Advanced Econometrics

Lecture 9: Hypothesis Testing (Hansen Chapter 9)

Instructor: Ma, Jun

Renmin University of China

December 4, 2018

Hypotheses

- ► Hypothesis tests attempt to assess whether there is evidence to contradict a proposed parametric restriction.
- ▶ Let $\theta = r(\beta)$ be a $q \times 1$ parameter of interest where $r : \mathbb{R}^k \to \Theta \subset \mathbb{R}^q$ is some transformation.
- ▶ A point hypothesis concerning θ is a proposed restriction such as $\theta = \theta_0$, where θ_0 is a hypothesized (known) value.
- ▶ A hypothesis is a restriction $\beta \in B_0$. In the case of the hypothesis $r(\beta) = \theta_0$, $B_0 = \{\beta : r(\beta) = \theta_0\}$.

Hypotheses

Definition

The **null hypothesis**, written \mathbb{H}_0 , is the restriction $\boldsymbol{\theta} = \boldsymbol{\theta}_0$ or $\boldsymbol{\beta} \in \boldsymbol{B}_0$.

▶ We often write the null hypothesis as $\mathbb{H}_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ or $\mathbb{H}_0: \boldsymbol{r}(\boldsymbol{\beta}) = \boldsymbol{\theta}_0$.

Definition

The alternative hypothesis, written \mathbb{H}_1 , is the set

$$\{m{ heta} \in m{\Theta}: m{ heta}
eq m{ heta}_0\} \ ext{or} \ \{m{eta}: m{eta}
otin m{B}_0\}$$

- We often write the alternative hypothesis as $\mathbb{H}_1: \theta \neq \theta_0$ or $\mathbb{H}_1: r(\beta) \neq \theta_0$.
- ▶ The goal of hypothesis testing is to assess whether or not \mathbb{H}_0 is true, by asking if \mathbb{H}_0 is consistent with the observed data.

Acceptance and Rejection

► The decision is based on a function of the data. It is convenient to express this function as a real-valued function called a **test statistic**

▶ Small values of T are likely when \mathbb{H}_0 is true and large values are likely when \mathbb{H}_1 is true.

Acceptance and Rejection

▶ The most commonly used test statistic is the absolute value of the t-statistic $T = |T(\theta_0)|$ where

$$T(\theta) = \frac{\widehat{\theta} - \theta}{s(\widehat{\theta})}.$$

 $\widehat{\theta}$ is a point estimate and $s\left(\widehat{\theta}\right)$ is its standard error.

Type I Error

▶ A false rejection of
$$\mathbb{H}_0$$
 (rejecting \mathbb{H}_0 when \mathbb{H}_0 is true) is called a **Type-I error**. The probability of a Type I error is

$$\Pr\left(\text{Reject }\mathbb{H}_0 \mid \mathbb{H}_0 \text{ true}\right) = \Pr\left(T > c \mid \mathbb{H}_0 \text{ true}\right).$$

- ► The first goal is to control the type-I error: it should not be large.
- In typical econometric models the exact sampling distributions
 In typical econometric models the exact sampling distributions of estimators and test statistics are unknown.

$$\hat{\beta} \approx N(\beta, \frac{V_{\beta}}{n})$$
 $Se(\hat{\beta}) = \sqrt{\frac{\hat{V}_{\beta}}{n}}$

HO 成花的 B= Bo ⇒

In seiß)

Ho?
$$\beta = \beta$$
.

Ho? $\beta = \beta$.

 $T = \left[\frac{\hat{Q} - \theta_0}{5e(\hat{Q})} \right] > C$

Type I Error

▶ Suppose that when \mathbb{H}_0 is true,

$$T \stackrel{d}{\to} \xi$$
.

Let $G\left(u\right)=\Pr\left(\xi\leq u\right)$ be the distribution of ξ . We call G the asymptotic null distribution. In simple cases, G is known and does not depend on unknown parameters.

► We define the **asymptotic size** of the test as the asymptotic probability of a Type I error:

$$\lim_{n \to \infty} \Pr\left(T > c \mid \mathbb{H}_0 \text{ true}\right) = \Pr\left(\xi > c\right)$$
 是很多成立下的事正命, $= 1 - G(c)$ 是 $= 0$ 是 $=$

▶ In the dominant approach to hypothesis testing, the researcher pre-selects a significance level $\alpha \in (0,1)$ and then selects c so that the asymptotic size is no larger than α .

$$T = \frac{\widehat{0} - 00}{4e(\widehat{\theta})} = \frac{\sqrt{n}(\widehat{\theta} - 00)}{\sqrt{n} \operatorname{se}(\widehat{\theta})} = \frac{\sqrt{n}(\widehat{\theta} - 00)}{\frac{\partial r(\widehat{\beta})}{\partial \widehat{\beta}'} \widehat{\sqrt{\beta}} \frac{\partial r(\widehat{\beta})}{\partial \widehat{\beta}}}$$

$$\begin{cases}
\theta = r(\beta) \\
\frac{\hat{0} - \theta_0}{\sec(\hat{0})}
\end{cases}$$

$$\begin{array}{c}
(\widehat{\beta} - \widehat{\beta}_0) \longrightarrow & N(0, \frac{\partial k_i}{\partial k_i}) \\
(\widehat{\beta} - \widehat{\beta}_0) \longrightarrow & N(0, \frac{\partial k_i}{\partial k_i}) \\
\end{array}$$

$$\begin{array}{l}
\sqrt{n} (\hat{\Theta} - \theta) = \sqrt{n} \left(r(\hat{\beta}) - r(\beta) \right) \\
\approx \sqrt{n} \frac{\partial r(\beta)}{\partial \beta^{1}} (\hat{\beta} - \beta)
\end{array}$$

$$\sqrt{\frac{\partial r(\hat{\beta})}{\partial \hat{\beta}'}} \hat{\nabla}_{\beta} \frac{\partial r(\hat{\beta})'}{\partial \hat{\beta}} \rightarrow \sqrt{\frac{\partial r(\beta)}{\partial \beta'}} \vee_{\beta} \frac{\partial r(\beta)}{\partial \beta}$$

$$\rightarrow d N(0, \frac{\partial r(\beta)}{\partial \beta'}(\hat{\beta} - \beta) \frac{\partial r(\beta')}{\partial \beta})$$

$$\beta \frac{\partial r(\beta)}{\partial \beta}$$

$$\Rightarrow \hat{\theta} \approx N\left(\theta, \frac{\partial g^{\prime}}{\partial \beta^{\prime}} \sqrt{\beta} \frac{\partial g^{\prime}}{\partial \beta^{\prime}}\right) \Rightarrow \frac{\partial \hat{g}^{\prime}}{\partial \hat{g}^{\prime}} \hat{V}_{\beta} \frac{\partial r(\hat{\beta})}{\partial \hat{g}^{\prime}} \qquad \text{Se}(\hat{\theta}) = \underbrace{\frac{\partial r(\hat{\beta})}{\partial \hat{g}^{\prime}} \hat{V}_{\beta} \frac{\partial r(\hat{\beta})^{\prime}}{\partial \hat{g}^{\prime}}}_{N}$$

t tests

▶ The most common test of "scalar" hypothesis: $\mathbb{H}_0: \theta = \theta_0$ against $\mathbb{H}_1: \theta \neq \theta_0$.

Theorem

Under
$$\mathbb{H}_0$$
: $\theta = \theta_0$,

For c satisfying
$$\alpha = 2(1 - \Phi(c))$$
,

$$\Pr(|T(\theta_0)| > c \mid \mathbb{H}_0) \to \alpha,$$

 $T(\theta_0) \stackrel{d}{\to} Z$.

and the test "Reject \mathbb{H}_0 if $|T\left(\theta_0\right)|>c$ " has asymptotic size α .

▶ The alternative $\theta \neq \theta_0$ is called a two-sided alternative.

十一カイマ (T) → d(3) P(7/2/20)=2(1-\$101) 7~ NIOII) => Pr(IT(>c) -> Pr(B)>c)

t tests

- ▶ One-sided alternative could be $\mathbb{H}_1: \theta > \theta_0$.
- ► Tests of $\theta = \theta_0$ against $\theta > \theta_0$ are based on the signed t-statistic $T = T(\theta_0)$.
- ▶ We reject \mathbb{H}_0 if T > c where c satisfies $\alpha = 1 \Phi(c)$. Negative values of are not taken as evidence against \mathbb{H}_0 .
- ▶ We should use one-sided tests and critical values only when the parameter space is known to satisfy a one-sided restriction such as $\theta \ge \theta_0$.

