Serial No. :

Filed : Page : 3 of 43

## Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

## **Listing of Claims**:

1-8 (canceled)

Serial No.:

Filed

Page : 4 of 43

9 (new): A method of inhibiting tumor growth which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

wherein

- $A^0=Gly$ , Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO $_2$ , OH, H or CH $_3$ ), Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^2 = pGlu, \ Gly, \ Ala, \ Val, \ Gln, \ Asn, \ Leu, \ Ile, \ Met, \ p-X-Phe$   $(where \ X = F, \ Cl, \ Br, \ NO_2, \ OH, \ H \ or \ CH_3), \ Trp, \ Cys, \ \beta-Nal, \ His,$   $1-methyl-His, \ or \ 3-methyl-His;$
- $A^4 = Ala, \ Val, \ Gln, \ Asn, \ Gly, \ Leu, \ Ile, \ Nle, \ \alpha\text{-aminobutyric}$  acid, Met, p-X-Phe (where X = F, Cl, Br, NO2, OH, H or CH3), Trp, Cys, or  $\beta$ -Nal;
- $A^5$  = Gln, Asn, Gly, Ala, Leu, Ile, Nle,  $\alpha$ -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH<sub>3</sub>), Trp, Thr, or  $\beta$ -Nal;
- $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;

 $A^7 = 1$ -methyl-His, 3-methyl-His or His;

Serial No.:

Filed

Page : 5 of 43

provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu; further provided that, when  $A^0$  is deleted and  $A^1$  is pGlu,  $R_1$  must be H and  $R_2$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

wherein  $R_3$  is  $CHR_{20}$ - $(CH_2)_{n1}$  (where  $R_{20}$  is either of H or OH; and n1 is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH, or CH<sub>3</sub>),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either  $OR_4$ , or



where  $R_4$  is any of  $C_{1\text{-}20}$  alkyl,  $C_{3\text{-}20}$  alkenyl,  $C_{3\text{-}20}$  alkinyl, phenyl, naphthyl, or  $C_{7\text{-}10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1\text{-}12}$  alkyl,  $C_{7\text{-}10}$  phenylalkyl, lower acyl, or



where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

Serial No.:

Filed

Page : 6 of 43

(II):

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):



wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$ 

phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that

Serial No.:

Filed

Page : 7 of 43

when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

10 (new): The method of claim 9 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p$ -Glu, D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

 $A^6 = Sar, Gly, D-Phe, or D-Ala;$ 

 $A^7 = His;$ 

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2$ - $CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is CHOH- $CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala, or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is  $NHR_6$ , and  $R_6$  is  $NH_2$ ; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br,  $NO_2$ , OH or  $CH_3$ ); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

11 (new): The method of claim 10 wherein said therapeutic peptide is of the formula: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

12 (new): The method of claim 10 wherein said therapeutic peptide is of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

Serial No.:

Filed

Page : 8 of 43

13 (new): The method of claim 10 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH,.

14 (new): The method of claim 9 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$ alkyl,  $C_{3-20}$ alkenyl,  $C_{3-20}$ alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F<sub>5</sub>-Phe.

15 (new): The therapeutic peptide of claim 14 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

16 (new): The therapeutic peptide of claim 10 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH,.

17 (new): The method of claim 9 wherein said tumor is located in the gastrointestinal tract, pancreas, colon, prostrate or breast.

1

18 (new): The method of claim 9 wherein said tumor is a small-cell lung carcinoma.

19 (new): The method of claim 9 wherein said effective amount is 0.5  $\mu g/kg/day$  to 5 mg/kg/day.

20 (new): The method of claim 9 wherein said effective amount is 250 mg/patient/day.

Serial No.:

Filed

Page : 9 of 43

21 (new): A method of inhibiting pancreatic adenocarcinomas which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

wherein

- $A^0 = Gly$ , Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^2$  = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys,  $\beta$ -Nal, His, 1-methyl-His, or 3-methyl-His;
- $A^4$  = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle,  $\alpha$ -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;
- $A^5$  = Gln, Asn, Gly, Ala, Leu, Ile, Nle,  $\alpha$ -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH<sub>3</sub>), Trp, Thr, or  $\beta$ -Nal;
- $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;
- $A^7$  = 1-methyl-His, 3-methyl-His or His; provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu; further provided

Serial No.:

