LDSCI5209 - Information Presentation and Visualisation

Week 3: Data Abstraction

Dimitris Mylonas

Northeastern University London

Recap: Mapping data to visual variables

Assign data fields (e.g., with *Nominal, Ordinal, Quantitative* types) to visual channels (x, y, colour, shape, size, ...) for a chosen graphical mark type (point, bar, line, ...).

Additional concerns include choosing appropriate **encoding parameters** (log scale, sorting, ...) and **data transformations** (bin, group, aggregate, ...).

Plan for today

- Data and task abstraction
- Data types
- Tables

Data and task abstraction

What, why, how?

Nested model of visualisation design

- Domain situation
 - who are the target users?
- Abstraction translate from specifics of domain to vocabulary of visualization
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
- Idiom

how is it shown?

- visual encoding idiom: how to draw
- interaction idiom: how to manipulate
- Algorithmefficient computation

What? Why? How?

Datasets

- Data Types
 - → Attributes → Links → Positions → Grids → Items
- **Data and Dataset Types**

- → Attribute Types
 - → Categorical

Attributes

- → Ordered
 - → Ordinal

→ Quantitative

- Dataset Types
 - → Tables

Items

(rows)

→ Networks

→ Trees

→ Fields (Continuous)

→ Diverging

→ Sequential

Ordering Direction

→ Cyclic

→ Multidimensional Table

Attributes (columns)

Cell containing value

- Value In cell

→ Geometry (Spatial)

Key 2

Attributes

- → Dataset Availability
 - → Static

→ Dynamic

Why?

⊘ Targets

- Analyze
 - → Consume

- → Produce
 - → Annotate
- → Record
- → Derive

Search

- {action, target} pairs
 - -discover distribution
 - -compare trends
 - -locate outliers
 - -browse topology

	Target known	Target unknown	
Location known	·.•• Lookup	*. Browse	
Location unknown	⟨゜	< O Explore	

- Query
 - → Identify
- → Compare
- → Summarize

All Data

→ Many

- **Attributes**
 - → One
 - → Distribution
 - .illii.
- → Dependency → Correlation → Similarity

<u>.::111:..</u>

→ Extremes

- **Network Data**
 - → Topology

→ Paths

- **Spatial Data**
 - → Shape

How?

Encode

Arrange

→ Express

→ Separate

→ Order

→ Use

How?

Map from categorical and ordered attributes

→ Size, Angle, Curvature, ...

→ Motion Direction, Rate, Frequency, ...

Manipulate

→ Change

Facet

Reduce

→ Juxtapose

→ Filter

→ Select

Partition

Aggregate

→ Navigate

⊙ Superimpose

→ Embed

Operations of data abstraction

- Translate domain-specific language to generic visualisation language
- Identify dataset type(s), attribute types
- Identify cardinality
 - how many items in the dataset?
 - what is cardinality of each attribute?
 - number of levels for categorical data
 - range for quantitative data
- Consider whether to transform data
 - guided by understanding of task

Derived attributes

Derived attribute: compute from originals

Original data

Derived data

Domain

- Details of an application domain
- Group of users, target domain & their data
 - varies wildly by domain
 - must be specific enough to get traction
- Domain questions/problems
 - break down into simpler abstract tasks

e.g., Find good movies?

- Identify movies in genres I like
- Domain: general population, movie enthusiasts

domain

Task Abstraction

- map what and why into generalised terms
 - identify tasks that users wish to perform, or already do
 - find data types that will support those tasks
- possibly transform /derive if need be

Example of domain abstraction

Find good movies

- identify good movies in genres I like
- Domain: general population, movie enthusiasts
- Task: what is a good movie for me?
 - highly rated by critics?
 - highly rated by audiences?
 - successful at the box office?
 - similar to movies I liked?
 - matches specific genres?
- data: (is it available?)
 - yes! data sources IMDB, Rotten Tomatoes...
- How? e.g. stacked bar chart for audience and critic ratings

https://ucladatares.medium.c om/movie-ratings-analysis-478c0de6c9f8

Analytic task taxonomy

- Retrieve Value: How long is the movie Gone with the Wind?
- Filter: What comedies have won awards?
- Compute Derived Value: How many awards have MGM studio won in total?
- Find Extremum: What director/film has won the most awards?
- Sort : Rank movies by most number of awards.
- Determine Range: What is the range of film lengths?
- Characterize Distribution: What is the age distribution of actors?
- Find Anomalies: Are there exceptions to the relationships?
- Cluster: Is there a cluster of typical film lengths?
- Correlate: Is there a trend of increasing film length over the years?

Validity threats at each level

Data types

nD Tables, Networks, Fields, Geometry

Dataset types

- DATASET = collection of information to be analysed
 - Tables, networks, trees fields, geometry
- TYPE = structural or mathematical interpretation of the data
 - Items, attributes, links, positions, grids

Dataset types

- DATASET = collection of information to be analysed
 - Tables, networks, trees fields, geometry
- TYPE = structural or mathematical interpretation of the data
 - Items, attributes, links, positions, grids

Attribute types: how many fruits?

Attribute types: how many fruits?

