

SEQUENCE LISTING

<110> HINUMA, Shuji
KAWAMATA, Yuji
FUJII, Ryo
MATSUMOTO, Hirokazu

RECEIVED

FEB 12 2001

<120> Prolactin Secretion Modulator

TECH CENTER 1600/2900

<130> 2472US0P

<140> US 09/446,543
<141> 1999-12-20

<150> PCT/JP98/02765
<151> 1998-06-22

<150> JP 9-165437
<151> 1997-06-23

<160> 99

<170> PatentIn version 3.0

<210> 1
<211> 98
<212> PRT
<213> Bovine

<400> 1

Met Lys Ala Val Gly Ala Trp Leu Leu Cys' Leu Leu Leu Leu Gly Leu
1 5 10 15

Ala Leu Gln Gly Ala Ala Ser Arg Ala His Gln His Ser Met Glu Ile
20 25 30

Arg Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg
35 40 45

Pro Val Gly Arg Phe Gly Arg Arg Ala Ala Pro Gly Asp Gly Pro
50 55 60

Arg Pro Gly Pro Arg Arg Val Pro Ala Cys Phe Arg Leu Glu Gly Gly
65 70 75 80

↓

RECEIVED
MAR 19 2001
TECH CENTER 1600/2900

Ala Glu Pro Ser Arg Ala Leu Pro Gly Arg Leu Thr Ala Gln Leu Val
85 90 95

Gln Glu

<210> 2
<211> 294
<212> DNA
<213> bovine

<400> 2
atgaaggcgg tgggggcctg gtcctctgc ctgctgctgc tggcctggc cctgcagggg
60

gctgccagca gagcccacca gcactccatg gagatccgca ccccccacat caaccctgcc
120

tggtaacgcrg gccgtggat ccggcccggt ggccgcattcg gccggcgaag agctgcccyyg
180

ggggacggac ccaggcctgg ccccccggcgt gtgccggcct gttccgcct ggaaggcggg
240

gctgagccct cccgagccct cccggggcgg ctgacggccc agctggtcca ggaa
294

B
h
<210> 3
<211> 29
<212> PRT
<213> artificial

<220>
<223> bovine fragment (23-51)

<400> 3

Ser Arg Ala His Gln His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro Val Gly
20 25

<210> 4
<211> 19

<212> PRT
<213> artificial

<220>
<223> bovine fragment (34-52)

<400> 4

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg

<210> 5
<211> 31
<212> PRT
<213> artificial

<220>
<223> bovine fragment (23-53)

<400> 5

Ser Arg Ala His Gln His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro Val Gly Arg Phe
20 25 30

B
wf
<210> 6
<211> 32
<212> PRT
<213> artificial

<220>
<223> bovine fragment (23-54)

<400> 6

Ser Arg Ala His Gln His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro Val Gly Arg Phe Gly
20 25 30

<210> 7
<211> 33
<212> PRT
<213> artificial

<220>
<223> bovine fragment (23-55)

<400> 7

Ser Arg Ala His Gln His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro Val Gly Arg Phe Gly
20 25 30

Arg

<210> 8
<211> 20
<212> PRT
<213> artificial

<220>
<223> bovine fragment (34-53)

<400> 8

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe
20

<210> 9
<211> 21
<212> PRT
<213> artificial

<220>
<223> bovine fragment (34-54)

<400> 9

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro

1

5

10

15

Val Gly Arg Phe Gly
20

<210> 10
<211> 22
<212> PRT
<213> artificial

<220>
<223> bovine fragment (34-55)

<400> 10

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe Gly Arg
20

<210> 11
<211> 87
<212> DNA
<213> bovine

11
agcagagccc accagcactc catggagatc cgcaccccg acatcaaccc tgcctggta
60
gcrgggccgtg ggatccggcc cgtggc
87

