DIGITALNI SUSTAVI ZA OBRADU SIGNALA

DSOS22

Julije Ožegović FESB Split

DIGITALNI SUSTAVI ZA OBRADU SIGNALA

UVOD: ANALOGNI I DIGITALNI SUSTAVI

I. OSNOVE DIGITALNE OBRADE SIGNALA

II. DIGITALNI FILTRI U VREMENSKOM I FREKVENCIJSKOM PODRUČJU

III. STRUKTURA DIGITALNIH SUSTAVA ZA OBRADU SIGNALA

IV. DIGITALNA OBRADA SIGNALA U PRIMJENI

II. DIGITALNI FILTRI U VREMENSKOM I FREKVENCIJSKOM PODRUČJU

- 8. SINTEZA NEREKURZIVNIH FILTARA
- 9. SINTEZA NEREKURZIVNIH FILTARA FOURIEROVOM TRANSFORMACIJOM
- 10. SINTEZA REKURZIVNIH FILTARA
- 11. DISKRETNA FOURIEROVA TRANSFORMACIJA
- 12. BRZA FOURIEROVA TRANSFORMACIJA
- 13. POSTUPCI BRZE FOURIEROVE TRANSFORMACIJE
- 14. FFT OBRADA SIGNALA

11. DISKRETNA FOURIEROVA TRANSFORMACIJA

11.1. DEFINICIJA DFT

11.2. SVOJSTVA DFT

11.3. RAČUNANJE DFT

11.1. DEFINICIJA DFT

- OSNOVA I DEFINICIJA DFT I IDFT

- ODNOS DFT, DFN i FTAN

- OSNOVA I DEFINICIJA DFT I IDFT

- Rad u frekvencijskom području
 - do sada smo definirali DFN i FT aperiodičkog niza
 - dobili smo
 - diskretni spektar periodičkog niza i
 - kontinuirani spektar aperiodičkog niza zgodan za opis sustava
 - oba spektra su periodička,
 što je posljedica uzorkovanja signala
- DFT diskretna Fourierova transformacija
 - definicija
 - način efikasnog izračunavanja (FFT)

- DEFINICIJA DFT I IDFT

• Signali:

- striktno periodički se ponavljaju u budućnosti
 - pa ne nose informaciju
 - te nam nisu interesantni
- aperiodički su neodređenog budućeg oblika, pa nose informaciju
- aperiodički signali su najčešći u prirodi i primjeni

- DEFINICIJA DFT I IDFT

• Za aperiodičke signale definiramo DFT i IDFT:

- DFT:
$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot \exp(-j2\pi kn/N) = \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn}$$
$$W_N = \exp(-j2\pi/N)$$

- Inverzna DFT (IDFT)
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot W_N^{-kn}$$

- DFT formira periodički spektar
- IDFT formira periodički signal
- obje predstavljaju konačni period spektra odnosno signala

- Usporedba DFT sa DFN:
 - DFT je suštinski identična sa diskretnim Fourierovim nizom:
 - samo je sada 1/N na strani inverzne transformacije (uobičajeno)
 - parametri a_k sada su nazvani X[k]
 - stoga DFT može značiti:
 - DFN, ako je signal striktno periodičan
 - način izračuna, ako je signal aperiodičan
 - u oba slučaja DFT daje kompletni informaciju o signalu
 - jedino se kod aperiodičkog ona mijenja iz bloka u blok uzoraka

- Usporedba DFT sa FTAN:
 - FTAN već opisuje aperiodičke nizove:
 - problem je što daje kontinuirani spektar
 - time možemo opisati frekvencijski odziv sustava
 - međutim ne možemo ga koristiti u numeričkoj obradi računalom
 - treba nam UZORKOVANA verzija spektra
 - DFT upravo daje takvu, uzorkovanu verziju spektra!
 - pitamo se koliko treba uzoraka spektra, odnosno koji je korak uzorkovanja

- Uzorkovanje spektra:
 - teorem uzorkovanja kaže
 - kontinuirani spektar signala koji traje T₀ sekundi može se predstaviti sa uzorcima spektra razmaknutim najviše 1/ T₀ herca

- Uzorkovanje spektra:
 - spektar je periodičan s periodom 2π :
 - T₀=NT_S (T_S=period uzorkovanja)
 - uzorci spektra razmaknuti su $1/NT_S$ herca ili $2\pi/NT_S$ radijana/s
 - znamo da je $\Omega = \omega T_S = 2\pi f T_S$
 - $f = f_S = 1/T_S$ imamo: $\Omega = 2\pi T_S/T_S = 2\pi$
 - $f = f_0 = 1/T_0 \text{ imamo: } \Omega = 2\pi T_S / T_0 = 2\pi T_S / NT_S = 2\pi / N$
 - dakle razmak uzoraka je najviše $2\pi/N$ radijana u Ω
 - u periodu spektra od 2π imamo najmanje N uzoraka

- Uzorkovanje spektra:
 - DFT upravo daje
 - N uzoraka u jednom periodu spektra
 - na osnovi N uzoraka vremenskog signala
 - to je ranije spomenuta podudarnost stupnjeva slobode
 - ako je vremenski signal realan
 - spektar je periodičan i zrcalan
 - imamo pola jedinstvenih uzoraka spektra, ali koji su kompleksni
 - N, koliko daje DFT, je upravo optimalan broj uzoraka

