Výroková a predikátová logika - XIV

Petr Gregor

KTIML MFF UK

ZS 2013/2014

Úvod

Gödelova 1. věta o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v $\underline{\mathbb{N}}$ a nedokazatelná v T.

Poznámky

- "Rekurzivně axiomatizovaná" znamená, že je "efektivně zadaná".
- "Extenze R. aritmetiky" znamená, že je "základní aritmetické síly".
- Je-li navíc $\mathbb{N} \models T$, je teorie T nekompletní.
- V důkazu sestrojená sentence vyjadřuje "nejsem dokazatelná v T".
- Důkaz je založen na dvou principech:
 - (a) aritmetizaci syntaxe,
 - (b) self-referenci.

Aritmetizace syntaxe

- Konečné objekty syntaxe (symboly jazyka, termy, formule, důkazy) lze vhodně zakódovat přirozenými čísly.
- Nechť $\lceil \varphi \rceil$, $\lceil t \rceil$ značí kód formule φ resp. termu t. Dále nechť $\underline{\varphi}$, \underline{t} značí numerál (term jazyka aritmetiky) reprezentující $\lceil \varphi \rceil$ resp. $\lceil t \rceil$.
- Kódování lze zvolit *"efektivní"*. Chceme např., aby funkce sub definovaná $sub(\lceil \varphi \rceil, \lceil x \rceil, \lceil t \rceil) = \begin{cases} \lceil \varphi(x/t) \rceil & \textit{pokud t je substituovatelný}, \\ 0 & \textit{jinak} \end{cases}$

byla reprezentovatelná v Q nějakou formulí $\psi(x_1, x_2, x_3, y)$ tak, že

$$Q \vdash \psi(\underline{a_1}, \underline{a_2}, \underline{a_3}, y) \leftrightarrow y = \underline{sub(a_1, a_2, a_3)}$$

pro každé $a_1, a_2, a_3 \in \mathbb{N}$.

- Pak v extenzi T aritmetiky Q o formulí ψ definovaný symbol sub platí $T \vdash sub(a_1, a_2, a_3) = a \Leftrightarrow sub(a_1, a_2, a_3) = a$.
- Poznámka Detaily aritmetizace a reprezentovatelnosti vynecháme.

Princip self-reference

- Tato věta má 16 písmen.
 Self-reference ve formálních systémech většinou není přímo k dispozici.
- Následující věta má 24 písmen "Následující věta má 24 písmen".
 Přímá reference obvykle je k dispozici, stačí, když umíme "mluvit" o posloupnostech symbolů. Uvedená věta ale není self-referenční.
- Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen "Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen".
 - Pomocí přímé reference lze dosáhnout self-reference. Namísto "má x písmen" může být jiná vlastnost.
- main() {char *c="main() {char *c=%c%s%c; printf(c,34, c,34);}"; printf(c,34,c,34);}

Věta o pevném bodě

Věta Nechť T je bezesporné rozšíření Robinsonovy aritmetiky. Pro každou formuli $\varphi(x)$ jazyka teorie T existuje sentence ψ taková, že $T \vdash \psi \leftrightarrow \varphi(\psi)$.

Poznámka Sentence ψ je self-referenční, říká "splňuji podmínku φ ".

 ${\it Důkaz}$ (idea) Uvažme ${\it zdvojujíci}$ funkci d takovou, že pro každou formuli $\chi(x)$

$$d(\lceil \chi(x) \rceil) = \lceil \chi(\chi(x)) \rceil$$

- Platí, že d je reprezentovatelná v T. Předpokládejme (pro jednoduchost),
 že nějakým termem, který si označme d, stejně jako funkci d.
- Pak pro každou formuli $\chi(x)$ jazyka teorie T platí

$$T \vdash d(\underline{\chi(x)}) = \underline{\chi(\underline{\chi(x)})} \tag{1}$$

- Za ψ vezměme sentenci $\varphi(d(\varphi(d(x))))$. Stačí ověřit $T \vdash d(\varphi(d(x))) = \underline{\psi}$.
- To plyne z (1) pro $\chi(x)$ tvaru $\varphi(d(x))$, neboť v tom případě

$$T \vdash d(\varphi(d(x))) = \varphi(d(\varphi(d(x)))) \quad \Box$$

Nedefinovatelnost pravdy

Řekneme, že formule $\tau(x)$ *definuje pravdu* v aritmetické teorii T, pokud pro každou sentenci φ platí $T \vdash \varphi \leftrightarrow \tau(\varphi)$.

