Mappel

Generated by Doxygen 1.8.11

ii CONTENTS

Contents

1	MAF	PEL		2
2	Insta	all		5
3	OMF	PExcept	ionCatcher	8
4	Nam	espace	Index	9
	4.1	Names	space List	9
5	Hier	archica	Index	10
	5.1	Class I	Hierarchy	10
6	Clas	s Index		13
	6.1	Class I	List	13
7	File	Index		16
	7.1	File Lis	st	16
8	Nam	espace	Documentation	20
	8.1	mappe	I Namespace Reference	20
		8.1.1	Detailed Description	26
		8.1.2	Typedef Documentation	26
		8.1.3	Function Documentation	29
		8.1.4	Variable Documentation	45
	8.2	mappe	disestimator Namespace Reference	47
		8.2.1	Class Documentation	48
		8.2.2	Enumeration Type Documentation	49
		8.2.3	Function Documentation	50
	8.3	mappe	di::estimator::subroutine Namespace Reference	50
		8.3.1	Detailed Description	51

	8.3.2 Function Documentation	. 51
8.4	mappel::mcmc Namespace Reference	. 53
	8.4.1 Function Documentation	. 54
8.5	mappel::methods Namespace Reference	. 55
	8.5.1 Detailed Description	. 58
	8.5.2 Function Documentation	. 58
8.6	mappel::methods::debug Namespace Reference	. 66
	8.6.1 Function Documentation	. 67
8.7	mappel::methods::likelihood Namespace Reference	. 67
	8.7.1 Function Documentation	. 68
8.8	mappel::methods::likelihood::debug Namespace Reference	. 70
	8.8.1 Function Documentation	. 71
8.9	mappel::methods::objective Namespace Reference	. 72
	8.9.1 Function Documentation	. 73
8.10	mappel::methods::objective::debug Namespace Reference	. 77
	8.10.1 Function Documentation	. 78
8.11	mappel::methods::objective::openmp Namespace Reference	. 79
	8.11.1 Function Documentation	. 80
8.12	mappel::methods::openmp Namespace Reference	. 84
	8.12.1 Function Documentation	. 85
8.13	omp_exception_catcher Namespace Reference	. 89
	8.13.1 Typedef Documentation	. 89
	8.13.2 Enumeration Type Documentation	. 90
8.14	omp_exception_catcher::impl_ Namespace Reference	. 90

iv CONTENTS

9	Clas	s Docu	mentation	90
	9.1	mappe	el::ArrayShapeError Struct Reference	90
		9.1.1	Detailed Description	90
		9.1.2	Constructor & Destructor Documentation	91
	9.2	mappe	el::ArraySizeError Struct Reference	91
		9.2.1	Detailed Description	91
		9.2.2	Constructor & Destructor Documentation	91
	9.3	mappe	el::estimator::CGaussHeuristicEstimator< Model > Class Template Reference	92
		9.3.1	Detailed Description	93
		9.3.2	Constructor & Destructor Documentation	93
		9.3.3	Member Function Documentation	93
		9.3.4	Member Data Documentation	102
	9.4	mappe	el::estimator::CGaussMLE< Model > Class Template Reference	104
		9.4.1	Detailed Description	105
		9.4.2	Constructor & Destructor Documentation	105
		9.4.3	Member Function Documentation	106
		9.4.4	Member Data Documentation	114
	9.5	mappe	el::estimator::Estimator< Model > Class Template Reference	116
		9.5.1	Detailed Description	118
		9.5.2	Constructor & Destructor Documentation	118
		9.5.3	Member Function Documentation	118
		9.5.4	Friends And Related Function Documentation	126
		9.5.5	Member Data Documentation	126
	9.6	mappe	el::Gauss1DMAP Class Reference	127
		9.6.1	Detailed Description	132
		9.6.2	Member Typedef Documentation	132
		9.6.3	Constructor & Destructor Documentation	134
		9.6.4	Member Function Documentation	134

	9.6.5	Member Data Documentation
9.7	mappe	l::Gauss1DMLE Class Reference
	9.7.1	Detailed Description
	9.7.2	Member Typedef Documentation
	9.7.3	Constructor & Destructor Documentation
	9.7.4	Member Function Documentation
	9.7.5	Member Data Documentation
9.8	mappe	l::Gauss1DModel Class Reference
	9.8.1	Detailed Description
	9.8.2	Member Typedef Documentation
	9.8.3	Constructor & Destructor Documentation
	9.8.4	Member Function Documentation
	9.8.5	Member Data Documentation
9.9	mappe	l::Gauss1DsMAP Class Reference
	9.9.1	Detailed Description
	9.9.2	Member Typedef Documentation
	9.9.3	Constructor & Destructor Documentation
	9.9.4	Member Function Documentation
	9.9.5	Member Data Documentation
9.10	mappe	::Gauss1DsMLE Class Reference
	9.10.1	Detailed Description
	9.10.2	Member Typedef Documentation
	9.10.3	Constructor & Destructor Documentation
	9.10.4	Member Function Documentation
	9.10.5	Member Data Documentation
9.11	mappe	l::Gauss1DsModel Class Reference
	9.11.1	Detailed Description
	9.11.2	Member Typedef Documentation

vi CONTENTS

	9.11.3	Constructor & Destructor Documentation
	9.11.4	Member Function Documentation
	9.11.5	Member Data Documentation
9.12	mappe	l::Gauss2DMAP Class Reference
	9.12.1	Detailed Description
	9.12.2	Member Typedef Documentation
	9.12.3	Constructor & Destructor Documentation
	9.12.4	Member Function Documentation
	9.12.5	Member Data Documentation
9.13	mappe	::Gauss2DMLE Class Reference
	9.13.1	Detailed Description
	9.13.2	Member Typedef Documentation
	9.13.3	Constructor & Destructor Documentation
	9.13.4	Member Function Documentation
	9.13.5	Member Data Documentation
9.14	mappe	l::Gauss2DModel Class Reference
	9.14.1	Detailed Description
	9.14.2	Member Typedef Documentation
	9.14.3	Constructor & Destructor Documentation
	9.14.4	Member Function Documentation
	9.14.5	Member Data Documentation
9.15	mappe	l::Gauss2DsMAP Class Reference
	9.15.1	Detailed Description
	9.15.2	Member Typedef Documentation
	9.15.3	Constructor & Destructor Documentation
	9.15.4	Member Function Documentation
	9.15.5	Member Data Documentation
9.16	mappe	l::Gauss2DsMLE Class Reference

CONTENTS vii

	9.16.1	Detailed Description
	9.16.2	Member Typedef Documentation
	9.16.3	Constructor & Destructor Documentation
	9.16.4	Member Function Documentation
	9.16.5	Member Data Documentation
9.17	mappe	l::Gauss2DsModel Class Reference
	9.17.1	Detailed Description
	9.17.2	Member Typedef Documentation
	9.17.3	Constructor & Destructor Documentation
	9.17.4	Member Function Documentation
	9.17.5	Member Data Documentation
9.18	mappe	l::Gauss2DsxyMAP Class Reference
	9.18.1	Detailed Description
	9.18.2	Member Typedef Documentation
	9.18.3	Constructor & Destructor Documentation
	9.18.4	Member Function Documentation
	9.18.5	Member Data Documentation
9.19	mappe	l::Gauss2DsxyModel Class Reference
	9.19.1	Detailed Description
	9.19.2	Member Typedef Documentation
	9.19.3	Constructor & Destructor Documentation
	9.19.4	Member Function Documentation
	9.19.5	Member Data Documentation
9.20	mappe	::estimator::HeuristicEstimator< Model > Class Template Reference
	9.20.1	Detailed Description
	9.20.2	Constructor & Destructor Documentation
	9.20.3	Member Function Documentation
	9.20.4	Member Data Documentation

viii CONTENTS

9.21	mappel	::ImageFormat1DBase Class Reference	57
	9.21.1	Detailed Description	58
	9.21.2	Member Typedef Documentation	58
	9.21.3	Constructor & Destructor Documentation	60
	9.21.4	Member Function Documentation	60
	9.21.5	Member Data Documentation	62
9.22	mappel	::ImageFormat2DBase Class Reference	63
	9.22.1	Detailed Description	64
	9.22.2	Member Typedef Documentation	64
	9.22.3	Constructor & Destructor Documentation	66
	9.22.4	Member Function Documentation	66
	9.22.5	Member Data Documentation	68
9.23	mappel	::estimator::IterativeMaximizer< Model > Class Template Reference	69
	9.23.1	Detailed Description	72
	9.23.2	Constructor & Destructor Documentation	72
	9.23.3	Member Function Documentation	72
	9.23.4	Member Data Documentation	85
9.24	mappel	::LogicalError Struct Reference	90
	9.24.1	Detailed Description	90
	9.24.2	Constructor & Destructor Documentation	90
9.25	mappel	::MAPEstimator Class Reference	90
	9.25.1	Detailed Description	93
	9.25.2	Member Typedef Documentation	93
	9.25.3	Constructor & Destructor Documentation	93
	9.25.4	Member Function Documentation	94
	9.25.5	Member Data Documentation	03
9.26	mappel	::estimator::IterativeMaximizer< Model >::MaximizerData Class Reference	06
	9.26.1	Detailed Description	08

CONTENTS ix

	9.26.2	Constructor & Destructor Documentation
	9.26.3	Member Function Documentation
	9.26.4	Member Data Documentation
9.27	mappel	::MCMCAdaptor1D Class Reference
	9.27.1	Detailed Description
	9.27.2	Member Typedef Documentation
	9.27.3	Constructor & Destructor Documentation
	9.27.4	Member Function Documentation
	9.27.5	Member Data Documentation
9.28	mappel	::MCMCAdaptor1Ds Class Reference
	9.28.1	Detailed Description
	9.28.2	Member Typedef Documentation
	9.28.3	Constructor & Destructor Documentation
	9.28.4	Member Function Documentation
	9.28.5	Member Data Documentation
9.29	mappel	::MCMCAdaptor2D Class Reference
	9.29.1	Detailed Description
	9.29.2	Member Typedef Documentation
	9.29.3	Constructor & Destructor Documentation
	9.29.4	Member Function Documentation
	9.29.5	Member Data Documentation
9.30	mappel	::MCMCAdaptor2Ds Class Reference
	9.30.1	Detailed Description
	9.30.2	Member Typedef Documentation
	9.30.3	Constructor & Destructor Documentation
	9.30.4	Member Function Documentation
	9.30.5	Member Data Documentation
9.31	mappel	::MCMCAdaptorBase Class Reference

	9.31.1	Detailed Description)4
	9.31.2	Constructor & Destructor Documentation	14
	9.31.3	Member Function Documentation	14
	9.31.4	Member Data Documentation	15
9.32	mappe	l::mcmc::MCMCData Struct Reference	16
	9.32.1	Detailed Description	16
	9.32.2	Member Function Documentation	16
	9.32.3	Member Data Documentation	16
9.33	mappe	l::mcmc::MCMCDataStack Struct Reference	8
	9.33.1	Detailed Description	8
	9.33.2	Member Function Documentation	19
	9.33.3	Member Data Documentation	19
9.34	mappe	l::mcmc::MCMCDebugData Struct Reference	0
	9.34.1	Detailed Description	0
	9.34.2	Member Function Documentation)1
	9.34.3	Member Data Documentation)1
9.35	mappe	l::estimator::MLEDebugData Struct Reference	12
	9.35.1	Detailed Description	12
	9.35.2	Member Function Documentation	12
	9.35.3	Member Data Documentation	12
9.36	mappe	::MLEstimator Class Reference)4
	9.36.1	Detailed Description)7
	9.36.2	Member Typedef Documentation)7
	9.36.3	Constructor & Destructor Documentation)7
	9.36.4	Member Function Documentation	18
	9.36.5	Member Data Documentation	7
9.37	mappe	::ModelBoundsError Struct Reference	20
	9.37.1	Detailed Description	21

CONTENTS xi

	9.37.2	Constructor & Destructor Documentation
9.38	mappel	::estimator::NewtonDiagonalMaximizer < Model > Class Template Reference
	9.38.1	Detailed Description
	9.38.2	Member Typedef Documentation
	9.38.3	Constructor & Destructor Documentation
	9.38.4	Member Function Documentation
	9.38.5	Member Data Documentation
9.39	mappel	::estimator::NewtonMaximizer< Model > Class Template Reference
	9.39.1	Detailed Description
	9.39.2	Member Typedef Documentation
	9.39.3	Constructor & Destructor Documentation
	9.39.4	Member Function Documentation
	9.39.5	Member Data Documentation
9.40	mappel	::NotImplementedError Struct Reference
	9.40.1	Detailed Description
	9.40.2	Constructor & Destructor Documentation
9.41	mappel	::NumericalError Struct Reference
	9.41.1	Detailed Description
	9.41.2	Constructor & Destructor Documentation
9.42	omp_ex	xception_catcher::impl_::OMPExceptionCatcher< _dummy > Class Template Reference 765
	9.42.1	Detailed Description
	9.42.2	Constructor & Destructor Documentation
	9.42.3	Member Function Documentation
9.43	mappel	::ParameterValueError Struct Reference
	9.43.1	Detailed Description
	9.43.2	Constructor & Destructor Documentation
9.44	mappel	::PointEmitterModel Class Reference
	9.44.1	Detailed Description

xii CONTENTS

	9.44.2	Member Typedef Documentation	71
	9.44.3	Constructor & Destructor Documentation	71
	9.44.4	Member Function Documentation	72
	9.44.5	Member Data Documentation	30
9.45	Poisso	nGaussianNoise2DObjective < ModelBase > Class Template Reference	34
	9.45.1	Detailed Description	34
	9.45.2	Member Typedef Documentation	35
	9.45.3	Constructor & Destructor Documentation	35
	9.45.4	Member Data Documentation	35
9.46	mappe	I::PoissonNoise1DObjective Class Reference	36
	9.46.1	Detailed Description	38
	9.46.2	Member Typedef Documentation	38
	9.46.3	Constructor & Destructor Documentation	39
	9.46.4	Member Function Documentation	90
	9.46.5	Member Data Documentation)2
9.47	mappe	I::PoissonNoise2DObjective Class Reference)3
	9.47.1	Detailed Description) 5
	9.47.2	Member Typedef Documentation) 5
	9.47.3	Constructor & Destructor Documentation)7
	9.47.4	Member Function Documentation) 7
	9.47.5	Member Data Documentation	9
9.48	mappe	l::estimator::ProfileBoundsData Struct Reference)1
	9.48.1	Detailed Description)1
	9.48.2	Member Function Documentation)1
	9.48.3	Member Data Documentation)2
9.49	mappe	l::estimator::ProfileBoundsDataStack Struct Reference)4
	9.49.1	Detailed Description)5
	9.49.2	Member Function Documentation)5

CONTENTS xiii

	9.49.3	Member Data Documentation	305
9.50	mappel	::estimator::QuasiNewtonMaximizer< Model > Class Template Reference	307
	9.50.1	Detailed Description	310
	9.50.2	Member Typedef Documentation	310
	9.50.3	Constructor & Destructor Documentation	310
	9.50.4	Member Function Documentation	311
	9.50.5	Member Data Documentation	324
9.51	mappel	::estimator::SimulatedAnnealingMaximizer< Model > Class Template Reference	328
	9.51.1	Detailed Description	330
	9.51.2	Constructor & Destructor Documentation	330
	9.51.3	Member Function Documentation	330
	9.51.4	Member Data Documentation	338
9.52	mappel	::Gauss2DsxyModel::Stencil Class Reference	340
	9.52.1	Detailed Description	341
	9.52.2	Member Typedef Documentation	341
	9.52.3	Constructor & Destructor Documentation	342
	9.52.4	Member Function Documentation	342
	9.52.5	Friends And Related Function Documentation	343
	9.52.6	Member Data Documentation	343
9.53	mappel	::Gauss1DsModel::Stencil Class Reference	345
	9.53.1	Detailed Description	346
	9.53.2	Member Typedef Documentation	346
	9.53.3	Constructor & Destructor Documentation	346
	9.53.4	Member Function Documentation	347
	9.53.5	Friends And Related Function Documentation	348
	9.53.6	Member Data Documentation	348
9.54	mappel	::Gauss2DModel::Stencil Class Reference	349
	9.54.1	Detailed Description	350

xiv CONTENTS

	9.54.2	Member Typedef Documentation	50
	9.54.3	Constructor & Destructor Documentation	50
	9.54.4	Member Function Documentation	51
	9.54.5	Friends And Related Function Documentation	52
	9.54.6	Member Data Documentation	52
9.55	mappel	::Gauss2DsModel::Stencil Class Reference	54
	9.55.1	Detailed Description	55
	9.55.2	Member Typedef Documentation	55
	9.55.3	Constructor & Destructor Documentation	55
	9.55.4	Member Function Documentation	55
	9.55.5	Friends And Related Function Documentation	57
	9.55.6	Member Data Documentation	57
9.56	mappel	l::Gauss1DModel::Stencil Class Reference	59
	9.56.1	Detailed Description	60
	9.56.2	Member Typedef Documentation	60
	9.56.3	Constructor & Destructor Documentation	61
	9.56.4	Member Function Documentation	61
	9.56.5	Friends And Related Function Documentation	62
	9.56.6	Member Data Documentation	62
9.57	mappel	::estimator::ThreadedEstimator< Model > Class Template Reference	63
	9.57.1	Detailed Description	65
	9.57.2	Constructor & Destructor Documentation	65
	9.57.3	Member Function Documentation	65
	9.57.4	Member Data Documentation	74
9.58	mappel	::estimator::TrustRegionMaximizer< Model > Class Template Reference	76
	9.58.1	Detailed Description	79
	9.58.2	Member Typedef Documentation	79
	9.58.3	Constructor & Destructor Documentation	80
	9.58.4	Member Function Documentation	80
	9.58.5	Member Data Documentation	94

CONTENTS xv

10	File [Documentation	899
	10.1	display.cpp File Reference	899
		10.1.1 Detailed Description	900
	10.2	display.h File Reference	900
		10.2.1 Detailed Description	901
	10.3	estimator.cpp File Reference	901
		10.3.1 Detailed Description	902
	10.4	estimator.h File Reference	902
		10.4.1 Detailed Description	903
		10.4.2 Class Documentation	903
		10.4.3 Typedef Documentation	905
	10.5	estimator_helpers.h File Reference	905
		10.5.1 Detailed Description	906
	10.6	estimator_impl.h File Reference	906
		10.6.1 Detailed Description	906
	10.7	estimator_statics.cpp File Reference	907
		10.7.1 Detailed Description	907
	10.8	Gauss1DMAP.cpp File Reference	907
		10.8.1 Detailed Description	907
	10.9	Gauss1DMAP.h File Reference	908
		10.9.1 Detailed Description	908
	10.10	0Gauss1DMLE.cpp File Reference	908
		10.10.1 Detailed Description	909
	10.11	1Gauss1DMLE.h File Reference	909
		10.11.1 Detailed Description	909
	10.12	2Gauss1DModel.cpp File Reference	910
		10.12.1 Detailed Description	910
	10.13	3Gauss1DModel.h File Reference	910

xvi CONTENTS

10.13.1 Detailed Description
10.14Gauss1DsMAP.cpp File Reference
10.14.1 Detailed Description
10.15Gauss1DsMAP.h File Reference
10.15.1 Detailed Description
10.16Gauss1DsMLE.cpp File Reference
10.16.1 Detailed Description
10.17Gauss1DsMLE.h File Reference
10.17.1 Detailed Description
10.18Gauss1DsModel.cpp File Reference
10.18.1 Detailed Description
10.19Gauss1DsModel.h File Reference
10.19.1 Detailed Description
10.20Gauss2DMAP.cpp File Reference
10.20.1 Detailed Description
10.21 Gauss2DMAP.h File Reference
10.21.1 Detailed Description
10.22Gauss2DMLE.cpp File Reference
10.22.1 Detailed Description
10.23Gauss2DMLE.h File Reference
10.23.1 Detailed Description
10.24Gauss2DModel.cpp File Reference
10.24.1 Detailed Description
10.25Gauss2DModel.h File Reference
10.25.1 Detailed Description
10.26Gauss2DsMAP.cpp File Reference
10.26.1 Detailed Description
10.27Gauss2DsMAP.h File Reference

CONTENTS xvii

10.27.1 Detailed Description
10.28Gauss2DsMLE.cpp File Reference
10.28.1 Detailed Description
10.29Gauss2DsMLE.h File Reference
10.29.1 Detailed Description
10.30Gauss2DsModel.cpp File Reference
10.30.1 Detailed Description
10.31 Gauss 2Ds Model.h File Reference
10.31.1 Detailed Description
10.32Gauss2DsxyMAP.h File Reference
10.32.1 Detailed Description
10.33Gauss2DsxyModel.h File Reference
10.33.1 Detailed Description
10.34ImageFormat1DBase.cpp File Reference
10.34.1 Detailed Description
10.35ImageFormat1DBase.h File Reference
10.35.1 Detailed Description
10.36ImageFormat2DBase.cpp File Reference
10.36.1 Detailed Description
10.37ImageFormat2DBase.h File Reference
10.37.1 Detailed Description
10.38Install.md File Reference
10.39MAPEstimator.h File Reference
10.39.1 Detailed Description
10.40mcmc.cpp File Reference
10.40.1 Detailed Description
10.41 mcmc.h File Reference
10.41.1 Detailed Description

xviii CONTENTS

10.42mcmc_data.h File Reference
10.42.1 Detailed Description
10.43MCMCAdaptor1D.cpp File Reference
10.43.1 Detailed Description
10.44MCMCAdaptor1D.h File Reference
10.44.1 Detailed Description
10.45MCMCAdaptor1Ds.cpp File Reference
10.45.1 Detailed Description
10.46MCMCAdaptor1Ds.h File Reference
10.46.1 Detailed Description
10.47MCMCAdaptor2D.cpp File Reference
10.47.1 Detailed Description
10.48MCMCAdaptor2D.h File Reference
10.48.1 Detailed Description
10.49MCMCAdaptor2Ds.cpp File Reference
10.49.1 Detailed Description
10.50MCMCAdaptor2Ds.h File Reference
10.50.1 Detailed Description
10.51MCMCAdaptorBase.cpp File Reference
10.51.1 Detailed Description
10.52MCMCAdaptorBase.h File Reference
10.52.1 Detailed Description
10.53MLEstimator.h File Reference
10.53.1 Detailed Description
10.54model_methods.h File Reference
10.55model_methods_impl.h File Reference
10.56numerical.cpp File Reference
10.56.1 Detailed Description

10.57numerical.h File Reference
10.57.1 Detailed Description
10.58OMPExceptionCatcher.h File Reference
10.58.1 Detailed Description
10.59openmp_methods.h File Reference
10.59.1 Detailed Description
10.60PointEmitterModel.cpp File Reference
10.60.1 Detailed Description
10.61 PointEmitterModel.h File Reference
10.61.1 Detailed Description
10.62PoissonGaussianNoise2DObjective.cpp File Reference
10.63PoissonGaussianNoise2DObjective.h File Reference
10.63.1 Detailed Description
10.63.2 Function Documentation
10.64PoissonNoise1DObjective.cpp File Reference
10.64.1 Detailed Description
10.65PoissonNoise1DObjective.h File Reference
10.65.1 Detailed Description
10.66PoissonNoise2DObjective.cpp File Reference
10.66.1 Detailed Description
10.67PoissonNoise2DObjective.h File Reference
10.67.1 Detailed Description
10.68README.md File Reference
10.69README.md File Reference
10.70rng.cpp File Reference
10.70.1 Detailed Description
10.71rng.h File Reference
10.71.1 Detailed Description
10.72stencil.cpp File Reference
10.72.1 Detailed Description
10.73stencil.h File Reference
10.73.1 Detailed Description
10.74util.cpp File Reference
10.75util.h File Reference
10.75.1 Detailed Description

Index 967

1 MAPPEL

Mappel is an object-oriented image processing library for high-performance super-resolution localization of Gaussian point emitters in fluorescence microscopy applications.

- Mappel uses CMake and builds cross-platform for Linux and Windows 64-bit.
- Mappel provides object-oriented interfaces for C++, Python, and Matlab.
- Mappel uses OpenMP to parallelize operations over vectors of images or parameters
- Mappel is free-as-in-beer and free-as-in-speech! ([GPL-v3](LICENSE))

Documentation

The Mappel Doxygen documentation can be build with the OPT_DOC CMake option and is also available on online:

- Mappel HTML Manual
- Mappel PDF Manual
- Mappel github repository

Background

Point emitter localization is a process of precisely estimating the sub-pixel location of a single point source emitters (molecules/proteins) at effective resolutions 10-50 times smaller than the fundamental diffraction limit for optical microscopes. Operationally, this is the process of going from blurry, noisy, pixelated images to a sub-pixel estimate of true emitter position as well as the uncertainty in that estimate. Figure 1 shows the point emitter localization process with realistic physical values for a typical super-resolution fluorescence microscope configuration.

Figure 1: Effective fitting resolution in typical applications

Applications

- Stochastic super-resolution reconstruction with PALM and dSTORM florescence microscopy techniques.
- Single particle tracking (SPT)
 - The Robust Particle Tracking (RPT) library uses Mappel for the localization phase of tracking.
- Nano-structure optical measurements and alignment.
- Accurate estimation of fluorophore emitter intensity over time.

1 MAPPEL 3

Performance

Emitter localization applications, especially SPT and super-resolution imaging, can require millions of emitter estimations per dataset. This demand is only increasing with the drive towards larger EMCCD and SCMOS sensors and longer experiments at higher frame-rates. Speed becomes even more crucial for these applications when batch processing dozens of large data files.

- Mappel runs all image oriented computations in parallel using OpenMP making full use the system hardware concurrency.
- Mappel is fast. It can easily localize 10⁴ emitters/sec/core on modern consumer hardware
- Small and medium-sized datasets using Mappel can work well on laptops allowing interactive Matlab applications like RPT to be used from nearly any machine.

Installation

Mappel uses the CMake build system, and is designed to be cross-compiled from linux to other platforms, primarily Win64, although future OSX support is planned.

Dependencies

Several standard numerical packages are required to build Mappel. Most distributions should have development versions of these packages which provide the include files and other necessary development files for the packages.

- Armadillo A high-performance array library for C++.
- · Boost
- BLAS
 - Requires support for 64-bit integers.
 - Netlib BLAS Reference
- LAPACK
 - Requires support for 64-bit integers.
 - Netlib LAPACK Reference

Note the OPT_BLAS_INT64 CMake option controls whether Armadillo uses BLAS and LAPACK libraries that use 64-bit integer indexing. Matlab uses 64-bit by default, so linking Mappel to Matlab MEX libraries requires this option enabled. Many linux systems only provide 32-bit integer versions of BLAS and Lapack, and the option can be disabled if Matlab support is not a concern and 64-bit support is difficult to provide.

External Projects

These packages are specialized CMake projects. If they are not currently installed on the development machines we use the AddExternalDependency.cmake which will automatically download, configure, build and install to the CMAKE_INSTALL_PREFIX, enabling their use through the normal CMake find_package() system.

- BacktraceException A library to provide debugging output on exception calls. Important for Matlab debugging.
- ParallelRngManager A simple manager for easily deploying a set of RNG parallelized over a set number of threads, using the TRNG parallel RNG library.
- PriorHessian The PriorHessian library allows fast computation of log-likelihood and derivatives for composite priors.

Model classes

Mappel provides model objects that correspond to different fitting-modes (psf-models). Mappel's core is a C++ library libmappel.so that uses OpenMP to automatically parallelize localizations over multiple images. Mappel also provides detailed object-oriented interfaces for Python and Matlab, using the same concept of a Model class to represent each class of psf fitting models.

Computations available

- 11h log-likelihood (log of pdf)
- rllh relative log-likelihood (log of pdf without constant terms)
- grad derivative of log-likelihood (or equivalently of relative-IIh)
- grad2 2nd-derivative of log-likelihood
- hessian hessian of log-likelihood

Design Notes

Static Polymorphism

The Mappel library is designed using static polymorphism (templates), and as such avoids virtual functions for small-grained tasks, and instead uses templates, which allow many small functions to be inlined. This aggressive inlining by the compiler produces log-likelihood, gradient, and hessian functions that are nearly as fast as hand-coded functions.

License

Copyright: 2013-2019Author: Mark J. Olah

• Email: (mjo@cs.unm DOT edu)

LICENSE: GPL-v3 See LICENSE file.

2 Install 5

2 Install

Currently building has only been tested on linux hosts.

Mappel has been tested with modern GCC-7.2.0 as well as earlier GCC's to 4.9.4 (which is still required for Matlab integration). In order to maintain compatibility with gcc-4.9.4 and still use modern C++14 features we use the -std=c+1y GCC standard when compiling.

Dependencies

Several standard numerical packages are required to build Mappel. Most distributions should have development versions of these packages which provide the include files and other necessary development files for the packages.

- Armadillo
- Boost
- TRNG
- BLAS
 - Requires support for 64-bit integers.
 - Netlib BLAS Reference
- LAPACK
 - Requires support for 64-bit integers.
 - Netlib LAPACK Reference

Gentoo

Add to your package.keywords

```
1 sci-libs/lapack-reference int64
2 sci-libs/blas-reference int64
1 emerge -av armadillo boost lapack-reference blas-reference
```

For TRNG there is not a gentoo ebuild in the tree, we provide one at the OlahGentooScienceOverlay.

```
1 layman -o https://github.com/markjolah/OlahScienceGentooOverlay/blob/master/layman.xml -f -a olah-science 2 emerge -av trng
```

External Projects

Mappel also depends on several small Github projects which for now are maintained in separate repositories.

• BacktraceException - A library to provide debugging output on exception calls. Important for Matlab debugging.

- ParallelRngManager A simple manager for easily deploying a set of RNG parallelized over a set number
 of threads, using the TRNG parallel RNG library.
- PriorHessian The PriorHessian library allows fast computation of log-likelihood and derivatives for composite priors.

If these libraries do not exist on the build system or at CMAKE_INSTALL_PREFIX, they are automatically downloaded, configured and installed as external dependencies during the CMake configure phase.

Normally the Github current versions of the external dependencies are used. To use the HEAD revision of a local git repository, the following Environment variables can be set:

- BacktraceExceptionURL Local directory or git URL for the BacktraceException library [optional] Default to use the HEAD version from Github
- ParallelRngManagerURL Local directory or git URL for the ParallelRngManager library
- PriorHessianURL Local directory or git URL for the PriorHessian library

Build process

Linux

```
1 git clone https://github.com/markjolah/Mappel.git
2 cd Mappel
3 ./build.sh
```

On successful build the Mappel libraries, binaries, includes, and CMake modules are all installed to the _install dir.

Debugging

CMake variable CMAKE_BUILD_TYPE=Debug will configure the debug build and all libraries and executables will have a .debug suffix.

A convenience script exists to only build the debug versions of the libraries in the local _build and _install directories

```
1 ./build.debug.sh
```

Tips:

• Try running VERBOSE=1 make inside the _build/Debug directory to debug the build/link command lines generated by CMAKE.

2 Install 7

Python support

Matlab support is enabled by setting the CMake option -DOPT_PYTHON=1. At the moment only python 3 is supported.

Several CMake variable can control for which python version modules are built.

- MAPPEL_PYTHON_VERSIONS List of python X.Y versions seperated by ";" to build modules for (e.g., "3. ← 4;3.5;3.6")
- MAPPEL_PYTHON_EXECUTABLE Name or full path to python executable on the system for which to build (e.g., python3).

Mappel uses pybind11 to compile modules for each Mappel Model class.

Python development workflow

The Mappel python package environment is created in the build tree at build_dir/python, as part of the CMake build process. There is a standard setuptools setup.py that can be used to build binary distributions and also to install to the local system.

The CMake install process will automatically install the python .egg using setup.py under the CMAKE_INSTALL← _PREFIX directory.

In order to be able to develop the code at the root mappel/python/ git repository while running and testing the mappel package without having to make install on every small change to python code, we use the developer mode install option provided by setuptoools. In fact, we have made it even easier to use, by making an alias localdevelop

```
1 $ cd _build/Debug/python
2 $ python setup.py localdevelop
3 $ python -m mappel
```

Matlab support

Matlab support is enabled by setting the CMake option MATLAB=on. This brings in an additional external dependency,

MexIFace - A cross-platform Matlab/C++ class-based interface wrapper for generating .mex files.

The following environment variables control the Matlab build process

- MexIFaceURL: Local directory or git URL for the MexIface library (Matlab Support). [optional] Default to use the HEAD version from Github
- MATLAB_LIBS_ROOT: [Optional] Local path to find Matlab core shared libraries to link against (overrides default search paths). Must contain subdirectory structure (\$MATLAB_ARCH) //{bin,extern}. MATLAB_ARCH is [glnxa64, maci64, win64].
- MATLAB_ROOT_GLNXA64: Necessary for Matlab. Location of the Matlab glnxa64 version to link against.

Cross-building to Win64

The following Environment variables control the Win64 cross-build environment necessary to compile win64 binaries

- MXE_ROOT Local directory root of the MXE Win64 cross environment. Necessary For Win64 cross-compiling only.
- MATLAB_ROOT_WIN64 Necessary for Matlab on Win64 cross build. Location of the Matlab win64 version to link against.

Cross-building to OSX

- OSXCROSS_ROOT: Local directory root of the OSXCross OSX 64-bit cross environment. Necessary for OSX cross-compiling only.
- MATLAB_ROOT_MACI64: Necessary for Matlab on OSX cross build. Location of the Matlab maci64 version to link against.

3 OMPExceptionCatcher

A lightweight class for managing C++ exception handling strategies in OpenMP code.

Motivation

OpenMP code must catch any exceptions that may have been thrown before exiting the OpenMP block. This class acts as lightweight wrapper that allows an arbitrary function or lambda expression to be run safely and efficiently in OMP even if it might throw exceptions. We employ one of 4 possible strategies as determined By the OMPExceptionCatcher::

Strategies enum.

Excepton Catching Strategy's

- OMPExceptionCatcher::Strategies::DoNotTry Don't even try, this is a null op to completely disable this class's effect.
- OMPExceptionCatcher::Strategies::Continue Catch exceptions and keep going
- OMPExceptionCatcher::Strategies::Abort Catch exceptions and abort
- OMPExceptionCatcher::Strategies::RethrowFirst Re-throws first exception thrown by any thread

4 Namespace Index 9

Including OMPExceptionCatcher in your OpenMP project

Since OMPExceptionCatcher is header-only, he easiest way to use it is via the git subrepo plugin. Unlike the traditional git submodule command, git subrepo is transparent to other users of your repository, and solves many of the irksome issues prevalent with the submodule approach. Follow the git subrepo install guide to install on your development machine.

Then to add OMPExceptionCatcher,

```
1 > cd $MY_REPOS
2 > git subrepo pull https://github.com/markjolah/OMPExceptionCatcher include/where/ever/OMPExceptionCatcher
```

Example useage:

License

· Author: Mark J. Olah

• Email: (mjo@cs.unm DOT edu)

· Copyright: 2019

• LICENSE: Apache 2.0. See LICENSE file.

4 Namespace Index

4.1 Namespace List

Here is a list of all namespaces with brief descriptions:

mappel	20
mappel::estimator	47
mappel::estimator::subroutine	50
mappel::mcmc	53
mappel::methods	
Templated functions for operating on a PointEmitterModel	55
mappel::methods::debug	66
mappel::methods::likelihood	67

mappel::methods::likelihood::debug	70
mappel::methods::objective	72
mappel::methods::objective::debug	77
mappel::methods::objective::openmp	79
mappel::methods::openmp	84
omp_exception_catcher	89
omp_exception_catcher::impl_	90
5 Hierarchical Index	
5.1 Class Hierarchy	
This inheritance list is sorted roughly, but not completely, alphabetically:	
mappel::estimator::Estimator< Model >	116
${\sf mappel::estimator::ThreadedEstimator} < {\sf Model} >$	863
${\sf mappel::estimator::CGaussHeuristicEstimator} < {\sf Model} >$	92
${\sf mappel::estimator::CGaussMLE} < {\sf Model} >$	104
${\bf mappel::estimator::HeuristicEstimator < Model >}$	544
${\it mappel::estimator::lterative Maximizer} < {\it Model} >$	569
${\it mappel::estimator::} Newton Diagonal Maximizer < {\it Model}>$	721
${\it mappel::estimator::NewtonMaximizer} < {\it Model} >$	742
mappel::estimator::QuasiNewtonMaximizer< Model >	807
${\sf mappel::estimator::TrustRegionMaximizer} < {\sf Model} >$	876
${\it mappel::estimator::SimulatedAnnealingMaximizer} < {\it Model} >$	828
mappel::ImageFormat1DBase	557
mappel::Gauss1DModel	185
mappel::Gauss1DMAP	127
mappel::Gauss1DMLE	156
mappel::Gauss2DsxyMAP	492
mappel::Gauss1DsModel	272
mappel::Gauss1DsMAP	213

5.1 Class Hierarchy 11

mappel::Gauss1DsMLE	242
mappel::PoissonNoise1DObjective	786
mappel::Gauss1DMAP	127
mappel::Gauss1DMLE	156
mappel::Gauss1DsMAP	213
mappel::Gauss1DsMLE	242
mappel::Gauss2DsxyMAP ImageFormat1DBase	492
PoissonGaussianNoise2DObjective < ModelBase >	784
mappel::ImageFormat2DBase	563
mappel::Gauss2DModel	363
mappel::Gauss2DMAP	300
mappel::Gauss2DMLE	332
mappel::Gauss2DsModel	460
mappel::Gauss2DsMAP	393
mappel::Gauss2DsMLE	427
mappel::Gauss2DsxyModel	520
mappel::PoissonNoise2DObjective	793
mappel::Gauss2DMAP	300
mappel::Gauss2DMLE	332
mappel::Gauss2DsMAP	393
mappel::Gauss2DsMLE MappelError	427
mappel::ArrayShapeError	90
mappel::ArraySizeError	91
mappel::LogicalError	590
mappel::ModelBoundsError	720
mappel::NotImplementedError	763
mappel::NumericalError	764
mappel::ParameterValueError	767

mappel::estimator::IterativeMaximizer< Model >::MaximizerData	606
mappel::MCMCAdaptorBase	693
mappel::MCMCAdaptor1D	615
mappel::Gauss1DModel	185
mappel::MCMCAdaptor1Ds	634
mappel::Gauss1DsModel	272
mappel::MCMCAdaptor2D	654
mappel::Gauss2DModel	363
mappel::MCMCAdaptor2Ds	673
mappel::Gauss2DsModel	460
mappel::mcmc::MCMCData	696
mappel::mcmc::MCMCDataStack	698
mappel::mcmc::MCMCDebugData	700
mappel::estimator::MLEData	47
mappel::estimator::MLEDataStack	47
mappel::estimator::MLEDebugData	702
$omp_exception_catcher::impl_::OMPExceptionCatcher < _dummy >$	
mappel::PointEmitterModel	768
mappel::Gauss1DModel	185
mappel::Gauss1DsModel	272
mappel::Gauss2DModel	363
mappel::Gauss2DsModel	460
mappel::Gauss2DsxyModel	520
mappel::MAPEstimator	590
mappel::Gauss1DMAP	127
mappel::Gauss1DsMAP	213
mappel::Gauss2DMAP	300
mappel::Gauss2DsMAP	393
mappel::Gauss2DsxyMAP	492
mappel::MCMCAdaptor1D	615

6 Class Index 13

mappel::MLEstimator	704
mappel::Gauss1DMLE	156
mappel::Gauss1DsMLE	242
mappel::Gauss2DMLE	332
mappel::Gauss2DsMLE	427
mappel::estimator::ProfileBoundsData	801
mappel::estimator::ProfileBoundsDataStack	804
mappel::estimator::ProfileBoundsDebugData	47
mappel::estimator::ProfileLikelihoodData	47
mappel::Gauss2DsxyModel::Stencil	840
mappel::Gauss1DsModel::Stencil	845
mappel::Gauss2DModel::Stencil	849
mappel::Gauss2DsModel::Stencil	854
mappel::Gauss1DModel::Stencil	859
6 Class Index 6.1 Class List	
Here are the classes, structs, unions and interfaces with brief descriptions:	
mappel::ArrayShapeError Array is not of the right dimensionality	90
mappel::ArraySizeError Array is not of the right size	91
mappel::estimator::CGaussHeuristicEstimator< Model >	92
mappel::estimator::CGaussMLE < Model >	104
mappel::estimator::Estimator < Model >	116
mappel::Gauss1DMAP A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective	127
mappel::Gauss1DMLE A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective	156
mappel::Gauss1DModel A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)	185

6

mappel::Gauss1DsMAP A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective	213
mappel::Gauss1DsMLE A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator	242
mappel::Gauss1DsModel Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels	272
mappel::Gauss2DMAP A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective	300
mappel::Gauss2DMLE A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective	332
mappel::Gauss2DModel A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma	363
mappel::Gauss2DsMAP A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective	393
mappel::Gauss2DsMLE A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective	427
mappel::Gauss2DsModel A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_sigmaX, psf_sigmaY]	460
mappel::Gauss2DsxyMAP A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective	492
mappel::Gauss2DsxyModel A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma _x and sigma_y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y]	520
mappel::estimator::HeuristicEstimator < Model >	544
mappel::ImageFormat1DBase A virtual base class for 2D image localization objectives	557
mappel::ImageFormat2DBase A virtual base class for 2D image localization objectives	563
mappel::estimator::lterativeMaximizer < Model >	569
mappel::LogicalError Failure of code or algorithm logic	590

6.1 Class List

mappel::MAPEstimator A Mixin class to configure a for MLE estimation (null prior)	590
mappel::estimator::lterativeMaximizer< Model >::MaximizerData	606
mappel::MCMCAdaptor1D	615
mappel::MCMCAdaptor1Ds	634
mappel::MCMCAdaptor2D	654
mappel::MCMCAdaptor2Ds	673
mappel::MCMCAdaptorBase	693
mappel::mcmc::MCMCData	696
mappel::mcmc::MCMCDataStack	698
mappel::mcmc::MCMCDebugData	700
mappel::estimator::MLEDebugData	702
mappel::MLEstimator A Mixin class to configure a for MLE estimation (null prior)	704
mappel::ModelBoundsError Access outside the model bounds is attempted	720
mappel::estimator::NewtonDiagonalMaximizer< Model >	721
mappel::estimator::NewtonMaximizer < Model >	742
mappel::NotImplementedError Feature not yet implemented	763
mappel::NumericalError Expected numerical condition does not hold	764
omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >	765
mappel::ParameterValueError Parameter value is not valid	767
mappel::PointEmitterModel A virtual Base type for point emitter localization models	768
PoissonGaussianNoise2DObjective< ModelBase > A Base type for point emitter localization models that use 2d images	784
mappel::PoissonNoise1DObjective A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel	786

	mappel::PoissonNoise2DObjective A base class for 2D objectives with Poisson read noise. This objective function and its subclasses	
	are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel	793
	mappel::estimator::ProfileBoundsData	801
	mappel::estimator::ProfileBoundsDataStack	804
	mappel::estimator::QuasiNewtonMaximizer < Model >	807
	mappel::estimator::SimulatedAnnealingMaximizer< Model >	828
	mappel::Gauss2DsxyModel::Stencil Stencil for 2D free-sigma (astigmatic) models	840
	mappel::Gauss1DsModel::Stencil Stencil for 1D variable-sigma models	845
	mappel::Gauss2DModel::Stencil Stencil for 2D fixed-sigma models	849
	mappel::Gauss2DsModel::Stencil Stencil for 2D scalar-sigma models	854
	mappel::Gauss1DModel::Stencil Stencil for 1D fixed-sigma models	859
	mappel::estimator::ThreadedEstimator< Model >	863
	mappel::estimator::TrustRegionMaximizer < Model >	876
7	File Index	
7.1	I File List	
He	ere is a list of all files with brief descriptions:	
	display.cpp	899
	display.h Textual image display with colors	900
	estimator.cpp Non-templated estimator helper routines and static constants	901
	estimator.h The class declaration and inline and templated functions for the Estimator class hierarchy	902
	estimator_helpers.h Estimator helper subroutines	905
	estimator impl.h	906

7

7.1 File List 17

estimator_statics.cpp	907
Gauss1DMAP.cpp The class definition and template Specializations for Gauss1DMAP	907
Gauss1DMAP.h The class declaration and inline and templated functions for Gauss1DMAP	908
Gauss1DMLE.cpp The class definition and template Specializations for Gauss1DMLE	908
Gauss1DMLE.h The class declaration and inline and templated functions for Gauss1DMLE	909
Gauss1DModel.cpp The class definition and template Specializations for Gauss1DModel	910
Gauss1DModel.h The class declaration and inline and templated functions for Gauss1DModel	910
Gauss1DsMAP.cpp The class definition and template Specializations for Gauss1DsMAP	911
Gauss1DsMAP.h The class declaration and inline and templated functions for Gauss1DsMAP	911
Gauss1DsMLE.cpp The class definition and template Specializations for Gauss1DsMLE	912
Gauss1DsMLE.h The class declaration and inline and templated functions for Gauss1DsMLE	913
Gauss1DsModel.cpp The class definition and template Specializations for Gauss1DsModel	913
Gauss1DsModel.h The class declaration and inline and templated functions for Gauss1DsModel	914
Gauss2DMAP.cpp The class definition and template Specializations for Gauss2DMAP	915
Gauss2DMAP.h The class declaration and inline and templated functions for Gauss2DMAP	915
Gauss2DMLE.cpp The class definition and template Specializations for Gauss2DMLE	916
Gauss2DMLE.h The class declaration and inline and templated functions for Gauss2DMLE	916
Gauss2DModel.cpp The class definition and template Specializations for Gauss2DModel	917
Gauss2DModel.h The class declaration and inline and templated functions for Gauss2DModel	918

Gauss2DsMAP.cpp The class definition and template Specializations for Gauss2DsMAP	919
Gauss2DsMAP.h	
The class declaration and inline and templated functions for Gauss2DsMAP	919
Gauss2DsMLE.cpp	
The class definition and template Specializations for Gauss2DsMLE	920
Gauss2DsMLE.h	
The class declaration and inline and templated functions for Gauss2DsMLE	920
Gauss2DsModel.cpp	
The class definition and template Specializations for Gauss2DsModel	921
Gauss2DsModel.h	
The class declaration and inline and templated functions for Gauss2DsModel	922
Gauss2DsxyMAP.h	
The class declaration and inline and templated functions for Gauss2DsxyMAP	923
Gauss2DsxyModel.h	
The class declaration and inline and templated functions for Gauss2DsxyModel	923
ImageFormat1DBase.cpp	
The class definition and template Specializations for ImageFormat1DBase	924
ImageFormat1DBase.h	
The class declaration and inline and templated functions for ImageFormat1DBase	925
ImageFormat2DBase.cpp	
The class definition and template Specializations for ImageFormat2DBase	926
ImageFormat2DBase.h	
The class declaration and inline and templated functions for ImageFormat2DBase	926
MAPEstimator.h	
Class declaration and inline and templated functions for MAPEstimator	927
тетс.срр	
MCMC helper functions	928
memc.h	
Templated MCMC methods for posterior estimation	929
mcmc_data.h	
MCMC data storage types	930
MCMCAdaptor1D.cpp	•••
The class definition and template Specializations for MCMCAdaptor1D	931
MCMCAdaptor1D.h	001
The class declaration and inline and templated functions for MCMCAdaptor1D	931
MCMCAdaptor1Ds.cpp	200
The class definition and template Specializations for MCMCAdaptor1Ds	932

7.1 File List 19

MCMCAdaptor1Ds.h The class declaration and inline and templated functions for MCMCAdaptor1Ds	933
MCMCAdaptor2D.cpp The class definition and template Specializations for MCMCAdaptor2D	933
MCMCAdaptor2D.h The class declaration and inline and templated functions for MCMCAdaptor2D	934
MCMCAdaptor2Ds.cpp The class definition and template Specializations for MCMCAdaptor2Ds	934
MCMCAdaptor2Ds.h The class declaration and inline and templated functions for MCMCAdaptor2Ds	935
MCMCAdaptorBase.cpp The class definition and template Specializations for MCMCAdaptorBase	935
MCMCAdaptorBase.h The class declaration and inline and templated functions for MCMCAdaptorBase	936
MLEstimator.h Class declaration and inline and templated functions for MLEstimator	936
model_methods.h	938
model_methods_impl.h	941
numerical.cpp Numerical matrix operations	944
numerical.h Numerical matrix operations	945
OMPExceptionCatcher.h A lightweight class for managing C++ exception handling strategies for OpenMP methods	946
<pre>openmp_methods.h Namespaces for OpenMP parallelized versions of the mappel::model namespace functions (external methods)</pre>	947
PointEmitterModel.cpp The class definition and template Specializations for PointEmitterModel	950
PointEmitterModel.h The class declaration and inline and templated functions for PointEmitterModel	951
PoissonGaussianNoise2DObjective.cpp	952
PoissonGaussianNoise2DObjective.h The class declaration and inline and templated functions for PoissonGaussianNoise2DObjective	952
PoissonNoise1DObjective.cpp The class definition and template Specializations for PoissonNoise1DObjective	955
PoissonNoise1DObjective.h The class declaration and inline and templated functions for PoissonNoise1DObjective	955

PoissonNoise2DObjective.cpp	
The class definition and template Specializations for PoissonNoise2DObjective	957
PoissonNoise2DObjective.h	
The class declaration and inline and templated functions for PoissonNoise2DObjective	957
rng.cpp	
Global random number generator	959
rng.h	
Random number generation usign sfmt	960
stencil.cpp	
The stencils for pixel based computations	961
stencil.h	
The stencils for pixel based computations	962
util.cpp	964
util.h	
Common utilities and errors	964

8 Namespace Documentation

8.1 mappel Namespace Reference

Namespaces

- estimator
- mcmc
- · methods

Templated functions for operating on a PointEmitterModel.

Classes

• struct ArrayShapeError

Array is not of the right dimensionality.

struct ArraySizeError

Array is not of the right size.

class Gauss1DMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

• class Gauss1DMLE

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

class Gauss1DModel

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

class Gauss1DsMAP

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

class Gauss1DsMLE

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

class Gauss1DsModel

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

class Gauss2DMAP

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

class Gauss2DMLE

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

· class Gauss2DModel

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

class Gauss2DsMAP

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective

class Gauss2DsMLE

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective.

· class Gauss2DsModel

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

class Gauss2DsxyMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

class Gauss2DsxyModel

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_ \leftarrow y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

class ImageFormat1DBase

A virtual base class for 2D image localization objectives.

class ImageFormat2DBase

A virtual base class for 2D image localization objectives.

struct LogicalError

Failure of code or algorithm logic.

· class MAPEstimator

A Mixin class to configure a for MLE estimation (null prior).

- class MCMCAdaptor1D
- class MCMCAdaptor1Ds
- class MCMCAdaptor2D
- class MCMCAdaptor2Ds
- · class MCMCAdaptorBase
- class MLEstimator

A Mixin class to configure a for MLE estimation (null prior).

• struct ModelBoundsError

Access outside the model bounds is attempted.

struct NotImplementedError

Feature not yet implemented.

struct NumericalError

Expected numerical condition does not hold.

struct ParameterValueError

Parameter value is not valid.

class PointEmitterModel

A virtual Base type for point emitter localization models.

using MappelError = backtrace exception::BacktraceException

class PoissonNoise1DObjective

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

· class PoissonNoise2DObjective

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

Typedefs

```
    using ParallelRngGeneratorT = trng::lcg64 shift

• using ParallelRngManagerT = parallel_rng::ParallelRngManager< ParallelRngGeneratorT >

    using RngSeedT = parallel rng::SeedT

    using UniformDistT = std::uniform real distribution< double >

    using BoolT = uint16 t

using BoolVecT = arma::Col< uint16_t >
• using ldxT = arma::uword
using ldxVecT = arma::Col < ldxT >

    using ldxMatT = arma::Mat< ldxT >

    using VecT = arma::vec

using MatT = arma::mat
• using CubeT = arma::cube

    using VecFieldT = arma::field < VecT >

    using StatsT = std::map< std::string, double >

using StringVecT = std::vector< std::string >

    template < class ModelT , class ModelBaseT >

  using EnableIfSubclassT = typename std::enable_if< std::is_base_of< ModelBaseT, ModelT >::value, void >←
  ::type

    template < class ReturnT , class ModelT , class ModelBaseT >

  using ReturnlfSubclassT = typename std::enable if < std::is base of < ModelBaseT, ModelT >::value, ReturnT
  >::type

    template<class Model >

  using ImageCoordT = typename Model::ImageCoordT

    template<class Model >

  using ImagePixeIT = typename Model::ImagePixeIT

    template<class Model >

  using ParamT = typename Model::ParamT

    template<class Model >

  using ParamVecT = typename Model::ParamVecT

    template<class Model >

  using ImageT = typename Model::ImageT

    template < class Model >

  using ModelDataT = typename Model::ModelDataT

    template<class Model >

  using StencilT = typename Model::Stencil

    template < class Model >

  using ImageStackT = typename Model::ImageStackT

    template < class Model >

  using ModelDataStackT = typename Model::ModelDataStackT

    template<class Model >

  using StencilVecT = typename Model::StencilVecT
```

Functions

- const char * lambda term color (int size, int Lidx)
- ostream & print_centered_title (ostream &out, char fill, int width, const char *title=nullptr)
- ostream & print_labeled_image (ostream &out, const arma::mat &im, const char *title, const char *color)
- template<>
 - std::ostream & print image (std::ostream &out, const arma::vec &im)
- template<>
 - std::ostream & print image (std::ostream &out, const arma::mat &im)
- template<>
 - std::ostream & print text image (std::ostream &out, const arma::vec &im)
- template<
 - std::ostream & print_text_image (std::ostream &out, const arma::mat &im)
- template<>
 - std::ostream & print_image (std::ostream &out, const arma::cube &im)
- std::ostream & operator<< (std::ostream &out, const Gauss1DModel::Stencil &s)
- std::ostream & operator<< (std::ostream &out, const Gauss1DsModel::Stencil &s)
- std::ostream & operator<< (std::ostream &out, const Gauss2DModel::Stencil &s)
- std::ostream & operator<< (std::ostream &out, const Gauss2DsModel::Stencil &s)
- void copy_Usym_mat (arma::mat &usym)
- void copy_Usym_mat_stack (arma::cube &usym_stack)
- void copy_Lsym_mat (arma::mat &lsym)
- void cholesky make negative definite (arma::mat &m)
- void cholesky_make_positive_definite (arma::mat &m)
- bool is negative definite (const arma::mat &usym)
- bool is_positive_definite (const arma::mat &usym)
- bool is symmetric (const arma::mat &A)
- void cholesky convert lower triangular (arma::mat &chol)
- void cholesky_convert_full_matrix (arma::mat &chol)
- bool cholesky (arma::mat &A)
- bool modified_cholesky (arma::mat &A)
- arma::vec cholesky_solve (const arma::mat &C, const arma::vec &b)
- double norm_sq (const VecT &v)
- double normal_quantile_twosided (double confidence)
- double normal_quantile_onesided (double confidence)
- double chisq_quantile (double confidence, int dof)
- double chisq_quantile (double confidence)
- void fill gaussian stencil (int size, double stencil[], double sigma)
- double gaussian convolution (int x, int y, const MatT &data, const VecT &Xstencil, const VecT &Ystencil)
- void estimate_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max_pos[], double &min_val)
- void refine gaussian 2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max pos[])
- double gaussian 3D convolution (int x, int y, int z, const CubeT &data, const VecFieldT &stencils)
- void estimate_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[], double &min_val)
- void refine gaussian 3Dmax (const CubeT &data, const VecFieldT &stencils, int max pos[])
- double estimate_background (const MatT &im, const MatT &unit_model_im, double min_bg)
- double estimate intensity (const MatT &im, const MatT &unit model im, double bg)
- double estimate background (const CubeT &im, const CubeT &unit model im)
- double estimate_intensity (const CubeT &im, const CubeT &unit_model_im, double bg)
- void enable_all_cpus ()
- bool istarts with (const char *s, const char *pattern)

- bool istarts_with (const std::string &str, const char *pattern)
- const char * icontains (const char *s, const char *pattern)
- int maxidx (const VecT &v)
- std::ostream & operator<< (std::ostream &out, const StatsT &stats)
- template < class ImageT >
 std::ostream & print_image (std::ostream &out, const ImageT &im)
- template < class ImageT >
 std::ostream & print_text_image (std::ostream &out, const ImageT &im)
- template<class Vec >
 std::ostream & print_vec_row (std::ostream &out, const Vec &vec, const char *header, int header_width, const char *color=nullptr)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DModel, Model >::value, ParamT < Model > >::type cgauss_
 heuristic_compute_estimate (const Model & model, const ModelDataT < Model > &im, const ParamT < Model
 > &theta init)
- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DModel, Model >::value, ParamT< Model > ::type cgauss_
 compute_estimate (Model &model, const ModelDataT< Model > &im, const ParamT< Model > &theta_init, int max_iterations)
- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DModel, Model >::value, ParamT< Model > ::type cgauss_
 compute_estimate_debug (const Model &model, const ModelDataT< Model > &im, const ParamT< Model >
 &theta_init, int max_iterations, ParamVecT< Model > &sequence)
- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DsModel, Model >::value, ParamT< Model > >::type cgauss_
 heuristic_compute_estimate (const Model &model, const ModelDataT< Model > &im, const ParamT< Model
 > &theta init)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsModel, Model >::value, ParamT < Model > >::type cgauss_
 compute_estimate (Model &model, const ModelDataT < Model > &im, const ParamT < Model > &theta_init, int max_iterations)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsModel, Model >::value, ParamT < Model > >::type cgauss_
 compute_estimate_debug (const Model &model, const ModelDataT < Model > &im, const ParamT < Model >
 &theta init, int max iterations, ParamVecT < Model > &sequence)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type cgauss_
 heuristic_compute_estimate (const Model & model, const ModelDataT < Model > &im, const ParamT < Model >
 &theta_init)
- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DsxyModel, Model >::value, ParamT< Model > >::type cgauss_
 compute_estimate (Model &model, const ModelDataT< Model > &im, const ParamT< Model > &theta_init, int max_iterations)
- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DsxyModel, Model >::value, ParamT< Model > >::type cgauss_
 compute_estimate_debug (const Model &model, const ModelDataT< Model > &im, const ParamT< Model >
 &theta_init, int max_iterations, ParamVecT< Model > &sequence)
- template < class FloatT >
 FloatT clamp (FloatT val, FloatT min_val, FloatT max_val)
- template<class Model , typename = EnablelfSubclassT<Model,PointEmitterModel>> std::ostream & operator<< (std::ostream &out, const Model &model)
- template < class RngT >
 ldxT generate_poisson_small (RngT &rng, double mu)

Generates a single Poisson distributed int from distribution with mean mu.

- template < class RngT >
 - IdxT generate poisson large (RngT &rng, double mu)
- template < class RngT >
 - double generate_poisson (RngT &rng, double mu)
- double gauss norm (double sigma)
- void fill d stencil (int size, double stencil[], double theta x)
- void fill G stencil (int size, double stencil[], const double dx[], double theta sigma)
- void fill X stencil (int size, double stencil[], const double dx[], double theta sigma)
- void fill_DX_stencil (int size, double stencil[], const double Gx[], double theta_sigma)
- void fill DXS stencil (int size, double stencil[], const double dx[], const double Gx[], double theta sigma)
- void fill_DXS2_stencil (int size, double stencil[], const double dx[], const double Gx[], const double DXS[], double theta sigma)
- void fill_DXSX_stencil (int size, double stencil[], const double dx[], const double Gx[], const double DX[], double theta sigma)
- VecT make d stencil (int size, double theta x)
- VecT make G stencil (int size, const VecT &dx, double theta sigma)
- VecT make_X_stencil (int size, const VecT &dx, double theta_sigma)
- VecT make_DX_stencil (int size, const VecT &Gx, double theta_sigma)
- VecT make_DXS_stencil (int size, const VecT &dx, const VecT &Gx, double theta_sigma)
- VecT make DXS2 stencil (int size, const VecT &dx, const VecT &Gx, const VecT &DXS, double theta sigma)
- VecT make_DXSX_stencil (int size, const VecT &dx, const VecT &Gx, const VecT &DX, double theta_sigma)
- VecT make_gaussian_stencil (int size, double sigma)
- double poisson_log_likelihood (double model_val, double data_val)
- double relative_poisson_log_likelihood (double model_val, double data_val)
- double check lower_bound_hyperparameter (const char *name, double value, double lower_bound)
- double check_positive_hyperparameter (const char *name, double value, double hyperprior_epsilon=1E-6)
- double check unit hyperparameter (const char *name, double value, double hyperprior epsilon=1E-6)
- double log prior beta const (double beta)
- double log_prior_beta2_const (double beta0, double beta1)
- double log_prior_gamma_const (double kappa, double mean)
- double log_prior_pareto_const (double alpha, double min)
- double log prior normal const (double sigma)
- double rllh beta prior (double beta, double v, double max=1., double min=0.)
- double rllh_beta2_prior (double beta0, double beta1, double v, double max=1., double min=0.)
- double rllh gamma prior (double kappa, double mean, double v)
- double rllh_pareto_prior (double alpha, double v)
- double rllh normal prior (double mu, double sigma)
- double beta prior grad (double beta, double v, double max=1., double min=0.)
- double beta2 prior grad (double beta0, double beta1, double v, double max=1., double min=0.)
- double gamma_prior_grad (double kappa, double mean, double v)
- double pareto_prior_grad (double alpha, double v)
- double normal_prior_grad (double mu, double sigma)
- double beta prior grad2 (double beta, double v, double max=1., double min=0.)
- double beta2 prior grad2 (double beta0, double beta1, double v, double max=1., double min=0.)
- double gamma_prior_grad2 (double kappa, double v)
- double pareto_prior_grad2 (double alpha, double v)
- double normal_prior_grad (double sigma)
- double rllh_normal_prior (double mu, double sigma, double v)
- double normal prior grad (double mu, double sigma, double v)
- double normal prior grad2 (double sigma)

```
    template<typename T >
        int sgn (T val)
        sign (signum) function: -1/0/1
    template<typename T >
        T square (T x)
    double restrict_value_range (double val, double minval, double maxval)
    template<typename T, typename... Args>
        std::unique_ptr< T > make_unique (Args &&...args)
```

Variables

```
    const char * TERM BLACK ="1;30"

const char * TERM RED ="1;31"
const char * TERM_GREEN ="1;32"
const char * TERM_YELLOW ="1;33"
const char * TERM BLUE ="1;34"

    const char * TERM MAGENTA ="1;35"

const char * TERM CYAN ="1;36"
const char * TERM WHITE ="1;37"

    const char * TERM DIM BLACK ="0;30"

• const char * TERM DIM RED ="0;31"

    const char * TERM DIM GREEN ="0;32"

const char * TERM_DIM_YELLOW ="0;33"
• const char * TERM DIM BLUE ="0;34"

    const char * TERM DIM MAGENTA ="0;35"

    const char * TERM DIM CYAN ="0;36"

    const char * TERM DIM WHITE ="0;37"

    ParallelRngManagerT rng manager
```

8.1.1 Detailed Description

All models will call for maximization through this virtual function. All non-GPU based maximizers will use this version which spawns threads using a non-virtual entry point member function Maximizer::thread_entry. GPU-based maximizers will want to do something custom, so they will declare their own virtual maximize_stack.

It is also because of the GPU-based mamixmizers that we are putting initialization, and CRLB/LLH calculations in here even though the Model knows how to do them.

We expect that those methods will need to also be paralellized and the GPU will need custom code, and the threaded CPU versions will want to also compute those in parallel, so in order to have a consistent call interface to the Maximizer classes, we put the CRLB/LLH and initialization work within the the maximize_stack method.

8.1.2 Typedef Documentation

8.1.2.1 using mappel::BooIT = typedef uint16_t

Definition at line 23 of file util.h.

8.1.2.2 using mappel::BoolVecT = typedef arma::Col<uint16_t>

Definition at line 24 of file util.h.

8.1.2.3 using mappel::CubeT = typedef arma::cube

A type to represent floating-point data cubes

Definition at line 30 of file util.h.

8.1.2.4 template < class ModelT , class ModelBaseT > using mappel::EnableIfSubclassT = typedef typename std::enable_if < std::is_base_of < ModelBaseT, ModelT >::value, void >::type

Definition at line 37 of file util.h.

8.1.2.5 using mappel::IdxMatT = typedef arma::Mat<IdxT>

A type to represent integer data arrays

Definition at line 27 of file util.h.

8.1.2.6 using mappel::ldxT = typedef arma::uword

Definition at line 25 of file util.h.

8.1.2.7 using mappel::IdxVecT = typedef arma::Col<IdxT>

A type to represent integer data arrays

Definition at line 26 of file util.h.

8.1.2.8 template < class Model > using mappel::ImageCoordT = typedef typename Model::ImageCoordT

Definition at line 42 of file util.h.

8.1.2.9 template < class Model > using mappel::ImagePixeIT = typedef typename Model::ImagePixeIT

Definition at line 43 of file util.h.

8.1.2.10 template < class Model > using mappel::ImageStackT = typedef typename Model::ImageStackT

Definition at line 51 of file util.h.

8.1.2.11 template < class Model > using mappel::ImageT = typedef typename Model::ImageT

Definition at line 47 of file util.h.

8.1.2.12 using mappel::MappelError = typedef backtrace_exception::BacktraceException

Definition at line 64 of file util.h.

8.1.2.13 using mappel::MatT = typedef arma::mat

A type to represent floating-point data matrices

Definition at line 29 of file util.h.

8.1.2.14 template < class Model > using mappel::ModelDataStackT = typedef typename Model::ModelDataStackT

Definition at line 52 of file util.h.

8.1.2.15 template < class Model > using mappel::ModelDataT = typedef typename Model::ModelDataT

Definition at line 48 of file util.h.

8.1.2.16 using mappel::ParallelRngGeneratorT = typedef trng::lcg64_shift

Definition at line 21 of file rng.h.

8.1.2.17 using mappel::ParallelRngManagerT = typedef parallel_rng::ParallelRngManager< ParallelRngGeneratorT>

Definition at line 22 of file rng.h.

8.1.2.18 template < class Model > using mappel::ParamT = typedef typename Model::ParamT

Definition at line 45 of file util.h.

8.1.2.19 template < class Model > using mappel::ParamVecT = typedef typename Model::ParamVecT

Definition at line 46 of file util.h.

8.1.2.20 template < class ReturnT , class ModelT , class ModelBaseT > using mappel::ReturnIfSubclassT = typedef typename std::enable_if < std::is_base_of < ModelBaseT, ModelT > ::value, ReturnT > ::type

Definition at line 40 of file util.h.

8.1.2.21 using mappel::RngSeedT = typedef parallel_rng::SeedT

Definition at line 23 of file rng.h.

8.1.2.22 using mappel::StatsT = typedef std::map<std::string,double>

A convenient form for reporting dictionaries of named FP data to Matlab

Definition at line 32 of file util.h.

```
8.1.2.23 template < class Model > using mappel::StencilT = typedef typename Model::Stencil
Definition at line 49 of file util.h.
8.1.2.24 template < class Model > using mappel::StencilVecT = typedef typename Model::StencilVecT
Definition at line 53 of file util.h.
8.1.2.25 using mappel::StringVecT = typedef std::vector<std::string>
Definition at line 33 of file util.h.
8.1.2.26 using mappel::UniformDistT = typedef std::uniform_real_distribution < double >
Definition at line 24 of file rng.h.
8.1.2.27 using mappel::VecFieldT = typedef arma::field < VecT >
Definition at line 31 of file util.h.
8.1.2.28 using mappel::VecT = typedef arma::vec
A type to represent floating-point data arrays
Definition at line 28 of file util.h.
8.1.3 Function Documentation
8.1.3.1 double mappel::beta2_prior_grad ( double beta0, double beta1, double max = 1., double min = 0.)
        [inline]
Definition at line 316 of file stencil.h.
8.1.3.2 double mappel::beta2_prior_grad2 ( double beta0, double beta1, double v, double mx = 1., double min = 0.)
        [inline]
Definition at line 349 of file stencil.h.
8.1.3.3 double mappel::beta_prior_grad ( double beta, double v, double max = 1., double min = 0.) [inline]
Definition at line 309 of file stencil.h.
8.1.3.4 double mappel::beta prior grad2 ( double beta, double v, double max = 1., double min = 0.) [inline]
Definition at line 341 of file stencil.h.
```

8.1.3.5 template < class Model > std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > >::type mappel::cgauss_compute_estimate (Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations)

Definition at line 223 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::estimator::CGaussMLE< Model >::get_debug_stats().

8.1.3.6 template < class Model > std::enable_if < std::is_base_of < Gauss2DsxyModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_compute_estimate (Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations)

Definition at line 251 of file Gauss2DsxyModel.h.

References mappel::ImageFormat2DBase::size.

8.1.3.7 template < class Model > std::enable_if < std::is_base_of < Gauss2DsModel, Model > ::value, ParamT < Model > > ::type mappel::cgauss_compute_estimate (Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations)

Definition at line 253 of file Gauss2DsModel.h.

References mappel::ImageFormat2DBase::size.

8.1.3.8 template < class Model > std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > >::type mappel::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations, ParamVecT < Model > & sequence)

Definition at line 238 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::estimator::CGaussMLE< Model >::get_debug_stats().

8.1.3.9 template < class Model > std::enable_if < std::is_base_of < Gauss2DsxyModel, Model > ::value, ParamT < Model > >::type mappel::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations, ParamVecT < Model > & sequence)

Definition at line 266 of file Gauss2DsxyModel.h.

References mappel::ImageFormat2DBase::size.

8.1.3.10 template < class Model > std::enable_if < std::is_base_of < Gauss2DsModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations, ParamVecT < Model > & sequence)

Definition at line 268 of file Gauss2DsModel.h.

References mappel::ImageFormat2DBase::size.

8.1.3.11 template < class Model > std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > >::type mappel::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta init)

Definition at line 209 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::estimator::HeuristicEstimator < Model >::get_debug_stats(), and mappel::estimator::CGauss ← MLE < Model >::get_debug_stats().

8.1.3.12 template < class Model > std::enable_if < std::is_base_of < Gauss2DsxyModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init)

Definition at line 237 of file Gauss2DsxyModel.h.

References mappel::ImageFormat2DBase::size.

8.1.3.13 template < class Model > std::enable_if < std::is_base_of < Gauss2DsModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init)

Definition at line 239 of file Gauss2DsModel.h.

References mappel::ImageFormat2DBase::size.

- 8.1.3.14 double mappel::check_lower_bound_hyperparameter (const char * name, double value, double lower_bound)
- 8.1.3.15 double mappel::check_positive_hyperparameter (const char * name, double value, double hyperprior_epsilon = 1E-6)
- 8.1.3.16 double mappel::check_unit_hyperparameter (const char * name, double value, double hyperprior_epsilon = 1E-6)
- 8.1.3.17 double mappel::chisq_quantile (double confidence, int dof)

Definition at line 43 of file stencil.cpp.

Referenced by mappel::methods::error_bounds_profile_likelihood(), mappel::methods::openmp::error_bounds_composite | profile likelihood parallel(), and mappel::methods::openmp::error bounds profile likelihood stack().

8.1.3.18 double mappel::chisq_quantile (double confidence)

Definition at line 50 of file stencil.cpp.

8.1.3.19 bool mappel::cholesky (arma::mat & A)

Convert full or upper-triangular symmetric matrix to lower-triangular Cholesky decomposition in-place

No error checking is performed

Parameters

in,out	
--------	--

Definition at line 102 of file numerical.cpp.

Referenced by is_positive_definite(), mappel::estimator::subroutine::solve_restricted_step_length_newton(), and mappel::estimator::subroutine::solve_TR_subproblem().

8.1.3.20 void mappel::cholesky_convert_full_matrix (arma::mat & chol)

Convert matrix in internal Cholesky format into a full matrix M = L*L'

Definition at line 82 of file numerical.cpp.

References copy_Usym_mat().

Referenced by cholesky make negative definite(), and cholesky make positive definite().

8.1.3.21 void mappel::cholesky_convert_lower_triangular (arma::mat & chol)

Convert matrix in internal Cholesky format into a lower triangular matrix L where M = L*L'

Definition at line 71 of file numerical.cpp.

Referenced by mappel::estimator::subroutine::solve restricted step length newton().

8.1.3.22 void mappel::cholesky_make_negative_definite (arma::mat & m)

Modify m in-place using modified Cholesky decomposition to ensure m is negative definite

Definition at line 38 of file numerical.cpp.

References cholesky_convert_full_matrix(), and modified_cholesky().

Referenced by mappel::methods::objective::negative definite hessian().

8.1.3.23 void mappel::cholesky_make_positive_definite (arma::mat & m)

Modify m in-place using modified Cholesky decomposition to ensure m is positive definite

Definition at line 46 of file numerical.cpp.

References cholesky_convert_full_matrix(), and modified_cholesky().

8.1.3.24 arma::vec mappel::cholesky_solve (const arma::mat & C, const arma::vec & b)

Given a matrix in modified Cholesky format and a vector solve the linear system C x = b.

Parameters

C A matrix ir		A matrix in lower modified Cholesky format
	b	A vector representing the right hand side of the linear system.

Returns

x - the solution to the linear system

Definition at line 186 of file numerical.cpp.

Referenced by mappel::estimator::subroutine::solve_restricted_step_length_newton(), and mappel::estimator \leftarrow ::subroutine::solve_TR_subproblem().

8.1.3.25 template < class FloatT > FloatT mappel::clamp (FloatT val, FloatT min_val, FloatT max_val)

Definition at line 103 of file numerical.h.

References norm sq().

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::subroutine ::compute_D_scale(), mappel::estimator::subroutine::compute_initial_trust_radius(), mappel::estimator::Iterative :: Maximizer < Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer < Model >::profile_bound_ :: backtrack(), and mappel::estimator::subroutine::solve restricted step length newton().

8.1.3.26 void mappel::copy_Lsym_mat (arma::mat & Isym)

Convert symmetric matrix stored as lower triangular to full Matrix Assuming lsym is the main diagonal and lower triangle of a symmetric matrix, fill in the upper triangle by copying the lower triangle. This operation modifies the matrix.

Definition at line 30 of file numerical.cpp.

8.1.3.27 void mappel::copy_Usym_mat (arma::mat & usym)

Convert symmetric matrix stored as upper triangular to full Matrix Assuming usym is the main diagonal and upper triangle of a symmetric matrix, fill in the lower triangle by copying the upper triangle. This operation modifies the matrix.

Definition at line 13 of file numerical.cpp.

Referenced by cholesky_convert_full_matrix().

8.1.3.28 void mappel::copy_Usym_mat_stack (arma::cube & usym_stack)

Definition at line 20 of file numerical.cpp.

8.1.3.29 void mappel::enable_all_cpus ()

Definition at line 16 of file util.cpp.

```
double mappel::estimate_background ( const MatT & im, const MatT & unit_model_im, double min_bg )
Definition at line 280 of file stencil.cpp.
8.1.3.31 double mappel::estimate_background ( const CubeT & im, const CubeT & unit_model_im )
Definition at line 299 of file stencil.cpp.
8.1.3.32 void mappel::estimate_gaussian_2Dmax ( const MatT & data, const VecT & Xstencil, const VecT & Ystencil, int
         max_pos[], double & min_val )
Definition at line 158 of file stencil.cpp.
References gaussian_convolution().
8.1.3.33 void mappel::estimate_gaussian_3Dmax ( const CubeT & data, const VecFieldT & stencils, int max_pos[], double &
         min_val )
Definition at line 222 of file stencil.cpp.
References gaussian 3D convolution().
8.1.3.34 double mappel::estimate_intensity ( const MatT & im, const MatT & unit_model_im, double bg )
Definition at line 294 of file stencil.cpp.
8.1.3.35 double mappel::estimate_intensity ( const CubeT & im, const CubeT & unit_model_im, double bg )
Definition at line 309 of file stencil.cpp.
8.1.3.36 void mappel::fill d stencil (int size, double stencil ], double theta x ) [inline]
Definition at line 153 of file stencil.h.
Referenced by make_d_stencil().
8.1.3.37 void mappel::fill_DX_stencil( int size, double stencil[], const double Gx[], double theta_sigma) [inline]
Definition at line 178 of file stencil.h.
Referenced by make DX stencil().
        void mappel::fill_DXS2_stencil ( int size, double stencil[], const double dx[], const double Gx[], const double DXS[],
8.1.3.38
         double theta_sigma ) [inline]
Definition at line 192 of file stencil.h.
Referenced by make DXS2 stencil().
```

```
8.1.3.39 void mappel::fill_DXS_stencil (int size, double stencil[], const double dx[], const double Gx[], double theta_sigma)
         [inline]
Definition at line 185 of file stencil.h.
References square().
Referenced by make_DXS_stencil().
8.1.3.40 void mappel::fill_DXSX_stencil ( int size, double stencil[], const double dx[], const double Gx[], const double DX[],
         double theta_sigma ) [inline]
Definition at line 205 of file stencil.h.
Referenced by make_DXSX_stencil().
8.1.3.41 void mappel::fill_G_stencil(int size, double stencil[], const double dx[], double theta_sigma) [inline]
Definition at line 159 of file stencil.h.
References square().
Referenced by make G stencil().
8.1.3.42 void mappel::fill_gaussian_stencil ( int size, double stencil[], double sigma )
Definition at line 57 of file stencil.cpp.
References gauss norm().
Referenced by make_gaussian_stencil().
8.1.3.43 void mappel::fill_X_stencil( int size, double stencil[], const double dx[], double theta_sigma ) [inline]
Definition at line 166 of file stencil.h.
Referenced by make X stencil().
8.1.3.44 double mappel::gamma_prior_grad ( double kappa, double mean, double v ) [inline]
Definition at line 322 of file stencil.h.
8.1.3.45 double mappel::gamma_prior_grad2 ( double kappa, double v ) [inline]
Definition at line 358 of file stencil.h.
8.1.3.46 double mappel::gauss_norm ( double sigma ) [inline]
Definition at line 94 of file stencil.h.
Referenced by fill gaussian stencil().
```

8.1.3.47 double mappel::gaussian_3D_convolution (int x, int y, int z, const CubeT & data, const VecFieldT & stencils)

Definition at line 201 of file stencil.cpp.

Referenced by estimate_gaussian_3Dmax(), and refine_gaussian_3Dmax().

8.1.3.48 double mappel::gaussian_convolution (int x, int y, const MatT & data, const VecT & Xstencil, const VecT & Ystencil)

Definition at line 144 of file stencil.cpp.

Referenced by estimate_gaussian_2Dmax(), and refine_gaussian_2Dmax().

8.1.3.49 template < class RngT > double mappel::generate_poisson (RngT & rng, double mu)

Definition at line 81 of file rng.h.

References generate_poisson_large(), and generate_poisson_small().

Referenced by mappel::methods::simulate_image(), simulate_image(), and mappel::methods::simulate_image_from __model().

8.1.3.50 template < class RngT > IdxT mappel::generate_poisson_large (RngT & rng, double mu)

Definition at line 57 of file rng.h.

Referenced by generate_poisson().

8.1.3.51 template < class RngT > IdxT mappel::generate_poisson_small (RngT & rng, double mu)

Generates a single Poisson distributed int from distribution with mean mu.

Parameters

mu	- mean of Poisson distribution
sfmt	- A pointer to the SFMT rng state.

Knuth method circa 1969. Transformed to work in log space. This is linear in mu. Works ok for small counts.

Definition at line 43 of file rng.h.

Referenced by generate_poisson().

8.1.3.52 const char * mappel::icontains (const char * s, const char * pattern)

Definition at line 45 of file util.cpp.

8.1.3.53 bool mappel::is_negative_definite (const arma::mat & usym)

Determine if C is negative definite (i.e., -C is positive definite)

Parameters

usym	A symmetric matrix in upper triangular format.
------	--

Returns

True if C is negative definite

Definition at line 52 of file numerical.cpp.

References is_positive_definite().

8.1.3.54 bool mappel::is_positive_definite (const arma::mat & usym)

Determine if C is positive definite

Parameters

Returns

True if C is positive definite

Definition at line 57 of file numerical.cpp.

References cholesky().

Referenced by is_negative_definite(), and mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

8.1.3.55 bool mappel::is_symmetric (const arma::mat & A)

Check that full 2D matrix A is symmetric and can thus be treated as either upper or lower triangular symmetric representation. This will obviously not work with matrices that are already implicitly stored as symmetric triangular format since those matrices won't have the other triangle of elements filled in correctly.

Definition at line 63 of file numerical.cpp.

8.1.3.56 bool mappel::istarts_with (const char * s, const char * pattern)

Definition at line 27 of file util.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior(), mappel::Gauss2DModel::make_default_prior(), mappel::Gauss1DModel::make_default_prior(), mappel::Gauss2DsModel::make_default_prior(), mappel::make_default_prior(), mappel::make_default_pri

8.1.3.57 bool mappel::istarts_with (const std::string & str, const char * pattern) Definition at line 35 of file util.cpp. 8.1.3.58 const char* mappel::lambda_term_color (int size, int Lidx) Definition at line 33 of file display.cpp. References TERM BLUE, TERM CYAN, TERM DIM BLUE, TERM DIM CYAN, TERM DIM GREEN, TERM DIM → _MAGENTA, TERM_DIM_RED, TERM_DIM_WHITE, TERM_DIM_YELLOW, TERM_GREEN, TERM_MAGENTA, T \hookleftarrow ERM RED, TERM WHITE, and TERM YELLOW. Referenced by print_image(). 8.1.3.59 double mappel::log_prior_beta2_const (double beta0, double beta1) [inline] Definition at line 250 of file stencil.h. 8.1.3.60 double mappel::log_prior_beta_const (double beta) [inline] Definition at line 244 of file stencil.h. 8.1.3.61 double mappel::log_prior_gamma_const (double kappa, double mean) [inline] Definition at line 257 of file stencil.h. **8.1.3.62** double mappel::log_prior_normal_const (double *sigma*) [inline] Definition at line 269 of file stencil.h. 8.1.3.63 double mappel::log_prior_pareto_const (double alpha, double min) [inline] Definition at line 263 of file stencil.h. 8.1.3.64 VecT mappel::make_d_stencil(int size, double theta_x) [inline] Definition at line 99 of file stencil.h. References fill d stencil(). Referenced by mappel::Gauss1DsModel::Stencil(), mappel::Gauss2DModel::Stencil(), mappel::← Gauss1DModel::Stencil::Stencil(), and mappel::Gauss2DsModel::Stencil::Stencil(). 8.1.3.65 VecT mappel::make_DX_stencil(int size, const VecT & Gx, double theta_sigma) [inline] Definition at line 120 of file stencil.h. References fill DX stencil(). Referenced by mappel::Gauss1DsModel::Stencil::compute derivatives(), mappel::Gauss2DModel::Stencil::compute ← derivatives(), mappel::Gauss1DModel::Stencil::compute derivatives(), and mappel::Gauss2DsModel::Stencil ←

::compute derivatives().

8.1.3.66 VecT mappel::make_DXS2_stencil (int size, const VecT & dx, const VecT & Gx, const VecT & DXS, double theta sigma) [inline]

Definition at line 135 of file stencil.h.

References fill DXS2 stencil().

Referenced by mappel::Gauss1DsModel::Stencil::compute_derivatives(), and mappel::Gauss2DsModel::Stencil ← ::compute_derivatives().

8.1.3.67 VecT mappel::make_DXS_stencil (int size, const VecT & dx, const VecT & Gx, double theta_sigma) [inline]

Definition at line 127 of file stencil.h.

References fill_DXS_stencil().

Referenced by mappel::Gauss1DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel::Stencil::compute \leftarrow _derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), and mappel::Gauss2DsModel::Stencil \leftarrow ::compute_derivatives().

8.1.3.68 VecT mappel::make_DXSX_stencil (int size, const VecT & dx, const VecT & Gx, const VecT & DX, double theta_sigma
) [inline]

Definition at line 143 of file stencil.h.

References fill_DXSX_stencil().

Referenced by mappel::Gauss1DsModel::Stencil::compute_derivatives(), and mappel::Gauss2DsModel::Stencil ← ::compute_derivatives().

8.1.3.69 VecT mappel::make G stencil (int size, const VecT & dx, double theta sigma) [inline]

Definition at line 106 of file stencil.h.

References fill_G_stencil().

Referenced by mappel::Gauss1DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel::Stencil::compute \leftarrow _derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), and mappel::Gauss2DsModel::Stencil \leftarrow ::compute_derivatives().

8.1.3.70 VecT mappel::make_gaussian_stencil(int size, double sigma) [inline]

Definition at line 218 of file stencil.h.

References fill_gaussian_stencil().

 $8.1.3.71 \quad template < typename \ T\ , typename...\ Args > std::unique_ptr < T > mappel::make_unique (\ Args \&\&...\ args\)$

Definition at line 134 of file util.h.

References operator<<().

8.1.3.72 VecT mappel::make_X_stencil(int size, const VecT & dx, double theta_sigma) [inline]

Definition at line 113 of file stencil.h.

References fill X stencil().

Referenced by mappel::Gauss1DsModel::Stencil(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DModel::Stencil().

8.1.3.73 int mappel::maxidx (const VecT & v)

Definition at line 61 of file util.cpp.

8.1.3.74 bool mappel::modified_cholesky (arma::mat & usym)

Parameters

usyn

An upper triangular symmetric matrix stored in a full matrix format. This matrix will be overwritten with the upper triangle and diagonal elements of the modified Cholesky decomposition.

Returns

true if usym was positive semi-definite (no Cholesky modification required). If false we made a modification

Definition at line 128 of file numerical.cpp.

Referenced by cholesky_make_negative_definite(), and cholesky_make_positive_definite().

8.1.3.75 double mappel::norm_sq (const VecT & v)

Definition at line 210 of file numerical.cpp.

References square().

Referenced by clamp(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel ::estimator::IterativeMaximizer< Model >::convergence_test_step_size(), and mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

8.1.3.76 double mappel::normal_prior_grad (double mu, double sigma)

8.1.3.77 double mappel::normal_prior_grad (double sigma)

8.1.3.78 double mappel::normal_prior_grad (double mu, double sigma, double v) [inline]

Definition at line 334 of file stencil.h.

8.1.3.79 double mappel::normal_prior_grad2 (double sigma) [inline]

Definition at line 370 of file stencil.h.

8.1.3.80 double mappel::normal_quantile_onesided (double confidence)

Definition at line 33 of file stencil.cpp.

8.1.3.81 double mappel::normal_quantile_twosided (double confidence)

Definition at line 22 of file stencil.cpp.

Referenced by mappel::methods::error_bounds_expected(), mappel::methods::openmp::error_bounds_expected_← stack(), mappel::methods::error_bounds_observed(), and mappel::methods::openmp::error_bounds_observed stack().

8.1.3.82 std::ostream & mappel::operator << (std::ostream & out, const StatsT & stats)

Definition at line 74 of file util.cpp.

8.1.3.83 template < class Model , typename = EnablelfSubclassT < Model,PointEmitterModel >> std::ostream & mappel::operator < < (std::ostream & out, const Model & model)

Definition at line 283 of file PointEmitterModel.h.

8.1.3.84 std::ostream& mappel::operator<< (std::ostream & out, const Gauss1DModel::Stencil & s)

Definition at line 164 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::derivatives_computed, mappel::Gauss1DModel::Stencil::dx, mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::DX, print_veccomputed, mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::Gx, print_veccomputed, mappel::Gauss1DModel::Stencil::Gx, print_veccomputed, mappel::Gauss1DModel::Stencil::Theta, and mappel::Gauss1Dcomputed, map

Referenced by make unique().

8.1.3.85 std::ostream& mappel::operator<< (std::ostream & out, const Gauss1DsModel::Stencil & s)

Definition at line 182 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::derivatives_computed, mappel::Gauss1DsModel::Stencil::dx, mappel ::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::Gx, print_vec_row(), TERM_BLUE, TE \leftarrow RM_CYAN, TERM_WHITE, mappel::Gauss1DsModel::Stencil::theta, and mappel::Gauss1DsModel::Stencil::X.

8.1.3.86 std::ostream& mappel::operator<< (std::ostream & out, const Gauss2DModel::Stencil & s)

Definition at line 249 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::derivatives_computed, mappel::Gauss2DModel::Stencil::dx, mappel:: \leftarrow Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DX, mappel:: \leftarrow Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::DY, mappel:: \leftarrow Gauss2DModel::Stencil::Gx, mappel:: \leftarrow Gauss2DModel::Stencil::Gy, print_vec_row(), TERM_BLUE, TERM_CYAN, TERM_WHITE, mappel::Gauss2DModel::Stencil::theta, mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

```
8.1.3.87 std::ostream& mappel::operator<< ( std::ostream & out, const Gauss2DsModel::Stencil & s )
```

Definition at line 314 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::derivatives_computed, mappel::Gauss2DsModel::Stencil::dx, mappel.:Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXSX, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::A, and mappel::Gauss2DsModel::Stencil::Y.

```
8.1.3.88 double mappel::pareto_prior_grad ( double alpha, double v ) [inline]
```

Definition at line 328 of file stencil.h.

```
8.1.3.89 double mappel::pareto_prior_grad2 ( double alpha, double v ) [inline]
```

Definition at line 364 of file stencil.h.

```
8.1.3.90 double mappel::poisson log likelihood ( double model val, double data_val ) [inline]
```

Definition at line 226 of file stencil.h.

Referenced by mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh_components(), and log_ likelihood().

8.1.3.91 ostream& mappel::print_centered_title (ostream & out, char fill, int width, const char * title = nullptr)

Definition at line 83 of file display.cpp.

Referenced by print_image(), and print_labeled_image().

```
8.1.3.92 template < class ImageT > std::ostream& mappel::print_image ( std::ostream & out, const ImageT & im )
```

8.1.3.93 template <> std::ostream& mappel::print_image (std::ostream & out, const arma::vec & im)

Definition at line 139 of file display.cpp.

References print labeled image().

8.1.3.94 template <> std::ostream & mappel::print_image (std::ostream & out, const arma::mat & im)

Definition at line 147 of file display.cpp.

References print labeled image().

8.1.3.95 template <> std::ostream & out, const arma::cube & im)

Definition at line 167 of file display.cpp.

References lambda_term_color(), print_centered_title(), and print_labeled_image().

8.1.3.96 ostream& mappel::print_labeled_image (ostream & out, const arma::mat & im, const char * title, const char * color)

Definition at line 95 of file display.cpp.

References print centered title().

Referenced by print_image(), and print_text_image().

8.1.3.97 template < class ImageT > std::ostream& mappel::print_text_image (std::ostream & out, const ImageT & im)

8.1.3.98 template<> std::ostream& mappel::print_text_image (std::ostream & out, const arma::vec & im)

Definition at line 153 of file display.cpp.

References print_labeled_image().

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Estimator< Model >::estimate \leftarrow _profile_bounds_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max().

8.1.3.99 template <> std::ostream & out, const arma::mat & im)

Definition at line 160 of file display.cpp.

References print_labeled_image().

8.1.3.100 template < class Vec > std::ostream& mappel::print_vec_row (std::ostream & out, const Vec & vec, const char * header, int header_width, const char * color = nullptr)

Definition at line 42 of file display.h.

Referenced by operator<<().

8.1.3.101 void mappel::refine_gaussian_2Dmax (const MatT & data, const VecT & Xstencil, const VecT & Ystencil, int max_pos[])

Definition at line 174 of file stencil.cpp.

References gaussian_convolution().

```
8.1.3.102 void mappel::refine_gaussian_3Dmax ( const CubeT & data, const VecFieldT & stencils, int max_pos[])
Definition at line 242 of file stencil.cpp.
References gaussian_3D_convolution().
8.1.3.103 double mappel::relative_poisson_log_likelihood ( double model_val, double data_val ) [inline]
Definition at line 235 of file stencil.h.
Referenced by relative log likelihood(), mappel::methods::likelihood::rllh(), and mappel::methods::likelihood::debug←
::rllh components().
8.1.3.104 double mappel::restrict_value_range ( double val, double minval, double maxval ) [inline]
Definition at line 127 of file util.h.
8.1.3.105 double mappel::rllh beta2 prior ( double beta0, double beta1, double max = 1., double min = 0.)
          [inline]
Definition at line 282 of file stencil.h.
8.1.3.106 double mappel::rllh_beta_prior( double beta, double v, double max = 1., double min = 0.) [inline]
Definition at line 275 of file stencil.h.
8.1.3.107 double mappel::rllh gamma prior ( double kappa, double mean, double v ) [inline]
Definition at line 289 of file stencil.h.
8.1.3.108 double mappel::rllh_normal_prior ( double mu, double sigma )
8.1.3.109 double mappel::rllh_normal_prior( double mu, double sigma, double v ) [inline]
Definition at line 301 of file stencil.h.
8.1.3.110 double mappel::rllh_pareto_prior ( double alpha, double v ) [inline]
Definition at line 295 of file stencil.h.
8.1.3.111 template<typename T > int mappel::sgn ( T val )
sign (signum) function: -1/0/1
Definition at line 120 of file util.h.
```

Referenced by mappel::estimator::subroutine::compute bound scaling vec().

8.1.3.112 template<typename T > T mappel::square (Tx)

Definition at line 125 of file util.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), fill_DXS_stencil(), fill_G_stencil(), norm_sq(), and mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

8.1.4 Variable Documentation

8.1.4.1 ParallelRngManagerT mappel::rng_manager

Definition at line 11 of file rng.cpp.

Referenced by mappel::PointEmitterModel::get_rng_generator(), mappel::PointEmitterModel::get_rng_manager(), mappel::PointEmitterModel::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::PointEmitterModel::sample_prior(), and mappel::PointEmitterModel ::set_rng_seed().

8.1.4.2 const char * mappel::TERM_BLACK ="1;30"

Definition at line 13 of file display.cpp.

8.1.4.3 const char * mappel::TERM_BLUE ="1;34"

Definition at line 17 of file display.cpp.

Referenced by lambda_term_color(), and operator<<().

8.1.4.4 const char * mappel::TERM_CYAN ="1;36"

Definition at line 19 of file display.cpp.

Referenced by lambda term color(), and operator<<().

8.1.4.5 const char * mappel::TERM_DIM_BLACK ="0;30"

Definition at line 21 of file display.cpp.

8.1.4.6 const char * mappel::TERM_DIM_BLUE ="0;34"

Definition at line 25 of file display.cpp.

Referenced by lambda term color().

```
8.1.4.7 const char * mappel::TERM_DIM_CYAN ="0;36"
Definition at line 27 of file display.cpp.
Referenced by lambda_term_color().
8.1.4.8 const char * mappel::TERM_DIM_GREEN ="0;32"
Definition at line 23 of file display.cpp.
Referenced by lambda term color().
8.1.4.9 const char * mappel::TERM_DIM_MAGENTA ="0;35"
Definition at line 26 of file display.cpp.
Referenced by lambda_term_color().
8.1.4.10 const char * mappel::TERM_DIM_RED ="0;31"
Definition at line 22 of file display.cpp.
Referenced by lambda_term_color().
8.1.4.11 const char * mappel::TERM_DIM_WHITE ="0;37"
Definition at line 28 of file display.cpp.
Referenced by lambda_term_color().
8.1.4.12 const char * mappel::TERM_DIM_YELLOW ="0;33"
Definition at line 24 of file display.cpp.
Referenced by lambda term color().
8.1.4.13 const char * mappel::TERM_GREEN ="1;32"
Definition at line 15 of file display.cpp.
Referenced by lambda_term_color().
8.1.4.14 const char * mappel::TERM_MAGENTA ="1;35"
Definition at line 18 of file display.cpp.
Referenced by lambda term color().
```

8.1.4.15 const char * mappel::TERM_RED ="1;31"

Definition at line 14 of file display.cpp.

Referenced by lambda_term_color().

8.1.4.16 const char * mappel::TERM_WHITE ="1;37"

Definition at line 20 of file display.cpp.

Referenced by lambda_term_color(), and operator<<().

8.1.4.17 const char * mappel::TERM_YELLOW ="1;33"

Definition at line 16 of file display.cpp.

Referenced by lambda_term_color().

8.2 mappel::estimator Namespace Reference

Namespaces

subroutine

Classes

- · class CGaussHeuristicEstimator
- class CGaussMLE
- · class Estimator
- · class HeuristicEstimator
- · class IterativeMaximizer
- struct MLEData
- struct MLEDataStack
- struct MLEDebugData
- class NewtonDiagonalMaximizer
- class NewtonMaximizer
- struct ProfileBoundsData
- struct ProfileBoundsDataStack
- struct ProfileBoundsDebugData
- struct ProfileLikelihoodData
- class QuasiNewtonMaximizer
- · class SimulatedAnnealingMaximizer
- class ThreadedEstimator
- class TrustRegionMaximizer

Functions

```
    template < class Model >
        std::ostream & operator << (std::ostream & out, Estimator < Model > & estimator)
```

```
    enum ExitCode::IdxT {
        ExitCode::TrustRegionRadius = 9, ExitCode::ModelImprovement = 8, ExitCode::GradRatio = 7, ExitCode::
        FunctionValue = 6,
        ExitCode::StepSize = 5, ExitCode::Success = 4, ExitCode::MaxBacktracks = 3, ExitCode::MaxIter = 2,
        ExitCode::Unassigned = 1, ExitCode::Error = 0 }
```

8.2.1 Class Documentation

8.2.1.1 struct mappel::estimator::MLEData

Data reporting structures A maximum-likelihood estimate for a single image. A container to group the necessary information at an MLEstimate

Definition at line 40 of file estimator.h.

Class Members

MatT	obsl	Observed Fisher information matrix at theta.
double	rllh	RLLH at theta.
VecT	theta	Theta estimate.

8.2.1.2 struct mappel::estimator::MLEDataStack

A stack of maximum-likelihood estimates for a stack of images A container to group the necessary information at an MLEstimate

Definition at line 65 of file estimator.h.

Class Members

ldxT	Ndata	Number of data estimates.	
CubeT	ubeT obsI Observed Fisher information matrix stack. size:[Nparams,Nparams,Ndata].		
VecT	rllh RLLH stack. size:[Ndata].		
MatT	tT theta Theta estimate stack. size:[Nparams,Ndata].		

8.2.1.3 struct mappel::estimator::ProfileBoundsDebugData

Data for debugging of estimation of profile bounds for a single parameter of a single image Includes both controlling (input) parameters as well as reporting (ouptut) parameters to give output parameters context.

Definition at line 115 of file estimator.h.

Class Members

IdxT	estimated_idx	Index of single parameter to estimate for.
MLEData mle Theta maximum-likelihood estimate, rllh, and Obsl.		Theta maximum-likelihood estimate, rllh, and Obsl.
IdxT	Nseq_lb	Number of points in sequence_lb.
IdxT	Nseq_ub	Number of points in sequence_ub.
double	profile_lb	size:[Nparams_est] Lower bound estimated for estimated_idx.
double	profile_ub	size:[Nparams_est] Upper bound estimated for estimated_idx.
MatT	sequence_lb	size:[NumParams,Nseq_lb] Sequence of evaluated points for lb estimate (including theta mle as initial point)
VecT	sequence_lb_rllh	size:[Nseq_lb] RLLH at each of the sequence_lb points
MatT	sequence_ub	size:[NumParams,Nseq_ub] Sequence of evaluated points for ub estimate (including theta mle as initial point)
VecT	sequence_ub_rllh	size:[Nseq_ub] RLLH at each of the sequence_ub points
double	target_rllh_delta	Targeted rllh change in value from MLE (-chi2inv(confidence,1)/2)

8.2.1.4 struct mappel::estimator::ProfileLikelihoodData

Container for profile liklihood estimator data Includes both controlling (input) parameters as well as reporting (ouptut) parameters to give output parameters context.

Definition at line 76 of file estimator.h.

Class Members

IdxVecT	fixed_idxs	Indexes of fixed parameters.
MatT	fixed_values	Vector values for each fixed parameter size:[Nfixed,Nvalues];.
IdxT	Nfixed	Number of fixed parameters.
ldxT Nvalues		Number of values of fixed parameters evaluated.
VecT	profile_likelihood	profile likelhood for each column of fixed parameter values
MatT	profile_parameters	Points at which the profile liklihood maximum was obtained.

8.2.2 Enumeration Type Documentation

8.2.2.1 enum mappel::estimator::ExitCode:ldxT [strong]

Enumerated exit codes for estimation methods

- Error: A Numerical Error was caught. Did not converge.
- · Unassigned: Logical error if this is still set
- MaxIter: Max iterations exceeded. Did not converge.
- MaxBacktracks: Backtracking failed. Did not converge successfully.

- · Success: Successful completion
- · StepSize: Relative Step size was less than epsilon. Converged successfully.
- · FunctionValue: Function value change was less than epsilon. Converged successfully.
- · GradRatio: Grad ratio was less than epsilon. Converged successfully.
- · ModelImprovement: Model predicted improvement is less than epsilon. Converged Successfully
- TrustRegionRadius: Trust region size was less than epsilon. Converged successfully.

Enumerator

TrustRegionRadius

ModelImprovement

GradRatio

FunctionValue

StepSize

Success

MaxBacktracks

MaxIter

Unassigned

Error

Definition at line 174 of file estimator.h.

- 8.2.3 Function Documentation
- 8.2.3.1 template < class Model > std::ostream & mappel::estimator::operator << (std::ostream & out, Estimator < Model > & estimator)

Definition at line 351 of file estimator_impl.h.

8.3 mappel::estimator::subroutine Namespace Reference

Functions

- VecT solve_profile_initial_step (const MatT &obsl, ldxT fixed_idx, double Ilh_delta)
- VecT bound_step (const VecT &step, const VecT &theta, const VecT &lbound, const VecT &ubound)
- void compute_bound_scaling_vec (const VecT &theta, const VecT &g, const VecT &lbound, const VecT &ubound, VecT &v, VecT &Jv)
- VecT compute D scale (const VecT &oldDscale, const VecT &grad2)
- void compute_scaled_problem (const MatT &H, const VecT &g, const VecT &Dinv, const VecT &Jv, MatT &Hhat, VecT &ghat)
- double compute initial trust radius (const VecT &ghat)
- VecT compute cauchy point (const VecT &g, const MatT &H, double delta)
- double compute_quadratic_model_value (const VecT &s, const VecT &g, const MatT &H)

Quadratic model value at given step Compute a quadratic model.

- VecT solve_TR_subproblem (const VecT &g, const MatT &H, double delta)
 - Exact solver the TR sub-problem even for non-positive definite H.
- VecT solve_restricted_step_length_newton (const VecT &g, const MatT &H, double delta, double lambda_lb, double lambda ub)

8.3.1 Detailed Description

Estimation subroutines common to several estimators and independent of the Model

Common subroutines shared between estimators.

These methods are model agnostic.

8.3.2 Function Documentation

8.3.2.1 VecT mappel::estimator::subroutine::bound_step (const VecT & step, const VecT & theta, const VecT & lbound, const VecT & ubound)

Return a new step that is guaranteed to keep theta in the interior of the feasible region. Uses a relative backtracking technique to step away from the boundary into the interior.

Parameters

step	proposed step
theta	current theta
lbound	lower bounds
ubound	upper bounds

Returns

bounded step

Definition at line 91 of file estimator.cpp.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local_profile_maximize().

8.3.2.2 void mappel::estimator::subroutine::compute_bound_scaling_vec (const VecT & theta, const VecT & g, const VecT & lbound, const VecT & ubound, VecT & v, VecT & Jv)

Bounds scaling vector for affine scaling of bounds constrained optimization problems. This v is from Coleman&Li (1996). It represents a scaling factor for bound constrained problems. For unconstrained problems v = sgn(grad);

Parameters

in	theta	current theta
in	g	gradient
in	lbound	lower bound
in	ubound	upper bound
out	v	Scaling vector
out	Jv	Jacobian

Definition at line 142 of file estimator.cpp.

References mappel::sgn(), and mappel::estimator::MLEDebugData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

8.3.2.3 VecT mappel::estimator::subroutine::compute_cauchy_point (const VecT & g, const MatT & H, double delta)

Definition at line 185 of file estimator.cpp.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

8.3.2.4 VecT mappel::estimator::subroutine::compute_D_scale (const VecT & oldDscale, const VecT & grad2)

Compute an affine scaling diagonal matrix to scale problem away from boundaries. This works for either minimization or maximization. sign(grad2) is not important

Parameters

oldDscale	Last D scaling matrix
grad2	Diagonal of hessian matrix

Returns

Diagonal scaling matrix as a vector.

Definition at line 169 of file estimator.cpp.

References mappel::clamp().

8.3.2.5 double mappel::estimator::subroutine::compute_initial_trust_radius (const VecT & ghat)

Definition at line 180 of file estimator.cpp.

References mappel::clamp().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

8.3.2.6 double mappel::estimator::subroutine::compute_quadratic_model_value (const VecT & s, const VecT & g, const MatT & H)

Quadratic model value at given step Compute a quadratic model.

Definition at line 193 of file estimator.cpp.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

8.3.2.7 void mappel::estimator::subroutine::compute_scaled_problem (const MatT & H, const VecT & g, const VecT & Dinv, const VecT & Jv, MatT & Hhat, VecT & ghat)

Definition at line 174 of file estimator.cpp.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

8.3.2.8 VecT mappel::estimator::subroutine::solve_profile_initial_step (const MatT & obsl, IdxT fixed_idx, double Ilh_delta)

Find initial step lengths in profile bounds estimation VM algorithm

Definition at line 61 of file estimator.cpp.

References mappel::estimator::MLEDebugData::obsl.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel ::estimator::Estimator<:Model >::estimator::ThreadedEstimator<:Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator<:Model >::estimate_profile_ \leftarrow bounds_stack().

8.3.2.9 VecT mappel::estimator::subroutine::solve_restricted_step_length_newton (const VecT & g, const MatT & H, double delta, double lambda_lb, double lambda_ub)

Definition at line 266 of file estimator.cpp.

References mappel::cholesky(), mappel::cholesky_convert_lower_triangular(), mappel::cholesky_solve(), and mappel::clamp().

Referenced by solve_TR_subproblem().

8.3.2.10 VecT mappel::estimator::subroutine::solve_TR_subproblem (const VecT & g, const MatT & H, double delta)

Exact solver the TR sub-problem even for non-positive definite H.

This method is a hybrid technique mixing ideas from Geyer (2013) and the "trust" R-package Nocetal and Wright (2000) More and Sorensen (1981)

Definition at line 199 of file estimator.cpp.

References mappel::cholesky(), mappel::cholesky solve(), and solve restricted step length newton().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

8.4 mappel::mcmc Namespace Reference

Classes

- struct MCMCData
- struct MCMCDataStack
- struct MCMCDebugData

Functions

- IdxT num_oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)
- MatT thin sample (MatT &sample, IdxT Nburnin, IdxT thin)
- void thin_sample (const MatT &sample, const VecT &sample_rllh, ldxT Nburnin, ldxT thin, MatT &subsample, VecT &subsample_rllh)
- void estimate_sample_posterior (const MatT &sample, VecT &theta_posterior_mean, MatT &theta_posterior_←
 cov)
- template < class Mat , class Vec >
 void compute_posterior_credible (const Mat & sample, double confidence, Vec & lb, Vec & ub)
- template < class Model >
 void sample_posterior (const Model & model, const ModelDataT < Model > & im, const StencilT < Model >
 & theta init, MatT & sample, VecT & sample rllh)
- template < class Model >
 void sample_posterior_debug (const Model & model, const ModelDataT < Model > & im, const StencilT < Model
 > & theta init, MatT & sample, VecT & sample rllh, MatT & candidate, VecT & candidate rllh)
- 8.4.1 Function Documentation
- 8.4.1.1 template < class Mat , class Vec > void mappel::mcmc::compute_posterior_credible (const Mat & sample, double confidence, Vec & lb, Vec & ub)

Definition at line 32 of file mcmc.h.

Referenced by mappel::methods::error bounds posterior credible(), and mappel::methods::estimate posterior().

8.4.1.2 void mappel::mcmc::estimate_sample_posterior (const MatT & sample, VecT & theta_posterior_mean, MatT & theta_posterior_cov) [inline]

Definition at line 25 of file mcmc.h.

Referenced by mappel::methods::estimate posterior().

8.4.1.3 IdxT mappel::mcmc::num_oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)

Definition at line 40 of file mcmc.cpp.

Referenced by mappel::methods::estimate_posterior(), and mappel::methods::openmp::estimate_posterior_stack().

8.4.1.4 template < class Model > void mappel::mcmc::sample_posterior (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & theta_init, MatT & sample, VecT & sample_rllh)

Definition at line 41 of file mcmc.h.

References mappel::methods::objective::rllh().

Referenced by mappel::methods::estimate posterior().

8.4.1.5	$template < class \ Model > void \ mappel::mcmc::sample_posterior_debug (\ const \ Model \& \ model, \ const \ Model DataT < Model > \& \ im, \ const \ StencilT < Model > \& \ theta_init, \ MatT \& \ sample, \ VecT \& \ sample_rllh, \ MatT \& \ candidate, \ VecT \& \ candidate_rllh)$
Definiti	ion at line 73 of file mcmc.h.
Refere	nces mappel::methods::objective::rllh().
Refere	nced by mappel::methods::debug::estimate_posterior_debug().
8.4.1.6	MatT mappel::mcmc::thin_sample (MatT & sample, IdxT Nburnin, IdxT thin)
Definiti	ion at line 46 of file mcmc.cpp.
Refere	nces mappel::mcmc::MCMCData::thin.
Refere	nced by mappel::methods::estimate_posterior().
8.4.1.7	void mappel::mcmc::thin_sample (const MatT & sample, const VecT & sample_rllh, IdxT Nburnin, IdxT thin, MatT & subsample, VecT & subsample_rllh)
Definiti	ion at line 57 of file mcmc.cpp.
Refere	nces mappel::mcmc::MCMCData::sample_rllh, and mappel::mcmc::MCMCData::thin.
8.5 n	nappel::methods Namespace Reference
Templa	ated functions for operating on a PointEmitterModel.
Namesp	paces
	debug likelihood

objectiveopenmp

Functions

template < class Model >
 ReturnIfSubclassT < ImageT < Model >, Model, ImageFormat1DBase > model_image (const Model & model, const StencilT < Model > &s)

template<class Model >

ReturnIfSubclassT< ImageT< Model >, Model, ImageFormat2DBase > model_image (const Model &model, const typename Model::Stencil &s)

template<class Model >

ImageT < Model > model image (const Model &model, const ParamT < Model > &theta)

template < class Model, class rng t >

ModelDataT< Model > simulate image (const Model & model, const ParamT< Model > &theta)

template < class Model , class rng_t >

ModelDataT < Model > simulate_image (const Model &model, const ParamT < Model > &theta, rng_t &rng)

template<class Model >

ModelDataT< Model > simulate image (const Model &model, const StencilT< Model > &s)

template<class Model >

ModelDataT< Model > simulate_image_from_model (const Model &model, const ImageT< Model > &model ← im)

template < class Model >

void aposteriori_objective (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)

template<class Model >

void aposteriori_objective (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template<class Model >

void prior_objective (const Model &model, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)

template<class Model >

void likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

ParamT < Model > cr_lower_bound (const Model &model, const typename Model::Stencil &s)

Calculate the Cramer-Rao lower bound at the given parameters.

template < class Model >

ParamT< Model > cr_lower_bound (const Model &model, const ParamT< Model > &theta)

template < class Model >

MatT expected_information (const Model &model, const ParamT< Model > &theta)

template < class Model >

MatT observed_information (const Model &model, const ModelDataT< Model > &data, const ParamT< Model > &theta mle)

template<class Model >

MatT observed_information (const Model &model, const ModelDataT< Model > &data, const StencilT< Model > &theta_mle)

template < class Model >

void estimate_max (const Model &model, const ModelDataT< Model > &data, const std::string &method, estimator::MLEData &mle)

template < class Model >

void estimate_max (const Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta init, estimator::MLEData &mle)

- template<class Model >
 void estimate_max (const Model &model, const ModelDataT< Model > &data, const std::string &method,
 estimator::MLEData &mle, StatsT &stats)
- template < class Model >
 void estimate_max (const Model & model, const ModelDataT < Model > & data, const std::string & method, const
 ParamT < Model > & theta init, estimator::MLEData & mle, StatsT & stats)
- template < class Model >
 double estimate_profile_likelihood (const Model & model, const ModelDataT < Model > & data, const std::string & method, const IdxVecT & fixed idxs, const ParamT < Model > & fixed theta init)
- template < class Model >
 double estimate_profile_likelihood (const Model & model, const ModelDataT < Model > &data, const std::string &method, const IdxVecT &fixed_idxs, const ParamT < Model > &fixed_theta_init, StencilT < Model > &profile ← max)
- template < class Model >
 double estimate_profile_likelihood (const Model & model, const ModelDataT < Model > & data, const std::string & method, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & profile \(\to \) max, StatsT & stats)
- template<class Model >
 void estimate_profile_likelihood (const Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, estimator::ProfileLikelihoodData &profile_data)
- template < class Model >
 void estimate_posterior (const Model & model, const ModelDataT < Model > &data, mcmc::MCMCData & mcmc
 est)
- template < class Model >
 void estimate_posterior (const Model & model, const ModelDataT < Model > & data, const ParamT < Model >
 & theta_init, mcmc::MCMCData & mcmc_est)
- template<class Model >
 void error_bounds_expected (const Model &model, const ParamT< Model > &theta_est, double confidence,
 ParamT< Model > &theta lb, ParamT< Model > &theta ub)
- template<class Model >
 void error_bounds_observed (const Model &model, const estimator::MLEData &mle, double confidence,
 ParamT< Model > &theta_lb, ParamT< Model > &theta_ub)
- template < class Model >
 void error_bounds_profile_likelihood (const Model & model, const ModelDataT < Model > &data, estimator::
 ProfileBoundsData & bounds)
- template < class Model >
 void error_bounds_profile_likelihood (const Model & model, const ModelDataT < Model > &data, estimator::
 ProfileBoundsData & bounds, StatsT & stats)
- template<class Model >
 void error_bounds_posterior_credible (const Model &model, const MatT &sample, double confidence, ParamT
 Model > &theta_lb, ParamT
 Model > &theta_ub)
- template < class Model >
 Model::ImageT model_image (const Model & model, const ParamT < Model > & theta)
- template < class Model >
 ModelDataT < Model > simulate_image (const Model & model, const ParamT < Model > & theta)
- template < class Model , class RngT >
 ModelDataT < Model > simulate_image (const Model & model, const ParamT < Model > & theta, RngT & rng)
- template < class Model , class rng_t >
 ReturnIfSubclassT < Model DataT < Model >, Model, PoissonNoise1DObjective > simulate_image (const Model & model, const StencilT < Model > &s, rng_t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template<class Model , class rng_t >
 ReturnIfSubclassT< ModelDataT< Model >, Model, PoissonNoise1DObjective > simulate_image_from_model
 (const Model &model, const ImageT< Model > &model im, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template<class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > expected_information (const Model &model, const StencilT< Model > &s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise1DObjective.

template<class Model >

ReturnIfSubclassT< std::unique_ptr< estimator::Estimator< Model > >, Model, PoissonNoise1DObjective > make_estimator (Model &model, std::string ename)

• template<class Model , class rng_t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > simulate_image (const Model &model, const StencilT< Model > &s, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

• template<class Model , class rng_t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > simulate_image_from_model (const Model &model, const ImageT< Model > &model im, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise2DObjective > expected_information (const Model &model, const StencilT< Model > &s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise2DObjective.

template < class Model >

ReturnIfSubclassT< std::unique_ptr< estimator::Estimator< Model > >, Model, PoissonNoise2DObjective > make estimator (Model &model, std::string ename)

8.5.1 Detailed Description

Templated functions for operating on a PointEmitterModel.

Most methods are overloaded to take a ParamT or a StencilT. The precomputed stencil for a theta value contains the common computational values needed by all methods that compute the likelihood function or its derivatives. Note that methods in model::prior:: namespace do not take a stencil (or data) a they are independent of the data and the likelihood function.

Methods with xxx_comonents return a sequence of values representing the results from each pixel in turn. The sum of these components is the overall model value. (e.g. sum(Ilh_components(...))==Ilh(...)). These methods are usefully for detailed inspection of the contributions of each pixel or prior component to the overall result. External template based methods for PointEmitterModel's. These are general or convenience functions that are included in this file. Those methods specific to other sub-types of Models should be included within that sub-type's .h file, using the enable_if mechanism to restrict their instantiation to the correct sub-types.

8.5.2 Function Documentation

8.5.2.1 template < class Model > void mappel::methods::aposteriori_objective (const Model & model, const ModelDataT < Model > & data im, const StencilT < Model > & s, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 218 of file model methods impl.h.

References mappel::methods::likelihood::hessian(), and mappel::methods::likelihood::rllh().

Referenced by aposteriori objective().

8.5.2.2 template < class Model > void mappel::methods::aposteriori_objective (const Model & model, const ModelDataT < Model > & data im, const ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 256 of file model methods impl.h.

References aposteriori_objective(), mappel::methods::objective::grad(), and mappel::methods::objective::rllh().

8.5.2.3 template < class Model > ParamT < Model > mappel::methods::cr_lower_bound (const Model & *model*, const typename Model::Stencil & s)

Calculate the Cramer-Rao lower bound at the given parameters.

Parameters

in	theta	The parameters to evaluate the CRLB at
out	crlb	The calculated parameters

Definition at line 283 of file model_methods_impl.h.

References expected_information().

Referenced by cr_lower_bound(), and error_bounds_expected().

8.5.2.4 template < class Model > ParamT < Model > mappel::methods::cr_lower_bound (const Model & model, const ParamT < Model > & theta)

Definition at line 295 of file model_methods_impl.h.

References cr_lower_bound().

8.5.2.5 template < class Model > void mappel::methods::error_bounds_expected (const Model & model, const ParamT < Model > & theta_est, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)

Definition at line 405 of file model_methods_impl.h.

References cr_lower_bound(), and mappel::normal_quantile_twosided().

8.5.2.6 template < class Model > void mappel::methods::error_bounds_observed (const Model & model, const estimator::MLEData & mle, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)

Definition at line 416 of file model methods impl.h.

References mappel::normal_quantile_twosided(), mappel::estimator::MLEData::obsl, and mappel::estimator::MLE← Data::theta.

8.5.2.7 template < class Model > void mappel::methods::error_bounds_posterior_credible (const Model & model, const MatT & sample, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)

Definition at line 444 of file model methods impl.h.

References mappel::mcmc::compute posterior credible().

8.5.2.8 template < class Model > void mappel::methods::error_bounds_profile_likelihood (const Model & model, const ModelDataT < Model > & data, estimator::ProfileBoundsData & bounds)

Definition at line 426 of file model_methods_impl.h.

References mappel::chisq_quantile(), mappel::estimator::ProfileBoundsData::confidence, mappel::estimator::\top Estimator \text{Model} >::estimate_profile_bounds(), mappel::estimator::ProfileBoundsData::estimated_idxs, and mappel \times ::estimator::ProfileBoundsData::target_rllh_delta.

8.5.2.9 template < class Model > void mappel::methods::error_bounds_profile_likelihood (const Model & model, const ModelDataT < Model > & data, estimator::ProfileBoundsData & bounds, StatsT & stats)

Definition at line 435 of file model_methods_impl.h.

8.5.2.10 template < class Model > void mappel::methods::estimate_max (const Model & model, const ModelDataT < Model > & data, const std::string & method, estimator::MLEData & mle)

Definition at line 322 of file model methods impl.h.

References make estimator().

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), and mappel::estimator::Estimator< Model >::~Estimator().

8.5.2.11 template < class Model > void mappel::methods::estimate_max (const Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, estimator::MLEData & mle)

Definition at line 331 of file model_methods_impl.h.

References make_estimator().

8.5.2.12 template < class Model > void mappel::methods::estimate_max (const Model & model, const ModelDataT < Model > & data, const std::string & method, estimator::MLEData & mle, StatsT & stats)

Definition at line 338 of file model methods impl.h.

References make_estimator().

8.5.2.13 template < class Model > void mappel::methods::estimate_max (const Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, estimator::MLEData & mle, StatsT & stats)

Definition at line 348 of file model_methods_impl.h.

References make estimator().

8.5.2.14 template < class Model > void mappel::methods::estimate_posterior (const Model & model, const ModelDataT < Model > & data, mcmc::MCMCData & mcmc est)

Definition at line 383 of file model methods impl.h.

8.5.2.15 template < class Model > void mappel::methods::estimate_posterior (const Model & model, const ModelDataT < Model > & data, const ParamT < Model > & theta_init, mcmc::MCMCData & mcmc_est)

Definition at line 391 of file model methods impl.h.

References mappel::mcmc::compute_posterior_credible(), mappel::mcmc::MCMCData::confidence, mappel::mcmc.::MCMCData::credible_lb, mappel::mcmc::MCMCData::credible_ub, mappel::mcmc::estimate_sample_posterior(), mappel::mcmc::MCMCData::Nsample, mappel::mcmc::num_oversample(), mappel::mcmc::MCMCData::sample, mappel::mcmc::MCMCData::sample_cov, mappel::mcmc::MCMCData::sample cov, mappel::mcmc

8.5.2.16 template < class Model > double mappel::methods::estimate_profile_likelihood (const Model & model, const ModelDataT < Model > & data, const std::string & method, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init)

Definition at line 357 of file model_methods_impl.h.

References make_estimator().

8.5.2.17 template < class Model > double mappel::methods::estimate_profile_likelihood (const Model & model, const ModelDataT < Model > & data, const std::string & method, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & profile_max)

Definition at line 365 of file model methods impl.h.

References make_estimator().

8.5.2.18 template < class Model > double mappel::methods::estimate_profile_likelihood (const Model & model, const ModelDataT < Model > & data, const std::string & method, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & profile_max, StatsT & stats)

Definition at line 373 of file model methods impl.h.

References make_estimator().

- 8.5.2.19 template < class Model > void mappel::methods::estimate_profile_likelihood (const Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, estimator::ProfileLikelihoodData & profile_data)
- 8.5.2.20 template < class Model > ReturnIfSubclassT < MatT, Model, PoissonNoise1DObjective > mappel::methods::expected_information (const Model & model, const StencilT < Model > & s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise1DObjective.

Parameters

model	PointEmitterModel
s	Stencil at desired theta

Returns

The fisher information matrix as an symmetric matrix in upper-triangular format

Definition at line 77 of file PoissonNoise1DObjective.h.

8.5.2.21 template < class Model > ReturnIfSubclassT < MatT, Model, PoissonNoise2DObjective > mappel::methods::expected_information (const Model & model, const StencilT < Model > & s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise2DObjective.

Parameters

model	PolmageCoordTEmitterModel
s	Stencil at desired theta

Returns

The fisher information matrix as an symmetric matrix in upper-triangular format

Definition at line 83 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

8.5.2.22 template < class Model > MatT mappel::methods::expected_information (const Model & model, const ParamT < Model > & theta)

Definition at line 301 of file model methods impl.h.

Referenced by cr_lower_bound().

8.5.2.23 template < class Model > void mappel::methods::likelihood_objective (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 247 of file model_methods_impl.h.

References mappel::methods::likelihood::hessian(), and mappel::methods::likelihood::rllh().

Referenced by likelihood objective().

8.5.2.24 template < class Model > void mappel::methods::likelihood_objective (const Model & model, const ModelDataT < Model > & data im, const ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 270 of file model methods impl.h.

References mappel::methods::objective::grad(), likelihood_objective(), and mappel::methods::objective::rllh().

8.5.2.25 template < class Model > ReturnIfSubclassT < std::unique_ptr < estimator::Estimator < Model > >, Model, PoissonNoise1DObjective > mappel::methods::make_estimator (Model & model, std::string ename)

Definition at line 95 of file PoissonNoise1DObjective.h.

References mappel::istarts_with().

Referenced by estimate_max(), mappel::methods::debug::estimate_max_debug(), mappel::methods::openmp \leftarrow ::estimate_max_stack(), estimate_profile_likelihood(), and mappel::methods::openmp::estimate_profile_likelihood \leftarrow _stack().

8.5.2.26 template < class Model > ReturnIfSubclassT < std::unique_ptr < estimator::Estimator < Model > >, Model, PoissonNoise2DObjective > mappel::methods::make_estimator (Model & model, std::string ename)

Definition at line 100 of file PoissonNoise2DObjective.h.

References mappel::istarts with().

8.5.2.27 template < class Model > Model::ImageT mappel::methods::model_image (const Model & model, const ParamT < Model > & theta)

Expected number of photons at each pixel in image given the emitter model

Definition at line 16 of file model methods impl.h.

References model image().

8.5.2.28 template < class Model > ImageT < Model > mappel::methods::model_image (const Model & model, const ParamT < Model > & theta)

Expected number of photons at each pixel in image given the emitter model

Definition at line 16 of file model methods impl.h.

References model image().

8.5.2.29 template < class Model > ReturnIfSubclassT < ImageT < Model > , Model, ImageFormat2DBase > mappel::methods::model_image (const Model & model, const typename Model::Stencil & s)

Definition at line 122 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.5.2.30 template < class Model > ReturnIfSubclassT<ImageT< Model>, Model, ImageFormat1DBase> mappel::methods::model_image (const Model & model, const StenciIT< Model > & s)

Definition at line 125 of file ImageFormat1DBase.h.

Referenced by model image(), and mappel::methods::openmp::simulate image stack().

8.5.2.31 template < class Model > MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data. const ParamT < Model > & theta mle)

Definition at line 315 of file model_methods_impl.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative \(\text{Maximizer} \) Maximizer< Model >::compute_estimater::Iterative \(\text{Model} \) =::get_debug \(\text{Model} \) =::get_debug \(\text{Model} \) =::get_debug \(\text{Model} \) =::get_debug \(\text{Model} \) =::local_maximize(), mappel::estimator::IterativeMaximizer
Model >::local_maximize(), and mappel \(\text{::estimator::ThreadedEstimator} \) Model >::record exit code().

8.5.2.32 template < class Model > MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data, const StencilT < Model > & theta_mle)

Definition at line 307 of file model methods impl.h.

References mappel::methods::objective::hessian().

8.5.2.33 template < class Model > void mappel::methods::prior_objective (const Model & model, const ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 229 of file model methods impl.h.

8.5.2.34 template < class Model > ModelDataT< Model> mappel::methods::simulate_image (const Model & model, const ParamT< Model > & theta)

Definition at line 22 of file model_methods_impl.h.

References simulate_image().

Referenced by simulate_image(), and mappel::methods::openmp::simulate_image_stack().

8.5.2.35 template < class Model , class RngT > ModelDataT < Model> mappel::methods::simulate_image (const Model & model, const ParamT < Model > & theta, RngT & rng)

Definition at line 29 of file model methods impl.h.

References simulate image().

8.5.2.36 template < class Model , class rng_t > ModelDataT < Model> mappel::methods::simulate_image (const Model & model, const ParamT < Model > & theta)

Definition at line 22 of file model methods impl.h.

References simulate_image().

Referenced by simulate_image(), and mappel::methods::openmp::simulate_image_stack().

8.5.2.37 template < class Model , class rng_t > ReturnIfSubclassT < ModelDataT < Model > , Model , Model , PoissonNoise1DObjective > mappel::methods::simulate_image (const Model & model, const StenciIT < Model > & s, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

Parameters

in		model	Model object
in		s	The stencil computed at theta.
in,c	ut	rng	A random number generator

Returns

A simulated image at theta under the noise model.

Definition at line 45 of file PoissonNoise1DObjective.h.

References mappel::generate_poisson().

8.5.2.38 template < class Model , class rng_t > ReturnIfSubclassT < ImageT < Model > , Model, PoissonNoise2D \leftarrow Objective > mappel::methods::simulate_image (const Model & *model*, const StencilT < Model > & s, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

Parameters

in	model	Model object
in	s	The stencil computed at theta.
in,out	rng	A random number generator

Returns

A simulated image at theta under the noise model.

Definition at line 45 of file PoissonNoise2DObjective.h.

References mappel::generate_poisson(), and mappel::lmageFormat2DBase::size.

- $8.5.2.39 \quad template < class \ Model \ , \ class \ rng_t > \ Model \ DataT < Model > \ mappel :: methods:: simulate_image \ (\ const \ Model \ \& \ model, \ const \ ParamT < \ Model > \& \ theta, \ rng_t \ \& \ rng \)$
- 8.5.2.40 template < class Model > ModelDataT < Model > mappel::methods::simulate_image (const Model & model, const StencilT < Model > & s)

Definition at line 35 of file model_methods_impl.h.

References simulate_image().

8.5.2.41 template < class Model > ModelDataT < Model > mappel::methods::simulate_image_from_model (const Model & model, const ImageT < Model > & model_im)

Definition at line 41 of file model methods impl.h.

8.5.2.42 template < class Model , class rng_t > ReturnIfSubclassT < ModelDataT < Model>, Model, PoissonNoise1DObjective > mappel::methods::simulate_image_from_model (const Model & model, const ImageT < Model > & model_im, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

Parameters

in	model	Model object
in	model_im	An image representing the expected (mean) at each pixel under the PSF model.
in,out	rng	A random number generator

Returns

A simulated image corresponding to model_im under the noise model.

Definition at line 61 of file PoissonNoise1DObjective.h.

References mappel::generate poisson().

8.5.2.43 template < class Model , class rng_t > ReturnIfSubclassT < ImageT < Model > , Model, PoissonNoise2D ← Objective > mappel::methods::simulate_image_from_model (const Model & model, const ImageT < Model > & model_im, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

Parameters

in	model	Model object
in	model_im	An image representing the expected (mean) at each pixel under the PSF model.
in,out	rng	A random number generator

Returns

A simulated image corresponding to model im under the noise model.

Definition at line 64 of file PoissonNoise2DObjective.h.

References mappel::generate_poisson(), and mappel::lmageFormat2DBase::size.

8.6 mappel::methods::debug Namespace Reference

Functions

template < class Model >
 void estimate_max_debug (const Model & model, const ModelDataT < Model > &data, const std::string &method,
 const ParamT < Model > &theta init, estimator::MLEDebugData &mle, StatsT &stats)

- template<class Model >
 void error_bounds_profile_likelihood_debug (const Model &model, const ModelDataT< Model > &data,
 estimator::ProfileBoundsDebugData &bounds, StatsT &stats)
- template < class Model >
 void estimate_posterior_debug (const Model & model, const ModelDataT < Model > & data, const ParamT <
 Model > & theta init, mcmc::MCMCDebugData & mcmc debug sample)
- 8.6.1 Function Documentation
- 8.6.1.1 template < class Model > void mappel::methods::debug::error_bounds_profile_likelihood_debug (const Model & model, const ModelDataT < Model > & data, estimator::ProfileBoundsDebugData & bounds, StatsT & stats)

Definition at line 461 of file model_methods_impl.h.

References mappel::estimator::Estimator< Model >::estimate_profile_bounds_debug(), and mappel::estimator::

IterativeMaximizer< Model >::get stats().

8.6.1.2 template < class Model > void mappel::methods::debug::estimate_max_debug (const Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, estimator::MLEDebugData & mle, StatsT & stats)

Definition at line 452 of file model_methods_impl.h.

References mappel::methods::make estimator().

Referenced by mappel::estimator::Estimator< Model >::~Estimator().

8.6.1.3 template < class Model > void mappel::methods::debug::estimate_posterior_debug (const Model & model, const ModelDataT < Model > & data, const ParamT < Model > & theta_init, mcmc::MCMCDebugData & mcmc_debug_sample)

Definition at line 470 of file model methods impl.h.

References mappel::mcmc::MCMCDebugData::candidate, mappel::mcmc::MCMCDebugData::candidate_rllh, mappel ::mcmc::MCMCDebugData::initialize_arrays(), mappel::mcmc::MCMCDebugData::Nsample, mappel::mcmc::MCMCDebugData::sample, mappel::mcmc::sample_posterior_debug(), and mappel::mcmc::MCMCDebugData::sample_rllh.

8.7 mappel::methods::likelihood Namespace Reference

Namespaces

debug

Functions

template < class Model >
 ReturnIfSubclassT < double, Model, PoissonNoise1DObjective > IIh (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > & s)

template<class Model >
 ReturnIfSubclassT< double, Model, PoissonNoise1DObjective > rllh (const Model &model, const ModelDataT
 Model > &data im, const StencilT< Model > &s)

template < class Model >
 ReturnIfSubclassT < ParamT < Model >, Model, PoissonNoise1DObjective > grad (const Model &model, const ModelDataT < Model > &im, const StencilT < Model > &s)

template<class Model >
 ReturnIfSubclassT< void, Model, PoissonNoise1DObjective > grad2 (const Model &model, const ModelDataT
 Model > &im, const StencilT< Model > &s, ParamT< Model > &grad_val, ParamT< Model > &grad2_val)

template<class Model >
 ReturnIfSubclassT< void, Model, PoissonNoise1DObjective > hessian (const Model &model, const Model ←
 DataT< Model > &im, const StencilT< Model > &s, ParamT< Model > &grad val, MatT &hess val)

template < class Model >
 ReturnIfSubclassT < double, Model, PoissonNoise2DObjective > IIh (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > & s)

template<class Model >
 ReturnIfSubclassT< double, Model, PoissonNoise2DObjective > rllh (const Model &model, const ModelDataT
 Model > &data im, const StencilT< Model > &s)

template<class Model >
 ReturnIfSubclassT< ParamT< Model >, Model, PoissonNoise2DObjective > grad (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >
 ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > grad2 (const Model &model, const ModelDataT <
 Model > &data_im, const StencilT < Model > &s, ParamT < Model > &grad_val, ParamT < Model > &grad2_val)

template < class Model >
 ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > hessian (const Model & model, const Model ←
 DataT < Model > & data im, const StencilT < Model > & paramT < Model > & grad val, MatT & hess val)

8.7.1 Function Documentation

8.7.1.1 template < class Model > ReturnIfSubclassT < ParamT < Model > ,Model,PoissonNoise1DObjective > mappel::methods::likelihood::grad (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s)

Definition at line 146 of file PoissonNoise1DObjective.h.

8.7.1.2 template < class Model > ReturnIfSubclassT < ParamT < Model > ,Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 159 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

8.7.1.3 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise1DObjective > mappel::methods::likelihood::grad2 (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s, ParamT < Model > & grad_val, ParamT < Model > & grad2_val)

Definition at line 163 of file PoissonNoise1DObjective.h.

8.7.1.4 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad2 (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad_val, ParamT < Model > & grad2_val)

Definition at line 177 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

8.7.1.5 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise1DObjective > mappel::methods::likelihood::hessian (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s, ParamT < Model > & $grad_val$, MatT & $hess_val$)

Definition at line 186 of file PoissonNoise1DObjective.h.

Referenced by mappel::methods::aposteriori_objective(), and mappel::methods::likelihood_objective().

8.7.1.6 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad_val, MatT & hess_val)

Definition at line 202 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

8.7.1.7 template < class Model > ReturnIfSubclassT < double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::llh (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 122 of file PoissonNoise1DObjective.h.

References mappel::poisson log likelihood().

8.7.1.8 template < class Model > ReturnIfSubclassT < double, Model, PoissonNoise2DObjective > mappel::methods::likelihood::llh (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 131 of file PoissonNoise2DObjective.h.

