ACH2002

Aula 14

Algoritmos de Ordenação: estabilidade e alg. inserção, seleção direta e bolha

Profa. Ariane Machado Lima

- Grande parte das operações de Sistemas de Informações é constituída por buscas em bases de dados.
- •Exemplos?

• Grande parte das operações de Sistemas de Informações é constituída por buscas em bases de dados.

•Exemplos?

- consultar saldo bancário, fornecendo número da conta corrente;
- consultar nota no sistema Júpiter, fornecendo número USP;
- consultar preço de um livro em uma loja, fornecendo seu código.

Para essas operações, os dados devem estar ordenados.

- Algoritmos de ordenação constituem uma classe muito estudada de algoritmos.
- •Por quê?

Para essas operações, os dados devem estar ordenados.

- Algoritmos de ordenação constituem uma classe muito estudada de algoritmos.
 - •é impossível pensar em buscas sem ordenação;
 - buscas exigem que os dados estejam organizados;
 - •volume de dados geralmente é grande.

O problema da ordenação

Um vetor v[0..n-1] é **crescente** se $v[0] \le v[1] \le \cdots \le v[n-1]$. O problema da ordenação de um vetor consiste no seguinte:

Rearranjar (ou seja, permutar) os elementos de um vetor v[0..n-1] de tal modo que ele se torne crescente.

Mas obviamente os mesmos algoritmos podem ser facilmente adaptados para realizar uma ordenação **decrescente**

Algoritmos de ordenação

- Terceira parte da disciplina
- Já vimos em aulas anteriores:
 - InsertionSort (inserção direta)
 - MergeSort (ordenação por intercalação)
- Vamos revisar hoje outros que já devem ter visto:
 - SelectionSort (ordenação por seleção direta)
 - BubbleSort (ordenação pelo método da bolha)
- Vamos comparar os quatro levando em consideração:
 - Quanto usa de espaço
 - Complexidade de tempo (total, comparações e movimentações)
 - Estabilidade

Algoritmos de ordenação

- Terceira parte da disciplina
- Já vimos em aulas anteriores:
 - InsertionSort (inserção direta)
 - MergeSort (ordenação por intercalação)
- Vamos revisar hoje outros que já devem ter visto:
 - SelectionSort (ordenação por seleção direta)
 - BubbleSort (ordenação pelo método da bolha)
- Vamos comparar os quatro levando em consideração:
 - Quanto usa de espaço
 - Complexidade de tempo (total, comparações e movimentações)
 - Estabilidade

Ordenação interna x externa

- Ordenação interna:
 - o arquivo/vetor cabe inteiramente na memória principal
 - tema desta disciplina
- Ordenação externa:
 - o arquivo/vetor NÃO cabe inteiramente na memória principal, e portanto a memória secundária (disco/SSD) precisa ser usada como apoio
 - Tema da disciplina ACH2024 (AED 2)

Uso de espaço

- O uso econômico da memória disponível é um requisito primordial na ordenação interna.
- Métodos de ordenação in situ ou in loco (que ordenam no próprio vetor, usando no máximo algumas poucas variáveis a mais) são os preferidos.
- Métodos que utilizam listas encadeadas não são muito utilizados (ponteiro gasta espaço).

Algoritmos de ordenação

- Terceira parte da disciplina
- Já vimos em aulas anteriores:
 - InsertionSort (inserção direta)
 - MergeSort (ordenação por intercalação)
- Vamos revisar hoje outros que já devem ter visto:
 - SelectionSort (ordenação por seleção direta)
 - BubbleSort (ordenação pelo método da bolha)
- Vamos levar em consideração nas comparações:
 - Quanto usa de espaço
 - Complexidade de tempo (total, comparações e movimentações)
 - Estabilidade

Algoritmos de ordenação

Ordenação utilizando um determinado campo chave

```
typedef long TipoChave;
typedef struct TipoItem {
   TipoChave Chave;
   /* outros componentes */
} TipoItem;
```

- Normalmente usaremos vetores com apenas um valor (ao invés de uma estrutura) para simplificar o problema e focar apenas na lógica de ordenação
- Mas na prática, quando as estruturas (registros) são muito grandes,
 minimizar movimentações é interessante. Por isso....

Complexidade de tempo de algoritmos de ordenação

Para um vetor de tamanho n, a complexidade de tempo pode ser analisada pela:

- Complexidade total T(n): número de operações (como fizemos até agora)
- Número de comparações (entre as chaves) C(n)
- Número de movimentações de registros M(n)

Algoritmos de ordenação

- Terceira parte da disciplina
- Já vimos em aulas anteriores:
 - InsertionSort (inserção direta)
 - MergeSort (ordenação por intercalação)
- Vamos revisar hoje outros que já devem ter visto:
 - SelectionSort (ordenação por seleção direta)
 - BubbleSort (ordenação pelo método da bolha)
- Vamos levar em consideração nas comparações:
 - Quanto usa de espaço
 - Complexidade de tempo (total, comparações e movimentações)
- Estabilidade ← Vamos agora falar um pouquinho disso

Suponha que você quer ordenar uma planilha por um determinado campo, ex. Nome:

+	_	-	-
Nome	Idade	Endereço	
Fulano da Silva	22	aaaa	
Beltrano Siqueira	22	bbbb	
Jurubeba Leão do Norte	34	cccc	
Lilica da Cunha	22	dddd	
Ciclano da Fonseca	34	eeeee	

Suponha que você quer ordenar uma planilha por um determinado campo, ex. Nome:

Nome	Idade	Endereço	 Nome	Idade	Endereço	
Fulano da Silva	22	aaaa	Beltrano Siqueira	22	bbbb	
Beltrano Siqueira	22	bbbb	Ciclano da Fonseca	34	eeeee	
Jurubeba Leão do Norte	34	cccc	Fulano da Silva	22	aaaa	
Lilica da Cunha	22	dddd	Jurubeba Leão do Norte	34	cccc	
Ciclano da Fonseca	34	eeeee	Lilica da Cunha	22	dddd	

Suponha que você quer ordenar uma planilha por um determinado campo, ex. Nome:

Nome	Idade	Endereço	 Nome	Idade	Endereço	
Fulano da Silva	22	aaaa	Beltrano Siqueira	22	bbbb	
Beltrano Siqueira	22	bbbb	Ciclano da Fonseca	34	eeeee	
Jurubeba Leão do Norte	34	cccc	Fulano da Silva	22	aaaa	
Lilica da Cunha	22	dddd	Jurubeba Leão do Norte	34	cccc	
Ciclano da Fonseca	34	eeeee	Lilica da Cunha	22	dddd	

Agora você quer ordenar por **outro** campo (ex. Idade) mantendo a ordenação por nome no caso de empate de idade (ou seja, **sem alterar a ordem relativa entre os empates**)

Nome	Idade	Endereço	
Beltrano Siqueira	22	bbbb	
Fulano da Silva	22	aaaa	
Lilica da Cunha	22	dddd	
Ciclano da Fonseca	34	eeeee	
Jurubeba Leão do Norte	34	cccc	

Suponha que você quer ordenar uma planilha por um determinado campo, ex. Nome:

