哈尔滨工业大学(深圳)2023 年春《数据结构》 第三次作业 图结构

学号 220110515	姓名	金正达	成绩	
--------------	----	-----	----	--

1、简答题

1-1 已知图的邻接表如图所示,给出以顶点 A 为起点的一次深度优先(先深, DFS)和广度优先(先广, BFS)的搜索序列,并给出相应的生成树/森林。

答: DFS: AFCBED BFS: ACFBED

1-2 对一个图进行遍历可以得到不同的遍历序列,那么导致得到的遍历序列不唯一的因素有哪些?

答:

- 1. 节点的选择顺序,例如,对于深度优先搜索算法 (DFS), 在选择下一个节点时, 可以按照不同的规则选择, 如选择最左侧的节点或最右侧的节点。
- 2. 节点的访问时机,例如,广度优先搜索算法(BFS)中,可以选择在将节点加入队列时访问节点,也可以选择在将节点出队列时访问节点。
- 3. 图的结构,例如,对于有向图中存在环路的情况,遍历算法可能进入环路并在环路内部反复遍历,导致多个不同的遍历序列。
- 4. 起始节点的选择。
- 1-3 已知有 6 个顶点(顶点编号为 0 ~ 5)的有向带权图 G,其邻接矩阵 A 为上三角矩阵,按行为主序(行优先)保存在如下的一维数组中。

4	6	∞	∞	∞	5	∞	8	8	4	3	∞	∞	3	3	
---	---	----------	----------	----------	---	----------	---	---	---	---	----------	----------	---	---	--

- (1) 写出图 G 的邻接矩阵 A;
- (2) 画出有向带权图 G:
- (3) 给出一个拓扑序列;

(4) 求图 G 的关键路径,并计算该关键路径的长度。

答:

1-4 无向网如下图所示,回答下列为题:

(1)按照 Prim 算法求其最小生成树,填表完成求解过程;

Prim 算法求解过程(1) ∑w=26

	111111 44747(1) / W 20									
No.	U	V-U	本轮需考察的边及其权值	最近邻/A						
1	{A}	{BCDEFGH}	AC:3,AB:4	С						
2	{AC}	{BDEFGH}	AB:4,CB:5,CD:5,CH:6	В						

3	{ACB}	{DEFGH}	CD:5,CH:6,BD:7,BE:9	D
4	{ACBD}	{EFGH}	CH:6,BE:9,DE:7,DF:6,DG:5,DH:4	Н
5	{ACBDH}	{EFG}	BE:9,DE:7,DF:6,DG:5,HG:6	G
6	{ACBDHG}	{EF}	BE:9,DE:7,DF:6,GF:2	F
7	{ACBDHGF}	{E}	BE:9,DE:7,FE:3	E
8	{ACBDHGFE}	{}	N/A	N/A

(2)按 Kruskal 算法求其最小生成树,按顺序给出边。

1	2	3	4	5	6	7
FG:2	FE:3	AC:3	DH:4	AB:4	DG:5	CD:5

注: 2和3,4和5,6和7位置均可互换。

1-5 求混合(有向和无向混合)图单源最短路径,填写表格完成 Dijkstra 算法各步骤。设源点为顶点①。

Dijkstra 算法求单源最短路径

No	S	W	D[2]	D[3]	D[4]	D[5]	D[6]	D [7]	D[8]	D[9]	D[10]	D[11]
0	{1}	•	8	∞	∞	∞	∞	7	8	∞	∞	∞
1	{1,7}	7	8	∞	∞	∞	16	7	8	∞	∞	∞
2	{1,7,6}	6	8	11	∞	∞	16	7	8	17	∞	∞
3	{1,7,6,2,8}	2,8	8	11	∞	∞	16	7	8	17	∞	∞
4	{1,7,6,2,8,3,9}	3,9	8	11	14	17	16	7	8	17	∞	∞
5	{1,7,6,2,8,3,9,4,5}	4,5	8	11	14	15	16	7	8	17	∞	26
6	{1,7,6,2,8,3,9,4,5,11}	11	8	11	14	15	16	7	8	17	∞	25
7	{1,7,6,2,8,3,9,4,5,11}	1	8	11	14	15	16	7	8	17	∞	25
8	{1,7,6,2,8,3,9,4,5,11,10}	10	8	11	14	15	16	7	8	17	19	25
9	{1,7,6,2,8,3,9,4,5,11,10}	ı	8	11	14	15	16	7	8	17	19	21
10												

