WOLFF'S PROBLEM OF IDEALS IN THE MULTIPLER ALGEBRA ON WEIGHTED DIRICHLET SPACE

DEBENDRA P. BANJADE AND TAVAN T. TRENT

ABSTRACT. We establish an analogue of Wolff's theorem on ideals in $H^{\infty}(\mathbb{D})$ for the multiplier algebra of weighted Dirichlet space.

In this paper we wish to extend a theorem of Wolff, concerning ideals in $H^{\infty}(\mathbb{D})$, to the setting of multiplier algebras on weighted Dirichlet spaces. Our techniques will closely follow those used in Banjade-Trent [BT] for the (unweighted) Dirichlet space. The new material requires the boundedness of a certain singular integral operator (Lemma 3) and the boundedness of the Beurling transform (Lemma 4) on some L^2 spaces with weights.

In 1962 Carleson [C] proved his famous "Corona theorem" characterizing when a finitely generated ideal in $H^{\infty}(\mathbb{D})$ is actually all of $H^{\infty}(\mathbb{D})$. Independently, Rosenblum [R], Tolokonnikov [To], and Uchiyama gave an infinite version of Carleson's work on $H^{\infty}(\mathbb{D})$. In an effort to classify ideal membership for finitely-generated ideals in $H^{\infty}(\mathbb{D})$, Wolff [G] proved the following version:

Theorem A (Wolff). If

$$\{f_j\}_{j=1}^n \subset H^{\infty}(\mathbb{D}), H \in H^{\infty}(\mathbb{D}) \quad and$$

$$|H(z)| \le \left(\sum_{j=1}^n |f_j(z)|^2\right)^{\frac{1}{2}} \quad for \ all \ z \in \mathbb{D}, \tag{1}$$

then

$$H^3 \in \mathcal{I}(\{f_j\}_{j=1}^n),$$

the ideal generated by $\{f_j\}_{j=1}^n$ in $H^{\infty}(\mathbb{D})$.

It is known that (1) is not, in general, sufficient for H itself or even for H^2 to be in $\mathcal{I}(\{f_j\}_{j=1}^n)$, see Rao [G] and Treil [T].

For the algebra of multipliers on Dirichlet space, the analogue of Wolff's ideal theorem was established by the authors in [BT]. Since

²⁰¹⁰ Mathematics Subject Classification. Primary: 30H50, 31C25, 46J20.

Key words and phrases. corona theorem, Wolff's theorem, weighted Dirichlet space.

the analogue of the corona theorem for the algebra of multipliers on weighted Dirichlet space was established in Kidane-Trent [KT], it seems plausible that Wolff-type ideal results should be extended to the algebra of multipliers on weighted Dirichlet space. This is what we intend to do in this paper.

We use \mathcal{D}_{α} to denote the weighted Dirichlet space on the unit disk, \mathbb{D} . That is,

$$\mathcal{D}_{\alpha} = \{ f : \mathbb{D} \to \mathbb{C} \mid f \text{ is analytic on } \mathbb{D} \text{ and for } f(z) = \sum_{n=0}^{\infty} a_n z^n,$$
$$\|f\|_{\mathcal{D}_{\alpha}}^2 = \sum_{n=0}^{\infty} (n+1)^{\alpha} |a_n|^2 < \infty \}.$$

We will use other equivalent norms for smooth functions in \mathcal{D}_{α} as follows,

$$||f||_{\mathcal{D}_{\alpha}}^2 = \int_{-\pi}^{\pi} |f|^2 d\sigma + \int_{D} |f'(z)|^2 (1 - |z|^2)^{1-\alpha} dA(z)$$
 and

$$||f||_{\mathcal{D}_{\alpha}}^{2} = \int_{-\pi}^{\pi} |f|^{2} d\sigma + \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{|f(e^{it}) - f(e^{i\theta})|^{2}}{|e^{it} - e^{i\theta}|^{1+\alpha}} d\sigma d\sigma.$$

For ease of notation, we will denote $(1-|z|^2)^{1-\alpha}dA(z)$ by $dA_{\alpha}(z)$. Also, we will consider $\bigoplus_{1}^{\infty} \mathcal{D}_{\alpha}$ as an l^2 -valued weighted Dirichlet space. The norms in this case are exactly as above but we will replace the absolute value by l^2 -norms. Moreover, we use $\mathcal{H}\mathcal{D}_{\alpha}$ to denote the harmonic weighted Dirichlet space (restricted to the boundary of \mathbb{D}). The functions in \mathcal{D}_{α} have only vanishing negative Fourier coefficients whereas the functions in $\mathcal{H}\mathcal{D}_{\alpha}$ may have negative fourier coefficients which do not vanish. Again, if f is smooth on $\partial \mathbb{D}$, the boundary of the unit disk \mathbb{D} , then

$$||f||_{\mathcal{HD}_{\alpha}}^{2} = \int_{-\pi}^{\pi} |f|^{2} d\sigma + \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{|f(e^{it}) - f(e^{i\theta})|^{2}}{|e^{it} - e^{i\theta}|^{1+\alpha}} d\sigma d\sigma.$$

We use $\mathcal{M}(\mathcal{D}_{\alpha})$ to denote the multiplier algebra of weighted Dirichlet space, defined as: $\mathcal{M}(\mathcal{D}_{\alpha}) = \{ \phi \in \mathcal{D}_{\alpha} : \phi f \in \mathcal{D}_{\alpha} \text{ for all } f \in \mathcal{D}_{\alpha} \}$, and we will denote the multiplier algebra of harmonic weighted Dirichlet space by $\mathcal{M}(\mathcal{H}\mathcal{D}_{\alpha})$, defined similarly (but only on $\partial \mathbb{D}$).

Given $\{f_j\}_{j=1}^{\infty} \subset \mathcal{M}(\mathcal{D}_{\alpha})$, we consider $F(z) = (f_1(z), f_2(z), \dots)$ for $z \in \mathbb{D}$. We define the row operator $M_F^R : \bigoplus_{j=1}^{\infty} \mathcal{D}_{\alpha} \to \mathcal{D}_{\alpha}$ by

$$M_F^R\left(\left\{h_j\right\}_{j=1}^\infty\right) = \sum_{j=1}^\infty f_j h_j \text{ for } \left\{h_j\right\}_{j=1}^\infty \in \bigoplus_{j=1}^\infty \mathcal{D}_\alpha.$$

Similarly, we define the column operator $M_F^C: \mathcal{D}_\alpha \to \bigoplus_{1}^{\infty} \mathcal{D}_\alpha$ by

$$M_F^C(h) = \{f_j h\}_{j=1}^{\infty} \text{ for } h \in \mathcal{D}_{\alpha}.$$

We notice that \mathcal{D}_{α} is a reproducing kernel (r.k.) Hilbert space with r.k.

$$K_w(z) = \sum_{n=0}^{\infty} \frac{1}{(n+1)^{\alpha}} (z\overline{w})^n \text{ for } z, w \in \mathbb{D}$$

and it is well known (see [S]) that

$$\frac{1}{k_w(z)} = 1 - \sum_{n=1}^{\infty} c_n (z\overline{w})^n, c_n > 0, \text{ for all } n.$$

Hence, weighted Dirichlet space has a reproducing kernel with "one positive square" or a "complete Nevanlinna-Pick" kernel. This property will be used to complete the first part of our proof.

