## **EXAMPLE 2.3 Calculation of Gravity at various latitudes and heights**



Polar radius,  $R_P = (1 - f)R_0$ Eccentricity, e 6356752.314 m 0.081819191

Surface acceleration due to gravity (Somigliana model)

From (2.134),

$$g_0(L_b) \approx 9.7803253359 \quad \frac{(1+0.001931853 \sin^2 L_b)}{\sqrt{1-e^2 \sin^2 L_b}} \text{ m s}^{-2}$$

Down component of acceleration due to gravity

From (2.139),

$$g_{b,D}^{n}(L_{b},h_{b}) \approx g_{0}(L_{b}) \left\{ 1 - \frac{2}{R_{0}} \left[ 1 + f \left( 1 - 2 \sin^{2} L_{b} \right) + \frac{\omega_{ie}^{2} R_{0}^{2} R_{P}}{\mu} \right] h_{b} + \frac{3}{R_{0}^{2}} h_{b}^{2} \right\}$$

North component of acceleration due to gravity

From (2.140),  $g_{b,N}^{n}(L_b, h_b) \approx -8.08 \times 10^{-9} h_b \sin 2L_b \text{ m s}^{-2}$ 

| Case                               | (a)         | (b)      | (c)      | (d)      | (e)      | (f)      |
|------------------------------------|-------------|----------|----------|----------|----------|----------|
| $g_0(L_b) \approx$                 | 9.806197771 | 9.806198 | 9.806198 | 9.780325 | 9.832185 | 9.819177 |
| $g_{b,D}^n(L_b,h_b) \approx$       | 9.803112948 | 9.806198 | 9.775415 | 9.777238 | 9.829102 | 9.816093 |
| $g_{b,N}^{n}(L_{b},h_{b}) \approx$ | -0.00000808 | 0        | -8.1E-05 | 0        | -9.9E-22 | -7E-06   |