WHAT IS CLAIMED IS:

]	l. A	a method	for	producing	an e	lectronic	signal,	comprising
--	---	------	----------	-----	-----------	------	-----------	---------	------------

multiplying together a first phasor associated with the electronic signal with a delta phasor associated with a cyclic rate of the electronic signal to produce a second phasor, the first phasor having a first real portion and a first imaginary portion, the second phasor having a second real portion and a second imaginary portion;

adding the first imaginary portion to the first real portion to produce a first sum;

scaling the first sum according to a first scaling factor to produce an imaginary correction factor;

adding the imaginary correction factor to the second imaginary portion of the second phasor to correct for a magnitude error of the second phasor; and updating the electronic signal based on the corrected second phasor.

2. The method of claim 1, further comprising:

subtracting the first imaginary portion from the first real portion to produce a first difference;

scaling the first difference according to the first scaling factor to produce a real correction factor; and

adding the real correction factor to the second real portion of the second phasor to further correct for the magnitude error of the second phasor.

- 3. The method of claim 1, wherein the first scaling factor is based on a bitprecision of N bits, where N is a non-zero integer.
- 4. The method of claim 3, wherein the first correction factor is further based on a second correction factor, the second correction factor being based on a first term of a Taylor series relating to a square-root.
- 5. The method of claim 4, wherein the second scaling factor is based on the formula:

$$\alpha = \left(\frac{1.0 - \left(\cos^2(\omega) + \sin^2(\omega)\right)}{2}\right)$$

where α is the second scaling factor and ω is the frequency of the complex sinusoid.

- 6. The method of claim 5, wherein the second correction factor is determined according to the formula $\alpha \approx 2^{-P}$, where P is a non-zero integer.
 - 7. The method of claim 6, wherein the first scaling factor is equal to $2^{-(P+N)}$.
- 1 8. The method of claim 7, wherein the step of scaling is performed using a shift operation.
 - 9. The method of claim 1, wherein the step of scaling is performed using a shift operation.
 - 10. The method of claim 1, further comprising updating the electronic signal based on a third phasor produced a high-accuracy technique.
 - 11. The method of claim 1, wherein the electronic signal is an electronic analog signal having sinusoidal form.
 - 12. The method of claim 1, further comprising producing a communication signal based on the updated electronic signal.
 - 13. The method of claim 1, further comprising receiving a communication signal using the updated electronic signal.
 - 14. The method of claim 2, wherein the steps of scaling are performed using a shift operation of N+P bits, where N is a target bit-precision and P is a non-zero integer such that

$$2^{-P} \approx \left(\frac{1.0 - \left(\cos^2(\omega) + \sin^2(\omega)\right)}{2}\right)$$

where ω is the frequency of the complex sinusoid.

15. An apparatus for producing an electronic signal, comprising:

a multiplier that multiplies a first phasor associated with the electronic signal and a delta phasor associated with a cyclic rate of the electronic signal to produce a second phasor, the first phasor having a first real portion and a first imaginary portion, the second phasor having a second real portion and a second imaginary portion;

an arithmetic device that adds the first imaginary portion to the first real portion to produce a first sum;

a scaling device that scales the first sum according to a first scaling factor to produce an imaginary correction factor;

an adding device that adds the imaginary correction factor to the second imaginary portion of the second phasor to correct for a magnitude error of the second phasor; and

an interface that updates the electronic signal based on the corrected second phasor.