We know that $\mathcal{M}(\mathcal{D}_{\alpha}) \subseteq H^{\infty}(\mathbb{D})$, but $\mathcal{M}(\mathcal{D}_{\alpha}) \neq H^{\infty}(\mathbb{D})$ (e.g., $\sum_{n=1}^{\infty} \frac{z^{n^{4m+1}}}{n^{2m\alpha}}$, $m = \left[\frac{1}{\alpha}\right] + 1$, $z \in D$, is in $H^{\infty}(D)$ but is not in \mathcal{D}_{α} and so neither in $\mathcal{M}(\mathcal{D}_{\alpha})$). Hence, $\mathcal{M}(\mathcal{D}_{\alpha}) \subsetneq H^{\infty}(\mathbb{D}) \cap \mathcal{D}_{\alpha}$.

Also, it is worthwhile to note that the pointwise hypothesis that $F(z) F(z)^* \leq 1$ for $z \in \mathbb{D}$ implies that the analytic Toeplitz operators T_F^R and T_F^C defined on $\bigoplus_{1}^{\infty} H^2(\mathbb{D})$ and $H^2(\mathbb{D})$, in analogy to that of M_F^R and M_F^C , are bounded and

$$||T_F^R|| = ||T_F^C|| = \sup_{z \in \mathbb{D}} \left(\sum_{j=1}^{\infty} |f_j(z)|^2 \right)^{\frac{1}{2}} \le 1.$$

But, since $M(\mathcal{D}_{\alpha}) \subsetneq H^{\infty}(\mathbb{D})$, the pointwise upper bound hypothesis will not be sufficient to conclude that M_F^R and M_F^C are bounded on weighted Dirichlet space. However, $\|M_F^R\| \leq \sqrt{10} \|M_F^C\|$. Thus, we will replace the natural normalization that $F(z) F(z)^* \leq 1$ for all $z \in \mathbb{D}$ by the stronger condition that $\|M_F^C\| \leq 1$.

Then we have the following theorem:

Theorem 1. Let $H,\{f_j\}_{j=1}^{\infty} \subset \mathcal{M}(\mathcal{D}_{\alpha})$. Assume that

(a)
$$||M_F^C|| \le 1$$

(a)
$$||M_F^{\circ}|| \le 1$$

and (b) $|H(z)| \le \sqrt{\sum_{j=1}^{\infty} |f_j(z)|^2}$ for all $z \in \mathbb{D}$.

Then there exists $K(\alpha) < \infty$ and there exists $\{g_j\}_{j=1}^{\infty} \subset \mathcal{M}(\mathcal{D}_{\alpha})$ with

$$||M_G^C|| \le K(\alpha)$$
and $FG^T = H^3$.

Of course, it should be noted that for only a finite number of multipliers, $\{f_i\}$, condition (a) of Theorem 1 can always be assumed, so we have the exact analogue of Wolff's theorem in the finite case.

First, let's outline the method of our proof. Assume that $F \in$ $\mathcal{M}_{l^2}(\mathcal{D}_{\alpha})$ and $H \in \mathcal{M}(\mathcal{D}_{\alpha})$ satisfy the hypotheses (a) and (b) of Theorem 1. Then we show that there exists a constant $K(\alpha) < \infty$, so that

$$M_{H^3} M_{H^3}^{\star} \le K(\alpha)^2 M_F^R M_F^{\star R}.$$
 (2)

Given (2), a commutant lifting theorem argument as it appears in, for example, Trent [Tr2] completes the proof by providing a $G \in \mathcal{M}_{l^2}(\mathcal{D}_{\alpha})$, so that $||M_G^C|| \le K(\alpha)$ and $FG^T = H^3$.

But (2) is equivalent to the following: there exists a constant $K(\alpha)$ ∞ so that, for any $h \in \mathcal{D}_{\alpha}$, there exists $\underline{u}_h \in \bigoplus_{i=1}^{\infty} \mathcal{D}_{\alpha}$ such that

(i)
$$M_F^R(\underline{u}_h) = H^3 h$$
 and
(ii) $\|\underline{u}_h\|_{\mathcal{D}_\alpha} \le K(\alpha) \|h\|_{\mathcal{D}_\alpha}$. (3)

Hence, our goal is to show that (3) follows from (a) and (b). For this we need a series of lemmas.

Lemma 1. Let $\{c_j\}_{j=1}^{\infty} \in l^2$ and $C = (c_1, c_2, ...) \in B(l^2, \mathbb{C})$. Then there exists Q such that the entries of Q are either 0 or $\pm c_j$ for some j and $CC^*I - C^*C = QQ^*$. Also, range of Q = kernel of C.

We will apply this lemma in our case with C = F(z) for each $z \in \mathbb{D}$, when $F(z) \neq 0$. A proof of this lemma can be found in Trent [Tr2].

Given condition (b) of Theorem 1 for all $z \in \mathbb{D}$, $F \in \mathcal{M}_{l^2}(\mathcal{D}_{\alpha})$ and $H \in \mathcal{M}(\mathcal{D}_{\alpha})$ with H being not identically zero, we lose no generality assuming that $H(0) \neq 0$. If H(0) = 0, but $H(a) \neq 0$, let $\beta(z) = \frac{a-z}{1-\bar{a}z}$

for $z \in \mathbb{D}$. Then since (b) holds for all $z \in \mathbb{D}$, it holds for $\beta(z)$. So we may replace H and F by $Ho\beta$ and $Fo\beta$, respectively. If we prove our theorem for $Ho\beta$ and $Fo\beta$, then there exists $G \in \mathcal{M}_{l^2}(\mathcal{D}_{\alpha})$ so that $(Fo\beta)G = Ho\beta$ and hence $F(Go\beta^{-1}) = H$ and $Go\beta^{-1} \in \mathcal{M}_{l^2}(\mathcal{D}_{\alpha})$, and we are done. Thus, we may assume that $H(0) \neq 0$ in (b), so $||F(0)||_2 \neq 0$. This normalization will let us apply some relevant lemmas from [Tr1].

It suffices to establish (i) and (ii) for any dense set of functions in \mathcal{D}_{α} , so we will use polynomials. First, we will assume F and H are analytic on $\mathbb{D}_{1+\epsilon}(0)$. In this case, we write the most general solution of the pointwise problem on $\overline{\mathbb{D}}$ and find an analytic solution with uniform bounds. Then we remove the smoothness hypotheses on F and H.

For a polynomial, h, we take

$$\underline{u}_h(z) = F(z)^* (F(z)F(z)^*)^{-1} H^3 h - Q(z)\underline{k}(z), \text{ where } \underline{k}(z) \in l^2 \text{ for } z \in \mathbb{D}.$$

We have to find $\underline{k}(z)$ so that $\underline{u}_h \in \bigoplus_{1}^{\infty} \mathcal{D}_{\alpha}$. Thus we want $\bar{\partial}_z \underline{u}_h = 0$ in \mathbb{D} .

Therefore, we will try

$$\underline{u}_h = \frac{F^* H^3 h}{F F^*} - Q \left(\frac{\widehat{Q^* F'^* H^3} h}{(F F^*)^2} \right),$$

where \hat{k} is the Cauchy transform of k on \mathbb{D} . Note that for k smooth on \mathbb{D} and $z \in \mathbb{D}$,

$$\underline{\widehat{k}}(z) = -\frac{1}{\pi} \int_D \frac{\underline{k}(w)}{w-z} dA(w)$$
 and $\overline{\partial} \underline{\widehat{k}}(z) = k(z)$ for $z \in \mathbb{D}$.

