VinMin = 7.0V VinMax = 36.0V Vout = 5.0V lout = 0.7A Device = LMR38010SQDDARQ1 Topology = Buck Created = 2023-07-27 12:31:18.918 BOM Cost = \$3.16 BOM Count = 11 Total Pd = 0.54W

WEBENCH® Design Report

Design: 17 LMR38010SQDDARQ1 LMR38010SQDDARQ1 7V-36V to 5.00V @ 0.7A

Design Alerts

Component Selection Information

The LMR38010S-Q1 is qualified for Automotive applications. All passives and other components selected in this design may not be qualified for Automotive applications. The user is required to verify that all components in the design meet the qualification and safety requirements for their specific application. This device support spread spectrum feature which is not modeled on WEBENCH. This device can work in steady state at Vin = 4.2V. However, needs a minimum of 4.5V during start up. See datasheet for details.

Electrical BOM

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cboot	MuRata	GRM155R71C104KA88D Series= X7R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
Cff	TDK	CGA1A2C0G1E390J030BA Series= C0G/NP0	Cap= 39.0 pF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
Cin	MuRata	GRM31CR71H475KA12L Series= X7R	Cap= 4.7 uF ESR= 3.0 mOhm VDC= 50.0 V IRMS= 4.98 A	1	\$0.10	1206 11 mm ²
Cinx	Kemet	C0805C104M5RACTU Series= X7R	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 50.0 V IRMS= 1.64 A	1	\$0.01	0805 7 mm ²
Cout	MuRata	GRM32ER61C476KE15L Series= X5R	Cap= 47.0 uF ESR= 3.037 mOhm VDC= 16.0 V IRMS= 4.59346 A	1	\$0.17	1210_280 15 mm ²
L1	Wurth Elektronik	7447709390	L= 39.0 µH 56.0 mOhm	1	\$1.48	WE-PD_1210 196 mm ²
Rfbb	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rfbt	Vishay-Dale	CRCW040240K2FKED Series= CRCWe3	Res= 40.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Rpgood	Vishay-Dale	CRCW0603100KFKEA Series= CRCWe3	Res= 100.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
Rt	Vishay-Dale	CRCW060364K9FKEA Series= CRCWe3	Res= 64.9 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
U1	Texas Instruments	LMR38010SQDDARQ1	Switcher	1	\$1.34	DDA0008E N 55 mm ²