• Usporedba vremenskih signala i spektra:

11.2. SVOJSTVA DFT

- PERIODIČNOST, LINEARNOST, VREMENSKI POMAK
- KONVOLUCIJA, MODULACIJA

SVOJSTVA DFT

- DFT ima sva svojstva koja ima DFN i FTAN:
 - periodičnost

$$x[n] = x[n+N] ; X[k] = X[k+N]$$

- linearnost ako je: $x_1[n] \leftrightarrow X_1[k]$; $x_2[n] \leftrightarrow X_2[k]$ tada je:

$$A \cdot x_1[n] + B \cdot x_2[n] \longleftrightarrow A \cdot X_1[k] + B \cdot X_2[k]$$

vremenski pomak

$$x_1[n-n_0] \leftrightarrow X[k] \cdot exp(-j2\pi kn_0/N) = X[k] \cdot W_n^{kn_0}$$

SVOJSTVA DFT

DFT ima sva svojstva koja ima DFN i FTAN:

- konvolucija
ako je:
$$x_1[n] \leftrightarrow X_1[k]$$
; $x_2[n] \leftrightarrow X_2[k]$

tada je:
$$\sum_{m=0}^{N-1} x_1[n] \cdot x_2[m-n] \longleftrightarrow X_1[k] \cdot X_2[k]$$

– modulacija:

$$x_1[n] \cdot x_2[n] \leftrightarrow \frac{1}{N} \sum_{m=0}^{N-1} X_1[m] \cdot X_2[k-m]$$

11.3. RAČUNANJE DFT

- KRITERIJI BRZINE
- KOMPLEKSNE OPERACIJE
- REALNI I KOMPLEKSNI VREMENSKI SIGNAL
- POLARNI PRIKAZ

KRITERIJI BRZINE DFT

- Rad u stvarnom vremenu:
 - uzeti N uzoraka (prividnog) perioda signala
 - obaviti sve operacije u NT_s vremena
 - do tada se nakupi novih N uzoraka
 - množenje
 - na računalu opće namjene je sporo
 - na specijalnim DSP platformama je brzo
 - grananje
 - nakon rješenja množenja, postaje značajno
 - izračun sin, cos: izračunati unaprijed, očitavati iz tablice

KRITERIJI BRZINE DFT

Usporedba vremenske i frekvencijske obrade: vremenska obrada: frekvencijska obrada: x[n]novih N x[n]uzoraka prikupi N uzoraka konvolucija DFT ili FFT reproduciraj <mark>→</mark> množenje ₀ 1 uzorak **→** IDFT ili IFFT reproduciraj y[n]N uzoraka

KOMPLEKSNE OPERACIJE

Računamo:

$$- DFT X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn} = \sum_{n=0}^{N-1} x[n] \cdot \exp(-j2\pi kn/N) =$$

$$= \sum_{n=0}^{N-1} x[n] \cdot \{\cos(2\pi kn/N) - j\sin(2\pi kn/N)\}$$

IDFT

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot W_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot \exp(j2\pi kn/N) =$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot \{\cos(2\pi kn/N) + j\sin(2\pi kn/N)\}$$

– uočavamo iste operacije!

REALNI VREMENSKI SIGNAL

- Vremenski signal može biti realan:
 - računamo posebno realnu, a posebno imaginarnu komponentu spektra

$$\Re(X[k]) = \sum_{n=0}^{N-1} x[n] \cdot \cos(2\pi kn/N)$$

$$\Im(X[k]) = -\sum_{n=0}^{N-1} x[n] \cdot \sin(2\pi kn/N)$$

dvije vrijednosti pamtimo zasebno u memoriji računala

KOMPLEKSNI VREMENSKI SIGNAL

Vremenski signal može biti kompleksan:

$$x[k] = r[k] + ji[k]$$

DFT je sada oblika:

$$X[k] = \sum_{n=0}^{N-1} (r[n] + ji[n]) \cdot \{\cos(2\pi kn/N) - j\sin(2\pi kn/N)\}$$

$$\Re(\mathbf{X}[\mathbf{k}]) = \sum_{n=0}^{N-1} \mathbf{r}[n] \cdot \cos(2\pi \mathbf{k} \mathbf{n}/\mathbf{N}) + \mathbf{i}[n] \cdot \sin(2\pi \mathbf{k} \mathbf{n}/\mathbf{N})$$

$$\Im(X[k]) = \sum_{n=0}^{N-1} i[n] \cdot \cos(2\pi kn/N) - r[n] \cdot \sin(2\pi kn/N)$$

POLARNI PRIKAZ

- Kompleksni broj:
 - realna i imaginarna komponenta su koordinate kartezijevog (pravokutnog) sustava u ravnini (x, y)

– moguć je zapis u polarnim koordinatama (r, φ)

$$[X[k]] = {\Re(X[k])^2 + \Im(X[k])^2}^{1/2}$$
 $\phi_k = \arctan{\Im(X[k])/\Re(X[k])}$

program 23!

