E SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

OBJECTIFS &

- Conjecturer, à partir de sa représentation graphique, la nature arithmétique ou géométrique d'une suite.
- Démontrer qu'une suite est arithmétique ou géométrique.
- Déterminer le sens de variation d'une suite arithmétique ou géométrique à l'aide de la raison.

1

Suites arithmétiques

À RETENIR 00

Définition

Une suite (u_n) est dite **arithmétique** si l'on passe d'un terme au suivant en ajoutant toujours la même valeur, appelée **raison** de la suite.

EXEMPLE **9**

La suite (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ est la suite arithmétique de raison r = 3 et de premier terme $u_0 = -2$.

À RETENIR **

Proposition

Soit (u_n) une suite. Alors (u_n) est arithmétique de raison r si et seulement si, on peut exprimer (u_n) ,

- par récurrence : $u_{n+1} = u_n + r$ pour tout entier n;
- par son terme général : $u_n = u_0 + r \times n$ pour tout entier n.

EXERCICE 1

Soit (u_n) une suite arithmétique de premier terme $u_0 = 5$ et de raison r = -2.

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/suites-arithmetiques-geometriques/#correction-1.

À RETENIR 👀

Propriétés

Soit (u_n) une suite arithmétique de raison r.

- 1. Sa représentation graphique est un nuage de points alignés.
- 2. Les variations de (u_n) dépendent du signe de r:
 - si r > 0, elle est strictement croissante;
 - si r < 0, elle est strictement décroissante;
 - si r = 0, elle est constante.

EXERCICE 2

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 2n + 1$.

2. Représenter les premiers termes de la suite dans le repère ci-dessous.

Ш

Suites géométriques

À RETENIR 00

Définition

Une suite (v_n) est dite **géométrique** si l'on passe d'un terme au suivant en multipliant toujours par la même valeur, appelée **raison** de la suite.

EXEMPLE 🔋

La suite (v_n) définie par $v_0 = 1$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n \times (-5)$ est la suite arithmétique de raison q = -5 et de premier terme $v_0 = 1$.

À RETENIR 99

Proposition

Soit (v_n) une suite. Alors (v_n) est géométrique de raison q si et seulement si, on peut exprimer (v_n) ,

- par récurrence : $v_{n+1} = v_n \times q$ pour tout entier n;
- par son terme général : $v_n = v_0 \times q^n$ pour tout entier n.

EXERCICE 3

Soit (v_n) une suite géométrique de premier terme $v_0 = 5$ et de raison q = -3.

- **1.** Déterminer l'expression de v_{n+1} en fonction de v_n pour tout $n \in \mathbb{N}$

À RETENIR 99

Propriété

Soit (v_n) une suite géométrique de raison q > 0. Les variations de (v_n) dépendent de q:

- si q > 1, elle est strictement croissante;
- si q ∈]0;1[, elle est strictement décroissante;
- si q = 1, elle est constante.

EXERCICE 4

Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = 10 \times \frac{1}{2^n}$.

2. Représenter les premiers termes de la suite dans le repère ci-dessous.