<210> 12
<211> 57
<212> DNA
<213> bovine

<400> 12
accggccaca tcaaccctgc ctggtagcggc ggccgtggga tccggcccggt gggccgc
57

<210> 13
<211> 93

<212> DNA
<213> bovine

<400> 13
agcagagccc accagcactc catggagatc cgcacccccc acatcaaccc tgcctggtac
60

gcrgggccgtg ggatccggcc cgtgggcccgc ttc
93

<210> 14
<211> 96
<212> DNA
<213> bovine

<400> 14
agcagagccc accagcactc catggagatc cgcacccccc acatcaaccc tgcctggtac
60

gcrgggccgtg ggatccggcc cgtgggcccgc ttccggc
96

B1
wt
<210> 15
<211> 99
<212> DNA
<213> bovine

<400> 15
agcagagccc accagcactc catggagatc cgcacccccc acatcaaccc tgcctggtac
60

gcrgggccgtg ggatccggcc cgtgggcccgc ttccggccgg
99

<210> 16
<211> 60
<212> DNA
<213> bovine

<400> 16
accccccgaca tcaaccctgc ctggtacgcr ggccgtggga tccggcccggt gggccgcttc
60

<210> 17
<211> 63
<212> DNA
<213> bovine

<400> 17
accccccaca tcaaccctgc ctggtaacgcr ggccgtggga tccggcccggt gggccgcttc
60

ggc
63

<210> 18
<211> 66
<212> DNA
<213> bovine

<400> 18
accccccaca tcaaccctgc ctggtaacgcr ggccgtggga tccggcccggt gggccgcttc
60

ggccgg
66

B1
wf
<210> 19
<211> 91
<212> PRT
<213> Human

<400> 19

Leu Val Leu Val Ile Ala Arg Val Arg Arg Leu His Asn Val Thr Asn
1 5 10 15

Phe Leu Ile Gly Asn Leu Ala Leu Ser Asp Val Leu Met Cys Thr Ala
20 25 30

Cys Val Pro Leu Thr Leu Ala Tyr Ala Phe Glu Pro Arg Gly Trp Val
35 40 45

Phe Gly Gly Gly Leu Cys His Leu Val Phe Phe Leu Gln Pro Val Thr
50 55 60

Val Tyr Val Ser Val Phe Thr Leu Thr Thr Ile Ala Val Asp Arg Tyr
 65 70 75 80

Val Val Leu Val His Pro Leu Arg Arg Arg Ile
 85 90

<210> 20
 <211> 59
 <212> PRT
 <213> human

<400> 20

Gly Leu Leu Leu Val Thr Tyr Leu Leu Pro Leu Leu Val Ile Leu Leu
 1 5 10 15

Ser Tyr Val Arg Val Ser Val Lys Leu Arg Asn Arg Val Val Pro Gly
 20 25 30

Cys Val Thr Gln Ser Gln Ala Asp Trp Asp Arg Ala Arg Arg Arg Arg
 35 40 45

Thr Phe Cys Leu Leu Val Val Val Val Val Val
 50 55

B1
WT
 <210> 21
 <211> 370
 <212> PRT
 <213> human

<400> 21

Met Ala Ser Ser Thr Thr Arg Gly Pro Arg Val Ser Asp Leu Phe Ser
 1 5 10 15

Gly Leu Pro Pro Ala Val Thr Thr Pro Ala Asn Gln Ser Ala Glu Ala
 20 25 30

Ser Ala Gly Asn Gly Ser Val Ala Gly Ala Asp Ala Pro Ala Val Thr
 35 40 45

Pro Phe Gln Ser Leu Gln Leu Val His Gln Leu Lys Gly Leu Ile Val
 50 55 60

Leu Leu Tyr Ser Val Val Val Val Gly Leu Val Gly Asn Cys Leu
 65 70 75 80

Leu Val Leu Val Ile Ala Arg Val Arg Arg Leu His Asn Val Thr Asn
 85 90 95

Phe Leu Ile Gly Asn Leu Ala Leu Ser Asp Val Leu Met Cys Thr Ala
 100 105 110

