

- Règles booléennes (présence/absence) / quantitatives (30<âge<40)</li>
- Règles multi-niveaux (brie < fromage < produits laitiers)</li>
- Associations multidimensionnelles (âge, revenus, achats)
- Autres mesures
- Exploration avec contraintes

- Règles d'association :
  - motifs de la forme : Corps → Tête
  - Exemple:
     achète(x, "cacahuètes") → achète(x, "bière")
- Étant donnés :
  - 1. une base de transactions D,  $I = \{i_1, i_2, ..., i_n\}$
  - 2. chaque transaction est décrite par un identifiant TID et une liste d'items  $T_{TID} = \{i_1, i_2, ..., i_m\} \subseteq I$ 
    - une transaction contient  $A \Leftrightarrow A \subseteq T$ règle  $A \to B / A \subseteq I$ , et  $B \subseteq I$  et  $A \cap B = \emptyset$
  - → Trouver: toutes les règles qui expriment une corrélation entre la présence d'un item avec la présence d'un ensemble d'items
    Ex : 98% des personnes qui achètent des chips achètent de la bière



Trouver les règles  $X \& Y \Rightarrow Z$  avec un support > s et une confiance > c

- support, s, probabilité qu'une transaction contienne {X, Y, Z}
- confiance, c, probabilité conditionnelle qu'une transaction qui contient {X, Y} contienne aussi Z

## Confiance=support(X,Y,Z)/support(X,Y)

| <b>ID</b> Transaction | Items |
|-----------------------|-------|
| 2000                  | A,B,C |
| 1000                  | A,C   |
| 4000                  | A,D   |
| 5000                  | B,E,F |

Soit support minimum 50%, et confiance minimum 50%,

$$A \Rightarrow C$$
 (50%, 66.6%)

$$C \Rightarrow A (50\%, 100\%)$$

support = support(
$$\{A, C\}$$
) = 50%  
confiance = support( $\{A, C\}$ )/support( $\{A\}$ ) = 66.6%

| Transaction ID | Items |
|----------------|-------|
| 2000           | A,B,C |
| 1000           | A,C   |
| 4000           | A,D   |
| 5000           | B,E,F |

Min. support 50% Min. confiance 50%

| <b>&gt;</b> | Itemsets fréquents | Support |
|-------------|--------------------|---------|
|             | {A}                | 75%     |
|             | (B)                | 50%     |
|             | {C}                | 50%     |
|             | {A,C}              | 50%     |

- D: une base de transactions
- I: ensemble de tous les items avec |I|=n

```
pour chaque ensemble d'items possible calculer son support \mathbf{si} support \geq min_support \mathbf{pour} chaque règle r: A_1,...,A_{m-1} \longrightarrow A_m t.q J=\{A_1,...,A_m\} \mathbf{si} confiance(r) \geq min_confiance afficher r
```

Bien sûr, en pratique, il y a trop de sous-ensembles de I possibles : 2<sup>n</sup>

- On suppose :
  - 10<sup>5</sup> items
  - 10<sup>7</sup> transactions
  - En moyenne chaque transaction concerne 10 items.

- Pour trouver les paires d'items fréquents (2itemsets) :
  - Pour chaque transaction on a  $C_{10}^2 = 45$  paires à considérer :  $45 \times 10^7 = 450$  millions

- Principe : Si un ensemble est non fréquent, alors tous ses sur-ensembles ne sont pas fréquents
  - Si {A} n'est pas fréquent alors {A,B} ne peut pas l'être
  - si {A,B} est fréquent alors {A} et{B} le sont
- Itérativement, trouver les itemsets fréquents dont la cardinalité varie de 1 à k (k-itemset)
- Utiliser les itemsets fréquents pour générer les règles d'association

