工科数学分析(上)复习卷(80学时)

一、填空(每小题3分,共15分,将答案写出,不填解题过程)

1. 若
$$x \to 0$$
 时, $\sqrt{1 + \frac{1}{x^2} f(x)} - 1$ 与 $\arctan x^2$ 是同阶无穷小, $f(x)$ 与 x^a 是等价无穷小, 则

- 2. 设向量a,b,c满足 $(a \times b) \cdot c = 2$,则 $[(a+b) \times (b+c)] \cdot (c+a) =$ ______. (注: 不做,此 内容放在下册)
- 3. 曲线 $y = x^2 e^{-x^2}$ 的渐近线方程是 ______.
- 4. 定积分 $\int_{-1}^{1} (x + \sqrt{1 x^2})^2 dx =$ ______.
- 5.若 $f(x) = \int_0^{x^2} \frac{t-4}{t^3+2} dt$,则 f(x) 的单增区间为______,单减区间为______
- 二、选择题(每小题 3 分,共 15 分,每小题给出四种选择,有且仅有一个是正确的,写出你认为正确 的代号).
 - 1.设 $\frac{d}{dx}f(x) = g(x), h(x) = x^2, 则 \frac{d}{dx}f[h(x)]$ 等于[].
- (A) $g(x^2)$; (B) 2xg(x); (C) $x^2g(x^2)$; (D) $2xg(x^2)$.
- 2. 设曲线 y = f(x) 与 $y = \sin x$ (或 $y = \int_0^{\arctan x} e^{-t^2} dt$) 在原点相切,则 $\lim_{n \to \infty} \sqrt{nf(\frac{2}{n})} = [$].
 - (A) 1;
- (B) 0; (C) $\sqrt{2}$:
- (D) 2
- 3. 曲线 $r = ae^{\lambda\theta}$, $(a > 0, \lambda > 0)$, 从 $\theta = 0$ 到 $\theta = a$ 的一段弧长为[]

 - (A) $\int_{0}^{a} ae^{\lambda\theta} \sqrt{1+\lambda^{2}} d\theta$; (B) $\int_{0}^{a} \sqrt{1+(a\lambda e^{\lambda\theta})^{2}} d\theta$;
 - (C) $\int_0^a \sqrt{1+(ae^{\lambda\theta})^2}d\theta$;
- (D) $\int_{0}^{a} \sqrt{1 + (a\lambda e^{\lambda \theta})^{2}} a\lambda e^{\lambda \theta} d\theta.$
- 4. 若 f(x) 在 $(-\infty, +\infty)$ 内连续且 f(-x) = f(x),在 $(-\infty, 0)$ 内 f'(x) > 0, f''(x) < 0,则在 $(0, +\infty)$ 内有[]
 - (A) f'(x) > 0, f''(x) < 0;
- (B) f'(x) > 0, f''(x) > 0;
- (C) f'(x) < 0, f''(x) < 0;
- (D) f'(x) < 0, f''(x) > 0.

- (A) I_1 与 I_2 均收敛; (B) I_1 发散, I_2 收敛; (C) I_1 与 I_2 均发散; (D) I_1 收敛, I_2 发散.
- 三、计算下列各题(每小题 6 分, 5 小题, 共 30 分, 要有解题过程)
 - 1. 求极限 $\lim_{x\to 0} [1 + \ln(1+x)]^{\frac{2}{x}}$
 - 2. 已知函数 y = y(x) 由方程 $e^y + 6xy + x^2 1 = 0$ 确定,求 y''(0).
 - 3. 设曲线 C 的方程为 $x = t^2 + 1$, $y = 4t t^2$ ($t \ge 0$), 讨论曲线 C 的凹凸性.
 - 4. 求不定积分 $\int \frac{x^3}{\sqrt{1+x^2}} dx$
- **四、(7分)** 设 $f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}}, & x > 0\\ x^2 g(x), & x \le 0 \end{cases}$ 其中g(x)是有界函数,讨论 f(x)在 x = 0 点的连续性和可导性.
- 五、(7分) 已知 f(x)的一个原函数为 $\frac{\sin x}{x}$, 求 $\int x^3 f'(x) dx$.
- 六、(7分) 证明方程 $\ln x = \frac{x}{e} 2\sqrt{2}$ 在 $(0, +\infty)$ 内有且仅有两个不同的实根.
- 七、(7分) 在半径为 R 的大圆中割出一个半径为 r 的同心小圆及与此小圆相切的一个弓形,问 r 为何值时,这割出的两部分的面积之和 A 最小。