Cys Val Pro Leu Thr Leu Ala Tyr Ala Phe Glu Pro Arg Gly Trp Val
 115 120 125

Phe Gly Gly Leu Cys His Leu Val Phe Phe Leu Gln Pro Val Thr
 130 135 140

Val Tyr Val Ser Val Phe Thr Leu Thr Thr Ile Ala Val Asp Arg Tyr
 145 150 155 160

Val Val Leu Val His Pro Leu Arg Arg Ile Ser Leu Arg Leu Ser
 165 170 175

Ala Tyr Ala Val Leu Ala Ile Trp Ala Leu Ser Ala Val Leu Ala Leu
 180 185 190

Pro Ala Ala Val His Thr Tyr His Val Glu Leu Lys Pro His Asp Val
 195 200 205

Arg Leu Cys Glu Glu Phe Trp Gly Ser Gln Glu Arg Gln Arg Gln Leu
 210 215 220

Tyr Ala Trp Gly Leu Leu Leu Val Thr Tyr Leu Leu Pro Leu Leu Val
 225 230 235 240

Ile Leu Leu Ser Tyr Val Arg Val Ser Val Lys Leu Arg Asn Arg Val
 245 250 255

Val Pro Gly Cys Val Thr Gln Ser Gln Ala Asp Trp Asp Arg Ala Arg
 260 265 270

Arg Arg Arg Thr Phe Cys Leu Leu Val Val Val Val Val Phe Ala
 275 280 285

Val Cys Trp Leu Pro Leu His Val Phe Asn Leu Leu Arg Asp Leu Asp
 290 295 300

Pro His Ala Ile Asp Pro Tyr Ala Phe Gly Leu Val Gln Leu Leu Cys
 305 310 315 320

His Trp Leu Ala Met Ser Ser Ala Cys Tyr Asn Pro Phe Ile Tyr Ala
 325 330 335

Trp Leu His Asp Ser Phe Arg Glu Glu Leu Arg Lys Leu Leu Val Ala
 340 345 350

Trp Pro Arg Lys Ile Ala Pro His Gly Gln Asn Met Thr Val Ser Val
 355 360 365

Val Ile
 370

<210> 22
 <211> 206
 <212> PRT
 <213> murine

<400> 22

Leu Val Leu Val Ile Ala Arg Val Arg Arg Leu Tyr Asn Val Thr Asn
 1 5 10 15

Phe Leu Ile Gly Asn Leu Ala Leu Ser Asp Val Leu Met Cys Thr Ala
 20 25 30

Cys Val Pro Leu Thr Leu Ala Tyr Ala Phe Glu Pro Arg Gly Trp Val
 35 40 45

Phe Gly Gly Gly Leu Cys His Leu Val Phe Phe Leu Gln Ala Val Thr
 50 55 60

Val Tyr Val Ser Val Phe Thr Leu Thr Thr Ile Ala Val Asp Arg Tyr
 65 70 75 80

Val Val Leu Val His Pro Leu Arg Arg Arg Ile Ser Leu Arg Leu Ser
 85 90 95

Ala Tyr Ala Val Leu Ala Ile Trp Val Leu Ser Ala Val Leu Ala Leu
 100 105 110

Pro Ala Ala Val His Thr Tyr His Val Glu Leu Lys Pro His Asp Val
 115 120 125

Arg Leu Cys Glu Glu Phe Trp Gly Ser Gln Glu Arg Gln Arg Gln Leu
 130 135 140

Tyr Ala Trp Gly Leu Leu Leu Val Thr Tyr Leu Leu Pro Leu Leu Val
145 150 155 160

Ile Leu Leu Ser Tyr Ala Arg Val Ser Val Lys Leu Arg Asn Arg Val
165 170 175

Val Pro Gly Arg Val Thr Gln Ser Gln Ala Asp Trp Asp Arg Ala Arg
180 185 190

Arg Arg Arg Thr Phe Cys Leu Leu Val Val Val Val Val Val Val
195 200 205

<210> 23

<211> 126

<212> PRT

<213> murine

<400> 23

```

Val Val Leu Val His Pro Leu Arg Arg Arg Ile Ser Leu Arg Leu Ser
1           5           10          15

