hw5.R

asahikuroki222

2021-12-07

```
# import packages
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
##
     method from
##
     +.gg
            ggplot2
library(caret)
## Loading required package: lattice
library(rpart.plot)
## Loading required package: rpart
library(gridExtra)
library(labelVector)
library(tidyverse)
## — Attaching packages
               – tidyverse 1.3.0 —
## √ tibble 3.0.3
                       √ dplyr
                                  1.0.2
## √ tidyr

√ stringr 1.4.0
            1.1.0
## √ readr
             1.3.1
                       √ forcats 0.5.0
## √ purrr
             0.3.4
## -- Conflicts
                   - tidyverse conflicts() —
## x dplyr::combine() masks gridExtra::combine()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
## x purrr::lift()
                      masks stats::lag()
                      masks caret::lift()
# Analysis
# Processing and Visualizing data
# a) Load the data. Get a summary of the data, report it. Use ggplot to plot
a histogram for the distribution of the number of bike-rides.
```

```
df <- read.csv("bike_day.csv")</pre>
summary(df)
      cnt_bike
                                                     windspeed
##
                                                                        temp
                       atemp
                                        hum
## Min.
         : 22
                  Min. : 3.95
                                   Min.
                                        : 0.00
                                                   Min. : 1.50
                                                                   Min.
2.42
## 1st Qu.:3152
                  1st Qu.:16.89
                                   1st Qu.:52.00
                                                   1st Qu.: 9.04
                                                                   1st
Ou.:13.82
## Median :4548
                  Median :24.34
                                   Median :62.67
                                                   Median :12.13
                                                                   Median
:20.43
## Mean
           :4504
                  Mean
                          :23.72
                                   Mean
                                          :62.79
                                                          :12.76
                                                                   Mean
                                                   Mean
:20.31
## 3rd Qu.:5956
                  3rd Qu.:30.43
                                   3rd Qu.:73.02
                                                   3rd Qu.:15.62
                                                                   3rd
Ou.:26.88
                                   Max.
## Max.
           :8714
                  Max.
                          :42.04
                                          :97.25
                                                          :34.00
                                                                   Max.
                                                   Max.
:35.33
##
      holiday
                        workingday
## Min.
           :0.00000
                            :0.000
                     Min.
   1st Qu.:0.00000
                      1st Qu.:0.000
## Median :0.00000
                     Median :1.000
## Mean
           :0.02873
                     Mean
                            :0.684
## 3rd Qu.:0.00000
                      3rd Qu.:1.000
## Max.
           :1.00000
                     Max.
                             :1.000
# histogram
ggplot(data = df, aes(cnt_bike)) +
 xlim(0, 9000) +
 ylim(0, 70) +
 geom_histogram(colour = "grey", fill = "black") +
  ggtitle("Distrubution of the number of bike-rides") +
 labs(x = "Number of bikes")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing missing values (geom_bar).
```

Distrubution of the number of bike-rides

The highest cnt is 8714 and the lowest is 22. It has the most count # around the center of the graph (3750 - 6000). Also the highest count # is around 60 and most counts are less than 40.

b) Use the function pairs() to produce a plot of the relationships among count, atemp and hum.

pairs(df[,1:3], col = "darkgreen")


```
# bike count (cnt bike) and atemp seems to have a positive relationship,
while atemp and hum, and cnt bike and hum do not have relationship
# c) (0.2) Split the data into 80% training and 20% testing.
trainRows <- createDataPartition(y = df$cnt_bike, p = 0.8, list = FALSE)</pre>
train_set <- df[trainRows,]</pre>
test_set <- df[-trainRows,]</pre>
# Train a K-NN model
# a) Decide whether you need to standardize the data or not
# A. Yes. We need to standardize the data in K-NN.
# We will standardize all the attributes besides cnt_bike because that is our
y-value.
train_set_stand <- train_set</pre>
test set stand <- test set
library(standardize)
##
         *******************
##
##
             Loading standardize package version 0.2.2
```

```
Call standardize.news() to see new features/changes
   *********************
##
#Apply the standardization
train_set_stand[,2:7] <- apply(train_set_stand[,2:7], MARGIN = 2, FUN =</pre>
scale)
test_set_stand[,2:7]<- apply(test_set_stand[,2:7], MARGIN = 2, FUN = scale)</pre>
# b) Train a k-NN model on the appropriate attributes.
knn model <- train(cnt bike~., train set stand, method = "knn")
knn model
## k-Nearest Neighbors
##
## 587 samples
##
     6 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 587, 587, 587, 587, 587, 587, ...
## Resampling results across tuning parameters:
##
##
    k RMSE
                  Rsquared
                             MAE
##
     5 1415.673 0.4864054 1155.578
    7 1385.400 0.5029210
##
                            1141.224
##
    9 1365.367 0.5158304 1135.913
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 9.
# The algorithm used k = 5, 7, 9
# c) Get the predictions from k-NN model
knnPred <- predict(knn_model, test_set_stand)</pre>
# create a histogram of the distribution of bike rides
h pred knn <- ggplot(data= test set stand, aes(x = knnPred)) +
 xlim(0, 9000) +
 ylim(0, 18) +
 geom_histogram(colour = "lightblue", fill = "darkblue") +
  ggtitle("KNN, Distribution of Predicted bike rides") +
 labs(x = "Predicted bike rides")
bike_dist<- ggplot(data=test_set_stand, aes(x = cnt_bike)) +</pre>
  geom_histogram(colour = "grey", fill = "black") +
 xlim (0,9000) +
 ylim (0,18) +
 ggtitle("Original Bike Distribution") +
 labs(x = "Bike rides")
```

```
grid.arrange(bike_dist, h_pred_knn, nrow=1)
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing missing values (geom_bar).
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing missing values (geom_bar).
```

