## Population genetics of the Manila clam (*Ruditapes philippinarum*) introduced in North America and Europe David Cordero, Marina Delgado, Baozhong Liu, Jennifer Ruesink, Carlos Saavedra Contents:

- Supplementary Table S1

- Supplementary Table S2

- Supplementary Table S3

- Supplementary Table S4

**Supplementary information** 

Supplementary Table S1.- COI frequencies in the Manila clam populations considered in this study. The names of the populations sampled for this study are shown in all-capitals. Data for the remaining populations were obtained from references 33 and 36.

| A-8<br>A-9 |     |     |     |    |    |    |      |    |    |       |    |    |       |     |     |     |     |      |     |     |     |     |       |       |       |       |       |       |    |
|------------|-----|-----|-----|----|----|----|------|----|----|-------|----|----|-------|-----|-----|-----|-----|------|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|----|
|            |     |     |     |    |    |    | Chir | na |    |       |    |    |       |     |     |     |     | Japa | n   |     |     |     | Am    | erica |       | Eu    | rope  |       |    |
|            | Xia | Kia | Dal | DI | Nb | Gz | Rs   | Pt | Qd | CHI-N | Lz | Tj | CHI-S | Kag | Mik | Tok | Ari | Miy  | Nan | Not | Akk | JAP | NAM-1 | NAM-2 | EUR-1 | EUR-2 | EUR-3 | EUR-4 |    |
|            | _   | _   | _   | _  | _  | _  | _    | _  | _  | _     | _  | _  | _     | _   | _   | _   | _   | _    | _   | 1   | _   | _   | _     | -     | _     | _     | _     | _     | 1  |
| 713        | -   | -   | -   | -  | -  | -  | -    | -  | 4  | -     | -  | 6  | -     | 1   | 1   | 1   | 1   | -    | -   | 2   | 4   | 2   | 9     | 9     | 3     | 5     | 2     | 2     | 52 |
| A-10       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | 2   | -   | -   | -     | -     | -     | -     | -     | -     | 2  |
| A-11       | -   | -   | -   | -  | -  | -  | 1    | -  | 1  | -     | -  | 1  | -     | 2   | 1   | 2   | 1   | -    | -   | -   | -   | 3   | 1     | 4     | 9     | 6     | 16    | 8     | 56 |
| A-12       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | 1   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-13       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | 1   | -   | -   | 1   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 2  |
| A-14       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | 1   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-15       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | 1    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-16       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | 1    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-17       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | 1    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-18       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | 1   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-19       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | 1   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-20       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | 1   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-21       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | 1   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-22       | -   | -   | -   | -  | -  | -  | -    | -  | 1  | -     | -  | -  | -     | -   | -   | -   | -   | -    | 1   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 2  |
| A-23       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | 2   | -   | -   | -    | -   | -   | -   | -   | 7     | 12    | 1     | 6     | 6     | 8     | 42 |
| A-24       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | 1   | 1   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 2  |
| A-25       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | 1   | -   | -    | -   | -   | -   | 1   | -     | -     | -     | -     | -     | -     | 2  |
| A-35       | -   | -   | -   | -  | -  | -  | -    | -  | 2  | -     | -  | 2  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 4  |
| A-37       | -   | -   | -   | -  | -  | -  | 1    | -  | 2  | -     | -  | 2  | -     | -   | -   | -   | -   | -    | -   | -   | -   | 3   | -     | -     | -     | -     | -     | -     | 8  |
| A-38       | -   | -   | -   | -  | -  | -  | -    | -  | 2  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 2  |
| A-41       | -   | -   | -   | -  | -  | -  | -    | -  | 1  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-42       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | 1   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-43       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | 2   | -   | -     | -     | -     | -     | -     | -     | 2  |
| A-44       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | 1   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-45       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | 1   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-46       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | 1   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-47       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | 1   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-48       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | 1   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-60       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | 1  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-61       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | 1  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-62       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | 1  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1  |
| A-63       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | 1  | -     | -   | -   | -   | -   | -    | -   | -   | -   | 2   | -     | -     | -     | -     | -     | -     | 3  |
| A-68       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | 1   | -     | -     | -     | -     | -     | -     | 1  |
| A-73       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | 1   | -     | -     | -     | -     | -     | -     | 1  |
| A-74       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | 1   | -     | -     | -     | -     | -     | -     | 1  |
| A-75       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | 1   | -     | -     | -     | -     | -     | -     | 1  |
| A-76       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | 1     | 2     | 3     | 1     | 7  |
| A-77       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | 13    | 2     | 7     | 8     | 30 |
| A-78       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | 1     | -     | -     | 1  |
| A-94       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | 1     | -     | -     | -     | -     | -     | 1  |
| A-95       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | 1     | -     | -     | -     | -     | -     | 1  |
| A-96       | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | 1     | -     | -     | -     | -     | -     | 1  |
| A-97       | -   | -   | -   | -  | -  | -  | -    | -  | _  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | 2     | -     | -     | -     | -     | -     | 2  |
| A-98       | -   | -   | -   | -  | -  | -  | -    | -  | _  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | 1     | -     | -     | -     | -     | -     | 1  |
| A-99       | -   | -   | -   | -  | -  | -  | -    | -  | _  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | 1     | -     | -     | -     | -     | -     | 1  |
| A-100      | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | 1     | -     | -     | -     | -     | -     | 1  |
| A-101      | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | _   | 1     | -     | -     | -     | -     | -     | 1  |
| A-102      |     | _   | _   |    |    |    |      |    |    | _     | _  |    | _     |     | _   | _   | _   | _    | _   | _   | _   | _   | 1     | _     |       | _     | _     | _     | 1  |

