# CPSC5610 Assignment 3

### CNN Image classifier for the SVHN dataset

#### Overview

In this assignment, you will create a convolutional neural network that classifies real-world images digits. You will use concepts from what we learned this course in building, training, testing, validating and saving your Tensorflow classifier model.

This is an open-ended project.

### What to submit

- · Please do this assignment in a folder.
- · When you have completed the notebook, you will save this notebook including all the intermediate results/plots.
- Please also print out a pdf file from your finished notebook, and put it in the same folder.
- Before you submit, please move your data folder outside. It is too big to submit.
- · Please include your saved models.
- Then zip your whole folder and submit the single zip file.

### Start

We'll start by running some imports, and loading the dataset. For this project you are free to make further imports throughout the notebook as you wish.

```
import os
import zipfile
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import scipy.io
```

In this assignment, you will use the <u>SVHN dataset</u>. This is an image dataset of over 600,000 digit images in all, and is a harder dataset than MNIST as the numbers appear in the context of natural scene images. SVHN is obtained from house numbers in Google Street View images.

• Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu and A. Y. Ng. "Reading Digits in Natural Images with Unsupervised Feature Learning". NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

Your goal is to develop an end-to-end workflow for building, training, validating, evaluating and saving a neural network that classifies a real-world image into one of ten classes.

Please only use the pre-cropped datasets in Format 2.

Both train and test are dictionaries with keys X and y for the input images and labels respectively.

### (20pts) Inspect and preprocess the dataset

- Extract the training and testing images and labels separately from the train and test dictionaries loaded for you.
- Select a random sample of images and corresponding labels from the dataset (at least 10), and display them in a figure.
- Convert the training and test images to grayscale by taking the average across all colour channels for each pixel. *Hint: retain the channel dimension, which will now have size 1.*
- · Select a random sample of the grayscale images and corresponding labels from the dataset (at least 10), and display them in a figure.
- 1) Extract the training and testing images and labels separately from the train and test dictionaries loaded for you.

```
# Mount google drive
from google.colab import drive
drive.mount('/content/drive')
```

→ Mounted at /content/drive # Unzip SVHN data zip\_path = "/content/drive/My Drive/Seattle University/CPSC5610 - Artificial Intelligence/Data/svnh\_data.zip" extract\_root = "/content" with zipfile.ZipFile(zip\_path, 'r') as zip\_ref: zip\_ref.extractall(extract\_root) # Load .mat files data\_directory = os.path.join(extract\_root, "svnh\_data") train = scipy.io.loadmat(os.path.join(data\_directory, "train\_32x32.mat")) test = scipy.io.loadmat(os.path.join(data\_directory, "test\_32x32.mat")) extra = scipy.io.loadmat(os.path.join(data\_directory, "extra\_32x32.mat")) # Subset extra dataset #subset size = 200000 #indices = np.random.choice(extra['X'].shape[-1], subset\_size, replace=False) #extra\_X\_subset = extra['X'][:, :, :, indices] #extra\_y\_subset = extra['y'][indices] # Transpose images from (32, 32, 3, N) to (N, 32, 32, 3)  $train_images = train['X'].transpose(3, 0, 1, 2) # from (32, 32, 3, 73257) to (73257, 32, 32, 3)$ test\_images = test['X'].transpose(3, 0, 1, 2) # from (32, 32, 3, 26032) to (26032, 32, 32, 3)  $extra_images = extra['X'].transpose(3, 0, 1, 2) # from (32, 32, 3, 531131) to (531131, 32, 32, 3)$ # Flatten labels train\_labels = train['y'].flatten() # (73257,) test\_labels = test['y'].flatten() # (26032,) extra\_labels = extra['y'].flatten() # (531131,) train\_images.shape # samples, height, width, channels → (73257, 32, 32, 3) train\_labels.shape # samples **→** (73257,) test\_images.shape # samples, height, width, channels **→** (26032, 32, 32, 3) test\_labels.shape # samples →**-** (26032,) extra\_images.shape # samples, height, width, channels **→** (531131, 32, 32, 3) extra\_labels.shape # samples → (531131,) Examine a single image single\_image = train\_images[25] single\_label = train\_labels[25] plt.imshow(single image) print(f"Label: {single\_label}")





single\_image\_gray = np.mean(single\_image, axis=-1)
plt.imshow(single\_image\_gray, cmap="gray")
print(f"Label: {single\_label}")





np.unique(train\_labels)

 $\Rightarrow$  array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=uint8)

np.unique(test\_labels)

 $\Rightarrow$  array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=uint8)

np.unique(extra\_labels)

 $\Rightarrow$  array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=uint8)

# Replaces '10' labels with '0' labels
train\_labels[train\_labels == 10] = 0
test\_labels[test\_labels == 10] = 0
extra\_labels[extra\_labels == 10] = 0

np.unique(train\_labels)

→ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)

```
np.unique(test_labels)
\Rightarrow array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
np.unique(extra_labels)
\rightarrow array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
# Normalize pixel values
train_images = train_images / 255.0
test_images = test_images / 255.0
extra_images = extra_images / 255.0
normalized_single_image = train_images[25]
normalized_single_image
array([[[0.32941176, 0.28627451, 0.30588235],
              [0.31764706, 0.28235294, 0.31372549],
              [0.30980392, 0.2745098 , 0.30980392],
              [0.19215686, 0.13333333, 0.15686275],
              [0.19607843, 0.14509804, 0.17647059],
              [0.19215686, 0.12941176, 0.17254902]],
             [[0.3372549 , 0.30980392, 0.32156863], [0.33333333, 0.31372549, 0.3372549],
              [0.31764706, 0.29803922, 0.3254902],
              [0.18431373, 0.13333333, 0.14509804],
              [0.18823529, 0.1372549, 0.16078431],
              [0.18431373, 0.12156863, 0.15686275]],
             [[0.32941176, 0.32156863, 0.32941176],
              [0.3254902 , 0.32156863, 0.34117647], [0.27843137, 0.27058824, 0.29803922],
              [0.19607843, 0.15294118, 0.15294118],
              [0.19607843, 0.15294118, 0.15686275],
              [0.18823529, 0.13333333, 0.15294118]],
             ...,
             [[0.50980392, 0.53333333, 0.50980392],
              [0.52941176, 0.54509804, 0.53333333],
              [0.52941176, 0.5254902 , 0.5372549 ],
              [0.31372549, 0.26666667, 0.29803922],
              [0.31372549, 0.27058824, 0.29411765]
              [0.30196078, 0.26666667, 0.28235294]],
             [[0.43529412, 0.46666667, 0.43921569],
              [0.4745098 , 0.49803922, 0.47058824],
              [0.49019608, 0.49411765, 0.48627451],
              [0.3254902, 0.2745098, 0.31764706],
              [0.3254902 , 0.2745098 , 0.30980392], [0.31372549, 0.27058824, 0.29803922]],
             [[0.34117647, 0.37254902, 0.36078431],
              [0.36862745, 0.39607843, 0.36862745],
                         , 0.4
                                     , 0.39607843],
              [0.4
              [0.3372549 , 0.28235294, 0.32941176],
              [0.33333333, 0.28235294, 0.32156863],
              [0.32156863, 0.2745098 , 0.30588235]]])
normalized_single_image_gray = np.mean(normalized_single_image, axis=-1)
plt.imshow(normalized_single_image_gray, cmap="gray")
```





```
# One-hot encode the labels
cat_train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10)
cat_test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10)
cat_extra_labels = tf.keras.utils.to_categorical(extra_labels, num_classes=10)

train_labels[25]

    np.uint8(3)

cat_train_labels[25]

# Combine train and extra sets
train_images = np.concatenate((train_images, extra_images), axis=0)
cat_train_labels = np.concatenate((cat_train_labels, cat_extra_labels), axis=0)

train_images.shape

    (604388, 32, 32, 3)

cat_train_labels.shape

    (604388, 10)
```

2) Select a random sample of images and corresponding labels from the dataset (at least 10), and display them in a figure.

```
plt.title(f"{label}")
plt.axis('off')

plt.tight_layout()
plt.show()
```



3) Convert the training and test images to grayscale by taking the average across all
 colour channels for each pixel. Hint: retain the channel dimension, which will now have size 1.

```
train_images_gray = np.mean(train_images, axis=-1, keepdims=True) # shape: (123257, 32, 32, 1) test_images_gray = np.mean(test_images, axis=-1, keepdims=True) # shape: (26032, 32, 32, 1) train_images_gray.shape

(604388, 32, 32, 1) test_images_gray.shape

(26032, 32, 32, 1)
```

4) Select a random sample of the grayscale images and corresponding labels from the dataset (at least 10), and display them in a figure.

```
plt.figure(figsize=(15, 4))
for i, idx in enumerate(random_indices):
    image = train_images_gray[idx, :, :, :]
    label = cat_train_labels[idx]
    plt.subplot(1, 20, i + 1)
    plt.imshow(image, cmap="gray")
    plt.title(f"{label}")
    plt.axis('off')

plt.tight_layout()
plt.show()
```

```
from sklearn.model_selection import train_test_split

# Stratified split (15% validation)
train_imgs, val_imgs, train_lbls, val_lbls = train_test_split(
    train_images_gray,
    cat_train_labels,
    test_size=0.15,
    stratify=np.argmax(cat_train_labels, axis=1),
    random_state=42
)
```

→ (90659, 10)

## (40pts) CNN neural network classifier

- Build a CNN classifier model using the Sequential API. Your model should use the Conv2D, MaxPool2D, Flatten, Dense and Dropout layers. The final layer should again have a 10-way softmax output. Please use only what we learned in class.
- You should design and build the model yourself. Feel free to experiment with different CNN architectures. *Hint: to achieve a reasonable accuracy you won't need to use more than 2 or 3 convolutional layers and 2 fully connected layers.*)
- Compile and train the model (we recommend a maximum of 30 epochs), making use of both training and validation sets during the training run.
- · Your model should track accuracy metric, and use early stopping during training.
- · Plot the learning curves for loss vs epoch and accuracy vs epoch for both training and validation sets.
- Compute and display the loss and accuracy of the trained model on the test set.

