MATH521

Winter 2017/18, Term 2 Timm Treskatis

Consistency

General Idea Imagine we want to solve the problem T(u) = 0. This function T would be

$$T(u) = \begin{pmatrix} -\Delta u - f \\ u|_{\partial\Omega} - g \end{pmatrix} \tag{1}$$

for the Poisson-Dirichlet problem, but T could also represent any other PDE, ODE or maybe an integral, ...

Numerically, we solve a discrete problem $T^h(u^h) = 0$ instead which gives us a numerical solution u^h . For instance, the above problem discretised with finite differences yields the left hand side

$$T^h(u^h) = L^h u^h - f^h (2)$$

of the 'big linear system', where h > 0 is a mesh parameter. For our POISSON-DIRICHLET solver, this would usually be $h = \max\{h_1, h_2\}$.

Clearly, there must be some relationship between the continuous problem T(u)=0 and the discrete problem $T^h(u^h)=0$ for T^h to be a sensible approximation of T. If we plug the (usually unknown) exact solution \bar{u} of the exact problem T(u)=0 into the discrete formulation, then this residual $T^h(\bar{u})$ should ideally be zero, but at least small. 'Small' means that as we refine the mesh $(h\to 0)$, the numerical scheme T^h should become an increasingly accurate approximation of T with perfect agreement in the hypothetical limit h=0. This is called consistency of the numerical scheme.

Formal Definition The numerical scheme T^h is said to be

1. consistent, if for every solution \bar{u} of T(u) = 0

$$||T^h(\bar{u}) - T^h(u^h)|| \to 0$$
 as $h \to 0$.

2. consistent of order $O(h^p)$, if additionally

$$||T^h(\bar{u}) - T^h(u^h)|| = O(h^p)$$
 as $h \to 0$.

Note that since $T^h(u^h) = 0$, we could have equally written $||T^h(\bar{u}) - T^h(u^h)|| = ||T^h(\bar{u})||$, but the above notation is probably more illustrative.

Your Task What is the order of consistency of our finite-difference scheme for the 1D Poisson-Dirichlet problem? Under what regularity assumption on the exact solution \bar{u} , i.e. how many continuous derivatives do we need?

It's sufficient if you consider the 1D problem

$$-u'' = f$$
 in $]0,1[$
 $u(0) = u(1) = 0$

because the analysis of the 2D case is essentially the same.

Let's break this down into three steps:

- 1. What does $||T^h(\bar{u}) T^h(u^h)||$ mean explicitly for this problem?
- 2. Compute the difference between -u''(x) and its finite-difference approximation at a fixed point $x \in]0,1[$!
- 3. Now take the maximum difference on the domain.