Monetary Policy Implications of State-Dependent Prices and Wages

James Costain*, Anton Nakov*, Borja Petit†

*ECB and Banco de España, *ECB and CEPR, †CEMFI

The views expressed here are personal and do not necessarily coincide with official ECB, Eurosystem, or Banco de España views.

Frankfurt, October 2019

Motivation

- Nominal rigidity is a key feature of most monetary models
 - ► Standard time-dependent models: Calvo '83, Rotemberg '82, Taylor '79
- Golosov-Lucas (2007) **state dependent (SD)** model, based on **menu costs**, implies **monetary shocks are almost neutral**
 - ▶ Due to "selection": the most misaligned prices get reoptimized, so aggregate price level is more flexible than a Calvo model implies

Motivation

- Nominal rigidity is a key feature of most monetary models
 - Standard time-dependent models: Calvo '83, Rotemberg '82, Taylor '79
- Golosov-Lucas (2007) **state dependent (SD)** model, based on **menu costs**, implies **monetary shocks are almost neutral**
 - Due to "selection": the most misaligned prices get reoptimized, so aggregate price level is more flexible than a Calvo model implies
- But newer SD pricing models that fit microdata better imply larger real effects of money shocks, closer to Calvo
 - Weaker selection effect improves micro fit and amplifies real effects:
 Midrigan '11, Alvarez et al. '11, Dotsey et al. '15, Costain/Nakov ('11/'18)

Motivation

- Nominal rigidity is a key feature of most monetary models
 - Standard time-dependent models: Calvo '83, Rotemberg '82, Taylor '79
- Golosov-Lucas (2007) **state dependent (SD)** model, based on **menu costs**, implies **monetary shocks are almost neutral**
 - Due to "selection": the most misaligned prices get reoptimized, so aggregate price level is more flexible than a Calvo model implies
- But newer SD pricing models that fit microdata better imply larger real effects of money shocks, closer to Calvo
 - Weaker selection effect improves micro fit and amplifies real effects:
 Midrigan '11, Alvarez et al. '11, Dotsey et al. '15, Costain/Nakov ('11/'18)
- But all this literature assumes price stickiness is the only friction
 - Unlike applied DSGEs!!
 - How important is price stickiness relative to other frictions?
 - ▶ How does price stickiness interact with other frictions?

This paper

- Study state dependent prices and wages simultaneously
- Nominal rigidities following "Logit Price Dynamics" (Costain/Nakov, 2018)
 - Main assumption: precise decisions are costly
- Game theoretic approach: "control costs"
 - Postulate a cost function for precision
 - ► Implies mistakes occur in equilibrium
 - ▶ If precision is measured by entropy, choices are distributed as a logit
- Market structure following Erceg/Henderson/Levin (2000)
 - Firms are monopolistic suppliers of goods, s.t. Calvo friction
 - Workers are monopolistic suppliers of labor, s.t. Calvo friction
- This paper: Erceg/Henderson/Levin (2000) meets Costain/Nakov (2018)

This paper

- Study state dependent prices and wages simultaneously
- Nominal rigidities following "Logit Price Dynamics" (Costain-Nakov, 2018)
 - Main assumption: precise decisions are costly
- Game theoretic approach: "control costs"
 - Postulate a cost function for precision
 - Implies mistakes occur in equilibrium
 - ▶ If precision is measured by entropy, choices are distributed as a logit
- Market structure following Erceg, Henderson, and Levin (2000)
 - ► Firms are monopolistic suppliers of goods, s.t. Calvo friction control costs
 - Workers are monopolistic suppliers of labor, s.t. Calvo friction control costs
 - ► And allow for idiosyncratic shocks, so we can calibrate to microdata
- This paper: Erceg-Henderson-Levin (2000) meets Costain-Nakov (2018)

Why control costs?

- Barro/Mankiw menu costs (MCs): simple but counterfactual
 - Micro: MCs imply no small adjustments (Klenow/Kryvstov '08)
 - Micro: MCs imply hazards increase with duration (Klenow/Malin '10)
 - Micro: MCs imply std deviation decreases with inflation (Costain/Nakov '11)
 - ► Macro: MCs imply near-neutrality of money (Golosov/Lucas '07)
 - Case studies: costs of nominal adjustment relate mostly to decisions and negotiations (Zbaracki et al. '04)

5 / 62

Why control costs?

- Barro/Mankiw menu costs (MCs): simple but counterfactual
 - Micro: MCs imply no small adjustments (Klenow/Kryvstov '08)
 - Micro: MCs imply hazards increase with duration (Klenow/Malin '10)
 - Micro: MCs imply std deviation decreases with inflation (Costain/Nakov '11)
 - Macro: MCs imply near-neutrality of money (Golosov/Lucas '07)
 - Case studies: costs of nominal adjustment relate mostly to decisions and negotiations (Zbaracki et al. '04)
- Representative agent macro: **ignore errors**
 - Study aggregates only, assume errors cancel
- Heterogeneous agent macro: model dynamics of the distribution
 - Fit mean, variance, skewness, kurtosis...
 - But therefore errors will not cancel!! If agents make mistakes, model without mistakes gives biased parameter estimates

Why control costs?

- Barro/Mankiw menu costs (MCs): simple but counterfactual
 - Micro: MCs imply no small adjustments (Klenow/Kryvstov '08)
 - Micro: MCs imply hazards increase with duration (Klenow/Malin '10)
 - ▶ Micro: MCs imply std deviation decreases with inflation (Costain/Nakov '11)
 - Macro: MCs imply near-neutrality of money (Golosov/Lucas '07)
 - Case studies: costs of nominal adjustment relate mostly to decisions and negotiations (Zbaracki et al. '04)
- Representative agent macro: **ignore errors**
 - Study aggregates only, assume errors cancel
- Heterogeneous agent macro: model dynamics of the distribution
 - Fit mean, variance, skewness, kurtosis...
 - But therefore errors will not cancel!! If agents make mistakes, model without mistakes gives biased parameter estimates
- **Control costs**: simple, structural model of costly, error-prone choice Findings from Costain/Nakov (2018):
 - Errors in size of adjustment help explain microdata patterns
 - ► Errors in *timing of adjustment* help generate monetary non-neutrality

Frankfurt, October 2019

Some related literature

- Interaction of sticky prices and wages
 - ➤ Time-dependent: Erceg/Henderson/Levin '00, Huang/Liu '02, Christiano/Eichenbaum/Evans '05
 - State-dependent: Takahashi '17.
 - * No idiosyncratic shocks! Hence no attempt to match microdata!

Some related literature

- Interaction of sticky prices and wages
 - Time-dependent: Erceg/Henderson/Levin '00, Huang/Liu '02, Christiano/Eichenbaum/Evans '05
 - State-dependent: Takahashi '17.
 - ⋆ No idiosyncratic shocks! Hence no attempt to match microdata!
- State-dependent prices meet microdata
 - Golosov/Lucas '07, Klenow/Malin '10, Nakamura/Steinsson '13, PRISMA . . .
- Microdata on wage adjustment
 - IWFP (Dickens etal '07), Baratierri/Basu/Gottschalk '11, Sigurdsson/Sigurdsdottir '16, Grigsby/Hurst/Yildirmaz '18

6 / 62

Some related literature

- Interaction of sticky prices and wages
 - Time-dependent: Erceg/Henderson/Levin '00, Huang/Liu '02, Christiano/Eichenbaum/Evans '05
 - State-dependent: Takahashi '17.
 - ★ No idiosyncratic shocks! Hence no attempt to match microdata!

• State-dependent prices meet microdata

- Golosov/Lucas '07, Klenow/Malin '10, Nakamura/Steinsson '13, PRISMA . . .
- Microdata on wage adjustment
 - IWFP (Dickens etal '07), Baratierri/Basu/Gottschalk '11, Sigurdsson/Sigurdsdottir '16, Grigsby/Hurst/Yildirmaz '18

Macro-labor facts

- Phillips curve slope: Benigno/Ricci '11, Lindé/Trabandt '18, Barnichon/Meesters '18
- ▶ Real wage cyclicality is insignificant (Christiano/Eichenbaum/Trabandt '16)
- ► Labor wedge is countercyclical (Shimer '07, Gali/Gertler/Lopez-S '07)
- ▶ **Price markup** cyclicality is controversial (Nekarda/Ramey '13)
- ► Wage markup is countercyclical (Gali/Gertler/Lopez-S '07)

Preview of results

- Estimated model implies significant, quantitatively reasonable real effects of monetary shocks
- Since wages are a large cost component for firms, wage rigidity plays a larger role in generating monetary nonneutrality than price rigidity does
- Since it ignores "selection effects", Calvo model exaggerates persistence of real effects, compared with state-dependent model
- When trend inflation is low, nominal adjustment is less frequent. Therefore
 inflation reacts less to monetary shocks, making the Phillips curve flatter.

MODEL

Model: monopolistic firms

Profits:

- Firm i's demand: $Y_{it} = Y_t P_t^{\epsilon} P_{it}^{-\epsilon}$
- Firm i's output: $Y_{it} = A_{it}N_{it}$, where $\log A_{it}$ is AR(1)
- ▶ Profits: $U_t(P_{it}, A_{it}) \equiv P_{it}Y_{it} W_tN_{it}$

Control variables:

- Firm adjusts its price P_{it}
- Current P_{it} remains in effect until firm sets a new price P'
- Output and labor are demand driven.

• Frictions:

- Adjustment itself is costless (zero menu costs)
- ▶ But choosing is costly, and greater precision requires more decision time

Costs of decision-making: price choice

- Think of decisions as probability distributions over alternatives.
- Assume precision is costly.
- Let $\pi(p)$ be a firm's chosen distribution over its log real price p.

Assumption 1. The time cost τ of decision π is:

$$\kappa_\pi \mathcal{D}(\pi||\eta) \equiv \kappa_\pi \int \pi(p) \ln \left(rac{\pi(p)}{\eta(p)}
ight) dp$$

where $\eta(p)$ is an exogenous "default" decision distribution.

Distribution of price adjustments

Costs of decision-making: timing choice

• Let λ be the probability of making a decision in the current period.

Assumption 2. The time cost μ of choosing whether or not to make a decision is:

$$\kappa_{\lambda}\mathcal{D}\left((\lambda,1-\lambda)||(\bar{\lambda},1-\bar{\lambda})\right) \equiv \kappa_{\lambda}\left(\lambda\log\frac{\lambda}{\bar{\lambda}} + (1-\lambda)\log\frac{1-\lambda}{1-\bar{\lambda}}\right)$$

where $\bar{\lambda}$ is an exogenous "default" probability.

Reset probability

Distance from optimal price

Bellman equations (real)

• Real value of producing at current firm-specific state (p, a):

$$egin{aligned} v_t(p,a) &= u_t(p,a) \ &+ \max_{\lambda} \left[(1-\lambda) v_t^e(p,a) + \lambda ilde{v}_t(a) - w_t \kappa_{\lambda} \mathcal{D} \left((\lambda,1-\lambda) || (ar{\lambda},1-ar{\lambda})
ight)
ight] \end{aligned}$$

▶ Where $\tilde{v}_t(a)$ is the firm's expected value, conditional on adjustment:

$$egin{aligned} ilde{v}_t(a) &= \max_{\pi(ilde{
ho})} \int \pi(ilde{
ho}) v_t^e(ilde{
ho}, a) d ilde{
ho} - w_t \kappa_\pi \mathcal{D}(\pi||\eta) \ ext{s.t.} &\int \pi(ilde{
ho}) d ilde{
ho} = 1 \end{aligned}$$

▶ And $v_t^e(p, a)$ is the expected value, conditional on unchanged nominal price:

$$v_t^e(p,a) = E_t \left\{ q_{t,t+1} v_{t+1}(p-i_{t+1},a') | a \right\}$$

Distribution of actions

- Both price distribution and probability of decision are weighted logits.
 - ► Stahl (1990), Mattsson/Weibull (2002), Matejka/McKay (2015)
- Distribution of prices, conditional on decision:

$$\pi_t(p|a) = \frac{\eta(p) \exp\left(\frac{v_t^e(p,a)}{\kappa_\pi w_t}\right)}{\int \eta(\tilde{p}) \exp\left(\frac{v_t^e(\tilde{p},a)}{\kappa w_t}\right) d\tilde{p}}$$

• Probability of making a decision:

$$\lambda_t(p, a) = \frac{\bar{\lambda}}{\bar{\lambda} + (1 - \bar{\lambda}) \exp\left(\frac{-d_t(p, a)}{\kappa_{\lambda} w_t}\right)},$$

• Where $d_t(p, a)$ is the real loss from inaction:

$$d_t(p,a) = \tilde{v}_t(a) - v_t^e(p,a)$$

Adding wage stickiness in an analogous way

- Next, do wage stickiness too
 - ► Model wages and prices analogously, as in Erceg/Henderson/Levin (2000)
 - Each worker sells a distinct type of labor, as a monopolistic competitor, to many firms
 - So we are not considering frictions in labor mobility
 - ▶ No search and matching, no unemployment
- Study effects of monetary shocks in a control cost model, assuming:
 - Sticky prices and wages
 - Sticky prices, flexible wages
 - Flexible prices, sticky wages
 - Flexible prices and wages
- And compare results to Calvo model

Model: monopolistic supply of labor

• Firm j's labor input is an aggregate of differentiated labor types i:

$$N_{jt} = \left\{ \int_0^1 N_{ijt}^{\frac{\epsilon_n - 1}{\epsilon_n}} di \right\}^{\frac{\epsilon_n}{\epsilon_n - 1}}$$

• Worker *i*'s effective labor N_{ijt} is the product of labor time H_{ijt} and worker-specific productivity Z_{it} :

$$N_{ijt} = Z_{it}H_{ijt}$$
, where $\log Z_{it}$ is AR(1)

- Let W_{it} be worker i's wage per unit of time,
- The aggregate wage index W_t is:

$$W_t = \left\{ \int_0^1 \left(\frac{W_{it}}{Z_{it}} \right)^{1-\epsilon_n} di \right\}^{\frac{1}{1-\epsilon_n}}.$$

Model: monopolistic supply of labor

• Demand for labor time of worker i is:

$$H_{it} = H_t(W_{it}, Z_{it}) \equiv Z_{it}^{\epsilon_n - 1} N_t W_t^{\epsilon_n} W_{it}^{-\epsilon_n}.$$

Households' utility is:

$$u(C_t) - X(H_t + \mu_t^w + \tau_t^w) + \nu(M_t/P_t)$$

where μ_t^w and τ_t^w are time devoted to wage decisions

• Then the marginal value of time is

$$\xi_t \equiv \frac{P_t}{u'(C_t)} X'(H_t + \mu_t^w + \tau_t^w)$$

Costs of decision-making

- Let $\pi^w(w)$ be a worker's chosen distribution over its log real wage w.
- ullet Let ρ be the probability of making a decision in the current period.

Assumption 3. The time cost $\tau^{\mathbf{w}}$ of decision $\pi^{\mathbf{w}}$ is:

$$\kappa_w \mathcal{D}(\pi^w || \eta^w) \equiv \kappa_w \int \pi^w(w) \ln \left(\frac{\pi^w(w)}{\eta^w(w)} \right) dw$$

where $\eta^{w}(w)$ is an exogenous "default" decision.

Assumption 4. The time cost μ^{w} of choosing whether to make a decision is:

$$\kappa_w \mathcal{D}\left((\rho, 1-\rho) || (\bar{\rho}, 1-\bar{\rho})\right) \equiv \kappa_w \left(\rho \log \frac{\rho}{\bar{\rho}} + (1-\rho) \log \frac{1-\rho}{1-\bar{\rho}}\right)$$

where $\bar{\rho}$ is an exogenous "default" probability.

Bellman equation (real)

$$\begin{split} I_t(w,z) &= \max_{\tau^w,\mu^w,\rho,\pi^w(\tilde{w})} e^w h_t(w,z) - \frac{X(h_t(w,z) + \tau^w + \mu^w)}{u'(C_t)} \\ &+ (1-\rho)I_t^e(w,z) + \rho \int \pi^w(\tilde{w})I_t^e(\tilde{w},z)d\tilde{w} \end{split}$$
 s.t.
$$1 &= \int \pi^w(\tilde{w})d\tilde{w},$$

$$\tau^w &= \rho \kappa_w \int \pi^w(\tilde{w}) \ln \left(\frac{\pi^w(\tilde{w})}{\eta^w(\tilde{w})}\right) d\tilde{w},$$

$$\mu^w &= \kappa_\rho \left[\rho \ln \left(\frac{\rho}{\bar{\rho}}\right) + (1-\rho) \ln \left(\frac{1-\rho}{1-\bar{\rho}}\right)\right],$$

$$I_t^e(w,z) &= E_t \left\{q_{t,t+1}I_{t+1}(w-i_{t+1},z')|z\right\}. \end{split}$$