Filed : : Page : 10 of 43

that, when  ${\rm A^0}$  is deleted and  ${\rm A^1}$  is pGlu,  ${\rm R_1}$  must be H and  ${\rm R_2}$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):

$$Z_1$$
 O  $\parallel$   $-NH-CH-R_3-C-V$ ,

wherein  $\rm R_3$  is  $\rm CHR_{20}\text{-}(\rm CH_2)_{\,\rm nl}$  (where  $\rm R_{20}$  is either of H or OH; and nl is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br,  $NO_2$ , OH, or  $CH_3$ ),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either OR4, or



where  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, lower acyl, or



where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

Serial No.:

Filed

Page : 11 of 43

(II):

$$Z_4$$
  $Z_1$   $Z_2$ 
 $-N$ —  $CH$ —  $C-N$ 
 $Z_3$ 

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):



wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

Serial No. :

Filed

Page : 12 of 43

22 (new): The method of claim 21 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p-Glu$ , D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

A<sup>6</sup> = Sar, Gly, D-Phe, or D-Ala;

 $A^7 = His;$ 

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2$ - $CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is CHOH- $CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala, or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is  $NHR_6$ , and  $R_6$  is  $NH_2$ ; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br,  $NO_2$ , OH or  $CH_3$ ); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

23 (new): The method of claim 22 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

24 (new): The method of claim 22 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

25 (new): The method of claim 22 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH<sub>2</sub>.

Serial No.:

Filed

Page : 13 of 43

26 (new): The method of claim 21 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$ alkyl,  $C_{3-20}$ alkenyl,  $C_{3-20}$ alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F<sub>5</sub>-Phe.

27 (new): The therapeutic peptide of claim 26 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

28 (new): The therapeutic peptide of claim 22 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH<sub>2</sub>.

29 (new): The method of claim 21 wherein said effective amount is 0.5  $\mu g/kg/day$  to 5 mg/kg/day.

30 (new): The method of claim 21 wherein said effective amount is 250 mg/patient/day.

31 (new): A method of inhibiting gastric acid secretion which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

wherein

 $A^0=Gly$ , Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal, or is deleted;

Serial No.:

Filed

Page : 14 of 43

 $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;

- $A^2$  = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys,  $\beta$ -Nal, His, 1-methyl-His, or 3-methyl-His;
- $A^4 = Ala, \ Val, \ Gln, \ Asn, \ Gly, \ Leu, \ Ile, \ Nle, \ \alpha\text{-aminobutyric}$  acid, Met, p-X-Phe (where X = F, Cl, Br, NO2, OH, H or CH3), Trp, Cys, or  $\beta\text{-Nal};$
- $A^5 = Gln, \ Asn, \ Gly, \ Ala, \ Leu, \ Ile, \ Nle, \ \alpha\text{-aminobutyric}$  acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH\_3), Trp, Thr, or  $\beta\text{-Nal};$
- $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;
- $A^7$  = 1-methyl-His, 3-methyl-His or His; provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu; further provided that, when  $A^0$  is deleted and  $A^1$  is pGlu,  $R_1$  must be H and  $R_2$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):

$$\begin{bmatrix} Z_1 & O \\ | & \parallel \\ -NH-CH-R_3-C-V \end{bmatrix}$$

wherein  $R_3$  is  $CHR_{20}$ - $(CH_2)_{n1}$  (where  $R_{20}$  is either of H or OH; and n1 is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser,

Serial No.:

Filed

Page : 15 of 43

Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br,  $NO_2$ , OH, or  $CH_3$ ),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either  $OR_4$ , or



where  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, lower acyl, or



where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

Serial No.:

Filed

Page : 16 of 43

(III):



wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

32 (new): The method of claim 31 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p-Glu$ , D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

A<sup>6</sup> = Sar, Gly, D-Phe, or D-Ala;

 $A^7 = His;$ 

Serial No. :

Filed

Page : 17 of 43

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2-CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is  $CHOH-CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is NHR<sub>6</sub>, and  $R_6$  is NH<sub>2</sub>; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

33 (new): The method of claim 32 wherein said therapeutic peptide is of the formula: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

34 (new): The method of claim 32 wherein said therapeutic peptide is of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

35 (new): The method of claim 32 wherein said therapeutic peptide is of the formula: D-Cpa-Gln-Trp-Ala-Val-Gly-His- $\beta$ -Leu-NH<sub>2</sub>.

