GESTALT

Geospatially Enhanced Search with Terrain Augmented Location Targeting

ACM SIGSPATIAL GEOSEARCH WORKSHOP

Kent O'Sullivan | Nicole Schneider | Aleeza Rasheed | Hanan Samet 13 Nov 2023

Presentation Scope

- 1. Problem motivation.
- 2. GESTALT Architecture.
- 3. Data Acquisition.
- 4. Object-Ownership Assignment.
- 5. Demo of GESTALT.
- 6. Experiments.
- 7. Future Directions.

Motivating example

On the merits of wine tours...

Australia

GESTALT Architecture

GESTALT Architecture

GESTALT Architecture

Data Acquisition

- 1. Hand-labeled ground truth data
- 2. OpenStreetMap labeled data
- 3. Automatically detected objects

Data Acquisition

Hand-labeled ground truth data

Data Acquisition

1. Hand-labeled ground truth data

GESTALT Architecture

Object-Ownership Assignment

Objects are assigned to nearby locations using density-based clustering, allowing for noise in the objects and locations tagged

- Probabilistic assignment
- Fuzzy assignment

GESTALT Architecture

UI Demo

https://gestalt.umiacs.umd.edu/

GESTALT Architecture

Experiments - effectiveness

Search Method	Metric	Results
Location-Object Search	Mean Precision	1.000
	Mean Recall	0.800
Object-Object Search	Mean Precision	0.947
	Mean Recall	0.737
Object-Object Cardinality Invariant Search	Mean Precision	0.825
	Mean Recall	0.816

Table 3: Spatial search performance results across 58 groundtruth pictorial queries run on the *Combined Swan Valley Wineries* dataset.

Dataset	Method	Fuzzy Param	Precision	Recall
	Exact	c = 0	1.0	0.89
Swan	Fuzzy	c = 2	0.85	0.89
Valley	Fuzzy	c = 4	0.85	0.89
Wineries	Fuzzy	c = 6	0.85	0.89
	Fuzzy	c = 8	0.85	0.89
	Fuzzy	c = 10	0.85	0.89
	Exact	c = 0	-	0.88
Combined	Fuzzy	c = 2	-	0.88
	Fuzzy	c = 4	-	0.91
	Fuzzy	c = 6	-	0.94
	Fuzzy	c = 8	-	0.97
	Fuzzy	c = 10	-	0.98

Table 2: Object-to-location assignment results for Swan Valley Wineries and Combined datasets. Increasing fuzziness improves recall on the noisier *Combined* dataset.

Experiments - efficiency

Figure 4: Spatial search complexity results measured in the number of candidate locations and query response times for each type of spatial query *GESTALT* supports. Measured on the Washington D.C. Dataset (12,179 Locations, 91,188 objects).

What next?

Discussion of our Data Structures and Search Algorithms in GeoSearch @ 1550 today.

Future Work:

- **Data collection** → Flickr is great, but not `general' enough.
- **Data processing** → Depth estimation for photos; refine object classes.
- Clustering → Clustering around known `centroids' & learn parameters.
- $UI \rightarrow Links$ to locations, return map thumbnails, enforce ontology.
- User Study → Confirm assumptions about utility.

Questions

Kent O'Sullivan osullik@umd.edu

Nicole R Schneider <u>nsch@umd.edu</u>

Hanan Samet hjs@cs.umd.edu