Distribution of actions

- Both wage distribution and probability of decision are weighted logits:
- Distribution of wages, conditional on decision:

$$\pi_t^w(w|z) = \frac{\eta^w(w) \exp\left(\frac{I_t^e(w,z)}{\kappa_w \xi_t}\right)}{\int \eta^w(w') \exp\left(\frac{I_t^e(w',z)}{\kappa_w \xi_t}\right) dw'}$$

Probability of making a decision:

$$\rho_t(w,z) = \frac{\bar{\rho}}{\bar{\rho} + (1 - \bar{\rho}) \exp\left(\frac{-d_t^w(w,z)}{\kappa_{\rho}\xi_t}\right)},$$

• Where $d_t^w(w, z)$ is the real loss from inaction:

$$d_t^w(w,z) = \tilde{l}_t(z) - l_t^e(w,z)$$

Computing general equilibrium

- This is a heterogeneous agent model with two distributions:
 - Distribution of prices and productivities across firms
 - Distribution of wages and productivities across firms
 - ► (Those are different aspects of heterogeneity from most "HANK" models.)
- Compute general equilibrium, on finite grids, following Reiter (2009).
- Step 1. Compute steady-state of heterogeneous agent economy, without aggregate shocks.
- Step 2. Linearize the aggregate dynamics to simulate impulse responses.

Computing general equilibrium

- This is a heterogeneous agent model with **two distributions**:
 - Distribution of prices and productivities across firms
 - Distribution of wages and productivities across firms
 - ► (Those are different aspects of heterogeneity from most "HANK" models.)
- Compute general equilibrium, on finite grids, following Reiter (2009).
- Step 1. Compute steady-state of heterogeneous agent economy, without aggregate shocks.
 - ► Guess C, N, w
 - Solve for value functions by backwards induction
 - ► Solve for cross-sectional distributions by simulating forward
 - Check market clearing, update guess.
- Step 2. Linearize the aggregate dynamics to simulate impulse responses.
 - Linearize Bellman equation and distributional dynamics.
 - ★ That's two linear equations at each grid point!!
 - ▶ Solve the rational expectations dynamics using Klein's (2000) algorithm.

RESULTS:

LINEAR LABOR DISUTILITY

$$X(h) = \chi h$$

Simulations and data

- We compare six calibrations (initial parameters from Costain/Nakov '18)
 - ▶ V1: Benchmark. Sticky prices and wages: $\kappa_{\pi} = \kappa_{\lambda} = \kappa_{w} = \kappa_{\rho} = 0.017$
 - ▶ V2: Semi-flexible prices and sticky wages: $\kappa_{\pi} = \kappa_{\lambda} = 0.0017$
 - ▶ V3: Flexible prices and sticky wages: $\kappa_{\pi} = \kappa_{\lambda} = 0.00017$
 - ▶ V4: Sticky prices and semi-flexible wages: $\kappa_w = \kappa_\rho = 0.0017$
 - ▶ V5: Sticky prices and flexible wages: $\kappa_w = \kappa_\rho = 0.00017$
 - ▶ V6: Flexible prices and flexible wages: $\kappa_{\pi} = \kappa_{\lambda} = \kappa_{w} = \kappa_{\rho} = 0.00017$
- Default hazard rates are $\bar{\lambda}=\bar{\rho}=0.2$ in all cases
- Also compare each version to a Calvo model with sticky prices and wages, imposing the same frequency of adjustment.

Simulations and data

- We compare six calibrations (initial parameters from Costain/Nakov '18)
 - ▶ V1: Benchmark. Sticky prices and wages: $\kappa_{\pi} = \kappa_{\lambda} = \kappa_{w} = \kappa_{\rho} = 0.017$
 - ▶ V2: Semi-flexible prices and sticky wages: $\kappa_{\pi} = \kappa_{\lambda} = 0.0017$
 - ▶ V3: Flexible prices and sticky wages: $\kappa_{\pi} = \kappa_{\lambda} = 0.00017$
 - ▶ V4: Sticky prices and semi-flexible wages: $\kappa_w = \kappa_\rho = 0.0017$
 - ▶ V5: Sticky prices and flexible wages: $\kappa_w = \kappa_\rho = 0.00017$
 - ▶ V6: Flexible prices and flexible wages: $\kappa_{\pi} = \kappa_{\lambda} = \kappa_{w} = \kappa_{\rho} = 0.00017$
- Default hazard rates are $\bar{\lambda}=\bar{\rho}=0.2$ in all cases
- Also compare each version to a Calvo model with sticky prices and wages, imposing the same frequency of adjustment.
- Price data: Cross-sectional distribution of retail price adjustments (after excluding sales) from Dominick's dataset
- Wage data: Cross-sectional distribution of annual wage adjustments from IWFP dataset

Nonzero price and wage changes: varying decision cost

Price probabilities and adjustment rates: firms (V1)

Wage probabilities and adjustment rates: workers (V1)

Steady-state behavior and decision costs

	V1 Both sticky	V3 Fl- <i>P</i> , St- <i>W</i>	V5 St- <i>P</i> , Fl- <i>W</i>	V6 Both flex.
Frequency and size of adjustments (%):				
Price adj. freq.	10.1	54.4	10.4	54.4
Wage adj. freq.	6.02	6.04	7.28	6.95
$Abs(\Delta \ln p)$	8.57	4.76	8.57	4.76
$Abs(\Delta \ln w)$	6.14	6.16	1.98	2.29
Costs as % of revenues:				
Price setting costs	0.43	0.01	0.43	0.01
Price timing costs	0.34	0.01	0.34	0.01
Loss w.r.t. full rationality	1.67	0.05	1.67	0.05
Wage setting costs	0.33	0.34	0.01	0.00
Wage timing costs	0.38	0.39	0.01	0.01
Loss w.r.t. full rationality	0.92	0.94	0.01	0.01

Note: Firms' costs stated as percentage of average revenue.

Workers' costs stated as percentage of average labor income.

