Seattle Terry Stops Prediction Project

By: Shamla Tadese Araya

Moringa School

Aug 2024

INTRODUCTION

In Seattle, Terry stops refer to brief stops and detentions by police officers based on a reasonable suspicion that a person may be involved in criminal activity. The term originates from the U.S. Supreme Court case Terry v. Ohio (1968), which established the legal standard for such stops. In Seattle, these stops are subject to both federal and local regulations, and there has been considerable debate over their impact on communities, particularly concerning concerns about racial profiling and civil liberties. Efforts to refine and improve the practice focus on balancing effective policing with the protection of individual rights.

In this project we aim to achieve the following objectives:

- · Determine if there is a racial disparity in the Seattle Terry Stops
- Do the differences in races between the officer and the subject play a role in frisks arrests?
- Determine the most common outcome of the Seattle Terry Stops and what it means
- Develop a model that can accurately predict the likelihood of an arrest occurring during a Terry Stop

This project will be divided into three workbooks, each focusing on a specific aspect of the process. We will start by exploring the data and cleaning, followed by followed by exploratory analysis aiming to addressing the first three objectives which are racial disparity during Terry Stops, role of race in the Terry Stops and the most common outcome of the Terry Stops in Seattle. We will then move on to the third workbook where we will be addressing the fourth objective of developing a comprehensive predictive model that can accurately predict the likelihood of an arrest following a Terry Stop based on various factors.

In this project we will be using the data obtained from City of Seattle on https://data.seattle.gov/Public-Safety/Terry-Stops (https://data.seattle.gov/Public-Safety/Terry-Stops).

Observing the Data

```
In [4]: # Importing the relevant libraries for EDA and visualization

import numpy as np
import pandas as pd
from scipy import stats
from datetime import datetime
import warnings
warnings.filterwarnings(action='ignore')
warnings.filterwarnings('ignore')
```

```
In [5]: # Loading the data
df = pd.read_csv('data/Terry_Stops_20240826.csv')
# Checking the first few rows of the data
df.head()
```

Out [5]:

	Subject Age Group	Subject ID	GO / SC Num	Terry Stop ID	Stop Resolution	Weapon Type	Officer ID	Officer YOB	Officer Gender	C
0	36 - 45	-1	20160000398323	208373	Offense Report	NaN	4852	1953	М	
1	18 - 25	-1	20180000227180	559146	Citation / Infraction	NaN	5472	1964	М	
2	18 - 25	-1	20180000410091	498246	Offense Report	NaN	6081	1962	М	
3	-	-1	20160000001637	146742	Field Contact	NaN	6924	1974	М	
4	46 - 55	-1	20150000006037	104477	Field Contact	NaN	6732	1975	М	

5 rows × 23 columns

```
In [6]: # Checking the number of rows and columns of the data
df.shape
```

Out[6]: (61009, 23)

The dataset on Terry stops from the City of Seattle's open data portal contains about 61000 entries with 23 columns which typically includes information on interactions between Seattle police officers and individuals during Terry stops. Here's a general description of what this dataset contains:

Stop Date and Time: When the Terry stop occurred, including the specific date and time.

Location: The geographic location where the stop took place, often including neighborhood or precinct information.

Officer Details: Identifiers or information related to the officers who conducted the stop, though specific identifying details might be anonymized.

Demographic Information: Data on the individuals stopped, such as race, gender, and age. This helps in analyzing the demographic breakdown of those stopped.

Reason for Stop: The reason or suspicion that led to the stop, providing context for why the individual was stopped.

Outcome of the Stop: The result of the stop, such as whether a search was conducted, if an arrest was made, or if a citation was issued.

Search Details: Information on whether a search was conducted during the stop, and if so, what was found.

Interaction Type: Information on the nature of the interaction, such as whether it was a stopand-frisk, a consent stop, or another type of encounter.

Agency and Division: Information about which division or unit within the police department conducted the stop.

The dataset aims to provide transparency and allow for analysis of police practices, helping to ensure accountability and evaluate the impact of Terry stops on different communities.

Column Names and Descriptions

The following descriptions were provided by data.seattle.gov This dataset contains the following data:

Subject Age Group: Subject Age Group (10 year increments) as reported by the officer.

Subject ID: Key, generated daily, identifying unique subjects in the dataset using a character to character match of first name and last name. "Null" values indicate an "anonymous" or "unidentified" subject. Subjects of a Terry Stop are not required to present identification.

GO / SC Num: General Offense or Street Check number, relating the Terry Stop to the parent report. This field may have a one to many relationship in the data.

Terry Stop ID: Key identifying unique Terry Stop reports.

Stop Resolution: Resolution of the stop as reported by the officer.

Weapon Type: Type of weapon, if any, identified during a search or frisk of the subject. Indicates "None" if no weapons was found.

Officer ID: Key identifying unique officers in the dataset.

Officer YOB: Year of birth, as reported by the officer.

Officer Gender: Gender of the officer, as reported by the officer.

Officer Race: Race of the officer, as reported by the officer.

Subject Perceived Race: Perceived race of the subject, as reported by the officer.

Subject Perceived Gender: Perceived gender of the subject, as reported by the officer.

Reported Date: Date the report was filed in the Records Management System (RMS). Not necessarily the date the stop occurred but generally within 1 day.

Reported Time: Time the stop was reported in the Records Management System (RMS). Not the time the stop occurred but generally within 10 hours.

Initial Call Type: Initial classification of the call as assigned by 911.

Final Call Type: Final classification of the call as assigned by the primary officer closing the event.

Call Type: How the call was received by the communication center.

Officer Squad: Functional squad assignment (not budget) of the officer as reported by the Data Analytics Platform (DAP).

Arrest Flag: Indicator of whether a "physical arrest" was made, of the subject, during the Terry Stop. Does not necessarily reflect a report of an arrest in the Records Management System (RMS).

Frisk Flag: Indicator of whether a "frisk" was conducted, by the officer, of the subject, during the Terry Stop.

Precinct: Precinct of the address associated with the underlying Computer Aided Dispatch (CAD) event. Not necessarily where the Terry Stop occurred.