12. BRZA FOURIEROVA TRANSFORMACIJA (FFT)

12.1. DEFINICIJA FFT

12.2. ELEMENTI FFT IZRAČUNA

12.3. GRAFIČKI PRIKAZ FFT IZRAČUNA

12.4. FFT LEPTIR I SIMBOLIČKI ZAPIS

12.1. DEFINICIJA FFT

- FFT KAO NEREDUNDANTNI IZRAČUN DFT
- PERIODIČKA PRIRODA W(N,kn)
- DEKOMPOZICIJA NA PODNIZOVE
- INDEKSIRANJE NIZA
- INVERZNA FFT

FFT KAO NEREDUNDANTNI IZRAČUN DFT

- Fast Fourier Transform (FFT)
 - razvija se od 1960
 - to je efikasan i neredundantan način izračuna DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot \exp(-j2\pi kn/N) = \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn}$$

$$W_N = \exp(-j2\pi/N)$$

- iste vrijednosti W(N,kn) se računaju mnogo puta
- često su vrijednosti ±1
- možemo uštedjeti niz operacija množenja
- FFT je skup algoritama za efikasno računanje DFT!

PERIODIČKA PRIRODA W(N,kn)

- Simbolički zapis W(N,kn)
 - pojednostavljuje formule FFT

$$W_{N} = \exp(-j2\pi/N)$$
; $W_{N}^{kn} = (\exp(-j2\pi/N))^{kn} = \exp(-j2\pi kn/N)$

računamo

$$W_N^{kn} = \exp(-j2\pi kn/N) = \cos(2\pi kn/N) - j\sin(-j2\pi kn/N)$$

- za korake kn, vrijednosti sin i cos se više puta ponavljaju
- npr. za N=8, n,k=0...7, nk=0...49,
- sin i cos imaju efekt računa po modulu N

PERIODIČKA PRIRODA W(N,kn)

• primjer N=8, ispišimo vrijednosti W(8,kn) u tablici

	n = 0	1	2	3	4	5	6	7
k = 0	1	1	1	1	1	1	1	1
1	1	$\frac{(1-j)}{\sqrt{2}}$	- j	$\frac{-(1+j)}{\sqrt{2}}$	-1	$\frac{-(1-j)}{\sqrt{2}}$	j	$\frac{(1+j)}{\sqrt{2}}$
2	1	– ј	-1	j	1	– j	-1	j
3	1	$\frac{-(1+j)}{\sqrt{2}}$	j	$\frac{(1-j)}{\sqrt{2}}$ -1	-1	$\frac{(1+j)}{\sqrt{2}}$	- j	$\frac{-(1-j)}{\sqrt{2}}$
4	1	-1	1	-1	1	-1	1	-1
5	1	$\frac{-(1-j)}{\sqrt{2}}$	- j	$\frac{(1+j)}{\sqrt{2}}$ $-j$	-1	$\frac{(1-j)}{\sqrt{2}}$	j	$\frac{-(1+j)}{\sqrt{2}}$
6	1	j	-1	- j	1	j	-1	- j
7	1	$\frac{(1+j)}{\sqrt{2}}$	j	$\frac{-(1-j)}{\sqrt{2}}$	-1	$\frac{-(1+j)}{\sqrt{2}}$	- j	$\frac{(1-j)}{\sqrt{2}}$

DEKOMPOZICIJA NA PODNIZOVE

- Pretpostavimo da je N paran:
 - niz vrijednosti možemo razbiti na parne i neparne
 - ako je N=2ⁱ, tada su i podnizovi parni sve do duljine 2
 - razbijanje vremenskog niza je decimacija u vremenu
 - n pišemo
 ako je paran n=2r
 ako je neparan: n=2r+1
 - time smo dobili indekse vrijednosti parnog podniza: x[2r]
 i neparnog podniza: x[2r+1]

DEKOMPOZICIJA NA PODNIZOVE

- FFT razbijemo po podnizovima:
 - dobijemo dvije sume

$$\begin{split} X[k] &= \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn} \; ; \; 0 \le k \le (N-1) \\ &= \sum_{r=0}^{N/2-1} x[2r] \cdot W_N^{2rk} + \sum_{r=0}^{N/2-1} x[2r+1] \cdot W_N^{(2r+1)k} = \\ &= \sum_{r=0}^{N/2-1} x[2r] \cdot \left(W_N^2\right)^{rk} + W_N^k \sum_{r=0}^{N/2-1} x[2r+1] \cdot \left(W_N^2\right)^{rk} \end{split}$$

DEKOMPOZICIJA NA PODNIZOVE

- FFT razbijemo po podnizovima:
 - uočimo:

$$W_N^2 = \exp(-2j2\pi/N) = \exp(-j2\pi/\frac{N}{2}) = W_{N/2}$$

– dobijemo:

$$\begin{split} X[k] &= \sum_{n=0}^{N/2-1} x[2r] \cdot W_{N/2}^{rk} + W_N^k \sum_{n=0}^{N/2-1} x[2r+1] \cdot W_{N/2}^{rk} = \\ &= G[k] + W_N^k H[k] \end{split}$$

INDEKSIRANJE NIZA

• Podnizovi za N=8 su:

```
- n = \{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7\}
```

