Hong Kong Mathematics Olympiad (1999-2000)

Final Event (Individual) Example

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 對任意整數 $m \otimes n$, $m \otimes n$ 之定義如下: $m \otimes n = m^n + n^m$ 。 若 $2 \otimes P = 100$,求 P 之值。 For all integers m and n, $m \otimes n$ is defined as $m \otimes n = m^n + n^m$.

If $2 \otimes P = 100$, find the value of P.

P =

(ii) 若 $\sqrt[3]{13Q+6P+1} - \sqrt[3]{13Q-6P-1} = \sqrt[3]{2}$,其中 Q > 0,求 Q 之值。 If $\sqrt[3]{13Q+6P+1} - \sqrt[3]{13Q-6P-1} = \sqrt[3]{2}$, where Q > 0, find the value of Q.

Q =

(iii) 在圖一,AB = AC和 $KL = LM \circ$ 若 LC = Q - 6 cm 及 KB = R cm,求 R 之值。 In figure 1, AB = AC and KL = LM. If LC = Q - 6 cm and KB = R cm,find the value of R.

R =

(iv) 數列 $\{a_n\}$ 的定義如下: $a_1 = R$, $a_{n+1} = a_n + 2n$ $(n \ge 1)$ 。若 $a_{100} = S$,求 S 之值。 The sequence $\{a_n\}$ is defined as $a_1 = R$, $a_{n+1} = a_n + 2n$ $(n \ge 1)$. If $a_{100} = S$, find the value of S.

S =

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

Team No.

+ Bonus score

Time

Total score

Min.

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 1 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 設 [x] 表示小數 x 的整數部份。

P =

Let [x] represents the integral part of the decimal number x. Given that

 $[3.126] + [3.126 + \frac{1}{8}] + [3.126 + \frac{2}{8}] + \dots + [3.126 + \frac{7}{8}] = P$, find the value of P.

(ii) 設 a+b+c=0 。已知 $\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}=P-3Q$,求 Q 的值。

R =

Let a+b+c=0. Given that $\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}=P-3Q$, find the value of Q.

(iii) 在直角座標平面的第一象限中,把座標為整數的點按以下方法編號:

......

已知 (Q-1,Q) 點為第R號,求R的值。

In the first quadrant of the rectangular co-ordinate plane, all integral points are numbered as follows,

point
$$(0, 0)$$
 is numbered as 1,

point
$$(1, 0)$$
 is numbered as 2,

point
$$(1, 1)$$
 is numbered as 3,

point
$$(0, 1)$$
 is numbered as 4,

point
$$(0, 2)$$
 is numbered as 5,

point
$$(2, 2)$$
 is numbered as 7 ,

•••••

Given that point (Q-1, Q) is numbered as R, find the value of R.

(iv) 當
$$x+y=4$$
 時, $3x^2+y^2$ 的最小值為 $\frac{R}{S}$,求 S 的值。

When x + y = 4, the minimum value of $3x^2 + y^2$ is $\frac{R}{S}$, find the value of S.

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 2 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 如果 $\log_2(\log_4 P) = \log_4(\log_2 P)$ 及 $P \neq 1$,求 P 的值。 If $\log_2(\log_4 P) = \log_4(\log_2 P)$ and $P \neq 1$, find the value of P.

(ii) 在梯形 ABCD 中,AB//DC。AC 和 BD 相交於 O。三角形 AOB 和 COD 的面積分別為 P 和 25。已知梯形的面積為 Q,求 Q 的值。

In the trapezium ABCD, $AB \parallel DC$. AC and BD intersect at O. The areas of triangles AOB and COD are P and 25 respectively. Given that the area of the trapezium is Q, find the value of Q.

(iii) 當 1999^Q 被 7 除時,餘數為 R。求 R 的值。
When 1999^Q is divided by 7, the remainder is R. Find the value of R.

$$S =$$

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

=

Team No.

+ score

Bonus

Time

Total score

Min.

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 3 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 已知 1 +2 +3 + ··· +1997 +1998+ 1999+ 1998+ 1997 + ··· + 3 + 2 + 1 的個位數是 P, 求 P的值。

Given that the units digit of 1+2+3+ +1997+1998+1999+1998+1997+ +3+2+1 is

Given that the units digit of 1+2+3+...+1997+1998+1999+1998+1997+...+3+2+1 is P, find the value of P.