See [A] for background on the Cauchy transform.

Then it's clear that $M_F^R(\underline{u}_h) = H^3h$ and \underline{u}_h is analytic. Hence, we will be done in the smooth case if we are able to find $K(\alpha) < \infty$, only depending on α and thus independent of the polynomial, h, such that

$$\|\underline{u}_h\|_{\mathcal{D}_\alpha} \le K(\alpha) \|h\|_{\mathcal{D}_\alpha} \tag{4}$$

Lemma 2. Let \underline{w} be a harmonic function on $\overline{\mathbb{D}}$, then

$$\int_{D} \|Q'\underline{w}\|_{l^{2}}^{2} dA_{\alpha} \leq 8 \|\underline{w}\|_{\mathcal{HD}_{\alpha}}^{2}.$$

Proof of this lemma can be found in [BT].

Lemma 3. Let the operator T be defined on $L^2(\mathbb{D}, dA_{\alpha})$ by

$$(Tf)(z) = \int_{D} \frac{f(u)}{(u-z)(1-u\bar{z})} dA_{\alpha},$$

for $z \in \mathbb{D}$ and $f \in L^2(\mathbb{D}, dA_\alpha)$. Then

$$||Tf||_{A_{\alpha}}^2 \le 4\pi^2 C_{\alpha}^2 ||f||_{A_{\alpha}}^2$$

where $C_{\alpha} = \frac{8}{\alpha^2}$.

Proof. To show that the singular integral operator, T, is bounded on $L^2(\mathbb{D}, dA_{\alpha})$, we apply Zygmund's method of rotations [Z] and apply Schur's lemma an infinite number of times.

Let $f(z) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk} z^j \bar{z}^k$, where $a_{ij} = 0$ except for a finite number of terms. For $z = r e^{i\theta}$, we relabel to get

$$f(r e^{i\theta}) = \sum_{l=-\infty}^{\infty} f_l(r) e^{il\theta}$$
, where $f_l(r) = \sum_{k=0}^{\infty} a_{l+k k} r^{l+2k}$.

Then

$$||f||_{A_{\alpha}}^{2} = \sum_{l=-\infty}^{\infty} ||f_{l}(r)||_{L_{\alpha}^{2}[0,1]},$$

where the measure on $L_{\alpha}^{2}\left[0,1\right]$ is " $\left(1-r^{2}\right)^{1-\alpha}rdr$ ".

Now computing as in [BT], we deduce that

$$(Tf)\left(se^{it}\right) = 2\pi \sum_{l=-\infty}^{\infty} e^{i(l-1)t} \left(T_l f_l\right)(s),$$

for
$$(T_l f_l)(s) = \begin{cases} -(\sum_{n=0}^{-l} s^{2n}) \int_0^1 \chi_{(0,s)}(r) \left(\frac{r}{s}\right)^{1-l} f_l(r) dr \\ +\frac{1}{1-s^2} \int_0^1 \chi_{(s,1)}(r) (rs)^{1-l} f_l(r) dr & \text{for } l \leq 0 \\ \frac{1}{1-s^2} \int_0^1 \chi_{(s,1)}(r) \left(\frac{s}{r}\right)^{l-1} f_0(r) r dr & \text{for } l > 0. \end{cases}$$

By our construction,

$$||Tf||_{A_{\alpha}}^2 = 4\pi^2 \sum_{l=-\infty}^{\infty} ||T_l f_l||_{L_{\alpha}^2[0,1]}^2,$$

where the measure on $L^2[0,1]$ is " $(1-r^2)^{1-\alpha} r dr$ ". Thus, to prove our lemma it suffices to prove that

$$\sup_{l} ||T_{l}||_{B(L_{\alpha}^{2}[0,1])} \leq C_{\alpha} < \infty.$$

To illustrate the technique, we show a detailed estimate for $||T_0||_{B(L^2_{\alpha}[0,1])}$. The other cases follow similarly.

Now

$$\int_{0}^{1} \left| T_{0} f_{0}(se^{it}) \right|^{2} (1 - s^{2})^{1-\alpha} s ds$$

$$= 2 \int_{0}^{1} \int_{0}^{1} f_{0}(u) f_{0}(v) \left(\int_{\max\{u,v\}}^{1} \frac{(1 - s^{2})^{1-\alpha} ds}{s} \right) u du \, v dv$$

$$+ 2 \int_{0}^{1} \int_{0}^{1} f_{0}(x) f_{0}(y) \left[\int_{0}^{\min\{x,y\}} \frac{s^{2} (1 - s^{2})^{1-\alpha}}{(1 - s^{2})^{2}} s ds \right] x dx \, y dy.$$

Claim(I):

$$\int_{0}^{1} \int_{0}^{1} f_{0}(u) f_{0}(v) \left(\int_{\max\{u,v\}}^{1} \frac{(1-s^{2})^{1-\alpha} ds}{s} \right) u du \, v dv$$

$$\leq \frac{25}{16} \int_{0}^{1} |f_{0}(u)|^{2} \left(1-u^{2} \right)^{1-\alpha} u \, du.$$

We have

$$\int_{0}^{1} \int_{0}^{1} f_{0}(u) f_{0}(v) \left(\int_{\max\{u,v\}}^{1} \frac{(1-s^{2})^{1-\alpha} ds}{s} \right) u du \, v dv
\leq \int_{0}^{1} \int_{0}^{1} f_{0}(u) f_{0}(v) \left[\frac{(1-\max(u^{2},v^{2}))^{1-\alpha}}{(1-u^{2})^{1-\alpha} (1-v^{2})^{1-\alpha}} ln \left(\frac{1}{\max\{u,v\}} \right) \right]
\left(1-u^{2} \right)^{1-\alpha} \left(1-v^{2} \right)^{1-\alpha} u du \, v dv.$$

We apply Schur's Test with p(u) = 1.

$$\int_0^v \left[\frac{(1-v^2)^{1-\alpha}}{(1-u^2)^{1-\alpha} (1-v^2)^{1-\alpha}} ln\left(\frac{1}{v}\right) \right] (1-u^2)^{1-\alpha} u du$$
$$= \frac{1}{2} ln\left(\frac{1}{v^2}\right) \frac{v^2}{2} \le \frac{1}{4}.$$

Similarly, we get
$$\int_{v}^{1} \left[\frac{(1-u^{2})^{1-\alpha}}{(1-u^{2})^{1-\alpha}(1-v^{2})^{1-\alpha}} ln\left(\frac{1}{u}\right) \right] (1-u^{2})^{1-\alpha} u du \leq 1.$$

Therefore,

$$\int_{0}^{1} \left[\frac{(1 - \max(u^{2}, v^{2}))^{1 - \alpha}}{(1 - u^{2})^{1 - \alpha} (1 - v^{2})^{1 - \alpha}} ln \left(\frac{1}{\max\{u, v\}} \right) \right] p(u) \left(1 - u^{2} \right)^{1 - \alpha} u du$$

$$\leq \frac{5}{4} p(v).$$

Claim(II):

$$\int_{0}^{1} \int_{0}^{1} f_{0}(x) f_{0}(y) \left[\int_{0}^{\min\{x,y\}} \frac{s^{2} (1-s^{2})^{1-\alpha}}{(1-s^{2})^{2}} s ds \right] x dx y dy$$

$$\leq \frac{4}{\alpha^{2}} \int_{0}^{1} |f_{0}(x)|^{2} (1-x^{2})^{1-\alpha} x dx.$$

