

CURSO INTENSIVO 2022

ITA - 2022 Matemática

Prof. Victor So

Sumário

APRESENTAÇÃO	4
1. DEFINIÇÃO	4
2. FORMA ALGÉBRICA	5
2.1. Operações dos números complexos	6
2.1.1. Igualdade entre números complexos	6
2.1.2. Adição de números complexos2.1.3. Multiplicação de números complexos	6
2.1.3. Multiplicação de hunicios complexos	· ·
2.2. Módulo e conjugado de um número complexo	6
2.2.1. Módulo de um número complexo	6
2.2.2. Conjugado de um número complexo	7
2.3. Propriedades	7
3. FORMA TRIGONOMÉTRICA	7
3.1. Representação no plano de Argand-Gauss	7
3.2. Propriedades	8
3.2.1. Multiplicação de números complexos na forma trigonométrica	8
3.2.2. Divisão de números complexos na forma trigonométrica	8
4. FÓRMULA DE DE MOIVRE	9
4.1. Primeira fórmula de De Moivre	9
4.2. Segunda fórmula de De Moivre	9
5. APLICAÇÃO DOS NÚMEROS COMPLEXOS NA GEOMETRIA	11
5.1. Distância entre dois Complexos	11
5.2. Mediatriz	11
5.3. Circunferência	12
5.4. Elipse	12
5.5. Hipérbole	13
5.6. Parábola	14
6. FÓRMULA DE EULER	14
7. RESOLUÇÃO DE PROBLEMAS TRIGONOMÉTRICOS COM COMPLEXOS	15
8. QUESTÕES DE PROVAS ANTERIORES	16

ITA		16
IME		28
9. GABARITO		35
ITA		35
IME		37
10. LISTA DE QUESTÕES COMENTADAS		37
ITA		38
IME		87

Apresentação

Nesta aula, aprenderemos a operar com números complexos. Esse é um assunto muito cobrado nos concursos. Por isso, vamos resolver várias questões para garantir nossos pontos na prova!

Estudaremos operações com números complexos, módulo e conjugado de um número complexo, forma trigonométrica, fórmulas de De Moivre e polinômio complexo.

Caso tenha alguma dúvida, entre em contato conosco através do fórum de dúvidas do Estratégia ou, se preferir:

Como se trata de um **curso intensivo**, o nosso objetivo é que você consiga estudar todas as principais questões que podem ser cobradas na prova e, por isso, teremos menos questões e nossa teoria será mais objetiva. Caso queira um material mais aprofundado e com mais questões, recomendo o nosso material do **curso extensivo**.

1. Definição

Podemos entender os números complexos como a extensão do conjunto dos reais. Ela surgiu como tentativa de se resolver uma equação que possuía soluções com raiz quadrada de números negativos. Por exemplo:

$$x^2 + x + 1 = 0$$

Possui raízes:

$$x = \frac{-1 \pm \sqrt{-3}}{2}$$

Como no conjunto dos reais não é possível calcular $\sqrt{-3}$, definiu-se o valor (-1) como i^2 e assim encontramos:

$$x = \frac{-1 \pm \sqrt{i^2 3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$$

i é dito unidade imaginária.

O conjunto dos números complexos é representado pelo símbolo C.

Um número $z \in \mathbb{C}$ é um par ordenado (a,b) com $a,b \in \mathbb{R}$ que satisfaz as seguintes propriedades:

Seja $w = (c, d) \in \mathbb{C}$, com $c, d \in \mathbb{R}$.

i) Igualdade:

Se z = w, temos:

$$(a,b) = (c,d) \Leftrightarrow a = c e b = d$$

ii) Adição:

$$z + w = (a, b) + (c, d) = (a + c, b + d)$$

iii) Multiplicação:

$$z \cdot w = (a, b) \cdot (c, d) = (ac - bd, ad + bc)$$

2. Forma algébrica

Considere o número complexo $z=(a,b),a,b\in\mathbb{R}$.

Pela propriedade da adição temos:

$$z = (a, b) = (a, 0) + (0, b)$$

Usando a propriedade da multiplicação, veja que $(b,0) \cdot (0,1) = (0,b)$:

$$(b,0)\cdot(0,1) = (b\cdot 0 - 0\cdot 1, b\cdot 1 + 0\cdot 0) = (0,b)$$

Desse modo:

$$z = (a, 0) + (0, b) = (a, 0) + (b, 0) \cdot (0, 1)$$

O par (0,1) é chamado de unidade imaginária e definido como i.

$$(0,1) = i$$

Os pares (a, 0) e (b, 0) são ditos números reais.

$$(a, 0) = a e (b, 0) = b$$

Logo, encontramos:

$$z = (a, b) = a + bi$$
$$z = a + bi$$

Essa é a representação do número z na forma algébrica.

a é dito parte real de z ou Re(z).

b é dito parte imaginária de z ou Im(z).

Um número z será real quando z for da forma $z = a, a \in \mathbb{R}$.

Um número z será imaginário puro quando z for da forma $z = bi, b \in \mathbb{R}$.

Observe que as potências de *i* seguem um padrão:

$$i^{1} = i$$
 $i^{2} = -1$
 $i^{3} = -i$
 $i^{4} = 1$
 $i^{5} = i$
 $i^{6} = -1$

Perceba que os valores de i se repetem, as potências de i assumem apenas 4 valores diferentes.

Então, se uma questão lhe pedir para calcular um número complexo com $i^n, n \in \mathbb{N}$, basta dividir n por 4 e encontrar o resto da divisão.

Logo, temos a seguinte relação:

$$i^n = i^r$$

 $n \in \mathbb{N}$ e r é o resto da divisão de n por 4

Por exemplo:

Descubra se o número i^{257} é real puro.

$$\frac{257}{4} = 64 \cdot 4 + 1$$
$$i^{257} = i^1 = i$$

Logo, o número i^{257} é imaginário puro.

2.1. Operações dos números complexos

2.1.1. Igualdade entre números complexos

Seja
$$z = (a, b)$$
 e $w = (c, d)$.

$$z = w$$

Pela propriedade dos números complexos, temos:

$$(a,b) = (c,d) \Leftrightarrow a = c e b = d$$

Então:

$$z = w$$

$$a + bi = c + di \Leftrightarrow a = c e b = d$$

Na igualdade, basta igualar os termos reais aos termos imaginários.

2.1.2. Adição de números complexos

Seja
$$z = (a, b)$$
 e $w = (c, d)$.

Pela propriedade da adição:

$$z + w = (a, b) + (c, d) = (a + c, b + d)$$
Fazendo $(a, b) = a + bi, (c, d) = c + di e (a + c, b + d) = (a + c) + (b + d)i$:
$$z + w = a + bi + c + di = (a + c) + (b + d)i$$

$$z + w = (a + c) + (b + d)i$$

Na adição, basta isolar os termos reais e os termos imaginários e somá-los.

2.1.3. Multiplicação de números complexos

Seja
$$z = (a, b)$$
 e $w = (c, d)$.

Pela propriedade da multiplicação:

$$zw = (a,b)(c,d) = (ac - bd, ad + bc)$$

Fazendo (a, b) = a + bi e (c, d) = c + di:

$$zw = (a+bi)(c+di)$$

Desenvolvendo algebricamente essa multiplicação:

$$zw = (a + bi)(c + di) = ac + adi + bci + bdi^2$$

Fazendo $i^2 = -1$:

$$ac + adi + bci + bdi^{2} = ac + (ad + bc)i - bd = (ac - bd) + i(ad + bc)$$

$$zw = (ac - bd) + i(ad + bc)$$

2.2. Módulo e conjugado de um número complexo

2.2.1. Módulo de um número complexo

Seja z = a + bi, $a, b \in \mathbb{R}$. Módulo de um número complexo é definido como |z|, cujo valor é:

$$|z| = \sqrt{a^2 + b^2}$$

2.2.2. Conjugado de um número complexo

Seja z=a+bi, $a,b\in\mathbb{R}$. O conjugado de um número complexo z é definido por \bar{z} e seu valor vale:

$$\overline{z} = a - bi$$

2.3. Propriedades

Vamos ver algumas propriedades envolvendo o conjugado e o módulo dos números complexos. Citarei os principais que você provavelmente usará na prova.

1)
$$z = \bar{z} \Leftrightarrow Im(z) = 0$$
, $z \in real$

$$2) z\bar{z} = |z|^{2}$$

$$3) \bar{z} = z$$

$$4) \overline{z + w} = \bar{z} + \overline{w}$$

$$5) \overline{zw} = \overline{z}\overline{w}$$

$$6) (\frac{\overline{z}}{w}) = \frac{\overline{z}}{\overline{w}}$$

$$7) |z| = |\bar{z}|$$

$$8) Re(z) = \frac{(z + \bar{z})}{2}$$

$$9) Im(z) = (\frac{(z - \bar{z})}{2i})$$

$$10) \overline{z^{n}} = (\bar{z})^{n}, n \in \mathbb{N}$$

$$11) |zw| = |z||w|$$

$$12) \left|\frac{z}{w}\right| = \frac{|z|}{|w|}$$

$$13) |z| - |w| \le |z + w| \le |z| + |w|$$

$$14) |z| - |w| \le |z - w| \le |z| + |w|$$

15)
$$|z^n| = |z|^n$$

3. Forma Trigonométrica

3.1. Representação no plano de Argand-Gauss

Os números complexos podem ser representados no plano cartesiano. Vamos definir o eixo \boldsymbol{x} como sendo a parte real do número complexo e o eixo \boldsymbol{y} será a parte imaginária. Esse plano será chamado de plano complexo ou plano de Argand-Gauss.

Vamos definir z=(a,b)=a+bi, $a,b\in\mathbb{R}$ e representar no plano complexo:

O ponto P é chamado de afixo de z e θ é chamado de argumento de z ou Arg(z).

Definimos ρ como sendo o valor da distância de O até P.

Vamos calcular o valor de ρ aplicando o teorema de Pitágoras:

$$\rho^2 = a^2 + b^2 \Rightarrow \rho = \sqrt{a^2 + b^2}$$

Veja que esse valor é o módulo de z!

$$\rho = \sqrt{a^2 + b^2} = |z|$$

Vamos colocar $a \ e \ b$ em função de ρ e θ :

Usando trigonometria, temos:

$$cos\theta = \frac{a}{\rho} \Rightarrow a = \rho cos\theta$$

 $sen\theta = \frac{b}{\rho} \Rightarrow b = \rho sen\theta$

Assim, podemos escrever z em função de ρ e θ :

$$z = a + bi = \rho cos\theta + i\rho sen\theta$$
$$z = \rho(cos\theta + isen\theta)$$

Essa é a forma trigonométrica do número complexo. Também pode ser chamado de forma polar.

O termo $cos\theta + isen\theta$ pode ser escrito como $cis\theta$.

Desse modo, z também pode ser escrito como:

$$z = |z| cis\theta$$

O argumento de z pode ser escrito como:

$$Arg(z) = \theta$$
$$tg(\theta) = \frac{b}{a}$$
$$\theta = arctg\left(\frac{b}{a}\right)$$

3.2. Propriedades

3.2.1. Multiplicação de números complexos na forma trigonométrica

Seja
$$z_1 = |z_1| cis(\theta_1)$$
 e $z_2 = |z_2| cis(\theta_2)$.

Multiplicando os dois números complexos, temos:

$$z_1 z_2 = |z_1| cis(\theta_1) |z_2| cis(\theta_2) =$$

$$|z_1| |z_2| (cos\theta_1 + isen\theta_1) (cos\theta_2 + isen\theta_2) =$$

$$|z_1| |z_2| (cos\theta_1 cos\theta_2 - sen\theta_1 sen\theta_2 + i(sen\theta_1 cos\theta_2 + sen\theta_2 cos\theta_1))$$

Das fórmulas da soma dos ângulos de seno e cosseno:

$$cos(\theta_1 + \theta_2) = cos\theta_1 cos\theta_2 - sen\theta_1 sen\theta_2$$

$$sen(\theta_1 + \theta_2) = sen\theta_1 cos\theta_2 + sen\theta_2 cos\theta_1$$

Substituindo na equação, encontramos:

$$z_{1}z_{2} = |z_{1}||z_{2}|(\cos(\theta_{1} + \theta_{2}) + isen(\theta_{1} + \theta_{2})) = |z_{1}||z_{2}|cis(\theta_{1} + \theta_{2})$$

$$z_{1}z_{2} = |z_{1}||z_{2}|cis(\theta_{1} + \theta_{2})$$

3.2.2. Divisão de números complexos na forma trigonométrica

Dividindo os dois números complexos, temos:

$$\frac{z_1}{z_2} = \frac{|z_1|(\cos\theta_1 + i sen\theta_1)}{|z_2|(\cos\theta_2 + i sen\theta_2)} = \frac{|z_1|(\cos\theta_1 + i sen\theta_1)}{|z_2|(\cos\theta_2 + i sen\theta_2)} \left(\frac{|z_2|(\cos\theta_2 - i sen\theta_2)}{|z_2|(\cos\theta_2 - i sen\theta_2)}\right) =$$

Das fórmulas da diferença dos ângulos de seno e cosseno:

$$cos(\theta_1 - \theta_2) = cos\theta_1 cos\theta_2 + sen\theta_1 sen\theta_2$$

$$sen(\theta_1 - \theta_2) = sen\theta_1 cos\theta_2 - sen\theta_2 cos\theta_1$$

E da propriedade da soma dos quadrados de seno e cosseno:

$$cos\theta_2^2 + sen\theta_2^2 = 1$$

Substituindo na equação, obtemos:

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \left(\cos(\theta_1 - \theta_2) + i \operatorname{sen}(\theta_1 - \theta_2) \right) = \frac{|z_1|}{|z_2|} \operatorname{cis}(\theta_1 - \theta_2)$$

$$\frac{z_1}{|z_2|} = \frac{|z_1|}{|z_2|} \operatorname{cis}(\theta_1 - \theta_2)$$

4. Fórmula de De Moivre

Esse é um tema muito cobrado nas provas, a maioria das questões de números complexos podem envolver a fórmula de De Moivre em seus cálculos.

4.1. Primeira fórmula de De Moivre

A primeira fórmula de De Moivre diz que dado $z \in \mathbb{C}$ e $n \in \mathbb{Z}$:

$$z = |z| cis\theta$$

$$z^{n} = |z|^{n} cis(n\theta)$$

$$z^{n} = |z|^{n} cis(n\theta), n \in \mathbb{Z}$$

4.2. Segunda fórmula de De Moivre

A segunda fórmula de De Moivre diz respeito à radiciação dos números complexos. Dado $z \in \mathbb{C}$ e $n \in \mathbb{N}$ $e \ z = \rho cis\theta$:

$$\sqrt[n]{z} = \sqrt[n]{
ho} cis\left(rac{ heta+2k\pi}{n}
ight)$$
, $n\in\mathbb{N}$ e $k=0,1,2,3,...,n-1$

Assim, $w^n = z$ possui n raízes! Cada uma dada por:

$$\sqrt[n]{\rho}cis\left(\frac{\theta+2n\pi}{n}\right)$$
, $k=0,1,2,\ldots,n-1; n\in\mathbb{N}\ e\ n>2$

E ainda, essas raízes, quando representadas no plano complexo, formam um polígono regular. Uma vez que o módulo dessas raízes possui o mesmo valor $\sqrt[n]{\rho}$, podemos afirmar que o polígono estará inscrito em um círculo de raio $\sqrt[n]{\rho}$.

Vamos provar:

Seja $z_1, z_2, z_3, ..., z^n$ raízes de z, então:

$$\begin{aligned} |z_1| &= \left| \sqrt[n]{\rho} cis\left(\frac{\theta}{n}\right) \right| = \left| \sqrt[n]{\rho} \right| \\ |z_2| &= \left| \sqrt[n]{\rho} cis\left(\frac{\theta + 2\pi}{n}\right) \right| = \left| \sqrt[n]{\rho} \right| \\ |z_3| &= \left| \sqrt[n]{\rho} cis\left(\frac{\theta + 4\pi}{n}\right) \right| = \left| \sqrt[n]{\rho} \right| \\ &\vdots \\ |z_n| &= \left| \sqrt[n]{\rho} cis\left(\frac{\theta + (n-1)\pi}{n}\right) \right| = \left| \sqrt[n]{\rho} \right| \end{aligned}$$

Desse modo, todos possuem o mesmo módulo. O único fator que altera entre eles é o seu argumento. Concluímos que todos pertencem ao círculo de raio $\left| \sqrt[n]{\rho} \right|$.

Agora, para provar que a figura que se forma no plano complexo é um polígono regular, devemos mostrar que o ângulo entre duas raízes vizinhas é o mesmo.

Vamos supor $z_k, 0 < k < n-1, k \in \mathbb{Z}$, raiz de z. Vamos calcular os argumentos de $z_k, z_{k+1} e z_{k-1}$:

$$z_{k} = \sqrt[n]{\rho} cis\left(\frac{\theta + 2k\pi}{n}\right)$$

$$Arg(z_{k}) = \frac{\theta + 2k\pi}{n}$$

$$z_{k+1} = \sqrt[n]{\rho} cis\left(\frac{\theta + 2(k+1)\pi}{n}\right)$$

$$Arg(z_{k+1}) = \frac{\theta + 2(k+1)\pi}{n}$$

$$z_{k-1} = \sqrt[n]{\rho} cis\left(\frac{\theta + 2(k-1)\pi}{n}\right)$$

$$Arg(z_{k-1}) = \frac{\theta + 2(k-1)\pi}{n}$$

Vamos calcular o valor dos ângulos $arg(z_k) - arg(z_{k-1})$ e $arg(z_{k+1}) - arg(z_k)$:

arg
$$(z_k)$$
 - arg (z_{k-1}) = $\frac{\theta + 2k\pi}{n} - \frac{\theta + 2(k-1)\pi}{n} = \frac{(\theta + 2k\pi - (\theta + 2(k-1)\pi))}{n} = \frac{2\pi}{n}$ arg (z_{k+1}) - arg (z_k) = $\frac{\theta + 2(k+1)\pi}{n} - \frac{\theta + 2k\pi}{n} = \frac{(\theta + 2(k+1)\pi - (\theta + 2k\pi))}{n} = \frac{2\pi}{n}$ Portanto, todos as raízes adjacentes possuem o mesmo ângulo entre elas. Sendo o ângulo

 $\frac{2\pi}{n}$, temos um polígono regular de n lados.

Podemos afirmar também que os argumentos das raízes estão em progressão aritmética de razão $r=2\pi/n$.

Para n=2, temos raízes diametralmente opostos no plano complexo.

Para n=3, temos um triângulo equilátero inscrito na circunferência.

Para n=4, temos um quadrado cuja medida da diagonal é o diâmetro da circunferência.

Toda vez que você encontrar uma questão pedindo a raiz de z de $z^n=1$, transforme 1 para sua forma polar. Dessa forma, você encontrará todas as raízes de z e não apenas z=1! Faça $1=\cos(2k\pi)+isen(2k\pi)=cis(2k\pi)$, $k\in\mathbb{N}$.

5. Aplicação dos Números Complexos na Geometria

Os números complexos possuem aplicabilidade na geometria. Vamos explorar mais esse assunto.

5.1. Distância entre dois Complexos

Vamos representar dois números complexos quaisquer no plano de Argand-Gauss:

A partir do conceito de soma de vetores (estudado na Física), podemos ver que:

$$\vec{w} = \vec{z} + \vec{x}$$

Veja que \vec{x} é o vetor diferença ($\vec{x}=\vec{w}-\vec{z}$). Assim, a distância entre os afixos z e w é dado pelo tamanho do vetor $\vec{w}-\vec{z}$. Sabemos do estudo de vetores que o tamanho de um vetor é sinônimo de módulo do vetor, isto é:

$$d(\vec{z}, \vec{w}) = d(\vec{w}, \vec{z}) = |z - w|$$

 $*d(\vec{z}, \vec{w})$ é a distância de vetor z ao vetor w.

Observando a figura, percebemos que podemos aplicar a desigualdade triangular e encontrar as seguintes relações:

$$|z| - |x| \le |w| \le |z| + |x|$$

 $|z| - |x| \le |z + x| \le |z| + |x|$

5.2. Mediatriz

Seja z tal que $z = \{|z - z_1| = |z - z_2|, onde z, z_1, z_2 \in \mathbb{C}\}.$

Estamos buscando um conjunto de valores de números complexos que possuem a mesma distância entre z_1 e z_2 . A reta que, por definição, garante que os pontos dela estarão equidistantes a dois pontos, é a mediatriz.

5.3. Circunferência

Vamos analisar o conjunto $z = \{|z - z_1| = r : z, z_1 \in \mathbb{C}, r \in \mathbb{R}_+\}.$

Quando fazemos $|z-z_1|=r$ percebemos que queremos um conjunto de valores de z tal que a distância dele até z_1 é sempre constante e igual a r. Esse conjunto define no plano uma circunferência de centro em z_1 e raio igual a r.

5.4. Elipse

Dado o conjunto $z=\{|z-c|+|z+c|=2a, no\ qual\ a\ e\ c\in\mathbb{R}_+\}$, esse conjunto representa todos os pontos cuja soma de suas distâncias a dois pontos fixos é constante e igual 2a.

Esse lugar geométrico é conhecido como elipse, com focos horizontais nos pontos $c \ e - c$.

Para o caso de os focos da elipse estarem na vertical, devemos considerar o conjunto de $z = \{|z - ci| + |z + ci| = 2a$, onde $a \in c \in \mathbb{R}_+\}$

A elipse também pode ser definida pelo seguinte conjunto:

$$z = \{|z - z_1| + |z - z_2| = 2\alpha, \alpha \in \mathbb{R}_+ \text{ e } z_1, z_2 \in \mathbb{C}\}$$

Nesse caso, z_1 e z_2 são os focos da elipse.

5.5. Hipérbole

Vamos considerar o conjunto $z = \{|z - c| - |z + c| = \pm 2a, a, c \in \mathbb{R}_+\}.$

Esse conjunto representa todos os pontos nos quais a diferença entre a distância de z a dois pontos fixos é constante. O lugar geométrico que possui essa propriedade é a hipérbole com focos nos pontos $-c\ e\ c$.

De forma semelhante ao que ocorre para o caso das elipses, se considerarmos o conjunto $z = \{|z - ci| - |z + ci| = \pm 2a, a, c \in \mathbb{R}_+\}$, teremos nossa hipérbole com focos na vertical.

A hipérbole também pode ser definida pelo seguinte conjunto:

$$z = \{|z - z_1| - |z - z_2| = \pm 2a, a \in \mathbb{R}_+ \text{ e } z_1, z_2 \in \mathbb{C}\}$$

Nesse caso, z_1 e z_2 são os focos da hipérbole.

5.6. Parábola

Para finalizarmos as figuras geométricas no estudo dos Números Complexos, vamos definir o conjunto $z=\{|z-a|=|Re(z)+a|,\ no\ qual\ a\in\mathbb{R}.$ Neste conjunto, percebemos que |Re(z)+a| é a medida de distância entre duas retas verticais que passam por $Re(z)\ e-a$, na qual chamamos de diretriz. Portanto, o lugar geométrico representado é a parábola, cujo parâmetro p=2a.

De forma semelhante, podemos ver que o conjunto dado por $z=\{|z-ai|=|Im(z)+ai|,no~qual~a\in\mathbb{R}$ também formará uma parábola. Entretanto, agora terá foco na vertical e sua diretriz estará na horizontal.

6. Fórmula de Euler

A **fórmula de Euler** é uma fórmula matemática que mostra uma relação entre a função trigonométrica e a função exponencial. Essa fórmula é dada por:

$$e^{i\theta} = \cos\theta + i \sin\theta$$

Onde θ é o argumento real em radianos.

O interessante dessa fórmula é que podemos usar as propriedades das funções exponenciais para operar com os números complexos, por exemplo:

$$e^{i\left(\frac{\pi}{3} + \frac{\pi}{4}\right)} = \cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right) + i \operatorname{sen}\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \cos\left(\frac{7\pi}{12}\right) + i \operatorname{sen}\left(\frac{7\pi}{12}\right)$$

Pelas propriedades dos complexos, podemos escrevers

$$e^{i\left(\frac{\pi}{3} + \frac{\pi}{4}\right)} = e^{i\frac{\pi}{3}} \cdot e^{i\frac{\pi}{4}}$$

Usando a fórmula de Euler:

$$\Rightarrow e^{i\frac{\pi}{3}} \cdot e^{i\frac{\pi}{4}} = \left(\cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right)\right) \left(\cos\left(\frac{\pi}{4}\right) + i \operatorname{sen}\left(\frac{\pi}{4}\right)\right)$$
$$= \cos\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{4}\right) + i \operatorname{sen}\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{4}\right) - \operatorname{sen}\left(\frac{\pi}{3}\right) \operatorname{sen}\left(\frac{\pi}{4}\right)$$

$$=\underbrace{\cos\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)}_{\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right)} + i\underbrace{\left(\underbrace{\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right)}_{\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)} - \underbrace{\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right)}_{i} - \underbrace{\cos\left(\frac{\pi}{3} + \frac{\pi$$

Para $\theta = \pi$, temos um caso específico da fórmula de Euler que é chamado de **identidade de** Euler:

$$e^{i\pi} + 1 = 0$$

 $\boxed{e^{i\pi}+1=0}$ Veja que, por meio da fórmula de Euler, podemos escrever as seguintes identidades:

$$e^{i\theta} = \cos\theta + i \sin\theta \quad (I)$$

$$e^{-i\theta} = \cos(-\theta) + i \sin(-\theta) \Rightarrow e^{-i\theta} = \cos\theta - i \sin\theta \quad (II)$$

Fazendo (I) + (II), obtemos o cosseno:

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

Fazendo (I) - (II), obtemos o seno:

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

7. Resolução de Problemas Trigonométricos com Complexos

Você sabia que podemos resolver alguns produtos trigonométricos usando números complexos? Vejamos um exemplo de questão:

7.a) Calcule o valor da soma

$$S = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right)$$

Resolução:

A princípio poderíamos usar as transformações trigonométricas para encontrar o valor da expressão, mas vamos aprender outro método. Seja $z \in \mathbb{C}$ tal que

$$z = \cos\frac{\pi}{7} + i \operatorname{sen}\frac{\pi}{7}$$

Podemos escrever os cossenos da soma em função de z. Aplicando a fórmula de Moivre, temos:

$$z = \cos\frac{\pi}{7} + i \operatorname{sen}\frac{\pi}{7}$$

$$\frac{1}{z} = \cos\left(-\frac{\pi}{7}\right) + i \operatorname{sen}\left(-\frac{\pi}{7}\right) = \cos\frac{\pi}{7} - i \operatorname{sen}\frac{\pi}{7}$$

$$\Rightarrow z + \frac{1}{z} = 2\cos\frac{\pi}{7} \Rightarrow \cos\frac{\pi}{7} = \frac{1}{2}\left(z + \frac{1}{z}\right)$$

Analogamente:

$$z^{3} = \cos\frac{3\pi}{7} + i \operatorname{sen}\frac{3\pi}{7} e^{\frac{1}{2^{3}}} = \cos\frac{3\pi}{7} - i \operatorname{sen}\frac{3\pi}{7} \Rightarrow \cos\frac{3\pi}{7} = \frac{1}{2}\left(z^{3} + \frac{1}{z^{3}}\right)$$

$$z^{5} = \cos\frac{5\pi}{7} + i \operatorname{sen}\frac{5\pi}{7} e^{\frac{1}{2^{5}}} = \cos\frac{5\pi}{7} - i \operatorname{sen}\frac{5\pi}{7} \Rightarrow \cos\frac{5\pi}{7} = \frac{1}{2}\left(z^{5} + \frac{1}{z^{5}}\right)$$

Dessa forma, a soma fica

$$S = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right)$$
$$S = \frac{1}{2}\left(z + \frac{1}{z} + z^3 + \frac{1}{z^3} + z^5 + \frac{1}{z^5}\right) = \frac{z^6 + z^4 + z^8 + z^2 + z^{10} + 1}{2z^5}$$

Note que

$$z^7 = \cos \pi + i \operatorname{sen} \pi \Rightarrow z^7 = -1$$

Multiplicando essa equação por $z e z^3$, obtemos:

$$z^8 = -z$$
$$z^{10} = -z^3$$

Fazendo as substituições na soma:
$$S=\frac{z^6+z^4-z+z^2-z^3+1}{2z^5}=\frac{1-z+z^2-z^3+z^4+z^6}{2z^5}$$
 Note que podemos transformar o numerador da soma em uma PG de razão

Note que podemos transformar o numerador da soma em uma PG de razão -z, veja:

$$S = \frac{1 - z + z^2 - z^3 + z^4 - z^5 + z^6 + z^5}{2z^5}$$

Dessa forma:

$$S = \frac{((-z)^7 - 1) + z^5}{2z^5} = \frac{-(z^7 + 1) + z^5}{2z^5}$$

Mas $z^7 = -1 \Rightarrow z^7 + 1 = 0$, logo:

$$S = \frac{z^5}{2z^5} : \boxed{S = \frac{1}{2}}$$

Interessante, não? Se você prefere operar com complexos, esse método pode ser muito útil para você!

8. Questões de Provas Anteriores

ITA

1. (ITA/2020)

A parte real da soma infinita da progressão geométrica cujo termo geral a_n é dado por

$$a_n = \frac{\cos n + i \cdot sen \, n}{2^n}, n = 1, 2, 3, \dots$$

é igual a

a)
$$\frac{-1+2\cos 1}{5-4\cos 1}$$

b)
$$\frac{-2+4\cos 1}{5-4\cos 1}$$

c)
$$\frac{4-2\cos 1}{5-4\cos 1}$$

d)
$$\frac{1+2\cos 1}{5-4\cos 1}$$

e)
$$\frac{2+4\cos 1}{5-4\cos 1}$$

2. (ITA/2020)

Seja $z \in \mathbb{C}$ uma raiz da equação $4z^2 - 4z \operatorname{sen} \alpha + 1 = 0$, para $\alpha \in \left[\frac{\pi}{2}, \frac{\pi}{2}\right]$. Determine, em função de α , todos os possíveis valores para:

- a) $2z + \frac{1}{2z}$.
- b) $(2z)^{15} + \frac{1}{(2z)^{15}}$.

3. (ITA/2020)

Seja H o hexágono no plano de Argand-Gauss cujos vértices são as raízes do polinômio $p(x) = \left(x - \sqrt{3}\right)^6 + 64$. Determine $z \in \mathbb{C}$ sabendo que o conjunto $M = \{zx \in \mathbb{C} : x \in H\}$ é o hexágono que possui $v_1 = -1 + \sqrt{3}i$, $v_2 = 1 - \sqrt{3}i$ e $v_3 = 5 - \sqrt{3}i$ como três vértices consecutivos.

4. (ITA/2019)

Sabe-se que -2 + 2i é uma das raízes quartas de um número complexo z. Então, no plano de Argand-Gauss, a área do triângulo, cujos vértices são as raízes cúbicas de z, é igual a

- a) $4(\sqrt{3}+1)$.
- b) $6\sqrt{3}$.
- c) $8(\sqrt{3}-1)$.
- d) $10\sqrt{3}$.
- e) $12\sqrt{3}$.

