Стохастичен анализ на количеството памет на алгоритмичната схема търсене с връщане

Ангел Димитриев

СУ, ФМИ, 2022 г.

Увод — типично количество памет

От практическа гледна точка не е проблем, ако една програма се нуждае от много памет временно, стига да използва малко памет през повечето време от своята работа. Ето защо е съществено не толкова максималното, колкото типичното количество памет, използвано от програмата по време на изпълнение.

Дефиниция

Под типично количество памет разбираме онази стойност, около която се колебае използваното количество памет през по-голямата част от времето за изпълнение на програмата.

Типичното количество памет зависи от:

- обема на входните данни;
- плътността на входните данни (различна дефиниция за всяка задача).

Увод — избор на мярка

За мярка на паметта избираме текущия брой елементи на построявания комбинаторен обект. Бележим с ξ . T ъй като величината ξ се мени с изпълнението на алгоритъма, ще я бележим с ξ_t , където индексът t означава **текущия момент**. Използваме модел с дискретно време: $t \in \{0; 1; 2; ...; T\}$, където T е броят на всички стъпки на алгоритъма.

Наблюдение

 $\xi_0 = 0$ за всякакви входни данни, а $\xi_T = n$ за входни данни, при които търсеният обект съществува.

Входните данни ω се избират случайно. При това тълкуване $\xi_t = \xi_t(\omega)$ се превръща в случайна величина за произволно, но фиксирано t; а когато t пробягва целите числа от 0 до T, се получава редицата $(\xi_t)_{t>0}$, която представлява случаен процес. Неговите числови характеристики са основен интерес на настоящото изследване.

Модел за пресмятане на типично количество памет

При търсене с връщане важи формулата $\,\xi_{\,t+1} = \xi_{\,t} \pm 1.\,$

Дефиниция

 $p_{n;\,k} = \mathsf{P} \big\{ \xi_{\,t+1} = k-1 \mid \xi_{\,t} = k \big\}$ е вероятността ξ да намалее, вместо да се увеличи (зависи от $n,\,p$ и от текущата стойност k на ξ).

Обикновено $p_{n;k}$ е растяща функция на k. Конкретната функция се различава от задача към задача.

Дефиниция

Обратната функция на $p_{n;k}$ бележим с k_{γ} , тоест $p_{n;k} = \gamma \iff k = k_{\gamma}$ (като функция на γ , n и p).

Модел за пресмятане на типично количество памет

Дефиниция

Равновесна точка — $k_{0,5}$.

В околност на равновесната точка процесът ξ_t има характер на симетрично случайно лутане.

Нужен ни е критерий, по който да изберем околността на равновесната точка, в която околност да ограничим симетричното случайно лутане, но така, че да наподобява процеса ξ (в смисъл на равенство на математическите очаквания).

Избор на околност на равновесната точка

- Връщащата сила трябва да е еднаква в двата края, затова търсим интервал от вида $[k_{1-\gamma}^{}; k_{\gamma}^{}], \gamma \in (0,5;1).$
- Дължината на този интервал (в който се извършва лутането) след подходящо мащабиране трябва да съвпадне с дължината п на интервала от 0 до n, в който се изменя процесът ξ_t .

Дефиниция

Мащабен множител
$$\mu=\mu(k)$$
: $p_{n,k}=\left(rac{1}{2}
ight)^{\mu}.$

Ако процесът $(\xi_t)_{t>0}$ извърши стъпка наляво от точката k, това съответства по вероятност на $\mu(k)$ стъпки наляво на симетричното случайно лутане.

$$\sum_{k=k_{1-\gamma}+1}^{k_{\gamma}} \mu(k) = \textit{n}, \; \; \text{toect} \; \; \sum_{k=k_{1-\gamma}+1}^{k_{\gamma}} \log_{2} \textit{p}_{\textit{n}\,;\,k} = -\textit{n}.$$

Решението на това уравнение ни дава γ като функция на n и p.

6 / 23

В околност на точката $k_{0,5}$ случайният процес има характер на симетрично случайно лутане, ограничено в интервала $[k_{1-\gamma}\,;\,k_{\gamma}].$ Това лутане може да се представи чрез верига на Марков:

Тази верига е:

- крайна (интервалът съдържа краен брой цели числа);
- еднородна (вероятностите за преход не се менят);
- неразложима (всяка стойност е достижима от всяка друга). Веригата не е апериодична: има два циклични подкласа (четните и нечетните числа). Веригите, породени от подкласовете, са ергодични.