Věta V žádném bezesporném rozšíření Robinsonovy aritmetiky neexistuje definice pravdy.

Důkaz Dle věty o pevném bodě pro $\neg \tau(x)$ existuje sentence φ taková, že

$$T \vdash \varphi \leftrightarrow \neg \tau(\underline{\varphi}).$$

Kdyby formule $\tau(x)$ definovala pravdu v T, bylo by

$$T \vdash \varphi \leftrightarrow \neg \varphi$$
,

což v bezesporné teorii není možné.

Poznámka Důkaz je založen na paradoxu lháře, sentence φ by vyjadřovala "nejsem pravdivá v T".

Aritmetizace - predikát dokazatelnosti

- Konečná tabla lze rovněž vhodně zakódovat přirozenými čísly.
- Pro teorii T uvažme relaci $\operatorname{Prf}_T \subseteq \mathbb{N}^2$ definovanou $\operatorname{Prf}_T(x,y) \Leftrightarrow (\textit{tablo}) \ y \ \textit{je důkazem (sentence)} \ x \ \textit{v} \ \textit{T}.$
- Je-li T rekurzivně axiomatizovaná, je Prf_T rekurzivní relace.
- Je-li T navíc extenze Robinsonovy aritmetiky Q, dá se dokázat, že Prf_T je reprezentovatelná nějakou formulí $\operatorname{Prf}_T(x,y)$ tak, že pro každé $x,y\in\mathbb{N}$

$$Q \vdash Prf_T(\underline{x}, \underline{y}), \quad \textit{je-li} \quad \Prf_T(x, y), \\ Q \vdash \neg Prf_T(\underline{x}, \underline{y}), \quad \textit{jinak}.$$

- $Prf_T(x, y)$ vyjadřuje "y je důkaz x v T".
- $(\exists y) Prf_T(x, y)$ vyjadřuje "x je dokazatelná v T".
- Je-li $T \vdash \varphi$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\varphi, y)$ a navíc $T \vdash (\exists y) Prf_T(\varphi, y)$.

Důkaz 1. věty o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá $v \ \underline{\mathbb{N}}$ a nedokazatelná $v \ T$.

Důkaz Nechť $\varphi(x)$ je $\neg(\exists y)Prf_T(x,y)$, vyjadřuje "x není dokazatelná v T".

• Dle věty o pevném bodě pro $\varphi(x)$ existuje sentence ψ_T taková, že

$$T \vdash \psi_T \leftrightarrow \neg(\exists y) Prf_T(\underline{\psi_T}, y). \tag{2}$$

 ψ_T říká "nejsem dokazatelná v T". Přesněji, ψ_T je ekvivalentní sentenci vyjadřující, že ψ_T není dokazatelná v T. (Ekvivalence platí v $\underline{\mathbb{N}}$ i v T).

- Nejprve ukážeme, že ψ_T není dokazatelná v T. Kdyby $T \vdash \psi_T$, tj. ψ_T je lživá v $\underline{\mathbb{N}}$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\psi_T}, y)$ a navíc $T \vdash (\exists y) Prf_T(\underline{\psi_T}, y)$. Tedy z (2) plyne $T \vdash \neg \psi_T$, což ale není možné, neboť T je bezesporná.
- Zbývá dokázat, že ψ_T je pravdivá v $\underline{\mathbb{N}}$. Kdyby ne, tj. $\underline{\mathbb{N}} \models \neg \psi_T$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\psi_T, y)$. Tedy $T \vdash \psi_T$, což jsme již dokázali, že neplatí.

Důsledky a zesílení 1. věty

Důsledek Je-li navíc $\underline{\mathbb{N}} \models T$, je teorie T nekompletní.

Důkaz Kdyby byla T kompletní, pak $T \vdash \neg \psi_T$ a tedy $\underline{\mathbb{N}} \models \neg \psi_T$, což je ve sporu s $\underline{\mathbb{N}} \models \psi_T$. \Box

Důsledek $Th(\underline{\mathbb{N}})$ není rekurzivně axiomatizovatelná.

 $D\mathring{u}kaz$ $\operatorname{Th}(\underline{\mathbb{N}})$ je bezesporná extenze Robinsonovy aritmetiky a má model $\underline{\mathbb{N}}$. Kdyby byla rekurzivně axiomatizovatelná, dle předchozího důsledku by byla nekompletní, ale $\operatorname{Th}(\mathbb{N})$ je kompletní. \square

Gödelovu 1. větu o neúplnosti lze následovně zesílit.

