逻辑航线信息学奥赛系列教程

广度优先搜索

Breadth First Search

基本模型:给定起点和终点,寻找可通行路线,如下图所示@代表起点,*代表终点,求一共需要多少步才能从起点走到终点。

数据准备:

- 1、建立Node类型结构体,用来存储每一个节点的信息,用于解答题目
- 2、建立char类型地图数据表map[行][列],记录整个地图信息
- 3、建立bool类型访问记录表vis[行][列],记录某个节点是否已经走过
- 4、建立Node类型一维数组或者队列searchQueue,存储后续将要访问的节点

遍历逻辑:

1、将起点加入searchQueue,并记录已访问

- 2、当searchQueue内存在未访问节点时,持续进行循环搜索。
- 3、从searchQueue中取出第一个节点(2,3),对其四个相邻的点进行判断。

	访问记录表								
	1	2	3	4	5	6			
1									
2									
3									
2 3 4 5									
5									

对于当前数据,其四个点都可以通行,同时,它们又不等于终点,因此,我们依次将其加入 searchQueue,并将其记录为已访问。

(1,3)(2,2)(3,3)(2,4)

4、重复执行步骤2,3

4-1 首先以(1,3)作为起始点,搜索其四个方向

	地图表							
_	1	2	3	4	5	6		
1	#				#	#		
2 3	#		@	•	•	#		
3	•	#	•	•	•			
4	•	#	•	•	#			
4 5			#		*	#		

	访问记录表							
_	1	2	3	4	5	6		
1			Bi	M	7/	•		
2 3		,			\times			
3		47		(1)	,			
4		X	Ske					
5			N					

对于当前数据,只有左右两个点可以走,同时,它们也不等于终点。因此,我们将左右点加入到 searchQueue

(2,2)(3,3)(2,4)(1,2)(1,4)

4-2 然后以(2,2)作为起始点,搜索其四个方向,此时发现无路可走

此时searchQueue状态如下

(3,3)(2,4)(1,2)(1,4)

4-3 接下来以(3,3)作为起始点,搜索其四个方向,发现两个新点可以移动。结果如下:

(2,4)(1,2)(1,4)(4,3)(3,4)

4-4 接下来以(2,4)作为起始点,搜索其四个方向,发现一个新点可以移动。结果如下:

	地图表							
	1	2	3	4	5	6		
1	# -) [10]			#	#		
$\frac{1}{2}$	#	<u> </u>	@) ;		#		
3	2	#						
4	٧.	#			#			
5	100	٦.	#		*	#		

	访问记录表								
	1	2	3	4	5	6			
1									
2									
2 3									
4 5									
5									

(1,2)(1,4)(4,3)(3,4)(2,5)

4-5 继续搜索, 我们可以发现(1,2),(1,4)点,均无可行走点,此时searchQueue状态如下:

(4,3)(3,4)(2,5)

4-6 继续搜索,以(4,3)为起点,结果如下:

	地图表							
	1	2	3	4	5	6		
1	#				#	#		
2 3	#	•	@	•	•	#		
3	•	#	•	•				
4	•	#		•	#			
5			#		*	#		

	访问记录表							
	1	2	3	4	5	6		
1					iX	7		
2				2/2	.4/			
2 3			Bi	1/-/) ^/	•		
4		1			\times			
5		4		(1)	,			

(3,4)(2,5)(4,4)

4-6 继续搜索,以(4,3)为起点,结果如下:

地图表							
1	2	3	4	5	6		
#			21	#	# 9		
#		@	17	. ,	#		
	#		<u></u>	••			
	#	ξ.	3/.	#			
S.	×.	#	₹.	*	#		
	-	1 2 # . # .	1 2 3 # # . @	1 2 3 4 # # . @ .	1 2 3 4 5 # # # . @		

	访问记录表								
	1	2	3	4	5	6			
1									
2									
2 3									
4 5									
5									

(2,5) (4,4) (3,5)

4-7 继续搜索,以(2,5)为起点,无路可走,结果如下

	地图表							
	1	2	3	4	5	6		
1	#				#	#		
2	#		@			#		
2 3		#						
4		#			#			
4 5			#		*	#		

(4,4)(3,5)

4-8 继续搜索,以(4,4)为起点,增加新路点,结果如下

		地图表						
	1.	$^{\circ}2$	3	4	5	6		
1	,#\\	7);	#	#		
1 2 3	#		@			#		
3	<u> </u>	#				•		
4	Ţ.	#			#			
5	0		#		*	#		

(3,5) (5,4)

4-9 继续搜索,以(3,5)为起点,增加新路点,结果如下

	地图表							
	1	2	3	4	5	6		
1	#	•	•		#	#		
2	#		@			#		
3		#						
4		#			#			
5			#		*	#		
3 4 5		#	#		#	. #		

	访问记录表								
	1	2	3	4	5	6			
1					iX	7			
2				2/2	.4/				
2 3			Bi	1/1	^/	•			
4		1	K(S)		\times				
5		.41		11/1	,				

(5,4) (3.6)

4-9 继续搜索,以(5,4)为起点,找到终点,结束循环

	地图表							
	1	2	3	4	5	6		
1	#				#	#		
2	#		@	21.		# 9		
3		#	•	17	. ,			
4		#		`.	#			
5		2	#	%	*	#		
2 3 4 5	#	# #	#	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	# *	. #		

其他问题:如何统计总步数? 为每个节点增加一个步数变量,将其相邻点的步数设置为当前节点的步数+1即可

逻辑航线培优教育,信息学奥赛培训专家。

扫码添加作者获取更多内容。

