BUSINESS QUESTIONS

- What is highest and lowest budgets used and for which movies
- What is the target audience(target genre)
- Which movies have the highest icome and the genre as well
- The top performing studios

bom movie df

MICROSOFT MOVIE PROJECT

The aim of this projet is to give high reccommendations of movies Microsoft can use to create. Analysis will be performed moreso correlation to give us the reccommendations Microsoft can use. EDA and data analysis will be performed. Also answered are the business questions helped to formulate the recommendation ad solution that will be provided.

1)In depth understanding of the Data

```
In [3]: #Import the libraries needed: pandas, numpy and matplotlib
        import pandas as pd
        import numpy as np
        import csv
        import seaborn as sns
        import matplotlib.pyplot as plt
        import sqlite3
        import zipfile
        %matplotlib inline
In [4]: #Load the datasets that will be used
        bom_movie_df = pd.read_csv('zippedData/bom.movie_gross.csv', index_col=0)
        #load the dataset #tn.movie budgets.csv
        tn_df = pd.read_csv('zippedData/tn.movie_budgets.csv', index_col=0)
        #load the dataset # rt.movie_info.tsv
        movieinfo_df = pd.read_csv('zippedData/rt.movie_info.tsv', sep = '\t')
        #Load the dataset #tmdb.movies.csz
        tmdb_df = pd.read_csv('zippedData/tmdb.movies.csv', index_col=0)
        #load the dataset im.db
In [5]: bom_movie_df = pd.read_csv('zippedData/bom.movie_gross.csv', index_col=0)
```

_			
()	114	1 5 1	
\cup	uч	ーンコ	

title				
Toy Story 3	BV	415000000.0	652000000	2010
Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
Inception	WB	292600000.0	535700000	2010
Shrek Forever After	P/DW	238700000.0	513900000	2010
The Quake	Magn.	6200.0	NaN	2018
Edward II (2018 re-release)	FM	4800.0	NaN	2018
El Pacto	Sony	2500.0	NaN	2018
The Swan	Synergetic	2400.0	NaN	2018
An Actor Prepares	Grav.	1700.0	NaN	2018

studio domestic_gross foreign_gross year

3387 rows × 4 columns

In [6]: bom_movie_df.describe()

Out[6]:

	domestic_gross	year
count	3.359000e+03	3387.000000
mean	2.874585e+07	2013.958075
std	6.698250e+07	2.478141
min	1.000000e+02	2010.000000
25%	1.200000e+05	2012.000000
50%	1.400000e+06	2014.000000
75%	2.790000e+07	2016.000000
max	9.367000e+08	2018.000000

In [7]: tn_df = pd.read_csv('zippedData/tn.movie_budgets.csv', index_col=0)
tn_df

Out[7]:		release_date	movie	production_budget	domestic_gross	$worldwide_gross$
	id					
	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
	•••					
	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041

5782 rows × 5 columns

[n [8]:	<pre>tn_df.describe()</pre>							
out[8]:		release_date	movie	production_budget	domestic_gross	worldwide_gross		
	count	5782	5782	5782	5782	5782		
	unique	2418	5698	509	5164	5356		
	top	Dec 31, 2014	Home	\$20,000,000	\$0	\$0		
	freq	24	3	231	548	367		

Merge the tables that will be required

bom_movie_df' and 'tn_df'. In this case the recommended method of joining the tables is by use of concact method. using the join method in this case overlaps the columns and also some of these columns have a differrent data type, hence recommend concact. Shape of the merged data With the merged dataset we have to know the shape of the dataset. Columns, rows, statistics in this case the mean, median and standard deviation.

```
In [9]: #merged data
new_movie_df = pd.merge(bom_movie_df,tn_df, how = "inner", left_on="title",right_on
new_movie_df
```