```

Ala Tyr Ala Val Leu Gly Ile Trp Ala Leu Ser Ala Val Leu Ala Leu
20 25 30

Pro Ala Ala Val His Thr Tyr His Val Glu Leu Lys Pro His Asp Val
35 40 45

Ser Leu Cys Glu Glu Phe Trp Gly Ser Gln Glu Arg Gln Arg Gln Ile
50 55 60

Tyr Ala Trp Gly Leu Leu Leu Gly Thr Tyr Leu Leu Pro Leu Leu Ala
65 70 75 80

Ile Leu Leu Ser Tyr Val Arg Val Ser Val Lys Leu Arg Asn Arg Val
85 90 95

Val Pro Gly Ser Val Thr Gln Ser Gln Ala Asp Trp Asp Arg Ala Arg
100 105 110

Arg Arg Arg Thr Phe Cys Leu Leu Val Val Val Val Val Val Val
115 120 125

<210> 24
<211> 273

<210> 24

<211> 273

<212> DNA

<213> human

<400> 24

ctgggtgctgg tgcacgtcg ggtgcgcgg ctgcacaacg tgacgaactt cctcatcggc
60

aacctggcct tgtccgacgt gctcatgtgc accgcctgcg tgccgctcac gctggcctat
120

gccttcgagc cacgcggctg ggtgttcggc ggccggctgt gccacctggt cttttccctg
180

cagccggta ccgtctatgt gtcggtgttc acgctcacca ccatcgcaagt ggaccggtag
240

gtcgtgctgg tgcacccgct gagggccgcg atc

273

<210> 25

<211> 177

<212> DNA

<213> human

B
W
<400> 25

ggcctgctgc tggtcaccta cctgctccct ctgctggta tcctcctgtc ttacgtccgg
60

gtgtcagtga agtccgcaa ccgcgtggtg ccgggctgcg tgacccagag ccaggccgac
120

tgggaccgcg ctccggcccg gcgcacccccc tgcggctgg tgggggtcgt ggtggtg
177

<210> 26

<211> 1110

<212> DNA

<213> human

<400> 26

atggcctcat cgaccactcg gggccccagg gtttctgact tattttctgg gctgccgcgg
60

gcggtcacaa ctccggccaa ccagagcgca gaggcctcg gggcaacgg gtcggtggt
120

ggcgccggacg ctccagccgt cacgcccttc cagagcctgc agctggtgca tcagctgaag
180

gggctgatcg tgctgctcta cagcgtcgtg gtggtcgtgg ggctggtggg caactgcctg
240

ctgggtctgg tgatcgcccg ggtgcgcgg ctgcacaacg tgacgaactt cctcatcgcc
300

aacctggcct tgcggacgt gctcatgtgc accgcctgcg tgccgctcac gctggcctat
360

gccttcgagc cacgcggctg ggtgttcggc ggccgcctgt gccacctggt cttttcctg
420

cagccggtca ccgtctatgt gtcggtgttc acgctcacca ccatcgcaagt ggaccgctac
480

gtcgtgctgg tgcacccgct gaggcggcgc atctcgctgc gcctcagcgc ctacgctgtg
540

ctggccatct gggcgctgtc cgccgtgctg gctgcccgg ccggcgtgca cacctatcac
600

gtggagctca agccgcacga cgtgcgcctc tgcgaggagt tctggggctc ccaggagcgc
660

cagcgccagc tctacgcctg ggggctgctg ctggtcaccc acctgctccc tctgctggc
720

atcctcctgt cttacgtccg ggtgtcagtg aagctccgca accgcgtggt gcccggctgc
780

gtgacccaga gccaggccga ctgggaccgc gctcggcgcc ggccgcaccc ttgtttgtcg
840

gtgggtgtcg tgggtgttt cggcgctgtc tggctgccgc tgcacgtctt caacctgctg
900

cgggaccccg accccccacgc catcgaccct tacgccttg ggctggtgca gctgctctgc
960

cactggctcg ccatgagttc ggccgtctac aaccgcctca tctacgcctg gctgcacgac
1020

agcttccgcg aggagctgcg caaactgttgcgtcgcttggc cccgcaagat agccccccat
1080

ggccagaata tgaccgtcag cgtggtcattc
1110

<210> 27
<211> 618
<212> DNA
<213> murine

<400> 27
ctggtgctgg tgcacgcgcg ggtgcgcggc ctgtacaacg tgacgaattt cctcatcgcc
60

aacctggcct tgcacgcgt gtcacatgtgc accgcctgcg tgccgctcac gctggcctat
120

gccttcgagc cacgcggctg ggtgttcggc ggccgcgtgt gccacctggt cttcttcctg
180

caggcggtca ccgtctatgt gtcggtgttc acgctcacca ccatcgcaatggaccgctac
240

gtcgtgctgg tgcacccgct gaggcggcgc atctcgctgc gcctcagcgc ctacgctgtg
300

ctggccatct gggtgctgtc cgccgtgctg ggcgtgcccgcg ccgcgtgca cacctatcac
360

gtggagctca agccgcacga cgtgcgcctc tgcgaggagt tctggggctc ccaggagcgc
420

cagcgccagc tctacgcctg ggggctgctg ctggtaacct acctgctccc tctgctggtc
480

atcctccctgt cttacgcccgg ggtgtcagtg aagctccgca accgcgtggt gcccggccgc
540

gtgacccaga gccaggccga ctgggaccgcg gctcggcgcc ggccgcacatt ctgcttgctg
600

gtggtggtcg tggtggtg
618

<210> 28
 <211> 378
 <212> DNA
 <213> murine

<400> 28
 gtggttctgg tgcacccgct acgtcggcgc atttcactga ggctcagcgc ctacgcggtg
 60

ctgggcatct gggctctatc tgcagtgctg gcgctgccgg ccgcggtgca cacctaccat
 120

gtggagctca agccccacga cgtgagcctc tgcgaggagt tctgggctc gcaggagcgc
 180

caacgccaga tctacgcctg ggggctgctt ctggcacct atttgctccc cctgctggcc
 240

atcctcctgt cttacgtacg ggtgtcagtg aagctgagga accgcgtggt gcctggcagc
 300

gtgacccaga gtcaagctga ctgggaccga gcgctcgcc gccgcacttt ctgtctgctg
 360

gtggtggtgg tgtagtg
 378

BI
 CK

<210> 29
 <211> 25
 <212> DNA
 <213> artificial

<220>
 <223> primer

<220>
 <221> misc_feature
 <222> (20)..(20)
 <223> any base (A, G, C, T)