36 (new): The method of claim 31 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$ alkyl,  $C_{3-20}$ alkenyl,  $C_{3-20}$ alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F<sub>5</sub>-Phe.

37 (new): The therapeutic peptide of claim 36 of the formula: D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

Serial No. :

Filed

Page : 18 of 43

38 (new): The therapeutic peptide of claim 32 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH<sub>2</sub>.

39 (new): The method of claim 31 wherein said effective amount is  $0.5~\mu g/kg/day$  to 5~mq/kg/day.

40 (new): A method of treating motility disorders of the GI tract which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

wherein

- $A^0=$  Gly, Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^2$  = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys,  $\beta$ -Nal, His, 1-methyl-His, or 3-methyl-His;
- $A^4 = Ala, \ Val, \ Gln, \ Asn, \ Gly, \ Leu, \ Ile, \ Nle, \ \alpha\text{-aminobutyric}$  acid, Met, p-X-Phe (where X = F, Cl, Br, NO2, OH, H or CH3), Trp, Cys, or  $\beta$ -Nal;
- $A^5$  = Gln, Asn, Gly, Ala, Leu, Ile, Nle,  $\alpha$ -aminobutyric

Serial No. :

Filed:

Page : 19 of 43

acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or  $CH_3$ ), Trp, Thr, or  $\beta$ -Nal;

 $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;

 $A^7$  = 1-methyl-His, 3-methyl-His or His; provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu;

further provided that, when  $A^0$  is deleted and  $A^1$  is pGlu,  $R_1$  must be H and  $R_2$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):

$$Z_1$$
 O  $\parallel$  -NH-CH-R<sub>3</sub>-C-V,

wherein  $R_3$  is  $CHR_{20}$ - $(CH_2)_{n1}$  (where  $R_{20}$  is either of H or OH; and n1 is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH, or CH<sub>3</sub>),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either  $OR_4$ , or



where  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, lower acyl, or

Serial No.:

Filed

Page : 20 of 43



where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

(II):

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):

$$Z_{20}$$
 $-N$ 
 $Z_{30}$ 

wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further provided that, for the

Serial No.:

Filed

Page : 21 of 43

formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

41 (new): The method of claim 40 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p-Glu$ , D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

 $A^6 = Sar, Gly, D-Phe, or D-Ala;$ 

 $A^7 = His;$ 

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2$ - $CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is CHOH- $CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala, or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is  $NHR_6$ , and  $R_6$  is  $NH_2$ ; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br,  $NO_2$ , OH or  $CH_3$ ); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

42 (new): The method of claim 41 wherein said therapeutic peptide is of the formula: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

Serial No.:

Filed

Page : 22 of 43

43 (new): The method of claim 41 wherein said therapeutic peptide is of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

44 (new): The method of claim 41 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH<sub>2</sub>.

45 (new): The method of claim 40 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl,

naphthyl, or  $C_{7\text{--}10}$  phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F\_s-Phe.

46 (new): The therapeutic peptide of claim 45 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

47 (new): The therapeutic peptide of claim 41 of the formula:

 $D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-\beta-Leu-NH_2$ .

- 48 (new): The method of claim 40 wherein said effective amount is 0.5  $\mu g/kg/day$  to 5 mg/kg/day.
- 49 (new): A method of suppressing amylase release which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

Serial No.:

Filed

Page : 23 of 43

## wherein

- $A^0 = Gly$ , Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^2$  = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys,  $\beta$ -Nal, His, 1-methyl-His, or 3-methyl-His;
- $A^4$  = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle,  $\alpha$ -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;
- $A^5$  = Gln, Asn, Gly, Ala, Leu, Ile, Nle,  $\alpha$ -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH<sub>3</sub>), Trp, Thr, or  $\beta$ -Nal;
- $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;
- $A^7$  = 1-methyl-His, 3-methyl-His or His; provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu; further provided that, when  $A^0$  is deleted and  $A^1$  is pGlu,  $R_1$  must be H and  $R_2$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

Serial No. :

Filed

Page : 24 of 43

(I):

wherein  $R_3$  is  $CHR_{20}$ - $(CH_2)_{n1}$  (where  $R_{20}$  is either of H or OH; and n1 is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH, or CH<sub>3</sub>),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either OR<sub>4</sub>, or



where  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, lower acyl, or



where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

(II):

$$\begin{bmatrix}
Z_4 & Z_1 & Q \\
-N - CH - C - N
\end{bmatrix}$$

Serial No. :