Out[9]:		studio	domestic_gross_x	foreign_gross	year	release_date	movie	production_budget
	0	BV	415000000.0	652000000	2010	Jun 18, 2010	Toy Story 3	\$200,000,000
	1	WB	292600000.0	535700000	2010	Jul 16, 2010	Inception	\$160,000,000
	2	P/DW	238700000.0	513900000	2010	May 21, 2010	Shrek Forever After	\$165,000,000
	3	Sum.	300500000.0	398000000	2010	Jun 30, 2010	The Twilight Saga: Eclipse	\$68,000,000
	4	Par.	312400000.0	311500000	2010	May 7, 2010	Iron Man 2	\$170,000,000
	•••							
	1242	VE	4300000.0	NaN	2018	Jun 15, 2018	Gotti	\$10,000,000
	1243	RAtt.	3700000.0	NaN	2018	Dec 7, 2018	Ben is Back	\$13,000,000
	1244	VE	491000.0	1700000	2018	Feb 2, 2018	Bilal: A New Breed of Hero	\$30,000,000
	1245	RLJ	1200000.0	NaN	2018	Sep 14, 2018	Mandy	\$6,000,000
	1246	A24	1200000.0	NaN	2018	Apr 6, 2018	Lean on Pete	\$8,000,000

1247 rows × 9 columns

```
In [10]: #In this case we have 9169 rows and 8 columns
   new_movie_df.shape
```

Out[10]: (1247, 9)

```
In [11]: #The .columns() function is used to identify the column names of the dataframe
    new_movie_df.columns
```

In [12]: #Used the .info() function to give the column names and the datatypes. In this case
new_movie_df.info()

```
<class 'pandas.core.frame.DataFrame'>
         Int64Index: 1247 entries, 0 to 1246
         Data columns (total 9 columns):
            Column
                               Non-Null Count Dtype
         --- -----
                               -----
            studio
                              1246 non-null object
          0
            domestic_gross_x 1245 non-null float64
            foreign_gross 1086 non-null object
          2
          3 year
                              1247 non-null int64
          4 release_date
                             1247 non-null object
          5 movie
                              1247 non-null object
          6 production_budget 1247 non-null object
          7 domestic_gross_y 1247 non-null
                                               object
          8 worldwide_gross
                               1247 non-null
                                               object
         dtypes: float64(1), int64(1), object(7)
         memory usage: 97.4+ KB
In [13]: #Change the 'Year' to the Dtype 'Object'
         new_movie_df = new_movie_df.astype({'year':'object'})
         new_movie_df.dtypes
Out[13]: studio
                              object
         domestic_gross_x
                            float64
         foreign_gross
                            object
         year
                             object
         release_date
                             object
                              object
         movie
         production_budget object
         domestic_gross_y
                              object
        worldwide_gross
                              object
         dtype: object
In [14]: #To know the statistics of the data: Mean, Median and std, count etc
         new_movie_df.describe()
Out[14]:
               domestic_gross_x
         count
                  1.245000e+03
                  6.062353e+07
                  8.477607e+07
           std
                  8.000000e+02
          min
          25%
                  7.500000e+06
          50%
                  3.340000e+07
          75%
                  7.420000e+07
                  7.001000e+08
          max
```

2)Data Preparation

With the merged dataset, we have to perform EDA. In this case, we identify duplicated

values, missing values and the percentage of the missing values. Using the Percentage in this case will give us a method or rather solution to the missing values: drop the missing values or use different methods to fill the missing values. Henceforth, we perform data cleaning to reduce inconsistency and improve accuracy

2.1) Check for duplicate values

In [15]: #Identify the duplicated values and check how many we have.

new_movie_df.duplicated().value_counts()

```
Out[15]: False
                  1247
         dtype: int64
In [16]: #We reomove the duplicated values and this makes a diffrence from the previous.
         new_movie_df = new_movie_df.drop_duplicates()
         new_movie_df.shape
Out[16]: (1247, 9)
         2.1) Missing values
In [17]: #We check for missing values in the merged dataframe, represented by Nan(null value
         new_movie_df.isna().sum()
Out[17]: studio
         domestic_gross_x
                               2
         foreign_gross
                             161
         year
         release_date
         movie
         production_budget
         domestic_gross_y
                               0
         worldwide_gross
         dtype: int64
In [18]: #Check the percentage of missing values for 'foreign_gross' column since it has the
         print('Percentage of Null foreign_gross Values:', len(new_movie_df[new_movie_df.for
```