We have

$$\int_{0}^{1} \int_{0}^{1} f_{0}(x) f_{0}(y) \left[\int_{0}^{\min\{x,y\}} \frac{s^{2}(1-s^{2})^{1-\alpha}}{(1-s^{2})^{2}} s ds \right] x dx y dy$$

$$= \int_{0}^{1} \int_{0}^{1} f_{0}(x) f_{0}(y) \left[\frac{1}{2} \int_{0}^{\min\{x^{2},y^{2}\}} \frac{s}{(1-s)^{1+\alpha}} ds \right] x dx y dy$$

$$\leq \int_{0}^{1} \int_{0}^{1} f_{0}(x) f_{0}(y) \left[\frac{1}{2\alpha} \frac{\min\{x^{2},y^{2}\}}{(1-\min\{x^{2},y^{2}\})^{\alpha}} \right] x dx y dy.$$

For this term, we take $p(x) = \frac{1}{(1-x^2)^{\beta}}$, where $\beta = 1 - \frac{\alpha}{2}$. Then, calculating, we get that

$$\int_0^y \frac{1}{2\alpha} \frac{x^2}{(1-x^2)^{\alpha+\beta}} \frac{1}{(1-y^2)^{1-\alpha}} x dx \le \frac{1}{4\alpha (\beta + \alpha - 1)} \frac{1}{(1-y^2)^{\beta}}.$$

Similarly,

$$\int_{y}^{1} \frac{1}{2\alpha} \frac{y^{2}}{(1-y^{2})^{\alpha}} \frac{1}{(1-y^{2})^{1-\alpha}} \frac{1}{(1-x^{2})^{\beta}} x dx \le \frac{1}{4\alpha (\beta - 1)} \frac{1}{(1-y^{2})^{\beta}}.$$

Therefore,

$$\begin{split} \int_{0}^{1} \left[\frac{1}{2\alpha} \frac{\min\{x^{2}, y^{2}\}}{(1 - \min\{x^{2}, y^{2}\})^{\alpha} (1 - x^{2})^{1 - \alpha} (1 - y^{2})^{1 - \alpha}} \right] p(x) \left(1 - x^{2} \right)^{1 - \alpha} x dx \\ &= \left(\frac{1}{4\alpha (\beta + \alpha - 1)} + \frac{1}{4\alpha (1 - \beta)} \right) p(y) \\ &= \frac{1}{(4\beta + \alpha - 1) (1 - \beta)} p(y) = \frac{1}{\alpha^{2}} p(y). \end{split}$$

Hence.

$$\int_0^1 |T_0 f_0(s)|^2 (1 - s^2)^{1 - \alpha} s ds \le C_{\alpha_0}^2 \int_0^1 |f_0(s)|^2 (1 - s^2)^{1 - \alpha} s ds,$$

where $C_{\alpha_0} = \left[\frac{5}{2} + \frac{2}{\alpha^2}\right] \le \frac{5}{\alpha^2}$.

Applying Schur's test for l>1 with $p(x)=\frac{1}{(1-x^2)^\beta},\ \beta=1-\frac{\alpha}{2},$ we get the estimate $C_l\leq \frac{5}{\alpha^2},$ independent of l. Similarly, for l<0 with p(x)=1 and $p(x)=\frac{1}{(1-x^2)^\beta},$ for each of the two terms, respectively, we get the estimate $C_l\leq 6+\frac{2}{\alpha^2},$ independent of l. Thus we conclude that

$$\sup_{l} ||T_{l}||_{B(L_{\alpha}^{2}[0,1])} \le \frac{8}{\alpha^{2}}.$$

This finishes the proof of the Lemma.

A classical treatment of the Beurling transform can be found in Zygmund [Z]. For our purposes, we define the Beurling transform formally by

$$\mathcal{B}(\phi) = \partial_z(\widehat{\phi}),$$

where ϕ is in $C^1(\overline{\mathbb{D}})$ and $\widehat{\phi}$ is the Cauchy transform of ϕ on \mathbb{D} .

Lemma 4. Let \mathcal{B} denote the Beurling transform. Then

$$||\mathcal{B}(f)||_{A_{\alpha}} \leq \frac{23}{\alpha} ||f||_{A_{\alpha}}, f \in L^{2}(\mathbb{D}, dA_{\alpha}).$$

Proof. To show that the Beurling transform, \mathcal{B} , is bounded on $L^2(\mathbb{D}, \mathbb{A}_{\alpha})$, we again apply Zygmund's method of rotations [Z] and apply Schur's lemma.

As in Lemma 3, we take

$$f(r e^{i\theta}) = \sum_{l=-\infty}^{\infty} f_l(r) e^{il\theta}$$
, where $f_l(r) = \sum_{k=0}^{\infty} a_{l+kk} r^{l+2k}$.

Then

$$||f||_{A_{\alpha}}^{2} = \sum_{l=-\infty}^{\infty} ||f_{l}(r)||_{L_{\alpha}^{2}[0,1]},$$

where the measure on $L_{\alpha}^{2}[0,1]$ is " $(1-r^{2})^{1-\alpha}rdr$ ".

Now

$$\widehat{f}(w) = -\frac{2}{2\pi} \int_{D} \frac{f(z)}{z - w} dA(z)$$

$$= 2 \sum_{l = -\infty}^{\infty} \sum_{n=0}^{\infty} \int_{0}^{2\pi} \int_{0}^{|w|} \frac{f_{l}(r) e^{i(l+n)\theta}}{w^{n+1}} r^{n+1} dr d\sigma(\theta)$$

$$- 2 \sum_{l = -\infty}^{\infty} \sum_{n=0}^{\infty} \int_{0}^{2\pi} \int_{|w|}^{1} \frac{f_{l}(r) e^{i(l-1-n)\theta} w^{n}}{r^{n}} dr d\sigma(\theta). \qquad (\star)$$

If we take l = 0 in (\star) , we get that

$$\widehat{f}_0(w) = \frac{2}{w} \int_0^{|w|} f_0(r) r dr.$$

Therefore,

$$\partial \widehat{f}_{0}(w) = \frac{-2}{w^{2}} \int_{0}^{|w|} f_{0}(r) r dr + \frac{2}{w} f_{0}(|w|) |w| \frac{\partial (|w|)}{\partial w}$$
$$= \frac{-2}{w^{2}} \int_{0}^{|w|} f_{0}(r) r dr + \frac{\overline{w}}{w} f_{0}(|w|),$$

since
$$\overline{w} = \frac{\partial |w|^2}{\partial w} = 2|w|\frac{\partial |w|}{\partial w}, \ \frac{\partial |w|}{\partial w} = \frac{\overline{w}}{2|w|}.$$

Thus,

$$\mathcal{B}f_0(se^{it}) = \partial \widehat{f}_0(se^{it}) = e^{-2it} \left[\frac{-2}{s^2} \int_0^s f_0(r) r dr + f_0(s) \right].$$

Similarly, a computation shows that

$$\mathcal{B}(f)(se^{it}) = \sum_{l=-\infty}^{\infty} e^{i(l-2)t} \mathcal{B}_l f_l(s),$$

for
$$\mathcal{B}_{l}f_{l}(s) = \begin{cases} \frac{-2}{s^{2}} \int_{0}^{s} f_{0}(r) r dr + f_{0}(s) & \text{for } l = 0 \\ -2 (l-1)s^{l-2} \int_{s}^{1} \frac{f_{l}(r)}{r^{l-1}} dr - f_{l}(s) & \text{for } l \geq 1 \\ -2 (1-l)s^{l-2} \int_{0}^{s} f_{l}(r)r^{1-l} dr + f_{l}(s) & \text{for } l < 0. \end{cases}$$

Thus,

$$||\mathcal{B}f||_{A_{\alpha}}^{2} = \sum_{l=-\infty}^{\infty} ||\mathcal{B}_{l}f_{l}||_{L_{\alpha}^{2}[0,1],}^{2}$$

where the measure on $L_{\alpha}^{2}[0,1]$ is " $(1-r^{2})^{1-\alpha}rdr$ ".