- parni n={0 2 4 6} i neparni n={1 3 5 7}
- nadalje n= $\{0.4\}$ i $\{2.6\}$ i $\{1.5\}$ i $\{3.7\}$
- kad dođemo do niza po 2 člana, to je elementarna FFT
- ovisno o indeksu člana imamo faktore koje moramo efikasno identificirati i po potrebi pomnožiti
- indekse možemo dobiti i algebarski

INDEKSIRANJE NIZA

- Algebarsko generiranje nizova
 - postupak se zove preslikavanje indeksa (Index Mapping)
 - neka je N=N₁N₂
 - definiramo pomoćne indekse:
 - $n_1 = 0, 1, ... N_1-1$
 - $n_2 = 0, 1, ... N_2-1$
 - definiramo funkciju preslikavanja:

$$n = (M_1 n_1 + M_2 n_2)_{\text{mod}N}$$
 i $k = (J_1 k_1 + J_2 k_2)_{\text{mod}N}$

INDEKSIRANJE NIZA

Algebarsko generiranje nizova

- npr. za N=4,
$$N_1=N_2=2$$
, $M_1=2$, $M_2=1$, $J_1=1$, $J_2=2$

$$- n = (2n_1 + n_2)_{\text{modN}}$$

$$- k = (k_1 + 2k_2)_{\text{mod N}}$$

n	$n_1 = 0$	1
$n_2 = 0$	0	2
1	1	3

$$\begin{array}{c|cc} k & k_1 = 0 & 1 \\ \hline k_2 = 0 & 0 & 1 \\ 1 & 2 & 3 \\ \end{array}$$

INVERZNA FFT

• Inverzna DFT:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot W_N^{-kn}$$

- inverzna FFT koristi istu tehniku kao i FFT
 - eksponenti su negativni
 - kružimo u suprotnom smjeru
 - množimo sa faktorom 1/N

12.2. ELEMENTI FFT IZRAČUNA

- RAZBIJANJE NA ELEMENTARNE TRANSFORMACIJE

- JEDNADŽBE ELEMENTARNIH TRANSFORMACIJA

- KOEFICIJENTI ELEMENTARNE TRANSFORMACIJE

RAZBIJANJE NA ELEMENTARNE TRANSFORMACIJE

Koristimo preslikavanje indeksa

$$-N=4$$
, $n = (2n_1 + n_2)_{\text{mod }N} k = (k_1 + 2k_2)_{\text{mod }N}$

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn} = \sum_{n=0}^{3} x[n] \cdot W_4^{kn}$$

uvrstimo preslikavanje n (zasad ostavimo k)

$$\mathbf{X}[\mathbf{k}] = \sum_{n_2=0}^{1} \left(\sum_{n_1=0}^{1} \mathbf{x}[\mathbf{n}_1, \mathbf{n}_2] \cdot \mathbf{W}_4^{\mathbf{k}(2n_1+n_2)} \right)$$

RAZBIJANJE NA ELEMENTARNE TRANSFORMACIJE

- Nadalje
 - pojednostavljeno se piše X i x umjesto X[k] i x[n]

$$X = \sum_{n_2=0}^{1} \left(\sum_{n_1=0}^{1} x \cdot W_4^{2kn_1} \cdot W_4^{kn_2} \right)$$

izlučimo W(4,kn₂) jer ne ovisi o n₁

$$X = \sum_{n_2=0}^{1} \left(\mathbf{W}_4^{kn_2} \cdot \sum_{n_1=0}^{1} \mathbf{x} \cdot \mathbf{W}_4^{2kn_1} \right)$$

RAZBIJANJE NA ELEMENTARNE TRANSFORMACIJE

- Nadalje
 - dobijemo dvije sume kada uvrstimo n₂=0, 1:

$$X = 1 \sum_{n_1=0}^{1} x \cdot W_4^{2kn_1} + W_4^k \sum_{n_1=0}^{1} x \cdot W_4^{2kn_1}$$

to je isto kao raniji izraz preko W(N/2,kn), za N=4

$$X[k] = \sum_{n=0}^{N/2-1} x[2r] \cdot W_{N/2}^{rk} + W_N^k \sum_{n=0}^{N/2-1} x[2r+1] \cdot W_{N/2}^{rk}$$

JEDNADŽBE ELEMENTARNIH TRANSFORMACIJA

- Izračunajmo vrijednosti X[k]
 - raspišimo i drugu sumu:

$$X = \{x[0] + x[2] \cdot W_4^{2k}\} + W_4^k \{x[1] + x[3] \cdot W_4^{2k}\}$$

– što daje elemente spektra:

$$X[0] = \{x[0] + x[2] \cdot W_4^0\} + W_4^0 \{x[1] + x[3] \cdot W_4^0\}$$

$$X[1] = \{x[0] + x[2] \cdot W_4^2\} + W_4^1 \{x[1] + x[3] \cdot W_4^2\}$$

$$X[2] = \{x[0] + x[2] \cdot W_4^0\} + W_4^2 \{x[1] + x[3] \cdot W_4^0\}$$

$$X[3] = \{x[0] + x[2] \cdot W_4^2\} + W_4^3 \{x[1] + x[3] \cdot W_4^2\}$$

To je FFT po bazi 2 (radix2) s decimacijom u vremenu

KOEFICIJENTI ELEMENTARNIH TRANSFORMACIJA

- Ponavljanje koeficijenata
 - ponavljaju se koeficijenti:
 - W(4,0) i W(4,2) u elementarnim sumama
 - pojavljuju se faktori prilagođenja:
 - W(4,0), W(4,1), W(4,2) i W(4,3)
 - vrijednosti koeficijenata su:
 - W(4,0) = 1
 - W(4,1) = -j
 - W(4,2) = -1
 - W(4,3) = j