5. (ITA/2019)

Determine o número complexo z de menor argumento que satisfaz $|z-25i| \le 15$.

6. (ITA/2018)

Seja $z = \cos \frac{\pi}{7} + i \operatorname{sen} \frac{\pi}{7}$. Pedem-se:

- a) Use a propriedade $z^k = \cos\frac{k\pi}{7} + i \sin\frac{k\pi}{7}$, $k \in \mathbb{N}$, para expressar $\cos(\frac{\pi}{7})$, $\cos(\frac{3\pi}{7})$ e $\cos(\frac{5\pi}{7})$ em função de z.
- b) Determine inteiros a e b tais que $\frac{a}{b} = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right)$.

7. (ITA/2017)

Considere a equação $(a - bi)^{501} = \frac{2(a + bi)}{(a^2 + b^2)^{250} + 1}$.

O número de pares ordenados $(a,b) \in \mathbb{R}^2$ que satisfazem a equação é

a) 500.

- b) 501.
- c) 502.
- d) 503.
- e) 504.

8. (ITA/2017)

O lugar geométrico dos pontos $(a, b) \in \mathbb{R}^2$ tais que a equação, em $z \in \mathbb{C}$,

$$z^2 + z + 2 - (a + ib) = 0$$

Possua uma raiz puramente imaginária é

- a) Uma circunferência.
- b) Uma parábola.
- c) Uma hipérbole.
- d) Uma reta.
- e) Duas retas paralelas.

9. (ITA/2016)

Considere as afirmações a seguir:

- I. Se z e w são números complexos tais que z iw = 1 2i e $\omega z = 2 + 3i$, então $z^2 + \omega^2 = -3 + 6i$.
- II. A soma de todos os números complexos z que satisfazem $2|z|^2 + z^2 = 4 + 2i$ é igual a zero.
- III. Se z = 1 i, então $z^{59} = 2^{29}(-1 + i)$.

É (são) verdadeira(s)

- a) Apenas I.
- b) Apenas I e II.
- c) Apenas I e III.
- d) Apenas II e III.
- e) I, II e III.

10. (ITA/2015)

Sejam $A, B \in C$ os subconjuntos de $\mathbb C$ definidos por $A = \{z \in \mathbb C: |z+2-3i| < \sqrt{19}\},$

$$B = \left\{z \in \mathbb{C}: |z+i| < \frac{7}{2}\right\}$$
 e $c = \{z \in \mathbb{C}: z^2 + 6z + 10 = 0\}$. Então, $(A \setminus B) \cap C$ é o conjunto

- a) $\{-1-3i, -1+3i\}$.
- b) $\{-3-i, -3+i\}$.
- c) $\{-3+i\}$.
- d) $\{-3 i\}$.

11. (ITA/2015)

Se $z = \left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$, então o valor de $2 \arcsin(Re(z)) + 5 \arctan(2 \operatorname{Im}(z))$ é igual a

- a) $-\frac{2\pi}{3}$.
- b) $-\frac{\pi}{3}$.
- c) $\frac{2\pi}{3}$.
- d) $\frac{4\pi}{3}$.
- e) $\frac{5\pi}{3}$.

12. (ITA/2015)

Seja $M \subset \mathbb{R}$ dado por $M = \{|z^2 + az - 1|: z \in \mathbb{C}e|z| = 1\}$, com $a \in \mathbb{R}$. Determine o maior elemento de M em função de a.

13. (ITA/2014)

Se $z \in \mathbb{C}$, então $z^6 - 3|z|^4(z^2 - \bar{z}^2) - \bar{z}^6$ é igual a

- a) $(z^2 \bar{z}^2)^3$.
- b) $(z^6 \bar{z}^6)$.
- c) $(z^3 \bar{z}^3)^2$.
- d) $(z \bar{z})^6$.
- e) $(z-\bar{z})^2(z^4-\bar{z}^4)$.

14. (ITA/2014)

Sejam $z, \omega \in \mathbb{C}$. Das afirmações:

- 1. $|z + \omega|^2 + |z \omega|^2 = 2(|z|^2 + |\omega|^2);$
- II. $(z + \overline{\omega})^2 (z \overline{\omega})^2 = 4z\overline{\omega};$
- III. $|z + \omega|^2 |z \omega|^2 = 4 \operatorname{Re}(z\overline{\omega}),$

É (são) verdadeira(s)

- a) Apenas I.
- b) Apenas I e II.
- c) Apenas I e III.
- d) Apenas II e III.
- e) Todas.

15. (ITA/2014)

- a) Determine o valor máximo de |z+i|, sabendo que $|z-2|=1, z\in\mathbb{C}$.
- b) Se $z_0 \in \mathbb{C}$, satisfaz (a), determine z_0 .

16. (ITA/2013)

A soma das raízes da equação em \mathbb{C} , $z^8-17z^4+16=0$, tais que z-|z|=0, é

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

17. (ITA/2013)

Considere a equação em \mathbb{C} , $(z-5+3i)^4=1$, se z_0 é a solução que apresenta o menor argumento principal dentre as quatro soluções, então o valor de $|z_0|$ é

- a) $\sqrt{29}$.
- b) $\sqrt{41}$.
- c) $3\sqrt{5}$.
- d) $4\sqrt{3}$.
- e) $3\sqrt{6}$.

18. (ITA/2013)

Para z=1+iy, y>0, determine todos os pares (a,y), a>1, tais que $z^{10}=a$. Escreva a e y em função de $Arg\ z$.

19. (ITA/2012)

Sejam $z=n^2(\cos 45^\circ+i \sin 45^\circ)$ e $\omega=n(\cos 15^\circ+i \sin 15^\circ)$, em que n é o menor inteiro positivo tal que $(1+i)^n$ é real. Então, $\frac{z}{w}$ é igual a

- a) $\sqrt{3} + i$.
- b) $2(\sqrt{3}+i)$.
- c) $2(\sqrt{2}+i)$.
- d) $2(\sqrt{2}-i)$.
- e) $2(\sqrt{3} i)$.

20. (ITA/2012)

Se $\arg z = \frac{\pi}{4}$, então um valor para $\arg (-2iz)$ é

- a) $-\frac{\pi}{2}$.
- b) $\frac{\pi}{4}$.
- c) $\frac{\pi}{2}$.
- d) $\frac{3\pi}{4}$.
- e) $\frac{7\pi}{4}$.

21. (ITA/2011)

Dado $z = \frac{1}{2}(-1 + \sqrt{3}i)$, então $\sum_{n=1}^{89} z^n$ é igual a

- a) $-\frac{89}{2}\sqrt{3}i$.
- b) -1.
- c) 0.
- d) 1.
- e) $\frac{89}{6}\sqrt{3}i$.

22. (ITA/2011)

Das afirmações abaixo sobre números complexos z_1 e z_2 :

- $|z_1 z_2| \le ||z_1| |z_2||.$
- $||-||\overline{z_1} \cdot z_2| = ||\overline{z_2}||\overline{z_2}||.$
- III- Se $z_1=|z_1|(\cos\theta+isen\theta)\neq 0$, então $z_1^{-1}=|z_1|^{-1}(\cos\theta-i\sin\theta)$.

É(são) sempre verdadeira(s)

- a) Apenas I.
- b) Apenas II.
- c) Apenas III.
- d) Apenas II e III.
- e) Todas.

23. (ITA/2011)

A soma de todas as soluções da equação em $\mathbb{C}:\,z^2+|z|^2+iz-1=0$ é igual a

- a) 2.
- b) $\frac{i}{2}$.
- c) 0.

- d) $-\frac{1}{2}$.
- e) -2i.

24. (ITA/2011)

Sejam $n \ge 3$ impar, $z \in \mathbb{C} \setminus \{0\}$ e $z_1, z_2, ..., z_n$ as raízes de $z^n = 1$. Calcule o número de valores $|z_i - z_j|, i, j = 1, 2, ..., n, com i \ne j$, distintos entre si.

25. (ITA/2010)

Se z é uma solução da equação em \mathbb{C} ,

$$|z-\bar{z}+|z|^2 = -\left[\left(\sqrt{2}+i\right)\left(\frac{\sqrt{2}-1}{3}-i\frac{\sqrt{2}+1}{3}\right)\right]^{12},$$

Pode-se afirmar que

- a) $i(z \bar{z}) < 0$.
- b) $i(z \bar{z}) > 0$.
- c) $|z| \in [5, 6]$.
- d) $|z| \in [6, 7]$.
- e) $\left|z + \frac{1}{z}\right| > 8$.

26. (ITA/2010)

Os argumentos principais das soluções da equação em z,

$$iz + 3\bar{z} + (z + \bar{z})^2 - i = 0$$

pertencem a

- a) $]\frac{\pi}{4}, \frac{3\pi}{4}[.$
- b) $]\frac{3\pi}{4}, \frac{5\pi}{4}[.$
- c) $]\frac{5\pi}{4}, \frac{3\pi}{2}[.$
- d) $]\frac{\pi}{4}, \frac{\pi}{2}[\cup]\frac{3\pi}{2}, \frac{7\pi}{4}[.$
- e) $]0,\frac{\pi}{4}[\cup]\frac{7\pi}{4},2\pi[.$

27. (ITA/2009)

Sejam $x, y \in \mathbb{R}$ e $w = x^2(1+3i) + y^2(4-i) - x(2+6i) + y(-16+4i) \in \mathbb{C}$. Identifique e esboce o conjunto

$$\Omega = \{(x, y) \in \mathbb{R}^2, Re \ w \le -13 \ e \ \operatorname{Im} \omega \le 4\}.$$

28. (ITA/2008)

Determine as raízes em $\mathbb C$ de $4z^6+256=0$, na forma a+bi, com $a,b\in\mathbb R$, que pertençam a

$$s = \{z \in \mathbb{C}, 1 < |z + 2| < 3\}.$$

29. (ITA/2008)

Sejam $\alpha, \beta \in \mathbb{C}$ tais que $|\alpha| = |\beta| = 1$ e $|\alpha - \beta| = \sqrt{2}$. Então $\alpha^2 + \beta^2$ é igual a

- a) -2.
- b) 0.
- c) 1.
- d) 2.
- e) 2i.

30. (ITA/2007)

Considere a equação

$$16\left(\frac{1-ix}{1+ix}\right)^3 = \left(\frac{1+i}{1-i} - \frac{1-i}{1+i}\right)^4.$$

Sendo x um número real, a soma dos quadrados das soluções dessa equação é

- a) 3.
- b) 6.
- c) 9.
- d) 12.
- e) 15.

31. (ITA/2007)

Assinale a opção que indica o módulo do número complexo

$$\frac{1}{1+i\cot gx}, x \neq k\pi, k \in \mathbb{Z}.$$

- a) $|\cos x|$.
- b) (1 + sen x)/2.
- c) $\cos^2 x$.
- d) |cossec x|.
- e) |sen x|.

32. (ITA/2007)

Determine o conjunto A formado por todos os números complexos z tais que

$$\frac{\overline{z}}{z-2i} + \frac{2z}{\overline{z}+2i} = 3 e 0 < |z-2i| \le 1.$$

33. (ITA/2006)

Se para todo $z \in \mathbb{C}$, |f(z)| = |z| e |f(z) - f(1)| = |z - 1|, então, para todo $z \in \mathbb{C}$, $\overline{f(1)}f(z) + f(1)\overline{f(z)}$ é igual a

- a) 1.
- b) 2z.
- c) 2 Re z.
- d) 2 Im z.
- e) $2|z|^2$.

34. (ITA/2006)

Se $\alpha \in [0, 2\pi[$ é o argumento de um número complexo $z \neq 0$ e n é um número natural tal que $\left(\frac{z}{|z|}\right)^n = i \ sen(n\alpha)$, então, é verdade que

- a) $2n\alpha$ é múltiplo de 2π .
- b) $2n\alpha \pi$ é múltiplo de 2π .
- c) $n\alpha \pi/4$ é múltiplo de $\pi/2$.
- d) $2n\alpha \pi$ é múltiplo não nulo de 2.
- e) $n\alpha 2\pi$ é múltiplo de π .

35. (ITA/2005)

Seja $z \in \mathbb{C}$ com |z|=1. Então, a expressão $\left|\frac{1-\overline{z}w}{z-w}\right|$ assume valor

- a) maior que 1, para todo w com |w| > 1.
- b) menor que 1, para todo w com |w| < 1.
- c) maior que 1, para todo $w \text{ com } w \neq z$.
- d) igual a 1, independente de $w \operatorname{com} w \neq z$.
- e) crescente para |w| crescente, com |w| < |z|.

36. (ITA/2004)

Considere a função $f: \mathbb{R} \to \mathbb{C}$, $f(x) = 2\cos x + 2i \operatorname{sen} x$. Então, $\forall x, y \in \mathbb{R}$, o valor do produto f(x)f(y) é igual a

- a) f(x + y).
- b) 2f(x + y).
- c) 4if(x + y).

- d) f(xy).
- e) 2f(x) + 2if(y).

37. (ITA/2004)

Considere todos os números z=x+iy que têm módulo $\sqrt{7}/2$ e estão na elipse $x^2+4y^2=4$. Então, o produto deles é igual a

- a) $\frac{25}{9}$.
- b) $\frac{49}{16}$.
- c) $\frac{81}{25}$
- d) $\frac{25}{7}$.
- e) 4.

38. (ITA/2004)

A soma das raízes da equação $z^3+z^2-|z|^2+2z=0$, $z\in\mathbb{C}$, é igual a

- a) -2.
- b) -1.
- c) 0.
- d) 1.
- e) 2.

39. (ITA/2004)

Sendo $z = \frac{1+i}{\sqrt{2}}$, calcule

$$\left| \sum_{n=1}^{60} z^n \right| = |z + z^2 + z^3 + \dots + z^{60}|.$$

40. (ITA/2003)

Seja $z \in \mathbb{C}$. Das seguintes afirmações independentes:

I. Se
$$w = \frac{2iz^2 + 5\overline{z} - i}{1 + 3\overline{z}^2 + 2iz + 3|z|^2 + 2|z|}$$
, então $\overline{w} = \frac{-2i\overline{z}^2 + 5z + i}{1 + 3z^2 - 2i\overline{z} + 3|\overline{z}|^2 + 2|z|}$;

II. Se
$$z \neq 0$$
 e $w = \frac{2iz + 3i + 3}{(1 + 2i)z}$, então $|w| \leq \frac{2|z| + 3\sqrt{2}}{\sqrt{5}z}$;

- III. Se $w = \frac{(1+i)z^2}{4\sqrt{3}+4i}$, então $2 \arg z + \frac{\pi}{12}$ é um argumento de w,
- é (são) verdadeira(s):
- a) todas.

- b) apenas I e II.
- c) apenas II e III.
- d) apenas I e III.
- e) apenas II.

41. (ITA/2003)

Das afirmações abaixo sobre a equação $z^4+z^3+z^2+z+1=0$ e suas soluções no plano complexo:

- I. A equação possui pelo menos um par de raízes reais;
- II. A equação possui duas raízes de módulo 1, uma raiz de módulo menor que 1 e uma raiz de módulo maior que 1;
- III. Se $n \in \mathbb{N}^*$ e r é uma raiz qualquer desta equação, então $\sum_{k=1}^n \left| \frac{r}{3} \right|^k < \frac{1}{2}$.
- É (são) verdadeira(s):
- a) nenhuma.
- b) apenas I.
- c) apenas II.
- d) apenas III.
- e) apenas I e III.

42. (ITA/2003)

Determine o conjunto dos números complexos z para os quais o número $w=\frac{z+\overline{z}+2}{\sqrt{|z-1|+|z+1|-3}}$ pertence ao conjunto dos números reais. Interprete (ou identifique) este conjunto geometricamente e faça um esboço do mesmo.

43. (ITA/2002)

Seja a equação em \mathbb{C} , $z^4 - z^2 + 1 = 0$. Qual dentre as alternativas abaixo é igual à soma de duas das raízes dessa equação?

- a) $2\sqrt{3}$.
- b) $-\sqrt{3}/2$.
- c) $\sqrt{3}/2$.
- d) -i.
- e) i/2.

44. (ITA/2002)

Sejam a e b dois números complexos não-nulos, tais que $a^2+b^2=0$. Se $Z,W\in\mathbb{C}$ satisfazem

$$\overline{z}w + z\overline{w} = 6a$$

$$\overline{z}w - z\overline{w} = 8b$$

determine o valor de |a| de forma que |zw| = 1.

45. (ITA/2001)

Se $z=1+i\sqrt{3},\ z\cdot\overline{w}=1$ e $\alpha\in[0,2\pi]$ é um argumento de $z\cdot w$, então α é igual a:

- a) $\pi/3$.
- b) π .
- c) $2\pi/3$.
- d) $5\pi/3$.
- e) $3\pi/2$.

46. (ITA/2001)

O número complexo $z = \frac{1-\cos a}{\sin a \cos a} + i \frac{1-2\cos a+2\sin a}{\sin 2a}, \ a \in]0,\pi/2[$ tem argumento $\pi/4$. Neste caso, a é igual a:

- a) $\pi/6$.
- b) $\pi/3$.
- c) $\pi/4$.
- d) $\pi/5$.
- e) $\pi/9$.

47. (ITA/2001)

A parte imaginária de $[(1 + \cos 2x) + i \operatorname{sen} 2x]^k$, k inteiro positivo, x real, é

- a) $2 \operatorname{sen}^k x \cos^k x$.
- b) $sen^k x cos^k x$.
- c) $2^k sen kx cos^k x$.
- d) $2^k \operatorname{sen}^k x \cos^k x$.
- e) $sen kx cos^k x$.

48. (ITA/2000)

Seja z_0 o número complexo 1+i. Sendo S o conjunto solução no plano complexo de $|z-z_0|=|z+z_0|=2$, então o produto dos elementos de S é igual a

- a) 4(1-i).
- b) 2(1+i).
- c) 2(1-i).
- d) -2i.

e) 2i.

IME

49. (IME/2020)

Seja $A = \{z \in C \mid 2 \le |z - 3 - 4i| \le 3\}$ onde C é o conjunto dos números complexos. O valor do produto entre o simétrico do complexo de menor módulo do conjunto A e o conjugado do complexo de maior módulo do mesmo conjunto A é:

- a) -16
- b) -8
- c) -16/5
- d) 1
- e) 16

50. (IME/2020)

Seja uma região **S** no plano complexo que consiste em todos os pontos Z tais que $\frac{Z}{20}$ e $\frac{20}{Z}$ possuem partes real e imaginária entre 0 e 1, inclusive. Determine a área da região **S**. Obs: \bar{Z} é o conjugado do número complexo Z.

51. (IME/2020)

Sabendo que $i^2=-1$, encontre todos os valores reais de x que satisfazem a seguinte inequação:

$$Re\left\{\frac{2.\log_2(sen x) + 1}{i(e^{2ix} - 2\cos^2 x + 1)}\right\} > 0$$

onde $Re\{Z\}$ é a parte real do número complexo Z.

52. (IME/2019)

Seja z um número complexo tal que $z^{12} \in \mathbb{R}$, Re(z) = 1 e $\arg(z) \in \left(0, \frac{\pi}{2}\right)$.

A soma dos inversos dos possíveis valores de |z| está no intervalo:

- a) $\left(\frac{1}{2}, \frac{3}{2}\right)$
- b) $(\frac{3}{2}, \frac{5}{2})$
- c) $\left(\frac{5}{2}, \frac{7}{2}\right)$
- d) $\left(\frac{7}{2}, \frac{9}{2}\right)$
- e) $\left(\frac{9}{2}, \frac{11}{2}\right)$

53. (IME/2019)

Seja Z um número complexo tal que $\frac{2Z}{\bar{Z}i}$ possui argumento igual a $\frac{3\pi}{4}$ e $\log_3(2Z+2\bar{Z}+1)=2$. Determine o número complexo Z.

54. (IME/2018)

Seja a função $H: \mathbb{C} \to \mathbb{C}$ definida por

$$H(s) = \frac{a_3s^3 + a_2s^2 + a_1s + a_0}{b_2s^2 + b_1s + a_0}$$

Com a_j e b_k reais, para j=0,1,2,3 e k=0,1,2. Seja a função $f:\mathbb{R}\to\mathbb{R}$ em que f(w) é a parte real de H(iw) em que $i=\sqrt{-1}$ é a unidade imaginária e $w\in\mathbb{R}$. A afirmação correta a respeito de f(w) é:

- a) f(w) é uma função ímpar.
- b) f(w) é uma função par.
- c) f(w) é sempre negativa.
- d) f(w) é sempre positiva.
- e) f(w) é uma função periódica.

55. (IME/2018)

Seja o número complexo z que satisfaz a relação $2(z-i)^{2017} = (\sqrt{3}+1)(iz-1)^{2017}$. Determine z, sabendo que $|z| = \sqrt{3}/3$.

56. (IME/2018)

Determine o valor de α na expressão abaixo, sabendo-se que $0 < \alpha < 1$,

$$\frac{1}{16}\log_a 256^{\operatorname{colog}(a^2)}{}^{256}^{\log_{(a^4)}{}^{256\cdots}} (a^{2^{65}})^{256} = Im\{Z\}$$

onde Z é um número complexo que satisfaz a equação:

$$2^{4033}Z^2 - 2^{2017}z + 1 = 0$$

Obs.: Im(Z) é a parte imaginária do número complexo Z.

- a) $\frac{1}{4}$
- b) $\frac{1}{8}$
- c) $\frac{1}{16}$
- d) $\frac{1}{32}$
- e) $\frac{1}{64}$

57. (IME/2017)

Sejam Z_1 e Z_2 números complexos tais que Z_2 é imaginário puro e $|Z_1-Z_2|=|Z_2|$. Para quaisquer valores de Z_1 e Z_2 que atendam a essas condições tem-se que:

- a) $Im(Z_2) > 0$
- b) $Im(Z_2) \le 0$
- c) $|Z_1| \le 2|Z_2|$
- d) $Re(Z_1) \ge 0$
- e) $Re(Z_1) \leq Im(Z_2)$

58. (IME/2017)

Sejam os complexos z = a + bi e w = 47 + ci, tais que $z^3 + w = 0$. Determine o valor de $a, b \in c$, sabendo que esses números são inteiros e positivos.

59. (IME/2016)

Seja Z um número complexo tal que $\frac{2Z}{\bar{Z}i}$ possui argumento igual a $\frac{3\pi}{4}$ e $\log_3(2Z+2\bar{Z}+1)=2$. Determine o número complexo Z.

60. (IME/2016)

O valor do somatório abaixo é:

$$\sum_{k=1}^{15} Img\left(cis^{2k-1}\left(\frac{\pi}{36}\right)\right)$$

Observação: Img(w) é a parte imaginária de w.

- a) $\frac{2+\sqrt{3}}{4sen(\frac{\pi}{36})}$
- b) $\frac{2-\sqrt{3}}{4sen(\frac{\pi}{36})}$
- c) $\frac{1}{4sen(\frac{\pi}{36})}$
- d) $sen\left(\frac{\pi}{36}\right)$
- e) $\frac{1}{4}$

61. (IME/2014)

Calcule o determinante abaixo, no qual $w = cis\left(\frac{2\pi}{3}\right)$ e $i = \sqrt{-1}$.

$$\begin{vmatrix} 1 & w & 0 & i \\ i & 1 & -1 & w^2 \\ 1 - i & w & i - 1 & 1 \\ 0 & w & 1 & i \end{vmatrix}$$

62. (IME/2013)

Seja o número complexo $z=\frac{a}{ib(1+ib)^2}$, onde a e b são números reais positivos e $i=\sqrt{-1}$.

Sabendo que o módulo e o argumento de z valem, respectivamente, 1 e $(-\pi)$ rd, o valor de a é

- a) $\frac{1}{4}$
- b) $\frac{1}{2}$
- c) 1
- d) 2
- e) 4

63. (IME/2012)

Seja o número complexo Z=a+bi, com a e $b\in\mathbb{R}$ (real) e $i=\sqrt{-1}$. Determine o módulo de Z sabendo que

$$\begin{cases} a^3 = 3(1 + ab^2) \\ b^3 = 3(a^2b - 1) \end{cases}$$

64. (IME/2012)

As raízes cúbicas da unidade, no conjunto dos números complexos, são representadas por $1, w \in w^2$, onde $w \in w$ é um número complexo. O intervalo que contém o valor de $(1-w)^6$ é:

- a) $(-\infty, -30]$
- b) (-30, -10]
- c) (-10, 10]
- d) (10,30]
- e) (30,∞)

65. (IME/2010)

Considere o sistema abaixo, em que x_1, x_2, x_3 e Z pertencem ao conjunto dos números complexos.

$$\begin{cases} (1+i)x_1 - ix_2 + ix_3 = 0\\ 2ix_1 - x_2 - x_3 = Z\\ (2i+2)x_1 + ix_2 - ix_3 = 0 \end{cases}$$

O argumento de Z, em graus, para que x_3 seja um número real positivo é:

Obs.: $i = \sqrt{-1}$

- a) 0°
- b) 45°

- c) 90°
- d) 135°
- e) 180°

66. (IME/2011)

Sejam $z_1=10+6i$ e $z_2=4+6i$, onde i é a unidade imaginária, e z um número complexo tal que $\arg\left(\frac{z-z_1}{z-z_2}\right)=\frac{\pi}{4}$, determine o módulo do número complexo (z-7-9i).

Obs: arg(w) é o argumento do número complexo w.

67. (IME/2011)

Resolva a equação $z^2 + \frac{9z^2}{(z+3)^2} = -5$, onde z pertence ao conjunto dos números complexos.

68. (IME/2009)

Seja $z=\rho\cdot e^{i\theta}$ um número complexo onde ρ e θ são, respectivamente, o módulo e o argumento de z e i é a unidade imaginária. Sabe-se que $\rho=2a\cos\theta$, onde a é uma constante real positiva. A representação de z no plano complexo é

a)

b)

c)

e)

69. (IME/2009)

Sabe-se que $z_1\overline{z_2}=\frac{z_3}{z_4}$ e $|z_3+z_4|-|z_3-z_4|=0$, sendo z_1,z_2,z_3 e z_4 números complexos diferentes de zero. Prove que z_1 e z_2 são ortogonais.

Obs: Números complexos ortogonais são aqueles cujas representações gráficas são perpendiculares entre si e \overline{z} é o número complexo conjugado de z.

70. (IME/2008)

Determine a expressão da soma a seguir, onde n é um inteiro múltiplo de 4.

$$1 + 2i + 3i^2 + \dots + (n+1)i^n$$

71. (IME/2008)

Considere os números complexos $Z_1 = sen \ \alpha + i \cos \alpha \ e \ Z_2 = \cos \alpha - i \ sen \ \alpha$, onde α é um número real. Mostre que, se $Z = Z_1 Z_2$, então $-1 \le Re(Z) \le 1$ e $-1 \le Im(Z) \le 1$, onde Re(Z) e Im(Z) indicam, respectivamente, as partes real e imaginária de Z.

72. (IME/2007)

Sejam z e w números complexos tais que:

$$\begin{cases} w^2 - z^2 = 4 + 12i \\ \overline{z} - \overline{w} = 2 + 4i \end{cases}$$

onde z e w representam, respectivamente, os números complexos conjugados de z e w. O valor de z+w é:

- a) 1 i
- b) 2 + i
- c) -1 + 2i
- d) 2 2i
- e) -2 + 2i

73. (IME/2006)

Sejam $a_1=1-i$, $a_n=r+si$ e $a_{n+1}=(r-s)+(r+s)i$ (n>1) termos de uma sequência. Determine, em função de n, os valores de r e s que tornam esta sequência uma progressão aritmética, sabendo que r e s são números reais e $i=\sqrt{-1}$.

74. (IME/2004)

Sendo a,b e c números naturais em progressão aritmética e z um número complexo de módulo unitário, determine um valor para cada um dos números a,b,c e z de forma que eles satisfaçam a igualdade:

$$\frac{1}{z^a} + \frac{1}{z^b} + \frac{1}{z^c} = z^9$$

75. (IME/2003)

Seja z um número complexo de módulo unitário que satisfaz a condição $z^{2n} \neq -1$, onde n é um número inteiro positivo. Demonstre que $\frac{z^n}{1+z^{2n}}$ é um número real.

76. (IME/2001)

Dois números complexos são ortogonais se suas representações gráficas forem perpendiculares entre si. Prove que dois números complexos Z_1 e Z_2 são ortogonais se e somente se:

Obs: \overline{Z} indica o conjugado de um número complexo Z.

77. (IME/2001)

Considere a matriz $A = (a_{kj})$, onde:

 $a_{kj}=k$ -ésimo termo do desenvolvimento de $(1+ji)^{54}$, com $k=1,\ldots,55; j=1,\ldots,55$ e $i=\sqrt{-1}$.

- a) Calcule $a_{3,2} + a_{54,1}$.
- b) Determine o somatório dos elementos da coluna 55.
- c) Obtenha uma fórmula geral para os elementos da diagonal principal.

78. (IME/1999)

Determine as raízes de $z^2 + 2iz + 2 - 4i = 0$ e localize-as no plano complexo, sendo $i = \sqrt{-1}$.

