# Self-Supervised Pretraining of 3D Features on any Point-Cloud

Paper Review
Isabel Taylor
February 17<sup>th</sup>, 2021

#### Current Problem

- Pretraining on a large set of data is necessary for good performance for many vision tasks.
- Large sets of annotated 3D data is difficult to acquire and time consuming to label.
- 3D reconstruction requires registering and aligning multiple static depth maps



## Background on Citation 107



## DepthContrast



# Contrastive Learning and Extension to Multiple Formats

$$l_{i} = -\log \left( \frac{\exp\left(\frac{v_{i,1}^{T}v_{i,2}}{\tau}\right)}{\exp\left(\frac{v_{i,1}^{T}v_{i,2}}{\tau}\right) + \sum_{j \neq i}^{K} \exp\left(\frac{v_{i,1}^{T}v_{j}}{\tau}\right)} \right)$$

$$l_i^{ab} = -\log \left( \frac{\exp\left(\frac{v_{i,1}^{aT}v_{i,2}^b}{\tau}\right)}{\exp\left(\frac{v_{i,1}^{aT}v_{i,2}^b}{\tau}\right) + \sum_{j \neq i}^K \exp\left(\frac{v_{i,1}^{aT}v_j^b}{\tau}\right)} \right)$$

#### Combined Loss

$$l_i^{ab} = -\log \left( \frac{\exp\left(\frac{v_{i,1}^{aT}v_{i,2}^b}{\tau}\right)}{\exp\left(\frac{v_{i,1}^{aT}v_{i,2}^b}{\tau}\right) + \sum_{j \neq i}^K \exp\left(\frac{v_{i,1}^{aT}v_j^b}{\tau}\right)} \right)$$

$$L_i = l_i^{ab} + l_i^{ba} + l_i^{aa} + l_i^{bb}$$

Across Format Within Format

## **Experimenting Details**

- Fine-tuning on downstream tasks
  - Object classification, semantics segmentation, object detection
  - full scenes/object centric; using different 3D sensors; single/multi-view; real/synthetic; indoor/outdoor
- ScanNet dataset
  - 2.5 million RGB-D scans for more than 1500 indoor scenes
  - Extract about 190k RGB-D scans from video sequences
  - No camera calibration or 3D registration models
  - Operate on single-view depth maps
  - Preform data augmentation

#### **Overall Results**

| Dataset                     | Stats                                        | Task | Gain of                |  |  |  |  |
|-----------------------------|----------------------------------------------|------|------------------------|--|--|--|--|
|                             |                                              |      | DepthContrast          |  |  |  |  |
| Self-supervised Pretraining |                                              |      |                        |  |  |  |  |
| ScanNet-vid [18]            | 190K single-view depth maps (Indoor)         |      |                        |  |  |  |  |
| Redwood-vid [16]            | 370K single-view depth maps (Indoor/Outdoor) |      |                        |  |  |  |  |
| Transfer tasks              |                                              |      |                        |  |  |  |  |
| ScanNet [18]                | 1.2K train, 312 val (Indoor)                 | Det. | +3.6% mAP              |  |  |  |  |
|                             |                                              | Seg. | +0.9% mIOU†            |  |  |  |  |
| SUNRGBD [84]                | 5.2K train, 5K val (Indoor)                  | Det  | +3.3% mAP              |  |  |  |  |
| S3DIS [4]                   | 199 train, 67 val (Indoor)                   | Det  | +12.1% mAP             |  |  |  |  |
|                             |                                              | Seg. | +2.4% mIOU             |  |  |  |  |
| Synthia [74]                | 19.8K train, 1.8K val (Synth.)               | Seg. | +2.4% mIOU             |  |  |  |  |
| Matterport3D [10]           | 1.4K train, 232 val (Indoor)                 | Det. | +3.9% mAP              |  |  |  |  |
| ModelNet [106]              | 9.8K train, 2.4K val (Synth.)                | Cls. | +3.1% Acc <sup>†</sup> |  |  |  |  |

Det.: Object Detection, Seg: Semantic Segmentation

Cls: Classification, Synth.: Synthetic, †Results in supplemental.

# Importance of Augmentation

| Task                           | VoteNet [67] | +Rand. | +Rand. |
|--------------------------------|--------------|--------|--------|
|                                |              | Cuboid | Drop   |
| ModelNet Linear (Accuracy)     | 80.6         | 85.4   | 85.0   |
| <b>SUNRGBD Detection</b> (mAP) | 58.6         | 59.5   | 60.7   |

## Long Tail Classes



# Scaling Model and Pretraining Data



#### Multiple Input Formats

#### 3 variants

- Within format
  - For voxel methods, does not improve consistently from scratch
- Across format
  - For point and voxel methods, improves performance
- Combined
  - For voxel method, improves by 4% over the within format loss
  - · Holds across different pretraining data and architecture
  - Comparable to the PointContrast method

$$L_i = l_i^{ab} + l_i^{ba} + l_i^{aa} + l_i^{bb}$$
Across Within Format

# Multiple Input Formats

| Loss                | Point Transfer     |                    | Voxel Transfer     |             |
|---------------------|--------------------|--------------------|--------------------|-------------|
|                     | SUNRGBD            | ScanNet            | S3DIS              | Synthia     |
| Scratch             | 57.4               | 58.6               | 68.2               | 78.9        |
| Within Format only  | 60.4 (+3.0)        | 61.3 (+1.7)        | 66.5 (-2.7)        | 80.1 (+1.2) |
| Across format only  | 60.0 (+2.6)        | 61.1 (+2.5)        | 69.9 (+1.7)        | 81.2 (+2.3) |
| Both (Ours)         | <b>60.7</b> (+3.3) | <b>62.2</b> (+3.6) | <b>70.6</b> (+2.4) | 81.3 (+2.4) |
| PointContrast [109] | 57.5               | 59.2               | 70.9               | 83.1        |

#### Results on KITTI



Figure 11: Label-efficiency evaluation for KITTI pedestrian detection at moderate difficulty level. We use the val split of the KITTI dataset.



Figure 12: Comparison between within format and joint training loss. Label-efficiency evaluation for pedestrian detection at moderate difficulty level of the KITTI val split

#### Discussion

- The topic of data augmentation has been spoken about before in this class, demonstrating its usefulness. What other ways could 3D data be augmented in (than the ones mentioned)?
- The main advantage of this method is the generality of both the input data. What are some potential limitations of this generalization?
- Contrastive learning is a very popular method, what are some limitations of it? What are some possible other uses or benefits?