Assignment 3&4

Q1)

A singular configuration in robotics occurs when a specific arrangement of a robot's joints leads to a loss of one or more degrees of freedom, signifying a decrease in the manipulator's Jacobian matrix. Configurations for which the rank J(q) is less than its maximum value are called singularities or singular configurations. This reduction in degrees of freedom can pose challenges in executing certain tasks. Identification of singular configurations involves analyzing the Jacobian matrix, which delineates the relationship between joint velocities and end-effector velocities. The singularity is manifested in the Jacobian becoming singular, indicating a loss of invertibility and potentially causing unpredictable behavior. Proximity to a singular configuration can be assessed by examining the condition number of the Jacobian matrix; a high condition number implies closeness to a singularity, suggesting that slight changes in joint velocities may result in substantial changes in end-effector velocities. To determine if a specific configuration is singular, the determinant of the Jacobian matrix is calculated, and if it equals zero, the configuration is deemed singular. The condition number is further computed as the ratio of the largest singular value to the smallest singular value of the Jacobian matrix.

Qn 4)

SCARA Manipulator


```
Manipulator Jacobian:
[[-1. -1. 0.]
  [ 1. 0. -0.]
  [ 0. 0. -1.]
  [ 0. 0. 0.]
  [ 0. 0. 0.]
  [ 1. 1. 0.]]

End-effector Position:
[[1.]
  [1.]
  [2.]]
```

```
Enter joint velocity(q_dot) for joint 1: 10
Enter joint velocity(q_dot) for joint 2: 10
Enter joint velocity(q_dot) for joint 3: 10

End-effector Velocity:
[[-20.]
  [ 10.]
  [-10.]
  [ 0.]
  [ 0.]
  [ 20.]]
```

Stanford Manipulator


```
Manipulator Jacobian:

[[ 1.5 0. -0. ]
  [-1. -0. -1. ]
  [ 0. 1.5 0. ]
  [ 0. -1. 0. ]
  [ 0. 0. 0. ]
  [ 1. 0. 0. ]]

End-effector Position:

[[-1. ]
  [-1.5]
  [ 2. ]]
```

```
Enter joint velocity(q_dot) for joint 1: 10
Enter joint velocity(q_dot) for joint 2: 10
Enter joint velocity(q_dot) for joint 3: 10

End-effector Velocity:
[[ 15.]
  [-20.]
  [ 15.]
  [-10.]
  [ 0.]
  [ 10.]]
```

Q5)

Q 6)

Link	a	d	4	0	- 12		
1	0	71/2	d,	0		7	
2	02	0	10	0,0	0	-	
3		71/2	0	02 1		1	
4	03	-17/2	dy	03			
	95	7/2	0	05		<u> </u>	
8	0	5	de	06			
			-16	6			
Mo! = [50 0 0 0 0	0	Cd 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ca	n fe	0 1	
123=	53	0 = 0	a3C	3 25	3 - 5		54 0 C4 0 0 d4

0 1	Cs a555	1 75 -	Se	06	0	0	200
0,1	_			- 6			
0 0	0	0	0	0	1	de	
	0 1 1		0	0	0	2	100
46 41 11	2 2	5	1	100			

Q7)

The 2R manipulator configurations are showed below

Direct Drive Configuration:

- This setup involves attaching the end-effector directly to the two rotational joints.
- The design is straightforward with minimal components.
- This configuration is typically more compact due to the elimination of additional linkages.
- The motors need to be constrained in such a way that we get 2nd angle relative to 1st.

Advantages:

- The streamlined design simplifies both construction and maintenance.
- Well-suited for applications where space is limited.

Remotely-Driven Configuration:

- This configuration introduces an additional link or arm between the actuators and the end-effector.
- A separate linkage connects the actuators to the end-effector, providing increased flexibility.
- The added link enhances the manipulator's reach.
- The motors need to be attached at the base and both of the are driven separately.

Advantages:

- Well-suited for scenarios where extended reach is a crucial factor.
- The additional link allows for more versatile movements.

<u>5-Bar Parallelogram Arrangement:</u>

- This configuration includes a parallelogram linkage in addition to the two rotational joints.
- The incorporation of a parallelogram mechanism helps maintain the orientation of the end-effector.
- The parallelogram linkage contributes to stability during motion.
- The motors should be independently controlled but need to be at the base as well as at the same line.