	V1 Both sticky	V3 Fl- <i>P</i> , St- <i>W</i>	V5 St- <i>P</i> , Fl- <i>W</i>	V6 Both flex.
Frequency and size of adjustme	<u> </u>	11-7 , 5t-77	31-7 , 11-77	DOLII IIEX.
Price adj. freq.	10.1	54.4	10.4	54.4
Wage adj. freq.	6.02	6.04	7.28	6.95
$Abs(\Delta \ln p)$	8.57	4.76	8.57	4.76
$Abs(\Delta \ln w)$	6.14	6.16	1.98	2.29
Costs as % of revenues:				
Price setting costs	0.43	0.01	0.43	0.01
Price timing costs	0.34	0.01	0.34	0.01
Loss w.r.t. full rationality	1.67	0.05	1.67	0.05
Wage setting costs	0.33	0.34	0.01	0.00
Wage timing costs	0.38	0.39	0.01	0.01
Loss w.r.t. full rationality	0.92	0.94	0.01	0.01

Note: Firms' costs stated as percentage of average revenue.

	V1 Both sticky	V3 Fl- <i>P</i> , St- <i>W</i>	V5 St- <i>P</i> , Fl- <i>W</i>	V6 Both flex.
Frequency and size of adjustme	<u> </u>	,		
Price adj. freq.	10.1	54.4	10.4	54.4
Wage adj. freq.	6.02	6.04	7.28	6.95
$Abs(\Delta In p)$	8.57	4.76	8.57	4.76
$Abs(\Delta ln w)$	6.14	6.16	1.98	2.29
Costs as % of revenues:				
Price setting costs	0.43	0.01	0.43	0.01
Price timing costs	0.34	0.01	0.34	0.01
Loss w.r.t. full rationality	1.67	0.05	1.67	0.05
Wage setting costs	0.33	0.34	0.01	0.00
Wage timing costs	0.38	0.39	0.01	0.01
Loss w.r.t. full rationality	0.92	0.94	0.01	0.01

Note: Firms' costs stated as percentage of average revenue.

	V1	V3	V5	V6
	Both sticky	Fl-P, St-W	St-P, Fl-W	Both flex.
Frequency and size of adjustme	ents (%):			
Price adj. freq.	10.1	54.4	10.4	54.4
Wage adj. freq.	6.02	6.04	7.28	6.95
$Abs(\Delta In p)$	8.57	4.76	8.57	4.76
$Abs(\Delta In w)$	6.14	6.16	1.98	2.29
Costs as % of revenues:				
Price setting costs	0.43	0.01	0.43	0.01
Price timing costs	0.34	0.01	0.34	0.01
Loss w.r.t. full rationality	1.67	0.05	1.67	0.05
Wage setting costs	0.33	0.34	0.01	0.00
Wage timing costs	0.38	0.39	0.01	0.01
Loss w.r.t. full rationality	0.92	0.94	0.01	0.01

Note: Firms' costs stated as percentage of average revenue.

	V1 Both sticky	V3 Fl- <i>P</i> , St- <i>W</i>	V5 St- <i>P</i> , FI- <i>W</i>	V6 Both flex.
Frequency and size of adjustme		117, 30 77	307,1177	Dotti fiex.
Price adj. freq.	10.1	54.4	10.4	54.4
Wage adj. freq.	6.02	6.04	7.28	6.95
$Abs(\Delta In p)$	8.57	4.76	8.57	4.76
$Abs(\Delta \ln w)$	6.14	6.16	1.98	2.29
Costs as % of revenues:				
Price setting costs	0.43	0.01	0.43	0.01
Price timing costs	0.34	0.01	0.34	0.01
Loss w.r.t. full rationality	1.67	0.05	1.67	0.05
Wage setting costs	0.33	0.34	0.01	0.00
Wage timing costs	0.38	0.39	0.01	0.01
Loss w.r.t. full rationality	0.92	0.94	0.01	0.01

Note: Firms' costs stated as percentage of average revenue.

Money supply shock: effects of price and wage stickiness

V1: sticky, V3: Pflex/Wsticky, V5: Psticky/Wflex, V6: flexible

Money supply shock: effects of price and wage stickiness

V1: sticky, V3: Pflex/Wsticky, V5: Psticky/Wflex, V6: flexible

Notice: consumption response almost as large in V3 as in V1!

Money supply shock: effects of stickiness (Calvo model)

V1C: sticky, V3C: Pflex/Wsticky, V5C: Psticky/Wflex, V6C: flexible

Main findings: linear case

- Decreased decision costs for P or W have the expected effects:
 - Make adjustment more frequent
 - Make average adjustment smaller
 - Decrease time devoted to the decision
- Linear disutility of labor supply implies constant desired wage, so we really can't compare this version to wage adjustment data
- Sticky wages generate more nonneutrality than sticky prices
 - ▶ If W is flexible, monetary stimulus is offset by $\frac{W}{P}$ ↑
 - Sticky wages + flexible prices generates almost as much persistence as a model where both are sticky
- Control costs on *P* and *W* recovers **roughly half of the persistence** of real effects observed in an analogous Calvo model

RESULTS:

CONVEX LABOR DISUTILITY

$$X(h) = \frac{\chi}{1+\zeta}h^{1+\zeta}, \quad \zeta = 0.5$$

Nonlinear model ($\zeta = 0.5$): parameter estimates

Estimation criterion:

$$\begin{split} \text{distance } &= \sqrt{\#_{Dom}} \, ||\lambda_{model} - \lambda_{Dom}|| + ||\vec{h}_{model}^w - \vec{h}_{Dom}|| \\ &+ \sqrt{\#_{IWFP}} \, ||\rho_{model} - \rho_{IWFP}|| + ||\vec{h}_{model}^w - \vec{h}_{IWFP}^w||, \end{split}$$

