泛函分析

强基数学 002

吴天阳 2204210460

1. 分别证明 $\rho_1(x,y) = \max_{a \le t \le b} |x(t) - y(t)|, \ \rho_2(x,y) = \int_a^b |x(t) - y(t)| \, \mathrm{d}t \ \notin C[a,b]$ 中的度量. 证明. 任取 $x, y, z \in C[a, b]$.

(正定性) 由于 $|x(t)-y(t)|\geqslant 0$, 则 $\rho_1(x,y)=\max_{a\leqslant t\leqslant b}|x(t)-y(t)|\geqslant 0$. 若 $\rho_1(x,y)=0$, 则 $|x(t)-y(t)|\leqslant \max_{a\leqslant t\leqslant b}|x(t)-y(t)|=0$, 则 x(t)=y(t); 反之,当 x(t)=y(t),

设 $\pi: a = a_1 < a_2 < \dots < a_n = b$ 为 [a,b] 上的一个划分, $\Delta \pi = \max_{(a_i,a_{i+1}) \in \pi} a_{i+1} - a_i$,则

$$\rho_2(x,y) = \int_a^b |x(t) - y(t)| \, \mathrm{d}t = \lim_{\Delta \pi \to 0} \sum_{(a_i, a_{i+1}) \in \pi} |x(\xi_i) - y(\xi_i)| (a_{i+1} - a_i)$$

其中 $\xi_i \in (a_i, a_{i+1})$. 由于 $|\cdot|$ 和 $(a_{i+1} - a_i)$ 均大于等于 0,则 $\rho_2(x, y) \ge 0$.

若 $\rho_2(x,y) = 0$, 则 $\int_a^b |x(t) - y(t)| \, \mathrm{d}t = 0$ 则 |x(t) - y(t)| 在 [a,b] 上几乎处处为 0,又由于

连续性可知处处为 0,即 x(t) = y(t); 反之, 当 x(t) = y(t),则 $\rho_2(x,y) = \int_0^b 0 dt = 0$. (对称性)

$$\begin{split} \rho_1(x,y) &= \max_{a \leqslant t \leqslant b} |x(t) - y(t)| = \max_{a \leqslant t \leqslant b} |y(t) - x(t)| = \rho_1(y,x) \\ \rho_2(x,y) &= \int_a^b |x(t) - y(t)| \, \mathrm{d}t = \int_a^b |y(t) - x(t)| \, \mathrm{d}t = \rho_2(y,x) \end{split}$$

(三角不等式)

$$\begin{split} \rho_1(x,y) &= \max_{a\leqslant t\leqslant b} |x(t)-y(t)| \leqslant \max_{a\leqslant t\leqslant b} (|x(t)-z(t)|+|z(t)-y(t)|) \\ &\leqslant \max_{a\leqslant t\leqslant b} |x(t)-z(t)| + \max_{a\leqslant t\leqslant b} |z(t)-y(t)| \leqslant \rho_1(x,z) + \rho_1(y,z) \\ \rho_2(x,y) &= \int_a^b |x(t)-y(t)| \, \mathrm{d}t \leqslant \int_a^b (|x(t)-z(t)|+|z(t)-y(t)|) \, \mathrm{d}t \\ &\leqslant \int_a^b |x(t)-z(t)| \, \mathrm{d}t + \int_a^b |z(t)-y(t)| \, \mathrm{d}t = \rho_2(x,z) + \rho_2(y,z) \end{split}$$

2. 证明 $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$ 是 \mathbb{R} 中的度量.

证明. (正定性) 由于 $|x-y|, 1+|x-y| \ge 0$, 则 $\rho(x,y) \ge 0$.

$$\rho(x,y) = 0 \iff |x-y| = 0 \iff x = y.$$

(交換性) 由于 |x - y| = |y - x|, 则 $\rho(x, y) = \rho(y, x)$.

(三角不等式)

$$\rho(x,y) = \frac{|x-y|}{1+|x-y|} = \frac{1}{\frac{1}{|x-y|}+1} \leqslant \frac{1}{\frac{1}{|x-z|+|z-y|}+1} = \frac{|x-z|+|z-y|}{1+|x-z|+|z-y|}$$

$$\leqslant \frac{|x-z|}{1+|x-z|} + \frac{|y-z|}{1+|y-z|} = \rho(x,z) + \rho(y,z)$$

3. S[a,b] 表示 [a,b] 上几乎处处有取值的可测函数全体,证明 $\rho(f,g) = \int_a^b \frac{|f-g|}{1+|f-g|} \, \mathrm{d}\mu$ 为其上的一个度量.

证明. 由第 **2** 题可知, $\frac{|f-g|}{1+|f-g|}$ 满足正定性、交换性和三角不等式,则 $\rho(f,g) \geq 0, \rho(f,g) = \rho(g,f)$,当 $\rho(f,g) = 0$ 时,f,g 几乎处处相等. 由积分的线性性可知

$$\begin{split} \rho(f,g) &= \, \int_a^b \frac{f-g}{1+|f-g|} \, \mathrm{d}\mu \leqslant \int_a^b \left(\frac{|f-h|}{1+|f-h|} + \frac{|g-h|}{1+|g-h|} \right) \, \mathrm{d}\mu \\ &= \int_a^b \frac{|f-h|}{1+|f-h|} \, \mathrm{d}\mu + \int_a^b \frac{|g-h|}{1+|g-h|} \, \mathrm{d}\mu = \rho(f,h) + \rho(g,h) \end{split}$$

4. 证明 $\rho(f,g) = \left(\int_a^b |f-g|^p \, \mathrm{d}x\right)^{1/p}$ 是 $L^p[a,b], \ (1 \leqslant p \leqslant \infty)$ 上的一个度量.