- (ii) 已知 $x+\frac{1}{x}=P$ 。如果 $x^6+\frac{1}{x^6}=Q$,求 Q 的值。

 Given that $x+\frac{1}{x}=P$. If $x^6+\frac{1}{x^6}=Q$, find the value of Q .
- - $\frac{Q}{\sqrt{Q} + \sqrt{2Q}} + \frac{Q}{\sqrt{2Q} + \sqrt{3Q}} + \dots + \frac{Q}{\sqrt{1998Q} + \sqrt{1999Q}} = \frac{R}{\sqrt{Q} + \sqrt{1999Q}},$ find the value of R.
- (iv) 設 f(0) = 0; f(n) = f(n-1) + 3 當 $n = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$ 如果 2 f(S) = R,求 S 的值。

 Let f(0) = 0; f(n) = f(n-1) + 3 when $n = 1, 2, 3, 4, \cdots$.

 If 2 f(S) = R, find the value of S.

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 4 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

假設 $a + \frac{1}{a+1} = b + \frac{1}{b-1} - 2$,其中 $a \neq -1$, $b \neq 1$ 和 $a - b + 2 \neq 0$ 。 (i) 已知 ab-a+b=P, 求 P 的值。

P =

Suppose $a + \frac{1}{a+1} = b + \frac{1}{b-1} - 2$, where $a \ne -1$, $b \ne 1$, and $a - b + 2 \ne 0$.

Given that ab - a + b = P, find the value of P.

在下圖中,AB 為圓的直徑。C 和 D 把弧 AB 分為三等份。斜綫面積為 P。 (ii) 若圓的面積為Q,求Q的值。

In the following figure, AB is a diameter of the circle. C and D divide the arc AB $Q = \frac{1}{2}$ into three equal parts. The shaded area is P.

If the area of the circle is Q, find the value of Q.

已知兩個 O 位數 1111...11 和 9999...99 的乘積中有 R 個數字是奇數, (iii) 求R的值。

R =

Given that there are R odd numbers in the digits of the product of the two Q-digit numbers $1111\cdots 11$ and $9999\cdots 99$, find the value of R.

- S =
- (iv) 設 $a_1 \times a_2 \times \cdots \times a_R$ 為正整數,其中 $a_1 < a_2 < a_3 < \cdots < a_{R-1} < a_R$ 。 已知這R個正整數的和為90及 a_1 的最大值為S,求S的值。 Let a_1, a_2, \dots, a_R be positive integers such that $a_1 < a_2 < a_3 < \dots < a_{R-1} < a_R$.

Given that the sum of these R integers is 90 and the maximum value of a_1 is S, find the value of S.

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

Team No.

Time

Total score

Bonus

score

Min.

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 5 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 如果
$$\left(\frac{1 \times 2 \times 4 + 2 \times 4 \times 8 + 3 \times 6 \times 12 + \dots + 1999 \times 3998 \times 7996}{1^3 + 2^3 + 3^3 + \dots + 1999^3}\right)^{\frac{1}{3}} = P$$
,求 P 的值。
$$P = \prod \left(\frac{1 \times 2 \times 4 + 2 \times 4 \times 8 + 3 \times 6 \times 12 + \dots + 1999 \times 3998 \times 7996}{1^3 + 2^3 + 3^3 + \dots + 1999^3}\right)^{\frac{1}{3}} = P$$

find the value of P.

(ii) 如果 (x-P)(x-2Q)-1=0 有兩個整數根,求 Q 的值。 If (x-P)(x-2Q)-1=0 has two integral roots, find the value of Q.

(iii) 已知 $\triangle ABC$ 的面積為 3Q; D、E和 F 分別為 AB、BC 和 CA 上的點使得 $AD = \frac{1}{3}AB$, $BE = \frac{1}{3}BC$, $CF = \frac{1}{3}CA$ 。如果 $\triangle DEF$ 的面積為 R, 求 R 的值。 Given that the area of the $\triangle ABC$ is 3Q; D, E and F are the points on AB, BC and

CA respectively such that $AD = \frac{1}{3}AB$, $BE = \frac{1}{3}BC$, $CF = \frac{1}{3}CA$.

If the area of $\triangle DEF$ is R, find the value of R.

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event (Group) Example

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 設x*y=x+y-xy, 其中x,y為實數,若a=1*(0*1),求a之值。 Let x*y=x+y-xy, where x,y are real numbers. If a=1*(0*1), find the value of a.

