

OPERCEPTRON SIMPLES

PPGCC - 2023.1

Prof. Saulo Oliveira <<u>saulo.oliveira@ifce.edu.br</u>>

Evolução das Redes Neurais Artificiais

Fonte: https://sefiks.com/2017/10/14/evolution-of-neural-networks/

Neurônios

Neurônio biológico

- Dendritos: Recebem sinais de outros neurônios;
- Corpo celular: Processa a informação;
- Axônio: Transmite a saída do neurônio em questão;
- Sinapse: Ponto de conexão para outros neurônios.

Fonte: https://dominicm73.blogspot.com/2020/08/modeling-threshold-logic-neurons-and.html

Neurônio artificial

- Entrada: Recebem as informações de entrada;
- Pesos sinápticos: Ponderam as informações de entrada;
- Junção aditiva: Combina (soma) as informações ponderadas;
- Função de ativação: Despenha o papel de excitação/inibição da informação processada.
- Saída: Ponto de conexão para outros neurônios.

Neurônio artificial

- Entrada: Recebem as informações de entrada;
- Pesos sinápticos: Ponderam as informações de entrada;
- Junção aditiva: Combina (soma) as informações ponderadas;
- Função de ativação: Despenha o papel de excitação/inibição da informação processada.
- Saída: Ponto de conexão para outros neurônios.

Visão geral de um neurônio artificial

Fonte: https://laptrinhx.com/introduction-to-deep-learning-feed-forward-neural-networks-ffnns-a-k-a-1737445691/

Portas lógicas

Α	X
0	1
1	0

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Portas lógicas: AND

$$w_1 = w_2 = 1 e \theta = 1,5$$

 $y = 1 se u \ge 0.$
 $y = 0 se u < 0.$

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Portas lógicas: OR

$$w_1 = w_2 = 1 e \theta = 0,5$$

 $y = 1 se u \ge 0.$
 $y = 0 se u < 0.$

Α	В	X
0	0	0
0	1	7
1	0	1
1	1	1

Portas lógicas: NOT

$$w_1 = -1 \text{ e } \theta = -0.5$$

 $y = 1 \text{ se } u \ge 0.$
 $y = 0 \text{ se } u < 0.$

Α	X
0	1
1	0

Como poderia se determinar cada um dos valores para os pesos sinápticos?

Como poderia se determinar cada um dos valores para os pesos sinápticos?

R: REGRA DE APRENDIZADO

- O processo de aprendizagem consiste basicamente na modificação dos pesos e do limiar do neurônio de M-P até que ele resolva o problema de interesse ou que o período de aprendizagem tenha finalizado.
- A ideia é pensar que deve haver uma variação dos valores contidos nos pesos durante o aprendizado, ou seja,

$$\Delta \mathbf{w} = \mathbf{w}^{(t+1)} - \mathbf{w}^{(t)}.$$
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \Delta \mathbf{w}.$$

em que:

- Δw é o incremento na memória necessário para o ajuste em relação a um vetor de entrada x;
- $oldsymbol{ ext{w}}^{(t)}$ representa o conhecimento no tempo t salvo na memória; e
- $\mathbf{w}^{(t+1)}$ representa o conhecimento no tempo t+1 salvo na memória.

Produto escalar

• O produto escalar é definido como o produto de um vetor linha por um vetor coluna, o que equivale a multiplicar cada componente de um vetor pelo seu correspondente no outro vetor e depois somar cada produto:

$$u = \mathbf{w}^{\mathsf{T}} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{w} = \sum_{i} x_{i} w_{i}.$$

• Alternativamente, o produto escalar pode ser definido como o produto dos comprimentos dos vetores com o cosseno do menor ângulo entre eles:

$$u = \|\mathbf{x}\| \|\mathbf{w}\| \cos \alpha$$
.

- O produto escalar é uma medida de similaridade entre vetores.
- Para vetores de comprimento fixo, quanto menor o ângulo entre eles, maior é o valor resultante do produto escalar.

Produto escalar: $u = || \mathbf{x} || || \mathbf{w} || \cos \alpha$

Considerando a definição $u = || \mathbf{x} || || \mathbf{w} || \cos \alpha$.

• CENÁRIO A: $\cos \alpha > 0$, u > 0 (positivo) • CENÁRIO B: $\cos \alpha < 0$, u < 0 (negativo)

Regra de aprendizagem: definindo Δw

Consideremos os argumentos geométricos para esta definição. Assim, 03 casos são derivados para a variável de erro $e^{(t)}$:

- CASO 1: $e^{(t)} = d^{(t)} y^{(t)} = +1$, para $d^{(t)} = 1$, $y^{(t)} = 0$;
- CASO 2: $e^{(t)} = d^{(t)} y^{(t)} = -1$, para $d^{(t)} = 0$, $y^{(t)} = 1$;
- CASO 3a: $e^{(t)} = d^{(t)} y^{(t)} = 0$, para $d^{(t)} = 0$, $y^{(t)} = 0$.
- CASO 3b: $e^{(t)} = d^{(t)} y^{(t)} = 0$, para $d^{(t)} = 1$, $y^{(t)} = 1$.

Nos CASO 1 e no CASO 2 houve erro. No CASO 3 houve acerto.

Caso 1:
$$e = d - y = +1 (d=+1 e y=0)$$

Situação ocorrida (*u*<0, *y*=0):

Situação desejada (u>0, y=1):

$$y = 1$$
, se $u \ge 0$.

$$y = 0$$
, se $u < 0$.