Nome	Idade	Endereço	 Nome	Idade	Endereço	
Fulano da Silva	22	aaaa	Beltrano Siqueira	22	bbbb	
Beltrano Siqueira	22	bbbb	Ciclano da Fonseca	34	eeeee	
Jurubeba Leão do Norte	34	cccc	Fulano da Silva	22	aaaa	
Lilica da Cunha	22	dddd	Jurubeba Leão do Norte	34	cccc	
Ciclano da Fonseca	34	eeeee	Lilica da Cunha	22	dddd	

Agora você quer ordenar por **outro** campo (ex. Idade) mantendo a ordenação por nome no caso de empate de idade (ou seja, **sem alterar a ordem relativa entre os empates**)

Idade	Endereço	
22	bbbb	
22	aaaa	
22	dddd	
34	eeeee	
34	cccc	
	22 22 22 34	Idade Endereço 22 bbbb 22 aaaa 22 dddd 34 eeeee 34 ccccc

Estabilidade

Definição: Um algoritmo de ordenação é **estável** se não altera a posição relativa de elementos que têm um mesmo valor.

Ex.:

```
vetor original: 444 555 666 777 333 222_1 111 222_2 888 vetor ordenado: 111 222_1 222_2 333 444 555 666 777 888
```

Figura 8.3: Ordenação estável. O vetor original tem dois elementos com valor 222 (índices 1 e 2 são usados para distinguir o primeiro do segundo). No vetor ordenado, o primeiro destes elementos continua à frente do segundo.

Estabilidade

• Alguns dos métodos de ordenação mais eficientes não são estáveis.

Algoritmos de ordenação

- Algoritmos elementares (simples)
 - Inserção Direta (InsertionSort)
 - Seleção Direta (SelectionSort)
 - Método da Bolha (BubbleSort)


```
insercao (n, v)

para j ← 2 até tamanho de v faça
    chave ← v[j];

// ordenando elementos à esquerda
    i ← j - 1
    enquanto i > 0 e v[i] > chave faça
        v[i+1] ← v[i]
        i ← i - 1

fim enquanto
    v[i+1] ← chave

fim para
```

Complexidade de tempo:

In loco?:

Estável:


```
insercao (n, v)

para j ← 2 até tamanho de v faça
    chave ← v[j];

// ordenando elementos à esquerda
    i ← j - 1
    enquanto i > 0 e v[i] > chave faça
        v[i+1] ← v[i]
        i ← i - 1

fim enquanto
    v[i+1] ← chave

fim para
```

Complexidade de tempo: O(n²)

In loco?:

Estável:


```
insercao (n, v)

para j \leftarrow 2 até tamanho de v faça

chave \leftarrow v[j];

// ordenando elementos à esquerda

i \leftarrow j - 1

enquanto i > 0 e v[i] > chave faça

v[i+1] \leftarrow v[i]

i \leftarrow i - 1

fim enquanto

v[i+1] \leftarrow chave

fim para
```

Complexidade de tempo: O(n²)

In loco?: SIM!

Estável:


```
insercao (n, v)

para j ← 2 até tamanho de v faça
    chave ← v[j];

// ordenando elementos à esquerda
    i ← j - 1
    enquanto i > 0 e v[i] > chave faça
        v[i+1] ← v[i]
        i ← i - 1

fim enquanto
    v[i+1] ← chave

fim para
```

Complexidade de tempo: O(n²)

In loco?: SIM!

Estável: Sim! O que o torna estável?


```
insercao (n, v)

para j ← 2 até tamanho de v faça
    chave ← v[j];

// ordenando elementos à esquerda
    i ← j - 1
    enquanto i > 0 e v[i] > chave faça
        v[i+1] ← v[i]
        i ← i - 1
    fim enquanto
    v[i+1] ← chave
    fim para
```

Complexidade de tempo: O(n²)

In loco?: SIM!

Estável: Sim! O que o torna estável? O menor elemento do subvetor à direita é inserido APÓS os elementos que já foram ordenados, e o processo é realizado da esquerda para a direita.


```
insercao (n, v)

para j ← 2 até tamanho de v faça
    chave ← v[j];

// ordenando elementos à esquerda
    i ← j - 1

enquanto i > 0 e v[i] > chave faça
    v[i+1] ← v[i]
    i ← i - 1

fim enquanto
    v[i+1] ← chave

fim para
```

Complexidade de tempo: O(n²)

Complexidade de tempo no melhor caso:

Complexidade de tempo: O(n²)

Complexidade de tempo no melhor caso:

O(n) quando o vetor já está ordenado


```
insercao (n, v)

para j ← 2 até tamanho de v faça
    chave ← v[j];

// ordenando elementos à esquerda
    i ← j - 1
    enquanto i > 0 e v[i] > chave faça
    v[i+1] ← v[i]
    i ← i - 1

fim enquanto
    v[i+1] ← chave

fim para
```

Número de comparações entre chaves - C(n):

Note que além das comparações entre chaves temos a comparação ± > 0

Dá para eliminá-la... como?


```
insercao (n, v)

para j ← 2 até tamanho de v faça
    chave ← v[j];

// ordenando elementos à esquerda
    i ← j - 1
    enquanto i > 0 e v[i] > chave faça
    v[i+1] ← v[i]
    i ← i - 1

fim enquanto
    v[i+1] ← chave

fim para
```

Número de comparações entre chaves - C(n):

Note que além das comparações entre chaves temos a comparação ± > 0

Dá para eliminá-la... como?

Usando uma sentinela! - colocando na primeira

Usando uma sentinela! - colocando na primeira posição (extra) um valor "-infinito" (ex: INT MIN)

O código do slide a seguir está em C, por isso assumiremos que o vetor começa em 0 (mas terá uma posição a mais por conta da sentinela).

```
Subvetor já
           Lordenado
                                                   n
                                  -78
         52
              125
                         55
                              69
                                       200
                                          55
                                                        200
                                125
                                               69
                                                                  63
                             DESLOCA
Número a inserir
                                52 | 125 |
                                          55
                                                   -78
                                                        200
                                               69
                                                              0
                                                                  63
```

```
#include <limits.h>
void insercao(int n, int [] v) {
 int i, j, chave;
 v[0] = INT MIN; //sentinela!!!
  for (j = 2; j \le n; j++) \{
    chave = v[j];
    // ordenando elementos à esquerda
    i = j - 1;
    while (v[i] > chave)
         v(i+1) = v(i):
         i = i - 1:
     v[i+1] = chave;
```

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em **cada** iteração:

Na iteração de um dado valor j:

Melhor caso : $C_i(n) =$

Pior caso : $C_i(n) =$

Caso médio : $C_i(n) =$

```
Subvetor já
           Lordenado
                                                   n
                                  -78
         52
              125
                         55
                              69
                                       200
                                          55
                                                        200
                                125
                                               69
                                                                  63
                             DESLOCA
Número a inserir
                                52 | 125 |
                                          55
                                                   -78
                                                        200
                                               69
                                                              0
                                                                  63
```

```
#include <limits.h>
void insercao(int n, int [] v) {
 int i, j, chave;
 v[0] = INT MIN; //sentinela!!!
  for (j = 2; j \le n; j++) \{
    chave = v[j];
    // ordenando elementos à esquerda
    i = j - 1;
    while (v[i] > chave)
         v(i+1) = v(i):
         i = i - 1:
     v[i+1] = chave;
```

