Final Proofs for MATH450 Real Analysis

Quinn Gates, Evan Walker

(Dated: January 31, 2018)

Problem 1.

Theorem 1 (3.24 Bolzano-Weierstrass). If a bounded set $S \subseteq \mathbb{R}^n$ contains infinitely many points, then there is at least one point in \mathbb{R}^n which is an accumulation point of S.

Proof. (Case $n=1, \mathbb{R}^1$) Let $S \subset \mathbb{R}^1$ and S bounded, \Rightarrow since S is bounded, S lies completely within an interval [a,b]. Since S contains infinitely many points,

$$[a, \frac{a+b}{2}]$$
 and $[\frac{a+b}{2}, b]$

may either both contain infinitely many points or only one contains infinitely many points. Now define $[a_1, b_1]$ to be one of the previously stated intervals with infinitely many points. Then

$$[a_1, \frac{a_1 + b_1}{2}]$$
 and $[\frac{a_1 + b_1}{2}, b_1]$

again may either both contain infinitely many points or only one contains infinitely many points. Repeating this process k times, we arrive at an interval $[a_k, b_k]$ such that

$$sup(a_k) = inf(b_k) = x$$

where $x \in S$. We aim to show that x is an accumulation point of S. Consider k to be large enough such that $b_k - a_k < \frac{r}{2}$, $\Rightarrow [a_k, b_k] \subseteq B(x, r)$. Since, by construction, B(x, r) contains infinitely many points, $(B(x, r) - \{x\}) \cap S \neq \emptyset$ and hence x is an accumulation point of S.

(Case $n=2, \mathbb{R}^2$) Let $S \subset \mathbb{R}^2$ and S bounded, \Rightarrow since S is bounded, S lies completely within a 2-dimensional interval J defined by the cartesian product of two 1-dimensional intervals.

$$J_1 = [a, b] \times [a, b]$$

similar to the case for n=1 above, we continually divide the interval into halfs, choosing the interval with infinitely many points. Let $I_1^{(1)}=[a,b]$, and $I_2^{(1)}=[a,b]$, Then let the next division of the interval be $I_1^{(2)}=[a,\frac{a+b}{2}]$ or $[\frac{a+b}{2},b]=[a_1,b_1]$, and $I_2^{(2)}=[a,\frac{a+b}{2}]$ or $[\frac{a+b}{2},b]=[a_1,b_1]$

 $[a_2, b_2]$, Again choosing whichever interval has infinitely many points. If they both contain infinitely many points, our choice is arbitrary. Hence, define $J_n = I_1^n \times I_2^n$. For a large enough n, we have that J_n has the property that

$$sup(a_1^{(n)}) = inf(b_1^{(n)}) = x_1$$
 and $sup(a_2^{(n)}) = inf(b_2^{(n)}) = x_2$

We assert that $x = (x_1, x_2)$ is an accumulation point of S. Note that $b_k^{(n)} - a_k^{(n)} = \frac{a}{2^{n-2}}$ for k = 1, 2. take a ball in \mathbb{R}^2 , B(x, r) and let n be large enough such that $\frac{a}{2^{n-2}} < \frac{r}{2}$. Hence $J_n \subseteq B(x, r)$, $\Rightarrow B(x, r)$ also contains infinitely many points and we have that,

$$(B(x,r) - \{x\}) \cap S \neq \emptyset$$

This proves that x is an accumulation point of S.

Applications of 3.24

Theorem 2 (3.25 The Cantor Intersection Theorem). Let $\{Q_1, Q_2, ...\}$ be a countable collection of nonempty sets in \mathbb{R}^2 such that.

- i) $Q_{k+1} \subseteq Q_k$ (k = 1, 2, 3, ...)
- ii) Each set Q_k is closed and Q_1 is bounded
- $\implies \cap_{k=1}^{\infty} Q_k \neq \emptyset$ and is closed.

Proof. (Case 1: $Q_m = Q_k \quad \forall m \ge k$)

$$\Rightarrow$$
 $Q_{k+2} \subseteq Q_{k+1} \subseteq Q_k \subseteq ...Q_2 \subseteq Q_1 \Rightarrow \bigcap_{n=1}^{\infty} Q_n = Q_k \neq \emptyset$

(Case 2: $Q_{k+1} \nsubseteq Q_k$)

- \Rightarrow we can build $A = \{x_1, x_2, x_3, ..., x_k, ...\}$, an infinite set. where $x_k \in Q_k \setminus Q_{k+1}$ $x_k \in Q_k$.
- \Rightarrow (by the Bolzano-Weierstrass Theorem) $\exists x \in \mathbb{R}^2$ such that x is an accumulation point of A. We want to show $x \in \bigcap_{k=1}^{\infty} Q_k$. since x is an accumulation point of A, x is also an
- accumulation point for Q_k $\forall k$. Since Q_k is closed, it contains all of its accumulation points

 $\Rightarrow x \in Q_k$ and therefore $x \in \bigcap_{k=1}^{\infty} Q_k$.

Problem 2.

Theorem 3 (3.27). Let $G = \{A_1, A_2, ...\}$ denote the countable collection of all n-balls having rational radii and centers at points with rational coordinates. Assume $x \in \mathbb{R}^n$ and let S be an open set in \mathbb{R}^n and $x \in S$. Then $x \in A_k \subseteq S$ for some k. That is, x is contained by some n-ball in G which is contained by S.

Proof. Theorem 2.27 states that if G is a countable collection of countable sets, then

$$\cup_{k=1}^{n} A_k \qquad A_k \in G$$

is also countable. Since $x \in S$, and S is open, we know that there exists an n-ball such that

$$B(x,r) \subseteq S$$

We want to find a rational point $y \in S$ such that $x \in B(y,R) \in G$, or equally stated by $B(y,R) \subseteq B(x,r) \subseteq S$. Let $x = (x_1, x_2, ..., x_n)$ and let y_k be a rational number such that

$$|y_k - x_k| < \frac{r}{4n}$$
 for each $k = 1, 2, 3, ..., n$

Then

$$||y - x|| \le |y_1 - x_1| + ... + |y_n - x_n| < \frac{r}{4}$$

Let us define R as a rational number such that $\frac{r}{4} < R < \frac{r}{2}$. Then $x \in B(y,R)$ since we found the distance between y and x to be less than r/4, so surely x must be contained in B(y,R). By the same reasoning, we have that $B(y,R) \subseteq B(x,r) \subseteq S$. since both y and R are rational by construction, we have that $B(y,R) \in G$. Hence, we've proved the assertion.

Applications of 3.27

Theorem 4 (3.28 Lindeloff Covering Theorem). Assume $A \subseteq \mathbb{R}^n$ and let f be an open covering of A. Then: \exists a countable subcollection of f that also covers A.

$$A \subseteq \bigcup_{S \in f'} S$$

Proof. Let $G = \{A_1, A_2, \dots, A_k \dots\}$ countable subset of $B_n(y, q)$ where y and q are both rational numbers. Then take $x \in A \implies \exists S \in f$ such that $x \in S \subset \mathbb{R}^n$ Where S is an open subset. Therefore, we can use Theorem 3.27 to say:

$$\exists A_k \in G \text{ such that } x \in A_k \subseteq S$$

Define $m = m(x) = min\{k | x \in A_k, A_k \in G\}$

$$G' = \{A_{m(x)} | x \in A\} \iff f' = \{S | A_{m(x)} \in S\}$$

Both G' and f' are countable so:

$$\Rightarrow A \subseteq \bigcup_{S \in f'} S$$

Problem 3

Theorem 5 (3.29 Heine-Borel). Let F be an open covering of a closed and bounded set $S \subseteq \mathbb{R}^n$. Then a finite subcollection of F also covers S.

Proof. Assume that F is an open covering of the set S. A countable subcollection of F, say $\{I_1, I_2, \ldots\}$ covers S. Now we consider the finite union:

$$S_m = \bigcup_{k=1}^m I_k$$

This set is open since it is the union of open sets. We shall show that for some value of m the union S_m covers S.

Consider the complement $R^n \setminus S_m$, which is closed. Now define a countable collection of sets $\{Q_1, Q_2, \ldots\}$ as follows: $Q_1 = S$ and for m > 1,

$$Q_m = S \cap (R^n \backslash S_m)$$

Then Q_m consists of all those points of S that are outside of S_m . Now we just need to show that there is some m for which Q_m is empty which will show that for this m no point of S lies outside of S_m . Consider the following:

Each set Q_m is closed since it is the intersection of closed S and closed $R^n \setminus S_m$

The sets Q_m are decreasing since the S_m are increasing. That is: $Q_{m+1} \subseteq Q_m$.

The sets Q_m being subsets of S are all bounded.

Therefore, if no set Q_m is empty we can use the CantorIntersectionTheorem to conclude that the intersection:

$$\bigcap_{k=1}^{\infty} Q_k \neq \emptyset$$

That means that there is some point in S which is in all the sets Q_m or outside all of the sets S_m . But this is a contradiction since $S \subseteq \bigcup_{k=1}^{\infty} S_k$. Therefore some Q_m must be empty.

Applications of 3.29

The Heine-Borel Theorem always applies when in a Euclidean space \mathbb{R}^n , but if an extra condition is added then it will apply in any metric space. In a metric space M=(S,d) M must be both complete and totally bounded. This means that M must have the property that every Cauchy sequence in M converges in M, and it must be possible to cover M with a finite number of balls with of fixed size. So having your space be closed and bounded takes care of half but for the theorem to hold in a metric space the hypothesis must also require that the metric space be complete.

Problem 4

Theorem 6 (3.31). Let $S \subseteq \mathbb{R}^n$. Then the following statements are equivalent

- a) S is compact.
- b) S is closed and bounded.
- c) Every infinite subset of S has an accumulation point in S.

Proof. To prove equivalence, we will prove that a implies b, that b implies c, that c implies b, b implies a by Thm3.29, the Heine-Borel theorem. Once these parts are proven, we will have equivalence of the statements.

$$a \implies b$$

Assume that S is compact. First we will prove that S is bounded. For some $p \in S \exists T$:= a collection of n-balls: B(p,k), k = 1,2,3... such that T is an open covering of the space S. Since S is compact, there is a finite subset of that collection that is still an open covering of S. Therefore, S is bounded. :)

Next we must prove that S is closed. This will be done through contradiction so first assume that S is not closed. Then $\exists y \notin S$ where y is an accumulation point of S. Now lets say $\exists x \in S$ and let $r_x = \frac{\|x-y\|}{2}$ (half of the distance between x and y) We know that each radius r_x is positive since $y \notin S$, and the collection fo balls $B(x, r_x)$ is an open covering of S. Since we know that S is compact, there is a finite number, n of these balls that still covers S which is basically the union of all of the balls.

$$S \subset \bigcup_{k=1}^{n} B(x_k, r_k)$$

We have a finite number of radii since we have a finite number of balls so lets say r is the smallest radius. Now we want to prove that B(y,r) has no points in common with any of the other balls that cover $S(B(x_k, r_k))$ So if we assume $x \in B(y,r)$ then $||x - y|| < r < r_k$. So by the triangle inequality, we have:

$$||y - x_k|| \le ||y - x|| + ||x - x_k||$$

 $\Rightarrow ||x - x_k|| \ge ||y - x_k|| - ||x - y|| = 2r_k - ||x - y|| > r_k$
 $\Rightarrow x \notin B(x_k, r_k) \Rightarrow B(y, r) \cap S = \emptyset$

 $\Rightarrow \Leftarrow$ Contradicts the fact that y is an accumulation point This shows that S is therefore closed and $a \implies b \checkmark$