Original Bike Distribution KNN, Distribution of Pred


```
# I think the performance of K-NN is OK. Even though each counts are not
# the same, the shape of overall graph looks kind of similar.
#d) Computer the prediction error for the k-NN model
# create ggolit histrogram for the error
knn_error <-knnPred - test_set_stand$cnt_bike</pre>
#Visualize the prediction error
#Histogram of the distribution of the prediction error
h_error_knn = ggplot(data= test_set_stand, aes(x = knn_error)) +
  geom histogram(colour = "lightblue", fill = "blue") +
  xlim(-5000, 5000) +
  ylim(0, 30) +
```

```
ggtitle("KNN, Distribution of Prediction Error") +
  labs(x = "Prediction Error")
#Plot prediction error vs actual price
p_error_knn<- ggplot(data = test_set_stand, aes(x=cnt_bike, y=knn_error)) +</pre>
  geom_point(size=2, color = "blue") +
  ylim (-5000, 8000) +
  xlim (0, 10000) +
  ggtitle("KNN, Prediction Error vs Actual Bike Count") +
  labs(x = "Actual Bike Count", y = "KNN Prediction Error")
grid.arrange(h_error_knn, p_error_knn)
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```

KNN, Distribution of Prediction Error

KNN, Prediction Error vs Actual Bike Count


```
# It seems like there are more negative errors by Looking at
# the distribution of Prediction Error. Also, KNN have more positive
# error when the actual bike count is < 5000 and negative error when
# actual bike count is > 5000
# We could say K-NN is under-predicting.
#e)
```

```
knnME <- mean(knn error)
knnME
## [1] -20.2392
knnRMSE<- RMSE(pred = knnPred, obs = test set stand$cnt bike)
knnRMSE
## [1] 1359.406
# ME of -20 tells us that on average we are under-predicting by about 20.
# RMSE of 1359 tells us that on average our prediction is off by 1359 bike
counts
# Train a Regression Tree
#f) Decide whether to standardize.
# No. We do not have to standarize the data in regression tree.
#g) Train a regression tree
rtree <- train(cnt bike~., train set, method = "rpart")</pre>
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info =
trainInfo, :
## There were missing values in resampled performance measures.
rtree
## CART
##
## 587 samples
     6 predictor
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 587, 587, 587, 587, 587, 587, ...
## Resampling results across tuning parameters:
##
##
                           Rsquared
                 RMSE
                                      MAE
##
     0.05290532 1480.938 0.4183129 1233.859
     0.06659281 1512.564 0.3928347 1267.285
##
##
     0.38629891 1703.105 0.3450741 1419.709
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.05290532.
# Plot the final tree
rpart.plot(rtree$finalModel, digits=-3)
```



```
# The algorithm picked temp < 17.7, temp < 11.3 for the attributes.
# h) Get the predictions from the regression tree and use gaplot
# to create a histogram of the distribution of the predicted bike rides
# compare it to the histogram of the true count
treePred <- predict(rtree, test set)</pre>
h_pred_tree<- ggplot(data= test_set, aes(x = treePred)) +</pre>
  geom_histogram(colour = "red", fill = "darkred") +
  xlim(0,9000) +
  ylim (0, 100) +
  ggtitle("Tree, Distribution of Predictions") +
  labs(x = "Predicted bike rides")
#compare to the actual price distribution we created above
grid.arrange(bike_dist,h_pred_tree, nrow=1)
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing missing values (geom bar).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing missing values (geom bar).
```

Original Bike Distribution

Tree, Distribution of Pred

7500


