

REVISÃO – ÁLGEBRA DE BOOLE

GEORGE BOOLE

(2 de novembro de 1815 —8 de dezembro de 1864)

- Foi um dos matemáticos fundamentais para a criação da computação moderna.
- Desenvolveu o modelo matemático lógico, conhecido como Álgebra Booleana.
- Quase todas as linguagens de programação possuem variáveis booleanas em sua homenagem.

Álgebra "Tradicional":

- Variáveis representam números reais;
- Operadores são aplicados as variáveis e o resultado e um numero real.

Álgebra Booleana:

- Variáveis representam apenas 0 ou 1;
- Operadores retornam apenas 0 ou 1.

FUNÇÕES E VARIÁVEIS LÓGICAS

Seguem algumas definições importantes :

- Variável booleana: é uma quantidade que pode ser, em diferentes momentos, igual a 0 ou 1.
- Função booleana: associa a cada n variáveis de entrada uma única saída.

Podemos descrever uma função booleana utilizando:

- tabela verdade
- portas lógicas
- equações
- formas de onda

Diferente da álgebra comum, a álgebra booleana possui somente três operações básicas : OR, AND e NOT, conhecidas como operações lógicas.

Por exemplo, supondo:

x = jovem; y = faz Sistemas de Informação;

- (1-x) iria então representar a operação de selecionar todas as coisas no mundo exceto jovens, isto e, todas as coisas que não são jovens;
- (xy) representaria o conjunto dos jovens que fazem Sistemas de informação;
- (1 x) (1 y) seriam todas as coisas que não são jovens nem fazem
 Sistemas de informação;
- (x + y) seria o conjunto das coisas que são jovens ou que fazem
 Sistemas de informação.

 A álgebra de boole possui diversos componentes que possibilitam a aplicação de lógica na matemática.

Alguns dos principais componentes desse modelo são:

AND

Este operador entre duas ou mais variáveis somente apresenta o resultado 1 se todas as variáveis estiverem no estado lógico 1.

Também chamado de conjunção, esse operador pode ser representado por:

AND && * . ^

Ex:.

Uma parcela da população de chocólatras são diabéticos.

Chocólatra AND Diabético

Tabela verdade:

Chocólatra	Diabético	Chocólatra AND Diabético
S / 1	S / 1	S / 1
S/1	N / O	N / 0
N / 0	N / O	N / 0
N / 0	S / 1	N / O

OR

Este operador entre duas ou mais variáveis somente apresenta o resultado 1 se pelo menos uma das variáveis estiverem no estado lógico 1.

Também chamado de disjunção, esse operador pode ser representado por:

OR || + V

Ex:.

Se o aluno tem a média menor que 7 ou possui mais de 30% de faltas, ele está reprovado.

Média > 7 AND Faltas >30%

Tabela verdade:

Média < 7	Faltas > 30%	Média < 7 OR Faltas > 30%
S/1	S/1	S/1
S/1	N / 0	S/1
N / 0	N / 0	N / O
N / 0	S / 1	S/1

NOT

Este operador de complementação ou inversão de uma variável é implementada através da inversão do valor lógico da variável referida.

Também chamado de negação, esse operador pode ser representado por:

NOT ! ¬ ~

Ex:.

Somente os alunos com faltas <= 15% serão selecionados para o concurso de programação.

NOT *Faltas* > *15%*

Tabela verdade:

Faltas > 15%	NOT Faltas > 15%
S/1	N / O
N / O	S / 1

Ex:.

"Eu irei almoçar se Maria ou João forem e se Célia não for."

Avaliação formal (para m = 1, j = 0, c = 1):

$$F = (m OR j) AND NOT(c)$$

 $F = (m + j) \neg c$

$$F = (1 + 0)$$
, $\neg 1 = 1$, $0 = 0$

Ex:. Simplificar (a + b) (a + \neg b + \neg c):

TABELA VERDADE

Seja uma função $f(A_1, \dots, A_n)$ com n entradas. A tabela verdade expressa o estado da saída para todas as combinações possíveis dos estados de entrada $\{A_1, \dots, A_n\}$. Segue m exemplo para duas entradas.