9. Gabarito

ITA

- 1
- 2. a) $2sen\alpha$ b) $-2sen(15\alpha)$
- 3. $z = \sqrt{3} + i$
- **4.** e
- 5. z = 12 + 16i
- **6.** a) $\cos\left(\frac{\pi}{7}\right) = \frac{1}{2}\left(z + \frac{1}{z}\right)$; $\cos\left(\frac{3\pi}{7}\right) = \frac{1}{2}\left(z^3 + \frac{1}{z^3}\right)$; $\cos\left(\frac{5\pi}{7}\right) = \frac{1}{2}\left(z^5 + \frac{1}{z^5}\right)$ b) a = 1; b = 2
- **7.** d
- **8.** b
- **9.** b
- **10.** c
- **11.** d
- **12.** $M = \sqrt{4 + a^2}$
- **13.** a
- **14.** e
- **15.** a) $\sqrt{5} + 1$ b) $z_0 = 2 + \left(\frac{2\sqrt{5}}{5}\right) + i\frac{\sqrt{5}}{5}$
- **16.** c
- **17.** b

- **19.** b
- **20.** e
- **21.** b
- **22.** c
- **23.** e
- **24.** $\frac{n-1}{2}$
- **25.** e
- **26.** c

- **28.** $\pm 2i$, $-\sqrt{3} \pm i$
- **29.** b
- **30.** b
- **31.** e
- **32.** $A = \{i\}$
- **33.** c
- **34.** b
- **35.** d
- **36.** c
- **37.** b
- **38.** a
- **39.** $\sqrt{4+2\sqrt{2}}$
- **40.** a
- **41.** d
- **42.** parte externa de uma elipse com centro na origem e focos nos pontos (-1,0) e (1,0)
- **43.** d
- **44.** $|a| = \frac{1}{5}$
- **45.** c
- **46.** a

- **47.** c
- **48.** d

IME

- **49.** a
- **50.** $S = 50(6 \pi) u. a.$

51.
$$S = \left\{ x \in R \mid k\pi < x < \frac{\pi}{4} + k\pi \text{ ou } \frac{\pi}{2} + k\pi < x < \frac{3\pi}{4} + k\pi, \text{ com } k \in Z \right\}$$

52. c

53.
$$Z = 2 - 2(\sqrt{2} + 1)$$

- **54.** b
- **55.** a

56.
$$z = -\sqrt{3}/3$$

57. c

58.
$$a = 1, b = 4, c = 52$$

59.
$$Z = 2 - 2(\sqrt{2} + 1)$$

- **60.** a
- **61.** 0
- **62.** d

63.
$$|Z| = \sqrt[6]{18}$$

- **64.** b
- **65.** e
- **66.** 32

67.
$$S = \left\{ \frac{-1 \pm \sqrt{11}i}{2}, \frac{-5 \pm \sqrt{35}i}{2} \right\}$$

- **68.** a
- 69. Demonstração

70.
$$P = \frac{n+2-ni}{2}$$

- 71. Demonstração

73.
$$s = \frac{n-2}{n^2-2n+2}$$
 e $r = \frac{n}{n^2-2n+2}$
74. $a = 3; b = 4; c = 5; z = cis(\pi)$

74.
$$a = 3$$
; $b = 4$; $c = 5$; $z = cis(\pi)$

- 75. Demonstração
- 76. Demonstração

77. a)
$$-5724 + 54i$$
, b) $(1 + 55i)^{54}$, c) $a_{k,k} = {54 \choose 55-k}(ki)^{k-1}$

78.
$$z = \{1 + i, -1 - 3i\}$$

10. Lista de Questões Comentadas

ITA

1. (ITA/2020)

A parte real da soma infinita da progressão geométrica cujo termo geral a_n é dado por

$$a_n = \frac{\cos n + i \cdot sen \, n}{2^n}, n = 1, 2, 3, \dots$$

é igual a

a)
$$\frac{-1+2\cos 1}{5-4\cos 1}$$

b)
$$\frac{-2+4\cos 1}{5-4\cos 1}$$

c)
$$\frac{4-2\cos 1}{5-4\cos 1}$$

d)
$$\frac{1+2\cos 1}{5-4\cos 1}$$

e)
$$\frac{2+4\cos 1}{5-4\cos 1}$$

Comentários

Note que podemos escrever o termo geral da seguinte forma:

$$a_n = \frac{\operatorname{cis} n}{2^n} = \frac{(\operatorname{cis} 1)^n}{2^n} \Rightarrow a_n = \left(\frac{\operatorname{cis} 1}{2}\right)^n$$

Usando o termo geral, temos a seguinte sequência

$$\left(\frac{\operatorname{cis} 1}{2}, \left(\frac{\operatorname{cis} 1}{2}\right)^2, \left(\frac{\operatorname{cis} 1}{2}\right)^3, \dots, \left(\frac{\operatorname{cis} 1}{2}\right)^n, \dots\right)$$

Logo, a razão da PG é:

$$q = \frac{cis 1}{2}$$

Como $|q| = \frac{1}{2} < 1$, temos que a soma infinita converge. Assim, usando a fórmula da soma infinita da PG, obtemos:

$$S = \frac{a_1}{1-q} = \frac{\frac{cis\ 1}{2}}{1-\frac{cis\ 1}{2}} = \frac{\frac{cis\ 1}{2}}{\frac{2-cis\ 1}{2}} = \frac{cis\ 1}{2-cis\ 1}$$

$$\Rightarrow S = \frac{\cos 1 + i\ sen\ 1}{2-\cos 1 - isen\ 1}$$
 Multiplicando o numerador e o denominador pelo conjugado do denominador, temos:

$$S = \frac{(\cos 1 + i \ sen \ 1)}{(2 - \cos 1 - i sen \ 1)} \cdot \frac{(2 - \cos 1 + i sen \ 1)}{(2 - \cos 1 + i sen \ 1)}$$

$$S = \frac{\cos 1 (2 - \cos 1) + i sen \ 1 \cos 1 + i sen \ 1 (2 - \cos 1) - sen^2 1}{(2 - \cos 1)^2 + sen^2 1}$$

$$S = \frac{\cos 1 (2 - \cos 1) - sen^2 1 + i [sen \ 1 \cos 1 + i sen \ 1 (2 - \cos 1)]}{(2 - \cos 1)^2 + sen^2 1}$$

A parte real da soma infinita é dada por:

$$S = \frac{\cos 1 (2 - \cos 1) - \sin^2 1}{(2 - \cos 1)^2 + \sin^2 1}$$

Simplificando a expressão:

$$S = \frac{2\cos 1 - \cos^2 1 - sen^2 1}{4 - 4\cos 1 + \cos^2 1 + sen^2 1} = \frac{2\cos 1 - 1}{4 - 4\cos 1 + 1}$$

$$\therefore S = \frac{-1 + 2\cos 1}{5 - 4\cos 1}$$

Gabarito: "a"

2. (ITA/2020)

Seja $z \in \mathbb{C}$ uma raiz da equação $4z^2 - 4z \operatorname{sen} \alpha + 1 = 0$, para $\alpha \in \left[\frac{\pi}{2}, \frac{\pi}{2}\right]$. Determine, em função de α , todos os possíveis valores para:

a)
$$2z + \frac{1}{2z}$$
.

b)
$$(2z)^{15} + \frac{1}{(2z)^{15}}$$
.

Comentários

Como z é raiz da equação, por teste, temos que $z \neq 0$.

Assim, vamos dividir a equação $4z^2 - 4zsen\alpha + 1 = 0$ por 2z.

$$2z - 2sen\alpha + \frac{1}{2z} = 0$$
$$\Rightarrow 2z + \frac{1}{2z} = 2sen\alpha$$

a)
$$2z + \frac{1}{2z} = 2sen\alpha$$

b) Seja $w=2z=|w|cis\theta$, vamos encontrar |w| a partir do |z|. Para isso, vamos resolver a equação dada no enunciado:

$$4z^{2} - 4zsen\alpha + 1 = 0$$

$$\Delta = (-4sen\alpha)^{2} - 4 \cdot 4 \cdot 1 = -16cos^{2}\alpha$$

Como $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, podemos escrever que:

$$z = \frac{4sen\alpha \pm 4cos\alpha i}{2 \cdot 4}$$
$$z = \frac{1}{2}(sen\alpha \pm i cos\alpha)$$
$$|z| = \frac{1}{2}$$

Dessa forma, podemos concluir que |w| = 1.

$$w + \frac{1}{w} = 2sen\alpha$$

$$cis\theta + \frac{1}{cis\theta} = 2sen\alpha$$

$$(cos\theta + isen\theta) + (cos\theta - isen\theta) = 2sen\alpha$$

$$2\cos\theta = 2sen\alpha$$

$$cos\theta = sen\alpha \Rightarrow \theta = \frac{\pi}{2} - \alpha$$

Dessa forma,

$$(2z)^{15} + \frac{1}{(2z)^{15}} = w^{15} + \frac{1}{w^{15}} = cis^{15}\theta + \frac{1}{cis^{15}\theta} = 2\cos(15\theta) = 2\cos\left(\frac{15\pi}{2} - 15\alpha\right) = 2\cos\left(\frac{15\pi}{2}\right)\cos(15\alpha) + 2sen\left(\frac{15\pi}{2}\right)\sin(15\alpha) = -2sen(15\alpha)$$
$$\therefore (2z)^{15} + \frac{1}{(2z)^{15}} = -2sen(15\alpha)$$

Gabarito: a) $2sen\alpha$ b) $-2sen(15\alpha)$

3. (ITA/2020)

Seja H o hexágono no plano de Argand-Gauss cujos vértices são as raízes do polinômio $p(x) = \left(x - \sqrt{3}\right)^6 + 64$. Determine $z \in \mathbb{C}$ sabendo que o conjunto $M = \{zx \in \mathbb{C} : x \in H\}$ é o hexágono que possui $v_1 = -1 + \sqrt{3}i$, $v_2 = 1 - \sqrt{3}i$ e $v_3 = 5 - \sqrt{3}i$ como três vértices consecutivos.

Comentários

Vamos encontrar os vértices do hexágono H:

$$p(x) = (x - \sqrt{3})^6 + 64 = 0$$

$$(x - \sqrt{3})^6 = -64 = -2^6 = 2^6 \cdot cis(\pi + 2k\pi)$$

$$x_k - \sqrt{3} = 2 \cdot cis\left(\frac{\pi}{6} + \frac{k\pi}{3}\right)$$

$$\Rightarrow x_k = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6} + \frac{k\pi}{3}\right)$$

Os vértices são dados por:

$$x_{1} = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6} + 0 \cdot \frac{\pi}{3}\right) = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6}\right) = \sqrt{3} + 2\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = 2\sqrt{3} + i$$

$$x_{2} = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6} + 1 \cdot \frac{\pi}{3}\right) = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{2}\right) = \sqrt{3} + 2i$$

$$x_{3} = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6} + 2 \cdot \frac{\pi}{3}\right) = \sqrt{3} + 2 \cdot cis\left(\frac{5\pi}{6}\right) = \sqrt{3} + 2\left(-\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = i$$

$$x_{4} = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6} + 3 \cdot \frac{\pi}{3}\right) = \sqrt{3} + 2 \cdot cis\left(\frac{7\pi}{6}\right) = \sqrt{3} + 2\left(-\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = -i$$

$$x_{5} = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6} + 4 \cdot \frac{\pi}{3}\right) = \sqrt{3} + 2 \cdot cis\left(\frac{3\pi}{2}\right) = \sqrt{3} - 2i$$

$$x_{6} = \sqrt{3} + 2 \cdot cis\left(\frac{\pi}{6} + 5 \cdot \frac{\pi}{3}\right) = \sqrt{3} + 2 \cdot cis\left(\frac{11\pi}{6}\right) = \sqrt{3} + 2\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = 2\sqrt{3} - i$$

Esboçando os pontos no plano de Argand-Gauss:

Note que o centro do hexágono H é o ponto $x_0 = \sqrt{3}$ e ele possui lado de medida 2 (basta ver a distância do vértice i ao vértice -i).

Sabendo que o hexágono M é formado pelos vértices consecutivos $v_1=-1+\sqrt{3}i$, $v_2=1-\sqrt{3}i$ e $v_3=5-\sqrt{3}i$, temos o seguinte esboço:

Estamos interessados em saber qual o número complexo z que transforma o hexágono H no hexágono M. O bizu aqui é analisar os centros dos hexágonos e usar a forma polar do complexo z:

$$z = |z| \cdot cis \theta$$

O centro do hexágono H é o ponto:

$$x_0 = \sqrt{3}$$

Observando-se a figura, podemos ver que o lado do hexágono M mede 4 (distância de v_2 até v_3). Além disso, o centro do hexágono M é:

parte real
$$\rightarrow$$
 $Re(v_2) + \frac{4}{2} = 1 + 2 = 3$
parte imaginária $\rightarrow \sqrt{3}i$

Assim, o centro de M é $v_0 = 3 + \sqrt{3}i$.

Como M é formado pelo hexágono H pela multiplicação de z, e os lados dos hexágonos H e M medem, respectivamente, 2 e 4, temos que o módulo de z é:

$$|z| = \frac{4}{2} = 2$$

Como o argumento do centro do hexágono $H \in 0^{\circ}$, temos que o argumento de z será igual ao argumento do centro de M, logo:

$$arg(z) = arctg\left(\frac{Im(v_0)}{Re(v_0)}\right) = arctg\left(\frac{\sqrt{3}}{3}\right) = 30^{\circ}$$

Portanto, o complexo z é:

$$z = |z|cis\theta = 2cis(30^\circ) = 2\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = \sqrt{3} + i$$
$$\therefore z = \sqrt{3} + i$$

Gabarito: $z = \sqrt{3} + i$

4. (ITA/2019)

Sabe-se que -2 + 2i é uma das raízes quartas de um número complexo z. Então, no plano de Argand-Gauss, a área do triângulo, cujos vértices são as raízes cúbicas de z, é igual a

- a) $4(\sqrt{3}+1)$.
- b) $6\sqrt{3}$.
- c) $8(\sqrt{3}-1)$.
- d) $10\sqrt{3}$.
- e) $12\sqrt{3}$.

Comentários

O enunciado diz que -2 + 2i é uma das raízes quartas de z. Disso, temos:

$$z = (-2 + 2i)^4$$

O problema pede as raízes cúbicas de z, então devemos encontrar o número complexo w^3 de forma que $w^3=z$.

Assim, desenvolvendo z:

$$z = (-2 + 2i)^4 = [2(-1 + i)]^4$$

Observe que podemos escrever o termo -1 + i:

$$-1 + i = \sqrt{2} \left(-\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2} \right) = \sqrt{2} (\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$$

Desse modo:

$$z = [2(-1+i)]^4 =$$

$$2^4 \left[\sqrt{2} \left(\cos \frac{3\pi}{4} + i \operatorname{sen} \frac{3\pi}{4} \right) \right]^4 =$$

$$2^4 \sqrt{(2)^4} \left(\cos \frac{3\pi}{4} + i \operatorname{sen} \frac{3\pi}{4} \right)^4 =$$

$$2^6 \left(\cos \frac{3\pi}{4} + i \operatorname{sen} \frac{3\pi}{4} \right)^4$$

Aplicando a Fórmula de De Moivre, sabemos que:

$$\left(\cos\frac{3\pi}{4} + i sen\frac{3\pi}{4}\right)^4 = \cos\left(4 \cdot \frac{3\pi}{4}\right) + i sen\left(4 \cdot \frac{3\pi}{4}\right) = \cos 3\pi + i sen 3\pi = \cos\pi + i sen \pi$$

Voltando ao z:

$$z = 2^6 \left(\cos \frac{3\pi}{4} + i \operatorname{sen} \frac{3\pi}{4} \right)^4 = 2^6 (\cos \pi + i \operatorname{sen} \pi)$$

Então, devemos encontrar w, tal que:

$$w^3 = z$$
$$w^3 = 2^6(\cos\pi + i sen\pi)$$

$$w = 2^2(\cos\pi + i \sin\pi)^{\frac{1}{3}}$$

Quando aplicarmos a Fórmula de De Moivre no termo $(cos\pi + isen\pi)^{\frac{1}{3}}$, devemos somar $2n\pi$, sendo $n \in \mathbb{N}$, no cosseno e seno para descobrir todas raízes de w:

$$w = 4(\cos\pi + i\sin\pi)^{\frac{1}{3}} =$$

$$4[\cos(\pi + 2n\pi) + i\sin(\pi + 2n\pi)]^{\frac{1}{3}} =$$

$$4\left[\cos\left(\frac{\pi}{3} + \frac{2n\pi}{3}\right) + i\sin\left(\frac{\pi}{3} + \frac{2n\pi}{3}\right)\right], n \in \mathbb{N}$$

Logo:

$$\begin{split} w_1 &= 4\left(\cos\left(\frac{\pi}{3}\right) + isen\left(\frac{\pi}{3}\right)\right) = 4\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right) = 2 + i2\sqrt{3} \\ w_2 &= 4\left(\cos(\pi) + isen(\pi)\right) = 4(-1 + i0) = -4 \\ w_3 &= 4\left(\cos\left(\frac{5\pi}{3}\right) + isen\left(\frac{5\pi}{3}\right)\right) = 4\left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right) = 2 - i2\sqrt{3} \end{split}$$

Colocando as raízes no plano de Argand-Gauss:

Temos um triângulo equilátero, BCD com altura h (B até o segmento CD):

$$h = 4 + 2 = 6$$

e base b (segmento CD):

$$b = 2\sqrt{3} + 2\sqrt{3} = 4\sqrt{3}$$

Então, a área é:

$$A = \frac{bh}{2} = 6\frac{4\sqrt{3}}{2} = 12\sqrt{3}$$

*Um modo mais fácil de resolver seria descobrir o módulo de w, pois descobriríamos o raio da circunferência no qual suas raízes se encontram. E como são 3 pontos, sabemos que encontraríamos um triângulo equilátero inscrito no círculo.

$$w = 4(\cos(\pi + 2n\pi) + isen(\pi + 2n\pi))^{\frac{1}{3}}$$
$$|w| = \left| 4(\cos(\pi + 2n\pi) + isen(\pi + 2n\pi))^{\frac{1}{3}} \right| = 4$$

Logo, r=4. Das propriedades do triângulo equilátero inscrito no círculo, temos:

$$\frac{2}{3}h = 4 => h = 6$$

Das propriedades do triângulo equilátero:

$$l = \frac{2\sqrt{3}}{3}h$$

$$l = 4\sqrt{3}$$

$$A = \frac{bh}{2} = 6\frac{4\sqrt{3}}{2} = 12\sqrt{3}$$

Essa resolução apresenta, de forma detalhada, os passos para se chegar à resposta. Na hora da prova, você deve escolher o caminho mais rápido para não perder tempo.

Gabarito: "e".

5. (ITA/2019)

Determine o número complexo z de menor argumento que satisfaz $|z - 25i| \le 15$.

Comentários

Vamos resolver essa questão pelo método geométrico. Se |z-25i|=15 é a equação da circunferência de centro $z_0=25i$ e raio 15, então, $|z-25i|\leq 15$ representa todos os pontos do círculo de centro $z_0=25i$ e raio 15. Desse modo:

O número complexo z de menor argumento é aquele que pertence à reta tangente ao círculo no primeiro quadrante e passa pelo ponto O(0,0). Seja z_1 esse número, então, temos:

Precisamos descobrir o valor de $|z_1|$, $\cos\theta$ e sen θ . Note que o triângulo OZ_0Z_1 é retângulo, então, podemos usar as relações trigonométricas:

$$sen(90^{\circ} - \theta) = \frac{15}{25} \Rightarrow cos(\theta) = \frac{3}{5} \Rightarrow sen(\theta) = \frac{4}{5}$$

Pelo teorema de Pitágoras:

$$\overline{OZ_0^2} = \overline{OZ_1^2} + \overline{Z_0Z_1^2} \Rightarrow 25^2 = 15^2 + |z_1|^2 \Rightarrow |z_1| = 20$$

Assim, z_1 é dado por:

$$z_1 = |z_1|(\cos\theta + i\sin\theta) = 20\left(\frac{3}{5} + i\frac{4}{5}\right)$$
$$\therefore \boxed{z_1 = 12 + 16i}$$

Gabarito: $z_1 = 12 + 16i$

6. (ITA/2018)

Seja $z = \cos \frac{\pi}{7} + i \operatorname{sen} \frac{\pi}{7}$. Pedem-se:

Use a propriedade $z^k = \cos\frac{k\pi}{7} + i \sin\frac{k\pi}{7}$, $k \in \mathbb{N}$, para expressar $\cos(\frac{\pi}{7})$, $\cos(\frac{3\pi}{7})$ e $\cos(\frac{5\pi}{7})$ em função de z.

a) Determine inteiros a e b tais que $\frac{a}{b} = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right)$.

Comentários

a) A questão pede para representar $\cos\left(\frac{\pi}{7}\right)$, $\cos\left(\frac{3\pi}{7}\right)e\cos\left(\frac{5\pi}{7}\right)$ em função de z.

Sabemos que $z=\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}$ e $\bar{z}=\cos\frac{\pi}{7}-i\sin\frac{\pi}{7}$, somando-se os dois, temos:

$$z + \bar{z} = \cos\frac{\pi}{7} + i \sin\frac{\pi}{7} + \cos\frac{\pi}{7} - i \sin\frac{\pi}{7} = 2\cos\left(\frac{\pi}{7}\right)$$

Ainda, pela propriedade do |z|:

$$|z| = z \cdot \bar{z} = 1$$
$$\bar{z} = \frac{1}{z}$$

Substituindo na equação:

$$z + \bar{z} = z + \frac{1}{z} = 2\cos\left(\frac{\pi}{7}\right)$$

Assim:

$$\cos\left(\frac{\pi}{7}\right) = \frac{1}{2}\left(z + \frac{1}{z}\right)$$

Analogamente para $\cos(\frac{3\pi}{7})$ e $\cos(\frac{5\pi}{7})$ e usando a propriedade $z^k = \cos\frac{k\pi}{7} + i \sin\frac{k\pi}{7}$:

$$z^{3} = \cos\frac{3\pi}{7} + i \sin\frac{3\pi}{7}$$
$$\cos\left(\frac{3\pi}{7}\right) = \frac{1}{2}\left(z^{3} + \frac{1}{z^{3}}\right)$$
$$z^{5} = \cos\frac{5\pi}{7} + i \sin\frac{5\pi}{7}$$
$$\cos\left(\frac{5\pi}{7}\right) = \frac{1}{2}\left(z^{5} + \frac{1}{z^{5}}\right)$$

b) Vamos definir a soma
$$S = \frac{a}{b} = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right)$$

$$S = \left(\frac{1}{2}\left(z + \frac{1}{z}\right) + \frac{1}{2}\left(z^3 + \frac{1}{z^3}\right) + \frac{1}{2}\left(z^5 + \frac{1}{z^5}\right)\right) = \frac{1}{2}\left(z + \frac{1}{z} + z^3 + \frac{1}{z^3} + z^5 + \frac{1}{z^5}\right)$$

$$S = \frac{1}{2}\left(\frac{z^6 + z^4 + z^8 + z^2 + z^{10} + 1}{z^5}\right) = \frac{1}{2}\left(\frac{1 + z^2 + z^4 + z^6 + z^8 + z^{10}}{z^5}\right)$$

A soma da parcela de cima de S é uma PG:

$$S = \frac{1}{2} \left(\frac{1((z^2)^6 - 1)}{z^5} \right) = \frac{1}{2} \left(\frac{z^{12} - 1}{z^5(z^2 - 1)} \right) = \frac{1}{2} \left(\frac{z^{12} - 1}{z^7 - z^5} \right)$$

Note que $z^7 = cos\pi + isen\pi = -1$

$$S = \frac{1}{2} \left(\frac{z^7 z^5 - 1}{-1 - z^5} \right) = \frac{1}{2} \left(\frac{-z^5 - 1}{-z^5 - 1} \right) = \frac{1}{2}$$

Logo:

$$a = 1 e b = 2$$

Gabarito:

a)
$$\cos\left(\frac{\pi}{7}\right) = \frac{1}{2}\left(z + \frac{1}{z}\right); \cos\left(\frac{3\pi}{7}\right) = \frac{1}{2}\left(z^3 + \frac{1}{z^3}\right); \cos\left(\frac{5\pi}{7}\right) = \frac{1}{2}\left(z^5 + \frac{1}{z^5}\right)$$

b) $a = 1; b = 2$

7. (ITA/2017)

Considere a equação $(a - bi)^{501} = \frac{2(a + bi)}{(a^2 + b^2)^{250} + 1}$.

O número de pares ordenados $(a,b) \in \mathbb{R}^2$ que satisfazem a equação é

- a) 500.
- b) 501.
- c) 502.
- d) 503.
- e) 504.

Comentários

$$(a-bi)^{501} = \frac{2(a+bi)}{(a^2+b^2)^{250}+1}$$

Vamos aplicar o módulo na equação do problema:

$$|(a-bi)^{501}| = \left| \frac{2(a+bi)}{(a^2+b^2)^{250}+1} \right|$$

Como $(a^2 + b^2)^{250} + 1$ é um número real, podemos retirá-lo do módulo:

$$\sqrt{(a^2 + b^2)^{501}} = \frac{2\sqrt{(a^2 + b^2)}}{(a^2 + b^2)^{250} + 1}$$

$$\sqrt{(a^2 + b^2)^{501}} - \frac{2\sqrt{(a^2 + b^2)}}{(a^2 + b^2)^{250} + 1} = 0$$

$$\sqrt{(a^2 + b^2)} \left(\sqrt{(a^2 + b^2)^{500}} - \frac{2}{(a^2 + b^2)^{250} + 1} \right) = 0$$

$$\sqrt{(a^2 + b^2)} \left((a^2 + b^2)^{250} - \frac{2}{(a^2 + b^2)^{250} + 1} \right) = 0$$

Para a equação ser verdadeira, podemos ter:

$$i)\sqrt{(a^2+b^2)}=0$$
, neste caso $(a,b)=(0,0)$ é solução.

Ou

$$ii)(a^2 + b^2)^{250} - \frac{2}{(a^2 + b^2)^{250} + 1} = 0$$
, para $(a, b) \neq (0, 0)$
$$\frac{(a^2 + b^2)^{500} + (a^2 + b^2)^{250} - 2}{(a^2 + b^2)^{250} + 1} = 0$$

Como o termo $(a^2 + b^2)^{250} + 1 > 1$

Temos:

$$(a^2 + b^2)^{500} + (a^2 + b^2)^{250} - 2 = 0$$

Substituindo $(a^2 + b^2)^{250} = x$:

$$x^2 + x - 2 = 0$$

Soluções:

$$x_1 = 1 \ ou \ x_2 = -2$$

Como $(a^2 + b^2)^{250} > 0$, a solução é x_1 :

$$(a^2 + b^2)^{250} = 1$$
$$a^2 + b^2 = 1$$

Aplicando esse valor à equação inicial do problema:

$$(a-bi)^{501} = \frac{2(a+bi)}{(a^2+b^2)^{250}+1} = \frac{2(a+bi)}{1+1} = \frac{2(a+bi)}{2} = a+bi$$
$$(a-bi)^{501} = a+bi$$

Multiplicando ambos os lados por a - bi:

$$(a - bi)^{502} = a^2 + b^2 = 1$$

Portanto, temos, dessa equação, 502 raízes. Somadas essas raízes com a raiz (0, 0), encontramos 503 raízes distintas.

Gabarito: "d".

8. (ITA/2017)

O lugar geométrico dos pontos $(a,b) \in \mathbb{R}^2$ tais que a equação, em $z \in \mathbb{C}$,

$$z^2 + z + 2 - (a + ib) = 0$$

Possua uma raiz puramente imaginária é

- a) Uma circunferência.
- b) Uma parábola.
- c) Uma hipérbole.
- d) Uma reta.
- e) Duas retas paralelas.

Comentários

Vamos considerar z=x+yi. Para que z possua uma raiz puramente imaginária, teremos, necessariamente, que x=0. Assim:

$$z = yi$$

Substituindo na equação do problema:

$$z^{2} + z + 2 - (a + ib) = 0$$
$$(yi)^{2} + yi + 2 - (a + ib) = 0$$
$$-y^{2} + yi + 2 - a - ib = 0$$

Reorganizando os termos:

$$-y^2 - a + 2 + i(y - b) = 0$$

Logo:

$$\begin{cases} -y^2 - a + 2 = 0 \\ y - b = 0 \end{cases}$$

Usando y - b = 0 na equação de cima:

$$-y^2 - a + 2 = 0$$

$$-b^2 - a + 2 = 0$$

Disso, encontramos:

 $a = -b^2 + 2$ que é a equação de uma parábola.

Gabarito: "b".

9. (ITA/2016)

Considere as afirmações a seguir:

- I. Se z e w são números complexos tais que z-iw=1-2i e $\omega-z=2+3i$, então $z^2+\omega^2=-3+6i$.
- II. A soma de todos os números complexos z que satisfazem $2|z|^2 + z^2 = 4 + 2i$ é igual a zero.
- III. Se z = 1 i, então $z^{59} = 2^{29}(-1 + i)$.

É (são) verdadeira(s)

- a) Apenas I.
- b) Apenas I e II.
- c) Apenas I e III.
- d) Apenas II e III.
- e) I, II e III.

Comentários

I.
$$\begin{cases} z - iw = 1 - 2i \\ \omega - z = 2 + 3i \end{cases}$$

Vamos descobrir o valor de z e w:

Somando-se as equações:

$$z - iw + w - z = 1 - 2i + 2 + 3i$$

Reorganizando a equação:

$$w(1-i) = 3+i$$

$$w = \frac{3+i}{1-i} = \frac{(3+i)(1+i)}{(1-i)(1+i)} = \left(\frac{3+3i+i-1}{1-i^2}\right) = \frac{2+4i}{2} = 1+2i$$

$$w = 1+2i$$

Substituindo w na seguinte equação:

$$\omega - z = 2 + 3i$$

$$1 + 2i - z = 2 + 3i$$

$$1 + 2i - 2 - 3i = z$$

$$z = -1 - i$$

Encontrando $z^2 + w^2$:

$$z^{2} + w^{2} =$$

$$(-1 - i)^{2} + (1 + 2i)^{2} =$$

$$(1 + 2i + i^{2}) + (1 + 4i + 4i^{2}) =$$

$$1 + 2i - 1 + 1 + 4i - 4 =$$

$$-3 + 6i$$

Logo, verdadeira.

II.
$$2|z|^2 + z^2 = 4 + 2i$$

Substituindo z = a + bi na equação:

$$2|a+bi|^{2} + (a+bi)^{2} = 4+2i$$

$$2\sqrt{(a^{2}+b^{2})^{2}} + (a^{2}+2abi-b^{2}) = 4+2i$$

$$2(a^{2}+b^{2}) + (a^{2}+2abi-b^{2}) - (4+2i) = 0$$

$$2a^{2}+2b^{2}+a^{2}+2abi-b^{2}-4-2i = 0$$

$$3a^{2}+b^{2}-4+i(2ab-2) = 0$$

Assim, temos:

$$\begin{cases} 3a^2 + b^2 - 4 = 0 \\ 2ab - 2 = 0 \end{cases}$$

Simplificando:

$$\begin{cases} 3a^2 + b^2 - 4 = 0 \\ ab - 1 = 0 \end{cases}$$

Das relações acima, $ab = 1 => a = \frac{1}{h}$

Substituindo a da equação acima:

$$3\left(\frac{1}{b}\right)^2 + b^2 - 4 = 0$$

$$\frac{3}{b^2} + b^2 - 4 = 0$$

$$\frac{b^4 - 4b^2 + 3}{b^2} = 0$$

Para a equação ter solução, precisamos que $b^2 \neq 0$, então, a parte de cima deve ser igual a zero:

$$b^4 - 4b^2 + 3 = 0$$

Encontrando as raízes da equação:

$$b^{2} = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2} = 3 \text{ ou } 1$$
$$\begin{cases} b^{2} = 3\\ b^{2} = 1 \end{cases}$$

Assim, as raízes encontradas são:

Para $b^2 = 1$:

$$b_{1} = 1 \Rightarrow a_{1} = \frac{1}{b_{1}} \Rightarrow a_{1} = 1$$

$$z_{1} = 1 + i$$

$$b_{2} = -1 \Rightarrow a_{2} = \frac{1}{b_{2}} \Rightarrow a_{1} = -1$$

$$z_{2} = -1 - i$$

$$\text{Para } b^{2} = 3:$$

$$b_{3} = \sqrt{3} \Rightarrow a_{3} = \frac{1}{b_{3}} \Rightarrow a_{3} = \frac{\sqrt{3}}{3}$$

$$z_{3} = \frac{\sqrt{3}}{3} + \sqrt{3}i$$

$$b_{4} = -\sqrt{3} \Rightarrow a_{4} = \frac{1}{b_{4}} \Rightarrow a_{4} = -\frac{\sqrt{3}}{3}$$

$$z_{4} = -\frac{\sqrt{3}}{3} - \sqrt{3}i$$

Logo, somando $z_1 + z_2 + z_3 + z_4$:

$$z_1 + z_2 + z_3 + z_4 = 1 + i - 1 - i + \frac{\sqrt{3}}{3} + \sqrt{3}i - \frac{\sqrt{3}}{3} - \sqrt{3}i = 0$$

Logo, assertiva verdadeira.