Filed

Page : 25 of 43

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):



wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

50 (new): The method of claim 49 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p\text{-Glu}$ , D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

Serial No.:

Filed

Page : 26 of 43

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

 $A^6 = Sar, Gly, D-Phe, or D-Ala;$ 

 $A^7 = His;$ 

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2-CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is  $CHOH-CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is NHR $_6$ , and  $R_6$  is NH $_2$ ; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO $_2$ , OH or CH $_3$ ); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

51 (new): The method of claim 50 wherein said therapeutic peptide is of the formula: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

52 (new): The method of claim 50 wherein said therapeutic peptide is of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

 $\,$  53 (new): The method of claim 50 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH<sub>2</sub>.

54 (new): The method of claim 49 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F<sub>5</sub>-Phe.

Serial No.:

Filed

Page : 27 of 43

55 (new): The therapeutic peptide of claim 54 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

56 (new): The therapeutic peptide of claim 50 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His- $\beta$ -Leu-NH<sub>2</sub>.

57 (new): The method of claim 49 wherein said effective amount is  $0.5 \mu g/kg/day$  to 5 mg/kg/day.

58 (new): A method of treating cancer cachexia which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

wherein

- $A^0=$  Gly, Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^2$  = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys,  $\beta$ -Nal, His, 1-methyl-His, or 3-methyl-His;
- $A^4$  = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle,  $\alpha$ -aminobutyric

Serial No.:

Filed

Page : 28 of 43

acid, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or  $CH_3$ ), Trp, Cys, or  $\beta$ -Nal;

 $A^5 = Gln, \ Asn, \ Gly, \ Ala, \ Leu, \ Ile, \ Nle, \ \alpha\text{-aminobutyric}$  acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH\_3), Trp, Thr, or  $\beta\text{-Nal};$ 

 $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;

 $A^7 = 1$ -methyl-His, 3-methyl-His or His;

provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu; further provided that, when  $A^0$  is deleted and  $A^1$  is pGlu,  $R_1$  must be H and  $R_2$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):

wherein  $R_3$  is  $CHR_{20}$ - $(CH_2)_{n1}$  (where  $R_{20}$  is either of H or OH; and n1 is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH, or  $CH_3$ ),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either  $OR_4$ , or



Serial No.:

Filed

Page : 29 of 43

where  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, lower acyl, or Applicant: Coy et al.



where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

(II):

$$Z_4$$
  $Z_1$   $Q$   $Z_2$   $Z_2$   $Z_3$ 

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):



wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when

Serial No. :

Filed

Page : 30 of 43

either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further

provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

59 (new): The method of claim 58 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p-Glu$ , D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

 $A^6$  = Sar, Gly, D-Phe, or D-Ala;

 $A^7 = His;$ 

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2$ - $CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is CHOH- $CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala, or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is  $NHR_6$ , and  $R_6$  is  $NH_2$ ; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br,  $NO_2$ , OH or  $CH_3$ ); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

Serial No.:

Filed

Filed : Page : 31 of 43

60 (new): The method of claim 59 wherein said therapeutic peptide is of the formula: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

61 (new): The method of claim 59 wherein said therapeutic peptide is of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

62 (new): The method of claim 59 wherein said therapeutic peptide is of the formula: D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH,.

63 (new): The method of claim 58 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$ alkyl,  $C_{3-20}$ alkenyl,  $C_{3-20}$ alkinyl, phenyl, naphthyl, or  $C_{7-10}$ phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F<sub>5</sub>-Phe.

64 (new): The therapeutic peptide of claim 63 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

65 (new): The therapeutic peptide of claim 59 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH<sub>2</sub>.

66 (new): The method of claim 58 wherein said effective amount is  $0.5 \, \mu g/kg/day$  to  $5 \, mg/kg/day$ .

