

Faculté des Sciences Département de Mathématiques

Année: 2020-2021 Module: Analyse 1

Résumé: continuité des fonctions réelles

1. INTRODUCTION

La notion de la continuité est à la base de l'analyse: il est nécessaire de s'en faire une idée intuitive et d'en bien comprendre la définition.

2. Continuité en x_0

Définition 2.1. Soit f une fonction définie sur D et $x_0 \in D$.

f est dite **continue** en x_0 si est seulement si f définie au voisinage de x_0 et

$$\lim f(x) = f(x_0).$$

Autrement dit si

$$\forall \varepsilon > 0, \Box \alpha > 0, \forall x \in D, |x - x_0| < \alpha \Rightarrow f(x) - f(x_0) < \varepsilon$$
.

Example 2.1. La fonction définie par

$$f(x) = \begin{cases} 1 & si \ x > 0 \\ 0 & si \ x \le 0 \end{cases}$$

Au point x = 0, la fonction f est continue à gauche, mais elle ne l'est pas à droite car:

$$\lim_{x \to 0^{-}} f(x) = f(0) = 0 \text{ et } \lim_{x \to 0^{+}} f(x) = 1 /= f(0).$$

Example 2.2. La fonction de la partie entière $x \mapsto E(x)$, elle est continue à droite en tout point entier $n \in \mathbf{Z}$, mais elle ne l'est pas continue à gauche en ces points car:

$$\lim_{x \to n^{-}} E(x) = n - 1$$
 et $\lim_{x \to n^{+}} E(x) = E(n) = n$

Les limites à gauche et à droite sont différentes, donc la fonction E n'est pas continue à gauche de $n \in \mathbf{Z}$.

3. Continuité sur un intervalle

Définition 3.1. On dit que f est continue sur l'intervalle I si f est continue en x_0 pour tout $x_0 \in I$.

3.0.1. Opérations algébriques sur les fonctions continues.

Théorème 3.1. Soient λ un réel et f et g deux fonctions définies sur un intervalle I de \mathbb{R} . Si f et g sont continues en $x_0 \in I$ alors on a les propriétés suivantes :

- (1) $\cdot f \cdot est$ continue en x_0 ;
- (2) f + g est continue en x_0 ;
- (3) $f \times g$ est continue en x_0 ;
- (4) λf est continue en x_0 ;
- (5) si de plus $g(x_0) /= 0$ alors g est continue en x_0 .

3.0.2. Continuité des fonctions compositions.

Théorème 3.2. Soient f une fonction définie au voisinage de x_0 et g une fonction définie au voisinage de $y_0 = f(x_0)$. Si $\lim_{x \to x_0} f(x) = y_0$ et si g est continue en y_0 alors $\lim_{x \to x_0} g$ $f(x_0) = g$ y_0 .

Example 3.1. Puisque $\lim_{x\to 0} \frac{\sin x}{x} = 1$ et que la fonction exponentielle est continue en 1, on en déduit que $\lim \exp \frac{\sin x}{x} = e$.

3.0.3. Continuité des fonctions usuelles.

Théorème 3.3.

- (1) Toute fonction polynôme est continue en tout point.
- (2) Toute fonction rationnelle est continue en tout point de son ensemble de définition.
- (3) Les fonctions sin et cos sont continues en tout point.
- (4) Les fonctions tan et cot sont continues en tout point où elle sont définies.

Corollaire 3.1. Les fonctions construites à partir des fonctions usuelles par opérations algébriques et composition sont continues sur tout intervalle où elles sont définies.

Remarque 3.1. Ce théorème permet souvent de conclure à la continuité d'une fonction sur son ensemble de définition.

Example 3.2. Soit la fonction définie sur **R** par :

$$f(x) = \begin{cases} x \ln|x| & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- (1) $x \mapsto |x|$ est continue sur \mathbf{R} à valeurs dans \mathbf{R}_+ et $|x| = 0 \Leftrightarrow x = 0$. De plus, la fonction \ln est continue sur \mathbf{R}_+ . Donc par composition, f est définie et continue sur \mathbf{R}^* .
- (2) Pour le point 0 qui échappe à ces considérations, on a $\lim_{n \to \infty} u \ln u = 0$. Par suite

$$\lim_{x \to 0} |x| \ln|x| = 0 \Leftrightarrow \lim_{x \to 0} |x| \ln|x| = 0 \Rightarrow \lim_{x \to 0} \ln|x| = 0$$

Par conséquent f possède une limite en 0 qui n'est autre que f (0).