Advantages:

- Improved precision in controlling the orientation of the end-effector.
- Particularly beneficial when stability is critical for precise tasks.

Qn 8)

$$V_{c_{2}} = \begin{cases} -l_{1,50} & -l_{c_{2}50} & 0 \\ l_{1}co_{1} & l_{c_{2}}co_{2} \\ 0 & 0 \end{cases} \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

$$U_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{2} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

$$U_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{2} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{2} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{2} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad U_{2} = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \qquad$$

$$C_{112} = \frac{1}{2} \left(\frac{3d_{21}}{3d_{1}} + \frac{3d_{12}}{3d_{1}} - \frac{3d_{11}}{3d_{21}} \right) = \frac{m_{2}L_{1}L_{c_{2}} \cdot s(O_{2} - O_{1})}{2(O_{2} - O_{1})}$$

$$C_{212} = C_{122} = \frac{1}{2} \left(\frac{3d_{22}}{3d_{1}} + \frac{3d_{12}}{3O_{2}} - \frac{3d_{12}}{3O_{2}} \right) = D$$

$$C_{222} = \frac{1}{2} \left(\frac{3d_{22}}{3d_{2}} \right) = D$$

$$Potential energy$$

$$V = \frac{m_{1}}{3}L_{c_{1}} \cdot so_{1} + \frac{m_{2}}{3O_{2}} \cdot (L_{1} \cdot so_{1} + L_{c_{2}} \cdot so_{2})$$

$$Potential lecams$$

$$\Phi_{1} = \frac{3V}{3O_{1}} - \frac{(m_{1}L_{c_{1}} + m_{2}L_{1}) \cdot g \cdot co_{1}}{3O_{2}}$$

$$\Phi_{2} = \frac{3V}{3O_{2}} - \frac{m_{2}}{3O_{2}} \cdot L_{c_{2}} \cdot c_{2}$$

$$\frac{1}{3O_{2}} \cdot \frac{2}{3O_{2}} \cdot \frac{2}{3O_{2}} + \frac{2}{3O_{2}} \cdot \frac{2}{3O_{2}} + \frac{2}{3O_{2}} + \frac{2}{3O_{2}} \cdot \frac{2}{3O_{2}} + \frac{2}{3O_{2}} \cdot \frac{2}{3O_{2}} \cdot \frac{2}{3O_{2}} + \frac{2}{3O_{2}}$$

$$t_{2} = \frac{2}{\xi} d_{12} \cdot \hat{q}_{1} + \frac{2}{\xi} C_{1j2} \cdot \hat{q}_{1}^{2} \hat{q}_{2}^{2} + \phi_{2}$$

$$\lim_{n \to \infty} t_{2} = d_{12} \hat{q}_{1} + d_{22} \hat{q}_{2}^{2} + C_{112} \hat{q}_{1}^{2} + \phi_{2}$$

$$\lim_{n \to \infty} t_{2} = d_{12} \hat{q}_{1}^{2} + d_{22} \hat{q}_{2}^{2} + C_{112} \hat{q}_{1}^{2} + \phi_{2}$$

$$\lim_{n \to \infty} t_{2} = d_{12} \hat{q}_{1}^{2} + d_{22} \hat{q}_{2}^{2} + C_{112} \hat{q}_{1}^{2} + \phi_{2}$$

$$\lim_{n \to \infty} t_{2} = d_{12} \hat{q}_{1}^{2} + d_{22} \hat{q}_{2}^{2} + C_{112} \hat{q}_{1}^{2} + \phi_{2}$$

$$\lim_{n \to \infty} t_{2} = d_{12} \hat{q}_{1}^{2} + d_{22} \hat{q}_{2}^{2} + C_{112} \hat{q}_{1}^{2} + \phi_{2}$$

Qn 10)