12.3. GRAFIČKI PRIKAZ FFT IZRAČUNA

- JEDNADŽBE ELEMENTARNE TRANSFORMACIJE
- GRAFIČKI PRIKAZ TRANSFORMACIJE
- KOEFICIJENTI U GRAFIČKOM PRIKAZU

JEDNADŽBE ELEMENTARNE TRANSFORMACIJE

- Transformiramo dostignute jednadžbe:
 - uočimo svojstva W:

$$W_4^0 = 1 = W_2^0$$
; $W_4^2 = W_2^1 = -1$; $W_4^3 = W_4^2 W_4^1 = W_2^1 W_4^1$

dobijemo

$$X[0] = \{x[0] + x[2] \cdot W_2^0\} + W_2^0 \{x[1] + x[3] \cdot W_2^0\}$$

$$X[1] = \{x[0] + x[2] \cdot W_2^1\} + W_4^1 \{x[1] + x[3] \cdot W_2^1\}$$

$$X[2] = \{x[0] + x[2] \cdot W_2^0\} + W_2^1 \{x[1] + x[3] \cdot W_2^0\}$$

$$X[3] = \{x[0] + x[2] \cdot W_2^1\} + W_2^1 W_4^1 \{x[1] + x[3] \cdot W_2^1\}$$

• Logički dijagram formula je:

- razmještaj u vremenu (shuffle in time)
- prirodni poredak u frekvenciji (natural order in frequency)
- izračun u mjestu (in place)

- Logički dijagram transformiramo:
 - izbacimo članove jednake jedinici:

- Logički dijagram transformiramo:
 - ubacimo vrijednosti preostalih članova:

- Logički dijagram transformiramo:
 - sada se vratimo na W(2,...):

KOEFICIJENTI U GRAFIČKOM PRIKAZU

- Izdvajanje faktora prilagođenja:
 - transformiramo jednadžbe:

$$X = \sum_{n_2=0}^{1} W_4^{(k_1+2k_2)n_2} \cdot \left(\sum_{n_1=0}^{1} X \cdot W_4^{2(k_1+2k_2)n_1} \right) =$$

$$= \sum_{n_2=0}^{1} W_4^{k_1 n_2} W_4^{2k_2 n_2} \cdot \left(\sum_{n_1=0}^{1} x \cdot W_4^{2k_1 n_1} W_4^{4k_2 n_1} \right)$$

- uočimo:
$$W_4^{4k_2n_1} = \exp(-2\pi j k_2 n_1 4/4) = \exp(2\pi j k_2 n_1) = 1$$
; $W_4^2 = W_2^1$

$$X = \sum_{n_2=0}^{1} W_4^{k_1 n_2} W_2^{k_2 n_2} \cdot \left(\sum_{n_1=0}^{1} x \cdot W_2^{k_1 n_1} \right)$$

12.4. FFT LEPTIR I SIMBOLIČKI ZAPIS

- OSNOVNI GRAFIČKI ELEMENT - LEPTIR

- FAKTOR PRILAGOĐENJA

- RAČUNANJE U MJESTU

- PROCJENA BROJA OPERACIJA

OSNOVNI GRAFIČKI ELEMENT - LEPTIR

- Osnovna dvočlana transformacija:
 - podsjetimo se na lijevu stranu logičkog dijagrama:

programski radi se o jednom zbrajanju i jednom oduzimanju

OSNOVNI GRAFIČKI ELEMENT - LEPTIR

- Osnovna dvočlana transformacija:
 - pojednostavljeno crtamo:

to je FFT leptir (butterfly)

FAKTOR PRILAGOĐENJA

- Drugi krug transformacije:
 - podsjetimo se na desnu stranu logičkog dijagrama:

 donji (desni) član također uključuje osnovni leptir, ali preko faktora prilagođenja

FAKTOR PRILAGOĐENJA

- Drugi krug transformacije:
 - izdvojimo faktor prilagođenja:

- dobili smo osnovni elementarni član za FFT
- faktor prilagođenja ovisi o krugu računanja

FAKTOR PRILAGOĐENJA

- Drugi krug transformacije:
 - za primjer N=4 imamo:

RAČUNANJE U MJESTU

- Karakteristike elementarne transformacije:
 - u svakom krugu računanja:
 - pojedini podatak se koristi samo dva puta u istom leptiru
 - nakon toga se više ne koristi
 - rezultati leptira mogu se smjestiti u iste dvije varijable
 - treba samo paziti na drugo korištenje
 - računanje u mjestu zahtjeva razmještaj podataka
 - razmještaj u vremenu, prirodni poredak u frekvenciji
 - ili razmještaj u frekvenciji, prirodni poredak u vremenu