<400> 29
 cgtggscmts stgggcaacn ycctg
 25

<210> 30
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

<220>
<221> misc_feature
<222> (3)..(3)
<223> any base (A, C, G, T)

<220>
<221> misc_feature
<222> (12)..(12)
<223> any base (A, C, G, T)

<400> 30
gtngwrrggc anccagcaga kggcaaa
27

Bf
<210> 31
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

<220>
<221> misc
<222> (15)..(15)
<223> any base (A, C, G, T)

<220>
<221> misc
<222> (16)..(16)
<223> any base (A, C, G, T)

<400> 31
ctgtgygysa tygcnnntkga ymgstac
27

<210> 32
<211> 29
<212> DNA
<213> artificial

<220>
<223> primer

<220>
<221> misc
<222> (23)..(23)
<223> any base (A, C, G, T)

<400> 32
akgwagwagg gcagccagca gansrygaa
29

B/|
y/
<210> 33
<211> 24
<212> DNA
<213> artificial
<220>
<223> primer

<400> 33
ctgacttatt ttctgggctg ccgc
24

<210> 34
<211> 24
<212> DNA
<213> artificial
<220>
<223> primer

<400> 34
aacaccgaca catagacggt gacc
24

<210> 35
<211> 20
<212> DNA
<213> artificial

<220>
<223> primer

<220>
<221> modified_base
<222> (3)..(3)
<223> i

<400> 35
gcncaycanc aytgyatgga
20

fl
ur
<210> 36
<211> 26
<212> DNA
<213> artificial

<220>
<223> primer

<220>
<221> modified_base
<222> (3)..(3)
<223> i

<220>
<221> modified_base
<222> (9)..(9)
<223> i

<220>
<221> modified_base

<222> (18)..(18)
<223> i

<220>
<221> modified_base
<222> (24)..(24)
<223> i

<400> 36
ccnacgggnc kdatgccnck gccngc
26

<210> 37
<211> 26
<212> DNA
<213> artificial

<220>
<223> primer

<220>
<221> modified_base
<222> (15)..(15)
<223> i

B1
B2

<220>
<221> modified_base
<222> (21)..(21)
<223> i

<400> 37
acgggcckda tgccnckgcc ngcrt
26

<210> 38
<211> 20
<212> DNA
<213> artificial

<220>

<223> primer

<400> 38

ccggcgtacc aggcagggtt
20

<210> 39

<211> 28

<212> DNA

<213> artificial

<220>

<223> primer

<400> 39

aggcagggtt gatgtcgaaa gtgcggat
28

<210> 40

<211> 27

<212> DNA

<213> artificial

<220>

<223> primer

<400> 40

ctgccagcag agcccaccag cactcca
27

<210> 41

<211> 27

<212> DNA

<213> artificial

<220>

<223> primer

<400> 41

gtgggggcct ggctcctctg cctgctg
27

<210> 42
<211> 32
<212> DNA
<213> artificial

<220>
<223> primer

<400> 42
gtgtcgacga atgaaggcgg tgggggcctg gc
32

<210> 43
<211> 24
<212> DNA
<213> artificial

<220>
<223> primer

<400> 43
aggctccgc tgttattcct ggac
24

Bl
Bv
<210> 44
<211> 98
<212> PRT
<213> bovine

<400> 44

Met Lys Ala Val Gly Ala Trp Leu Leu Cys Leu Leu Leu Leu Gly Leu
1 5 10 15

Ala Leu Gln Gly Ala Ala Ser Arg Ala His Gln His Ser Met Glu Ile
20 25 30

Arg Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Gly Arg Gly Ile Arg
35 40 45