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	1
1	0	1
1	1	0

Além de 0s e 1s a função $f(\cdot)$ pode ser igual ao caracter x , chamado de don't care. Este caracter serve para indicar que para uma dada combinação de entradas, x pode ser tanto 0 como 1.

• Operação NOT: Para qualquer entrada A, ela é definida como:

$$f(A) = \bar{A}$$

ou seja, é a entrada negada (barrada). Para uma entrada A_1 , por exemplo temos:

Tabela verdade

A_1	$f(A_1)$
0	1
1	0

• Operação OR: Para qualquer entrada $\{A_1, \dots, A_n\}$, ela é definida como:

$$f(A_1,\dots,A_n) = \sum_{i=1}^n A_i$$

E vale 1 se qualquer uma das entradas for igual a 1. Para duas entradas temos:

_			
T_{2}	ha	~	vordada
Id	Del	d	verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	1
1	0	1
1	1	1

• Operação AND: Para qualquer entrada $\{A_1, \dots, A_n\}$, ela é definida como:

$$f(A_1,\dots,A_n) = \prod_{i=1}^n A_i$$

E vale 1 apenas se todas as entradas forem iguais a 1. Para duas entradas temos:

Tabela v	erdade
----------	--------

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	0
1	0	0
1	1	1

• Operação NOR: É a operação OR negada. Para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1 + A_2}$$

E vale 1 apenas se todas as entradas forem iguais a 0. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	0
1	0	0
1	1	0

- Sobre a porta NOR, podemos realizar os seguintes comentários:
 - Utilizando a tabela verdade podemos verificar que:

$$\overline{A_1 + A_2} = \overline{A_1} . \overline{A_2}$$

Que é um dos resultados do teorema de Morgan que veremos a seguir...

Tabela verdade

A_1	A_2	$\overline{A_1 + A_2}$	$\overline{A_1}$. $\overline{A_2}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

 Utilizando apenas a porta NOR, podemos obter as outras três portas básicas:

• Operação NAND: É a operação AND negada. Para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1 \cdot A_2}$$

E vale 0 apenas se todas as entradas forem iguais a 1. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	1
1	0	1
1	1	0

- Sobre a porta NAND, podemos realizar os seguintes comentários:
 - Utilizando a tabela verdade podemos verificar que:

$$\overline{A_1}$$
 . $\overline{A_2} = \overline{A_1 + A_2}$

Que é um dos resultados do teorema de Morgan que veremos a seguir...

Tabela verdade

A_1	A_2	$\overline{A_1.A_2}$	$\overline{A_1} + \overline{A_2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

 Utilizando apenas a porta NAND, podemos obter as outras três portas básicas:

• Operação XOR (ou exclusivo): Definida para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1} \cdot A_2 + \overline{A_2} \cdot A_1 = A_1 \oplus A_2$$

E vale 1 apenas se as entradas forem diferentes. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	1
1	0	1
1	1	0

• Operação XNOR (coincidência): Definida para duas entradas $\{A_1, A_2\}$, ela é definida como:

$$f(A_1, A_2) = \overline{A_1} . \overline{A_2} + A_1 . A_2 = A_1 \odot A_2$$

E vale 1 apenas se as entradas forem iguais. Para duas entradas temos:

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	0
1	0	0
1	1	1

- As regras operacionais de minimização utilizando a álgebra de Boole decorrem dos postulados e propriedades a segui:
 - Postulados da complementação

$$\bar{\bar{A}} = A$$

Postulados da adição

$$A + 0 = A, A + 1 = 1, A + A = A, A + \overline{A} = 1$$

Postulados da multiplicação

$$A.0 = 0, A.1 = A, A.A = A, A.\bar{A} = 0$$

 Propriedades: Comutativa, associativa e distributiva são válidas para a adição e a multiplicação.