References mappel::poisson log likelihood(), and mappel::ImageFormat2DBase::size.

8.7.1.9 template < class Model > ReturnIfSubclassT < double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::rllh (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 134 of file PoissonNoise1DObjective.h.

References mappel::relative_poisson_log_likelihood().

Referenced by mappel::methods::aposteriori objective(), and mappel::methods::likelihood objective().

8.7.1.10 template < class Model > ReturnIfSubclassT < double,Model,PoissonNoise2DObjective > mappel::methods::likelihood::rllh (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 145 of file PoissonNoise2DObjective.h.

References mappel::relative poisson log likelihood(), and mappel::ImageFormat2DBase::size.

8.8 mappel::methods::likelihood::debug Namespace Reference

Functions

- template < class Model >
 ReturnIfSubclassT < VecT, Model, PoissonNoise1DObjective > Ilh_components (const Model & model, const ModelDataT < Model > & data im, const StencilT < Model > & s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, PoissonNoise1DObjective > rllh_components (const Model &model, const ModelDataT < Model > &data im, const StencilT < Model > &s)
- template<class Model >
 ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > grad_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)
- template<class Model >
 ReturnIfSubclassT< CubeT, Model, PoissonNoise1DObjective > hessian_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)
- template<class Model >
 ReturnIfSubclassT< VecT, Model, PoissonNoise2DObjective > Ilh_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, PoissonNoise2DObjective > rllh_components (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < MatT, Model, PoissonNoise2DObjective > grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)
- template < class Model >
 ReturnIfSubclassT < CubeT, Model, PoissonNoise2DObjective > hessian_components (const Model & model, const ModelDataT < Model > & data im, const StencilT < Model > & s)

- 8.8.1 Function Documentation
- 8.8.1.1 template < class Model > ReturnIfSubclassT < MatT,Model,PoissonNoise1DObjective > mappel::methods::likelihood::debug::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 230 of file PoissonNoise1DObjective.h.

8.8.1.2 template < class Model > ReturnIfSubclassT < MatT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 255 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

8.8.1.3 template < class Model > ReturnIfSubclassT < CubeT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 246 of file PoissonNoise1DObjective.h.

8.8.1.4 template < class Model > ReturnIfSubclassT < CubeT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 274 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

8.8.1.5 template < class Model > ReturnIfSubclassT < VecT,Model,PoissonNoise1DObjective > mappel::methods::likelihood::debug::llh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 206 of file PoissonNoise1DObjective.h.

References mappel::poisson_log_likelihood().

8.8.1.6 template < class Model > ReturnIfSubclassT < VecT,Model,PoissonNoise2DObjective > mappel::methods::likelihood::debug::llh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 225 of file PoissonNoise2DObjective.h.

References mappel::poisson log likelihood(), and mappel::ImageFormat2DBase::size.

8.8.1.7 template < class Model > ReturnIfSubclassT < VecT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 218 of file PoissonNoise1DObjective.h.

References mappel::relative poisson log likelihood().

8.8.1.8 template < class Model > ReturnIfSubclassT < VecT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 240 of file PoissonNoise2DObjective.h.

References mappel::relative poisson log likelihood(), and mappel::ImageFormat2DBase::size.

8.9 mappel::methods::objective Namespace Reference

Namespaces

- debug
- · openmp

Functions

- template < class Model >
 ReturnIfSubclassT < double, Model, MAPEstimator > IIh (const Model & model, const ModelDataT < Model >
 &data_im, const StencilT < Model > &s)
- template<class Model >
 ReturnIfSubclassT< double, Model, MAPEstimator > rllh (const Model &model, const ModelDataT< Model >
 &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < ParamT < Model >, Model, MAPEstimator > grad (const Model & model, const Model ←
 DataT < Model > & data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < void, Model, MAPEstimator > grad2 (const Model & model, const ModelDataT < Model >
 & data_im, const StencilT < Model > &s, ParamT < Model > &grad, ParamT < Model > &grad2)
- template < class Model >
 ReturnIfSubclassT < void, Model, MAPEstimator > hessian (const Model & model, const ModelDataT < Model >
 &data_im, const StencilT < Model > &s, ParamT < Model > &grad, MatT &hess)
- template < class Model >
 ReturnIfSubclassT < double, Model, MLEstimator > IIh (const Model &model, const ModelDataT < Model >
 &data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < double, Model, MLEstimator > rllh (const Model & model, const ModelDataT < Model >
 &data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < ParamT < Model >, Model, MLEstimator > grad (const Model & model, const ModelDataT <
 Model > & data_im, const StencilT < Model > &s)

- template<class Model >
 ReturnIfSubclassT< void, Model, MLEstimator > grad2 (const Model &model, const ModelDataT< Model >
 &data im, const StencilT< Model > &s, ParamT< Model > &grad2)
- template < class Model >
 ReturnIfSubclassT < void, Model, MLEstimator > hessian (const Model & model, const ModelDataT < Model >
 & data im, const StencilT < Model > &s, ParamT < Model > &grad, MatT &hess)
- template < class Model >
 double IIh (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 double rllh (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 ParamT < Model > grad (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 ParamT < Model > grad2 (const Model & model, const ModelDataT < Model > &data_im, const ParamT < Model
 > &theta)
- template<class Model >
 void grad2 (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta,
 ParamT< Model > &grad_val, ParamT< Model > &grad2_val)
- template < class Model >
 MatT hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 MatT hessian (const Model & model, const ModelDataT < Model > &data_im, const StencilT < Model > &s)
 template < class Model >
- template<class Model >
 void hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta,
 ParamT< Model > &grad, MatT &hess)
- template < class Model >
 void hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta,
 MatT & hess)
- template < class Model >
 MatT negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT <
 Model > & theta)
- template < class Model >
 MatT negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT <
 Model > &s)
- template<class Model >
 void negative_definite_hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT<
 Model > &theta, ParamT< Model > &grad, MatT &hess)
- template < class Model >
 void negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT <
 Model > &s, ParamT < Model > &grad, MatT & hess)

8.9.1 Function Documentation

8.9.1.1 template < class Model > ReturnIfSubclassT< ParamT< Model>, Model,MLEstimator > mappel::methods::objective::grad (const Model & model, const ModelDataT< Model > & data_im, const StencilT< Model > & s)

Definition at line 51 of file MLEstimator.h.

8.9.1.2 template < class Model > ReturnIfSubclassT< ParamT< Model>,Model,MAPEstimator> mappel::methods::objective::grad (const Model & model, const ModelDataT< Model > & data_im, const StencilT< Model > & s)

Definition at line 55 of file MAPEstimator.h.

8.9.1.3 template < class Model > ParamT < Model > mappel::methods::objective::grad (const Model & model, const ModelDataT < Model > & $data_im$, const ParamT < Model > & theta)

Definition at line 65 of file model methods impl.h.

References grad().

8.9.1.4 template < class Model > ReturnIfSubclassT < void, Model, MLEstimator > mappel::methods::objective::grad2 (const Model & model, const Model DataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, ParamT < Model > & grad2)

Definition at line 58 of file MLEstimator.h.

8.9.1.5 template < class Model > ReturnIfSubclassT < void, Model, MAPEstimator > mappel::methods::objective::grad2 (const Model & model, const Model DataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, ParamT < Model > & grad2)

Definition at line 64 of file MAPEstimator.h.

Referenced by grad2(), and mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

8.9.1.6 template < class Model > ParamT < Model > mappel::methods::objective::grad2 (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta_)

Definition at line 77 of file model methods impl.h.

References grad2().

8.9.1.7 template < class Model > void mappel::methods::objective::grad2 (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, ParamT < Model > & grad_val, ParamT < Model > & grad2_val)

Definition at line 92 of file model_methods_impl.h.

References grad2().

8.9.1.8 template < class Model > ReturnIfSubclassT < void, Model, MLEstimator > mappel::methods::objective::hessian (const Model & model, const Model DataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, MatT & hess)

Definition at line 65 of file MLEstimator.h.

8.9.1.9 template < class Model > MatT mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data im. const ParamT < Model > & theta)

Definition at line 100 of file model methods impl.h.

References hessian().

8.9.1.10 template < class Model > ReturnIfSubclassT < void, Model, MAPEstimator > mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, MatT & hess)

Definition at line 72 of file MAPEstimator.h.

Referenced by hessian(), mappel::methods::objective::openmp::hessian_stack(), mappel::estimator::Iterative \leftarrow Maximizer < Model >::local_profile_maximize(), negative_definite_hessian(), and mappel::methods::observed_ \leftarrow information().

8.9.1.11 template < class Model > MatT mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & $data_im$, const StencilT < Model > & s)

Definition at line 112 of file model methods impl.h.

References grad(), and hessian().

8.9.1.12 template < class Model > void mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, ParamT < Model > & grad, MatT & hess)

Definition at line 122 of file model methods impl.h.

References grad(), and hessian().

8.9.1.13 template < class Model > void mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, MatT & hess)

Definition at line 134 of file model methods impl.h.

References grad(), and hessian().

8.9.1.14 template < class Model > ReturnIfSubclassT < double, Model, MAPEstimator > mappel::methods::objective::llh (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 36 of file MAPEstimator.h.

Referenced by Ilh(), mappel::methods::objective::openmp::llh_stack(), and log_likelihood().

8.9.1.15 template < class Model > ReturnIfSubclassT< double,Model,MLEstimator> mappel::methods::objective::llh (const Model & model, const ModelDataT< Model > & data_im, const StencilT< Model > & s)

Definition at line 37 of file MLEstimator.h.

8.9.1.16 template < class Model > double mappel::methods::objective::llh (const Model & model, const ModelDataT < Model > & data im. const ParamT < Model > & theta)

Definition at line 49 of file model_methods_impl.h.

References IIh().

8.9.1.17 template < class Model > MatT mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 142 of file model methods impl.h.

Referenced by negative_definite_hessian(), and mappel::methods::objective::openmp::negative_definite_hessian_ stack().

8.9.1.18 template < class Model > MatT mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 154 of file model methods impl.h.

References grad(), and negative_definite_hessian().

8.9.1.19 template < class Model > void mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, ParamT < Model > & grad, MatT & hess)

Definition at line 164 of file model methods impl.h.

References grad(), and negative_definite_hessian().

8.9.1.20 template < class Model > void mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, MatT & hess)

Definition at line 177 of file model methods impl.h.

References mappel::cholesky make negative definite(), and hessian().

8.9.1.21 template < class Model > ReturnIfSubclassT < double, Model, MLEstimator > mappel::methods::objective::rllh (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 44 of file MLEstimator.h.

8.9.1.22 template < class Model > ReturnIfSubclassT < double,Model,MAPEstimator > mappel::methods::objective::rllh (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 48 of file MAPEstimator.h.

Referenced by mappel::methods::aposteriori_objective(), mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::Estimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::methods::likelihood_ \hookleftarrow objective(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), mappel::estimator::Iterative \hookleftarrow Maximizer< Model >::MaximizerData::MaximizerData(), mappel::estimator::IterativeMaximizer< Model >::profile \hookleftarrow _bound_backtrack(), mappel::estimator::ThreadedEstimator</br>
Model >::record_exit_code(), relative_log_likelihood(), rllh(), mappel::methods::objective::openmp::rllh_stack(), mappel::mcmc::sample_posterior(), and mappel::mcmc \hookleftarrow ::sample posterior debug().

8.9.1.23 template < class Model > double mappel::methods::objective::rllh (const Model & model, const ModelDataT < Model > & data im, const ParamT < Model > & theta)

Definition at line 57 of file model methods impl.h.

References rllh().

8.10 mappel::methods::objective::debug Namespace Reference

Functions

- template<class Model >
 ReturnIfSubclassT< VecT, Model, MAPEstimator > Ilh_components (const Model &model, const ModelDataT
 Model > &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, MAPEstimator > rllh_components (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > &s)
- template<class Model >
 ReturnIfSubclassT< MatT, Model, MAPEstimator > grad_components (const Model &model, const Model ←
 DataT< Model > &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < CubeT, Model, MAPEstimator > hessian_components (const Model & model, const Model ←
 DataT < Model > & data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, MLEstimator > Ilh_components (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, MLEstimator > rllh_components (const Model & model, const ModelDataT <
 Model > & data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < MatT, Model, MLEstimator > grad_components (const Model & model, const ModelDataT <
 Model > & data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < CubeT, Model, MLEstimator > hessian_components (const Model & model, const Model ←
 DataT < Model > &data_im, const StencilT < Model > &s)
- template < class Model >
 VecT Ilh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model >
 & theta)
- template < class Model >
 VecT rllh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model >
 & theta)
- template < class Model >
 MatT grad_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model
 > & theta)
- template < class Model >
 CubeT hessian_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT <
 Model > & theta)

```
8.10.1 Function Documentation
```

8.10.1.1 template < class Model > ReturnIfSubclassT < MatT, Model, MLEstimator > mappel::methods::objective::debug \leftarrow ::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 88 of file MLEstimator.h.

8.10.1.2 template < class Model > ReturnIfSubclassT < MatT,Model,MAPEstimator > mappel::methods::objective::debug \leftarrow ::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 96 of file MAPEstimator.h.

Referenced by grad components().

8.10.1.3 template < class Model > MatT mappel::methods::objective::debug::grad_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 201 of file model_methods_impl.h.

References grad_components().

8.10.1.4 template < class Model > ReturnIfSubclassT < CubeT,Model,MLEstimator > mappel::methods::objective::debug \leftarrow ::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 95 of file MLEstimator.h.

8.10.1.5 template < class Model > ReturnIfSubclassT< CubeT,Model,MAPEstimator> mappel::methods::objective \leftarrow ::debug::hessian_components (const Model & model, const ModelDataT< Model > & data_im, const StencilT< Model > & s)

Definition at line 103 of file MAPEstimator.h.

Referenced by hessian_components().

8.10.1.6 template < class Model > CubeT mappel::methods::objective::debug::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 208 of file model methods impl.h.

References hessian_components().

8.10.1.7 template < class Model > ReturnIfSubclassT < VecT, Model, MLEstimator > mappel::methods::objective::debug \leftarrow ::Ilh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 74 of file MLEstimator.h.

```
8.10.1.8 template < class Model > ReturnIfSubclassT < VecT,Model,MAPEstimator > mappel::methods::objective::debug \leftarrow ::Ilh_components ( const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s )
```

Definition at line 82 of file MAPEstimator.h.

Referenced by Ilh_components().

8.10.1.9 template < class Model > VecT mappel::methods::objective::debug::llh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 187 of file model methods impl.h.

References IIh_components().

8.10.1.10 template < class Model > ReturnIfSubclassT < VecT,Model,MLEstimator > mappel::methods::objective::debug \leftarrow ::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 81 of file MLEstimator.h.

8.10.1.11 template < class Model > ReturnIfSubclassT < VecT,Model,MAPEstimator > mappel::methods::objective::debug ← ::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 89 of file MAPEstimator.h.

Referenced by rllh_components().

8.10.1.12 template < class Model > VecT mappel::methods::objective::debug::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 194 of file model_methods_impl.h.

References rllh components().

8.11 mappel::methods::objective::openmp Namespace Reference

Functions

template<class Model >
 void Ilh_stack (const Model &model, const ImageT< Model > &image, const ParamVecT< Model > &theta_←
 stack, VecT &Ilh stack)

Parallel log_likelihood calculations for a single image.

template < class Model >
 void Ilh_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model >
 & theta stack, VecT & Ilh stack)

Parallel log likelihood calculations for a stack of images.

template < class Model >
 void rllh_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model >
 & theta stack, VecT & rllh stack)

Parallel relative log_likelihood calculations for a stack of images.

template<class Model >
 void rllh_stack (const Model &model, const ImageT< Model > &image, const ParamVecT< Model > &theta_←
 stack, VecT &rllh_stack)

template<class Model >
 void grad_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model
 > &theta_stack, ParamVecT< Model > &grad_stack)

Parallel model gradient calculations for a stack of images.

template<class Model >

void hessian_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, CubeT &hessian_stack)

Parallel model Hessian calculations for a stack of images.

• template<class Model >

void negative_definite_hessian_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, CubeT &hessian_stack)

Parallel model negative_definite Hessian approximation calculations for a stack of images.

8.11.1 Function Documentation

8.11.1.1 template < class Model > void mappel::methods::objective::openmp::grad_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, ParamVecT < Model > & grad_stack)

Parallel model gradient calculations for a stack of images.

Compute gradient of log-likelihood for multiple image, theta pairs.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model gradients.

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas.
out	grad_stack	Sequence of grad vectors values computed. Size: [model.num_params, n]

Definition at line 515 of file openmp_methods.h.

References mappel::methods::objective::grad(), omp_exception_catcher::impl_::OMPExceptionCatcher<_dummy > \cdot ::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< dummy >::run().

8.11.1.2 template < class Model > void mappel::methods::objective::openmp::hessian_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, CubeT & hessian_stack)

Parallel model Hessian calculations for a stack of images.

Compute Hessian of log-likelihood for multiple image, theta pairs.

Use: model.make_param_mat_stack() to make a parameter matrix stack of appropriate dimensions for the model Hessian.

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	hess_stack	Sequence of Hessian matrices computed. Size: [model.num_params, model.num_params, n]

Definition at line 563 of file openmp_methods.h.

References mappel::methods::objective::hessian(), omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::run().

8.11.1.3 template < class Model > void mappel::methods::objective::openmp::llh_stack (const Model & model, const ImageT < Model > & image, const ParamVecT < Model > & theta_stack, VecT & Ilh_stack)

Parallel log_likelihood calculations for a single image.

Compute log-likelihood for multiple thetas using the same image

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel

Parameters

in	model	A PointEmitterModel object.
in	image	An image.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	llh_stack	Sequence of Ilh values computed.

Definition at line 379 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), and omp_exception_ \leftarrow catcher::impl ::OMPExceptionCatcher< dummy >::run().

8.11.1.4 template < class Model > void mappel::methods::objective::openmp::llh_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, VecT & Ilh_stack)

Parallel log likelihood calculations for a stack of images.

Compute log-likelihood for multiple image, theta pairs.

Use: model.make param stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	llh_stack	Sequence of Ilh values computed. Size: [n]

Definition at line 404 of file openmp methods.h.

References mappel::methods::objective::llh(), omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy $>\leftarrow$::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::run().

8.11.1.5 template < class Model > void mappel::methods::objective::openmp::negative_definite_hessian_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, CubeT & hessian_stack)

Parallel model negative_definite Hessian approximation calculations for a stack of images.

Compute Hessian a negative_definite Hessian using a modified Cholesky decompositions. Computes for multiple image, theta pairs.

Use: model.make_param_mat_stack() to make a parameter matrix stack of appropriate dimensions for the model Hessian.

Template Parameters

Model	A concrete subclass of PointEmitterModel
ivioaei	A concrete subclass of PointEmittenvioder

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.

Parameters

in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	hess_stack	Sequence of approximate Hessian negative definite matrices computed. Size:
		[model.num_params, model.num_params, n]

Definition at line 612 of file openmp_methods.h.

References mappel::methods::objective::negative_definite_hessian(), omp_exception_catcher::impl_::OMPException← Catcher< dummy >::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< dummy >::run().

8.11.1.6 template < class Model > void mappel::methods::objective::openmp::rllh_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, VecT & rllh_stack)

Parallel relative log likelihood calculations for a stack of images.

Compute relative log-likelihood for multiple image, theta pairs.

Use: model.make param stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	rllh_stack	Sequence of rllh values computed. Size: [n]

Definition at line 451 of file openmp_methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), mappel::methods ::objective::rllh(), rllh_stack(), and omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::run().

Referenced by mappel::estimator::CGaussMLE< Model >::get_debug_stats().

8.11.1.7 template < class Model > void mappel::methods::objective::openmp::rllh_stack (const Model & model, const ImageT < Model > & image, const ParamVecT < Model > & theta_stack, VecT & rllh_stack)

Definition at line 487 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< _dummy >::run().

Referenced by rllh stack().

8.12 mappel::methods::openmp Namespace Reference

Functions

template < class Model >
 void sample_prior_stack (const Model & model, ParamVecT < Model > & theta_stack)
 Parallel sampling of the model prior.

template<class Model >

void model_image_stack (const Model &model, const ParamVecT< Model > &theta_stack, ImageStackT< Model > &image_stack)

Parallel computation of the model image.

template < class Model >

 $\label{local_param} \mbox{void simulate_image_stack (const Model \& model, const ParamVecT< Model > \& theta_stack, ImageStackT< Model > \& image_stack) \\$

Parallel simulation of images from one or more theta.

template < class Model >

void cr_lower_bound_stack (const Model &model, const ParamVecT< Model > &theta_stack, ParamVecT< Model > &crlb stack)

template < class Model >

void expected_information_stack (const Model &model, const ParamVecT< Model > &theta_stack, CubeT &fisherI stack)

template<class Model >

void estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data_stack, const std ← ::string &method, estimator::MLEDataStack &mle data stack)

template<class Model >

void estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data_stack, const std ← ::string &method, estimator::MLEDataStack &mle data stack, StatsT &stats)

template<class Model >

void estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data_stack, const std ← ::string &method, ParamVecT< Model > &theta_init_stack, estimator::MLEDataStack &mle_data_stack)

template < class Model >

void estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data_stack, const std
::string &method, ParamVecT< Model > &theta_init_stack, estimator::MLEDataStack &mle_data_stack, StatsT
&stats)

template < class Model >

void estimate_profile_likelihood_stack (const Model &model, const ModelDataT< Model > &data, const std

::string &method, const ParamVecT< Model > &fixed theta init, estimator::ProfileLikelihoodData &est)

template < class Model >

void estimate_profile_likelihood_stack (const Model &model, const ModelDataT< Model > &data, const std
::string &method, const ParamVecT< Model > &fixed_theta_init, estimator::ProfileLikelihoodData &est, StatsT
&stats)

template<class Model >

void estimate_posterior_stack (const Model &model, const ModelDataStackT< Model > &data_stack, const ParamVecT< Model > &theta init stack, mcmc::MCMCDataStack &est)

template < class Model >

void estimate_posterior_stack (const Model &model, const ModelDataStackT< Model > &data_stack, mcmc::

MCMCDataStack &est)

• template<class Model >

void error_bounds_expected_stack (const Model &model, const MatT &theta_est_stack, double confidence, MatT &theta_lb_stack, MatT &theta_ub_stack)

template < class Model >

void error_bounds_observed_stack (const Model &model, const MatT &theta_est_stack, CubeT &obsl_stack, double confidence, MatT &theta_lb_stack, MatT &theta_ub_stack)

- template<class Model >
 void error_bounds_profile_likelihood_parallel (const Model &model, const ModelDataStackT< Model > &image,
 estimator::ProfileBoundsData &est, StatsT &stats)
- template<class Model >
 void error_bounds_profile_likelihood_parallel (const Model &model, const ModelDataT< Model > &image,
 estimator::ProfileBoundsData &est)
- template<class Model >
 void error_bounds_profile_likelihood_stack (const Model &model, const ModelDataStackT< Model > &image,
 estimator::ProfileBoundsDataStack &est, StatsT &stats)
- template<class Model >
 void error_bounds_profile_likelihood_stack (const Model &model, const ModelDataStackT< Model > &image,
 estimator::ProfileBoundsDataStack &est)

8.12.1 Function Documentation

8.12.1.1 template < class Model > void mappel::methods::openmp::cr_lower_bound_stack (const Model & model, const ParamVecT < Model > & theta_stack, ParamVecT < Model > & crlb_stack)

Definition at line 138 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::run().

8.12.1.2 template < class Model > void mappel::methods::openmp::error_bounds_expected_stack (const Model & model, const MatT & theta est stack, double confidence, MatT & theta lb stack, MatT & theta ub stack)

Definition at line 273 of file openmp methods.h.

References mappel::normal_quantile_twosided(), omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< dummy >::run().

8.12.1.3 template < class Model > void mappel::methods::openmp::error_bounds_observed_stack (const Model & model, const MatT & theta_est_stack, CubeT & obsl_stack, double confidence, MatT & theta_lb_stack, MatT & theta_ub_stack)

Definition at line 294 of file openmp methods.h.

References mappel::normal_quantile_twosided(), and omp_exception_catcher::impl_::OMPExceptionCatcher \leftarrow dummy >::run().

8.12.1.4 template < class Model > void mappel::methods::openmp::error_bounds_profile_likelihood_parallel (const Model & model, const ModelDataStackT < Model > & image, estimator::ProfileBoundsData & est, StatsT & stats)

Profile likelihood bounds. Uses the Venzon and Moolgavkar (VM) algorithm for computing each of the bounds of the profile likelihood.

Definition at line 323 of file openmp_methods.h.

References mappel::chisq_quantile(), mappel::estimator::ProfileBoundsData::confidence, mappel::estimator \leftarrow ::ThreadedEstimator < Model >::estimate_profile_bounds_parallel(), mappel::estimator::ProfileBoundsData \leftarrow ::estimated_idxs, mappel::estimator::IterativeMaximizer < Model >::get_stats(), and mappel::estimator::Profile \leftarrow BoundsData::target rllh delta.

8.12.1.5 template < class Model > void mappel::methods::openmp::error_bounds_profile_likelihood_parallel (const Model & model, const ModelDataT < Model > & image, estimator::ProfileBoundsData & est)

Definition at line 333 of file openmp methods.h.

References mappel::chisq_quantile(), mappel::estimator::ProfileBoundsData::confidence, mappel::estimator ::ThreadedEstimator < Model >::estimate_profile_bounds_parallel(), mappel::estimator::ProfileBoundsData :: :estimated_idxs, and mappel::estimator::ProfileBoundsData::target_rllh_delta.

8.12.1.6 template < class Model > void mappel::methods::openmp::error_bounds_profile_likelihood_stack (const Model & model, const ModelDataStackT < Model > & image, estimator::ProfileBoundsDataStack & est, StatsT & stats)

Definition at line 342 of file openmp methods.h.

References mappel::chisq_quantile(), mappel::estimator::ProfileBoundsDataStack::confidence, mappel::estimator \leftarrow ::ThreadedEstimator < Model >::estimate_profile_bounds_stack(), mappel::estimator::ProfileBoundsDataStack \leftarrow ::estimated_idxs, mappel::estimator::IterativeMaximizer < Model >::get_stats(), and mappel::estimator::Profile \leftarrow BoundsDataStack::target_rllh_delta.

8.12.1.7 template < class Model > void mappel::methods::openmp::error_bounds_profile_likelihood_stack (const Model & model, const ModelDataStackT < Model > & image, estimator::ProfileBoundsDataStack & est)

Definition at line 352 of file openmp methods.h.

References mappel::chisq_quantile(), mappel::estimator::ProfileBoundsDataStack::confidence, mappel::estimator :: ThreadedEstimator < Model >::estimate_profile_bounds_stack(), mappel::estimator::ProfileBoundsDataStack :: :estimated idxs, and mappel::estimator::ProfileBoundsDataStack::target rllh delta.

8.12.1.8 template < class Model > void mappel::methods::openmp::estimate_max_stack (const Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, estimator::MLEDataStack & mle_data_stack)

Definition at line 168 of file openmp methods.h.

References mappel::methods::make estimator().

Referenced by mappel::estimator::Estimator< Model >::~Estimator().

8.12.1.9 template < class Model > void mappel::methods::openmp::estimate_max_stack (const Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, estimator::MLEDataStack & mle_data_stack, StatsT & stats)

Definition at line 178 of file openmp_methods.h.

References mappel::methods::make estimator().

8.12.1.10 template < class Model > void mappel::methods::openmp::estimate_max_stack (const Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, ParamVecT < Model > & theta_init_stack, estimator::MLEDataStack & mle_data_stack)

Definition at line 189 of file openmp methods.h.

References mappel::methods::make estimator().

8.12.1.11 template < class Model > void mappel::methods::openmp::estimate_max_stack (const Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, ParamVecT < Model > & theta_init_stack, estimator::MLEDataStack & mle_data_stack, StatsT & stats)

Definition at line 198 of file openmp_methods.h.

References mappel::methods::make estimator().

8.12.1.12 template < class Model > void mappel::methods::openmp::estimate_posterior_stack (const Model & model, const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, mcmc::MCMCDataStack & est)

Definition at line 227 of file openmp_methods.h.

References mappel::mcmc::MCMCDataStack::initialize_arrays(), mappel::mcmc::MCMCDataStack::Nburnin, mappel ::mcmc::MCMCDataStack::Nburnin, mappel ::mcmc::MCMCDataStack::Nsample, mappel::mcmc::num_oversample(), omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), omp_exception_catcher::impl_::OM PExceptionCatcher< dummy >::rethrow(), and mappel::mcmc::MCMCDataStack::thin.

Referenced by estimate posterior stack().

8.12.1.13 template < class Model > void mappel::methods::openmp::estimate_posterior_stack (const Model & model, const ModelDataStackT < Model > & data_stack, mcmc::MCMCDataStack & est)

Definition at line 265 of file openmp methods.h.

References estimate_posterior_stack().

8.12.1.14 template < class Model > void mappel::methods::openmp::estimate_profile_likelihood_stack (const Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamVecT < Model > & fixed_theta_init, estimator::ProfileLikelihoodData & est)

Definition at line 208 of file openmp methods.h.

References mappel::methods::make estimator().

8.12.1.15 template < class Model > void mappel::methods::openmp::estimate_profile_likelihood_stack (const Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamVecT < Model > & fixed_theta_init, estimator::ProfileLikelihoodData & est, StatsT & stats)

Definition at line 217 of file openmp_methods.h.

References mappel::methods::make estimator().

8.12.1.16 template < class Model > void mappel::methods::openmp::expected_information_stack (const Model & model, const ParamVecT < Model > & theta_stack, CubeT & fisherl_stack)

Definition at line 153 of file openmp_methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< _dummy >::run().

8.12.1.17 template < class Model > void mappel::methods::openmp::model_image_stack (const Model & model, const ParamVecT < Model > & theta_stack, ImageStackT < Model > & image_stack)

Parallel computation of the model image.

The model image is the expected photon count at each pixel under parameter theta.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model Use: model.← make_image_stack() to make an image stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	theta_stack	Sequence of thetas for which to generate images. Size: [model.num_params, nThetas]
out	image_stack	Sequence of model images generated.

Definition at line 73 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), and omp_exception_ \leftarrow catcher::impl ::OMPExceptionCatcher< dummy >::run().

8.12.1.18 template < class Model > void mappel::methods::openmp::sample_prior_stack (const Model & model, ParamVecT < Model > & theta_stack)

Parallel sampling of the model prior.

Use: model.make param stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model,A	PointEmitterModel object.
out	theta_stack,A	sequence of sampled thetas. Size: [model.num_params, nSamples]

Definition at line 45 of file openmp_methods.h.

References omp_exception_catcher::Continue, omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy > \cdot ::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy > ::run().

8.12.1.19 template < class Model > void mappel::methods::openmp::simulate_image_stack (const Model & model, const ParamVecT < Model > & theta_stack, ImageStackT < Model > & image_stack)

Parallel simulation of images from one or more theta.

This accepts either a single theta and a stack of images, or a stack of thetas and a stack of images.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model Use: model.

make_image_stack() to make an image stack of appropriate dimensions for the model

Template Parameters

Model F	A concrete subclass of PointEmitterModel
---------	--

Parameters

in	model	A PointEmitterModel object.
in	theta_stack	Single theta or a sequence of thetas. Size: [model.num_params, nThetas]
out	image_stack	Sequence of model images generated.

Definition at line 100 of file openmp_methods.h.

References mappel::methods::model_image(), omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::rethrow(), omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >::run(), and mappel::methods \leftarrow ::simulate_image().

8.13 omp_exception_catcher Namespace Reference

Namespaces

• impl_

Typedefs

• using OMPExceptionCatcher = impl_::OMPExceptionCatcher<>

Enumerations

• enum Strategy { Strategy::DoNotTry, Strategy::Continue, Strategy::Abort, Strategy::RethrowFirst }

8.13.1 Typedef Documentation

8.13.1.1 using omp_exception_catcher::OMPExceptionCatcher = typedef impl_::OMPExceptionCatcher <>

A class to run and catch exceptions in parallel code allowing various exception management strategies

Definition at line 114 of file OMPExceptionCatcher.h.

8.13.2 Enumeration Type Documentation

8.13.2.1 enum omp_exception_catcher::Strategy [strong]

Enumerator

DoNotTry

Continue

Abort

RethrowFirst

Definition at line 38 of file OMPExceptionCatcher.h.

8.14 omp_exception_catcher::impl_ Namespace Reference

Classes

• class OMPExceptionCatcher

9 Class Documentation

9.1 mappel::ArrayShapeError Struct Reference

Array is not of the right dimensionality.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::ArrayShapeError:

Public Member Functions

• ArrayShapeError (std::string message)

9.1.1 Detailed Description

Array is not of the right dimensionality.

Definition at line 76 of file util.h.

9.1.2 Constructor & Destructor Documentation

9.1.2.1 mappel::ArrayShapeError::ArrayShapeError (std::string message) [inline]

Definition at line 78 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

9.2 mappel::ArraySizeError Struct Reference

Array is not of the right size.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::ArraySizeError:

Public Member Functions

ArraySizeError (std::string message)

9.2.1 Detailed Description

Array is not of the right size.

Definition at line 83 of file util.h.

9.2.2 Constructor & Destructor Documentation

9.2.2.1 mappel::ArraySizeError::ArraySizeError (std::string message) [inline]

Definition at line 85 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

9.3 mappel::estimator::CGaussHeuristicEstimator < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::CGaussHeuristicEstimator< Model >:

Public Member Functions

- CGaussHeuristicEstimator (const Model &model)
- StatsT get stats ()
- StatsT get debug stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT< Model > &data, const ParamVecT< Model > &theta_init← stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est) override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- void clear_stats ()
- const Model & get_model ()
- void estimate_max_stack (const ModelDataStackT< Model > &data_stack, MLEDataStack &mle_data_stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data, StencilT< Model > &mle stencil)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 — data)
- void estimate_max (const ModelDataT< Model > &data, MLEData &mle_data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle data, StencilT< Model > &mle stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate_profile_bounds (const ModelDataT < Model > &data, ProfileBoundsData &bounds_est)
- void estimate_profile_bounds_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &bounds
 —est)
- IdxVecT get exit counts () const

Protected Member Functions

- · void record exit code (ExitCode code) override
- virtual void compute_estimate_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEDebugData &mle_data, StencilT< Model > &mle_stencil)
- virtual double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta
 init, const IdxVecT &fixed idxs, StencilT< Model > &max stencil)
- virtual void compute_profile_bound (const ModelDataT< Model > &data, ProfileBoundsData &est, const VecT &init_step, IdxT param_idx, IdxT which_bound)
- virtual void compute profile bound debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &est)
- void record walltime (ClockT::time point start walltime, int num estimations)

Protected Attributes

- · int max threads
- int num_threads
- std::mutex mtx
- const Model & model
- int num estimations = 0
- double total walltime = 0.
- IdxVecT exit counts

9.3.1 Detailed Description

```
template < class Model > class mappel::estimator::CGaussHeuristicEstimator < Model >
```

Definition at line 348 of file estimator.h.

9.3.2 Constructor & Destructor Documentation

```
9.3.2.1 template < class Model > mappel::estimator::CGaussHeuristicEstimator < Model >::CGaussHeuristicEstimator ( const Model & model ) [inline]
```

Definition at line 351 of file estimator.h.

9.3.3 Member Function Documentation

```
9.3.3.1 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::clear_stats() [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::Estimator< Model >.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 570 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, and mappel::estimator::ThreadedEstimator< Model >::num_threads.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear stats().

9.3.3.2 template < class Model > void mappel::estimator::Estimator < Model > ::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [protected], [virtual], [inherited]

Virtual estimate debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 285 of file estimator impl.h.

References mappel::estimator::Estimator< Model >:::compute_estimate(), mappel::estimator::Estimator< Model >:::model, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max debug().

9.3.3.3 template < class Model > void mappel::estimator::Estimator < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 309 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator< Model > \leftarrow ::estimate profile bounds stack().

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 318 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_bounds_debug().

9.3.3.5 template < class Model > double mappel::estimator::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, const IdxVecT & fixed_idxs, StencilT < Model > & max_stencil) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 300 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_max(), and mappel::estimator::Threaded ← Estimator< Model >::estimate profile max().

9.3.3.6 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: Model >::record_walltime(), mappel::estimator::MLEData::rllh, and mappel::estimator ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate_max().

9.3.3.7 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate max().

9.3.3.8 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, MLEData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator impl.h.

References mappel::estimator::Estimator
< Model >::estimate_max(), and mappel::estimator::Estimator
< Model > \leftarrow ::model.

```
9.3.3.9 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta_init and theta_mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.3.3.10 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel \leftarrow ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

9.3.3.11 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.3.3.12 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [override], [virtual], [inherited]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for each data

 $Implements \ mappel :: estimator :: Estimator < Model >.$

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator
Model >::compute_estimate(), mappel::estimator::Error, mappel
::estimator::Estimator
Model >::model, mappel::estimator::MLEDataStack::Ndata, mappel::estimator::Threaded
Estimator
Model >::num_threads, mappel::estimator::MLEData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel
::estimator::Estimator
Model >::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.3.3.13 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator:: \leftarrow ProfileBoundsData::profile_lb, mappel::estimator::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator:: \leftarrow ProfileBoundsData::profile_ub, mappel::estimator::Estimator $Model > ::record_exit_code(), mappel::estimator \leftarrow$::Estimator $Model > ::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel \leftarrow$::estimator::ProfileBoundsData::theta.

Referenced by mappel::methods::error bounds profile likelihood().

9.3.3.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_exit_code(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

```
9.3.3.15 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_profile_bounds_parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]
```

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::ThreadedEstimator< Model >::num_threads, mappel::estimator:: \leftarrow MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_parallel().

```
9.3.3.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack(
const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override],
[virtual], [inherited]
```

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(),

mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::⇔ Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds← DataStack::Nparams est, mappel::estimator::ThreadedEstimator < Model >::num threads, mappel::estimator::ML← EData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ProfileBounds← mappel::estimator::ProfileBoundsDataStack::profile lb, mappel::estimator::ProfileBoundsData← Data::profile lb, ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile points lb rllh, mappel::estimator::ProfileBoundsDataStack::profile points lb rllh, mappel::estimator. ::ProfileBoundsData::profile points ub. mappel::estimator::ProfileBoundsDataStack::profile points ub. ::estimator::ProfileBoundsData::profile points ub rllh, mappel::estimator::ProfileBoundsDataStack::profile points← _ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::ProfileBoundsDataStack::profile_ub, mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target rllh delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData↔ Stack::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood stack().

```
9.3.3.17 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max ) [inherited]
```

Profile likelihood estimation methods

Definition at line 190 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

```
9.3.3.18 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile )

[override], [virtual], [inherited]
```

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:::

ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::print_ text_image(), mappel::estimator::ProfileLikelihoodData::profile_likelihoodData::profile_likelihoodData::profile_parameters, mappel::estimator::ThreadedEstimator

**Model >::record_exit_code(), and mappel::estimator::

Estimator< Model >::record_walltime().

```
9.3.3.19 template < class Model > StatsT mappel::estimator::CGaussHeuristicEstimator < Model >::get_debug_stats ( ) [ virtual ]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 650 of file estimator_impl.h.

References mappel::estimator::ThreadedEstimator< Model >::get stats().

9.3.3.20 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts () const [inline], [inherited]

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

```
9.3.3.21 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.3.3.22 template < class Model > StatsT mappel::estimator::CGaussHeuristicEstimator < Model >::get_stats ( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 635 of file estimator impl.h.

References mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::ThreadedEstimator< Model >::mux, and mappel::estimator::Estimator< Model >::num_estimations.

```
9.3.3.23 template < class Model > std::string mappel::estimator::CGaussHeuristicEstimator < Model >::name ( ) const [inline], [virtual]
```

Implements mappel::estimator::Estimator< Model >.

Definition at line 355 of file estimator.h.

```
9.3.3.24 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code ( ExitCode code ) [override], [protected], [virtual], [inherited]
```

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model > \leftarrow ::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::methods::observed_information(), mappel \leftarrow ::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:: \leftarrow Success, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator:: \leftarrow ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel \leftarrow ::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.3.3.25 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::num_estimations, and mappel::estimator::Estimator< Model >::total walltime.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Model >::estimator<:Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max().

9.3.4 Member Data Documentation

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ ⇔ stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded ⇔ Estimator< Model >::record_exit_code().

9.3.4.2 template<**class Model** > **int mappel**::**estimator**::**ThreadedEstimator**< **Model** >::**max_threads** [protected], [inherited]

Definition at line 326 of file estimator.h.

9.3.4.3 template < class Model > const Model& mappel::estimator::Estimator < Model >::model [protected], [inherited]

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute estimate(), mappel::estimator::Estimator< Model >::compute estimate debug(), mappel ::estimator::IterativeMaximizer< Model >::compute estimate debug(), mappel::estimator::Estimator< Model >← ::compute_profile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ← ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >-::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_stack(), mappel::estimator::Threaded← Estimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator < Model >::estimate_← profile max(), mappel::estimator::HeuristicEstimator< Model >::get debug stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::Estimator< Model >::get_model(), mappel::estimator::Iterative← Maximizer Model >::local maximize(), mappel::estimator::IterativeMaximizer Model >::local profile maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.3.4.4 template < class Model > std::mutex mappel::estimator::ThreadedEstimator < Model >::mtx [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative
Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel
::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get
_stats(), mappel::estimator::CGaussMLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative
Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

9.3.4.6 template < class Model > int mappel::estimator::ThreadedEstimator < Model >::num_threads [protected], [inherited]

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile \leftarrow _bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator

9.3.4.7 template<class Model > double mappel::estimator::Estimator< Model >::total_walltime = 0. [protected], [inherited]

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

9.4 mappel::estimator::CGaussMLE < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::CGaussMLE< Model >:

Public Member Functions

- CGaussMLE (const Model &model, int num_iterations=DefaultIterations)
- StatsT get stats ()
- StatsT get debug stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT< Model > &data, const ParamVecT< Model > &theta_init← stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
 override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- void clear_stats ()
- const Model & get_model ()
- void estimate_max_stack (const ModelDataStackT< Model > &data_stack, MLEDataStack &mle_data_stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data, StencilT< Model > &mle stencil)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 — data)
- void estimate_max (const ModelDataT< Model > &data, MLEData &mle_data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle data, StencilT< Model > &mle stencil)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate_profile_bounds (const ModelDataT < Model > &data, ProfileBoundsData &bounds_est)
- void estimate_profile_bounds_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &bounds
 —est)
- IdxVecT get exit counts () const

Static Public Attributes

• static const int DefaultIterations =50

Protected Member Functions

- void record_exit_code (ExitCode code) override
- virtual double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta
 — init, const IdxVecT &fixed_idxs, StencilT< Model > &max_stencil)
- virtual void compute_profile_bound (const ModelDataT< Model > &data, ProfileBoundsData &est, const VecT &init_step, IdxT param_idx, IdxT which_bound)
- virtual void compute_profile_bound_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &est)
- void record_walltime (ClockT::time_point start_walltime, int num_estimations)

Protected Attributes

- · int max threads
- · int num_threads
- std::mutex mtx
- · const Model & model
- int num estimations = 0
- double total_walltime = 0.
- · IdxVecT exit_counts

9.4.1 Detailed Description

 $\label{local_constraints} \mbox{template}{<} \mbox{class Model}{>} \\ \mbox{class mappel}{::estimator}{::} \mbox{CGaussMLE}{<} \mbox{ Model}{>} \\$

Definition at line 363 of file estimator.h.

9.4.2 Constructor & Destructor Documentation

9.4.2.1 template < class Model > mappel::estimator::CGaussMLE < Model >::CGaussMLE (const Model & model, int num_iterations = DefaultIterations) [inline]

Definition at line 368 of file estimator.h.

```
9.4.3 Member Function Documentation
```

Run statistics.

Reimplemented from mappel::estimator::Estimator< Model >.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 570 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, and mappel::estimator::ThreadedEstimator< Model >::num_threads.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats().

9.4.3.2 template < class Model > void mappel::estimator::Estimator < Model > ::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 309 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator < Model >::estimate_profile_bounds(), mappel::estimator::Threaded \leftarrow Estimator < Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack().

9.4.3.3 template < class Model > void mappel::estimator::Estimator < Model > ::compute_profile_bound_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & est) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 318 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_bounds_debug().

9.4.3.4 template < class Model > double mappel::estimator::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, const IdxVecT & fixed_idxs, StencilT < Model > & max_stencil) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 300 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_max(), and mappel::estimator::Threaded Estimator< Model >::estimate profile max().

9.4.3.5 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator_impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: Model >::record_walltime(), mappel::estimator::MLEData::rllh, and mappel::estimator ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate_max().

9.4.3.6 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator impl.h.

References mappel::estimator::Estimator < Model >::estimate max().

9.4.3.7 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, MLEData & mle data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator impl.h.

References mappel::estimator::Estimator
< Model >::estimate_max(), and mappel::estimator::Estimator
< Model > \leftarrow ::model.

```
9.4.3.8 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta_init and theta_mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.4.3.9 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel \leftarrow ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

9.4.3.10 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.4.3.11 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [override], [virtual], [inherited]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for each data

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator impl.h.

References mappel::estimator::Estimator
Model >::compute_estimate(), mappel::estimator::Error, mappel
::estimator::Estimator
Model >::model, mappel::estimator::MLEDataStack::Ndata, mappel::estimator::Threaded
Estimator
Model >::num_threads, mappel::estimator::MLEData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel
::estimator::Estimator
Model >::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.4.3.12 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator:: \leftarrow ProfileBoundsData::profile_lb, mappel::estimator::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator:: \leftarrow ProfileBoundsData::profile_ub, mappel::estimator::Estimator $Model > ::record_exit_code(), mappel::estimator \leftarrow$::Estimator $Model > ::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel \leftarrow$::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::error bounds profile likelihood().

9.4.3.13 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_exit_code(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

```
9.4.3.14 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_profile_bounds_parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]
```

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::ThreadedEstimator< Model >::num_threads, mappel::estimator:: \leftarrow MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_parallel().

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(),

mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::⇔ Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator < Model >::num threads, mappel::estimator::ML← EData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ProfileBounds← mappel::estimator::ProfileBoundsDataStack::profile lb, mappel::estimator::ProfileBoundsData← Data::profile lb, ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile points lb rllh, mappel::estimator::ProfileBoundsDataStack::profile points lb rllh, mappel::estimator. mappel::estimator::ProfileBoundsDataStack::profile points ub. ::ProfileBoundsData::profile points ub. ::estimator::ProfileBoundsData::profile points ub rllh, mappel::estimator::ProfileBoundsDataStack::profile points← _ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::ProfileBoundsDataStack::profile_ub, mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target rllh delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData⇔ Stack::theta.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_stack().

9.4.3.16 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max) [inherited]

Profile likelihood estimation methods

Definition at line 190 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

9.4.3.17 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile) [override], [virtual], [inherited]

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:: \leftarrow ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::ProfileLikelihoodData::profile_likelihoodData::profile_likelihoodData::profile_parameters, mappel::estimator::ThreadedEstimator

```
9.4.3.18 template < class Model > StatsT mappel::estimator::CGaussMLE < Model >::get_debug_stats ( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 675 of file estimator impl.h.

```
9.4.3.19 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

```
9.4.3.20 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.4.3.21 template < class Model > StatsT mappel::estimator::CGaussMLE < Model >::get_stats() [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 660 of file estimator_impl.h.

References mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, and mappel::estimator::Estimator< Model >::num estimations.

Implements mappel::estimator::Estimator< Model >.

Definition at line 373 of file estimator.h.

9.4.3.23 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >:::model, mappel::estimator::ThreadedEstimator< Model >:::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:: \leftarrow Success, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator
Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer

9.4.3.24 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::total_walltime.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Model >::estimator<:Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max().

- 9.4.4 Member Data Documentation
- 9.4.4.1 template < class Model > const int mappel::estimator::CGaussMLE < Model >::Defaultlterations = 50 [static]

Definition at line 366 of file estimator.h.

 $\textbf{9.4.4.2} \quad \textbf{template} < \textbf{class Model} > \textbf{IdxVecT mappel} :: \textbf{estimator} :: \textbf{Estimator} < \textbf{Model} > :: \textbf{exit_counts} \quad [\texttt{protected}], \\ [\texttt{inherited}]$

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded \leftarrow Estimator< Model >::record exit code().

9.4.4.3 template < class Model > int mappel::estimator::ThreadedEstimator < Model >::max_threads [protected], [inherited]

Definition at line 326 of file estimator.h.

9.4.4.4 template<class Model > const Model& mappel::estimator::Estimator< Model >::model [protected], [inherited]

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute estimate(), mappel::estimator::Estimator< Model >::compute estimate debug(), mappel ::estimator::IterativeMaximizer< Model >::compute estimate debug(), mappel::estimator::Estimator< Model >↔ ::compute profile bound(), mappel::estimator::IterativeMaximizer< Model >::compute profile bound(), mappel ::estimator::Estimator< Model >::compute profile bound debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >← ::estimate max(), mappel::estimator::Estimator< Model >::estimate max stack(), mappel::estimator::Threaded ← Estimator< Model >::estimate max stack(), mappel::estimator::Estimator< Model >::estimate profile bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator < Model >::estimate_← profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::Estimator< Model >::get_model(), mappel::estimator::Iterative ← Maximizer Model >::local maximize(), mappel::estimator::IterativeMaximizer Model >::local profile maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record_exit_code().

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel \leftarrow ::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get \leftarrow stats(), mappel::estimator::CGaussMLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::get_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record walltime().

9.4.4.7 template<class Model > int mappel::estimator::ThreadedEstimator< Model >::num_threads [protected], [inherited]

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile \leftarrow _bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator<:ThreadedEstimator< Model >::estimator::ThreadedEstimator<

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \hookleftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \hookleftarrow ::record walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h
- 9.5 mappel::estimator::Estimator < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::Estimator< Model >:

Public Member Functions

- Estimator (const Model &_model)
- virtual ~Estimator ()
- virtual std::string name () const =0
- const Model & get model ()
- void estimate_max (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLEData &mle
 — data, StencilT < Model > &mle_stencil)
- void estimate_max (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLEData &mle ← data)
- void estimate max (const ModelDataT< Model > &data, MLEData &mle data)

- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE
 —
 DebugData &mle data, StencilT< Model > &mle stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data)
- virtual void estimate_max_stack (const ModelDataStackT < Model > &data_stack, const ParamVecT < Model > &theta init stack, MLEDataStack &mle data stack)=0
- void estimate max stack (const ModelDataStackT< Model > &data stack, MLEDataStack &mle data stack)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- virtual void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &fixed_←
 theta init, ProfileLikelihoodData &profile)=0
- void estimate_profile_bounds (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
- virtual void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds est)=0
- void estimate_profile_bounds_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds ← est)
- virtual void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data_stack, ProfileBounds←
 DataStack &bounds_est)=0
- virtual StatsT get_stats ()
- virtual StatsT get_debug_stats ()=0
- virtual void clear_stats ()
- IdxVecT get exit counts () const

Protected Member Functions

- virtual void compute_estimate (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, ML←
 EData &mle_data, StencilT < Model > &mle_stencil)=0
- virtual void compute_estimate_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init,
 MLEDebugData &mle_data, StencilT< Model > &mle_stencil)
- virtual double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta
 init, const IdxVecT &fixed idxs, StencilT< Model > &max stencil)
- virtual void compute_profile_bound (const ModelDataT< Model > &data, ProfileBoundsData &est, const VecT &init_step, IdxT param_idx, IdxT which_bound)
- virtual void compute_profile_bound_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &est)
- void record walltime (ClockT::time point start walltime, int num estimations)
- virtual void record_exit_code (ExitCode code)=0

Protected Attributes

- · const Model & model
- int num estimations = 0
- double total_walltime = 0.
- IdxVecT exit counts

Friends

template < class T >
 std::ostream & operator < < (std::ostream &out, Estimator < T > &estimator)

9.5.1 Detailed Description

```
template < class Model > class mappel::estimator::Estimator < Model >
```

Estimator base class defines the interface for estimator interactions designed to unify the ThreadedEstimator with future GPUEstimator types under a single API.

Design notes: Templated on the model type to allow for direct function call for models through the mappel::methods namespace templated model methods.

Definition at line 196 of file estimator.h.

- 9.5.2 Constructor & Destructor Documentation
- 9.5.2.1 template < class Model > mappel::estimator: Estimator < Model >::Estimator (const Model & _model)

Definition at line 102 of file estimator_impl.h.

```
9.5.2.2 template < class Model > virtual mappel::estimator::Estimator < Model >::\simEstimator ( ) [inline], [virtual]
```

Definition at line 199 of file estimator.h.

References mappel::methods::estimate_max(), mappel::methods::debug::estimate_max_debug(), and mappel ::methods::openmp::estimate_max_stack().

- 9.5.3 Member Function Documentation
- 9.5.3.1 template < class Model > void mappel::estimator::Estimator < Model > ::clear_stats() [virtual]

Run statistics.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >, and mappel::estimator::ThreadedEstimator< Model >.

Definition at line 343 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >::num_ \leftarrow estimations, and mappel::estimator::Estimator< Model >::total walltime.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear stats().

9.5.3.2 template < class Model > virtual void mappel::estimator::Estimator < Model > ::compute_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [protected], [pure virtual]

Implemented in mappel::estimator::IterativeMaximizer< Model >.

Referenced by mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Estimator< Model >::estimate max(), and mappel::estimator::ThreadedEstimator< Model >::estimate max stack().

9.5.3.3 template < class Model > void mappel::estimator::Estimator < Model > ::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [protected], [virtual]

Virtual estimate_debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Estimator< Model >-::model, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::multiple.compute_

Referenced by mappel::estimator::Estimator< Model >::estimate_max_debug().

9.5.3.4 template < class Model > void mappel::estimator::Estimator < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [protected], [virtual]

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 309 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator < Model >::estimate_profile_bounds(), mappel::estimator::Threaded \leftarrow Estimator < Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack().

9.5.3.5 template < class Model > void mappel::estimator::Estimator < Model >::compute_profile_bound_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & est) [protected], [virtual]

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 318 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate profile bounds debug().

9.5.3.6 template < class Model > double mappel::estimator::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, const IdxVecT & fixed_idxs, StencilT < Model > & max_stencil) [protected], [virtual]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 300 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_max(), and mappel::estimator::Threaded ← Estimator< Model >::estimate profile max().

9.5.3.7 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil)

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator_impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel::estimator::Error, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::MLEData::rllh, and mappel::estimator:: MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max().

9.5.3.8 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data)

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate max().

9.5.3.9 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, MLEData & mle_data)

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max(), and mappel::estimator::Estimator< Model > ::model.

9.5.3.10 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle stencil)

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta init and theta mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.5.3.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data)

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel \leftarrow ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

9.5.3.12 template < class Model > virtual void mappel::estimator::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [pure_virtual]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for
		each data

Implemented in mappel::estimator::ThreadedEstimator< Model >.

Referenced by mappel::estimator::Estimator < Model >::estimate max stack().

9.5.3.13 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack)

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.5.3.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est)

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator<: Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator:: \leftarrow ProfileBoundsData::profile_lb, mappel::estimator::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator:: \leftarrow ProfileBoundsData::profile_ub, mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator \leftarrow ::Estimator</br> $= \text{Model} = \text{$

Referenced by mappel::methods::error bounds profile likelihood().

9.5.3.15 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds_est)

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::mle, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_walltime(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error bounds profile likelihood debug().

Profile likelihood bounds computations with VM algorithm

Implemented in mappel::estimator::ThreadedEstimator< Model >.

9.5.3.17 template < class Model > virtual void mappel::estimator::Estimator < Model >::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [pure virtual]

Profile likelihood bounds computations with VM algorithm

Implemented in mappel::estimator::ThreadedEstimator< Model >.

9.5.3.18 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max)

Profile likelihood estimation methods

Definition at line 190 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::Error, mappel ::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

9.5.3.19 template < class Model > virtual void mappel::estimator::Estimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile)

[pure virtual]

Profile likelihood estimation methods

Implemented in mappel::estimator::ThreadedEstimator< Model >.

9.5.3.20 template < class Model > virtual StatsT mappel::estimator::Estimator < Model >::get_debug_stats() [pure virtual]

Run statistics.

Implemented in mappel::estimator::IterativeMaximizer< Model >, mappel::estimator::SimulatedAnnealingMaximizer< Model >, mappel::estimator::CGaussMLE< Model >, mappel::estimator::CGaussHeuristicEstimator< Model >, mappel::estimator::HeuristicEstimator< Model >, and mappel::estimator::ThreadedEstimator< Model >.

9.5.3.21 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts () const [inline]

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.5.3.22 template < class Model > const Model & mappel::estimator::Estimator < Model > ::get model ()

Definition at line 108 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

9.5.3.23 template < class Model > StatsT mappel::estimator::Estimator < Model >::get_stats() [virtual]

Run statistics.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >, mappel::estimator::CimulatedAnnealing Amaximizer< Model >, mappel::estimator::CGaussMLE< Model >, mappel::estimator::CGaussHeuristicEstimator< Model >, and mappel::estimator::ThreadedEstimator< Model >.

Definition at line 326 of file estimator impl.h.

References mappel::estimator::Error, mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Grad
Ratio, mappel::estimator::MaxBacktracks, mappel::estimator::MaxIter, mappel::estimator::Estimator< Model >::num
_estimations, mappel::estimator::StepSize, mappel::estimator::Success, mappel::estimator::Estimator< Model >
::total_walltime, and mappel::estimator::TrustRegionRadius.

Referenced by mappel::estimator::ThreadedEstimator< Model >::get_stats().

9.5.3.24 template < class Model > virtual std::string mappel::estimator::Estimator < Model >::name () const [pure virtual]

 $Implemented \ in \ mappel::estimator::TrustRegionMaximizer< \ Model >, \ mappel::estimator::QuasiNewtonMaximizer< \\ Model >, \ mappel::estimator::NewtonDiagonalMaximizer< Model >, \\ mappel::estimator::SimulatedAnnealingMaximizer< Model >, \\ mappel::estimator::CGaussMLE< Model >, \\ mappel::estimator::CGaussHeuristicEstimator< Model >, \\ and \\ mappel::estimator::HeuristicEstimator< Model >. \\ \\$

Referenced by mappel::estimator::lterativeMaximizer< Model >::solve profile bound().

9.5.3.25 template < class Model > virtual void mappel::estimator::Estimator < Model >::record_exit_code (ExitCode code) [protected], [pure virtual]

Implemented in mappel::estimator::ThreadedEstimator< Model >.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model > \leftarrow ::estimate_max_debug(), mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator:: \leftarrow Estimator< Model >::estimator< Model >::estimator< Model >::estimator< Model >::estimator< Model >::estimator< Model >::estimator<

9.5.3.26 template < class Model > void mappel::estimator::Estimator < Model > ::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected]

Definition at line 360 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::total_walltime.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Estimator< Model >::estimate \leftarrow _profile_bounds_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max().

- 9.5.4 Friends And Related Function Documentation
- 9.5.4.1 template < class Model > template < class T > std::ostream & operator << (std::ostream & out, Estimator < T > & estimator) [friend]
- 9.5.5 Member Data Documentation
- $\textbf{9.5.5.1} \quad \textbf{template} < \textbf{class Model} > \textbf{IdxVecT mappel} :: \textbf{estimator} :: \textbf{Estimator} < \textbf{Model} > :: \textbf{exit_counts} \quad [\texttt{protected}]$

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded \leftarrow Estimator< Model >::record exit code().

9.5.5.2 template < class Model > const Model& mappel::estimator::Estimator < Model >::model [protected]

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute estimate(), mappel::estimator::Estimator< Model >::compute estimate debug(), mappel $:: estimator:: Iterative Maximizer < \ \ Model \ >:: compute_estimate_debug(), \ \ mappel:: estimator:: Estimator < \ \ Model \ > \leftarrow$::compute profile bound(), mappel::estimator::lterativeMaximizer< Model >::compute profile bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_ profile estimate(), mappel ← ::estimator::IterativeMaximizer< Model >::compute profile estimate(), mappel::estimator::Estimator< Model >← ::estimate max(), mappel::estimator::Estimator< Model >::estimate max stack(), mappel::estimator::Threaded← Estimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::Threaded ← Estimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_← profile max(), mappel::estimator::HeuristicEstimator< Model >::get debug stats(), mappel::estimator::CGaussMLE< Model >::get debug stats(), mappel::estimator::Estimator< Model >::get model(), mappel::estimator::Iterative← Maximizer Model >::local maximize(), mappel::estimator::IterativeMaximizer Model >::local profile maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record_exit_code().

9.5.5.3 template < class Model > int mappel::estimator::Estimator < Model >::num_estimations = 0 [protected]

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get _stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

9.5.5.4 template < class Model > double mappel::estimator::Estimator < Model > ::total_walltime = 0. [protected]

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \hookleftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \hookleftarrow ::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h

9.6 mappel::Gauss1DMAP Class Reference

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DMAP.h>
Inheritance diagram for mappel::Gauss1DMAP:

Public Types

```
    using StencilVecT = std::vector < Stencil >
    using ParamT = arma::vec
    using ParamVecT = arma::mat
    using ImageCoordT = uint32_t
    using ImagePixeIT = double
    template < class CoordT > using ImageSizeShapeT = CoordT
    template < class CoordT >
```

- using ImageSizeVecShapeT = arma::Col< CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

```
using ImageShapeT = arma::Col< PixelT >
```

template<class PixelT >

using ImageStackShapeT = arma::Mat< PixelT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

- Gauss1DMAP (arma::Col< ImageCoordT > size, VecT psf_sigma, const std::string &prior_type=DefaultPrior
 — Type)
- Gauss1DMAP (ImageSizeT size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss1DMAP (ImageSizeT size, double psf_sigma, CompositeDist &&prior)
- Gauss1DMAP (ImageSizeT size, double psf_sigma, const CompositeDist &prior)
- Gauss1DMAP (const Gauss1DMAP &o)
- Gauss1DMAP & operator= (const Gauss1DMAP &o)
- Gauss1DMAP (Gauss1DMAP &&o)
- Gauss1DMAP & operator= (Gauss1DMAP &&o)
- · double get psf sigma () const
- double get_psf_sigma (ldxT idx) const
- void set_psf_sigma (double new_psf_sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (IdxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (ldxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const

- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (IdxT n) const
- template<class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- · MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample_prior () const
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- · bool theta in bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get size image stack (const ImageStackT &stack) const

- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template < class ImT >
 void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- ImageSizeT get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set_size (const ImageSizeT &size_)
- void set size (const arma::Col < ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- · IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make default prior (ldxT size, const std::string &prior type)
- static CompositeDist make default prior beta position (IdxT size)
- static CompositeDist make_default_prior_normal_position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

• static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global_max_size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- · double psf sigma
- CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- · ImageSizeT size
- double eta x =0
- double eta I =0
- double eta_bg =0
- · IdxT num phases
- · double sigma scale

```
9.6.1 Detailed Description
```

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Model: Gauss1DModel - 1D Gaussian PSF with fixed PSF sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MAPstimator - Maximum a-posteriori estimator

Definition at line 23 of file Gauss1DMAP.h.

9.6.2 Member Typedef Documentation

9.6.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.6.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.6.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.6.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.6.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.6.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

9.6.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.6.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.6.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

9.6.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

9.6.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

9.6.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.6.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.6.2.15 using mappel::Gauss1DModel::StencilVecT = std::vector<Stencil> [inherited] Definition at line 49 of file Gauss1DModel.h. 9.6.3 Constructor & Destructor Documentation 9.6.3.1 mappel::Gauss1DMAP::Gauss1DMAP (arma::Col < ImageCoordT > size, VecT psf_sigma, const std::string & prior_type = DefaultPriorType) Definition at line 11 of file Gauss1DMAP.cpp. 9.6.3.2 mappel::Gauss1DMAP::Gauss1DMAP (ImageSizeT size, double psf_sigma, const std::string & prior_type = DefaultPriorType) Definition at line 15 of file Gauss1DMAP.cpp. 9.6.3.3 mappel::Gauss1DMAP::Gauss1DMAP (ImageSizeT size, double psf_sigma, CompositeDist && prior) Definition at line 19 of file Gauss1DMAP.cpp. 9.6.3.4 mappel::Gauss1DMAP::Gauss1DMAP (ImageSizeT size, double psf_sigma, const CompositeDist & prior) Definition at line 27 of file Gauss1DMAP.cpp. 9.6.3.5 mappel::Gauss1DMAP::Gauss1DMAP (const Gauss1DMAP & o) Definition at line 35 of file Gauss1DMAP.cpp. 9.6.3.6 mappel::Gauss1DMAP::Gauss1DMAP (Gauss1DMAP && o) Definition at line 43 of file Gauss1DMAP.cpp. 9.6.4 Member Function Documentation 9.6.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited] Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), mappel::PointEmitterModel::lbound, mappel::Point←

EmitterModel::num params, and mappel::PointEmitterModel::ubound.

9.6.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.6.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

9.6.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.6.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.6.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.6.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.6.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.6.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.6.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

9.6.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

9.6.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

9.6.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.6.4.17 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.6.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

 $References\ mappel:: MCMCA daptor Base:: sigma_scale.$

9.6.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

9.6.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

```
9.6.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
        [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get stats().
9.6.4.22 StringVecT mappel::PointEmitterModel::get param names ( ) const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.6.4.23 CompositeDist & mappel::PointEmitterModel::get prior() [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
9.6.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.6.4.25 double mappel::Gauss1DModel::get_psf_sigma() const [inline], [inherited]
Definition at line 127 of file Gauss1DModel.h.
References mappel::Gauss1DModel::psf_sigma.
Referenced by mappel::Gauss1DModel::get stats().
9.6.4.26 double mappel::Gauss1DModel::get_psf_sigma ( ldxT idx ) const [inherited]
Definition at line 131 of file Gauss1DModel.cpp.
References mappel::Gauss1DModel::psf_sigma.
9.6.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator( ) [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng manager.
```

9.6.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.6.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get stats().

9.6.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size (IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.6.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

9.6.4.32 StatsT mappel::Gauss1DModel::get_stats() const [inherited]

Definition at line 178 of file Gauss1DModel.cpp.

 $References \quad mappel::Gauss1DModel::get_psf_sigma(), \quad mappel::MCMCAdaptor1D::get_stats(), \quad mappel::Image \leftarrow Format1DBase::get_stats(), \quad and \quad mappel::PointEmitterModel::get_stats().$

9.6.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.6.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.35 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate(const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make param(), and mappel::Gauss1DModel::Stencil::theta.

9.6.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 207 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::l(), mappel::Gauss1DModel ← ::make stencil(), mappel::PointEmitterModel::num params, and mappel::ImageFormat1DBase::size.

9.6.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior(ldxT size, const std::string & prior_type) [static], [inherited]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DModel::make_default_prior_beta_position(), and mappel::

Gauss1DModel::make_default_prior_normal_position().

Definition at line 80 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component intensity(), and mappel::PointEmitterModel::make prior component position beta().

Referenced by mappel::Gauss1DModel::make_default_prior().

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component intensity(), and mappel::PointEmitterModel::make prior component position normal().

Referenced by mappel::Gauss1DModel::make_default_prior().

9.6.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image()const [inline],[inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.6.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.6.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.6.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.6.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_params.$

9.6.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.6.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_params.$

9.6.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.6.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

9.6.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.6.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position(ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_ prior_component_position_beta().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

9.6.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.6.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.6.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.6.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.6.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_component_prior_co

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

9.6.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss1DModel::initial_theta_estimate().

9.6.4.57 Gauss1DMAP & mappel::Gauss1DMAP::operator= (const Gauss1DMAP & o)

Definition at line 51 of file Gauss1DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D (), model::operator=(), and mappel::PointEmitterModel::operator=().

9.6.4.58 Gauss1DMAP & mappel::Gauss1DMAP::operator= (Gauss1DMAP && o)

Definition at line 62 of file Gauss1DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D \leftarrow Model::operator=(), and mappel::PointEmitterModel::operator=().

9.6.4.59 void mappel::Gauss1DModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel \leftarrow ::Stencil::X.

Referenced by mappel::Gauss1DModel::pixel hess update().

9.6.4.60 void mappel::Gauss1DModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1D \leftarrow Model::psf_sigma.

9.6.4.61 void mappel::Gauss1DModel::pixel_hess (ldxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 159 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Edauss1DModel::Gauss1DModel::Gauss1DModel::Gauss1DModel::Gauss1DModel::Gauss1DModel::psf sigma.

9.6.4.62 void mappel::Gauss1DModel::pixel_hess_update (ldxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio,
ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), mappel::PointEmitterModel :::make_param(), mappel::Gauss1DModel::pixel_grad(), and mappel::Gauss1DModel::psf_sigma.

9.6.4.63 double mappel::Gauss1DModel::pixel_model_value(ldxTi, const Stencil & s) const [inline], [inherited]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

9.6.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.6.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta)
const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.6.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.67 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_← x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.6.4.68 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed parameters mask, double step scale = 1.0) const [inherited]

Definition at line 122 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_← x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.6.4.69 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.70 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.6.4.71 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.6.4.72 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.6.4.73 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & desc) [inline], [inherited]

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.74 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.75 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.6.4.76 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.6.4.77 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Industrial Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.6.4.78 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.6.4.79 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

9.6.4.80 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma _ _ scale.

9.6.4.81 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.6.4.82 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

9.6.4.83 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.6.4.84 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma) [inherited]

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and mappel::Gauss1DModel::psf_sigma.

Referenced by mappel::Gauss1DModel::set psf sigma(), and mappel::Gauss2DModel::set psf sigma().

9.6.4.85 void mappel::Gauss1DModel::set_psf_sigma (const VecT & new_psf_sigma) [inline], [inherited]

Definition at line 131 of file Gauss1DModel.h.

References mappel::Gauss1DModel::set_psf_sigma().

9.6.4.86 void mappel::PointEmitterModel::set_rng_seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.6.4.87 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

9.6.4.88 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

9.6.4.89 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.6.4.90 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::heck_param_shape(),\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::helpintEmitterModel::h$

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.6.4.91 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.6.5 Member Data Documentation

9.6.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

```
9.6.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]
Default level at which to estimate confidence intervals must be in range (0.1).
Definition at line 57 of file PointEmitterModel.h.
9.6.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]
Default optimization method for MLE/MAP estimation.
Definition at line 51 of file PointEmitterModel.h.
9.6.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.6.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.6.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.6.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.6.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.6.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
```

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.6.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.6.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D content is set_background_mcmc_sampling().

9.6.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.6.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.6.5.14 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 53 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

9.6.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.6.5.16 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.6.5.17 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

```
9.6.5.18 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
9.6.5.19 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Dscandidate(), mappel::MCMCAdaptor2Dscandidate(), mappel::MCMCAdaptor1Dscandidate(), mappel::MCMCAdaptor1Dccandidate(), mappel::MCMCAdaptor1Dccandidate(), and mappel::MCMCAdaptor1Dccandidate(), m

```
9.6.5.20 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

9.6.5.21 const double mappel::MCMCAdaptorBase::global default mcmc sigma scale = 0.05 [static],[inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.6.5.22 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

9.6.5.23 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.6.5.25 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.6.5.27 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmi

9.6.5.28 const std::string mappel::Gauss1DMAP::name [static]

Definition at line 34 of file Gauss1DMAP.h.

9.6.5.29 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.6.5.30 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set prior().

9.6.5.31 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.6.5.32 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

9.6.5.33 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \(\) _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DsModel(), mappel\(\) ::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparams(), mappel::Gauss1DsModel\(\) ::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::has_\(\) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::

9.6.5.34 const StringVecT mappel::Gauss1DModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

9.6.5.35 double mappel::Gauss1DModel::psf_sigma [protected], [inherited]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::Gauss1DModel::get_psf_sigma(), mappel::Gauss1DModel::pixel_prad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss1D \leftarrow Model::Stencil().

9.6.5.36 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

9.6.5.37 ImageSizeT mappel::ImageFormat1DBase::size [protected],[inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

9.6.5.38 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::poin

The documentation for this class was generated from the following files:

- Gauss1DMAP.h
- Gauss1DMAP.cpp

9.7 mappel::Gauss1DMLE Class Reference

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DMLE.h>

Inheritance diagram for mappel::Gauss1DMLE:

Public Types

```
    using StencilVecT = std::vector < Stencil >

• using ParamT = arma::vec
• using ParamVecT = arma::mat

    using ImageCoordT = uint32 t

• using ImagePixeIT = double

    template<class CoordT >

  using ImageSizeShapeT = CoordT

    template<class CoordT >

  using ImageSizeVecShapeT = arma::Col < CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template < class PixeIT >

  using ImageShapeT = arma::Col< PixelT >

    template<class PixelT >

  using ImageStackShapeT = arma::Mat< PixeIT >
using ImageT = ImageShapeT < ImagePixeIT >
```

using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- Gauss1DMLE (arma::Col< ImageCoordT > size, VecT psf_sigma, const std::string &prior_type=DefaultPrior
 — Type)
- Gauss1DMLE (ImageSizeT size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss1DMLE (ImageSizeT size, double psf_sigma, CompositeDist &&prior)
- Gauss1DMLE (ImageSizeT size, double psf_sigma, const CompositeDist &prior)
- Gauss1DMLE (const Gauss1DMLE &o)
- Gauss1DMLE & operator= (const Gauss1DMLE &o)
- Gauss1DMLE (Gauss1DMLE &&o)
- Gauss1DMLE & operator= (Gauss1DMLE &&o)
- · double get psf sigma () const

using ModelDataT = ImageT

using ModelDataStackT = ImageStackT

- double get psf sigma (ldxT idx) const
- void set_psf_sigma (double new_psf_sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (IdxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (ldxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const

- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (IdxT n) const
- template<class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- · MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- · const CompositeDist & get prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size image_stack (const ImageStackT &stack) const

- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
 void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- ImageSizeT get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set_size (const ImageSizeT &size_)
- void set size (const arma::Col< ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- · IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make default prior (ldxT size, const std::string &prior type)
- static CompositeDist make default prior beta position (ldxT size)
- static CompositeDist make_default_prior_normal_position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

• static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global_max_size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- · double psf sigma
- CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta x =0
- double eta I =0
- double eta_bg =0
- · IdxT num phases
- · double sigma scale

9.7.1 Detailed Description

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Model: Gauss1DModel - 1D Gaussian PSF with fixed PSF sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 23 of file Gauss1DMLE.h.

9.7.2 Member Typedef Documentation

9.7.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.7.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.7.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.7.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.7.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.7.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.7.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.7.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

9.7.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

9.7.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

9.7.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.7.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.7.2.15 using mappel::Gauss1DModel::StencilVecT = std::vector<Stencil> [inherited]

Definition at line 49 of file Gauss1DModel.h.

9.7.3 Constructor & Destructor Documentation

9.7.3.1 mappel::Gauss1DMLE::Gauss1DMLE (arma::Col< ImageCoordT > size, VecT psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 11 of file Gauss1DMLE.cpp.

9.7.3.2 mappel::Gauss1DMLE::Gauss1DMLE (ImageSizeT size, double psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 15 of file Gauss1DMLE.cpp.

9.7.3.3 mappel::Gauss1DMLE::Gauss1DMLE (ImageSizeT size, double psf_sigma, CompositeDist && prior)

Definition at line 19 of file Gauss1DMLE.cpp.

9.7.3.4 mappel::Gauss1DMLE::Gauss1DMLE (ImageSizeT size, double psf_sigma, const CompositeDist & prior)

Definition at line 27 of file Gauss1DMLE.cpp.

9.7.3.5 mappel::Gauss1DMLE::Gauss1DMLE (const Gauss1DMLE & o)

Definition at line 35 of file Gauss1DMLE.cpp.

9.7.3.6 mappel::Gauss1DMLE::Gauss1DMLE (Gauss1DMLE && o)

Definition at line 43 of file Gauss1DMLE.cpp.

- 9.7.4 Member Function Documentation
- 9.7.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

9.7.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.7.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

9.7.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.7.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.7.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.7.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.7.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel(), mappel

9.7.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.7.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

9.7.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

```
9.7.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams ( ) const [inline],
        [inherited]
Definition at line 231 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.7.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack( const ImageStackT & stack,
        ImageCoordT n ) const [inline], [inherited]
Definition at line 108 of file ImageFormat1DBase.h.
9.7.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound( ) const [inline],
        [inherited]
Definition at line 219 of file PointEmitterModel.h.
References mappel::PointEmitterModel::lbound.
Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and
mappel::MCMCAdaptor1D::set background mcmc sampling().
9.7.4.17 | IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases( ) const [inherited]
Definition at line 56 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::num_phases.
9.7.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale( ) const [inherited]
Definition at line 53 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::sigma_scale.
9.7.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline],[inherited]
Definition at line 215 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
9.7.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 167 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num params.
```

9.7.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels() const [inline], [inherited]

Definition at line 82 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.7.4.22 StringVecT mappel::PointEmitterModel::get param names () const [inline], [inherited]

Definition at line 255 of file PointEmitterModel.h.

Referenced by mappel::ImageFormat1DBase::get stats().

References mappel::PointEmitterModel::prior.

9.7.4.23 CompositeDist & mappel::PointEmitterModel::get prior() [inline], [inherited]

Definition at line 207 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update internal 1Dsum estimators().

9.7.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 211 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.25 double mappel::Gauss1DModel::get_psf_sigma() const [inline], [inherited]

Definition at line 127 of file Gauss1DModel.h.

References mappel::Gauss1DModel::psf_sigma.

Referenced by mappel::Gauss1DModel::get_stats().

9.7.4.26 double mappel::Gauss1DModel::get_psf_sigma (ldxT idx) const [inherited]

Definition at line 131 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::psf_sigma.

9.7.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 127 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.7.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.7.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.7.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.7.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

9.7.4.32 StatsT mappel::Gauss1DModel::get_stats() const [inherited]

Definition at line 178 of file Gauss1DModel.cpp.

 $References \quad mappel::Gauss1DModel::get_psf_sigma(), \quad mappel::MCMCAdaptor1D::get_stats(), \quad mappel::Image \leftarrow Format1DBase::get_stats(), \quad and \quad mappel::PointEmitterModel::get_stats().$

9.7.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.7.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.35 Gauss1DModel::Gauss1DModel::initial_theta_estimate(const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make param(), and mappel::Gauss1DModel::Stencil::theta.

9.7.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 207 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::l(), mappel::Gauss1DModel ← ::make stencil(), mappel::PointEmitterModel::num params, and mappel::ImageFormat1DBase::size.

9.7.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior(ldxT size, const std::string & prior_type) [static], [inherited]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DModel::make_default_prior_beta_position(), and mappel::

Gauss1DModel::make default prior normal position().

Definition at line 80 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_prior_component_position_beta().

Referenced by mappel::Gauss1DModel::make_default_prior().

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component intensity(), and mappel::PointEmitterModel::make prior component position normal().

Referenced by mappel::Gauss1DModel::make_default_prior().

9.7.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.7.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.7.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.7.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.7.4.44 MatT mappel::PointEmitterModel::make_param_mat()const [inline],[inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.7.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.7.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.7.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.7.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(| ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

9.7.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.7.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position(ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static],[inherited]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_ prior_component_position_beta().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

9.7.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.7.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.7.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.7.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.7.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_component_prior_co

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

9.7.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss1DModel::initial_theta_estimate().

9.7.4.57 Gauss1DMLE & mappel::Gauss1DMLE::operator= (const Gauss1DMLE & o)

Definition at line 51 of file Gauss1DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D \leftarrow Model::operator=(), and mappel::PointEmitterModel::operator=().

9.7.4.58 Gauss1DMLE & mappel::Gauss1DMLE::operator= (Gauss1DMLE && o)

Definition at line 62 of file Gauss1DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D \leftarrow Model::operator=(), and mappel::PointEmitterModel::operator=().

9.7.4.59 void mappel::Gauss1DModel::pixel_grad (IdxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

Referenced by mappel::Gauss1DModel::pixel hess update().

9.7.4.60 void mappel::Gauss1DModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1D \leftarrow Model::psf_sigma.

9.7.4.61 void mappel::Gauss1DModel::pixel_hess (ldxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 159 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::← Stencil::I(), and mappel::Gauss1DModel::psf sigma.

9.7.4.62 void mappel::Gauss1DModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad. MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), mappel::PointEmitterModel ← ::make param(), mappel::Gauss1DModel::pixel grad(), and mappel::Gauss1DModel::psf sigma.

9.7.4.63 double mappel::Gauss1DModel::pixel_model_value(ldxTi, const Stencil & s) const [inline], [inherited]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

9.7.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.7.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta)
const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.7.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.67 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_← x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.7.4.68 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed parameters mask, double step scale = 1.0) const [inherited]

Definition at line 122 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_i, mappel::MCMCAdaptor1D::eta_i x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.7.4.69 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.70 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.7.4.71 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.7.4.72 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.74 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.75 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.7.4.76 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.7.4.77 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Industrial Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.7.4.78 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.7.4.79 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C Ds().

9.7.4.80 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma _ __scale.

9.7.4.81 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.7.4.82 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

9.7.4.83 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.7.4.84 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma) [inherited]

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and mappel::Gauss1DModel::psf_sigma.

Referenced by mappel::Gauss1DModel::set psf sigma(), and mappel::Gauss2DModel::set psf sigma().

9.7.4.85 void mappel::Gauss1DModel::set_psf_sigma (const VecT & new_psf_sigma) [inline], [inherited]

Definition at line 131 of file Gauss1DModel.h.

References mappel::Gauss1DModel::set_psf_sigma().

9.7.4.86 void mappel::PointEmitterModel::set_rng_seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.7.4.87 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

9.7.4.88 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

9.7.4.89 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.7.4.90 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::heck_param_shape(),\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::helpintEmitterModel::h$

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.7.4.91 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.7.5 Member Data Documentation

9.7.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

9.7.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited] Default level at which to estimate confidence intervals must be in range (0.1). Definition at line 57 of file PointEmitterModel.h. 9.7.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited] Default optimization method for MLE/MAP estimation. Definition at line 51 of file PointEmitterModel.h. 9.7.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited] Number of samples to throw away (burn-in) on initialization. Definition at line 55 of file PointEmitterModel.h. 9.7.5.5 const ldxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited] Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.) Definition at line 54 of file PointEmitterModel.h. 9.7.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited] Keep every # samples. [Value of 0 indicates use the model default. This is suggested.]. Definition at line 56 of file PointEmitterModel.h. 9.7.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited] Default position parameter in symmetric beta-distributions Definition at line 59 of file PointEmitterModel.h. 9.7.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited] Default shape for intensity gamma distributions Definition at line 63 of file PointEmitterModel.h. 9.7.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxI = INFINITY [static], [inherited] Default maximum emitter intensity Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.7.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanI = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.7.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D content is set_background_mcmc_sampling().

9.7.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.7.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.7.5.14 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 53 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

9.7.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.7.5.16 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.7.5.17 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

9.7.5.18 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.7.5.19 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Dscandidate(), mappel::MCMCAdaptor2Dscandidate(), mappel::MCMCAdaptor1Dscandidate(), mappel::MCMCAdaptor1Dccandidate(), mappel::MCMCAdaptor1Dccandidate(), and mappel::MCMCAdaptor1Dccandidate(), m

9.7.5.20 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

9.7.5.21 const double mappel::MCMCAdaptorBase::global default mcmc sigma scale = 0.05 [static],[inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.7.5.22 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

9.7.5.23 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

9.7.5.25 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

9.7.5.27 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmi

9.7.5.28 const std::string mappel::Gauss1DMLE::name [static]

Definition at line 34 of file Gauss1DMLE.h.

9.7.5.29 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static],[inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.7.5.30 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set prior().

9.7.5.31 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.7.5.32 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

9.7.5.33 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

9.7.5.34 const StringVecT mappel::Gauss1DModel::prior_types [static],[inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

9.7.5.35 double mappel::Gauss1DModel::psf_sigma [protected], [inherited]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::Gauss1DModel::get_psf_sigma(), mappel::Gauss1DModel::pixel_prad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss1D \leftarrow Model::Stencil().

9.7.5.36 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

9.7.5.37 ImageSizeT mappel::ImageFormat1DBase::size [protected],[inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

9.7.5.38 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::perator=(), map

The documentation for this class was generated from the following files:

- · Gauss1DMLE.h
- Gauss1DMLE.cpp

9.8 mappel::Gauss1DModel Class Reference

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DModel.h>

Inheritance diagram for mappel::Gauss1DModel:

Classes

· class Stencil

Stencil for 1D fixed-sigma models.

Public Types

```
using StencilVecT = std::vector< Stencil >
using ParamT = arma::vec
using ParamVecT = arma::mat
using ImageCoordT = uint32_t
using ImagePixelT = double
template<class CoordT >
using ImageSizeShapeT = CoordT
template<class CoordT >
using ImageSizeVecShapeT = arma::Col< CoordT >
using ImageSizeVecShapeT = lmageSizeShapeT< ImageCoordT >
using ImageSizeVecT = ImageSizeVecShapeT< ImageCoordT >
template<class PixelT >
using ImageShapeT = arma::Col< PixelT >
template<class PixelT >
using ImageStackShapeT = arma::Mat< PixelT >
```

Public Member Functions

- double get_psf_sigma () const
- double get_psf_sigma (ldxT idx) const
- void set_psf_sigma (double new_psf_sigma)

using ImageT = ImageShapeT < ImagePixeIT >

using ImageStackT = ImageStackShapeT < ImagePixeIT >

- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- · double pixel model value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get num params () const
- · void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template < class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make_param_mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- · IdxT get num hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- · void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template < class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set_size (const ImageSizeT &size_)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- ldxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make default prior (ldxT size, const std::string &prior type)
- static CompositeDist make default prior beta position (ldxT size)
- static CompositeDist make default prior normal position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static CompositeDist make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

• static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

• static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

- static const double DefaultConfidenceLevel = 0.95
 - Default level at which to estimate confidence intervals must be in range (0,1).
- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global max size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- Gauss1DModel (IdxT size, double psf_sigma)
- Gauss1DModel (const Gauss1DModel &o)
- Gauss1DModel (Gauss1DModel &&o)
- Gauss1DModel & operator= (const Gauss1DModel &o)
- Gauss1DModel & operator= (Gauss1DModel &&o)
- void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- double psf_sigma
- · CompositeDist prior
- IdxT num params
- IdxT num hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_x =0
- double eta I =0
- double eta bg =0
- IdxT num phases
- double sigma_scale

9.8.1 Detailed Description

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

This base class defines the Stencil type for 1D Gaussian PSF as well as the prior shape and parameters.

Initialized by an integer, size, and double, psf_sigma.

Definition at line 24 of file Gauss1DModel.h.

9.8.2 Member Typedef Documentation

9.8.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.8.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.8.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.8.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.8.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.8.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

9.8.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.8.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.8.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

9.8.2.11 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.8.2.12 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.8.2.13 using mappel::Gauss1DModel::StencilVecT = std::vector<Stencil>

Definition at line 49 of file Gauss1DModel.h.

9.8.3 Constructor & Destructor Documentation

9.8.3.1 mappel::Gauss1DModel::Gauss1DModel (ldxT size, double psf_sigma) [protected]

Definition at line 12 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma().

9.8.3.2 mappel::Gauss1DModel::Gauss1DModel (const Gauss1DModel & o) [protected]

Definition at line 20 of file Gauss1DModel.cpp.

9.8.3.3 mappel::Gauss1DModel::Gauss1DModel (Gauss1DModel && o) [protected]

Definition at line 26 of file Gauss1DModel.cpp.

9.8.4 Member Function Documentation

9.8.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

9.8.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

9.8.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

9.8.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.8.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.8.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

9.8.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.8.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

Referenced by Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DsModel:

9.8.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

9.8.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

9.8.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.8.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

9.8.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound () const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.8.4.17 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.8.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale()const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma scale.

```
9.8.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline],[inherited]
Definition at line 215 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_hyperparams.
9.8.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 167 of file PointEmitterModel.h.
References\ mappel:: Point Emitter Model:: num\_params.
9.8.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
        [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get_stats().
9.8.4.22 StringVecT mappel::PointEmitterModel::get param_names( )const [inline],[inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.8.4.23 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
9.8.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.8.4.25 double mappel::Gauss1DModel::get_psf_sigma() const [inline]
Definition at line 127 of file Gauss1DModel.h.
References psf sigma.
Referenced by get stats().
```

9.8.4.26 double mappel::Gauss1DModel::get_psf_sigma (IdxT idx) const Definition at line 131 of file Gauss1DModel.cpp. References psf_sigma. 9.8.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited] Definition at line 127 of file PointEmitterModel.cpp. References mappel::rng_manager. 9.8.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited] Definition at line 122 of file PointEmitterModel.cpp. References mappel::rng_manager. 9.8.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline], [inherited] Definition at line 71 of file ImageFormat1DBase.h. References mappel::ImageFormat1DBase::size. Referenced by mappel::ImageFormat1DBase::get_stats(). 9.8.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited] Definition at line 20 of file ImageFormat1DBase.cpp. References mappel::ImageFormat1DBase::size. 9.8.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited] Definition at line 101 of file ImageFormat1DBase.h. 9.8.4.32 StatsT mappel::Gauss1DModel::get_stats () const

References get psf sigma(), mappel::MCMCAdaptor1D::get stats(), mappel::ImageFormat1DBase::get stats(), and

Definition at line 178 of file Gauss1DModel.cpp.

mappel::PointEmitterModel::get stats().

Generated by Doxygen

9.8.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.8.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.35 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im) const [inline]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make param(), and mappel::Gauss1DModel::Stencil::theta.

9.8.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const

Definition at line 207 of file Gauss1DModel.cpp.

 $References\ mappel::Gauss1DModel::Stencil::bg(),\ mappel::Gauss1DModel::Stencil::l(),\ make_stencil(),\ mappel::PointEmitterModel::num_params, and mappel::ImageFormat1DBase::size.$

9.8.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior(ldxT size, const std::string & prior_type) [static]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), make_default_prior_beta_position(), and make_default_prior_normal_position().

9.8.4.38 CompositeDist mappel::Gauss1DModel::make_default_prior_beta_position(ldxT size) [static]

Definition at line 80 of file Gauss1DModel.cpp.

 $References \quad mappel:: PointEmitterModel:: DefaultPriorPixelMeanBG, \quad mappel:: PointEmitterModel:: make_prior_ \\ component_intensity(), and mappel:: PointEmitterModel:: make_prior_ \\ component_position_beta().$

Referenced by make default prior().

9.8.4.39 CompositeDist mappel::Gauss1DModel::make_default_prior_normal_position(ldxT size) [static]

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component intensity(), and mappel::PointEmitterModel::make prior component position normal().

Referenced by make default prior().

9.8.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.8.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.8.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make param() const [inline],[inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta-estimate(), mappel::Gauss2DsModel::pixel_heta-estimate(), mappel::Gauss2DsModel::pixel_heta-estimate(), mappel::Gauss2DModel::pixel_heta-estimate(), mappel::Gauss2DsModel::pixel_heta-estimate(), mappel::Gauss2DsMo

9.8.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.8.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.8.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat (FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.8.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(| ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.8.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.8.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

9.8.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.8.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_component_position beta().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

9.8.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_ \leftarrow beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel-::Gauss2DsModel::make_prior_beta_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), make_default_prior_normal_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), make_default_prior_normal_position(), make_default_prior_normal_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), make_default_prior_normal_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), make_default_prior_normal_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), make_default_prior_normal_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), make_default_prior_normal_position(), make_default_prior_normal_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), mappel-::Gauss2DsModel::make_prior_normal_position(), make_default_prior_normal_position(), make_default_prior_normal_positi

9.8.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = DefaultPriorBetaPos) [static],[inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_deta_position(), mappel::Gauss2DsModel::make_default_prior_deta_position(), mappel::Gauss2DModel::make_prior_beta_default_prior_deta_default_prior_deta_default_prior_deta_default_prior_deta_default_prior_deta_position(), mappel::Gauss2DsModel::make_prior_beta_default_prior_deta_deta_default_pri

9.8.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mapp

9.8.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.8.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_
prior_component_position_normal().

Referenced by mappel::Gauss2DModel::make internal 1Dsum estimator().

9.8.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by initial_theta_estimate().

9.8.4.57 Gauss1DModel & mappel::Gauss1DModel::operator=(const Gauss1DModel & o) [protected]

Definition at line 32 of file Gauss1DModel.cpp.

References mappel::MCMCAdaptor1D::operator=(), and psf_sigma.

Referenced by mappel::Gauss1DMAP::operator=(), and mappel::Gauss1DMLE::operator=().

9.8.4.58 Gauss1DModel & mappel::Gauss1DModel::operator=(Gauss1DModel && o) [protected]

Definition at line 41 of file Gauss1DModel.cpp.

References DefaultPriorType, mappel::MCMCAdaptor1D::operator=(), prior_types, and psf_sigma.

9.8.4.59 void mappel::Gauss1DModel::pixel_grad (IdxT i, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel \leftrightarrow ::Stencil::X.

Referenced by pixel_hess_update().

9.8.4.60 void mappel::Gauss1DModel::pixel_grad2 (IdxT i, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and psf_sigma.

9.8.4.61 void mappel::Gauss1DModel::pixel_hess (IdxT i, const Stencil & s, MatT & hess) const [inline]

Definition at line 159 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::← Stencil::I(), and psf_sigma.

9.8.4.62 void mappel::Gauss1DModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad. MatT & hess) const

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), mappel::PointEmitterModel ::make_param(), pixel_grad(), and psf_sigma.

9.8.4.63 double mappel::Gauss1DModel::pixel_model_value (IdxT i, const Stencil & s) const [inline]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

9.8.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.8.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta)
const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.8.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.67 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_← x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.8.4.68 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed parameters mask, double step scale = 1.0) const [inherited]

Definition at line 122 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_i, mappel::MCMCAdaptor1D::eta_i x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.8.4.69 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.70 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.8.4.71 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.8.4.72 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

9.8.4.73 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & desc) [inline], [inherited]

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.74 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.75 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.8.4.76 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.8.4.77 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Industrial Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.8.4.78 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.8.4.79 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C Ds().

9.8.4.80 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma _ _ scale.

9.8.4.81 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.8.4.82 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

9.8.4.83 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.8.4.84 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma)

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and psf_sigma.

Referenced by set psf sigma(), and mappel::Gauss2DModel::set psf sigma().

9.8.4.85 void mappel::Gauss1DModel::set_psf_sigma (const VecT & new_psf_sigma) [inline]

Definition at line 131 of file Gauss1DModel.h.

References set_psf_sigma().

9.8.4.86 void mappel::PointEmitterModel::set_rng_seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.8.4.87 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

9.8.4.88 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

9.8.4.89 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.8.4.90 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::hound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmit$

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), make_stencil(), mappel::Gauss1DsModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_ \hookleftarrow in bounds().

9.8.4.91 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.8.5 Member Data Documentation

9.8.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

```
9.8.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]
Default level at which to estimate confidence intervals must be in range (0,1).
Definition at line 57 of file PointEmitterModel.h.
9.8.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]
Default optimization method for MLE/MAP estimation.
Definition at line 51 of file PointEmitterModel.h.
9.8.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.8.5.5 const ldxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.8.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.8.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.8.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.8.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxI = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
Referenced by mappel::PointEmitterModel::make prior component intensity().
```

9.8.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanI = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.8.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_deta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_default_prior_normal_position(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.8.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.8.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.8.5.14 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static]

Definition at line 53 of file Gauss1DModel.h.

Referenced by operator=().

9.8.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

```
9.8.5.17 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
9.8.5.18 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Dc(), mappel:

```
9.8.5.19 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

9.8.5.20 const double mappel::MCMCAdaptorBase::global default mcmc sigma scale = 0.05 [static],[inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.8.5.21 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

9.8.5.22 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.8.5.24 const double mappel::PointEmitterModel::global min psf sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check psf sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.8.5.26 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmi

9.8.5.27 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.8.5.28 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.8.5.29 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2Ds
Model::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_extack(), mappel::PointEmitterModel::make_param_extack(), mappel::PointEmitterModel::poi

```
9.8.5.30 | IdxT mappel::MCMCAdaptorBase::num_phases [protected],[inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
9.8.5.31 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set

9.8.5.32 const StringVecT mappel::Gauss1DModel::prior_types [static]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by operator=().

9.8.5.33 double mappel::Gauss1DModel::psf_sigma [protected]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), get_psf_sigma(), operator=(), pixel_grad2(), pixel_hess(), pixel_hess_update(), set_psf_sigma(), and mappel::Gauss1DModel::Stencil::Stencil().

9.8.5.34 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

9.8.5.35 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_image_shape(), mappel::Gauss1DsModel::Stencil::compute \leftarrow _derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::ImageFormat1DBase::get_num_ \leftarrow pixels(), mappel::ImageFormat1DBase::get_size(), initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::ImageFormat1DBase::make_image(), mappel::ImageFormat1DBase::make_image_stack(), mappel::ImageFormat1DBase::set_size(), mappel::Gauss1DsModel::Stencil(), and mappel::Gauss1DModel \leftarrow ::Stencil::Stencil().

9.8.5.36 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubo

The documentation for this class was generated from the following files:

- Gauss1DModel.h
- Gauss1DModel.cpp

9.9 mappel::Gauss1DsMAP Class Reference

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsMAP.h>

Inheritance diagram for mappel::Gauss1DsMAP:

Public Types

- using StencilVecT = std::vector< Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- $\bullet \ \ \text{template}{<} \text{class CoordT} >$

using ImageSizeShapeT = CoordT

template < class CoordT >

using ImageSizeVecShapeT = arma::Col < CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

using ImageShapeT = arma::Col< PixelT >

• template<class PixeIT >

using ImageStackShapeT = arma::Mat< PixeIT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

Gauss1DsMAP (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string &prior ← type=DefaultPriorType)

- Gauss1DsMAP (ImageSizeT size, double min_sigma, double max_sigma, const std::string &prior_type=Default
 —
 PriorType)
- Gauss1DsMAP (ImageSizeT size, CompositeDist &&prior)
- Gauss1DsMAP (ImageSizeT size, const CompositeDist &prior)
- Gauss1DsMAP (const Gauss1DsMAP &o)
- Gauss1DsMAP & operator= (const Gauss1DsMAP &o)
- Gauss1DsMAP (Gauss1DsMAP &&o)
- Gauss1DsMAP & operator= (Gauss1DsMAP &&o)
- double get min sigma () const
- double get_max_sigma () const
- void set min sigma (double min sigma)
- void set_min_sigma (const VecT &min_sigma)
- void set_max_sigma (double max_sigma)
- void set_max_sigma (const VecT &max_sigma)
- · StatsT get stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- · void pixel hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- Stencil initial_theta_estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get num params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make param stack (ldxT n, FillT fill) const

- · MatT make param mat () const
- template < class FillT >

MatT make param mat (FillT fill) const

- · CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)

- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col < ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set_intensity_mcmc_sampling (double eta_I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- · double get_mcmc_sigma_scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

 static CompositeDist make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string &prior_type)

- static CompositeDist make default prior beta position (ldxT size, double min sigma, double max sigma)
- static CompositeDist make default prior normal position (ldxT size, double min sigma, double max sigma)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)
- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_ double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get rng generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

• static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const ldxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2

- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global_max_size = 512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator names

Protected Member Functions

void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- · CompositeDist prior
- · IdxT num params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_sigma =-1
- double eta x =0
- double eta_I =0
- double eta bg =0
- IdxT num phases
- · double sigma_scale

9.9.1 Detailed Description

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

Model: Gauss1DsModel a 1D gaussian PSF with variable psf_sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MAPstimator - Maximum a-posteriori estimator

Definition at line 24 of file Gauss1DsMAP.h.

9.9.2 Member Typedef Documentation

9.9.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.9.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.9.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.9.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.9.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.9.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.9.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.9.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

9.9.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

9.9.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

9.9.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.9.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.9.2.15 using mappel::Gauss1DsModel::StencilVecT = std::vector<Stencil> [inherited]

Definition at line 47 of file Gauss1DsModel.h.

9.9.3 Constructor & Destructor Documentation

9.9.3.1 mappel::Gauss1DsMAP::Gauss1DsMAP (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 12 of file Gauss1DsMAP.cpp.

9.9.3.2 mappel::Gauss1DsMAP::Gauss1DsMAP (ImageSizeT size, double min_sigma, double max_sigma, const std::string & prior type = DefaultPriorType)

Definition at line 16 of file Gauss1DsMAP.cpp.

9.9.3.3 mappel::Gauss1DsMAP::Gauss1DsMAP (ImageSizeT size, CompositeDist && prior)

Definition at line 20 of file Gauss1DsMAP.cpp.

9.9.3.4 mappel::Gauss1DsMAP::Gauss1DsMAP (ImageSizeT size, const CompositeDist & prior)

Definition at line 28 of file Gauss1DsMAP.cpp.

9.9.3.5 mappel::Gauss1DsMAP::Gauss1DsMAP (const Gauss1DsMAP & o)

Definition at line 36 of file Gauss1DsMAP.cpp.

9.9.3.6 mappel::Gauss1DsMAP::Gauss1DsMAP (Gauss1DsMAP && o)

Definition at line 44 of file Gauss1DsMAP.cpp.

- 9.9.4 Member Function Documentation
- 9.9.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.9.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.9.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

9.9.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.9.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.9.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta_stack(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel::theta_stack_in_bounds().

9.9.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

9.9.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

9.9.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

9.9.4.10 void ImageFormat1DBase::check_size (const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global max size, and mappel::ImageFormat1DBase::global min size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.9.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

9.9.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.9.4.17 double mappel::Gauss1DsModel::get_max_sigma()const [inline], [inherited]

Definition at line 102 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss1DsModel::get_stats(), and mappel::Gauss1DsModel::set_min_sigma().

9.9.4.18 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.9.4.19 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale()const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma scale.

9.9.4.20 double mappel::Gauss1DsModel::get_min_sigma() const [inline], [inherited]

Definition at line 98 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss1DsModel::get_stats(), and mappel::Gauss1DsModel::set_max_sigma().

9.9.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_hyperparams.

9.9.4.22 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

```
9.9.4.23 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
        [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get stats().
9.9.4.24 StringVecT mappel::PointEmitterModel::get param names ( ) const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.9.4.25 CompositeDist & mappel::PointEmitterModel::get prior() [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
9.9.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.9.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator( ) [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng manager.
9.9.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited]
Definition at line 122 of file PointEmitterModel.cpp.
References mappel::rng manager.
9.9.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size( ) const [inline], [inherited]
Definition at line 71 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get stats().
```

9.9.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.9.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

9.9.4.32 StatsT mappel::Gauss1DsModel::get_stats() const [inherited]

Definition at line 198 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::MCM← CAdaptor1Ds::get_stats(), mappel::ImageFormat1DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMC \leftarrow Adaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.9.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.35 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 173 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::make_param().

9.9.4.36 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 231 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::I(), mappel::PointEmitter (), mappel::Gauss1DsModel::Btencil::I(), mappel::Gauss1DsModel::Btencil::I(), mappel::Image (), mappel:

9.9.4.37 CompositeDist mappel::Gauss1DsModel::make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string & prior type) [static],[inherited]

Definition at line 50 of file Gauss1DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DsModel::make_default_prior_beta_position(), and mappel::

Gauss1DsModel::make default prior normal position().

9.9.4.38 CompositeDist mappel::Gauss1DsModel::make_default_prior_beta_position (IdxT size, double min_sigma, double max sigma) [static],[inherited]

Definition at line 72 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ \hookleftarrow component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::Point \hookleftarrow EmitterModel::make prior component sigma().

Referenced by mappel::Gauss1DsModel::make default prior().

9.9.4.39 CompositeDist mappel::Gauss1DsModel::make_default_prior_normal_position (IdxT size, double min_sigma, double max_sigma) [static],[inherited]

Definition at line 83 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ \leftarrow component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::Point \leftarrow EmitterModel::make prior component sigma().

Referenced by mappel::Gauss1DsModel::make_default_prior().

9.9.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image()const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.9.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.9.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make param() const [inline],[inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel:: \leftarrow Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel \leftarrow ::pixel_hess_update(), mappel::Gauss2DModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.9.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.9.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.9.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.9.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(| ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.9.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.9.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta \leftarrow _stack().

9.9.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.9.4.50 CompositeDist mappel::Gauss1DsModel::make_prior_beta_position (IdxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma) [static], [inherited]

Definition at line 94 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position beta(), and mappel::PointEmitterModel::make prior component sigma().

Referenced by mappel::Gauss2DsModel::make internal 1Dsum estimator().

9.9.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity(double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition().

9.9.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.9.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.9.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.9.4.55 CompositeDist mappel::Gauss1DsModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

[static], [inherited]

Definition at line 108 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), and mappel::PointEmitterModel::make_prior_component_sigma().

Referenced by mappel::Gauss2DsModel::make internal 1Dsum estimator().

9.9.4.56 Gauss1DsModel::Stencil mappel::Gauss1DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 123 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss1DsModel::initial theta estimate().

9.9.4.57 Gauss1DsMAP & mappel::Gauss1DsMAP::operator= (const Gauss1DsMAP & o)

Definition at line 52 of file Gauss1DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds (), model::operator=(), and mappel::PointEmitterModel::operator=().

9.9.4.58 Gauss1DsMAP & mappel::Gauss1DsMAP::operator= (Gauss1DsMAP && o)

Definition at line 63 of file Gauss1DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds (), model::operator=(), and mappel::PointEmitterModel::operator=().

9.9.4.59 void mappel::Gauss1DsModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 140 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::X.

Referenced by mappel::Gauss1DsModel::pixel hess update().

9.9.4.60 void mappel::Gauss1DsModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::sigma().

9.9.4.61 void mappel::Gauss1DsModel::pixel_hess (ldxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 160 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::I(), and mappel:: \leftarrow Gauss1DsModel::Stencil::sigma().

9.9.4.62 void mappel::Gauss1DsModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio,
ParamT & grad, MatT & hess) const [inherited]

Definition at line 211 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), mappel::Point← EmitterModel::make param(), mappel::Gauss1DsModel::pixel grad(), and mappel::Gauss1DsModel::Stencil::sigma().

Definition at line 134 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::l(), and mappel::Gauss1Ds ← Model::Stencil::X.

9.9.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.9.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta)
const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.9.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.67 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, mappel::MCMCAdaptor1Ds::eta_ sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.9.4.68 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, const IdxVecT & fixed_parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 77 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1Ds::eta_← sigma, mappel::MCMCAdaptor1D::eta x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.9.4.69 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.70 PointEmitterModel::ParamT mappel::PointEmitterModel::sample prior () const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.9.4.71 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.9.4.72 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num params, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
9.9.4.73 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT & desc ) [inline], [inherited]
```

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.74 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.75 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.9.4.76 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.9.4.77 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(double eta_l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.9.4.78 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

9.9.4.79 void mappel::Gauss1DsModel::set_max_sigma (double max_sigma) [inherited]

Definition at line 135 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel:: PointEmitterModel::prior, and mappel::PointEmitterModel::set_ubound().

 $Referenced\ by\ mappel:: Gauss 1Ds Model:: set_max_sigma(),\ mappel:: Gauss 2Ds Model:: set_max_sigma_ratio(),\ and\ mappel:: Gauss 2Ds Model:: set_min_sigma().$

9.9.4.80 void mappel::Gauss1DsModel::set_max_sigma (const VecT & max_sigma) [inherited]

Definition at line 153 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set max sigma().

9.9.4.81 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2←Ds().

9.9.4.82 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← _scale.

9.9.4.83 void mappel::Gauss1DsModel::set_min_sigma (double min_sigma) [inherited]

Definition at line 122 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_max_sigma(), mappel:: \leftarrow PointEmitterModel::prior, and mappel::PointEmitterModel::set lbound().

Referenced by mappel::Gauss1DsModel::set_min_sigma(), and mappel::Gauss2DsModel::set_min_sigma().

9.9.4.84 void mappel::Gauss1DsModel::set_min_sigma (const VecT & min_sigma) [inherited]

Definition at line 148 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set_min_sigma().

9.9.4.85 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.9.4.86 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

9.9.4.87 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.9.4.88 void mappel::PointEmitterModel::set_rng_seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.9.4.89 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

9.9.4.90 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

9.9.4.91 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.9.4.92 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.9.4.93 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.9.5 Member Data Documentation

9.9.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.9.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.9.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.9.5.4 const IdxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.9.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.9.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.9.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.9.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.9.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxI = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.9.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.9.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cdot normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddot::set background mcmc sampling().

9.9.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.9.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.9.5.14 const std::string mappel::Gauss1DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 51 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.9.5.17 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

9.9.5.18 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.9.5.19 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor1Dccample_mcmc_candidate(), mappel::MCMCAdaptor1Dccample_mcmc_candidate(), and mappel::MCMCAdaptor1Dccample_mcmc_candidate(), and mappel::MCMCAdaptor1Dccample_mcmc_candidate().

```
9.9.5.20 double mappel::MCMCAdaptor1Ds::eta_sigma =-1 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor1Ds.h.

Referenced by mappel::MCMCAdaptor1Ds::get_stats(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel:: \leftarrow MCMCAdaptor1Ds::operator=(), and mappel::MCMCAdaptor1Ds::sample_mcmc_candidate().

```
9.9.5.21 double mappel::MCMCAdaptor1D::eta_x =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds:MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds:MCMCAdaptor1Ds(), mappel::MCMCAdaptor2Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds

```
9.9.5.22 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]
```

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

```
9.9.5.23 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]
```

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

```
9.9.5.24 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.9.5.26 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.9.5.28 ParamT mappel::PointEmitterModel::Ibound [protected], [inherited]
```

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_stats(), mappel::PointEmitterModel::pet_stats

```
9.9.5.29 const std::string mappel::Gauss1DsMAP::name [static]
```

Definition at line 35 of file Gauss1DsMAP.h.

9.9.5.30 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.9.5.31 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.9.5.32 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel

```
9.9.5.33 | IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
9.9.5.34 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_param_\(\cdot \) nappel::PointEmitterModel::set_param_\(\cdot \) nappel::PointEmitterModel::set_param_\(\cdot \cdot \) nappel::PointEmitterModel::set_param_\(\cdot \cdot \cdot \) nappel::PointEmitterModel::set_param_\(\cdot \

```
9.9.5.35 const StringVecT mappel::Gauss1DsModel::prior_types [static], [inherited]
```

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

9.9.5.36 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds:

9.9.5.37 ImageSizeT mappel::ImageFormat1DBase::size [protected],[inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_image_shape(), mappel::Gauss1DsModel::Stencil::compute captivatives(), mappel::ImageFormat1DBase::get_num captivatives(), mappel::ImageFormat1DBase::get_num captivatives(), mappel::ImageFormat1DBase::get_size(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::ImageFormat1DBase::make_image(), mappel::ImageFormat1DBase::make_image(), mappel::ImageFormat1DBase::set_size(), mappel::Gauss1DsModel::Stencil::Stencil(), and mappel::Gauss1DModel::Stencil::Stencil().

9.9.5.38 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::

The documentation for this class was generated from the following files:

- Gauss1DsMAP.h
- Gauss1DsMAP.cpp

9.10 mappel::Gauss1DsMLE Class Reference

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsMLE.h>

Inheritance diagram for mappel::Gauss1DsMLE:

mappel::PointEmitterModel mappel::MCMCAdaptorBase

mappel::MCMCAdaptorID

mappel::MCMCAdaptorID

mappel::Model mappel::ImageFormatIDBase mappel::MCMCAdaptorIDs mappel::ImageFormatIDBase mappel::PointEmitterModel

mappel::PointEmitterModel mappel::PointEmitterModel

mappel::PointEmitterModel mappel::PointEmitterModel

mappel::PointEmitterModel mappel::MLEstimator

mappel::GaussIDsModel mappel::GaussIDsMLE

Public Types

```
    using StencilVecT = std::vector < Stencil >

• using ParamT = arma::vec
using ParamVecT = arma::mat

    using ImageCoordT = uint32 t

• using ImagePixeIT = double

    template < class CoordT >

  using ImageSizeShapeT = CoordT

    template<class CoordT >

  using ImageSizeVecShapeT = arma::Col < CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template < class PixeIT >

  using ImageShapeT = arma::Col < PixelT >

    template < class PixelT >

  using ImageStackShapeT = arma::Mat< PixeIT >

    using ImageT = ImageShapeT < ImagePixeIT >

    using ImageStackT = ImageStackShapeT < ImagePixeIT >

    using ModelDataT = ImageT
```

Public Member Functions

- Gauss1DsMLE (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string &prior
 _type=DefaultPriorType)
- Gauss1DsMLE (ImageSizeT size, CompositeDist &&prior)
- Gauss1DsMLE (ImageSizeT size, const CompositeDist &prior)
- Gauss1DsMLE (const Gauss1DsMLE &o)

using ModelDataStackT = ImageStackT

- Gauss1DsMLE & operator= (const Gauss1DsMLE &o)
- Gauss1DsMLE (Gauss1DsMLE &&o)
- Gauss1DsMLE & operator= (Gauss1DsMLE &&o)
- double get_min_sigma () const
- double get_max_sigma () const
- void set_min_sigma (double min_sigma)
- void set_min_sigma (const VecT &min_sigma)
- void set_max_sigma (double max_sigma)
- void set_max_sigma (const VecT &max_sigma)
- StatsT get stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (ldxT i, const Stencil &s) const
- void pixel_grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (ldxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const
- void check psf sigma (const VecT &psf sigma) const
- ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make param stack (ldxT n) const
- template < class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample prior (RngT &rng) const

- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &Ibound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make image () const

- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string &prior type)
- static CompositeDist make_default_prior_beta_position (ldxT size, double min_sigma, double max_sigma)
- static CompositeDist make_default_prior_normal_position (ldxT size, double min_sigma, double max_sigma)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)
- static CompositeDist make_prior_normal_position (ldxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- · static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

• static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

• static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global_max_size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- CompositeDist prior
- IdxT num params
- IdxT num_hyperparams
- ParamT lbound
- ParamT ubound
- ImageSizeT size
- double eta sigma =-1
- double eta x = 0
- double eta I =0
- double eta_bg =0
- · IdxT num phases
- · double sigma scale

9.10.1 Detailed Description

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

Model: Gauss1DsModel - 1D Gaussian PSF with variable PSF sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 24 of file Gauss1DsMLE.h.

9.10.2 Member Typedef Documentation

9.10.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.10.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.10.2.3 template < class PixeIT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixeIT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.10.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.10.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT<ImageCoordT>
[inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.10.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

9.10.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.10.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.10.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

9.10.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

9.10.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

9.10.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.10.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.10.2.15 using mappel::Gauss1DsModel::StencilVecT = std::vector < Stencil > [inherited]

Definition at line 47 of file Gauss1DsModel.h.

9.10.3 Constructor & Destructor Documentation

9.10.3.1 mappel::Gauss1DsMLE::Gauss1DsMLE (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 12 of file Gauss1DsMLE.cpp.

9.10.3.2 mappel::Gauss1DsMLE::Gauss1DsMLE (ImageSizeT size, double min_sigma, double max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 16 of file Gauss1DsMLE.cpp.

9.10.3.3 mappel::Gauss1DsMLE::Gauss1DsMLE (ImageSizeT size, CompositeDist && prior)

Definition at line 20 of file Gauss1DsMLE.cpp.

9.10.3.4 mappel::Gauss1DsMLE::Gauss1DsMLE (ImageSizeT size, const CompositeDist & prior)

Definition at line 28 of file Gauss1DsMLE.cpp.

9.10.3.5 mappel::Gauss1DsMLE::Gauss1DsMLE (const Gauss1DsMLE & o)

Definition at line 36 of file Gauss1DsMLE.cpp.

9.10.3.6 mappel::Gauss1DsMLE::Gauss1DsMLE (Gauss1DsMLE && o)

Definition at line 44 of file Gauss1DsMLE.cpp.

9.10.4 Member Function Documentation

9.10.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

9.10.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.10.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.10.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.10.4.5 void ImageFormat1DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.10.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.10.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.10.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.10.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.10.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

9.10.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

9.10.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

9.10.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

 $Referenced\ by\ mappel::MCMCAdaptor 1D::MCMCAdaptor 1D(),\ mappel::MCMCAdaptor 2D::MCMCAdaptor 2D(),\ and\ mappel::MCMCAdaptor 1D::set_background_mcmc_sampling().$

9.10.4.17 double mappel::Gauss1DsModel::get_max_sigma() const [inline], [inherited]

Definition at line 102 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss1DsModel::get stats(), and mappel::Gauss1DsModel::set min sigma().

9.10.4.18 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

9.10.4.19 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.10.4.20 double mappel::Gauss1DsModel::get_min_sigma() const [inline], [inherited]

Definition at line 98 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss1DsModel::get stats(), and mappel::Gauss1DsModel::set max sigma().

```
9.10.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline], [inherited]
Definition at line 215 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
9.10.4.22 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 167 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_params.
9.10.4.23 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get_stats().
9.10.4.24 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.10.4.25 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
9.10.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.10.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
```

References mappel::rng manager.

9.10.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.10.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get stats().

9.10.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size (IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.10.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

9.10.4.32 StatsT mappel::Gauss1DsModel::get_stats() const [inherited]

Definition at line 198 of file Gauss1DsModel.cpp.

 $References\ mappel::Gauss1DsModel::get_max_sigma(),\ mappel::Gauss1DsModel::get_min_sigma(),\ mappel::MCM \leftarrow CAdaptor1Ds::get_stats(),\ mappel::ImageFormat1DBase::get_stats(),\ and\ mappel::PointEmitterModel::get_stats().$

9.10.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.10.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.35 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 173 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::make param().

9.10.4.36 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 231 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::I(), mappel::PointEmitter \leftarrow Model::Ibound, mappel::Gauss1DsModel::make_stencil(), mappel::Gauss1DsModel::Stencil::sigma(), mappel::Image \leftarrow Format1DBase::size, and mappel::PointEmitterModel::ubound.

9.10.4.37 CompositeDist mappel::Gauss1DsModel::make_default_prior(ldxT size, double min_sigma, double max_sigma, const std::string & prior_type) [static], [inherited]

Definition at line 50 of file Gauss1DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DsModel::make_default_prior_beta_position(), and mappel:: \leftarrow Gauss1DsModel::make_default_prior_normal_position().

9.10.4.38 CompositeDist mappel::Gauss1DsModel::make_default_prior_beta_position (ldxT size, double min_sigma, double max_sigma) [static], [inherited]

Definition at line 72 of file Gauss1DsModel.cpp.

 $References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::Pointcomponent_position_beta(), and mappel::Pointcomponent_sigma().$

Referenced by mappel::Gauss1DsModel::make_default_prior().

9.10.4.39 CompositeDist mappel::Gauss1DsModel::make_default_prior_normal_position (ldxT size, double min_sigma, double max_sigma) [static], [inherited]

Definition at line 83 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::Pointcomponent_sigma().

Referenced by mappel::Gauss1DsModel::make default prior().

9.10.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.10.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.10.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.10.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.10.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.10.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.10.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.10.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.10.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.10.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.10.4.50 CompositeDist mappel::Gauss1DsModel::make_prior_beta_position (IdxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma) [static], [inherited]

Definition at line 94 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), and mappel::PointEmitterModel::make_prior_component_sigma().

 $Referenced\ by\ mappel:: Gauss 2Ds Model:: make_internal_1Dsum_estimator().$

9.10.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity(double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_pri

9.10.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos beta = DefaultPriorBetaPos) [static],[inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.10.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.10.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel:: \leftarrow Gauss2DsModel::make_prior_beta_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.10.4.55 CompositeDist mappel::Gauss1DsModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

[static],[inherited]

Definition at line 108 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior ← _component_position_normal(), and mappel::PointEmitterModel::make_prior_component_sigma().

Referenced by mappel::Gauss2DsModel::make_internal_1Dsum_estimator().

9.10.4.56 Gauss1DsModel::Stencil mappel::Gauss1DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 123 of file Gauss1DsModel.h.

 $References\ mappel:: Gauss 1 Ds Model:: Stencil:: Stencil(),\ and\ mappel:: Point Emitter Model:: theta_in_bounds().$

Referenced by mappel::Gauss1DsModel::initial theta estimate().

9.10.4.57 Gauss1DsMLE & mappel::Gauss1DsMLE::operator= (const Gauss1DsMLE & o)

Definition at line 52 of file Gauss1DsMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds (), model::operator=(), and mappel::PointEmitterModel::operator=().

9.10.4.58 Gauss1DsMLE & mappel::Gauss1DsMLE::operator=(Gauss1DsMLE && o)

Definition at line 63 of file Gauss1DsMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds \leftarrow Model::operator=(), and mappel::PointEmitterModel::operator=().

9.10.4.59 void mappel::Gauss1DsModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 140 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::X.

Referenced by mappel::Gauss1DsModel::pixel hess update().

9.10.4.60 void mappel::Gauss1DsModel::pixel_grad2 (IdxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1Ds ← Model::Stencil::I(), and mappel::Gauss1DsModel::Stencil::sigma().

9.10.4.61 void mappel::Gauss1DsModel::pixel_hess (ldxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 160 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), and mappel:: \leftarrow Gauss1DsModel::Stencil::sigma().

9.10.4.62 void mappel::Gauss1DsModel::pixel_hess_update (ldxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

Definition at line 211 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), mappel::Point
EmitterModel::make_param(), mappel::Gauss1DsModel::pixel_grad(), and mappel::Gauss1DsModel::Stencil::sigma().

9.10.4.63 double mappel::Gauss1DsModel::pixel_model_value (ldxT i, const Stencil & s) const [inline], [inherited]

Definition at line 134 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::Ig(), mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1Ds ← Model::Stencil::X.

9.10.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.10.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.10.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.67 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, mappel::MCMCAdaptor1Ds::eta_ sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.10.4.68 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed_parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 77 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1Ds::eta_ sigma, mappel::MCMCAdaptor1D::eta x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.10.4.69 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.70 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.10.4.71 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.10.4.72 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter← Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.74 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.75 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.10.4.76 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.10.4.77 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Wodel::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.10.4.78 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.10.4.79 void mappel::Gauss1DsModel::set_max_sigma (double max_sigma) [inherited]

Definition at line 135 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel:: PointEmitterModel::prior, and mappel::PointEmitterModel::set ubound().

Referenced by mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_max_sigma_ratio(), and mappel::Gauss2DsModel::set min sigma().

9.10.4.80 void mappel::Gauss1DsModel::set max sigma (const VecT & max sigma) [inherited]

Definition at line 153 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set max sigma().

9.10.4.81 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C Ds().

9.10.4.82 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

 $References\ mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale,\ and\ mappel::MCMCAdaptorBase::sigma_scale.$

9.10.4.83 void mappel::Gauss1DsModel::set min_sigma (double min_sigma) [inherited]

Definition at line 122 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_max_sigma(), mappel::
PointEmitterModel::prior, and mappel::PointEmitterModel::set_lbound().

Referenced by mappel::Gauss1DsModel::set_min_sigma(), and mappel::Gauss2DsModel::set_min_sigma().

9.10.4.84 void mappel::Gauss1DsModel::set_min_sigma (const VecT & min_sigma) [inherited]

Definition at line 148 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set min sigma().

9.10.4.85 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.10.4.86 void mappel::PointEmitterModel::set prior (CompositeDist && prior) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

9.10.4.87 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.10.4.88 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.10.4.89 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DsModel::set_size().

9.10.4.90 void ImageFormat1DBase::set_size(const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

9.10.4.91 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.10.4.92 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.10.4.93 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.10.5 Member Data Documentation

9.10.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 \leftarrow DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.10.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.10.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.10.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.10.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited] Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.) Definition at line 54 of file PointEmitterModel.h. 9.10.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited] Keep every # samples. [Value of 0 indicates use the model default. This is suggested.]. Definition at line 56 of file PointEmitterModel.h. 9.10.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited] Default position parameter in symmetric beta-distributions Definition at line 59 of file PointEmitterModel.h. 9.10.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited] Default shape for intensity gamma distributions Definition at line 63 of file PointEmitterModel.h. 9.10.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited] Default maximum emitter intensity Definition at line 62 of file PointEmitterModel.h. Referenced by mappel::PointEmitterModel::make prior component intensity(). 9.10.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited] Default emitter intensity mean Definition at line 61 of file PointEmitterModel.h. Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(). 9.10.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited] Default per-pixel mean background counts Definition at line 64 of file PointEmitterModel.h. Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make ← default prior beta position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2← DsModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(),

normal position(), mappel::Gauss2DsModel::make default prior normal position(), and mappel::MCMCAdaptor1D←

mappel::Gauss2DModel::make default prior normal position(),

::set background mcmc sampling().

mappel::Gauss1DModel::make default prior ←

9.10.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.10.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.10.5.14 const std::string mappel::Gauss1DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 51 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

9.10.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.10.5.16 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.10.5.17 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

9.10.5.18 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
9.10.5.19 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dcc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dcc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.10.5.20 double mappel::MCMCAdaptor1Ds::eta_sigma =-1 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor1Ds.h.

Referenced by mappel::MCMCAdaptor1Ds::get_stats(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel:: \leftarrow MCMCAdaptor1Ds::operator=(), and mappel::MCMCAdaptor1Ds::sample_mcmc_candidate().

```
9.10.5.21 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::operator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

9.10.5.22 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.10.5.23 const double mappel::MCMCAdaptorBase::global max mcmc sigma scale = 0.5 [static],[inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

9.10.5.24 const double mappel::PointEmitterModel::global max psf sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.10.5.26 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.10.5.28 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEm

```
9.10.5.29 const std::string mappel::Gauss1DsMLE::name [static]
```

Definition at line 35 of file Gauss1DsMLE.h.

```
9.10.5.30 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]
```

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.10.5.31 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.10.5.32 | IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.10.5.33 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

9.10.5.34 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::has_ \leftarrow hyperparam(), mappel::PointEmitterModel::pointEmitt

9.10.5.35 const StringVecT mappel::Gauss1DsModel::prior_types [static], [inherited]

Initial value:

Definition at line 50 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

```
9.10.5.36 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

```
9.10.5.37 | ImageSizeT mappel::ImageFormat1DBase::size [protected],[inherited]
```

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_image_shape(), mappel::Gauss1DsModel::Stencil::compute captivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::ImageFormat1DBase::get_num captivates(), mappel::ImageFormat1DBase::get_size(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::ImageFormat1DBase::make_image(), mappel::ImageFormat1CDBase::make_image(), mappel::Gauss1DsModel::Stencil::Stencil(), and mappel::Gauss1DModel::Stencil::Stencil().

```
9.10.5.38 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]
```

Definition at line 155 of file PointEmitterModel.h.

The documentation for this class was generated from the following files:

- Gauss1DsMLE.h
- Gauss1DsMLE.cpp

9.11 mappel::Gauss1DsModel Class Reference

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsModel.h>

Inheritance diagram for mappel::Gauss1DsModel:

Classes

· class Stencil

Stencil for 1D variable-sigma models.

Public Types

```
using StencilVecT = std::vector < Stencil >
```

- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- template < class CoordT >
 using ImageSizeShapeT = CoordT
- template < class CoordT >
 using ImageSizeVecShapeT = arma::Col < CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >
 using ImageShapeT = arma::Col < PixelT >
- template < class PixelT >
 using ImageStackShapeT = arma::Mat < PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- double get_min_sigma () const
- double get_max_sigma () const
- void set_min_sigma (double min_sigma)
- void set max sigma (double max sigma)
- · void set min sigma (const VecT &min sigma)
- void set max sigma (const VecT &max sigma)
- StatsT get stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (ldxT i, const Stencil &s) const
- void pixel grad (IdxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- · void pixel_hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- · Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get num params () const
- · void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make_param_mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)

- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample prior () const
- void set bounds (const ParamT & lbound, const ParamT & ubound)
- void set Ibound (const ParamT & Ibound)
- void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template < class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set_mcmc_sigma_scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string &prior_type)
- static CompositeDist make_default_prior_beta_position (ldxT size, double min_sigma, double max_sigma)
- static CompositeDist make_default_prior_normal_position (ldxT size, double min_sigma, double max_sigma)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean bg, double kappa bg, double min sigma, double max sigma, double alpha sigma)

- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa I, double mean bg, double kappa bg, double min sigma, double max sigma, double alpha sigma)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global_max_size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global max mcmc sigma scale = 0.5

Protected Member Functions

- Gauss1DsModel (ldxT size_)
- Gauss1DsModel (const Gauss1DsModel &o)
- Gauss1DsModel (Gauss1DsModel &&o)
- Gauss1DsModel & operator= (const Gauss1DsModel &o)
- Gauss1DsModel & operator= (Gauss1DsModel &&o)
- void set mcmc num phases (ldxT num phases)

Protected Attributes

- · CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta sigma =-1
- double eta_x =0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

9.11.1 Detailed Description

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

Definition at line 19 of file Gauss1DsModel.h.

9.11.2 Member Typedef Documentation

9.11.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.11.2.2 using mappel::ImageFormat1DBase::ImagePixeIT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.11.2.3 template < class PixeIT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixeIT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.11.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.11.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT<ImageCoordT>
[inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.11.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

9.11.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.11.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

9.11.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.11.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixelT > [inherited] Data type to represent single image Definition at line 35 of file ImageFormat1DBase.h. **9.11.2.11** using mappel::PointEmitterModel::ParamT = arma::vec [inherited] Parameter vector Definition at line 47 of file PointEmitterModel.h. 9.11.2.12 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited] Vector of parameter vectors Definition at line 48 of file PointEmitterModel.h. 9.11.2.13 using mappel::Gauss1DsModel::StencilVecT = std::vector<Stencil> Definition at line 47 of file Gauss1DsModel.h. 9.11.3 Constructor & Destructor Documentation 9.11.3.1 mappel::Gauss1DsModel::Gauss1DsModel(IdxT size_) [explicit], [protected] Definition at line 12 of file Gauss1DsModel.cpp. 9.11.3.2 mappel::Gauss1DsModel::Gauss1DsModel (const Gauss1DsModel & o) [protected] Definition at line 17 of file Gauss1DsModel.cpp. 9.11.3.3 mappel::Gauss1DsModel::Gauss1DsModel (Gauss1DsModel && o) [protected] Definition at line 22 of file Gauss1DsModel.cpp. 9.11.4 Member Function Documentation 9.11.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited] Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), mappel::PointEmitterModel::lbound, mappel::Point←

EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Generated by Doxygen

9.11.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.11.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

9.11.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.11.4.5 void ImageFormat1DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.11.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.11.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.11.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DsModel::set_max_sigma(), set_min_sigma(), mappel::Gauss2DsModel::set_max_sigma(), set_min_sigma(), mappel::Gauss2DsModel::set_min_sigma(), and mappel::Gauss2DModelGauss2DSModel() ::set_psf_sigma().

9.11.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.11.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

9.11.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

9.11.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

9.11.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

 $Referenced\ by\ mappel::MCMCAdaptor 1D::MCMCAdaptor 1D(),\ mappel::MCMCAdaptor 2D::MCMCAdaptor 2D(),\ and\ mappel::MCMCAdaptor 1D::set_background_mcmc_sampling().$

9.11.4.17 double mappel::Gauss1DsModel::get_max_sigma() const [inline]

Definition at line 102 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by get stats(), and set min sigma().

9.11.4.18 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

 $References\ mappel:: MCMCA daptor Base:: num_phases.$

9.11.4.19 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.11.4.20 double mappel::Gauss1DsModel::get_min_sigma() const [inline]

Definition at line 98 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by get stats(), and set max sigma().

