

Prvi izborni ispit

18. svibnja 2024.

Zadaci

Zadatak	Vremensko ograničenje	Memorijsko ograničenje	Bodovi
Hijerarhija	1 sekunda	$1024~\mathrm{MiB}$	100
Promet	1 sekunda	$1024~\mathrm{MiB}$	100
Ukupno			200

Zadatak Hijerarhija

Bliže se lokalni izbori!

Prije promjene vlasti, potrebno je podijeliti bonuse u jednom neimenovanom odjelu gradske uprave. Hijerarhiju uprave možemo predstaviti stablom u kojem je čvorom 1 označen direktor, te izravan šef svakog zaposlenika je njegov roditelj u stablu.

Ako i-ti zaposlenik dobije bonus u iznosu od barem c_i , njegova će produktivnost u sljedećoj godini biti veća za p_i , dok u suprotnom ostaje ista. Ne moraju svi zaposlenici dobiti bonus (t.j. mogu dobiti bonus u iznosu od 0), no za svakog zaposlenika koji je dobio bonus mora vrijediti da je njegov izravni šef dobio barem nekakv bonus (makar to bilo u iznosu od 1).

Odredite najvećue moguće povećanje produktivnosti odjela ako je iznos proračuna za bonuse najviše K.

Ulazni podaci

U prvom retku su prirodni brojevi N i K.

U drugom je retku N-1 brojeva s_i $(1 \le p_i \le N)$ gdje i-ti broj označava izravnog šefa i+1-og radnika.

U trećem je retku N brojeva p_i .

U četvrtom je retku N brojeva c_i .

Izlazni podaci

U jedini redak ispišite najveće moguće povećanje produktivnosti uz zadani proračun.

Bodovanje

U svim podzadacima vrijedi $2 \leq N \leq 5\,000$ i $2 \leq K \leq 5\,000.$

Za sve $i=1,\ldots,N$ vrijedi da je $1 \le p_i \le 10^5$ i $1 \le c_i \le 5\,000$.

Podzadatak	Broj bodova	Ograničenja
1	4	$N \leq 20$
2	7	$c_i=1$ za sve i i dodatno ako je j šef od i tada $p_j\geq p_i.$
3	23	Za sve $i < N$, izravan šef od $i+1$ je i .
4	13	$N, K \le 500$
5	18	$N \le 100$
6	35	Nema dodatnih ograničenja.

Probni primjeri

ulaz izlaz ulaz izlaz ulaz izlaz

Pojašnjenje drugog probnog primjera:

Zadatak Promet

Bliže se lokalni izbori!

Sve vrvi od različitih prometnih planova, a malog Ivicu zanima samo jedno pitanje, koliko će mu zanimljiv biti put od škole!

Možemo zamisliti da se Zagreb sastoji od N kvartova označenih brojevima od 1 do N. Između nekih parova kvartova i te j (gdje i < j) postoje jednosmjerne ulice. $Prometni\ plan$ sastoji se od nekog skupa takvih jednosmjernih ulica.

Ivičina kuća nalazi se u kvartu 1, a škola u kvartu N. Sada ga zanima, za svaki K od 0 do N, koliko postoji prometnih planova, tako da broj kvartova koji se nalaze na **nekom** mogućem putu od kvarta 1 do kvarta N je **točno** K.

Kako su ti brojevi možda jako veliki, zanima ga njihov ostatak pri dijeljenju s P.

Ulazni podaci

U prvom retku su prirodni brojevi N i P.

Izlazni podaci

U jedini redak ispišite N+1 brojeva gdje i-ti broj predstavlja broj prometnih planova si-1 bitnih kvartova modulo P.

Bodovanje

U svim podzadacima vrijedi $2 \le N \le 2000$ i $10^8 \le P \le 10^9 + 100$, P je prost broj.

Podzadatak	Broj bodova	Ograničenja
1	4	$N \le 7$
2	7	$N \le 18$
3	23	$N \le 50$
4	13	$N \le 100$
5	18	$N \le 300$
6	35	Nema dodatnih ograničenja.

Probni primjeri

ulaz	ulaz	ulaz
2 1000000007	3 1000000007	5 1000000007
izlaz	izlaz	izlaz
1 0 1	3 0 3 2	183 0 183 286 250 122

Pojašnjenje drugog probnog primjera:

Vrijedi ${\cal K}=0$ za prometne planove

- {}
- {(1, 2)}
- $\{(2,3)\}$

Vrijedi K=2 za prometne planove

- {(1, 3)}
- {(1, 3), (1, 2)}
- {(1, 3), (2, 3)}

Vrijedi K=3 za prometne planove

- $\{(1, 2), (2, 3)\}$
- {(1, 2), (1, 3), (2, 3)}