



(All rights reserved)

## BACHELOR OF SCIENCE IN ENGINEERING SECOND SEMESTER EXAMINATIONS: 2014/2015 CPEN 206: LINEAR CIRCUITS

**INSTRUCTIONS: ATTEMPT ALL QUESTIONS.** 

TIME ALLOWED: THREE HOURS

Q1(a) Briefly explain why in solving problems in linear circuits Star(T) network is a times converted into the equivalent of  $Delta(\prod)$  and vise verse. [2marks]

(b) A star network has  $Z_1=20\Omega$ ,  $Z_2=(10+j10)$  and  $Z_3=(20-j5)$ . Calculate the values of the components of the equivalent delta curcuit. [6marks]

(c) State the Superposition theorem.

[2marks]

(d)A voltage generator whose internal resistance is  $500\Omega$  and voltage source of 15V is connected in parallel to another generator whose internal resistance is  $40\Omega$  and voltage is 24V. If the two generators are producing currents which are out of phase, calculate the total current that will flow through a  $600\Omega$  connected across the two voltage generators, using the superposition theorem. [6marks]

(e) Repeat Q1(d) using mesh analysis.

[4marks]

Q2 (a) Give two uses of electric Resonance

[2marks]

(b) State three conditions of Resonance

[3marks]

(c) A series-resonant circuit is connected across a 10V, 2MHz supply having an internal impedance of  $5\Omega$ . Calculate the values of inductance and capacitance required to give a capacitor voltage of 250V at the resonant frequency. [8marks]

10---

(d) Define Quality or Q-factor of a series-tuned circuit

[2marks]

(e) A 4μFcapacitor is connected in series with 500kΩ resistor and a 120V d.c supply.
 Calculate the rate at which energy is being stored in the capacitor when its terminal voltage is 50V.

A

Page 1 of 2

Examiner: Mr. Agyare Debra

Q3 (a) Briefly explain why the Maximum Power Transfer theorem is particularly useful for analysing communication networks but not power transmission and distribution networks

[2marks]

(b) State the Maximum Power Transfer theorem.

[2marks]

- (c) Draw a circuit consisting of a generator having a e.m.f of E(volts) and internal resistance (Rs) which is connected in series to a load resistor (R<sub>L</sub>) and use it to proof the maximum power transfer theorem [4marks]
- (d) A source of impedance  $(6000\text{-j}125)\Omega$  at a frequency of  $1000/2\pi$  Hz is to be connected to a resistive load of  $6000\Omega$ . Calculate the value of the component that should be connected in series with the load in order for the load to dissipate maximum power.

  [6marks]
- (e) The Thevenin's equivalent circuit of a network is calculated to consist of a voltage source of  $15.4/60^{\circ}$  volts in series with a resistor of  $1k\Omega$ , a capacitor of reactance  $-j100\Omega$  and a load impedance  $Z_L$ . What should be the value of  $Z_L$  for it to dissipate the maximum possible power. [6marks]
- Q4 (a) Give two advantages of Active Filters over Passive Filters. [2marks]
- (b) Using the Voltage divider theorem, show how a Passive Low Pass Filter (LPF) can easily be made by connecting together a single resistor and a capacitor across an a.c voltage source

  [4marks]
- (c) A Low Pass Filter consists of a resistor of  $50k\Omega$  in series with a capacitor of 70nF and input voltage of 20V. Calculate the output voltage ( $V_0$ ) at frequencies of 200Hz and 20kHz.
- (d) Use the result obtained in Q4(c) to plot the output voltage against the different values of the input frequency and explain by the curve how the network acts as a Low Pass Filter. [7marks]
- Q5 (a) State the Thevenin's theorem.

[2marks]

(b) A linear network consisting of a 6V voltage source whose internal resistance is  $120\Omega$  is connected in parallel to  $5000\Omega$  resistor. The parallel circuit is joined to a series circuit which is made up of  $300\Omega$  resistor and inductor whose inductive reactance is  $j400\Omega$ . Use Thevenin's theorem to determine the current that will flow in an impedance of

(c) Verify your answer by Norton's Theorem

 $(350-j600)\Omega$  if it is connected to the output of the linear network.

[8marks]

[10marks]