Percentage of Null foreign_gross Values: 0.12910986367281477

In [19]: #Visually represent the missing values with a heatmap

plt.show()

sns.heatmap(new_movie_df.isnull(), cmap = 'viridis')
plt.title('Missing values in Foreign Gross Column')


```
In [20]:
         #Convert 'foreign_gross' column to a numeric data type
         new_movie_df['foreign_gross'] = pd.to_numeric(new_movie_df['foreign_gross'], errors
         #Calculate the mean and median of the foreign_gross column in 'new_movie_budget_df'
         foreign_gross_mean = new_movie_df['foreign_gross'].mean()
         foreign_gross_median = new_movie_df['foreign_gross'].median()
         print("Mean Value for foreign_gross column: {}".format(foreign_gross_mean))
         print("Median Value for foreign_gross column: {}".format(foreign_gross_median))
         Mean Value for foreign_gross column: 100945897.5896488
         Median Value for foreign gross column: 38050000.0
In [21]: new_movie_df['foreign_gross'].isna().sum
Out[21]: <bound method Series.sum of 0
                                              False
         1
                 False
         2
                 False
         3
                 False
                 False
         1242
                  True
         1243
                  True
                 False
         1244
         1245
                  True
                  True
         1246
         Name: foreign_gross, Length: 1247, dtype: bool>
In [22]: | new_movie_df['production_budget'] = new_movie_df['production_budget'].replace('[\$,]
         new_movie_df['worldwide_gross'] =new_movie_df['worldwide_gross'].replace('[\$,]',
         new_movie_df['domestic_gross_x'] =new_movie_df['domestic_gross_x'].replace('[\$,]',
```

new_movie_df['domestic_gross_y'] =new_movie_df['domestic_gross_y'].replace('[\\$,]',

Clean the merged data 'reviews_df'

• This is a dataframe that consist of 'tn_df' and 'movieinfo_df')

In [23]:	rev	iew	s_df = pd.me	erge(tn_d	df, movieinfo_df,	how = "inner",	, left_on="id",	right_on	="
In [24]:	<pre>#Drop the columns with missing values reviews_df = reviews_df.dropna() reviews_df.head()</pre>								
Out[24]:		id	release_date	movie	production_budget	domestic_gross	worldwide_gross	synopsis	rati
	58	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350	New York City, not-too- distant- future: Eric Pa	
	59	3	Nov 21, 2018	Ralph Breaks The Internet	\$175,000,000	\$201,091,711	\$524,283,695	New York City, not-too- distant- future: Eric Pa	
	60	3	Apr 8, 2005	Sahara	\$145,000,000	\$68,671,925	\$121,671,925	New York City, not-too- distant- future: Eric Pa	
	61	3	Oct 5, 2018	Venom	\$116,000,000	\$213,511,408	\$853,628,605	New York City, not-too- distant- future: Eric Pa	
	62	3	Feb 18, 2005	Son of the Mask	\$100,000,000	\$17,018,422	\$59,918,422	New York City, not-too- distant- future: Eric Pa	

Data Analysis

i) What was the Highest profit?

- The data for analysis used in this case is the new merged data
- The output in this case will be based on the worldwide and domestic gross to give the profits made
- Also we need to find the movie that made the highest profit
- Plot showing the profit made

```
In [25]: #Created a column called profit_needed
         new_movie_df["profit_made"] = (new_movie_df["worldwide_gross"] - new_movie_df["dome
         #Find the highest profit
         highest_profit = new_movie_df["profit_made"].max()
         print("The highest profit made is:" , highest_profit)
         The highest profit made is: 1369318718.0
         #Calculating the percentage profit
In [26]:
         new_movie_df["percentage_profit"] = (new_movie_df["profit_made"] / new_movie_df["pr
         # Finding the highest percentage
         highest_percentage_profit = new_movie_df["percentage_profit"].max()
         print("The highest percentage profit made is:", highest_percentage_profit)
         The highest percentage profit made is: 18892.064
In [27]: #Find the movies that made the highest profit
         profitable_movies = new_movie_df[new_movie_df["profit_made"] >0]["movie"].tolist()
         #To find the movie that made the highest profit
         highest_profit = new_movie_df['profit_made'].idxmax()
         highest_profit_movie = new_movie_df.loc[highest_profit]['movie']
         print("The movie with the highest profit made is", highest_profit_movie)
         The movie with the highest profit made is Avengers: Infinity War
In [28]: #Plot a histogram of the profits made
         fg, ax = plt.subplots(figsize=(40, 20))
         x = new_movie_df["profit_made"]
         y = new movie df["movie"]
         plt.hist(new_movie_df['profit_made'], bins=100)
         plt.xlabel('Profit Made')
         plt.ylabel('Frequency')
         plt.title('Distribution of Movie Profit Made')
         plt.show()
```