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em **cada** iteração:

Na iteração de um dado valor j:

Melhor caso : $C_i(n) = 1$

Pior caso : $C_i(n) =$

Caso médio : $C_i(n) =$

v[i+1] = chave;

```
Subvetor já
           Lordenado
                                                    n
                                   -78
         52
              125
                         55
                              69
                                        200
                            52 | 125 |
                                           55
                                                         200
                                                69
                                                                    63
                              DESLOCA
Número a inserir
                                 52 | 125 |
                                           55
                                                69
                                                    -78
                                                         200
                                                               0
                                                                   63
```

```
#include #include toid insercao(int n, int [] v) {
    int i, j, chave;
    v[0] = INT_MIN; //sentinela!!!
    for (j = 2; j <= n; j++) {
        chave = v[j];
        // ordenando elementos à esquerda
        i = j - 1;
        while (v[i] > chave) {
            v[i+1] = v[i];
            i = i - 1;
        }
}
```

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em **cada** iteração:

Na iteração de um dado valor j:

Melhor caso : $C_i(n) = 1$

Pior caso : $C_i(n) = i$ (j-1 números + sentinela)

Caso médio : $C_i(n) =$

```
Subvetor já
           Lordenado
                                                   n
                                  -78
         52
              125
                   32
                         55
                              69
                                       200
                                          55
                                                        200
                                125
                                               69
                                                                  63
                             DESLOCA
Número a inserir
                                52 | 125 |
                                          55
                                                   -78
                                                        200
                                               69
                                                              0
                                                                  63
```

```
#include <limits.h>
void insercao(int n, int [] v) {
 int i, j, chave;
 v[0] = INT MIN; //sentinela!!!
  for (j = 2; j \le n; j++) \{
    chave = v[j];
    // ordenando elementos à esquerda
    i = i - 1;
    while (v[i] > chave)
         v(i+1) = v(i):
         i = i - 1:
     v[i+1] = chave;
```

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em **cada** iteração:

Na iteração de um dado valor j:

Melhor caso : $C_i(n) = 1$

Pior caso : $C_i(n) = i$ (j-1 números + sentinela)

Caso médio : $C_{j}(n) = \frac{1}{i}(1 + 2 + \dots + i) = \frac{j+1}{2}$

v[i+1] = chave;

```
Subvetor já
            <sup>L</sup>ordenado
                                                       n
                                     -78
          52
               125
                     32
                           55
                                69
                                           200
                                   125
                                              55
                                                             200
                                                   69
                                                                        63
                                DESLOCA
Número a inserir
                                   52 | 125 |
                                              55
                                                       -78
                                                             200
                                                   69
                                                                   0
                                                                        63
```

```
#include #include toid insercao(int n, int [] v) {
   int i, j, chave;
   v[0] = INT_MIN; //sentinela!!!
   for (j = 2; j <= n; j++) {
      chave = v[j];
      // ordenando elementos à esquerda
      i = j - 1;
      while (v[i] > chave) {
         v[i+1] = v[i];
         i = i - 1;
    }
}
```

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em cada iteração:

Na iteração de um dado valor j:

Melhor caso : $C_i(n) = 1$

Pior caso : $C_i(n) = i$ (j-1 números + sentinela)

Caso médio : $C_{j}(n) = \frac{1}{i}(1 + 2 + \dots + i) = \frac{j+1}{2}$

No total

Melhor caso : C(n) =

Pior caso : C(n) =

Caso médio : C(n) =

v[i+1] = chave;

#include #include timits.h> void insercao(int n, int [] v) { int i, j, chave; v[0] = INT_MIN; //sentinela!!! for (j = 2; j <= n; j++) { chave = v[j]; // ordenando elementos à esquerda i = j - 1; while (v[i] > chave) { v[i+1] = v[i]; i = i - 1; } }

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em cada iteração:

Na iteração de um dado valor j:

Melhor caso : $C_i(n) = 1$

Pior caso : $C_i(n) = i$ (j-1 números + sentinela)

Caso médio : $C_{j}(n) = \frac{1}{i}(1 + 2 + \dots + i) = \frac{j+1}{2}$

No total

Pois j começa em 2 Melhor caso : $C(n) = (1+1+\cdots+1) = n-1$

Pior caso : C(n) =

Caso médio : C(n) =

v[i+1] = chave;

#include <limits.h> void insercao(int n, int [] v) { int i, j, chave; v[0] = INT MIN; //sentinela!!! for $(j = 2; \forall i <= n; j++) \{$ chave = v[i]; // ordenando elementos à esquerda i = j - 1;while (v[i] > chave){ v[i+1] = v[i]: i = i - 1:

Pois i começa em 2

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em cada iteração:

Na iteração de um dado valor i:

Melhor caso : $C(n) = (1 + 1 + \dots + 1) = n - 1$

Melhor caso : $C_i(n) = 1$

Pior caso : $C_i(n) = i$ (j-1 números + sentinela)

Caso médio : $C_{i}(n) = \frac{1}{i}(1 + 2 + \dots + l) = \frac{j+1}{2}$

No total

Pior caso : $C(n) = (2 + 3 + \dots + n) = \frac{n^2}{2} + \frac{n}{2} - 1$

Caso médio : C(n) =

v[i+1] = chave;


```
#include #include toid insercao(int n, int [] v) {
    int i, j, chave;
    v[0] = INT_MIN; //sentinela!!!
    for (j = 2; j <= n; j++) {
        chave = v[j];
        // ordenando elementos à esquerda
        i = j - 1;
        while (v[i] > chave) {
            v[i+1] = v[i];
            i = i - 1;
        }
}
```

Número de comparações entre chaves - C(n):

Para análise de caso médio é útil entender o que ocorre em cada iteração:

Na iteração de um dado valor j:

Melhor caso : $C_i(n) = 1$

Pior caso : $C_i(n) = i$ (j-1 números + sentinela)

Caso médio : $C_i(n) =$ média (1, j) $= \frac{j+1}{2}$

No total (para j de 2 a n):

Melhor caso :
$$C(n) = (1 + 1 + \dots + 1) = n - 1$$

Pior caso :
$$C(n) = (2 + 3 + \dots + n) = \frac{n^2}{2} + \frac{n}{2} - 1$$

Caso médio :
$$C(n) = \frac{1}{2}(3+4+\cdots+n+1) = \frac{n^2}{4} + \frac{3n}{4} - 1$$

```
#include <limits.h>
void insercao(int n, int [] v) {
 int i, j, chave;
 v[0] = INT MIN; //sentinela!!!
  for (j = 2; j \le n; j++) {
    chave = v[j];
    // ordenando elementos à esquerda
    i = j - 1;
    while (v[i] > chave)
        v[i+1] = v[i];
        i = i - 1:
     v[i+1] = chave;
```