Operating Values

H Name	nductor
2. Cin Pd 183.4 μW Capacitor Output capacitor power dissipation Peak switch current in IC Peak switch current in IC IC Ped S13.77 mW IC IC IC power dissipation IC IC power dissipation IC IC power dissipation IC Power IC power dissipation IC Power IC power dissipation IC IC Pd IC Power IC power dissipation IC IC Pd IC Power IC	nductor
3. Cout IRMS 80.395 mA Capacitor Output capacitor RMS ripple current 4. Cout Pd 19.629 µW Capacitor Output capacitor power dissipation 5. IC Ipk 839.249 mA IC Peak switch current in IC 6. IC Pd 513.77 mW IC IC IC power dissipation 7. IC Tj 44.899 degC IC IC IC power dissipation 9. ICThetaJA Effective 5.0 mV IC IC Feedback Tolerance 10. Iin Avg 112.29 mA IC Average input current 11. Ipp percentage 39.785 % Inductor Inductor ripple current percentage (with respect to average in current) 12. L Ipp 278.498 mA Inductor Inductor ripple current percentage (with respect to average in current) 13. L Pd 27.802 mW Inductor Inductor power dissipation 14. Cin Pd 19.629 µW Power Inductor power dissipation 15. Cout Pd 19.629 µW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power IC power dissipation 18. Total Pd 542.293 mW Power IC power dissipation 19. BOM Count 11 System Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current (% of average inductor curre requirement used for Information Information Information System Information 27. Curson Freq 40.0 % System Information 28. FootPrint 304.0 mm² System Information 29. Cross Freq 16.035 kHz System Information Information 29. Cross Freq 16.035 kHz System Information Information Information Information Information Information Informatio	nductor
4. Cout Pd 19.629 μW Capacitor Output capacitor power dissipation 5. IC lpk 839.249 mA IC Peak switch current in IC 6. IC Pd 513.77 mW IC IC power dissipation 7. IC Tj 44.899 degC IC IC junction temperature 8. IC Tolerance 5.0 mV IC IC Feedback Tolerance 9. ICThetaJA Effective 29.0 degC/W IC Effective IC Junction-to-Ambient Thermal Resistance 10. lin Avg 112.29 mA IC Average input current 11. lpp percentage 39.785 % Inductor Inductor ripple current percentage (with respect to average icurrent) 12. L lpp 278.498 mA Inductor Peak-to-peak inductor ripple current 13. L Pd 27.802 mW Inductor Inductor power dissipation 14. Cin Pd 183.4 μW Power Input capacitor power dissipation 15. Cout Pd 19.629 μW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Inductor power dissipation 19. BOM Count 11 System Total Design BOM count Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System System Steady state efficiency 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System System Switch current in Information Information 25. Gain Marg -21.139 dB System System Switch current in Information Information 26. Inductor ripple current requirement used for Information Information Information Information 27. Custom Inductor ripple current (% of average inductor current requirement used for Information Informa	nductor
5. IC lpk 839.249 mA IC Peak switch current in IC IC power dissipation Fig. 10 Fd 513.77 mW IC IC IC power dissipation Fig. 10 Fd 513.77 mW IC IC IC power dissipation Fig. 10 Fd 513.77 mW IC IC IC power dissipation Fig. 10 Fd 513.77 mW IC IC IC Feedback Tolerance Fig. 10 In Avg 112.29 mA IC Average input current Fig. 11 In Information Fig. 12 In In In Information Fig. 12 In In In Information Fig. 12 In In Information Fig. 13 In In Information Fig. 14 In Information Fig. 15 In In Information Fig. 15 In In Information Fig. 16 In In Information Fig. 17 In Information Fig. 18 In In Information Fig. 18 In Information Fig. 18 In Information Fig. 18 In Information Fig. 18 In Information Fig. 19 In Information Fig. 19 In Information Fig. 10 In Information Fig. 11 Information Fig. 11 Information Fig. 11 Information Fig. 12 In Information Fig. 12 In Information Fig. 13 In Information Fig. 14 In Information Fig. 15 In Information Fig. 15 In Information Fig. 15 In Information Fig. 16 In Information Fig. 17 In Information Fig. 17 In Information Fig. 18 In Information	nductor
6. IC Pd 513.77 mW IC IC power dissipation 7. IC Tj 44.899 degC IC IC power dissipation 8. IC Tolerance 5.0 mV IC IC Feedback Tolerance 9. ICThetaJA Effective 29.0 degC/W IC Effective IC Junction-to-Ambient Thermal Resistance 10. Iin Avg 112.29 mA IC Average input current 11. Ipp percentage 39.785 % Inductor inductor ripple current percentage (with respect to average inductor ripple current 12. L Ipp 278.498 mA Inductor 13. L Pd 183.4 μW Power Inductor power dissipation 14. Cin Pd 183.4 μW Power Inductor power dissipation 15. Cout Pd 19.629 μW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power IC power dissipation 18. Total Pd 542.293 mW Power Information 19. BOM Count 11 System Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current 40.0 % System Information System Information System Custom Inductor ripple current (% of average inductor curre requirement used for Inductor selection 16. Inductor ripple current (% of average inductor curre requirement used for Inductor selection 27. Inductor ripple current (% of average inductor curre requirement used for Inductor selection 28. Inductor ripple current (% of average inductor curre requirement used for Inductor selection 29. Inductor ripple current (% of average inductor curre requirement used for Inductor selection 29. Inductor ripple current (% of average inductor curre requirement used for Inductor selection 20. Cross Freq 10.00	nductor