ii) What's the company's focal point

- This will depend on the foreign_gross and domestic_gross_y(the sales made)
- Plot the domestic sales and foreign sales.

```
In [44]: | print('The average worldwide sales: {} \nThe average foreign sales: {}'.format(
                                                                                 new_movie_df
                                                                                 new_movie_df
         print('The Difference: {}'.format(
                                      (new_movie_df["domestic_gross_x"].mean()-new_movie_df["
         The average worldwide sales: 60623530.9124498
         The average foreign sales: 152125895.94947875
         The Difference: -91502365.03702894
In [32]: #Set to plot
         fg, ax = plt.subplots(figsize=(50, 20))
         # Define the domestic and foreign sales
         plt.hist(new_movie_df['domestic_gross_x'], bins=20, alpha=0.5, label='Domestic Sale
         plt.hist(new_movie_df['worldwide_gross'], bins=20, alpha=0.5, label='Foreign Sales'
         #Label the axes
         plt.xlabel('Gross Sales')
         plt.ylabel('Number of Movies')
         plt.title('Distribution of Domestic and Foreign Sales', fontsize=37)
         plt.legend()
         plt.show()
```


Which movies brought in the highest income.

- In this case we want to find the first 20 movies that brought the highest income
- The output is based on 'domestic_gross and worldwide_gross
- Plot showing the income and movies

```
In [34]: # Select the necessary columns
         movie_income = new_movie_df[["movie", "domestic_gross_y", "worldwide_gross"]]
         # Calculate the total income for each movie
         movie_income.loc[:,"total_income"] = movie_income["domestic_gross_y"] + movie_incom
         # Sort the movies by total income in descending order
         movie_income = movie_income.sort_values(by="total_income", ascending=False)
         # Get the top 10 highest income movies
         top20_movies = movie_income.head(10)
         #Print the list of High Income movies
         print("Top 20 Movies with Highest Income")
         print(top20_movies["movie"])
         Top 20 Movies with Highest Income
         1154
                         Avengers: Infinity War
                                 Jurassic World
         764
         1155
                                  Black Panther
         765
                                       Furious 7
         766
                        Avengers: Age of Ultron
         1157
                                  Incredibles 2
                 Jurassic World: Fallen Kingdom
         1156
         496
                                          Frozen
         497
                                     Iron Man 3
                   Rogue One: A Star Wars Story
         Name: movie, dtype: object
```

```
In [35]: # Plot the bar chart
    fig, ax = plt.subplots(figsize=(10, 8))
    ax.barh(top20_movies["movie"], top20_movies["total_income"])
    ax.set_xlabel("Total Income")
    ax.set_ylabel("Movies")
    ax.set_title("Top 20 Movies with Highest Income")

plt.show()
```


Finding the top studios and how much income they generate

We use 'new movie_df' which is a merged dataframe of 'bom.movies and 'tn.movies

*Plot showing the information

```
In [36]: # Group the data by genre and calculates the sum of the domestic and worldwide gros
    studio_income =new_movie_df.groupby('studio')[['domestic_gross_y', 'worldwide_gross

#Creating a new column 'total_gross' summing up the two columns
    studio_income['total_gross'] = studio_income['domestic_gross_y'] + studio_income['w

#Sort the data frame by the total gross in descending order and have the genres wit
    studio_income = studio_income.sort_values('total_gross', ascending=False)

studio_income.head(10)
```

Out[36]:		studio	domestic_gross_y	worldwide_gross	total_gross
	15	BV	1.292614e+10	3.328602e+10	4.621216e+10
	90	Uni.	1.070684e+10	2.732929e+10	3.803613e+10
	32	Fox	9.410234e+09	2.679581e+10	3.620605e+10
	94	WB	9.130528e+09	2.219381e+10	3.132434e+10
	82	Sony	7.059959e+09	1.760181e+10	2.466177e+10
	69	Par.	6.007203e+09	1.443821e+10	2.044541e+10
	95	WB (NL)	3.417630e+09	8.540864e+09	1.195849e+10
	48	LGF	3.332465e+09	6.983389e+09	1.031585e+10
	64	P/DW	1.682915e+09	5.078028e+09	6.760942e+09
	47	LG/S	1.499805e+09	3.815925e+09	5.315730e+09

The top studios include:

