一维问题的有限差分求解 计算流体力学 Project1:part 3

Professor 陈维建

BX2201913 包晨宇 2023 年 1 月 8 日

目录

1	作业	2要求即实现方式	1
	1.1	作业要求	1
	1.2	作业实现方式	1
2	数值	实验原理	2
	2.1	一维 Burgers 方程	2
	2.2	限制器 (Limiter)	2
3		TO A ATTAILE.	3
	3.1	二阶迎风格式结果	3
	3.2	三阶迎风格式结果	3
	3.3	迎风守恒格式结果	4
	3.4	迎风非守恒格式结果	4
	3.5	Centered 中心格式	5
	3.6	Fromm 格式	5
	3.7	Godunov 格式	6

1 作业要求即实现方式

1.1 作业要求

用不同的 Limiter 实现一维 Burgers 方程,其中初始条件选取为斜初始条件及阶跃型初始条件。

1.2 作业实现方式

使用 julia 程序语言编写程序,用 Plots 库进行可视化。

2 数值实验原理

2.1 一维 Burgers 方程

一维 Burgers 方程形式如下:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 \tag{2.1}$$

其可以写成守恒形式如下:

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0 \tag{2.2}$$

其中 f 如下:

$$f = \frac{1}{2}u^2\tag{2.3}$$

写成差分形式的时候,可以表达为如下形式:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{1}{2\Delta x} (f_{j+\frac{1}{2}}^n - f_{j-\frac{1}{2}}^n) = 0$$
 (2.4)

限制器 (Limiter) 2.2

记如下符号:

$$r = \frac{u_{j+1}^n - u_j^n}{u_j^n - u_{j-1}^n} \tag{2.5}$$

在实际操作中为了避免 $u_j^n - u_{j-1}^n$ 在分母位置出现 0 会增加一个很小的偏移量 ε 。该式 r 值是一个衡量斜率变化程度的一个量。然后可以将方程写成如下形式:

$$u_{j+\frac{1}{2}}^{L} = u_j + \frac{1}{2}\psi(r)(u_j - u_{j-1})$$
(2.6)

对于不同的限制器格式有不同的 ψ 格式:

- 1. Van leer: $\psi(r) = \frac{r+|r|}{1+r^2}$;
- 2. Van Albada: $\psi(r) = \frac{r+r^2}{1+r^2}$;
- 3. Minimod: $\psi(r) = \min \{ 0, r \};$
- 4. Superbee: $\max(0, \min(2r, 1), \min(r, 2))$.

3 数值实验结果

3.1 二阶迎风格式结果

图 3.1: 二阶迎风格式格式

3.2 三阶迎风格式结果

图 3.2: 三阶迎风格式格式

3.3 迎风守恒格式结果

图 3.3: 迎风守恒格式格式

3.4 迎风非守恒格式结果

图 3.4: 迎风非守恒格式格式

3.5 Centered 中心格式

图 3.5: Centered 中心格式

3.6 Fromm 格式

图 3.6: Fromm 格式

3.7 Godunov 格式

图 3.7: Godunov 格式

3.8 QUICK 格式

图 3.8: QUICK 格式

3.9 Roe 格式

图 3.9: Roe 格式