Pro Val Gly Arg Phe Gly Arg Arg Ala Ala Leu Gly Asp Gly Pro
50 55 60

Arg Pro Gly Pro Arg Arg Val Pro Ala Cys Phe Arg Leu Glu Gly Gly

65 70 75 80

Ala Glu Pro Ser Arg Ala Leu Pro Gly Arg Leu Thr Ala Gln Leu Val
85 90 95

Gln Glu

<210>	45
<211>	83
<212>	PRT
<213>	rat

<400> 45

Met Ala Leu Lys Thr Trp Leu Leu Cys Leu Leu Leu Leu Ser Leu Val
 1 5 10 15

Leu Pro Gly Ala Ser Ser Arg Ala His Gln His Ser Met Glu Thr Arg
20 25 30

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Thr Gly Arg Gly Ile Arg Pro
35 40 45

Val Gly Arg Phe Gly Arg Arg Arg Ala Thr Pro Arg Asp Val Thr Gly
50 55 60

Leu Gly Gln Leu Ser Cys Leu Pro Leu Asp Gly Arg Thr Lys Phe Ser
65 70 75 80

Gln Arg Gly

<210>	46
<211>	249
<212>	DNA
<213>	rat

<400> 46
atggccctg
60

tccaaaggccggaa cccacccaggca ctccatqqaaq acaaqaaccc ctgatatacaa tcctgcctgg

taacccggacc acggggatcaq qcctataqqac cacttcqaca qqaqaqqqc aaccccqagg

180

gatgtcactg gacttggcca actcagctgc ctcccactgg atggacgcac caagttctct
240

cagcgtgga
249

<210> 47
<211> 31
<212> PRT
<213> artificial

<220>
<223> rat fragment (22-52)

<400> 47

Ser Arg Ala His Gln His Ser Met Glu Thr Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Thr Gly Arg Gly Ile Arg Pro Val Gly Arg Phe
20 25 30

B1
art
<210> 48
<211> 32
<212> PRT
<213> artificial

<220>
<223> rat fragment (22-53)

<400> 48

Ser Arg Ala His Gln His Ser Met Glu Thr Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Thr Gly Arg Gly Ile Arg Pro Val Gly Arg Phe Gly
20 25 30

<210> 49
<211> 33
<212> PRT
<213> artificial

<220>
<223> rat fragment (22-54)

<400> 49

Ser Arg Ala His Gln His Ser Met Glu Thr Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Thr Gly Arg Gly Ile Arg Pro Val Gly Arg Phe Gly
20 25 30

Arg

<210> 50
<211> 20
<212> PRT
<213> artificial

<220>
<223> rat fragment (33-53)

<400> 50

B /
Thr Pro Asp Ile Asn Pro Ala Trp Tyr Thr Gly Arg Gly Ile Arg Pro
1 5 10 15

Um+
Val Gly Arg Phe
20

<210> 51
<211> 21
<212> PRT
<213> artificial

<220>
<223> rat fragment (33-53)

<400> 51

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Thr Gly Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe Gly
20

<210> 52
<211> 22
<212> PRT
<213> artificial

<220>
<223> rat fragment (33-54)

<400> 52

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Thr Gly Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe Gly Arg
20

<210> 53
<211> 93
<212> DNA
<213> rat

<400> 53
agcccgagccc accagcactc catggagaca agaacccctg atatcaatcc tgcctggta
60
acggggccgcg ggatcaggcc tgtgggcccgc ttc
93

B1
cont
<210> 54
<211> 96
<212> DNA
<213> rat

<400> 54
agcccgagccc accagcactc catggagaca agaacccctg atatcaatcc tgcctggta
60
acggggccgcg ggatcaggcc tgtgggcccgc ttccggc
96

<210> 55
<211> 99
<212> DNA
<213> rat

<400> 55
agccgagccc accagcactc catggagaca agaaccctg atatcaatcc tgcctggta
60

acggggcccg gatatcaggcc tgtgggcccc ttcggcagg
99

<210> 56
<211> 60
<212> DNA
<213> rat

<400> 56
acccctgata tcaatcctgc ctggcacacg ggccgcggga tcaggcctgt gggccgcttc
60

<210> 57
<211> 63
<212> DNA
<213> rat

<400> 57
acccctgata tcaatcctgc ctggcacacg ggccgcggga tcaggcctgt gggccgcttc
60

B1
B2
63

<210> 58
<211> 66
<212> DNA
<213> rat

<400> 58
acccctgata tcaatcctgc ctggcacacg ggccgcggga tcaggcctgt gggccgcttc
60

ggcagg
66

<210> 59

<211> 87
<212> PRT
<213> human

<400> 59

Met Lys Val Leu Arg Ala Trp Leu Leu Cys Leu Leu Met Leu Gly Leu
1 5 10 15

Ala Leu Arg Gly Ala Ala Ser Arg Thr His Arg His Ser Met Glu Ile
20 25 30

Arg Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Ser Arg Gly Ile Arg
35 40 45

