথাক্রমে বামে ও ডানে অবস্থিত। P মৌলটি বামে অবস্থিত হওয়ায় এর আকার Cl অপেক্ষা বড়।

(ঘ) উদ্দীপকের তথ্যমতে, A, B মৌল তিনটি যথাক্রমে P(15), Cl(17) [গ হতে পাই] এবং C মৌলটি Ca, কেননা Ca এর e^- বিন্যাস নিয়ে পাই, $Ca(20) \rightarrow [_{18}Ar] \ 4s^2;$ নিকটস্থ নিষ্ক্রিয় মৌল Ar অপেক্ষা 2টি e^- বেশি। মৌলটির পর্যায়-4।

বসায়ৰ

৫ম অধ্যায়

<u>বাসা</u>য়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

A ও B দ্বারা গঠিত যৌগ PCl_3 এবং B ও C দ্বারা গঠিত যৌগ $CaCl_2 \mid PCl_3$ ও $CaCl_2$ যৌগদ্বয়ের মধ্যে $CaCl_2$ পানিতে দ্রবণীয়। নিচে কৌশলসহ বর্ণনা করা হলো-

 $CaCl_2$ যৌগে Ca পরমাণু 2টি ইলেকট্রন দান করে। অপরদিকে Cl পরমাণু একটিমাত্র ইলেকট্রন গ্রহণে সমর্থ হওয়ায় প্রতিটি Ca পরমাণুর জন্য 2টি Cl পরমাণুর প্রয়োজন হয়। এরূপে Ca^{2+} ও Cl^- আয়ন সৃষ্টি হয়। $CaCl_2$ কে পানিতে দ্রবীভূত করার সময় H_2O এর ধনাত্মক মেরু $CaCl_2$ এর ঋণাত্মক আয়নের দিকে এবং H_2O এর ঋণাত্মক আয়নের $CaCl_2$ এর ধনাত্মক আয়নের দিকে আবর্তিত হয়। ফলে $CaCl_2$ এর Ca^{2+} আয়ন ও Cl^- আয়নসমূহ পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে।

 ${\rm Ca}^{2+}$ ও ${\rm Cl}^-$ আয়নসমূহ দ্রবণে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে। জলীয় দ্রবণে আয়নিক যৌগের আয়নসমূহের এরূপে পানি অণু সংযোজিত হওয়ার প্রক্রিয়াকে পানি যোজন বা হাইদ্রেশন বলা হয়। ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইদ্রেশন শক্তি বলে। এ নির্গত তাপ শক্তির প্রভাবে ${\rm CaCl}_2$ এর কেলাস-ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

চিত্র : CaCl₂ এর পানিতে দ্রবণীয়তা

অপরদিকে PCl_3 যৌগটি একটি অপোলার সমযোজী যৌগ। এজন্য পানির ধনাত্মক বা ঋণাত্মক প্রান্ত দ্বারা PCl_3 যৌগটি আকৃষ্ট হয় না বলে এটি পানিতে অদুবণীয়।

২৮.

	মৌল	X	Y	Z
١,	প্রোটন সংখ্যা	9	12	16

[বি:দ্র: X, Y, Z প্রচলিত প্রতীক নয়]

[কুমিল্লা বোর্ড ২০২২]

- (ক) সুপ্ত যোজনী কাকে বলে?
- (খ) আপেক্ষিক পারমাণবিক ভরের একক নাই কেন?
- (গ) YX_2 যৌগের বন্ধন গঠন প্রক্রিয়া চিত্রসহ বর্ণনা করো।
- (ঘ) ZX_2 ও ZX_4 যৌগ অষ্টক নিয়ম পালন করে কিনা? বিশ্লেষণ করো।

২৯ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের সর্বোচ্চ যোজনী ও সক্রিয় যোজনীর পার্থক্যকে সুপ্ত যোজনী বলে।
- (খ) জানা আছে, দুটি একই রকম রাশি অনুপাত আকারে থাকলে এর কোনো একক থাকে না। কোনো মৌলের আপেক্ষিক পারমাণবিক ভরকে নিম্নুরূপে প্রকাশ করা হয়-

মৌলের আপেক্ষিক পারমাণবিক ভর

= মৌলের 1টি পরমাণুর ভর
১টি কার্বন-12 আইসোটোপের ভরের
$$\frac{1}{12}$$
 অংশ

সুতরাং, দেখা যায়, আপেক্ষিক পারমাণবিক ভর দুটি পৃথক ভরের অনুপাত (kg/kg বা g/g)। তাই এর কোনো একক থাকে না।

(গ) উদ্দীপকের X ও Y মৌল দুটি যথাক্রমে ফ্লোরিন (F) ও ম্যাগনেসিয়াম (Mg)। কেননা 9 ও 12 প্রোটন সংখ্যা তথা পারমাণবিক সংখ্যাবিশিষ্ট মৌলদ্বয় যথাক্রমে F ও Mg। সুতরাং YX_2 যৌগটি MgF_2 । নিচে MgF_2 যৌগের বন্ধন গঠন প্রক্রিয়া চিত্রসহ বর্ণনা করা হলো-

Mg ও F এর ইলেকট্রন বিন্যাস-

$$Mg(12)/$$
 'C' $\longrightarrow 1s^2 2s^2 2p^6 3s^2$

 $F(9)'B' \longrightarrow 1s^2 2s^2 2p^5$

রাসায়নিক বিক্রিয়ার সময় Mg পরমাণু তার সর্ববহিঃস্থ স্তরের 2° ইলেক্ট্রন F পরমাণুকে দান করে Mg^{2+} আয়নে পরিণত হয়।

 $Mg^{2+}(12) = 1s^2 2s^2 2p^6 3s^0$

অপ্রদিকে 2° টি F পরমাণু প্রত্যেকে 1° টি করে Mg প্রদন্ত ইলেক্ট্রন গ্রহণ করে $2F^-$ আয়নে পরিণত হয়। ধনাত্মক Mg^{2+} এবং ঋণাত্মক F^- আয়নের মধ্যে স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে MgF_2 এর মধ্যে আয়নিক বন্ধনের সৃষ্টি হয়।

চিত্র : MgF₂ এর আয়নিক বন্ধন গঠন

(ঘ) উদ্দীপকের Z ও X মৌল দুটি যথাক্রমে সালফার (S) ও ফ্লোরিন (F) । কেননা 16 ও 9 প্রোটন সংখ্যা তথা পারমাণবিক সংখ্যাবিশিষ্ট মৌলদ্বয় যথাক্রমে S ও F । সুতরাং ZX_2 ও ZX_4 যৌগ দুটি যথাক্রমে SF_2 ও SF_4 । এদের মধ্যে SF_2 অষ্টক নিয়ম মেনে চলে কিন্তু SF_4 অষ্টক নিয়ম পালন করে না । নিচে তা বিশ্লেষণ করা হলো-

S(16) ও F(9) প্রমাণুর ইলেক্ট্রন বিন্যাস নিয়ে পাই,

$$S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^1 3p_z^1$$

$$S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1 3d_{xy}^1$$

$$F(9) \rightarrow 1s^2 2s^2 3p_x^2 3p_y^2 3p_z^1$$

S এর যোজ্যতা স্তরে 60 ইলেক্ট্রন আছে। অষ্টক পূরণের জন্য S পরমাণুর 20 ইলেক্ট্রন প্রয়োজন। অপরদিকে F পরমাণুর যোজ্যতা স্তরে 10 ইলেক্ট্রন আছে এবং অষ্টক পূরণের জন্য 10 ইলেক্ট্রন প্রয়োজন। এজন্য S পরমাণু দৃ0 F পরমাণুর সাথে ইলেক্ট্রন শেয়ারের মাধ্যমে যুক্ত হয়ে অষ্টক পূরণ করে। ফলে SF_2 অণু গঠন করে। এক্ষেত্রে S ও F উভয়ের শেষ কক্ষপথে 80 ইলেক্ট্রন বিন্যাস লাভ করে। সুতরাং SF_2 অষ্টক নিয়ম মেনে চলে।

চিত্র : SF2 অণুর গঠন

অপরদিকে, SF_4 অণুটি অষ্টক নীতি মেনে চলে না। SF_4 অণুর গঠন হতে দেখা যায়, 4টি F এর শেষ কক্ষপথের 1টি বিজোড় ইলেকট্রন S এর 4টি বিজোড় ইলেকট্রনের সাথে শেয়ার করে SF_4 সমযোজী যৌগ গঠন করে। ফলে F এর শেষ কক্ষপথে 8টি ইলেকট্রনের বিন্যাস লাভ

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

করলেও S এর 10টি ইলেক্ট্রনের বিন্যাস লাভ করে যা অষ্টক নিয়মের ব্যতিক্রম। এজন্য SF_4 যৌগ গঠনে F অষ্টক নিয়ম মেনে চললেও S তা মেনে চলে না।

চিত্র : SF₄ এর গঠন

২৯.

মৌল	বিন্যাস	
A	$\dots ns^2np^3$	n = 2
В	\dots ns ² np ¹	n = 3
C	(n – 1) d^{10} ns ¹	n = 4

[এখানে, A, B, C প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়]
[চট্টগ্রাম বোর্ড ২০২২]

- (ক) গবেষণা কী?
- (খ) F_2 ও Cl_2 একই ধরনের বিক্রিয়া প্রদর্শন করে ব্যাখ্যা করো।
- (গ) ইলেকট্রন বিন্যাস উল্লেখপূর্বক পর্যায় সারণিতে 'C' মৌলের <mark>অব</mark>স্থান নির্ণয় করো।
- (ঘ) BA3 যৌগের বিদ্যুৎ পরিবাহীতার কৌশল বিশ্লেষণ করো।

৩০ নং প্রশ্নের উত্তর

- (ক) পরীক্ষা-নিরীক্ষা ও পদ্ধতিগতভাবে কোনো কিছু জানার চেষ্টাই হচ্ছে গবেষণা।
- (খ) F_2 ও Cl_2 একই ধরনের বিক্রিয়া প্রদর্শন করে। কারণ মৌল দুটি একই গ্রুপ-17 এর অন্তর্ভুক্ত। এ গ্রুপের মৌলগুলো হ্যালোজেন নামে পরিচিত। এরা ধাতুর সাথে যুক্ত হয়ে ধাতুর হ্যালাইড (NaF, NaCl) গঠন করে। যেমন,

 $12Na + F_2 \rightarrow 2NaF$

 $2Na + Cl_2 \rightarrow NaCl$

আবার হাইড্রোজেন (H₂) এর সাথে যুক্ত হয়ে হাইড্রাসিড গঠন করে।

 $H + F_2 \rightarrow HF$,

 $H_2 + Cl_2 \rightarrow 2HCl$

সুতরাং F_2 ও Cl_2 একই ধরনের বিক্রিয়া প্রদর্শন করে।

- (গ) উদ্দীপকের তথ্য মতে, 'C' মৌলটি কপার (Cu)। কেননা C মৌলের যোজ্যতান্তরের বিন্যাস পূর্ণ করে পাই, n=4 হলে $C(29)=\left[{}_{18}Ar\right]$ $3d^{10}$ $4s^1$ । সুতরাং C মৌলটি Cu। নিচে পর্যায় সারণিতে Cu এর অবস্থান নির্ণয় করা হলো-
 - Cu(29) এর ইলেক্ট্রন বিন্যাস,

 $Cu(29) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$

ইলেকট্রন বিন্যাস থেকে দেখা যায়, Cu এর সর্বশেষ ইলেকট্রনটি d অরবিটালে প্রবেশ করায় এটি d- ব্লকভুক্ত মৌল।

পর্যায় নির্ণয় : Cu এর ইলেকট্রনসমূহ মোট চারটি স্তরে বিন্যস্ত হওয়ায় Cu(29) ৪র্থ পর্যায়ের মৌল।

ঞ্চপ নির্ণয় : Cu(29) মৌলটি d ব্লকভুক্ত হওয়ায় এবং বাইরের প্রধান শক্তিস্তরে s অরবিটাল থাকায় এর গ্রুপ হবে d ও s অরবিটালের মোট ইলেকট্রনের যোগফলের সমান।

কাজেই Cu এর গ্রুপ = s + d = 1 + 10 = 11 নং গ্রুপ। অর্থাৎ পর্যায় সারণিতে Cu এর অবস্থান ৪র্থ পর্যায়ের গ্রুপ-11 তে।

(ঘ) উদ্দীপকের তথ্যমতে, A ও B মৌলদ্বয় যথাক্রমে ফ্লোরিন (F) ও অ্যালুমিনিয়াম (Al)। সুতরাং BA_3 যৌগটি হবে AlF_3 । নিচে AlF_3 যৌগের বিদ্যুৎ পরিবাহিতার কৌশল বিশ্লেষণ করা হলো-

AIF3 আয়নিক যৌগ হওয়ায় কঠিন অবস্থায় এর ধনাত্মক ও ঋণাত্মক আয়নসমূহ কেলাস ল্যাটিসে নির্দিষ্ট স্থানে অবস্থান করে বলে এরা বিদ্যুৎ অপরিবাহী হয়। কিন্তু বিগলিত বা দ্রবীভূত অবস্থায় আয়নসমূহ কেলাস ল্যাটিস থেকে মুক্ত হয়ে ইতঃস্তত পরিভ্রমণ করে।

 $AlF_3 + aq \rightarrow Al^{3+}(aq) + 3F^{-}(aq)$

 AlF_3 এর দ্রবণে দুটি ইলেকট্রন প্রবেশ করালে ঋণাত্মক F^- আয়ন অ্যানোডের দিকে আকৃষ্ট হয় এবং ধনাত্মক Al^{3+} আয়ন ক্যাথোডের দিকে আকৃষ্ট হয়।

্ষ্ণণাত্মক F^- আয়ন অ্যানোডে পৌছা মাত্র অ্যানোডে 1টি ইলেকট্রন দান করে F পরমাণুতে পরিণত হয়। পরে দুটি F পরমাণু পরস্পর যুক্ত হয়ে F_2 গ্যাসে পরিণত হয়।

চিত্র: AlF₃ দ্রবণের তড়িৎ পরিবাহিতা

 $F^-(aq) - e^- \rightarrow F$

 $F + F = F_2(g)$

আবার, Al^{3+} আয়ন ক্যা<mark>খোডে পৌছে ক্যাখো</mark>ড থেকে তিনটি ইলেকট্রন গ্রহণ করে বিজারিত হয় এবং Al(g) ধাতুতে পরিণত হয়।

 $Al^{3+}(aq) + 3e^- \rightarrow Al(s)$

এভাবে অ্যানোড কর্তৃক ইলেক্ট্রন দান ও ক্যাথোড কর্তৃক ইলেক্ট্রন গ্রহণের ফলে অ্যানোড ও ক্যাথোডের মধ্যে ইলেক্ট্রন প্রবাহের সৃষ্টি হয়। আমরা জানি, ইলেক্ট্রন প্রবাহ হলো বিদ্যুৎ প্রবাহ। এভাবে AIF_3 যৌগে বিদ্যুৎ পরিবহন ঘটে।

৩০. 4A, 16B, 17C এবং 34D চারটি মৌল। [এখানে A, B, C, D প্রচলিত প্রতীক নয়।]

[সিলেট বোর্ড ২০২২]

- (ক) উর্ধ্বপাতন কাকে বলে?
- (খ) Cu কে মুদ্রা ধাতু বলা হয় কেন?
- (গ) A ও C দ্বারা গঠিত যৌগের বন্ধন গঠন প্রক্রিয়া ডায়াগ্রামের সাহায্যে ব্যাখ্যা করো।
- (घ) উদ্দীপকের B, C, D মৌলের পারমাণবিক আকারের ক্রম বিশ্লেষণ করো।

৩১ নং প্রশ্নের উত্তর

- (ক) যদি কঠিন পদার্থকে তাপ দিলে তা সরাসরি গ্যাসে পরিণত হয় এবং ঠাভা করলে তা সরাসরি কঠিনে রূপান্তরিত হয় তবে উক্ত প্রক্রিয়াকে উর্ধ্বপাতন বলে।
- (খ) Cu কে মুদ্রা ধাতু বলা হয়। কারণ প্রাচীনকালে Cu ধাতু দ্বারা মুদ্রা তৈরি হতো এবং ব্যবসা-বাণিজ্য ও লেনদেনের মাধ্যম হিসাবে Cu ধাতুর মুদ্রা ব্যবহার করা হতো। এজন্য Cu কে মুদ্রা ধাতু বলে।
- (গ) উদ্দীপকের $_4A$ ও $_{17}C$ মৌলদ্বয় যথাক্রমে Be ও Cl । কেননা 4 ও 17 পারমাণবিক সংখ্যাবিশিষ্ট মৌলদ্বয় যথাক্রমে বেরিলিয়াম (Be) এবং ক্লোরিন (Cl) । Be ও C মৌলদ্বয় দ্বারা গঠিত যৌগ $BeCl_2$ । $BeCl_2$

যৌগে সমযোজী বন্ধন বিদ্যমান। নিচে $BeCl_2$ যৌগের বন্ধন গঠন প্রক্রিয়া ডায়াথামের সাহায্যে ব্যাখ্যা করা হলো-

 $BeCl_2$ যৌগের Be(4) ও C`(17) এর ইলেকট্রন বিন্যাস :

* Be(4) =
$$1s^2 2s^2 2p_x^1$$

$$Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$$

Be পরমাণুর যোজ্যতা স্তরে $2\overline{b}$ বিজোড় ইলেকট্রন থাকে । 2s অরবিটাল ইলেকট্রন দ্বারা পূর্ণ থাকায় Be এর আয়নীকরণ শক্তি অনেক উচ্চ (900 kJ/mol) । এছাড়া Be এর ক্ষুদ্র আকারের কারণে যোজ্যতা স্তরে $2\overline{b}$ ইলেকট্রন থাকা সত্ত্বেও এটি ক্যাটায়ন (Be^{2+}) গঠন করে না । এজন্য Be পরমাণুর যোজ্যতান্তরের $2\overline{b}$ ইলেকট্রনের সাথে Cl পরমাণুর যোজ্যতান্তরের $1\overline{b}$ বিজোড় ইলেকট্রন এবং অপর Cl পরমাণুর সাথে অপরটি বিজোড় ইলেকট্রন শেয়ার করে সমযোজী বন্ধনের মাধ্যমে যুক্ত হয়ে $BeCl_2$ অণুর সৃষ্টি করে ।

চিত্র : BeCl2 অণুর সমযোজী বন্ধন গঠন

সুতরাং Be এর যোজ্যতা স্তরের 2টি বিজোড় ইলেকট্রন 2টি Cl পরমাণুর সাথে ইলেকট্রন শেয়ারের মাধ্যমে $BeCl_2$ সমযোজী বন্ধনের সৃষ্টি করে।

(ঘ) উদ্দীপকের তথ্য মতে, $_{16}B$, $_{17}C$, $_{34}D$ মৌল তিনটি যথাক্রমে সালফার (S), ক্লোরিন (Cl) ও সেলিনিয়াম (Se)। নিচে এদের পারমাণবিক আকারের ক্রম বিশ্লেষণ করা হলো-

পারমাণবিক আকার তথা পারমাণবিক ব্যাসার্ধ একটি পর্যায়বৃত্ত ধর্ম। পর্যায় সারণির বাম হতে ডানদিকে অগ্নসর হলে পারমাণবিক সংখ্যা বৃদ্ধির সাথে মৌলসমূহ পারমাণবিক আকার ব্রাস পায়। এর কারণ হলো পারমাণবিক সংখ্যা বৃদ্ধির সাথে মৌলের পরমাণুর নিউক্লিয়াসে একটি করে প্রোটন যুক্ত হয় এবং সেই সাথে একটি করে ইলেকট্রনও যুক্ত হয়। নিউক্লিয়াসে প্রোটন সংখ্যা বৃদ্ধি পাওয়ায় বহিঃস্থ ইলেকট্রন মেঘ নিউক্লিয়াস কর্তৃক আরও দৃঢ্ভাবে আকৃষ্ট হয় এবং ফলস্বরূপ পরমাণুর আকারও ক্রমশ কমতে থাকে।

আবার একই গ্রুপের উপর থেকে নিচে মৌলসমূহের পারমাণবিক ব্যাসার্ধ বৃদ্ধি পায়। এর কারণ হলো একই গ্রুপে উপর থেকে নিচে অবস্থিত মৌলগুলোর ক্ষেত্রে যোজ্যতা স্তরের ইলেকট্রন বৃদ্ধি না পেলেও নতুন একটি যোজ্যতা স্তরের সৃষ্টি হয়। ফলে নতুন আগত ইলেকট্রনের সাথে কেন্দ্রীয় নিউক্লিয়াসের দূরত্ব বৃদ্ধি পায়। অর্থাৎ পরমাণুর ব্যাসার্ধ বৃদ্ধি পায়।

S(16), Cl(17), Se(34) মৌল তিনটির ইলেক্ট্রন বিন্যাস:

$$S(16) = 1s^2 2s^2 2p^6 3s^2 3p^4$$

$$Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$$

$$Se(34) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^4$$

ইলেকট্রন বিন্যাস থেকে দেখা যাচ্ছে, S ও Cl পর্যায় সারণির ৩য় পর্যায়ে এবং Se ৪র্থ পর্যায়ে অবস্থিত। ৩য় পর্যায় অপেক্ষা Se পর্যায়ের পরমাণুর আকার বড় হওয়ায় Se এর আকার সবচেয়ে বড়। আবার ৩য় পর্যায়ের S ও Cl এর মধ্যে S বামে অবস্থিত হওয়ায় Cl অপেক্ষা S এর আকার বড়।

সুতরাং মৌল তিনটির আকারের ক্রম:

৩১. দৃশ্যকল্প-১ :

শক্তিস্তর সংখ্যা	মৌল	শেষ শক্তিস্তরের ইলেকট্রন সংখ্যা
3	A	2
3	В	5
3	С	7

দৃশ্যকল্প-২:

অক্সিজেনের তিনটি আইসোটোপ $_{16}O$, $_{17}O$ এবং $_{18}O$ এদের প্রথমটির প্রকৃতিতে প্রাপ্ত আইসোটোপের হার 99.76% এবং অক্সিজেনের আপেক্ষিক পারমাণবিক ভর 16.00276.

[সিলেট বোর্ড ২০২২]

- (ক) নিঃসরণ কাকে বলে?
- (খ) HF একটি পোলার যৌগ –ব্যাখ্যা করো।
- (গ) দৃশ্য-২ এর মৌলটির অপর দুটি আইসোটোপের প্রকৃতিতে প্রাপ্ত আইসোটোপের শতকরা পরিমাণ নির্ণয় করো।
- (ঘ) AC_2 এবং BC_2 যৌগের মধ্যে কোনটি পানিতে দ্রবণীয়? বিশ্লেষণ করো।

৩২ নং প্রশ্নের উত্তর

- (ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- (খ) যে সমযোজী <mark>যৌগে পোলারিটির সৃষ্টি হ</mark>য় তাকে পোলার যৌগ বলে। ফ্রোরিন (ঋ) এর তড়িংঋণাত্মকতা হাইড্রোজেন (H) অপেক্ষা বেশি। তাই H F এ শেয়ারকৃত ইলেকট্রনযুগল F পরমাণুর দিকে বেশি আকৃষ্ট হয়। ফলে F পরমাণুতে আংশিক ঋণাত্মক প্রাপ্ত এবং H পরমাণুতে আংশিক ধনাত্মক প্রাপ্তের সৃষ্টি হয়। এ কারণে HF পোলার যৌগ।
- (গ) উদ্দীপকের দৃশ্য-২ এ দেওয়া আছে, ¹⁶O আইসোটোপের শতকরা পরিমাণ 99.76%।

সুতরাং ¹⁷O ও ¹⁸O আইসোটোপ দুটির শতকরা পরিমাণ

$$=(100-99.76)\%=0.24\%$$

ধরি, ¹⁷O আইসোটোপে<mark>র প্রকৃতিতে পরিমাণ = x</mark>%

এবং $^{18}{
m O}$ আইসোটোপের প্রকৃতিতে পরিমাণ $=(0.24-{
m x})\%$ প্রশ্নমতে,

অক্সিজেনের আপেক্ষিক পারমাণবিক ভর

$$=\frac{(99.76\times16)+17\times x+18(0.24-x)}{100}$$

ৰা,
$$16.00276 = \frac{1596.16 + 17x + 4.32 - 18x}{100}$$

বা,
$$x = 1600.48 - 1600.276$$
 ∴ $x = 0.204\%$

সুতরাং ¹⁷O আইসোটোপের প্রকৃতিতে শতকরা পরিমাণ 0.204%.

এবং ¹⁸O আইসোটোপের প্রকৃতিতে শতকরা পরিমাণ

$$=(0.24-0.204)\%=0.036\%$$

(ঘ) উদ্দীপকের তথ্যমতে, A, B, C মৌল তিনটি যথাক্রমে Mg, P ও Cl। কেননা,

A/Mg মৌলের e^- বিন্যাস = $1s^2 2s^2 2p^6 3s^2 \rightarrow$ শক্তিস্তর 3,

শেষ শক্তিস্তরে e⁻ সংখ্যা 2।

B/P মৌলের e^- বিন্যাস = $1s^2 2s^2 2p^6 3s^2 2p^3 \rightarrow$ শক্তিস্তর 3,

শেষ শক্তিস্তরে e⁻ সংখ্যা 5 ।

C/C1 মৌলের e^- বিন্যাস = $1s^2 2s^2 2p^6 3s^2 2p^5 \rightarrow$ শক্তিস্তর 3,

শেষ শক্তিস্তরে e সংখ্যা 7।

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

সুতরাং AC_2 ও BC_3 যৌগ দুটি যথাক্রমে $MgCl_2$ ও PCl_3 । যৌগ দুটির মধ্যে $MgCl_2$ পানিতে দ্রবণীয়। নিচে তা বিশ্লেষণ করা হলো- $MgCl_2$ যৌগটি পানিতে দ্রবীভূত হওয়ার সময় Mg দুটি ইলেক্ট্রন ত্যাগ করে Mg^{2+} এবং Cl_2 দুটি ইলেক্ট্রন গ্রহণ করে $2Cl^-$ আয়নে পরিণত হয়। ফলে $MgCl_2$ এর Mg^{2+} আয়ন ও $2Cl^-$ আয়ন পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে। Mg^{2+} ও Cl^- আয়নসমূহ পানিতে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে। জলীয় দ্রবণে আয়নিক যৌগের ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইদ্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে $MgCl_2$ এর কেলাস-ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

চিত্র : $MgCl_2$ এর পানিতে দ্রবণীয়তা অপরদিকে PCl_3 যৌগটি একটি সমযোজী যৌগ। এটি বিযোজিত হয়ে ক্যাটায়ন ও অ্যানায়ন তৈরি করতে পারে না বলে এটি পানিতে অদুবণীয়।

৩২.

[যশোর বোর্ড ২০২২]

- (ক) ডেবেরাইনারের ত্রয়ী সূত্রটি লেখো।
- (খ) অক্সিজেনের যোজনী ও যোজনী ইলেকট্রন সমান নয় ব্যাখ্যা করো।
- (গ) (i) নং এর মৌলসমূহের ধাতব ধর্ম ব্যাখ্যা করো।
- (ঘ) (ii) নং এর মৌলসমূহের একই গ্রুপের অন্তর্ভুক্ত কি-না? বিক্রিয়াসহ বিশ্লেষণ করো।

৩৩ নং প্রশ্নের উত্তর

- (ক) তিনটি মৌলকে তাদের পারমাণবিক ভরের ক্রমানুসারে পর পর সাজালে দেখা যায় যে, ২য় মৌলটির পারমাণবিক ভর ১ম ও ৩য় মৌলের পারমাণবিক ভরের গাণিতিক গড়ের সমান বা কাছাকাছি। (বিজ্ঞানী ডোবেরাইনারের নামানুসারে) একে ডোবেরাইনারের ত্রয়ী সূত্র বলে।
- (খ) কোনো মৌলের সর্বশেষ স্তরে যে কয়টি ইলেকট্রন থাকে তাকে যোজনী ইলেকট্রন বলে। আবার, কোন মৌল অষ্টক পূরণের সময় রাসায়নিক বন্ধন গঠনে যে কয়টি ইলেকট্রন গ্রহণ, ত্যাগ বা শেয়ার করে তাই হলো সেই মৌলের যোজনী। অক্সিজেনের ইলেকট্রন বিন্যাস হলো $O(8)=1s^2$ $2s^2$ $2p^4$ ।

ইলেকট্রন বিন্যাস হতে দেখা যায় যে, O এর সর্বশেষ স্তরে 6টি ইলেকট্রন থাকায় (O) এর যোজনী ইলেকট্রন 6। অপরদিকে, অস্টক পূর্ণ করতে 2টি ইলেকট্রন প্রয়োজন হয় বলে এর যোজনী 2। তাই বলা যায় অক্সিজেনের যোজনী ইলেকট্রন ও যোজনী সমান নয়।

(গ) উদ্দীপকে উল্লিখিত (i) নং এর মৌলসমূহ হলো Be, Mg এবং Ca। এরা সকলেই গ্রুপ-2 এ অবস্থিত। তবে Be ২য় পর্যায়ে Mg ৩য় পর্যায়ে এবং Ca ৪র্থ পর্যায়ে।

যে সকল মৌল চকচকে, আঘাত করলে ধাতব শব্দ করে এবং তাপ ও বিদ্যুৎ পরিবাহী তাদের ধাতু বলে। আধুনিক সংজ্ঞা অনুযায়ী, যে সকল মৌল এক বা একাধিক ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয় তাদের ধাতু বলে। ধাতুর ইলেকট্রন ত্যাগের এই ধর্মকে ধাতব ধর্ম বলে। যে মৌলের পরমাণু যত সহজে ইলেকট্রন ত্যাগ করে সেই মৌলের ধাতব ধর্ম তত বেশি। বেরিলিয়াম, ম্যাগনেসিয়াম ও ক্যালসিয়াম এর ধাতব ধর্ম তুলনায় কতগুলো বিষয় উপস্থাপিত হলো:

- i. আয়নিকরণ শক্তি : পর্যায় সারণিতে একই গ্রুপে উপর হতে যত নিচের দিকে যাওয়া যাই পরমাণুর আকার ততই বৃদ্ধি পায়। পরমাণুর আকার বৃদ্ধি পেলে আয়নিকরণ শক্তির মান কমে। ফলে Be এর চেয়ে Mg এবং Mg এর চেয়ে Ca এর ধাতব ধর্ম বেশি।
- ii. দ্রাব্যতা : Be পানির সাথে বিক্রিয়া করে না। Mg ঠান্ডা পানির সাথে খুব ধীরে বিক্রিয়া করে কিন্তু জলীয় বাম্পের সাথে তীব্রভাবে বিক্রিয়া করে MgO উৎপন্ন করে। আবার Ca পানির সাথে তীব্রভাবে বিক্রিয়া করে Ca(OH)2 উৎপন্ন করে।

সুতরাং গ্রুপ-2 এর মৌল তিনটির ধাতব ধর্মের ক্রম হলো : Ca>Mg >Be

(ঘ) উদ্দীপকের fig(ii) অনুসারে, $X, Y \circ Z$ মৌলগুলো হল যথাক্রমে F, $Cl \circ Br$

ফ্লোরিন (F), ক্লোরিন (Cl) এবং ব্রোমিন (Br)। এর ইলেকট্রন বিন্যাস নিম্নরূপ-

$$F(9) \rightarrow 1s^2 \left[2s^2 2p^5 \right]$$

$$Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$$

$$Br(35) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$$

উপরোক্ত মৌলসমূহের ইলেকট্রন বিন্যাস লক্ষ্য করলে দেখা যায়, এদের প্রত্যেকের সর্ববহিঃস্থ শক্তিস্তরে 7টি ইলেকট্রন আছে। যেখানে, s অরবিটালে 2টি এবং p অরবিটালে 5টি ইলেকট্রন উপস্থিত। ফলে এদের এম্প সংখ্যা হয় 2+5+10=17। এদেরকে হ্যাদ্রোজেন বলে। হ্যালোজেন শব্দের অর্থ লবণ উৎপন্নকারী। হ্যালোজেন মৌলসমূহ হাইড্রোজেনের সাথে মিলে হাইড্রাসিড গঠন করে। এদের সাধারণ সংকেত HX।

এখানে,

ফ্রোরিন (F), হাইড্রোজেনের সাথে বিক্রিয়া করে HF নামের হাইড্রাসিড উৎপন্ন করে।

 $H_2(g) + F_2(g) \rightarrow 2HF(g)$

একইভাবে, ক্লোরিন (Cl) এবং ব্রোমিন (Br) অনুরূপ বিক্রিয়া প্রদর্শন করে।

$$H_2(g) + Cl_2(g) + 2HCl(g)$$

$$H_2(g) + Br(g) \rightarrow 2HBr(g)$$

উপরোক্ত HF, HCl এবং HBr সবগুলোই হাইড্রাসিড।

আবার, এই হাইড্রাসিডগুলো কার্বনেট লবণের সাথে বিক্রিয়ায় লবণ, কার্বন-ডাইঅক্সাইড গ্যাস এবং পানি উৎপন্ন করে।

www.schoolmathematics.com.bd

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

$$\begin{array}{lll} CaCO_3(s) \ + \ 2HCl(aq) \ \rightarrow \ CaCl_2(aq) \ + \ CO_2(g) \ \uparrow \ + \\ H_2O(Cl) \end{array}$$

[Cl এর হাইড্রাসিড HCl]

$$CaCO_3(s) + 2HBr(aq) \rightarrow CaBr_2(aq) + CO_2(g) \uparrow + H_2O(Cl)$$

[Br এর হাইড্রাসিড HBr]

$$CaCO_3(s) + 2HF(aq) \rightarrow CaF_2(aq) + CO_2(g) \uparrow + H_2O(Cl)$$

[F এর হাইড্রাসিড HF)

সুতরাং, এরা একই গ্রুপের অন্তর্ভুক্ত।

90.

