

<복제물에 대한 경고>

본 저작물은 **저작권법제25조수업목적 저작물이용보상금제**도에의거. 한국복제전송저작권협회와약정을체결하고 적법하게 이용하고 있습니다. 약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

저작물의재복제 및수업목적외의사용을 금지합니다.

2020, 03, 30,

건국대학교(서울) 한국복제전송저작권협회

<전송에 대한 경고>

본사이트에서 수업 자료로 이용되는 저작물은 저작권법제25조 수업목적저작물이용 보상금제도에 의거.

한국복제전송저작권협회와 약정을 체결하고 적법하게 이용하고 있습니다.

약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

수업자료의 대중 공개 공유 및 수업 목적 외의 사용을 금지합니다.

2020, 03, 30,

건국대학교(서울)·한국복제전송저작권협회

Statistical Models

HMM, MEMM, and CRFs

HMM (Hidden Markov Model)

- What is the HMM?
 - Hidden + Markov Model
- Markov Model: Example
 - Training

		Tomorrow State (내일 상태)		
		Rain	Cloudy	Sunny
Today State (오늘 상태)	Rain	0.4	0.3	0.3
	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

- Assumption: Tomorrow weather depends only on today one.
- Problem: P(Rain, Rain, Sunny, Cloudy)?

마코프 모델 (Markov Model)

- Markov Model: Sequence Probability
 - 결합 확률(joint probability) 계산 모델
 - 연쇄 규칙과 마코프 가정을 이용하여 결합 확률을 단순화하여 결합 확률을 근사화시키는 모델

Chain Rule

$$P(y_1, y_2, ..., y_t)$$

=
$$P(y_1)P(y_2|y_1)P(y_3|y_1,y_2) \dots P(y_t|y_1,y_2,\dots,y_{t-1})$$

마코프 모델 (Markov Model)

마코프 모델: 학습데이터로 부터 얻어진 전이 확률분포 (상태 간 이동 확률 분포)

		Tomorrow State (내일 상태)		
		Rain	Cloudy	Sunny
Today State (오늘 상태)	Rain	0.4	0.3	0.3
	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

State = $\{S_1: Rain, S_2: Cloudy, S_3: Sunny\}$

$$P(S_1, S_1, S_3, S_2 | model)$$
= $P(S_1)P(S_1|S_1)P(S_3|S_1) P(S_2|S_3)$
=1 * 0.4 * 0.3 * 0.1
=0.012

What is Hidden?

- Hidden Markov Model
 - 상태(풀고자 하는 레이블)를 직접 관측할 수 없고 상태를 예측하는데 도움이 되는 특징(자질)만을 관측할 수 있음
 - 상태가 감춰져 있고(직접 관찰할 수 없고) 관측에 대한 확률로만존재
 - 예제
 - 상태(State): Rain, Cloudy, Sunny
 - 관측(Observation): B (Rain Boots), S (Sports Shoes)
 - 문제(problem): P(B, B, S, S, Rain, Rain, Sunny, Cloudy)?

What is Hidden?

- 상태(State): Rain, Cloudy, Sunny
- 관측(Observation): B (Rain Boots), S (Sports Shoes)
- 문제(problem): "B, B, S, S"를 관측했을 때 날씨가 어떻게 예측하는 게 최적일까?
 - P(Rain, Rain, Sunny, Cloudy) vs. P(Rain, Rain, Sunny, Sunny) vs. ...

HMM (Hidden Markov Model)

Let
$$P(x_{1,t}) = P(x_1, x_2, ..., x_t)$$

HMM = $\underset{y_{1,t}}{\operatorname{argmax}} P(x_{1,t}, y_{1,t})$
= $\underset{y_{1,t}}{\operatorname{argmax}} P(y_{1,t}) P(x_{1,t}|y_{1,t})$

= $\underset{y_{1,t}}{\operatorname{argmax}} \prod_{i=1}^{t} P(y_i|y_{i-1}) P(x_i|y_i)$

1'st-order Markov Assumption
 $\Rightarrow \text{전이 확률 (Transition Probability)}$

Independent Assumption
 $\Rightarrow \text{ 과축 확률 (Observation Probability)}$
 $y_1 \longrightarrow y_2 \longrightarrow \dots \longrightarrow y_t \quad \text{o } \quad \text{Graphical Representation}$

Sequence Labeling Problem

- · Segmentation or path analysis problem
 - Application: Part-of-speech tagging

Viterbi Algorithm

• 모든 경로를 고려하지 않고도 빠른 시간 내에 최적의 경로를 찾는 알고리즘 Output: 1, 1, 2, 3

질의응답

Homepage: http://nlp.konkuk.ac.kr E-mail: nlpdrkim@konkuk.ac.kr