```
9.11.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline], [inherited]
Definition at line 215 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
9.11.4.22 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 167 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_params.
9.11.4.23 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get_stats().
9.11.4.24 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.11.4.25 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
9.11.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.11.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng manager.
```

9.11.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.11.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get stats().

9.11.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size (IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.11.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

9.11.4.32 StatsT mappel::Gauss1DsModel::get_stats () const

Definition at line 198 of file Gauss1DsModel.cpp.

 $References\ get_max_sigma(),\ get_min_sigma(),\ mappel::MCMCAdaptor1Ds::get_stats(),\ mappel::ImageFormat1D \leftarrow Base::get_stats(),\ and\ mappel::PointEmitterModel::get_stats().$

9.11.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.11.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.35 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im) const [inline]

Fast, heuristic estimate of initial theta.

Definition at line 173 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::make param().

9.11.4.36 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const

Definition at line 231 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::l(), mappel::PointEmitter \leftarrow Model::Ibound, make_stencil(), mappel::Gauss1DsModel::Stencil::sigma(), mappel::ImageFormat1DBase::size, and mappel::PointEmitterModel::ubound.

9.11.4.37 CompositeDist mappel::Gauss1DsModel::make_default_prior (IdxT size, double min_sigma, double max_sigma, const std::string & prior_type) [static]

Definition at line 50 of file Gauss1DsModel.cpp.

References mappel::istarts with(), make default prior beta position(), and make default prior normal position().

9.11.4.38 CompositeDist mappel::Gauss1DsModel::make_default_prior_beta_position (ldxT size, double min_sigma, double max_sigma) [static]

Definition at line 72 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ \leftarrow component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::Point \leftarrow EmitterModel::make_prior_component_sigma().

Referenced by make_default_prior().

9.11.4.39 CompositeDist mappel::Gauss1DsModel::make_default_prior_normal_position (IdxT size, double min_sigma, double max_sigma) [static]

Definition at line 83 of file Gauss1DsModel.cpp.

 $References \quad mappel::PointEmitterModel::DefaultPriorPixelMeanBG, \quad mappel::PointEmitterModel::make_prior_component_intensity(), \quad mappel::PointEmitterModel::make_prior_component_position_normal(), \quad and \quad mappel::Pointcomponent_position_normal(), \quad and \quad and$

Referenced by make_default_prior().

9.11.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.11.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.11.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make param() const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss2DModel \leftarrow ::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss1DModel::pixel_hess_update(), pixel_hess_update(), mappel::Gauss2DModel::pixel_ \leftarrow hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.11.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.11.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.11.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.11.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.11.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.11.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

9.11.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.11.4.50 CompositeDist mappel::Gauss1DsModel::make_prior_beta_position (IdxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma) [static]

Definition at line 94 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position beta(), and mappel::PointEmitterModel::make prior component sigma().

Referenced by mappel::Gauss2DsModel::make_internal_1Dsum_estimator().

9.11.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanI, double kappa = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_ormal_position(), mappel::Gauss2DsModel::make_default_prior_ormal_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_ormal_position(), mappel::Gauss1DModel::make_prior_ormal_position().

9.11.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta position(), make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1D Model::make_prior_beta_position(), and mappel::Gauss2DsModel::make_prior_beta_position().

9.11.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cormal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.11.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static],[inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), make_prior_beta_position(), make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.11.4.55 CompositeDist mappel::Gauss1DsModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

[static]

Definition at line 108 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), and mappel::PointEmitterModel::make_prior_component_sigma().

Referenced by mappel::Gauss2DsModel::make_internal_1Dsum_estimator().

9.11.4.56 Gauss1DsModel::Stencil mappel::Gauss1DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 123 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil(), and mappel::PointEmitterModel::theta in bounds().

Referenced by initial_theta_estimate().

9.11.4.57 Gauss1DsModel & mappel::Gauss1DsModel::operator=(const Gauss1DsModel & o) [protected]

Definition at line 27 of file Gauss1DsModel.cpp.

References mappel::MCMCAdaptor1Ds::operator=().

Referenced by mappel::Gauss1DsMAP::operator=(), and mappel::Gauss1DsMLE::operator=().

9.11.4.58 Gauss1DsModel & mappel::Gauss1DsModel::operator=(Gauss1DsModel && o) [protected]

Definition at line 35 of file Gauss1DsModel.cpp.

References DefaultPriorType, mappel::MCMCAdaptor1Ds::operator=(), and prior_types.

9.11.4.59 void mappel::Gauss1DsModel::pixel_grad (IdxT i, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 140 of file Gauss1DsModel.h.

 $References \quad mappel::Gauss1DsModel::Stencil::DXS, \quad mappel::Gauss1DsModel::Stencil::DXS, \quad mappel::Gauss1DsModel::Stencil::I(), and \\ mappel::Gauss1DsModel::Stencil::X.$

Referenced by pixel hess update().

9.11.4.60 void mappel::Gauss1DsModel::pixel_grad2 (IdxT i, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 150 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1Ds← Model::Stencil::I(), and mappel::Gauss1DsModel::Stencil::sigma().

9.11.4.61 void mappel::Gauss1DsModel::pixel_hess (IdxT i, const Stencil & s, MatT & hess) const [inline]

Definition at line 160 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), and mappel:: \leftarrow Gauss1DsModel::Stencil::sigma().

9.11.4.62 void mappel::Gauss1DsModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad. MatT & hess) const

Definition at line 211 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::l(), mappel::← PointEmitterModel::make param(), pixel grad(), and mappel::Gauss1DsModel::Stencil::sigma().

9.11.4.63 double mappel::Gauss1DsModel::pixel_model_value (IdxT i, const Stencil & s) const [inline]

Definition at line 134 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::l(), and mappel::Gauss1Ds ← Model::Stencil::X.

9.11.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.11.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.11.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.67 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1Ds::eta_ sigma, mappel::MCMCAdaptor1D::eta x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.11.4.68 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed_parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 77 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1Ds::eta_← sigma, mappel::MCMCAdaptor1D::eta x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.11.4.69 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.70 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.11.4.71 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.11.4.72 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

9.11.4.73 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & desc) [inline], [inherited]

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.74 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.75 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.11.4.76 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.11.4.77 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Wodel::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.11.4.78 void mappel::PointEmitterModel::set_lbound (const ParamT & *lbound*) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by set_min_sigma().

9.11.4.79 void mappel::Gauss1DsModel::set_max_sigma (double max_sigma)

Definition at line 135 of file Gauss1DsModel.cpp.

 $References\ mappel::PointEmitterModel::check_psf_sigma(),\ get_min_sigma(),\ mappel::PointEmitterModel::prior,\ and\ mappel::PointEmitterModel::set_ubound().$

Referenced by set_max_sigma(), mappel::Gauss2DsModel::set_max_sigma_ratio(), and mappel::Gauss2DsModel ::set_min_sigma().

9.11.4.80 void mappel::Gauss1DsModel::set_max_sigma (const VecT & max_sigma)

Definition at line 153 of file Gauss1DsModel.cpp.

References set max sigma().

9.11.4.81 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.11.4.82 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

9.11.4.83 void mappel::Gauss1DsModel::set_min_sigma (double min_sigma)

Definition at line 122 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), get_max_sigma(), mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::set_lbound().

Referenced by set min sigma(), and mappel::Gauss2DsModel::set min sigma().

9.11.4.84 void mappel::Gauss1DsModel::set_min_sigma (const VecT & min_sigma)

Definition at line 148 of file Gauss1DsModel.cpp.

References set_min_sigma().

9.11.4.85 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.11.4.86 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

9.11.4.87 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.11.4.88 void mappel::PointEmitterModel::set rng seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.11.4.89 void ImageFormat1DBase::set_size(const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

9.11.4.90 void ImageFormat1DBase::set size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set size().

9.11.4.91 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.11.4.92 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_ \leftarrow in bounds().

9.11.4.93 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.11.5 Member Data Documentation

9.11.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.11.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static],[inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.11.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.11.5.4 const IdxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.11.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.11.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.11.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.11.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.11.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.11.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.11.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cormal_position(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.11.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.11.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.11.5.14 const std::string mappel::Gauss1DsModel::DefaultPriorType = "Normal" [static]

Definition at line 51 of file Gauss1DsModel.h.

Referenced by operator=().

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.11.5.17 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
9.11.5.18 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.11.5.19 double mappel::MCMCAdaptor1Ds::eta sigma =-1 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor1Ds.h.

Referenced by mappel::MCMCAdaptor1Ds::get_stats(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::perator=(), and mappel::MCMCAdaptor1Ds::sample mcmc candidate().

```
9.11.5.20 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

```
9.11.5.21 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]
```

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

```
9.11.5.22 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]
```

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

```
9.11.5.23 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
9.11.5.25 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

9.11.5.27 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), initial_theta_estimate(), mappel::Gauss2 \leftarrow DModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_bounds().

9.11.5.28 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.11.5.29 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.11.5.30 | IdxT mappel::PointEmitterModel::num_params [protected],[inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set \leftarrow prior(), mappel::PointEmitterModel::set ubound(), and mappel::PointEmitterModel::theta in bounds().

```
9.11.5.31 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
9.11.5.32 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal ← _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel ::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::Point← EmitterModel::get hyperparam value(), mappel::PointEmitterModel::get hyperparams(), get max sigma(), get min← sigma(), mappel::PointEmitterModel::get param names(), mappel::PointEmitterModel::get prior(), mappel::Point← EmitterModel::get_stats(), mappel::PointEmitterModel::has_hyperparam(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::PointEmitterModel(), mappel::PointEmitterModel::rename hyperparam(), PointEmitterModel::sample_prior(), mappel::PointEmitterModel::set bounds(), mappel::PointEmitterModel::set← hyperparam names(), mappel::PointEmitterModel::set hyperparam value(), mappel::PointEmitterModel::set ← hyperparams(), mappel::PointEmitterModel::set lbound(), set max sigma(), set min sigma(), mappel::PointEmitter← Model::set param names(), mappel::PointEmitterModel::set prior(), and mappel::PointEmitterModel::set ubound().

9.11.5.33 const StringVecT mappel::Gauss1DsModel::prior_types [static]

Initial value:

Definition at line 50 of file Gauss1DsModel.h.

Referenced by operator=().

```
9.11.5.34 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1D::set background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set mcmc sigma scale().

9.11.5.35 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_image_shape(), mappel::Gauss1DsModel::Stencil::compute — __derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::ImageFormat1DBase::get_num_ — pixels(), mappel::ImageFormat1DBase::get_size(), mappel::Gauss1DModel::initial_theta_estimate(), initial_theta — __estimate(), mappel::ImageFormat1DBase::make_image(), mappel::ImageFormat1DBase::make_image_stack(), mappel::ImageFormat1DBase::set_size(), mappel::Gauss1DsModel::Stencil(), and mappel::Gauss1DModel — ::Stencil().

9.11.5.36 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), initial_theta_estimate(), mappel::Gauss2 \leftarrow DModel::initial_theta_estimate(), mappel::PointEmitterModel \leftarrow ::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

The documentation for this class was generated from the following files:

- · Gauss1DsModel.h
- Gauss1DsModel.cpp

9.12 mappel::Gauss2DMAP Class Reference

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DMAP.h>

Inheritance diagram for mappel::Gauss2DMAP:

Public Types

```
    using Gauss1DSumModelT = Gauss1DMAP

    using StencilVecT = std::vector< Stencil >

• using ParamT = arma::vec
using ParamVecT = arma::mat
• using ImageCoordT = uint32 t

    using ImagePixeIT = double

    template < class CoordT >

  using ImageSizeShapeT = arma::Col< CoordT >

    template < class CoordT >

  using ImageSizeVecShapeT = arma::Mat < CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template < class PixelT >

  using ImageShapeT = arma::Mat< PixeIT >

    template < class PixelT >

  using ImageStackShapeT = arma::Cube < PixeIT >

    using ImageT = ImageShapeT < ImagePixeIT >

    using ImageStackT = ImageStackShapeT < ImagePixeIT >

    using ModelDataT = ImageT

    using ModelDataStackT = ImageStackT
```

Public Member Functions

- Gauss2DMAP (ImageCoordT size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DMAP (const ImageSizeT &size, double psf sigma, const std::string &prior type=DefaultPriorType)
- template < class IntType , class FloatType >
 Gauss2DMAP (const arma::Col < IntType > &size, const arma::Col < FloatType > &psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DMAP (const ImageSizeT &size, const VecT &psf sigma, CompositeDist &&prior)
- Gauss2DMAP (ImageSizeT &&size, VecT &&psf_sigma, CompositeDist &&prior)
- Gauss2DMAP (const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)
- Gauss2DMAP (const Gauss2DMAP &o)
- Gauss2DMAP & operator= (const Gauss2DMAP &o)
- Gauss2DMAP (Gauss2DMAP &&o)
- Gauss2DMAP & operator= (Gauss2DMAP &&o)
- void set_hyperparams (const VecT &hyperparams)
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- void set_size (const ImageSizeT &size_)
- const VecT & get_psf_sigma () const
- double get_psf_sigma (IdxT idx) const
- void set_psf_sigma (double new_psf_sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (int i, int j, const Stencil &s) const
- void pixel grad (int i, int j, const Stencil &s, ParamT &pgrad) const

- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const
- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init, const std::string &estimator) const
- Gauss1DSumModelT debug_internal_sum_model_x () const
- Gauss1DSumModelT debug_internal_sum_model_y () const
- IdxT get num params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template < class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make param stack (ldxT n, FillT fill) const

- · MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make param mat stack (ldxT n) const
- template < class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- · const CompositeDist & get prior () const
- IdxT get_num_hyperparams () const
- VecT get hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const

- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const
- $\bullet \;\; {\sf template}{<} {\sf class\; ImT} >$
 - void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get_size () const
- ImageCoordT get size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (IdxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, const std::string &prior_type)
- static CompositeDist make default prior beta position (const ImageSizeT &size)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double beta_
 —
 ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

• static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

- void update_internal_1Dsum_estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &psf sigma, const CompositeDist &prior)

Protected Attributes

- VecT psf_sigma
- Gauss1DSumModelT x_model
- Gauss1DSumModelT y_model
- CompositeDist prior
- IdxT num params
- ldxT num_hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_y =0
- double eta x = 0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

9.12.1 Detailed Description

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Model: Gauss2DModel a 2D gaussian PSF with fixed psf_sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MAPEstimator - Maximum a-posteriori estimator

Definition at line 23 of file Gauss2DMAP.h.

9.12.2 Member Typedef Documentation

9.12.2.1 using mappel::Gauss2DModel::Gauss1DSumModelT = Gauss1DMAP [inherited]

Definition at line 23 of file Gauss2DModel.h.

9.12.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.12.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.12.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.12.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.12.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.12.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.12.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixelT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.12.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

9.12.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

9.12.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.12.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.12.2.16 using mappel::Gauss2DModel::StencilVecT = std::vector<Stencil> [inherited]

Definition at line 47 of file Gauss2DModel.h.

9.12.3 Constructor & Destructor Documentation

9.12.3.1 mappel::Gauss2DMAP::Gauss2DMAP (ImageCoordT size, double psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 11 of file Gauss2DMAP.cpp.

9.12.3.2 mappel::Gauss2DMAP::Gauss2DMAP (const ImageSizeT & size, double psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 15 of file Gauss2DMAP.cpp.

9.12.3.3 template < class IntType , class FloatType > mappel::Gauss2DMAP::Gauss2DMAP (const arma::Col < IntType > & size, const arma::Col < FloatType > & psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 41 of file Gauss2DMAP.h.

9.12.3.4 mappel::Gauss2DMAP::Gauss2DMAP (const ImageSizeT & size, const VecT & psf_sigma, CompositeDist && prior)

Definition at line 27 of file Gauss2DMAP.cpp.

9.12.3.5 mappel::Gauss2DMAP::Gauss2DMAP (ImageSizeT && size, VecT && psf_sigma, CompositeDist && prior)

Definition at line 19 of file Gauss2DMAP.cpp.

9.12.3.6 mappel::Gauss2DMAP::Gauss2DMAP (const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior)

Definition at line 35 of file Gauss2DMAP.cpp.

9.12.3.7 mappel::Gauss2DMAP::Gauss2DMAP (const Gauss2DMAP & o)

Definition at line 43 of file Gauss2DMAP.cpp.

9.12.3.8 mappel::Gauss2DMAP::Gauss2DMAP (Gauss2DMAP && o)

Definition at line 51 of file Gauss2DMAP.cpp.

9.12.4 Member Function Documentation

9.12.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

9.12.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.12.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.12.4.4 void mappel::ImageFormat2DBase::check image shape (const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.12.4.5 void mappel::ImageFormat2DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.12.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.12.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.12.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.12.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.12.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

```
9.12.4.11 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_x ( ) const [inline], [inherited]
```

Definition at line 89 of file Gauss2DModel.h.

References mappel::Gauss2DModel::x model.

```
9.12.4.12 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_y ( ) const [inline], [inherited]
```

Definition at line 90 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel::PointEmitterModel::prior, mappel::Gauss2DModel::psf_sigma, mappel ::ImageFormat2DBase::size, mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2D \leftarrow Model::y_model.

```
9.12.4.13 int mappel::PointEmitterModel::get_hyperparam_index ( const std::string & name ) const [inline], [inherited]
```

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
9.12.4.14 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]
```

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.15 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_\(\Limits_intensity_mcmc_sampling().

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.17 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

9.12.4.18 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling()$.

9.12.4.19 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

9.12.4.20 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.12.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams()const [inline],[inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

9.12.4.22 IdxT mappel::PointEmitterModel::get_num_params()const [inline],[inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.12.4.23 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels()const [inline], [inherited]

Definition at line 79 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.12.4.24 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited]

Definition at line 255 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.25 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]

Definition at line 207 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ∴ ::update_internal_1Dsum_estimators().

9.12.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 211 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.27 const VecT & mappel::Gauss2DModel::get_psf_sigma() const [inline], [inherited]

Definition at line 142 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf_sigma.

Referenced by mappel::Gauss2DModel::get_stats().

9.12.4.28 double mappel::Gauss2DModel::get_psf_sigma (ldxT idx) const [inherited]

Definition at line 132 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::DefaultPriorType, mappel::Gauss2DModel::prior_types, and mappel::Gauss2D← Model::psf sigma.

9.12.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 127 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.12.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.12.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.12.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.12.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 99 of file ImageFormat2DBase.h.

9.12.4.34 StatsT mappel::Gauss2DModel::get_stats() const [inherited]

Definition at line 268 of file Gauss2DModel.cpp.

 $References \quad mappel:: Gauss 2DModel:: get_psf_sigma(), \quad mappel:: MCMCAdaptor 2D:: get_stats(), \quad mappel:: Image \leftarrow Format 2DBase:: get_stats(), \quad and \quad mappel:: Point Emitter Model:: get_stats().$

9.12.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.12.4.36 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.37 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate(const ImageT & im)const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 194 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make_ param().

Referenced by mappel::Gauss2DModel::initial_theta_estimate().

9.12.4.38 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inline], [inherited]

Definition at line 201 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DModel::initial_theta_ \leftarrow estimate().

9.12.4.39 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) const [inherited]

Definition at line 303 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, mappel::Gauss2DModel::make_stencil(), mappel::PointEmitterModel \leftarrow ::num_params, mappel::ImageFormat2DBase::size, mappel::estimator::MLEData::theta, mappel::PointEmitterModel \leftarrow ::theta_in_bounds(), mappel::PointEmitterModel::ubound, mappel::Gauss2DModel::x_model, and mappel::Gauss2D \leftarrow Model::y_model.

9.12.4.40 CompositeDist mappel::Gauss2DModel::make_default_prior (const ImageSizeT & size, const std::string & prior_type)
[static], [inherited]

Definition at line 150 of file Gauss2DModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DModel::make_default_prior_beta_position(), and mappel::

Gauss2DModel::make_default_prior_beta_position().

9.12.4.41 CompositeDist mappel::Gauss2DModel::make_default_prior_beta_position(const ImageSizeT & size) [static], [inherited]

Definition at line 171 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::Image \leftarrow Format2DBase::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

9.12.4.42 CompositeDist mappel::Gauss2DModel::make_default_prior_normal_position (const ImageSizeT & size) [static], [inherited]

Definition at line 182 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::Image \leftarrow Format2DBase::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.12.4.44 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.12.4.45 Gauss2DModel::Gauss1DSumModelT mappel::Gauss2DModel::make_internal_1Dsum_estimator(ldxT dim, const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior) [static], [protected], [inherited]

Definition at line 62 of file Gauss2DModel.cpp.

References mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_normal_ \leftarrow position(), mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), and mappel::Gauss2DModel::update internal 1Dsum estimators().

9.12.4.46 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.12.4.47 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.12.4.48 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.12.4.49 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.12.4.50 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.12.4.51 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.12.4.52 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.12.4.53 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.12.4.54 CompositeDist mappel::Gauss2DModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 193 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), and mappel::ImageFormat2DBase::size.

9.12.4.55 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.12.4.56 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = DefaultPriorBetaPos) [static],[inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds default_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds default_prior_beta_position().

9.12.4.57 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.12.4.58 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static].[inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.12.4.59 CompositeDist mappel::Gauss2DModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 206 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior ← _component_position_normal(), and mappel::ImageFormat2DBase::size.

9.12.4.60 Gauss2DModel::Stencil mappel::Gauss2DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 131 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss2DModel::initial theta estimate().

9.12.4.61 Gauss2DMAP & mappel::Gauss2DMAP::operator= (const Gauss2DMAP & o)

Definition at line 59 of file Gauss2DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

9.12.4.62 Gauss2DMAP & mappel::Gauss2DMAP::operator=(Gauss2DMAP && o)

Definition at line 70 of file Gauss2DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

9.12.4.63 void mappel::Gauss2DModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 159 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::⇔ Stencil::I(), mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

Referenced by mappel::Gauss2DModel::pixel_hess_update().

9.12.4.64 void mappel::Gauss2DModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 170 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss2DModel:: \leftarrow Stencil::Y.

9.12.4.65 void mappel::Gauss2DModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 181 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel.:Stencil::DYS, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel.:Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

9.12.4.66 void mappel::Gauss2DModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 282 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel:: \leftarrow Stencil::DY, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::Stencil::I(), mappel::PointEmitterModel \leftarrow ::make_param(), mappel::Gauss2DModel::pixel_grad(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss2D \leftarrow Model::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

9.12.4.67 double mappel::Gauss2DModel::pixel_model_value (int i, int j, const Stencil & s) const [inline], [inherited]

Definition at line 152 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::bg(), mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::

Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

9.12.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.12.4.69 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.12.4.70 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.71 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_\infty x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.12.4.72 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed_parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 74 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_\infty x, mappel::MCMCAdaptor2D::eta y, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.12.4.73 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.74 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline],[inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.12.4.75 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.12.4.76 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.78 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.79 void mappel::Gauss2DModel::set_hyperparams (const VecT & hyperparams) [inherited]

Definition at line 109 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DModel::update_internal_1Dsum_ \leftarrow estimators().

9.12.4.80 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

9.12.4.81 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanI, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.12.4.82 void mappel::PointEmitterModel::set lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter← Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

9.12.4.83 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.12.4.84 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma _ _ scale.

9.12.4.85 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.12.4.86 void mappel::Gauss2DModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 97 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ \leftarrow estimators().

9.12.4.87 void mappel::Gauss2DModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 103 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ \leftarrow estimators().

9.12.4.88 void mappel::Gauss2DModel::set_psf_sigma (double new_psf_sigma) [inline], [inherited]

Definition at line 146 of file Gauss2DModel.h.

9.12.4.89 void mappel::Gauss2DModel::set psf sigma (const VecT & new psf sigma) [inherited]

Definition at line 123 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss1D (), mappel::Gauss2DModel::y model. model::www.model.icheck_psf_sigma(), mappel::Gauss2DModel::y model.

9.12.4.90 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.12.4.91 void mappel::Gauss2DModel::set_size(const ImageSizeT & size_) [inherited]

Definition at line 115 of file Gauss2DModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), mappel:

9.12.4.92 void mappel::PointEmitterModel::set ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.12.4.93 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss1DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.12.4.94 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.12.4.95 void mappel::Gauss2DModel::update_internal_1Dsum_estimators() [protected], [inherited]

Definition at line 91 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::get_prior(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::psf_sigma, mappel::ImageFormat2DBase::size, mappel::Gauss2DModel::x_model, and mappel::Gauss2DModel::y model.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DModel::set_prior().

9.12.5 Member Data Documentation

9.12.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static],[inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.12.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.12.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited] Default optimization method for MLE/MAP estimation. Definition at line 51 of file PointEmitterModel.h. 9.12.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited] Number of samples to throw away (burn-in) on initialization. Definition at line 55 of file PointEmitterModel.h. 9.12.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited] Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.) Definition at line 54 of file PointEmitterModel.h. 9.12.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited] Keep every # samples. [Value of 0 indicates use the model default. This is suggested.]. Definition at line 56 of file PointEmitterModel.h. 9.12.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited] Default position parameter in symmetric beta-distributions Definition at line 59 of file PointEmitterModel.h. 9.12.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited] Default shape for intensity gamma distributions Definition at line 63 of file PointEmitterModel.h. 9.12.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited] Default maximum emitter intensity Definition at line 62 of file PointEmitterModel.h. Referenced by mappel::PointEmitterModel::make prior component intensity(). 9.12.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited] Default emitter intensity mean Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.12.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_ormal_position(), and mappel::MCMCAdaptor1D \hookleftarrow ::set_background_mcmc_sampling().

9.12.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.12.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.12.5.14 const std::string mappel::Gauss2DModel::DefaultPriorType = "Normal" [static],[inherited]

Definition at line 51 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

9.12.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.12.5.17 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

```
9.12.5.18 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
9.12.5.19 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.12.5.20 double mappel::MCMCAdaptor1D::eta_x =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

```
9.12.5.21 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MC \leftarrow MCAdaptor2D::operator=(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate().

9.12.5.22 const double mappel::MCMCAdaptorBase::global default mcmc sigma scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.12.5.23 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

9.12.5.24 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.12.5.26 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.12.5.28 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmi

9.12.5.29 const std::string mappel::Gauss2DMAP::name [static]

Definition at line 37 of file Gauss2DMAP.h.

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.12.5.31 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.12.5.32 | IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

```
9.12.5.33 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

9.12.5.34 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

9.12.5.35 const StringVecT mappel::Gauss2DModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

9.12.5.36 VecT mappel::Gauss2DModel::psf_sigma [protected], [inherited]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 104 of file Gauss2DModel.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss \leftarrow _heuristic_compute_estimate(), mappel::Gauss2DModel::Stencil::compute_derivatives(), mappel::Gauss2DModel \leftarrow ::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::get_psf_ \leftarrow sigma(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel \leftarrow ::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DModel::set_psf_sigma(), mappel::Gauss2DModel::Stencil::Stencil(), and mappel::Gauss2DModel \leftarrow ::update_internal_1Dsum_estimators().

9.12.5.37 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

9.12.5.38 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute derivatives(), mappel::Gauss2DsModel::Stencil::compute derivatives(), mappel::Gauss2DModel ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← mappel::Gauss2DModel::Gauss2DModel(). mappel::Gauss2DsMAP::Gauss2DsMA← ::expected information(). P(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel(), mappel::lmage ← Format2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get ← _stats(), mappel::methods::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood⇔ ::debug::grad_components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian ← components(), mappel::Gauss2DModel::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel ← ::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta position(), Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make default prior normal← position(), mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum \leftarrow estimator(), mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel::make prior beta ← position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal ← position(), mappel::methods::model image(), mappel::ImageFormat2DBase::operator=(), mappel::methods ← mappel::methods::likelihood::debug::rllh_components(), mappel::ImageFormat2DBase::set_ <--::likelihood::rllh(), size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate image from model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2Ds ← Model::Stencil::Stencil(), mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2Ds ← Model::update internal 1Dsum estimators().

9.12.5.39 ParamT mappel::PointEmitterModel::ubound [protected],[inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta = estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::set_prior(), mappel::PointEmitterModel::s

9.12.5.40 Gauss1DSumModelT mappel::Gauss2DModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum)

Definition at line 105 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_x(), mappel::Gauss2DModel::initial_theta_ \leftarrow estimate(), mappel::Gauss2DModel::operator=(), mappel::Gauss2DModel::set_psf_sigma(), mappel::Gauss2DModel \leftarrow ::set size(), and mappel::Gauss2DModel::update internal 1Dsum estimators().

9.12.5.41 Gauss1DSumModelT mappel::Gauss2DModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum)

Definition at line 106 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Gauss2DModel::gauss2DModel

The documentation for this class was generated from the following files:

- · Gauss2DMAP.h
- Gauss2DMAP.cpp

9.13 mappel::Gauss2DMLE Class Reference

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DMLE.h>

Inheritance diagram for mappel::Gauss2DMLE:

Public Types

- using Gauss1DSumModelT = Gauss1DMAP
- using StencilVecT = std::vector < Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- $\bullet \ \ \text{template}{<} \text{class CoordT} >$

using ImageSizeShapeT = arma::Col< CoordT >

template < class CoordT >

using ImageSizeVecShapeT = arma::Mat< CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

using ImageShapeT = arma::Mat< PixelT >

- template<class PixeIT >
 - using ImageStackShapeT = arma::Cube < PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

- Gauss2DMLE (ImageCoordT size, double psf sigma, const std::string &prior type=DefaultPriorType)
- Gauss2DMLE (const ImageSizeT &size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DMLE (const ImageSizeT &size, const VecT &psf sigma, const std::string &prior type=DefaultPriorType)
- Gauss2DMLE (const ImageSizeT &size, const VecT &psf sigma, CompositeDist &&prior)
- Gauss2DMLE (const ImageSizeT &size, const VecT &psf sigma, const CompositeDist &prior)
- Gauss2DMLE (const Gauss2DMLE &o)
- Gauss2DMLE & operator= (const Gauss2DMLE &o)
- Gauss2DMLE (Gauss2DMLE &&o)
- Gauss2DMLE & operator= (Gauss2DMLE &&o)
- void set_hyperparams (const VecT &hyperparams)
- void set prior (CompositeDist &&prior)
- void set_prior (const CompositeDist &prior_)
- void set size (const ImageSizeT &size)
- const VecT & get_psf_sigma () const
- double get_psf_sigma (ldxT idx) const
- void set psf sigma (double new psf sigma)
- void set_psf_sigma (const VecT &new_psf_sigma)
- StatsT get stats () const
- Stencil make_stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (int i, int j, const Stencil &s) const
- · void pixel grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator) const
- Gauss1DSumModelT debug_internal_sum_model_x () const
- Gauss1DSumModelT debug internal sum model y () const
- IdxT get num params () const
- void check param shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make_param_mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

CubeT make param mat stack (ldxT n) const

- template<class FillT >
 - CubeT make param mat stack (ldxT n, FillT fill) const
- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- IdxT get num hyperparams () const
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get param names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >
 - ParamT sample_prior (RngT &rng) const
- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set ubound (const ParamT &ubound)
- const ParamT & get Ibound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get size image stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
 - void set image in stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, const std::string &prior_type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size)
- static CompositeDist make default prior normal position (const ImageSizeT &size)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean I, double kappa I, double mean bg, double kappa bg)

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get rng generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

• static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const ldxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

• static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6

- static const double global_min_psf_sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global min size =3
- static const ImageCoordT global_max_size =512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

- void update_internal_1Dsum_estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)

Protected Attributes

- · VecT psf sigma
- Gauss1DSumModelT x model
- Gauss1DSumModelT y model
- CompositeDist prior
- IdxT num params
- ldxT num_hyperparams
- ParamT lbound
- · ParamT ubound
- ImageSizeT size
- double eta_y =0
- double eta_x =0
- double eta_I =0
- double eta bg =0
- · IdxT num phases
- double sigma_scale

9.13.1 Detailed Description

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Model: Gauss2DModel - 2D Gaussian PSF with fixed PSF sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 24 of file Gauss2DMLE.h.

```
9.13.2 Member Typedef Documentation
```

9.13.2.1 using mappel::Gauss2DModel::Gauss1DSumModelT = Gauss1DMAP [inherited]

Definition at line 23 of file Gauss2DModel.h.

9.13.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.13.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.13.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.13.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.13.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

9.13.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.13.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.13.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.13.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

9.13.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

9.13.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.13.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.13.2.16 using mappel::Gauss2DModel::StencilVecT = std::vector<Stencil> [inherited] Definition at line 47 of file Gauss2DModel.h. 9.13.3 Constructor & Destructor Documentation 9.13.3.1 mappel::Gauss2DMLE::Gauss2DMLE (ImageCoordT size, double psf sigma, const std::string & prior type = DefaultPriorType) Definition at line 11 of file Gauss2DMLE.cpp. 9.13.3.2 mappel::Gauss2DMLE::Gauss2DMLE (const ImageSizeT & size, double psf_sigma, const std::string & prior_type = DefaultPriorType) Definition at line 15 of file Gauss2DMLE.cpp. 9.13.3.3 mappel::Gauss2DMLE::Gauss2DMLE (const ImageSizeT & size, const VecT & psf sigma, const std::string & prior_type = DefaultPriorType) Definition at line 19 of file Gauss2DMLE.cpp. 9.13.3.4 mappel::Gauss2DMLE::Gauss2DMLE (const ImageSizeT & size, const VecT & psf_sigma, CompositeDist && prior) Definition at line 23 of file Gauss2DMLE.cpp. 9.13.3.5 mappel::Gauss2DMLE::Gauss2DMLE (const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior) Definition at line 31 of file Gauss2DMLE.cpp. 9.13.3.6 mappel::Gauss2DMLE::Gauss2DMLE (const Gauss2DMLE & o) Definition at line 39 of file Gauss2DMLE.cpp. 9.13.3.7 mappel::Gauss2DMLE::Gauss2DMLE (Gauss2DMLE && o) Definition at line 47 of file Gauss2DMLE.cpp. 9.13.4 Member Function Documentation

9.13.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.13.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.13.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.13.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.13.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.13.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.13.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.13.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DSModel()

9.13.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.13.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

9.13.4.11 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_x () const [inline], [inherited]

Definition at line 89 of file Gauss2DModel.h.

References mappel::Gauss2DModel::x model.

9.13.4.12 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_y () const [inline], [inherited]

Definition at line 90 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel::PointEmitterModel::prior, mappel::Gauss2DModel::psf_sigma, mappel ::ImageFormat2DBase::size, mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2D \leftarrow Model::y model.

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.14 StringVecT mappel::PointEmitterModel::get_hyperparam_names()const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.15 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.13.4.16 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.17 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

9.13.4.18 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.13.4.19 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.13.4.20 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale()const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma scale.

9.13.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams()const [inline], [inherited] Definition at line 215 of file PointEmitterModel.h. $References\ mappel:: Point Emitter Model:: num_hyperparams.$ 9.13.4.22 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited] Definition at line 167 of file PointEmitterModel.h. References mappel::PointEmitterModel::num params. 9.13.4.23 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline], [inherited] Definition at line 79 of file ImageFormat2DBase.h. References mappel::ImageFormat2DBase::size. Referenced by mappel::ImageFormat2DBase::get_stats(). 9.13.4.24 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited] Definition at line 255 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 9.13.4.25 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 207 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ← ::update internal 1Dsum estimators(). 9.13.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 211 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 9.13.4.27 const VecT & mappel::Gauss2DModel::get_psf_sigma() const [inline], [inherited]

Definition at line 142 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf_sigma.

Referenced by mappel::Gauss2DModel::get stats().

9.13.4.28 double mappel::Gauss2DModel::get_psf_sigma (ldxT idx) const [inherited]

Definition at line 132 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::DefaultPriorType, mappel::Gauss2DModel::prior_types, and mappel::Gauss2D Model::psf_sigma.

9.13.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 127 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.13.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.13.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.13.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.13.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

9.13.4.34 StatsT mappel::Gauss2DModel::get_stats() const [inherited]

Definition at line 268 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::get_psf_sigma(), mappel::MCMCAdaptor2D::get_stats(), mappel::Image Format2DBase::get stats(), and mappel::PointEmitterModel::get stats().

9.13.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.13.4.36 bool mappel::PointEmitterModel::has_hyperparam(const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.37 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate(const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 194 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by mappel::Gauss2DModel::initial_theta_estimate().

9.13.4.38 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inline], [inherited]

Definition at line 201 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DModel::initial_theta $_\leftarrow$ estimate().

9.13.4.39 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) const [inherited]

Definition at line 303 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, mappel::Gauss2DModel::make_stencil(), mappel::PointEmitterModel \leftarrow ::num_params, mappel::ImageFormat2DBase::size, mappel::estimator::MLEData::theta, mappel::PointEmitterModel \leftarrow ::theta_in_bounds(), mappel::PointEmitterModel::ubound, mappel::Gauss2DModel::x_model, and mappel::Gauss2D \leftarrow Model::y model.

9.13.4.40 CompositeDist mappel::Gauss2DModel::make_default_prior(const ImageSizeT & size, const std::string & prior_type) [static], [inherited]

Definition at line 150 of file Gauss2DModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DModel::make_default_prior_beta_position(), and mappel::

Gauss2DModel::make_default_prior_normal_position().

9.13.4.41 CompositeDist mappel::Gauss2DModel::make_default_prior_beta_position(const ImageSizeT & size) [static], [inherited]

Definition at line 171 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::Image \leftarrow Format2DBase::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

9.13.4.42 CompositeDist mappel::Gauss2DModel::make_default_prior_normal_position (const ImageSizeT & size) [static], [inherited]

Definition at line 182 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::Image Format2DBase::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

9.13.4.43 | ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.13.4.44 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.13.4.45 Gauss2DModel::Gauss1DSumModelT mappel::Gauss2DModel::make_internal_1Dsum_estimator(ldxT dim, const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior) [static], [protected], [inherited]

Definition at line 62 of file Gauss2DModel.cpp.

References mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_normal_ \leftarrow position(), mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), and mappel::Gauss2DModel::update internal 1Dsum estimators().

9.13.4.46 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.13.4.47 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.13.4.48 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.13.4.49 template < class FillT > MatT mappel::PointEmitterModel::make param mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.13.4.50 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.13.4.51 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.13.4.52 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta ← stack().

9.13.4.53 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.13.4.54 CompositeDist mappel::Gauss2DModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 193 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), and mappel::ImageFormat2DBase::size.

9.13.4.55 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.13.4.56 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds
Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds
DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds
Model::make_prior_beta_position().

9.13.4.57 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.13.4.58 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static].[inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2\to DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel\to ::Gauss2DsModel::make_prior_normal_position().

9.13.4.59 CompositeDist mappel::Gauss2DModel::make_prior_normal_position(const ImageSizeT & size, double sigma_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 206 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior ← _component_position_normal(), and mappel::ImageFormat2DBase::size.

9.13.4.60 Gauss2DModel::Stencil mappel::Gauss2DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 131 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss2DModel::initial theta estimate().

9.13.4.61 Gauss2DMLE & mappel::Gauss2DMLE::operator= (const Gauss2DMLE & o)

Definition at line 55 of file Gauss2DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

9.13.4.62 Gauss2DMLE & mappel::Gauss2DMLE::operator= (Gauss2DMLE && o)

Definition at line 66 of file Gauss2DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

9.13.4.63 void mappel::Gauss2DModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 159 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Stencil::Y.

Referenced by mappel::Gauss2DModel::pixel hess update().

9.13.4.64 void mappel::Gauss2DModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 170 of file Gauss2DModel.h.

References mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DYS, mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel:: \leftarrow Stencil::Y.

9.13.4.65 void mappel::Gauss2DModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 181 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel.:Stencil::DYS, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel.:Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

9.13.4.66 void mappel::Gauss2DModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 282 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Edauss2DModel::DXS, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DXS

9.13.4.67 double mappel::Gauss2DModel::pixel_model_value (int i, int j, const Stencil & s) const [inline], [inherited]

Definition at line 152 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::bg(), mappel::Gauss2DModel::Ga

9.13.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.13.4.69 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.13.4.70 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.71 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_\infty x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.13.4.72 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, const IdxVecT & fixed_parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 74 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_\infty x, mappel::MCMCAdaptor2D::eta y, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.13.4.73 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.74 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline],[inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.13.4.75 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.13.4.76 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.78 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.79 void mappel::Gauss2DModel::set_hyperparams (const VecT & hyperparams) [inherited]

Definition at line 109 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DModel::update_internal_1Dsum_ estimators().

9.13.4.80 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

9.13.4.81 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanI, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.13.4.82 void mappel::PointEmitterModel::set lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter← Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

9.13.4.83 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.13.4.84 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale(double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← __scale.

9.13.4.85 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.13.4.86 void mappel::Gauss2DModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 97 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ \leftarrow estimators().

9.13.4.87 void mappel::Gauss2DModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 103 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ estimators().

9.13.4.88 void mappel::Gauss2DModel::set_psf_sigma (double new_psf_sigma) [inline], [inherited]

Definition at line 146 of file Gauss2DModel.h.

9.13.4.89 void mappel::Gauss2DModel::set_psf_sigma (const VecT & new_psf_sigma) [inherited]

Definition at line 123 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss1D (), mappel::Gauss2DModel::y model. model::www.model.icheck_psf_sigma(), mappel::Gauss2DModel::y model.

9.13.4.90 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.13.4.91 void mappel::Gauss2DModel::set_size(const ImageSizeT & size_) [inherited]

Definition at line 115 of file Gauss2DModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), mappel:

9.13.4.92 void mappel::PointEmitterModel::set ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.13.4.93 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss1DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.13.4.94 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.13.4.95 void mappel::Gauss2DModel::update_internal_lDsum_estimators() [protected], [inherited]

Definition at line 91 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::get_prior(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::psf_sigma, mappel::ImageFormat2DBase::size, mappel::Gauss2DModel::x_model, and mappel::Gauss2DModel::y model.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DModel::set_prior().

9.13.5 Member Data Documentation

9.13.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static],[inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.13.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

```
9.13.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]
Default optimization method for MLE/MAP estimation.
Definition at line 51 of file PointEmitterModel.h.
9.13.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.13.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.13.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.13.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.13.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.13.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
Referenced by mappel::PointEmitterModel::make prior component intensity().
9.13.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanI = 300 [static], [inherited]
Default emitter intensity mean
Definition at line 61 of file PointEmitterModel.h.
Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().
```

9.13.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddisset_background_mcmc_sampling().

9.13.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.13.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.13.5.14 const std::string mappel::Gauss2DModel::DefaultPriorType = "Normal" [static],[inherited]

Definition at line 51 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.13.5.17 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

```
9.13.5.18 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
9.13.5.19 double mappel::MCMCAdaptor1D::eta_l =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dcc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dcc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.13.5.20 double mappel::MCMCAdaptor1D::eta_x =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D:: $MCMCAdaptor1D::MCMCAdaptor1D::MCMCAdaptor1Ds::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 <math>\leftarrow$ D::sample mcmc candidate().

```
9.13.5.21 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MC \leftarrow MCAdaptor2D::operator=(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate().

9.13.5.22 const double mappel::MCMCAdaptorBase::global default mcmc sigma scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.13.5.23 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

9.13.5.24 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.13.5.25 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.13.5.26 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check psf sigma().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.13.5.28 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior

9.13.5.29 const std::string mappel::Gauss2DMLE::name [static]

Definition at line 37 of file Gauss2DMLE.h.

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.13.5.31 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.13.5.32 | IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

```
9.13.5.33 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

9.13.5.34 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal — _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \circ ::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\Lip hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmi

9.13.5.35 const StringVecT mappel::Gauss2DModel::prior_types [static], [inherited]

Initial value:

Definition at line 50 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

9.13.5.36 VecT mappel::Gauss2DModel::psf_sigma [protected], [inherited]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 104 of file Gauss2DModel.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss \leftarrow _heuristic_compute_estimate(), mappel::Gauss2DModel::Stencil::compute_derivatives(), mappel::Gauss2DModel \leftarrow ::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::get_psf_ \leftarrow sigma(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel \leftarrow ::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DModel::stencil(), and mappel::Gauss2DModel \leftarrow ::update_internal_1Dsum_estimators().

```
9.13.5.37 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

9.13.5.38 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute derivatives(), mappel::Gauss2DsModel::Stencil::compute derivatives(), mappel::Gauss2DModel ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← mappel::Gauss2DModel::Gauss2DModel(). mappel::Gauss2DsMAP::Gauss2DsMA← ::expected information(). mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::lmage ← Format2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get ← _stats(), mappel::methods::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood⇔ ::debug::grad_components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian ← components(), mappel::Gauss2DModel::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel ← ::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta position(), Gauss2DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior normal← position(), mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum \leftarrow estimator(), mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel::make prior beta ← position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal ← position(), mappel::methods::model image(), mappel::lmageFormat2DBase::operator=(), mappel::methods ← ::likelihood::rllh(), mappel::methods::likelihood::debug::rllh_components(), mappel::ImageFormat2DBase::set_ <-size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate image from model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2Ds ← Model::Stencil::Stencil(), mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2Ds ← Model::update internal 1Dsum estimators().

9.13.5.39 ParamT mappel::PointEmitterModel::ubound [protected],[inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

9.13.5.40 Gauss1DSumModelT mappel::Gauss2DModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum)

Definition at line 105 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_x(), mappel::Gauss2DModel::initial_theta_ \leftarrow estimate(), mappel::Gauss2DModel::operator=(), mappel::Gauss2DModel::set_psf_sigma(), mappel::Gauss2DModel \leftarrow ::set size(), and mappel::Gauss2DModel::update internal 1Dsum estimators().

9.13.5.41 Gauss1DSumModelT mappel::Gauss2DModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum)

Definition at line 106 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Gauss2DModel::gauss2DModel::set contains a sigma(), mappel::Gauss2DModel::set size(), and mappel::Gauss2DModel::update internal 1Dsum estimators().

The documentation for this class was generated from the following files:

- Gauss2DMLE.h
- Gauss2DMLE.cpp

9.14 mappel::Gauss2DModel Class Reference

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DModel.h>

Inheritance diagram for mappel::Gauss2DModel:

Classes

· class Stencil

Stencil for 2D fixed-sigma models.

Public Types

```
using Gauss1DSumModelT = Gauss1DMAP
using StencilVecT = std::vector < Stencil >
using ParamT = arma::vec
using ParamVecT = arma::mat
using ImageCoordT = uint32_t
using ImagePixelT = double
template < class CoordT >
using ImageSizeShapeT = arma::Col < CoordT >
template < class CoordT >
using ImageSizeVecShapeT = arma::Mat < CoordT >
using ImageSizeVecShapeT = lmageSizeShapeT < ImageCoordT >
using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
template < class PixelT >
using ImageShapeT = arma::Mat < PixelT >
```

Public Member Functions

template < class PixelT >

void set hyperparams (const VecT &hyperparams)

using ImageStackShapeT = arma::Cube < PixelT >
• using ImageT = ImageShapeT < ImagePixelT >

using ImageStackT = ImageStackShapeT < ImagePixeIT >

- void set prior (CompositeDist &&prior)
- void set_prior (const CompositeDist &prior_)
- void set_size (const ImageSizeT &size_)
- const VecT & get_psf_sigma () const
- double get_psf_sigma (ldxT idx) const
- void set psf sigma (double new psf sigma)
- void set_psf_sigma (const VecT &new_psf_sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (int i, int j, const Stencil &s) const
- void pixel grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator) const
- Gauss1DSumModelT debug internal sum model x () const
- Gauss1DSumModelT debug_internal_sum_model_y () const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const

- void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make param stack (IdxT n) const
- template<class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- IdxT get_num_hyperparams () const
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample_prior () const
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const

- void check_image_shape (const ImageT &im) const
 - Check the shape of a single images is correct for model size.
- void check image shape (const ImageStackT &ims) const
 - Check the shape of a stack of images is correct for model size.
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make default prior (const ImageSizeT &size, const std::string &prior type)
- static CompositeDist make default prior beta position (const ImageSizeT &size)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_ double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"
 - Default optimization method for MLE/MAP estimation.
- static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"
 - Default optimization method for profile bounds optimizations.
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300
 - Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
- static const ldxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const ldxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global max size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- Gauss2DModel (const ImageSizeT &size, const VecT &psf_sigma)
- Gauss2DModel (const Gauss2DModel &o)
- Gauss2DModel (Gauss2DModel &&o)
- Gauss2DModel & operator= (const Gauss2DModel &o)
- Gauss2DModel & operator= (Gauss2DModel &&o)
- void update_internal_1Dsum_estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)

Protected Attributes

- VecT psf sigma
- Gauss1DSumModelT x_model
- Gauss1DSumModelT y_model
- CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_y =0
- double eta_x =0
- double eta_I =0
- double eta_bg =0
- IdxT num_phases
- · double sigma scale

```
9.14.1 Detailed Description
```

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

Definition at line 20 of file Gauss2DModel.h.

9.14.2 Member Typedef Documentation

9.14.2.1 using mappel::Gauss2DModel::Gauss1DSumModelT = Gauss1DMAP

Definition at line 23 of file Gauss2DModel.h.

9.14.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.14.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.14.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.14.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.14.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

9.14.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.14.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

9.14.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.14.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.14.2.12 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.14.2.13 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.14.2.14 using mappel::Gauss2DModel::StencilVecT = std::vector<Stencil>

Definition at line 47 of file Gauss2DModel.h.

9.14.3 Constructor & Destructor Documentation

9.14.3.1 mappel::Gauss2DModel::Gauss2DModel(const ImageSizeT & size, const VecT & psf_sigma) [protected]

Definition at line 12 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), make_internal_1Dsum_estimator(), mappel::Point← EmitterModel::prior, psf_sigma, mappel::ImageFormat2DBase::size, and y_model.

Referenced by debug internal sum model y().

9.14.3.2 mappel::Gauss2DModel::Gauss2DModel (const Gauss2DModel & o) [protected]

Definition at line 22 of file Gauss2DModel.cpp.

References make_internal_1Dsum_estimator(), mappel::PointEmitterModel::prior, psf_sigma, mappel::Image Format2DBase::size, and y_model.

9.14.3.3 mappel::Gauss2DModel::Gauss2DModel && o) [protected]

Definition at line 30 of file Gauss2DModel.cpp.

References make_internal_1Dsum_estimator(), mappel::PointEmitterModel::prior, psf_sigma, mappel::Image ← Format2DBase::size, and y_model.

9.14.4 Member Function Documentation

9.14.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.14.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.14.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.14.4.4 void mappel::ImageFormat2DBase::check image shape (const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.14.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.14.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \hookleftarrow ::theta_stack_in_bounds().

9.14.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.14.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel::Gauss1DModel(), Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss1DsModel::Gauss1DsModel::Gauss1DsModel::Gauss1Dmodel::Gauss1DModel::Gauss2DSM

9.14.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

9.14.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

9.14.4.11 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_x() const [inline]

Definition at line 89 of file Gauss2DModel.h.

References x model.

9.14.4.12 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_y() const [inline]

Definition at line 90 of file Gauss2DModel.h.

References Gauss2DModel(), make_internal_1Dsum_estimator(), operator=(), mappel::PointEmitterModel::prior, psf—sigma, mappel::ImageFormat2DBase::size, update_internal_1Dsum_estimators(), and y_model.

9.14.4.13 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.14 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.15 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

9.14.4.16 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.17 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

9.14.4.18 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.14.4.19 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.14.4.20 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

 $References\ mappel:: MCMCA daptor Base:: sigma_scale.$

9.14.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams()const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

9.14.4.22 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

```
9.14.4.23 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline],
          [inherited]
Definition at line 79 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
Referenced by mappel::ImageFormat2DBase::get_stats().
9.14.4.24 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.14.4.25 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline],[inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel::update_internal_1Dsum_←
estimators().
9.14.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.14.4.27 const VecT & mappel::Gauss2DModel::get_psf_sigma() const [inline]
Definition at line 142 of file Gauss2DModel.h.
References psf sigma.
Referenced by get_stats().
9.14.4.28 double mappel::Gauss2DModel::get_psf_sigma ( IdxT idx ) const
Definition at line 132 of file Gauss2DModel.cpp.
References DefaultPriorType, prior types, and psf sigma.
9.14.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
```

References mappel::rng manager.

9.14.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.14.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.14.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.14.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

9.14.4.34 StatsT mappel::Gauss2DModel::get_stats () const

Definition at line 268 of file Gauss2DModel.cpp.

 $References\ get_psf_sigma(),\ mappel::MCMCAdaptor2D::get_stats(),\ mappel::ImageFormat2DBase::get_stats(),\ and\ mappel::PointEmitterModel::get_stats().$

9.14.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.14.4.36 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.37 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im) const [inline]

Fast, heuristic estimate of initial theta.

Definition at line 194 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by initial theta estimate().

9.14.4.38 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta init) const [inline]

Definition at line 201 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and initial theta estimate().

9.14.4.39 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) const

Definition at line 303 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, make_stencil(), mappel::PointEmitterModel::num_params, mappel \leftarrow ::ImageFormat2DBase::size, mappel::estimator::MLEData::theta, mappel::PointEmitterModel::theta_in_bounds(), mappel::PointEmitterModel::ubound, x model, and y model.

9.14.4.40 CompositeDist mappel::Gauss2DModel::make_default_prior (const ImageSizeT & size, const std::string & prior_type)
[static]

Definition at line 150 of file Gauss2DModel.cpp.

References mappel::istarts_with(), make_default_prior_beta_position(), and make_default_prior_normal_position().

9.14.4.41 CompositeDist mappel::Gauss2DModel::make_default_prior_beta_position (const ImageSizeT & size) [static]

Definition at line 171 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::Image \leftarrow Format2DBase::size.

Referenced by make_default_prior().

9.14.4.42 CompositeDist mappel::Gauss2DModel::make_default_prior_normal_position (const ImageSizeT & size) [static]

Definition at line 182 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::Image \leftarrow Format2DBase::size.

Referenced by make default prior().

9.14.4.43 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.14.4.44 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.14.4.45 Gauss2DModel::Gauss1DSumModelT mappel::Gauss2DModel::make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT & size, const VecT & psf sigma, const CompositeDist & prior) [static], [protected]

Definition at line 62 of file Gauss2DModel.cpp.

References mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_normal_ position(), psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by debug internal sum model y(), Gauss2DModel(), and update internal 1Dsum estimators().

9.14.4.46 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta = estimate(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), pixel_ hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.14.4.47 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.14.4.48 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.14.4.49 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.14.4.50 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.14.4.51 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.14.4.52 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.14.4.53 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.14.4.54 CompositeDist mappel::Gauss2DModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 193 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position beta(), and mappel::ImageFormat2DBase::size.

9.14.4.55 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_ \hookleftarrow position(), make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_ \hookleftarrow normal_position(), make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), make_prior_ \hookleftarrow normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_ \hookleftarrow normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.14.4.56 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1Dcookies1Dcookies1Dcookies2DsModel::make_prior_beta_position(), and mappel::Gauss2DsModel::make_prior_beta_position().

9.14.4.57 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), make_default_prior_normal_cosition(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_defaultcosition(), mappel::Gauss1DsModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position().

9.14.4.58 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.14.4.59 CompositeDist mappel::Gauss2DModel::make_prior_normal_position(const ImageSizeT & size, double sigma_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 206 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position normal(), and mappel::ImageFormat2DBase::size.

9.14.4.60 Gauss2DModel::Stencil mappel::Gauss2DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 131 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by initial_theta_estimate().

9.14.4.61 Gauss2DModel & mappel::Gauss2DModel::operator=(const Gauss2DModel & o) [protected]

Definition at line 38 of file Gauss2DModel.cpp.

References mappel::MCMCAdaptor2D::operator=(), psf_sigma, x_model, and y_model.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DMAP::operator=(), and mappel::Gauss2DMLE ::operator=().

9.14.4.62 Gauss2DModel & mappel::Gauss2DModel::operator=(Gauss2DModel && o) [protected]

Definition at line 49 of file Gauss2DModel.cpp.

References mappel::MCMCAdaptor2D::operator=(), psf_sigma, x_model, and y_model.

9.14.4.63 void mappel::Gauss2DModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 159 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Gauss2DModel::Stencil::Y.

Referenced by pixel hess update().

9.14.4.64 void mappel::Gauss2DModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 170 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::← Stencil::I(), psf_sigma, mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

9.14.4.65 void mappel::Gauss2DModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline]

Definition at line 181 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::⇔ Stencil::DY, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::Stencil::I(), psf_sigma, mappel::Gauss2DModel::Stencil::Y.

9.14.4.66 void mappel::Gauss2DModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const

pixel derivative inner loop calculations.

Definition at line 282 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Eduss2DModel::Eduss2DModel::Eduss2DModel::DY, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

9.14.4.67 double mappel::Gauss2DModel::pixel_model_value (int i, int j, const Stencil & s) const [inline]

Definition at line 152 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::bg(), mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::

Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

9.14.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

9.14.4.69 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.14.4.70 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline],[inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.71 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_\infty x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.14.4.72 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, const IdxVecT & fixed_parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 74 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_c x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.14.4.73 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.74 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.14.4.75 void mappel::MCMCAdaptor1D::set background mcmc_sampling(double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

 $References \quad mappel::PointEmitterModel::DefaultPriorPixelMeanBG, \quad mappel::MCMCAdaptor1D::eta_bg, \quad mappel:: \\ PointEmitterModel::get_hyperparam_value(), \quad mappel::PointEmitterModel::get_lbound(), \quad mappel::PointEmitterModel \\ \\ \vdots get_ubound(), \quad and \quad mappel::MCMCAdaptorBase::sigma_scale.$

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.14.4.76 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
9.14.4.77 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT & desc ) [inline], [inherited]
```

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
9.14.4.78 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline], [inherited]
```

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.79 void mappel::Gauss2DModel::set_hyperparams (const VecT & hyperparams)

Definition at line 109 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and update_internal_1Dsum_estimators().

9.14.4.80 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

9.14.4.81 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Industrial Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.14.4.82 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.14.4.83 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C Ds().

9.14.4.84 void mappel::MCMCAdaptorBase::set mcmc sigma scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

 $References\ mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale,\ and\ mappel::MCMCAdaptorBase::sigma {\leftarrow} scale.$

9.14.4.85 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.14.4.86 void mappel::Gauss2DModel::set_prior (CompositeDist && prior_)

Definition at line 97 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set prior(), and update internal 1Dsum estimators().

9.14.4.87 void mappel::Gauss2DModel::set_prior (const CompositeDist & prior_)

Definition at line 103 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set prior(), and update internal 1Dsum estimators().

9.14.4.88 void mappel::Gauss2DModel::set_psf_sigma (double new_psf_sigma) [inline]

Definition at line 146 of file Gauss2DModel.h.

9.14.4.89 void mappel::Gauss2DModel::set_psf_sigma (const VecT & new_psf_sigma)

Definition at line 123 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), psf_sigma, mappel::Gauss1DModel::set_psf_sigma(), x — _model, and y_model.

9.14.4.90 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.14.4.91 void mappel::Gauss2DModel::set size (const ImageSizeT & size)

Definition at line 115 of file Gauss2DModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), mappel

9.14.4.92 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.14.4.93 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::lbound,\ mappel::PointEmi$

Referenced by initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel \leftarrow ::make_stencil(), mappel::Gauss1DsModel::make_stencil(), mappel::Gauss2DsxyModel::make_ \leftarrow stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_in_bounds().

9.14.4.94 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.14.4.95 void mappel::Gauss2DModel::update_internal_1Dsum_estimators() [protected]

Definition at line 91 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::get_prior(), make_internal_1Dsum_estimator(), psf_sigma, mappel::Image Format2DBase::size, x model, and y model.

Referenced by debug_internal_sum_model_y(), set_hyperparams(), and set_prior().

9.14.5 Member Data Documentation

9.14.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

9.14.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.14.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.14.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.14.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.14.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.14.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.14.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.14.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.14.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.14.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_correction(), mappel::Gauss1DsModel::make_default_prior_normal_position(), make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_correction(), mappel::Gauss2DsModel::make_default_prior_correction(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.14.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.14.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.14.5.14 const std::string mappel::Gauss2DModel::DefaultPriorType = "Normal" [static]

Definition at line 51 of file Gauss2DModel.h.

Referenced by get psf sigma().

9.14.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

```
9.14.5.16 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]
```

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2Ds (), Model::initial_theta_estimate().

```
9.14.5.17 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1Dc::set background mcmc sampling().

```
9.14.5.18 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::M \leftarrow CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.14.5.19 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

9.14.5.20 double mappel::MCMCAdaptor2D::eta_y = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D::mcMCAdaptor2D::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::sample mcmc candidate().

9.14.5.21 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.14.5.22 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

9.14.5.23 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.14.5.24 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.14.5.25 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.14.5.27 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta_ \leftarrow estimate(), initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel.::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get stats().

9.14.5.29 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

 $Referenced \quad by \quad mappel::PointEmitterModel::get_num_hyperparams(), \quad mappel::PointEmitterModel::get_stats(), \\ mappel::PointEmitterModel::operator=(), and \\ mappel::PointEmitterModel::set_prior().$

9.14.5.30 | IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel :: PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter: Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss2Ds :: Model::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_: stack(), mappel::PointEmitterModel::make_param_: stack(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::: PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::theta in bounds().

```
9.14.5.31 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

```
9.14.5.32 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 152 of file PointEmitterModel.h.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal_sum_model_y(), Gauss2 DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::rename_hyperparam(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_value(), mappel::PointEmitterModel::set_hyperparam_value(), mappel::PointEmitterModel::set_hyperparam_value(), mappel::PointEmitterModel::set_hyperparam_value(), mappel::PointEmitterModel::set_hyperparam_value(), mappel::PointEmitterModel::set_hyperparam_value(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_param_names(), mappel::PointEmitterModel::

9.14.5.33 const StringVecT mappel::Gauss2DModel::prior_types [static]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss2DModel.h.

Referenced by get_psf_sigma().

9.14.5.34 VecT mappel::Gauss2DModel::psf_sigma [protected]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 104 of file Gauss2DModel.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss_ \leftarrow heuristic_compute_estimate(), mappel::Gauss2DModel::Stencil::compute_derivatives(), debug_internal_sum_model \leftarrow _y(), Gauss2DModel(), get_psf_sigma(), make_internal_1Dsum_estimator(), operator=(), pixel_grad2(), pixel_hess(), pixel_hess_update(), set_psf_sigma(), mappel::Gauss2DModel::Stencil::Stencil(), and update_internal_1Dsum_ \leftarrow estimators().

9.14.5.35 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1D::set background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCCAdaptorBase::set_mcmc_sigma_scale().

9.14.5.36 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← heuristic compute estimate(), mappel::ImageFormat2DBase::check image shape(), mappel::Gauss2DModel::← Stencil::compute derivatives(), mappel::Gauss2DsModel::Stencil::compute derivatives(), debug internal sum ← mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::methods::expected_information(), Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMAP(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel ::Gauss2DsModel::Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2D ← Base::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood::grad(), mappel::methods⇔ ::likelihood::grad2(), mappel::methods::likelihood::debug::grad_components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), initial theta estimate(), mappel::Gauss2DsModel← ::initial_theta_estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh_components(), make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), make_default_← prior normal position(), mappel::Gauss2DsModel::make default prior normal position(), mappel::ImageFormat2← mappel::ImageFormat2DBase::make image stack(), DBase::make image(), make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum estimator(), make prior beta position(), mappel::Gauss2Ds ← Model::make prior beta position(), make prior normal position(), mappel::Gauss2DsModel::make prior normal ← _position(), mappel::methods::model_image(), mappel::ImageFormat2DBase::operator=(), mappel::methods← ::likelihood::rllh(), mappel::methods::likelihood::debug::rllh_components(), mappel::ImageFormat2DBase::set_size(), set size(), mappel::Gauss2DsModel::set size(), mappel::methods::simulate image(), mappel::methods::simulate ← image from model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DsModel::Stencil(), update ← internal 1Dsum estimators(), and mappel::Gauss2DsModel::update internal 1Dsum estimators().

9.14.5.37 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta_cestimate(), initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel.::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

9.14.5.38 Gauss1DSumModelT mappel::Gauss2DModel::x_model [protected]

X-model fits 2D images X-axis (column sum)

Definition at line 105 of file Gauss2DModel.h.

Referenced by debug_internal_sum_model_x(), initial_theta_estimate(), operator=(), set_psf_sigma(), set_size(), and update_internal_1Dsum_estimators().

9.14.5.39 Gauss1DSumModelT mappel::Gauss2DModel::y_model [protected]

Y-model fits 2D images Y-axis (row sum)

Definition at line 106 of file Gauss2DModel.h.

Referenced by debug_internal_sum_model_y(), Gauss2DModel(), initial_theta_estimate(), operator=(), set_psf_ \leftarrow sigma(), set_size(), and update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- · Gauss2DModel.h
- · Gauss2DModel.cpp

9.15 mappel::Gauss2DsMAP Class Reference

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsMAP.h>

Inheritance diagram for mappel::Gauss2DsMAP:

Public Types

```
    using Gauss1DSumModelT = Gauss1DsMAP

    using StencilVecT = std::vector < Stencil >

using ParamT = arma::vec
using ParamVecT = arma::mat

    using ImageCoordT = uint32 t

• using ImagePixeIT = double

    template<class CoordT >

  using ImageSizeShapeT = arma::Col< CoordT >
template<class CoordT >
  using ImageSizeVecShapeT = arma::Mat < CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template<class PixelT >

  using ImageShapeT = arma::Mat< PixeIT >

    template < class PixelT >

  using ImageStackShapeT = arma::Cube < PixelT >

    using ImageT = ImageShapeT < ImagePixeIT >

    using ImageStackT = ImageStackShapeT < ImagePixeIT >
```

Public Member Functions

using ModelDataT = ImageT

using ModelDataStackT = ImageStackT

- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, double max_sigma_ratio, const std::string &prior type=DefaultPriorType)
- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const std::string &prior type=DefaultPriorType)
- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, CompositeDist &&prior)
- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, const CompositeDist &prior)
- Gauss2DsMAP (const Gauss2DsMAP &o)
- Gauss2DsMAP & operator= (const Gauss2DsMAP &o)
- Gauss2DsMAP (Gauss2DsMAP &&o)
- Gauss2DsMAP & operator= (Gauss2DsMAP &&o)
- void set_hyperparams (const VecT &hyperparams)
- void set_prior (CompositeDist &&prior_)
- void set prior (const CompositeDist &prior)
- void set size (const ImageSizeT &size)
- · VecT get min sigma () const
- double get_min_sigma (ldxT dim) const
- VecT get_max_sigma () const
- double get_max_sigma (ldxT dim) const
- double get_max_sigma_ratio () const
- void set min sigma (const VecT &min sigma)
- void set max sigma (const VecT &max sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (int i, int j, const Stencil &s) const
- void pixel_grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator) const
- Gauss1DSumModelT debug internal sum model x () const
- Gauss1DSumModelT debug_internal_sum_model_y () const
- IdxT get num params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template < class FillT >

ParamVecT make_param_stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- · CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (IdxT n, FillT fill) const

- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- IdxT get_num_hyperparams () const
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample prior (RngT &rng) const

- ParamT sample_prior () const
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- · void set_ubound (const ParamT &ubound)
- const ParamT & get Ibound () const
- const ParamT & get ubound () const

- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- · ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
 - void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio, const std::string &prior_type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)

- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

• static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const ldxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator names

Protected Member Functions

- void update_internal_1Dsum_estimators ()
- void set mcmc num phases (ldxT num phases)

Static Protected Member Functions

 static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const CompositeDist &prior)

• static double compute_max_sigma_ratio (const VecT &min_sigma, const VecT &max_sigma)

Protected Attributes

- · VecT min sigma
- Gauss1DSumModelT x model
- · Gauss1DSumModelT y model
- · CompositeDist prior
- IdxT num params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta sigma =0
- double eta y =0
- double eta x = 0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

9.15.1 Detailed Description

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective.

Model: Gauss2DsModel - 2D Gaussian variable scalar PSF sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MAPEstimator - Maximum a-posteriori estimator

Definition at line 24 of file Gauss2DsMAP.h.

9.15.2 Member Typedef Documentation

9.15.2.1 using mappel::Gauss2DsModel::Gauss1DSumModelT = Gauss1DsMAP [inherited]

Definition at line 26 of file Gauss2DsModel.h.

9.15.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.15.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.15.2.4 template < class PixeIT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixeIT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.15.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

9.15.2.6 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT<ImageCoordT>
[inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.15.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

9.15.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT<ImageCoordT>
[inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.15.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

9.15.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.15.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.15.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

9.15.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

9.15.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.15.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.15.2.16 using mappel::Gauss2DsModel::StencilVecT = std::vector < Stencil > [inherited]

Definition at line 55 of file Gauss2DsModel.h.

9.15.3 Constructor & Destructor Documentation

9.15.3.1 mappel::Gauss2DsMAP::Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, double max_sigma_ratio, const std::string & prior_type = DefaultPriorType)

Definition at line 11 of file Gauss2DsMAP.cpp.

References mappel::Gauss2DsModel::min sigma, and mappel::ImageFormat2DBase::size.

9.15.3.2 mappel::Gauss2DsMAP::Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 15 of file Gauss2DsMAP.cpp.

References mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::make_default_prior(), mappel::Gauss2DsModel::min_sigma, and mappel::ImageFormat2DBase::size.

9.15.3.3 mappel::Gauss2DsMAP:Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, CompositeDist && prior)

Definition at line 19 of file Gauss2DsMAP.cpp.

9.15.3.4 mappel::Gauss2DsMAP::Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, const CompositeDist & prior)

Definition at line 27 of file Gauss2DsMAP.cpp.

9.15.3.5 mappel::Gauss2DsMAP::Gauss2DsMAP (const Gauss2DsMAP & o)

Definition at line 35 of file Gauss2DsMAP.cpp.

9.15.3.6 mappel::Gauss2DsMAP::Gauss2DsMAP (Gauss2DsMAP && o)

Definition at line 43 of file Gauss2DsMAP.cpp.

9.15.4 Member Function Documentation

9.15.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.15.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.15.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.15.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.15.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.15.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.15.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.15.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.15.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

9.15.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

9.15.4.11 double mappel::Gauss2DsModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max_sigma)
[static], [protected], [inherited]

Definition at line 162 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::min sigma.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), Gauss2DsMAP(), mappel::Gauss2DsML ← E::Gauss2DsMLE(), and mappel::Gauss2DsModel::set max sigma().

Definition at line 104 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::x_model.

9.15.4.13 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_y () const [inline], [inherited]

Definition at line 105 of file Gauss2DsModel.h.

 $References \quad mappel::Gauss2DsModel::compute_max_sigma_ratio(), \quad mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::make_internal_1Dsum_estimator(), \quad mappel::Gauss2DsModel::min_sigma, \quad mappel:: Gauss2DsModel::operator=(), \quad mappel::PointEmitterModel::prior, \quad mappel::ImageFormat2DBase::size, \quad mappel:: Gauss2DsModel::update_internal_1Dsum_estimators(), \quad and \quad mappel::Gauss2DsModel::y_model.$

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.15 StringVecT mappel::PointEmitterModel::get_hyperparam_names()const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.16 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.15.4.17 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.18 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

9.15.4.19 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling()$.

9.15.4.20 VecT mappel::Gauss2DsModel::get_max_sigma()const [inline], [inherited]

Definition at line 132 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get_max_sigma_ratio(), and mappel::Gauss2DsModel::get_min_sigma().

Referenced by mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::set_max_sigma_ratio(), mappel::Gauss2DsModel::set_min_sigma(), and mappel::Gauss2DsModel::update internal 1Dsum estimators().

9.15.4.21 double mappel::Gauss2DsModel::get_max_sigma(ldxT dim) const [inline], [inherited]

Definition at line 136 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get max sigma ratio(), and mappel::Gauss2DsModel::get min sigma().

9.15.4.22 double mappel::Gauss2DsModel::get_max_sigma_ratio() const [inline], [inherited]

Definition at line 140 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::get_ubound().

Referenced by mappel::Gauss2DsModel::get max sigma(), and mappel::Gauss2DsModel::get stats().

9.15.4.23 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.15.4.24 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale()const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.15.4.25 VecT mappel::Gauss2DsModel::get_min_sigma() const [inline], [inherited]

Definition at line 128 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::min sigma.

Referenced by mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_stats(), and mappel::

Gauss2DsModel::set max sigma().

9.15.4.26 double mappel::Gauss2DsModel::get_min_sigma (ldxT dim) const [inherited]

Definition at line 191 of file Gauss2DsModel.cpp.

 $References\ mappel:: Gauss 2Ds Model:: Default Prior Type,\ mappel:: Gauss 2Ds Model:: min_sigma,\ and\ mappel:: Gauss 2 \hookleftarrow Ds Model:: prior_types.$

9.15.4.27 | IdxT mappel::PointEmitterModel::get num_hyperparams() const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

```
9.15.4.28 IdxT mappel::PointEmitterModel::get_num_params( ) const [inline], [inherited]
Definition at line 167 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num params.
9.15.4.29 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 79 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
Referenced by mappel::ImageFormat2DBase::get stats().
9.15.4.30 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.15.4.31 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline],[inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
9.15.4.32 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.15.4.33 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng_manager.
9.15.4.34 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static],[inherited]
Definition at line 122 of file PointEmitterModel.cpp.
References mappel::rng manager.
```

9.15.4.35 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.15.4.36 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.15.4.37 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

9.15.4.38 StatsT mappel::Gauss2DsModel::get_stats() const [inherited]

Definition at line 337 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel ::Gauss2DsModel::get_min_sigma(), mappel::MCMCAdaptor2Ds::get_stats(), mappel::ImageFormat2DBase::get_ stats(), and mappel::PointEmitterModel::get_stats().

9.15.4.39 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.15.4.40 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.41 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 224 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by mappel::Gauss2DsModel::initial theta estimate().

9.15.4.42 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate(const ImageT & im, const ParamT & theta init) const [inline].[inherited]

Definition at line 231 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DsModel::initial_theta_ \leftarrow estimate().

9.15.4.43 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) const [inherited]

Definition at line 381 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DsModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::min_sigma, mappel::PointEmitterModel::num_params, mappel::Gauss2DsModel::Stencil::sigma_ratio(), mappel ::ImageFormat2DBase::size, mappel::estimator::MLEData::theta, mappel::PointEmitterModel::theta_in_bounds(), mappel::PointEmitterModel::ubound, mappel::Gauss2DsModel::x_model, and mappel::Gauss2DsModel::y_model.

9.15.4.44 CompositeDist mappel::Gauss2DsModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio, const std::string & prior_type) [static], [inherited]

Definition at line 208 of file Gauss2DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DsModel::make_default_prior_beta_position(), and mappel::

Gauss2DsModel::make default prior normal position().

Referenced by Gauss2DsMAP(), and mappel::Gauss2DsMLE::Gauss2DsMLE().

9.15.4.45 CompositeDist mappel::Gauss2DsModel::make_default_prior_beta_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 229 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ \leftarrow component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), mappel::PointEmitter \leftarrow Model::make_prior_component_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make_default_prior().

9.15.4.46 CompositeDist mappel::Gauss2DsModel::make_default_prior_normal_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 241 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ \leftarrow component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), mappel::PointEmitter \leftarrow Model::make_prior_component_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make default prior().

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.15.4.48 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.15.4.49 Gauss2DsModel::Gauss1DSumModelT mappel::Gauss2DsModel::make_internal_1Dsum_estimator (IdxT dim, const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const CompositeDist & prior)

[static], [protected], [inherited]

Definition at line 69 of file Gauss2DsModel.cpp.

References mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_
position(), mappel::Gauss2DsModel::min_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::update internal_1Dsum_estimators().

9.15.4.50 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.15.4.51 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.15.4.52 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.15.4.53 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.15.4.54 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.15.4.55 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.15.4.56 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta \rightarrow _stack().

9.15.4.57 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.15.4.58 CompositeDist mappel::Gauss2DsModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static], [inherited]

Definition at line 253 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

9.15.4.59 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity(double *mean* = DefaultPriorMeanl, double *kappa* = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_cormal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.15.4.60 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds DModel::make_prior_beta_position(), mappel::Gauss2Ds Model::make_prior_beta_position().

9.15.4.61 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.15.4.62 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel ::Gauss2DsModel::make_prior_normal_position().

9.15.4.63 CompositeDist mappel::Gauss2DsModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static], [inherited]

Definition at line 268 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

9.15.4.64 Gauss2DsModel::Stencil mappel::Gauss2DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 162 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil(), and mappel::PointEmitterModel::theta in bounds().

Referenced by mappel::Gauss2DsModel::initial_theta_estimate().

9.15.4.65 Gauss2DsMAP & mappel::Gauss2DsMAP::operator= (const Gauss2DsMAP & o)

Definition at line 51 of file Gauss2DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DsModel::operator=(), and mappel::PointEmitterModel::operator=().

9.15.4.66 Gauss2DsMAP & mappel::Gauss2DsMAP::operator= (Gauss2DsMAP && o)

Definition at line 62 of file Gauss2DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DsModel::operator=(), and mappel::PointEmitterModel::operator=().

9.15.4.67 void mappel::Gauss2DsModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 180 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::Y.

Referenced by mappel::Gauss2DsModel::pixel_hess_update().

9.15.4.68 void mappel::Gauss2DsModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 192 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::Stencil::Stencil::Stencil::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

9.15.4.69 void mappel::Gauss2DsModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 204 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I), mappel::Gauss2DsModel::Stencil::Stencil::Stencil::Stencil::Stencil::Stencil::Stencil::Y, and mappel::Gauss2DsModel::Stencil::Y.

9.15.4.70 void mappel::Gauss2DsModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 354 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2Ds- Model::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXSX, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::PointEmitterModel::make_param(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::

9.15.4.71 double mappel::Gauss2DsModel::pixel_model_value (int i, int j, const Stencil & s) const [inline], [inherited]

Definition at line 173 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel.:Stencil::Y.

9.15.4.72 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.15.4.73 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.15.4.74 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.75 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor2Ds::eta \leftarrow _sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_ \leftarrow phases, and mappel::rng_manager.

9.15.4.76 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed parameters mask, double step_scale = 1.0) const [inherited]

Definition at line 75 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor2Ds::eta
__sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_

phases, and mappel::rng manager.

9.15.4.77 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.78 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline],[inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.15.4.79 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.15.4.80 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::bounds_epsilon,\ mappel::PointEmitterModel::lbound,\ mappel::$

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.82 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.83 void mappel::Gauss2DsModel::set_hyperparams (const VecT & hyperparams) [inherited]

Definition at line 119 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DsModel::update_internal_1Dsum - estimators().

9.15.4.84 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

9.15.4.85 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Wodel::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.15.4.86 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter ← Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.15.4.87 void mappel::Gauss2DsModel::set_max_sigma (const VecT & new_sigma) [inherited]

Set the max_sigma_ratio based on the new max_sigma's ratio with the current min_sigma.

Definition at line 155 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::get_min_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.15.4.88 void mappel::Gauss2DsModel::set_max_sigma_ratio (double max_sigma_ratio) [inherited]

Definition at line 176 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::Gauss2DsModel::get_max_sigma(), mappel::Point EmitterModel::get_ubound(), mappel::Gauss1DsModel::set_max_sigma(), mappel::PointEmitterModel::set_ubound(), mappel::Gauss2DsModel::y_model.

Referenced by mappel::Gauss2DsModel::set max sigma().

9.15.4.89 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2←Ds().

9.15.4.90 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

9.15.4.91 void mappel::Gauss2DsModel::set min_sigma (const VecT & new sigma) [inherited]

Set the minimum sigma, keeping the max_sigma_ratio the same.

Definition at line 137 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss1DsModel::set_min_\circ sigma(), mappel::Gauss2DsModel::x_model, and mappel::Gauss2DsModel::y_model.

9.15.4.92 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.15.4.93 void mappel::Gauss2DsModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 107 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

9.15.4.94 void mappel::Gauss2DsModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 113 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

9.15.4.95 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.15.4.96 void mappel::Gauss2DsModel::set_size(const ImageSizeT & size_) [inherited]

Definition at line 125 of file Gauss2DsModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), model.

9.15.4.97 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.15.4.98 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.15.4.99 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.15.4.100 void mappel::Gauss2DsModel::update_internal_1Dsum_estimators() [protected], [inherited]

Definition at line 100 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::get_max_sigma(), mappel::PointEmitterModel::get_prior(), mappel::Gauss2Ds Model::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::min_sigma, mappel::ImageFormat2DBase::size, mappel::Gauss2DsModel::y_model, and mappel::Gauss2DsModel::y_model.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::set_hyperparams(), and mappel::Gauss2DsModel::set_prior().

9.15.5 Member Data Documentation

9.15.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.15.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.15.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.15.5.4 const IdxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.15.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.15.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.15.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.15.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.15.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.15.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.15.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cdot normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddot::set background mcmc sampling().

9.15.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.15.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.15.5.14 const std::string mappel::Gauss2DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 59 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get_min_sigma().

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.15.5.16 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.15.5.17 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

9.15.5.18 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.15.5.19 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set intensity mcmc sampling().

```
9.15.5.20 double mappel::MCMCAdaptor2Ds::eta_sigma =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2Ds.h.

Referenced by mappel::MCMCAdaptor2Ds::get_stats(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds(), mappel::

MCMCAdaptor2Ds::operator=(), and mappel::MCMCAdaptor2Ds::sample mcmc candidate().

```
9.15.5.21 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

```
9.15.5.22 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MC \leftarrow MCAdaptor2D::operator=(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate().

9.15.5.23 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.15.5.24 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

9.15.5.25 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.15.5.27 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.15.5.29 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

9.15.5.30 VecT mappel::Gauss2DsModel::min_sigma [protected], [inherited]

Gaussian PSF in pixels

Definition at line 118 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), Gauss2DsMAP(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::initial_theta_estimate(), mappel \leftarrow ::Gauss2DsModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::Stencil::sigmaY(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

9.15.5.31 const std::string mappel::Gauss2DsMAP::name [static]

Definition at line 36 of file Gauss2DsMAP.h.

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.15.5.33 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.15.5.34 | IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.15.5.35 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

9.15.5.36 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel\
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_pyperparams(), mappel::Gauss1DsModel\
::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::has_\(\to \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmitt

9.15.5.37 const StringVecT mappel::Gauss2DsModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 58 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get_min_sigma().

9.15.5.38 double mappel::MCMCAdaptorBase::sigma scale [protected],[inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

9.15.5.39 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← ::expected_information(), mappel::Gauss2DModel::Gauss2DModel(), Gauss2DsMAP(), mappel::Gauss2DsMLE ← ::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood ← ::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood::debug::grad_components(), mappel ← ::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), mappel::Gauss2D ← Model::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood← ::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel::make default prior beta ← position(), mappel::Gauss2DsModel::make default prior beta position(), mappel::Gauss2DModel::make default ← prior_normal_position(), mappel::ImageFormat2D← Base::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal ← 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum estimator(), mappel::Gauss2DModel::make ← _prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make \leftarrow prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal_position(), mappel::methods::model_image(), mappel::ImageFormat2DBase::operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug← ::rllh_components(), mappel::ImageFormat2DBase::set_size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2← DsModel::set size(), mappel::methods::simulate image(), mappel::methods::simulate image from model(), mappel ← ::Gauss2DModel::Stencil::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DModel::update ← internal 1Dsum estimators(), and mappel::Gauss2DsModel::update internal 1Dsum estimators().

9.15.5.40 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

9.15.5.41 Gauss1DSumModelT mappel::Gauss2DsModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 119 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_x(), mappel::Gauss2DsModel::initial_theta — _estimate(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::set_max_sigma_ratio(), mappel:: \leftarrow Gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_ \leftarrow internal 1Dsum estimators().

9.15.5.42 Gauss1DSumModelT mappel::Gauss2DsModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 120 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::gauss2DsModel::gauss2DsModel::gauss2DsModel::gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- · Gauss2DsMAP.h
- Gauss2DsMAP.cpp

9.16 mappel::Gauss2DsMLE Class Reference

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsMLE.h>
Inheritance diagram for mappel::Gauss2DsMLE:

Public Types

- using Gauss1DSumModelT = Gauss1DsMAP
- using StencilVecT = std::vector < Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- $\bullet \ \ \text{template}{<} \text{class CoordT} >$

using ImageSizeShapeT = arma::Col< CoordT >

template < class CoordT >

using ImageSizeVecShapeT = arma::Mat< CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

using ImageShapeT = arma::Mat< PixeIT >

template < class PixelT >

using ImageStackShapeT = arma::Cube < PixelT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

 Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, double max_sigma_ratio, const std::string &prior type=DefaultPriorType)

- Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, CompositeDist &&prior)
- Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, const CompositeDist &prior)
- Gauss2DsMLE (const Gauss2DsMLE &o)
- Gauss2DsMLE & operator= (const Gauss2DsMLE &o)
- Gauss2DsMLE (Gauss2DsMLE &&o)
- Gauss2DsMLE & operator= (Gauss2DsMLE &&o)
- void set hyperparams (const VecT &hyperparams)
- void set_prior (CompositeDist &&prior_)
- void set prior (const CompositeDist &prior)
- void set size (const ImageSizeT &size)
- VecT get_min_sigma () const
- double get_min_sigma (ldxT dim) const
- VecT get max sigma () const
- double get max sigma (IdxT dim) const
- double get_max_sigma_ratio () const
- void set min sigma (const VecT &min sigma)
- void set max sigma (const VecT &max sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- · double pixel model value (int i, int j, const Stencil &s) const
- void pixel_grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator) const
- Gauss1DSumModelT debug_internal_sum_model_x () const
- Gauss1DSumModelT debug internal sum model y () const
- IdxT get num params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- ParamT make param () const
- template < class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template < class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make_param_mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- · const CompositeDist & get_prior () const
- IdxT get num hyperparams () const
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample prior (RngT &rng) const

- ParamT sample_prior () const
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- · ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- · ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (IdxT sample_index, ParamT &candidate, const IdxVecT &fixed_parameters_
 mask, double step scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)

- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio, const std::string &prior_type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

• static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const ldxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num dim =2
- static const ImageCoordT global min size =3
- static const ImageCoordT global_max_size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

- void update_internal_1Dsum_estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

- static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const CompositeDist &prior)
- static double compute_max_sigma_ratio (const VecT &min_sigma, const VecT &max_sigma)

Protected Attributes

- VecT min_sigma
- Gauss1DSumModelT x model
- · Gauss1DSumModelT y model
- CompositeDist prior
- IdxT num_params
- IdxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_sigma =0
- double eta_y =0
- double eta_x =0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- · double sigma scale

```
9.16.1 Detailed Description
```

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective.

Model: Gauss2DsModel - 2D Gaussian variable scalar PSF sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 24 of file Gauss2DsMLE.h.

9.16.2 Member Typedef Documentation

9.16.2.1 using mappel::Gauss2DsModel::Gauss1DSumModelT = Gauss1DsMAP [inherited]

Definition at line 26 of file Gauss2DsModel.h.

9.16.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.16.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.16.2.4 template < class PixeIT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixeIT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.16.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.16.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

9.16.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.16.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.16.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.16.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

9.16.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

9.16.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited] Parameter vector Definition at line 47 of file PointEmitterModel.h. 9.16.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited] Vector of parameter vectors Definition at line 48 of file PointEmitterModel.h. 9.16.2.16 using mappel::Gauss2DsModel::StencilVecT = std::vector < Stencil> [inherited] Definition at line 55 of file Gauss2DsModel.h. 9.16.3 Constructor & Destructor Documentation 9.16.3.1 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, double max_sigma_ratio, const std::string & prior_type = DefaultPriorType) Definition at line 11 of file Gauss2DsMLE.cpp. References mappel::Gauss2DsModel::min_sigma, and mappel::ImageFormat2DBase::size. 9.16.3.2 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const std::string & prior_type = DefaultPriorType) Definition at line 15 of file Gauss2DsMLE.cpp. References mappel::Gauss2DsModel::compute max sigma ratio(), mappel::Gauss2DsModel::make default prior(), mappel::Gauss2DsModel::min sigma, and mappel::ImageFormat2DBase::size. 9.16.3.3 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, CompositeDist && prior) Definition at line 19 of file Gauss2DsMLE.cpp. 9.16.3.4 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, const CompositeDist & prior) Definition at line 27 of file Gauss2DsMLE.cpp. 9.16.3.5 mappel::Gauss2DsMLE::Gauss2DsMLE (const Gauss2DsMLE & o)

Definition at line 35 of file Gauss2DsMLE.cpp.

9.16.3.6 mappel::Gauss2DsMLE::Gauss2DsMLE (Gauss2DsMLE && o)

Definition at line 43 of file Gauss2DsMLE.cpp.

9.16.4 Member Function Documentation

9.16.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

9.16.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.16.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

9.16.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.16.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.16.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

9.16.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.16.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.16.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.16.4.10 void mappel::ImageFormat2DBase::check size (const ImageSizeT & size) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global max size, and mappel::ImageFormat2DBase::global min size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

9.16.4.11 double mappel::Gauss2DsModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max_sigma) [static], [protected], [inherited]

Definition at line 162 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::min_sigma.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP(), Gauss2DsMLE(), and mappel::Gauss2DsModel::set max sigma().

9.16.4.12 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_x () const [inline], [inherited]

Definition at line 104 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::x_model.

9.16.4.13 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_y () const [inline], [inherited]

Definition at line 105 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Gauss2DsModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::min_sigma, mappel::

Gauss2DsModel::operator=(), mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, mappel::

Gauss2DsModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel::y_model.

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.15 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.16 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

9.16.4.17 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.18 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

9.16.4.19 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.16.4.20 VecT mappel::Gauss2DsModel::get_max_sigma()const [inline], [inherited]

Definition at line 132 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get max sigma ratio(), and mappel::Gauss2DsModel::get min sigma().

Referenced by mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Gauss2DsModel::get_stats(), mappel::Gauss2CDsModel::get_stats(), mappel::Gauss2DsModel::get_stats(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::set_min_sigma(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

9.16.4.21 double mappel::Gauss2DsModel::get_max_sigma (ldxT dim) const [inline], [inherited]

Definition at line 136 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get_max_sigma_ratio(), and mappel::Gauss2DsModel::get_min_sigma().

9.16.4.22 double mappel::Gauss2DsModel::get_max_sigma_ratio() const [inline], [inherited]

Definition at line 140 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::get_ubound().

Referenced by mappel::Gauss2DsModel::get_max_sigma(), and mappel::Gauss2DsModel::get_stats().

9.16.4.23 | IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

9.16.4.24 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.16.4.25 VecT mappel::Gauss2DsModel::get min sigma() const [inline], [inherited]

Definition at line 128 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::min_sigma.

Referenced by mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_stats(), and mappel::Gauss2DsModel::set_max_sigma().

9.16.4.26 double mappel::Gauss2DsModel::get_min_sigma (IdxT dim) const [inherited]

Definition at line 191 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::DefaultPriorType, mappel::Gauss2DsModel::min_sigma, and mappel::Gauss2← DsModel::prior_types.

9.16.4.27 IdxT mappel::PointEmitterModel::get_num_hyperparams()const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

9.16.4.28 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.16.4.29 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline], [inherited]

Definition at line 79 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.16.4.30 StringVecT mappel::PointEmitterModel::get_param_names()const [inline], [inherited]

Definition at line 255 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.31 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 207 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ← ::update internal 1Dsum estimators(). 9.16.4.32 const CompositeDist & mappel::PointEmitterModel::get prior () const [inline], [inherited] Definition at line 211 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 9.16.4.33 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited] Definition at line 127 of file PointEmitterModel.cpp. References mappel::rng_manager. 9.16.4.34 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited] Definition at line 122 of file PointEmitterModel.cpp. References mappel::rng manager. 9.16.4.35 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited] Definition at line 74 of file ImageFormat2DBase.h. References mappel::ImageFormat2DBase::size. 9.16.4.36 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get size (IdxT idx) const [inherited] Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.16.4.37 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

9.16.4.38 StatsT mappel::Gauss2DsModel::get_stats() const [inherited]

Definition at line 337 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel ::Gauss2DsModel::get_min_sigma(), mappel::MCMCAdaptor2Ds::get_stats(), mappel::ImageFormat2DBase::get_ \leftarrow stats(), and mappel::PointEmitterModel::get_stats().

9.16.4.39 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.16.4.40 bool mappel::PointEmitterModel::has_hyperparam(const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.41 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 224 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by mappel::Gauss2DsModel::initial_theta_estimate().

9.16.4.42 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inline], [inherited]

Definition at line 231 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DsModel::initial_theta_ \leftarrow estimate().

9.16.4.43 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) const [inherited]

Definition at line 381 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DsModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::min_sigma, mappel::PointEmitterModel::num_params, mappel::Gauss2DsModel::Stencil::sigma_ratio(), mappel ::ImageFormat2DBase::size, mappel::estimator::MLEData::theta, mappel::PointEmitterModel::theta_in_bounds(), mappel::PointEmitterModel::ubound, mappel::Gauss2DsModel::x model, and mappel::Gauss2DsModel::y model.

9.16.4.44 CompositeDist mappel::Gauss2DsModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio, const std::string & prior_type) [static], [inherited]

Definition at line 208 of file Gauss2DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DsModel::make_default_prior_beta_position(), and mappel::

Gauss2DsModel::make_default_prior_normal_position().

Referenced by mappel::Gauss2DsMAP::Gauss2DsMAP(), and Gauss2DsMLE().

9.16.4.45 CompositeDist mappel::Gauss2DsModel::make_default_prior_beta_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 229 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), mappel::PointEmittercomponent sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make_default_prior().

9.16.4.46 CompositeDist mappel::Gauss2DsModel::make_default_prior_normal_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 241 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), mappel::PointEmittercomponent_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make_default_prior().

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.16.4.48 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.16.4.49 Gauss2DsModel::Gauss1DSumModelT mappel::Gauss2DsModel::make_internal_1Dsum_estimator (IdxT dim, const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const CompositeDist & prior)

[static], [protected], [inherited]

Definition at line 69 of file Gauss2DsModel.cpp.

References mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_
position(), mappel::Gauss2DsModel::min_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::update internal 1Dsum estimators().

9.16.4.50 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.16.4.51 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.16.4.52 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.16.4.53 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.16.4.54 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.16.4.55 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.16.4.56 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.16.4.57 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.16.4.58 CompositeDist mappel::Gauss2DsModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static], [inherited]

Definition at line 253 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

9.16.4.59 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.16.4.60 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = DefaultPriorBetaPos) [static].[inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds
Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds
DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds
Model::make_prior_beta_position().

9.16.4.61 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.16.4.62 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel:: \leftarrow Gauss2DsModel::make_prior_beta_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.16.4.63 CompositeDist mappel::Gauss2DsModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha sigma) [static],[inherited]

Definition at line 268 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

9.16.4.64 Gauss2DsModel::Stencil mappel::Gauss2DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 162 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss2DsModel::initial theta estimate().

9.16.4.65 Gauss2DsMLE & mappel::Gauss2DsMLE::operator=(const Gauss2DsMLE & o)

Definition at line 51 of file Gauss2DsMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DsModel::operator=(), and mappel::PointEmitterModel::operator=().

9.16.4.66 Gauss2DsMLE & mappel::Gauss2DsMLE::operator=(Gauss2DsMLE && o)

Definition at line 62 of file Gauss2DsMLE.cpp.

 $References \quad mappel::MLEstimator::operator=(), \quad mappel::PoissonNoise2DObjective::operator=(), \quad mappel::Image \leftarrow Format2DBase::operator=(), \quad mappel::Gauss2DsModel::operator=(), \quad and \quad mappel::PointEmitterModel::operator=().$

9.16.4.67 void mappel::Gauss2DsModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 180 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DY, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::Y.

Referenced by mappel::Gauss2DsModel::pixel_hess_update().

9.16.4.68 void mappel::Gauss2DsModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 192 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

9.16.4.69 void mappel::Gauss2DsModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 204 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

9.16.4.70 void mappel::Gauss2DsModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 354 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXSX, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::PointEmitterModel::make_param(), mappel::Gauss2DsModel::Stencil::Gauss2DsModel::Stencil::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stenci

9.16.4.71 double mappel::Gauss2DsModel::pixel_model_value (int i, int j, const Stencil & s) const [inline], [inherited]

Definition at line 173 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel.:Stencil::Y.

9.16.4.72 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.16.4.73 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.16.4.74 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.75 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor2Ds::eta __ _ _ _ _ _ _ _ _ _ _ _ _ mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_ _ _ phases, and mappel::rng_manager.

9.16.4.76 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed_parameters_mask, double step_scale = 1 . 0) const [inherited]

Definition at line 75 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor2Ds::eta
__sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_

phases, and mappel::rng_manager.

9.16.4.77 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.78 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

 $9.16.4.79 \quad \text{void mappel::} MCMCA daptor 1D:: set_background_mcmc_sampling (\ double \ \textit{eta_bg} = -1 \) \quad \texttt{[inherited]}$

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.16.4.80 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.82 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.83 void mappel::Gauss2DsModel::set_hyperparams (const VecT & hyperparams) [inherited]

Definition at line 119 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DsModel::update_internal_1Dsum _ estimators().

9.16.4.84 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

9.16.4.85 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Industrial Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.16.4.86 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter ← Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.16.4.87 void mappel::Gauss2DsModel::set max sigma (const VecT & new sigma) [inherited]

Set the max_sigma_ratio based on the new max_sigma's ratio with the current min_sigma.

Definition at line 155 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::get min sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.16.4.88 void mappel::Gauss2DsModel::set_max_sigma_ratio (double max_sigma_ratio) [inherited]

Definition at line 176 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::Gauss2DsModel::get_max_sigma(), mappel::Point EmitterModel::get_ubound(), mappel::Gauss1DsModel::set_max_sigma(), mappel::PointEmitterModel::set_ubound(), mappel::Gauss2DsModel::y_model.

Referenced by mappel::Gauss2DsModel::set_max_sigma().

9.16.4.89 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Cdaptor2Cdaptor2Ds().

9.16.4.90 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale(double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← _ scale.

9.16.4.91 void mappel::Gauss2DsModel::set_min_sigma (const VecT & new_sigma) [inherited]

Set the minimum sigma, keeping the max_sigma_ratio the same.

Definition at line 137 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::set_max_sigma(), mappel::Gauss1DsModel::set_min_ colored in the sigma(), mappel::Gauss2DsModel::set_max_sigma(), mappel::Gauss2DsModel::xet_min_ colored in the sigma(), mappel::Gauss2DsModel::xet_min_ colored in the sigma(), mappel::Gauss2DsModel::xet_max_sigma(), mappel::Gauss2DsModel

9.16.4.92 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.16.4.93 void mappel::Gauss2DsModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 107 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

9.16.4.94 void mappel::Gauss2DsModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 113 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

9.16.4.95 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.16.4.96 void mappel::Gauss2DsModel::set_size (const ImageSizeT & size_) [inherited]

Definition at line 125 of file Gauss2DsModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::Image← Format2DBase::size, mappel::Gauss2DsModel::x model, and mappel::Gauss2DsModel::y model.

9.16.4.97 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter← Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.16.4.98 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::lbound,\ mappel::PointEmi$

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.16.4.99 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.16.4.100 void mappel::Gauss2DsModel::update_internal_1Dsum_estimators() [protected], [inherited]

Definition at line 100 of file Gauss2DsModel.cpp.

 $References\ mappel::Gauss2DsModel::get_max_sigma(),\ mappel::PointEmitterModel::get_prior(),\ mappel::Gauss2Ds \\ Model::make_internal_1Dsum_estimator(),\ mappel::Gauss2DsModel::min_sigma,\ mappel::ImageFormat2DBase::size,\ mappel::Gauss2DsModel::y_model,\ and\ mappel::Gauss2DsModel::y_model.$

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::set_hyperparams(), and mappel::Gauss2DsModel::set_prior().

9.16.5 Member Data Documentation

9.16.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.16.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.16.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.16.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.16.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.16.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.16.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.16.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.16.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.16.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.16.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D \column ::set_background_mcmc_sampling().

9.16.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.16.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.16.5.14 const std::string mappel::Gauss2DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 59 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get_min_sigma().

9.16.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.16.5.16 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.16.5.17 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

9.16.5.18 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.16.5.19 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.16.5.20 double mappel::MCMCAdaptor2Ds::eta_sigma =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2Ds.h.

Referenced by mappel::MCMCAdaptor2Ds::get_stats(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::perator=(), and mappel::MCMCAdaptor2Ds::sample_mcmc_candidate().

9.16.5.21 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

9.16.5.22 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor2Dc::sample_mcmc_candidate().

9.16.5.23 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.16.5.24 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

9.16.5.25 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.16.5.27 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check psf sigma().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.16.5.29 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::get_stats(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::get_stats(), mappel::PointEmitterModel::get_stats(), mappel::get_stats(), mappel::get_st

9.16.5.30 VecT mappel::Gauss2DsModel::min_sigma [protected], [inherited]

Gaussian PSF in pixels

Definition at line 118 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::debug_internal — _sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP(), Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::initial_theta_estimate(), mappel ::Gauss2DsModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel::Gauss2DsModel::Stencil::sigmaX(), and mappel::Gauss2DsModel::update internal 1Dsum_estimators().

9.16.5.31 const std::string mappel::Gauss2DsMLE::name [static]

Definition at line 36 of file Gauss2DsMLE.h.

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get stats().

9.16.5.33 | IdxT mappel::PointEmitterModel::num_hyperparams [protected],[inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.16.5.34 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel

```
9.16.5.35 | IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

```
9.16.5.36 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitte

9.16.5.37 const StringVecT mappel::Gauss2DsModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 58 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get_min_sigma().

```
9.16.5.38 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCbadaptorBase::set_mcmc_sigma_scale().

9.16.5.39 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMAP(), ::expected information(), Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood ← ::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood::debug::grad_components(), mappel ← ::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), mappel::Gauss2D ← Model::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood← ::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel::make default prior beta ← position(), mappel::Gauss2DsModel::make default prior beta position(), mappel::Gauss2DModel::make default ← prior_normal_position(), mappel::ImageFormat2D← Base::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal ← 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum estimator(), mappel::Gauss2DModel::make ← _prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make \leftarrow prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal_position(), mappel::methods::model_image(), mappel::ImageFormat2DBase::operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug← ::rllh_components(), mappel::ImageFormat2DBase::set_size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2← DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel ← ::Gauss2DModel::Stencil::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DModel::update ← internal 1Dsum estimators(), and mappel::Gauss2DsModel::update internal 1Dsum estimators().

9.16.5.40 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

9.16.5.41 Gauss1DSumModelT mappel::Gauss2DsModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 119 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_x(), mappel::Gauss2DsModel::initial_theta — _estimate(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::set_max_sigma_ratio(), mappel:: \leftarrow Gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_ \leftarrow internal 1Dsum estimators().

9.16.5.42 Gauss1DSumModelT mappel::Gauss2DsModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 120 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::gauss2DsModel::gauss2DsModel::gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- · Gauss2DsMLE.h
- Gauss2DsMLE.cpp

9.17 mappel::Gauss2DsModel Class Reference

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsModel.h>

Inheritance diagram for mappel::Gauss2DsModel:

Classes

class Stencil

Stencil for 2D scalar-sigma models.

Public Types

```
    using Gauss1DSumModelT = Gauss1DsMAP

using StencilVecT = std::vector< Stencil >
• using ParamT = arma::vec
using ParamVecT = arma::mat
• using ImageCoordT = uint32 t
• using ImagePixeIT = double

    template < class CoordT >

  using ImageSizeShapeT = arma::Col < CoordT >

    template < class CoordT >

  using ImageSizeVecShapeT = arma::Mat< CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template<class PixelT >

  using ImageShapeT = arma::Mat< PixelT >

    template < class PixelT >

  using ImageStackShapeT = arma::Cube < PixeIT >
```

Public Member Functions

void set hyperparams (const VecT &hyperparams)

using ImageT = ImageShapeT < ImagePixeIT >

using ImageStackT = ImageStackShapeT < ImagePixeIT >

- void set prior (CompositeDist &&prior)
- void set_prior (const CompositeDist &prior_)
- void set_size (const ImageSizeT &size_)
- VecT get min sigma () const
- double get_min_sigma (ldxT dim) const
- · VecT get max sigma () const
- double get max sigma (ldxT dim) const
- double get_max_sigma_ratio () const
- void set_min_sigma (const VecT &min_sigma)
- void set max sigma (const VecT &max sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get_stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (int i, int j, const Stencil &s) const
- void pixel_grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- · void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init, const std::string &estimator) const
- Gauss1DSumModelT debug internal sum model x () const

- · Gauss1DSumModelT debug_internal_sum_model_y () const
- IdxT get num params () const
- void check_param_shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- · CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- IdxT get_num_hyperparams () const
- VecT get hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const

- template < class ImT > void set image in stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const
- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (IdxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio, const std::string &prior type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make default prior normal position (const ImageSizeT &size, double max sigma ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma _ ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global min size =3
- static const ImageCoordT global max size =512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- Gauss2DsModel (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma)
- Gauss2DsModel (const Gauss2DsModel &o)
- Gauss2DsModel (Gauss2DsModel &&o)
- Gauss2DsModel & operator= (const Gauss2DsModel &o)
- Gauss2DsModel & operator= (Gauss2DsModel &&o)
- void update_internal_1Dsum_estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

- static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const CompositeDist &prior)
- static double compute max sigma ratio (const VecT &min sigma, const VecT &max sigma)

Protected Attributes

- VecT min_sigma
- Gauss1DSumModelT x_model
- Gauss1DSumModelT y_model
- CompositeDist prior
- IdxT num params
- IdxT num hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_sigma =0
- double eta y =0
- double eta_x =0
- double eta_l =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

9.17.1 Detailed Description

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

Definition at line 23 of file Gauss2DsModel.h.

9.17.2 Member Typedef Documentation

9.17.2.1 using mappel::Gauss2DsModel::Gauss1DSumModelT = Gauss1DsMAP

Definition at line 26 of file Gauss2DsModel.h.

9.17.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.17.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.17.2.4 template < class PixeIT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixeIT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.17.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.17.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.17.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

9.17.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.17.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixelT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.17.2.12 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.17.2.13 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.17.2.14 using mappel::Gauss2DsModel::StencilVecT = std::vector<Stencil>

Definition at line 55 of file Gauss2DsModel.h.

9.17.3 Constructor & Destructor Documentation

9.17.3.1 mappel::Gauss2DsModel::Gauss2DsModel (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma) [protected]

Definition at line 12 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), make_internal_1Dsum_estimator(), min_sigma, mappel ::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, and y_model.

Referenced by debug_internal_sum_model_y().

9.17.3.2 mappel::Gauss2DsModel::Gauss2DsModel (const Gauss2DsModel & o) [protected]

Definition at line 28 of file Gauss2DsModel.cpp.

References get_max_sigma(), make_internal_1Dsum_estimator(), min_sigma, mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, and y_model.

9.17.3.3 mappel::Gauss2DsModel::Gauss2DsModel && o) [protected]

Definition at line 36 of file Gauss2DsModel.cpp.

References get_max_sigma(), make_internal_1Dsum_estimator(), min_sigma, mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, and y model.

9.17.4 Member Function Documentation

9.17.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

9.17.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

9.17.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.17.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.17.4.5 void mappel::ImageFormat2DBase::check image shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.17.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

9.17.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

9.17.4.8 void mappel::PointEmitterModel::check psf sigma (double psf sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel::Gauss1DModel(), mappel::Gauss2DModel(), Gauss2Dsc-Model(), mappel::Gauss1DsModel::set_max_sigma(), set_max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), set_min_sigma(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

9.17.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

9.17.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

9.17.4.11 double mappel::Gauss2DsModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max_sigma)
[static], [protected]

Definition at line 162 of file Gauss2DsModel.cpp.

References min_sigma.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP(), mappel::Gauss2DsMLE ::Gauss2DsMLE(), and set max sigma().

9.17.4.12 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_x() const [inline]

Definition at line 104 of file Gauss2DsModel.h.

References x model.

9.17.4.13 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_y() const [inline]

Definition at line 105 of file Gauss2DsModel.h.

References compute_max_sigma_ratio(), Gauss2DsModel(), make_internal_1Dsum_estimator(), min_sigma, operator=(), mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, update_internal_1Dsum_estimators(), and y_model.

9.17.4.14 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.17.4.15 StringVecT mappel::PointEmitterModel::get_hyperparam_names()const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.17.4.17 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.17.4.18 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.17.4.20 VecT mappel::Gauss2DsModel::get_max_sigma() const [inline] Definition at line 132 of file Gauss2DsModel.h. References get_max_sigma_ratio(), and get_min_sigma(). Referenced by Gauss2DsModel(), get_stats(), operator=(), set_max_sigma_ratio(), set_min_sigma(), and update_← internal 1Dsum estimators(). 9.17.4.21 double mappel::Gauss2DsModel::get_max_sigma (ldxT dim) const [inline] Definition at line 136 of file Gauss2DsModel.h. References get_max_sigma_ratio(), and get_min_sigma(). 9.17.4.22 double mappel::Gauss2DsModel::get_max_sigma_ratio() const [inline] Definition at line 140 of file Gauss2DsModel.h. References mappel::PointEmitterModel::get_ubound(). Referenced by get_max_sigma(), and get_stats(). 9.17.4.23 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited] Definition at line 56 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::num phases. 9.17.4.24 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited] Definition at line 53 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::sigma_scale. 9.17.4.25 VecT mappel::Gauss2DsModel::get_min_sigma() const [inline] Definition at line 128 of file Gauss2DsModel.h. References min_sigma. Referenced by get_max_sigma(), get_stats(), and set_max_sigma().

Generated by Doxygen

9.17.4.26 double mappel::Gauss2DsModel::get_min_sigma (${\tt IdxT} \ dim$) const

Definition at line 191 of file Gauss2DsModel.cpp.

References DefaultPriorType, min sigma, and prior types.

9.17.4.27 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited] Definition at line 215 of file PointEmitterModel.h. References mappel::PointEmitterModel::num hyperparams. 9.17.4.28 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited] Definition at line 167 of file PointEmitterModel.h. References mappel::PointEmitterModel::num_params. 9.17.4.29 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline], [inherited] Definition at line 79 of file ImageFormat2DBase.h. References mappel::ImageFormat2DBase::size. Referenced by mappel::ImageFormat2DBase::get_stats(). 9.17.4.30 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited] Definition at line 255 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 9.17.4.31 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 207 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and update internal 1Dsum ← estimators(). 9.17.4.32 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 211 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 9.17.4.33 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static], [inherited] Definition at line 127 of file PointEmitterModel.cpp. References mappel::rng manager.

9.17.4.34 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.17.4.35 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.17.4.36 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.17.4.37 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

9.17.4.38 StatsT mappel::Gauss2DsModel::get_stats () const

Definition at line 337 of file Gauss2DsModel.cpp.

References get_max_sigma(), get_max_sigma_ratio(), get_min_sigma(), mappel::MCMCAdaptor2Ds::get_stats(), mappel::ImageFormat2DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

9.17.4.39 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), get_max_sigma_ratio(), mappel::MCMC \leftarrow Adaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_ \leftarrow background_mcmc_sampling(), and set_max_sigma_ratio().

9.17.4.40 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.17.4.41 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im) const [inline]

Fast, heuristic estimate of initial theta.

Definition at line 224 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by initial_theta_estimate().

9.17.4.42 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inline]

Definition at line 231 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and initial theta estimate().

9.17.4.43 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) const

Definition at line 381 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DsModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, make_stencil(), min_sigma, mappel::PointEmitterModel::num_params, mappel::Gauss2DsModel::Stencil::sigma_ratio(), mappel::ImageFormat2DBase::size, mappel::estimator::MLEData ::theta, mappel::PointEmitterModel::theta_in_bounds(), mappel::PointEmitterModel::ubound, x_model, and y_model.

9.17.4.44 CompositeDist mappel::Gauss2DsModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio, const std::string & prior_type) [static]

Definition at line 208 of file Gauss2DsModel.cpp.

References mappel::istarts with(), make default prior beta position(), and make default prior normal position().

Referenced by mappel::Gauss2DsMAP::Gauss2DsMAP(), and mappel::Gauss2DsMLE::Gauss2DsMLE().

9.17.4.45 CompositeDist mappel::Gauss2DsModel::make_default_prior_beta_position (const ImageSizeT & size, double max_sigma_ratio) [static]

Definition at line 229 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_ \leftarrow component_intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), mappel::PointEmitter \leftarrow Model::make_prior_component_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by make default prior().

9.17.4.46 CompositeDist mappel::Gauss2DsModel::make_default_prior_normal_position (const ImageSizeT & size, double max_sigma_ratio) [static]

Definition at line 241 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), mappel::PointEmittercomponent_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by make default prior().

9.17.4.47 | ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.17.4.48 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.17.4.49 Gauss2DsModel::Gauss1DSumModelT mappel::Gauss2DsModel::make_internal_1Dsum_estimator (IdxT dim, const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const CompositeDist & prior)
[static], [protected]

Definition at line 69 of file Gauss2DsModel.cpp.

References mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_
position(), min_sigma, and mappel::ImageFormat2DBase::size.

Referenced by debug_internal_sum_model_y(), Gauss2DsModel(), and update_internal_1Dsum_estimators().

9.17.4.50 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsyModel::initial_theta_estimate(), initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DModel::pixel_hess_update(), and pixel_hess_update().

9.17.4.51 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.17.4.52 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.17.4.53 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.17.4.54 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.17.4.55 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.17.4.56 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta ← stack().

9.17.4.57 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.17.4.58 CompositeDist mappel::Gauss2DsModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static]

Definition at line 253 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

9.17.4.59 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), make_default_prior_deta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), make_default_default_default_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_default_defau

9.17.4.60 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), and make_prior_beta_position().

9.17.4.61 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and make_prior_normal_position().

9.17.4.62 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_cormal_position(), and make_prior_normal_position().

9.17.4.63 CompositeDist mappel::Gauss2DsModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static]

Definition at line 268 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

9.17.4.64 Gauss2DsModel::Stencil mappel::Gauss2DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 162 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by initial_theta_estimate().

9.17.4.65 Gauss2DsModel & mappel::Gauss2DsModel::operator=(const Gauss2DsModel & o) [protected]

Definition at line 44 of file Gauss2DsModel.cpp.

References get max sigma(), min sigma, mappel::MCMCAdaptor2Ds::operator=(), x model, and y model.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DsMAP::operator=(), and mappel::Gauss2DsMLE ← ::operator=().

9.17.4.66 Gauss2DsModel & mappel::Gauss2DsModel::operator=(Gauss2DsModel && o) [protected]

Definition at line 56 of file Gauss2DsModel.cpp.

References min_sigma, mappel::MCMCAdaptor2Ds::operator=(), x_model, and y_model.

9.17.4.67 void mappel::Gauss2DsModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 180 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::Y. mappel::Gauss2DsModel::Stencil::Y.

Referenced by pixel hess update().

9.17.4.68 void mappel::Gauss2DsModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 192 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

9.17.4.69 void mappel::Gauss2DsModel::pixel hess (int i, int j, const Stencil & s, MatT & hess) const [inline]

Definition at line 204 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

9.17.4.70 void mappel::Gauss2DsModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const

pixel derivative inner loop calculations.

Definition at line 354 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2Ds- Model::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXSX, mappel::Gauss2DsModel::Stencil::DY, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::PointEmitterModel::make_param(), pixel_grad(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

9.17.4.71 double mappel::Gauss2DsModel::pixel_model_value (int i, int j, const Stencil & s) const [inline]

Definition at line 173 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel \leftrightarrow ::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

9.17.4.72 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

9.17.4.73 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.17.4.74 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.17.4.75 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, mappel::MCMCAdaptor2Ds::eta
__sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_

phases, and mappel::rng_manager.

9.17.4.76 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 75 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, mappel::MCMCAdaptor2Ds::eta
__sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_

phases, and mappel::rng_manager.

9.17.4.77 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.17.4.78 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.17.4.79 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.17.4.80 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
9.17.4.81 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT & desc ) [inline], [inherited]
```

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
9.17.4.82 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline], [inherited]
```

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.17.4.83 void mappel::Gauss2DsModel::set_hyperparams (const VecT & hyperparams)

Definition at line 119 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and update_internal_1Dsum_estimators().

9.17.4.84 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

9.17.4.85 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanI, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter← Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.17.4.86 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.17.4.87 void mappel::Gauss2DsModel::set_max_sigma (const VecT & new_sigma)

Set the max_sigma_ratio based on the new max_sigma's ratio with the current min_sigma.

Definition at line 155 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), compute_max_sigma_ratio(), get_min_sigma(), and set ← __max_sigma_ratio().

9.17.4.88 void mappel::Gauss2DsModel::set_max_sigma_ratio (double max_sigma_ratio)

Definition at line 176 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, get_max_sigma(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::set_max_sigma(), mappel::PointEmitterModel::set_ubound(), x_model, and y_model.

Referenced by set_max_sigma().

9.17.4.89 void mappel::MCMCAdaptorBase::set mcmc_num_phases(| IdxT_num_phases) [protected],[inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C→Ds().

9.17.4.90 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double *scale*) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← scale.

9.17.4.91 void mappel::Gauss2DsModel::set_min_sigma (const VecT & new_sigma)

Set the minimum sigma, keeping the max_sigma_ratio the same.

Definition at line 137 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), get_max_sigma(), min_sigma, mappel::Gauss1Ds Model::set max sigma(), mappel::Gauss1DsModel::set min sigma(), x model, and y model.

9.17.4.92 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.17.4.93 void mappel::Gauss2DsModel::set_prior (CompositeDist && prior_)

Definition at line 107 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and update_internal_1Dsum_estimators().

9.17.4.94 void mappel::Gauss2DsModel::set_prior (const CompositeDist & prior_)

Definition at line 113 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set prior(), and update internal 1Dsum estimators().

9.17.4.95 void mappel::PointEmitterModel::set_rng_seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.17.4.96 void mappel::Gauss2DsModel::set_size (const ImageSizeT & size_)

Definition at line 125 of file Gauss2DsModel.cpp.

 $References \quad mappel::ImageFormat2DBase::set_size(), \quad mappel::ImageFormat1DBase::set_size(), \quad mappel::ImageFormat2DBase::set_size(), \quad mappel::ImageFormat2DB$

9.17.4.97 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and set max sigma ratio().

9.17.4.98 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss1DModel :::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsxyModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_in_bounds().

9.17.4.99 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.17.4.100 void mappel::Gauss2DsModel::update_internal_1Dsum_estimators() [protected]

Definition at line 100 of file Gauss2DsModel.cpp.

References get_max_sigma(), mappel::PointEmitterModel::get_prior(), make_internal_1Dsum_estimator(), min_sigma, mappel::ImageFormat2DBase::size, x_model, and y_model.

Referenced by debug_internal_sum_model_y(), set_hyperparams(), and set_prior().

9.17.5 Member Data Documentation

9.17.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), set_max_sigma — _ratio(), and mappel::PointEmitterModel::set_ubound().

9.17.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.17.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

```
9.17.5.4 const IdxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.17.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.17.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.17.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.17.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.17.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxI = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
Referenced by mappel::PointEmitterModel::make_prior_component_intensity().
9.17.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]
Default emitter intensity mean
Definition at line 61 of file PointEmitterModel.h.
Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().
```

9.17.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), make_default_prior_deta_position(), make_default_prior_deta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), make_default_default_default_prior_normal_position(), make_default_def

9.17.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.17.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.17.5.14 const std::string mappel::Gauss2DsModel::DefaultPriorType = "Normal" [static]

Definition at line 59 of file Gauss2DsModel.h.

Referenced by get min sigma().

9.17.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and initial_theta_estimate().

9.17.5.17 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.17.5.18 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.17.5.19 double mappel::MCMCAdaptor2Ds::eta_sigma =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2Ds.h.

Referenced by mappel::MCMCAdaptor2Ds::get_stats(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::perator=(), and mappel::MCMCAdaptor2Ds::sample_mcmc_candidate().

9.17.5.20 double mappel::MCMCAdaptor1D::eta_x =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::M \leftarrow CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \hookleftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \hookleftarrow D::sample_mcmc_candidate().

9.17.5.21 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D::mcMCAdaptor2D::mcMcAdaptor2D::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::sample mcmc candidate().

9.17.5.22 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.17.5.23 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

9.17.5.24 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.17.5.26 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.17.5.28 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::PointEmitterModel = ::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

9.17.5.29 VecT mappel::Gauss2DsModel::min_sigma [protected]

Gaussian PSF in pixels

Definition at line 118 of file Gauss2DsModel.h.

Referenced by compute_max_sigma_ratio(), debug_internal_sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP::Gauss2DsMLE(), mappel::Gauss2DsMLE(), get_min_sigma(), initial_theta_estimate(), make \leftarrow _internal_1Dsum_estimator(), operator=(), set_min_sigma(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel:: \leftarrow Gauss2DsModel::Stencil::sigmaY(), and update_internal_1Dsum_estimators().

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.17.5.31 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.17.5.32 | IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel :: PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter: Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::po

```
9.17.5.33 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

```
9.17.5.34 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug internal sum model y(), debug internal sum model y(), mappel::← Gauss2DModel::Gauss2DModel(), Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_index(), mappel ← ::PointEmitterModel::get hyperparam names(), mappel::PointEmitterModel::get hyperparam value(), mappel::Point← EmitterModel::get hyperparams(), mappel::Gauss1DsModel::get max sigma(), mappel::Gauss1DsModel::get min← sigma(), mappel::PointEmitterModel::get param names(), mappel::PointEmitterModel::get prior(), mappel::Point← EmitterModel::get stats(), mappel::PointEmitterModel::has hyperparam(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::PointEmitterModel(), mappel::PointEmitterModel::rename hyperparam(), PointEmitterModel::sample prior(), mappel::PointEmitterModel::set bounds(), mappel::PointEmitterModel::set← hyperparam names(), mappel::PointEmitterModel::set hyperparam value(), mappel::PointEmitterModel::set ← hyperparams(), mappel::PointEmitterModel::set lbound(), mappel::Gauss1DsModel::set max sigma(), mappel::← Gauss1DsModel::set min sigma(), mappel::PointEmitterModel::set param names(), mappel::PointEmitterModel ← ::set prior(), and mappel::PointEmitterModel::set ubound().

9.17.5.35 const StringVecT mappel::Gauss2DsModel::prior_types [static]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 58 of file Gauss2DsModel.h.

Referenced by get min sigma().

```
9.17.5.36 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

9.17.5.37 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss ← heuristic compute estimate(), mappel::ImageFormat2DBase::check image shape(), mappel::Gauss2DModel ← ::Stencil::compute derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2D← Model::debug internal sum model y(), debug internal sum model y(), mappel::methods::expected information(), mappel::Gauss2DModel:;Gauss2DModel(), mappel::Gauss2DsMAP(), mappel Gauss2DsMLE(), Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2D ← Base::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood::grad(), mappel::methods ← ::likelihood::grad2(), mappel::methods::likelihood::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian_components(), mappel::Gauss2DModel::initial_theta_estimate(), initial ← theta estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel ::Gauss2DModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss2DModel ← ::make default prior normal position(), make default prior normal position(), mappel::ImageFormat2DBase← ::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal← _1Dsum_estimator(), make internal 1Dsum estimator(), mappel::Gauss2DModel::make prior beta position(), make prior beta position(), mappel::Gauss2DModel::make prior normal position(), make prior normal position(), mappel::methods::model_image(), mappel::ImageFormat2DBase::operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug::rllh components(), mappel::lmageFormat2DBase::set size(), mappel::Gauss2← DModel::set_size(), set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DModel⊹ ::update_internal_1Dsum_estimators(), and update_internal_1Dsum_estimators().

9.17.5.38 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::PointEmitterModel \leftarrow ::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

9.17.5.39 Gauss1DSumModelT mappel::Gauss2DsModel::x_model [protected]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 119 of file Gauss2DsModel.h.

Referenced by debug_internal_sum_model_x(), initial_theta_estimate(), operator=(), set_max_sigma_ratio(), set_min sigma(), set_size(), and update internal 1Dsum estimators().

9.17.5.40 Gauss1DSumModelT mappel::Gauss2DsModel::y_model [protected]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 120 of file Gauss2DsModel.h.

Referenced by debug_internal_sum_model_y(), Gauss2DsModel(), initial_theta_estimate(), operator=(), set_max_
sigma ratio(), set min sigma(), set size(), and update internal 1Dsum estimators().

The documentation for this class was generated from the following files:

- Gauss2DsModel.h
- · Gauss2DsModel.cpp

9.18 mappel::Gauss2DsxyMAP Class Reference

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsxyMAP.h>

Inheritance diagram for mappel::Gauss2DsxyMAP:

Public Types

- using StencilVecT = std::vector < Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- $\bullet \ \ \text{template}{<} \text{class CoordT} >$

using ImageSizeShapeT = CoordT

- template < class CoordT >
 - using ImageSizeVecShapeT = arma::Col < CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixeIT >

using ImageShapeT = arma::Col < PixelT >

- template<class PixeIT >
 - using ImageStackShapeT = arma::Mat< PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT< ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

- Gauss2DsxyMAP (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma)
- Gauss2DsxyMAP (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, CompositeDist &&prior)
- · double get psf sigma () const
- double get psf sigma (ldxT idx) const
- void set_psf_sigma (double new_psf_sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (ldxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const
- IdxT get_num_params () const
- · void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make param stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (IdxT n, FillT fill) const

- MatT make param mat () const
- $\bullet \ \ \text{template}{<} \text{class FillT} >$

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get num hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)

- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >
 - ParamT sample_prior (RngT &rng) const
- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- const ParamT & get ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
 - void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- ImageSizeT get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set_size (const ImageSizeT &size_)
- void set_size (const arma::Col < ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, const std::string &prior_type)
- static CompositeDist make default prior beta position (IdxT size)
- static CompositeDist make_default_prior_normal_position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean bg, double kappa bg)

- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static prior_hessian::TruncatedNormalDist make_prior_component_position_normal (ldxT size, double pos_
 sigma=DefaultPriorSigmaPos)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const ldxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global_max_size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator names

Protected Member Functions

· void set mcmc num phases (ldxT num phases)

Protected Attributes

- · double psf_sigma
- · CompositeDist prior
- · IdxT num params
- IdxT num hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_x =0
- double eta I =0
- double eta bg =0
- IdxT num phases
- double sigma_scale

9.18.1 Detailed Description

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Model: Gauss1DModel a 1D gaussian PSF with fixed psf_sigma Objective Statistical Noise Model: PoissonNoise1D← MAPObjective an MLE objective for Poisson noise ImageFormat: ImageFormat1DBase - Data format

Definition at line 25 of file Gauss2DsxyMAP.h.

```
9.18.2 Member Typedef Documentation
```

```
9.18.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]
```

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.18.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

```
9.18.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]
```

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.18.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.18.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.18.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.18.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.18.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

9.18.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

9.18.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

9.18.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.18.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.18.2.15 using mappel::Gauss1DModel::StencilVecT = std::vector<Stencil> [inherited]

Definition at line 49 of file Gauss1DModel.h.

- 9.18.3 Constructor & Destructor Documentation
- 9.18.3.1 mappel::Gauss2DsxyMAP::Gauss2DsxyMAP (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma)
- 9.18.3.2 mappel::Gauss2DsxyMAP::Gauss2DsxyMAP (const ImageSizeT & size, const VecT & min_sigma, const VecT & max sigma, CompositeDist && prior)
- 9.18.4 Member Function Documentation
- 9.18.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

9.18.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.18.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

9.18.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.18.4.5 void ImageFormat1DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.18.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.18.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.18.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.18.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

9.18.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

9.18.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

9.18.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

9.18.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.18.4.17 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.18.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

 $References\ mappel:: MCMCA daptor Base:: sigma_scale.$

9.18.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams()const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

 $References\ mappel :: Point Emitter Model :: num_hyperparams.$

9.18.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

```
9.18.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get stats().
9.18.4.22 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.18.4.23 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline],[inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
9.18.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.18.4.25 double mappel::Gauss1DModel::get_psf_sigma() const [inline], [inherited]
Definition at line 127 of file Gauss1DModel.h.
References mappel::Gauss1DModel::psf_sigma.
Referenced by mappel::Gauss1DModel::get stats().
9.18.4.26 double mappel::Gauss1DModel::get_psf_sigma ( ldxT idx ) const [inherited]
Definition at line 131 of file Gauss1DModel.cpp.
References mappel::Gauss1DModel::psf_sigma.
9.18.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
```

References mappel::rng manager.

9.18.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.18.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.18.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size (IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.18.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

9.18.4.32 StatsT mappel::Gauss1DModel::get_stats() const [inherited]

Definition at line 178 of file Gauss1DModel.cpp.

 $References \quad mappel:: Gauss 1DModel:: get_psf_sigma(), \quad mappel:: MCMCAdaptor 1D:: get_stats(), \quad mappel:: Image \leftarrow Format 1DB ase:: get_stats(), \quad and \quad mappel:: Point Emitter Model:: get_stats().$

9.18.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.18.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.35 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate(const ImageT & im)const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make param(), and mappel::Gauss1DModel::Stencil::theta.

9.18.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 207 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::l(), mappel::Gauss1DModel ← ::make stencil(), mappel::PointEmitterModel::num params, and mappel::ImageFormat1DBase::size.

9.18.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior(IdxT size, const std::string & prior_type) [static], [inherited]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DModel::make_default_prior_beta_position(), and mappel::

Gauss1DModel::make default prior normal position().

9.18.4.38 CompositeDist mappel::Gauss1DModel::make_default_prior_beta_position (ldxT size) [static], [inherited]

Definition at line 80 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component intensity(), and mappel::PointEmitterModel::make prior component position beta().

Referenced by mappel::Gauss1DModel::make_default_prior().

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::PointEmitterModel::make_prior_component intensity(), and mappel::PointEmitterModel::make prior component position normal().

Referenced by mappel::Gauss1DModel::make_default_prior().

9.18.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.18.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.18.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.18.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.18.4.44 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_params.$

9.18.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.18.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.18.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.18.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

9.18.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.18.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_ prior_component_position_beta().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

9.18.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanI, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.18.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.18.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.18.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.18.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_
prior component position normal().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

9.18.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta in bounds().

Referenced by mappel::Gauss1DModel::initial theta estimate().

9.18.4.57 void mappel::Gauss1DModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

Referenced by mappel::Gauss1DModel::pixel_hess_update().

9.18.4.58 void mappel::Gauss1DModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1D← Model::psf sigma.

9.18.4.59 void mappel::Gauss1DModel::pixel_hess (IdxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 159 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel:: \leftarrow Stencil::I(), and mappel::Gauss1DModel::psf_sigma.

9.18.4.60 void mappel::Gauss1DModel::pixel_hess_update(ldxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

 $References\ mappel::Gauss1DModel::Stencil::DXS,\ mappel::Gauss1DModel::Stencil::I(),\ mappel::PointEmitterModel \\ :::make_param(),\ mappel::Gauss1DModel::pixel_grad(),\ and\ mappel::Gauss1DModel::psf_sigma.$

9.18.4.61 double mappel::Gauss1DModel::pixel_model_value (ldxT i, const Stencil & s) const [inline], [inherited]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

9.18.4.62 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

9.18.4.63 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.18.4.64 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.65 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) const [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_ \leftarrow x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.18.4.66 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, const ldxVecT & fixed_parameters_mask, double step_scale = 1.0) const [inherited]

Definition at line 122 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_\infty x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.18.4.67 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.18.4.69 void mappel::MCMCAdaptor1D::set background mcmc sampling (double eta bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.18.4.70 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.72 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.73 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

9.18.4.74 template < class lmT > void ImageFormat1DBase::set_image_in_stack(ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.18.4.75 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter← Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.18.4.76 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.18.4.77 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

9.18.4.78 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale(double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

9.18.4.79 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.18.4.80 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

9.18.4.81 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.18.4.82 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma) [inherited]

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and mappel::Gauss1DModel::psf_sigma.

Referenced by mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

9.18.4.83 void mappel::Gauss1DModel::set_psf_sigma (const VecT & new_psf_sigma) [inline], [inherited]

Definition at line 131 of file Gauss1DModel.h.

References mappel::Gauss1DModel::set_psf_sigma().

9.18.4.84 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.18.4.85 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2colored by mappel::Gauss2DModel::set_size().

9.18.4.86 void ImageFormat1DBase::set_size(const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

9.18.4.87 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.18.4.88 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.18.4.89 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.18.5 Member Data Documentation

9.18.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 \leftarrow DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.18.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.18.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.18.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.18.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.18.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.18.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.18.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.18.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.18.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.18.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D $\column{c}\column{$

9.18.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.18.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.18.5.14 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 53 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

9.18.5.15 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.18.5.16 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.18.5.17 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

9.18.5.18 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
9.18.5.19 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dcc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dcc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.18.5.20 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

9.18.5.21 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.18.5.22 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

```
9.18.5.23 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

9.18.5.25 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

9.18.5.27 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

9.18.5.28 const std::string mappel::Gauss2DsxyMAP::name [static]

Definition at line 30 of file Gauss2DsxyMAP.h.

9.18.5.29 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.18.5.30 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.18.5.31 | IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set \leftarrow prior(), mappel::PointEmitterModel::set ubound(), and mappel::PointEmitterModel::theta in bounds().

```
9.18.5.32 | IdxT mappel::MCMCAdaptorBase::num_phases [protected],[inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

```
9.18.5.33 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_param_\(\cdot \) nappel::PointEmitterModel::set_param_\(\cdot \) nappel::PointEmitterModel::set_param_\(\cdot \cdot \) nappel::PointEmitterModel::set_param_\(\cdot \cdot \cdot \) nappel::PointEmitterModel::set_param_\(\cdot \

```
9.18.5.34 const StringVecT mappel::Gauss1DModel::prior_types [static], [inherited]
```

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

9.18.5.35 double mappel::Gauss1DModel::psf_sigma [protected],[inherited]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::Gauss1DModel::get_psf_sigma(), mappel::Gauss1DModel::pixel_prad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss1D Model::Stencil().

9.18.5.36 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds:

9.18.5.37 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

9.18.5.38 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_

The documentation for this class was generated from the following file:

Gauss2DsxyMAP.h

9.19 mappel::Gauss2DsxyModel Class Reference

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_ \leftarrow y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

 $\label{local-mappel} \verb|#include| </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsxyModel. \leftarrow h>$

Inheritance diagram for mappel::Gauss2DsxyModel:

Classes

· class Stencil

Stencil for 2D free-sigma (astigmatic) models.

Public Types

```
    using StencilVecT = std::vector< Stencil >
```

- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- template < class CoordT > using ImageSizeShapeT = arma::Col < CoordT >
- template < class CoordT >
 using ImageSizeVecShapeT = arma::Mat < CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >
 using ImageShapeT = arma::Mat < PixelT >
- template < class PixelT >
 using ImageStackShapeT = arma::Cube < PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- Gauss2DsxyModel (const ImageSizeT &size, const VecT &min sigma, const VecT &max sigma)
- void set_hyperparams (const VecT &hyperparams)
- void set prior (CompositeDist &&prior)
- void set size (const ImageSizeT &size)
- · VecT get min sigma () const
- double get min sigma (ldxT dim) const
- VecT get max sigma () const
- double get_max_sigma (ldxT dim) const
- double get max sigma ratio () const
- void set_min_sigma (const VecT &min_sigma)
- void set_max_sigma (const VecT &max_sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (int i, int j, const Stencil &s) const
- void pixel grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- Stencil initial theta estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init)
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator)
- void sample_mcmc_candidate (int sample_index, ParamT &canidate_theta, double scale=1.0)
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template < class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const

- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >
 - ParamT sample_prior (RngT &rng) const
- ParamT sample prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT & theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
- void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=DefaultPriorBetaPos)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

• static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global max size =512

Protected Member Functions

void update_internal_1D_estimators ()

Static Protected Member Functions

static double compute max sigma ratio (const VecT &min sigma, const VecT &max sigma)

Protected Attributes

- · double mcmc candidate eta y
- double mcmc_candidate_eta_sigma
- VecT min sigma
- Gauss1DsMAP x model
- Gauss1DsMAP y_model
- CompositeDist prior
- · IdxT num params
- IdxT num hyperparams
- ParamT lbound
- · ParamT ubound
- · ImageSizeT size

9.19.1 Detailed Description

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_ y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

Importantly sigma_x and sigma_y must be in the range given by parameters min_sigma, max_sigma. Each is a 2-element vector, giving the minimum and maximum acceptable values for the gaussian sigma. It is important that min—sigma is at least 0.5 pixel, estimating gaussian centers when any component of the sigma is significantly smaller than a pixel will lead to poor results anyways.

Definition at line 27 of file Gauss2DsxyModel.h.

9.19.2 Member Typedef Documentation

9.19.2.1 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.19.2.2 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.19.2.3 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.19.2.4 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

9.19.2.5 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.19.2.6 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

9.19.2.7 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.19.2.8 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.19.2.10 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.19.2.11 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.19.2.12 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.19.2.13 using mappel::Gauss2DsxyModel::StencilVecT = std::vector<Stencil>

Definition at line 59 of file Gauss2DsxyModel.h.

9.19.3 Constructor & Destructor Documentation

9.19.3.1 mappel::Gauss2DsxyModel::Gauss2DsxyModel (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma)

9.19.4 Member Function Documentation

9.19.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.19.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

9.19.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

9.19.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.19.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.19.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.19.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

9.19.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

9.19.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

9.19.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

9.19.4.11 static double mappel::Gauss2DsxyModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max_sigma) [static], [protected]

9.19.4.12 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.19.4.13 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.19.4.14 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.19.4.15 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.19.4.16 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

```
9.19.4.17 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound ( ) const [inline],
         [inherited]
Definition at line 219 of file PointEmitterModel.h.
References mappel::PointEmitterModel::lbound.
Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), and
mappel::MCMCAdaptor1D::set_background_mcmc_sampling().
9.19.4.18 VecT mappel::Gauss2DsxyModel::get_max_sigma( ) const [inline]
Definition at line 127 of file Gauss2DsxyModel.h.
References get_max_sigma_ratio(), and get_min_sigma().
9.19.4.19 double mappel::Gauss2DsxyModel::get_max_sigma ( ldxT dim ) const [inline]
Definition at line 131 of file Gauss2DsxyModel.h.
References get max sigma ratio(), and get min sigma().
9.19.4.20 double mappel::Gauss2DsxyModel::get max sigma_ratio( ) const [inline]
Definition at line 135 of file Gauss2DsxyModel.h.
References mappel::PointEmitterModel::get_ubound().
Referenced by get_max_sigma().
9.19.4.21 VecT mappel::Gauss2DsxyModel::get_min_sigma() const [inline]
Definition at line 122 of file Gauss2DsxyModel.h.
References min_sigma.
Referenced by get_max_sigma().
9.19.4.22 double mappel::Gauss2DsxyModel::get_min_sigma ( IdxT dim ) const
9.19.4.23 | IdxT mappel::PointEmitterModel::get_num_hyperparams( ) const [inline], [inherited]
Definition at line 215 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
9.19.4.24 IdxT mappel::PointEmitterModel::get num params() const [inline], [inherited]
Definition at line 167 of file PointEmitterModel.h.
```

References mappel::PointEmitterModel::num params.

