

Lecture 2: Representation of individuals

Michael Melnik mihail.melnik.ifmo@gmail.com

Components of EAs

- Representation of individuals
- Population of individuals
- Evaluation function (fitness function)
- Parent selection mechanism
- Variation operators (recombination, mutation)
- Survivor selection mechanism

Representations

- The first stage of building any evolutionary algorithm is to decide on a genetic representation of a candidate solution to a problem
- Common types of representation:
 - Binary
 - Integer values
 - Real values
 - Permutation
 - Tree representation

Binary representation

	1	0	1	0	0	0	0	1	0
L		_	_		_	_	_	_	

Integer 332 is represented as a binary genotype

Mutation may flip some bits in genotype

Binary crossover

- Original crossover operator is one-point crossover
- This can be easily extended to n-point crossover

Uniform crossover

ITMO UNIVERSITY

Child may receive genes uniformly

Crossover or mutation

- Decade long debate: which one is better / necessary / main-background
- Answer:
 - it depends on the problem, but
 - in general, it is good to have both
 - both have another role
 - mutation-only-EA is possible, xover-only-EA would not work

Crossover OR mutation

- Only crossover can combine information from two parents
- Only mutation can introduce new information (genes)

There is co-operation AND competition between them

- Crossover is explorative, it makes a big jump to an area somewhere "in between" two (parent) areas
- Mutation is exploitative, it creates random small diversions, thereby staying near (in the area of) the parent

Integer representation

- Nowadays it is generally accepted that it is better to encode numerical variables directly (integers, floating point variables)
- Some problems naturally have integer variables, e.g. image processing parameters
- Others take categorical values from a fixed set e.g. {blue, green, yellow, pink}
- ▼ N-point / uniform crossover operators work
- Extend bit-flipping mutation to make
 - "creep" i.e. more likely to move to similar value
 - Adding a small (positive or negative) value to each gene with probability p
 - Random resetting (esp. categorical variables)
 - With probability p_m a new value is chosen at random
- Same recombination as for binary representation

Real-valued (floating-point) representation

- Genotype for a solution with is now a vector of real values
- Floating-point ignores discretization and considers genes as continuous values
- Real valued representation is widely used
- For example: satellite holder can be encoded as a set of float values, which responsible for different angles and spar lengths

Population

Mutation

For real-valued representation it is common to change value of each gene randomly within its domain given by lower and upper bounds

$$< x_1, ..., x_n > \to < x'_1, ..., x'_n >$$
, where $x_i, x'_i \in [L_i, U_i]$

Two types of mutations can be defined:

- uniform
- nonuniform

Uniform mutation

Uniform random value from range $[L_i, U_i]$.

Nonuniform mutation

- Nonuniform creep mutation.
- $\bigvee X'_i = X_i + N(0,\sigma)$

Uniform mutation $N(0,\sigma)$

How to choose σ ?

- Hand-tuned by problem range
- Hyper-parameter

Self-adaptive mutation

- Nonuniform mutation is done by adding some random variables from a Gaussian distribution with specified std.
- Concept of self-adaptive mutation is that std evolves with solutions
- $\langle X_1,...,X_n,\sigma \rangle$

Self adaptive mutation

- \circ Mutate σ first
- Mutation effect: $\langle x, \sigma \rangle \rightarrow \langle x', \sigma' \rangle$
- Order is important:
 - first $\sigma \rightarrow \sigma'$
 - then $x \rightarrow x' = x + N(0,\sigma')$
- Reversing mutation order this would not work
 - Primary: x' is good if f(x') is good
 - Secondary: σ' is good if the x' it created is good

Nonuniform mutation $N(0,\sigma)$

How to choose σ ?

- Hand-tuned by problem range
- Hyper-parameter
- Hyper-parameters for each x value:

 $N(0, \sigma 1, \sigma 2)$

Uncorrelated mutation with n stds

- Chromosomes: $\langle X_1,...,X_n, \sigma_1,..., \sigma_n \rangle$
 - $\sigma'_{i} = \sigma_{i} \cdot exp(\tau' \cdot N(0,1) + \tau \cdot N_{i}(0,1))$
 - $X'_{i} = X_{i} + \sigma'_{i} \cdot N_{i}$ (0,1)
- Two learning rate parameters:
 - τ' overall learning rate
 - τ coordinate wise learning rate

Correlated mutation

itmo university

Mutants with equal likelihood

Ellipse: mutants having the same chance to be created

Correlated mutation

- •Chromosomes: $\langle x_1,...,x_n, \sigma_1,..., \sigma_n, \alpha_1,..., \alpha_k \rangle$ where k = n • (n-1)/2
- Covariance matrix C is defined as:
 - $C_{ii} = \sigma_i^2$
 - c_{ij} = 0 if i and j are not correlated
 - $c_{ij} = \frac{1}{2} \cdot (\sigma_i^2 \sigma_j^2) \cdot tan(2 \alpha_{ij})$ if i and j are correlated
- \bigcirc Note the numbering / indices of the α 's

Correlated mutation

The mutation mechanism is then:

$$\boldsymbol{\vee}$$
 $\alpha'_j = \alpha_j + \beta \cdot N$ (0,1)

$$\vee$$
 $X' = X + N(O,C')$

- x stands for the vector (x₁,...,x_n)
- C' is the covariance matrix C after mutation of the α values

Exploration vs Exploitation

- Exploration
 - Global search
- Exploitation
 - Local search

Crossover

Discrete:

each gene value in offspring z comes from one of its parents (x,y) with equal probability: z_i
 = X_i or y_i

Intermediate

• $Z_i = \alpha X_i + (1 - \alpha) y_i$ where $\alpha : 0 \le \alpha \le 1$.