4□ > 4□ > 4 = > 4 = > = 90

Разглеждаме една от веригите. След като веригата е ергодична, тя притежава гранично и единствено стационарно разпределение π и те съвпадат. Понеже π е стационарно разпределение, то

$$\pi_k = \frac{1}{2}\pi_k + \frac{1}{4}\pi_{k-2} + \frac{1}{4}\pi_{k+2},$$

$$\pi_k = \frac{1}{2}\pi_{k-2} + \frac{1}{2}\pi_{k+2}.$$

Тази редица е аритметична прогресия. Лутането е симетрично, следователно вероятностите в краищата на интервала са равни. Затова редицата е константна, тоест π е равномерно разпределение и математическото му очакване е средата $k_{\rm cp.}$ на интервала:

$$k_{\mathsf{cp.}} = rac{1}{2} \left(k_{1-\gamma} + k_{\gamma}
ight)$$

е типичното количество използвана памет.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Разглеждаме известната задача за търсене на хамилтонов цикъл в даден неориентиран граф с n върха. Тълкуваме входните данни като случаен граф: за всеки два различни върха вероятността да има ребро между тях е някакво реално число $p \in [0\,;\,1]$ — едно и също за всеки два върха.

Дефиниция за плътност в конкретната задача

Вероятността p за съществуване на ребро между два произволни върха в графа наричаме плътност на графа.

Дефиниция

 $P_n(p)$ е вероятността за съществуване на хамилтонов цикъл.

Наблюдение

 $P_n(0) = 0$, $P_n(1) = 1$ и $P_n(p)$ е растяща функция на p.

◆ロト ◆御ト ◆恵ト ◆恵ト ・恵 ・ 夕久(

Търсене на хамилтонов цикъл (експерименти)

Експериментите показват, че $P_n(p)$ расте стръмно от 0 до 1. Например $P_{50}(0,11) < 0.01$ и $P_{50}(0,14) > 0.99$, тоест почти цялото нарастване на $P_n(p)$ от 0 до 1 се извършва, когато плътността pсе мени от 0.11 до 0.14 — участък с ширина едва 0.03. Извън критичния участък можем да си спестим търсенето, приемайки, че има хамилтонов цикъл за p надясно от критичния участък, няма хамилтонов цикъл за p наляво от този участък.

Търсене на хамилтонов цикъл (експерименти)

Дефиниция

Критична плътност:
$$P_n\left(
ho_{ ext{ kp.}}
ight)=rac{1}{2}\cdot$$

При графи с критична плътност търсенето работи бавно, ето защо е важно колко памет изразходва.

11/23

Търсене на хамилтонов цикъл (експерименти)

— При плътност 7 % почти всички графи са нехамилтонови: $26.9;\ 25.3;\ 35.4;\ 32.4;\ 31.0;\ 21.8;\ 29.8;\ 31.9;\ 22.2.$ Числови характеристики: обем: $n_{\rm x}=9;$ средноаритметично: $\overline{\rm x}=28.5;$ средно отклонение: $s_{\rm x}=4.7.$

— При плътност 17 % почти всички графи са хамилтонови: 44,0; 42,4; 37,8; 44,6; 41,1; 42,8; 40,8; 39,2; 39,2. Числови характеристики: обем: $n_y=9$; средноаритметично: $\overline{y}=41,3$; средно отклонение: $s_v=2,3$.

Статистиката T' показва, че има статистически значима разлика между средните стойности: типичното количество памет расте с увеличаване на плътността на графа.

Критична плътност

 $p_{ ext{ iny Kp.}} \sim rac{\ln n}{n}$ (теорема на Поза, уточнена от Коршунов).

По правилото за умножение намираме

$$P\{\xi_{t+1} = \xi_t - 1 \mid \xi_t = k\} = p_{n;k} = (1-p)^{n-k}, \ 1 \le k \le n.$$

Тъй като случайният процес е ограничен между 0 и n вкл.:

- $p_{n;0} = 0$;
- $p_{n;n} = 1$.

Формула за $p_{n;k}$

$$p_{n;k} = \begin{cases} 0, & k = 0; \\ (1-p)^{n-k}, & 1 \le k \le n. \end{cases}$$

Решаваме относно k уравнението $p_{n;k}=\gamma$, тоест $(1-p)^{n-k}=\gamma$, и намираме $k=n-\log_{1-p}\gamma$.

Формула за k_{γ}

$$k_{\gamma} = n - \frac{\ln \gamma}{\ln(1-p)}.$$

Търсим подходящ интервал $[k_{1-\gamma}\,;\,k_{\gamma}],\ \gamma\in(0,5\,;\,1)$:

$$\sum_{k=k_{1-\gamma}+1}^{k_{\gamma}} \log_2 (1-p)^{n-k} = -n.$$

Формула за γ

$$\gamma pprox 1 - \exp\left(-\sqrt{-2n \cdot \ln 2 \cdot \ln(1-p)}\,\right)$$
.