Sector: Sector of the address associated with the underlying Computer Aided Dispatch (CAD) event. Not necessarily where the Terry Stop occurred.

Beat: Beat of the address associated with the underlying Computer Aided Dispatch (CAD) event. Not necessarily where the Terry Stop occurred.

In [7]: # Getting a closer look at the dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 61009 entries, 0 to 61008
Data columns (total 23 columns):

# 	Column		ull Count	Dtype
0	Subject Age Group	61009	non-null	object
1	Subject ID	61009	non-null	int64
2	GO / SC Num	61009	non-null	int64
3	Terry Stop ID	61009	non-null	int64
4	Stop Resolution	61009	non-null	object
5	Weapon Type	28444	non-null	object
6	Officer ID	61009	non-null	object
7	Officer YOB	61009	non-null	int64
8	Officer Gender	61009	non-null	object
9	Officer Race	61009	non-null	object
10	Subject Perceived Race	61009	non-null	object
11	Subject Perceived Gender	61009	non-null	object
12	Reported Date	61009	non-null	object
13	Reported Time	61009	non-null	object
14	Initial Call Type	61009	non-null	object
15	Final Call Type	61009	non-null	object
16	Call Type	61009		object
17	Officer Squad		non-null	object
18	Arrest Flag	61009	non-null	object
19	Frisk Flag	61009		object
20	Precinct	61009	non-null	object
21	Sector	61009	non-null	object
22	Beat	61009	non-null	object
dtype	es: int64(4), object(19)			

dtypes: int64(4), object(19) memory usage: 10.7+ MB

The data types of the columns are as follows:

Column Classification

Numerical Columns:

Subject ID, GO / SC Num, Terry Stop ID, Officer YOB,

Categorical Columns:

Subject Age Group, Stop Resolution, Weapon Type, Officer ID, Officer Gender, Officer Race, Subject Perceived Race, Subject Perceived Gender, Reported Date, Reported Time, Initial Call Type, Final Call Type, Call Type, Officer Squad, Arrest Flag, Frisk Flag, Precinct, Sector, Beat,

	<pre># Checking for missing values in df.isnull().sum()</pre>	n the dataset
Out[8]:	Subject Age Group	0

Subject Age Group	0
Subject ID	0
GO / SC Num	0
Terry Stop ID	0
Stop Resolution	0
Weapon Type	32565
Officer ID	0
Officer YOB	0
Officer Gender	0
Officer Race	0
Subject Perceived Race	0
Subject Perceived Gender	0
Reported Date	0
Reported Time	0
Initial Call Type	0
Final Call Type	0
Call Type	0
Officer Squad	561
Arrest Flag	0
Frisk Flag	0
Precinct	0
Sector	0
Beat	0
dtype: int64	

Here we can clearly see that the Weapon Type feature has a lot of values missing and also the Office Squad as well has 561 missing values. Still yet we need to check the dataset in depth to learn if there are any place holders, none or other unnecessary values/Characters.

```
In [9]:
         # Creating a function that shows the value counts of each column in the
         def col values(df):
              For use in Preprocessing and cleaning to find placeholder values
              Input: Data frame
              Output: Counts of unique values for each column
              for col in df.columns:
                  print(df[col].value counts())
                  print('---
         col values(df)
           7738872582
                               1
           16724979306
                               1
                               1
           19137661313
         Name: count, Length: 17000, dtype: int64
         GO / SC Num
         20160000378750
                             16
         20150000190790
                             16
         20180000134604
                             14
         20210000267148
                             14
         20230000049052
                             14
         20150000006142
                             1
                              1
         20180000000272
         20200000339446
                              1
         20220000283906
                              1
                             1
         20220000018102
         Name: count, Length: 48845, dtype: int64
         Terry Stop ID
In [10]: # For ease of use let us rename the columns
         'subject_perceived_gender', 'reported_date', 'reported_time',
                 'initial_call_type', 'final_call_type', 'call_type', 'officer_s
'arrest_flag', 'frisk_flag', 'precinct', 'sector', 'beat']
         df.columns
Out[10]: Index(['subject_age_group', 'subject_id', 'go_sc_num', 'terry_stop_i
         d',
                 'stop resolution', 'weapon_type', 'officer_id', 'officer_yo
         b',
                 'officer_gender', 'officer_race', 'subject_perceived_race',
                 'subject_perceived_gender', 'reported_date', 'reported_time',
'initial_call_type', 'final_call_type', 'call_type', 'officer
         _squad',
                 'arrest_flag', 'frisk_flag', 'precinct', 'sector', 'beat'],
                dtvpe='object')
```

In [11]: # Checking the dataframe
df.head()

Out[11]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapon_type
0	36 - 45	-1	20160000398323	208373	Offense Report	NaN
1	18 - 25	-1	20180000227180	559146	Citation / Infraction	NaN
2	18 - 25	-1	20180000410091	498246	Offense Report	NaN
3	-	-1	20160000001637	146742	Field Contact	NaN
4	46 - 55	-1	20150000006037	104477	Field Contact	NaN

5 rows × 23 columns

Data Cleaning

Let us clean the data before we proceed to processing. Let us start by replacing the dashes and place holders with the more workable values first. Then we will go on to the more complex cleaning process.

```
In [12]: # Replacing the dashes with Unknown
df = df.replace('-', 'Unknown')
df.head()
```

Out[12]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapon_type
0	36 - 45	-1	20160000398323	208373	Offense Report	NaN
1	18 - 25	-1	20180000227180	559146	Citation / Infraction	NaN
2	18 - 25	-1	20180000410091	498246	Offense Report	NaN
3	Unknown	-1	20160000001637	146742	Field Contact	NaN
4	46 - 55	-1	20150000006037	104477	Field Contact	NaN

5 rows × 23 columns

Officer_gender has 30 'N' values. We cannot be sure if 'N' stands for 'Not Available', 'Not Disclosed', or even 'Non-Gender Binary'. Since it's such a small amount of data, we'll just drop it.

```
In [13]: # Dropping the entries with 'N' values from the officer_gender column.
df.drop(df[df['officer_gender'] == 'N'].index, inplace=True)
df.officer_gender.value_counts()
```

