M444 – Complex Analysis

Pierre-Olivier Parisé

University of Hawai'i at Manoa Chapter 3

Section 3.3: Independence of Path

Theorem (Theorem 3.3.4)

Let f be a continuous complex-valued function on a **region** Ω . Assume there is an analytic function F on Ω such that f(z) = F'(z), $\forall z \in \Omega$. Then $\forall z_1, z_2 \in \Omega$ and any path $\gamma \subset \Omega$ joining z_1 to z_2 , the integral

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Recall that $\frac{d}{dt}(F(z(t))) = F'(z(t))z'(t)$.

Let $z:[a,b]\to\mathbb{C}$ be a parametrization of γ with $z(a)=z_1$ and $z(b)=z_2$. Then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} F'(z(t))z'(t) dt = \int_{a}^{b} \frac{d}{dt}(F(z(t))) dt$$
$$= F(z(b)) - F(z(a))$$

hence the result.

Example. Consider

$$\int_{[z_1,z_2,z_3]} 3(z-1)^2 \, dz$$

where $z_1 = 1$, $z_2 = i$, and $z_3 = 1 + i$.

Consider $\Omega = \mathbb{C}$ and $F(z) = (z-1)^3$. Then F is analytic on Ω and $F'(z) = 3(z-1)^2$.

The path $[z_1, z_2, z_3] = [z_1, z_2] \cup [z_2, z_3] \subset \Omega$. Hence by Theorem 3.3.4

$$\int_{[z_1,z_2,z_3]} 3(z-1)^2 dz = \int_{[z_1,z_2]} 3(z-1)^2 dz + \int_{[z_2,z_3]} 3(z-1)^2 dz$$

$$= F(z_2) - F(z_1) + F(z_3) - F(z_2)$$

$$= F(z_3) - F(z_1)$$

$$= (1+i-1)^2 - (1-1)^3$$

$$= -1.$$

Example. Consider

$$\int_{\gamma} \frac{i}{z - 2 - 2i} \, dz,$$

where $\gamma(t) = e^{it}$, $0 < t < \pi$.

Possible antiderivative : $F(z) = i \operatorname{Log}(z - 2 - 2i)$. This is analytic on $\mathbb{C}\setminus\{a+2+2i: a<0\}.$

Let $\Omega := \mathbb{C} \setminus \{a+2+i : a \leq 0\}$. Then $C_1(0) \subset \Omega$. Let $\gamma(t) = e^{it}$ $(0 \le t \le \pi)$ so that $z_1 = \gamma(0) = 1$ and $z_2 = \gamma(\pi) = -1$.

By Theorem 3.3.4,

$$\int_{C_1(0)} \frac{i}{z - 2 - i} dz = i \operatorname{Log}(z_2 - 2 - 2i) - i \operatorname{Log}(z_1 - 2 - 2i)$$

$$= i \operatorname{Log}(-3 - 2i) - i \operatorname{Log}(-1 - 2i)$$

$$\approx 0.5191 - i \cdot 0.2075$$

Example. Consider

$$\int_{C_1(0)} \frac{1}{z^n} \, dz$$

where $n \neq 1$.

Possible antiderivative : $F(z) = \frac{-1}{(n-1)z^{n-1}}$. It is analytic on $\Omega = \mathbb{C} \setminus \{0\}$. Notice that this is a region and contains $C_1(0)$.

By Theorem 3.3.4,

$$\int_{C_1(0)} \frac{1}{z^n} dz = F(z_2) - F(z_1) = \frac{-1}{(n-1)z_2^{n-1}} + \frac{1}{(n-1)z_1^{n-1}}.$$

However, $C_1(0)$ is a closed curve, so $z_1 = z_2$. Hence

$$\int_{C_1(0)}\frac{1}{z^n}=0.$$