 7. IC Tj 44.899 degC 5.0 mV IC IC Feedback Tolerance 9. ICThetaJA Effective 9.0 degC/W IC Effective 1C Junction-to-Ambient Thermal Resistance 10. Ilin Avg 112.29 mA IC Average input current 11. Ipp percentage 39.785 % Inductor Inductor ripple current percentage (with respect to average in current) 12. L Ipp 278.498 mA Inductor Inductor power dissipation 13. L Pd 27.802 mW Inductor Inductor power dissipation 14. Cin Pd 183.4 μW Power Input capacitor power dissipation 15. Cout Pd 19.629 μW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power IC power dissipation 18. Total Pd 542.293 mW Power Inductor power dissipation 19. BOM Count 11 System Total Design BOM count Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current 40.0 % System Information 27. Inductor ripple current 40.0 % System Information Information 28. Inductor ripple current 40.0 % System Information 29. Inductor ripple current 40.0 % System Information 29. Inductor ripple current 40.0 % Information Information 29. Inductor ripple current 40.0 % Information Information 20. Inductor ripple current 40.0 % Information Information 20. Inductor ripple current 40.0 % Information Information Information 20. Inductor ripple current 40.0 % Information Information Information 20. Inductor ripple current 40.0 % Information Information Information Information 20. Inductor ripple current 40.0 % Information Information Information Information Information Information Information Information Information Inform	nductor
8. IC Tolerance 5.0 mV IC IC Feedback Tolerance 9. ICThetaJA Effective 29.0 degC/W IC Effective IC Junction-to-Ambient Thermal Resistance 10. Iin Avg 112.29 mA IC Average input current 11. Ipp percentage 39.785 % Inductor Inductor ripple current percentage (with respect to average in current) 12. L Ipp 278.498 mA Inductor Peak-to-peak inductor ripple current percentage (with respect to average in current) 13. L Pd 27.802 mW Inductor Inductor power dissipation 14. Cin Pd 183.4 µW Power Input capacitor power dissipation 15. Cout Pd 19.629 µW Power IC power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power IC power dissipation 18. Total Pd 542.293 mW Power Inductor power dissipation 19. BOM Count 11 System Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current 40.0 % System Information 27. Information System Information 28. Gain Marg -21.139 dB System Information 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Gain Marg -21.139 dB System Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current) 29. Custom Inductor ripple current (% of average inductor current requirement used for Inductor selection	nductor
9. ICThetaJA Effective 29.0 degC/W 112.29 mA 122.29 mA 122.29 mA 122.29 mA 123. lpp percentage 39.785 % Inductor Inductor ripple current percentage (with respect to average inductor ripple current) lnductor ripple current percentage (with respect to average inductor ripple current) lnductor ripple current percentage (with respect to average inductor ripple current) lnductor peak-to-peak inductor ripple current lnductor ripple current lnductor power dissipation lnductor power	nductor
10. Iin Avg 112.29 mA IC Average input current Inductor ripple current percentage (with respect to average in current) 11. Ipp percentage 278.498 mA Inductor Peak-to-peak inductor ripple current percentage (with respect to average in current) 12. L Ipp 278.498 mA Inductor Peak-to-peak inductor ripple current 13. L Pd 27.802 mW Inductor Inductor power dissipation 14. Cin Pd 183.4 µW Power Input capacitor power dissipation 15. Cout Pd 19.629 µW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Inductor power dissipation 19. BOM Count 11 System Total Design BOM count Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection	nductor
11. Ipp percentage 39.785 % Inductor Inductor ripple current percentage (with respect to average in current) 12. L Ipp 278.498 mA Inductor Peak-to-peak inductor ripple current 13. L Pd 27.802 mW Inductor Inductor power dissipation 14. Cin Pd 183.4 µW Power Input capacitor power dissipation 15. Cout Pd 19.629 µW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Inductor power dissipation 19. BOM Count 11 System Total Power Dissipation 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Duty cycle Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection 11. Information Information Custom Information System Custom Inductor ripple current (% of average inductor current requirement used for Inductor selection	nductor
Current) 12. L Ipp	nductor
 12. L Ipp 278.498 mA Inductor Peak-fo-peak inductor ripple current 13. L Pd 27.802 mW Inductor Inductor power dissipation 14. Cin Pd 183.4 μW Power Input capacitor power dissipation 15. Cout Pd 19.629 μW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Inductor power Dissipation 19. BOM Count 11 System Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection 27. Custom Inductor ripple current (% of average inductor curre requirement used for Inductor selection 28. Inductor ripple current requirement used for Inductor selection 	
14. Cin Pd 15. Cout Pd 19.629 μW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Power Inductor power dissipation 19. BOM Count 11 System Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection Information System Information Information Custom Inductor ripple current (% of average inductor curre requirement used for Inductor selection	
15. Cout Pd 19.629 μW Power Output capacitor power dissipation 16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Total Power Dissipation 19. BOM Count 11 System Total Design BOM count Information 20. Cross Freq 16.035 kHz System Bode plot crossover frequency Information 21. Duty Cycle 14.344 % System Duty cycle 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection 27. Cout Pd 19.629 μW Power Output capacitor power dissipation 1C power dissipation 1ct power diss	
