Álgebra de Boole

OdC 2025

Álgebra booleana

El álgebra booleana es una estructura algebraica definida por un conjunto de elementos: '0' y '1', junto con dos operadores binarios: + y *. El álgebra booleana no tiene inversos aditivos ni multiplicativos; por tanto, no hay operaciones de resta ni de división. Pero si tiene el operador complemento.

Tablas de verdad:

x	y	$x \cdot y$
0	0	0
0	1	0
1	0	0
1	1	1

y	x + y
0	0
1	1
0	1
1	1
	1

1
0

Postulados y teoremas del álgebra booleana

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

Compuertas lógicas

Las compuertas lógicas son circuitos electrónicos que operan con una o más señales de entrada para producir una señal de salida. En los sistemas digitales, en circuitos operados por voltaje responden a dos niveles de voltaje distintos que representan una variable binaria cuyo valor es '1' lógico o '0' lógico.

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
			XYF
13115	x —	F 107	0 0 0
AND	YF	F = XY	0 1 0
			1 0 0
			1 1 1
			XYF
	x —		0 0 0
OR	$_{\rm Y}$ \longrightarrow $_{\rm F}$	F = X + Y	0 1 1
			1 0 1
			1 1 1
	<u>.</u>		X F
NOT	X — F	$F = \overline{X}$	0 1
(inverter)			1 0
			XYF
	v —		0 0 1
NAND	X	$F = X \cdot Y$	0 1 1
	Y		1 0 1
			1 1 0
			XYF
	v — —		0 0 1
NOR	X — Do— F	$F = \overline{X + Y}$	0 1 0
	Y		$\begin{array}{c cccc} 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$

Simplificar las siguientes funciones booleanas a un número mínimo de literales.

a)
$$x.y + x.y' (p4)$$

= $x.(y + y') (p5)$

= x.1 (p2)

= x

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

Simplificar las siguientes funciones booleanas a un número mínimo de literales.

b)
$$(x + y).(x + y') (p4)$$

= $x + (y.y') (p5)$
= $x + 0 (p2)$
= x

Postulados y teoremas del álgebra booleana

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

Simplificar las siguientes funciones booleanas a un número mínimo de literales.

```
e) (A + B)'.(A' + B')' (t5 en 2 términos)
```

$$= A'.B'.A''.B''$$
 (T3)

$$= A'.B'.A.B (P3 Y T4)$$

$$= 0.0 (t2)$$

$$= 0$$

Postulados y teoremas del ál	gebr	a booleana		
Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

Reducir a un número mínimo de literales las siguientes funciones booleanas:

- b) B'.D + A'.B.C' + A.C.D + A'.B.C
- a. Graficar las expresiones encontradas en "b" y "d" mediante cualquier tipo de compuertas del número de entradas necesarias.
- b. Encontrar expresiones equivalentes a las funciones "b" y "d", pero utilizando sólo compuertas NAND del número de entradas necesarias.
- c. Graficar las expresiones encontradas en el punto anterior.

B'D + A'BC' + ACD + A'BC	(p3)			
= B'D + A'BC' + A'BC + ACD	(t4)			
= B'D + A'B(C'+C) + ACD	(p5, p2)			
= B'D + A'B + ACD	(t6 2 términos))		
= B'D + B'DA'C + A'B + A'BCD + ACD	(p2, p5)			
= B'D + B'DA'C + A'B + A'BCD + ACD(B + B')	(p4)			
= B'D + B'DA'C + A'B + A'BCD + ACDB + ACDB'	(p3, t4)			
= B'D + A'B + (A'BCD + ACDB) + (ACDB' + B'DA'C)	(p3)			
= B'D + A'B + (A'BCD + ABCD) + (AB'CD + A'B'CD)	(p4)	Postulados y teoremas del ál	gabra boolagua	
= B'D + A'B + BCD (A' + A) + B'CD (A' + A)	(p5, p2, t4)	Postulado 2 Postulado 5	a) x+0=x	b) $x \cdot 1 = x$
= B'D + A'B + (BCD + B'CD)	(p4)	Teorema 1 Teorema 2	a) $x + x' = 1$ a) $x + x = x$ a) $x + 1 = 1$	b) $x \cdot x' = 0$ b) $x \cdot x = x$ b) $x \cdot 0 = 0$
= B'D + A'B + CD (B + B')	(p5, p2)	Teorema 3, involución Postulado 3, conmutatividad Teorema 4, asociatividad	(x')' = x a) $x + y = y + x$ a) $x + (y + z) = (x + y) + z$	b) $xy = yx$ b) $x(yz) = (xy)z$
= B'D + A'B + CD		Postulado 4, distributividad Teorema 5, DeMorgan Teorema 6, absorción	a) $x + (y + z) - (x + y) + z$ a) $x(y + z) = xy + xz$ a) $(x + y)' = x'y'$ a) $x + xy = x$	b) $x(yz) - (xy)z$ b) $x + yz = (x + y)(x + z)$ b) $(xy)' = x' + y'$ b) $x(x + y) = x$

