Exp. No. 7 Write a C program to find FIRST() - predictive parser for the given grammar

```
S → AaAb / BbBa
A \rightarrow \in
B \rightarrow \in
Program:
#include<stdio.h>
#include<ctype.h>
void FIRST(char[],char );
void addToResultSet(char[],char);
int numOfProductions;
char productionSet[10][10];
int main()
{
  int i;
  char choice;
  char c;
  char result[20];
  printf("How many number of productions ?:");
  scanf(" %d",&numOfProductions);
  for(i=0;i<numOfProductions;i++)//read production string eg: E=E+T
  {
    printf("Enter productions Number %d : ",i+1);
    scanf(" %s",productionSet[i]);
  }
  do
  {
    printf("\n Find the FIRST of :");
    scanf(" %c",&c);
    FIRST(result,c); //Compute FIRST; Get Answer in 'result' array
    printf("\n FIRST(%c)= { ",c);
    for(i=0;result[i]!='\0';i++)
    printf(" %c ",result[i]); //Display result
    printf("}\n");
     printf("press 'y' to continue : ");
```

```
scanf(" %c",&choice);
  }
  while(choice=='y'||choice =='Y');
}
*Function FIRST:
*Compute the elements in FIRST(c) and write them
*in Result Array.
*/
void FIRST(char* Result,char c)
{
  int i,j,k;
  char subResult[20];
  int foundEpsilon;
  subResult[0]='\0';
  Result[0]='\setminus 0';
  //If X is terminal, FIRST(X) = \{X\}.
  if(!(isupper(c)))
  {
     addToResultSet(Result,c);
         return;
  //If X is non terminal
  //Read each production
  for(i=0;i<numOfProductions;i++)</pre>
//Find production with X as LHS
     if(productionSet[i][0]==c)
     {
//If X \rightarrow \varepsilon is a production, then add \varepsilon to FIRST(X).
if(productionSet[i][2]=='$') addToResultSet(Result,'$');
       //If X is a non-terminal, and X \rightarrow Y1 Y2 ... Yk
       //is a production, then add a to FIRST(X)
       //if for some i, a is in FIRST(Yi),
       //and \epsilon is in all of FIRST(Y1), ..., FIRST(Yi-1).
```

```
else
      {
        j=2;
        while(productionSet[i][j]!='\0')
        foundEpsilon=0;
         FIRST(subResult,productionSet[i][j]);
        for(k=0;subResult[k]!='\0';k++)
           addToResultSet(Result,subResult[k]);
         for(k=0;subResult[k]!='\0';k++)
           if(subResult[k]=='$')
           {
              foundEpsilon=1;
              break;
         //No ε found, no need to check next element
         if(!foundEpsilon)
           break;
         j++;
  }
}
  return;
/* addToResultSet adds the computed
*element to result set.
*This code avoids multiple inclusion of elements
 */
void addToResultSet(char Result[],char val)
{
  int k;
  for(k=0;Result[k]!='\0';k++)
    if(Result[k]==val)
      return;
```

```
Result[k]=val;
Result[k+1]='\0';
}
```

OUTPUT: