Q1. Naive Bayes: Pacman or Ghost?

You are standing by an exit as either Pacmen or ghosts come out of it. Every time someone comes out, you get two observations: a visual one and an auditory one, denoted by the random variables X_v and X_a , respectively. The visual observation informs you that the individual is either a Pacman $(X_v = 1)$ or a ghost $(X_v = 0)$. The auditory observation X_a is defined analogously. Your observations are a noisy measurement of the individual's true type, which is denoted by Y. After the individual comes out, you find out what they really are: either a Pacman (Y = 1) or a ghost (Y = 0). You have logged your observations and the true types of the first 20 individuals:

individual i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
first observation $X_v^{(i)}$																				
second observation $X_a^{(i)}$																				
individual's type $Y^{(i)}$	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0

The superscript (i) denotes that the datum is the ith one. Now, the individual with i = 20 comes out, and you want to predict the individual's type $Y^{(20)}$ given that you observed $X_v^{(20)} = 1$ and $X_a^{(20)} = 1$.

(a) Assume that the types are independent, and that the observations are independent conditioned on the type. You can model this using naïve Bayes, with $X_v^{(i)}$ and $X_a^{(i)}$ as the features and $Y^{(i)}$ as the labels. Assume the probability distributions take on the following form:

$$P(X_v^{(i)} = x_v | Y^{(i)} = y) = \begin{cases} p_v & \text{if } x_v = y \\ 1 - p_v & \text{if } x_v \neq y \end{cases}$$
$$P(X_a^{(i)} = x_a | Y^{(i)} = y) = \begin{cases} p_a & \text{if } x_a = y \\ 1 - p_a & \text{if } x_a \neq y \end{cases}$$
$$P(Y^{(i)} = 1) = q$$

for $p_v, p_a, q \in [0, 1]$ and $i \in \mathbb{N}$.

(i) What's the maximum likelihood estimate of p_v, p_a and q?

 $p_v = \underline{\hspace{1cm}} \qquad p_a = \underline{\hspace{1cm}} \qquad q = \underline{\hspace{1cm}}$

(ii) What is the probability that the next individual is Pacman given your observations? Express your answer in terms of the parameters p_v, p_a and q (you might not need all of them).

$$P(Y^{(20)} = 1|X_v^{(20)} = 1, X_a^{(20)} = 1) =$$

Now, assume that you are given additional information: you are told that the individuals are actually coming out of a bus that just arrived, and each bus carries $exactly\ 9$ individuals. Unlike before, the types of every 9 consecutive individuals are conditionally independent given the bus type, which is denoted by Z. Only after all of the 9 individuals have walked out, you find out the bus type: one that carries mostly Pacmans (Z=1) or one that carries mostly ghosts (Z=0). Thus, you only know the bus type in which the first 18 individuals came in:

individual i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
first observation $X_v^{(i)}$																				
second observation $X_a^{(i)}$	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
individual's type $Y^{(i)}$	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0
	ı									ı										
bus j									0									1		
bus type $Z^{(j)}$									0									1		

(b) You can model this using a variant of naïve bayes, where now 9 consecutive labels $Y^{(i)}, \ldots, Y^{(i+8)}$ are conditionally independent given the bus type $Z^{(j)}$, for bus j and individual i = 9j. Assume the probability distributions take on the following form:

$$P(X_v^{(i)} = x_v | Y^{(i)} = y) = \begin{cases} p_v & \text{if } x_v = y\\ 1 - p_v & \text{if } x_v \neq y \end{cases}$$

$$P(X_a^{(i)} = x_a | Y^{(i)} = y) = \begin{cases} p_a & \text{if } x_a = y\\ 1 - p_a & \text{if } x_a \neq y \end{cases}$$

$$P(Y^{(i)} = 1 | Z^{(j)} = z) = \begin{cases} q_0 & \text{if } z = 0\\ q_1 & \text{if } z = 1 \end{cases}$$

$$P(Z^{(j)} = 1) = r$$

for $p, q_0, q_1, r \in [0, 1]$ and $i, j \in \mathbb{N}$.

(i) What's the maximum likelihood estimate of q_0, q_1 and r?

$$q_0 = \underline{\hspace{1cm}} \qquad q_1 = \underline{\hspace{1cm}} \qquad r = \underline{\hspace{1cm}}$$

(ii) Compute the following joint probability. Simplify your answer as much as possible and express it in terms of the parameters p_v , p_a , q_0 , q_1 and r (you might not need all of them).

$$P(Y^{(20)} = 1, X_v^{(20)} = 1, X_a^{(20)} = 1, Y^{(19)} = 1, Y^{(18)} = 1) =$$

Q2. Neural Network Data Sufficiency

The next few problems use the below neural network as a reference. Neurons h_{1-3} and j_{1-2} all use ReLU activation functions. Neuron y uses the identity activation function: f(x) = x. In the questions below, let $w_{a,b}$ denote the weight that connects neurons a and b. Also, let o_a denote the value that neuron a outputs to its next layer.

Given this network, in the following few problems, you have to decide whether the data given are sufficient for answering the question.

- (a) Given the above neural network, what is the value of o_y ?
 - Data item 1: the values of all weights in the network and the values o_{h_1} , o_{h_2} , o_{h_3}

Data item 2: the values of all weights in the network and the values o_{j_1} , o_{j_2}

- O Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
- Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
- O Both statements taken together are sufficient, but neither data item alone is sufficient.
- C Each data item alone is sufficient to answer the question.
- O Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.
- (b) Given the above neural network, what is the value of o_{h_1} ?
 - Data item 1: the neuron input values, i.e., o_{x_1} through o_{x_4}

Data item 2: the values o_{i_1} , o_{i_2}

- O Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
- O Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
- O Both statements taken together are sufficient, but neither data item alone is sufficient.
- O Each data item alone is sufficient to answer the question.
- Statements (1) and (2) together are not sufficient, and additional data is needed to answer the question.
- (c) Given the above neural network, what is the value of o_{j_1} ?
 - Data item 1: the values of all weights connecting neurons h_1 , h_2 , h_3 to j_1 , j_2

Data item 2: the values o_{h_1} , o_{h_2} , o_{h_3}

- O Data item (1) alone is sufficient, but data item (2) alone is not sufficient to answer the question.
- O Data item (2) alone is sufficient, but data item (1) alone is not sufficient to answer the question.
- O Both statements taken together are sufficient, but neither data item alone is sufficient.

needed to answer the
$\text{ough } o_{x_4}$
answer the question. answer the question. sufficient. s needed to answer the
answer the question. answer the question. sufficient. s needed to answer the
i.e., o_{x_1} through o_{x_4}
answer the question. answer the question. sufficient. s needed to answer the
in si in in