TD 5 - Lemme d'Arden - rationalité

Lemme d'Arden:

X = e X + f avec e, f: expressions régulières

est solution minimale de X = eX + f si $\varepsilon \in e$ est solution unique de X = eX + f si $\varepsilon \notin e$

1. En utilisant le lemme d'Arden, donnez une expression régulière décrivant le langage reconnu par les automates :

La classe des langages rationnels est stable pour l'union, la concaténation, l'étoile de Kleene, l'intersection et le complémentaire.

Pour montrer qu'un langage L est **non** rationnel, on fait le raisonnement par l'absurde suivant :

- Supposer L rationnel;
- Déterminer L_1 rationnel tel que L_1 op $L = L_2$ (op $\in \{ \cup, ., *, \cap, \text{ complémentaire} \}$), L_2 connu non rationnel ;
- L₁ op L rationnel par stabilité, L₂ connu non rationnel, donc contradiction.
- 2. Montrez que le complémentaire d'un langage non rationnel est non rationnel.
- 3. Est-ce que la classe des langages non rationnels est stable par
 - a) Union?
 - b) Intersection?
 - c) Étoile de Kleene?
- 4. À l'aide des propriétés de stabilité, montrez que le langage $L = \{ w \in \{a,b\}^* \mid w \text{ comporte autant de a que de b } \}$ est non rationnel.

Lemme de l'étoile :

Soit L un langage rationnel infini accepté par un automate <u>déterministe</u> M à k états. Soit z un mot quelconque de L tel que $|z| \ge k$.

Alors z peut être décomposé en uvw avec $|uv| \le k$, $|v| \ne 0$ et $uv^i w \in L$, $\forall i \ge 0$.

5. À l'aide du lemme de l'étoile, montrez que le langage $L = \{a^p b^q \mid p \in \mathbb{N}, q \in \mathbb{N}, q \leq p\}$ est non rationnel.