「ファイバー束とホモトピー」 非公式誤植表¹ compiled on 2022 年 1 月 30 日

表でページ番号のマスが オレンジ になっているところは, 気をつけるべき誤植と感じたところです.

第1章 ファイバーを束ねる

p	位置	誤	正
5	15 行目	$TS^2 = \bigcup T_{\mathbf{x}}S^2$	$TS^2 = \bigcup T_{\mathbf{x}}S^2$
		$\mathbf{x} \in \mathbb{R}^3$	$\mathbf{x} \in S^2$

第2章 雛形としての被覆空間

p	位置	誤	正
6	19 行目	$p _{\widetilde{U_x}}\colon \widetilde{U_y} o U_x$ は同相写像である.	$p _{\widetilde{U_y}}\colon \widetilde{U_y} o U_x$ は同相写像である.
8	15 行目	$\{ e^{i\theta} \mid \frac{3\pi}{2} < \theta < 2\pi \}$	$\{\ e^{i\theta}\mid \pi<\theta<\frac{3\pi}{2}\}$
8	20 行目	$\{ e^{i\theta} \mid \frac{3\pi}{2} < \theta < 2\pi \}$	$\{ e^{i\theta} \mid \pi < \theta < \frac{3\pi}{2} \}$
10	図 2.3	$\widetilde{l}(a)$	$\widetilde{l}(b)$
10	15 行目	$x \subset V \subset X_0$	$x \in V \subset X_0$
12	14 行目	$W_i \subset U_{\alpha_i}$	$W_i \subset l^{-1}(U_{\alpha_i})$
14	22 行目	$\widetilde{H}(a,t)$ と $\widetilde{H}(b,t)$ は s によらず一定である.	$\widetilde{H}(a, {\color{red} s})$ と $\widetilde{H}(b, {\color{red} s})$ は s によらず一定である.
16	4 行目	$x_0, x_1 \in X$	$x_0, x_1 \in \underline{B}$
24	3 行目	$\frac{1}{2} < t < 1$	$\frac{1}{2} < s < 1$
25	10 行目	命題 2.2.12 と命題 2.2.11	例 2.2.12 と例 2.2.11
27	7 行目	$(f _{F_{x_0}})^{-1} \circ \sigma \circ (f _{F_{x_0}})$	$(f _{F_{x_0}})\circ\sigma\circ(f _{F_{x_0}})^{-1}$

第3章 ファイバー束の基本

р	位置	誤	正
50	8 行目	$\overline{V_x}$ はコンパクト	$\overline{V_y}$ はコンパクト
57	19 行目	X が局所コンパクトのときには $,$	X が局所コンパクト $rac{ ext{Hausdorff}}{ ext{OUS}}$ のときには、
76	18 行目	$(p(s_{\alpha}(x)A), s_{\alpha}(p(s_{\alpha}(x)A)^{-1}s_{\alpha}(x)A))$	$(p(s_{\alpha}(x)A), s_{\alpha}(p(s_{\alpha}(x)A))^{-1}s_{\alpha}(x)A)$
85	14 行目	$\varphi_+^{-1}(p(z_1,z_2),\overline{\varphi}_+(z_1)w)$	$\varphi_+^{-1}(p(z_1,z_2),\overline{\varphi}_+(z_1,z_2)w)$

