	Lehrveranstaltung	Grundlagen von Date	nbanken	WS 2014/15
(XXX)	Aufgabenzettel	5 (Lösungsvorschläge))	
VSIS	Gesamtpunktzahl	40		
	Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

Aufgabe 1: Referentielle Aktionen

[9 P.]

Betrachten Sie das folgende Datenbankschema:

```
Person(Vorname, Nachname, DOB, Wohnort, Lieblingsfilm \rightarrow Film.IMDb-ID, Videothek \rightarrow Videothek.VID) Film(IMDb-ID, Titel, (ProduzentVN, ProduzentNN) \rightarrow (Person.Vorname, Person.Nachname)) Videothek(VID, Adresse, Name, (LeiterVN, LeiterNN) \rightarrow (Person.Vorname, Person.Nachname)) in Bestand(Videothek \rightarrow Videothek.VID, Film \rightarrow Film.IMDb-ID, Anzahl) leiht aus((Vorname, Nachname) \rightarrow (Person.Vorname, Person.Nachname), Film \rightarrow Film.IMDb-ID, Datum)
```

Der SQL-Standard erlaubt die Definition von referentiellen Aktionen, um Verletzungen der referentiellen Integrität zu vermeiden. Der unten abgebildete Referenzgraph zeigt die im gegebenen Datenbankschema geltenden referentiellen Aktionen.

 $\begin{array}{l} {\rm Erkl\ddot{a}rung:} \\ {\rm DC} = {\rm On~Delete~Cascade} \\ {\rm DR} = {\rm On~Delete~Restrict} \\ {\rm DSN} = {\rm On~Delete~Set~Null} \\ {\rm DNA} = {\rm On~Delete~No~Action} \\ \end{array}$

a) Welche Anforderung erfüllt ein (bzgl. der referentiellen Aktionen) sicheres Schema?

[1 P.]

Lösungsvorschlag:

Bei einem sicheren Schema ist das Ergebnis einer Änderungsoperation unabhängig von der Reihenfolge, in der die referentiellen Aktionen ausgeführt werden; es treten also keine reihenfolgeabhängige Ergebnisse auf.

b) Handelt es sich im vorliegenden Fall um ein sicheres Schema? [8 P.]
 Sollte dies nicht der Fall sein, diskutieren Sie alle Szenarien, bei denen reihenfolgeabhängige Ergebnisse auftreten können.

Lösungsvorschlag:

Reihenfolgeabhängige Ergebnisse können nur dann auftreten, wenn durch das Löschen eines Eintrages in einer Tabelle mehrere referentielle Aktionen ausgelöst werden, die zur gleichen Zieltabelle führen. Dies wiederum ist nur möglich, wenn mehrere Pfade von Fremdschlüsselreferenzen zwischen zwei Tabellen existieren. In unserem Beispiel ist dies in fünf Fällen gegeben:

|--|

Lehrveranstaltung	Grundlagen von Date	WS 2014/15	
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

• Fall 1 (Löschen eines Film-Eintrags F, betrachtete Zieltabelle leiht aus): sicher

- Pfad 1: Film→leiht_aus
- Pfad 2: Film→Person→leiht_aus

Unabhängig von der Ausführungsreihenfolge werden alle leiht_aus-Einträge gelöscht, die F referenzieren (Pfad 1). Außerdem wird der Lieblingsfilm einer Person auf NULL gesetzt, wenn es sich dabei um F handelt (Pfad 2).

• Fall 2 (Löschen eines Person-Eintrags P, betrachtete Zieltabelle leiht aus): nicht sicher

- Pfad 1: Person→leiht aus
- Pfad 2: $Person \rightarrow Film \rightarrow leiht_aus$

Das Ergebnis ist reihenfolgeabhängig, wenn die zu löschende Person P nur selbstproduzierte Filme ausgeliehen hat.

