DESIGN & OP-&MP IN 180NM CMOS TECHNOLOGY

- Introduction :- operational amplifier is an versatile and essential component in analog electronics. It is an integrated circuit that can amplify weak electric signals or dc coupled high gain electronic voltage amplifier with differential inputs (inverting and non-inverting) and single ended outputs. It's input impedance is very high and output impedance is low.
- ➤ Op-amps are used in various configuration such as integrator, differentiator, and summing amplifier.

Given Specification:

- ❖ Gain
 40 V/V
- ❖ Gain-Bandwidth (UGB) 2 GHz
- ❖ Band-Width (BW)
 50 MHz
- ❖ Load Capacitance (CL)
 100 fF
- ❖ Phase Margin >=90deg
- ❖ Vout (dc)

Design process:-

Step 1:

- Assume ,
- Length (L) = 360nm, Gm/Id = 15,
- BW = 1/[2*pi*CL*Rout]
- Rout = $1/[2*3.14*100*10^{-15*50*10^{6}}]$
- Rout = 31.85 Kohm,

Step 2:

Gain = Gm*Rout

- Gm = Gain/Rout ,
- Gm = 40/31.85*10^3
- $Gm = 1.256 \, mS$,
- Gm/Id = 15
- $Id = 1.256*10^{-3}/15$
- Id = 83.7 uA,
- Graph between Vgs and Gm/Id from ADT (Analog Designer Toolbox)
- Vgs = 585.5 mV
- Graph between Id/W and Gm/Id from ADT

- Id/W = 5.275
- W(1,2) = 15.87 um

Step 3:

- Graph Between Id/Gds1 and Gm/Id from ADT
- Id/Gds1 = 5.072
- Gds1 = 16.5u
- ro1 = 1/Gds1
- ro1 = 60.6 Kohm
- Rout = ro1 || ro3

- ro3 = Rout/[1-Rout/ro1]
- ro3 = 67.13 Kohm
- Gds3 = 1/ro3
- Gds3 = 14.89u
- Ratio , Id/Gds3 = 5.62
- Graph Between Gm3/Id and Id/Gds3 from ADT
- Gm3/Id = 12.52
- Graph Between Gm3/Id and Id/W from ADT
- Id/W = 2.398

• W(3,4) = 34.9 um

Step 4:

- lss = 2* Id
- Iss = 167.4 uA
- Assume, Gm/Iss = 15
- Graph Between Gm/Iss and Vgs(5) from ADT
- Vgs(5) = 585.5mV
- Graph Between Gm/Iss and Iss/W from ADT
- Iss/W = 5.275
- W(5) = 31.73 um

Step 5:

- Current mirror in transistor M6,
- I = Iss/10
- I = 16.3 uA
- W(6) = W(5)/10
- W(6) = 3.18 um

> Schematic of single stage operational Amplifier.

> Ac Analysis of single stage operational Amplifier

Transient Analysis of Single Stage Op-Amp

TABLE 1: TRANSISTOR SIZES

Device	Length(L)	Width(W)	W/L
■ NM1	360nm	17um	47.2
■ NM2	360nm	17um	47.2
■ NM5	360nm	31.7um	88.0
■ NM6	360nm	3.18um	8.8
■ PM1	360nm	34.9um	96.9
■ PM2	360nm	34.9um	96.9

TABLE 2: RESULTS

Specs	Given	Achieved
Dc gain	40 V/V	40.45 V/V
Band-width (BW)	50 MHz	66.4 MHz
Gain-Bandwidth (UGB)	2 GHz	2.09 GHz
Vout (Dc)	1 V	1.2 V
Power Dissipation (Pd)	Unspecified	307.2 uW
Load Capacitance (CL)	100 fF	100 fF
Current (Iss)	Unspecified	170.6 uA
Phase Margin (PM)	>= 90 deg	107 deg