Claim:

$$\sup_{l} ||\mathcal{B}_l||_{B(L^2_{\alpha}[0,1])} \leq \frac{23}{\alpha} < \infty.$$

Without loss of generality we may assume that $f_l(s) \geq 0$ for all l. For l < 2, applying Schur's test with p(u) = 1 or $p(u) = \frac{1}{\sqrt{u}}$, we get that $||\mathcal{B}_l||_{B(L^2[0,1])} \leq 7$. The main cases occur for $l \geq 2$. So let $l \geq 2$ be fixed. Then

$$||\mathcal{B}_{l}f_{l}||_{L_{\alpha}^{2}[0,1]} \leq 2\left(\int_{0}^{1} |-(l-1)s^{l-2}\int_{s}^{1} \frac{f_{l}(r)}{r^{l-1}}dr|^{2}(1-s^{2})^{1-\alpha}sds\right)^{\frac{1}{2}} + ||f_{l}||_{L_{\alpha}^{2}[0,1]}$$

Now,

$$(l-1)^{2} \int_{0}^{1} s^{2(l-2)} \left| \int_{0}^{1} \chi_{(s,1)}(r) \frac{f_{l}(r)}{r^{l-1}} dr \right|^{2} (1-s^{2})^{1-\alpha} s ds$$

$$= \int_{0}^{1} \int_{0}^{1} f_{l}(u) f_{l}(v) \left[(l-1)^{2} \frac{1}{u^{l}} \frac{1}{v^{l}} \frac{\int_{0}^{\min\{u,v\}} s^{2(l-2)} (1-s^{2})^{1-\alpha} s ds}{(1-u^{2})^{1-\alpha} (1-v^{2})^{1-\alpha}} \right]$$

$$(1-u^{2})^{1-\alpha} (1-v^{2})^{1-\alpha} u du v dv.$$

Applying Schur's test with $p(u) = \frac{1}{(1-u^2)^{1-\alpha}}$, then it's sufficient to show that

$$\int_0^1 \left[(l-1)^2 \frac{1}{u^l} \frac{\int_0^{\min\{u,v\}} s^{2l-3} (1-s^2)^{1-\alpha} ds}{(1-u^2)^{1-\alpha}} \right] u du \le C_l v^l.$$

Since $(1+s)^{1-\alpha} \le 2$ and $\frac{1}{2} \le \frac{1}{(1+u)^{1-\alpha}} \le 1$, we will be done if we are able to show

$$\int_0^1 \left[(l-1)^2 \frac{1}{u^l} \frac{\int_0^{\min\{u,v\}} s^{2l-3} (1-s)^{1-\alpha} ds}{(1-u)^{1-\alpha}} \right] u du \le C_l v^l.$$

So we are trying to prove that

$$\int_0^v \left[(l-1)^2 \frac{1}{u^l} \frac{\int_0^u s^{2l-3} (1-s)^{1-\alpha} ds}{(1-u)^{1-\alpha}} \right] u du \le C_l v^l \quad \text{and}$$

$$\int_v^1 \left[(l-1)^2 \frac{1}{u^l} \frac{\int_0^v s^{2l-3} (1-s)^{1-\alpha} ds}{(1-u)^{1-\alpha}} \right] u du \le C_l v^l.$$

Now

$$\int_0^v \left[(l-1)^2 \frac{1}{u^l} \frac{\int_0^u s^{2l-3} (1-s)^{1-\alpha} ds}{(1-u)^{1-\alpha}} \right] u du$$

$$= \int_0^v \left[(l-1)^2 s^{2l-3} (1-s)^{1-\alpha} \int_s^v \frac{du}{u^{l-1} (1-u)^{1-\alpha}} \right] ds.$$

Let $t = (1 - u)^{\alpha}$ and change variables. Then we get that

$$\begin{split} &\int_{0}^{v} \left[(l-1)^{2} s^{2l-3} (1-s)^{1-\alpha} \int_{s}^{v} \frac{du}{u^{l-1} (1-u)^{1-\alpha}} \right] ds \\ &= \int_{0}^{v} \left[\frac{1}{\alpha} (l-1)^{2} s^{2l-3} (1-s)^{1-\alpha} \int_{(1-v)^{\alpha}}^{(1-s)^{\alpha}} \frac{dt}{\left(1-t^{\frac{1}{\alpha}}\right)^{(l-2)+1}} \right] ds \\ &= \int_{0}^{v} \left[\frac{1}{\alpha} (l-1)^{2} s^{2l-3} (1-s)^{1-\alpha} \sum_{p=0}^{\infty} \left(\begin{array}{c} l-2+p \\ p \end{array} \right) \int_{(1-v)^{\alpha}}^{(1-s)^{\alpha}} t^{\frac{p}{\alpha}} dt \right] ds \\ &\leq \int_{0}^{v} \left[\frac{1}{\alpha} (l-1)^{2} s^{2l-3} (1-s)^{1-\alpha} \sum_{p=0}^{\infty} \frac{(l-2+p)!}{(l-2)!} \left[\frac{((1-s)^{\alpha})^{\frac{p}{\alpha}+1}}{\frac{p}{\alpha}+1} \right] \right] ds \\ &\leq \frac{2}{\alpha} \int_{0}^{v} \left[(l-1) s^{2l-3} (1-s)^{1-\alpha} \sum_{q=1}^{\infty} \frac{(l-3+q)!}{(l-3)!} \frac{(1-s)^{q}}{(1-s)^{1-\alpha}} \right] ds \\ &= \frac{2}{\alpha} \int_{0}^{v} \left[(l-1) s^{2l-3} \left(\frac{1}{(1-(1-s))^{l-3+1}} - 1 \right) \right] ds \\ &\leq \frac{2}{\alpha} \int_{0}^{v} \left[(l-1) s^{2l-3} \left(\frac{1}{s^{l-2}} \right) \right] ds \\ &\leq \frac{2}{\alpha} v^{l}. \end{split}$$

Now consider

$$\int_{v}^{1} \left[(l-1)^{2} \frac{1}{u^{l}} \frac{\int_{0}^{v} s^{2l-3} (1-s)^{1-\alpha} ds}{(1-u)^{1-\alpha}} \right] u du$$

$$= \int_{0}^{v} \left[(l-1)^{2} s^{2l-3} (1-s)^{1-\alpha} \int_{v}^{1} \frac{du}{u^{l-1} (1-u)^{1-\alpha}} \right] ds.$$