Out[13]: officer_gender

M 54072 F 6907

Name: count, dtype: int64

Officer_squad also has some NAN values. Since this information is less relevant to this particular task, it is better to just drop the column.

```
In [14]: # Dropping the officer_squad column and assigning the data to a copy of df.drop('officer_squad', axis=1, inplace=True)
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 60979 entries, 0 to 61008
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	subject_age_group	60979 non-null	object
1	subject_id	60979 non-null	int64
2	go_sc_num	60979 non-null	int64
3	terry_stop_id	60979 non-null	int64
4	stop_resolution	60979 non-null	object
5	weapon_type	28419 non-null	object
6	officer_id	60979 non-null	object
7	officer_yob	60979 non-null	int64
8	officer_gender	60979 non-null	object
9	officer_race	60979 non-null	object
10	<pre>subject_perceived_race</pre>	60979 non-null	object
11	<pre>subject_perceived_gender</pre>	60979 non-null	object
12	reported_date	60979 non-null	object
13	reported_time	60979 non-null	object
14	initial_call_type	60979 non-null	object
15	final_call_type	60979 non-null	object
16	call_type	60979 non-null	object
17	arrest_flag	60979 non-null	object
18	frisk_flag	60979 non-null	object
19	precinct	60979 non-null	object
20	sector	60979 non-null	object
21	beat	60979 non-null	object
dtyp	es: int64(4), object(18)		

dtypes: int64(4), object(18) memory usage: 10.7+ MB

As we saw it above, there are some subject IDs that are repeated multiple times. This could be either duplicates or repeat offenders. So it is crucial to investigate that feature.

```
In [15]: # Checking the subject_id column
df['subject_id'].value_counts()
```

```
Out[15]: subject_id
                           35095
          -1
                              28
           7753260438
                              22
           7774286580
           7726918259
                              21
           7731717691
                              20
           15606702593
                               1
           7735943699
                               1
           7738872582
                               1
           16724979306
                               1
           19137661313
                               1
```

Name: count, Length: 16988, dtype: int64

```
# Let us replace those -1 values in 'Subject_ID' with 'unassigned'
In [16]:
         df['subject_id'] = df['subject_id'].replace(-1, 'unassigned')
         df.subject_id.value_counts()
Out[16]: subject_id
         unassigned
                         35095
         7753260438
                            28
         7774286580
                            22
         7726918259
                            21
         7731717691
                            20
         15606702593
                             1
         7735943699
                             1
         7738872582
                             1
         16724979306
                             1
         19137661313
                             1
         Name: count, Length: 16988, dtype: int64
```

Here it looks like we have multiple duplicates in 'Subject_IDs'. If that is the case this could make our dataset biased so we need to check closely to decide whether we have duplicates or not. We can do this by checking a number of columns namely 'subject_id', 'terry_stop_id' and 'officer_id'.

```
In [17]: # Group by 'subject_id', 'terry_stop_id', and 'officer_id' and count of df['count'] = df.groupby(['subject_id', 'terry_stop_id', 'officer_id']
# Create 'repeat_offenders' column based on count df['repeat_offenders'] = df['count'].apply(lambda x: 'Yes' if x > 1 e]
# Drop the 'count' column as it is no longer needed df.drop(columns=['count'], axis=1, inplace=True)

df['repeat_offenders'].value_counts()
Out[17]: repeat_offenders
No 60784
```

Yes 195 Name: count, dtype: int64

This tells us we have 195 duplicated in our dataset but still we need to dig deeper before we conclusively decide.

Terry Stop ID also has some duplicate values worth checking.

```
In [18]: # Checking terry stop id value counts
         df['terry_stop_id'].value_counts()
Out[18]: terry_stop_id
         19324329995
                         3
                         3
         19268585233
                         3
         27511831225
                         3
         36014210659
                         3
         32633045284
                         1
         87443
         108886
                         1
                         1
         274766
         12093615563
                         1
                         1
         31342435997
         Name: count, Length: 60877, dtype: int64
```

Out[19]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	
52	26 - 35	7810387129	20190000254490	8611673538	Field Contact	Knife/(
43012	26 - 35	7810387129	20190000254490	8611673538	Field Contact	Blun
14583	26 - 35	7730805128	20190000268604	8677596250	Offense Report	
8805	26 - 35	7730805128	20190000268604	8677596250	Offense Report	Knife/C
19773	18 - 25	9458419522	20190000285750	9585545373	Field Contact	
20234	26 - 35	53848066671	20240000133855	56110860878	Arrest	Knife/(
46922	36 - 45	57754429915	20240000198136	57754515446	Arrest	Knife/(
42736	36 - 45	57754429915	20240000198136	57754515446	Arrest	Blun
9130	18 - 25	7741755512	20240000210107	57961741719	Arrest	
21376	18 - 25	7741755512	20240000210107	57961741719	Arrest	Knife/(

195 rows × 23 columns

This may look like a confirmation of duplicate entries at first glance. However if we look carefully we can see that all these incidents have different weapon types even though they have identical subject, stop and officer ids. From this we can understand that these

incidents are entries done by the same officer at the same time with the same subject who happen to be with multiple weapon types. After all it is a normal procedure for officers to place multiple entries of the same subject based on each weapon type found with.

```
In [20]: # Group by 'subject_id', 'terry_stop_id', and 'officer_id' and count of df['count'] = df.groupby(['subject_id', 'terry_stop_id', 'officer_id']
# Create 'repeat_offenders' column based on count df['repeat_offenders'] = df['count'].apply(lambda x: 'Yes' if x > 1 el # Drop the 'count' column as it is no longer needed df.drop(columns=['count'], axis=1, inplace=True)

