Rendere un prob. di ottim. P un prob. decisionale R \rightarrow Fr = { g \in Fp | cp(g) = Zp} \rightarrow serve conoscere valore ottimo di P.

Oppure dato un k si può formulare Rk decisionale (min) \rightarrow Fr_k = { $g \in Fp \mid cp(g) \le k$ } \rightarrow Scelgo k sempre più piccoli per avvicinarmi a Zp Un **rilassamento** di P è un P* definito come: min{cp*(g) | $g \in Fp^*$ } \rightarrow Fp* \supseteq Fp e Zp* < Zp \rightarrow Se cp*(g*) = cp(g*) allora cp*(g*) = Zp* \le Zp \le cp(g*) = cp*(g*) Sel. sottoins. \rightarrow det. D \subseteq F (\subseteq N) costo min \rightarrow P. **copertura** \rightarrow N almeno uno D (>= 1); P. **partizione** \rightarrow N uno D (=1); P. **riempimento** \rightarrow N al più uno D (<= 1) **Val. ass.** \rightarrow Vincoli: $|g(x)| <= b \rightarrow g(x) <= b$; Nella FO: confronto valori ottimi max {|f(x)|} \rightarrow max {f(x)} e max{- f(x)}

Vincoli \rightarrow domanda e offerta globale si equivalgono; il flusso conserva; il flusso deve ammissibile (I < x < u)

MCF in PL = min cx; $0 \le x \le u$; Ex= b (b = sbil)

Rendere le Lij = 0: si sottrae lij a bj e a uij \rightarrow si aggiunge lij a bi \rightarrow si aggiunge alla FO $\sum_{(i,j \in A)} cij * lij \rightarrow$ ad un flusso Xij corrisponde Xij + lij.

Il valore di un flusso ammissibile è sempre minore o uguale della capacità di qualunque taglio \rightarrow v = x(Ns, Nt) \leq u(Ns, Nt)

Se x è un flusso ammissibile massimo, allora Gx non ha cammini aumentanti \rightarrow se ci fossero, x non sarebbe massimo + esiste taglio con capacità v Il valore del massimo flusso è uguale alla minima capacità dei tagli \rightarrow x ammissibile e max quindi Gx non ha camm. aumentanti, quindi esiste taglio cap. v Etichettatura valida \rightarrow per i, j se hanno capacità residua: di – dj <= 1; per j, i se il flusso è > 0: di – dj <= 1 \rightarrow Arco ammissibile \rightarrow se non saturo + di = dj+1 Th (Struttura degli pseudoflussi): Siano x e y due pseudoflussi qualunque: esistono k \leq n + m cammini aumentanti P1, ..., Pk, per x, di cui al più m sono cicli, t.c: z1 = x; zi+1 = zi \oplus θ iPi; zk+1 = y; $0 \leq i \leq \theta$ (Pi, zi) Inoltre, tutti i Pi hanno come estremi dei nodi in cui lo sbilanciamento di x è diverso da quello di y. Pseudoflusso minimale \rightarrow pseudoflusso x che ha costo minimo tra tutti gli pseudoflussi aventi lo stesso vettore di sbilanciamento ex

Uno pseudofl. è minimale (o un flusso ammiss. è ottimo) sse non esistono cicli aum. di costo negativo \rightarrow dim: supporre non minim. di x ed esistenza ciclo Complessità algoritmi \rightarrow FF O(mnU) \rightarrow EK O(NA^2) \rightarrow GT O(N^2A) \rightarrow Camm min succ. O(sbil.iniziale *NA) \rightarrow canc. cilci O(Na^2 * max(uij) * max(cij))

Iperpiano → ax = b; **Semispazio** → ax <= b; **Poliedro** → Inters. di semispazi (mat. A e vett. b | P = {x | Ax <= b}); **Ins. convesso** → punti che conn. x,y sono in C $P_1 = \{x \mid A_i x = b_i \text{ and } A_{i^*} x <= b_{i^*}\}$ → **Faccia** → P_1 , se non è vuoto → max 2^m → dimens. faccia = più piccolo sottosp. che la contenga

Se determinata da mat rango k ha dim n-k (se k = n **vertice**, se rango = n-1 **spigolo**) \rightarrow i vertici di P sono tutte e sole le sue soluzioni di base ammissibili.

Vincoli attivi \rightarrow Se X \in P, vincoli soddisfatti come uguaglianze \rightarrow I(x) = insieme vincoli attivi

Per ogni $J \in I(x)$, l'insieme PJ è una faccia di P, e PI(x) è la faccia minimale tra esse.

Rappr. per punti dei poliedri dato insieme di punti X \rightarrow Inviluppo convesso conv(X) = { x = $\sum_{i=1}^{S} \lambda i * xi \mid \sum_{i=1}^{S} \lambda i = 1 \text{ and } \lambda i \geq 0$ } (ins. più piccolo a conten. X) conv(X) è un **politopo**, ossia un poliedro limitato, i cui vertici sono tutti in X.

Cono \rightarrow Ins. C \subseteq Rn in cui $\forall x \in C$ e a \in R+ ax \in C \rightarrow **Coni convessi** \rightarrow x, y \in C and λ , $\mu \in$ R $\rightarrow \lambda x + \mu y \in$ C.

Rappr. sulle direz. coni conv. \rightarrow dato un insieme V = {v1, ...,vt} \subseteq Rn, il cono finit. generato da V è: **cono(v)** = {v = $\sum_{i=1}^{t} Vi * vi \mid Vi \in R+$ } (ins più picc. con. V) **Motzkin** \rightarrow P \subseteq Rn è un poliedro sse esistono X, V finiti tali che P = conv(X) + cono(V) \rightarrow P gen. da punti in X e direz in V \rightarrow minimale \rightarrow elem = raggi esterni **Th**: sia P gen. secondo Motzkin \rightarrow il problema max {cx | Ax \le b} ha **ottimo finito** sse cvj \le 0 per ogni j \in {1, ..., t}. Esiste k \in {1, ...,s} tale che xk è una sol. ott. **Dualità** \rightarrow si basa su def. di un'involuzione (funzione inversa di sé stessa) che mappa ogni prob. PL nel suo duale.

TDD \rightarrow Se x e y sono soluzioni ammissibili per il primale e il duale, rispettivamente, allora cx <= yb. \rightarrow (max {cx | Ax <= b} e min {yb | (yA = c) and y >= 0}) **Coroll:** \rightarrow primale ill. = duale vuoto \rightarrow Se x, y sol. amm. per prim. e duale e cx = yb allora x e y sono sol. ottime

Un vet. $\varepsilon \in \mathbb{R}$ n è detto direzione Ammissibile se esiste $\lambda^* > 0 \mid x(\lambda) = x^* + \lambda \varepsilon$ è amm. nel prim. $\forall \lambda \in [0; \lambda^*]$. ε è direzione ammissibile per x sse $Al_{(x^*)} \varepsilon \leq 0$. ε è una direzione di crescita per x^* se uno spost. λ lungo ε fa crescere il valore della FO (se c di cx = 0 sol. ammiss. ottime, altrim. esiste dir. amm. di cr. per x) Invarianti simplesso \to B è amm.; x è sol amm. per prim. (sempre vertice); yA = c (y sol. per duale sse yB >= 0).

Sia λ^* il valore min $\{\lambda i \mid i \in N\}$: Se $0 < \lambda^* < +\inf$ allora $x(\lambda)$ * ammissibile per ogni $\lambda \in [0, \lambda^*] \rightarrow Possiamo$ spostarci da B a B U $\{k\} - \{h\}$ ovvero un altro vertice