FA24: APPLIED ALGORITHMS: 11565 - ASSIGNMENT - 1

QUESTION 2

def function 1 (n):

K+=1

neturn

- 1 The outer loop runs n times
- ② In the middle loop, for each value of i, the loop runs i times

 Total iterations $\Rightarrow \sum_{i=0+1+2+\cdots}^{n-1} (n-1)$

$$= \frac{n(n-1)}{2} \Rightarrow O(n^2)$$

tonce the letal number of

3 In the inner while loop. for each iteration of the middle loop. the while loop runs from K = j to K = n times ⇒ n - j times

Total iterations =)
$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (n-j) = \sum_{i=0}^{n-1} \left[n \times i - \sum_{j=0}^{i-1} j \right]$$

$$= \sum_{i=0}^{n-1} \left[n.i - \frac{i(i-1)}{2} \right] = \sum_{i=0}^{n} n.i$$

$$= n \times \frac{n(n-1)}{2} = 0(n^3)$$

Hence the overall time complexity will be O(n3)

def function2(n): i=n 1144144 while i >0:

⇒ Variable i Starts at i= n and is divided by 3 in each iteration and the loop continues

i=i//3

until i >0

return

Total number of iterations:

• In each iteration i is divided by $3 \Rightarrow \frac{n}{3}$

• After K iterations, i will be $\Rightarrow \frac{n}{3^k}$

· Loop terminates when $\frac{n}{3^k} \leq 1$

⇒ K ≈ log3 n

i itualion

1 m 1/3

2 n/3²

2 n/3^k

K

n = 3"

login = k

· Hence the total number of iterations is proportional to log3 n

Thus the overall time complexity will be O(log n)

def function3(n):

i=1
while i*i < n:
i+=1
seturn

The while loop continues as long as $i^2 < n$, which implies $i \times i$ becomes greater than or equal to n.

- · The loop increments i by I in each iteration
- Condition $i^2 < n \Rightarrow \neq i \ge \sqrt{n}$
- · Hence the loop runs approximately In times.

Thus the overall time complexity will be O(vn)

d) def function4(n): while i >0: -0 for j m range (0,n): -2 for kin range (0,3): -3 i=1/12 return 1) The outer while loop starts with i = n and repeatedly halves i until it reaches o. Hence it runs O(logn) times 2) The middle loop (for) runs n times for each while loop iteration 3 For each value of j. the inner for loop runs i times Total number of iterations for the nested for loops: $\sum_{j=0+1+2+\cdots+(n-1)}^{n} = \frac{n(n-1)}{2} \Rightarrow O(n^2)$

Total time complexity: $O(\log n) \times O(n^2) = O(n^2 \log n)$

def functions (n):

The variable i starts at 2 and is squared

us. of lines

while i < n:

in each iteration.

i = i * i

The while loop continues as long as i < n

return

· In each iteration i is squared, So the value of i grow as:

> First iteration $i = 2^2 = 4$ Second iteration $i = 4^2 = 16$ Third iteration $i = 16^2 = 256$ and so on

i	12	Kitero
2	22	221
4	42	222
16	162	223
		1
ben-	ation	. 2×

- . So after K iterations i will be 22th
- · Solving for k => 22k zn

Taking log twice ...

K ≈ log log n

in street his his wated for in after

Hence the overall time complexity will be O(log logn)

SUBMITTED BY
SUBASHREE V S
SUBAVENK@iu.edu
2001429203

QUESTION-11

 $f(n) \in O(g(n))$ where f(n) = 3n + 4 and g(n) = n

Big-O Definition: we say that $f(n) \in O(g(n))$ if there exist positive constants c and n_0 such that for all $n \ge n_0$: $f(n) \le c \cdot g(n)$

PROOF

b(n) = 3n+4

g(n) = n

we want to find constants cand no such that: 3n+4 ≤ c.n for all n≥ no

Dividing both sides by n, assuming n>0: 3+4 < C

As $n \to \infty$, 4 becomes very small, so for sufficiently large n, we can make the inequality hold.

