ECSE 6965 - Introduction to Deep Learning

Programming Homework 05

Submission by Usama Munir Sheikh

Test Accuracy: \sim 84.12 % \rightarrow (84% +)

Validation Script: Works

Screenshot:

```
Loss: 0.31638238
Training Accuracy: 87.199997901916504
Test Accuracy: 84.118002653121948

Optimization Finished
Time Elapsed: 2239.1494510173798
usama@usama-desktop:~/assign_05_new$ python validation_script.py my_model
Not validating, but checking network compatibility...
Loading model from file 'my_model'...
Trying random batch...
Batch of shape (1000, 25)
Network seems good. Go ahead and submit.
usama@usama-desktop:~/assign_05_new$
```

Visualization: Fruits and Days linearly separable with a 4^{th} degree polynomial transform.

Model uses embedding Layer: Yes. Word Embedding Size → 300

Model uses TensorFlow RNN Cell with dynamic rnn: Yes. LSTM Cell Size → 128

Model uses classifier weights with appropriate loss function: Yes. Cross Entropy used

tf.nn.sigmoid_cross_entropy_with_logits

Plots: Blue → Loss/Cost, Green → Validation Set Accuracy, Red → Training Accuracy, x-axis is Number of Iterations ÷ 50

Memory Calculation:

 $vocabulary_size = 500,000$

 $embedding_size = 300$

From Wikipedia (Dated 4/20/2017 12:37pm): "Double-precision floating-point format is a <u>computer number format</u> that occupies 8 bytes (64 bits) in computer memory"

Total Memory for Matrix of Size [vocabulary_size, embedding_size]:

 $= 8 \times 500,000 \times 300 \text{ bytes}$

= 1,200,000,000 bytes

$$= \frac{1,200,000,000}{1024 \times 1024 \times 1024}$$
 Giga Bytes

= 1.1176 Giga Bytes

~ 1.12 GB

Code: (Attached \rightarrow 'pghw05_5.py')

Commented: Yes

Not Plagiarized

Model Files: (Attached)