Llevando la expresión a su forma canónica:

```
B'D + A'BC' + ACD + A'BC

(p2, p5)

= B'D(A+A')+A'BC'(D+D')+A'BC(D+D')+ACD(B+B')

= B'DA(C+C')+B'DA'(C+C')+A'BC'D+A'BC'D'+A'BCD+A'BCD'+ACDB+ACDB'

=AB'CD+AB'C'D+A'B'CD+A'B'C'D+A'BC'D'+A'BC'D'+A'BCD+A'BCD'+ABCD+AB'CD

=AB'CD+AB'C'D+A'B'CD+A'B'C'D+A'BC'D+A'BC'D'+A'BCD+A'BCD'+ABCD+AB'CD

=(A'BC'D+A'B'C'D+A'BCD+A'BCD')+(AB'CD+A'B'CD+A'BCD)+(AB'C'D+A'B'CD+AB'CD)

(t1)

= (A'BC'D+A'BC'D'+A'BCD+A'BCD')+(AB'CD+A'B'CD+ABCD)+(AB'C'D+A'B'CD+AB'CD) + A'B'CD+A'BCD

= (A'BC'D+A'BC'D'+A'BCD+A'BCD')+(AB'CD+A'B'CD+ABCD)+(AB'C'D+A'B'CD+AB'CD) + A'B'CD+A'BCD

(p4, p2, p5)

(p4, p2, p5)
```

= A'B(C'D+C'D'+CD+CD') + CD(AB'+A'B'+AB+A'B) + B'D(AC'+A'C'+AC+A'C)

Resolviendo para uno de los paréntesis: (C'D+C'D'+CD+CD') = C'(D+D') + C(D+D') = C'+C =1

$$= A'B(1) + CD(1) + B'D(1)$$
 (p2)

= A'B + CD + B'D

Postulados y teoremas del álgebra booleana

	_	March Programme Control (No. 10)		
Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

a. Graficar las expresiones encontradas en "b" y "d" mediante cualquier tipo de compuertas del número de entradas necesarias.

b)
$$F = A'B + CD + B'D$$

a. Graficar las expresiones encontradas en "b" y "d" mediante cualquier tipo de compuertas del número de entradas necesarias.

b)
$$F = A'B + CD + B'D$$

b. Encontrar expresiones equivalentes a las funciones "b" y "d", pero utilizando sólo compuertas NAND del número de entradas necesarias.

b)
$$F = A'B + CD + B'D$$

 $F = F'' = (A'B + CD + B'D)'' = ((A'.B)' . (C.D)' . (B'.D)')'$

NAND = (x.y)'

Postulados y teoremas del álgebra booleana

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

- Encontrar expresiones equivalentes a las funciones "b" y "d", pero utilizando sólo compuertas NAND del número de entradas necesarias.
- c. Graficar las expresiones encontradas en el punto anterior.

b)
$$F = A'B + CD + B'D = ((A'B)' * (CD)' * (B'D)')'$$

La función OR-exclusiva, denotada por "^" tiene dos entradas y una salida. Si **a** y **b** son las entradas y **c** es la salida, entonces **c** es '1' sólo cuando exactamente una de las entradas vale '1'. En el resto de los casos es '0'.

