# LG U+ Why Not SW Camp 성능평가 결과 기획서

객체 탐지 기반 자율주행 차량 로봇의 포트홀 감지 및 자동 신고 서비스

# Dynamic Object Detection(D오디)

팀원 : 김승엽, 한은선, 김동혁, 김준희, 박장원, 김나현

# 목 차

# 1. 프로젝트 개요

- 1.1 목적 및 목표
- 1.2 데이터
- 1.3 데이터 전처리
- 1.4 분포 및 크기

# 2. 모델 구성

- 2.1 모델 구조
- 2.2 하이퍼 파라미터
- 2.3 하드웨어 요구사항
- 2.4 소프트웨어 요구사항

# 3. 평가 결과

- 3.1 학습평가
- 3.2 시각화

# 4. 비교 분석

- 5.1 데이터셋
- 5.2 데이터 증강

# 6. 결론 및 제언

# 7. 부록

### 1. 프로젝트개요

### 1.1 목적 및 목표

#### 목적

- 실시간 객체 탐지 정확도를 향상시키고 자율 주행에서 도로, 왼쪽, 오른쪽, 정지, 포트홀의 탐지를 최적화 하기 위함.

### 목표

- 최적화된 학습 과정을 통해 검증 데이터셋에서 mAP 50-95(B)가 0.6 이상, Precision(B) 0.8 이 상, Recall(B) 0.84 이상을 달성

#### 1.2 데이터

- 직접 촬영한 데이터 셋
- 사용된 데이터셋(훈련,검증,테스트데이터셋)

| 데이터 종류  | 설명                                                              |
|---------|-----------------------------------------------------------------|
| 훈련 데이터  | • 모델 학습에 사용된 데이터셋으로, 손실 값(box loss, class loss, dfl loss)의 감소   |
|         | 를 통해 모델의 학습 상태를 평가                                              |
|         | • 객체 탐지를 위한 바운딩 박스 정보와 클래스 라벨을 포함하며, 데이터 증강 기법(회                |
|         | 전, 크롭, 밝기 조정 등)을 적용하여 다양한 학습 제공                                 |
|         | • 모델의 성능을 중간평가                                                  |
| 검증 데이터  | • 검증 손실 값(box loss, class loss 등)과 mAP(50) 및 mAP(50-95) 지표를 기준으 |
|         | 로 모델의 탐지 성능을 평가                                                 |
|         | • 과적합 여부를 확인                                                    |
| 테스트 데이터 | • 모델의 최종 성능을 평가하기 위해 사용되는 독립적인 데이터셋                             |
|         | • 모델의 실제 예측 가능성을 평가함.                                           |

### 1.3 데이터 전처리

| 데이터 전처리 과정                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|---------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 이미지화                      | 리사이징                | 바운딩박스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | class 통일                           |
| → JPG                     | 720 X 723 640 X 640 | GEORGE TO THE STATE OF THE STAT | ** perbole* cogy * valid * libeals |
| • 동영상을 프레임 단위<br>로 이미지 생성 | • 이미지 사이즈 통일화       | • 특정 객체 라벨링                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 클래스 번호를 통한 객<br>체 분류             |

# 1.4 데이터 분포 및 크기 (현재)

| 객체         |       | 이미지, 라벨링 개수 |
|------------|-------|-------------|
|            | test  | 54          |
| Pothole    | train | 3003        |
|            | valid | 28          |
|            | test  | 20          |
| Stop Sign  | train | 160         |
|            | valid | 20          |
|            | test  | 12          |
| Left sign  | train | 516         |
|            | valid | 47          |
|            | test  | 20          |
| Right sign | train | 539         |
|            | valid | 51          |

# 2. 모델 구성

### 2.1 모델 구조

- 백본과 탐지 헤드의 주요 레이어 비교



| 구성요소  | 백본(Backbone)                       | 탐지 헤드(Detection Head)           |
|-------|------------------------------------|---------------------------------|
| 주요레이어 | CSPNet 기반의 CSPDarknet              | FPN (Feature Pyramid Network)   |
| 핵심 구조 | 잔차 블록(Residual Blocks),<br>합성곱 레이어 | PAN (Path Aggregation Network)  |
| 기능    | 이미지에서 특징 추출                        | 추출된 특징을 바탕으로<br>바운딩 박스 및 클래스 예측 |

최종 예측 메커니즘으로, 정제된 특징 맵을 바탕으로 객체의 위치와 분류를 출력합니다. 이 단계에서 최종 결과를 생성합니다.

