

Stručný popis koncepce stochastických modelů využívaných pro predikce pravděpodobného vývoje epidemie COVID-19 v ČR

Tento dokument představuje pouze stručný úvod do koncepce prediktivního modelování vývoje epidemie. Dokument je doplněn následujícími přílohami:

- **Příloha 1.** Detailní metodický popis jednotlivých modelů, jejich podstaty, výhod a limitací.
- **Příloha 2.** Krátkodobé prediktivní modely verifikační rekalibrace provedená v druhé polovině dubna
- **Příloha 3.** Variantní výstupy dlouhodobých modelů zpracované v květnu 2020

Autoři: Ondřej Májek, Ondřej Ngo, Jiří Jarkovský, Monika Ambrožová,

Barbora Budíková, Ladislav Dušek, Tomáš Pavlík

Verze: 1.0

Datum: 29. 4. 2020

1 Stručný popis koncepce aplikovaných modelů

Pro stochastické predikce vývoje pandemie byly a jsou v ČR používány standardní epidemiologické modely, které lze adoptovat v jakémkoli SW prostředí a jejich výpočty lze realizovat pomocí zpracování vlastních dat. Nejde tedy o licencované produkty spravované či rozvíjené třetí stranou, ale o aplikovanou analýzou dat plněné algoritmy, které mají jasný původ a SW realizaci, plně v rukou k tomu určených analytiků MZ ČR a ÚZIS ČR. Konkrétně jde o následující epidemiologické modely:

- Krátkodobé predikce na bázi stavových, kompartmentových modelů (S-E-IR). Modely reprezentují dynamiku infekčního onemocnění v populaci. Jedinci v populaci jsou v každém okamžiku uvažováni v jednom ze stavů (kompartmentů).
- Dlouhodobé variantní predikce na bázi SEIR modelů. Pro implementaci byl zvolen kompartmentový věkově strukturovaný SEIR model. Byl adaptován model London School of Hygiene & Tropical Medicine, publikován 25. 3. 2020 v Lancet Public Health. Model pracuje s místně-specifickými kontaktními vzorci (domácnost, zaměstnání, škola, jiné). Model umožňuje pracovat s četností kontaktů (a jejich omezení) ve specifických prostředích, a tak umožňuje odhadovat dopad opatření k zamezení kontaktů v různých prostředích (škola, práce, veřejné prostory).

2 Role jednotlivých modelů v používaných predikcích

Krátkodobé predikce vycházejí ze standardních modelů SIR, tento typ modelů neumožňuje spolehlivě delší a variantní predikce. Proto byly pro tyto účely připraveny modely SEIR, které jsou významně komplexnější a umožňují variantní epidemiologické predikce – nevýhodou zde ovšem je značná závislost na mnoha vstupních parametrech (inkubační doba, pravděpodobnost expozice odvozená od četnosti pracovních a sociálních kontaktů, sériový interval, ...), jejichž znalost může být v dlouhodobém měřítku velmi problematická až spekulativní. Proto jsou dle metodické strategie ÚZIS ČR s dlouhodobější perspektivou zpracovávány varianty těchto predikcí s tím, že tyto jsou odstupňovány podle míry rizika. Takových variant je ovšem možné teoreticky vytvořit velmi mnoho a v současné situaci nelze předvídat do detailu možný vývoj např. na podzim 2020 – mimo jiné také proto, že epidemická situace v ČR bude do značné míry záviset na strategii a chování okolních států. Proto je zásadním prvkem vybudovaného prediktivního systému kombinace krátkodobých a dlouhodobých modelů, přičemž krátkodobé predikce hrají roli "časné detekce změn" a mohou tak indikovat změnu, která bude měnit predikce dlouhodobé.

3 Forma zveřejňování výsledků modelů

Krátkodobé a dlouhodobé predikce jsou prezentovány pravidelně na týdenních tiskových konferencích MZ ČR a ÚZIS ČR, přičemž první proběhla v polovině března a od té doby probíhají pravidelně. Krátkodobá predikce je vždy publikována pro nadcházející časový interval cca 3 – 4 týdnů.

4 Definice reprodukčního čísla R jako zásadního výstupu modelů

Reprodukční číslo (označujeme jako R) udává průměrný počet dalších osob, které přímo nakazí jeden nakažený pacient. Např. reprodukční číslo 2 znamená, že jeden nemocný nakazí přímo další dvě osoby, které mohou nemoc dále šířit. **Základní reprodukční číslo** udává počáteční hodnotu v dané populaci před přijetím ochranných opatření, postupně by se mělo snižovat na tzv. **efektivní reprodukční číslo**, které odpovídá pomalejšímu šíření epidemie díky přijatým opatřením.

Reprodukční číslo je dáno zejména **infekčností** onemocnění, **četností osobních kontaktů** nakaženého a **dobou, po kterou nakažený může šířit onemocnění**, než se dostane do karantény nebo je izolován.

5 Prováděný výpočet (odhad) reprodukčního čísla R

Abychom mohli reprodukční číslo spočítat, musíme vytvořit matematický model šíření onemocnění, ve kterém je reprodukční číslo jedním z klíčových parametrů. Pro ČR jsme vytvořili **stavový analytický model**, který využívá dostupných poznatků o onemocněním novým koronavirem. Model pracuje s počty nově infikovaných prozatím bezpříznakových jedinců, průběhem jejich onemocnění včetně infekčního období, nástupem příznaků onemocnění, přesunem pacienta do izolace a potvrzením onemocnění laboratorním testem.

Některé proměnné tohoto modelu můžeme v praxi díky dostupným epidemiologickým datům přímo pozorovat, zejména počet případů onemocnění importovaných ze zahraničí (se zpožděním oproti času nákazy) a celkový počet potvrzených případů onemocnění v konkrétním dni. Na základě těchto údajů můžeme kalibrací modelu odhadnout hodnotu parametrů, včetně reprodukčního čísla.

6 Význam a možné problémy s interpretací reprodukčního čísla R

Reprodukční číslo poskytuje snadno prezentovatelnou charakteristiku infekčnosti onemocnění, ale nesmíme zapomínat na to, že je pouze **odhadem parametrů modelu**, nikoliv přímo pozorovatelnou hodnotou. Modely jsou vždy zatížené různými **neurčitostmi**, v tomto případě zejména **délkou inkubační doby a infekčnosti** onemocnění. Odborná literatura se v současné době zcela neshoduje například na přesném odhadu délky inkubační doby a infekčnosti onemocnění, a proto přesné odhady čísla R je potřeba brát s jistou rezervou.

Zároveň je potřeba počítat s tím, že vzhledem k inkubační době můžeme mít relevantní data o změně reprodukčního čísla až více než týden po zavedení ochranných opatření.

Více než například **mezinárodní srovnání**, která mohou být **zatížena například rozdíly ve zdravotnických systémech a systémech pro sběr dat**, může být užitečné sledovat vývoj čísla R v rámci jednoho matematického modelu v čase v jedné populaci.

Čím je reprodukční číslo vyšší, tím se nemoc šíří rychleji. Pokud se podaří snížit reprodukční číslo pod 1, můžeme očekávat vyhasnutí epidemie. Pokud se alespoň podaří reprodukční číslo dostatečně snížit, lze šíření epidemie zpomalit a snížit riziko překročení kapacity zdravotnického systému (Obrázek 1).

Obrázek 1. Modelování dopadu změny reprodukčního čísla na vývoj počtu (dosud nezachycených) nakažených osob

