实验一 门电路逻辑功能及测试

一、实验目的

- 1. 熟悉门电路逻辑功能。
- 2. 熟悉数字电路学习机及示波器使用方法。

二、实验仪器及材料

- 1. 双踪示波器
- 2. 器件

74LS00	二输入端四与非门	2片
74LS20	四输入端双与非门	1片
74LS86	二输入端四异或门	1片
74LS04	六反相器	1片

三、予习要求

- 1. 复习门电路工作原理及相应逻辑表达式。
- 2. 熟悉所用集成电路的引线位置及各引线用途。
- 3. 了解双踪示波器使用方法。

四、实验内容

实验前按学习机使用说明先检查学习机电源是否正常。然后选择实验用的集成电路·按自己设计的实验接线图接好连线,特别注意 Vcc 及地线不能接错。线接好后经实验指导教师检查无误方可通电实验。实验中改动接线须先断开电源,接好线后再通电实验。

- 1. 测试门电路逻辑功能
- (1). 选用双四输入与非门 74LS20 一只,插入面包板. 按图 1.1 接线、输入端接 $S_1 \sim S_4$ (电平开关输出插口).输出端接电平显示发光二极管 ($D_1 \sim D_3$ 任意一个)
 - (2). 将电平开关按表 1.1 置位,分别测输出电压及逻辑状态。

表 1.1

	输	人		1	
1	2	3	4	Y	· 电压(V)
Н	Н	Н	Н		
L	Н	Н	Н		
L	L	Н	Н		
L	L	L	Н		
L	L	L	L	·	

2. 异或门逻辑功能测试

图 1.2

- (1). 选二输入四异或门电路 74LS86, 按图 1.2 接线, 输入端 1、2、4、5 接电平开关, 输出端 A、B、Y 接电平显示发光二极管。
 - (2). 将电平开关按表 1.2 置位,将结果填入表中。

				47 1. 7			
	**	. 1			输出	Ł	0 .tr
1	2 1	人	5	A	В	Y	Y 电压(V)
L	L	L	L				
Н	L	Ľ	L				
H.	H	L	L				
Н	H	Н	L				
Н	Н	Н	H			,	
L	H	L	Н				

表 1.2

3. 逻辑电路的逻辑关系

(1). 用 74LS00、按图 1.3,1.4 接线,将输入输出逻辑关系分别填入表 1.3、表 1.4 中,

图 1.3

输	入	输出
A	В	Y
L	L	1
L	Н	1-3
Н	L	H
Н	Н	

表 1.3

表 1.4

输	入	输	出
A	В	Y	Z
L	L	7	L
L	Н	H	1
Н	L	L.	14
Н	Н	7	1-1

图 1.4

- (2). 写出上面两个电路逻辑表达式。
- 4. 逻辑门传输延迟时间的测量。

用六反相器(非门)按图 1.5 接线,输入 80KHz 连续脉冲,用双踪示波器测输入,输出相位差,计算每个门的平均传输延迟时间的 tpd 值。

图 1.5

- 5. 利用与非门控制输出。
 - 用一片 74LS00 按图 1.6 接线,
 - S接任一电平开关,用示波器观察
 - S对输出脉冲的控制作用。
- 6. 用与非门组成其它门电路并测试验证。
- (1). 组成或非门。

用一片二输入端四与非门组成或非门 $Y = \overline{A - B} = \overline{A} \cdot \overline{B}$

画出电路图,测试并填表 1.5

图 1.6

表 1.5

输	输出	
A	В	Y
0	U	
0	1	
1	()	
1	l	

A	В	Y
0	0	1
0	1	\mathcal{C}
1	0 .	1
		,

表 1.6

- (2). 组成异或门
- (a) 将异或门表达式转化为与非门表达式。
- (b)画出逻辑电路图。
- (c)测试并填表 1.6。

五、实验报告

- 1. 按各步聚要求填表并画逻辑图。
- 2. 回答问题:
- (1) 怎样判断门电路逻辑功能是否正常?
- (2) 与非门一个输入接连续脉冲,其余端什么状态时允许脉冲通过? 什么状态时禁止脉冲通过?
- (3)异或门又称可控反相门,为什么?

实验二 组合逻辑电路(半加器全加器及逻辑运算)

一、实验目的

- 1. 掌握组合逻辑电路的功能测试。
- 2. 验证半加器和全加器的逻辑功能。
- 3. 学会二进制数的运算规律。

二、实验仪器及材料

器件

74LS00 二输入端四与非门 3 片 74LS86 二输入端四异或门 1 片 74LS54 四组输入与或非门 1 片

三、预习要求

- 1. 预习组合逻辑电路的分析方法。
- 2. 预习用与非门和异或门构成的半加器、全加器的工作原理。
- 3. 预习二进制数的运算。

四、实验内容

1. 组合逻辑电路功能测试。

图 2.1

(1). 用 2 片 74LS00 组成图 2.1 听示逻辑电路。为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。