Número de movimentações de registros - M(n):

Para análise de caso médio é útil entender o que ocorre em cada iteração:

Na iteração de um dado valor j:

Melhor caso: $M_i(n) = 2$

```
#include <limits.h>
void insercao(int n, int [] v) {
 int i, j, chave;
 v[0] = INT MIN; //sentinela!!!
  for (i = 2; i \le n; i++)
    chave = v[j]; ◆
    // ordenando elementos à esquerda
    i = j - 1;
    while (v[i] > chave)
        v[i+1] = v[i]:
        i = i - 1:
     v[i+1] = chave;
```

Pior caso

Número de movimentações de registros - M(n):

Para análise de caso médio é útil entender o que ocorre em cada iteração:

Na iteração de um dado valor j:

Melhor caso: $M_i(n) = 2$

Pior caso: $M_{j}(n) = (j-1)+2$

Caso médio: $M_{i}(n) = média(2, j+1) = (j+3)/2$

No total (para j de 2 a n):

Melhor caso: M(n) = 2(n-1)

:
$$M(n) = (4 + 5 + \dots + n + 2) = \frac{n^2}{2} + \frac{5n}{2} - 3$$

Caso médio :
$$M(n) = \frac{1}{2}(5 + 6 + \dots + n + 3) = \frac{n^2}{4} + \frac{11n}{4} - 3$$

```
Subvetor já
           Lordenado
         52
              125
                         55
                                   -78
                                        200
                              69
                                                        200
                                125
                                           55
                             DESLOCA
Número a inserir
                                     125
                                          55
                                                    -78
                                 52
                                               69
                                                        200
                                                              0
                                                                   63
```

```
#include <limits.h>
void insercao(int n, int [] v) {
 int i, j, chave;
 v[0] = INT MIN; //sentinela!!!
  for (i = 2; i \le n; i++)
    chave = v[j];
    // ordenando elementos à esquerda
    i = j - 1;
    while (v[i] > chave)
        v[i+1] = v[i]:
        i = i - 1:
     v[i+1] = chave;
```

Número de movimentações de registros - M(n):

Para análise de caso médio é útil entender o que ocorre em cada iteração:

Na iteração de um dado valor j:

Melhor caso: $M_i(n) = 2$

Pior caso: $M_i(n) = (j-1)+2$

Caso médio: $M_i(n) = média(2, j+1) = (j+3)/2$

No total (para j de 2 a n):

Melhor caso: M(n) = 2(n-1)

No livro do Ziviani ele coloca a inicialização da sentinela dentro do **for** (v[0] = chave). É desnecessário, e aumenta em 1 o nr de movimentações (que ele só considerou no melhor caso, por isso lá ele coloca Mj(n) = 3). No pior caso e caso médio ficou igual porque acho que ele considerou usar o v[0] no lugar da *chave*.

Tabela comparativa dos algoritmos de ordenação

	J							1	1		
		T(n)			C(n)			M(n)		in loco?	estável?
Algoritmo	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio		
InsertionSort	O(n)	$O(n^2)$	$O(n^2)$	O(n)	O(n ²)	O(n ²)	O(n)	$O(n^2)$	$O(n^2)$	sim	sim

- Primeiro passo:
 - Encontrar o menor elemento do array
 - Levar este menor elemento para o início do array (troca com o primeiro)
- Segundo passo:
 - Encontrar o segundo menor elemento do array
 - Levar este menor elemento para a segunda posição do array (troca de posição)
- E assim por diante...

52 125 -4 3	2 55 69	-78 200	0 63
-------------	---------	---------	------


```
// código para achar o menor elemento

// i é a prox posição a ser preenchida, min é o índice do menor elemento

min = i;

for (j = i+1; i < n; j++)

if (v[j] < v[min]) min = j;
```


E assim por diante...
PÁRO QUANDO PRÓXIMA
POSIÇÃO = TAM-1

(a última rodada é para pos = tam - 2)

SISTEMAS DE INFORMAÇÃO

EACH

Algoritmo (vetor com início em 0):

- para cada posição do vetor original, onde a próxima posição a ser preenchida vai de 0 a tam-2
 - Percorre subvetor (da próxima posição a ser preenchida até tamanho do vetor -1) para encontrar menor valor no subvetor
 - Troca com o elemento da próxima posição a ser preenchida


```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
         if (v[j] < v[min]) \min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
```



```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
        min = i;
        for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
        x = v[i]; v[i] = v[min]; v[min] = x;
}
```

In loco?:


```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
        min = i;
        for (j = i+1; j < n; j++)
            if (v[j] < v[min]) min = j;
        x = v[i]; v[i] = v[min]; v[min] = x;
   }
}
```

In loco?: SIM!

Estável:


```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
}
```

In loco?: SIM!

Estável: Não! Por quê?


```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
        min = i;
        for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
        x = v[i]; v[i] = v[min]; v[min] = x;
}
```

In loco?: SIM!

Estável: Não! Por quê?

A troca pode fazer com que um elemento da posição j vá para a posição min, passando "por cima" de outros elementos de igual valor


```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
}
```

Complexidade de tempo:


```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
        min = i;
        for (j = i+1; j < n; j++)
            if (v[j] < v[min]) min = j;
        x = v[i]; v[i] = v[min]; v[min] = x;
   }
}
```

Complexidade de tempo: O(n²)

Complexidade de tempo no melhor caso:


```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
}
```

Complexidade de tempo: O(n²)

Complexidade de tempo no melhor caso:

Não tem melhor caso – faz O(n²) sempre!

Seleção Direta

```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
   }
}
```

Pseudocódigo:

(vetor começando em 1 facilita as contas corretas)

```
para i ← 1 até n - 1 faça
    min ← i
    para j ← i +1 até n faça
        se v[j] < v[min] min ← j
        X ← v[i]
    v[i] ← v[min]
    v[min] ← X</pre>
```

$$C(n) =$$
 $M(n) =$

Seleção Direta

```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
   }
}
```

Pseudocódigo:

(vetor começando em 1 facilita as contas corretas)

$$\sum_{i=1}^{n-1} (n-i) = n-1 + n-2 + ... + 1$$
 $C(n) = \frac{n^2}{2} - \frac{n}{2}$ $M(n) =$

Seleção Direta

```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
}
```

Pseudocódigo:

(vetor começando em 1 facilita as contas corretas)

$$\sum_{i=1}^{n-1} (n-i) = n-1 + n-2 + ... + 1 \leftarrow C(n) = \frac{n^2}{2} - \frac{n}{2}$$

M(n) = 3(n-1)

Linear no número de movimentações!!!

Muito atraente quando os registros são grandes!!!

Comparando InsertionSort com SelectionSort

	T(n)	C(n)			M(n)			in loco?	estável?	
Algoritmo	Melhor caso Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio		
InsertionSort	$O(n)$ $O(n^2)$	O(n²)	O(n)	$O(n^2)$	$O(n^2)$	O(n)	$O(n^2)$	$O(n^2)$	sim	sim
SelectionSort	$O(n^2)$ $O(n^2)$	$O(n^2)$	O(n ²)	O(n ²)	O(n ²)	O(n)	O(n)	O(n)	sim	não

InsertionSort: quando é uma boa escolha?