RAČUNANJE U MJESTU

- FFT na uzorku od N članova:
 - koristimo nizove N=2ⁱ,
 - DFT dekomponiramo na V koraka elementarnih FFT:

$$N = 2^{i} ; V = \log_2 N = i$$

– u m-tom koraku imamo:

$$X_{m+1}(p) = X_m(p) + T_F X_m(q)$$

$$X_{m+1}(q) = X_m(p) - T_F X_m(q)$$

PROCJENA BROJA OPERACIJA

- Broj operacija za FFT:
 - koristimo nizove $N=2^i$, dakle V = log 2(N) = i koraka
 - u svakom koraku imamo N kompleksnih množenja
 - procijenimo broj operacija: $K_{FFT} = N \log_2(N)$
 - za DFT smo procijenili: $K_{DFT} \approx N^2$

- poboljšanje je:
$$E = \frac{K_{DFT}}{K_{FFT}} = \frac{N^2}{N \log_2(N)} = \frac{N}{\log_2(N)}$$

13. POSTUPCI FFT-a

13.1. DECIMACIJA PO BAZI 2 U VREMENU

13.2. IZRAČUN NA ISTOM MJESTU I IZBOR RAZMJEŠTAJA

13.3. DECIMACIJA PO BAZI 2 PO FREKVENCIJI

13.1. DECIMACIJA PO BAZI 2

- PRIMJENA PRESLIKAVANJA INDEKSA

- CRTANJE DIJAGRAMA TOKA SIGNALA

- CRTANJE DIJAGRAMA PRIMJENOM LEPTIRA

PRIMJENA PRESLIKAVANJA INDEKSA

- Decimacija preslikavanjem indeksa:
 - indekse rastavljamo po bazi 2
 - time pratimo decimaciju po bazi 2
 - − npr. za N=8

$$n = 4n_1 + 2n_2 + n_3$$
; $k = k_1 + 2k_2 + 4k_3$

- konstruiramo tablice preslikavanja
- nacrtamo dijagram koristeći potencije od W_N
- korigiramo dijagram koristeći leptire i faktore prilagođenja

PRIMJENA PRESLIKAVANJA INDEKSA

- Decimacija preslikavanjem indeksa:
 - izračunamo tablice preslikavanja indeksa (npr. N=8)
 - izabran je prirodni poredak po frekvenciji
 - uzorci su razmješteni u vremenu

n_1	n_2	n_3	n
0	0	0	0
1	0	0	4
0	1	0	2
1	1	0	6
0	0	1	1
1	0	1	5
0	1	1	3
1	1	1	7

\mathbf{k}_1	k_2	k_3	n
0	0	0	1
1	0	0	2
0	1	0	3
1	1	0	4
0	0	1	5
1	0	1	6
0	1	1	7
1	1	1	8

PRIMJENA PRESLIKAVANJA INDEKSA

- Decimacija preslikavanjem indeksa:
 - Jednadžbe su (N=8)

$$\begin{split} X[k] &= \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn} = \sum_{n=0}^7 x[n] \cdot W_8^{kn} = \\ &= \sum_{n_3=0}^1 \left(\sum_{n_2=0}^1 \left(\sum_{n_1=0}^1 x \cdot W_8^{k(4n_1+2n_2+n_3)} \right) \right) = \\ &= \sum_{n_3=0}^1 W_8^{kn_3} \left(\sum_{n_2=0}^1 W_8^{2kn_2} \left(\sum_{n_1=0}^1 x \cdot W_8^{4kn_1} \right) \right) \end{split}$$

DIJAGRAM TOKA SIGNALA

• Crtamo dijagram toka signala (potencije W_N):

DIJAGRAM TOKA SIGNALA - LEPTIR

• Dijagram toka signala s leptirima (potencije W_N):

13.2. IZRAČUN NA ISTOM MJESTU I IZBOR RAZMJEŠTAJA

- UVJETI IZRAČUNA NA ISTOM MJESTU

- DIJAGRAM ZA RAZMJEŠTAJ PO FREKVENCIJI

- PROBLEMI PRIRODNOG REDOSLIJEDA U VREMENU I PO FREKVENCIJI

UVJETI IZRAČUNA U MJESTU

• Izračun u mjestu:

- bazira se na svojstvu leptira
 - podatak koristi samo taj leptir
 - podatak se koristi samo dva puta
 - nakon toga podatak se može obrisati
 - to znači nova vrijednost se može smjestiti na istom mjestu
- razmještaj u vremenu
 - vrijednosti se razmjeste da u prvom krugu idu leptiri na susjednim vrijednostima
 - u drugom i trećem krugu preskače se na svaku drugu pa na svaku četvrtu vrijednost
 - leptiri u višim krugovima ne koriste uzastopne vrijednosti, ali je očuvano svojstvo leptira

UVJETI IZRAČUNA U MJESTU

- Izračun u mjestu:
 - razmještaj po frekvenciji
 - vrijednosti se razmjeste da u posljednjem krugu leptiri dadu rezultate na susjednim vrijednostima
 - u prvom i drugom krugu preskače se na svaku četvrtu pa na svaku drugu vrijednost
 - leptiri više ne koriste uzastopne vrijednosti ali je očuvano svojstvo leptira
 - redoslijed uzimanja podataka
 - bez obzira na raspored (u memoriji), redoslijedi uzimanja podataka su isti
 - radi se o decimaciji u vremenu