df['repeat_offenders'].value_counts()
```

Out[20]: repeat_offenders

No 60979

Name: count, dtype: int64

In [21]: | df.head()

Out [21]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapon_type
0	36 - 45	unassigned	20160000398323	208373	Offense Report	NaN
1	18 - 25	unassigned	20180000227180	559146	Citation / Infraction	NaN
2	18 - 25	unassigned	20180000410091	498246	Offense Report	NaN
3	Unknown	unassigned	20160000001637	146742	Field Contact	NaN
4	46 - 55	unassigned	20150000006037	104477	Field Contact	NaN

5 rows × 23 columns

This confirms our observation. Therefore since having this multiple entries of the same subjects can bloat our dataset and since the incidents are only 195, it is better to drop the duplicates and keep only the first entries.

In [22]: # Dropping the duplicates and keeping the first instance
 df.drop_duplicates('terry_stop_id', keep='first', inplace=True)
 df.sort_values(by='terry_stop_id')

Out [22]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapc
5536	1 - 17	unassigned	20150000084533	28020	Referred for Prosecution	Lethal Inst
34249	36 - 45	unassigned	20150000001428	28092	Field Contact	
22176	18 - 25	unassigned	20150000001428	28093	Field Contact	
46800	26 - 35	unassigned	20150000001437	28381	Field Contact	
35165	36 - 45	unassigned	20150000087329	28462	Offense Report	
8952	18 - 25	33970989734	20240000173704	58505996345	Field Contact	Н
43019	1 - 17	7734651568	20240000173704	58506837543	Field Contact	Uı
31174	1 - 17	53252554865	20240000173704	58506902793	Field Contact	Uı
32618	26 - 35	7729016487	20240000238040	58508727659	Field Contact	Uı
12853	18 - 25	58509790601	20240000238282	58509776131	Field Contact	Uı

60877 rows × 23 columns

Next let us check some repetitions in the general offense street check column.

```
In [23]: # Investigating the repeated values in the go_sc_num column
    stops = df[df['go_sc_num'] > 1]
    stops['go_sc_num'].value_counts()
Out[23]: go_sc_num
```

```
Out[23]: go_sc_num
         20160000378750
                            16
         20150000190790
                            16
         20230000049052
                            14
         20180000134604
                            14
         20210000267148
                            14
         20170000437667
                             1
         20210000238907
                             1
                             1
         20220000218677
         20220000320502
                             1
         20220000018102
```

Name: count, Length: 48826, dtype: int64

```
In [24]: # Looking closely
stops = stops[stops['go_sc_num'] == 20160000378750]
stops
```

Out [24]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapon_
5940	46 - 55	unassigned	20160000378750	208306	Offense Report	
11366	36 - 45	unassigned	20160000378750	208312	Offense Report	
13031	26 - 35	unassigned	20160000378750	208300	Offense Report	
33240	36 - 45	unassigned	20160000378750	208314	Arrest	
33810	46 - 55	unassigned	20160000378750	208309	Arrest	
36586	46 - 55	unassigned	20160000378750	208304	Offense Report	
36631	36 - 45	unassigned	20160000378750	208299	Offense Report	
39754	26 - 35	unassigned	20160000378750	208307	Offense Report	
41484	26 - 35	unassigned	20160000378750	208301	Offense Report	
43337	18 - 25	unassigned	20160000378750	208311	Arrest	
48555	26 - 35	unassigned	20160000378750	208303	Offense Report	
49658	18 - 25	unassigned	20160000378750	208302	Offense Report	
55394	36 - 45	unassigned	20160000378750	208308	Offense Report	
57795	46 - 55	unassigned	20160000378750	208313	Arrest	
58626	36 - 45	unassigned	20160000378750	208305	Offense Report	
59513	36 - 45	unassigned	20160000378750	208310	Offense Report	

16 rows × 23 columns

Taking into account the dates, the separate Terry Stop ID's, the different Stop Resolutions and it all roughly happening within the same hour, it appears that this was a **dispute** of some sort in which an officer **collected Offense Reports from 12 people** and issued out **tickets 4 people** (because there was **no physical arrest** denoted by the column 'arrest_flag', these were **non-custodial** arrests/citations).

Looking back at the Column Description document, the GO/SC Number is considered the "parent report" that contain associated Terry Stops. This confirms our observations.

Report Date

Ok so now lets remove the timestamp from date, create a new columns "incident year" and "incident month" with the year and month of the incidents and drop the reported date.

```
In [25]: # Checking the column reported date
         df.reported_date.dtype, df.reported_date.head()
Out[25]: (dtype('0'),
               2016-11-03T00:00:00Z
               2018-06-22T00:00:00Z
               2018-11-02T00:00:00Z
               2016-04-17T00:00:00Z
               2015-11-29T00:00:00Z
          Name: reported_date, dtype: object)
In [26]: # Converting to date time format
         df['reported_date'] = pd.to_datetime(df['reported_date'])
         # Creating a new column with the year of the incident
         df['incident year'] = df['reported date'].dt.year
         # Creating a new column with the month of the incident
         df['incident_month'] = df['reported_date'].dt.month
         # Dropping the reported date column
         df.drop('reported_date', axis=1, inplace=True)
         df.head()
```

Out [26]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapon_type
0	36 - 45	unassigned	20160000398323	208373	Offense Report	NaN
1	18 - 25	unassigned	20180000227180	559146	Citation / Infraction	NaN
2	18 - 25	unassigned	20180000410091	498246	Offense Report	NaN
3	Unknown	unassigned	20160000001637	146742	Field Contact	NaN
4	46 - 55	unassigned	20150000006037	104477	Field Contact	NaN

5 rows × 24 columns

Officer Age

Let us create a new column 'officer_age' that holds the age value of the officer at the time of the incident. We can do this by subtracting the officer year of birth from the incident year.

```
In [27]: # Creating a column that holds the officer's year.
         df['officer_age'] = df['incident_year'] - df['officer_yob']
         df.officer_age.unique()
Out[27]: array([ 63,
                       54,
                            56,
                                 42,
                                       40,
                                            48,
                                                 32,
                                                      39,
                                                            31,
                                                                 38,
                                                                      24,
                                                                           28,
         37,
                  34.
                       27.
                            23.
                                 43.
                                       33.
                                            26,
                                                 35.
                                                      30, 121,
                                                                 55.
                                                                      25.
                                                                           29,
         52,
                  51,
                       57,
                            22,
                                 49,
                                       47,
                                            36,
                                                 44,
                                                      45,
                                                            46,
                                                                 50,
                                                                      58,
                                                                           41,
         60,
                  61,
                       53,
                            62,
                                 64,
                                       65,
                                            59,
                                                 69,
                                                      71, 120,
                                                                 21,
                                                                      67, 118,
         70,
                  66.
                       68. 1191)
```

Wow we have some entries for officer age that are unrealistic. Let us fix that.