- Étape de jointure: C<sub>k</sub> est généré en joignant L<sub>k-1</sub>avec lui même
- Étape d'élimination: Chaque (k-1)-itemset qui n'est pas fréquent ne peut être un sous ensemble d'un k-itemset fréquent

```
C_k: Itemset candidat de taille k,
L<sub>k</sub> : itemset fréquent de taille k
```

```
L_1 = {items fréquents}
pour (k = 1; L_k != \emptyset; k++)
   C_{k+1} = candidats générés à partir de L_k % jointure
   pour chaque transaction t dans la base
         incrémenter le COUNT des candidats de C_{k+1} qui sont dans t
   L_{k+1} = candidats dans C_{k+1} dont COUNT > support_min
renvoyer \bigcup_k L_k
```

# Avec min\_support=2



- $L_3$ ={abc, abd, acd, ace, bcd}
- jointure :  $C_4 = L_3 * L_3$ 
  - abcd à partir de abc et abd
  - acde à partir acd et ace
  - $C_{\Delta} = \{abcd, acde\}$
- Elagage:
  - acde est supprimé car ade n'est pas dans L<sub>3</sub>
- *C*<sub>4</sub>={*abcd*}

# Confiance (A $\rightarrow$ B)=support(AB)/support(A)

# Algorithme: pour chaque itemset fréquent f pour chaque sous ensemble s ⊂ f, avec s≠∅ si confiance(s → f \ s) > min\_conf alors afficher(s → f \ s) fin pour fin pour

| Items | count |
|-------|-------|
| 1     | 2     |
| 2     | 3     |
| 3     | 3     |
| 5     | 3     |

| Items   | count |
|---------|-------|
| 1, 3    | 2     |
| 2, 3    | 2     |
| 2, 5    | 3     |
| 3, 5    | 2     |
| 2, 3, 5 | 2     |

min\_sup=50% min\_conf=75%

| Règles             | Conf. |  |  |
|--------------------|-------|--|--|
| 1 <del>→</del> 3   | 100%  |  |  |
| 3 <b>→</b> 1       | 66%   |  |  |
| 2 <b>→</b> 3       | 66%   |  |  |
| 3→2                | 66%   |  |  |
| 2→5                | 100%  |  |  |
| 5 <b>→</b> 2       | 100%  |  |  |
| 3→5                | 66%   |  |  |
| 5 <b>→</b> 3       | 66%   |  |  |
| 2,3 <del>→</del> 5 | 100%  |  |  |
| 2,5 <del>→</del> 3 | 66%   |  |  |
| 3,5 <del>→</del> 2 | 100%  |  |  |
| 2→3,5              | 66%   |  |  |
| 3→2,5              | 100%  |  |  |
| 5 <del>→</del> 2,3 | 66%   |  |  |

- Le principe de l'algorithme:
  - Utiliser les (k-1)-itemsets fréquents pour générer les k-itemsets <u>candidats</u>
  - Scanner la base pour tester le support des candidats
- Point faible : génération des candidats
  - Beaucoup:
    - 10<sup>4</sup> 1-itemsets fréquents générant ~5.10<sup>7</sup> paires d'items candidates
    - Pour trouver les 100-itemsets, on doit générer  $2^{100} \approx 10^{30}$  candidats.
  - Plusieurs scans de la base:
    - On doit faire (n + 1) scans, pour trouver les n-itemsets fréquents

- Compresser la base, Frequent-Pattern tree (FPtree)
  - Une représentation condensée
  - Évite les scans coûteux de la base
- Développer une méthode efficace pour l'exploration basée sur une approche
  - diviser-pour-régner: décompose le problèmes en sous-problèmes
  - Pas de génération de candidats : test de la "sous-base" seulement!

| TID            | T100          | T200          | T300      | T400             | T500             | T600      | T700             | T800            | T900             |
|----------------|---------------|---------------|-----------|------------------|------------------|-----------|------------------|-----------------|------------------|
| Liste<br>items | I1,<br>I2, I5 | I2, I4,<br>I6 | I1,<br>I3 | I1,<br>I2,<br>I4 | I2,<br>I3,<br>I8 | I2,<br>I3 | I1,<br>I3,<br>I7 | I1,I2,I<br>3,I5 | I1,<br>I2,<br>I3 |