Pro Val Gly Arg Phe Gly Arg Arg Arg Ala Thr Leu Gly Asp Val Pro
50 55 60

Lys Pro Gly Leu Arg Pro Arg Leu Thr Cys Phe Pro Leu Glu Gly Gly
65 70 75 80

Ala Met Ser Ser Gln Asp Gly
85

B1
art
<210> 60
<211> 261
<212> DNA
<213> human

<400> 60
atgaagggtgc tgagggcctg gtcctgtgc ctgctgatgc tgggcctggc cctgcgggaa
60

gctgcaagtc gtacccatcg gcactccatg gagatccgca cccctgacat caatcctgcc
120

tggtacgcca gtcgcggat caggcctgtg ggccgcttcg gtcggaggag ggcaaccctg
180

ggggacgtcc ccaagcctgg cctgcgaccc cggctgacct gcttccccct ggaaggcgg
240

gctatgtcgt cccaggatgg c
261

<210> 61
<211> 31
<212> PRT
<213> artificial

<220>
<223> human fragment (23-53)

<400> 61

Ser Arg Thr His Arg His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Ala Ser Arg Gly Ile Arg Pro Val Gly Arg Phe
20 25 30

<210> 62
<211> 32
<212> PRT
<213> artificial

<220>
<223> human fragment (23-54)

<400> 62

Ser Arg Thr His Arg His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Ala Ser Arg Gly Ile Arg Pro Val Gly Arg Phe Gly
20 25 30

B/ut
<210> 63
<211> 32
<212> PRT
<213> artificial

<220>
<223> human fragment (23-55)

<400> 63

Ser Arg Thr His Arg His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15

Pro Ala Trp Tyr Ala Ser Arg Gly Ile Arg Pro Val Gly Arg Phe Gly

20

25

30

<210> 64
<211> 20
<212> PRT
<213> artificial

<220>
<223> human fragment (34-53)

<400> 64

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Ser Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe
20

<210> 65
<211> 21
<212> PRT
<213> artificial

<220>
<223> human fragment (34-54)

<400> 65

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Ser Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe Gly
20

<210> 66
<211> 22
<212> PRT
<213> artificial

<220>
<223> human fragment (34-55)

<400> 66

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Ser Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe Gly Arg
20

<210> 67
<211> 93
<212> DNA
<213> human

<400> 67
agtctgtaccc atcggcactc catggagatc cgcacccctg acatcaatcc tgcctggta
60

gccagtcgctg ggatcaggcc tgtggccgc ttc
93

<210> 68
<211> 96
<212> DNA
<213> human

<400> 68
agtctgtaccc atcggcactc catggagatc cgcacccctg acatcaatcc tgcctggta
60

Bl
96
gccagtcgctg ggatcaggcc tgtggccgc ttcgg
96

<210> 69
<211> 99
<212> DNA
<213> human

<400> 69
agtctgtaccc atcggcactc catggagatc cgcacccctg acatcaatcc tgcctggta
60

gccagtcgctg ggatcaggcc tgtggccgc ttcgg
99

<210> 70
<211> 60
<212> DNA

<213> human

<400> 70

acccctgaca tcaatcctgc ctggtacgcc agtcgcggga tcaggcctgt gggccgcttc
60

<210> 71

<211> 63

<212> DNA

<213> human

<400> 71

acccctgaca tcaatcctgc ctggtacgcc agtcgcggga tcaggcctgt gggccgcttc
60

ggt

63

<210> 72

<211> 66

<212> DNA

<213> human

B1 <400> 72

acccctgaca tcaatcctgc ctggtacgcc agtcgcggga tcaggcctgt gggccgcttc
60

CNT ggtcgg

66

<210> 73

<211> 22

<212> PRT

<213> artificial

<220>

<223> artificial ligand polypeptide

<220>

<221> PEPTIDE

<222> (22)..(22)