III. Queremos descobrir z^{59} :

$$z = 1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{i\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos\left(\frac{7\pi}{4}\right) + i sen\left(\frac{7\pi}{4}\right) \right)$$

$$z^{59} = \left(\sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + isen\left(\frac{7\pi}{4}\right)\right)\right)^{59}$$

Aplicando a Fórmula de De Moivre:

$$\left(\sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + isen\left(\frac{7\pi}{4}\right)\right)\right)^{59} =$$

$$\sqrt{2}^{59}\left(\cos\left(59\frac{7\pi}{4}\right) + isen\left(59\frac{7\pi}{4}\right)\right) =$$

$$\sqrt{2}^{59}\left(\cos\left(\frac{413\pi}{4}\right) + isen\left(\frac{413\pi}{4}\right)\right)$$

*Para simplificar $\cos\left(\frac{413\pi}{4}\right)$ e $\sin\left(\frac{413\pi}{4}\right)$, sabemos que a cada 2π , os valores de seno e cosseno se repetem. Assim, basta tornar $\frac{413\pi}{4}$ múltiplo de 2π e divisível por 4. Desse modo:

$$\frac{413\pi}{4} = \frac{408\pi + 5\pi}{4} = 102\pi + \frac{5\pi}{4}$$

Voltando à equação:

$$\sqrt{2}^{59} \left(\cos \left(\frac{413\pi}{4} \right) + i \operatorname{sen} \left(\frac{413\pi}{4} \right) \right) =$$

$$\sqrt{2}^{59} \left(\cos \left(\frac{5\pi}{4} \right) + i \operatorname{sen} \left(\frac{5\pi}{4} \right) \right) =$$

$$\sqrt{2}^{59} \left(-\frac{\sqrt{2}}{2} - \frac{i\sqrt{2}}{2} \right) =$$

$$\frac{\sqrt{2}^{60}}{2} (-1 - i) =$$

$$2^{29} (-1 - i)$$

Logo, assertiva errada.

Apenas I e II são verdadeiras.

Gabarito: "b".

10. (ITA/2015)

Sejam $A, B \ e \ \mathcal{C}$ os subconjuntos de \mathbb{C} definidos por $A = \big\{z \in \mathbb{C} \colon |z+2-3i| < \sqrt{19}\big\}$,

$$B = \left\{z \in \mathbb{C}: |z+i| < \frac{7}{2}\right\}$$
 e $C = \{z \in \mathbb{C}: z^2 + 6z + 10 = 0\}$. Então, $(A \setminus B) \cap C$ é o conjunto

- a) $\{-1-3i, -1+3i\}$.
- b) $\{-3-i,-3+i\}$.
- c) $\{-3+i\}$.
- d) $\{-3-i\}$.
- e) $\{-3+3i\}$.

Comentários

Analisando os subconjuntos:

Subconjunto A é um círculo com centro em (-2, 3i) e raio $<\sqrt{19}$.

Subconjunto B é um círculo com centro em (0, -i) e raio $< \frac{7}{2}$.

Subconjunto C são duas raízes da equação.

Vamos descobrir as raízes de C:

$$z = \frac{-6 \pm \sqrt{36 - 40}}{2} = -3 \pm i$$

Assim, $z_1 = -3 + i e z_2 = -3 - i$.

O problema pede $(A \setminus B) \cap C$, isso significa que o elemento de C deve pertencer a A e não deve pertencer a B.

Substituindo z_1 no subconjunto A:

$$|-3+i+2-3i| = |-1-2i| = \sqrt{5} < \sqrt{19}, z_1 \in A$$

Substituindo z_1 no subconjunto B:

$$|-3+i+i| = |-3+2i| = \sqrt{13} > \frac{7}{2}, z_1 \notin B$$

 z_1 satisfaz as condições.

*Se não ficar claro que $\sqrt{13} > \frac{7}{2}$, tente colocar $\frac{7}{2}$ em uma raiz quadrada e assim ficará mais fácil:

$$\frac{7}{2} = \sqrt{\frac{7}{2}}^2 = \sqrt{\frac{49}{4}} = \sqrt{12.25}$$

Testando z_2 nas condições:

Em A:

$$|-3-i+2-3i| = |-1-4i| = \sqrt{17} < \sqrt{19}, z_2 \in A$$

Em B:

$$|-3 - i + i| = |-3| = 3 < \frac{7}{2}, z_2 \in B$$

 z_2 não satisfaz as condições.

Logo, apenas $z_1 = -3 + i$ satisfaz as condições.

Gabarito: "c".

11. (ITA/2015)

Se $z = \left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$, então o valor de $2 \arcsin(Re(z)) + 5 \arctan(2 \operatorname{Im}(z))$ é igual a

a)
$$-\frac{2\pi}{3}$$
.

b)
$$-\frac{\pi}{3}$$
.

- c) $\frac{2\pi}{3}$.
- d) $\frac{4\pi}{3}$.
- e) $\frac{5\pi}{3}$.

Comentários

O problema pede os ângulos dos valores reais e imaginários de z. Então, devemos simplificar z de modo que figuem mais claros esses valores:

$$z = \left(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i}\right)^{10}$$

Vamos transformar z no formato $cos(\theta) + isen(\theta) = cis(\theta)$

$$z = \left(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i}\right)^{10} = \left(\frac{\frac{1 + \sqrt{3}i}{2}}{\frac{1 - \sqrt{3}i}{2}}\right)^{10} = \left(\frac{\frac{1}{2} + \frac{\sqrt{3}i}{2}}{\frac{1}{2} - \frac{\sqrt{3}i}{2}}\right)^{10} = \left(\frac{cis\left(\frac{\pi}{3}\right)}{cis\left(-\frac{\pi}{3}\right)}\right)^{10}$$

Aplicando a Fórmula de De Moivre:

$$z = \left(\frac{cis\left(\frac{\pi}{3}\right)}{cis\left(-\frac{\pi}{3}\right)}\right)^{10} = \frac{cis\left(\frac{10\pi}{3}\right)}{cis\left(-\frac{10\pi}{3}\right)}$$

Multiplicando ambos os termos por $cis\left(\frac{10\pi}{3}\right)$ e simplificando:

$$z = \frac{cis\left(\frac{10\pi}{3}\right)}{cis\left(-\frac{10\pi}{3}\right)} \frac{cis\left(\frac{10\pi}{3}\right)}{cis\left(\frac{10\pi}{3}\right)} =$$

$$\frac{cis\left(\frac{20\pi}{3}\right)}{cis(0)} = cis\left(\frac{20\pi}{3}\right) = cis\left(6\pi + \frac{2\pi}{3}\right) =$$

$$cis\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

Assim:

$$2 \operatorname{arcsen}(\operatorname{Re}(z)) + 5 \operatorname{arctg}(2 \operatorname{Im}(z)) =$$

$$2 \operatorname{arcsen}\left(-\frac{1}{2}\right) + 5 \operatorname{arctg}\left(\frac{2\sqrt{3}}{2}\right) =$$

$$2 \operatorname{arcsen}\left(-\frac{1}{2}\right) + 5 \operatorname{arctg}(\sqrt{3})$$

Qual ângulo de seno que resulta $-\frac{1}{2}$?

$$sen\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$

Qual ângulo de tangente que resulta $\sqrt{3}$?

Logo:

$$2arcsen\left(-\frac{1}{2}\right) + 5arctg\left(\sqrt{3}\right) = 2\left(-\frac{\pi}{6}\right) + 5\left(\frac{\pi}{3}\right) = \frac{4\pi}{3}$$

Gabarito: "d".

12. (ITA/2015)

Seja $M \subset \mathbb{R}$ dado por $M = \{|z^2 + az - 1| : z \in \mathbb{C} \ e \ |z| = 1\}$, com $a \in \mathbb{R}$. Determine o maior elemento de M em função de a.

Comentários

Vamos resolver essa questão pela forma trigonométrica, aproveitando |z|=1

Como |z| = 1, podemos escrever:

$$z = cis(\theta), \theta \in [0, 2\pi[$$

Substituindo z na equação:

$$M = |z^2 + az - 1| = |(cis\theta)^2 + acis\theta - 1|$$

Pela Fórmula de De Moivre:

$$|(cis\theta)^{2} + acis\theta - 1| = |cis(2\theta) + acis\theta - 1| =$$

$$|cos(2\theta) + isen(2\theta) + a(cos\theta + isen\theta) - 1|$$

Expandindo $cos(2\theta)$ *e sen* (2θ) :

$$|(cos\theta^2 - sen\theta^2) + i(2sen\theta cos\theta) + a(cos\theta + isen\theta) - 1|$$

Vamos igualar $cos\theta^2 = 1 - sen\theta^2$ para eliminar o (-1) da equação:

$$|((1 - sen\theta^2 - sen\theta^2) + i(2sen\theta cos\theta) + a(cos\theta + isen\theta) - 1| =$$

$$|1 - 2sen\theta^2 + i(2sen\theta cos\theta) + a(cos\theta + isen\theta) - 1| =$$

$$|-2sen\theta^2 + i(2sen\theta cos\theta) + a(cos\theta + isen\theta)|$$

Observe o termo $-2sen\theta^2 + i(2sen\theta cos\theta)$, se isolarmos $2sen\theta$ nesse termo, teremos:

$$-2sen\theta^2 + i(2sen\theta cos\theta) = 2sen\theta(-sen\theta + icos\theta)$$

Note que temos $(cos\theta + isen\theta)$ evidenciado em $a(cos\theta + isen\theta)$, disso podemos manipular $2sen\theta(-sen\theta + icos\theta)$ para que possamos fatorar com o termo de a:

Vamos igualar $-sen\theta = i^2 sen\theta$:

$$2sen\theta(-sen\theta + icos\theta) = 2sen\theta(i^2sen\theta + icos\theta)$$

Pronto, jogando i para fora dos parênteses:

$$2sen\theta(i^2sen\theta + icos\theta) = 2isen\theta(cos\theta + isen\theta)$$

Daí encontramos
$$-2sen\theta^2 + i(2sen\theta cos\theta) = 2isen\theta(cos\theta + isen\theta)$$

Voltando ao nosso problema, e aplicando as substituições que encontramos:

$$|-2sen\theta^2 + i(2sen\theta cos\theta) + a(cos\theta + isen\theta)| =$$

 $|2isen\theta(cos\theta + isen\theta) + a(cos\theta + isen\theta)| =$

$$|2isen\theta cis\theta + acis\theta| = |cis\theta(2isen\theta + a)| =$$

 $|cis\theta||2isen\theta + a|$

Sabemos que $|cis\theta| = 1$, então:

$$M = |2isen\theta + a| = \sqrt{4sen\theta^2 + a^2}$$

Sendo ambos os termos positivos, temos que o maior valor de M será quando $sen\theta=1$:

Logo, o maior valor de M é:

$$M = \sqrt{4 + a^2}$$

Gabarito: $M = \sqrt{4 + a^2}$

13. (ITA/2014)

Se $z \in \mathbb{C}$, então $z^6 - 3|z|^4(z^2 - \overline{z}^2) - \overline{z}^6$ é igual a

- a) $(z^2 \bar{z}^2)^3$.
- b) $(z^6 \bar{z}^6)$.
- c) $(z^3 \bar{z}^3)^2$.
- d) $(z \bar{z})^6$.
- e) $(z-\bar{z})^2(z^4-\bar{z}^4)$.

Comentários

Vamos usar a propriedade dos números complexos $|z|^2 = z\bar{z}$ e substituir na equação:

$$z^{6} - 3|z|^{4}(z^{2} - \bar{z}^{2}) - \bar{z}^{6} = z^{6} - 3(z\bar{z})^{2}(z^{2} - \bar{z}^{2}) - \bar{z}^{6} = z^{6} - 3(z\bar{z})^{2}(z^{2} - \bar{z}^{2})$$

Observe o termo $z^6-\bar{z}^6$, isso é uma diferença de dois cubos que pode ser fatorado usando-se a fórmula da aula de Matemática Básica!

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Assim, temos:

$$z^{6} - \bar{z}^{6} - 3(z\bar{z})^{2}(z^{2} - \bar{z}^{2}) =$$

$$(z^{2} - \bar{z}^{2})(z^{4} + z^{2}\bar{z}^{2} + \bar{z}^{4}) - 3(z\bar{z})^{2}(z^{2} - \bar{z}^{2}) =$$

$$(z^{2} - \bar{z}^{2})(z^{4} + z^{2}\bar{z}^{2} + \bar{z}^{4} - 3z^{2}\bar{z}^{2}) =$$

$$(z^{2} - \bar{z}^{2})(z^{4} - 2z^{2}\bar{z}^{2} + \bar{z}^{4}) =$$

$$(z^{2} - \bar{z}^{2})(z^{2} - \bar{z}^{2})^{2} =$$

$$(z^{2} - \bar{z}^{2})^{3}$$

Gabarito: "a".

14. (ITA/2014)

Sejam $z, \omega \in \mathbb{C}$. Das afirmações:

1.
$$|z + \omega|^2 + |z - \omega|^2 = 2(|z|^2 + |\omega|^2);$$

II.
$$(z + \overline{\omega})^2 - (z - \overline{\omega})^2 = 4z\overline{\omega};$$

III.
$$|z + \omega|^2 - |z - \omega|^2 = 4 \operatorname{Re}(z\overline{\omega}),$$

É (são) verdadeira(s)

- a) Apenas I.
- b) Apenas I e II.
- c) Apenas I e III.
- d) Apenas II e III.
- e) Todas.

Comentários

I. Vamos usar a propriedade $|z|^2 = z\bar{z}$:

$$|z + \omega|^2 + |z - \omega|^2 =$$

$$(z + w)\overline{(z + w)} + (z - w)\overline{(z - w)} =$$

$$(z + w)(\overline{z} + \overline{\omega}) + (z - w)(\overline{z} - \overline{\omega}) =$$

$$z\overline{z} + w\overline{z} + \overline{\omega}z + \omega\overline{\omega} + z\overline{z} - w\overline{z} - \overline{\omega}z + \omega\overline{\omega} =$$

$$2z\overline{z} + 2\omega\overline{\omega} = 2(|z|^2 + |\omega|^2)$$

Verdadeira.

II. Desenvolvendo a equação:

$$(z+\overline{\omega})^2 - (z-\overline{\omega})^2 = z^2 + 2z\overline{\omega} + \overline{\omega}^2 - (z^2 - 2z\overline{\omega} + \overline{\omega}^2) = 4z\overline{\omega}$$

Verdadeira.

III. Usando a propriedade $|z|^2 = z\bar{z}$:

$$|z + \omega|^2 - |z - \omega|^2 =$$

$$(z + w)\overline{(z + w)} - (z - w)\overline{(z - w)} =$$

$$(z + w)(\overline{z} + \overline{\omega}) - (z - w)(\overline{z} - \overline{\omega}) =$$

$$z\overline{z} + \overline{z}w + z\overline{\omega} + \omega\overline{\omega} - (z\overline{z} - \overline{z}w - z\overline{\omega} + \omega\overline{\omega}) =$$

$$2\overline{z}w + 2z\overline{\omega} = 2(\overline{z}w + z\overline{\omega})$$

*Veja que, na assertiva, temos $z\overline{\omega}$, então, devemos transformar $\overline{z}w$:

$$\bar{z}w = \overline{\overline{z}\overline{\omega}} = \overline{z}\overline{\overline{\omega}}$$
$$2(\overline{z}w + z\overline{\omega}) = 2(\overline{z}\overline{\omega} + z\overline{\omega})$$

Que é a soma de um número complexo com seu conjugado, logo:

$$2(\overline{z\overline{\omega}} + z\overline{\omega}) = 2(2\operatorname{Re}(z\overline{\omega})) = 4\operatorname{Re}(z\overline{\omega})$$

Verdadeira.

Gabarito: "e".

- 15. (ITA/2014)
- a) Determine o valor máximo de |z+i|, sabendo que |z-2|=1, $z\in\mathbb{C}$.
- b) Se $z_0 \in \mathbb{C}$, satisfaz (a), determine z_0 .

Comentários

a) Vamos ilustrar o problema: primeiramente, sabemos que o lugar geométrico de |z-2|=1 é uma circunferência de centro (2, 0) e raio 1 no plano de Argand-Gauss:

|z+i| é o afixo de z que passa por (0,-i):

A questão pede o maior valor de |z+i|, então, deveremos encontrar o maior valor do segmento BC que cruze a circunferência de centro A. Pelas propriedades da geometria plana, temos que o maior valor do segmento será quando ele cruzar com o centro de A:

Agora vamos calcular o valor do segmento BC. Basta calcular BA e somar o valor do raio da circunferência:

Usando o Teorema de Pitágoras no triângulo BDA:

$$BA^2 = 1^2 + 2^2$$

$$BA = \sqrt{5}$$

Logo, o valor máximo será:

$$BC = \sqrt{5} + 1$$

b) O problema pede para encontrarmos o afixo $z_{\rm 0}$. Assim, teremos que descobrir as coordenadas do ponto C.

Os triângulos ABD e ACE são semelhantes. Desse modo:

$$\frac{AB}{BD} = \frac{AC}{CE}$$

$$\frac{\sqrt{5}}{1} = \frac{1}{CE}$$

$$CE = \frac{\sqrt{5}}{5}$$

$$\frac{AB}{AD} = \frac{AC}{AE}$$

$$\frac{\sqrt{5}}{2} = \frac{1}{AE}$$

$$AE = \frac{2\sqrt{5}}{5}$$

Logo:

$$C = \left(2 + \left(\frac{2\sqrt{5}}{5}\right), \frac{\sqrt{5}}{5}\right)$$

$$z_0 = 2 + \left(\frac{2\sqrt{5}}{5}\right) + i\frac{\sqrt{5}}{5}$$

Gabarito: a)
$$\sqrt{5} + 1$$
 b) $z_0 = 2 + \left(\frac{2\sqrt{5}}{5}\right) + i\frac{\sqrt{5}}{5}$

16. (ITA/2013)

A soma das raízes da equação em \mathbb{C} , $z^8 - 17z^4 + 16 = 0$, tais que z - |z| = 0, é

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

Comentários

Vamos fatorar a equação, observe que o elemento $-17z^4 = -z^4 - 16z^4$

$$z^{8} - 17z^{4} + 16 =$$

$$z^{8} - z^{4} - 16z^{4} + 16 =$$

$$z^{4}(z^{4} - 1) - 16(z^{4} - 1) =$$

$$(z^{4} - 1)(z^{4} - 16) = 0$$

Assim, temos:

$$z^4 = 1$$
 ou $z^4 = 16$

Para $z^4=1=cis(0+2n\pi), n\in\mathbb{N}$, e usando a Fórmula de De Moivre:

$$z = cis(2n\pi)^{\frac{1}{4}} = cis\left(\frac{n\pi}{2}\right)$$

Disso, encontramos as raízes: $\pm 1 e \pm i$.

Para $z^4 = 16$:

$$z = 2cis(2n\pi)^{\frac{1}{4}} = 2cis\left(\frac{n\pi}{2}\right)$$

Dessa equação, temos as outras raízes: $\pm 2 e \pm 2i$.

Mas precisamos satisfazer a condição $z-|z|=0 \Rightarrow z=|z|$, isto é, z deve ser um número real positivo!

Logo, apenas 1 e 2 satisfazem a condição.

$$S = 1 + 2 = 3$$

Gabarito: "c".

17. (ITA/2013)

Considere a equação em \mathbb{C} , $(z-5+3i)^4=1$, se z_0 é a solução que apresenta o menor argumento principal dentre as quatro soluções, então o valor de $|z_0|$ é

- a) $\sqrt{29}$.
- b) $\sqrt{41}$.

- d) $4\sqrt{3}$.
- e) $3\sqrt{6}$.

Comentários

Da equação do problema, temos:

$$(z-5+3i)^4 = 1 = cis(2n\pi), n \in \mathbb{N}$$

Usando a Fórmula de De Moivre:

$$z - 5 + 3i = cis(2n\pi)^{\frac{1}{4}} = cis\left(\frac{n\pi}{2}\right)$$

 $cis\left(\frac{n\pi}{2}\right)$ pode assumir os valores cis0=1, $cis\left(\frac{\pi}{2}\right)=i$, $cis\pi=-1$, $cis\left(\frac{3\pi}{2}\right)=-i$

Assim:

$$z = cis\left(\frac{n\pi}{2}\right) + 5 - 3i$$

$$z_1 = 1 + 5 - 3i = 6 - 3i$$

$$z_2 = i + 5 - 3i = 5 - 2i$$

$$z_3 = -1 + 5 - 3i = 4 - 3i$$

$$z_4 = -i + 5 - 3i = 5 - 4i$$

O argumento de cada uma dessas soluções é:

$$z_{1} = 6 - 3i$$

$$tg(\theta_{1}) = \left(-\frac{3}{6}\right) = -\frac{1}{2}$$

$$z_{2} = 5 - 2i$$

$$tg(\theta_{2}) = -\frac{2}{5}$$

$$z_{3} = 4 - 3i$$

$$tg(\theta_{3}) = -\frac{3}{4}$$

$$z_{4} = 5 - 4i$$

$$tg(\theta_{4}) = -\frac{4}{5}$$

$$-\frac{4}{5} < -\frac{3}{4} < -\frac{1}{2} < -\frac{2}{5}$$

Logo, θ_4 é o menos argumento. Então $z_0=z_4=5-4i$

$$|z_0| = \sqrt{5^2 + 4^2} = \sqrt{41}$$

Gabarito: "b".

18. (ITA/2013)

Para z=1+iy, y>0, determine todos os pares (a,y), a>1, tais que $z^{10}=a$. Escreva a e y em função de $Arg\ z$.

Comentários

Vamos usar a forma trigonométrica e considerar $z = \rho cis(\theta)$:

$$z^{10} = a$$

Substituindo a forma trigonométrica na equação e aplicando a Fórmula de De Moivre:

$$(\rho cis\theta)^{10} = a$$

$$\rho^{10} cis(10\theta) = a$$

$$\rho^{10} (\cos(10\theta) + isen(10\theta)) = a$$

Mas a>1, isso quer dizer que $\rho^{10}(\cos(10\theta)+isen(10\theta))$ é real e positivo. Então, temos: $sen(10\theta)=0$ para zerar a parte imaginária e $\cos(10\theta)>0$, pois $\rho^{10}\cos(10\theta)=a$ Para satisfazer as duas condições, temos:

$$\cos(10\theta) = 1 = \cos(2n\pi), n \in \mathbb{N}$$

$$\theta = \frac{n\pi}{5} e \rho^{10} = a$$

Definimos que $z = \rho(\cos\theta + i sen(\theta)) = 1 + i y$

O enunciado afirma que y > 0, então, podemos restringir os valores de θ .

Sendo
$$z = \rho(\cos\theta + i \sin\theta), \theta \in]0; \frac{\pi}{2}[.$$

Com isso, encontramos $\theta = \frac{\pi}{5} e \theta = \frac{2\pi}{5}$.

Então para $z = \rho(\cos\theta + i \sin\theta) = 1 + i y$:

$$\begin{cases} \rho \cos \theta = 1 \\ \rho \sin \theta = y \\ \rho^{10} = a \end{cases}$$

Para $\theta = \frac{\pi}{5}$:

$$\rho = \frac{1}{\cos \theta} = \sec \theta = \sec \left(\frac{\pi}{5}\right)$$

$$a = \sec \left(\frac{\pi}{5}\right)^{10}$$

$$\sec \theta$$

$$y = \rho sen\theta = \frac{sen\theta}{cos\theta} = tg\theta = tg\left(\frac{\pi}{5}\right)$$

Para $\theta = \frac{2\pi}{5}$:

$$a = \sec\left(\frac{2\pi}{5}\right)^{10}$$

$$y = tg\left(\frac{2\pi}{5}\right)$$

Portanto:

$$(a,y) = \left(\sec\left(\frac{\pi}{5}\right)^{10}, tg\left(\frac{\pi}{5}\right)\right) ou\left(a,y\right) = \left(\sec\left(\frac{2\pi}{5}\right)^{10}, tg\left(\frac{2\pi}{5}\right)\right)$$

$$a = \sec(Arg z)^{10} e y = tg(Arg z)$$

Gabarito: $a = \sec(Arg z)^{10} e y = tg(Arg z)$

19. (ITA/2012)

Sejam $z=n^2(\cos 45^\circ+i \sin 45^\circ)$ e $\omega=n(\cos 15^\circ+i \sin 15^\circ)$, em que n é o menor inteiro positivo tal que $(1+i)^n$ é real. Então, $\frac{z}{w}$ é igual a

- a) $\sqrt{3} + i$.
- b) $2(\sqrt{3}+i)$.
- c) $2(\sqrt{2}+i)$.
- d) $2(\sqrt{2}-i)$.
- e) $2(\sqrt{3}-i)$.

Comentários

Do enunciado, temos:

$$z = n^{2}(\cos 45^{\circ} + i \sin 45^{\circ}) = n^{2}cis(45^{\circ})$$

$$w = n(\cos 15^{\circ} + i \sin 15^{\circ}) = ncis(15^{\circ})$$

$$\frac{z}{w} = \frac{n^{2}cis(45^{\circ})}{ncis(15^{\circ})} = \frac{ncis(45^{\circ})}{cis(15^{\circ})}$$

Das propriedades dos números complexos na forma trigonométrica:

$$\frac{z}{w} = \frac{ncis(45^{\circ})}{cis(15^{\circ})} = ncis(45^{\circ} - 15^{\circ}) = ncis(30^{\circ}) = n\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)$$

Ainda, do enunciado temos n menor inteiro positivo tal que $(1+i)^n$ é real.

$$(1+i)^n = \left(\sqrt{2}\left(\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2}\right)\right)^n = 2^{\frac{n}{2}}cis\left(\frac{\pi}{4}\right)^n$$

Aplicando a Fórmula de De Moivre:

$$2^{\frac{n}{2}}cis\left(\frac{\pi}{4}\right)^n = 2^{\frac{n}{2}}cis\left(\frac{n\pi}{4}\right)$$

Então, para o valor acima ser real temos:

$$\frac{n\pi}{4} = 0 \ ou \frac{n\pi}{4} = \pi$$

Mas n é o menor inteiro positivo que satisfaz a equação, logo n=4.

Portanto:

$$\frac{z}{w} = 4\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = 2\left(\sqrt{3} + i\right)$$

Gabarito: "b".

20. (ITA/2012)

Se $\arg z = \frac{\pi}{4}$, então um valor para $\arg (-2iz)$ é

- a) $-\frac{\pi}{2}$.
- b) $\frac{\pi}{4}$.
- c) $\frac{\pi}{2}$.
- d) $\frac{3\pi}{4}$.
- e) $\frac{7\pi}{4}$.

Comentários

Vamos definir $z = \rho cis(\theta)$. Do enunciado, $\arg z = \frac{\pi}{4}$ então $\theta = \frac{\pi}{4}$.

$$z = \rho \left(\cos \left(\frac{\pi}{4} \right) + i sen \left(\frac{\pi}{4} \right) \right) = \rho \left(\frac{\sqrt{2}}{2} + \frac{i \sqrt{2}}{2} \right)$$

Descobrindo o valor de -2iz:

$$-2iz = -2i\rho\left(\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2}\right) = \rho\left(\sqrt{2} - i\sqrt{2}\right) = 2\rho\left(\frac{\sqrt{2}}{2} - \frac{i\sqrt{2}}{2}\right) = 2\rho cis\left(\frac{7\pi}{4}\right)$$

Portanto:

$$\arg(-2iz) = \frac{7\pi}{4}$$

Gabarito: "e".

21. (ITA/2011)

Dado $z = \frac{1}{2}(-1 + \sqrt{3}i)$, então $\sum_{n=1}^{89} z^n$ é igual a

- a) $-\frac{89}{2}\sqrt{3}i$.
- b) -1.
- c) 0.
- d) 1.
- e) $\frac{89}{6}\sqrt{3}i$.

Comentários

Do enunciado:

$$z = \frac{1}{2} \left(-1 + \sqrt{3}i \right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = cis\left(\frac{2\pi}{3}\right)$$
$$S = \sum_{n=1}^{89} z^n = z + z^2 + z^3 + \dots + z^{89}$$

A soma acima é uma PG de razão z:

Usando a fórmula da soma de uma PG finita:

$$S_n = \frac{a_1(q^n - 1)}{q - 1}$$
$$S_{89} = \frac{z(z^{89} - 1)}{z - 1} = \frac{z^{90} - z}{z - 1}$$

Substituindo $z = cis\left(\frac{2\pi}{3}\right)$ na equação:

$$S_{89} = \frac{cis\left(\frac{2\pi}{3}\right)^{90} - cis\left(\frac{2\pi}{3}\right)}{cis\left(\frac{2\pi}{3}\right) - 1}$$

Usando a Fórmula de De Moivre:

$$S_{89} = \frac{cis\left(\frac{2\pi90}{3}\right) - cis\left(\frac{2\pi}{3}\right)}{cis\left(\frac{2\pi}{3}\right) - 1} = \frac{cis(2\pi30) - cis\left(\frac{2\pi}{3}\right)}{cis\left(\frac{2\pi}{3}\right) - 1} = \frac{1 - cis\left(\frac{2\pi}{3}\right)}{cis\left(\frac{2\pi}{3}\right) - 1}$$

Simplificando a equação, temos:

$$S_{89} = \frac{1 - cis\left(\frac{2\pi}{3}\right)}{cis\left(\frac{2\pi}{3}\right) - 1} = \frac{-1\left(cis\left(\frac{2\pi}{3}\right) - 1\right)}{cis\left(\frac{2\pi}{3}\right) - 1} = -1$$

Gabarito: "b".

22. (ITA/2011)

Das afirmações abaixo sobre números complexos z_1 e z_2 :

$$|z_1 - z_2| \le ||z_1| - |z_2||.$$

$$|\overline{z_1}z_2| = |\overline{z_2}||\overline{z_2}||.$$

III- Se
$$z_1 = |z_1|(\cos \theta + i \sin \theta) \neq 0$$
, então $z_1^{-1} = |z_1|^{-1}(\cos \theta - i \sin \theta)$.

É(são) sempre verdadeira(s)

- a) Apenas I.
- b) Apenas II.
- c) Apenas III.
- d) Apenas II e III.
- e) Todas.

Comentários

$$||z_1 - z_2| \le ||z_1| - |z_2||$$

Como se trata de uma questão de verdadeiro ou falso, não precisamos gastar nosso tempo tentando provar essa desigualdade. Vamos supor $z_1 = 1$ e $z_2 = -2$:

$$|z_1 - z_2| = |1-2| = 3$$

 $||z_1| - |z_2|| = ||1|-2| = |-1| = 1$

Portanto, falso pois 3 > 1.