```
In [28]: # Dropping unrealistic ages from the officers age column
# df[df['officer_age'] <= 100]
df.drop(df[df['officer_age'] >= 100].index, inplace=True)
# Confirming our change
df['officer_age'].describe()
```

```
Out[28]: count
                   60807.000000
                      34.488102
         mean
         std
                       8.267055
                      21,000000
         min
         25%
                      28,000000
         50%
                      33.000000
         75%
                      39.000000
                      71.000000
         max
         Name: officer_age, dtype: float64
```

So now our officer age looks more realistic ranging from 21 years to 71 years old. Let us now drop the officer year of birth column from the dataframe.

```
In [29]: # Dropping the officer_yob column
    df.drop('officer_yob', axis=1, inplace=True)
    df.columns
```

Let us now proceed to the stop resolution. From common knowledge, we know that any arrest which is not flagged as one in the appropriate column is considered a "non-custodial arrest" or an instance where a citation was issued.

```
In [30]: # Checking the stop resolution
df['stop_resolution'].value_counts()
```

Out[30]: stop_resolution

Field Contact 29439
Offense Report 15701
Arrest 14722
Referred for Prosecution 728
Citation / Infraction 217

Name: count, dtype: int64

Even though this column tells us what happened after the incident, the Field Contact and Offense Report values do give us insight as to why an officer may have initiated a stop. So let us create columns for these values and drop the stop resolution column.

```
In [31]: # Creating field_contact column that contains 'y' and 'n' values
    df['field_contact'] = df['stop_resolution'].str.contains('Field Contact']
    df['field_contact'] = df['field_contact'].map({True: 'Y', False: 'N'})

# Creating offense_report column that contains 'y' and 'n' values
    df['offense_report'] = df['stop_resolution'].str.contains('Offense Report')
    df['offense_report'] = df['offense_report'].map({True: 'Y', False: 'N'})

df.head()
```

Out[31]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapon_type
0	36 - 45	unassigned	20160000398323	208373	Offense Report	NaN
1	18 - 25	unassigned	20180000227180	559146	Citation / Infraction	NaN
2	18 - 25	unassigned	20180000410091	498246	Offense Report	NaN
3	Unknown	unassigned	20160000001637	146742	Field Contact	NaN
4	46 - 55	unassigned	20150000006037	104477	Field Contact	NaN

5 rows × 26 columns

In [32]: # Checking our new columns df.offense_report.value_counts(), df.field_contact.value_counts()

```
Out[32]: (offense_report
```

N 45106 Y 15701

Name: count, dtype: int64,

field_contact N 31368 Y 29439

Name: count, dtype: int64)

The weapon type column contains a lot of redundant values. Let us clean it up and organize it well.

In [33]: # Checking the weapon type column df['weapon_type'].value_counts()

Out[33]:	weapon_type	
	Unknown	24493
	Lethal Cutting Instrument	1482
	Knife/Cutting/Stabbing Instrument	1289
	Handgun	384
	Blunt Object/Striking Implement	150
	Firearm	102
	Firearm Other	100
	Other Firearm	73
	Club, Blackjack, Brass Knuckles	49
	Mace/Pepper Spray	48
	None/Not Applicable	18
	Firearm (unk type)	15
	Taser/Stun Gun	14
	Fire/Incendiary Device	12
	Rifle	10
	Club	9
	Shotgun	5
	Automatic Handgun	2
	Personal Weapons (hands, feet, etc.)	2
	Poison	1
	Blackjack	1
	Brass Knuckles	1
	Name: count, dtype: int64	

```
In [34]: # Weapon type categories
         none = ['None/Not Applicable']
         knife = ['Lethal Cutting Instrument', 'Knife/Cutting/Stabbing Instrument']
         blunt_obj = ['Club, Blackjack, Brass Knuckles', 'Club', 'Blackjack',
         firearm = ['Firearm Other', 'Firearm (unk type)', 'Other Firearm', 'R:
                    'Shotgun', 'Automatic Handgun', 'Handgun']
         other = ['Taser/Stun Gun', 'Mace/Pepper Spray', 'Fire/Incendiary Device
         # Creating a function called replace val that takes the source data, d
         def replace val(df, col, old val, new val):
             for i in range(len(df[col])):
                 for j in range(len(old_val)):
                      if df[col].iloc[i] == old val[j]:
                          df[col].iloc[i] = df[col].iloc[i].replace(old_val[j],
         # Applying the function to replace weapon type values
         # replacing none
         replace_val(df, 'weapon_type', none, 'None')
         # replacing knife
         replace val(df, 'weapon type', knife, 'Knife/Stabbing Instrument')
         # replacing blunt object
         replace_val(df, 'weapon_type', blunt_obj, 'Blunt Object/Striking Imple
         # replacing firearm
         replace_val(df, 'weapon_type', firearm, 'Firearm')
         # other
         replace_val(df, 'weapon_type', other, 'Other')
         df['weapon type'].value counts()
Out[34]: weapon_type
                                             24493
         Unknown
         Knife/Stabbing Instrument
                                              2771
                                               691
         Firearm
         Blunt Object/Striking Implement
                                               210
         0ther
                                                77
         None
                                                18
         Name: count, dtype: int64
         Let us tidy up the reported time column as well
In [35]: # Converting the time column to datetime format and keeping only the #
         df['reported_time'] = pd.to_datetime(df['reported_time'])
         df['reported_hour'] = df['reported_time'].dt.hour
         df.drop('reported_time', axis=1, inplace=True)
         df.reported hour.head()
Out[35]: 0
              15
         1
               0
         2
               2
         3
               1
         Name: reported_hour, dtype: int32
```

Great the reported time now has been arranged by hour in 24 hour format.

