Melek Machine Learning

Data Science Indonesia

Contents

- Introducing Machine Learning
- Supervised Learning
- Unsupervised Learning
- Evaluation
- Tuning Parameter
- Analytics

Where is the location of Machine learning?

From impact to business side:

Where is the location of Machine learning?

From Data Science Side:

Wikipedia:

Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.

Wikipedia:

Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.

Me:

Machine Learning is a thing labeler!

Thing labeler, talking your description of something and telling you what label it should get Example:

We have data:

- Kaki empat
- Memiliki Ekor
- Berbulu
- Suka colek kaki orang yang makan di warteg

Machine Learning — • Model •

- 98% Probability is "Kucing"
- 65% Probability is "Anjing"
- 6% Probability is "Kuda nil"

What should label that appropriate with this object?

why you should be excited about thing labeler

What is this animal?

Why you should be excited about thing labeler

Kucing!

Why you should be excited about thing labeler

Machine learning is a new programming paradigm, a new way of communicating your wishes to a computer.

Why you should be excited about thing labeler

Kucing!

Explain with examples (data), not instructions

Why Machine Learning?

Machine Learning is used to solve business problem

My boss asked me that he wants to:

- wants to know about our customer behavior ---> ML can help you!
- wants to know which customer dare to pay expensive ---> ML can help you!
- wants to know customer who will stop using our product ---> ML can help you!
- wants to sell the same product with different price on each customer at the same time ---> ML can help you!
- wants to know the customer who will pay the credit until the end ---> ML can help you!
- wants to recommend products according to the needs of every customer ---> ML can help you!
- wants to know if there is fraud to the customer in using our product ---> ML can help you!
- wants to know the market potential for new innovation products ---> ML can help you!
- And many more

How to build Machine Learning Models?

What are kinds of Machine Learning model?

Supervised Learning

Supervised Learning

What is Supervised Learning?

Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output.

Algorithms:

- K-Nearest Neighbor
- Decision Tree
- Support Vector Machine

Supervised Learning

- Regression
- Classification

Supervised learning in classification handles estimator for discrete labels rather than continuous labels.

Classification > binary classification, multiclass classification, multilabel classification

K-Nearest Neighbor

- K-NN is an instance-based learning or lazy learning
- K-NN using distance to measure the likelihood of the class
- Number of K take as a comparison of the likelihood

Pros and Cons

Pros

- Simple Algorithm
- Versatile (Classification and Regression)
- Does not assume any probability distribution on the input data

Cons

- Requires high memory
- Computationally Expensive
- Lazy Learning

Decision Tree

Metrics that DT consider:

- Information Gain
- Entropy

Algorithms:

- ID3
- C4.5
- C5.0
- CART

Decision Tree

Step 1: Calculate Entropy

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Yes	No
9	5

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64) = - (0.36 log₂ 0.36) - (0.64 log₂ 0.64) = 0.94

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

		Play	Golf	
		Yes	No	96
Outlook	Sunny	3	2	5
	Overcast	4	0	4
	Rainy	2	3	5
				14

 $\textbf{E}(\mathsf{PlayGolf}, \mathsf{Outlook}) = \textbf{P}(\mathsf{Sunny})^* \textbf{E}(3,2) + \textbf{P}(\mathsf{Overcast})^* \textbf{E}(4,0) + \textbf{P}(\mathsf{Rainy})^* \textbf{E}(2,3)$

= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971

= 0.693

Step 2: Calculate Information Gain

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

		Play Golf	
		Yes	No
Outlook	Sunny	3	2
	Overcast	4	0
	Rainy	2	3
4	Gain = 0.	247	

		Play Golf	
		Yes	No
Humidity	High	3	4
	Normal	6	1

		Play Golf	
		Yes	No
Temp.	Hot	2	2
	Mild	4	2
	Cool	3	1
	Gain =	0.029	

	Play Golf	
	Yes	No
False	6	2
True	3	3
		False 6

Step 3: Choose Root Node

Yes	No
	140
3	2
4	0
2	3
	3 4 2

Step 3: Node Leaf

Step 4: Calculate Entropy & Information Gain

Step 5: Calculate Information Gain

R,: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes R2: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No R₃: IF (Outlook=Overcast) THEN Play=Yes Ra: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No Rs: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

Pros and Cons

Pros:

- Easy to Explain
- Follows the same approach with human
- Interpretation of a complex decision tree can be simplified by visualization

Cons:

- High probability of overfitting
- Calculations can be complex when there are many class labels

Support Vector Machine

Pros and Cons

Pros:

- Works well with clear margin
- Effective in High Dimensional Spaces
- Effective in cases where num. Of dimension is greater than num. Of samples

Cons:

- High computation
- Bad at a lot of noise

Let's Code

Unsupervised Learning

Unsupervised Learning

What is Unsupervised Learning?

Algorithms:

- K-Means
- Hierarchy clustering
- DBSCAN

K-Means is the 'go-to' clustering algorithm for many simply because it is fast, easy to understand, and available everywhere (there's an implementation in almost any statistical or machine learning tool you care to use) <- Really Suitable with large data

"Here's a list of 100,000 warehouses full of data. I'd like you to condense them down to one meaningful warehouse."