 $^{^1}$ 玉木大, 『ファイバー束とホモトピー』 (森北出版),2020/4/30 発行 第 1 版第 1 刷 準拠

第4章 ファイバー束の分類

p	位置	誤	正
93	19 行目	$1_G \times f$	$f \times 1_G$
98	19 行目	$\operatorname{ad}(\beta) \circ \overline{\lambda}_{\alpha\beta}$	$\operatorname{ad}(\mu) \circ \overline{\lambda}_{\alpha\beta}$
103	19 行目	$\psi_{\lambda} \colon p^*(f)^{-1}(U_{\lambda}) \to f^{-1}(U_{\lambda}) \times F$	$\psi_{\lambda} \colon p^*(f)^{-1}(f^{-1}(U_{\lambda})) \to f^{-1}(U_{\lambda}) \times F$
103	21 行目	U_{lpha}	V_{γ}
103	25 行目	$\psi_{\lambda} \colon p^*(f)^{-1}(U_{\lambda}) \to U_{\lambda} \times F$	$\psi_{\lambda} \colon p^*(f)^{-1}(f^{-1}(U_{\lambda})) \to f^{-1}(U_{\lambda}) \times F$
104	1 行目	$p^*(f)^{-1}(U_\lambda) \to U_\lambda \times F$	$p^*(f)^{-1}(f^{-1}(U_{\lambda})) \to f^{-1}(U_{\lambda}) \times F$
104	8 行目	U_{lpha}	V_{γ}
105	pullback の図式	Y o Z	X o Z
111	21 行目	$\widetilde{H}_j \colon E'_j \times [0,1] \to E$	$\widetilde{H}_j \colon E'_j \to E$
112	9 行目	$\widetilde{H}_j _{E'_{j-1}\times[0,1]}=\widetilde{H}_{j-1}$	$ \widetilde{H}_j _{{m E}_{j-1}'} = \widetilde{H}_{j-1}$
119	25 行目	$p^{-1}(S^n_+ \cap S^n) \to (S^n_+ \cap S^n) \times F$	$p^{-1}(S^n_+ \cap S^n) \to (S^n_+ \cap S^n) \times F \to F$
120	17 行目	$S^n_+ \times G \succeq S^n \times G$	$S^n_+ \times F \succeq S^n \times F$
120	23 行目	$\varphi_{\pm,\varepsilon} \colon p^{-1}(U_{\pm,\varepsilon}) \to U_{\pm,\varepsilon} \times G$	$\varphi_{\pm,\varepsilon} \colon p^{-1}(U_{\pm,\varepsilon}) \to U_{\pm,\varepsilon} \times F$
120	24 行目	$\varphi_{\pm,\varepsilon}\colon (p')^{-1}(U_{\pm,\varepsilon})\to U_{\pm,\varepsilon}\times G$	$\varphi_{\pm,\varepsilon}\colon (p')^{-1}(U_{\pm,\varepsilon})\to U_{\pm,\varepsilon}\times F$
122	9 行目	$G(x,t) = w_{-}(t)^{-1}B(p')(x)w_{+}(t)$	$F'(x,t) = w_{-}(t)^{-1}B(p')(x)w_{+}(t)$
122	10 行目	G(x,0) = F(x,1),	F'(x,0) = F(x,1),
122		G(x,1) = B(p')(x)	F'(x,1) = B(p')(x)
151	17 行目	$(S^{n-1} \times [0,1]) \cup \{*\} \times [0,1]$	$(S^{n-1} \times [0,1] \cup \{*\} \times [0,1])$
151	19 行目	$(S^{n-1} \times [0,1]) \cup \{*\} \times [0,1]$	$(S^{n-1} \times [0,1] \cup \{*\} \times [0,1])$
152	19 行目	$\widetilde{H} _{S^{n-1}\times\{0\}}=* \sharp \mathfrak{h},$	$ \widetilde{G} _{S^{n-1}\times\{0\}}=* \sharp\mathfrak{h},$
102	10 13 11	$H _{S^{n-1}\times\{0\}} = *$	$G _{S^{n-1}\times\{0\}}=*$
152	20 行目	Ĥ が基点を保つホモトピー	
152	20 行目	<i>H</i> も基点を保つホモトピー	G も基点を保つホモトピー
152	21 行目	H は写像	G は写像
152	24 行目	$f _{S^{n-1}} = H _{S^{n-1} \times \{1\}}$	$f _{S^{n-1}} = G _{S^{n-1} \times \{1\}}$
152	25 行目	$[f] = \partial[g]$	$\partial[f] = [g]$
153	24 行目	$H \colon X \times [0,1] \to B$	$H \colon X \times [0,1] \times [0,1] \to B$
153	26 行目	$X \times [0,1] \to B$	$X \times [0,1] \times [0,1] \to B$
170	定義 4.10.11	注 1	注 2
171	8 行目	次の条件を満足する写像	次の条件を満足する <mark>連続</mark> 写像
174	可換図式	注 3	注 4
174	写像の構成と計算	注 5	注 6
174	13 行目	$\varphi_{\alpha}(x) = (p_{n+1}(x), \operatorname{pr}_2(\psi_{\alpha}(\widetilde{r}(x))))$	$\varphi_{\alpha}(x) = (p_{n+1}(x), \operatorname{pr}_2(\psi_{\alpha}(\widetilde{r}(x))))$

注 1(誤)

定義 4.10.11 G を位相群とする. n を非負整数または ∞ とし、

$$E_n G = \left(\prod_{k=0}^n \times \Delta^k\right) /_{\sim}$$

と定義する. ここで, 同値関係 \sim は次の四つの関係で生成されたものである: $(g_1,g_2,\ldots,g_n,g_{n+1};t_0,\ldots,t_n)\in G^{n+1}\times \Delta^n$ に対し,

