	Name: ID:		-
	Department of Computer Science and Engineeri CSE340: Computer Architecture Spring 2013 Quiz-1 Full Marks:15 Time: 20 Mins	ng	
1.	1. Define ISA and ABI.		2
2.	2. Encode the MIPS instruction sub \$16,\$17,\$18 and sw \$16,40(\$17) also find [sub= 000000 100010,sw=011011]	l their type.	3
3.	 Write MIPS instruction for the expression f=(g+h)-(i+j), using minimum num Register. 		3

4. What type instruction is JAL? How would you represent JAL 513 in the register? What would 3 be the value in \$ra/\$31? 5. In general you can store 16-bit constant in a register, but if you would need to store 27-bit constant, how would you do this? Give an example. 4

	Name: ID:		-
	Department of Computer Science and Engineeri CSE340: Computer Architecture Spring 2013 Quiz-1 Full Marks:15 Time: 20 Mins	ng	
1.	1. Define ISA and ABI.		2
2.	2. Encode the MIPS instruction sub \$16,\$17,\$18 and sw \$16,40(\$17) also find [sub= 000000 100010,sw=011011]	l their type.	3
3.	 Write MIPS instruction for the expression f=(g+h)-(i+j), using minimum num Register. 		3

4. What type instruction is JAL? How would you represent JAL 513 in the register? What would 3 be the value in \$ra/\$31? 5. In general you can store 16-bit constant in a register, but if you would need to store 27-bit constant, how would you do this? Give an example. 4

Name:	ID:
-------	-----

Department of Computer Science and Engineering

CSE340: Computer Architecture Fall 2014 Quiz-1

Full Marks:15 Time: 20 Mins

1. Show that: $A \oplus (B \oplus C) = A \oplus (B\bar{C} + \bar{B}C)$. Using Boolean expression.

6

2. Using T-FF design a counter that can count from decimal 0 to 10 in binary.

Name: ID: Section: _	
----------------------	--

Department of Computer Science and Engineering CSE340: Computer Architecture

Fall 2015 Quiz-1, A

Full Marks: 15 Time: 20 Mins

1. Design a conditional shift register and explain its operation.

Name: ID: _	Section:
-------------	----------

Department of Computer Science and Engineering

CSE340: Computer Architecture Fall 2015

Quiz-1, B

Full Marks: 15 Time: 20 Mins

1. Design a "Conditional Sum" adder and explain its operation.

Name:	ID:	Section:
-------	-----	----------

Department of Computer Science and Engineering CSE340: Computer Architecture

Fall 2015 Quiz-1, C

Full Marks: 15 Time: 20 Mins

Let's assume you have four inputs A, B, C, D and output F. F is high when decimal equivalent of the inputs are even. Simplify F using sum of product expression and draw the logic circuit.

Name:	ID:	Section:
-------	-----	----------

Department of Computer Science and Engineering

CSE340: Computer Architecture Fall 2015

Quiz-1, D

Full Marks: 15 Time: 20 Mins

1. Design a PLA for the expression given below:

a.
$$f_1 = A.\overline{B} + \overline{A}.B.\overline{C}$$

b.
$$f_2 = A.\bar{B} + A.B.C$$

c.
$$f_3 = \bar{A}.B.\bar{C} + A.B.C$$

Name:	ID:	Section:
-------	-----	-----------------

Department of Computer Science and Engineering CSE340: Computer Architecture Fall 2015

Quiz-1, E Full Marks: 15 Time: 20 Mins

Let's assume you have four inputs A, B, C, D and output F. F is high when decimal equivalent of the inputs are odd. Simplify F using sum of product expression and draw the logic circuit.

,	Name:	ID:	
		Department of Computer Science and Engineering CSE340: Computer Architecture Spring 2014 Quiz-1 Full Marks:15 Time: 20 Mins	
1.	Define c	compiler and assembler.	2
2.	Encode t	the MIPS instruction addi \$16,\$17, 18 and lw \$16,40(\$17) also find their type.	3

3. Write MIPS instruction for the expression f=(g-h)+(i-j), using minimum number of

3

Register.

4. What type instruction is JAL? What value does \$ra/\$31 stores?
3
5. Convert *blt \$s1,s2*, *Exit* into equivalent MIPS code. [blt= branch if less than]
4

Name:	ID:

Department of Computer Science and Engineering CSE340: Computer Architecture Spring 2015

Quiz-1

Full Marks:15 Time: 20 Mins

1. Design a logic circuit that has four inputs and one output. Output will be HIGH (1) when majority of the inputs are High (1).

Name:	ID:	

Department of Computer Science and Engineering CSE340: Computer Architecture

Spring 2015 Quiz-1

Full Marks:15 Time: 20 Mins

1. Design a ripple adder and explain its limitations. Design another adder that overcomes the limitations of a ripple adder.

15

Name:	ID:
-------	-----

Department of Computer Science and Engineering CSE340: Computer Architecture

Spring 2015
Quiz-1

Full Marks:15 Time: 20 Mins

Why do you need a D-flip flop? Explain with an example. Design a shift register using D flip flop.