Let no=1, then 3+4=7

Thus if we choose c = 7, the inequality $3n + 4 \le 7n$ holds for all $n \ge 1$

Hence we conclude that $f(n) = 3n + 4 \in O(n)$

: 6(n) € O(g(n)) is true

b) $f(n) \in \Theta(g(n))$ where $f(n) = 5n^2 + 2n \log n$ and $g(n) = n^2$

Big - Theta Definition:

We say f(n) ∈ \(\theta\) (g(n)), if there exist positive constants (1, C2 and no such that for all n≥no: (1.g(n) \(\perinc\) f(n) \(\leq (2.g(n))\)

PROOF:

$$f(n) = 5n^2 + 2n \log n$$

$$g(n) = n^2$$

we need to show that f(n) is asymptotically bounded both above a below by g(n)

11-140115900

Lot Mart Airen 3 + 12 s

we direct to 7

. UPPER BOUND:

For large n, the term $5n^2$ dominates 2nlogn because of n^2 grows faster than nlogn

 $\Rightarrow f(n) = 5n^2 + 2n \log n \le 6n^2 \text{ for sufficiently large } n$ So $f(n) \le C_2 n^2$ with $C_2 = 6$

2. LOWER BOUND:

Similarly for large n, the term $5n^2$ dominates 2nlog nSo, $6(n) = 5n^2 + 2nlog n \ge 5n^2$ for sufficiently large n $\Rightarrow 6(n) \ge c_1 n^2$ with $c_1 = 5$

Since we have both upper and lower bounds, we can conclude that f(n) is asymptotically tight around n^2

$$\Rightarrow$$
 $\delta(n) = 5n^2 + 2n \log n \in \Theta(n^2)$

 $\beta(n) \in \Omega(g(n))$ where $\beta(n) = n \log n + 100$ and g(n) = n

Big-Omega Definition:

we say $f(n) \in \Omega$ (g(n)) if there exists positive constants c and no such that for all $n \ge no$: $f(n) \ge c \cdot g(n)$

PROOF:

f(n) = n logn + 100 g(n) = n

We want to find constants c and no such that:

nlogn + 100 ≥ c.n for all n≥no

For large n, nlogn dominates 100, so that 100 becomes negligible.

So focusing on term nlogn, we need nlogn ≥ c.n

Divide on both sides by n, logn≥c

For large enough n, this inequality holds for any constant c.

Sherifically for $n \ge 2$, we can choose c = 1 and $\log n \ge 1$ will be true

Since f(n) ≥c.n for c=1 and no=2, we can conclude that

 $f(n) = n\log + 100 \in \Omega(n)$

 \therefore $f(n) \in \Omega$ (g(n)) is true

b(n) ∈ ⊕ (g(n)) where b(n) = nlogn and g(n) = 2n

PROOF:

b(n) = nlogn

g(n) = 2"

For $f(n) \in \Theta(g(n))$, we would need f(n) to be asymptotically both upper and lower bounded by g(n). However $n \log n$ grows much slower than 2^n .

UPPER BOUND

For logs large n, nlogn grows slower than 2". W.K.t nlog n = 0(2m) because 2° grows enponentially while nlogn grows Sub enponentially This implies that f(n) is not comparable to g(n) in terms of growth rates. For lange in whey a deminded now

Since nlogn grows much slower than 2", we have for large enough no this inequality helph

: b(n) ∈ O(g(n)) is not true

firs 20. m for cor and no 2, we can conclude that $f(n) \in O(g(n))$ where $f(n) = n^{1.5} + \log_2 n$ and $g(n) = n^2$

Little - O Definition:

We say $f(n) \in O(g(n))$ if for any constant c > 0, there exists no such that for all $n \ge n_0$: b(n) < c.g(n)

fin) e se (gras) do true

PROOF:

e)

we need to show that f(n) grows strictly slower than g(n)

For large n, n'5 dominates log_n, so we can focus on comparing n'5 with n2

$$\frac{6(n)}{g(n)} = \frac{n^{1.5} + \log_2 n}{n^2} = \frac{n^{1.5}}{n^2} + \frac{\log_2 n}{n^2} = \frac{1}{n^{0.5}} + \frac{\log_2 n}{n^2}$$

$$\frac{1}{n^{0.5}} \rightarrow 0$$
 and $\frac{\log_2 n}{n^2} \rightarrow 0$

Thus $\frac{f(n)}{g(n)} \rightarrow 0$ as $n \rightarrow \infty$ which means that f(n) grows

strictly slower than g(n)

:. 6(n) € 0 (g(n)) is true

SUBMITTED BY
SUBASHREE VS
SUBAVENK@iu.edu
2001429203