-	
(G = (sole) 1 1 1905
(10)	- 1 Given D(2) & V(2)
	Langrangian eg is I= K-Y
	The state of the s
	Where, K = 1 9 D (2) 9
	Where, $K = \frac{1}{2} \dot{q}^{T} D(2) \dot{q}$ $V = V(0)$
	V = V (2)
	transi lateris
	T = d (3f) - 3f
	$T = \frac{d}{dt} \left(\frac{\partial f}{\partial \dot{z}} \right) - \frac{\partial f}{\partial \dot{z}}$
	06
	where $\frac{d}{dt}\left(\frac{\partial d}{\partial \dot{q}}\right) = \frac{\epsilon}{1} d_{ik}\left(\dot{q}_{i}\right) + \frac{\epsilon}{1} \frac{\partial d_{ik}}{\partial \dot{q}_{i}} \dot{q}_{i}\dot{q}_{i}$
	de (7à) - 1
	600
	38 - 1 c 3di) 9:9: - 3v(2)
	$\frac{\partial \mathcal{S}}{\partial \mathcal{Q}} = \frac{1}{2} \underbrace{\mathcal{E}}_{111} \underbrace{\partial \mathcal{O}_{11}}_{\partial \mathcal{Q}_{11}} \underbrace{\partial_{1}^{2} \partial_{1}^{2}}_{\partial \mathcal{Q}_{11}} - \underbrace{\partial_{1}^{2} \mathcal{O}_{12}}_{\partial \mathcal{Q}_{11}}$
-	- cdi 9: +1 & Cadio adki - adii 7 5 9.
	TK = Edik 21 + 1 & E odik + odki - odij 2, 2;
	32x
	o u

 $T_{k} = \frac{\epsilon}{\epsilon} di_{k} \dot{2}_{i} + \frac{\epsilon}{c_{i}j_{k}} \dot{2}_{i} \dot{2}_{j} + \frac{3V}{32k}$ $T_{k} = \frac{\epsilon}{\epsilon} di_{k} \dot{2}_{i} + \frac{\epsilon}{c_{i}j_{k}} \dot{2}_{i} \dot{2}_{j} + \frac{3V}{4k(2)}$ $T = D(2) \dot{2} + C(2, \dot{2}) \dot{2} + \frac{4}{9}(2) + \frac{3V}{9(2)} = \frac{3V}{32k}$ $30, \text{ when whe given D(2) whe will find C(2, \dot{2})}$ $-u_{k}ing = \frac{\epsilon}{i} \underbrace{c_{ijk}}_{ji} = \frac{1}{2} \underbrace{\left(\frac{3d_{ik}}{32j} + \frac{3d_{ki}}{32j} - \frac{3d_{ij}}{32j}\right)}_{32k}$

Qn 18)

DH =	Link	d	θ	a	α
	1	l_1	0	0	-90
	2	l_2	90	0	-90
	3	l_3	0	0	0

Ex 1)

for,
$$l_1 = 2$$
, $l_2 = 2$ and $l_3 = 1$

DH =	Link	d	θ	a	α
	1	2	0	0	-90
	2	2	90	0	-90
	3	1	0	0	0

Let's put this value in Qn 3 code.

```
Manipulator Jacobian:

[[ 0.  0. -1.]
  [ 0.  1.  0.]
  [ 1.  0. -0.]
  [ 0.  0.  0.]
  [ 0.  0.  0.]

End-effector Position:

[[-1.]
  [ 2.]
  [ 2.]]
```

```
Enter joint velocity(q_dot) for joint 1: 2
Enter joint velocity(q_dot) for joint 2: 5
Enter joint velocity(q_dot) for joint 3: 8

End-effector Velocity:
[[-8.]
  [ 5.]
  [ 2.]
  [ 0.]
  [ 0.]
  [ 0.]]
```

Ex 2)

for,
$$l_1 = 1$$
, $l_2 = 1.5$ and $l_3 = 2$

DH =	Link	d	θ	a	α
	1	1	0	0	-90
	2	1.5	90	0	-90
	3	2	0	0	0

Let's put this value in Qn 3 code.

```
Manipulator Jacobian:
[[ 0.  0. -1.]
  [ 0.  1.  0.]
  [ 1.  0. -0.]
  [ 0.  0.  0.]
  [ 0.  0.  0.]

End-effector Position:
[[-2. ]
  [ 1.5]
  [ 1. ]]
```

```
Enter joint velocity(q_dot) for joint 1: 2
Enter joint velocity(q_dot) for joint 2: 5
Enter joint velocity(q_dot) for joint 3: 8

End-effector Velocity:
[[-8.]
  [ 5.]
  [ 2.]
  [ 0.]
  [ 0.]
  [ 0.]
```