或:设质量均匀分布的平面薄板由曲线 $C:\begin{cases} x=5t^2+t\\ y=t^2-2t \end{cases}$ 与x轴所围成,试求其质量m。

八、(每题 6 分共 12 分)

- 1. 证明 x > 0时,不等式 $\ln(1+x) \ln x > \frac{1}{1+x}$ 成立.
- 2. 设 f(x)在[a, b]上有二阶导数,且 f(a) = f(b) = 0, f'(a)f'(b) > 0, 证明
 - (1) 存在 $\xi \in (a,b)$, 使得 $f(\xi) = 0$; (2)存在 $\eta \in (a,b)$, 使得 $f''(\eta) = 0$.

答案:一. 1. $\underline{4}$; 2. $\underline{4}$; 3. $\underline{y} = 0$; 4. $\underline{2}$; 5. 在 $\left(-2,0\right)$, $\left(2,+\infty\right)$ 内单增,在 $\left(-\infty,-2\right)$, $\left(0,2\right)$ 内单减.

二. DCACD. $\equiv .1. \ e^2$; 2. -2; 3. $y''(x) = -t^{-3} < 0 \ (t > 0)$,曲线是下凹的.

$$4.\frac{1}{3}(1+x^2)^{3/2}-\sqrt{1+x^2}+c$$
; $5.\frac{7}{3}-\frac{1}{e}$.

四. f(x) 在 x = 0 处连续可导,且 f'(0) = 0. 五. $x^2 \cos x - 4x \sin x - 6 \cos x + c$.

七.
$$A(r) = \pi r^2 + 2 \int_r^R \sqrt{R^2 - y^2} dy$$
, $r = \frac{R}{\sqrt{\pi^2 + 1}}$ 时, A 取最小值.

一、填空

1.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + \sin^2 x) \cos^2 x dx = \underline{\qquad}$$

- 2. 曲线 $y = x^3 + 6x^2 16$ 的拐点坐标是_____
- 3. 设曲线 $y = f(x) = x^n$ 在点 (1,1) 处的切线与 x 轴交点为 (ξ_n ,0),则 $\lim_{n\to\infty} f(\xi_n) = _____.$
- 4. 抛物线 $y = 0.4x^2$ 上的最大曲率 $K = _____.$
- $5. \int \sqrt{e^x 1} dx = \underline{\qquad}.$
 - 2. 或:已知|a|=3,|b|=5,则 λ =______时,a+ λb 与a- λb 互相垂直.(注:不做,此内容放在下册)

二、选择题

1. 设在
$$[a,b]$$
上 $f(x) > 0$, $f'(x) < 0$, $f''(x) > 0$, $S_1 = \int_a^b f(x) dx$, $S_2 = f(b)(b-a)$,

$$S_3 = \frac{f(a) + f(b)}{2}(b-a)$$
, \emptyset ()

$$(A) \ \, S_1 < S_2 < S_3 \, ; \qquad (B) \ \, S_2 < S_1 < S_3 \, ; \qquad (C) \ \, S_3 < S_1 < S_2 \, ; \qquad (D) \ \, S_2 < S_3 < S_1 \, .$$

2.
$$\exists \exists f'(1) = 1, \exists \lim_{x \to 0} \frac{f(1+x) + f(1+2\sin x) - 2f(1-3\tan x)}{x} = ($$
).

(A) 9; (B) 3; (C)
$$-3$$
; (D) 0.

3. 如果
$$\lim_{x \to a^+} f(x) = -\infty$$
, 那么 ().

- (A) 当 $x \rightarrow a^+$ 时,f(x) 的极限存在; (B) f(x) 在x = a 处右连续;
- (C) f(x) 在 x = a 的右邻域内有界; (D) 曲线 y = f(x) 有渐近线 x = a.

4. 己知:
$$0 < \varepsilon < \frac{b-a}{2}$$
, $f(x)$ 在 $(a-\varepsilon,b+\varepsilon)$ 上连续,则 ().

- (A) f(x)在 $(a-\varepsilon,b+\varepsilon)$ 上必有最值; (B) f(x)在(a,b)内无界;
- (C) f(x) 在(a,b) 内一致连续; (D) f(x) 在 $(a+\varepsilon,b-\varepsilon)$ 上不连续.