[A, B, C প্রচলিত কোনো মৌলের প্রতীক নয়।]

[যশোর বোর্ড ২০২২]

- (ক) অবস্থান্তর মৌল কাকে বলে?
- (খ) शिलग्रामरक 18 नः श्राप्त ताथा श्रा रकनः व्याधा करता।
- (গ) উদ্দীপকের B ও C মৌল দ্বারা বন্ধন গঠন প্রক্রিয়া ডায়াগ্রামের সাহায্যে বর্ণনা করো।
- (ঘ) A ও C দ্বারা গঠিত যৌগ অষ্ট্রক নিয়ম না মানলেও B ও C দ্বারা গঠিত যৌগ অষ্ট্রক নিয়ম মেনে চলে বিশ্লেষণ করো।

৩৪ নং প্রশ্নের উত্তর

- (ক) যেসব মৌলের স্থিতিশীলতা আয়নের ইলেকট্রন বিন্যাসে d অরবিটাল আংশিক পূর্ণ থাকে অর্থাৎ d^{1-9} হয় তাদেকে অবস্থান্তর মৌল বলে।
- খে) হিলিয়ামকে গ্রুপ-18 তে রাখা হয়। কারণ He এর ইলেকট্রন বিন্যাস He(2) = 1s²। He এর সর্বশেষ কক্ষপথ ইলেকট্রন দ্বারা পূর্ণ থাকে। এজন্য এটি অপর কোনো মৌলের সাথে ইলেকট্রন গ্রহণ, বর্জন বা শেয়ার করে না। অর্থাৎ নিদ্রিয় অবস্থায় থাকে। আবার 18 নং গ্রুপ হচ্ছে নিদ্রিয় মৌলসমূহের গ্রুপ। এক্ষেত্রে মৌলগুলোর ইলেকট্রন বিন্যাসে সর্ববহিঃস্থ স্তর ইলেকট্রন দ্বারা অষ্টক পূর্ণ, যা স্থিতিশীল। যার জন্য অন্য মৌলের সাথে e শেয়ার বা আদান-প্রদান করে না। অর্থাৎ নিদ্রিয় অবস্থায় থাকে। তাই He কে নিদ্রিয় গ্যাসের সাথে গ্রুপ- 18 তে রাখা হয়।
- (গ) উদ্দীপকের তথ্য মতে, B ও C মৌলদ্বয় যথাক্রমে ম্যাগনেসিয়াম (Mg) ও ক্লোরিন (Cl)। কেননা চিত্রে প্রদর্শিত B মৌলের e^- সংখ্যা 12, তাই মৌলিটি Mg। আবার C মৌলের e^- সংখ্যা 17। তাই মৌলটি Cl। এদের দ্বারা গঠিত যৌগ $MgCl_2$ । নিচে $MgCl_2$ যৌগের কখন গঠন প্রক্রিয়া ডায়াগ্রামের সাহায্যে বর্ণনা করা হলো-

Mg পরমাণুর ইলেকট্রন বিন্যাস, $_{12}Mg \longrightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2$ অর্থাৎ ম্যাগনেসিয়ামের সর্ববহিঃস্থ স্তরে 2টি ইলেকট্রন বিদ্যমান।

আবার, Cl পরমাণুর ইলেকট্রন বিন্যাস, $_{17}Cl \longrightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$

অর্থাৎ ক্লোরিন পরমাণুর বহিঃস্থ স্তরে 7টি ইলেকট্রন বিদ্যমান । রাসায়নিক বিক্রিয়ায় সময় Mg পরমাণু তার সর্ববহিঃস্থ ভরের 2টি ইলেকট্রন C1 পরমাণুকে দান করে অস্টক পূর্ণ করে এবং নিদ্ধিয় গ্যাস নিয়নের (Ne) ইলেকট্রন বিন্যাস $({}_{10}Ne \longrightarrow 1s^2\ 2s^2\ 1s^6$ অর্জন করে এবং সে সাথে Mg^{2+} আয়নে পরিণত হয় ।

অন্যদিকে 2টি Cl পরমাণুর প্রত্যেকে 1টি করে Mg প্রদন্ত ইলেকট্রন গ্রহণ করে অষ্টক পূর্ণ করে নিষ্ক্রিয় গ্যাস আর্গনের (Ar) ইলেকট্রন বিন্যাস $(1s^2\ 2s^2\ 2p^2\ 3s^2\ 3p^6)$ অর্জন করে এবং সে সাথে Cl^- আয়নে পরিণত করে।

এখন বিপরীতধর্মী ধনাত্মক Mg^{2^+} আয়ন এবং দুটি ঋণাত্মক Cl^- আয়ন স্থির বৈদ্যুতিক আকর্ষণের দ্বারা আবদ্ধ হয়ে $MgCl_2$ আয়নিক যৌগ গঠন করে।

চিত্র : MgCl2 এর আয়নিক বন্ধন

(ঘ) উদ্দীপকের A, B, C মৌল তিনটি যথাক্রমে বোরন (${}_5B$), ম্যাগনেসিয়াম (${}_{12}Mg$) ও ক্লোরিন (${}_{17}Cl$)। A ও C দ্বারা গঠিত যৌগ BCl_3 যা অষ্টক নিয়ম না মানলেও B ও C দ্বারা গঠিত যৌগ $MgCl_2$, যা অষ্টক নিয়ম মেনে চলে। নিচে তা বিশ্লোষণ করা হলো-

যে সব যৌগের কেন্দ্রীয় পরমাণুর সর্বশেষ স্তরে 8 (আট) টি ইলেকট্রন থাকে সে যৌগ অষ্টক নিয়ম অনুসরণ করে। 8 (আট) টির কম বা বেশি থাকলে যৌগটি অষ্টক নিয়ম অনুসরণ করে না।

BCl3 যৌগের কেন্দ্রীয় ও প্রমাণুর ইলেক্ট্রন বিন্যাস:

 $B(5) = 1s^2 2s^2 2p^1$

*B(5) = $1s^2 2s^2 2p_x^1 2p_y^1$ (যৌগ সৃষ্টির সময়)

B এর যোজ্যতা স্তরে 3টি বিজোড় ইলেকট্রন থাকায় তিনটি একযোজী Cl পরমাণুর সাথে যুক্ত হয়ে BCl3 অণু গঠন করে।

;Çi; ;Çi x B x Çi;

চিত্র : BCl3 অণুর গঠন

দেখা যাচ্ছে, BCl_3 অণুর কেন্দ্রীয় B পরমাণুর যোজ্যতা স্তরে 6টি ইলেকট্রন আছে। এজন্য BCl_3 অষ্টক নিয়ম মানে না।

অপরদিকে MgCl₂ যৌগের কেন্দ্রীয় Mg এর ইলেকট্রন বিন্যাস :

 $Mg(12) = 1s^2 2s^2 2p^6 3s^2$

Mg পরমাণুর যোজ্যতা স্তরে 2টি ইলেকট্রন থাকায় 2টি ইলেকট্রন দুইটি C1 পরমাণুকে দান করে Mg^{2+} ও $2C1^-$ আয়ন সৃষ্টি করে।

চিত্র : MgCl2 এর গঠন

 Mg^{2^+} আয়নে Mg এর যোজ্যতা স্তরে 8 (আট) টি ইলেকট্রন আছে। এজন্য $MgCl_2$ যৌগটি অষ্টক নিয়ম মেনে চলে।

উপরের আলোচনা থেকে বলা যায়, BCl_3 যৌগটি অষ্টক নিয়ম না মানলেও $MgCl_2$ যৌগ অষ্টক নিয়ম মেনে চলে।

৩8

বসায়ৰ

৫ম অধ্যায়

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

X . Y Z [এখানে X, Y, Z প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়।] [বরিশাল বোর্ড ২০২২]

- (ক) প্রতীক কাকে বলে?
- (খ) 11Na ও 17Cl এর যোজনী একই কেন?
- (গ) Y ও Z মৌল দ্বারা গঠিত যৌগের বন্ধন প্রকৃতি চিত্রের সাহায্যে ব্যাখ্যা করো।
- (ঘ) X ও Y এর দারা গঠিত যৌগ অষ্টক নিয়ম অনুসরণ না করলেও দুই এর নিয়ম অনুসরণ করে। – চিত্রসহ ব্যাখ্যা করো।

৩৫ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে মৌলের প্রতীক বলে।
- (খ) কোনো পরমাণু তার যোজ্যতা স্তর থেকে যতটি ইলেক্ট্রন দান করে অথবা যতটি ইলেক্ট্রন গ্রহণ করে অন্টক পূর্ণ করে সেটি হলো ঐ মৌলের যোজনী। Na(11) ও CI(17) এর ইলেক্ট্রন বিন্যাস:

 $Na(11) = 1s^2 2s^2 2p^6 3s^1$

 $Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$

দেখা যাচ্ছে, Na পরমাণুর যোজ্যতা স্তরে 1টি মাত্র ইলেকট্রন থাকায় এটি 1টি ইলেকট্রন দান করে অষ্টক পূর্ণতা অর্জন করে এবং Na^+ আয়নে পরিণত হয়। এজন্য Na এর যোজনী 1। অপরদিকে C1 পরমাণুর যোজ্যতা স্তরে 7টি ইলেকট্রন আছে। অর্থাৎ অষ্টক পূর্ণ অপেক্ষা 1টি ইলেকট্রন কম আছে। তাই এটি 1টি ইলেকট্রন গ্রহণ করে $C1^-$ আয়নে পরিণত হয়। এজন্য C1 এর যোজনী 1 অর্থাৎ $_{11}Na$ ও $_{17}C1$ এর যোজনী একই।

(গ) উদ্দীপকের তথ্য মতে, Y ও Z মৌল দুটি যথাক্রমে ফ্লোরিন (F) ও ম্যাগনেসিয়াম (Mg)। কেননা চিত্র হতে, F এর মোট e- সংখ্যা 9 এবং Mg এর মোট e- সংখ্যা 12। এদের দ্বারা গঠিত যৌগ MgF_2 । নিচে MgF_2 যৌগের বন্ধন প্রকৃতি চিত্রসহ ব্যাখ্যা করা হলো-

Mg ও F এর ইলেকট্রন বিন্যাস-

 ${
m Mg}(12)
ightarrow 1 s^2 \, 2 s^2 \, 2 p^6 \, 3 s^2 \qquad F(9)
ightarrow 1 s^2 \, 2 s^2 \, 2 p^5$ ${
m Mg}$ মৌলের সর্বশেষ ভরে 2টি ইলেকট্রন আছে এবং F পরমাণুর সর্বশেষ ভরে 7টি ইলেকট্রন আছে । রাসায়নিক বিক্রিয়ার সময় ${
m Mg}$ পরমাণু তার সর্ব বহিঃস্বভরের 2টি ইলেকট্রন F পরমাণুতে দান করে ${
m Mg}^{2+}$ আয়নে পরিণত হয় । ${
m Mg}^{2+}(12) = 1 s^2 \, 2 s^2 \, 2 p^6 \, 3 s^0$

অপরদিকে 2টি F পরমাণু প্রত্যেকে 1টি করে Mg প্রদন্ত ইলেকট্রন গ্রহণ করে $2F^-$ আয়নে পরিণত হয়। ধনাত্মক Mg^{2+} এবং ঋণাত্মক F^- আয়নের মধ্যে স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে MgF_2 এর মধ্যে আয়নিক বন্ধনের সৃষ্টি হয়।

চিত্র : MgF2 এর আয়নিক বন্ধন গঠন

(ঘ) উদ্দীপকের তথ্য মতে, X ও Y মৌলদ্বয় যথাক্রমে বোরন (B) ও ফ্লোরিন (F)। এদের দ্বারা গঠিত যৌগ BF_3 । BF_3 অষ্টক নিয়ম অনুসরণ না করলেও দুই এর নিয়ম অনুসরণ করে। নিচে চিত্রসহ ব্যাখ্যা করা হলো-যেসব যৌগের কেন্দ্রীয় পরমাণুর যোজ্যতা স্তরে 8 (আট) টি ইলেক্ট্রন থাকে সে যৌগ অষ্টক নিয়ম অনুসরণ করে। 8 (আট) টির কম বা বেশি থাকলে যৌগটি অষ্টক নিয়ম অনুসরণ করে না। এ কারণে BF_3 অষ্টক নিয়ম অনুসরণ করে না। এ কারণে 4

BF3 যৌগে B এর ইলেকট্রন বিন্যাস:

* $B(5) = 1s^2 2s^1 2p_x^{-1} 2p_y^{-1} 2p_z^{-1}$ (উদ্দীপিত অবস্থায়) অপরদিকে F পরমাণুর ইলেকট্রন :

 $F(9) = 1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$

দেখা যাচ্ছে, উদ্দীপিত অবস্থায় ${f B}$ এর যোজ্যতা স্তরে তিনটি বিজোড় ইলেকট্রন আছে। এজন্য এটি একযোজী ${f F}$ পরমাণুর (যার যোজ্যতা স্তরে 1টি বিজোড় ইলেকট্রন আছে) সাথে তিনটি ইলেকট্রন শেয়ার করে ${f BF}_3$ অণু গঠন করে।

চিত্র : BF3 অণুর গঠন

দেখা যাচ্ছে, BF_3 যৌগের B এর যোজ্যতা স্তরে তিন জোড়া অর্থাৎ $6\overline{b}$ ইলেক্ট্রন থাকে। এজন্য এটি অষ্ট্রক নিয়ম অনুসরণ করে না। কিন্তু প্রতিটি F পরমাণু B পরমাণুর সাথে 1 জোড়া করে মোট তিন জোড়া ইলেক্ট্রন থাকে বলে এটি দুই এর নিয়ম অনুসরণ করে।

উপরের আলোচনা থেকে বলা যায়, BF3 যৌগ অষ্টক নিয়ম অনুসরণ না করলেও দুই এর নিয়ম অনুসরণ করে।

৩৫. A,B এবং C তিনটি মৌল যাদেও পারমাণবিক সংখ্যা যথাক্রমে 8,17 এবং 20 ।

[ঢাকা বোর্ড ২০২১]

- (ক) আইসোটোপ কাকে বলে?
- (খ) 'Ge' কে অপধাতু বলা হয় কেন?
- (গ) A মৌলটি দ্বি-পরমাণুক অণু গঠন করে ডায়াগ্রামসহ দেখাও।
- (ঘ) B ও C মৌল দ্বারা গঠিত যৌগের দ্রবণীয়তা বিশ্লেষণ করো।

৩৬ নং প্রশ্নের উত্তর

(ক) যেসব মৌলের পরমাণুসমূহের পারমাণবিক সংখ্যা একই কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলে।

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

- (খ) যে সব মৌল ধাতু ও অধাতু উভয় শ্রেণির ধর্ম প্রকাশ করে তাদেরকে অপধাতু বলে। Ge একটি অপধাতু। কারণ Ge এর যোজ্যতা স্তরে $4\bar{b}$ ($4s^2$ $4p^2$) ইলেকট্রন থাকে। তাই Ge পরমাণু $4\bar{b}$ ইলেকট্রন ত্যাগ করে Ge^{4+} আয়ন গঠন করে ধাতু হিসাবে কাজ করতে পারে এবং চারটি ইলেকট্রন গ্রহণ করে Ge^{4+} আয়নে পরিণত হয়ে অধাতু হিসাবে কাজ করতে পারে। এজন্য Ge কে অপধাতু বলে।
- (গ) উদ্দীপকের A মৌলটির পারমাণবিক সংখ্যা 8। সুতরাং মৌলটি অক্সিজেন (O)। অক্সিজেন (O) মৌলটি দ্বি-পরমাণুক (O_2) অণু গঠন করে। নিচে ডায়াগ্রামসহ O_2 অণুর গঠন ব্যাখ্যা করা হলো,

জায়ায়্রামণ O2 অণুর গঠন ব্যাব্যা করা হলো,
অক্সিজেনের ইলেকট্রন বিন্যাস: $O(8) \rightarrow 1s^2 2s^2 2p^4$ ইলেকট্রন বিন্যাস হতে দেখা যায়, এর যোজ্যতা স্তরের ইলেকট্রন সংখ্যা
6 এবং নিকটবর্তী নিদ্ধির গ্যাস নিয়নের চেয়ে দুটি ইলেকট্রন কম আছে।
অর্থাৎ অস্টক বিন্যাস থেকে অক্সিজেনের দুটি ইলেকট্রন ঘাটতি থাকে।
তাই একটি অক্সিজেন পরমাণু (O) অপর একটি অক্সিজেন পরমাণুর
সাথে দুটি করে ইলেকট্রন শেয়ার করে অক্সিজেন অণু গঠন করে, যা দ্বিপরমাণুক মৌলিক অণু। ফলে অক্সিজেন অণুতে দ্বিবন্ধন দেখা যায়।

চিত্র : ইলেকট্রন শেয়ারের মাধ্যমে O₂ দ্বিপরমাণুক অণুর গঠন

- (ঘ) উদ্দীপকের তথ্য মতে, $_{17}$ B ও $_{20}$ C মৌলদ্বয় <mark>যথা</mark>ক্রমে ক্লোরিন (Cl) ও ক্যালসিয়াম (Ca) এবং এদের দ্বারা গঠিত যৌগ $CaCl_2$ । নিচে $CaCl_2$ যৌগের দ্রবণীয়তা বিশ্লেষণ করা হলো,
 - $CaCl_2$ যৌগে Ca পরমাণু 2টি ইলেকট্রন দান করে। অপরদিকে Cl পরমাণু একটিমাত্র ইলেকট্রন গ্রহণে সমর্থ হওয়ায় প্রতিটি Ca পরমাণুর জন্য 2টি Cl পরমাণুর প্রয়োজন হয়। এরূপে Ca^{2+} ও Cl^- আয়ন সৃষ্টি হয়। $CaCl_2$ কে পানিতে দ্রবীভূত করার সময় H_2O এর ধনাত্মক মেরু $CaCl_2$ এর ঋণাত্মক আয়নের দিকে এবং H_2O এর ঋণাত্মক আয়নের $CaCl_2$ এর ধনাত্মক আয়নের দিকে আবর্তিত হয়। ফলে $CaCl_2$ এর Ca^{2+} আয়ন ও Cl^- আয়নসমূহ পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে।
 - ${\rm Ca}^{2^+}$ ও ${\rm Cl}^-$ আয়নসমূহ দ্রবণে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে। জলীয় দ্রবণে আয়নিক যৌগের আয়নসমূহের এরূপে পানি অণু সংযোজিত হওয়ার প্রক্রিয়াকে পানি যোজন বা হাইড্রেশন বলা হয়। ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে ${\rm CaCl}_2$ এর কেলাস-ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

চিত্র : CaCl₂ এর পানিতে দ্রবণীয়তা

পর্যায়	গ্ৰুপ -16	গ্ৰন্থ -17
2		M
3	N	O

[এখানে M, N, O প্রতীকী অর্থে প্রচলিত, কোনো মৌলের প্রতীক নয়।]

- (ক) নিউক্লিয়ন সংখ্যা কাকে বলে?
- (খ) নাইট্রেট একটি যৌগ মূলক ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'O' মৌলটির নিউক্লিয়াসের প্রকৃত ভর $58.591 \times 10^{-24} {
 m g}$ হলে এর নিউট্রন সংখ্যা নির্ণয় করো।
- (ঘ) NM2 এবং NM4 যৌগ দুটির মধ্যে একটির কেন্দ্রীয় পরমাণু অষ্টক নিয়ম মেনে চললেও অপরটি অষ্টক নিয়ম মানে না বিশ্লেষণ করো।

৩৭ নং প্রশ্নের উত্তর

- (ক) পরমাণুর নিউক্লিয়াসে অবস্থিত প্রোটন ও নিউট্রন এর মোট সংখ্যাই হলো নিউক্লিয়ন সংখ্যা।
- (খ) নাইট্রেট (NO₃) একটি যৌগমূলক। কারণ NO₃ আয়নটি ঋণাত্মক আধানবিশিষ্ট, যা একাধিক পরমাণু সমন্বয়ে গঠিত। রাসায়নিক বিক্রিয়ায় এটি একটি মাত্র পরমাণুর ন্যায় আচরণ করে এবং বিক্রিয়া শেষে অপরিবর্তিত থাকে। যেমন,

$$Zn + 2HNO_3 \longrightarrow$$
 যৌগমূলক $Zn(NO_3)_2 + H_2(g)$
যৌগমূলক যৌগমূলক

(গ) উদ্দীপক মতে, 'O' এর গ্রুপ সংখ্যা 17 এবং পর্যায় সংখ্যা 3। সুতরাং O মৌলটি Cl, যার পারমাণবিক সংখ্যা তথা প্রোটন সংখ্যা 17। নিউক্লিয়াসের প্রকৃত ভর $58.591 \times 10^{-24} \, \mathrm{g}$ ।

জানা আছে, ভর সংখ্যা = <mark>প্রোটন সংখ্যা + নিউট্রন</mark> সংখ্যা

বা,
$$A=p+n$$

আবার, কোনো মৌলের আপেক্ষিক পারমাণবিক ভর

= $\dfrac{$ নিউক্লিয়াসের প্রকৃত ভর $}{C-12}$ আই<mark>সোটোপের পরমাণু</mark>র ভরের $\dfrac{1}{12}$ অংশ

$$= \frac{58.591 \times 10^{-24}}{1.66 \times 10^{-24}} = 35.3 \cong 35$$

যেহেতু,
$$A = p + n$$

এখানে, ভরসংখ্যা,
$$A=35$$

বা,
$$n = A - p$$

সুতরাং, উদ্দীপকের 'O' মৌলটির নিউট্রন সংখ্যা 18।

(घ) উদ্দীপকের তথ্যমতে, N ও M মৌল দুটি যথাক্রমে সালফার (S) ও ফ্রোরিন (F)। কেননা ৩য় পর্যায়ের 16 নং গ্রুপের মৌলটি হচ্ছে S এবং ২য় পর্যায়ের 17 নং গ্রুপের মৌলটি হচ্ছে F। সুতরাং NM_2 ও NM_4 যৌগদ্বয় যথাক্রমে SF_2 ও SF_4 । এদের মধ্যে SF_2 অষ্টক নিয়ম মেনে চললেও SF_4 অপুটি অষ্টক নিয়ম মানে না। নিচে তা বিশ্লেষণ করা হলো, S(16) ও F(9) পরমাণুর ইলেকট্রন বিন্যাস নিয়ে পাই,

$$S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$$

$$S^*(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1 3p_{xy}^1$$

$$F(9) \rightarrow 1s^2 2s^2 2p_x^2 3p_y^2 2p_z^1$$

S এর যোজ্যতা স্তরে 6টি ইলেক্ট্রন আছে। নিকটতম নিদ্রিয় গ্যাস অপেক্ষা 2টি ইলেক্ট্রন কম আছে। অপরদিকে F পরমাণুর যোজ্যতা স্তরে 7টি ইলেক্ট্রন আছে এবং অষ্টক পূরণের জন্য 1টি ইলেক্ট্রন প্রয়োজন। আবার অষ্টক পূরণের জন্য পরমাণুর 2টি ইলেক্ট্রন প্রয়োজন। এজন্য S

ব্সায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

পরমাণু দুটি F পরমাণুর সাথে ইলেক্ট্রন শেয়ারের মাধ্যমে যুক্ত হয়ে অষ্টক পূরণ করে। ফলে SF_2 অণু গঠন করে।

চিত্র : SF2 অণুর গঠন

অপরদিকে, SF_4 অণুটি অষ্টক নীতি মেনে চলে না। SF_4 অণুর গঠন হতে, দেখা যায়, 4টি F এর শেষ কক্ষপথের 1টি বিজোড় ইলেকট্রন S এর 4টি বিজোড় ইলেকট্রনের সাথে শেয়ার করে SF_4 সমযোজী যৌগ গঠন করে। ফলে F এর শেষ কক্ষপথে 8টি ইলেকট্রনের বিন্যাস লাভ করলেও S এর 10টি ইলেকট্রনের বিন্যাস লাভ করে যা অষ্টক নিয়মের ব্যতিক্রম। এজন্য SF_4 যৌগ গঠনে F অষ্টক নিয়ম মেনে চললেও S তা মেনে চলে না।

চিত্র : SF4 এর গঠন

৩৭. দৃশ্য-১: (a)O₂, (b) N₂

দৃশ্য-২:

2, (0) 1 N ₂			
Li	Be	0	F
	W/ /	11-6	Cl
			Br

[ঢাকা বোর্ড ২০২১]

- (ক) অবস্থান্তর মৌল কাকে বলে?
- (খ) ধাতু বিদ্যুৎ পরিবাহী ব্যাখ্যা করো।
- (গ) দৃশ্য-২ এ উল্লিখিত গ্রুপটির আয়নিকরণ শক্তির ক্রম ব্যাখ্যা করো।
- (ঘ) দৃশ্য-১ এ (a) এবং (b) সমযোজী যৌগ হলেও সমযোজী বন্ধনের সংখ্যা ভিন্ন চিত্রসহ বিশ্লেষণ করো।

৩৮ নং প্রশ্নের উত্তর

- (ক) পর্যায় সারণিতে উপস্থিত যেসব ধাতব মৌলের স্থিতিশীল আয়নের ইলেকট্রন বিন্যাসে d অরবিটাল আংশিকভাবে ইলেকট্রন দ্বারা পূর্ণ থাকে তাদেরকে অবস্থান্তর মৌল বলে।
- (খ) সকল ধাতুই বিদ্যুৎ সুপরিবাহী। কারণ ধাতুর ক্ষটিকে মুক্তভাবে বিচরণশীল ইলেকট্রনগুলো বিদ্যুৎ পরিবহনের কাজটি করে থাকে। ধাতব খন্ডের দুই প্রান্তের সাথে ব্যাটারির ধনাত্মক (+) ও ঋণাত্মক (-) প্রান্ত সংযুক্ত করা হলে ইলেকট্রন (e⁻) গুলো ঋণাত্মক প্রান্ত হতে ধনাত্মক দিকে প্রবাহিত হবে। অর্থাৎ ধনাত্মক প্রান্ত হতে ঋণাত্মক প্রান্তের দিকে বিদ্যুৎ প্রবাহিত হবে। এই সঞ্চারণশীল ইলেকট্রনের (e⁻) জন্যই মূলত ধাতুর মধ্যে বিদ্যুৎ প্রবাহিত হয়।
- (গ) দৃশ্য-২ এ উল্লিখিত গ্রুপটি গ্রুপ-17। নিচে গ্রুপ-17 এর মৌলগুলোর আয়নিকরণ শক্তির ক্রম ব্যাখ্যা করা হলো.

প্রদত্ত গ্রুপটির মৌলসমূহের ইলেকট্রন বিন্যাস করে পাই,

 $F(9) = 1s^2 2s^2 2p^5$

 $Cl(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$

 $Br(35) = [Ar] 3d^6 4s^2 4p^5$

দেখা যাচ্ছে, মৌলগুলোর একই গ্রুপে অবস্থিত। কেননা প্রত্যেকের যোজ্যতান্তরের ইলেকট্রন বিন্যাস একই। জানা আছে, গ্যাসীয় অবস্থায় কোনো পরমাণুর যোজ্যতা স্তর থেকে 1টি ইলেকট্রন সরিয়ে এক মোল ধনাত্মক আয়নে পরিণত করতে য়ে শক্তির প্রয়োজন তাকে আয়নিকরণ শক্তি বলে। আয়নিকরণ শক্তির মান একই গ্রুপের উপর থেকে নিচে ব্রাস পায়। কারণ একই গ্রুপে উপর থেকে নিচের মৌলগুলোর ক্ষেত্রে যোজ্যতা স্তরে ইলেকট্রন বৃদ্ধি পায় না কিন্তু যোজ্যতা ভরের সংখ্যা বৃদ্ধি পায়। ফলে নিউক্লিয়াসের সাথে যোজ্যতা স্তরের ইলেকট্রনগুলোর দূরত্ব বৃদ্ধি পায় এবং সহজেই ইলেকট্রন ছেড়ে দিতে পারে বলে আয়নিকরণ শক্তির মান কমে যায়। উদ্দীপকের গ্রুপ- 17 মৌলগুলোর মধ্যে F সবার উপরে হওয়ায় এর আয়নিকরণ শক্তি সবচেয়ে বেশি এবং I সবার নিচে হওয়ায় এর আয়নিকরণ শক্তি সবচেয়ে কম। সুতরাং মৌলগুলোর আয়নিকরণ শক্তির ক্রম: F(১৬81 kJ/mol) > Cl(1251 kJ/mol) > Br(1139.9 kJ/mol) > 1(1008.4 kJ/mol)।

- (ঘ) দৃশ্য-১ এ (a) হলো অক্সিজেন (O_2) এবং (b) হলো নাইট্রোজেন (N_2)। O_2 ও N_2 উভয়ই সমযোজী যৌগ কিন্তু এদের সমযোজী বন্ধনের সংখ্যা ভিন্ন। নিচে চিত্রসহ বিশ্লেষণ করা হলো.
 - O_2 অপুর ক্ষেত্রে: অক্সিজেনের ইলেকট্রন বিন্যাস: $O(8) \to 1 s^2 2 s^2 2 p^4$ ইলেকট্রন বিন্যাস হতে দেখা যায়, এর যোজ্যতা স্তরের ইলেকট্রন সংখ্যা 6 এবং নিকটবর্তী নিদ্ধিয় গ্যাস নিয়নের চেয়ে দুটি ইলেকট্রন কম আছে। অর্থাৎ অষ্টক বিন্যাস থেকে অক্সিজেনের দুটি ইলেকট্রন ঘাটতি থাকে। তাই একটি অক্সিজেন পরমাণু (O) অপর একটি অক্সিজেন পরমাণুর সাথে দুটি করে ইলেকট্রন শেয়ার করে অক্সিজেন অণু গঠন করে। ফলে অক্সিজেন অণুতে দ্বিবন্ধন (=) দেখা যায়।

চিত্র : O2 মৌলিক অণুর গঠন

সুতরাং, O₂ <mark>অণুতে সমযোজী বন্ধনের সংখ্যা 2</mark>।

 N_2 অপুর ক্ষেত্রে: N(7) পরমাণুর ইলেকট্রন বিন্যাস, $N(7) \to 1 s^2 2 s^2 \ 2 p^3$ ইলেকট্রন বিন্যাস হতে দেখা যায়, নিকটস্থ নিদ্রিয় গ্যাস Ne এর স্থিতিশীল ইলেকট্রন কাঠামো (অস্টক) লাভের জন্য N-এর আরও তিনটি ইলেকট্রন প্রয়োজন। তাই দুটি N-পরমাণু একত্রিত হয়ে উভয়েই তিনটি করে ইলেকট্রন শেয়ার করে উভয়েই তাদের অস্টক পূর্ণ করে এবং ত্রিবন্ধনীর (\equiv) মাধ্যমে সমযোজী যৌগ উৎপন্ন করে।

চিত্র : N₂ মৌলিক অণুর গঠন

সুতরাং, N_2 অণুতে সমযোজী বন্ধনের সংখ্যা 3। উপরের আলোচনার প্রেক্ষিতে বলা যায়, N_2 ও O_2 উভয়ই সমযোজী যৌগ হলেও সমযোজী বন্ধনের সংখ্যা ভিন্ন।

৩৮. $^{19}_{9}\mathrm{X}, ^{24}_{12}\mathrm{Y}, ^{31}_{15}\mathrm{Z}, ^{65}_{30}\mathrm{M}$ [এখানে $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ও M প্রতীকী অর্থে; কোনো মৌলের প্রতীক নয়।]
[ময়মনসিংহ বোর্ড ২০২১]

বুসামূল ৫ম অধ্যাম

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

- (ক) বদ্ধ শিকল হাইড্রোকার্বন কাকে বলে?
- (খ) মিথেন একটি প্যারাফিন ব্যাখ্যা করো।
- (গ) ইলেকট্রন বিন্যাস করে পর্যায় সারণিতে M মৌলের অবস্থান নির্ণয় করো।
- (ঘ) YX_2 ও ZX_3 যৌগগুলোর মধ্যে একই ধরনের বন্ধন কিনা? যুক্তিসহ বিশ্লেষণ করো।

৩৯ নং প্রশ্নের উত্তর

- (ক) যে সকল হাইড্রোকার্বনের কার্বন শিকলের দুই প্রান্তের কার্বন পরস্পর যুক্ত হয়ে একটি বলয় গঠন করে তাকে বন্ধ শিকল হাইড্রোকার্বন বলে।
- (খ) মিথেন একটি প্যারাফিন। প্যারাফিন ল্যাটিন শব্দ, যার অর্থ নিব্ধিয় বা আকর্ষণ নেই। মিথেন (CH4) এ কার্বন-হাইড্রোজেন বন্ধনসমূহ অত্যন্ত শক্তিশালী হওয়ায় মিথেন সাধারণত রাসায়নিকভাবে নিব্ধিয় হয়। ফলে এটি সাধারণত তীব্র এসিড, ক্ষারক ও জারক বা বিজারক পদার্থের সাথে বিক্রিয়া করে না। তাই মিথেনকে প্যারাফিন বলা হয়।
- (গ) উদ্দীপকের M মৌল হলো জিংক (Zn)। কারণ জিংকের পারমাণবিক সংখ্যা 30 এবং পারমাণবিক ভর 65। Zn এর ইলেক্ট্রন বিন্যাস নিয়ে পাই,

 $Zn(30) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$

পর্যায় নির্ণয় : যেহেতু Z_n এর ইলেকট্রন বিন্যাসে সবচেয়ে বাইরের শক্তিস্তর 4 । তাই Z_n 4- নম্বর পর্যায়ের মৌল ।

ঞ্চপ নির্ণয় : Zn এর ইলেক্ট্রন বিন্যাসে বাইরের শক্তিস্তরে s অরবিটাল আছে এবং তার তাগের শক্তিস্তরে d অরবিটাল আছে। এখানে d অরবিটালে 10টি এবং s অরবিটালে 2টি ইলেক্ট্রন আছে। কাজেই Za এর গ্রুপ নম্বর 10+2=12।

সুতরাং, Zn মৌলটি পর্যায় সারণির চতুর্থ <mark>পর্যায়ের গ্রুপ 12 তে অবস্থিত।</code></mark>

(घ) উদ্দীপকের X, Y ও Z মৌল তিনটি হলো যথাক্রমে ফ্রোরিন (F), ম্যাগনেসিয়াম (Mg) ও ফসফরাস (P)। কারণ F, Mg ও P এর পারমাণবিক সংখ্যা যথাক্রমে 9, 12 ও 15। YX_2 ও ZX_3 যৌগদ্বয় হলো যথাক্রমে MgF_2 ও PF_3 । MgF_2 আয়নিক বন্ধন ও PF_3 সমযোজী বন্ধন তথা ভিন্ন বন্ধনের মাধ্যমে যৌগ গঠন করে। নিচে যুক্তিসহ তা বিশ্লেষণ করা হলো:

MgF2 যৌগের গঠন প্রক্রিয়া :

Mg ও F এর ইলেকট্রন বিন্যাস,

 $Mg(12) \longrightarrow 1s^2 2s^2 2p^6 3s^2$

 $F(9) \longrightarrow 1s^2 2s^2 2p^5$

রাসায়নিক বিক্রিয়ার সময় Mg পরমাণু তার সর্ববহিঃস্থ স্তরের 2টি ইলেকট্রন F পরমাণুকে দান করে Mg^{2+} আয়নে পরিণত হয়।

 $Mg^{2+}(12) = 1s^2 2s^2 2p^6 3s^0$

অপরদিকে 2টি F পরমাণু প্রত্যেকে 1টি করে Mg এর দানকৃত ইলেকট্রন গ্রহণ করে $2F^-$ আয়নে পরিণত হয়। ধনাত্মক Mg^{2+} এবং ঋণাত্মক আয়নের মধ্যে স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে MgF_2 এর মধ্যে আয়নিক বন্ধনের সৃষ্টি হয়।

চিত্র : MgF2 এর আয়নিক বন্ধন গঠন

PF₃ যৌগের গঠন প্রক্রিয়া : P ও F এর ইলেক্ট্রন বিন্যাস,

 $P(15) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1$

 $F(9) \rightarrow 1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$

 PF_3 যৌগ গঠনকালে ফসফরাস P পরমাণুর সর্ববহিঃস্থ শক্তিস্তরে তিনটি অযুগা ইলেকট্রন সৃষ্টি হয়। তাই ফসফরাস P পরমাণু তিনটি একযোজী P পরমাণুর সাথে ইলেকট্রন শেয়ারের মাধ্যমে PF_3 সমযোজী অণু গঠিত হয়।

এভাবে ইলেকট্রন শেয়ারের মাধ্যমে PF_3 যৌগে সমযোজী বন্ধনের সৃষ্টি হয়।

চিত্র: PF3 এর সমযোজী কখন গঠন

সুতরাং দেখা যাচ্ছে, YX_2 ও ZX_3 তথা MgF_2 ও PF_3 যৌগদ্বয়ের মধ্যে ভিন্ন ধরনের বন্ধন সৃষ্টি হয়।

৩৯.

