# Understanding Variational Autoencoders' Latent Representations of Remote Sensing Images

Hannes Stärk

September 13, 2019

# Gliederung

- Motivation
- Vorwissen
- ► Implementierung, Hardware, Software
- Datensatz
- Architekturen
- Architektur Experimente
- Latenter Raum Experimente
- Fazit, Wie kann es weiter gehen



Credit: Audebert et al. 2017



Credit: Riemer et al. 2015

#### Motivation

- ► Trial-and-Error Multi-Task Architekturen
- Multi-Task Taxonomie
- ► Latente Informationen einzelner Schichten in Single-Task Modellen
- Latenten Raum eines Variational Autoencoders verstehen



Credit: GRID INC



# Implementierung, Hardware, Software

- Python
- Tensorflow
- Container der Uni Hannover
- ► Machine-Learning Rechner der UniBw

### Architektur Experimente

- ► Anzahl von convolutional Schichten
- Anzahl von Filtern
- ► Kernel Größe
- ▶ Max/Average Pooling











# t-Stochastic-Neighbor-Embedding

- Machine-Learning Verfahren zur Dimensions Reduktion
- Besonders gut geeignet für
- ► Fokus auf Kontext von Punkten zu ihren Nachbarn

# Latenter Raum Experimente

# Fazit und wie es weiter gehen kann



Riemer, Matthew et al. (Jan. 2015). "A Deep Learning and Knowledge Transfer Based Architecture for Social Media User Characteristic Determination". In: pp. 39–47. DOI: 10.3115/v1/W15-1705.