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping
model = Sequential()
# Convolutional Block 1
model.add(Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu', input_shape=(32, 32, 1)))
model.add(MaxPool2D(pool_size=(2, 2)))
# Convolutional Block 2
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
# Convolutional Block 3
model.add(Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
# Fully Connected Layers
model.add(Flatten())
model.add(Dense(units=256, activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
🚁 /usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
model.summary()
```

### → Model: "sequential"

| Layer (type)                   | Output Shape       | Param # |
|--------------------------------|--------------------|---------|
| conv2d (Conv2D)                | (None, 32, 32, 32) | 320     |
| max_pooling2d (MaxPooling2D)   | (None, 16, 16, 32) | 0       |
| conv2d_1 (Conv2D)              | (None, 16, 16, 64) | 18,496  |
| max_pooling2d_1 (MaxPooling2D) | (None, 8, 8, 64)   | 0       |
| conv2d_2 (Conv2D)              | (None, 8, 8, 128)  | 73,856  |
| max_pooling2d_2 (MaxPooling2D) | (None, 4, 4, 128)  | 0       |
| flatten (Flatten)              | (None, 2048)       | 0       |
| dense (Dense)                  | (None, 256)        | 524,544 |
| dropout (Dropout)              | (None, 256)        | 0       |
| dense_1 (Dense)                | (None, 10)         | 2,570   |

Total params: 619,786 (2.36 MB)
Trainable params: 619,786 (2.36 MB)
Non-trainable params: 0 (0.00 B)

# Early stop

early\_stop = EarlyStopping(monitor='val\_loss', patience=3)

# Train

 $\verb|model.fit(train_imgs, train_lbls, epochs=30, validation_data=(val_imgs, val_lbls), callbacks=[early_stop])|$ 

| ⋺₹ | Epoch 1/30                                                    |               |             |           |          |         |        |                            |                    |        |
|----|---------------------------------------------------------------|---------------|-------------|-----------|----------|---------|--------|----------------------------|--------------------|--------|
|    |                                                               | <b>9s</b> 3   | Bms/step -  | accuracy: | 0.8205 - | - loss: | 0.5608 | <pre>- val_accuracy:</pre> | 0.9549 - val_loss  | 0.1622 |
|    | Epoch 2/30<br>16055/16055 ——————————————————————————————————— | :16 3         | mc/cton -   | accuracy  | 0 0/8/ - | 1000    | a 1926 | - val accuracy:            | 0.9640 - val loss: | 0 1366 |
|    | Epoch 3/30                                                    | ) <b>13</b> ) | mis/step -  | accuracy. | 0.3404   | - 1055. | 0.1020 | - vat_accuracy.            | 0.9040 - Vat_t055  | 0.1300 |
|    | •                                                             | <b>0s</b> 3   | Bms/step -  | accuracy: | 0.9575 - | - loss: | 0.1535 | <pre>- val_accuracy:</pre> | 0.9629 - val_loss  | 0.1375 |
|    | Epoch 4/30                                                    |               |             |           |          |         |        |                            |                    |        |
|    | <b>16055/16055</b> ———————————————————————————————————        | <b>1s</b> 3   | Sms/step –  | accuracy: | 0.9612 - | - loss: | 0.1412 | <pre>- val_accuracy:</pre> | 0.96/2 - val_loss  | 0.12/6 |
|    | •                                                             | <b>3s</b> 3   | Bms/step -  | accuracy: | 0.9640 - | - loss: | 0.1326 | <pre>- val_accuracy:</pre> | 0.9688 - val_loss  | 0.1213 |
|    | Epoch 6/30                                                    |               | •           | -         |          |         |        | _                          |                    |        |
|    | <b>16055/16055</b> ———————————————————————————————————        | <b>52s</b> 3  | Bms/step –  | accuracy: | 0.9655 - | - loss: | 0.1278 | <pre>- val_accuracy:</pre> | 0.9693 - val_loss  | 0.1194 |
|    | 16055/16055                                                   | <b>51s</b> 3  | Bms/step -  | accuracy: | 0.9667 - | - loss: | 0.1240 | - val accuracy:            | 0.9693 - val loss: | 0.1225 |
|    | Epoch 8/30                                                    |               |             | ,         |          |         |        |                            |                    |        |
|    |                                                               | <b>51s</b> 3  | Bms/step –  | accuracy: | 0.9675 - | - loss: | 0.1200 | <pre>- val_accuracy:</pre> | 0.9711 - val_loss  | 0.1174 |
|    | Epoch 9/30<br>16055/16055 ——————————————————————————————————— | :0c 3         | mc/cton -   | accuracy  | 0 0686 - | 1000    | A 1153 | - val accuracy:            | 0 0680 - val loss  | 0 1324 |
|    | Epoch 10/30                                                   | <b>, 03</b>   | mis/step -  | accuracy. | 0.9000 - | - 1055. | 0.1133 | - vat_accuracy.            | 0.9000 - Vat_t055  | 0.1324 |
|    | 16055/16055 —————                                             | <b>1s</b> 3   | Bms/step -  | accuracy: | 0.9690 - | - loss: | 0.1162 | <pre>- val_accuracy:</pre> | 0.9688 - val_loss  | 0.1252 |
|    | Epoch 11/30                                                   |               |             |           |          |         |        |                            |                    |        |
|    | <pre>16055/16055</pre>                                        |               |             | ,         | 0.9701 - | - loss: | 0.1137 | <pre>- val_accuracy:</pre> | 0.9/13 - val_loss  | 0.1188 |
|    | -verasisicica cinacks illistory illist                        | лу а          | it extabuut | 0220110>  |          |         |        |                            |                    |        |

model.metrics\_names # Check the metric names

['loss', 'compile\_metrics']

losses = pd.DataFrame(model.history.history)

losses

| <del>∑</del> * |    | accuracy | loss     | val_accuracy | val_loss |
|----------------|----|----------|----------|--------------|----------|
|                | 0  | 0.902721 | 0.324831 | 0.954930     | 0.162200 |
|                | 1  | 0.950602 | 0.176437 | 0.963997     | 0.136565 |
|                | 2  | 0.957807 | 0.153704 | 0.962861     | 0.137525 |
|                | 3  | 0.960828 | 0.142849 | 0.967196     | 0.127583 |
|                | 4  | 0.963562 | 0.135306 | 0.968762     | 0.121255 |
|                | 5  | 0.965013 | 0.129435 | 0.969347     | 0.119449 |
|                | 6  | 0.966064 | 0.125630 | 0.969292     | 0.122537 |
|                | 7  | 0.967095 | 0.121628 | 0.971078     | 0.117439 |
|                | 8  | 0.967859 | 0.119363 | 0.968045     | 0.132404 |
|                | 9  | 0.968442 | 0.118479 | 0.968795     | 0.125223 |
|                | 10 | 0.968877 | 0.117038 | 0.971266     | 0.118845 |

losses[['accuracy','val\_accuracy']].plot()



losses[['loss','val\_loss']].plot()



from sklearn.metrics import classification\_report,confusion\_matrix

6/17/25, 4:40 PM predictions = model.predict(test\_images\_gray) → 814/814 — **\_\_\_\_\_ 2s** 2ms/step predictions → array([[4.8619563e-11, 8.7852543e-09, 2.4123054e-07, ..., 1.6935695e-07, 3.4333281e-09, 1.4450826e-08], [1.2798432e-09, 7.1566602e-09, 9.9999416e-01, ..., 2.2324438e-07, 9.0855612e-10, 3.6524348e-09], [1.4622789e-08, 9.9998963e-01, 6.7177808e-07, ..., 9.8884368e-07, 1.3059671e-08, 1.5191265e-08], [6.8170480e-10, 1.3964177e-07, 4.4802335e-05, ..., 9.9995232e-01, 3.3615491e-12, 3.8908124e-07], [1.2936059e-05, 7.7630782e-09, 1.3935372e-10, ..., 2.3640118e-10, 1.5215099e-05, 1.1328984e-11], [1.9599569e-12, 1.4076382e-05, 4.7574801e-07, ..., 9.9998546e-01, 5.5827988e-13, 1.5650263e-09]], dtype=float32) pred\_binary = predictions > 0.5 pred\_binary → array([[False, False, False, ..., False, False, False], [False, False, True, ..., False, False, False], [False, True, False, ..., False, False, False], [False, False, False, ..., True, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., True, False, False]]) pred\_class = np.argmax(predictions, axis=1) pred\_class  $\rightarrow$  array([5, 2, 1, ..., 7, 6, 7]) cat\_test\_labels[0]  $\rightarrow$  array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.]) print(classification\_report(test\_labels,pred\_class)) **₹** precision recall f1-score support 0 0.92 0.96 0.94 1744 1 0.95 0.97 0.96 5099 0.96 0.95 2 0.97 4149 3 0.92 0.94 0.93 2882 4 0.97 0.95 0.96 2523 5 0.94 0.95 0.94 2384 6 0.93 0.94 0.94 1977 7 0.96 0.94 0.95 2019 8 0.91 0.93 0.94 1660 0.93 0.93 0.93 1595 0.95 26032 accuracy 0.94 0.94 0.94 26032 macro avq weighted avg 0.95 0.95 0.95 26032 confusion\_matrix(test\_labels,pred\_class) 7, → array([[1669, 13. 6, 2. 4, 16, 5, 5, 17], 45, 4930, 22, 14, 21, 10, 12, 29, 10. 6],

