

심장질환 AI 예측 서비스

TEAM 우병목

목차

1.프로젝트 개요

- 프로젝트 소개
- 구성원 소개 및 역할
- 개발 환경 및 활용 라이브러리

2. EDA & 전처리

- 중복값 처리 / 결측치 확인
- 변수 형태 별 분리
- 범주형 변수 시각화
- 심장질환과의 상관관계
- 수치형 변수 시각화
- 연속형 변수 시각화
- 이상치 분석
- 인코딩

3. 모델링

- 분류모델 별 정확도 비교
- 상위 모델 선정
- 상위모델 하이퍼파라미터 튜닝 웹 시연
- 특성 선택
- 소프트 보팅
- 모델 간 점수 비교
- 최종 모델 선정

4. 웹 구현

- 웹 개요
- 모델 활용법 소개

5. 프로젝트 마무리

- 한계점
- 팀원별 느낀점
- 질의응답

1. 프로젝트 개요

• 프로젝트 소개

Personal Key Indicators of Heart Disease

2020 annual CDC survey data of 400k adults related to their health status

Data Card Code (156) Discussion (16)

About Dataset

Key Indicators of Heart Disease

2020 annual CDC survey data of 400k adults related to their health status

CDC에서 2020년간 40만명의 성인을 대상으로 전화설문을 통해 심장질환 유무를 수집한 데이터(캐글)

Usability ① 10.00

License
CC0: Public Domain

Expected update frequency Annually

머신러닝 모델을 통한 심장질환 유무 예측

모델 활용 심장질환 예측 웹 구현

1.프로젝트 개요

• 구성원 역할 및 소개

우상욱

역할

- EDA
- 전처리
- 머신러닝 모델링
- 웹 구현

민병창

역할

- 전처리
- 머신러닝 학습 및 선택
- 머신러닝 모델링
- 시각화

김경목

역할

- 시각화
- 머신러닝 학습
- 머신러닝 모델링

1. 프로젝트 개요

- 개발 환경 및 활용 라이브러리
 - 개발환경: Python 3.9.13
 - 라이브러리
 - 데이터 수집 및 전처리 : pandas, numpy
 - 시각화: matplotlib, Seaborn
 - o 머신러닝: scikit-learn, lightgbm, xgboost, catboost
 - 웹구현: streamlit
 - Devops
 - Git, Notion, Canva

• 중복값 처리 / 결측치 확인

msno 라이브러리 활용 결측치 시각화 -> 결측치 없음 df.drop_duplicates() -> 중복행 18078개 삭제

• 변수 형태별 분리

BMI	float64
SleepTime	float64
PhysicalHealth	float64
MentalHealth	float64
HeartDisease	object
Asthma	object
GenHealth	object
PhysicalActivity	object
Diabetic	object
Race	object
Sex	object
KidneyDisease	object
DiffWalking	object
Stroke	object
AlcoholDrinking	object
Smoking	object
AgeCategory	object
SkinCancer	object

● 총 18개의 컬럼, 319,795 행 개수

● 수치형 컬럼:4개

범주형 변수: 14개(타겟 변수 1개 포함)

• 범주형 변수 시각화

심장질환을 가진 사람의 성별, 나이 분포 시각화

심장질환을 가진 사람은 나이가 많을 수록, 남자일수록 더 많이 분포 된 것으로 보인다.

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 흡연율이 높다.

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 과음자 비율이 적다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 계단을 오를 때 어려움을 느끼는 비율이 높다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 운동을 하지 않는 비율이 높다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 자신이 건강하지 않다 생각하는 비율이 높다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 뇌졸중 경험 비율이 높다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 당뇨병 경험 비율이 높다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 천식 경험 비율이 높다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 신장질환 경험 비율이 높다

• 심장질환과의 상관관계

심장질환을 가진 그룹은 심장질환을 가지지 않은 그룹에 비해 피부암 경험 비율이 높다

• 수치형 변수 시각화

Person Correlation of Features

수치형 변수 간 다중공선성은 없다고 판단

BMI 분포 시각화

	심장질환 o	심장질환 x
BMI 평균값	29.4	28.2

	심장질환 o	심장질환 x
SleepTime 평균값	7.13	7.09

하루 평균 몇 시간씩 자는지에 대한 응답수

최근 30일간 신체가 건강하지 못했던 일 수

	심장질환 o	심장질환 x
PhysicalHealth 평균값	7.80	2.95

최근 30일간 정신이 건강하지 못했던 일 수

	심장질환 o	심장질환 x
MentalHealth 평균값	4.64	3.82

• 이상치 분석

• 이상치 분석

따라서 BMI 지수가 특정 지수를 넘을 때 심질환자 비율을 나타낸 그래프

심지어 BMI가 70을 넘었을 때부터 심질환자 비율이 많이 하락하는 것을 볼 수 있음

BMI 70 이상은 이상치로 판단하고 삭제 시도

예측 성능 하락(이상치 삭제 X)

