Textbook sections: 7.2

Almost Linear Systems

Almost linear systems are a method of creating linear approximations to non-linear systems.

For a given system

$$\vec{x}' = A\vec{x} + \vec{q}$$

if the system is almost linear near a given critical point, we can approximate the system as a linear system

$$\vec{x}' pprox A \vec{x}$$

around that critical point.

By doing so, we can apply our <u>analysis of stability of linear systems</u> to understand the behavior of the non-linear system.

Isolated Critical Points (ICPs)

Note that almost linear systems can only be applied around an **isolated critical point**. A critical point is considered *isolated* if there is some circle around the given critical point such that there are no other critical points.

(i.e., there are no lines or curves of critical points)

We can describe a non-linear autonomous system as

$$ec{x}' = Aec{x} + ec{g}.$$

(Note that $A\vec{x}$ is the linear part of \vec{x}' , \vec{g} is the non-linear part of \vec{x}' .)

If \vec{x}_0 is an ICP of this system, it is **also** an ICP of $\vec{x}' = A\vec{x}$, assuming $\det A \neq 0$.

Definition of Almost Linear System

Suppose

$$\vec{x}' = A\vec{x} + \vec{g},$$

where A is a matrix with constant coefficients (and $\det A \neq 0$), and \vec{g} is a non-linear function of \vec{x}

.

We can consider the system almost linear near $\vec{x} = \vec{0}$ if:

ullet $ec{x}=ec{0}$ is an isolated critical point

•
$$rac{\|ec{g}\|}{\|ec{x}\|} oec{0}$$
, as $ec{x} oec{x}_0$. (i.e., $ec{g}$ approaches $ec{0}$ faster than $ec{x}$ approaches $ec{0}$.)

We can also extend this arbitrarily. A system is almost linear near $\vec{x}=\vec{x}_0$ if:

- $\vec{x} = \vec{x}_0$ is an isolated critical point
- $rac{\|ec{g}\|}{\|ec{x}-ec{x}_0\|} oec{0}$, as $ec{x} oec{x}_0$. (i.e., $ec{g}$ approaches $ec{0}$ faster than $ec{x}$ approaches $ec{x}_0$.)

Almost Linear Systems using Jacobian

Consider a given autonomous system

$$x' = F(x, y)$$
$$y' = G(x, y),$$

with an ICP at $ec{x}_0=(x_0,y_0)$.

Then, we can describe the system as

$$ec{x}'=J(ec{x}-ec{x}_0)+ec{\eta},$$

where:

- J is the **Jacobian matrix** $egin{bmatrix} F_x & F_y \ G_x & G_y \end{bmatrix}$, computed at $ec{x}=ec{x}_0$,
- $\vec{\eta}$ is a vector describing the quadratic (and beyond) terms for the Taylor expansions of F and G.

Near the ICP \vec{x}_0 , this system can be approximated as

$$ec{x}'pprox J(ec{x}-ec{x}_0).$$

(Assuming $\det J
eq 0$ at $ec x = ec x_0$.)

○ Derivation ∨

We can find the Taylor expansion of F around (x_0, y_0) :

$$F(x,y) = F(x_0,y_0) + F_x(x_0,y_0)(x-x_0) + F_y(x_0,y_0)(y-y_0) + \eta_1,$$

where η_1 represents the quadratic (and beyond) terms of the Taylor expansion.

Since (x_0, y_0) is a critical point, $F(x_0, y_0) = 0$. We can then rewrite F's Taylor expansion as

$$F(x,y) = egin{bmatrix} F_x & F_y \end{bmatrix} egin{bmatrix} x - x_0 \ y - y_0 \end{bmatrix} + \eta_1.$$

In a similar process, we can find the Taylor expansion of G to be

$$G(x,y) = \left[egin{aligned} G_x & G_y \end{aligned}
ight] egin{aligned} x - x_0 \ y - y_0 \end{aligned} + \eta_2.$$