 $b \implies a$ by the Heine-BorelTheorem

Proved in number 3

$$b \implies c$$

Assume that b holds. This will be used to prove c: Every infinite subset of S has an accumulation point in S. If T is an infinite subset of S, since S is bounded, T must also be bounded because T is a subset of S. By the BolzanoWeierstrassTheorem, if a bounded set in \mathbb{R}^n contains infinitely many points, then there is at least one point in \mathbb{R}^n which is an accumulation point of S. Lets name that accumulation in T, x. Since S is closed, we know that the accumulation point of T is also the accumulation point of S. $\Rightarrow b \implies c \checkmark$

$$c \implies b$$

Assume that c holds. \rightarrow every infinite subset of S has an accumulation point in S. We want to prove b which says that S is closed and bounded. First, we are going to say that S is unbounded, and prove by contradiction. So assume that S is unbounded $\Rightarrow \forall m > 0 \exists x_m \in S$ such that $||x_n|| > m$ There is a collection of points $T := \{x_1, x_2, \ldots\}$ that is an infinite subset of S, and since we are assuming (c), T has an accumulation point $y \in S$. For m > 1 + ||y|| we have:

$$||x_m - y|| \ge ||x_m|| - ||y|| > m - ||y|| > 1$$

This contradicts the fact that y is an accumulation point of T. Therefore, S is bounded. :) Next we have to prove that S is closed. Let x be an accumulation point of S. Since every set containing a ball with center x contains infinitely many points of S, we can consider $B(x, \frac{1}{k})$, where $k = 1, 2, 3, \ldots$, and get a countable set of distinct points, $T := \{x_1, x_2, \ldots\} \subset$ S, such that $x_k \in B(x, \frac{1}{k})$ The point x is also an accumulation point of T since $T \subset S$ Since T is an infinite subset of S, (c) tells us that T must have an accumulation point in S Next, we have to prove that x is the only accumulation point of T. Suppose that $y \neq x$. By the triangle inequality we have:

$$||y - x|| \le ||y - x_k|| + ||x_k - x|| < ||y - x_k|| + \frac{1}{k} |x_k| \le T$$

If k_0 is taken to be $k_0 = \lfloor \frac{2}{\|y-x\|} \rfloor \Rightarrow \frac{1}{k} < \frac{1}{2} \|y-x\|$ whenever $k \geq k_0$, the last inequality leads to $\frac{1}{2} \|y-x\| < \|y-x_k\| \implies x_k \notin B(y,r)$ when $k \geq k_0$ if $r = \frac{1}{2} \|y-x\| \implies y$ is not an accumulation point of T. $\checkmark QED$

Theorem 3.31 does not hold in a general metric space. This is because the requirements for a metric space to be compact are more rigorous than the requirements for a euclidean space. In a metric space M = (S, d) M must be both complete and totally bounded. This means that M must have the property that every Cauchy sequence in M converges in M, and it must be possible to cover M with a finite number of balls with of fixed size. For this reason, we still have that $a \implies b$ but the theorem will fail when we try to prove that $b \implies a$.

Consider the metric space $R^2\setminus(0,0)$ with the usual metric from R^2 . The set

$$D = \{(x, y) \mid 0 < x^2 + y^2 \le 1\}$$

is closed and bounded since it is the interior of the unit circle. But D is not compact since it will "want" to converge to (0,0) but (0,0) is not an element of the metric so it is not compact hence b does not imply a. Therefore, Theorem 3.31 does not apply to the general metric space.

The next 3 theorems are with respect to problem 5.

Theorem 7 (theorem 4.16). Let $f: S \to T$ be a function from one metric space (S, d_S) to another (T, d_T) , and assume $p \in S$. Then f is continuous at p iff for every sequence $\{x_n\}$ in S convergent to p, the sequence $\{f(x_n)\}$ in T converges to f(p). Symbolically,

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

Proof. (\Longrightarrow) Assume that f is continuous at p. The definition of continuity at a point states that for every $\epsilon > 0$ there is a $\delta > 0$ such that,

$$d_T(f(x), f(p)) < \epsilon$$
 whenever $d_S(x, p) < \delta$

By Definition 4.1(def convergence) if the sequence $\{x_n\} \to p$ in S, then $\forall \delta > 0 \quad \exists N \text{ s.t.}$

$$d_S(x_n, p) < \delta,$$
 whenever $n \ge N$

Hence, we have that

$$d_T(f(x_n), f(p)) < \epsilon$$
 (By Definition 4.15(continuity))

and therefore, by using Definition 4.1 twice

$$\lim_{n \to \infty} f(x_n) = f(p)$$

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

 (\longleftarrow) Assume $\{f(x_n)\}\to f(p)$ in T and Then by Definition 4.1, we have

$$d_T(f(x_n), f(p)) < \epsilon$$
 for $\epsilon > 0$

By Definition 4.11, we have that when $\lim_{n\to\infty} f(x_n) = f(p), \forall \epsilon > 0 \quad \exists \delta > 0$ such that $d_T(f(x_n), f(p)) < \epsilon$ whenever $d_S(x_n, p) < \delta$, and hence δ is defined by ϵ . Therefore we have that $\forall \epsilon > 0$, $\exists \delta > 0$ such that

$$d_T(f(x), f(p)) < \epsilon$$
 whenever $d_S(x, p) < \delta$

and hence, f is continuous at p.

Theorem 8 (theorem 4.23). Let $f: S \to T$ be a function from one metric space (S, d_S) to another (T, d_T) . Then f is continuous on S iff for every open set Y in T, the inverse image $f^{-1}(Y)$ is open on S.

Proof. (\Longrightarrow) Assume Y is open and f is continuous, Since Y is open we have that $B_T(y, \epsilon) \subseteq Y$ for some $\epsilon > 0$. Let $p \in f^{-1}(Y)$ and y = f(p), And Since f is continuous on S we have that f is continuous at p and hence $\exists \delta > 0$ such that $f(B_S(p, \delta)) \subseteq B_T(y, \epsilon)$. Hence,

$$B_S(p,\delta) \subseteq f^{-1}[f(B_S(p,\delta))] \subseteq f^{-1}[B_T(y,\epsilon)] \subseteq f^{-1}(Y)$$

Then p is an interior point of $f^{-1}(Y)$ and by Definition 3.6, if a set contains all its interior points then it is open, and since p can be any point in $f^{-1}(Y)$ we have that $f^{-1}(Y)$ contains

all its interior points and hence is open.

