Final Examination

Date: January 30, 2024; Duration: 120 minutes Close book; Offline, One note (A4 size) is allowed.

SUBJECT: Name of course (ID:	EE051IU) Principles of Electrical
Engineering I	
Approval by the School	Lecturer:
Signature	Signature
	Su
Full name: Vo Tan Phuoc	Full name: Tran Van Su
Proctor 1	Proctor 2
Signature	Signature
Full name:	Full name:
STUDENT INFO	
Student name:	
Student ID:	

INSTRUCTIONS: the total of point is 100 (equivalent to 40% of the course)

1. Purpose:

- Test your knowledge in understanding the fundamentals of techniques of circuit analysis in AC; balanced three-phase circuits. (G1.3)
- Test your knowledge in applying the techniques of circuit analysis to solve electrical engineering circuits (AC). (G2.1)
- Test your knowledge in applying the techniques of circuit analysis to solve electrical engineering circuits balanced three-phase circuits. (G2.3)
- Examine your skill in Designing, implementing real circuits. (G4.1)

2. Requirement:

- Read carefully each question and answer it following the requirements.
- Write the answers and draw models CLEAN and TIDY directly in the exam paper.

QUESTIONS

Question 1

The electric circuit is depicted in the figure with $v_s(t) = 20cos(5000t) \text{ V}$

- a. Show all the values of circuit elements in phasors.
- b. Calculate i(t).
- c. Compute and draw the Thevenin equivalent circuit in phasor for terminals a and b.
- d. If a capacitor of 100μF is connected to terminal a and b, determine the voltage across the capacitor in time domain.

Question 2

The electric circuit is shown in the figure

- a. Show the circuit in phasors.
- b. Establish the mesh-current equations in phasor.
- c. Determine I_1 in phasor and $i_1(t)$.
- d. Determine voltage across the capacitor in frequency and time domains.

Question 3

The electric circuit is described below with four circuit elements and one current source sin(t) (A) with the voltage polarity given.

- -----
- a. Use source transformation method to determine voltage across 1 Ω resistor in phasor and time domain.
- b. What is the average power dissipated in 1 Ω .
- c. What is the complex power S of the current source (sint) in the circuit.

Question 4 (20 Marks)

A linear transformer is depicted in the figure

- a. Calculate the reflected impedance from secondary circuit to the primary winding. (10 Marks)
- b. What is the complex power of the voltage source. (5 Marks)
- c. What is the voltage for secondary coil. (5 Marks)

Question 5 (20 Marks)

A three-phase circuit is described in the figure with voltage sources are 220 V_{rms}. Find

- a. I_{aA} , I_{bB} and I_{cC} . (5 Marks)
- b. V_{AN} , V_{BN} and V_{CN} . (5 Marks)

HCMC National University	
International University	

Student Name:	
Student ID:	

- c. V_{AB} , V_{BC} and V_{CA} . (5 Marks)
- d. Total average power of the three-phase load. (5 Marks)

- END OF QUESTIONS -