Description

A negative binomial model for data collected in three hierarchical levels (data nested within subgroup nested within group), with varying coefficients at the second (subgroup) and third (group) levels.

Implementation

The file nb.varying.coef.3.sim.R simulates data according to the model statement presented below, and nb.varying.coef.3.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let y_{ijk} denote observed counts (i.e., y_{ijk} are integers greater than or equal to 0) for groups i = 1, ..., N, subgroups $j = 1, ..., n_i$ nested within groups, and replicate observations $k = 1, ..., m_{ij}$ (level-1 units) within subgroup j (level-2 units) and group i (level-3 units). Furthermore, let \mathbf{x}_{ijk} be a vector of p covariates (including the intercept) associated with y_{ijk} and α_{ij} be the corresponding vector of coefficients for subgroup j in group i. The vector $\boldsymbol{\beta}_i$ corresponds to group-level coefficients and $\boldsymbol{\mu}_{\beta}$ is a vector of population-level coefficients.

$$y_{ijk} \sim \operatorname{NB}(\lambda_{ijk}, \theta_i),$$

$$\log(\lambda_{ijk}) = \mathbf{x}'_{ijk} \boldsymbol{\alpha}_{ij}$$

$$\boldsymbol{\alpha}_{ij} \sim \mathcal{N}(\boldsymbol{\beta}_i, \boldsymbol{\Sigma}_{\alpha_i})$$

$$\boldsymbol{\beta}_i \sim \mathcal{N}(\mathbf{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta})$$

$$\boldsymbol{\mu}_{\beta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\beta}^2 \mathbf{I})$$

$$\theta_i \sim \operatorname{Gamma}(a, b)$$

$$\boldsymbol{\Sigma}_{\alpha_i}^{-1} \sim \operatorname{Wish}(\mathbf{S}_0^{-1}, \nu)$$

$$\boldsymbol{\Sigma}_{\beta}^{-1} \sim \operatorname{Wish}(\mathbf{S}_0^{-1}, \nu)$$

Full conditional distributions

Subgroup-level regression coefficients (α_{ij}) :

$$\begin{split} \left[\boldsymbol{\alpha}_{ij}\mid\cdot\right] & \propto & \prod_{k=1}^{m_{ij}}\left[y_{ijk}\mid\lambda_{ijk},\theta_{i}\right]\left[\boldsymbol{\alpha}_{ij}\mid\boldsymbol{\beta}_{i},\boldsymbol{\Sigma}_{\alpha_{i}}\right] \\ & \propto & \prod_{k=1}^{m_{ij}}\operatorname{NB}\left(y_{ijk}\mid\lambda_{ijk},\theta_{i}\right)\mathcal{N}\left(\boldsymbol{\alpha}_{ij}\mid\boldsymbol{\beta}_{i},\boldsymbol{\Sigma}_{\alpha_{i}}\right). \end{split}$$

The update for α_{ij} proceeds using Metropolis-Hastings.

Group-level regression coefficients (β_i):

$$egin{array}{ll} \left[oldsymbol{eta}_i \mid \cdot
ight] & \propto & \prod_{j=1}^{n_i} \left[oldsymbol{lpha}_{ij} \mid oldsymbol{eta}_{i}, oldsymbol{\Sigma}_{lpha_i}
ight] \left[oldsymbol{eta}_i \mid oldsymbol{\mu}_{eta}, oldsymbol{\Sigma}_{eta}
ight] \ & \propto & \prod_{j=1}^{n_i} \mathcal{N}\left(oldsymbol{lpha}_{ij} \mid oldsymbol{eta}_{i}, oldsymbol{\Sigma}_{lpha_i}
ight) \mathcal{N}\left(oldsymbol{eta}_i \mid oldsymbol{\mu}_{eta}, oldsymbol{\Sigma}_{eta}
ight) \end{array}$$