```
9.19.4.25 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline],
         [inherited]
Definition at line 79 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
Referenced by mappel::ImageFormat2DBase::get_stats().
9.19.4.26 StringVecT mappel::PointEmitterModel::get param_names( ) const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.19.4.27 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
9.19.4.28 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References\ mappel:: Point Emitter Model:: prior.
9.19.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng_manager.
9.19.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static],[inherited]
Definition at line 122 of file PointEmitterModel.cpp.
References mappel::rng manager.
9.19.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size( ) const [inline],
         [inherited]
Definition at line 74 of file ImageFormat2DBase.h.
```

References mappel::ImageFormat2DBase::size.

9.19.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.19.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

9.19.4.34 StatsT mappel::Gauss2DsxyModel::get_stats () const

9.19.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1 \leftarrow D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background \leftarrow _mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.19.4.36 bool mappel::PointEmitterModel::has_hyperparam(const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.19.4.37 Gauss2DsxyModel::Stencil mappel::Gauss2DsxyModel::initial_theta_estimate (const ImageT & im) [inline]

Fast, heuristic estimate of initial theta.

Definition at line 222 of file Gauss2DsxyModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make_ param().

Referenced by initial_theta_estimate().

9.19.4.38 Gauss2DsxyModel::Stencil mappel::Gauss2DsxyModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) [inline]

Definition at line 229 of file Gauss2DsxyModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and initial theta estimate().

9.19.4.39 Stencil mappel::Gauss2DsxyModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator)

9.19.4.40 static CompositeDist mappel::Gauss2DsxyModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio) [static]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.19.4.42 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.19.4.43 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update().

9.19.4.44 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.19.4.45 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.19.4.46 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.19.4.47 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.19.4.48 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.19.4.49 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta ← stack().

9.19.4.50 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

- 9.19.4.51 static CompositeDist mappel::Gauss2DsxyModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static]
- 9.19.4.52 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanI, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_pri

9.19.4.53 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds
Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds
DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds
Model::make_prior_beta_position().

9.19.4.54 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.19.4.55 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

- 9.19.4.56 static CompositeDist mappel::Gauss2DsxyModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static]
- 9.19.4.57 Gauss2DsxyModel::Stencil mappel::Gauss2DsxyModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 157 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

9.19.4.58 void mappel::Gauss2DsxyModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 178 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DYS, mappel::Gauss2DsxyModel::Stencil::I(), mappel::Gauss2DsxyModel::Stencil::X, and mappel::Gauss2DsxyModel::Stencil::Y.

9.19.4.59 void mappel::Gauss2DsxyModel::pixel grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 190 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXS2, mappel:: \leftarrow Gauss2DsxyModel::Stencil::DYS, mappel::Gauss2DsxyModel::Stencil::DYS2, mappel::Gauss2DsxyModel::Stencil::I(), mappel::Gauss2DsxyModel::Stencil::sigmaY(), mappel::Gauss2DsxyModel::Stencil::sigmaY(), mappel::Gauss2DsxyModel::Stencil::X, and mappel::Gauss2DsxyModel::Stencil::Y.

9.19.4.60 void mappel::Gauss2DsxyModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline]

Definition at line 202 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::DX, mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXSX, mappel::Gauss2DsxyModel::Stencil::DYS, mappel::Gauss2DsxyModel::Stencil::DYS, mappel::Gauss2DsxyModel::Stencil::DYS2, mappel::Gauss2DsxyModel::Stencil::DYS4, mappel::Gauss2DsxyModel::Stencil::DYS4, mappel::Gauss2DsxyModel::Stencil:

9.19.4.61 void mappel::Gauss2DsxyModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const

9.19.4.62 double mappel::Gauss2DsxyModel::pixel_model_value (int i, int j, const Stencil & s) const [inline]

Definition at line 171 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::bg(), mappel::Gauss2DsxyModel::Stencil::I(), mappel::Gauss2DsxyModel::Stencil::Y.

9.19.4.63 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

9.19.4.64 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.19.4.65 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)

[inline],[inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.19.4.66 void mappel::Gauss2DsxyModel::sample_mcmc_candidate (int sample_index, ParamT & canidate_theta, double scale = 1.0)

9.19.4.67 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.19.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior()const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.19.4.69 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
9.19.4.70 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT & desc ) [inline],
          [inherited]
Definition at line 267 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.19.4.71 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline],
          [inherited]
Definition at line 247 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.19.4.72 void mappel::Gauss2DsxyModel::set_hyperparams ( const VecT & hyperparams )
9.19.4.73 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack ( ImageStackT & stack,
          ImageCoordT n, const ImT & im ) const [inherited]
Definition at line 113 of file ImageFormat2DBase.h.
9.19.4.74 void mappel::PointEmitterModel::set lbound ( const ParamT & lbound ) [inherited]
Definition at line 233 of file PointEmitterModel.cpp.
References mappel::PointEmitterModel::bounds epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter⊷
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.
Referenced by mappel::Gauss1DsModel::set_min_sigma().
9.19.4.75 void mappel::Gauss2DsxyModel::set_max_sigma ( const VecT & max_sigma )
9.19.4.76 void mappel::Gauss2DsxyModel::set_max_sigma_ratio ( double max_sigma_ratio )
9.19.4.77 void mappel::Gauss2DsxyModel::set_min_sigma ( const VecT & min_sigma )
9.19.4.78 void mappel::PointEmitterModel::set_param_names ( const StringVecT & desc ) [inline], [inherited]
Definition at line 259 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.19.4.79 void mappel::Gauss2DsxyModel::set_prior ( CompositeDist && prior_ )
9.19.4.80 void mappel::PointEmitterModel::set_prior( const CompositeDist & prior_) [inherited]
```

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Definition at line 156 of file PointEmitterModel.cpp.

9.19.4.81 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.19.4.82 void mappel::Gauss2DsxyModel::set_size (const ImageSizeT & size_)

9.19.4.83 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.19.4.84 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.19.4.85 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.19.4.86 void mappel::Gauss2DsxyModel::update_internal_1D_estimators() [protected]

9.19.5 Member Data Documentation

9.19.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

```
9.19.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]
Default level at which to estimate confidence intervals must be in range (0.1).
Definition at line 57 of file PointEmitterModel.h.
9.19.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]
Default optimization method for MLE/MAP estimation.
Definition at line 51 of file PointEmitterModel.h.
9.19.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.19.5.5 const ldxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.19.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.19.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.19.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.19.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
Referenced by mappel::PointEmitterModel::make prior component intensity().
```

9.19.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanI = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.19.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D \leftarrow ::set_background_mcmc_sampling().

9.19.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.19.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.19.5.14 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), and mappel::Gauss2Ds (). Model::initial_theta_estimate().

9.19.5.16 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.19.5.18 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.19.5.20 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior

9.19.5.21 double mappel::Gauss2DsxyModel::mcmc_candidate_eta_sigma [protected]

The standard deviation for the normally distributed pertebation to theta_sigma in the random walk MCMC sampling

Definition at line 108 of file Gauss2DsxyModel.h.

9.19.5.22 double mappel::Gauss2DsxyModel::mcmc_candidate_eta_y [protected]

Std-dev for the normal perturbations to theta_y under MCMC sampling

Definition at line 107 of file Gauss2DsxyModel.h.

9.19.5.23 VecT mappel::Gauss2DsxyModel::min_sigma [protected]

Gaussian PSF in pixels

Definition at line 113 of file Gauss2DsxyModel.h.

Referenced by get_min_sigma().

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.19.5.25 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.19.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmit

9.19.5.27 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitte

9.19.5.28 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute derivatives(), mappel::Gauss2DsModel::Stencil::compute derivatives(), mappel::Gauss2DModel ← ::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::methods ← mappel::Gauss2DsMAP::Gauss2DsMA← mappel::Gauss2DModel::Gauss2DModel(), ::expected_information(), P(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel(), mappel::Image ← Format2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get ⇔ stats(), mappel::methods::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood ::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian ← _components(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel ← ::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta position(), Gauss2DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior normal← mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), position(), mappel::Gauss2DModel::make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum \leftarrow estimator(), mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel::make prior beta \ position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal← position(), mappel::methods::model image(), mappel::lmageFormat2DBase::operator=(), mappel::methods ::likelihood::rllh(), mappel::methods::likelihood::debug::rllh components(), mappel::ImageFormat2DBase::set ← size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel::Gauss2DModel::Stencil::Stencil(), mappel::Gauss2Ds↔ Model::Stencil::Stencil(), mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2Ds ← Model::update_internal_1Dsum_estimators().

9.19.5.29 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::

9.19.5.30 Gauss1DsMAP mappel::Gauss2DsxyModel::x_model [protected]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 114 of file Gauss2DsxyModel.h.

9.19.5.31 Gauss1DsMAP mappel::Gauss2DsxyModel::y_model [protected]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 115 of file Gauss2DsxyModel.h.

The documentation for this class was generated from the following file:

· Gauss2DsxyModel.h

9.20 mappel::estimator::HeuristicEstimator Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::HeuristicEstimator< Model >:

Public Member Functions

- HeuristicEstimator (const Model &model)
- StatsT get_stats ()
- StatsT get_debug_stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init← _stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est) override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- void clear_stats ()
- const Model & get model ()

- void estimate_max_stack (const ModelDataStackT< Model > &data_stack, MLEDataStack &mle_data_stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data, StencilT< Model > &mle stencil)
- void estimate_max (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLEData &mle ← data)
- void estimate max (const ModelDataT< Model > &data, MLEData &mle data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE
 —
 DebugData &mle_data, StencilT< Model > &mle_stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate profile bounds (const ModelDataT < Model > &data, ProfileBoundsData &bounds est)
- void estimate_profile_bounds_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds ← est)
- IdxVecT get_exit_counts () const

Protected Member Functions

- void record exit code (ExitCode code) override
- virtual void compute_estimate_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEDebugData &mle data, StencilT< Model > &mle stencil)
- virtual double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta
 —init, const IdxVecT &fixed_idxs, StencilT< Model > &max_stencil)
- virtual void compute_profile_bound (const ModelDataT< Model > &data, ProfileBoundsData &est, const VecT &init_step, ldxT param_idx, ldxT which_bound)
- virtual void compute_profile_bound_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &est)
- void record walltime (ClockT::time point start walltime, int num estimations)

Protected Attributes

- int max_threads
- · int num threads
- std::mutex mtx
- const Model & model
- int num estimations = 0
- double total walltime = 0.
- IdxVecT exit_counts

9.20.1 Detailed Description

template < class Model > class mappel::estimator::HeuristicEstimator < Model >

Definition at line 334 of file estimator.h.

```
9.20.2 Constructor & Destructor Documentation
```

9.20.2.1 template < class Model > mappel::estimator::HeuristicEstimator < Model >::HeuristicEstimator (const Model & model) [inline]

Definition at line 337 of file estimator.h.

9.20.3 Member Function Documentation

Run statistics.

Reimplemented from mappel::estimator::Estimator< Model >.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 570 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, and mappel::estimator::ThreadedEstimator< Model >::num_threads.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear stats().

```
9.20.3.2 template < class Model > void mappel::estimator::Estimator < Model >::compute_estimate_debug ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil ) [protected], [virtual], [inherited]
```

Virtual estimate_debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >:::compute_estimate(), mappel::estimator::Estimator< Model >:::model, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::sequence, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max debug().

9.20.3.3 template < class Model > void mappel::estimator::Estimator < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 309 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator< Model > \leftarrow ::estimate profile bounds stack().

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 318 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate profile bounds debug().

9.20.3.5 template < class Model > double mappel::estimator::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, const IdxVecT & fixed_idxs, StencilT < Model > & max_stencil) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 300 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_max(), and mappel::estimator::Threaded Estimator< Model >::estimate_profile_max().

9.20.3.6 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::MLEData::rllh, and mappel::estimator ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max().

9.20.3.7 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max().

9.20.3.8 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, MLEData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max(), and mappel::estimator::Estimator< Model >← ::model.

```
9.20.3.9 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta init and theta mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.

9.20.3.10 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.

Parameters

out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel \leftarrow ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

```
9.20.3.11 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack ( const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

```
9.20.3.12 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack ( const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack ) [override], [virtual], [inherited]
```

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for
		each data

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::Estimator<:Model >::model, mappel::estimator::MLEDataStack::Ndata, mappel::estimator::Threaded := Estimator<:Model >::num_threads, mappel::estimator::MLEData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator<:Model >::record_exit_code(), mappel ::estimator::Estimator::MLEData::rllh, mappel::estimator::MLEData::mll, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.20.3.13 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator_impl.h.

References mappel::estimator::Estimator < Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mitialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator:: \leftarrow ProfileBoundsData::profile_points_lb, mappel::estimator::Profile \leftarrow BoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator:: \leftarrow ProfileBoundsData::profile_ub, mappel::estimator::Estimator < Model >::record_exit_code(), mappel::estimator \leftarrow ::Estimator < Model >::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel \leftarrow ::estimator::ProfileBoundsData::target rllh delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::error_bounds_profile_likelihood().

9.20.3.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds_debug (const Model DataT < Model > & data, ProfileBoundsDebugData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator:: \leftarrow Estimator< Model >::record_exit_code(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error bounds profile likelihood debug().

9.20.3.15 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_profile_bounds_← parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator < Model >.

Definition at line 464 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile ::estimator::Profile ::estimator::Profile ::mum_threads, mappel::estimator::: MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel::estimator::Estimator
Model >::record_exit_code(), mappel::estimator::Estimator::ProfileBoundsData::target rllh delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood parallel().

9.20.3.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute profile bound(), mappel::estimator::Error, mappel ← ::estimator::ProfileBoundsData::estimated idxs, mappel::estimator::ProfileBoundsDataStack::estimated idxs, mappel idxs, m ::estimator::ProfileBoundsData::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::⇔ Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds← DataStack::Nparams est, mappel::estimator::ThreadedEstimator < Model >::num threads, mappel::estimator::ML← EData::obsI, mappel::estimator::MLEDataStack::obsI, mappel::print text image(), mappel::estimator::ProfileBounds← mappel::estimator::ProfileBoundsDataStack::profile lb, mappel::estimator::ProfileBoundsData← Data::profile lb, ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile_points_lb_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points_lb_rllh, mappel::estimator: ::ProfileBoundsData::profile points ub, mappel::estimator::ProfileBoundsDataStack::profile points ub, ::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsDataStack::profile points← ub rllh, mappel::estimator::ProfileBoundsData::profile ub, mappel::estimator::ProfileBoundsDataStack::profile ub, mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target rllh delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData↔ Stack::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood stack().

9.20.3.17 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max) [inherited]

Profile likelihood estimation methods

Definition at line 190 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::Error, mappel ::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

9.20.3.18 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile) [override], [virtual], [inherited]

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator_impl.h.

```
9.20.3.19 template < class Model > StatsT mappel::estimator::HeuristicEstimator < Model >::get_debug_stats ( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 612 of file estimator impl.h.

References mappel::cgauss_heuristic_compute_estimate(), mappel::estimator::ThreadedEstimator < Model $> \leftarrow$::get_stats(), mappel::estimator::Estimator::Estimator::Mstatistic < Model > = ::model, mappel::methods::observed_information(), mappel \leftarrow ::estimator::MLEData::obsl, mappel::estimator::ThreadedEstimator < Model > = ::record_exit_code(), mappel \leftarrow ::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator::Success, and mappel::estimator \leftarrow ::MLEData::theta.

```
9.20.3.20 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

```
9.20.3.21 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.20.3.22 template < class Model > StatsT mappel::estimator::HeuristicEstimator < Model >::get_stats ( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 597 of file estimator impl.h.

References mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, and mappel::estimator::Estimator< Model >::num estimations.

```
9.20.3.23 template < class Model > std::string mappel::estimator::HeuristicEstimator < Model >::name ( ) const [inline], [virtual]
```

Implements mappel::estimator::Estimator< Model >.

Definition at line 341 of file estimator.h.

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:: \leftarrow Success, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator:: \leftarrow ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel \leftarrow ::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.20.3.25 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start walltime, int num estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::num_estimations, and mappel::estimator::Estimator< Model >::total walltime.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Model >::estimator<:Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max().

9.20.4 Member Data Documentation

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ ⇔ stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded ⇔ Estimator< Model >::record_exit_code().

Definition at line 326 of file estimator.h.

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute estimate(), mappel::estimator::Estimator< Model >::compute estimate debug(), mappel ::estimator::IterativeMaximizer< Model >::compute estimate debug(), mappel::estimator::Estimator< Model >← :::compute_profile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel ← ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >--::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_stack(), mappel::estimator::Threaded← Estimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator < Model >::estimate_← profile max(), mappel::estimator::HeuristicEstimator< Model >::get debug stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::Estimator< Model >::get_model(), mappel::estimator::Iterative← Maximizer Model >::local maximize(), mappel::estimator::IterativeMaximizer Model >::local profile maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.20.4.4 template < class Model > std::mutex mappel::estimator::ThreadedEstimator < Model >::mtx [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative
Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel
::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get
_stats(), mappel::estimator::CGaussMLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative
Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

9.20.4.6 template < class Model > int mappel::estimator::Threaded Estimator < Model >::num_threads [protected], [inherited]

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile \leftarrow _bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

9.21 mappel::ImageFormat1DBase Class Reference

A virtual base class for 2D image localization objectives.

 $\label{local-mappel} $$\#include < /home/travis/build/markjolah/Mappel/include/Mappel/ImageFormat1D \leftarrow Base.h>$

Inheritance diagram for mappel::ImageFormat1DBase:

Public Types

- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- template < class CoordT >
 using ImageSizeShapeT = CoordT
- template < class CoordT >
 - using ImageSizeVecShapeT = arma::Col < CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >
- using ImageShapeT = arma::Col< PixelT >
- template<class PixeIT >
 - using ImageStackShapeT = arma::Mat< PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- StatsT get stats () const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
 - void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- ImageSizeT get_size () const
- ImageCoordT get size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set_size (const ImageSizeT &size_)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

static void check_size (const ImageSizeT &size_)
 Check the size argument for the model.

Static Public Attributes

- static const ImageCoordT num_dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global_max_size = 512

Protected Member Functions

- ImageFormat1DBase ()=default
- ImageFormat1DBase (ImageSizeT size_)

Protected Attributes

ImageSizeT size

9.21.1 Detailed Description

A virtual base class for 2D image localization objectives.

This class should be inherited virtually by both the model and the objective so that the common image information and functions are available in both Model and Objective classes hierarchies

Definition at line 23 of file ImageFormat1DBase.h.

9.21.2 Member Typedef Documentation

9.21.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.21.2.2 using mappel::ImageFormat1DBase::ImagePixeIT = double

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.21.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT >

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.21.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

9.21.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT >

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.21.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT >

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

9.21.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

 $9.21.2.8 \quad template < class \ PixelT > using \ mappel:: ImageFormat1DBase:: ImageStackShapeT = arma:: Mat < PixelT > template < class \ Pixe$

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

9.21.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT >

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.21.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT >

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

```
9.21.3 Constructor & Destructor Documentation
9.21.3.1 mappel::ImageFormat1DBase::ImageFormat1DBase() [protected], [default]
9.21.3.2 | ImageFormat1DBase::ImageFormat1DBase ( | ImageSizeT size_ ) [explicit], [protected]
Definition at line 13 of file ImageFormat1DBase.cpp.
References check_size().
9.21.4 Member Function Documentation
9.21.4.1 void ImageFormat1DBase::check_image_shape ( const ImageT & im ) const
Check the shape of a single images is correct for model size.
Definition at line 59 of file ImageFormat1DBase.cpp.
References size.
9.21.4.2 void ImageFormat1DBase::check image shape ( const ImageStackT & ims ) const
Check the shape of a stack of images is correct for model size.
Definition at line 71 of file ImageFormat1DBase.cpp.
References size.
9.21.4.3 void ImageFormat1DBase::check_size( const ImageSizeT & size_) [static]
Check the size argument for the model.
Definition at line 39 of file ImageFormat1DBase.cpp.
References global max size, and global min size.
Referenced by ImageFormat1DBase(), and set_size().
9.21.4.4 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack( const ImageStackT & stack,
        ImageCoordT n ) const [inline]
Definition at line 108 of file ImageFormat1DBase.h.
9.21.4.5 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline]
Definition at line 82 of file ImageFormat1DBase.h.
References size.
Referenced by get stats().
```

9.21.4.6 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline]

Definition at line 71 of file ImageFormat1DBase.h.

References size.

Referenced by get stats().

9.21.4.7 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size (IdxT idx) const

Definition at line 20 of file ImageFormat1DBase.cpp.

References size.

9.21.4.8 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack (const ImageStackT & stack) const [inline]

Definition at line 101 of file ImageFormat1DBase.h.

9.21.4.9 StatsT ImageFormat1DBase::get_stats () const

Definition at line 81 of file ImageFormat1DBase.cpp.

References get_num_pixels(), get_size(), and num_dim.

Referenced by mappel::Gauss1DModel::get stats(), and mappel::Gauss1DsModel::get stats().

9.21.4.10 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline]

Definition at line 87 of file ImageFormat1DBase.h.

References size.

9.21.4.11 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline]

Definition at line 94 of file ImageFormat1DBase.h.

References size.

9.21.4.12 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const

Definition at line 115 of file ImageFormat1DBase.h.

9.21.4.13 void ImageFormat1DBase::set_size (const ImageSizeT & size_)

Definition at line 30 of file ImageFormat1DBase.cpp.

References check size(), and size.

Referenced by set size(), mappel::Gauss2DModel::set size(), and mappel::Gauss2DsModel::set size().

9.21.4.14 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline]

Definition at line 75 of file ImageFormat1DBase.h.

References set size().

9.21.5 Member Data Documentation

9.21.5.1 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_max_size = 512 [static]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by check_size().

9.21.5.2 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_min_size = 3 [static]

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by check_size().

9.21.5.3 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by get_stats().

9.21.5.4 ImageSizeT mappel::ImageFormat1DBase::size [protected]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by check_image_shape(), mappel::Gauss1DsModel::Stencil::compute_derivatives(), mappel::Gauss1Dc—Model::Stencil::compute_derivatives(), get_num_pixels(), get_size(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), make_image(), make_image_stack(), set_size(), mappel::Gauss1c—DsModel::Stencil(), and mappel::Gauss1DModel::Stencil().

The documentation for this class was generated from the following files:

- ImageFormat1DBase.h
- ImageFormat1DBase.cpp

9.22 mappel::ImageFormat2DBase Class Reference

A virtual base class for 2D image localization objectives.

#include </home/travis/build/markjolah/Mappel/include/Mappel/ImageFormat2D←</pre> Base.h>

Inheritance diagram for mappel::ImageFormat2DBase:

Public Types

- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template<class CoordT > using ImageSizeShapeT = arma::Col< CoordT >
- template<class CoordT > using ImageSizeVecShapeT = arma::Mat< CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT > using ImageShapeT = arma::Mat< PixeIT >
- template < class PixelT >
- using ImageStackShapeT = arma::Cube < PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

• StatsT get_stats () const

template<class ImT >

- ImageT make image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set_size (const ImageSizeT &size_)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

static void check_size (const ImageSizeT &size_)
 Check the size argument for the model.

Static Public Attributes

- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512

Protected Member Functions

- ImageFormat2DBase ()=default
- ImageFormat2DBase (const ImageSizeT &size)
- ImageFormat2DBase (const ImageFormat2DBase &)
- ImageFormat2DBase (ImageFormat2DBase &&)
- ImageFormat2DBase & operator= (const ImageFormat2DBase &)
- ImageFormat2DBase & operator= (ImageFormat2DBase &&)

Protected Attributes

· ImageSizeT size

9.22.1 Detailed Description

A virtual base class for 2D image localization objectives.

This class should be inherited virtually by both the model and the objective so that the common image information and functions are available in both Model and Objective classes hierarchies

Definition at line 22 of file ImageFormat2DBase.h.

9.22.2 Member Typedef Documentation

9.22.2.1 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

9.22.2.2 using mappel::ImageFormat2DBase::ImagePixeIT = double

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

9.22.2.3 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat<PixelT>

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

9.22.2.4 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT >

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

9.22.2.5 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT >

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.22.2.6 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT >

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

9.22.2.7 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.22.2.8 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT >

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

9.22.2.9 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT < ImagePixeIT >

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.22.2.10 using mappel::ImageFormat2DBase::ImageT = ImageShapeT<ImagePixeIT>

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

```
9.22.3 Constructor & Destructor Documentation
9.22.3.1 mappel::ImageFormat2DBase::ImageFormat2DBase( ) [protected], [default]
9.22.3.2 mappel::ImageFormat2DBase:ImageFormat2DBase (const ImageSizeT & size ) [explicit], [protected]
Definition at line 13 of file ImageFormat2DBase.cpp.
References check_size().
9.22.3.3 mappel::ImageFormat2DBase::ImageFormat2DBase ( const ImageFormat2DBase & o ) [protected]
Definition at line 19 of file ImageFormat2DBase.cpp.
9.22.3.4 mappel::ImageFormat2DBase:ImageFormat2DBase ( ImageFormat2DBase && o ) [protected]
Definition at line 23 of file ImageFormat2DBase.cpp.
9.22.4 Member Function Documentation
9.22.4.1 void mappel::ImageFormat2DBase::check_image_shape ( const ImageT & im ) const
Check the shape of a single images is correct for model size.
Definition at line 80 of file ImageFormat2DBase.cpp.
References size.
9.22.4.2 void mappel::ImageFormat2DBase::check_image_shape ( const ImageStackT & ims ) const
Check the shape of a stack of images is correct for model size.
Definition at line 93 of file ImageFormat2DBase.cpp.
References size.
9.22.4.3 void mappel::ImageFormat2DBase::check size ( const ImageSizeT & size_) [static]
Check the size argument for the model.
Definition at line 60 of file ImageFormat2DBase.cpp.
References global_max_size, and global_min_size.
Referenced by ImageFormat2DBase(), and set size().
```

9.22.4.4 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline]

Definition at line 106 of file ImageFormat2DBase.h.

9.22.4.5 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline]

Definition at line 79 of file ImageFormat2DBase.h.

References size.

Referenced by get_stats().

9.22.4.6 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline]

Definition at line 74 of file ImageFormat2DBase.h.

References size.

9.22.4.7 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size(_ldxT idx_) const

Definition at line 41 of file ImageFormat2DBase.cpp.

References size.

9.22.4.8 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline]

Definition at line 99 of file ImageFormat2DBase.h.

9.22.4.9 StatsT mappel::ImageFormat2DBase::get_stats () const

Definition at line 103 of file ImageFormat2DBase.cpp.

References get_num_pixels(), num_dim, and size.

Referenced by mappel::Gauss2DModel::get_stats(), and mappel::Gauss2DsModel::get_stats().

9.22.4.10 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline]

Definition at line 85 of file ImageFormat2DBase.h.

References size.

9.22.4.11 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline]

Definition at line 92 of file ImageFormat2DBase.h.

References size.

9.22.4.12 ImageFormat2DBase & mappel::ImageFormat2DBase::operator= (const ImageFormat2DBase & o) [protected] Definition at line 27 of file ImageFormat2DBase.cpp. References size. Referenced by mappel::Gauss2DsMAP::operator=(), mappel::Gauss2DsMLE::operator=(), mappel::Gauss2DMAP ← ::operator=(), and mappel::Gauss2DMLE::operator=(). 9.22.4.13 ImageFormat2DBase & mappel::ImageFormat2DBase::operator= (ImageFormat2DBase && o) [protected] Definition at line 33 of file ImageFormat2DBase.cpp. References size. 9.22.4.14 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const Definition at line 113 of file ImageFormat2DBase.h. 9.22.4.15 void mappel::ImageFormat2DBase::set_size (const ImageSizeT & size_) Definition at line 51 of file ImageFormat2DBase.cpp. References check size(), and size. Referenced by mappel::Gauss2DModel::set_size(), and mappel::Gauss2DsModel::set_size(). 9.22.5 Member Data Documentation 9.22.5.1 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global max_size =512 [static] Maximum size along any dimension of the image. This is insanely big to catch obvious errors Definition at line 39 of file ImageFormat2DBase.h. Referenced by check_size(). 9.22.5.2 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static] Minimum size along any dimension of the image. Definition at line 38 of file ImageFormat2DBase.h.

Referenced by check size().

9.22.5.3 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by get stats().

9.22.5.4 ImageSizeT mappel::ImageFormat2DBase::size [protected]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss← _heuristic_compute_estimate(), check_image_shape(), mappel::Gauss2DModel::Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel::debug_internal_sum_model_ <-y(), mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::methods::expected_information(), mappel::← Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMAP(), mappel::Gauss2DsMLE::Gauss2Ds MLE(), mappel::Gauss2DsModel:(Gauss2DsModel(), get num pixels(), get size(), get stats(), mappel::methods ← ::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), mappel::Gauss2DsModel::initial_theta_estimate(), Gauss2DModel::initial_theta_estimate(), mappel::methods ← ::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel::make default \leftarrow prior beta position(), mappel::Gauss2DsModel::make default prior beta position(), mappel::Gauss2DModel::make ← default prior normal position(), mappel::Gauss2DsModel::make default prior normal position(), make image(), make_image_stack(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::make← internal 1Dsum estimator(), mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel← ::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel ← ::make prior normal position(), mappel::methods::model image(), operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug::rllh_components(), set_size(), mappel::Gauss2DModel::set_size(), mappel:: Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DsModel.:Stencil(), mappel ::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- · ImageFormat2DBase.h
- ImageFormat2DBase.cpp

9.23 mappel::estimator::IterativeMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::IterativeMaximizer< Model >:

Classes

class MaximizerData

Public Member Functions

- IterativeMaximizer (const Model &model, int max_iterations=DefaultIterations)
- double mean iterations ()
- double mean_backtracks ()
- double mean fun evals ()
- double mean_der_evals ()
- StatsT get stats ()
- StatsT get_debug_stats ()
- void clear stats ()
- · int get total iterations () const
- int get_total_backtracks () const
- int get_total_fun_evals () const
- int get_total_der_evals () const
- void local_maximize (const ModelDataT< Model > &im, StencilT< Model > &stencil, MLEData &data)

 Perform a local maximization to finish off a simulated annealing run.
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEDebugData &debug

 data)
- void local_profile_maximize (const ModelDataT< Model > &im, const ldxVecT &fixed_param_idxs, StencilT
 Model > &stencil, MLEDebugData &mle)
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init
 —stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est) override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds est stack) override
- virtual std::string name () const =0
- const Model & get_model ()
- void estimate_max_stack (const ModelDataStackT< Model > &data_stack, MLEDataStack &mle_data_stack)
- void estimate_max (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLEData &mle ← data, StencilT < Model > &mle stencil)
- void estimate_max (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLEData &mle ← data)
- void estimate_max (const ModelDataT< Model > &data, MLEData &mle_data)
- void estimate_max_debug (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLE ←
 DebugData &mle data, StencilT < Model > &mle stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate profile bounds (const ModelDataT < Model > &data, ProfileBoundsData &bounds est)
- void estimate_profile_bounds_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &bounds
 —est)
- IdxVecT get exit counts () const

Static Public Attributes

static const int DefaultIterations =100

Protected Member Functions

- void record_run_statistics (const MaximizerData &data)
- void compute_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle_data, StencilT< Model > &mle_stencil) override
- void compute_estimate_debug (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, M←
 LEDebugData &mle data, StencilT < Model > &mle stencil) override
- double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, const IdxVecT &fixed_idxs, StencilT< Model > &theta_max) override
- void compute_profile_bound_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds) override
- bool backtrack (MaximizerData &data)
- bool profile_bound_backtrack (MaximizerData &data, ldxT fixed_idx, double target_rllh, double old_fval, const VecT &fgrad)
- virtual void maximize (MaximizerData &data)=0
- virtual void solve_profile_bound (MaximizerData &data, MLEData &mle, double Ilh_delta, IdxT fixed_idx, IdxT which_bound)
- bool convergence test grad ratio (const VecT &grad, double fval)
- bool convergence_test_step_size (const VecT &new_theta, const VecT &old_theta)
- void record_exit_code (ExitCode code) override
- void record walltime (ClockT::time point start walltime, int num estimations)

Protected Attributes

- int max iterations
- int total iterations = 0
- int total backtracks = 0
- int total_fun_evals = 0
- int total der evals = 0
- IdxVecT last_backtrack_idxs

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

- · int max_threads
- · int num threads
- std::mutex mtx
- · const Model & model
- int num_estimations = 0
- double total_walltime = 0.
- IdxVecT exit counts

Static Protected Attributes

• static const double min eigenvalue correction delta = 1e-3

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

static const double convergence_min_function_change_ratio = 1.0e-9

Convergence criteria: tolerance for function-value change.

static const double convergence_min_step_size_ratio = 1.0e-9

Convergence criteria: tolerance of relative step size.

- static const double backtrack min ratio = 0.05
- static const double backtrack max ratio = 0.50
- static const double backtrack_min_linear_step_ratio = 1e-3
- static const int max backtracks = 8
- static const double min profile bound residual = 1e-4

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

9.23.1 Detailed Description

```
template < class Model > class mappel::estimator::IterativeMaximizer < Model >
```

Definition at line 426 of file estimator.h.

9.23.2 Constructor & Destructor Documentation

9.23.2.1 template < class Model > mappel::estimator::IterativeMaximizer < Model >::IterativeMaximizer (const Model & model, int max_iterations = DefaultIterations)

Definition at line 732 of file estimator impl.h.

9.23.3 Member Function Documentation

9.23.3.1 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected]

Definition at line 870 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::Iterative Maximizer Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::Estimator<:Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::Estimator::ThreadedEstimator<:IterativeMaximizer</td>
 Model >::MaximizerData::record (), mappel::estimator::IterativeMaximizer
 Model >::MaximizerData::record (), mappel::estimator::IterativeMaximizer
 Model >::MaximizerData::retore_stencil(), mappel::estimator::IterativeMaximizer
 Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer
 Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer
 Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer
 Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer
 Mod

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.23.3.2 template < class Model > void mappel::estimator::lterativeMaximizer < Model >::clear_stats() [virtual]

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 848 of file estimator impl.h.

References mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel::estimator::Iterative Maximizer< Model >::total_der_evals, and mappel::estimator::IterativeMaximizer< Model >::total_fun_evals, and mappel::estimator::IterativeMaximizer< Model >::total_iterativeMaximizer<

9.23.3.3 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::compute_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [override], [protected], [virtual]

Implements mappel::estimator::Estimator< Model >.

Definition at line 1043 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator<:Model >-::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative-Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::Iterative-Maximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer
Model >::MaximizerData::theta, and mappel::estimator::IterativeMaximizer
Model >::MaximizerData::theta().

9.23.3.4 template < class Model > void mappel::estimator::lterativeMaximizer < Model >::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [override], [protected], [virtual]

Virtual estimate debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1057 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::Iterative \(\text{Maximizer} \) Maximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::methods::observed_\(\text{information} \) information(), mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::record \(\text{pun_statistics} \) mappel::estimator::MLEDebugData::rllh, mappel::estimator::IterativeMaximizer< Model >::\(\text{MaximizerData::rllh}, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEDebugData \(\text{cut} \) ::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

9.23.3.5 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [override], [protected], [virtual]

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1088 of file estimator impl.h.

References mappel::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::mle, mappel::estimator

Model >::model, mappel::estimator::ProfileBoundsData::profile_lb, mappel::estimator

::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_lb_rllh, mappel

::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::IterativeMaximizer

Model >::solve_profile_bound(), mappel::estimator::Profile \leftarrow BoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1114 of file estimator_impl.h.

References mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::ProfileBoundsDebugData::Nseq_ \hookrightarrow lb, mappel::estimator::ProfileBoundsDebugData::Nseq_ub, mappel::estimator::MLEData::obsl, mappel::estimator \hookleftarrow ::ProfileBoundsDebugData::profile_lb, mappel::estimator::ProfileBoundsDebugData::profile_ub, mappel::estimator \hookleftarrow ::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::ProfileBoundsDebugData::sequence \hookleftarrow _lb, mappel::estimator::ProfileBoundsDebugData::sequence_lb_rllh, mappel::estimator::ProfileBoundsDebug \hookleftarrow Data::sequence_ub, mappel::estimator::ProfileBoundsDebugData::sequence_ub_rllh, mappel::estimator::Iterative \hookleftarrow Maximizer< Model >::solve_profile_bound(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::ProfileBoundsDebugData::target \hookleftarrow _rllh_delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1074 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::estimator::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::rellh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::set_← fixed parameters(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil().

9.23.3.8 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::convergence_test_grad_ratio (const VecT & grad, double fval) [protected]

Definition at line 1015 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel \leftarrow ::estimator::GradRatio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::square().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

Definition at line 1027 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record exit code(), and mappel::estimator::StepSize.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.23.3.10 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator_impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel \rightleftharpoons ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: Model >::record_walltime(), mappel::estimator::MLEData::rllh, and mappel::estimator \rightleftharpoons ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max().

9.23.3.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta init, MLEData & mle data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator impl.h.

References mappel::estimator::Estimator < Model >::estimate max().

9.23.3.12 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, MLEData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator_impl.h.

References mappel::estimator::Estimator
< Model >::estimate_max(), and mappel::estimator::Estimator
< Model >::model.

9.23.3.13 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator.

If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta init and theta mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.23.3.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel \leftarrow ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

```
9.23.3.15 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack ( const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.23.3.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [override], [virtual], [inherited]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

Parameters

in data Model data to estimate for	
in theta_init [optional] Initial theta value for each image.	
out mle MLEStackData records the maximum likelihood estimate, RLLH, and each data	Observed information for

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator < Model >::compute_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::Estimator < Model >::model, mappel::estimator::MLEDataStack::Ndata, mappel::estimator::Threaded \leftarrow Estimator < Model >::num_threads, mappel::estimator::MLEData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator < Model >::record_exit_code(), mappel ::estimator::Estimator::MLEData::rllh, mappel::estimator::MLEData \leftarrow Stack::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.23.3.17 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::model, mappel::estimator::Profile >::model, mappel::estimator::Profile >::mod

Referenced by mappel::methods::error bounds profile likelihood().

9.23.3.18 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_walltime(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error bounds profile likelihood debug().

9.23.3.19 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_← parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::ThreadedEstimator< Model >::num_threads, mappel::estimator:: \leftarrow MLEData::obsI, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator<:Model >::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood parallel().

9.23.3.20 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute profile bound(), mappel::estimator::Error, mappel ← ::estimator::ProfileBoundsData::estimated idxs, mappel::estimator::ProfileBoundsDataStack::estimated idxs, mappel idxs, m ::estimator::ProfileBoundsData::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::← Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator< Model >::num threads, mappel::estimator::ML← EData::obsI, mappel::estimator::MLEDataStack::obsI, mappel::print text image(), mappel::estimator::ProfileBounds← mappel::estimator::ProfileBoundsDataStack::profile lb. mappel::estimator::ProfileBoundsData← Data::profile lb. ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile_points_lb_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points_lb_rllh, mappel::estimator: ::ProfileBoundsData::profile points ub, mappel::estimator::ProfileBoundsDataStack::profile points ub, ::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points← ub rllh, mappel::estimator::ProfileBoundsData::profile ub, mappel::estimator::ProfileBoundsDataStack::profile ub, mappel::estimator::ThreadedEstimator< Model >::record exit code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target_rllh_delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData ← Stack::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood stack().

```
9.23.3.21 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max ) [inherited]
```

Profile likelihood estimation methods

Definition at line 190 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::Error, mappel ::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

```
9.23.3.22 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile ) [override], [virtual], [inherited]
```

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:: \leftarrow ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::profile_likelihood, mappel::estimator::ProfileLikelihoodData::profile_parameters, mappel::estimator::ThreadedEstimator

```
9.23.3.23 template < class Model > StatsT mappel::estimator::lterativeMaximizer < Model >::get_debug_stats( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 832 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator::

IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::last_backtrack_idxs.

```
9.23.3.24 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

```
9.23.3.25 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.23.3.26 template < class Model > StatsT mappel::estimator::lterativeMaximizer < Model >::get_stats ( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 811 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::ThreadedEstimator<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::Iterative \(\to \) Maximizer< Model >::mtx, mappel::estimator::\(\to \) Estimator< Model >::num_estimations, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_\(\to \) fun evals, and mappel::estimator::IterativeMaximizer< Model >::total iterations.

Referenced by mappel::methods::error_bounds_profile_likelihood(), mappel::methods::debug::error_bounds_ \hookleftarrow profile_likelihood_debug(), mappel::methods::openmp::error_bounds_profile_likelihood_parallel(), mappel::methods \hookleftarrow ::openmp::error_bounds_profile_likelihood_stack(), mappel::estimator::SimulatedAnnealingMaximizer< Model $> \hookleftarrow$::get debug stats(), and mappel::estimator::lterativeMaximizer< Model > ::get debug stats().

9.23.3.27 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_backtracks () const [inline]

Definition at line 443 of file estimator.h.

9.23.3.28 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::get_total_der_evals () const [inline]

Definition at line 445 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.23.3.29 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_fun_evals () const [inline]

Definition at line 444 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.23.3.30 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_iterations () const [inline]

Definition at line 442 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.23.3.31 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEData & data)

Perform a local maximization to finish off a simulated annealing run.

Definition at line 1145 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative \leftarrow Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.23.3.32 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEDebugData & debug_data)

Definition at line 1158 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::Iterative ::Maximizer< Model >::maximize(), mappel::estimator::Estimator<:Model >::model, mappel::methods::observed_ :-information(), mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::record :-information(), mappel::estimator::MLEDebugData::rllh, mappel::estimator::IterativeMaximizer< Model >::-information(), mappel::estimator::MLEDebugData::sequence, mappel::estimator::MLEDebugData::sequence_ :-information(), mappel::estimator::IterativeMaximizer

9.23.3.33 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_profile_maximize (const ModelDataT < Model > & im, const IdxVecT & fixed_param_idxs, StenciIT < Model > & stencil, MLEDebugData & mle)

Definition at line 1173 of file estimator impl.h.

References mappel::estimator::lterativeMaximizer< Model >::backtrack(), mappel::estimator::subroutine::bound ← mappel::clamp(). mappel::estimator::subroutine::compute bound scaling vec(), mappel::estimator::subroutine::compute_initial_trust_radius(), ::subroutine::compute cauchy point(), mappel← ::estimator::subroutine::compute quadratic model value(), mappel::estimator::subroutine::compute scaled problem(), mappel::estimator::IterativeMaximizer< Model >::convergence test grad ratio(), mappel::estimator::Iterative← Maximizer< Model >::convergence test step size(), mappel::estimator::Estimator< Model >::exit counts, mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::fixed idxs, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::free idxs, mappel::estimator::Estimator< Model >::get exit counts(), mappel::estimator::← IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::IterativeMaximizer< Model >::get_total_der ← evals(), mappel::estimator::IterativeMaximizer< Model >::get total fun evals(), mappel::estimator::Iterative ← Maximizer< Model >::get total iterations(), mappel::methods::objective::grad(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::grad, mappel::methods::objective::grad2(), mappel::estimator::Iterative ← Maximizer Model >::Maximizer Data::has_fixed_parameters(), mappel::methods::objective::hessian(), mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::is_positive_definite(), mappel::estimator::← IterativeMaximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_← maximize(), mappel::estimator::IterativeMaximizer < Model >::max iterations, mappel::estimator::IterativeMaximizer < Model >::maximize(), mappel::estimator::MaxIter, mappel::estimator::IterativeMaximizer< Model >::min profile← bound residual, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters(), mappel ::methods::observed information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record backtrack(), mappel::estimator::ThreadedEstimator< Model >::record exit ← code(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record iteration(), mappel::estimator::⇔ IterativeMaximizer< Model >::record run statistics(), mappel::estimator::IterativeMaximizer< Model >::Maximizer ← Data::restore_stencil(), mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator::⇔ MLEDebugData::rllh, mappel::estimator::lerativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::le-IterativeMaximizer< Model >::MaximizerData::s0, mappel::estimator::IterativeMaximizer< Model >::MaximizerData ← :::s1, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::save stencil(), mappel::estimator::Iterative← Maximizer< Model >::MaximizerData::saved theta(), mappel::estimator::MLEDebugData::sequence, mappel ← ::estimator::MLEDebugData::sequence rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::set_fixed_parameters(), mappel::estimator::lterativeMaximizer< Model >::MaximizerData::set_stencil(), mappel ::estimator::subroutine::solve_TR_subproblem(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::stencil(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::MLEData::theta, mappel::estimator::MLEDebugData::theta, mappel::estimator::lterativeMaximizer< Model >::MaximizerData::theta(), mappel::estimator::IterativeMaximizer< Model >::total der evals, mappel::estimator::IterativeMaximizer< Model >← ::total fun evals, mappel::estimator::IterativeMaximizer< Model >::total iterations, and mappel::estimator::Trust← RegionRadius.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative \(\to \) Maximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_\(\to \) profile_estimate(), mappel::estimator::IterativeMaximizer< Model >::local_maximize(), and mappel::estimator::\(\to \) IterativeMaximizer< Model >::local_profile maximize().

```
9.23.3.35 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_backtracks( )
9.23.3.36 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_der_evals( )
9.23.3.37 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_fun_evals( )
9.23.3.38 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_iterations( )
9.23.3.39 template < class Model > virtual std::string mappel::estimator::Estimator < Model >::name( ) const [pure virtual], [inherited]
```

Implemented in mappel::estimator::TrustRegionMaximizer< Model >, mappel::estimator::QuasiNewtonMaximizer< Model >, mappel::estimator::NewtonDiagonalMaximizer< Model >, mappel::estimator::SimulatedAnnealingMaximizer< Model >, mappel::estimator::CGaussMLE< Model >, mappel::estimator::CGaussHeuristicEstimator< Model >, and mappel::estimator::HeuristicEstimator< Model >.

Referenced by mappel::estimator::IterativeMaximizer< Model >::solve profile bound().

Definition at line 943 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_max_ratio, mappel::estimator::Iterative Aximizer< Model >::backtrack min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::backtrack min_ratio, mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::methods::objective::grad(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::Maximizer Data::record_backtracks, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), mappel::estimator::ThreadedEstimator

Data::record_backtrack(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel::estimator::IterativeMaximizer

::IterativeMaximizer
Model >::MaximizerData::restore_stencil(), mappel::estimator::IterativeMaximizer

::MaximizerData::relinentor::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

Model >::MaximizerData::set_stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::step, mappel::estimator::IterativeMaximizer

:StepSize, and mappel::estimator::IterativeMaximizer
Model >::MaximizerData::theta().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.23.3.41 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:: \leftarrow Success, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator
Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer

9.23.3.42 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::record_run_statistics (const MaximizerData & data) [protected]

Definition at line 859 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::MaximizerData::has_theta_sequence(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::Iast_backtrack_idxs, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel \leftarrow ::estimator::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::nIterativeMaximizer< Model >::total_backtracks, mappel::estimator \leftarrow ::IterativeMaximizer< Model >::total_der_evals, mappel::estimator::IterativeMaximizer< Model >::total_fun_evals, and mappel::estimator::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterativeMaximizer

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative
Maximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_compute_compute_profile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappelcompute_compute_profile_estimator::IterativeMaximizer< Model >::local maximize(), and mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.23.3.43 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::num_estimations, and mappel::estimator::Estimator< Model >::total_walltime.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator< Model >::estimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator::Estimator

Definition at line 1137 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::name().

Referenced by mappel::estimator::lterativeMaximizer< Model >::compute_profile_bound(), and mappel::estimator:: lterativeMaximizer< Model >::compute profile bound debug().

9.23.4 Member Data Documentation

9.23.4.1 template < class Model > const double mappel::estimator::IterativeMaximizer < Model > ::backtrack_max_ratio = 0.50 [static], [protected]

Definition at line 462 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack().

9.23.4.2 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::backtrack min linear step ratio = 1e-3 [static],[protected]

Definition at line 463 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), and mappel::estimator::Iterative Aximizer< Model >::profile bound backtrack().

9.23.4.3 template < class Model > const double mappel::estimator::IterativeMaximizer < Model > ::backtrack_min_ratio = 0.05 [static], [protected]

Definition at line 461 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::profile_bound_backtrack().

9.23.4.4 template < class Model > const double mappel::estimator::IterativeMaximizer < Model >::convergence_min_function_change_ratio = 1.0e-9 [static], [protected]

Convergence criteria: tolerance for function-value change.

Definition at line 458 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), and mappel ::estimator::IterativeMaximizer< Model >::get_stats().

9.23.4.5 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::convergence min step size ratio = 1.0e-9 [static], [protected]

Convergence criteria: tolerance of relative step size.

Definition at line 459 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_step_size(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel ::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.23.4.6 template < class Model > const int mappel::estimator::IterativeMaximizer < Model >::DefaultIterations = 100 [static]

Definition at line 430 of file estimator.h.

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded \leftarrow Estimator< Model >::record exit code().

9.23.4.8 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::last_backtrack_idxs [protected]

Debugging: Stores last set of backtrack idxs when data.save seq==true.

Definition at line 477 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_debug_stats(), and mappel::estimator::Iterative \(\to \) Maximizer< Model >::record_run_statistics().

Definition at line 464 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.23.4.10 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::max_iterations [protected]

Definition at line 468 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Iterative \leftarrow Maximizer< Model >::local_profile_maximize().

Definition at line 326 of file estimator.h.

9.23.4.12 template < class Model > const double mappel::estimator::IterativeMaximizer < Model >::min_eigenvalue_correction_delta = 1e-3 [static], [protected]

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

Definition at line 456 of file estimator.h.

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

Definition at line 466 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute estimate(), mappel::estimator::Estimator< Model >::compute estimate debug(), mappel ::estimator::IterativeMaximizer< Model >::compute estimate debug(), mappel::estimator::Estimator< Model >↔ :::compute profile bound(), mappel::estimator::IterativeMaximizer< Model >::compute profile bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute profile bound debug(), mappel::estimator::Estimator< Model >::compute profile estimate(), mappel ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >← ::estimate max(), mappel::estimator::Estimator< Model >::estimate max stack(), mappel::estimator::Threaded ← Estimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator < Model >::estimate_← profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get debug stats(), mappel::estimator::Estimator< Model >::get model(), mappel::estimator::Iterative← Maximizer Model >::local_maximize(), mappel::estimator::IterativeMaximizer Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record_exit_code().

9.23.4.15 template<**class Model** > **std::mutex mappel::estimator::ThreadedEstimator**< **Model** >::**mtx** [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative
Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel
::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get
_stats(), mappel::estimator::CGaussMLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative
Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get \leftarrow _stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss \leftarrow MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

 $\textbf{9.23.4.17} \quad \textbf{template} < \textbf{class Model} > \textbf{int mappel} :: \textbf{estimator} :: \textbf{ThreadedEstimator} < \textbf{Model} > :: \textbf{num_threads} \\ [\texttt{protected}], [\texttt{inherited}]$

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile \leftarrow _bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator<:ThreadedEstimator< Model >::estimator::ThreadedEstimator<

9.23.4.18 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::total_backtracks = 0 [protected]

Definition at line 472 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::IterativeMaximizer< Model >::get stats(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

9.23.4.19 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_der_evals = 0 [protected]

Definition at line 474 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated
AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model
>::record_run_statistics().

9.23.4.20 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::total_fun_evals = 0 [protected]

Definition at line 473 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::record run statistics().

9.23.4.21 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::total_iterations = 0 [protected]

Definition at line 471 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::record run statistics().

9.23.4.22 template < class Model > double mappel::estimator::Estimator < Model >::total_walltime = 0. [protected], [inherited]

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

9.24 mappel::LogicalError Struct Reference

Failure of code or algorithm logic.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::LogicalError:

Public Member Functions

• LogicalError (std::string message)

9.24.1 Detailed Description

Failure of code or algorithm logic.

Definition at line 104 of file util.h.

9.24.2 Constructor & Destructor Documentation

9.24.2.1 mappel::LogicalError::LogicalError (std::string message) [inline]

Definition at line 106 of file util.h.

The documentation for this struct was generated from the following file:

• util.h

9.25 mappel::MAPEstimator Class Reference

A Mixin class to configure a for MLE estimation (null prior).

#include </home/travis/build/markjolah/Mappel/include/Mappel/MAPEstimator.h>

Inheritance diagram for mappel::MAPEstimator:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- StatsT get_stats () const
- IdxT get_num_params () const
- · void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- · const CompositeDist & get prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &Ibound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const

- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT & theta) const

Static Public Member Functions

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get rng generator ()

Static Public Attributes

static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

• static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

• static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

• static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global max psf sigma = 1E2

Protected Member Functions

- MAPEstimator ()
- MAPEstimator (const MAPEstimator &o)
- MAPEstimator (MAPEstimator &&o)
- MAPEstimator & operator= (const MAPEstimator &o)
- MAPEstimator & operator= (MAPEstimator &&o)

Protected Attributes

- · CompositeDist prior
- IdxT num_params
- IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound

9.25.1 Detailed Description

A Mixin class to configure a for MLE estimation (null prior).

Inheriting from this class modifies the objective function undergoing optimization to use a Null prior, by simply ignoreing the effect of the prior on the objective. This which effectively turns the objective function into a pure likelihood function, and the estimator becomes an MLE estimator.

Definition at line 22 of file MAPEstimator.h.

9.25.2 Member Typedef Documentation

9.25.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.25.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.25.3 Constructor & Destructor Documentation

9.25.3.1 mappel::MAPEstimator::MAPEstimator() [inline], [protected]

Definition at line 24 of file MAPEstimator.h.

9.25.3.2 mappel::MAPEstimator::MAPEstimator (const MAPEstimator & o) [inline], [protected]

Definition at line 25 of file MAPEstimator.h.

9.25.3.3 mappel::MAPEstimator::MAPEstimator (MAPEstimator & o) [inline], [protected]

Definition at line 26 of file MAPEstimator.h.

9.25.4 Member Function Documentation

9.25.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

9.25.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.25.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

9.25.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

9.25.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

9.25.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_min_sigma(), mappel::Gauss1DModel::set_min_sigma(), mappel::Gauss2DsModel::set_min_sigma(), mappel::Gauss1DModel::set_min_sigma(), mappel::Gauss2DModel::set_min_sigma(), mappel::Gauss2DModel::set

9.25.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::Ibound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.25.4.13 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

9.25.4.14 IdxT mappel::PointEmitterModel::get_num_params()const [inline],[inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.25.4.15 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited]

Definition at line 255 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.16 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]

Definition at line 207 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ∴ ::update_internal_1Dsum_estimators().

9.25.4.17 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 211 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.18 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 127 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.25.4.19 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.25.4.20 StatsT mappel::PointEmitterModel::get_stats() const [inherited]

Definition at line 132 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num_params, mappel::PointEmitterModel::prior, mappel::rng_manager, and mappel::PointEmitter← Model::ubound.

Referenced by mappel::Gauss1DModel::get_stats(), mappel::Gauss1DsModel::get_stats(), mappel::Gauss2DModel ← ::get_stats(), and mappel::Gauss2DsModel::get_stats().

9.25.4.21 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.25.4.22 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.23 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.25.4.24 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.25.4.25 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.25.4.26 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.25.4.27 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.25.4.28 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.25.4.29 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.25.4.30 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.25.4.31 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity(double *mean* = DefaultPriorMeanl, double *kappa* = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_cormal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.25.4.32 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.25.4.33 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.25.4.34 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.25.4.35 MAPEstimator& mappel::MAPEstimator::operator=(const MAPEstimator & o) [inline], [protected]

Definition at line 27 of file MAPEstimator.h.

Referenced by mappel::Gauss1DMAP::operator=(), mappel::Gauss1DsMAP::operator=(), mappel::Gauss2DsMAP::operator=(), and mappel::Gauss2DMAP::operator=().

9.25.4.36 MAPEstimator& mappel::MAPEstimator::operator=(MAPEstimator && o) [inline], [protected]

Definition at line 28 of file MAPEstimator.h.

9.25.4.37 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.25.4.38 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.25.4.39 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

 $9.25.4.40 \quad template < class \ RngT > PointEmitter Model:: ParamT \ mappel:: PointEmitter Model:: sample_prior (\ RngT \& \textit{rng}) \ constituted]$

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.41 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior()const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.25.4.42 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.44 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.45 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.25.4.46 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

9.25.4.47 void mappel::PointEmitterModel::set param names (const StringVecT & desc) [inline],[inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.25.4.48 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

9.25.4.49 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.25.4.50 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.25.4.51 void mappel::PointEmitterModel::set ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.25.4.52 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

9.25.4.53 BoolVecT mappel::PointEmitterModel::theta stack in bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.25.5 Member Data Documentation

9.25.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.25.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.25.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.25.5.4 const IdxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.25.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.25.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.25.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.25.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.25.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.25.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.25.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cdot normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddot::set background mcmc sampling().

9.25.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.25.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.25.5.15 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.25.5.16 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.25.5.17 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.25.5.18 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitte

9.25.5.19 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.25.5.20 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.25.5.21 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal — _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel — ::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_pyperparams(), mappel::Gauss1DsModel — ::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::has_ — hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointE

9.25.5.22 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

The documentation for this class was generated from the following file:

· MAPEstimator.h

9.26 mappel::estimator::IterativeMaximizer < Model >::MaximizerData Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Public Member Functions

- MaximizerData (const Model &model, const ModelDataT< Model > &im, const StencilT< Model > &s, bool save_seq=false)
- MaximizerData (const Model &model, const ModelDataT< Model > &im, const StencilT< Model > &s, double rllh, bool save_seq=false)
- void record_iteration ()
- void record iteration (const ParamT< Model > &accepted theta)

Record an iteration point (derivatives computed)

· void record backtrack (double rejected rllh)

Record a backtracked point (no derivative computations performed) Using the saved theta as the default.

void record_backtrack (const ParamT< Model > &rejected_theta, double rejected_rllh)

Record a backtracked point (no derivative computations performed)

bool has theta sequence () const

Return the saved theta sequence.

- IdxT get sequence len () const
- ParamVecT< Model > get_theta_sequence () const
- · IdxVecT get backtrack idxs () const
- VecT get_theta_sequence_rllh () const
- StencilT < Model > & stencil ()

Get the current stencil.

- void set stencil (const StencilT < Model > &s)
- · void save stencil ()

Save the current stencil to the single reserve spot. Overwrites any previously saved stencil. This is used to save a stencil when backtracking.

void restore_stencil ()

Restore the single reserved stencil to the current stencil spot. Overwrites any previously saved stencil. This is used to restore a last good iterate (and associated stencil data) when backtracking.

• const StencilT < Model > & saved stencil () const

Get the saved stencil.

const ParamT< Model > & theta () const

Get the current stencil's theta.

const ParamT< Model > & saved_theta () const

Get the saved stencil's theta.

- void set_fixed_parameters (const ldxVecT &fixed_parameters_idxs)
- · bool has_fixed_parameters () const
- IdxT num_fixed_parameters () const

Public Attributes

- const ModelDataT< Model > & im
- ParamT< Model > grad
- ParamT< Model > step
- double rllh
- int nBacktracks =0
- int nlterations =0
- · IdxVecT fixed_idxs
- IdxVecT free idxs

Protected Member Functions

void expand max seq len ()

Protected Attributes

- const ldxT num params
- StencilT < Model > s0
- StencilT< Model > s1
- · bool current stencil
- int max_seq_len =0
- int seq_len =0
- ParamVecT< Model > theta seq
- VecT seg_rllh
- IdxVecT backtrack idxs

Static Protected Attributes

static const int DefaultMaxSeqLength = 50
 Default maximum length of sequence to perpare to save if debugging.

9.26.1 Detailed Description

```
template < class Model > class mappel::estimator::lterativeMaximizer < Model > ::MaximizerData
```

Definition at line 479 of file estimator.h.

- 9.26.2 Constructor & Destructor Documentation
- 9.26.2.1 template < class Model > mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::MaximizerData (const Model & model, const Model DataT < Model > & im, const StencilT < Model > & s, bool save_seq = false)

Definition at line 738 of file estimator_impl.h.

9.26.2.2 template < class Model > mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::MaximizerData (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s, double rllh, bool save_seq = false)

Definition at line 744 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator::: \leftarrow IterativeMaximizer< Model >::MaximizerData::DefaultMaxSeqLength, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_iteration(), mappel::methods::objective::rllh(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta_seq.

9.26.3 Member Function Documentation

9.26.3.1 template < class Model > void mappel::estimator::lterativeMaximizer < Model >::MaximizerData::expand_max_seq_len() [protected]

Definition at line 766 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator \leftarrow ::IterativeMaximizer< Model >::MaximizerData::max_seq_len, mappel::estimator::IterativeMaximizer< Model >:: \leftarrow MaximizerData::seq_rllh, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta_seq.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::record_iteration().

9.26.3.2 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::get_backtrack_idxs () const [inline]

Definition at line 506 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer < Model >::record_run_statistics().

9.26.3.3 template < class Model > IdxT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::get_sequence_len() const [inline]

Definition at line 504 of file estimator.h.

9.26.3.4 template < class Model > ParamVecT < Model > mappel::estimator::IterativeMaximizer < Model >::MaximizerData::get_theta_sequence() const [inline]

Definition at line 505 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::\u2234- IterativeMaximizer< Model >::local_maximize(), and mappel::estimator::IterativeMaximizer< Model >::local_profile\u2234- _maximize().

9.26.3.5 template < class Model > VecT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::get_theta_sequence_rllh() const [inline]

Definition at line 507 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator:: \leftarrow IterativeMaximizer< Model >::local_maximize(), and mappel::estimator::IterativeMaximizer< Model >::local_profile \leftarrow _maximize().

9.26.3.6 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::MaximizerData::has_fixed_parameters() const [inline]

Definition at line 530 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.26.3.7 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::MaximizerData::has_theta_sequence() const [inline]

Return the saved theta sequence.

Definition at line 503 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::record run statistics().

9.26.3.8 template < class Model > IdxT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::num_fixed_parameters () const [inline]

Definition at line 531 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local_profile_maximize().

9.26.3.9 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::MaximizerData::record_backtrack (double rejected_rllh) [inline]

Record a backtracked point (no derivative computations performed) Using the saved theta as the default.

Definition at line 498 of file estimator.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel \leftarrow ::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record backtrack().

9.26.3.10 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::record_backtrack (const ParamT < Model > & rejected_theta, double rejected_rllh)

Record a backtracked point (no derivative computations performed)

Definition at line 787 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator:::

IterativeMaximizer< Model >::MaximizerData::expand_max_seq_len(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::seq_len, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta_seq.

9.26.3.11 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::MaximizerData::record_iteration () [inline]

Definition at line 494 of file estimator.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_iteration(), and mappel ← ::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::Maximizer Data(), mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack(), and mappel::estimator::Iterative Maximizer< Model >::MaximizerData::record iteration().

9.26.3.12 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::record_iteration (const ParamT < Model > & accepted theta)

Record an iteration point (derivatives computed)

Definition at line 775 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::expand_max_seq_len(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::max_seq_len, mappel::estimator::IterativeMaximizer
Model >::MaximizerData::nlterativeMaximizer< Model >::MaximizerData::rllh, mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel ::estimator::IterativeMaximizer
Model >::MaximizerData::seq_len, mappel::estimator::IterativeMaximizer
Model >::MaximizerData::seq_rllh, and mappel::estimator::IterativeMaximizer

9.26.3.13 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::MaximizerData::restore_stencil (
) [inline]

Restore the single reserved stencil to the current stencil spot. Overwrites any previously saved stencil. This is used to restore a last good iterate (and associated stencil data) when backtracking.

Definition at line 521 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.26.3.14 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::MaximizerData::save_stencil() [inline]

Save the current stencil to the single reserve spot. Overwrites any previously saved stencil. This is used to save a stencil when backtracking.

Definition at line 516 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.26.3.15 template < class Model > const StencilT < Model > & mappel::estimator::IterativeMaximizer < Model >::MaximizerData::saved_stencil() const [inline]

Get the saved stencil.

Definition at line 523 of file estimator.h.

9.26.3.16 template < class Model > const ParamT < Model > & mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::saved_theta() const [inline]

Get the saved stencil's theta.

Definition at line 527 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::local profile maximize(), and mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack().

9.26.3.17 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::MaximizerData::set fixed parameters (const IdxVecT & fixed parameters idxs)

Definition at line 800 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::fixed_idxs, mappel::estimator::Iterative \leftarrow Maximizer< Model >::MaximizerOata::free_idxs, and mappel::estimator::IterativeMaximizer< Model >::Maximizer \leftarrow Data::num params.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), and mappel::estimator ::IterativeMaximizer< Model >::local profile maximize().

9.26.3.18 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::set_stencil (const StencilT < Model > & s) [inline]

Definition at line 511 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::local profile maximize(), and mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack().

9.26.3.19 template < class Model > StencilT < Model > & mappel::estimator::IterativeMaximizer < Model >::MaximizerData::stencil() [inline]

Get the current stencil.

Definition at line 510 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_estimator::IterativeMaximizer<

Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel ::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.26.3.20 template < class Model > const ParamT < Model > & mappel::estimator::IterativeMaximizer < Model >::MaximizerData::theta () const [inline]

Get the current stencil's theta.

Definition at line 525 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.26.4 Member Data Documentation

9.26.4.1 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::backtrack_idxs [protected]

Definition at line 542 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::expand_max_seq_len(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >:: \leftarrow :MaximizerData::MaximizerData(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_ \leftarrow :backtrack().

9.26.4.2 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::MaximizerData::current_stencil

Definition at line 536 of file estimator.h.

Default maximum length of sequence to perpare to save if debugging.

Definition at line 533 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::MaximizerData().

9.26.4.4 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::fixed_idxs

Definition at line 489 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::

IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters().

9.26.4.5 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::free idxs

Definition at line 489 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator:: IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters().

9.26.4.6 template < class Model > ParamT < Model > mappel::estimator::IterativeMaximizer < Model >::MaximizerData::grad

Definition at line 482 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::backtrack(), and mappel::estimator::Iterative \leftarrow Maximizer < Model >::local_profile_maximize().

9.26.4.7 template < class Model > const ModelDataT < Model > & mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::im

Definition at line 481 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer < Model >::backtrack(), mappel::estimator::lterativeMaximizer < Model >::local_profile_maximize(), and mappel::estimator::lterativeMaximizer < Model >::profile_bound_backtrack().

9.26.4.8 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::MaximizerData::max_seq_len = 0 [protected]

Definition at line 538 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::expand_max_seq_len(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::MaximizerData(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::record_backtrack(), and mappel::estimator::IterativeMaximizer
Model >::MaximizerData::record_backtrack(), and mappel::estimator::IterativeMaximizer
Model >::MaximizerData::record_backtrack(), and mappel::estimator::IterativeMaximizer

9.26.4.9 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::MaximizerData::nBacktracks = 0

Definition at line 486 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel ::estimator::IterativeMaximizer< Model >::record run statistics().

9.26.4.10 template < class Model > int mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::nlterations = 0

Definition at line 487 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::MaximizerData::record_iteration(), and mappel \leftarrow ::estimator::IterativeMaximizer < Model >::record run statistics().

9.26.4.11 template < class Model > const ldxT mappel::estimator::lterativeMaximizer < Model >::MaximizerData::num_params [protected]

Definition at line 534 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::MaximizerData::set_fixed_parameters().

9.26.4.12 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::MaximizerData::rllh

Definition at line 484 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizerData::MaximizerData(), mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_ \leftarrow iteration().

```
9.26.4.13 template < class Model > StencilT < Model > mappel::estimator::IterativeMaximizer < Model >::MaximizerData::s0 [protected]
```

Definition at line 535 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.26.4.14 template < class Model > StencilT < Model > mappel::estimator::IterativeMaximizer < Model >::MaximizerData::s1 [protected]

Definition at line 535 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.26.4.15 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::MaximizerData::seq_len = 0 [protected]

Definition at line 539 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::record_iteration().

9.26.4.16 template < class Model > VecT mappel::estimator::IterativeMaximizer < Model >::MaximizerData::seq_rllh [protected]

Definition at line 541 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::expand_max_seq_len(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::MaximizerData(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData ::record_iteration().

9.26.4.17 template < class Model > ParamT < Model > mappel::estimator::IterativeMaximizer < Model > ::MaximizerData::step

Definition at line 483 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.26.4.18 template < class Model > ParamVecT < Model > mappel::estimator::IterativeMaximizer < Model >::MaximizerData::theta_seq [protected]

Definition at line 540 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::MaximizerData::expand_max_seq_len(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::MaximizerData(), mappel::estimator::IterativeMaximizer</br>
Model >::MaximizerData::record_backtrack(), and mappel::estimator::IterativeMaximizer
Model >::MaximizerData::record_backtrack(), and mappel::estimator::IterativeMaximizer

The documentation for this class was generated from the following files:

- · estimator.h
- estimator_impl.h

9.27 mappel::MCMCAdaptor1D Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor1D.h>
Inheritance diagram for mappel::MCMCAdaptor1D:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step scale=1.0) const
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- · void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >
 - ParamT make_param (FillT fill) const
- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >
 - ParamVecT make param stack (ldxT n, FillT fill) const
- MatT make_param_mat () const
- template<class FillT >
 - MatT make_param_mat (FillT fill) const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >
 - CubeT make_param_mat_stack (ldxT n, FillT fill) const
- CompositeDist & get_prior ()
- · const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >
- ParamT sample_prior (RngT &rng) const
- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &lbound)

- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

• static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

• static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2

- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptor1D ()
- MCMCAdaptor1D (double sigma scale)
- MCMCAdaptor1D (const MCMCAdaptor1D &o)
- MCMCAdaptor1D (MCMCAdaptor1D &&o)
- MCMCAdaptor1D & operator= (const MCMCAdaptor1D &o)
- MCMCAdaptor1D & operator= (MCMCAdaptor1D &&o)
- StatsT get_stats () const
- void set_mcmc_num_phases (IdxT num_phases)

Protected Attributes

- double eta x =0
- double eta_I =0
- double eta_bg =0
- CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- IdxT num_phases
- · double sigma_scale

9.27.1 Detailed Description

Definition at line 15 of file MCMCAdaptor1D.h.

9.27.2 Member Typedef Documentation

9.27.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.27.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.27.3 Constructor & Destructor Documentation

9.27.3.1 mappel::MCMCAdaptor1D::MCMCAdaptor1D() [protected]

Definition at line 11 of file MCMCAdaptor1D.cpp.

9.27.3.2 mappel::MCMCAdaptor1D::MCMCAdaptor1D(double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor1D.cpp.

References eta_x, mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_ubound(), set_ background_mcmc_sampling(), set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::sigma_scale.

9.27.3.3 mappel::MCMCAdaptor1D::MCMCAdaptor1D (const MCMCAdaptor1D & o) [protected]

Definition at line 24 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

9.27.3.4 mappel::MCMCAdaptor1D::MCMCAdaptor1D(MCMCAdaptor1D && o) [protected]

Definition at line 33 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

9.27.4 Member Function Documentation

9.27.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

9.27.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.27.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.27.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.27.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.27.4.6 void mappel::PointEmitterModel::check psf sigma (double psf sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitter Model:: global_max_psf_sigma,\ and\ mappel:: PointEmitter Model:: global_min_psf_colored sigma.$

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

9.27.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.27.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.27.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by set_background_mcmc_sampling(), and set_intensity_mcmc_sampling().

9.27.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and set_background_mcmc_ \leftarrow sampling().

9.27.4.13 ldxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.27.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.27.4.15 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

9.27.4.16 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited] Definition at line 167 of file PointEmitterModel.h. References mappel::PointEmitterModel::num params. 9.27.4.17 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited] Definition at line 255 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 9.27.4.18 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 207 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update_internal_1Dsum_estimators(). 9.27.4.19 const CompositeDist & mappel::PointEmitterModel::get prior () const [inline], [inherited] Definition at line 211 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 9.27.4.20 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited] Definition at line 127 of file PointEmitterModel.cpp. References mappel::rng_manager. 9.27.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited] Definition at line 122 of file PointEmitterModel.cpp. References mappel::rng manager. **9.27.4.22** StatsT mappel::MCMCAdaptor1D::get_stats() const [protected] Definition at line 98 of file MCMCAdaptor1D.cpp. References eta_bg, eta_I, eta_x, and mappel::MCMCAdaptorBase::get_stats().

Referenced by mappel::MCMCAdaptor1Ds::get stats(), mappel::MCMCAdaptor2D::get stats(), and mappel::Gauss1←

DModel::get stats().

9.27.4.23 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ \leftarrow ratio(), MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.27.4.24 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.27.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline],[inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.27.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.27.4.27 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.27.4.28 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.27.4.29 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.27.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.27.4.31 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.27.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.27.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanI, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.27.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = DefaultPriorBetaPos) [static].[inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds DModel::make_prior_beta_position(), mappel::Gauss2Ds Model::make_prior_beta_position().

9.27.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.27.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel:: \leftarrow Gauss2DsModel::make_prior_beta_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.27.4.37 MCMCAdaptor1D & mappel::MCMCAdaptor1D::operator=(const MCMCAdaptor1D & o) [protected]

Definition at line 42 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

Referenced by mappel::MCMCAdaptor1Ds::operator=(), mappel::MCMCAdaptor2D::operator=(), and mappel:: \leftarrow Gauss1DModel::operator=().

9.27.4.38 MCMCAdaptor1D & mappel::MCMCAdaptor1D::operator=(MCMCAdaptor1D && o) [protected]

Definition at line 53 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

9.27.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.27.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.27.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.27.4.42 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1 . 0) const

Definition at line 108 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, eta x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.27.4.43 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, const IdxVecT & fixed_parameters_mask, double step_scale = 1 . 0) const

Definition at line 122 of file MCMCAdaptor1D.cpp.

References eta_bg, eta_I, eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.27.4.44 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.27.4.45 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior()const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.27.4.46 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1)$

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, eta_bg, mappel::PointEmitterModel::get_ \leftarrow hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by MCMCAdaptor1D().

9.27.4.47 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
9.27.4.49 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline], [inherited]
```

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.27.4.50 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.27.4.51 void mappel:: $MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1)$

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanI, eta_I, mappel::PointEmitterModel::get_hyperparam_ value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by MCMCAdaptor1D().

9.27.4.52 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.27.4.53 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

9.27.4.54 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma - _ scale.

9.27.4.55 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: prior.$

9.27.4.56 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

9.27.4.57 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.27.4.58 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.27.4.59 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.27.4.60 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.27.4.61 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds(const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.27.5 Member Data Documentation

9.27.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.27.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

```
9.27.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]
Default optimization method for MLE/MAP estimation.
Definition at line 51 of file PointEmitterModel.h.
9.27.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.27.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.27.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.27.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.27.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.27.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
Referenced by mappel::PointEmitterModel::make prior component intensity().
9.27.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]
Default emitter intensity mean
Definition at line 61 of file PointEmitterModel.h.
Referenced by set intensity mcmc sampling().
```

9.27.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make \leftarrow _default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2 DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and set_background_mcmc_ \leftarrow sampling().

9.27.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.27.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.27.5.14 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.27.5.16 double mappel::MCMCAdaptor1D::eta_bg =0 [protected]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by get_stats(), MCMCAdaptor1D(), operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), sample mcmc candidate(), and set background mcmc sampling().

```
9.27.5.17 double mappel::MCMCAdaptor1D::eta_l = 0 [protected]
```

The standard deviation for the normally distributed perturbation to theta I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by get_stats(), MCMCAdaptor1D(), operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), sample_mcmc_candidate(), and set_intensity_mcmc_sampling().

```
9.27.5.18 double mappel::MCMCAdaptor1D::eta_x = 0 [protected]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by get_stats(), MCMCAdaptor1D(), operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and sample mcmc candidate().

```
9.27.5.19 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]
```

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

```
9.27.5.20 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]
```

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

```
9.27.5.21 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
9.27.5.22 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.27.5.23 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_bound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds().

9.27.5.24 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.27.5.25 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointE

9.27.5.26 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), sample_mcmc_candidate(), and mappel::MCMCAdaptor Base::set_mcmc_num_phases().

9.27.5.27 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::Gauss1DsModel \leftarrow ::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::has_ \leftarrow hyperparam(), mappel::PointEmitterModel::p

9.27.5.28 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor2D::MCMCAdaptor2D::MCMCAdaptor2D::MCMCAdaptor2Ds(), set_background_mcmc_sampling(), set_intensity_mcmc_ sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_scale().

9.27.5.29 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_dauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_dauss2DsModel::pet_dauss2DsModel::initial_theta_estimate(), mappel::P

The documentation for this class was generated from the following files:

- MCMCAdaptor1D.h
- MCMCAdaptor1 D.cpp

9.28 mappel::MCMCAdaptor1Ds Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor1Ds.h>

Inheritance diagram for mappel::MCMCAdaptor1Ds:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- IdxT get num params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >
 - ParamT make_param (FillT fill) const
- ParamVecT make_param_stack (IdxT n) const
- template<class FillT >
 - ParamVecT make_param_stack (ldxT n, FillT fill) const
- MatT make_param_mat () const
- template<class FillT >
 - MatT make param mat (FillT fill) const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >
 - CubeT make_param_mat_stack (ldxT n, FillT fill) const
- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- $\bullet \;\; {\sf template}{<} {\sf class} \; {\sf RngT} >$
 - ParamT sample prior (RngT &rng) const
- ParamT sample_prior () const
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set_ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- · const ParamT & get ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const

- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- void set mcmc sigma scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_←
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

• static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

• static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const ldxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double global default mcmc sigma scale = 0.05
- static const double global max mcmc sigma scale = 0.5

Protected Member Functions

- MCMCAdaptor1Ds ()
- MCMCAdaptor1Ds (double sigma scale)
- MCMCAdaptor1Ds (const MCMCAdaptor1Ds &o)
- MCMCAdaptor1Ds (MCMCAdaptor1Ds &&o)
- MCMCAdaptor1Ds & operator= (const MCMCAdaptor1Ds &o)
- MCMCAdaptor1Ds & operator= (MCMCAdaptor1Ds &&o)
- StatsT get_stats () const
- void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- double eta_sigma =-1
- double eta_x =0
- double eta_I =0
- double eta_bg =0
- CompositeDist prior
- IdxT num params
- · IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- IdxT num_phases
- double sigma_scale

9.28.1 Detailed Description

Definition at line 14 of file MCMCAdaptor1Ds.h.

9.28.2 Member Typedef Documentation

9.28.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.28.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.28.3 Constructor & Destructor Documentation

9.28.3.1 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds() [protected]

Definition at line 11 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale.

9.28.3.2 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds (double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor1Ds.cpp.

9.28.3.3 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds (const MCMCAdaptor1Ds & o) [protected]

Definition at line 21 of file MCMCAdaptor1Ds.cpp.

References eta_sigma.

9.28.3.4 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds (MCMCAdaptor1Ds && o) [protected]

Definition at line 28 of file MCMCAdaptor1Ds.cpp.

References eta_sigma.

9.28.4 Member Function Documentation

9.28.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

9.28.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.28.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.28.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta_stack(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.28.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.28.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

9.28.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.28.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names()const [inline],[inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_\(\Limits_intensity_mcmc_sampling().

9.28.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

9.28.4.13 | IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

9.28.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.28.4.15 IdxT mappel::PointEmitterModel::get_num_hyperparams()const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

```
9.28.4.16 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 167 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num params.
9.28.4.17 StringVecT mappel::PointEmitterModel::get_param_names( )const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.28.4.18 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
9.28.4.19 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.28.4.20 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng_manager.
9.28.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static], [inherited]
Definition at line 122 of file PointEmitterModel.cpp.
References mappel::rng_manager.
9.28.4.22 StatsT mappel::MCMCAdaptor1Ds::get_stats() const [protected]
Definition at line 51 of file MCMCAdaptor1Ds.cpp.
References eta_sigma, and mappel::MCMCAdaptor1D::get_stats().
Referenced by mappel::Gauss1DsModel::get_stats().
```

9.28.4.23 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

9.28.4.24 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.28.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.28.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.28.4.27 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.28.4.28 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.28.4.29 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.28.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.28.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.28.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.28.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = DefaultPriorBetaPos) [static].[inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.28.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.28.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.28.4.37 MCMCAdaptor1Ds & mappel::MCMCAdaptor1Ds::operator=(const MCMCAdaptor1Ds & o) [protected]

Definition at line 35 of file MCMCAdaptor1Ds.cpp.

References eta sigma, and mappel::MCMCAdaptor1D::operator=().

Referenced by mappel::Gauss1DsModel::operator=().

9.28.4.38 MCMCAdaptor1Ds & mappel::MCMCAdaptor1Ds::operator=(MCMCAdaptor1Ds && o) [protected]

Definition at line 43 of file MCMCAdaptor1Ds.cpp.

References eta sigma, and mappel::MCMCAdaptor1D::operator=().

9.28.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

9.28.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.28.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.28.4.42 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1 . 0) const

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, eta_sigma, mappel::MCMC Adaptor1D::eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.28.4.43 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, const IdxVecT & fixed_parameters_mask, double step_scale = 1 . 0) const

Definition at line 77 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, eta_sigma, mappel::MCMC Adaptor1D::eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.28.4.44 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.28.4.45 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.28.4.46 void mappel::MCMCAdaptor1D::set background mcmc sampling (double eta bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.28.4.47 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

9.28.4.48 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & desc) [inline], [inherited]

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.28.4.49 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.28.4.50 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

9.28.4.51 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter← Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.28.4.52 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

9.28.4.53 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.28.4.54 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← __scale.

9.28.4.55 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.28.4.56 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

9.28.4.57 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.28.4.58 void mappel::PointEmitterModel::set rng seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.28.4.59 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.28.4.60 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

9.28.4.61 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.28.5 Member Data Documentation

9.28.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

9.28.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited] Default level at which to estimate confidence intervals must be in range (0,1). Definition at line 57 of file PointEmitterModel.h. 9.28.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited] Default optimization method for MLE/MAP estimation. Definition at line 51 of file PointEmitterModel.h. **9.28.5.4** const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited] Number of samples to throw away (burn-in) on initialization. Definition at line 55 of file PointEmitterModel.h. **9.28.5.5** const ldxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited] Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.) Definition at line 54 of file PointEmitterModel.h. 9.28.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited] Keep every # samples. [Value of 0 indicates use the model default. This is suggested.]. Definition at line 56 of file PointEmitterModel.h. 9.28.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited] Default position parameter in symmetric beta-distributions Definition at line 59 of file PointEmitterModel.h. 9.28.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited] Default shape for intensity gamma distributions Definition at line 63 of file PointEmitterModel.h. 9.28.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited] Default maximum emitter intensity Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.28.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanI = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.28.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D \leftarrow ::set_background_mcmc_sampling().

9.28.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.28.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.28.5.16 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.28.5.17 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Dsc::sample_mcmc_candidate(), sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.28.5.18 double mappel::MCMCAdaptor1Ds::eta_sigma =-1 [protected]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor1Ds.h.

Referenced by get stats(), MCMCAdaptor1Ds(), operator=(), and sample mcmc candidate().

9.28.5.19 double mappel::MCMCAdaptor1D::eta_x =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate().

9.28.5.20 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2 \leftarrow Ds::MCMCAdaptor2Ds().

9.28.5.21 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

```
9.28.5.22 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
9.28.5.23 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
9.28.5.24 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterMode

```
9.28.5.25 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]
```

Definition at line 154 of file PointEmitterModel.h.

 $Referenced \quad by \quad mappel::PointEmitterModel::get_num_hyperparams(), \quad mappel::PointEmitterModel::get_stats(), \\ mappel::PointEmitterModel::operator=(), and \\ mappel::PointEmitterModel::set_prior().$

```
9.28.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]
```

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.28.5.27 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptor Base::set_mcmc_num_phases().

9.28.5.28 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel(), mappel::PointEmitterModel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparams(), mappel::Gauss1DsModel \leftarrow ::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::has_ \leftarrow hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \leftarrow _value(), mappel::PointEmitterModel::set_hyperparams(), mappel::PointEmitterModel::set_lyperparam. \leftarrow _value(), mappel::PointEmitterModel::set_hyperparams(), mappel::PointEmitterModel::set_param. \leftarrow _value(), m

9.28.5.29 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D \cup D(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_ \leftarrow scale().

9.28.5.30 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::

The documentation for this class was generated from the following files:

- MCMCAdaptor1Ds.h
- MCMCAdaptor1Ds.cpp

9.29 mappel::MCMCAdaptor2D Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor2D.h>

Inheritance diagram for mappel::MCMCAdaptor2D:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step_scale=1.0) const
- void set intensity mcmc sampling (double eta I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >
 - ParamT make_param (FillT fill) const
- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >
 - ParamVecT make param stack (ldxT n, FillT fill) const
- MatT make_param_mat () const
- template < class FillT >
 - MatT make_param_mat (FillT fill) const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >
 - CubeT make_param_mat_stack (ldxT n, FillT fill) const
- CompositeDist & get prior ()
- const CompositeDist & get_prior () const

- void set_prior (CompositeDist &&prior_)
- void set prior (const CompositeDist &prior)
- IdxT get num hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >
 - ParamT sample_prior (RngT &rng) const
- ParamT sample prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get Ibound () const
- · const ParamT & get ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- void set_mcmc_sigma_scale (double scale)
- · double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get rng generator ()

Static Public Attributes

static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const ldxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const ldxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

• static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptor2D ()
- MCMCAdaptor2D (double sigma_scale)
- MCMCAdaptor2D (const MCMCAdaptor2D &o)
- MCMCAdaptor2D (MCMCAdaptor2D &&o)
- MCMCAdaptor2D & operator= (const MCMCAdaptor2D &o)
- MCMCAdaptor2D & operator= (MCMCAdaptor2D &&o)
- · StatsT get stats () const
- void set_mcmc_num_phases (IdxT num_phases)

Protected Attributes

- double eta_y =0
- double eta x = 0
- double eta_l =0
- double eta_bg =0
- · CompositeDist prior
- IdxT num params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- · IdxT num phases
- · double sigma scale

9.29.1 Detailed Description

Definition at line 14 of file MCMCAdaptor2D.h.

9.29.2 Member Typedef Documentation

9.29.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.29.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.29.3 Constructor & Destructor Documentation

9.29.3.1 mappel::MCMCAdaptor2D::MCMCAdaptor2D() [protected]

Definition at line 11 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale.

9.29.3.2 mappel::MCMCAdaptor2D::MCMCAdaptor2D(double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor2D.cpp.

References eta_y, mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_ubound(), and mappel ::MCMCAdaptorBase::sigma_scale.

9.29.3.3 mappel::MCMCAdaptor2D::MCMCAdaptor2D (const MCMCAdaptor2D & o) [protected]

Definition at line 22 of file MCMCAdaptor2D.cpp.

References eta_y.

9.29.3.4 mappel::MCMCAdaptor2D::MCMCAdaptor2D (MCMCAdaptor2D && o) [protected]

Definition at line 27 of file MCMCAdaptor2D.cpp.

References eta y.

9.29.4 Member Function Documentation

9.29.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

9.29.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

9.29.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

9.29.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta_stack(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.29.4.5 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.29.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.29.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_ \leftarrow intensity_mcmc_sampling().

9.29.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), MCMCAdaptor2D(), and mappel::MCMCAdaptor1D ← ::set background mcmc sampling().

9.29.4.13 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.29.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

9.29.4.15 IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

9.29.4.16 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.29.4.17 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited]

Definition at line 255 of file PointEmitterModel.h.

 $References\ mappel :: Point Emitter Model :: prior.$

9.29.4.18 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]

Definition at line 207 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel
 ::update internal 1Dsum estimators().

9.29.4.19 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 211 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.20 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 127 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.29.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.29.4.22 StatsT mappel::MCMCAdaptor2D::get_stats() const [protected]

Definition at line 51 of file MCMCAdaptor2D.cpp.

References eta_y, and mappel::MCMCAdaptor1D::get_stats().

Referenced by mappel::MCMCAdaptor2Ds::get_stats(), and mappel::Gauss2DModel::get_stats().

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_

mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.29.4.24 bool mappel::PointEmitterModel::has_hyperparam(const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline],[inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.29.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.29.4.27 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.29.4.28 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.29.4.29 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.29.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.29.4.31 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.29.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.29.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity(double *mean* = DefaultPriorMeanl, double *kappa* = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_cormal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.29.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.29.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.29.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.29.4.37 MCMCAdaptor2D & mappel::MCMCAdaptor2D::operator=(const MCMCAdaptor2D & o) [protected]

Definition at line 32 of file MCMCAdaptor2D.cpp.

References eta_y, and mappel::MCMCAdaptor1D::operator=().

Referenced by mappel::MCMCAdaptor2Ds::operator=(), and mappel::Gauss2DModel::operator=().

9.29.4.38 MCMCAdaptor2D & mappel::MCMCAdaptor2D::operator=(MCMCAdaptor2D && o) [protected]

Definition at line 41 of file MCMCAdaptor2D.cpp.

References eta_y, and mappel::MCMCAdaptor1D::operator=().

9.29.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.29.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

9.29.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.42 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1 . 0) const

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_← x, eta y, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

9.29.4.43 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, const IdxVecT & fixed parameters mask, double step scale = 1 . 0) const

Definition at line 74 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_\infty x, eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

9.29.4.44 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.45 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

9.29.4.46 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.29.4.47 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.49 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.50 void mappel::PointEmitterModel::set hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

9.29.4.51 void mappel::MCMCAdaptor1D::set intensity mcmc sampling (double eta I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter ← Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.29.4.52 void mappel::PointEmitterModel::set_lbound (const ParamT & *lbound*) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

9.29.4.53 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.29.4.54 void mappel::MCMCAdaptorBase::set mcmc sigma scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

9.29.4.55 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.29.4.56 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

9.29.4.57 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.29.4.58 void mappel::PointEmitterModel::set rng seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.29.4.59 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.29.4.60 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

9.29.4.61 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.29.5 Member Data Documentation

9.29.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.29.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.29.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.29.5.4 const IdxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.29.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.29.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.29.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.29.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.29.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

9.29.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

9.29.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D $\column{c}\column{$

9.29.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.29.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.29.5.14 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

```
9.29.5.16 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
9.29.5.17 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.29.5.18 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample mcmc_candidate().

9.29.5.19 double mappel::MCMCAdaptor2D::eta_y =0 [protected]

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

 $Referenced\ by\ get_stats(),\ MCMCAdaptor2D(),\ operator=(),\ mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(),\ and\ sample_mcmc_candidate().$

9.29.5.20 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), MCMCAdaptor2D(), and mappel::MCMCAdaptor2 Ds::MCMCAdaptor2Ds().

9.29.5.21 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

9.29.5.22 const double mappel::PointEmitterModel::global max psf sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.29.5.23 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.29.5.24 ParamT mappel::PointEmitterModel::lbound [protected],[inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmi

9.29.5.25 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.29.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.29.5.27 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptor Base::set_mcmc_num_phases().

9.29.5.28 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Gauss2DsModel::Gauss2DsModel(), mappel \leftarrow ::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::pointEmitterModel::has_ \leftarrow hyperparam(), mappel::PointEmitterModel::poi

9.29.5.29 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor2Dc(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set_background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_costale().

9.29.5.30 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_

The documentation for this class was generated from the following files:

- · MCMCAdaptor2D.h
- MCMCAdaptor2D.cpp

9.30 mappel::MCMCAdaptor2Ds Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor2Ds.h>

Inheritance diagram for mappel::MCMCAdaptor2Ds:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0) const
- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, const ldxVecT &fixed_parameters_

 mask, double step scale=1.0) const
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >
 - ParamT make_param (FillT fill) const
- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >
 - ParamVecT make param stack (ldxT n, FillT fill) const
- MatT make_param_mat () const
- template<class FillT >
 - MatT make param mat (FillT fill) const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >
 - CubeT make_param_mat_stack (ldxT n, FillT fill) const
- CompositeDist & get_prior ()
- · const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >
- ParamT sample_prior (RngT &rng) const
- ParamT sample_prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &lbound)

- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_←
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

• static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

• static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2

- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptor2Ds ()
- MCMCAdaptor2Ds (double sigma scale)
- MCMCAdaptor2Ds (const MCMCAdaptor2Ds &o)
- MCMCAdaptor2Ds (MCMCAdaptor2Ds &&o)
- MCMCAdaptor2Ds & operator= (const MCMCAdaptor2Ds &o)
- MCMCAdaptor2Ds & operator= (MCMCAdaptor2Ds &&o)
- StatsT get_stats () const
- void set mcmc num phases (ldxT num phases)

Protected Attributes

- double eta sigma =0
- double eta_y =0
- double eta x =0
- double eta_I =0
- double eta_bg =0
- CompositeDist prior
- IdxT num_params
- IdxT num hyperparams
- ParamT Ibound
- ParamT ubound
- IdxT num_phases
- double sigma_scale

9.30.1 Detailed Description

Definition at line 14 of file MCMCAdaptor2Ds.h.

9.30.2 Member Typedef Documentation

9.30.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.30.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.30.3 Constructor & Destructor Documentation

9.30.3.1 mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds() [protected]

Definition at line 11 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale.

9.30.3.2 mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds (double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor2Ds.cpp.

9.30.3.3 mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds (const MCMCAdaptor2Ds & o) [protected]

Definition at line 22 of file MCMCAdaptor2Ds.cpp.

References eta_sigma.

9.30.3.4 mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds (MCMCAdaptor2Ds && o) [protected]

Definition at line 27 of file MCMCAdaptor2Ds.cpp.

References eta sigma.

9.30.4 Member Function Documentation

9.30.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

9.30.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

9.30.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

9.30.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

9.30.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

9.30.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DSModel()

9.30.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline],[inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.30.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound () const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

9.30.4.13 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

9.30.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma scale.

```
9.30.4.15 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]
Definition at line 215 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_hyperparams.
9.30.4.16 IdxT mappel::PointEmitterModel::get_num_params( )const [inline],[inherited]
Definition at line 167 of file PointEmitterModel.h.
References\ mappel:: Point Emitter Model:: num\_params.
9.30.4.17 StringVecT mappel::PointEmitterModel::get_param_names( )const [inline], [inherited]
Definition at line 255 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.30.4.18 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline], [inherited]
Definition at line 207 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
9.30.4.19 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 211 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
9.30.4.20 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng_manager.
9.30.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]
Definition at line 122 of file PointEmitterModel.cpp.
References mappel::rng_manager.
9.30.4.22 StatsT mappel::MCMCAdaptor2Ds::get_stats( ) const [protected]
Definition at line 48 of file MCMCAdaptor2Ds.cpp.
References eta_sigma, and mappel::MCMCAdaptor2D::get_stats().
```

Referenced by mappel::Gauss2DsModel::get stats().

9.30.4.23 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.30.4.24 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.30.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.30.4.27 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.30.4.28 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.30.4.29 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.30.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.30.4.31 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

9.30.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.30.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanI, double kappa = DefaultPriorIntensityKappa) [static], [inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_pri

9.30.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = DefaultPriorBetaPos) [static].[inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.30.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.30.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.30.4.37 MCMCAdaptor2Ds & mappel::MCMCAdaptor2Ds::operator=(const MCMCAdaptor2Ds & o) [protected]

Definition at line 32 of file MCMCAdaptor2Ds.cpp.

References eta sigma, and mappel::MCMCAdaptor2D::operator=().

Referenced by mappel::Gauss2DsModel::operator=().

9.30.4.38 MCMCAdaptor2Ds & mappel::MCMCAdaptor2Ds::operator=(MCMCAdaptor2Ds && o) [protected]

Definition at line 40 of file MCMCAdaptor2Ds.cpp.

References eta sigma, and mappel::MCMCAdaptor2D::operator=().

9.30.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.30.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.30.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.42 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1 . 0) const

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, eta_sigma, mappel::MCMC \leftarrow Adaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_ \leftarrow manager.

9.30.4.43 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, const IdxVecT & fixed_parameters_mask, double step_scale = 1 . 0) const

Definition at line 75 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, eta_sigma, mappel::MCMC \leftarrow Adaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_ \leftarrow manager.

9.30.4.44 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.45 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.30.4.46 void mappel::MCMCAdaptor1D::set background mcmc sampling (double eta bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorPixelMeanBG, mappel::MCMCAdaptor1D::eta_bg, mappel:: \leftarrow PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel \leftarrow ::get_ubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.30.4.47 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.49 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.50 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

9.30.4.51 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::DefaultPriorMeanl, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter← Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

9.30.4.52 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

9.30.4.53 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and MCMCAdaptor2Ds().

9.30.4.54 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma - __scale.

9.30.4.55 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.30.4.56 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

9.30.4.57 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.30.4.58 void mappel::PointEmitterModel::set rng seed (RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.30.4.59 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.30.4.60 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point \leftarrow EmitterModel::theta_stack_in_bounds().

9.30.4.61 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

9.30.5 Member Data Documentation

9.30.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

```
9.30.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]
Default level at which to estimate confidence intervals must be in range (0.1).
Definition at line 57 of file PointEmitterModel.h.
9.30.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]
Default optimization method for MLE/MAP estimation.
Definition at line 51 of file PointEmitterModel.h.
9.30.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.30.5.5 const ldxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.30.5.6 const IdxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.30.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.30.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.30.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
```

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.30.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanI = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.30.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D default_prior_normal_position().

9.30.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.30.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.30.5.14 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

```
9.30.5.16 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 33 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
9.30.5.17 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
9.30.5.18 double mappel::MCMCAdaptor2Ds::eta_sigma =0 [protected]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2Ds.h.

Referenced by get_stats(), MCMCAdaptor2Ds(), operator=(), and sample_mcmc_candidate().

```
9.30.5.19 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D ::sample_mcmc_candidate(), sample_mcmc_candidate().

```
9.30.5.20 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 28 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MC
MCAdaptor2D::operator=(), sample mcmc candidate(), and mappel::MCMCAdaptor2D::sample mcmc candidate().

9.30.5.21 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and MCMCAdaptor2Ds().

9.30.5.22 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

9.30.5.23 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.30.5.24 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.30.5.25 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::peintEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEm

9.30.5.26 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.30.5.27 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel

9.30.5.28 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), sample_mcmc_candidate(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor4DBase::set mcmc num phases().

9.30.5.29 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set

9.30.5.30 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_ scale().

9.30.5.31 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta-estimate(), mappel::Gauss2DsModel::initial_theta-estimate(), mappel::PointEmitterModel::perator=(), mappel::

The documentation for this class was generated from the following files:

- MCMCAdaptor2Ds.h
- MCMCAdaptor2Ds.cpp

9.31 mappel::MCMCAdaptorBase Class Reference

 $\label{local-mappel} $$\#include < /home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor \leftrightarrow Base.h>$

Inheritance diagram for mappel::MCMCAdaptorBase:

Public Member Functions

- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Attributes

- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptorBase (IdxT num_phases)
- MCMCAdaptorBase (IdxT num_phases, double sigma_scale)
- void set mcmc num phases (ldxT num phases)
- StatsT get stats () const

Protected Attributes

```
• IdxT num_phases
```

• double sigma_scale

9.31.1 Detailed Description

Definition at line 13 of file MCMCAdaptorBase.h.

9.31.2 Constructor & Destructor Documentation

9.31.2.1 mappel::MCMCAdaptorBase::MCMCAdaptorBase (ldxT num_phases) [protected]

Definition at line 14 of file MCMCAdaptorBase.cpp.

9.31.2.2 mappel::MCMCAdaptorBase::MCMCAdaptorBase (ldxT num_phases, double sigma_scale) [protected]

Definition at line 18 of file MCMCAdaptorBase.cpp.

References global_max_mcmc_sigma_scale.

9.31.3 Member Function Documentation

9.31.3.1 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases () const

Definition at line 56 of file MCMCAdaptorBase.cpp.

References num_phases.

9.31.3.2 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale () const

Definition at line 53 of file MCMCAdaptorBase.cpp.

References sigma_scale.

9.31.3.3 StatsT mappel::MCMCAdaptorBase::get_stats() const [protected]

 $\label{lem:condition} \mbox{Definition at line 70 of file MCMCAdaptorBase.cpp.}$

References num_phases, and sigma_scale.

Referenced by mappel::MCMCAdaptor1D::get_stats().

9.31.3.4 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (IdxT num_phases) [protected]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C→Ds().

9.31.3.5 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale)

Definition at line 39 of file MCMCAdaptorBase.cpp.

References global_max_mcmc_sigma_scale, and sigma_scale.

9.31.4 Member Data Documentation

9.31.4.1 const double mappel::MCMCAdaptorBase::global default mcmc sigma scale = 0.05 [static]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

9.31.4.2 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by MCMCAdaptorBase(), and set_mcmc_sigma_scale().

9.31.4.3 IdxT mappel::MCMCAdaptorBase::num_phases [protected]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by get_mcmc_num_phases(), get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample mcmc candidate(), and set mcmc num phases().

9.31.4.4 double mappel::MCMCAdaptorBase::sigma_scale [protected]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by get_mcmc_sigma_scale(), get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set_background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_contensity_mcmc_sampling(), and set_mcmc_sigma_scale().

The documentation for this class was generated from the following files:

- · MCMCAdaptorBase.h
- MCMCAdaptorBase.cpp

9.32 mappel::mcmc::MCMCData Struct Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/mcmc_data.h>

Public Member Functions

• void initialize_arrays (ldxT Nparams)

Public Attributes

- IdxT Nsample =0
- IdxT Nburnin =0
- IdxT thin =0
- double confidence =-INFINITY
- VecT sample_mean
- MatT sample_cov
- VecT credible lb
- VecT credible_ub
- MatT sample
- VecT sample_rllh

9.32.1 Detailed Description

Structures for reporting MCMC resultsData and controlling parameters for an MCMC posterior sampling for a single data.

Definition at line 21 of file mcmc_data.h.

9.32.2 Member Function Documentation

9.32.2.1 void mappel::mcmc::MCMCData::initialize_arrays (IdxT Nparams)

Definition at line 12 of file mcmc.cpp.

References credible_lb, credible_ub, Nsample, sample, sample_cov, sample_mean, and sample_rllh.

9.32.3 Member Data Documentation

9.32.3.1 double mappel::mcmc::MCMCData::confidence =-INFINITY

Definition at line 26 of file mcmc_data.h.

Referenced by mappel::methods::estimate posterior().

9.32.3.2 VecT mappel::mcmc::MCMCData::credible_lb

Definition at line 30 of file mcmc data.h.

Referenced by mappel::methods::estimate_posterior(), initialize_arrays(), and mappel::mcmc::MCMCDataStack ← ::initialize_arrays().

9.32.3.3 VecT mappel::mcmc::MCMCData::credible_ub

Definition at line 31 of file mcmc data.h.

9.32.3.4 IdxT mappel::mcmc::MCMCData::Nburnin =0

Definition at line 24 of file mcmc_data.h.

Referenced by mappel::methods::estimate_posterior().

9.32.3.5 IdxT mappel::mcmc::MCMCData::Nsample =0

Definition at line 23 of file mcmc_data.h.

Referenced by mappel::methods::estimate_posterior(), initialize_arrays(), mappel::mcmc::MCMCDebugData ::initialize arrays(), and mappel::mcmc::MCMCDataStack::initialize arrays().

9.32.3.6 MatT mappel::mcmc::MCMCData::sample

Definition at line 32 of file mcmc data.h.

Referenced by mappel::methods::estimate_posterior(), initialize_arrays(), mappel::mcmc::MCMCDebugData ::initialize_arrays(), and mappel::mcmc::MCMCDataStack::initialize_arrays().

9.32.3.7 MatT mappel::mcmc::MCMCData::sample_cov

Definition at line 29 of file mcmc_data.h.

Referenced by mappel::methods::estimate_posterior(), initialize_arrays(), and mappel::mcmc::MCMCDataStack ← ::initialize_arrays().

9.32.3.8 VecT mappel::mcmc::MCMCData::sample_mean

Definition at line 28 of file mcmc data.h.

Referenced by mappel::methods::estimate_posterior(), initialize_arrays(), and mappel::mcmc::MCMCDataStack ← ::initialize arrays().

9.32.3.9 VecT mappel::mcmc::MCMCData::sample_rllh

Definition at line 33 of file mcmc_data.h.

9.32.3.10 IdxT mappel::mcmc::MCMCData::thin =0

Definition at line 25 of file mcmc_data.h.

Referenced by mappel::methods::estimate_posterior(), and mappel::mcmc::thin_sample().

The documentation for this struct was generated from the following files:

- · mcmc_data.h
- · mcmc.cpp

9.33 mappel::mcmc::MCMCDataStack Struct Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/mcmc_data.h>

Public Member Functions

void initialize_arrays (ldxT Nparams)

Public Attributes

- IdxT Nsample =0
- IdxT Nburnin =0
- IdxT thin =0
- double confidence =-INFINITY
- IdxT Ndata =0
- MatT sample_mean
- CubeT sample_cov
- · MatT credible lb
- · MatT credible ub
- CubeT sample
- MatT sample rllh

9.33.1 Detailed Description

Data and controlling parameters for an MCMC posterior sampling for stack of single data.

Definition at line 53 of file mcmc data.h.

9.33.2 Member Function Documentation

9.33.2.1 void mappel::mcmc::MCMCDataStack::initialize_arrays (IdxT Nparams)

Definition at line 30 of file mcmc.cpp.

References mappel::mcmc::MCMCData::credible_lb, mappel::mcmc::MCMCData::credible_ub, mappel::mcmc::MCMCData::credible_ub, mappel::mcmc::MCMCData::sample, mappel::mcmc::MCMCData::sample_cov, mappel::mcmc::MCMCData::sample mean, and mappel::mcmc::MCMCData::sample rllh.

Referenced by mappel::methods::openmp::estimate_posterior_stack().

9.33.3 Member Data Documentation

9.33.3.1 double mappel::mcmc::MCMCDataStack::confidence =-INFINITY

Definition at line 58 of file mcmc data.h.

9.33.3.2 MatT mappel::mcmc::MCMCDataStack::credible_lb

Definition at line 64 of file mcmc_data.h.

9.33.3.3 MatT mappel::mcmc::MCMCDataStack::credible_ub

Definition at line 65 of file mcmc data.h.

9.33.3.4 IdxT mappel::mcmc::MCMCDataStack::Nburnin =0

Definition at line 56 of file mcmc_data.h.

Referenced by mappel::methods::openmp::estimate_posterior_stack().

9.33.3.5 IdxT mappel::mcmc::MCMCDataStack::Ndata =0

Definition at line 61 of file mcmc data.h.

Referenced by mappel::methods::openmp::estimate_posterior_stack().

9.33.3.6 IdxT mappel::mcmc::MCMCDataStack::Nsample =0

Definition at line 55 of file mcmc_data.h.

Referenced by mappel::methods::openmp::estimate_posterior_stack().

9.33.3.7 CubeT mappel::mcmc::MCMCDataStack::sample

Definition at line 66 of file mcmc data.h.

9.33.3.8 CubeT mappel::mcmc::MCMCDataStack::sample_cov

Definition at line 63 of file mcmc data.h.

9.33.3.9 MatT mappel::mcmc::MCMCDataStack::sample_mean

Definition at line 62 of file mcmc_data.h.

9.33.3.10 MatT mappel::mcmc::MCMCDataStack::sample_rllh

Definition at line 67 of file mcmc_data.h.

9.33.3.11 IdxT mappel::mcmc::MCMCDataStack::thin =0

Definition at line 57 of file mcmc_data.h.

Referenced by mappel::methods::openmp::estimate_posterior_stack().

The documentation for this struct was generated from the following files:

- · mcmc data.h
- mcmc.cpp

9.34 mappel::mcmc::MCMCDebugData Struct Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/mcmc_data.h>

Public Member Functions

• void initialize_arrays (ldxT Nparams)

Public Attributes

- IdxT Nsample =0
- MatT sample
- VecT sample_rllh
- MatT candidate
- VecT candidate_rllh

9.34.1 Detailed Description

Debugging Data and controlling parameters for an MCMC posterior sampling for a single data. No burnin or thinning is performed when debugging

Definition at line 40 of file mcmc data.h.

9.34.2 Member Function Documentation

9.34.2.1 void mappel::mcmc::MCMCDebugData::initialize_arrays (IdxT Nparams)

Definition at line 22 of file mcmc.cpp.

References mappel::mcmc::MCMCData::Nsample, mappel::mcmc::MCMCData::sample, and mappel::mcmc::MCMCData::sample rllh.

Referenced by mappel::methods::debug::estimate_posterior_debug().

9.34.3 Member Data Documentation

9.34.3.1 MatT mappel::mcmc::MCMCDebugData::candidate

Definition at line 46 of file mcmc_data.h.

Referenced by mappel::methods::debug::estimate posterior debug().

9.34.3.2 VecT mappel::mcmc::MCMCDebugData::candidate_rllh

Definition at line 47 of file mcmc_data.h.

Referenced by mappel::methods::debug::estimate posterior debug().

9.34.3.3 IdxT mappel::mcmc::MCMCDebugData::Nsample =0

Definition at line 42 of file mcmc_data.h.

Referenced by mappel::methods::debug::estimate posterior debug().

9.34.3.4 MatT mappel::mcmc::MCMCDebugData::sample

Definition at line 44 of file mcmc_data.h.

Referenced by mappel::methods::debug::estimate posterior debug().

9.34.3.5 VecT mappel::mcmc::MCMCDebugData::sample_rllh

Definition at line 45 of file mcmc data.h.

Referenced by mappel::methods::debug::estimate_posterior_debug().

The documentation for this struct was generated from the following files:

- · mcmc data.h
- · mcmc.cpp

9.35 mappel::estimator::MLEDebugData Struct Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Public Member Functions

• MLEData makeMLEData () const

Public Attributes

VecT theta

Theta estimate.

· double rllh

RLLH at theta.

· MatT obsl

Observed Fisher information matrix at theta.

IdxT Nseq

Number of points evaluated including theta_init and theta_mle.

MatT sequence

Sequence of evaluated points including theta init and theta mle.

VecT sequence_rllh

RLLH at each point in sequence.

9.35.1 Detailed Description

A maximum-likelihood estimate for a single image with debugging information. A container to group the necessary information at an MLEstimate

Definition at line 50 of file estimator.h.

9.35.2 Member Function Documentation

9.35.2.1 MLEData mappel::estimator::MLEDebugData::makeMLEData () const

Definition at line 18 of file estimator.cpp.

References mappel::estimator::MLEData::obsl, obsl, mappel::estimator::MLEData::rllh, rllh, mappel::estimator::MLE ← Data::theta, and theta.

9.35.3 Member Data Documentation

9.35.3.1 IdxT mappel::estimator::MLEDebugData::Nseq

Number of points evaluated including theta_init and theta_mle.

Definition at line 55 of file estimator.h.

9.35.3.2 MatT mappel::estimator::MLEDebugData::obsl

Observed Fisher information matrix at theta.

Definition at line 54 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Iterative
Maximizer Model >::compute_estimate_debug(), mappel::estimator::Estimator Model >::estimate_max_debug(),
mappel::estimator::CGaussMLE Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer Model >::local_maximize(), mappel::estimator::IterativeMaximizer Model >::local_profile_maximize(), makeMLEData(), and
mappel::estimator::subroutine::solve profile initial step().

9.35.3.3 double mappel::estimator::MLEDebugData::rllh

RLLH at theta.

Definition at line 53 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Iterative \(\to \) Maximizer < Model >::compute_estimate_debug(), mappel::estimator::Estimator < Model >::estimate_max_debug(), mappel::estimator::CGaussMLE < Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer < Model >::local maximize(), mappel::estimator::IterativeMaximizer < Model >::local profile maximize(), and makeMLEData().

9.35.3.4 MatT mappel::estimator::MLEDebugData::sequence

Sequence of evaluated points including theta init and theta mle.

Definition at line 56 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Iterative
Maximizer< Model >::compute_estimate_debug(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(),
mappel::estimator::IterativeMaximizer< Model >::local_maximize(), and mappel::estimator::IterativeMaximizer< Model
>::local_profile_maximize().

9.35.3.5 VecT mappel::estimator::MLEDebugData::sequence_rllh

RLLH at each point in sequence.

Definition at line 57 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Iterative \(\text{Maximizer} \) Maximizer < Model >::compute_estimate_debug(), mappel::estimator::CGaussMLE < Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer < Model >::local_maximize(), and mappel::estimator::IterativeMaximizer < Model >::local_profile maximize().

9.35.3.6 VecT mappel::estimator::MLEDebugData::theta

Theta estimate.

Definition at line 52 of file estimator.h.

Referenced by mappel::estimator::subroutine::compute_bound_scaling_vec(), mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::CGaussMLE< Model >::get debug_stats(), mappel::estimator::IterativeMaximizer< Model >::local_maximize(), mappel::estimator::Iterative debug_maximizer

The documentation for this struct was generated from the following files:

- · estimator.h
- · estimator.cpp

9.36 mappel::MLEstimator Class Reference

A Mixin class to configure a for MLE estimation (null prior).

#include </home/travis/build/markjolah/Mappel/include/Mappel/MLEstimator.h>

Inheritance diagram for mappel::MLEstimator:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- StatsT get stats () const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make param stack (IdxT n) const
- template<class FillT >

ParamVecT make param stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- · const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng) const

- ParamT sample prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- · ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=DefaultPriorBetaPos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2

Protected Member Functions

- MLEstimator ()=default
- MLEstimator (const MLEstimator &o)
- MLEstimator (MLEstimator &&o)
- MLEstimator & operator= (const MLEstimator &o)
- MLEstimator & operator= (MLEstimator &&o)

Protected Attributes

- CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound

9.36.1 Detailed Description

A Mixin class to configure a for MLE estimation (null prior).

Inheriting from this class modifies the objective function undergoing optimization to use a Null prior, by simply ignoring the effect of the prior on the objective. This which effectively turns the objective function into a pure likelihood function, and the estimator becomes an MLE estimator.

Definition at line 22 of file MLEstimator.h.

```
9.36.2 Member Typedef Documentation
```

```
9.36.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]
```

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

```
9.36.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]
```

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

```
9.36.3 Constructor & Destructor Documentation
```

```
9.36.3.1 mappel::MLEstimator::MLEstimator() [protected], [default]
```

9.36.3.2 mappel::MLEstimator::MLEstimator (const MLEstimator & o) [inline], [protected]

Definition at line 25 of file MLEstimator.h.

9.36.3.3 mappel::MLEstimator::MLEstimator (MLEstimator && o) [inline], [protected]

Definition at line 26 of file MLEstimator.h.

9.36.4 Member Function Documentation

9.36.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 255 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

9.36.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 272 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

9.36.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 313 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

9.36.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 174 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta_stack(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel::theta_stack_in_bounds().

9.36.4.5 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 183 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

9.36.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 192 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

9.36.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 204 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

9.36.4.8 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 243 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 263 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 239 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

9.36.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline], [inherited]

Definition at line 231 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 219 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling()$.

9.36.4.13 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 215 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_hyperparams.

9.36.4.14 IdxT mappel::PointEmitterModel::get_num_params()const [inline],[inherited]

Definition at line 167 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.36.4.15 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited]

Definition at line 255 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.16 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]

Definition at line 207 of file PointEmitterModel.h.

 $References\ mappel :: Point Emitter Model :: prior.$

9.36.4.17 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 211 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.18 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 127 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.36.4.19 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 122 of file PointEmitterModel.cpp.

References mappel::rng manager.

9.36.4.20 StatsT mappel::PointEmitterModel::get stats() const [inherited]

Definition at line 132 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, mappel::rng_manager, and mappel::PointEmitter← Model::ubound.

Referenced by mappel::Gauss1DModel::get_stats(), mappel::Gauss1DsModel::get_stats(), mappel::Gauss2DModel ← ::get_stats(), and mappel::Gauss2DsModel::get_stats().

9.36.4.21 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 223 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.36.4.22 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 235 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.23 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 171 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.36.4.24 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 188 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.36.4.25 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 179 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.36.4.26 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 198 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.36.4.27 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 183 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.36.4.28 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 203 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

9.36.4.29 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 175 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

9.36.4.30 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 193 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

9.36.4.31 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static],[inherited]

Definition at line 105 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_position().

9.36.4.32 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = DefaultPriorBetaPos) [static], [inherited]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds DModel::make_prior_beta_position(), mappel::Gauss2Ds Model::make_prior_beta_position().

9.36.4.33 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = DefaultPriorSigmaPos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.36.4.34 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static], [inherited]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel ::Gauss2DsModel::make_prior_normal_position().

9.36.4.35 MLEstimator& mappel::MLEstimator::operator=(const MLEstimator & o) [inline], [protected]

Definition at line 27 of file MLEstimator.h.

Referenced by mappel::Gauss1DMLE::operator=(), mappel::Gauss1DsMLE::operator=(), mappel::Gauss2DsMLE::operator=().

9.36.4.36 MLEstimator& mappel::MLEstimator::operator=(MLEstimator && o) [inline], [protected]

Definition at line 28 of file MLEstimator.h.

9.36.4.37 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 283 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

9.36.4.38 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 323 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

9.36.4.39 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 251 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.40 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const [inherited]

Definition at line 271 of file PointEmitterModel.h.

 $References\ mappel :: Point Emitter Model :: prior.$

9.36.4.41 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior()const [inline], [inherited]

Definition at line 275 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

9.36.4.42 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.36.4.43 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & desc) [inline], [inherited]

Definition at line 267 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.44 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 247 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.45 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 227 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

9.36.4.46 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 233 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

9.36.4.47 void mappel::PointEmitterModel::set param names (const StringVecT & desc) [inline],[inherited]

Definition at line 259 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

9.36.4.48 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 165 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

9.36.4.49 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 156 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

9.36.4.50 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 117 of file PointEmitterModel.cpp.

References mappel::rng_manager.

9.36.4.51 void mappel::PointEmitterModel::set ubound (const ParamT & ubound) [inherited]

Definition at line 244 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

9.36.4.52 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 264 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

9.36.4.53 BoolVecT mappel::PointEmitterModel::theta stack in bounds (const ParamVecT & theta) const [inherited]

Definition at line 303 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

9.36.5 Member Data Documentation

9.36.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

9.36.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static], [inherited]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.36.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static], [inherited]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

9.36.5.4 const IdxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static], [inherited]

Number of samples to throw away (burn-in) on initialization.

Definition at line 55 of file PointEmitterModel.h.

9.36.5.5 const ldxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static], [inherited]

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

Definition at line 54 of file PointEmitterModel.h.

9.36.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static], [inherited]

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

Definition at line 56 of file PointEmitterModel.h.

9.36.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 59 of file PointEmitterModel.h.

9.36.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 63 of file PointEmitterModel.h.

9.36.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxl = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 62 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

9.36.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

9.36.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cdot normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddot::set background mcmc sampling().

9.36.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.36.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.36.5.14 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static], [inherited]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.36.5.15 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.36.5.16 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.36.5.17 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

9.36.5.18 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::petated_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::DointEmitterModel::petated_theta().

9.36.5.19 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 154 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

9.36.5.20 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 153 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

9.36.5.21 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparams(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cup \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cup \) PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::pointEmit

9.36.5.22 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 155 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta-estimate(), mappel::Gauss2DsModel::initial_theta-estimate(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(),

The documentation for this class was generated from the following file:

MLEstimator.h

9.37 mappel::ModelBoundsError Struct Reference

Access outside the model bounds is attempted.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>
Inheritance diagram for mappel::ModelBoundsError:

Public Member Functions

ModelBoundsError (std::string message)

9.37.1 Detailed Description

Access outside the model bounds is attempted.

Definition at line 90 of file util.h.

9.37.2 Constructor & Destructor Documentation

9.37.2.1 mappel::ModelBoundsError::ModelBoundsError (std::string message) [inline]

Definition at line 92 of file util.h.

The documentation for this struct was generated from the following file:

• util.h

9.38 mappel::estimator::NewtonDiagonalMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

 $Inheritance\ diagram\ for\ mappel::estimator::NewtonDiagonalMaximizer < Model >:$

Public Types

using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData

Public Member Functions

NewtonDiagonalMaximizer (const Model &model, int max_iterations=IterativeMaximizer < Model >::Default←
Iterations)

- std::string name () const
- double mean_iterations ()
- double mean backtracks ()
- double mean_fun_evals ()
- double mean der evals ()
- StatsT get stats ()
- StatsT get debug stats ()
- void clear stats ()
- int get_total_iterations () const
- int get_total_backtracks () const
- int get total fun evals () const
- int get total der evals () const
- void local_maximize (const ModelDataT< Model > &im, StencilT< Model > &stencil, MLEData &data)

 Perform a local maximization to finish off a simulated annealing run.
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEDebugData &debug

 data)
- void local_profile_maximize (const ModelDataT< Model > &im, const ldxVecT &fixed_param_idxs, StencilT
 Model > &stencil, MLEDebugData &mle)
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init
 —stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
 override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- const Model & get_model ()
- void estimate max stack (const ModelDataStackT< Model > &data stack, MLEDataStack &mle data stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 — data, StencilT< Model > &mle_stencil)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data)
- void estimate_max (const ModelDataT< Model > &data, MLEData &mle_data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data, StencilT< Model > &mle_stencil)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate profile bounds (const ModelDataT< Model > &data, ProfileBoundsData &bounds est)
- void estimate_profile_bounds_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds
 _ est)
- IdxVecT get exit counts () const

Static Public Attributes

static const int DefaultIterations =100

Protected Member Functions

- void record_run_statistics (const MaximizerData &data)
- void compute_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle_data, StencilT< Model > &mle_stencil) override
- void compute_estimate_debug (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, M←
 LEDebugData &mle_data, StencilT < Model > &mle_stencil) override
- double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, const IdxVecT &fixed_idxs, StencilT< Model > &theta_max) override
- void compute_profile_bound (const ModelDataT < Model > &data, ProfileBoundsData &est, const VecT &init_←
 step, ldxT param_idx, ldxT which_bound) override
- void compute_profile_bound_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds) override
- bool backtrack (MaximizerData &data)
- bool profile_bound_backtrack (MaximizerData &data, ldxT fixed_idx, double target_rllh, double old_fval, const VecT &fgrad)
- virtual void maximize (MaximizerData &data)=0
- virtual void solve_profile_bound (MaximizerData &data, MLEData &mle, double Ilh_delta, IdxT fixed_idx, IdxT which_bound)
- bool convergence test grad ratio (const VecT &grad, double fval)
- bool convergence_test_step_size (const VecT &new_theta, const VecT &old_theta)
- void record_exit_code (ExitCode code) override
- void record_walltime (ClockT::time_point start_walltime, int num_estimations)

Protected Attributes

- int max iterations
- int total iterations = 0
- int total backtracks = 0
- int total_fun_evals = 0
- int total der evals = 0
- IdxVecT last_backtrack_idxs

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

- · int max_threads
- · int num threads
- std::mutex mtx
- · const Model & model
- int num_estimations = 0
- double total_walltime = 0.
- IdxVecT exit counts

Static Protected Attributes

• static const double min_eigenvalue_correction_delta = 1e-3

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

• static const double convergence_min_function_change_ratio = 1.0e-9

Convergence criteria: tolerance for function-value change.

static const double convergence_min_step_size_ratio = 1.0e-9

Convergence criteria: tolerance of relative step size.

- static const double backtrack min ratio = 0.05
- static const double backtrack_max_ratio = 0.50
- static const double backtrack_min_linear_step_ratio = 1e-3
- static const int max backtracks = 8
- static const double min_profile_bound_residual = 1e-4

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

9.38.1 Detailed Description

 $\label{lem:class} \mbox{ template}{<} \mbox{class Model}{>} \\ \mbox{class mappel}{::estimator::NewtonDiagonalMaximizer}{<} \mbox{ Model}{>} \\ \mbox{ }$

Definition at line 569 of file estimator.h.

- 9.38.2 Member Typedef Documentation
- 9.38.2.1 template < class Model > using mappel::estimator::NewtonDiagonalMaximizer < Model >::MaximizerData = typename IterativeMaximizer < Model >::MaximizerData

Definition at line 572 of file estimator.h.

- 9.38.3 Constructor & Destructor Documentation
- 9.38.3.1 template < class Model > mappel::estimator::NewtonDiagonalMaximizer < Model >::NewtonDiagonal \leftarrow Maximizer (const Model & model, int max_iterations = IterativeMaximizer < Model > :: DefaultIterations) [inline]

Definition at line 574 of file estimator.h.

9.38.4 Member Function Documentation

9.38.4.1 template < class Model > bool mappel::estimator::lterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 870 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::Iterative Maximizer Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::Estimator<:Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::Estimator::ThreadedEstimator<:IterativeMaximizer</td>

_backtrack(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel::estimator::IterativeMaximizer

_MaximizerData::restore_stencil(), mappel::methods::objective::rllh(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.38.4.2 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::clear_stats () [virtual], [inherited]

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 848 of file estimator_impl.h.

References mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel::estimator::Iterative Maximizer< Model >::total_der_evals, mappel::estimator::IterativeMaximizer< Model >::total_fun_evals, and mappel::estimator::IterativeMaximizer< Model >::total_iterativeMaximizer<

9.38.4.3 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::compute_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 1043 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >-- ::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative-- Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::Iterative-- Maximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

9.38.4.4 template < class Model > void mappel::estimator::lterativeMaximizer < Model >::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Virtual estimate debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1057 of file estimator impl.h.

9.38.4.5 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [override], [protected], [virtual], [inherited]

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1088 of file estimator impl.h.

References mappel::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::mle, mappel::estimator
Model >::model, mappel::estimator::ProfileBoundsData::profile_lb, mappel::estimator
::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_lb_rllh, mappel
::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::IterativeMaximizer
Model >::record_run
_statistics(), mappel::estimator::IterativeMaximizer
Model >::solve_profile_bound(), mappel::estimator::Profile
BoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1114 of file estimator_impl.h.

References mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::ProfileBoundsDebugData::Nseq_ \hookrightarrow lb, mappel::estimator::ProfileBoundsDebugData::Nseq_ub, mappel::estimator::MLEData::obsl, mappel::estimator \hookrightarrow ::ProfileBoundsDebugData::profile_lb, mappel::estimator::ProfileBoundsDebugData::profile_ub, mappel::estimator \hookrightarrow ::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::ProfileBoundsDebugData::sequence \hookrightarrow _lb, mappel::estimator::ProfileBoundsDebugData::sequence_lb_rllh, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::sequence_ub, mappel::estimator::ProfileBoundsDebugData::sequence_ub_rllh, mappel::estimator::Iterative \hookrightarrow Maximizer< Model >::solve_profile_bound(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::ProfileBoundsDebugData::target \hookrightarrow _rllh_delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1074 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::estimator::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::Iterative \(\to \) Maximizer< Model >::MaximizerData::set_\(\to \) fixed parameters(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil().

9.38.4.8 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::convergence_test_grad_ratio (const VecT & grad, double fval) [protected], [inherited]

Definition at line 1015 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::GradRatio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::square().

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

Definition at line 1027 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::StepSize.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.38.4.10 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::MLEData::rllh, and mappel::estimator ::MLEData::rllh, and mappel::estimator ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max().

```
9.38.4.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, const ParamT < Model > & theta init, MLEData & mle_data) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max().

```
9.38.4.12 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, MLEData & mle data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max(), and mappel::estimator::Estimator< Model >← ::model.

```
9.38.4.13 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta_init and theta_mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.38.4.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel ::estimator::MLEDebugData::obsl, mappel::print text image(), mappel::estimator::Estimator< Model >::record \(\lefta \)

 $\label{lem:code} exit_code(), \ mappel::estimator::Estimator < Model > ::record_walltime(), \ mappel::estimator::MLEDebugData::rllh, \ and \ mappel::estimator::MLEDebugData::theta.$

```
9.38.4.15 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack ( const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

```
9.38.4.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack ( const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack ) [override], [virtual], [inherited]
```

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for each data

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::Estimator::Estimator::MLEDataStack::Ndata, mappel::estimator::Threaded = Estimator< Model >::num threads, mappel::estimator::MLEDataStack::obsl, mappel::estimator::MLEDataStack::obsl,

mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel ::estimator::Btimator::MLEData::rllh, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.38.4.17 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::model, mappel::estimator::Profile >::model, mappel::estimator::Profile >::mod

Referenced by mappel::methods::error_bounds_profile_likelihood().

9.38.4.18 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::mle, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_exit_code(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

9.38.4.19 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_ ⇔ parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::mum_threads, mappel::estimator::: MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel::estimator::Estimator
Model >::record_exit_code(), mappel::estimator::Estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood parallel().

9.38.4.20 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute profile bound(), mappel::estimator::Error, mappel ← ::estimator::ProfileBoundsData::estimated idxs, mappel::estimator::ProfileBoundsDataStack::estimated idxs, mappel idxs, m ::estimator::ProfileBoundsData::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::← Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator< Model >::num threads, mappel::estimator::ML← EData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ProfileBounds ← mappel::estimator::ProfileBoundsDataStack::profile lb. mappel::estimator::ProfileBoundsData← Data::profile lb. ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile points lb rllh, mappel::estimator::ProfileBoundsDataStack::profile points lb rllh, mappel::estimator. ::ProfileBoundsData::profile points ub, mappel::estimator::ProfileBoundsDataStack::profile points ub, ::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points← ub rllh, mappel::estimator::ProfileBoundsData::profile ub, mappel::estimator::ProfileBoundsDataStack::profile ub, mappel::estimator::ThreadedEstimator< Model >::record exit code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target_rllh_delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData ← Stack::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood stack().

```
9.38.4.21 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max ) [inherited]
```

Profile likelihood estimation methods

Definition at line 190 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::Error, mappel ::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

```
9.38.4.22 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile ) [override], [virtual], [inherited]
```

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:: \leftarrow ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::profile_likelihood, mappel::estimator::ProfileLikelihoodData::profile_parameters, mappel::estimator::ThreadedEstimator

```
9.38.4.23 template < class Model > StatsT mappel::estimator::lterativeMaximizer < Model >::get_debug_stats() | [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 832 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator::

IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::last_backtrack_idxs.

```
9.38.4.24 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

```
9.38.4.25 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.38.4.26 template < class Model > StatsT mappel::estimator::lterativeMaximizer < Model >::get_stats ( ) [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 811 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::ThreadedEstimator

Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::Iterative \leftarrow Maximizer

Model >::max_iterations, mappel::estimator::ThreadedEstimator

Model >::mtx, mappel::estimator:: \leftarrow Estimator

Model >::num_estimations, mappel::estimator::IterativeMaximizer

Model >::total_backtracks, mappel

::estimator::IterativeMaximizer

Model >::total_backtracks, mappel

::estimator::IterativeMaximizer

Model >::total_compared

fun evals, and mappel::estimator::IterativeMaximizer

Model >::total iterations.

Referenced by mappel::methods::error_bounds_profile_likelihood(), mappel::methods::debug::error_bounds_ \hookleftarrow profile_likelihood_debug(), mappel::methods::openmp::error_bounds_profile_likelihood_parallel(), mappel::methods \hookleftarrow ::openmp::error_bounds_profile_likelihood_stack(), mappel::estimator::SimulatedAnnealingMaximizer< Model $> \hookleftarrow$::get debug stats(), and mappel::estimator::lterativeMaximizer< Model > ::get debug stats().

9.38.4.27 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_backtracks () const [inline], [inherited]

Definition at line 443 of file estimator.h.

9.38.4.28 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_der_evals () const [inline], [inherited]

Definition at line 445 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.38.4.29 template < class Model > int mappel::estimator::IterativeMaximizer < Model > ::get_total_fun_evals () const [inline], [inherited]

Definition at line 444 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.38.4.30 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::get_total_iterations () const [inline], [inherited]

Definition at line 442 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.38.4.31 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEData & data) [inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 1145 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative \leftarrow Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.38.4.32 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEDebugData & debug_data) [inherited]

Definition at line 1158 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::Iterative ::Maximizer< Model >::maximize(), mappel::estimator::Estimator<:Model >::model, mappel::methods::observed_ :-information(), mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::record :-information(), mappel::estimator::MLEDebugData::rllh, mappel::estimator::IterativeMaximizer< Model >::-information(), mappel::estimator::MLEDebugData::sequence, mappel::estimator::MLEDebugData::sequence_ :-information(), mappel::estimator::IterativeMaximizer

9.38.4.33 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::local_profile_maximize (const ModelDataT < Model > & im, const ldxVecT & fixed_param_idxs, StencilT < Model > & stencil, MLEDebugData & mle) [inherited]

Definition at line 1173 of file estimator impl.h.

References mappel::estimator::lterativeMaximizer< Model >::backtrack(), mappel::estimator::subroutine::bound ← mappel::estimator::subroutine::compute bound scaling vec(), mappel::estimator::subroutine::compute_initial_trust_radius(), ::subroutine::compute cauchy point(), mappel← ::estimator::subroutine::compute quadratic model value(), mappel::estimator::subroutine::compute scaled problem(), mappel::estimator::IterativeMaximizer< Model >::convergence test grad ratio(), mappel::estimator::Iterative← Maximizer< Model >::convergence test step size(), mappel::estimator::Estimator< Model >::exit counts, mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::fixed idxs, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::free idxs, mappel::estimator::Estimator< Model >::get exit counts(), mappel::estimator::⇔ IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::IterativeMaximizer< Model >::get_total_der ← evals(), mappel::estimator::IterativeMaximizer< Model >::get total fun evals(), mappel::estimator::Iterative ← Maximizer< Model >::get total iterations(), mappel::methods::objective::grad(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::grad, mappel::methods::objective::grad2(), mappel::estimator::Iterative ← Maximizer Model >::Maximizer Data::has_fixed_parameters(), mappel::methods::objective::hessian(), mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::is_positive_definite(), mappel::estimator::← IterativeMaximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_← maximize(), mappel::estimator::IterativeMaximizer < Model >::max iterations, mappel::estimator::IterativeMaximizer < Model >::maximize(), mappel::estimator::MaxIter, mappel::estimator::IterativeMaximizer< Model >::min profile← bound residual, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters(), mappel ::methods::observed information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record backtrack(), mappel::estimator::ThreadedEstimator< Model >::record exit ← code(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record iteration(), mappel::estimator::⇔ IterativeMaximizer< Model >::record run statistics(), mappel::estimator::IterativeMaximizer< Model >::Maximizer ← Data::restore_stencil(), mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator::⇔ MLEDebugData::rllh, mappel::estimator::lerativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::le-IterativeMaximizer< Model >::MaximizerData::s0, mappel::estimator::IterativeMaximizer< Model >::MaximizerData ← :::s1, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::save stencil(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::saved theta(), mappel::estimator::MLEDebugData::sequence, mappel ← ::estimator::MLEDebugData::sequence rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::set_fixed_parameters(), mappel::estimator::lterativeMaximizer< Model >::MaximizerData::set_stencil(), mappel ::estimator::subroutine::solve_TR_subproblem(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::stencil(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::MLEData::theta, mappel::estimator::MLEDebugData::theta, mappel::estimator::lterativeMaximizer< Model >::MaximizerData::theta(), mappel::estimator::IterativeMaximizer< Model >::total der evals, mappel::estimator::IterativeMaximizer< Model >← ::total fun evals, mappel::estimator::IterativeMaximizer< Model >::total iterations, and mappel::estimator::Trust← RegionRadius.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.38.4.34 template < class Model > virtual void mappel::estimator::IterativeMaximizer < Model >::maximize (
MaximizerData & data) [protected], [pure virtual], [inherited]

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative Adaminizer< Model >::compute_estimater
Maximizer< Model >::compute_estimater
Model >::local_maximize(), and mappel::estimator::
HerativeMaximizer
Model >::local_maximize(), and mappel::estimator::
HerativeMaximizer

```
9.38.4.35 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_backtracks ( )
        [inherited]

9.38.4.36 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_der_evals ( )
        [inherited]

9.38.4.37 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_fun_evals ( )
        [inherited]

9.38.4.38 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_iterations ( )
        [inherited]

9.38.4.39 template < class Model > std::string mappel::estimator::NewtonDiagonalMaximizer < Model >::name ( ) const
        [inline], [virtual]
```

Implements mappel::estimator::Estimator< Model >.