SelectionSort:

Comparando InsertionSort com SelectionSort

	T(n)			C(n)			M(n)			in loco?	estável?
Algoritmo	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio		
InsertionSort	O(n)	$O(n^2)$	$O(n^2)$	O(n)	O(n ²)	O(n²)	O(n)	$O(n^2)$	$O(n^2)$	sim	sim
SelectionSort	O(n ²)	$O(n^2)$	$O(n^2)$	O(n ²)	O(n ²)	O(n²)	O(n)	O(n)	O(n)	sim	não

- InsertionSort:
 - Boa escolha para arquivos quase ordenados, ou quando precisa inserir alguns poucos registros em um arquivo que já estava ordenado
- SelectionSort: quando é uma boa escolha?

Comparando InsertionSort com SelectionSort

	T(n)		C(n)			M(n)			in loco?	estável?	
Algoritmo	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio		
InsertionSort	O(n)	$O(n^2)$	$O(n^2)$	O(n)	O(n ²)	$O(n^2)$	O(n)	$O(n^2)$	$O(n^2)$	sim	sim
SelectionSort	O(n ²)	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(n)	O(n)	O(n)	sim	não

InsertionSort:

 Boa escolha para arquivos quase ordenados, ou quando precisa inserir alguns poucos registros em um arquivo que já estava ordenado

SelectionSort:

 Boa escolha para quando os arquivos não estão quase ordenados e os registros são grandes - e estabilidade não é um problema (M(n) linear é um grande diferencial...)

Seleção Direta - Exercício

```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
      x = v[i]; v[i] = v[min]; v[min] = x;
}
}
```

Prove por indução que esse algoritmo está correto.

Dica: Qual é a invariante A no início do laço que pode ser usada nesta prova?

- Passa pelo array uma bolha que ordena duas posições consecutivas (leva o maior elemento para o final do vetor)
- Percorre o array e, em cada passo:
 - Testa se dois vizinhos estão ordenados
 - Troca o par que n\u00e3o estiver ordenado

E assim por diante...

Algoritmo:

- Quantas vezes?
 - Percorre o vetor desde o início até onde já estiver
 ordenado (ivet) e vai trocando o par de lugar quando posição [j-1] > posição [j]


```
void bolha(int n, int [] v) {
 int ivet, j, temp;
  // ivet é o "final" do vetor para onde deve ir o maior elemento (do fim para o início)
  for (ivet = n - 1; ivet > 0; ivet--)
       // a cada passagem o maior elemento é descolado para a sua posição correta
       for (i = 0; i < ivet; i++)
       // se ordem está errada para dois números consecutivos, troca os números
         if (v[i] > v[i+1])
             temp = v[i];
             v[j] = v[j+1];
             v[j+1] = temp;
```



```
void bolha(int n, int [] v) {
 int ivet, j, temp;
  // ivet é o "final" do vetor para onde deve ir o maior elemento (do fim para o início)
  for (ivet = n - 1; ivet > 0; ivet--)
       // a cada passagem o maior elemento é descolado para a sua posição correta
       for (i = 0; i < ivet; i++)
       // se ordem está errada para dois números consecutivos, troca os números
         if (v[i] > v[i+1])
                                           In loco?:
             temp = v[i];
             v[j] = v[j+1];
             v[j+1] = temp;
```



```
void bolha(int n, int [] v) {
 int ivet, j, temp;
  // ivet é o "final" do vetor para onde deve ir o maior elemento (do fim para o início)
  for (ivet = n - 1; ivet > 0; ivet--)
       // a cada passagem o maior elemento é descolado para a sua posição correta
       for (i = 0; i < ivet; i++)
       // se ordem está errada para dois números consecutivos, troca os números
         if (v[i] > v[i+1])
                                           In loco?: SIM!
             temp = v[i];
             v[j] = v[j+1];
             v[j+1] = temp;
```



```
void bolha(int n, int [] v) {
 int ivet, j, temp;
  // ivet é o "final" do vetor para onde deve ir o maior elemento (do fim para o início)
  for (ivet = n - 1; ivet > 0; ivet--)
      // a cada passagem o maior elemento é descolado para a sua posição correta
       for (i = 0; i < ivet; i++)
       // se ordem está errada para dois números consecutivos, troca os números
         if (v[j] > v[j+1])
                                          In loco?: SIM!
             temp = v[i];
                                          Estável: Exercício! Se sim, o que o torna
             v[j] = v[j+1];
                                          estável? Se não, dá para fazer alguma
             v[j+1] = temp;
                                          alteraçãozinha para torná-lo estável?
                                          Complexidade de tempo:
```



```
void bolha(int n, int [] v) {
 int ivet, j, temp;
  // ivet é o "final" do vetor para onde deve ir o maior elemento (do fim para o início)
  for (ivet = n - 1; ivet > 0; ivet--)
      // a cada passagem o maior elemento é descolado para a sua posição correta
      for (i = 0; i < ivet; i++)
      // se ordem está errada para dois números consecutivos, troca os números
         if (v[j] > v[j+1])
                                          In loco?: SIM!
             temp = v[i];
                                          Estável: Exercício! Se sim, o que o torna
             v[j] = v[j+1];
                                          estável? Se não, dá para fazer alguma
             v[j+1] = temp;
                                          alteraçãozinha para torná-lo estável?
                                          Complexidade de tempo: O(n²)
                                          Complexidade de tempo no melhor caso:
```



```
void bolha(int n, int [] v) {
 int ivet, j, temp;
  // ivet é o "final" do vetor para onde deve ir o maior elemento (do fim para o início)
  for (ivet = n - 1; ivet > 0; ivet--)
      // a cada passagem o maior elemento é descolado para a sua posição correta
      for (i = 0; i < ivet; i++)
      // se ordem está errada para dois números consecutivos, troca os números
         if (v[j] > v[j+1])
                                          In loco?: SIM!
             temp = v[i];
                                          Estável: Exercício! Se sim, o que o torna
             v[j] = v[j+1];
                                          estável? Se não, dá para fazer alguma
             v[j+1] = temp;
                                          alteraçãozinha para torná-lo estável?
                                          Complexidade de tempo: O(n²)
                                          Complexidade de tempo no melhor caso:
```


Não tem melhor caso – faz O(n²) sempre!


```
void bolha(int n, int [] v) {
  int ivet, j, temp;
  // ivet é o "final" do vetor para onde deve ir o maior elemento (do fim para o início)
  for (ivet = n - 1; ivet > 0; ivet--)
      // a cada passagem o maior elemento é descolado para a sua posição correta
       for (i = 0; i < ivet; i++)
       // se ordem está errada para dois números consecutivos, troca os números
         if (v[i] > v[i+1])
                                          Exercício:
             temp = v[i];
                                          Faça as análises de nr de comparações e
             v[j] = v[j+1];
                                          Nr de movimentações para o melhor/pior
             v[j+1] = temp;
                                          Caso e caso médio.
```


Algoritmos elementares x eficientes

- InsertionSort, SelectionSort e BubbleSort são exemplos de algoritmos elementares de ordenação
 - Complexidade de tempo (pior caso): O(n²)
 - Porém na prática são bem rápidos para arquivos pequenos (preferíveis)
 - Algoritmos mais simples
- MergeSort e outros que veremos nas próximas aulas são exemplos de algoritmos eficientes - O(n lgn)
 - Vamos fazer a análise do MergeSort

MergeSort

```
mergeSort (A,i,f)
                                        12234567
sei < f
        m \leftarrow \lfloor (i+f)/2 \rfloor
                                     2 4 5 7
                                                      1236
        mergeSort(A, i, m)
        mergeSort(A, m+1,f)
                                 25
        merge(A,i,m,f)
                                 5
                                                               6
                                  5
                                      2
                                                      3
                                                          2
                                                  1
                                                              6
                                          4
                    Arranjo inicial
```


Divide até obter subarranjos com tamanho 1. Então, começa a mesclar...