| Haplotype      |     |     |     |    |    |    |      |    |    |       |    |    |       |     | F   | Region | ıs  |      |     |     |     |     |       |        |       |       |        |         | Total |
|----------------|-----|-----|-----|----|----|----|------|----|----|-------|----|----|-------|-----|-----|--------|-----|------|-----|-----|-----|-----|-------|--------|-------|-------|--------|---------|-------|
|                |     |     |     |    |    |    | Chir | na |    |       |    |    |       |     |     |        |     | Japa | n   |     |     |     | Ame   | erica  |       | Eui   | rope   |         |       |
|                | Xia | Kia | Dal | DI | Nb | Gz | Rs   | Pt | Qd | CHI-N | Lz | Tj | CHI-S | Kag | Mik | Tok    | Ari | Miy  | Nan | Not | Akk | JAP | NAM-1 | NAM-2  | EUR-1 | EUR-2 | 2 EUR- | 3 EUR-4 |       |
| A-103          | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | 1     | -      | -     | -     | -      | -       | 1     |
| A-104          | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | 1     | -      | -     | -     | -      | -       | 1     |
| A-105          | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | 1     | -      | -     | -     | -      | -       | 1     |
| A-106          | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | 1     | -      | -     | -     | -      | -       | 1     |
| A-107<br>A-108 | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | 1<br>1 | -     | -     | -      | -       | 1     |
| A-108<br>A-109 | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | 1      | -     | -     | -      | -       | 1     |
| A-110          | _   | _   | _   | _  | _  | _  |      | _  | _  | _     | _  | _  | _     | _   | _   | _      | _   | _    | _   | _   | _   | _   | _     | 1      | _     | _     | _      | _       | 1     |
| A-111          | _   | _   | _   | _  | _  | _  | _    | _  | _  | _     | _  | _  | _     | _   | _   | _      | _   | _    | _   | _   | _   | _   | _     | 1      | _     | _     | _      | _       | 1     |
| A-112          | -   | _   | _   | _  | _  | _  | _    | _  | _  | -     | _  | _  | _     | -   | _   | _      | _   | _    | _   | _   | _   | -   | -     | 2      | -     | _     | _      | _       | 2     |
| A-113          | _   | -   | -   | _  | -  | _  | -    | _  | -  | _     | _  | -  | -     | _   | -   | -      | _   | -    | -   | -   | -   | -   | -     | 1      | _     | -     | -      | _       | 1     |
| B-2            | 2   | 1   | 1   | 2  | 2  | 2  | 1    | 2  | -  | 1     | -  | -  | 9     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 23    |
| B-7            | -   | -   | 1   | -  | -  | -  | -    | -  | -  | 1     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 2     |
| B-26           | -   | -   | -   | 1  | 2  | -  | 3    | 5  | -  | 2     | 1  | -  | 1     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 15    |
| B-29           | -   | -   | -   | -  | 1  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-30           | -   | -   | -   | -  | 1  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-32           | -   | -   | -   | -  | -  | 1  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-33           | -   | -   | -   | -  | -  | 1  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-36           | -   | -   | -   | -  | -  | -  | -    | -  | 1  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-39           | -   | -   | -   | -  | -  | -  | -    | -  | 3  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | 1   | -     | -      | -     | -     | -      | -       | 4     |
| B-40           | -   | -   | -   | -  | -  | -  | -    | -  | 1  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-50           | -   | -   | -   | 1  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-51           | -   | -   | -   | 1  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-52           | -   | -   | -   | 1  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-56           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | 1  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-57           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | 1  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-64           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | 1  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-65<br>B-66   | -   | -   | -   | -  | -  | -  | 1    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| B-80           | -   | -   | -   | -  | -  | -  | _    | -  | -  | -     | -  | -  | 2     | -   | -   | -      | -   | Ī    | -   | •   | -   | -   | -     | -      | -     | Ī     | -      | -       | 2     |
| B-83           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | 1     | -   | -   | -      | -   |      | -   |     | -   | -   | -     | -      | -     |       | -      | -       | 1     |
| B-85           | _   | _   | _   | _  | _  | _  | _    | _  | _  | 1     | _  | _  | -     | _   | _   | _      | _   | _    | _   | _   | _   | _   | _     | _      | _     | _     | _      | _       | 1     |
| B-93           | _   | _   | _   | _  | _  | _  | _    | _  | _  | 1     | _  | _  | _     | _   | _   | _      | _   | _    | _   | _   | _   | _   | _     | _      | _     | _     | _      | _       | 1     |
| C-1            | 1   | _   | _   | _  | _  | _  | _    | _  | _  | -     | _  | _  | _     | _   | _   | _      | _   | _    | _   | _   | _   | _   | _     | _      | _     | _     | _      | _       | 1     |
| C-3            | 1   | _   | _   | _  | _  | _  | _    | 2  | _  | 1     | _  | _  | _     | -   | _   | _      | _   | _    | _   | _   | _   | -   | -     | -      | -     | _     | _      | _       | 4     |
| C-4            | 1   | _   | -   | 2  | -  | 1  | 1    | 3  | 1  | 1     | 5  | 1  | 5     | 3   | _   | _      | -   | -    | -   | -   | _   | 5   | 2     | -      | 1     | _     | _      | _       | 32    |
| C-5            | -   | 2   | -   | 7  | 5  | -  | -    | 4  | 1  | 4     | -  | -  | 2     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 25    |
| C-6            | -   | 1   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-27           | -   | -   | -   | 1  | 1  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 2     |
| C-28           | -   | -   | -   | -  | 1  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-31           | -   | -   | -   | -  | -  | 1  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-34           | -   | -   | -   | -  | -  | 1  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-49           | -   | -   | -   | 1  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-53           | -   | -   | -   | 1  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-54           | -   | -   | -   | 1  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-55           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | 1  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-58           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | 1  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-59           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | 1  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | -   | -     | -      | -     | -     | -      | -       | 1     |
| C-67           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | 4   | -     | -      | -     | -     | -      | -       | 4     |
| C-69           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | 1   | -     | -      | -     | -     | -      | -       | 1     |
| C-70           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | 1   | -     | -      | -     | -     | -      | -       | 1     |
| C-71           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | 2   | -     | -      | -     | -     | -      | -       | 2     |
| C-72           | -   | -   | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | -     | -   | -   | -      | -   | -    | -   | -   | -   | 2   | -     | -      | -     | -     | -      | -       | 2     |

## Supplementary Table S1 (Continued).

| aplotype |     | Regions Total |     |    |    |    |      |    |    |       |    |    |       |     |     |     |     |      |     |     |     |     |       |       |       |       |       |       |     |
|----------|-----|---------------|-----|----|----|----|------|----|----|-------|----|----|-------|-----|-----|-----|-----|------|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-----|
|          |     |               |     |    |    |    | Chii | na |    |       |    |    |       |     |     |     |     | Japa | n   |     |     |     | Am    | erica |       | Euro  | оре   |       |     |
|          | Xia | Kia           | Dal | DI | Nb | Gz | Rs   | Pt | Qd | CHI-N | Lz | Tj | CHI-S | Kag | Mik | Tok | Ari | Miy  | Nan | Not | Akk | JAP | NAM-1 | NAM-2 | EUR-1 | EUR-2 | EUR-3 | EUR-4 |     |
| C-79     | -   | _             | -   | -  | _  | -  | -    | -  | -  | _     | _  | -  | 1     | -   | _   | -   | _   | -    | _   | _   | _   | -   | -     | -     | -     | _     | _     | -     | 1   |
| C-81     | -   | -             | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | 1     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| C-82     | -   | -             | -   | -  | -  | -  | -    | -  | -  | -     | -  | -  | 1     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| C-84     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 1     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| C-86     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 2     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 2   |
| C-87     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 1     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| C-88     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 1     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| C-89     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 2     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 2   |
| C-90     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 1     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| C-91     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 1     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| C-92     | -   | -             | -   | -  | -  | -  | -    | -  | -  | 1     | -  | -  | -     | -   | -   | -   | -   | -    | -   | -   | -   | -   | -     | -     | -     | -     | -     | -     | 1   |
| Total    | 5   | 4             | 2   | 19 | 13 | 7  | 9    | 16 | 20 | 22    | 11 | 17 | 23    | 7   | 5   | 5   | 5   | 3    | 5   | 5   | 12  | 31  | 33    | 33    | 34    | 27    | 22    | 28    | 423 |

Supplementary Table S2 .- Mitochondrial COI genetic diversity and neutrality tests in 28 populations and four regions of R. Philippinarum . Philippina

|               | Region    | Population         | Ν        | S        | h  |                                    | ·I <sub>d</sub> | π                                  | (%)                                | Tajima's D           |
|---------------|-----------|--------------------|----------|----------|----|------------------------------------|-----------------|------------------------------------|------------------------------------|----------------------|
|               |           |                    |          |          |    | All clades                         | Clade A         | All clades                         | Clade A                            | _                    |
| By population | ıs        |                    |          |          |    |                                    |                 |                                    |                                    |                      |
| z, population | China     |                    |          |          |    |                                    |                 |                                    |                                    |                      |
|               |           | DI1                | 2        | 1        | 2  | 1.00 ± 0.50                        | -               | 0.17 ± 0.09                        | -                                  | n.a.                 |
|               |           | DI2                | 19       | 14       | 11 | 0.87 ± 0.07                        | -               | 0.66 ± 0.09                        | -                                  | -0.392               |
|               |           | Tj                 | 17       | 18       | 10 | 0.88 ± 0.07                        | 0.84 ± 0.09     | 0.60 ± 0.15                        | 0.35 ±0.07                         | -1.354               |
|               |           | Lz                 | 11       | 12       | 7  | 0.82 ± 0.12                        |                 | 0.55 ± 0.12                        | -                                  | -0.951               |
|               |           | Rs                 | 9        | 15       | 7  | 0.92 ± 0.09                        | 1.00 ± 0.50     | 0.83 ± 0.19                        | 0.52 ± 0.26                        | -0.560               |
|               |           | Qd                 | 20       | 21       | 12 | 0.94 ± 0.03                        | 0.86 ± 0.06     | 1.03 ± 0.11                        | 0.50 ± 0.09                        | 0.076                |
|               |           | CHI-N              | 22       | 23       | 16 | 0.96 ± 0.03                        | -               | 0.72 ± 0.06                        | -                                  | -1.277               |
|               |           | Kia                | 4        | 9        | 3  | 0.83 ± 0.22                        | -               | 0.83 ± 0.24                        | -                                  | -0.154               |
|               |           | Nb                 | 13       | 12       | 7  | 0.85 ± 0.09                        | -               | 0.79 ± 0.09                        | -                                  | 0.736                |
|               |           | Pt                 | 16       | 8        | 5  | 0.83 ± 0.05                        |                 | 0.57 ± 0.05                        | -                                  | 1.330                |
|               |           | Xia                | 5        | 7        | 4  | 0.90 ± 0.16                        | -               | 0.62 ± 0.13                        | -                                  | 0.498                |
|               |           | Gz                 | 7        | 11       | 6  | 0.95 ± 0.10                        | -               | 0.74 ± 0.17                        | -                                  | -0.246               |
|               |           | CHI-S              | 23       | 13       | 9  | 0.81 ± 0.07                        | -               | 0.58 ± 0.06                        | -                                  | -0.154               |
|               | Japan     |                    |          |          |    |                                    |                 |                                    |                                    |                      |
|               | Jupu      | Not                | 5        | 2        | 3  | 0.80 ± 0.16                        | 0.80 ± 0.16     | 0.17 ± 0.05                        | 0.17 ± 0.05                        | 0.243                |
|               |           | Akk                | 12       |          | 8  |                                    | $0.89 \pm 0.08$ | $0.39 \pm 0.10$                    | $0.39 \pm 0.10$                    | -1.985*              |
|               |           | Tok                | 5        | 5        | 4  |                                    | 0.90 ± 0.16     | 0.41 ± 0.09                        | 0.41 ± 0.09                        | 0.000                |
|               |           | Mik                | 5        | 5        | 4  |                                    | $0.90 \pm 0.16$ | 0.45 ± 0.12                        | 0.45 ± 0.12                        | 0.562                |
|               |           | JAP                | 31       | 25       | 16 |                                    | $0.92 \pm 0.04$ | 1.08 ± 0.06                        | 0.49 ± 0.07                        | -0.133               |
|               |           | Kag                | 7        | 11       |    |                                    | $0.83 \pm 0.22$ | 1.03 ± 0.18                        | 0.26 ± 0.09                        | 1.819                |
|               |           | Ari                | 5        | 8        | 5  |                                    | 1.00 ± 0.13     | 0.61 ± 0.16                        | 0.62 ± 0.16                        | -0.440               |
|               |           | Miy                | 3        | 7        | 3  |                                    | 1.00 ± 0.27     | $0.80 \pm 0.33$                    | $0.80 \pm 0.33$                    | n.a.                 |
|               |           | Nan                | 5        | 7        | 5  |                                    | $1.00 \pm 0.13$ | $0.55 \pm 0.10$                    | $0.55 \pm 0.10$                    | -0.332               |
|               | N. Americ | •                  |          |          |    |                                    |                 |                                    |                                    |                      |
|               | N. Americ |                    | 22       | 27       | 17 | 0.00 ± 0.04                        | 0.00 ± 0.04     | 0.65 ± 0.00                        | 0.53 ± 0.06                        | 1 521                |
|               |           | NAM-1<br>NAM-2     | 33<br>33 | 27<br>13 |    | $0.89 \pm 0.04$<br>$0.79 \pm 0.05$ |                 | 0.65 ± 0.09<br>0.45 ± 0.05         | $0.53 \pm 0.06$<br>$0.45 \pm 0.05$ | -1.531<br>-0.581     |
|               |           | 10,401 2           | 33       | 13       |    | 0.73 = 0.03                        | 0.73 = 0.03     | 0.10 = 0.03                        | 0.13 = 0.03                        | 0.301                |
|               | Europe    |                    |          |          |    |                                    |                 |                                    |                                    | 4 600                |
|               |           | EUR-1              | 28       | 13       | 6  |                                    | $0.67 \pm 0.06$ | 0.29 ± 0.10                        | $0.18 \pm 0.05$                    | -1.693               |
|               |           | EUR-2              | 22       | 8        | 6  |                                    | $0.82 \pm 0.04$ | 0.44 ± 0.05                        | 0.44 ± 0.05                        | 0.577                |
|               |           | EUR-3              | 34       | 6        | 5  |                                    | $0.72 \pm 0.06$ | 0.35 ± 0.05                        | 0.35 ± 0.05                        | 1.059                |
|               |           | EUR-4              | 27       | 6        | 5  | 0.76 ± 0.04                        | 0.76 ± 0.04     | $0.40 \pm 0.04$                    | $0.40 \pm 0.04$                    | 1.414                |
| By regions    |           |                    |          |          |    |                                    |                 |                                    |                                    |                      |
|               |           | China              | 168      | 60       | 59 | $0.93 \pm 0.01$                    | $0.86 \pm 0.04$ | 0.95 ± 0.04                        | 0.42 ± 0.06                        | -1.511               |
|               |           | Japan              | 78       | 42       | 38 | $0.95 \pm 0.01$                    | $0.94 \pm 0.02$ | $0.91 \pm 0.06$                    | $0.49 \pm 0.04$                    | -1.314               |
|               |           | N. America         | 66       | 34       | 24 | $0.84 \pm 0.03$                    |                 | 0.55 ± 0.06                        | $0.49 \pm 0.04$                    | -1.830*              |
|               |           | Europe             | 111      | 15       | 7  | 0.76 ± 0.02                        | 0.75 ± 0.02     | $0.38 \pm 0.03$                    | 0.35 ± 0.03                        | -0.636               |
| By clades     |           | Clade A            | 262      | 55       | 60 | 0 88 + 0 01                        | _               | 0.45 ± 0.02                        | _                                  | -2.124**             |
|               |           | Clade A<br>Clade B | 63       |          |    | $0.88 \pm 0.01$<br>$0.81 \pm 0.04$ |                 |                                    |                                    | -2.124***            |
|               |           | Clade B            | 63<br>97 |          |    | $0.81 \pm 0.04$<br>$0.83 \pm 0.03$ |                 | $0.32 \pm 0.03$<br>$0.37 \pm 0.03$ |                                    | -1.935**<br>-2.163** |
|               |           |                    |          |          |    |                                    |                 |                                    |                                    |                      |
|               | * 5 0 05  | ** D/0 01·         | ***      |          |    |                                    |                 |                                    |                                    |                      |

<sup>\*,</sup> P<0.05; \*\*, P<0.01; \*\*\*, P<0.001

| Locus | Allele (bp) |           |        |           |              | Population |       |           |        |        |
|-------|-------------|-----------|--------|-----------|--------------|------------|-------|-----------|--------|--------|
|       |             | CHI-N     | CHI-S  | JAP       | NAM-1        | NAM-2      | EUR-1 | EUR-2     | EUR-3  | EUR-4  |
| A16   | 152         | 0.03      | 0.02   | -         | -            | -          | -     | -         | -      | -      |
|       | 156         | -         | -      | 0.03      | -            | -          | _     | 0.01      | -      | _      |
|       | 158         | 0.89      | 0.74   | 0.42      | 0.02         | 0.05       | _     | 0.02      | 0.04   | 0.01   |
|       | 160         | 0.03      | 0.13   | 0.04      | 0.18         | 0.15       | 0.16  | 0.20      | 0.15   | 0.16   |
|       | 162         | -         | -      | 0.04      | 0.03         | 0.05       | 0.16  | 0.07      | 0.21   | 0.13   |
|       | 164         | -         | _      | 0.14      | 0.02         | -          | -     | 0.01      | -      | -      |
|       | 166         | 0.02      | 0.04   | 0.22      | 0.15         | 0.17       | 0.04  | 0.08      | 0.08   | 0.08   |
|       | 168         | 0.02      | 0.06   | 0.06      | 0.20         | 0.20       | 0.21  | 0.23      | 0.14   | 0.19   |
|       | 170         | -         | 0.01   | 0.06      | 0.21         | 0.23       | 0.18  | 0.29      | 0.14   | 0.13   |
|       | 170         | -         | -      | -         | 0.21         | 0.23       | 0.18  | 0.23      | 0.21   | 0.21   |
|       |             | _         | -<br>- | -         |              |            |       |           |        |        |
|       | 174         |           | -      |           | 0.05         | 0.03       | 0.17  | 0.04      | 0.06   | 0.13   |
|       | 176         | -         | -      | -         | 0.02         | 0.02       | -     | -         | -      | 0.02   |
|       | 178         | -         | -      | -         | 0.02         | 0.02       | -     | 0.01      | -      | 0.02   |
|       | 180         | -         | -      | -         | 0.02         | 0.02       | -     | -         | -      | 0.01   |
|       | 188         | -         | -      | -         | -            | -          | -     | 0.01      | -      | 0.01   |
| A24   | 157         | 0.02      | -      | 0.10      | -            | -          | -     | -         | -      | -      |
|       | 159         | 0.02      | 0.05   | -         | -            | -          | -     | -         | -      | -      |
|       | 163         | 0.88      | 0.77   | 0.55      | 0.72         | 0.62       | 0.75  | 0.80      | 0.76   | 0.82   |
|       | 165         | -         | 0.02   | 0.06      | -            | -          | 0.03  | -         | -      | -      |
|       | 167         | 0.05      | 0.14   | 0.13      | -            | 0.03       | 0.03  | 0.04      | 0.01   | -      |
|       | 169         | 0.02      | 0.01   | 0.03      | -            | 0.03       | 0.01  | 0.01      | -      | 0.02   |
|       | 171         | -         | -      | -         | -            | 0.06       | 0.08  | 0.06      | 0.08   | 0.05   |
|       | 173         | 0.01      | 0.01   | 0.10      | 0.25         | 0.21       | 0.11  | 0.08      | 0.15   | 0.11   |
|       | 175         | -         | -      | 0.10      |              | 0.21       | -     |           | -      | -      |
|       |             |           |        |           | 0.02         |            |       | 0.01      |        |        |
|       | 177         | -         | -      | -         | 0.02         | -          | -     | -         | -      | -      |
| A54   | 239         | -         | -      | -         | -            | 0.04       | -     | -         | -      | -      |
|       | 241         | -         | 0.03   | -         | 0.02         | -          | 0.04  | -         | 0.03   | 0.01   |
|       | 243         | 0.01      | 0.03   | -         | -            | -          | 0.03  | 0.02      | -      | 0.04   |
|       | 245         | 0.02      | 0.02   | 0.05      | 0.02         | -          | 0.04  | 0.04      | 0.03   | 0.01   |
|       | 247         | 0.30      | 0.35   | 0.41      | 0.41         | 0.40       | 0.21  | 0.23      | 0.40   | 0.38   |
|       | 249         | 0.30      | 0.21   | 0.18      | 0.14         | 0.19       | 0.27  | 0.35      | 0.33   | 0.29   |
|       | 251         | 0.03      | 0.03   | 0.04      | 0.16         | 0.06       | 0.09  | 0.07      | 0.07   | 0.02   |
|       | 253         | 0.01      | -      | -         | 0.02         | 0.03       | 0.01  | 0.01      | -      | 0.02   |
|       | 255         | -         | 0.02   | 0.04      | 0.02         | -          | -     | 0.01      | -      | -      |
|       | 257         | 0.02      | -      | 0.01      | -            |            |       | -         |        | _      |
|       | 259         | -         | -      | 0.01      | -            | _          | _     | _         | _      | _      |
|       |             |           | 0.01   |           |              | -          | _     | -         | -      | _      |
|       | 261         | 0.02      |        | -         | 0.02         | -          | -     | -         | -      | - 0.01 |
|       | 267         | -         | -      | -         | -            | -          | -     | -         | -      | 0.01   |
|       | 271<br>null | -<br>0.28 | 0.28   | -<br>0.27 | 0.02<br>0.20 | -<br>0.29  | 0.30  | -<br>0.27 | 0.16   | 0.22   |
|       |             | 0.20      |        |           | 0.20         | 0.23       | 0.50  | 0.27      | 0.10   | 0.22   |
| 462   | 208         | -         | -      | 0.04      | -            | -          | -     | -         | -      | -      |
|       | 216         | 0.05      | 0.04   | 0.01      | -            | -          | -     | -         | -      | -      |
|       | 218         | 0.05      | 0.03   | 0.03      | 0.02         | -          | -     | -         | -      | -      |
|       | 220         | 0.09      | 0.05   | 0.04      | 0.02         | -          | 0.02  | 0.02      | 0.01   | 0.02   |
|       | 222         | 0.07      | 0.03   | 0.01      | -            | 0.03       | -     | 0.01      | -      | -      |
|       | 224         | 0.01      | -      | 0.08      | 0.09         | 0.05       | 0.09  | 0.05      | 0.06   | 0.07   |
|       | 226         | 0.09      | 0.18   | -         | 0.02         | 0.03       | -     | 0.01      | -      | 0.02   |
|       | 228         | 0.08      | 0.09   | 0.21      | 0.33         | 0.32       | 0.34  | 0.32      | 0.31   | 0.26   |
|       | 230         | 0.16      | 0.46   | 0.26      | 0.30         | 0.42       | 0.27  | 0.29      | 0.30   | 0.34   |
|       | 232         | 0.11      | 0.04   | 0.04      | 0.05         | 0.03       | 0.15  | 0.13      | 0.10   | 0.09   |
|       | 234         | 0.12      | -      | 0.19      | 0.12         | 0.05       | 0.12  | 0.11      | 0.19   | 0.17   |
|       | 236         | 0.04      | 0.05   | 0.06      | 0.03         | -          | 0.02  | 0.02      | -      | 0.01   |
|       | 238         | 0.05      | 0.01   | -         | -            | -          | -     | 0.01      | -      | -      |
|       |             |           |        |           | -            |            | -     |           |        | -      |
|       | 240         | 0.04      | 0.03   | 0.01      |              | 0.02       | -     | -         | - 0.01 |        |
|       | 242         | 0.01      | 0.01   | 0.01      | -            | 0.02       | -     | -         | 0.01   | -      |
|       | 244         | 0.02      | -      | -         | 0.02         | -          | -     | 0.01      | -      | 0.01   |
|       | 246         | 0.01      | -      | -         | -            | -          | -     | -         | -      | -      |
|       | 248         | -         | -      | 0.01      | -            | 0.02       | -     | -         | -      | -      |
|       | 250         | -         | -      | -         | 0.02         | 0.02       | 0.02  | 0.01      | 0.01   | -      |
|       | 254         | 0.01      | _      | -         | -            | -          | _     | -         | -      | _      |

| Locus | Allele (bp) |              |              |              |              | Population   |       |       |              |           |
|-------|-------------|--------------|--------------|--------------|--------------|--------------|-------|-------|--------------|-----------|
|       |             | CHI-N        | CHI-S        | JAP          | NAM-1        | NAM-2        | EUR-1 | EUR-2 | EUR-3        | EUR-4     |
| A64   | 106         | 0.01         | -            | 0.02         | -            | -            | -     | -     | -            | -         |
|       | 110         | 0.11         | 0.05         | 0.09         | 0.08         | 0.08         | 0.04  | 0.03  | -            | 0.03      |
|       | 114         | 0.01         | -            | -            | -            | -            | -     | 0.03  | -            | -         |
|       | 116         | 0.01         | 0.01         | -            | -            | -            | 0.01  | -     | 0.01         | 0.01      |
|       | 118         | 0.25         | 0.31         | 0.23         | 0.24         | 0.30         | 0.28  | 0.25  | 0.28         | 0.27      |
|       | 120         | 0.11         | 0.10         | 0.09         | 0.05         | 0.11         | 0.01  | 0.05  | 0.01         | 0.02      |
|       | 122         | 0.03         | -            | -            | -            | -            | -     | -     | -            | -         |
|       | 124         | 0.01         | 0.01         | 0.01         | 0.05         | 0.03         | 0.07  | 0.07  | 0.08         | 0.03      |
|       | 126         | 0.35         | 0.44         | 0.43         | 0.50         | 0.42         | 0.49  | 0.47  | 0.43         | 0.46      |
|       | 128         | -            | -            | -            | 0.03         | -            | 0.01  | 0.01  | 0.01         | 0.01      |
|       | 130         | 0.02         | -            | -            | -            | -            | -     | -     | -            | 0.01      |
|       | 132         | 0.01         | 0.01         | -            | 0.02         | 0.02         | -     | 0.01  | 0.03         | 0.01      |
|       | 134         | 0.01         | 0.01         | 0.02         | 0.03         | 0.03         | -     | -     | -            | -         |
|       | 136         | -            | 0.01         | 0.05         | -            | 0.02         | 0.01  | -     | 0.01         | -         |
|       | 138         | 0.02         | 0.01         | -            | -            | -            | 0.01  | 0.01  | 0.08         | 0.05      |
|       | 140         | -            | -            | -            | -            | -            | 0.03  | 0.01  | 0.01         | -         |
|       | 142         | 0.01         | 0.02         | -            | -            | -            | 0.03  | 0.06  | 0.06         | 0.09      |
|       | 144         | -            | 0.01         | 0.01         | -            | -            | -     | -     | -            | -         |
|       | 146         | -            | -            | 0.04         | -            | -            | -     | -     | -            | -         |
|       | 148         | -            | -            | 0.01         | 0.02         | -            | -     | -     | -            | -         |
|       | 150         | 0.01         | -            | -            | -            | -            | -     | -     | -            | -         |
| К8    | 144         | -            | -            | -            | 0.03         | -            | -     | -     | -            | -         |
|       | 154         | -            | -            | 0.01         | -            | -            | -     | 0.01  | -            | -         |
|       | 160         | 0.04         | 0.06         | -            | -            | -            | -     | -     | -            | 0.03      |
|       | 162         | 0.38         | 0.24         | 0.26         | 0.15         | 0.24         | 0.14  | 0.20  | 0.19         | 0.15      |
|       | 164         | 0.35         | 0.31         | 0.50         | 0.46         | 0.49         | 0.49  | 0.53  | 0.38         | 0.58      |
|       | 166         | 0.15         | 0.22         | 0.17         | 0.18         | 0.17         | 0.26  | 0.18  | 0.31         | 0.16      |
|       | 168         | 0.06         | 0.08         | 0.05         | 0.09         | 0.09         | 0.04  | 0.08  | 0.09         | 0.06      |
|       | 170         | 0.01         | 0.01         | 0.01         | 0.02         | 0.02         | 0.03  | -     | 0.01         | 0.01      |
|       | 174<br>null | 0.01         | 0.01<br>0.06 | -            | 0.08         | -            | 0.04  | -     | 0.03         | 0.01      |
|       |             |              |              |              |              |              |       |       |              |           |
| K22   | 175         | -            | -            | -            | -            | 0.02         | 0.06  | -     | -            | -         |
|       | 178         | -            | -            | -            | -            | 0.05         | 0.01  | 0.01  | -            | -         |
|       | 181         | 0.03         | -            | 0.02         | 0.08         | 0.09         | 0.17  | 0.07  | 0.16         | 0.11      |
|       | 184         | -            | 0.01         | 0.01         | -            | 0.05         | 0.03  | 0.04  | 0.05         | 0.05      |
|       | 199         | -            | -            | -            | -            | -            | -     | -     | -            | 0.01      |
|       | 205         | -            | -            | -            | -            | 0.02         | -     | -     | -            | -         |
|       | 214         | -            | 0.01         | -            | -            | 0.03         | -     | -     | -            | -         |
|       | 217         | -            | -            | -            | 0.02         | -            | -     | -     | 0.03         | -         |
|       | 220         | 0.01         | -            | -            | -            | 0.02         | -     | -     | -            | -<br>0.02 |
|       | 223<br>226  | 0.03<br>0.06 | -            |              |              |              | -     | 0.02  |              | 0.02      |
|       | 229         |              | 0.06<br>0.05 | 0.04<br>0.02 | 0.09<br>0.05 | 0.03<br>0.03 | 0.11  | 0.12  | 0.15         | 0.11      |
|       | 232         | -            | 0.05         | 0.02         | 0.05         | -            |       | 0.01  |              | 0.03      |
|       | 232         | 0.04<br>0.06 | 0.05         | 0.02         | 0.05         | 0.08         | -     | 0.01  | 0.03<br>0.05 | 0.08      |
|       | 238         | 0.06         | 0.06         | 0.08         | 0.08         | 0.08         | 0.03  | 0.04  | 0.03         | 0.01      |
|       | 241         | 0.12         | 0.12         | 0.08         | 0.03         | -            | 0.03  | 0.05  | 0.04         | 0.08      |
|       | 241         | 0.08         | 0.14         | 0.10         | 0.09         | -<br>-       | 0.04  | 0.06  | 0.03         | 0.03      |
|       | 244         | 0.08         | 0.08         | 0.10         | 0.09         | 0.03         | 0.07  | 0.07  | 0.10         | 0.10      |
|       | 250         | 0.10         | 0.07         | 0.07         | 0.05         | 0.03         | -     | 0.03  | 0.01         | 0.02      |
|       | 253         | 0.14         | 0.04         | 0.03         | 0.00         | 0.03         | -     | 0.01  | 0.03         | -         |
|       | 256         | 0.03         | 0.04         | 0.02         | 0.03         | 0.03         | 0.04  | 0.01  | 0.01         | 0.02      |
|       | 259         | 0.03         | 0.04         | -            | 0.03         | 0.02         | 0.04  | 0.02  | -            | -         |
|       | 262         | -            | -            | -            | 0.03         | -            | -     | -     | -            | -         |
|       | 265         | -            | -            | -            | 0.03         | -            | -     | -     | -            | -         |
|       | 289         | -            | 0.01         | -            | -            | 0.02         | 0.03  | -     | -            | -         |
|       | null        | 0.17         | 0.16         | 0.42         | 0.20         | 0.36         | 0.34  | 0.39  | 0.28         | 0.30      |
|       | nun         | 0.17         | 0.10         | 0.42         | 0.20         | 0.30         | 0.34  | 0.33  | 0.20         | 0.5       |