16. IC Pd 513.77 mW Power IC power dissipation 17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Total Power Dissipation 19. BOM Count 11 System Total Design BOM count 11 System Bode plot crossover frequency 12. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection 27. FootPrint 47.00 % System Custom Inductor ripple current (% of average inductor curre requirement used for Information requirement used for Inductor selection	
17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Total Power Dissipation 19. BOM Count 11 System Total Design BOM count 11 System Bode plot crossover frequency 11 Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Steady state efficiency 11 Information System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Bode Plot Gain Margin 26. Inductor ripple current requirement used for Inductor selection Information requirement used for Inductor selection	
17. L Pd 27.802 mW Power Inductor power dissipation 18. Total Pd 542.293 mW Power Total Power Dissipation 19. BOM Count 11 System Total Design BOM count 11 System Bode plot crossover frequency 11 Information 20. Cross Freq 16.035 kHz System Information 21. Duty Cycle 14.344 % System Information 22. Efficiency 86.585 % System Steady state efficiency 11 Information System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Bode Plot Gain Margin 26. Inductor ripple current requirement used for Inductor selection Information requirement used for Inductor selection	
19. BOM Count 11 System Information 20. Cross Freq 16.035 kHz System Bode plot crossover frequency Information 21. Duty Cycle 14.344 % System Duty cycle Information 22. Efficiency 86.585 % System Steady state efficiency Information 23. FootPrint 304.0 mm² System Total Foot Print Area of BOM components Information 24. Frequency 405.78 kHz System Switching frequency Information System Bode Plot Gain Margin Information 26. Inductor ripple current requirement used for Inductor selection 10.035 kHz System Bode Plot Gain Margin Custom Inductor ripple current (% of average inductor current requirement used for Inductor selection	
20. Cross Freq 16.035 kHz System Bode plot crossover frequency Information 21. Duty Cycle 14.344 % System Duty cycle 22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Switching frequency Information 25. Gain Marg -21.139 dB System Bode Plot Gain Margin 26. Inductor ripple current requirement used for Information Information System Custom Inductor selection 27. Frequency 40.0 % System Custom Inductor ripple current (% of average inductor current requirement used for Information requirement used for Inductor selection	
20. Cross Freq 16.035 kHz System Information Duty Cycle 14.344 % System Information Duty cycle 21. Duty Cycle 14.344 % System Duty cycle 22. Efficiency 86.585 % System Information Steady state efficiency Information Duty Cycle 23. FootPrint 304.0 mm² System Total Foot Print Area of BOM components Information System Information System Switching frequency Information Duty Cycle 24. Frequency 405.78 kHz System Switching frequency Information System Information Duty Cycle 25. Gain Marg -21.139 dB System Bode Plot Gain Margin Information Duty Cycle 26. Inductor ripple current requirement used for Inductor selection Information requirement used for Inductor selection	
Duty Cycle	
22. Efficiency 86.585 % System Steady state efficiency Information	
22. Efficiency 86.585 % System Information 23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection 27. System Switching frequency Information 28. Inductor ripple current requirement used for Information Information Information Information requirement used for Inductor selection 28. System System Sode Plot Gain Margin Information requirement used for Inductor selection	
23. FootPrint 304.0 mm² System Information 24. Frequency 405.78 kHz System Switching frequency Information 25. Gain Marg -21.139 dB System Bode Plot Gain Margin Information 26. Inductor ripple current requirement used for Inductor selection 27. Frequency System Switching frequency Information 28. Custom Inductor ripple current (% of average inductor current requirement used for Inductor selection requirement used for Inductor selection	
24. Frequency 405.78 kHz System Information 25. Gain Marg -21.139 dB System Information 26. Inductor ripple current requirement used for Inductor selection System Information Custom Inductor ripple current (% of average inductor curre requirement used for Inductor selection	
 25. Gain Marg 26. Inductor ripple current requirement used for Inductor selection 26. Inductor ripple current requirement used for Inductor selection 27. System Sustem Inductor ripple current (% of average inductor curre requirement used for Inductor selection 	
26. Inductor ripple current 40.0 % System Custom Inductor ripple current (% of average inductor curre requirement used for Information requirement used for Inductor selection	
Inductor selection	nt)
21. IOUL 700.0 IIIA SYSTEIN IOUL ODEIALIIU DOINL	
Information	0 1
28. lout transient step used 350.0 mA System Custom Transient current step requirement that was used for Cout calculations Information selection (A).	r Cout
29. Low Freq Gain 47.498 dB System Gain at 1Hz Information	
30. Mode CCM System Conduction Mode Information	
31. Overshoot Value 15.073 mV System Theoretical Vout Overshoot Value Information	
32. Phase Marg 60.49 deg System Bode Plot Phase Margin Information	
33. Pout 3.5 W System Total output power Information	
34. Total BOM \$3.16 System Total BOM Cost Information	

