DATE : 14.10.2024

DT/NT : DT

LESSON: DEEP LEARNING

SUBJECT: RECURRENT NEURAL

NETWORK - LSTM - GRU

BATCH : 250

DATA **SCIENCE**

DEEP LEARNING II

Recurrent Neural Network(RNN)

- Recurrent Neural Network (RNN)
- Long Short-Term Memory (LSTM)
- Gated Recurrent Units (GRU)

GENERAL CONTENTS

Different Types of Sequence Modeling Tasks

DIFFERENCE BETWEEN RNN AND ANN

Recurrent Neural Network

Feed-Forward Neural Network

- RNNs are preferred in NLP because they are effective at modeling sequential data.
- The key difference between RNN models and ANN or CNN is that each layer in an RNN depends on the information from the previous layer. Without this information from the previous layer, it cannot function.
- In CNNs and ANNs, all data is processed independently of each other.
- Another key difference of RNN compared to CNN and ANN is that RNN has memory, which is why it is often preferred in NLP models.

Vanilla-RNN

RNN (Recurrent Neural Network)

Source: StatQuest with Josh Starmer

Time Series Example

All		U
1	date	value
2	9/6/2017	531974.19
3	9/7/2017	484704.26
4	9/8/2017	693635.27
5	9/9/2017	420176.65
6	9/10/2017	257548.74
7	9/11/2017	212416.06
8	9/12/2017	410240.57
9	9/13/2017	559267.26
10	9/14/2017	556496.67
11	9/15/2017	813277.37
12	9/16/2017	600138.13
13	9/17/2017	371246.62
14	9/18/2017	319319.61
15	9/19/2017	561685.94
16	9/20/2017	650536.61
17	9/21/2017	599229.88

Time Series Example

EDUCATION

THE USE CASES OF RNN IN REAL LIFE

SEQUENCE PROBLEMS

A Timeseries is a common example of this, with each point reflecting an observation at a certain point in time, such as a stock price or sensor data.

Examples of sequence data

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec moi?

變是影響

Yesterday, Harry Potter met Hermione Granger. "The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger. Andrew Ng

RNN APPLICATION

Text Mining and Sentiment Analysis can be carried out using RNN for Natural Language Processing

RNN APPLICATION

Here the person is speaking in English and it is getting translated into Chinese, Italian, French, German and Spanish languages

Machine Translation

Given an input in one language, RNN can be used to translate the input into different languages as output

HOW DOES RNN WORK?

A recurrent neural network (RNN) is a type of artificial neural network which uses sequential data or time series data.

is

it

?

time_series_generator

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

```
Grup 1 - Girdi (x): [[1 2 3]], Çıkış (y): [4]
Grup 2 - Girdi (x): [[2 3 4]], Çıkış (y): [5]
Grup 3 - Girdi (x): [[3 4 5]], Çıkış (y): [6]
Grup 4 - Girdi (x): [[4 5 6]], Çıkış (y): [7]
Grup 5 - Girdi (x): [[5 6 7]], Çıkış (y): [8]
Grup 6 - Girdi (x): [[6 7 8]], Çıkış (y): [9]
Grup 7 - Girdi (x): [[7 8 9]], Çıkış (y): [10]
```


- new hidden state
- previous hidden state
- X_t input
- → concatenation

DATE : 15.10.2024

DT/NT : DT

LESSON: DEEP LEARNING

SUBJECT: **RNN-LONG SHORT-TERM**

MEMORY(LSTM) - GRU

BATCH : 250

DATA SCIENCE

VANISHING /EXPLODING GRADIENT PROBLEM

RNN VANISHING / EXPLODING GRADIENT

LSTM (LONG SHORT-TERM MEMORY)

LSTM

...Long Short-Term

Memory uses two
separate paths to make
predictions about
tomorrow.

So, now that we know that the Sigmoid Activation Function turns any input into a number between 0 and 1...

...and the Tanh Activation

Function turns any input into a
number between -1 and 1...

What is LSTM?

"I will lead the way to success.."
"She wore a necklace made of lead."

Customers Review 2,49

Thanos

September 2018 Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

A Box of Cereal \$3.99

Customers Review 2,491

Thanos

September 2018
Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

A Box of Cereal \$3.99

(1)
$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

sigmoid

tanh

1-) Forget Gate

- C_M previous cell state
- forget gate output

2-) Input Gate

- C_{b1} previous cell state
- forget gate output
- input gate output
- č, candidate

3-) Cell State

- C_{b1} previous cell state
- forget gate output
- input gate output
- č_t candidate
- c new cell state

4-) Output Gate

- C_{b1} previous cell state
- forget gate output
- input gate output
- č, candidate
- C₁ new cell state
- output gate output
- hidden state

LSTM - BACKPROPAGATION

GRU (GATED RECCURENT UNITS)

LSTM GRU

tanh

pointwise multiplication

pointwise addition

vector concatenation

GRU

BIDIRECTIONAL RNN/LSTM/GRU

BIDIRECTIONAL RNN/LSTM/GRU

BIDIRECTIONAL RNN/LSTM/GRU

THE END

Do you have any questions?

Send it to us! We hope you learned something new.

