Областная олимпиада по математике, 2009 год, 11 класс

- **1.** Определите все натуральные числа $n = p_1 p_2 \dots p_k$, которые являются делителем числа $(p_1 + 1)(p_2 + 1) \dots (p_k + 1)$, где $p_1 p_2 \dots p_k$ разложение числа n на простые множители (не обязательно различные).
- **2.** Обозначим центры вневписанных окружностей, касающихся сторон BC, CA и AB треугольника ABC, через I_a , I_b и I_c соответственно. Пусть BM и BN биссектрисы треугольников I_aBC и I_cBA соответственно. Обозначим через K точку касания вневписанной окружности со стороной AC. Докажите, что середина MN равноудалена от B и K.
- **3.** Определите все функции $f:(0,+\infty)\to (0,+\infty)$ такие, что для любых положительных действительных чисел x,y выполнено равенство

$$(x+y)f(f(x)y)=x^2f(f(x)+f(y)).$$

- **4.** Дан треугольник ABC, вписанная окружность которого касается сторон BC, CA и AB в точках A_1 , B_1 и C_1 соответственно. Пусть прямые AA_1 и CC_1 пересекаются в точке K. Проведем через точку K прямую параллельную стороне AC, которая пересекает прямые A_1B_1 и C_1B_1 в точках M и N соответственно. Докажите, что MK = KN.
- **5.** Докажите, что для любого натурального числа m, имеющего делитель n, существует простое число p такое, что $m^n 1$ делится на p, а число m 1 не делится на p.
- 6. Два фокусника показывают трюк. Первый фокусник выходит из комнаты, а затем второй фокусник берёт колоду из 100 карт, пронумерованных числами от 1 до 100, и просит каждого из трех участников выбрать по очереди по одной карте, и при этом он видит какую карту взял каждый. Затем он сам добавляет еще одну карту к трем выбранным из оставшейся колоды. Участники вызывают первого фокусника, предварительно перемешав 4 карты произвольным образом, и дают ему их. Первый фокусник смотрит на эти 4 карты и «угадывает» какую карту выбирал каждый из участников. Докажите, что фокусники смогут исполнить этот трюк.