(\iff) Conversely, assume $f^{-1}(Y)$ is open in S for every open subset set Y in T. Take $p \in S$ and again let y = f(p), then we want to show f is continuous at p. $\forall \epsilon > 0$, $B_T(y, \epsilon)$ is open in T, hence $f^{-1}(B_T(y, \epsilon))$ is open in S. Since $f^{-1}(y) = p$, $p \in f^{-1}(B_T(y, \epsilon))$, then $\exists \delta > 0$ such that,

$$B_S(p,\delta) \subseteq f^{-1}(B_T(y,\epsilon)) \Rightarrow f(B_S(p,\delta)) \subseteq B_T(y,\epsilon)$$

By definition 4.15, a function f is continuous at p iff $\forall \epsilon > 0$, $\exists \delta > 0$ such that $f(B_S(p, \delta)) \subseteq B_T(f(p), \epsilon)$, and hence we have that f is continuous at p.

Theorem 9 (theorem 4.25). Let $f: S \to T$ be a function from one metric space (S, d_S) to another (T, d_T) . If f is continuous on compact subset X of S, then the image f(X) is a compact subset of T; in particular, f(X) is closed and bounded in T.

Proof. By Definition 3.30, a set S is compact iff every open covering of S contains a finite subcovering, that is, a finite subcovering that also covers S. And by Theorem 3.38, if S is compact then it is also closed and bounded.

Hence our goal is to find a finite open subcovering of f(X) and the assertion will be proved. Define F to be an open covering of f(X), so that $f(X) = \bigcup_{A \in F} A$. Since f is continuous on S and hence every subset of S, we can apply Theorem 4.23 to see that $\forall A \in F$, $f^{-1}(A)$ is also open in (X, d_S) . Hence, $X \subseteq \bigcup_{A \in F} f^{-1}(A)$. Since X is compact, we know by the definition of a compact set that there exists an open subcovering of X, hence $X \subseteq \bigcup_{k=1}^n f^{-1}(A_k)$ for $A_k \in F$. And hence,

$$f(X) \subseteq f(\bigcup_{k=1}^{n} f^{-1}(A_k)) = \bigcup_{k=1}^{n} f(f^{-1}(A_k)) = \bigcup_{k=1}^{n} A_k$$

 $\Rightarrow f(X) \subseteq \bigcup_{k=1}^n A_k$ and we have found our open subcovering, and hence f(X) is closed and compact in T.

Problem 6

Theorem 10 (Uniform Continuity Thm. 4.47 (Heine)). Let $f: S \to T$ be a function from one metric space (S, d_S) to another (T, d_T) . Let A be a compact subset of S and assume that f is continuous on A. Then f is uniformly continuous on A.

Proof. Let $\epsilon > 0$ be given. Then each point $a \in A$ has associated with it a ball $B_S(a, r)$, with r depending on a such that,

$$d_T(f(x), f(a)) < \frac{\epsilon}{2}$$
 whenever $x \in B_S(a, r) \cap A$

Consider the collection of balls $B_S(a, r/2)$. Since A is compact, a finite number of them also cover A, say

$$A \subseteq \bigcup_{k=1}^n B_S(a_k, \frac{r_k}{2})$$

in any ball with twice the radius, $B_S(a_k, r_k)$, we have

$$d_T(f(x), f(a_k)) < \frac{\epsilon}{2}$$
 whenever $x \in B_S(a_k, r_k) \cap A$

Let $\delta = min(r_n/2)$. We want to show that δ satisfies the condition of uniform continuity. Take $x \in A$ and $p \in A$ with $d_S(x,p) < \delta$. it is clear that $x \in B_S(a_k, r_k/2)$, hence

$$d_T(f(x), f(a_k)) < \frac{\epsilon}{2}$$

By the Triangle inequality and our defined δ , we have

$$d_S(p, a_k) \le d_S(p, x) + d_S(x, a_k) < \delta + \frac{r_k}{2} \le \frac{r_k}{2} + \frac{r_k}{2} = r_k$$

Hence, $d_S(p, a_k) \leq r_k$ and thus $p \in B_S(a_k, r_k) \cap S$. Using the Triangle inequality and the fact that $d_T(f(p), f(a_k)) < \epsilon/2$, we have

$$d_T(f(x), f(p)) \le d_T(f(x), f(a_k)) + d_T(f(a_k), f(p)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

hence we have that $d_T(f(x), f(p)) < \epsilon$ and $d_S(x, p) < \delta$, thus fulfilling the condition for uniform continuity.

The following 2 theorems are with respect to problem 7

Theorem 11 (Thm 5.10 (Rolle)). Let f be a functions, having a derivative (finite or infinite) at each point of an open interval (a,b) and continuous at the endpoints a and b. if f(a) = f(b), then there is at least one interior point c at which

$$f'(c) = 0$$

Proof. Assume $f'(x) \neq 0 \quad \forall x \in (a,b)$, we want to arrive at a contradiction. Since f is continuous on a compact interval (a,b), $\exists c_1, c_2 \in (a,b)$ such that

$$f(c_1) = min(f(x))$$
 and $f(c_2) = max(f(x))$

by Theorem 5.9, c_1, c_2 cannot be interior points since this implies $f'(c_1) = 0$ and $f'(c_2) = 0$. This implies that $f(c_1)$ and $f(c_2)$ are endpoints. Since $f(a) = f(b) \Rightarrow f(c_1) = f(c_2)$ and hence f is constant on [a, b]. However this contradicts our assumption that $f'(x) \neq 0 \quad \forall x \in (a, b)$. Therefore f'(c) = 0 for some $c \in (a, b)$.

Theorem 12 (Thm 5.12 (Generalized Mean Value)). Let f and g be two functions, each having a derivative (finite or infinite) at each point of an open interval (a,b) and each continuous at the endpoints a and b. Assume also that there is no interior point x at which both f'(x) and g'(x) are infinite. Then for some interior point c we have

$$f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)]$$

Proof. Let h(x) = f(x)[g(b) - g(a)] - g(x)[f(b) - f(a)]. Since h(x) is a linear combination of f(x) and g(x), h(x) inherits many of the assumptions about f(x) and g(x), which is exactly what we want in order to use Rolle's theorem. Note that,

$$h(a) = f(a)[g(b) - g(a)] - g(a)[f(b) - f(a)]$$

$$= f(a)g(b) - g(a)f(b)$$

$$= - f(b)g(a) + g(b)f(a)$$

$$= f(b)[g(b) - g(a)] - g(b)[f(b) - f(a)]$$

$$= h(b)$$

So h(a) = h(b), \Rightarrow by Rolle's theorem we have that $\exists c$ such that h'(c) = 0. And Hence,

$$h'(c) = f'(c)[g(b) - g(a)] - g'(c)[f(b) - f(a)] = 0$$

 \Rightarrow

$$f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)]$$

This proves the assertion.