Zuerst Auswertung von Pfad 1:

- Die von P getätigten Ausleihen können nicht gelöscht werden.
- ⇒ Der Löschvorgang wird abgebrochen.

Zuerst Auswertung von Pfad 2:

- Alle Filme, die von P produziert wurden, werden ebenfalls gelöscht.
- Alle Ausleihen dieser Filme werden gelöscht.
- P kann nun gelöscht werden, da für P keine Ausleihen mehr verzeichnet sind.
- ⇒ Der Löschvorgang ist erfolgreich.

vsis

Lehrveranstaltung	Grundlagen von Date	WS 2014/15	
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

• Fall 3 (Löschen eines Videothek-Eintrags V, betrachtete Zieltabelle in Bestand): sicher

- Pfad 1: Videothek→in Bestand
- Pfad 2: Videothek \rightarrow Person \rightarrow Film \rightarrow in Bestand

Unabhängig davon, welcher Pfad zuerst verfolgt wird, wird bei der Löschung einer Videothek V auch immer jeder in Bestand-Eintrag gelöscht (Pfad 1). Das Löschen einer Videothek ist allerdings nur dann gestattet, wenn am Ende der Auswertung aller referentiellen Aktionen für diese Videothek keine Person vorhanden ist, die diese Videothek leitet (Pfad 2).

• Fall 4 (Löschen eines Film-Eintrags F, betrachtete Zieltabelle in Bestand): sicher

- Pfad 1: Film→in Bestand
- Pfad 2: Film \rightarrow Person \rightarrow Videothek \rightarrow in_Bestand

Sollte der zu löschende Film F bereits in den Bestand einer Videothek aufgenommen worden sein, wird die Löschung zurückgesetzt (Pfad 1). Ist F der Lieblingsfilm einer Person, wird der entsprechende Wert bei dieser Person auf NULL gesetzt (Pfad 2). Es liegen keine Reihenfolgeabhängigkeiten vor.

|--|

Lehrveranstaltung	Grundlagen von Date	WS 2014/15	
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

• Fall 5 (Löschen eines Person-Eintrags P, betrachtete Zieltabelle in Bestand): nicht sicher

- Pfad 1: Person→Videothek→in Bestand
- Pfad 2: Person→Film→in Bestand

Das Ergebnis ist reihenfolgeabhängig, wenn eine Person P gelöscht wird, die Leiter einer Videothek ist und nur Filme produziert hat, die ausschließlich in den eigenen Videotheken vorhanden sind.

Zuerst Auswertung von Pfad 1:

- Die von P produzierten Filme werden gelöscht.
- Die entsprechenden in Bestand-Einträge können jedoch *nicht* gelöscht werden, da diese noch in dem Bestand einer Videothek enthalten sind.
- ⇒ Der Löschvorgang wird abgebrochen.

Zuerst Auswertung von Pfad 2:

- Die von P geleitete Videothek wird gelöscht.
- Alle in Bestand-Einträge der betreffenden Videothek werden gelöscht.
- Die von *P* produzierten Filme werden gelöscht. Dies ist möglich, da diese im Bestand keiner Videothek enthalten sind.
- ⇒ Der Löschvorgang ist erfolgreich.

vsis	Lehrveranstaltung	Grundlagen von Date	enbanken	WS 2014/15
	Aufgabenzettel	5 (Lösungsvorschläge	e)	
	Gesamtpunktzahl	40		
	Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

Aufgabe 2: Änderbarkeit von Sichten

[8 P.]

a) Gegeben seien die folgenden Basisrelationen:

```
Rennwagen(RNr, Typ, Rennserie, Rennstall, Jahr)

Mechaniker(Vorname, Nachname, Gehalt, Geburtsjahr, wartet \rightarrow Rennwagen.RNr)
```

Geben Sie die SQL-Anweisungen an, die notwendig sind, um die folgenden Sichten zu erstellen. Geben Sie zu jeder dieser Sichten an, ob sie Änderungsoperationen auf den in ihr enthaltenen Tupeln erlaubt. Begründen Sie Ihre Antwort, falls dies nicht der Fall ist.

