R.F. DOUBLE TRIODE

Double triode intended for use as cascode amplifier in television tuners.

QUICK REFERENCE DATA (Each unit)			
Anode current	I_a	15	mA
Transconductance	S	12.5	mA/V
Amplification factor	μ	33	

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage

 $\frac{I_f}{V_f}$ 300 mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES	w	ithout external	with external screen	
Anode to grid	C_{ag}	1.4	1.4	pF
Grid to cathode + heater + screen	Cg/kfs	3.3	3.3	pF
Anode to cathode + heater + screen	C _{a/kfs}	1.8	2.5	pF
Grid to heater	C_{gf}	0.13	0.13	pF
Anode to grid	Ca'g'	1.4	1.4	pF
Cathode to grid + heater + screen	Ck'/g'f	s 6	6	pF
Anode to grid + heater + screen	Ca'/g'f	s 2.8	3.7	pF
Cathode to heater	$C_{\mathbf{k'f}}$	2.7	2.7	pF
Anode to cathode	ca'k'	0.18	0.16	pF
Anode to anode	Caa'	max.0.045	max.0.015	pF
Grid to anode other unit	Cga'	max.0.005	max.0.005	pF

REMARK

The unit a, g, k should be used as the grounded cathode input section and unit a', g', k' as the grounded grid output unit.

TYPICAL CHARACTERISTICS

Anode voltage	v_a	90	V
Grid voltage	v_g	-1.3	V
Anode current	I_a	15	mA
Transconductance	S	12.5	mA/V
Amplification factor	μ	33	-
Equivalent noise resistance	R_{eq}	300	Ω

LIMITING VALUES (Design centre rating system) (each unit, unless otherwise stated)

Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	130	V
Anode dissipation	w_a	max.	1.8	w
Cathode current	$I_{\mathbf{k}}$	max.	25	mA
Grid voltage	-V _g	max.	50	V
Grid resistor	$R_{\mathbf{g}}$	max.	1	$\mathbf{M}\Omega$
Cathode to heater voltage	$V_{\mathbf{kf}}$	max.	50	V
	V _k 'f(k'pos)	max.	150	V^1)

REMARK

In order not to exceed the maximum permissible anode voltage when the cascode amplifier is controlled, it is necessary to use a voltage divider for the grid of the grounded grid section. With grid current biasing for the grounded cathode section the anode voltage across this section should not be more than 75 V in the not controlled condition.

¹⁾ D.C. component max. 130 V.

4

PCC88

page	sheet	date
1	1	1970.01
2	2	1970.01
3	3	1970.01
4	4	1970.01
5	FP	1999.07.31