Definition at line 577 of file estimator.h.

Definition at line 943 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_max_ratio, mappel::estimator::Iterative ← Maximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::backtrack ← min_ratio, mappel::clamp(), mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::methods::objective::grad(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel ← ::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel::estimator ← ::Estimator</br>
Model >::max_backtracks, mappel::estimator::IterativeMaximizer</br>
Model >::max_backtracks, mappel::estimator::IterativeMaximizer</br>
Model >::maximizer ← Model >::

Maximizer ← Model >::Maximizer ← Model >::Ma

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.38.4.41 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >:::model, mappel::estimator::ThreadedEstimator< Model >:::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:::Cuccess, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator:: \leftarrow ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator</br>
Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel

9.38.4.42 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::record_run_statistics (const MaximizerData & data) [protected], [inherited]

Definition at line 859 of file estimator impl.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative
Maximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_eprofile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel
::estimator::IterativeMaximizer< Model >::compute_profile_estimator::IterativeMaximizer< Model >::local maximize(), and mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.38.4.43 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

 $References\ mappel::estimator::Estimator< Model >::num_estimations,\ and\ mappel::estimator::Estimator< Model > \leftarrow ::total\ walltime.$

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimater< Model >::estimator< Model >::estimater< Model >::estimater< Model >::estimater< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator< Model >::estimater< Model >::e

Definition at line 1137 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::name().

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), and mappel::estimator:: lterativeMaximizer< Model >::compute profile bound debug().

9.38.5 Member Data Documentation

9.38.5.1 template < class Model > const double mappel::estimator::IterativeMaximizer < Model > ::backtrack_max_ratio = 0.50 [static], [protected], [inherited]

Definition at line 462 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::profile bound backtrack().

Definition at line 463 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::backtrack(), and mappel::estimator::Iterative \leftarrow Maximizer < Model >::profile_bound_backtrack().

9.38.5.3 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::backtrack_min_ratio = 0.05 [static], [protected], [inherited]

Definition at line 461 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::profile bound backtrack().

9.38.5.4 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::convergence_min_function_change_ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance for function-value change.

Definition at line 458 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), and mappel ::estimator::IterativeMaximizer< Model >::get stats().

9.38.5.5 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::convergence_min_step_size_ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance of relative step size.

Definition at line 459 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_step_size(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel ::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.38.5.6 template < class Model > const int mappel::estimator::IterativeMaximizer < Model >::DefaultIterations = 100 [static], [inherited]

Definition at line 430 of file estimator.h.

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded Estimator< Model >::record exit code().

9.38.5.8 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

Definition at line 477 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_debug_stats(), and mappel::estimator::Iterative \(\times \) Maximizer< Model >::record_run_statistics().

9.38.5.9 template < class Model > const int mappel::estimator::IterativeMaximizer < Model >::max_backtracks = 8 [static], [protected], [inherited]

Definition at line 464 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::backtrack(), mappel::estimator::lterativeMaximizer< Model >::get stats(), and mappel::estimator::lterativeMaximizer< Model >::profile bound backtrack().

9.38.5.10 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::max_iterations [protected], [inherited]

Definition at line 468 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Iterative \(\to \) Maximizer < Model >::local profile maximize().

Definition at line 326 of file estimator.h.

9.38.5.12 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::min_eigenvalue_correction_delta = 1e-3 [static], [protected], [inherited]

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

Definition at line 456 of file estimator.h.

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

Definition at line 466 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local_profile_maximize().

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel ::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::Estimator< Model >↔ ::compute profile bound(), mappel::estimator::lterativeMaximizer< Model >::compute profile bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >-::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_stack(), mappel::estimator::Threaded ← Estimator < Model >::estimate max stack(), mappel::estimator::Estimator < Model >::estimate profile bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate profile bounds stack(), mappel::estimator::ThreadedEstimator < Model >::estimate ← profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get debug stats(), mappel::estimator::Estimator< Model >::get model(), mappel::estimator::Iterative← Maximizer Model >::local_maximize(), mappel::estimator::IterativeMaximizer Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.38.5.15 template < class Model > std::mutex mappel::estimator::ThreadedEstimator < Model >::mtx [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel ::estimator::GaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::GaussHeuristicEstimator< Model >::get \leftarrow _stats(), mappel::estimator::GaussMLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::get_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator

9.38.5.16 template < class Model > int mappel::estimator::Estimator < Model >::num_estimations = 0 [protected], [inherited]

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator

Estimator

Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile \leftarrow bounds_parallel(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator

Model >::estimator::ThreadedEstimator

Model >::get_stats().

9.38.5.18 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_backtracks = 0 [protected], [inherited]

Definition at line 472 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.38.5.19 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_der_evals = 0 [protected], [inherited]

Definition at line 474 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.38.5.20 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::total_fun_evals = 0 [protected], [inherited]

Definition at line 473 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated \leftarrow AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

9.38.5.21 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_iterations = 0 [protected], [inherited]

Definition at line 471 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated \leftarrow AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h

9.39 mappel::estimator::NewtonMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::NewtonMaximizer< Model >:

Public Types

using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData

Public Member Functions

- NewtonMaximizer (const Model &model, int max iterations=IterativeMaximizer < Model >::DefaultIterations)
- std::string name () const
- double mean iterations ()
- double mean_backtracks ()
- double mean fun evals ()
- double mean_der_evals ()
- StatsT get stats ()
- StatsT get_debug_stats ()
- void clear stats ()
- int get total iterations () const
- · int get total backtracks () const
- int get_total_fun_evals () const
- int get total der evals () const
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEData &data)
 Perform a local maximization to finish off a simulated annealing run.
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEDebugData &debug

 data)
- void local_profile_maximize (const ModelDataT< Model > &im, const ldxVecT &fixed_param_idxs, StencilT
 Model > &stencil, MLEDebugData &mle)
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init
 —stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
 override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- const Model & get_model ()
- void estimate_max_stack (const ModelDataStackT< Model > &data_stack, MLEDataStack &mle_data_stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data, StencilT< Model > &mle stencil)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data)
- void estimate max (const ModelDataT < Model > &data, MLEData &mle data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE
 —
 DebugData &mle_data, StencilT< Model > &mle_stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate_profile_bounds (const ModelDataT < Model > &data, ProfileBoundsData &bounds_est)
- void estimate_profile_bounds_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds
 _est)
- IdxVecT get exit counts () const

Static Public Attributes

static const int DefaultIterations =100

Protected Member Functions

- void record_run_statistics (const MaximizerData &data)
- void compute_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle_data, StencilT< Model > &mle_stencil) override
- void compute_estimate_debug (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, M←
 LEDebugData &mle data, StencilT < Model > &mle stencil) override
- double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, const IdxVecT &fixed_idxs, StencilT< Model > &theta_max) override
- void compute_profile_bound (const ModelDataT < Model > &data, ProfileBoundsData &est, const VecT &init_←
 step, IdxT param_idx, IdxT which_bound) override
- void compute_profile_bound_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds) override
- bool backtrack (MaximizerData &data)
- bool profile_bound_backtrack (MaximizerData &data, ldxT fixed_idx, double target_rllh, double old_fval, const VecT &fgrad)
- virtual void maximize (MaximizerData &data)=0
- virtual void solve_profile_bound (MaximizerData &data, MLEData &mle, double Ilh_delta, IdxT fixed_idx, IdxT which_bound)
- bool convergence test grad ratio (const VecT &grad, double fval)
- bool convergence_test_step_size (const VecT &new_theta, const VecT &old_theta)
- void record_exit_code (ExitCode code) override
- void record_walltime (ClockT::time_point start_walltime, int num_estimations)

Protected Attributes

- int max iterations
- int total iterations = 0
- int total backtracks = 0
- int total_fun_evals = 0
- int total der evals = 0
- IdxVecT last_backtrack_idxs

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

- int max_threads
- · int num threads
- std::mutex mtx
- · const Model & model
- int num_estimations = 0
- double total_walltime = 0.
- · IdxVecT exit counts

Static Protected Attributes

• static const double min_eigenvalue_correction_delta = 1e-3

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

static const double convergence_min_function_change_ratio = 1.0e-9

Convergence criteria: tolerance for function-value change.

• static const double convergence_min_step_size_ratio = 1.0e-9

Convergence criteria: tolerance of relative step size.

- static const double backtrack min ratio = 0.05
- static const double backtrack max ratio = 0.50
- static const double backtrack_min_linear_step_ratio = 1e-3
- static const int max backtracks = 8
- static const double min profile bound residual = 1e-4

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

9.39.1 Detailed Description

 $\label{lem:lemplate} $$ \ensuremath{\mathsf{class}}$ \ensuremath{\mathsf{Model}} > $$ \ensuremath{\mathsf{class}}$ \ensuremath{\mathsf{mappel}}$::estimator::NewtonMaximizer < Model > $$$

Definition at line 584 of file estimator.h.

- 9.39.2 Member Typedef Documentation

Definition at line 587 of file estimator.h.

- 9.39.3 Constructor & Destructor Documentation
- 9.39.3.1 template < class Model > mappel::estimator::NewtonMaximizer < Model >::NewtonMaximizer (const Model & model, int max_iterations = IterativeMaximizer < Model >::DefaultIterations) [inline]

Definition at line 589 of file estimator.h.

9.39.4 Member Function Documentation

9.39.4.1 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 870 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::Iterative \(\text{MaximizerData::igrad}, \text{mappel::estimator::IterativeMaximizer} \) Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel \(\text{:estimator::Estimator} \) Model >::model, mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::IterativeMaximizerData::record \(\text{MaximizerData::record} \) Model >::max_backtracks, mappel::estimator::IterativeMaximizer \(\text{Model} \) Model >::MaximizerData::record \(\text{Model} \) Model >::MaximizerData::record_iterative(), mappel::estimator::IterativeMaximizer

MaximizerData::restore_stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

Model >::MaximizerData::set_stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Model >::MaximizerData::set_stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.39.4.2 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::clear_stats () [virtual], [inherited]

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 848 of file estimator_impl.h.

References mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel::estimator::Iterative Maximizer< Model >::total_der_evals, mappel::estimator::IterativeMaximizer< Model >::total_fun_evals, and mappel::estimator::IterativeMaximizer< Model >::total_iterativeMaximizer<

9.39.4.3 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::compute_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 1043 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >-- ::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative-- Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::Iterative-- Maximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

9.39.4.4 template < class Model > void mappel::estimator::lterativeMaximizer < Model >::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Virtual estimate debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1057 of file estimator impl.h.

9.39.4.5 template < class Model > void mappel::estimator::lterativeMaximizer < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, ldxT param_idx, ldxT which_bound) [override], [protected], [virtual], [inherited]

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1088 of file estimator impl.h.

References mappel::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::mle, mappel::estimator
Model >::model, mappel::estimator::ProfileBoundsData::profile_lb, mappel::estimator
::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_lb_rllh, mappel
::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::IterativeMaximizer
Model >::solve_profile_bound(), mappel::estimator::Profile
BoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1114 of file estimator_impl.h.

References mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::mle, mappel::estimator::Estimator<: Model \gt ::model, mappel::estimator::ProfileBoundsDebugData::Nseq_ \hookleftarrow lb, mappel::estimator::ProfileBoundsDebugData::profile_lb, mappel::estimator::ProfileBoundsDebugData::profile_ub, mappel::estimator::ProfileBoundsDebugData::profile_ub, mappel::estimator::ProfileBoundsDebugData::sequence \hookleftarrow ::IterativeMaximizer<: Model \gt ::record_run_statistics(), mappel::estimator::ProfileBoundsDebugData::sequence_lb_rllh, mappel::estimator::ProfileBoundsDebug \hookleftarrow Data::sequence_ub, mappel::estimator::ProfileBoundsDebugData::sequence_ub_rllh, mappel::estimator::Iterative \hookleftarrow Maximizer<: Model \gt ::solve_profile_bound(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel \hookleftarrow ::estimator::IterativeMaximizer<: Model \gt ::MaximizerData::step, mappel::estimator::ProfileBoundsDebugData::target \hookleftarrow rllh delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1074 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::estimator::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::Iterative \(\to \) Maximizer< Model >::MaximizerData::set_\(\to \) fixed parameters(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil().

9.39.4.8 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::convergence_test_grad_ratio (const VecT & grad, double fval) [protected], [inherited]

Definition at line 1015 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::GradRatio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::square().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

Definition at line 1027 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::StepSize.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.39.4.10 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator_impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel \leftrightarrow ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: MLEData::rllh, and mappel::estimator \leftrightarrow ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max().

```
9.39.4.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, const ParamT < Model > & theta init, MLEData & mle_data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for	
in	theta_init	[Optional] Initial theta value.	
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.	
out	stencil	[Optional] StencilT at the MLE value.	

Definition at line 121 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max().

```
9.39.4.12 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, MLEData & mle_data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max(), and mappel::estimator::Estimator< Model >← ::model.

```
9.39.4.13 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta_init and theta_mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for	
in	in theta_init Initial theta value.		
out	t mle_data MLEDebugData recording the maximum likelihood estimate and relevant		
out	stencil	[Optional] StencilT at the MLE value.	

```
9.39.4.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	t mle_data MLEData recording the maximum likelihood estimate and relevant	
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel ::estimator::MLEDebugData::obsl, mappel::print text image(), mappel::estimator::Estimator< Model >::record \(\lefta \)

exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

9.39.4.15 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.39.4.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [override], [virtual], [inherited]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for	
in	theta_init	[optional] Initial theta value for each image.	
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for each data	

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::Estimator::Estimator::MLEDataStack::Ndata, mappel::estimator::Threaded = Estimator< Model >::num threads, mappel::estimator::MLEDataStack::obsl, mappel::estimator::MLEDataStack::obsl,

 $\label{lem:mappel::print_text_image} $$ mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Black::rllh, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.$

9.39.4.17 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::model, mappel::estimator::Profile >::model, mappel::estimator::Profile >::mod

Referenced by mappel::methods::error bounds profile likelihood().

9.39.4.18 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::mappel::estimator::ProfileBoundsDebugData::mappel::estimator::ProfileBoundsDebugData::mappel::estimator::Code(), mappel::estimator::Code(), mappel::estimator::Code(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappelcodestimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

9.39.4.19 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_ ⇔ parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile := BoundsData::Nparams_est, mappel::estimator::ThreadedEstimator< Model >::num_threads, mappel::estimator::- MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator<:Model >::record_exit_code(), mappel::estimator::ForfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood parallel().

9.39.4.20 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute profile bound(), mappel::estimator::Error, mappel ← ::estimator::ProfileBoundsData::estimated idxs, mappel::estimator::ProfileBoundsDataStack::estimated idxs, mappel idxs, m ::estimator::ProfileBoundsData::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::← Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator< Model >::num threads, mappel::estimator::ML← EData::obsI, mappel::estimator::MLEDataStack::obsI, mappel::print_text_image(), mappel::estimator::ProfileBounds← mappel::estimator::ProfileBoundsDataStack::profile lb. mappel::estimator::ProfileBoundsData← Data::profile lb. ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile_points_lb_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points_lb_rllh, mappel::estimator: ::ProfileBoundsData::profile_points_ub, mappel::estimator::ProfileBoundsDataStack::profile_points_ub, ::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points← ub rllh, mappel::estimator::ProfileBoundsData::profile ub, mappel::estimator::ProfileBoundsDataStack::profile ub, mappel::estimator::ThreadedEstimator< Model >::record exit code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target_rllh_delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData↔ Stack::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood stack().

9.39.4.21 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max) [inherited]

Profile likelihood estimation methods

Definition at line 190 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::Error, mappel ::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

9.39.4.22 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile) [override], [virtual], [inherited]

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:: ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::print_ctx_image(), mappel::estimator::ProfileLikelihoodData::profile_likelihood, mappel::estimator::ProfileLikelihoodData ::profile_parameters, mappel::estimator::ThreadedEstimator

Model >::record_exit_code(), and mappel::estimator::Code(), and mappel::estimator::Code()

Estimator
Model >::record_walltime()

```
9.39.4.23 template < class Model > StatsT mappel::estimator::lterativeMaximizer < Model >::get_debug_stats( ) [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 832 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator::

IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::last_backtrack_idxs.

```
9.39.4.24 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

```
9.39.4.25 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.39.4.26 template < class Model > StatsT mappel::estimator::IterativeMaximizer < Model >::get_stats ( ) [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 811 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::ThreadedEstimator<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::Iterative \(\to \) Maximizer< Model >::mtx, mappel::estimator::\(\to \) Estimator< Model >::num_estimations, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_\(\to \) fun evals, and mappel::estimator::IterativeMaximizer< Model >::total iterations.

Referenced by mappel::methods::error_bounds_profile_likelihood(), mappel::methods::debug::error_bounds_comprofile_likelihood_debug(), mappel::methods::openmp::error_bounds_profile_likelihood_parallel(), mappel::methodscomposition = comprofile_likelihood_parallel(), mappel::methodsc

9.39.4.27 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_backtracks () const [inline], [inherited]

Definition at line 443 of file estimator.h.

9.39.4.28 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::get_total_der_evals () const [inline], [inherited]

Definition at line 445 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.39.4.29 template < class Model > int mappel::estimator::IterativeMaximizer < Model > ::get_total_fun_evals () const [inline], [inherited]

Definition at line 444 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.39.4.30 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_iterations () const [inline], [inherited]

Definition at line 442 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.39.4.31 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEData & data) [inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 1145 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative \leftarrow Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.39.4.32 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEDebugData & debug_data) [inherited]

Definition at line 1158 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::Iterative ::Maximizer< Model >::maximize(), mappel::estimator::Estimator<:Model >::model, mappel::methods::observed_ :-information(), mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::record :-information(), mappel::estimator::MLEDebugData::rllh, mappel::estimator::IterativeMaximizer< Model >:: :-information(), mappel::estimator::MLEDebugData::sequence, mappel::estimator::MLEDebugData::sequence_ :-information(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEDebugData::stencil(), mappel::estimator::MLEDebugData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

9.39.4.33 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::local_profile_maximize (const ModelDataT < Model > & im, const ldxVecT & fixed_param_idxs, StencilT < Model > & stencil, MLEDebugData & mle) [inherited]

Definition at line 1173 of file estimator impl.h.

References mappel::estimator::lterativeMaximizer< Model >::backtrack(), mappel::estimator::subroutine::bound ← mappel::clamp(). mappel::estimator::subroutine::compute bound scaling vec(), mappel::estimator::subroutine::compute initial trust radius(), ::subroutine::compute cauchy point(), mappel← ::estimator::subroutine::compute guadratic model value(), mappel::estimator::subroutine::compute scaled problem(), mappel::estimator::IterativeMaximizer< Model >::convergence test grad ratio(), mappel::estimator::Iterative← Maximizer< Model >::convergence test step size(), mappel::estimator::Estimator< Model >::exit counts, mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::fixed idxs, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::free idxs, mappel::estimator::Estimator< Model >::get exit counts(), mappel::estimator::← IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::IterativeMaximizer< Model >::get_total_der ← evals(), mappel::estimator::IterativeMaximizer< Model >::get total fun evals(), mappel::estimator::Iterative ← Maximizer< Model >::get total iterations(), mappel::methods::objective::grad(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::grad, mappel::methods::objective::grad2(), mappel::estimator::Iterative ← Maximizer Model >::Maximizer Data::has fixed parameters(), mappel::methods::objective::hessian(), mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::is_positive_definite(), mappel::estimator::← IterativeMaximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_← maximize(), mappel::estimator::IterativeMaximizer < Model >::max iterations, mappel::estimator::IterativeMaximizer < Model >::maximize(), mappel::estimator::MaxIter, mappel::estimator::IterativeMaximizer< Model >::min profile← bound residual, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::lterativeMaximizer< Model >::MaximizerData::num fixed parameters(), mappel ::methods::observed information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record backtrack(), mappel::estimator::ThreadedEstimator< Model >::record exit ← code(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record iteration(), mappel::estimator::⇔ IterativeMaximizer< Model >::record run statistics(), mappel::estimator::IterativeMaximizer< Model >::Maximizer ← Data::restore_stencil(), mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator::⇔ MLEDebugData::rllh, mappel::estimator::lerativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::le-IterativeMaximizer< Model >::MaximizerData::s0, mappel::estimator::IterativeMaximizer< Model >::MaximizerData ← ::s1, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::save stencil(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::saved theta(), mappel::estimator::MLEDebugData::sequence, mappel ← ::estimator::MLEDebugData::sequence rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::set fixed parameters(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::set stencil(), mappel ::estimator::subroutine::solve_TR_subproblem(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::stencil(), mappel::estimator::lterativeMaximizer < Model >::MaximizerData::step, mappel::estimator::MLEData::theta, mappel::estimator::MLEDebugData::theta, mappel::estimator::lterativeMaximizer< Model >::MaximizerData::theta(), mappel::estimator::IterativeMaximizer< Model >::total der evals, mappel::estimator::IterativeMaximizer< Model >← ::total fun evals, mappel::estimator::IterativeMaximizer< Model >::total iterations, and mappel::estimator::Trust← RegionRadius.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.39.4.34 template < class Model > virtual void mappel::estimator::IterativeMaximizer < Model >::maximize (
MaximizerData & data) [protected], [pure virtual], [inherited]

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative Adaminizer< Model >::compute_estimater
Maximizer< Model >::compute_estimater
Model >::local_maximize(), and mappel::estimator::
HerativeMaximizer
Model >::local_maximize(), and mappel::estimator::
HerativeMaximizer

```
9.39.4.35 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_backtracks()
[inherited]

9.39.4.36 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_der_evals()
[inherited]

9.39.4.37 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_fun_evals()
[inherited]

9.39.4.38 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_iterations()
[inherited]

9.39.4.39 template < class Model > std::string mappel::estimator::NewtonMaximizer < Model >::name() const
[inline], [virtual]
```

Implements mappel::estimator::Estimator< Model >.

Definition at line 592 of file estimator.h.

Definition at line 943 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_max_ratio, mappel::estimator::Iterative Maximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::backtrack min_step_size_ratio, mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::methods::objective::grad(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::Maximizer Model >::Maxi

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.39.4.41 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >:::model, mappel::estimator::ThreadedEstimator< Model >:::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:::Cuccess, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator:: \leftarrow ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator</br>
Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer

9.39.4.42 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::record_run_statistics (const MaximizerData & data) [protected], [inherited]

Definition at line 859 of file estimator impl.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative
Maximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_eprofile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel
::estimator::IterativeMaximizer< Model >::compute_profile_estimator::IterativeMaximizer< Model >::local maximize(), and mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.39.4.43 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

 $References\ mappel::estimator::Estimator< Model >::num_estimations,\ and\ mappel::estimator::Estimator< Model > \leftarrow ::total\ walltime.$

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Estimator< Model >::estimatec=profile_bounds_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max().

Definition at line 1137 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::name().

Referenced by mappel::estimator::IterativeMaximizer < Model >::compute_profile_bound(), and mappel::estimator:: IterativeMaximizer < Model >::compute_profile_bound debug().

9.39.5 Member Data Documentation

9.39.5.1 template < class Model > const double mappel::estimator::IterativeMaximizer < Model > ::backtrack_max_ratio = 0.50 [static], [protected], [inherited]

Definition at line 462 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::profile bound backtrack().

9.39.5.2 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::backtrack_min_linear_step_ratio = 1e-3 [static], [protected], [inherited]

Definition at line 463 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::backtrack(), and mappel::estimator::Iterative \leftarrow Maximizer < Model >::profile_bound_backtrack().

9.39.5.3 template < class Model > const double mappel::estimator::IterativeMaximizer < Model > ::backtrack_min_ratio = 0.05 [static], [protected], [inherited]

Definition at line 461 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::profile_bound_backtrack().

9.39.5.4 template < class Model > const double mappel::estimator::IterativeMaximizer < Model
>::convergence_min_function_change_ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance for function-value change.

Definition at line 458 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), and mappel ::estimator::IterativeMaximizer< Model >::get stats().

9.39.5.5 template < class Model > const double mappel::estimator::IterativeMaximizer < Model >::convergence_min_step_size_ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance of relative step size.

Definition at line 459 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_step_size(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel ::estimator::IterativeMaximizer< Model >::profile bound backtrack().

9.39.5.6 template < class Model > const int mappel::estimator::IterativeMaximizer < Model >::DefaultIterations = 100 [static], [inherited]

Definition at line 430 of file estimator.h.

9.39.5.7 template < class Model > IdxVecT mappel::estimator::Estimator < Model > ::exit_counts [protected], [inherited]

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator<:Model >::get_ ⇔ stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded ⇔ Estimator< Model >::record exit code().

9.39.5.8 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

Definition at line 477 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_debug_stats(), and mappel::estimator::Iterative \(\times \) Maximizer< Model >::record_run_statistics().

Definition at line 464 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::get stats(), and mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack().

9.39.5.10 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::max_iterations [protected], [inherited]

Definition at line 468 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Iterative \(\to \) Maximizer < Model >::local profile maximize().

9.39.5.11 template < class Model > int mappel::estimator::ThreadedEstimator < Model >::max_threads [protected].[inherited]

Definition at line 326 of file estimator.h.

9.39.5.12 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::min_eigenvalue_correction_delta = 1e-3 [static], [protected], [inherited]

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

Definition at line 456 of file estimator.h.

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

Definition at line 466 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel ::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::Estimator< Model >↔ ::compute profile bound(), mappel::estimator::lterativeMaximizer< Model >::compute profile bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >-::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_stack(), mappel::estimator::Threaded ← Estimator < Model >::estimate max stack(), mappel::estimator::Estimator < Model >::estimate profile bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate profile bounds stack(), mappel::estimator::ThreadedEstimator < Model >::estimate ← profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get debug stats(), mappel::estimator::Estimator< Model >::get model(), mappel::estimator::Iterative← Maximizer Model >::local_maximize(), mappel::estimator::IterativeMaximizer Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.39.5.15 template<**class Model** > **std::mutex mappel::estimator::ThreadedEstimator**< **Model** >::**mtx** [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel ::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator

Estimator

Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile \leftarrow bounds_parallel(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator

Model >::estimator::ThreadedEstimator

Model >::get_stats().

9.39.5.18 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_backtracks = 0 [protected], [inherited]

Definition at line 472 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.39.5.19 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::total_der_evals = 0 [protected], [inherited]

Definition at line 474 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.39.5.20 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::total_fun_evals = 0 [protected], [inherited]

Definition at line 473 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated \leftarrow AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

9.39.5.21 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_iterations = 0 [protected], [inherited]

Definition at line 471 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.39.5.22 template < class Model > double mappel::estimator::Estimator < Model >::total_walltime = 0. [protected], [inherited]

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h

9.40 mappel::NotImplementedError Struct Reference

Feature not yet implemented.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::NotImplementedError:

Public Member Functions

NotImplementedError (std::string message)

9.40.1 Detailed Description

Feature not yet implemented.

Definition at line 111 of file util.h.

9.40.2 Constructor & Destructor Documentation

9.40.2.1 mappel::NotImplementedError:NotImplementedError (std::string message) [inline]

Definition at line 113 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

9.41 mappel::NumericalError Struct Reference

Expected numerical condition does not hold.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::NumericalError:

Public Member Functions

NumericalError (std::string message)

9.41.1 Detailed Description

Expected numerical condition does not hold.

Definition at line 97 of file util.h.

9.41.2 Constructor & Destructor Documentation

9.41.2.1 mappel::NumericalError::NumericalError (std::string message) [inline]

Definition at line 99 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

9.42 omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/OMPException←
Catcher/OMPExceptionCatcher.h>

Public Member Functions

- OMPExceptionCatcher ()
- OMPExceptionCatcher (Strategy strategy)
- void rethrow () const
- template<class Function , class... Parameters> void run (Function func, Parameters...params)

Static Public Member Functions

static void setGlobalDefaultStrategy (Strategy s)

9.42.1 Detailed Description

```
template < class _dummy = void > class omp_exception_catcher::impl_::OMPExceptionCatcher < _dummy >
```

Implementation of OMPExceptionCatcher

Note: The template variable is a dummy. It exists solely to allow this class to be a template, which makes it header-only and allows static member initialization to be defined in the header file.

Definition at line 47 of file OMPExceptionCatcher.h.

9.42.2 Constructor & Destructor Documentation

```
9.42.2.1 template < class _dummy = void > omp_exception_catcher::impl_::OMPExceptionCatcher < _dummy >::OMPExceptionCatcher( ) [inline]
```

Construct a new OMPExceptionCatcher using the GlobalDefaultStrategy

Definition at line 55 of file OMPExceptionCatcher.h.

```
9.42.2.2 template < class _dummy = void > omp_exception_catcher::impl_::OMPExceptionCatcher < _dummy >::OMPExceptionCatcher ( Strategy strategy_ ) [inline]
```

Construct a new OMPExceptionCatcher using the given strategy

Definition at line 59 of file OMPExceptionCatcher.h.

9.42.3 Member Function Documentation

```
9.42.3.1 template < class _dummy = void > void omp_exception_catcher::impl_::OMPExceptionCatcher < _dummy >::rethrow( ) const [inline]
```

Rethrow any stored exceptions Should only be called from single-threaded blocks of code

Definition at line 64 of file OMPExceptionCatcher.h.

References omp_exception_catcher::RethrowFirst.

Referenced by mappel::methods::openmp::cr_lower_bound_stack(), mappel::methods::openmp::error_bounds_
expected_stack(), mappel::methods::openmp::estimate_posterior_stack(), mappel::methods::openmp::expected
_information_stack(), mappel::methods::objective::openmp::grad_stack(), mappel::methods::objective::openmp::llh_stack(), mappel::methods::objective::openmp::methods::objective::openmp::rllh_cappel::methods::objective::openmp::rllh_cappel::methods::objective::openmp::rllh_cappel::methods::objective::openmp::rllh_cappel::methods::objective::openmp::rllh_cappel::methods::objective::openmp::rllh_cappel::methods::objective::openmp::rllh_cappel::methods::objective::openmp::rllh_cappel::methods::openmp::simulate image stack().

Run a function in parallel code and prevent exceptions escaping.

Runs any function with any set of parameters and applies the chosen exception catching Strategy to prevent any exceptions escaping. This function is thread-safe designed to be called in parallel code blocks.

Parameters

in	func	function to call
in	params	Possibly empty variadic set of parameters to call.

Definition at line 76 of file OMPExceptionCatcher.h.

References omp_exception_catcher::Abort, omp_exception_catcher::Continue, omp_exception_catcher::DoNotTry, and omp_exception_catcher::RethrowFirst.

Referenced by mappel::methods::openmp::cr_lower_bound_stack(), mappel::methods::openmp::error_bounds_ \leftarrow expected_stack(), mappel::methods::openmp::error_bounds_observed_stack(), mappel::methods::openmp::estimate \leftarrow _posterior_stack(), mappel::methods::openmp::expected_information_stack(), mappel::methods::objective::openmp \leftarrow ::grad_stack(), mappel::methods::objective::openmp::hessian_stack(), mappel::methods::objective::openmp::methods::objective::openmp::negative_definite_ \leftarrow hessian_stack(), mappel::methods::objective::openmp::rllh_stack(), mappel::methods::openmp::sample_prior_stack(), and mappel::methods::openmp::simulate image_stack().

9.42.3.3 template < class _dummy = void > static void omp_exception_catcher::impl_::OMPExceptionCatcher < _dummy >::setGlobalDefaultStrategy (Strategy s) [inline], [static]

Definition at line 51 of file OMPExceptionCatcher.h.

The documentation for this class was generated from the following file:

OMPExceptionCatcher.h

9.43 mappel::ParameterValueError Struct Reference

Parameter value is not valid.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::ParameterValueError:

Public Member Functions

• ParameterValueError (std::string message)

9.43.1 Detailed Description

Parameter value is not valid.

Definition at line 69 of file util.h.

9.43.2 Constructor & Destructor Documentation

9.43.2.1 mappel::ParameterValueError::ParameterValueError (std::string message) [inline]

Definition at line 71 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

9.44 mappel::PointEmitterModel Class Reference

A virtual Base type for point emitter localization models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/PointEmitter←
Model.h>

Inheritance diagram for mappel::PointEmitterModel:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- StatsT get_stats () const
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- ParamVecT make_param_stack (ldxT n) const
- MatT make_param_mat () const
- CubeT make param mat stack (ldxT n) const

- template<class FillT >
 - ParamT make param (FillT fill) const
- template<class FillT >
 - ParamVecT make_param_stack (ldxT n, FillT fill) const
- template<class FillT >
 - MatT make param mat (FillT fill) const
- template<class FillT >
 - CubeT make param mat stack (ldxT n, FillT fill) const
- CompositeDist & get_prior ()
- · const CompositeDist & get prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >
 - ParamT sample_prior (RngT &rng) const
- · ParamT sample prior () const
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const

Static Public Member Functions

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=DefaultPriorMeanI, double kappa=DefaultPriorIntensityKappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=DefaultPriorPSFSigmaAlpha)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get rng generator ()

Static Public Attributes

static const std::string DefaultEstimatorMethod = "TrustRegion"

Default optimization method for MLE/MAP estimation.

static const std::string DefaultProfileBoundsEstimatorMethod = "Newton"

Default optimization method for profile bounds optimizations.

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const IdxT DefaultMCMCNumSamples = 300

Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)

static const IdxT DefaultMCMCBurnin = 10

Number of samples to throw away (burn-in) on initialization.

static const IdxT DefaultMCMCThin = 0

Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].

• static const double DefaultConfidenceLevel = 0.95

Default level at which to estimate confidence intervals must be in range (0,1).

- static const double DefaultPriorBetaPos = 3
- static const double DefaultPriorSigmaPos = 1
- static const double DefaultPriorMeanI = 300
- static const double DefaultPriorMaxI = INFINITY
- static const double DefaultPriorIntensityKappa = 2
- static const double DefaultPriorPixelMeanBG = 4
- static const double DefaultPriorPSFSigmaAlpha = 2
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2

Protected Member Functions

- PointEmitterModel ()
- PointEmitterModel (const CompositeDist &prior_)
- PointEmitterModel (CompositeDist &&prior)
- PointEmitterModel (const PointEmitterModel &)
- PointEmitterModel (PointEmitterModel &&)
- PointEmitterModel & operator= (const PointEmitterModel &)
- PointEmitterModel & operator= (PointEmitterModel &&)

Protected Attributes

- CompositeDist prior
- · IdxT num params
- IdxT num hyperparams
- ParamT Ibound
- ParamT ubound

9.44.1 Detailed Description

A virtual Base type for point emitter localization models.

<Composite distribution from prior_hessian:: for representing priorsInitialized with a prior as a PriorHessian:: CompositeDist object, this sets the dimensionality (num_params) and num_hyperparams, and the associated descriptions.

Box-type bounding constraints are controlled with the set bounds() method.

Of note some of the common MCMC variables are rooted here in the inheritance tree.

Definition at line 44 of file PointEmitterModel.h.

9.44.2 Member Typedef Documentation

9.44.2.1 using mappel::PointEmitterModel::ParamT = arma::vec

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

9.44.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

9.44.3 Constructor & Destructor Documentation

9.44.3.1 mappel::PointEmitterModel::PointEmitterModel() [protected]

Definition at line 38 of file PointEmitterModel.cpp.

9.44.3.2 mappel::PointEmitterModel::PointEmitterModel (const CompositeDist & prior_) [explicit], [protected]

Definition at line 50 of file PointEmitterModel.cpp.

9.44.3.3 mappel::PointEmitterModel::PointEmitterModel (CompositeDist && prior_) [explicit], [protected]

Definition at line 44 of file PointEmitterModel.cpp.

9.44.3.4 mappel::PointEmitterModel::PointEmitterModel (const PointEmitterModel & o) [protected]

Definition at line 56 of file PointEmitterModel.cpp.

References prior.

9.44.3.5 mappel::PointEmitterModel::PointEmitterModel (PointEmitterModel && o) [protected]

Definition at line 62 of file PointEmitterModel.cpp.

9.44.4 Member Function Documentation

9.44.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const

Definition at line 255 of file PointEmitterModel.cpp.

References check_param_shape(), lbound, num_params, and ubound.

9.44.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const

Definition at line 272 of file PointEmitterModel.cpp.

References check_param_shape(), lbound, num_params, and ubound.

Referenced by bounded_theta_stack().

9.44.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const

Definition at line 313 of file PointEmitterModel.cpp.

References bounded_theta(), check_param_shape(), and make_param_stack().

9.44.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const

Definition at line 174 of file PointEmitterModel.cpp.

References num params.

Referenced by bound_theta(), bounded_theta(), bounded_theta_stack(), reflected_theta(), reflected_theta_stack(), theta_in_bounds(), and theta_stack_in_bounds().

9.44.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const

Definition at line 183 of file PointEmitterModel.cpp.

References num params.

9.44.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const

Definition at line 192 of file PointEmitterModel.cpp.

References global max psf sigma, and global min psf sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

9.44.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const

Definition at line 204 of file PointEmitterModel.cpp.

References global_max_psf_sigma, and global_min_psf_sigma.

9.44.4.8 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline]

Definition at line 243 of file PointEmitterModel.h.

References prior.

9.44.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline]

Definition at line 263 of file PointEmitterModel.h.

References prior.

9.44.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline]

Definition at line 239 of file PointEmitterModel.h.

References prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_contensity mcmc sampling().

9.44.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline]

Definition at line 231 of file PointEmitterModel.h.

References prior.

9.44.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline]

Definition at line 219 of file PointEmitterModel.h.

References Ibound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
9.44.4.13 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline]
Definition at line 215 of file PointEmitterModel.h.
References num_hyperparams.
9.44.4.14 IdxT mappel::PointEmitterModel::get_num_params() const [inline]
Definition at line 167 of file PointEmitterModel.h.
References num params.
9.44.4.15 StringVecT mappel::PointEmitterModel::get_param_names() const [inline]
Definition at line 255 of file PointEmitterModel.h.
References prior.
9.44.4.16 CompositeDist & mappel::PointEmitterModel::get_prior() [inline]
Definition at line 207 of file PointEmitterModel.h.
References prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
9.44.4.17 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline]
Definition at line 211 of file PointEmitterModel.h.
References prior.
9.44.4.18 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator( ) [static]
Definition at line 127 of file PointEmitterModel.cpp.
References mappel::rng_manager.
9.44.4.19 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static]
Definition at line 122 of file PointEmitterModel.cpp.
```

References mappel::rng manager.

9.44.4.20 StatsT mappel::PointEmitterModel::get_stats () const

Definition at line 132 of file PointEmitterModel.cpp.

References Ibound, num hyperparams, num params, prior, mappel::rng manager, and ubound.

Referenced by mappel::Gauss1DModel::get_stats(), mappel::Gauss1DsModel::get_stats(), mappel::Gauss2DModel::get_stats(), and mappel::Gauss2DsModel::get_stats().

9.44.4.21 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get ubound () const [inline]

Definition at line 223 of file PointEmitterModel.h.

References ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.44.4.22 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline]

Definition at line 235 of file PointEmitterModel.h.

References prior.

9.44.4.23 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline]

Definition at line 171 of file PointEmitterModel.h.

References num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsyModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

9.44.4.24 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const

Definition at line 188 of file PointEmitterModel.h.

References num_params.

9.44.4.25 MatT mappel::PointEmitterModel::make_param_mat() const [inline]

Definition at line 179 of file PointEmitterModel.h.

References num params.

9.44.4.26 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat (FillT fill) const

Definition at line 198 of file PointEmitterModel.h.

References num_params.

9.44.4.27 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline]

Definition at line 183 of file PointEmitterModel.h.

References num_params.

9.44.4.28 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (IdxT n, FillT fill) const

Definition at line 203 of file PointEmitterModel.h.

References num params.

9.44.4.29 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline]

Definition at line 175 of file PointEmitterModel.h.

References num params.

Referenced by bounded_theta_stack(), and reflected_theta_stack().

9.44.4.30 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (IdxT n, FillT fill) const

Definition at line 193 of file PointEmitterModel.h.

References num params.

9.44.4.31 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = DefaultPriorMeanl, double kappa = DefaultPriorIntensityKappa) [static]

Definition at line 105 of file PointEmitterModel.cpp.

References DefaultPriorMaxI.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.44.4.32 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = DefaultPriorBetaPos) [static]

Definition at line 99 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

9.44.4.33 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal (IdxT size, double pos_sigma = DefaultPriorSigmaPos) [static]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

9.44.4.34 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = DefaultPriorPSFSigmaAlpha) [static]

Definition at line 111 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

9.44.4.35 PointEmitterModel & mappel::PointEmitterModel::operator=(const PointEmitterModel & o) [protected]

Definition at line 68 of file PointEmitterModel.cpp.

References prior.

Referenced by mappel::Gauss1DMAP::operator=(), mappel::Gauss1DMLE::operator=(), mappel::Gauss1DsMLE \leftarrow ::operator=(), mappel::Gauss2DsMAP::operator=(), mappel::Gauss2DsMLE::operator=(), mappel::Gauss2DMLE::operator=().

9.44.4.36 PointEmitterModel & mappel::PointEmitterModel::operator=(PointEmitterModel && o) [protected]

Definition at line 75 of file PointEmitterModel.cpp.

References Ibound, num hyperparams, num params, prior, and ubound.

9.44.4.37 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const

Definition at line 283 of file PointEmitterModel.cpp.

References check param shape(), Ibound, num params, and ubound.

Referenced by reflected theta stack().

9.44.4.38 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const

Definition at line 323 of file PointEmitterModel.cpp.

References check_param_shape(), make_param_stack(), and reflected_theta().

9.44.4.39 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline]

Definition at line 251 of file PointEmitterModel.h.

References prior.

9.44.4.40 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) const

Definition at line 271 of file PointEmitterModel.h.

References prior.

9.44.4.1 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() const [inline]

Definition at line 275 of file PointEmitterModel.h.

References prior, and mappel::rng_manager.

9.44.4.42 void mappel::PointEmitterModel::set_bounds (const ParamT & Ibound_, const ParamT & ubound_)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 220 of file PointEmitterModel.cpp.

References bounds_epsilon, lbound, num_params, prior, and ubound.

9.44.4.43 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & desc) [inline]

Definition at line 267 of file PointEmitterModel.h.

References prior.

```
9.44.4.44 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline]
Definition at line 247 of file PointEmitterModel.h.
References prior.
9.44.4.45 void mappel::PointEmitterModel::set_hyperparams ( const VecT & hyperparams ) [inline]
Definition at line 227 of file PointEmitterModel.h.
References prior.
Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().
9.44.4.46 void mappel::PointEmitterModel::set_lbound ( const ParamT & lbound )
Definition at line 233 of file PointEmitterModel.cpp.
References bounds epsilon, Ibound, num params, prior, and ubound.
Referenced by mappel::Gauss1DsModel::set min sigma().
9.44.4.47 void mappel::PointEmitterModel::set_param_names ( const StringVecT & desc ) [inline]
Definition at line 259 of file PointEmitterModel.h.
References prior.
9.44.4.48 void mappel::PointEmitterModel::set_prior ( CompositeDist && prior_ )
Definition at line 165 of file PointEmitterModel.cpp.
References Ibound, num_hyperparams, num_params, prior, and ubound.
Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().
9.44.4.49 void mappel::PointEmitterModel::set_prior ( const CompositeDist & prior_ )
Definition at line 156 of file PointEmitterModel.cpp.
References Ibound, num hyperparams, num params, prior, and ubound.
9.44.4.50 void mappel::PointEmitterModel::set_rng_seed( RngSeedT seed) [static]
Definition at line 117 of file PointEmitterModel.cpp.
References mappel::rng manager.
```

9.44.4.51 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound)

Definition at line 244 of file PointEmitterModel.cpp.

References bounds_epsilon, lbound, num_params, prior, and ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

9.44.4.52 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const

Definition at line 264 of file PointEmitterModel.cpp.

References check param shape(), Ibound, num params, and ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and theta_stack_in bounds().

9.44.4.53 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const

Definition at line 303 of file PointEmitterModel.cpp.

References check param shape(), and theta in bounds().

9.44.5 Member Data Documentation

9.44.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 67 of file PointEmitterModel.h.

Referenced by set bounds(), set lbound(), mappel::Gauss2DsModel::set max sigma ratio(), and set ubound().

9.44.5.2 const double mappel::PointEmitterModel::DefaultConfidenceLevel = 0.95 [static]

Default level at which to estimate confidence intervals must be in range (0,1).

Definition at line 57 of file PointEmitterModel.h.

9.44.5.3 const std::string mappel::PointEmitterModel::DefaultEstimatorMethod = "TrustRegion" [static]

Default optimization method for MLE/MAP estimation.

Definition at line 51 of file PointEmitterModel.h.

```
9.44.5.4 const ldxT mappel::PointEmitterModel::DefaultMCMCBurnin = 10 [static]
Number of samples to throw away (burn-in) on initialization.
Definition at line 55 of file PointEmitterModel.h.
9.44.5.5 const IdxT mappel::PointEmitterModel::DefaultMCMCNumSamples = 300 [static]
Number of final samples to use in estimation of posterior properties (mean, credible interval, cov, etc.)
Definition at line 54 of file PointEmitterModel.h.
9.44.5.6 const ldxT mappel::PointEmitterModel::DefaultMCMCThin = 0 [static]
Keep every # samples. [Value of 0 indicates use the model default. This is suggested.].
Definition at line 56 of file PointEmitterModel.h.
9.44.5.7 const double mappel::PointEmitterModel::DefaultPriorBetaPos = 3 [static]
Default position parameter in symmetric beta-distributions
Definition at line 59 of file PointEmitterModel.h.
9.44.5.8 const double mappel::PointEmitterModel::DefaultPriorIntensityKappa = 2 [static]
Default shape for intensity gamma distributions
Definition at line 63 of file PointEmitterModel.h.
9.44.5.9 const double mappel::PointEmitterModel::DefaultPriorMaxI = INFINITY [static]
Default maximum emitter intensity
Definition at line 62 of file PointEmitterModel.h.
Referenced by make_prior_component_intensity().
9.44.5.10 const double mappel::PointEmitterModel::DefaultPriorMeanl = 300 [static]
Default emitter intensity mean
Definition at line 61 of file PointEmitterModel.h.
Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().
```

9.44.5.11 const double mappel::PointEmitterModel::DefaultPriorPixelMeanBG = 4 [static]

Default per-pixel mean background counts

Definition at line 64 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cdot normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddot::set background mcmc sampling().

9.44.5.12 const double mappel::PointEmitterModel::DefaultPriorPSFSigmaAlpha = 2 [static]

Default per-pixel background gamma distribution shape

Definition at line 65 of file PointEmitterModel.h.

9.44.5.13 const double mappel::PointEmitterModel::DefaultPriorSigmaPos = 1 [static]

Default position parameter in symmetric beta-distributions

Definition at line 60 of file PointEmitterModel.h.

9.44.5.14 const std::string mappel::PointEmitterModel::DefaultProfileBoundsEstimatorMethod = "Newton" [static]

Default optimization method for profile bounds optimizations.

Definition at line 52 of file PointEmitterModel.h.

9.44.5.15 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static]

Estimator name to use in 1D separable initializations

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

9.44.5.16 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 69 of file PointEmitterModel.h.

Referenced by check psf sigma().

9.44.5.17 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 68 of file PointEmitterModel.h.

Referenced by check psf sigma().

9.44.5.18 ParamT mappel::PointEmitterModel::Ibound [protected]

Definition at line 155 of file PointEmitterModel.h.

Referenced by bound_theta(), bounded_theta(), get_lbound(), get_stats(), mappel::Gauss1DsModel::initial_theta_cestimate(), mappel::Gauss2DsModel::initial_theta_estimate(), operator=(), reflected_theta(), set_bounds(), set_prior(), set_ubound(), and theta_in_bounds().

9.44.5.19 IdxT mappel::PointEmitterModel::num_hyperparams [protected]

Definition at line 154 of file PointEmitterModel.h.

Referenced by get_num_hyperparams(), get_stats(), operator=(), and set_prior().

9.44.5.20 IdxT mappel::PointEmitterModel::num_params [protected]

Definition at line 153 of file PointEmitterModel.h.

Referenced by bound_theta(), bounded_theta(), check_param_shape(), get_num_params(), get_stats(), mappel::\(Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel\(\times:initial_theta_estimate(), make_param(), make_param_mat(), make_param_mat_stack(), make_param_stack(), operator=(), reflected theta(), set bounds(), set lbound(), set prior(), set ubound(), and theta in bounds().

9.44.5.21 CompositeDist mappel::PointEmitterModel::prior [protected]

Definition at line 152 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), get_ \leftarrow hyperparam_index(), get_hyperparam_names(), get_hyperparam_value(), get_hyperparams(), mappel::Gauss1Ds \leftarrow Model::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), get_param_names(), get_prior(), get_stats(), has_hyperparam(), operator=(), PointEmitterModel(), rename_hyperparam(), sample_prior(), set_bounds(), set_ \leftarrow hyperparam_names(), set_hyperparam_value(), set_hyperparams(), set_lbound(), mappel::Gauss1DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), set_param_names(), set_prior(), and set_ubound().

9.44.5.22 ParamT mappel::PointEmitterModel::ubound [protected]

Definition at line 155 of file PointEmitterModel.h.

Referenced by bound_theta(), bounded_theta(), get_stats(), get_ubound(), mappel::Gauss1DsModel::initial_theta_compared estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), operator=(), reflected theta(), set bounds(), set lbound(), set prior(), set ubound(), and theta in bounds().

The documentation for this class was generated from the following files:

- · PointEmitterModel.h
- PointEmitterModel.cpp

9.45 PoissonGaussianNoise2DObjective < ModelBase > Class Template Reference

A Base type for point emitter localization models that use 2d images.

#include </home/travis/build/markjolah/Mappel/include/Mappel/PoissonGaussian←
Noise2DObjective.h>

Inheritance diagram for PoissonGaussianNoise2DObjective < ModelBase >:

Public Types

- using CoordldxT = uint32_t
- using CoordT = arma::vec< uint32 t >
- using CoordStackT = arma::mat< uint32_t >
- using ModelDataT = std::pair < ImageT, CoordT >
- using ModelDataStackT = std::pair < ImageStackT, CoordStackT >

Public Member Functions

PoissonGaussianNoise2DObjective (const ImageSizeVecT &size, const ImageT &sensor_gain_map, const ImageT &sensor_bg_map)

Public Attributes

- ImageT sensor_gain_map
- ImageT sensor_bg_map

Static Public Attributes

static const StringVecT estimator names

9.45.1 Detailed Description

```
template<typename ModelBase> class PoissonGaussianNoise2DObjective< ModelBase >
```

A Base type for point emitter localization models that use 2d images.

We don't assume much here, so that it is possible to have a wide range of 2D models

Definition at line 23 of file PoissonGaussianNoise2DObjective.h.

- 9.45.2 Member Typedef Documentation
- 9.45.2.1 template<typename ModelBase > using PoissonGaussianNoise2DObjective< ModelBase >::CoordIdxT = uint32_t

Definition at line 26 of file PoissonGaussianNoise2DObjective.h.

9.45.2.2 template<typename ModelBase > using PoissonGaussianNoise2DObjective< ModelBase >::CoordStackT = arma::mat<uint32 t>

Definition at line 28 of file PoissonGaussianNoise2DObjective.h.

9.45.2.3 template < typename ModelBase > using PoissonGaussianNoise2DObjective < ModelBase > ::CoordT = arma::vec < uint32_t>

Definition at line 27 of file PoissonGaussianNoise2DObjective.h.

9.45.2.4 template < typename ModelBase > using PoissonGaussianNoise2DObjective < ModelBase > ::ModelDataStackT = std::pair < ImageStackT,CoordStackT >

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 30 of file PoissonGaussianNoise2DObjective.h.

9.45.2.5 template<typename ModelBase > using PoissonGaussianNoise2DObjective< ModelBase >::ModelDataT = std::pair<ImageT, CoordT>

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 29 of file PoissonGaussianNoise2DObjective.h.

- 9.45.3 Constructor & Destructor Documentation
- 9.45.3.1 template < typename ModelBase > PoissonGaussianNoise2DObjective < ModelBase >::PoissonGaussian ←
 Noise2DObjective (const ImageSizeVecT & size, const ImageT & sensor_gain_map, const ImageT & sensor_bg_map
)
- 9.45.4 Member Data Documentation
- 9.45.4.1 template < typename ModelBase > const std::vector < std::string > PoissonGaussianNoise2DObjective < ModelBase >::estimator_names [static]

Definition at line 25 of file PoissonGaussianNoise2DObjective.h.

9.45.4.2 template < typename ModelBase > ImageT PoissonGaussianNoise2DObjective < ModelBase >::sensor_bg_map

Definition at line 34 of file PoissonGaussianNoise2DObjective.h.

9.45.4.3 template < typename ModelBase > ImageT PoissonGaussianNoise2DObjective < ModelBase >::sensor_gain_map

Definition at line 33 of file PoissonGaussianNoise2DObjective.h.

The documentation for this class was generated from the following files:

- PoissonGaussianNoise2DObjective.h
- PoissonGaussianNoise2DObjective.cpp

9.46 mappel::PoissonNoise1DObjective Class Reference

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

#include </home/travis/build/markjolah/Mappel/include/Mappel/PoissonNoise1D←
Objective.h>

Inheritance diagram for mappel::PoissonNoise1DObjective:

Public Types

- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template < class CoordT > using ImageSizeShapeT = CoordT
- template<class CoordT >
 - $using \ ImageSizeVecShapeT = arma::Col < CoordT >$
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template<class PixeIT >
 - using ImageShapeT = arma::Col< PixelT >
- template<class PixelT >
 - using ImageStackShapeT = arma::Mat< PixeIT >
- using ImageT = ImageShapeT < ImagePixelT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- StatsT get stats () const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template < class ImT >
 void set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const
- ImageSizeT get size () const
- ImageCoordT get_size (IdxT idx) const
- · ImageCoordT get num pixels () const
- void set_size (const ImageSizeT &size_)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

· void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

• static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::vector< std::string > estimator_names
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global max size = 512

Protected Member Functions

- PoissonNoise1DObjective ()
- PoissonNoise1DObjective (const PoissonNoise1DObjective &o)
- PoissonNoise1DObjective (PoissonNoise1DObjective &&o)
- PoissonNoise1DObjective & operator= (const PoissonNoise1DObjective &o)
- PoissonNoise1DObjective & operator= (PoissonNoise1DObjective &&o)

Protected Attributes

ImageSizeT size

9.46.1 Detailed Description

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

Definition at line 22 of file PoissonNoise1DObjective.h.

9.46.2 Member Typedef Documentation

9.46.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

9.46.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

9.46.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

9.46.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

9.46.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

9.46.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

9.46.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

9.46.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

9.46.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

9.46.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

9.46.3 Constructor & Destructor Documentation

9.46.3.1 mappel::PoissonNoise1DObjective::PoissonNoise1DObjective() [protected]

Definition at line 14 of file PoissonNoise1DObjective.cpp.

```
9.46.3.2 mappel::PoissonNoise1DObjective::PoissonNoise1DObjective ( const PoissonNoise1DObjective & o )
         [protected]
Definition at line 18 of file PoissonNoise1DObjective.cpp.
9.46.3.3 mappel::PoissonNoise1DObjective::PoissonNoise1DObjective ( PoissonNoise1DObjective && o )
         [protected]
Definition at line 22 of file PoissonNoise1DObjective.cpp.
9.46.4 Member Function Documentation
9.46.4.1 void ImageFormat1DBase::check image_shape(const ImageT & im)const [inherited]
Check the shape of a single images is correct for model size.
Definition at line 59 of file ImageFormat1DBase.cpp.
References mappel::ImageFormat1DBase::size.
9.46.4.2 void ImageFormat1DBase::check image shape ( const ImageStackT & ims ) const [inherited]
Check the shape of a stack of images is correct for model size.
Definition at line 71 of file ImageFormat1DBase.cpp.
References mappel::ImageFormat1DBase::size.
9.46.4.3 void ImageFormat1DBase::check_size (const ImageSizeT & size_) [static], [inherited]
Check the size argument for the model.
Definition at line 39 of file ImageFormat1DBase.cpp.
References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.
Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().
9.46.4.4 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(_const ImageStackT & stack,
        ImageCoordT n ) const [inline], [inherited]
Definition at line 108 of file ImageFormat1DBase.h.
9.46.4.5 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get num_pixels( ) const [inline],
        [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
```

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get stats().

9.46.4.6 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.46.4.7 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

9.46.4.8 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 101 of file ImageFormat1DBase.h.

9.46.4.9 StatsTlmageFormat1DBase::get_stats() const [inherited]

Definition at line 81 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::get_num_pixels(), mappel::ImageFormat1DBase::get_size(), and mappel ::ImageFormat1DBase::num_dim.

Referenced by mappel::Gauss1DModel::get_stats(), and mappel::Gauss1DsModel::get_stats().

9.46.4.10 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

9.46.4.11 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

 $References\ mappel:: Image Format 1DB as e:: size.$

9.46.4.12 PoissonNoise1DObjective & mappel::PoissonNoise1DObjective::operator= (const PoissonNoise1DObjective & o) [protected]

Definition at line 26 of file PoissonNoise1DObjective.cpp.

Referenced by mappel::Gauss1DMAP::operator=(), mappel::Gauss1DMLE::operator=(), mappel::Gauss1DsMAP ::operator=(), and mappel::Gauss1DsMLE::operator=().

9.46.4.13 PoissonNoise1DObjective & mappel::PoissonNoise1DObjective::operator=(PoissonNoise1DObjective && o)

[protected]

Definition at line 31 of file PoissonNoise1DObjective.cpp.

9.46.4.14 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

9.46.4.15 void ImageFormat1DBase::set_size(const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2← DsModel::set_size().

9.46.4.16 void ImageFormat1DBase::set size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

9.46.5 Member Data Documentation

9.46.5.1 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static]

Definition at line 24 of file PoissonNoise1DObjective.h.

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

9.46.5.4 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

9.46.5.5 ImageSizeT mappel::ImageFormat1DBase::size [protected],[inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

The documentation for this class was generated from the following files:

- PoissonNoise1DObjective.h
- PoissonNoise1DObjective.cpp

9.47 mappel::PoissonNoise2DObjective Class Reference

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

#include </home/travis/build/markjolah/Mappel/include/Mappel/PoissonNoise2D←
Objective.h>

Inheritance diagram for mappel::PoissonNoise2DObjective:

Public Types

```
    using ModelDataT = ImageT
```

- using ModelDataStackT = ImageStackT
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template < class CoordT >

```
using ImageSizeShapeT = arma::Col< CoordT >
```

template < class CoordT >

using ImageSizeVecShapeT = arma::Mat< CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

```
using ImageShapeT = arma::Mat< PixeIT >
```

• template<class PixeIT >

using ImageStackShapeT = arma::Cube < PixelT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT< ImagePixeIT >

Public Member Functions

- StatsT get_stats () const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get size image stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set image in stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set size (const ImageSizeT &size)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::vector< std::string > estimator_names
- static const ImageCoordT num_dim =2
- static const ImageCoordT global min size =3
- static const ImageCoordT global max size =512

Protected Member Functions

- PoissonNoise2DObjective ()
- PoissonNoise2DObjective (const PoissonNoise2DObjective &o)
- PoissonNoise2DObjective (PoissonNoise2DObjective &&o)
- PoissonNoise2DObjective & operator= (const PoissonNoise2DObjective &o)
- PoissonNoise2DObjective & operator= (PoissonNoise2DObjective &&o)

Protected Attributes

· ImageSizeT size

9.47.1 Detailed Description

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

Definition at line 21 of file PoissonNoise2DObjective.h.

9.47.2 Member Typedef Documentation

```
9.47.2.1 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]
```

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

```
9.47.2.2 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]
```

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

```
9.47.2.3 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]
```

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

```
9.47.2.4 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]
```

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

9.47.2.6 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

9.47.2.8 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

9.47.2.10 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

9.47.2.11 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

9.47.2.12 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

9.47.3 Constructor & Destructor Documentation

9.47.3.1 mappel::PoissonNoise2DObjective::PoissonNoise2DObjective() [protected]

Definition at line 15 of file PoissonNoise2DObjective.cpp.

9.47.3.2 mappel::PoissonNoise2DObjective::PoissonNoise2DObjective (const PoissonNoise2DObjective & o) [protected]

Definition at line 19 of file PoissonNoise2DObjective.cpp.

Definition at line 23 of file PoissonNoise2DObjective.cpp.

9.47.4 Member Function Documentation

9.47.4.1 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.47.4.2 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

9.47.4.3 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static],[inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

9.47.4.4 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

9.47.4.5 | ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline], [inherited]

Definition at line 79 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.47.4.6 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.47.4.7 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

Definition at line 99 of file ImageFormat2DBase.h.

9.47.4.9 StatsT mappel::ImageFormat2DBase::get_stats() const [inherited]

Definition at line 103 of file ImageFormat2DBase.cpp.

 $References\ mappel::ImageFormat2DBase::get_num_pixels(),\ mappel::ImageFormat2DBase::num_dim,\ and\ mappel \\ ::ImageFormat2DBase::size.$

Referenced by mappel::Gauss2DModel::get_stats(), and mappel::Gauss2DsModel::get_stats().

9.47.4.10 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image()const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.47.4.11 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

9.47.4.12 PoissonNoise2DObjective & mappel::PoissonNoise2DObjective::operator= (const PoissonNoise2DObjective & o) [protected]

Definition at line 27 of file PoissonNoise2DObjective.cpp.

Referenced by mappel::Gauss2DsMAP::operator=(), mappel::Gauss2DsMLE::operator=(), mappel::Gauss2DMAP ::operator=(), and mappel::Gauss2DMLE::operator=().

9.47.4.13 PoissonNoise2DObjective & mappel::PoissonNoise2DObjective::operator=(PoissonNoise2DObjective && o)

[protected]

Definition at line 32 of file PoissonNoise2DObjective.cpp.

9.47.4.14 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

9.47.4.15 void mappel::ImageFormat2DBase::set_size(const ImageSizeT & size_) [inherited]

Definition at line 51 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::check size(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DModel::set size(), and mappel::Gauss2DsModel::set size().

9.47.5 Member Data Documentation

9.47.5.1 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static]

Definition at line 23 of file PoissonNoise2DObjective.h.

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

9.47.5.4 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static], [inherited]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

9.47.5.5 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← heuristic compute estimate(), mappel::ImageFormat2DBase::check image shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← ::expected information(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMA← mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Image← Format2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get ← _stats(), mappel::methods::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood ::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian ← _components(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel ← mappel::Gauss2DsModel::make_default_prior_beta_position(), ::make default prior beta position(), Gauss2DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior normal← mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum \leftarrow mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel::make prior beta ← position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal ← mappel::methods::model image(), mappel::ImageFormat2DBase::operator=(), mappel::methods ← position(), mappel::methods::likelihood::debug::rllh components(), mappel::ImageFormat2DBase::set ← ::likelihood::rllh(). size(), mappel::Gauss2DModel::set size(), mappel::Gauss2DsModel::set size(), mappel::methods::simulate image(), mappel::methods::simulate_image_from_model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2Ds ← Model::Stencil::Stencil(), mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2Ds ← Model::update internal 1Dsum estimators().

The documentation for this class was generated from the following files:

- · PoissonNoise2DObjective.h
- PoissonNoise2DObjective.cpp

9.48 mappel::estimator::ProfileBoundsData Struct Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Public Member Functions

• void initialize_arrays (ldxT Nparams)

Public Attributes

· IdxVecT estimated idxs

List of indexs for computed parameters. Empty to compute all parameters.

double confidence =-1

Confidence level. If invalid, use default value.

MLEData mle

Theta maximum-likelihood estimate, rllh, and Obsl.

double target rllh delta =-INFINITY

Targeted rllh change in value from MLE (-chi2inv(confidence,1)/2)

• IdxT Nparams est =0

 $number\ of\ parameters\ estimated\ = estimated_param_idxs.n_elem.$

· VecT profile_lb

size:[Nparams_est] Lower bound estimated at each estimated_idx.

· VecT profile ub

size:[Nparams_est] Upper bound estimated at each estimated_idx.

MatT profile_points_lb

size:[NumParams,Nparams_est] Optimal theta found at each lower bound estimate for each estimated_idx.

MatT profile_points_ub

size:[NumParams,Nparams_est] Optimal theta found at each upper bound estimate for each estimated_idx.

· VecT profile points lb rllh

size:[Nparams_est] RLLH at each of the profile_points_lb

· VecT profile_points_ub_rllh

size:[Nparams_est] RLLH at each of the profile_points_lb

9.48.1 Detailed Description

Data related to a profile bounds estimation for a single image Includes both controlling (input) parameters as well as reporting (ouptut) parameters to give output parameters context.

Definition at line 92 of file estimator.h.

9.48.2 Member Function Documentation

9.48.2.1 void mappel::estimator::ProfileBoundsData::initialize_arrays (IdxT Nparams)

Definition at line 27 of file estimator.cpp.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator< Model > \leftarrow ::estimate profile bounds stack().

9.48.3 Member Data Documentation

9.48.3.1 double mappel::estimator::ProfileBoundsData::confidence =-1

Confidence level. If invalid, use default value.

Definition at line 96 of file estimator.h.

Referenced by mappel::methods::error_bounds_profile_likelihood(), and mappel::methods::openmp::error_bounds_comprofile_likelihood parallel().

9.48.3.2 IdxVecT mappel::estimator::ProfileBoundsData::estimated_idxs

List of indexs for computed parameters. Empty to compute all parameters.

Definition at line 95 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::methods \leftarrow ::error_bounds_profile_likelihood(), mappel::methods::openmp::error_bounds_profile_likelihood_parallel(), mappel \leftarrow ::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_ \leftarrow bounds_parallel(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_ \leftarrow bounds_stack().

9.48.3.3 MLEData mappel::estimator::ProfileBoundsData::mle

Theta maximum-likelihood estimate, rllh, and Obsl.

Definition at line 97 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::estimator:: \leftarrow Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile \leftarrow _bounds_parallel(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack().

9.48.3.4 IdxT mappel::estimator::ProfileBoundsData::Nparams_est =0

number of parameters estimated =estimated_param_idxs.n_elem.

Definition at line 101 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_bounds(), and mappel::estimator::

ThreadedEstimator< Model >::estimate_profile_bounds_parallel().

9.48.3.5 VecT mappel::estimator::ProfileBoundsData::profile_lb

size:[Nparams est] Lower bound estimated at each estimated idx.

Definition at line 102 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::estimator:: \leftarrow Estimator< Model >::estimate_profile_bounds(), and mappel::estimator::ThreadedEstimator< Model >::estimate_ \leftarrow profile bounds stack().

9.48.3.6 MatT mappel::estimator::ProfileBoundsData::profile_points_lb

size:[NumParams,Nparams est] Optimal theta found at each lower bound estimate for each estimated idx.

Definition at line 104 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::estimator:: \leftarrow Estimator< Model >::estimate_profile_bounds(), and mappel::estimator::ThreadedEstimator< Model >::estimate_ \leftarrow profile bounds stack().

9.48.3.7 VecT mappel::estimator::ProfileBoundsData::profile_points_lb_rllh

size:[Nparams est] RLLH at each of the profile points lb

Definition at line 106 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::estimator:: \leftarrow Estimator< Model >::estimate_profile_bounds(), and mappel::estimator::ThreadedEstimator< Model >::estimate_ \leftarrow profile_bounds_stack().

9.48.3.8 MatT mappel::estimator::ProfileBoundsData::profile_points_ub

size:[NumParams,Nparams est] Optimal theta found at each upper bound estimate for each estimated idx.

Definition at line 105 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::estimator::← Estimator< Model >::estimate_profile_bounds(), and mappel::estimator::ThreadedEstimator< Model >::estimate_← profile_bounds_stack().

9.48.3.9 VecT mappel::estimator::ProfileBoundsData::profile_points_ub_rllh

size:[Nparams est] RLLH at each of the profile points lb

Definition at line 107 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), and mappel::estimator::

ThreadedEstimator< Model >::estimate_profile_bounds_stack().

9.48.3.10 VecT mappel::estimator::ProfileBoundsData::profile_ub

size:[Nparams_est] Upper bound estimated at each estimated_idx.

Definition at line 103 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::estimator:: \leftarrow Estimator< Model >::estimate_profile_bounds(), and mappel::estimator::ThreadedEstimator< Model >::estimate_ \leftarrow profile bounds stack().

9.48.3.11 double mappel::estimator::ProfileBoundsData::target_rllh_delta =-INFINITY

Targeted rllh change in value from MLE (-chi2inv(confidence,1)/2)

Definition at line 100 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel::methods \leftarrow ::error_bounds_profile_likelihood(), mappel::methods::openmp::error_bounds_profile_likelihood_parallel(), mappel \leftarrow ::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_ \leftarrow bounds_parallel(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_ \leftarrow bounds_stack().

The documentation for this struct was generated from the following files:

- · estimator.h
- estimator.cpp

9.49 mappel::estimator::ProfileBoundsDataStack Struct Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Public Member Functions

void initialize_arrays (IdxT Nparams)

Public Attributes

IdxVecT estimated idxs

List of indexs for computed parameters. Empty to compute all parameters.

double confidence =-1

Confidence level. If invalid, use default value.

MLEDataStack mle

Theta maximum-likelihood estimate, rllh, and Obsl stack.

IdxT Nparams_est =0

number of parameters estimated =estimated_param_idxs.n_elem.

• IdxT Ndata =0

size of the data stack estimated. (number of individual problem data estimates performed.)

double target_rllh_delta =-INFINITY

Targeted rllh change in value from MLE (-chi2inv(confidence,1)/2)

MatT profile_lb

size:[Nparams_est,Ndata] Lower bound estimated at each estimated_idx.

MatT profile ub

size:[Nparams_est,Ndata] Upper bound estimated at each estimated_idx.

CubeT profile_points_lb

size:[Nparams,Nparams_est,Ndata] Optimal theta found at each lower bound estimate for each estimated_idx.

· CubeT profile points ub

size:[Nparams,Nparams_est,Ndata] Optimal theta found at each upper bound estimate for each estimated_idx.

MatT profile_points_lb_rllh

size:[Nparams_est,Ndata] RLLH at each of the profile_points_lb

MatT profile_points_ub_rllh

size:[Nparams_est,Ndata] RLLH at each of the profile_points_ub

9.49.1 Detailed Description

Data related to a profile bounds estimation for a stack of images Includes both controlling (input) parameters as well as reporting (ouptut) parameters to give output parameters context.

Definition at line 136 of file estimator.h.

9.49.2 Member Function Documentation

9.49.2.1 void mappel::estimator::ProfileBoundsDataStack::initialize arrays (IdxT Nparams)

Definition at line 38 of file estimator.cpp.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds stack().

9.49.3 Member Data Documentation

9.49.3.1 double mappel::estimator::ProfileBoundsDataStack::confidence =-1

Confidence level. If invalid, use default value.

Definition at line 139 of file estimator.h.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_stack().

9.49.3.2 IdxVecT mappel::estimator::ProfileBoundsDataStack::estimated_idxs

List of indexs for computed parameters. Empty to compute all parameters.

Definition at line 138 of file estimator.h.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_stack(), and mappel::estimator::

ThreadedEstimator < Model >::estimate_profile_bounds_stack().

9.49.3.3 MLEDataStack mappel::estimator::ProfileBoundsDataStack::mle

Theta maximum-likelihood estimate, rllh, and Obsl stack.

Definition at line 140 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds stack().

9.49.3.4 IdxT mappel::estimator::ProfileBoundsDataStack::Ndata =0

size of the data stack estimated. (number of individual problem data estimates performed.)

Definition at line 144 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds stack().

9.49.3.5 IdxT mappel::estimator::ProfileBoundsDataStack::Nparams_est =0

number of parameters estimated =estimated_param_idxs.n_elem.

Definition at line 143 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack().

9.49.3.6 MatT mappel::estimator::ProfileBoundsDataStack::profile_lb

size:[Nparams_est,Ndata] Lower bound estimated at each estimated_idx.

Definition at line 146 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds stack().

9.49.3.7 CubeT mappel::estimator::ProfileBoundsDataStack::profile_points_lb

size:[Nparams, Nparams est, Ndata] Optimal theta found at each lower bound estimate for each estimated idx.

Definition at line 148 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds stack().

9.49.3.8 MatT mappel::estimator::ProfileBoundsDataStack::profile_points_lb_rllh

size:[Nparams est,Ndata] RLLH at each of the profile points lb

Definition at line 150 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack().

9.49.3.9 CubeT mappel::estimator::ProfileBoundsDataStack::profile_points_ub

size:[Nparams,Nparams_est,Ndata] Optimal theta found at each upper bound estimate for each estimated_idx.

Definition at line 149 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds stack().

9.49.3.10 MatT mappel::estimator::ProfileBoundsDataStack::profile_points_ub_rllh

size:[Nparams_est,Ndata] RLLH at each of the profile_points_ub

Definition at line 151 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds stack().

9.49.3.11 MatT mappel::estimator::ProfileBoundsDataStack::profile_ub

size:[Nparams_est,Ndata] Upper bound estimated at each estimated_idx.

Definition at line 147 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack().

9.49.3.12 double mappel::estimator::ProfileBoundsDataStack::target_rllh_delta =-INFINITY

Targeted rllh change in value from MLE (-chi2inv(confidence,1)/2)

Definition at line 145 of file estimator.h.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_stack(), and mappel::estimator:: \leftarrow ThreadedEstimator< Model >::estimate_profile_bounds_stack().

The documentation for this struct was generated from the following files:

- · estimator.h
- · estimator.cpp

9.50 mappel::estimator::QuasiNewtonMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::QuasiNewtonMaximizer< Model >:

Public Types

using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData

Public Member Functions

 QuasiNewtonMaximizer (const Model &model, int max_iterations=IterativeMaximizer < Model >::Default← Iterations)

- std::string name () const
- double mean iterations ()
- double mean backtracks ()
- double mean_fun_evals ()
- double mean_der_evals ()
- StatsT get_stats ()
- StatsT get debug stats ()
- void clear_stats ()
- int get_total_iterations () const
- int get_total_backtracks () const
- int get total fun evals () const
- int get total der evals () const
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEData &data)
 Perform a local maximization to finish off a simulated annealing run.
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEDebugData &debug

 data)
- void local_profile_maximize (const ModelDataT< Model > &im, const ldxVecT &fixed_param_idxs, StencilT
 Model > &stencil, MLEDebugData &mle)
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init
 —stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
 override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds est stack) override
- const Model & get_model ()
- void estimate max stack (const ModelDataStackT< Model > &data stack, MLEDataStack &mle data stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 — data, StencilT< Model > &mle_stencil)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data)
- void estimate_max (const ModelDataT< Model > &data, MLEData &mle_data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data, StencilT< Model > &mle_stencil)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate profile bounds (const ModelDataT< Model > &data, ProfileBoundsData &bounds est)
- void estimate_profile_bounds_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds ← est)
- IdxVecT get exit counts () const

Static Public Attributes

static const int DefaultIterations =100

Protected Member Functions

- void record_run_statistics (const MaximizerData &data)
- void compute_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle_data, StencilT< Model > &mle_stencil) override
- void compute_estimate_debug (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, M←
 LEDebugData &mle data, StencilT < Model > &mle stencil) override
- double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, const IdxVecT &fixed_idxs, StencilT< Model > &theta_max) override
- void compute_profile_bound_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds) override
- bool backtrack (MaximizerData &data)
- bool profile_bound_backtrack (MaximizerData &data, ldxT fixed_idx, double target_rllh, double old_fval, const VecT &fgrad)
- virtual void maximize (MaximizerData &data)=0
- virtual void solve_profile_bound (MaximizerData &data, MLEData &mle, double Ilh_delta, IdxT fixed_idx, IdxT which_bound)
- bool convergence test grad ratio (const VecT &grad, double fval)
- bool convergence_test_step_size (const VecT &new_theta, const VecT &old_theta)
- void record_exit_code (ExitCode code) override
- void record walltime (ClockT::time point start walltime, int num estimations)

Protected Attributes

- int max iterations
- int total iterations = 0
- int total backtracks = 0
- int total_fun_evals = 0
- int total der evals = 0
- IdxVecT last_backtrack_idxs

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

- · int max_threads
- · int num threads
- std::mutex mtx
- · const Model & model
- int num_estimations = 0
- double total_walltime = 0.
- IdxVecT exit counts

Static Protected Attributes

• static const double min_eigenvalue_correction_delta = 1e-3

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

• static const double convergence_min_function_change_ratio = 1.0e-9

Convergence criteria: tolerance for function-value change.

• static const double convergence_min_step_size_ratio = 1.0e-9

Convergence criteria: tolerance of relative step size.

- static const double backtrack min ratio = 0.05
- static const double backtrack max ratio = 0.50
- static const double backtrack_min_linear_step_ratio = 1e-3
- static const int max_backtracks = 8
- static const double min profile bound residual = 1e-4

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

9.50.1 Detailed Description

 $\label{lem:condition} {\it template} < {\it class Model} > \\ {\it class mappel} :: {\it estimator} :: {\it QuasiNewtonMaximizer} < {\it Model} > \\ \\$

Definition at line 601 of file estimator.h.

- 9.50.2 Member Typedef Documentation
- 9.50.2.1 template < class Model > using mappel::estimator::QuasiNewtonMaximizer < Model >::MaximizerData = typename IterativeMaximizer < Model >::MaximizerData

Definition at line 604 of file estimator.h.

- 9.50.3 Constructor & Destructor Documentation
- 9.50.3.1 template < class Model > mappel::estimator::QuasiNewtonMaximizer < Model >::QuasiNewtonMaximizer (const Model & model, int max_iterations = IterativeMaximizer < Model >:: DefaultIterations) [inline]

Definition at line 606 of file estimator.h.

9.50.4 Member Function Documentation

9.50.4.1 template < class Model > bool mappel::estimator::lterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 870 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::Iterative Maximizer Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::Estimator<:Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::Estimator::ThreadedEstimator<:IterativeMaximizer</td>

_backtrack(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel::estimator::IterativeMaximizer

_MaximizerData::restore_stencil(), mappel::methods::objective::rllh(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_wimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.50.4.2 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::clear_stats () [virtual], [inherited]

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 848 of file estimator_impl.h.

References mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel::estimator::Iterative Maximizer< Model >::total_der_evals, mappel::estimator::IterativeMaximizer< Model >::total_fun_evals, and mappel::estimator::IterativeMaximizer< Model >::total_iterativeMaximizer<

9.50.4.3 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::compute_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 1043 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >-- ::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative-- Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::Iterative-- Maximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

9.50.4.4 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Virtual estimate debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1057 of file estimator impl.h.

9.50.4.5 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [override], [protected], [virtual], [inherited]

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1088 of file estimator impl.h.

References mappel::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::mle, mappel::estimator
Model >::model, mappel::estimator::ProfileBoundsData::profile_lb, mappel::estimator
::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_lb_rllh, mappel
::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::IterativeMaximizer
Model >::solve_profile_bound(), mappel::estimator::Profile
BoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1114 of file estimator_impl.h.

References mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::ProfileBoundsDebugData::Nseq_ \hookrightarrow lb, mappel::estimator::ProfileBoundsDebugData::Nseq_ub, mappel::estimator::MLEData::obsl, mappel::estimator \hookrightarrow ::ProfileBoundsDebugData::profile_lb, mappel::estimator::ProfileBoundsDebugData::profile_ub, mappel::estimator \hookrightarrow ::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::ProfileBoundsDebugData::sequence \hookrightarrow _lb, mappel::estimator::ProfileBoundsDebugData::sequence_lb_rllh, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::sequence_ub, mappel::estimator::ProfileBoundsDebugData::sequence_ub_rllh, mappel::estimator::Iterative \hookrightarrow Maximizer< Model >::solve_profile_bound(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::ProfileBoundsDebugData::target \hookrightarrow _rllh_delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1074 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::estimator::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::Iterative \(\to \) Maximizer< Model >::MaximizerData::set_\(\to \) fixed parameters(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil().

9.50.4.8 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::convergence_test_grad_ratio (const VecT & grad, double fval) [protected], [inherited]

Definition at line 1015 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::GradRatio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::square().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

Definition at line 1027 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::StepSize.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.50.4.10 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::MLEData::rllh, and mappel::estimator ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max().

```
9.50.4.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, const ParamT < Model > & theta init, MLEData & mle_data) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max().

```
9.50.4.12 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, MLEData & mle data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max(), and mappel::estimator::Estimator< Model >← ::model.

```
9.50.4.13 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta_init and theta_mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.50.4.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data)
[inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel ::estimator::MLEDebugData::obsl, mappel::print text image(), mappel::estimator::Estimator< Model >::record \(\lefta \)

 $\label{lem:code} exit_code(), \ mappel::estimator::Estimator< Model > ::record_walltime(), \ mappel::estimator::MLEDebugData::rllh, \ and \ mappel::estimator::MLEDebugData::theta.$

```
9.50.4.15 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack ( const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

```
9.50.4.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack ( const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack ) [override], [virtual], [inherited]
```

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for each data

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::Estimator::Estimator::MLEDataStack::Ndata, mappel::estimator::Threaded = Estimator< Model >::num threads, mappel::estimator::MLEDataStack::obsl, mappel::estimator::MLEDataStack::obsl,

mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel ::estimator::Btimator::MLEData::rllh, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.50.4.17 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator<: Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator:: \leftarrow ProfileBoundsData::profile_lb, mappel::estimator::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator:: \leftarrow ProfileBoundsData::profile_ub, mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator \leftarrow ::Estimator
 Model >::record_exit_code(), mappel::estimator \leftarrow ::Estimator
 Model >::record_exit_code(), mappel::estimator \leftarrow ::Estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::error bounds profile likelihood().

9.50.4.18 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::mappel::estimator::ProfileBoundsDebugData::mappel::estimator::ProfileBoundsDebugData::mappel::estimator::Code(), mappel::estimator::Code(), mappel::estimator::Code(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappelcodestimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

9.50.4.19 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_ ⇔ parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::mum_threads, mappel::estimator::: MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel::estimator::Estimator
Model >::record_exit_code(), mappel::estimator::Estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood parallel().

9.50.4.20 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute profile bound(), mappel::estimator::Error, mappel ← ::estimator::ProfileBoundsData::estimated idxs, mappel::estimator::ProfileBoundsDataStack::estimated idxs, mappel idxs, m ::estimator::ProfileBoundsData::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::← Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator< Model >::num threads, mappel::estimator::ML← EData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ProfileBounds ← mappel::estimator::ProfileBoundsDataStack::profile lb. mappel::estimator::ProfileBoundsData← Data::profile lb. ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile points lb rllh, mappel::estimator::ProfileBoundsDataStack::profile points lb rllh, mappel::estimator. ::ProfileBoundsData::profile points ub, mappel::estimator::ProfileBoundsDataStack::profile points ub, ::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points← ub rllh, mappel::estimator::ProfileBoundsData::profile ub, mappel::estimator::ProfileBoundsDataStack::profile ub, mappel::estimator::ThreadedEstimator< Model >::record exit code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target_rllh_delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData ← Stack::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood stack().

```
9.50.4.21 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max ) [inherited]
```

Profile likelihood estimation methods

Definition at line 190 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::Error, mappel ::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

```
9.50.4.22 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile ) [override], [virtual], [inherited]
```

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:: \leftarrow ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::ProfileLikelihoodData::profile_likelihoodData::profile_likelihoodData::profile_parameters, mappel::estimator::ThreadedEstimator

```
9.50.4.23 template < class Model > StatsT mappel::estimator::lterativeMaximizer < Model >::get_debug_stats( ) [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 832 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator::

IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::last_backtrack_idxs.

```
9.50.4.24 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

```
9.50.4.25 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.50.4.26 template < class Model > StatsT mappel::estimator::IterativeMaximizer < Model >::get_stats ( ) [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 811 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::ThreadedEstimator<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::Iterative \(\to \) Maximizer< Model >::mtx, mappel::estimator::\(\to \) Estimator< Model >::num_estimations, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_\(\to \) fun evals, and mappel::estimator::IterativeMaximizer< Model >::total iterations.

Referenced by mappel::methods::error_bounds_profile_likelihood(), mappel::methods::debug::error_bounds_ \hookleftarrow profile_likelihood_debug(), mappel::methods::openmp::error_bounds_profile_likelihood_parallel(), mappel::methods \hookleftarrow ::openmp::error_bounds_profile_likelihood_stack(), mappel::estimator::SimulatedAnnealingMaximizer< Model $> \hookleftarrow$::get debug stats(), and mappel::estimator::lterativeMaximizer< Model > ::get debug stats().

9.50.4.27 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_backtracks () const [inline], [inherited]

Definition at line 443 of file estimator.h.

9.50.4.28 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_der_evals () const [inline], [inherited]

Definition at line 445 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.50.4.29 template < class Model > int mappel::estimator::IterativeMaximizer < Model > ::get_total_fun_evals () const [inline], [inherited]

Definition at line 444 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.50.4.30 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_iterations () const [inline], [inherited]

Definition at line 442 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.50.4.31 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEData & data) [inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 1145 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative \leftarrow Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.50.4.32 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEDebugData & debug_data) [inherited]

Definition at line 1158 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::Iterative ::Maximizer< Model >::maximize(), mappel::estimator::Estimator<:Model >::model, mappel::methods::observed_ :-information(), mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::record :-information(), mappel::estimator::MLEDebugData::rllh, mappel::estimator::IterativeMaximizer< Model >:: :-information(), mappel::estimator::MLEDebugData::sequence, mappel::estimator::MLEDebugData::sequence_ :-information(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEDebugData::stencil(), mappel::estimator::MLEDebugData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

9.50.4.33 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::local_profile_maximize (const ModelDataT < Model > & im, const ldxVecT & fixed_param_idxs, StencilT < Model > & stencil, MLEDebugData & mle) [inherited]

Definition at line 1173 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::subroutine::bound ← mappel::estimator::subroutine::compute bound scaling vec(), mappel::estimator::subroutine::compute_initial_trust_radius(), ::subroutine::compute cauchy point(), mappel← ::estimator::subroutine::compute quadratic model value(), mappel::estimator::subroutine::compute scaled problem(), mappel::estimator::IterativeMaximizer< Model >::convergence test grad ratio(), mappel::estimator::Iterative← Maximizer< Model >::convergence test step size(), mappel::estimator::Estimator< Model >::exit counts, mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::fixed idxs, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::free idxs, mappel::estimator::Estimator< Model >::get exit counts(), mappel::estimator::← IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::IterativeMaximizer< Model >::get_total_der ← evals(), mappel::estimator::IterativeMaximizer< Model >::get total fun evals(), mappel::estimator::Iterative ← Maximizer< Model >::get total iterations(), mappel::methods::objective::grad(), mappel::estimator::Iterative ← $\label{lem:maximizer} \textbf{MaximizerData::grad}, \quad \text{mappel::methods::objective::grad2()}, \quad \text{mappel::estimator::lterative} \leftarrow \\$ Maximizer Model >::Maximizer Data::has_fixed_parameters(), mappel::methods::objective::hessian(), mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::is_positive_definite(), mappel::estimator::← IterativeMaximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_← maximize(), mappel::estimator::IterativeMaximizer < Model >::max iterations, mappel::estimator::IterativeMaximizer < Model >::maximize(), mappel::estimator::MaxIter, mappel::estimator::IterativeMaximizer< Model >::min profile← bound residual, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters(), mappel ::methods::observed information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record backtrack(), mappel::estimator::ThreadedEstimator< Model >::record exit ← code(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record iteration(), mappel::estimator::⇔ IterativeMaximizer< Model >::record run statistics(), mappel::estimator::IterativeMaximizer< Model >::Maximizer ← Data::restore_stencil(), mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator::⇔ MLEDebugData::rllh, mappel::estimator::lerativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::le-IterativeMaximizer< Model >::MaximizerData::s0, mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ :::s1, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::save stencil(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::saved theta(), mappel::estimator::MLEDebugData::sequence, mappel ← ::estimator::MLEDebugData::sequence rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::set_fixed_parameters(), mappel::estimator::lterativeMaximizer< Model >::MaximizerData::set_stencil(), mappel ::estimator::subroutine::solve_TR_subproblem(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::stencil(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::MLEData::theta, mappel::estimator::MLEDebugData::theta, mappel::estimator::lterativeMaximizer< Model >::MaximizerData::theta(), mappel::estimator::IterativeMaximizer< Model >::total der evals, mappel::estimator::IterativeMaximizer< Model >← ::total fun evals, mappel::estimator::IterativeMaximizer< Model >::total iterations, and mappel::estimator::Trust← RegionRadius.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative Adaminizer< Model >::compute_estimater
Maximizer< Model >::compute_estimater
Model >::local_maximize(), and mappel::estimator::
HerativeMaximizer
Model >::local_maximize(), and mappel::estimator::
HerativeMaximizer

```
9.50.4.35 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_backtracks()
[inherited]

9.50.4.36 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_der_evals()
[inherited]

9.50.4.37 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_fun_evals()
[inherited]

9.50.4.38 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_iterations()
[inherited]

9.50.4.39 template < class Model > std::string mappel::estimator::QuasiNewtonMaximizer < Model >::name() const
[inline], [virtual]
```

Implements mappel::estimator::Estimator< Model >.

Definition at line 609 of file estimator.h.

Definition at line 943 of file estimator impl.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.50.4.41 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >:::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:::Cuccess, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator:: \leftarrow ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator
Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer

9.50.4.42 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::record_run_statistics (const MaximizerData & data) [protected], [inherited]

Definition at line 859 of file estimator impl.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative
Maximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_eprofile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel
::estimator::IterativeMaximizer< Model >::compute_profile_estimator::IterativeMaximizer< Model >::local maximize(), and mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.50.4.43 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

 $References\ mappel::estimator::Estimator< Model >::num_estimations,\ and\ mappel::estimator::Estimator< Model > \leftarrow ::total\ walltime.$

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel ::estimator::Estimator< Model >::estimator::Estimator< Model >::estimate_constitute = constitute = constitute

Definition at line 1137 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::name().

Referenced by mappel::estimator::IterativeMaximizer < Model >::compute_profile_bound(), and mappel::estimator:: IterativeMaximizer < Model >::compute_profile_bound debug().

9.50.5 Member Data Documentation

9.50.5.1 template < class Model > const double mappel::estimator::IterativeMaximizer < Model > ::backtrack_max_ratio = 0.50 [static], [protected], [inherited]

Definition at line 462 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::profile bound backtrack().

9.50.5.2 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::backtrack_min_linear_step_ratio = 1e-3 [static], [protected], [inherited]

Definition at line 463 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), and mappel::estimator::Iterative \leftarrow Maximizer< Model >::profile bound backtrack().

9.50.5.3 template < class Model > const double mappel::estimator::lterativeMaximizer < Model > ::backtrack_min_ratio = 0.05 [static], [protected], [inherited]

Definition at line 461 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::profile_bound_backtrack().

9.50.5.4 template < class Model > const double mappel::estimator::IterativeMaximizer < Model >::convergence_min_function_change_ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance for function-value change.

Definition at line 458 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), and mappel ::estimator::IterativeMaximizer< Model >::get stats().

9.50.5.5 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::convergence min step size ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance of relative step size.

Definition at line 459 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_step_size(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel ::estimator::IterativeMaximizer< Model >::profile bound backtrack().

9.50.5.6 template < class Model > const int mappel::estimator::IterativeMaximizer < Model >::DefaultIterations = 100 [static], [inherited]

Definition at line 430 of file estimator.h.

9.50.5.7 template < class Model > IdxVecT mappel::estimator::Estimator < Model > ::exit_counts [protected], [inherited]

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator<:Model >::get_ ⇔ stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded ⇔ Estimator< Model >::record exit code().

9.50.5.8 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

Definition at line 477 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_debug_stats(), and mappel::estimator::Iterative \(\times \) Maximizer< Model >::record_run_statistics().

9.50.5.9 template < class Model > const int mappel::estimator::lterativeMaximizer < Model >::max_backtracks = 8 [static], [protected], [inherited]

Definition at line 464 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::backtrack(), mappel::estimator::lterativeMaximizer< Model >::get stats(), and mappel::estimator::lterativeMaximizer< Model >::profile bound backtrack().

9.50.5.10 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::max_iterations [protected], [inherited]

Definition at line 468 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Iterative \(\to \) Maximizer < Model >::local profile maximize().

Definition at line 326 of file estimator.h.

9.50.5.12 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::min_eigenvalue_correction_delta = 1e-3 [static], [protected], [inherited]

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

Definition at line 456 of file estimator.h.

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

Definition at line 466 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel ::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::Estimator< Model >↔ ::compute profile bound(), mappel::estimator::lterativeMaximizer< Model >::compute profile bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >-::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_stack(), mappel::estimator::Threaded ← Estimator < Model >::estimate max stack(), mappel::estimator::Estimator < Model >::estimate profile bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate profile bounds stack(), mappel::estimator::ThreadedEstimator < Model >::estimate ← profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get debug stats(), mappel::estimator::Estimator< Model >::get model(), mappel::estimator::Iterative← Maximizer Model >::local_maximize(), mappel::estimator::IterativeMaximizer Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.50.5.15 template<**class Model** > **std::mutex mappel::estimator::ThreadedEstimator**< **Model** >::**mtx** [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel ::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator

9.50.5.16 template < class Model > int mappel::estimator::Estimator < Model >::num_estimations = 0 [protected], [inherited]

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

9.50.5.17 template < class Model > int mappel::estimator::ThreadedEstimator < Model >::num_threads [protected], [inherited]

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator

Estimator

Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile \leftarrow bounds_parallel(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator

Model >::estimator::ThreadedEstimator

Model >::get_stats().

9.50.5.18 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_backtracks = 0 [protected], [inherited]

Definition at line 472 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.50.5.19 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::total_der_evals = 0 [protected], [inherited]

Definition at line 474 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.50.5.20 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_fun_evals = 0 [protected], [inherited]

Definition at line 473 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated \leftarrow AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

9.50.5.21 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_iterations = 0 [protected], [inherited]

Definition at line 471 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated \leftarrow AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h

9.51 mappel::estimator::SimulatedAnnealingMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::SimulatedAnnealingMaximizer< Model >:

Public Member Functions

- SimulatedAnnealingMaximizer (const Model &model, int num_iterations_=DefaultNumIterations, double T_init
 —=Default_T_Init, double cooling_rate_=DefaultCoolingRate)
- StatsT get_stats ()
- StatsT get_debug_stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init
 stack, MLEDataStack &mle data stack) override

- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
 override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- · void clear stats ()
- const Model & get model ()
- void estimate_max_stack (const ModelDataStackT< Model > &data_stack, MLEDataStack &mle_data_stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data, StencilT< Model > &mle stencil)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 —data)
- void estimate max (const ModelDataT< Model > &data, MLEData &mle data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data, StencilT< Model > &mle_stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate_profile_bounds (const ModelDataT < Model > &data, ProfileBoundsData &bounds_est)
- void estimate_profile_bounds_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds ← est)
- IdxVecT get_exit_counts () const

Static Public Attributes

• static const int DefaultNumIterations = 500

Default number of SA iterations.

static const double Default_T_Init = 100.

Default SA initial temperature.

static const double DefaultCoolingRate = 1.02

Default SA cooling rate.

Protected Member Functions

- void record exit code (ExitCode code) override
- virtual void compute_profile_bound (const ModelDataT< Model > &data, ProfileBoundsData &est, const VecT &init_step, IdxT param_idx, IdxT which_bound)
- virtual void compute_profile_bound_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &est)
- void record walltime (ClockT::time point start walltime, int num estimations)

Protected Attributes

- int max threads
- · int num threads
- std::mutex mtx
- const Model & model
- int num_estimations = 0
- double total walltime = 0.
- IdxVecT exit_counts

9.51.1 Detailed Description

```
template < class Model > class mappel::estimator::SimulatedAnnealingMaximizer < Model >
```

Definition at line 386 of file estimator.h.

- 9.51.2 Constructor & Destructor Documentation
- 9.51.2.1 template < class Model > mappel::estimator::SimulatedAnnealingMaximizer < Model >::SimulatedAnnealingMaximizer (const Model & model, int num_iterations_ = DefaultNumIterations, double T_init_ = Default T_Init, double cooling_rate_ = DefaultCoolingRate) [inline]

Definition at line 394 of file estimator.h.

- 9.51.3 Member Function Documentation

Run statistics.

Reimplemented from mappel::estimator::Estimator < Model >.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 570 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, and mappel::estimator::ThreadedEstimator< Model >::num_threads.

Referenced by mappel::estimator::lterativeMaximizer< Model >::clear stats().

9.51.3.2 template < class Model > void mappel::estimator::Estimator < Model > ::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 309 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator< Model > \leftarrow ::estimate profile bounds stack().

9.51.3.3 template < class Model > void mappel::estimator::Estimator < Model > ::compute_profile_bound_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & est) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 318 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate profile bounds debug().

9.51.3.4 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print text image(), mappel::estimator::Estimator<: Model >::record exit code(),

 $mappel::estimator::Estimator < Model > ::record_walltime(), mappel::estimator::MLEData::rllh, and mappel::estimator \\ ::MLEData::theta.$

Referenced by mappel::estimator::Estimator< Model >::estimate_max().

```
9.51.3.5 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate max().

```
9.51.3.6 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, MLEData & mle_data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max(), and mappel::estimator::Estimator< Model >← ::model.

```
9.51.3.7 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta_init and theta_mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.51.3.8 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

9.51.3.9 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data stack, MLEDataStack & mle data stack) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.51.3.10 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [override], [virtual], [inherited]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for
		each data

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::MLEDataStack::Ndata, mappel::estimator::Threaded \leftarrow Estimator< Model >::num_threads, mappel::estimator::MLEData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel ::estimator::Estimator::Estimator::MLEData::rllh, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.51.3.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::model, mappel::estimator::Profile ::estimator::ProfileBoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::ProfileBoundsData::profile_b, mappel::estimator::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator::Estimator
ProfileBoundsData::profile_ub, mappel::estimator::Estimator
Model >::record_exit_code(), mappel::estimator
::Estimator
Model >::record_walltime(), mappel::estimator::Subroutine::solve_profile_initial_step(), mappel
::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::error bounds profile likelihood().

9.51.3.12 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_walltime(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

9.51.3.13 template < class Model > void mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_ \leftarrow parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsData::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel ::estimator::ProfileBoundsData::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::model, mappel::estimator::Profile ::mum_threads, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator<:Model >::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood parallel().

9.51.3.14 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute profile bound(), mappel::estimator::Error, mappel ← ::estimator::ProfileBoundsData::estimated idxs, mappel::estimator::ProfileBoundsDataStack::estimated idxs, mappel idxs, m ::estimator::ProfileBoundsData::initialize arrays(), mappel::estimator::ProfileBoundsDataStack::initialize arrays(), mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::← Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator< Model >::num threads, mappel::estimator::ML← EData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ProfileBounds ← mappel::estimator::ProfileBoundsDataStack::profile lb. mappel::estimator::ProfileBoundsData← Data::profile lb. ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile_points_lb_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points_lb_rllh, mappel::estimator: ::ProfileBoundsData::profile points ub, mappel::estimator::ProfileBoundsDataStack::profile points ub, ::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsDataStack::profile_points← ub rllh, mappel::estimator::ProfileBoundsData::profile ub, mappel::estimator::ProfileBoundsDataStack::profile ub, mappel::estimator::ThreadedEstimator< Model >::record exit code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target_rllh_delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData ← Stack::theta.

Referenced by mappel::methods::openmp::error bounds profile likelihood stack().

```
9.51.3.15 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max ) [inherited]
```

Profile likelihood estimation methods

Definition at line 190 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::estimator::Error, mappel ::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

```
9.51.3.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max ( const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile ) [override], [virtual], [inherited]
```

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:: \leftarrow ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::ProfileLikelihoodData::profile_likelihoodData::profile_likelihoodData::profile_parameters, mappel::estimator::ThreadedEstimator

```
9.51.3.17 template < class Model > StatsT mappel::estimator::SimulatedAnnealingMaximizer < Model >::get_debug_stats() [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 1764 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::get stats().

```
9.51.3.18 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

```
9.51.3.19 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.51.3.20 template < class Model > StatsT mappel::estimator::SimulatedAnnealingMaximizer < Model >::get_stats( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 1744 of file estimator impl.h.

References mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::Estimator< Model >::num_estimations, mappel::estimator::IterativeMaximizer< Model >::total_der_evals, mappel::estimator::HerativeMaximizer< Model >::total_fun_evals, and mappel::estimator::\infty IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterations.

```
9.51.3.21 template < class Model > std::string mappel::estimator::SimulatedAnnealingMaximizer < Model >::name ( ) const [inline], [virtual]
```

Implements mappel::estimator::Estimator< Model >.

Definition at line 403 of file estimator.h.

References mappel::estimator::MLEData::rllh.

9.51.3.22 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator < Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >:::model, mappel::estimator::ThreadedEstimator< Model >:::mtx, mappel::methods::observed_information(), mappel:::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:::Cuccess, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator:: \leftarrow ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator $< Model > ::get_debug_stats(), mappel::estimator::IterativeMaximizer
<math display="block">< Model > ::local_profile_maximize(), and mappel ::estimator::IterativeMaximizer
<math display="block">< Model > ::local_profile_maximize(), and mappel ::estimator::IterativeMaximizer
<math display="block">< Model > ::local_profile_maximize(), and mappel ::estimator::IterativeMaximizer$

9.51.3.23 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::num_estimations, and mappel::estimator::Estimator< Model >::total walltime.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Model >::estimator<:Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max().

9.51.4 Member Data Documentation

9.51.4.1 template < class Model > const double mappel::estimator::SimulatedAnnealingMaximizer < Model >::Default_T_Init = 100. [static]

Default SA initial temperature.

Definition at line 391 of file estimator.h.

9.51.4.2 template < class Model > const double mappel::estimator::SimulatedAnnealingMaximizer < Model >::DefaultCoolingRate = 1.02 [static]

Default SA cooling rate.

Definition at line 392 of file estimator.h.

9.51.4.3 template < class Model > const int mappel::estimator::SimulatedAnnealingMaximizer < Model >::DefaultNumIterations = 500 [static]

Default number of SA iterations.

Definition at line 390 of file estimator.h.

9.51.4.4 template < class Model > IdxVecT mappel::estimator::Estimator < Model > ::exit_counts [protected], [inherited]

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded \leftarrow Estimator< Model >::record_exit_code().

Definition at line 326 of file estimator.h.

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel ::estimator::IterativeMaximizer< Model >::compute estimate debug(), mappel::estimator::Estimator< Model >← ::compute_profile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ← ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >-::estimate max(), mappel::estimator::Estimator< Model >::estimate max stack(), mappel::estimator::Threaded ← Estimator< Model >::estimate max stack(), mappel::estimator::Estimator< Model >::estimate profile bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate profile bounds stack(), mappel::estimator::ThreadedEstimator < Model >::estimate ← profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::Estimator< Model >::get_model(), mappel::estimator::Iterative← Maximizer Model >::local maximize(), mappel::estimator::IterativeMaximizer Model >::local profile maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.51.4.7 template < class Model > std::mutex mappel::estimator::ThreadedEstimator < Model >::mtx [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel ::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

9.51.4.9 template<**class Model** > **int mappel**::**estimator**::**ThreadedEstimator**< **Model** >::**num_threads** [protected], [inherited]

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile \leftarrow _bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator<:ThreadedEstimator<:Model >::estimator::ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEstimator<:ThreadedEs

9.51.4.10 template < class Model > double mappel::estimator::Estimator < Model >::total_walltime = 0. [protected], [inherited]

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \hookleftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \hookleftarrow ::record walltime().

The documentation for this class was generated from the following files:

- estimator.h
- · estimator impl.h

9.52 mappel::Gauss2DsxyModel::Stencil Class Reference

Stencil for 2D free-sigma (astigmatic) models.

 $\verb|#include| </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsxyModel. \leftarrow h>$

Public Types

typedef Gauss2DsxyModel::ParamT ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss2DsxyModel &model, const ParamT &theta, bool _compute_derivatives=true)
- void compute_derivatives ()
- double x () const
- double y () const
- double I () const
- · double bg () const
- double sigmaX () const
- double sigmaY () const

Public Attributes

- bool derivatives computed =false
- Gauss2DsxyModel const * model
- · ParamT theta
- VecT dx
- VecT dy
- VecT Gx
- VecT Gy
- VecT X
- VecT Y
- VecT DX
- VecT DY
- VecT DXSX
- VecT DYSX
- VecT DXS
- VecT DYS
- VecT DXS2
- VecT DYS2
- VecT DYSY

Friends

std::ostream & operator<< (std::ostream &out, const Gauss2DsxyModel::Stencil &s)

9.52.1 Detailed Description

Stencil for 2D free-sigma (astigmatic) models.

Definition at line 32 of file Gauss2DsxyModel.h.

9.52.2 Member Typedef Documentation

9.52.2.1 typedef Gauss2DsxyModel::ParamT mappel::Gauss2DsxyModel::Stencil::ParamT

Definition at line 35 of file Gauss2DsxyModel.h.

```
9.52.3 Constructor & Destructor Documentation
9.52.3.1 mappel::Gauss2DsxyModel::Stencil() [inline]
Definition at line 47 of file Gauss2DsxyModel.h.
References compute derivatives().
Referenced by mappel::Gauss2DsxyModel::make_stencil().
9.52.3.2 mappel::Gauss2DsxyModel::Stencil:( const Gauss2DsxyModel & model, const ParamT & theta, bool
        _compute_derivatives = true )
9.52.4 Member Function Documentation
9.52.4.1 double mappel::Gauss2DsxyModel::Stencil::bg ( ) const [inline]
Definition at line 53 of file Gauss2DsxyModel.h.
References theta.
Referenced by mappel::Gauss2DsxyModel::pixel_model_value().
9.52.4.2 void mappel::Gauss2DsxyModel::Stencil::compute_derivatives ( )
Referenced by Stencil().
9.52.4.3 double mappel::Gauss2DsxyModel::Stencil::I() const [inline]
Definition at line 52 of file Gauss2DsxyModel.h.
References theta.
Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), mappel::←
Gauss2DsxyModel::pixel_hess(), and mappel::Gauss2DsxyModel::pixel_model_value().
9.52.4.4 double mappel::Gauss2DsxyModel::Stencil::sigmaX( )const [inline]
Definition at line 54 of file Gauss2DsxyModel.h.
References theta.
Referenced by mappel::Gauss2DsxyModel::pixel grad2(), and mappel::Gauss2DsxyModel::pixel hess().
9.52.4.5 double mappel::Gauss2DsxyModel::Stencil::sigmaY( )const [inline]
Definition at line 55 of file Gauss2DsxyModel.h.
References operator<<, and theta.
```

Referenced by mappel::Gauss2DsxyModel::pixel grad2(), and mappel::Gauss2DsxyModel::pixel hess().

9.52.4.6 double mappel::Gauss2DsxyModel::Stencil::x()const [inline]

Definition at line 50 of file Gauss2DsxyModel.h.

References theta.

9.52.4.7 double mappel::Gauss2DsxyModel::Stencil::y()const [inline]

Definition at line 51 of file Gauss2DsxyModel.h.

References theta.

9.52.5 Friends And Related Function Documentation

9.52.5.1 std::ostream& operator << (std::ostream & out, const Gauss2DsxyModel::Stencil & s) [friend]

Referenced by sigmaY().

9.52.6 Member Data Documentation

9.52.6.1 bool mappel::Gauss2DsxyModel::Stencil::derivatives_computed =false

Definition at line 34 of file Gauss2DsxyModel.h.

9.52.6.2 VecT mappel::Gauss2DsxyModel::Stencil::dx

Definition at line 39 of file Gauss2DsxyModel.h.

9.52.6.3 VecT mappel::Gauss2DsxyModel::Stencil::DX

Definition at line 42 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), and mappel::Gauss2DsxyModel::pixel_hess().

9.52.6.4 VecT mappel::Gauss2DsxyModel::Stencil::DXS

Definition at line 44 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), and mappel::Gauss2DsxyModel::pixel_hess().

9.52.6.5 VecT mappel::Gauss2DsxyModel::Stencil::DXS2

Definition at line 45 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel grad2(), and mappel::Gauss2DsxyModel::pixel hess().

9.52.6.6 VecT mappel::Gauss2DsxyModel::Stencil::DXSX

Definition at line 43 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_hess().

9.52.6.7 VecT mappel::Gauss2DsxyModel::Stencil::dy

Definition at line 39 of file Gauss2DsxyModel.h.

9.52.6.8 VecT mappel::Gauss2DsxyModel::Stencil::DY

Definition at line 42 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), and mappel::Gauss2DsxyModel::pixel_hess().

9.52.6.9 VecT mappel::Gauss2DsxyModel::Stencil::DYS

Definition at line 44 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), and mappel::Gauss2DsxyModel::pixel_hess().

9.52.6.10 VecT mappel::Gauss2DsxyModel::Stencil::DYS2

Definition at line 45 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad2(), and mappel::Gauss2DsxyModel::pixel_hess().

9.52.6.11 VecT mappel::Gauss2DsxyModel::Stencil::DYSX

Definition at line 43 of file Gauss2DsxyModel.h.

9.52.6.12 VecT mappel::Gauss2DsxyModel::Stencil::DYSY

Definition at line 46 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_hess().

9.52.6.13 VecT mappel::Gauss2DsxyModel::Stencil::Gx

Definition at line 40 of file Gauss2DsxyModel.h.

9.52.6.14 VecT mappel::Gauss2DsxyModel::Stencil::Gy

Definition at line 40 of file Gauss2DsxyModel.h.

9.52.6.15 Gauss2DsxyModel const* mappel::Gauss2DsxyModel::Stencil::model

Definition at line 36 of file Gauss2DsxyModel.h.

9.52.6.16 ParamT mappel::Gauss2DsxyModel::Stencil::theta

Definition at line 38 of file Gauss2DsxyModel.h.

Referenced by bg(), I(), sigmaX(), sigmaY(), x(), and y().

9.52.6.17 VecT mappel::Gauss2DsxyModel::Stencil::X

Definition at line 41 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), mappel::

Gauss2DsxyModel::pixel hess(), and mappel::Gauss2DsxyModel::pixel model value().

9.52.6.18 VecT mappel::Gauss2DsxyModel::Stencil::Y

Definition at line 41 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), mappel::

Gauss2DsxyModel::pixel_hess(), and mappel::Gauss2DsxyModel::pixel_model_value().

The documentation for this class was generated from the following file:

• Gauss2DsxyModel.h

9.53 mappel::Gauss1DsModel::Stencil Class Reference

Stencil for 1D variable-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsModel.h>

Public Types

using ParamT = Gauss1DsModel::ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss1DsModel &model, const ParamT &theta, bool _compute_derivatives=true)
- void compute_derivatives ()
- double x () const
- double I () const
- double bg () const
- · double sigma () const

Public Attributes

- bool derivatives_computed = false
- Gauss1DsModel const * model
- · ParamT theta
- VecT dx
- VecT Gx
- VecT X
- VecT DX
- VecT DXS
- VecT DXS2
- VecT DXSX

Friends

std::ostream & operator<< (std::ostream &out, const Gauss1DsModel::Stencil &s)

9.53.1 Detailed Description

Stencil for 1D variable-sigma models.

Definition at line 24 of file Gauss1DsModel.h.

9.53.2 Member Typedef Documentation

9.53.2.1 using mappel::Gauss1DsModel::Stencil::ParamT = Gauss1DsModel::ParamT

Definition at line 27 of file Gauss1DsModel.h.

9.53.3 Constructor & Destructor Documentation

9.53.3.1 mappel::Gauss1DsModel::Stencil::Stencil() [inline]

Definition at line 38 of file Gauss1DsModel.h.

References compute_derivatives().

Referenced by mappel::Gauss1DsModel::make_stencil().

9.53.3.2 mappel::Gauss1DsModel::Stencil:(const Gauss1DsModel & model, const ParamT & theta, bool _compute_derivatives = true)

Definition at line 159 of file Gauss1DsModel.cpp.

References compute_derivatives(), dx, mappel::make_d_stencil(), mappel::make_X_stencil(), model, sigma(), mappel::lmageFormat1DBase::size, X, and x().

9.53.4 Member Function Documentation

9.53.4.1 double mappel::Gauss1DsModel::Stencil::bg() const [inline]

Definition at line 43 of file Gauss1DsModel.h.

References theta.

Referenced by mappel::Gauss1DsModel::initial_theta_estimate(), and mappel::Gauss1DsModel::pixel_model_value().

9.53.4.2 void mappel::Gauss1DsModel::Stencil::compute_derivatives ()

Definition at line 170 of file Gauss1DsModel.cpp.

References derivatives_computed, dx, DX, DXS, DXS2, DXSX, Gx, mappel::make_DX_stencil(), mappel::make_DXS_stencil(), mappel::make_DXS_stencil(), mappel::make_G_stencil(), model, sigma(), and mappel::lmageFormat1DBase::size.

Referenced by Stencil().

9.53.4.3 double mappel::Gauss1DsModel::Stencil::I() const [inline]

Definition at line 42 of file Gauss1DsModel.h.

References theta.

Referenced by mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss1DsModel::pixel_grad(), mappel::Gauss1DsModel::pixel_grad2(), mappel::Gauss1DsModel::pixel_hess(), mappel::Gauss1DsModel::pixel_hess_ \leftarrow update(), and mappel::Gauss1DsModel::pixel_model_value().

9.53.4.4 double mappel::Gauss1DsModel::Stencil::sigma () const [inline]

Definition at line 44 of file Gauss1DsModel.h.

References operator<<, and theta.

Referenced by compute_derivatives(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss1DsModel.:pixel_grad2(), mappel::Gauss1DsModel::pixel_hess(), mappel::Gauss1DsModel::pixel_hess_update(), and Stencil().

9.53.4.5 double mappel::Gauss1DsModel::Stencil::x() const [inline]

Definition at line 41 of file Gauss1DsModel.h.

References theta.

Referenced by Stencil().

9.53.5 Friends And Related Function Documentation

9.53.5.1 std::ostream& operator << (std::ostream & out, const Gauss1DsModel::Stencil & s) [friend]

Definition at line 182 of file Gauss1DsModel.cpp.

Referenced by sigma().

9.53.6 Member Data Documentation

9.53.6.1 bool mappel::Gauss1DsModel::Stencil::derivatives_computed = false

Definition at line 26 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

9.53.6.2 VecT mappel::Gauss1DsModel::Stencil::dx

Definition at line 31 of file Gauss1DsModel.h.

Referenced by compute derivatives(), mappel::operator<<(), and Stencil().

9.53.6.3 VecT mappel::Gauss1DsModel::Stencil::DX

Definition at line 34 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DsModel::pixel_grad(), mappel:: \leftarrow Gauss1DsModel::pixel_hess(), and mappel::Gauss1DsModel::pixel_hess_update().

9.53.6.4 VecT mappel::Gauss1DsModel::Stencil::DXS

Definition at line 35 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss1DsModel::pixel_grad(), mappel::Gauss1DsModel::pixel_hess(), and mappel::Gauss1DsModel::pixel_hess_ \leftarrow update().

9.53.6.5 VecT mappel::Gauss1DsModel::Stencil::DXS2

Definition at line 36 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator << (), mappel::Gauss1DsModel::pixel_grad2(), mappel:: \leftarrow Gauss1DsModel::pixel_hess(), and mappel::Gauss1DsModel::pixel_hess_update().

9.53.6.6 VecT mappel::Gauss1DsModel::Stencil::DXSX

Definition at line 37 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DsModel::pixel_hess(), and mappel::
Gauss1DsModel::pixel hess update().

9.53.6.7 VecT mappel::Gauss1DsModel::Stencil::Gx

Definition at line 32 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

9.53.6.8 Gauss1DsModel const* mappel::Gauss1DsModel::Stencil::model

Definition at line 28 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), and Stencil().

9.53.6.9 ParamT mappel::Gauss1DsModel::Stencil::theta

Definition at line 30 of file Gauss1DsModel.h.

Referenced by bg(), I(), mappel::operator << (), sigma(), and x().

9.53.6.10 VecT mappel::Gauss1DsModel::Stencil::X

Definition at line 33 of file Gauss1DsModel.h.

Referenced by mappel:: $Gauss1DsModel::pixel_grad()$, mappel:: $Gauss1DsModel::pixel_erad()$

The documentation for this class was generated from the following files:

- · Gauss1DsModel.h
- · Gauss1DsModel.cpp

9.54 mappel::Gauss2DModel::Stencil Class Reference

Stencil for 2D fixed-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DModel.h>

Public Types

• using ParamT = Gauss2DModel::ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss2DModel &model, const ParamT &theta, bool compute_derivatives=true)
- void compute_derivatives ()
- double x () const
- double y () const
- double I () const
- double bg () const

Public Attributes

- bool derivatives_computed =false
- Gauss2DModel const * model
- · ParamT theta
- VecT dx
- VecT dy
- VecT Gx
- VecT Gy
- VecT X
- VecT Y
- VecT DX
- VecT DY
- VecT DXS
- VecT DYS

Friends

std::ostream & operator<< (std::ostream &out, const Gauss2DModel::Stencil &s)

9.54.1 Detailed Description

Stencil for 2D fixed-sigma models.

Definition at line 26 of file Gauss2DModel.h.

- 9.54.2 Member Typedef Documentation
- 9.54.2.1 using mappel::Gauss2DModel::Stencil::ParamT = Gauss2DModel::ParamT

Definition at line 29 of file Gauss2DModel.h.

- 9.54.3 Constructor & Destructor Documentation
- **9.54.3.1** mappel::Gauss2DModel::Stencil() [inline]

Definition at line 38 of file Gauss2DModel.h.

References compute_derivatives().

Referenced by mappel::Gauss2DModel::make stencil().

9.54.3.2 mappel::Gauss2DModel::Stencil: const Gauss2DModel & model, const ParamT & theta, bool compute derivatives = true)

Definition at line 218 of file Gauss2DModel.cpp.

References compute_derivatives(), dx, dy, mappel::make_d_stencil(), mappel::make_X_stencil(), model, mappel::← Gauss2DModel::psf_sigma, mappel::lmageFormat2DBase::size, X, x(), Y, and y().

9.54.4 Member Function Documentation

9.54.4.1 double mappel::Gauss2DModel::Stencil::bg()const [inline]

Definition at line 44 of file Gauss2DModel.h.

References operator<<, and theta.

Referenced by mappel::Gauss2DModel::initial theta estimate(), and mappel::Gauss2DModel::pixel model value().

9.54.4.2 void mappel::Gauss2DModel::Stencil::compute_derivatives ()

Definition at line 232 of file Gauss2DModel.cpp.

References derivatives_computed, dx, DX, DXS, dy, DY, DYS, Gx, Gy, mappel::make_DX_stencil(), mappel::make_← DXS_stencil(), mappel::make_G_stencil(), model, mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2D← Base::size.

Referenced by Stencil().

9.54.4.3 double mappel::Gauss2DModel::Stencil::I() const [inline]

Definition at line 43 of file Gauss2DModel.h.

References theta.

Referenced by mappel::Gauss2DModel::pixel_grad(), mappel::Gauss2DModel::pixel_grad(), mappel:: \leftarrow Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), and mappel::Gauss2DModel::pixel_model_value().

9.54.4.4 double mappel::Gauss2DModel::Stencil::x () const [inline]

Definition at line 41 of file Gauss2DModel.h.

References theta.

Referenced by Stencil().

9.54.4.5 double mappel::Gauss2DModel::Stencil::y()const [inline] Definition at line 42 of file Gauss2DModel.h. References theta. Referenced by Stencil(). 9.54.5 Friends And Related Function Documentation 9.54.5.1 std::ostream& operator << (std::ostream & out, const Gauss2DModel::Stencil & s) [friend] Definition at line 249 of file Gauss2DModel.cpp. Referenced by bg(). 9.54.6 Member Data Documentation 9.54.6.1 bool mappel::Gauss2DModel::Stencil::derivatives_computed =false Definition at line 28 of file Gauss2DModel.h. Referenced by compute_derivatives(), and mappel::operator<<(). 9.54.6.2 VecT mappel::Gauss2DModel::Stencil::dx Definition at line 33 of file Gauss2DModel.h. Referenced by compute_derivatives(), mappel::operator<<(), and Stencil(). 9.54.6.3 VecT mappel::Gauss2DModel::Stencil::DX Definition at line 36 of file Gauss2DModel.h. Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DModel::pixel_grad(), mappel:: Gauss2DModel::pixel hess(), and mappel::Gauss2DModel::pixel hess update(). 9.54.6.4 VecT mappel::Gauss2DModel::Stencil::DXS Definition at line 37 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DModel::pixel_grad2(), mappel::←

Gauss2DModel::pixel hess(), and mappel::Gauss2DModel::pixel hess update().

9.54.6.5 VecT mappel::Gauss2DModel::Stencil::dy

Definition at line 33 of file Gauss2DModel.h.

Referenced by compute derivatives(), mappel::operator<<(), and Stencil().

9.54.6.6 VecT mappel::Gauss2DModel::Stencil::DY

Definition at line 36 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator<<<(), mappel::Gauss2DModel::pixel_grad(), mappel:: \leftarrow Gauss2DModel::pixel_hess(), and mappel::Gauss2DModel::pixel_hess_update().

9.54.6.7 VecT mappel::Gauss2DModel::Stencil::DYS

Definition at line 37 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator<<<(), mappel::Gauss2DModel::pixel_grad2(), mappel:: \leftarrow Gauss2DModel::pixel_hess(), and mappel::Gauss2DModel::pixel_hess_update().

9.54.6.8 VecT mappel::Gauss2DModel::Stencil::Gx

Definition at line 34 of file Gauss2DModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

9.54.6.9 VecT mappel::Gauss2DModel::Stencil::Gy

Definition at line 34 of file Gauss2DModel.h.

Referenced by compute derivatives(), and mappel::operator<<().

9.54.6.10 Gauss2DModel const* mappel::Gauss2DModel::Stencil::model

Definition at line 30 of file Gauss2DModel.h.

Referenced by compute_derivatives(), and Stencil().

9.54.6.11 ParamT mappel::Gauss2DModel::Stencil::theta

Definition at line 32 of file Gauss2DModel.h.

Referenced by bg(), I(), mappel::operator <<(), x(), and y().

9.54.6.12 VecT mappel::Gauss2DModel::Stencil::X

Definition at line 35 of file Gauss2DModel.h.

Referenced by mappel::operator<<(), mappel::Gauss2DModel::pixel_grad(), mappel::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel, mappel::Gauss2DM

9.54.6.13 VecT mappel::Gauss2DModel::Stencil::Y

Definition at line 35 of file Gauss2DModel.h.

Referenced by mappel::operator << (), mappel::Gauss2DModel::pixel_grad(), mappel::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DModel::pixel \leftarrow _model_value(), and Stencil().

The documentation for this class was generated from the following files:

- · Gauss2DModel.h
- Gauss2DModel.cpp

9.55 mappel::Gauss2DsModel::Stencil Class Reference

Stencil for 2D scalar-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsModel.h>

Public Types

• typedef Gauss2DsModel::ParamT ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss2DsModel &model, const ParamT &theta, bool _compute_derivatives=true)
- void compute_derivatives ()
- double x () const
- double y () const
- double I () const
- · double bg () const
- double sigma_ratio () const
- double sigmaX () const
- · double sigmaY () const

Public Attributes

- bool derivatives computed =false
- Gauss2DsModel const * model
- · ParamT theta
- VecT dx
- VecT dy
- VecT Gx
- VecT Gy
- VecT X
- VecT Y
- VecT DX
- VecT DY
- VecT DXS
- VecT DYS
- VecT DXS2
- VecT DYS2
- VecT DXSX
- VecT DYSY

Friends

• std::ostream & operator<< (std::ostream &out, const Gauss2DsModel::Stencil &s)

9.55.1 Detailed Description

Stencil for 2D scalar-sigma models.

Definition at line 29 of file Gauss2DsModel.h.

9.55.2 Member Typedef Documentation

9.55.2.1 typedef Gauss2DsModel::ParamT mappel::Gauss2DsModel::Stencil::ParamT

Definition at line 32 of file Gauss2DsModel.h.

9.55.3 Constructor & Destructor Documentation

9.55.3.1 mappel::Gauss2DsModel::Stencil() [inline]

Definition at line 43 of file Gauss2DsModel.h.

References compute_derivatives().

Referenced by mappel::Gauss2DsModel::make_stencil().

9.55.3.2 mappel::Gauss2DsModel::Stencil::Stencil (const Gauss2DsModel & model, const ParamT & theta, bool _compute_derivatives = true)

Definition at line 282 of file Gauss2DsModel.cpp.

References compute_derivatives(), dx, dy, mappel::make_d_stencil(), mappel::make_X_stencil(), model, sigmaX(), sigmaY(), mappel::ImageFormat2DBase::size, X, X(), Y, and Y().

9.55.4 Member Function Documentation

9.55.4.1 double mappel::Gauss2DsModel::Stencil::bg() const [inline]

Definition at line 49 of file Gauss2DsModel.h.

References theta.

Referenced by mappel::Gauss2DsModel::initial theta estimate(), and mappel::Gauss2DsModel::pixel model value().

9.55.4.2 void mappel::Gauss2DsModel::Stencil::compute_derivatives ()

Definition at line 296 of file Gauss2DsModel.cpp.

References derivatives_computed, dx, DX, DXS, DXS2, DXSX, dy, DY, DYS, DYS2, DYSY, Gx, Gy, mappel::make — DX_stencil(), mappel::make_DXS2_stencil(), mappel::make_DXSX_stencil(), mappel::make

Referenced by Stencil().

9.55.4.3 double mappel::Gauss2DsModel::Stencil::I() const [inline]

Definition at line 48 of file Gauss2DsModel.h.

References theta.

Referenced by mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::pixel_grad(), mappel ::Gauss2DsModel::pixel_hess(), mappel::Gauss2DsModel::pixel_hess(), mappel::Gauss2DsModel::pixel_hess_ \leftarrow update(), and mappel::Gauss2DsModel::pixel_model_value().

9.55.4.4 double mappel::Gauss2DsModel::Stencil::sigma_ratio() const [inline]

Definition at line 50 of file Gauss2DsModel.h.

References theta.

Referenced by mappel::Gauss2DsModel::initial_theta_estimate(), sigmaX(), and sigmaY().

9.55.4.5 double mappel::Gauss2DsModel::Stencil::sigmaX () const [inline]

Definition at line 51 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::min_sigma, and sigma_ratio().

Referenced by compute_derivatives(), mappel::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess(), mappel::Gauss2DsModel::pixel hess update(), and Stencil().

9.55.4.6 double mappel::Gauss2DsModel::Stencil::sigmaY() const [inline]

Definition at line 52 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::min_sigma, operator<<, and sigma_ratio().

Referenced by compute_derivatives(), mappel::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess(), mappel::Gauss2DsModel::pixel_hess_update(), and Stencil().

9.55.4.7 double mappel::Gauss2DsModel::Stencil::x() const [inline]

Definition at line 46 of file Gauss2DsModel.h.

References theta.

Referenced by Stencil().

9.55.4.8 double mappel::Gauss2DsModel::Stencil::y()const [inline]

Definition at line 47 of file Gauss2DsModel.h.

References theta.

Referenced by Stencil().

9.55.5 Friends And Related Function Documentation

9.55.5.1 std::ostream& operator << (std::ostream & out, const Gauss2DsModel::Stencil & s) [friend]

Definition at line 314 of file Gauss2DsModel.cpp.

Referenced by sigmaY().

9.55.6 Member Data Documentation

9.55.6.1 bool mappel::Gauss2DsModel::Stencil::derivatives_computed =false

Definition at line 31 of file Gauss2DsModel.h.

Referenced by compute derivatives(), and mappel::operator<<().

9.55.6.2 VecT mappel::Gauss2DsModel::Stencil::dx

Definition at line 36 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), and Stencil().

9.55.6.3 VecT mappel::Gauss2DsModel::Stencil::DX

Definition at line 39 of file Gauss2DsModel.h.

 $Referenced \ by \ compute_derivatives(), \ mappel::operator <<(), \ mappel::Gauss2DsModel::pixel_grad(), \ mappel::Gauss2DsModel::pixel_hess(), \ and \ mappel::Gauss2DsModel::pixel_hess().$

9.55.6.4 VecT mappel::Gauss2DsModel::Stencil::DXS

Definition at line 40 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss2DsModel::pixel_grad(), mappel:: \leftarrow Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess_ \leftarrow update().

9.55.6.5 VecT mappel::Gauss2DsModel::Stencil::DXS2

Definition at line 41 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DsModel::pixel_grad2(), mappel:: \leftarrow Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess_update().

9.55.6.6 VecT mappel::Gauss2DsModel::Stencil::DXSX

Definition at line 42 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DsModel::pixel_hess(), and mappel::
Gauss2DsModel::pixel hess update().

9.55.6.7 VecT mappel::Gauss2DsModel::Stencil::dy

Definition at line 36 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), and Stencil().

9.55.6.8 VecT mappel::Gauss2DsModel::Stencil::DY

Definition at line 39 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DsModel::pixel_grad(), mappel::
Gauss2DsModel::pixel hess(), and mappel::Gauss2DsModel::pixel hess update().

9.55.6.9 VecT mappel::Gauss2DsModel::Stencil::DYS

Definition at line 40 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss2DsModel::pixel_grad(), mappel:: \leftarrow Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess_ \leftarrow update().

9.55.6.10 VecT mappel::Gauss2DsModel::Stencil::DYS2

Definition at line 41 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<<(), mappel::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess_update().

9.55.6.11 VecT mappel::Gauss2DsModel::Stencil::DYSY

Definition at line 42 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DsModel::pixel_hess(), and mappel::
Gauss2DsModel::pixel_hess update().

9.55.6.12 VecT mappel::Gauss2DsModel::Stencil::Gx

Definition at line 37 of file Gauss2DsModel.h.

Referenced by compute derivatives(), and mappel::operator<<().

9.55.6.13 VecT mappel::Gauss2DsModel::Stencil::Gy

Definition at line 37 of file Gauss2DsModel.h.

Referenced by compute derivatives(), and mappel::operator<<().

9.55.6.14 Gauss2DsModel const* mappel::Gauss2DsModel::Stencil::model

Definition at line 33 of file Gauss2DsModel.h.

Referenced by compute derivatives(), and Stencil().

9.55.6.15 ParamT mappel::Gauss2DsModel::Stencil::theta

Definition at line 35 of file Gauss2DsModel.h.

Referenced by bg(), I(), mappel::operator << (), sigma_ratio(), x(), and y().

9.55.6.16 VecT mappel::Gauss2DsModel::Stencil::X

Definition at line 38 of file Gauss2DsModel.h.

Referenced by mappel::operator << (), mappel::Gauss2DsModel::pixel_grad(), mappel::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess_update(), mappel::Gauss2DsModel :: pixel_model_value(), and Stencil().

9.55.6.17 VecT mappel::Gauss2DsModel::Stencil::Y

Definition at line 38 of file Gauss2DsModel.h.

 $Referenced \ by \ mappel:: Gauss2DsModel:: pixel_grad(), \ mappel:: Gauss2DsModel:: pixel_grad(), \ mappel:: Gauss2DsModel:: pixel_pixel_hess(), \ mappel:: Gauss2DsModel:: pixel_hess_update(), \ mappel:: Gauss2DsModel::$

The documentation for this class was generated from the following files:

- · Gauss2DsModel.h
- · Gauss2DsModel.cpp

9.56 mappel::Gauss1DModel::Stencil Class Reference

Stencil for 1D fixed-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DModel.h>

Public Types

using ParamT = Gauss1DModel::ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss1DModel &model, const ParamT &theta, bool compute_derivatives=true)
- void compute_derivatives ()
- double x () const
- double I () const
- · double bg () const

Public Attributes

- bool derivatives_computed = false
- Gauss1DModel const * model
- · ParamT theta
- VecT dx
- VecT Gx
- VecT X
- VecT DX
- VecT DXS

Friends

• std::ostream & operator<< (std::ostream &out, const Gauss1DModel::Stencil &s)

9.56.1 Detailed Description

Stencil for 1D fixed-sigma models.

Definition at line 29 of file Gauss1DModel.h.

9.56.2 Member Typedef Documentation

9.56.2.1 using mappel::Gauss1DModel::Stencil::ParamT = Gauss1DModel::ParamT

Definition at line 32 of file Gauss1DModel.h.

9.56.3 Constructor & Destructor Documentation

9.56.3.1 mappel::Gauss1DModel::Stencil() [inline]

Definition at line 41 of file Gauss1DModel.h.

References compute derivatives().

Referenced by mappel::Gauss1DModel::make stencil().

9.56.3.2 mappel::Gauss1DModel::Stencil:(const Gauss1DModel & model, const ParamT & theta, bool compute_derivatives = true)

Definition at line 142 of file Gauss1DModel.cpp.

References compute_derivatives(), dx, mappel::make_d_stencil(), mappel::make_X_stencil(), model, mappel:: \leftarrow Gauss1DModel::psf_sigma, mappel::ImageFormat1DBase::size, X, and x().

9.56.4 Member Function Documentation

9.56.4.1 double mappel::Gauss1DModel::Stencil::bg() const [inline]

Definition at line 46 of file Gauss1DModel.h.

References operator<<, and theta.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), and mappel::Gauss1DModel::pixel_model_value().

9.56.4.2 void mappel::Gauss1DModel::Stencil::compute_derivatives ()

Definition at line 153 of file Gauss1DModel.cpp.

References derivatives_computed, dx, DX, DXS, Gx, mappel::make_DX_stencil(), mappel::make_DXS_stencil(), mappel::make_G_stencil(), model, mappel::Gauss1DModel::psf_sigma, and mappel::ImageFormat1DBase::size.

Referenced by Stencil().

9.56.4.3 double mappel::Gauss1DModel::Stencil::I() const [inline]

Definition at line 45 of file Gauss1DModel.h.

References theta.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_grad(), mappel::Gauss1DModel::pixel_grad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), and mappel::Gauss1DModel::pixel model value().

9.56.4.4 double mappel::Gauss1DModel::Stencil::x() const [inline] Definition at line 44 of file Gauss1DModel.h. References theta. Referenced by Stencil(). 9.56.5 Friends And Related Function Documentation 9.56.5.1 std::ostream& operator << (std::ostream & out, const Gauss1DModel::Stencil & s) [friend] Definition at line 164 of file Gauss1DModel.cpp. Referenced by bg(). 9.56.6 Member Data Documentation 9.56.6.1 bool mappel::Gauss1DModel::Stencil::derivatives_computed = false Definition at line 31 of file Gauss1DModel.h. Referenced by compute_derivatives(), and mappel::operator<<(). 9.56.6.2 VecT mappel::Gauss1DModel::Stencil::dx Definition at line 36 of file Gauss1DModel.h. Referenced by compute_derivatives(), mappel::operator<<(), and Stencil(). 9.56.6.3 VecT mappel::Gauss1DModel::Stencil::DX Definition at line 39 of file Gauss1DModel.h. Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DModel::pixel_grad(), and mappel:: Gauss1DModel::pixel hess(). 9.56.6.4 VecT mappel::Gauss1DModel::Stencil::DXS Definition at line 40 of file Gauss1DModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DModel::pixel_grad2(), mappel::←

Gauss1DModel::pixel hess(), and mappel::Gauss1DModel::pixel hess update().

9.56.6.5 VecT mappel::Gauss1DModel::Stencil::Gx

Definition at line 37 of file Gauss1DModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

9.56.6.6 Gauss1DModel const* mappel::Gauss1DModel::Stencil::model

Definition at line 33 of file Gauss1DModel.h.

Referenced by compute derivatives(), and Stencil().

9.56.6.7 ParamT mappel::Gauss1DModel::Stencil::theta

Definition at line 35 of file Gauss1DModel.h.

Referenced by bg(), I(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::operator<<(), and x().

9.56.6.8 VecT mappel::Gauss1DModel::Stencil::X

Definition at line 38 of file Gauss1DModel.h.

Referenced by mappel::operator<<(), mappel::Gauss1DModel::pixel_grad(), mappel::Gauss1DModel::pixel_model_colored value(), and Stencil().

The documentation for this class was generated from the following files:

- · Gauss1DModel.h
- Gauss1DModel.cpp

9.57 mappel::estimator::ThreadedEstimator < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::ThreadedEstimator< Model >:

Public Member Functions

- · ThreadedEstimator (const Model &model)
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init
 —stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est) override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- StatsT get_stats ()
- StatsT get debug stats ()
- void clear stats ()
- virtual std::string name () const =0
- const Model & get model ()
- void estimate_max (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLEData &mle ← data, StencilT < Model > &mle stencil)
- void estimate_max (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, MLEData &mle ← data)
- void estimate max (const ModelDataT< Model > &data, MLEData &mle data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle data, StencilT< Model > &mle stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle data)
- void estimate_max_stack (const ModelDataStackT < Model > &data_stack, MLEDataStack &mle_data_stack)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate_profile_bounds (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
- void estimate_profile_bounds_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &bounds
 —est)
- IdxVecT get_exit_counts () const

Protected Member Functions

- void record exit code (ExitCode code) override
- virtual void compute_estimate_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init,
 MLEDebugData &mle_data, StencilT< Model > &mle_stencil)
- virtual double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta
 init, const IdxVecT &fixed idxs, StencilT< Model > &max stencil)
- virtual void compute_profile_bound (const ModelDataT< Model > &data, ProfileBoundsData &est, const VecT &init_step, ldxT param_idx, ldxT which_bound)
- virtual void compute profile bound debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &est)
- void record walltime (ClockT::time point start walltime, int num estimations)

Protected Attributes

- int max_threads
- · int num_threads
- std::mutex mtx
- · const Model & model
- int num_estimations = 0
- double total_walltime = 0.
- IdxVecT exit_counts

9.57.1 Detailed Description

 $\label{local_class} \mbox{ model} > \\ \mbox{class mappel::estimator::ThreadedEstimator} < \mbox{ Model} > \\$

We avoid combining Estimator and ThreadedEstimator classes so that a future GPU implementation can inherit directly from Estimator as it will present a different method for estimate_stack pure virtual member function. For now all other (CPU) estimators inherit from ThreadedEstimator.

Definition at line 311 of file estimator.h.

9.57.2 Constructor & Destructor Documentation

9.57.2.1 template < class Model > mappel::estimator::ThreadedEstimator < Model >::ThreadedEstimator (const Model & model)

Definition at line 370 of file estimator impl.h.

9.57.3 Member Function Documentation

9.57.3.1 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::clear_stats() [virtual]

Run statistics.

Reimplemented from mappel::estimator::Estimator< Model >.

Reimplemented in mappel::estimator::IterativeMaximizer < Model >.

Definition at line 570 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, and mappel::estimator::ThreadedEstimator< Model >::num_threads.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear stats().

9.57.3.2 template < class Model > virtual void mappel::estimator::Estimator < Model > ::compute_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [protected], [pure virtual], [inherited]

Implemented in mappel::estimator::IterativeMaximizer < Model >.

Referenced by mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Estimator< Model >::estimate max(), and mappel::estimator::ThreadedEstimator< Model >::estimate max stack().

9.57.3.3 template < class Model > void mappel::estimator::Estimator < Model > ::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [protected], [virtual], [inherited]

Virtual estimate debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 285 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Estimator< Model > \leftarrow ::model, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::multiple.compute_estimator::MLEData::sequence, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate_max_debug().

9.57.3.4 template < class Model > void mappel::estimator::Estimator < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 309 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator < Model >::estimate_profile_bounds(), mappel::estimator::Threaded \leftarrow Estimator < Model >::estimate_profile_bounds_parallel(), and mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack().

9.57.3.5 template < class Model > void mappel::estimator::Estimator < Model >::compute_profile_bound_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & est) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 318 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate profile bounds debug().

9.57.3.6 template < class Model > double mappel::estimator::Estimator < Model > ::compute_profile_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, const IdxVecT & fixed_idxs, StencilT < Model > & max_stencil) [protected], [virtual], [inherited]

Reimplemented in mappel::estimator::IterativeMaximizer< Model >.

Definition at line 300 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

Referenced by mappel::estimator::Estimator< Model >::estimate_profile_max(), and mappel::estimator::Threaded← Estimator< Model >::estimate_profile_max().

9.57.3.7 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), mappel::estimator::MLEData::rllh, and mappel::estimator ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate max().

9.57.3.8 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta init, MLEData & mle data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 121 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate max().