```
8,
       37,
            3961,
                     64,
                            14,
                                   17,
                                            5,
                                                         10,
                                                                12],
       40,
                              4,
              17,
                   2721,
                                   35,
                                           13,
                                                         19,
                                                                22],
               8,
                          2386,
                                    5,
                                                                 9],
       59,
                                                   8,
15,
                     16,
                                           14,
                                                          3,
                                 2246,
 5,
       10,
              12,
                     59,
                              4,
                                           26,
                                                         11,
                                                                  9],
28,
       17,
               3,
                     12,
                              5,
                                   24,
                                        1855,
                                                   3,
                                                         24,
                                                                  6],
3,
       69,
7,
                                    9,
                                            5,
                                               1890,
                                                                 8],
                                                          1,
                              5,
              18,
                     11,
17,
                                                   2,
                                                      1513,
                                                                27],
               6,
                     28,
                              8,
                                   11,
                                           41,
27,
       12,
                     14,
                              8,
                                   10,
                                                   2,
                                                          8, 1491]])
```

import seaborn as sns

sns.heatmap(confusion\_matrix(test\_labels,pred\_class),annot=True)



my\_number = test\_images\_gray[664]

plt.imshow(my\_number.reshape(32, 32), cmap='gray')



model.predict(my\_number.reshape(1, 32, 32, 1))

np.round(model.predict(my\_number.reshape(1, 32, 32, 1)), 2)

