Prove: That any two eigenvectors, & a symmetric matrix A are orthogonal.

are orthogonal.

eigenvalues

Proof: Let u and v be the eigenvalues of A, with eigenvalues λ and δ , respectively.

This means: $Au = \lambda u + \lambda v = 8v + \lambda v = 8v$ We want to show that $u \cdot v = 0$ (or $u \cdot v \cdot v = 0$).

Let's that with this expression: $\lambda u \cdot v \cdot v = 0$ above islaturships, along with the first that $A = A^T$, to arms at $u \cdot v \cdot v = 0$.

$$\begin{array}{lll}
 & \text{if } T_{AV} = \lambda u \\
 & \text{if } T_{AV} = \sqrt{2} \chi \\
 & \text{if } T_{AV}
\end{array}$$

Okay, so Xxv = 8xxv.

Brown 1-8 = 0 Hivey our distinct), utv=0!