Supposons que min-support=2. On construit la liste « triée »:

L = [I2:7, I1:6, I3:6, I4:2, I5:2] Min support = 2, on ne s'interesse qu'aux I<= 2 apparitions dans le tableau On parcourt une  $2^{\grave{e}me}$  fois la base. On lit les transactions selon l'ordre des items dans L : pour T100 on a I2,I1,I5. La lecture de T100 donne



| TID            | T100          | T200          | T300      | T400             | T500             | T600      | T700             | T800            | T900             |
|----------------|---------------|---------------|-----------|------------------|------------------|-----------|------------------|-----------------|------------------|
| Liste<br>items | I1,<br>I2, I5 | I2, I4,<br>I6 | I1,<br>I3 | I1,<br>I2,<br>I4 | I2,<br>I3,<br>I8 | I2,<br>I3 | I1,<br>I3,<br>I7 | I1,I2,I<br>3,I5 | I1,<br>I2,<br>I3 |

La lecture de T200 va *a priori* générer une branche qui relie la racine à I2 et I2 à I4. Or cette branche partage un préfixe (i.e I2) avec une branche qui existe déjà. L'arbre obtenu après lecture de T200 sera



| TID            | T100          | T200          | T300      | T400             | T500             | T600      | T700             | T800            | T900             |
|----------------|---------------|---------------|-----------|------------------|------------------|-----------|------------------|-----------------|------------------|
| Liste<br>items | I1,<br>I2, I5 | I2, I4,<br>I6 | I1,<br>I3 | I1,<br>I2,<br>I4 | I2,<br>I3,<br>I8 | I2,<br>I3 | I1,<br>I3,<br>I7 | I1,I2,I<br>3,I5 | I1,<br>I2,<br>I3 |

En lisant T300, l'ordre selon L est I1,I3. Ceci nous amène à ajouter une branche  $Null \rightarrow I1 \rightarrow I3$ . Noter qu'elle n'a pas de préfixe commun avec ce qui existe déjà. On obtient



| TID            | T100          | T200          | T300      | T400             | T500             | T600      | T700             | T800            | T900             |
|----------------|---------------|---------------|-----------|------------------|------------------|-----------|------------------|-----------------|------------------|
| Liste<br>items | I1,<br>I2, I5 | I2, I4,<br>I6 | I1,<br>I3 | I1,<br>I2,<br>I4 | I2,<br>I3,<br>I8 | I2,<br>I3 | I1,<br>I3,<br>I7 | I1,I2,I<br>3,I5 | I1,<br>I2,<br>I3 |

## Finalement, le FP-tree obtenu est



• Considérons I5. Il apparaît dans 2 branches.  $|2 \rightarrow |1 \rightarrow |5:1$  et  $|2 \rightarrow |1 \rightarrow |3 \rightarrow |5:1$ 

Ainsi, pour le suffixe I5, on a 2 chemins préfixes: <I2,I1:1> et
 <I2,I1,I3:1>. Ils forment sa «table conditionnelle»

| TiD | Itemset    |
|-----|------------|
| 1   | I2, I1     |
| 2   | I2, I3, I1 |

- Le «FP-tree conditionnel» de I5 contient une seule branche
   I2→I1. I3 n'en fait pas partie car son support est 1 qui est <2 (Rappel: min\_support=2)</li>
- Ce chemin unique va générer toutes les combinaisons de I5 avec I1 et I2, i.e {I1,I5}:2, {I2,I5}:2, {I1,I2,I5}:2