মৌল	L	M	N
পারমাণবিক সংখ্যা	7	15	17

[এখানে L, M, N প্রচলিত কোনো মৌলের প্রতীক নয়]

[ময়মনসিংহ বোর্ড ২০২১]

- (ক) রাসায়নিক সংকেত কাকে বলে?
- ইথেন পানিতে দ্রবীভূত হয় না? ব্যাখ্যা করো।
- (গ) L₂ অণুর বন্ধন গঠনে ব্যাখ্যা করো।
- (घ) M ও N দ্বারা গঠিত দুটি ভিন্ন যৌগের মধ্যে একটি অষ্টক নিয়ম মানলেও অপটির মানে না – বিশ্লেষণ করো।

৪০ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলিক বা যৌগিক পদার্থের অণুকে সংশ্লিষ্ট মৌলের প্রতীক ও তাদের পরমাণুর সংখ্যার সাহায্যে সংক্ষিপ্ত রূপে প্রকাশকে মৌলিক বা যৌগিক পদার্থের রাসায়নিক সংকেত বলে। যেমন, সালফিউরিক এসিড এর রাসায়নিক সংকেত H_2SO_4 এবং হাইড্রোজেনের রাসায়নিক সংকেত H_2 ।
- (খ) পানি হলো একটি পোলার দ্রাবক। তাই পানিতে দ্রবীভূত হতে হলে দ্রবটিকে অবশ্যই পোলার হতে হবে। কিন্তু ইথেন হলো একটি অপোলার সমযোজী যৌগ। কারণ, এ প্রতিসম যৌগে দুটি কার্বন পরমাণুর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য শূন্য এবং কার্বন ও হাইড্রোজেন এর মধ্যেকার

www.schoolmathematics.com.bd

৫ম অধ্যায়

Prepared by: SAJJAD HOSSAIN

তডিৎ ঋণাত্মকতার পার্থক্যও অনেক কম (0.35)। তাই এতে ধনাত্মক ও ঋণাত্মক আধানবিশিষ্ট প্রান্ত সষ্টি হয় না। ফলে. ইথেন অপোলার যৌগ হওয়ায় পানির সাথে হাইড্রোজেন বন্ধন গঠন করতে পারে না এবং এ কারণে ইথেন পানিতে অদ্রবণীয়।

- (গ) উদ্দীপকে উল্লিখিত L মৌলটির পারমাণবিক সংখ্যা 7। কাজেই, পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যাক্রম অনুযায়ী মৌলটি নাইট্রোজেন (N) এবং L_2 অণু বলতে এখানে নাইট্রোজেনের অণুকে (N_2) বুঝানো হয়েছে। নিম্নে এর বন্ধন গঠন প্রক্রিয়া দেয়া হলো :
 - বন্ধন গঠনের সময় N প্রমাণু নিকটস্থ নিষ্ক্রিয় গ্যাস নিয়নের যোজ্যতান্তরের স্থায়ী ইলেকট্রন বিন্যাস (2.6) অর্জনের মাধ্যমে স্থিতিশীল ইলেক্ট্রনীয় কাঠামো অর্জন করে।
 - এই স্থিতিশীল কাঠামো অর্জন করতে হলে 5টি ইলেকট্রন ত্যাগ করতে হবে অথবা অন্য অধাতুর পরমাণুর সাথে 3টি ইলেট্রন শেয়ার করতে হবে। রাসায়নিক বিক্রিয়ায় এতো অধিক সংখ্যক (5টি) ইলেকট্রন ত্যাগ করা সম্ভব হয় না।

তাই, অধাতু-অধাতুর বন্ধন গঠনের সময় ইলেকট্রন শেয়ার করে বন্ধন গঠন করে সমযোজী বন্ধন গঠন করে। N_2 বন্ধন গঠনের সময় নাইট্রোজেন সর্বশেষ শক্তিস্তরের তিনটি ইলেকট্রন শেয়ার করে <mark>অষ্ট</mark>কের স্থিতিশীল গঠন অর্জন করে।

N(7) এর ইলেক্ট্রন বিন্যাস : $1s^2 \ 2s^2 \ 2p^3$

চিত্র : N2 এর বন্ধন গঠন

- (ঘ) উদ্দীপকে উল্লিখিত মৌল M ও N এর পারমাণবিক সংখ্যা যথাক্রমে 15 ও 17, যা পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যা ক্রম অনুযায়ী যথাক্রমে ফসফরাস (P) ও ক্লোরিন (Cl)।
 - P এবং Cl এর সমন্বয়ে গঠিত যৌগদ্বয় হলো PCl₅ ও PCl₅। P এর ইলেক্ট্রন বিন্যাস-

$$P(15)
ightarrow 1 {
m s}^2 \ 2 {
m s}^2 \ 2 {
m p}^6 \ 3 {
m s}^2 \ 3 {
m p}^5$$
 সর্ববহিঃস্থ শক্তিস্তারে 5 টি ইলেকট্রন বিদ্যমান। স্থিতিশীল ইলেকট্রনীয় কাঠায়ো অর্জনের জন্ম 3 টি ইলেকট্রন প্রযোজন। অন্যদিকে $C1$ এব

কাঠামো অর্জনের জন্য 3টি ইলেক্ট্রন প্রয়োজন। অন্যদিকে Cl এর ইলেক্ট্রন বিন্যাস হতে দেখা যায়,

$$Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$$

সর্ববহিঃস্থ শক্তিস্তরে স্থিতিশীল ইলেকট্রনীয় কাঠামো অর্জনের জন্য Cl এর 1টি ইলেকট্রন প্রয়োজন।

তাই PCl3 এ তিনটি Cl পরমাণু P এর 3টি ইলেক্ট্রন শেয়ারের মাধ্যমে অণু গঠন করে । কিন্তু PCl_3 এ পাঁচটি Cl পরমাণু P এর সাথে সমযোজী সন্নিবেশ বন্ধনের মাধ্যমে যুক্ত হয়।

এক্ষেত্রে P পরমাণুর ইলেক্ট্রন বিন্যাসে উত্তেজিত অবস্থার দরুন $3{
m s}^2$ থেকে 1টি ইলেকট্রন 3d অরবিটালে যায় ফলে 5টি বিজোড় ইলেকট্রন অরবিটাল গঠিত হয়। 5টি বিজোড় ইলেক্ট্রন পাঁচটি Cl এর সাথে ইলেকট্রন শেয়ারের মাধ্যমে PCl₅ গঠন করে।

ফলে Cl এর বহিঃস্থ কক্ষপথে অষ্টক পূর্ণ হলেও P এর রহিঃস্থ শেলে ইলেকট্রন সংখ্যা হয় 10টি।

অপরদিকে. PCl3 যৌগ গঠনের সময় তিনটি ক্লোরিন পরমাণ P এর বহিঃস্থ শেলের তিনটি বিজোড ইলেকট্রনের সাথে ইলেকট্রন শেয়ারের মাধ্যমে PCl3 যৌগ গঠন করে।

ফলে P ও Cl উভয়েরই বহিঃস্থ কক্ষপথে ইলেক্ট্রন সংখ্যা হয় আট (8)টি বা অষ্টক পূর্ণ হয়। তাই বলা যায় PCl_3 ও PCl_5 যৌগ গঠনে PCl3 অষ্টক নিয়ম মানলেও PCl5 মানে না।

80.

[এখানে X, Y, Z প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়।] [রাজশাহী বোর্ড ২০২১]

- (ক) সমগোত্রীয় শ্রেণি কাকে ব**লে**?
- (খ) পেট্রোলিয়ামকে জীবাশা জ্বালানি বলা হয় কেন?
- (গ) উদ্দীপকের Y ও Z মৌলের দ্বারা গঠিত যৌগটি পানিতে দ্রবণীয় ব্যাখ্যা করো।
- (ঘ) X ও Z দ্বারা গঠিত যৌগটি অষ্টক নিয়ম না মানলেও Y ও Z দ্বারা গঠিত যৌগটি অষ্টক নিয়ম মেনে চলে – বিশ্লেষণ করো।

৪১ নং প্রশ্নের উত্তর

- (ক) যে সকল জৈব যৌগের <mark>কার্যকরী মূলক একই</mark> হওয়ায় তাদের ভৌত ও রাসায়নিক ধর্মের গভীর মিল থাকে তারা একই শ্রেণিভুক্ত, এদেরকে সমগোত্রীয় শ্রেণি বলে।
- (খ) পেট্রোলিয়ামকে জীবাশ্ম জ্বা<mark>লানি বলা হয়। কার</mark>ণ বহু প্রাচীনকালের উদ্ভিদ এবং প্রাণীর মৃতদেহের য<mark>ে ধ্</mark>বংসা<mark>বশেষ মাটির</mark> নিচে পাওয়া যায় তাকে জীবাশা বলে। মাটির নিচে <mark>বায়ুর অনুপস্থিতি</mark>তে শত শত মিলিয়ন বছর ধরে তাপ ও চাপের প্র<mark>ভাবে</mark> ফা<mark>ইটোপাংকটন,</mark> জুওপাংকটন ও মৃত প্রাণীর দেহাবশেষ থেকে পে<mark>ট্রো</mark>লিয়া<mark>মের সৃষ্টি হ</mark>য় এবং এটি জ্নালানির কাজে ব্যবহার করা হয় ব<mark>লে একে জীবাশ্ম জ্বালা</mark>নি বলে।
- (গ) উদ্দীপকের তথ্য অনুসারে, Y মৌলটি সোডিয়াম 11Na) এবং Z মৌলটি ফ্রোরিন (9F)। সুতরাং Y ও Z মৌলদ্বয় দ্বারা গঠিত যৌগ NaF. যা পানিতে দ্রবণীয়। নিচে তা ব্যাখ্যা করা হলো.

সাধার<mark>ণত আয়নিক যৌগগুলো পানিতে দ্রবীভূত হয়। আয়নিক যৌগগুলো</mark> <mark>পানিতে দ্রবীভূত করলে ধনাত্মক আয়ন পানির ঋণাত্মক মেরুর দিকে এবং</mark> <mark>যৌগের ঋণাত্মক</mark> আয়ন পানির ধনায়ক মেরুর দিকে আবর্তিত হয়ে <mark>পারস্পরিক আ</mark>কর্ষণ অনুভব করে। ফলে ল্যাটিসের আয়নসমূহের মধ্যকার কুলম্ব আকর্ষণ কমতে থাকে এবং আয়নগুলো দ্রাবক পানির অণু দ্বারা বেষ্টিত অবস্থায় ল্যাটিস হতে বিচ্ছিন্ন হয়ে দ্রাবকে দ্রবীভূত হয়।

চিত্র : NaF এর পানিতে দ্রবণীয়তা

আয়নিক যৌগ NaF এর ধনাতাক $\mathrm{Na^+}$ আয়ন পানির ঋণাতাক মেরু $\mathrm{OH^-}$ দ্বারা এবং NaF এর ঋণাত্মক আয়ন $\mathrm{F^-}$ পানির ধনাত্মক মেরু $\mathrm{H^+}$ দ্বারা পরিবেষ্টিত হয়। ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে NaF এর কেলাস ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

(ঘ) উদ্দীপকের তথ্যানুসারে $X, Y \otimes Z$ মৌল তিনটি যথাক্রমে বোরন $(_5B)$, সোডিয়াম $(_{11}Na)$ ও ফ্লোরিন $(_9F)$ । $X \otimes Z$ দ্বারা গঠিত যৌগ BF_3 এবং $Y \otimes Z$ দ্বারা গঠিত যৌগ NaF। BF_3 যৌগটি অষ্টক নিয়ম না মানলেও NaF যৌগটি অষ্টক নিয়ম মেনে চলে। নিচে তা বিশ্লোষণ করা হলো-

যেসব যৌগের কেন্দ্রীয় পরমাণুর সর্বশেষ স্তরে ৪টি ইলেকট্রন থাকে সে যৌগ অকটেট নিয়ম অনুসরণ করে। ৪টির কম বা বেশি থাকলে যৌগটি অকটেট নিয়ম অনুসরণ করে না। যেমন.

বোরনের ইলেক্ট্রন বিন্যাস-

 $B(5) = 1s^2 2s^2 2p^1$

যৌগ সৃষ্টির পূর্বমুহূর্তে $2s^2$ থেকে 1টি ইলেকট্রন $2p_y$ অরবিটালে গমন করে। $*B(5)=1s^2\,2s^1\,2p_x^{-1}\,2p_y^{-1}$

যেহেতু বোরনের যোজ্যতা স্তরে 3টি বিজোড় ইলেকট্রন আছে, সেহেতু এটি 3টি একযোজী ফ্লোরিনের সাথে যুক্ত হতে পারে। তখন বোরন পরমাণুর সর্বশেষ স্তরে 6টি ইলেকট্রন থাকে, যা 8টি অপেক্ষা কম। এ কারণে BF_3 যৌগটি অকটেট নিয়ম অনুসরণ করে না অর্থাৎ অসম্পূর্ণ অকটেট অবস্থায় থাকে।

বোরনের (B) চারদিকে 6টি ইলেক্ট্রন

অপরদিকে NaF যৌগ অষ্টক নিয়ম মেনে চলে। কারণ Na ও F এর ইলেক্ট্রন বিন্যাস :

 $Na(11) = 1s^2 2s^2 2p^6 3s^1$

 $F(9) = 1s^2 2s^2 2p^5$

দেখা যাছে যে, N_a পরমাণুর বহিঃস্থ শক্তিস্তরে 1° ট ইলেক্ট্রন থাকায় এটি 1° ট ইলেক্ট্রন দান করে N_a^+ আয়ন গঠন করে। ফলে N_a^+ আয়নের যোজ্যতা স্তরে 8° ট ইলেক্ট্রন হয়। আবার, F^- পরমাণুর যোজ্যতা স্তরে 7° ট ইলেক্ট্রন থাকায় N_a^+ পরমাণুর ত্যাগ করা ইলেক্ট্রন গ্রহণ করে F^- আয়নে পরিণত হয়ে যোজ্যতা স্তরে 8° ট ইলেক্ট্রন লাভ করে। অর্থাৎ, N_aF যৌগে উভয় আয়ন (N_a^+ ও F^-) এর যোজ্যতা স্তরে 8° ট ইলেক্ট্রন, বিন্যাস লাভ করে বলে N_aF যৌগটি অষ্টক নিয়ম মেনে চলে।

সুতরাং দেখা যাচ্ছে যে, BF_3 অষ্টক নিয়ম না মানলেও NaF অষ্টক নিয়ম মেনে চলে।

83.

•							
	Li	-	4				Q
	M	Mg	Al	Si	P	S	R
	N			The same			Br

[M, N, O, R মৌলের প্রতীক নয়, প্রতীকী অর্থে ব্যবহৃত।]

[রাজশাহী বোর্ড ২০২১]

- (ক) সমযোজী যৌগ কাকে বলে?
- (খ) ক্রিপ্টন সিথতিশীল কেন? ব্যাখ্যা করো।
- (গ) M, N এবং R এর আয়নিকরণ শক্তির ক্রম ব্যাখ্যা করো।
- (ঘ) M ও R দ্বারা গঠিত যৌগ এবং Q_2 অণুর মধ্যে বন্ধন কি একই প্রকৃতির? যুক্তিসহ মতামত দাও।
 - ৪২ নং প্রশ্নের উত্তর

- (ক) যেসব যৌগে ইলেকট্রন শেয়ারের মাধ্যমে কখন তথা সমযোজী বন্ধন গঠিত হয়, সেসব যৌগকে সমযোজী যৌগ বলে।
- (খ) ক্রিন্টন (Kr) স্থিতিশীল যৌগ। কারণ Kr(36) এর বহিঃস্তরের ইলেকট্রনীয় গঠন অষ্টক পূর্ণ।

Kr(36) এর ইলেকট্রন বিন্যাস : $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6$ । ইলেকট্রন বিন্যাস থেকে দেখা যায়, Kr এর যোজ্যতা স্তরে ৪টি ইলেকট্রন বিদ্যমান। এজন্য এটি অন্য কোনো পরমাণুর সাথে ইলেকট্রন গ্রহণ, বর্জন বা শেয়ার করে না। অর্থাৎ রাসায়নিক বন্ধন গঠন করে না বলে এটি স্থিতিশীল।

(গ) উদ্দীপকের তথ্য অনুসারে, M, N ও R মৌল তিনটি যথাক্রমে সোডিয়াম ($_{11}Na$), পটাসিয়াম ($_{19}K$) ও ক্লোরিন ($_{17}Cl$)। কেননা, জানা আছে, Li 1 নং গ্রুপের মৌল। ঐ গ্রুপের Li এর পরের মৌলদ্বয় যথাক্রমে $_{11}Na$ ও $_{19}K$ । আবার Br মৌলটি 17 নং গ্রুপের মৌল। এ গ্রুপের Br এর উপরের মৌল $_{17}Cl$ । নিচে এদের আয়নিকরণ শক্তির ক্রম ব্যাখ্যা করা হলোঁ-

উদ্দীপকের পর্যায় সারণির অংশবিশেষ লক্ষ্য করলে দেখা যায়, M ও R অর্থাৎ Na এবং Cl একই তথা ৩য় পর্যায়ের মৌল।

আয়নিকরণ শক্তি একটি পর্যায়বৃত্ত ধর্ম। যেকোনো পর্যায়ের যতই ডানদিকে যাওয়া যায় অর্থাৎ পারমাণবিক সংখ্যা যতই বাড়ে আয়নিকরণ শক্তি ততই বেড়ে যায়। কারণ পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে কেন্দ্রের সাথে সর্ববহিঃস্থ ইলেকট্রনের আকর্ষণ বেড়ে যায়। ফলে সর্ববহিঃস্থ একটি ইলেকট্রন অপসারণ করতে বেশি শক্তির প্রয়োজন হয়। Na অপেক্ষা Cl এর পারমাণবিক সংখ্যা বেশি এবং Cl, Na এর ডানে অবস্থিত। তাই Na অপেক্ষা Cl এর আয়নিকরণ শক্তি বেশি।

আবার ঞ্চপের উপর হতে নিচের দিকে আয়নিকরণ শক্তির মান কমে। কারণ একই গ্রুপে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে একটি করে নতুন শক্তিস্তর যোগ হয়। ফলে কেন্দ্রের সাথে সর্ববহিঃস্থ ইলেকট্রনের আকর্ষণ কমে যায় এবং অল্প শক্তি প্রয়োগে ইলেকট্রন অপসারণ করা যায়। এক্ষেত্রে Na ও K পর্যায় সারণির গ্রুপ-1 এ অবস্থিত দুটি মৌল। K মৌলটি একই গ্রুপ তথা 1নং গ্রুপের Na এর নিচে অবস্থিত। এজন্য Na অপেক্ষা K এর আয়নিকরণ শক্তি কম।

সূতরাং উদ্দীপকের মৌল তিনটির আয়নিকরণ শক্তির ক্রম:

(ঘ) উদ্দীপকের তথ্য অনুসারে, M, R ও Q মৌল তিনটি যথাক্রমে $_{11}Na$, $_{17}Cl$ ও $_9F$ । অতএব M ও R দ্বারা গঠিত যৌগ NaCl যা আয়নিক বন্ধনের মাধ্যমে গঠিত যৌগ এবং Q_2 অণুটি F_2 যা সমযোজী বন্ধনে গঠিত যৌগ। সুতরাং, NaCl ও F_2 অণুর বন্ধন প্রকৃতি একই নয়। নিচে তা যুক্তিসহ মতামত বিশ্লেষণ করা হলো,

NaCl যৌগে আয়নিক বন্ধন:

সোডিয়াম (Na) ও ক্লোরিন (Cl) প্রমাণুর ইলেকট্রন বিন্যাস,

 $Na(11) = 1s^2 2s^2 2p^6 3s^1$

 $CI(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$

ইলেক্ট্রন বিন্যাস থেকে দেখা যায়, Na পরমাণুর যোজ্যতা স্তরে 1টি মাত্র ইলেক্ট্রন আছে। তাই এটি সহজেই 1টি ইলেক্ট্রন দান করে নিকটতম নিদ্ধিয় গ্যাস নিয়ন (Ne) এর কাঠামো অর্জন করে এবং সুস্থিত হয়। অপরদিকে C1 পরমাণুর যোজ্যতা স্তরে 7টি ইলেক্ট্রন আছে। তাই অস্ট্রক পূরণের জন্য এটি Na পরমাণুর ত্যাগ করা ইলেক্ট্রন গ্রহণ করে নিকটতম নিদ্ধিয় গ্যাস আর্গনের কাঠামো অর্জন করে এবং সুস্থিত হয়।

$$Na \rightarrow Na^{+} + e^{-}$$

 $\underline{Cl + e^{-} \rightarrow Cl^{-}}$
 $Na + Cl \rightarrow Na^{+} + Cl^{-} \blacktriangleleft NaCl$

বুসায়ৰ

৫ম অধ্যায়

বাসাম্লিক বন্ধল

Prepared by: SAJJAD HOSSAIN

চিত্র : NaCl এর গঠন

এভাবে Na পরমাণু e দান করে ধনাত্মক আয়ন ও Cl পরমাণু ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয়। এই বিপরীত, আয়নদ্বয়ের মাঝে স্থির বৈদ্যুতিক আকর্ষণ বলের মাধ্যমে NaCl এর মধ্যে আয়নিক বন্ধন গঠিত হয়।

F₂ অণুতে সমযোজী বন্ধন: F এর ইলেকট্রন বিন্যাস,

$$F(9) \rightarrow 1s^2 2s^2 2p^5$$

$$F \rightarrow 1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$$

দেখা যাচ্ছে, দুটি ফ্লোরিন (F) পরমাণুর যোজ্যতা স্তরে প্রত্যেকটির 7টি যোজনী ইলেকট্রন রয়েছে, যার মধ্যে একটি করে অযুগা ইলেকট্রন বিদ্যমান।

এজন্য দুটি ফ্রোরিন পরমাণু তাদের অযুগা ইলেকট্রন শেয়ার করে একটি ইলেকট্রন যুগল সৃষ্টি করে। ফলে উভয় ফ্রোরিন পরমাণুর সর্ববহিঃস্থ স্তরে পৃথকভাবে ৪টি করে ইলেকট্রন (নিয়নের অনুরূপ) অর্জিত হয়। এভাবে দুটি ফ্রোরিন পরমাণুর মধ্যে ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী একক বন্ধন সৃষ্টি হয় এবং দ্বিপরমাণুক ফ্রোরিন অণু (F_2) গঠিত হয়।

চিত্র : ইলেক্ট্রন শেয়ারের মাধ্যমে F_2 অণুর গঠন সুতরাং দেখা যাচ্ছে যে, NaCl ও F_2 অণুর বন্ধন প্রকৃতি একই নয়।

8२.

া $A, {}_{17}B$ [এখানে A ও B প্রতীকী অর্থে ব্যবহৃত]

[দিনাজপুর বোর্ড ২০২১]

- (ক) আয়নিক বন্ধন কাকে বলে?
- (খ) 'He' কে গ্রুপ 18 এ রাখা হয় কেন? ব্যাখ্যা করো।
- (গ) উদ্দীপকের A ও B মৌলের মধ্যে কী ধরনের বন্ধন গঠিত হয়? ডায়াগ্রামসহ ব্যাখ্যা করো।
- (ঘ) AB যৌগটির পানিতে দ্রবীভূত হওয়ার কৌশল বিশ্লেষণ করো।

৪৩ নং প্রশ্নের উত্তর

- ইলেকট্রন আদান-প্রদানের মাধ্যমে গঠিত ক্যাটায়ন ও অ্যানায়নসমূহ যে আকর্ষণ বল দ্বারা যৌগের অণুতে আবদ্ধ থাকে তাকে আয়নিক বন্ধন বলে।
- (খ) He এর ইলেক্ট্রন বিন্যাস : He(2) → 1s² হিলিয়ামের ইলেক্ট্রন বিন্যাস অনুসারে একে গ্রুপ-2 এ স্থান দেওয়া উচিত ছিল। কিন্তু গ্রুপ-2 এর মৌলসমূহ তীব্র তড়িৎ ধনাত্মক। এদের মৃৎক্ষার ধাতু বলে। অপরদিকে He একটি নিদ্রিয় গ্যাস। নিদ্রিয় গ্যাসমূহ পর্যায় সারণিতে 18নং গ্রুপে অবস্থিত। এর ধর্ম অন্যান্য নিদ্রিয় গ্যাস যেমন নিয়ন, আর্গন, ব্লুন্টন, জেনন, রেডন ইত্যাদির সাথে মিলে যায়। He এর ধর্ম কখনোই তীব্র তড়িৎ ধনাত্মক মৃৎক্ষার ধাতুর মতো হয় না। তাই হিলিয়ামকে নিদ্রিয় গ্যাসসমূহের সাথে গ্রুপ- 18 তে স্থান দেওয়া হয়েছে।
- (গ) উদ্দীপকে উল্লেখিত 1 ও 17 পারমাণবিক সংখ্যাবিশিষ্ট A ও B মৌল দুটি হলো যথাক্রমে হাইড্রোজেন (H) ও ক্লোরিন (Cl)। উভয়ই অধাতব মৌল। H ও Cl সমযোজী বন্ধনের মাধ্যমে HCl যৌগ গঠিত হয়। নিচে HCl এর বন্ধন গঠন প্রক্রিয়াটি ভায়াগ্রামসহ ব্যাখ্যা করা হলো : H ও Cl এর ইলেকট্রন বিন্যাস নিম্নন্ধপ :

 $H(1) \rightarrow 1s^1$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$

H এর যোজ্যতা স্তরে 1টি ইলেকট্রন বিদ্যমান। আবার Cl এর যোজ্যতা স্তরে ইলেকট্রন রয়েছে 7টি। তাই Cl এর পক্ষে ইলেকট্রন ত্যাগ করা সম্ভব হয় না। এজন্য উভয় পরমাণুই পরস্পরের সাথে একটি করে ইলেকট্রন শেয়ার করার মাধ্যমে সমযোজী বন্ধন গঠন করে। এর ফলে H এর নিকটস্থ নিদ্রিয় মৌল He এর মতো স্থিতিশীল ইলেকট্রন কাঠামো ও Cl এর নিকটস্থ নিদ্রিয় মৌল Ar এর মতো স্থিতিশীলতা অর্জন করে HCl যৌগটি গঠন করে।

চিত্র : HCl এর সমযোজী বন্ধন গঠন

(ঘ) উদ্দীপকের 'গ' হতে প্রাপ্ত AB যৌগটি হলো HCl। HCl যৌগটির পানিতে দ্রবীভূত হওয়ার কৌশল নিচে বিশ্লেষণ করা হলো : জানা আছে, পোলার সমযোজী যৌগসমূহ সাধারণত পানিতে দ্রবীভূত হয়। HCl অণুর ক্ষেত্রে H ও Cl পরমাণুর তড়িং ঋণাত্মকতার মান যথাক্রমে 2.1 ও 3.0। এ দুটি পরমাণুর তড়িং ঋণাত্মকতার পার্থক্য = 3 − 2.1 = 0.9; অর্থাৎ 0.5 অপেক্ষা বেশি কিন্তু 1.7 অপেক্ষা কম। তাই HCl একটি পোলার অণু। HCl অণুর পোলারিটির কারণে ধনাত্মক H⁺ ও ঋণাত্মক Cl⁻ প্রান্ত থাকে। এ ধনাত্মক H⁺ প্রাপ্ত পানির ঋণাত্মক প্রান্ত O²⁻ দ্বারা আকর্ষিত হয় এবং Cl⁻ প্রান্ত পানির ধনাত্মক প্রান্ত পরস্পর থেকে বিচ্ছিন্ন হয়ে পানির পোলার অণুর বিপরীত প্রান্ত দ্বারা পরিবেষ্টিত

চিত্র: পানি অণু সংযোজিত H⁺ ও Cl⁻ আয়ন

80

থাকে।

[দিনাজপুর বোর্ড ২০২১]

- (ক) যোজনী কাকে বলে?
- (খ) পানির আণবিক গঠন ব্যাখ্যা করো।
- (গ) উদ্দীপকের A যৌগে অষ্টক নিয়মের প্রয়োগ দেখাও।
- (ঘ) B যৌগের জলীয় দ্রবণ বিদ্যুৎ পরিবহন করে কি? বিশ্লেষণ করো।

৪৪ নং প্রশ্নের উত্তর

- (ক) অণু গঠনকালে কোনো মৌলের একটি পরমাণুর সাথে অপর একটি মৌলের পরমাণু যুক্ত হওয়ার ক্ষমতাকে যোজনী বা যোজ্যতা বলা হয়।
- (খ) পানির অণু (H_2O) হাইড্রোজেন (H) ও অক্সিজেন (O) পরমাণুর সমন্বয়ে গঠিত। এখন H ও O এর ইলেক্ট্রন বিন্যাস নিয়ে পাই,
 - H(1) এর e^- বিন্যাস $\rightarrow 1s^1$
 - $O(8) e^-$ এর বিন্যাস $\to 1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

এক্ষেত্রে O পরমাণু তার সর্বশেষ শক্তিস্তরের 1টি করে অযুগা ইলেকট্রন প্রত্যেক H পরমাণুর 1টি করে ইলেকট্রনের সাথে শেয়ার করে। এভাবে 2টি (O-H) সমযোজী বন্ধন গঠনের মাধ্যমে পানির অণু গঠিত হয়।

চিত্র : পানি (H₂O)-এর আণবিক গঠন

(গ) উদ্দীপকের A যৌগটি হলো PCl_3 । নিচে PCl_3 এর অষ্টক নিয়মের প্রয়োগ দেখানো হলো :

P ও Cl এর ইলেক্ট্রন বিন্যাস নিমুরূপ:

$$P(15) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1$$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$

ইলেকট্রন বিন্যাস হতে দেখা যাচ্ছে যে, P এর বহিঃস্থ স্তরে 3টি বিজোড় ইলেকট্রন রয়েছে। অন্যদিকে, Cl এর সর্বশেষ স্তরে 1টি বিজোড় ইলেকট্রন আছে। এখন 1টি পরমাণু 3টি Cl পরমাণুর সাথে ইলেকট্রন শেয়ারের মাধ্যমে যৌগ গঠন করলে দেখা যায় উভয়ের সর্বশেষ স্তরে 8টি ইলেকট্রন অর্জিত হয়। অর্থাৎ PCl_3 গঠনকালে অষ্টক নিয়ম প্রয়োগ হয়।

চিত্ৰ : PCl3 যৌগ গঠন

(घ) উদ্দীপকের B যৌগটি হলো $CaCl_2$ । $CaCl_2$ যৌগের জলীয় দ্রবণ বিদ্যুৎ পরিবহন করে। নিচে তা বিশ্লেষণ করা হলো :

CaCl₂ যৌগের জলীয় দ্রবণ বিদ্যুৎ পরিবহন করে। নিচে তা বিশ্লেষণ করা হলো:

CaCl2 আয়নিক যৌগ হওয়ায় কঠিন অবস্থায় এর ধনাত্মক ও ঋণাত্মক আয়নসমূহ কেলাস ল্যাটিসে নির্দিষ্ট স্থানে অবস্থান করে বলে এরা বিদ্যুৎ অপরিবাহী। কিন্তু জলীয় দ্রবণ বা দ্রবীভূত অবস্থায় আয়নসমূহ কেলাস ল্যাটিস থেকে মুক্ত হয়ে ইতঃস্তত পরিভ্রমণ করে।

 $CaCl_2(s) + aq \rightarrow Ca^{2+}(aq) + 2Cl^{-}(aq)$

চিত্র : CaCl2 দ্রবণের তড়িৎ বিশ্লেষণ

 $CaCl_2$ এর দ্রবণে দুটি ইলেকট্রোড প্রবেশ করালে ঋণাত্মক আয়ন (Cl^-) অ্যানোডের দিকে এবং ধনাত্মক আয়ন (Ca^{2^+}) ক্যাথোডের দিকে আকৃষ্ট হয়।

 Ca^{2+} ক্যাথোডে পৌঁছার পর তা থেকে $2\bar{b}$ ইলেক্ট্রন গ্রহণ করে চার্জ নিরপেক্ষ ধাতুতে পরিণত হয়।

বিজারণ প্রক্রিয়া : $Ca^{2+} + 2e^{-} \rightarrow Ca$

অপরদিকে, ${\rm Cl}^-$ অ্যানোডে পৌছে 1টি ইলেক্ট্রন দান করে প্রথমে চার্জ নিরপেক্ষ হয় ও পরে নিজেদের মধ্যে যুক্ত হয়ে ${\rm Cl}_2$ গ্যাসে পরিণত হয়।

জারণ প্রক্রিয়া : $Cl^- - e^- \rightarrow Cl$ $Cl + Cl \rightarrow Cl_2$ এভাবে $CaCl_2$ যৌগটির মধ্যে অ্যানোডে জারণ এবং ক্যাথোডে বিজারণ ঘটে এবং বিদ্যুৎ পরিবহন ঘটে।

88.

মৌল	X	Y	Z
পারমাণবিক সংখ্যা	7	15	17

[এখানে X, Y, Z প্রচলিত মৌলের প্রতীক নয়]

[কুমিল্লা বোর্ড ২০২১]

- (ক) ভ্যান্ডার ওয়ালস আকর্ষণ বল কাকে বলে?
- (খ) KF উচ্চ গলনাঙ্ক ও স্কুটনাঙ্কবিশিষ্ট যৌগ ব্যাখ্যা করো।
- (গ) X_2 অণুর বন্ধন গঠন ব্যাখ্যা করো।
- (घ) Y ও Z দ্বারা গঠিত দুটি ভিন্ন যৌগের মধ্যে একটি অষ্টক নিয়ম মানলেও অপরটি মানে না – বিশ্লেষণ করো।

৪৫ নং প্রশ্নের উত্তর

- (ক) দুটি সমযোজী অণু যখন খুবই নিকটবর্তী হয়, তখন তাদের মধ্যে এক ধরনের দুর্বল আকর্ষণ বল কাজ করে, এই আকর্ষণ বলকেই ভ্যানডার ওয়ালস বল বলে।
- (খ) KF একটি আয়নিক যৌগ। এজন্য এটি উচ্চ গলনাম্ক ও স্ফুটনাম্কবিশিষ্ট যৌগ। কারণ KF যৌগে K^+ ও F^- আয়নদ্বয় পরস্পারের সাথে দৃঢ়ভাবে আকৃষ্ট থাকে। এতে আন্তঃআণবিক আকর্ষণ বল অনেক বেশি হয়। ফলে এদের গলাতে অনেক বেশি তাপশক্তি প্রয়োজন হয় বলে KF উচ্চ গলনাম্ক ও স্ফুটনাম্কবিশিষ্ট যৌগ।
- (গ) উদ্দীপকের তথ্যমতে, X_2 হলে নাইট্রোজেন (N_2) অণু। নিচে N_2 অণুর বন্ধন গঠন ব্যাখ্যা করা হলো,

N(7) পরমাণুর ইলেকট্রন বিন্যাস, $N(7) \to 1s^2 \, 2s^2 \, 2p^3$ ইলেকট্রন বিন্যাস হতে দেখা যায়, নিকটস্থ নিষ্ক্রিয় গ্যাস Ne এর স্থিতিশীল ইলেকট্রন কাঠামো (অষ্ট্রক) লাভের জন্য N-এর আরও তিনটি ইলেকট্রন প্রয়োজন। তাই দুটি N-পরমাণু একত্রিত হয়ে উভয়েই তিনটি করে ইলেকট্রন শেয়ার করে উভয়েই অষ্ট্রক পূর্ণ করে Ne এর ইলেকট্রন বিন্যাস অর্জন করে। ফলে তাদের মধ্যে $N \equiv N$ সমযোজী বন্ধন গঠিত হয়।

চিত্র: N2 অণুর গঠন

(ঘ) উদ্দীপকের তথ্য অনুসারে, $Y \otimes Z$ মৌল দুটি যথাক্রমে ফসফরাস ($_{15}P$) ও ক্লোরিন ($_{17}C$)। $P \otimes Cl$ দ্বারা গঠিত যৌগ যথাক্রমে $PCl_3 \otimes PCl_5$ । এদের মধ্যে PCl_3 অষ্টক নিয়ম মানলেও PCl_5 অষ্টক নিয়ম মানে না। নিচে তা বিশ্লেষণ করা হলো,

P ও Cl এর ইলেক্ট্রন বিন্যাস নিমুরূপ:

 $P(15) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$

দেখা যাচ্ছে যে, P এর শেষ কক্ষপথে 3টি বিজোড় ইলেক্ট্রন এবং C1 এর শেষ কক্ষপথে 1টি বিজোড় ইলেক্ট্রন বিদ্যমান। এখন, একটি ফসফরাস পরমাণু 3টি ক্লোরিন পরমাণুর সাথে ইলেক্ট্রন শেয়ারের মাধ্যমে যৌগ গঠন করলে দেখা যায় উভয়ের শেষ স্তরে 8টি ইলেক্ট্রন অর্জিত হয়। অর্থাৎ $PC1_3$ গঠনকালে অষ্টক নীতি অনুসৃত হয়।

৫ম অধ্যায় ব্সায়ৰ

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

চিত্ৰ: PCl3 যৌগ গঠন

আবার, উত্তেজিত অবস্থায় P এর ইলেক্ট্রন বিন্যাস নিমুরূপ: $P*(15) \rightarrow 1s^2 2s^2 2p^6 3s^1 3p_x^1 3p_y^1 3p_z^1 3d_{xy}^1$ উত্তেজিত অবস্থায় P এর ফাঁকা d অরবিটালে ইলেক্ট্রন প্রবেশ করে। ফলে বিজোড় ইলেকট্রন সংখ্যা হয় 5টি। তাই একটি পরমাণু 5টি ক্লোরিন পরমাণুর সাথে যুক্ত হয়। তখন প্রতিটি ক্লোরিন পরমাণু তার সর্বশেষ স্তরে ৪টি ইলেকট্রন অর্জন করলেও P প্রমাণুর সর্বশেষ স্তরে 10টি ইলেকট্রন অর্জিত হয়। অর্থাৎ PCl5 গঠনকালে অষ্টক সম্প্রসারণ ঘটে।

চিত্ৰ: PCl5 যৌগ গঠন

অতএব, সামগ্রিক আলোচনার পরিশেষে বলা যায় যে, PCl₃ <mark>অষ্টক</mark> নিয়ম মেনে চলে কিন্তু PCl_5 অষ্টক নিয়ম মেনে চলে না।

86.

