Johns Hopkins Engineering

Immunoengineering

Immunoengineering—Allergy and Autoimmunity

Protein Engineering

General Outline

- Engineered Cells
- Engineered Microbes
- Engineered Proteins
- Engineered Genetic Material

Cytokine Engineering Therapies

- Eli Lilly \$400 million
 - Nektar Therapeutics
- Celgene \$300 million
 - Delinia

IL-2 Receptor Biasing – Nektar Therapeutics

Cell type	CD25 (IL-2Ra)	CD122 (IL-2Rβ)	CD132 (IL-2Rγ)	
Naïve T cell	-	-/+	+	
Effector T cell	+++	+ +	+	
Memory T cell	-	+/++	+	
NK cell	-	+ +	+	
Treg cell	+++	+	+	
Endothelial cell	+	+	+	

Adapted from Boyman and Sprent, Nat Rev Immunol 12(3):180-90 (2012)

John L. Langowski et al.

2015 Inaugural CRI-CIMT-EATI-AACR Immunotherapy Conference Poster: Antitumor activity of NKTR-214, a CD122-biased immunostimulatory cytokine, combined with immune checkpoint blockade requires innate and adaptive immunity

IL-2 Receptor Biasing – Attachment of Polymers

- PEG polyethylene glycol
 - Increase half-life
 - **Improve** biodistribution
 - Controlled release of active version of the drug
- Specific sites of attachment for PEG prevent binding with specific receptors

Adapted from Wang et al., Science Vol 310 18 Nov. 2005

EC50. pSTAT5 CTLL-2

Treg Targeting IL-2

A single administration of NKTR-358 promotes greater Treg mobilization than multiple IL-2 administrations

Cytokine Engineering – IL-13

- IL-13 associated with asthma and fibrosis
- Yeast display to engineer variants of binding affinity
- Differential k.on and k.offs

IL-13Rα1

IL-13-yeast FACS staining with receptor ECDs:

Unstained

Cytokine Engineering – IL-13 modeling

- Single molecule imaging allowed them to hypothesize a model
- Kinetic model agrees with observed experimental results
 k.on = pSTAT forming more complexes
 - k.off = STAT activation through endocytosis
 - k.e important regulator of low k.off
- Help cytokine therapies to engineer low affinity therapies with equal potency to limit non-specific effects

Moraga, Ignacio, et al. "Instructive roles for cytokine-receptor binding parameters in determining signaling and functional potency." Sci. Signal. 8.402 (2015): ra114-ra114.

Antibody Engineering – bispecific for RA

 TNFa and IL-17 raised in Rheumatoid arthritis

Treatment effects

- Decreased levels of cytokines
- Decreased swelling in bone
- 2+2 format more effective than 1+1 format potentially due to higher avidity

Antibody Engineering – anti-CD40L

- Blocking CD40L attractive for treating autoimmunity or transplant recipients
 - But cause thromboembolism
- Domain Antibody (dAb)
 - Smallest Ab fragments (10% of size)
 - Eliminate Fc region
 - Mutate and add back non-active Fc region
- Decrease platelet activation while retaining bioactivity

DARPin for Allergies

- Antibodies are unable to compete off established IgE/Fce
 - Also bispecific nature leads to crosslinking and further activation
- DARPin (designed ankyrin repeat proteins)
 - Engineered antibody fragments often aggregate
 - Produce bacterially
 - Bi-specific DARPin target 2 regions on same protein

(a)

DARPin for Allergies

- Kinetic models establish mechanistic facilitated dissociation
- Works in both in vitro and in vivo assays more efficiently than Omalizumab (current antibody therapy)

Allergen Peptide Immunotherapy

- One of most common allergy treatments
- Low levels of peptide given over time
- Effective in reducing allergic rhinitis
- Administration with shots or sublingual tablets

Time During ICS Reduction, d

No. at risk							
Placebo	257	228	200	188	171	163	109
6 SQ-HDM tablet	237	224	207	201	187	171	122
12 SQ-HDM tablet	248	228	214	207	189	180	121

Short Peptide Immunotherapy for Type 1 Diabetes

- More risky for autoimmune diseases
- Phase 1 trial
- Pro-insulin peptide given to T1D patients not need to increase insulin

DNA Vaccine for Insulin Tolerization

- Similar Phase 1 trial except with DNA vaccine
- Design pro-insulin to be tolerogenic
- Advantages to DNA delivery
 - Ease of manufacturing
 - More cost effective
 - Durability of expression
 - Produce whole protein

Polyelectrolyte Multilayered Immune Modulation

- Bias response with regulatory signals
- Functions of nanobiomaterials without inherent biomaterial inflammation or clearance
- Effective in treating MS mouse models and decreasing inflammation from human samples

Combination Therapies – Cell & Peptide Engineering

- Apoptotic cells are tolerogenic
- RBCs are an attractive vehicle
 - RBCs have quick turnover
 - RBCs are abundant and accessible
 - Dead RBCs are cleared by the spleen (secondary lymphoid organ)
- Enzyme covalent modification with autoimmune peptides
- Therapeutic in mouse models of T1D and MS

Summary

- Promising Future for Protein Engineering
 - Improve pharmacokinetics (e.g. half-life)
 - Decrease off-target effects (e.g. specificity)
 - Increased tools (e.g. evolution & modeling)
 - Curative potential (e.g. antigen immunotherapy)
 - Increased understanding (e.g. Fc receptor K.O.)
- Challenges Ahead for Protein Engineering
 - Immunogenicity
 - Safety
 - Cost