 Considérons I4. Sa table conditionnelle est formée de <I2,I1:1> et <I2:1>

 Le FP-Tree conditionnel ne contient donc qu'un seul nœud 12

 Nous obtenons donc un itemset fréquent qui est {12,14}:2

| Item | Base conditionnelle                             | FP-tree<br>conditionnel | Itemsets générés                          |
|------|-------------------------------------------------|-------------------------|-------------------------------------------|
| 15   | <i2,i1>:1,<i2,i1,i3>:1</i2,i1,i3></i2,i1>       | I2:2→I1:2               | {I2, I5}:2<br>{I1, I5}:2<br>{I2,I1,I5}:2  |
| I4   | <i2,i1>:1,<i2>:1</i2></i2,i1>                   | I2:2                    | {I2, I4}:2                                |
| I3   | <i2,i1>:2 ,<i2>:2,<br/><i1>:2</i1></i2></i2,i1> | I2:4→I1:2<br>I1:2       | {I2, I3}:4<br>{I1,I3}:4<br>{I2, I1, I3}:2 |
| I1   | <i2>:4</i2>                                     | I2:4                    | {I2,I1}:4                                 |

Ce n'est pas la peine de regarder I2 car ça va donner les combinaisons avec les autres items qui ont déjà été considérés

## Règles d'association multi-niveaux

- Les items forment des hiérarchies.
- Les items au niveau inférieur ont des supports inférieurs
- Les bases de transactions peuvent prendre en compte les niveaux
- Item {111} représente le « yaourt fruit »



| TID        | Items                     |
|------------|---------------------------|
| <b>T</b> 1 | {111, 121, 211, 221}      |
| T2         | {111, 211, 222, 323}      |
| Т3         | {112, 122, 221, 411}      |
| T4         | {111, 121}                |
| T5         | {111, 122, 211, 221, 413} |

- On dispose d'une hiérarchie de concepts
- Les niveaux sont numérotés de 0 à n en commençant par le niveau le plus général
- Les concepts (ou items) de chaque niveau i sont numérotés de 1 à m<sub>i</sub> avec m<sub>i</sub> qui représente le nombre de concepts dans le niveau i
- Les données dont on dispose représentent les transactions avec les items du plus bas niveau
- Avec une chaîne de n digits, on peut identifier tous les items du plus bas niveau.

- Approche Top-Down:
  - On utilise la propriété de non monotonie: Si un concept (ou ensemble de concepts) est non fréquent, alors tous ses fils sont non fréquents
  - Ex: Si produit\_laitier est non fréquent alors yaourt ne l'est certainement pas.
  - Ex: Si {produit\_laitier, pain} est non fréquent alors {yaourt, pain\_au\_seigle} ne l'est certainement pas
- Problème : difficulté de régler le support minimal

- Si niveau\_i < niveau\_j</li>
   alors min-support (i) > min-support(j)
  - min-support du niveau 1 est 50% et min-support de niveau 2 est de 10%
- Dans ce cas, il y a différentes approches
  - Indépendance entre niveaux
  - Filtre sur un seul item
  - Filtre sur k items

- Dans ce cas, on n'utilise aucune connaissance sur les parents
  - Ce n'est pas parce qu'un parent n'est pas fréquent que le fils ne le sera pas
  - Ce n'est pas parce qu'un fils est fréquent que le parent le sera
- Le calcul peut être Top-Down ou Bottom-Up

- Un k-itemset est vérifié au niveau i
- si les k-parents au niveau i-1 sont fréquents
  - {pain-au-seigle, yaourt} sera vérifié seulement si {pain, produit-laitier} est fréquent

Une approche Top-Down

 Risque de perte de règles intéressantes aux niveaux inférieurs

- Un item au niveau i sera examiné si son parent est considéré comme fréquent
  - Si Pain est fréquent alors on peut voir si Pain-au-seigle l'est.
  - Si produit-laitier est fréquent alors on peut voir si yaourt l'est.
- Approche Top-Down.

