Ipin TSP-algoritmien suoritusaikoja

Brute Force:

Allaolevat taulukot on saatu arpomalla kaupunkien sijainteja, ja laskemalla koko ohjelman suoritusaika ilman renderöintiä kummankin Brute Force -algoritmin suoritus ajat kahdeksaan kaupunkiin asti näyttävät riippuvan pää-asiallisesti vain NetBeansin omista prosesseista ja itse algoritmi suoriutuu tehtävästä todennäköisesti silmänräpäyksessä. Varsinaisen optimoimattoman Brute Forcen ajoista on hyvin selvästi havaittavissa aikavaativuus O(n!). Jos oletetun n. 0.650 sekunnin vakion jättää laskuista pois, näyttäisi siltä, että 12:nnen kaupungin kohdalla itse algoritmin suoritusaika olisi noin 1.7, joka kerrottuna 13:lla tuottaisi i likimain 18.6. Likimain 18.6. Tämä taas kerrottuna 14 ei ole aivan seuraava 3:56s, mutta jotain samaa kokoluokkaa kuitenkin. Oletukseni mukaan seuraava kaupunkimäärä kohottaisi suoritusajan jo 15*4min eli tuntiin. Lopetin kokeiluni tähän.

Optimoitu versio toimii odotetusti hyvin epätasaisesti. Kaikki riippuu siitä, kuinka aikaisin algoritmi löytää hyviä ratkaisuja, jolloin iso osa puusta jää käymättä läpi. Hajonta on merkittävä, sillä silloin tällöin 16 kaupunkia saadaan parissa sekunnissa ja silloin tällöin täytyy odotella jo melkein minuutti. 17 kaupunkiakin menee välillä 8:ssa sekunnissa, mutta keskiarvo on silti 1:36s. Otanta on kuitenkin hajonnan vuoksi aivan liian pieni, luotettavan keskiarvon saamiseksi. Joka tapauksessa pahiman tapauksen toteutuessa (häviävän harvoin) laskenta veisi puolisen kuukautta. Optimointi on siis varsin merkittävä.

Optimoinnin kanssa

Kaupunkeja	Suoritu	saikoja			
1	0.635s	0.636s	0.639s	0.975s	0.620s
2	0.634s	1.112s	0.907s	0.677s	0.617s
3	0.636s	0.883s	0.623s	0.860s	0.619s
4	0.622s	0.880s	0.612s	0.618s	0.697s
5	0.631s	0.628s	0.707s	0.618s	0.609s
6	0.632s	0.626s	0.676s	0.622s	0.614s
7	0.630s	0.692s	0.623s	0.619s	0.619s
8	0.610s	0.640s	0.629s	0.703s	0.626s
9	0.728s	0.917s	0.717s	0.915s	0.715s
10	0.734s	0.773s	0.730s	0.725s	0.784s
11	0.738s	0.0.730s	0.798s	0.764s	0.718s
12	0.745s	0.725s	0.715s	0.718s	0.775s
13	0.738s	0.925s	0.844s	0.710s	0.917s
14	1.031s	1.185s	0.921s	1.168s	2.326s
15	1.031s	3.787s	5.521s	1.361s	18.589s
16	15.729s	2.416s	21.943s	3.436s	12.720s
17	21.323s	11.854s	8.189s	15.752s	34.009s

					AVG
0.616s	0.958s	0.623s	0.692s	0.631s	0.633s
0.626s	1.047s	0.718s	0.878s	0.643s	0.786s
0.689s	0.634s	0.635s	0.637s	0.641s	0.686s
0.632s	0.611s	0.824s	0.696s	0.614s	0.681s
0.725s	0.629s	0.637s	0.698s	0.623s	0.651s
0.626s	0.681s	0.615s	0.616s	0.625s	0.633s
0.688s	0.618s	0.615s	0.614s	0.693s	0.641s
0.615s	0.635s	0.959s	0.618s	0.639s	0.664s
0.767s	0.724s	0.730s	0.931s	0.860s	0.800s
0.730s	0.792s	0.934s	0.723s	0.733s	0.765s
0.727s	0.712s	0.774s	0.756s	0.734s	0.745s
0.745s	0.736s	0.771s	0.717s	0.723s	0.737s
0.877s	0.821s	0.729s	0.793s	0.886s	0.824s
1.227s	0.983s	0.826s	1.088s	1.018s	1.177s
1.946s	3.012s	1.436s	15.537s	2.324s	5.454s
3.208s	5.431s	4.236s	45.306s	17.569s	11.627s
2:04.473s	46.374s	1:00.070s	22.738s	20.632s	1:36.541s

Ilman optimointia

Kaupunkeja	Suoritusaikoja
1	0.620s
2	0.625s
3	0.629s
4	0.679s
5	0.615s
6	0.623s
7	0.696s
8	0.725s
9	0.728s
10	0.706s
11	0.887s
12	2.376s
13	18.611s
14	3:56.577s
15	Tästä eteenpäin ei jaksa testaa. Tässä menis joku tunti.
16	Ja tässä sit varmaan melkein päivä
17	Ja tässä puolisen kk.

Simulated Annealing (kaupunkeja 14):

Huomattavaa allaolevassa taulukossa on, että ratio (alpha-arvo) voi olla huoletta 0.9995 ja ohjelma suoriutuu tehtävästä silmänräpäyksessä, vaikka final temperature olisi 0.002. Suorituskyky ei siis ole minkäänlainen ongelma 14 kaupungilla saadaan 100% tarkkuus, ja toistaiseksi isommat määrät jäävät arvailujen varaan. Algoritmi vaikuttaisi kuitenkin varsin käyttökelpoiselta käytännöntilanteisiin.

Starting temperature	Ratio	Final temperature	Time	Accuracy
10	0.99	0.05	0s	100-105%
10	0.99	0.01	0s	100–101.7%
10	0.99	0.002	0s	100,00%
10	0.999	0.05	0s	100–104%
10	0.999	0.01	0s	100,00%
10	0.999	0.002	0s	100,00%
10	0.9995	0.05	0s	100-100.2%
10	0.9995	0.01	0s	100,00%
10	0.9995	0.002	0s	100,00%
100	0.99	0.05	0s	100-103%
100	0.99	0.01	0s	100,00%
100	0.99	0.002	0s	100,00%
100	0.999	0.05	0s	100-101%
100	0.999	0.01	0s	100,00%
100	0.999	0.002	0s	100,00%
100	0.9995	0.05	0s	100,00%
100	0.9995	0.01	0s	100,00%
100	0.9995	0.002	0s	100,00%