<223> Absent or Arg when aa21 is Gly

<220>
<221> PEPTIDE
<222> (21)..(21)
<223> Absent or Gly

<220>
<221> PEPTIDE
<222> (11)..(11)
<223> Gly or Ser

<220>
<221> PEPTIDE
<222> (10)..(10)
<223> Ala or Thr

<400> 73

Thr Pro Asp Ile Asn Pro Ala Trp Tyr Xaa Xaa Arg Gly Ile Arg Pro
1 5 10 15

Val Gly Arg Phe Xaa Xaa
20

Bl
Cmf
<210> 74
<211> 11
<212> PRT
<213> artificial

<220>
<223> ligand polypeptide

<220>
<221> PEPTIDE
<222> (10)..(10)
<223> Ile or Thr

<220>
<221> PEPTIDE
<222> (5)..(5)
<223> Gln or Arg

<220>
<221> PEPTIDE
<222> (3)..(3)
<223> Ala or Thr

<400> 74

Ser Arg Xaa His Xaa His Ser Met Glu Xaa Arg
1 5 10

<210> 75
<211> 26
<212> DNA
<213> artificial

<220>
<223> primer

<400> 75
carcaytcca tggagacaag aacccc
26

B1
<210> 76
<211> 24
<212> DNA
<213> artificial

<220>
<223> primer

<400> 76
taccaggcag gattgataca gggg
24

<210> 77
<211> 25
<212> DNA
<213> artificial

<220>
<223> primer

<400> 77
ggcatcatcc aggaagacgg agcat
25

<210> 78
<211> 25
<212> DNA
<213> artificial

<220>
<223> primer

<400> 78
agcagaggag agggagggta gagga
25

<210> 79
<211> 22
<212> DNA
<213> artificial

<220>
<223> primer

<400> 79
acgtggcttc tgtgcttgct gc
22

B/1
B/

<210> 80
<211> 25
<212> DNA
<213> artificial

<220>
<223> primer

<400> 80
gcctgatccc gcgccccgtg tacca
25

<210> 81
<211> 26

<212> DNA
<213> artificial

<220>
<223> primer

<400> 81
ttgcccttct cctgccgaag cggccc
26

<210> 82
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

<400> 82
ggcgggggct gcaagtgcgt a cccatcg
27

B1
But

<210> 83
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

<400> 83
cggcactcca tggagatccg cacccct
27

<210> 84
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

<400> 84

caggcaggat tgatgtcagg ggtgcgg
27

<210> 85
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

<400> 85
catggagtgc cgatgggtac gacttgc
27

<210> 86
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

B1
B2
<400> 86
ggcctccctcg gaggagccaa gggatga
27

<210> 87
<211> 27
<212> DNA
<213> artificial

<220>
<223> primer

<400> 87
gggaaaggag cccgaaggag aggagag
27

<210> 88
<211> 25
<212> DNA

<213> artificial

<220>

<223> primer

<400> 88
cctgctggcc atttcctgt cttac
25

<210> 89

<211> 25

<212> DNA

<213> artificial

<220>

<223> primer

<400> 89
gggtccaggt cccgcagaag gttga
25

31

<210> 90

<211> 25

<212> DNA

<213> artificial

<220>

<223> primer

<400> 90
gaagacggag catggccctg aagac
25

<210> 91

<211> 25

<212> DNA

<213> artificial

<220>

<223> primer

<400> 91
ggcagctgag ttggccaagt ccagt

25

<210> 92
<211> 15
<212> PRT
<213> artificial

<220>
<223> N-terminal peptide

<400> 92

Cys Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro Val Gly Arg Phe
1 5 10 15

<210> 93
<211> 15
<212> PRT
<213> artificial

<220>
<223> C-terminal peptide

<400> 93

Cys Ala Trp Tyr Ala Gly Arg Gly Ile Arg Pro Val Gly Arg Phe
1 5 10 15

<210> 94
<211> 15
<212> PRT
<213> artificial

<220>
<223> central peptide

<400> 94

Cys Glu Ile Arg Thr Pro Asp Ile Asn Pro Ala Trp Tyr Ala Gly
1 5 10 15

<210> 95
<211> 30
<212> DNA
<213> artificial

<220>
<223> primer

<400> 95
agattggcat catccaggaa gacggagcat
30

<210> 96
<211> 31
<212> DNA
<213> artificial

<220>
<223> primer

<400> 96
gctgactcgaa cagcactgtc ttctcgagct g
31

B1
<210> 97
<211> 21
<212> DNA
<213> artificial

<220>
<223> primer

<400> 97
aaccgcgttca tctatgcgtg g
21

<210> 98
<211> 20
<212> DNA
<213> artificial

<220>
<223> primer

<400> 98
atattctggc catgaggcac
20

<210> 99
<211> 28
<212> DNA
<213> artificial

BV
<220>
<223> primer

<400> 99
ttccgagagg agctacgcaa gatgcttc
28