```
In [6]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
    from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
    from sklearn.compose import ColumnTransformer
    from sklearn.pipeline import Pipeline
    from sklearn.impute import SimpleImputer
    from sklearn.compose import ColumnTransformer
    from sklearn.preprocessing import StandardScaler, OneHotEncoder
    # Step 2: Load Data
    link = "https://raw.githubusercontent.com/dsrscientist/dataset3/main/weatherAUS.csv"
    ta = pd.read_csv(link)
    # Step 3: Exploratory Data Analysis (EDA)
    # (No changes here)
    # Step 4: Data Preprocessing and Feature Engineering
    ta.dropna(inplace=True)
    ta.reset_index(drop=True, inplace=True)
    # Extract features from the date column
    ta['Date'] = pd.to_datetime(ta['Date'])
    ta['Year'] = ta['Date'].dt.year
    ta['Month'] = ta['Date'].dt.month
    ta['Day'] = ta['Date'].dt.day
    # Perform feature scaling
    scale = MinMaxScaler()
    scale_features = ['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine', 'WindGustSpeed',
                         'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am',
                         'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am', 'Temp3pm']
    ta[scaled_features] = scaler.fit_transform(data[scaled_features])
    # Split the Dataset
    feature= ta.drop(['RainTomorrow', 'Date', 'Location'], axis=1)
    target= ta['RainTomorrow']
    X_train, X_test, y_train, y_test = train_test_split(feature, target, test_size=0.2, random_state=42)
    # Step 5: Build Random Forest Model in a pipeline
    numeric_features = feature.select_dtypes(include=['int64', 'float64']).columns
    categorical_features = feature.select_dtypes(include=['object']).columns
    numeric_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='mean')),
        ('scaler', StandardScaler())
    ])
    categorical_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
        ('onehot', OneHotEncoder(handle_unknown='ignore'))
    ])
    preprocessor = ColumnTransformer(
        transformers=[
            ('num', numeric_transformer, numeric_features),
            ('cat', categorical_transformer, categorical_features)
        ])
    model = Pipeline([
        ('preprocessor', preprocessor),
        ('classifier', RandomForestClassifier(random_state=42))
    ])
    # Fit the model
    model.fit(X_train, y_train)
    # Step 6: Evaluate the Model
    y_pred = model.predict(X_test)
    print("Accuracy:", accuracy_score(y_test, y_pred))
    print("Classification Report:\n", classification_report(y_test, y_pred))
    # Plot Confusion Matrix
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
    plt.title("Confusion Matrix")
    plt.show()
```

Accuracy: 0.8918205804749341

Report: precision	recall	f1-score	support
0.91	0.96	0.93	580
0.83	0.67	0.75	178
		0.89	758
0.87	0.82	0.84	758
0.89	0.89	0.89	758
	0.91 0.83 0.87	precision recall 0.91 0.96 0.83 0.67 0.87 0.82	precision recall f1-score 0.91 0.96 0.93 0.83 0.67 0.75 0.89 0.87 0.82 0.84

Title: Rain Prediction Model Documentation

1. DATA knowledage:

- This project provides documentation for the Rain Prediction Model, which forcasts whether it will rain tomorrow.
- The model is built using a Random Forest Classifier and contain various data preprocessing steps.

2. Import Libraries:

- · Pandas: Data manipulation and analysis.
- · Numpy: Numerical operations.
- Matplotlib, seaborn: Data visualization. · Scikit-learn: Machine learning tools.
- 3. Source data:

- The model uses the weatherAUS dataset from the given link. The model uses the weatherAUS dataset from the given link.
- 4. Exploratory Data Analysis :
 - No changes were made to the EDA section; _it is assumed to have been performed separately.
- 5. Data Preprocessing and Feature Engineering: a. Handling Missing Values:
 - Rows with missing values were droppe. b. Extracting Features from Date:
 - 'Year', 'Month', and 'Day' feature were extracted from the 'Date' columns. c. Feature Scaling:
 - · Min-Max scaling was applied to selecte features

6. Data Splitting:

- · The data was split into training and testing sets.
- 7. Building the Random Forest Model in a Pipeline: a. Numeric Transformer:
 - Imputed missing values with the mean.
 - Applied Standard Scaling to numeric features. b. Categorical Transformer:
 - Imputed missing values with a constant value.
 - Applied one-hot encoding to categorical features. c. Column Transformer:
 - Applied transformers to numeric and categorical features. d. Model Pipeline:
 - · Combined preprocessing and RandomForestClassifier in a pipeline.

8. Model Train:

- · The model was trained using the training dataset.
- 9. Model perfomance: a. Accuracy Score:
 - · Calculated the accuracy of the model on the test set. b. Classification Report:
- Provided a detailed classification report.

10. Confusion Matrix:

- Plotted a confusion matrix to visualize model performance.
- 11. Conclusion:
 - · The Rain Prediction Model has been inflawlessely built and evaluated.