Again, change variables with $t = (1 - u)^{\alpha}$. So

$$\begin{split} &\int_{0}^{v} \left[(l-1)^{2} \, s^{2l-3} (1-s)^{1-\alpha} \int_{v}^{1} \frac{du}{u^{l-1} (1-u)^{1-\alpha}} \right] ds \\ &= \int_{0}^{v} \left[\frac{1}{\alpha} \, (l-1)^{2} \, s^{2l-3} (1-s)^{1-\alpha} \int_{0}^{(1-v)^{\alpha}} \frac{dt}{\left(1-t^{\frac{1}{\alpha}}\right)^{l-1}} \right] ds \\ &= \int_{0}^{v} \left[\frac{1}{\alpha} \, (l-1)^{2} \, s^{2l-3} (1-s)^{1-\alpha} \sum_{p=0}^{\infty} \left(\begin{array}{c} l-2+p \\ p \end{array} \right) \int_{0}^{(1-v)^{\alpha}} t^{\frac{p}{\alpha}} dt \right] ds \\ &= \int_{0}^{v} \left[\frac{1}{\alpha} \, (l-1)^{2} \, s^{2l-3} (1-s)^{1-\alpha} \sum_{p=0}^{\infty} \frac{(l-3+p+1)!}{(l-2) \, (l-3)! \, p!} \left[\frac{(1-v)^{p+\alpha}}{p+1} \right] \right] ds \\ &\leq \frac{2}{\alpha} \int_{0}^{v} \left[(l-1) \, s^{2l-3} (1-s)^{1-\alpha} \sum_{q=1}^{\infty} \frac{(l-3+q)!}{(l-3)! \, q!} \frac{(1-v)^{q}}{(1-v)^{1-\alpha}} \right] ds \\ &= \frac{2}{\alpha} \int_{0}^{v} \left[(l-1) \, s^{2l-3} (1-s)^{1-\alpha} \left(\frac{1}{(1-(1-v))^{l-3+1}} - 1 \right) \frac{1}{(1-v)^{1-\alpha}} \right] ds \\ &\leq \frac{2}{\alpha} \int_{0}^{v} \left[(l-1) \, s^{2l-3} (1-s)^{1-\alpha} \left(\frac{1-v^{l-2}}{v^{l-2}} \right) \frac{(1-v)^{\alpha}}{(1-v)} \right] ds \\ &\leq \frac{2}{\alpha} \int_{0}^{v} \left[(l-1) \, s^{2l-3} (1-s)^{1-\alpha} (1-s)^{\alpha} \left(\frac{1-v^{l-2}}{1-v} \right) \frac{1}{v^{l-2}} \right] ds \\ &= \frac{2(l-1)}{\alpha} \int_{0}^{v} \left[\left(s^{2l-3} - s^{2l-2} \right) \left(\frac{1-v^{l-2}}{1-v} \right) \frac{1}{v^{l-2}} \right] ds \\ &= \frac{2(l-1)}{\alpha} \left[\left(\frac{v^{2l-2}}{2l-2} - \frac{v^{2l-1}}{2l-1} \right) \left(\frac{1-v^{l-2}}{1-v} \right) \frac{1}{v^{l-2}} \right] \\ &= \frac{2(l-1)v^{l}}{\alpha} \left[\left(\frac{(1-v)}{2l-2} + v \left(\frac{1}{2l-2} - \frac{1}{2l-1} \right) \right) \left(\frac{1-v^{l-2}}{1-v} \right) \right] \\ &\leq \frac{1}{\alpha} \, v^{l} + \frac{2(l-1)v^{l+1}}{\alpha} \left[\left(\frac{1}{2(l-1)(2l-1)} \right) \left(\frac{1-v^{l-2}}{1-v} \right) \right] \end{aligned}$$

$$= \frac{1}{\alpha} v^l + \frac{v^{l+1}}{\alpha} \left[\frac{1}{2l-1} \left(\frac{1-v^{l-2}}{1-v} \right) \right]$$

$$\leq \frac{1}{\alpha} v^l + \frac{v^{l+1}}{\alpha} \frac{(l-2)}{(2l-1)}$$

$$\leq \frac{2}{\alpha} v^l.$$

Therefore,

$$\int_{0}^{1} \left[(l-1)^{2} \frac{1}{u^{l}} \frac{1}{v^{l}} \frac{\int_{0}^{\min\{u^{2}, v^{2}\}} s^{(l-2)} (1-s)^{1-\alpha} ds}{(1-u^{2})^{1-\alpha} (1-v^{2})^{1-\alpha}} \right] p(u) (1-u^{2})^{1-\alpha} u du$$

$$\leq \frac{4}{\alpha} p(v).$$

We conclude that

$$\sup_{l} ||\mathcal{B}_{l}||_{B(L_{\alpha}^{2}[0,1])} \le 15 + \frac{8}{\alpha} \le \frac{23}{\alpha}.$$

Lemma 5. If Q is a multiplier of \mathcal{D}_{α} , then

$$(1-|z|^2) |Q'(z)| \le ||M_Q||_{B(\mathcal{D}_\alpha)} \text{ for all } z \in \mathbb{D}.$$

Proof. Define $\varphi: D \to D$ as $\varphi(z) = \frac{Q(z)}{\|M_Q\|_{B(\mathcal{D}_\alpha)}}$ for all $z \in \mathbb{D}$. Now use the Schwarz lemma and the fact that $\|\varphi\|_{\infty,\mathbb{D}} \leq \|M_\varphi\|_{\mathcal{B}(\mathcal{D}_\alpha)}$ to complete the proof.

Lemma 6. If $H \in \mathcal{M}(\mathcal{D}_{\alpha})$, then $|H'|^2 dA_{\alpha}$ is a \mathcal{D}_{α} -Carleson measure with the constant $4||M_H||^2_{B(\mathcal{D}_{\alpha})}$.

Proof. To prove the lemma, we need to show that

$$\int_{\mathbb{D}} |H'|^2 |g|^2 dA_{\alpha} \le 4||M_H||^2_{B(\mathcal{D}_{\alpha})}||g||^2_{\mathcal{D}_{\alpha}} \text{ for all } g \in \mathcal{D}_{\alpha}.$$

Let $g \in \mathcal{D}_{\alpha}$, then

$$\int_{\mathbb{D}} |H'|^{2} |g|^{2} dA_{\alpha} = \int_{\mathbb{D}} |(Hg)' - Hg'|^{2} dA_{\alpha}
\leq 2 \int_{\mathbb{D}} |(Hg)'|^{2} dA_{\alpha} + 2 \int_{\mathbb{D}} |Hg'|^{2} dA_{\alpha}
\leq 2 \int_{\mathbb{D}} |Hg|^{2} d\sigma + 2 \int_{\mathbb{D}} |(Hg)'|^{2} dA_{\alpha} + 2 \int_{\mathbb{D}} |Hg'|^{2} dA_{\alpha}
\leq 2 ||M_{H}g||_{\mathcal{D}_{\alpha}}^{2} + 2 ||M_{H}||_{B(\mathcal{D}_{\alpha})}^{2} ||g||_{\mathcal{D}_{\alpha}}^{2}
\leq 4 ||M_{H}||_{B(\mathcal{D}_{\alpha})}^{2} ||g||_{\mathcal{D}_{\alpha}}^{2}.$$

This proves the lemma.

We are now ready to prove Theorem 1.

Proof. First, we will prove the theorem for smooth functions on $\overline{\mathbb{D}}$ and get a uniform bound. Then we will use a compactness argument to remove the smoothness hypothesis.

