2^a LISTA DE MÉTODOS MATEMÁTICOS

PROF. SANDRO RODRIGUES MAZORCHE

Todas as soluções tem que ser justificadas!

1. Capítulo 3

Questão 1. Resolva o seguinte PVI, desenhe o gráfico.

$$y'' + 5y' + y = 0$$
, $y(0) = -2$, $y'(0) = 0$.

Questão 2. Determine o maior intervalo no qual o PVI a seguir tem uma solução única, duplamente derivável. (não precisa encontrar a solução)

$$(x-3)y'' + xy + (\ln|x|)y = 0$$
, $y(1) = 0$, $y'(1) = 1$.

Questão 3. Encontre o conjunto fundamental de soluções para o seguinte problema:

$$y'' + 4y' + 3y = 0, \quad t_0 = 1.$$

Questão 4. Dado uma EDO e duas funções, determine se as funções formam um conjunto fundamental de soluções:

$$x^2y'' - x(x+2)y' + (x+2)y = 0$$
, $x > 0$; $y_1(x) = x$, $y_2(x) = xe^x$.

Questão 5. Usando o Wronskiano descubra se as funções a seguir são ou não LI:

$$y_1(t) = e^{\lambda t} \cos(t), \quad y_2(t) = e^{\lambda t} \operatorname{sen}(t).$$

Questão 6. Se as funções y_1 e y_2 são soluções LI de y'' + p(t)y' + q(t)y = 0, determine para quais constantes a_1 , a_2 , b_1 e b_2 as funções $y_3 = a_1y_1 + a_2y_2$ e $y_4 = b_1y_1 + b_2y_2$ são soluções LI da mesma EDO.

Questão 7. Encontre o Wronskiano da equação de Bessel sem resolvê-la:

$$x^2y'' + xy' + (x^2 - v^2)y = 0$$
, $v - \text{constante}$.

Questão 8. Resolva os PVIs:

- (a) y'' + 2y' + 2y = 0, $y(\pi/4) = 2$, $y'(\pi/4) = -2$.
- (b) y'' + 4y = 0, y(0) = 0, y'(0) = 1.

Questão 9. Resolva os PVIs:

- (a) 9y'' 12y' + 4y = 0, y(0) = 2, y'(0) = -1.
- (b) y'' + 4y' + 4y = 0, y(-1) = 2, y'(-1) = 1.

Questão 10. Usando o método de coeficientes a determinar encontre a solução geral da EDO: $y'' - y' - 2y = \cosh 2t$.

Questão 11. Usando o método de coeficientes a determinar resolva o PVI:

$$y'' - 2y' + y = te^t + 4, y(0) = 1, y'(0) = 0.$$

2. Capítulo 4.

Questão 12. Determine intervalos nos quais a seguinte EDO possui única solução

$$y^4 + \cos(t-1)y'' - \frac{1}{t-2} = t^2.$$

Questão 13. Verifique se as funções $y_1 = 1$, $y_2 = t$ e $y_3 = t^3$ formam o conjunto fundamental de soluções da EDO: ty''' - y'' = 0.

Questão 14. Resolva o PVI: $y''' - y'' + y' - y = e^{4t}$, y(0) = 1, y'(0) = 0, y''(0) = -1.

3. Equações separáveis

Questão 15. Resolva a seguinte equação

$$y''\cos(x) = \tan(x)y^2.$$