AI Planning Exercise Sheet 4

AI Planning Exercise Sheet 4

Date: dd.11.2014

Students: Axel Perschmann, Tarek Saier

Exercise 4.1

For easy readability let the tiles be referred to as b_1 , b_2 , w_1 and w_2 and the empty cell be referred to as e. Furthermore, let the actions move and jump be denoted as $m_c(t)$ and $j_c(t)$ respectively where c is the destination cell $\{1, 2, 3, 4, 5\}$ and t is the tile that is being relocated.

```
As an example, the initial state is:
```

 b_1, b_2, w_1, w_2, e

If we then apply $j_5(b_2)$ we reach:

 b_1, e, w_1, w_2, b_2

```
(a) Let [o] be the search node \sigma reached by applying the operation o \in \{m_c(t), j_c(t)\}.
f(\lceil m_5(w_2) \rceil) = 1 + 4 = 5
f([j_5(w_1)]) = 1 + 4 = 5
```

$$f([i_5(w_1)]) = 1 + 4 = 5$$

$$f(\lceil j_5(b_2) \rceil) = 2 + 2 = 4$$

Apply $j_5(b_2)$ which results in σ_1 :

$$b_1, e, w_1, w_2, b_2$$

$$f(\lceil m_2(b_1) \rceil) = 3 + 2 = 5$$

$$f(\lceil m_2(w_1) \rceil) = 3 + 2 = 5$$

$$f([j_2(w_2)]) = 3 + 2 = 5$$

$$\lceil j_2(b_2) \rceil = I \in closed$$

Apply $m_2(b_1)$ which results in σ_2 :

$$e, b_1, w_1, w_2, b_2$$

Apply $m_2(w_1)$ which results in σ_3 :

$$b_1, w_1, e, w_2, b_2$$

Apply $j_2(w_2)$ which results in σ_4 :

$$b_1, w_2, w_1, e, b_2$$

Expanding on σ_2 :

$$\lceil m_1(b_1) \rceil = \sigma_1 \in closed$$

$$f([j_1(w_1)]) = 4 + 1 = 5$$

$$f([j_1(w_2)]) = 5 + 1 = 6$$

Expanding on σ_3 :

$$f([j_3(b_1)]) = 4 + 1 = 5$$

$$f(\lceil m_3(w_1) \rceil) = 4 + 2 = 6$$

$$f(\lceil m_3(w_2) \rceil) = 4 + 2 = 6$$

$$f([j_3(b_2)]) = 4 + 3 = 7$$

AI Planning Exercise Sheet 4

Expanding on
$$\sigma_4$$
:
 $f(\lceil j_4(b_1) \rceil) = 5 + 0 = 5$

Since h is goal aware and the minimum cost of an operator is 1 we're done at this point. There may be other solutions but none with a cost of less than 5. The resulting plan is: $j_5(b_2), j_2(w_2), j_4(b_1)$ with a total cost of 5 a final state: e, w_2, w_1, b_1, b_2

(b)

Exercise 4.2

bar