

2^a Ficha Formativa

Matemática A

12. Ano de Escolaridade • Turma: B + C + H

novembro de 2022

- 1. Seja f, a função real, de variável real, definida por $f(x) = \frac{x+2}{x+3}$
 - 1.1. Determina a equação reduzida da reta tangente ao gráfico da função f, no ponto de abcissa -1
 - 1.2. Resolve, em \mathbb{R} , e analiticamente, a condição $f(x) \geq -\frac{1}{x^2 + 3x}$

Apresenta o conjunto solução sob a forma de intervalo ou reunião de intervalos de números reais

2. Seja g, a função real de variável real, definida por, $g(x)=\left\{\begin{array}{ll} \displaystyle\frac{2x^2+2x}{x^2-1} & se \quad x<-1\\ \\ \displaystyle\frac{k^2+1}{3} & se \quad x=-1\\ \\ \displaystyle\frac{4\sqrt{2x+6}-8}{x^2+4x+3} & se \quad x>-1 \end{array}\right.$

Averigua, analiticamente, se existe k, para o qual a função g é contínua em x=-1

3. Considera a função h, real, de variável real, definida por $h(x) = \frac{-x^3 - x^2 - 2x + 2}{x^2 + 1}$

Em qual das opções está o valor de $\lim_{x\to +\infty} \frac{xh(x)+2x^2}{x^2}$?

- (A) 1
- (B) -1
- (C) 2
- (D) 3
- 4. Considera a função h, real de variável real, de domínio \mathbb{R} , definida por $h(x) = -\frac{1}{4}(x^2 9)(x + 2)$

Na figura 1, está representado, em referencial $o.n.\ xOy$, parte do gráfico da função h, e uma reta r, tangente ao gráfico da função no ponto de abcissa 1

Em qual das opções está o valor do declive da reta r?

- (A) $\frac{1}{4}$
- (B) $\frac{1}{3}$
- (C) $\frac{1}{2}$
- (D) $\frac{1}{5}$

Figura 1

5. Seja
$$f$$
, a função real, de variável real, definida por $f(x) = \begin{cases} x^3 + \frac{3}{2}x^2 - 1 & se \quad x < 1 \\ -1 & se \quad x = 1 \\ \frac{14x}{\sqrt{7x^2 + 4} + \sqrt{7}x} & se \quad x > 1 \end{cases}$

- 5.1. Determina, caso exista, e analiticamente, a equação da assíntota ao gráfico da função f, quando $x \to +\infty$
- 5.2. Estuda a função f quanto à monotonia e quanto à existência de extremos, no intervalo $]-\infty;1[$, e determina esses extremos, caso existam

Na tua resposta, apresenta o(s) intervalo(s) de monotonia

6. Sejam $f \in g$, duas funções reais, de variável real, de domínio $]-\infty;1]$

Na figura 2, está representado, em referencial $o.n.\ xOy$, parte do gráfico da função f, e uma reta t, tangente ao gráfico da função no ponto A

Sabe-se que:

• a função
$$g$$
 é definida por $g(x) = x\sqrt{-x+1}$

Sabendo que $(f \times g)'(-1) = 2\sqrt{2}$, determina o declive da reta t

Figura 2

7. Seja
$$g$$
, a função real de variável real definida no seu domínio por $g(x) = \frac{\sqrt{2x+1}}{x-1}$

Mostra que a equação g(x) = 2 é possível no intervalo [2; 3]

8. Seja f, uma função real de variável real, contínua em \mathbb{R} , e par, e seja a um número real não nulo, tal que $f(a) \neq f(0)$

Mostra que a equação f(x-a) = f(x) tem pelo menos uma solução em]0; a[

9. Seja g, a função real de variável real definida no seu domínio por $g(x) = \frac{b}{x-c}$, com $b, c \in \mathbb{R}$ e $b \neq 0$

Mostra, pela definição de derivada de uma função num ponto, que $g'(x) = -\frac{b}{(x-c)^2}$, com $x \neq c$

10. Seja h, a função real de variável real definida no seu domínio por $h(x) = \sqrt{bx+1}$, com $b \in \mathbb{R}$ e $b \neq 0$

Mostra, pela definição de derivada de uma função num ponto, que $h'(x) = \frac{b}{2\sqrt{bx+1}}$, com bx+1>0