5. 设函数
$$f(x)$$
 的 1 阶导数连续,且 $f'(x) > 0$,令 $\Phi(x) = \int_0^x (2t - x) f(t) dt$,则(

(A) $\Phi(0)$ 是 $\Phi(x)$ 的极大值; (B) $\Phi(0)$ 是 $\Phi(x)$ 的极小值;

- (C) 点 (0, Φ (0)) 不是曲线 $y = \Phi(x)$ 的拐点;
- (D) $\Phi(0)$ 不是 $\Phi(x)$ 的极值,点 (0, $\Phi(0)$) 是曲线 $y = \Phi(x)$ 的拐点.

三、求解下列各题

- 1. 由拉格朗日中值定理有 $e^x 1 = xe^{x\theta(x)}$, 其中 $0 < \theta(x) < 1$. 求 $\lim_{x \to 0} \theta(x)$
- 2. $f(x) = x^2 \ln(1+x)$, $\Re f^{(n)}(0)$ $(n \ge 3)$.
- 3. 求 $\int x^3 e^{-x^2} dx$. (或 $\int_1^{+\infty} \frac{\ln x}{x^2} dx$)
- 4. 求曲线 $r = 1 \cos \theta$ 上对应雨点 $\theta = \frac{\pi}{6}$ 处的切线方程.
- 6. 求 $\lim_{n\to\infty} \int_0^1 e^{-x} \sin nx dx$
- 四、设 $f''(x) > 0, x \in [a,b]$,证明 $f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{1}{2} \left[f(a) + f(b)\right]$
- 五、求 $I_n = \int_0^{+\infty} x^n e^{-x} dx, n$ 为自然数.
- 六、求证从点 A(5,0) 到抛物线 $y = \sqrt{x}$ 上点 P(x,y) 的连线中最短者正是该抛物线的法线.
- 七、已知 f(x) 在 $[0,\frac{\pi}{4}]$ 上单调可导,且满足方程 $\int_0^{f(x)} f^{-1}(t) dt = \int_0^x t \frac{\cos t \sin t}{\sin t + \cos t} dt$,求 f(x).
- 八、(1)设 f(x) 在 $[0,+\infty)$ 上连续可微,且 |f'(x)| < f(x) .如果 f(0) = 1,试证明:当 x > 0时, $f(x) < e^x$.
- (2) 设 $f''(x) \in C[-a,a]$, 且 f(0) = 0. (1) 写出一阶 Maclaurin 公式,余项为 Lagrange 型; (2) 证
- 明: 存在 $\xi \in (-a,a)$, 使 $a^3 f''(\xi) = 3 \int_a^a f(x) dx$.

答案:一、1.
$$\frac{\pi}{8}$$
; 2. $\underline{(-2, 0)}$; 3. $\underline{e^{-1}}$; 4. $K = \frac{4}{5}$; 5. $\underline{2\sqrt{e^x - 1}} - 2\arctan\sqrt{e^x - 1} + c$. $\underline{\lambda} = \pm \frac{3}{5}$

 \equiv BADCD.

4.
$$x-y-\frac{3\sqrt{3}}{4}+\frac{5}{4}=0$$
; 5. $8(1+\ln 2)^2-\frac{1}{2}$; 6. 0.

四、提示:左边不等式利用泰勒公式(在点 $\mathbf{x}_0 = \frac{a+b}{2}$ 展开);右边不等式利用单调性.

$$\exists L \cdot I_n = \int_0^{+\infty} x^n e^{-x} dx = -x^n e^{-x} \Big|_0^{+\infty} + n \int_0^{+\infty} x^{n-1} e^{-x} dx = n I_{n-1} = n(n-1) I_{n-2} = \dots = n! \int_0^{+\infty} e^{-x} dx = n! .$$

六、
$$f(x) = |PA|^2 = (x-5)^2 + (\sqrt{x})^2, x = \frac{9}{2}$$
 时,即 $P(\frac{9}{2}, \frac{3}{\sqrt{2}})$ 时,距离最短,再证 $k_{\overline{AP}} = k_{\underline{k}}|_{P}$.

卷三

一、填空(每小题3分,共15分,将答案填在题中横线上,不填解题过程)

1. 曲线
$$y = \frac{x + \sin x}{2x - 2\cos x}$$
 的水平渐进线是______.

2. 函数 $y = xe^{-x}$ 的图形的拐点是______.

3. 定积分
$$\int_{-1}^{1} (|x| + x)e^{-|x|} dx =$$
______.

5. 质点以速度 $v=t\sin t^2$ 米/秒作直线运动,则从 $t_1=\sqrt{\pi/2}$ 到 $t_2=\sqrt{\pi}$ 秒内,该质点所经过的路程是 米.