(3) Conclusion: f est continue sur \mathbb{R}

4. Prolongement par continuité en un point

Définition 4.1. Si la fonction f n'est pas définie au point $x_0 \in I$ et qu'elle admet en ce point une limite finie notée P, la fonction définie par

$$g(x) =$$

$$f(x) \quad si \ x \in I \setminus \{x_0\}$$

$$P \quad si \ x = x_0$$

est dite prolongement par continuité de f au point x_0

Example 4.1. La fonction à valeurs réelles, définie, pour $x_0 \neq 0$ par $f(x) = \frac{\sin(ax)}{x}$, peut se prolonger par continuité en 0, car:

$$\lim_{x \to 0} \frac{\sin(ax)}{x} = \lim_{x \to 0} a \frac{\sin(ax)}{ax} = a.$$

$$g(x) = \begin{cases} \frac{\sin(ax)}{x} & \text{si } x \neq 0, \\ a & \text{si } x = 0. \end{cases}$$

Donc

Remarque 4.1. Pour que f soit prolongeable par continuité au point x_0 , il suffit que:

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = l.$$

Example 4.2. Soit

$$f(x) = \begin{bmatrix} \frac{\cos x - \sin(x)}{x - \frac{\pi}{4}} & x > \frac{\pi}{4}, \\ \frac{1}{2} & \frac{1}{4} & x < \frac{\pi}{4}, \end{bmatrix}$$

Peut-on prolonger la fonction f par continuité au point $x_0 = \frac{\pi}{4}$

 $f(x) = \lim_{x \to \frac{\pi}{4}^+} f(x) = l$. Dans ce cas f est prolongeable par continuité au point $x_0 = \frac{\pi}{4}$ si et seulement si $\lim_{x \to \frac{\pi}{4}^+} \frac{4}{x \to \frac{\pi}{4}^-}$ le prolongement par continuité de f au point $x_0 = \frac{\pi}{4}$ si et seulement si $\lim_{x \to \frac{\pi}{4}^+} \frac{4}{x \to \frac{\pi}{4}^-}$

le prolongement par continuité de f au point $x_0 = \frac{\pi}{4}$, définie par:

$$g(x) = \int_{1}^{\infty} \frac{\cos x - \sin(x)}{\pi} \qquad x > \frac{\pi}{4},$$

$$g(x) = \int_{1}^{\infty} \frac{2 + \pi - x}{x^{2} - 4} \qquad x < \frac{\pi}{4},$$

$$- \int_{1}^{\infty} \lim_{x \to \frac{\pi}{4}} f(x) \qquad x = \frac{\pi}{4}.$$

Calculoinmes $\lim_{x \to a} tes_A^{n} de f$ à gaughe et à droite, on a

$$\lim_{x \to \frac{\pi}{4}^{-}} \frac{\cos x - \sin(x)}{x - \frac{\pi}{4}} = \frac{0}{0} \text{ FI.}$$
On pose:
$$\begin{pmatrix}
y = x - \frac{\pi}{4}, & \Rightarrow x = y + \frac{\pi}{4}, \\
x \to \frac{\pi}{4}. & y \to 0.
\end{pmatrix}$$

$$\lim_{y \to 0} \frac{\cos y + \frac{\pi}{4} - \sin y + \frac{\pi}{4}}{y} = \lim_{y \to 0} \frac{\frac{\sqrt{2}}{2} \cos y - \frac{\sqrt{2}}{2} \sin y - \frac{\sqrt{2}}{2} \cos y}{y}$$

$$= \lim_{y \to 0} - 2 \frac{\sin y}{y}$$

$$= - 2 \frac{\sin y}{2}$$

Par conséquent f est prolongeable par continuité au point $x_0 = \frac{\pi}{4}$ et on a:

$$\frac{\cos x - \sin(x)}{\underline{\pi}} \qquad x > \frac{\pi}{4},$$

$$g(x) = \frac{1}{2} - \frac{2}{4} + \frac{\pi}{4}.$$

$$x < \frac{\pi}{4},$$

$$x \leq \frac{\pi}{4},$$

5. Théorème des valeurs intermédiaires

Théorème 5.1. Soit f une fonction continue sur un intervalle I, alors l'image f(I) est également un intervalle (I n'est supposé ni fermé ni borné à priori).

Corollaire 5.1. Si f prend au moins une valeur négative et au moins une valeur positive, alors f prend la valeur 0. Autrement dit: si f une fonction continue sur un intervalle [a, b]. Si $f(a) \times f(b) < 0$ alors il existe $c \in]a,b[tel\ que\ f(c)=0.$

Example 5.1. Considérons l'application $f: x \in [0, 2\pi] \rightarrow \sin(x) + (x-1)\cos(x)$. Cette application est continue car les fonctions sinus et cosinus ainsi que la fonction polynomiale $x \to x - 1$ sont continues sur $[0, 2\pi]$. Puisque f(0) = -1 < 0 et $f(2\pi) = 2\pi - 1 > 0$, d'après le théorème des valeurs intermédiaires, il existe (au moins) un réel $c \in (0, 2\pi)$ [tel que f(c) = 0.