- BV
- Uni.
- Fox
- WB
- Sony
- Par
- LGF
- P/DW
- LG/S

The studios enlisted above makes the highest total gross and Microsoft can indeed invest in these studios from movies produced or owned by these studios

```
In [37]: # select the top 10 studios by total gross income
top_10_studios = studio_income.head(10)

# plot a bar graph of the total gross income for each studio
top_10_studios.plot(x='studio', y='total_gross', kind='bar', legend=None)

# set the plot title and axis labels
plt.title('Top 10 Studios by Total Gross Income')
plt.xlabel('Studio')
plt.ylabel('Total Gross Income (in billions)')

# show the plot
plt.show()
```


The Genres that brought the highest income

- To find this we merge the 'tn_df' and movieinfo_df
- The output will be the income based on the domestic and worldwide gross
- Plot showing the profitable genres

```
In [38]: reviews_df = pd.merge(tn_df, movieinfo_df, how = "inner", left_on="id", right_on ="
In [40]: # Group the data by genre and calculates the sum of the domestic and worldwide gros
genre_income = reviews_df.groupby('genre')[['domestic_gross', 'worldwide_gross']].s

#Creating a new column 'total_gross' summing up the two columns
genre_income['total_gross'] = genre_income['domestic_gross'] + genre_income['worldw

#Sort the data frame by the total gross in descending order and have the genres wit
genre_income = genre_income.sort_values('total_gross', ascending=False)
genre_income.head(15)
```

Out[40]: genre domestic_gross worldwide_gross

	genre	domestic_gross	worldwide_gross	
41	Drama Mystery and Suspense	936, 662, 225150,201,498 305, 411, 224310,676,7	2, 053, 311, 220 302,469,017634, 954, 103 656,695	936, 662, 22 305, 411, 2
1	Action and Adventure Art House and Internation	92, 054, 159133,501,348 54, 647, 948 89,296,573\$	259, 357, 408397,501,348 240, 759, 682169,296,5	92, 054, 15
37	Drama	89, 302, 115417,719,760 122, 523, 060 42,779,261	260, 002, 1151,305,772,799 375, 740, 705232,017	89, 302, 11
31	Comedy Kids and Family Romance	80, 101, 125206,445,654 217, 536, 138 203,464,10	409, 953, 905626,549,695 767, 820, 459515,419,8	80, 101, 12
2	Action and Adventure Classics Drama	760, 507, 625293,004,164 111, 506, 43030,212,62	2, 776, 345, 279 731,463,377269, 806, 430 49,628,	760, 507, 62 111, 506, 4
3	Action and Adventure Classics Drama Mystery an	700, 059, 566146,408,305 215, 434, 5913,100,000	1, 348, 258, 224 355,408,305631, 910, 531 3,100,0	700,059,56 $215,434,59$
42	Drama Romance	678, 815, 482113,805,681 257, 730, 019289,423,4	2, 048, 134, 200 221,229,335386, 839, 614 559,757	678, 815, 48 257, 730, 0
22	Classics Comedy Musical and Performing Arts	659, 363, 944127,509,326 180, 202, 163315,544,7	2, 208, 208, 395 329,631,958518, 858, 449 887,210	659, 363, 94 180, 202, 1
11	Action and Adventure Mystery and Suspense	652, 270, 625100,368,560 63, 478, 83866,184,051	1, 648, 854, 864 176,038,324163, 818, 556 172,022	652, 270, 62 63, 478, 83
46	Musical and Performing Arts	623, 279, 547238,736,787 183, 637, 894102,608,8	1, 517, 935, 897 756,244,673532, 938, 302 208,370	623, 279, 54 183, 637, 89
39	Drama Musical and Performing Arts	620, 181, 382152,901,115 160, 942, 139380,270,5	1, 316, 721, 747 383,541,369431, 942, 139 848,998	620, 181, 38 160, 942, 1
30	Comedy Kids and Family	532, 177, 32460,674,817 171, 958, 438 58,183,966	1, 049, 102, 856 181,674,817341, 528, 518 87,683,	532, 177, 3
32	Comedy Musical and Performing Arts	486, 295, 56147,225,655 149, 260, 504 228,433,66	1, 021, 215, 193 425,522,281554, 987, 477 655,271	486, 295, 5
23	Classics Comedy Musical and Performing Arts Ro	423, 315, 812232,641,920 126, 930, 660100,014,6	1, 066, 215, 812 676,404,566361, 730, 660 302,239	$423, 315, 81 \\ 126, 930, 6$
43	Drama Science Fiction and Fantasy	42, 762, 350201,091,711 68, 671, 925 213,511,408	149, 762, 350524,283,695 121, 671, 925853,628,6	42,762,35