|       |                               | CHI-N       | CHI-S     | JAP     | NAM-1       | NAM-2       | EUR-1   | EUR-2   | EUR-3    | EUR-4      |
|-------|-------------------------------|-------------|-----------|---------|-------------|-------------|---------|---------|----------|------------|
|       | 2N                            | 88          | 86        | 72      | 66          | 66          | 76      | 100     | 78       | 96         |
|       | F <sub>IS</sub>               | -0.066      | 0.026     | -0.064  | 0.119       | -0.097      | 0.131   | -0.004  | -0.046   | -0.012*    |
| A16   | $H_e$                         | 0.213       | 0.430     | 0.758   | 0.858       | 0.858       | 0.846   | 0.817   | 0.858    | 0.865      |
|       | $N_a$                         | 5           | 6         | 8       | 12          | 11          | 7       | 12      | 8        | 12         |
|       | Α                             | 4.78        | 5.62      | 7.98    | 11.69       | 10.82       | 7.00    | 10.27   | 7.99     | 10.68      |
|       | 2N                            | 88          | 88        | 78      | 64          | 66          | 76      | 84      | 74       | 94         |
|       | F <sub>IS</sub>               | -0.073      | -0.061    | -0.047* | -0.324      | -0.281      | -0.055  | 0.064   | -0.208   | -0.140     |
| A24   | $H_e$                         | 0.233       | 0.386     | 0.662   | 0.427       | 0.570       | 0.424   | 0.356   | 0.404    | 0.318      |
|       | $N_a$                         | 6           | 6         | 7       | 4           | 6           | 6       | 6       | 4        | 4          |
|       | Α                             | 5.44        | 5.32      | 6.92    | 3.94        | 5.99        | 5.75    | 5.46    | 3.84     | 3.88       |
|       | 2N                            | 88          | 88        | 84      | 64          | 70          | 70      | 100     | 76       | 96         |
|       | $F_{IS}$                      | 0.123***    | -0.021*** | -0.007* | 0.097       | -0.100      | -0.013* | -0.011* | 0.118    | 0.118**    |
| A54   | $H_e$                         | 0.750       | 0.757     | 0.733   | 0.760       | 0.728       | 0.790   | 0.752   | 0.715    | 0.731      |
|       | $N_a$                         | 9           | 9         | 8       | 10          | 6           | 8       | 8       | 6        | 9          |
|       | Α                             | 8.13        | 8.46      | 7.44    | 9.81        | 5.99        | 7.87    | 7.08    | 5.94     | 7.68       |
|       | 2N                            | 86          | 80        | 80      | 66          | 62          | 68      | 92      | 80       | 96         |
|       | F <sub>IS</sub>               | 0.015       | -0.072    | 0.115   | 0.149       | 0.019       | 0.024   | 0.037   | -0.036   | -0.043     |
| A62   | H <sub>e</sub>                | 0.921       | 0.747     | 0.846   | 0.782       | 0.723       | 0.783   | 0.790   | 0.772    | 0.779      |
|       | $N_a$                         | 17          | 12        | 14      | 11          | 11          | 8       | 12      | 8        | 9          |
|       | Α                             | 15.75       | 11.38     | 12.80   | 10.69       | 11.00       | 7.74    | 10.16   | 7.33     | 8.05       |
|       | 2N                            | 88          | 88        | 82      | 66          | 66          | 74      | 98      | 80       | 92         |
|       | $F_{IS}$                      | 0.026       | -0.100    | -0.004  | 0.078       | 0.075       | -0.069  | -0.002  | 0.084    | -0.132*    |
| A64   | He                            | 0.793       | 0.704     | 0.753   | 0.690       | 0.720       | 0.683   | 0.713   | 0.736    | 0.712      |
|       | $N_a$                         | 15          | 12        | 11      | 9           | 8           | 11      | 11      | 11       | 11         |
|       | Α                             | 12.44       | 9.84      | 10.14   | 8.87        | 7.87        | 10.14   | 9.43    | 9.83     | 9.52       |
|       | 2N                            | 80          | 78        | 78      | 66          | 66          | 72      | 76      | 80       | 80         |
|       | F <sub>IS</sub>               | 0.131       | 0.065*    | 0.110   | 0.092       | 0.065       | 0.103   | 0.155   | 0.038    | 0.160      |
| К8    | $H_e$                         | 0.718       | 0.794     | 0.662   | 0.733       | 0.680       | 0.680   | 0.652   | 0.727    | 0.623      |
|       | $N_a$                         | 7           | 8         | 6       | 7           | 5           | 6       | 5       | 6        | 7          |
|       | Α                             | 6.54        | 7.59      | 5.59    | 6.94        | 4.94        | 5.98    | 4.82    | 5.73     | 6.50       |
|       | 2N                            | 78          | 86        | 92      | 66          | 66          | 70      | 98      | 74       | 92         |
|       | F <sub>IS</sub>               | 0.076       | 0.140*    | -0.013  | 0.183***    | 0.104***    | -0.027* | 0.003   | 0.124*** | -0.006     |
| K22   | He                            | 0.914       | 0.918     | 0.794   | 0.924       | 0.844       | 0.835   | 0.819   | 0.862    | 0.865      |
|       | Na                            | 15          | 16        | 14      | 17          | 18          | 13      | 16      | 14       | 15         |
|       | Α                             | 14.62       | 15.09     | 13.11   | 16.92       | 17.62       | 12.73   | 14.09   | 13.55    | 13.86      |
|       | $\chi^2$                      | Infinity    | 39.2268   | 24.5613 | Infinity    | Infinity    | 26.8067 | 26.2667 | 28.6358  | Infinity   |
|       | χ² Prob                       | High. sign. | 0.0003    | 0.0392  | High. sign. | High. sign. | 0.0204  | 0.0239  | 0.0117   | High. sigi |
|       | Mean H <sub>e</sub>           | 0.649       | 0.677     | 0.744   | 0.739       | 0.732       | 0.720   | 0.700   | 0.725    | 0.699      |
| Total | S.D. ( <i>H<sub>e</sub></i> ) | 0.301       | 0.196     | 0.067   | 0.158       | 0.098       | 0.146   | 0.163   | 0.154    | 0.189      |
|       | Mean N <sub>a</sub>           | 10.6        | 9.9       | 9.7     | 10.0        | 9.3         | 8.4     | 10.0    | 8.1      | 9.6        |
|       | S.D. (N <sub>a</sub> )        | 5.0         | 3.7       | 3.3     | 4.1         | 4.5         | 2.6     | 3.9     | 3.4      | 3.6        |
|       | Mean A                        | 9.67        | 9.04      | 9.14    | 9.84        | 9.18        | 8.17    | 8.76    | 7.74     | 8.60       |
|       | S.D. (A)                      | 4.53        | 3.43      | 2.94    | 4.05        | 4.42        | 2.48    | 3.22    | 3.18     | 3.18       |