• 이상치 분석

모든 사람의 심질환 비율

수면 시간이 20시간 이상인 사람들의 심질환 비율

보수적으로 수면시간이 24시간인 경우만 이상치로 판단 후 삭제 시도

예측 성능 하락(이상치 삭제 X)

• 인코딩

범주형 변수 中 유니크 값 2개 라벨 인코딩

범주형 변수 中 유니크 값 3개 이상 원핫 인코딩

• 분류 모델별 정확도 비교

타겟 변수 불균형 -> SMOTE, SMOTEOMEK

```
df = pd.read_csv('./../0.data/heart_2020_final.csv')

X = df.iloc[:,1:].values
y = df['HeartDisease']

X_smote,y_smote = SMOTE(random_state = 42).fit_resample(X,y)

X_train_ns,y_train_ns = SMOTETomek(sampling_strategy=0.5).fit_resample(X,y)
```

기존 데이터, SMOTE 데이터, SMOTETomek 데이터로 모델별 학습

• 분류 모델별 정확도(accuracy) 비교

파라미터 default 값으로 예측 / K_FOLD = 5 평균 accuracy 값

• 상위모델 선정

accuracy 지표, 과적합 여부 판단 후 상위 2개 모델 선정

CATBOOST, XGBOOST

• 하이퍼 파라미터 튜닝(그리드 서치)

CATBOOST

bagging_temperature = 0, depth $l2_leaf_reg = 3,$ learning_rate = 0.1

		train	test
심질환자가 맞는데, 아니라고 예측했을 때 모델의 치명적 단점 -> 중요지표로 선정	정확도	0.9336 -> 0.9532	0.9325 -> 0.9357
	재현율	0.8933 -> 0.9240	0.8923 -> 0.9009

XGBOOST

colsample_bytree = 0.8, learning_rate = 0.1, max_depth = 5, min_child_weight = 4, n_estimators = 200, subsample = 0.9

	train	test
정확도	0.9366 -> 0.9562	0.9342-> 0.9435
재현율	0.8970 -> 0.9195	0.8946 -> 0.9065

• 특성 선택

CatBoost, XGboost, RandomForest에서 추출한 특성 중요도를 바탕으로 특성 중요도 하위 독립 변수 4개 선정

Race, GenHelath, Diabetic, MentalHealth

• 특성 선택

평가 점수 산정을 위해 튜닝 된 CatBoost만 사용해서 특성 하나씩 Drop 하며 비교

Drop_columns	train 정확도	test 정확도	train 재현율	test 재현율
None	0.9532	0.9357	0.9240	0.9009
Race	0.9503	0.9329	0.9197	0.8976
GenHeatlh	0.9390	0.9228	0.9123	0.8916
Diabetic	0.9486	0.9321	0.9213	0.9001
MentalHealth	0.9482	0.9318	0.9173	0.8966

어떤 변수도 삭제하지 않았을 때, 평가 지표가 가장 좋았다

2개의 상위모델(XGB, Catboost)을 선정 하고 하이퍼파라미터 튜닝 후에 두 모델을 소프트 보팅함

• 소프트 보팅

CATBOOST

bagging_temperature = 0, depth = 9, l2_leaf_reg = 3, learning_rate = 0.1

XGBOOST

colsample_bytree = 0.8, learning_rate = 0.1, max_depth = 5, max_leaf_nodes = 2, min_child_weight = 4, n_estimators = 200, subsample = 0.9

		train	test		train	test
정확	·도	0.9336 -> 0.9532	0.9325 -> 0.9357	정확도	0.9366 -> 0.9562	0.9342-> 0.9435
재현	윧	0.8933 -> 0.9240	0.8923 -> 0.9009	재현율	0.8970 -> 0.9195	0.8946 -> 0.9065

SOFT_VOTING(CAT & XGB)

	train	test
정확도	0.9580	0.9458
재현율	0.9207	0.9063

• 모델 간 점수 비교

soft_voting의 평가지표가 유의미하게 높지만, 웹에 voting 모델을 로드하는 것에 기술적 한계가 있었음. 따라서 평가지표가 가장 좋은 xgboost로만 웹 구현