- Certaines règles peuvent être redondantes à cause des relations de "parenté" entre items
- Exemple
  - Produit\_laitier ⇒ pain\_farine [s = 8%, c = 70%]
  - fromage  $\Rightarrow$  pain\_farine [s = 2%, c = 72%]
- On dit que la première règle est un ancêtre de la seconde
- Une règle est redondante si son support est très proche du support prévu, en se basant sur sa règle ancêtre
  - Dans l'exemple, s'il y a 4 fils du nœud Produit\_laitier dont Fromage, alors le support 2% est « prévisible »

- Règles uni-dimensionnelles:
  - achète(X, "lait") ⇒ achète(X, "pain")
- Règles multi-dimensionnelles: 2 dimensions ou prédicats
  - Règles inter-dimensions (pas de prédicats répétés)
    - age(X,"19-25") ∧ occupation(X,"étudiant") ⇒
      achète(X,"Cola")
  - Règles hybrides (prédicats répétés)
    - age(X,"19-25") ∧ achète(X, "popcorn") ⇒ achète(X, "Cola")
- Attributs de catégorie
  - Un nombre fini de valeurs, pas d'ordre entre les valeurs
- Attributs quantitatifs
  - numériques, il existe un ordre (implicite) entre les valeurs

- Si tous les attributs sont catégoriels, on peut se ramener au cas classique
  - Achète(T100,Bob,cola), Achète(T100,Bob,popcorn), Occupation(Bob,étudiant) est remplacé par la transaction T={cola,popcorn,étudiant}
  - ◆ Si I est fréquent et si la règle cola, étudiant → popcorn a une confiance suffisante alors la règle multidimensionnelle
  - Achète(X,cola),occupation(X,étudiant)→Achète(X, popcorn)
     est générée

- Chercher les ensembles à k-prédicats fréquents:
  - Exemple: {âge, occupation, achète} est un ensemble à 3 prédicats.
  - Le seul attribut quantitatif est âge. Les techniques peuvent être distinguées sur le mode de traitement de l'attribut âge.
- 1. Discrétisation statique
  - Remplacer les valeurs d'âge par des intervalles 0..20,
     21..40, ...Chaque intervalle devient donc une catégorie.
- 2. Règles quantitatives
  - Les attributs quantitatifs sont dynamiquement discrétisés en se basant sur la distribution des données.
- 3. Règles basées sur une notion de Distance
  - C'est un processus de discrétisation dynamique basé sur la distance entre les données

- Les attributs numériques sont dynamiquement discrétisés de sorte à maximiser la confiance ou la compacité des règles sont maximisées
- Considérons le cas des règles: A<sub>quan1</sub> ^ A<sub>quan2</sub> ^ A<sub>cat1</sub>
- Regrouper les règles "adjacentes" pour former des règles générales en utilisant une grille 2-D

Exemple:
 age(X,"34..35") \
 revenu(X,"31K..50K")





- C'est une sorte de regroupement.
- Ex: la distance entre éléments d'un groupe inférieure à 4

| Prix | equi-largeur (10) | equi-profondeur (2) | Distance |
|------|-------------------|---------------------|----------|
| 7    | [0,10]            | [7,20]              | [7,7]    |
| 20   | [11,20]           | [22,50]             | [20,22]  |
| 22   | [21,30]           | [51,53]             | [50,53]  |
| 50   | [31,40]           |                     |          |
| 51   | [41,50]           |                     |          |
| 53   | [51,60]           |                     |          |

 La discrétisation est ici basée sur la proximité des éléments d'un intervalle en tenant compte des données réelles

- Mesures objectives:
  - support et
  - confiance

- Mesures subjectives
  - Une règle est intéressante
  - Si elle est inattendue et/ou
  - actionnable (l'utilisateur peut faire quelque chose avec)

- Parmi 5000 étudiants
  - 3000 jouent au basket
  - 3750 prennent des céréales
  - 2000 jouent au basket et prennent des céréales
- Jouer au basket → prendre des céréales [40%, 66.7%] n'est pas informative car il y a 75% d'étudiants qui prennent des céréales ce qui est plus que 66.7%.
- jouer au basket → pas de céréales [20%, 33.3%] est plus pertinente même avec un support et une confiance inférieurs

|             | basket | non basket | Σ    |
|-------------|--------|------------|------|
| céréales    | 2000   | 1750       | 3750 |
| non céréale | 1000   | 250        | 1250 |
| sum(col.)   | 3000   | 2000       | 5000 |