<sup>\*</sup> P < 0.05; \*\* P < 0.01; \*\*\* P < 0.001.

Supplementary Table S5. Join distribution of mitochondrial clades and microsatellite cluster 3 obtained from Structure's Bayesian inference, in the population of Japan.

| Individual | COI clade | Cluster 3<br>estimated<br>membership<br>coefficient |
|------------|-----------|-----------------------------------------------------|
| JAP1       | С         | 0.111                                               |
| JAP2       | С         | 0.945                                               |
| JAP4       | А         | 0.390                                               |
| JAP5       | А         | 0.513                                               |
| JAP6       | А         | 0.569                                               |
| JAP7       | А         | 0.822                                               |
| JAP8       | А         | 0.315                                               |
| JAP13      | С         | 0.091                                               |
| JAP15      | С         | 0.280                                               |
| JAP16      | Α         | 0.415                                               |
| JAP21      | С         | 0.843                                               |
| JAP25      | В         | 0.145                                               |
| JAP26      | С         | 0.948                                               |
| JAP27      | С         | 0.949                                               |
| JAP28      | А         | 0.304                                               |
| JAP30      | С         | 0.858                                               |
| JAP32      | С         | 0.726                                               |
| JAP35      | С         | 0.060                                               |
| JAP36      | С         | 0.439                                               |
| JAP38      | С         | 0.016                                               |
| JAP39      | А         | 0.418                                               |
| JAP40      | А         | 0.705                                               |
| JAP41      | С         | 0.255                                               |
| JAP42      | А         | 0.1195                                              |
| JAP43      | Α         | 0.0395                                              |
| JAP44      | Α         | 0.156                                               |
| JAP45      | Α         | 0.376                                               |
| JAP46      | С         | 0.102                                               |

Figure S1.- Bayesian model-based cluster analysis of individual genotypes at seven microsatellite markers in 9 populations of Manila clam. a: Diagram of posterior probability of the microsatellite data according to Evanno et al. for K = 1 to K = 10. b: Diagram of posterior probability of the microsatellite data according to Pritchard et al. for K = 1 to K = 10.