Representations

- The first stage of building any evolutionary algorithm is to decide on a genetic representation of a candidate solution to a problem
- Common types of representation:
 - Binary
 - Integer values
 - Real values
 - Permutation
 - Tree representation

Permutation representations

- Ordering/sequencing problems form a special type
- Task is (or can be solved by) arranging some objects in a certain order
- Example: Travelling Salesman Problem (TSP): important thing is which elements occur next to each other

Traveling salesman problem

- 5 cities
- Need to find the shortest path

Population

[A, B, E, C, D]

[A, B, C, E, D]

[A, D, B, E, C]

Permutation Representations: Mutation

- Normal mutation operators lead to inadmissible solutions
 - e.g. bit-wise mutation: let gene i have value j
 - changing to some other value k would mean that k occurred twice and j no longer occurred

$$[A B C D E] \longrightarrow [A B C D A]$$

$$[A B C D E] \longrightarrow [A C B D E]$$

- Therefore must change at least two values
- Mutation parameter now reflects the probability that some operator is applied once to the whole string, rather than individually in each position

Permutation Representations: Swap mutation

Pick two alleles at random and swap their positions

Permutation Representations: Insert Mutation

- Pick two allele values at random
- Move the second to follow the first, shifting the rest along to accommodate
- Note that this preserves most of the order and the adjacency information

Permutation Representations: Scramble mutation

- Pick a subset of genes at random
- Randomly rearrange the alleles in those positions

123456789

Permutation Representations: Inversion mutation

- Pick two alleles at random and then invert the substring between them.
- Preserves most adjacency information (only breaks two links) but disruptive of order information

Components of EAs

- Representation of individuals
- Population of individuals
- Evaluation function (fitness function)
- Parent selection mechanism
- Variation operators (recombination, mutation)
- Survivor selection mechanism
- Terminate conditions

Permutation Representations: Crossover operators

 "Normal" crossover operators will often lead to inadmissible solutions

Many specialised operators have been devised which focus on combining order or adjacency information from the two parents

Permutation Representations: Order 1 crossover (1/2)

- ▼ Idea is to preserve relative order that elements occur
- Informal procedure:
 - 1. Choose an arbitrary part from the first parent
 - 2. Copy this part to the first child
 - 3. Copy the numbers that are not in the first part, to the first child:
 - starting right from cut point of the copied part,
 - using the **order** of the second parent
 - and wrapping around at the end
 - 4. Analogous for the second child, with parent roles reversed

Permutation Representations: Order 1 crossover (2/2)

Copy randomly selected set from first parent

Copy rest from second parent in order 1,9,3,8,2

Representations

- The first stage of building any evolutionary algorithm is to decide on a genetic representation of a candidate solution to a problem
- Common types of representation:
 - Binary
 - Integer values
 - Real values
 - Permutation
 - Tree representation

Tree Representation (1/6)

- Trees are a universal form, e.g. consider
- Arithmetic formula:

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Logical formula:

$$(x \land true) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$$

Program:

Tree Representation (2/6)

(ITsMOre than a UNIVERSITY

Tree Representation (3/6)

Tree Representation (4/6)

Tree Representation (5/6)

- In GA, ES, EP chromosomes are linear structures (bit strings, integer string, real-valued vectors, permutations)
- Tree shaped chromosomes are non-linear structures
- ▼ In GA, ES, EP the size of the chromosomes is fixed.
- Trees in GP may vary in depth and width

Tree Representation (6/6)

Terminal set $\mathbb{R} \cup \{x, u\}$

- ✓ Symbolic expressions can be defined by Function set
 - Terminal set T
 - Function set F (with the arities of function symbols)
- Adopting the following general recursive definition:
 - Every t ∈ T is a correct expression
 - $f(e_1, ..., e_n)$ is a correct expression if $f \in F$, arity(f)=n and e_1 , ..., e_n are correct expressions
 - There are no other forms of correct expressions
- ✓ In general, expressions in GP are not typed (closure property: any f ∈ F can take any g ∈ F as argument)

Tree Representation: Mutation (1/2)

Most common mutation: replace randomly chosen subtree by randomly generated tree

Tree Representation: Mutation (2/2)

- Mutation has two parameters:
 - Probability p_m to choose mutation
 - Probability to chose an internal point as the root of the subtree to be replaced
- ▼ Remarkably p_m is advised to be 0 (Koza'92) or very small, like 0.05 (Banzhaf et al. '98)
- The size of the child can exceed the size of the parent

Tree Representation: Recombination (1/2)

- Most common recombination: exchange two randomly chosen subtrees among the parents
- Recombination has two parameters:
 - Probability p_c to choose recombination
 - Probability to chose an internal point within each parent as crossover point
- The size of offspring can exceed that of the parents

Tree Representation: Recombination (2/2)

Parent 1

Parent 2

Child 2

Lab₂

- Function optimization
- Need to implement Factory, Mutation and Crossover
- ▼ Fitness function estimates n dimensional double array with values from -5.0 to 5.0
- Max possible fitness is 10.0.

Thank you for your attention!

www.ifmo.ru

