Лекция 2 Отношения на множествах

- •1. Понятие отношения. Бинарные отношения.
- •2. Композиция бинарных отношений. Обратное отношение.
- •3. Свойства отношений.

Литература

- 1. Белоусов, А.И. Математика в техническом университете: учебник: / А.И. Белоусов, С.Б. Ткачев. М.: МГТУ им. Н.Э. Баумана Выпуск 19: Дискретная математика 2015. https://e.lanbook.com/book/106548
- 2. Нефедов В.Н., Осипова В.А. Курс дискретной математики: Учеб. пособие. М.: Изд-во Магадан, 2011. 264 с.: ил.
- 3. Кривцова И.Е., Лебедев И.С., Настека А.В. Основы дискретной математики. Часть 1. СПб: Университет ИТМО, 2016.

https://books.ifmo.ru/file/pdf/2029.pdf I.Krivtsova

Пример: X – множество студентов, Y – множество дисциплин по выбору.

X	Мат.анализ базовый	Мат.анализ продвинутый	Машинное обучение	Биометрия	Управление ИБ
1					
2					
3					
4					

Бинарное отношение Q: студент x выбрал дисциплину y.

$$Q = \{(1, \text{ма}_6), (2, \text{ма}_6), (2, \text{мо}), (4,6), (4, \text{уиб})\}$$
 © I.Krivtsova ITMO University

1. Понятие отношения. Бинарные отношения

Пусть $X \neq \emptyset$, $Y \neq \emptyset$.

• Определение 1

Бинарным отношением Q на множествах X и Y называется произвольное подмножество упорядоченных пар (x,y), где $x \in X$, $y \in Y$.

Обозначение: xQy или $(x,y) \in Q$.

Элементы x и y — компоненты (координаты) отношения Q.

© I.Krivtsova ITMO University

$$Q \subseteq X \times Y$$

Определение 2

• Областью определения бинарного отношения Q называется множество

$$D_Q = \{x: \exists y \text{ такое, что } (x,y) \in Q\};$$

• областью значений бинарного отношения Q называется множество

$$R_Q = \{y: \exists x \text{ такое, что } (x,y) \in Q\}.$$

Бинарным отношением на X называется любое подмножество Q декартова квадрата множества X:

$$Q \subseteq X \times X = X^2$$

$\forall X$ определим:

- нуль-отношение: \varnothing в X^2
- тождественное отношение (диагональ) на X:

$$id_X = \{(x, x): x \in X\}$$

• универсальное (полное) отношение:

$$U_X = X^2$$

Пример 1.
$$X = \{2,4\}, Y = \{3,4,6\}$$

$$X \times Y = \{ (2,3), (2,4), (2,6), (4,3), (4,4), (4,6) \}$$

Отношения на X и Y

$$1. P: X: y X$$
 делится на y

$$P = \{ (4,4) \}$$

2. Q: x/y X является делителем y

$$Q = \{ (2,4), (2,6), (4,4) \}$$

$$D_Q = \{2, 4\} = X$$
 $R_Q = \{4, 6\}$

Пример 2. $X = \{2,4\}$

$$X^2 = X \times X = \{ (2,2), (2,4), (4,2), (4,4) \}$$

Отношения на X

1.
$$Q: x/y$$

 $Q = \{ (2,2), (2,4), (4,4) \} \subseteq X^2$

2. Тождественное отношение на X:

$$id_X = \{ (2,2), (4,4) \}$$
 – равенство в X : $x=y$

3. Универсальное отношение

$$U_X = X^2 = \{ (2,2), (2,4), (4,2), (4,4) \}$$
 — первая компонента является арифметической степенью второй © І.Кrivtsova

ITMO University

• Определение 3

n-местным (n-арным) отношением на множествах $X_1, X_2, ... X_n$ называется любое подмножество декартова произведения $X_1 \times X_2 \times ... \times X_n$:

$$Q \subseteq X_1 \times \cdots \times X_n$$

При n=1 отношение Q является подмножеством X и называется унарным отношением или свойством.

ITMO University

Способы задания бинарных отношений

- перечисление
- график
- граф
- матрица

Пусть X, Y — конечные множества.