DIJAGRAM RAZMJEŠTAJA PO FREKVENCIJI

• Razmještaj po frekvenciji:

POREDAK PO VREMENU I PO FREKVENCIJI

- Prirodni poredak po vremenu i po frekvenciji:
 - može se organizirati obrada da se sačuvaju oba prirodna poretka
 - gubi se svojstvo leptira da rezultat koristi iste ulazne pozicije
 - stoga treba koristiti različita memorijska polja (not in place)

POREDAK PO VREMENU I PO FREKVENCIJI

Prirodni poredak po vremenu i po frekvenciji:

13.3. DECIMACIJA PO BAZI DVA PO FREKVENCIJI

- GENERIRANJE INDEKSA DA DECIMACIJU PO FREKVENCIJI

- LEPTIR ZA DECIMACIJU PO FREKVENCIJI

- REDOSLIJEDI ZA DECIMACIJU PO FREKVENCIJI

- Decimacija po frekvenciji:
 - umjesto da se ulazi uzimaju na preskok
 - izlazi se generiraju preskačući indekse
 - posljedično, ulazi se uzimaju redom
 - decimaciju po frekvenciji možemo smatrati prirodnom
 - za početak izaberimo razmještaj po frekvenciji
 - indekse definiramo formulama (N=4):

$$n = n_1 + 2n_2$$
; $k = 2k_1 + k_2$

- Decimacija po frekvenciji:
 - dobijemo (N=4):

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn} = \sum_{n=0}^{3} x[n] \cdot W_4^{kn} =$$

$$= \sum_{n_2=0}^{1} \left(\sum_{n_1=0}^{1} x[n_1, n_2] \cdot W_4^{k(n_1+2n_2)} \right)$$

– slijedi:

$$X = \sum_{n_2=0}^{1} W_4^{2kn_2} \left(\sum_{n_1=0}^{1} x \cdot W_4^{kn_1} \right) =$$

$$= 1 \sum_{n_1=0}^{1} x \cdot W_4^{kn_1} + W_4^{2k} \sum_{n_1=0}^{1} x \cdot W_4^{kn_1}$$

- Decimacija po frekvenciji:
 - raspišemo formulu:

$$X = \{x[0] + x[1]W_4^k\} + W_4^{2k} \{x[2] + x[3]W_4^k\}$$

– indeksi su:

n	$n_1 = 0$	1	k	$\mathbf{k}_1 = 0$	1
$\overline{n_2 = 0}$	0	1	$k_2 = 0$	0	2
1	2	3	1	1	3

- Decimacija po frekvenciji:
 - nacrtamo graf:

LEPTIR ZA DECIMACIJU PO FREKVENCIJI

- Leptir i faktor prilagođenja:
 - jednadžbe za izračun u mjestu:

$$X_{m+1}(p) = X_m(p) + X_m(q)$$

 $X_{m+1}(q) = \{X_m(p) - X_m(q)\}T_F$

leptir i primjena

LEPTIR ZA DECIMACIJU PO FREKVENCIJI

- Leptir i faktor prilagođenja:
 - crtamo dijagram:

REDOSLIJEDI ZA DECIMACIJU PO FREKVENCIJI

- Redoslijed i raspored:
 - prije: prirodni redoslijed u vremenu, raspored po frekv.
 - sada: prirodni redoslijed p frekvenciji, raspored u vremenu

14. FFT OBRADA SIGNALA

14.1. SPEKTRALNA ANALIZA I PROZORI

14.2. ANALIZA LTI SUSTAVA

14.3. BRZA KONVOLUCIJA

14.4. SEGMENTACIJA SIGNALA

14.1. SPEKTRALNA ANALIZA I PROZORI

- KORIŠTENJE SPEKTRALNE ANALIZE
- CURENJE SPEKTRA
- KORIŠTENJE PROZORA

• Spektralna analiza:

- dekompozicija signala na komponente spektra
- FFT je prirodan izbor
- spektar će dati bitne informacije o signalu, inače skrivene u vremenskom signalu
- postupak je istraživački,
 pri tome načelno nećemo mijenjati sam signal
- često primjenjujemo na prirodne signale, npr. burza
- također često ispitujemo sustave:
 promatramo spektar odziva, često statistički radi šuma

- Spektralna analiza:
 - kod stvarno periodičkih signala
 - periodi se nastavljaju jedan na drugi
 - sve komponente spektra su harmonici osnovne frekvencije
 - dobijemo linijski spektar
 - kod aperiodičkih signala
 - spektar se širi, "curi" oko spektralnih linija
 - smatramo da smo dobili uzorkovani kontinuirani spektar

• Primjer periodičkog signala:

$$x[n] = 0.1\sin\left(\frac{2\pi n}{512} \cdot 16\right) + 0.2\sin\left(\frac{2\pi n}{512} \cdot 53\right) + 0.15\sin\left(\frac{2\pi n}{512} \cdot 211\right)$$

CURENJE SPEKTRA

Primjer aperiodičkog signala:

$$x[n] = 0.1\sin\left(\frac{2\pi n}{512} \cdot 16\right) + 0.2\sin\left(\frac{2\pi n}{512} \cdot 53.5\right) + 0.15\sin\left(\frac{2\pi n}{512} \cdot 211.25\right)$$

