Homework Week 03

Md Ariful Haque Miah

9/18/2022

```
# Answer to the problem 2.32.(b).
Inspector <- c (1:12)
\texttt{Caliper1} \leftarrow \texttt{c(0.265,0.265,0.266,0.267,0.267,0.265,0.267,0.267,0.265,0.268,0.268,0.265)}
\texttt{Caliper2} \leftarrow \texttt{c(0.264,0.265,0.264,0.266,0.267,0.268,0.264,0.265,0.265,0.267,0.268,0.269)}
Inspector <- as.character(Inspector)</pre>
Caliper1 <- as.numeric(Caliper1)</pre>
Caliper2 <- as.numeric(Caliper2)</pre>
dat <- data.frame(Inspector, Caliper1, Caliper2)</pre>
dat
##
      Inspector Caliper1 Caliper2
## 1
                    0.265
                              0.264
               1
                    0.265
                              0.265
## 2
               2
                    0.266
## 3
               3
                              0.264
## 4
               4
                    0.267
                              0.266
## 5
               5
                    0.267
                              0.267
                    0.265
                              0.268
## 6
               6
## 7
               7
                    0.267
                              0.264
## 8
               8
                    0.267
                              0.265
## 9
              9
                    0.265
                              0.265
## 10
              10
                    0.268
                              0.267
## 11
              11
                    0.268
                              0.268
## 12
              12
                    0.265
                              0.269
str(dat)
## 'data.frame':
                     12 obs. of 3 variables:
                       "1" "2" "3" "4" ...
    $ Inspector: chr
    $ Caliper1 : num 0.265 0.265 0.266 0.267 0.267 0.265 0.267 0.267 0.265 0.268 ...
    $ Caliper2 : num 0.264 0.265 0.264 0.266 0.267 0.268 0.264 0.265 0.265 0.267 ...
t.test(dat$Caliper1,dat$Caliper2,paired=TRUE,alternative = c("two.sided"))
##
##
    Paired t-test
##
## data: dat$Caliper1 and dat$Caliper2
## t = 0.43179, df = 11, p-value = 0.6742
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.001024344 0.001524344
## sample estimates:
## mean of the differences
##
                    0.00025
```

```
# P-value is 0.67
# Answer to the problem 2.34.(b).
grider <- c("S1/1", "S2/1", "S3/1", "S4/1", "S5/1", "S2/1", "S2/2", "S2/3", "S2/4")
Kmethod \leftarrow c(1.186, 1.151, 1.322, 1.339, 1.200, 1.402, 1.365, 1.537, 1.559)
Lmethod \leftarrow c(1.061,0.992,1.063,1.062,1.065,1.178,1.037,1.086,1.052)
grider <- as.factor(grider)</pre>
Kmethod <- as.numeric(Kmethod)</pre>
Lmethod <- as.numeric(Lmethod)</pre>
dat <- data.frame(grider, Kmethod, Lmethod)</pre>
dat
    grider Kmethod Lmethod
##
      S1/1 1.186 1.061
## 1
## 2
      S2/1 1.151 0.992
## 3
      S3/1 1.322 1.063
## 4
      S4/1 1.339 1.062
## 5
      S5/1 1.200 1.065
## 6 S2/1 1.402 1.178
      S2/2 1.365
## 7
                     1.037
## 8
      S2/3 1.537
                     1.086
## 9
      S2/4 1.559 1.052
str(dat)
## 'data.frame':
                    9 obs. of 3 variables:
## $ grider : Factor w/ 8 levels "S1/1", "S2/1", ...: 1 2 6 7 8 2 3 4 5
## $ Kmethod: num 1.19 1.15 1.32 1.34 1.2 ...
## $ Lmethod: num 1.061 0.992 1.063 1.062 1.065 ...
t.test(dat$Kmethod,dat$Lmethod,paired=TRUE,alternative = c("two.sided"))
##
## Paired t-test
##
## data: dat$Kmethod and dat$Lmethod
## t = 6.0819, df = 8, p-value = 0.0002953
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1700423 0.3777355
## sample estimates:
## mean of the differences
                 0.2738889
# P-value is 0.0002953
# Answer to the problem 2.34.(d).
qqnorm(dat$Kmethod,main="Karlsruhe Method")
qqline(dat$Kmethod)
```

Karlsruhe Method

qqnorm(dat\$Lmethod,main = "Lehigh Method")
qqline(dat\$Lmethod)

Lehigh Method

If we ignore some outliers especially from Lehigh Method then both the sample's # are approximately normally distributed. Since, almost all points fall

```
# on a straight line.

# Answer to the problem 2.34.(e).
qqnorm(dat$Kmethod-dat$Lmethod,main="Difference of NPP between two methods")
qqline(dat$Kmethod-dat$Lmethod)
```

Difference of NPP between two methods

If we ignore some outliers for the diffrence in ratios of the two method's
then it is approximately normally distributed. Since, almost all points fall
on a straight line.