```
In [36]: # CHecking the copy dataframe so far
         df.info()
```

<class 'pandas.core.frame.DataFrame'> Index: 60807 entries, 0 to 61007 Data columns (total 26 columns):

Data #	Columns (total 26 columns)		ull Count	Dtype
0	subject_age_group	60807	non-null	object
1	subject_id	60807	non-null	object
2	go_sc_num	60807	non-null	int64
3	terry_stop_id	60807	non-null	int64
4	stop_resolution	60807	non-null	object
5	weapon_type	28260	non-null	object
6	officer_id	60807	non-null	object
7	officer_gender	60807	non-null	object
8	officer_race	60807	non-null	object
9	<pre>subject_perceived_race</pre>	60807	non-null	object
10	<pre>subject_perceived_gender</pre>	60807	non-null	object
11	initial_call_type	60807	non-null	object
12	<pre>final_call_type</pre>	60807	non-null	object
13	call_type	60807	non-null	object
14	arrest_flag	60807	non-null	object
15	frisk_flag	60807	non-null	object
16	precinct	60807	non-null	object
17	sector	60807	non-null	object
18	beat	60807	non-null	object
19	repeat_offenders	60807	non-null	object
20	incident_year	60807	non-null	int32
21	incident_month	60807	non-null	int32
22	officer_age	60807	non-null	int64
23	field_contact	60807	non-null	object
24	offense_report	60807	non-null	object
25	reported_hour	60807	non-null	int32
dtype	es: int32(3), int64(3), obj	ject(20	ð)	
memoi	rv usage: 11.8+ MB			

memory usage: 11.8+ MB

Moving on let us work with the call types column. There are 13000+ entries in this column with an 'unknown' values which indicates that these instances were not put in the CAD system. This could be unanimous calls for privacy reasons so we will keep them. However we will drop all the other entries of this column that have very little values.

```
# Checking the call types column
In [37]:
         df['initial_call_type'].value_counts()
Out[37]: initial_call_type
         Unknown
                                                          13406
         SUSPICIOUS STOP - OFFICER INITIATED ONVIEW
                                                           4769
         SUSPICIOUS PERSON, VEHICLE, OR INCIDENT
                                                           4200
         DISTURBANCE
                                                           3060
         ASLT - CRITICAL (NO SHOOTINGS)
                                                           2702
         ESCAPE - PRISONER
                                                              1
         PHONE - OBSCENE OR NUISANCE PHONE CALLS
                                                              1
         EXPLOSION
                                                              1
         ORDER - ASSIST DV VIC W/SRVC OF COURT ORDER
                                                              1
         -ASSIGNED DUTY - STAKEOUT
                                                              1
         Name: count, Length: 181, dtype: int64
```

ESCAPE - PRISONER, PHONE - OBSCENE OR NUISANCE PHONE CALLS, EXPLOSION, ORDER - ASSIST DV VIC W/SRVC OF COURT ORDER, ASSIGNED DUTY - STAKEOUT, TEXT MESSAGE and SCHEDULED EVENT (RECURRING) all of these have very small values, it is better to drop them as well. We are keeping the ones with the unknown values as they are so many and we assume that these instances could be meant for privacy reasons.

911 28734

0NVIEW 14013

Unknown 13406

TELEPHONE OTHER, NOT 911 4099

ALARM CALL (NOT POLICE ALARM) 525

Name: count, dtype: int64

Alright now that the initial call type is cleared let us proceed frisk flag.

```
In [39]: # Checking our dataframe.
df.shape
```

Out[39]: (60777, 26)

Let us check and clean the frisk flag instances.

```
In [40]: # Checking the frisk flag column
    df['frisk_flag'].value_counts()

#Dropping the frisk flag instances with unknown values only 478 instant
    df.drop(df[df['frisk_flag'] == 'Unknown'].index, inplace=True)

df['frisk_flag'].value_counts()
```

Out[40]: frisk_flag N 45834

N 45834 Y 14465

Name: count, dtype: int64

In [41]: # Checking the arrest flag column for any missing values
df['arrest flag'].value counts()

Out[41]: arrest_flag N 53789 Y 6510

Name: count, dtype: int64

The arrest flag column seems clean with no missing values. Out of the total instances we have only 6510 arrests which make up to 10%.

Officer Race has some instances with unknown or not specified values. It is better to combine them together and tidying up the column.

```
In [42]: # Checking the officer race column
df['officer_race'].value_counts()
```

Out[42]: officer_race

White 43220 Two or More Races 4201 Hispanic or Latino 3986 Asian 2876 Not Specified 2828 Black or African American 2403 Nat Hawaiian/Oth Pac Islander 545 American Indian/Alaska Native 240 Name: count, dtype: int64

In [43]: # Combining the Unknown values into the not specified values of the or
replace_val(df, 'officer_race', ['Unknown/Unspecified', 'Not Stated'],
df.officer_race.value_counts()

Out[43]: officer_race

White 43220 Two or More Races 4201 Hispanic or Latino 3986 Asian 2876 Not Specified 2828 Black or African American 2403 Nat Hawaiian/Oth Pac Islander 545 American Indian/Alaska Native 240 Name: count, dtype: int64

Subject Gender same as officer race has unknown and unable to determine values that need to be combined together.

```
# Combining the Unknown values into the unable to determine values of
In [44]:
         Unknown = ['Unknown']
         replace_val(df, 'subject_perceived_gender', Unknown, 'Unable to Determ:
         df.subject_perceived_gender.value_counts()
Out[44]: subject_perceived_gender
         Male
                                                                       47640
         Female
                                                                        12004
         Unable to Determine
                                                                         608
         Gender Diverse (gender non-conforming and/or transgender)
                                                                           45
         MULTIPLE SUBJECTS
                                                                            2
         Name: count, dtype: int64
In [45]: # Dropping the gender diverse and multiple subjects values as they are
         df.drop(df[df['subject_perceived_gender'].isin([
             'Gender Diverse (gender non-conforming and/or transgender)',
             'MULTIPLE SUBJECTS'
         ])].index, inplace=True)
         df.subject_perceived_gender.value_counts()
Out[45]: subject_perceived_gender
         Male
                                 47640
         Female
                                 12004
         Unable to Determine
                                   608
         Name: count, dtype: int64
```

Precinct, Sector and Beat

These are location data which can be very important in this process as they determine the probability of one getting stopped. However they have some place holder values which need to be cleaned up.