Applications of 5.12

Theorem 13 (Mean-Value Theorem(5.11)). Assume that f has a derivative (finite or infinite) at each point of (a,b), and assume that f is continuous at both endpoints a and b. Then $\exists c \in (a,b)$ such that

$$f(b) - f(a) = f'(c)(b - a)$$

Proof. Consider Theorem 5.12, The General Mean-Value Theorem. We have that

$$f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)]$$

Letting g(x) = x, then if we can find g'(x) we could substitute and simplify to get

$$f(b) - f(a) = f'(c)(b - a)$$

Let's first find g'(x)

$$g'(x) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$
$$= \lim_{x \to c} \frac{x - c}{x - c}$$
$$= 1$$

Now substituting g(x) = x and g'(x) = 1 into the result of Theorem 5.12 we get,

$$f'(c)[b-a] = 1[f(b) - f(a)]$$

After little simplification, we get exactly what we wanted,

$$f(b) - f(a) = f'(c)(b - a)$$

The next 3 theorems are with respect to problem 8.

Theorem 14 (7.8). Assume $f \in R(\alpha)$ on [a,b] and assume that α has a continuous derivative α' on [a,b]. Then the Riemann integral $\int_a^b f(x)\alpha'(x)dx$ exists and we have

$$\int_{a}^{b} f(x)d\alpha(x) = \int_{a}^{b} f(x)\alpha'(x)dx$$

Proof. Let $g(x) = f(x)\alpha'(x)$ and consider a Riemanm sum

$$S(P,g) = \sum_{k=1}^{n} g(t_k) \Delta x_k = \sum_{k=1}^{n} f(t_k) \alpha'(t_k) \Delta x_k$$

Using the same P and t_k we can form the following Riemann-Stieljes integral

$$S(P, f, \alpha) = \sum_{k=1}^{n} f(t_k) \Delta \alpha_k$$

From the M.V.T. we can write,

$$\Delta \alpha_k = \alpha'(v_k) \Delta x_k$$
 whenever $v_k \in (x_{k-1}, x_k)$

 \Longrightarrow

$$S(P, f, \alpha) - S(P, g) = \sum_{k=1}^{n} f(t_k)\alpha'(v_k)\Delta x_k - \sum_{k=1}^{n} f(t_k)\alpha'(t_k)\Delta x_k$$
$$= \sum_{k=1}^{n} f(t_k)[\alpha'(v_k) - \alpha'(t_k)]\Delta x_k$$

Since f is bounded, $|f(x)| \le M$ $\forall x \in [a, b]$, where M > 0. Continuity of α' on [a, b] implies uniform continuity on [a, b]. \Rightarrow for $\epsilon > 0$, $\exists \delta > 0$ such that

$$0 \le |x - y| < \delta$$
 implies $|\alpha'(x) - \alpha'(y)| < \frac{\epsilon}{2M(b - a)}$

If we take a partition P'_{ϵ} with norm $\|P'_{\epsilon}\| < \delta$, then for any finer partition P we will have

$$|\alpha'(v_k) - \alpha'(t_k)| < \frac{\epsilon}{2M(b-a)} \Rightarrow |S(P, f, \alpha) - S(P, g)| < \frac{\epsilon}{2}$$

Since $f \in R(\alpha)$ on [a, b], $\exists P''_{\epsilon}$ such that

$$\left| S(P, f, \alpha) - \int_{a}^{b} f d\alpha \right| < \frac{\epsilon}{2}$$

Hence, combining the last two inequalities we have that

$$\left| S(P,g) - \int_{a}^{b} f d\alpha \right| < \epsilon$$

This proves the assertion.

Theorem 15 (7.9). Given a < c < b. Define α on [a,b] as follows: The values $\alpha(a)$, $\alpha(c)$, $\alpha(b)$ are arbitrary;

$$\alpha(x) = \alpha(a) \text{ if } a \leq x < c$$

and

$$\alpha(x) = \alpha(b)$$
 if $c \le x < b$

Let f be defined on [a,b] in such a way that at least one of the functions f or α is continuous from the left at c and at least one is continuous from the right at c. Then $f \in R(\alpha)$ on [a,b] and we have

$$\int_{a}^{b} f d\alpha = f(c)[\alpha(c+) - \alpha(c-)]$$

Proof. if $c \in P$, every term in the sum $S(P, f, \alpha)$ is zero except the two terms arising from the subinterval separated by c. To account the nonzero terms, write

$$S(P, f, \alpha) = f(t_{k-1})[\alpha(c) - \alpha(c-)] + f(t_k)[\alpha(c+) - \alpha(c)]$$

where $t_{k-1} \leq c \leq t_k$. Consider subtracting by $f(c)[\alpha(c+) - \alpha(c-)]$ on both sides of the above equation,

$$S(P, f, \alpha) - f(c)[\alpha(c+) - \alpha(c-)] = \Delta = (f(t_{k-1}) - f(c))[\alpha(c) - \alpha(c-)] + (f(t_k) - f(c))[\alpha(c+) - \alpha(c)]$$

Hence we have the following about Δ

$$|\Delta| \le |f(t_{k-1}) - f(c)| |\alpha(c) - \alpha(c-)| + |f(t_k) - f(c)| |\alpha(c+) - \alpha(c)|$$

With respect to $|\Delta|$, if f is continuous at $c, \Rightarrow \forall \epsilon > 0$, $\exists \delta > 0$ such that $||P|| > \delta$ implies

$$|f(t_{k-1}) - f(c)| < \epsilon$$
 and $|f(t_k) - f(c)| < \epsilon$

Substituting our inequalities back into our equation for $|\Delta|$ we get,

$$|\Delta| \leq \epsilon \, |\alpha(c) - \alpha(c-)| + \epsilon \, |\alpha(c+) - \alpha(c)|$$

This inequality holds true whether or not f is continuous at c. By changing f's continuity from the left or right, we change the above inequality. If discontinuous from both sides at c, then $\Delta = 0$. If discontinuous from the right at c, then $\alpha(c) = \alpha(c+)$ and if discontinuous from the left at c, then $\alpha(c) = \alpha(c-)$. Either way, the assertion is proved.