Answer to the problem 2.34.(f).
As in any t-test, the assumption of normality is of only little importance.
In the paired t-test, the assumption of normality applies to the distribution
of the differences. That is, the individual sample measurements do not have
to be normally distributed, but their difference.

Answer to the problem 2.29.(e).
Temp95 <- c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
Temp100 <- c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
dat <- data.frame(Temp95,Temp100)
dat

```
##
     Temp95 Temp100
## 1 11.176
              5.263
## 2 7.089
              6.748
## 3 8.097
              7.461
## 4 11.739
              7.015
## 5 11.291
              8.133
## 6 10.759
              7.418
## 7 6.467
              3.772
```

```
## 8 8.315 8.963
```

```
# Normality assumptions check
qqnorm(dat$Temp95,main="Normal Probability Plot Temp95",col="blue",ylab="95 degree celcius")
qqline(dat$Temp95)
```

Normal Probability Plot Temp95

qqnorm(dat\$Temp100,main="Normal Probability Plot Temp100",col="red",ylab="100 degree celcius")
qqline(dat\$Temp100)

Normal Probability Plot Temp100


```
# No significant deviations been observed from both (Temp 95 and Temp 100) of the
# the normality assumptions.
# Answer to the problem 2.29.(f).
library(pwr)
pwr.t.test(n=8,d=1.34,sig.level = 0.05,power = NULL,type = c("two.sample"), alternative = c("two.sided"
##
##
        Two-sample t test power calculation
##
##
                  n = 8
##
                  d = 1.34
         sig.level = 0.05
##
##
             power = 0.7030143
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
Source Code
Inspector \leftarrow c (1:12)
Caliper1 \leftarrow c(0.265,0.265,0.266,0.267,0.265,0.265,0.267,0.265,0.268,0.268,0.265)
Caliper2 <- c(0.264,0.265,0.264,0.266,0.267,0.268,0.264,0.265,0.265,0.267,0.268,0.269)
Inspector <- as.character(Inspector)</pre>
Caliper1 <- as.numeric(Caliper1)</pre>
Caliper2 <- as.numeric(Caliper2)</pre>
dat <- data.frame(Inspector,Caliper1,Caliper2)</pre>
dat
str(dat)
t.test(dat$Caliper1,dat$Caliper2,paired=TRUE,alternative = c("two.sided"))
grider <- c("S1/1", "S2/1", "S3/1", "S4/1", "S5/1", "S2/1", "S2/2", "S2/3", "S2/4")
```

```
Kmethod \leftarrow c(1.186, 1.151, 1.322, 1.339, 1.200, 1.402, 1.365, 1.537, 1.559)
Lmethod \leftarrow c(1.061, 0.992, 1.063, 1.062, 1.065, 1.178, 1.037, 1.086, 1.052)
grider <- as.factor(grider)</pre>
Kmethod <- as.numeric(Kmethod)</pre>
Lmethod <- as.numeric(Lmethod)</pre>
dat <- data.frame(grider,Kmethod,Lmethod)</pre>
dat
t.test(dat$Kmethod,dat$Lmethod,paired=TRUE,alternative = c("two.sided"))
qqnorm(dat$Kmethod,main="Karlsruhe Method")
qqline(dat$Kmethod)
qqnorm(dat$Lmethod,main = "Lehigh Method")
qqline(dat$Lmethod)
qqnorm(dat$Kmethod-dat$Lmethod, main="Difference of NPP between two methods")
qqline(dat$Kmethod-dat$Lmethod)
Temp95 <- c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
Temp100 <- c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
dat <- data.frame(Temp95,Temp100)</pre>
qqnorm(dat$Temp95,main="Normal Probability Plot Temp95",col="blue",ylab="95 degree celcius")
qqline(dat$Temp95)
qqnorm(dat$Temp100,main="Normal Probability Plot Temp100",col="red",ylab="100 degree celcius")
qqline(dat$Temp100)
library(pwr)
pwr.t.test(n=8,d=1.34,sig.level = 0.05,power = NULL,type = c("two.sample"), alternative = c("two.sided"
```