- (i) 9 ও 20 পারমাণবিক সংখ্যাবিশিষ্ট মৌল
- CuSO₄ এবং NH₄ (ii)

[কুমিল্লা বোর্ড ২০২১]

- (ক) বদ্ধ শিকল হাইড্রোকার্বন কাকে বলে?
- (খ) $CH_3 (CH_3)_5$ একটি অ্যালকাইল মূলক ব্যাখ্যা করো।
- (গ) (i) এর মৌলগুলো দারা গঠিত যৌগের বন্ধন প্রকৃতি ব্যাখ্যা
- (ঘ) (ii) এর উভয় যৌগ পানিতে দ্রবীভূত হবে কিনা মতামত বিশ্লেষণ করো।

৪৬ নং প্রশ্নের উত্তর

- (ক) যে সকল হাইড্রোকার্বনের কার্বন শিকলের দুই প্রান্তের কার্বন পরস্পর যুক্ত হয়ে একটি বলয় বা চক্র গঠন করে তাদেরকে বন্ধ শিকল হাইড্রোকার্বন
- (খ) $CH_3 (CH_2)_5$ একটি অ্যালকাইল মূলক। কারণ অ্যালকেন থেকে একটি হাইড্রোজেন পরমাণু অপসারণ করলে যে একযোজী মূলকের সৃষ্টি হয় তাকে অ্যালকাইল মূলক বলে। অ্যালকেনের সাধারণ সংকেত C_nH_{2n+2} । একটি H অপসারণ হলে সংকেতটি দাঁড়ায় C_nH_{2n+1} ।। এখন n=6 হলে অ্যালকাইল মূলক হবে C_6H_{13} বা $CH_3-(CH_2)_5$ —। অর্থাৎ $\mathrm{CH_3} - (\mathrm{CH_2})_5 -$ একটি অ্যালকাইল মূলক।
- (গ) উদ্দীপক (i) নং এর মৌল দুটির পারমাণবিক সংখ্যা 9 ও 20 হওয়ায় মৌল দুটি যথাক্রমে ফ্লোরিন (F) ও ক্যালসিয়াম (Ca)। এদের দ্বারা গঠিত যৌগ CaF₂ যার বন্ধন প্রকৃতি নিচে ব্যাখ্যা করা হলো, Ca ও F এর ইলেকট্রন বিন্যাস নিম্নুরূপ:

 $Ca(20) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

 $F(9) \rightarrow 1s^2 2s^2 2p^5$

ইলেক্ট্রন বিন্যাস থেকে দেখা যাচেছ যে, Ca এর শেষ স্তরে 2টি ইলেক্ট্রন বিদ্যমান। এ 2টি ইলেক্ট্রন ত্যাগ করে ঈধ তার নিকটবর্তী নিষ্ক্রিয় গ্যাস আর্গনের (Ar) ইলেকট্রন বিন্যাস অর্জন করে এবং Ca আয়নে পরিণত হয়।

 $Ca - 2e^{-} \longrightarrow Ca$

অপরদিকে, F এর ইলেকট্রন বিন্যাস থেকে দেখা যাচ্ছে যে, F এর শেষ ভরে 7টি ইলেকট্রন বিদ্যমান। Ca কর্তৃক ত্যাগকৃত 2টি থেকে 1টি ইলেকট্রন গ্রহণ করে নিকটবর্তী নিষ্ক্রিয় গ্যাস নিয়নের (Ne) ইলেকট্রন বিন্যাস অর্জন করে এবং F আয়নে পরিণত হয়। এভাবে 2টি F পরমাণ 2টি ইলেকট্রন গ্রহণ করে ২টি F^- আয়নে পরিণত হয়। এভাবে সৃষ্ট ক্যাটায়ন ও অ্যানায়নসমূহ পরস্পরের আকর্ষণে আয়নিক বন্ধনে আবদ্ধ হয়ে আয়নিক যৌগ CaF_2 গঠন করে। নিচে ডায়াগ্রামের সাহায্যে দেখানো হলো.

চিত্র : CaF2 এর আয়নিক বন্ধন গঠন

সুতরাং, CaF2 এর বন্ধন প্র<mark>কৃতি হলো আ</mark>য়নিক।

(ঘ) উদ্দীপকের ii নং এর যৌগ<mark>স্বয়</mark> CuSO₄ ও NH3। উভয় যৌগ পানিতে দ্রবীভূত হবে। নিচে এর মতামত বিশ্লেষণ করা হলো-

CuSO₄ একটি আয়নিক যৌগ। এটি পোলার দ্রাবক যেমন পানিতে দ্রবীভূত হয়। CuSO4 <mark>আয়নিক যৌগ হওয়া</mark>য় দ্রবণে Cu²⁺ ও SO4^{2–} আয়নে পরিণত হয়। Cu^{2+} আয়নকে ঘিরে পানির ঋণাত্মক অংশ অক্সিজেন আকৃষ্ট <mark>হয়। আবার পানির</mark> ধনাত্মক অংশ CuSO₄ এর ঋণাত্মক প্রান্ত $\mathrm{SO_4}^{2-}$ কে <mark>আকর্ষণ করে</mark>। এ আকর্ষণ বলের মান যখন Cu^{2+} ও $\mathrm{SO_4}^{2-}$ এর মধ্যকার আকর্ষণ থেকে বেশি হয় তখন Cu^{2+} ও SO_4^2 আয়নদ্বয় পরস্পর থেকে বিচ্ছিন্ন হয়ে পানির অণু দ্বারা পরিবেষ্টিত হয়। এভাবে CuSO4 পানিতে দ্রবীভূত হয়

চিত্র: CuSO4 অণুর পানিতে দ্রবণীয়তা

অপরদিকে, NH3 একটি পোলার সমযোজী অণু। এটি সমযোজী হলেও অতিমাত্রায় পানিতে দ্রবণীয়। কারণ NH3 অণুতে N ও H এর তড়িৎ ঋণাত্মকতার পার্থক্য বেশি হওয়ায় এটি পোলার অণু। আবার N পরমাণুর আকার ক্ষুদ্র ও তড়িৎ ঋণাতাকতার মান বেশি বলে এটি H_2O অণুর সাথে দুর্বল হাইড্রোজেন বন্ধনের মাধ্যমে যুক্ত হয়। অর্থাৎ NH3 অণুটি হাইড্রোজেন বন্ধনের মাধ্যমে পানিতে দ্রবীভূত হয়।

চিত্র : NH3 অণুর H কথনের মাধ্যমে পানিতে দ্রবণীয়তা

বসায়ৰ

৫ম অধ্যায়

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

উপরের আলোচনা থেকে বলা যায়, $CuSO_4$ ও NH_3 উভয় যৌগই। পানিতে দ্রবীভূত হবে।

৪৬. বিক্রিয়া-১: ডিমের খোসা + HCl → A(gas) বিক্রিয়া-২: 12B + HCl → C + D(gas)

[চট্টগ্রাম বোর্ড ২০২১]

- (ক) ধাতব বন্ধন কাকে বলে?
- (খ) ফসফরাসের যোজ্যতা ও যোজ্যতা ইলেকট্রন একই নয় ব্যাখ্যা করো।
- (গ) উদ্দীপকের A যৌগের বন্ধন গঠন চিত্রসহ ব্যাখ্যা করো।
- (घ) A, C ও D এর কোনটি পানিতে দ্রবণীয়? যুক্তিসহ বিশ্লেষণ করো।

৪৭ নং প্রশ্নের উত্তর

- (ক) এক খন্ত ধাতুর মধ্যে পরমাণুসমূহ যে আকর্ষণের মাধ্যমে যুক্ত থাকে তাকেই ধাত্র বন্ধন বলে।
- (খ) জানা আছে, কোনো অধাতব মৌলের সর্বশেষ কক্ষপথে বিজোড় ইলেকট্রন সংখ্যাকে ঐ মৌলের যোজ্যতা বলে।
 ফসফরাসের ইলেকট্রন বিন্যাস.

 $P(15) = 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1$

ফসফরাস একটি অধাতু এবং এর শেষ কক্ষপথে বিজোড় ইলেকট্রন সংখ্যা 3। সুতরাং P এর যোজ্যতা 3। আবার কোনো মৌলের সর্বশেষ প্রধান শক্তিস্তরে মোট ইলেকট্রন সংখ্যাকে সেই মৌলের যোজ্যতা ইলেকট্রন বলে। P এর ইলেকট্রন বিন্যাস থেকে দেখা যায়, এর সর্বশেষ প্রধান শক্তিস্তরে 5টি ইলেকট্রন আছে। তাই P এর যোজ্যতা ইলেকট্রন 5। সুতরাং দেখা যাচ্ছে, ফসফরাসের যোজ্যতা ও যোজ্যতা ইলেকট্রন যথাক্রমে 3 এবং 5, অর্থাৎ একই নয়।

(গ) উদ্দীপকের বিক্রিয়া->: ডিমের খোসা + $HCl \rightarrow CO_2$ (gas)

(A)

অর্থাৎ $CaCO_3 + HCl \rightarrow CaCl_2(s) + CO_2(g)\uparrow + H_2O$ ডিমের খোসা (A)

সুতরাং, A হলো CO_2 । নিচে CO_2 যৌগের বন্ধন গঠন চিত্রসহ বর্ণনা করা হলো,

C এর ইলেকট্রন বিন্যাস : $C(6) \rightarrow 1s^2 2s^2 2p^2$ ।

দেখা যাচ্ছে, C এর যোজ্যতা স্তরে 4টি ইলেকট্রন বিদ্যমান। নিকটবর্তী নিদ্ধিয় গ্যাস He বা Ne-এর e^- বিন্যাস অর্জনের জন্য আরও 4টি ইলেকট্রন যথাক্রমে বর্জন বা গ্রহণ করা প্রয়োজন। কিন্তু এত বেশি ইলেকট্রন গ্রহণ বা ত্যাগ করা C পরমাণুর পক্ষে সম্ভব নয়। তাই এটি 4টি ইলেকট্রন শেয়ারের মাধ্যমে সর্বদা সমযোজী বন্ধন গঠন করে। আবার, O(8)-এর ইলেকট্রন বিন্যাস: $1s^2 2s^2 2^4$ ।

দেখা যাচ্ছে, যোজ্যতা স্তরে 6টি ইলেকট্রন, থাকায় O পরমাণুর পক্ষে ইলেকট্রন ত্যাগ করা সম্ভব নয়। তাই এটি নিকটবর্তী নিদ্ধিয় গ্যাস Ne এর e বিন্যাস অর্জনের জন্য 2টি ইলেকট্রন গ্রহণ করে আয়নিক অথবা শেয়ার করে সমযোজী বন্ধন গঠন করতে পারে।

এখন CO_2 যৌগ গঠনের সময় উভয় পরমাণু পরস্পরের সাথে ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন গঠন করে। একটি C পরমাণুর 4টি যোজ্যতা ইলেকট্রনের সাথে 2টি O পরমাণু তাদের যোজ্যতা স্তরের 2টি করে ইলেকট্রন শেয়ার করে সমযোজী কখন গঠন করে এবং CO_2 যৌগ গঠন করে। CO_2 এর অণুতে প্রতিটি অক্সিজেন পরমাণু C পরমাণুর সাথে দ্বিবন্ধনে যুক্ত। এর কখন ডায়াগ্রামটি হলো,

চিত্র: CO2 অণুর সমযোজী বন্ধন গঠন

(ঘ) বিক্রিয়া-২ : $Mg + 2HCl \rightarrow MgCl_2 + H_2(g)$ [\because কেননা $_{12}B$ $= _{12}Mg$]

(C) (D)

সুতরাং $A,\,C,\,D$ যৌগ তিনটি যথাক্রমে CO_2 (গ থেকে), $MgCl_2$ ও $H_2(g)$ । এদের মধ্যে $MgCl_2$ ও CO_2 পানিতে দ্রবণীয়।

 $MgCl_2$ একটি আয়নিক যৌগ। $MgCl_2$ যৌগটি পানিতে দ্রবীভূত হওয়ার সময় Mg^{2+} আয়ন ও Cl^- আয়ন পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস-ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে। Mg^{2+} ও Cl^- আয়নসমূহ পানিতে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে। জলীয় দ্রবণে আয়নিক যৌগের ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে $MgCl_2$ এর কেলাস- ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

চিত্র: MgCl₂ এর পানিতে দ্রবণীয়তা

আবার কার্বন ডাইঅক্সাইড (CO₂) একটি সমযোজী যৌগ হওয়া সত্ত্বেও পোলারিটি প্রদর্শন করে। এর কার্বন এবং অক্সিজেন বন্ধন পোলার হলেও পানির হাইড্রোজেন ও অক্সিজেনের বন্ধনের মত শক্তিশালী পোলার নয়। তবে কার্বন ডাইঅক্সাইড এর আংশিক ধনাত্মক ও ঋণাত্মক প্রান্ত থাকায় পানির ধনাত্মক ও ঋণাত্মক আয়ন দ্বারা আবদ্ধ হয়ে পানিতে দ্রবীভূত হতে সক্ষম।

অপরদিকে, সমযোজী অণু H_2 তে কোনো পোলারিটি না থাকায় পোলার যৌগ H_2O অণু দ্বারা আকর্ষিত হয় না। ফলে H_2 পানিতে দ্রবীভূত হতে পারে না।

8٩.

[সিলেট বোর্ড ২০২১]

- (ক) মেন্ডেলিফের পর্যায় সূত্রটি লেখো।
- (খ) 6s অরবিটালের শক্তি 4d অরবিটাল অপেক্ষা বেশি ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'Y' মৌলের নিউক্লিয়াসের প্রকৃত ভর নির্ণয় করো।
- (ঘ) X ও Y এবং Y ও Z দ্বারা গঠিত যৌগ পানিতে দ্রবীভূত হবে কিনা? যুক্তিসহ মতামত দাও।

৪৮ নং প্রশ্নের উত্তর

(ক) মেন্ডেলিফের পর্যায় সূত্রটি হলো, "মৌলসমূহের ভৌত ও রাসায়নিকের ধর্মাবলি তাদের পারমাণবিক ভর বৃদ্ধির সাথে পর্যায়ক্রমে আবর্তিত হয়।"

Prepared by: SAJJAD HOSSAIN

(খ) আউফবাউ নীতি অনুসারে, ইলেকট্রন প্রথমে নিমু শক্তির অরবিটালে এবং পরে উচ্চ শক্তির অরবিটালে গমন করে। যার (n+l) এর মান কম সেটি নিমু শক্তির অরবিটাল । 6s ও 4d অরবিটালের জন্য প্রধান কোয়ান্টাম সংখ্যা, n এবং সহকারী কোয়ান্টাম সংখ্যা, l এর যোগফল অর্থাৎ (n+l) এর মান নিমুরূপ :

$$6$$
s অরবিটালে : $n = 6$, $l = 0$ \therefore $n + l = 6 + 0 = 6$

4d অরবিটালে : n=4, l=2 \therefore n+l=4+2=6 দেখা যাচ্ছে যে, 6s ও 4d অরবিটালের (n+l) এর মান সমান । এক্ষেত্রে যে অরবিটালের n এর মান বেশি সেই অরবিটালের শক্তিও বেশি । কাজেই 6s এর n এর মান বেশি হওয়ায় এ অরবিটালের শক্তি বেশি এবং ইলেকট্রন এক্ষেত্রে পরে প্রবেশ করবে । আবার 4d এর n এর মান কম তাই এ অরবিটালের শক্তি কম । এ অরবিটালে আগে ইলেকট্রন

অর্থাৎ, 6s অরবিটালের শক্তি 4d অপেক্ষা বেশি।

প্রবেশ করবে।

- গে) উদ্দীপকের Y মৌলটির প্রোটন সংখ্যা 9 ও নিউট্রন সংখ্যা 10। জানা আছে, 1টি প্রোটনের ভর $=1.67\times 10^{-24}\,\mathrm{g}$ 1টি নিউট্রনের ভর $=1.675\times 10^{-24}\mathrm{g}$ তাহলে, নিউক্রিয়াসের প্রকৃত ভর = (প্রোটন সংখ্যা \times 1টি প্রোটনের ভর) + (নিউট্রন সংখ্যা \times 1টি নিউট্রনের ভর)
 - = $(9 \times 1.67 \times 10^{-24}) + (10 \times 1.675 \times 10^{-24})$ = $1.503 \times 10^{-23} + 1.675 \times 10^{-23} = 3.178 \times 10^{-23}$ g
 - ∴ Y মৌলের নিউক্রিয়াসের প্রকৃত ভর 3.178 ∴ 10⁻²³ g।
- (ঘ) উদ্দীপকের X, Y ও Z মৌলগুলো হলো যথাক্রমে হাইড্রোজেন (H), ফ্রোরিন (F) ও লিথিয়াম (Li)। কারণ হাইড্রোজেন, ফ্রোরিন ও লিথিয়ামের পারমাণবিক সংখ্যা যথাক্রমে 1, 9 ও 3। কেননা নিউক্রিয়াসে উপস্থিত প্রোটনের সংখ্যাকে বলা হয় পারমাণবিক সংখ্যা। এখন, X ও Y দ্বারা গঠিত যৌগ HF এবং Y ও Z দ্বারা গঠিত যৌগ হচ্ছে LiF। HF ও LiF উভয় যৌগ পানিতে দ্রবীভূত হবে। নিচে যুক্তিসহ তা ব্যাখ্যা দেওয়া হলো:

সমযোজী বন্ধনে আবদ্ধ অধাতব মৌলের পরমাণু দুটির তড়িং ঋণাত্মকতার পার্থক্য 0.5 অপেক্ষা বেশি হলে সংশ্লিষ্ট অণুটি পোলার হবে। HF একটি সমযোজী যৌগ। HF এর ক্ষেত্রে H ও F এর তড়িং ঋণাত্মকতার পার্থক্য (4-2.1)=1.9। যেহেতু HF অণুতে পরমাণুসমূহের তড়িং ঋণাত্মকতার মান 0.5 অপেক্ষা বেশি, সেহেতু HF পোলার অণু। অপরদিকে H_2O হলো একটি পোলার দ্রাবক। জানা আছে, পোলার অণুসমূহ পোলার দ্রাবকে দ্রবীভূত হয়। এ কারণে HF সমযোজী যৌগ হওয়া সত্ত্বেও পোলার দ্রাবক পানিতে দ্রবীভূত হয়।

চিত্ৰ : পানি অণু সংযোজিত H^+ ও F

আবার, LiF হলো আয়নিক যৌগ। আয়নিক যৌগ পানিতে দ্রবণীয়। বিগলিত অবস্থায় আয়নিক যৌগ LiF এ ধনাত্মক প্রান্ত হলো Li^+ এবং ঋণাত্মক প্রান্ত হলো F^- । অপরদিকে পানির অণুর দুইপ্রান্তে দুটি মেরু থাকে। ফলে LiF কে পানিতে দ্রবীভূত করার সময় ধনাত্মক প্রান্ত Li^+ পানির ঋণাত্মক প্রান্ত ঘারা আকর্ষিত হয় এবং ঋণাত্মক প্রান্ত বিশ্বত হয়। এভাবে LiF পানিতে দ্রবীভূত হয়।

চিত্র: পানি অণু সংযোজিত Li⁺ ও F⁻ আয়ন

[বি.দ্র. : LiF আয়নিক যৌগ হলেও পানিতে সামান্য দ্রবণীয়। কারণ F এর আকার ছোট হওয়ায় তা Li এর সাথে শক্তিশালী বন্ধন তৈরি করে। ফলে ল্যাটিস শক্তি অনেক বেশি হয়। আবার ল্যাটিস শক্তি ও হাইড্রেশন শক্তির পার্থক্য খুবই কম হয়। এজন্য LiF পানিতে সামান্য দ্রবণীয়।]

86.

$$^{40}_{20}\text{Ca}^{2+}$$
 $^{40}_{20}\text{Ca}$ (ii) (ii)

[সিলেট বোর্ড ২০২১]

- (ক) যৌগ মূলক কাকে বলে?
- (খ) विউটिनक वालिकिन वाला रंग्न व्याच्या करता।
- (গ) উদ্দীপকের (i) নং আয়নের মূল কণিকার সংখ্যা হিসাব করো।
- (ঘ) (i) ও (ii) নং <mark>আয়ন দ্বারা গঠিত যৌ</mark>গ গলিত ও দ্রবীভূত অবস্থায় বিদ্যুৎ পরিবহন করবে কিনা? যুক্তি দাও।

৪৯ নং প্রশ্নের উত্তর

- (ক) একাধিক মৌলের একাধি<mark>ক পরমাণুর সমন্ব</mark>য়ে গঠিত একটি পরমাণুগুচ্ছ, যা একটি আয়নের ন্যায় <mark>আ</mark>চরণ করে এবং বিক্রিয়া শেষে অপরিবর্তিত থাকে; এ ধরনের পরমাণুগুচ্ছকে যৌগমূলক বলে।
- (খ) বিউটিনকে অলিফিন বলা হয়। এর কারণ নিচে ব্যাখ্যা করা হলো:
 জানা আছে, অ্যালকিনের যেসব নিমুতর সদস্যগুলো (ইথিন, প্রোপিন,
 বিউটিন ইত্যাদি) হ্যালোজেনের সাথে বিক্রিয়া করে তৈলাক্ত পদার্থ উৎপন্ন
 করে তাদেরকে অলিফিন (Olifin, Greek, Olefiant Oil =
 forming) বলা হয়।

বিউটিন (C_4H_8) -এ কার্বন-কার্বন দ্বিবন্ধন থাকায় বিউটিন অ্যালকিন। C_4H_8 হ্যালোজেন $(Cl_2,\ Br_2)$ এর সাথে সংযোজন বিক্রিয়ার মাধ্যমে তৈলাক্ত পদার্থ উৎপন্ন করে বলে বিউটিনকে অলিফিন বলা হয়।

বিক্রিয়া : $C_4H_8+Cl_2 \rightarrow C_4H_6Cl_2$ বিউটিন

(গ) উদ্দীপকের (i) নং আয়ন হলো : ${}^{40}_{20}{\rm Ca}^{2+}$

দেখা যাচ্ছে যে, আয়নটিতে Ca মৌলের পারমাণবিক সংখ্যা তথা প্রোটন সংখ্যা 20, ভরসংখ্যা 40 ও আধান + 2।

এখানে, প্রোটন সংখ্যা = 20

নিউট্রন সংখ্যা = ভর সংখ্যা – প্রোটন সংখ্যা

- ∴ নিউট্রন সংখ্যা = 40 20 = 20
 ইলেকট্রন সংখ্যা = প্রোটন সংখ্যা আধান সংখ্যা
- \therefore ইলেকট্রন সংখ্যা =20-2=18

অতএব, $^{40}_{20}{\rm Ca}^{2^+}$ আয়নে মূল কণিকা তথা ইলেক্ট্রন, প্রোটন ও নিউট্রনের সংখ্যা যথাক্রমে 18,20,20।

(ঘ) উদ্দীপকের (i) ও (ii) নং আয়ন হচ্ছে- $_{20}Ca^{2^+}$ এবং $_{17}Cl^-$ । প্রদন্ত আয়নদ্বয় দ্বারা গঠিত যৌগ হলো $CaCl_2$ ।

 $CaCl_2$ যৌগের জলীয় দ্রবণ বিদ্যুৎ পরিবহন করে। নিচে তা বিশ্লেষণ করা হলো :

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

 $CaCl_2$ আয়নিক যৌগ হওয়ায় কঠিন অবস্থায় এর ধনাত্মক ও ঋণাত্মক আয়নসমূহ কেলাস ল্যাটিসে নির্দিষ্ট স্থানে অবস্থান করে বলে এরা বিদ্যুৎ অপরিবাহী। কিন্তু জলীয় দ্রবণ বা দ্রবীভূত অবস্থায় আয়নসমূহ কেলাস ল্যাটিস থেকে মুক্ত হয়ে ইতঃস্তত পরিভ্রমণ করে।

 $CaCl_2(s) + aq \rightarrow Ca^{2+}(aq) + 2Cl^{-}(aq)$

চিত্র : CaCl₂ দ্রবণের তড়িৎ বিশ্লেষণ

 $CaCl_2$ এর দ্রবণে দুটি ইলেকট্রোড প্রবেশ করালে ঋণাত্মক আয়ন (Cl^-) অ্যানোডের দিকে এবং ধনাত্মক আয়ন (Ca^{2+}) ক্যাথোডের দিকে আকৃষ্ট হয়।

 ${
m Ca}^{2+}$ ক্যাথোডে পৌছার পর তা থেকে 2টি ইলেকট্রন গ্রহণ করে চার্জ নিরপেক্ষ ধাতুতে পরিণত হয়।

বিজারণ প্রক্রিয়া : $Ca^{2+} + 2e^{-} \rightarrow Ca$

অপরদিকে, ${
m Cl}^-$ অ্যানোডে পৌছে 1টি ইলেক্ট্রন দান করে প্রথ<mark>মে</mark> চার্জ নিরপেক্ষ হয় ও পরে নিজেদের মধ্যে যুক্ত হয়ে ${
m Cl}_2$ গ্যাসে পরিণত হয়।

জারণ প্রক্রিয়া : $Cl^- - e^- \rightarrow Cl$ $Cl + Cl \rightarrow Cl_2$

এভাবে $CaCl_2$ যৌগটির মধ্যে অ্যানোডে জারণ এবং ক্যাথোডে বিজারণ ঘটে এবং বিদ্যুৎ পরিবহন ঘটে।

৪৯. M ও N দুটি মৌল। M মৌলের তিনটি <mark>আই</mark>সোটোপের শতকরা পরিমাণ যথাক্রমে $^{12}M=99\%,\ ^{13}M=0.75\%$ ও $^{14}M=0.25\%$ । N মৌলটি ৩য় পর্যায়ের হ্যালোজেন গ্রুপের সদস্য।

[সিলেট বোর্ড ২০২১]

- (ক) অ্যানায়ন কাকে বলে?
- (খ) Ar নিষ্ক্রিয় কেন? ব্যাখ্যা করো।
- (গ) M মৌলের আপেক্ষিক পারমাণবিক ভর নির্ণয় করো।
- (ঘ) M ও N মৌল দ্বারা গঠিত যৌগের চিত্র এঁকে মুক্ত জোড় ও বন্ধন জোড় ইলেকট্রন সংখ্যা হিসাব করো।

৫০ নং প্রশ্নের উত্তর

- (ক) ঋণাত্মক আধানবিশিষ্ট অধাতব পরমাণুকে অ্যানায়ন বলে।
- (খ) আর্গন (Ar) নিদ্ধিয় গ্যাস। কারণ $_{18}{\rm Ar}$ এর ($1{
 m s}^2~2{
 m s}^2~2{
 m p}^6~3{
 m s}^2~3{
 m p}^6)$ সর্ববহিঃস্থ স্তরে ইলেকট্রন দ্বারা অষ্টকপূর্ণ থাকে যা অত্যন্ত সুস্থিত। এ সুস্থিত ইলেকট্রন বিন্যাস ভাঙতে অনেক শক্তির প্রয়োজন। তাই Ar স্বাভাবিক অবস্থায় কোনো মৌলের সাথে যুক্ত হয় না। অর্থাৎ বহিঃস্থ স্তরের সুবিন্যন্ত ইলেকট্রন বিন্যাসের কারণে Ar নিদ্ধিয় হয়।
- (গ) উদ্দীপক হতে,

 $^{12}{
m M}$ আইসোটোপ = 99%; যেখানে ভরসংখ্যা 12

 13 M আইসোটোপ = 0.75%; যেখানে ভ্রসংখ্যা 13

¹⁴M আইসোটোপ = ০.২৫%; যেখানে ভরসংখ্যা 14

M এর আপেক্ষিক পার্মাণবিক ভর

$$= \frac{(99 \times 12) + (0.75 \times 13) + (0.25 \times 14)}{100}$$

$$= \frac{1188 + 9.75 + 3.5}{100}$$

$$= 12.013 \approx 12$$

- ∴ M মৌলের আপেক্ষিক পারমাণবিক ভর 12।
- (ঘ) উদ্দীপকের 'গ' হতে প্রাপ্ত M মৌলের আপেক্ষিক পারমাণবিক ভর 12, যা কার্বন (C) এর পারমাণবিক ভর। আবার, N মৌলটি ৩য় পর্যায়ের হ্যালোজেন গ্রুপের মৌল অর্থাৎ মৌলটি হলো ক্লোরিন (Cl)। এখন M ও N অর্থাৎ C ও Cl মৌলদ্বয় দ্বারা গঠিত যৌগ হলো CCl4। নিচে CCl4 এর চিত্র এঁকে মুক্ত জোড় ও বন্ধন জোড় ইলেকট্রন সংখ্যা হিসাব করা হলো-

C ও Cl এর ইলেক্ট্রন বিন্যাস নিয়ে পাই-

$$C(6) \rightarrow 1s^2 2s^1 2p_x^1 2p_y^1 2p_z^1$$

$$Cl(17) \rightarrow 1s^2 2s^1 2p^6 2s^2 2p^5$$

 $C1* \rightarrow 1s^2 2s^1 2p^6 3s^2 3p_x^2 2p_y^2 3p_z^1$

সমযোজী অণুতে কেন্দ্রীয় পরমাণুর সর্বশেষ শক্তিস্তরে যে ইলেক্ট্রনগুলো বন্ধনে আবন্ধ হয় তাকে বন্ধন জোড় এবং যে ইলেক্ট্রন জোড় কোনো বন্ধন তৈরি করে না তাকে মুক্ত জোড় ইলেক্ট্রন বলে।

চিত্ৰ: CCl4 যৌগ গঠন

দেখা যাচ্ছে যে, CCl_4 এর কেন্দ্রীয় C পরমাণুর যোজ্যতা স্তরে বন্ধনবিহীন কোনো ইলেকট্রন নেই। অর্থাৎ 4 জোড়া বন্ধন ইলেকট্রন বিদ্যমান। আবার, CCl_4 এর 4টি Cl পরমাণুতে যোজ্যতা স্তরে (3×4) বা, 12 জোড়া ইলেকট্রন বন্ধন গঠনে অংশগ্রহণ করে না। তাই CCl_4 অণুতে 12 জোড়া মুক্ত ইলেকট্রন বিদ্যমান। সুতরাং, CCl_4 অণুতে মুক্ত জোড় ও বন্ধন জোড় ইলেকট্রন সংখ্যা যথাক্রমে 12 ও 4।

œ.

মৌল	পর্যায়	গ্রুপ
M	2	15
R	3	15
L	1	1

[এখানে M, R, L প্রতীকী অর্থে]

[যশোর বোর্ড ২০২১]

- (ক) সমযোজী বন্ধন কাকে বলে?
- (খ) CO যৌগে কার্বনের সুপ্ত যোজনী ব্যাখ্যা করো।
- (গ) ML3 এর বন্ধন গঠন প্রক্রিয়া চিত্রসহ বর্ণনা করো।
- (ঘ) RCl₅ যৌগ গঠনে অষ্টক নিয়মের ব্যকিক্রম ঘটে বিশ্লেষণ করো।

৫১ নং প্রশ্নের উত্তর

- (ক) সর্বশেষ শক্তিস্তরে নিকটতম নিদ্ধিয় গ্যাসের ইলেকট্রন বিন্যাস লাভের জন্য ইলেকট্রন শেয়ারের মাধ্যমে যে বন্ধন গঠিত হয়, তাকে সমযোজী বন্ধন বলে।
- (খ) কোনো মৌলের সর্বোচ্চ যোজনী ও সক্রিয় যোজনীর পার্থক্যকে ঐ মৌলের সুপ্ত যোজনী বলে। CO যৌগে কার্বন (C) এর সক্রিয় যোজনী 2। কিন্তু C এর সর্বোচ্চ যোজনী 4।

সুতরাং, CO যৌগে কার্বনের সুপ্ত যোজনী = 4 – 2 = 2।

বুসায়ৰ ৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

(গ) উদ্দীপকের তথ্য অনুসারে, ২য় পর্যায়ের 15 নং গ্রুপের M মৌলটি হচ্ছে N। আবার ১ম পর্যায়ের 1 নং গ্রুপের। মৌলটি হচ্ছে H। সুতরাং ML_3 যৌগটি NH_3 । নিচে NH_3 অণুর বন্ধন গঠন প্রক্রিয়া চিত্রসহ বর্ণনা করা হলো.