車侧假设检验的符号与H、秩、 H、是">", TE仓域的在石边。 H、是"<", 拒龟域就在左边。

Type II Error and Power 取尾精误

J 笑错误的概率 Pr (Accept Ho) Hi is true)

- ▶ A false acceptance of the null hypothesis \mathbb{H}_0 (accepting \mathbb{H}_0 when \mathbb{H}_1 is true) is called a **Type II error**.
- ► The rejection probability under the alternative hypothesis is

$$\pi\left(\boldsymbol{\theta}\right) = \Pr\left(\text{Reject }\mathbb{H}_{0} \mid \mathbb{H}_{1} \text{ true}\right) = \Pr\left(T > c \mid \mathbb{H}_{1} \text{ true}\right)$$

- 物数正确制件的可能性。 $\pi(\theta) = \text{FI} (\text{Reject } m_0 \mid m_1 \mid m_1 \mid m_2 \mid m_3 \mid m_4 \mid m$ $\pi\left(\boldsymbol{\theta}\right)$ is called **power function**. The power depends on the
 - \blacktriangleright A well behaved test the power is increasing both as θ moves away from θ_0 and as the sample size n increases.

Power of the test. called the power of the test. power = 1 - the probability of a Type II error: $\pi\left(\boldsymbol{\theta}\right) = \Pr\left(\operatorname{Reject}\ \mathbb{H}_0 \mid \mathbb{H}_1 \ \operatorname{true}\right) = \Pr\left(T > c \mid \mathbb{H}_1 \ \operatorname{true}\right)$

Type II Error and Power

► Four possibilities:

	Truth		
		H_0	H_1
Decision	H_0	✓	Type II error
	$\overline{H_1}$	Type I error	√

- ▶ When $T \le c$, we accept H_0 (and risk making a Type II error).
- ▶ When T > c, we reject H_0 (and risk making a Type I error).

如果 C很大, 那似 T>C 更不容易, 降低工炭镜误 但同时会提高工炭镜误.

Type II Error and Power

- Unfortunately, the probabilities of Type I and II errors are inversely related.
- ▶ By decreasing the probability of Type I error, one makes c larger, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.
- ► We want the probability of a type-II error to be as small as possible for a given probability of a type-I error.

希望在控制工类错误的同时,尽可能减小工类错误 选择功敏更大的.

XP-Values

P值是随机变量,

C是T的渐近分布

一种一种: P值是边际 意义上的围著水平. ► p-value is a measure of the strength of information against the null hypothesis:

$$p = 1 - G(T).$$

丁特别大证明越违背Ho. G(·)严格违

G is the (asymptotic) distribution of T under \mathbb{H}_0 .

- ▶ p-value is the marginal significant level: the largest value of α for which the test rejects \mathbb{H}_0 .
- ▶ $T \rightarrow_d \xi$ under \mathbb{H}_0 , then $p = 1 G(T) \rightarrow_d 1 G(\xi)$:

$$\Pr(1 - G(\xi) \le u) = \Pr(1 - u \le G(\xi))$$

$$= 1 - \Pr(\xi \le G^{-1}(1 - u))$$

$$= 1 - G(G^{-1}(1 - u))$$

$$= 1 - (1 - u)$$

$$= u.$$

Wald Tests

The parameter of interest is
$$\theta = r(\beta)$$
. Estimator:

 $\widehat{m{ heta}}=m{r}\left(\widehat{m{eta}}
ight)$. To test $\mathbb{H}_0:m{ heta}=m{ heta}_0$ against $\mathbb{H}_1:m{ heta}
eqm{ heta}_0$, one approach is to measure the discrepancy $\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0$:

r使我性函数的例子

approach is to measure the discrepancy
$$m{ heta} - m{ heta}_0$$
:
$$W = n \left(m{r} \left(\widehat{m{eta}} \right) - m{ heta}_0 \right)' \left(\widehat{m{R}}' \widehat{m{V}}_{\widehat{m{eta}}} \widehat{m{R}} \right)^{-1} \left(m{r} \left(\widehat{m{eta}} \right) - m{ heta}_0 \right).$$

|T|= | = 0-00 | β= r(β) Ho: 0= 0. O. G. G. Hi: 0 + 00 • When $r(\beta) = R'\beta$, $\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \boldsymbol{\theta}\|^2 = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \boldsymbol{\theta})' W (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \boldsymbol{\theta})$

