Deep Reinforcement Learning

Wenjun Zeng

Reading Group of Ye Lab, UM

Mar. 9, 2019

Contents

- Recap
- \square Q-Learning
- ☐ Deep *Q*-Networks (DQN)

I. Recap

Markov Decision Processes (MDP)

- \square State space $S, s \in S$
- \square Action space $\mathcal{A}, a \in \mathcal{A}$
- \square Policy π , $a = \pi(s)$ for deterministic case or $a \sim \pi(a|s)$ for stochastic case
- \square Reward $R(s, a) : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
- □ Transition Dynamics $P: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}_+$

 $P_{sa}(s')$ is the probability that the agent reaches state s' from s after taking action a.

Objective of MDP

Denoting s_t , a_t , and $R_t = R(s_t, a_t)$ as the state, action, and reward of $t = 0, 1, 2, \dots$, MDP aims at finding policy to maximize the expectation of

$$G_t = \sum_{t=0}^{\infty} \gamma^t R_t$$

with $\gamma \in [0,1)$ the discount factor.

■ Model-free: State transition $P_{sa}(s')$ and reward function are unknown.

Q-function (state-action value function)

$$Q^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t})\right| s_{0} = s, a_{0} = a, \pi\right]$$

is the expected return for executing a particular action at a given state.

Bellman's Equation

 \square Bellman equation on Q-function

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{sa}(s') \max_{a' \in \mathcal{A}} Q^*(s', a')$$

☐ Bellman equation in expectation form:

$$Q^*(s, a) = \mathbb{E}_{s' \sim P_{sa}(s')} \left[R(s, a, s') + \gamma \max_{a' \in \mathcal{A}} Q^*(s', a') \right]$$

- ☐ In conventional optimization (linear/nonlinear programming...), we solve Karush–Kuhn–Tucker (KKT) condition to obtain the optimal (stationary) solution.
- ☐ In MDP (RL), we solve Bellman's equation to obtain the optimal solution. If $P_{sa}(s')$ is known (model-based), it is dynamic programming.

Q-Value Iteration for Model-Based Case

- \square $Q^*(s,a)$: expected return starting in s, taking action a, and (thereafter) acting optimally
- ☐ Bellman Equation:

$$Q^{*}(s, a) = \sum_{s' \in S} P_{sa}(s') (R(s, a, s') + \gamma \max_{a' \in A} Q^{*}(s', a'))$$

 \bigcirc Q-Value Iteration:

$$Q(s, a) \leftarrow \sum_{s' \in \mathcal{S}} P_{sa}(s') (R(s, a, s') + \gamma \max_{a' \in \mathcal{A}} Q(s', a'))$$

Model-Free Reinforcement Learning

- ☐ In realistic problems, often the state transition and reward function are not explicitly given.
- ☐ Model-free RL is to directly learn value & policy from experience.
- \square How to accumulate experience? \rightarrow learning from episodes

For $t = 0, 1, 2, \dots, T$

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{a_0^{(1)}} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{a_1^{(1)}} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2:
$$s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{a_0^{(2)}} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{a_1^{(2)}} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

(Tabular) Q-Learning

Rewrite Q-value iteration as expectation:

$$Q(s, a) \leftarrow \mathbb{E}_{s' \sim P_{sa}(s')} \left[R(s, a, s') + \gamma \max_{a' \in \mathcal{A}} Q(s', a') \right]$$

(Tabular) Q-Learning: replace expectation by samples

- \square For a state-action pair (s, a), receive: $s' \sim P_{sa}(s')$
- \square Use the old estimate: Q(s, a)
- Consider your new sample estimate:

$$y = \text{target}(s') = R(s, a, s') + \gamma \max_{a' \in \mathcal{A}} Q(s', a')$$

☐ Incorporate the new estimate into a running average:

$$Q^{\text{new}}(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \cdot \text{target}(s')$$

Algorithm: (Tabular) *Q*-Learning

```
Algorithm:  \begin{array}{l} \text{Start with } Q_0(s,a) \text{ for all s, a.} \\ \text{Get initial state s} \\ \text{For k = 1, 2, ... till convergence} \\ \text{Sample action a, get next state s'} \\ \text{If s' is terminal:} \\ \text{target} = R(s,a,s') \\ \text{Sample new initial state s'} \\ \text{else:} \\ \text{target} = R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \\ Q_{k+1}(s,a) \leftarrow (1-\alpha)Q_k(s,a) + \alpha \text{ [target]} \\ s \leftarrow s' \\ \end{array}
```

Learning rate α : $\sum_{t=0}^{\infty} \alpha_t = \infty$, $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

Theorem: *Q-learning converges to the optimal action-value function*

$$Q(s,a) \to Q^*(s,a)$$
.

How to sample actions?