# 2.2 하이퍼 파라미터 (yolo표준)

| 이름                       | 현재 값                                                         |
|--------------------------|--------------------------------------------------------------|
| 학습률 (Learning Rate)      | lr0: 0.01<br>lrf: 0.01<br>warmup_bias_lr: 0.1<br>fliplr: 0.5 |
| 배치 크기 (Batch Size)       | Batch Size: 16                                               |
| 에포크 수 (Number of Epochs) | Epochs: 80                                                   |
| 모멘텀 (Momentum)           | momentum: 0.937<br>warmup_momentum: 0.8                      |
| 가중치 감쇠 (Weight Decay):   | weight_decay: 0.0005                                         |

# 2.3 하드웨어 요구 사항

| CPU (Intel i7-13620H)  | 총 코어: 10 코어, 16 쓰레드 / 코어성능 : 기본 2.4 GHz, 터보 4.9 GHz |
|------------------------|-----------------------------------------------------|
| GPU (NIVIDIA RTX 4060) | 메모리 크기 : 8GB , 대역폭 : 272.0 GB/s                     |
| RAM                    | 32GB                                                |
| 저장공간 (SSD)             | 414GB                                               |

# 2.4 소프트웨어 요구 사항

| 운영체제          | Window 10                                   |
|---------------|---------------------------------------------|
| 실행환경          | Jupyter Notebook                            |
| Python        | Python 12.0 이상                              |
|               | numpy 2.0.1 (고성능 수치 계산)                     |
|               | pandas 2.2.3 (데이터 조작 및 분석)                  |
| <br>  사용한 패키지 | opencv-python 14.10.0.84 (컴퓨터 비전 및 이미지 처리)  |
| 사용인 페기시       | matplotlib 3.9.2 , seaborn 0.13.2 (시각화)     |
|               | torch 2.5.1 (모델 구축 및 훈련)                    |
|               | ultralytics 8.3.38 (YOLO 모델 객체 탐지 및 이미지 분류) |

# 3. 학습결과

# 3.1 학습 평가

평가 기준값: 50번

| 지표 평가 |    | 평가                   | 결과 값  |
|-------|----|----------------------|-------|
| 훈련    |    | train/box_loss       | 0.95  |
|       | 훈련 | train/cls_loss       | 0.9   |
| 손실    |    | train/dfl_loss       | 1.2   |
| 七色    |    | val/box_loss         | 1.10  |
|       | 검증 | val/cls_loss         | 1.0   |
|       |    | val/dfl_loss         | 1.325 |
| 정확도   |    | metrics/precision(B) | 0.755 |
|       |    | metrics/recall(B)    | 0.825 |

### 3.2 시각화



# 4. 비교분석

# 4.1 데이터셋



# 4.2 데이터 증강



#### 6. 결론 및 제언

#### 6.1 결론

본 프로젝트는 객체 탐지 기반 자율주행 차량 로봇에서 객체 인식을 통한 주행과 포트홀 감지 및 자동 신고 서비스를 목표로 하였습니다.

- 검증 데이터셋에서 mAP 50-95(B)가 0.6 이상 목표를 설정하였으나, 성능은 일부 지표에서 목표를 하회하여 추가 개선의 여지가 확인되었습니다.
- Precision(B)은 0.755, Recall(B)은 0.825로 나타나 도로 환경에서의 높은 탐지율을 나타냅니다.