জানা আছে, দুটি অধাতব পরমাণু ইলেকট্রন শেয়ারের মাধ্যমে নিকটস্থ নিষ্ক্রিয় চরিত্র অর্জনের উদ্দেশ্যে যে কখন গঠন করে তা-ই মূলত সমযোজী বন্ধন। আবার সমযোজী বন্ধনের মাধ্যমে যে যৌগ গঠিত তা হচ্ছে সমযোজী যৌগ।

N এর ইলেকট্রন বিন্যাস, $N(7) \to 1s^2 \, 2s^2 \, 2p_x^{\ 1} \, 2p_y^{\ 1} \, 2p_z^{\ 1}$ H এর ইলেকট্রন বিন্যাস, $H(1) \to 1s^1$

ইলেকট্রন বিন্যাস হতে দেখা যায়, N এর যোজনী শেলে 3 টি বিজোড় ইলেকট্রন আছে। N-পরমাণু তার 3টি বিজোড় ইলেকট্রন 3টি H পরমাণুর $1s^1$ অবিটালের ইলেকট্রনের সাথে শেয়ার করে তিনটি N-H সমযোজী বন্ধন গঠনের মাধ্যমে NH_3 সমযোজী যৌগ গঠন করে। নিচে ভায়াগ্রামের সাহায়েয় NH_3 অণুর বন্ধন গঠন প্রক্রিয়া দেখানো হলো :

চিত্র: NH3 অণুর সমযোজী বন্ধন গঠন

সুতরাং বলা যায়, N ও H অধাতব পরমাণুদ্বয় দ্বারা গঠিত NH_3 যৌগটি সমযোজী যৌগ।

(ঘ) উদ্দীপকের R মৌলটি ফসফরাস (P)। কেন্না তয় পর্যায়ের 15 নং ফপের মৌলটি হচ্ছে P। সুতরাং RCl_5 যৌগটি হলো RCl_5 । RCl_5 যৌগ গঠনে অষ্টক নিয়মের ব্যতিক্রম ঘটে। নিচে তা বিশ্লেষণ করা হলো-ফসফরাসের পারমাণবিক সংখ্যা 15। ফসফরাসের ইলেকট্রন বিন্যাস করলে পাই,

 $P(15) \rightarrow 1 s^2 \ 2 s^2 \ 2 p^6 \ 3 s^2 \ 3 p_x^{\ 1} \ 3 p_y^{\ 1} \ 3 p_z^{\ 1}$ উত্তেজিত অবস্থায়, $P*(15) \rightarrow 1 s^2 \ 2 s^2 \ 2 p^6 \ 3 s^1 \ 3 p_x^{\ 1} \ 3 p_y^{\ 1} \ 3 p_z^{\ 1} \ 3 d_{xy}^{\ 1}$

অন্যদিকে ক্লোরিনের ইলেকট্রন বিন্যাস,

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$

চিত্ৰ: PCl₅ যৌগ গঠন

P এর যোজ্যতা স্তরে একটি ইলেক্ট্রন উদ্দীপিত অবস্থায় $3d_{xy}$ অরবিটালে উন্নীত হয়। ফলে এর P যোজ্যতা স্তরে 5টি বিজোড় ইলেক্ট্রন 5টি Cl পরমাণুর সাথে কখন গঠনের মাধ্যমে PCl_5 যৌগ উৎপন্ন করে। ফলে ফসফরাসের বহিঃস্থ স্তরে ইলেক্ট্রন সংখ্যা বৃদ্ধি পেয়ে 10 হয়। অর্থাৎ ফসফরাসের অষ্টক সম্প্রসারণ ঘটে।

অর্থাৎ PCl₅ যৌগ গঠনের সময় অষ্টক নিয়মের ব্যতিক্রম ঘটে না।

৫১. নিচের চিত্রে দুটি মৌলের ইলেকট্রন বিন্যাস দেখানো হয়েছে:

[এখানে A, D প্রতীক অর্থে, প্রচলিত কোন মৌলের প্রতীক নয়]
[যশোর বোর্ড ২০২১]

- (ক) মুদ্রা ধাতু কাকে বলে?
- (খ) "সোডিয়াম একটি ক্ষার ধাতু" ব্যাখ্যা করো।
- (গ) 'A' ও 'D' মৌল দ্বারা গঠিত যৌগের বন্ধন গঠন প্রক্রিয়া ব্যাখ্যা করো।
- (ঘ) "D মৌলটি পরিবর্তনশীল যোজনী প্রদর্শন করে" বিশ্লেষণ করো।

৫২ নং প্রশ্নের উত্তর

- (ক) পর্যায় সারণিতে গ্রুপ- II এ অবস্থিত ধাতব বৈশিষ্ট্যসম্পন্ন যে সমস্ত ধাতু (Cu, Ag, Au) উজ্জ্বল, চকচকে এবং যেসব ধাতু দ্বারা প্রাচীনকালে মুদ্রা তৈরি করে ক্রয়-বিক্রয় ও অন্যান্য প্রয়োজনে বিনিময়ের মাধ্যম হিসেবে ব্যবহার করা হয়, তাদেরকে মুদ্রা ধাতু (Coin Metals) বলে।
- (খ) হাইড্রোজেন ব্যতিত পর্যায় সারণির 1 নং গ্রুপে অবস্থিত সকল মৌলকে ক্ষার ধাতু বলে। আমরা জানি, যারা পানির সাথে বিক্রিয়া করে ক্ষার তৈরি করে তারা ক্ষারধাতু নামে পরিচিত। সোডিয়াম (Na) পর্যায় সারণির 1 নং গ্রুপে অবস্থিত এবং এটি পানির সাথে তীব্রভাবে বিক্রিয়া করে হাইড্রোজেন গ্যাস ও তীব্র ক্ষার NaOH উৎপন্ন করে।

2Na + 2H₂O → 2NaOH + H₂ সুতরাং, সোডিয়াম একটি ক্ষার ধাতু।

(গ) উদ্দীপকে উল্লিখিত A ও D মৌলসমূহের পারমাণবিক সংখ্যাক্রম অনুযায়ী মৌলদ্বয় যথাক্রমে ম্যাগনেসিয়াম (Mg) এবং সালফার (S)। কাজেই এদের সমন্বয়ে গঠিত যৌগ হলো MgS।

Ca ও S এর ইলেক্ট্রন বিন্যাস নিয়ে পাই-

 $Ca(20) = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

 $S(16) = 1s^2 2s^2 2p^6 3s^2 3p^4$

দেখা যাচ্ছে, Ca এর যোজ্যতা স্তরে 2° টি ইলেকট্রন আছে এবং S এর যোজ্যতা স্তরে 6° টি ইলেকট্রন আছে। এজন্য Ca পরমাণু 2° টি ইলেকট্রন দান করে Ca^{2+} আয়ন এবং S পরমাণু 2° টি ইলেকট্রন গ্রহণ করে S^{2-} । আয়নে পরিণত হয়।

 $Ca \rightarrow Ca^{2+} + 2e^-$ (ইলেকট্রন ত্যাগ)

 $S + 2e^- \rightarrow S^{2-}$ (ইলেক্ট্রন গ্রহণ)

 $Ca + S \rightarrow CaS$

পরে Ca^{2+} ও S^{2-} আয়নদ্বয় পরস্পর স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে CaS আয়নিক যৌগ গঠন করে।

চিত্র : CaS যৌগের আয়নিক বন্ধন গঠন

(ঘ) উক্ত উদ্দীপকে উল্লিখিত 'D' মৌল এর পরমাণুর ইলেকট্রন শেলে মোট 16টি ইলেকট্রন আছে। আমরা জানি, সাধারণ অবস্থায় পরমাণু বিদ্যুৎ নিরপেক্ষ। কাজেই D মৌলের পরমাণুর নিউক্লিয়াসে মোট 16টি প্রোটন উপস্থিত। অর্থাৎ, D এর পারমাণবিক সংখ্যা 16। পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যার ক্রম অনুযায়ী মৌলটি সালফার (S)।

নিম্নে সালফার (S) এর ইলেকট্রন বিন্যাস দেয়া হলো:

Prepared by: SAJJAD HOSSAIN

$$_{16}S$$
 \longrightarrow $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^4$
⊲1, $_{16}S$ \longrightarrow $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p_x$ 2 $3p_y$ 1 $3p_y$ 1

আমরা জানি, কোনো অর্থাতব মৌলের সর্বশেষ শক্তিস্তরের ইলেকট্রন বিন্যাসে যতটি অযুগা ইলেকট্রন বিদ্যমান সেই সংখ্যাই ঐ মৌলের যোজনী। সালফারের ইলেকট্রন বিন্যাস থেকে দেখা যায় যে, এর যোজ্যতা স্তরে 2টি অযুগা ইলেকট্রন বিদ্যমান। তাই S-এর যোজনী দুই (2)।

আবার যখন S এর $3p_x^2$ অরবিটালের 1টি ইলেকট্রন উত্তেজিত অবস্থায় ফাঁকা 3d তে যায় তখন এর অযুগ্ন ইলেকট্রন হয় 4টি অর্থাৎ S এর যোজনী দাঁড়ায় 4। একইভাবে, পুনরায় উত্তেজিত অবস্থায় S এর যোজনী হয় 6।

$$_{16}{
m S}
ightarrow 1{
m s}^2\,2{
m s}^2\,2{
m p}^6\,3{
m s}^2\,3{
m p}_{{
m z}}^{\,2}\,\overline{\left[3{
m p}_{{
m y}}^{\,1}\,3{
m p}_{{
m z}}^{\,1}
ight]}
ightarrow$$
 যোজনী -2

উত্তেজিত:
$$_{16}\mathrm{S}^{ullet} \to 1\mathrm{s}^2 \ 2\mathrm{s}^2 \ 2\mathrm{p}^6 \ \boxed{3\mathrm{p}_{\mathrm{x}}^{-1} \ 3\mathrm{p}_{\mathrm{y}}^{-1} \ 3\mathrm{p}_{\mathrm{z}}^{-1} \ 3\mathrm{d}^{-1}_{22}} \to$$
 যোজনী -4

আরো উত্তেজিত: $_{16}{
m S}^{ullet}
ightarrow 1{
m s}^2\ 2{
m s}^2\ 2{
m p}^6$

উপরোক্ত ইলেকট্রন বিন্যাস হতে এটা স্পষ্ট যে, সালফারের <mark>ক্ষে</mark>ত্রে উত্তেজিত অবস্থায় আরো দুটি যোজনী (4, 6) পাওয়া যায়। অতএব, S পরিবর্তনশীল যোজনী প্রদর্শন করে।

*৫*২.

[এখানে, P, Q, R প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়]
[যশোর বোর্ড ২০২১]

- (ক) আয়ন কাকে বলে?
- (খ) পটাশিয়াম কে ক্ষার ধাতু বলা হয় কেন?
- (গ) 'Q' মৌলটির নিষ্ক্রিয়তার কারণ ব্যাখ্যা করো।
- (ঘ) 'P' এবং 'R' মৌল কীভাবে 'Q' মৌলের ইলেকট্রন বিন্যাস লাভ করে – বিশ্লেষণ করো।

৫৩ নং প্রশ্নের উত্তর

- (ক) ধনাত্মক বা ঋণাত্মক চার্জযুক্ত পরমাণু বা অণুকে আয়ন বলে।
- (খ) পটাসিয়াম (K) কে ক্ষার ধাতু বলা হয়। কারণ পটাসিয়াম গ্রুপ-1 এর মৌল এবং পানির সাথে বিক্রিয়া করে তীব্র ক্ষারীয় KOH যৌগ উৎপন্ন করে।

বিক্রিয়া :
$$2K + 2H_2O \longrightarrow 2KOH + H_2$$

তীব ক্ষার

আবার KOH অস্লের অস্লত্বকে বিনষ্ট করতে পারে এবং বিক্রিয়ায় লবণ ও পানি উৎপন্ন করে।

বিক্রিয়া :
$$KOH + HCl \longrightarrow KCl + H_2O$$
 ক্ষার অমু লবণ পানি

তাই পটাসিয়ামকে ক্ষার ধাতু বলা হয়।

(গ) উদ্দীপকের তথ্যানুসারে, $_{10}Q$ মৌলটি নিয়ন (Ne)। কেননা Q মৌলটির প্রোটন সংখ্যা তথা পারমাণবিক সংখ্যা 10। নিচে Ne এর স্থিতিশীলতার কারণ ব্যাখ্যা করা হলো,

Ne(10) এর ইলেকট্রন বিন্যাস : $Ne\ (10) = 1s^2\ 2s^2\ 2p^6$ ইলেকট্রন বিন্যাস থেকে দেখা যাচেছ, $Ne\$ এর যোজ্যতা স্তরে 8টি ইলেকট্রন বিদ্যমান। কোনো মৌলের সর্বশেষ শক্তিস্তরে 8টি ইলেকট্রন

থাকলে তারা সর্বাধিক স্থিতিশীলতা লাভ করে। সর্বশেষ শক্তিস্তরে ৪টি ইলেকট্রন থাকার কারণে Ne অধিকতর সুস্থিত হয়। আর অধিকতর স্থিতিশীলতার কারণে Ne গ্যাস অন্য কোনো মৌলকে ইলেকট্রন প্রদান, গ্রহণ বা শেয়ার করে না। ফলে রাসায়নিকভাবে মৌলটি নিচির হয়ে পড়ে।

(ঘ) উদ্দীপকের তথ্যমতে, $_8P$ ও $_{13}R$ মৌল দুটি যথাক্রমে অক্সিজেন (O) ও অ্যালুমিনিয়াম (Al); যেখানে O এর পারমাণবিক সংখ্যা 8 এবং Al এর পারমাণবিক সংখ্যা 13। $_{10}O$ মৌলটি নিয়ন (Ne)।

Al ও O মৌলদ্বয় যথাক্রমে ক্যাটায়ন ও অ্যানায়ন গঠনের মাধ্যমে Ne মৌলের ইলেকট্রন বিন্যাস লাভ করে। নিচে তা বিশ্লেষণ করা হলো,

Al(13) এর ইলেক্ট্রন বিন্যাস,

$$Al(13) = 1s^2 2s^2 2p^6 3s^2 3p^1$$

ইলেক্ট্রন বিন্যাস হতে দেখা যাচেছ, Al এর যোজ্যতা স্তরে 3টি ইলেক্ট্রন আছে। Nc (10) এর ইলেক্ট্রন বিন্যাস লাভ করতে একে তিন্টি ইলেক্ট্রন ত্যাগ করতে হবে।

$$A1^{3+}(13) = 1s^2 2s^2 2p^6 = Ne(10)$$

আধান নিরপেক্ষ পরমাণু থেকে এক বা একাধিক ইলেকট্রন সরিয়ে নিলে পরমাণুটি ধনাত্মক আধানগ্রস্ত হয়ে পড়ে, একে ক্যাটায়ন বলে। এজন্য ক্যাটায়ন গঠনের মাধ্যমে অ্যালুমিনিয়াম (Al) ধাতু নিয়নের ইলেকট্রন বিন্যাস লাভ করে।

অপরদিকে অক্সিজেন (O) এর ইলেকট্রন বিন্যাস,

$$O(8) = 1s^2 2s^2 2p^4$$

অক্সিজেনের যোজ্যতা স্তরে 6টি ইলেকট্রন আছে। নিকটতম নিদ্ধিয় গ্যাস নিয়ন (Ne) অপেক্ষা 2টি ইলেকট্রন কম আছে। এজন্য O পরমাণু 2টি ইলেকট্রন গ্রহণ করে অ্যানায়নে পরিণত হয় এবং নিদ্ধিয় গ্যাস Ne এর ইলেকট্রন কাঠামো অর্জন করে।

$$O^{2}$$
-(8) = 1s² 2s² 2p⁶ = Ne(10)

অর্থাৎ অ্যানায়ন গঠনের মাধ্যমে অক্সিজেন পরমাণু নিয়নের ইলেকট্রন বিন্যাস লাভ করে।

সুতরাং দেখা যাচ্ছে যে, <mark>ক্যাটায়ন ও অ্যানায়</mark>ন সৃষ্টির মাধ্যমে Al ও O মৌল Ne মৌলের ইলেক্ট্রন বিন্যাস লাভ করে।

৫৩.

[এখানে A, B, C প্রতীকী অর্থে। প্রচলিত কোনো মৌলের প্রতীক নয়।]
[যশোর বোর্ড ২০২১]

- (ক) আয়নিক বন্ধন কাকে বলে?
- (খ) কার্বনের যোজ্যতা ও যোজ্যতা ইলেকট্রন একই কেন?
- (গ) 'B' ও 'C' মৌল দ্বারা গঠিত যৌগের বন্ধন গঠনপ্রণালী ব্যাখ্যা
- অধাত হওয়া সত্ত্বেও 'A' মৌলটির অবস্থান পর্যায় সারণির গ্রুপ-1
 এ ব্যাখ্যা করো।

৫৪ নং প্রশ্নের উত্তর

- (ক) ইলেকট্রন আদান-প্রদানের মাধ্যমে গঠিত ক্যাটায়ন (ধনাত্মক আয়ন) এবং অ্যানায়ন (ঋণাত্মক আয়ন) সমূহ যে স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা যৌগের অণুতে আবদ্ধ থাকে তাকে আয়নিক বন্ধন বলে।
- (খ) কোনো মৌলের একটি পরমাণুর সাথে অপর একটি পরমাণুর যুক্ত হওয়ায় ক্ষমতাকে ঐ মৌলের পরমাণুর যোজ্যতা বলে। কার্বনের ইলেকট্রন বিন্যাস হতে আমরা পাই,

 $C(6) \to 1s^2 \ 2s^2 \ 2p^2$ বা $1s^2 \ 2s^2 \ 2p_x^1 \ 2p_y^1 \ 2p_z^0$ আবার, উত্তেজিত অবস্থায় কার্বনের যোজ্যতা নিমুরূপ-

Prepared by: SAJJAD HOSSAIN

C* (6)
$$\rightarrow 1s^2 \left[2s^1 2p_x^1 2p_y^1 2p_z^1\right]$$

ইলেকট্রন বিন্যাস হতে দেখা যায়, কার্বনের যোজ্যতা স্তরে 4টি অযুগ্ম ইলেকট্রন রয়েছে। যার মাধ্যমে সর্বোচ্চ 4টি একযোজী মৌলের পরমাণুর সাথে বন্ধন গঠনের মাধ্যমে যুক্ত হতে পারবে। আবার, কোনো মৌলের ইলেকট্রন বিন্যাসে সর্ববহিঃস্থ শক্তিস্তরের অযুগ্ম ইলেকট্রন সংখ্যাই হলো যোজ্যতা ইলেকট্রন। কাজেই, কার্বনের যোজ্যতা ও যোজ্যতা ইলেকট্রন একই।

(গ) উদ্দীপকে উল্লিখিত B ও C মৌলদ্বরের পারমাণবিক সংখ্যা যথাক্রমে 11 ও 17। পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যাক্রম অনুযায়ী মৌলদ্বয় যথাক্রমে সোডিয়াম (Na) এবং ক্লোরিন (Cl)।

Na পরমাণু তার সর্ববহিঃস্থ শক্তিন্তরের একটি ইলেকট্রন ত্যাগ করে নিদ্রিয় গ্যাস নিয়ন এর মতো ইলেকট্রন বিন্যাস অর্জন করে। অর্থাৎ, সর্বশেষ শক্তিন্তরে আট (৪)টি ইলেকট্রন এর কাঠামো গঠন করে Na ক্যাটায়নে পরিণত হয়। অপরদিকে, CI পরমাণু তার সর্ববহিঃস্থ শক্তিন্তরে Na এর ত্যাগকৃত ইলেকট্রনটিকে গ্রহণ করে নিদ্রিয় গ্যাস আর্গন এর মতো ইলেকট্রন বিন্যাস অর্জন করে। অর্থাৎ, সর্ববহিঃস্থ শক্তিন্তরে আট (৪)টি ইলেকট্রন কাঠামো গঠন করে CI অ্যানায়নে পরিণত হয়। এভাবে সৃষ্ট ধনাত্মক চার্জ Na^+ ও ঋণাত্মক চার্জ CI^- পরস্পরের সাথে স্থির বৈদ্যুতিক আকর্ষণে আবদ্ধ হয়। এই আকর্ষণ বলই আয়নিক বন্ধন। অর্থাৎ, ধাতব ও অধাতব পরমাণুর রাসায়নিক সংযোগের সময় ধাতব পরমাণু তার সর্বশেষ শক্তিন্তরের এক বা একাধিক ইলেকট্রনকে অধাতব পরমাণুর সর্বশেষ শক্তিন্তরের গ্রক বার ধনাত্মক ও ঋণাত্মক আয়ন সৃষ্টির মাধ্যমে যে বন্ধন গঠিত হয় তাকে আয়নিক বা তড়িৎযোজী বন্ধন বলে। যে যৌগে আয়নিক বন্ধন থাকে তাকে আয়নিক যৌগ বলে। সুত্রাং, NaCI একটি আয়নিক যৌগ।

$$Na \longrightarrow Na^{+} + e^{-}$$

$$Cl + e^{-} \longrightarrow Cl^{-}$$

$$Na + Cl \longrightarrow Na^{+} + Cl = NaCl$$

$$O(Sall) \longrightarrow O(Sall)$$

$$O(Sall) \longrightarrow O(Sall)$$

$$O(Sall) \longrightarrow O(Sall)$$

$$O(Sall) \longrightarrow O(Sall)$$

) পরমাণু (CI) ক্লোরাইড (NaCI) চিত্র: সোডিয়াম ক্লোরাইড গঠন।

(ঘ) উদ্দীপকে উল্লিখিত A মৌলটির পারমাণবিক সংখ্যা 1। পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যাক্রম অনুযায়ী মৌলটি হাইড্রোজেন।

হাইড্রোজেন একটি অধাতু। কিন্তু, পর্যায় সারণিতে হাইড্রোজেনকে তীব্র তড়িৎ ধনাত্মক ক্ষার ধাতু Na, K, Rb, Cs, Fr এর সাথে গ্রুপ-1 এ স্থান দেওয়া হয়েছে। এর কারণ ক্ষার ধাতুর মতো H এর বহিঃস্থ প্রধান শক্তিস্তরে একটিমাত্র ইলেকট্রন রয়েছে। আবার, হাইড্রোজেনের কিছু ধর্ম ক্ষার ধাতুগুলোর ধর্মের সাথে মিলে যায়।

i. তড়িৎ ধনাত্মকতা : ক্ষার ধাতুর ন্যায় হাইড্রোজেন (H) তড়িৎ ধনাত্মক। ফলে সহজেই ইলেকট্রন ত্যাগ করে ধনাত্মক হাইড্রোজেন আয়ন বা প্রোটন (H^+) এ পরিণত হয়। যেমন-

 $Na \rightarrow Na^+ + e^-$; $H \rightarrow H^+ + e^-$

পরমাণ (Na)

ii. ধাতুর মত হ্যালাইড গঠন : ক্ষার ধাতুর ন্যায় হাইড্রোজেন ঋণাত্মক হ্যালোজেনের সঙ্গে যুক্ত হয়ে ধাতব হ্যালাইডের ন্যায় হাইড্রোহ্যালাইড গঠন করে। যেমন-

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$

 $H_2(g) + F_2(g) \longrightarrow 2HF(g)$

 $H_2(g) + Br_2(g) \longrightarrow 2HBr$

 $H_2(g) + l_2(g) \longrightarrow 2HI$

iii. ক্যাথোডে বিজারণ : ক্ষার ধাতুর হ্যালাইডের জলীয় দ্রবণের ন্যায় হাইড্রোজেনের হ্যালাইডসমূহ যেমন, HCl এর জলীয় দ্রবণকে তড়িং বিশ্লেষণ করলে ক্যাথোডে হাইড্রোজেন (H_2) জমা হয়।

উপরোক্ত কারণগুলোর জন্যই অধাতু হওয়া সত্ত্বেও 'A' মৌল তথা হাইড্রোজেনের অবস্থান পর্যায় সারণীতে গ্রুপ-1 এ।

$$\&$$
8. (i) Mg + O₂ → 'X'

[বরিশাল বোর্ড ২০২১]

(ক) ভরসংখ্যা কাকে বলে?

(খ) Cl এর যোজনী ও <mark>যোজ্যতা ইলেকট্রন ভিন্ন –</mark> ব্যাখ্যা করো।

(গ) উদ্দীপকের 'Y' যৌগ<mark>কে</mark> চুনের পানিতে চালনা করলে কী ঘটবে? বর্ণনা করো।

(ঘ) উদ্দীপকের 'X' ও 'Y' যৌগের বন্ধন গঠন প্রক্রিয়া ভিন্ন – বিশ্লেষণ করো।

৫৫ নং প্রশ্নের উত্তর

(ক) কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে ঐ মৌলের পরমাণুর ভরসংখ্যা বলে।

(খ) জানা আছে, অধাতব মৌলের সর্বশেষ শক্তিস্তরের বিজোড় ইলেকট্রন সংখ্যাকে যোজনী বলে এবং সর্বশেষ শক্তিস্তরের মোট ইলেকট্রন সংখ্যাকে যোজ্যতা ইলেকট্রন বলে। অধাতব মৌল Cl এর ইলেকট্রন বিন্যাস,

$$Cl(17) = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p_x^2 \ 3p_y^2 \ 3p_z^1$$
 বিজোড় $e^- = 1$ টি।

ইলেকট্রন বিন্যাস থেকে দেখা যায়, এতে যোজ্যতা স্তরে বিজোড় ইলেকট্রন 1 হওয়ায় যোজনী-1 এবং যোজ্যতা ভরের ইলেকট্রন সংখ্যা 7টি হওয়ায় যোজ্যতা ইলেকট্রন 7। সুতরাং, দেখা যাচেছ, Cl এর যোজ্যতা ইলেকট্রন ও যোজনী যথাক্রমে 7 ও 1, অর্থাৎ ভিন্ন।

(গ) উদ্দীপকের (ii) নং-এ সংঘটিত বিক্রিয়া নিমুরূপ :

 $2HCl + MgCO_3 \rightarrow MgCl_2 + CO_2(g)(Y) + H_2O$ দেখা যাচ্ছে যে, Y যৌগটি হলো কার্বন ডাইঅক্সাইড (CO_2) গ্যাস। CO_2 যৌগকে চুনের পানিতে চালনা করলে ক্যালসিয়াম কার্বনেটের $(CaCO_3)$ সাদা বর্ণের অধ্যক্ষেপ উৎপন্ন হয় এবং চুনের পানি ঘোলা হয়ে যায়।

$$\mathrm{CO_2} \ + \ \mathrm{Ca}(\mathrm{OH})_2 o \mathrm{Ca}(\mathrm{CO_3(s)}) \downarrow + \mathrm{H_2O}(\mathit{l})$$
 Y গ্যাস চুনের পানি সাদা অধ্যক্ষেপ

৫ম অধ্যায় বসায়ন

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

এখানে অদ্রবণীয় CaCO3 উৎপন্ন হওয়ার জন্য চুনের পানিকে ঘোলা দেখায়। এ ঘোলা চনের পানিতে অতিরিক্ত CO2 গ্যাসকে চালনা করলে সেটি আবার স্বচ্ছ হয়ে যায়। এক্ষেত্রে অদ্রবণীয় CaCO3 এর সাথে CO_2 এবং H_2O বিক্রিয়া করে দ্রবণীয় ক্যালসিয়াম বাইকার্বনেট $[Ca(HCO_3)_2]$ উৎপন্ন করার কারণে ঘোলা চুনের পানিকে স্বচ্ছ দেখায়।

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$$

(ঘ) উদ্দীপকের (i) নং বিক্রিয়া পূর্ণ করে পাই.

 $2Mg + O_2 \rightarrow MgO(X)$

সুতরাং, 'X' যৌগটি হলো ম্যাগনেসিয়াম অক্সাইড (MgO)। আবার, উদ্দীপকের 'গ' হতে প্রাপ্ত Y যৌগ হলো কার্বন ডাইঅক্সাইড (CO2)। MgO যৌগটি আয়নিক বন্ধনের মাধ্যমে এবং CO2 যৌগটি সমযোজী বন্ধনের মাধ্যমে গঠিত হয় অর্থাৎ এদের বন্ধন গঠন প্রক্রিয়া ভিন্ন। নিচে তা ব্যাখ্যা করা হলো:

MgO যৌগের গঠন: 12Mg ও 8O এর ইলেকট্রন বিন্যাস, $_{8}O \rightarrow 1s^{2} 2s^{2} 2p_{x}^{2} 2p_{y}^{1} 2p_{z}^{1}$

 $_{12}{
m Mg}^*
ightarrow 1{
m s}^2 2{
m s}^2 2{
m p}^6 3{
m s}^1 3{
m p}_{
m x}^{\ 1}$ (উত্তেজিত অবস্থায়)

ইলেকট্রন বিন্যাস থেকে দেখা যায়, অক্সিজেনের অষ্টক পূরণের জন্য 2টি ইলেকট্রন গ্রহণ করা প্রয়োজন। অপরদিকে Mg এর অষ্টক পুর<mark>ণের</mark> জন্য 2টি ইলেকট্রন ত্যাগ করা প্রয়োজন। Mg পরমাণু 2টি e^- ত্যাগ করে ${
m Mg}^{2+}$ ক্যাটায়নে পরিণত হয়। আবার ${
m O}$ পরমাণু ${
m Mg}$ এর ত্যাগ<mark>কৃত</mark> ${
m e}^-$ 2টি গ্রহণ করে O^{2-} অ্যানায়নে পরিণত হয়। এ বিপরীতধর্মী ক্যা<mark>টায়ন</mark> ও অ্যানায়ন স্থির বৈদ্যুতিক আকর্ষণ দ্বারা MgO আয়নিক যৌগ গঠন করে।

চিত্র : MgO-এ আয়নিক বন্ধন

সুতরাং Mg ও O মৌলদ্বয় দ্বারা গঠিত যৌগ গমঙ এবং গঠিত বন্ধন আয়নিক বন্ধন।

CO₂ যৌগের গঠন:

 $_6\mathrm{C}$ -এর ইলেকট্রন বিন্যাস : $1\mathrm{s}^2~2\mathrm{s}^2~2\mathrm{p}^2 \stackrel{\cdot}{\longrightarrow} 1\mathrm{s}^2~2\mathrm{s}^1~2\mathrm{p_x}^1$ $2p_{y}^{1} 2p_{z}^{1}$

 $_8 ext{O}$ -এর ইলেকট্রন বিন্যাস : $1 ext{s}^2\ 2 ext{s}^2\ 2 ext{p}^4 \longrightarrow 1 ext{s}^2\ 2 ext{s}^2\ 2 ext{p}_{ ext{x}}^2\ 2 ext{p}_{ ext{y}}^1$

 CO_2 যৌগ গঠনের সময় কোনো প্রমাণুর পক্ষে ইলেক্ট্রন ত্যাগ করা সম্ভব নয় বলে উভয় পরমাণু পরস্পরের সাথে ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন গঠন করে। একটি C পরমাণুর 4টি যোজ্যতা ইলেকট্রনের সাথে 2টি O পরমাণু তাদের যোজ্যতা স্তরের 2টি করে ইলেক্ট্রন শেয়ার করে সমযোজী বন্ধনের মাধ্যমে CO2 যৌগ গঠন করে। CO_2 এর অণুতে প্রতিটি অক্সিজেন পরমাণু C পরমাণুর সাথে দ্বিবন্ধনে যুক্ত। এর কন্ধন ডায়াগ্রামটি হলো,

B চিত্র-১

[বরিশাল বোর্ড ২০২১]

- (ক) তড়িৎ ঋণাত্মকতা কাকে বলে?
- (খ) Be কে মৃৎক্ষার ধাতু বলা হয় কেন? ব্যাখ্যা করো।
- (গ) উদ্দীপকের B ও C মৌল দ্বারা গঠিত যৌগ পানিতে অদ্রবণীয় বর্ণনা করো।
- (ঘ) মৌল তিনটির আয়নিকরণ শক্তির ক্রম উদ্দীপকের কোন চিত্রকে সমর্থন করে? বিশ্লেষণ করো।

৫৬ নং প্রশ্নের উত্তর

- (ক) সমযোজী বন্ধন দ্বারা যুক্ত কোনো প্রমাণুর নিজের দিকে বন্ধনে শেয়ারকৃত <mark>ইলেকট্রন জোড়কে আ</mark>কর্ষ<mark>ণ করার</mark> ক্ষমতাকে সংশ্লিষ্ট মৌলের পরমাণুর তডিৎ ঋণাত্মকতা বলে।
- (খ) যে সকল ধাতু মাটিতে যৌগ হিসেবে পাওয়া যায় এবং পানির সাথে বিক্রিয়া করে মৃদু <mark>ক্ষার তৈরি করে তাদের</mark>কে মৃৎক্ষার ধাতু বলে। বৈশিষ্ট্য অনুসারে গ্রুপ-2 এর <mark>মৌলসমূহকে মুৎক্ষা</mark>র ধাতু বলে। বেরিলিয়াম (Be) পর্যায় সারণির দ্বিতীয় গ্<mark>রুপে অবস্থিত একটি মৌল। মৌলটি মূলত মাটিতে</mark> পাওয়া যায় এবং পানি<mark>র সাথে বিক্রিয়া করে মৃদু ক্ষার বে</mark>রিলিয়াম হাইড্রক্সাইড (Be(OH)2) ক্ষার গঠন করে। $Be + 2H_2O \rightarrow Be(OH)_2 + H_2$

তাই বেরিয়াম Be কে মৃৎক্ষা<mark>র</mark> ধাতু বলা হয়।

(গ) পর্যায় সারণিতে বিদ্যমান মৌলের পারমাণবিক সংখ্যাক্রম অনুযায়ী উদ্দীপকের ₁₇Y, ₁₄Z ও ₁₁W মৌলগুলি যথাক্রমে Cl(17), Si(14) এবং Na(11)। গ্যাসী<mark>য় অবস্থায় কোনো মৌলের</mark> এক মোল গ্যাসীয় পরমাণুতে এক মোল ই<mark>লেকট্রন প্রবেশ করিয়ে</mark> এক মোল ঋণাত্মক আয়নে পরিণত করতে যে প<mark>রিমাণ শক্তি নির্গত হয় তাকে ঐ মৌলের ইলেকট্রন</mark>

পর্যায় সারণির একই পর্যায়ে বাম দিক থেকে ডান দিকে গেলে ইলেকট্রন আসক্তি ক্রমশ বৃদ্ধি পায়। <mark>কারণ</mark>, বাম থেকে ডান দিকে পারমাণবিক <mark>সংখ্যা ক্রমশ বৃদ্ধি পায়। ফলে নিউক্লিয়াসের প্রোটনের সংখ্যা বৃদ্ধি তথা</mark> ধনাত্মক <mark>চার্জ বৃদ্ধি পায়,</mark> সাথে সাথে পরমাণুর বহিঃস্থ শক্তিস্তরে ইলেকট্রন <mark>সংখ্যাও বৃদ্ধি পায়। ফলে নিউক্লিয়াস কর্তৃক বহিঃস্থ শক্তিস্তরের আকর্ষণ</mark> বৃদ্ধি পায়। ফলে পরমাণুর আকার ব্রাস পায়। এক্ষেত্রে উদ্দীপকের Na <mark>এর আকার সবচেয়ে বড় এবং সর্বভানের মৌল Cl এর আকার সবচেয়ে</mark> ছোট। অতএব, এ পর্যায়ের মৌলের আকারের ক্রম হলো $\mathrm{Na}>\mathrm{Si}>$ Cl। সুতরাং, উদ্দীপকের মৌলগুলোর ইলেকট্রন আসক্তির ক্রম হবে Na < Si < Cl +

(ঘ) উদ্দীপকে উল্লিখিত A, B ও C মৌলদ্বয়ের পারমাণবিক সংখ্যা যথাক্রমে 13, 15 ও 17। পর্যায় সারণিতে বিদ্যমান মৌলসমূহের পারমাণবিক সংখ্যাক্রম অনুসারে মৌলসমূহ যথাক্রমে Al (অ্যালুমিনিয়াম), P(ফসফরাস) এবং Cl (ক্লোরিন)। পর্যায় সারণিতে তিনটি মৌলের অবস্থান পর্যায়-3 এর যথাক্রমে গ্রুপ-13, 15 এবং 17 তে অবস্থিত। আমরা জানি, পর্যায় সারণিতে পারমাণবিক সংখ্যা বৃদ্ধির সঙ্গে একই পর্যায়ে বাম থেকে ডানে মৌলের পারমাণবিক ব্যাসার্ধ ক্রমান্বয়ে ব্রাস পায়। কারণ, কোনো একটি পর্যায়ে বাম থেকে ডানে পারমাণবিক সংখ্যা

Prepared by: SAJJAD HOSSAIN

বৃদ্ধির সঙ্গে মৌলসমূহের পরমাণুর একই শক্তিস্তরে ক্রমান্বয়ে ইলেকট্রন সংখ্যা বৃদ্ধি পেতে থাকে। আবার, পারমাণবিক সংখ্যা বৃদ্ধির সঙ্গে নিউক্লিয়াসের ধনাত্মক চার্জও বৃদ্ধি পেতে থাকে। ফলে বহিঃস্থ ইলেকট্রনীয় স্তরের উপর নিউক্লিয়াসের আকর্ষণ ক্রমান্বয়ে বাড়তে থাকে। এ ক্রমবর্ধমান আকর্ষণের প্রভাবে বহিঃস্থ ইলেকট্রনীয় স্তর ক্রমান্বয়ে নিউক্লিয়াসের নিকটবর্তী হতে থাকে। ফলে ব্যাসার্ধ ক্রমান্বয়ে ব্রাস পেতে থাকে।

এখন, ক্রমহ্রাসমান পারমাণবিক ব্যাসার্ধের জন্য আয়নিকরণ শক্তির মান ক্রমান্বয়ে বাড়তে থাকে। কারণ, নিউক্লিয়াস কর্তৃক বহিঃস্থ ইলেকট্রনের উপর ক্রমবর্ধমান আকর্ষণের ফলে বহিঃস্থ শক্তিস্তর থেকে ইলেকট্রন অপসারণ কঠিন হয়ে পড়ে। ফলে আয়নিকরণ শক্তি বাড়তে থাকে।

মৌলের নাম	আয়নিকরণ শক্তি
9 69 6	(kJ/mol)
অ্যালুমিনিয়াম (Al)	577.5
ফসফরাস (P)	1011.8
ক্লোরিন (Cl)	1221.2

চিত্র-১ এ বর্ণিত লেখটিতে A, B ও C মৌলের আয়নিকরণ শক্তির ক্রমবর্ধমান লেখচিত্র দেখানো হয়েছে। কিন্তু, চিত্র-২ এ এর বিপরীত চিত্র দেয়া হয়েছে। কাজেই মৌল তিনটির আয়নিকরণ শক্তির ক্রম চিত্র-১ কে সমর্থন করে।