- (2). 图中 A、B、C 接电平开关,Y1,Y2 接发光管电平显示。
- (3). 按表 2.1 要求,改变 A、B、C的状态填表并写出 Y1,Y2 逻辑表达式。
- (4). 将运算结果与实验比较。

表 2.1

输入			箱	计出
A	В	С	Yı	Ya
0	0	0		
0	0	1		·
0	1	1		
1	1	1		
1	1	0		
1	0	0		
1	0	1		
0	1	0 _		

2. 测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。

根据半加器的逻辑表达式可知、半加器 Y 是 A、B 的 异或,而进位 Z 是 A、B 相与,故半加器可用一个集 成异或门和二个与非门组成如图 2.2。

- (1). 在学习机上用异或门和与门接成以上电路。A、B 接电平开关 S.Y、Z 接电平显示。
- (2). 按表 2.2 要求改变 A、B 状态,填表。

图 2.2

表 2.2

输入端	A	. 0	1	0	1
抱 八流	В	Ú	0	1	1
#\$ JJ 2 44	Y				
輸出端	Z				

- 3. 测试全加器的逻辑功能。
- (1). 写出图 2.3 电路的逻辑表达式,
- (2). 根据逻辑表达式列真值表。
- (3). 根据真值表画逻辑函数 S, C, 的卡诺图。

图 2.3

(4). 填写表 2.3 各点状态

表 2.3

A _i	Bi	C_{i-1}	Y	Z	X ₁	X ₂	Х3	Si	C _i
0 ·	0	0	•				·		
0	1	0	•						
1 :	Ö	0				·		-	
· 1	1	0							
0	0	1			-				
0	1	1						٠	
1	0	1	-						
l	. 1	1		5 e4					

- (5). 按原理图选择与非门并接线进行测试,将测试结果记入衰 2.4,并与上表进行比较 看逻辑功能是否一致。
- 4. 测试用异或、与或和非门组成的全加器的逻辑功能。 全加器可以用两个半加器和两个与门一个或门组成 在实验中,常用一块双异或门、 一个与或非门和一个与非门实现。
- (1). 画出用异或门、与或非门和非门实现全加器的逻辑电路图,写出逻辑表达式。
- (2). 找出异或门、与或非门和与门器件按自己画出的图接线。接线时注意与或非门中不用的与门输入端接地。
- (3). 当输入端 A_i、B_i 及 C_{i-i}为下列情况时,用万用表测量 S_i 和 C_i 的电位并将其转为逻辑状态填入下表。

芸	2	4
~X	۵٠	9

Ai	B _i	C _{i-i}	C,	Si
0	0	0		
0	1	0		
1	0	0		
1 .	1	0		
0	0	1		
0	1	1		
1	0	1		
1	1	1		

输入端	A_{i}	0	0	0	0	1	1	1	1
	B _i	0	0	1	1	0	0	1	1
	C_{i-1}	0	1	0	1	0	1	0	1
输出端	Si								
	C _i	·				·			

五、实验报告

- 1. 整理实验数据、图表并对实验结果进行分析讨论。
- 2. 总结组合逻辑电路的分析方法。

实验三 触发器(一) R—S, D, J—K

一、实验目的

- 1. 熟悉并掌握 R-S、D、J-K 触发器的构成,工作原理和功能测试方法。
- 2. 学会正确使用触发器集成芯片。
- 3. 了解不同逻辑功能 FF 相互转换的方法。

二、实验仪器及材料

1. 双踪示波器

2. 器件 74LS00

二输入端四与非门 1片

74LS74

双D触发器

1片

74LS112 双 J-K 触发器

1片

三、实验内容

1. 基本 R-SFF 功能测试: 两个 TTL 与非门首尾相接构成的基本 R-S FF 的电路如 图 3.1 所示。

(1) 试按下面的顺序在 Sa, Ra 端加信号:

 $\overline{S}_d = 0$ $\overline{R}_d = 1$

 $\overline{S}_d = 1$ $\overline{R}_d = 1$ $\overline{S}_d = 1$ $\overline{R}_d = 0$

 $\overline{S}_i = 1$ $\overline{R}_i = 1$

图 3.1 基本 R-S FF 电路

观察并记录 FF 的 Q、Q 端的状态,将结果填入下表 3.1 中,并说明在上述各种输入状 态下,FF 执行的是什么功能?