TEOREMA DE DE MORGAN

 O seguinte teorema e importante pois permite simplificar expressões booleanas ⇒minimização

Teorema de De Morgan

As seguintes igualdades são verdadeiras :

•
$$\overline{A \cdot B \cdot C \cdot \cdots \cdot N} = \overline{A} + \overline{B} + \cdots + \overline{N}$$

•
$$\overline{A+B+C+\cdots+N} = \overline{A} \cdot \overline{B} \cdot \cdots \cdot \overline{N}$$

Exemplo 1 : Minimize a expressão sem utilizar o teorema.

$$ar{A}ar{B} + ar{A}B + Aar{B} = ar{A}(B + ar{B}) + Aar{B}$$

$$= ar{A}(1 + ar{B}) + Aar{B}$$

$$= ar{A} + (A + ar{A})ar{B}$$

$$= ar{A} + ar{B}$$

TEOREMA DE DE MORGAN

 Exemplo 2 : Minimize a mesma expressão utilizando o teorema de De Morgan.

$$\bar{A}\bar{B} + \bar{A}B + A\bar{B} = \bar{A}(B + \bar{B}) + A\bar{B}$$

$$= \bar{A} + A\bar{B}$$

$$= \bar{A} \cdot (\bar{A} + B)$$

$$= \bar{A}B$$

$$= \bar{A} + \bar{B}$$

Exemplo 3 : Minimize a seguinte expressão

$$ABC + A\overline{B} + A\overline{C} = A(BC + \overline{B} + \overline{C})$$

 $= A(BC + (\overline{B} + \overline{C}))$
 $= A(BC + \overline{BC})$
 $= A$

EXERCÍCIOS

Descreva a expressão lógica que representa o circuito a seguir

A expressão lógica é dada por

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{\overline{A} \cdot \overline{C}})$$

SIMPLIFICAÇÃO

Minimizar a expressão de um circuito lógico, significa obter uma outra equivalente com menos termos e operações. Isto implica em menos portas lógicas e conexões.

- Como vimos, podemos usar a álgebra de Boole para realizar a minimização.
- Neste caso, a simplificação nem sempre é óbvia.
- Geralmente, podemos seguir dois passos essenciais :
 - colocar a expressão na forma de soma de produtos
 - identificar fatores comuns e realizar a fatoração
- Algumas vezes devemos contar com habilidade e experiência para obter uma boa simplificação.

SIMPLIFICAÇÃO

 Utilizando a álgebra de Boole, podemos minimizar a expressão da função do exercício anterior

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} \cdot \overline{C})$$

$$= A \cdot B \cdot C + A \cdot \overline{B} \cdot (A + C)$$

$$= A \cdot C \cdot (B + \overline{B}) + A \cdot \overline{B}$$

$$= A \cdot (C + \overline{B})$$

O circuito lógico simplificado é dado por.

A quantidade de portas lógicas foi reduzida de 7 para 3!!!

EXERCÍCIOS

 A partir do circuito apresentado anteriormente, obtenha a sua tabela verdade e, a partir dela, obtenha a expressão lógica.

Α	В	C	f(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Utilizando a tabela, sua expressão lógica é dada por

$$f(A, B, C) = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

embora seja equivalente à função obtida através do circuito, ela possui um número maior de termos.

Tecnologia da informação e comunicação **REFERÊNCIAS**

MEIRELLES, Fernando de Souza. **INFORMÁTICA: NOVAS APLICAÇÕES COM MICROCOMPUTADORES**., Makron Books. 2005

CAPUANO E IDOETA. Elementos de eletrônica Digital. Ed Erica

TORRES, Gabriel. **Hardware: curso completo** . 4. ed. Rio de Janeiro: Axcel Books, 2005

BROOKSHEAR, J. Glenn. **Ciência da Computação – Uma Visão Abrangente**. Porto Alegre: Bookman. 2009

CAPRON, Harriet L. Introdução a Informatica. Pearson Brasil

PERES, Fernando Eduardo; FEDELI, Ricardo Daniel; POLLONI, Enrico G. F. Introdução À Ciência da Computação – 2. ed. Cengage Learning, 2010