Name:	ID:	
_ ,	 	

Department of Computer Science and Engineering CSE340: Computer Architecture Summer 2014 Quiz-1

Full Marks:15 Time: 20 Mins

1. Consider the function $Y = (A.B) + \overline{(A.C).B}$, draw a combinational logic circuit that implements this function. Also draw the Truth table for this function.

2. Design and explain operation of a circuit built with D flip-flop that can implement left shift, right shift and data store operation. The circuit should also have the provision to clear all flip-flop when required.6

3. Design an ALU with logical gates.

Name:	ID:	

Department of Computer Science and Engineering CSE340: Computer Architecture

Summer 2015

Quiz-1

Full Marks:15 Time: 20 Mins

1. Simplify the Boolean expression and draw logic circuit:

$$z = A'BCD + AB'C'D' + AB'CD' + AB'CD + ABC'D' + ABCD' + ABCD' + ABCD.$$
 15

Name:	ID:	

Department of Computer Science and Engineering CSE340: Computer Architecture Summer 2015

Quiz-1

Full Marks:15 Time: 20 Mins

1. Simplify the below circuit and draw the simplified circuit:

Name:	ID:	

Department of Computer Science and Engineering CSE340: Computer Architecture Summer 2015 Quiz-1

Full Marks:15 Time: 20 Mins

1. Draw and explain the operation of a counter that can count clock cycle from 0~13 having a falling edge triggered clock and using a T FF.

Name:	ID:	

Department of Computer Science and Engineering

CSE340: Computer Architecture Summer 2015 Quiz-1

Full Marks:15 Time: 20 Mins

1. Simplify the Boolean expression and draw logic circuit:

$$z = \overline{A} C(A + \overline{B} + \overline{D}) + \overline{A} B \overline{C} \overline{D} + A \overline{B} C$$

Name:	ID:	

Department of Computer Science and Engineering

CSE340: Computer Architecture Summer 2015 Quiz-1

Full Marks:15 Time: 20 Mins

1. Simplify the below circuit and draw the simplified circuit:

Name: ID:	
-----------	--

Department of Computer Science and Engineering CSE340: Computer Architecture Summer 2015 Quiz-1

Full Marks:15 Time: 20 Mins

Design a hardware that can execute shift left, shift right, store new data and clear all stored data operation using D FF. Also explain its operation.

Name:	ID:	

Department of Computer Science and Engineering

CSE340: Computer Architecture Fall 2013 Quiz-2

Full Marks: 15 Time: 25 Mins

1. Draw the missing links?

2. What are the advantages and disadvantages of single cycle data path implementation?

3

4. For executing lw \$16,40(\$17), circle the appropriate MUX output in the below datapath.

Name:	ID:
CSE340: Con Sur	nter Science and Engineering mputer Architecture mmer 2013 Quiz-2 15 Time: 25 Mins
1. What do you mean by zero and sign exten	aded? 2
2. Use Booth's algorithm to multiply 5 by -3	3. 4
3. 1 00000111 10000000000000000000000000	

3

floating point representation.

4.	Write Show the IEEE 754 binary representation of the floating point number -5/6.	3
5.	Write Show the IEEE 754 binary representation of the floating point number -11.7 .	3

	Name:	ID:	
	Department of Computer Science and CSE340: Computer Architectu Fall 2014 Quiz-2 Full Marks:15 Time: 30 Mi	ire	
1.	What are the purpose of PC and \$sp.	2	2
2.	Encode the MIPS instruction addi \$16,\$17, 18 and lw \$16,40(\$	17) also find their type.	3
3.	Write MIPS instruction for the expression if (i<=10) f=g+h, using	ing minimum number of	

3

Register.

4. Describe how JUMP address is calculated with	ith figure.
---	-------------

Name:	ID:	Section:	
	Department of Computer Science and Engine CSE340: Computer Architecture Fall 2015 Quiz-2, A Full Marks: 15 Time: 20 Mins	eering	
1. Define me	emory hierarchy with diagram.		5
2. Write MII	PS code for the following C code: if (A[5]==10) f=g[6]+C; else f=g[[5]+C;	10

Name:	ID:	Section:
Department of Computer Science and Engineering CSE340: Computer Architecture Fall 2015 Quiz-2, B Full Marks: 15 Time: 20 Mins		
1. Draw the diagram of Ha	arvard and Von Neumann Model of computer.	5

Name:	ID: Section:	
Department of Computer Science and Engineering CSE340: Computer Architecture		
	Fall 2015	
	Quiz-2, C	
	Full Marks: 15 Time: 20 Mins	

1. Design a register file having 64 registers with 32-bit each.

5

2. Write MIPS code for the following C code: if (A[6]==B[5]) f=g[6]-C; else f=g[5]-C;

Name:	ID:	Section:
CSE340:	nputer Science and En Computer Architecture Fall 2015 Quiz-2, D ks: 15 Time: 20 Mins	
1. Define Multiprocessor system with diagr	am.	