```
1/1 Os 30ms/step array([[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]], dtype=float32)
```

model.save('base\_model\_full\_dataset.keras')

# (30pts) Improvement

- Try to use ImageDataGenerator to augment the data.
- Try to add BatchNomalization layers using Keras API. Please do a little research how this is done.

• Try to use a pre-trained CNN model for transfer learning. You make your choice and explain why.

Does any of the above help?

 $from \ tensorflow.keras.preprocessing.image \ import \ ImageDataGenerator$ 

#help(ImageDataGenerator)

```
train_gen = ImageDataGenerator(
    rotation_range=10,
    width_shift_range=0.1,
    height_shift_range=0.1,
    zoom_range=0.1,
    shear_range=8,
    fill_mode='nearest'
)
```

pass\_gen = ImageDataGenerator()

plt.imshow(train\_images[0])





plt.imshow(train\_gen.random\_transform(train\_images[0]))





BATCH = 64

```
6/17/25, 4:40 PM
```

```
train_gen = train_gen.flow(
    train_imgs, # numpy array (N,32,32,1)
    train_lbls, # numpy array (N,10)
    batch_size=BATCH,
    shuffle=True
val_gen = pass_gen.flow(
    val_imgs,
    val_lbls,
    batch_size=BATCH,
    shuffle=False
test_gen = pass_gen.flow(
    test_images_gray,
    cat_test_labels,
    batch_size=BATCH,
    shuffle=False
print("Samples :", train_gen.n)
print("Batch sz:", train_gen.batch_size)
batch_x, batch_y = train_gen[0]
print("Batch X shape:", batch_x.shape)
print("Batch Y shape:", batch_y.shape)
→ Samples : 513729
     Batch sz: 64
     Batch X shape: (64, 32, 32, 1)
     Batch Y shape: (64, 10)
model2 = Sequential()
# Convolutional Block 1
model2.add(Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu', input_shape=(32, 32, 1)))
model2.add(MaxPool2D(pool_size=(2, 2)))
# Convolutional Block 2
model2.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'))
model2.add(MaxPool2D(pool_size=(2, 2)))
# Convolutional Block 3
model2.add(Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu'))
model2.add(MaxPool2D(pool_size=(2, 2)))
# Fully Connected Layers
model2.add(Flatten())
model2.add(Dense(units=256, activation='relu'))
model2.add(Dropout(rate=0.5))
model2.add(Dense(units=10, activation='softmax'))
model2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
3 /usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
# Train
model2.fit(
    train_gen,
    epochs=30,
    validation_data=val_gen,
    callbacks=[early_stop]
→ Epoch 1/30
     /usr/local/lib/python3.11/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121: UserWarning: Your `PyDat
       self._warn_if_super_not_called()
                                   - 154s 19ms/step – accuracy: 0.7230 – loss: 0.8355 – val_accuracy: 0.9559 – val_loss: 0.1594
     8028/8028
     Epoch 2/30
     8028/8028 -
                                  – 150s 19ms/step – accuracy: 0.9193 – loss: 0.2731 – val_accuracy: 0.9666 – val_loss: 0.1258
     Epoch 3/30
     8028/8028 -
                                  — 151s 19ms/step – accuracy: 0.9344 – loss: 0.2275 – val_accuracy: 0.9675 – val_loss: 0.1251
```

```
Epoch 4/30
8028/8028 -
                              152s 19ms/step - accuracy: 0.9415 - loss: 0.2026 - val_accuracy: 0.9671 - val_loss: 0.1223
Epoch 5/30
8028/8028 -
                               155s 19ms/step - accuracy: 0.9470 - loss: 0.1869 - val_accuracy: 0.9693 - val_loss: 0.1182
Epoch 6/30
8028/8028 -
                               153s 19ms/step - accuracy: 0.9492 - loss: 0.1784 - val_accuracy: 0.9717 - val_loss: 0.1104
Epoch 7/30
                              - 153s 19ms/step - accuracy: 0.9506 - loss: 0.1758 - val accuracy: 0.9726 - val loss: 0.1092
8028/8028 -
Epoch 8/30
8028/8028
                              - 159s 20ms/step – accuracy: 0.9532 – loss: 0.1668 – val_accuracy: 0.9726 – val_loss: 0.1065
Epoch 9/30
8028/8028 -
                              - 153s 19ms/step – accuracy: 0.9538 – loss: 0.1653 – val_accuracy: 0.9727 – val_loss: 0.1074
Epoch 10/30
8028/8028 -
                               152s 19ms/step - accuracy: 0.9552 - loss: 0.1598 - val_accuracy: 0.9737 - val_loss: 0.1043
Epoch 11/30
8028/8028 -
                              - 152s 19ms/step – accuracy: 0.9564 – loss: 0.1586 – val_accuracy: 0.9737 – val_loss: 0.1055
Epoch 12/30
8028/8028 -
                              - 153s 19ms/step – accuracy: 0.9572 – loss: 0.1563 – val_accuracy: 0.9748 – val_loss: 0.1034
Epoch 13/30
                              - 152s 19ms/step – accuracy: 0.9571 – loss: 0.1530 – val_accuracy: 0.9730 – val_loss: 0.1035
8028/8028 -
Epoch 14/30
8028/8028 -
                              153s 19ms/step - accuracy: 0.9590 - loss: 0.1492 - val_accuracy: 0.9751 - val_loss: 0.0984
Epoch 15/30
8028/8028 -
                              149s 19ms/step - accuracy: 0.9589 - loss: 0.1494 - val_accuracy: 0.9755 - val_loss: 0.0993
Epoch 16/30
8028/8028 -
                              - 148s 18ms/step - accuracy: 0.9590 - loss: 0.1482 - val_accuracy: 0.9736 - val_loss: 0.1005
Epoch 17/30
8028/8028 -
                               147s 18ms/step - accuracy: 0.9596 - loss: 0.1464 - val_accuracy: 0.9739 - val_loss: 0.1039
<keras.src.callbacks.history.History at 0x7abb64328710>
```

model2.metrics\_names # Check the metric names

['loss', 'compile\_metrics']

losses2 = pd.DataFrame(model2.history.history)

#### losses2



losses2[['accuracy','val\_accuracy']].plot()



losses2[['loss','val\_loss']].plot()



predictions2 = model2.predict(test\_images\_gray)

 → 814/814 — 2s 2ms/step

predictions2