$$\propto \exp \left\{ \sum_{j=1}^{n_i} \left(-\frac{1}{2} \left(\boldsymbol{\alpha}_{ij} - \boldsymbol{\beta}_i \right)' \boldsymbol{\Sigma}_{\alpha_i}^{-1} \left(\boldsymbol{\alpha}_{ij} - \boldsymbol{\beta}_i \right) \right) \right\} \\
\times \exp \left\{ -\frac{1}{2} \left(\boldsymbol{\beta}_i - \boldsymbol{\mu}_{\beta} \right)' \boldsymbol{\Sigma}_{\beta}^{-1} \left(\boldsymbol{\beta}_i - \boldsymbol{\mu}_{\beta} \right) \right\} \\
\propto \exp \left\{ -\frac{1}{2} \left(-2 \left(\sum_{j=1}^{n_i} \boldsymbol{\alpha}'_{ij} \boldsymbol{\Sigma}_{\alpha_i}^{-1} \right) \boldsymbol{\beta}_i + \boldsymbol{\beta}'_i \left(n_i \boldsymbol{\Sigma}_{\alpha_i}^{-1} \right) \boldsymbol{\beta}_i \right) \right\} \\
\times \exp \left\{ -\frac{1}{2} \left(-2 \left(\boldsymbol{\mu}'_{\beta} \boldsymbol{\Sigma}_{\beta}^{-1} \right) \boldsymbol{\beta}_i + \boldsymbol{\beta}'_i \left(\boldsymbol{\Sigma}_{\beta}^{-1} \right) \boldsymbol{\beta}_i \right) \right\} \\
\propto \exp \left\{ -\frac{1}{2} \left(-2 \left(\sum_{j=1}^{n_i} \boldsymbol{\alpha}'_{ij} \boldsymbol{\Sigma}_{\alpha_i}^{-1} - \boldsymbol{\mu}'_{\beta} \boldsymbol{\Sigma}_{\beta}^{-1} \right) \boldsymbol{\beta}_i + \boldsymbol{\beta}'_i \left(n_i \boldsymbol{\Sigma}_{\alpha_i}^{-1} + \boldsymbol{\Sigma}_{\beta}^{-1} \right) \boldsymbol{\beta}_i \right) \right\} \\
= \mathcal{N}(\mathbf{A}^{-1} \mathbf{b}, \mathbf{A}^{-1}),$$

where $\mathbf{A} = n_i \mathbf{\Sigma}_{\alpha_i}^{-1} + \mathbf{\Sigma}_{\beta}^{-1}$ and $\mathbf{b}' = \boldsymbol{\alpha}_i' \mathbf{\Sigma}_{\alpha_i}^{-1} - \boldsymbol{\mu}_\beta' \mathbf{\Sigma}_{\beta}^{-1}$, where $\boldsymbol{\alpha}_i$ is the vector sum $\sum_{j=1}^{n_i} \boldsymbol{\alpha}_{ij}$.

Mean of group-level regression coefficients (μ_{β}) :

$$\begin{split} \left[\boldsymbol{\mu}_{\beta}\mid\cdot\right] & \propto & \prod_{i=1}^{N}\left[\boldsymbol{\beta}_{i}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}_{\beta}\right]\left[\boldsymbol{\mu}_{\beta}\mid\boldsymbol{0},\sigma_{\mu_{\beta}}^{2}\right] \\ & \propto & \prod_{i=1}^{N}\mathcal{N}\left(\boldsymbol{\beta}_{i}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}_{\beta}\right)\mathcal{N}\left(\boldsymbol{\mu}_{\beta}\mid\boldsymbol{0},\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right) \\ & \propto & \exp\left\{\sum_{i=1}^{N}\left(-\frac{1}{2}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}_{\beta}\right)'\boldsymbol{\Sigma}_{\beta}^{-1}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}_{\beta}\right)\right)\right\} \\ & \times \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}_{\beta}-\mathbf{0}\right)'\left(\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right)^{-1}\left(\boldsymbol{\mu}_{\beta}-\mathbf{0}\right)\right\} \\ & \propto & \exp\left\{-\frac{1}{2}\left(-2\left(\sum_{i=1}^{N}\boldsymbol{\beta}_{i}'\boldsymbol{\Sigma}_{\beta}^{-1}\right)\boldsymbol{\mu}_{\beta}+\boldsymbol{\mu}_{\beta}'\left(\boldsymbol{N}\boldsymbol{\Sigma}_{\beta}^{-1}\right)\boldsymbol{\mu}_{\beta}\right)\right\} \\ & \times \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}_{\beta}'\left(\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right)^{-1}\boldsymbol{\mu}_{\beta}\right)\right\} \\ & \propto & \exp\left\{-\frac{1}{2}\left(-2\left(\sum_{i=1}^{N}\boldsymbol{\beta}_{i}'\boldsymbol{\Sigma}_{\beta}^{-1}\right)\boldsymbol{\mu}_{\beta}+\boldsymbol{\mu}_{\beta}'\left(\boldsymbol{N}\boldsymbol{\Sigma}_{\beta}^{-1}+\left(\sigma_{\mu_{\beta}}^{2}\mathbf{I}\right)^{-1}\right)\boldsymbol{\mu}_{\beta}\right)\right\} \\ & = & \mathcal{N}(\mathbf{A}^{-1}\mathbf{b},\mathbf{A}^{-1}). \end{split}$$

where $\mathbf{A} = N \mathbf{\Sigma}_{\beta}^{-1} + \left(\sigma_{\mu_{\beta}}^{2} \mathbf{I}\right)^{-1}$ and $\mathbf{b}' = \boldsymbol{\beta}' \mathbf{\Sigma}_{\beta}^{-1}$, where $\boldsymbol{\beta}$ is the vector sum $\sum_{i=1}^{N} \boldsymbol{\beta}_{i}$.