证明. $\rho(f,g) = ||f-g||_p$, 其中 $||f-g||_p$ 为 f-g 的 p-范数.

(正定性) 由于 p-范数满足正定性,则 $\rho(f,g) \geqslant 0$, 当 $\rho(f,g) = 0 \iff f = g$ a.e.

(交換性) 由于 $|f - g|^p = |g - f|^p$, 则 $\rho(f, g) = \rho(g, f)$.

(三角不等式) 由 Minkowski 不等式知, $||f-g||_p \leq ||f-h||_p + ||g-h||_p$,于是 $\rho(f,g) \leq \rho(f,h) + \rho(g,h)$.

5. 设 (X, ρ) 为度量空间, $A \subset X$, 则 A 是闭集 \iff A 包含 A 中所有收敛列的极限点.

证明. "⇒": 当 A 是闭集,则 A^c 为开集. $\forall x \in A^c$, $\exists r > 0$ 使得 $B(x,r) \subset A^c$,任取收敛列 $\{x_n\} \subset A, \ x_n \to x$. 假设 $x \notin A$,则 $x \in A^c$. 由于 $\rho(x_n,x) \to 0$,则存在 $N \in \mathbb{N}$ 使得 $\forall n \geqslant N$ 有 $\rho(x_n,x) < r$,则 $x_n \in B(x,r) \Rightarrow x_n \in A^c$ 与 $x_n \in A$ 矛盾,故 $x \in A$.

" \leftarrow ": $\forall x \in A^c$,假设对 $\forall r > 0$ 都有 $B(x,r) \cap A \neq \varnothing$,则 $\exists \{x_n\} \subset A \perp x_n \to x$,由原命题条件可知 $x \in A$,与 $x \in A^c$ 矛盾,则 $\exists r > 0$ 使得 $B(x,r) \cap A = \varnothing$,则 $B(x,r) \subset A^c$,故 A^c 为开集,即 A 为闭集.

6. 设 (X, ρ) 为度量空间, $A \subset X$,定义 diam $A := \sup_{x,y \in A} \rho(x,y)$,证明: diam $A = \operatorname{diam} \bar{A}$.

证明. 只需证 $\sup_{x,y\in A} \rho(x,y) = \sup_{x,y\in \bar{A}} \rho(x,y)$.

设 $\sup_{x,y\in \bar{A}} \rho(x,y) = M$,由于 $\bar{A} = A \cup A'$,则 $\sup_{x,y\in A} \rho(x,y) \leqslant M$.

 $\forall \varepsilon > 0$, $\exists x, y \in \overline{A}$ 使得 $\rho(x, y) > M - \varepsilon$. 于是存在 $\{x_n\}, \{y_n\} \subset A$ 使得 $x_n \to x, y_n \to y$. 则 $\exists N \in \mathbb{N}$ 使得 $\forall n \geqslant N$ 有

$$\rho(x, x_n) \leqslant \varepsilon, \quad \rho(y, y_n) \leqslant \varepsilon, \quad (n \geqslant N)$$

于是

$$M - \varepsilon < \rho(x, y) \leqslant \rho(x, x_n) + \rho(x_n, y_n) + \rho(y_n, y) \leqslant 2\varepsilon + \sup_{x, y \in A} \rho(x, y)$$

$$\Rightarrow M - 3\varepsilon < \sup_{x, y \in A} \rho(x, y) \leqslant M \quad (n \geqslant N)$$

由 ε 的任意性知 $\sup_{x,y\in A} \rho(x,y) = M$,即 $\operatorname{diam} A = \operatorname{diam} \bar{A}$.

7. 设 (X, ρ) 为度量空间, $E \subset X$,则 E 是疏集 $\iff \forall \overline{B(x,r)} = \{z \in X : \rho(z,x) \leqslant r\}$ 必存在 开球 $B(x',r') \subset B(x,r)$ 使得 $\overline{B(x',r')} \cap \bar{E} = \emptyset$.

证明. "⇒":由于 \bar{E} 无内点,则 $\forall x \in \bar{E}$, $\forall \varepsilon > 0$ 有 $B(x,\varepsilon) \not\subset \bar{E}$,即 $B(x,\varepsilon) - \bar{E} \neq \varnothing$,且 $B(x,\varepsilon) - \bar{E} = B(x,\varepsilon) \cap \bar{E}^c$ 为开集.

取 $x' \in B(x,\varepsilon) - \bar{E}$,则 $\exists \delta > 0$ 使得 $B(x',\delta) \subset B(x,\varepsilon) - \bar{E}$,则 $B(x',\delta) \cap \bar{E} = \varnothing \Rightarrow \overline{B(x',\delta/2)} \cap \bar{E} = \varnothing$.

" \leftarrow ": 假设 \bar{E} 有内点,则 $\exists x \in \bar{E}$, $\exists \varepsilon > 0$,使得 $B(x,\varepsilon) \subset \bar{E}$,则 $\forall B(x',r') \subset B(x,\varepsilon)$, $B(x',r') \cap \bar{E} \neq \emptyset$,与原命题条件矛盾,则 \bar{E} 无内点.