Categorical

Ordinal

Quantitative

Grid types

Geometry

- shape of items
- explicit spatial positions
- points, lines, curves, surfaces, regions
 - (volumes outside scope of class)
- boundary between graphics and visualisation
 - graphics: geometry taken as given
 - vis: geometry is result of a design decision

Tables 1D, 2D, 3D, nD

Working with tables

- homogeneity
 - same data type? same scales?
- need different approaches based on scale
 - how many attributes?
 - up to ~50: tractable with direct visual encoding
 - thousands: need transformations / analytical methods
 - how many items?
 - up to 1K: tractable with direct visual encoding
 - >> 10K: need transformations / analytical methods

	Age	Gender	Height
Bob	19	М	176
Alice	25	F	168
Chris	26	M	185
Dan	22	M	191

Tasks and techniques

- Deviation
- Correlation
- Ranking
- Distribution
- Change-over-time
- Magnitude
- Part-to-whole
- Spatial
- Flow

https://github.com/Financial-Times/chart-doctor/blob/main/visual-vocabulary/Visual-vocabulary-en.pdf https://gramener.github.io/visual-vocabulary-vega/#

Keys and values

- Keys
 - independent attribute
 - used as unique index to look up items
 - simple tables: 1 key
 - multidimensional tables: multiple keys
- Values
 - dependent attribute, value of cell
- classify arrangements by key count
 - 0, 1, 2, many...

0 Keys: Express values (magnitudes)

Data Visualisation Techniques

Scatter, Radial plots, Line, Bar, Pie Charts, Streamgraphs, Heatmaps

Scatter plots

No keys, only values

- Data: 2 quantitative
- Marks: points
- Channels: horizontal and vertical positions
- Tasks: find trends, outliers, correlation, distribution, clusters
- Scalability: hundreds of items

Scatter plots with additional channels

Additional encodings for point marks:

- Colour (clusters)
- Size (bubble plots)

Scatter plot tasks (correlation)

Dot plots and line charts

One key, one value

- Data: 2 quantitative
- Marks: points and line
- Channels: position, length
- Task: find trend
- Scalability: hundreds key and value levels

Bar charts

One key, one value

- Data: 1 categorical, 1 quantitative
- Marks: lines
- Channels: length, spatial regions
 - separated, aligned and ordered
- Task: compare, look up values
- Scalability: dozens to hundreds of levels

Bar vs. line charts

Depends on type of key attribute

- Bar charts if categorical
- Line charts if ordered

Using line charts for categorical attributes violates expressiveness: trend so strong that it overrides semantics

Stacked bar charts

One key, one value

- Data: 2 categorical, 1 quantitative
- Marks: vertical stack of lines
 - glyph: composite object
- Channels: length, colour lightness
 - separated, aligned and unordered
- Task: part-to-whole relationship
- Scalability: up to one dozen levels

Streamgraphs

Generalized stacked graph

- Data: 1 categorical (bands),
 1 order key (dates)
 1 quantitative (counts)
- Derived data: geometry –height (counts)
 1 quantitative (layer ordering)
- Marks: lines and areas
- Channels: length, colour hue
 - separated, aligned and ordered
- Task: change-over-time
- Scalability: hundreds of time keys and dozens to hundreds bands

Indexed line charts

One key, one value

- Data: 2 quantitative
- Derived data: 1 quantitative index instead of price
- Marks: lines
- Channels: length, colour hue
 - separated, aligned and ordered
- Task: change-over-time, normalised
- Scalability: hundreds key and value levels

Effect of DeepSeek to AI related shares 2025

Gantt charts

One key, two related values

- Data: 1 categorical, 2 quantitative
- Marks: line (duration)
- Channels: position start-end time
- Task: Start/end, temporal overlaps
- Scalability: dozens of keys, hundreds of levels

Heatmaps

Two keys, one value

- Data: 2 categorical, 1 quantitative
- Marks: points
- Channels: colour hue by quantity
- Task: find clusters, outliers
- Scalability: 1M items, 100s of categorical, ~10 quantitative levels

Cluster Heatmaps

In addition:

- Derived data: 2 cluster hierarchies
- Dendrogram: parent-child relationships
- Heatmap: marks re-ordered by clusters hierarchy traversal
- Task: assess quality of clusters found by automatic methods

Axis orientation

Parallel coordinates

Axes in parallel to show position

Data: 1 categorical, 1 quantitative

- Marks: lines (counts)
- Channels: colour, length, position
- Task: correlations, relationships
- Scalability: dozens of attributes and hundreds of items

Limitations of parallel coordinates

visible patterns only between neighboring axis pairs

- how to pick axis order?
- usual solution: reorderable axes, interactive exploration
- same weakness as many other techniques
- downside of interaction: humanpowered search
- some algorithms proposed, none fully solve

Axis orientation

Radar plots

Radial axes meet at central ring

Data: 1 categorical, 1 quantitative

- Marks: line (counts)
- Channels: colour, length
- Task: orientation
- Scalability: dozens of keys and values

Diagram of the causes of mortality (1858)

Pie charts

One key, one value

- Data: 1 categorical, 1 quantitative
- Marks: points
- Channels: lines with angle, colour by area
- Task: part-to-whole judgements
- Scalability: 2+ to hundreds of levels

Criticism of pie charts

- Empirical evidence that people respond to arc length
- not angles
- -maybe also areas?...
- donut charts no worse than pie charts

Questions?