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
    n1 ← m-i+1 // define subarranjos
    n2 \leftarrow f-m
   criar arranjos L[1..n1+1] e R[1..n2+1]
    L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
    para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
    para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
    // mesclar subarranjos
    k1 ← 1 // k1 é o índice que percorre L
    k2 ← 1 // k2 é o índice que percorre R
    para k \leftarrow i até f // k percorre A
          se L[k1] \leq R[k2]
                  A[k] \leftarrow L[k1]
                   k1 \leftarrow k1 + 1
          senão
                  A[k] \leftarrow R[k2]
                   k2 \leftarrow k2 + 1
          fim se
                                                  97
    fim para
```


Complexidade de tempo do MergeSort (cálculo "por intuição")

$$T(n) = \begin{cases} c & \text{if } n = 1 \text{ ,} \\ 2T(n/2) + cn & \text{if } n > 1 \text{ ,} \end{cases}$$
 Nr de subproblemas

mergeSort (A,p,r) se p < r $q \leftarrow \lfloor (p+r)/2 \rfloor$ mergeSort(A, p, q) mergeSort(A, q+1,r) merge(A, p, q, r)

Tamanho de cada subproblema

Tempo para divisão e conquista

(d)

Total: cn (lg n + 1) = O(n lg n)

base

```
mergeSort (A,i,f)
se i < f

m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
      n1 ← m-i+1 // define subarranjos
      n2 \leftarrow f-m
     criar arranjos L[1..n1+1] e R[1..n2+1]
     L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
     para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
     para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
     // mesclar subarranjos
      k1 ← 1 // k1 é o índice que percorre L
      k2 ← 1 // k2 é o índice que percorre R
      para k \leftarrow i até f // k percorre A
              se L[k1] \leq R[k2]
                          A[k] \leftarrow L[k1]
                          k1 \leftarrow k1 + 1
              senão
                          A[k] \leftarrow R[k2]
                          k2 \leftarrow k2 + 1
              fim se
     fim para
```


mergeSort (A,i,f) se i < f m ← [(i+f)/2] mergeSort(A, i, m) mergeSort(A, m+1,f) merge(A,i,m,f)</pre>

lgn+1

```
merge (A, i, m, f)
                  n1 ← m-i+1 // define subarranjos
                  n2 \leftarrow f-m
                 criar arranjos L[1..n1+1] e R[1..n2+1]
                 L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
                 para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
                 para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
                  // mesclar subarranjos
                  k1 ← 1 // k1 é o índice que percorre L
                  k2 ← 1 // k2 é o índice que percorre R
                  para k \leftarrow i até f // k percorre A
                           se L[k1] \leq R[k2]
                                        A[k] \leftarrow L[k1]
                                                                         f-i+1 comparações
                                        k1 \leftarrow k1 + 1
                                                                          (n')
                           senão
                                        A[k] \leftarrow R[k2]
                                        k2 \leftarrow k2 + 1
                           fim se
                  fim para
        C(n): ?
C(n) = \begin{cases} 0 & \text{Se } n - 1 \\ C(|n/2|) + C(|n/2|) + n & \text{se } n > 1 \end{cases}
```

mergeSort (A,i,f) se i < f m ← [(i+f)/2] mergeSort(A, i, m) mergeSort(A, m+1,f) merge(A,i,m,f)</pre>

lgn+1

```
merge (A, i, m, f)
                   n1 ← m-i+1 // define subarranjos
                   n2 \leftarrow f-m
                  criar arranjos L[1..n1+1] e R[1..n2+1]
                  L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
                  para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
                  para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
                   // mesclar subarranjos
                   k1 ← 1 // k1 é o índice que percorre L
                   k2 ← 1 // k2 é o índice que percorre R
                   para k \leftarrow i até f // k percorre A
                            se L[k1] \leq R[k2]
                                         A[k] \leftarrow L[k1]
                                                                            f-i+1 comparações
                                         k1 \leftarrow k1 + 1
                                                                            (n')
                            senão
                                         A[k] \leftarrow R[k2]
                                         k2 \leftarrow k2 + 1
                            fim se
                   fim para
        C(n): O(n lg n)
C(n) = \begin{cases} 0 & \text{Se } n - 1 \\ C(\lfloor n/2 \rfloor) + C(\lfloor n/2 \rfloor) + n & \text{se } n > 1 \end{cases}
```

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
      n1 ← m-i+1 // define subarranjos
      n2 \leftarrow f-m
     criar arranjos L[1..n1+1] e R[1..n2+1]
     L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
     para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
     para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
     // mesclar subarranjos
      k1 ← 1 // k1 é o índice que percorre L
      k2 ← 1 // k2 é o índice que percorre R
      para k \leftarrow i até f // k percorre A
              se L[k1] \leq R[k2]
                          A[k] \leftarrow L[k1]
                                                         f-i+1 comparações
                          k1 \leftarrow k1 + 1
                                                         (n')
              senão
                          A[k] \leftarrow R[k2]
                          k2 \leftarrow k2 + 1
              fim se
      fim para
```


C(n): O(n lg n)

$$C(n) = \begin{cases} 0 & \text{se } n = 1 \\ C(\lfloor n/2 \rfloor) + C(\lfloor n/2 \rfloor) + n & \text{se } n > 1 \end{cases}$$

Tem melhor caso?


```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
      n1 ← m-i+1 // define subarranjos
      n2 \leftarrow f-m
     criar arranjos L[1..n1+1] e R[1..n2+1]
     L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
     para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
     para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
     // mesclar subarranjos
      k1 ← 1 // k1 é o índice que percorre L
      k2 ← 1 // k2 é o índice que percorre R
      para k \leftarrow i até f // k percorre A
              se L[k1] \leq R[k2]
                          A[k] \leftarrow L[k1]
                                                         f-i+1 comparações
                          k1 \leftarrow k1 + 1
                                                         (n')
              senão
                          A[k] \leftarrow R[k2]
                          k2 \leftarrow k2 + 1
              fim se
      fim para
```


C(n): **O**(n lg n)

$$C(n) = \begin{cases} 0 & \text{se } n = 1 \\ C(\lfloor n/2 \rfloor) + C(\lfloor n/2 \rfloor) + n & \text{se } n > 1 \end{cases}$$