(1) $t_0 = 0$ のとき,

$$(g_1, g_2, \dots, g_n, g_{n+1}; 0, t_1, \dots, t_n) \sim (g_2, g_3, \dots, g_n, g_{n+1}; t_1, \dots, t_n)$$

(2) $1 \le k \le n-1$ に対し $t_k = 0$ のとき,

$$(g_1, \dots, g_{n+1}; t_0, \dots, t_{i-1}, 0, t_{i+1}, \dots, t_n) \sim (g_1, \dots, g_{k-1}, g_k g_{k+1}, g_{k+2}, \dots, g_n; t_0, \dots, t_{k-1}, t_{k+1}, \dots, t_n)$$

(3) $t_n = 0$ のとき,

$$(g_1, \ldots, g_{n-1}, g_n, g_{n+1}; t_0, \ldots, t_{n-1}, 0) \sim (g_1, \ldots, g_{n-1}, g_n, g_{n+1}; t_0, \ldots, t_{n-1})$$

(4) $1 \le k \le n$ に対し $g_k = e$ のとき,

$$(g_1,\ldots,g_{k-1},e,g_{k+1};t_0,\ldots,t_n)\sim(g_1,\ldots,g_{k-1},g_{k+1},\ldots,g_n;t_0,\ldots,t_{k-2},t_{k-1}+t_k,t_{k+1},\ldots,t_n)$$

また, G の E_nG への作用 μ : $E_nG \times G \to E_nG$ を

$$\mu((g_1,\ldots,g_n,g_{n+1};t_0,\ldots,t_n),g)=(g_1,\ldots,g_n,g_ng;t_0,\ldots,t_n)$$

で定義し, $B_nG = E_nG/G$ とおく. 位相は E_nG も B_nG も等化位相である.

注 2(正)

定義 4.10.11 G を位相群とする. n を非負整数または ∞ とし、

$$E_n G = \left(\coprod_{k=0}^n G^{k+1} \times \Delta^k \right) /_{\sim}$$

と定義する. ここで, 同値関係 ~ は次の四つの関係で生成されたものである: $(g_1,g_2,\dots,g_k,g_{k+1};t_0,\dots,t_k)\in G^{k+1}\times\Delta^k \text{ に対し,}$

(1) $t_0 = 0$ のとき,

$$(g_1, g_2, \dots, g_k, g_{k+1}; 0, t_1, \dots, t_k) \sim (g_2, g_3, \dots, g_k, g_{k+1}; t_1, \dots, t_k)$$

(2) $1 \le i \le k-1$ に対し $t_i = 0$ のとき,

$$(g_1, \dots, g_{k+1}; t_0, \dots, t_{i-1}, 0, t_{i+1}, \dots, t_k) \sim (g_1, \dots, g_{i-1}, g_i g_{i+1}, g_{i+2}, \dots, g_k; t_0, \dots, t_{i-1}, t_{i+1}, \dots, t_k)$$

(3) $t_{k} = 0$ のとき,

$$(g_1, \ldots, g_{k-1}, g_k, g_{k+1}; t_0, \ldots, t_{k-1}, 0) \sim (g_1, \ldots, g_{k-1}, g_k g_{k+1}; t_0, \ldots, t_{k-1})$$

(4) $1 \leq i \leq k$ に対し $g_i = e$ のとき,

$$(g_1, \dots, g_{i-1}, e, g_{i+1}, \dots g_{k+1}; t_0, \dots, t_k) \sim$$

$$(g_1, \dots, g_{i-1}, g_{i+1}, \dots, g_{k+1}; t_0, \dots, t_{i-2}, t_{i-1} + t_i, t_{i+1}, \dots, t_k)$$

また, G の E_nG への作用 μ : $E_nG \times G \to E_nG$ を

$$\mu((g_1,\ldots,g_k,g_{k+1};t_0,\ldots,t_k),g)=(g_1,\ldots,g_k,g_{k+1}g;t_0,\ldots,t_k)$$

で定義し, $B_nG = E_nG/G$ とおく. 位相は E_nG も B_nG も等化位相である.