(ii) 在圖一,AB 平行於 DC, $\angle ACB$ 為一直角,AC = CB 及 AB = BD., 若 $\angle CBD = b^{\circ}$,求 b 之值。

In figure 1, AB is parallel to DC, $\angle ACB$ is a right angle, AC = CB and AB = BD. If $\angle CBD = b^{\circ}$, find the value of b.

Figure 1 圖一

(iii) 設x、y為非零實數,若x是y的 250%,而 2y是x的 c%,求c之值。 Let x, y be non-zero real numbers. If x is 250% of y and 2y is c% of x, find the value of c.

(iv) 若 $\log_p x = 2$, $\log_q x = 3$, $\log_r x = 6$ 及 $\log_{pqr} x = d$,求 d 之值。 If $\log_p x = 2$, $\log_q x = 3$, $\log_r x = 6$ and $\log_{pqr} x = d$, find the value of d.

$$d =$$

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 1 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 已知整數 n 除 81849、106392 及 124374 得出的餘數相等,求 n 的最大值 a 。 Given that when 81849, 106392 and 124374 are divided by an integer n, the remainders are equal. If a is the maximum value of n, find a.

a =

(ii) 設 $x = \frac{1-\sqrt{3}}{1+\sqrt{3}}$ 及 $y = \frac{1+\sqrt{3}}{1-\sqrt{3}}$ 如果 $b = 2x^2-3xy+2y^2$,求 b 的值

b =

- Let $x = \frac{1 \sqrt{3}}{1 + \sqrt{3}}$ and $y = \frac{1 + \sqrt{3}}{1 \sqrt{3}}$. If $b = 2x^2 3xy + 2y^2$, find the value of b.
- (iii) 已知 c 為正數,如果只有一條直綫穿過點 A(1,c)且與曲綫 $C: x^2+y^2-2x-2y-7=0$ 相交於一點,求 c 的值。 Given that c is a positive number. If there is only one straight line which passes through point A(1,c) and meets the curve $C: x^2+y^2-2x-2y-7=0$ at only one point,

c =

(iv) 在圖一,PA 切圓於 A,O 為圓心。如果 PA=6,BC=9,PB=d,求 d 的值。 In Figure 1, PA touches the circle with centre O at A. If PA=6, BC=9, PB=d, find the value of d.

Figure 1

FOR OFFICIAL USE

Score for accuracy

find the value of c.

Mult. factor for speed

=

Team No.

+ score

Bonus

Time

Total score

Min.

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 2 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 如果 191 為兩個連續平方數之差,而 a 為其中最小的平方數,求 a 的值。 If 191 is the difference of two consecutive perfect squares, find the value of the smallest square number, a.

a =

(ii) 在圖二(a),ABCD 是一長方形。DE:EC=1:5,且 $DE=12^{\frac{1}{4}}$ 。 ΔBCE 沿 BE 摺去另一方。設 b 為圖二(b)中陰影部份的面積,求 b 的值。

b =

In Figure 2(a), ABCD is a rectangle. DE:EC = 1:5, and $DE = 12^{\frac{1}{4}}$. $\triangle BCE$ is folded along the side BE.

If b is the area of the shaded part as shown in Figure 2(b), find the value of b.

(iii) 設曲綫 $y=x^2-7x+12$ 與 x 軸的交點為 A 及 B ,而與 y 軸的交點為 C 。 如果 c 是 ΔABC 的面積,求 c 的值。

如来 c 定 ΔABC 的面積 ,來 c 的值。 Let the curve $y = x^2 - 7x + 12$ intersect the x-axis at points A and B, and intersect the y-axis at C. If c is the area of ΔABC , find the value of c.

(iv) 設 $f(x) = 41x^2 - 4x + 4$, $g(x) = -2x^2 + x$ 。如果 f(x) + kg(x) = 0 只有一個根, 求 k 的最小值 d 。

Let $f(x) = 41x^2 - 4x + 4$ and $g(x) = -2x^2 + x$. If d is the smallest value of k such that f(x) + kg(x) = 0 has a single root, find the value of d.

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 3 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

設 $a = \sqrt{1997 \times 1998 \times 1999 \times 2000 + 1}$, 求 a 的值。 (i) Let $a = \sqrt{1997 \times 1998 \times 1999 \times 2000 + 1}$, find the value of a. a =

在圖三,圓管的長為 20 及直徑為 6,內有兩個圓錐體 A 和 B。A 及 B 的體積比 (ii) 例為3:1。如果b是B的高度,求b的值。

b =

In Figure 3, A and B are two cones inside a cylindrical tube with length of 20 and diameter of 6. If the volumes of A and B are in the ratio 3:1 and b is the height of the cone B, find the value of b.