Serial No.:

Filed

Page : 32 of 43

67 (new): A method of inhibiting growth hormone release which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

wherein

- $A^0=$  Gly, Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>),  $F_5$ -Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^2$  = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys,  $\beta$ -Nal, His, 1-methyl-His, or 3-methyl-His;
- $A^4 = Ala, \ Val, \ Gln, \ Asn, \ Gly, \ Leu, \ Ile, \ Nle, \ \alpha\text{-aminobutyric}$  acid, Met, p-X-Phe (where X = F, Cl, Br, NO2, OH, H or CH3), Trp, Cys, or  $\beta$ -Nal;
- $A^5$  = Gln, Asn, Gly, Ala, Leu, Ile, Nle,  $\alpha$ -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH<sub>3</sub>), Trp, Thr, or  $\beta$ -Nal;
- $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;
- $A^7 = 1$ -methyl-His, 3-methyl-His or His;

Serial No.:

Filed

Page : 33 of 43

provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu; further provided that, when  $A^0$  is deleted and  $A^1$  is pGlu,  $R_1$  must be H and  $R_2$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

wherein  $R_3$  is  $CHR_{20}$ - $(CH_2)_{n1}$  (where  $R_{20}$  is either of H or OH; and n1 is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val,

Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH, or CH<sub>3</sub>),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either  $OR_4$ , or



where  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, lower acyl, or



where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

Serial No. :

Filed

Page : 34 of 43

(II):

$$\begin{bmatrix}
Z_4 & Z_1 & Q & Z_2 \\
-N - CH - C - N & & \\
& Z_3
\end{bmatrix}$$

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):



wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

Serial No. :

Filed

Page : 35 of 43

68 (new): The method of claim 67 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p-Glu$ , D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

A<sup>6</sup> = Sar, Gly, D-Phe, or D-Ala;

 $A^7 = His;$ 

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2-CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is  $CHOH-CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is NHR<sub>6</sub>, and  $R_6$  is NH<sub>2</sub>; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

69 (new): The method of claim 68 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

70 (new): The method of claim 68 wherein said therapeutic peptide is of the formula:  $\frac{1}{2}$ 

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

71 (new): The method of claim 68 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH<sub>2</sub>.

Serial No.:

Filed

Page : 36 of 43

72 (new): The method of claim 67 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F<sub>5</sub>-Phe.

73 (new): The therapeutic peptide of claim 72 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

74 (new): The therapeutic peptide of claim 68 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH<sub>2</sub>.

75 (new): The method of claim 67 wherein said growth hormone is a factor in the progression of muscular dystrophy in a patient.

76 (new): The method of claim 67 wherein said growth hormone is a factor in the onset of diabetes in a patient.

77 (new): The method of claim 67 wherein said growth hormone is a factor in the development of diabetes-related retinopathy in a patient.

78 (new): The method of claim 67 wherein said effective amount is 0.5  $\mu g/kg/day$  to 5 mg/kg/day.

79 (new): The method of claim 67 wherein said effective amount is 0.01  $\mu g/kg/day$  to 1000  $\mu g/kg/day$ .

Serial No.:

Filed

Page : 37 of 43

80 (new): The method of claim 67 wherein said effective amount is 0.1  $\mu g/kg/day$  to 100  $\mu g/kg/day$ .

81 (new): A method of treating artherosclerosis which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$ 
 $R_2$ 

wherein

- $A^0=Gly$ , Nle,  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^1$  = the D or L-isomer of any of pGlu, Nle, or  $\alpha$ -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, or  $\beta$ -Nal, or is deleted;
- $A^2$  = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys,  $\beta$ -Nal, His, 1-methyl-His, or 3-methyl-His;
- $A^4 = Ala, \ Val, \ Gln, \ Asn, \ Gly, \ Leu, \ Ile, \ Nle, \ \alpha\text{-aminobutyric}$  acid, Met, p-X-Phe (where X = F, Cl, Br, NO2, OH, H or CH3), Trp, Cys, or  $\beta\text{-Nal};$
- $A^5$  = Gln, Asn, Gly, Ala, Leu, Ile, Nle,  $\alpha\text{-aminobutyric}$  acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or  $CH_3)$ , Trp, Thr, or  $\beta\text{-Nal}$ ;

Serial No.:

Filed

Page : 38 of 43

 $A^6$  = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO<sub>2</sub>, OH, H or CH<sub>3</sub>), Trp, Cys, or  $\beta$ -Nal;

