

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu

Why diffraction is used to find out crystal structure?

- Atoms are periodically arranged and acts as a 3-D grating.
- The interatomic spacing is around 2-3 Å, so a ray should have wavelength matching to grating.
- X-rays are having identical wavelength to atomic spacing.

- ■X-rays can be generated by decelerating electrons.
- □Hence, X-rays are generated by bombarding a target (say Cu) with an electron beam.

An accelerating (or decelerating) charge radiates electromagnetic radiation

Generation of X-rays

- The resultant spectrum of X-rays generated (i.e. λ_{X-rays} versus Intensity plot) shows intense peaks on a 'broad' background.
- □ The intense peaks can be 'thought of' as monochromatic radiation and be used for X-ray diffraction studies.

Can every metal generate X-rays?

Yes, with exception, most of the metals.

Elements	(KV)	λ Of K _{α1} radiation (Å)	λ Of K _{α2} radiation (Å)	λ Of K _β radiation (Å)
Ag	25.52	0.55941	0.5638	0.49707
Мо	20	0.7093	0.71359	0.63229
Cu	8.98	1.540598	1.54439	1.39222
Ni	8.33	1.65791	1.66175	1.50014
Со	7.71	1.78897	1.79285	1.62079
Fe	7.11	1.93604	1.93998	1.75661
Cr	5.99	2.2897	2.29361	2.08487

The diffraction phenomenon

Position ->

Let us consider scattering across planes

Ray-1, ray-2 and ray-3 are constructively interfering. As the path difference is in multiple of λ .

So intensities will add up.

 $2dsin\theta = n\lambda \rightarrow Bragg's equation$

If Bragg's eq. is NOT satisfied If Bragg's eq. is satisfied

→ NO 'reflection' can occur

→ 'reflection' MAY occur

- X-rays have matching wavelength to the interplanar spacing (2-3 Å).
- If there is a constructive interference, then diffraction occurs.
- For diffraction, X-ray should be monochromatic, having high intensity and matching wavelength to the lattice spacing.

X-ray powder diffraction method

How the diffraction measurement takes place?

X-ray powder diffraction

Does every plane give reflection/signal

Simple cubic

Body centered cubic

The diffraction from (100) planes get cancelled out by the extra atom at the center in BCC.

So (100) reflection is absent in BCC.

- For diffraction, X-ray should be monochromatic, having high intensity and matching wavelength to the lattice spacing.
- 2. X-rays have matching wavelength to the interplanar spacing (2-3 Å).
- 3. If there is a constructive interference, then and only then diffraction occurs.

