Oppgaver ICA06

a)

NAND – gate (negative-AND)

Usant, dersom alle inputs er sant.

Input		Output
Α	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

AND – gate

A og B er sant, gir output sant

Input		Output
Α	Α	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

NOT – gate

0 er ikke 1

1 er ikke 0

Input	Output	
Α	NOT A	
0	1	
1	0	

OR – gate

A eller B er input er sant, gir output sant.

Input		Output
Α	В	A or B
0	0	0
0	1	1
1	0	1
1	1	1

XOR – gate (Exclusive OR gate)

Er sant dersom kun én som sant av inputs.

Input		Output
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

NOR – gate

Resulterer I sant, dersom begge inputs er negativ

Input		Output
Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

b)

Tilstands	stabell ()	orogram)		
Tilstand	Symbol	Skriveinstruksjon	Flytteinstruksjon	Neste tilstand
Tilstand 0	Blank	Skriv 'Blank'	Flytt tape til høyre	Tilstand 1
	0	Skriv '0'	Flytt tape til venstre	Tilstand 0
	1	Skriv '1'	Flytt tape til venstre	Tilstand 0
Tilstand 1	Blank	Skriv '1'	Flytt tape til venstre	Tilstand 2
	0	Skriv '1'	Flytt tape til høyre	Tilstand 2
	1	Skriv '0'	Flytt tape til høyre	Tilstand 1
Tilstand 2	Blank	Skriv 'Blank'	Flytt tape til høyre	Stop Tilstand
	0	Skriv '0'	Flytt tape til venstre	Tilstand 2
	1	Skriv '1'	Flytt tape til venstre	Tilstand 2

* Tall utenfor parantes er det den leser, mens den innenfor er det tallet som erstatter det første. Tilstand 0 – Operasjon 1 1 1 ^Head Tilstand 1 – Operasjon 2 1 1(0) 1 ^Head Tilstand 1 – Operasjon 3 1 1(0) 0 ^Head Tilstand 1 – Operasjon 4 0 1(0) 0 ^Head Tilstand 1 – Operasjon 5 0 0 $(1) \mid 0$ ^Head Tilstand 2 – Operasjon 6 1 0(0) 0 0 ^Head Tilstand 2 – Operasjon 7 0(0) 0 1 0 ^Head Tilstand 2 – Operasjon 8 0 0 0(0) 1 ^Head Tilstand 2 - Operasjon 9 1 0 0 0 ^Head Stopp tilstand 1 0 0 0 ^Head

Som gjennomgangen av eksempelet viser, vil headeren være over 1 (nr 4) når den har nådd stopp tilstand. Den vil også ha gjort totalt 9 operasjoner før dette.

- c) Hovedforskjellen på tilstandsdiagrammene og prosessene som skjer i de fto tilstandsdiagrammene (elve eksempel og gate eksempel), er at elve eksempelet har en slutt, i motsetning til gaten som fortsetter teoretisk uendelig.
 - Sammenligner man de forskjellige tilstandsdiagrammene kommer dette tydelig fram, hvor man kan se at gate går i en «sirkel» hvor den til slutt ender opp i begynnelsen, mens i elve eksemplet går man hele tiden videre til en av de alternative «sluttene»