```
9.57.3.9 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & data, MLEData & mle_data ) [inherited]
```

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator_impl.h.

References mappel::estimator::Estimator
< Model >::estimate_max(), and mappel::estimator::Estimator
< Model > \leftarrow ::model.

```
9.57.3.10 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug ( const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil ) [inherited]
```

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta init and theta mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	Initial theta value.
out	mle_data	MLEDebugData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

9.57.3.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel \leftarrow ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

9.57.3.12 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.57.3.13 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [override], [virtual]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for
in	theta_init	[optional] Initial theta value for each image.
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for
		each data

Implements mappel::estimator::Estimator< Model >.

Definition at line 377 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::MLEDataStack::Ndata, mappel::estimator::Threaded \leftarrow Estimator< Model >::num_threads, mappel::estimator::MLEData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel ::estimator::Estimator::Estimator::MLEData::rllh, mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.57.3.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator<: Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator:: \leftarrow ProfileBoundsData::profile_lb, mappel::estimator::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator:: \leftarrow ProfileBoundsData::profile_ub, mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator \leftarrow ::Estimator
 Model >::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel \leftarrow ::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::error bounds profile likelihood().

9.57.3.15 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_exit_code(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

9.57.3.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_← parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::ThreadedEstimator< Model >::num_threads, mappel::estimator:: \leftarrow MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator<:Model >::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_parallel().

9.57.3.17 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::initialize_arrays(), mappel::estimator::ProfileBoundsDataStack::initialize_arrays(),

mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::⇔ Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator < Model >::num threads, mappel::estimator::ML← EData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ProfileBounds← mappel::estimator::ProfileBoundsDataStack::profile lb, mappel::estimator::ProfileBoundsData← Data::profile lb, ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile points lb rllh, mappel::estimator::ProfileBoundsDataStack::profile points lb rllh, mappel::estimator. mappel::estimator::ProfileBoundsDataStack::profile points ub. ::ProfileBoundsData::profile points ub. ::estimator::ProfileBoundsData::profile points ub rllh, mappel::estimator::ProfileBoundsDataStack::profile points← _ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::ProfileBoundsDataStack::profile_ub, mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator↔ ::ProfileBoundsDataStack::target rllh delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData↔ Stack::theta.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_stack().

9.57.3.18 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max) [inherited]

Profile likelihood estimation methods

Definition at line 190 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

9.57.3.19 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile) [override], [virtual]

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileLikelihoodData::fixed_idxs, mappel::estimator::ProfileLikelihoodData::fixed_values, mappel \leftarrow ::estimator::Estimator< Model >::model, mappel::estimator::ProfileLikelihoodData::Nfixed, mappel::estimator:: \leftarrow ThreadedEstimator< Model >::num_threads, mappel::estimator::ProfileLikelihoodData::Nvalues, mappel::estimator::ProfileLikelihoodData::ProfileLikelihoodData::profile_likelihoodData::profile_likelihoodData::profile_parameters, mappel::estimator::ThreadedEstimator

```
9.57.3.20 template < class Model > StatsT mappel::estimator::ThreadedEstimator < Model > ::get_debug_stats ( ) [virtual]
```

Run statistics.

Implements mappel::estimator::Estimator< Model >.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >, mappel::estimator::SimulatedAnnealing Amaximizer< Model >, mappel::estimator::CGaussMLE< Model >, mappel::estimator::CGaussHeuristicEstimator

Model >, and mappel::estimator::HeuristicEstimator
Model >.

Definition at line 564 of file estimator_impl.h.

References mappel::estimator::ThreadedEstimator< Model >::get_stats().

```
9.57.3.21 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

```
9.57.3.22 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.57.3.23 template < class Model > StatsT mappel::estimator::ThreadedEstimator < Model >::get_stats ( ) [virtual]
```

Run statistics.

Reimplemented from mappel::estimator::Estimator< Model >.

Reimplemented in mappel::estimator::IterativeMaximizer< Model >, mappel::estimator::SimulatedAnnealing \(\text{Maximizer} \) Maximizer< Model >, mappel::estimator::CGaussHeuristicEstimator

 Model >, and mappel::estimator::HeuristicEstimator
 Model >.

Definition at line 553 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::get_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::Estimator< Model >::num_estimations, mappel::estimator::ThreadedEstimator< Model >::num_threads, and mappel::estimator::Estimator< Model >::total_walltime.

Referenced by mappel::estimator::ThreadedEstimator< Model >::get_debug_stats(), mappel::estimator::Heuristic \leftarrow Estimator< Model >::get_debug_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::GaussMLE< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussML \leftarrow E< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), and mappel \leftarrow ::estimator::IterativeMaximizer< Model >::get stats().

9.57.3.24 template < class Model > virtual std::string mappel::estimator::Estimator < Model >::name() const [pure virtual], [inherited]

Implemented in mappel::estimator::TrustRegionMaximizer< Model >, mappel::estimator::QuasiNewtonMaximizer< Model >, mappel::estimator::NewtonDiagonalMaximizer< Model >, mappel::estimator::SimulatedAnnealingMaximizer< Model >, mappel::estimator::CGaussMLE< Model >, mappel::estimator::CGaussHeuristicEstimator< Model >, and mappel::estimator::HeuristicEstimator< Model >.

Referenced by mappel::estimator::IterativeMaximizer< Model >::solve profile bound().

9.57.3.25 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual]

Implements mappel::estimator::Estimator < Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:: \leftarrow Success, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer< Model >::convergence_test \leftarrow _step_size(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator< Model >::get_debug_stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel ::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.57.3.26 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

References mappel::estimator::Estimator < Model >::num_estimations, and mappel::estimator::Estimator < Model >::total walltime.

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimator<:Estimator< Model >::estimate \leftarrow _profile_bounds_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator<:Model >::estimate_profile_max(), and mappel::estimator::ThreadedEstimator< Model >::estimate_profile_max().

9.57.4 Member Data Documentation

9.57.4.1 template < class Model > IdxVecT mappel::estimator::Estimator < Model > ::exit_counts [protected], [inherited]

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded \leftarrow Estimator< Model >::record exit code().

9.57.4.2 template < class Model > int mappel::estimator::ThreadedEstimator < Model >::max_threads [protected]

Definition at line 326 of file estimator.h.

9.57.4.3 template < class Model > const Model& mappel::estimator::Estimator < Model >::model [protected], [inherited]

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute estimate(), mappel::estimator::Estimator< Model >::compute estimate debug(), mappel ::estimator::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::estimator::Estimator< Model >-::compute_profile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute profile bound debug(), mappel::estimator::Estimator< Model >::compute profile estimate(), mappel ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >← ::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_stack(), mappel::estimator::Threaded← Estimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate profile bounds stack(), mappel::estimator::ThreadedEstimator < Model >::estimate ← profile max(), mappel::estimator::HeuristicEstimator< Model >::get debug stats(), mappel::estimator::CGaussMLE< Model >::get debug stats(), mappel::estimator::Estimator< Model >::get model(), mappel::estimator::Iterative← Maximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), mappel::estimator::IterativeMaximizer< Model >::profile_bound_backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.57.4.4 template < class Model > std::mutex mappel::estimator::ThreadedEstimator < Model > ::mtx [protected]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative
Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel
::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get
_stats(), mappel::estimator::CGaussMLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative
Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get
_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model
>::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss
MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel
::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record walltime().

9.57.4.6 template < class Model > int mappel::estimator::ThreadedEstimator < Model >::num_threads [protected]

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator

Estimator

Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile \leftarrow _bounds_parallel(), mappel::estimator::ThreadedEstimator

Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator

Model >::estimator::ThreadedEstimator

Model >::get_stats().

9.57.4.7 template<class Model > double mappel::estimator::Estimator< Model >::total_walltime = 0. [protected], [inherited]

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h

9.58 mappel::estimator::TrustRegionMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::estimator::TrustRegionMaximizer< Model >:

Public Types

using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData

Public Member Functions

- TrustRegionMaximizer (const Model &model, int max iterations=IterativeMaximizer < Model >::DefaultIterations)
- std::string name () const
- double mean iterations ()
- double mean_backtracks ()
- double mean fun evals ()
- double mean_der_evals ()
- StatsT get stats ()
- StatsT get_debug_stats ()
- void clear stats ()
- · int get total iterations () const
- · int get total backtracks () const
- int get_total_fun_evals () const
- int get total der evals () const
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEData &data)
 Perform a local maximization to finish off a simulated annealing run.
- void local_maximize (const ModelDataT < Model > &im, StencilT < Model > &stencil, MLEDebugData &debug

 data)
- void local_profile_maximize (const ModelDataT< Model > &im, const ldxVecT &fixed_param_idxs, StencilT
 Model > &stencil, MLEDebugData &mle)
- void estimate_max_stack (const ModelDataStackT < Model > &data, const ParamVecT < Model > &theta_init
 —stack, MLEDataStack &mle_data_stack) override
- void estimate_profile_max (const ModelDataT< Model > &data, const ParamVecT< Model > &theta_init, ProfileLikelihoodData &profile) override
- void estimate_profile_bounds_parallel (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
 override
- void estimate_profile_bounds_stack (const ModelDataStackT< Model > &data, ProfileBoundsDataStack &bounds_est_stack) override
- const Model & get_model ()
- void estimate_max_stack (const ModelDataStackT < Model > &data_stack, MLEDataStack &mle_data_stack)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data, StencilT< Model > &mle stencil)
- void estimate_max (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle
 data)
- void estimate max (const ModelDataT < Model > &data, MLEData &mle data)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE
 —
 DebugData &mle_data, StencilT< Model > &mle_stencil)
- void estimate_max_debug (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLE←
 DebugData &mle_data)
- double estimate_profile_max (const ModelDataT< Model > &data, const IdxVecT &fixed_idxs, const ParamT
 Model > &fixed_theta_init, StencilT< Model > &theta_max)
- void estimate_profile_bounds (const ModelDataT< Model > &data, ProfileBoundsData &bounds_est)
- void estimate_profile_bounds_debug (const ModelDataT < Model > &data, ProfileBoundsDebugData &bounds
 _est)
- IdxVecT get exit counts () const

Static Public Attributes

static const double rho_cauchy_min = 0.1

Minimum acceptable rho for cauchy point: Coleman beta / Bellavia beta_1.

static const double rho_obj_min = 0.25

Minimum acceptable rho: Coleman mu / Bellavia beta_2.

static const double rho obj opt = 0.75

Optimal step rho: Coleman eta / Bellavia beta_2.

static const double trust radius decrease min = 0.125

Smallest alowable trust radius decrease ratio: Coleman gamma_0 / Bellavia alpha_1.

• static const double trust radius decrease = 0.25

Trust radius decrease ratio to step size: Coleman gamma 1 / Bellavia alpha 2.

static const double trust radius increase = 2

Trust radius increase ratio: Coleman gamma_2 / Bellavia alpha_3.

static const double convergence_min_trust_radius = 1.0e-8

Convergence criteria: Minimum trust region radius.

static const int DefaultIterations =100

Protected Member Functions

- void record_run_statistics (const MaximizerData &data)
- void compute_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, MLEData &mle data, StencilT< Model > &mle stencil) override
- void compute_estimate_debug (const ModelDataT < Model > &data, const ParamT < Model > &theta_init, M ←
 LEDebugData &mle_data, StencilT < Model > &mle_stencil) override
- double compute_profile_estimate (const ModelDataT< Model > &data, const ParamT< Model > &theta_init, const IdxVecT &fixed_idxs, StencilT< Model > &theta_max) override
- void compute_profile_bound (const ModelDataT < Model > &data, ProfileBoundsData &est, const VecT &init_←
 step, IdxT param_idx, IdxT which_bound) override
- void compute_profile_bound_debug (const ModelDataT< Model > &data, ProfileBoundsDebugData &bounds)
 override
- bool backtrack (MaximizerData &data)
- bool profile_bound_backtrack (MaximizerData &data, ldxT fixed_idx, double target_rllh, double old_fval, const VecT &fgrad)
- virtual void maximize (MaximizerData &data)=0
- virtual void solve_profile_bound (MaximizerData &data, MLEData &mle, double Ilh_delta, IdxT fixed_idx, IdxT which bound)
- bool convergence_test_grad_ratio (const VecT &grad, double fval)
- bool convergence_test_step_size (const VecT &new_theta, const VecT &old_theta)
- void record_exit_code (ExitCode code) override
- void record walltime (ClockT::time point start walltime, int num estimations)

Protected Attributes

- · int max iterations
- int total_iterations = 0
- int total backtracks = 0
- int total_fun_evals = 0
- int total_der_evals = 0
- IdxVecT last backtrack idxs

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

- · int max threads
- · int num_threads
- std::mutex mtx
- const Model & model
- int num estimations = 0
- double total walltime = 0.
- IdxVecT exit_counts

Static Protected Attributes

• static const double min_eigenvalue_correction_delta = 1e-3

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

static const double convergence_min_function_change_ratio = 1.0e-9

Convergence criteria: tolerance for function-value change.

static const double convergence_min_step_size_ratio = 1.0e-9

Convergence criteria: tolerance of relative step size.

- static const double backtrack min ratio = 0.05
- static const double backtrack_max_ratio = 0.50
- static const double backtrack_min_linear_step_ratio = 1e-3
- static const int max backtracks = 8
- static const double min_profile_bound_residual = 1e-4

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

9.58.1 Detailed Description

template < class Model > class mappel::estimator::TrustRegionMaximizer < Model >

Definition at line 616 of file estimator.h.

9.58.2 Member Typedef Documentation

9.58.2.1 template < class Model > using mappel::estimator::TrustRegionMaximizer < Model > ::MaximizerData = typename IterativeMaximizer < Model > ::MaximizerData

Definition at line 619 of file estimator.h.

- 9.58.3 Constructor & Destructor Documentation

Definition at line 629 of file estimator.h.

- 9.58.4 Member Function Documentation
- 9.58.4.1 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 870 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::Iterative MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::Estimator

Model >::max_backtracks, mappel::estimator::IterativeMaximizer
Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel ::estimator::IterativeMaximizer

_backtrack(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel::estimator::IterativeMaximizer

_MaximizerData::restore_stencil(), mappel::methods::objective::rllh(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_s::MaximizerData::restore_stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::save_stencil(), mappel::estimator::IterativeMaximizer

_s::MaximizerData::set_stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_s::MaximizerData::set_stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

_s::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer
Model >::MaximizerData::stencil(), mappel::estimator::IterativeMaximizer

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

9.58.4.2 template < class Model > void mappel::estimator::lterativeMaximizer < Model >::clear_stats() [virtual], [inherited]

Run statistics.

 $\label{lem:lemented_from_mappel::estimator::ThreadedEstimator < Model >.}$

Definition at line 848 of file estimator impl.h.

References mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel::estimator::Iterative Waximizer< Model >::total_der_evals, and mappel::estimator::IterativeMaximizer< Model >::total_fun_evals, and mappel::estimator::IterativeMaximizer< Model >::total_iterativeMaximizer<

9.58.4.3 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::compute_estimate (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 1043 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >-- ::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative- Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::Iterative- Maximizer
Maximizer
Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer
Model >::MaximizerData::theta, and mappel::estimator::IterativeMaximizer
Model >::MaximizerData::theta().

9.58.4.4 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, MLEDebugData & mle_debug, StencilT < Model > & mle_stencil) [override], [protected], [virtual], [inherited]

Virtual estimate debug interface

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1057 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::Iterative \(\text{Maximizer} \) Maximizer< Model >::maximize(), mappel::estimator::Estimator
Model >::model, mappel::estimator::IterativeMaximizer
Model >::model, mappel::estimator::IterativeMaximizer
Model >::record \(\text{Precord} \) Model >::record \(\text{Precord} \) MaximizerData::rllh, mappel::estimator::IterativeMaximizer
Model >::\(\text{Precord} \) MaximizerData::sequence, mappel::estimator::IterativeMaximizer
Model >::\(\text{Precord} \) MaximizerData::sequence, \(\text{Precord} \) MaximizerData::sequence, \(\text{Precord} \) MaximizerData::setimator::IterativeMaximizer
Model >::\(\text{MaximizerData::stencil()}, \) mappel::estimator::MLEDebugData \(\text{Precord} \) \(\text{:theta}, \) and mappel::estimator::IterativeMaximizer
Model >::\(\text{MaximizerData::theta} \) MaximizerData::theta().

9.58.4.5 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::compute_profile_bound (const ModelDataT < Model > & data, ProfileBoundsData & est, const VecT & init_step, IdxT param_idx, IdxT which_bound) [override], [protected], [virtual], [inherited]

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1088 of file estimator impl.h.

References mappel::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::mle, mappel::estimator < Model >::model, mappel::estimator::ProfileBoundsData::profile_lb, mappel::estimator \leftarrow ::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_lb_rllh, mappel ::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_points_ub_rllh, mappel::estimator::ProfileBoundsData::profile_boundsData::profile_boundsData::profile_boundsData::profile_compared >::record_run
_statistics(), mappel::estimator::IterativeMaximizer < Model >::solve_profile_bound(), mappel::estimator::Profile
BoundsData::target rllh delta, and mappel::estimator::MLEData::theta.

9.58.4.6 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::compute_profile_bound_debug(
const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds) [override], [protected],
[virtual], [inherited]

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1114 of file estimator_impl.h.

References mappel::estimator::ProfileBoundsDebugData::estimated_idx, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::ProfileBoundsDebugData::Nseq_ \hookrightarrow lb, mappel::estimator::ProfileBoundsDebugData::profile_lb, mappel::estimator::ProfileBoundsDebugData::profile_ub, mappel::estimator::ProfileBoundsDebugData::profile_ub, mappel::estimator::ProfileBoundsDebugData::sequence \hookrightarrow ::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::ProfileBoundsDebugData::sequence \hookrightarrow _lb, mappel::estimator::ProfileBoundsDebugData::sequence_lb_rllh, mappel::estimator::ProfileBoundsDebug \hookrightarrow Data::sequence_ub, mappel::estimator::ProfileBoundsDebugData::sequence_ub_rllh, mappel::estimator::Iterative \hookrightarrow Maximizer< Model >::solve_profile_bound(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::ProfileBoundsDebugData::target \hookrightarrow rllh delta, and mappel::estimator::MLEData::theta.

Reimplemented from mappel::estimator::Estimator< Model >.

Definition at line 1074 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::estimator::IterativeMaximizer< Model >::record_run_statistics(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::rellh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::set_← fixed parameters(), and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil().

9.58.4.8 template < class Model > bool mappel::estimator::IterativeMaximizer < Model >::convergence_test_grad_ratio (const VecT & grad, double fval) [protected], [inherited]

Definition at line 1015 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel \leftarrow ::estimator::GradRatio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::square().

Referenced by mappel::estimator::lterativeMaximizer< Model >::local_profile_maximize().

Definition at line 1027 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::norm_sq(), mappel::estimator::ThreadedEstimator< Model >::record exit code(), and mappel::estimator::StepSize.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.58.4.10 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	at mle_data MLEData recording the maximum likelihood estimate and relevant	
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 128 of file estimator_impl.h.

References mappel::estimator::Estimator<: Model >::compute_estimate(), mappel::estimator::Error, mappel ::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator::Estimator<: Model >::record_exit_code(), mappel::estimator::Estimator<: Model >::record_walltime(), mappel::estimator::MLEData::rllh, and mappel::estimator ::MLEData::theta.

Referenced by mappel::estimator::Estimator< Model >::estimate_max().

9.58.4.11 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEData & mle_data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	data Model data to estimate for	
in	theta_init	[Optional] Initial theta value.	
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.	
out	stencil	[Optional] StencilT at the MLE value.	

Definition at line 121 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::estimate max().

9.58.4.12 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max (const ModelDataT < Model > & data, MLEData & mle data) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data Model data to estimate for	
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 112 of file estimator impl.h.

References mappel::estimator::Estimator
< Model >::estimate_max(), and mappel::estimator::Estimator
< Model > \leftarrow ::model.

9.58.4.13 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data, StencilT < Model > & mle_stencil) [inherited]

Debug estimation for a single data starting at theta_init, fill in the MLEDebugData struct with data including the sequence of evaluated points. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The sequence and sequence_rllh parameters of the MLEDebugData struct record the entire sequence of evaluated points including theta_init and theta_mle, which should be first and last respectively.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for	
in	theta_init	Initial theta value.	
out	mle_data MLEDebugData recording the maximum likelihood estimate and relevant d		
out	stencil	[Optional] StencilT at the MLE value.	

9.58.4.14 template < class Model > void mappel::estimator::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & data, const ParamT < Model > & theta_init, MLEDebugData & mle_data)
[inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data	Model data to estimate for
in	theta_init	[Optional] Initial theta value.
out	at mle_data MLEData recording the maximum likelihood estimate and relevant	
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 157 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_estimate_debug(), mappel::estimator::Error, mappel \leftarrow ::estimator::MLEDebugData::obsl, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_ \leftarrow exit_code(), mappel::estimator::MLEDebugData::rllh, and mappel::estimator::MLEDebugData::theta.

9.58.4.15 template < class Model > void mappel::estimator::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, MLEDataStack & mle_data_stack) [inherited]

Maximum likelihood point estimators Estimate for a single data starting at theta_init, fill in the MLEData struct with the estimated parameter, RLLH, and observed information. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta_init will not be modified in the initialization process.

The stencil at the MLE is also returned but can be ignored if not needed as it is available at no extra cost.

Parameters

in	data Model data to estimate for	
in	theta_init	[Optional] Initial theta value.
out	mle_data	MLEData recording the maximum likelihood estimate and relevant data.
out	stencil	[Optional] StencilT at the MLE value.

Definition at line 183 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::estimate_max_stack(), and mappel::estimator::Estimator< Model >::model.

9.58.4.16 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, MLEDataStack & mle_data_stack) [override], [virtual], [inherited]

Estimate for a stack of data and fill in the MLEDataStack struct with the estimated parameter, RLLH, and observed information for each data in parallel. Estimation is initialized with theta_init, theta_init is empty, it is estimated with the Heuristic estimator. If any individual parameters are infinite or are not in the interior of the feasible region, they will be estimated with the Heuristic method. Valid parameters of theta init will not be modified in the initialization process.

Parameters

in	data	Model data to estimate for	
in	theta_init	[optional] Initial theta value for each image.	
out	mle	MLEStackData records the maximum likelihood estimate, RLLH, and Observed information for	
		each data	

 $Implements \ mappel :: estimator :: Estimator < Model >.$

Definition at line 377 of file estimator_impl.h.

References mappel::estimator::Estimator
Model >::compute_estimate(), mappel::estimator::Error, mappel
::estimator::Estimator
Model >::model, mappel::estimator::MLEDataStack::Ndata, mappel::estimator::Threaded
Estimator
Model >::num_threads, mappel::estimator::MLEData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator
Model >::record_exit_code(), mappel
::estimator::Estimator
Model >::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEData::theta, and mappel::estimator::MLEDataStack::theta.

9.58.4.17 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 220 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::MLEData::obsl, mappel::print_text_image(), mappel::estimator:: \leftarrow ProfileBoundsData::profile_lb, mappel::estimator::ProfileBoundsData::profile_points_lb, mappel::estimator::ProfileBoundsData::profile_points_ub, mappel::estimator:: \leftarrow ProfileBoundsData::profile_ub, mappel::estimator::Estimator $Model > ::record_exit_code(), mappel::estimator \leftarrow$::Estimator $Model > ::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel \leftarrow$::estimator::ProfileBoundsData::theta.

Referenced by mappel::methods::error bounds profile likelihood().

9.58.4.18 template < class Model > void mappel::estimator::Estimator < Model >::estimate_profile_bounds_debug (const ModelDataT < Model > & data, ProfileBoundsDebugData & bounds est) [inherited]

Profile likelihood bounds computations with VM algorithm

Definition at line 258 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::Error, mappel::estimator::ProfileBoundsDebugData::mle, mappel::estimator::ProfileBoundsDebugData::mle, mappel::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::← Estimator< Model >::record_walltime(), mappel::estimator::ProfileBoundsDebugData::target_rllh_delta, and mappel ::estimator::MLEData::theta.

Referenced by mappel::methods::debug::error_bounds_profile_likelihood_debug().

9.58.4.19 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_← parallel (const ModelDataT < Model > & data, ProfileBoundsData & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 464 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel \leftarrow ::estimator::ProfileBoundsData::estimated_idxs, mappel::estimator::ProfileBoundsData::initialize_arrays(), mappel \leftarrow ::estimator::ProfileBoundsData::mle, mappel::estimator::Estimator< Model >::model, mappel::estimator::Profile \leftarrow BoundsData::Nparams_est, mappel::estimator::ThreadedEstimator< Model >::num_threads, mappel::estimator:: \leftarrow MLEData::obsl, mappel::print_text_image(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator<:Model >::record_walltime(), mappel::estimator::subroutine::solve_profile_initial_step(), mappel::estimator::ProfileBoundsData::target_rllh_delta, and mappel::estimator::MLEData::theta.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_parallel().

9.58.4.20 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_bounds_stack (const ModelDataStackT < Model > & data_stack, ProfileBoundsDataStack & bounds_est) [override], [virtual], [inherited]

Profile likelihood bounds computations with VM algorithm

Implements mappel::estimator::Estimator< Model >.

Definition at line 500 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_bound(), mappel::estimator::Error, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::estimated_idxs, mappel ::estimator::ProfileBoundsDataStack::initialize_arrays(), mappel::estimator::ProfileBoundsDataStack::initialize_arrays(),

mappel::estimator::ProfileBoundsData::mle, mappel::estimator::ProfileBoundsDataStack::mle, mappel::estimator::← Estimator< Model >::model, mappel::estimator::ProfileBoundsDataStack::Ndata, mappel::estimator::ProfileBounds↔ DataStack::Nparams est, mappel::estimator::ThreadedEstimator < Model >::num threads, mappel::estimator::ML← EData::obsl, mappel::estimator::MLEDataStack::obsl, mappel::print_text_image(), mappel::estimator::ProfileBounds← mappel::estimator::ProfileBoundsDataStack::profile lb, Data::profile lb, mappel::estimator::ProfileBoundsData← ::profile points lb, mappel::estimator::ProfileBoundsDataStack::profile points lb, mappel::estimator::ProfileBounds↔ Data::profile points lb rllh, mappel::estimator::ProfileBoundsDataStack::profile points lb rllh, mappel::estimator. ::ProfileBoundsData::profile points ub. mappel::estimator::ProfileBoundsDataStack::profile points ub. ::estimator::ProfileBoundsData::profile points ub rllh, mappel::estimator::ProfileBoundsDataStack::profile points← _ub_rllh, mappel::estimator::ProfileBoundsData::profile_ub, mappel::estimator::ProfileBoundsDataStack::profile_ub, mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >← ::record_walltime(), mappel::estimator::MLEData::rllh, mappel::estimator::MLEDataStack::rllh, mappel::estimator. ::subroutine::solve profile initial step(), mappel::estimator::ProfileBoundsData::target rllh delta, mappel::estimator ← ::ProfileBoundsDataStack::target rllh delta, mappel::estimator::MLEData::theta, and mappel::estimator::MLEData↔ Stack::theta.

Referenced by mappel::methods::openmp::error_bounds_profile_likelihood_stack().

9.58.4.21 template < class Model > double mappel::estimator::Estimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT < Model > & theta_max) [inherited]

Profile likelihood estimation methods

Definition at line 190 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel::estimator::Error, mappel ::print_text_image(), mappel::estimator::Estimator< Model >::record_exit_code(), mappel::estimator::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

9.58.4.22 template < class Model > void mappel::estimator::ThreadedEstimator < Model > ::estimate_profile_max (const ModelDataT < Model > & data, const ParamVecT < Model > & fixed_theta_init, ProfileLikelihoodData & profile) [override], [virtual], [inherited]

Profile likelihood estimation methods

Implements mappel::estimator::Estimator< Model >.

Definition at line 418 of file estimator_impl.h.

```
9.58.4.23 template < class Model > StatsT mappel::estimator::lterativeMaximizer < Model >::get_debug_stats() | [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 832 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::estimator::\icide IterativeMaximizer< Model >::get_stats(), and mappel::estimator::IterativeMaximizer< Model >::last_backtrack_idxs.

```
9.58.4.24 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::get_exit_counts ( ) const [inline], [inherited]
```

Run statistics.

Definition at line 276 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

```
9.58.4.25 template < class Model > const Model & mappel::estimator::Estimator < Model >::get_model ( ) [inherited]
```

Definition at line 108 of file estimator_impl.h.

References mappel::estimator::Estimator< Model >::model.

```
9.58.4.26 template < class Model > StatsT mappel::estimator::IterativeMaximizer < Model >::get_stats ( ) [virtual], [inherited]
```

Run statistics.

Reimplemented from mappel::estimator::ThreadedEstimator< Model >.

Definition at line 811 of file estimator_impl.h.

References mappel::estimator::IterativeMaximizer< Model >::convergence_min_function_change_ratio, mappel ::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::estimator::ThreadedEstimator<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::Iterative \(\to \) Maximizer< Model >::mtx, mappel::estimator::\(\to \) Estimator< Model >::num_estimations, mappel::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_backtracks, mappel ::estimator::IterativeMaximizer< Model >::total_\(\to \) fun evals, and mappel::estimator::IterativeMaximizer< Model >::total iterations.

Referenced by mappel::methods::error_bounds_profile_likelihood(), mappel::methods::debug::error_bounds_ \hookleftarrow profile_likelihood_debug(), mappel::methods::openmp::error_bounds_profile_likelihood_parallel(), mappel::methods \hookleftarrow ::openmp::error_bounds_profile_likelihood_stack(), mappel::estimator::SimulatedAnnealingMaximizer< Model $> \hookleftarrow$::get debug stats(), and mappel::estimator::lterativeMaximizer< Model > ::get debug stats().

9.58.4.27 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_backtracks () const [inline], [inherited]

Definition at line 443 of file estimator.h.

9.58.4.28 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::get_total_der_evals () const [inline], [inherited]

Definition at line 445 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.58.4.29 template < class Model > int mappel::estimator::IterativeMaximizer < Model > ::get_total_fun_evals () const [inline], [inherited]

Definition at line 444 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.58.4.30 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::get_total_iterations () const [inline], [inherited]

Definition at line 442 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::local profile maximize().

9.58.4.31 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEData & data) [inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 1145 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::maximize(), mappel::estimator::Estimator< Model >::model, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::Iterative \leftarrow Maximizer< Model >::record_run_statistics(), mappel::estimator::MLEData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::stencil(), mappel::estimator::MLEData::theta, and mappel::estimator::IterativeMaximizer< Model >::MaximizerData::theta().

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.58.4.32 template < class Model > void mappel::estimator::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, StencilT < Model > & stencil, MLEDebugData & debug_data) [inherited]

Definition at line 1158 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel ::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::Iterative \(\text{Maximizer} \) Maximizer< Model >::maximize(), mappel::estimator::Estimator
Model >::model, mappel::estimator::IterativeMaximizer
Model >::model, mappel::estimator::IterativeMaximizer
Model >::record \(\text{Cord} \) = \(\text{Cord}

9.58.4.33 template < class Model > void mappel::estimator::lterativeMaximizer < Model > ::local_profile_maximize (const ModelDataT < Model > & im, const ldxVecT & fixed_param_idxs, StencilT < Model > & stencil, MLEDebugData & mle) [inherited]

Definition at line 1173 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::subroutine::bound ← mappel::estimator::subroutine::compute bound scaling vec(), mappel::estimator::subroutine::compute_initial_trust_radius(), ::subroutine::compute cauchy point(), mappel← ::estimator::subroutine::compute quadratic model value(), mappel::estimator::subroutine::compute scaled problem(), mappel::estimator::IterativeMaximizer< Model >::convergence test grad ratio(), mappel::estimator::Iterative← Maximizer< Model >::convergence test step size(), mappel::estimator::Estimator< Model >::exit counts, mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::fixed idxs, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::free idxs, mappel::estimator::Estimator< Model >::get exit counts(), mappel::estimator::← IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::estimator::IterativeMaximizer< Model >::get_total_der ← evals(), mappel::estimator::IterativeMaximizer< Model >::get total fun evals(), mappel::estimator::Iterative ← Maximizer< Model >::get total iterations(), mappel::methods::objective::grad(), mappel::estimator::Iterative ← Maximizer< Model >::MaximizerData::grad, mappel::methods::objective::grad2(), mappel::estimator::Iterative ← Maximizer Model >::Maximizer Data::has_fixed_parameters(), mappel::methods::objective::hessian(), mappel ← ::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel::is_positive_definite(), mappel::estimator::← IterativeMaximizer< Model >::local_maximize(), mappel::estimator::IterativeMaximizer< Model >::local_profile_← maximize(), mappel::estimator::IterativeMaximizer < Model >::max iterations, mappel::estimator::IterativeMaximizer < Model >::maximize(), mappel::estimator::MaxIter, mappel::estimator::IterativeMaximizer< Model >::min profile← bound residual, mappel::estimator::Estimator< Model >::model, mappel::estimator::ThreadedEstimator< Model >::mtx, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters(), mappel ::methods::observed information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEDebugData::obsl, mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record backtrack(), mappel::estimator::ThreadedEstimator< Model >::record exit ← code(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::record iteration(), mappel::estimator::⇔ IterativeMaximizer< Model >::record run statistics(), mappel::estimator::IterativeMaximizer< Model >::Maximizer ← Data::restore_stencil(), mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator::⇔ MLEDebugData::rllh, mappel::estimator::lerativeMaximizer< Model >::MaximizerData::rllh, mappel::estimator::le-IterativeMaximizer< Model >::MaximizerData::s0, mappel::estimator::IterativeMaximizer< Model >::MaximizerData ← :::s1, mappel::estimator::IterativeMaximizer< Model >::MaximizerData::save stencil(), mappel::estimator::Iterative← Maximizer< Model >::MaximizerData::saved theta(), mappel::estimator::MLEDebugData::sequence, mappel ← ::estimator::MLEDebugData::sequence rllh, mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::set_fixed_parameters(), mappel::estimator::lterativeMaximizer< Model >::MaximizerData::set_stencil(), mappel ::estimator::subroutine::solve_TR_subproblem(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData⇔ ::stencil(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::step, mappel::estimator::MLEData::theta, mappel::estimator::MLEDebugData::theta, mappel::estimator::lterativeMaximizer< Model >::MaximizerData::theta(), mappel::estimator::IterativeMaximizer< Model >::total der evals, mappel::estimator::IterativeMaximizer< Model >← ::total fun evals, mappel::estimator::IterativeMaximizer< Model >::total iterations, and mappel::estimator::Trust← RegionRadius.

Referenced by mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize().

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative \leftarrow Maximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_ \leftarrow profile_estimate(), mappel::estimator::IterativeMaximizer< Model >::local_maximize(), and mappel::estimator:: \leftarrow IterativeMaximizer< Model >::local_profile_maximize().

```
9.58.4.35 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_backtracks ( )
[inherited]

9.58.4.36 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_der_evals ( )
[inherited]

9.58.4.37 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_fun_evals ( )
[inherited]

9.58.4.38 template < class Model > double mappel::estimator::IterativeMaximizer < Model >::mean_iterations ( )
[inherited]

9.58.4.39 template < class Model > std::string mappel::estimator::TrustRegionMaximizer < Model >::name ( ) const
[inline], [virtual]

Implements mappel::estimator::Estimator < Model >.
```

Definition at line 632 of file estimator.h.

Definition at line 943 of file estimator impl.h.

References mappel::estimator::IterativeMaximizer< Model >::backtrack_max_ratio, mappel::estimator::Iterative ← Maximizer< Model >::backtrack_min_linear_step_ratio, mappel::estimator::IterativeMaximizer< Model >::backtrack ← min_ratio, mappel::clamp(), mappel::estimator::IterativeMaximizer< Model >::convergence_min_step_size_ratio, mappel::methods::objective::grad(), mappel::estimator::IterativeMaximizer< Model >::MaximizerData::im, mappel ← ::estimator::IterativeMaximizer< Model >::max_backtracks, mappel::estimator::MaxBacktracks, mappel::estimator ← ::Estimator</br>
Model >::max_backtracks, mappel::estimator::IterativeMaximizer</br>
Model >::max_backtracks, mappel::estimator::IterativeMaximizer</br>
Model >::maximizer ← Model >::

Maximizer ← Model >::Maximizer ← Model >::Ma

Referenced by mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.58.4.41 template < class Model > void mappel::estimator::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [override], [protected], [virtual], [inherited]

Implements mappel::estimator::Estimator< Model >.

Definition at line 578 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::exit_counts, mappel::estimator::Estimator< Model >:::model, mappel::estimator::ThreadedEstimator< Model >:::mtx, mappel::methods::observed_information(), mappel::estimator::MLEData::obsl, mappel::estimator::MLEData::rllh, mappel::methods::objective::rllh(), mappel::estimator:::Cuccess, and mappel::estimator::MLEData::theta.

Referenced by mappel::estimator::IterativeMaximizer
Model >::backtrack(), mappel::estimator::IterativeMaximizer
Model >::convergence_test_grad_ratio(), mappel::estimator::IterativeMaximizer
Model >::convergence_test
_step_size(), mappel::estimator::ThreadedEstimator
Model >::estimate_max_stack(), mappel::estimator:: \leftarrow
ThreadedEstimator
Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator
Model >::estimate_profile_max(), mappel::estimator::HeuristicEstimator
Model >::get_debug_stats(), mappel::estimator::CGaussMLE
Model > ::get_debug_stats(), mappel::estimator::IterativeMaximizer
Model >::local_profile_maximize(), and mappel
::estimator::IterativeMaximizer
Model >::profile_bound backtrack().

9.58.4.42 template < class Model > void mappel::estimator::IterativeMaximizer < Model > ::record_run_statistics (const MaximizerData & data) [protected], [inherited]

Definition at line 859 of file estimator impl.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_estimate(), mappel::estimator::Iterative
Maximizer< Model >::compute_estimate_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_eprofile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel
::estimator::IterativeMaximizer< Model >::compute_profile_estimator::IterativeMaximizer< Model >::local maximize(), and mappel::estimator::IterativeMaximizer< Model >::local profile maximize().

9.58.4.43 template < class Model > void mappel::estimator::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int num_estimations) [protected], [inherited]

Definition at line 360 of file estimator impl.h.

 $References\ mappel::estimator::Estimator< Model >::num_estimations,\ and\ mappel::estimator::Estimator< Model > \leftarrow ::total\ walltime.$

Referenced by mappel::estimator::Estimator< Model >::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_debug(), mappel::estimator::ThreadedEstimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimator::Estimator< Model >::estimater< Model >::estimator< Model >::estimater< Model >::estimater< Model >::estimater< Model >::estimate_profile_bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel::estimator::Estimator< Model >::estimater< Model >::e

Definition at line 1137 of file estimator impl.h.

References mappel::estimator::Estimator< Model >::name().

Referenced by mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), and mappel::estimator:: lterativeMaximizer< Model >::compute profile bound debug().

9.58.5 Member Data Documentation

9.58.5.1 template < class Model > const double mappel::estimator::lterativeMaximizer < Model > ::backtrack_max_ratio = 0.50 [static], [protected], [inherited]

Definition at line 462 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::profile bound backtrack().

9.58.5.2 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::backtrack_min_linear_step_ratio = 1e-3 [static], [protected], [inherited]

Definition at line 463 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::backtrack(), and mappel::estimator::Iterative \leftarrow Maximizer < Model >::profile_bound_backtrack().

9.58.5.3 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::backtrack_min_ratio = 0.05 [static], [protected], [inherited]

Definition at line 461 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::profile bound backtrack().

9.58.5.4 template < class Model > const double mappel::estimator::IterativeMaximizer < Model >::convergence_min_function_change_ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance for function-value change.

Definition at line 458 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::convergence_test_grad_ratio(), and mappel ::estimator::IterativeMaximizer< Model >::get stats().

9.58.5.5 template < class Model > const double mappel::estimator::lterativeMaximizer < Model >::convergence_min_step_size_ratio = 1.0e-9 [static], [protected], [inherited]

Convergence criteria: tolerance of relative step size.

Definition at line 459 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::convergence_test_step_size(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel ::estimator::IterativeMaximizer< Model >::profile_bound_backtrack().

9.58.5.6 template < class Model > const double mappel::estimator::TrustRegionMaximizer < Model >::convergence min trust radius = 1.0e-8 [static]

Convergence criteria: Minimum trust region radius.

Definition at line 627 of file estimator.h.

9.58.5.7 template < class Model > const int mappel::estimator::lterativeMaximizer < Model >::DefaultIterations = 100 [static], [inherited]

Definition at line 430 of file estimator.h.

9.58.5.8 template < class Model > IdxVecT mappel::estimator::Estimator < Model >::exit_counts [protected], [inherited]

Definition at line 301 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::Threaded \leftarrow Estimator< Model >::record_exit_code().

9.58.5.9 template < class Model > IdxVecT mappel::estimator::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]

Debugging: Stores last set of backtrack_idxs when data.save_seq==true.

Definition at line 477 of file estimator.h.

 $Referenced \ by \ mappel::estimator::Iterative Maximizer < Model > ::get_debug_stats(), \ and \ mappel::estimator::Iterative \leftarrow Maximizer < Model > ::record_run_statistics().$

9.58.5.10 template < class Model > const int mappel::estimator::IterativeMaximizer < Model >::max_backtracks = 8
 [static], [protected], [inherited]

Definition at line 464 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::backtrack(), mappel::estimator::lterativeMaximizer< Model >::get stats(), and mappel::estimator::lterativeMaximizer< Model >::profile bound backtrack().

9.58.5.11 template < class Model > int mappel::estimator::IterativeMaximizer < Model >::max_iterations [protected], [inherited]

Definition at line 468 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Iterative \(\to \) Maximizer < Model >::local profile maximize().

9.58.5.12 template < class Model > int mappel::estimator::ThreadedEstimator < Model >::max_threads [protected], [inherited]

Definition at line 326 of file estimator.h.

9.58.5.13 template < class Model > const double mappel::estimator::IterativeMaximizer < Model >::min_eigenvalue_correction_delta = 1e-3 [static], [protected], [inherited]

Ensure the minimum eigenvalue is at least this big when correcting indefinite matrix.

Definition at line 456 of file estimator.h.

9.58.5.14 template < class Model > const double mappel::estimator::IterativeMaximizer < Model >::min_profile_bound_residual = 1e-4 [static], [protected], [inherited]

Minimum residual in quadratic solutions of equation (8) to accept. Revert to newton step.

Definition at line 466 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer < Model >::local profile maximize().

9.58.5.15 template < class Model > const Model& mappel::estimator::Estimator < Model > ::model [protected], [inherited]

Definition at line 296 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::backtrack(), mappel::estimator::IterativeMaximizer< Model >::compute estimate(), mappel::estimator::Estimator< Model >::compute estimate debug(), mappel ::estimator::IterativeMaximizer< Model >::compute estimate debug(), mappel::estimator::Estimator< Model >← :::compute_profile_bound(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound(), mappel ← ::estimator::Estimator< Model >::compute_profile_bound_debug(), mappel::estimator::IterativeMaximizer< Model >::compute_profile_bound_debug(), mappel::estimator::Estimator< Model >::compute_profile_estimate(), mappel ← ::estimator::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::estimator::Estimator< Model >-::estimate_max(), mappel::estimator::Estimator< Model >::estimate_max_stack(), mappel::estimator::Threaded← Estimator< Model >::estimate_max_stack(), mappel::estimator::Estimator< Model >::estimate_profile_bounds(), mappel::estimator::ThreadedEstimator< Model >::estimate profile bounds parallel(), mappel::estimator::Threaded← Estimator < Model >::estimate_profile_bounds_stack(), mappel::estimator::ThreadedEstimator < Model >::estimate_← profile max(), mappel::estimator::HeuristicEstimator< Model >::get debug stats(), mappel::estimator::CGaussMLE< Model >::get_debug_stats(), mappel::estimator::Estimator< Model >::get_model(), mappel::estimator::Iterative← Maximizer Model >::local maximize(), mappel::estimator::IterativeMaximizer Model >::local profile maximize(), mappel::estimator::IterativeMaximizer< Model >::profile bound backtrack(), and mappel::estimator::Threaded← Estimator < Model >::record exit code().

9.58.5.16 template < class Model > std::mutex mappel::estimator::ThreadedEstimator < Model >::mtx [protected], [inherited]

Definition at line 328 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Iterative
Maximizer< Model >::clear_stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel
::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get
_stats(), mappel::estimator::CGaussMLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer<
Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel::estimator::Iterative
Maximizer< Model >::local_profile_maximize(), mappel::estimator::ThreadedEstimator< Model >::record_exit_code(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

Definition at line 299 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get _stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), mappel::estimator::HeuristicEstimator< Model >::get_stats(), mappel::estimator::CGaussHeuristicEstimator< Model >::get_stats(), mappel::estimator::CGauss MLE< Model >::get_stats(), mappel::estimator::SimulatedAnnealingMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::get_stats(), and mappel::estimator::Estimator< Model >::record_walltime().

Definition at line 327 of file estimator.h.

Referenced by mappel::estimator::ThreadedEstimator< Model >::clear_stats(), mappel::estimator::Threaded \leftarrow Estimator< Model >::estimate_max_stack(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile \leftarrow _bounds_parallel(), mappel::estimator::ThreadedEstimator< Model >::estimate_profile_bounds_stack(), mappel \leftarrow ::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator< Model >::estimator::ThreadedEstimator<:ThreadedEstimator< Model >::estimator::ThreadedEstimator<

9.58.5.19 template < class Model > const double mappel::estimator::TrustRegionMaximizer < Model > ::rho_cauchy_min = 0.1 [static]

Minimum acceptable rho for cauchy point: Coleman beta / Bellavia beta 1.

Definition at line 621 of file estimator.h.

9.58.5.20 template < class Model > const double mappel::estimator::TrustRegionMaximizer < Model >::rho_obj_min = 0.25 [static]

Minimum acceptable rho: Coleman mu / Bellavia beta 2.

Definition at line 622 of file estimator.h.

9.58.5.21 template < class Model > const double mappel::estimator::TrustRegionMaximizer < Model >::rho_obj_opt = 0.75 [static]

Optimal step rho: Coleman eta / Bellavia beta 2.

Definition at line 623 of file estimator.h.

9.58.5.22 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_backtracks = 0 [protected], [inherited]

Definition at line 472 of file estimator.h.

Referenced by mappel::estimator::lterativeMaximizer< Model >::clear_stats(), mappel::estimator::lterativeMaximizer< Model >::get stats(), and mappel::estimator::lterativeMaximizer< Model >::record run statistics().

9.58.5.23 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_der_evals = 0 [protected], [inherited]

Definition at line 474 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.58.5.24 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_fun_evals = 0 [protected], [inherited]

Definition at line 473 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated \leftarrow AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record_run_statistics().

9.58.5.25 template < class Model > int mappel::estimator::lterativeMaximizer < Model >::total_iterations = 0 [protected], [inherited]

Definition at line 471 of file estimator.h.

Referenced by mappel::estimator::IterativeMaximizer< Model >::clear_stats(), mappel::estimator::Simulated \leftarrow AnnealingMaximizer< Model >::get_stats(), mappel::estimator::IterativeMaximizer< Model >::get_stats(), mappel \leftarrow ::estimator::IterativeMaximizer< Model >::local_profile_maximize(), and mappel::estimator::IterativeMaximizer< Model >::record run statistics().

9.58.5.26 template < class Model > double mappel::estimator::Estimator < Model >::total_walltime = 0. [protected], [inherited]

Definition at line 300 of file estimator.h.

Referenced by mappel::estimator::Estimator< Model >::clear_stats(), mappel::estimator::Estimator< Model >::get_ \leftarrow stats(), mappel::estimator::ThreadedEstimator< Model >::get_stats(), and mappel::estimator::Estimator< Model > \leftarrow ::record walltime().

10 File Documentation 899

9.58.5.27 template < class Model > const double mappel::estimator::TrustRegionMaximizer < Model >::trust_radius_decrease = 0.25 [static]

Trust radius decrease ratio to step size: Coleman gamma_1 / Bellavia alpha_2.

Definition at line 625 of file estimator.h.

9.58.5.28 template < class Model > const double mappel::estimator::TrustRegionMaximizer < Model >::trust_radius_decrease_min = 0.125 [static]

Smallest alowable trust radius decrease ratio: Coleman gamma 0 / Bellavia alpha 1.

Definition at line 624 of file estimator.h.

9.58.5.29 template < class Model > const double mappel::estimator::TrustRegionMaximizer < Model >::trust_radius_increase = 2 [static]

Trust radius increase ratio: Coleman gamma_2 / Bellavia alpha_3.

Definition at line 626 of file estimator.h.

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

10 File Documentation

10.1 display.cpp File Reference

```
#include "Mappel/display.h"
```

Namespaces

mappel

Functions

- const char * mappel::lambda_term_color (int size, int Lidx)
- ostream & mappel::print_centered_title (ostream &out, char fill, int width, const char *title=nullptr)
- ostream & mappel::print_labeled_image (ostream &out, const arma::mat &im, const char *title, const char *color)
- template<>

std::ostream & mappel::print_image (std::ostream &out, const arma::vec &im)

template<>

std::ostream & mappel::print image (std::ostream &out, const arma::mat &im)

• template<>

std::ostream & mappel::print_text_image (std::ostream &out, const arma::vec &im)

• template<>

std::ostream & mappel::print_text_image (std::ostream &out, const arma::mat &im)

template<>

std::ostream & mappel::print image (std::ostream &out, const arma::cube &im)

Variables

```
    const char * mappel::TERM_BLACK ="1;30"

    const char * mappel::TERM RED ="1;31"

const char * mappel::TERM_GREEN ="1;32"
const char * mappel::TERM_YELLOW ="1;33"

    const char * mappel::TERM BLUE ="1;34"

const char * mappel::TERM_MAGENTA ="1;35"

    const char * mappel::TERM CYAN ="1;36"

    const char * mappel::TERM_WHITE ="1;37"

    const char * mappel::TERM DIM BLACK ="0;30"

    const char * mappel::TERM DIM RED ="0;31"

const char * mappel::TERM_DIM_GREEN ="0;32"

    const char * mappel::TERM DIM YELLOW ="0;33"

    const char * mappel::TERM_DIM_BLUE ="0;34"

    const char * mappel::TERM DIM MAGENTA ="0;35"

const char * mappel::TERM_DIM_CYAN ="0;36"
const char * mappel::TERM_DIM_WHITE ="0;37"
```

10.1.1 Detailed Description

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.2 display.h File Reference

Textual image display with colors.

```
#include <iostream>
#include <iomanip>
#include <armadillo>
```

Namespaces

mappel

Functions

- template < class ImageT >
 std::ostream & mappel::print_image (std::ostream &out, const ImageT &im)
- template < class ImageT >
 std::ostream & mappel::print_text_image (std::ostream &out, const ImageT &im)
- template < class Vec >
 std::ostream & mappel::print_vec_row (std::ostream &out, const Vec &vec, const char *header, int header_width,
 const char *color=nullptr)

10.2.1 Detailed Description

Textual image display with colors.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.3 estimator.cpp File Reference

Non-templated estimator helper routines and static constants.

```
#include <cmath>
#include <iomanip>
#include <armadillo>
#include "Mappel/util.h"
#include "Mappel/numerical.h"
#include "Mappel/estimator.h"
#include "Mappel/estimator_helpers.h"
```

Namespaces

- mappel
- mappel::estimator
- · mappel::estimator::subroutine

Functions

- VecT mappel::estimator::subroutine::solve_profile_initial_step (const MatT &obsl, IdxT fixed_idx, double Ilh_delta)
- VecT mappel::estimator::subroutine::bound_step (const VecT &step, const VecT &theta, const VecT &lbound, const VecT &ubound)
- void mappel::estimator::subroutine::compute_bound_scaling_vec (const VecT &theta, const VecT &g, const VecT &lbound, const VecT &ubound, VecT &v, VecT &Jv)
- VecT mappel::estimator::subroutine::compute_D_scale (const VecT &oldDscale, const VecT &grad2)
- void mappel::estimator::subroutine::compute_scaled_problem (const MatT &H, const VecT &g, const VecT &Dinv, const VecT &Jv, MatT &Hhat, VecT &ghat)
- double mappel::estimator::subroutine::compute_initial_trust_radius (const VecT &ghat)
- VecT mappel::estimator::subroutine::compute_cauchy_point (const VecT &g, const MatT &H, double delta)
- double mappel::estimator::subroutine::compute_quadratic_model_value (const VecT &s, const VecT &g, const MatT &H)

Quadratic model value at given step Compute a quadratic model.

- VecT mappel::estimator::subroutine::solve_TR_subproblem (const VecT &g, const MatT &H, double delta) Exact solver the TR sub-problem even for non-positive definite H.
- VecT mappel::estimator::subroutine::solve_restricted_step_length_newton (const VecT &g, const MatT &H, double delta, double lambda lb, double lambda ub)

10.3.1 Detailed Description

Non-templated estimator helper routines and static constants.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.4 estimator.h File Reference

The class declaration and inline and templated functions for the Estimator class hierarchy.

```
#include <exception>
#include <fstream>
#include <string>
#include <limits>
#include <memory>
#include <mutex>
#include <map>
#include "Mappel/rng.h"
#include "cGaussMLE/cGaussMLE.h"
#include "Mappel/util.h"
```

Classes

- struct mappel::estimator::MLEData
- struct mappel::estimator::MLEDebugData
- struct mappel::estimator::MLEDataStack
- struct mappel::estimator::ProfileLikelihoodData
- struct mappel::estimator::ProfileBoundsData
- struct mappel::estimator::ProfileBoundsDebugData
- struct mappel::estimator::ProfileBoundsDataStack
- class mappel::estimator::Estimator< Model >
- class mappel::estimator::ThreadedEstimator< Model >
- class mappel::estimator::HeuristicEstimator< Model >
- class mappel::estimator::CGaussHeuristicEstimator< Model >
- class mappel::estimator::CGaussMLE< Model >
- class mappel::estimator::SimulatedAnnealingMaximizer< Model >
- class mappel::estimator::IterativeMaximizer< Model >
- class mappel::estimator::IterativeMaximizer< Model >::MaximizerData
- class mappel::estimator::NewtonDiagonalMaximizer< Model >
- class mappel::estimator::NewtonMaximizer< Model >
- class mappel::estimator::QuasiNewtonMaximizer< Model >
- class mappel::estimator::TrustRegionMaximizer< Model >

Namespaces

- mappel
- · mappel::estimator

Typedefs

typedef std::chrono::high_resolution_clock ClockT

```
    enum mappel::estimator::ExitCode::IdxT {
        mappel::estimator::ExitCode::TrustRegionRadius = 9, mappel::estimator::ExitCode::ModelImprovement = 8,
        mappel::estimator::ExitCode::GradRatio = 7, mappel::estimator::ExitCode::FunctionValue = 6,
        mappel::estimator::ExitCode::StepSize = 5, mappel::estimator::ExitCode::Success = 4, mappel::estimator::ExitCode::MaxBacktracks = 3, mappel::estimator::ExitCode::MaxIter = 2,
        mappel::estimator::ExitCode::Unassigned = 1, mappel::estimator::ExitCode::Error = 0 }
```

10.4.1 Detailed Description

The class declaration and inline and templated functions for the Estimator class hierarchy.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.4.2 Class Documentation

10.4.2.1 struct mappel::estimator::MLEData

Data reporting structures A maximum-likelihood estimate for a single image. A container to group the necessary information at an MLEstimate

Definition at line 40 of file estimator.h.

Class Members

MatT	obsl	Observed Fisher information matrix at theta.
double	rllh	RLLH at theta.
VecT	theta	Theta estimate.

10.4.2.2 struct mappel::estimator::MLEDataStack

A stack of maximum-likelihood estimates for a stack of images A container to group the necessary information at an MI Estimate

Definition at line 65 of file estimator.h.

Class Members

ldxT	Ndata	Number of data estimates.	
CubeT	obsl	Observed Fisher information matrix stack. size:[Nparams,Nparams,Ndata].	
VecT	rllh	RLLH stack. size:[Ndata].	
MatT	theta	Theta estimate stack. size:[Nparams,Ndata].	

10.4.2.3 struct mappel::estimator::ProfileLikelihoodData

Container for profile liklihood estimator data Includes both controlling (input) parameters as well as reporting (ouptut) parameters to give output parameters context.

Definition at line 76 of file estimator.h.

Class Members

IdxVecT	fixed_idxs	Indexes of fixed parameters.
MatT	fixed_values	Vector values for each fixed parameter size:[Nfixed,Nvalues];.
IdxT	Nfixed	Number of fixed parameters.
IdxT	Nvalues	Number of values of fixed parameters evaluated.
VecT	profile_likelihood	profile likelhood for each column of fixed parameter values
MatT	profile_parameters	Points at which the profile liklihood maximum was obtained.

10.4.2.4 struct mappel::estimator::ProfileBoundsDebugData

Data for debugging of estimation of profile bounds for a single parameter of a single image Includes both controlling (input) parameters as well as reporting (ouptut) parameters to give output parameters context.

Definition at line 115 of file estimator.h.

Class Members

ldxT	estimated_idx	Index of single parameter to estimate for.
MLEData	mle	Theta maximum-likelihood estimate, rllh, and Obsl.
ldxT	Nseq_lb	Number of points in sequence_lb.
ldxT	Nseq_ub	Number of points in sequence_ub.
double	profile_lb	size:[Nparams_est] Lower bound estimated for estimated_idx.
double	profile_ub	size:[Nparams_est] Upper bound estimated for estimated_idx.
MatT	sequence_lb	size:[NumParams,Nseq_lb] Sequence of evaluated points for lb estimate (including theta mle as initial point)

Class Members

VecT	sequence_lb_rllh	size:[Nseq_lb] RLLH at each of the sequence_lb points
MatT	sequence_ub	size:[NumParams,Nseq_ub] Sequence of evaluated points for ub estimate (including theta mle as initial point)
VecT	sequence_ub_rllh	size:[Nseq_ub] RLLH at each of the sequence_ub points
double	target_rllh_delta	Targeted rllh change in value from MLE (-chi2inv(confidence,1)/2)

10.4.3 Typedef Documentation

10.4.3.1 typedef std::chrono::high_resolution_clock ClockT

Definition at line 25 of file estimator.h.

10.5 estimator_helpers.h File Reference

Estimator helper subroutines.

Namespaces

- mappel
- mappel::estimator
- · mappel::estimator::subroutine

Functions

- VecT mappel::estimator::subroutine::bound_step (const VecT &step, const VecT &theta, const VecT &lbound, const VecT &ubound)
- void mappel::estimator::subroutine::compute_bound_scaling_vec (const VecT &theta, const VecT &g, const VecT &lbound, const VecT &ubound, VecT &v, VecT &Jv)
- VecT mappel::estimator::subroutine::compute_D_scale (const VecT &oldDscale, const VecT &grad2)
- void mappel::estimator::subroutine::compute_scaled_problem (const MatT &H, const VecT &g, const VecT &Dinv, const VecT &Jv, MatT &Hhat, VecT &ghat)
- VecT mappel::estimator::subroutine::solve_profile_initial_step (const MatT &obsl, ldxT fixed_idx, double llh_delta)
- double mappel::estimator::subroutine::compute_initial_trust_radius (const VecT &ghat)
- VecT mappel::estimator::subroutine::compute cauchy point (const VecT &g, const MatT &H, double delta)
- double mappel::estimator::subroutine::compute_quadratic_model_value (const VecT &s, const VecT &g, const MatT &H)

Quadratic model value at given step Compute a quadratic model.

- VecT mappel::estimator::subroutine::solve_TR_subproblem (const VecT &g, const MatT &H, double delta) Exact solver the TR sub-problem even for non-positive definite H.
- VecT mappel::estimator::subroutine::solve_restricted_step_length_newton (const VecT &g, const MatT &H, double delta, double lambda_lb, double lambda_ub)

```
10.5.1 Detailed Description
```

Estimator helper subroutines.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.6 estimator_impl.h File Reference

```
#include <thread>
#include <cmath>
#include <armadillo>
#include "Mappel/estimator.h"
#include "Mappel/estimator_helpers.h"
#include "Mappel/rng.h"
#include "Mappel/numerical.h"
#include "Mappel/display.h"
```

Namespaces

- mappel
- · mappel::estimator

Functions

template < class Model >
 std::ostream & mappel::estimator::operator << (std::ostream & out, Estimator < Model > & estimator)

10.6.1 Detailed Description

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.7 estimator_statics.cpp File Reference

```
#include "Mappel/Gauss1DMAP.h"
#include "Mappel/estimator_impl.h"
```

Namespaces

mappel

10.7.1 Detailed Description

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

01-15-2014

10.8 Gauss1DMAP.cpp File Reference

The class definition and template Specializations for Gauss1DMAP.

```
#include "Mappel/Gauss1DMAP.h"
```

Namespaces

mappel

10.8.1 Detailed Description

The class definition and template Specializations for Gauss1DMAP.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.9 Gauss1DMAP.h File Reference

The class declaration and inline and templated functions for Gauss1DMAP.

```
#include "Mappel/Gauss1DModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss1DMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Namespaces

· mappel

10.9.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.10 Gauss1DMLE.cpp File Reference

The class definition and template Specializations for Gauss1DMLE.

```
#include "Mappel/Gauss1DMLE.h"
```

Namespaces

mappel

10.10.1 Detailed Description

The class definition and template Specializations for Gauss1DMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.11 Gauss1DMLE.h File Reference

The class declaration and inline and templated functions for Gauss1DMLE.

```
#include "Mappel/Gauss1DModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

• class mappel::Gauss1DMLE

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Namespaces

mappel

10.11.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.12 Gauss1DModel.cpp File Reference

The class definition and template Specializations for Gauss1DModel.

```
#include "Mappel/Gauss1DModel.h"
#include "Mappel/stencil.h"
```

Namespaces

· mappel

Functions

std::ostream & mappel::operator<< (std::ostream &out, const Gauss1DModel::Stencil &s)

10.12.1 Detailed Description

The class definition and template Specializations for Gauss1DModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.13 Gauss1DModel.h File Reference

The class declaration and inline and templated functions for Gauss1DModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat1DBase.h"
#include "Mappel/MCMCAdaptor1D.h"
```

Classes

class mappel::Gauss1DModel

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

• class mappel::Gauss1DModel::Stencil

Stencil for 1D fixed-sigma models.

Namespaces

mappel

10.13.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.14 Gauss1DsMAP.cpp File Reference

The class definition and template Specializations for Gauss1DsMAP.

```
#include "Mappel/Gauss1DsMAP.h"
```

Namespaces

mappel

10.14.1 Detailed Description

The class definition and template Specializations for Gauss1DsMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2017

10.15 Gauss1DsMAP.h File Reference

The class declaration and inline and templated functions for Gauss1DsMAP.

```
#include "Mappel/Gauss1DsModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

• class mappel::Gauss1DsMAP

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

Namespaces

mappel

10.15.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DsMAP.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.16 Gauss1DsMLE.cpp File Reference

The class definition and template Specializations for Gauss1DsMLE.

```
#include "Mappel/Gauss1DsMLE.h"
```

Namespaces

mappel

10.16.1 Detailed Description

The class definition and template Specializations for Gauss1DsMLE.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2017

10.17 Gauss1DsMLE.h File Reference

The class declaration and inline and templated functions for Gauss1DsMLE.

```
#include "Mappel/Gauss1DsModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

• class mappel::Gauss1DsMLE

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

Namespaces

mappel

10.17.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DsMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.18 Gauss1DsModel.cpp File Reference

The class definition and template Specializations for Gauss1DsModel.

```
#include "Mappel/Gauss1DsModel.h"
#include "Mappel/stencil.h"
```

Namespaces

mappel

Functions

std::ostream & mappel::operator<< (std::ostream &out, const Gauss1DsModel::Stencil &s)

10.18.1 Detailed Description

The class definition and template Specializations for Gauss1DsModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.19 Gauss1DsModel.h File Reference

The class declaration and inline and templated functions for Gauss1DsModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat1DBase.h"
#include "Mappel/MCMCAdaptor1Ds.h"
```

Classes

• class mappel::Gauss1DsModel

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

• class mappel::Gauss1DsModel::Stencil

Stencil for 1D variable-sigma models.

Namespaces

· mappel

10.19.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DsModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.20 Gauss2DMAP.cpp File Reference

The class definition and template Specializations for Gauss2DMAP.

```
#include "Mappel/Gauss2DMAP.h"
```

Namespaces

mappel

10.20.1 Detailed Description

The class definition and template Specializations for Gauss2DMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.21 Gauss2DMAP.h File Reference

The class declaration and inline and templated functions for Gauss2DMAP.

```
#include "Mappel/Gauss2DModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

· class mappel::Gauss2DMAP

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Namespaces

mappel

10.21.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.22 Gauss2DMLE.cpp File Reference

The class definition and template Specializations for Gauss2DMLE.

```
#include "Mappel/Gauss2DMLE.h"
```

Namespaces

mappel

10.22.1 Detailed Description

The class definition and template Specializations for Gauss2DMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.23 Gauss2DMLE.h File Reference

The class declaration and inline and templated functions for Gauss2DMLE.

```
#include "Mappel/Gauss2DModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss2DMLE

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Namespaces

mappel

10.23.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.24 Gauss2DModel.cpp File Reference

The class definition and template Specializations for Gauss2DModel.

```
#include "Mappel/Gauss2DModel.h"
#include "Mappel/stencil.h"
```

Namespaces

mappel

Functions

std::ostream & mappel::operator<< (std::ostream &out, const Gauss2DModel::Stencil &s)

10.24.1 Detailed Description

The class definition and template Specializations for Gauss2DModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.25 Gauss2DModel.h File Reference

The class declaration and inline and templated functions for Gauss2DModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/MCMCAdaptor2D.h"
#include "Mappel/Gauss1DMAP.h"
```

Classes

· class mappel::Gauss2DModel

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

· class mappel::Gauss2DModel::Stencil

Stencil for 2D fixed-sigma models.

Namespaces

mappel

Functions

- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DModel, Model >::value, ParamT< Model > >::type mappel::cgauss
 _heuristic_compute_estimate (const Model &model, const ModelDataT< Model > &im, const ParamT< Model
 > &theta_init)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > > ::type mappel::cgauss ←
 _compute_estimate (Model &model, const ModelDataT < Model > &im, const ParamT < Model > &theta_init, int max_iterations)
- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DModel, Model >::value, ParamT< Model > >::type mappel::cgauss
 _compute_estimate_debug (const Model &model, const ModelDataT< Model > &im, const ParamT< Model >
 &theta_init, int max_iterations, ParamVecT< Model > &sequence)

10.25.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.26 Gauss2DsMAP.cpp File Reference

The class definition and template Specializations for Gauss2DsMAP.

```
#include "Mappel/Gauss2DsMAP.h"
```

Namespaces

mappel

10.26.1 Detailed Description

The class definition and template Specializations for Gauss2DsMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.27 Gauss2DsMAP.h File Reference

The class declaration and inline and templated functions for Gauss2DsMAP.

```
#include "Mappel/Gauss2DsModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss2DsMAP

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective.

Namespaces

mappel

10.27.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.28 Gauss2DsMLE.cpp File Reference

The class definition and template Specializations for Gauss2DsMLE.

```
#include "Mappel/Gauss2DsMLE.h"
```

Namespaces

mappel

10.28.1 Detailed Description

The class definition and template Specializations for Gauss2DsMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.29 Gauss2DsMLE.h File Reference

The class declaration and inline and templated functions for Gauss2DsMLE.

```
#include "Mappel/Gauss2DsModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss2DsMLE

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective.

Namespaces

mappel

10.29.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.30 Gauss2DsModel.cpp File Reference

The class definition and template Specializations for Gauss2DsModel.

```
#include "Mappel/Gauss2DsModel.h"
#include "Mappel/stencil.h"
```

Namespaces

mappel

Functions

std::ostream & mappel::operator<< (std::ostream &out, const Gauss2DsModel::Stencil &s)

10.30.1 Detailed Description

The class definition and template Specializations for Gauss2DsModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.31 Gauss2DsModel.h File Reference

The class declaration and inline and templated functions for Gauss2DsModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/MCMCAdaptor2Ds.h"
#include "Mappel/Gauss1DsMAP.h"
```

Classes

· class mappel::Gauss2DsModel

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

• class mappel::Gauss2DsModel::Stencil

Stencil for 2D scalar-sigma models.

Namespaces

mappel

Functions

- template<class Model > std::enable_if< std::is_base_of< Gauss2DsModel, Model >::value, ParamT< Model > >::type mappel ← ::cgauss_heuristic_compute_estimate (const Model &model, const ModelDataT< Model > &im, const ParamT< Model > &theta init)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_compute_estimate (Model &model, const ModelDataT < Model > &im, const ParamT < Model >
 &theta_init, int max_iterations)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > &im, const ParamT <
 Model > &theta init, int max iterations, ParamVecT < Model > &sequence)

10.31.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.32 Gauss2DsxyMAP.h File Reference

The class declaration and inline and templated functions for Gauss2DsxyMAP.

```
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/Gauss1DModel.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss2DsxyMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Namespaces

mappel

10.32.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsxyMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2017

10.33 Gauss2DsxyModel.h File Reference

The class declaration and inline and templated functions for Gauss2DsxyModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/Gauss1DsMAP.h"
```

Classes

class mappel::Gauss2DsxyModel

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_ \leftarrow y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

class mappel::Gauss2DsxyModel::Stencil

Stencil for 2D free-sigma (astigmatic) models.

Namespaces

mappel

Functions

template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > &im, const ParamT <
 Model > &theta init)

template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_compute_estimate (Model &model, const ModelDataT < Model > &im, const ParamT < Model >
 &theta init, int max iterations)

template < class Model > std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type mappel <-::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > &im, const ParamT <
Model > &theta init, int max iterations, ParamVecT < Model > &sequence)

10.33.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsxyModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.34 ImageFormat1DBase.cpp File Reference

The class definition and template Specializations for ImageFormat1DBase.

```
#include "Mappel/ImageFormat1DBase.h"
```

Namespaces

mappel

10.34.1 Detailed Description

The class definition and template Specializations for ImageFormat1DBase.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.35 ImageFormat1DBase.h File Reference

The class declaration and inline and templated functions for ImageFormat1DBase.

```
#include "Mappel/util.h"
#include "Mappel/ImageFormat2DBase.h"
```

Classes

· class mappel::ImageFormat1DBase

A virtual base class for 2D image localization objectives.

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

Functions

template < class Model >
 ReturnIfSubclassT < ImageT < Model >, Model, ImageFormat1DBase > mappel::methods::model_image (const Model & model, const StencilT < Model > &s)

10.35.1 Detailed Description

The class declaration and inline and templated functions for ImageFormat1DBase.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019 The virtual base class for all point 2D image based emitter Models and Objectives

10.36 ImageFormat2DBase.cpp File Reference

The class definition and template Specializations for ImageFormat2DBase.

```
#include "Mappel/ImageFormat2DBase.h"
```

Namespaces

· mappel

10.36.1 Detailed Description

The class definition and template Specializations for ImageFormat2DBase.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.37 ImageFormat2DBase.h File Reference

The class declaration and inline and templated functions for ImageFormat2DBase.

```
#include "Mappel/util.h"
```

Classes

· class mappel::ImageFormat2DBase

A virtual base class for 2D image localization objectives.

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

Functions

template < class Model >
 ReturnIfSubclassT < ImageT < Model >, Model, ImageFormat2DBase > mappel::methods::model_image (const Model &model, const typename Model::Stencil &s)

10.37.1 Detailed Description

The class declaration and inline and templated functions for ImageFormat2DBase.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019 The virtual base class for all point 2D image based emitter Models and Objectives

10.38 Install.md File Reference

10.39 MAPEstimator.h File Reference

Class declaration and inline and templated functions for MAPEstimator.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/MLEstimator.h"
```

Classes

· class mappel::MAPEstimator

A Mixin class to configure a for MLE estimation (null prior).

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::objective
- · mappel::methods::objective::debug

Functions

template < class Model >

ReturnIfSubclassT< double, Model, MAPEstimator > mappel::methods::objective::llh (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< double, Model, MAPEstimator > mappel::methods::objective::rllh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< ParamT< Model >, Model, MAPEstimator > mappel::methods::objective::grad (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

 $ReturnIfSubclassT < void, \ Model, \ MAPEstimator > mappel::methods::objective::grad2 \ (const \ Model \ \&model, \ const \ Model > \&data_im, \ const \ StencilT < \ Model > \&s, \ ParamT < \ Model > \&grad, \ ParamT < \ Model > \&grad2)$

• template<class Model >

ReturnIfSubclassT< void, Model, MAPEstimator > mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template < class Model >

ReturnIfSubclassT< VecT, Model, MAPEstimator > mappel::methods::objective::debug::llh_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< VecT, Model, MAPEstimator > mappel::methods::objective::debug::rllh_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< MatT, Model, MAPEstimator > mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

• template<class Model >

ReturnIfSubclassT< CubeT, Model, MAPEstimator > mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

10.39.1 Detailed Description

Class declaration and inline and templated functions for MAPEstimator.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2017-2019

10.40 mcmc.cpp File Reference

MCMC helper functions.

```
#include "Mappel/util.h"
#include "Mappel/mcmc_data.h"
```

Namespaces

- mappel
- mappel::mcmc

Functions

- IdxT mappel::mcmc::num_oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)
- MatT mappel::mcmc::thin_sample (MatT &sample, IdxT Nburnin, IdxT thin)
- void mappel::mcmc::thin_sample (const MatT &sample, const VecT &sample_rllh, ldxT Nburnin, ldxT thin, MatT &subsample, VecT &subsample_rllh)

```
10.40.1 Detailed Description
```

MCMC helper functions.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.41 mcmc.h File Reference

Templated MCMC methods for posterior estimation.

```
#include <cmath>
#include "Mappel/mcmc_data.h"
#include "Mappel/util.h"
#include "Mappel/rng.h"
#include <trng/uniform01_dist.hpp>
```

Namespaces

- mappel
- mappel::mcmc

Functions

- IdxT mappel::mcmc::num_oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)
- MatT mappel::mcmc::thin_sample (MatT &sample, IdxT Nburnin, IdxT thin)
- void mappel::mcmc::thin_sample (const MatT &sample, const VecT &sample_rllh, ldxT Nburnin, ldxT thin, MatT &subsample, VecT &subsample rllh)
- void mappel::mcmc::estimate_sample_posterior (const MatT &sample, VecT &theta_posterior_mean, MatT &theta_posterior_cov)
- template<class Mat , class Vec > void mappel::mcmc::compute_posterior_credible (const Mat &sample, double confidence, Vec &lb, Vec &ub)
- template<class Model >
 void mappel::mcmc::sample_posterior (const Model &model, const ModelDataT< Model > &im, const StencilT
 Model > &theta init, MatT &sample, VecT &sample rllh)
- template<class Model >
 void mappel::mcmc::sample_posterior_debug (const Model &model, const ModelDataT< Model > &im, const
 StencilT< Model > &theta_init, MatT &sample, VecT &sample_rllh, MatT &candidate, VecT &candidate_rllh)

10.41.1 Detailed Description

Templated MCMC methods for posterior estimation.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2015-2019

10.42 mcmc_data.h File Reference

MCMC data storage types.

#include <armadillo>

Classes

- struct mappel::mcmc::MCMCData
- struct mappel::mcmc::MCMCDebugData
- struct mappel::mcmc::MCMCDataStack

Namespaces

- mappel
- mappel::mcmc

10.42.1 Detailed Description

MCMC data storage types.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2015-2019

10.43 MCMCAdaptor1D.cpp File Reference

The class definition and template Specializations for MCMCAdaptor1D.

```
#include "Mappel/MCMCAdaptor1D.h"
```

Namespaces

mappel

10.43.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor1D.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018

10.44 MCMCAdaptor1D.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor1D.

```
#include "Mappel/MCMCAdaptorBase.h"
#include "Mappel/PointEmitterModel.h"
```

Classes

class mappel::MCMCAdaptor1D

Namespaces

mappel

10.44.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor1D.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

10.45 MCMCAdaptor1Ds.cpp File Reference

The class definition and template Specializations for MCMCAdaptor1Ds.

```
#include "Mappel/MCMCAdaptor1Ds.h"
```

Namespaces

mappel

10.45.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor1Ds.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

10.46 MCMCAdaptor1Ds.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor1Ds.

```
#include "Mappel/MCMCAdaptor1D.h"
```

Classes

• class mappel::MCMCAdaptor1Ds

Namespaces

mappel

10.46.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor1Ds.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

10.47 MCMCAdaptor2D.cpp File Reference

The class definition and template Specializations for MCMCAdaptor2D.

```
#include "Mappel/MCMCAdaptor2D.h"
```

Namespaces

mappel

10.47.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor2D.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

10.48 MCMCAdaptor2D.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor2D.

```
#include "Mappel/MCMCAdaptor1D.h"
```

Classes

· class mappel::MCMCAdaptor2D

Namespaces

mappel

10.48.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor2D.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

10.49 MCMCAdaptor2Ds.cpp File Reference

The class definition and template Specializations for MCMCAdaptor2Ds.

```
#include "Mappel/MCMCAdaptor2Ds.h"
```

Namespaces

mappel

10.49.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor2Ds.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

10.50 MCMCAdaptor2Ds.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor2Ds.

```
#include "Mappel/MCMCAdaptor2D.h"
```

Classes

• class mappel::MCMCAdaptor2Ds

Namespaces

mappel

10.50.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor2Ds.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

10.51 MCMCAdaptorBase.cpp File Reference

The class definition and template Specializations for MCMCAdaptorBase.

```
#include "Mappel/MCMCAdaptorBase.h"
```

Namespaces

mappel

10.51.1 Detailed Description

The class definition and template Specializations for MCMCAdaptorBase.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2018

10.52 MCMCAdaptorBase.h File Reference

The class declaration and inline and templated functions for MCMCAdaptorBase.

```
#include "Mappel/util.h"
```

Classes

• class mappel::MCMCAdaptorBase

Namespaces

· mappel

10.52.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptorBase.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2018-2019

10.53 MLEstimator.h File Reference

Class declaration and inline and templated functions for MLEstimator.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/MAPEstimator.h"
```

Classes

class mappel::MLEstimator

A Mixin class to configure a for MLE estimation (null prior).

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::objective
- · mappel::methods::objective::debug

Functions

template<class Model >

ReturnIfSubclassT< double, Model, MLEstimator > mappel::methods::objective::llh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< double, Model, MLEstimator > mappel::methods::objective::rllh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< ParamT< Model >, Model, MLEstimator > mappel::methods::objective::grad (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

• template<class Model >

ReturnIfSubclassT< void, Model, MLEstimator > mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad, ParamT< Model > &grad2)

template<class Model >

ReturnIfSubclassT< void, Model, MLEstimator > mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template < class Model >

 $ReturnIfSubclassT < VecT, \ Model, \ MLEstimator > mappel::methods::objective::debug::llh_components \ (const \ Model \ \&model, \ const \ ModelDataT < Model > \&data_im, \ const \ StencilT < Model > \&s)$

template < class Model >

 $ReturnIfSubclassT < VecT, \ Model, \ MLEstimator > mappel::methods::objective::debug::rllh_components \ (const \ Model \ \&model, \ const \ ModelDataT < Model > \&data_im, \ const \ StencilT < Model > \&s)$

template<class Model >

ReturnIfSubclassT< MatT, Model, MLEstimator > mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< CubeT, Model, MLEstimator > mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

10.53.1 Detailed Description

Class declaration and inline and templated functions for MLEstimator.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

10.54 model methods.h File Reference

```
#include "Mappel/mcmc_data.h"
#include "Mappel/estimator.h"
#include "Mappel/mcmc.h"
#include "Mappel/openmp_methods.h"
#include "Mappel/model_methods_impl.h"
#include "Mappel/estimator_impl.h"
```

Namespaces

- · mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- · mappel::methods::objective
- mappel::methods::objective::debug
- mappel::methods::debug

Functions

- template < class Model >
 ImageT < Model > mappel::methods::model_image (const Model & model, const ParamT < Model > & theta)
- template < class Model , class rng_t >
 ModelDataT < Model > mappel::methods::simulate_image (const Model & model, const ParamT < Model >
 & theta)
- template < class Model , class rng_t >
 ModelDataT < Model > mappel::methods::simulate_image (const Model &model, const ParamT < Model >
 &theta, rng_t &rng)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image (const Model & model, const StencilT < Model > &s)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image_from_model (const Model & model, const ImageT <
 Model > & model_im)
- template<class Model >
 double mappel::methods::objective::llh (const Model &model, const ModelDataT< Model > &data_im, const
 ParamT< Model > &theta)
- template<class Model >
 double mappel::methods::objective::rllh (const Model &model, const ModelDataT< Model > &data_im, const
 ParamT< Model > &theta)
- template<class Model >
 ParamT< Model > mappel::methods::objective::grad (const Model &model, const ModelDataT< Model >
 &data im, const ParamT< Model > &theta)
- template<class Model >
 ParamT< Model > mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model >
 &data_im, const ParamT< Model > &theta)
- template < class Model >
 void mappel::methods::objective::grad2 (const Model &model, const ModelDataT < Model > &data_im, const
 ParamT < Model > &grad_val, ParamT < Model > &grad2_val)

• template<class Model >

MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template<class Model >

MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s)

template<class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template<class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, MatT &hess)

• template<class Model >

MatT mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template<class Model >

MatT mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

• template<class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template < class Model >

VecT mappel::methods::objective::debug::llh_components (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template < class Model >

VecT mappel::methods::objective::debug::rllh_components (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template < class Model >

MatT mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template<class Model >

CubeT mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template < class Model >

void mappel::methods::aposteriori_objective (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s, double &rllh, ParamT < Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::aposteriori_objective (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta, double &rllh, ParamT < Model > &grad, MatT &hess)

template<class Model >

void mappel::methods::prior_objective (const Model &model, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

ParamT < Model > mappel::methods::cr lower bound (const Model &model, const typename Model::Stencil &s)

Calculate the Cramer-Rao lower bound at the given parameters.

template < class Model >

ParamT < Model > mappel::methods::cr lower bound (const Model &model, const ParamT < Model > &theta)

template < class Model >

MatT mappel::methods::expected information (const Model &model, const ParamT < Model > &theta)

template<class Model >

MatT mappel::methods::observed_information (const Model &model, const ModelDataT < Model > &data, const ParamT < Model > &theta mle)

template<class Model >

 $\label{lem:mappel:methods::observed_information} \mbox{ (const Model \& model, const ModelDataT} < \mbox{ Model} > \& \mbox{ data, const StencilT} < \mbox{ Model} > \& \mbox{ theta_mle)}$

template < class Model >

void mappel::methods::estimate_max (const Model &model, const ModelDataT< Model > &data, const std ← ::string &method, estimator::MLEData &mle)

template < class Model >

void mappel::methods::estimate_max (const Model &model, const ModelDataT< Model > &data, const std ← ::string &method, const ParamT< Model > &theta init, estimator::MLEData &mle)

template < class Model >

void mappel::methods::estimate_max (const Model &model, const ModelDataT< Model > &data, const std ← ::string &method, estimator::MLEData &mle, StatsT &stats)

template<class Model >

void mappel::methods::estimate_max (const Model &model, const ModelDataT< Model > &data, const std ← ::string &method, const ParamT< Model > &theta init, estimator::MLEData &mle, StatsT &stats)

template<class Model >

double mappel::methods::estimate_profile_likelihood (const Model &model, const ModelDataT< Model > &data, const std::string &method, const ldxVecT &fixed idxs, const ParamT< Model > &fixed theta init)

template<class Model >

double mappel::methods::estimate_profile_likelihood (const Model &model, const ModelDataT< Model > &data, const std::string &method, const IdxVecT &fixed_idxs, const ParamT< Model > &fixed_theta_init, StencilT< Model > &profile max)

 $\bullet \ \ \mathsf{template}{<}\mathsf{class} \ \mathsf{Model}>$

double mappel::methods::estimate_profile_likelihood (const Model &model, const ModelDataT< Model > &data, const std::string &method, const IdxVecT &fixed_idxs, const ParamT< Model > &fixed_theta_init, StencilT< Model > &profile_max, StatsT &stats)

template < class Model >

void mappel::methods::estimate_profile_likelihood (const Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta init, estimator::ProfileLikelihoodData &profile data)

template < class Model >

void mappel::methods::estimate_posterior (const Model &model, const ModelDataT < Model > &data, mcmc::

MCMCData &mcmc est)

template < class Model >

void mappel::methods::estimate_posterior (const Model &model, const ModelDataT< Model > &data, const ParamT< Model > &theta_init, mcmc::MCMCData &mcmc_est)

template<class Model >

void mappel::methods::error_bounds_expected (const Model &model, const ParamT< Model > &theta_est, double confidence, ParamT< Model > &theta_lb, ParamT< Model > &theta_ub)

template < class Model >

void mappel::methods::error_bounds_observed (const Model &model, const estimator::MLEData &mle, double confidence, ParamT< Model > &theta lb, ParamT< Model > &theta ub)

template<class Model >

void mappel::methods::error_bounds_profile_likelihood (const Model &model, const ModelDataT< Model > &data, estimator::ProfileBoundsData &bounds)

- template<class Model >
 void mappel::methods::error_bounds_profile_likelihood (const Model &model, const ModelDataT< Model >
 &data, estimator::ProfileBoundsData &bounds, StatsT &stats)
- template<class Model >
 void mappel::methods::error_bounds_posterior_credible (const Model &model, const MatT &sample, double confidence, ParamT< Model > &theta lb, ParamT< Model > &theta ub)
- template<class Model >
 void mappel::methods::debug::estimate_max_debug (const Model &model, const ModelDataT< Model > &data,
 const std::string &method, const ParamT< Model > &theta_init, estimator::MLEDebugData &mle, StatsT &stats)
- template<class Model >
 void mappel::methods::debug::error_bounds_profile_likelihood_debug (const Model &model, const Model ←
 DataT< Model > &data, estimator::ProfileBoundsDebugData &bounds, StatsT &stats)
- template < class Model >
 void mappel::methods::debug::estimate_posterior_debug (const Model &model, const ModelDataT < Model >
 &data, const ParamT < Model > &theta init, mcmc::MCMCDebugData &mcmc debug sample)

10.55 model_methods_impl.h File Reference

```
#include "Mappel/numerical.h"
```

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

- · mappel::methods::objective
- mappel::methods::objective::debug
- · mappel::methods::debug

Functions

- template < class Model >
 Model::ImageT mappel::methods::model_image (const Model & model, const ParamT < Model > & theta)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image (const Model &model, const ParamT < Model >
 &theta)
- template < class Model , class RngT >
 ModelDataT < Model > mappel::methods::simulate_image (const Model & model, const ParamT < Model >
 &theta, RngT &rng)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image (const Model & model, const StencilT < Model > &s)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image_from_model (const Model & model, const ImageT <
 Model > & model im)
- template < class Model >
 double mappel::methods::objective::llh (const Model & model, const ModelDataT < Model > & data_im, const
 ParamT < Model > & theta)

template<class Model >

double mappel::methods::objective::rllh (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

• template<class Model >

ParamT< Model > mappel::methods::objective::grad (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template < class Model >

ParamT< Model > mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template<class Model >

void mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, ParamT< Model > &grad val, ParamT< Model > &grad2 val)

template < class Model >

MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template < class Model >

MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s)

template < class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template<class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, MatT &hess)

template<class Model >

MatT mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template<class Model >

 $\label{local_mappel::methods::objective::negative_definite_hessian} \mbox{ (const Model \& model, const ModelDataT} < \mbox{ModelDataT} < \mbox{M$

template<class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template<class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template<class Model >

VecT mappel::methods::objective::debug::llh_components (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template < class Model >

VecT mappel::methods::objective::debug::rllh_components (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template < class Model >

MatT mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT < Model > &data im, const ParamT < Model > &theta)

template < class Model >

CubeT mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template < class Model >

void mappel::methods::aposteriori_objective (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s, double &rllh, ParamT < Model > &grad, MatT &hess)

template < class Model >

 $\label{local_problem} \begin{tabular}{ll} void & mappel::methods::prior_objective (const Model & model, const ParamT< Model > & theta, double & rllh, ParamT< Model > & grad, MatT & hess) \\ \end{tabular}$

- template<class Model >
 void mappel::methods::likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const
 StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)
- template < class Model >
 void mappel::methods::aposteriori_objective (const Model & model, const ModelDataT < Model > & data_im, const
 ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)
- template < class Model >
 void mappel::methods::likelihood_objective (const Model & model, const ModelDataT < Model > & data_im, const
 ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)
- template < class Model >
 ParamT < Model > mappel::methods::cr_lower_bound (const Model & model, const typename Model::Stencil &s)
 Calculate the Cramer-Rao lower bound at the given parameters.
- template < class Model >
 ParamT < Model > mappel::methods::cr_lower_bound (const Model & model, const ParamT < Model > & theta)
- template < class Model >
 MatT mappel::methods::expected_information (const Model & model, const ParamT < Model > & theta)
- template < class Model >
 MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data, const
 StencilT < Model > & theta mle)
- template<class Model >
 MatT mappel::methods::observed_information (const Model &model, const ModelDataT< Model > &data, const
 ParamT< Model > &theta mle)
- template < class Model >
 void mappel::methods::estimate_max (const Model & model, const ModelDataT < Model > &data, const std
 ::string &method, estimator::MLEData &mle)
- template < class Model >
 void mappel::methods::estimate_max (const Model & model, const ModelDataT < Model > &data, const std
 ::string &method, const ParamT < Model > &theta init, estimator::MLEData &mle)
- template<class Model >
 void mappel::methods::estimate_max (const Model &model, const ModelDataT< Model > &data, const std
 ::string &method, estimator::MLEData &mle, StatsT &stats)
- template < class Model >
 void mappel::methods::estimate_max (const Model & model, const ModelDataT < Model > & data, const std
 ::string & method, const ParamT < Model > & theta_init, estimator::MLEData & mle, StatsT & stats)
- template<class Model >
 double mappel::methods::estimate_profile_likelihood (const Model &model, const ModelDataT< Model > &data,
 const std::string &method, const IdxVecT &fixed_idxs, const ParamT< Model > &fixed_theta_init)
- template<class Model >
 double mappel::methods::estimate_profile_likelihood (const Model &model, const ModelDataT< Model > &data,
 const std::string &method, const ldxVecT &fixed_idxs, const ParamT< Model > &fixed_theta_init, StencilT
 Model > &profile max)
- template < class Model >
 double mappel::methods::estimate_profile_likelihood (const Model & model, const ModelDataT < Model > & data,
 const std::string & method, const IdxVecT & fixed_idxs, const ParamT < Model > & fixed_theta_init, StencilT <
 Model > & profile_max, StatsT & stats)
- template < class Model >
 void mappel::methods::estimate_posterior (const Model & model, const ModelDataT < Model > &data, mcmc::
 MCMCData & mcmc_est)
- template < class Model >
 void mappel::methods::estimate_posterior (const Model &model, const ModelDataT < Model > &data, const
 ParamT < Model > &theta init, mcmc::MCMCData &mcmc est)

- template<class Model >
 void mappel::methods::error_bounds_expected (const Model &model, const ParamT< Model > &theta_est, double confidence, ParamT< Model > &theta_lb, ParamT< Model > &theta_ub)
- template < class Model >
 void mappel::methods::error_bounds_observed (const Model & model, const estimator::MLEData & mle, double confidence, ParamT < Model > & theta lb, ParamT < Model > & theta ub)
- template < class Model >
 void mappel::methods::error_bounds_profile_likelihood (const Model &model, const ModelDataT < Model >
 &data, estimator::ProfileBoundsData &bounds)
- template<class Model >
 void mappel::methods::error_bounds_profile_likelihood (const Model &model, const ModelDataT< Model >
 &data, estimator::ProfileBoundsData &bounds, StatsT &stats)
- template < class Model >
 void mappel::methods::error_bounds_posterior_credible (const Model &model, const MatT &sample, double confidence, ParamT < Model > &theta lb, ParamT < Model > &theta ub)
- template<class Model >
 void mappel::methods::debug::estimate_max_debug (const Model &model, const ModelDataT< Model > &data,
 const std::string &method, const ParamT< Model > &theta_init, estimator::MLEDebugData &mle, StatsT &stats)
- template < class Model >
 void mappel::methods::debug::error_bounds_profile_likelihood_debug (const Model & model, const Model ←
 DataT < Model > & data, estimator::ProfileBoundsDebugData & bounds, StatsT & stats)
- template<class Model >
 void mappel::methods::debug::estimate_posterior_debug (const Model &model, const ModelDataT< Model >
 &data, const ParamT< Model > &theta init, mcmc::MCMCDebugData &mcmc debug sample)

10.56 numerical.cpp File Reference

Numerical matrix operations.

```
#include <cassert>
#include "Mappel/numerical.h"
```

Namespaces

· mappel

Functions

- void mappel::copy_Usym_mat (arma::mat &usym)
- void mappel::copy_Usym_mat_stack (arma::cube &usym_stack)
- void mappel::copy_Lsym_mat (arma::mat &lsym)
- void mappel::cholesky_make_negative_definite (arma::mat &m)
- void mappel::cholesky_make_positive_definite (arma::mat &m)
- bool mappel::is negative definite (const arma::mat &usym)
- bool mappel::is_positive_definite (const arma::mat &usym)
- bool mappel::is symmetric (const arma::mat &A)
- void mappel::cholesky convert lower triangular (arma::mat &chol)
- void mappel::cholesky convert full matrix (arma::mat &chol)
- bool mappel::cholesky (arma::mat &A)
- bool mappel::modified_cholesky (arma::mat &A)
- arma::vec mappel::cholesky solve (const arma::mat &C, const arma::vec &b)
- double mappel::norm sq (const VecT &v)

10.56.1 Detailed Description

Numerical matrix operations.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2015-2019

10.57 numerical.h File Reference

Numerical matrix operations.

```
#include <cmath>
#include <climits>
#include <armadillo>
#include "Mappel/util.h"
```

Namespaces

mappel

Functions

- void mappel::copy_Usym_mat (arma::mat &usym)
- void mappel::copy_Usym_mat_stack (arma::cube &usym_stack)
- void mappel::copy Lsym mat (arma::mat &lsym)
- void mappel::cholesky_convert_lower_triangular (arma::mat &chol)
- void mappel::cholesky_convert_full_matrix (arma::mat &chol)
- void mappel::cholesky_make_negative_definite (arma::mat &m)
- void mappel::cholesky_make_positive_definite (arma::mat &m)
- bool mappel::is_positive_definite (const arma::mat &usym)
- bool mappel::is_negative_definite (const arma::mat &usym)
- bool mappel::is_symmetric (const arma::mat &A)
- bool mappel::cholesky (arma::mat &A)
- bool mappel::modified_cholesky (arma::mat &A)
- arma::vec mappel::cholesky_solve (const arma::mat &C, const arma::vec &b)
- template < class FloatT >
 FloatT mappel::clamp (FloatT val, FloatT min_val, FloatT max_val)
- double mappel::norm_sq (const VecT &v)

```
10.57.1 Detailed Description
```

Numerical matrix operations.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2015-2019

10.58 OMPExceptionCatcher.h File Reference

A lightweight class for managing C++ exception handling strategies for OpenMP methods.

```
#include <exception>
#include <mutex>
#include <functional>
#include <cstdint>
```

Classes

class omp_exception_catcher::impl_::OMPExceptionCatcher< _dummy >

Namespaces

- · omp exception catcher
- omp_exception_catcher::impl_

Typedefs

• using omp_exception_catcher::OMPExceptionCatcher = impl_::OMPExceptionCatcher<>

Enumerations

enum omp_exception_catcher::Strategy { omp_exception_catcher::Strategy::DoNotTry, omp_exception_catcher::Strategy::Continue, omp_exception_catcher::Strategy::Abort, omp_exception_catcher::Strategy::←
 RethrowFirst }

10.58.1 Detailed Description

A lightweight class for managing C++ exception handling strategies for OpenMP methods.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2019

Copyright

See LICENSE file OpenMP code must catch any exceptions that may have been thrown before exiting the Open \leftarrow MP block. This class acts as lightweight wrapper that allows an arbitrary function or lambda expression to be run safely and efficiently in OMP even if it might throw exceptions. We employ one of 4 possible strategies as determined By the omp_exception_catcher::Strategies enum.

Strategy's: omp_exception_catcher::Strategies::DoNotTry - Don't even try, this is a null op to completely disable this class's effect. omp_exception_catcher::Strategies::Continue - Catch exceptions and keep going omp_exception_catcher::Strategies::Abort - Catch exceptions and abort omp_exception_catcher::Strategies::RethrowFirst - Re-throws first exception thrown by any thread.

Example usage: omp_exception_catcher::OMPExceptionCatcher catcher(omp_exception_catcher::Strategies ← ::Continue); #pragma omp parallel for for(int n=0; n < N; n++) catcher.run([&]{ my_output(n)=do_my_← calculations(args(n));}) catcher.rethrow(); //Required only if you ever might use RethrowFirst strategy

10.59 openmp methods.h File Reference

Namespaces for OpenMP parallelized versions of the mappel::model namespace functions (external methods)

```
#include <omp.h>
#include "Mappel/OMPExceptionCatcher/OMPExceptionCatcher.h"
#include "Mappel/util.h"
#include "Mappel/mcmc.h"
```

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

- · mappel::methods::openmp
- · mappel::methods::objective
- mappel::methods::objective::openmp

Functions

template<class Model >
 void mappel::methods::openmp::sample_prior_stack (const Model &model, ParamVecT< Model > &theta_stack)
 Parallel sampling of the model prior.

template < class Model >

void mappel::methods::openmp::model_image_stack (const Model &model, const ParamVecT< Model > &theta_stack, ImageStackT< Model > &timage_stack)

Parallel computation of the model image.

template<class Model >

void mappel::methods::openmp::simulate_image_stack (const Model &model, const ParamVecT< Model > &theta stack, ImageStackT< Model > &timage stack)

Parallel simulation of images from one or more theta.

template < class Model >

void mappel::methods::openmp::cr_lower_bound_stack (const Model &model, const ParamVecT< Model > &theta_stack, ParamVecT< Model > &crlb_stack)

template < class Model >

void mappel::methods::openmp::expected_information_stack (const Model &model, const ParamVecT < Model > &theta stack, CubeT &fisherI stack)

template<class Model >

void mappel::methods::openmp::estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data stack, const std::string &method, estimator::MLEDataStack &mle data stack)

template < class Model >

void mappel::methods::openmp::estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data stack, const std::string &method, estimator::MLEDataStack &mle data stack, StatsT &stats)

template<class Model >

void mappel::methods::openmp::estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data_stack, const std::string &method, ParamVecT< Model > &theta_init_stack, estimator::MLEDataStack &mle_data_stack)

template < class Model >

void mappel::methods::openmp::estimate_max_stack (const Model &model, const ModelDataStackT< Model > &data_stack, const std::string &method, ParamVecT< Model > &theta_init_stack, estimator::MLEDataStack &mle data stack, StatsT &stats)

• template<class Model >

void mappel::methods::openmp::estimate_profile_likelihood_stack (const Model &model, const ModelDataT < Model > &data, const std::string &method, const ParamVecT < Model > &fixed_theta_init, estimator::Profile \(\times \) LikelihoodData &est)

template<class Model >

void mappel::methods::openmp::estimate_profile_likelihood_stack (const Model &model, const ModelDataT < Model > &data, const std::string &method, const ParamVecT < Model > &fixed_theta_init, estimator::Profile
LikelihoodData &est, StatsT &stats)

template < class Model >

void mappel::methods::openmp::estimate_posterior_stack (const Model &model, const ModelDataStackT < Model > &data stack, const ParamVecT < Model > &theta init stack, mcmc::MCMCDataStack &est)

template<class Model >

 $\label{local_posterior_stack} \begin{tabular}{ll} void & mappel::methods::openmp::estimate_posterior_stack & (const & Model & model, & const & ModelDataStackT< & Model > & data_stack, & mcmc::MCMCDataStack & est) \end{tabular}$

template < class Model >

template < class Model >

void mappel::methods::openmp::error_bounds_observed_stack (const Model &model, const MatT &theta_est_← stack, CubeT &obsl_stack, double confidence, MatT &theta_lb_stack, MatT &theta_ub_stack)

template<class Model >
 void mappel::methods::openmp::error_bounds_profile_likelihood_parallel (const Model &model, const Model
 DataStackT< Model > &image, estimator::ProfileBoundsData &est, StatsT &stats)

template < class Model >
 void mappel::methods::openmp::error_bounds_profile_likelihood_parallel (const Model & model, const Model ←
 DataT < Model > & image, estimator::ProfileBoundsData & est)

template < class Model >
 void mappel::methods::openmp::error_bounds_profile_likelihood_stack (const Model & model, const ModelData ←
 StackT < Model > & image, estimator::ProfileBoundsDataStack & est, StatsT & stats)

template<class Model >
 void mappel::methods::openmp::error_bounds_profile_likelihood_stack (const Model &model, const ModelData
 StackT< Model > &image, estimator::ProfileBoundsDataStack &est)

template < class Model >
 void mappel::methods::objective::openmp::llh_stack (const Model &model, const ImageT < Model > &image,
 const ParamVecT < Model > &theta stack, VecT &llh stack)

Parallel log likelihood calculations for a single image.

template<class Model >

void mappel::methods::objective::openmp::llh_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, VecT &llh_stack)

Parallel log_likelihood calculations for a stack of images.

· template<class Model >

void mappel::methods::objective::openmp::rllh_stack (const Model &model, const ImageStackT< Model > &image stack, const ParamVecT< Model > &theta stack, VecT &rllh stack)

Parallel relative log_likelihood calculations for a stack of images.

template<class Model >

void mappel::methods::objective::openmp::rllh_stack (const Model &model, const ImageT< Model > &image, const ParamVecT< Model > &theta stack, VecT &rllh stack)

template<class Model >

void mappel::methods::objective::openmp::grad_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, ParamVecT< Model > &grad_stack)

Parallel model gradient calculations for a stack of images.

template<class Model >

void mappel::methods::objective::openmp::hessian_stack (const Model &model, const ImageStackT< Model > &image stack, const ParamVecT< Model > &theta stack, CubeT &hessian stack)

Parallel model Hessian calculations for a stack of images.

template < class Model >

void mappel::methods::objective::openmp::negative_definite_hessian_stack (const Model &model, const Image ← StackT < Model > &image stack, const ParamVecT < Model > &theta stack, CubeT &hessian stack)

Parallel model negative_definite Hessian approximation calculations for a stack of images.

10.59.1 Detailed Description

Namespaces for OpenMP parallelized versions of the mappel::model namespace functions (external methods)

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2013-2019 OpenMP computation for stacked Model operations on vector data.

Design Decisions

OpenMP vectorized versions are implemented as templated external methods in inline namespaces openmp.
 This allows easy future replacement with other palatalization mechanisms (CUDA, C++11 threads, etc..). Also allows the vectorized versions to directly overload with the non-vectorized base-versions.

- Because we want to integrate as seamlessly as possible with matlab, we use the armadillo package which stores
 arrays in column major order.
- Therefore in the *_stack operations, if they are to be parallelized, we want the data stored as a nParms X n matrix, i.e. each column is a parameter matrix. Similarly stacks are size X size X n, so that contiguous images sequences are contiguous in memory. This avoids false sharing.

10.60 PointEmitterModel.cpp File Reference

The class definition and template Specializations for PointEmitterModel.

```
#include <cmath>
#include <algorithm>
#include "Mappel/PointEmitterModel.h"
```

Namespaces

mappel

10.60.1 Detailed Description

The class definition and template Specializations for PointEmitterModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2017

10.61 PointEmitterModel.h File Reference

The class declaration and inline and templated functions for PointEmitterModel.

```
#include <iostream>
#include <string>
#include <armadillo>
#include <PriorHessian/CompositeDist.h>
#include <PriorHessian/TruncatedNormalDist.h>
#include <PriorHessian/ScaledSymmetricBetaDist.h>
#include <PriorHessian/TruncatedGammaDist.h>
#include <PriorHessian/TruncatedParetoDist.h>
#include "Mappel/util.h"
#include "Mappel/stencil.h"
#include "Mappel/display.h"
#include "Mappel/rng.h"
```

Classes

class mappel::PointEmitterModel

A virtual Base type for point emitter localization models.

Namespaces

mappel

Functions

template < class Model, typename = EnablelfSubclassT < Model, PointEmitterModel >> std::ostream & mappel::operator << (std::ostream & out, const Model & model)

10.61.1 Detailed Description

The class declaration and inline and templated functions for PointEmitterModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019 The base class for all point emitter localization models

10.62 PoissonGaussianNoise2DObjective.cpp File Reference

```
#include "Mappel/PoissonGaussianNoise2DObjective.h"
```

Namespaces

· mappel

10.63 PoissonGaussianNoise2DObjective.h File Reference

The class declaration and inline and templated functions for PoissonGaussianNoise2DObjective.

```
#include "Mappel/PoissonNoise2D.h"
```

Classes

class PoissonGaussianNoise2DObjective < ModelBase >

A Base type for point emitter localization models that use 2d images.

Functions

- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::ImageT
 >::type model_image (const Model &model, const typename Model::Stencil &s)
- template < class Model , class rng_t >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::ImageT
 >::type simulate_image (const Model &model, const typename Model::Stencil &s, rng_t &rng)

Simulate an image using the PSF model, by generating Poisson noise.

- template < class Model , class rng_t >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::ImageT
 >::type simulate_image (const Model &model, const typename Model::ImageT &model_im, rng_t &rng)
- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value >::type model_grad (const
 Model &model, const typename Model::ImageT &im, const typename Model::Stencil &s, typename Model::
 ParamT &grad)
- template<class Model >
 std::enable_if< std::is_base_of< PoissonGaussianNoise2DObjective, Model >::value >::type model_grad2
 (const Model &model, const typename Model::ImageT &im, const typename Model::Stencil &s, typename Model::ParamT &grad, typename Model::ParamT &grad2)
- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value >::type model_hessian
 (const Model &model, const typename Model::ImageT &im, const typename Model::Stencil &s, typename
 Model::ParamT &grad, typename Model::MatT &hess)

- template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, double >::type log_ ← likelihood (const Model & model, const typename Model::ImageT & data im, const typename Model::Stencil &s)
- template<class Model >
 std::enable_if< std::is_base_of< PoissonGaussianNoise2DObjective, Model >::value, double >::type relative
 _log_likelihood (const Model &model, const typename Model::ImageT &data_im, const typename Model::Stencil &s)
- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::MatT >::type fisher information (const Model &model, const typename Model::Stencil &s)
- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, std::shared_ptr <
 Estimator < Model > > >::type make_estimator (const Model & model, std::string ename)

10.63.1 Detailed Description

The class declaration and inline and templated functions for PoissonGaussianNoise2DObjective.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

04-2017

10.63.2 Function Documentation

10.63.2.1 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > ← ::value, typename Model::MatT > ::type fisher_information (const Model & model, const typename Model::Stencil & s)

Definition at line 200 of file PoissonGaussianNoise2DObjective.h.

Definition at line 172 of file PoissonGaussianNoise2DObjective.h.

References mappel::methods::objective::llh(), and mappel::poisson_log_likelihood().

10.63.2.3 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective,Model > ← ::value,std::shared_ptr < Estimator < Model > > ::type make_estimator (const Model & model, std::string ename)

Definition at line 217 of file PoissonGaussianNoise2DObjective.h.

References mappel::istarts with().

10.63.2.4 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > ::value > ← ::type model_grad (const Model & model, const typename Model::ImageT & im, const typename Model::Stencil & s, typename Model::ParamT & grad)

Definition at line 101 of file PoissonGaussianNoise2DObjective.h.

10.63.2.5 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > ::value > ← ::type model_grad2 (const Model & model, const typename Model::lmageT & im, const typename Model::Stencil & s, typename Model::ParamT & grad, typename Model::ParamT & grad2)

Definition at line 119 of file PoissonGaussianNoise2DObjective.h.

10.63.2.6 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > ::value > ← ::type model_hessian (const Model & model, const typename Model::ImageT & im, const typename Model::Stencil & s, typename Model::ParamT & grad, typename Model::MatT & hess)

Definition at line 148 of file PoissonGaussianNoise2DObjective.h.

10.63.2.7 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective,Model > ← ::value,typename Model::ImageT>::type model_image (const Model & model, const typename Model::Stencil & s)

Definition at line 59 of file PoissonGaussianNoise2DObjective.h.

Definition at line 185 of file PoissonGaussianNoise2DObjective.h.

References mappel::relative_poisson_log_likelihood(), and mappel::methods::objective::rllh().

10.63.2.9 template < class Model , class rng_t > std::enable_if < std::is_base_of < PoissonGaussianNoise2D ←
Objective,Model >::value,typename Model::ImageT >::type simulate_image (const Model & model, const typename Model::Stencil & s, rng_t & rng_)

Simulate an image using the PSF model, by generating Poisson noise.

Parameters

out	image	An image to populate.
in	theta	The parameter values to us
in,out	rng	An initialized random number generator

Definition at line 78 of file PoissonGaussianNoise2DObjective.h.

References mappel::generate poisson().

10.63.2.10 template < class Model , class rng_t > std::enable_if < std::is_base_of < PoissonGaussianNoise2D ←
Objective,Model >::value,typename Model::lmageT >::type simulate_image (const Model & model, const typename
Model::lmageT & model_im, rng_t & rng)

Definition at line 89 of file PoissonGaussianNoise2DObjective.h.

References mappel::generate_poisson().

10.64 PoissonNoise1DObjective.cpp File Reference

The class definition and template Specializations for PoissonNoise1DObjective.

```
#include "Mappel/PoissonNoise1DObjective.h"
```

Namespaces

mappel

10.64.1 Detailed Description

The class definition and template Specializations for PoissonNoise1DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.65 PoissonNoise1DObjective.h File Reference

The class declaration and inline and templated functions for PoissonNoise1DObjective.

```
#include "Mappel/ImageFormat1DBase.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/estimator.h"
```

Classes

· class mappel::PoissonNoise1DObjective

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

956 CONTENTS

Namespaces

- · mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

- · mappel::methods::likelihood
- mappel::methods::likelihood::debug

Functions

• template<class Model , class rng_t >

ReturnIfSubclassT< ModelDataT< Model >, Model, PoissonNoise1DObjective > mappel::methods::simulate \(\) _image (const Model & model, const StencilT< Model > &s, rng_t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template < class Model , class rng t >

ReturnIfSubclassT< ModelDataT< Model >, Model, PoissonNoise1DObjective > mappel::methods::simulate ← image from model (const Model &model, const ImageT< Model > &model im, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > mappel::methods::expected_information (const Model &model, const StencilT< Model > &s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise1DObjective.

template < class Model >

ReturnIfSubclassT< std::unique_ptr< estimator::Estimator< Model > >, Model, PoissonNoise1DObjective > mappel::methods::make_estimator (Model &model, std::string ename)

template<class Model >

ReturnIfSubclassT< double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::llh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::rllh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< ParamT< Model >, Model, PoissonNoise1DObjective > mappel::methods::likelihood::grad (const Model &model, const ModelDataT< Model > &im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< void, Model, PoissonNoise1DObjective > mappel::methods::likelihood::grad2 (const Model &model, const ModelDataT< Model > &im, const StencilT< Model > &s, ParamT< Model > &grad_val, ParamT< Model > &grad2 val)

template<class Model >

ReturnIfSubclassT< void, Model, PoissonNoise1DObjective > mappel::methods::likelihood::hessian (const Model &model, const ModelDataT< Model > &im, const StencilT< Model > &s, ParamT< Model > &grad_val, MatT &hess_val)

template<class Model >

 $ReturnIfSubclassT< VecT, \ Model, \ PoissonNoise1DObjective > mappel::methods::likelihood::debug::llh_{\leftarrow} components (const Model \& model, const ModelDataT< Model > \& data_im, const StencilT< Model > \& s)$

• template<class Model >

ReturnIfSubclassT< VecT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::rllh_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::grad_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >
 ReturnIfSubclassT < CubeT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::hessian ←
 _components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

10.65.1 Detailed Description

The class declaration and inline and templated functions for PoissonNoise1DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.66 PoissonNoise2DObjective.cpp File Reference

The class definition and template Specializations for PoissonNoise2DObjective.

```
#include "Mappel/PoissonNoise2DObjective.h"
```

Namespaces

mappel

10.66.1 Detailed Description

The class definition and template Specializations for PoissonNoise2DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

10.67 PoissonNoise2DObjective.h File Reference

The class declaration and inline and templated functions for PoissonNoise2DObjective.

```
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/estimator.h"
```

958 CONTENTS

Classes

class mappel::PoissonNoise2DObjective

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of photons given a certain mean rate of incidence on each pixel.

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::likelihood
- mappel::methods::likelihood::debug

Functions

template < class Model , class rng t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > mappel::methods::simulate_image (const Model &model, const StencilT< Model > &s, rng_t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

template < class Model , class rng_t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > mappel::methods::simulate_
image from model (const Model &model, const ImageT< Model > &model_im, rng_t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

template < class Model >

 $Return If Subclass T < MatT, \ Model, \ Poisson Noise 2DObjective > mappel::methods::expected_information \ (const \ Model \& model, \ const \ Stencil T < Model > \&s)$

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise2DObjective.

template<class Model >

ReturnIfSubclassT< std::unique_ptr< estimator::Estimator< Model > >, Model, PoissonNoise2DObjective > mappel::methods::make estimator (Model &model, std::string ename)

template<class Model >

ReturnIfSubclassT< double, Model, PoissonNoise2DObjective > mappel::methods::likelihood::llh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< double, Model, PoissonNoise2DObjective > mappel::methods::likelihood::rllh (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< ParamT< Model >, Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad2 (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad_val, ParamT< Model > &grad2 val)

• template<class Model >

ReturnIfSubclassT< void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::hessian (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad val, MatT &hess val)

- template<class Model >
 ReturnIfSubclassT< VecT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::llh_←
 components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)
- template<class Model >
 ReturnIfSubclassT< VecT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::rllh_←
 components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < MatT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::grad_ ←
 components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < CubeT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::hessian ←
 _components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

10.67.1 Detailed Description

The class declaration and inline and templated functions for PoissonNoise2DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

- 10.68 README.md File Reference
- 10.69 README.md File Reference
- 10.70 rng.cpp File Reference

Global random number generator.

#include "Mappel/rng.h"

Namespaces

mappel

Variables

ParallelRngManagerT mappel::rng manager

960 CONTENTS

```
10.70.1 Detailed Description
```

Global random number generator.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.71 rng.h File Reference

Random number generation usign sfmt.

```
#include <random>
#include "Mappel/util.h"
#include <trng/lcg64_shift.hpp>
#include <ParallelRngManager/ParallelRngManager.h>
```

Namespaces

mappel

Typedefs

- using mappel::ParallelRngGeneratorT = trng::lcg64_shift
- using mappel::ParallelRngManagerT = parallel_rng::ParallelRngManager< ParallelRngGeneratorT >
- using mappel::RngSeedT = parallel_rng::SeedT
- using mappel::UniformDistT = std::uniform_real_distribution< double >

Functions

template < class RngT >
 IdxT mappel::generate_poisson_small (RngT &rng, double mu)

Generates a single Poisson distributed int from distribution with mean mu.

- template < class RngT >
 IdxT mappel::generate_poisson_large (RngT &rng, double mu)
- template < class RngT > double mappel::generate_poisson (RngT &rng, double mu)

10.71.1 Detailed Description

Random number generation usign sfmt.

Author

```
Mark J. Olah (email mjo@cs.unm DOT edu )
```

Date

2013-2019

10.72 stencil.cpp File Reference

The stencils for pixel based computations.

```
#include <sstream>
#include <boost/math/special_functions/erf.hpp>
#include <boost/math/distributions/chi_squared.hpp>
#include "Mappel/util.h"
#include "Mappel/stencil.h"
#include "Mappel/display.h"
```

Namespaces

mappel

Functions

- double mappel::normal_quantile_twosided (double confidence)
- double mappel::normal_quantile_onesided (double confidence)
- double mappel::chisq_quantile (double confidence, int dof)
- double mappel::chisq quantile (double confidence)
- void mappel::fill gaussian stencil (int size, double stencil[], double sigma)
- double mappel::gaussian_convolution (int x, int y, const MatT &data, const VecT &Xstencil, const VecT &Ystencil)
- void mappel::estimate_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max_pos[], double &min_val)
- void mappel::refine_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max
 _pos[])
- double mappel::gaussian_3D_convolution (int x, int y, int z, const CubeT &data, const VecFieldT &stencils)
- void mappel::estimate_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[], double &min_val)
- void mappel::refine_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[])
- double mappel::estimate_background (const MatT &im, const MatT &unit_model_im, double min_bg)
- double mappel::estimate_intensity (const MatT &im, const MatT &unit_model_im, double bg)
- double mappel::estimate background (const CubeT &im, const CubeT &unit model im)
- double mappel::estimate intensity (const CubeT &im, const CubeT &unit model im, double bg)

962 CONTENTS

10.72.1 Detailed Description

The stencils for pixel based computations.

General utilities and helpers for Mappel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.73 stencil.h File Reference

The stencils for pixel based computations.

```
#include <cmath>
#include <climits>
#include "Mappel/util.h"
#include "Mappel/rng.h"
```

Namespaces

mappel

Functions

- double mappel::gauss_norm (double sigma)
- void mappel::fill_d_stencil (int size, double stencil[], double theta_x)
- void mappel::fill_G_stencil (int size, double stencil[], const double dx[], double theta_sigma)
- void mappel::fill_X_stencil (int size, double stencil[], const double dx[], double theta_sigma)
- void mappel::fill_DX_stencil (int size, double stencil[], const double Gx[], double theta_sigma)
- void mappel::fill_DXS_stencil (int size, double stencil[], const double dx[], const double Gx[], double theta_sigma)
- void mappel::fill_DXS2_stencil (int size, double stencil[], const double dx[], const double Gx[], const double D

 XS[], double theta sigma)
- void mappel::fill_DXSX_stencil (int size, double stencil[], const double dx[], const double Gx[], const double DX[], double theta_sigma)
- VecT mappel::make_d_stencil (int size, double theta_x)
- VecT mappel::make_G_stencil (int size, const VecT &dx, double theta_sigma)
- VecT mappel::make_X_stencil (int size, const VecT &dx, double theta_sigma)
- VecT mappel::make_DX_stencil (int size, const VecT &Gx, double theta_sigma)
- VecT mappel::make_DXS_stencil (int size, const VecT &dx, const VecT &Gx, double theta_sigma)
- VecT mappel::make_DXS2_stencil (int size, const VecT &dx, const VecT &Gx, const VecT &DXS, double theta
 — sigma)

- void mappel::fill_gaussian_stencil (int size, double stencil[], double sigma)
- VecT mappel::make gaussian stencil (int size, double sigma)
- void mappel::estimate_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max_pos[], double &min_val)
- void mappel::refine_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max
 pos[])
- double mappel::gaussian_convolution (int x, int y, const MatT &data, const VecT &Xstencil, const VecT &Ystencil)
- void mappel::estimate_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[], double &min_val)
- void mappel::refine_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[])
- double mappel::gaussian 3D convolution (int x, int y, int z, const CubeT &data, const VecFieldT &stencils)
- double mappel::poisson_log_likelihood (double model_val, double data_val)
- double mappel::relative_poisson_log_likelihood (double model_val, double data_val)
- double mappel::check lower bound hyperparameter (const char *name, double value, double lower bound)
- double mappel::check_positive_hyperparameter (const char *name, double value, double hyperprior_epsilon=1 ← E-6)
- double mappel::check_unit_hyperparameter (const char *name, double value, double hyperprior_epsilon=1E-6)
- double mappel::log prior beta const (double beta)
- double mappel::log prior beta2 const (double beta0, double beta1)
- double mappel::log prior gamma const (double kappa, double mean)
- double mappel::log prior pareto const (double alpha, double min)
- double mappel::log prior normal const (double sigma)
- double mappel::rllh_beta_prior (double beta, double v, double max=1., double min=0.)
- double mappel::rllh beta2 prior (double beta0, double beta1, double v, double max=1., double min=0.)
- double mappel::rllh gamma prior (double kappa, double mean, double v)
- double mappel::rllh_pareto_prior (double alpha, double v)
- double mappel::rllh normal prior (double mu, double sigma)
- double mappel::beta_prior_grad (double beta, double v, double max=1., double min=0.)
- double mappel::beta2_prior_grad (double beta0, double beta1, double v, double max=1., double min=0.)
- double mappel::gamma_prior_grad (double kappa, double mean, double v)
- double mappel::pareto prior grad (double alpha, double v)
- double mappel::normal_prior_grad (double mu, double sigma)
- double mappel::beta prior grad2 (double beta, double v, double max=1., double min=0.)
- double mappel::beta2_prior_grad2 (double beta0, double beta1, double v, double max=1., double min=0.)
- double mappel::gamma prior grad2 (double kappa, double v)
- double mappel::pareto prior grad2 (double alpha, double v)
- double mappel::normal_prior_grad (double sigma)
- double mappel::normal quantile twosided (double confidence)
- double mappel::normal quantile onesided (double confidence)
- double mappel::chisq_quantile (double confidence, int dof)
- double mappel::chisq quantile (double confidence)
- double mappel::rllh_normal_prior (double mu, double sigma, double v)
- double mappel::normal_prior_grad (double mu, double sigma, double v)
- double mappel::normal prior grad2 (double sigma)

964 CONTENTS

10.73.1 Detailed Description

The stencils for pixel based computations.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

10.74 util.cpp File Reference

```
#include <sched.h>
#include <cctype>
#include <omp.h>
#include "Mappel/util.h"
```

Namespaces

mappel

Functions

- void mappel::enable_all_cpus ()
- bool mappel::istarts_with (const char *s, const char *pattern)
- bool mappel::istarts_with (const std::string &str, const char *pattern)
- const char * mappel::icontains (const char *s, const char *pattern)
- int mappel::maxidx (const VecT &v)
- std::ostream & mappel::operator<< (std::ostream &out, const StatsT &stats)

10.75 util.h File Reference

Common utilities and errors.

