TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 22.-26.10.2018

1. Übung Analysis III für Mathematiker(innen)

(Differentialgleichungen)

Themen der großen Übung am 15.10.

Lineare Differentialgleichungen mit konstanten Koeffizienten

Harmonischer Oszillator

Airy'sche Differentialgleichung y'' - xy = f(x) und Ihre Lösungen

Hausaufgaben

1. Aufgabe (5 Punkte)

Seien $I_1, I_2 \subseteq \mathbb{R}$ Intervalle, $f: I_1 \to \mathbb{R}$ und $g: I_2 \to \mathbb{R}$ stetig differenzierbar. Betrachten Sie die Differentialgleichung

$$y' = f(x)g(y)$$
 $(x,y) \in I_1 \times I_2.$ (\star)

Zeigen Sie Folgendes.

- (i) Falls ein $y_0 \in I_2$ mit $g(y_0) = 0$ existiert, dann ist die konstante Funktion $\varphi \colon I_1 \to \mathbb{R}, \varphi(x) := y_0$ die eindeutige Lösung des Anfangswertproblems (\star) mit $y(x_0) = y_0$ bei gegebenem $x_0 \in I_1$.
- (ii) Falls $\psi \colon I_1 \supseteq J \to I_2$ eine Lösung von (\star) mit $g(\psi(x_1)) \neq 0$ für ein $x_1 \in J$ ist, dann gilt $g(\psi(x)) \neq 0$ für alle $x \in J$.

2. Aufgabe (5 Punkte)

Es seien $\omega \in \mathbb{R} \setminus \{0\}$, $\kappa > 0$ und $A \in \mathbb{R}$. Lösen Sie das Anfangswertproblem

$$y'' + 2\kappa y' + \omega^2 y = 0,$$
 $y(0) = A,$ $y'(0) = 0.$

Bemerkung: Dieses Problem beschreibt einen gedämpften harmonischen Oszillator, ein wichtiges Modell der klassischen Physik.

3. Aufgabe (10 Punkte)

Sei $u: [0, \infty) \to (0, \infty)$ eine Lösung der Differentialgleichung

$$y'' + p(x)y = 0,$$
 $x \in (0, \infty).$ $(\star\star)$

Wir setzen $I := \int_0^\infty \frac{\mathrm{d}x}{u^2(x)} \in (0, \infty]$. Zeigen Sie, dass

- (i) $b(x) := u(x) \int_x^\infty \frac{\mathrm{d}t}{u^2(t)}$ eine Lösung von $(\star\star)$ ist, falls $I < \infty$.
- (ii) $w(x) := u(x) \int_0^x \frac{\mathrm{d}t}{u^2(t)}$ eine Lösung von $(\star\star)$ ist, falls $I = \infty$.
- (iii) $(\star\star)$ positive Lösungen y_1,y_2 mit den folgenden Eigenschaften besitzt:

$$y_1 y_2' - y_1' y_2 = 1$$
 und $\frac{\mathrm{d}}{\mathrm{d}x} \frac{y_1}{y_2} < 0$ in $(0, \infty)$ sowie $\lim_{x \to \infty} \frac{y_1(x)}{y_2(x)} = 0$.

Bemerkung: Für p(x) = -x erhält man als Spezialfall die Airy'sche Differentialgleichung y'' - xy = 0, welche in der Optik studiert wird und andererseits eine wichtige Rolle in der Beschreibung der Grenzverteilung der Eigenwerte zufälliger Matrizen spielt, vgl. https://de.wikipedia.org/wiki/Airy-Funktion. Wir kennen zwar keine explizite Formeln für die Lösungen, können aber mit (iii) ihr asymptotisches Verhalten grob skizzieren.

Gesamtpunktzahl: 20