或者: 设 $a = \{1,0,-1\}, b = \{1,-2,0\}, c = \{-1,2,-1\}$,则 $(a \times b) \times c =$ ______. (注: 不做, 此内容放在下册)

- 二、选择题(每小题 3 分,共 15 分,每小题给出四种选择,有且仅有一个是正确的,将你认为正确的代号填入括号内).
- 1. 设函数 g(x) 可微, $f(x) = e^{1+g(x)}$, f'(1) = 1, g'(1) = 2则 g(1)等于[]

$$(A)\ln 3-1$$
; $(B) -\ln 3-1$; $(C) -\ln 2-1$; $(D)\ln 2-1$.

- 2. 设 f(x), g(x) > 0,且可导, f'(x)g(x) f(x)g'(x) < 0. 则当 a < x < b 时[]
 - (A) f(x)g(b) > f(b)g(x); (B) f(x)g(a) > f(a)g(x);
 - (C) f(x)g(x) > f(b)g(b); (D) f(x)g(x) > f(a)g(a).
- 3. 设 f(x) 在 x = 0 的某邻域内连续,且 f(0) = 0, $\lim_{x \to 0} \frac{f(x)}{1 \cos x} = 3$,则在 x = 0 处 f(x) []
 - (A) 取得极小值; (B) 取得极大值; (C) 不可导; (D) 可导且 $f'(0) \neq 0$
- 4. 设函数 $f(x) = \int_0^x \frac{t^2}{\sqrt{4+t^2}} dt$, $g(x) = x \sin x$, 当 $x \to 0$ 时, f(x) 是 g(x) 的 []
 - (A) 高阶无穷小; (B)低阶无穷小; (C)同阶非等价无穷小; (D) 等价无穷小.

5. 曲线
$$y = \ln(1 - x^2)$$
上 $0 \le x \le \frac{1}{2}$ 一段弧长 $s = [$]

(A)
$$\int_{0}^{\frac{1}{2}} \sqrt{1 + \left(\frac{1}{1 - x^2}\right)} dx$$
; (B) $\int_{0}^{\frac{1}{2}} \frac{1 + x^2}{1 - x^2} dx$;

(C)
$$\int_{0}^{\frac{1}{2}} \sqrt{1 + \frac{-2x}{1 - x^2}} dx$$
; (D) $\int_{0}^{\frac{1}{2}} \sqrt{1 + \left[\ln(1 - x^2)\right]} dx$.

三、计算下列各题(每小题6分,5小题,共30分,要有解题过程)

1.
$$\Re \lim_{x \to 0} \frac{1 - \cos(e^{x^2} - 1)}{\tan^3 x \cdot \sin x}$$
. $(\text{ } \lim_{x \to +\infty} (x + e^x)^{\frac{1}{x}} \text{ } \text{ } \lim_{x \to 0^+} (\frac{1}{x})^{\tan x})$

$$2. \ \ \vec{x} \int \frac{dx}{1+\cos^2 x}.$$

或: 设
$$y = y(x)$$
 由
$$\begin{cases} x = \int_{1}^{1+2\ln t} \frac{e^{u}}{u} du \\ 2y - ty^{2} + e = 5 \end{cases}$$
 所确定 $(t > 1)$, 求 $\frac{dy}{dx}$

4. 求一曲线方程,这曲线过点(3,56),并且它在点(x,y)处的切线斜率等于 $\frac{15x\sqrt{x+1}}{2}$.

5.
$$\[\] f(x) = \begin{cases} xe^{-x}, & x \le 0 \\ \sqrt{4 - x^2}, & x > 0 \end{cases}, \quad \[\] \int_0^3 f(x - 1) dx. \]$$

四、(8分) 已知
$$g(x)$$
 在 $x=0$ 处连续且二阶可导, $g(0)=0$, $g'(0)=4$, 若 $f(x)=\begin{cases} \frac{g(x)}{2x}, & x\neq 0\\ 2, & x=0 \end{cases}$

讨论 f(x) 在 x=0 处的连续性与可导性.

五、(8分) 已知
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
,求广义积分 $\int_0^{+\infty} \sin^2 x \cdot \frac{1}{x^2} dx$.

六、(8分) 若
$$0 < x < 1$$
, 证明不等式 $\frac{1-x}{1+x} < e^{-2x}$.