- Izdvajanje signala iz šuma:
 - ukupna snaga šuma može biti znatna, ali je po komponenti mala
 - snaga signala može biti mala, ali je po komponenti znatna

KORIŠTENJE PROZORA

- Prozori ublažuju krajnje uzorke:
 - curenje spektra možemo ublažiti prozorima, da se približimo periodičkom signalu

14.2. SPEKTRALNA ANALIZA LTI SUSTAVA

- POBUDA I ODZIV

- TEHNIKA ISPITIVANJA

- BROJ UZORAKA ODZIVA

POBUDA I ODZIV KOD TESTRANJA LTI

• Ispitivanje LTI:

- ispitujemo spektar odziva,
 time doznamo svojstvene frekvencije sustava
- sustav često pobudimo impulsom ili step funkcijom
- zabilježimo vremenski odziv sustava
- FFT nam služi za izračunavanje spektra odziva
- da bi test dao bolje rezultate,
 pobuda mora imati širokopojasni spektar
- alternativno, trebamo snimiti i pobudu i njen spektar

TEHNIKA TESTRANJA LTI

- Sustav ispitivanja LTI:
 - pobudimo širokopojasnom pobudom i snimimo odziv
 - FFT izračunamo spektar odziva

TEHNIKA TESTRANJA LTI

- Ako pobudni signal nije idealan:
 - snimimo pobudni signal
 - FFT izračunamo spektar signala
 - izračunamo spektar odziva sustava:

$$H[k] = \frac{Y[k]}{X[k]} ; Y[k] = X[k] \cdot H[k]$$

- najjednostavnije je testirati impulsom,
 čiji je spektar bijeli šum
- zbog niske energije impulsa, nekad koristimo step odziv na impuls dobijemo kao diferenciju prvog reda

BROJ UZORAKA ODZIVA

- Zbog decimacije po bazi 2 trebamo N=2ⁱ uzoraka:
 - odziv može biti dugačak
 - obuhvatimo manje uzoraka odziva
 - dio odziva je izgubljen
 - spektar je grublji (manje komponenti)
 - unesena je pogrješka zbog izgubljene informacije
 - obuhvatimo više uzoraka
 - nadopunimo odziv nulama (zero padding)
 - odziv je kompletan
 - spektar je finiji (više komponenti)
 - spektar je precizan

BROJ UZORAKA ODZIVA

Primjer s 256 i 128 točaka: 256 n |H[k]|

14.3. BRZA KONVOLUCIJA

- FILTRIRANJE U FREKVENCIJSKOM PODRUČJU

- PROBLEM CIRKULARNE KONVOLUCIJE

- SEGMENTACIJA SIGNALA

FILTRIRANJE U FREKVENCIJSKOM PODRUČJU

- Procedura filtriranja u frekvencijskom području:
 - uzorkujemo ulazni signal
 - izračunamo impulsni odziv LTI (jedanput)
 - izračunamo FFT za signal
 - izračunamo FFT za odziv LTI, dovoljno jedanput
 - obavimo množenje u frekvencijskom području
 - izračunamo IFFT za odziv
 - dobijemo blok izlaznih uzoraka, koje možemo reproducirati

FILTRIRANJE U FREKVENCIJSKOM PODRUČJU

Dijagram filtriranja u frekvencijskom području:

PROBLEM CIRKULARNE KONVOLUCIJE

- Cirkularna konvolucija:
 - odnosi se na periodični signal
 - uzima u obzir utjecaj prethodnog perioda
 - generira komponente koji utječu na slijedeći period
 - za stvarno periodične signale je OK
 - problem nastaje za aperiodičke signale treba nam obična, "linearna" konvolucija
 - RJEŠENJE: adekvatna segmentacija signala

PROBLEM CIRKULARNE KONVOLUCIJE

• Primjer za cirkularnu konvoluciju:

PROBLEM CIRKULARNE KONVOLUCIJE

• Primjer za linearnu konvoluciju:

SEGMENTACIJA SIGNALA

- Odziv izračunat konvolucijom:
 - za signal koji traje N₁ uzoraka
 - za odziv koji traje N₂ uzoraka
 - u najgorem slučaju imat ćemo ukupni odziv:

$$N_0 = N_1 + N_2 - 1$$

- nadopunimo signal sa 2ⁱ-N₁ nula, 2ⁱ ≥ N_o
- izračunamo FFT po bloku 2ⁱ,
- množimo sa frekvencijskim odzivom LTI
- pomoću IFFT dobijemo 2ⁱ uzoraka izlaza

SEGMENTACIJA SIGNALA

- Za kontinuirani aperiodički signal:
 - podijelimo na blokove po N₁ uzoraka
 - nadopunimo do 2ⁱ ≥ N_o izračunamo FFT, množimo
 - pomoću IFFT dobijemo 2ⁱ uzoraka izlaza
 - reproduciramo N₁ uzoraka izlaza
 (uključimo ostatak prethodnog bloka)
 - preostalih 2ⁱ N₁ uzoraka izlaza sačuvamo,
 da bi ih pribrojili uzorcima slijedećeg bloka

SEGMENTACIJA SIGNALA