$$\hat{R} = \frac{\partial r(\hat{\beta})}{\partial \beta^{i}}, R = \frac{\partial r(\beta)}{\partial \beta^{i}}$$

$$\hat{R} = \frac{\partial r(\hat{\beta})}{\partial \beta^{i}}, R = \frac{\partial r(\beta)}{\partial \beta^{i}}$$

$$\hat{R} = \frac{\partial r(\hat{\beta})}{\partial \beta^{i}}, R = \frac{\partial r(\beta)}{\partial \beta^{i}}$$

$$\sqrt{r(\beta)-r(\beta)}\rightarrow JN(0,RVBR')$$

$$W = \left(\mathbf{R}' \widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_0 \right)' \left(\mathbf{R}' \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}} \mathbf{R} \right)^{-1} \left(\mathbf{R}' \widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_0 \right).$$

 $\widetilde{Wald} \rightarrow_d \chi^2_{\beta} (H_0: r(\beta) = \theta_0)$

Pr (Wald >
$$\chi^2_{1-\alpha g}$$
) $\rightarrow \alpha$

⇒ ÊVB Ê'→p RVBR'

=> (m (r(ĝ)-00) | Ê VB Ř '(m (r(ĝ)-00)

一种情况: Ho: 0 < 00 Wald Tests H1: 0>00 ①Wad 计算无约束最小一乘 T= 0-0. @ 拉格胡丹泰教法 计算有约束最小二条 run (Y-Xb) (Y-Xb) Im Pr (T>Z+x)=x Theorem 5.t. r(b) = 00 Under $\mathbb{H}_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$, 看承叙大小. then ③ 第三种为法、有约束无约束都算 $W \stackrel{d}{\to} \chi_a^2$ - Nous $=\frac{\widehat{0}-0}{\operatorname{Se}(\widehat{0})}+\frac{0-0}{\operatorname{Se}(\widehat{0})}$ 三位一体的检验方法 and for c satisfying $\alpha = 1 - G_a(c)$, trivity $\Pr(T > \frac{1}{2}(-\alpha)) = \Pr(\frac{\hat{b} - 0}{2(\alpha)} + \frac{0 - 0 \hat{a}}{2(\alpha)}) \xrightarrow{\epsilon_1} \frac{1}{\epsilon_2}$ $\Pr(W > c \mid \mathbb{H}_0) \to \alpha$ so the test "Reject \mathbb{H}_0 if W > c" has asymptotic size α . < Pr(6-0 > 71-0) -> 0 $= Pr(type^{-1}) \rightarrow \alpha$ H 0 < 0. 4 95 00 Lim Pr(Tって1-2)= a いっか か Size a 梅独-足是 level a 超強 Limsup Pr(T>Z1-a) < a 15/20

Homoskedastic Wald Tests

▶ If the error is known to be homoskedastic.

If the error is known to be homoskedastic,
$$W^{0} = \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}\right)' \left(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}}^{0}\right)^{-1} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}\right) \\ = \left(\boldsymbol{r}\left(\widehat{\boldsymbol{\beta}}\right) - \boldsymbol{\theta}_{0}\right)' \left(\widehat{\boldsymbol{R}}'\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\widehat{\boldsymbol{R}}\right)^{-1} \left(\boldsymbol{r}\left(\widehat{\boldsymbol{\beta}}\right) - \boldsymbol{\theta}_{0}\right)/s^{2}.$$

▶ In the case of linear hypotheses $\mathbb{H}_0: \mathbf{R}'\beta = \boldsymbol{\theta}_0$,

$$W^{0} = \left(\mathbf{R}'\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_{0}\right)' \left(\mathbf{R}' \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{R}\right)^{-1} \left(\mathbf{R}'\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_{0}\right) / s^{2}.$$

▶ In this case, the F testing statistic: $F = W^0/q$ and $F \to_d \chi_q^2/q$.

 $\mathcal{N}_{B} = \mathcal{L}_{S} (\mathcal{E} X X_{I})_{-I}$

Power and Test Consistency

- ▶ The power of a test is the probability of rejecting \mathbb{H}_0 when \mathbb{H}_1 is true.
- ▶ Random sample from $N\left(\theta,\sigma^2\right)$, with σ^2 known: $\{Y_1,...,Y_n\}$. For testing $\mathbb{H}_0:\theta=0$ against $\mathbb{H}_1:\theta>0$,

$$T = \frac{\sqrt{n}\overline{Y}}{\sigma}.$$

We reject \mathbb{H}_0 if T > c.

