Statistical Inference Chapter 1

Gallant Tsao

July 1, 2024

- 1. (a) $\Omega = \{(x_1, x_2, x_3, x_4) : x_i \in \{H, T\}\}.$
 - (b) If there are N leaves on the plant, $\Omega = [N]$.
 - (c) $\Omega = \{t : t \in \mathbb{R}, \ t \ge 0\}.$
 - (d) $\Omega = \{w : w \in \mathbb{R}_+\}.$
 - (e) If there are n components, $\Omega = \{i/n : i \in \{0, 1, ..., n\}\}.$
- 2. (a)

$$\begin{aligned} x \in A \setminus B &\iff x \in A \text{ and } x \notin B \\ &\iff x \in A \text{ and } x \notin A \cap B \\ &\iff x \in A \setminus (A \cap B). \end{aligned}$$

Also,

$$x \in A \setminus B \iff x \in A \text{ and } x \notin B$$

 $\iff x \in A \text{ and } x \in B^c$
 $\iff x \in A \cap B^c.$

Therefore $A \setminus B = A \setminus (A \cap B) = A \cap B^c$.

(b) By the distributive law,

$$(B \cap A) \cup (B \cap A^c) = B \cap (A \cup A^c)$$
$$= B.$$

(c)

$$x \in B \setminus A \iff x \in B \text{ and } x \notin A$$

 $\iff x \in B \text{ and } x \in A^c$
 $\iff x \in B \cap A^c.$

(d) From part b), we have

$$\begin{split} A \cup B &= A \cup ((B \cap A) \cup (B \cap A^c)) \\ &= A \cup (B \cap A) \cup A \cup (B \cap A^c) \\ &= A \cup A \cup (B \cap A^c) \\ &= A \cup (B \cap A^c). \end{split}$$

$$\begin{aligned} x \in A \cup B &\iff x \in A \text{ or } x \in B \\ &\iff x \in B \cup A. \\ x \in A \cap B &\iff x \in A \text{ and } x \in B \\ &\iff xinB \cap A. \end{aligned}$$

(b)

$$\begin{split} x \in A \cup (B \cup C) &= x \in A \text{ or } x \in B \cup C \\ &= x \in A \cup B \text{ or } x \in C \\ &= x \in (A \cup B) \cup C. \end{split}$$

(c)

$$x \in (A \cup B)^c \iff x \notin A \cup B$$

$$\iff x \in A^c \text{ and } x \in B^c$$

$$\iff x \in A^c \cap B^c.$$

$$x \in (A \cap B)^c \iff x \notin A \cap B$$

$$\iff x \in A^c \text{ or } x \in B^c$$

$$\iff x \in A^c \cup B^c.$$

- 4. (a) This is $P(A \cup B)$, so we get $P(A) + P(B) P(A \cap B)$.
 - (b) This is $P(A\Delta B)$, so we get $P(A) + P(B) 2P(A \cap B)$.
 - (c) This is again $P(A \cup B)$, so we get $P(A) + P(B) P(A \cap B)$.
 - (d) This is $P((A \cap B)^c)$, so we get $1 P(A \cap B)$.
- 5. (a) $A \cap B \cap C = \{a \text{ U.S. birth resulting in identical twin females}\}.$
 - (b) $P(A \cap B \cap C) = \frac{1}{90} \cdot \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{540}$.
- 6. $p_0 = (1 u)(1 w), p_1 = u(1 w) + w(1 u), p_2 = uw$. For them to be equal,

$$p_0 = p_2 \implies 1 - u - w + uw = uw$$

$$\implies u + w = 1,$$

$$p_1 = p_2 \implies u + w - 2uw = uw$$

$$\implies uw = \frac{1}{3}.$$

The above two equations imply $u(1-u)=\frac{1}{3}$, which has no real solutions in \mathbb{R} . Therefore we can't choose such u, w satisfying $p_0=p_1=p_2$.

7. (a) This is just having an extra case of hitting outside of the dart board. So

$$P(\text{scoring } i \text{ points}) = \begin{cases} 1 - \frac{\pi r^2}{A} & i = 0 \\ \frac{\pi r^2}{A} \cdot \frac{1}{5^2} ((6 - i)^2 - (5 - i)^2) & i = 1, ..., 5 \end{cases}$$

(b)

$$\begin{split} P(\text{scoring } i \text{ points}|\text{board is hit}) &= \frac{P(\text{scoring } i \text{ points, board is hit})}{P(\text{board is hit})} \\ &= \frac{\pi r^2}{A} \cdot \frac{1}{5^2} ((6-i)^2 - (5-i)^2) / \frac{\pi r^2}{A} \\ &= \frac{1}{5^2} ((6-i)^2 - (5-i)^2), \ i = 1, ..., 5 \end{split}$$

For i = 0, we will definitely score given that we hit the board so P(scoring 0 points|board is hit) = 0, which is consistent with the probability distribution in Example 1.2.7 as well.

8. (a) From the example given,

$$P(\text{scoring } i \text{ points}) = \frac{(6-i)^2 - (5-i)^2}{5^2}, i = 1, ..., 5.$$

(b) Expanding the above,

$$\frac{(6-i)^2 - (5-i)^2}{5^2} = \frac{11-2i}{r^2},$$

which is a decreasing function of i.

(c)

$$\frac{11-2i}{5^2} > 0$$
 for $i = 1, ..., 5$

hence the first axiom is satisfied.

$$P(S) = P(\text{hitting the board}) = 1,$$

hence the second axiom is satisfied. For $i \neq j$,

$$P(i \cup j) = \text{Area of ring } i + \text{Area of ring } j = P(i) + P(j),$$

hence the third axiom is satisfied so P(scoring i points) is a probability function.

- (a) Suppose $x \in (\cup_{\alpha} A_{\alpha})^c$. Then $x \notin A_{\alpha}$ for all $\alpha \in \Gamma$ so $x \in A_{\alpha}^c$ for all $\alpha \in \Gamma$. Therefore $x \in \cap_{\alpha} A_{\alpha}$.
 - Now suppose $x \in \cap_{\alpha} A_{\alpha}^{c}$. Then for all $\alpha \in \Gamma$, $x \in A_{\alpha}^{c}$ hence $x \notin A_{\alpha}$, then $x \notin \cup_{\alpha} A_{\alpha}$ so $x \in (\cup_{\alpha} A_{\alpha})^{c}$.
- (b) Suppose $x \in (\cap_{\alpha} A_{\alpha})^c$. Then $x \notin \cap_{\alpha} A_{\alpha}$ so $x \notin A_{\alpha}$ for some $\alpha \in \Gamma$. Then $x \in A_{\alpha}^c$ for some $\alpha \in \Gamma$. Therefore $x \in \cup_{\alpha} A_{\alpha}^c$.
 - Now suppose $x \in \bigcup_{\alpha} A_{\alpha}^{c}$. Then $x \in A_{\alpha}^{c}$ for some $\alpha \in \Gamma$ so $x \notin A_{\alpha}$ for some $\alpha \in \Gamma$. Then $x \notin \cap_{\alpha}$ thus $x \in (\cap_{\alpha})^{c}$.