

Geometría

Proporcionalidad

Intensivo UNI 2024 - III

1. Según el gráfico, las rectas \mathcal{L}_1 , \mathcal{L}_2 y \mathcal{L}_3 son paralelas. Si 5(AB) = 4(BC) y 3(MN) = 4(NP), calcule la m \widehat{PQ} .

4. Del gráfico, $AB = \frac{3}{2}(BC)$ y AC = 8. Calcule CD.

- A) 11 D) 16
- B) 13
- C) 8 E) 14

C) 2

- A) 60° D) 32°
- B) 74°
- C) 90°
- E) 106°
- **5.** De acuerdo al gráfico, calcule *BC* si *AB*=2 y *CD*=3.
- 2. Los segmentos \mathcal{L}_1 y \mathcal{L}_2 son paralelos entre sí, y los segmentos \mathcal{L}_3 y \mathcal{L}_4 también son paralelos entre sí. Halle el valor de x+y.

- \mathscr{L}_1 \mathscr{L}_2 \mathscr{L}_3 \mathscr{L}_4 A) 12 B) 14 C) 16
- 3. En un triángulo *ABC*, AB=6, BC=8 y AC=9; se traza la bisectriz interior \overline{BD} . Calcule AD.
 - A) $\frac{27}{7}$

D) 18

- B) 4
- C) 3

E) 20

D) 7

E) $\frac{25}{4}$

- D) 2,5 E) 3
- **6.** Si B y C son puntos de tangencia, AD = 2(CD) = 6 y AB = 4, halle DE.

- A) 12
- B) 14
- C) 16

D) 18

E) 24

En un triángulo ABC, se sabe que AB=5, O es un punto de \overline{BC} , de modo que BQ=8 y QC=2.

Además P es un punto en la prolongación de \overline{BA} , de modo que la recta PQ resulta ser perpendicular a la bisectriz interior \overline{BH} del triángulo ABC, considere que H en \overline{PQ} . Si dicha recta PO interseca a \overline{AC} en L, calcule HL/LO.

- A) 1 D) 0.3
- C) 3 E) 2.3
- En el gráfico mostrado, $\overline{CO}//\overline{PM}$. Calcule x. 8.

- A) 83° D) 90°
- B) 120°
- C) 45°
- E) 60°
- En el gráfico mostrado, P y Q son puntos de tangencia. Si PM = QN, y AB = 2AQ, calcule PC/CD.

- A) 3/5
- B) 3/2
- C) 3

D) 2/3

- E) 5/3
- **10.** En un triángulo *ABC*, *Q* es un punto de *BC* y *P* un punto de \overline{AB} , de modo que \overline{AQ} , \overline{CP} y \overline{BL} concurren y \overline{PQ} es paralelo a \overline{AC} , L en \overline{AC} . Además \overline{LQ} interseca a \overline{CP} en H y la recta BH interseca a \overline{AC} en T, de modo que \overline{QT} es paralelo a \overline{BL} . Calcule QC/BQ.
 - A) 2
- B) 1
- C) 3

D) 7

E) 5

11. Según el gráfico, BP = CO, AB = AD v PH = 3(HE). Calcule x. $(E \in \overline{HD})$.

A) 37° D) 74°

- B) 60°
- C) 45° E) 53°
- **12.** En un triángulo ABC, Q es un punto de \overline{BC} , de modo que BQ=2QC, además S es un punto de \overline{BA} , de modo que la recta SO interseca a la recta CP en H donde P está en el segmento \overline{SB} . Si BP=PS=2, además se sabe que AC=8 y que la perpendicular a \overline{PC} en H pasa por A, calcule AS.
 - A) 4
- B) 8
- C) 5

D) 6

- E) 3
- 13. En un triángulo ABC se traza una recta secante a \overline{AB} , \overline{BC} y a la prolongación de \overline{AC} , en M, N y L, respectivamente. Si AM=6, BM=3, BN=NC y AC=8, calcule CL.
- B) 7
- C) 8