Pros and Cons

- Applicable only when mean is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance. If you have a good intuition for how many clusters the dataset your exploring has then great, otherwise you might have a problem
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes
- Doesn't consider the proportion of different cluster
- Doesn't consider the variance of different cluster

Hierarchy Clustering

Hierarchy algorithms: Create a hierarchical

decomposition of the set of data (or objects) using some criterion

In short, decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.

Pros and Cons

- do not scale well: time complexity of at least O(n^2), where n is the number of total objects
- can never undo what was done previously
- Similar to K-Means we are stuck choosing the number of clusters (not easy in EDA), or trying to discern some natural parameter value from a plot that may or may not have any obvious natural choices.

DBSCAN

DBSCAN is a density based algorithm – it assumes clusters for dense regions. It is also the first actual clustering algorithm we've looked at: it doesn't require that every point be assigned to a cluster and hence doesn't partition the data, but instead extracts the 'dense' clusters and leaves sparse background classified as 'noise'.

Pros and Cons

 Epsilon is a distance value, so you need to survey the distribution of distances in your dataset to attempt to get an idea of where it should lie. In practice, however, this isn't an especially intuitive parameter, nor is it easy to get right.

Sensitive to the parameter

Let's Code

Evaluation

Evaluation - Classification

- Cross Validation
 - Stratified Cross Validation
 - One Leave Out Cross Validation
- Metrices
 - Accuracy
 - Precision
 - Recall
 - o F1-Score

Cross Validation

Stratified Cross Validation

Stratified Cross-validation

Leave One Out Cross Validation

Confusion Matrix

Binary prediction outcomes

True negative TN FP

True positive FN TP

Label 1 = positive class (class of interest)

Label 0 = negative class (everything else)

TP = true positive

FP = false positive (Type I error)

TN = true negative

FN = false negative (Type II error)

Predicted negative

Predicted positive

Confusion Matrix Visualization

Accuracy

True negative	TN = 400	FP = 7		Accuracy = $\frac{TN+TP}{TN+TP+FN+FP}$ $400+26$
True positive	FN = 17	TP = 26		$= \frac{1}{400+26+17+7}$ $= 0.95$
	Predicted negative	Predicted positive	N = 450	

Recall

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted	Predicted	N = 450

positive

negative

$$Recall = \frac{TP}{TP + FN}$$

$$=\frac{26}{26+17}$$

$$= 0.60$$

Recall is also known as: True Positive Rate (TPR)

- Sensitivity
- Probability of detection

Precision

	50.00 to 50.00		56	
True negative	TN = 400	FP = 7		$Precision = \frac{TP}{TP + FP}$ $= \frac{26}{TP + FP}$
True positive	FN = 17	TP = 26		26+7 = 0.79
	Predicted negative	Predicted positive	N = 450	

F1-Score

$$F_1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2 \cdot TP}{2 \cdot TP + FN + FP}$$

Evaluation - Clustering

Tuning Parameter (Decision Tree)

max_depth

The first parameter to tune is max_depth. This indicates how deep the tree can be. The deeper the tree, the more splits it has and it captures more information about the data.

min_samples_split

min_samples_split represents the minimum number of samples required to split an internal node. This can vary between considering at least one sample at each node to considering all of the samples at each node. When we increase this parameter, the tree becomes more constrained as it has to consider more samples at each node.

Tuning Parameter (Decision Tree)

min_samples_leaf

min_samples_leaf is The minimum number of samples required to be at a leaf node. This parameter is similar to *min_samples_splits*, however, this describe the minimum number of samples of samples at the leafs, the base of the tree.

max_features

max_features represents the number of features to consider when looking for the best split.

Analytics

Machine Learning Use Cases

- Supervised Learning
 - a. Use case 1
 - b. Use case 2
 - c. Use case 3
- Unsupervised Learning
 - a. Use case 1
 - b. Use case 2
 - c. Use case 3

Use Case Machine Learning

How machine learning implemented in real case

Rekomendasi

Google Search

revi	ew f ×	Q
()	review f emale daily dr g brightening peeling gel	×
()	review female daily nature republic lemon peeling gel	×
()	review female daily mizon apple smoothie peeling gel	×
Q	review foundation wardah	↸
Q	review f ilm target	K

Credit Scoring

Bot

36781 people talking

Gak tau.

Nama saya ysabel yang pelakon tu.

Maem sek yo.

Kepala hotak hang.

Hmm.

What are you thinking? & share!

say to cleverbot...

think about it

think for me

thoughts so far

Study Case

Data Science Indonesia

Data Science Indonesia (DSI), adalah sebuah Komunitas yang didirikan pada bulan Mei 2015 yang terdiri dari sekumpulan ilmuwan, seniman dan pembelajar yang ingin membangun budaya Data Driven di Indonesia dengan menginspirasi, mengajarkan serta menawarkan nilai dari sebuah data melalui pendekatan Data Science

Visi Kami:

•Bersama masyarakat menciptakan ekosistem inovasi berbasis data untuk meningkatkan kesejahteraan masyarakat

Misi:

- •Menjadi mitra bagi sektor publik maupun swasta untuk mengeskplorasi pendekatan data science dalam mencari solusi atas tantangan yang ada
- •Meningkatkan pengetahuan dan kesadaran masyarakat terhadap data science
- •Menjadi wadah bagi masyarakat untuk berjejaring dalam konteks pemanfaatan data science

http://datascience.or.id/daftar-anggota-dsi/

Contact: contact@datascience.or.id