In [43]: genre_income.tail(100)

Out[43]: genre domestic_gross worldwide_gross

	genre	domestic_gross	worldwide_gross	
41	Drama Mystery and Suspense	936, 662, 225150,201,498 305, 411, 224310,676,7	2, 053, 311, 220302,469,017 634, 954, 103656,695	936, 662, 305, 411
1	Action and Adventure Art House and Internation	92, 054, 159133,501,348 54, 647, 948 89,296,573\$	259, 357, 408397,501,348 240, 759, 682169,296,5	92,054,
37	Drama	89, 302, 115417,719,760 122, 523, 060 42,779,261	260, 002, 1151,305,772,799 375, 740, 705232,017	89, 302,
31	Comedy Kids and Family Romance	80, 101, 125206,445,654 217, 536, 138 203,464,10	409, 953, 905626,549,695 767, 820, 459515,419,8	80, 101,
2	Action and Adventure Classics Drama	760, 507, 625293,004,164 111, 506, 43030,212,62	2, 776, 345, 279731,463,377 269, 806, 43049,628,	$760, 507, \\111, 506$
3	Action and Adventure Classics Drama Mystery an	700, 059, 566146,408,305 215, 434, 5913,100,000	1, 348, 258, 224355,408,305 631, 910, 5313,100,0	700,059, $215,434$
42	Drama Romance	678, 815, 482113,805,681 257, 730, 019289,423,4	2, 048, 134, 200221,229,335 386, 839, 614559,757	678, 815, 257, 730
22	Classics Comedy Musical and Performing Arts	659, 363, 944127,509,326 180, 202, 163315,544,7	2, 208, 208, 395329,631,958 518, 858, 449887,210	$659, 363, \\180, 202$
11	Action and Adventure Mystery and Suspense	652, 270, 625100,368,560 63, 478, 83866,184,051	1, 648, 854, 864176,038,324 163, 818, 556172,022	652, 270, 63, 478,
46	Musical and Performing Arts	623, 279, 547238,736,787 183, 637, 894102,608,8	1, 517, 935, 897756,244,673 532, 938, 302208,370	$623, 279, \\183, 637$
39	Drama Musical and Performing Arts	$620, 181, 382152, 901, 115 \\ 160, 942, 139380, 270, 5$	$1, 316, 721, 747383, 541, 369 \\ 431, 942, 139848, 998$	620, 181, 160, 942
30	Comedy Kids and Family	532, 177, 32460,674,817 171, 958, 438 58,183,966	1, 049, 102, 856181,674,817 341, 528, 51887,683,	532,175
32	Comedy Musical and Performing Arts	486, 295, 56147,225,655 149, 260, 504 228,433,66	1, 021, 215, 193425,522,281 554, 987, 477655,271	486, 29!
23	Classics Comedy Musical and Performing Arts Ro	423, 315, 812232,641,920 126, 930, 660100,014,6	$1,066,215,812676,404,566\\361,730,660302,239$	423, 315, 126, 930
43	Drama Science Fiction and Fantasy	42, 762, 350201,091,711 68, 671, 925 213,511,408	149, 762, 350524,283,695 121, 671, 925853,628,6	42, 762,
10	Action and Adventure Drama Western	408, 992, 272104,386,950 138, 540, 870144,801,0	1, 215, 392, 272418,186,950 273, 271, 982348,629	408, 992, 138, 540
40	Drama Musical and Performing Arts Romance	40, 479, 37073,103,784 101, 028, 233 55,675,313\$	215, 098, 356205,440,387 428, 056, 280139,716,7	40, 479

