Bayes Theorem

1. Suppose there are 2 cookie jars. Jar A has 10 chocolate chip and 30 plain cookies while jar B has 20 of each type. We pick a cookie and it turns out to be plain. What is the probability that we picked out of the jar A?

We are trying to find the probability that you chose a cookie from jar A given that you picked a plain cookie.

$$P(A|plain)$$
.

We can find this value by

$$P(A|plain) = \frac{P(A \text{ and plain})}{P(plain)} = \frac{(1/2)(3/4)}{(1/2)(3/4) + (1/2)(20/40)}.$$

2. The blue M&M was introduced in 1995. Before 1995, the ratios of colors was

$$30\%$$
 brown 20% yellow 20% red 10% green 10% orange 10% tan

After 1995, the ratios were

$$24\%$$
 blue 20% green 16% orange 14% yellow 13% red 13% brown

If we pick an M&M that turns out to be yellow, what is the probability that the bag came before 1995?

We want to find P(1994|yellow). By Bayes theorem, we can find this value by

$$P(1994|\text{yellow}) = \frac{P(1994 \text{ and yellow})}{P(\text{yellow})} = \frac{(.5)(.2)}{(.5)(.2) + (.5)(.25)}$$

Communication Classes

1. What are the communication classes of

We can find the communication classes by determining if we can move from state i to j and from state j to i.

2. Consider the matrix

$$\left(\begin{array}{cc} .6 & .4 \\ .3 & .7 \end{array}\right)$$

(a) How many communication classes are there?

There is 1 communication class, since every state is accessible from ever other state.

(b) List the communication class(es).

Since there are two states, with one communication class, the communication class is $\{A, B\}.$

(c) Find π .

To find the π vector, we can solve the system

$$\begin{cases} .6\pi_1 + .3\pi_2 = \pi_1 \\ \pi_1 + \pi_2 = 1 \end{cases}$$

3. Consider the model of moving from the city to the suburbs with an initial state.

- (a) What is the probability that a person in 3 years transfers from city to suburb?
- (b) What number of people in the city will be in the suburbs next year?
- (c) What is the ultimate number of people in the suburbs? The cities?

Fundamental Matrices

1. Find the fundamental matrix corresponding to the following P matrix.

	A	B	C	D	E
\overline{A}	1	0	0	0	0
B	$\begin{array}{c} 1\\1/2\\0\end{array}$	0	1/2	0	0
C	0	1/2	0	1/2	0
D	0	0	1/2	0	1/2
E	0	0	0	0	1

To determine the fundamental matrix, we must complete a series of steps.

(a) Group the absorbing states together.

	A	B	C	D	E			A	E	C	D	B
\overline{A}	1	0	0	0	0	_	\overline{A}	1	0	0	0	0
B	1/2	0	1/2	0	0	,	E	0	1	0	0	0
C	0	1/2	0	1/2	0	\rightarrow	C	0	0	0	1/2	1/2
D	0	0	1/2	0	1/2		D	0	1/2	1/2	0	0
E	0	0	0	0	1						0	

(b) Partition the matrix into the form

(c) Determine $(I-Q)^{-1}$.