```
In [46]: # Checking the precinct data
         df['precinct'].value_counts()
Out[46]: precinct
         West
                       16657
         North
                       12693
         Unknown
                       10661
         East
                        8159
         South
                        7290
         Southwest
                        4673
         00J
                          97
         FK ERROR
                          22
         Name: count, dtype: int64
```

In [47]: # Let us check what the FK ERROR is
df[df['precinct'] == 'FK ERROR']

Out[47]:

·	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weap
1996	56 and Above	7760748894	20190000369575	10569761986	Field Contact	U
2697	1 - 17	34202427492	20220000012513	31222898051	Arrest	
6011	36 - 45	21896920197	20210000064178	21897246304	Arrest	U
18028	18 - 25	10392618417	20190000350728	10392612439	Field Contact	U
22615	36 - 45	7727091519	20190000325595	10042391872	Field Contact	Knife/S Ins
22642	26 - 35	12172435351	20200000021260	12172421137	Field Contact	U
24264	26 - 35	7732925068	20200000028389	12221869321	Arrest	U
32431	46 - 55	7729016287	20210000021036	20132790775	Field Contact	U
35677	26 - 35	7726837499	20190000468247	12108530793	Offense Report	U
36841	18 - 25	58002696823	20200000187751	13477897443	Field Contact	U
38123	26 - 35	8333698983	20190000222535	8333750884	Field Contact	U
38209	26 - 35	9804531492	20210000005854	19280652489	Offense Report	U
40088	46 - 55	7736599528	20190000196167	8258190629	Field Contact	U
41551	26 - 35	7726362993	20190000283674	9258189887	Field Contact	U
49974	1 - 17	8194784044	20190000224323	8335625151	Field Contact	U
50407	56 and Above	7728365691	20190000240737	8544232751	Offense Report	U
51247	26 - 35	7728529496	20190000222535	8333754250	Field Contact	U
51597	36 - 45	7732113716	20200000202980	13811156623	Field Contact	U
52274	26 - 35	7726955629	20210000021036	20132828518	Field Contact	U
53464	26 - 35	7749300947	20190000215001	8317517528	Field Contact	U
54055	46 - 55	7744306937	20210000101823	23375775291	Field Contact	Knife/S Ins
57220	46 - 55	19401241744	20210000007326	19403608968	Arrest	Knife/S Ins

22 rows × 26 columns

It looks very interesting the data we have here is between 2019 and 2022 half of them being in 2019. This suggests that the error is most likely due to system failure. Since this incidents really occurred we cannot ignore them and must clean them.

```
In [48]: prec = ['FK ERROR', '00J'] # 00J stands for Obstruction of Justice
sect = ['99']
beats = ['99', '99', '00J']

# precinct
replace_val(df, col='precinct', old_val=prec, new_val='Unknown')
# sector
replace_val(df, col='sector', old_val=sect, new_val='Unknown')
# beat
replace_val(df, col='beat', old_val=beats, new_val='Unknown')

df['precinct'].value_counts(), df['sector'].value_counts(), df['beat']
```

```
Out[48]: (precinct
           West
                          16657
           North
                          12693
           Unknown
                          10780
           East
                           8159
           South
                           7290
           Southwest
                           4673
           Name: count, dtype: int64,
           sector
           Unknown
                       10739
           K
                        5597
           Μ
                        5091
           Ε
                        4284
           Ν
                        3554
           D
                        3427
           F
                        2815
           R
                        2763
           В
                        2733
           Q
                        2538
           L
                        2466
           0
                        2326
           S
                        2200
           U
                        2199
           G
                        2084
           W
                        1856
           C
                        1791
           J
                        1739
           00J
                           50
           Name: count, dtype: int64,
           beat
                       10783
           Unknown
           K3
                        3209
           М3
                        2472
           E2
                        1789
           N3
                        1761
           E1
                        1439
           M2
                        1349
           D1
                        1346
           N2
                        1340
           K2
                        1303
           R2
                        1286
           D2
                        1278
           М1
                        1273
           Q3
                        1213
           F2
                        1159
           Κ1
                        1085
           E3
                        1054
           B2
                        1042
           B1
                        1018
           U2
                        1015
                          945
           01
           S2
                          857
           L2
                          852
           F3
                          836
           F1
                          820
           L1
                          816
           D3
                          803
           R1
                          801
           L3
                          798
           W2
                          791
```

G2

780

U1		751	
03		747	
Q2		746	
S 3		733	
C1		726	
G3		709	
В3		677	
R3		676	
J3		657	
J1		639	
02		634	
С3		623	
S1		610	
W1		608	
G1		594	
Q1		579	
W3		458	
N1		451	
C2		443	
J2		443	
U3		433	
S		2	
Nama :	count	d+vno:	int

Name: count, dtype: int64)

Final Check

Ok so let us now check what we have done with our dataset before proceeding further.

In [49]: # Checking the copy dataframe we have cleaned up

