

MONOMORPHISM CATEGORIES, COTILTING THEORY, AND GORENSTEIN-PROJECTIVE MODULES

PU ZHANG

Dedicated to Claus Michael Ringel on the occasion of his 65th birthday

Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, P. R. China

ABSTRACT. The monomorphism category $\mathcal{S}_n(\mathcal{X})$ is introduced, where \mathcal{X} is a full subcategory of the module category $A\text{-mod}$ of Artin algebra A . The key result is a reciprocity of the monomorphism operator \mathcal{S}_n and the left perpendicular operator $^\perp$: for a cotilting A -module T , there is a canonical construction of a cotilting $T_n(A)$ -module $\mathbf{m}(T)$, such that $\mathcal{S}_n(^\perp T) = {}^\perp \mathbf{m}(T)$.

As applications, $\mathcal{S}_n(\mathcal{X})$ is a resolving contravariantly finite subcategory in $T_n(A)\text{-mod}$ with $\widehat{\mathcal{S}_n(\mathcal{X})} = T_n(A)\text{-mod}$ if and only if \mathcal{X} is a resolving contravariantly finite subcategory in $A\text{-mod}$ with $\widehat{\mathcal{X}} = A\text{-mod}$. For a Gorenstein algebra A , the category $T_n(A)\text{-Gproj}$ of Gorenstein-projective $T_n(A)$ -modules can be explicitly determined as $\mathcal{S}_n({}^\perp A)$. Also, self-injective algebras A can be characterized by the property $T_n(A)\text{-Gproj} = \mathcal{S}_n(A)$. Using $\mathcal{S}_n(A) = {}^\perp \mathbf{m}(D(A_A))$, a characterization of $\mathcal{S}_n(A)$ of finite type is obtained.

Key words and phrases. Monomorphism category, cotilting modules, Gorenstein-projective modules

Introduction

Throughout A is an Artin algebra, and $n \geq 2$ an integer. Let $A\text{-mod}$ be the category of finitely generated left A -modules, and \mathcal{X} a full subcategory of $A\text{-mod}$. Denote by $\text{Mor}_n(A)$ the morphism category, which is equivalent to $T_n(A)\text{-mod}$, where $T_n(A)$ is the upper triangular matrix algebra of A . Let $\mathcal{S}_n(A)$ denote the full subcategory of $\text{Mor}_n(A)$ given by $\mathcal{S}_n(A) = \{X_{(\phi_i)} \in \text{Mor}_n(A) \mid \text{all } \phi_i \text{ are monomorphisms}\}$.

G. Birkhoff [Bir] initiated to classify the indecomposable objects of $\mathcal{S}_2(\mathbb{Z}/\langle p^t \rangle)$. In [RW] the indecomposable objects of $\mathcal{S}_2(\mathbb{Z}/\langle p^t \rangle)$ with $t \leq 5$ were determined. In [Ar] $\mathcal{S}_n(R)$ was denoted by $\mathcal{C}(n, R)$, where R is a commutative uniserial artinian ring; and the complete lists of $\mathcal{C}(n, R)$ of finite type, and of the representation types of $\mathcal{C}(n, k[x]/\langle x^t \rangle)$, have been given by D. Simson [S] (see also [SW]). C. M. Ringel and M. Schmidmeier ([RS1] - [RS3]) have intensively studied the monomorphism category $\mathcal{S}_2(A)$. According to [RS2], $\mathcal{S}_n(A)$ is a functorially finite subcategory in $T_n(A)\text{-mod}$; and hence $\mathcal{S}_n(A)$ has Auslander-Reiten sequences. For more recent work related to the monomorphism categories we refer to [C], [IKM] and [KLM].

2010 Mathematical Subject Classification. 16G10, 16E65, 16G50.

Supported by the NSF of China (10725104), and STCSM (09XD1402500).

pzhang@sjtu.edu.cn.

On the other hand, M. Auslander and I. Reiten [AR] have established a relation between resolving contravariantly finite subcategories and cotilting theory, by asserting that \mathcal{X} is resolving and contravariantly finite with $\widehat{\mathcal{X}} = A\text{-mod}$ if and only if $\mathcal{X} = {}^{\perp}T$ for some cotilting A -module T ([AR], Theorem 5.5(a)), where ${}^{\perp}T$ is the left perpendicular category of T .

Define $\mathcal{S}_n(\mathcal{X})$ to be the full subcategory of $\text{Mor}_n(A)$ of all the objects $X_{(\phi_i)}$, where all $X_i \in \mathcal{X}$, all ϕ_i are monomorphisms, and all $\text{Coker } \phi_i \in \mathcal{X}$. A main problem we concern is: when is $\mathcal{S}_n(\mathcal{X})$ contravariantly finite in $T_n(A)\text{-mod}$? This leads to the following reciprocity of the monomorphism operator \mathcal{S}_n and the left perpendicular operator ${}^{\perp}$: given a cotilting A -module T , then $\mathbf{m}(T) = \begin{pmatrix} T \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \oplus \begin{pmatrix} T \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} T \\ T \\ T \\ \vdots \\ T \end{pmatrix}$ is a cotilting $T_n(A)$ -module, such that $\mathcal{S}_n({}^{\perp}T) = {}^{\perp}\mathbf{m}(T)$. See Theorem 3.1. The proof needs the contravariantly finiteness of $\mathcal{S}_n(A)$ in $T_n(A)\text{-mod}$, and the six adjoint pairs between $A\text{-mod}$ and $T_n(A)\text{-mod}$.