- 16. The method of claim 15, wherein the electronic signal is an electronic analog signal having sinusoidal form.
- 17. The method of claim 15, wherein the electronic signal is a communication signal having embedded information.
- 18. The apparatus of claim 15, wherein the arithmetic device further subtracts the first imaginary portion from the first real portion to produce a first difference, the scaling device further scales the first difference according to the first scaling factor to produce a real correction factor; and the adding device further adds the real correction factor to the second real portion of the second phasor to further correct for the magnitude error of the second phasor.
- 19. The apparatus of claim 15, wherein the first scaling factor is based on a bit-precision of N bits, where N is a non-zero integer.
- 20. The apparatus of claim 15, wherein the first correction factor is further based on a second correction factor, the second correction factor being based on a first term of a Taylor series.
- 21. The apparatus of claim 16, wherein the second scaling factor is based on the formula:

$$\alpha = \left(\frac{1.0 - \left(\cos^2(\omega) + \sin^2(\omega)\right)}{2}\right)$$

- where α is the second scaling factor and ω is the frequency of the complex sinusoid.
- 22. The apparatus of claim 21, wherein the second correction factor is determined according to the formula $\alpha = 2^{-P}$, where P is a non-zero integer.

7

8

	19						
1	23. The apparatus of claim 22, wherein the scaling device scales the first sur						
2	device using a shift operation.						
1	24. The apparatus of claim 15, wherein the scaling device scales the first sur						
2	device using a shift operation.						
1	25. The apparatus of claim 15, wherein the apparatus further updates the						
2	electronic signal based on a third phasor, the third phasor being produced a high-accuracy						
3	technique.						
1	26. A machine-readable medium including instructions for producing ar						
2	electronic signal, the instructions being arranged to cause a machine to perform the steps						
3	of:						
4	multiplying a first phasor associated with the electronic signal and a delta						
5	phasor associated with a cyclic rate of the electronic signal to produce a second phasor						
6	the first phasor having a first real portion and a first imaginary portion, the second phason						
7	having a second real portion and a second imaginary portion;						
8	adding the first imaginary portion to the first real portion to produce a first						
9	sum;						
10	scaling the first sum according to a first scaling factor to produce an						
11	imaginary correction factor;						
12	adding the imaginary correction factor to the second imaginary portion of						
13	the second phasor to correct for a magnitude error of the second phasor; and						
14	updating the electronic signal based on the corrected second complex						
15	sinusoid phasor.						
1	27. The machine-readable medium of claim 26, further comprising						
2	instructions being arranged to cause a machine to perform the steps of:						
3	subtracting the first imaginary portion from the first real portion to						
4	produce a first difference:						

scaling the first difference according to the first scaling factor to produce a

adding the real correction factor to the second real portion of the second

phasor to further correct for the magnitude error of the second phasor.

real correction factor; and

28. The machine-readable medium of claim 27, wherein the steps of scaling are performed using a shift operation of N+P bits, where N is a target bit-precision and P is a non-zero integer such that

$$2^{-p} \approx \left(\frac{1.0 - (\cos^2(\omega) + \sin^2(\omega))}{2}\right)$$

where ω is the frequency of the complex sinusoid.

29. An apparatus for producing an electronic signal, comprising:

a multiplying means for multiplying a first phasor associated with the electronic signal and a delta phasor associated with a cyclic rate of the electronic signal to produce a second phasor, the first phasor having a first real portion and a first imaginary portion, the second phasor having a second real portion and a second imaginary portion;

an arithmetic means for adding the first imaginary portion to the first real portion to produce a first sum;

a scaling means for scaling the first sum according to a first scaling factor to produce an imaginary correction factor;

an adding means for adding the imaginary correction factor to the second imaginary portion of the second phasor to correct for a magnitude error of the second phasor;

an interface that updates the electronic signal based on the corrected second phasor.

- 30. The apparatus of claim 29, wherein the arithmetic means further subtracts the first imaginary portion from the first real portion to produce a first difference, the scaling means further scales the first difference according to the first scaling factor to produce a real correction factor; and the adding means further adds the real correction factor to the second real portion of the second phasor to further correct for the magnitude error of the second phasor.
- 31. The apparatus of claim 29, wherein the scaling means performs its scaling without using a multiply operation.
- 32. The apparatus of claim 29, wherein the scaling means performs its scaling using one or more shift operations.

2

- 33. The apparatus of claim 29, further comprising a communication-based device that produces a communication signal using the updated electronic signal.
 - 34. The apparatus of claim 29, further comprising a communication-based device that receives a communication signal using the updated electronic signal.