 $A^7$  = 1-methyl-His, 3-methyl-His or His; provided that, if  $A^0$  is present,  $A^1$  cannot be pGlu; further provided that, if  $A^0$  or  $A^1$  is present,  $A^2$  cannot be pGlu; further provided that, when  $A^0$  is deleted and  $A^1$  is pGlu,  $R_1$  must be H and  $R_2$  must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):

wherein  $R_3$  is  $CHR_{20}$ - $(CH_2)_{n1}$  (where  $R_{20}$  is either of H or OH; and n1 is either of 1 or 0), or is deleted, and  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH, or CH<sub>3</sub>),  $F_5$ -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or  $\beta$ -Nal; and V is either OR<sub>4</sub>, or



where  $R_4$  is any of  $C_{1\text{--}20}$  alkyl,  $C_{3\text{--}20}$  alkenyl,  $C_{3\text{--}20}$  alkinyl, phenyl, naphthyl, or  $C_{7\text{--}10}$  phenylalkyl, and each  $R_5$ , and  $R_6$ , independently, is any of H,  $C_{1\text{--}12}$  alkyl,  $C_{7\text{--}10}$  phenylalkyl, lower acyl, or



Serial No.:

Filed

Page : 39 of 43

Η

where  $R_{22}$  is any of H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl, or lower acyl; provided that, when one of  $R_5$  or  $R_6$  is  $-NR_{22}$ , the other is H;

(II):

wherein  $Z_1$  is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu,  $\beta$ -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO<sub>2</sub>, OH or CH<sub>3</sub>), F<sub>5</sub>-Phe, Trp, Cys, Met, Pro, or HyPro; and each  $Z_2$ ,  $Z_3$ , and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):



wherein each  $Z_{20}$  and  $Z_{30}$ , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of  $Z_{20}$  or  $Z_{30}$  is other than H,  $A^7$  is His,  $A^6$  is Gly,  $A^5$  is Val,  $A^4$  is Ala,  $A^2$  is His, and either of  $R_1$  or  $R_2$  is other than H,  $A^1$  must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each  $R_1$  and  $R_2$ , independently, is H,  $C_{1-12}$  alkyl,  $C_{7-10}$  phenylalkyl,  $COE_1$  (where  $E_1$  is  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or

Serial No. :

Filed

Page : 40 of 43

 $C_{7\text{--}10}$  phenylalkyl), or lower acyl, and  $R_1$  and  $R_2$  are bonded to the N-terminal amino acid of said peptide, and further provided that when one of  $R_1$  or  $R_2$  is  $COE_1$ , the other must be H, or a pharmaceutically acceptable salt thereof.

82 (new): The method of claim 81 wherein said therapeutic peptide is of the formula:

 $A^0 = Gly$ , D-Phe, or is deleted;

 $A^1 = p-Glu$ , D-Phe, D-Ala, D- $\beta$ -Nal, D-Cpa, or D-Asn;

 $A^2 = Gln$ , His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala;$ 

 $A^5 = Val;$ 

 $A^6$  = Sar, Gly, D-Phe, or D-Ala;

 $A^7 = His;$ 

and, where W is (I) and  $R_3$  is  $CH_2$  or  $CH_2-CH_2$ ,  $Z_1$  is the identifying group of Leu or Phe, where W is (I) and  $R_3$  is  $CHOH-CH_2$ ,  $Z_1$  is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each  $R_5$  and  $R_6$  is H; and where W is (I), V is NHR $_6$ , and  $R_6$  is NH $_2$ ; where W is (II),  $Z_1$  is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO $_2$ , OH or CH $_3$ ); and each  $Z_2$ ,  $Z_3$  and  $Z_4$ , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each  $Z_{20}$  and  $Z_{30}$ , is H; and each  $R_1$  and  $R_2$ , independently, is H, lower alkyl, or lower acyl.

83 (new): The method of claim 82 wherein said therapeutic peptide is of the formula: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

84 (new): The method of claim 82 wherein said therapeutic peptide is of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

Serial No.:

Filed

Page : 41 of 43

85 (new): The method of claim 82 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH<sub>2</sub>.

86 (new): The method of claim 81 wherein said therapeutic peptide is of the formula: W is (I), V is  $OR_4$ , and  $R_4$  is any of  $C_{1-20}$  alkyl,  $C_{3-20}$  alkenyl,  $C_{3-20}$  alkinyl, phenyl, naphthyl, or  $C_{7-10}$  phenylalkyl, and  $A^6$  is N-methyl-D-Ala or  $A^1$  is D-F<sub>5</sub>-Phe.

87 (new): The therapeutic peptide of claim 86 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

88 (new): The therapeutic peptide of claim 82 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH<sub>2</sub>.

89 (new): The method of claim 81 wherein said effective amount is 0.5  $\mu g/kg/day$  to 5 mg/kg/day.