```
# Regression tree only produced three bars in the graph.
# Just by Looking at the graph, regression tree does not seem to be
performing well because it only has three bars while the original one has a
lot. It does not capture all the details.
# i) Compute the prediction error for the regression tree and
# create a ggplot histogram for the prediction error
# Prediction error
tree_error <-treePred - test_set$cnt_bike</pre>
h_error_tree<- ggplot(data= test_set, aes(x = tree_error)) +</pre>
  geom_histogram(colour = "darkred", fill = "red") +
  xlim (-10000, 10000) +
  ylim (0, 30) +
  ggtitle("Tree, Distribution of Prediction Error") +
  labs(x = "Prediction Error")
#Plot prediction error vs actual price
p_error_tree<- ggplot(data = test_set, aes(x=cnt_bike, y=tree_error)) +</pre>
  geom point(size=2, color = "red") +
  ylim (-5000, 8000) +
  xlim (0, 10000) +
  ggtitle("Tree, Prediction Error vs Actual Bike Count") +
```

```
labs(x = "Actual Bike Count", y = "Tree Prediction Error")
grid.arrange(h_error_tree, p_error_tree)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Tree, Distribution of Prediction Error

Tree, Prediction Error vs Actual Bike Count

The distribution of Prediction Error looks like there might be a little more error on the left side.

It is interesting how we could draw three lines in this scatter plot, and those would represent the three bars in "Distribution of prediction" graph. I think the algorithm is doing a good job not over-Estimating nor underestimating too much.

```
# i,b) Compute the ME and RMSE for the regression tree
ME_tree <- mean(tree_error)
treeRMSE <- RMSE(pred = treePred, obs = test_set$cnt_bike)
ME_tree
## [1] -53.61088
treeRMSE
## [1] 1435.095</pre>
```

```
# ME of -53 means that on average RegressionTree under predicts
# by 53

# RMSE of 1435 meants that on average RegressionTree's prediction
# is off by 1435 bike counts

# Train a Linear Regression
#a) Decide whether you need to standardize the data
A. No. I do not have to use standardized data in Linear Regression

#b) Check and comment on whether using the attributes used for the prediction.
bike_dist

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Warning: Removed 2 rows containing missing values (geom bar).
```

Original Bike Distribution

A. Yes. There are some outliers, but it is somewhat normally distributed

```
#c) Create a correlation matrix using the attributes used for the prediction,
cor(df[,c(2:7)])
##
                                 hum
                                        windspeed
                   atemp
                                                        temp
                                                                  holiday
## atemp
              1.00000000 0.14000432 -0.183668766 0.99169797 -0.032502593
## hum
              0.14000432 1.00000000 -0.248509797 0.12695001 -0.015927598
## windspeed -0.18366877 -0.24850980 1.000000000 -0.15792514 0.006288675
## temp
             ## holiday
             -0.03250259 -0.01592760 0.006288675 -0.02855690 1.000000000
## workingday 0.05215699 0.02432579 -0.018791911 0.05267624 -0.253022700
              workingday
##
## atemp
              0.05215699
## hum
              0.02432579
## windspeed -0.01879191
## temp
              0.05267624
## holiday
             -0.25302270
## workingday 1.00000000
# I will exclude atemp from the attributes because it is highly correlated
# with temp (0.99169).
train set lr <- train set %>% select(1:1, 3:7)
test_set_lr <- test_set %>% select(1:1, 3:7)
# d) Train a linear regression model
lin_reg <- train(cnt_bike~., train_set_lr, method = "lm")</pre>
lin reg
## Linear Regression
##
## 587 samples
    5 predictor
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 587, 587, 587, 587, 587, 587, ...
## Resampling results:
##
##
    RMSE
              Rsquared
                         MAE
##
    1437.873 0.4553024
                        1184.21
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
#Summarize final model
fit <- lin reg$finalModel</pre>
options(scipen = 999) #this is to avoid scientific notation
summary(fit)
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
```

```
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -4917.8 -1075.7 -96.7 1070.7 3635.1
##
## Coefficients:
##
              Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) 4053.062
                         ## hum
               -32.192
                           4.338
                                 -7.422
                                           0.000000000000413 ***
## windspeed
               -67.318
                          11.863 -5.674
                                            0.000000021967255 ***
                                  ## temp
               163.722
                           8.058
## holiday
              -727.827
                         371.818 -1.957
                                                      0.0508 .
## workingday
               57.799
                         129.667 0.446
                                                      0.6559
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1420 on 581 degrees of freedom
## Multiple R-squared: 0.4681, Adjusted R-squared: 0.4636
## F-statistic: 102.3 on 5 and 581 DF, p-value: < 0.00000000000000022
# j) Get the predictions from the linear regression model and
# use ggplot to create a histogram of the distribution of the predicted
# bike rides
lin_pred <- predict(lin_reg, newdata = test_set_lr)</pre>
#Visualize the predictions
#Create a histogram for the distribution of predicted prices
h pred lm <- ggplot(data= test set lr, aes(x = lin pred)) +
  geom_histogram(colour = "seagreen", fill = "darkgreen") +
 xlim (0,10000) +
 ylim (0, 30) +
 ggtitle("Linear Reg., Distribution of Predictions") +
  labs(x = "Predicted Bike rides")
#compare to the actual price distribution
grid.arrange(bike_dist, h_pred_lm, nrow = 1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing missing values (geom_bar).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing missing values (geom bar).
```

