Problem 134

Iñaki Silanes

October 2, 2014

1 Definition

Consider the consecutive primes $p_1 = 19$ and $p_2 = 23$. It can be verified that 1219 is the smallest number such that the last digits are formed by p_1 whilst also being divisible by p_2 .

In fact, with the exception of $p_1 = 3$ and $p_2 = 5$, for every pair of consecutive primes, $p_2 > p_1$, there exist values of n for which the last digits are formed by p_1 and n is divisible by p_2 . Let S be the smallest of these values of n.

Find $\sum S$ for every pair of consecutive primes with $5 \le p_1 \le 1000000$.

2 Solution

The requested n will always be of the form $n = m10^d + p_1$, where d is the amount of digits in p_1 . The requested property for n is

$$n \bmod p_2 = 0 \tag{1}$$

$$(m10^d + p_1) \bmod p_2 = 0 (2)$$

$$(m10^d \bmod p_2 + p_1 \bmod p_2) \bmod p_2 = 0 (3)$$

$$(m10^d \bmod p_2 + p_1) \bmod p_2 = 0 (4)$$

$$m10^d \bmod p_2 = p_2 - p_1 \tag{5}$$

Following this reasoning, we proceed to check different m values for each p_1, p_2 pair, until Eq. 5 holds. Then we calculate $n = m10^d + p_1 = S$ and add it to the total.