Práctica IV Geometría I

Universidad: Mayor de San Ándres.

Asignatura: Geometría I.

Práctica: IV.

Alumno: PAREDES AGUILERA CHRISTIAN LIMBERT.

Soluciones

1. Sea el triángulo ABC, como sigue

Como \hat{e} y $C \hat{A} B$ son adyacentes y están bajo el mismo semirecta entonces:

$$\hat{e} + C\hat{A}B = 180^{\circ},$$

de igual forma se concluye que

$$C\widehat{B}A + \widehat{f} = 180^{\circ}$$

o que implica que $\widehat{e}+C\widehat{A}B=C\widehat{B}A+\widehat{f}$

(1), luego por hipótesis $\hat{e} = \hat{f}$ entonces por (1) tenemos que

$$C\widehat{A}B = C\widehat{B}A$$

Por lo tanto, el triángulo ABC es isosceles de base AB

- **2.** a) 5, 8, 3, 10
 - **b)** 7, 6, 4, 2, 9, 1
 - **c)** 1, 2, 3, 5, 6, 7, 8, 9, 10
- **3.** Por TAE es necesario:

$$A\widehat{C}E > B\widehat{A}C, A\widehat{B}C$$

Como por hipótesis

$$A\widehat{B}C < A\widehat{C}E < A\widehat{B}D$$

Que implica que $A\widehat{B}C < A\widehat{B}D$

 ${f 4.}\,$ Dado el triángulo ABC

Sea $\widehat{A}+\widehat{B}+\widehat{C}=180^\circ$. Como $\widehat{B}=90^\circ$, entonces $widehatA,\widehat{C}<90^\circ$. Luego el ángulo externo a \widehat{A} y $\widehat{C}>90^\circ$ ya que son suplementarios.

 ${\bf 5.}$ Notemos que \hat{ADE} es un ángulo externo al triángulo DBC y por TAE se tiene:

$$A\widehat{D}E > D\widehat{B}C, D\widehat{C}B$$
 (1

De la misma manera, $A\widehat{E}C$ es externo a $\triangle ADE$ y una vez más por TAE:

$$A\widehat{E}C = A\widehat{D}E \qquad (2)$$

luego por (2) y (1) se tiene que $A\widehat{E}C > D\widehat{B}C$.

6. El ángulo $E\widehat{C}D > \widehat{B}$, \widehat{A} por TAE. Como $\triangle ABC = \triangle ECD$ así $E\widehat{C}D = B\widehat{C}A$, entonces $\overline{AC} = \overline{EC}$ por el teorema de desigualdad triangular tenemos que:

$$\overline{AC} + \overline{CB} \ge \overline{AB},$$

como $\overline{AC}=\overline{EC}$ y $\overline{CB}=\overline{CD}$ entonces

$$\overline{EC} + \overline{CD} > \overline{AB},$$

luego $\overline{AD} = \overline{AC} + \overline{CD}$ se tiene

$$\overline{AD} = \overline{EC} + \overline{CD} > \overline{AB}$$

que implica que $\overline{AD} > \overline{AB}$

- 7. Simplemente debemos trazar el segmento AC e introducirlo en $\triangle ADC = \triangle ABC$ según el criterio del catéto de hipotenusa que implica que AD = BC.
- $8.\ {
 m Los\ triángulos\ serán\ congruentes\ con\ el\ caso\ del\ caso\ LAA\ o\ con\ el\ cateto\ opuesto.}$
- ${f 9.}\,$ a) Si son congruentes ya que los ángulos lo son.
 - **b)** El lado AB.
 - c) El lado AC

Práctica IV Geometría I

- 10. a) No son congruentes.
 - **b)** El lado AB.
 - c) El lado AC