Theorem 16 (7.12). Every finite sum can be written as a Riemann-Stieltjes integral. In fact, given a sum $\sum_{k=1}^{n} a_k$, define f on [0,n] as follows:

$$f(x) = a_k \text{ if } k - 1 < x \le k$$

for k = 1, 2, ..., n, and f(0) = 0. Then

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} f(k) = \int_0^n f(x)d[x]$$

where [x] is the greatest integer $\leq x$.

Proof. The greatest integer function is a type of step-function, hence d[x] is continuous from the right and jumps 1 at each integer by definition of [x]. The function f is continuous from the left at 1, 2, ..., n by construction of f. Hence we meet the conditions to apply Theorem 7.11, and the sum can therefore be written as a Riemann-Stieljes integral.

Ch.7 Examples:

Let $\{a_n\}$ be a sequence of real numbers. For $x \geq 0$, define

$$A(x) = \sum_{n \le x} a_n = \sum_{n=1}^{[x]} a_n$$

Where [x] is the greatest integer in x and empty sums are interpreted as zero. Let f have a continuous derivative in [1, a]. Use Stieltjes integrals to derive:

$$\sum_{n \le a} a_n f(n) = -\int_1^a A(x) f'(x) dx + A(a) f(a)$$

Proof. Since

$$\int_{1}^{a} A(x)f'(x)dx = \int_{1}^{a} A(x)df(x) \text{ since f has a continuous derivative on } [1, a]$$

$$= -\int_{1}^{a} f(x)dA(x) + A(a)f(a) - A(1)f(1) \text{ From integration by parts}$$

$$= -\sum_{n \leq a} a_{n}f(n) + A(a)f(a) \text{ by } \int_{1}^{a} f(x)dA(x) = \sum_{n=2}^{[a]} a_{n}f(n) \text{ and } A(1) = a_{1}$$

Therefore we know that:

$$\sum_{n \le a} a_n f(n) = -\int_1^a A(x) f'(x) dx + A(a) f(a)$$

The following 3 theorems are with respect to problem 9

Theorem 17 (7.30 First Mean-Value Theorem for Riemann-Stieltjes integrals). Assume that α is increasing and let $f \in R(\alpha)$ on [a,b]. Let M and m denote, respectively, the sup and inf of the set $\{f(x): x \in [a,b]\}$. Then $\exists c \in \mathbb{R}$ satisfying $m \leq c \leq M$ such that

$$\int_{a}^{b} f(x)d\alpha(x) = c \int_{a}^{b} d\alpha(x) = c[\alpha(b) - \alpha(a)]$$

In particular, if f is continuous on [a,b], then $c = f(x_0)$ for some $x_0 \in [a,b]$.

Proof. if $\alpha(a) = \alpha(b) \Rightarrow \int_a^b f(x) d\alpha(x) = c[\alpha(b) - \alpha(a)] = 0$ and the condition holds trivially. Hence, assume $\alpha(a) < \alpha(b)$. Consider the following inequality that holds true for all upper and lower sums

$$m[\alpha(b) - \alpha(a)] \le L(P, f, \alpha) \le U(P, f, \alpha) \le M[\alpha(b) - \alpha(a)]$$

 $\int_a^b f(x)d\alpha$ must be lie in this interval. This is clear since if m is the smallest f(x), then clearly, the smallest "area" possible is m multiplied by the length of the integrand and similarly M multiplied by the length of the integrand will be the largest possible area of the integral. Therefore,

$$m[\alpha(b) - \alpha(a)] \le \int_a^b f(x)d\alpha \le M[\alpha(b) - \alpha(a)]$$
$$m \le \frac{\int_a^b f(x)d\alpha}{[\alpha(b) - \alpha(a)]} \le M$$
$$m \le \frac{\int_a^b f(x)d\alpha}{\int_a^b d\alpha} \le M$$

Hence, define

$$c = \frac{\int_a^b f(x)d\alpha}{\int_a^b d\alpha}$$

Clearly, if f is continuous on [a, b], then we can apply the intermediate value to find that $\exists x_0 \in [a, b]$ such that $f(x_0) = c$

Theorem 18 (7.32). Let α be of bounded variation on [a,b] and assume that $f \in R(\alpha)$ on [a,b]. Define F by

$$F(x) = \int_{a}^{x} f d\alpha \quad \text{if } x \in [a, b]$$

- a) F is of bounded variation [a, b].
- b) Every point of continuity of α is also a point of continuity of F.
- c) if α is increasing on [a,b], then $\exists F'(x)$ at each point $x \in [a,b]$ where $\alpha'(x)$ exists and where f is continuous. For such x, we have

$$F'(x) = f(x)\alpha'(x)$$

Proof. a) if $x \neq y$ and α increasing on [a, b], then consider the following

$$F(y) - F(x) = \int_{a}^{x} f d\alpha - \int_{a}^{y} f d\alpha$$

$$= \int_{x}^{y} f d\alpha \qquad \text{(by Theorem 7.4, } \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha = \int_{a}^{b} f d\alpha \text{)}$$

$$= c[\alpha(y) - \alpha(x)] \qquad \text{(by Theorem 7.30)}$$

$$F(y) - F(x) = c[\alpha(y) - \alpha(x)] \qquad (1)$$

where $m \leq c \leq M$. if α is of bounded variation on [a, b], then

$$\sum_{k=1}^{n} |\Delta \alpha_k| \le T$$

where T is a positive number. Then consider

$$\sum_{k=1}^{n} |\Delta F_k| = \sum_{k=1}^{n} |F(x_k) - F(x_{k-1})|$$

$$= \sum_{k=1}^{n} |c_k[\alpha(x_k) - \alpha(x_{k-1})]| \quad \text{by equation (1)}$$

$$= \sum_{k=1}^{n} |c_k \Delta \alpha_k|$$

$$\leq T \sum_{k=1}^{n} |c_k|$$

Hence $\sum_{k=1}^{n} |\Delta F_k|$ is bounded by a positive number $T \sum_{k=1}^{n} |c_k|$, therefore F is of bounded variation on [a, b].