- Exemple 2:
  - X et Y: positivement corrélés,
  - X et Z, négativement corrélés
  - Les support et confiance de X→Z dominent

| X | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   | 0 |   |   |
| Z | 0 | 1 | 1 | ~ | 1 | 1 | 1 | 1 |

Nous avons besoin d'une mesure de corrélation

$$corr_{A,B} = \frac{P(AB)}{P(A)P(B)}$$

 est aussi appelé le lift de A => B

| Règle | Support | Confiance |
|-------|---------|-----------|
| X>Y   | 25%     | 50%       |
| X>Z   | 37,50%  | 75%       |

• Intérêt (corrélation)  $\frac{P(A \wedge B)}{P(A)P(B)}$ 

- Prendre en compte P(A) et P(B)
- P(A & B)=P(B)\*P(A), si A et B sont des événements indépendants
- A et B négativement corrélés, si corr(A,B)<1.

| X | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| Y | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Z | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

| Itemset | Support | Intérêt |
|---------|---------|---------|
| X,Y     | 25%     | 2       |
| X,Z     | 37,50%  | 0,9     |
| Y,Z     | 12,50%  | 0,57    |

- Exploration interactive où l'utilisateur pose des conditions en plus des minima de support et confiance
- Quels types de conditions ?
  - Type de connaissance recherchée: classification, association, etc.
  - Contraintes sur les données:
    - Trouver les paires de produits vendus à Toulouse en Décembre 98
  - Contraintes sur l'intérêt
    - support, confiance, corrélation
  - Contraintes sur les dimensions:
    - En rapport à région, prix, marque, catégorie client
  - Contraintes sur les règles
    - Nombres de prédicats dans le corps

- Exemple, Base: (1) trans (TID, Itemset),
   (2) itemInfo (Item, Type, Prix)
- Une requête d'association contrainte (RAC) est une expression de la forme {(S1→S2)/C},
  - où C est un ensemble de contraintes sur S1 et S2 incluant la contrainte de fréquence
- Une classification de contraintes (à une variable) :
  - Contraintes de classe :
     ex. S2 ⊂ I1
  - Contrainte de domaine :
     ex. S2.Prix < 100</li>
  - Contraintes d'agrégation :
     ex. avg(S<sub>2</sub>.Prix) < 100</li>

- Soit une RAC = { (S1 →S2) / C }, l'algorithme doit être:
  - Correct : Il ne trouve que les itemsets fréquents qui satisfont C
  - Complet : Il trouve tous les itemsets fréquents qui satisfont C
- Solution naïve :
  - Appliquer A priori pour trouver les itemsets fréquents puis éliminer les itemsets ne satisfaisant pas C
- Autre approche :
  - Analyser les propriétés des contraintes pour les intégrer dans A priori lors de la phase de l'exploration des itemsets fréquents.

- Une contrainte  $C_a$  est anti-monotone ssi pour chaque itemset S, si S ne satisfait pas  $C_a$ , alors aucun de ses sur-ensembles ne satisfait  $C_a$
- $C_m$  est monotone ssi pour chaque S, si S satisfait  $C_m$ , alors chacun de ses sur-ensembles satisfait  $C_m$

- Anti-monotonicité : Si S viole la contrainte alors chaque sur-ensemble de S viole aussi la contrainte
- Exemples :
  - sum(S.Prix)≤ v est anti-monotone
  - sum(S.Prix) ≥ v n'est pas anti-monotone
  - sum(S.Prix) = v est partiellement anti-monotone
- Application :
  - Pousser la condition "sum(S.prix) ≤ 1000" lors des itérations du calcul des ensembles fréquents