• 웹 개요

♥ 당신의 심장질환을 AI를 통해 예측합니다

♠ AI가 예측 중입니다...■ AI 예측

사용자 정보 입력

모델 기반 예측

💻 AI 예측

심장질환이 있을 확률은 95.5%입니다 AI 예측상 당신은 심장질환을 가졌습니다

🚴 AI가 예측한 당신의 개선 방향입니다

흡연을 하지 않았다면

숙면을 취한다면

92.11%

↓ -3.39%

61.59%

↓ -33.91%

정상범위의 체중을 가진다면

93.98%

↓ -1.52%

예측값 기반 시각화 자료 출력

• 모델 웹 적용법 소개

- 웹 동작 때마다 머신러닝 모델이 데이터를 학습 해야만하는 문제
 -> 학습 시킨 모델을 저장하고, 웹 동작 시엔 그 모델을 불러오기만 하는 식으로 해결
- 1. joblib 라이브러리 활용
- 2. pkl 형식으로 학습된 모델 자체를 저장
- 3. 웹 동작시, 저장된 pkl 파일을 로드하는 방식으로 웹 동작

• 모델 웹 적용법 소개

❤ 당신의 심장질환을 AI를 통해 예측합니다

■ AI 예측
AI 예측
AI 예측상 당신은 심장질환을 가졌습니다
Predict 활용 심장질환 분류된 기준에 따라

• 모델 웹 적용법 소개

🚴 AI가 예측한 당신의 개선 방향입니다

흡연을 하지 않았다면

92.11%

↓ -3.39%

숙면을 취한다면

61.59%

↓ -33.91%

정상범위의 체중을 가진다면

93.98%

↓ -1.52%

- 1. 사용자가 입력한 정보에, 일정 변수를 조작해서 predict_proba 값을 반환 받음
 - (ex) 흡연을 했다고 응답한 응답자의 경우, 다른 조건은 일정한 상태에서 흡연을 하지 않은 걸로 바꾼 후의 예측 값
- 2. 사용자가 기존 입력한 정보와 기존 확률과 비교해서, 심장질환일 확률이 떨어졌다면 그 변수에 대해서 확률 출력

• 웹 시연

5. 프로젝트 마무리

- 한계점
 - 1. ML 하이퍼파라미터 튜닝을 시도하는데에 있어서 GPU 옵션을 제공하지 않는 모델들이 존재하여 세밀한 조정에 대한 시도가 부족했다.
 - 2. 보팅 모델을 웹에 구현하지 못한 것이 아쉬웠고, 분류기를 조금 더 여러 개 써서 앙상블을 시도 해봤으면 좋았을 것 같다. 특히 스태킹을 한번 해봤으면 어땠을까 싶었다.
 - 3. 데이터베이스를 활용했다면, 사용자가 입력한 정보를 데이터베이스에 입력하면서 조금 더다양한 시도를 해볼 수 있었을 것 같다. ex) 이용 사용자 대시보드 생성, 심장질환 예측자사후 서비스 등
 - 4. 심장질환 관련 의료기관을 지도 시각화하여 심장질환이라고 분류된 사용자에게 병원 위치를 제공 하려고 했었다. 공공데이터 심질환 관련 의료기관 자료의 위치 좌표를 변경하는 과정에서 오차가 발생하여 시간이 너무 길어질 것 같아 제외했다.

5. 프로젝트 마무리

• 팀원별 느낀점

우상욱

- 적으로 동작하는지 이해했습니다.
- 성능이 좋은 AI 모델은 예측 결과 뿐 만 아니라, 다양한 방식으로 새로운 인사이트를 줄 수 있을 것이라고 생각 했습니다.

민병창

- 머신러닝 모델이 웹에서 어떻게 효율
 큰 데이터로 학습을 시켜보며 좋은 컴 퓨터가 왜 필요한지 깨닫게 되는 시간 이었습니다.
 - 데이터 EDA에서 분석한 그대로 ML 학습이 이루어지는 모습을 보고 데이 터가 인공지능 모델을 정하는 가장 중 요한 요소라는 생각을 가지게 되었습 니다.

김경목

- 변수들간의 상관관계를 나타내는 시 각화 부분이 생각보다 어려웠다
- 머신러닝 모델을 이해하고 직접 경험 해볼 수 있어서 뜻깊은 프로젝트가 되 었다

5. 프로젝트 마무리

• 질의응답