Estimation results:

	Prices	Wages
Parameters		
Default hazard	$ar{\lambda}=0.2707$	$ar{ ho}=0.2317$
Decision noise	$\kappa_\pi = \kappa_\lambda = 0.0177$	$\kappa_{\sf w}=\kappa_{ ho}=0.0275$
Productivity process	$ ho_{\sf a} = 0.644 \sigma_{\sf a} = 0.0703$	$ \rho_z = 0.970 \sigma_z = 0.0574 $

Nonlinear model ($\zeta = 0.5$): parameter estimates

Estimation criterion:

$$\begin{split} \text{distance } &= \sqrt{\#_{Dom}} \, ||\lambda_{model} - \lambda_{Dom}|| + ||\vec{h}_{model}^w - \vec{h}_{Dom}|| \\ &+ \sqrt{\#_{IWFP}} \, ||\rho_{model} - \rho_{IWFP}|| + ||\vec{h}_{model}^w - \vec{h}_{IWFP}^w||, \end{split}$$

Estimation results:

	Prices	Wages	
Parameters			
Default hazard	$ar{\lambda}=0.2707$	$ar{ ho}=$ 0.2317	
Decision noise	$\kappa_\pi = \kappa_\lambda = 0.0177$	$\kappa_{\sf w}=\kappa_{ ho}=0.0275$	
Productivity process	$ ho_{\sf a} = 0.644 \sigma_{\sf a} = 0.0703$	$ \rho_z = 0.970 \sigma_z = 0.0574 $	

Simulation exercises:

• V1N: baseline estimate (sticky)

• V2N, V3N: more price flexibility

• V4N, V4N: more wage flexibility

V6N: both flexible

Nonzero price and wage changes: varying decision cost

Price probabilities and adjustment rates: firms (V1)

Wage probabilities and adjustment rates: workers (V1)

	V1N Both sticky	V3N FI- <i>P</i> , St- <i>W</i>	V5N St- <i>P</i> , Fl- <i>W</i>	V6N Both flex.
Frequency and size of adjustme	ents (%):			
Price adj. freq.	10.2	59.5	10.2	59.7
Wage adj. freq.	8.34	8.33	30.8	30.7
$Abs(\Delta In p)$	6.94	4.53	6.92	4.52
$Abs(\Delta \ln w)$	5.50	5.50	1.95	1.96
Costs as % of revenues:				
Price setting costs	0.50	0.07	0.49	0.07
Price timing costs	0.48	0.03	0.48	0.03
Loss w.r.t. full rationality	2.49	1.01	2.48	1.01
Wage setting costs	1.09	1.10	0.08	0.03
Wage timing costs	0.94	0.95	0.03	0.01
Loss w.r.t. full rationality	2.77	2.79	0.29	0.29

Note: Firms' costs stated as percentage of average revenue.

	V1N Both sticky	V3N FI- <i>P</i> , St- <i>W</i>	V5N St- <i>P</i> , Fl- <i>W</i>	V6N Both flex.
Frequency and size of adjustme	ents (%):			
Price adj. freq.	10.2	59.5	10.2	59.7
Wage adj. freq.	8.34	8.33	30.8	30.7
$Abs(\Delta In p)$	6.94	4.53	6.92	4.52
$Abs(\Delta \ln w)$	5.50	5.50	1.95	1.96
Costs as % of revenues:				
Price setting costs	0.50	0.07	0.49	0.07
Price timing costs	0.48	0.03	0.48	0.03
Loss w.r.t. full rationality	2.49	1.01	2.48	1.01
Wage setting costs	1.09	1.10	0.08	0.03
Wage timing costs	0.94	0.95	0.03	0.01
Loss w.r.t. full rationality	2.77	2.79	0.29	0.29

Note: Firms' costs stated as percentage of average revenue.

	V1N Both sticky	V3N FI- <i>P</i> , St- <i>W</i>	V5N St- <i>P</i> , Fl- <i>W</i>	V6N Both flex.
Frequency and size of adjustme	ents (%):			
Price adj. freq.	10.2	59.5	10.2	59.7
Wage adj. freq.	8.34	8.33	30.8	30.7
$Abs(\Delta In p)$	6.94	4.53	6.92	4.52
$Abs(\Delta \ln w)$	5.50	5.50	1.95	1.96
Costs as % of revenues:				
Price setting costs	0.50	0.07	0.49	0.07
Price timing costs	0.48	0.03	0.48	0.03
Loss w.r.t. full rationality	2.49	1.01	2.48	1.01
Wage setting costs	1.09	1.10	0.08	0.03
Wage timing costs	0.94	0.95	0.03	0.01
Loss w.r.t. full rationality	2.77	2.79	0.29	0.29

Note: Firms' costs stated as percentage of average revenue.

	V1N Both sticky	V3N FI- <i>P</i> , St- <i>W</i>	V5N St- <i>P</i> , Fl- <i>W</i>	V6N Both flex.
Frequency and size of adjustme	ents (%):			
Price adj. freq.	10.2	59.5	10.2	59.7
Wage adj. freq.	8.34	8.33	30.8	30.7
$Abs(\Delta In p)$	6.94	4.53	6.92	4.52
$Abs(\Delta \ln w)$	5.50	5.50	1.95	1.96
Costs as % of revenues:				
Price setting costs	0.50	0.07	0.49	0.07
Price timing costs	0.48	0.03	0.48	0.03
Loss w.r.t. full rationality	2.49	1.01	2.48	1.01
Wage setting costs	1.09	1.10	0.08	0.03
Wage timing costs	0.94	0.95	0.03	0.01
Loss w.r.t. full rationality	2.77	2.79	0.29	0.29

Note: Firms' costs stated as percentage of average revenue.

