第2-3周作业

by zzr

9.10 ch1 21,23,25 9.12 ch2 2,5,6,7 9.19 ch2 16,17,18,20

ch121

连通图 G 中任意两条最长的轨道都有公共顶点.

使用反证法。

假设 G 中存在两条长度为n、无公共顶点的最长轨道 P_1, P_2 ,易知 $n \geq 3$. 考虑两条轨道上除端点外的两点 u, v,由连通性知他们之间存在轨道,设长度为 l. 设 u 将 P_1 分为长度为 a 和 n-a 的两部分,v 将 P_2 分为长度为 b 和 n-b 的两部分,则有

$$max(a,n-a)+max(b,n-b)+l\geq n+l\geq n+1$$

这与 P_1, P_2 是最长轨道矛盾。 故假设不成立,原命题得证。

ch1 23

G 是一个简单图, $e \in E(G)$ 在一个起点与终点相同的行迹上, 则 e 在一个圈上.

若该行迹是一个圈,得证。

否则,找从起点出发后第一个在行迹上重复的顶点记为w,利用行迹无重边的性质,一定存在从起点到该点的至少两条轨道,则构成一个圈。

若e在该圈上,得证;

否则,删除图中该圈除外的所有顶点及关联的边,将w作为起点(也是终点),依然满足题目性质,继续重复刚才的操作,且能在有限步终止,最终e一定在某个圈上。

ch1 25

设 G 是简单图. 证明:

- (1) 若 $\epsilon(G) > \nu(G)$, 则 G 中有圈;
- (2) 若 $\epsilon(G) > \nu(G) + 4$, 则 G 中有两个无公共边的圈.

对顶点数 $\nu(G)$ 进行归纳。

- $1. \nu(G) = 3$ 时,显然成立(三角形)。
- 2. 假设 $\nu(G) < k$ 时成立,当 $\nu(G) = k$ 时,若存在 v ,使得 $deg(v) \le 1$,则删去该点及与之关联的边,就降至 k-1 阶情形,由归纳假设知成立。若对 $\forall v, deg(v) \ge 2, \delta(G) \ge 2$,则由例 1.8 知有圈。 综上得证。

(2)

对顶点数 $\nu(G)$ 进行归纳。

首先注意到 $\nu(G)(\nu(G)-1)/2 \geq \epsilon(G) \geq \nu(G)+4$, 得 $\nu(G) \geq 5$ 。

 $1.\nu(G)=5$ 时, $\epsilon(G)\geq 9$,即相当于 K_5 至多删一条边,经验证,显然成立。

2.假设 u(G) < k 时成立,当 u(G) = k 时, $\epsilon(G) \ge \nu(G) + 4 > \nu(G)$,由(1)知必有圈。

若 G 中存在长度为 3 或 4 的圈 C ,则删去圈 C 的所有边依然满足 $\epsilon(G) \geq \nu(G)$,仍然有圈,且与 C 无公共边,成立。

否则,所有圈长度大于等于5(无三角形或四边形)。

若 $\exists v$, 使得 $\deg(v) \leq 1$,删除此点及与之关联的一条边即降为 k-1 阶情形,由归纳假设知存在两个无公共边的圈,再加回来也不破坏,成立。

若 $\exists v$, 使得 $\deg(v) = 2$,设与之相邻两点 $v_1 \setminus v_2$,由于无三角形,则 v_1 与 v_2 不相邻,考虑删去 v 及 $vv_1 \setminus vv_2$,加上 v_1v_2 ,降至 k-1 阶情形,由归纳假设知存在两个无公共边的圈,若 v_1v_2 在圈中,将其替换回 $vv_1 \setminus vv_2$ 依然满足;若不在圈中,加回来显然满足。

若 $\forall v, \deg(v) \geq 3$,以下考虑 $\epsilon(G) = \nu(G) + 4$ 情形,若 $\epsilon(G) > \nu(G) + 4$,删边即可,最后加回去不改变性质。

易知 $\delta(G)\geq 3$,从而 $\sum \deg(v)=2\epsilon(G)\geq 3\nu(G)$,结合 $\epsilon(G)=\nu(G)+4$,得 $\nu(G)\leq 8$ 。下证此情形必定存在三角形或四边形,从而不可能出现。

易知 G 中有圈,设 C 为圈长最短的圈,则圈中点除了圈上的边之外不会有其他边,否则与圈长最短矛盾。设圈长为 r 。

若 $r = \nu(G)$, 由于 $\epsilon(G) = \nu(G) + 4$, 必定存在其他边, 矛盾!

若 $r=\nu(G)-1$,由 $\forall v, \deg(v)\geq 3$,则只能是圈上每一点都与圈外那一点相连,从而存在三角形,矛盾!

若 $r \leq \nu(G) - 2$,而 $r \geq 5$ 。所以 $\nu(G) = 7$ 或8 。

若 $\nu(G)=7$,则 $\epsilon(G)=11$,r 只能为 5 ,圈上有 5 条边,圈外 2 点至多连 1 条边,故圈外必有一点至少与圈上点有三条边,必存在三角形,矛盾! 若 $\nu(G)=8$,则 $\epsilon(G)=12$ 。

若 r=5,圈上有 5 条边,则圈外 3 点至多有 2 条边,必有一点至少与圈上点有两条边,从而必定存在四边形,矛盾!

若 r=6,圈上有 6 条边,圈外 2 点至多连 1 条边,则圈外必有一点至少与圈上点有三条边,必存在四边形,矛盾!