七、(8分) 设 D_1 是由抛物线 $y=2x^2$ 和直线 x=a, x=2及y=0所围成的平面区域, D_2 是由抛物线 $y=2x^2$ 和直线y=0, x=a所围成的平面区域,其中 0<a<2

(1) 试求 D_1 绕x轴旋转而成的旋转体体积 V_1 , D_2 绕y轴旋转而成的旋转体体积 V_2 .

(2) 问a为何值时, $V_1 + V_2$ 取得最大值?并求此最大值。

八、证明题

- 1. 试利用 Lagrange (拉格朗日) 微分中值定理证明: 若函数 $f(x) = x + \sin x$, 则:
- (1) 存在常数 L>0,使得对任意的 $x_1,x_2\in (-\infty,+\infty)$,有 $|f(x_2)-f(x_1)| \le L|x_2-x_1|$ 成立.
- (2) $f(x) = x + \sin x$ 在 $(-\infty, +\infty)$ 上一致连续。
- 2. (8分)设 f(x) 具有三阶连续导数,且 $\lim_{x\to 0} \frac{f(x)}{x^3} = 1$.
 - (1) 试写出 f(x) 的带有 Lagrange(拉格朗日)余项的二阶 Maclaurin(麦克劳林)公式证明:若 f(1) = 0,则在(0,1)内至少存在一点 ξ ,使 $f'''(\xi) = 0$.
- (2) 点(0,0) 是否为曲线 y = f(x) 的拐点? 试说明理由.
- 3. 设 $f(x) \in C[0,1]$,在 (0,1) 内可导,且满足 $f(1) = 2\int_0^{\frac{1}{2}} e^{x-x^2} f(x) dx$,试证明 $\exists \xi \in (0,1)$,使 $f'(\xi) = (2\xi 1)f(\xi)$.

答案:一、1.
$$y = \frac{1}{2}$$
. 2. $(2, 2e^{-2})$. 3. $2(1-2e^{-1})$. 5. $\frac{1}{2}$. \Box C AADB.

三、1.
$$\frac{1}{2}$$
 (或 e 或 1); 2. $\frac{1}{\sqrt{2}} \arctan \frac{\tan x}{\sqrt{2}} + C$; 3. $\frac{\pi}{4}$ ($\frac{y^2(1+2\ln t)}{4et(1-ty)}$);

4.
$$y = 3(\sqrt{x+1})^5 - 5(\sqrt{x+1})^3$$
; 5. $\pi - 1$.

四、f(x) 在 x = 0 处连续; f(x) 在 x = 0 处可导,且 $f'(0) = \frac{1}{4}g''(0)$

五、
$$=\frac{\pi}{2}$$
. 六、提示:即证 $(1-x)e^{2x}-(1+x)<0$.

七、 (1)
$$V_1 = \pi \int_a^2 (2x^2)^2 dx = \frac{4\pi}{5} (32 - a^5); \quad V_2 = 2\pi \int_0^a x(2x^2) dx = \pi a^4.$$

(2)
$$a = 1$$
 时 $V_1 + V_2$ 取得最大值为 $\frac{129\pi}{5}$

八、证明提示 1. (1)由 Lagrange 微分中值定理 $|f(x_2) - f(x_1)| = |f'(\xi)(x_2 - x_1)| < 2|x_2 - x_1|$.

(2) 对于任给的 $\varepsilon > 0$,取 $\delta = \frac{\varepsilon}{2}$,则对于任意的 $x_1, x_2 \in (-\infty, +\infty)$,只要 $|x_2 - x_1| < \delta$,则

$$|f(x_2)-f(x_1)| \le 2|x_2-x_1| < 2\delta = \varepsilon$$
, 从而由定义 $f(x)$ 在 $(-\infty,+\infty)$ 上一致连续.

2.
$$f(x) = \frac{f'''(\xi)}{3!}x^3$$
. 将 $f(1) = 0$ 代入上式,则在 $(0,1)$ 内至少存在一点 ξ ,使 $f'''(\xi) = 0$

(2) 解法一、由 f''(x) = f'''(0)x + o(x),又易知 f'''(0) = 6,在 x = 0的充分小邻域内,当 x > 0时, f''(x) > 0; 当 x < 0时, f''(x) < 0, 故(0,0) 是曲线 y = f(x) 的拐点.

08级《工科数学分析》(上)试题

一、填空题($3' \times 5 = 15$ 分,将答案填在答题纸上,不填解题过程)

1. 极限
$$\lim_{x\to 0} (x \sin \frac{1}{x} + \frac{1}{x} \sin x) = \underline{\hspace{1cm}}$$

2. 函数 $y = f[\ln(\cos x)]$,其中 f 可微,则 $dy = _____$

4.
$$\int \frac{(1-x)^2}{\sqrt{x}} dx =$$
_______.

