1장. 컴퓨터 그래픽스

▶ 학습목표

- 구성요소를분야별로 컴퓨터 그래픽스가 응용되는 사례를 이해한다.
- 컴퓨터 그래픽스의 발전과정을 개략적으로 이해한다.
- 컴퓨터 그래픽스의 두 가지를 이해한다.

工場의 2717 子付至上

컴퓨터 그래픽스

- ▶ 컴퓨터 그래픽스
 - "컴퓨터를 사용하여 그림을 생성하는 기술"
 - 수작업 대 컴퓨터
 - 생성 = 창조 (cf. 영상처리)

♪ 그래픽스 응용

프레젠테이션
가상현실
미술
에니메이션 / 게임
교육 훈련
자연과학 가시화
그래픽 사용자 인터페이스

캐드 / 캠

캐드

- Computer-Aided Design
- ▶ 설계에 필요한 인력,시간, 노력 등을 단축함으로써 설계효율을 향상
- Computer-Aided Manufacturing
 - Numerical Control Machine
 - 자동생산에 따른 효율과 가공의 정밀도 향상

프레젠테이션 그래픽스

- ▶ 막대 차트(Bar Chart), 선 그래프(Line Chart), 파이 차트(Pie Chart), 입체 그래프(Surface Graph)
- ▶ 백문(百聞)이 불여일견(不如一見)
- ▶ 시선을 붙잡을 것

가상현실

- Virtual Reality
- "존재하지 않는 가상의 환경을 구성하되 그것이 마치 현실과 똑같이 느껴지도록 만드는 데 주안점"
- ▶ 기술적 요소
 - 입체화면, 3차원 입체 음향, 데이터 장갑
 - 장면 데이터베이스, 그래픽 소프트웨어
- ▶ 인지과학, 전자공학, 기계공학, 음향학

미술

- ▶ 무선 스타일러스 펜 이용
- ▶ 그래픽 소프트웨어

애니메이션 및 게임

Ants

소요 내역	양
총 프레임(정지화면) 수	119,592 개
주당 렌더링에 소요된 시간	275,000 시간
평균 정지 프레임 크기	6 MB
렌더링에 사용된 실리콘 그래픽 서버 수	270 대
프로세싱에 사용된 데스크 탑 컴퓨터 수	166 대
프로세서 당 평균 메모리 용량	156MB
1개의 프로세서로 제작할 경우의 소요시간	약 54년
영화 저장을 위한 보조기억 장치 용량	3.2 TB
매 순간 온 라인으로 공유된 프레임 수	75,000 개

애니메이션 및 게임

- 🏂 캐릭터, 배경화면, 애니메이션
- ▶ 사용자와 프로그램 사이의 상호작용 설계
- ▶ 상호작용에 걸리는 시간을
- ▶ 시장성 면에서 볼 때 무한한 가능성

교육 및 훈련

- CAI(Computer Aided Instruction)
 - 학습 보조도구로서 컴퓨터를 활용
 - 컴퓨터에 내재하는 추론 기능과 지식 데이터베이스
 - 텍스트 + 시각 정보를 활용
 - Ex. Exploded View

교육및 훈련

♪ 시뮬레이션

과학분야 가시화

- SCI VIS(Scientific Visualization)
 - 대용량 정보분석
 - 자연현상을 시각화. 현상 내부의 패턴이나 추세를 직관적으로 파악

그래픽 사용자 인터페이스

- GUI(Graphic User Interface)
- 🔈 메뉴, 스크롤바, 아이콘, ...
- 🔈 사용자 편의를 고려

1960	William Fetter	"컴퓨터 그래픽"이란 용어를 최초로 사용
1963	Ivan Sutherland	컴퓨터 그래픽의 제반 개념을 확립
1963	Douglas Englebart	최초의 마우스 프로토타입
1965	Jack Bresenham	선분 그리기 알고리즘을 개발

▶ 이반 서더런드(Ivan Sutherland)

- 컴퓨터 그래픽의 창시자
- 대화형 컴퓨터 그래픽 개념: 라이트 펜으로 의사전달
- 스케치패드 프로젝트
- 직선, 원호 등 기본적 그래픽 요소를 사용하여 물체를 표현하는 방법
- 기본물체를 조합하여 큰 물체를 모델링한다는 계층구조 모델링
- 물체를 선택하여 이동하는 방법
- 팝업 메뉴에 의한 사용자 입력

▶ 그래픽 알고리즘의 시기

1971	Gouraud	구로 셰이딩 알고리즘
1973	John Whitney Jr.	컴퓨터 그래픽에 의한 최초의 영화 "West World"
1974	Edwin Catmuff	텍스쳐 매핑, 지-버퍼 알고리즘
1974	Bui-Tong Phong	전반사에 의한 하이라이트 알고리즘
1975	Martin Newell	베지어 표면 메쉬를 사용한 차 주전자 모델
1975	Benoit Mandelbrot	프랙탈 이론
1976	Jim Blinn	주변 매핑, 범프 매핑 이론
1977	Steve Wozniak	컬러 그래픽 PC: Apple II
1977	Frank Crow	앤티 에일리어싱 알고리즘
1979	Kay, Greenberg	최초로 투명한 물체 면을 그려냄

- ▶ PC의 시대,
- ▶ 래스터 그래픽 하드웨어
- ▶ 기하 엔진 출현

1980	Turner, Whitted	광선 추적 알고리즘
1982	Steven Lisberger	3차원 그래픽 애니메이션 "Tron"
1982	John Walkner, Dan Drake	"AutoCAD"
1983	Jaron Lanier	데이터 장갑을 사용한 가상현실 영화
1985	Pixar	"Luxo Junior"
1985	NES	가정용 게임 "Nintendo"
1986	Steve Jobs	Lucasfilm사의 Pixar 그래픽 그룹을 인수
1987	IBM	VGA 그래픽 카드
1989	IBM	SVGA 그래픽 카드
1989	Pixar	"Tin Toy" 아카데미상 수상

♪ 사실적(Photo-realistic) 그래픽 영상에 주력

1990	Pixar: Hanrahan, Lawson	렌더링 소프트웨어 "Renderman" 개발
1990	Gary Yost	3-D Studio 개발
1991	Disney and Pixar	"Beauty and the Beast"
1992	Silicon Graphics	openGL 사양 발표
1993	Steven Spielberg	"Jurassic Park"
1995	Pixar	"Toy Story"
1995	Microsoft	DirectX API 사양 발표
1996	John Carmack, Michael Abrash	Quake 그래픽 엔진 개발
1999	NVIDIA	GeForce 256 GPU

🤌 영화, 게임 응용의 시기

2001	Square	"Final Fantasy: The Spirits Within"
2003	Timothy Purcell	광선추적 기법을 GPU에 적용
2004	Id Software	Doom Engine 발표
2004	DirectX, openGL	New Version 발표
2005	Unity Tec	Unity 발표
2007	nVidia	CUDA 발표

- 장면 내부 물체를 정의하는 작업
- 선분의 끝점, 다각형의 정점을 정의
- 질문: 선분(또는 원) 하나를 어떻게 자료구조로 나타낼 수 있을까

렌더링

- 정의될 물체를 그려내기
- 와이어 프레임 렌더링, 솔리드 렌더링
- 질문: 자료구조로 표현된 선분(또는 원)을 어떻게 모니터에 표시할까