

01

Introduction

02

Problem Statement 03

Project Objective. 04

Data Understanding

05

Data Modeling Results 06

Recommendations

07

Conclusion

PROBLEM STATEMENT

The goal of this project is to provide valuable insights to a real estate agency, which aims to offer data-driven recommendations to homeowners regarding home renovations and their potential impact on the estimated value of their properties.

OBJECTIVES.

Utilize multiple linear regression modeling to analyze the King County House Sales dataset and identify key factors influencing home prices.

Offer personalized recommendations to homeowners regarding the types of renovations or improvements that could potentially increase the estimated value of their homes.

OUR DATA.

This project uses the King County House Sales dataset

DATA UNDERSTANDING

CORRELATION MATRIX.

Based on the correlation matrix, it can be observed that the Square footage of living space other than the basement has the highest positive correlation to the price of 0.70. Which is a strong correlation.

Additionally, the yr_build variable had the least correlation of 0.054

PRICE VS WATERFRONT

From the Box plot above, we can observe that the price of a house tends to be higher when the house has a waterfront.

Additionally, houses that do not have a waterfront tend to have more outliers than those with waterfronts

PRICE VS CONDITION.

Based on the correlation matrix, it can be observed that the Square footage of living space other than the basement has the highest positive correlation to the price of 0.70. Which is a strong correlation.

Additionally, the yr_build variable had the least correlation of 0.054

PRICE VS RENOVATION STATUS

Based on the correlation matrix, it can be observed that the Square footage of living space other than the basement has the highest positive correlation to the price of 0.70. Which is a strong correlation.

Additionally, the yr_build variable had the least correlation of 0.054

REGRESSION MODELING

SIMPLE LINEAR MODEL

OLS Regression Results												
Dep. Variable:	R-squar	ed:		0.492								
Model:	OLS	Adj. R-	squared:		0.492							
Method:	Least Squares	F-stati	stic:		2.087e+04							
Date:	Tue, 09 Apr 2024):	0.00							
Time:	19:29:40	Log-Lik	elihood:		-2.9912e+05							
No. Observations:	21534	AIC:	AIC:		5.982e+05							
Df Residuals:	21532	BIC:	:		5.983e+05							
Df Model:	1											
Covariance Type:	nonrobust											
coe	f std err	t	P> t	[0.025	0 . 975]							
const -4.215e+0	4 4404.521	-9 . 570	0.000	-5.08e+04	-3.35e+04							
sqft_living 279.932	1 1.938	144.473	0.000	276.134	283.730							
Omnibus:	14582.265	 -Durbin	======= Watson:		1.981							
Prob(Omnibus):	0.000	Jarque-	Jarque-Bera (JB):		516142.289							
Skew:	2.781		Prob(JB):		0.00							
Kurtosis:	26.331	Cond. N	ο.		5.63e+03							

Comments.

- Our Model and coefficient are statistically significant because the F-value is less than our assumed alpha of 0.05.
- Our Adjusted R Squared is 0.493, hence the model explains 49.2% of the variance in price, the target variable.
- For a square foot living of 0, our model would predict a price of -0.0004399 dollars. An increase of 1 square-feet living, would increase the price by 280.