Граф отношения Q строится следующим образом:

- компоненты отношения изображаются точками;
- если xQy, то изображается стрелка, ведущая от точки, соответствующей элементу x, к точке, соответствующей элементу y.

Пусть
$$X = \{x_1, x_2, ..., x_m\}$$
 и $Y = \{y_1, y_2, ..., y_n\}$.

• Определение 4

Матрицей бинарного отношения Q на множествах X и Y называется матрица порядка $m \times n$ в которой элемент, стоящий на пересечении i-й строки и j-го столбца, определяется так:

$$q_{ij} = \begin{cases} 1, & ecnu \ (x_i, y_j) \in Q, \\ 0, & ecnu \ (x_i, y_j) \notin Q. \end{cases}$$

Обозначение: [Q].

Для бинарных отношений определены обычные теоретикомножественные операции:

- объединение
- пересечение
- разность
- симметрическая разность
- дополнение отношения до универсального

Пусть P, Q – бинарные отношения на X и Y, известны их матрицы $[P]=(p_{ij}), [Q]=(q_{ij}).$

Основные свойства матриц

- 1. Если $P \subseteq Q$, то $\forall i, j$ $p_{ij} \leq q_{ij}$.
- 2. Матрица объединения отношений:

$$[P \cup Q] = (p_{ij} + q_{ij}) = [P] + [Q],$$

где сложение осуществляется поэлементным сложением соответствующих элементов матриц [P] и [Q] по бинарным правилам. © I.Krivtsova

ITMO University

3. Матрица пересечения отношений

$$[P \cap Q] = (p_{ij} \cdot q_{ij}) = [P] * [Q],$$

где умножение * осуществляется поэлементным перемножением соответствующих элементов матриц [P] и [Q].

4. Матрица тождественного отношения на X есть единичная матрица размерности m:

$$[id_X] = \boldsymbol{E}_{m \times m}.$$

Реляционные таблицы

X_{I}	X_2	• • •	X_n
x_1	x_2	• • •	X_n
x_1	x_2	• • •	X_n
$x_1^{"}$	$x_2^{"}$	• • •	$x_n^{"}$
•••	•••	•••	•••

 X_i – атрибуты (свойства); $x_i \in X_i$ – домены (значения) атрибутов.

2. Композиция бинарных отношений. Обратное отношение

Пусть
$$Q \subseteq X \times Z$$
, $P \subseteq Z \times Y$.

• Определение 5

Композицией (произведением) бинарных отношений Q и P называется множество

$$Q \circ P = \{(x,y): x \in X, y \in Y \text{ и } \exists z \in Z \text{ такое, что}$$
 $(x,z) \in Q \text{ и } (z,y) \in P\}.$

© I.Krivtsova ITMO University

Пусть $Q \subseteq X^2$.

Композиция $Q \circ Q$ называется квадратом бинарного отношения Q на X: $Q \circ Q = Q^2$

Свойства композиции

1.
$$(Q \circ P) \circ R = Q \circ (P \circ R)$$

2.
$$Q \circ (P \cup R) = (Q \circ P) \cup (Q \circ R)$$

3.
$$\forall Q \ Q \circ \emptyset = \emptyset \circ Q = \emptyset$$

4.
$$\forall Q$$
 на X $Q \circ id_X = id_X \circ Q = Q$

Докажем, что
$$(Q \circ P) \circ R = Q \circ (P \circ R)$$
:

1. Пусть
$$(x,y) \in (Q \circ P) \circ R \Rightarrow \exists u,v : (x,u) \in Q$$
, $(u,v) \in P \text{ и } (v,y) \in R \Rightarrow (x,u) \in Q$, $(u,y) \in P \circ R \Rightarrow (x,y) \in Q \circ (P \circ R)$

T.o.
$$(Q \circ P) \circ R \subseteq Q \circ (P \circ R)$$

2. Пусть
$$(x,y) \in Q \circ (P \circ R) \Rightarrow \exists \ v : (u,v) \in P,$$

 $(v,y) \in R$ и $\exists \ u : (x,u) \in Q \Rightarrow (x,v) \in Q \circ P, \ (v,y) \in R$
 $\Rightarrow (x,y) \in (Q \circ P) \circ R$

T.o.
$$Q \circ (P \circ R) \subseteq (Q \circ P) \circ R$$

© I.Krivtsova ITMO University

СР Верно ли, что $Q \circ P = P \circ Q$ на X? Докажите.