II.
$$|\bar{z_1} \cdot z_2| = ||\bar{z_2}||\bar{z_2}||$$

Tomando $z_1 = 1 e z_2 = 2$:

$$|\bar{z}_1 \cdot z_2| = ||\bar{z}_2||\bar{z}_2||$$

 $|1 \cdot 2| = 2 \neq ||2||2|| = 4$

III.
$$z_1 = |z_1|(\cos\theta + i sen\theta) \neq 0$$

$$z_1^{-1} = |z_1|^{-1}(\cos\theta + i \sin\theta)^{-1} = \frac{|z_1|^{-1}}{\cos\theta + i \sin\theta}$$

Multiplicando ambos os lados por $cos\theta - isen\theta$:

$$z_1^{-1} = \left(\frac{|z_1|^{-1}}{\cos\theta + i sen\theta}\right) \frac{\cos\theta - i sen\theta}{\cos\theta - i sen\theta} = \frac{|z_1|^{-1}(\cos\theta - i sen\theta)}{\cos\theta^2 + sen\theta^2} = |z_1|^{-1}(\cos\theta - i sen\theta)$$

Portanto, verdadeira.

Gabarito: "c".

23. (ITA/2011)

A soma de todas as soluções da equação em $\mathbb{C}: z^2 + |z|^2 + iz - 1 = 0$ é igual a

- a) 2.
- b) $\frac{i}{2}$.
- c) 0.
- d) $-\frac{1}{2}$.
- e) -2i.

Comentários

Vamos definir z = a + bi e substituir na equação:

$$z^{2} + |z|^{2} + iz - 1 = 0$$

$$(a + bi)^{2} + |a + bi|^{2} + i(a + bi) - 1 = 0$$

$$(a^{2} + 2abi - b^{2}) + \sqrt{a^{2} + b^{2}}^{2} + ai - b - 1 =$$

$$a^{2} + 2abi - b^{2} + a^{2} + b^{2} + ai - b - 1 =$$

$$2a^{2} + 2abi + ai - b - 1 =$$

$$(2a^{2} - b - 1) + i(2ab + a) = 0$$

Devemos encontrar a solução do sistema:

$$\begin{cases} 2a^2 - b - 1 = 0 \ (I) \\ 2ab + a = 0 \ (II) \end{cases}$$

De (II):

$$2ab + a = a(2b + 1) = 0$$

 $a = 0$ ou $b = -\frac{1}{2}$

Para a = 0 em (I):

$$2a^2 - b - 1 = 0 \implies b = -1 \implies z_1 = -i$$

Para $b = -\frac{1}{2}$ em (*I*):

$$2a^{2} - b - 1 = 2a^{2} + \frac{1}{2} - 1 = 2a^{2} - \frac{1}{2} = 0$$
$$a = \pm \frac{1}{2}$$

Portanto, temos as raízes:

$$z_1 = -i$$
 , $z_2 = \frac{1}{2} - \frac{i}{2}$ e $z_3 = -\frac{1}{2} - \frac{i}{2}$

Somando as raízes:

$$-i + \left(\frac{1}{2} - \frac{i}{2}\right) + \left(-\frac{1}{2} - \frac{i}{2}\right) = -2i$$

Gabarito: "e".

24. (ITA/2011)

Sejam $n \ge 3$ ímpar, $z \in \mathbb{C} \setminus \{0\}$ e $z_1, z_2, ..., z_n$ as raízes de $z^n = 1$. Calcule o número de valores $|z_i - z_j|, i, j = 1, 2, ..., n, com i \ne j$, distintos entre si.

Comentários

Vamos analisar $z^n=1$. O enunciado diz que $n\geq 3$, então, as raízes dessa equação geram um polígono regular no plano de Argand-Gauss (se n=1, teríamos um ponto e n=2, uma reta). Vamos transformá-la na forma trigonométrica:

$$z^n = 1 = cis(2k\pi), k \in \mathbb{N}$$

Logo, usando a fórmula de De Moivre:

$$z = cis\left(\frac{2k\pi}{n}\right)$$

Então variando o valor de k até n-1 (pois $k \ge n$ estaríamos encontrando raízes repetidas):

$$z_{1} = cis(0) = 1$$

$$z_{2} = cis\left(\frac{2\pi}{n}\right)$$

$$z_{3} = cis\left(\frac{4\pi}{n}\right)$$

$$\vdots$$

$$z_n = cis\left(\frac{2(n-1)\pi}{n}\right)$$

Essas são as n raízes da equação. Representando z no plano complexo:

O problema pede o número de valores diferentes de $\left|z_{i}-z_{j}\right|$, $i,j=1,2,\ldots$, n, $com\ i\neq j$.

 $|z_i - z_j|$, $com i \neq j$ é um segmento de reta que liga $z_i \ a \ z_j$.

Então, ele quer saber quantos valores diferentes podemos encontrar nesses segmentos. Vamos chamar cada segmento de d_{ij} . Veja a figura:

Analisando a figura, vemos que as distâncias de z_1 até as raízes complexas situadas na parte positiva do eixo imaginário se repetem com as raízes complexas da parte negativa do eixo imaginário. Pois:

$$d_{12} = d_{1n}$$

$$d_{13} = d_{1(n-1)}$$

$$d_{14} = d_{1(n-2)}$$

$$\vdots$$

Observe que tomamos z_1 como referência para o problema. Se escolhêssemos qualquer outra raiz, os valores de d_{ij} seriam os mesmos.

Logo, o número de valores distintos que d_{1j} assume será a quantidade de retas que podemos traçar na parte superior do círculo entre z_1 e as raízes nela situadas.

O enunciado afirma que n é ímpar, então, teremos $\frac{n-1}{2}$ pontos na parte superior da circunferência:

Portanto, o número de valores distintos é:

$$\frac{n-1}{2}$$

Gabarito: $\frac{n-1}{2}$

25. (ITA/2010)

Se z é uma solução da equação em $\mathbb{C},$

$$z - \bar{z} + |z|^2 = -\left[\left(\sqrt{2} + i\right)\left(\frac{\sqrt{2} - 1}{3} - i\frac{\sqrt{2} + 1}{3}\right)\right]^{12},$$

Pode-se afirmar que

- a) $i(z \bar{z}) < 0$.
- b) $i(z \bar{z}) > 0$.
- c) $|z| \in [5, 6]$.
- d) $|z| \in [6, 7]$.
- e) $\left|z + \frac{1}{z}\right| > 8$.

Comentários

Devemos encontrar a solução z para analisar as alternativas.

O primeiro passo será organizar a bagunça que o examinador fez no lado direito da equação:

$$-\left[\left(\sqrt{2}+i\right)\left(\frac{\sqrt{2}-1}{3}-i\frac{\sqrt{2}+1}{3}\right)\right]^{12}$$

Vamos desenvolver a equação para ver no que dá:

$$-\left[\left(\sqrt{2}+i\right)\left(\frac{\sqrt{2}-1}{3}-i\frac{\sqrt{2}+1}{3}\right)\right]^{12} =$$

$$-\left[\left(\frac{1}{3}\right)\left(\sqrt{2}+i\right)\left(\sqrt{2}-1-i(\sqrt{2}+1)\right)\right]^{12} =$$

$$-\left[\left(\frac{1}{3}\right)\left(2-\sqrt{2}-i2-i\sqrt{2}+i\sqrt{2}-i+\sqrt{2}+1\right)^{12} =$$

$$-\left[\left(\frac{1}{3}\right)\left(2-i2-i+1\right)^{12} = -\left[\left(\frac{1}{3}\right)\left(3-3i\right)\right]^{12} = -(1-i)^{12}$$

Vamos transformar 1 - i na forma trigonométrica:

$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{i\sqrt{2}}{2} \right) = \sqrt{2} cis \left(-\frac{\pi}{4} \right)$$

Voltando à equação:

$$-(1-i)^{12} = -\left(\sqrt{2}cis\left(-\frac{\pi}{4}\right)\right)^{12} = -2^6cis\left(-\frac{\pi}{4}\right)^{12}$$

Aplicando Fórmula de De Moivre:

$$-2^6 cis\left(-\frac{\pi}{4}\right)^{12} = -2^6 cis\left(-\frac{12\pi}{4}\right) = -2^6 cis(-3\pi) = -2^6 cis(\pi) = 2^6 = 64$$

Agora, podemos analisar a equação do problema:

$$|z - \bar{z} + |z|^2 = -\left[\left(\sqrt{2} + i\right)\left(\frac{\sqrt{2} - 1}{3} - i\frac{\sqrt{2} + 1}{3}\right)\right]^{12} = 64$$

Vamos chamar z = a + bi e substituir na equação:

$$a + bi - (a - bi) + \sqrt{(a^2 + b^2)^2} = 64$$
$$2bi + a^2 + b^2 - 64 = 0$$

Então, temos o sistema:

$$\begin{cases}
2bi = 0 \\
a^2 + b^2 - 64 = 0
\end{cases}$$

$$2bi = 0 \Rightarrow b = 0$$

$$a^2 + b^2 - 64 = 0 \Rightarrow a^2 = 64$$

$$a = \pm 8$$

Portanto, $z_1 = 8 e z_2 = -8$.

Vamos analisar as alternativas:

- a) Errado. Pois z é real, logo, a diferença de z e seu conjugado é 0.
- b) Errado. Idem item a.
- c) Errado. $z = \pm 8$
- d) Errado. $z = \pm 8$
- e) Verdadeiro.

$$\left|z + \frac{1}{z}\right| = \left|8 + \frac{1}{8}\right| = \left|8.125\right| > 8$$

Gabarito: "e".

26. (ITA/2010)

Os argumentos principais das soluções da equação em z,

$$iz + 3\bar{z} + (z + \bar{z})^2 - i = 0$$

pertencem a

a)
$$]\frac{\pi}{4}, \frac{3\pi}{4}[.$$

b)
$$]\frac{3\pi}{4}, \frac{5\pi}{4}[.$$

c)
$$]\frac{5\pi}{4}, \frac{3\pi}{2}[.$$

d)
$$]\frac{\pi}{4}, \frac{\pi}{2}[\cup]\frac{3\pi}{2}, \frac{7\pi}{4}[.$$

e)
$$]0,\frac{\pi}{4}[\cup]\frac{7\pi}{4},2\pi[.$$

Comentários

Vamos usar a forma algébrica de z. Seja z = a + bi, $a, b \in \mathbb{R}$:

$$iz + 3\overline{z} + (z + \overline{z})^{2} - i = 0$$

$$i(a + bi) + 3(a - bi) + (a + bi + a - bi)^{2} - i = 0$$

$$ai - b + 3a - 3bi + 4a^{2} - i = 0$$

$$4a^{2} + 3a - b + i(a - 3b - 1) = 0$$

$$\begin{cases} 4a^{2} + 3a - b = 0 \ (I) \\ a - 3b - 1 = 0 \ (II) \end{cases}$$

De (I), temos $b = 4a^2 + 3a$. Substituindo em (II):

$$a - 3(4a^{2} + 3a) - 1 = 0$$
$$-12a^{2} - 8a - 1 = 0$$
$$a = \frac{8 \pm \sqrt{64 - 48}}{-24} = -\frac{1}{2}ou - \frac{1}{6}$$

Para
$$a = -\frac{1}{2}$$
, $b = -\frac{1}{2}$
Para $a = -\frac{1}{6}$, $b = -\frac{7}{18}$

Então:

$$z_1 = -\frac{1}{2} - \frac{i}{2}$$
$$z_2 = -\frac{1}{6} - i\left(\frac{7}{18}\right)$$

Portanto as duas raízes pertencem ao terceiro quadrante no plano complexo. A única alternativa que indica um intervalo apena no terceiro quadrante é a alternativa c.

Ilustrando:

Gabarito: "c".

27. (ITA/2009)

Sejam
$$x, y \in \mathbb{R}$$
 e $w = x^2(1+3i) + y^2(4-i) - x(2+6i) + y(-16+4i) \in \mathbb{C}$.

Identifique e esboce o conjunto

$$\Omega = \{(x, y) \in \mathbb{R}^2, Re \ w \le -13 \ e \ Im \ w \le 4\}.$$

Comentários

A questão pede o esboço do conjunto Ω em função dos valores de w. Vamos desenvolver w:

$$w = x^{2}(1+3i) + y^{2}(4-i) - x(2+6i) + y(-16+4i)$$

$$w = x^{2} + 3x^{2}i + 4y^{2} - y^{2}i - 2x - 6xi - 16y + 4yi$$

$$w = (x^{2} + 4y^{2} - 2x - 16y) + i(3x^{2} - y^{2} - 6x + 4y)$$

Logo, temos:

$$Re w = x^{2} + 4y^{2} - 2x - 16y$$
$$Im w = 3x^{2} - y^{2} - 6x + 4y$$

O conjunto pede $Re \ w \le -13$:

Re
$$w = x^2 + 4y^2 - 2x - 16y \le -13$$

 $x^2 - 2x + 4y^2 - 16y \le -13$

Fatorando os elementos x e y:

$$x^{2} - 2x + 1 + 4y^{2} - 16y + 16 \le -13 + 1 + 16$$
$$(x - 1)^{2} + 4(y - 2)^{2} \le 4$$
$$\frac{(x - 1)^{2}}{4} + \frac{(y - 2)^{2}}{1} \le 1$$

Isso é uma elipse com centro (1, 2) de vértices (-1, 2) e (3, 2) e pólos (1, 1) e (1, 3)! Essa inequação traz como solução todos os pontos dentro da elipse! Vamos ilustrar:

*Elipses possuem a forma $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Agora, para o conjunto $Im w \leq 4$:

$$Im \ w = 3x^2 - y^2 - 6x + 4y \le 4$$

Fatorando a equação acima:

$$3x^{2} - 6x + 3 - y^{2} + 4y - 4 \le 4 + 3 - 4$$
$$3(x - 1)^{2} - (y - 2)^{2} \le 3$$
$$\frac{(x - 1)^{2}}{1} - \frac{(y - 2)^{2}}{3} \le 1$$

É uma hipérbole com centro (1, 2), vértices (0, 2) e (2, 2) e pólos $(1, 2 \pm \sqrt{3})$.

Juntando as 2 inequações, temos como resultado:

Gabarito:

28. (ITA/2008)

Determine as raízes em $\mathbb C$ de $4z^6+256=0$, na forma a+bi, com $a,b\in\mathbb R$, que pertençam a

$$s = \{z \in \mathbb{C}, 1 < |z + 2| < 3\}.$$

Comentários

Vamos encontrar as raízes de z:

$$4z^{6} + 256 = 0$$

$$z^{6} = -\frac{256}{4} = -64$$

$$z = (-1)^{\frac{1}{6}} 64^{\frac{1}{6}} = (-1)^{\frac{1}{6}} 2$$

Sabemos que $-1=cis\pi$. Então substituindo e aplicando fórmula de De Moivre:

$$z = 2cis(\pi + 2n\pi)^{\frac{1}{6}} = 2cis(\frac{\pi}{6} + \frac{n\pi}{3})$$

Logo, as raízes são:

$$z_1 = 2cis\left(\frac{\pi}{6}\right) = 2\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = \sqrt{3} + i$$

$$z_2 = 2cis\left(\frac{\pi}{2}\right) = 2i$$

$$z_3 = 2cis\left(\frac{5\pi}{6}\right) = 2\left(-\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = -\sqrt{3} + i$$

$$z_4 = 2cis\left(\frac{7\pi}{6}\right) = 2\left(-\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = -\sqrt{3} - i$$

$$z_5 = 2cis\left(\frac{3\pi}{2}\right) = 2(-i) = -2i$$

$$z_6 = 2cis\left(\frac{11\pi}{6}\right) = 2\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = \sqrt{3} - i$$

A questão pede as raízes que satisfazem à condição:

$$1 < |z + 2| < 3$$

Para $z = \pm 2i$:

$$|z + 2| = |\pm 2i + 2| = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2} \approx 2.8$$

* $\sqrt{2} \approx 1.4$

Para $z = -\sqrt{3} \pm i$:

$$|z+2| = \left|-\sqrt{3} \pm i + 2\right| = \left|-\sqrt{3} + 2 \pm i\right| = \sqrt{\left(2 - \sqrt{3}\right)^2 + 1} = \sqrt{8 - 4\sqrt{3}} \cong \sqrt{1.2} \cong 1.1$$

*\sqrt{3} \simeq 1.7

Para $z = \sqrt{3} \pm i$:

$$|z+2| = |\sqrt{3} \pm i + 2| = |\sqrt{3} + 2 \pm i| = \sqrt{(2+\sqrt{3})^2 + 1} = \sqrt{8+4\sqrt{3}} \cong \sqrt{14.4}$$

$$\sqrt{9} < \sqrt{14.4} < \sqrt{16}$$

$$3 < \sqrt{14.4} < 4$$

Portanto apenas as raízes $\pm 2i$, $-\sqrt{3} \pm i$ satisfazem a condição.

Gabarito: $\pm 2i$, $-\sqrt{3} \pm i$

29. (ITA/2008)

Sejam $\alpha, \beta \in \mathbb{C}$ tais que $|\alpha| = |\beta| = 1$ e $|\alpha - \beta| = \sqrt{2}$. Então $\alpha^2 + \beta^2$ é igual a

- a) -2.
- b) 0.
- c) 1.
- d) 2.
- e) 2i.

Comentários

$$|\alpha - \beta| = \sqrt{2}$$
$$|\alpha - \beta|^2 = 2$$
$$(\alpha - \beta)(\overline{\alpha - \beta}) = 2$$
$$(\alpha - \beta)(\overline{\alpha} - \overline{\beta}) = 2$$
$$\alpha \overline{\alpha} - \alpha \overline{\beta} - \overline{\alpha}\beta + \beta \overline{\beta} = 2$$
$$|\alpha|^2 - \alpha \overline{\beta} - \beta \overline{\alpha} + |\beta|^2 = 2$$

Mas, $|\alpha| = |\beta| = 1$, então:

$$\alpha \overline{\beta} + \beta \overline{\alpha} = 0 \ (I)$$

Façamos $\alpha=a+bi$ e $\beta=c+di$.

Substituindo na equação (I), temos:

$$(a+bi)(c-di)+(c+di)(a-bi)=0$$

$$ac - adi + bci + bd + ac - bci + adi + bd = 0$$

$$2ac + 2bd = 0$$

$$ac = -bd (II)$$

$$a = \frac{-bd}{c}$$

Como $|\alpha| = 1$, temos:

$$\Rightarrow a^2 + b^2 = 1 \Rightarrow \left(\frac{-bd}{c}\right)^2 + b^2 = 1 \Rightarrow \frac{b^2(c^2 + d^2)}{c^2} = 1$$

Como $|\beta| = 1$, temos $c^2 + d^2 = 1$, logo:

$$\Rightarrow b^2 = c^2 e a^2 = d^2$$

Vamos analisar agora o pedido na questão:

$$\alpha^{2} + \beta^{2}$$

$$(a+bi)^{2} + (c+di)^{2}$$

$$= a^{2} + 2abi - b^{2} + c^{2} + 2cdi - d^{2}$$

$$= 2(ab+cd)i + \underbrace{(a^{2}-d^{2})}_{0} + \underbrace{(c^{2}-d^{2})}_{0}$$

$$= 2(ab+cd)i$$

Porém, como $b^2=c^2$ e ac=-bd, temos as seguintes possibilidades:

$$b = c e a = -d$$

$$b = -c e a = d$$

Para qualquer um dos casos, 2(ab + cd) = 0, ou seja,

$$\alpha^2 + \beta^2 = 0$$

Gabarito: "b".

30. (ITA/2007)

Considere a equação

$$16\left(\frac{1-ix}{1+ix}\right)^3 = \left(\frac{1+i}{1-i} - \frac{1-i}{1+i}\right)^4.$$

Sendo \boldsymbol{x} um número real, a soma dos quadrados das soluções dessa equação é

- a) 3.
- b) 6.
- c) 9.
- d) 12.
- e) 15.

Comentários

$$16\left(\frac{1-ix}{1+ix}\right)^{3} = \left(\frac{1+i}{1-i} - \frac{1-i}{1+i}\right)^{4}$$

$$16\left(\frac{1-ix}{1+ix}\right)^{3} = \left[\frac{(1+i)^{2} - (1-i)^{2}}{2}\right]^{4}$$

$$16\left(\frac{1-ix}{1+ix}\right)^{3} = \underbrace{(2i)^{4}}_{16}$$

$$(1-ix)^{3} = (1+ix)^{3}$$

$$1 - 3ix - 3x^{2} + ix^{3} = 1 + 3ix - 3x^{2} - ix^{3}$$

$$6ix = 2ix^3 \Rightarrow x^3 = 3x$$

 $x(x^2 - 3) = 0 : x = 0 \text{ ou } x = \pm\sqrt{3}$

As soluções dessa equação são: $S = \{0, \sqrt{3}, -\sqrt{3}\}$

A questão pede $A = 0^2 + (\sqrt{3})^2 + (-\sqrt{3})^2 = 6$

Gabarito: "b".

31. (ITA/2007)

Assinale a opção que indica o módulo do número complexo

$$\frac{1}{1+i\cot x}, x \neq k\pi, k \in \mathbb{Z}.$$

- a) $|\cos x|$.
- b) (1 + sen x)/2.
- c) $\cos^2 x$.
- d) |cossec x|.
- e) |sen x|.

Comentários

$$z = \frac{1}{1 + i \cot g x} = \frac{1 - i \cot g x}{(1 + i \cot g x)(1 - i \cot g x)} = \frac{1 - i \cot g x}{1 + \cot g^2 x}$$

Contudo, lembre-se que $1 + \cot^2 x = \csc^2 x$

$$\frac{1 - i \cot x}{1 + \cot^2 x} = \frac{1 - i\left(\frac{\cos x}{sen \ x}\right)}{\left(\frac{1}{sen^2 x}\right)} = \sin^2 x - i sen x \cos x = z$$

$$|z| = \sqrt{(\sin^2 x)^2 + (-sen x \cos x)^2} = \sqrt{sen^2 x \underbrace{(sen^2 x + \cos^2 x)}_{1}} = |sen x|$$

Gabarito: "e".

32. (ITA/2007)

Determine o conjunto A formado por todos os números complexos z tais que

$$\frac{\overline{z}}{z-2i} + \frac{2z}{\overline{z}+2i} = 3 e 0 < |z-2i| \le 1.$$

Comentários

$$\frac{\overline{z}}{z - 2i} + \frac{2z}{\overline{z} + 2i} = 3$$

Vamos aplicar o conjugado nessa equação.

$$\frac{\overline{z}}{z-2i} + \frac{2z}{\overline{z}+2i} = \frac{z}{\overline{z}+2i} + \frac{2\overline{z}}{z-2i} = 3$$

Agora temos o sistema:

$$\begin{cases} \frac{z}{\overline{z} + 2i} + \frac{2\overline{z}}{z - 2i} = 3 \\ \frac{\overline{z}}{\overline{z} - 2i} + \frac{2z}{\overline{z} + 2i} = 3 \end{cases} \Rightarrow \begin{cases} \frac{z}{\overline{z} + 2i} + \frac{2\overline{z}}{z - 2i} = 3 \ (I) \\ \frac{2\overline{z}}{z - 2i} + \frac{4z}{\overline{z} + 2i} = 6 \ (II) \end{cases}$$

Fazendo (II) - (I), obtemos:

$$\frac{3z}{\overline{z} + 2i} = 3 \Rightarrow z = \overline{z} + 2i$$

Seja $z = a + bi \operatorname{com} a, b \in \mathbb{R}$, substituindo:

$$a + bi = a - bi + 2i$$
$$2bi = 2i$$
$$\therefore b = 1$$

Note que a equação não depende de a, usemos a desigualdade do enunciado:

$$b = 1, \forall a \Rightarrow 0 < |a + i - 2i| \le 1$$
$$\Rightarrow 0 < \sqrt{a^2 + 1} \le 1$$

Como $\sqrt{a^2 + 1} > 0$, temos:

$$\Rightarrow 0 < a^2 + 1 \le 1 \Rightarrow -1 < a^2 \le 0 \Rightarrow a = 0$$

Portanto, temos uma única solução z = i. Dessa forma, $A = \{i\}$.

Gabarito: $A = \{i\}$

33. (ITA/2006)

Se para todo $z \in \mathbb{C}$, |f(z)| = |z| e |f(z) - f(1)| = |z - 1|, então, para todo $z \in \mathbb{C}$, $\overline{f(1)}f(z) + f(1)\overline{f(z)}$ é igual a

- a) 1.
- b) 2z.
- c) 2 Re z.
- d) 2 Im z.
- e) $2|z|^2$.

Comentários

$$|f(z) - f(1)| = |z - 1|$$

Elevando ao quadrado, temos:

$$|f(z) - f(1)|^{2} = |z - 1|^{2}$$

$$(f(z) - f(1))(f(z) - f(1)) = (z - 1)(\overline{z - 1})$$

$$|f(z)|^{2} - f(z)\overline{f(1)} - f(1)\overline{f(z)} + |f(1)|^{2} = |z|^{2} - z - \overline{z} + 1$$

Mas, |f(z)| = |z|. Logo:

$$f(z)\overline{f(1)} + f(1)\overline{f(z)} = z + \overline{z} = 2Re(z)$$

Gabarito: "c".

34. (ITA/2006)

Se $\alpha \in [0, 2\pi[$ é o argumento de um número complexo $z \neq 0$ e n é um número natural tal que $\left(\frac{z}{|z|}\right)^n = i \ sen(n\alpha)$, então, é verdade que

- a) $2n\alpha$ é múltiplo de 2π .
- b) $2n\alpha \pi$ é múltiplo de 2π .
- c) $n\alpha \pi/4$ é múltiplo de $\pi/2$.
- d) $2n\alpha \pi$ é múltiplo não nulo de 2.
- e) $n\alpha 2\pi$ é múltiplo de π .

Comentários

$$z = |z| cis\theta$$

$$\left(\frac{z}{|z|}\right)^n = \left(\frac{|z| cis\theta}{|z|}\right)^n = cis(n\theta) = isen(n\alpha) \Rightarrow cosn\theta = 0 \text{ e } sen(n\theta) = sen(n\alpha) \Rightarrow \theta = \alpha$$
 Como $cosn\alpha = 0$, $\frac{(2k+1)\pi}{2} = n\alpha \Rightarrow 2n\alpha - \pi = 2k\pi$. Logo, o gabarito é a letra b.

Gabarito: "b".

35. (ITA/2005)

Seja $z \in \mathbb{C}$ com |z|=1. Então, a expressão $\left|\frac{1-\overline{z}w}{z-w}\right|$ assume valor

- a) maior que 1, para todo $w \operatorname{com} |w| > 1$.
- b) menor que 1, para todo $w \operatorname{com} |w| < 1$.
- c) maior que 1, para todo $w \text{ com } w \neq z$.
- d) igual a 1, independente de $w \operatorname{com} w \neq z$.
- e) crescente para |w| crescente, com |w| < |z|.

Comentários

A ideia é usar a informação de que $|z| = 1 \Rightarrow |z|^2 = 1$ e substituir na expressão:

$$\left|\frac{1-\overline{z}w}{z-w}\right| = \left|\frac{|z|^2 - \overline{z}w}{z-w}\right| = \left|\frac{z\overline{z} - \overline{z}w}{z-w}\right| = |\overline{z}| \left|\frac{z-w}{z-w}\right| = |\overline{z}| = 1$$

Essa igualdade só vale se $z \neq w$.

Gabarito: "d".

36. (ITA/2004)

Considere a função $f: \mathbb{R} \to \mathbb{C}$, $f(x) = 2\cos x + 2i \operatorname{sen} x$. Então, $\forall x, y \in \mathbb{R}$, o valor do produto f(x)f(y) é igual a

- a) f(x + y).
- b) 2f(x + y).
- c) 4if(x + y).
- d) f(xy).
- e) 2f(x) + 2if(y).

Comentários

$$f(x) = 2\cos x + 2i \operatorname{sen} x \operatorname{e} f(y) = 2\cos y + 2i \operatorname{sen} y$$

$$f(x)f(y) = (2\cos x + 2i \operatorname{sen} x)(2\cos y + 2i \operatorname{sen} y) =$$

$$4\cos x \cos y + 4i \cos x \operatorname{sen} y + 4i \operatorname{sen} x \cos y - 4\operatorname{sen} x \operatorname{sen} y =$$

$$4(\cos x \cos y - \operatorname{sen} x \operatorname{sen} y) + 4i(\cos x \operatorname{sen} y + \operatorname{sen} x \operatorname{cos} y) =$$

$$4\cos(x + y) + 4i \operatorname{sen}(x + y) =$$

$$2[2\cos(x + y) + 2i \operatorname{sen}(x + y)] = \boxed{2f(x + y)}$$

Gabarito: "c".

37. (ITA/2004)

Considere todos os números z=x+iy que têm módulo $\sqrt{7}/2$ e estão na elipse $x^2+4y^2=4$. Então, o produto deles é igual a

a) $\frac{25}{9}$.

- b) $\frac{49}{16}$.
- c) $\frac{81}{25}$.
- d) $\frac{25}{7}$.
- e) 4.

Comentários

$$|z| = \frac{\sqrt{7}}{2} \Rightarrow x^2 + y^2 = \frac{7}{4}$$

$$\text{Como } x^2 + 4y^2 = 4, \begin{cases} x^2 + 4y^2 = 4 \\ x^2 + y^2 = \frac{7}{4} \end{cases} \Rightarrow y = \pm \frac{\sqrt{3}}{2}, x = \pm 1$$

Os números complexos que satisfazem essa relação são

$$\left\{1 + \frac{\sqrt{3}}{2}i, 1 - \frac{\sqrt{3}}{2}i, -1 - \frac{\sqrt{3}}{2}i, -1 + \frac{\sqrt{3}}{2}i\right\}$$

O produto desses valores é $\left(1 + \frac{\sqrt{3}}{2}i\right)\left(1 - \frac{\sqrt{3}}{2}i\right)\left(-1 - \frac{\sqrt{3}}{2}i\right)\left(-1 + \frac{\sqrt{3}}{2}i\right) = \frac{49}{16}$.

Gabarito: "b".

38. (ITA/2004)

A soma das raízes da equação $z^3 + z^2 - |z|^2 + 2z = 0$, $z \in \mathbb{C}$, é igual a

- a) -2.
- b) -1.
- c) 0.
- d) 1.
- e) 2.

Comentários

Observando a equação, podemos escrever:

$$z^{3} + z^{2} - |z|^{2} + 2z = 0$$

$$z^{3} + z^{2} - z\overline{z} + 2z = 0$$

$$z(z^{2} + z - \overline{z} + 2) = 0$$

Seja a z = a + bi, então, temos:

$$z = 0 \text{ ou } (a+bi)^2 + (a+bi) - \overline{(a+bi)} + 2 = 0$$

$$a^2 + 2abi - b^2 + a + bi - a + bi + 2 = 0$$

$$\begin{cases} a^2 - b^2 + 2 = 0 \\ ab + b = 0 \end{cases} \Rightarrow \begin{cases} a^2 - b^2 + 2 = 0 \\ b(a+1) = 0 \end{cases}$$

Se $b=0\Rightarrow a\notin\mathbb{R}$. Logo, a=-1 e $b=\pm\sqrt{3}$.

As raízes dessa equação são $\{-1 + \sqrt{3}, -1 - \sqrt{3}\}$.