Assume that (a) and (b) of Theorem 1 hold for F and H and that F and H are analytic on $\mathbb{D}_{1+\epsilon}(0)$. Our main goal is to show that there exists a constant, $K(\alpha) < \infty$, independent of ϵ , so that for any polynomial, h, there exists $\underline{u}_h \in \bigoplus_{1}^{\infty} \mathcal{D}_{\alpha}$ such that $M_F^R(\underline{u}_h) = H^3h$ and $\|\underline{u}_h\|_{\mathcal{D}_{\alpha}}^2 \leq K(\alpha) \|h\|_{\mathcal{D}_{\alpha}}^2$.

We take $\underline{u}_h = \frac{F^{\star}H^3h}{FF^{\star}} - Q\Big(\frac{\widehat{Q^{\star}F'^{\star}H^3h}}{(FF^{\star})^2}\Big)$. Then \underline{u}_h is analytic and $M_F^R(\underline{u}_h) = H^3h$. We know that

$$\|\underline{u}_h\|_{\mathcal{D}_\alpha}^2 = \int_{-\pi}^{\pi} \|\underline{u}_h(e^{it})\|^2 d\sigma(t) + \int_D \|(\underline{u}_h(z))'\|^2 dA_\alpha(z).$$

Condition (b) implies that

$$\int_{-\pi}^{\pi} \| \frac{F^{\star} H^{3} h}{F F^{\star}} - Q \left(\frac{Q^{\star} \widehat{F'^{\star} H^{3}} h}{\left(F F^{\star} \right)^{2}} \right) \|^{2} d\sigma(t) \leq 15 \|h\|_{\sigma}^{2} \text{ (see [Tr1])}.$$

Hence, we only need to show that

$$\int_{D} \left\| \left(\frac{F^{\star} H^{3} h}{F F^{\star}} - Q \left(\frac{\widehat{Q^{\star} F^{\prime \star} H^{3} h}}{\left(F F^{\star} \right)^{2}} \right) \right)^{\prime} \right\|^{2} dA_{\alpha}(z) \leq K(\alpha)^{2} \|h\|_{\mathcal{D}_{\alpha}}^{2}$$

for some $K(\alpha) < \infty$.

Now

$$\begin{split} \int_{D} & \| \left(\frac{F^{\star}H^{3}h}{FF^{\star}} - Q \left(\frac{Q^{\star}\widehat{F'^{\star}H^{3}h}}{(FF^{\star})^{2}} \right) \right)^{'} \|^{2} dA_{\alpha}(z) \\ & \leq 5 \underbrace{\int_{D} \| \frac{F^{\star}3H^{2}H'h}{FF^{\star}} \|^{2} dA_{\alpha}(z)}_{(a')} + 5 \underbrace{\int_{D} \| \frac{F^{\star}H^{3}h'}{FF^{\star}} \|^{2} dA_{\alpha}(z)}_{(b')} \\ & + 5 \underbrace{\int_{D} \| \frac{F^{\star}H^{3}h'F'F^{\star}}{(FF^{\star})^{2}} \|^{2} dA_{\alpha}(z)}_{(c')} + 5 \underbrace{\int_{D} \| Q' \left(\frac{Q^{\star}\widehat{F'^{\star}H^{3}h}}{(FF^{\star})^{2}} \right) \|^{2} dA_{\alpha}(z)}_{(d')} \\ & + 5 \underbrace{\int_{D} \| Q \left(\frac{Q^{\star}\widehat{F'^{\star}H^{3}h}}{(FF^{\star})^{2}} \right)^{'} \|^{2} dA_{\alpha}(z)}_{(e')}. \end{split}$$

Then

$$(a') = \int_{D} \|\frac{F^{*}3H^{2}H'h}{FF^{*}}\|^{2} dA_{\alpha}(z) = 9 \int_{D} \|\frac{F^{*}}{\sqrt{FF^{*}}} \frac{H}{\sqrt{FF^{*}}} H H'h\|^{2} dA_{\alpha}(z)$$

$$\leq 9 \int_{D} \|H'h\|^{2} dA_{\alpha}(z)$$

$$\leq 36 \|M_{H}\|_{B(\mathcal{D}_{\alpha})}^{2} \|h\|_{\mathcal{D}_{\alpha}}^{2} \quad \text{by Lemma 6.}$$

$$(b') = \int_D \|\frac{F^* H^3 h'}{F F^*}\|^2 dA_{\alpha}(z) \le \int_D \|h'\|^2 dA_{\alpha}(z) \le \|h\|_{\mathcal{D}_{\alpha}}^2.$$

$$(c') = \int_{D} \| \frac{F^{\star} H^{3} h F' F^{\star}}{(F F^{\star})^{2}} \|^{2} dA_{\alpha}(z) = \int_{D} \| \frac{F^{\star} F' F^{\star}}{\sqrt{F F^{\star}}} \frac{H^{2}}{F F^{\star}} \frac{H}{\sqrt{F F^{\star}}} h \|^{2} dA_{\alpha}(z)$$

$$\leq \int_{D} \| \frac{F^{\star} F' F^{\star}}{\sqrt{F F^{\star}}} h \|^{2} dA_{\alpha}(z)$$

$$\leq \int_{D} \| F'^{\star} h \|^{2} dA_{\alpha}(z) \leq 4 \| h \|_{\mathcal{D}_{\alpha}}^{2}.$$

We use condition (a) and Lemma 3 to estimate (e').

$$(e') = \int_{D} \|Q\left(\frac{\widehat{Q^{\star}F^{\prime\star}H^{3}h}}{(FF^{\star})^{2}}\right)' \|^{2} dA_{\alpha}(z)$$

$$\leq \int_{D} \|\left(\frac{\widehat{Q^{\star}F^{\prime\star}H^{3}h}}{(FF^{\star})^{2}}\right)' \|^{2} dA_{\alpha}(z) \qquad (\text{ since } \|Q(z)\|_{B(l^{2})} \leq 1)$$

$$\leq \left(\frac{23}{\alpha}\right)^{2} \int_{D} \|\frac{\widehat{Q^{\star}F^{\prime\star}H^{3}h}}{(FF^{\star})^{2}}\|^{2} dA_{\alpha}(z) \qquad (\text{by Lemma 4})$$

$$\leq 4 \left(\frac{23}{\alpha}\right)^{2} \|h\|_{\mathcal{D}_{\alpha}}^{2}.$$

So we only need estimate (d'). For this, we have

$$\int_{D} \|Q'\left(\frac{Q^{\star}\widehat{F'^{\star}H^{3}h}}{(FF^{\star})^{2}}\right)\|^{2} dA_{\alpha}(z) = \int_{D} \|Q'\widehat{w}\|^{2} dA_{\alpha}(z),$$

where $\widehat{w} = \left(\frac{\widehat{Q^{\star}F'^{\star}H^{3}h}}{(FF^{\star})^{2}}\right)$ is a smooth function on $\overline{\mathbb{D}}$. Therefore,

$$\int_{D} \|Q' \, \widehat{w}\|^{2} \, dA_{\alpha}(z) \leq 2 \underbrace{\int_{D} \|Q' \widehat{w} - Q' \widetilde{\widehat{w}}\|^{2} \, dA_{\alpha}(z)}_{(f')} + 2 \int_{D} \|Q' \widetilde{\widehat{w}}\|^{2} \, dA_{\alpha}(z),$$

where $\widetilde{\widehat{w}}(z) = \int_{-\pi}^{\pi} \frac{1-|z|^2}{|1-e^{-it}z|} \, \widehat{w}(e^{it}) \, d\sigma(t)$ is the harmonic extension of \widehat{w} from $\partial \mathbb{D}$ to \mathbb{D} .

