A. VOCABULARY

WORD	MEANING
PHOSPHORYLATION	Adding a PHOSPHATE group This makes a molecule more reactive and less stable.
OXIDATION	Removing HYDROGEN
REDUCTION	Adding HYDROGEN
DECARBOXYLATION	Removing CARBON DIOXIDE
NAD	Are co-enzymes that can pick up and release HYDROGEN
FAD	NADH = reduced NAD (picked up H) NAD = oxidised NAD (released H)

B. A MITOCHONDRION

C. THE POINT OF EACH STAGE

Stage	Where It Occurs	The Point Of It
Glycolysis	Cytoplasm	To get glucose into a form that can enter mitochondria
Link Reaction	Matrix	To get the substance into a form that can enter Kreb's cycle
Kreb's Cycle	Matrix	To produce lots of NADH and FADH ₂
Oxidative Phosphorylation	Cristae	To use the 'H' from NADH and FADH₂ to produce ATP

D. AEROBIC RESPIRATION

Stage 1: Glycolysis (Cytoplasm)

• Converts **glucose** to **pyruvate** so it can enter a **mitochondrion**.

Stage 2: Link Reaction (Matrix)

 Oxidation and decarboxylation to convert pyruvate to acetyl coenzyme A that can enter Kreb's cycle.

Stage 3: Kreb's cycle (Matrix)

Oxidations and decarboxylations occur to produce lots of NADH and FADH₂.

NADH and FADH₂ are needed in oxidative phosphorylation to produce ATP molecules.

Stage 4: Oxidative phosphorylation (Cristae)

All about oxidising NADH and FADH₂ so that energy can be used to make ATP molecules.

- ATP is made by chemiosmosis using energy in the proton concentration gradient.
- Chemiosmosis couples (links) ATP production with the movement of electrons and H⁺ (protons).

E. ANAEROBIC RESPIRATION

- No oxygen
- Oxygen is the terminal electron acceptor in the electron transport chain (ETC).
- (So) electron flow along the electron transport chain stops.
- (So) NADH cannot be oxidised/converted back to NAD.
- (So) supplies of NAD run out in the mitochondrion so the link reaction and Kreb's cycle cannot continue.
- The **body** must have another way of **producing ATP**, otherwise **death** could occur.
- This is achieved by regenerating NAD for glycolysis, so that it can continue to produce a small amount of ATP 'to keep us going'.

How NAD is regenerated for glycolysis

• By reducing pyruvate

Animals

Plants & Yeast

• By reducing pyruvate, NAD is again made available to oxidise triose phosphate to pyruvate. This reaction produces ATP.