Algebra: Chapter 0 Exercises

Chapter 3, Section 7
Complexes and homology

David Melendez

December 31, 2018

Problem 7.1. Assume the complex

$$\cdots \longrightarrow 0 \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} 0 \longrightarrow \cdots$$

is exact. Prove $M \cong 0$.

Proof. By exactness, we have that $M = \ker g = \operatorname{im} f = 0$.

Problem 7.2. Assume that the complex

$$\cdots \longrightarrow 0 \longrightarrow M \stackrel{\varphi}{\longrightarrow} M' \longrightarrow 0 \longrightarrow \cdots$$

is exact. Prove that $M \cong M'$.

Proof. By exactness, we have that $\ker \varphi = \operatorname{im} \{0 : 0 \to M\} = 0$ and $\operatorname{im} \varphi = \ker \{0 : M' \to 0\} = M'$ Thus φ is an isomorphism, as desired.

Problem 7.3. Assume the complex

$$0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\varphi}{\longrightarrow} M' \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$$

is exact. Show that up to natural identifications, $L = \ker \varphi$ and $N = \operatorname{coker} \varphi$.

Proof. By exactness, we have that $\ker \varphi = \operatorname{im} \alpha \cong L$ (since α is injective), and coker $\varphi = M'/\operatorname{im} \varphi = M'/\ker \beta \cong N$, since β is surjective. \square

Problem 7.4. Construct short exact sequences of \mathbb{Z} – modules

$$(a) 0 \longrightarrow \mathbb{Z}^{\oplus \mathbb{N}} \stackrel{f}{\longrightarrow} \mathbb{Z}^{\oplus \mathbb{N}} \stackrel{g}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

$$(b) 0 \longrightarrow \mathbb{Z}^{\oplus \mathbb{N}} \xrightarrow{f} \mathbb{Z}^{\oplus \mathbb{N}} \xrightarrow{g} \mathbb{Z}^{\oplus \mathbb{N}} \longrightarrow 0$$

Solution.

- (a) Let $f(n_1, n_2, ...) = (0, n_1, n_2, ...)$ and $g(n_1, n_2, ...) = n_1$.
- (b) Let $f(n_1, n_2, ...) = (n_1, 0, n_2, 0, n_3, ...)$ and $g(n_1, b_2, ...) = (n_2, n_4, n_6, ...)$.

Problem 7.5. Assume that the complex

$$\cdots \longrightarrow L \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} N \longrightarrow \cdots$$

is exact and that L and N are Noetherian. Prove that M is Noetherian.

Proof. First, nt hat since L is Noetherian, we have that im f is Noetherian, since it is the homomorphic image of a Noetherian module. Next, note hat M/im f = M/ker g is a submodule of N, and hence is also Noetherian.

Therefore, since im f and M/im f are Noetherian, we have that M is Noetherian, as desired.

Problem 7.7. Let

$$0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0$$

be a short exact equence of R-modules, and let L be an R-module.

(i) Prove that athere is an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R\operatorname{-\mathbf{Mod}}}(P,L) \longrightarrow \operatorname{Hom}_{R\operatorname{-\mathbf{Mod}}}(N,L) \longrightarrow \operatorname{Hom}_{R\operatorname{-\mathbf{Mod}}}(M,L)$$

(ii) Let M be cyclic R-module, so that $M \cong R/I$ for a (left-)ideal I, and let N be another R-module. Prove that $\operatorname{Hom}_{R\text{-}\mathbf{Mod}}(M,N) \cong \{n \in N | (\forall a \in I), an = 0\}$. For $a,b \in \mathbb{Z}$, prove that $\operatorname{Hom}_{\mathbf{Ab}}(\mathbb{Z}/a\mathbb{Z},\mathbb{Z}/b\mathbb{Z}) \cong \mathbb{Z}/\gcd(a,b)\mathbb{Z}$.