Problema: Sea G una gráfica conexa, demuestre que existe una trayectoria de tamaño $\min(2\delta, n-1)$.

Solución:

Supondremos que $\delta \geq 2$ pues si $\delta = 1$ la gráfica es K_2 y es trivial.

Lo haremos por contradicción, supongamos que no, sea $P=x_1,x_2,\ldots,x_m$ una trayectoria de longitud máxima, con $m \leq \min(2\delta,n-1)$. Es claro que todos los vecinos de x_1 y x_m están en P. Supongamos que para cada vecino x_k de x_m se cumple que x_{k+1} no es vecino de x_1 . Entonces x_1 tiene a lo más $(m-1)-\deg(x_n)$ vecinos. Concluimos que $\deg(x_1)+\deg(x_m)\leq m-1<2\delta$, una contradicción. Por lo tanto existe un ciclo C con la misma longitud que P (explicitamente es el ciclo $x_1,x_2,\ldots,x_k,x_n,x_{n-1},\ldots,x_{k+1},x_1$).

Por hipótesis tenemos que C no contiene todos los vértices de G, como G es conexa existe un vértice de C conectado a un vértice fuera de C. Esto es una contradicción, pues nos permite construir una trayectoria más grande que P.