- ☐ Choose random actions?
- $lue{}$ Greedy? That is, choose action that maximizes Q(s,a).
- \blacksquare ϵ -Greedy Policy Exploration:
 - \bullet With probability ϵ , choose an action at random
 - lacktriangle With probability 1ϵ , choose the greedy action

III. DQN

Mnih et al., "Human-level control through deep reinforcement learning," Nature, 2015.

Approximate Q-Learning

- \square Solve the curse of dimensionality of too big table ($|\mathcal{S}| \times |\mathcal{A}|$) of tabular Q-learning
- \square Instead of a table, we use a parametrized Q-function: $Q_{\theta}(s, a)$ with $\boldsymbol{\theta} = [\theta_1, \cdots, \theta_d]^{\top}$.
- Nonlinear neural network approximation of Q-function: Deep Q-Networks (DQN) θ : weights of the neural network

Approximate *Q***-Learning Rule:**

Remember

$$target(s') = R(s, a, s') + \gamma \max_{a' \in \mathcal{A}} Q_{\theta}(s', a')$$

 \Box Update θ :

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \left(\frac{1}{2} (Q_{\theta}(s, a) - \text{target}(s'))^2 \right)$$

Why the objective function $\frac{1}{2}(Q_{\theta}(s, a) - \operatorname{target}(s'))^2$ in gradient method?

We can check that the gradient update rule recovers the tabular Q-learning update rule if $Q_{\theta}(s, a) \equiv \theta_{sa}$ for $\theta \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$.

Instability of Nonlinear Approximation Using Neural Networks

- ☐ Correlations present in the sequence of observations (episodes)
 - $e_t = (s_t, a_t, r_t, s_{t+1})$
- ☐ Small updates to *Q*-function may significantly change the policy and therefore change the data distribution.
- lacksquare Correlations between Q(s,a) and the target values $\mathrm{target}(s') = R(s,a,s') + \gamma \max_{a' \in \mathcal{A}} Q(s',a')$

Novelty of DQN: stabilize Q-learning for nonlinear approximation with CNN

Experience Replay

- Store agent's experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ at each time-step in a data set $D_t = \{e_1, \dots, e_t\}$ pooled over many episodes into a replay memory. The end of an episode occurs when a terminal state is reached.
- During the inner loop of the algorithm, apply Q-learning updates, or minibatch updates, to samples of experience, $(s, a, r, s') \sim U(D)$, drawn randomly from the pool of stored samples.

Online update \rightarrow off-line

Advantages of experience replay

- Each step of experience is potentially used in many weight updates, which allows for greater data efficiency.
- Learning directly from consecutive samples is inefficient, owing to the strong correlations between the samples; randomizing the samples breaks these correlations and therefore reduces the variance of the updates.
- By using experience replay, the behavior distribution is averaged over many of its previous states, smoothing out learning and avoiding oscillations or divergence in the parameters.
- When learning by experience replay, it is necessary to learn off-policy (because our current parameters are different to those used to generate the sample), which motivates the choice of Q-learning.

Target Network

Further improving the stability is to use a separate network (target network) for generating the targets $y = r + \gamma \max_{a' \in \mathcal{A}} Q(s', a')$ in the Q-learning update.

Use an older set of weights to compute the targets:

Keeps the target function from changing too quickly.

At iteration i, DQN uses minimizes the following loss function:

$$\min \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a' \in \mathcal{A}} Q_{\boldsymbol{\theta}_i^-}(s',a') - Q_{\boldsymbol{\theta}_i}(s,a) \right)^2 \right]$$

- $\square \theta_i^-$: target network parameters at iteration i
- $\square \theta_i$: parameters of the Q-network at iteration i
- The target network parameters θ_i^- are only updated with the Q-network parameters θ_i every C steps and are held fixed between individual updates.

Target Network

- lacktriangle Every C updates we clone the network Q to obtain a target network \hat{Q} and use \hat{Q} for generating the Q-learning targets y for the following C updates to Q.
- ☐ This modification makes the algorithm more stable compared to standard online Q-learning.
- Generating the targets using an older set of parameters adds a delay between the time an update to Q is made and the time the update affects the targets y, making divergence or oscillations much more unlikely.

Other Details of DQN

- \square Downsampling: 210 × 160 game images to ones of 84 × 84 ($s_t \rightarrow \phi(s_t)$).
- ☐ CNN: 5 layers: 3 convolution layers + 2 full connection layers

Layer	Input	Filter size	Stride	Num filters	Activation	Output
conv1	84x84x4	8x8	4	32	ReLU	20x20x32
conv2	20x20x32	4x4	2	64	ReLU	9x9x64
conv3	9x9x64	3x3	1	64	ReLU	7x7x64
fo4	7x7x64			512	ReLU	512
fc5	512			18	Linear	18

- Uses RMSProp instead of vanilla SGD Optimization in RL really matters.
- It helps to anneal the exploration rate: Start ϵ at 1 and anneal it to 0.1 or 0.05 over the first million frames.

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Thank you!