- E) 10
- 14. En un triángulo cuyos lados miden 5; 6 y 7, halle la longitud del segmento cuyos extremos son el incentro y baricentro de dicho triángulo inicial.
 - A) 1
- B) 1/2
- C) 1/3

D) 1/4

- E) 2/3
- **15.** Por el incentro de un triángulo ABC se traza la recta \mathcal{L} , que interseca a \overline{BC} y \overline{AB} , de modo que las distancias de A y C hacia $\overrightarrow{\mathscr{L}}$ son 2 y 8, respectivamente. Si $\frac{AB}{5} = \frac{AC}{6} = \frac{BC}{7}$, calcu-
 - A) 10
- B) 12

le la distancia de B hacia $\overline{\mathscr{G}}$.

C) 14

D) 9

E) 8

- **16.** Se sabe que *P* es un punto de la semicircunferencia de diámetro \overline{AB} : O un punto en la prolongación de \overline{BA} . Si AP es bisectriz del ángulo $OPL(L \in \overline{AB}) \vee AO = 6, AL = 2$, calcule el radio de la semicircunferencia.
 - A) 12
 - B) 10
 - C) 8
 - D) 6
 - E) 3
- 17. Se tienen dos triángulos: ACB v CDE $(E \in \overline{CB})$, $\overline{DE}//\overline{AC}$ v $\overline{EC}//\overline{DA}$; además. $\overline{AB} \cap \overline{DC} = M \vee \overline{MB} \cap \overline{DE} = \{N\}$. Si $AM = a \vee \overline{BC} = \{N\}$. MN=b, calcule MB.
 - A) $\frac{a^2}{h}$
- C) $\frac{a}{b}$ A CADEMIA A) $\sqrt{6}$ B) $\sqrt{5}$

D) $\frac{b}{a}$

- 18. En un triángulo ABC, \overline{BD} y \overline{BE} son bisectrices interior y exterior, respectivamente. Si AD=3 y CD = 2, halle $(BD)^2 + (BE)^2$.
 - A) 25
- B) 50
- C) 100

D) 144

- E) 225
- 19. Se muestran dos rectas numércias que tienen diferentes escalas y han sido dispuestas en paralelo. Determine qué fracción corresponde al punto marcado con un signo de interrogación.

- A) $\frac{29}{3}$
- B) $\frac{31}{3}$

D) $\frac{19}{2}$

20. En el gráfico, ABCD es un paralelogramo v

$$CD=3(PB)$$
. Calcule $\frac{OD}{BO}$

- A) 2
- B) 3
- C) 4

D) 5

- E) 6
- **21.** En un $\triangle ABC$, se traza la bisectriz interior \overline{AD} , tal que AD = CD = 3 y BD = 2. Halle AC.
- C) $\sqrt{10}$

D) $\frac{2\sqrt{10}}{3}$

- E) $\frac{3\sqrt{10}}{2}$
- 22. En un triángulo acutángulo ABC, la medida del ángulo $ABC = 60^{\circ}$, además se sabe que BC > ABsi la distancia del ortocentro al vértice B es 20. ¿Cuál será la distancia del ortocentro al lado AC si se sabe que este toma su mayor valor entero?
 - A) 10
- B) 9
- C) 8

D) 7

- E) 6
- 23. En un triángulo ABC, el perímetro es 25 cm. Se traza la bisectriz interior \overline{AD} que mide 10 cm. Si BC=5 cm, entonces la distancia del incentro al vértice A es
 - A) 7
- B) 8
- C) 8,5

D) 9

- E) 9.5
- **24.** En un triángulo *ABC* se trazan las cevianas *AD*, BE y CF concurrentes en el punto T. Si BF=6, FA=3, BD=2 y DC=3, entonces BT/TE es
 - A) 5/2
- B) 7/3
- C) 8/5

D) 10/7

E) 11/4