```
df.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 60252 entries, 0 to 61007
         Data columns (total 26 columns):
          #
              Column
                                          Non-Null Count
                                                          Dtype
              subject age group
                                          60252 non-null
                                                          object
          0
          1
              subject_id
                                          60252 non-null object
          2
              go_sc_num
                                          60252 non-null int64
          3
              terry stop id
                                          60252 non-null int64
              stop resolution
                                          60252 non-null object
              weapon_type
          5
                                          28175 non-null object
          6
              officer_id
                                          60252 non-null object
          7
              officer_gender
                                          60252 non-null object
          8
              officer race
                                          60252 non-null object
              subject_perceived_race
                                          60252 non-null object
          9
          10 subject_perceived_gender 60252 non-null object
          11 initial_call_type
                                          60252 non-null object
          12 final_call_type
                                          60252 non-null object
          13 call_type
                                          60252 non-null object
          14 arrest_flag
                                          60252 non-null object
          15 frisk flag
                                          60252 non-null object
          16 precinct
                                          60252 non-null object
          17
              sector
                                          60252 non-null object
          18 beat
                                          60252 non-null object
          19 repeat offenders
                                          60252 non-null
                                                          object
          20 incident_year
                                          60252 non-null int32
          21 incident month
                                          60252 non-null int32
          22 officer_age
                                         60252 non-null int64
          23 field contact
                                          60252 non-null object
          24 offense_report
                                          60252 non-null object
          25 reported_hour
                                          60252 non-null int32
         dtypes: int32(3), int64(3), object(20)
         memory usage: 11.7+ MB
In [50]: # Fixing the format of subject age group values
         replace_val(df, 'subject_age_group', ['26 - 35'], '26_35')
         replace_val(df, 'subject_age_group', ['18 - 25'], '18_25')
         replace_val(df, 'subject_age_group', ['36 - 45'],
                                                             '36 45')
         replace_val(df, 'subject_age_group', ['46 - 55'], '46_55')
replace_val(df, 'subject_age_group', ['56 and Above'], '56_up')
replace_val(df, 'subject_age_group', ['1 - 17'], '1_17')
         df['subject_age_group'].value_counts()
Out[50]: subject_age_group
         26_35
                     20163
         36 45
                     13474
         18_25
                     11414
         46 55
                      7651
         56_up
                      3189
                      2263
         1 17
                      2098
         Unknown
         Name: count, dtype: int64
```

With that we say we have cleaned up the dataset for EDA and modeling.

Feature Engineering

Same Races

Here we'll make a binary column 'same_race' that displays as 1 if the officer and the subject were of the same race and 0 if they are of different.

To accomplish this, we need to make sure that the categories in 'Officer_Race' and 'Subject_Perceived_Race' have the same values and make any necessary changes.

```
In [51]: # Checking the values of both columns
         races = df[['officer_race', 'subject_perceived_race']]
         col_values(races)
         officer race
         White
                                           43191
         Two or More Races
                                            4195
         Hispanic or Latino
                                            3982
                                            2872
         Asian
         Not Specified
                                            2827
         Black or African American
                                            2401
         Nat Hawaiian/Oth Pac Islander
                                             545
         American Indian/Alaska Native
                                             239
         Name: count, dtype: int64
         subject_perceived_race
                                                       29548
         White
         Black or African American
                                                       18119
         Unknown
                                                        6108
         Asian
                                                        2070
         Hispanic
                                                        1666
         American Indian or Alaska Native
                                                         1638
         Multi-Racial
                                                          796
         Native Hawaiian or Other Pacific Islander
                                                          158
         0ther
                                                          149
         Name: count, dtype: int64
```

Ok so we can see that we don't have the same values for both columns. The differences are (Hispanic or Latino, Hispanic), (American Indian/Alaska Native, American Indian or Alaska Native), (Two or More Races, Multi-Racial), (Nat Hawaiian/Oth Pac Islander, Other), and (Not Specified, Unknown). Lets sort this out.

```
In [52]: # Aligning the column values
         native = ['American Indian/Alaska Native', 'American Indian or Alaska
         multi = ['Two or More Races']
         other = ['Nat Hawaiian/Oth Pac Islander', 'Native Hawaiian or Other Pa
         unknown = ['Unknown']
         hispanic = ['Hispanic or Latino']
         replace_val(df, 'officer_race', native, 'Native American')
         replace_val(df, 'subject_perceived_race', native, 'Native American')
         # multi
         replace val(df, 'officer race', multi, 'Multi-Racial')
         # other
         replace_val(df, 'officer_race', other, 'Other')
         replace_val(df, 'subject_perceived_race', other, 'Other')
         # unknown
         replace val(df, 'subject perceived race', unknown, 'Not Specified')
         # hispanic
         replace_val(df, 'officer_race', hispanic, 'Hispanic')
         df.officer_race.unique()
Out[52]: array(['Asian', 'White', 'Multi-Racial', 'Hispanic', 'Not Specifie
         d',
                 'Black or African American', 'Other', 'Native American'],
               dtype=object)
In [53]: | df.subject perceived race.unique()
Out[53]: array(['White', 'Hispanic', 'Not Specified', 'Asian',
                 'Black or African American', 'Native American', 'Multi-Racia
         l',
                'Other'], dtype=object)
In [54]: # Now that the values of the two fields are identical, let us create &
         df['same_race'] = np.nan
         for i in range(len(df['officer_race'])):
             if df['officer_race'].iloc[i] == df['subject_perceived_race'].iloc
                 df['same_race'].iloc[i] = 'Y'
             else:
                 df['same_race'].iloc[i] = 'N'
         df['same_race'].value_counts()
Out[54]: same_race
         Ν
              37263
              22989
         Name: count, dtype: int64
```

Gender Race

Let us do the same thing with the officer gender and the subject gender. First let us make sure that the genders in both columns match.

```
In [55]: # Matching both genders
male = ['Male']
female = ['Female']

replace_val(df, 'subject_perceived_gender', male, 'M')
replace_val(df, 'subject_perceived_gender', female, 'F')

# Now that the values of the two fields are identical, let us create a df['same_gender'] = np.nan
for g in range(len(df['officer_gender'])):
    if df['officer_gender'].iloc[g] == df['subject_perceived_gender'].
        df['same_gender'].iloc[g] = 'Y'
    else:
        df['same_gender'].iloc[g] = 'N'

# df_copy['subject_perceived_gender']!= df_copy['officer_gender']
df['same_gender'].value_counts()
```

Out[55]: same_gender

Y 43800 N 16452

Name: count, dtype: int64

In [56]: # Creating a new dataframe for EDA
 df_clean = df
 df_clean.head()

Out [56]:

	subject_age_group	subject_id	go_sc_num	terry_stop_id	stop_resolution	weapon_type
0	36_45	unassigned	20160000398323	208373	Offense Report	NaN
1	18_25	unassigned	20180000227180	559146	Citation / Infraction	NaN
2	18_25	unassigned	20180000410091	498246	Offense Report	NaN
3	Unknown	unassigned	20160000001637	146742	Field Contact	NaN
4	46_55	unassigned	20150000006037	104477	Field Contact	NaN

5 rows × 28 columns

Exporting to CSV

We are done with cleaning, feature engineering and preprocessing the dataset. Let us export it to a new CSV file that we will use for EDA.

```
In [58]: # # Exporting to csv file
# df_clean.to_csv('data/clean_Terry_stops_data.csv', index=False)
# print('Data exported to clean_data.csv successfully.')
```