b) By Theorem 7.30, we have that $F(x) = \int_a^x f d\alpha = c[\alpha(x) - \alpha(a)]$. Hence, if α is continuous at a point x, then F is also continuous at x.

c) Consider $F(y) - F(x) = c[\alpha(y) - \alpha(x)]$, then by dividing y - x on both sides, we have

$$\frac{F(y) - F(x)}{y - x} = c \frac{\alpha(y) - \alpha(x)}{y - x}$$

taking the limit as $y \to x$ we have,

$$\lim_{y \to x} \frac{F(y) - F(x)}{y - x} = \lim_{y \to x} c \frac{\alpha(y) - \alpha(x)}{y - x}$$
$$F'(x) = c\alpha'(x)$$

Since $c = f(x_0)$ for some $x_0 \in [x, y]$, we have that when we take the limit as $y \to x$, then $x_0 \in [x, x]$. Hence $x_0 = x$, and c = f(x). Therefore

$$F'(x) = f(x)\alpha'(x)$$

Theorem 19 (7.34 Second fundamental theorem of integral calculus). Assume that $f \in R$ on [a, b]. Let g be a function defined on [a, b] such that $\exists g' \in (a, b)$ and has the value

$$g'(x) = f(x)$$
 for every $x \in (a, b)$

At the endpoints assume that g(a+) and g(b-) exist and satisfy

$$g(a) - g(a+) = g(b) - g(b-)$$

Then we have

$$\int_a^b f(x)dx = \int_a^b g'(x)dx = g(b) - g(a)$$

Proof. For every partition on [a, b], we can rewrite g(b) - g(a) by

$$g(b) - g(a) = \sum_{k=1}^{n} [g(x_k) - g(x_{k-1})] = \sum_{k=1}^{n} g'(t_k) \Delta x_k = \sum_{k=1}^{n} f(t_k) \Delta x_k$$

where $t_k \in (x_{k-1}, x_k)$ determined by the Mean Value Theorem by $g'(t_k) = \frac{g(x_k) - g(x_{k-1})}{x_k - x_{k-1}}$. Taking $\epsilon > 0$, the partition can be made finer such that

$$\left| g(b) - g(a) - \int_a^b f(x)dx \right| = \left| \sum_{k=1}^n f(t_k) \Delta x_k - \int_a^b f(x)dx \right| < \epsilon$$

Hence,

$$\int_{a}^{b} f(x)dx = g(b) - g(a)$$

This proves the assertion.

Ch.7 Examples

Example 1: The Second Mean-Value Theorem for Riemann Integrals (Thm. 7.37) states that, if f and g be function defined on [a,b] with f increasing and g continuous, then

$$\int_{a}^{b} f(x)g(x)dx = f(a) \int_{a}^{x_{0}} g(x)dx + f(b) \int_{x_{0}}^{b} g(x)dx$$

for some $x_0 \in [a, b]$.

Proof. If $G(x) = \int_a^x g(x)dx$ and

$$\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} f(x)dG(x) = f(a)(G(x_0) - G(a)) + f(b)(G(b) - G(x_0))$$

for some $x_0 \in [a, b]$ by the Theorem 7.30, the First Mean-Value Theorem.

Example 2: Let α be a continuous function of bounded variation on [a, b]. Assume $g \in R(\alpha)$ on [a, b] and define $\beta(x) = \int_a^x g(t)d\alpha(t)$ if $x \in [a, b]$. Show that: If f only increases on [a, b], then $\exists x_0 \in [a, b]$ such that:

$$\int_{a}^{b} f d\beta = f(a) \int_{a}^{x_0} g d\alpha + f(b) \int_{x_0}^{b} g d\alpha$$

Proof. Since α is a continuous function of bounded variation on [a, b], and $g \in R(\alpha)$ on [a, b], we know that $\beta(x)$ is a continuous function of bounded variation on [a, b], by Theorem 7.32. Hence, by Second Mean-Value Theorem for Riemann-Stieltjes integrals, we know that:

$$\int_{a}^{b} f d\beta = f(a) \int_{a}^{x_0} \beta(x) + f(b) \int_{x_0}^{b} d\beta(x)$$

which implies that, By Theorem 7.26,

$$\int_{a}^{b} f d\beta = f(a) \int_{a}^{x_0} g d\alpha + f(b) \int_{x_0}^{b} g d\alpha$$

The next 4 theorems are with respect to problem 10.

Theorem 20 (8.22). If |x| < 1, the series $1 + x + x^2 + \dots$ converges and has the sum $\frac{1}{1-x}$. If $|x| \ge 1$, the series diverges.

Proof. the series can be written in summation form by $\sum_{k=0}^{n} x^{k}$, and by multiplying it by 1-x, we can simplify our sum to be in terms of only x and n,

$$(1-x)\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n} x^{k} - x \sum_{k=0}^{n} x^{k}$$
$$= \sum_{k=0}^{n} (x^{k} - x^{k+1})$$
$$= 1 - x^{n+1}$$

dividing (1-x) on both sides, we get

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{(1 - x)}$$

if |x| < 1 and as $n \to \infty$ we have that

$$\lim_{n\to\infty} x^{n+1} = 0$$

and hence

$$\lim_{n\to\infty} \frac{1-x^{n+1}}{(1-x)} = \frac{1}{(1-x)}$$

if $|x| \ge 1 \implies$ as $n \to \infty$, we have that $\lim_{n \to \infty} x^{n+1}$ diverges and hence $\frac{1-x^{n+1}}{(1-x)}$ diverges. (NOTE: This Theorem can be proved briefly using Theorem 8.10 on the convergence of telescopic series, letting $a_n = x^k - x^{k+1}$)

Theorem 21 (8.23 integral test). Let f be a positive decreasing function defined on $[1, \infty)$ such that $\lim_{x\to+\infty} f(x) = 0$. For n = 1, 2, ..., define

$$s_n = \sum_{k=1}^n f(k), \qquad t_n = \int_1^n f(x)dx, \qquad d_n = s_n - t_n$$

Then we have:

- a) $0 < f(n+1) \le d_{n+1} \le d_n \le f(1)$, for n = 1, 2, ...
- b) $\lim_{n\to\infty} d_n \ exists$

- c) $\sum_{n=1}^{\infty} f(n)$ converges iff the sequence t_n converges
- d) $0 \le d_k \lim_{n \to \infty} d_n \le f(k)$, for k = 1, 2, ...

