Programming 8251 USART Controller

Dr A Sahu

Dept of Comp Sc & Engg.

IIT Guwahati

Hierarchy of I/O Control Devices

Outline

- Asynchronous Communication
- 8251 USART Architecture
- USART Registers
- Programming UART
- RS 232 Port
- Interfacing CRT Monitor using a UART and RS-232 port

Data Comm: Serial Vs Parallel

Type of Serial Communication

Synchronous transmission

Framing in Asynchronous

- Character oriented
- Each character carried start bit and stop bits
- When No data are being transmitted
 - Receiver stay at logic 1 called mark, logic 0 is Space
- Framing:
 - Transmission begins with one start bit (low/0)
 - Followed by DATA (8bit) and
 - Stop bits (1 or 2 bits of logic high)

Type of Serial Communication

8085 Serial I/O lines

- Serial Input Data (SID)
- Serial Output Data (SOD)
 - Instruction SIM is necessary to output data
 - Interpretations (ACC contents)

D7	D6	D5	D4	D3	D2	D1	D0
SOD	SDE (0/1 Dis/Ena SOD)	X	For interrupts				

```
MVI A, 80; Set D_7 in the ACC=1
RAR; Set D_6 =1 and bring carry into D_7
SIM; output D_7
```

Data transmission Program on SOD

Transmit an ASCII Char stored in Register B

```
MVI
                  B ASCIIDatabyte
                                    ; get data byte in B
                                     ; set up counter for 11 bits
         MVI
                  C,0BH
         XRA
                  Α
                                     ; reset carry to 0
NXTbit: MVI
                  A,80H
                                     ;set D7=1 in ACC
         RAR
                                     ;bring Carry in D7 and set D6=1
         SIM
                                     ;output D7
         CALL
                  DELAYBittime
                                     ;wait for fixed time (BWT)
         STC
                                     ;set Carry 1
         MOV
                   A.B
                                     ;Place ASIII car in acc
         RAR
                                     ; place ASCII D0 in Carry
                                     ;and shift 1 in D7
         MOV
                  B,A
                                     :Save B
         DCR
                  NXTbit
         JNZ
         RET
```

Hardware control Serial I/O

- Programmable chip 8251
- Requirement of HW control serial I/O
 - An input/output port are required for interfacing
 - Converts data bits in to Parallel to serial & vice versa
 - Data transfer to be synchronized between I/O
 - USART (Universal Synchronous Asynchronous Receiver and Transmitter)

UART/USART

- Writing a program compatible with all different serial communication protocols is difficult and it is an inefficient use of microprocessor.
- UART: Universal Asynchronous Receiver/Transmitter chip.
- USART: Universal Synchronous/Asynchronous Receiver/Transmitter chip.
- The microprocessor sends/receives the data to the UART in parallel, while with I/O, the UART transmits/receive data serially.
- 8251 functions are integrated into standard PC interface chip.

UART / CPU interface

- UART/USART
 - 8251 USART
 - 8250/16450 UART is a newer version of 8251.
 - 16550 is the latest version UART.

8251 Block Diagram

8251 Registers

CS ^b	C/Db	RDb	WR ^b	Meaning
1	X	X	X	Data Bus Tri-state
0	X	1	1	Data Bus Tri-state
0	1	0	1	Status → CPU
0	1	1	0	Control Word← CPU
0	0	0	1	Data → CPU (accept data from Data Buffer)
0	0	1	0	Data ← CPU (Out put data to Data buffer)

Control Logic & Registers

Transmitter and Receiver

8251: Command Register (Mode word format)

Command Register (Command Word Format)

EH IR RTS ER SBRK RXE DTR TXE

TxE: transmit enable (0/1 Enable Disable)

DTR: data terminal ready (1=ENABLE DTR)

RxE: receiver enable (1/0=EN/DISABLE)

SBPRK: send break character 1= force TxD low

ER: error reset (Reset Flags: Parity, Over run,

Framing Error of Status Word)

RTS: request to send (1= Enable Request to send)

IR: internal reset (Reset 8251 to mode)

EH: enter hunt mode (1=search for Sync Character)

