

Data Preprocessing

BITS Pilani
Pilani Campus

Data Preprocessing

In this webinar we'll learn different data preprocessing techniques using Python.

Agenda for Today's session

- Overview of Python packages for Data Scientists
- What is Data Preprocessing?
- Different techniques for Data Preprocessing
- Implementing Data Preprocessing techniques in python

What is Data Preprocessing?

- Data preprocessing is a data mining technique that involves transforming raw data into an understandable format.
- Real-world data is often incomplete, inconsistent, and/or lacking in certain behaviors or trends, and is likely to contain many errors.
- Data preprocessing is a proven method of resolving such issues.

Data Preprocessing

Data Cleaning

Data Transformation

Data Reduction

Missing Data

Normalization

Dimensionality Reduction

Noisy Data

Discretization

Numerosity Reduction

Integration

Python packages for Data **Scientists**

1. Scientifics Computing Libraries:

Pandas Numpy **Scipy**

2. Visualization Libraries:

Matplotlib

Seaborn

3. Algorithmic Libraries:

learn Scikit-learn

Statsmodels

Steps in Data Preprocessing

Data cleaning

Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases or files

Data transformation

Normalization and aggregation

Data reduction

Obtains reduced representation in volume but produces the same or similar analytical results

Data Cleaning: Missing values

- What is missing value?
 When no data value is stored for feature for a particular observation, we say this feature has a missing value.
- Could be represented as "?", "N/A", O or just a blank cell.

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location
0	3	NaN —	alfa- romero	gas	std	two	convertible	rwd	front

How to deal with missing data?

- Check with the data collection source
- Drop the missing values
 - drop the variable
 - drop the data entry
- Replace the missing values
 - replace it with an average (or similar data points)
 - replace it by the frequency
- Leave it as missing data

How to drop missing values in Python?

Use dataframes.dropna(): df.dropna(subset=["price"], axis =0, inplace=True)

highway- mpg	price
••••	••••
12	3587
19	NaN
22	16897

highway- mpg	price
••••	
12	3587
19	NaN
22	16897

highway- mpg	price
••••	
12	3587
22	16897

axis = 0 drops the entire row axis = 1 drops the entire column

How to replace missing values in Python?

Use dataframe.replace(missing_value, new_value):

normalized -losses	make
••••	••••
152	audi
NaN	audi
158	audi
162	audi

normalized -losses	make
152	audi
153	audi
158	audi
162	audi

mean = df["normalized-losses"].mean()

df["normalized-losses"].replace(np.nan, mean)

(missing, new)

Data Integration

- Data are usually collected from different places by different people which may be stored in different formats.
- Bringing data into a common standard of expression that allows users to make meaningful comparisons.

Non-formatted:

- confusing
- · hard to aggregate
- hard to compare

Formatted:

- more clear
- easy to aggregate
- · easy to compare

Data Cleaning: How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency)
 bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

smooth by fitting the data into regression functions

Clustering

- detect and remove outliers

Example

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28,29, 34

- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Data Integration (Example)

Convert "mpg" to "L/100km" in Car dataset

Data transformation

Uniform features with different range

age	income
10	20000
30	400000
40	60000

Not-Normalized

- "age" and "income" are in different range.
- Hard to compare
- "income" will influence the result more

age	income
0.1	0.04
0.3	0.8
0.4	0.03

Normalized

- Similar value range
- Similar intrinsic influence on analytical model.

innovate

Methods for Normalizing data

1. Simple feature scaling

$$x_{new} = \frac{x_{old}}{x_{max}}$$

2. Min-Max

$$x_{new} = \frac{x_{old} - x_{min}}{x_{max} - x_{min}}$$

3. Z-Score

$$x_{new} = \frac{x_{old - \mu}}{sigma}$$

Example

Turning categorical values to numerical variables

Most statistical models cannot take in objects or strings as inputs.

Solution:

- Add dummy variable for each unique category
- Add 0 or 1 for each category

Car	Fuel	Car	Fuel		Gas	Diesel
А	Gas	А	Gas	••••	1	0
В	Diesel	В	Diesel		0	1
С	Gas	С	Gas		1	0
D	gas	D	gas		1	0

"one-hot encoding"

- Use pandas.get_dummies() method
- Convert categorical variables to dummy variables (0 or 1)

Fuel	Gas	Diesel
Gas	1	0
Diesel	0	1
Gas	1	0
gas	1	0

pd.get_dummies(df["Fuel"])

Thank you