Original Bike Distribution

Linear Reg., Distribution

7500

10000


```
# By Looking at the graph it seems like linear regression
# model is doing a good job because the graph has similar
# overall shape. But it does not capture all the details.
#k) Compute the prediction error for the linear regression model and create
# a gaplot histogram for the distribute of the prediction error
#Compute Prediction error
lm_error <- lin_pred - test_set_lr$cnt_bike</pre>
#Visualize the prediction error
#Histogram of the distribution of prediction errors
h_error_lm <- ggplot(data= test_set_lr, aes(x = lm_error)) +</pre>
  geom_histogram(colour = "darkgreen", fill = "seagreen") +
  xlim(-5000, 5000) +
  ylim(0, 30) +
  ggtitle("Linear Reg., Distribution of Prediction Error") +
  labs(x = "Prediction Error")
#Plot of the Prediction Error vs Actual Price
p_error_lm<- ggplot(data = test_set_lr, aes(x=cnt_bike, y=lm_error)) +</pre>
  geom_point(size=2, color = "seagreen") +
  ylim (-5000, 8000) +
  xlim (0, 10000) +
  ggtitle("Linear Reg., Prediction Error vs Actual Price") +
```

```
labs(x = "Actual Price", y = "Linear Reg. Prediction Error")
grid.arrange(h_error_lm, p_error_lm)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Linear Reg., Distribution of Prediction Error


```
# By looking at these two graphs we can say that linear
# regression is doing a good job not over predicting nor
# under-predicting.
# Also the model tends to over predict when actual price is < 5000 and under-
predict when actual price is > 5000.
#e)
ME_lin <- mean(lm_error)
#RMSE
lin_RMSE <- RMSE(pred = lin_pred, obs = test_set_lr$cnt_bike)
ME_lin
## [1] 61.8804
lin_RMSE
## [1] 1440.201</pre>
```

```
# ME of 61 means that on average Linear Regression model is
# underpredicting by 61.
# RMSE of 1440 means that on average the model is off by
# 1440 bike counts
######
# Product Insights
#Put together the error metrics
error_table <- c(knnME, knnRMSE, ME_tree, treeRMSE, ME_lin, lin_RMSE)</pre>
names(error_table) <- c("KNN ME", "KNN RMSE", "TREE ME", "TREE RMSE", "LR</pre>
ME", "LR RMSE")
error_table <- set_label(error_table, "Error table")</pre>
error_table
## Error table
##
       KNN ME
                KNN RMSE
                            TREE ME TREE RMSE
                                                     LR ME
                                                              LR RMSE
   -20.23920 1359.40552 -53.61088 1435.09505
                                                  61.88040 1440.20087
##
# Report the histogram for the distribution of the prediction errors
grid.arrange(h_error_knn,h_error_tree,h_error_lm, nrow = 1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


I would suggest the company to implement the K-NN model. This is because the K-NN model has lowest abs (ME) and lowest RMSE. This means K-NN model did the best job not overpredicting nor underpredicting as well as minimizing the overall error. I would not suggest the company to use Regression Tree model and Linear Regression model because ME and RMSE are higher than K-NN's ME and RMSE.

Also in the histogram, Regression tree has higher Prediction Error count because the model only has 3 values to return. We could see that from Regression Tree's distribution of prediction.

K-NN might did a better job than Regression Tree and Linear Regression because the data points were pretty close to each other and there weren't that many outliers.