	V1N Both sticky	V3N FI- <i>P</i> , St- <i>W</i>	V5N St- <i>P</i> , Fl- <i>W</i>	V6N Both flex.
Frequency and size of adjustme	ents (%):			
Price adj. freq.	10.2	59.5	10.2	59.7
Wage adj. freq.	8.34	8.33	30.8	30.7
$Abs(\Delta In p)$	6.94	4.53	6.92	4.52
$Abs(\Delta \ln w)$	5.50	5.50	1.95	1.96
Costs as % of revenues:				
Price setting costs	0.50	0.07	0.49	0.07
Price timing costs	0.48	0.03	0.48	0.03
Loss w.r.t. full rationality	2.49	1.01	2.48	1.01
M/	1.00	1.10	0.00	0.00
Wage setting costs	1.09	1.10	0.08	0.03
Wage timing costs	0.94	0.95	0.03	0.01
Loss w.r.t. full rationality	2.77	2.79	0.29	0.29

Note: Firms' costs stated as percentage of average revenue.

Money supply shock: effects of price and wage stickiness

V1N: sticky, V3N: Pflex/Wsticky, V5N: Psticky/Wflex, V6N: flexible

Money supply shock: effects of price and wage stickiness

V1N: sticky, V3N: Pflex/Wsticky, V5N: Psticky/Wflex, V6N: flexible

Notice: consumption response almost as large in V3N as in V1N!

47 / 62

Money supply shock: effects of stickiness (Calvo model)

V1CN: sticky, V3CN: Pflex/Wsticky, V5CN: Psticky/Wflex, V6CN: flexible

Diminishing returns to monetary stimulus (tentative!)

49 / 62

Diminishing returns to monetary stimulus (tentative!)

- Diminishing returns: greater stimulus is less effective on the margin
- Cumulative consumption effect maximized by $\Delta \log M^s \approx 0.05!$

Money supply shock: effects of trend inflation

Money supply shock: effects of trend inflation

- Phillips curve slope = $\Delta \pi / \Delta \log H$ decreases as inflation declines!
- May be harder to hit inflation target, but money has stronger effects on real variables

Frankfurt, October 2019

	Annual trend inflation rate					
	-1%	0	1%	2%	5%	
Frequency and size of adjustments (%):						
Price adj. freq.	9.04	7.53	9.05	10.2	12.5	
Wage adj. freq.	7.28	6.95	7.53	8.34	10.8	
$Abs(\Delta In p)$	6.50	6.18	6.59	6.94	7.72	
$Abs(\Delta \ln w)$	4.91	4.93	5.20	5.50	6.27	
$Std(\Delta \ln p)$	8.65	8.54	8.80	8.96	9.39	
$Std(\Delta \ln w)$	6.77	6.82	6.82	6.74	6.55	
DUW LUW LOOK	, ,					
Phillips multipliers: inflation	on/employ	ment trad	eotts:			
Multiplier on impact	0.124	0.105	0.126	0.161	0.233	
Cumulative multiplier	0.172	0.147	0.195	0.254	0.394	
Note: "Phillips multipliers'	' are ratio	s of the c	hange in i	nflation to	,	

Note: "Phillips multipliers" are ratios of the change in inflation to the change in log employment caused by a money shock.

	Annual trend inflation rate						
	-1%	0	1%	2%	5%		
Frequency and size of adjustments (%):							
Price adj. freq.	9.04	7.53	9.05	10.2	12.5		
Wage adj. freq.	7.28	6.95	7.53	8.34	10.8		
$Abs(\Delta In p)$	6.50	6.18	6.59	6.94	7.72		
$Abs(\Delta \ln w)$	4.91	4.93	5.20	5.50	6.27		
$Std(\Delta \ln p)$	8.65	8.54	8.80	8.96	9.39		
$Std(\Delta \ln w)$	6.77	6.82	6.82	6.74	6.55		
Phillips multipliers: inflation/employment tradeoffs:							
Multiplier on impact	0.124	0.105	0.126	0.161	0.233		
Cumulative multiplier	0.172	0.147	0.195	0.254	0.394		
Note: "Phillips multipliers" are ratios of the change in inflation to							

the change in log employment caused by a money shock.

	Annual trend inflation rate						
	-1%	0	1%	2%	5%		
Frequency and size of adjustments (%):							
Price adj. freq.	9.04	7.53	9.05	10.2	12.5		
Wage adj. freq.	7.28	6.95	7.53	8.34	10.8		
$Abs(\Delta In p)$	6.50	6.18	6.59	6.94	7.72		
$Abs(\Delta \ln w)$	4.91	4.93	5.20	5.50	6.27		
$Std(\Delta \ln p)$	8.65	8.54	8.80	8.96	9.39		
$Std(\Delta \ln w)$	6.77	6.82	6.82	6.74	6.55		
Phillips multipliers: inflation/employment tradeoffs:							
Multiplier on impact	0.124	0.105	0.126	0.161	0.233		
Cumulative multiplier	0.172	0.147	0.195	0.254	0.394		
Note: "Phillips multipliers" are ratios of the change in inflation to							

the change in log employment caused by a money shock.

	Annual trend inflation rate						
	-1%	0	1%	2%	5%		
Frequency and size of adjustments (%):							
Price adj. freq.	9.04	7.53	9.05	10.2	12.5		
Wage adj. freq.	7.28	6.95	7.53	8.34	10.8		
$Abs(\Delta In p)$	6.50	6.18	6.59	6.94	7.72		
$Abs(\Delta \ln w)$	4.91	4.93	5.20	5.50	6.27		
$Std(\Delta \ln p)$	8.65	8.54	8.80	8.96	9.39		
$Std(\Delta \ln w)$	6.77	6.82	6.82	6.74	6.55		
Phillips multipliers: inflation/employment tradeoffs:							
Multiplier on impact	0.124	0.105	0.126	0.161	0.233		
Cumulative multiplier	0.172	0.147	0.195	0.254	0.394		
AL STREET							

Note: "Phillips multipliers" are ratios of the change in inflation to the change in log employment caused by a money shock.

