Práctica 5

Hoja de actividades

Curso 2013-2014

Actividad 1. Dada la matriz

$$A = \begin{bmatrix} -2 & 4 & 2 & 1 \\ 4 & 2 & 1 & -2 \\ 2 & 1 & -2 & 4 \\ 1 & -2 & 4 & 2 \end{bmatrix}$$

- a) Calcula la matriz A^2 .
- b) Sin hacer ningún cálculo, determina quién es la inversa de A.

Actividad 2. Calcula de dos formas distintas las inversas de las siguientes matrices. Si alguno de los resultados que has obtenido no es correcto explica por qué.

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -3 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 2 \\ 2 & 1 & 3 & 1 \\ 4 & 3 & 5 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix}$$

1

Actividad 3. Sea la matriz

$$D = \begin{bmatrix} 7 & 1 & 2 \\ 4 & 2 & 1 \\ 0 & 1 & -2 \\ 0 & 4 & 2 \end{bmatrix}$$

- a) Calcula la matriz T tal que TD=R siendo R la forma escalonada reducida de D.
- b) Resuelve la ecuación matricial $TX + X = DD^t$.

Actividad 4. Sea la matriz

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 1 & -1 & -1 \\ -3 & 13 & 4 \end{bmatrix}$$

- a) Calcula (a mano) una descomposición LU de A.
- b) Resuelve (a mano) el sistema siguiente utilizando la descomposición LU que has obtenido en el apartado anterior.

$$\begin{array}{rcl}
-x + 3y + 2z & = & 2 \\
x - y - z & = & -2 \\
-3x + 13y + 4z & = & -2
\end{array}$$

- c) Calcula con Scilab la descomposición LU de la matriz A. Si no es la misma que has obtenido en el apartado a), explica por qué.
- d) Calcula la inversa de A y su determinante utilizando la factorización LU que has obtenido en el apartado anterior. Comprueba que sale el mismo resultado que utilizando las instrucciones inv(A) y det(A), respectivamente.