- 1.1) $\prod_{person name} (\sigma_{company name = "BigBank"}(works))$
- 1.2) $\prod_{person_name, city} (\sigma_{company_name = "BigBank"}(works))$ $\bowtie_{works.person_name = employee.person_name} employee)$
- 1.3) ∏person_name, street, city(σcompany_name = "BigBank" ^ salary > 10000(works))

 Works.person_name=employee.person_name employee)
- 1.4) joined \leftarrow (works $\bowtie_{works.company_name=company.company_name}$ company)

∏person_name (joined ⋈joined.person_name=employee.person_name ^ joined.city=employee.cityemployee)

- 2.1) $\prod_{person_name} (employee) \prod_{person_name} (\sigma_{company_name} = "BigBank" (works))$
- 2.2) \prod_{person_name} (works) -

∏works.person_name(works⋈works.salary≤works_2.salaryρworks_2(works))

3) instructor(ID, name, dept name, salary)

department(dept name, building, budget)

Inserting: (22222, Einstein, Physics, 95000)

into the instructor table, where the department table doesn't have the department Physics, would violate the foreign key constraint

Deleting: (Physics, Watson, 70000)

From the department table, where at least one instructor has dept name as Physics, would violate the foreign key constraint

4) Candidate keys: {person_name}, {street}, {city}. One of them can be primary key. In the RM of DB, a primary key is a specific choice of a minimal set of attributes