A soma das raízes é $\left(-1+\sqrt{3}\right)+\left(-1-\sqrt{3}\right)=-2$.

Gabarito: "a".

39. (ITA/2004)

Sendo $z = \frac{1+i}{\sqrt{2}}$, calcule

$$\left| \sum_{n=1}^{60} z^n \right| = |z + z^2 + z^3 + \dots + z^{60}|.$$

Comentários

Primeiro devemos achar a forma polar do número complexo z.

$$z = \frac{1+i}{\sqrt{2}} = cis45^{\circ}$$

Agora, podemos calcular a soma da PG

$$|z+z^{2}+z^{3}+\cdots+z^{60}| = \left|\frac{z(z^{60}-1)}{z-1}\right| = \left|\frac{z^{61}-z}{z-1}\right| = \left|\frac{cis(61\cdot 45^{\circ})-cis(45^{\circ})}{cis(45^{\circ})-1}\right| = \left|\frac{cis\left[\frac{(60+1)\pi}{4}\right]-cis\frac{\pi}{4}}{cis\frac{\pi}{4}-1}\right| = \left|\frac{cis\left[\frac{(60+1)\pi}{4}\right]-cis\frac{\pi}{4}}{cis\frac{\pi}{4}-1}\right| = \left|\frac{-cos\frac{\pi}{4}-sen\frac{\pi}{4}i-cos\frac{\pi}{4}-sen\frac{\pi}{4}i}{cos\frac{\pi}{4}-1+sen\frac{\pi}{4}i}\right| = \left|\frac{-2cos\frac{\pi}{4}-2sen\frac{\pi}{4}i}{(cos\frac{\pi}{4}-1)^{2}-(sen\frac{\pi}{4}i)^{2}}\right| = \left|\frac{-2+2cos+2seni}{2-2cos}\right| = \left|\frac{-2+2cos+2seni}{2-\sqrt{2}}\right| = \left|\frac{-2+2cos+2seni}{2-\sqrt{2}}\right| = \left|\frac{(2+\sqrt{2})(\sqrt{2}-2)}{2}+\frac{\sqrt{2}}{2}(2+\sqrt{2})i\right| = \left|-1+(\sqrt{2}+1)i\right| = \sqrt{(-1)^{2}+(\sqrt{2}+1)^{2}} = \sqrt{4+2\sqrt{2}}$$

Gabarito: $\sqrt{4+2\sqrt{2}}$

40. (ITA/2003)

Seja $z \in \mathbb{C}$. Das seguintes afirmações independentes:

I. Se
$$w = \frac{2iz^2 + 5\overline{z} - i}{1 + 3\overline{z}^2 + 2iz + 3|z|^2 + 2|z|}$$
, então $\overline{w} = \frac{-2i\overline{z}^2 + 5z + i}{1 + 3z^2 - 2i\overline{z} + 3|\overline{z}|^2 + 2|z|}$;

II. Se
$$z \neq 0$$
 e $w = \frac{2iz + 3i + 3}{(1 + 2i)z}$, então $|w| \leq \frac{2|z| + 3\sqrt{2}}{\sqrt{5}z}$;

III. Se
$$w = \frac{(1+i)z^2}{4\sqrt{3}+4i}$$
, então $2 \arg z + \frac{\pi}{12}$ é um argumento de w ,

é (são) verdadeira(s):

- a) todas.
- b) apenas I e II.
- c) apenas II e III.
- d) apenas I e III.
- e) apenas II.

Comentários

Vamos analisar item por item.

I. Devemos lembrar das propriedades do conjugado. $\overline{x \pm y} = \overline{x} \pm \overline{y}$, $\overline{xy} = \overline{x} \cdot \overline{y}$, $\overline{\left(\frac{x}{y}\right)} = \frac{\overline{x}}{\overline{y}}$.

$$\overline{w} = \overline{\left(\frac{2iz^2 + 5\overline{z} - i}{1 + 3\overline{z}^2 + 2iz + 3|z|^2 + 2|z|}\right)} = \overline{\frac{(2iz^2 + 5\overline{z} - i)}{\left(1 + 3\overline{z}^2 + 2iz + 3|z|^2 + 2|z|\right)}}$$

$$\therefore \overline{w} = \frac{-2i\overline{z}^2 + 5 + i}{1 + 3z^2 - 2i\overline{z} + 3|\overline{z}|^2 + 2|z|}$$

Com isso, observa-se que o item é verdadeiro.

II. Dos números complexos, sabemos que $|u+v| \le |u| + |v|$, em que u e v são números complexos.

Da questão, podemos escrever que

$$|w| = \left| \frac{2iz + 3i + 3}{(1+2i)z} \right| = \frac{|2iz + 3i + 3|}{|1+2i||z|} = \frac{|2iz + 3i + 3|}{\sqrt{5}|z|} \le \frac{|2iz|}{\sqrt{5}|z|} + \frac{|3i + 3|}{\sqrt{5}|z|}$$
$$\frac{|2iz + 3i + 3|}{\sqrt{5}|z|} \le \frac{2|z|}{\sqrt{5}|z|} + \frac{3\sqrt{2}}{\sqrt{5}|z|} \Rightarrow \frac{|2iz + 3i + 3|}{\sqrt{5}|z|} \le \frac{2|z| + 3\sqrt{2}}{\sqrt{5}|z|}$$

Item verdadeiro

III. Também das propriedades dos números complexos, sabemos que $\arg(uv) = \arg(u) + \arg(v)$ e $\arg\left(\frac{u}{v}\right) = \arg(u) - \arg(v)$. Dessa forma, temos:

$$\arg\left[\frac{(1+i)z^2}{4\sqrt{3}+4i}\right] = \arg(1+i) + 2\arg(z) - \arg(4\sqrt{3}+4i) = \frac{\pi}{4} + 2\arg(z) - \frac{\pi}{6} = \frac{\pi}{12} + 2\arg(z)$$

Item verdadeiro.

Gabarito: "a".

41. (ITA/2003)

Das afirmações abaixo sobre a equação $z^4+z^3+z^2+z+1=0$ e suas soluções no plano complexo:

- I. A equação possui pelo menos um par de raízes reais;
- II. A equação possui duas raízes de módulo 1, uma raiz de módulo menor que 1 e uma raiz de módulo maior que 1;
- III. Se $n \in \mathbb{N}^*$ e r é uma raiz qualquer desta equação, então $\sum_{k=1}^n \left|\frac{r}{3}\right|^k < \frac{1}{2}$.

É (são) verdadeira(s):

- a) nenhuma.
- b) apenas I.
- c) apenas II.
- d) apenas III.
- e) apenas I e III.

Comentários

I. Podemos reescrever a equação da seguinte forma: $z^4 + z^3 + z^2 + z + 1 = \frac{z^{5-1}}{z-1} = 0$. Como z=1 não é solução da equação, segue que a equação $z^5=1$ fornece as soluções da equação do enunciado, exceto a solução z=1. As soluções dessa equação formam um pentágono regular inscrito em uma circunferência de raio unitário, como na figura:

Dessa forma, as equações da equação do enunciado são as interseções do pentágono com o círculo de raio 1 exceto o 1, e nenhuma dessas raízes está no eixo dos Re(z). Logo, o item I é falso.

- II. O Item II também é falso, pois todas as raízes possuem módulo 1.
- III. No item III, temos que

$$\sum_{k=1}^{n} \left| \frac{r}{3} \right|^{k} = \sum_{k=1}^{n} \left(\frac{1}{3} \right)^{k} = \frac{\frac{1}{3} \left(\frac{1}{3^{n}} - 1 \right)}{\frac{1}{3} - 1} = \frac{3^{n} - 1}{2 \cdot 3^{n}} = \frac{1}{2} - \frac{1}{2 \cdot 3^{n}} < \frac{1}{2}$$

Logo, o item III está correto.

Gabarito: "d".

42. (ITA/2003)

Determine o conjunto dos números complexos z para os quais o número $w=\frac{z+z+2}{\sqrt{|z-1|+|z+1|-3}}$ pertence ao conjunto dos números reais. Interprete (ou identifique) este conjunto geometricamente e faça um esboço do mesmo.

Comentários

Sabemos que $z+\overline{z}\in\mathbb{R}$, pois $z+\overline{z}=(a+bi)+(a-bi)=2a\in\mathbb{R}$. Dessa forma, a única condição que devemos analisar agora é a condição do denominador para que o número w seja real. Para isso, devemos ter que:

$$|z-1| + |z+1| - 3 > 0$$
.

Essa equação representa a parte externa de uma elipse com centro na origem e focos nos pontos (-1,0) e (1,0) no plano de Argand-Gauss. Além disso, essa elipse tem semieixo maior $a=\frac{3}{2}$ e semieixo menor $b=\frac{\sqrt{5}}{2}$.

A representação geométrica desse conjunto é:

Em que esse plano sombreado é infinito para o exterior da elipse.

Gabarito: parte externa de uma elipse com centro na origem e focos nos pontos (-1,0) e (1,0)

43. (ITA/2002)

Seja a equação em \mathbb{C} , $z^4-z^2+1=0$. Qual dentre as alternativas abaixo é igual à soma de duas das raízes dessa equação?

- a) $2\sqrt{3}$.
- b) $-\sqrt{3}/2$.
- c) $\sqrt{3}/2$.
- d) -i.
- e) i/2.

Comentários

Façamos $z^2=y$. Com isso, a equação fica: $y^2-y+1=0$, cujas soluções são $y=\frac{1+\sqrt{3}i}{2}$ ou $y=\frac{1-\sqrt{3}i}{2}$. Na forma polar, as soluções são $\left\{cis\left(\frac{\pi}{3}\right),cis\left(\frac{5\pi}{3}\right)\right\}$.

Voltando para a variável z, temos que $z=\pm cis\left(\frac{\pi}{6}\right)$ e $z=\pm cis\left(\frac{5\pi}{6}\right)$.

As soluções são $\left\{\frac{\sqrt{3}}{2} + \frac{i}{2}, -\frac{\sqrt{3}}{2} - \frac{i}{2}, -\frac{\sqrt{3}}{2} + \frac{i}{2}, \frac{\sqrt{3}}{2} - \frac{i}{2}\right\}$. Logo, a soma de duas delas pode ser -i.

Gabarito: "d".

44. (ITA/2002)

Sejam a e b dois números complexos não-nulos, tais que $a^2+b^2=0$. Se $Z,W\in\mathbb{C}$ satisfazem

$$\begin{cases} \overline{z}w + z\overline{w} = 6a\\ \overline{z}w - z\overline{w} = 8b \end{cases}$$

determine o valor de |a| de forma que |zw| = 1.

Comentários

Seja $a = x_a + y_a i$ e $b = x_b + y_b i$

Pelo sistema dado no problema, temos que $\overline{z}w = 3a + 4b$ e $z\overline{w} = 3a - 4b$.

Além disso, sabemos que |zw|=1 e $|zw|^2=1\Rightarrow (\overline{z}w)(z\overline{w})=1\Rightarrow (3a+4b)(3a-4b)=1$ $9a^2-16b^2=1$

Mas, pelo enunciado, $a^2 + b^2 = 0$. Fazendo $b^2 = -a^2$:

$$9a^{2} - 16(-a^{2}) = 1$$
$$a^{2} = \frac{1}{25} \Rightarrow |a| = \frac{1}{5}$$

Gabarito: $|a| = \frac{1}{5}$

45. (ITA/2001)

Se $z=1+i\sqrt{3}$, $z\cdot\overline{w}=1$ e $\alpha\in[0,2\pi]$ é um argumento de $z\cdot w$, então α é igual a:

- a) $\pi/3$.
- b) π .
- c) $2\pi/3$.
- d) $5\pi/3$.
- e) $3\pi/2$.

Comentários

$$(1+i\sqrt{3}) \cdot \overline{w} = 1 \Rightarrow \overline{w} = \frac{1}{1+i\sqrt{3}} = \frac{1-i\sqrt{3}}{4} \Rightarrow w = \frac{1+i\sqrt{3}}{4}.$$
$$Arg(zw) = Arg(z) + Arg(w) = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

Gabarito: "c".

46. (ITA/2001)

O número complexo $z = \frac{1-\cos a}{\sec n \, a \cos a} + i \, \frac{1-2\cos a+2\, \sin a}{\sec n \, 2a}, \, a \in]0,\pi/2[$ tem argumento $\pi/4$. Neste caso, a é igual a:

- a) $\pi/6$.
- b) $\pi/3$.
- c) $\pi/4$.
- d) $\pi/5$.
- e) $\pi/9$.

Comentários

Se o número complexo w tem argumento $\pi/4$, então sen[Arg(w)] = cos[Arg(w)] Assim, temos que:

$$\frac{1-\cos a}{\sin a\cos a} = \frac{1-2\cos a+2\sin a}{\sin 2a}$$

 $sen2a - sen(2a)cosa = senacosa - 2senacos^2a + 2sen^2acosa$ $2senacosa - 2senacos^2a = senacosa - 2senacos^2a + 2sen^2acosa$

$$senacosa = 2sen^2acosa$$

Como $sena \neq 0$ e $cosa \neq 0$, $sena = \frac{1}{2}$

Dessa forma, $a = \frac{\pi}{6}$.

Gabarito: "a".

47. (ITA/2001)

A parte imaginária de $[(1 + \cos 2x) + i \operatorname{sen} 2x]^k$, k inteiro positivo, x real, é

- a) $2 \operatorname{sen}^k x \cos^k x$.
- b) $sen^k x cos^k x$.
- c) $2^k \operatorname{sen} kx \cos^k x$.
- d) $2^k sen^k x cos^k x$.
- e) sen $kx \cos^k x$.

Comentários

$$z = [(1 + \cos 2x) + i \operatorname{sen} 2x]^{k}$$

$$[(1 + 2\cos^{2}x - 1) + i \operatorname{2senxcosx}]^{k}$$

$$(2\cos^{2}x + i \operatorname{2senxcosx})^{k}$$

$$2^{k}\cos^{k}x(\cos x + i \operatorname{senx})^{k} = 2^{k}\cos^{k}x\operatorname{cis}(kx) = 2^{k}\cos^{k}\cos(kx) + 2^{k}\cos^{k}\operatorname{sen}(kx)i$$

$$Im(z) = 2^{k}\cos^{k}\operatorname{sen}(kx)$$

Gabarito: "c".

48. (ITA/2000)

Seja z_0 o número complexo 1+i. Sendo S o conjunto solução no plano complexo de $|z-z_0|=|z+z_0|=2$, então o produto dos elementos de S é igual a

- a) 4(1-i).
- b) 2(1+i).
- c) 2(1-i).
- d) -2i.
- e) 2i.

Comentários

$$|z - z_0| = |z + z_0|$$

$$|z - z_0|^2 = |z + z_0|^2 \Rightarrow (z - z_0)(\overline{z} - \overline{z_0}) = (z + z_0)(\overline{z} + \overline{z_0})$$

$$(z - z_0)(\overline{z} - \overline{z_0}) = (z + z_0)(\overline{z} + \overline{z_0})$$

$$|z|^2 - z\overline{z_0} - z_0\overline{z} + |z_0|^2 = |z|^2 + z\overline{z_0} + z_0\overline{z} + |z_0|^2$$

$$z\overline{z_0} + z_0\overline{z} = 0$$

z = a + bi, logo:

$$z(1-i) = (1+i)\overline{z} \Rightarrow (a+bi)(1-i) = (1+i)(a-bi) \\ \Rightarrow a+bi-ai+b=a-bi+ai+b \Rightarrow a=b \\ \text{Mas, } |z-z_0| = 2 \Rightarrow |(a+bi)-(1+i)|^2 = 4 \Rightarrow (a-1)^2+(b-1)^2=4 \\ \text{Para } a=b:$$

$$(a-1)^{2} + (a-1)^{2} = 4$$

$$2(a-1)^{2} = 4$$

$$(a-1)^{2} = 2 \Rightarrow a-1 = \pm\sqrt{2}$$

$$\Rightarrow a = b = 1 + \sqrt{2}$$

As soluções dessa equação são $\{1+\sqrt{2}+\left(1+\sqrt{2}\right)i,1-\sqrt{2}+\left(1-\sqrt{2}\right)i\}$ O produto dessas soluções é:

-2i

Gabarito: "d".

IME

49. (IME/2020)

Seja $A=\{z\in C\mid 2\leq |z-3-4i|\leq 3\}$ onde C é o conjunto dos números complexos. O valor do produto entre o simétrico do complexo de menor módulo do conjunto A e o conjugado do complexo de maior módulo do mesmo conjunto A é:

- a) -16
- b) -8
- c) -16/5
- d) 1
- e) 16

Comentários

Note que $2 \le |z-3-4i| \le 3$ representa duas circunferências concêntricas no plano de Argand-Gauss de centro 3+4i:

$$2 \le |z - (3 + 4i)| \le 3$$

Os elementos de A estão representados pela região colorida.

Devemos encontrar o complexo de menor módulo e o complexo de maior módulo no conjunto A. Para isso, traçamos uma reta que passa pela origem e pelo centro das circunferências.

 Z_1 é o complexo de menor módulo e Z_2 é o complexo de maior módulo. Vamos calcular a equação da reta r, como ela passa pela origem do sistema e pelo ponto (3;4), temos:

$$r: y = \frac{4}{3}x$$

Os complexos são a intersecção da reta com a circunferência maior. A equação da circunferência maior é

$$(x-3)^2 + (y-4)^2 = 9$$

Fazendo a intersecção da reta com essa circunferência, obtemos:

$$(x-3)^{2} + \left(\frac{4}{3}x - 4\right)^{2} = 9$$

$$(x-3)^{2} + \left(\frac{4}{3}(x-3)\right)^{2} = 9$$

$$(x-3)^{2} + \frac{16}{9}(x-3)^{2} = 9$$

$$(x-3)^{2} \cdot \frac{25}{9} = 9$$

$$|x-3| = \frac{9}{5} \Rightarrow x = 3 \pm \frac{9}{5}$$

$$x_{1} = \frac{6}{5} \text{ ou } x_{2} = \frac{24}{5}$$

Para x_1 , temos:

$$y_1 = \frac{8}{5}$$

Para x_2 , temos:

$$y_2 = \frac{32}{5}$$

Assim, os complexos são:

$$Z_1 = \frac{6}{5} + \frac{8}{5}i$$
$$Z_2 = \frac{24}{5} + \frac{32}{5}i$$

Queremos o produto do simétrico do complexo de menor módulo com o conjugado do complexo de maior módulo:

$$P = (-Z_1) \cdot \overline{Z_2} = -\left(\frac{6}{5} + \frac{8}{5}i\right) \left(\frac{24}{5} - \frac{32}{5}i\right)$$

$$P = -\frac{2}{5}(3+4i)\frac{8}{5}(3-4i) = -\frac{16}{25}(9+16) = -16$$

Gabarito: "a".

50. (IME/2020)

Seja uma região **S** no plano complexo que consiste em todos os pontos Z tais que $\frac{Z}{20}$ e $\frac{20}{Z}$ possuem partes real e imaginária entre 0 e 1, inclusive. Determine a área da região **S**.

Obs: \bar{Z} é o conjugado do número complexo Z.

Comentários

Seja o número complexo Z=a+bi, com $a\in\mathbb{R}$ e $b\in\mathbb{R}$. Então o conjugado de Z é expresso por:

$$\bar{Z} = a - bi$$

Então

1.
$$\frac{z}{20} = \frac{a}{20} + \frac{b}{20}i$$
, com $0 \le \frac{a}{20} \le 1$ e $0 \le \frac{b}{20} \le 1$. Então:
 $0 \le a \le 20$ e $0 \le h \le 20$

2.
$$\frac{20}{\bar{z}} = \frac{20(a+bi)}{a^2+b^2} \Rightarrow 0 \le \frac{20a}{a^2+b^2} \le 1 \text{ e } 0 \le \frac{20b}{a^2+b^2} \le 1.$$
 Então:
a) $0 \le \frac{20a}{a^2+b^2} \le 1$:
 $0 \le 20a \le a^2+b^2 \Rightarrow a^2+b^2-20a \ge 0 \Rightarrow a^2-20a+100+b^2 \ge 100$
 $\Rightarrow (a-10)^2+b^2 \ge 10^2$

b)
$$0 \le \frac{20b}{a^2 + b^2} \le 1$$
:
 $0 \le 20b \le a^2 + b^2 \Rightarrow a^2 + b^2 - 20b \ge 0$
 $\Rightarrow a^2 + (b - 10)^2 > 10^2$

Representando a regiões encontradas no plano Argand-Gauss, temos:

Da figura, temos:

$$S_1 = S_2 = \frac{1}{4}\pi(10)^2 = 25\pi$$

$$S_3 = 10^2 = 100$$

$$S + S_1 + S_2 + S_3 = 20^2 = 400$$

$$S = 400 - 100 - 2 \cdot 25\pi = 300 - 50\pi$$

$$S = 50(6 - \pi) u. a.$$

Gabarito: $S = 50(6 - \pi) u. a.$

51. (IME/2020)

Sabendo que $i^2=-1$, encontre todos os valores reais de x que satisfazem a seguinte inequação:

$$Re\left\{\frac{2.\log_2(sen x) + 1}{i(e^{2ix} - 2\cos^2 x + 1)}\right\} > 0$$

onde $Re\{Z\}$ é a parte real do número complexo Z.

Comentários

Vamos trabalhar com a expressão fornecida.

$$S = \frac{\log_2(sen^2x) + 1}{i \cdot (cos2x + i.sen2x - 2\cos^2x + 1)}$$

Usando o cosseno do arco duplo, temos:

$$\cos 2x = 2\cos^2 x - 1$$

$$\therefore \cos 2x - 2\cos^2 x + 1 = 0$$

Portanto, a expressão S é um número real puro:

$$S = \frac{\log_2(sen^2x) + 1}{i \cdot (0 + i.sen2x)}$$

$$S = \frac{\log_2(sen^2x) + 1}{i^2 \cdot sen \cdot 2x} = -\frac{\log_2(2sen^2x)}{sen \cdot 2x}$$

Podemos usar outra expressão para o cosseno do arco duplo:

$$\cos 2x = 1 - 2 \operatorname{sen}^2 x$$

$$\therefore 2\operatorname{sen}^2 x = 1 - \cos 2x$$

Logo, temos:

$$Re\{S\} = S = -\frac{\log_2(1 - \cos 2x)}{\sin 2x}$$

Portanto, para que a parte real de S seja positiva, temos que o numerador e o denominador devem ter sinais opostos:

• $\log_2(1-\cos 2x) > 0$ e sen 2x < 0

$$\log_2(1 - \cos 2x) > 0$$

$$\therefore 1 - \cos 2x > 1$$

$$-\cos 2x > 0$$

$$\cos 2x < 0$$

Temos, portanto, que $\cos 2x < 0$ e sen 2x < 0. Logo, o arco **2x** está no terceiro quadrante:

$$\pi + 2k\pi < 2x < \frac{3\pi}{2} + 2k\pi, com \ k \in \mathbb{Z}$$
$$\therefore \frac{\pi}{2} + k\pi < x < \frac{3\pi}{4} + k\pi$$

• $\log_2(1-\cos 2x) < 0 \text{ e sen } 2x > 0$

$$\log_2(1 - \cos 2x) < 0$$

$$\therefore 1 - \cos 2x < 1$$

$$-\cos 2x < 0$$

$$\cos 2x > 0$$

Temos, portanto, que $\cos 2x > 0$ e sen 2x > 0. Logo, o arco **2x** está no primeiro quadrante:

$$0 + 2k\pi < 2x < \frac{\pi}{2} + 2k\pi, com \ k \in \mathbb{Z}$$
$$\therefore k\pi < x < \frac{\pi}{4} + k\pi$$

Portanto, o conjunto solução é a união das duas soluções encontradas:

$$S = \left\{ x \in R \mid k\pi < x < \frac{\pi}{4} + k\pi \text{ ou } \frac{\pi}{2} + k\pi < x < \frac{3\pi}{4} + k\pi, \text{com } k \in Z \right\}$$

Gabarito:
$$S = \left\{ x \in R \mid k\pi < x < \frac{\pi}{4} + k\pi \ ou \frac{\pi}{2} + k\pi < x < \frac{3\pi}{4} + k\pi, com \ k \in Z \right\}$$

52. (IME/2019)

Seja z um número complexo tal que $z^{12} \in \mathbb{R}$, Re(z) = 1 e $arg(z) \in \left(0, \frac{\pi}{2}\right)$.

A soma dos inversos dos possíveis valores de |z| está no intervalo:

- a) $\left(\frac{1}{2}, \frac{3}{2}\right)$
- b) $(\frac{3}{2}, \frac{5}{2})$
- c) $\left(\frac{5}{2}, \frac{7}{2}\right)$
- d) $\left(\frac{7}{2}, \frac{9}{2}\right)$
- e) $\left(\frac{9}{2}, \frac{11}{2}\right)$

Comentários

Do enunciado, $z^{12} \in \mathbb{R}$. Isso implica que $Im(z^{12}) = 0$. Vamos representar z em sua forma polar:

$$\begin{split} z &= |z| cis\theta \\ z^{12} &= (|z| cis\theta)^{12} = |z|^{12} cis(12\theta) \end{split}$$

Se $Im(z^{12})=0$, então a parte imaginária de z^{12} é nula. Logo:

$$sen(12\theta) = 0$$

Sabemos que $sen(k\pi)=0, k\in\mathbb{Z}$. Vamos encontrar os valores de θ que satisfazem a equação:

$$12\theta = k\pi \Rightarrow \boxed{\theta = \frac{k\pi}{12}, k \in \mathbb{Z}}$$

Lembrando que $\arg(z) = \theta$ e o enunciado afirma que $\arg(z) \in \left(0, \frac{\pi}{2}\right)$. Temos:

$$\theta \in \left\{ \frac{\pi}{12}, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{5\pi}{12} \right\}$$

Da informação Re(z) = 1, podemos escrever z em sua forma algébrica:

$$z = 1 + bi$$

Igualando z na forma algébrica com z na forma polar:

$$z = 1 + bi = |z|(\cos\theta + i\sin\theta)$$

Igualando a parte real do número z:

$$1 = |z|\cos\theta$$

$$\Rightarrow \frac{1}{|z|} = \cos\theta$$

A questão pede a soma dos inversos dos possíveis valores de |z| no intervalo determinado. Das condições do problema encontramos 5 possíveis valores para $z\left(\theta\in\left\{\frac{\pi}{12},\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{5\pi}{12}\right\}\right)$. Então a soma é dada por:

$$S = \frac{1}{|z_1|} + \frac{1}{|z_2|} + \frac{1}{|z_3|} + \frac{1}{|z_4|} + \frac{1}{|z_5|}$$

Encontramos que $\frac{1}{|z|} = \cos \theta$. Então:

$$S = \cos\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{5\pi}{12}\right)$$

Conhecemos os valores de $\cos\left(\frac{\pi}{6}\right)$, $\cos\left(\frac{\pi}{4}\right)$ e $\cos\left(\frac{\pi}{3}\right)$. Vamos calcular o valor de $\cos\left(\frac{5\pi}{12}\right)$ + $\cos\left(\frac{\pi}{12}\right)$:

Usando a transformação da soma em produto dos cossenos:

$$\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$
$$\cos\left(\frac{5\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right) = 2\cos\left(\frac{5\pi}{12} + \frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12} - \frac{\pi}{12}\right) =$$
$$2\cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) = 2\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$$

Substituindo os valores em S:

$$S = \cos\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{5\pi}{12}\right)$$
$$S = \cos\left(\frac{5\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{3}\right)$$
$$S = \frac{\sqrt{6}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} + \frac{1}{2} = \frac{\sqrt{6} + \sqrt{3} + \sqrt{2} + 1}{2}$$

Aproximando os valores:

$$\sqrt{2} \cong 1,4$$

$$\sqrt{3} \cong 1,7$$

$$\sqrt{6} \cong 2.4$$

$$\frac{\sqrt{6} + \sqrt{3} + \sqrt{2} + 1}{2} \cong \frac{2,4 + 1,7 + 1,4 + 1}{2} \cong \frac{6,5}{2} \cong 3,25 \in \left(\frac{5}{2},\frac{7}{2}\right)$$

Gabarito: "c".

53. (IME/2019)

Seja Z um número complexo tal que $\frac{2Z}{\bar{Z}i}$ possui argumento igual a $\frac{3\pi}{4}$ e $\log_3(2Z+2\bar{Z}+1)=2$. Determine o número complexo Z.

Comentários

Temos que encontrar o número complexo Z. Dado as informações do enunciado:

$$\arg\left(\frac{2Z}{\bar{Z}i}\right) = \frac{3\pi}{4}$$

Vamos definir $w = \frac{2Z}{\overline{Z}i}$. Escrevendo Z, \overline{Z}, i na forma polar:

$$Z = |Z| cis\theta$$
$$\bar{Z} = |Z| cis(-\theta)$$
$$i = cis\left(\frac{\pi}{2}\right)$$

Substituindo em w:

$$w = \frac{2|\mathbf{Z}|cis\theta}{|\mathbf{Z}|cis(-\theta)cis\left(\frac{\pi}{2}\right)} = 2cis\left(2\theta - \frac{\pi}{2}\right)$$

O argumento de w é dado por:

$$\arg(w) = 2\theta - \frac{\pi}{2} + 2k\pi = \frac{3\pi}{4}$$
$$2\theta = \frac{3\pi}{4} + \frac{\pi}{2} - 2k\pi = \frac{5\pi}{4} - 2k\pi$$
$$\theta = \frac{5\pi}{8} - k\pi, k \in \mathbb{Z}$$

Dessa informação, podemos concluir que Z possui 2 valores possíveis:

Um para k = 0 e outro para $k = \pm 1$.

Vamos usar a outra informação da questão:

$$\log_3(2Z + 2\bar{Z} + 1) = 2 \Rightarrow 2Z + 2\bar{Z} + 1 = 3^2 = 9$$

Escrevendo Z na forma algébrica e substituindo na equação:

$$Z = a + bi$$

$$2(a + bi) + 2(a - bi) + 1 = 9$$

$$2a + 2bi + 2a - 2bi = 8$$

$$4a = 8$$

$$a = 2$$

Disso, encontramos a = 2.

Assim:

$$Z = 2 + bi = |Z| cis \left(\frac{5\pi}{8} - k\pi\right), k \in \mathbb{Z}$$
$$2 + bi = |Z| \left(cos\left(\frac{5\pi}{8} - k\pi\right) - sen\left(\frac{5\pi}{8} - k\pi\right)\right)$$
$$\Rightarrow 2 = |Z| cos\left(\frac{5\pi}{8} - k\pi\right)$$

Como 2 > 0, |Z| > 0, temos que ter $\cos\left(\frac{5\pi}{8} - k\pi\right) > 0$.

Se k = 0:

$$\cos\left(\frac{5\pi}{8}\right) < 0$$

Se k = 1:

$$\cos\left(-\frac{3\pi}{8}\right) > 0$$

Para k = 1, encontramos a solução do problema.

Representando a raiz no plano complexo:

Falta encontrar o valor da constante *b*.

b é negativo, dado que ela está localizada no quarto quadrante.