```
array([[5.2060019e-09, 4.3295935e-07, 1.9128575e-07, ..., 5.7688095e-07, 2.2260602e-09, 2.5183297e-07], [9.9598385e-11, 4.6322217e-08, 9.9999964e-01, ..., 1.1171285e-07, 1.4305229e-10, 2.2930874e-10], [2.7705939e-06, 9.9817336e-01, 1.3308752e-06, ..., 1.1998583e-05, 2.5519222e-07, 4.2033093e-07], ..., [6.9868920e-09, 2.2034372e-05, 7.8806333e-06, ..., 9.9996006e-01, 1.6232604e-10, 1.9304376e-07], [5.6024688e-05, 4.0376702e-07, 2.0019315e-09, ..., 5.9883138e-09, 1.3196832e-06, 3.2170625e-08], [6.8687855e-10, 3.7536487e-05, 7.8305834e-07, ..., 9.9996173e-01, 1.6771548e-12, 6.2388050e-09]], dtype=float32)

pred2_binary

array([[False, False, False, ..., False, False, False], [False, False, False
```

```
[False, True, False, ..., False, False, False],
...,
[False, False, False, ..., True, False, False],
[False, False, False, ..., False, False, False]])
```

pred2\_class = np.argmax(predictions2, axis=1)

pred2\_class

```
\Rightarrow array([5, 2, 1, ..., 7, 6, 7])
```

print(classification\_report(test\_labels,pred2\_class))

| <del>_</del> | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.93      | 0.96   | 0.95     | 1744    |
| 1            | 0.97      | 0.96   | 0.97     | 5099    |
| 2            | 0.97      | 0.98   | 0.97     | 4149    |
| 3            | 0.94      | 0.95   | 0.94     | 2882    |
| 4            | 0.96      | 0.97   | 0.97     | 2523    |
| 5            | 0.96      | 0.95   | 0.95     | 2384    |
| 6            | 0.95      | 0.95   | 0.95     | 1977    |
| 7            | 0.96      | 0.95   | 0.96     | 2019    |
| 8            | 0.95      | 0.92   | 0.94     | 1660    |
| 9            | 0.95      | 0.92   | 0.94     | 1595    |
| accuracy     |           |        | 0.96     | 26032   |
| macro avg    | 0.95      | 0.95   | 0.95     | 26032   |
| weighted avg | 0.96      | 0.96   | 0.96     | 26032   |

confusion\_matrix(test\_labels,pred2\_class)

```
→ array([[1679,
                                                     7,
                                                           21,
                                                                                  7],
                        10,
                                7,
                                       8,
                                              1,
                22,
                     4915,
                               25,
                                      27,
                                             38,
                                                    11,
                                                           11,
                                                                   37,
                                                                                  6],
                                                                                  5],
                 5,
                        16,
                            4056,
                                      16,
                                             10,
                                                     8,
                                                                           4,
                 5,
                               24,
                                   2729,
                                              6,
                                                                   6,
                                                                                 28],
                        20,
                                                    33,
                                                           10,
                                                                          21,
                 6,
                        28,
                               16,
                                       5,
                                           2447,
                                                     3,
                                                            3,
                                                                    4,
                                                                                  8],
                 5,
                        14,
                                6,
                                                 2268,
                                                           19,
                                                                                  3],
                21,
                        13,
                                4,
                                       9,
                                              5,
                                                    23,
                                                         1875,
                                                                    3,
                                                                          23,
                                                                                  1],
                 2,
                        55,
                               20,
                                      11,
                                              6,
                                                     2,
                                                             0,
                                                                1919,
                                                                           1.
                                                                                  3],
                15,
                         5,
                               13,
                                      25,
                                             11,
                                                      6,
                                                           36,
                                                                    0,
                                                                       1529,
                                                                                 20],
                38,
                        10,
                                                     9,
                                                                          11, 1474]])
```

sns.heatmap(confusion\_matrix(test\_labels,pred\_class),annot=True)



my\_number = test\_images\_gray[1000]

plt.imshow(my\_number.reshape(32, 32), cmap='gray')

<matplotlib.image.AxesImage at 0x7ac14dd7aa90>

model2.predict(my\_number.reshape(1, 32, 32, 1))