```
#include <cstdint>
#include <cmath>
#include <memory>
#include <utility>
#include <string>
#include <map>
#include <sstream>
#include <armadillo>
#include <BacktraceException/BacktraceException.h>
```

10.75 util.h File Reference 965

Classes

struct mappel::ParameterValueError

Parameter value is not valid.

· struct mappel::ArrayShapeError

Array is not of the right dimensionality.

· struct mappel::ArraySizeError

Array is not of the right size.

struct mappel::ModelBoundsError

Access outside the model bounds is attempted.

· struct mappel::NumericalError

Expected numerical condition does not hold.

struct mappel::LogicalError

Failure of code or algorithm logic.

struct mappel::NotImplementedError

Feature not yet implemented.

Namespaces

mappel

Typedefs

```
    using mappel::BoolT = uint16_t
```

using mappel::BoolVecT = arma::Col< uint16_t >

using mappel::ldxT = arma::uword

using mappel::IdxVecT = arma::Col< IdxT >

using mappel::ldxMatT = arma::Mat< ldxT >

using mappel::VecT = arma::vec

using mappel::MatT = arma::mat

using mappel::CubeT = arma::cube

using mappel::VecFieldT = arma::field< VecT >

using mappel::StatsT = std::map< std::string, double >

using mappel::StringVecT = std::vector< std::string >

• template<class ModelT , class ModelBaseT >

using mappel::EnableIfSubclassT = typename std::enable_if< std::is_base_of< ModelBaseT, ModelT >::value, void >::type

- template < class ReturnT , class ModelT , class ModelBaseT >

using mappel::ReturnIfSubclassT = typename std::enable_if< std::is_base_of< ModelBaseT, ModelT >::value, ReturnT >::type

• template<class Model >

using mappel::ImageCoordT = typename Model::ImageCoordT

template<class Model >

using mappel::ImagePixeIT = typename Model::ImagePixeIT

• template<class Model >

using mappel::ParamT = typename Model::ParamT

template<class Model >

using mappel::ParamVecT = typename Model::ParamVecT

966 CONTENTS

```
• template<class Model >
      using mappel::ImageT = typename Model::ImageT

    template<class Model >

      using mappel::ModelDataT = typename Model::ModelDataT
    • template<class Model >
      using mappel::StencilT = typename Model::Stencil

    template < class Model >

      using mappel::ImageStackT = typename Model::ImageStackT

    template < class Model >

      using mappel::ModelDataStackT = typename Model::ModelDataStackT
    • template<class Model >
      using mappel::StencilVecT = typename Model::StencilVecT
    • using mappel::MappelError = backtrace exception::BacktraceException
Functions

    void mappel::enable_all_cpus ()

    bool mappel::istarts_with (const char *s, const char *pattern)

    • bool mappel::istarts_with (const std::string &str, const char *pattern)
    • const char * mappel::icontains (const char *s, const char *pattern)
    • int mappel::maxidx (const VecT &v)
    • template<typename T >
      int mappel::sgn (T val)
          sign (signum) function: -1/0/1
    • template<typename T >
      T mappel::square (T x)
    • double mappel::restrict_value_range (double val, double minval, double maxval)
    • template<typename T , typename... Args>
      std::unique ptr< T > mappel::make unique (Args &&...args)

    std::ostream & mappel::operator<< (std::ostream &out, const StatsT &stats)</li>

10.75.1 Detailed Description
Common utilities and errors.
Author
     Mark J. Olah (mjo@cs.unm DOT edu)
Date
```

2014-2019

Index

\sim Estimator	mappel::Gauss2DsxyModel::Stencil, 842
mappel::estimator::Estimator, 118	BoolVecT
	mappel, 26
Abort	BoolT
omp_exception_catcher, 90	mappel, 26
aposteriori_objective	bound_step
mappel::methods, 58	mappel::estimator::subroutine, 51
ArrayShapeError	bound_theta
mappel::ArrayShapeError, 91	mappel::Gauss1DMAP, 134
ArraySizeError	mappel::Gauss1DMLE, 163
mappel::ArraySizeError, 91	mappel::Gauss1DModel, 192
backtrack	mappel::Gauss1DsMAP, 220
mappel::estimator::IterativeMaximizer, 572	mappel::Gauss1DsMLE, 249
mappel::estimator::NewtonDiagonalMaximizer, 725	mappel::Gauss1DsModel, 278
mappel::estimator::NewtonDiagonaliviaximizer, 725	mappel::Gauss2DMAP, 308
mappel::estimator::QuasiNewtonMaximizer, 746	mappel::Gauss2DMLE, 339
mappel::estimator::TrustRegionMaximizer, 880	mappel::Gauss2DModel, 370
backtrack idxs	mappel::Gauss2DsMAP, 401
mappel::estimator::IterativeMaximizer::Maximizer ←	mappel::Gauss2DsMLE, 435
• •	mappel::Gauss2DsModel, 468
Data, 612	mappel::Gauss2DsxyMAP, 498
backtrack_max_ratio mappel::estimator::IterativeMaximizer, 585	mappel::Gauss2DsxyModel, 526
mappel::estimator::NewtonDiagonalMaximizer, 738	mappel::MAPEstimator, 594
mappel::estimator::NewtonDiagonaliwaximizer, 759	mappel::MCMCAdaptor1Ds, 638
mappel::estimator::QuasiNewtonMaximizer, 739	mappel::MCMCAdaptor1D, 619
• •	mappel::MCMCAdaptor2Ds, 677
mappel::estimator::TrustRegionMaximizer, 894	mappel::MCMCAdaptor2D, 658
backtrack_min_linear_step_ratio	mappel::MLEstimator, 708
mappel::estimator::IterativeMaximizer, 585	mappel::PointEmitterModel, 772
mappel::estimator::NewtonDiagonalMaximizer, 738	bounded_theta
mappel::estimator::NewtonMaximizer, 759 mappel::estimator::QuasiNewtonMaximizer, 824	mappel::Gauss1DMAP, 134
mappel::estimator::TrustRegionMaximizer, 894	mappel::Gauss1DMLE, 163
backtrack_min_ratio	mappel::Gauss1DModel, 192
mappel::estimator::IterativeMaximizer, 586	mappel::Gauss1DsMAP, 220
mappel::estimator::NewtonDiagonalMaximizer, 738	mappel::Gauss1DsMLE, 249
mappel::estimator::NewtonDiagonaliwaximizer, 759	mappel::Gauss1DsModel, 278
mappel::estimator::QuasiNewtonMaximizer, 824	mappel::Gauss2DMAP, 308
mappel::estimator::TrustRegionMaximizer, 894	mappel::Gauss2DMLE, 339
beta2_prior_grad	mappel::Gauss2DModel, 370
mappel, 29	mappel::Gauss2DsMAP, 401
beta2_prior_grad2	mappel::Gauss2DsMLE, 435
mappel, 29	mappel::Gauss2DsModel, 468
beta_prior_grad	mappel::Gauss2DsxyMAP, 498
mappel, 29	mappel::Gauss2DsxyModel, 526
• •	mappel::MAPEstimator, 594
beta_prior_grad2 mappel, 29	mappel::MCMCAdaptor1Ds, 638
	mappel::MCMCAdaptor1Ds, 638
bg mannal::Gauss1DMadal::Stonail 861	mappel::MCMCAdaptor2Ds, 677
mappel::Gauss1DModel::Stencil, 861 mappel::Gauss1DsModel::Stencil, 847	mappel::MCMCAdaptor2D, 658
mappel::Gauss2DModel::Stencil, 851	mappel::MLEstimator, 708
mappel::Gauss2DsModel::Stencil, 855	mappel::PointEmitterModel, 772
mappenGaussepsiviouenstenon, oss	mappenrumulilillenviudei, //2

bounded theta stack	mappel, 29, 30
mappel::Gauss1DMAP, 135	cgauss_compute_estimate_debug
mappel::Gauss1DMLE, 164	mappel, 30
mappel::Gauss1DModel, 192	cgauss_heuristic_compute_estimate
mappel::Gauss1DsMAP, 220	mappel, 30, 31
mappel::Gauss1DsMLE, 250	check image shape
mappel::Gauss1DsModel, 279	mappel::Gauss1DMAP, 135
mappel::Gauss2DMAP, 308	mappel::Gauss1DMLE, 164
mappel::Gauss2DMLE, 340	mappel::Gauss1DModel, 192
mappel::Gauss2DModel, 370	mappel::Gauss1DsMAP, 220, 221
mappel::Gauss2DsMAP, 401	mappel::Gauss1DsMLE, 250
mappel::Gauss2DsMLE, 435	mappel::Gauss1DsModel, 279
mappel::Gauss2DsModel, 468	mappel::Gauss2DMAP, 309
mappel::Gauss2DsxyMAP, 499	mappel::Gauss2DMLE, 340
mappel::Gauss2DsxyModel, 526	mappel::Gauss2DModel, 371
mappel::MAPEstimator, 594	mappel::Gauss2DsMAP, 402
mappel::MCMCAdaptor1Ds, 638	mappel::Gauss2DsMLE, 435
mappel::MCMCAdaptor1D, 619	mappel::Gauss2DsModel, 468
mappel::MCMCAdaptor2Ds, 678	mappel::Gauss2DsxyMAP, 499
mappel::MCMCAdaptor2Ds, 678	mappel::Gauss2DsxyModel, 526, 527
mappel::MLEstimator, 708	mappel::ImageFormat1DBase, 560
mappel::PointEmitterModel, 772	mappel::ImageFormat2DBase, 566
• •	mappel::PoissonNoise1DObjective, 790
bounds_epsilon	
mappel::Gauss1DMAP, 149	mappel::PoissonNoise2DObjective, 797
mappel::Gauss1DMLE, 178	check_lower_bound_hyperparameter
mappel::Gauss1DModel, 206	mappel, 31
mappel::Gauss1DsMAP, 236	check_param_shape
mappel::Gauss1DsMLE, 265	mappel::Gauss1DMAP, 135
mappel::Gauss1DsModel, 294	mappel::Gauss1DMLE, 164
mappel::Gauss2DMAP, 324	mappel::Gauss1DModel, 192, 193
mappel::Gauss2DMLE, 355	mappel::Gauss1DsMAP, 221
mappel::Gauss2DModel, 386	mappel::Gauss1DsMLE, 250
mappel::Gauss2DsMAP, 419	mappel::Gauss1DsModel, 279
mappel::Gauss2DsMLE, 452	mappel::Gauss2DMAP, 309
mappel::Gauss2DsModel, 484	mappel::Gauss2DMLE, 340
mappel::Gauss2DsxyMAP, 513	mappel::Gauss2DModel, 371
mappel::Gauss2DsxyModel, 538	mappel::Gauss2DsMAP, 402
mappel::MAPEstimator, 603	mappel::Gauss2DsMLE, 435, 436
mappel::MCMCAdaptor1Ds, 648	mappel::Gauss2DsModel, 468
mappel::MCMCAdaptor1D, 629	mappel::Gauss2DsxyMAP, 499
mappel::MCMCAdaptor2Ds, 687	mappel::Gauss2DsxyModel, 527
mappel::MCMCAdaptor2D, 668	mappel::MAPEstimator, 594
mappel::MLEstimator, 717	mappel::MCMCAdaptor1Ds, 639
mappel::PointEmitterModel, 780	mappel::MCMCAdaptor1D, 620
	mappel::MCMCAdaptor2Ds, 678
CGaussHeuristicEstimator	mappel::MCMCAdaptor2D, 658
mappel::estimator::CGaussHeuristicEstimator, 93	mappel::MLEstimator, 708
CGaussMLE	mappel::PointEmitterModel, 772
mappel::estimator::CGaussMLE, 105	check_positive_hyperparameter
candidate	mappel, 31
mappel::mcmc::MCMCDebugData, 701	check_psf_sigma
candidate_rllh	mappel::Gauss1DMAP, 135, 136
mappel::mcmc::MCMCDebugData, 701	mappel::Gauss1DMLE, 164, 165
cgauss compute estimate	mappel::Gauss1DModel, 193

mappel::Gauss1DsMAP, 221	mappel, 33
mappel::Gauss1DsMLE, 250, 251	clear_stats
mappel::Gauss1DsModel, 279, 280	mappel::estimator::CGaussHeuristicEstimator, 93
mappel::Gauss2DMAP, 309	mappel::estimator::CGaussMLE, 106
mappel::Gauss2DMLE, 340, 341	mappel::estimator::Estimator, 118
mappel::Gauss2DModel, 371	mappel::estimator::HeuristicEstimator, 546
mappel::Gauss2DsMAP, 402	mappel::estimator::IterativeMaximizer, 572
mappel::Gauss2DsMLE, 436	mappel::estimator::NewtonDiagonalMaximizer, 725
mappel::Gauss2DsModel, 469	mappel::estimator::NewtonMaximizer, 746
mappel::Gauss2DsxyMAP, 499, 500	mappel::estimator::QuasiNewtonMaximizer, 811
mappel::Gauss2DsxyModel, 527	mappel :: estimator :: Simulated Annealing Maximizer,
mappel::MAPEstimator, 595	830
mappel::MCMCAdaptor1Ds, 639	mappel::estimator::ThreadedEstimator, 865
mappel::MCMCAdaptor1D, 620	mappel::estimator::TrustRegionMaximizer, 880
mappel::MCMCAdaptor2Ds, 678	ClockT
mappel::MCMCAdaptor2D, 658, 659	estimator.h, 905
mappel::MLEstimator, 708, 709	compute_D_scale
mappel::PointEmitterModel, 772, 773	mappel::estimator::subroutine, 52
check_size	compute_bound_scaling_vec
mappel::Gauss1DMAP, 136	mappel::estimator::subroutine, 51
mappel::Gauss1DMLE, 165	compute_cauchy_point
mappel::Gauss1DModel, 193	mappel::estimator::subroutine, 52
mappel::Gauss1DsMAP, 221	compute_derivatives
mappel::Gauss1DsMLE, 251	mappel::Gauss1DModel::Stencil, 861
mappel::Gauss1DsModel, 280	mappel::Gauss1DsModel::Stencil, 847
mappel::Gauss2DMAP, 310	mappel::Gauss2DModel::Stencil, 851
mappel::Gauss2DMLE, 341	mappel::Gauss2DsModel::Stencil, 855
mappel::Gauss2DModel, 372	mappel::Gauss2DsxyModel::Stencil, 842
mappel::Gauss2DsMAP, 403	compute_estimate
mappel::Gauss2DsMLE, 436	mappel::estimator::Estimator, 118
mappel::Gauss2DsModel, 469	mappel::estimator::IterativeMaximizer, 573
mappel::Gauss2DsxyMAP, 500	mappel::estimator::NewtonDiagonalMaximizer, 725
mappel::Gauss2DsxyModel, 527	mappel::estimator::NewtonMaximizer, 746
mappel::ImageFormat1DBase, 560	mappel::estimator::QuasiNewtonMaximizer, 811
mappel::ImageFormat2DBase, 566	mappel::estimator::ThreadedEstimator, 865
mappel::PoissonNoise1DObjective, 790	mappel::estimator::TrustRegionMaximizer, 880
mappel::PoissonNoise2DObjective, 797	compute_estimate_debug
check_unit_hyperparameter	mappel::estimator::CGaussHeuristicEstimator, 93
mappel, 31	mappel::estimator::Estimator, 119
chisq_quantile	mappel::estimator::HeuristicEstimator, 546
mappel, 31	mappel::estimator::IterativeMaximizer, 573
cholesky	mappel::estimator::NewtonDiagonalMaximizer, 725
mappel, 31	mappel::estimator::NewtonMaximizer, 746
cholesky_convert_full_matrix	mappel::estimator::QuasiNewtonMaximizer, 811
mappel, 32	mappel::estimator::ThreadedEstimator, 866
cholesky_convert_lower_triangular	mappel::estimator::TrustRegionMaximizer, 881
mappel, 32	compute_initial_trust_radius
cholesky_make_negative_definite	mappel::estimator::subroutine, 52
mappel, 32	compute_max_sigma_ratio
cholesky_make_positive_definite	mappel::Gauss2DsMAP, 403
mappel, 32	mappel::Gauss2DsMLE, 436
cholesky_solve	mappel::Gauss2DsModel, 469
mappel, 32	mappel::Gauss2DsxyModel, 528
clamp	compute_posterior_credible

mappel::mcmc, 54	mappel::estimator::TrustRegionMaximizer, 894
compute_profile_bound	convergence_min_step_size_ratio
mappel::estimator::CGaussHeuristicEstimator, 94	mappel::estimator::IterativeMaximizer, 586
mappel::estimator::CGaussMLE, 106	mappel::estimator::NewtonDiagonalMaximizer, 738
mappel::estimator::Estimator, 119	mappel::estimator::NewtonMaximizer, 759
mappel::estimator::HeuristicEstimator, 546	mappel::estimator::QuasiNewtonMaximizer, 824
mappel::estimator::IterativeMaximizer, 573	mappel::estimator::TrustRegionMaximizer, 894
mappel::estimator::NewtonDiagonalMaximizer, 726	convergence_min_trust_radius
mappel::estimator::NewtonMaximizer, 747	mappel::estimator::TrustRegionMaximizer, 895
mappel::estimator::QuasiNewtonMaximizer, 812	convergence_test_grad_ratio
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::estimator::IterativeMaximizer, 574
830	mappel::estimator::NewtonDiagonalMaximizer, 727
mappel::estimator::ThreadedEstimator, 866	mappel::estimator::NewtonMaximizer, 748
mappel::estimator::TrustRegionMaximizer, 881	mappel::estimator::QuasiNewtonMaximizer, 813
• • • • • • • • • • • • • • • • • • • •	
compute_profile_bound_debug	mappel::estimator::TrustRegionMaximizer, 882
mappel::estimator::CGaussHeuristicEstimator, 94	convergence_test_step_size
mappel::estimator::CGaussMLE, 106	mappel::estimator::IterativeMaximizer, 575
mappel::estimator::Estimator, 119	mappel::estimator::NewtonDiagonalMaximizer, 727
mappel::estimator::HeuristicEstimator, 547	mappel::estimator::NewtonMaximizer, 748
mappel::estimator::IterativeMaximizer, 574	mappel::estimator::QuasiNewtonMaximizer, 813
mappel::estimator::NewtonDiagonalMaximizer, 726	mappel::estimator::TrustRegionMaximizer, 882
mappel::estimator::NewtonMaximizer, 747	CoordldxT
mappel::estimator::QuasiNewtonMaximizer, 812	PoissonGaussianNoise2DObjective, 785
mappel :: estimator :: Simulated Annealing Maximizer,	CoordStackT
831	PoissonGaussianNoise2DObjective, 785
mappel::estimator::ThreadedEstimator, 866	CoordT
mappel::estimator::TrustRegionMaximizer, 881	PoissonGaussianNoise2DObjective, 785
compute_profile_estimate	copy_Lsym_mat
mappel::estimator::CGaussHeuristicEstimator, 94	mappel, 33
mappel::estimator::CGaussMLE, 106	copy_Usym_mat
mappel::estimator::Estimator, 119	mappel, 33
mappel::estimator::HeuristicEstimator, 547	copy_Usym_mat_stack
mappel::estimator::IterativeMaximizer, 574	mappel, 33
mappel::estimator::NewtonDiagonalMaximizer, 726	cr lower bound
mappel::estimator::NewtonMaximizer, 747	mappel::methods, 59
mappel::estimator::QuasiNewtonMaximizer, 812	cr_lower_bound_stack
mappel::estimator::ThreadedEstimator, 866	mappel::methods::openmp, 85
mappel::estimator::TrustRegionMaximizer, 882	credible_lb
compute_quadratic_model_value	mappel::mcmc::MCMCData, 696
mappel::estimator::subroutine, 52	mappel::mcmc::MCMCDataStack, 699
compute_scaled_problem	credible ub
mappel::estimator::subroutine, 52	mappel::mcmc::MCMCData, 697
confidence	mappel::mcmc::MCMCDataStack, 699
mappel::estimator::ProfileBoundsData, 802	CubeT
••	
mappel::estimator::ProfileBoundsDataStack, 805	mappel, 27
mappel::mcmc::MCMCData, 696	current_stencil
mappel::mcmc::MCMCDataStack, 699	mappel::estimator::IterativeMaximizer::Maximizer↔
Continue	Data, 612
omp_exception_catcher, 90	DVO
convergence_min_function_change_ratio	DXS2
mappel::estimator::IterativeMaximizer, 586	mappel::Gauss1DsModel::Stencil, 848
mappel::estimator::NewtonDiagonalMaximizer, 738	mappel::Gauss2DsModel::Stencil, 857
mappel::estimator::NewtonMaximizer, 759	mappel::Gauss2DsxyModel::Stencil, 843
mappel::estimator::QuasiNewtonMaximizer, 824	DXSX

mappel::Gauss1DsModel::Stencil, 848	mappel::MCMCAdaptor1Ds, 648
mappel::Gauss2DsModel::Stencil, 858	mappel::MCMCAdaptor1D, 629
mappel::Gauss2DsxyModel::Stencil, 843	mappel::MCMCAdaptor2Ds, 687
DXS	mappel::MCMCAdaptor2D, 668
mappel::Gauss1DModel::Stencil, 862	mappel::MLEstimator, 717
mappel::Gauss1DsModel::Stencil, 848	mappel::PointEmitterModel, 780
mappel::Gauss2DModel::Stencil, 852	DefaultCoolingRate
mappel::Gauss2DsModel::Stencil, 857	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::Gauss2DsxyModel::Stencil, 843	838
DYS2	DefaultEstimatorMethod
mappel::Gauss2DsModel::Stencil, 858	mappel::Gauss1DMAP, 150
mappel::Gauss2DsxyModel::Stencil, 844	mappel::Gauss1DMLE, 179
DYSX	mappel::Gauss1DModel, 207
mappel::Gauss2DsxyModel::Stencil, 844	mappel::Gauss1DsMAP, 236
DYSY	mappel::Gauss1DsMLE, 265
mappel::Gauss2DsModel::Stencil, 858	mappel::Gauss1DsModel, 294
mappel::Gauss2DsxyModel::Stencil, 844	mappel::Gauss2DMAP, 324
DYS	mappel::Gauss2DMLE, 355
mappel::Gauss2DModel::Stencil, 853	mappel::Gauss2DModel, 386
mappel::Gauss2DsModel::Stencil, 858	mappel::Gauss2DsMAP, 419
mappel::Gauss2DsxyModel::Stencil, 844	mappel::Gauss2DsMLE, 452
debug_internal_sum_model_x	mappel::Gauss2DsModel, 484
mappel::Gauss2DMAP, 310	mappel::Gauss2DsxyMAP, 513
mappel::Gauss2DMLE, 341	mappel::Gauss2DsxyModel, 539
mappel::Gauss2DMcdel, 372	mappel::MAPEstimator, 603
·	mappel::MCMCAdaptor1Ds, 649
mappel::Gauss2DsMAP, 403	·
mappel::Gauss2DsMLE, 437	mappel::MCMCAdaptor1D, 629
mappel::Gauss2DsModel, 469	mappel::MCMCAdaptor2Ds, 688
debug_internal_sum_model_y	mappel::MCMCAdaptor2D, 668
mappel::Gauss2DMAP, 310	mappel::MLEstimator, 717
mappel::Gauss2DMLE, 341	mappel::PointEmitterModel, 780
mappel::Gauss2DModel, 372	DefaultIterations 00 MI 5
mappel::Gauss2DsMAP, 403	mappel::estimator::CGaussMLE, 114
mappel::Gauss2DsMLE, 437	mappel::estimator::lterativeMaximizer, 586
mappel::Gauss2DsModel, 469	mappel::estimator::NewtonDiagonalMaximizer, 739
Default_T_Init	mappel::estimator::NewtonMaximizer, 760
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::estimator::QuasiNewtonMaximizer, 825
838	mappel::estimator::TrustRegionMaximizer, 895
DefaultConfidenceLevel	DefaultMCMCBurnin
mappel::Gauss1DMAP, 149	mappel::Gauss1DMAP, 150
mappel::Gauss1DMLE, 178	mappel::Gauss1DMLE, 179
mappel::Gauss1DModel, 206	mappel::Gauss1DModel, 207
mappel::Gauss1DsMAP, 236	mappel::Gauss1DsMAP, 236
mappel::Gauss1DsMLE, 265	mappel::Gauss1DsMLE, 265
mappel::Gauss1DsModel, 294	mappel::Gauss1DsModel, 294
mappel::Gauss2DMAP, 324	mappel::Gauss2DMAP, 325
mappel::Gauss2DMLE, 355	mappel::Gauss2DMLE, 356
mappel::Gauss2DModel, 386	mappel::Gauss2DModel, 386
mappel::Gauss2DsMAP, 419	mappel::Gauss2DsMAP, 419
mappel::Gauss2DsMLE, 452	mappel::Gauss2DsMLE, 452
mappel::Gauss2DsModel, 484	mappel::Gauss2DsModel, 484
mappel::Gauss2DsxyMAP, 513	mappel::Gauss2DsxyMAP, 513
mappel::Gauss2DsxyModel, 538	mappel::Gauss2DsxyModel, 539
mappel::MAPEstimator, 603	mappel::MAPEstimator, 603

1.1101101111111111111111111111111111111	
mappel::MCMCAdaptor1Ds, 649	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::MCMCAdaptor1D, 630	838
mappel::MCMCAdaptor2Ds, 688	DefaultPriorBetaPos
mappel::MCMCAdaptor2D, 668	mappel::Gauss1DMAP, 150
mappel::MLEstimator, 717	mappel::Gauss1DMLE, 179
mappel::PointEmitterModel, 780	mappel::Gauss1DModel, 207
DefaultMCMCNumSamples	mappel::Gauss1DsMAP, 236
mappel::Gauss1DMAP, 150	mappel::Gauss1DsMLE, 266
mappel::Gauss1DMLE, 179	mappel::Gauss1DsModel, 294
mappel::Gauss1DModel, 207	mappel::Gauss2DMAP, 325
mappel::Gauss1DsMAP, 236	mappel::Gauss2DMLE, 356
mappel::Gauss1DsMLE, 265	mappel::Gauss2DModel, 386
mappel::Gauss1DsModel, 294	mappel::Gauss2DsMAP, 419
mappel::Gauss2DMAP, 325	mappel::Gauss2DsMLE, 453
mappel::Gauss2DMLE, 356	mappel::Gauss2DsModel, 485
mappel::Gauss2DModel, 386	mappel::Gauss2DsxyMAP, 514
mappel::Gauss2DsMAP, 419	mappel::Gauss2DsxyModel, 539
mappel::Gauss2DsMLE, 452	mappel::MAPEstimator, 603
mappel::Gauss2DsModel, 485	mappel::MCMCAdaptor1Ds, 649
mappel::Gauss2DsxyMAP, 513	mappel::MCMCAdaptor1D, 630
mappel::Gauss2DsxyModel, 539	mappel::MCMCAdaptor2Ds, 688
mappel::MAPEstimator, 603	mappel::MCMCAdaptor2D, 668
mappel::MCMCAdaptor1Ds, 649	mappel::MLEstimator, 717
mappel::MCMCAdaptor1D, 630	mappel::PointEmitterModel, 781
mappel::MCMCAdaptor2Ds, 688	DefaultPriorIntensityKappa
·	
mappel::MCMCAdaptor2D, 668	mappel::Gauss1DMAP, 150
mappel::MLEstimator, 717	mappel::Gauss1DMLE, 179
mappel::PointEmitterModel, 781	mappel::Gauss1DModel, 207
DefaultMCMCThin 45045	mappel::Gauss1DsMAP, 236
mappel::Gauss1DMAP, 150	mappel::Gauss1DsMLE, 266
mappel::Gauss1DMLE, 179	mappel::Gauss1DsModel, 295
mappel::Gauss1DModel, 207	mappel::Gauss2DMAP, 325
mappel::Gauss1DsMAP, 236	mappel::Gauss2DMLE, 356
mappel::Gauss1DsMLE, 266	mappel::Gauss2DModel, 387
mappel::Gauss1DsModel, 294	mappel::Gauss2DsMAP, 419
mappel::Gauss2DMAP, 325	mappel::Gauss2DsMLE, 453
mappel::Gauss2DMLE, 356	mappel::Gauss2DsModel, 485
mappel::Gauss2DModel, 386	mappel::Gauss2DsxyMAP, 514
mappel::Gauss2DsMAP, 419	mappel::Gauss2DsxyModel, 539
mappel::Gauss2DsMLE, 453	mappel::MAPEstimator, 603
mappel::Gauss2DsModel, 485	mappel::MCMCAdaptor1Ds, 649
mappel::Gauss2DsxyMAP, 514	mappel::MCMCAdaptor1D, 630
mappel::Gauss2DsxyModel, 539	mappel::MCMCAdaptor2Ds, 688
mappel::MAPEstimator, 603	mappel::MCMCAdaptor2D, 669
mappel::MCMCAdaptor1Ds, 649	mappel::MLEstimator, 717
mappel::MCMCAdaptor1D, 630	mappel::PointEmitterModel, 781
mappel::MCMCAdaptor2Ds, 688	DefaultPriorMaxI
mappel::MCMCAdaptor2D, 668	mappel::Gauss1DMAP, 150
mappel::MLEstimator, 717	mappel::Gauss1DMLE, 179
mappel::PointEmitterModel, 781	mappel::Gauss1DMcE, 179
• •	mappel::Gauss1DsMAP, 237
DefaultMaxSeqLength	• •
mappel::estimator::IterativeMaximizer::Maximizer ↔	mappel::Gauss1DsMLE, 266
Data, 613	mappel::Gauss1DsModel, 295
DefaultNumIterations	mappel::Gauss2DMAP, 325

mappel::Gauss2DMLE, 356	mappel::MCMCAdaptor2Ds, 689
mappel::Gauss2DModel, 387	mappel::MCMCAdaptor2D, 669
mappel::Gauss2DsMAP, 420	mappel::MLEstimator, 718
mappel::Gauss2DsMLE, 453	mappel::PointEmitterModel, 782
mappel::Gauss2DsModel, 485	DefaultPriorPixelMeanBG
mappel::Gauss2DsxyMAP, 514	mappel::Gauss1DMAP, 151
mappel::Gauss2DsxyModel, 539	mappel::Gauss1DMLE, 180
mappel::MAPEstimator, 604	mappel::Gauss1DModel, 208
mappel::MCMCAdaptor1Ds, 649	mappel::Gauss1DsMAP, 237
mappel::MCMCAdaptor1D, 630	mappel::Gauss1DsMLE, 266
mappel::MCMCAdaptor2Ds, 688	mappel::Gauss1DsModel, 295
mappel::MCMCAdaptor2D, 669	mappel::Gauss2DMAP, 325
mappel::MLEstimator, 718	mappel::Gauss2DMLE, 356
mappel::PointEmitterModel, 781	mappel::Gauss2DModel, 387
DefaultPriorMeanl	mappel::Gauss2DsMAP, 420
mappel::Gauss1DMAP, 150	mappel::Gauss2DsMLE, 453
mappel::Gauss1DMLE, 179	mappel::Gauss2DsModel, 485
mappel::Gauss1DModel, 207	mappel::Gauss2DsxyMAP, 514
mappel::Gauss1DsMAP, 237	mappel::Gauss2DsxyModel, 540
mappel::Gauss1DsMLE, 266	mappel::MAPEstimator, 604
mappel::Gauss1DsModel, 295	mappel::MCMCAdaptor1Ds, 650
mappel::Gauss2DMAP, 325	mappel::MCMCAdaptor1D, 630
mappel::Gauss2DMLE, 356	mappel::MCMCAdaptor2Ds, 689
mappel::Gauss2DModel, 387	mappel::MCMCAdaptor2D, 669
mappel::Gauss2DsMAP, 420	mappel::MLEstimator, 718
mappel::Gauss2DsMLE, 453	mappel::PointEmitterModel, 781
mappel::Gauss2DsModel, 485	DefaultPriorSigmaPos
mappel::Gauss2DsxyMAP, 514	mappel::Gauss1DMAP, 151
mappel::Gauss2DsxyModel, 539	mappel::Gauss1DMLE, 180
mappel::MAPEstimator, 604	mappel::Gauss1DModel, 208
mappel::MCMCAdaptor1Ds, 649	mappel::Gauss1DsMAP, 237
mappel::MCMCAdaptor1D, 630	mappel::Gauss1DsMLE, 267
mappel::MCMCAdaptor2Ds, 688	mappel::Gauss1DsModel, 295
mappel::MCMCAdaptor2D, 669	mappel::Gauss2DMAP, 326
mappel::MLEstimator, 718	mappel::Gauss2DMLE, 357
mappel::PointEmitterModel, 781	mappel::Gauss2DModel, 387
DefaultPriorPSFSigmaAlpha	mappel::Gauss2DsMAP, 420
mappel::Gauss1DMAP, 151	mappel::Gauss2DsMLE, 454
mappel::Gauss1DMLE, 180	mappel::Gauss2DsModel, 486
mappel::Gauss1DModel, 208	mappel::Gauss2DsxyMAP, 515
mappel::Gauss1DsMAP, 237	mappel::Gauss2DsxyModel, 540
mappel::Gauss1DsMLE, 266	mappel::MAPEstimator, 604
mappel::Gauss1DsModel, 295	mappel::MCMCAdaptor1Ds, 650
mappel::Gauss2DMAP, 326	mappel::MCMCAdaptor1D, 631
mappel::Gauss2DMLE, 357	mappel::MCMCAdaptor2Ds, 689
mappel::Gauss2DModel, 387	mappel::MCMCAdaptor2D, 669
mappel::Gauss2DsMAP, 420	mappel::MLEstimator, 718
mappel::Gauss2DsMLE, 453	mappel::PointEmitterModel, 782
mappel::Gauss2DsModel, 486	DefaultPriorType
mappel::Gauss2DsxyMAP, 514	mappel::Gauss1DMAP, 151
mappel::Gauss2DsxyModel, 540	mappel::Gauss1DMLE, 180
mappel::MAPEstimator, 604	mappel::Gauss1DModel, 208
mappel::MCMCAdaptor1Ds, 650	mappel::Gauss1DsMAP, 237
mappel::MCMCAdaptor1D, 631	mappel::Gauss1DsMLE, 267

mappel::Gauss1DsModel, 295	mappel::Gauss1DsModel::Stencil, 848
mappel::Gauss2DMAP, 326	mappel::Gauss2DModel::Stencil, 852
mappel::Gauss2DMLE, 357	mappel::Gauss2DsModel::Stencil, 857
mappel::Gauss2DModel, 387	mappel::Gauss2DsxyModel::Stencil, 843
mappel::Gauss2DsMAP, 420	display.cpp, 899
mappel::Gauss2DsMLE, 454	display.h, 900
mappel::Gauss2DsMcL, 434	DoNotTry
• •	-
mappel::Gauss2DsxyMAP, 515 DefaultProfileBoundsEstimatorMethod	omp_exception_catcher, 90 DX
mappel::Gauss1DMAP, 151	mappel::Gauss1DModel::Stencil, 862
mappel::Gauss1DMLE, 180	mappel::Gauss1DsModel::Stencil, 848
mappel::Gauss1DModel, 208	mappel::Gauss2DModel::Stencil, 852
mappel::Gauss1DsMAP, 238	mappel::Gauss2DsModel::Stencil, 857
mappel::Gauss1DsMLE, 267	mappel::Gauss2DsxyModel::Stencil, 843
mappel::Gauss1DsModel, 296	dx
mappel::Gauss2DMAP, 326	mappel::Gauss1DModel::Stencil, 862
mappel::Gauss2DMLE, 357	mappel::Gauss1DsModel::Stencil, 848
mappel::Gauss2DModel, 388	mappel::Gauss2DModel::Stencil, 852
mappel::Gauss2DsMAP, 421	mappel::Gauss2DsModel::Stencil, 857
mappel::Gauss2DsMLE, 454	mappel::Gauss2DsxyModel::Stencil, 843
mappel::Gauss2DsModel, 486	DY
mappel::Gauss2DsxyMAP, 515	mappel::Gauss2DModel::Stencil, 853
mappel::Gauss2DsxyModel, 540	mappel::Gauss2DsModel::Stencil, 858
mappel::MAPEstimator, 604	mappel::Gauss2DsxyModel::Stencil, 844
mappel::MCMCAdaptor1Ds, 650	dy
mappel::MCMCAdaptor1D, 631	mappel::Gauss2DModel::Stencil, 852
mappel::MCMCAdaptor2Ds, 689	mappel::Gauss2DsModel::Stencil, 858
mappel::MCMCAdaptor2D, 670	mappel::Gauss2DsxyModel::Stencil, 844
mappel::MLEstimator, 718	mapperdausszbskywioderotenen, 044
mappel::PointEmitterModel, 782	enable_all_cpus
• •	mappel, 33
DefaultSeperableInitEstimator	EnableIfSubclassT
mappel::Gauss1DMAP, 151	
mappel::Gauss1DMLE, 180	mappel, 27
mappel::Gauss1DModel, 208	Error
mappel::Gauss1DsMAP, 238	mappel::estimator, 50
mappel::Gauss1DsMLE, 267	error_bounds_expected
mappel::Gauss1DsModel, 296	mappel::methods, 59
mappel::Gauss2DMAP, 326	error_bounds_expected_stack
mappel::Gauss2DMLE, 357	mappel::methods::openmp, 85
mappel::Gauss2DModel, 388	error_bounds_observed
mappel::Gauss2DsMAP, 421	mappel::methods, 59
mappel::Gauss2DsMLE, 454	error_bounds_observed_stack
mappel::Gauss2DsModel, 486	mappel::methods::openmp, 85
mappel::Gauss2DsxyMAP, 515	error_bounds_posterior_credible
mappel::Gauss2DsxyModel, 540	mappel::methods, 59
mappel::MAPEstimator, 605	error bounds profile likelihood
mappel::MCMCAdaptor1Ds, 650	mappel::methods, 59, 60
mappel::MCMCAdaptor1D, 631	error_bounds_profile_likelihood_debug
mappel::MCMCAdaptor2Ds, 689	mappel::methods::debug, 67
mappel::MCMCAdaptor2D, 670	error_bounds_profile_likelihood_parallel
mappel::MLEstimator, 719	mappel::methods::openmp, 85
mappel::PointEmitterModel, 782	error_bounds_profile_likelihood_stack
derivatives_computed	
mappel::Gauss1DModel::Stencil, 862	mappel::methods::openmp, 86 estimate background
mapperGauss i DiviouerStericii, 604	estimate dackgrould

mappel, 33, 34	mappel::methods::debug, 67
estimate_gaussian_2Dmax	estimate_posterior_stack
mappel, 34	mappel::methods::openmp, 87
• •	
estimate_gaussian_3Dmax	estimate_profile_bounds
mappel, 34	mappel::estimator::CGaussHeuristicEstimator, 98
estimate_intensity	mappel::estimator::CGaussMLE, 110
mappel, 34	mappel::estimator::Estimator, 123
estimate_max	mappel::estimator::HeuristicEstimator, 551
mappel::estimator::CGaussHeuristicEstimator, 94,	mappel::estimator::IterativeMaximizer, 578
95	mappel::estimator::NewtonDiagonalMaximizer, 731
mappel::estimator::CGaussMLE, 106, 107	mappel::estimator::NewtonMaximizer, 752
mappel::estimator::Estimator, 120, 121	mappel::estimator::QuasiNewtonMaximizer, 817
mappel::estimator::HeuristicEstimator, 547, 548	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::estimator::IterativeMaximizer, 575, 576	834
mappel::estimator::NewtonDiagonalMaximizer, 727,	mappel::estimator::ThreadedEstimator, 870
728	mappel::estimator::TrustRegionMaximizer, 886
mappel::estimator::NewtonMaximizer, 748, 749	estimate_profile_bounds_debug
mappel::estimator::QuasiNewtonMaximizer, 813, 814	mappel::estimator::CGaussHeuristicEstimator, 98
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::estimator::CGaussMLE, 110
831, 832	mappel::estimator::Estimator, 123
mappel::estimator::ThreadedEstimator, 867, 868	mappel::estimator::HeuristicEstimator, 551
mappel::estimator::TrustRegionMaximizer, 882, 883	mappel::estimator::IterativeMaximizer, 579
mappel::methods, 60	mappel::estimator::NewtonDiagonalMaximizer, 731
estimate_max_debug	mappel::estimator::NewtonMaximizer, 752
mappel::estimator::CGaussHeuristicEstimator, 96	mappel::estimator::QuasiNewtonMaximizer, 817
mappel::estimator::CGaussMLE, 108	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::estimator::Estimator, 121, 122	835
mappel::estimator::HeuristicEstimator, 549	mappel::estimator::ThreadedEstimator, 870
mappel::estimator::IterativeMaximizer, 576, 577	mappel::estimator::TrustRegionMaximizer, 886
mappel::estimator::NewtonDiagonalMaximizer, 729	estimate_profile_bounds_parallel
mappel::estimator::NewtonMaximizer, 750	mappel::estimator::CGaussHeuristicEstimator, 99
mappel::estimator::QuasiNewtonMaximizer, 815	mappel::estimator::CGaussMLE, 111
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::estimator::Estimator, 124
832, 833	mappel::estimator::HeuristicEstimator, 551
mappel::estimator::ThreadedEstimator, 868, 869	mappel::estimator::IterativeMaximizer, 579
mappel::estimator::TrustRegionMaximizer, 884	mappel::estimator::NewtonDiagonalMaximizer, 731
mappel::methods::debug, 67	mappel::estimator::NewtonMaximizer, 752
estimate max stack	mappel::estimator::QuasiNewtonMaximizer, 817
mappel::estimator::CGaussHeuristicEstimator, 97	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::estimator::CGaussMLE, 109	835
• •	
mappel::estimator::Estimator, 122, 123	mappel::estimator::ThreadedEstimator, 871
mappel::estimator::HeuristicEstimator, 550	mappel::estimator::TrustRegionMaximizer, 887
mappel::estimator::IterativeMaximizer, 577, 578	estimate_profile_bounds_stack
mappel::estimator::NewtonDiagonalMaximizer, 730	mappel::estimator::CGaussHeuristicEstimator, 99
mappel::estimator::NewtonMaximizer, 751	mappel::estimator::CGaussMLE, 111
mappel::estimator::QuasiNewtonMaximizer, 816	mappel::estimator::Estimator, 124
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::estimator::HeuristicEstimator, 552
833, 834	mappel::estimator::IterativeMaximizer, 579
mappel::estimator::ThreadedEstimator, 869, 870	mappel::estimator::NewtonDiagonalMaximizer, 731
mappel::estimator::TrustRegionMaximizer, 885	mappel::estimator::NewtonMaximizer, 752
mappel::methods::openmp, 86	mappel::estimator::QuasiNewtonMaximizer, 817
estimate_posterior	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::methods, 60, 61	835
estimate_posterior_debug	mappel::estimator::ThreadedEstimator, 871

mappel::estimator::TrustRegionMaximizer, 887		mappel::Gauss2DsMAP, 421
estimate_profile_likelihood		mappel::Gauss2DsMLE, 454
mappel::methods, 61		mappel::Gauss2DsModel, 486
estimate_profile_likelihood_stack		mappel::Gauss2DsxyMAP, 515
mappel::methods::openmp, 87		mappel::MCMCAdaptor1Ds, 650
estimate_profile_max		mappel::MCMCAdaptor1D, 631
mappel::estimator::CGaussHeuristicEstimator, 100		mappel::MCMCAdaptor2Ds, 689
mappel::estimator::CGaussMLE, 112		mappel::MCMCAdaptor2D, 670
mappel::estimator::Estimator, 124	eta_	
mappel::estimator::HeuristicEstimator, 552, 553		mappel::Gauss1DMAP, 152
mappel::estimator::IterativeMaximizer, 580		mappel::Gauss1DMLE, 181
mappel::estimator::NewtonDiagonalMaximizer, 732		mappel::Gauss1DModel, 209
mappel::estimator::NewtonMaximizer, 753		mappel::Gauss1DsMAP, 238
mappel::estimator::QuasiNewtonMaximizer, 818		mappel::Gauss1DsMLE, 267
mappel::estimator::SimulatedAnnealingMaximizer,		mappel::Gauss1DsModel, 296
836		mappel::Gauss2DMAP, 327
mappel::estimator::ThreadedEstimator, 872		mappel::Gauss2DMLE, 358
mappel::estimator::TrustRegionMaximizer, 888		mappel::Gauss2DModel, 388
estimate_sample_posterior		mappel::Gauss2DsMAP, 421
mappel::mcmc, 54		mappel::Gauss2DsMLE, 454
estimated_idxs		mappel::Gauss2DsModel, 487
mappel::estimator::ProfileBoundsData, 802		mappel::Gauss2DsxyMAP, 515
mappel::estimator::ProfileBoundsDataStack, 805		mappel::MCMCAdaptor1Ds, 651
Estimator		mappel::MCMCAdaptor1D, 631
mappel::estimator::Estimator, 118		mappel::MCMCAdaptor2Ds, 690
estimator.cpp, 901		mappel::MCMCAdaptor2D, 670
estimator.h, 902	eta_	sigma
ClockT, 905		mappel::Gauss1DsMAP, 238
estimator_helpers.h, 905		mappel::Gauss1DsMLE, 268
estimator_impl.h, 906		mappel::Gauss1DsModel, 296
estimator_names		mappel::Gauss2DsMAP, 421
mappel::Gauss1DMAP, 152		mappel::Gauss2DsMLE, 455
mappel::Gauss1DMLE, 181		mappel::Gauss2DsModel, 487
mappel::Gauss1DsMAP, 238		mappel::MCMCAdaptor1Ds, 651
mappel::Gauss1DsMLE, 267		mappel::MCMCAdaptor2Ds, 690
mappel::Gauss2DMAP, 326	eta_	
mappel::Gauss2DMLE, 357		mappel::Gauss1DMAP, 152
mappel::Gauss2DsMAP, 421		mappel::Gauss1DMLE, 181
mappel::Gauss2DsMLE, 454		mappel::Gauss1DModel, 209
mappel::Gauss2DsxyMAP, 515		mappel::Gauss1DsMAP, 239
mappel::PoissonNoise1DObjective, 792		mappel::Gauss1DsMLE, 268
mappel::PoissonNoise2DObjective, 799		mappel::Gauss1DsModel, 296
PoissonGaussianNoise2DObjective, 785		mappel::Gauss2DMAP, 327
estimator_statics.cpp, 907		mappel::Gauss2DMLE, 358
eta_bg		mappel::Gauss2DModel, 388
mappel::Gauss1DMAP, 152 mappel::Gauss1DMLE, 181		mappel::Gauss2DsMAP, 422
mappel::Gauss1DModel, 209		mappel::Gauss2DsMLE, 455 mappel::Gauss2DsModel, 487
• •		• •
mappel::Gauss1DsMAP, 238 mappel::Gauss1DsMLE, 267		mappel::Gauss2DsxyMAP, 516 mappel::MCMCAdaptor1Ds, 651
mappel::Gauss1DsMcE, 207 mappel::Gauss1DsModel, 296		mappel::MCMCAdaptor1D, 632
mappel::Gauss2DMAP, 327		mappel::MCMCAdaptor2Ds, 690
mappel::Gauss2DMAP, 327 mappel::Gauss2DMLE, 358		mappel::MCMCAdaptor2D, 670
mappel::Gauss2DModel, 388	eta	
mappen.Gausszbinouer, 300	eta_	_y

mappel::Gauss2DMAP, 327	mappel::estimator::IterativeMaximizer::Maximizer ↔
mappel::Gauss2DMLE, 358	Data, 613
mappel::Gauss2DModel, 388	FunctionValue
mappel::Gauss2DsMAP, 422	mappel::estimator, 50
mappel::Gauss2DsMLE, 455	
mappel::Gauss2DsModel, 487	gamma_prior_grad
mappel::MCMCAdaptor2Ds, 690	mappel, 35
mappel::MCMCAdaptor2D, 670	gamma_prior_grad2
exit_counts	mappel, 35
mappel::estimator::CGaussHeuristicEstimator, 102	Gauss1DMAP.cpp, 907
mappel::estimator::CGaussMLE, 114	Gauss1DMAP.h, 908
mappel::estimator::Estimator, 126	Gauss1DMAP
mappel::estimator::HeuristicEstimator, 555	mappel::Gauss1DMAP, 134
mappel::estimator::IterativeMaximizer, 586	Gauss1DMLE.cpp, 908
mappel::estimator::NewtonDiagonalMaximizer, 739	Gauss1DMLE.h, 909
mappel::estimator::NewtonMaximizer, 760	Gauss1DMLE
mappel::estimator::QuasiNewtonMaximizer, 825	mappel::Gauss1DMLE, 163
mappel::estimator::SimulatedAnnealingMaximizer,	Gauss1DModel
839	mappel::Gauss1DModel, 191
mappel::estimator::ThreadedEstimator, 874	Gauss1DModel.cpp, 910
mappel::estimator::TrustRegionMaximizer, 895	Gauss1DModel.h, 910
ExitCode	Gauss1DSumModelT
mappel::estimator, 49	mappel::Gauss2DMAP, 305
expand max seq len	mappel::Gauss2DMLE, 337
mappel::estimator::IterativeMaximizer::Maximizer↔	mappel::Gauss2DModel, 368
Data, 609	mappel::Gauss2DsMAP, 398
expected_information	mappel::Gauss2DsMLE, 432
mappel::methods, 61, 62	mappel::Gauss2DsModel, 465
expected_information_stack	Gauss1DsMAP.cpp, 911
mappel::methods::openmp, 87	Gauss1DsMAP.h, 911
mappermethodsopeninp, 67	Gauss1DsMAP
	mappel::Gauss1DsMAP, 219, 220
fill_DX_stencil	Gauss1DsMLE.cpp, 912
mappel, 34	Gauss1DsMLE.h, 913
fill_DXS2_stencil	Gauss1DsMLE
mappel, 34	mappel::Gauss1DsMLE, 249
fill_DXS_stencil	Gauss1DsModel
mappel, 34	mappel::Gauss1DsModel, 278
fill_DXSX_stencil	Gauss1DsModel.cpp, 913
mappel, 35	Gauss1DsModel.h, 914
fill_G_stencil	Gauss2DMAP.cpp, 915
mappel, 35	Gauss2DMAP.h, 915
fill_X_stencil	Gauss2DMAP
mappel, 35	mappel::Gauss2DMAP, 307, 308
fill_d_stencil	Gauss2DMLE.cpp, 916
mappel, 34	Gauss2DMLE.h, 916
fill_gaussian_stencil	Gauss2DMLE
mappel, 35	mappel::Gauss2DMLE, 339
fisher_information	Gauss2DModel
PoissonGaussianNoise2DObjective.h, 953	mappel::Gauss2DModel, 370
fixed_idxs	Gauss2DModel.cpp, 917
$mappel :: estimator :: Iterative Maximizer :: Maximizer \leftarrow$	Gauss2DModel.h, 918
Data, 613	Gauss2DsMAP.cpp, 919
free idxs	Gauss2DsMAPh, 919

Gauss2DsMAP	mappel::estimator::SimulatedAnnealingMaximizer, 837
mappel::Gauss2DsMAP, 400, 401	
Gauss2DsMLE.cpp, 920	mappel::estimator::ThreadedEstimator, 873
Gauss2DsMLE.h, 920	mappel::estimator::TrustRegionMaximizer, 889
Gauss2DsMLE	get_hyperparam_index
mappel::Gauss2DsMLE, 434	mappel::Gauss1DMAP, 136
Gauss2DsModel	mappel::Gauss1DMLE, 165
mappel::Gauss2DsModel, 467	mappel::Gauss1DModel, 193
Gauss2DsModel.cpp, 921	mappel::Gauss1DsMAP, 222
Gauss2DsModel.h, 922	mappel::Gauss1DsMLE, 251
Gauss2DsxyMAP.h, 923	mappel::Gauss1DsModel, 280
Gauss2DsxyMAP	mappel::Gauss2DMAP, 310
mappel::Gauss2DsxyMAP, 498	mappel::Gauss2DMLE, 341
Gauss2DsxyModel	mappel::Gauss2DModel, 372
mappel::Gauss2DsxyModel, 526	mappel::Gauss2DsMAP, 403
Gauss2DsxyModel.h, 923	mappel::Gauss2DsMLE, 437
gauss_norm	mappel::Gauss2DsModel, 470
-	mappel::Gauss2DsxyMAP, 500
mappel, 35	mappel::Gauss2DsxyModel, 528
gaussian_3D_convolution	mappel::MAPEstimator, 595
mappel, 35	mappel::MCMCAdaptor1Ds, 639
gaussian_convolution	mappel::MCMCAdaptor1D, 620
mappel, 36	mappel::MCMCAdaptor2Ds, 678
generate_poisson	mappel::MCMCAdaptor2D, 659
mappel, 36	mappel::MLEstimator, 709
generate_poisson_large	• •
mappel, 36	mappel::PointEmitterModel, 773
generate_poisson_small	get_hyperparam_names
mappel, 36	mappel::Gauss1DMAP, 136
get_backtrack_idxs	mappel::Gauss1DMLE, 165
mappel::estimator::IterativeMaximizer::Maximizer↔	mappel::Gauss1DModel, 193
Data, 609	mappel::Gauss1DsMAP, 222
get_debug_stats	mappel::Gauss1DsMLE, 251
mappel::estimator::CGaussHeuristicEstimator, 100	mappel::Gauss1DsModel, 280
mappel::estimator::CGaussMLE, 112	mappel::Gauss2DMAP, 310
• •	mappel::Gauss2DMLE, 341
mappel::estimator::Estimator, 124	mappel::Gauss2DModel, 372
mappel::estimator::HeuristicEstimator, 553	mappel::Gauss2DsMAP, 403
mappel::estimator::lterativeMaximizer, 580	mappel::Gauss2DsMLE, 437
mappel::estimator::NewtonDiagonalMaximizer, 732	mappel::Gauss2DsModel, 470
mappel::estimator::NewtonMaximizer, 753	mappel::Gauss2DsxyMAP, 500
mappel::estimator::QuasiNewtonMaximizer, 818	mappel::Gauss2DsxyModel, 528
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::MAPEstimator, 595
836	mappel::MCMCAdaptor1Ds, 639
mappel::estimator::ThreadedEstimator, 872	mappel::MCMCAdaptor1D, 620
mappel::estimator::TrustRegionMaximizer, 888	mappel::MCMCAdaptor2Ds, 679
get_exit_counts	mappel::MCMCAdaptor2D, 659
mappel::estimator::CGaussHeuristicEstimator, 100	mappel::MLEstimator, 709
mappel::estimator::CGaussMLE, 113	mappel::PointEmitterModel, 773
mappel::estimator::Estimator, 125	get_hyperparam_value
mappel::estimator::HeuristicEstimator, 553	mappel::Gauss1DMAP, 136
mappel::estimator::lterativeMaximizer, 581	• •
	mappel::Gauss1DMLE, 165
mappel::estimator::NewtonDiagonalMaximizer, 733	mappel::Gauss1DModel, 194
mappel::estimator::NewtonMaximizer, 754	mappel::Gauss1DsMAP, 222
mappel::estimator::QuasiNewtonMaximizer, 819	mappel::Gauss1DsMLE, 251

mappel::Gauss1DsModel, 280	mappel::ImageFormat2DBase, 566
mappel::Gauss2DMAP, 310	mappel::PoissonNoise1DObjective, 790
mappel::Gauss2DMLE, 342	mappel::PoissonNoise2DObjective, 797
mappel::Gauss2DModel, 372	get_lbound
mappel::Gauss2DsMAP, 404	mappel::Gauss1DMAP, 137
mappel::Gauss2DsMLE, 437	mappel::Gauss1DMLE, 166
mappel::Gauss2DsModel, 470	mappel::Gauss1DModel, 194
mappel::Gauss2DsxyMAP, 500	mappel::Gauss1DsMAP, 222
mappel::Gauss2DsxyModel, 528	mappel::Gauss1DsMLE, 252
mappel::MAPEstimator, 595	mappel::Gauss1DsModel, 281
mappel::MCMCAdaptor1Ds, 640	mappel::Gauss2DMAP, 311
mappel::MCMCAdaptor1D, 621	mappel::Gauss2DMLE, 342
mappel::MCMCAdaptor2Ds, 679	mappel::Gauss2DModel, 373
mappel::MCMCAdaptor2D, 659	mappel::Gauss2DsMAP, 404
mappel::MLEstimator, 709	mappel::Gauss2DsMLE, 438
mappel::PointEmitterModel, 773	mappel::Gauss2DsModel, 470
get_hyperparams	mappel::Gauss2DsxyMAP, 501
mappel::Gauss1DMAP, 136	mappel::Gauss2DsxyModel, 528
mappel::Gauss1DMLE, 165	mappel::MAPEstimator, 596
mappel::Gauss1DModel, 194	mappel::MCMCAdaptor1Ds, 640
mappel::Gauss1DsMAP, 222	mappel::MCMCAdaptor1D, 621
mappel::Gauss1DsMLE, 251	mappel::MCMCAdaptor2Ds, 679
mappel::Gauss1DsModel, 280	mappel::MCMCAdaptor2D, 659
mappel::Gauss2DMAP, 311	mappel::MLEstimator, 709
mappel::Gauss2DMLE, 342	mappel::PointEmitterModel, 773
mappel::Gauss2DModel, 372	get_max_sigma
mappel::Gauss2DsMAP, 404	mappel::Gauss1DsMAP, 223
mappel::Gauss2DsMLE, 437	mappel::Gauss1DsMLE, 252
mappel::Gauss2DsModel, 470	mappel::Gauss1DsModel, 281
mappel::Gauss2DsxyMAP, 500	mappel::Gauss2DsMAP, 404
mappel::Gauss2DsxyModel, 528	mappel::Gauss2DsMLE, 438
mappel::MAPEstimator, 595	mappel::Gauss2DsModel, 470, 471
mappel::MCMCAdaptor1Ds, 640	mappel::Gauss2DsxyModel, 529
mappel::MCMCAdaptor1D, 621	get max sigma ratio
mappel::MCMCAdaptor2Ds, 679	mappel::Gauss2DsMAP, 405
mappel::MCMCAdaptor2D, 659	mappel::Gauss2DsMLE, 438
mappel::MLEstimator, 709	mappel::Gauss2DsModel, 471
mappel::PointEmitterModel, 773	mappel::Gauss2DsxyModel, 529
get_image_from_stack	get_mcmc_num_phases
mappel::Gauss1DMAP, 137	mappel::Gauss1DMAP, 137
mappel::Gauss1DMLE, 166	mappel::Gauss1DMLE, 166
mappel::Gauss1DModel, 194	mappel::Gauss1DModel, 194
mappel::Gauss1DsMAP, 222	mappel::Gauss1DsMAP, 223
mappel::Gauss1DsMLE, 252	mappel::Gauss1DsMLE, 252
mappel::Gauss1DsModel, 281	mappel::Gauss1DsModel, 281
mappel::Gauss2DMAP, 311	mappel::Gauss2DMAP, 311
mappel::Gauss2DMLE, 342	mappel::Gauss2DMLE, 342
mappel::Gauss2DModel, 373	mappel::Gauss2DModel, 373
mappel::Gauss2DsMAP, 404	mappel::Gauss2DsMAP, 405
mappel::Gauss2DsMLE, 438	mappel::Gauss2DsMLE, 438
mappel::Gauss2DsModel, 470	mappel::Gauss2DsModel, 471
mappel::Gauss2DsxyMAP, 501	mappel::Gauss2DsxyMAP, 501
mappel::Gauss2DsxyModel, 528	mappel::MCMCAdaptor1Ds, 640
mappel::ImageFormat1DBase, 560	mappel::MCMCAdaptor1Ds, 640
mappoininagor ormatrobase, soo	mappointionormoration ib, oz i

mappel::MCMCAdaptor2Ds, 679	mappel::Gauss2DsMLE, 439
mappel::MCMCAdaptor2D, 660	mappel::Gauss2DsModel, 471
mappel::MCMCAdaptorBase, 694	mappel::Gauss2DsxyMAP, 501
get_mcmc_sigma_scale	mappel::Gauss2DsxyModel, 529
mappel::Gauss1DMAP, 137	mappel::MAPEstimator, 596
mappel::Gauss1DMLE, 166	mappel::MCMCAdaptor1Ds, 640
mappel::Gauss1DModel, 194	mappel::MCMCAdaptor1D, 621
mappel::Gauss1DsMAP, 223	mappel::MCMCAdaptor2Ds, 679
mappel::Gauss1DsMLE, 252	mappel::MCMCAdaptor2D, 660
mappel::Gauss1DsModel, 281	mappel::MLEstimator, 710
mappel::Gauss2DMAP, 311	mappel::PointEmitterModel, 773
mappel::Gauss2DMLE, 342	get_num_params
mappel::Gauss2DModel, 373	mappel::Gauss1DMAP, 137
mappel::Gauss2DsMAP, 405	mappel::Gauss1DMLE, 166
mappel::Gauss2DsMLE, 438	mappel::Gauss1DModel, 195
mappel::Gauss2DsModel, 471	mappel::Gauss1DsMAP, 223
mappel::Gauss2DsxyMAP, 501	mappel::Gauss1DsMLE, 253
mappel::MCMCAdaptor1Ds, 640	mappel::Gauss1DsModel, 282
mappel::MCMCAdaptor1D, 621	mappel::Gauss2DMAP, 311
mappel::MCMCAdaptor2Ds, 679	mappel::Gauss2DMLE, 343
mappel::MCMCAdaptor2D, 660	mappel::Gauss2DModel, 373
mappel::MCMCAdaptorBase, 694	mappel::Gauss2DsMAP, 405
get_min_sigma	mappel::Gauss2DsMLE, 439
mappel::Gauss1DsMAP, 223	mappel::Gauss2DsModel, 472
mappel::Gauss1DsMLE, 252	mappel::Gauss2DsxyMAP, 501
mappel::Gauss1DsModel, 281	mappel::Gauss2DsxyModel, 529
mappel::Gauss2DsMAP, 405	mappel::MAPEstimator, 596
mappel::Gauss2DsMLE, 439	mappel::MCMCAdaptor1Ds, 640
mappel::Gauss2DsModel, 471	mappel::MCMCAdaptor1D, 621
mappel::Gauss2DsxyModel, 529	mappel::MCMCAdaptor2Ds, 680
get_model	mappel::MCMCAdaptor2D, 660
mappel::estimator::CGaussHeuristicEstimator, 101	mappel::MLEstimator, 710
mappel::estimator::CGaussMLE, 113	mappel::PointEmitterModel, 774
mappel::estimator::Estimator, 125	get_num_pixels
mappel::estimator::HeuristicEstimator, 553	mappel::Gauss1DMAP, 137
mappel::estimator::IterativeMaximizer, 581	mappel::Gauss1DMLE, 166
mappel::estimator::NewtonDiagonalMaximizer, 733	mappel::Gauss1DModel, 195
mappel::estimator::NewtonMaximizer, 754	mappel::Gauss1DsMAP, 223
mappel::estimator::QuasiNewtonMaximizer, 819	mappel::Gauss1DsMLE, 253
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::Gauss1DsModel, 282
837	mappel::Gauss2DMAP, 312
mappel::estimator::ThreadedEstimator, 873	mappel::Gauss2DMLE, 343
mappel::estimator::TrustRegionMaximizer, 889	mappel::Gauss2DModel, 373
get_num_hyperparams	mappel::Gauss2DsMAP, 406
mappel::Gauss1DMAP, 137	mappel::Gauss2DsMLE, 439
mappel::Gauss1DMLE, 166	mappel::Gauss2DsModel, 472
mappel::Gauss1DModel, 194	mappel::Gauss2DsxyMAP, 501
mappel::Gauss1DsMAP, 223	mappel::Gauss2DsxyModel, 529
mappel::Gauss1DsMLE, 252	mappel::ImageFormat1DBase, 560
mappel::Gauss1DsModel, 281	mappel::ImageFormat2DBase, 567
mappel::Gauss2DMAP, 311	mappel::PoissonNoise1DObjective, 790
mappel::Gauss2DMLE, 342	mappel::PoissonNoise2DObjective, 798
mappel::Gauss2DModel, 373	get_param_names
mappel::Gauss2DsMAP, 405	mappel::Gauss1DMAP, 138

	mappel::Gauss1DMLE, 167	mappel::Gauss1DsMAP, 224
	mappel::Gauss1DModel, 195	mappel::Gauss1DsMLE, 253
	mappel::Gauss1DsMAP, 224	mappel::Gauss1DsModel, 282
	mappel::Gauss1DsMLE, 253	mappel::Gauss2DMAP, 312
	mappel::Gauss1DsModel, 282	mappel::Gauss2DMLE, 344
	mappel::Gauss2DMAP, 312	mappel::Gauss2DModel, 374
	mappel::Gauss2DMLE, 343	mappel::Gauss2DsMAP, 406
	mappel::Gauss2DModel, 374	mappel::Gauss2DsMLE, 440
	mappel::Gauss2DsMAP, 406	mappel::Gauss2DsModel, 472
	mappel::Gauss2DsMLE, 439	mappel::Gauss2DsxyMAP, 502
	mappel::Gauss2DsModel, 472	mappel::Gauss2DsxyModel, 530
	mappel::Gauss2DsxyMAP, 502	mappel::MAPEstimator, 596
	mappel::Gauss2DsxyModel, 530	mappel::MCMCAdaptor1Ds, 641
	mappel::MAPEstimator, 596	mappel::MCMCAdaptor1D, 622
	mappel::MCMCAdaptor1Ds, 641	mappel::MCMCAdaptor2Ds, 680
	mappel::MCMCAdaptor1D, 622	mappel::MCMCAdaptor2D, 661
	mappel::MCMCAdaptor2Ds, 680	mappel::MLEstimator, 710
	• •	mappel::PointEmitterModel, 774
	mappel::MCMCAdaptor2D, 660	• •
	mappel::MLEstimator, 710	get_rng_manager
	mappel::PointEmitterModel, 774	mappel::Gauss1DMAP, 138
get_	prior	mappel::Gauss1DMLE, 167
	mappel::Gauss1DMAP, 138	mappel::Gauss1DModel, 196
	mappel::Gauss1DMLE, 167	mappel::Gauss1DsMAP, 224
	mappel::Gauss1DModel, 195	mappel::Gauss1DsMLE, 253
	mappel::Gauss1DsMAP, 224	mappel::Gauss1DsModel, 282
	mappel::Gauss1DsMLE, 253	mappel::Gauss2DMAP, 313
	mappel::Gauss1DsModel, 282	mappel::Gauss2DMLE, 344
	mappel::Gauss2DMAP, 312	mappel::Gauss2DModel, 374
	mappel::Gauss2DMLE, 343	mappel::Gauss2DsMAP, 406
	mappel::Gauss2DModel, 374	mappel::Gauss2DsMLE, 440
	mappel::Gauss2DsMAP, 406	mappel::Gauss2DsModel, 472
	mappel::Gauss2DsMLE, 439, 440	mappel::Gauss2DsxyMAP, 502
	mappel::Gauss2DsModel, 472	mappel::Gauss2DsxyModel, 530
	mappel::Gauss2DsxyMAP, 502	mappel::MAPEstimator, 597
	mappel::Gauss2DsxyModel, 530	mappel::MCMCAdaptor1Ds, 641
	mappel::MAPEstimator, 596	mappel::MCMCAdaptor1D, 622
	mappel::MCMCAdaptor1Ds, 641	mappel::MCMCAdaptor2Ds, 680
	mappel::MCMCAdaptor1D, 622	mappel::MCMCAdaptor2D, 661
	mappel::MCMCAdaptor2Ds, 680	mappel::MLEstimator, 710
	mappel::MCMCAdaptor2D, 660	mappel::PointEmitterModel, 774
	mappel::MLEstimator, 710	get_sequence_len
	mappel::PointEmitterModel, 774	mappel::estimator::IterativeMaximizer::Maximizer↔
aet	psf_sigma	Data, 609
0 -	mappel::Gauss1DMAP, 138	get_size
	mappel::Gauss1DMLE, 167	mappel::Gauss1DMAP, 139
	mappel::Gauss1DModel, 195	mappel::Gauss1DMLE, 168
	mappel::Gauss2DMAP, 312	mappel::Gauss1DModel, 196
	mappel::Gauss2DMLE, 343	mappel::Gauss1DsMAP, 224
	mappel::Gauss2DModel, 374	mappel::Gauss1DsMLE, 254
	mappel::Gauss2DsxyMAP, 502	mappel::Gauss1DsModel, 283
aet	rng_generator	mappel::Gauss2DMAP, 313
901_	mappel::Gauss1DMAP, 138	mappel::Gauss2DMLE, 344
	mappel::Gauss1DMLE, 167	mappel::Gauss2DModel, 375
	mappel::Gauss1DMcdel, 196	mappel::Gauss2DsMAP, 406, 407
	mappemauss i Dividuei, 130	111appolGausszusiviar, 400, 407

mappel::Gauss2DsMLE, 440	mappel::estimator::CGaussHeuristicEstimator, 101
mappel::Gauss2DsModel, 473	mappel::estimator::CGaussMLE, 113
mappel::Gauss2DsxyMAP, 503	mappel::estimator::Estimator, 125
mappel::Gauss2DsxyModel, 530	mappel::estimator::HeuristicEstimator, 554
mappel::ImageFormat1DBase, 560, 561	mappel::estimator::IterativeMaximizer, 581
mappel::ImageFormat2DBase, 567	mappel::estimator::NewtonDiagonalMaximizer, 733
mappel::PoissonNoise1DObjective, 790, 791	mappel::estimator::NewtonMaximizer, 754
mappel::PoissonNoise2DObjective, 798	mappel::estimator::QuasiNewtonMaximizer, 819
get_size_image_stack	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::Gauss1DMAP, 139	837
mappel::Gauss1DMLE, 168	mappel::estimator::ThreadedEstimator, 873
mappel::Gauss1DModel, 196	mappel::estimator::TrustRegionMaximizer, 889
mappel::Gauss1DsMAP, 225	get_theta_sequence
mappel::Gauss1DsMLE, 254	mappel::estimator::IterativeMaximizer::Maximizer ←
mappel::Gauss1DsModel, 283	Data, 609
mappel::Gauss2DMAP, 313	get_theta_sequence_rllh
mappel::Gauss2DMLE, 344	mappel::estimator::IterativeMaximizer::Maximizer ←
mappel::Gauss2DModel, 375	Data, 609
mappel::Gauss2DsMAP, 407	get_total_backtracks
mappel::Gauss2DsMLE, 440	mappel::estimator::IterativeMaximizer, 581
mappel::Gauss2DsModel, 473	mappel::estimator::NewtonDiagonalMaximizer, 733
mappel::Gauss2DsxyMAP, 503	mappel::estimator::NewtonMaximizer, 754
mappel::Gauss2DsxyModel, 531	mappel::estimator::QuasiNewtonMaximizer, 819
mappel::ImageFormat1DBase, 561	mappel::estimator::TrustRegionMaximizer, 889
mappel::ImageFormat2DBase, 567	get_total_der_evals
mappel::PoissonNoise1DObjective, 791	mappel::estimator::IterativeMaximizer, 582
mappel::PoissonNoise2DObjective, 798	mappel::estimator::NewtonDiagonalMaximizer, 734
get_stats	mappel::estimator::NewtonMaximizer, 755
mappel::Gauss1DMAP, 139	mappel::estimator::QuasiNewtonMaximizer, 820
mappel::Gauss1DMLE, 168	mappel::estimator::TrustRegionMaximizer, 890
mappel::Gauss1DModel, 196	get_total_fun_evals
mappel::Gauss1DsMAP, 225	mappel::estimator::lterativeMaximizer, 582
mappel::Gauss1DsMLE, 254	mappel::estimator::NewtonDiagonalMaximizer, 734
mappel::Gauss1DsModel, 283	mappel::estimator::NewtonMaximizer, 755
mappel::Gauss2DMAP, 313	mappel::estimator::QuasiNewtonMaximizer, 820
mappel::Gauss2DMLE, 344	mappel::estimator::TrustRegionMaximizer, 890
mappel::Gauss2DModel, 375	get_total_iterations
mappel::Gauss2DsMAP, 407	mappel::estimator::IterativeMaximizer, 582
mappel::Gauss2DsMLE, 440	mappel::estimator::NewtonDiagonalMaximizer, 734
mappel::Gauss2DsModel, 473	mappel::estimator::NewtonMaximizer, 755
mappel::Gauss2DsxyMAP, 503	mappel::estimator::QuasiNewtonMaximizer, 820
mappel::Gauss2DsxyModel, 531	mappel::estimator::TrustRegionMaximizer, 890
mappel::ImageFormat1DBase, 561	get_ubound
mappel::ImageFormat2DBase, 567	mappel::Gauss1DMAP, 139
mappel::MAPEstimator, 597	mappel::Gauss1DMLE, 168
mappel::MCMCAdaptor1Ds, 641	mappel::Gauss1DModel, 196
mappel::MCMCAdaptor1D, 622	mappel::Gauss1DsMAP, 225
mappel::MCMCAdaptor2D, 680	mappel::Gauss1DsMLE, 254
mappel::MCMCAdaptor2D, 661	mappel::Gauss1DsModel, 283
mappel::MCMCAdaptorBase, 694	mappel::Gauss2DMAP, 313
mappel::MLEstimator, 711	mappel::Gauss2DMLE, 344
mappel::PointEmitterModel, 774	mappel::Gauss2DModel, 375
mappel::PoissonNoise1DObjective, 791 mappel::PoissonNoise2DObjective, 798	mappel::Gauss2DsMAP, 407 mappel::Gauss2DsMLE, 441

mappel::Gauss2DsModel, 473	mappel::Gauss1DsModel, 297
mappel::Gauss2DsxyMAP, 503	mappel::Gauss2DMAP, 328
mappel::Gauss2DsxyModel, 531	mappel::Gauss2DMLE, 359
mappel::MAPEstimator, 597	mappel::Gauss2DModel, 389
mappel::MCMCAdaptor1Ds, 641	mappel::Gauss2DsMAP, 422
mappel::MCMCAdaptor1D, 622	mappel::Gauss2DsMLE, 456
mappel::MCMCAdaptor2Ds, 680	mappel::Gauss2DsModel, 488
mappel::MCMCAdaptor2D, 661	mappel::Gauss2DsxyMAP, 516
mappel::MLEstimator, 711	mappel::Gauss2DsxyModel, 540
mappel::PointEmitterModel, 775	mappel::MAPEstimator, 605
global_default_mcmc_sigma_scale	mappel::MCMCAdaptor1Ds, 651
mappel::Gauss1DMAP, 152	mappel::MCMCAdaptor1D, 632
mappel::Gauss1DMLE, 181	mappel::MCMCAdaptor2Ds, 691
mappel::Gauss1DModel, 209	mappel::MCMCAdaptor2D, 671
mappel::Gauss1DsMAP, 239	mappel::MLEstimator, 719
mappel::Gauss1DsMLE, 268	mappel::PointEmitterModel, 782
mappel::Gauss1DsModel, 297	global_max_size
mappel::Gauss2DMAP, 327	mappel::Gauss1DMAP, 153
mappel::Gauss2DMLE, 358	mappel::Gauss1DMLE, 182
mappel::Gauss2DModel, 389	mappel::Gauss1DModel, 210
mappel::Gauss2DsMAP, 422	mappel::Gauss1DsMAP, 239
mappel::Gauss2DsMLE, 455	mappel::Gauss1DsMLE, 268
mappel::Gauss2DsModel, 487	mappel::Gauss1DsModel, 297
mappel::Gauss2DsxyMAP, 516	mappel::Gauss2DMAP, 328
mappel::MCMCAdaptor1Ds, 651	mappel::Gauss2DMLE, 359
mappel::MCMCAdaptor1D, 632	mappel::Gauss2DModel, 389
mappel::MCMCAdaptor2Ds, 690	mappel::Gauss2DsMAP, 422
mappel::MCMCAdaptor2D, 671	mappel::Gauss2DsMLE, 456
mappel::MCMCAdaptorBase, 695	mappel::Gauss2DsModel, 488
global_max_mcmc_sigma_scale	mappel::Gauss2DsxyMAP, 516
mappel::Gauss1DMAP, 152	mappel::Gauss2DsxyModel, 541
mappel::Gauss1DMLE, 181	mappel::ImageFormat1DBase, 562
mappel::Gauss1DModel, 209	mappel::ImageFormat2DBase, 568
mappel::Gauss1DsMAP, 239	mappel::PoissonNoise1DObjective, 792
mappel::Gauss1DsMLE, 268	mappel::PoissonNoise2DObjective, 799
mappel::Gauss1DsModel, 297	global min psf sigma
mappel::Gauss2DMAP, 327	mappel::Gauss1DMAP, 153
mappel::Gauss2DMLE, 358	mappel::Gauss1DMLE, 182
mappel::Gauss2DModel, 389	mappel::Gauss1DModel, 210
mappel::Gauss2DsMAP, 422	mappel::Gauss1DsMAP, 239
mappel::Gauss2DsMLE, 455	mappel::Gauss1DsMLE, 269
mappel::Gauss2DsModel, 488	mappel::Gauss1DsModel, 297
mappel::Gauss2DsxyMAP, 516	mappel::Gauss2DMAP, 328
mappel::MCMCAdaptor1Ds, 651	mappel::Gauss2DMLE, 359
mappel::MCMCAdaptor1D, 632	mappel::Gauss2DModel, 389
mappel::MCMCAdaptor2Ds, 691	mappel::Gauss2DsMAP, 423
mappel::MCMCAdaptor2D, 671	mappel::Gauss2DsMLE, 456
mappel::MCMCAdaptorBase, 695	mappel::Gauss2DsModel, 488
global_max_psf_sigma	mappel::Gauss2DsxyMAP, 516
mappel::Gauss1DMAP, 153	mappel::Gauss2DsxyModel, 541
mappel::Gauss1DMLE, 182	mappel::MAPEstimator, 605
mappel::Gauss1DModel, 210	mappel::MCMCAdaptor1Ds, 652
mappel::Gauss1DsMAP, 239	mappel::MCMCAdaptor1D, 632
mappel::Gauss1DsMLE, 268	mappel::MCMCAdaptor2Ds, 691
	appointmontortaaptorebo, oo i

mappel::MCMCAdaptor2D, 671	mappel::Gauss1DModel, 197
mappel::MLEstimator, 719	mappel::Gauss1DsMAP, 225
mappel::PointEmitterModel, 782	mappel::Gauss1DsMLE, 254
global_min_size	mappel::Gauss1DsModel, 283
mappel::Gauss1DMAP, 153	mappel::Gauss2DMAP, 313
mappel::Gauss1DMLE, 182	mappel::Gauss2DMLE, 345
mappel::Gauss1DModel, 210	mappel::Gauss2DModel, 375
mappel::Gauss1DsMAP, 240	mappel::Gauss2DsMAP, 407
mappel::Gauss1DsMLE, 269	mappel::Gauss2DsMLE, 441
mappel::Gauss1DsModel, 297	mappel::Gauss2DsModel, 473
mappel::Gauss2DMAP, 328	mappel::Gauss2DsxyMAP, 503
mappel::Gauss2DMLE, 359	mappel::Gauss2DsxyModel, 531
mappel::Gauss2DModel, 389	mappel::MAPEstimator, 597
mappel::Gauss2DsMAP, 423	mappel::MCMCAdaptor1Ds, 642
mappel::Gauss2DsMLE, 456	mappel::MCMCAdaptor1D, 623
mappel::Gauss2DsModel, 488	mappel::MCMCAdaptor2Ds, 681
mappel::Gauss2DsxyMAP, 517	mappel::MCMCAdaptor2D, 661
mappel::Gauss2DsxyModel, 541	mappel::MLEstimator, 711
mappel::ImageFormat1DBase, 562	mappel::PointEmitterModel, 775
mappel::ImageFormat2DBase, 568	has theta sequence
mappel::PoissonNoise1DObjective, 792	mappel::estimator::IterativeMaximizer::Maximizer↔
mappel::PoissonNoise2DObjective, 799	Data, 609
grad	hessian
mappel::estimator::IterativeMaximizer::Maximizer ↔	mappel::methods::likelihood, 69
Data, 613	mappel::methods::objective, 74, 75
mappel::methods::likelihood, 68	hessian_components
mappel::methods::objective, 73, 74	mappel::methods::likelihood::debug, 71
grad2	mappel::methods::objective::debug, 78
mappel::methods::likelihood, 68, 69	hessian_stack
mappel::methods::objective, 74	mappel::methods::objective::openmp, 80
grad_components	HeuristicEstimator
mappel::methods::likelihood::debug, 71	mappel::estimator::HeuristicEstimator, 546
mappel::methods::objective::debug, 78	
grad_stack	I
mappel::methods::objective::openmp, 80	mappel::Gauss1DModel::Stencil, 861
GradRatio	mappel::Gauss1DsModel::Stencil, 847
mappel::estimator, 50	mappel::Gauss2DModel::Stencil, 851
Gx	mappel::Gauss2DsModel::Stencil, 856
mappel::Gauss1DModel::Stencil, 862	mappel::Gauss2DsxyModel::Stencil, 842
mappel::Gauss1DsModel::Stencil, 848	icontains
mappel::Gauss2DModel::Stencil, 853	mappel, 36
mappel::Gauss2DsModel::Stencil, 858	ldxMatT
mappel::Gauss2DsxyModel::Stencil, 844	mappel, 27
Gy	IdxVecT
mappel::Gauss2DModel::Stencil, 853	mappel, 27
mappel::Gauss2DsModel::Stencil, 859	IdxT
mappel::Gauss2DsxyModel::Stencil, 844	mappel, 27
, то по	im
has_fixed_parameters	mappel::estimator::IterativeMaximizer::Maximizer ←
mappel::estimator::IterativeMaximizer::Maximizer↔	Data, 613
Data, 609	ImageCoordT
has_hyperparam	mappel, 27
mappel::Gauss1DMAP, 139	mappel::Gauss1DMAP, 132
mappel::Gauss1DMLE, 168	mappel::Gauss1DMLE, 161
	· · · · · · · · · · · · · · · · · · ·

mappel::Gauss1DModel, 190	mappel::Gauss2DsMAP, 399
mappel::Gauss1DsMAP, 217	mappel::Gauss2DsMLE, 432
mappel::Gauss1DsMLE, 247	mappel::Gauss2DsModel, 465
mappel::Gauss1DsModel, 276	mappel::Gauss2DsxyMAP, 496
mappel::Gauss2DMAP, 305	mappel::Gauss2DsxyModel, 524
mappel::Gauss2DMLE, 337	mappel::ImageFormat1DBase, 558
mappel::Gauss2DModel, 368	mappel::ImageFormat2DBase, 564
mappel::Gauss2DsMAP, 398	mappel::PoissonNoise1DObjective, 788
mappel::Gauss2DsMLE, 432	mappel::PoissonNoise2DObjective, 795
mappel::Gauss2DsModel, 465	ImageSizeShapeT
mappel::Gauss2DsxyMAP, 496	mappel::Gauss1DMAP, 132
mappel::Gauss2DsxyModel, 524	mappel::Gauss1DMLE, 161
mappel::ImageFormat1DBase, 558	mappel::Gauss1DModel, 190
mappel::ImageFormat2DBase, 564	mappel::Gauss1DsMAP, 218
mappel::PoissonNoise1DObjective, 788	mappel::Gauss1DsMLE, 247
mappel::PoissonNoise2DObjective, 795	mappel::Gauss1DsModel, 277
ImageFormat1DBase	mappel::Gauss2DMAP, 306
mappel::ImageFormat1DBase, 560	mappel::Gauss2DMLE, 337
ImageFormat1DBase.cpp, 924	mappel::Gauss2DModel, 368
ImageFormat1DBase.h, 925	mappel::Gauss2DsMAP, 399
ImageFormat2DBase	mappel::Gauss2DsMLE, 432
mappel::ImageFormat2DBase, 566	mappel::Gauss2DsModel, 466
ImageFormat2DBase.cpp, 926	mappel::Gauss2DsxyMAP, 496
ImageFormat2DBase.h, 926	mappel::Gauss2DsxyModel, 524
ImagePixeIT	mappel::ImageFormat1DBase, 559
mappel, 27	mappel::ImageFormat2DBase, 565
mappel::Gauss1DMAP, 132	mappel::PoissonNoise1DObjective, 788
mappel::Gauss1DMLE, 161	mappel::PoissonNoise2DObjective, 795
mappel::Gauss1DModel, 190	ImageSizeVecShapeT
mappel::Gauss1DsMAP, 217	mappel::Gauss1DMAP, 132
mappel::Gauss1DsMLE, 247	mappel::Gauss1DMLE, 161
mappel::Gauss1DsModel, 276	mappel::Gauss1DModel, 190
mappel::Gauss2DMAP, 305	mappel::Gauss1DsMAP, 218
mappel::Gauss2DMLE, 337	mappel::Gauss1DsMLE, 247
mappel::Gauss2DModel, 368	mappel::Gauss1DsModel, 277
mappel::Gauss2DsMAP, 398	mappel::Gauss2DMAP, 306
mappel::Gauss2DsMLE, 432	mappel::Gauss2DMLE, 337
mappel::Gauss2DsModel, 465	mappel::Gauss2DModel, 368
mappel::Gauss2DsxyMAP, 496	mappel::Gauss2DsMAP, 399
mappel::Gauss2DsxyModel, 524	mappel::Gauss2DsMLE, 432
mappel::ImageFormat1DBase, 558	mappel::Gauss2DsModel, 466
mappel::ImageFormat2DBase, 564	mappel::Gauss2DsxyMAP, 497
mappel::PoissonNoise1DObjective, 788	mappel::Gauss2DsxyModel, 525
mappel::PoissonNoise2DObjective, 795	mappel::ImageFormat1DBase, 559
ImageShapeT	mappel::ImageFormat2DBase, 565
mappel::Gauss1DMAP, 132	mappel::PoissonNoise1DObjective, 788
mappel::Gauss1DMLE, 161	mappel::PoissonNoise2DObjective, 796
mappel::Gauss1DModel, 190	ImageSizeVecT
mappel::Gauss1DsMAP, 218	mappel::Gauss1DMAP, 132
mappel::Gauss1DsMLE, 247	mappel::Gauss1DMLE, 161
mappel::Gauss1DsModel, 276	mappel::Gauss1DModel, 190
mappel::Gauss2DMAP, 305	mappel::Gauss1DsMAP, 218
mappel::Gauss2DMLE, 337	mappel::Gauss1DsMLE, 247
mappel::Gauss2DModel, 368	mappel::Gauss1DsModel, 277

mappel::Gauss2DMAP, 306	mappel::Gauss1DModel, 191
mappel::Gauss2DMLE, 337	mappel::Gauss1DsMAP, 218
mappel::Gauss2DModel, 369	mappel::Gauss1DsMLE, 248
mappel::Gauss2DsMAP, 399	mappel::Gauss1DsModel, 277
mappel::Gauss2DsMLE, 433	mappel::Gauss2DMAP, 306
mappel::Gauss2DsModel, 466	mappel::Gauss2DMLE, 338
mappel::Gauss2DsxyMAP, 497	mappel::Gauss2DModel, 369
mappel::Gauss2DsxyModel, 525	mappel::Gauss2DsMAP, 399
mappel::ImageFormat1DBase, 559	mappel::Gauss2DsMLE, 433
mappel::ImageFormat2DBase, 565	mappel::Gauss2DsModel, 466
mappel::PoissonNoise1DObjective, 788	mappel::Gauss2DsxyMAP, 497
mappel::PoissonNoise2DObjective, 796	mappel::Gauss2DsxyModel, 525
ImageSizeT	mappel::ImageFormat1DBase, 559
mappel::Gauss1DMAP, 132	mappel::ImageFormat2DBase, 565
mappel::Gauss1DMLE, 161	mappel::PoissonNoise1DObjective, 789
mappel::Gauss1DModel, 190	mappel::PoissonNoise2DObjective, 796
mappel::Gauss1DsMAP, 218	ImageT
mappel::Gauss1DsMLE, 247	mappel, 27
mappel::Gauss1DsModel, 277	mappel::Gauss1DMAP, 133
mappel::Gauss2DMAP, 306	mappel::Gauss1DMLE, 162
mappel::Gauss2DMLE, 337	mappel::Gauss1DModel, 191
mappel::Gauss2DModel, 368	mappel::Gauss1DsMAP, 219
mappel::Gauss2DsMAP, 399	mappel::Gauss1DsMLE, 248
mappel::Gauss2DsMLE, 432	mappel::Gauss1DsModel, 277
mappel::Gauss2DsModel, 466	mappel::Gauss2DMAP, 306
mappel::Gauss2DsxyMAP, 497	mappel::Gauss2DMLE, 338
mappel::Gauss2DsxyModel, 525	mappel::Gauss2DModel, 369
mappel::ImageFormat1DBase, 559	mappel::Gauss2DsMAP, 400
mappel::ImageFormat2DBase, 565	mappel::Gauss2DsMLE, 433
mappel::PoissonNoise1DObjective, 788	mappel::Gauss2DsModel, 466
mappel::PoissonNoise2DObjective, 795	mappel::Gauss2DsxyMAP, 497
ImageStackShapeT	mappel::Gauss2DsxyModel, 525
mappel::Gauss1DMAP, 133	mappel::ImageFormat1DBase, 559
mappel::Gauss1DMLE, 162	mappel::ImageFormat2DBase, 565
mappel::Gauss1DModel, 190	mappel::PoissonNoise1DObjective, 789
mappel::Gauss1DsMAP, 218	mappel::PoissonNoise2DObjective, 796
mappel::Gauss1DsMLE, 248	initial theta estimate
mappel::Gauss1DsModel, 277	mappel::Gauss1DMAP, 139, 140
mappel::Gauss2DMAP, 306	mappel::Gauss1DMLE, 168, 169
mappel::Gauss2DMLE, 338	mappel::Gauss1DModel, 197
mappel::Gauss2DModel, 369	mappel::Gauss1DsMAP, 225
mappel::Gauss2DsMAP, 399	mappel::Gauss1DsMLE, 254, 255
mappel::Gauss2DsMLE, 433	mappel::Gauss1DsModel, 283, 284
mappel::Gauss2DsModel, 466	mappel::Gauss2DMAP, 314
mappel::Gauss2Dsiviouel, 400	mappel::Gauss2DMLE, 345
mappel::Gauss2DsxyModel, 525	mappel::Gauss2DMcel, 375, 376
mappel::ImageFormat1DBase, 559	mappel::Gauss2DsMAP, 407, 408
mappel::ImageFormat2DBase, 565	mappel::Gauss2DsMLE, 441
mappel::PoissonNoise1DObjective, 789	mappel::Gauss2DsMcE, 441
mappel::PoissonNoise2DObjective, 769	mappel::Gauss2Dswodel, 473, 474
ImageStackT	mappel::Gauss2DsxyModel, 531
mappel, 27	initialize_arrays
mappel::Gauss1DMAP, 133	mappel::estimator::ProfileBoundsData, 801
mappel::Gauss1DMAF, 133	mappel::estimator::ProfileBoundsDataStack, 805
mappoinadado i Divice, 102	mappointoinnatorin romoboundabataotack, 000

mappel::mcmc::MCMCData, 696	mappel::methods::objective::openmp, 81, 82
mappel::mcmc::MCMCDataStack, 699	local_maximize
mappel::mcmc::MCMCDebugData, 701	mappel::estimator::IterativeMaximizer, 582
Install.md, 927	mappel::estimator::NewtonDiagonalMaximizer, 734
is_negative_definite	mappel::estimator::NewtonMaximizer, 755
mappel, 36	mappel::estimator::QuasiNewtonMaximizer, 820
is_positive_definite	mappel::estimator::TrustRegionMaximizer, 890
mappel, 37	local_profile_maximize
is_symmetric	mappel::estimator::IterativeMaximizer, 582
mappel, 37	mappel::estimator::NewtonDiagonalMaximizer, 734
istarts_with	mappel::estimator::NewtonMaximizer, 755
mappel, 37	mappel::estimator::QuasiNewtonMaximizer, 820
IterativeMaximizer	mappel::estimator::TrustRegionMaximizer, 890
mappel::estimator::IterativeMaximizer, 572	log_likelihood
mappointoumatortorativowaximizor, 072	PoissonGaussianNoise2DObjective.h, 953
lambda_term_color	log_prior_beta2_const
mappel, 38	mappel, 38
last_backtrack_idxs	log_prior_beta_const
mappel::estimator::IterativeMaximizer, 586	mappel, 38
mappel::estimator::NewtonDiagonalMaximizer, 739	log_prior_gamma_const
mappel::estimator::NewtonMaximizer, 760	mappel, 38
mappel::estimator::QuasiNewtonMaximizer, 825	log_prior_normal_const
mappel::estimator::TrustRegionMaximizer, 895	mappel, 38
lbound	log_prior_pareto_const
mappel::Gauss1DMAP, 153	mappel, 38
mappel::Gauss1DMLE, 182	LogicalError
mappel::Gauss1DModel, 210	mappel::LogicalError, 590
mappel::Gauss1DsMAP, 240	
mappel::Gauss1DsMLE, 269	MAPEstimator
mappel::Gauss1DsModel, 298	mappel::MAPEstimator, 593, 594
mappel::Gauss2DMAP, 328	MAPEstimator.h, 927
mappel::Gauss2DMLE, 359	MCMCAdaptor1 D.cpp, 931
mappel::Gauss2DModel, 390	MCMCAdaptor1D.h, 931
mappel::Gauss2DsMAP, 423	MCMCAdaptor1Ds
mappel::Gauss2DsMLE, 456	mappel::MCMCAdaptor1Ds, 638
mappel::Gauss2DsModel, 488	MCMCAdaptor1Ds.cpp, 932
mappel::Gauss2DsxyMAP, 517	MCMCAdaptor1Ds.h, 933
mappel::Gauss2DsxyModel, 541	MCMCAdaptor1D
mappel::MAPEstimator, 605	mappel::MCMCAdaptor1D, 619
mappel::MCMCAdaptor1Ds, 652	MCMCAdaptor2D.cpp, 933
mappel::MCMCAdaptor1D, 632	MCMCAdaptor2D.h, 934
mappel::MCMCAdaptor2Ds, 691	MCMCAdaptor2Ds
mappel::MCMCAdaptor2D, 671	mappel::MCMCAdaptor2Ds, 677
mappel::MLEstimator, 719	MCMCAdaptor2Ds.cpp, 934
mappel::PointEmitterModel, 783	MCMCAdaptor2Ds.h, 935
likelihood_objective	MCMCAdaptor2D
mappel::methods, 62	mappel::MCMCAdaptor2D, 657
llh	MCMCAdaptorBase
mappel::methods::likelihood, 69	mappel::MCMCAdaptorBase, 694
mappel::methods::objective, 75	MCMCAdaptorBase.cpp, 935
llh_components	MCMCAdaptorBase.h, 936
mappel::methods::likelihood::debug, 71	MLEstimator
mappel::methods::objective::debug, 78, 79	mappel::MLEstimator, 707
Ilh stack	MLEstimator.h, 936

make_DX_stencil	mappel::Gauss2DsMLE, 442
mappel, 38	mappel::Gauss2DsModel, 474
make_DXS2_stencil	mappel::Gauss2DsxyMAP, 504
mappel, 38	make_estimator
make_DXS_stencil	mappel::methods, 63
mappel, 39	PoissonGaussianNoise2DObjective.h, 953
make_DXSX_stencil	make_gaussian_stencil
mappel, 39	mappel, 39
make_G_stencil	make_image
mappel, 39	mappel::Gauss1DMAP, 140
make_X_stencil	mappel::Gauss1DMLE, 169
mappel, 39	mappel::Gauss1DModel, 198
make_d_stencil	mappel::Gauss1DsMAP, 226
mappel, 38	mappel::Gauss1DsMLE, 255
make_default_prior	mappel::Gauss1DsModel, 284
mappel::Gauss1DMAP, 140	mappel::Gauss2DMAP, 315
mappel::Gauss1DMLE, 169	mappel::Gauss2DMLE, 346
mappel::Gauss1DModel, 197	mappel::Gauss2DModel, 376
mappel::Gauss1DsMAP, 225	mappel::Gauss2DsMAP, 408
mappel::Gauss1DsMLE, 255	mappel::Gauss2DsMLE, 442
mappel::Gauss1DsModel, 284	mappel::Gauss2DsModel, 475
mappel::Gauss2DMAP, 314	mappel::Gauss2DsxyMAP, 504
mappel::Gauss2DMLE, 345	mappel::Gauss2DsxyModel, 532
mappel::Gauss2DModel, 376	mappel::ImageFormat1DBase, 561
mappel::Gauss2DsMAP, 408	mappel::ImageFormat2DBase, 567
mappel::Gauss2DsMLE, 441	mappel::PoissonNoise1DObjective, 791
mappel::Gauss2DsMcE, 444	mappel::PoissonNoise2DObjective, 798
mappel::Gauss2DsxyMAP, 504	make_image_stack
mappel::Gauss2DsxyModel, 532	mappel::Gauss1DMAP, 140
make_default_prior_beta_position	mappel::Gauss1DMLE, 169
mappel::Gauss1DMAP, 140	mappel::Gauss1DModel, 198
mappel::Gauss1DMLE, 169	mappel::Gauss1DsMAP, 226
mappel::Gauss1DMcE, 109	mappel::Gauss1DsMLE, 256
• •	• •
mappel::Gauss1DsMAP, 226	mappel::Gauss1DsModel, 284 mappel::Gauss2DMAP, 315
mappel::Gauss1DsMLE, 255	••
mappel::Gauss1DsModel, 284	mappel::Gauss2DMLE, 346
mappel::Gauss2DMAP, 314	mappel::Gauss2DModel, 377
mappel::Gauss2DMLE, 346	mappel::Gauss2DsMAP, 409
mappel::Gauss2DModel, 376	mappel::Gauss2DsMLE, 442
mappel::Gauss2DsMAP, 408	mappel::Gauss2DsModel, 475
mappel::Gauss2DsMLE, 442	mappel::Gauss2DsxyMAP, 504
mappel::Gauss2DsModel, 474	mappel::Gauss2DsxyModel, 532
mappel::Gauss2DsxyMAP, 504	mappel::ImageFormat1DBase, 561
make_default_prior_normal_position	mappel::ImageFormat2DBase, 567
mappel::Gauss1DMAP, 140	mappel::PoissonNoise1DObjective, 791
mappel::Gauss1DMLE, 169	mappel::PoissonNoise2DObjective, 798
mappel::Gauss1DModel, 197	make_internal_1Dsum_estimator
mappel::Gauss1DsMAP, 226	mappel::Gauss2DMAP, 315
mappel::Gauss1DsMLE, 255	mappel::Gauss2DMLE, 346
mappel::Gauss1DsModel, 284	mappel::Gauss2DModel, 377
mappel::Gauss2DMAP, 314	mappel::Gauss2DsMAP, 409
mappel::Gauss2DMLE, 346	mappel::Gauss2DsMLE, 442
mappel::Gauss2DModel, 376	mappel::Gauss2DsModel, 475
mappel::Gauss2DsMAP, 408	make_param

mappel::Gauss1DMAP, 141	mappel::Gauss2DsMLE, 443
mappel::Gauss1DMLE, 170	mappel::Gauss2DsModel, 476
mappel::Gauss1DModel, 198	mappel::Gauss2DsxyMAP, 505
mappel::Gauss1DsMAP, 226	mappel::Gauss2DsxyModel, 532, 533
mappel::Gauss1DsMLE, 256	mappel::MAPEstimator, 598
mappel::Gauss1DsModel, 285	mappel::MCMCAdaptor1Ds, 642, 643
mappel::Gauss2DMAP, 315	mappel::MCMCAdaptor1D, 623, 624
mappel::Gauss2DMLE, 346, 347	mappel::MCMCAdaptor2Ds, 681, 682
mappel::Gauss2DModel, 377	mappel::MCMCAdaptor2D, 662
mappel::Gauss2DsMAP, 409	mappel::MLEstimator, 712
mappel::Gauss2DsMLE, 443	mappel::PointEmitterModel, 776
mappel::Gauss2DsModel, 475	make_param_stack
mappel::Gauss2DsxyMAP, 505	mappel::Gauss1DMAP, 141, 142
mappel::Gauss2DsxyModel, 532	mappel::Gauss1DMLE, 170, 171
mappel::MAPEstimator, 597	mappel::Gauss1DModel, 199
mappel::MCMCAdaptor1Ds, 642	mappel::Gauss1DsMAP, 227
mappel::MCMCAdaptor1D, 623	mappel::Gauss1DsMLE, 257
mappel::MCMCAdaptor2Ds, 681	mappel::Gauss1DsModel, 285, 286
mappel::MCMCAdaptor2D, 661	mappel::Gauss2DMAP, 316
mappel::MLEstimator, 711	mappel::Gauss2DMLE, 347
mappel::PointEmitterModel, 775	mappel::Gauss2DMcEt, 347
• •	mappel::Gauss2DsMAP, 410
make_param_mat mappel::Gauss1DMAP, 141	mappel::Gauss2DsMLE, 444
···	mappel::Gauss2DsMcE, 444
mappel::Gauss1DMLE, 170	mappel::Gauss2Dswodel, 476 mappel::Gauss2DsxyMAP, 505, 506
mappel::Gauss1DModel, 198	• • • • • • • • • • • • • • • • • • • •
mappel::Gauss1DsMAP, 227	mappel::Gauss2DsxyModel, 533
mappel::Gauss1DsMLE, 256	mappel::MAPEstimator, 598
mappel::Gauss1DsModel, 285	mappel::MCMCAdaptor1Ds, 643
mappel::Gauss2DMAP, 316	mappel::MCMCAdaptor1D, 624
mappel::Gauss2DMLE, 347	mappel::MCMCAdaptor2Ds, 682
mappel::Gauss2DModel, 377	mappel::MCMCAdaptor2D, 662
mappel::Gauss2DsMAP, 409	mappel::MLEstimator, 712
mappel::Gauss2DsMLE, 443	mappel::PointEmitterModel, 776
mappel::Gauss2DsModel, 475, 476	make_prior_beta_position
mappel::Gauss2DsxyMAP, 505	mappel::Gauss1DMAP, 142
mappel::Gauss2DsxyModel, 532	mappel::Gauss1DMLE, 171
mappel::MAPEstimator, 598	mappel::Gauss1DModel, 199
mappel::MCMCAdaptor1Ds, 642	mappel::Gauss1DsMAP, 227
mappel::MCMCAdaptor1D, 623	mappel::Gauss1DsMLE, 257
mappel::MCMCAdaptor2Ds, 681	mappel::Gauss1DsModel, 286
mappel::MCMCAdaptor2D, 662	mappel::Gauss2DMAP, 316
mappel::MLEstimator, 711, 712	mappel::Gauss2DMLE, 348
mappel::PointEmitterModel, 775	mappel::Gauss2DModel, 378
make_param_mat_stack	mappel::Gauss2DsMAP, 410
mappel::Gauss1DMAP, 141	mappel::Gauss2DsMLE, 444
mappel::Gauss1DMLE, 170	mappel::Gauss2DsModel, 476
mappel::Gauss1DModel, 198, 199	mappel::Gauss2DsxyMAP, 506
mappel::Gauss1DsMAP, 227	mappel::Gauss2DsxyModel, 533
mappel::Gauss1DsMLE, 256	make_prior_component_intensity
mappel::Gauss1DsModel, 285	mappel::Gauss1DMAP, 142
mappel::Gauss2DMAP, 316	mappel::Gauss1DMLE, 171
mappel::Gauss2DMLE, 347	mappel::Gauss1DModel, 199
mappel::Gauss2DModel, 378	mappel::Gauss1DsMAP, 228
mappel::Gauss2DsMAP, 410	mappel::Gauss1DsMLE, 257

mappel::Gauss1DsModel, 286	mappel::MCMCAdaptor1Ds, 644
mappel::Gauss2DMAP, 317	mappel::MCMCAdaptor1D, 625
mappel::Gauss2DMLE, 348	mappel::MCMCAdaptor2Ds, 683
mappel::Gauss2DModel, 378	mappel::MCMCAdaptor2D, 663
mappel::Gauss2DsMAP, 410	mappel::MLEstimator, 713
mappel::Gauss2DsMLE, 444	mappel::PointEmitterModel, 777
mappel::Gauss2DsModel, 476	make_prior_component_sigma
mappel::Gauss2DsxyMAP, 506	mappel::Gauss1DMAP, 143
mappel::Gauss2DsxyModel, 533	mappel::Gauss1DMLE, 172
mappel::MAPEstimator, 598	mappel::Gauss1DModel, 200
mappel::MCMCAdaptor1Ds, 643	mappel::Gauss1DsMAP, 228
mappel::MCMCAdaptor1D, 624	mappel::Gauss1DsMLE, 258
mappel::MCMCAdaptor2Ds, 682	mappel::Gauss1DsModel, 287
mappel::MCMCAdaptor2D, 662	mappel::Gauss2DMAP, 317
mappel::MLEstimator, 712	mappel::Gauss2DMLE, 348
mappel::PointEmitterModel, 776	mappel::Gauss2DModel, 379
make_prior_component_position_beta	mappel::Gauss2DsMAP, 411
mappel::Gauss1DMAP, 142	mappel::Gauss2DsMLE, 445
mappel::Gauss1DMLE, 171	mappel::Gauss2DsModel, 477
mappel::Gauss1DModel, 199	mappel::Gauss2DsxyMAP, 507
mappel::Gauss1DsMAP, 228	mappel::Gauss2DsxyModel, 534
mappel::Gauss1DsMLE, 257	mappel::MAPEstimator, 599
mappel::Gauss1DsModel, 286	mappel::MCMCAdaptor1Ds, 644
mappel::Gauss2DMAP, 317	mappel::MCMCAdaptor1D, 625
mappel::Gauss2DMLE, 348	mappel::MCMCAdaptor2Ds, 683
mappel::Gauss2DModel, 379	mappel::MCMCAdaptor2D, 663
mappel::Gauss2DsMAP, 411	mappel::MLEstimator, 713
mappel::Gauss2DsMLE, 444	mappel::PointEmitterModel, 777
mappel::Gauss2DsModel, 477	make_prior_normal_position
mappel::Gauss2DsxyMAP, 506	mappel::Gauss1DMAP, 143
mappel::Gauss2DsxyModel, 533	mappel::Gauss1DMLE, 172
mappel::MAPEstimator, 599	mappel::Gauss1DModel, 200
mappel::MCMCAdaptor1Ds, 643	mappel::Gauss1DsMAP, 229
mappel::MCMCAdaptor1D, 624	mappel::Gauss1DsMLE, 258
mappel::MCMCAdaptor2Ds, 682	mappel::Gauss1DsModel, 287
mappel::MCMCAdaptor2D, 663	mappel::Gauss2DMAP, 318
mappel::MLEstimator, 713	mappel::Gauss2DMLE, 349
mappel::PointEmitterModel, 776	mappel::Gauss2DModel, 379
make_prior_component_position_normal	mappel::Gauss2DsMAP, 411
mappel::Gauss1DMAP, 142	mappel::Gauss2DsMLE, 445
mappel::Gauss1DMLE, 171	mappel::Gauss2DsModel, 477
mappel::Gauss1DModel, 200	mappel::Gauss2DsxyMAP, 507
mappel::Gauss1DsMAP, 228	mappel::Gauss2DsxyModel, 534
mappel::Gauss1DsMLE, 258	make stencil
mappel::Gauss1DsModel, 286	mappel::Gauss1DMAP, 143
mappel::Gauss2DMAP, 317	mappel::Gauss1DMLE, 172
mappel::Gauss2DMLE, 348	mappel::Gauss1DModel, 200
mappel::Gauss2DModel, 379	mappel::Gauss1DsMAP, 229
mappel::Gauss2DsMAP, 411	mappel::Gauss1DsMLE, 258
mappel::Gauss2DsMLE, 445	mappel::Gauss1DsModel, 287
mappel::Gauss2DsModel, 477	mappel::Gauss2DMAP, 318
mappel::Gauss2DsxyMAP, 506	mappel::Gauss2DMLE, 349
mappel::Gauss2DsxyModel, 534	mappel::Gauss2DModel, 379
mappel::MAPEstimator, 599	mappel::Gauss2DsMAP, 412

mappel::Gauss2DsMLE, 445	generate_poisson_small, 36
mappel::Gauss2DsModel, 477	icontains, 36
mappel::Gauss2DsxyMAP, 507	IdxMatT, 27
mappel::Gauss2DsxyModel, 534	IdxVecT, 27
make_unique	ldxT, 27
mappel, 39	ImageCoordT, 27
makeMLEData	ImagePixeIT, 27
mappel::estimator::MLEDebugData, 702	ImageStackT, 27
mappel, 20	ImageT, 27
beta2_prior_grad, 29	is_negative_definite, 36
beta2_prior_grad2, 29	is_positive_definite, 37
beta_prior_grad, 29	is_symmetric, 37
beta_prior_grad2, 29	istarts_with, 37
BoolVecT, 26	lambda_term_color, 38
BoolT, 26	log_prior_beta2_const, 38
cgauss_compute_estimate, 29, 30	log_prior_beta_const, 38
cgauss compute estimate debug, 30	log prior gamma const, 38
cgauss heuristic compute estimate, 30, 31	log_prior_normal_const, 38
check_lower_bound_hyperparameter, 31	log_prior_pareto_const, 38
check_positive_hyperparameter, 31	make_DX_stencil, 38
check unit hyperparameter, 31	make_DXS2_stencil, 38
chisq_quantile, 31	make DXS stencil, 39
cholesky, 31	make_DXSX_stencil, 39
cholesky_convert_full_matrix, 32	make_G_stencil, 39
cholesky_convert_lower_triangular, 32	make_X_stencil, 39
cholesky_make_negative_definite, 32	make_d_stencil, 38
cholesky_make_positive_definite, 32	make_gaussian_stencil, 39
cholesky_solve, 32	make_unique, 39
clamp, 33	MappelError, 27
copy_Lsym_mat, 33	MatT, 28
copy_Lsym_mat, 33	maxidx, 40
copy_Usym_mat_stack, 33	ModelDataStackT, 28
CubeT, 27	ModelDataStack1, 28
enable_all_cpus, 33	modified_cholesky, 40
EnableIfSubclassT, 27	norm_sq, 40
estimate_background, 33, 34	normal_prior_grad, 40
estimate_gaussian_2Dmax, 34	normal_prior_grad2, 40
estimate_gaussian_3Dmax, 34	normal_quantile_onesided, 40
estimate_intensity, 34	normal_quantile_twosided, 41
fill_DX_stencil, 34	operator<<, 41
fill_DXS2_stencil, 34	ParallelRngGeneratorT, 28
fill_DXS_stencil, 34	ParallelRngManagerT, 28
fill_DXSX_stencil, 35	ParamVecT, 28
fill_G_stencil, 35	ParamT, 28
fill_X_stencil, 35	pareto_prior_grad, 42
fill_d_stencil, 34	pareto_prior_grad2, 42
fill_gaussian_stencil, 35	poisson_log_likelihood, 42
gamma_prior_grad, 35	print_centered_title, 42
gamma_prior_grad2, 35	print_image, 42
gauss_norm, 35	print_labeled_image, 43
gaussian_3D_convolution, 35	print_text_image, 43
gaussian_convolution, 36	print_vec_row, 43
generate_poisson, 36	refine_gaussian_2Dmax, 43
generate_poisson_large, 36	refine_gaussian_3Dmax, 43

relative_poisson_log_likelihood, 44	DefaultPriorIntensityKappa, 150
restrict_value_range, 44	DefaultPriorMaxI, 150
ReturnIfSubclassT, 28	DefaultPriorMeanI, 150
rllh_beta2_prior, 44	DefaultPriorPSFSigmaAlpha, 151
rllh_beta_prior, 44	DefaultPriorPixelMeanBG, 151
rllh_gamma_prior, 44	DefaultPriorSigmaPos, 151
rllh_normal_prior, 44	DefaultPriorType, 151
rllh_pareto_prior, 44	DefaultProfileBoundsEstimatorMethod, 151
rng_manager, 45	DefaultSeperableInitEstimator, 151
RngSeedT, 28	estimator_names, 152
sgn, 44	eta_bg, 152
square, 44	eta_I, 152
StatsT, 28	eta_x, 152
StencilVecT, 29	Gauss1DMAP, 134
StencilT, 28	get_hyperparam_index, 136
StringVecT, 29	get_hyperparam_names, 136
TERM_BLACK, 45	get_hyperparam_value, 136
TERM_BLUE, 45	get_hyperparams, 136
TERM_CYAN, 45	get_image_from_stack, 137
TERM_DIM_BLACK, 45	get_lbound, 137
TERM_DIM_BLUE, 45	get_mcmc_num_phases, 137
TERM_DIM_CYAN, 45	get_mcmc_sigma_scale, 137
TERM_DIM_GREEN, 46	get_num_hyperparams, 137
TERM_DIM_MAGENTA, 46	get_num_params, 137
TERM_DIM_RED, 46	get_num_pixels, 137
TERM_DIM_WHITE, 46	get_param_names, 138
TERM_DIM_YELLOW, 46	get_prior, 138
TERM_GREEN, 46	get_psf_sigma, 138
TERM_MAGENTA, 46	get_rng_generator, 138
TERM_RED, 46	get_rng_manager, 138
TERM_WHITE, 47	get_size, 139
TERM_YELLOW, 47	get_size_image_stack, 139
UniformDistT, 29	get_stats, 139
VecFieldT, 29	get_ubound, 139
VecT, 29	global_default_mcmc_sigma_scale, 152
mappel::ArrayShapeError, 90	global_max_mcmc_sigma_scale, 152
ArrayShapeError, 91	global_max_psf_sigma, 153
mappel::ArraySizeError, 91	global_max_size, 153
ArraySizeError, 91	global_min_psf_sigma, 153
mappel::Gauss1DMAP, 127	global_min_size, 153
bound_theta, 134	has_hyperparam, 139
bounded_theta, 134	ImageCoordT, 132
bounded_theta_stack, 135	ImagePixeIT, 132
bounds_epsilon, 149	ImageShapeT, 132
check_image_shape, 135	ImageSizeShapeT, 132
check_param_shape, 135	ImageSizeVecShapeT, 132
check_psf_sigma, 135, 136	ImageSizeVecT, 132
check_size, 136	ImageSizeT, 132
DefaultConfidenceLevel, 149	ImageStackShapeT, 133
DefaultEstimatorMethod, 150	ImageStackT, 133
DefaultMCMCBurnin, 150	ImageT, 133
DefaultMCMCNumSamples, 150	initial_theta_estimate, 139, 140
DefaultMCMCThin, 150	lbound, 153
DefaultPriorBetaPos, 150	make_default_prior, 140

make_default_prior_beta_position, 140	sigma_scale, 155
make_default_prior_normal_position, 140	size, 155
make_image, 140	StencilVecT, 133
make_image_stack, 140	theta_in_bounds, 149
make_param, 141	theta_stack_in_bounds, 149
make_param_mat, 141	ubound, 156
make_param_mat_stack, 141	mappel::Gauss1DMLE, 156
make_param_stack, 141, 142	bound_theta, 163
make_prior_beta_position, 142	bounded_theta, 163
make_prior_component_intensity, 142	bounded_theta_stack, 164
make_prior_component_position_beta, 142	bounds_epsilon, 178
make_prior_component_position_normal, 142	check_image_shape, 164
make_prior_component_sigma, 143	check_param_shape, 164
make_prior_normal_position, 143	check_psf_sigma, 164, 165
make_stencil, 143	check_size, 165
ModelDataStackT, 133	DefaultConfidenceLevel, 178
ModelDataT, 133	DefaultEstimatorMethod, 179
name, 153	DefaultMCMCBurnin, 179
num dim, 154	DefaultMCMCNumSamples, 179
num_hyperparams, 154	DefaultMCMCThin, 179
num params, 154	DefaultPriorBetaPos, 179
num_phases, 154	DefaultPriorIntensityKappa, 179
operator=, 144	DefaultPriorMaxI, 179
ParamVecT, 133	DefaultPriorMeanl, 179
ParamT, 133	DefaultPriorPSFSigmaAlpha, 180
pixel_grad, 144	DefaultPriorPixelMeanBG, 180
pixel_grad2, 144	DefaultPriorSigmaPos, 180
pixel_hess, 144	DefaultPriorType, 180
pixel_hess_update, 144	DefaultProfileBoundsEstimatorMethod, 180
pixel_model_value, 145	DefaultSeperableInitEstimator, 180
prior, 154	estimator_names, 181
prior_types, 155	eta_bg, 181
psf_sigma, 155	eta_I, 181
reflected_theta, 145	eta_x, 181
reflected_theta_stack, 145	Gauss1DMLE, 163
rename_hyperparam, 145	get_hyperparam_index, 165
sample_mcmc_candidate, 145	get_hyperparam_names, 165
sample_prior, 146	get_hyperparam_value, 165
set_background_mcmc_sampling, 146	get_hyperparams, 165
set_bounds, 146	get_image_from_stack, 166
set_hyperparam_names, 146	get_lbound, 166
set_hyperparam_value, 146	get_mcmc_num_phases, 166
set_hyperparams, 147	get_mcmc_sigma_scale, 166
set_image_in_stack, 147	get_num_hyperparams, 166
set_intensity_mcmc_sampling, 147	get_num_params, 166
set_lbound, 147	get_num_pixels, 166
set_mcmc_num_phases, 147	get_param_names, 167
set_mcmc_sigma_scale, 147	get_prior, 167
set_param_names, 148	get_psf_sigma, 167
set_prior, 148	get_rng_generator, 167
set_psf_sigma, 148	get_rng_manager, 167
set_rng_seed, 148	get_size, 168
set_size, 148, 149	get_size_image_stack, 168
set_ubound, 149	get_stats, 168

get_ubound, 168	reflected_theta, 174
global_default_mcmc_sigma_scale, 181	reflected_theta_stack, 174
global_max_mcmc_sigma_scale, 181	rename_hyperparam, 174
global_max_psf_sigma, 182	sample_mcmc_candidate, 174
global_max_size, 182	sample_prior, 175
global_min_psf_sigma, 182	set_background_mcmc_sampling, 175
global_min_size, 182	set_bounds, 175
has_hyperparam, 168	set_hyperparam_names, 175
ImageCoordT, 161	set_hyperparam_value, 175
ImagePixeIT, 161	set_hyperparams, 176
ImageShapeT, 161	set_image_in_stack, 176
ImageSizeShapeT, 161	set_intensity_mcmc_sampling, 176
ImageSizeVecShapeT, 161	set_lbound, 176
ImageSizeVecT, 161	set_mcmc_num_phases, 176
ImageSizeT, 161	set_mcmc_sigma_scale, 176
ImageStackShapeT, 162	set_param_names, 177
ImageStackT, 162	set_prior, 177
ImageT, 162	set_psf_sigma, 177
initial_theta_estimate, 168, 169	set_rng_seed, 177
lbound, 182	set_size, 177, 178
make_default_prior, 169	set_ubound, 178
make_default_prior_beta_position, 169	sigma_scale, 184
make_default_prior_normal_position, 169	size, 184
make_image, 169	StencilVecT, 162
make_image_stack, 169	theta_in_bounds, 178
make_param, 170	theta_stack_in_bounds, 178
make_param_mat, 170	ubound, 185
make_param_mat_stack, 170	mappel::Gauss1DModel, 185
make_param_stack, 170, 171	bound_theta, 192
make_prior_beta_position, 171	bounded_theta, 192
make_prior_component_intensity, 171	bounded_theta_stack, 192
make_prior_component_position_beta, 171	bounds_epsilon, 206
make_prior_component_position_normal, 171	check_image_shape, 192
make_prior_component_sigma, 172	check_param_shape, 192, 193
make_prior_normal_position, 172	check_psf_sigma, 193
make_stencil, 172	check_size, 193
ModelDataStackT, 162	DefaultConfidenceLevel, 206
ModelDataT, 162	DefaultEstimatorMethod, 207
name, 182	DefaultMCMCBurnin, 207
num_dim, 183	DefaultMCMCNumSamples, 207
num_hyperparams, 183	DefaultMCMCThin, 207
num_params, 183	
	DefaultPriorBetaPos, 207
num_phases, 183	DefaultPriorIntensityKappa, 207
operator=, 173	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207
operator=, 173 ParamVecT, 162	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207
operator=, 173 ParamVecT, 162 ParamT, 162	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173 pixel_grad2, 173	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208 DefaultPriorSigmaPos, 208
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173 pixel_grad2, 173 pixel_hess, 173	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208 DefaultPriorSigmaPos, 208 DefaultPriorType, 208
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173 pixel_grad2, 173 pixel_hess, 173 pixel_hess_update, 173	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208 DefaultPriorSigmaPos, 208 DefaultPriorType, 208 DefaultProfileBoundsEstimatorMethod, 208
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173 pixel_grad2, 173 pixel_hess, 173 pixel_hess_update, 173 pixel_model_value, 174	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208 DefaultPriorSigmaPos, 208 DefaultPriorType, 208
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173 pixel_grad2, 173 pixel_hess, 173 pixel_hess_update, 173	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208 DefaultPriorSigmaPos, 208 DefaultPriorType, 208 DefaultPriorType, 208 DefaultProfileBoundsEstimatorMethod, 208 DefaultSeperableInitEstimator, 208 eta_bg, 209
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173 pixel_grad2, 173 pixel_hess, 173 pixel_hess_update, 173 pixel_model_value, 174 prior, 183 prior_types, 184	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208 DefaultPriorSigmaPos, 208 DefaultPriorType, 208 DefaultProfileBoundsEstimatorMethod, 208 DefaultSeperableInitEstimator, 208 eta_bg, 209 eta_I, 209
operator=, 173 ParamVecT, 162 ParamT, 162 pixel_grad, 173 pixel_grad2, 173 pixel_hess, 173 pixel_hess_update, 173 pixel_model_value, 174 prior, 183	DefaultPriorIntensityKappa, 207 DefaultPriorMaxI, 207 DefaultPriorMeanI, 207 DefaultPriorPSFSigmaAlpha, 208 DefaultPriorPixelMeanBG, 208 DefaultPriorSigmaPos, 208 DefaultPriorType, 208 DefaultPriorType, 208 DefaultProfileBoundsEstimatorMethod, 208 DefaultSeperableInitEstimator, 208 eta_bg, 209

Gauss1DModel, 191	make_prior_normal_position, 200
get_hyperparam_index, 193	make_stencil, 200
get_hyperparam_names, 193	num_dim, 210
get_hyperparam_value, 194	num_hyperparams, 211
get_hyperparams, 194	num_params, 211
get_image_from_stack, 194	num_phases, 211
get_lbound, 194	operator=, 201
get_mcmc_num_phases, 194	ParamVecT, 191
get_mcmc_sigma_scale, 194	ParamT, 191
get_num_hyperparams, 194	pixel_grad, 201
get_num_params, 195	pixel_grad2, 201
get_num_pixels, 195	pixel_hess, 201
get_param_names, 195	pixel_hess_update, 201
get_prior, 195	pixel_model_value, 202
get_psf_sigma, 195	prior, 211
get_rng_generator, 196	prior_types, 211
get_rng_manager, 196	psf_sigma, 212
get_size, 196	reflected_theta, 202
get_size_image_stack, 196	reflected_theta_stack, 202
get stats, 196	rename_hyperparam, 202
get_ubound, 196	sample_mcmc_candidate, 202
global_default_mcmc_sigma_scale, 209	sample_prior, 203
global_max_mcmc_sigma_scale, 209	set_background_mcmc_sampling, 203
global_max_psf_sigma, 210	set_bounds, 203
global_max_size, 210	set_hyperparam_names, 203
global_min_psf_sigma, 210	set_hyperparam_value, 203
global_min_size, 210	set_hyperparams, 204
has_hyperparam, 197	set_image_in_stack, 204
ImageCoordT, 190	set_intensity_mcmc_sampling, 204
ImagePixeIT, 190	set_lbound, 204
ImageShapeT, 190	set_mcmc_num_phases, 204
ImageSizeShapeT, 190	set_mcmc_sigma_scale, 204
ImageSizeVecShapeT, 190	set_param_names, 205
ImageSizeVecT, 190	set_prior, 205
ImageSizeT, 190	set_psf_sigma, 205
ImageStackShapeT, 190	set rng seed, 205
ImageStackT, 191	set_size, 205, 206
ImageT, 191	set ubound, 206
initial theta estimate, 197	sigma_scale, 212
Ibound, 210	size, 212
make_default_prior, 197	StencilVecT, 191
make_default_prior_beta_position, 197	theta_in_bounds, 206
make_default_prior_normal_position, 197	theta_stack_in_bounds, 206
make_image, 198	ubound, 212
make image stack, 198	mappel::Gauss1DModel::Stencil, 859
make_param, 198	bg, 861
make_param_mat, 198	compute_derivatives, 861
make_param_mat_stack, 198, 199	DXS, 862
make_param_stack, 199	derivatives_computed, 862
make_prior_beta_position, 199	DX, 862
make_prior_component_intensity, 199	dx, 862
make_prior_component_position_beta, 199	Gx, 862
make_prior_component_position_normal, 200	I, 861
make_prior_component_sigma, 200	model, 863

operator<<, 862	get_size_image_stack, 225
ParamT, 860	get_stats, 225
Stencil, 861	get_ubound, 225
theta, 863	global_default_mcmc_sigma_scale, 239
X, 863	global_max_mcmc_sigma_scale, 239
x, 861	global_max_psf_sigma, 239
mappel::Gauss1DsMAP, 213	global_max_size, 239
bound_theta, 220	global_min_psf_sigma, 239
bounded_theta, 220	global_min_size, 240
bounded_theta_stack, 220	has_hyperparam, 225
bounds_epsilon, 236	ImageCoordT, 217
check_image_shape, 220, 221	ImagePixeIT, 217
check_param_shape, 221	ImageShapeT, 218
check_psf_sigma, 221	ImageSizeShapeT, 218
check_size, 221	ImageSizeVecShapeT, 218
DefaultConfidenceLevel, 236	ImageSizeVecT, 218
DefaultEstimatorMethod, 236	ImageSizeT, 218
DefaultMCMCBurnin, 236	ImageStackShapeT, 218
DefaultMCMCNumSamples, 236	ImageStackT, 218
DefaultMCMCThin, 236	ImageT, 219
DefaultPriorBetaPos, 236	initial theta estimate, 225
DefaultPriorIntensityKappa, 236	lbound, 240
DefaultPriorMaxI, 237	make_default_prior, 225
DefaultPriorMeanl, 237	make_default_prior_beta_position, 226
DefaultPriorPSFSigmaAlpha, 237	make_default_prior_normal_position, 226
DefaultPriorPixelMeanBG, 237	make_image, 226
DefaultPriorSigmaPos, 237	make_image_stack, 226
DefaultPriorType, 237	make_param, 226
DefaultProfileBoundsEstimatorMethod, 238	make_param_mat, 227
DefaultSeperableInitEstimator, 238	make_param_mat_stack, 227
estimator_names, 238	make_param_stack, 227
eta bg, 238	make_prior_beta_position, 227
eta_I, 238	make_prior_component_intensity, 228
eta_i, 200 eta_sigma, 238	make_prior_component_position_beta, 228
eta_sigma, 250 eta_x, 239	make_prior_component_position_normal, 228
Gauss1DsMAP, 219, 220	make_prior_component_sigma, 228
	· _ ·
get_hyperparam_index, 222	make_prior_normal_position, 229 make_stencil, 229
get_hyperparam_names, 222 get_hyperparam_value, 222	
5 – 21 · 1 – 2	ModelDataStackT, 219
get_hyperparams, 222	ModelDataT, 219
get_image_from_stack, 222	name, 240
get_lbound, 222	num_dim, 240
get_max_sigma, 223	num_hyperparams, 240
get_mcmc_num_phases, 223	num_params, 240
get_mcmc_sigma_scale, 223	num_phases, 241
get_min_sigma, 223	operator=, 229, 230
get_num_hyperparams, 223	ParamVecT, 219
get_num_params, 223	ParamT, 219
get_num_pixels, 223	pixel_grad, 230
get_param_names, 224	pixel_grad2, 230
get_prior, 224	pixel_hess, 230
get_rng_generator, 224	pixel_hess_update, 230
get_rng_manager, 224	pixel_model_value, 230
get_size, 224	prior, 241

anim kura 044	-t- h- 007
prior_types, 241	eta_bg, 267
reflected_theta, 231	eta_I, 267
reflected_theta_stack, 231	eta_sigma, 268
rename_hyperparam, 231	eta_x, 268
sample_mcmc_candidate, 231	Gauss1DsMLE, 249
sample_prior, 231, 232	get_hyperparam_index, 251
set_background_mcmc_sampling, 232	get_hyperparam_names, 251
set_bounds, 232	get_hyperparam_value, 251
set_hyperparam_names, 232	get_hyperparams, 251
set_hyperparam_value, 232	get_image_from_stack, 252
set_hyperparams, 232	get_lbound, 252
set_image_in_stack, 233	get_max_sigma, 252
set_intensity_mcmc_sampling, 233	get_mcmc_num_phases, 252
set_lbound, 233	get_mcmc_sigma_scale, 252
set_max_sigma, 233	get_min_sigma, 252
set_mcmc_num_phases, 233	get_num_hyperparams, 252
set_mcmc_sigma_scale, 234	get_num_params, 253
set_min_sigma, 234	get_num_pixels, 253
set_param_names, 234	get_param_names, 253
set_prior, 234	get_prior, 253
set_rng_seed, 234	get_rng_generator, 253
set_size, 235	get_rng_manager, 253
set_ubound, 235	get_size, 254
sigma_scale, 241	get_size_image_stack, 254
size, 242	get_stats, 254
StencilVecT, 219	get_ubound, 254
theta_in_bounds, 235	global_default_mcmc_sigma_scale, 268
theta_stack_in_bounds, 235	global_max_mcmc_sigma_scale, 268
ubound, 242	global_max_psf_sigma, 268
mappel::Gauss1DsMLE, 242	global_max_size, 268
bound_theta, 249	global_min_psf_sigma, 269
bounded_theta, 249	global_min_size, 269
bounded_theta_stack, 250	has_hyperparam, 254
bounds_epsilon, 265	ImageCoordT, 247
check_image_shape, 250	ImagePixeIT, 247
check_param_shape, 250	ImageShapeT, 247
check_psf_sigma, 250, 251	ImageSizeShapeT, 247
check_size, 251	ImageSizeVecShapeT, 247
DefaultConfidenceLevel, 265	ImageSizeVecT, 247
DefaultEstimatorMethod, 265	ImageSizeT, 247
DefaultMCMCBurnin, 265	ImageStackShapeT, 248
DefaultMCMCNumSamples, 265	ImageStackT, 248
DefaultMCMCThin, 266	ImageT, 248
DefaultPriorBetaPos, 266	initial theta estimate, 254, 255
DefaultPriorIntensityKappa, 266	Ibound, 269
DefaultPriorMaxI, 266	make_default_prior, 255
DefaultPriorMeanl, 266	make_default_prior_beta_position, 255
DefaultPriorPSFSigmaAlpha, 266	make_default_prior_normal_position, 255
DefaultPriorPixelMeanBG, 266	make_image, 255
DefaultPriorSigmaPos, 267	make_image_stack, 256
DefaultPriorType, 267	make_param, 256
DefaultProfileBoundsEstimatorMethod, 267	make_param_mat, 256
DefaultSeperableInitEstimator, 267	make_param_mat_stack, 256
estimator_names, 267	make_param_stack, 257

make prior beta position, 257	bounded theta, 278
make_prior_component_intensity, 257	bounded_theta_stack, 279
make_prior_component_position_beta, 257	bounds_epsilon, 294
make prior component position normal, 258	check image shape, 279
make_prior_component_sigma, 258	check_param_shape, 279
make_prior_normal_position, 258	check_psf_sigma, 279, 280
make_stencil, 258	check_size, 280
ModelDataStackT, 248	DefaultConfidenceLevel, 294
ModelDataT, 248	DefaultEstimatorMethod, 294
name, 269	DefaultMCMCBurnin, 294
num_dim, 269	DefaultMCMCNumSamples, 294
num_hyperparams, 269	DefaultMCMCThin, 294
num_params, 270	DefaultPriorBetaPos, 294
num_phases, 270	DefaultPriorIntensityKappa, 295
_	Default Hormensity Rappa, 293 Default Prior MaxI, 295
operator=, 259 ParamVecT, 248	DefaultPriorMeanl, 295
ParamT, 248	
•	DefaultPriorPSFSigmaAlpha, 295 DefaultPriorPixelMeanBG, 295
pixel_grad, 259	
pixel_grad2, 259	DefaultPriorSigmaPos, 295
pixel_hess, 259	DefaultPriorType, 295
pixel_hess_update, 260	DefaultProfileBoundsEstimatorMethod, 29
pixel_model_value, 260	DefaultSeperableInitEstimator, 296
prior, 270	eta_bg, 296
prior_types, 270	eta_I, 296
reflected_theta, 260	eta_sigma, 296
reflected_theta_stack, 260	eta_x, 296
rename_hyperparam, 260	Gauss1DsModel, 278
sample_mcmc_candidate, 260, 261	get_hyperparam_index, 280
sample_prior, 261	get_hyperparam_names, 280
set_background_mcmc_sampling, 261	get_hyperparam_value, 280
set_bounds, 261	get_hyperparams, 280
set_hyperparam_names, 261	get_image_from_stack, 281
set_hyperparam_value, 262	get_lbound, 281
set_hyperparams, 262	get_max_sigma, 281
set_image_in_stack, 262	get_mcmc_num_phases, 281
set_intensity_mcmc_sampling, 262	get_mcmc_sigma_scale, 281
set_lbound, 262	get_min_sigma, 281
set_max_sigma, 262, 263	get_num_hyperparams, 281
set_mcmc_num_phases, 263	get_num_params, 282
set_mcmc_sigma_scale, 263	get_num_pixels, 282
set_min_sigma, 263	get_param_names, 282
set_param_names, 263	get_prior, 282
set_prior, 264	get_rng_generator, 282
set_rng_seed, 264	get_rng_manager, 282
set_size, 264	get_size, 283
set_ubound, 264	get_size_image_stack, 283
sigma scale, 271	get_stats, 283
size, 271	get_ubound, 283
StencilVecT, 248	global_default_mcmc_sigma_scale, 297
theta_in_bounds, 264	global_max_mcmc_sigma_scale, 297
theta_stack_in_bounds, 265	global_max_psf_sigma, 297
	global max size, 297
upourid. 27 I	
ubound, 271 pel::Gauss1DsModel, 272	global_min_psf_sigma, 297

has_hyperparam, 283	set_intensity_mcmc_sampling, 291
ImageCoordT, 276	set_lbound, 291
ImagePixeIT, 276	set_max_sigma, 291
ImageShapeT, 276	set_mcmc_num_phases, 292
ImageSizeShapeT, 277	set_mcmc_sigma_scale, 292
ImageSizeVecShapeT, 277	set_min_sigma, 292
ImageSizeVecT, 277	set_param_names, 292
ImageSizeT, 277	set_prior, 292
ImageStackShapeT, 277	set_rng_seed, 293
ImageStackT, 277	set_size, 293
ImageT, 277	set_ubound, 293
initial_theta_estimate, 283, 284	sigma_scale, 299
lbound, 298	size, 299
make_default_prior, 284	StencilVecT, 278
make_default_prior_beta_position, 284	theta_in_bounds, 293
make_default_prior_normal_position, 284	theta_stack_in_bounds, 293
make_image, 284	ubound, 300
make_image_stack, 284	mappel::Gauss1DsModel::Stencil, 845
make_param, 285	bg, 847
make_param_mat, 285	compute_derivatives, 847
make_param_mat_stack, 285	DXS2, 848
make_param_stack, 285, 286	DXSX, 848
make_prior_beta_position, 286	DXS, 848
make_prior_component_intensity, 286	derivatives_computed, 848
make_prior_component_position_beta, 286	DX, 848
make_prior_component_position_normal, 286	dx, 848
make_prior_component_sigma, 287	Gx, 848
make_prior_normal_position, 287	I, 847
make_stencil, 287	model, 849
num_dim, 298	operator<<, 848
num_hyperparams, 298	ParamT, 846
num_params, 298	sigma, 847
num_phases, 298	Stencil, 846
operator=, 288	theta, 849
ParamVecT, 278	X, 849
ParamT, 278	x, 847
pixel_grad, 288	mappel::Gauss2DMAP, 300
pixel_grad2, 288	bound_theta, 308
pixel_hess, 288	bounded_theta, 308
pixel_hess_update, 288	bounded_theta_stack, 308
pixel_model_value, 289	bounds_epsilon, 324
prior, 299	check_image_shape, 309
prior_types, 299	check_param_shape, 309
reflected_theta, 289	check_psf_sigma, 309
reflected_theta_stack, 289	check_size, 310
rename_hyperparam, 289	debug_internal_sum_model_x, 310
sample_mcmc_candidate, 289	debug_internal_sum_model_y, 310
sample_prior, 290	DefaultConfidenceLevel, 324
set_background_mcmc_sampling, 290	DefaultEstimatorMethod, 324
set_bounds, 290	DefaultMCMCBurnin, 325
set_hyperparam_names, 290	DefaultMCMCNumSamples, 325
set_hyperparam_value, 290	DefaultMCMCThin, 325
set_hyperparams, 291	DefaultPriorBetaPos, 325
set_image_in_stack, 291	DefaultPriorIntensityKappa, 325

DefaultPriorMaxI, 325	make_default_prior, 314
DefaultPriorMeanI, 325	make_default_prior_beta_position, 314
DefaultPriorPSFSigmaAlpha, 326	make_default_prior_normal_position, 314
DefaultPriorPixelMeanBG, 325	make_image, 315
DefaultPriorSigmaPos, 326	make_image_stack, 315
DefaultPriorType, 326	make_internal_1Dsum_estimator, 315
DefaultProfileBoundsEstimatorMethod, 326	make_param, 315
DefaultSeperableInitEstimator, 326	make_param_mat, 316
estimator_names, 326	make_param_mat_stack, 316
eta_bg, 327	make_param_stack, 316
eta_I, 327	make_prior_beta_position, 316
eta_x, 327	make_prior_component_intensity, 317
eta_y, 327	make_prior_component_position_beta, 317
Gauss1DSumModelT, 305	make_prior_component_position_normal, 317
Gauss2DMAP, 307, 308	make_prior_component_sigma, 317
get_hyperparam_index, 310	make_prior_normal_position, 318
get_hyperparam_names, 310	make_stencil, 318
get_hyperparam_value, 310	ModelDataStackT, 307
get_hyperparams, 311	ModelDataT, 307
get_image_from_stack, 311 get_lbound, 311	name, 328
9 —	num_dim, 329
get_mcmc_num_phases, 311 get_mcmc_sigma_scale, 311	num_hyperparams, 329 num_params, 329
	num phases, 329
get_num_hyperparams, 311 get_num_params, 311	operator=, 318, 319
get_num_pixels, 312	ParamVecT, 307
get_param_names, 312	ParamT, 307
get_prior, 312	pixel_grad, 319
get_prior, 312 get_psf_sigma, 312	pixel_grad2, 319
get_rng_generator, 312	pixel_hess, 319
get_rng_manager, 313	pixel_hess_update, 319
get_size, 313	pixel_model_value, 319
get_size_image_stack, 313	prior, 329
get_stats, 313	prior_types, 330
get_ubound, 313	psf_sigma, 330
global_default_mcmc_sigma_scale, 327	reflected theta, 320
global_max_mcmc_sigma_scale, 327	reflected_theta_stack, 320
global_max_psf_sigma, 328	rename_hyperparam, 320
global_max_size, 328	sample_mcmc_candidate, 320
global_min_psf_sigma, 328	sample prior, 320, 321
global_min_size, 328	set_background_mcmc_sampling, 321
has_hyperparam, 313	set_bounds, 321
ImageCoordT, 305	set_hyperparam_names, 321
ImagePixeIT, 305	set_hyperparam_value, 321
ImageShapeT, 305	set_hyperparams, 321
ImageSizeShapeT, 306	set_image_in_stack, 322
ImageSizeVecShapeT, 306	set_intensity_mcmc_sampling, 322
ImageSizeVecT, 306	set_lbound, 322
ImageSizeT, 306	set_mcmc_num_phases, 322
ImageStackShapeT, 306	set_mcmc_sigma_scale, 322
ImageStackT, 306	set_param_names, 322
ImageT, 306	set_prior, 322, 323
initial_theta_estimate, 314	set_psf_sigma, 323
Ibound, 328	set_rng_seed, 323

set_size, 323	get_num_pixels, 343
set_ubound, 323	get_param_names, 343
sigma_scale, 330	get_prior, 343
size, 330	get_psf_sigma, 343
StencilVecT, 307	get_rng_generator, 344
theta_in_bounds, 323	get_rng_manager, 344
theta_stack_in_bounds, 324	get_size, 344
ubound, 331	get_size_image_stack, 344
update_internal_1Dsum_estimators, 324	get_stats, 344
x_model, 331	get_ubound, 344
y_model, 331	global_default_mcmc_sigma_scale, 358
mappel::Gauss2DMLE, 332	global_max_mcmc_sigma_scale, 358
bound_theta, 339	global_max_psf_sigma, 359
bounded_theta, 339	global_max_size, 359
bounded_theta_stack, 340	global_min_psf_sigma, 359
bounds_epsilon, 355	global_min_size, 359
check_image_shape, 340	has_hyperparam, 345
check_param_shape, 340	ImageCoordT, 337
check_psf_sigma, 340, 341	ImagePixeIT, 337
check_size, 341	ImageShapeT, 337
debug_internal_sum_model_x, 341	ImageSizeShapeT, 337
debug_internal_sum_model_y, 341	ImageSizeVecShapeT, 337
DefaultConfidenceLevel, 355	ImageSizeVecT, 337
DefaultEstimatorMethod, 355	ImageSizeT, 337
DefaultMCMCBurnin, 356	ImageStackShapeT, 338
DefaultMCMCNumSamples, 356	ImageStackT, 338
DefaultMCMCThin, 356	ImageT, 338
DefaultPriorBetaPos, 356	initial_theta_estimate, 345
DefaultPriorIntensityKappa, 356	lbound, 359
DefaultPriorMaxI, 356	make_default_prior, 345
DefaultPriorMeanl, 356	make_default_prior_beta_position, 346
DefaultPriorPSFSigmaAlpha, 357	make_default_prior_normal_position, 346
DefaultPriorPixelMeanBG, 356	make_image, 346
DefaultPriorSigmaPos, 357	make_image_stack, 346
DefaultPriorType, 357	make_internal_1Dsum_estimator, 346
DefaultProfileBoundsEstimatorMethod, 357	make_param, 346, 347
DefaultSeperableInitEstimator, 357	make_param_mat, 347
estimator_names, 357	make_param_mat_stack, 347
eta_bg, 358	make_param_stack, 347
eta_I, 358	make_prior_beta_position, 348
eta_x, 358	make_prior_component_intensity, 348
eta_y, 358	make_prior_component_position_beta, 348
Gauss1DSumModelT, 337	make_prior_component_position_normal, 348
Gauss2DMLE, 339	make_prior_component_sigma, 348
get_hyperparam_index, 341	make_prior_normal_position, 349
get_hyperparam_names, 341	make_stencil, 349
get_hyperparam_value, 342	ModelDataStackT, 338
get_hyperparams, 342	ModelDataT, 338
get_image_from_stack, 342	name, 359
get_lbound, 342	num_dim, 360
get_mcmc_num_phases, 342	num_hyperparams, 360
get_mcmc_sigma_scale, 342	num_params, 360
get_num_hyperparams, 342	num_phases, 360
get_num_params, 343	operator=, 349, 350

ParamVecT, 338	DefaultMCMCNumSamples, 386
ParamT, 338	DefaultMCMCThin, 386
pixel_grad, 350	DefaultPriorBetaPos, 386
pixel_grad2, 350	DefaultPriorIntensityKappa, 387
pixel_hess, 350	DefaultPriorMaxI, 387
pixel_hess_update, 350	DefaultPriorMeanI, 387
pixel_model_value, 350	DefaultPriorPSFSigmaAlpha, 387
prior, 360	DefaultPriorPixelMeanBG, 387
prior_types, 361	DefaultPriorSigmaPos, 387
psf_sigma, 361	DefaultPriorType, 387
reflected_theta, 351	DefaultProfileBoundsEstimatorMethod, 388
reflected_theta_stack, 351	DefaultSeperableInitEstimator, 388
rename_hyperparam, 351	eta_bg, 388
sample_mcmc_candidate, 351	eta_I, 388
sample_prior, 351, 352	eta_x, 388
set_background_mcmc_sampling, 352	eta_y, 388
set_bounds, 352	Gauss1DSumModelT, 368
set_hyperparam_names, 352	Gauss2DModel, 370
set_hyperparam_value, 352	get_hyperparam_index, 372
set_hyperparams, 352	get_hyperparam_names, 372
set_image_in_stack, 353	get_hyperparam_value, 372
set_intensity_mcmc_sampling, 353	get_hyperparams, 372
set_lbound, 353	get_image_from_stack, 373
set_mcmc_num_phases, 353	get_lbound, 373
set_mcmc_sigma_scale, 353	get_mcmc_num_phases, 373
set_param_names, 353	get_mcmc_sigma_scale, 373
set_prior, 353, 354	get_num_hyperparams, 373
set_psf_sigma, 354	get_num_params, 373
set_rng_seed, 354	get_num_pixels, 373
set_size, 354	get_param_names, 374
set_ubound, 354	get_prior, 374
sigma scale, 361	get_psf_sigma, 374
size, 361	get_rng_generator, 374
StencilVecT, 338	get_rng_manager, 374
theta_in_bounds, 354	get_size, 375
theta_stack_in_bounds, 355	get_size_image_stack, 375
ubound, 362	get_stats, 375
update_internal_1Dsum_estimators, 355	get ubound, 375
x_model, 362	global default mcmc sigma scale, 389
y_model, 362	global_max_mcmc_sigma_scale, 389
mappel::Gauss2DModel, 363	global max psf sigma, 389
bound_theta, 370	global_max_size, 389
bounded theta, 370	global min psf sigma, 389
bounded theta stack, 370	global_min_size, 389
bounds_epsilon, 386	has_hyperparam, 375
check_image_shape, 371	ImageCoordT, 368
check param shape, 371	ImagePixeIT, 368
check_psf_sigma, 371	ImageShapeT, 368
check_size, 372	ImageSizeShapeT, 368
debug_internal_sum_model_x, 372	ImageSizeVecShapeT, 368
debug_internal_sum_model_y, 372	ImageSizeVecT, 369
DefaultConfidenceLevel, 386	ImageSizeT, 368
DefaultEstimatorMethod, 386	ImageStackShapeT, 369
DefaultMCMCBurnin, 386	ImageStackT, 369
,	,

ImageT, 369	set_size, 385
initial_theta_estimate, 375, 376	set_ubound, 385
Ibound, 390	sigma_scale, 391
make_default_prior, 376	size, 392
make_default_prior_beta_position, 376	StencilVecT, 369
make_default_prior_normal_position, 376	theta_in_bounds, 385
make_image, 376	theta_stack_in_bounds, 385
make_image_stack, 377	ubound, 392
make_internal_1Dsum_estimator, 377	update_internal_1Dsum_estimators, 385
make_param, 377	x_model, 392
make_param_mat, 377	y_model, 393
make_param_mat_stack, 378	mappel::Gauss2DModel::Stencil, 849
make_param_stack, 378	bg, 851
make_prior_beta_position, 378	compute_derivatives, 851
make_prior_component_intensity, 378	DXS, 852
make_prior_component_position_beta, 379	DYS, 853
make_prior_component_position_normal, 379	derivatives_computed, 852
make_prior_component_sigma, 379	DX, 852
make_prior_normal_position, 379	dx, 852
make_stencil, 379	DY, 853
num_dim, 390	dy, 852
num_hyperparams, 390	Gx, 853
num_params, 390	Gy, 853
num_phases, 390	I, 851
operator=, 380	model, 853
ParamVecT, 369	operator<<, 852
ParamT, 369	ParamT, 850
pixel_grad, 380	Stencil, 850
pixel_grad2, 380	theta, 853
pixel_hess, 381	X, 853
pixel_hess_update, 381	x, 851
pixel_model_value, 381	Y, 853
prior, 391	y, 851
prior_types, 391	mappel::Gauss2DsMAP, 393
psf_sigma, 391	bound_theta, 401
reflected_theta, 381	bounded_theta, 401
reflected_theta_stack, 381	bounded_theta_stack, 401
rename_hyperparam, 381	bounds_epsilon, 419
sample_mcmc_candidate, 382	check_image_shape, 402
sample_prior, 382	check_param_shape, 402
set_background_mcmc_sampling, 382	check_psf_sigma, 402
set_bounds, 382	check_size, 403
set_hyperparam_names, 383	compute_max_sigma_ratio, 403
set_hyperparam_value, 383	debug_internal_sum_model_x, 403
set_hyperparams, 383	debug_internal_sum_model_y, 403
set_image_in_stack, 383	DefaultConfidenceLevel, 419
set_intensity_mcmc_sampling, 383	DefaultEstimatorMethod, 419
set_lbound, 383	DefaultMCMCBurnin, 419
set_mcmc_num_phases, 384	DefaultMCMCNumSamples, 419
set_mcmc_sigma_scale, 384	DefaultMCMCThin, 419
set_param_names, 384	DefaultPriorBetaPos, 419
set_prior, 384	DefaultPriorIntensityKappa, 419
set_psf_sigma, 384	DefaultPriorMaxI, 420
set_rng_seed, 385	DefaultPriorMeanI, 420

DefaultPriorPSFSigmaAlpha, 420	lbound, 423
DefaultPriorPixelMeanBG, 420	make_default_prior, 408
DefaultPriorSigmaPos, 420	make_default_prior_beta_position, 408
DefaultPriorType, 420	make_default_prior_normal_position, 408
DefaultProfileBoundsEstimatorMethod, 421	make_image, 408
DefaultSeperableInitEstimator, 421	make_image_stack, 409
estimator_names, 421	make_internal_1Dsum_estimator, 409
eta_bg, 421	make_param, 409
eta_I, 421	make_param_mat, 409
eta_sigma, 421	make_param_mat_stack, 410
eta_x, 422	make_param_stack, 410
eta_y, 422	make_prior_beta_position, 410
Gauss1DSumModelT, 398	make_prior_component_intensity, 410
Gauss2DsMAP, 400, 401	make_prior_component_position_beta, 411
get_hyperparam_index, 403	make_prior_component_position_normal, 411
get_hyperparam_names, 403	make_prior_component_sigma, 411
get_hyperparam_value, 404	make_prior_normal_position, 411
get_hyperparams, 404	make_stencil, 412
get_image_from_stack, 404	min_sigma, 423
get_lbound, 404	ModelDataStackT, 400
get_max_sigma, 404	ModelDataT, 400
get_max_sigma_ratio, 405	name, 423
get_mcmc_num_phases, 405	num_dim, 424
get_mcmc_sigma_scale, 405	num_hyperparams, 424
get_min_sigma, 405	num_params, 424
get_num_hyperparams, 405	num_phases, 424 operator=, 412
get_num_params, 405	ParamVecT, 400
get_num_pixels, 406	ParamT, 400
get_param_names, 406 get_prior, 406	pixel_grad, 413
get_rng_generator, 406	pixel_grad2, 413
get_rng_generator, 400 get_rng_manager, 406	pixel_hess, 413
get_size, 406, 407	pixel_hess_update, 413
get_size_image_stack, 407	pixel_model_value, 413
get_stats, 407	prior, 424
get_ubound, 407	prior_types, 425
global_default_mcmc_sigma_scale, 422	reflected_theta, 414
global_max_mcmc_sigma_scale, 422	reflected_theta_stack, 414
global_max_psf sigma, 422	rename_hyperparam, 414
global_max_size, 422	sample_mcmc_candidate, 414
global_min_psf_sigma, 423	sample_prior, 414, 415
global_min_size, 423	set_background_mcmc_sampling, 415
has hyperparam, 407	set bounds, 415
ImageCoordT, 398	set_hyperparam_names, 415
ImagePixeIT, 398	set hyperparam value, 415
ImageShapeT, 399	set_hyperparams, 415
ImageSizeShapeT, 399	set image in stack, 416
ImageSizeVecShapeT, 399	set_intensity_mcmc_sampling, 416
ImageSizeVecT, 399	set_lbound, 416
ImageSizeT, 399	set_max_sigma, 416
ImageStackShapeT, 399	set_max_sigma_ratio, 416
ImageStackT, 399	set mcmc num phases, 416
ImageT, 400	set_mcmc_sigma_scale, 417
initial_theta_estimate, 407, 408	set_min_sigma, 417
, ,	5 ,

set_param_names, 417	get_lbound, 438
set prior, 417	get_max_sigma, 438
set_rng_seed, 417	get_max_sigma_ratio, 438
set_size, 417	get_mcmc_num_phases, 438
set_ubound, 418	get_mcmc_sigma_scale, 438
sigma scale, 425	get_min_sigma, 439
size, 425	get_num_hyperparams, 439
StencilVecT, 400	get_num_params, 439
theta_in_bounds, 418	get_num_pixels, 439
theta_stack_in_bounds, 418	get_param_names, 439
ubound, 426	get prior, 439, 440
update_internal_1Dsum_estimators, 418	get_rng_generator, 440
x_model, 426	get_rng_manager, 440
y_model, 426	get_size, 440
mappel::Gauss2DsMLE, 427	get_size_image_stack, 440
bound_theta, 435	get_stats, 440
bounded_theta, 435	get_ubound, 441
bounded_theta_stack, 435	global default mcmc sigma scale, 455
bounds_epsilon, 452	global_max_mcmc_sigma_scale, 455
check_image_shape, 435	global_max_psf_sigma, 456
check_mage_shape, 435, 436	global_max_psi_sigma, 450 global max size, 456
check_psf_sigma, 436	global_min_psf_sigma, 456
check_size, 436	global_min_size, 456
compute max sigma ratio, 436	has hyperparam, 441
. – –	
debug_internal_sum_model_x, 437	ImageCoordT, 432
debug_internal_sum_model_y, 437	ImagePixeIT, 432
DefaultConfidenceLevel, 452	ImageShapeT, 432
DefaultEstimatorMethod, 452	ImageSizeShapeT, 432
DefaultMCMCBurnin, 452	ImageSizeVecShapeT, 432
DefaultMCMCNumSamples, 452	ImageSizeVecT, 433
DefaultMCMCThin, 453	ImageSizeT, 432
DefaultPriorBetaPos, 453	ImageStackShapeT, 433
DefaultPriorIntensityKappa, 453	ImageStackT, 433
DefaultPriorMaxI, 453	ImageT, 433
DefaultPriorMeanI, 453	initial_theta_estimate, 441
DefaultPriorPSFSigmaAlpha, 453	lbound, 456
DefaultPriorPixelMeanBG, 453	make_default_prior, 441
DefaultPriorSigmaPos, 454	make_default_prior_beta_position, 442
DefaultPriorType, 454	make_default_prior_normal_position, 442
DefaultProfileBoundsEstimatorMethod, 454	make_image, 442
DefaultSeperableInitEstimator, 454	make_image_stack, 442
estimator_names, 454	make_internal_1Dsum_estimator, 442
eta_bg, 454	make_param, 443
eta_I, 454	make_param_mat, 443
eta_sigma, 455	make_param_mat_stack, 443
eta_x, 455	make_param_stack, 444
eta_y, 455	make_prior_beta_position, 444
Gauss1DSumModelT, 432	make_prior_component_intensity, 444
Gauss2DsMLE, 434	make_prior_component_position_beta, 444
get_hyperparam_index, 437	make_prior_component_position_normal, 445
get_hyperparam_names, 437	make_prior_component_sigma, 445
get_hyperparam_value, 437	make_prior_normal_position, 445
get_hyperparams, 437	make_stencil, 445
get_image_from_stack, 438	min_sigma, 456

ModelDataStackT, 433	check_image_shape, 468
ModelDataT, 433	check_param_shape, 468
name, 457	check_psf_sigma, 469
num_dim, 457	check_size, 469
num_hyperparams, 457	compute_max_sigma_ratio, 469
num_params, 457	debug_internal_sum_model_x, 469
num_phases, 457	debug_internal_sum_model_y, 469
operator=, 446	DefaultConfidenceLevel, 484
ParamVecT, 434	DefaultEstimatorMethod, 484
ParamT, 433	DefaultMCMCBurnin, 484
pixel_grad, 446	DefaultMCMCNumSamples, 485
pixel_grad2, 446	DefaultMCMCThin, 485
pixel_hess, 446	DefaultPriorBetaPos, 485
pixel_hess_update, 447	DefaultPriorIntensityKappa, 485
pixel_model_value, 447	DefaultPriorMaxI, 485
prior, 458	DefaultPriorMeanI, 485
prior_types, 458	DefaultPriorPSFSigmaAlpha, 486
reflected_theta, 447	DefaultPriorPixelMeanBG, 485
reflected_theta_stack, 447	DefaultPriorSigmaPos, 486
rename_hyperparam, 447	DefaultPriorType, 486
sample_mcmc_candidate, 448	DefaultProfileBoundsEstimatorMethod, 486
sample_prior, 448	DefaultSeperableInitEstimator, 486
set_background_mcmc_sampling, 448	eta_bg, 486
set_bounds, 448	eta_I, 487
set_hyperparam_names, 449	eta_sigma, 487
set_hyperparam_value, 449	eta_x, 487
set_hyperparams, 449	eta_y, 487
set_image_in_stack, 449	Gauss1DSumModelT, 465
set_intensity_mcmc_sampling, 449	Gauss2DsModel, 467
set_lbound, 449	get_hyperparam_index, 470
set_max_sigma, 450	get_hyperparam_names, 470
set_max_sigma_ratio, 450	get_hyperparam_value, 470
set_mcmc_num_phases, 450	get_hyperparams, 470
set_mcmc_sigma_scale, 450	get_image_from_stack, 470
set_min_sigma, 450	get_lbound, 470
set_param_names, 450	get_max_sigma, 470, 471
set_prior, 451	get_max_sigma_ratio, 471
set_rng_seed, 451	get_mcmc_num_phases, 471
set_size, 451	get_mcmc_sigma_scale, 471
set_ubound, 451	get_min_sigma, 471
sigma_scale, 458	get_num_hyperparams, 471
size, 458	get_num_params, 472
StencilVecT, 434	get_num_pixels, 472
theta_in_bounds, 451	get_param_names, 472
theta_stack_in_bounds, 451	get_prior, 472
ubound, 459	get_rng_generator, 472
update_internal_1Dsum_estimators, 452	get_rng_manager, 472
x_model, 459	get_size, 473
y model, 459	get_size_image_stack, 473
mappel::Gauss2DsModel, 460	get_stats, 473
bound_theta, 468	get_ubound, 473
bounded_theta, 468	global_default_mcmc_sigma_scale, 487
bounded_theta_stack, 468	global_max_mcmc_sigma_scale, 488
bounds_epsilon, 484	global_max_psf_sigma, 488

global_max_size, 488	set_bounds, 481
global_min_psf_sigma, 488	set_hyperparam_names, 481
global_min_size, 488	set_hyperparam_value, 481
has_hyperparam, 473	set_hyperparams, 481
ImageCoordT, 465	set_image_in_stack, 481
ImagePixeIT, 465	set_intensity_mcmc_sampling, 481
ImageShapeT, 465	set_lbound, 482
ImageSizeShapeT, 466	set_max_sigma, 482
ImageSizeVecShapeT, 466	set_max_sigma_ratio, 482
ImageSizeVecT, 466	set_mcmc_num_phases, 482
ImageSizeT, 466	set_mcmc_sigma_scale, 482
ImageStackShapeT, 466	set_min_sigma, 482
ImageStackT, 466	set_param_names, 483
ImageT, 466	set_prior, 483
initial_theta_estimate, 473, 474	set_rng_seed, 483
lbound, 488	set_size, 483
make_default_prior, 474	set_ubound, 483
make_default_prior_beta_position, 474	sigma_scale, 490
make_default_prior_normal_position, 474	size, 490
make_image, 475	StencilVecT, 467
make_image_stack, 475	theta in bounds, 483
make_internal_1Dsum_estimator, 475	theta stack in bounds, 484
make_param, 475	ubound, 491
make_param_mat, 475, 476	update_internal_1Dsum_estimators, 484
make_param_mat_stack, 476	x_model, 491
make_param_stack, 476	y_model, 491
make_prior_beta_position, 476	mappel::Gauss2DsModel::Stencil, 854
make_prior_component_intensity, 476	bg, 855
	3 ,
make prior component position beta, 477	compute derivatives, 855
make_prior_component_position_beta, 477 make_prior_component_position_normal, 477	compute_derivatives, 855 DXS2, 857
make_prior_component_position_normal, 477	DXS2, 857
make_prior_component_position_normal, 477 make_prior_component_sigma, 477	DXS2, 857 DXSX, 858
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477	DXS2, 857 DXSX, 858 DXS, 857
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_params, 489 num_phases, 489	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_lyperparams, 489 num_params, 489 num_params, 489 num_params, 489 operator=, 478	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_dim, 489 num_params, 489 num_params, 489 num_params, 489 prior_params, 489 num_phases, 489 prior_paramvect, 467 Paramt, 467	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 dy, 858 Gx, 858
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 dy, 858 Gx, 858 Gy, 859
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_params, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856 model, 859
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_params, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator<<, 857
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479 pixel_model_value, 479	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator < <, 857 ParamT, 855
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479 pixel_model_value, 479 prior, 490	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator < <, 857 ParamT, 855 sigma_ratio, 856
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479 pixel_model_value, 479 prior_types, 490	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator <<, 857 ParamT, 855 sigma_ratio, 856 sigmaX, 856
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess_update, 479 pixel_model_value, 479 prior_types, 490 reflected_theta, 479	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator <<, 857 ParamT, 855 sigma_ratio, 856 sigmaY, 856
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479 pixel_model_value, 479 prior, 490 prior_types, 490 reflected_theta_stack, 479	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator <<, 857 ParamT, 855 sigma_ratio, 856 sigmaY, 856 Stencil, 855
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479 pixel_model_value, 479 prior, 490 prior_types, 490 reflected_theta, 479 reflected_theta_stack, 479 rename_hyperparam, 480	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator <<, 857 ParamT, 855 sigma_ratio, 856 sigmaY, 856 Stencil, 855 theta, 859
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479 pixel_model_value, 479 prior_types, 490 reflected_theta, 479 reflected_theta_stack, 479 rename_hyperparam, 480 sample_mcmc_candidate, 480	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator <<, 857 ParamT, 855 sigma_ratio, 856 sigmaY, 856 Stencil, 855 theta, 859 X, 859
make_prior_component_position_normal, 477 make_prior_component_sigma, 477 make_prior_normal_position, 477 make_stencil, 477 min_sigma, 489 num_dim, 489 num_hyperparams, 489 num_params, 489 num_phases, 489 operator=, 478 ParamVecT, 467 ParamT, 467 pixel_grad, 478 pixel_grad2, 478 pixel_hess, 479 pixel_hess_update, 479 pixel_model_value, 479 prior, 490 prior_types, 490 reflected_theta, 479 reflected_theta_stack, 479 rename_hyperparam, 480	DXS2, 857 DXSX, 858 DXS, 857 DYS2, 858 DYSY, 858 DYS, 858 derivatives_computed, 857 DX, 857 dx, 857 dx, 857 DY, 858 dy, 858 Gx, 858 Gy, 859 I, 856 model, 859 operator <<, 857 ParamT, 855 sigma_ratio, 856 sigmaY, 856 Stencil, 855 theta, 859

y, 856	global_min_psf_sigma, 516
mappel::Gauss2DsxyMAP, 492	global_min_size, 517
bound_theta, 498	has_hyperparam, 503
bounded_theta, 498	ImageCoordT, 496
bounded_theta_stack, 499	ImagePixeIT, 496
bounds_epsilon, 513	ImageShapeT, 496
check_image_shape, 499	ImageSizeShapeT, 496
check_param_shape, 499	ImageSizeVecShapeT, 497
check_psf_sigma, 499, 500	ImageSizeVecT, 497
check_size, 500	ImageSizeT, 497
DefaultConfidenceLevel, 513	ImageStackShapeT, 497
DefaultEstimatorMethod, 513	ImageStackT, 497
DefaultMCMCBurnin, 513	ImageT, 497
DefaultMCMCNumSamples, 513	initial_theta_estimate, 503, 504
DefaultMCMCThin, 514	lbound, 517
DefaultPriorBetaPos, 514	make_default_prior, 504
DefaultPriorIntensityKappa, 514	make_default_prior_beta_position, 504
DefaultPriorMaxI, 514	make_default_prior_normal_position, 504
DefaultPriorMeanI, 514	make_image, 504
DefaultPriorPSFSigmaAlpha, 514	make_image_stack, 504
DefaultPriorPixelMeanBG, 514	make_param, 505
DefaultPriorSigmaPos, 515	make_param_mat, 505
DefaultPriorType, 515	make_param_mat_stack, 505
DefaultProfileBoundsEstimatorMethod, 515	make_param_stack, 505, 506
DefaultSeperableInitEstimator, 515	make_prior_beta_position, 506
estimator_names, 515	make_prior_component_intensity, 506
eta_bg, 515	make_prior_component_position_beta, 506
eta_I, 515	make_prior_component_position_normal, 506
eta_x, 516	make_prior_component_sigma, 507
Gauss2DsxyMAP, 498	make_prior_normal_position, 507
get_hyperparam_index, 500	make_stencil, 507
get_hyperparam_names, 500	ModelDataStackT, 497
get_hyperparam_value, 500	ModelDataT, 498
get_hyperparams, 500	name, 517
get_image_from_stack, 501	num_dim, 517
get_lbound, 501	num_hyperparams, 517
get_mcmc_num_phases, 501	num_params, 517
get_mcmc_sigma_scale, 501	num_phases, 518
got num hypornoromo 501	
get_num_hyperparams, 501	ParamVecT, 498
get_num_params, 501	ParamVecT, 498 ParamT, 498
get_num_params, 501 get_num_pixels, 501	ParamT, 498
get_num_params, 501 get_num_pixels, 501 get_param_names, 502	ParamT, 498 pixel_grad, 508 pixel_grad2, 508
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502	ParamT, 498 pixel_grad, 508
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502 get_size, 503	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518 prior_types, 518
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502 get_size, 503 get_size_image_stack, 503	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518 prior_types, 518 psf_sigma, 518
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502 get_size, 503 get_size_image_stack, 503 get_stats, 503 get_ubound, 503	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518 prior_types, 518 psf_sigma, 518 reflected_theta, 508 reflected_theta_stack, 509
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502 get_size, 503 get_size_image_stack, 503 get_stats, 503 get_ubound, 503 global_default_mcmc_sigma_scale, 516	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518 prior_types, 518 psf_sigma, 518 reflected_theta, 508 reflected_theta_stack, 509 rename_hyperparam, 509
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502 get_size, 503 get_size_image_stack, 503 get_stats, 503 get_ubound, 503 global_default_mcmc_sigma_scale, 516 global_max_mcmc_sigma_scale, 516	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518 prior_types, 518 psf_sigma, 518 reflected_theta, 508 reflected_theta_stack, 509 rename_hyperparam, 509 sample_mcmc_candidate, 509
get_num_params, 501 get_num_pixels, 501 get_param_names, 502 get_prior, 502 get_psf_sigma, 502 get_rng_generator, 502 get_rng_manager, 502 get_size, 503 get_size_image_stack, 503 get_stats, 503 get_ubound, 503 global_default_mcmc_sigma_scale, 516	ParamT, 498 pixel_grad, 508 pixel_grad2, 508 pixel_hess, 508 pixel_hess_update, 508 pixel_model_value, 508 prior, 518 prior_types, 518 psf_sigma, 518 reflected_theta, 508 reflected_theta_stack, 509 rename_hyperparam, 509

	ounds, 510	get_min_sigma, 529
	perparam_names, 510	get_num_hyperparams, 529
	perparam_value, 510	get_num_params, 529
	perparams, 510	get_num_pixels, 529
	age_in_stack, 510	get_param_names, 530
	ensity_mcmc_sampling, 511	get_prior, 530
	ound, 511	get_rng_generator, 530
	cmc_num_phases, 511	get_rng_manager, 530
	cmc_sigma_scale, 511	get_size, 530
set_pa	ram_names, 511	get_size_image_stack, 531
set_pri	ior, 511	get_stats, 531
set_ps	f_sigma, 512	get_ubound, 531
set_rn	g_seed, 512	global_max_psf_sigma, 540
set_siz	ze, 512	global_max_size, 541
set_ub	ound, 512	global_min_psf_sigma, 541
sigma_	_scale, 519	global_min_size, 541
size, 5	19	has_hyperparam, 531
Stencil	VecT, 498	ImageCoordT, 524
theta_i	in_bounds, 512	ImagePixelT, 524
theta_s	stack_in_bounds, 513	ImageShapeT, 524
ubound	d, 519	ImageSizeShapeT, 524
mappel::Ga	uss2DsxyModel, 520	ImageSizeVecShapeT, 525
bound	theta, 526	ImageSizeVecT, 525
bounde	ed_theta, 526	ImageSizeT, 525
	ed_theta_stack, 526	ImageStackShapeT, 525
	s_epsilon, 538	ImageStackT, 525
	image_shape, 526, 527	ImageT, 525
	_param_shape, 527	initial_theta_estimate, 531
	_psf_sigma, 527	lbound, 541
	size, 527	make_default_prior, 532
	te_max_sigma_ratio, 528	make_image, 532
•	tConfidenceLevel, 538	make_image_stack, 532
	tEstimatorMethod, 539	make_param, 532
	tMCMCBurnin, 539	make_param_mat, 532
	tMCMCNumSamples, 539	make param mat stack, 532, 533
	tMCMCThin, 539	make_param_stack, 533
	tPriorBetaPos, 539	make_prior_beta_position, 533
	tPriorIntensityKappa, 539	make_prior_component_intensity, 533
	tPriorMaxI, 539	make_prior_component_position_beta, 533
	tPriorMeanl, 539	make_prior_component_position_normal, 534
	tPriorPSFSigmaAlpha, 540	make prior component sigma, 534
	tPriorPixelMeanBG, 540	make_prior_normal_position, 534
	tPriorSigmaPos, 540	make stencil, 534
	tProfileBoundsEstimatorMethod, 540	mcmc_candidate_eta_sigma, 541
		mcmc_candidate_eta_sigma, 541
	tSeperableInitEstimator, 540	
	2DsxyModel, 526	min_sigma, 542
	perparam_index, 528	num_dim, 542
	perparam_names, 528	num_hyperparams, 542
	perparam_value, 528	num_params, 542
	perparams, 528	ParamVecT, 526
	age_from_stack, 528	ParamT, 525
-	ound, 528	pixel_grad, 535
-	ax_sigma, 529	pixel_grad2, 535
get_ma	ax_sigma_ratio, 529	pixel_hess, 535

pixel_hess_update, 535	theta, 845
pixel_model_value, 535	X, 845
prior, 542	x, 842
reflected_theta, 535	Y, 845
reflected_theta_stack, 536	y, 843
rename_hyperparam, 536	mappel::ImageFormat1DBase, 557
sample_mcmc_candidate, 536	check_image_shape, 560
sample_prior, 536	check_size, 560
set_bounds, 536	get_image_from_stack, 560
set_hyperparam_names, 536	get_num_pixels, 560
set_hyperparam_value, 537	get_size, 560, 561
set_hyperparams, 537	get_size_image_stack, 561
set_image_in_stack, 537	get_stats, 561
set_lbound, 537	global_max_size, 562
set_max_sigma, 537	global_min_size, 562
set_max_sigma_ratio, 537	ImageCoordT, 558
set_min_sigma, 537	ImageFormat1DBase, 560
set_param_names, 537	ImagePixeIT, 558
set prior, 537	ImageShapeT, 558
set_rng_seed, 537	ImageSizeShapeT, 559
set size, 538	ImageSizeVecShapeT, 559
set_ubound, 538	ImageSizeVecT, 559
size, 543	ImageSizeT, 559
StencilVecT, 526	ImageStackShapeT, 559
theta_in_bounds, 538	ImageStackT, 559
theta_stack_in_bounds, 538	ImageT, 559
ubound, 543	make_image, 561
update_internal_1D_estimators, 538	make_image_stack, 561
x model, 543	num dim, 562
y_model, 544	set_image_in_stack, 561
mappel::Gauss2DsxyModel::Stencil, 840	set_size, 561, 562
bg, 842	size, 562
compute_derivatives, 842	mappel::ImageFormat2DBase, 563
DXS2, 843	check_image_shape, 566
DXSX, 843	check_size, 566
DXS, 843	get_image_from_stack, 566
DYS2, 844	get_num_pixels, 567
DYSX, 844	get_size, 567
DYSY, 844	get_size_image_stack, 567
DYS, 844	get_stats, 567
derivatives_computed, 843	global_max_size, 568
DX, 843	global_min_size, 568
dx, 843	ImageCoordT, 564
DY, 844	ImageFormat2DBase, 566
dy, 844	ImagePixeIT, 564
Gx, 844	ImageShapeT, 564
Gy, 844	ImageSizeShapeT, 565
I, 842	ImageSizeVecShapeT, 565
model, 844	ImageSizeVecT, 565
operator<<, 843	ImageSizeT, 565
ParamT, 841	ImageStackShapeT, 565
sigmaX, 842	ImageStackT, 565
sigmaY, 842	ImageT, 565
Stencil, 842	make_image, 567

make_image_stack, 567	make_prior_component_sigma, 599
num_dim, 568	num_hyperparams, 605
operator=, 567, 568	num_params, 605
set_image_in_stack, 568	operator=, 599, 600
set_size, 568	ParamVecT, 593
size, 569	ParamT, 593
mappel::LogicalError, 590	prior, 606
LogicalError, 590	reflected_theta, 600
mappel::MAPEstimator, 590	reflected_theta_stack, 600
bound_theta, 594	rename_hyperparam, 600
bounded_theta, 594	sample_prior, 600
bounded_theta_stack, 594	set_bounds, 600
bounds_epsilon, 603	set_hyperparam_names, 601
check_param_shape, 594	set_hyperparam_value, 601
check_psf_sigma, 595	set_hyperparams, 601
DefaultConfidenceLevel, 603	set_lbound, 601
DefaultEstimatorMethod, 603	set_param_names, 601
DefaultMCMCBurnin, 603	set_prior, 601, 602
DefaultMCMCNumSamples, 603	set_rng_seed, 602
DefaultMCMCThin, 603	set_ubound, 602
DefaultPriorBetaPos, 603	theta_in_bounds, 602
DefaultPriorIntensityKappa, 603	theta_stack_in_bounds, 602
DefaultPriorMaxI, 604	ubound, 606
DefaultPriorMeanI, 604	mappel::MCMCAdaptor1Ds, 634
DefaultPriorPSFSigmaAlpha, 604	bound_theta, 638
DefaultPriorPixelMeanBG, 604	bounded_theta, 638
DefaultPriorSigmaPos, 604	bounded_theta_stack, 638
DefaultProfileBoundsEstimatorMethod, 604	bounds_epsilon, 648
DefaultSeperableInitEstimator, 605	check_param_shape, 639
get_hyperparam_index, 595	check_psf_sigma, 639
get_hyperparam_names, 595	DefaultConfidenceLevel, 648
get_hyperparam_value, 595	DefaultEstimatorMethod, 649
get_hyperparams, 595	DefaultMCMCBurnin, 649
get_lbound, 596	DefaultMCMCNumSamples, 649
get_num_hyperparams, 596	DefaultMCMCThin, 649
get_num_params, 596	DefaultPriorBetaPos, 649
get_param_names, 596	DefaultPriorIntensityKappa, 649
get_prior, 596	DefaultPriorMaxI, 649
get_rng_generator, 596	DefaultPriorMeanI, 649
get_rng_manager, 597	DefaultPriorPSFSigmaAlpha, 650
get_stats, 597	DefaultPriorPixelMeanBG, 650
get_ubound, 597	DefaultPriorSigmaPos, 650
global_max_psf_sigma, 605	DefaultProfileBoundsEstimatorMethod, 650
global_min_psf_sigma, 605	DefaultSeperableInitEstimator, 650
has_hyperparam, 597	eta_bg, 650
lbound, 605	eta_I, 651
MAPEstimator, 593, 594	eta_sigma, 651
make_param, 597	eta_x, 651
make_param_mat, 598	get_hyperparam_index, 639
make_param_mat_stack, 598	get_hyperparam_names, 639
make_param_stack, 598	get_hyperparam_value, 640
make_prior_component_intensity, 598	get_hyperparams, 640
make_prior_component_position_beta, 599	get_lbound, 640
make_prior_component_position_normal, 599	get_mcmc_num_phases, 640

get_mcmc_sigma_scale, 640	bound_theta, 619
get_num_hyperparams, 640	bounded_theta, 619
get_num_params, 640	bounded_theta_stack, 619
get_param_names, 641	bounds_epsilon, 629
get_prior, 641	check_param_shape, 620
get_rng_generator, 641	check_psf_sigma, 620
get_rng_manager, 641	DefaultConfidenceLevel, 629
get_stats, 641	DefaultEstimatorMethod, 629
get_ubound, 641	DefaultMCMCBurnin, 630
global_default_mcmc_sigma_scale, 651	DefaultMCMCNumSamples, 630
global_max_mcmc_sigma_scale, 651	DefaultMCMCThin, 630
global_max_psf_sigma, 651	DefaultPriorBetaPos, 630
global_min_psf_sigma, 652	DefaultPriorIntensityKappa, 630
has_hyperparam, 642	DefaultPriorMaxI, 630
lbound, 652	DefaultPriorMeanI, 630
MCMCAdaptor1Ds, 638	DefaultPriorPSFSigmaAlpha, 631
make param, 642	DefaultPriorPixelMeanBG, 630
make_param_mat, 642	DefaultPriorSigmaPos, 631
make_param_mat_stack, 642, 643	DefaultProfileBoundsEstimatorMethod, 631
make param stack, 643	DefaultSeperableInitEstimator, 631
make_prior_component_intensity, 643	eta_bg, 631
make prior component position beta, 643	eta_I, 631
make_prior_component_position_normal, 644	eta_x, 632
make_prior_component_sigma, 644	get_hyperparam_index, 620
num_hyperparams, 652	get_hyperparam_names, 620
num_params, 652	get_hyperparam_value, 621
num_phases, 652	get_hyperparams, 621
operator=, 644	get_lbound, 621
ParamVecT, 637	get_mcmc_num_phases, 621
ParamT, 637	get_mcmc_sigma_scale, 621
prior, 653	get_num_hyperparams, 621
reflected theta, 644	get_num_params, 621
reflected_theta_stack, 645	get_param_names, 622
rename_hyperparam, 645	
	get_prior, 622
sample_mcmc_candidate, 645	get_rng_generator, 622
sample_prior, 645	get_rng_manager, 622
set_background_mcmc_sampling, 646	get_stats, 622
set_bounds, 646	get_ubound, 622
set_hyperparam_names, 646	global_default_mcmc_sigma_scale, 632
set_hyperparam_value, 646	global_max_mcmc_sigma_scale, 632
set_hyperparams, 646	global_max_psf_sigma, 632
set_intensity_mcmc_sampling, 646	global_min_psf_sigma, 632
set_lbound, 647	has_hyperparam, 623
set_mcmc_num_phases, 647	lbound, 632
set_mcmc_sigma_scale, 647	MCMCAdaptor1D, 619
set_param_names, 647	make_param, 623
set_prior, 647	make_param_mat, 623
set_rng_seed, 648	make_param_mat_stack, 623, 624
set_ubound, 648	make_param_stack, 624
sigma_scale, 653	make_prior_component_intensity, 624
theta_in_bounds, 648	make_prior_component_position_beta, 624
theta_stack_in_bounds, 648	make_prior_component_position_normal, 6
ubound, 653	make_prior_component_sigma, 625
2002.12, 000	=

num_params, 633	get_hyperparam_index, 678
num_phases, 633	get_hyperparam_names, 679
operator=, 625	get_hyperparam_value, 679
ParamVecT, 618	get_hyperparams, 679
ParamT, 618	get_lbound, 679
prior, 633	get_mcmc_num_phases, 679
reflected_theta, 625	get_mcmc_sigma_scale, 679
reflected_theta_stack, 626	get_num_hyperparams, 679
rename_hyperparam, 626	get_num_params, 680
sample_mcmc_candidate, 626	get_param_names, 680
sample_prior, 626	get_prior, 680
set_background_mcmc_sampling, 626	get_rng_generator, 680
set_bounds, 627	get_rng_manager, 680
set_hyperparam_names, 627	get_stats, 680
set_hyperparam_value, 627	get_ubound, 680
set_hyperparams, 627	global_default_mcmc_sigma_scale, 690
set_intensity_mcmc_sampling, 627	global_max_mcmc_sigma_scale, 691
set_lbound, 627	global_max_psf_sigma, 691
set_mcmc_num_phases, 628	global_min_psf_sigma, 691
set_mcmc_sigma_scale, 628	has_hyperparam, 681
set_param_names, 628	lbound, 691
set_prior, 628	MCMCAdaptor2Ds, 677
set_rng_seed, 628	make_param, 681
set_ubound, 629	make_param_mat, 681
sigma_scale, 633	make_param_mat_stack, 681, 682
theta_in_bounds, 629	make_param_stack, 682
theta_stack_in_bounds, 629	make_prior_component_intensity, 682
ubound, 634	make_prior_component_position_beta, 682
mappel::MCMCAdaptor2Ds, 673	make_prior_component_position_normal, 683
bound_theta, 677	make_prior_component_sigma, 683
bounded_theta, 677	num_hyperparams, 691
bounded_theta_stack, 678	num_params, 691
bounds_epsilon, 687	num_phases, 692
check_param_shape, 678	operator=, 683
check_psf_sigma, 678	ParamVecT, 676
DefaultConfidenceLevel, 687	ParamT, 676
DefaultEstimatorMethod, 688	prior, 692
DefaultMCMCBurnin, 688	reflected_theta, 683
DefaultMCMCNumSamples, 688	reflected_theta_stack, 684
DefaultMCMCThin, 688	rename_hyperparam, 684
DefaultPriorBetaPos, 688	sample_mcmc_candidate, 684
DefaultPriorIntensityKappa, 688	sample_prior, 684
DefaultPriorMaxI, 688	set_background_mcmc_sampling, 685
DefaultPriorMeanl, 688	set_bounds, 685
DefaultPriorPSFSigmaAlpha, 689	set_hyperparam_names, 685
DefaultPriorPixelMeanBG, 689	set_hyperparam_value, 685
DefaultPriorSigmaPos, 689	set_hyperparams, 685
DefaultProfileBoundsEstimatorMethod, 689	set_intensity_mcmc_sampling, 685
DefaultSeperableInitEstimator, 689	set_lbound, 686
eta_bg, 689	set_mcmc_num_phases, 686
eta_I, 690	set_mcmc_sigma_scale, 686
eta_sigma, 690	set_param_names, 686
eta_x, 690	set_prior, 686
eta_y, 690	set_rng_seed, 687

set_ubound, 687	make_param_mat_stack, 662
sigma_scale, 692	make_param_stack, 662
theta_in_bounds, 687	make_prior_component_intensity, 662
theta_stack_in_bounds, 687	make_prior_component_position_beta, 663
ubound, 692	make_prior_component_position_normal, 663
mappel::MCMCAdaptor2D, 654	make_prior_component_sigma, 663
bound_theta, 658	num_hyperparams, 671
bounded_theta, 658	num_params, 672
bounded_theta_stack, 658	num_phases, 672
bounds_epsilon, 668	operator=, 663, 664
check_param_shape, 658	ParamVecT, 657
check_psf_sigma, 658, 659	ParamT, 657
DefaultConfidenceLevel, 668	prior, 672
DefaultEstimatorMethod, 668	reflected_theta, 664
DefaultMCMCBurnin, 668	reflected_theta_stack, 664
DefaultMCMCNumSamples, 668	rename_hyperparam, 664
DefaultMCMCThin, 668	sample_mcmc_candidate, 664
DefaultPriorBetaPos, 668	sample_prior, 665
DefaultPriorIntensityKappa, 669	set_background_mcmc_sampling, 665
DefaultPriorMaxI, 669	set bounds, 665
DefaultPriorMeanI, 669	set_hyperparam_names, 665
DefaultPriorPSFSigmaAlpha, 669	set_hyperparam_value, 665
DefaultPriorPixelMeanBG, 669	set_hyperparams, 666
DefaultPriorSigmaPos, 669	set_intensity_mcmc_sampling, 666
DefaultProfileBoundsEstimatorMethod, 670	set_lbound, 666
DefaultSeperableInitEstimator, 670	set_mcmc_num_phases, 666
eta_bg, 670	set_mcmc_sigma_scale, 666
eta_I, 670	set_param_names, 666
eta_x, 670	set_prior, 667
eta_y, 670	set_rng_seed, 667
get_hyperparam_index, 659	set_ubound, 667
get hyperparam names, 659	sigma_scale, 672
get_hyperparam_value, 659	theta in bounds, 667
get_hyperparams, 659	theta stack in bounds, 667
get_lbound, 659	ubound, 673
get_mcmc_num_phases, 660	mappel::MCMCAdaptorBase, 693
get_mcmc_sigma_scale, 660	get_mcmc_num_phases, 694
get num hyperparams, 660	get_mcmc_sigma_scale, 694
get num params, 660	get_stats, 694
get_param_names, 660	global_default_mcmc_sigma_scale, 695
get_prior, 660	global_max_mcmc_sigma_scale, 695
get_rng_generator, 661	MCMCAdaptorBase, 694
get rng manager, 661	num_phases, 695
get_stats, 661	set mcmc num phases, 694
get_ubound, 661	set_mcmc_sigma_scale, 695
global default mcmc sigma scale, 671	-
	sigma_scale, 695 mappel::MLEstimator, 704
global_max_mcmc_sigma_scale, 671	,
global_max_psf_sigma, 671	bound_theta, 708
global_min_psf_sigma, 671	bounded_theta, 708
has_hyperparam, 661	bounded_theta_stack, 708
lbound, 671	bounds_epsilon, 717
MCMCAdaptor2D, 657	check_param_shape, 708
make_param, 661	check_psf_sigma, 708, 709
make_param_mat, 662	DefaultConfidenceLevel, 717

DefaultEstimatorMethod, 717	set_param_names, 715
DefaultMCMCBurnin, 717	set_prior, 715, 716
DefaultMCMCNumSamples, 717	set_rng_seed, 716
DefaultMCMCThin, 717	set_ubound, 716
DefaultPriorBetaPos, 717	theta_in_bounds, 716
DefaultPriorIntensityKappa, 717	theta_stack_in_bounds, 716
DefaultPriorMaxI, 718	ubound, 720
DefaultPriorMeanI, 718	mappel::ModelBoundsError, 720
DefaultPriorPSFSigmaAlpha, 718	ModelBoundsError, 721
DefaultPriorPixelMeanBG, 718	mappel::NotImplementedError, 763
DefaultPriorSigmaPos, 718	NotImplementedError, 764
DefaultProfileBoundsEstimatorMethod, 718	mappel::NumericalError, 764
DefaultSeperableInitEstimator, 719	NumericalError, 764
get_hyperparam_index, 709	mappel::ParameterValueError, 767
get_hyperparam_names, 709	ParameterValueError, 767
get_hyperparam_value, 709	mappel::PointEmitterModel, 768
get_hyperparams, 709	bound_theta, 772
get_lbound, 709	bounded_theta, 772
get_num_hyperparams, 710	bounded_theta_stack, 772
get_num_params, 710	bounds epsilon, 780
get_param_names, 710	check param shape, 772
get_prior, 710	check_psf_sigma, 772, 773
get_rng_generator, 710	DefaultConfidenceLevel, 780
get rng manager, 710	DefaultEstimatorMethod, 780
get_stats, 711	DefaultMCMCBurnin, 780
get_ubound, 711	DefaultMCMCNumSamples, 781
global_max_psf_sigma, 719	DefaultMCMCThin, 781
global_min_psf_sigma, 719	DefaultPriorBetaPos, 781
has_hyperparam, 711	DefaultPriorIntensityKappa, 781
Ibound, 719	DefaultPriorMaxI, 781
MLEstimator, 707	DefaultPriorMeanI, 781
make_param, 711	DefaultPriorPSFSigmaAlpha, 782
make_param_mat, 711, 712	DefaultPriorPixelMeanBG, 781
make param mat stack, 712	DefaultPriorSigmaPos, 782
make_param_stack, 712	DefaultProfileBoundsEstimatorMethod, 782
make_prior_component_intensity, 712	DefaultSeperableInitEstimator, 782
make_prior_component_position_beta, 713	get_hyperparam_index, 773
make_prior_component_position_normal, 713	get_hyperparam_names, 773
make_prior_component_sigma, 713	get_hyperparam_value, 773
num_hyperparams, 719	get_hyperparams, 773
num_params, 719	get_lbound, 773
operator=, 713, 714	get_num_hyperparams, 773
ParamVecT, 707	get_num_params, 774
ParamT, 707	get_nam_params, 774 get_param_names, 774
prior, 720	get_param_names, 774 get_prior, 774
reflected theta, 714	
- · · · ·	get_rng_generator, 774
reflected_theta_stack, 714 rename hyperparam, 714	get_rng_manager, 774
- 21 · ·	get_stats, 774
sample_prior, 714	get_ubound, 775
set_bounds, 714	global_max_psf_sigma, 782
set_hyperparam_names, 715	global_min_psf_sigma, 782
set_hyperparam_value, 715	has_hyperparam, 775
set_hyperparams, 715	lbound, 783
set_lbound, 715	make_param, 775

make_param_mat, 775	ModelDataT, 789
make_param_mat_stack, 776	num_dim, 792
make_param_stack, 776	operator=, 791
make_prior_component_intensity, 776	PoissonNoise1DObjective, 789, 790
make_prior_component_position_beta, 776	set_image_in_stack, 792
make_prior_component_position_normal, 777	set_size, 792
make_prior_component_sigma, 777	size, 793
num_hyperparams, 783	mappel::PoissonNoise2DObjective, 793
num_params, 783	check_image_shape, 797
operator=, 777	check_size, 797
ParamVecT, 771	estimator_names, 799
ParamT, 771	get_image_from_stack, 797
PointEmitterModel, 771	get_num_pixels, 798
prior, 783	get_size, 798
reflected_theta, 777	get_size_image_stack, 798
reflected_theta_stack, 778	get_stats, 798
rename_hyperparam, 778	global_max_size, 799
sample_prior, 778	global_min_size, 799
set_bounds, 778	ImageCoordT, 795
set_hyperparam_names, 778	ImagePixeIT, 795
set_hyperparam_value, 778	ImageShapeT, 795
set_hyperparams, 779	ImageSizeShapeT, 795
set_lbound, 779	ImageSizeVecShapeT, 796
set_param_names, 779	ImageSizeVecT, 796
set_prior, 779	ImageSizeT, 795
set_rng_seed, 779	ImageStackShapeT, 796
set_ubound, 779	ImageStackT, 796
theta_in_bounds, 780	ImageT, 796
theta_stack_in_bounds, 780	make_image, 798
ubound, 783	make_image_stack, 798
mappel::PoissonNoise1DObjective, 786	ModelDataStackT, 796
check_image_shape, 790	ModelDataT, 796
check_size, 790	num_dim, 800
estimator_names, 792	operator=, 799
get_image_from_stack, 790	PoissonNoise2DObjective, 797
get_num_pixels, 790	set_image_in_stack, 799
get_size, 790, 791	set_size, 799
get_size_image_stack, 791	size, 800
get_stats, 791	mappel::estimator, 47
global_max_size, 792	Error, 50
global_min_size, 792	ExitCode, 49
ImageCoordT, 788	FunctionValue, 50
ImagePixeIT, 788	GradRatio, 50
ImageShapeT, 788	MaxBacktracks, 50
ImageSizeShapeT, 788	MaxIter, 50
ImageSizeVecShapeT, 788	ModelImprovement, 50
ImageSizeVecT, 788	operator<<, 50
ImageSizeVec1, 788	StepSize, 50
ImageStackShapeT, 789	Success, 50
ImageStackT, 789	TrustRegionRadius, 50
ImageT, 789	Unassigned, 50
make_image, 791	mappel::estimator::CGaussHeuristicEstimator
make_image_stack, 791	CGaussHeuristicEstimator, 93
ModelDataStackT, 789	clear_stats, 93
WOUGIDalaGlack I, 103	∪cai_stats, ₹3

compute_estimate_debug, 93	num_threads, 115
compute_profile_bound, 94	record_exit_code, 113
compute_profile_bound_debug, 94	record_walltime, 114
compute_profile_estimate, 94	total_walltime, 116
estimate_max, 94, 95	mappel::estimator::Estimator
estimate_max_debug, 96	\sim Estimator, 118
estimate_max_stack, 97	clear_stats, 118
estimate_profile_bounds, 98	compute_estimate, 118
estimate_profile_bounds_debug, 98	compute estimate debug, 119
estimate profile bounds parallel, 99	compute_profile_bound, 119
estimate_profile_bounds_stack, 99	compute profile bound debug, 119
estimate profile max, 100	compute_profile_estimate, 119
exit_counts, 102	estimate_max, 120, 121
get_debug_stats, 100	estimate_max_debug, 121, 122
get_exit_counts, 100	estimate_max_stack, 122, 123
get_model, 101	estimate_profile_bounds, 123
get_stats, 101	estimate_profile_bounds_debug, 123
max_threads, 102	estimate profile bounds parallel, 124
model, 102	estimate_profile_bounds_stack, 124
mtx, 102	estimate_profile_max, 124
name, 101	Estimator, 118
num_estimations, 103	exit_counts, 126
num_threads, 103	get_debug_stats, 124
record_exit_code, 101	get_exit_counts, 125
record_exit_code, 101	get_model, 125
	- —
total_walltime, 103	get_stats, 125
mappel::estimator::CGaussHeuristicEstimator< Model >, 92	model, 126
	name, 125
mappel::estimator::CGaussMLE< Model >, 104	num_estimations, 127
mappel::estimator::CGaussMLE	operator<<, 126
CGaussMLE, 105	record_exit_code, 125
clear_stats, 106	record_walltime, 126
compute_profile_bound, 106	total_walltime, 127
compute_profile_bound_debug, 106	mappel::estimator::Estimator< Model >, 116
compute_profile_estimate, 106	mappel::estimator::HeuristicEstimator
DefaultIterations, 114	clear_stats, 546
estimate_max, 106, 107	compute_estimate_debug, 546
estimate_max_debug, 108	compute_profile_bound, 546
estimate_max_stack, 109	compute_profile_bound_debug, 547
estimate_profile_bounds, 110	compute_profile_estimate, 547
estimate_profile_bounds_debug, 110	estimate_max, 547, 548
estimate_profile_bounds_parallel, 111	estimate_max_debug, 549
estimate_profile_bounds_stack, 111	estimate_max_stack, 550
estimate_profile_max, 112	estimate_profile_bounds, 551
exit_counts, 114	estimate_profile_bounds_debug, 551
get_debug_stats, 112	estimate_profile_bounds_parallel, 551
get_exit_counts, 113	estimate_profile_bounds_stack, 552
get_model, 113	estimate_profile_max, 552, 553
get_stats, 113	exit_counts, 555
max_threads, 114	get_debug_stats, 553
model, 115	get_exit_counts, 553
mtx, 115	get_model, 553
name, 113	get_stats, 554
num_estimations, 115	HeuristicEstimator, 546

max_threads, 555	mean_iterations, 584
model, 555	min_eigenvalue_correction_delta, 587
mtx, 555	min_profile_bound_residual, 587
name, 554	model, 587
num_estimations, 556	mtx, 588
num_threads, 556	name, 584
record_exit_code, 554	num_estimations, 588
record_walltime, 554	num_threads, 588
total_walltime, 556	profile_bound_backtrack, 584
mappel::estimator::HeuristicEstimator< Model >, 544	record_exit_code, 584
mappel::estimator::IterativeMaximizer	record_run_statistics, 584
backtrack, 572	record_walltime, 585
backtrack_max_ratio, 585	solve_profile_bound, 585
backtrack_min_linear_step_ratio, 585	total_backtracks, 588
backtrack_min_ratio, 586	total_der_evals, 589
clear_stats, 572	total_fun_evals, 589
compute_estimate, 573	total_iterations, 589
compute_estimate_debug, 573	total_walltime, 589
compute_profile_bound, 573	mappel::estimator::IterativeMaximizer< Model >, 569
compute_profile_bound_debug, 574	mappel::estimator::IterativeMaximizer< Model >:: <
compute_profile_estimate, 574	MaximizerData, 606
convergence_min_function_change_ratio, 586	mappel::estimator::IterativeMaximizer::MaximizerData
convergence_min_step_size_ratio, 586	backtrack_idxs, 612
convergence_test_grad_ratio, 574	current_stencil, 612
convergence_test_step_size, 575	DefaultMaxSeqLength, 613
DefaultIterations, 586	expand_max_seq_len, 609
estimate_max, 575, 576	fixed_idxs, 613
estimate_max_debug, 576, 577	free_idxs, 613
estimate_max_stack, 577, 578	get_backtrack_idxs, 609
estimate_profile_bounds, 578	get_sequence_len, 609
estimate_profile_bounds_debug, 579	get_theta_sequence, 609
estimate_profile_bounds_parallel, 579	get_theta_sequence_rllh, 609
estimate_profile_bounds_stack, 579	grad, 613
estimate_profile_max, 580	has_fixed_parameters, 609
exit_counts, 586	has_theta_sequence, 609
get_debug_stats, 580	im, 613
get_exit_counts, 581	max_seq_len, 613
get_model, 581	MaximizerData, 608
get_stats, 581	nBacktracks, 613
get_total_backtracks, 581	nlterations, 614
get_total_der_evals, 582	num_fixed_parameters, 610
get_total_fun_evals, 582	num_params, 614
get_total_iterations, 582	record_backtrack, 610
IterativeMaximizer, 572	record_iteration, 610
last_backtrack_idxs, 586	restore_stencil, 611
local_maximize, 582	rllh, 614
local_profile_maximize, 582	s0, 614
max_backtracks, 587	s1, 6 14
max_iterations, 587	save_stencil, 611
max_threads, 587	saved_stencil, 611
maximize, 583	saved_theta, 611
mean_backtracks, 583	seq_len, 614
mean_der_evals, 584	seq_rllh, 615
mean_fun_evals, 584	set_fixed_parameters, 611

set_stencil, 612	maximize, 735
stencil, 612	MaximizerData, 724
step, 615	mean_backtracks, 735
theta, 612	mean_der_evals, 736
theta_seq, 615	mean_fun_evals, 736
mappel::estimator::MLEData, 48, 903	mean_iterations, 736
mappel::estimator::MLEDataStack, 48, 903	min_eigenvalue_correction_delta, 740
mappel::estimator::MLEDebugData, 702	min_profile_bound_residual, 740
makeMLEData, 702	model, 740
Nseq, 702	mtx, 740
obsl, 702	name, 736
rllh, 703	NewtonDiagonalMaximizer, 724
sequence, 703	num_estimations, 740
sequence_rllh, 703	num_threads, 741
theta, 703	profile_bound_backtrack, 736
mappel::estimator::NewtonDiagonalMaximizer	record_exit_code, 736
backtrack, 725	record_run_statistics, 737
backtrack_max_ratio, 738	record_walltime, 737
backtrack_min_linear_step_ratio, 738	solve_profile_bound, 737
backtrack_min_ratio, 738	total_backtracks, 741
clear_stats, 725	total_der_evals, 741
compute_estimate, 725	total_fun_evals, 741
compute_estimate_debug, 725	total_iterations, 741
compute_profile_bound, 726	total_walltime, 742
compute_profile_bound_debug, 726	mappel::estimator::NewtonDiagonalMaximizer< Model >,
compute_profile_estimate, 726	721
convergence_min_function_change_ratio, 738	mappel::estimator::NewtonMaximizer
convergence_min_step_size_ratio, 738	backtrack, 746
convergence_test_grad_ratio, 727	backtrack_max_ratio, 759
convergence_test_step_size, 727	backtrack_min_linear_step_ratio, 759
DefaultIterations, 739	backtrack_min_ratio, 759
estimate_max, 727, 728	clear_stats, 746
estimate_max_debug, 729	compute_estimate, 746
estimate_max_stack, 730	compute_estimate_debug, 746
estimate_profile_bounds, 731	compute_profile_bound, 747
estimate_profile_bounds_debug, 731	compute_profile_bound_debug, 747
estimate_profile_bounds_parallel, 731	compute_profile_estimate, 747
estimate_profile_bounds_stack, 731	convergence_min_function_change_ratio, 759
estimate_profile_max, 732	convergence_min_step_size_ratio, 759
exit_counts, 739	convergence_test_grad_ratio, 748
get_debug_stats, 732	convergence_test_step_size, 748
get_exit_counts, 733	DefaultIterations, 760
get_model, 733	estimate_max, 748, 749
get_stats, 733	estimate_max_debug, 750
get_total_backtracks, 733	estimate_max_stack, 751
get_total_der_evals, 734	estimate_profile_bounds, 752
get_total_fun_evals, 734	estimate_profile_bounds_debug, 752
get_total_iterations, 734	estimate_profile_bounds_parallel, 752
last_backtrack_idxs, 739	estimate_profile_bounds_stack, 752
local_maximize, 734	estimate_profile_max, 753
local_profile_maximize, 734	exit_counts, 760
max_backtracks, 739	get_debug_stats, 753
max_iterations, 739	get_exit_counts, 754
max_threads, 739	get_model, 754

get_stats, 754	Ndata, 805
get_total_backtracks, 754	Nparams_est, 805
get_total_der_evals, 755	profile_lb, 806
get_total_fun_evals, 755	profile_points_lb, 806
get_total_iterations, 755	profile_points_lb_rllh, 806
last_backtrack_idxs, 760	profile_points_ub, 806
local_maximize, 755	profile_points_ub_rllh, 806
local_profile_maximize, 755	profile_ub, 806
max_backtracks, 760	target_rllh_delta, 807
max_iterations, 760	mappel::estimator::ProfileBoundsDebugData, 48, 904
max_threads, 760	mappel::estimator::ProfileLikelihoodData, 49, 904
maximize, 756	mappel::estimator::QuasiNewtonMaximizer
MaximizerData, 745	backtrack, 811
mean_backtracks, 756	backtrack_max_ratio, 824
mean_der_evals, 757	backtrack_min_linear_step_ratio, 824
mean_fun_evals, 757	backtrack_min_ratio, 824
mean iterations, 757	clear_stats, 811
min eigenvalue correction delta, 761	compute_estimate, 811
min profile bound residual, 761	compute_estimate_debug, 811
model, 761	compute_profile_bound, 812
mtx, 761	compute_profile_bound_debug, 812
name, 757	compute_profile_estimate, 812
NewtonMaximizer, 745	convergence_min_function_change_ratio, 824
num_estimations, 761	convergence_min_step_size_ratio, 824
num_threads, 762	convergence_test_grad_ratio, 813
profile_bound_backtrack, 757	convergence_test_step_size, 813
record_exit_code, 757	DefaultIterations, 825
record_run_statistics, 758	estimate_max, 813, 814
record_walltime, 758	estimate_max_debug, 815
solve_profile_bound, 758	estimate_max_stack, 816
total_backtracks, 762	estimate_profile_bounds, 817
total_der_evals, 762	estimate_profile_bounds_debug, 817
total_fun_evals, 762	estimate_profile_bounds_parallel, 817
total_iterations, 762	estimate_profile_bounds_stack, 817
total walltime, 763	estimate_profile_max, 818
mappel::estimator::NewtonMaximizer< Model >, 742	exit_counts, 825
mappel::estimator::ProfileBoundsData, 801	get_debug_stats, 818
confidence, 802	get_exit_counts, 819
estimated_idxs, 802	get_model, 819
initialize_arrays, 801	get stats, 819
mle, 802	get_total_backtracks, 819
Nparams_est, 802	get_total_der_evals, 820
profile lb, 802	get_total_der_evals, 820
profile points lb, 802	get_total_iterations, 820
profile_points_lb_rllh, 803	last_backtrack_idxs, 825
profile_points_ub, 803	local_maximize, 820
profile_points_ub_rllh, 803	local_profile_maximize, 820
. – –	max backtracks, 825
profile_ub, 803	-
target_rilh_delta, 803	max_iterations, 825
mappel::estimator::ProfileBoundsDataStack, 804	max_threads, 825
confidence, 805	maximize, 821
estimated_idxs, 805	MaximizerData, 810
initialize_arrays, 805	mean_backtracks, 821
mle, 805	mean_der_evals, 822

mean_fun_evals, 822	mappel::estimator::ThreadedEstimator
mean_iterations, 822	clear_stats, 865
min_eigenvalue_correction_delta, 826	compute_estimate, 865
min_profile_bound_residual, 826	compute_estimate_debug, 866
model, 826	compute_profile_bound, 866
mtx, 826	compute_profile_bound_debug, 866
name, 822	compute_profile_estimate, 866
num_estimations, 826	estimate_max, 867, 868
num_threads, 827	estimate_max_debug, 868, 869
profile bound backtrack, 822	estimate_max_stack, 869, 870
QuasiNewtonMaximizer, 810	estimate_profile_bounds, 870
record_exit_code, 822	estimate_profile_bounds, 676 estimate_profile_bounds_debug, 870
record_run_statistics, 823	estimate_profile_bounds_debug, 676 estimate_profile_bounds_parallel, 871
	estimate_profile_bounds_stack, 871
record_walltime, 823	
solve_profile_bound, 823	estimate_profile_max, 872
total_backtracks, 827	exit_counts, 874
total_der_evals, 827	get_debug_stats, 872
total_fun_evals, 827	get_exit_counts, 873
total_iterations, 827	get_model, 873
total_walltime, 828	get_stats, 873
mappel::estimator::QuasiNewtonMaximizer< Model >,	max_threads, 874
807	model, 875
mappel::estimator::SimulatedAnnealingMaximizer	mtx, 875
clear_stats, 830	name, 873
compute_profile_bound, 830	num_estimations, 875
compute_profile_bound_debug, 831	num_threads, 875
Default_T_Init, 838	record_exit_code, 874
DefaultCoolingRate, 838	record_walltime, 874
DefaultNumIterations, 838	ThreadedEstimator, 865
estimate_max, 831, 832	total_walltime, 876
estimate_max_debug, 832, 833	mappel::estimator::ThreadedEstimator < Model >, 863
estimate_max_stack, 833, 834	mappel::estimator::TrustRegionMaximizer
estimate_profile_bounds, 834	backtrack, 880
estimate_profile_bounds_debug, 835	backtrack_max_ratio, 894
estimate_profile_bounds_parallel, 835	backtrack_min_linear_step_ratio, 894
estimate_profile_bounds_stack, 835	backtrack_min_ratio, 894
estimate_profile_max, 836	clear_stats, 880
exit_counts, 839	compute_estimate, 880
get_debug_stats, 836	compute_estimate_debug, 881
get_exit_counts, 837	compute_profile_bound, 881
get_model, 837	compute_profile_bound_debug, 881
get_stats, 837	compute profile estimate, 882
max_threads, 839	convergence min function change ratio, 894
model, 839	convergence_min_step_size_ratio, 894
mtx, 839	convergence_min_trust_radius, 895
name, 837	convergence test grad ratio, 882
num_estimations, 839	convergence_test_step_size, 882
num_threads, 840	DefaultIterations, 895
record_exit_code, 837	estimate_max, 882, 883
record_walltime, 838	estimate_max_debug, 884
SimulatedAnnealingMaximizer, 830	estimate_max_debug, 664 estimate_max_stack, 885
total_walltime, 840	estimate_max_stack, 663 estimate_profile_bounds, 886
mappel::estimator::SimulatedAnnealingMaximizer<	estimate_profile_bounds_debug, 886
Model >, 828	estimate_profile_bounds_parallel, 887

	estimate_profile_bounds_stack, 887	compute quadratic model value, 52
	estimate_profile_max, 888	compute_scaled_problem, 52
	exit_counts, 895	solve_TR_subproblem, 53
	get_debug_stats, 888	solve_profile_initial_step, 53
	get_exit_counts, 889	solve_restricted_step_length_newton, 53
	get_model, 889	mappel::mcmc, 53
	get_stats, 889	compute_posterior_credible, 54
	get_total_backtracks, 889	estimate_sample_posterior, 54
	get_total_der_evals, 890	num_oversample, 54
	get_total_fun_evals, 890	sample_posterior, 54
	get_total_iterations, 890	sample_posterior_debug, 54
	last backtrack idxs, 895	thin_sample, 55
	local_maximize, 890	mappel::mcmc::MCMCData, 696
	local_profile_maximize, 890	confidence, 696
	max_backtracks, 895	credible_lb, 696
	max_iterations, 895	credible_ub, 697
	max_threads, 896	initialize_arrays, 696
	maximize, 891	Nburnin, 697
	Maximizer, 879	Nsample, 697
	mean_backtracks, 891	sample, 697
	mean_der_evals, 892	sample_cov, 697
	mean_fun_evals, 892	sample_mean, 697
	mean_iterations, 892	sample_rllh, 697
	min eigenvalue correction delta, 896	thin, 698
	min_profile_bound_residual, 896	mappel::mcmc::MCMCDataStack, 698
	model, 896	confidence, 699
		credible_lb, 699
	mtx, 896	credible_ub, 699
	name, 892	
	num_estimations, 897	initialize_arrays, 699
	num_threads, 897	Nburnin, 699
	profile_bound_backtrack, 892	Ndata, 699
	record_exit_code, 892	Nsample, 699
	record_run_statistics, 893	sample, 699
	record_walltime, 893	sample_cov, 699
	rho_cauchy_min, 897	sample_mean, 700
	rho_obj_min, 897	sample_rllh, 700
	rho_obj_opt, 897	thin, 700
	solve_profile_bound, 893	mappel::mcmc::MCMCDebugData, 700
	total_backtracks, 898	candidate, 701
	total_der_evals, 898	candidate_rllh, 701
	total_fun_evals, 898	initialize_arrays, 701
	total_iterations, 898	Nsample, 701
	total_walltime, 898	sample, 701
	trust_radius_decrease, 898	sample_rllh, 701
	trust_radius_decrease_min, 899	mappel::methods, 55
	trust_radius_increase, 899	aposteriori_objective, 58
	TrustRegionMaximizer, 880	cr_lower_bound, 59
	opel::estimator::TrustRegionMaximizer< Model >, 876	error_bounds_expected, 59
map	opel::estimator::subroutine, 50	error_bounds_observed, 59
	bound_step, 51	error_bounds_posterior_credible, 59
	compute_D_scale, 52	error_bounds_profile_likelihood, 59, 60
	compute_bound_scaling_vec, 51	estimate_max, 60
	compute_cauchy_point, 52	estimate_posterior, 60, 61
	compute initial trust radius, 52	estimate profile likelihood, 61

expected_information, 61, 62	MappelError
likelihood_objective, 62	mappel, 27
make_estimator, 63	MatT
model_image, 63	mappel, 28
observed_information, 64	max_backtracks
prior_objective, 64	mappel::estimator::IterativeMaximizer, 587
simulate_image, 64, 65	mappel::estimator::NewtonDiagonalMaximizer, 739
simulate_image_from_model, 65, 66	mappel::estimator::NewtonMaximizer, 760
mappel::methods::debug, 66	mappel::estimator::QuasiNewtonMaximizer, 825
error_bounds_profile_likelihood_debug, 67	mappel::estimator::TrustRegionMaximizer, 895
estimate_max_debug, 67	max_iterations
estimate_posterior_debug, 67	mappel::estimator::IterativeMaximizer, 587
mappel::methods::likelihood, 67	mappel::estimator::NewtonDiagonalMaximizer, 739
grad, 68	mappel::estimator::NewtonMaximizer, 760
grad2, 68, 69	mappel::estimator::QuasiNewtonMaximizer, 825
hessian, 69	mappel::estimator::TrustRegionMaximizer, 895
Ilh, 69	max_seq_len
rllh, 69, 70	mappel::estimator::IterativeMaximizer::Maximizer ←
mappel::methods::likelihood::debug, 70	Data, 613
grad_components, 71	max_threads
hessian_components, 71	mappel::estimator::CGaussHeuristicEstimator, 102
Ilh_components, 71	mappel::estimator::CGaussMLE, 114
rllh_components, 71, 72	mappel::estimator::HeuristicEstimator, 555
mappel::methods::objective, 72	mappel::estimator::IterativeMaximizer, 587
grad, 73, 74	mappel::estimator::NewtonDiagonalMaximizer, 739
grad2, 74	mappel::estimator::NewtonMaximizer, 760
hessian, 74, 75	mappel::estimator::QuasiNewtonMaximizer, 825
Ilh, 75	mappel::estimator::SimulatedAnnealingMaximizer,
negative_definite_hessian, 76	839
rllh, 76	mappel::estimator::ThreadedEstimator, 874
mappel::methods::objective::debug, 77	mappel::estimator::TrustRegionMaximizer, 896
grad_components, 78	MaxBacktracks
hessian_components, 78	mappel::estimator, 50
Ilh_components, 78, 79	MaxIter
rllh_components, 79	mappel::estimator, 50
mappel::methods::objective::openmp, 79	maxidx
grad_stack, 80	mappel, 40
hessian_stack, 80	maximize
Ilh_stack, 81, 82	mappel::estimator::IterativeMaximizer, 583
negative_definite_hessian_stack, 82	mappel::estimator::NewtonDiagonalMaximizer, 735
rllh_stack, 83	mappel::estimator::NewtonMaximizer, 756
mappel::methods::openmp, 84	mappel::estimator::QuasiNewtonMaximizer, 821
cr_lower_bound_stack, 85	mappel::estimator::TrustRegionMaximizer, 891
error_bounds_expected_stack, 85	MaximizerData
error_bounds_observed_stack, 85	mappel::estimator::IterativeMaximizer::Maximizer ←
error_bounds_profile_likelihood_parallel, 85	Data, 608
error_bounds_profile_likelihood_stack, 86	mappel::estimator::NewtonDiagonalMaximizer, 724
estimate_max_stack, 86	mappel::estimator::NewtonMaximizer, 745
estimate_posterior_stack, 87	mappel::estimator::QuasiNewtonMaximizer, 810
estimate_profile_likelihood_stack, 87	mappel::estimator::TrustRegionMaximizer, 879
expected_information_stack, 87	mcmc.cpp, 928
model_image_stack, 87	mcmc.h, 929
sample_prior_stack, 88	mcmc_candidate_eta_sigma
simulate_image_stack, 88	mappel::Gauss2DsxyModel, 541

mcmc_candidate_eta_y	mappel::estimator::CGaussMLE, 115
mappel::Gauss2DsxyModel, 541	mappel::estimator::Estimator, 126
mcmc_data.h, 930	mappel::estimator::HeuristicEstimator, 555
mean_backtracks	mappel::estimator::IterativeMaximizer, 587
mappel::estimator::IterativeMaximizer, 583	mappel::estimator::NewtonDiagonalMaximizer, 740
mappel::estimator::NewtonDiagonalMaximizer, 735	mappel::estimator::NewtonMaximizer, 761
mappel::estimator::NewtonMaximizer, 756	mappel::estimator::QuasiNewtonMaximizer, 826
mappel::estimator::QuasiNewtonMaximizer, 821	mappel :: estimator :: Simulated Annealing Maximizer,
mappel::estimator::TrustRegionMaximizer, 891	839
mean_der_evals	mappel::estimator::ThreadedEstimator, 875
mappel::estimator::IterativeMaximizer, 584	mappel::estimator::TrustRegionMaximizer, 896
mappel::estimator::NewtonDiagonalMaximizer, 736	model_grad
mappel::estimator::NewtonMaximizer, 757	PoissonGaussianNoise2DObjective.h, 953
mappel::estimator::QuasiNewtonMaximizer, 822	model_grad2
mappel::estimator::TrustRegionMaximizer, 892	PoissonGaussianNoise2DObjective.h, 954
mean_fun_evals	model_hessian
mappel::estimator::IterativeMaximizer, 584	PoissonGaussianNoise2DObjective.h, 954
mappel::estimator::NewtonDiagonalMaximizer, 736	model_image
mappel::estimator::NewtonMaximizer, 757	mappel::methods, 63
mappel::estimator::QuasiNewtonMaximizer, 822	PoissonGaussianNoise2DObjective.h, 954
mappel::estimator::TrustRegionMaximizer, 892	model_image_stack
mean_iterations	mappel::methods::openmp, 87
mappel::estimator::IterativeMaximizer, 584	model_methods.h, 938
mappel::estimator::NewtonDiagonalMaximizer, 736	model_methods_impl.h, 941
mappel::estimator::NewtonMaximizer, 757 mappel::estimator::QuasiNewtonMaximizer, 822	ModelBoundsError
mappel::estimator::TrustRegionMaximizer, 892	mappel::ModelBoundsError, 721 ModelDataStackT
min_eigenvalue_correction_delta	mappel, 28
mappel::estimator::lterativeMaximizer, 587	mappel::Gauss1DMAP, 133
mappel::estimator::NewtonDiagonalMaximizer, 740	mappel::Gauss1DMLE, 162
mappel::estimator::NewtonMaximizer, 761	mappel::Gauss1DsMAP, 219
mappel::estimator::QuasiNewtonMaximizer, 826	mappel::Gauss1DsMLE, 248
mappel::estimator::TrustRegionMaximizer, 896	mappel::Gauss2DMAP, 307
min_profile_bound_residual	mappel::Gauss2DMLE, 338
mappel::estimator::IterativeMaximizer, 587	mappel::Gauss2DsMAP, 400
mappel::estimator::NewtonDiagonalMaximizer, 740	mappel::Gauss2DsMLE, 433
mappel::estimator::NewtonMaximizer, 761	mappel::Gauss2DsxyMAP, 497
mappel::estimator::QuasiNewtonMaximizer, 826	mappel::PoissonNoise1DObjective, 789
mappel::estimator::TrustRegionMaximizer, 896	mappel::PoissonNoise2DObjective, 796
min_sigma	PoissonGaussianNoise2DObjective, 785
mappel::Gauss2DsMAP, 423	ModelDataT
mappel::Gauss2DsMLE, 456	mappel, 28
mappel::Gauss2DsModel, 489	mappel::Gauss1DMAP, 133
mappel::Gauss2DsxyModel, 542	mappel::Gauss1DMLE, 162
mle	mappel::Gauss1DsMAP, 219
mappel::estimator::ProfileBoundsData, 802	mappel::Gauss1DsMLE, 248
mappel::estimator::ProfileBoundsDataStack, 805	mappel::Gauss2DMAP, 307
model	mappel::Gauss2DMLE, 338
mappel::Gauss1DModel::Stencil, 863	mappel::Gauss2DsMAP, 400
mappel::Gauss1DsModel::Stencil, 849	mappel::Gauss2DsMLE, 433
mappel::Gauss2DModel::Stencil, 853	mappel::Gauss2DsxyMAP, 498
mappel::Gauss2DsModel::Stencil, 859	mappel::PoissonNoise1DObjective, 789
mappel::Gauss2DsxyModel::Stencil, 844	mappel::PoissonNoise2DObjective, 796
mappel::estimator::CGaussHeuristicEstimator, 102	PoissonGaussianNoise2DObjective, 785

ModelImprovement	mappel::methods::objective::openmp, 82
mappel::estimator, 50	NewtonDiagonalMaximizer
modified_cholesky	mappel::estimator::NewtonDiagonalMaximizer, 724
mappel, 40	NewtonMaximizer
mtx	mappel::estimator::NewtonMaximizer, 745
mappel::estimator::CGaussHeuristicEstimator, 102	norm_sq
mappel::estimator::CGaussMLE, 115	mappel, 40
mappel::estimator::HeuristicEstimator, 555	normal_prior_grad
mappel::estimator::IterativeMaximizer, 588	mappel, 40
mappel::estimator::NewtonDiagonalMaximizer, 740	normal_prior_grad2
mappel::estimator::NewtonMaximizer, 761	mappel, 40
mappel::estimator::QuasiNewtonMaximizer, 826	normal_quantile_onesided
mappel :: estimator :: Simulated Annealing Maximizer,	mappel, 40
839	normal_quantile_twosided
mappel::estimator::ThreadedEstimator, 875	mappel, 41
mappel::estimator::TrustRegionMaximizer, 896	NotImplementedError
	mappel::NotImplementedError, 764
nBacktracks	Nparams_est
mappel::estimator::IterativeMaximizer::Maximizer ←	mappel::estimator::ProfileBoundsData, 802
Data, 613	mappel::estimator::ProfileBoundsDataStack, 805
nlterations	Nsample
mappel::estimator::IterativeMaximizer::Maximizer ←	mappel::mcmc::MCMCData, 697
Data, 614	mappel::mcmc::MCMCDataStack, 699
name	mappel::mcmc::MCMCDebugData, 701
mappel::Gauss1DMAP, 153	Nseq
mappel::Gauss1DMLE, 182	mappel::estimator::MLEDebugData, 702
mappel::Gauss1DsMAP, 240	num_dim
mappel::Gauss1DsMLE, 269	mappel::Gauss1DMAP, 154
mappel::Gauss2DMAP, 328	mappel::Gauss1DMLE, 183
mappel::Gauss2DMLE, 359	mappel::Gauss1DModel, 210
mappel::Gauss2DsMAP, 423	mappel::Gauss1DsMAP, 240
mappel::Gauss2DsMLE, 457	mappel::Gauss1DsMLE, 269
mappel::Gauss2DsxyMAP, 517	mappel::Gauss1DsModel, 298
mappel::estimator::CGaussHeuristicEstimator, 101	mappel::Gauss2DMAP, 329
mappel::estimator::CGaussMLE, 113	mappel::Gauss2DMLE, 360
mappel::estimator::Estimator, 125	mappel::Gauss2DModel, 390
mappel::estimator::HeuristicEstimator, 554	mappel::Gauss2DsMAP, 424
mappel::estimator::IterativeMaximizer, 584	mappel::Gauss2DsMLE, 457
mappel::estimator::NewtonDiagonalMaximizer, 736	mappel::Gauss2DsModel, 489
mappel::estimator::NewtonMaximizer, 757	mappel::Gauss2DsxyMAP, 517
mappel::estimator::QuasiNewtonMaximizer, 822	mappel::Gauss2DsxyModel, 542
mappel::estimator::SimulatedAnnealingMaximizer,	mappel::ImageFormat1DBase, 562
837	mappel::ImageFormat2DBase, 568
mappel::estimator::ThreadedEstimator, 873	mappel::PoissonNoise1DObjective, 792
mappel::estimator::TrustRegionMaximizer, 892	mappel::PoissonNoise2DObjective, 800
Nburnin	num_estimations
mappel::mcmc::MCMCData, 697	mappel::estimator::CGaussHeuristicEstimator, 103
mappel::mcmc::MCMCDataStack, 699	mappel::estimator::CGaussMLE, 115
Ndata	mappel::estimator::Estimator, 127
mappel::estimator::ProfileBoundsDataStack, 805	mappel::estimator::HeuristicEstimator, 556
mappel::mcmc::MCMCDataStack, 699	mappel::estimator::IterativeMaximizer, 588
negative_definite_hessian	mappel::estimator::NewtonDiagonalMaximizer, 740
mappel::methods::objective, 76	mappel::estimator::NewtonMaximizer, 761
negative_definite_hessian_stack	mappel::estimator::QuasiNewtonMaximizer, 826

mappel::estimator::SimulatedAnnealingMaximizer, 839	mappel::estimator::IterativeMaximizer::Maximizer ↔ Data, 614
mappel::estimator::ThreadedEstimator, 875	num_phases
mappel::estimator::TrustRegionMaximizer, 897	mappel::Gauss1DMAP, 154
num_fixed_parameters	mappel::Gauss1DMLE, 183
mappel::estimator::IterativeMaximizer::Maximizer↔	mappel::Gauss1DModel, 211
Data, 610	mappel::Gauss1DsMAP, 241
num_hyperparams	mappel::Gauss1DsMLE, 270
mappel::Gauss1DMAP, 154	mappel::Gauss1DsModel, 298
mappel::Gauss1DMLE, 183	mappel::Gauss2DMAP, 329
mappel::Gauss1DModel, 211	mappel::Gauss2DMLE, 360
mappel::Gauss1DsMAP, 240	mappel::Gauss2DModel, 390
mappel::Gauss1DsMLE, 269	mappel::Gauss2DsMAP, 424
mappel::Gauss1DsModel, 298	mappel::Gauss2DsMLE, 457
mappel::Gauss2DMAP, 329	mappel::Gauss2DsModel, 489
mappel::Gauss2DMLE, 360	mappel::Gauss2DsxyMAP, 518
mappel::Gauss2DModel, 390	mappel::MCMCAdaptor1Ds, 652
mappel::Gauss2DsMAP, 424	mappel::MCMCAdaptor1D, 633
• •	mappel::MCMCAdaptor2Ds, 692
mappel::Gauss2DsMLE, 457	mappel::MCMCAdaptor2D, 672
mappel::Gauss2DsModel, 489	mappel::MCMCAdaptorBase, 695
mappel::Gauss2DsxyMAP, 517	num_threads
mappel::Gauss2DsxyModel, 542	mappel::estimator::CGaussHeuristicEstimator, 103
mappel::MAPEstimator, 605	mappel::estimator::CGaussMLE, 115
mappel::MCMCAdaptor1Ds, 652	mappel::estimator::HeuristicEstimator, 556
mappel::MCMCAdaptor1D, 633	mappel::estimator::IterativeMaximizer, 588
mappel::MCMCAdaptor2Ds, 691	mappel::estimator::NewtonDiagonalMaximizer, 741
mappel::MCMCAdaptor2D, 671	mappel::estimator::NewtonMaximizer, 762
mappel::MLEstimator, 719	mappel::estimator::QuasiNewtonMaximizer, 827
mappel::PointEmitterModel, 783	mappel::estimator::SimulatedAnnealingMaximizer,
num_oversample	840
mappel::mcmc, 54	mappel::estimator::ThreadedEstimator, 875
num_params	mappel::estimator::TrustRegionMaximizer, 897
mappel::Gauss1DMAP, 154	numerical.cpp, 944
mappel::Gauss1DMLE, 183	numerical.h, 945
mappel::Gauss1DModel, 211	NumericalError
mappel::Gauss1DsMAP, 240	mappel::NumericalError, 764
mappel::Gauss1DsMLE, 270	mappointamonoaiznoi, 701
mappel::Gauss1DsModel, 298	OMPExceptionCatcher
mappel::Gauss2DMAP, 329	omp_exception_catcher, 89
mappel::Gauss2DMLE, 360	omp_exception_catcher::impl_::OMPException←
mappel::Gauss2DModel, 390	Catcher, 765
mappel::Gauss2DsMAP, 424	OMPExceptionCatcher.h, 946
mappel::Gauss2DsMLE, 457	observed_information
mappel::Gauss2DsModel, 489	mappel::methods, 64
mappel::Gauss2DsxyMAP, 517	obsl
mappel::Gauss2DsxyModel, 542	mappel::estimator::MLEDebugData, 702
mappel::MAPEstimator, 605	omp exception catcher, 89
mappel::MCMCAdaptor1Ds, 652	Abort, 90
mappel::MCMCAdaptor1D, 633	Continue, 90
mappel::MCMCAdaptor2Ds, 691	DoNotTry, 90
mappel::MCMCAdaptor2D, 672	OMPExceptionCatcher, 89
mappel::MLEstimator, 719	RethrowFirst, 90
mappel::PointEmitterModel, 783	Strategy, 90
	UJ ,

omp_exception_catcher::impl_, 90	mappel::Gauss2DMAP, 307
omp_exception_catcher::impl_::OMPExceptionCatcher	mappel::Gauss2DMLE, 338
OMPExceptionCatcher, 765	mappel::Gauss2DModel, 369
rethrow, 766	mappel::Gauss2DsMAP, 400
run, 766	mappel::Gauss2DsMLE, 434
setGlobalDefaultStrategy, 766	mappel::Gauss2DsModel, 467
omp_exception_catcher::impl_::OMPExceptionCatcher<	mappel::Gauss2DsxyMAP, 498
_dummy >, 765	mappel::Gauss2DsxyModel, 526
openmp_methods.h, 947	mappel::MAPEstimator, 593
operator<<	mappel::MCMCAdaptor1Ds, 637
mappel, 41	mappel::MCMCAdaptor1D, 618
mappel::Gauss1DModel::Stencil, 862	mappel::MCMCAdaptor2Ds, 676
mappel::Gauss1DsModel::Stencil, 848	mappel::MCMCAdaptor2D, 657
mappel::Gauss2DModel::Stencil, 852	mappel::MLEstimator, 707
mappel::Gauss2DsModel::Stencil, 857	mappel::PointEmitterModel, 771
mappel::Gauss2DsxyModel::Stencil, 843	ParameterValueError
mappel::estimator, 50	mappel::ParameterValueError, 767
mappel::estimator::Estimator, 126	ParamT
operator=	mappel, 28
mappel::Gauss1DMAP, 144	mappel::Gauss1DMAP, 133
mappel::Gauss1DMLE, 173	mappel::Gauss1DMLE, 162
mappel::Gauss1DModel, 201	mappel::Gauss1DModel, 191
mappel::Gauss1DsMAP, 229, 230	mappel::Gauss1DModel::Stencil, 860
mappel::Gauss1DsMLE, 259	mappel::Gauss1DsMAP, 219
mappel::Gauss1DsModel, 288	mappel::Gauss1DsMLE, 248
mappel::Gauss2DMAP, 318, 319	mappel::Gauss1DsModel, 278
mappel::Gauss2DMLE, 349, 350	mappel::Gauss1DsModel::Stencil, 846
mappel::Gauss2DModel, 380	mappel::Gauss2DMAP, 307
mappel::Gauss2DsMAP, 412	mappel::Gauss2DMLE, 338
mappel::Gauss2DsMLE, 446	mappel::Gauss2DModel, 369
mappel::Gauss2DsModel, 478	mappel::Gauss2DModel::Stencil, 850
mappel::ImageFormat2DBase, 567, 568	mappel::Gauss2DsMAP, 400
mappel::MAPEstimator, 599, 600	mappel::Gauss2DsMLE, 433
mappel::MCMCAdaptor1Ds, 644	mappel::Gauss2DsModel, 467
mappel::MCMCAdaptor1D, 625	mappel::Gauss2DsModel::Stencil, 855
mappel::MCMCAdaptor2Ds, 683	mappel::Gauss2DsxyMAP, 498
mappel::MCMCAdaptor2D, 663, 664	mappel::Gauss2DsxyModel, 525
mappel::MLEstimator, 713, 714	mappel::Gauss2DsxyModel::Stencil, 841
mappel::PointEmitterModel, 777	mappel::MAPEstimator, 593
mappel::PoissonNoise1DObjective, 791	mappel::MCMCAdaptor1Ds, 637
mappel::PoissonNoise2DObjective, 799	mappel::MCMCAdaptor1D, 618
mappoint diccontrolog_bodito, 700	mappel::MCMCAdaptor2Ds, 676
ParallelRngGeneratorT	mappel::MCMCAdaptor2D, 657
mappel, 28	mappel::MLEstimator, 707
ParallelRngManagerT	mappel::PointEmitterModel, 771
mappel, 28	pareto_prior_grad
ParamVecT	mappel, 42
mappel, 28	pareto_prior_grad2
mappel::Gauss1DMAP, 133	mappel, 42
···	• •
mappel::Gauss1DMLE, 162 mappel::Gauss1DModel, 191	pixel_grad
• •	mappel::Gauss1DMAP, 144
mappel::Gauss1DsMAP, 219	mappel::Gauss1DMLE, 173
mappel::Gauss1DsMLE, 248	mappel::Gauss1DModel, 201
mappel::Gauss1DsModel, 278	mappel::Gauss1DsMAP, 230

mappel::Gauss1DsMLE, 259	mappel::Gauss2DsxyModel, 535
mappel::Gauss1DsModel, 288	pixel_model_value
mappel::Gauss2DMAP, 319	mappel::Gauss1DMAP, 145
mappel::Gauss2DMLE, 350	mappel::Gauss1DMLE, 174
mappel::Gauss2DModel, 380	mappel::Gauss1DModel, 202
mappel::Gauss2DsMAP, 413	mappel::Gauss1DsMAP, 230
mappel::Gauss2DsMLE, 446	mappel::Gauss1DsMLE, 260
mappel::Gauss2DsModel, 478	mappel::Gauss1DsModel, 289
mappel::Gauss2DsxyMAP, 508	mappel::Gauss2DMAP, 319
mappel::Gauss2DsxyModel, 535	mappel::Gauss2DMLE, 350
pixel_grad2	mappel::Gauss2DModel, 381
mappel::Gauss1DMAP, 144	mappel::Gauss2DsMAP, 413
mappel::Gauss1DMLE, 173	mappel::Gauss2DsMLE, 447
mappel::Gauss1DModel, 201	mappel::Gauss2DsModel, 479
mappel::Gauss1DsMAP, 230	mappel::Gauss2DsxyMAP, 508
mappel::Gauss1DsMLE, 259	mappel::Gauss2DsxyModel, 535
mappel::Gauss1DsModel, 288	PointEmitterModel
mappel::Gauss2DMAP, 319	mappel::PointEmitterModel, 771
mappel::Gauss2DMLE, 350	PointEmitterModel.cpp, 950
mappel::Gauss2DModel, 380	PointEmitterModel.h, 951
mappel::Gauss2DsMAP, 413	poisson_log_likelihood
mappel::Gauss2DsMLE, 446	mappel, 42
mappel::Gauss2DsModel, 478	PoissonGaussianNoise2DObjective
mappel::Gauss2DsxyMAP, 508	CoordidxT, 785
mappel::Gauss2DsxyModel, 535	CoordStackT, 785
pixel_hess	CoordT, 785
mappel::Gauss1DMAP, 144	estimator_names, 785
mappel::Gauss1DMLE, 173	ModelDataStackT, 785
mappel::Gauss1DModel, 201	ModelDataT, 785
mappel::Gauss1DsMAP, 230	PoissonGaussianNoise2DObjective, 785
mappel::Gauss1DsMLE, 259	sensor_bg_map, 785
mappel::Gauss1DsModel, 288	sensor_gain_map, 786
mappel::Gauss2DMAP, 319	PoissonGaussianNoise2DObjective< ModelBase >, 784
mappel::Gauss2DMAF, 319	PoissonGaussianNoise2DObjective https://www.noise2DObjectivehttps://www.noise2DObjectivehttps://www.noise2DObjectivehttps://www.noise2DObjectivehttps://www.noise2DObjective.cpp, 764
·	
mappel::Gauss2DModel, 381	PoissonGaussianNoise2DObjective.h, 952
mappel::Gauss2DsMAP, 413	fisher_information, 953
mappel::Gauss2DsMLE, 446	log_likelihood, 953
mappel::Gauss2DsModel, 479	make_estimator, 953
mappel::Gauss2DsxyMAP, 508	model_grad, 953
mappel::Gauss2DsxyModel, 535	model_grad2, 954
pixel_hess_update	model_hessian, 954
mappel::Gauss1DMAP, 144	model_image, 954
mappel::Gauss1DMLE, 173	relative_log_likelihood, 954
mappel::Gauss1DModel, 201	simulate_image, 954
mappel::Gauss1DsMAP, 230	PoissonNoise1DObjective
mappel::Gauss1DsMLE, 260	mappel::PoissonNoise1DObjective, 789, 790
mappel::Gauss1DsModel, 288	PoissonNoise1DObjective.cpp, 955
mappel::Gauss2DMAP, 319	PoissonNoise1DObjective.h, 955
mappel::Gauss2DMLE, 350	PoissonNoise2DObjective
mappel::Gauss2DModel, 381	mappel::PoissonNoise2DObjective, 797
mappel::Gauss2DsMAP, 413	PoissonNoise2DObjective.cpp, 957
mappel::Gauss2DsMLE, 447	PoissonNoise2DObjective.h, 957
mappel::Gauss2DsModel, 479	print_centered_title
mappel::Gauss2DsxyMAP, 508	mappel, 42

print_image	mappel::estimator::ProfileBoundsDataStack, 806
mappel, 42	profile_points_lb
print_labeled_image	mappel::estimator::ProfileBoundsData, 802
mappel, 43	mappel::estimator::ProfileBoundsDataStack, 806
print_text_image	profile_points_lb_rllh
mappel, 43	mappel::estimator::ProfileBoundsData, 803
print_vec_row	mappel::estimator::ProfileBoundsDataStack, 806
mappel, 43	profile_points_ub
prior	mappel::estimator::ProfileBoundsData, 803
mappel::Gauss1DMAP, 154	mappel::estimator::ProfileBoundsDataStack, 806
mappel::Gauss1DMLE, 183	profile_points_ub_rllh
mappel::Gauss1DModel, 211	mappel::estimator::ProfileBoundsData, 803
mappel::Gauss1DsMAP, 241	mappel::estimator::ProfileBoundsDataStack, 806
mappel::Gauss1DsMLE, 270	profile_ub
mappel::Gauss1DsModel, 299	mappel::estimator::ProfileBoundsData, 803
mappel::Gauss2DMAP, 329	mappel::estimator::ProfileBoundsDataStack, 806
mappel::Gauss2DMLE, 360	psf_sigma
mappel::Gauss2DModel, 391	mappel::Gauss1DMAP, 155
mappel::Gauss2DsMAP, 424	mappel::Gauss1DMLE, 184
mappel::Gauss2DsMLE, 458	mappel::Gauss1DModel, 212
mappel::Gauss2DsModel, 490	mappel::Gauss2DMAP, 330
mappel::Gauss2DsxyMAP, 518	mappel::Gauss2DMLE, 361
mappel::Gauss2DsxyModel, 542	mappel::Gauss2DModel, 391
mappel::MAPEstimator, 606	mappel::Gauss2DsxyMAP, 518
mappel::MCMCAdaptor1Ds, 653	
mappel::MCMCAdaptor1D, 633	QuasiNewtonMaximizer
mappel::MCMCAdaptor2Ds, 692	mappel::estimator::QuasiNewtonMaximizer, 810
mappel::MCMCAdaptor2D, 672	README.md, 959
mappel::MLEstimator, 720	record backtrack
mappel::PointEmitterModel, 783	mappel::estimator::IterativeMaximizer::Maximizer↔
prior_objective	Data, 610
mappel::methods, 64	record exit code
prior_types	mappel::estimator::CGaussHeuristicEstimator, 101
mappel::Gauss1DMAP, 155	mappel::estimator::CGaussMLE, 113
mappel::Gauss1DMLE, 184	mappel::estimator::Estimator, 125
mappel::Gauss1DModel, 211	mappel::estimator::HeuristicEstimator, 554
mappel::Gauss1DsMAP, 241	mappel::estimator::IterativeMaximizer, 584
mappel::Gauss1DsMLE, 270	mappel::estimator::NewtonDiagonalMaximizer, 736
mappel::Gauss1DsModel, 299	mappel::estimator::NewtonMaximizer, 757
mappel::Gauss2DMAP, 330	mappel::estimator::QuasiNewtonMaximizer, 822
mappel::Gauss2DMLE, 361	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::Gauss2DModel, 391	837
mappel::Gauss2DsMAP, 425	mappel::estimator::ThreadedEstimator, 874
mappel::Gauss2DsMLE, 458	mappel::estimator::TrustRegionMaximizer, 892
mappel::Gauss2DsModel, 490	record_iteration
mappel::Gauss2DsxyMAP, 518	mappel::estimator::IterativeMaximizer::Maximizer↔
profile_bound_backtrack	Data, 610
mappel::estimator::IterativeMaximizer, 584	record_run_statistics
mappel::estimator::NewtonDiagonalMaximizer, 736	mappel::estimator::IterativeMaximizer, 584
mappel::estimator::NewtonMaximizer, 757	mappel::estimator::NewtonDiagonalMaximizer, 737
mappel::estimator::QuasiNewtonMaximizer, 822	mappel::estimator::NewtonDagonalivaximizer, 737
mappel::estimator::TrustRegionMaximizer, 892	mappel::estimator::QuasiNewtonMaximizer, 823
profile_lb	mappel::estimator::TrustRegionMaximizer, 893
mappel::estimator::ProfileBoundsData, 802	record_walltime
mappoints infator in Tome Dounds Data, 002	100014_Wallinio

mappel::estimator::CGaussHeuristicEstimator, 101	mappel::MCMCAdaptor1Ds, 645
mappel::estimator::CGaussMLE, 114	mappel::MCMCAdaptor1D, 626
mappel::estimator::Estimator, 126	mappel::MCMCAdaptor2Ds, 684
mappel::estimator::HeuristicEstimator, 554	mappel::MCMCAdaptor2D, 664
mappel::estimator::IterativeMaximizer, 585	mappel::MLEstimator, 714
mappel::estimator::NewtonDiagonalMaximizer, 737	mappel::PointEmitterModel, 778
mappel::estimator::NewtonMaximizer, 758	relative_log_likelihood
mappel::estimator::QuasiNewtonMaximizer, 823	PoissonGaussianNoise2DObjective.h, 954
mappel::estimator::SimulatedAnnealingMaximizer,	relative_poisson_log_likelihood
838	mappel, 44
mappel::estimator::ThreadedEstimator, 874	rename_hyperparam
mappel::estimator::TrustRegionMaximizer, 893	mappel::Gauss1DMAP, 145
refine_gaussian_2Dmax	mappel::Gauss1DMLE, 174
mappel, 43	mappel::Gauss1DModel, 202
refine_gaussian_3Dmax	mappel::Gauss1DsMAP, 231
mappel, 43	mappel::Gauss1DsMLE, 260
reflected_theta	mappel::Gauss1DsModel, 289
	• •
mappel::Gauss1DMAP, 145	mappel::Gauss2DMAP, 320
mappel::Gauss1DMLE, 174	mappel::Gauss2DMLE, 351
mappel::Gauss1DModel, 202	mappel::Gauss2DModel, 381
mappel::Gauss1DsMAP, 231	mappel::Gauss2DsMAP, 414
mappel::Gauss1DsMLE, 260	mappel::Gauss2DsMLE, 447
mappel::Gauss1DsModel, 289	mappel::Gauss2DsModel, 480
mappel::Gauss2DMAP, 320	mappel::Gauss2DsxyMAP, 509
mappel::Gauss2DMLE, 351	mappel::Gauss2DsxyModel, 536
mappel::Gauss2DModel, 381	mappel::MAPEstimator, 600
mappel::Gauss2DsMAP, 414	mappel::MCMCAdaptor1Ds, 645
mappel::Gauss2DsMLE, 447	mappel::MCMCAdaptor1D, 626
mappel::Gauss2DsModel, 479	mappel::MCMCAdaptor2Ds, 684
mappel::Gauss2DsxyMAP, 508	mappel::MCMCAdaptor2D, 664
mappel::Gauss2DsxyModel, 535	mappel::MLEstimator, 714
mappel::MAPEstimator, 600	mappel::PointEmitterModel, 778
mappel::MCMCAdaptor1Ds, 644	restore_stencil
mappel::MCMCAdaptor1D, 625	mappel::estimator::IterativeMaximizer::Maximizer↔
mappel::MCMCAdaptor2Ds, 683	Data, 611
mappel::MCMCAdaptor2D, 664	restrict_value_range
mappel::MLEstimator, 714	mappel, 44
mappel::PointEmitterModel, 777	rethrow
reflected theta stack	omp_exception_catcher::impl_::OMPException←
mappel::Gauss1DMAP, 145	Catcher, 766
mappel::Gauss1DMLE, 174	RethrowFirst
mappel::Gauss1DModel, 202	omp_exception_catcher, 90
mappel::Gauss1DsMAP, 231	ReturnIfSubclassT
• •	
mappel::Gauss1DsMLE, 260	mappel, 28
mappel::Gauss1DsModel, 289	rho_cauchy_min
mappel::Gauss2DMAP, 320	mappel::estimator::TrustRegionMaximizer, 897
mappel::Gauss2DMLE, 351	rho_obj_min
mappel::Gauss2DModel, 381	mappel::estimator::TrustRegionMaximizer, 897
mappel::Gauss2DsMAP, 414	rho_obj_opt
mappel::Gauss2DsMLE, 447	mappel::estimator::TrustRegionMaximizer, 897
mappel::Gauss2DsModel, 479	rllh
mappel::Gauss2DsxyMAP, 509	mappel::estimator::IterativeMaximizer::Maximizer ↔
mappel::Gauss2DsxyModel, 536	Data, 614
mappel::MAPEstimator, 600	mappel::estimator::MLEDebugData, 703

mappel::methods::likelihood, 69, 70	mappel::Gauss2DsxyModel, 536
mappel::methods::objective, 76	mappel::MCMCAdaptor1Ds, 645
rllh_beta2_prior	mappel::MCMCAdaptor1D, 626
mappel, 44	mappel::MCMCAdaptor2Ds, 684
rllh_beta_prior	mappel::MCMCAdaptor2D, 664
mappel, 44	sample_mean
rllh_components	mappel::mcmc::MCMCData, 697
mappel::methods::likelihood::debug, 71, 72	mappel::mcmc::MCMCDataStack, 700
mappel::methods::objective::debug, 79	sample_posterior
rllh_gamma_prior	mappel::mcmc, 54
mappel, 44	sample_posterior_debug
rllh_normal_prior	mappel::mcmc, 54
mappel, 44	sample_prior
rllh_pareto_prior	mappel::Gauss1DMAP, 146
mappel, 44	mappel::Gauss1DMLE, 175
rllh_stack	mappel::Gauss1DModel, 203
mappel::methods::objective::openmp, 83	mappel::Gauss1DsMAP, 231, 232
rng.cpp, 959	mappel::Gauss1DsMLE, 261
rng.h, 960	mappel::Gauss1DsModel, 290
rng_manager	mappel::Gauss2DMAP, 320, 321
mappel, 45	mappel::Gauss2DMLE, 351, 352
RngSeedT	mappel::Gauss2DModel, 382
mappel, 28	mappel::Gauss2DsMAP, 414, 415
run	mappel::Gauss2DsMLE, 448
omp_exception_catcher::impl_::OMPException←	mappel::Gauss2DsModel, 480
Catcher, 766	mappel::Gauss2DsxyMAP, 509
	mappel::Gauss2DsxyModel, 536
s0	mappel::MAPEstimator, 600
mappel::estimator::IterativeMaximizer::Maximizer↔	mappel::MCMCAdaptor1Ds, 645
Data, 614	mappel::MCMCAdaptor1D, 626
s1	mappel::MCMCAdaptor2Ds, 684
mappel::estimator::IterativeMaximizer::Maximizer ↔	mappel::MCMCAdaptor2D, 665
Data, 614	mappel::MLEstimator, 714
sample	mappel::PointEmitterModel, 778
mappel::mcmc::MCMCData, 697	sample_prior_stack
mappel::mcmc::MCMCDataStack, 699	mappel::methods::openmp, 88
mappel::mcmc::MCMCDebugData, 701	sample rllh
sample cov	mappel::mcmc::MCMCData, 697
mappel::mcmc::MCMCData, 697	mappel::mcmc::MCMCDataStack, 700
mappel::mcmc::MCMCDataStack, 699	mappel::mcmc::MCMCDebugData, 701
sample_mcmc_candidate	save stencil
mappel::Gauss1DMAP, 145	mappel::estimator::IterativeMaximizer::Maximizer↔
mappel::Gauss1DMLE, 174	Data, 611
mappel::Gauss1DModel, 202	saved stencil
mappel::Gauss1DsMAP, 231	mappel::estimator::IterativeMaximizer::Maximizer
mappel::Gauss1DsMLE, 260, 261	Data, 611
mappel::Gauss1DsModel, 289	saved_theta
mappel::Gauss2DMAP, 320	mappel::estimator::IterativeMaximizer::Maximizer↔
mappel::Gauss2DMAF, 320	Data, 611
mappel::Gauss2DMcdel, 382	sensor_bg_map
mappel::Gauss2DsMAP, 414	PoissonGaussianNoise2DObjective, 785
mappel::Gauss2DsMAF, 414	
mappel::Gauss2DsMcE, 446 mappel::Gauss2DsModel, 480	sensor_gain_map
• •	PoissonGaussianNoise2DObjective, 786
mappel::Gauss2DsxyMAP, 509	seq_len

manage also attended and the realist and acting in a realist and		manualuCausatDMLE 175
mappel::estimator::IterativeMaximizer::Maximizer ←		mappel::Gauss1DMLE, 175
Data, 614		mappel::Gauss1DModel, 203
seq_rllh		mappel::Gauss1DsMAP, 232
mappel::estimator::IterativeMaximizer::Maximizer ←		mappel::Gauss1DsMLE, 261
Data, 615		mappel::Gauss1DsModel, 290
sequence		mappel::Gauss2DMAP, 321
mappel::estimator::MLEDebugData, 703		mappel::Gauss2DMLE, 352
sequence_rllh		mappel::Gauss2DModel, 383
mappel::estimator::MLEDebugData, 703		mappel::Gauss2DsMAP, 415
set_background_mcmc_sampling		mappel::Gauss2DsMLE, 449
mappel::Gauss1DMAP, 146		mappel::Gauss2DsModel, 481
mappel::Gauss1DMLE, 175		mappel::Gauss2DsxyMAP, 510
mappel::Gauss1DModel, 203		mappel::Gauss2DsxyModel, 536
mappel::Gauss1DsMAP, 232		mappel::MAPEstimator, 601
mappel::Gauss1DsMLE, 261		mappel::MCMCAdaptor1Ds, 646
mappel::Gauss1DsModel, 290		mappel::MCMCAdaptor1D, 627
mappel::Gauss2DMAP, 321		mappel::MCMCAdaptor2Ds, 685
mappel::Gauss2DMLE, 352		mappel::MCMCAdaptor2D, 665
mappel::Gauss2DModel, 382		mappel::MLEstimator, 715
mappel::Gauss2DsMAP, 415		mappel::PointEmitterModel, 778
mappel::Gauss2DsMLE, 448	set	hyperparam_value
mappel::Gauss2DsModel, 480		mappel::Gauss1DMAP, 146
mappel::Gauss2DsxyMAP, 510		mappel::Gauss1DMLE, 175
mappel::MCMCAdaptor1Ds, 646		mappel::Gauss1DModel, 203
mappel::MCMCAdaptor1D, 626		mappel::Gauss1DsMAP, 232
mappel::MCMCAdaptor2Ds, 685		mappel::Gauss1DsMLE, 262
mappel::MCMCAdaptor2D, 665		mappel::Gauss1DsModel, 290
set bounds		mappel::Gauss2DMAP, 321
mappel::Gauss1DMAP, 146		mappel::Gauss2DMLE, 352
mappel::Gauss1DMLE, 175		mappel::Gauss2DModel, 383
mappel::Gauss1DModel, 203		mappel::Gauss2DsMAP, 415
mappel::Gauss1DsMAP, 232		mappel::Gauss2DsMLE, 449
mappel::Gauss1DsMLE, 261		mappel::Gauss2DsModel, 481
mappel::Gauss1DsModel, 290		mappel::Gauss2DsxyMAP, 510
mappel::Gauss2DMAP, 321		mappel::Gauss2DsxyModel, 537
mappel::Gauss2DMLE, 352		mappel::MAPEstimator, 601
mappel::Gauss2DModel, 382		mappel::MCMCAdaptor1Ds, 646
mappel::Gauss2DsMAP, 415		mappel::MCMCAdaptor1D, 627
mappel::Gauss2DsMLE, 448		mappel::MCMCAdaptor2Ds, 685
mappel::Gauss2DsModel, 481		mappel::MCMCAdaptor2D, 665
mappel::Gauss2DsxyMAP, 510		mappel::MLEstimator, 715
mappel::Gauss2DsxyModel, 536		mappel::PointEmitterModel, 778
mappel::MAPEstimator, 600	oot	hyperparams
· · · · · · · · · · · · · · · · · · ·	sei_	
mappel::MCMCAdaptor1Ds, 646		mappel::Gauss1DMAP, 147
mappel::MCMCAdaptor1D, 627		mappel::Gauss1DMLE, 176
mappel::MCMCAdaptor2Ds, 685		mappel::Gauss1DModel, 204
mappel::MCMCAdaptor2D, 665		mappel::Gauss1DsMAP, 232
mappel::MLEstimator, 714		mappel::Gauss1DsMLE, 262
mappel::PointEmitterModel, 778		mappel::Gauss1DsModel, 291
set_fixed_parameters		mappel::Gauss2DMAP, 321
mappel::estimator::IterativeMaximizer::Maximizer ←		mappel::Gauss2DMLE, 352
Data, 611		mappel::Gauss2DModel, 383
set_hyperparam_names		mappel::Gauss2DsMAP, 415
mappel::Gauss1DMAP, 146		mappel::Gauss2DsMLE, 449

mappel::Gauss2DsModel, 481	mappel::Gauss2DMAP, 322
mappel::Gauss2DsxyMAP, 510	mappel::Gauss2DMLE, 353
mappel::Gauss2DsxyModel, 537	mappel::Gauss2DModel, 383
mappel::MAPEstimator, 601	mappel::Gauss2DsMAP, 416
mappel::MCMCAdaptor1Ds, 646	mappel::Gauss2DsMLE, 449
mappel::MCMCAdaptor1D, 627	mappel::Gauss2DsModel, 482
mappel::MCMCAdaptor2Ds, 685	mappel::Gauss2DsxyMAP, 511
mappel::MCMCAdaptor2D, 666	mappel::Gauss2DsxyModel, 537
mappel::MLEstimator, 715	mappel::MAPEstimator, 601
mappel::PointEmitterModel, 779	mappel::MCMCAdaptor1Ds, 647
set_image_in_stack	mappel::MCMCAdaptor1D, 627
mappel::Gauss1DMAP, 147	mappel::MCMCAdaptor2Ds, 686
mappel::Gauss1DMLE, 176	mappel::MCMCAdaptor2D, 666
mappel::Gauss1DModel, 204	mappel::MLEstimator, 715
mappel::Gauss1DsMAP, 233	mappel::PointEmitterModel, 779
mappel::Gauss1DsMLE, 262	set_max_sigma
mappel::Gauss1DsModel, 291	mappel::Gauss1DsMAP, 233
mappel::Gauss2DMAP, 322	mappel::Gauss1DsMLE, 262, 263
mappel::Gauss2DMLE, 353	mappel::Gauss1DsModel, 291
mappel::Gauss2DModel, 383	mappel::Gauss2DsMAP, 416
mappel::Gauss2DsMAP, 416	mappel::Gauss2DsMLE, 450
mappel::Gauss2DsMLE, 449	mappel::Gauss2DsModel, 482
mappel::Gauss2DsModel, 481	mappel::Gauss2DsxyModel, 537
mappel::Gauss2DsxyMAP, 510	set_max_sigma_ratio
mappel::Gauss2DsxyModel, 537	mappel::Gauss2DsMAP, 416
mappel::ImageFormat1DBase, 561	mappel::Gauss2DsMLE, 450
mappel::ImageFormat2DBase, 568	mappel::Gauss2DsModel, 482
mappel::PoissonNoise1DObjective, 792	mappel::Gauss2DsxyModel, 537
mappel::PoissonNoise2DObjective, 799	set_mcmc_num_phases
set_intensity_mcmc_sampling	mappel::Gauss1DMAP, 147
mappel::Gauss1DMAP, 147	mappel::Gauss1DMLE, 176
mappel::Gauss1DMLE, 176	mappel::Gauss1DModel, 204
mappel::Gauss1DModel, 204	mappel::Gauss1DsMAP, 233
mappel::Gauss1DsMAP, 233	mappel::Gauss1DsMLE, 263
mappel::Gauss1DsMLE, 262	mappel::Gauss1DsModel, 292
mappel::Gauss1DsModel, 291	mappel::Gauss2DMAP, 322
mappel::Gauss2DMAP, 322	mappel::Gauss2DMLE, 353
mappel::Gauss2DMLE, 353	mappel::Gauss2DModel, 384
mappel::Gauss2DModel, 383	mappel::Gauss2DsMAP, 416
mappel::Gauss2DsMAP, 416	mappel::Gauss2DsMLE, 450
mappel::Gauss2DsMLE, 449	mappel::Gauss2DsModel, 482
mappel::Gauss2DsModel, 481	mappel::Gauss2DsxyMAP, 511
mappel::Gauss2DsxyMAP, 511	mappel::MCMCAdaptor1Ds, 647
mappel::MCMCAdaptor1Ds, 646	mappel::MCMCAdaptor1D, 628
mappel::MCMCAdaptor1D, 627	mappel::MCMCAdaptor2Ds, 686
mappel::MCMCAdaptor2Ds, 685	mappel::MCMCAdaptor2D, 666
mappel::MCMCAdaptor2D, 666	mappel::MCMCAdaptorBase, 694
set Ibound	set mcmc sigma scale
mappel::Gauss1DMAP, 147	mappel::Gauss1DMAP, 147
mappel::Gauss1DMLE, 176	mappel::Gauss1DMLE, 176
mappel::Gauss1DModel, 204	mappel::Gauss1DModel, 204
mappel::Gauss1DsMAP, 233	mappel::Gauss1DsMAP, 234
mappel::Gauss1DsMLE, 262	mappel::Gauss1DsMLE, 263
mappel::Gauss1DsModel, 291	mappel::Gauss1DsModel, 292
	11

mappel::Gauss2DMAP, 322	mappel::Gauss2DsModel, 483
mappel::Gauss2DMLE, 353	mappel::Gauss2DsxyMAP, 511
mappel::Gauss2DModel, 384	mappel::Gauss2DsxyModel, 537
mappel::Gauss2DsMAP, 417	mappel::MAPEstimator, 601, 602
mappel::Gauss2DsMLE, 450	mappel::MCMCAdaptor1Ds, 647
mappel::Gauss2DsModel, 482	mappel::MCMCAdaptor1D, 628
mappel::Gauss2DsxyMAP, 511	mappel::MCMCAdaptor2Ds, 686
mappel::MCMCAdaptor1Ds, 647	mappel::MCMCAdaptor2D, 667
mappel::MCMCAdaptor1D, 628	mappel::MLEstimator, 715, 716
mappel::MCMCAdaptor2Ds, 686	mappel::PointEmitterModel, 779
mappel::MCMCAdaptor2D, 666	set_psf_sigma
mappel::MCMCAdaptorBase, 695	mappel::Gauss1DMAP, 148
set_min_sigma	mappel::Gauss1DMLE, 177
mappel::Gauss1DsMAP, 234	mappel::Gauss1DModel, 205
mappel::Gauss1DsMLE, 263	mappel::Gauss2DMAP, 323
mappel::Gauss1DsModel, 292	mappel::Gauss2DMLE, 354
mappel::Gauss2DsMAP, 417	mappel::Gauss2DModel, 384
mappel::Gauss2DsMLE, 450	mappel::Gauss2DsxyMAP, 512
mappel::Gauss2DsModel, 482	set_rng_seed
mappel::Gauss2DsxyModel, 537	mappel::Gauss1DMAP, 148
set_param_names	mappel::Gauss1DMLE, 177
mappel::Gauss1DMAP, 148	mappel::Gauss1DModel, 205
mappel::Gauss1DMLE, 177	mappel::Gauss1DsMAP, 234
mappel::Gauss1DModel, 205	mappel::Gauss1DsMLE, 264
mappel::Gauss1DsMAP, 234	mappel::Gauss1DsModel, 293
mappel::Gauss1DsMLE, 263	mappel::Gauss2DMAP, 323
mappel::Gauss1DsModel, 292	mappel::Gauss2DMLE, 354
mappel::Gauss2DMAP, 322	mappel::Gauss2DModel, 385
mappel::Gauss2DMLE, 353	mappel::Gauss2DsMAP, 417
mappel::Gauss2DModel, 384	mappel::Gauss2DsMLE, 451
mappel::Gauss2DsMAP, 417	mappel::Gauss2DsModel, 483
mappel::Gauss2DsMLE, 450	mappel::Gauss2DsxyMAP, 512
mappel::Gauss2DsModel, 483	mappel::Gauss2DsxyModel, 537
mappel::Gauss2DsxyMAP, 511	mappel::MAPEstimator, 602
mappel::Gauss2DsxyModel, 537	mappel::MCMCAdaptor1Ds, 648
mappel::MAPEstimator, 601	mappel::MCMCAdaptor1D, 628
mappel::MCMCAdaptor1Ds, 647	mappel::MCMCAdaptor2Ds, 687
mappel::MCMCAdaptor1D, 628	mappel::MCMCAdaptor2D, 667
mappel::MCMCAdaptor2Ds, 686	mappel::MLEstimator, 716
mappel::MCMCAdaptor2D, 666	mappel::PointEmitterModel, 779
mappel::MLEstimator, 715	set_size
mappel::PointEmitterModel, 779	mappel::Gauss1DMAP, 148, 149
set_prior	mappel::Gauss1DMLE, 177, 178
mappel::Gauss1DMAP, 148	mappel::Gauss1DModel, 205, 206
mappel::Gauss1DMLE, 177	mappel::Gauss1DsMAP, 235
mappel::Gauss1DModel, 205	mappel::Gauss1DsMLE, 264
mappel::Gauss1DsMAP, 234	mappel::Gauss1DsModel, 293
mappel::Gauss1DsMLE, 264	mappel::Gauss2DMAP, 323
mappel::Gauss1DsModel, 292	mappel::Gauss2DMLE, 354
mappel::Gauss2DMAP, 322, 323	mappel::Gauss2DModel, 385
mappel::Gauss2DMLE, 353, 354	mappel::Gauss2DsMAP, 417
mappel::Gauss2DModel, 384	mappel::Gauss2DsMLE, 451
mappel::Gauss2DsMAP, 417	mappel::Gauss2DsModel, 483
mappel::Gauss2DsMLE, 451	mappel::Gauss2DsxyMAP, 512
	, , , , , , , , , , , , , , , , , , ,

	mappel::Gauss2DsxyModel, 538	mappel::MCMCAdaptor1D, 633
	mappel::ImageFormat1DBase, 561, 562	mappel::MCMCAdaptor2Ds, 692
	mappel::ImageFormat2DBase, 568	mappel::MCMCAdaptor2D, 672
	mappel::PoissonNoise1DObjective, 792	mappel::MCMCAdaptorBase, 695
	mappel::PoissonNoise2DObjective, 799	sigmaX
set_	stencil	mappel::Gauss2DsModel::Stencil, 856
	mappel::estimator::IterativeMaximizer::Maximizer ←	mappel::Gauss2DsxyModel::Stencil, 842
	Data, 612	sigmaY
set	ubound	mappel::Gauss2DsModel::Stencil, 856
	mappel::Gauss1DMAP, 149	mappel::Gauss2DsxyModel::Stencil, 842
	mappel::Gauss1DMLE, 178	simulate_image
	mappel::Gauss1DModel, 206	mappel::methods, 64, 65
	mappel::Gauss1DsMAP, 235	PoissonGaussianNoise2DObjective.h, 954
	mappel::Gauss1DsMLE, 264	simulate_image_from_model
	mappel::Gauss1DsModel, 293	mappel::methods, 65, 66
	mappel::Gauss2DMAP, 323	simulate_image_stack
	mappel::Gauss2DMLE, 354	mappel::methods::openmp, 88
	mappel::Gauss2DModel, 385	SimulatedAnnealingMaximizer
	mappel::Gauss2DsMAP, 418	mappel::estimator::SimulatedAnnealingMaximizer,
	mappel::Gauss2DsMLE, 451	830
	mappel::Gauss2DsMcL, 483	
	mappel::Gauss2Dswodel, 463	size
		mappel::Gauss1DMAP, 155
	mappel::Gauss2DsxyModel, 538	mappel::Gauss1DMLE, 184
	mappel::MAPEstimator, 602	mappel::Gauss1DModel, 212
	mappel::MCMCAdaptor1Ds, 648	mappel::Gauss1DsMAP, 242
	mappel::MCMCAdaptor1D, 629	mappel::Gauss1DsMLE, 271
	mappel::MCMCAdaptor2Ds, 687	mappel::Gauss1DsModel, 299
	mappel::MCMCAdaptor2D, 667	mappel::Gauss2DMAP, 330
	mappel::MLEstimator, 716	mappel::Gauss2DMLE, 361
	mappel::PointEmitterModel, 779	mappel::Gauss2DModel, 392
setG	ilobalDefaultStrategy	mappel::Gauss2DsMAP, 425
	omp_exception_catcher::impl_::OMPException←	mappel::Gauss2DsMLE, 458
	Catcher, 766	mappel::Gauss2DsModel, 490
sgn		mappel::Gauss2DsxyMAP, 519
	mappel, 44	mappel::Gauss2DsxyModel, 543
sigm	na	mappel::ImageFormat1DBase, 562
	mappel::Gauss1DsModel::Stencil, 847	mappel::ImageFormat2DBase, 569
sigm	na_ratio	mappel::PoissonNoise1DObjective, 793
	mappel::Gauss2DsModel::Stencil, 856	mappel::PoissonNoise2DObjective, 800
sigm	na_scale	solve_TR_subproblem
Ū	mappel::Gauss1DMAP, 155	mappel::estimator::subroutine, 53
	mappel::Gauss1DMLE, 184	solve profile bound
	mappel::Gauss1DModel, 212	mappel::estimator::IterativeMaximizer, 585
	mappel::Gauss1DsMAP, 241	mappel::estimator::NewtonDiagonalMaximizer, 737
	mappel::Gauss1DsMLE, 271	mappel::estimator::NewtonMaximizer, 758
	mappel::Gauss1DsModel, 299	mappel::estimator::QuasiNewtonMaximizer, 823
	mappel::Gauss2DMAP, 330	mappel::estimator::TrustRegionMaximizer, 893
	mappel::Gauss2DMLE, 361	solve_profile_initial_step
	mappel::Gauss2DMcL, 301	mappel::estimator::subroutine, 53
	mappel::Gauss2DModel, 391 mappel::Gauss2DsMAP, 425	solve_restricted_step_length_newton
	• •	_ · · · · · · ·
	mappel::Gauss2DsMLE, 458	mappel::estimator::subroutine, 53
	mappel::Gauss2DsModel, 490	square
	mappel::Gauss2DsxyMAP, 519	mappel, 44
	mappel::MCMCAdaptor1Ds, 653	StatsT

mappel, 28	TERM_DIM_GREEN
Stencil	mappel, 46
mappel::Gauss1DModel::Stencil, 861	TERM_DIM_MAGENTA
mappel::Gauss1DsModel::Stencil, 846	mappel, 46
mappel::Gauss2DModel::Stencil, 850	TERM_DIM_RED
mappel::Gauss2DsModel::Stencil, 855	mappel, 46
mappel::Gauss2DsxyModel::Stencil, 842	TERM_DIM_WHITE
stencil	mappel, 46
mappel::estimator::IterativeMaximizer::Maximizer ←	TERM_DIM_YELLOW
Data, 612	mappel, 46
stencil.cpp, 961	TERM_GREEN
stencil.h, 962	mappel, 46
StencilVecT	TERM_MAGENTA
mappel, 29	mappel, 46
mappel::Gauss1DMAP, 133	TERM RED
mappel::Gauss1DMLE, 162	mappel, 46
mappel::Gauss1DModel, 191	TERM_WHITE
mappel::Gauss1DsMAP, 219	mappel, 47
mappel::Gauss1DsMLE, 248	TERM YELLOW
mappel::Gauss1DsModel, 278	mappel, 47
mappel::Gauss2DMAP, 307	target_rllh_delta
mappel::Gauss2DMLE, 338	mappel::estimator::ProfileBoundsData, 803
mappel::Gauss2DModel, 369	mappel::estimator::ProfileBoundsDataStack, 807
mappel::Gauss2DsMAP, 400	theta
mappel::Gauss2DsMLE, 434	mappel::Gauss1DModel::Stencil, 863
mappel::Gauss2DsModel, 467	mappel::Gauss1DsModel::Stencil, 849
mappel::Gauss2DsxyMAP, 498	mappel::Gauss2DModel::Stencil, 853
mappel::Gauss2DsxyModel, 526	mappel::Gauss2DModel::Stencil, 859
StencilT	mappel::Gauss2Dswodel::Stencil, 839
	mappel::estimator::IterativeMaximizer::Maximizer↔
mappel, 28	Data, 612
step mappel::estimator::IterativeMaximizer::Maximizer↔	mappel::estimator::MLEDebugData, 703
Data, 615	theta_in_bounds
StepSize	mappel::Gauss1DMAP, 149
mappel::estimator, 50	mappel::Gauss1DMLE, 178
Strategy	mappel::Gauss1DModel, 206
omp_exception_catcher, 90	mappel::Gauss1DsMAP, 235
StringVecT	mappel::Gauss1DsMLE, 264
mappel, 29	mappel::Gauss1DsModel, 293
Success	mappel::Gauss2DMAP, 323
mappel::estimator, 50	mappel::Gauss2DMLE, 354
	mappel::Gauss2DModel, 385
TERM_BLACK	mappel::Gauss2DsMAP, 418
mappel, 45	mappel::Gauss2DsMLE, 451
TERM_BLUE	mappel::Gauss2DsModel, 483
mappel, 45	mappel::Gauss2DsxyMAP, 512
TERM_CYAN	mappel::Gauss2DsxyModel, 538
mappel, 45	mappel::MAPEstimator, 602
TERM_DIM_BLACK	
	mappel::MCMCAdaptor1Ds, 648
mappel, 45	mappel::MCMCAdaptor1D, 629
TERM_DIM_BLUE	mappel::MCMCAdaptor1D, 629 mappel::MCMCAdaptor2Ds, 687
TERM_DIM_BLUE mappel, 45	mappel::MCMCAdaptor1D, 629 mappel::MCMCAdaptor2Ds, 687 mappel::MCMCAdaptor2D, 667
TERM_DIM_BLUE	mappel::MCMCAdaptor1D, 629 mappel::MCMCAdaptor2Ds, 687

theta_seq	mappel::estimator::QuasiNewtonMaximizer, 827
mappel::estimator::IterativeMaximizer::Maximizer ←	mappel::estimator::TrustRegionMaximizer, 898
Data, 615	total_walltime
theta_stack_in_bounds	mappel::estimator::CGaussHeuristicEstimator, 103
mappel::Gauss1DMAP, 149	mappel::estimator::CGaussMLE, 116
mappel::Gauss1DMLE, 178	mappel::estimator::Estimator, 127
mappel::Gauss1DModel, 206	mappel::estimator::HeuristicEstimator, 556
mappel::Gauss1DsMAP, 235	mappel::estimator::IterativeMaximizer, 589
mappel::Gauss1DsMLE, 265	mappel::estimator::NewtonDiagonalMaximizer, 742
mappel::Gauss1DsModel, 293	mappel::estimator::NewtonMaximizer, 763
mappel::Gauss2DMAP, 324	mappel::estimator::QuasiNewtonMaximizer, 828
mappel::Gauss2DMLE, 355	mappel::estimator::SimulatedAnnealingMaximizer,
mappel::Gauss2DModel, 385	840
mappel::Gauss2DsMAP, 418	mappel::estimator::ThreadedEstimator, 876
mappel::Gauss2DsMLE, 451	mappel::estimator::TrustRegionMaximizer, 898
mappel::Gauss2DsModel, 484	trust_radius_decrease
mappel::Gauss2DsxyMAP, 513	mappel::estimator::TrustRegionMaximizer, 898
mappel::Gauss2DsxyModel, 538	trust_radius_decrease_min
mappel::MAPEstimator, 602	mappel::estimator::TrustRegionMaximizer, 899
mappel::MCMCAdaptor1Ds, 648	trust_radius_increase
mappel::MCMCAdaptor1D, 629	mappel::estimator::TrustRegionMaximizer, 899
mappel::MCMCAdaptor2Ds, 687	TrustRegionMaximizer
mappel::MCMCAdaptor2D, 667	mappel::estimator::TrustRegionMaximizer, 880
mappel::MLEstimator, 716	TrustRegionRadius
mappel::PointEmitterModel, 780	mappel::estimator, 50
thin	
mappel::mcmc::MCMCData, 698	ubound
mappel::mcmc::MCMCDataStack, 700	mappel::Gauss1DMAP, 156
thin_sample	mappel::Gauss1DMLE, 185
mappel::mcmc, 55	mappel::Gauss1DModel, 212
ThreadedEstimator	mappel::Gauss1DsMAP, 242
mappel::estimator::ThreadedEstimator, 865	mappel::Gauss1DsMLE, 271
total_backtracks	mappel::Gauss1DsModel, 300
mappel::estimator::IterativeMaximizer, 588	mappel::Gauss2DMAP, 331
mappel::estimator::NewtonDiagonalMaximizer, 741	mappel::Gauss2DMLE, 362
mappel::estimator::NewtonMaximizer, 762	mappel::Gauss2DModel, 392
mappel::estimator::QuasiNewtonMaximizer, 827	mappel::Gauss2DsMAP, 426
mappel::estimator::TrustRegionMaximizer, 898	mappel::Gauss2DsMLE, 459
total der evals	mappel::Gauss2DsModel, 491
mappel::estimator::IterativeMaximizer, 589	mappel::Gauss2DsxyMAP, 519
• •	mappel::Gauss2DsxyModel, 543
mappel::estimator::NewtonDiagonalMaximizer, 741	· · · · · · · · · · · · · · · · · · ·
mappel::estimator::NewtonMaximizer, 762	mappel::MAPEstimator, 606
mappel::estimator::QuasiNewtonMaximizer, 827	mappel::MCMCAdaptor1Ds, 653
mappel::estimator::TrustRegionMaximizer, 898	mappel::MCMCAdaptor1D, 634
total_fun_evals	mappel::MCMCAdaptor2Ds, 692
mappel::estimator::lterativeMaximizer, 589	mappel::MCMCAdaptor2D, 673
mappel::estimator::NewtonDiagonalMaximizer, 741	mappel::MLEstimator, 720
mappel::estimator::NewtonMaximizer, 762	mappel::PointEmitterModel, 783
mappel::estimator::QuasiNewtonMaximizer, 827	Unassigned
mappel::estimator::TrustRegionMaximizer, 898	mappel::estimator, 50
total_iterations	UniformDistT
mappel::estimator::IterativeMaximizer, 589	mappel, 29
mappel::estimator::NewtonDiagonalMaximizer, 741	update_internal_1D_estimators
mappel::estimator::NewtonMaximizer, 762	mappel::Gauss2DsxyModel, 538