[4 P.]

i) FerrariMechaniker: Vorname und Nachname aller Mechaniker, die Ferrari-Rennwagen warten.

```
Lösungsvorschlag:
```

```
CREATE VIEW FerrariMechaniker
AS SELECT Vorname, Nachname
FROM Mechaniker, Rennwagen
WHERE wartet = RNr
AND Rennstall = 'Ferrari';
```

Die Sicht ist aufgrund der Verbundoperationen nicht änderbar.

ii) reicheMechaniker: Vorname und Nachname aller Mechaniker, die ein Gehalt von mehr als 2 Millionen Geldeinheiten haben.

Lösungsvorschlag:

```
CREATE VIEW reicheMechaniker
AS SELECT Vorname, Nachname
FROM Mechaniker
WHERE Gehalt > 2000000;
```

Die Sicht ist änderbar.

iii) alteRennserien: Die Namen aller Rennserien, die es schon vor 1950 gab.

Lösungsvorschlag:

```
CREATE VIEW alteRennserien
AS SELECT Rennserie
FROM Rennwagen
WHERE Jahr < 1950;
```

Die Sicht ist nicht änderbar, da sie nicht den Primärschlüssel der Rennwagen-Relation enthält.

Lehrveranstaltung	Grundlagen von Date	WS 2014/15	
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

iv) FerrariWagen: RNr, Typ, Rennserie und Jahr aller Rennwagen aus dem Stall 'Ferrari'.

```
Lösungsvorschlag:

CREATE VIEW FerrariWagen

AS SELECT RNr, Typ, Rennserie, Jahr
FROM Rennwagen
WHERE Rennstall = 'Ferrari';

Die Sicht ist änderbar.
```

b) Auf der Rennwagen-Relation seien folgende Sichten definiert:

```
[4 P.]
```

```
CREATE VIEW Formel1_Wagen

AS SELECT * FROM Rennwagen
WHERE Rennserie = 'Formel1'
WITH CASCADED CHECK OPTION;

CREATE VIEW Ferrari_F1_Wagen
AS SELECT * FROM Formel1_Wagen
WHERE Rennstall = 'Ferrari';

CREATE VIEW Auto-Union-Rennwagen
AS SELECT * FROM Formel1_Wagen
WHERE Jahr < 1939;

CREATE VIEW F156
AS SELECT * FROM Ferrari_F1_Wagen
WHERE Jahr BETWEEN 1961 AND 1963
WITH CASCADED CHECK OPTION;
```

Es handelt sich bei allen obigen Sichtdefinitionen um änderbare Sichten. Bestimmen Sie, ob die folgenden SQL-Anweisungen auf diesen Sichtdefinitionen durchgeführt werden können. Für die Fälle, in denen die Änderung bzw. das Einfügen zulässig ist, geben Sie außerdem an, in welchen Sichten **auf jeden Fall alle** geänderten/eingefügten Tupel nach Abschluss der Operation sichtbar werden.

Hinweis: Im Falle von UPDATE-Operationen ist davon auszugehen, dass die zu ändernden Tupel vor der Änderung die die Sicht definierenden Prädikate erfüllen.

Lehrveranstaltung	Grundlagen von Date	WS 2014/15	
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

Lösungsvorschlag:

In der folgenden Abbildung ist die Vererbungshierarchie im vorliegenden Beispiel abgebildet:


```
i) UPDATE Formel1_Wagen
    SET Jahr = 1937
WHERE Jahr = 1936
AND Rennstall = 'McLaren';
```

Lösungsvorschlag:

Die Operation ist zulässig. Geänderte Tupel sind in den Relationen Formel1_Wagen und Auto-Union-Rennwagen sichtbar vor.

```
ii) UPDATE F156
    SET Jahr = 2014
    WHERE Rennstall = 'Ferrari';
```