Vamos calcular seu módulo, usando a fórmula da tangente:

$$tg\left(\frac{3\pi}{8}\right) = \frac{|b|}{2}$$

Calculando o valor de $tg\left(\frac{3\pi}{8}\right)$:

$$tg\left(\frac{3\pi}{8}\right) = tg\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \frac{sen\left(\frac{\pi}{2} - \frac{\pi}{8}\right)}{\cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right)} = \frac{\cos\left(\frac{\pi}{8}\right)}{sen\left(\frac{\pi}{8}\right)} = cotg\left(\frac{\pi}{8}\right) = \frac{1}{tg\left(\frac{\pi}{8}\right)}$$

Precisamos calcular o valor de $tg\left(\frac{\pi}{8}\right)$. Podemos usar a fórmula do arco metade da tangente:

$$tg\left(\frac{A}{2}\right) = \sqrt{\frac{1 - \cos A}{1 + \cos A}}$$

$$tg\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 - \cos\left(\frac{\pi}{4}\right)}{1 + \cos\left(\frac{\pi}{4}\right)}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{1 + \frac{\sqrt{2}}{2}}} = \sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{2}}} = \sqrt{\frac{\left(2 - \sqrt{2}\right)^2}{2}} = \frac{2 - \sqrt{2}}{\sqrt{2}} = \sqrt{2} - 1$$

Assim, temos:

$$\frac{1}{tg\left(\frac{\pi}{8}\right)} = \frac{|b|}{2}$$
$$\frac{1}{\sqrt{2} - 1} = \frac{|b|}{2}$$
$$|b| = 2(\sqrt{2} + 1)$$

Como b < 0, temos $b = -2(\sqrt{2} + 1)$.

Portanto, Z é:

$$Z = 2 - 2\left(\sqrt{2} + 1\right)$$

Gabarito: $Z=2-2\left(\sqrt{2}+1\right)$

54. (IME/2018)

Seja a função $H: \mathbb{C} \to \mathbb{C}$ definida por

$$H(s) = \frac{a_3s^3 + a_2s^2 + a_1s + a_0}{b_2s^2 + b_1s + a_0}$$

Com a_j e b_k reais, para j=0,1,2,3 e k=0,1,2. Seja a função $f:\mathbb{R}\to\mathbb{R}$ em que f(w) é a parte real de H(iw) em que $i=\sqrt{-1}$ é a unidade imaginária e $w\in\mathbb{R}$. A afirmação correta a respeito de f(w) é:

- a) f(w) é uma função ímpar.
- b) f(w) é uma função par.
- c) f(w) é sempre negativa.
- d) f(w) é sempre positiva.
- e) f(w) é uma função periódica.

Comentário

Sendo $w \in \mathbb{R}$ e H definida nos complexos, vamos substituir s = iw na função para encontrar as relações do problema.

$$H(iw) = \frac{a_3(iw)^3 + a_2(iw)^2 + a_1(iw) + a_0}{b_2(iw)^2 + b_1(iw) + a_0}$$
$$H(iw) = \frac{-a_3w^3i - a_2w^2 + a_1wi + a_0}{-b_2w^2 + b_1wi + a_0}$$

Organizando os termos em parte real e parte imaginária:

$$H(iw) = \frac{a_0 - a_2 w^2 + a_1 w i - a_3 w^3 i}{a_0 - b_2 w^2 + b_1 w i} = \frac{(a_0 - a_2 w^2) + (a_1 w - a_3 w^3) i}{a_0 - b_2 w^2 + b_1 w i}$$

$$H(iw) = \left[\frac{(a_0 - a_2 w^2) + (a_1 w - a_3 w^3) i}{(a_0 - b_2 w^2) + b_1 w i} \right] \left(\frac{(a_0 - b_2 w^2) - b_1 w i}{(a_0 - b_2 w^2) - b_1 w i} \right) = \frac{[(a_0 - a_2 w^2)(a_0 - b_2 w^2) + (a_1 w - a_3 w^3)b_1 w] + [(a_1 w - a_3 w^3)(a_0 - b_2 w^2) - (a_0 - a_2 w^2)b_1 w] i}{(a_0 - b_2 w^2)^2 + (b_1 w)^2}$$

O enunciado afirma que f(w) = Re(H(iw)). Assim, temos:

$$f(w) = \frac{(a_0 - a_2 w^2)(a_0 - b_2 w^2) + (a_1 w - a_3 w^3)b_1 w}{(a_0 - b_2 w^2)^2 + (b_1 w)^2}$$
$$f(w) = \frac{(a_0 - a_2 w^2)(a_0 - b_2 w^2) + (a_1 - a_3 w^2)b_1 w^2}{(a_0 - b_2 w^2)^2 + b_1^2 w^2}$$

Analisando a paridade de f:

$$f(-w) = \frac{(a_0 - a_2(-w)^2)(a_0 - b_2(-w)^2) + (a_1 - a_3(-w)^2)b_1(-w)^2}{(a_0 - b_2(-w)^2)^2 + (b_1(-w))^2}$$
$$f(-w) = \frac{(a_0 - a_2w^2)(a_0 - b_2w^2) + (a_1 - a_3w^2)b_1w^2}{(a_0 - b_2w^2)^2 + b_1^2w^2}$$

Perceba que f(w) = f(-w). Logo, f é uma função par.

Gabarito: "b".

55. (IME/2018)

Determine o valor de a na expressão abaixo, sabendo-se que 0 < a < 1,

$$\frac{1}{16}\log_a 256^{\operatorname{colog}_{(a^2)} 256^{\log_a(a^4)} 256\cdots}} = \operatorname{Im}\{Z\}$$

onde Z é um número complexo que satisfaz a equação:

$$2^{4033}Z^2 - 2^{2017}Z + 1 = 0$$

Obs.: Im(Z) é a parte imaginária do número complexo Z.

- a) $\frac{1}{4}$
- b) $\frac{1}{8}$
- c) $\frac{1}{16}$
- d) $\frac{1}{32}$

Comentários

Vamos calcular o valor de Z:

$$2^{4033}Z^2 - 2^{2017}Z + 1 = 0$$

O bizu nessa equação é multiplicá-lo por 2 para poder fatorá-la:

$$(2^{4033}Z^2 - 2^{2017}Z + 1) \cdot 2 = 0$$

$$2^{4034}Z^2 - 2 \cdot 2^{2017}Z + 2 = 0$$

$$2^{4034}Z^2 - 2 \cdot 2^{2017}Z + 1 = -1$$

Perceba que a equação possui a forma $(a+b)^2=a^2+2ab+b^2$. Então, fatorando:

$$(2^{2017}Z - 1)^2 = -1$$

Encontrando as raízes da equação:

$$2^{2017}Z - 1 = \pm \sqrt{-1} = \pm i$$
$$2^{2017}Z = 1 \pm i$$
$$Z = \frac{1 \pm i}{2^{2017}}$$

Encontramos o valor de Z. Agora vamos calcular o valor de α na equação logarítmica:

$$\frac{1}{16}\log_a 256^{\operatorname{colog}_{(a^2)} 256^{\log(a^4)^{256\cdots}}} = Im\{Z\}$$

Note que o expoente da base logarítmica é uma PG:

$$(a^{2^0}, a^{2^1}, a^{2^2}, \dots, a^{2^{65}})$$

Vamos usar a propriedade $\log_a b^n = n \log_a b$ para calcular a equação acima. Dessa forma, temos:

$$Im\{Z\} = \frac{1}{16} \operatorname{colog}_{a^{2^{65}}} 256 \cdot \log_{a^{2^{64}}} 256 \cdot \operatorname{colog}_{a^{2^{63}}} 256 \cdot \dots \cdot \log_{a^{2^{0}}} 256$$

Lembrando que podemos usar a propriedade dos logaritmos $\log_{a^{\beta}}b=\frac{1}{\beta}\log_a b$ e que $\operatorname{colog}_ab=-\log_a b$. Dessa forma:

$$Im\{Z\} = \frac{1}{16} \left(-\frac{1}{2^{65}} \log_a 256 \right) \cdot \left(\frac{1}{2^{64}} \log_a 256 \right) \cdot \left(-\frac{1}{2^{63}} \log_a 256 \right) \cdot \dots \cdot \left(\frac{1}{2^0} \log_a 256 \right)$$

$$Im\{Z\} = \frac{1}{16} \left(-\frac{1}{2^{65}} \right) \cdot \left(\frac{1}{2^{64}} \right) \cdot \left(-\frac{1}{2^{63}} \right) \cdot \dots \cdot \left(\frac{1}{2^{0}} \right) (\log_a 256)^{66}$$

*0 até 65 são 66 termos

Perceba que os números com expoentes ímpares são números negativos. Assim, dos 66 termos, metade deles são negativos. Então, temos o produto de 33 números negativos. Isso resulta em um número negativo.

$$Im\{Z\} = -\frac{1}{16} \left(\frac{1}{2^{65}} \cdot \frac{1}{2^{64}} \cdot \frac{1}{2^{63}} \cdot \dots \cdot \frac{1}{2^{0}} \right) (\log_a 256)^{66}$$

$$Im\{Z\} = -\frac{1}{16} \left(\frac{1}{2^{65+64+63+\dots+1+0}} \right) (\log_a 256)^{66}$$

Encontramos uma PA no expoente do número 2. Vamos calculá-la:

$$S_{66} = 0 + 1 + 2 + \dots + 64 + 65$$

Aplicando a fórmula da soma dos termos de uma PA de razão 1:

$$S_{66} = \frac{(a_1 + a_{66})66}{2} = \frac{(0 + 65)66}{2} = 2145$$

$$Im\{Z\} = -\frac{1}{16} \left(\frac{1}{2^{2145}}\right) (\log_a 256)^{66}$$

$$Im\{Z\} = -\frac{1}{2^4} \left(\frac{1}{2^{2145}}\right) (\log_a 256)^{66}$$

$$Im\{Z\} = -\frac{1}{2^{2149}} (\log_a 256)^{66}$$

Veja que $-\frac{1}{2^{2149}}$ é negativo e $(\log_a 256)^{66}$ é positivo. Disso, resulta que $-\frac{1}{2^{2149}}(\log_a 256)^{66}$ também é negativo, logo, $Im\{Z\}$ deve ser negativo.

$$Z = \frac{1 - i}{2^{2017}}$$

$$\Rightarrow Im\{Z\} = \frac{-1}{2^{2017}}$$

$$-\frac{1}{2^{2017}} = -\frac{1}{2^{2149}} (\log_a 256)^{66}$$

$$\frac{2^{2149}}{2^{2017}} = (\log_a 256)^{66}$$

$$2^{132} = (\log_a 256)^{66}$$

$$\Rightarrow \log_a 256 = \pm 2^2$$

$$*256 = 2^8$$

$$2^8 = a^{\pm 4}$$

 $0 < a < 1 \Rightarrow$ o expoente de a deve ser negativo.

$$2^{8} = a^{-4}$$

$$2^{8} = (a^{-1})^{4}$$

$$2^{2} = a^{-1}$$

$$\frac{1}{a} = 4$$

$$\Rightarrow a = \frac{1}{4}$$

Gabarito: "a".

56. (IME/2018)

Seja o número complexo z que satisfaz a relação $2(z-i)^{2017} = (\sqrt{3}+1)(iz-1)^{2017}$. Determine z, sabendo que $|z| = \sqrt{3}/3$.

Comentários

O bizu nessa questão é aplicar o módulo nos dois lados da equação e encontrar alguma relação. Veja:

$$2(z-i)^{2017} = (\sqrt{3}+1)(iz-1)^{2017}$$

$$|2(z-i)^{2017}| = |(\sqrt{3}+1)(iz-1)^{2017}|$$

$$2|z-i|^{2017} = |(\sqrt{3}+1)||iz-1|^{2017}$$

$$2|z-i|^{2017} = 2|iz-1|^{2017}$$

$$|z-i|^{2017} = |iz-1|^{2017}$$

$$|z-i| = |iz-1|$$

Usando a propriedade $z\bar{z} = |z|$:

$$(z-i)\overline{(z-i)} = (iz-1)\overline{(iz-1)}$$

$$(z-i)(\overline{z}-\overline{i}) = (iz-1)(\overline{i}\overline{z}-\overline{1})$$

$$(z-i)(\overline{z}+i) = (iz-1)(-i\overline{z}-1)$$

$$z\overline{z}+iz-i\overline{z}-i^2 = -i^2z\overline{z}-iz+i\overline{z}+1$$

$$z\overline{z}+iz-i\overline{z}+1 = z\overline{z}-iz+i\overline{z}+1$$

$$z\overline{z}+iz-i\overline{z}+1 = z\overline{z}-iz+i\overline{z}+1$$

$$2iz = 2i\overline{z}$$

$$z = \overline{z}$$

Como $|z| = \frac{\sqrt{3}}{3}$, temos:

$$z = \frac{\sqrt{3}}{3} \text{ ou } z = -\frac{\sqrt{3}}{3}$$

 $\Rightarrow z$ é um número real

Vamos testar os valores.

1)
$$z = \frac{\sqrt{3}}{3}$$

Substituindo na equação inicial:

$$2\left(\frac{\sqrt{3}}{3}-i\right)^{2017} = \left(\sqrt{3}+1\right)\left(i\frac{\sqrt{3}}{3}-1\right)^{2017}$$

Devemos escrever os números complexos acima em sua forma polar:

$$\frac{\sqrt{3}}{3} - i = \frac{2}{\sqrt{3}} \left(\frac{1}{2} - \frac{i\sqrt{3}}{2} \right) = \frac{2}{\sqrt{3}} cis\left(\frac{5\pi}{3}\right)$$

$$\sqrt{3} + 1 = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) = 2cis\left(\frac{\pi}{6}\right)$$

$$-1 + \frac{i\sqrt{3}}{3} = \frac{2}{\sqrt{3}} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = \frac{2}{\sqrt{3}} cis\left(\frac{5\pi}{6}\right)$$

Substituindo na equação:

$$2\left(\frac{2}{\sqrt{3}}cis\left(\frac{5\pi}{3}\right)\right)^{2017} = \left(2cis\left(\frac{\pi}{6}\right)\right)\left(\frac{2}{\sqrt{3}}cis\left(\frac{5\pi}{6}\right)\right)^{2017}$$

$$2\left(\frac{2}{\sqrt{3}}\right)^{2017}cis\left(\frac{5\pi}{3}\cdot2017\right) = 2cis\left(\frac{\pi}{6}\right)\left(\frac{2}{\sqrt{3}}\right)^{2017}cis\left(\frac{5\pi}{6}\cdot2017\right)$$

$$cis\left(\frac{5\pi}{3}\cdot2017\right) = cis\left(\frac{\pi}{6}\right)cis\left(\frac{5\pi}{6}\cdot2017\right)$$

$$cis\left(\frac{10085\pi}{3}\right) = cis\left(\frac{\pi}{6} + \frac{10085\pi}{6}\right)$$

$$cis\left(\frac{20170\pi}{6}\right) = cis\left(\frac{10086\pi}{6}\right)$$

Vamos ver se encontramos solução:

$$\frac{20170\pi}{6} = \frac{10086\pi}{6} + 2k\pi, k \in \mathbb{Z}$$
$$\Rightarrow 2k\pi = \frac{20170\pi}{6} - \frac{10086\pi}{6}$$
$$\Rightarrow k = \frac{10084}{12} = \frac{2521}{3}$$

Perceba que 2521 não é divisível por 3, logo $k \notin \mathbb{Z}$. Isso implica que $z=\sqrt{3}/3$ não é solução.

2)
$$z = -\frac{\sqrt{3}}{3}$$

$$2\left(-\frac{\sqrt{3}}{3}-i\right)^{2017} = \left(\sqrt{3}+1\right)\left(-i\frac{\sqrt{3}}{3}-1\right)^{2017}$$

Devemos escrever os números complexos acima em sua forma polar:

$$-\frac{\sqrt{3}}{3} - i = \frac{2}{\sqrt{3}} \left(-\frac{1}{2} - \frac{i\sqrt{3}}{2} \right) = \frac{2}{\sqrt{3}} cis\left(\frac{4\pi}{3}\right)$$

$$\sqrt{3} + 1 = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) = 2cis\left(\frac{\pi}{6}\right)$$

$$-1 - \frac{i\sqrt{3}}{3} = \frac{2}{\sqrt{3}} \left(-\frac{\sqrt{3}}{2} - \frac{i}{2} \right) = \frac{2}{\sqrt{3}} cis\left(\frac{7\pi}{6}\right)$$

Substituindo na equação:

$$2\left(\frac{2}{\sqrt{3}}cis\left(\frac{4\pi}{3}\right)\right)^{2017} = \left(2cis\left(\frac{\pi}{6}\right)\right)\left(\frac{2}{\sqrt{3}}cis\left(\frac{7\pi}{6}\right)\right)^{2017}$$
$$2\left(\frac{2}{\sqrt{3}}\right)^{2017}cis\left(\frac{4\pi}{3}\cdot 2017\right) = 2cis\left(\frac{\pi}{6}\right)\left(\frac{2}{\sqrt{3}}\right)^{2017}cis\left(\frac{7\pi}{6}\cdot 2017\right)$$
$$cis\left(\frac{4\pi}{3}\cdot 2017\right) = cis\left(\frac{\pi}{6}\right)cis\left(\frac{7\pi}{6}\cdot 2017\right)$$

$$cis\left(\frac{8068\pi}{3}\right) = cis\left(\frac{\pi}{6} + \frac{14119\pi}{6}\right)$$
$$cis\left(\frac{16136\pi}{6}\right) = cis\left(\frac{14120\pi}{6}\right)$$

Vamos ver se encontramos solução:

$$\frac{16136\pi}{6} = \frac{14120\pi}{6} + 2k\pi, k \in \mathbb{Z}$$

$$\Rightarrow 2k\pi = \frac{16136\pi}{6} - \frac{14120\pi}{6}$$

$$\Rightarrow k = \frac{2016}{12} = \frac{504}{3} = 168$$

Assim, o número complexo que satisfaz a relação é:

$$z = -\frac{\sqrt{3}}{3}$$

Gabarito: $z = -\sqrt{3}/3$

57. (IME/2017)

Sejam Z_1 e Z_2 números complexos tais que Z_2 é imaginário puro e $|Z_1-Z_2|=|Z_2|$. Para quaisquer valores de Z_1 e Z_2 que atendam a essas condições tem-se que:

- a) $Im(Z_2) > 0$
- b) $Im(Z_2) \leq 0$
- c) $|Z_1| \le 2|Z_2|$
- d) $Re(Z_1) \ge 0$
- e) $Re(Z_1) \leq Im(Z_2)$

Comentários

Se Z_2 é imaginário puro, então:

$$Z_2 = bi, b \in \mathbb{R}^*$$

Substituindo na equação:

$$|Z_1 - Z_2| = |Z_2|$$

 $|Z_1 - bi| = |bi|$
 $|Z_1 - bi| = |b|$

Essa equação representa uma circunferência com centro (0,b) e raio |b|. Representando no plano complexo, temos 2 casos:

2) *b* < 0:

Para quaisquer valores de ${\cal Z}_1$ e ${\cal Z}_2$, vamos analisar as alternativas:

a) $Im(Z_2) > 0$

Falso, pois podemos ter $Im(Z_2) = b < 0$ conforme figura 2.

b)
$$Im(Z_2) \leq 0$$

Falso. Análogo à alternativa (a). Podemos ter b > 0.

c)
$$|Z_1| \le 2|Z_2|$$

Observando o gráfico, vemos que o maior valor que Z_1 pode assumir é $|Z_1| = 2|b|$.

Logo, podemos escrever a condição:

$$|Z_1| \le 2|Z_2|$$

Correto.

d)
$$Re(Z_1) \geq 0$$

Falso. Z_1 pertence a uma circunferência centrada em (0,b) com raio b e dessa condição $Re(Z_1)$ pode ser menor que zero.

e)
$$Re(Z_1) \leq Im(Z_2)$$

Falso. Pois, se b < 0, podemos ter $Re(Z_1) > 0$.

Gabarito: "c".

58. (IME/2017)

Sejam os complexos z = a + bi e w = 47 + ci, tais que $z^3 + w = 0$. Determine o valor de $a, b \in c$, sabendo que esses números são inteiros e positivos.

Comentários

Usando o produto notável:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$z^3 = (a+bi)^3 = a^3 + 3a^2bi + 3a(bi)^2 + (bi)^3 = (a^3 - 3ab^2) + (3a^2b - b^3)i$$

Da equação do problema:

$$z^{3} + w = 0 \Rightarrow z^{3} = -w$$

$$(a^{3} - 3ab^{2}) + (3a^{2}b - b^{3})i = -(47 + ci)$$

$$(a^{3} - 3ab^{2}) + (3a^{2}b - b^{3})i = -47 - ci$$

Igualando as partes reais e as partes imaginárias, encontramos:

$$\begin{cases} a^3 - 3ab^2 = -47 \\ 3a^2b - b^3 = -c \end{cases}$$
$$\begin{cases} a(a^2 - 3b^2) = -47 \\ b(3a^2 - b^2) = -c \end{cases}$$

Vamos analisar a equação:

$$a(a^2 - 3b^2) = -47$$

Perceba que 47 é um número primo.

Como $a, b, c \in \mathbb{Z}_+^*$, temos as seguintes possibilidades:

1)
$$a = 47 e a^2 - 3b^2 = -1$$

Substituindo a = 47 em $a^2 - 3b^2 = -1$:

$$47^{2} - 3b^{2} = -1$$

$$2209 + 1 = 3b^{2}$$

$$3b^{2} = 2210$$

$$b^{2} = \frac{2210}{3}$$

2210 não é divisível por 3 (soma dos algarismos: 2+2+1+0=5). Como b é inteiro positivo, não temos solução nesse caso.

2)
$$a = 1 e a^2 - 3b^2 = -47$$

$$a = 1 \Rightarrow 1^2 - 3b^2 = -47$$

$$48 = 3b^2$$

$$b^2 = 16$$

$$b = +4$$

b inteiro positivo $\Rightarrow b = 4$

Vamos encontrar o valor de c:

$$b(3a^2 - b^2) = -c$$

$$a = 1, b = 4 \Rightarrow 4(3(1)^2 - 4^2) = -c$$

$$\Rightarrow c = 52$$

$$\therefore a = 1, b = 4, c = 52$$

Gabarito: a = 1, b = 4, c = 52

59. (IME/2016)

Seja Z um número complexo tal que $\frac{2Z}{\bar{Z}i}$ possui argumento igual a $\frac{3\pi}{4}$ e $\log_3(2Z+2\bar{Z}+1)=2$. Determine o número complexo Z.

Comentários

Temos que encontrar o número complexo Z. Dadas as informações do enunciado:

$$\arg\left(\frac{2Z}{\bar{Z}i}\right) = \frac{3\pi}{4}$$

Vamos definir $w = \frac{2Z}{\overline{Z}i}$. Escrevendo Z, \overline{Z}, i na forma polar:

$$Z = |Z|cis\theta$$
$$\bar{Z} = |Z|cis(-\theta)$$
$$i = cis\left(\frac{\pi}{2}\right)$$

Substituindo em w:

$$w = \frac{2|\mathbf{Z}|cis\theta}{|\mathbf{Z}|cis(-\theta)cis\left(\frac{\pi}{2}\right)} = 2cis\left(2\theta - \frac{\pi}{2}\right)$$

O argumento de w é dado por:

$$\arg(w) = 2\theta - \frac{\pi}{2} + 2k\pi = \frac{3\pi}{4}$$
$$2\theta = \frac{3\pi}{4} + \frac{\pi}{2} - 2k\pi = \frac{5\pi}{4} - 2k\pi$$
$$\theta = \frac{5\pi}{8} - k\pi, k \in \mathbb{Z}$$

Dessa informação, podemos concluir que Z possui 2 valores possíveis:

Um para k=0 e outro para $k=\pm 1$.

Vamos usar a outra informação da questão:

$$\log_3(2Z + 2\bar{Z} + 1) = 2 \Rightarrow 2Z + 2\bar{Z} + 1 = 3^2 = 9$$

Escrevendo Z na forma algébrica e substituindo na equação:

$$Z = a + bi$$

$$2(a + bi) + 2(a - bi) + 1 = 9$$

$$2a + 2bi + 2a - 2bi = 8$$

$$4a = 8$$

$$a = 2$$

Disso, encontramos a = 2.

Assim:

$$Z = 2 + bi = |Z| cis \left(\frac{5\pi}{8} - k\pi\right), k \in \mathbb{Z}$$

$$2 + bi = |Z| \left(cos\left(\frac{5\pi}{8} - k\pi\right) - sen\left(\frac{5\pi}{8} - k\pi\right)\right)$$

$$\Rightarrow 2 = |Z| cos\left(\frac{5\pi}{8} - k\pi\right)$$

Como 2 > 0, |Z| > 0, temos que ter $\cos\left(\frac{5\pi}{8} - k\pi\right) > 0$.

Se k = 0:

$$\cos\left(\frac{5\pi}{8}\right) < 0$$

Se k = 1:

$$\cos\left(-\frac{3\pi}{8}\right) > 0$$

Para k=1, encontramos a solução do problema.

Representando a raiz no plano complexo:

Falta encontrar o valor da constante b.

b é negativo, dado que está localizado no quarto quadrante.

Vamos calcular seu módulo, usando a fórmula da tangente:

$$tg\left(\frac{3\pi}{8}\right) = \frac{|b|}{2}$$

Calculando o valor de $tg\left(\frac{3\pi}{8}\right)$:

$$tg\left(\frac{3\pi}{8}\right) = tg\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \frac{sen\left(\frac{\pi}{2} - \frac{\pi}{8}\right)}{\cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right)} = \frac{\cos\left(\frac{\pi}{8}\right)}{sen\left(\frac{\pi}{8}\right)} = cotg\left(\frac{\pi}{8}\right) = \frac{1}{tg\left(\frac{\pi}{8}\right)}$$

Precisamos calcular o valor de $tg\left(\frac{\pi}{8}\right)$. Podemos usar a fórmula do arco metade da tangente:

$$tg\left(\frac{A}{2}\right) = \sqrt{\frac{1 - cosA}{1 + cosA}}$$

$$tg\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 - \cos\left(\frac{\pi}{4}\right)}{1 + \cos\left(\frac{\pi}{4}\right)}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{1 + \frac{\sqrt{2}}{2}}} = \sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{2}}} = \sqrt{\frac{\left(2 - \sqrt{2}\right)^2}{2}} = \frac{2 - \sqrt{2}}{\sqrt{2}} = \sqrt{2} - 1$$

Assim, temos:

$$\frac{1}{tg\left(\frac{\pi}{8}\right)} = \frac{|b|}{2}$$

$$\frac{1}{\sqrt{2}-1} = \frac{|b|}{2}$$

$$|b| = 2\left(\sqrt{2} + 1\right)$$

Como b < 0, temos $b = -2(\sqrt{2} + 1)$.

Portanto, Z é:

$$Z = 2 - 2(\sqrt{2} + 1)$$

Gabarito:
$$Z=2-2(\sqrt{2}+1)$$

60. (IME/2016)

O valor do somatório abaixo é:

$$\sum_{k=1}^{15} Img\left(cis^{2k-1}\left(\frac{\pi}{36}\right)\right)$$

Observação: Img(w) é a parte imaginária de w.

a)
$$\frac{2+\sqrt{3}}{4sen(\frac{\pi}{36})}$$

b)
$$\frac{2-\sqrt{3}}{4sen(\frac{\pi}{36})}$$

c)
$$\frac{1}{4sen(\frac{\pi}{36})}$$

d)
$$sen\left(\frac{\pi}{36}\right)$$

e)
$$\frac{1}{4}$$

Comentários

Lembrando da fórmula de De Moivre:

$$cis^n(\theta) = cis(n\theta)$$

O somatório pedido é o somatório dos senos do complexo g. Veja:

$$Im(cis\theta) = Im(cos\theta + isen\theta) = sen\theta$$

Dessa forma, podemos escrever:

$$S = \sum_{k=1}^{15} Img\left(cis^{2k-1}\left(\frac{\pi}{36}\right)\right) = \sum_{k=1}^{15} Img\left(cis\left(\frac{(2k-1)\pi}{36}\right)\right)$$

$$S = sen\left(\frac{\pi}{36}\right) + sen\left(\frac{3\pi}{36}\right) + sen\left(\frac{5\pi}{36}\right) + \cdots + sen\left(\frac{27\pi}{36}\right) + sen\left(\frac{29\pi}{36}\right)$$

Da aula de trigonometria, vamos usar a fórmula do somatório do seno:

$$sen(a) + sen(a+r) + \dots + sen(a+(n-1)r) = \frac{sen\left(a + \frac{(n-1)r}{2}\right)sen\left(\frac{nr}{2}\right)}{sen\left(\frac{r}{2}\right)}$$

Analisando o somatório, temos:

$$a = \frac{\pi}{36}$$

$$r = \frac{2\pi}{36}$$

$$a_n = a + (n - r)r \Rightarrow \frac{29\pi}{36} = \frac{\pi}{36} + \frac{(n - 1)2\pi}{36}$$

$$\Rightarrow 28 = (n - 1)2$$

$$\Rightarrow n = 15$$

Substituindo os valores na fórmula do somatório do seno:

$$S = \frac{sen\left(a + \frac{(n-1)r}{2}\right)sen\left(\frac{nr}{2}\right)}{sen\left(\frac{r}{2}\right)} = \frac{sen\left(\frac{\pi}{36} + \frac{(15-1)\left(\frac{2\pi}{36}\right)}{2}\right)sen\left(\frac{15\left(\frac{2\pi}{36}\right)}{2}\right)}{sen\left(\frac{(2\pi)}{36}\right)}$$

$$S = \frac{sen\left(\frac{\pi}{36} + \frac{14\pi}{36}\right)sen\left(\frac{15\pi}{36}\right)}{sen\left(\frac{\pi}{36}\right)}$$

$$S = \frac{\left(sen\left(\frac{15\pi}{36}\right)\right)^2}{sen\left(\frac{\pi}{36}\right)} = \frac{sen^2\left(\frac{5\pi}{12}\right)}{sen\left(\frac{\pi}{36}\right)}$$

Podemos simplificar o número usando a fórmula:

$$\cos(2A) = 1 - 2sen^{2}A \Rightarrow sen^{2}A = \frac{1 - \cos(2A)}{2}$$

$$sen^{2}\left(\frac{5\pi}{12}\right) = \frac{1 - \cos\left(\frac{2 \cdot 5\pi}{12}\right)}{2} = \frac{1 - \cos\left(\frac{5\pi}{6}\right)}{2} = \frac{1 - \left(-\frac{\sqrt{3}}{2}\right)}{2} = \frac{2 + \sqrt{3}}{4}$$

$$\Rightarrow S = \frac{sen^{2}\left(\frac{5\pi}{12}\right)}{sen\left(\frac{\pi}{36}\right)} = \frac{\frac{2 + \sqrt{3}}{4}}{sen\left(\frac{\pi}{36}\right)}$$

$$S = \frac{2 + \sqrt{3}}{4sen\left(\frac{\pi}{36}\right)}$$

Gabarito: "a".