- *C: sum(S.Prix)* = *v* est partiellement antimonotone dans le sens suivant :
  - C est équivalente à
     C': sum(S.Prix) ≤ v et C'': sum(S.Prix) ≥ v
  - Si S ne satisfait pas C alors une des deux conditions de la conjonction est fausse
  - Si c'est C'' qui est fausse, alors on peut faire des conclusions sur les  $S' \supset S$

 Le problème avec ces contraintes est que l'on ne peut pas les intégrer lors de l'évaluation des itemsets fréquents

- Exemples
  - Sum(S.prix) ≥ 100 est monotone
  - $Sum(S.prix) \le v$  n'est pas monotone

 Par contre, si S' ⊃ S et Sum(S.prix) ≥ 100 alors ce n'est pas la peine de tester Sum(S'.prix)

- Une contrainte est succincte si on peut générer statiquement tous les itemsets qui la satisfont
- Exemple :
  - A ∈ S avec I={A, B, C, D}
  - L'ensemble des itemsets S qui satisfont la condition sont tous les sous-ensembles de I qui contiennent A

| $S \theta v, \theta \in \{=, \leq, \geq\}$      | oui        |
|-------------------------------------------------|------------|
| v ∈ S                                           | oui        |
| $S \supseteq V$                                 | oui        |
| $S \subseteq V$                                 | oui        |
| S = V                                           | oui        |
| $\min(S) \leq v$                                | oui        |
| $\min(S) \geq v$                                | oui        |
| $\min(S) = v$                                   | oui        |
| $\max(S) \leq v$                                | oui        |
| $\max(S) \geq v$                                | oui        |
| max(S) = v                                      | oui        |
| $count(S) \le v$                                | faiblement |
| $count(S) \ge v$                                | faiblement |
| count(S) = v                                    | faiblement |
| $sum(S) \leq v$                                 | non        |
| $sum(S) \ge v$                                  | non        |
| sum(S) = v                                      | non        |
| $avg(S) \theta v, \theta \in \{=, \leq, \geq\}$ | non        |
| (contrainte de fréquence )                      | non        |

- Supposons que tous les items dans les motifs soient triés selon l'ordre O
- Une contrainte C est convertible antimonotone ssi un motif S satisfait C implique que chaque suffixe de S (respectivement à O) satisfait aussi C
- Une contrainte C est convertible monotone ssi un motif S satisfait C implique que chaque motif dont S est un suffixe (respectivement à O) satisfait aussi C

- Soit S l'ensemble de valeurs (par ordre décroissant)
   {9, 8, 6, 4, 3, 1}
- Avg(S) ≥ v est monotone convertible respectivement à S
  - Si S est un suffixe de S<sub>1</sub>, alors avg(S<sub>1</sub>) ≥ avg(S)
    - {8, 4, 3} est un suffixe de {9, 8, 4, 3}
    - $avg({9, 8, 4, 3})=6 \ge avg({8, 4, 3})=5$
  - Si S satisfait avg(S) ≥v, alors S₁ aussi
    - {8, 4, 3} satisfait avg(S) ≥ 4, ainsi que
       {9, 8, 4, 3}

- Les règles d'association sont générées en 2 étapes:
  - 1. Les itemsets fréquents sont retournés
  - 2. Les règles en sont induites
- On distingues les associations selon plusieurs critères
  - Booléennes vs. Quantitatives
  - Uni. vs. multidimensionnelles
  - Mono. vs. multi-niveaux

- Apriori travaille par niveaux (levelwise) correspondant aux tailles des itemsets
  - Générer les candidats (réduction du nombre)
  - Tester les candidats
  - Optimisations (hachage, sampling, réduction de la base ...)
- FP-trees : génère, en 2 passes sur la base, un arbre résumant les données
  - Pas de génération de candidats
  - Pas de tests de fréquence sur la base

- Les règles multi-niveaux peuvent être générées selon différentes approches
  - Mêmes vs. différents supports selon les niveaux
  - Différents types de discrétisation
- Tenir compte des corrélations pour ne pas prendre des décisions hâtives
- Introduction des contraintes pour l'extraction des règles.
  - Optimisation selon le type des contraintes.