

ME 439 Final Project: Kalman Filter and LQR for Mobile Robot

By: Team 5

Mohamed Safwat and Ahmed Khalil

Goal of Project

 Improve state estimation method of the mobile robot by incorporating more sensors

 Improve the trajectory control of the mobile robot

Brief description of Kalman Filter

Optimal State Estimator

- Prediction from the linear model of the robot
- Update from the sensor measurements
- Includes the sensor fusion of encoders & IMU

[1]

Sensors Used

- MPU6050
 - adafruit_mpu6050
 - Gyroscope only

- BNO055
 - adafruit_bno055
 - Gyroscope and magnetometer
- Pololu Encoders
 - encoders_and_motors.py

Encoders

Brief description of LQR

- Linear Quadratic Regulator
 - Minimizes certain objective cost function

$$J = \int_0^\infty (x^TQx + u^TRu)dt$$

Provides optimal feedback control between state error and motor effort

Trajectory Generation

- Generated cubic functions for smoother motion when following way points
- Satisfy differential flatness for mobile robot dynamics
 - Position, velocity, acceleration
- Simple trajectory for testing
 - [(0,0),(0,1),(1,1)]

Block diagram for mobile robot control

Offboard implementation of Controller

ROS Networking between RasPi and Linux Laptop

Demonstration of LQR & EKF on robot

Simulation using Gazebo and rviz for Tuning

- ros1 for running code and rviz
- ros2 for simulation on Gazebo
- ROS1-ROS2 Bridge

Next Steps/Challenges

- Tune Kalman Filter Covariances and LQR matrices
 - Able to obtain sensor measurement covariances only
- Creating a trajectory for tracking
 - Parametrized cubic spline trajectory wrt time
- Implementing a Kalman/Madgwick/Complementary filter for better IMU yaw angle
- Modeling system dynamics to account for inertia using Euler/Lagrange (double integrator) as opposed to system kinematics (single integrator)
 - We just used the single integrator method

Questions, Comments, Concerns?

Ros 1: EKF + LQR Code

Ros 2: Simulation Code

References

[1] Hindawi, Kalman Filter: Historical Overview and Review of Its Use in Robotics 60 Years after Its Creation, 2021. [Online].

Available: https://www.hindawi.com/journals/js/2021/9674015/fig1/.

[Accessed: 02-May-2022].