表 3.1

\overline{S}_{d}	R₄	Q	Q	逻辑功能
0	1			
1	1			
1	0			
1	1			

- (2) Sa 端接低电平. Ra 端加脉冲。
- (3) Sa端接高电平、Ra端加脉冲。
- (4)连接 Ra、Sa, 并加脉冲

记录并观察(2)、(3)、(4)三种情况下,Q,Q 端的状态。从中你能否总结出基本 R-S FF 的 Q 或 Q 端的状态改变和输入端 S_a , R_a 的关系。

- (5) 当 S_a 、 R_a 都接低电平时,观察 Q、Q 端的状态。当 S_a 、 R_a 同时由低电平跳为高电平时,注意观察 Q、Q 端的状态,重复 3~5 次看 Q、Q 端的状态是否相同,以正确理解"不定"状态的含义。
- 2. 维持一阻塞型 D 触发器功能测试。

双 D 型正边沿维持一阻塞型触发器 74LS74 的逻辑符号如图 3.2 所示。

图中 S₄、R₄ 端为异步置 1 端,置 0 端(或称异步置位,复位端)。CP 为时钟脉冲端。

试按下面步骤做实验:

- (1) 分别在 Sa、Ra 端加低电平,观察并记录 Q、Q 端的状态。 cp
- (2) 令 S_a、R_a 端为高电平,D 端分别接高,低电平,用点动脉冲作为 CP,观察并记录当 CP 为 O、↑、1、↓ 时 Q 端状态的变化。

- (3) 当 S_d=R_d=1、CP=0(或 CP=1).改变 D 端信号,观察 Q 图 3.2 D FF 逻辑符号端的状态是否变化? 整理上述实验数据,将结果填入下表 3.2 中。
- (4) $\diamondsuit S_a = R_a = 1$. 将 D 和 Q 端相连,CP 加连续脉冲,用双踪示波器观察并记录 Q 相对于 CP 的波形。

表 3.2

S _d	R₄	СР	D	Qª	Q ⁿ⁺¹
0		$\mathbf{X}_{\mathcal{A}}$	X	0	
	1			1	`
1	· -	X	X	0	
	0 .			1	
1		1	0	0	
	1			1	
1		Ţ	1	0	
	1			1	

3. 负边沿 J-K 触发器功能测试 双 J-K 负边沿触发器 74LS112 芯片的逻辑符号如图 3.3 所示。

自拟实验步骤,测试其功能,并将结果填入表 3.3 中。若令 J=K=1 时, CP 端加连续脉冲,用双踪示波器观察 $Q\sim CP$ 波形,和 DFF 的 D 和 Q 端相连时观察到的 Q 端的波形相比较,有何异同点?

- 4. 触发器功能转换
- (1). 将 D 触发器和 J-K 触发器转换成 T' 触发器,列 出表达式,画出实验电路图。
- (2). 接入连续脉冲,观察各触发器 CP 及 Q 端波形。比较两者关系。
- (3). 自拟实验数据表并填写之。

图 3.3 J-K FF 逻辑符号

表 3.3

S̄a	\overline{R}_d	CP	J	K	Q"	
0	1	X	X	X	X	
1	0	X	X	X	X	
1	1	Z,	0	X	0	
1	1	2	1	X	0	
1	1	7	X	0	1	
1	. 1	- 7_	Χ	1	1	

四、实验报告

- 1. 整理实验数据并填表。
- 2. 写出实验内容 3、4 的实验步骤及表达式。
- 3. 画出实验 4 的电路图及相应表格。
- 4. 总结各类触发器特点。

实验五 时序电路测试及研究

一、实验目的

- 1. 掌握常用时序电路分析,设计及测试方法。
- 2. 训练独立进行实验的技能。

二、实验仪器及材料

1. 双踪示波器

 2. 器件
 74LS73
 双 J-K 触发器
 2 片

 74LS175
 四 D 触发器
 1 片

 74LS10
 三输入端三与非门
 1 片

 -30.1-0
 74LS00
 二输入端四与非门
 1 片

三、实验内容

- 1. 异步二进制计数器
- (1). 按图5.1接线。

图 5.1

- (2). 由 CP 端输入单脉冲,测试并记录 Q,~Q,端状态及波形。
- (3). 试将异步二进制加法计数改为减法计数、参考加法计数器、要求实验并记录。
- 2. 异步二一十进制加法计数器
- (1). 按图 5.2 接线。

 Q_A 、 Q_B 、 Q_C 、 Q_D 4 个输出端分别接发光二极管显示,CP 端接连续脉冲或单脉冲。

- (2). 在 CP 端接连续脉冲,观察 CP、Q、、QB、Qc 及 QD 的波形。
- (3). 画出 CP、Q_A、Q_B、Q_C及 Q_D的波形。

图 5.2

- 3. 自循环移位寄存器——环形计数器。
- (1). 按图 5.3 接线,将 A、B、C、D 置为 1000,用单脉冲计数,记录各触发器状态。

图 5.3

改为连续脉冲计数,并将其中一个状态为"0"的触发器置为"1"(模拟干扰信号作用的结果).观察计数器能否正常工作。分析原因。

(2). 接图 5.4 接线,与非门用 74LS10 三输入端三与非门重复上述实验,对比实验结果,总结关于自启动的体会。

图 5.4

四、实验报告

- 1. 画出实验内容要求的波形及记录表格.
- 2. 总结时序电路特点.

附录: TPE-D 型数字电路实验学习机常用集成电路引脚图

