

Introduction

Experiment

- Introduction
- Experiment
- Application

Contents

Introduction

Experiment

Contents

Introduction

Experiment

Contents

Introduction

Experiment

Application

Output : $f_{\theta}(x)$

Loss: $-\log(p(y|f_{\theta}(x)))$

Contents

Introduction

Experiment

$$\theta^* = \underset{\theta}{\operatorname{argmin}} L(f_{\theta}(x), y) \qquad \theta^* = \underset{\theta}{\operatorname{argmin}} [-\log(p(y|f_{\theta}(x)))]$$
$$y_{new} = f_{\theta^*}(x_{new}) \qquad y_{new} \sim p(y|f_{\theta^*}(x_{new}))$$

Contents

Introduction

Experiment

Application

i.i.d Condition on $p(y|f_{\theta}(x))$

Assumption 1: Independence

All of our data is independent of each other

$$p(y|f_{\theta}(x)) = \prod_{i} p_{D_i}(y|f_{\theta}(x_i))$$

Assumption 2: Identical Distribution

Our data is identically distributed

$$p(y|f_{\theta}(x)) = \prod_{i} p(y|f_{\theta}(x_{i}))$$

Contents

Introduction

Experiment

Application

i.i.d Condition on $p(y|f_{\theta}(x))$

Assumption 1: Independence

All of our data is independent of each other

$$p(y|f_{\theta}(x)) = \prod_{i} p_{D_i}(y|f_{\theta}(x_i))$$

Assumption 2: Identical Distribution

Our data is identically distributed

$$p(y|f_{\theta}(x)) = \prod_{i} p(y|f_{\theta}(x_i))$$

$$-\log(p(y|f_{\theta}(x))) = -\sum_{i}\log(p(y_{i}|f_{\theta}(x_{i})))$$

Contents

Introduction

Experiment

Application

$-\log(p(y_i|f_{\theta}(x_i)))$

Gaussian distribution

$$f_{\theta}(x_i) = \mu_i, \sigma_i = 1$$

$$p(y_i|\boldsymbol{\mu_i}, \boldsymbol{\sigma_i}) = \frac{1}{\sqrt{2\pi}\boldsymbol{\sigma_i}} \exp\left(-\frac{(y_i - \boldsymbol{\mu_i})^2}{2\sigma_i^2}\right)$$

$$\log(p(y_i|\boldsymbol{\mu_i},\boldsymbol{\sigma_i})) = \log \frac{1}{\sqrt{2\pi}\boldsymbol{\sigma_i}} - \frac{(y_i - \boldsymbol{\mu_i})^2}{2\boldsymbol{\sigma_i^2}}$$

$$-\log(p(y_i|\mu_i)) = -\log\frac{1}{\sqrt{2\pi}} + \frac{(y_i - \mu_i)^2}{2}$$

$$-\log(p(y_i|\mu_i)) \propto \frac{(y_i - \mu_i)^2}{2} = \frac{(y_i - f_\theta(x_i))^2}{2}$$

Mean Squared Error

Bernoulli distribution

$$f_{\theta}(x_i) = p_i$$

$$p(y_i|p_i) = p_i^{y_i}(1-p_i)^{1-y_i}$$

$$\log(p(y_i|p_i)) = y_i \log p_i + (1 - y_i) \log(1 - p_i)$$

$$-\log(p(y_i|p_i)) = -[y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

Cross-entropy

AutoEncoder

Contents

Introduction

Experiment

Application

 $x, y \in \mathbb{R}^d$

입출력이 동일한 네트워크

Unsupervised Learning을 Supervised Learning으로 바꾸어 해결

Decoder가 최소한 학습 데이터는 생성해 낼 수 있게 된다.

->생성된 데이터가 학습 데이터 좀 닮았다.

Encoder가 최소한 학습 데이터는 잘 latent vector로 표현 할 수 있게 된다.

->데이터의 추상화를 위해 많이 사용됨.

Manifold Learning

Contents

Introduction

Experiment

Application

MNIST Data → 2D manifold

• 고차원의 데이터 공간에 데이터들이 존재할 때, 이들을 잘 포함할 수 있는 저차원의 서브스페이스인 Manifold가 존재한다.

- 목적
- 데이터 압축
- 데이터 시각화
- 차원의 저주의 문제
- 중요한 Feature

Introduction

Experiment

Introduction

Experiment

Introduction

Experiment

Introduction

Experiment

Contents

Introduction

Experiment

Contents

Introduction

Experiment

$$L_{DAE} = \sum_{x \in D} E_{q(\tilde{x}|x)} \left[L(x, g(h(\tilde{x}))) \right] \approx \sum_{x \in D} \frac{1}{L} \sum_{i=1}^{L} L(x, g(h(\tilde{x}_i)))$$
 병균으로 대체