#### 6.2 제언

- 1. 모델 성능 향상
- 직접 만든 test도로에서의 데이터 추출을 통해 성능을 개선, 포트홀 및 정지 표지판과 같은 특정 클래스에 대한 데이터 다양성을 확보하는 것이 중요합니다.
- 우리가 직접 촬영하고 제작한 데이터셋을 기반으로, 실제 도로 상황과 유사한 추가 데이터를 확보하여 모델의 일반화 성능을 높일 필요가 있습니다.

### 2. 실시간 시스템 구현

• 현재 ESP32-CAM을 통해 실시간으로 카메라 데이터를 수집하고 있으므로, 이를 활용하여 실시 간 객체 탐지 및 분석 시스템을 딜레이에 대한 안정화하는 작업이 필요합니다.

#### 3. 현장 테스트 및 시뮬레이션

- 직접 제작한 도로 및 시나리오를 기반으로 작업한 경험을 확장하여, TEST 도로 환경을 반영한 테스트 시뮬레이션을 추가로 수행해야 합니다.
- 직접 제작한 도로 및 시나리오를 기반으로 다양한 환경과 조건에서 성능을 평가하고, 안전성을 강화하는 방향으로 개선 작업을 이어나갈 필요가 있습니다.

# 5. 부록

| 학습률 (Learning Rate)      | 모델이 가중치를 업데이트하는 속도를 결정합니다. 너무 높으면 최<br>적점을 지나칠 수 있고, 너무 낮으면 학습 속도가 느려질 수 있습<br>니다. |
|--------------------------|------------------------------------------------------------------------------------|
| 배치 크기 (Batch Size)       | 한 번의 업데이트에 사용되는 샘플 수입니다. 큰 배치 크기는 더<br>안정적인 경량 업데이트를 제공하지만, 메모리 사용량이 증가합니<br>다.    |
| 에포크 수 (Number of Epochs) | 전체 데이터셋을 몇 번 반복하여 학습할지를 결정합니다. 너무 많으면 과적합(overfitting)될 수 있습니다.                    |
| 모멘텀 (Momentum)           | 이전 업데이트의 영향을 반영하여 현재 업데이트를 조정하는 데 사용됩니다. 이는 학습 속도를 높이고 진동을 줄이는 데 도움을 줍니다.          |
| 가중치 감쇠 (Weight Decay):   | 과적합을 방지하기 위해 가중치에 패널티를 부여하는 방법입니다.<br>일반적으로 L2 정규화를 사용합니다.                         |

# 성능평가 지표

|                      | 모델이 예측한 바운딩 박스와 실제 바운딩 박스 간의               |
|----------------------|--------------------------------------------|
|                      | 차이를 측정하는 손실 값입니다. 일반적으로 L1 손실              |
| train/box_loss       | 이나 L2 손실을 사용하여 계산됩니다. 이 값이 낮을              |
|                      | 수록 모델이 바운딩 박스를 정확하게 예측하고 있다                |
|                      | 는 것을 의미합니다.                                |
|                      | 클래스 손실로, 모델이 객체의 클래스를 올바르게 분               |
| train/cls_loss       | 류하는 능력을 평가합니다. 일반적으로 크로스 엔트                |
| ti dili/ Cis_ioss    | 로피 손실을 사용하여 계산되며, 이 값이 낮을수록                |
|                      | 모델의 분류 성능이 좋다는 것을 나타냅니다.                   |
|                      | DFL(Distribution Focal Loss) 손실로, 객체 탐지에   |
| train/dfl_loss       | 서 클래스 불균형 문제를 해결하기 위해 사용됩니다.               |
| trum, un_ross        | 이 손실은 어려운 예제에 더 많은 가중치를 부여하여               |
|                      | 모델이 더 잘 학습하도록 돕습니다.                        |
|                      | 정밀도(Precision)는 모델이 예측한 양성 샘플 중 실          |
| metrics/precision(B) | 제로 양성인 샘플의 비율을 나타냅니다. 즉, TP /              |
|                      | (TP + FP)로 계산됩니다. 높은 정밀도는 모델이 잘            |
|                      | 못된 <u>긍정</u> 예측을 적게 한다는 것을 의미합니다           |
|                      | 재현율(Recall)은 실제 양성 샘플 중 모델이 올바르            |
| metrics/recall(B)    | 게 예측한 양성 샘플의 비율을 나타냅니다. 즉, TP              |
|                      | /(TP + FN)으로 계산됩니다. 높은 재현율은 모델이            |
|                      | 실제 양성을 잘 포착하고 있다는 것을 의미합니다.                |
|                      | mAP(Mean Average Precision) at IoU=0.5는 다양 |
|                      | 한 클래스에 대한 평균 정밀도를 측정합니다.                   |
| metrics/mAP50(B)     | IoU(Intersection over Union) 임계값이 0.5일 때,  |
|                      | 모델의 성능을 평가하는 데 사용됩니다. 이 값이 높               |
|                      | 을수록 모델의 전반적인 성능이 좋다는 것을 나타냅                |
|                      | 니다.                                        |
| metrics/mAP50-95(B)  | mAP at IoU=0.5:0.95는 IoU 임계값을 0.5에서 0.95   |
|                      | 까지 변화시키면서 계산한 평균 정밀도를 나타냅니                 |