a. Hacer una tabla de verdad de la función OR-exclusiva.

x	у	F
0	0	0
0	1	1
1	0	1
1	1	0

La función OR-exclusiva, denotada por "^" tiene dos entradas y una salida. Si **a** y **b** son las entradas y **c** es la salida, entonces **c** es '1' sólo cuando exactamente una de las entradas vale '1'. En el resto de los casos es '0'.

b. Encontrar la expresión equivalente a la función OR-exclusiva utilizando sólo suma de productos y graficar con compuertas.

$$F = x'y + xy'$$

X	у	F
0	0	0
0	1	1
1	0	1
1	1	0

La función OR-exclusiva, denotada por "^" tiene dos entradas y una salida. Si **a** y **b** son las entradas y **c** es la salida, entonces **c** es '1' sólo cuando exactamente una de las entradas vale '1'. En el resto de los casos es '0'.

b. Encontrar la expresión equivalente a la función OR-exclusiva utilizando sólo suma de productos y graficar con compuertas.

$$F = x'y + xy'$$

X	у	F
0	0	0
0	1	1
1	0	1
1	1	0

c. Implementar una OR-exclusiva de 3 entradas usando OR-exclusivas de 2 entradas.

Tabla de verdad de una OR-exclusiva de 3 entradas:

x	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

c. Implementar una OR-exclusiva de 3 entradas usando OR-exclusivas de 2 entradas.

Tabla de verdad de una OR-exclusiva de 3 entradas:

x	у	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

y F

Mostrar que la función NAND (Not AND) es universal en el sentido de que las funciones NOT, AND, OR y NOR se pueden expresar como productos negados. Graficar las implementaciones de las compuertas NOT, AND, OR y NOR con compuertas NAND.

NAND

NOT:
$$F = x'(T1)$$

$$= (x.x)'$$
AND: $F = x.y$ (T3)

$$= (x.y)^{"} = ((x.y)^{"})^{"}$$

OR:
$$F = x + y (T3)$$

$$=(x+y)''(T5) = (x'.y')'$$

NOR:
$$F = (x+y)'(T3)$$

$$= (x+y)^{"} (T5) = ((x'.y')')'$$

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

Mostrar que la función NAND (Not AND) es universal en el sentido de que las funciones NOT, AND, OR y NOR se pueden expresar como productos negados. Graficar las implementaciones de las compuertas NOT, AND, OR y NOR con compuertas NAND.

NOT:
$$F = x' = (x.x)'$$

AND:
$$F = x.y = ((x.y)')'$$

OR:
$$F = x+y = (x'.y')'$$

NOR:
$$F = (x+y)' = ((x'.y')')'$$

F = (x + y)'

Mostrar que la función NOR (Not OR) es universal en el sentido de que las funciones NOT, OR, AND y NAND se pueden expresar como sumas negadas. Graficar las implementaciones de las compuertas NOT, OR, AND y NAND con compuertas NOR.

NOR

NOT:
$$F = x'(T1)$$

OR:
$$F = x+y (t3)$$

$$= ((x+y)')'$$

 $=(\chi+\chi)'$

AND:
$$F = x.y$$
 (t3)

$$= (x.y)^{"}(t5) = (x'+y')'$$

NAND:
$$F = (x.y)'(t3)$$

$$= (x.y)^{"}(t5) = (x'+y')^{"}$$

Postulados v teoremas del álgebra boolean

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

 $x \longrightarrow F = (x + y)$

y	F
0	1
1	0
0	0
1	0
	y 0 1 0 1

Mostrar que la función NOR (Not OR) es universal en el sentido de que las funciones NOT, OR, AND y NAND se pueden expresar como sumas negadas. Graficar las implementaciones de las compuertas NOT, OR, AND y NAND con compuertas NOR.

NOR

NOT:
$$F = x' = (x+x)'$$

OR:
$$F = x+y = ((x+y)')'$$

AND:
$$F = x.y = (x'+y')'$$

NAND:
$$F = (x.y)' = ((x'+y')')'$$

