Inlämningsuppgift 1 - sannolikhetsteori

David Tonderski - davton

1 Uppgift 1

1.a

Sannolikheten att välja minst en röd strumpa kallas P(R), medan sannolikheten att välja låda i kallas P(i). Eftersom $P(1) = P(2) = P(3) = \frac{1}{3}$, så får vi:

$$P(R) = \frac{1}{3} \left(P(R|1) + P(R|2) + P(R|3) \right). \tag{1}$$

Vidare har viP(R|1)=0, $P(R|2)=1-P(VV|2)=1-\frac{3\cdot 2}{7\cdot 6}=\frac{18}{21},$ och $P(R|3)=1-P(BB|3)=1-\frac{4\cdot 3}{7\cdot 6}=\frac{15}{21},$ där P(VV)är sannolikheten att vi väljer två vita strumpor. Sammanlagt får vi då:

$$P(R) = \frac{18+15}{21\cdot 3} = \frac{11}{21}. (2)$$

1.b

Vi har att:

$$P(M|1) = P(VV|1) + P(BB|1), \tag{3}$$

där P(M) är sannolikheten att vi får matchande strumpor. Vidare har vi $P(VV|1)=\frac{3\cdot 2}{5\cdot 4}=\frac{3}{10}$, medan $P(BB|1)=\frac{2\cdot 1}{5\cdot 4}=\frac{1}{10}$. Sammanlagt får vi då:

$$P(M|1) = \frac{2}{5}. (4)$$

1.c

Vi har att:

$$P(M) = \frac{1}{3} \left(P(M|1) + P(M|2) + P(M|3) \right). \tag{5}$$

Vidare har vi:

$$P(M|1) = \frac{2}{5} \tag{6}$$

$$P(M|2) = \frac{\cancel{4} \cdot 3}{\cancel{7} \cdot 6} + \frac{\cancel{3} \cdot 2}{\cancel{7} \cdot 6} = \frac{3}{7} \tag{7}$$

$$P(M|3) = P(M|2) = \frac{3}{7}. (8)$$

Insättning ger:

$$P(M) = \frac{44}{105}. (9)$$

1.d

Vi använder formeln:

$$P(1|M) = P(M|1)\frac{P(1)}{P(M)} = \frac{7}{22}. (10)$$

2 Uppgift 2

2.a

Fördelningsfunktionen för T ges av:

$$P(T \le t) = \sum_{k=0}^{\infty} P(T \le t | X = k) \cdot P(X = k) =$$
 (11)

$$= \sum_{k=0}^{\infty} \left(1 - e^{-(k+1)t} \right) \cdot \left(\frac{e^{-\lambda} \lambda^k}{k!} \right) = 1 - e^{\lambda e^{-t} - \lambda - t}. \tag{12}$$

2.b

Det sökta väntevärdet ges av:

$$E(T|X) = \int_0^\infty t \cdot f_t(t|k)dt = \int_0^\infty t(k+1)e^{(-(k+1)t)}.$$
 (13)

Detta är helt enkelt väntevärdet av en exponentiell fördelning med parameter (k+1), vilket ger värdet

$$E(T|X) = \frac{1}{(k+1)}. (14)$$

2.c

Distributionen av T kan ses som en viktad summa av E(T|X=k) med vikterna P(X=k). Från väntevärdets linjaritet får vi då:

$$E(T) = \sum_{k=0}^{\infty} E(T|X=k)P(X=k) = \sum_{k=0}^{\infty} \frac{1}{k+1} \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \frac{1 - e^{-\lambda}}{\lambda}.$$
 (15)

3 Uppgift 3

3.a

Från definitionen av den momentgenererande funktionen har vi:

$$M_y(t) = \int_{-\infty}^{\infty} e^{yt} \cdot f_y(y) dy = 2 \int_0^1 e^{yt} y dy = \frac{2(e^t(t-1)+1)}{t^2}.$$
 (16)

3.b

Vi vet att sannolikheterna för möjliga k måste summera till 1. Vi får alltså:

$$1 = \sum_{k=0}^{n-1} \frac{ck}{n} = \frac{c(n-1)}{2}.$$
 (17)

Därmed får vi:

$$c = \frac{2}{n-1}. (18)$$

3.c

Från definitionen av den momentgenererande funktionen har vi:

$$M_{Y_n}(t) = \sum_{k=0}^{n-1} \frac{2k}{n(n-1)} e^{\frac{kt}{n}} = \frac{2}{n(n-1)} \frac{\left((n-1)e^{\frac{t}{n}+t} + e^{\frac{t}{n}} - ne^t\right)}{(e^{t/n} - 1)^2}$$
(19)

Det ser orimligt ut att detta är den enklaste möjliga formen, men jag lyckades inte hitta något sätt att förenkla.

3.d

Vi tar gränsvärdet av täljaren och nämnaren separat. Först täljaren:

$$\lim_{n \to \infty} 2\left((n-1)e^{\frac{t}{n}+t} + e^{\frac{t}{n}} - ne^t\right) \tag{20}$$

$$= \left[\text{Taylorutveckla } e^{\frac{t}{n}} \right] = 2 \left(1 + e^{t} (t-1) \right). \tag{21}$$

Vi gör samma sak med nämnaren:

$$\lim_{n \to \infty} n(n-1)(e^{\frac{t}{n}} - 1)^2 = \left[\text{Taylorutveckla } e^{\frac{t}{n}} \right] = t^2.$$
 (22)

Vi får då sammanlagt resultatet:

$$\lim_{n \to \infty} M_{Y_n}(t) = \frac{2(1 + e^t(t - 1))}{t^2} = M_y(t), \tag{23}$$

vilket skulle visas.