Lösungsvorschlag:

Die Operation wird zurückgewiesen, da die geänderten Tupel die Bedingung Jahr BETWEEN 1961 AND 1963 nicht mehr erfüllen würden.

```
iii) UPDATE Ferrari_F1_Wagen
    SET Rennstall = 'Lotus'
WHERE Rennserie = 'Formel1'
AND Jahr = 1960;
```

Lösungsvorschlag:

Die Operation ist zulässig. Geänderte Tupel sind in der Formel1_Wagen-Relation sichtbar.

vsis

Lehrveranstaltung	Grundlagen von Date	WS 2014/15	
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

iv) INSERT INTO Auto-Union-Rennwagen
VALUES (12, 'Typ C', 'AVUS', 'Auto-Union', 1938);

Lösungsvorschlag:

Die Operation wird zurückgewiesen, da die einzufügenden Tupel die Bedingung Rennserie = 'Formell' nicht erfüllen würden.

Aufgabe 3: Serialisierbarkeit, Anomalien

[15 P.]

Gegeben sind die folgenden Transaktionen $T_1 = r_1(A) \ w_1(A) \ w_1(B) \ und \ T_2 = r_2(A) \ r_2(B) \ w_2(A)$. T_1 liest den Wert von A, erhöht diesen um 100 und schreibt den neuen Wert nach A zurück. Außerdem schreibt T_1 den alten Wert von A nach B (ohne B vorher gelesen zu haben). T_2 erhöht den gelesenen Wert von A um 200 und addiert den Wert von B dazu. Der Anfangswert von A sei 10 und der von B sei 5. Allgemein bezeichnet $w_i(x)$ den Schreibzugriff der Transaktion i auf das Objekt x und $r_i(x)$ den Lesezugriff der Transaktion i auf x. Gegeben sind die folgenden Schedules:

$$S_1 = r_1(A) w_1(A) w_1(B) r_2(A) r_2(B) w_2(A)$$

 $S_2 = r_2(A) r_2(B) w_2(A) r_1(A) w_1(A) w_1(B)$
 $S_3 = r_1(A) w_1(A) r_2(A) r_2(B) w_1(B) w_2(A)$
 $S_4 = r_1(A) r_2(A) r_2(B) w_1(A) w_1(B) w_2(A)$
 $S_5 = r_1(A) r_2(A) r_2(B) w_2(A) w_1(A) w_1(B)$
 $S_6 = r_1(A) w_1(A) r_2(A) w_1(B) r_2(B) w_2(A)$

Beantworten Sie für jeden der Schedules die folgenden drei Fragestellungen:

- a) Wie lautet nach Ausführung des Schedules die Belegung für die Variablen A und B? [3 P.]
- b) Welche Abhängigkeiten existieren zwischen den Operationen der beiden Transaktionen innerhalb des [6 P.] Schedules?
- c) Ist der Schedule seriell, serialisierbar oder nicht serialisierbar? Erläutern sie zusätzlich bei einem nicht- [6 P.] serialisierbaren Schedule die auftretenden Datenanomalien. Begründen Sie die Antworten mit Hilfe der Abhängigkeiten!

|--|

Lehrveranstaltung	Grundlagen von Datenbanken		WS 2014/15
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

Lösungsvorschlag:

• Schedule S₁:

- a) Endwert für A ist 320, Endwert für B ist 10.
- b) Abhängigkeiten

$$-\ r_1(A) \to w_2(A)$$

$$-\ w_1(A) \to r_2(A)$$

$$-\ w_1(A)\to w_2(A)$$

$$- w_1(B) \rightarrow r_2(B)$$

- c) Der Schedule ist seriell.
- Schedule S₂:

- a) Endwert für A ist 315, Endwert für B ist 215.
- b) Abhängigkeiten

$$- r_2(A) \rightarrow w_1(A)$$

$$-\ r_2(B) \to w_1(B)$$

$$-\ w_2(A) \to r_1(A)$$

$$-\ w_2(A)\to w_1(A)$$

|--|

Lehrveranstaltung	Grundlagen von Datenbanken		WS 2014/15
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

- c) Der Schedule ist seriell.
- Schedule S₃:

- a) Endwert für A ist 315, Endwert für B ist 10.
- b) Abhängigkeiten

$$- r_1(A) \rightarrow w_2(A)$$

$$- w_1(A) \rightarrow r_2(A)$$

$$- w_1(A) \rightarrow w_2(A)$$

$$- r_2(B) \rightarrow w_1(B)$$

- c) Wegen der Abhängigkeiten $r_1(A) \to w_2(A)$, $w_1(A) \to r_2(A)$ und $w_1(A) \to w_2(A)$ gilt: t_1 vor t_2 .
 - Wegen des Abhängigkeit $r_2(B) \rightarrow w_1(B)$ gilt: t_2 vor t_1 . $\frac{1}{2}$
 - \Rightarrow S₃ ist nicht serialisierbar. Es gibt keine serielle Abfolge der beiden Transaktionen, die ein identisches Resultat für die Variablen A und B erzielt. Die Anomalie im Datenbestand entsteht, weil T₂ bereits den neuen Wert von A liest (Abhängigkeit: $w_1(A) \to r_2(A)$), aber noch den alten Wert von B benutzt (Abhängigkeit: $r_2(B) \to w_1(B)$).
- Schedule S₄:

a) Endwert für A ist 215, Endwert für B ist 10.

|--|

Lehrveranstaltung	Grundlagen von Datenbanken		WS 2014/15
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

b) Abhängigkeiten

$$- r_2(A) \rightarrow w_1(A)$$

$$- r_2(B) \rightarrow w_1(B)$$

$$- r_1(A) \rightarrow w_2(A)$$

$$- w_1(A) \rightarrow w_2(A)$$

- c) Wegen der Abhängigkeiten $r_2(A) \to w_1(A)$ und $r_2(B) \to w_1(B)$ gilt: t_2 vor t_1 .
 - Wegen der Abhängigkeiten $r_1(A) \to w_2(A)$ und $w_1(A) \to w_2(A)$ gilt: t_1 vor t_2 . \clip{t}
 - \Rightarrow S₄ ist nicht serialisierbar. Es gibt keine serielle Abfolge der beiden Transaktionen, die ein identisches Resultat für die Variablen A und B erzielt. Dabei überschreibt Transaktion t₂ alle Änderungen der Variable A, die von t₁ getätigt wurden (Lost-Update).

• Schedule S₅:

- a) Endwert für A ist 110, Endwert für B ist 10.
- b) Abhängigkeiten

$$- r_2(A) \rightarrow w_1(A)$$

$$- r_2(B) \rightarrow w_1(B)$$

$$-\ w_2(A) \to w_1(A)$$

$$- r_1(A) \rightarrow w_2(A)$$

- c) Wegen der Abhängigkeiten $r_2(A) \to w_1(A), \; r_2(B) \to w_1(B)$ und $w_2(A) \to w_1(A)$ gilt: t_2 vor t_1 .
 - Wegen des Abhängigkeit $r_1(A) \rightarrow w_2(A)$ gilt: t_1 vor t_2 . $\frac{1}{2}$
 - \Rightarrow S₅ ist nicht serialisierbar. Es gibt keine serielle Abfolge der beiden Transaktionen, die ein identisches Resultat für die Variablen A und B erzielt. Dabei überschreibt Transaktion t₁ alle Änderungen von t₂ (Lost-Update).