Negative binomial over-dispersion parameter (θ_i) :

$$[\theta_{i} \mid \cdot] \propto \prod_{k=1}^{m_{ij}} [y_{ijk} \mid \lambda_{ijk}, \theta_{i}] [\theta_{i} \mid a, b]$$

$$\propto \prod_{k=1}^{m_{ij}} NB (y_{ijk} \mid \lambda_{ijk}, \theta_{i}) Gamma (\theta_{i} \mid a, b).$$

The update for θ_i proceeds using Metropolis-Hastings.

Variance-covariance of group-level regression coefficients (Σ_{β}):

$$\begin{split} \left[\boldsymbol{\Sigma}_{\beta} \mid \cdot \right] & \propto & \prod_{i=1}^{N} \left[\boldsymbol{\beta}_{i} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta} \right] \left[\boldsymbol{\Sigma}_{\beta} \mid \mathbf{S}_{0}, \nu \right] \\ & \propto & \prod_{i=1}^{N} \mathcal{N} \left(\boldsymbol{\beta}_{i} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta} \right) \operatorname{Wish} \left(\boldsymbol{\Sigma}_{\beta} \mid \mathbf{S}_{0}, \nu \right) \\ & \propto & \left| \boldsymbol{\Sigma}_{\beta} \right|^{-\frac{N}{2}} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{N} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \boldsymbol{\Sigma}_{\beta}^{-1} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \right\} \\ & \times \left| \mathbf{S}_{0} \right|^{-\frac{N}{2}} \left| \boldsymbol{\Sigma}_{\beta} \right|^{-\frac{\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left(\mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1} \right) \right\} \\ & \propto & \left| \boldsymbol{\Sigma}_{\beta} \right|^{-\frac{N+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{N} \operatorname{tr} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \boldsymbol{\Sigma}_{\beta}^{-1} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \right) + \operatorname{tr} \left(\mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1} \right) \right] \right\} \\ & \propto & \left| \boldsymbol{\Sigma}_{\beta} \right|^{-\frac{N+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left(\boldsymbol{\Sigma}_{i=1}^{N} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \right) \boldsymbol{\Sigma}_{\beta}^{-1} + \mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1} \right) \right] \right\} \\ & \propto & \left| \boldsymbol{\Sigma}_{\beta} \right|^{-\frac{N+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left(\boldsymbol{\Sigma}_{i=1}^{N} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \right) \boldsymbol{\Sigma}_{\beta}^{-1} + \mathbf{S}_{0} \boldsymbol{\Sigma}_{\beta}^{-1} \right) \right] \right\} \\ & = & \operatorname{Wish} \left(\left(\sum_{i=1}^{N} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \right) + \mathbf{S}_{0} \right)^{-1}, N + \nu \right). \end{split}$$

Variance-covariance of subgroup-level regression coefficients (Σ_{α_i}):

$$\begin{aligned} \left[\boldsymbol{\Sigma}_{\alpha_{i}} \mid \cdot \right] & \propto & \prod_{j=1}^{n_{i}} \left[\alpha_{ij} \mid \boldsymbol{\beta}_{i}, \boldsymbol{\Sigma}_{\alpha_{i}} \right] \left[\boldsymbol{\Sigma}_{\alpha_{i}} \mid \mathbf{S}_{0}, \nu \right] \\ & \propto & \prod_{j=1}^{n_{i}} \mathcal{N} \left(\alpha_{ij} \mid \boldsymbol{\beta}_{i}, \boldsymbol{\Sigma}_{\alpha_{i}} \right) \operatorname{Wish} \left(\boldsymbol{\Sigma}_{\alpha_{i}} \mid \mathbf{S}_{0}, \nu \right) \\ & = & \operatorname{Wish} \left(\left(\sum_{j=1}^{n_{i}} \left(\left(\alpha_{ij} - \boldsymbol{\beta}_{i} \right) \left(\alpha_{ij} - \boldsymbol{\beta}_{i} \right)' \right) + \mathbf{S}_{0} \right)^{-1}, n_{i} + \nu \right). \end{aligned}$$