Nerovinné grafy, ofarbenia grafov stromy, kostry a ich konštruktívna enumerácia

Algebra a diskrétna matematika

Prednáška č. 5

doc. RNDr. Jana Šiagiová, PhD.

Nerovinné grafy

Rovinný (planárny) graf je graf, ktorý sa dá nakresliť v rovine tak, že hrany majú spoločné nanajvýš krajné vrcholy.

Graf, ktorý nie je rovinný sa nazýva nerovinný (neplanárny).

Z minula vieme, že grafy K_5 , $K_{3,3}$ a Petersenov graf sú nerovinné.

POČET VECHOLOV = 10 STUPNE VECHOLOV = 3 PRIEMER = 2

Petersenov graf v priestore

Plochy

Otázka: Je možné nakresliť nerovinné grafy *nejakým spôsobom (niekde)* tak, aby sa ich hrany nepretínali vo svojich vnútorných bodoch?

Odpoveď: Áno $- v R^3 - každý graf$

na plochách - ako ktoré

Torus (anuloid)

Torusy

Dvojitý torus

Trojitý torus

Ďalšie plochy

Möbiov pás

Kleinova fl'aša

Grafy na plochách

Tvrdenie

Každý graf je možné nakresliť bez priesečníkov na guľu s dostatočným počtom "uší".

Úplný graf K_5 na toruse

Kreslenie

Zostrojenie torusu

doslaname 1 richol

$K_{3,3}$ na toruse

$K_{4,4}$ na toruse

Ç

Ofarbenia grafov

Vrcholové ofarbenie grafu G: Zobrazenie $f: V(G) \to \{1, 2, \dots, k\}$ také, že pre každú $uv \in E(G)$ je $f(u) \neq f(v)$ (susedné vrcholy dostanú rôzne farby).

Najmenšie také k je **chromatické číslo** $\chi(G)$ grafu G.

PETTE SENOUND GRAFU
4 FARBAMI

Ofarbenia grafov

Hranové ofarbenie grafu je priradenie k farieb hranám grafu, pričom hrany incidentné s rovnakým vrcholom dostanú rôzne farby.

Najmenšie také k je **chromatický index** (hranové chromatické číslo) $\chi'(G)$ grafu G.

FALT:
$$\Delta(6)$$
 - max stupen $\lambda(6) \leq \chi'(6) \leq \Delta(6) + 1$

Veta o 5 farbách

Tvrdenie

Pre každý konečný rovinný graf platí, že $\chi(G) \leq 5$.

Dôkaz (náčrt): Indukciou podľa počtu vrcholov.

Využijeme fakt, že v rovinnom grafe existuje vrchol stupňa nanajvýš 5.

Uvažujme vrchol v najmenšieho stupňa (je to ≤ 5).

Odstránime z grafu G vrchol v a máme menší rovinný graf $G-\{v\}$.

Ten podľa predpokladu vieme ofarbiť 5 farbami.

1. Ak je $deg(v) \leq 4$

Keď vrchol v pridáme späť, vieme ho ofarbiť farbou, ktorá chýba jeho nanajvýš 4 susedom.

Graf G sa teda dá zafarbiť 5 farbami.

Veta o 5 farbách - pokračovanie

2. Ak je deg(v) = 5

Ak na susedoch vrchola v boli použité nanajvýš 4 farby, ofarbíme v v grafe G zvyšnou 5. farbou.

Ak sú susedné vrcholy vrchola \emph{v} ofarbené 5 farbami:

heado'me cestu

e alternoju' aimi

hrana mi

vimenime forby

a vietreni

poveije me va v

taka' cesta existoje

vdaka Predpokladu

rovinnosti

Slávny problém

Formulovaný r. 1852 – Francis Guthrie

Problém 4 farieb

Je pravda, že $\chi(G) \leq 4$ pre každý rovinný graf?

Odpoveď: Áno

1976 – Appel a Haken - prvý dôkaz, nie všetkými matematikmi prijatý. Použili počítačové výpočty (overovanie 1,936 typov máp)

1996 – Robertson, Sanders, Seymour, Thomas - všeobecne prijatý dôkaz

Robin Thomas

Svetoznámy český matematik, žijúci v USA.

Narodil sa v r. 1962.

Vyštudoval Karlovu Univerzitu.

Dlho pôsobil na Georgia Institute of Technology, USA.

Paul Seymour

Narodený v 1950 v Anglicku. Aktuálne je profesorom na Princeton University.

Problém 4 farieb na mapách

Na **zafarbenie každej mapy v rovine** tak, aby každé dve susedné územia mali odlišnú farbu, stačia maximálne **štyri farby**.

Stromy

Strom je súvislý graf neobsahujúci kružnicu.

Nesúvislý graf bez kružníc sa nazýva les.

List grafu je vrchol stupňa jeden.

Hviezda, húsenica

Hviezda je strom, ktorý má práve jeden vrchol stupňa aspoň 3 a všetky ostatné vrcholy majú stupeň 1.

Húsenica je strom, v ktorom po odstránení listov (vrcholov stupňa 1) ostane iba cesta.

Kostra

Kostra grafu G je strom, ktorý je jeho podgrafom a obsahuje všetky ℓ vrcholy grafu G.

