Recitation 3

Wednesday 12th November, 2014

Contents

1	Arithmetic of Limits		
	1.1 Theorem: If $\lim_{x \to x_0} f(x) = a$ and $\lim_{x \to x_0} g(x) = b$, then, $\lim_{x \to x_0} (f(x) \pm a)$		
	g(x)		2
	1.2 Exa	mples	2
	1.2.		2
	1.2.5	2 Example 2	2
	1.3 Infin	nite Arithmetic	3
2	Useful Limits		
3	Sandwich Theorem		3
4 Continuity	ity	3	
	4.1 Typ	es of Discontinuity	3
	4.1.		4
	4.1.5		4
	11	B Discontinuity of Second Kind	4

1 Arithmetic of Limits

- 1.1 Theorem: If $\lim_{x\to x_0}f(x)=a$ and $\lim_{x\to x_0}g(x)=b$, then, $\lim_{x\to x_0}(f(x)\pm g(x))=a\pm b\ , \ \lim_{x\to x_0}(f(x)\cdot g(x))=a\cdot b\ , \ \lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{a}{b}$
- 1.2 Examples
- 1.2.1 Example 1

$$\lim_{x \to \infty} \frac{x^2 - 4x + 2}{x^2 + 4} = \lim_{x \to \infty} \frac{\frac{x^2 - 4x + 2}{x^2}}{\frac{x^2 + 4}{x^2}}$$

$$= \lim_{x \to \infty} \frac{1 - \frac{4}{x} + \frac{2}{x^2}}{1 + \frac{4}{x^2}}$$

$$= \frac{1}{1}$$

$$= 1$$

1.2.2 Example 2

$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1}$$

Let $x = t^1 2$

1.3 Infinite Arithmetic

$$\frac{\text{"∞"}}{\text{"a"}} = \begin{cases} +\infty; a > 0 \\ -\infty; a < 0 \end{cases}$$
$$\frac{\text{"a"}}{\text{"∞"}} = 0$$

2 Useful Limits

If $\lim_{x \to x_0} g(x) = 0$,

$$\lim_{x \to x_0} (1 + g(x))^{\frac{1}{g(x)}} = e$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

3 Sandwich Theorem

If, in a punctured neighbourhood of x_0 we have

$$g(x) \le h(x) \le f(x)$$

and

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$$

then

$$\lim_{x \to x_0} h(x) = l$$

4 Continuity

A function f is continuous at x_0 if $\lim_{x\to x_0} f(x) = f(x_0)$.

4.1 Types of Discontinuity

Let f(x) be defined in a neighbourhood of x_0 .

4.1.1 Removable Discontinuity

$$\lim_{x \to x_0} f(x) \neq f(x_0)$$

4.1.2 Discontinuity of First Kind

$$\lim_{x\to x_{0^+}}f(x)\neq \lim_{x\to x_{0^-}}f(x)$$

4.1.3 Discontinuity of Second Kind

At least one of the one-sided limits of f(x) at x_0 does not exist. Note that the limits are defined as finite numbers only.