This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1-27. (Canceled).

28. (Currently amended) A method of treating an organism having a disease characterized by the undesired production of a protein, said method comprising contacting said an organism with a compound of formula:

wherein:

each B is a nucleobase;

one of X_1 or X_2 is O, and the other of X_1 or X_2 is S;

each R_1 , is, independently, H, hydroxyl, C_1 - C_{20} alkyl, C_3 - C_{20} alkenyl, C_2 - C_{20} alkynyl, halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

or R₁ is a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

v is from 0 to about 10;

or R_1 has the formula:

$$-(O)_{y1} = \{ (CH_2)_{y2} - O - N \}_{y3} + (CH_2)_{y2} - O - E$$

wherein:

y1 is 0 or 1;

y2 is independently 0 to 10;

y3 is 1 to 10;

E is C_1 - C_{10} alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;

each Q_1 and Q_2 is, independently, H, C_1 - C_{10} alkyl, substituted alkyl, dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to a solid support; or Q_1 and Q_2 , together, are joined in a nitrogen protecting group or a ring structure that can include at least one additional heteroatom selected from N and O;

or R₁ has one of formula I or II:

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

$$-\left\{-Z_0-(CH_2)q_1\right\}_{q_2}(O)_{q_3}-E$$

$$\begin{array}{c}
O \\
Z_1 \\
Z_2
\end{array}$$

$$Z_3$$

$$Z_4$$

$$Z_4$$

$$Z_4$$

wherein:

 Z_0 is O, S, or NH;

 q^1 is from 0 to 10;

 q^2 is from 1 to 10;

 q^3 is 0 or 1;

q⁴ is, 0, 1 or 2;

 Z_4 is OM_1 , SM_1 , or $N(M_1)_2$;

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)M_2$, $C(=O)N(H)M_2$ or $OC(=O)N(H)M_2$;

 M_2 is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN;

n is from 2 to 50; and m is 0 or 1.

29. (Currently amended) A method of treating an organism having a disease characterized by the undesired production of a protein, said method comprising contacting said <u>an</u> organism with a compound of formula:

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

wherein:

each B is a nucleobase;

 X_1 is S;

 X_2 is O;

each R₁, is, independently, H, hydroxyl, C₁-C₂₀ alkyl, C₃-C₂₀ alkenyl, C₂-C₂₀ alkynyl, halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

or R_1 is a group of formula $Z-R_{22}-(R_{23})_v$;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

v is from 0 to about 10;

or R₁ has the formula:

$$-(O)_{y1} \left\{ (CH_2)_{y2} - O - N \right\}_{y3}^{Q_1} (CH_2)_{y2} - O - E$$

y1 is 0 or 1;

y2 is independently 0 to 10;

y3 is 1 to 10;

E is C_1 - C_{10} alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;

each Q_1 and Q_2 is, independently, H, C_1 - C_{10} alkyl, substituted alkyl, dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to a solid support; or Q_1 and Q_2 , together, are joined in a nitrogen

protecting group or a ring structure that can include at least one additional heteroatom selected from N and O;

or R₁ has one of formula I or II:

wherein:

 Z_0 is O, S, or NH;

q¹ is from 0 to 10;

 q^2 is from 1 to 10;

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

 q^3 is 0 or 1;

q⁴ is, 0, 1 or 2;

 Z_4 is OM_1 , SM_1 , or $N(M_1)_2$;

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)M_2$, $C(=O)N(H)M_2$ or $OC(=O)N(H)M_2$;

 M_2 is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN;

n is from 2 to 50; and

m is 0 or 1;

R₂ is H, a hydroxyl protecting group, or an oligonucleotide; and

R₃ is OH, an oligonucleotide, or a linker connected to a solid support.