```
1/1 _______ 0s 247ms/step
array([[4.51854554e-10, 2.19837915e-07, 8.16593959e-10, 9.18656099e-07,
1.22803447e-08, 9.99963164e-01, 3.54813783e-05, 7.46057272e-10,
8.70424888e-09, 1.09917956e-07]], dtype=float32)
```

np.round(model2.predict(my\_number.reshape(1, 32, 32, 1)), 2)

```
→ 1/1 — 0s 33ms/step array([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.]], dtype=float32)
```

model2.save('data\_augmentation\_model\_full\_dataset.keras')

### Adding Batching Normalization

```
from tensorflow.keras.layers import BatchNormalization, Activation
model3 = Sequential()
# Convolutional Block 1
model3.add(Conv2D(filters=32, kernel_size=(3, 3), padding='same', use_bias=False, input_shape=(32, 32, 1)))
model3.add(BatchNormalization())
model3.add(Activation('relu'))
model3.add(MaxPool2D(pool_size=(2, 2)))
# Convolutional Block 2
model3.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', use_bias=False))
model3.add(BatchNormalization())
model3.add(Activation('relu'))
model3.add(MaxPool2D((2, 2)))
# Convolutional Block 3
model3.add(Conv2D(filters=128, kernel_size=(3, 3), padding='same', use_bias=False))
model3.add(BatchNormalization())
model3.add(Activation('relu'))
model3.add(MaxPool2D((2, 2)))
# Fully Connected Layers
model3.add(Flatten())
model3.add(Dense(units=256, activation='relu'))
model3.add(Dropout(rate=0.5))
model3.add(Dense(units=10, activation='softmax'))
# Compile
model3.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

//usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base\_conv.py:107: UserWarning: Do not pass an `input\_
super().\_\_init\_\_(activity\_regularizer=activity\_regularizer, \*\*kwargs)

```
# Train
model3.fit(
    train_gen,
    epochs=30,
    validation_data=val_gen,
    callbacks=[early_stop]
)
```

Epoch 1/30 **₹** 8028/8028 -- **162s** 20ms/step – accuracy: 0.4983 – loss: 1.3425 – val\_accuracy: 0.9453 – val\_loss: 0.2114 Epoch 2/30 8028/8028 -- **154s** 19ms/step – accuracy: 0.8592 – loss: 0.4366 – val\_accuracy: 0.9572 – val\_loss: 0.1576 Epoch 3/30 8028/8028 - 162s 20ms/step - accuracy: 0.9382 - loss: 0.2218 - val\_accuracy: 0.9713 - val\_loss: 0.1136 Epoch 4/30 8028/8028 - 154s 19ms/step - accuracy: 0.9516 - loss: 0.1760 - val\_accuracy: 0.9691 - val\_loss: 0.1176 Epoch 5/30 8028/8028 -**- 153s** 19ms/step – accuracy: 0.9569 – loss: 0.1581 – val\_accuracy: 0.9733 – val\_loss: 0.1059 Epoch 6/30 - **152s** 19ms/step - accuracy: 0.9604 - loss: 0.1464 - val\_accuracy: 0.9722 - val\_loss: 0.1056 8028/8028 -Fnoch 7/30 8028/8028 -**- 153s** 19ms/step – accuracy: 0.9618 – loss: 0.1398 – val\_accuracy: 0.9744 – val\_loss: 0.1000 Epoch 8/30 8028/8028 - 155s 19ms/step - accuracy: 0.9642 - loss: 0.1336 - val\_accuracy: 0.9731 - val\_loss: 0.1033 Epoch 9/30 8028/8028 -- 153s 19ms/step - accuracy: 0.9654 - loss: 0.1288 - val\_accuracy: 0.9638 - val\_loss: 0.1329 Epoch 10/30 8028/8028 -- **153s** 19ms/step - accuracy: **0.9667** - loss: **0.1237** - val\_accuracy: **0.9741** - val\_loss: **0.0987** Epoch 11/30 8028/8028 -- **151s** 19ms/step – accuracy: 0.9670 – loss: 0.1239 – val\_accuracy: 0.9754 – val\_loss: 0.0949 Epoch 12/30 **- 150s** 19ms/step – accuracy: 0.9679 – loss: 0.1210 – val\_accuracy: 0.9737 – val\_loss: 0.1003 8028/8028 -Epoch 13/30 8028/8028 -- 148s 18ms/step – accuracy: 0.9685 – loss: 0.1192 – val\_accuracy: 0.9749 – val\_loss: 0.0965 Epoch 14/30 8028/8028 -**- 149s** 19ms/step — accuracy: 0.9690 — loss: 0.1164 — val\_accuracy: 0.9714 — val\_loss: 0.1066 <keras.src.callbacks.history.History at 0x7ac4ea04a990>

model3.metrics\_names # Check the metric names

→ ['loss', 'compile\_metrics']

losses3 = pd.DataFrame(model3.history.history)