```
update_internal_1Dsum_estimators
    mappel::Gauss2DMAP, 324
    mappel::Gauss2DMLE, 355
    mappel::Gauss2DModel, 385
    mappel::Gauss2DsMAP, 418
    mappel::Gauss2DsMLE, 452
    mappel::Gauss2DsModel, 484
util.cpp, 964
util.h, 964
VecFieldT
    mappel, 29
VecT
    mappel, 29
Χ
    mappel::Gauss1DModel::Stencil, 863
    mappel::Gauss1DsModel::Stencil, 849
    mappel::Gauss2DModel::Stencil, 853
    mappel::Gauss2DsModel::Stencil, 859
    mappel::Gauss2DsxyModel::Stencil, 845
Х
    mappel::Gauss1DModel::Stencil, 861
    mappel::Gauss1DsModel::Stencil, 847
    mappel::Gauss2DModel::Stencil, 851
    mappel::Gauss2DsModel::Stencil, 856
    mappel::Gauss2DsxyModel::Stencil, 842
x_model
    mappel::Gauss2DMAP, 331
    mappel::Gauss2DMLE, 362
    mappel::Gauss2DModel, 392
    mappel::Gauss2DsMAP, 426
    mappel::Gauss2DsMLE, 459
    mappel::Gauss2DsModel, 491
    mappel::Gauss2DsxyModel, 543
Υ
    mappel::Gauss2DModel::Stencil, 853
    mappel::Gauss2DsModel::Stencil, 859
    mappel::Gauss2DsxyModel::Stencil, 845
У
    mappel::Gauss2DModel::Stencil, 851
    mappel::Gauss2DsModel::Stencil, 856
    mappel::Gauss2DsxyModel::Stencil, 843
y_model
    mappel::Gauss2DMAP, 331
    mappel::Gauss2DMLE, 362
    mappel::Gauss2DModel, 393
    mappel::Gauss2DsMAP, 426
    mappel::Gauss2DsMLE, 459
    mappel::Gauss2DsModel, 491
    mappel::Gauss2DsxyModel, 544
```