Tem melhor caso? Não!


```
mergeSort (A,i,f)
se i < f

m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
      n1 ← m-i+1 // define subarranjos
      n2 \leftarrow f-m
     criar arranjos L[1..n1+1] e R[1..n2+1]
     L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
     para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
     para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
     // mesclar subarranjos
      k1 ← 1 // k1 é o índice que percorre L
      k2 ← 1 // k2 é o índice que percorre R
      para k \leftarrow i até f // k percorre A
              se L[k1] \leq R[k2]
                          A[k] \leftarrow L[k1]
                          k1 \leftarrow k1 + 1
              senão
                          A[k] \leftarrow R[k2]
                          k2 \leftarrow k2 + 1
              fim se
      fim para
```


M(n): ?


```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
          n1 ← m-i+1 // define subarranjos
         n2 \leftarrow f-m
         criar arranjos L[1..n1+1] e R[1..n2+1]
         L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
                                                             f-i+1
         para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
                                                               movimentações
         para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
                                                               (n')
         // mesclar subarranjos
         k1 ← 1 // k1 é o índice que percorre L
          k2 ← 1 // k2 é o índice que percorre R
          para k \leftarrow i até f // k percorre A
                  se L[k1] \leq R[k2]
                                                            f-i+1
                             A[k] \leftarrow L[k1]
                                                            movimentações
                             k1 \leftarrow k1 + 1
                                                            (n')
                  senão
                             A[k] \leftarrow R[k2]
                             k2 \leftarrow k2 + 1
                  fim se
         fim para
M(n): O(n lg n)
```


Tem melhor caso?

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
          n1 ← m-i+1 // define subarranjos
         n2 \leftarrow f-m
         criar arranjos L[1..n1+1] e R[1..n2+1]
         L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
                                                             f-i+1
         para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
                                                               movimentações
         para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
                                                               (n')
         // mesclar subarranjos
          k1 ← 1 // k1 é o índice que percorre L
          k2 ← 1 // k2 é o índice que percorre R
          para k \leftarrow i até f // k percorre A
                  se L[k1] \leq R[k2]
                                                            f-i+1
                             A[k] \leftarrow L[k1]
                                                            movimentações
                              k1 \leftarrow k1 + 1
                                                            (n')
                  senão
                             A[k] \leftarrow R[k2]
                             k2 \leftarrow k2 + 1
                  fim se
         fim para
M(n): O(n lg n)
```


Tem melhor caso? Não!

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A, i, m, f)
          n1 ← m-i+1 // define subarranjos
         n2 \leftarrow f-m
         criar arranjos L[1..n1+1] e R[1..n2+1]
         L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
                                                             f-i+1
         para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
                                                               movimentações
         para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
                                                               (n')
         // mesclar subarranjos
          k1 ← 1 // k1 é o índice que percorre L
          k2 ← 1 // k2 é o índice que percorre R
          para k \leftarrow i até f // k percorre A
                  se L[k1] \leq R[k2]
                                                            f-i+1
                             A[k] \leftarrow L[k1]
                                                            movimentações
                              k1 \leftarrow k1 + 1
                                                            (n')
                  senão
                             A[k] \leftarrow R[k2]
                             k2 \leftarrow k2 + 1
                  fim se
         fim para
M(n): O(n lg n)
```


merge (A,i,m,f)

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

In loco?: ?

```
n1 ← m-i+1 // define subarranjos
n2 \leftarrow f-m
criar arranjos L[1..n1+1] e R[1..n2+1]
L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
// mesclar subarranjos
k1 ← 1 // k1 é o índice que percorre L
k2 ← 1 // k2 é o índice que percorre R
para k \leftarrow i até f // k percorre A
         se L[k1] \leq R[k2]
                    A[k] \leftarrow L[k1]
                    k1 \leftarrow k1 + 1
         senão
                    A[k] \leftarrow R[k2]
                    k2 \leftarrow k2 + 1
         fim se
fim para
```


merge (A,i,m,f)

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
n1 ← m-i+1 // define subarranjos
n2 \leftarrow f-m
criar arranjos L[1..n1+1] e R[1..n2+1]
L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
// mesclar subarranjos
k1 ← 1 // k1 é o índice que percorre L
k2 ← 1 // k2 é o índice que percorre R
para k \leftarrow i até f // k percorre A
         se L[k1] \leq R[k2]
                    A[k] \leftarrow L[k1]
                    k1 \leftarrow k1 + 1
         senão
                    A[k] \leftarrow R[k2]
                    k2 \leftarrow k2 + 1
         fim se
fim para
```

In loco?: Não...

merge (A,i,m,f)

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
n1 ← m-i+1 // define subarranjos
n2 \leftarrow f-m
criar arranjos L[1..n1+1] e R[1..n2+1]
L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
// mesclar subarranjos
k1 ← 1 // k1 é o índice que percorre L
k2 ← 1 // k2 é o índice que percorre R
para k \leftarrow i até f // k percorre A
         se L[k1] \leq R[k2]
                    A[k] \leftarrow L[k1]
                    k1 \leftarrow k1 + 1
         senão
                    A[k] \leftarrow R[k2]
                    k2 \leftarrow k2 + 1
         fim se
fim para
```

In loco?: Não...

Estável?:

merge (A,i,m,f)

 $n2 \leftarrow f-m$

```
mergeSort (A,i,f)
se i < f
m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
criar arranjos L[1..n1+1] e R[1..n2+1]
L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
// mesclar subarranjos
k1 ← 1 // k1 é o índice que percorre L
k2 ← 1 // k2 é o índice que percorre R
para k \leftarrow i até f // k percorre A
         se L[k1] \leq R[k2]
                    A[k] \leftarrow L[k1]
                     k1 \leftarrow k1 + 1
         senão
                    A[k] \leftarrow R[k2]
                     k2 \leftarrow k2 + 1
         fim se
fim para
```

n1 ← m-i+1 // define subarranjos

In loco?: Não...

Estável?: SIM! Por quê?

MergeSort (ordenação por intercalação)

```
mergeSort (A,i,f)
se i < f

m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A,i,m,f)
      n1 ← m-i+1 // define subarranjos
     n2 \leftarrow f-m
     criar arranjos L[1..n1+1] e R[1..n2+1]
     L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
     para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
     para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
     // mesclar subarranjos
      k1 ← 1 // k1 é o índice que percorre L
      k2 ← 1 // k2 é o índice que percorre R
      para k \leftarrow i até f // k percorre A
              se L[k1] \leq R[k2]
                         A[k] \leftarrow L[k1]
                          k1 \leftarrow k1 + 1
              senão
                         A[k] \leftarrow R[k2]
                          k2 \leftarrow k2 + 1
              fim se
      fim para
```

In loco?: Não...

Estável?: SIM! Por quê? Duas coisas...