Počet kostier

Cayleyho veta

Pre každé $n \ge 2$ je počet všetkých kostier úplného grafu K_n (počet stromov na daných n vrcholoch) rovný n^{n-2} .

Hlavné myšlienky dôkazu

Ukážeme, že každú kostru K_n vieme zakódovať (n-2)-člennou postupnosťou čísel z množiny $\{1,2,\ldots,n\}$.

Také kódovanie definuje bijekciu medzi všetkými kostrami a všetkými postupnosťami tohto typu.

Prüferov kód

Uvažujme kostru T grafu K_n s označenými vrcholmi číslami $1,2,\ldots,n$

Kostre T priradíme **Prüferov kód** $P(T) = (p_1, p_2, \dots, p_{n-2})$ nasledovne:

- Z kostry postupne odstraňujeme listy, až kým neostane jedna hrana.
- V každom kroku odstránime list s najmenším číslom.
- Do postupnosti pridáme číslo vrchola, ktorý je susedom odstráneného listu.

Prüferov kód - príklad 1

Prüferov kód - príklad 2

Prüferov kód - príklad 3

Spätná rekonštrukcia kostry

Ako z kódu P zrekonštruovať kostru T?

<u>Fakt:</u> Každý vrchol, ktorý nie je v P, je list.

Prvý vrchol bol odstránený list, ktorý susedil s prvým vstupom p_1 v P a mal najmenšie číslo ℓ_1 nevyskytujúce sa v P.

Ako druhý bol odstránený list susediaci s druhým vstupom p_2 v P a s najmenším číslom nevyskytujúcim sa v P a rôznym od ℓ_1 .

V ďalšlom kroku budeme podobne vyšetrovať kód o dva vstupy kratší. Tak pokračujem ďalej.

Po n-2 krokoch prejdeme celý kód.

Ostáva určiť poslednú hranu.

Jeden jej koniec je posledný vstup v kóde p_{n-2} a druhý ten, ktorý sa nevyskytuje medzi odstránenými listami $\ell_1,\ldots\ell_{n-2}$ a je rôzny od p_{n-2} .

Algoritmus spätnej rekonštrukcie kostry

Vstup: Prüferov kód $P = (p_1, p_2, \dots p_{n-2})$

Algoritmus

- Krok 1: Nakresli *n* vrcholov a označ číslami od 1 do *n*.
- Krok 2: Zostav zoznam čísel $Z \rightarrow (1, 2, ..., n)$.
- Krok 3: Ak sú v zozname presne dve čísla, spoj hranou a ukonči, inak prejdi na Krok 4.
- Krok 4: Nájdi najmenšie číslo v zozname, ktoré nie je v kóde a prvé číslo v kóde. Spoj vrcholy s týmito číslami hranou.
- Krok 5: Vymaž čísla z Kroku 4 zo zoznamu aj z kódu. Choď na Krok 3.

VÝSTUP: KOSTRA

Dá sa ukázať, že vzniknutý graf je vždy strom a že spätným prekódovaním dostaneme pôvodný kód.

Rekonštrukcia kostry - príklad 4

Zrekonštruujte kostry z Prüferových kódov (3, 5, 5, 6) a (3, 1, 2, 1).

$$P = (3, 5, 6) \xrightarrow{k_1} P = (5, 5, 6) \xrightarrow{k_2} P = (6) \Rightarrow P$$

P = (3, 1, 2, 1) P = (1, 2, 3, 9, 5, 6) P = (1, 2, 3, 9, 5, 6) P = (1, 2, 3, 6) P = (1, 2, 3, 6) P = (1, 2, 3, 6)

Rekonštrukcia kostry - príklad 5

Zrekonštruujte kostru z Prüferovho kódu (3, 7, 3, 2, 7, 2, 2, 3).

$$P = (3, 7, 3, 2, 7, 2, 2, 3)$$

$$P = (1) 2, 3, 4, 5, 6, 7, 8, 9, 10)$$

$$P = (2, 3, 6, 5, 6, 7, 8, 9, 10)$$

$$P = (2, 3, 6, 5, 6, 7, 8, 9, 10)$$

$$P = (2, 3, 6, 5, 6, 7, 8, 9, 10)$$

Ohodnotené grafy

Vrcholovohodnotený graf rádu n je graf, v ktorom sú vrcholom priradené čísla $1, 2, \ldots, n$.

Hranovoohodnotený graf s n hranami je graf, v ktorom sú hrany ohodnotené číslami $1,2,\ldots,n$.

Graciózne (pôvabné) ohodnotenie

Graciózne ohodnotenie (graceful labeling) stromu rádu n je ohodnotenie jeho vrcholov číslami $1, 2, \ldots, n$ tak, aby absolútne hodnoty rozdielov susedných vrcholov vyčerpali celú množinu $\{1, 2, \ldots, n-1\}$.

Veľká hypotéza

Ringel-Kotzigova hypotéza

Každý strom má graciózne ohodnotenie.

Vyslovená v 1963 v Smoleniciach.

Stále sa o tomto probléme málo vie!

Anton Kotzig - významný slovenský matematik Narodil sa v Kočovciach v r. 1919. Zomrel v Montreale, Kanada, v r. 1991. Od 1969 žil v Kanade.