Lemma 2 tells us that

$$\int_{D} \|Q'\widetilde{\widehat{w}}\|^{2} dA_{\alpha}(z) \leq 8 \|\widetilde{\widehat{w}}\|_{\mathcal{HD}_{\alpha}}^{2}.$$

Also, Lemmas 10 and 11 of [KT] imply that there is a $C_1 < \infty$, independent of w and α , satisfying

$$\|\widetilde{\underline{w}}\|_{\mathcal{HD}_{\alpha}}^2 \le C_1 \|w\|_{A_{\alpha}}^2$$
.

But, as we showed above

$$||w||_{A_{\alpha}}^{2} = \int_{D} ||\frac{Q^{\star} F^{\prime \star} H^{3} h}{(F F^{\star})^{2}}||^{2} dA_{\alpha}(z) \le \int_{D} ||F^{\prime \star} h||^{2} dA_{\alpha}(z) \le 4 ||h||_{\mathcal{D}_{\alpha}}^{2}.$$

Thus,

$$\int_{D} \|Q'\widetilde{\widehat{w}}\|^{2} dA_{\alpha}(z) \leq C_{2} \|h\|_{\mathcal{D}_{\alpha}}^{2},$$

where $C_2 < \infty$ is independent of w and α .

Now we are just left with estimating (f'). We have

$$\begin{split} &(f') = \int_D \|Q'\widehat{w} - Q'\widetilde{\widehat{w}}\|^2 dA_{\alpha}(z) \\ &= \int_D \|Q' \left[-\frac{1}{\pi} \int_D \frac{w(u)}{u - z} dA(u) - \int_{-\pi}^{\pi} \frac{1 - |z|^2}{|1 - e^{-it}z|} \widehat{w}(e^{it}) d\sigma(t) \right] \|^2 dA_{\alpha}(z) \\ &= \frac{1}{\pi^2} \int_D \|Q' \int_D w(u) \left[\frac{1}{u - z} + \int_{-\pi}^{\pi} \frac{1 - |z|^2}{|1 - e^{-it}z|} e^{-it} \frac{1}{1 - ue^{-it}} d\sigma(t) \right] \\ &= \frac{1}{\pi^2} \int_D \|Q' \int_D w(u) \left[\frac{1}{u - z} + \frac{\overline{z}}{1 - u\overline{z}} \right] dA(u) \|^2 dA_{\alpha}(z) \\ &= \frac{1}{\pi^2} \int_D \|Q' \int_D w(u) \left[\frac{1 - |z|^2}{(u - z)(1 - u\overline{z})} \right] dA(u) \|^2 dA_{\alpha}(z) \\ &= \frac{1}{\pi^2} \int_D \|Q'(z) (1 - |z|^2) T(w)(z) \|^2 dA_{\alpha}(z) \\ &\leq \frac{\|M_Q\|^2}{\pi^2} \|T(w)\|_{A_{\alpha}}^2 \quad \text{by Lemma 5} \\ &\leq \frac{256}{\alpha^4} \|M_Q\|^2 \|w\|_{A_{\alpha}}^2 \quad \text{by Lemma 3.} \\ &\leq \frac{1024}{\alpha^4} \|M_Q\|^2 \|h\|_{\mathcal{D}_{\alpha}}^2 \end{split}$$

By Lemma 9 of [KT], we have $||M_Q||_{B(\oplus \mathcal{D}_{\alpha})} \leq \sqrt{86}$. Combining all these pieces, we see that in the smooth case

$$\|\underline{u}_h\|_{\mathcal{D}_{\alpha}}^2 \le K(\alpha)^2 \|h\|_{\mathcal{D}_{\alpha}}^2$$

where $K(\alpha) = K_1 \|M_H\|_{B(\mathcal{D}_{\alpha})} + \frac{K_2}{\alpha^2}$, where $K_1 < \infty$ and $K_2 < \infty$ are constants independent of h, ϵ and α .

By the proof of Theorem 1 in the smooth case, we have

$$M_{F_n}^R(M_{F_n}^R)^* \leq K(\alpha)^2 M_{H_r} M_{H_n}^* \text{ for } 0 \leq r < 1.$$

Using a commutant lifting argument, there exists $G_r \in \mathcal{M}(\mathcal{D}_{\alpha}, \overset{\infty}{\oplus} \mathcal{D}_{\alpha})$ so that $M_{F_r}^R M_{G_r}^C = M_{H_r^3}$ and $||M_{G_r}^R|| \leq K(\alpha)$. Then $M_{F_r}^R \to M_F^R$ and $M_{H_r} \to M_H$ as $r \uparrow 1$ in the \star -strong topology.

By compactness, we may choose a net with $G_{r_{\alpha}}^{\star} \to G^{\star}$ as $r_{\alpha} \to 1^{-}$. Since the multiplier algebra (as operators) is WOT closed, $G \in$

 $\mathcal{M}(\mathcal{D}_{\alpha}, \overset{\infty}{\underset{1}{\oplus}} \mathcal{D}_{\alpha})$. Also, since $F_{r_{\alpha}}^{\star} \overset{s}{\to} F^{\star}$, we get $M_{H_r}^{\star} = M_{G_r}^{\star C} M_{F_r}^{\star R} \overset{WOT}{\to} M_G^{\star C} M_F^{\star R}$ and so $M_F^R M_G^C = M_{H^3}$ with entries of G in $\mathcal{M}(\mathcal{D}_{\alpha})$ and $\|M_G^C\| \leq K(\alpha)$.

This ends our proof.

References

- [A] M. Andersson, Topics in Complex Analysis, Springer-Verlag, 1997.
- [AM] J. Agler and J.E. McCarthy, *Pick interpolation and Hilbert spaces*, Amer. Math. Soc. 44 (2002).
- [BT] D. Banjade and T. Trent, Wolff's problem of ideals in the multiplier algebra on Dirichlet space, submitted, arXiv:1302.5732.
- [C] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Annals of Math. **76** (1962), 547-559.
- [G] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [KT] B. Kidane and T.T Trent, The corona theorem for the multiplier algebra on weighted Dirichlet spaces, Rocky Moun. J. Math. 43 (2013), 1-31.
- [R] M. Rosenblum, A corona theorem for countably many functions. Int. Equ. Op. Theory 3 (1980), 125–137.
- [S] S. Shimorin, Complete Nevanlinna-Pick property of Dirichlet-type spaces, J. Func. Anal. 191 (2002), 276-296.
- [To] V.A. Tolokonnikov, Estimate in Carleson's corona theorem and infinitely generated ideals in the algebras H^{∞} , Functional Anal., Prilozhen 14 (1980), 85-86, in Russian.
- [T] S.R. Treil, Estimates in the corona theorem and ideal of H^{∞} : A problem of T. Wolff, J. Anal. Math. 87 (2002), 481-495.
- [Tr1] T.T. Trent, An estimate for ideals in $H^{\infty}(D)$, Integral Equations and Operator Theory **53** (2005), 573-587.
- [Tr2] _____, A corona theorem for the multipliers on Dirichlet space, Integral Equations and Operator Theory 49 (2004), 123-139.
- [Zy] A. Zygmund, Integrales Singulieres, Springer-Verlag, 1971.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF ALABAMA, Box 870350, Tuscaloosa, AL 35487-0350, (205)758-4275

E-mail address: dpbanjade@crimson.ua.edu, ttrent@as.ua.edu