Lehrveranstaltung	Grundlagen von Datenbanken		WS 2014/15
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

• Schedule S₆:

- a) Endwert für A ist 320, Endwert für B ist 10.
- b) Abhängigkeiten

$$- w_1(A) \rightarrow r_2(A)$$

$$-\ w_1(B) \to r_2(B)$$

$$-\ r_1(A) \to w_2(A)$$

$$- w_1(A) \rightarrow w_2(A)$$

c) — Wegen der Abhängigkeiten $r_1(A) \rightarrow w_2(A)$, $w_1(A) \rightarrow r_2(A)$ und $w_1(B) \rightarrow r_2(B)$ gilt: t_1 vor t_2 .

 $\Rightarrow S_6 \text{ ist serialisierbar (Schedule } S_1 \text{ erzielt das identische Ergebnis für die Variablen A und B)}$

A	Lehrveranstaltung	Grundlagen von Datenbanken		WS 2014/15
	Aufgabenzettel	5 (Lösungsvorschläge)		
(1/5/15)	Gesamtpunktzahl	40		
	Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

Aufgabe 4: 2PL-Synchronisation mit R/X-Sperren

[8 P.]

Gegeben sind die drei Objekte x, y und z, welche von den Transaktionen T_1 , T_2 und T_3 gelesen bzw. geschrieben werden. Dabei bezeichnet $w_i(x)$ den Schreibzugriff der Transaktion T_i auf das Objekt x und $r_i(x)$ den Lesezugriff der Transaktion T_i auf x.

Der Schedule S_1 zeigt an, in welcher Reihenfolge die Operationen der drei Transaktionen T_1 , T_2 , T_3 beim Scheduler eines Datenbanksystems eintreffen. Die Operation c_i soll das Commit der Transaktion T_i darstellen.

$$S_1 = w_1(x) \ r_2(z) \ r_1(x) \ r_3(y) \ w_2(y) \ w_1(y) \ c_1 \ r_2(z) \ c_2 \ w_3(y) \ c_3$$

Bei der Ausführung von S₁ soll das RX-Sperrverfahren mit 2PL zum Einsatz kommen. Vervollständigen Sie die auf der nächsten Seite angegebene Tabelle, indem Sie die Sperranforderungen (lock) und -freigaben (unlock) der Transaktionen, deren Lese- und Schreibzugriffe (read bzw. write) und Commits (commit) eintragen. Beachten Sie, dass eine Transaktion innerhalb eines Zeitschritts nur jeweils eine Operation durchführen kann. Nutzen Sie die Spalte "Bemerkungen" für etwaige Wartebeziehungen und Benachrichtigungen an wartende Transaktionen.

Lehrveranstaltung	Grundlagen von Datenbanken		WS 2014/15
Aufgabenzettel	5 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 10.12.2014	Abgabe	Fr. 09.01.2015

Lösungsvorschlag:

$\mathsf{S}_1 = \mathsf{w}_1(\mathsf{x}) \ \mathsf{r}_2(\mathsf{z}) \ \mathsf{r}_1(\mathsf{x}) \ \mathsf{r}_3(\mathsf{y}) \ \mathsf{w}_2(\mathsf{y}) \ \mathsf{w}_1(\mathsf{y}) \ \mathsf{c}_1 \ \mathsf{r}_2(\mathsf{z}) \ \mathsf{c}_2 \ \mathsf{w}_3(\mathsf{y}) \ \mathsf{c}_3$

Zeitschritt	T ₁	T ₂	T ₃	Bemerkung
0				
1	lock(x,X)			
2	write(x)	lock(z,R)		
3	read(x)	read(z)	lock(y,R)	
4		lock(y,X)	read(y)	T ₂ wartet auf Freigabe von y
5	lock(y,X)			T_1 wartet auf Freigabe von y
6			lock(y,X)	
7			write(y)	
8			unlock(y)	T ₂ wird benachrichtigt
9		write(y)	commit	
10		read(z)		
11		unlock(z)		
12		unlock(y)		T_1 wird benachrichtigt
13	write(y)	commit		
14	unlock(x)			
15	unlock(y)			
16	commit			