Análisis Funcional I

Tarea 2

Maite Fernández Unzueta. maite@cimat.mx Antonio Barragán Romero. antonio.barragan@cimat.mx

Problema 1

Dos espacios métricos sobre el mismo conjunto (M,d_1) y (M,d_2) se dice que son homeomorfos si la función identidad es bicontinua. En tal caso se dice que las métricas d_1 y d_2 son equivalentes.

- i) Prueba que si $\varphi : \mathbb{R} \to \mathbb{R}$ es un homeomorfismo, entonces la métrica en \mathbb{R} definida por $d'(x,y) := |\varphi(x) \varphi(y)|$ es equivalente a la métrica usual en \mathbb{R} .
- ii) Prueba que d' $(x,y) := \left\lceil \frac{x}{1+|x|} \frac{y}{1+|y|} \right\rceil$ determina una métrica equivalente a la métrica usual en \mathbb{R} .
- i) Demostración: Sea $I:(\mathbb{R},d')\to(\mathbb{R},|\cdot|)$ la función identidad, veamos que (\mathbb{R},d') y $(\mathbb{R},|\cdot|)$ son homeomorfos. Primero veamos que I_d es continua. Dado $x\in\mathbb{R}$ y $\varepsilon>0$
- ii) Demostración:

Problema 2

Considera dos métricas d_1 y d_2 en un espacio X tales que existen $\alpha>0$ y $\beta>0$ cumpliendo

$$\alpha d_1(x,y) \leqslant d_2(x,y) \leqslant \beta d_1(x,y).$$

- i) Prueba que d_1 y d_2 son equivalentes (según la definición en el ejercicio anterior).
- ii) Dada una métrica d_1 , prueba que $d_2(x,y):=d_1\frac{x,y}{1+d_1(x,y)}$ determina una métrica equivalente a d_1
- iii) Utiliza este ejemplo para probar que dos métricas pueden ser equivalentes sin que necesariamente existan α y β cumpliendo

SSS

Problema 3

Dado un espacio métrico (X,d) un conjunto $K\subset X$ se dice que es totalmente acotado si para cada $\varepsilon>0$ existen $x_1,...,x_n\in X$ tales que

$$K \subset \bigcup_{i=1}^{n} B(x_i, \varepsilon).$$

Prueba que las siguientes afirmaciones son equivalentes:

- i) K no es totalmente acotado en X,
- ii) Para algún $\delta > 0$ existe una sucesión $\{x_n\}_n \subset K$ tal que $d(x_i, x_j) > \delta$ para todo $i \neq j$.

Si X no es totalmente acotado existe $\delta > 0$ tal que no existe un conjunto finito de puntos $x_1, ..., x_n \in X$ tales que $K \not\subset \bigcup_{i=1}^n B(x_i, \delta)$. Es claro que K es no vació. Lo anterior nos dice que podemos escoger un punto $x_1 \in K$ tal que $\frac{K}{B(x_1, \delta)} \neq \emptyset$

Problema 4

Sea X un espacio métrico y $K \subset X$ un subconjunto. Prueba que son equivalentes:

- i) K es compacto.
- ii) Toda sucesión en K admite una subsucesión convergente cuyo limite está en K
- iii) K es totalmente acotado y completo.

Supongamos que K es compacto y sea $\{x_n\}\subset K$ una sucesión y consideremos $\{B(x_i,\frac{1}{i})\}$

Problema 5

Da un ejemplo de un espacio métrico que sea acotado pero no totalmente acotado.

Solución: En este caso consideremos un espacio métrico X infinito y consideremos la métrica discreta $d: X \times X \to X$,

$$d(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y. \end{cases}$$

Se puede ver que X es acotado pues podemos tomar cualquier punto $x \in X$ y se tiene que $X \subset B(x,2)$. Sin embargo para $\varepsilon < 1$ tenemos que $B(x,\varepsilon) = \{x\}$ para todo $x \in X$, por lo cual si queremos cubrir X, necesitamos una cantidad infinita de bolas.

Problema 6

Sea $f: X \to Y$ una función entre dos espacios métricos, X, Y. Prueba que si X es compacto y f es continua, entonces f es uniformemente continua.

Sea $\varepsilon > 0$, como f es continua para todo $x \in X$ existe $\delta_x > 0$ tal que $f(B(x, \delta_x)) \subset B(f(x), \varepsilon)$, luego, podemos notar que $\{B(x, \delta_x)\}$ es una cubierta abierta de X

Consideremos esta colección de bolas abiertas, dado que X es compacto tenemos $\{B(x,\delta_x)\}$ admite una sub-cubierta finita, es decir existen $x_1,...,x_n\in X$ y $\delta_1,...,\delta_n\in\mathbb{R}_+$ tal que

$$X \subset \cup B(x_i, \delta_i).$$

Sea $\delta=\min\{\delta_1,...,d_n\}$ y notemos que si $x,y\in X$ tales que $d(x,y)<\delta$ entonces Y consideremos la siguiente cubierta abierta de X $\{B(x,\delta)\}$ la cual admite sub-cubierta finita, pues X es compacto. Entonces