Формула за $k_{\rm cp.}$ (типичното количество памет)

$$k_{\mathsf{cp.}} = \frac{1}{2} \left(k_{1-\gamma} + k_{\gamma} \right) = n - \frac{\ln \left(\gamma (1-\gamma) \right)}{2 \ln (1-p)}$$

е типичното количество използвана памет — равнището, около което се колебаят стойностите на случайния процес във водоравния участък на траекторията.

При $p_{\rm kp.} \sim \frac{\ln n}{n}$ получаваме:

Типично количество памет за графи с критична плътност

$$k_{\mathrm{cp.}} pprox n \left(1 - \sqrt{rac{0.5 \cdot \ln 2}{\ln n}}
ight) \cdot$$

Алгоритъм за разпознаване на хамилтонови графи

Оттук произтича следният алгоритъм за разпознаване:

- 1) Пускаме стандартния алгоритъм за търсене с връщане, като следим стойностите на случайния процес ξ_t .
- 2) Щом започне водоравният участък на траекторията, образуваме извадка от достатъчно стойности на процеса.
- 3) Пресмятаме средното аритметично $\overline{\xi}$ на извадката.
- 4) Ако $\overline{\xi} > k_{\rm cp}$, приемаме, че графът е хамилтонов; в противен случай приемаме, че графът не е хамилтонов.

Разпознаването на началото на водоравния участък може да стане с проверка на хипотези за знаците на нарастванията.

Обемът на извадката от водоравния участък може да се намери по формулата за планиране на обема: $\Theta(n)$.

Резултати от тестването на алгоритъма

Алгоритъмът разпознава правилно 99, 9937 % от графите, а останалите $0.0063\,\%$ са разпределени поравно между двата типа грешки.

Броя на решенията върху шахматна дъска $n \times n$ означаваме с $\mathbb{Q}(n)$.

Хипотеза на Беноа Кльоатър

$$Q(n) \sim \frac{n!}{c^n}, \quad c \approx 2,54.$$

Ще генерираме входните данни по случаен начин, като всяко поле ще бъде разрешено с вероятност p независимо от другите полета. Допустими стойности: $p \in [0; 1]$.

Дефиниция за плътност в конкретната задача

Вероятността p случайно избрано поле да бъде разрешено ще наричаме плътност на дъската.

Задача за цариците (експерименти)

 $P_n(p)=$ вероятността за съществуване на разположение на n царици, без да се бият, върху шахматна дъска n imes n с плътност p.

Задачата е интересна само за $p \approx p_{\rm кр.} = P_n^{-1}(0,5).$ При задачата за цариците липсва аналог на теоремата на Поза (асимптотична формула за критичната плътност на дъската).

18 / 23

Всяко поле независимо от другите остава разрешено с вероятност p. Вероятността да отпадне едно конкретно разположение е $1-p^n$. Вероятността да отпаднат всички разположения на цариците е приблизително $(1-p^n)^{\mathrm{Q}(n)}$.

Приблизителна формула за $P_n(p)$

$$P_n(p) \approx 1 - (1 - p^n)^{Q(n)}$$

е вероятността да съществува поне едно разположение на n царици.

От уравнението $P_n\left(p_{_{\mathsf{Kp}.}}\right)=0,5$ намираме критичната плътност.

Формула за $p_{_{\mathsf{KP}}}$

$$p_{\text{kp.}} \approx \frac{7}{n}$$

$$p_{n;k} \stackrel{\text{def}}{=} P\{\xi_{t+1} = \xi_t - 1 \mid \xi_t = k\} = P\{\xi_{t+1} = k - 1 \mid \xi_t = k\}.$$

Формула за $p_{n:k}$

$$p_{n;k} pprox \left(1-p\left(1-\frac{k}{n}\right)^3\right)^n.$$

От уравнението $p_{n\,;\,k}=\gamma$ намираме $k=k_{\gamma}.$

Формула за k_γ

$$k_{\gamma} pprox n \left(1 - \sqrt[3]{rac{1 - \gamma^{1/n}}{p}}
ight) \cdot$$

Разглеждаме плътности около критичната.

Формула за k_{γ}

$$k_{\gamma} \approx n \left(1 + \sqrt[3]{\frac{\ln \gamma}{7}} \right).$$

Параметърът γ може да се намери от уравнението

$$\sum_{k=k_{1-\gamma}+1}^{k_{\gamma}}\log_{2}p_{n\,;\,k}=-n.$$
 Получаваме $\gammapprox0,96979.$

Типично количество памет за дъски с критична плътност

$$k_{\mathrm{cp.}} = rac{1}{2} k_{\gamma} + rac{1}{2} k_{1-\gamma} pprox rac{n}{2} \cdot$$

Задача за цариците (експерименти)

Траектории на $(\xi_t)_{t>0}$ при дъска 8×8 с критична плътност.

Задача за цариците (експерименти)

Траектории на $(\xi_t)_{t>0}$ при дъска 16 imes 16 с критична плътност.