2. Write MIPS code for the following C code: if (A[6]==B[5]) f=g[6]+C; else f=g[5]+C;

Name:	ID):	Section:
CSE	Computer Science 2340: Computer Arcl Fall 2015 Quiz-2, E Marks: 15 Time:	hitecture	neering
1. Define big endian and little endian	addressing with example	2.	5

2. Write MIPS code for the following C code: if (A[3]==B[4]) f=g[6]*C; else f=g[5]+C;

	Name:	ID:
	Department of Computer Science CSE340: Computer Archit Spring 2014 Quiz-2 Full Marks: 15 Time: 25	tecture
1.	What do you mean by zero and sign extended?	2
2.	1 00001111 101010000000000000000000000	decimal value using IEEE754 32-bit
	floating point representation.	3
3.	Write Show the IEEE 754 binary representation of the float	ating point number -11.1 using eight

bit register have one bit for sign, three bits for exponent and four bits for fraction part.

4. Add 0.5_{ten} and -0.4365_{ten} IEEE 754 floating point addition.

	Name:	ID:
	CSE340: Compu Sprin Qu	Science and Engineering iter Architecture g 2015 iz-2 Time: 20 Mins
1.	What do you mean by zero and sign extended ^a	?
2.	2. Write MIPS instruction for the expression f =(;	g*h)+(i*j), using minimum number of registers. 5

3. Convert bgt \$s1,s2, Exit into equivalent MIPS code. [bgt= branch if greater than]

- a. srl \$t1,\$t2,8.
- b. slt \$t1,\$t2,\$t3.

Name:	ID:	

Department of Computer Science and Engineering

CSE340: Computer Architecture Fall 2013 Quiz-2

Full Marks: 15 Time: 25 Mins

1. Draw the missing links?

Add Data Register # Registers Address Instruction Register # Instruction memory Register # RegWrite Control

M x

2. What are the advantages and disadvantages of single cycle data path implementation?

3

4. For executing lw \$16,40(\$17), circle the appropriate MUX output in the below datapath.

Name:	ID:
CSE340: Con Sur	nter Science and Engineering mputer Architecture mmer 2013 Quiz-2 15 Time: 25 Mins
1. What do you mean by zero and sign exten	aded? 2
2. Use Booth's algorithm to multiply 5 by -3	3. 4
3. 1 00000111 10000000000000000000000000	

floating point representation.

4.	Write Show the IEEE 754 binary representation of the floating point number -5/6.	3
5.	Write Show the IEEE 754 binary representation of the floating point number -11.7.	3

	Name:		ID:
	Departme	ent of Computer Science of CSE340: Computer Archit Fall 2014 Quiz-2 Full Marks:15 Time: 30	ecture
1.	What are the purpose of	PC and \$sp.	2
2.	Encode the MIPS instruc	ction addi \$16,\$17, 18 and lw \$16,	40 (\$17) also find their type. 3
3.	Write MIPS instruction	for the expression if (i<=10) f=g+h	, using minimum number of

Register.

4. Describe how JUMP address is calcu	ılated with figure.
---------------------------------------	---------------------

Name:	ID:	Section:	_
	Department of Computer Science and Engine CSE340: Computer Architecture Fall 2015 Quiz-2, A Full Marks: 15 Time: 20 Mins	eering	
1. Define m	nemory hierarchy with diagram.		5
2. Write MI	IPS code for the following C code: if (A[5]==10) f=g[6]+C; else f=g	[5]+C;	10

Name:	ID:	Section:
Department of Computer Science and Engineering CSE340: Computer Architecture Fall 2015 Quiz-2, B Full Marks: 15 Time: 20 Mins		
1. Draw the diagram of Ha	rvard and Von Neumann Model of computer.	5

Name:	ID: Section:			
Department of Computer Science and Engineering CSE340: Computer Architecture				
Fall 2015 Quiz-2, C				
				Full Marks: 15 Time: 20 Mins

1. Design a register file having 64 registers with 32-bit each.

5

2. Write MIPS code for the following C code: if (A[6]==B[5]) f=g[6]-C; else f=g[5]-C;

Name:	ID:	Section:
CSE340:	nputer Science and En Computer Architecture Fall 2015 Quiz-2, D ks: 15 Time: 20 Mins	
1. Define Multiprocessor system with diagr	am.	

2. Write MIPS code for the following C code: if (A[6]==B[5]) f=g[6]+C; else f=g[5]+C;

Name:	ID: _		Section:
CS	of Computer Science a E340: Computer Archite Fall 2015 Quiz-2, E Il Marks: 15 Time: 20	cture	ing
1. Define big endian and little endia	an addressing with example.		5

2. Write MIPS code for the following C code: if (A[3]==B[4]) f=g[6]*C; else f=g[5]+C;

	Name:	ID:
	Department of Computer Science CSE340: Computer Archit Spring 2014 Quiz-2 Full Marks: 15 Time: 25	tecture
1.	What do you mean by zero and sign extended?	2
2.	1 00001111 101010000000000000000000000	decimal value using IEEE754 32-bit
	floating point representation.	3
3.	Write Show the IEEE 754 binary representation of the float	ating point number -11.1 using eight

bit register have one bit for sign, three bits for exponent and four bits for fraction part.

4. Add 0.5_{ten} and -0.4365_{ten} IEEE 754 floating point addition.