- ▶ Note $T = \frac{\sqrt{n}(\overline{Y} \theta)}{\sigma} + \frac{\sqrt{n}\theta}{\sigma}$. The power of the test is $\Pr(T > c) = \Pr(Z + \sqrt{n}\theta/\sigma > c) = 1 \Phi(c \sqrt{n}\theta/\sigma).$
- ▶ This power function is monotonically increasing in θ and n.
- ▶ If $\theta > 0$, the power increases to 1 as $n \to \infty$. This means whenever \mathbb{H}_1 is true, the test will reject \mathbb{H}_0 with a high probability if n is sufficiently large.

Power and Test Consistency

Definition A test of $\mathbb{H}_0: \boldsymbol{\theta} \in \boldsymbol{\Theta}_0$ is consistent against fixed alternatives if for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}_1$, $\Pr\left(\operatorname{Reject}\ \mathbb{H}_0 \mid \boldsymbol{\theta}\right) \to 1$ as $n \to \infty$.

 \blacktriangleright In general, t test and Wald test are consistent. Take a tstatistic for testing $\mathbb{H}_0: \theta = \theta_0$,

$$|T| = \left| \frac{\widehat{\theta} - \theta_0}{s\left(\widehat{\theta}\right)} \right| = \left| \frac{\widehat{\theta} - \theta}{s\left(\widehat{\theta}\right)} + \frac{\sqrt{n}\left(\theta - \theta_0\right)}{\sqrt{\widehat{V}_{\theta}}} \right|$$
Forest Ho of $|T| > \frac{2}{5} = \frac{2}{5}$

 $ightharpoonup rac{\widehat{\theta} - \theta}{s(\widehat{\theta})}$ converges in distribution to $N\left(0,1\right)$ but $\frac{\sqrt{n}(\theta - \theta_0)}{\sqrt{\widehat{V}_0}}$ tends to be large if n is large, since $\sqrt{\widehat{V}_{\theta}}$ converges in probability to a positive constant.

Bonferroni Corrections

$$\begin{array}{ll}
() E(Y|X) = X'B \\
() U = Y - E(Y|X)
\end{array}$$

$$\begin{array}{ll}
() E(U^2|X) = Constant \\
() E(U^2|X) = Constant
\end{array}$$

- ► Under the joint hypothesis that a set of *k* hypotheses are all true, what is the probability that the smallest *p*-value is smaller than α?
- ▶ Suppose our null hypothesis \mathbb{H}_0 is a joint hypothesis: " \mathbb{H}_0^1 is true, \mathbb{H}_0^2 is true, ..., and \mathbb{H}_0^k is true" and for each hypothesis we have a test (a testing statistic with an asymptotic p-value p_j).
- ▶ Consider the following rule: reject \mathbb{H}_0 if any of the hypotheses is rejected, or the smallest p-value is smaller than α .

Bonferroni Corrections

► But the test may not have "correct size" (the type-I error could be very large):

large):
$$\Pr\left(\min_{1\leq j\leq k}p_{j}<\alpha\right)\leq\sum_{j=1}^{k}\Pr\left(p_{j}<\alpha\right)\rightarrow k\alpha.$$

$$\Pr\left(\min_{1\leq j\leq k}p_{j}<\alpha\right)\leq\sum_{j=1}^{k}\Pr\left(p_{j}<\alpha\right)\rightarrow k\alpha.$$

$$\stackrel{\triangleright}{\leftarrow}\cdots$$

$$\stackrel{\triangleright}{\rightarrow}\Pr\left(p_{j}<\alpha\right)\rightarrow k\alpha$$

▶ Bonferroni correction: use the adjusted significance level α/k ,

$$\underbrace{\Pr\left(\min_{1\leq j\leq k}p_{j}<\frac{\alpha}{k}\right)}_{\text{EFRICAL SOLE}}\leq \sum_{j=1}^{k}\Pr\left(p_{j}<\frac{\alpha}{k}\right)\rightarrow\alpha. \quad \Rightarrow \text{ type-I error KTINGLESOLE}.$$

So the type-I error associated with the decision rule should not be much larger than α .