61. (IME/2014)

Calcule o determinante abaixo, no qual $w = cis\left(\frac{2\pi}{3}\right)$ e $i = \sqrt{-1}$.

$$\begin{bmatrix} 1 & w & 0 & i \\ i & 1 & -i & w^2 \\ 1 - i & w & i - 1 & 1 \\ 0 & w & 1 & i \end{bmatrix}$$

Comentários

Vamos simplificar o determinante aplicando o Teorema de Jacobi:

$$\begin{vmatrix} 1 & w & 0 & i \\ i & 1 & -i & w^2 \\ -i & 0 & i-1 & 1-i \\ -1 & 0 & 1 & 0 \end{vmatrix}$$

Usando a regra de Chió:

$$\begin{vmatrix} 1 & w & 0 & i \\ i & 1 & -i & w^2 \\ -i & 0 & i-1 & 1-i \\ -1 & 0 & 1 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 - wi & -i & w^2 - i^2 \\ 0 - (-wi) & i - 1 & 1 - i - (-i^2) \\ 0 - (-w) & 1 & 0 - (-i) \end{vmatrix}$$

$$\begin{vmatrix} 1 - wi & -i & w^2 + 1 \\ wi & i - 1 & -i \\ w & 1 & i \end{vmatrix}$$

Vamos reorganizar as linhas e colunas para aplicar a regra de Chió:

$$\begin{bmatrix} 1 - wi \\ wi \\ w \end{bmatrix} \begin{bmatrix} -i \\ i - 1 \\ 1 \end{bmatrix} w^2 + 1 \\ -i \\ i \end{bmatrix}$$

Aplicando a regra de Chió:

$$\begin{array}{|c|c|c|c|c|c|} \hline 1 & w & i \\ \hline i-1 & wi & -i \\ -i & 1-wi & w^2+1 \\ \hline \end{array}$$

$$\begin{vmatrix} wi - w(i-1) & -i - i(i-1) \\ 1 - wi - w(-i) & w^2 + 1 - i(-i) \end{vmatrix}$$

$$\begin{vmatrix} w & 1 \\ 1 & w^2 \end{vmatrix} = w^3 - 1$$

Do enunciado:

$$w = cis\left(\frac{2\pi}{3}\right) \Rightarrow w^3 - 1 = \left(cis\left(\frac{2\pi}{3}\right)\right)^3 - 1 = cis(2\pi) - 1 = 0$$

Portanto, o valor do determinante é igual a 0.

Gabarito: 0

62. (IME/2013)

Seja o número complexo $z=\frac{a}{ib(1+ib)^2}$, onde a e b são números reais positivos e $i=\sqrt{-1}$.

Sabendo que o módulo e o argumento de z valem, respectivamente, 1 e $(-\pi)$ rd, o valor de a é

- a) $\frac{1}{4}$
- b) $\frac{1}{2}$
- c) 1
- d) 2
- e) 4

Comentários

Do enunciado, temos:

$$|z| = 1$$

$$\arg(z) = -\pi$$

Sabendo que $z = |z| cis\theta$, temos:

$$z = cis(-\pi) = -1$$

Desse modo:

$$z = \frac{a}{ib(1+ib)^2} = -1$$

Desenvolvendo a equação:

$$\frac{a}{ib(1+2bi-b^2)} = -1$$

$$\frac{a}{ib-2b^2-b^3i} = -1$$

$$\frac{a}{-2b^2+b(1-b^2)i} = -1$$

$$\frac{(-2b^2-b(1-b^2)i)}{(-2b^2-b(1-b^2)i)} = a$$

$$\frac{(-2b^2-b(1-b^2)i)}{(-2b^2+b(1-b^2)i)} = -1$$

$$\frac{(-2b^2-b(1-b^2)i)a}{(-2b^2)^2+[b(1-b^2)]^2} = -1$$

$$\frac{-2ab^2-ab(1-b^2)i}{4b^4+[b(1-b^2)]^2} = -1$$

Vamos igualar a parte real e a parte imaginária das expressões:

$$\begin{cases} -\frac{2ab^2}{4b^4 + [b(1-b^2)]^2} = -1\\ \frac{-ab(1-b^2)}{4b^4 + [b(1-b^2)]^2} = 0 \end{cases} \Rightarrow \begin{cases} \frac{2ab^2}{4b^4 + [b(1-b^2)]^2} = 1\\ ab(1-b^2) = 0 \end{cases}$$

Da segunda equação:

$$ab(1-b^2)=0$$

Temos duas possibilidades:

1)
$$a = 0$$

Esse caso não satisfaz as condições do problema. Veja:

$$a = 0 \Rightarrow \frac{2(0)b^2}{4b^4 + [b(1-b^2)]^2} = 0 \neq 1$$

2)
$$b(1-b^2)=0$$

I) Para b=0:

$$\frac{2ab^2}{4b^4 + [b(1-b^2)]^2} = \frac{0}{0}$$

Não convém.

II) Para b = -1:

Não convém, pois o enunciado afirma que $b \in \mathbb{R}_+$.

III) Para b=1:

$$\frac{2ab^2}{4b^4 + [b(1-b^2)]^2} = 1$$

$$\frac{2a}{4} = 1$$

$$a = 2$$

Gabarito: "d".

63. (IME/2012)

Seja o número complexo Z=a+bi, com a e $b\in\mathbb{R}$ (real) e $i=\sqrt{-1}$. Determine o módulo de Z sabendo que

$$\begin{cases} a^3 = 3(1 + ab^2) \\ b^3 = 3(a^2b - 1) \end{cases}$$

Comentários

Perceba que as equações cúbicas lembram o produto notável:

$$(x + y)^3 = x^3 + 3xy^2 + 3x^2y + y^3$$

Do sistema dado no enunciado:

$$\begin{cases} a^3 = 3(1+ab^2) \\ b^3 = 3(a^2b-1) \end{cases} \Rightarrow \begin{cases} a^3 - 3ab^2 = 3 \\ b^3 - 3a^2b = -3 \end{cases} \Rightarrow \begin{cases} a^3 - 3ab^2 = 3 \\ -b^3 + 3a^2b = 3 \end{cases}$$

Vamos elevar Z ao cubo:

$$Z^3 = (a + bi)^3 = a^3 + 3a(bi)^2 + 3a^2bi + (bi)^3 = (a^3 - 3ab^2) + (-b^3 + 3a^2b)i$$

Usando os dados do sistema, encontramos Z^3 :

$$Z^3 = 3 + 3i$$

A questão pede o módulo de Z, aplicando o módulo na equação acima:

$$|Z^{3}| = |3 + 3i|$$

 $|Z|^{3} = \sqrt{9 + 9} = \sqrt{18}$
 $|Z| = \sqrt[6]{18}$

Gabarito: $|Z| = \sqrt[6]{18}$

64. (IME/2012)

As raízes cúbicas da unidade, no conjunto dos números complexos, são representadas por $1, w \in w^2$, onde $w \in w$ é um número complexo. O intervalo que contém o valor de $(1-w)^6$ é:

- a) $(-\infty, -30]$
- b) (-30, -10]
- c) (-10, 10]
- d) (10,30]
- e) (30,∞)

Comentários

As raízes cúbicas da unidade são representadas por $1, w e w^2$. Desse modo, podemos escrever:

$$w^3 = 1$$

$$w = cis\left(\frac{2k\pi}{3}\right), k \in \mathbb{Z}$$

As raízes são:

$$cis(0) = 1, w = cis\left(\frac{2\pi}{3}\right) e w^2 = cis\left(\frac{4\pi}{3}\right)$$

Vamos calcular o valor de $(1 - w)^6$:

$$(1-w)^{6} = \left(1 - cis\left(\frac{2\pi}{3}\right)\right)^{6} = \left(1 - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)^{6} = \left(\frac{3}{2} - \frac{\sqrt{3}}{2}i\right)^{6}$$
$$\left(\frac{3}{2} - \frac{\sqrt{3}}{2}i\right)^{6} = \left(\sqrt{3}\right)^{6} \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{6}$$
$$3^{3} \left(cis\left(\frac{11\pi}{6}\right)\right)^{6} = 27cis(11\pi) = -27$$
$$\Rightarrow (1-w)^{6} = -27 \in (-30, -10]$$

Gabarito: "b".

65. (IME/2010)

Considere o sistema abaixo, em que x_1, x_2, x_3 e Z pertencem ao conjunto dos números complexos.

$$\begin{cases} (1+i)x_1 - ix_2 + ix_3 = 0\\ 2ix_1 - x_2 - x_3 = Z\\ (2i+2)x_1 + ix_2 - ix_3 = 0 \end{cases}$$

O argumento de Z, em graus, para que x_3 seja um número real positivo é:

Obs.: $i = \sqrt{-1}$

- a) 0°
- b) 45°
- c) 90°
- d) 135°
- e) 180°

Comentários

Vamos resolver o sistema:

$$\begin{cases} (1+i)x_1 - ix_2 + ix_3 = 0 & (I) \\ 2ix_1 - x_2 - x_3 = Z & (II) \\ (2i+2)x_1 + ix_2 - ix_3 = 0 & (III) \end{cases}$$

Fazendo (I) + (III):

$$(1+i)x_1 + (2i+2)x_1 = 0$$

(3+3i)x₁ = 0 \Rightarrow x₁ = 0

Substituindo $x_1 = 0$ em (III):

$$(2i+2)x_1 + ix_2 - ix_3 = 0 \Rightarrow i(x_2 - x_3) = 0 \Rightarrow x_2 = x_3$$

Substituindo $x_1 = 0$, $x_2 = x_3$ em (II):

$$2ix_1 - x_2 - x_3 = Z \Rightarrow Z = 2i(0) - x_3 - x_3$$

$$Z = -2x_3$$

$$\Rightarrow x_3 = -\frac{Z}{2}$$

 x_3 deve ser um número real positivo. Vamos escrever Z em sua forma algébrica para analisar os valores de x_3 :

$$Z = |Z|cis\theta$$

$$x_3 = -\frac{1}{2}|Z|cis\theta = -\frac{|Z|}{2}(cos\theta + isen\theta) = \frac{|Z|}{2}(-cos\theta - isen\theta)$$

$$x_3 \ real \ positivo \Rightarrow sen\theta = 0 \ e - cos\theta > 0$$

Assim, temos que encontrar o valor de θ tal que:

$$\begin{cases} sen\theta = 0 \\ cos\theta < 0 \end{cases}$$

$$sen\theta = 0 \Rightarrow \theta = 2k\pi, k \in \mathbb{Z}$$

$$cos\theta < 0 \Rightarrow \theta = \pi$$

Portanto, o argumento de Z que torna o número x_3 real positivo é:

$$arg(Z) = \theta = \pi = 180^{\circ}$$

Gabarito: "e".

66. (IME/2011)

Sejam $z_1 = 10 + 6i$ e $z_2 = 4 + 6i$, onde i é a unidade imaginária, e z um número complexo tal que $\arg\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$, determine o módulo do número complexo (z-7-9i).

Obs: arg(w) é o argumento do número complexo w.

Comentários

Seja
$$z = x + yi$$
:

$$\frac{z - z_1}{z - z_2} = \frac{(x + yi) - (10 + 6i)}{(x + yi) - (4 + 6i)} = \frac{(x - 10) + (y - 6)i}{(x - 4) + (y - 6)i} = \frac{[(x - 10) + (y - 6)i][(x - 4) - (y - 6)i]}{[(x - 4) + (y - 6)i][(x - 4) - (y - 6)i]} = \frac{[(x - 10)(x - 4) + (y - 6)^2] + [(y - 6)(x - 4) - (x - 10)(y - 6)]i}{(x - 4)^2 + (y - 6)^2} = \frac{(x - 2)(x - 2)^2 + (y - 6)^2}{(x - 2)^2 + (y - 6)^2}$$

Como
$$\arg\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$$
, então $Im\left(\frac{z-z_1}{z-z_2}\right) = Re\left(\frac{z-z_1}{z-z_2}\right)$.
 $(x-10)(x-4) + (y-6)^2 = (y-6)(x-4) - (x-10)(y-6)$
 $x^2 - 14x + 40 + y^2 - 12y + 36 = 6y - 36$
 $x^2 - 14x + y^2 - 18y + 112 = 0$
 $(x-7)^2 + (y-9)^2 = 18$

A equação pede o valor de |z-7-9i|, logo:

$$\sqrt{(x-7)^2 + (y-9)^2} = \sqrt{18} = 3\sqrt{2}$$

Gabarito: $3\sqrt{2}$

67. (IME/2011)

Resolva a equação $z^2 + \frac{9z^2}{(z+3)^2} = -5$, onde z pertence ao conjunto dos números complexos.

Comentários

Para resolver essa equação, vamos desenvolver a expressão:

$$z^2 + \frac{9z^2}{(z+3)^2} = -5$$

$$z^{2}(z+3)^{2} + 9z^{2} = -5(z+3)^{2}$$

$$z^{2}(z^{2} + 6z + 9) + 9z^{2} = -5(z^{2} + 6z + 9)$$

$$z^{4} + 6z^{3} + 23z^{2} + 30z + 45 = 0$$

Chegamos em algo relativamente complicado de resolver. Uma das formas de atacar essa equação é fatorando em dois polinômios de segundo grau.

Reescrevendo a equação, temos:

$$(z4 + z3 + 3z2) + (5z3 + 5z2 + 15z) + (15z2 + 15z + 45) = 0$$

$$(z2 + z + 3)(z2 + 5z + 15) = 0$$

Logo, o conjunto solução S é:

$$S = \left\{ \frac{-1 \pm \sqrt{11}i}{2}, \frac{-5 \pm \sqrt{35}i}{2} \right\}$$

Gabarito:
$$S = \left\{ \frac{-1 \pm \sqrt{11}i}{2}, \frac{-5 \pm \sqrt{35}i}{2} \right\}$$

68. (IME/2009)

Seja $z=\rho\cdot e^{i\theta}$ um número complexo onde ρ e θ são, respectivamente, o módulo e o argumento de z e i é a unidade imaginária. Sabe-se que $\rho=2a\cos\theta$, onde a é uma constante real positiva. A representação de z no plano complexo é

a)

b)

c)

e)

Comentários

$$z = \rho \cdot e^{i\theta} = 2a\cos\theta e^{i\theta} = 2a\cos\theta(\cos\theta + \sin\theta i) = 2a\cos^2\theta + 2a\cos\theta \sin\theta i = z = 2a\cos^2\theta - a + a + 2a\cos\theta \sin\theta i = a(2\cos^2\theta - 1) + a\sin2\theta i + a = z = a\cos(2\theta) + a\sin(2\theta)i + a = ae^{2i\theta} + a$$
$$z = ae^{2i\theta} + a$$

Essa é uma equação de circunferência de raio a e deslocada de a no sentido positivo do eixo real.

Gabarito: "a".

69. (IME/2009)

Sabe-se que $z_1\overline{z_2}=\frac{z_3}{z_4}$ e $|z_3+z_4|-|z_3-z_4|=0$, sendo z_1,z_2,z_3 e z_4 números complexos diferentes de zero. Prove que z_1 e z_2 são ortogonais.

Obs: Números complexos ortogonais são aqueles cujas representações gráficas são perpendiculares entre si e \overline{z} é o número complexo conjugado de z.

Comentários

Para provar que z_1 e z_2 são ortogonais devemos demonstrar que $\theta_1-\theta_2=\pm 90^\circ$, em que θ_1 e θ_2 são os argumentos dos números complexos z_1 e z_2 , respectivamente.

Para isso, temos que:

$$z_{1}\overline{z_{2}} = \frac{z_{3}}{z_{4}}$$

$$\theta_{1} + (-\theta_{2}) = \theta_{3} - \theta_{4} (i)$$

$$|z_{3} + z_{4}| = |z_{3} - z_{4}|$$

$$|z_{3} + z_{4}|^{2} = |z_{3} - z_{4}|^{2}$$

$$(z_{3} + z_{4})(z_{3} + z_{4}) = (z_{3} - z_{4})(\overline{z_{3}} - \overline{z_{4}})$$

$$|z_{3}|^{2} + z_{3}\overline{z_{4}} + \overline{z_{3}}z_{4} + |z_{4}|^{2} = |z_{3}|^{2} - z_{3}\overline{z_{4}} - \overline{z_{3}}z_{4} + |z_{4}|^{2}$$

$$z_{3}\overline{z_{4}} = -\overline{z_{3}}z_{4}$$

$$\theta_{3} - \theta_{4} = \theta_{4} - \theta_{3} + (2k+1)\pi$$

$$\theta_{3} - \theta_{4} = \frac{(2k+1)\pi}{2} = \pm 90^{\circ} (ii)$$

De (i) em (ii), temos:

$$\theta_1 - \theta_2 = \pm 90^{\circ}$$

Gabarito: Demonstração

70. (IME/2008)

Determine a expressão da soma a seguir, onde n é um inteiro múltiplo de 4.

$$1 + 2i + 3i^2 + \dots + (n+1)i^n$$

Comentários

Podemos observar que isso é uma PAG, pois os termos de i estão em PG e seus coeficientes estão em PA.

Dessa forma,

$$P = 1 + 2i + 3i^{2} + \dots + (n+1)i^{n}$$

$$Pi = i + 2i^{2} + 3i^{3} + \dots + (n+1)i^{n+1}$$

$$P - Pi = 1 + i + i^{2} + \dots + i^{n} - (n+1)i^{n+1}$$

$$P(1-i) = \frac{(i^{n+1} - 1)}{i - 1} - (n+1)i^{n+1}$$

Como n é múltiplo de 4, temos:

$$i^{n+1} = i$$

$$P(1-i) = 1 - (n+1)i$$

$$P = \frac{[1 - (n+1)i](1+i)}{2}$$

$$P = \frac{n+2-ni}{2}$$

Gabarito:
$$P = \frac{n+2-ni}{2}$$

71. (IME/2008)

Considere os números complexos $Z_1 = sen \alpha + i cos \alpha$ e $Z_2 = cos \alpha - i sen \alpha$, onde α é um número real. Mostre que, se $Z = Z_1Z_2$, então $-1 \le Re(Z) \le 1$ e $-1 \le Im(Z) \le 1$, onde Re(Z) e Im(Z) indicam, respectivamente, as partes real e imaginária de Z.

Comentários

$$Z = Z_1 Z_2$$

$$Z = (sen \alpha + i \cos \alpha)(\cos \alpha - i sen \alpha)$$

$$Z = sen\alpha cos\alpha - i sen^2\alpha + i cos^2\alpha + sen\alpha cos\alpha$$

$$Z = 2sen\alpha cos\alpha + (cos^2\alpha - sen^2\alpha)i = sen2\alpha + cos2\alpha i$$

$$-1 \le sen2\alpha \le 1 \Rightarrow -1 \le Re(Z) \le 1$$

$$-1 \le cos2\alpha \le 1 \Rightarrow -1 \le Im(Z) \le 1$$

Gabarito: Demonstração

72. (IME/2007)

Sejam z e w números complexos tais que:

$$\begin{cases} w^2 - z^2 = 4 + 12i \\ \overline{z} - \overline{w} = 2 + 4i \end{cases}$$

onde z e w representam, respectivamente, os números complexos conjugados de z e w. O valor de z+w é:

- a) 1 i
- b) 2 + i
- c) -1 + 2i
- d) 2 2i
- e) -2 + 2i

Comentários

A partir do enunciado, temos:

$$w^{2} - z^{2} = 4 + 12i$$

$$(w - z)(w + z) = 4 + 12i$$

$$(z - w)(w + z) = -4 - 12i$$
 (I)

Ainda das informações do enunciado:

$$\frac{\overline{z} - \overline{w}}{\overline{z} - \overline{w}} = \frac{2 + 4i}{2 + 4i}$$
$$z - w = 2 - 4i \quad (II)$$

De (I) em (II), temos:

$$(2-4i)(w+z) = -4 - 12i$$

$$w+z = 2-2i$$

Gabarito: "d".

73. (IME/2006)

Sejam $a_1=1-i,\ a_n=r+si$ e $a_{n+1}=(r-s)+(r+s)i\ (n>1)$ termos de uma sequência. Determine, em função de n, os valores de r e s que tornam esta sequência uma progressão aritmética, sabendo que r e s são números reais e $i=\sqrt{-1}$.

Comentários

Para que a sequência do enunciado seja uma PA, devemos ter o seguinte:

$$a_{n+1} - a_n = p$$

$$-s + ri = p(I)$$

Fazendo
$$a_n = a_1 + (n - 1)p$$
:

$$a_{n+1} - a_n = p \Rightarrow a_{n+1} - (a_1 + (n-1)p) = p \Rightarrow a_{n+1} - a_1 - np + p = p$$

$$a_{n+1} - a_1 = np$$

$$r - s - 1 + (r + s + 1)i = np (II)$$

De (I) e (II), temos:

$$\begin{cases} -s + ri = p \\ r - s - 1 + (r + s + 1)i = np \end{cases}$$

$$\begin{cases} r - s - 1 = -ns \\ r + s + 1 = nr \end{cases} \Rightarrow \begin{cases} s = \frac{n - 2}{n^2 - 2n + 2} \\ r = \frac{n}{n^2 - 2n + 2} \end{cases}$$

Gabarito:
$$s = \frac{n-2}{n^2 - 2n + 2}$$
 e $r = \frac{n}{n^2 - 2n + 2}$

74. (IME/2004)

Sendo a,b e c números naturais em progressão aritmética e z um número complexo de módulo unitário, determine um valor para cada um dos números a,b,c e z de forma que eles satisfaçam a igualdade:

$$\frac{1}{z^a} + \frac{1}{z^b} + \frac{1}{z^c} = z^9$$

Comentários

Como a, b, c formam uma PA, temos:

$$(a,b,c) = (b-r,b,b+r)$$

Sendo z um complexo de módulo unitário, podemos escrever:

$$|z| = 1 \Rightarrow z = cis \theta$$

Assim, temos:

$$\frac{1}{z^{a}} + \frac{1}{z^{b}} + \frac{1}{z^{c}} = z^{9}$$

$$\frac{1}{z^{b-r}} + \frac{1}{z^{b}} + \frac{1}{z^{b+r}} = (cis \theta)^{9}$$

$$\frac{1}{z^{b}} \left(z^{r} + 1 + \frac{1}{z^{r}}\right) = cis (9\theta)$$

$$z^{-b} (z^{r} + 1 + z^{-r}) = cis (9\theta)$$

$$(cis\theta)^{-b} ((cis\theta)^{r} + 1 + (cis\theta)^{-r}) = cis (9\theta)$$

Multiplicando a equação por $(cis\theta)^b = cis(b\theta)$:

$$cis(r\theta) + 1 + cis(-r\theta) = cis(9\theta - b\theta)$$

$$\cos(r\theta) + isen(r\theta) + 1 + \cos(r\theta) - isen(r\theta) = \cos((9-b)\theta) + isen((9-b)\theta)$$
$$2\cos(r\theta) + 1 = \cos((9-b)\theta) + isen((9-b)\theta)$$

Igualando a parte real e a parte imaginária, obtemos o seguinte sistema:

$$\begin{cases} \cos((9-b)\theta) = 2\cos(r\theta) + 1\\ sen((9-b)\theta) = 0 \end{cases}$$

Como $sen((9-b)\theta) = 0$, temos que $cos((9-b)\theta) = \pm 1$. Então, temos:

$$\cos((9-b)\theta) = 1 \Rightarrow 2\cos(r\theta) + 1 = 1 \Rightarrow \cos(r\theta) = 0$$

Assim, uma possível solução é:

$$sen((9-b)\theta) = 0 \Rightarrow b = 4 e \theta = \pi$$

$$cos((9-b)\theta) = 2\cos(r\theta) + 1 \Rightarrow \cos(5\pi) = 2\cos(r\pi) + 1 \Rightarrow 2\cos(r\pi) = -2 \Rightarrow r = 1$$

$$\Rightarrow a = 3 e c = 5$$

Note que temos verificada a relação do enunciado:

$$\frac{1}{z^{a}} + \frac{1}{z^{b}} + \frac{1}{z^{c}} = z^{9}$$

$$\frac{1}{\left(cis(\pi)\right)^{3}} + \frac{1}{\left(cis(\pi)\right)^{4}} + \frac{1}{\left(cis(\pi)\right)^{5}} = \left(cis(\pi)\right)^{9}$$

$$cis(-3\pi) + cis(-4\pi) + cis(-5\pi) = cis(9\pi)$$

$$-1 + 1 + (-1) = -1$$

$$-1 = -1$$

Gabarito: a = 3; b = 4; c = 5; $z = cis(\pi)$

75. (IME/2003)

Seja z um número complexo de módulo unitário que satisfaz a condição $z^{2n} \neq -1$, onde n é um número inteiro positivo. Demonstre que $\frac{z^n}{1+z^{2n}}$ é um número real.

Comentários

Vamos provar por absurdo.

Vamos supor que $\frac{z^n}{1+z^{2n}}$ não seja real. Assim, temos:

$$\frac{z^n}{1+z^{2n}} \neq \left(\frac{\overline{z^n}}{1+z^{2n}}\right)$$
$$z^n (1+\overline{z^{2n}}) \neq (1+z^{2n})\overline{z^n}$$
$$z^n + |z|^{2n}\overline{z^n} \neq \overline{z^n} + z^n |z|^{2n}$$

Como |z| = 1,

$$z^n + \overline{z^n} \neq \overline{z^n} + z^n$$

 $0 \neq 0$ (ABSURDO)

Logo, $\frac{z^n}{1+z^{2n}}$ é um número real.

Gabarito: Demonstração

76. (IME/2001)

Dois números complexos são ortogonais se suas representações gráficas forem perpendiculares entre si. Prove que dois números complexos Z_1 e Z_2 são ortogonais se e somente se:

$$Z_1\overline{Z_2} + \overline{Z_1}Z_2 = 0$$

Obs: \overline{Z} indica o conjugado de um número complexo Z.

Comentários

Como a questão fala "se e somente se", devemos provar tanto a ida quanto a volta.

Vamos começar pela ida: Se $Z_1\overline{Z_2}+\overline{Z_1}Z_2=0$, prove que Z_1 e Z_2 são ortogonais.

$$Z_1\overline{Z_2} = -\overline{Z_1}Z_2$$

 θ_1 e θ_2 são os argumentos de Z_1 e Z_2 , respectivamente.

$$\begin{aligned} \theta_1 - \theta_2 &= \theta_2 - \theta_1 + (2k+1)\pi, k \in \mathbb{Z} \\ \theta_1 - \theta_2 &= \frac{(2k+1)\pi}{2} = \pm 90^{\circ} \end{aligned}$$

Logo Z_1 e Z_2 são ortogonais!

Volta: Se Z_1 e Z_2 são ortogonais, prove que $Z_1\overline{Z_2}+\overline{Z_1}Z_2=0$ Se $\theta_1-\theta_2=90^\circ$, temos:

$$Z_1 = |Z_1|(-sen\theta_2 + cos\theta_2 i)$$

$$Z_1\overline{Z_2} + \overline{Z_1}Z_2 =$$

$$\begin{split} Z_1\overline{Z_2} + \overline{Z_1}Z_2 &= \\ |Z_1|(-sen\theta_2 + cos\theta_2i)|Z_2|(cos\theta_2 - sen\theta_2i) + |Z_1|(-sen\theta_2 - cos\theta_2i)|Z_2|(cos\theta_2 + sen\theta_2i) \\ &= |Z_1||Z_2|(-sen\theta_2cos\theta_2 + sen^2\theta_2i + cos^2\theta_2i + sen\theta_2cos\theta_2 - sen\theta_2cos\theta_2 - sen^2\theta_2i - cos^2\theta_2i \\ &+ sen\theta_2cos\theta_2) = 0 \end{split}$$

O caso para $\theta_1 - \theta_2 = -90^\circ$ é completamente análogo. Sendo assim, a volta está provada. Logo, $Z_1\overline{Z_2} + \overline{Z_1}Z_2 = 0 \Leftrightarrow Z_1 \perp Z_2$.

Gabarito: Demonstração

77. (IME/2001)

Considere a matriz $A = (a_{ki})$, onde:

 $a_{kj}=k$ -ésimo termo do desenvolvimento de $(1+ji)^{54}$, com $k=1,\ldots,55; j=1,\ldots,55$ e $i=1,\ldots,55$ $\sqrt{-1}$.

- a) Calcule $a_{3,2} + a_{54,1}$.
- b) Determine o somatório dos elementos da coluna 55.
- c) Obtenha uma fórmula geral para os elementos da diagonal principal.

Comentários

Primeiro devemos escrever o termo geral desse binômio:

$$(1+ji)^{54} = \sum_{k=1}^{55} a_{kj} \Rightarrow a_{kj} = {54 \choose 54-k+1} (1)^{54-k+1} (ji)^{k-1} = {54 \choose 54-k+1} (ji)^{k-1}$$

O detalhe dessa questão é que, no desenvolvimento de um binômio, a variável contadora p do somatório varia de 0 até n. Nesse caso, o k varia de 1 até 55, então devemos fazer p = k - 1.

Analisando item por item, temos:

a)
$$a_{3,2} + a_{54,1}$$

$$= {54 \choose 54 - 3 + 1} (2i)^{3 - 1} + {54 \choose 54 - 54 + 1} (1i)^{54 - 1} = \frac{54!}{52! \, 2!} (2i)^2 + \frac{54!}{53! \, 1!} (i)^{53} = -5724 + 54i$$

b) Para obtermos a soma dos elementos da coluna 55 devemos fazer j=55.

$$\sum_{k=1}^{55} a_{k,55} = \sum_{k=1}^{55} {54 \choose 54 - k + 1} (55i)^{k-1} = (1 + 55i)^{54}$$

c) Para obtermos os temos da diagonal principal devemos fazer j = k

$$a_{k,k} = {54 \choose 55 - k} (ki)^{k-1}$$

Gabarito: a)
$$-5724 + 54i$$
, b) $(1 + 55i)^{54}$, c) $a_{k,k} = {54 \choose 55-k}(ki)^{k-1}$

78. (IME/1999)

Determine as raízes de $z^2 + 2iz + 2 - 4i = 0$ e localize-as no plano complexo, sendo i = $\sqrt{-1}$.

Comentários

Fazendo z = a + bi, temos:

$$(a+bi)^{2} + 2i(a+bi) + 2 - 4i = 0$$

$$a^{2} + 2abi - b^{2} + 2ia - 2b + 2 - 4i = 0$$

$$(a^{2} - b^{2} - 2b + 2) + (2a + 2ab - 4)i = 0$$

$$\begin{cases} 2a + 2ab - 4 = 0 & (i) \\ a^{2} - b^{2} - 2b + 2 = 0 & (ii) \end{cases}$$

De (i), temos:

$$a + ab = 2 \Rightarrow b = \frac{2 - a}{a}$$

De (ii), temos:

De
$$(ii)$$
, temos:
$$a^2-\left(\frac{2-a}{a}\right)^2-2\left(\frac{2-a}{a}\right)+2=0$$

$$a^4+3a^2-4=0\Rightarrow \begin{cases} a=1\ e\ b=1\\ a=-1\ e\ b=-3 \end{cases}$$

$$z_1=1+i\ e\ z_2=-1-3i$$
 A representação geométrica fica:

Gabarito: $z = \{1 + i, -1 - 3i\}$