Main findings: steady state

- Feasible to estimate nonlinear disutility model by matching steady-state histograms
 - FORTRAN was needed for speed.
- Quantum Good fit to typical size and dispersion of adjustments
 - ▶ But histogram excessively smooth, compared with data
 - May still need wider and finer wage grid?
- Implied costs of decisions:
 - lacktriangle Firms spend pprox 1% of revenue managing prices
 - ▶ Workers spend \approx 2% of time managing wages
- Lifetime productivity trend generates illusion of downward nominal wage rigidity
 - Workers have little incentive to make small negative wage changes

Main findings: impulse responses

- Microfounded model of nominal price and wage rigidity generates substantial real effects of monetary shocks
 - ▶ Estimate V1N: cumulative Phillips multiplier \approx 0.25 at 2% trend inflation
 - Equals Phillips coefficient of Blanchard (2016) in Great Moderation period (controlling for inflation expectations)
- Calvo framework significantly exaggerates persistence of real effects, compared with state-dependent model
- Sticky wages generate more nonneutrality than sticky prices
 - ▶ If W is flexible, monetary stimulus is offset by $\frac{W}{P}$ ↑
 - Sticky wages + flexible prices generates almost as much persistence as a model where both are sticky

Main findings: impulse responses

- Microfounded model of nominal price and wage rigidity generates substantial real effects of monetary shocks
 - ▶ Estimate V1N: cumulative Phillips multiplier ≈ 0.25 at 2% trend inflation
 - ► Equals Phillips coefficient of Blanchard (2016) in Great Moderation period (controlling for inflation expectations)
- Calvo framework significantly exaggerates persistence of real effects, compared with state-dependent model
- Sticky wages generate more nonneutrality than sticky prices
 - ▶ If W is flexible, monetary stimulus is offset by $\frac{W}{P}$ ↑
 - Sticky wages + flexible prices generates almost as much persistence as a model where both are sticky

Comparing persistence:

	V5N	V3N	V1N	Calvo
	St-P, Fl-W	FI-P, St-W	Both sticky	Both sticky
Half life of				
consumption IRF	4	6	8	22

Main findings: nonlinearities

- Diminishing returns to monetary stimulus (tentative)
 - ▶ Diminishing returns: greater stimulus is less effective on the margin
 - ► Cumulative consumption effect maximized by ≈ 5% increase in money supply!
 - ▶ Thereafter, larger increases have a mostly negative impact on consumption
- Phillips curve gets flatter as trend inflation falls
 - Due to state dependence, not downward nominal rigidity!
 - Phillips curve is flattest at zero trend inflation, steeper at higher or lower rates
 - Cumulative Phillips multiplier rises from 0.147 at zero trend inflation to 0.394 at 5% annual trend inflation
 - May be harder to hit inflation target, but money has stronger effects on real variables when trend inflation is low

EXTENSIONS/RELATED

Control costs: a research agenda

- Simple but widely-applicable model of costly decisions as a microfoundation for sluggish adjustment
 - ► For any context where one control variable is intermittently updated
 - ► Basically an error-prone (S,s) model
 - ▶ Similar to "rational inattention", but more tractable state space
- Done so far:
 - Sticky prices (Costain/Nakov JECD 2015, JMCB 2018)
 - Sequential bargaining (Costain 2017, BdE WP1729)
 - Sticky prices and sticky wages (this paper)

Control costs: a research agenda

- Simple but widely-applicable model of costly decisions as a microfoundation for sluggish adjustment
 - ► For any context where one control variable is intermittently updated
 - ► Basically an error-prone (S,s) model
 - ▶ Similar to "rational inattention", but more tractable state space
- Done so far:
 - Sticky prices (Costain/Nakov JECD 2015, JMCB 2018)
 - Sequential bargaining (Costain 2017, BdE WP1729)
 - Sticky prices and sticky wages (this paper)
- To do:
 - ▶ PRISMA!!
 - Sticky prices in continuous time
 - Matching and wage bargaining
- Could do:
 - Inventory adjustment
 - Portfolio adjustment
 - ▶ Bids/asks in financial markets
 - Adjustment of policy instruments

Sticky prices in continuous time: application to petrol

- Control cost model of sticky prices simplifies further in continuous time
 - I have run some horseraces on different algorithms
- Simple first-order condition linking optimal price choice and optimal adjustment timing:

$$\log\left(\frac{\pi(p|a)}{\bar{\eta}}\right) = \frac{v(p,a) - \tilde{v}(z)}{\kappa} = \log\left(\frac{\lambda(p,a)}{\bar{\lambda}}\right)$$

• FOC between observables:

$$\log \pi(p|a) = -\log(\lambda(p,a)) + \frac{\bar{\eta}}{\bar{\lambda}}$$

- Testing that requires data on costs
- Spanish data: **daily panel of retail gasoline prices**, plus daily data on international wholesale gasoline price

Deriving matching frictions and wage stickiness from control costs

- Following Cheremukhin/Restrepo/Tutino '12, can derive matching function from costly choice of partner
 - Choice across possible partners is governed by a logit
 - ▶ Equilibrium between firm and worker decisions resembles a matching function
- Following Costain '17, derive sticky wage bargain from costly choice in a sequential bargaining game
 - Both initial wage bargain, and subsequent renegotiations and/or separations, are derived from the same repeated game
- Derive matching frictions, nominal wage rigidity, and separations from the same underlying decision costs; analyze their interactions
 - ► Equilibrium should lie between the two cases described by Michaillat/Saez '12: fixed tightness / flex prices vs. flex tightness / fixed prices

Thanks for your attention!

62 / 62