Věta (Rosser) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje nezávislá sentence. Tedy T je nekompletní.

Poznámka Tedy předpoklad, že $\underline{\mathbb{N}} \models T$, je v prvním důsledku nadbytečný.

Gödelova 2. věta o neúplnosti

Označme Con_T sentenci $\neg(\exists y)Prf_T(\underline{0=1},y)$. Platí $\underline{\mathbb{N}} \models Con_T \Leftrightarrow T \not\vdash 0 = \underline{1}$. Tedy Con_T vyjadřuje, že "T je bezesporná".

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Peanovy aritmetiky platí, že Con_T není dokazatelná v T.

Důkaz (náznak) Nechť ψ_T je Gödelova sentence "nejsem dokazatelná v T".

- V první části důkazu 1. věty o neúplnosti jsme ukázali, že "Je-li T bezesporná, pak ψ_T není dokazatelná v T." (3) Jinak vyjádřeno, platí $Con_T \to \psi_T$.
- Je-li T extenze Peanovy aritmetiky, důkaz tvrzení (3) lze formalizovat v rámci T. Tedy $T \vdash Con_T \rightarrow \psi_T$.
- Jelikož T je bezesporná dle předpokladu věty, podle (3) je T ∀ ψ_T.
- Z předchozích dvou bodů vyplývá, že $T \nvdash Con_T$.

Poznámka Taková teorie T tedy neumí dokázat vlastní bezespornost.

Důsledky 2. věty

Důsledek Existuje model \mathcal{A} Peanovy aritmetiky t.ž. $\mathcal{A} \models (\exists y) Prf_{PA}(\underline{0=1},y)$.

Poznámka A musí být nestandardní model PA, svědkem musí být nestandardní prvek (jiný než hodnoty numerálů).

Důsledek Existuje bezesporná rekurzivně axiomatizovaná extenze T Peanovy aritmetiky taková, že $T \vdash \neg Con_T$.

Důkaz Nechť $T = PA \cup \{\neg Con_{PA}\}$. Pak T je bezesporná, neboť $PA \not\vdash Con_{PA}$.

Navíc $T \vdash \neg Con_{PA}$, tj. T dokazuje spornost $PA \subseteq T$, tedy i $T \vdash \neg Con_T$.

Poznámka $\underline{\mathbb{N}}$ nemůže být modelem teorie T.

Důsledek Je-li teorie množin ZFC bezesporná, není Con_{ZFC} dokazatelná v ZFC.

Co bude u zkoušky?

Písemná část: 90 min, pro postup do ústní části aspoň 1/2 bodů. [vzor]

Ústní část: cca 20 min, obvykle v pořadí odevzdávání písemné části.

Co nebude v písemné části.

- Hilbertovský kalkul.
- LD a SLD rezoluce, SLD stromy (ani v ústní části).
- Programy v Prologu (ani v ústní části).
- (Ne)rozhodnutelnost a neúplnost.

Co bude v ústní části?

- (a) Definice, algoritmy či konstrukce, znění vět.
- (b) Důkaz zadané věty či tvrzení.

Poznámka Část (a) bude včetně nerozhodnutelnosti a neúplnosti.

Které důkazy se zkouší?

- Cantorova věta, Königovo lemma.
- Algoritmy pro 2-SAT a Horn-SAT (důkaz korektnosti).
- Tablo metoda ve VL: syst. tablo (dokončenost, kon. důkazu), korektnost, úplnost.
- Věta o kompaktnosti VL. Hilbertovský kalkul ve VL: korektnost.
- Rezoluce ve VL: korektnost, úplnost. LI-rezoluce (úplnost pro Horn. formule).
- Sémantika PL: věta o konstantách, vlastnosti otevřených teorií, věta o dedukci.
- Tablo metoda v PL: syst. tablo (dokon., kon. důkazu), význam axiomů rovnosti.
- Tablo metoda v PL: korektnost, kanonický model, úplnost. L.-S. věta.
- Věta o kompaktnosti PL a její důsledky. Hilbertovský kalkul v PL: korektnost.
- Extenze o definice, Skolemova věta, Herbrandova věta.
- Rezoluce v PL: korektnost, lift. lemma, úplnost. LI-rezoluce (úplnost pro Horn.).
- Elementární ekvivalence, důsledky L.-S. věty. Izomorfismus a sémantika.
- ω -kategoričnost, podmínky pro konečnou a otevřenou axiomatizovatelnost.
- Invariance definovatelných množin na automorfismy.