By combining these, we find

$$egin{aligned} ec{x}' &= egin{bmatrix} x' \ y' \end{bmatrix} = egin{bmatrix} F_x & F_y \ G_x & G_y \end{bmatrix} egin{bmatrix} x - x_0 \ y - y_0 \end{bmatrix} + ec{\eta} \ &= J(ec{x} - ec{x}_0) + ec{\eta} \end{aligned}$$

Proving Almost Linearity

Because $\vec{\eta}$ only consists of quadratic (and beyond) terms $\vec{\eta}$ will shrink quadratically towards 0 as \vec{u} shrinks linearly towards 0, so we see that

$$\lim_{ec{x} o ec{x}_0} rac{\|ec{\eta}\|}{\|ec{x} - ec{x}_0\|} = 0.$$

∃ Example ∨

Identify all critical points and classify the critical points (according to stability) of

$$egin{aligned} rac{dx}{dt} &= x + x^2 + y^2 \ rac{dy}{dt} &= y - xy. \end{aligned}$$

Critical Points

When $\frac{dx}{dt} = 0$,

$$x + x^2 + y^2 = 0 \ \left(x + rac{1}{2}
ight)^2 + y^2 = rac{1}{4}.$$

When $\frac{dy}{dt} = 0$,

$$y - xy = 0$$
$$y(1 - x) = 0.$$

By drawing the graph and solving, we find the critical points (-1,0) and (0,0).

Classifying

We first find the Jacobian:

$$J = egin{bmatrix} 1+2x & 2y \ -y & 1-x \end{bmatrix}.$$

At (-1,0), the Jacobian is $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$.

The eigenvalues of this matrix are $\lambda = -1, 2$, making the system an unstable saddle.

At (0,0), the Jacobian is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

The eigenvalue of this matrix is $\lambda = 1$, making the system an unstable source.

Test for Almost Linear Systems

Consider a given autonomous system

$$x' = F(x, y)$$
$$y' = G(x, y),$$

with an ICP at $\vec{x}_0 = (x_0, y_0)$.

If F and G are twice differentiable, the system is almost linear (because it can be Jacobian-ified).

Effect of Small Perturbations

Suppose

$$ec{x}' = Aec{x} + ec{g},$$

where $ec{x}_0$ is an ICP and $ec{g}
eq 0$.

Because the linear system only *approximates* the linear system, the eigenvalues of the almost linear system only *approximate* the linear system's eigenvalues.

For most systems, this difference is negligible. However, there are two cases where it can result in a difference in behavior or stability: pure imaginary λ and real repeated λ .

Pure Imaginary λ

Ideally, if a linear system has $\lambda=\pm i\beta$, there is a center around the critical point. However due to perturbations, the approximate $\lambda=\pm i\beta$ shifts to $\lambda=\alpha'\pm i\beta'$.

Here, $\alpha' \approx 0, \beta' \approx \beta$.

This can cause a change in stability AND behavior.

- If $\alpha' > 0$, then the almost linear system has an *unstable* spiral source.
- If $\alpha' = 0$, then the almost linear system has a *stable* center.
- If $\alpha' < 0$, then the almost linear system has an *asymptotically stable* spiral sink.

Real Repeated λ

Ideally, if a linear system has repeated eigenvalues $\lambda = \alpha$, then there is a <u>proper or improper node</u>. However due to perturbations, the approximate $\lambda = \alpha$ shifts to $\lambda = \alpha' \pm i\beta'$.

Here, $\alpha' \approx \alpha, \beta' \approx 0$.

This does not change the stability, but it does change the behavior.

Table of Changes

λ_1,λ_2	linear system behavior	stability	almost linear system behavior	stability
$\lambda_1=\lambda_2>0$	proper/improper node	unstable	nodal or spiral source	unstable
$\lambda=\lambda_2<0$	proper/improper node	a. stable	nodal or spiral sink	a. stable
$\lambda_1,\lambda_2=\pm ieta$	center	stable	center, spiral source, or spiral sink	indeterminate

For systems with eigenvalues that don't match these two conditions, the linear system & almost linear systems maintain the same behavior. Those tables can be found here.