MergeSort (ordenação por intercalação)

```
mergeSort (A,i,f)
se i < f

m ← [(i+f)/2]
mergeSort(A, i, m)
mergeSort(A, m+1,f)
merge(A,i,m,f)</pre>
```

```
merge (A,i,m,f)
      n1 ← m-i+1 // define subarranjos
      n2 \leftarrow f-m
     criar arranjos L[1..n1+1] e R[1..n2+1]
     L[n1+1] \leftarrow \infty; R[n2+1] \leftarrow \infty //sentinela
     para j \leftarrow 1 até n1 L[j] \leftarrow A[i+j-1]
     para j \leftarrow 1 até n2 R[j] \leftarrow A[m+j]
     // mesclar subarranjos
      k1 ← 1 // k1 é o índice que percorre L
      k2 ← 1 // k2 é o índice que percorre R
      para k \leftarrow i até f // k percorre A
              se L[k1] \leq R[k2]
                         A[k] \leftarrow L[k1]
                          k1 \leftarrow k1 + 1
              senão
                         A[k] \leftarrow R[k2]
                          k2 \leftarrow k2 + 1
              fim se
      fim para
```

In loco?: Não...

Estável?: SIM! Por quê? Duas coisas...

- 1) L e R são vetores vizinhos
- 2) Na hora de intercalar, L tem preferência sobre R (quando L[k1] = R[k2])

Comparando...

					1	1	1			
	T(n)			C(n)			M(n)		in loco?	estável?
Algoritmo	Melhor caso Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio		
InsertionSort	$O(n)$ $O(n^2)$	O(n²)	O(n)	$O(n^2)$	O(n ²)	O(n)	$O(n^2)$	O(n ²)	sim	sim
SelectionSort	$O(n^2)$ $O(n^2)$	O(n ²)	O(n ²)	$O(n^2)$	$O(n^2)$	O(n)	O(n)	O(n)	sim	não
BubbleSort										
MergeSort	O(n lgn) O(n lgn	n) O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	não	sim

O que podem falar agora do MergeSort (em comparação com os demais?

Comparando...

	I I	1				1		1		4
	T(n)			C(n)			M(n)		in loco?	estável?
Algoritmo	Melhor caso Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio	Melhor caso	Pior caso	Caso médio		
InsertionSort	$O(n)$ $O(n^2)$	$O(n^2)$	O(n)	$O(n^2)$	O(n ²)	O(n)	$O(n^2)$	O(n ²)	sim	sim
SelectionSort	$O(n^2)$ $O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(n)	O(n)	O(n)	sim	não
BubbleSort										
MergeSort	O(n lgn) O(n lgn)) O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	O(n lgn)	não	sim

- O que podem falar agora do MergeSort (em comparação com os demais?
 - Boa escolha se o arquivo é grande e desordenado, desde que tenha memória para isso (se for pequeno o selection na prática deve valer a pena)

Obs: ShellSort

O mais eficiente dos algoritmos de complexidade quadrática

- Proposto por Shell em 1959.
- É uma extensão do algoritmo de ordenação por inserção.
- Problema com o algoritmo de ordenação por inserção:
 - Troca itens adjacentes para determinar o ponto de inserção.
 - São efetuadas n-1 comparações e movimentações quando o menor item está na posição mais à direita no vetor.
- O método de Shell contorna este problema permitindo trocas de registros distantes um do outro.

- Os itens separados de h posições são rearranjados.
- Todo h-ésimo item leva a uma seqüência ordenada.
- Tal seqüência é dita estar h-ordenada.
- Exemplo de utilização:

• Quando h = 1 Shellsort corresponde ao algoritmo de inserção.

- Como escolher o valor de h: O cálculo é iterativo, partindo de h(1) = 1 h(s) é o s-ésimo cálculo de h
 - Seqüência para h:

$$h(s) = 3h(s-1) + 1$$
, para $s > 1$
 $h(s) = 1$, para $s = 1$.

- Knuth (1973, p. 95) mostrou experimentalmente que esta seqüência é difícil de ser batida por mais de 20% em eficiência.
- A seqüência para h corresponde a 1, 4, 13, 40, 121, 364, 1.093,
 3.280, ... Continua enquanto h(s) < n, e daí aplica-se esse maior h, e depois os inferiores (h(s), h(s-1), h(s-2), ..., h(1))

Obs: ShellSort

```
void shellSort(int n, int[] v) {
     int i, j, h, chave;
     for (h = 1; h < n; h = 3*h+1); // calcula-se o máximo h
     while (h > 0) { // faz um insertionSort para cada h da série InsertionSort – versão
          h = (h-1)/3;
                                                               Sem sentinela
          for(j = h; j < n; j++) {
                                                               for (j = 1; j < n; j++) {
              chave = v[i];
                                                                  chave = v[i];
                                                                  i = i - 1;
               i = j; // vou olhar a posição i - h
                                                                  while (i >= 0 \&\&
              while (i \ge h \&\& v[i - h] > chave) {
para garantir
                                                                        v[i] > chave){}
                   v[i] = v[i - h];
que i-h >= 0
                                                                     v[i+1] = v[i];
                   i = i - h;
                                                                     i = i - 1;
               }
               v[i] = chave;
                                                                  v[i+1] = chave;
```


- A implementação do Shellsort não utiliza registros sentinelas.
- Seriam necessários h registros sentinelas, uma para cada h-ordenação.

- A razão da eficiência do algoritmo ainda não é conhecida.
- Ninguém ainda foi capaz de analisar o algoritmo.
- A sua análise contém alguns problemas matemáticos muito difíceis.
- A começar pela própria seqüência de incrementos.
- O que se sabe é que cada incremento não deve ser múltiplo do anterior.
- Conjecturas referente ao número de comparações para a seqüência de Knuth:

Conjetura 1 :
$$C(n) = O(n^{1,25})$$

Conjetura 2 :
$$C(n) = O(n(\ln n)^2)$$

Vantagens:

- Shellsort é uma ótima opção para arquivos de tamanho moderado.
- Sua implementação é simples e requer uma quantidade de código pequena.

Desvantagens:

- O tempo de execução do algoritmo é sensível à ordem inicial do arquivo.
- O método não é estável,

Tempo de execução:

Comparação (Ziviani)

- Oservação: O método que levou menos tempo real para executar recebeu o valor 1 e os outros receberam valores relativos a ele.
- Registros na ordem aleatória:

	5.00	5.000	10.000	30.000
Inserção	11,3	87	161	_
Seleção	16,2	124	228	_
Shellsort	1,2	1,6	1,7	2

• Registros na ordem ascendente:

	500	5.000	10.000	30.000
Inserção	1	1	1	1
Seleção	128	1.524	3.066	_
Shellsort	3,9	6,8	7,3	8,1

• Registros na ordem descendente:

	500	5.000	10.000	30.000
Inserção	40,3	305	575	_
Seleção	29,3	221	417	_
Shellsort	1,5	1,5	1,6	1,6

Referências

- Paulo Feofiloff. Algoritmos em C. Cap 8 e 9 (tem exercícios!!!) https://www.ime.usp.br/~pf/algoritmos-livro/
- Nívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 3a. Edição, 2004. Cap 4.1.1 a 4.1.3
 - http://www2.dcc.ufmg.br/livros/algoritmos/implementacoes.php
- Apostila Prof. Marcio cap 6.1 a 6.3