8251: Status Regsiter

						1		1		
	DSR	SYN DET	FE	FE OE PE TX EMPTY RXRDY						
•	TxRDY		transmit ready (DB Buffer is empty)							
	RxRDY		receive	er ready	/					
	TxEMPTY		transmitter empty							
	PE		parity error (1=when PE detected)							
	OE		overrun error							
	FE		framing error (Aynsc only, Valid stop bit							
			not detected)							
	SYND	DET	sync. character detected							
DSR			data set ready (DSR set at 0 level)							

RS 232 (Recommended Standard)

RS-232 Cable Receive **Transmit Data Data Terminal** Communication 3 **Equipment Equipment** 3 Receive **Transmit** (DTE) (DCE) 7 **CPU** 1/0 7 **3V** +9V +3V 0.2V-9V -0.2V

- RS232: Data transmitted as Voltage to terminal
 - 20KBps, 50Mters only
 - Improved to RS 422A (9 pine), RS 423A (15 pin-VGA)
- Modem (Data transmitted by Frequency)

RS-232: Mostly used for Monitor

Pin	Signal	Function
2	TxD: transmitted Data	Output CPU to I/O
3	RxD :Received Data	Input I/O receive from CPU
4	RTS :Request to Send	Output from I/0
5	CTS :Clear to send	Input to I/O, HS signal
6	DSR: Data set ready	CPU send to I/O is ready
7	GND	Comm. Ref GND
8	DCD: Data Carrier Detect	I/O to disable reception
20	DTR: Data terminal ready	Output to indicate I/O is ready

Interfacing a CRT monitor using RS-232 terminal using 8251

- Connect a RS 232 port onto a CRT terminal
- Address the 8251A USART at FF to control transmission
- Specify initialization instructions and status word to transmit characters
 - Async mode with 9600 buad
 - Character length= 7 bit + 2 stop bit
 - No parity check
- Write instruction to initialize USART and read status word and Setup a loop until the transmitter is ready

Interface Diagram

Initialization of UART

Mode Word

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	1	0	1	0
Two Stop bits		No pa	rity	7 bit char	acters	Baud=Tx =153.6k/ =9600	-

CAH

COMMAND WORD

	D7	D6	D5	D4	D3	D2	D1	D0	
)	X	0	X	1	X	0	X	1	11H
				ERR		Receive		Transmit	
				Reset		Disable		Enable	

STATUS

D7	D6	D5	D4	D3	D2	D1	D0	
X	X	X	X	X	X	X	1	01H
							Transmit Ready	

<u>Initialization instructions</u>

SETUP: MVI A,CAH; load mode word OUT FFH ;Write mode word in control register MVI A,11H ; load command word to enable TX OUT ;Enable the transmitter FFH **STATUS:** IN FFH ; Read the status register 01H ; Mask all bit except D0 ANI JZ STATUS ; if D0=0 the TX buffer if full

Display message stored at memory location 2070 to CRT

```
Message is "HELLO CS421"
2070 OE; 13 characters to follow
2071 48; Letter H
2072 45; Letter E
2073 4C; Letter L
2074 4C; Letter L
2075 4F; Letter H
2076 20; space
2077 43; Letter C
2078 53; Letter S
2079 34; Digit 4
2080 32;Digit 2
2081 31; Digit 1
2082 OD; Carriage return
2083 OA; Linefeed
```

Write a program to display message at CRT terminal

```
H 2070H; Meory ptr for Message
LXI
MOV
         C, M; Set up Ctr register
MVI
         A,40; Reset 8251
OUT
         FFH
MVI
         A,CA; Initialize 82512
OUT
         FFH
MVI
         A,11; initialize for transmit
OUT
         FFH
```

```
STATUS: IN
               FFH
       ANI
               01H
                       ;Ckeck TxRDY
       JZ
               STATUS
                       ; is txRDY 1? If not wait
       INX
               Н
                       : Pont to Next Char
       MOV
               A,M; place the Char in ACC
       OUT FEH
                      ; Send the Char to Transmitter
       DCR
                 : DCr cnt
       JNZ STATUS
                      ;Again Send the rest of Char
       HLT
```

Thanks