Пусть $Q\subseteq X\times Z$, $P\subseteq Z\times Y$ заданы матрицами $[Q]=(q_{ij})_{m\times n}$ и $[P]=(p_{ij})_{n\times r}$.

Матрица композиции бинарных отношений — матрица размерности $m \times r$, которую находят по правилу:

$$[Q \circ P] = [Q] \cdot [P],$$

где умножение \cdot матриц производится по правилу «строка на столбец», но произведение и сумма элементов q_{ij} и p_{ij} — по бинарному закону.

© I.Krivtsova ITMO University

• Определение 6

Обратным отношением для отношения $Q \subseteq X \times Y$ называется отношение $Q^{-1} \subseteq Y \times X$ такое, что:

$$Q^{-1} = \{ (y,x): (x,y) \in Q \}.$$

Свойства обратного отношения

1.
$$(Q^{-1})^{-1} = Q$$

2.
$$(Q \circ P)^{-1} = P^{-1} \circ Q^{-1}$$

СР Доказательство свойства 1:

Матрица обратного отношения:

$$[Q^{-1}] = [Q]^{\mathrm{T}}$$

где $^{\mathrm{T}}$ – операция транспонирования матрицы [Q].

3. Свойства отношений

Пусть Q – бинарное отношение на X.

• Определение 7

Отношение Q на X называется:

✓ рефлексивным, если

$$\forall x \in X \quad (x,x) \in Q$$

✓ антирефлексивным (иррефлексивным), если $\exists x \in X$ такой, что $(x,x) \in Q$.

✓ нерефлексивным, если оно ни рефлексивное, ни антирефлексивное.

Отношение Q рефлексивное, если $id_X \subseteq Q$,

т.е. диагональ множества X содержится в Q.

Отношение Q антирефлексивное, если $id_X \cap Q = \emptyset$.

• Определение 8

Отношение Q на X называется:

✓ симметричным, если

$$\forall x, y \in X : (x, y) \in Q \Rightarrow (y, x) \in Q$$

 \checkmark антисимметричным, если его наличие между x и y, $x \neq y$, влечет за собой его отсутствие между y и x:

$$\forall x, y \in X : (x, y) \in Q \ u \ (y, x) \in Q \Rightarrow x = y;$$

• несимметричным, если оно ни симметричное, ни антисимметричное.

Отношение Q симметричное \Leftrightarrow

$$Q^{-1} = Q$$

Отношение Q антисимметричное \Leftrightarrow

$$Q\cap Q^{-1}{\subseteq} id_X$$
 в частности, $Q\cap Q^{-1}=\varnothing$

Отношение Q антисимметричное \Leftrightarrow в матрице $[Q \cap Q^{-1}] = [Q] * [Q^{-1}]$ все элементы вне главной диагонали равны нулю.

• Определение 9

Отношение Q на X называется:

✓ транзитивным, если

$$\forall x, y, z \in X : (x, y) \in Q \ u \ (y, z) \in Q \Rightarrow (x, z) \in Q;$$

✓ интранзитивным, если

$$\forall x, y, z \in X : (x, y) \in Q \ u \ (y, z) \in Q \Rightarrow (x, z) \notin Q;$$

✓ нетранзитивным, если оно ни транзитивное, ни интранзитивное.

• **Теорема** (необходимый и достаточный признак транзитивности)

Бинарное отношение Q на X транзитивно тогда и только тогда, когда его квадрат содержится в нем:

$$Q$$
 – транзитивно $\Leftrightarrow Q \circ Q \subseteq Q$.

Доказательство

1. Пусть Q транзитивно

$$(x,y) \in Q^2 \Rightarrow \exists z \in X : (x,z) \in Q \ u \ (z,y) \in Q \Rightarrow$$

 $\Rightarrow (x,y) \in Q \Rightarrow Q^2 \subseteq Q$

2. СР Докажите, что

$$Q^2 \subseteq Q \Rightarrow Q$$
 транзитивно