5. 质点以速度 $v=t\sin t^2$ 米/秒作直线运动,则从 $t_1=\sqrt{\pi/2}$ 到 $t_2=\sqrt{\pi}$ 秒内,该质点所经过的路程是 _____米.

二、(3'×5=15分,每小题仅有一个选择是正确的,将正确的代号填在答题纸上)

1. 曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$
 () .

- (A) 没有渐近线;
- (B) 仅有水平渐近线;
- (C) 仅有垂直渐近线; (D) 既有水平渐近线又有垂直渐近线
- 2. 设 $f(x) = 2^x + 3^x 2$,则当 $x \to 0$ 时, f(x) ().
 - (A) 与x是同阶非等价无穷小; (B) 与x是等价无穷小;
 - (C) 是x的高阶无穷小;
- (D) 是 x 的低阶无穷小.

3. 已知连续函数 f(x) = -f(-x), 且在 $(0,+\infty)$ 内, f'(x) > 0, f''(x) > 0 那么 ().

- (A) f(0) 是 f(x) 的极小值;
- (B) f(0) 是 f(x) 的极大值;
- (C) (0, f(0)) 是曲线 y = f(x) 的拐点; (D) 以上结论都不对.

4. 设 $f(x) \in C[a,b]$, 在积分中值公式 $\int_a^b f(x)dx = f(\xi)(b-a)$ 中, ξ 是().

- (A) 区间[a,b] 内任一点; (B) 在[a,b] 内至少存在的某一点;
- (C) 区间[a,b]内唯一的一点; (D) 区间(a,b)的中点.

5. 设
$$I_1 = \int_1^{+\infty} \frac{dx}{x(1+x)}, I_2 = \int_0^1 \frac{dx}{x(1+x)}$$
, 下列结论正确的是(

- (A) I_1 与 I_2 均收敛; (B) I_1 与 I_2 均发散;
- (C) *I*₁收敛, *I*₂发散; (D) *I*₁发散, *I*₂收敛.

三、求解下列各题(每小题6分,5小题,共30分,要有解题过程)

- 2. 设曲线 C 的方程为 $x = t^2 + 1$, $y = 4t t^2$ ($t \ge 0$), 讨论曲线 C 的凹凸性.
- 3. 设函数 y = y(x) 是由方程 $x^2 + y^2 ye^{xy} = 2$ 所确定的隐函数, 求曲线 y = y(x) 在点 (0,2) 处的 切线方程.

- 5. 求微分方程 ydx (x-2y)dy = 0满足条件 $y|_{x=1} = 1$ 的解. (注: 不做, 微分方程已放到下册)
- 或: 设 $\frac{\cos x}{x}$ 是f(x)的原函数,求 $\int \frac{\cos x}{x} f(x) dx$.

四、(9 分)设函数
$$f(x) = \begin{cases} \frac{a(1-\cos x)}{x}, x < 0 \\ 0, & x = 0 \\ \frac{\int_0^{x^3} \cos t dt}{x^2}, & x > 0 \end{cases}$$

五、(8分) 已知 f(x) 在 $\left[0, \frac{\pi}{4}\right]$ 上单调可导,且满足方程 $\int_0^{f(x)} f^{-1}(t) dt = \int_0^x t \frac{\cos t - \sin t}{\sin t + \cos t} dt$,求 f(x).

六、(9分)设 D_1 是由曲线 $y = \ln x$ 和直线x = a及y = 0所围成的平面区域, D_2 是由曲线 $y = \ln x$ 和直 线 x = a 及 y = 1 所围成的平面区域,其中 1 < a < e . D_1 及 D_2 绕 x 轴旋转而成的旋转体的体积分别记作 V_1 与 V_2 .在区间[1,e]上求一点a,使 V_1+V_2 取得最小值.

七、(8分) 设
$$0 < a < b$$
, 求证: $\ln \frac{b}{a} > \frac{2a}{a^2 + b^2} (b - a)$.

八、(6分) 设函数 f(x)在区间[0,1]上可微, 当 $0 \le x < 1$ 时, 0 < f(1) < f(x), 且 $f'(x) \ne f(x)$. 试证: 存在唯一一点 $\xi \in (0,1)$,使得 $f(\xi) = \int_0^{\xi} f(t) dt$.