Caso 1: e = d - y = +1 (d=+1 e y=0)

Situação ocorrida (u<0, y=0):

Situação desejada (u>0, y=1):

Lembre-se que:

$$y = 1$$
, se $u \ge 0$.

$$y = 0$$
, se $u < 0$.

O vetor **w** deve ser ajustado para se aproximar de **x**. Assim, neste caso, a regra de atualização é descrita como:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{x}.$$

Caso 1: e = d - y = +1 (d=+1 e y=0)

Situação ocorrida (u<0, y=0):

Situação desejada (u>0, y=1):

Lembre-se que:

$$y = 1$$
, se $u \ge 0$.

$$y = 0$$
, se $u < 0$.

Х

O vetor **w** deve ser ajustado para se aproximar de **x**. Assim, neste caso, a regra de atualização é descrita como:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{x}.$$

Caso 2:
$$e = d - y = -1$$
 (d=0 e y=+1)

Situação ocorrida (u>0, y=+1):

Lembre-se que:

$$y = 1$$
, se *u* ≥ 0.

$$y = 0$$
, se $u < 0$.

Caso 2: e = d - y = -1 (d=0 e y=+1)

Situação ocorrida (u>0, y=+1):

Situação desejada (u<0, y=0):

Lembre-se que:

$$y = 1$$
, se *u* ≥ 0.

$$y = 0$$
, se $u < 0$.

O vetor w deve ser ajustado para se afastar de x. Assim, neste caso, a regra de atualização é descrita como:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \mathbf{x}.$$

Caso 2: e = d - y = -1 (d=0 e y=+1)

Situação ocorrida (u>0, y=+1):

Lembre-se que:

$$y = 1$$
, se *u* ≥ 0.

$$y = 0$$
, se $u < 0$.

O vetor **w** deve ser ajustado para se afastar de **x**. Assim, neste caso, a regra de atualização é descrita como:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \mathbf{x}.$$

EOCASO 3?

Consideremos os argumentos geométricos para esta definição. Assim, 03 casos são derivados para a variável de erro $e^{(t)}$:

• CASO 1:
$$e^{(t)} = d^{(t)} - y^{(t)} = +1$$
, $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{x}$;

• CASO 2:
$$e^{(t)} = d^{(t)} - y^{(t)} = -1$$
, $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \mathbf{x}$;

• CASO 3: $e^{(t)} = d^{(t)} - y^{(t)} = 0$, não faz nada.

Consideremos os argumentos geométricos para esta definição. Assim, 03 casos são derivados para a variável de erro $e^{(t)}$:

• CASO 1:
$$e^{(t)} = d^{(t)} - y^{(t)} = +1$$
, $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{x}$; $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{x}$; $\mathbf{w}^{(t)} + e^{(t)} \mathbf{x}^{(t)}$
• CASO 2: $e^{(t)} = d^{(t)} - y^{(t)} = -1$, $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \mathbf{x}$;

• CASO 3: $e^{(t)} = d^{(t)} - y^{(t)} = 0$, não faz nada.

Em geral utiliza-se um valor para η , denominado fator ou taxa de aprendizagem, pequeno $(0 < \eta \le 1)$. Assim, que como $\eta \mathbf{x}^{(t)}$ representa o vetor a ser somado para aproximação ou afastamento de $\mathbf{w}^{(t)}$.

Em geral utiliza-se um valor para η , denominado fator ou taxa de aprendizagem, pequeno $(0 < \eta \le 1)$. Assim, que como $\eta \mathbf{x}^{(t)}$ representa o vetor a ser somado para aproximação ou afastamento de $\mathbf{w}^{(t)}$.

REGRAGERAL DE APRENDIZAGEM PERCEPTRON SIMPLES

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta e^{(t)} \mathbf{x}^{(t)}$$

Como poderia se determinar cada um dos valores para os pesos sinápticos?

Como poderia se determinar cada um dos valores para os pesos sinápticos?

REGRA DE APRENDIZADO

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta e^{(t)} \mathbf{x}^{(t)}.$$

Resumo do algoritmo de treinamento do Perceptron

- 1. INICIO (t = 0)
 - 1.1. Definir o valor de η , $0 < \eta \le 1$;
 - 1.2. Iniciar $\mathbf{w}^{(0)}$ com valores aleatórios;
- 2. FUNCIONAMENTO
 - 2.1. Selecionar um valor de entrada $\mathbf{x}^{(t)}$.
 - 2.2. Calcular a saída do neurônio $y^{(t)}$.
- 3. TREINAMENTO
 - 3.1. Calcular o erro: $e^{(t)} = d^{(t)} y^{(t)}$.
 - 3.2. Ajustar o peso via REGRA DE APRENDIZAGEM.
 - 3.3. Verificar o critério de parada.
 - 3.3.1. Se o critério for atendido, finalizar treinamento.
 - 3.3.2. Caso contrário, fazer t = t + 1 e voltar ao PASSO 2. FUNCIONAMENTO.

Referências

- Jardel Rodrigues. Aula 03: Perceptron Simples. IFCE campus Jaguaribe, 2021.
- PÁDUA BRAGA, Antônio; DE LEON FERREIRA, André Carlos Ponce; LUDERMIR, Teresa Bernarda. **Redes neurais artificiais**: teoria e aplicações. LTC editora, 2007.
- Richard O. Duda, Peter E. Hart, David G. Stork. Pattern Classification.
 John Wiley & Sons, 2012.