Laboratory 3: Smith Chart

In this laboratory, we will develop several simple functions relating the load impedance Z_L , reflection coefficient Γ and input impedance Z_{in} for a lossless transmission line with characteristic impedance Z_0 , phase constant β and length l.

1. Reflection coefficient and input impedance

Write a function that calculates the reflection coefficient Γ from the normalized load impedance $z_L = Z_L / Z_0$,

a function that calculates a rotated (phase shifted) reflection coefficient Γ ' from the reflection coefficient Γ and round-trip phase $\theta = 2\beta l$,

and a function that calculates the normalized input impedance $z_{in} = Z_{in} / Z_0$ from the reflection coefficient Γ and round-trip phase $\theta = 2\beta l$,

as defined by the following equations,

$$\Gamma = \frac{z_L - 1}{z_L + 1} \qquad \qquad \Gamma' = \Gamma \exp(-j\theta) \qquad \qquad z_{in} = \frac{1 + \Gamma'}{1 - \Gamma'} = \frac{1 + \Gamma \exp(-j\theta)}{1 - \Gamma \exp(-j\theta)} \qquad \qquad \theta = 2\beta l$$

Alternatively, you might wish to calculate input impedance z_{in} directly from the rotated coefficient Γ '. In the following, you may find it useful to recall,

$$\beta = \frac{2\pi f}{v_p}$$

For all of the calculations that follow, consider the case of a lossless transmission line with a characteristic impedance $Z_0 = 75 \Omega$, phase velocity $v_p = 2 \times 10^8 \text{ m/s}$, and length l = 0.25 m.

Take a frequency range f = 1 MHz to 300 MHz in steps of $\Delta f = 1$ MHz.

2. Reflection coefficient of RC, RL and RLC circuits on a Smith Chart

Consider three load impedances:

how to draw ??

- a) series RC circuit, $Z_L = R + 1/j\omega C$, with $R = 75 \Omega$ and C = 100 pF
- b) series RL circuit, $Z_L = R + j\omega L$, with $R = 75 \Omega$ and L = 200 nH upper
- c) series RLC circuit, $Z_L = R + 1/j\omega C + j\omega L$, with $R = 75 \Omega$, L = 200 nH and C = 100 pF origin
- d) parallel RLC circuit, $Z_L = 1/(1/R + 1/j\omega L + j\omega C)$, with $R = 75 \Omega$, L = 200 nH and C = 100 pF

Calculate the reflection coefficient Γ for the frequency range specified above, and plot Γ in the complex plane on a Smith chart for each of the load impedances. This can be conveniently done using a MATLAB command from the RFToolbox, s = smithplot(f, Gamma) where s is the handle for your Smith chart. You can add a title with the commend s. TitleTop = 'RC circuit' for example. The values of Γ can be read explicitly by floating your cursor over the data point of interest.

Inspect your Smith charts. Notice that $|\Gamma|$, and the VSWR s, varies with frequency for these load impedances.

Why does the reflection coefficient Γ for the series RC circuit follow the r = 1 locus in the lower half plane? Why does the reflection coefficient Γ for the series RL circuit follow the r = 1 locus in the upper half plane? Why does the reflection coefficient Γ for the series RLC circuit follow the r = 1 locus?

At what frequency f is the series RLC circuit impedance matched, Γ = 0, with the transmission line? What is the reactive component of the load impedance, x_L = Re{ z_L }, when the impedance matching condition is satisfied?

Nº 1: Show your results to the teaching assistant.

Optional: Why does the reflection coefficient Γ for the parallel RLC circuit follow the locus of constant normalized conductance, $q = \text{Re}\{Z_0/Z_L\} = 1$.

3. Reflection and input impedance of transmission line with a resistive load

Consider a resistive load impedance $Z_L = 15 \Omega$. Calculate the reflection coefficient Γ , the rotated reflection coefficient Γ , and the normalized input impedance z_{in} for the frequency range specified above.

Plot the rotated reflection coefficient Γ ' in the complex plane on a Smith chart, using for example the MATLAB command s = smithplot(f, Gammarot). Plot the real and imaginary parts of the normalized input impedance z_{in} versus frequency. This can be done simply using h = plot(f, real(zin), f, imag(zin)) for example.

Inspect your Smith chart and your impedance versus frequency plots.

Where on your Smith chart are the points corresponding to low frequency operation (f = 1 MHz) and high frequency operation (f = 300 MHz)?

At what frequency is the transmission line acting as a ¼ wave transformer?

Use your Smith chart to determine the length of the transmission line in terms of wavelengths at f = 300 MHz, by determining the rotation angle θ = $2\beta l$ at f = 300 MHz, and then calculating l/λ (300 MHz) = $\beta l/2\pi$ = $\theta/4\pi$. Does this agree with direct calculation of l/λ (300 MHz) = l x 300 MHz / v_p ? Use your Smith chart to determine the VSWR.

Nº 2: Show your results to the teaching assistant.

4. Reflection and input impedance of transmission line with an inductive load

Consider an inductive load impedance $Z_L = j\omega L$ with L = 20 nH. Calculate the reflection coefficient Γ , the rotated reflection coefficient Γ ' and the normalized input impedance z_{in} for the frequency range specified above.

Plot the rotated reflection coefficient Γ ' in the complex plane on a Smith chart. Plot the real and imaginary parts of the normalized input impedance z_{in} versus frequency. Restrict your impedance figure axes to normalized impedance components within the range ± 15 .

What is the minimum frequency f required to achieve a capacitive ($x_{in} < 0$) input impedance z_{in} ? Will increasing the inductance L increase, or decrease, the minimum frequency f required to achieve a capacitive ($x_{in} < 0$) input impedance z_{in} ?

Nº 3: Show your results to the teaching assistant.

5. Reflection and input impedance of transmission line with a series RLC circuit

Consider a load impedance $Z_L = R + j\omega L + 1/j\omega C$ of a series combination of resistance $R = 75 \Omega$, inductance L = 200 nH and capacitance C = 100 pF (as in exercise 2 c). Calculate the reflection coefficient Γ , the rotated reflection coefficient Γ and the normalized input impedance Z_{in} for the frequency range specified above.

Plot the rotated reflection coefficient Γ ' in the complex plane on a Smith chart. The result is non-trivial. Plot the real and imaginary parts of the normalized input impedance z_{in} versus frequency. Restrict your figure axes to impedance components within the range ± 15 .

Inspect your Smith chart and your impedance versus frequency plots, and consider the following questions. At what frequency f is the impedance matching condition Γ = 0 satisfied? Does the length I of the transmission line affect the frequency at which Γ = 0 is achieved? Why does $|\Gamma| \approx 1$ in the low-frequency (f = 1 MHz) and high-frequency (f = 300 MHz) limits?

Nº 4: Show your results to the teaching assistant.

Optional: Compare the Smith charts of the series RLC circuit reflection coefficient Γ (exercise 2c) and rotated reflection coefficient Γ '. Using the two charts, determine the length of the transmission line in terms of wavelengths at f=300 MHz. In other words, determine the ratio $l/\lambda(300$ MHz). Confirm that your answer is the same as in exercise 3, as it must be, because the transmission line is unchanged.