#### losses3

| _            |    |          |          |              |          |
|--------------|----|----------|----------|--------------|----------|
| <del>→</del> |    | accuracy | loss     | val_accuracy | val_loss |
|              | 0  | 0.625666 | 1.002552 | 0.945334     | 0.211423 |
|              | 1  | 0.891234 | 0.353513 | 0.957158     | 0.157647 |
|              | 2  | 0.942843 | 0.207207 | 0.971332     | 0.113594 |
|              | 3  | 0.952714 | 0.172306 | 0.969126     | 0.117628 |
|              | 4  | 0.957357 | 0.156275 | 0.973284     | 0.105890 |
|              | 5  | 0.960697 | 0.144803 | 0.972181     | 0.105557 |
|              | 6  | 0.962375 | 0.138645 | 0.974365     | 0.100029 |
|              | 7  | 0.964549 | 0.132129 | 0.973141     | 0.103281 |
|              | 8  | 0.965544 | 0.128588 | 0.963798     | 0.132867 |
|              | 9  | 0.966360 | 0.125442 | 0.974123     | 0.098695 |
|              | 10 | 0.967125 | 0.122985 | 0.975435     | 0.094902 |
|              | 11 | 0.967582 | 0.120684 | 0.973671     | 0.100347 |
|              | 12 | 0.968552 | 0.117752 | 0.974939     | 0.096470 |
|              | 13 | 0.968941 | 0.116763 | 0.971420     | 0.106648 |

losses3[['accuracy','val\_accuracy']].plot()



losses3[['loss','val\_loss']].plot()



predictions3 = model3.predict(test\_images\_gray)

```
        → 814/814 — 2s 2ms/step
```

predictions3

```
array([[2.8453124e-07, 2.8197126e-05, 8.7615354e-06, ..., 1.5913520e-05, 5.3405046e-07, 4.4351059e-06], [8.0707914e-06, 6.1902298e-05, 9.9964201e-01, ..., 4.7926307e-05, 2.4544610e-05, 3.5739791e-05], [6.1016585e-06, 9.9915576e-01, 2.3376668e-05, ..., 6.3453408e-05, 1.7735758e-05, 1.9348902e-06], ..., [5.8625133e-08, 8.8640722e-05, 1.0469111e-04, ..., 9.9977797e-01, 3.2194031e-08, 1.8442601e-05], [1.5912355e-03, 4.6303289e-04, 4.1217943e-05, ..., 5.1023730e-05, 1.8465503e-04, 3.5647965e-05], [7.2829508e-08, 1.1128939e-03, 1.3698303e-05, ..., 9.9885786e-01, 2.6150971e-08, 8.8013776e-06]], dtype=float32)

pred3_binary

array([[False, False, False, ..., False, False, False], [False, False, True, ..., False, False, False, False],
```

```
[False, True, False, ..., False, False, False],
...,
[False, False, False, ..., True, False, False],
[False, False, False, ..., False, False, False]])
```

pred3\_class = np.argmax(predictions3, axis=1)

pred3\_class

 $\Rightarrow$  array([5, 2, 1, ..., 7, 6, 7])

print(classification\_report(test\_labels,pred3\_class))

| <del>_</del> | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.95      | 0.94   | 0.95     | 1744    |  |
| 1            | 0.95      | 0.97   | 0.96     | 5099    |  |
| 2            | 0.97      | 0.96   | 0.97     | 4149    |  |
| 3            | 0.93      | 0.94   | 0.94     | 2882    |  |
| 4            | 0.96      | 0.96   | 0.96     | 2523    |  |
| 5            | 0.95      | 0.95   | 0.95     | 2384    |  |
| 6            | 0.94      | 0.94   | 0.94     | 1977    |  |
| 7            | 0.95      | 0.93   | 0.94     | 2019    |  |
| 8            | 0.96      | 0.91   | 0.94     | 1660    |  |
| 9            | 0.94      | 0.95   | 0.94     | 1595    |  |
| accuracy     |           |        | 0.95     | 26032   |  |
| macro avg    | 0.95      | 0.95   | 0.95     | 26032   |  |
| weighted avg | 0.95      | 0.95   | 0.95     | 26032   |  |

confusion\_matrix(test\_labels,pred3\_class)

```
→ array([[1645,
                                                     7,
                                                                                17],
                              11,
                                                           30,
                       16,
                                      13,
                                              3,
                18,
                     4938,
                              17,
                                      36,
                                             41,
                                                    10,
                                                                  27,
                                                                                  3],
                 4,
                                                                                  9],
                       39,
                            3999,
                                      22,
                                             17,
                                                     4,
                                                            3,
                 7,
                       27,
                              19,
                                   2718,
                                                    39,
                                                                   8,
                                                                         17,
                                                                                 29],
                                             10,
                                                            8,
                 6,
                       44,
                              12,
                                      11,
                                           2429,
                                                     4,
                                                                                  3],
                 3,
                         8,
                                      59,
                                                 2265,
                                                           19,
                                                                                  8],
                17,
                       12,
                               9,
                                      9,
                                              9,
                                                    25,
                                                         1866,
                                                                   2,
                                                                         24,
                                                                                  4],
                 4,
                       99,
                              14,
                                       4,
                                              3,
                                                     3,
                                                            1.
                                                                1885,
                                                                           1.
                                                                                  5],
                10,
                       12,
                              11,
                                      24,
                                              9,
                                                     9,
                                                           39,
                                                                    4,
                                                                       1518,
                                                                                24],
                14,
                       10,
                              20,
                                      13,
                                                    10,
                                                                           6, 1513]])
```

sns.heatmap(confusion\_matrix(test\_labels,pred3\_class),annot=True)



 $my_number = test_images_gray[3333]$ 

plt.imshow(my\_number.reshape(32, 32), cmap='gray')

<matplotlib.image.AxesImage at 0x7abac4748f50>

