

Charging Infrastructure

Lecture-35
Modulation Strategies for PWM Full Bridge Converter

Dr. Apurv Kumar Yadav

Department of Electrical Engineering

tuning on 'S' (book Pulse to Sz)

ZVS of Switch's Solt-switching of Si

subficient deadline is provided such that Vcz goes to "O", simultanear Vc, goes to Vin > sequired condition

The neutrony condition is

Recap

Some non-zero Psw (on)

Si is on

SzisoFF

2 VAN = Vin

Full-bridge Converter

PWM Strategies

 $Source: Soft-Switching\ PWM\ Full-Bridge\ Converters:\ Topologies,\ Control,\ and\ Design\ by\ Xinbo\ Ruan$

PWM Strategies

Source: Soft-Switching PWM Full-Bridge Converters: Topologies, Control, and Design by Xinbo Ruan

Q2,12 2 0.00

- Leading leg
 - 1: On-time is unchanged: $\frac{DT_S}{2}$
 - 2: Turn-on time of S_1 and S_2 switches are adjusted forward, but the on-time is less than $\frac{T_s}{2}$
 - 3: Turn-on time of S_1 and S_2 switches are adjusted forward to $\frac{T_S}{2}$ $\left(\begin{array}{ccc} D_2^T & \Delta T = \begin{pmatrix} D_1^T & \Delta T \\ D_2^T & \Delta T \end{array}\right) = \frac{T_S}{2}$

PWM Strategies

- Lagging leg
 - A: On-time is unchanged: $\frac{DT_S}{2}$
 - B: Turn-on time of S_3 and S_4 switches are adjusted backward, but the on-time is less than $\frac{T_S}{2}$
 - C: Turn-on time of S_3 and S_4 switches are adjusted backward to $\frac{T_S}{2}$

Source: Soft-Switching PWM Full-Bridge Converters: Topologies, Control, and Design by Xinbo Ruan

$$\Delta T \angle \left(\frac{(-D)T_{5}}{2} \right)$$

$$\Rightarrow t_{on(5,7)} = \underbrace{DT_{5}}_{2} + \Delta T$$

$$V_{5} = n \text{ VinD}$$

- · 20
- Diagonal switches turn-off at the same time

- 3A
- Diagonal switches turn-off at the same time

Source: Soft-Switching PWM Full-Bridge Converters: Topologies, Control, and Design by Xinbo Ruan

- Diagonal switches turn-off at different time

• Diagonal switches turn-off at different time

Source: Soft-Switching PWM Full-Bridge Converters: Topologies, Control, and Design by Xinbo Ruan

$$ton(s, s_2) = \frac{T_s}{2}$$

$$ton(s_2, s_4) = \frac{DT_s}{2} + \Delta T$$

$$2 \Delta T < (1-D)T_s$$

$$2 \nabla T_s < T_s$$

- Diagonal switches turn-off at different time

- 1č
- Diagonal switches turn-off at different time

ton(s, su) =
$$\frac{T_s}{2}$$

 $\frac{1}{2}$ ton(s, su) = $\frac{DT_s}{2} + \Delta T$
 $\Delta T \geq \frac{(1-D)T_s}{2}$

Vo=nVin D

- Diagonal switches turn-off at different time

- \(\sqrt{3C} \)
- Diagonal switches turn-off at different time

Two Types of PWM Strategies

 Type-1: Diagonal switches turns-off at the same time: Modulation method 1 to 3

 Type-2: Diagonal switches turns-off at different time: Modulation method 4 to 9

Thank You