Remarque 5.1. Le réel $c \in [a, b[$ pour lequel f(c) = 0 n'est pas nécessairement unique.

6.

TRAVAUX DÉRIGÉS

Exercice 1. On considère la fonction

$$f(x) = \begin{cases} \frac{\pi \sin(x)}{1} & x \neq -\pi, \\ 1 & x = -\pi. \end{cases}$$

- (1) Déterminer le domaine de définition D_f .
- (2) Etudier la continuité de f sur D_f .
- (3) f admet-elle un prolongement par continuité en 0? Si oui, donner le.
- (4) Montrer que:

$$\Box c \in 0; \frac{\pi}{2}^{h}, f(c) = c.$$

Réponse:

(1) Soit

$$f_{\overline{\mathbf{f}}}(x) = \frac{\pi \sin(x)}{x(x+\pi)},$$
 $D_{-1} = \mathbf{R} - \{-\pi, 0\}.$ $D_{f_2} = \mathbf{R}.$

D'où

$$D_f = D_{f_1} \cap \mathbf{R} - \{-\pi\} \square D_{f_2} \cap \{-\pi\}$$

= $\mathbf{R} - \{0\}$
= \mathbf{R}^* .

- (2) • Sur $\mathbf{R} - \{-\pi, 0\}$, f est un rapport de produit de fonctions continues, donc f est continue.
 - Au point $x_0 = -\pi$.

* On a:
$$f(-\pi) = 1$$
.

* On a:
$$f(-\pi) = 1$$
.
* $\lim_{x \to -\pi} f(x) = \lim_{x \to -\pi} \frac{\pi \sin(x)}{x(x + \pi)} = \frac{0}{0}$ FI.
On pose:

$$\begin{array}{ccc}
(& & (& \\
y = x + \pi, & & \\
x \to -\pi. & & \Rightarrow & x = y - \pi, \\
& & & y \to 0.
\end{array}$$

$$\lim_{x \to -\pi} \frac{\pi \sin(x)}{x(x+\pi)} = \lim_{y \to 0} \frac{\pi \sin(y-\pi)}{y(y-\pi)}$$

On sait que:

1).
$$\sin(\alpha \pm \theta) = \sin \alpha \times \cos \theta \pm \cos \alpha \times \sin \theta$$
,

2).
$$\sin(-x) = -\sin(x)$$
,

3).
$$\sin(\pi - x) = \sin(x),$$

4).
$$\sin(\pi + x) = -\sin(x)$$
.

Alors:

$$\lim_{y \to 0} \frac{\pi \sin(y - \pi)}{y(y - \pi)} = \lim_{y \to 0} \frac{-\pi \sin(y)}{y(y - \pi)}$$

$$= \lim_{y \to 0} \frac{-\pi \sin(y)}{(y - \pi)}$$

$$= 1$$

$$= f(-\pi).$$

donc f est continue en $-\pi$ et alors f est continue sur D_f .

(3) f n'est pas définit en 0 mais définit au voisinage de 0 et on a:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\pi \sin(x)}{x} = \lim_{x \to 0} \frac{\pi \sin(x)}{x} = 1.$$

donc f admet un prolongement par continuité donnée par:

$$g(x) = \begin{cases} f(x) & x \neq 0, \\ 1 & x = 0. \end{cases}$$

(4) Posons:

$$h(x) = g(x) - x, \quad x \in {}^{\mathbf{h}}_{0; \underline{\pi}} \underline{i}$$

La fonction h est continue sur $0; \frac{\pi}{2}$ car g est continue sur $0; \frac{\pi}{2}$ h(0) = g(0) - 0 = 1 > 0 et $h(\frac{\pi}{2}) = 0$ $g \frac{\pi}{2} - \frac{\pi}{2} = \frac{8 - 3\pi^2}{6\pi} < 0$, par le théorème des valeurs intermédiaires

$$\Box c\in 0; \frac{\pi}{2}^{\text{h}},\ h(c)=g\left(c\right)-c=0,$$
 mais comme $c\neq 0$, alors $g\left(c\right)=f\left(c\right)$, c'est-à-dire:

$$\Box c \in 0; \underline{\pi}^{\mathbf{h}}, \ f(c) = c.$$