15

25

ATTORNEY'S CKET TI-33005 (032350.B372)

WHAT IS CLAIMED IS:

1. A method for manufacturing a semiconductor device, comprising:

18

forming a buried layer of a semiconductor substrate;

forming an active region adjacent at least a portion of the buried layer;

forming an isolation structure adjacent at least a portion of the active region;

forming a gate oxide adjacent at least a portion of the active region;

forming a polysilicon layer adjacent at least a portion of the gate oxide;

removing at least a portion of the polysilicon layer to form a polysilicon definition structure, wherein the polysilicon definition structure at least substantially surrounds and defines an emitter contact region; and

forming an implant region of the emitter contact region, wherein the implant region is self-aligned.

20 2. The method of Claim 1, wherein removing at least a portion of the polysilicon layer to form a polysilicon definition structure comprises:

masking a first portion of the polysilicon layer, leaving a second portion of the polysilicon layer unmasked; and

removing the second portion of the polysilicon layer.

3. The method of Claim 1, further comprising forming an implant region of a base contact region, wherein the base contact region is proximate an outer edge of the polysilicon definition structure.

ADGOZOZU ZIBOTI

5

- 4. The method of Claim 1, wherein a width of the polysilicon definition structure is approximately 0.4 to 0.6 microns.
- 5. The method of Claim 1, wherein a width of the emitter contact region is approximately 0.6 microns.
- 6. The method of Claim 1, wherein the isolation structure comprises a local oxidation on silicon (LOCOS) isolation structure.
- 7. The method of Claim 1, wherein the isolation structure comprises a shallow trench isolation (STI) structure.
 - 8. The method of Claim 1, wherein the active region has a depth of approximately 3.5 microns.
- 9. The method of Claim 1, further comprising forming an emitter contact at the emitter contact region.
- 10. The method of Claim 1, further comprising forming one or more spacer structures adjacent the polysilicon definition structure.
 - 11. The method of Claim 1, wherein the spacer structures comprise a nitride.

OGGGYGYE LIEGO

15

20

25

12. A semiconductor device, comprising:

a buried layer of a semiconductor substrate;

an active region adjacent at least a portion of the buried layer;

an isolation structure adjacent at least a portion of the active region;

a gate oxide adjacent at least a portion of the active region;

a polysilicon definition structure adjacent at least

10 a portion of the gate oxide, wherein the polysilicon

definition structure at least substantially surrounds and

defines an emitter contact region; and

an implant region of the emitter contact region, wherein the implant region is self-aligned during formation.

- 13. The semiconductor device of Claim 12, further comprising an implant region of a base contact region, wherein the base contact region is proximate an outer edge of the polysilicon definition structure.
- 14. The semiconductor device of Claim 12, wherein a width of the polysilicon definition structure is approximately 0.4 to 0.6 microns.
- 15. The semiconductor device of Claim 12, wherein a width of the emitter contact region is approximately 0.6 microns.
- 16. The semiconductor device of Claim 12, wherein the isolation structure comprises a local oxidation on silicon (LOCOS) isolation structure.

| A

þæ

20

5

17. The semiconductor device of Claim 12, wherein the isolation structure comprises a shallow trench isolation (STI) structure.

18. The semiconductor device of Claim 12, wherein the active region has a depth of approximately 3.5 microns.

- 10 19. The semiconductor device of Claim 12, further comprising an emitter contact at the emitter contact region.
- 20. The semiconductor device of Claim 12, further comprising one or more spacer structures adjacent the polysilicon definition structure.
 - 21. The semiconductor device of Claim 12, wherein the spacer structures comprise a nitride.