注 3(誤)

$$E_{n+1}G \times [0,1] \xrightarrow{\widetilde{h}} E_{n+1}G$$

$$\downarrow^{p_{n+1}} \downarrow \qquad \qquad \downarrow^{p_{n+1}}$$

$$B_{n+1}G \times [0,1] \xrightarrow{h} B_{n+1}G$$

$$G \times E_{n+1}G \times [0,1] \xrightarrow{\operatorname{id}_{G} \times \widetilde{h}} G \times E_{n+1}G$$

$$\downarrow^{\mu} \downarrow \qquad \qquad \downarrow^{\mu}$$

$$E_{n+1}G \times [0,1] \xrightarrow{\widetilde{h}} E_{n+1}G$$

$$G \times E_{n+1}G \xrightarrow{\operatorname{pr}_{2}} E_{n+1}G$$

$$\downarrow^{\mu} \downarrow \qquad \qquad \downarrow^{\overline{\mu}}$$

$$E_{n+1}G \times [0,1] \xrightarrow{\widetilde{h}} E_{n+1}G$$

$$\downarrow^{\mu} \downarrow \qquad \qquad \downarrow^{\overline{\mu}}$$

$$E_{n+1}G \times [0,1] \xrightarrow{\widetilde{h}} E_{n+1}G$$

$$\downarrow^{p_{n+1}} \times \operatorname{id}_{[0,1]} \downarrow \qquad \qquad \downarrow^{p_{n+1}}$$

$$B_{n+1}G \times [0,1] \xrightarrow{h} B_{n+1}G$$

$$G \times E_{n+1}G \times [0,1] \times G \xrightarrow{\widetilde{h} \times \operatorname{id}_{G}} G \times E_{n+1}G$$

$$\downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu}$$

$$\downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu}$$

$$\downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu}$$

$$\downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu}$$

$$\downarrow^{\mu} \downarrow^{\mu} \downarrow^{$$

$$G \times E_{n+1}G \times [0,1] \simeq \underbrace{E_{n+1}G} \times [0,1] \times G \xrightarrow{h \times \mathrm{id}_{G}} G \times E_{n+1}G$$

$$\downarrow^{\mu}$$

$$E_{n+1}G \times [0,1] \xrightarrow{\widetilde{h}} E_{n+1}G$$

$$\underbrace{E_{n+1}G \times G \xrightarrow{\mathrm{pr}_{1}} E_{n+1}G}_{\mu\downarrow} \downarrow^{\widetilde{\mu}}$$

$$E_{n+1}G \times [0,1] \xrightarrow{\widetilde{u}} [0,1]$$

注 5(誤)

$$\gamma_{\alpha} : p_{n+1}^{-1}(U_{\alpha}) \times G \to p_{n+1}^{-1}(U_{\alpha})$$

を

$$\gamma_{\alpha}(x,g) = g(\operatorname{pr}_{2} \circ \psi_{\alpha} \circ \widetilde{r})(x)^{-1}x$$

で定義する. この写像は連続であり, $g' \in G$ に対し

$$\begin{split} \gamma_{\alpha}(g'x,g) &= g(\operatorname{pr}_2 \circ \psi_{\alpha} \circ \widetilde{r})(g'x)^{-1}g'x \\ &= g(\operatorname{pr}_2 \circ \psi_{\alpha} \circ \widetilde{r})(g'x)^{-1}g'x \\ &= g(g'(\operatorname{pr}_2 \circ \psi_{\alpha} \circ \widetilde{r}(x))^{-1})g'x \\ &= g(\operatorname{pr}_2 \circ \psi_{\alpha} \circ \widetilde{r}(x))^{-1}g'^{-1}g'x \\ &= g(\operatorname{pr}_2 \circ \psi_{\alpha} \circ \widetilde{r}(x))^{-1}x \\ &= \gamma_{\alpha}(x,g) \end{split}$$

注6(正)

$$\gamma_\alpha\colon p_{n+1}^{-1}(U_\alpha)\times G\to p_{n+1}^{-1}(U_\alpha)$$

を

$$\gamma_{\alpha}(x,g) = x(\operatorname{pr}_{2} \circ \psi_{\alpha} \circ \widetilde{r})(x)^{-1}g$$

で定義する. この写像は連続であり, $g' \in G$ に対し

$$\gamma_{\alpha}(g'x,g) = xg'(\operatorname{pr}_{2} \circ \psi_{\alpha} \circ \widetilde{r})(g'x)^{-1}g$$

$$= xg'((\operatorname{pr}_{2} \circ \psi_{\alpha} \circ \widetilde{r})(x)g')^{-1}g$$

$$= xg'g'^{-1}(\operatorname{pr}_{2} \circ \psi_{\alpha} \circ \widetilde{r}(x))^{-1}g$$

$$= x(\operatorname{pr}_{2} \circ \psi_{\alpha} \circ \widetilde{r}(x))^{-1}g$$

$$= \gamma_{\alpha}(x,g)$$

第5章 ファイブレーション

p	位置	誤	正
	行目		

第6章 あとがきに代えて

p	位置	誤	正
	行目		

付録 その他諸々の話題

p	位置	誤	正
	行目		