|                            | 다. 이 지표는 모델의 성능을 더 엄격하게 평가하며,     |
|----------------------------|-----------------------------------|
|                            | 다양한 IoU 임계값에서의 성능을 종합적으로 보여줍      |
|                            | 니다.                               |
| wal/box logg               | 검증 데이터셋에서의 바운딩 박스 손실입니다. 훈련       |
| val/box_loss               | 중 모델의 일반화 성능을 평가하는 데 사용됩니다.       |
| wol/ala loga               | 검증 데이터셋에서의 클래스 손실입니다. 모델의 분       |
| val/cls_loss               | 류 성능을 검증하는 데 사용됩니다.               |
| wal/dfl logg               | 검증 데이터셋에서의 DFL 손실입니다. 모델의 일반      |
| val/dfl_loss               | 화 성능을 평가하는 데 사용됩니다.               |
|                            | 각 파라미터 그룹에 대한 학습률(Learning Rate)입 |
| la /2 =0 la /2 =1 la /2 =0 | 니다. 모델의 훈련 과정에서 각 파라미터 그룹에 대      |
| lr/pg0, lr/pg1, lr/pg2     | 해 설정된 학습률을 나타냅니다. 학습률은 모델의 수      |
|                            | 렴 속도와 성능에 큰 영향을 미칩니다.             |

# 하이퍼 파라미터

| 학습률 (Learning Rate)      | 모델이 가중치를 업데이트하는 속도를 결정합니다. 너무 높으면 최<br>적점을 지나칠 수 있고, 너무 낮으면 학습 속도가 느려질 수 있습<br>니다. |
|--------------------------|------------------------------------------------------------------------------------|
| 배치 크기 (Batch Size)       | 한 번의 업데이트에 사용되는 샘플 수입니다. 큰 배치 크기는 더<br>안정적인 경량 업데이트를 제공하지만, 메모리 사용량이 증가합니<br>다.    |
| 에포크 수 (Number of Epochs) | 전체 데이터셋을 몇 번 반복하여 학습할지를 결정합니다. 너무 많으면 과적합(overfitting)될 수 있습니다.                    |
| 모멘텀 (Momentum)           | 이전 업데이트의 영향을 반영하여 현재 업데이트를 조정하는 데 사용됩니다. 이는 학습 속도를 높이고 진동을 줄이는 데 도움을 줍니다.          |
| 가중치 감쇠 (Weight Decay):   | 과적합을 방지하기 위해 가중치에 패널티를 부여하는 방법입니다.<br>일반적으로 L2 정규화를 사용합니다.                         |