- 圖三 Figure 3
- 現有點 $A\left(\frac{\sqrt{10}}{2}, \frac{\sqrt{10}}{2}\right)$ 和圓 $C: x^2 + y^2 = 1$ 。

c =

如果c是通過點A與圓相切直綫的最大斜率,求c的值。

If c is the largest slope of the tangents from the point $A\left(\frac{\sqrt{10}}{2}, \frac{\sqrt{10}}{2}\right)$ to the circle $C: x^2$ $+ v^2 = 1$, find the value of c.

(iv) 在座標平面的原點上有一點 P。假如擲出骰子的點數 n 是偶數, P在x方向右前進n;如果n是奇數,P在y方向上前進n。 如果有d種不同擲法使得P到達點(4,4),求d的值。

d =

P is a point located at the origin of the coordinate plane. When a dice is thrown and the number n shown is even, P moves to the right by n. If n is odd, P moves upward by n. Find the value of d, the total number of tossing sequences for P to move to the point (4, 4).

FOR OFFICIAL USE

Score for Mult. factor for Team No. speed accuracy Bonus Time score Min. Total score Sec.

Hong Kong Mathematics Olympiad (1999 – 2000)

Final Event 4 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 如果 a 是一個三位數,駁在 504 之後,新組成的六位數可被 $7 \times 9 \times 11$ 整除,求 a 的值。

a = a

b =

Let a be a 3-digit number. If the 6-digit number formed by putting a at the end of the number 504 is divisible by 7, 9, and 11, find the value of a.

(ii) 在圖四, ABCD 為長方形,

$$AB = \sqrt{\frac{8 + \sqrt{64 - \pi^2}}{\pi}}$$
, $BC = \sqrt{\frac{8 - \sqrt{64 - \pi^2}}{\pi}}$ o

BE imes BF 分別是以 C imes A 為圓心的弧。

若 b 是陰影部份之面積,求 b 的值。

In Figure 4, ABCD is a rectangle with

$$AB = \sqrt{\frac{8 + \sqrt{64 - \pi^2}}{\pi}}$$
 and $BC = \sqrt{\frac{8 - \sqrt{64 - \pi^2}}{\pi}}$.

BE and BF are the arcs of circles with centres at C and A respectively. If b is the total area of the shaded parts, find the value of b.

— ← C 圖四 Figure 4

(iii) 在圖五,O為圓心, $c^{\circ} = 2y^{\circ}$,求c的值。

In Figure 5, O is the centre of the circle and $c^{\circ} = 2y^{\circ}$. Find the value of c.

圖五 Figure 5

c =

(iv) $A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G$ 七個人圍圓桌而坐。

如果B及G都與C相鄰而坐的坐法總數為d,求d的值。

A, B, C, D, E, F, G are seven people sitting around a circular table.

If d is the total number of ways that B and G must sit next to C, find the value of d.

Bonus

score

Total score

FOR OFFICIAL USE

Score for accuracy ×

Mult. factor for speed

Team No.

Time

Min.

Hong Kong Mathematics Olympiad (1999 – 2000) Final Event 5 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 如果 a 是可被 810 整除的最小立方數,求 a 的值。

If a is the smallest cubic number divisible by 810, find the value of a.

(ii) 設 b 是函數 $y=|x^2-4|-6x$ (其中 $-2 \le x \le 5$) 的最大值,求 b 的值。 Let b be the maximum of the function $y=|x^2-4|-6x$ (where $-2 \le x \le 5$), find the value of b.

(iii) 圖六為一個正方形底的錐體。若從底部向上並在 $\frac{2}{3}$ 之高度平行橫切,並設 1:c 為上面細錐與餘下底部體積的比,求c 的值。 In Figure 6, a square-based pyramid is cut into two shapes by a cut running parallel to the base and made $\frac{2}{3}$ of the way up. Let 1:c be the ratio of the volume of the small pyramid to that of the truncated base, find the value of c.

(iv) 如果 $\cos^6 \theta + \sin^6 \theta = 0.4$,及 $d = 2 + 5\cos^2 \theta \sin^2 \theta$,求 d 的值。 If $\cos^6 \theta + \sin^6 \theta = 0.4$ and $d = 2 + 5\cos^2 \theta \sin^2 \theta$, find the value of d.

d =