2 Some basic knowledge about researching problem...

```
Let's calculate smth with a given function: f(x) = \ln x
Firstly, let's simplify this expression (if possible): f(x) = \ln x
```

3 Exploration of the expression

```
Calculation value of function in the point BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!!
   In the point M_0(x_0) = (0.000) it's value = -inf
   Personally, I've always thought about first derivation of something like that function... Haven't you?
   But now, by using informatics and math skills I feel that I'm prepared enough to calculate it!
   1 step: Finding a derivation of x
   While preparing for exams, I learned a lot of new things, for example:
   (x)' = \dots = [\text{top secret}] = \dots =
= 1.000
   2 step: Finding a derivation of \ln x
   It's really easy to find:
   (\ln x)' = \dots = [\text{top secret}] = \dots =
   Congratulations! The first derivation of the expression is:
   In the point M_0(x_0) = (0.000) it's value = inf
Finding the 3 derivation Let's find the 1 derivation of the expression:
   1 step: Finding a derivation of x
   My roommate mumbled it in his sleep all night:
   (x)' = \dots = [\text{top secret}] = \dots =
   2 step: Finding a derivation of \ln x
   Sounds logical that it is the same as:
   (\ln x)' = \dots = [\text{top secret}] = \dots =
   Let's find the 2 derivation of the expression:
   1 step: Finding a derivation of x
   For centuries, people have hunted for the secret knowledge that:
   (x)' = \dots = [\text{top secret}] = \dots =
= 1.000
   2 step: Finding a derivation of 1.000
   Sounds logical that it is the same as:
   (1.000)' = \dots = [\text{top secret}] = \dots =
= 0.000
   3 step: Finding a derivation of \frac{1.000}{r}
   It's really easy to find:
   (\frac{1.000}{\pi})' = \dots = [\text{top secret}] = \dots =
   (-1.000) \cdot 1.000
   Let's find the 3 derivation of the expression:
   1 step: Finding a derivation of x
   My roommate mumbled it in his sleep all night:
   (x)' = \dots = [\text{top secret}] = \dots =
   2 step: Finding a derivation of x^{2.000}
   (x^{2.000})' = \dots = [\text{top secret}] = \dots =
   3 step: Finding a derivation of -1.000
   It's really easy to find:
    (-1.000)' = \dots = [\text{top secret}] = \dots =
   4 step: Finding a derivation of \frac{(-1.000)}{x^{2.000}}
   Even my two-aged sister knows that:
   \left(\frac{(-1.000)}{x^{2.000}}\right)' = \dots = [\text{top secret}] = \dots =
= \frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot x}{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot x}
   Finally... The 3 derivation of the expression:
   f^{(3)}(\mathbf{x}) = \frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot x}{(x^{2.000})^{2.000}}
   BRITISH SCIENTISTS WERE SHOCKED AGAIN,
   In the point M_0(x_0) = (0.000) it's value = -nan
Finding partical derivations Partial derivation of the expression on the variable x:
   In the point M_0(x_0) = (0.000) it's value = inf!!!
Finding full derivation Full derivation:
    \sqrt{\left(\frac{1.000}{r}\right)^{2.000}}
   In the point M_0(x_0) = (0.000) it's value = inf!!!
```

 $\mathbf{f}(\mathbf{x}) = (-inf) + inf \cdot x + (-inf) \cdot x^{2.000} + ?(inf)? \cdot x^{3.000} + ?(inf)? \cdot x^{4.000} + ?(inf)? \cdot x^{5.000} + ?(inf)? \cdot x^{6.000} + o(x^{6.000})$

Decomposing on Macloren's formula Maklorens formula for $x \to x_0 = 0.000$:

Graphics Graph $f(x) = \ln x$ on the diapasone $x \in [-10:10]$:

Equations in the point Tangent equation in the point $x_0 = 1.000$: f(x) = x - 1.000

Normal equation in the point $x_0 = 1.000$:

 $f(x) = (-1.000) \cdot (x - 1.000)$