综上,证毕。

ch2 2

一棵树 T 有 n_i 个度数为 i 的顶点, $i = 2, 3, \dots, k$, 其余顶点都是树叶, 则 T 有几片树叶?

由图的性质有: $2\epsilon(T) = \sum_{i=1}^k i n_i$

由树的性质有: $\epsilon(T) = v(T) - 1 = \sum_{i=1}^k n_i - 1$.

联立可得: $n_1 = \sum_{i=2}^k (i-2)n_i + 2$

ch25

图 G 是森林当且仅当 $\varepsilon = \nu - \omega$, 其中 ω 是 G 的连通片个数, $\omega > 1$.

必要性:对每个连通片, 有 $\epsilon_i = \nu_i - 1$,累加有 $\epsilon = \sum \epsilon_i = \sum \nu_i - 1 = \nu - \omega$.

充分性:首先,对每个连通片有 $\epsilon_i \geq \nu_i - 1$,从而 $\epsilon = \sum \epsilon_i \geq \sum \nu_i - 1 = \nu - \omega$,而现在 $\epsilon = \nu - \omega$,则对每个连通片等号都必须成立,那么每个连通片都是树(定理 2.1(4)),因此 G 是森林。

ch26

证明: 树有一个中心或两个中心, 且有两个中心时, 这两个中心相邻.

u(G) = 1或2 时显然成立. 考虑 $u(G) \geq 3$ 的情形。

显然,树叶不可能是中心,考虑进行如下操作,依次删除树叶结点及与之关联的边,直至剩下的结点不是树叶结点,最后只可能是两种情况:

若只剩下一个顶点,说明该树只有一个中心。

若不剩任何顶点,前一步必然是 K_2 ,则说明该树有两个中心,且相邻。下面说明每次删除树叶后的原图的中心还是中心。

由中心定义,其离心率最小,而删除树叶后,会导致所有点的离心率要么不变,要么-1,而中心的离心率必然-1(以其为一段端点的最长轨道末端必然是树叶,否则与最长轨道矛盾),从而其离心率依然最小,仍为中心。

法2:

考虑最长轨道 $v_0v_1\cdots v_k$,若 k 为偶数, $v_{k/2}$ 是唯一中心;若 k 为奇数, $v_{(k\pm 1)/2}$ 是两相邻中心。

以 k 为偶数为例,显然 $l(v_{k/2}) = k/2$, 否则与最长轨道矛盾。

易知最长轨道上的其它点都不可能是中心;而考虑其它任意点 u 不在最长轨道上, 必定与最长轨道上点连通, 从而也不可能是中心。

ch27

证明: 若 G 是森林, 且有 2k 个度数为奇数的顶点, 则 G 中有 k 条无公共边的轨道, 使得 G 的每条边都在这些轨道上.

对k归纳。

k=1,2 时显然成立。

假设 k-1 时成立,考虑 k 时情形,在其中一棵树取两片树叶 u、v,P(u,v) 为他们之间唯一轨道,则 G-P(u,v) 显然满足 k-1阶情形,由归纳假设有 k-1 条无公共边的轨道,且每条边都在这些轨道上,加回 P(u,v) 依然成立,证毕。

ch2 16

- (1) 试给出破圈法的算法.
- (2) 证明: 破圈法得到的生成树是最小生成树.
- (3) 分析破圈法的时间复杂度.

(1)

- 1. 在图中找一个圈;
- 2. 去掉该圈中权值最大的边;
- 3. 重复1、2直至图中无圈,得到最小生成树。

(2)

最后得到的是连通无圈图,也就是树,记为T'。

考虑与 T' 变数重合最多的最小生成树 T ,记 G=T+T' ,根据破圈法的构造过程, G-T' 中的边的权值和一定大于等于 G-T 中的权值和,而 T 是最小生成树,从而只能 是相等,则 $\omega(T)=\omega\left(T'\right)$ 。

(3)

时间复杂度可以分解为几个部分:

- 1. 寻找权值最大边:在一个圈里用 DFS 寻找权值最大边的时间复杂度是 $O(\nu)$
- 2. 去掉边:去掉边的操作是常数时间 O(1)

3. 循环执行: $O(\epsilon)$ 故总体时间复杂度为 $O(\epsilon \nu)$.

ch2 17

证明: 一棵有向树 T 是有根树, 当且仅当 T 中有且仅有一个顶点的入度为 0.

必要性:由定义,有且仅有根的入度为0。

充分性:由于有且仅有一点入度为0,则其余点的入度必定都>1。而由

 $\sum \deg^+(v) = \epsilon(G) =
u(G) - 1 \geq 0 + 1 imes (
u(G) - 1)$, 从而等号成立,其余点入度为 1 ,

该有向树为有根树。

ch2 18

设 T 是二叉正则树, i 是分支点数, I 是各分支点的深度之和, L 是各树叶的深度之和, 证明: L=I+2i.

对i作归纳。

- 1.i = 1 时显然成立。
- 2. 假设 i 时成立,有 $L_i=I_i+2i$ 。对于 i+1 情形,考虑删去一片树叶的父节点 v (是分支点)下的树叶,变为 i 情形(刚才的分支点变为了树叶),而 $L_{i+1}=L_i-L(v)+2(L(v)+1), I_{i+1}=I_i+L(v)$ 。从而 $L_{i+1}=I_{i+1}+2(i+1)$ 成立。

ch2 20

画出带权 0.2, 0.17, 0.13, 0.1, 0.1, 0.08, 0.06, 0.07, 0.03 的 Huffman 树.