	genre	domestic_gross	worldwide_gross	
5	Action and Adventure Comedy Mystery and Suspense	389, 813, 10189,760,956 131, 538, 435 140,015,22	862, 316, 233432,150,894 492, 846, 291298,815,2	389, 81;
6	Action and Adventure Drama	373, 524, 48559,874,525 118, 311, 368 104,400,89	795, 110, 670290,930,148 290, 650, 494270,997,3	373, 524
47	Mystery and Suspense	334, 191, 11034,297,191 101, 200, 044 94,784,201	1, 025, 491, 110167,297,191 352, 831, 065269,065	334, 191
35	Documentary	330, 360, 194187,224,605 31, 153, 464186,336,27	867, 500, 281311,365,187 138, 836, 756486,124,0	330, 360, 31, 153,
33	Comedy Mystery and Suspense Science Fiction an	315, 058, 289133,298,577 32, 698, 89977,233,467	846, 980, 024484,161,265 61, 698, 89999,123,656	$315,058, \\ 32,698,$
38	Drama Kids and Family	309, 420, 425102,491,776 201, 578, 182132,556,8	963, 420, 425405,760,225 554, 600, 000416,456,8	309,420, $201,578$
29	Comedy Drama Romance	304, 360, 277146,880,162 77, 591, 83164,063,008	1, 110, 526, 981489,592,267 373, 993, 951402,156	304, 360, 77, 591,
36	Documentary Special Interest	303, 003, 568155,136,755 403, 706, 375155,190,8	1, 017, 003, 568401,021,746 821, 706, 375456,258	303, 003, 403, 706
20	Classics Comedy Drama	302, 089, 278150,358,296 107, 509, 799142,614,1	935, 213, 767433,058,296 186, 976, 250563,749,3	302, 089, 107, 509
27	Comedy Drama Kids and Family Romance	291, 710, 957131,772,187 260, 044, 82575,030,16	720, 539, 572319, 713, 881 345, 141, 403249, 488, 1	291, 710, 260, 044
28	Comedy Drama Mystery and Suspense	255, 119, 788113,883,318 134, 806, 913130,179,0	945, 577, 621345,004,422 265, 573, 859295,075,8	255, 119, 134, 806
26	Comedy Drama	234, 770, 996319,246,193 49, 554, 002100,234,83	490, 359, 051708,272,592 215, 080, 810408,803,6	234, 770, 49, 554,
15	Art House and International Classics Horror My	234, 362, 462292,576,195 424, 668, 04748,097,08	459, 260, 946835,524,642 864, 868, 047150,468,0	234, 362, 424, 668
13	Action and Adventure Science Fiction and Fantasy	233, 921, 534412,563,408 33, 618, 855101,643,00	747, 862, 775821,133,378 79, 076, 678232,643,00	$233,921, \\ 33,618,$
24	Classics Drama	228, 778, 661195,042,377 191, 204, 754173,005,0	467, 381, 584688,858,992 485, 004, 754331,323,4	228, 778, 191, 204
14	Art House and International Classics Horror	220, 159, 10445,157,105 93, 050, 117 49,438,370\$	787, 456, 552334,486,852 286, 192, 09169,548,64	220, 159
12	Action and Adventure Mystery and Suspense Scie	200, 821, 936312,433,331 110, 550, 000324,591,7	586, 477, 240621,156,389 203, 018, 919786,680,5	200, 821, 110, 550
4	Action and Adventure Comedy Drama	200, 120, 00085,710,210 32, 131, 830 125,304,276	374, 085, 065402,976,036 85, 131, 830339,504,27	200, 120

	genre	domestic_gross	worldwide_gross	
25	Comedy	200, 074, 17588,246,220 176, 654, 505 48,003,015	879, 620, 923264,246,220 370, 569, 776165,149,3	200,074
9	Action and Adventure Drama Science Fiction and	172, 558, 87685,576,941 292, 324, 737 113,330,34	788, 241, 137299,276,941 829, 724, 737215,300,0	172,558
34	Comedy Romance	172, 062, 763292,137,260 137, 748, 063100,478,6	400, 062, 763943,076,457 356, 148, 063133,401,8	172, 062, 137, 748
16	Art House and International Comedy Drama Music	169, 368, 42777,042,381 187, 168, 425 106,580,05	591, 692, 078276,928,112 573, 068, 425330,780,0	169, 368
17	Art House and International Drama	166, 112, 167290,201,752 226, 277, 06897,104,62	757, 677, 748897,099,794 615, 461, 394212,282,7	$166, 112, \\226, 277$
21	Classics Comedy Drama Romance	155, 442, 48935,088,320 89, 107, 235 48,417,850\$	542, 537, 546151,525,973 287, 916, 63395,255,48	155, 442
19	Art House and International Drama Mystery and	145, 443, 74221,392,758 85, 364, 450 45,216,793\$	529, 530, 71539,549,758 142, 531, 552115,149,42	145, 44;
0	Action and Adventure	144, 840, 419181,030,624 186, 740, 799148,438,6	351, 040, 419449,326,618 556, 319, 450310,650,5	144, 840, 186, 740
18	Art House and International Drama Musical and	140, 125, 96883,670,083 131, 921, 738 59,475,623	256, 585, 882305,270,083 289, 480, 69196,221,97	140, 12!
8	Action and Adventure Drama Mystery and Suspense	130, 168, 683103,144,286 64, 006, 46671,017,784	602, 893, 340384,169,424 157, 956, 466348,547,5	130, 168, 64, 006,
7	Action and Adventure Drama Horror Mystery and	125, 322, 469256,393,010 381, 193, 157132,024,7	365, 491, 792585,532,684 1, 341, 693, 157358,824	$125, 322, \\381, 193$
45	Horror	105, 487, 148281,723,902 249, 757, 72647,398,41	322,459,006648,986,787 796,907,323218,853,3	$105, 487, \\249, 757$
44	Drama Sports and Fitness	100, 206, 2560 64, 956, 806 40,202,379\$150,947,8	370, 541, 2560 166, 000, 000 82,145,379\$276,014,	40,202