2、算法设计

- (1) 采用 C 或 C++语言设计数据结构;
- (2) 给出算法的基本设计思想;
- (3) 根据设计思想,采用C或C++语言描述算法,关键之处给出注释;
- (4) 说明你所设计算法的时间复杂度和空间复杂度。
- 2-1图的存储结构实践。

自定义图的邻接矩阵和邻接表两种存储结构。以下两项任选其一:

- (1) 创建图的邻接矩阵,设计算法自动生成邻接表,或:
- (2) 创建图的邻接表,设计算法自动生成邻接矩阵。

要求能够打印图的邻接矩阵和邻接表,进行验证。

答: (1):

```
const int N = 20;
const int MAX = 100000;
typedef struct node
    int vex;
    int data;
    struct node* next;
}Node;
typedef struct
    Node* vexList[N];
    int n;
    int e;
}AdjGraph;
void AddToLast(Node* node, Node* sentinal) {
    Node* p;
    for (p = sentinal; p->next != NULL; p = p->next);
    p->next = node;
void CreatAdjGraph(int** matrix, AdjGraph* adjGraph) {
    for (int i = 0; i < adjGraph - > n; i++) {
         for (int j = 0; j < adjGraph -> n; j++) {
             if (matrix[i][j] != MAX) {
   Node* node = (Node*)malloc(sizeof(Node));
                 node->data = matrix[i][j];
                 node->vex = j;
                 node->next = NULL;
                 AddToLast(node, adjGraph->vexList[i]);
```

由图的邻接矩阵生成邻接表的算法时间复杂度为O(V*V),V为图的顶点个数,空间复杂度为O(1)。

2-2 设具有 n 个顶点的有向图用邻接表存储 (不存在逆邻接表)。试写出计算所有顶点入度的算法,将每个顶点的入度值分别存入一维数组 int Indegree[n]中。答:

```
const int N = 20;
    const int MAX = 100000;
    typedef struct node
        int vex;
        int data;
        struct node* next;
    }Node;
    typedef struct
        Node* vexList[N];
        int n;
    }AdjGraph;
19
    int SearchVex(Node* node, int vex) {
        for (Node* p = node->next; p != NULL; p = p->next) {
            if (p->vex == vex) {
        return 0;
    void CaculateDegrees(AdjGraph* adjGraph, int* Indegree) {
        for (int i = 0; i < adjGraph->n; i++) {
                Indegree[i] += SearchVex(adjGraph->vexList[j], i);
```

时间复杂度为 O(V*V), V 为图的顶点个数,空间复杂度为 O(1)。

2-3一个连通图采用邻接表作为存储结构,设计一个算法,实现从顶点 v 出发的 深度优先遍历的非递归过程。

答:

```
void DFS(AdjGraph* adjGraph, int v) {
    Stack* stack = (Stack*)malloc(sizeof(Stack));
    InitialStack(stack);
    int visited[adjGraph->n];
    for (int i = 0; i < adjGraph -> n; i++) {
        visited[i] = 0;
   Push(stack, ν);
    visited[v] = 1;
   while(!isEmpty(stack)) {
        int currVex = Pop(stack);
        printf("%d,", currVex);
       Node* p = adjGraph->vexList[currVex];
       while(p) {
            int adjVex = p->vex;
            if (visited[adjVex] == 0) {
                Push(stack, adjVex);
                visited[adjVex] = 1;
            p = p->next;
```

时间复杂度 O(V+E), 空间复杂度为 O(V), 其中 V 为图的顶点个数,E 为图的边数。

2-4 采用链接表存储结构,编写一个判别无向图中任意给定的两个顶点(u,v)之间 是否存在一条长度为 k 的简单路径

答:

```
int isReachable(AdjGraph* adjGraph, int u, int v, int k, int* visited){
    if (k == 0 && u == v) {
        return 1;
    }
    visited[u] = 1;
    Node* p = adjGraph->vexList[u];
    while (p) {
        if (ivisited[p->vex] && isReachable(adjGraph, p->vex, v, k - 1, visited)) {
            return 1;
        }
        p = p->next;
    }
    visited[u] = 0;
    return 0;

int HasPath(AdjGraph* adjGraph, int u, int v, int k) {
        if (k == 0 && u == k) {
            return 1;
        }

        int visited[N];
        for (int i = 0; i < N; i++) {
            visited[u] = 1;
        Node* p = adjGraph->vexList[u];
        while(p) {
            if (isReachable(adjGraph, p->vex, v, k-1, visited)) {
                return 1;
            }
            p = p->next;
        }
        return 0;
}
```

时间复杂度 O(V+E), 空间复杂度为 O(V), 其中 V 为图的顶点个数,E 为图的边数。