- ৫৬. W ও D দুটি মৌল। W মৌলের তিনটি আইসোটোপের শতকরা পরিমাণ যথাক্রমে $^{12}W=99\%,\ ^{13}W=0.75\%$ ও $^{14}W=0.25\%$ । D মৌলটি ৩য় পর্যায়ের হ্যালোজেন গ্রুপের মৌল।
 - (ক) ক্যাটায়ন কাকে বলে?
 - (খ) Ne নিষ্ক্রিয় কেন? ব্যাখ্যা করো।
 - (গ) W মৌলের আপেক্ষিক পারমাণবিক ভর নির্ণয় করো।
 - (ঘ) W ও D মৌল দ্বারা গঠিত যৌগের চিত্র <mark>এঁকে মুক্ত জোড় ও</mark> বন্ধন জোড ইলেকট্রন সংখ্যা হিসাব করো।

[বরিশাল বোর্ড ২০২১]

৫৭ নং প্রশ্নের উত্তর

- (ক) ধনাত্মক চার্জযুক্ত আয়নকে ক্যাটায়ন বলে।
- (খ) নিয়নের পারমাণবিক সংখ্যা 10। এর ইলেক্ট্রন বিন্যাস হলো-

$$_{10}$$
Ne $\longrightarrow 1s^2 2s^2 2p^6$

ইলেকট্রন বিন্যাস হতে দেখা যায়, Ne এর শেষ কক্ষপথে ৪টি ইলেকট্রন বিদ্যমান। এটি অত্যন্ত স্থিতিশীল ইলেকট্রনীয় কাঠামো। এ স্থিতিশীল ইলেকট্রন কাঠামোর জন্য Ne অন্য কোনো মৌলের সাথে কোনো ইলেকট্রন ত্যাগ অথবা গ্রহণ বা শেয়ার করে না। অর্থাৎ রাসায়নিক বন্ধন তৈরি করে না। তাই নিয়ন (Ne) অন্য কারও সাথে কোনোরূপ রাসায়নিক বিক্রিয়া না করে নিষ্ক্রিয় অবস্থা প্রদর্শন করে।

- (গ) উদ্দীপক হতে,
 - 12 M আইসোটোপ = 99%; যেখানে ভরসংখ্যা 12
 - 13 M আইসোটোপ = 0.75%; যেখানে ভরসংখ্যা 13
 - $^{14}{
 m M}$ আইসোটোপ = 0.২৫%; যেখানে ভরসংখ্যা 14

M এর আপেক্ষিক পারমাণবিক ভর

$$= \frac{(99 \times 12) + (0.75 \times 13) + (0.25 \times 14)}{100}$$

$$= \frac{1188 + 9.75 + 3.5}{100}$$

$$= 12.013 \approx 12$$

- ∴ M মৌলের আপেক্ষিক পারমাণবিক ভর 12।
- (ঘ) উদ্দীপকের 'গ' হতে প্রাপ্ত M মৌলের আপেক্ষিক পারমাণবিক ভর 12, যা কার্বন (C) এর পারমাণবিক ভর। আবার, N মৌলটি ৩য় পর্যায়ের হ্যালোজেন গ্রুপের মৌল অর্থাৎ মৌলটি হলো ক্লোরিন (Cl)। এখন M ও N অর্থাৎ C ও Cl মৌলদ্বয় দ্বারা গঠিত যৌগ হলো CCl4। নিচে CCl4 এর চিত্র এঁকে মুক্ত জোড় ও বন্ধন জোড় ইলেকট্রন সংখ্যা হিসাব করা হলো-

C ও Cl এর ইলেকট্রন বিন্যাস নিয়ে পাই-

 $C(6) \rightarrow 1s^2 2s^1 2p_x^1 2p_y^1 2p_z^1$

 $Cl(17) \rightarrow 1s^2 2s^1 2p^6 2s^2 2p^5$ $Cl^* \rightarrow 1s^2 2s^1 2p^6 3s^2 3p_x^2 2p_y^2 3p_z^1$

সমযোজী অণুতে কেন্দ্রীয় পরমাণুর সর্বশেষ শক্তিস্তরে যে ইলেকট্রনগুলো বন্ধনে আবন্ধ হয় তাকে বন্ধন জোড় এবং যে ইলেকট্রন জোড় কোনো বন্ধন তৈরি করে না তাকে মুক্ত জোড় ইলেকট্রন বলে।

চিত্ৰ : CCl4 যৌগ গঠন

দেখা যাচ্ছে যে, CCl_4 এর কেন্দ্রীয় C পরমাণুর যোজ্যতা স্তরে বন্ধনবিহীন কোনো ইলেকট্রন নেই। অর্থাৎ 4 জোড়া বন্ধন ইলেকট্রন বিদ্যমান। আবার, CCl_4 এর 4টি Cl পরমাণুতে যোজ্যতা স্তরে (3×4) বা, 12 জোড়া ইলেকট্রন বন্ধন গঠনে অংশগ্রহণ করে না। তাই CCl_4 অণুতে 12 জোড়া মুক্ত ইলেকট্রন বিদ্যমান। সুতরাং, CCl_4 অণুতে মুক্ত জোড় ও বন্ধন জোড় ইলেকট্রন সংখ্যা যথাক্রমে 12 ও 4।

৫৭. M একটি মৌল যার নিউক্লিয়াসের প্রকৃত $6.5287 \times 10^{-23} g$ এবং নিউট্রন সংখ্যা 20। A ও B অপর দুটি মৌল যারা পর্যায় সারণির ২য় পর্যায়ের যথাক্রমে গ্রুপ -15 এবং গ্রুপ-17 এ অবস্থিত।

[বরিশাল বোর্ড ২০২১]

- (ক) জীবাশা কাকে বলে?
- (খ) C₃H₇ একটি অ্যালকাইল মূলক ব্যাখ্যা করো।
- (গ) M মৌলের প্রোটন সংখ্যা নির্ণয় করো।
- (ঘ) M ও B এবং A ও B দ্বারা গঠিত দুটি যৌগের জলীয় দ্রবণের কোনটি বিদ্যুৎ পরিবাহী? বিশ্লেষণ করো।

৫৮ নং প্রশ্নের উত্তর

- (ক) বহু প্রাচীন কালের উদ্ভিদ এবং প্রাণীর মৃতদেহের যে ধ্বংসাবশেষ মাটির নিচে পাওয়া যায় তাকে জীবাশা বলে।
- (খ) অ্যালকেন থেকে একটি হাইড্রোজেন পরমাণু অপসারণ করলে যে একযোজী মূলকের সৃষ্টি হয় তাকে অ্যালকাইল মূলক বলে। এদের সাধারণ সংকেত C_nH_{2n+1} । অ্যালকেন শ্রেণীর তৃতীয় যৌগ C_3H_8 (প্রোপেন) থেকে একটি হাইড্রোজেন পরমাণু অপসারণ করে C_3H_7 গঠিত হয় এবং এর যোজনী 1।। সুতরাং, C_3H_7 একটি অ্যালকাইল মূলক।
- (গ) উদ্দীপকে উল্লিখিত M মৌলের ক্ষেত্রে, নিউক্লিয়াসের প্রকৃত ভর $=6.5287 \times 10^{-23}~{
 m g}$ এবং নিউট্রন সংখ্যা =20।

বসায়ৰ

৫ম অধ্যায়

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

এখন, কোনো মৌলের পরমাণুর ভর সংখ্যা বলতে ঐ মৌলের নিউউক্রিয়াসে, উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে বুঝায়। আবার, আপেক্ষিক পারমাণবিক ভর বলতে বুঝায় উক্ত মৌলের একটি পরমাণুর গড় ভর এবং একটি কার্বন-12 পরমাণুর ভরের 12 ভাগের ভাগের অনুপাত।

অর্থাৎ, কোনো মৌলের আপেক্ষিক পারমাণবিক ভর =

ঐ মৌলের নিউক্লিয়াসের প্রকৃত ভর

একটি C-12 আইসোটোপের পরমাণুর ভরের $\frac{1}{12}$ অংশ

Arr M মৌলের আপেক্ষিক পারমাণবিক ভর $=rac{6.5287 imes10^{-23}~{
m g}}{1.66 imes10^{-24}~{
m g}}$ =39.3295 pprox39

এখন, M মৌলের আপেক্ষিক পারমাণবিক ভর সংখ্যা = প্রোটনের ভর সংখ্যা + নিউট্টনের ভর সংখ্যা

বা, 39 = প্রোটন সংখ্যা + 20

বা, প্রোটন সংখ্যা = 19

অতএব, M মৌলের নিউক্লিয়াসে উপস্থিত প্রোটন সংখ্যা = 19

(ঘ) 'গ' হতে প্রাপ্ত পারমাণবিক সংখ্যা পর্যবেক্ষণে M মৌলের নাম পর্যায় সারণি থেকে পাওয়া যায় পটাশিয়াম (K)। আবার, A ও B মৌলদ্বয় পর্যায় সারণিতে যথাক্রমে গ্রুপ-15 ও গ্রুপ-17 তে অবস্থিত এবং A ও B এর প্রত্যেকেই ২য় পর্যায়ের অন্তর্ভুক্ত। কাজেই, পর্যায় ও গ্রুপ পর্যবেক্ষণে আমরা পাই A ও B মৌলদ্বয় যথাক্রমে ফসফরাস (P) এবং ক্লোরিন (Cl)। কাজেই, M ও B দ্বারা গঠিত যৌগটি পটাসিয়াম ক্লোরাইড (KCl) এবং A ও B দ্বারা গঠিত যৌগটি ফসফরাস ট্রাইক্লোরাইড (PCl3)।

 PCl_3 এবং KCl এর মধ্যে PCl_3 হলো সমযোজী যৌগ। অন্যদিকে KCl হলো আয়নিক যৌগ। আয়নিক যৌগসমূহ জলীয় দ্রবণে বিদ্যুৎ পরিবহন করে লা।

$$K \longrightarrow K^+ + e^-$$

 $Cl + e^- \longrightarrow Cl$
 $K^+ + Cl^- \longrightarrow KCl$

আয়নিক যৌগ KC1 জলীয় দ্রবণে বিয়োজিত হয়ে ধনাত্মক পটাসিয়াম আয়ন এবং ঋণাত্মক কোরাইড আয়ন উৎপন্ন করে। উৎপন্ন K^+ আয়ন ক্যাথোড দ্বারা আকৃষ্ট হয় এবং $C1^-$ আয়ন অ্যানোড দ্বারা আকৃষ্ট হয় এবং $C1^-$ আয়ন অ্যানোড দ্বারা আকৃষ্ট হয় । K^+ ক্যাথোড হতে ইলেকট্রন গ্রহণ করে ধাতব K^+ এবং $C1^-$ আয়ন অ্যানোডে ইলেকট্রন ত্যাগ করে $C1_2$ গ্যাস এ পরিণত হয়। আর বিদ্যুৎ প্রবাহ হলো ইলেকট্রন প্রবাহ। আয়নিক যৌগ আয়ন আকারে ইলেকট্রন স্থানান্তর করে। অপরদিকে সমযোজী $PC1_3$ হতে অনুরূপ আয়ন পাওয়া সম্ভব নয়। তাই, $PC1_3$ এর জলীয় দ্রবণ তড়িৎ দ্বারা বিশেষিত না হলেও $RC1_1$ হয়।

অ্যানোড বিক্রিয়া : $2Cl^- \longrightarrow Cl_2 + 2e^-$ ক্যাথোড বিক্রিয়া : $2K^+ + 2e^- \longrightarrow 2K(s)$

৫৮.
মৌল P Q R

পারমাণবিক সংখ্যা 1 5 7

[P, Q, R প্রতীকী অর্থে ব্যবহৃত]

[বরিশাল বোর্ড ২০২১]

- (ক) আইসোটোপ কাকে বলে?
- (খ) প্রোপানয়িক এসিড দুর্বল এসিড ব্যাখ্যা করো।
- (গ) পর্যায় সারণিতে O মৌলের অবস্থান নির্ণয় করো।
- (ঘ) উদ্দীপকের P ও R মৌল দ্বারা গঠিত যৌগে একটি মৌর দুই এর নিয়ম অনুসরণ করলেও অষ্টক নিয়ম অনুসরণ করে না – বিশ্লেষণ করো।

৫৯ নং প্রশ্নের উত্তর

- (ক) যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন, তাদেরকে পরস্পরের আইসোটোপ বলে।
- থে) প্রোপানয়িক এসিড (CH_3CH_2COOH) একটি দুর্বল এসিড। কারণ জানা আছে, জলীয় দ্রবণে যে পদার্থ যত বেশি বিয়োজিত হয়ে H^+ আয়ন দিতে পারে তার শক্তিমাত্রা ততো বেশি। CH_3CH_2COOH জৈব এসিড বলে এটি জলীয় দ্রবণে স্বল্পমাত্রায় তথা আংশিক বিয়োজিত হয় তাই এর শক্তিমাত্রাও কম। অর্থাৎ এটি দুর্বল এসিড। CH_3CH_2COOH জলীয় দ্রবণে নিমুন্ধপে বিয়োজিত হয়।

আংশিক বিয়োজিত _

বিক্রিয়া : CH₃CH₂COOH(aq) = H⁺(aq) + CH₃CH₂COO⁻ (aq)

(গ) উদ্দীপকের Q মৌল হলো বোরন $({}_5B)$ । কারণ, বোরনের পারমাণবিক সংখ্যা 5। নিচে পর্যায় সারণিতে বোরনের অবস্থান নির্ণয় করা হলো :

 ${f B}$ এর ইলেক্ট্রন বিন্যাস $:{f B}(5)
ightarrow 1{f s}^2\,2{f s}^2\,2{f p}^1$

ইলেকট্রন বিন্যাস থেকে দেখা যায়, বোরন (B) এর ইলেকট্রনসমূহ দুটি স্তরে বিন্যস্ত ৷ তাই B পর্যায় সারণির ২য় পর্যায়ের মৌল ৷ আবার, এর যোজ্যতা স্তরে তথা s ও p অরবিটালে মোট (2+1)=3টি ইলেকট্রন আছে ৷ তাই B এর এন্প (3+10)=13 ৷

সুতরাং পর্যায় সারণিতে Q তথা বোরন (B) মৌলটির অবস্থান দ্বিতীয় পর্যায়ে ও গ্রুপ 13 তে।

(ঘ) উদ্দীপকের P ও R মৌল দুটি হলো যথাক্রমে হাইড্রোজেন $(_1H)$ ও নাইট্রোজেন $(_7N)$ । কারণ H ও N এর পারমাণবিক সংখ্যা যথাক্রমে 1 ও 7। H ও N মৌলদ্বয় দ্বারা গঠিত যৌগ হলো NH_3 । NH_3 যৌগের একটি মৌল H দুই এর নিয়ম অনুসরণ করলেও অষ্টক নিয়ম অনুসরণ করে না। নিচে তা বিশ্লেষণ করা হলো:

H ও N এর ইলেক্ট্রন বিন্যাস হতে পাই,

 $H(1) \rightarrow 1s^1$

 $N(7) \rightarrow 1s^2 2s^2 2p^3$

যৌগ গঠন করার পর যে পরমাণুর সর্বশেষ স্তরে ৪টি ইলেকট্রন থাকে সে মৌল অকটেট নিয়ম অনুসরণ করে। আবার, যেসব পরমাণুর সর্বশেষ স্তরে 2টি ইলেকট্রন থাকে সে মৌল দুই এর নিয়ম অনুসরণ করে।

উক্ত NH_3 অণুর গঠন হতে দেখা যাচেছ, N পরমাণুর বহিঃস্থ স্তরে 5টি e^- রয়েছে। অষ্টক পূরণের আরও 3টি e^- প্রয়োজন, যা 3টি H পরমাণুর সাথে 1টি করে e^- শেয়ার করে সমযোজী অণু NH_3 গঠন করে, এক্ষেত্রে প্রত্যেক H পরমাণুর বহিঃস্তর দ্বিত্ব পূর্ণ হয়, অষ্টক পূর্ণ নয়। সুতরাং বলা যায়, NH_3 যৌগ গঠনে H পরমাণু দুই এর নিয়ম অনুসরণ করেলও অষ্টক নিয়ম অনুসরণ করে না।

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

$_{6}\mathrm{W}$	8X	9Y	19 Z

[এখানে, W, X, Y, Z প্রচলিত অর্থে কোনো মৌলের প্রতীক নয়।]

- (ক) এন্টাসিড কী?
- (খ) CO₂ অণুতে মুক্ত জোড় এবং বন্ধন জোড় ইলেকট্রন উল্লেখ করো।
- (গ) Y এবং Z মৌলদ্বয় দারা গঠিত যৌগের বন্ধন গঠন চিত্রের মাধ্যমে বর্ণনা করো।
- (ঘ) W, X এবং Y, Z মৌলসমূহ দ্বারা গঠিত দুটি যৌগের গলনাঙ্ক এবং স্ফুটনাঙ্ক তুলনামূলক বিশ্লেষণ করো।

৬০ নং প্রশ্নের উত্তর

- (ক) এন্টাসিড হলো $Mg(OH)_2$ ও $Al(OH)_3$ এর ক্ষারীয় মিশ্রণ, যা পাকস্থলীতে নিঃসৃত অতিরিক্ত HCl প্রশমিত করার জন্য ঔষধরূপে ব্যবহৃত হয়।
- (খ) সমযোজী অণুতে কেন্দ্রীয় পরমাণুর সর্বশেষ শক্তিস্তরে যে ইলেকট্রনগুলো বন্ধনে আবদ্ধ হয় তাকে কখন জোড় এবং যে ইলেকট্রন জোড় বন্ধন তৈরি করে না তাকে মুক্ত জোড় ইলেকট্রন বলে। CO2 এর গঠন নিমুরূপ-

চিত্র: CO2 এর গঠন

দেখা যাচ্ছে যে, CO_2 অণুতে $4\overline{D}$ বন্ধন জোড় এবং $4\overline{D}$ মুক্ত জোড় ইলেকট্রন বিদ্যমান। কারণ 4 জোড়া ইলেকট্রন C ও O শেয়ারের মাধ্যমে CO_2 গঠন করে, যা কখন জোড় ইলেকট্রন। এছাড়া দুটি O এ আরও 4 জোড়া ইলেকট্রন রয়েছে যা বন্ধনে অংশগ্রহণ করে নি, এগুলো মুক্ত জোড় ইলেকট্রন।

(গ) উদ্দীপকের তথ্য মতে, Y ও Z মৌল দুটি হলো যথাক্রমে ফ্লোরিন (F) ও পটাসিয়াম (K)। কারণ F ও K এর পারমাণবিক সংখ্যা যথাক্রমে 9 ও 19। সুতরাং এদের দ্বারা গঠিত যৌগ হলো KF। নিচে KF যৌগের কখন গঠন চিত্রের মাধ্যমে বর্ণনা করা হলো:

K ও F পরমাণুর ইলেক্ট্রন বিন্যাস নিমুরূপ-

$$K(19) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

 $F(9) \longrightarrow 1s^2 2s^2 2p^5$

K পরমাণু তার সর্ববহিঃস্থ $4s^1$ শক্তিস্তরের 1টি ইলেকট্রন ত্যাগ করে নিকটস্থ নিষ্ক্রিয় গ্যাস আর্গনের স্থিতিশীল অষ্টক কাঠামো লাভ করে এবং K^+ আয়নে পরিণত হয়। অপরদিকে F পরমাণু তার সর্ববহিঃস্থ ২য় শক্তিস্তরে 1টি ইলেকট্রন গ্রহণ করে নিকটদ্ধ নিষ্ক্রিয় গ্যাস নিয়নের স্থিতিশীল অষ্টক কাঠামো লাভ করে এবং F^- আয়নে পরিণত হয়। এভাবে সৃষ্ট K^+ ও F^- আয়নদ্বয় বিপরীত আধানযুক্ত হওয়ায় তারা পরস্পর স্থির বৈদ্যুতিক আকর্ষণ শক্তির দ্বারা যুক্ত হয়ে KF আয়নিক কন্ধনের মাধ্যমে যৌগ গঠন করে।

$$\begin{split} K - e^- &\longrightarrow K^+ \\ \underline{F + e^- &\longrightarrow F^-} \\ K + F &\longrightarrow K^+ + F^- &\rightarrow KF \end{split}$$

চিত্র : আয়নিক বন্ধনের মাধ্যমে KF যৌগ গঠন প্রক্রিয়া

(ঘ) উদ্দীপকের W ও X মৌল দুটি হলো যথাক্রমে কার্বন (C) ও অক্সিজেন (O)। কারণ C ও O এর পারমাণবিক সংখ্যা যথাক্রমে 6 ও 8। সুতরাং এদের দ্বারা গঠিত যৌগ হলো CO2।

আবার, 'গ' হতে Y ও Z দারা গঠিত যৌগ KF। নিচে এদের গলনাঙ্ক ও স্ফুটনাঙ্কের তুলনামূলক বিশ্লেষণ করা হলো:

 ${
m CO_2}$ হলো সমযোজী যৌগ। কারণ কার্বন ও অক্সিজেন সমযোজী বন্ধনের মাধ্যমে যুক্ত হয়ে ${
m CO_2}$ গঠন করে। আবার, ${
m KF}$ হলো আয়নিক যৌগ। কারণ পটাসিয়াম ও ফ্লোরিন আয়নিক বন্ধনের মাধ্যমে যুক্ত হয়ে ${
m KF}$ গঠন করে।

আয়নিক বন্ধন অনেক শক্তিশালী বন্ধন। কারণ আয়নিক বন্ধনে মৌলসমূহ স্থির বৈদ্যুতিক আকর্ষণ বলের মাধ্যমে যুক্ত থাকে। এই স্থির বৈদ্যুতিক আকর্ষণ বল ভাঙার জন্য অনেক বেশি তাপশক্তির প্রয়োজন হয়। তাই আয়নিক যৌগের গলনাম্ব ও স্কুটনাম্ব অনেক বেশি। কিন্তু সমযোজী বন্ধন হলো দুর্বল বন্ধন। সমযোজী যৌগে দুর্বল ভ্যাভারওয়ালস বল কাজ করে, তাই অল্প তাপশক্তি প্রয়োগের ফলে এটি ভেঙে যায়। তাই সমযোজী যৌগের গলনাম্ব ও স্কুটনাম্ব অনেক কম। সুতরাং বলা যায় যে, আয়নিক যৌগ KF এর গলনাম্ব ও স্কুটনাম্ব সমযোজী যৌগ CO2 অপেক্ষা বেশি।

৬০.

[ময়মনসিংহ বোর্ড ২০২০]

- (ক) সমযোজী বন্ধন কী?
- (খ) অ্যালুমিনিয়াম বিদ্যুৎ পরিবাহী কেন?
- (গ) TR₆ যৌগে কোন ধরনের বন্ধন বিদ্যমান? চিত্রসহ বর্ণনা করো।
- (ঘ) QR_2 এবং 6 পারমাণবিক সংখ্যাবিশিষ্ট মৌলের সাথে R এর গঠিত যৌগ পানিতে দ্রবণীয় কিনা? বিশ্লেষণ করো।

৬১ নং প্রশ্নের উত্তর

- (ক) অধাতব পরমাণুর সর্বশেষ শক্তিস্তরে স্থায়ী বা নিকটতম নিদ্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভের জন্য ইলেকট্রন শেয়ারের মাধ্যমে যে বন্ধন গঠিত হয়, তাই হলো সমযোজী বন্ধন।
- (খ) A1 একটি ধাতব মৌল। A1 তার শেষ কক্ষপথের 3টি ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয়ে পারমাণবিক শাঁস গঠন করে। ধাতব ক্ষটিকে পারমাণবিক শাঁসগুলো সুনির্দিষ্ট ত্রিমাত্রিকভাবে বিন্যান্ত থাকে। A1 পরমাণুগুলো কর্তৃক ত্যাগকৃত ইলেকট্রনগুলো কোনো নির্দিষ্ট পরমাণুর

www.schoolmathematics.com.bd

ব্সায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

অধীনে না থেকে সমগ্র ধাতব খণ্ডের হয়ে যায় এবং উক্ত পারমাণবিক শাঁসের মধ্যবর্তী স্থানে মুক্তভাবে ঘোরাফেরা করে। Al এর এই মুক্ত ইলেক্ট্রনগুলোকে বলে সঞ্চারণশীল ইলেক্ট্রন। Al এর ধাতব খণ্ডের দুই প্রান্তের সাথে ব্যাটারির ধনাত্মক (+) ও ঋণাত্মক প্রান্ত করলে সঞ্চারণশীল ইলেক্ট্রনগুলো ঋণাত্মক প্রান্তে থেকে ধনাত্মক প্রান্তের দিকে প্রবাহিত হবে। অর্থাৎ, ধনাত্মক প্রান্ত থেকে ঋণাত্মক প্রান্তের দিকে বিদ্যুৎ প্রবাহিত হবে। তাই বলা যায়, সঞ্চারণশীল ইলেক্ট্রনই Al এর বিদ্যুৎ পরিবাহিতার কারণ।

(গ) উদ্দীপকের T ও R প্রতীকযুক্ত মৌলের ইলেকট্রন সংখ্যা যথাক্রমে 16 ও 9। অর্থাৎ T ও R মৌলদ্বয় হলো যথাক্রমে S ও F।

 TR_6 তথা SF_6 যৌগে সমযোজী বন্ধন বিদ্যমান। নিচে চিত্রসহ বর্ণনা করা হলো :

S-এর ইলেক্ট্রন বিন্যাস হচ্ছে:

 $S(16) \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p_x^2 \ 3p_y^1 \ 3p_z^1 \ 3d^0$ (সাধারণ অবস্থা)

$$S*(16) \rightarrow 1s^{2} 2s^{2} 2p^{6} 3s^{2} \boxed{3p_{x}^{1} 3p_{y}^{1} 3p_{z}^{1} 3d_{xy}^{1}}$$

$$S*(16) \rightarrow 1s^{2} 2s^{2} 2p^{6}$$

$$3s^{1} 3p_{x}^{1} 3p_{y}^{1} 3p_{z}^{1} 3d_{xy}^{1} 3d_{yz}^{1}$$

$$3s^{2}$$

* দ্বারা উত্তেজিত অবস্থা বোঝানো হয়েছে

F এর ইলেক্ট্রন বিন্যাস:

 $F(9) \rightarrow 1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$

S হলো ৩য় পর্যায়ভুক্ত এবং গ্রুপ-16 এর দ্বিতীয় মৌল। S পরমাণুর যোজ্যতা স্তরে $3s^2\ 3p_x^2\ 3p_y^1\ 3p_z^1$ ইলেক্ট্রন বিন্যাসসহ খালি 3d অরবিটাল আছে। উত্তেজিত অবস্থায় S পরমাণু এর $3p_x^2\ 3s^2$ একটি করে $2\bar{b}$ ইলেক্ট্রন খালি $3d^0_{xy}$ ও $3d^0_{yz}$ অরবিটালে স্থানান্তর ঘটে ফলে S এর বিজোড় ইলেক্ট্রন সংখ্যা হয় 6। অন্যদিকে F এর বিজোড়, ইলেক্ট্রন সংখ্যা 1। একটি S ও $6\bar{b}$ F ইলেক্ট্রন শেয়ারের মাধ্যমে SF_6 সমযোজী যৌগ গঠন করে।

চিত্র : SF₆ অণুর আকৃতি

(ঘ) যেহেতু উদ্দীপক অনুসারে Q মোলটির মোট ইলেকট্রন সংখ্যা 12 ও ইলেকট্রন বিন্যাস 2, 8,2। তাই মৌলটি হলো ম্যাগনেসিয়াম (Mg)। 'গ' নং প্রশ্নোত্তর থেকে পাই 'R' মৌলটি হলো ফ্রোরিন (F) এবং 6 পারমাণবিক সংখ্যা বিশিষ্ট মৌলটি হলো কার্বন (C)। সুতরাং QR_2 যৌগটি হলো MgF_2 এবং 6 পারমাণবিক সংখ্যাবিশিষ্ট মৌলের সাথে R এর গঠিত যৌগ হলো CF_4 । MgF_2 পানিতে দ্রবণীয় হলেও CF_4 পানিতে অদ্বণীয়।

পানি একটি পোলার যৌগ। পানির অণুতে বিদ্যমান হাইড়োজেন ও অক্সিজেনের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য অধিক হওয়ায় পোলারিটির সৃষ্টি হয়। ফলে অক্সিজেন (O) পরমাণুটি আংশিক ঋণাত্মক এবং হাইড়োজেন পরমাণু দুটি আংশিক ধনাত্মক চার্জপ্রাপ্ত হয়।

চিত্র: পানির পোলারিটি

কোনো আয়নিক যৌগকে পানিতে দ্রবীভূত করলে যৌগটি প্রথমে ধনাত্মক ও ঋণাত্মক আয়নে বিয়োজিত হবে। এক্ষেত্রে আয়নিক যৌগের ধনাত্মক প্রান্তটি পানির অণুর ঋণাত্মক প্রান্ত বা অক্সিজেন দ্বারা আকর্ষিত হবে। অপরদিকে, আয়নিক যৌগের ঋণাত্মক প্রান্তটি নিম্নুরূপে পানির ধনাত্মক বা হাইডোজেন প্রান্ত দ্বারা আকর্ষিত হবে। ফলে আয়নিক যৌগ MgF_2 পানিতে দ্রবণীয় হবে।

চিত্র : পানির অণু সংযোজিত MgF2

অপরদিকে, কার্বন ও ক্লোরিন অধাতব হওয়ায় এরা তাদের কক্ষপথের ইলেকট্রন শেয়ার করে CF4 সমযোজী যৌগ গঠন করে।

আমরা জানি, ফ্লোরিনের তড়িং ঋণাত্মকতা কার্বন অপেক্ষা বেশি। তাই CF_4 এর অণুর গঠনে প্রতিটি F পরমাণু শেয়ারকৃত বন্ধন ইলেকট্রন মেঘকে নিজের দিকে আকৃষ্ট করতে চায়। কিন্তু কার্বন পরমাণু চারদিকে চারটি F পরমাণু দ্বারা সুষমভাবে পরিবেষ্টিত থাকে। ফলে কেন্দ্রীয় কার্বন পরমাণুর চারদিকের ক্লোরিন পরমাণুর আকর্ষণের লব্ধি শূন্য হয়। তাই এতে কোনো আংশিক ধনাত্মক বা আংশিক ঋণাত্মক প্রান্তের সৃষ্টি হয় না। ফলে CF_4 অণু সামগ্রিকভাবে অপোলার হয়। ফলে পোলার পানির অণু CF_4 অণুকে আকর্ষণ করার জন্য ধনাত্মক-ঋণাত্মক প্রান্ত বা পোল পায় না। ফলে CF_4 পানিতে দ্রবীভূত হয় না।

অতএব, MgF2 পানিতে দ্বীভূত হলেও CF4 পানিতে দ্বীভূত হয় না।

- ৬১. কয়েকটি প্রতীকী মৌল হলো A(20), D(9), E(14), G(17) [রাজশাহী বোর্ড ২০২০]
 - (ক) ইলেকট্রনীয় পরিবাহী কাকে বলে?
 - (খ) HCl একটি পোলার যৌগ ব্যাখ্যা করো।
 - (গ) A ও D এর মধ্যে বন্ধন গঠন প্রক্রিয়া চিত্রসহ বর্ণনা করো।
 - (ঘ) G আয়<mark>নিক ও সমযোজী উভয় ধরনের যৌগ গঠন করলেও E</mark> কেবলমাত্র এক ধরনের যৌগ গঠন করে – বিশ্লেষণ করো।

৬২ নং প্রশ্নের উত্তর

- (ক) যেসব পদার্থের মধ্য দিয়ে ইলেকট্রনের মাধ্যমে বিদ্যুৎ পরিবাহিত হয় সেসব পরিবাহীকে ইলেকট্রনীয় পরিবাহী বলে।
- (খ) H ও Cl মৌলদ্বয় দারা সমযোজী বন্ধনের মাধ্যমে হাইড়োজেন ক্লোরাইড (HCl) গঠিত হয়। সাধারণত সমযোজী যৌগ অপোলার হয়। কিন্তু হাইড্রোজেন (2.1) ও ক্লোরিনের (3.0) তড়িং ঋণাত্মকতার পার্থক্য বেশি হওয়ায় ক্লোরিন বন্ধনজোড় ইলেকট্রনকে নিজের দিকে টেনে নেয়। ফলে হাইড্রোজেন আংশিক ধনাত্মক ও ক্লোরিন আংশিক ঋণাত্মক চার্জে চার্জিত হয়। এভাবে সৃষ্ট আংশিক ধনাত্মক ও আংশিক ঋণাত্মক চার্জযুক্ত যৌগ পোলার যৌগ। এ কারণে HCl যৌগটি পোলার।
- (গ) উদ্দীপক হতে, A ও D মৌল দুটি যথাক্রমে ক্যালসিয়াম (Ca) ও ফ্লোরিন (F)। কারণ Ca ও F এর পারমাণবিক সংখ্যা যথাক্রমে 20 ও

বসায়ৰ

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

9। Ca ও F দ্বারা গঠিত যৌগ হলো Ca F_2 । নিচে Ca F_2 এর বন্ধন গঠন প্রক্রিয়া চিত্রসহ নিচে বর্ণনা করা হলো-

Ca ও F এর ইলেক্ট্রন বিন্যাস নিয়ে পাই-

$$Ca(20) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

 $F(9) \rightarrow 1s^2 2s^2 2p^5$

ইলেকট্রন বিন্যাস থেকে দেখা যাচ্ছে যে, Ca এর সর্বশেষ স্তরে 2টি ইলেকট্রন ত্যাগ করে Ca তার নিকটবর্তী নিদ্রিয় গ্যাস আর্গনের (Ar) ইলেকট্রন বিন্যাস অর্জন করে এবং Ca^{2+} আয়নে পরিণত হয়।

$$Ca - 2e^- \longrightarrow Ca^{2+}$$

অপরদিকে, F এর শেষস্তরে 7টি ইলেকট্রন বিদ্যমান । Ca কর্তৃক ত্যাগকৃত ইলেকট্রন গ্রহণ করে নিকটবর্তী নিদ্ধিয় গ্যাস নিয়নের (Ne) ইলেকট্রন বিন্যাস অর্জন করে এবং F^- আয়নে পরিণত হয় । এভাবে দুটি F পরমাণু দুটি ইলেকট্রন গ্রহণ করে দুটি F^- আয়নে পরিণত হয় । এভাবে সৃষ্ট ক্যাটায়ন ও অ্যানায়নসমূহ পরস্পরের আকর্ষণে আয়নিক বন্ধনে আবদ্ধ হয়ে CaF_2 আয়নিক যৌগ গঠন করে । নিচে ডায়াগ্রামের সাহায্যেতা দেখানো হলো-

$$Ca - 2e^{-} \rightarrow Ca^{2+}$$

$$F_{2} + 2e^{-} \rightarrow 2F^{-}$$

$$Ca + F_{2} \rightarrow Ca^{2+} + 2F^{-} \rightarrow CaF_{2}$$

$$F_{2} \rightarrow Ca^{2+} + 2F^{-} \rightarrow CaF_{2}$$

চিত্র : CaF2 এর আয়নিক বন্ধন গঠন

(ঘ) উদ্দীপকের E ও G মৌলদ্বয় যথাক্রমে সিলিকন (Si) ও ক্লোরিন (Cl)। কারণ, Si ও Cl এর পারমাণবিক সংখ্যা 14 ও 17। Cl আয়নিক ও সমযোজী উভয় ধরনের যৌগ গঠন করলেও Si কেবল ও সমযোজী যৌগ গঠন করে। নিচে তা বিশ্লেষণ করা হলো:

জানা আছে, অণ্টক পূর্ণ করার মাধ্যমে মৌলের পরমাণুসমূহ স্থিতিশীলতা অর্জন করে। ধাতুসমূহের সর্বশেষ কক্ষপথে 1, 2 বা 3টি ইলেকট্রন বিদ্যমান এবং অধাতুসমূহের সর্বশেষ কক্ষপথে 4, 5, 6 বা 7টি ইলেকট্রন বিদ্যমান। Si ও C1 এর ইলেকট্রন বিন্যাস নিমুরূপ:

$$Si(14) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^2$$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$

দেখা যাচ্ছে যে, Si ও Cl এর সর্বশেষ যথাক্রমে কক্ষপথে 4টি ও 7টি ইলেকট্রন বিদ্যমান। তাই Si ও Cl উভয়ই অধাতু।

ধাতুর সাথে যুক্ত হওয়ার ক্ষেত্রে, ধাতু এর সর্বশেষ কক্ষপথের 1,2 বা 3টি ইলেকট্রন ত্যাগ করে ক্যাটায়নে পরিণত হয়। C1 পরমাণু 1টি ইলেকট্রন গ্রহণ করে এটি অস্টক পূর্ণ করবে এবং $C1^-$ আয়নে পরিণত হবে। এভাবে $C1^-$ আয়ন ক্যাটায়নের সাথে আয়নিক বন্ধনে আবদ্ধ হয়ে আয়নিক যৌগ উৎপন্ন করে। যেমন, C1 ও Na পরমাণুদ্ধয় আদান-প্রদানের মাধ্যমে ঘধস্টয আয়নিক যৌগ গঠন করে।

$$2Na - 2e^{-} \rightarrow 2Na^{+}$$

$$\underline{Cl_2 + 2e^{-} \rightarrow 2Cl^{-}}$$

 $2Na + Cl_2 \rightarrow 2NaCl$ [আয়নিক যৌগ]

আবার, Si পরমাণুর ইলেকট্রন গ্রহণ করে এর সর্বশেষ কক্ষপথে অষ্টক পূর্ণ করতে এটি ইলেকট্রন প্রয়োজন, যা ধাতু কর্তৃক ত্যাগ করা সম্ভব নয়। তাই Si ধাতুর সাথে যুক্ত হয়ে আয়নিক যৌগ গঠন করতে পারে না। অপরদিকে, অধাতুর সাথে যুক্ত হওয়ার ক্ষেত্রে, অধাতু (Si ও Cl) অপর কোনো অধাতুর সাথে বিক্রিয়ার মাধ্যমে যৌগ গঠন করে। তখন কোনো পরমাণুর পক্ষেই ইলেকট্রন ত্যাগ করা সম্ভব নয় তাই এরা প্রয়োজনীয় সংখ্যক ইলেকট্রন শেয়ারের মাধ্যমে অষ্টক পূর্ণ করবে। এভাবে সমযোজী বন্ধনে আবদ্ধ হয়ে সমযোজী যৌগ গঠন করবে।

যেমন, C1 পরমাণু H এর সাথে e^- শেয়ারের মাধ্যমে HC1 সমযোজী যৌগ গঠন করে এবং Si পরমাণু O এর সাথে e^- শেয়ারের মাধ্যমে SiO_2 সমযোজী যৌগ গঠন করে।

চিত্র: HCl অণুর গঠন (সমযোজী যৌগ)

চিত্র : SiO₂ অণুর গঠন (সমযোজী যৌগ)

উপরোক্ত আলোচনা থেক<mark>ে বলা যায়</mark> যে, Cl আয়নিক ও সমযোজী যৌগ গঠন করলেও Si শুধুমাত্র সমযোজী যৌগ গঠন করে।

৬২.

