DETECTING CANCER METASTASES ON GIGAPIXEL PATHOLOGY IMAGES

Jessie Wang (yw3765)

Zhucheng Zhan (zz2783)

AGENDA

- Introduction and Data
- Methodology
 - Data Preprocess
 - Model Experiments
 - Prediction on New Slides
- Evaluation
- Code Walkthrough
- Next Steps

DATA SOURCE

- Training Data from: https://camelyon16.grand-challenge.org/Data/
- 22 slides converted by Josh for ease of use with OpenSlide
- Whole-slide images are stored in a multi-resolution pyramid structure.
- Image files contain multiple downsampled versions of the original image.
- Example of contents included in 1 slide

```
Read WSI from tumor_091.tif with width: 61440, height: 53760
Read tumor mask from tumor_091_mask.tif
Slide includes %d levels 8
Level 0, dimensions: (61440, 53760) downsample factor 1
Level 1, dimensions: (30720, 26880) downsample factor 2
Level 2, dimensions: (15360, 13440) downsample factor 4
Level 3, dimensions: (7680, 6720) downsample factor 8
Level 4, dimensions: (3840, 3360) downsample factor 16
Level 5, dimensions: (1920, 1680) downsample factor 32
Level 6, dimensions: (960, 840) downsample factor 64
Level 7, dimensions: (480, 420) downsample factor 128
```


METHODOLOGY

- Pick 10 slides from 22 available
- Generate training images from desired levels
- Remove non-tissue parts
- Balance classes via downsampling and upsampling

- Single tower
- Multi tower
- Data augmentation
- Transfer learning

- Confusion matrix on test set
- Inference on new slides
- Generate heatmap

DATA GENERATION VIA IMAGE TILING

INPUT DATA

• Slide 096 (117806, 22126) at lvl 0; Tumor Status = True (indicated by red mask)

TRAIN TEST SPLIT

MODEL STRUCTURE

- Single tower with level 0 data
- Explored performance with transfer learning and data augmentation

 Two tower with user-input levels (0 and 2 as example)

MODEL PERFORMANCE - SINGLE TOWER

- Single tower (level 0) with transfer learning (InceptionV3)
- Train Accuracy: 88.15, Val Accuracy 90.73

MODEL PERFORMANCE - SINGLE TOWER

- Single tower (level 0) self-defined model
- Train Accuracy: 95.15, Val Accuracy 90.10

MODEL PERFORMANCE - TWO TOWER

- Best performing model: two tower (level 0 and 2) self-defined model
- Train Accuracy: 92.23, Val Accuracy 94.97

MODEL PERFORMANCE

• Best performing model: two tower (level 0 and 2) self-defined model

Test Accuracy: 92.6

Prediction True Label	Predicted Positive	Predicted Negative
Labeled Positive	46.2%	3.8%
Labeled Negative	<u>3.6%</u>	46.4%

A good balance between FP and FN

HEATMAP GENERATION

Non-tissue part pre-filtering

Batchprocessing for prediction

Predicted mask generation and overlayed

PREDICTION HEATMAP

• Heatmap generated on slide 78 (train slide)

PREDICTION HEATMAP

Heatmap generated on slide 91 (test slide)

OBSERVATIONS AND NEXT STEPS

- Model performs well on train slides and test sets but generated some false positives when inferring on whole test slides
- Data quality (largely) determines performance of a model
- Current approach of defining tissue patches could be improved
- With sufficient data, improvement from data augmentation is minor
- Advanced models require a lot more computing resources
- Computational intensive to generate predicted mask with high resolution
- Class balancing and model calibration remain to be challenges