#	Name	Value	Category	Description
35.	Undershoot Value	25.864 mV	System Information	Theoretical Vout Undershoot Value
36.	Vin	36.0 V	System Information	Vin operating point
37.	Vin p-p	123.154 mV	System Information	Peak-to-peak input voltage
38.	Vout	5.0 V	System Information	Operational Output Voltage
39.	Vout Actual	5.02 V	System Information	Vout Actual calculated based on selected voltage divider resistors
40.	Vout Ripple requirement used for Cout calculations	1.0 %	System Information	Custom maximum output ripple requirement that was used for Cout selection(% of Vout).
41.	Vout Tolerance	2.126 %	System Information	Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable
42.	Vout p-p	2.841 mV	System Information	Peak-to-peak output ripple voltage
43.	Vout transient requirement used for Cout calculations	3.0 %	System Information	Custom Transient voltage change requirement that was used for Cout selection (% of Vout).

Design Inputs

Name	Value	Description	
lout	700.0 m	Maximum Output Current	
VinMax	36.0	Maximum input voltage	
VinMin	7.0	Minimum input voltage	
Vout	5.0	Output Voltage	
base_pn	LMR38010S-Q1	Base Product Number	
source	DC	Input Source Type	
Та	30.0	Ambient temperature	

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 7.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

- 1. Master key: 9BEBB61A34925AAD[v1]
- 2. LMR38010S-Q1 Product Folder: http://www.ti.com/product/LMR38010%2DQ1: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.