মৌল	পর্যায়	শ্রেণি
A	2	15
В	3	15
C	3	17

[A, B, C প্রচলিত প্রতীক নয়।]

[দিনাজপুর বোর্ড ২০২০]

- (ক) ব্যাপন কাকে বলে?
- (খ) Cl অপেক্ষা P এর তড়িৎ ঋণাত্মকতা কম ব্যাখ্যা করো।
- (গ) A₂ অণুর বন্ধন গঠন প্রক্রিয়া চিত্রসহ ব্যাখ্যা করো।
- (ঘ) BC_2 এবং BC_5 যৌগ গঠনে কোনটি অষ্টক নিয়ম মেনে চলে? বিশ্লেষণ করো।

৬৩ নং প্রশ্নের উত্তর

- (ক) কোনো মাধ্যমে কঠিন, তরল বা গ্যাসীয় বস্তুর স্বতঃস্ফূর্ত ও সমভাবে পরিব্যপ্ত হওয়ার প্রক্রিয়াকে ব্যাপন বলে।
- (খ) আমরা জানি, পর্যায় সারণির একই পর্যায়ে, বাম থেকে ডানে গেলে বহিঃস্তরে ইলেকট্রন সংখ্যা বৃদ্ধির ফলে কেন্দ্রের উপর বহিঃস্তরের আকর্ষণ বৃদ্ধি পায়। এতে পরমাণুর আকার ক্রমান্বয়ে ব্রাস পায় এবং তড়িৎ ঋণাত্মকতা বৃদ্ধি পায়। উদ্দীপকে উল্লেখিত P এর অবস্থান তৃতীয় পর্যায়ে Cl এর বামে। সুতরাং Cl এর বহিঃস্তরে ইলেকট্রন সংখ্যা P অপেক্ষা বেশি হওয়ার কারণে Cl অপেক্ষা P এর তড়িৎ ঋণাত্মকতা কম।
- (গ) উদ্দীপকে 'C' মৌলটি Ca এর 4 ঘর ডানে অবস্থিত এবং 'D' মৌলটি Zn এর 1 ঘ্যানিক বিন্যাস হলো :

 $Cr(24) = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^4$ [আউফবাউ নীতি অনুযায়ী ইলেকট্রন বিন্যাস]

বসায়ৰ

৫ম অধ্যায়

<u>বাসা</u>য়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

 $Cr(24)=1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^4\ 3d^2$ [প্রকৃত অস্থিতিশীল ইলেকট্রন বিন্যাস]

 $Cr(24) = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^5 \ 3d^1$ [প্রকৃত স্থিতিশীল ইলেকট্রন বিন্যাস]

d এর ইলেকট্রন ধারণ ক্ষমতা 10, অর্থাৎ $3d^{10}$ যেকোন অরবিটাল পূর্ণ (সম্পূর্ণ) বা অর্ধপূর্ণ থাকলে তার স্থিতিশীলতা বেশি হয়। d অরবিটালের $3d^5$ এবং $3d^{10}$ ইলেকট্রন বিন্যাসটি অধিক সুস্থিত এবং স্থিতিশীল। কিন্তু $3d^4$ অর্ধপূর্ণতা $3d^5$ অপেক্ষা ১টা ইলেকট্রন কম থাকায় তার স্থিতিশীলতা বিনষ্ট হয়। তাই স্থিতিশীলতা অর্জনের লক্ষে Cr এর $4s^2$ থেকে ১টা ইলেকট্রন $3d^4$ এ প্রবেশ করে $3d^5$ ইলেকট্রন বিন্যাস অর্জন করে স্থিতিশীল হয়। এ অরবিটলে কখনও 4টি ইলেকট্রন ধারণ করে না। এই কারণে Cr এর ইলেকট্রন বিন্যাসে নিয়মের ব্যতিক্রম পরিলক্ষিত হয়।

Cu এর ইলেক্ট্রন বিন্যাস হলো:

 $Cu~(29)=1s^2~2s^2~2p^6~3s^2~3p^6~4y^2~3d^9~$ [আউফবাউ নীতি অনুযায়ী ইলেকট্রন বিন্যাস]

 $Cu~(29)=1s^2~2s^2~2p^6~3s^2~3p^6~3d^9~4s^2$ [প্রকৃত অস্থিতিশীল ইলেকট্রন বিন্যাস]

 $Cu~(29)=1s^2~2s^2~2p^6~3s^2~3p^6~3d^{10}~4s^1$ [প্রকৃত স্থিতিশীল ইলেকট্রন বিন্যাস]

d এর ইলেকট্রন ধারণ ক্ষমতা 10, অর্থাৎ $3d^{10}$ যেকোন অরবিটাল পূর্ণ (সম্পূর্ণ) বা অর্ধপূর্ণ থাকলে তার স্থিতিশীলতা বেশি হয়। d অরবিটালের $3d^5$ এবং $3d^{10}$ ইলেকট্রন বিন্যাসটি অধিক সুস্থিত অর্থাৎ স্থিতিশীল। কিন্তু $3d^9$ পূর্ণতা $3d^{10}$ অপেক্ষা ১টা ইলেকট্রন কম থাকায় তার স্থিতিশীলতা বিনম্ভ হয়। তাই স্থিতিশীলতা অর্জনের লক্ষে Cu এ $4s^2$ থেকে ১টা ইলেকট্রন $3d^9$ এ প্রবেশ করে $3d^{10}$ ইলেকট্রন বিন্যাস অর্জন করে স্থিতিশীল হয়। এ অরবিটলে কখনও 4 বা 9 টি ইলেকট্রন ধারণ করে না। এই কারণে Cu এর ইলেকট্রন বিন্যাসে নিয়মের ব্যতিক্রম পরিলক্ষিত হয়।

(ঘ) উদ্দীপকে উল্লিখিত A মৌলের অবস্থান ৩য় পর্যায়ের গ্রুপ-17 এ অবস্থিত। কাজেই, পর্যায় সারণি অনুযায়ী মৌলটি ক্লোরিন (Cl)। আবার, শেষ স্তরের ইলেকট্রন বিন্যাস $4s^1$ অনুযায়ী B মৌলটি ৪র্থ পর্যায়ের গ্রুপ-1 এর মৌল পটাশিয়াম (K)। সুতরাং, A ও B মৌলদ্বয় যথাক্রমে ক্লোরিন (Cl) এবং পটাশিয়াম (K) এবং 'গ' হতে প্রাপ্ত C মৌলটি Cr। সুতরাং, উদ্দীপকে A, B ও C মৌলক্রয় যথাক্রমে Cl, K এবং Cr। আমরা জানি, গ্যাসীয় অবস্থায় 1 mol পরমাণু 1 mol ইলেকট্রন গ্রহণ করে 1 mol গ্যাসীয় আয়নে পরিণত হতে যে পরিমাণ শক্তি ত্যাগ করে তাকে ইলেকট্রন আসক্তি বলে।

নিম্নে ইলেকট্রন আসক্তির গ্রুপভিত্তিক ও পর্যায়ভিত্তিক সম্পর্ক ব্যাখ্যা করা হলো:

- গ্রুপভিত্তিক সম্পর্ক : একই গ্রুপের উপর থেকে নিচে পরমাণুতে একটি করে নতুন শক্তিস্তর সংযুক্ত হয়। ফলে সর্ববহিঃস্থ স্তরের ইলেকট্রনের উপর নিউক্লিয়াসের আকর্ষণ কমে যায়। এতে করে নিউক্লিয়াস কর্তৃক যোজ্যতা স্তরে নতুন ইলেকট্রন সংযুক্ত করা কষ্টসাধ্য হয় এবং পরমাণুর ইলেকট্রন আসক্তি ব্রাস পায়। অর্থাৎ, একই গ্রুপের উপর থেকে নিচে ইলেকট্রন আসক্তি ব্রাস পায়।
- ii. পর্যায়ভিত্তিক সম্পর্ক : একই পর্যায়ের বাম থেকে ডানে পরমাণুতে একটি করে নতুন ইলেকট্রন ও প্রোটন সংযুক্ত হয়। ফলে, যোজ্যতা স্তরের ইলেকট্রনের উপর প্রোটনের তথা নিউক্লিয়াসের আকর্ষণ বৃদ্ধি পায়। যেহেতু একই পর্যায়ের বাম থেকে ডানে পরমাণুতে নতুন কোনো শক্তিস্তর সংযুক্ত হয় না, তাই বাম থেকে ডানে পরমাণুর

আকার ব্রাস পায়। একই সাথে নিউক্লিয়াস কর্তৃক ইলেকট্রন আকর্ষণ সহজ হয় এবং ঋণাত্মক আয়ন গঠনের সময় বেশি শক্তি ত্যাগ করতে পারে। অর্থাৎ, একই পর্যায়ের বাম থেকে ডানে ইলেকট্রন আসক্তি বাড়ে।

উপরোক্ত তথ্য অনুসারে, Cl পর্যায় সারণিতে ৩য় পর্যায়ের গ্রুপ-17 এর অন্তর্ভুক্ত এবং K ও Cr ৪র্থ পর্যায়ের অন্তর্ভুক্ত মৌলসমূহ। যেহেতু, পর্যায়ের ক্ষেত্রে উপর থেকে নীচের দিকে পরমাণুর আকার, বৃদ্ধির ফলে ইলেকট্রন আসক্তি ব্রাস পায়। কাজেই, Cl এর তুলনায় K ও Cr এর ইলেকট্রন আসন্তি কম হবে।

অপরদিকে, K ও Cr ৪র্থ পর্যায়ের যথাক্রমে গ্রুপ-1 ও গ্রুপ-6 এর মৌল। আমরা জানি, একই পর্যায়ের বাম থেকে ডানে মৌলসমূহের পরমাণুর আকার কমার সাথে সাথে ইলেকট্রন আসক্তিও বাড়তে থাকে। ফলে K এর তুলনায় Cr এর ইলেকট্রন আসক্তি বেশি। নিম্নে মৌলসমূহের ইলেকট্রন আসক্তির ক্রম সম্বলিত ছক নিম্নে দেয়া হল:

মৌলের নাম	ইলেকট্রন আসক্তির মান (KJ/mol)
Cl	349
Cr	64.3
K	48.4

সুতরাং, উদ্দীপকে উলিখিত মৌলসমূহের ইলেকট্রন আসক্তির সঠিক ক্রম হল Cl>Cr>K।

৬৩. নিচে পর্যায় সারণির খন্ডিত অংশ দেওয়া হলো:

X	Mg	Al	Si	Y	S	Z	Ar
[এখানে X, Y ও Z প্রচ <mark>লিত কোনো মৌলের</mark> প্রতীক নয়।]							
[দিনাজপুর বোর্ড ২০২০]							

- (ক) গ্যালভানাইজিং কাকে <mark>বলে</mark>?
- (খ) $C_{10}H_8$ একটি উর্ধ্বপাতিত পদার্থ ব্যাখ্যা করো।
- (গ) $\, {
 m X} \,$ এবং $\, {
 m Z} \,$ এর মধ্যে <mark>কোন মৌলটির আ</mark>কার ছোট? ব্যাখ্যা করো।
- (ঘ) XZ এবং YZ₃ এ<mark>র মধ্যে কোনটি পানিতে দ্রবীভূত হবে? বিশ্লেষণ</mark> করো।

৬৪ নং প্রশ্নের উত্তর

- (ক) তড়িৎবিশ্লেষণের সময় একটি ধাতুর উপর জিঙ্ক (Zn) ধাতুর প্রলেপ দেওয়াকে গ্যালভানাইজিং বলে।
- (খ) যেসব পদার্থ তাপ প্রদানের ফলে কঠিন অবস্থা থেকে সরাসরি বাস্পে পরিণত হয় এবং শীতলীকরণের সময় বাস্প থেকে সরাসরি কঠিন অবস্থায় ফিরে আসে তাদেরকে উর্ধ্বপাতিত পদার্থ বলে। সাধারণ তাপমাত্রায় $C_{10}H_8$ তথা ন্যাপথলিন একটি কঠিন পদার্থ। তাপ প্রয়োগের ফলে এটি সরাসরি বাস্পে পরিণত হয়। আবার শীতলীকরণের সময় বাস্প থেকে সরাসরি কঠিন অবস্থায় ফিরে আসে। তাই $C_{10}H_8$ কে উর্ম্বপাতিত পদার্থ বলা হয়।
- (গ) উদ্দীপকের X ও Z মৌল দুটি হলো যথাক্রমে Na ও Cl। কারণ উদ্দীপকের পর্যায়টি ৩য় পর্যায়। X মৌলটি $_{12}Mg$ এর ঠিক বামে এবং Z মৌলটি ও Ar এর মাঝে অবস্থিত। অর্থাৎ, X মৌলটি $_{11}Na$ এবং Z মৌলটি $_{17}Cl$ । Na ও Cl এর মধ্যে Cl এর আকার ছোট। নিচে তা ব্যাখ্যা করা হলো-

জানা আছে, যে কোনো পর্যায়ের বাম হতে যতই ডান দিকে যাওয়া যায় মৌলসমূহের আকার আনুপাতিক হারে কমতে থাকে। অর্থাৎ ৩য় পর্যায়ে Na থেকে Cl এর দিকে অগ্রসর হলে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে আকার আনুপাতিক হারে কমতে থাকে। কারণ পারমাণবিক সংখ্যা বৃদ্ধির অর্থ নিউক্রিয়াসের ধনাত্মক আধানের পরিমাণের বৃদ্ধি। ফলে ইলেকট্রনসমূহ নিউক্রিয়াস কর্তৃক আরও জোরালোভাবে আকৃষ্ট হয়। ফলে

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

ব্যাসার্ধও কমতে থাকে। এক্ষেত্রে প্রদন্ত মৌলসমূহের মধ্যে তৃতীয় পর্যায়ে C1 এর অবস্থান Na এর ডানে। তাই C1 এর আকার Na অপেক্ষা ছোট। অর্থাৎ Na < C1।

(ঘ) উদ্দীপকের X, Y ও Z মৌল তিনটি হলো যথাক্রমে Na, P ও Cl । XZ ও YZ_3 যৌগ দুটি হলো NaCl ও PCl_3 । NaCl ও PCl_3 এর মধ্যে NaCl পানিতে দ্রবীভূত হবে কিন্তু PCl_3 পানিতে দ্রবীভূত হবে না । নিচে তা বিশ্লেষণ করা হলো :

NaCl যৌগটিতে ধনাত্মক ও ঋণাত্মক প্রান্ত বিদ্যমান।

পোলার দ্রাবক পানির ধনাত্মক ও ঋণাত্মক দুটি মেরু আছে। আয়নিক যৌগ পানিতে দ্রবীভূত করলে যৌগটির ধনাত্মক আয়ন পানির ঋণাত্মক মেরুর দিকে এবং যৌগের ঋণাত্মক আয়ন পানির ধনাত্মক মেরুর দিকে আবর্তিত হয়ে পারস্পরিক আকর্ষণ অনুভব করে। ফলে ল্যাটিসের আয়নসমূহের মধ্যকার কুলম্ব আকর্ষণ কমতে থাকে এবং আয়নগুলো দ্রাবক পানির অণু দ্বারা বেষ্টিত অবস্থায় ল্যাটিস হতে বিচ্ছিন্ন হয়ে দ্রাবকে দ্রবীভূত হয়।

নিচের চিত্রে পানিতে NaCl এর দ্রবণীয়তা দেখানো হলো-

চিত্র : পানিতে আয়নিক যৌগ NaCl এর দ্রবণীয়তা

পানির ডাইপোলগুলো Na^+ ও Cl^- আয়নগুলোকে ল্যাটিস হতে আকর্ষণ বল দ্বারা বিচ্ছিন্ন করে পরিবেষ্টিত অবস্থায় নিজের মধ্যে দ্রবীভূত করে। অপরদিকে PCl_3 হলো অপোলার সমযোজী যৌগ। অর্থাৎ PCl_3 এর ক্ষেত্রে ধনাত্মক ও ঋণাত্মক আয়নের সৃষ্টি হয় না। ফলে হাইডেশন শক্তি কেলাস ল্যাটিস ভাঙার শক্তির চেয়ে কম হয়। ফলে PCl_3 যৌগটি পোলার দ্রাবক পানিতে অদ্রবণীয় হয়।

₩8. Ä: ×B× Č

xx [A, B, C প্রচলিত মৌলের প্রতীক নয়, এদের প্রত্যেকের তিনটি স্তরে ইলেকট্রন বিদ্যমান।]

[চট্টগ্রাম বোর্ড ২০২০]

- (ক) স্ফুটনাঙ্ক কাকে বলে?
- (খ) তাপমাত্রার সাথে ব্যাপন হারের সম্পর্ক ব্যাখ্যা করো।
- (গ) A এবং B দ্বারা যৌগের বন্ধন গঠন ডায়াগ্রামের মাধ্যমে ব্যাখ্যা করো।
- (ঘ) B এবং C দ্বারা গঠিত যৌগ পানিতে দ্রবণীয় কি? উত্তরের সপক্ষে যুক্তি দাও।

৬৫ নং প্রশ্নের উত্তর

- (ক) স্বাভাবিক চাপে (1 atm) যে তাপমাত্রায় কোনো তরল পদার্থ গ্যাসীয় অবস্থা প্রাপ্ত হয় সে তাপমাত্রাকে উক্ত পদার্থের স্ফুটনাঙ্ক বলা হয়।
- (খ) কোনো মাধ্যমে কঠিন, তরল বা গ্যাসের কোনো জায়গা জুড়ে ছড়িয়ে পড়াকে ব্যাপন বলে। কোনো পদার্থের ব্যাপনের হার তার ভর ও আভঃআণবিক আকর্ষণ বলের উপর নির্ভরশীল। আভঃআণবিক আকর্ষণ কম হলে ব্যাপন দ্রুত হয় অর্থাৎ ব্যাপন হার বেশি হয়। তাপমাত্রা বাড়ালে বস্তুর আভঃকণা আকর্ষণ কমে যায় এবং ফলস্বরূপ ব্যাপন হার বেড়ে যায়।

(গ) উদ্দীপকের A এবং B মৌল দুটি হলো যথাক্রমে সালফার (S) ও ক্লোরিন (Cl)। কারণ এদের উভয়ের সর্বশেষ শক্তিস্তর হলো 3 এবং সালফারের সর্বশেষ শক্তিস্তরে 6টি ও ক্লোরিনের সর্বশেষ শক্তিস্তরে 7টি ইলেকট্রন বিদ্যমান। S ও Cl উভয়ই অধাতু। এদের দ্বারা গঠিত যৌগ হলো SCl_2 । নিচে SCl_2 এর বন্ধন গঠন ডায়াগ্রামের মাধ্যমে দেখানো হলো:

চিত্র : SCl2 এর গঠন প্রক্রিয়া

S ও Cl এর ইলেকট্রন বিন্যাস নিমুরূপ:

 $S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^4$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$

যেহেতু সালফারের সর্বশেষ শক্তিস্তরে 6টি ইলেকট্রন ও ক্লোরিনের সর্বশেষ শক্তিস্তরে 7টি ইলেকট্রন বিদ্যমান। সুতরাং অস্টক পূরণের জন্য সালফারের 2টি ইলেকট্রন এবং ক্লোরিনের 1টি ইলেকট্রন প্রয়োজন। সুতরাং সালফার 2টি ক্লোরিনের পরমাণুর প্রত্যেকের সাথে একটি করে মোট 2টি ইলেকট্রন শেয়ার করে। ইলেকট্রন শেয়ারের ফলে সালফার এবং প্রতিটি ক্লোরিন পরমাণুর অস্টক পূর্ণ হয়। এভাবে ইলেকট্রন শেয়ারের মাধ্যমে SCI2 সমযোজী যৌগ গঠিত হয়।

(ঘ) উদ্দীপকের C মৌল হলো ম্যাগনেসিয়াম (Mg)। কারণ এটির সর্বশেষ শক্তিস্তর 3 এবং শেষ শক্তিস্তরে 2টি ইলেকট্রন বিদ্যমান। গ হতে, B মৌল হলো Cl। এদের দ্বারা গঠিত যৌগ $MgCl_2$ ।

 $MgCl_2$ যৌগটি পানিতে দ্রবীভূত হওয়ার সময় Mg দুটি ইলেকট্রন ত্যাগ করে Mg^{2+} এবং Cl_2 দুটি ইলেকট্রন গ্রহণ করে $2Cl^-$ আয়নে পরিণত হয়। ফলে $MgCl_2$ এর Mg^{2+} আয়ন ও $2Cl^-$ আয়ন পানি অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে। Mg^{2+} ও Cl^- আয়নসমূহ পানিতে পুরোপুরি মুক্ত থাকে না। তারা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে। জলীয় দ্রবণে আয়নিক যৌগের ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইদ্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে $MgCl_2$ এর কেলাস- ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়।

চিত্র : MgCl2 এর পানিতে দ্রবণীয়তা

৬৫.

মৌল	যোজনী স্তরের ইলেকট্রন বিন্যাস	
A	$3s^2$	

বুসায়ৰ ৫ম অধ্যায়

<u>বাসাম্</u>লিক বন্ধল

Prepared by: SAJJAD HOSSAIN

В	$2s^2 2p^4$
С	$1s^2$
D	$2s^2 2p^3$

[ঢাকা বোর্ড ২০১৯]

- (ক) ধাতব বন্ধন কাকে বলে?
- (খ) "নাইট্রোজেন যোজনী ও যোজ্যতা ইলেকট্রন ভিন্ন" ব্যাখ্যা করো।
- (গ) A ও B দ্বারা গঠিত যৌগের এক গ্রামে পরমাণু সংখ্যা নির্ণয় করো।
- (ঘ) "C ও D দ্বারা গঠিত যৌগ সমযোজী হলেও এর জলীয় দ্রবণ তড়িৎ পরিবাহী" – বিশ্লেষণ করো।

৬৬ নং প্রশ্নের উত্তর

- (ক) ধাতব প্রমাণুসমূহ যে শক্তির বলে একটি অপরটির সাথে যুক্ত থাকে তাকে ধাতব বন্ধন বলে।
- (খ) নাইট্রোজেন পরমাণুর যোজনী ও যোজ্যতা ইলেকট্রন ভিন্ন হয়। এর কারণ যোজনী হলো কোনো মৌল অপর মৌলের সাথে যুক্ত হওয়ার ক্ষমতা। কিন্তু যোজ্যতা ইলেকট্রন হলো মৌলের বহিঃস্থস্তরের মোট ইলেকট্রন সংখ্যা।

N এর ইলেকট্রন বিন্যাস হচ্ছে, N(7) : $1s^2 2s^2 2p_x^{-1} 2p_y^{-1} 2p_z^{-1}$. N এর বহিঃস্থ স্তরে ৩টি অযুগা ইলেকট্রন রয়েছে।

ফলে নাইট্রোজেন মৌলটি একযোজী কোনো মৌলের তিনটি পরমাণুর সাথে যুক্ত হওয়ার ক্ষমতা রাখে। সংজ্ঞানুসারে, নাইট্রোজেনের যোজনী তিন। অপরদিকে নাইট্রোজেনের সর্বশেষ শক্তিস্তরে মোট 5টি ইলেকট্রন থাকায় এর যোজ্যতা ইলেকট্রন 5। সূতরাং, দেখা যাচ্ছে, N এর যোজনী 3 এবং যোজ্যতা ইলেকট্রন 5, যা ভিন্ন।

(গ) উদ্দীপকের A ও B মৌল দুটি যথাক্রমে ম্যাগনেসিয়াম ($_{12}Mg$) ও অক্সিজেন ($_8O$)। কেননা, A ও B এর পূর্ণ ইলেক্ট্রন বিন্যাস নিয়ে পাই, $A=1s^2\ 2s^2\ 2p^6\ 3s^2$; মোট ইলেক্ট্রন 12

 $B = 1s^2 2s^2 2p^4$; মোট ইলেকট্রন 8

A ও B মৌলদ্বয় দ্বারা গঠিত যৌগ MgO।

MgO যৌগের আণবিক ভর = 24 + 16 = 40

আবার MgO যৌগে পরমাণুর সংখ্যা = 2

সুতরাং,

40~g~MgO যৌগে পরমাণুর সংখ্যা = $2 \times 6.023 \times 10^{23}$ টি

$$Arr$$
 1g MgO যৌগে পরমাণুর সংখ্যা = $rac{2 imes 6.023 imes 10^{23}}{40}$ টি
$$= 3.02 imes 10^{22}$$
 টি

সুতরাং, A ও B দ্বারা গঠিত যৌগ MgO এক গ্রামে পরমাণুর সংখ্যা 3.02×10^{22} টি।

(ঘ) উদ্দীপকের C ও D মৌল দুটি যথাক্রমে হাইড্রোজেন (1H) ও ফ্লোরিন (9F)। কেননা C ও D এর পূর্ণ ইলেকট্রন বিন্যাস নিয়ে পাই,

 $C=1s^1$; ইলেকট্রন সংখ্যা 1টি

 $D = 1s^2 2s^2 2p^5$; ইলেক্ট্রন সংখ্যা 9।

সুতরাং C ও D মৌলদ্বয় দ্বারা গঠিত যৌগ HF। HF যৌগ সমযোজী হলেও এর জলীয় দ্রবণ তড়িংপরিবাহী। নিচে তা বিশ্লেষণ করা হলো-

HF যৌগটি সমযোজী হলেও H ও F এর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য (F(4.0)-H(2.1)=1.9] অনেক বেশি হয়। এ কারণে HF একটি পোলার সমযোজী যৌগ। পোলার HF যৌগ জলীয় দ্রবণে নিম্নরূপে বিয়োজিত হয়।

$$HF \xrightarrow{H_2O} H^{\delta^+}(aq) + F^{\delta^-}(aq)$$
 অর্থাৎ জলীয় দ্রবণে H পরমাণু 1 টি ইলেকট্রন দান করে H^+ এবং F পরমাণু 1 টি ইলেকট্রন গ্রহণ করে F^- আয়নে পরিণত হয়।

চিত্র : HF এর তড়িৎ পরিবাহিতা

তড়িৎ বিশ্লেষণকালে H^+ আয়ন ক্যাথোড দ্বারা এবং F^- আয়ন অ্যানোড দ্বারা আকৃষ্ট হয়ে H_2 ও F_2 গ্যাসে পরিণত হয়। যেহেতু জলীয় দ্রবণে HF যৌগে ইলেকট্রন স্থানান্তর হয়, সেহেতু HF এর জলীয় দ্রবণ তড়িৎ বা বিদ্যুৎ পরিবাহী।

সুতরাং উপরের আলোচনা থেকে বলা যায়, HF সমযোজী যৌগ হলেও জলীয় দ্রবণে তড়িৎ পরিবাহী।

৬৬. (i) 6P (ii) 19Q (iii) 17R [P, Q, R কোনো প্রচলিত প্রতীক নয়]

[যশোর বোর্ড ২০১৯]

- (ক) উর্ধ্বপাতন কী?
- (খ) অ্যালুমিনিয়াম বিদ্যুৎ সুপরিবাহী কেন?
- (গ) 'P' এবং 'R' মৌলদ্বয়ের মধ্যে বন্ধন গঠন প্রকিয়া ব্যাখ্যা করো।
- (ঘ) 'Q' এবং 'R' দারা গঠিত যৌগের পানিতে দ্রবীভূত হওয়ার কৌশল বিশ্লেষণ করো।

৬৭ নং প্রশ্নের উত্তর

- (ক) যে প্রক্রিয়ায় কোনো কঠি<mark>ন পদার্থকে তাপ প্র</mark>য়োগ করা হলে তা তরলে পরিণত না হয়ে সরাসরি বা<mark>ল্পে পরিণত হয় সেই প্রক্রিয়াকে উর্ধ্বপাতন বলে।</mark>
- (খ) অ্যালুমিনিয়াম বিদ্যুৎ সুপরি<mark>বা</mark>হী। এর কারণ অ্যালুমিনিয়ামের ক্ষটিকে মুক্তভাবে বিচরণশীল ইলেক্ট্রন বিদ্যমান। যেমন-

 $Al \rightarrow (1s^2\ 2s^2\ 2p^6\ 3s^1\ 3p_x^1\ 3p_y^1)$ এর সর্ববহিঃস্থ স্তরে $3l^2$ অযুণ্ম ইলেকট্রন থাকে, যা ত্যাগ করে আয়নে পরিণত হয়। এই ত্যাগকৃত ইলেকট্রনই ধাতব ক্ষটিকে মুক্তভাবে বিচরণ করে। এই ইলেক্ট্রনগুলোই মূলত বিদ্যুৎ পরিবহনের জন্য দায়ী। সঞ্চারণশীল এই ইলেক্ট্রন না থাকলে অ্যালুমিনিয়াম বিদ্যুৎ সুপরিবাহী হত না। অর্থাৎ সঞ্চারণশীল ইলেক্ট্রন থাকায় অ্যালুমিনিয়াম বিদ্যুৎ সুপরিবাহী।

(গ) উদ্দীপকের 6P ও 17R মৌলদ্বয় যথাক্রমে কার্বন (C) এবং ক্লোরিন (Cl); যেখানে মৌলদ্বয়ের পারমাণবিক সংখ্যা যথাক্রমে 6 ও 17। সুতরাং, C ও Cl মৌলদ্বয়ের সমন্বয়ে গঠিত যৌগ CCl4। CCl4 এর বন্ধন গঠন প্রক্রিয়া নিচে ব্যাখ্যা করা হলো-

কার্বন (C) ও ক্লোরিনের (Cl) ইলেক্ট্রন বিন্যাস নিমুরূপ-

$$*C(6) = 1s^2 2s^1 2p_x^1 2p_y^1 2p_z^1$$

$$Cl(17) = 1s^2 2s^1 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$$

ইলেকট্রন বিন্যাস থেকে দেখা যায়, C এর সর্বশেষ স্তরে 4টি এবং Cl এর সর্বশেষ স্তরে 1টি অযুগা ইলেকট্রন আছে। নিকটতম নিদ্ধিয় গ্যাস Ne এর কাঠামো অর্জনের জন্য কার্বন পরমাণু 4টি ক্লোরিনের একক বন্ধনের সাথে যুক্ত হয়। ক্লোরিন পরমাণুর যোজ্যতা স্তরের অযুগা ইলেকট্রনটি কার্বনের সাথে বন্ধন গঠনে অংশগ্রহণ করলে যোজ্যতা ভরে আরও তিনটি মুক্তজোড় ইলেকট্রন বিদ্যমান থাকে। তাই CCl4 যৌগে চারটি Cl পরমাণুর তিনটি করে মোট 12টি মুক্তজোড় ইলেকট্রন বিদ্যমান। কিন্তু কার্বন পরমাণুর যোজ্যতা স্তরের সবগুলো ইলেকট্রন বন্ধন গঠনে অংশ নেয় বলে এতে কোন মুক্তজোড় ইলেকট্রন নেই। এভাবে

বসায়ৰ

৫ম অধ্যায়

বাসা্যনিক বন্ধন

Prepared by: SAJJAD HOSSAIN

কার্বন ও ক্লোরিন পরমাণু ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন দ্বারা আবদ্ধ হয়ে CC14 সমযোজী যৌগ গঠন করে।

চিত্র : CCl4 এর গঠন

(ঘ) উদ্দীপকের $_{19}Q$ ও $_{17}R$ মৌল দুটি যথাক্রমে পটাসিয়াম (K) এবং ক্লোরিন (Cl); যেখানে 19 পারমাণবিক সংখ্যাবিশিষ্ট মৌলটি K এবং 17 পারমাণবিক সংখ্যার মৌলটি Cl এবং এদের দ্বারা গঠিত যৌগ KCl। নিচে KCl যৌগের পানিতে দ্রবীভূত হওয়ার কৌশল বিশ্লেষণ করা হলোঁ-

KC1 একটি আয়নিক যৌগ। সাধারণত আয়নিক যৌগগুলো পানিতে দ্রবীভূত হয়। আয়নিক KC1 যৌগকে পানিতে দ্রবীভূত করলে ধনাত্মক K^+ আয়ন ও ঋণাত্মক $C1^-$ আয়নে পরিণত হয়। ধনাত্মক K^+ আয়নকে ঘিরে পানির অণুর ঋণাত্মক অংশ অক্সিজেন থাকে এবং KC1 এর ঋণাত্মক অংশ $C1^-$ আয়নকে ঘিরে পানির অণুর ধনাত্মক অংশ হাইড্রোজেন থাকে। এভাবে KC1 অণুর ধনাত্মক ও ঋণাত্মক অংশ পানির অণু দ্বারা আকৃষ্ট হয়। ফলে ল্যাটিস শক্তি কমতে থাকে এবং হাইড্রোশেন শক্তি বাড়তে থাকে। ল্যাটিস অপেক্ষা হাইড্রেশন শক্তি বেশি হলেই KC1 পানিতে দ্রবীভূত হবে।

চিত্ৰ : KCl এর পানিতে দ্রবণীয়তা <mark>হওয়ার কৌশল</mark> এভাবে KCl যৌগটি পানিতে দ্রবীভূত হয়।

৬৭.