30. (Currently amended) A method of treating an organism having a disease characterized by the undesired production of a protein, said method comprising contacting said an organism with a compound of formula:

$$(5') W^1-W^2-W^3 (3')$$

wherein:

W¹ has the Formula:

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

wherein:

each B is a nucleobase;

one of X_1 or X_2 is O, and the other of X_1 or X_2 is S;

each R₁, is, independently, H, hydroxyl, C₁-C₂₀ alkyl, C₃-C₂₀ alkenyl, C₂-C₂₀ alkynyl, halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

or R_1 is a group of formula $Z-R_{22}-(R_{23})_v$;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

 $R_{23} \ is \ hydrogen, \ amino, \ halogen, \ hydroxyl, \ thiol, \ keto, \ carboxyl, \ nitro, \\ nitroso, \ nitrile, \ trifluoromethyl, \ trifluoromethoxy, \ O-alkyl, \ S-alkyl, \ NH-alkyl, \ N-dialkyl, \ O-alkyl, \ NH-alkyl, \ N-dialkyl, \ N-dialkyl,$

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

v is from 0 to about 10;

or R_1 has the formula:

$$-(O)_{y1} \left\{ (CH_2)_{y2} - O - N \right\}_{y3} (CH_2)_{y2} - O - E$$

y1 is 0 or 1;

y2 is independently 0 to 10;

y3 is 1 to 10;

E is C_1 - C_{10} alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;

each Q_1 and Q_2 is, independently, H, C_1 - C_{10} alkyl, substituted alkyl, dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to a solid support; or Q_1 and Q_2 , together, are joined in a nitrogen protecting group or a ring structure that can include at least one additional heteroatom selected from N and O;

or R_1 has one of formula I or II:

wherein:

 Z_0 is O, S, or NH; q^1 is from 0 to 10; q^2 is from 1 to 10; q^3 is 0 or 1; q^4 is, 0, 1 or 2;

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

 Z_4 is OM_1 , SM_1 , or $N(M_1)_2$;

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)M_2$, $C(=O)N(H)M_2$ or $OC(=O)N(H)M_2$;

 M_2 is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN;

n is from 2 to 50; and

m is 0 or 1;

R₂ is H, a hydroxyl protecting group, or an oligonucleotide;

W³ has the Formula:

wherein R₃ is OH, an oligonucleotide, or a linker connected to a solid support; and

DOCKET NO.: ISIS-4847

Application No.: 09/965,551

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

W² is a plurality of covalently bound nucleosides linked by phosphodiester or phosphorothioate linkages.

- 31-51. (Canceled).
- 52. (Previously presented) The method of claim 28 wherein R₁ is -O-CH₂-CH₂-O-CH₃.
- 53. (Previously presented) The method of claim 28 wherein n is about 5 to about 50.
- 54. (Previously presented) The method of claim 28 wherein n is about 8 to about 30.
- 55. (Previously presented) The method of claim 28 wherein n is about 4 to about 15.
- 56. (Previously presented) The method of claim 28 wherein n is 2 to about 10.
- 57. (Previously presented) The method of claim 29 wherein R₁ is -O-CH₂-CH₂-O-CH₃.
- 58. (Previously presented) The method of claim 29 wherein R₂ is H, and R₃ is OH.
- 59. (Previously presented) The method of claim 29 wherein R_2 is a phosphodiester-linked oligonucleotide or a phosphorothioate linked oligonucleotide.
- 60. (Previously presented) The method of claim 29 wherein R_3 is a phosphodiester-linked oligonucleotide or a phosphorothioate linked oligonucleotide.

Office Action Dated: February 13, 2004

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

- 61. (Previously presented) The method of claim 29 R₂ and R₃ are each a phosphodiesterlinked oligonucleotide or a phosphorothioate linked oligonucleotide.
- 62. (Previously presented) The method of claim 30 wherein R₁ is -O-CH₂-CH₂-O-CH₃.
- 63. (Previously presented) The method of claim 30 wherein R₂ is H, and R₃ is OH.
- 64. (Previously presented) The method of claim 30 wherein n is about 5 to about 50.
- 65. (Previously presented) The method of claim 30 wherein n is about 8 to about 30.
- 66. (Previously presented) The method of claim 30 wherein n is about 4 to about 15.
- 67. (Previously presented) The method of claim 30 wherein n is 2 to about 10.
- 68. (Previously presented) The method of claim 30 wherein W² is a plurality of covalently bound nucleosides linked by phosphodiester linkages.
- 69. (Previously presented) The method of claim 30 wherein W² is a plurality of covalently bound nucleosides linked by phosphorothioate linkages.