MULTIPLE LINEAR MODEL

OLS Regression Results											
Dep. Variable:				-squared:	0.676						
Model:	OLS			dj. R-squared:	0.675						
Method:	Least Squares					1867.					
Date:	Tue, 09 Apr 2024			Prob (F-statistic):		. 0.00					
Time:	19:29:41			og-Likelihood:		-2.9430e+05					
No. Observations:	21534			IC:		5.886e+05					
Df Residuals:		21509	В	IC:		5.888e+0	95				
Df Model:		24									
Covariance Type:	nor	robust									
=======================================											
	coef	std (err	t 	P> t	[0.025	0.975]				
const	7.138e+06	1.31e-	+05	54.692	0.000	6.88e+06	7.39e+06				
bedrooms	-2.803e+04	2003.8	856	-13.987	0.000	-3.2e+04	-2.41e+04				
bathrooms	5.024e+04	3383.0	670	14.848	0.000	4.36e+04	5.69e+04				
sqft_living	113.9033		916		0.000	106.228	121.578				
floors	4.771e+04				0.000	4.04e+04					
sqft_basement	48.5041	4.			0.000	39.959	57.049				
yr built	-3394.7148	66.			0.000	-3525.233	-3264.196				
sqft_living15	40.2369	3.4			0.000	33.414	47.060				
sqft_lot15	-0.5212		054		0.000	-0.627	-0.415				
waterfront_YES	7.098e+05	1.76e-			0.000	6.75e+05	7.44e+05				
condition Fair	-3.051e+04				0.061	-6.24e+04	1405.416				
_	1.709e+04	3541.7			0.000	1.01e+04	2.4e+04				
condition Poor	-4.659e+04	3.91e-			0.234	-1.23e+05	3.01e+04				
condition_Very Good					0.000	4.55e+04	6.79e+04				
grade_11 Excellent					0.000	2.5e+05	2.99e+05				
grade_12 Luxury	7.384e+05					6.92e+05	7.85e+05				
					0.000						
grade_13 Mansion					0.000	1.88e+06					
grade_3 Poor		2.09e-			0.006	-9.89e+05	-1.7e+05				
-	-5.393e+05	4.15e-			0.000	-6.21e+05					
grade_5 Fair	-5.463e+05				0.000		-5.14e+05				
grade_6 Low Average					0.000						
grade_7 Average	-4.148e+05	8740.4	474	-47.460	0.000						
grade_8 Good	-3.275e+05	7890.0	605	-41.510							
grade_9 Better						-1.97e+05					
renovated_Yes	1.18e+04	3516.4	495	3.355	0.001	4905.392	1.87e+04				
							=				
Omnibus:				Durbin-Watson:		1.976					
Prob(Omnibus):				Jarque-Bera (JB):		446759.374					
Skew:				rob(JB):		0.00					
Kurtosis:	24.866 Cond. No.			4.43e+06							

OLS Regression Results

Comments.

1. Our Model and coefficient are statistically significant because the F-value is less than our assumed alpha of 0.05.

2. Our Adjusted R Squared is 0.676, hence the model explains 67.6% of the variance in price, target variable.

OBSERVATIONS

- R-Squared Value. The R-squared value of 0.676 indicates that the model explains approximately 67.6% of the variance in the target variable (price). This suggests that the model has a moderate level of explanatory power.
- Significance of Predictors. Several predictors have statistically significant coefficients. That is the calculated P-values are less than the assumed alpha of 0.05 indicating that they have a significant impact on the price of houses
- Coefficient Interpretation: The coefficients represent the change in the target variable (price) for a one-unit change in the predictor variable, holding all other variables constant.
- Intercept: The intercept term (const) represents the expected price of a house when all predictor variables are zero.

OBSERVATIONS

- Positive/Negative Coefficients: Positive coefficients indicate a positive relationship between the predictor variable and the price of houses, while negative coefficients indicate a negative relationship.
- Waterfront Variable: The coefficient for the waterfront variable is particularly large, suggesting that houses with waterfront views have a substantial impact on price.
- Grade Variable: The grade variable includes multiple categories, each representing different levels of house quality. Higher-grade categories have positive coefficients, indicating that houses with higher quality grades tend to have higher prices.
- Renovated Variable: The coefficient for the renovated variable (renovated_Yes) is positive and statistically significant (p < 0.05), suggesting that renovated houses tend to have higher prices compared to non-renovated houses.

RECOMMENDATIONS

01

Consider Waterfront Properties.

Given the significant impact of waterfront properties on price, buyers interested in premium properties may prioritize houses with waterfront views.

03

Evaluate Renovated Properties

Sellers may benefit from renovating their properties, as renovated houses tend to have higher prices. Buyers should also consider renovated properties when looking for houses with increased value potential.

02

Focus on Grade

Buyers seeking high-quality houses should pay attention to the grade variable, as highergrade categories tend to command higher prices

O4Further Analysis

Conduct further analysis to explore potential interactions between predictor variables and identify any additional factors that may influence house prices.

OUR TEAM

Sammy Warah

sammy.warah@student.moringaschool.com

James Kimani

james.irungul@student.moringaschool.com

Dorothy Chomba

dorothy.chomba@student.moringaschool.com

Wilfred Likishorumingi

wilfred.lekishorumongi@student.moringaschool.com

