

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$\therefore x = \frac{a\sin(\theta+a) + b\cos\varphi\sin a - \kappa\cos a}{\sin a\cos a}.$$

$$y = \cos \alpha + \frac{(\kappa - b\sin \varphi)\cos \alpha}{\sin \alpha} = a\cos \theta + b\cos \varphi.$$

$$\therefore y = \frac{b\sin(\varphi + a) + a\cos\theta\sin\alpha - \kappa\cos\alpha}{\sin\alpha\cos\alpha}.$$

When $\theta = \varphi = \frac{1}{2}\pi - a$ and $\kappa = \frac{1}{2}(a+b)\sec a$,

$$x = \frac{a - b\cos 2a}{\sin 2a}, y = \frac{b - a\cos 2a}{\sin 2a}.$$

118. Proposed by L. C. WALKER, A. M.. Graduate Student, Leland Stanford Jr. University, Cal.

Show how to determine the illumination at any point of the surface of the water at the bottom of a deep well, due to the light from the sky.

Solution by G. B. M. ZERR, A. M., Ph. D., Professor of Chemistry and Physics in The Temple College, Philadelphia, Pa.

Let I=illumination, dQ the quantity of light that falls upon a small area dA of an illuminated surface, coming from an element of any bright surface dS.

Let O be the center of the element of the luminous surface, C the center of the illuminated area dA, and let OC=r, depth of well=a. Let θ =inclination of OC to normal at O, φ =inclination of OC to normal at C. Now if dA subtend solid angle $d\omega$ at O, and μ be the intrinsic brightness of dS, then

$$dQ = \mu dS \cos\theta d\omega$$
, but $d\omega = \frac{dA \cos\varphi}{r^2}$.

- $dQ = \mu dS dA \cos\theta \cos\varphi/r^2$.
- $I = dQ/dA = \mu \cos \varphi \cos \theta dS/r^2$.

If $d\sigma$ be the solid angle at C subtended by dS, then $d\sigma = \cos\theta dS/r^2$.

 $I = \mu \cos \varphi d\sigma$.

The solid angle at C cannot be larger than the top of the well will admit. Let b=the area of the top of well, then we may write $I = \mu b/a^2$ for center of surface of water, since $\theta = \varphi = 0$, and $S/r^2 = b/a^2$.