Contents

Introduction

Experiment

Application

$$y = \sigma_d(W^T z + b_d)$$

AutoEncoder with 1hidden layer

Contents

Introduction

Experiment

Contents

Introduction

Experiment

Contents

Introduction

Experiment

Contents

Introduction

Experiment

Contents

Introduction

Experiment

Contents

Introduction

Experiment

Introduction

Experiment

Application

$$L_{SCAE} = \sum_{x \in D} \underline{L(x, g(h(x)))} + \lambda \underline{E_{q(\tilde{x}|x)}} [||h(x) - h(\tilde{x})||^2]$$

Reconstruction Error

Stochastic Regularization

SCAE stochastic regularization term : $E_{q(\tilde{x}|x)}$ [$||h(x) - h(\tilde{x})||^2$]

For small additive noise, $\tilde{x}|x=x+\epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2 I)$

Taylor series expansion yields, $h(\tilde{x}) = h(x + \epsilon) = h(x) + \frac{\partial h}{\partial x}\epsilon + \cdots$

$$E_{q(\tilde{x}|x)} \left[\|h(x) - h(\tilde{x})\|^2 \right] \approx \left\| \frac{\partial h}{\partial x}(x) \right\|_F^2$$

Stochastic Regularization (SCAE)

Analytic Regularization (CAE)

Result

Contents

Introduction

Experiment

Result

Contents

Introduction

Experiment

	Model	Test	Average	SAT	
		error	$ J_f(x) _F$		
MNIST	CAE	1.14	$0.73 10^{-4}$	86.36%	
	DAE-g	1.18	$0.86 10^{-4}$	17.77%	
	RBM-binary	1.30	$2.50 10^{-4}$	78.59%	
	DAE-b	1.57	$7.87 10^{-4}$	68.19%	
	AE+wd	1.68	$5.00 10^{-4}$	12.97%	
	AE	1.78	$17.5 \ 10^{-4}$	49.90%	
CIFAR-bw	CAE	47.86	$2.40 \ 10^{-5}$	$85,\!65\%$	
	DAE-b	49.03	$4.85 10^{-5}$	$80,\!66\%$	
	DAE-g	54.81	$4.94 \ 10^{-5}$	19,90%	
	AE+wd	55.03	$34.9 10^{-5}$	23,04%	
	AE	55.47	$44.9 \ 10^{-5}$	$22,\!57\%$	

- DAE-g: DAE with gaussian noise
- DAE-b: DAE with binary masking noise
- CIFAR-bw : gray scale version
- Training/Validation/test: 10k/2k/50k
- SAT: average fraction of saturated units per sample
- 1-hidden layer with 1000 units

Result

Contents

Introduction

Experiment

Data Set	\mathbf{SVM}_{rbf}	SAE-3	RBM-3	DAE-b-3	CAE-1	CAE-2
basic	3.03 ± 0.15	3.46 ± 0.16	3.11 ± 0.15	2.84 ± 0.15	2.83 ± 0.15	2.48 ±0.14
rot	11.11 ± 0.28	10.30 ± 0.27	10.30 ± 0.27	9.53 ± 0.26	11.59 ± 0.28	9.66 ± 0.26
bg-rand	14.58 ± 0.31	11.28 ± 0.28	6.73 ± 0.22	10.30 ± 0.27	13.57 ± 0.30	10.90 ± 0.27
$bg ext{-}img$	22.61 ± 0.379	23.00 ± 0.37	$16.31{\pm}0.32$	$16.68{\pm}0.33$	16.70 ± 0.33	15.50 ± 0.32
$bg ext{-}img ext{-}rot$	55.18 ± 0.44	51.93 ± 0.44	47.39 ± 0.44	43.76 ± 0.43	$48.10{\pm}0.44$	45.23 ± 0.44
rect	2.15 ± 0.13	2.41 ± 0.13	2.60 ± 0.14	1.99 ± 0.12	1.48 ± 0.10	1.21 ± 0.10
rect- img	24.04 ± 0.37	24.05 ± 0.37	22.50 ± 0.37	21.59 ± 0.36	21.86 ± 0.36	21.54 ± 0.36

- basic: smaller subset of MNIST
- rot: digits with added random rotation
- bg-rand: digits with random noise background
- bg-img: digits with random image background
- bg-img-rot: digits with rotation and image background
- rect: discriminate between tall and wide rectangles (white on black)
- rect-img: discriminate between tall and wide rectangular image on a different background image

Application

Contents

Introduction

Experiment

- 클러스터링 알고리즘
 - Step 0: 각 f(x)를 임의의 클러스터에 할당 각 클러스터의 c(x) 계산
 - Step 1: 목적 함수 계산 오토 인코더 학습
 - Step 2: 변경된 f(x)를 이용한 중심점 c(x) 계산
 - Step 3: 각 f(x)를 새로 구한 c(x)에 할당
 - Step 1~3 반복 (step 1이 없으면 그냥 k-mean과 동일)

$$\min_{W,b} \frac{1}{N} \sum_{i=1}^{N} ||x_i - z_i||^2 + \lambda \sum_{i=1}^{N} ||f(x_i) - c(x_i)||^2$$

$$c(x) = arg\min_{c_i} ||f(x) - c_i||^2$$