[কুমিল্লা বোর্ড ২০১৯]

- (ক) আইসোটোপ কাকে বলে?
- (খ) Mg ও Mg²⁺ এর আকার ভিন্ন হয় কেন?
- (গ) উদ্দীপকের পূর্ণ পর্যায়ের মৌলগুলোর আয়নিকরণ শক্তির ক্রমের ব্যাখ্যা দাও।
- (ঘ) Q মৌলটি, P- মৌলের সাথে দুই ধরনের যৌগ গঠনের কারণ বিশ্লেষণ করো।

৬৮ নং প্রশ্নের উত্তর

- (ক) যে সকল মৌলের পরমাণুসমূহের পারমাণবিক সংখ্যা বা প্রোটন সংখ্যা একই কিন্তু ভরসংখ্যা ভিন্ন তাদেরকে আইসোটোপ বলে।
- (খ) Mg ও Mg^{2+} এর আকার ভিন্ন। এর কারণ নিম্নরূপ- Mg ও Mg^{2+} এর ইলেকট্রন বিন্যাস নিয়ে পাই-

$$Mg(12) = 1s^2 2s^2 2p^6 3s^2$$

 $Mg^{2+}(12) = 1s^2 2s^2 2p^6$

ইলেক্ট্রন বিন্যাস থেকে দেখা যায়, ${
m Mg}$ এর ইলেক্ট্রন বিন্যাস তিনটি স্তরে কিন্তু ${
m Mg}^{2+}$ এর ইলেক্ট্রন বিন্যাস দুইটি স্তরে বিন্যস্ত, যদিও তাদের প্রোটন সংখ্যা একই। জানা আছে, ইলেক্ট্রন বিন্যাসে শক্তিস্তরে যত বৃদ্ধি পায় সে মৌলের আকার তত বৃদ্ধি পায়। এ কারণে Mg এর আকার Mg^{2^+} অপেক্ষা বড় অর্থাৎ Mg ও Mg^{2^+} এর আকার ভিন্ন হয়।

(গ) উদ্দীপক প্রদত্ত পূর্ণ ৩য় পর্যায়টির মৌলগুলো নিয়ে পাই,

গ্রুপ \downarrow	1	2	13	14	15	16	17	18
পর্যায়	Na	Mg	Al	Si	P	S	Cl	Ar
\rightarrow	less.							

জানা আছে, পর্যায় সারণির একই পর্যায়ে যত বাম থেকে ডানে যাওয়া যায় মৌলের পারমাণবিক আকার হ্রাস পাওয়ায় আয়নিকরণ শক্তির মান বৃদ্ধি পায়। তবে তৃতীয় পর্যায়ের মৌল (Al ও S) এর ক্ষেত্রে ব্যতিক্রম পরিলক্ষিত হয়। এর কারণ মৌল দুটির ইলেক্ট্রনীয় গঠনের ভিত্তিতে নিম্নরূপে ব্যাখ্যা করা যায়।

Al ও Mg মৌলের ক্ষেত্রে : Al ও Mg এর ইলেক্ট্রন বিন্যাস ও আয়নীকরণ শক্তি নিমুরূপ :

 $Mg(12) \rightarrow 1s^2 2s^2 2p^6 3s^2$; IP = 737.7 kJ/mol

 $Al(13) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^1 : lP = 577.6 \text{ kJ/mol}$

Mg পরমাণুর 3s অরবিটাল যুগলবন্ধ হয়ে পূর্ণ থাকায় এ ইলেন্ট্রন অপসারণ করতে যথেষ্ট শক্তির প্রয়োজন হয়। কিন্তু Al পরমাণুর বহিঃস্তরে অপূর্ণ $3p^l$ অরবিটাল থেকে ইলেন্ট্রনটি সরাতে কিছুটা কম শক্তির প্রয়োজন হয়। এ কারণে Mg অপেক্ষা Al এর প্রথম আয়নীকরণ শক্তি কম হয়।

P ও S মৌলের ক্ষেত্রে: P ও S মৌলের পরমাণুর ইলেকট্রন বিন্যাস ও আয়নীকরণ শক্তি নিমুরূপ:

 $P(15) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1$; IP = 1011.8 kJ/mol

 $S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 2p_y^1 3p_z^1 ; lP = 999.6$ kJ/mol

এক্ষেত্রে P পরমাণুর বহিঃস্থ স্তর 3টি অর্ধপূর্ণ p অরবিটালে 3টি ইলেকট্রন সুষমভাবে বিন্যস্ত । এ সুস্থিত বিন্যাস্থ হতে একটি ইলেকট্রন সরাতে যথেষ্ট শক্তির প্রয়োজন হয় । অন্যদিকে S এর বহিঃস্থ আংশিক পূর্ণ p অরবিটাল হতে একটি ইলেকট্রন অপসারণ সহজতর । এ কারণেই S এর আয়নিকরণ শক্তি P অপেক্ষা কম হয় ।

সুতরাং, ৩য় পর্যায়ের মৌলগুলোর আয়নিকরণ শক্তির ক্রম-

(ঘ) উদ্দীপক অনুসারে, Q ও P মৌল দুটি যথাক্রমে ফসফরাস ($_{15}P$) ও ক্লোরিন ($_{17}C$)। P ও Cl দুই ধরনের যৌগ PCl_3 ও PCl_5 গঠন করে। নিচে এর কারণ বিশ্লেষণ করা হলো-

সমযোজী বন্ধনে আবদ্ধ অধাতব মৌলের পরমাণু দুটির তড়িং ঋণাত্মকতার পার্থক্য 0.5 অপেক্ষা বেশি হলে সংশ্লিষ্ট অণুটি পোলার হবে। HF একটি সমযোজী যৌগ। HF এর ক্ষেত্রে H ও F এর তড়িং ঋণাত্মকতার পার্থক্য (4-2.1)=1.9। যেহেতু HF অণুতে পরমাণুসমূহের তড়িং ঋণাত্মকতার মান 0.5 অপেক্ষা বেশি, সেহেতু HF পোলার অণু। অপরদিকে H_2O হলো একটি পোলার দ্রাবক। জানা আছে, পোলার অণুসমূহ পোলার দ্রাবকে দ্রবীভূত হয়। এ কারণে HF সমযোজী যৌগ হওয়া সত্ত্বেও পোলার দ্রাবক পানিতে দ্রবীভূত হয়।

চিত্ৰ : পানি অণু সংযোজিত H^+ ও F^-

বসামূল

৫ম অধ্যায়

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

আবার, LiF হলো আয়নিক যৌগ। আয়নিক যৌগ পানিতে দ্রবণীয়। বিগলিত অবস্থায় আয়নিক যৌগ LiF এ ধনাত্মক প্রান্ত হলো Li^+ এবং ঋণাত্মক প্রান্ত হলো F^- । অপরদিকে পানির অণুর দুইপ্রান্তে দুটি মেরু থাকে। ফলে LiF কে পানিতে দ্রবীভূত করার সময় ধনাত্মক প্রান্ত Li^+ পানির ঋণাত্মক প্রান্ত ঘারা আকর্ষিত হয় এবং ঋণাত্মক প্রান্ত ব্যান্ত হয়। এভাবে LiF পানিতে দ্রবীভূত হয়।

চিত্র: পানি অণু সংযোজিত Li⁺ ও F⁻ আয়ন

বিদ্র: LiF আয়নিক যৌগ হলেও পানিতে সামান্য দ্রবণীয়। কারণ F এর আকার ছোট হওয়ায় তা Li এর সাথে শক্তিশালী বন্ধন তৈরি করে। ফলে ল্যাটিস শক্তি অনেক বেশি হয়। আবার ল্যাটিস শক্তি ও হাইড্রেশন শক্তির পার্থক্য খুবই কম হয়। এজন্য LiF পানিতে সামান্য দ্রবণীয়।

৬৮. M, D ও E যথাক্রমে পর্যায় সারণির তৃতীয় পর্যায়ের তিনটি <mark>মৌল</mark> যাদের যোজ্যতা ইলেকট্রন যথাক্রমে 2, 5 ও 7।

[সিলেট বোর্ড ২০১৯]

- (ক) অ্যানায়ন কাকে বলে?
- (খ) SO_4^{2-} একটি যৌগমূলক ব্যাখ্যা করো।
- (গ) DE3 অণুর বন্ধন গঠন প্রক্রিয়া ব্যাখ্যা করো।
- (ঘ) ME_2 ও DE_5 যৌগ দুটির মধ্যে একটি পোলার দ্রাবকে অদ্রবণীয় বিশ্লেষণ করো।

৬৯ নং প্রশ্নের উত্তর

- ক) ঋণাত্মক আধানবিশিষ্ট অধাতব পরমাণু বা যৌগমূলককে অ্যানায়ন বলে।
- (খ) SO_4^{2-} কে যৌগমূলক বলা হয়। কারণ SO_4^{2-} মূলকটি এ<mark>কা</mark>ধিক পরমাণুর সমন্বয়ে গঠিত, রাসায়নিক বিক্রিয়ায় একটিমাত্র পরমাণুর ন্যায় আচরণ করে এবং বিক্রিয়া শেষে অপরিবর্তিত থাকে। যেমন-

 $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2(g)$

বিক্রিয়া থেকে দেখা যায়, বিক্রিয়ক ও উৎপাদে ${
m SO}_4^{2-}$ এর কোনো পরিবর্তন হয়নি। সুতরাং ${
m SO}_4^{2-}$ একটি যৌগমূলক।

(গ) উদ্দীপকের D ও E মৌল দুটি তৃতীয় পর্যায়ের মৌল; যাদের ইলেকট্রন বিন্যাস নিম্নরূপ:

 $D o 1 s^2 \, 2 s^2 \, 2 p^6 \, 3 s^2 \, 3 p^3;$ যোজ্যতা ইলেকট্রন 5

 $E \to 1s^2 2s^2 2p^6 3s^2 3p^5$; যোজ্যতা ইলেকট্রন 7

দেখা যাচ্ছে যে, \hat{D} ও \hat{E} মৌলের পারমাণবিক সংখ্যা 15 ও 17; যা যথাক্রমে ফসফরাস (P) ও ক্লোরিন (Cl) মৌলের পারমাণবিক সংখা। সুতরাং, DE_3 যৌগ হলো PCl_3 । নিচে PCl_3 অণুর বন্ধন গঠন প্রক্রিয়া ব্যাখ্যা করা হলো।

ফসফরাস ও ক্লোরিনের ইলেকট্রন বিন্যাস নিমুরূপ:

 $P(15) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_z^1 3p_y^1 3p_z^1$

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$

ইলেক্ট্রন বিন্যাস থেকে দেখা যাচ্ছে যে, P এর সর্ববহিঃস্থ স্তরে 3 টি বিজোড় ইলেক্ট্রন রয়েছে। অন্যদিকে Cl এর সর্ববহিঃস্থ স্তরে 1 টি বিজোড় ইলেক্ট্রন আছে। এখন, একটি ফসফরাস পরমাণু 3টি ক্লোরিন পরমাণুর সাথে 1টি করে ইলেক্ট্রন শেয়ারের মাধ্যমে যৌগ গঠন করলে দেখা যায় উভয়ের সর্বশেষ কক্ষপথে 8টি ইলেক্ট্রন অর্জিত হয়ে নিকটস্থ নিক্রিয় গ্যাস আর্গনের কাঠামো অর্জন করে। অর্থাৎ সমযোজী বন্ধনের

মাধ্যমে ইলেকট্রন শেয়ার করে এভাবে PCl_3 অণু গঠিত হয়। নিচে PCl_3 অণুর গঠন ডায়াগ্রাম দেখানো হলো :

চিত্র : PCl3 অণুর গঠন

(ঘ) উদ্দীপকের M, D ও E মৌল তিনটি তৃতীয় পর্যায়ের মৌল. যাদের যোজ্যতান্তরে ইলেকট্রন সংখ্যা যথাক্রমে 2, 5 ও 7। অর্থাৎ এদের পারমাণবিক সংখ্যা $12,\ 15$ ও 17 যা হলো ম্যাগনেসিয়াম (Mg),ফসফরাস (P) ও ক্লোরিন (Cl) এর পারমাণবিক সংখ্যা। সুতরাং, ME2 যৌগটি হলো MgCl_2 এবং DE_5 যৌগটি হলো PCl_5 । আয়নিক যৌগ MgCl₂ পোলার দ্রাবক H₂O-তে দ্রবণীয় কিন্তু সমযোজী যৌগ PCl₅ <mark>অদ্রবণীয়। কারণ, পোলার দ্রাবক পানির অণুর দুই প্রান্তে দুটি মে</mark>রু <mark>থাকে। আয়নিক যৌগ ${
m MgCl}_2$ এর কেলাসকে দ্রবীভূত করার সময়</mark> পানির ঋণাত্মক মেরু \mathbf{MgCl}_2 এর ধনাত্মক আয়নের দিকে এবং পানির ধনাত্মক মেরু ${f MgCl}_2$ এর <mark>ঋণাত্মক মে</mark>রুর দিকে আবর্তিত হয়। ফলে $m MgCl_2$ এর $m Mg^{2^+}$ ও $m Cl^-$ আয়নসমূহ পানির অণু দ্বারা আকর্ষিত হয় এবং কেলাস ল্যাটিস থেকে ক্রমশ দ্রবণে চলে আসে। ${
m Mg}^{2^+}$ ও ${
m Cl}^-$ আয়নসমূহ দ্রবণে পুরোপু<mark>রি মুক্ত থাকে না। তা</mark>রা দ্রাবক পানি অণুর সাথে সংযোজিত থাকে। ধনা<mark>ত্মক ও ঋণাত্মক আ</mark>য়নের সাথে পানি অণুর সংযোজনের সময় নির্গত <mark>শ</mark>ক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে MgCl₂ এর <mark>কেলাস ল্যাটি</mark>স থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত থাকে।

চিত্ৰ : পানি অণু সংযোজিত Mg^{2+} ও Cl^- আয়ন

অপরদিকে, PCl_5 এর ক্ষেত্রে সমযোজী যৌগ হওয়ায় ধনাত্মক ও ঋণাত্মক আয়নের সৃষ্টি হয় না। ফলে হাইড্রেশন শক্তি কেলাস ল্যাটিস ভাঙার শক্তির চেয়ে কম হয়। ফলে PCl_5 যৌগটি পোলার দ্রাবক পানিতে অদবণীয় হয়।

৬৯. স্বচ্ছ সিলিন্ডারে মিথাইল ক্লোরাইড ও ক্লোরিন গ্যাসের মিশ্রণ মৃদু সূর্যালোকের উপস্থিতিতে একাধিক জৈব যৌগ উৎপন্ন হয়। সিলিন্ডারটি ছিদ্র করলে গ্যাসগুলো পর্যায়ক্রমে বের হয়।

[সিলেট বোর্ড ২০১৯]

- (ক) প্রতিস্থাপন বিক্রিয়া কাকে বলে?
- (খ) বিউটেন একটি প্যারাফিন ব্যাখ্যা করো।
- (গ) সর্বপ্রথম বের হয়ে যাওয়া উৎপাদ গ্যাসটির শতকরা সংযুতি নির্ণয় করো।
- (घ) সর্বশেষ বের হয়ে যাওয়া গ্যাসটি পানিতে দ্রবণীয় কিনা বিশ্লেষণ করো।

৭০ নং প্রশ্নের উত্তর

(ক) যে বিক্রিয়ায় অধিক সক্রিয় মৌল বা যৌগমূলক অপর কোনো কম সক্রিয় মৌল বা যৌগমূলককে প্রতিস্থাপন করে নতুন যৌগ উৎপন্ন করে তাকে প্রতিস্থাপন বিক্রিয়া বলা হয়।

৫ম অধ্যায়

বুসায়ুৰ

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

- (খ) বিউটেন একটি প্যারাফিন। কারণ বিউটেন এ কার্বন-কার্বন ও কার্বন-হাইড্রোজেন বন্ধনসমূহ অত্যন্ত শক্তিশালী হওয়ায় বিউটেন সাধারণত রাসায়নিকভাবে নিষ্ক্রিয় হয়। ফলে এটি সাধারণত তীব এসিড, ক্ষারক ও জারক বা বিজারক পদার্থের সাথে বিক্রিয়া করে না।। আবার প্যারাফিন ল্যাটিন শব্দ যার অর্থ নিষ্ক্রিয় বা আকর্ষণ নেই। তাই বিউটেনকে প্যারাফিন
- (গ) উদ্দীপকের সংশ্লিষ্ট বিক্রিয়া নিমুরূপ:

$$\mathrm{CH_2Cl_2} + \mathrm{Cl_2} \xrightarrow{h\upsilon} \mathrm{CHCl_3(g)} + \mathrm{HCl}$$
 ট্রাইক্লোরো মিথেন

বিক্রিয়া থেকে দেখা যায় যে, সর্বপ্রথম বের হওয়া উৎপাদ গ্যাসটি হলো ডাইক্লোরোমিথেন (CH2Cl2)। নিচে CH2Cl2 গ্যাসটির শতকরা সংযুতি নির্ণয় করা হলো:

এখানে, CH2Cl2 এর আণবিক ভর

$$= (1 \times 12) + (1 \times 2) + (35.5 \times 2)$$

= 12 + 2 + 71 = 85

সুতরাং $\mathrm{CH_2Cl_2}$ যৌগে C এর শতকরা পরিমাণ $=\frac{12}{85} imes 100\% =$

14.12%

H এর শতকরা পরিমাণ =
$$\frac{2}{85} \times 100\%$$

= 2.35%
Cl এর শতকরা পরিমাণ = $\frac{71}{85} \times 100\%$
= 83.53%

(ঘ) উদ্দীপকের 'গ' থেকে সর্বশেষ বের হওয়া গ্যাসটি হলো টেট্রাক্লোরোমিথেন (CCl₄), বা কার্বন টেট্রাক্লোরাইড। C এবং Cl এর ইলেকট্রন বিন্যাস নিয়ে পাই,

$$_{6}C \rightarrow 1s^{2} 2s^{2} 2p^{2} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$$

 $_{17}C1 \rightarrow 1s^{2} 2s^{2} 2p^{6}3s^{2} 3p_{x}^{2} 3p_{y}^{2} 3p_{z}^{1} 3d^{0}$

ইলেকট্রন বিন্যাস থেকে দেখা যায়, C পরমাণুর ফাঁকা d অরবিটাল না থাকায় পানি (H_2O) অণুর সাথে C এর কোনো সন্নিবেশ বন্ধন গঠন করা সম্ভব হয় না। অর্থাৎ পানিতে দ্রবীভূত বা, আর্দ্র বিশেষিত হয় না। আবার CCl₄ হলো একটি সমযোজী যৌগ। CCl₄ যৌগে একটি কার্বন (C) পরমাণু চারটি Cl পরমাণুর সাথে ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী যৌগ CCl_4 গঠন করে। পানি একটি পোলার দ্রাবক অর্থাৎ পানির অণুতে ধনাতাক ও ঋণাতাক প্রান্ত রয়েছে। CCl4 একটি বিশুদ্ধ সমযোজী যৌগ হওয়ায় এর কোনো ধরনের পোলারিটির সৃষ্টি হয় না। তাই CCl_4 যৌগ পোলার পানির অণু দ্বারা আকর্ষিত হয় না। ফলে CCl₄ পানিতে দ্রবীভূত হতে পারে না। অর্থাৎ, উদ্দীপক প্রদত্ত সর্বশেষ বের হওয়া গ্যাসটি তথা CCl₄ যৌগটি পানিতে অদ্রবণীয়।

- ৭০. (i) $NH_3 + HCl \rightarrow Q$ (উদ্ধায়ী পদার্থ)
 - (ii) $CHCl_3 + Cl_2 \xrightarrow{h\upsilon} CCl_4 + HCl$

[বরিশাল বোর্ড ২০১৯]

- (ক) নিঃসরণ কাকে বলে?
- (খ) অ্যারোসেল বোতলে কোন সাংকেতিক চিহ্ন ব্যবহার হয়? ব্যাখ্যা করো।

- (গ) উদ্দীপকের Q যৌগের তাপ প্রদানের বক্ররেখা চিত্রসহ ব্যাখ্যা
- (ঘ) উদ্দীপকের ii নং বিক্রিয়ার উৎপাদ যৌগদ্বয় পানিতে দ্রবণীয় কী? যুক্তিসহ বিশ্লেষণ করো।

৭১ নং প্রশ্নের উত্তর

- (ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিমুচাপ অঞ্চলে সজোরে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- (খ) অ্যারোসল দাহ্য (Flammable) পদার্থ, যা তাপ বা আগুনের সংস্পর্শে সহজেই আগুন ধরে যেতে পারে। এই জন্য অ্যারোসল বোতলের গায়ে আগুনের শিখা সংবলিত সাংকেতিক চিহ্ন ব্যবহার করা হয়। দাহ্য পদার্থের

<mark>সাংকেতিক চিহ্নটি হলো</mark>-

(গ) উদ্দীপকের (i) নং বিক্রিয়া নিমুরূপ-

বিক্রিয়া থেকে Q যৌগ হলো অ্যামোনিয়াম ক্লোরাইড (NH4Cl) যা উদ্বায়ী। নিচে NH4Cl এর <mark>তাপ প্র</mark>দানের বক্ররেখা চিত্রসহ ব্যাখ্যা করা হলো- NH4Cl একটি উদ্বায়ী পদার্থ বলে একে তাপ প্রয়োগ করলে সরাসরি কঠি<mark>ন থেকে বাল্পে পরিণত হয়ে</mark> যায়। এখানে তরল অংশটি থাকবে না। ফলে বক্ররেখার<mark>ও পরিবর্তন ঘট</mark>বে। নিচে NH4Cl এর তাপ প্রদানের বক্ররেখাটি হলো-

উপরিউক্ত চিত্রে.

 ${f A}-{f B}$ বরাবর শুধু কঠিন ${f NH_4Cl}$ বিদ্যমান।

B-C বরাবর কঠিন ও বাঙ্পীয় NH_4Cl বিদ্যমান।

C-D বরাবর শুধু বাঙ্গীয় NH_4C বিদ্যমান।

ঘ উদ্দীপকের (ii) নং বিক্রিয়া হলো-

$$CHCl_3 + Cl_2 \xrightarrow{h\gamma} CCl_4 + HCl$$

বিক্রিয়াটিতে উৎপাদ যৌগদ্বয় হলো CCl4 ও HCl। এদের মধ্যে HCl পানিতে দ্রবণীয় কিন্তু CCl4 পানিতে অদ্রবণীয়। নিচে যুক্তিসহ তা বিশ্লে-ষণ করা হলো-

Cl প্রমাণুর তড়িৎ ঋণাত্মকতা (3.0), H প্রমাণুর তড়িৎ ঋণাত্মকতার (2.1) তুলনায় অধিক হওয়ায় H-Cl বন্ধনে শেয়ারকৃত ইলেক্ট্রন জোড় Cl প্রমাণু দ্বারা অধিক আকৃষ্ট হয়। ফলে Cl প্রমাণু আংশিক <mark>ঋণাত্মক চার্জপ্রাপ্ত হয় এবং H পরমাণু আংশিক ধনাত্মক চার্জপ্রাপ্ত হয়।</mark> $H^{\delta+} - Cl^{\delta-}$

এভাবে সৃষ্ট ধনাত্মক মেরু (H^{δ_+}) পানির ঋণাত্মক প্রান্ত (OH^-) দ্বারা আকৃষ্ট হয় এবং ঋণাত্মক মেরু $(Cl^{\delta-})$ পানির ধনাত্মক মেরু (H^+) দ্বারা আকৃষ্ট হয়। ফলে HCl পানিতে তীব্ৰ দ্ৰবণীয়তা দেখায়।

অপরদিকে, সমযোজী যৌগ CCl4 এর এরূপ কোনো বিপরীত চার্জবিশিষ্ট মেরু বা প্রান্ত সৃষ্টি না হওয়ায় তা পোলার দ্রাবক $m H_2O$ তে দ্রবণীয় নয়।

٩۵.

মৌল	A	В	С	D
পারমাণবিক সংখ্যা	6	9	11	17

[এখানে A, B, C, D প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়।]

বসায়ৰ

৫ম অধ্যায়

বাসামূলিক বন্ধল

Prepared by: SAJJAD HOSSAIN

[দিনাজপুর বোর্ড ২০১৯]

- (ক) যৌগমূলক কাকে বলে?
- (খ) অক্সিজেনের যোজনী ও যোজ্যতা ইলেকট্রন একই নয় কেন?
- (গ) উদ্দীপকে A ও B মৌলদ্বয়ের বন্ধন গঠন প্রক্রিয়ার চিত্রসহ বর্ণনা দাও।
- (ঘ) B এবং C এর সমন্বয়ে গঠিত যৌগ পানিতে দ্রবণীয় হলেও A এবং D এর সমন্বয়ে গঠিত যৌগ পানিতে অদ্রবণীয় বিশ্লেষণ করো।

৭১ নং প্রশ্নের উত্তর

- (ক) একাধিক মৌলের একাধিক পরমাণুর সমন্বয়ে গঠিত একটি পরমাণুগুচ্ছ যা একটি আয়নের ন্যায় আচরণ করে এবং বিক্রিয়া শেষে অপরিবর্তিত থাকে সেসব পরমাণুগুচ্ছকে যৌগমূলক বলে।
- (খ) কোনো অধাতব মৌলের সর্বশেষ কক্ষপথে বিজোড় ইলেকট্রন সংখ্যাকে ঐ মৌলের যোজনী বলে। অক্সিজেনের ইলেকট্রন বিন্যাস নিয়ে পাই-

 $O(8) \rightarrow 1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$

অক্সিজেন হলো একটি অধাতু এবং এর শেষ কক্ষপথে বিজোড় ইলেকট্রন সংখ্যা 2। সুতরাং অক্সিজেনের যোজনী 2। আবার, কোনো মৌলের সর্বশেষ প্রধান শক্তিস্তরের মোট ইলেকট্রন সংখ্যাকে সেই মৌলের যোজ্যতা ইলেকট্রন বলে। ইলেকট্রন বিন্যাস হতে দেখা যায় যে, অক্সিজেনের সর্বশেষ প্রধান শক্তিস্তরে ইলেকট্রন সংখ্যা হলো (2+4)=6টি। অর্থাৎ যোজ্যতা ইলেকট্রন 6। সুতরাং অক্সিজেনের যোজনী ও যোজ্যতা ইলেকট্রন এক নয়।

- (গ) উদ্দীপকের A ও D মৌলদ্বয়ের পারমাণবিক সংখ্যা 6 ও 17 যা যথাক্রমে কার্বন (C) ও ক্লোরিন (Cl) এর পারমাণবিক সংখ্যাকে নির্দেশ করে। কার্বন (C) ও ক্লোরিন (Cl) মৌলদ্বয় দ্বারা গঠিত সমযোজী যৌগ হলো কার্বন ট্ট্রোক্লোরাইড (CCl₄)। নিচে CCl₄ এর বন্ধন গঠন প্রক্রিয়া চিত্রসহ বর্ণনা করা হলো:
 - জানা আছে, যে কোনো পর্যায়ের বাম হতে যতই ডান দিকে যাওয়া যায় মৌলসমূহের আকার আনুপাতিক হারে কমতে থাকে। অর্থাৎ ৩য় পর্যায়ে Na থেকে Cl এর দিকে অগ্রসর হলে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে আকার আনুপাতিক হারে কমতে থাকে। কারণ পারমাণবিক সংখ্যা বৃদ্ধির অর্থ নিউক্লিয়াসের ধনাত্মক আধানের পরিমাণের বৃদ্ধি। ফলে ইলেকট্রনসমূহ নিউক্লিয়াস কর্তৃক আরও জোরালোভাবে আকৃষ্ট হয়। ফলে ব্যাসার্ধও কমতে থাকে। এক্ষেত্রে প্রদন্ত মৌলসমূহের মধ্যে তৃতীয় পর্যায়ে Cl এর অবস্থান Na এর ডানে। তাই Cl এর আকার Na অপেক্ষা ছোট। অর্থাৎ Na < Cl।
- (ঘ) উদ্দীপকের B ও C মৌলদ্বয়ের পারমাণবিক সংখ্যা 9 ও 11, যা যথাক্রমে ফ্রোরিন (F) ও সোডিয়ামের (Na) পারমাণবিক সংখ্যা। Na ও F দ্বারা গঠিত আয়নিক যৌগ NaF। আবার উদ্দীপকের 'গ' হতে A ও D দ্বারা গঠিত সময়োজী যৌগ CCl4।

NaF ও CC14 এর মধ্যে NaF পানিতে দ্রবণীয় কিন্তু CC14 পানিতে অদুবণীয়, নিচে তা বিশ্লেষণ করা হলো:

সাধারণত আয়নিক যৌগগুলো পানিতে দ্রবীভূত হয়। আয়নিক যৌগগুলো পানিতে দ্রবীভূত করলে ধনাত্মক আয়ন পানির ঋণাত্মক মেরুর দিকে এবং যৌগের ঋণাত্মক আয়ন পানির ধনাত্মক মেরুর দিকে আবর্তিত হয়ে পারস্পরিক আকর্ষণ অনুভব করে। ফলে ল্যাটিসের আয়নসমূহের মধ্যকার কুলম্ব আকর্ষণ কমতে থাকে এবং আয়নগুলো দ্রাবক পানির অণু দ্বারা বেষ্টিত অবস্থায় ল্যাটিস হতে বিচ্ছিন্ন হয়ে দ্রাবকে দ্রবীভূত হয়। নিচের চিত্রে NaF এর দ্রবণীয়তা দেখানো হলো-

চিত্র : NaF এর পানিতে দ্রবণীয়তা

NaF এর ধনাত্মক Na^+ আয়ন পানির ঋণাত্মক মের OH^- দারা এবং NaF এর ঋণাত্মক F^- আয়ন পানির ধনাত্মক মের H^+ দারা পরিবেষ্টিত হয়। ধনাত্মক ও ঋণাত্মক আয়নের সাথে পানি অণুর সংযোগের সময় নির্গত শক্তিকে হাইড্রেশন শক্তি বলে। এ নির্গত তাপশক্তির প্রভাবে NaF এর কেলাস ল্যাটিস থেকে আয়নগুলো পৃথক হয়ে পানিতে দ্রবীভূত হয়। অপরদিকে CCl_4 এর ক্ষেত্রে সমযোজী যৌগ হওয়ায় ধনাত্মক ও ঋণাত্মক আয়নের সৃষ্টি হয় না। ফলে হাইড্রেশন শক্তি কেলাস ল্যাটিস ভাঙার শক্তির চেয়ে কম হয়। ফলে CCl_4 পানিতে অদুবণীয় হয়।

৭২. নিচের তথ্যগুলো লক্ষ কর এবং সংশ্লিষ্ট প্রশ্নগুলোর উত্তর দাও:

মৌল	পর্যায়	গ্রহপ
A	2	14
В	2	17
С	3	2

[এখানে A, B, C প্রতীকী অর্থে ব্যবহৃত]

[সকল বোর্ড ২০১৮]

- (ক) আইসোটোপ কাকে বলে?
- (খ) HF একটি পোলার <mark>যৌগ ব্যাখ্যা করো</mark>।
- (গ) 'C' মৌলের সাথে 'B' মৌলের বন্ধন গঠন প্রক্রিয়া ডায়াগ্রামের সাহায্যে ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের 'A' মৌ<mark>লের দুটি রূপভেদের</mark> একচি বিদ্যুৎ পরিবাহী হলেও অন্যটি নয়। – চিত্রসহ বিশ্লেষণ করো।

৭৩ নং প্রশ্নের উত্তর

- (ক) বিভিন্ন ভরসংখ্যা বিশিষ্ট একই মৌলের পরমাণুসমূহকে পরস্পারের আইসোটোপ বলে।
- খে) যে সমযোজী যৌগে পোলারিটির সৃষ্টি হয় তাকে পোলার যৌগ বলে। ফ্রোরিনের তড়িৎঋণাত্মকতা হাইড্রোজেন অপেক্ষা বেশি। তাই H-F এ শেয়ারকৃত ইলেকট্রনযুগল F পরমাণুর দিকে বেশি আকৃষ্ট হয়। ফলে F পরমাণুতে আংশিক ঋণাত্মক প্রাপ্ত এবং H পরমাণুতে আংশিক ধনাত্মক প্রাপ্তের সৃষ্টি হয়। এ কারণে HF পোলার যৌগ।
- (গ) উদ্দীপকের 'C' মৌলটি ৩য় পর্যায়ের গ্রুপ 2 তে হওয়ায় মৌলটি ম্যাগনেসিয়াম (Mg) এবং 'B' মৌলটি ২য় পর্যায়ের গ্রুপ 17 তে হওয়ায় মৌলটি ফ্রোরিন (F)। সুতরাং Mg ও F মৌলদ্বয় দ্বারা গঠিত যৌগ MgF_2 এবং গঠিত বন্ধন আয়নিক বন্ধন।

Mg ও F এর ইলেকট্রন বিন্যাস-

 $Mg(12)/^{\circ}C^{\circ} \longrightarrow 1s^2 2s^2 2p^6 3s^2$

 $F(9)'B' \longrightarrow 1s^2 2s^2 2p^5$

রাসায়নিক বিক্রিয়ার সময় Mg পরমাণু তার সর্ববহিঃস্থ স্তরের 2টি ইলেকট্রন F পরমাণুকে দান করে Mg আয়নে পরিণত হয়।

 $Mg^{2+}(12) = 1s^2 2s^2 2p^6 3s^0$

অপ্রদিকে 2টি F পরমাণু প্রত্যেকে 1টি করে Mg প্রদন্ত ইলেকট্রন গ্রহণ করে $2F^-$ আয়নে পরিণত হয়। ধনাত্মক Mg^{2+} এবং ঋণাত্মক F^- আয়নের মধ্যে স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে MgF_2 এর মধ্যে আয়নিক বন্ধনের সৃষ্টি হয়।

বুসামূল ৫ম অধ্যাম

বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

চিত্র: MgF2 এর আয়নিক বন্ধন গঠন

(ঘ) উদ্দীপকের 'A' মৌলটি ২য় পর্যায়ের গ্রুপ 14 এর মৌল। তাই মৌলটি কার্বন (C)। এর দুটি রূপভেদ হলো হীরক ও গ্রাফাইট। গ্রাফাইট বিদ্যুৎ পরিবাহী হলেও হীরক বিদ্যুৎ পরিবাহী নয়। বিদ্যুৎ পরিবহনের জন্য মুক্ত আয়ন বা ইলেকট্রনের উপস্থিতি বা চলাচল প্রয়োজন। নিচে চিত্রসহ বিশ্লেষণ করা হলো-

চিত্র: হীরক বা ডায়মন্ড অণুর গঠন

হীরকের গঠনে দেখা যায়, প্রতিটি কার্বন পরমাণু অপর সমযোজী বন্ধনের মাধ্যমে যুক্ত হয়ে বৃহদাকার অণুতে পরিণত হয়। সবগুলো যোজনী ইলেকট্রন সমযোজী বন্ধন গঠনে ব্যবহৃত হওয়ায় কোন মুক্ত ইলেকট্রন থাকে না।

চিত্র : গ্রাফাইটের গঠন

অন্যদিকে গ্রাফাইটের গঠনে প্রতিটি কার্বন পরমাণু এর নিকটতম প্রতিবেশী অন্য তিনটি পরমাণুর সাথে যুক্ত হয়ে জালের মত একটি সমতলীয় স্তর সৃষ্টি করে।

এক্ষেত্রে 1টি মুক্ত ইলেকট্রন থাকে। এই মুক্ত ইলেকট্রনটি গ্রাফাইটের মধ্যে দিয়ে বিদ্যুৎ পরিবহনে সহায়তা করে। এজন্য গ্রাফাইট বিদ্যুৎ সুপরিবাহী।

সুতরাং উপরের আলোচনা থেকে স্পষ্ট যে, কার্বনের একটি রূপভেদ বিদ্যুৎ পরিবাহী হলেও অপরটি বিদ্যুৎ পরিবাহী নয়।