Proof. a)

$$t_{n+1} = \int_{1}^{n+1} f(x)dx = \sum_{k=1}^{n} \int_{k}^{k+1} f(x)dx \le \sum_{k=1}^{n} \int_{k}^{k+1} f(k)dx = \sum_{k=1}^{n} f(k) = s_{n}$$

Which implies that $f(n+1) = s_{n+1} - s_n \le s_{n+1} - t_{n+1} = d_{n+1} \Rightarrow 0 < f(n+1) \le d_{n+1}$. But we also have:

$$d_n - d_{n+1} = t_{n+1} - t_n - (s_{n+1} - s_n) = \int_n^{n+1} f(x) dx - f(n+1) \ge \int_n^{n+1} f(n+1) dx - f(n+1) = 0$$

Therefore $d_{n+1} \leq d_n \leq d_1 = f(1)$. \checkmark

- b) In a), we proved that $0 < f(n+1) \le d_{n+1} \le d_n \le f(1)$ so $\lim_{n\to\infty} d_n$ must exist since the sequence is always decreasing but has a lower bound. \checkmark
- c) Since b is true, we know that since d_n converges then s_n and t_n converge as well, so $\sum_{n=1}^{\infty} f(n)$ converges whenever $\int_{1}^{\infty} f(x)dx$ converges. \checkmark
- d) From above we can write:

$$0 \le d_n - d_{n+1} \le \int_n^{n+1} f(n)dx - f(n+1) = f(n) - f(n+1)$$

and summing on n:
$$0 \le \sum_{n=k}^{\infty} (d_n - d_{n+1}) \le \sum_{n=k}^{\infty} (f(n) - f(n+1))$$
 if $k \ge 1$

Each part of that inequality telescopes and breaks down into: $0 \le d_k - \lim_{n \to \infty} d_n \le f(k)$

Theorem 22 (8.25 ratio test). Given a series $\sum a_n$ of nonzero complex terms, let

$$r = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|, \qquad R = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|$$

- a) The series $\sum a_n$ converges absolutely if R < 1.
- b) The series $\sum a_n$ diverges if r > 1.
- c) The test is inconclusive if $r \leq 1 \leq R$.

Proof. Assume that R < 1 and take x such that R < x < 1. Since R < 1, we know that $a_{n+1} < a_n$. This implies $\exists N$ such that $\left|\frac{a_{n+1}}{a_n}\right| < x$ whenever $n \ge N$. Since $x = \frac{x^{n+1}}{x^n}$:

$$\frac{|a_{n+1}|}{x^{n+1}} < \frac{|a_n|}{x^n} \le \frac{|a_N|}{x^N} \quad \text{if } n \ge N$$

 \Rightarrow $|a_n| \leq cx^n$ if $n \leq N$, where $c = |a_N|x^{-N}$. We now have the requirements fulfilled to apply the comparison test $\Rightarrow \sum a_n$ converges and a) is confirmed. Now we assume that r > 1. $\Rightarrow |a_{n+1}| > a_n \quad \forall n \geq N$ for some N and therefore $\lim_{n \to \infty} \neq 0$ so $\sum a_n$ diverges and a0 is confirmed. Finally, to confirm a0 consider the two summations:

$$\sum n^{-1} \quad \sum n^{-2}$$

In both summations, r = R = 1 but we know that $\sum n^{-1}$ diverges but that $\sum n^{-2}$ converges so the test is inconclusive confirming c).

Theorem 23 (8.26 root test). Given a series $\sum a_n$ of complex terms, let

$$p = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$$

- a) The series $\sum a_n$ converges absolutely if p < 1.
- b) The series $\sum a_n$ diverges if p > 1.
- c) The test is inconclusive if p = 1.

Proof. Assume that $\rho < 1$ and take x such that $\rho < x < 1$. Since $\rho < 1$ we know that $\exists N$ such that $|a_n| < x^n$ whenever $n \ge N$. We now have the elements required to run the comparison test and since x^n converges to 0 and $|a_n| < x^n$, we know that $\sum a_n$ also converges confirming a).

Now assume that $\rho > 1$. This implies that $|a_n| > 1$ $\forall a_n$ so $\lim_{n \to \infty} a_n \neq 0$ and therefore $\sum a_n$ diverges confirming b).

Consider the two summations:

$$\sum n^{-1} \quad \sum n^{-2}$$

In both summations, $\rho = 1$ but we know that $\sum n^{-1}$ diverges but that $\sum n^{-2}$ converges so the test is inconclusive confirming c).

Ch.8 Examples:

Test for convergence: $\sum_{n=1}^{\infty} n^3 e^{-n}$

By Root Test, $\lim_{n\to\infty}\sup(\frac{n^3}{e^n})^{1/n}=\frac{1}{e}<1\quad\Rightarrow$ The sum converges.

Test for convergence: $\sum_{n=3}^{\infty} \frac{1}{n logn(log log n)^p}$

By Integral Test. The function $f(x) = \frac{1}{nlogn(loglogn)^p}$ is positive, decreasing, and continuous on $[a, \infty)$ so the test is usable. Consider:

$$\int_{a}^{\infty} \frac{dx}{x \log x (\log \log x)^{p}} = \int_{\log \log a}^{\infty} \frac{dy}{y^{p}}$$

Which implies that the series converges if p > 1 and it diverges if $p \le 1$