Find the correlation between the vote count and vote average

- We use the 'tmdbmovies. df
- Plot a scatter plot to show the correlation

```
In [42]: # calculate correlation between vote_count and vote_average
    corr = tmdb_df['vote_count'].corr(tmdb_df['vote_average'])
    print('Correlation between vote_count and vote_average:', corr)
```

Correlation between vote_count and vote_average: 0.08636988831138752

Skewness and Kurtosis of the 'runtime'

- By examining the skewness and kurtosis of runtime in the movieinfo_df dataset, we can gain insights into how movie runtimes are distributed and how they compare to a normal distribution.
- This can be useful in understanding patterns in movie runtime and identifying any outliers or anomalies in the data. Box plots can also be helpful in visualizing these patterns and identifying any potential outliers.

```
In [44]: # Read in the movieinfo_df DataFrame
    movieinfo_df = pd.read_csv('zippedData/rt.movie_info.tsv', sep='\t')

# Change the 'runtime' column to numeric
    movieinfo_df['runtime'] = movieinfo_df['runtime'].str.replace(' minutes', '').astyp
```

```
# Calculate the skewness and kurtosis of the "runtime" column
runtime_skew = movieinfo_df['runtime'].skew()
runtime_kurtosis = movieinfo_df['runtime'].kurtosis()

print('Runtime skewness:', runtime_skew)
print('Runtime kurtosis:', runtime_kurtosis)
```

Runtime skewness: 2.242613327185838 Runtime kurtosis: 17.572857716979282

```
In [45]: # Create a histogram of the "runtime" column
sns.histplot(movieinfo_df['runtime'], kde=True)

# Add a vertical line at the mean
plt.axvline(movieinfo_df['runtime'].mean(), color='r', linestyle='dashed', linewidt

# Add text labels for the skewness and kurtosis
plt.text(150, 40, "Skewness: {:.2f}".format(movieinfo_df['runtime'].skew()))
plt.text(150, 50, "Kurtosis: {:.2f}".format(movieinfo_df['runtime'].kurtosis()))

# Show the plot
plt.show()
```


Recommendation

Microsoft recommendation for the new movie studio would be:

1) Genre Recommendation

The recommendation were based on the total gross made.

For the single Genre the best recommended are as follow:

- Family
- Adventure
- Fantasy Musical

Multicategory Highly Recommend:

- Action, Adventure, Scifi
- Adventure, Animation, Comedy
- · Action, Adventure, Classics and Drama

Genres that also made a huge loss:

- Action, Adventure, Comedy
- Action , Adventure , Scifi
- Action, Adventure, Drama

2) Target Audience

- The top recommended would be worldwide which would be profitable to the company.
- Difference between foreign and worldwide sales was 91502365.03702894. Having movies being released to the domestc audience would incur a significant los..

3) Top Studios to collaborate/ work with:

These are the top studios

- Studio BV
- Universal Pictures(Uni)
- Fox
- Warner Bros(WB)
- Sony
- Studio Paramount(Par)

4)Being a starting film/movie industry

these would be the to releases that can generate a high income:

- Avengers: Infinity War
- Jurassic World
- Black Panther
- Furious 7
- Avengers: Age of Ultron
- Incredibles 2
- Jurassic World: Fallen Kingdom
- Frozen
- Iron Man 3
- Rogue One: A Star Wars Story