We illustrate this reciprocity with several applications. First, we have a solution to the main problem: $\mathcal{S}_n(\mathcal{X})$ is a resolving contravariantly finite subcategory in $T_n(A)\text{-mod}$ with $\widehat{\mathcal{S}_n(\mathcal{X})} = T_n(A)\text{-mod}$ if and only if \mathcal{X} is a resolving contravariantly finite subcategory in $A\text{-mod}$ with $\widehat{\mathcal{X}} = A\text{-mod}$ (Theorem 3.9).

As another application, taking $T = {}_A A$ for Gorenstein algebra A , the category $T_n(A)\text{-Gproj}$ of Gorenstein-projective $T_n(A)$ -modules, can be determined explicitly as $\mathcal{S}_n({}^{\perp}A)$ (Corollary 4.1). By D. Happel's triangle-equivalence $D^b(A)/K^b(\mathcal{P}(A)) \cong {}^{\perp}A$ for Gorenstein algebra A , one has $D^b(T_n(A))/K^b(\mathcal{P}(T_n(A))) = \mathcal{S}_n({}^{\perp}A)$ (Corollary 4.3). Also, self-injective algebras A can be characterized by the property $\mathcal{S}_n(A) = T_n(A)\text{-Gproj}$ (Theorem 4.4).

The representation type of $\mathcal{S}_n(A)$ is quite different from the ones of A and of $T_n(A)$. For example, $k[x]/\langle x^t \rangle$ is of finite type, $T_2(k[x]/\langle x^t \rangle)$ is of finite type if and only if $t \leq 3$, but $\mathcal{S}_2(k[x]/\langle x^t \rangle)$ is of finite type if and only if $t \leq 5$, where k is an algebraically closed field. If $t > 6$ then $\mathcal{S}_2(k[x]/\langle x^t \rangle)$ is of “wild” type, while $\mathcal{S}_2(k[x]/\langle x^6 \rangle)$ is of “tame” type ([S], Theorems 5.2 and 5.5). A complete classification of indecomposable objects of $\mathcal{S}_2(k[x]/\langle x^6 \rangle)$ is exhibited in [RS3]. Inspired by Auslander's classical result: A is of finite type if and only if there is an A -generator-cogenerator M such that $\text{gl. dim } \text{End}_A(M) \leq 2$ ([Au], Chapter III), by using $\mathcal{S}_n(A) = {}^{\perp}\mathbf{m}(D(A_A))$, we prove that $\mathcal{S}_n(A)$ is of finite type if and only if there is a bi-generator M of $\mathcal{S}_n(A)$ such that $\text{gl. dim } \text{End}_{T_n(A)}(M) \leq 2$ (Theorem 5.1). As a corollary, for a self-injective algebra A , $T_n(A)$ is CM-finite if and only if there is a $T_n(A)$ -generator M which is Gorenstein-projective, such that $\text{gl. dim } \text{End}_{T_n(A)}(M) \leq 2$ (Corollary 5.2).

1. Monomorphism categories

We will define the monomorphism category $\mathcal{S}_n(\mathcal{X})$ and give its basic properties needed later.

1.1. An object of the morphism category $\text{Mor}_n(A)$ is $X_{(\phi_i)} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}_{(\phi_i)}$, where $\phi_i : X_{i+1} \rightarrow X_i$

is an A -map, $1 \leq i \leq n-1$; and a morphism $X_{(\phi_i)} \rightarrow Y_{(\theta_i)}$ is $f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$, where $f_i : X_i \rightarrow Y_i$ is an A -map, $1 \leq i \leq n$, such that every square in the following diagram commutes

$$\begin{array}{ccccccc} X_n & \xrightarrow{\phi_{n-1}} & X_{n-1} & \xrightarrow{\phi_{n-2}} & \cdots & \xrightarrow{\phi_1} & X_1 \\ f_n \downarrow & & f_{n-1} \downarrow & & & & f_1 \downarrow \\ Y_n & \xrightarrow{\theta_{n-1}} & Y_{n-1} & \xrightarrow{\theta_{n-2}} & \cdots & \xrightarrow{\theta_1} & Y_1. \end{array} \quad (1.1)$$

Note that $\text{Mor}_n(A)$ is again an abelian category, and that a sequence $Z_{(\psi_i)} \xrightarrow{f} Y_{(\theta_i)} \xrightarrow{g} X_{(\phi_i)}$ in $\text{Mor}_n(A)$ is exact if and only if $Z_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} X_i$ is exact in $A\text{-mod}$ for each $1 \leq i \leq n$.

1.2. We define $\mathcal{S}_n(\mathcal{X})$ to be the full subcategory of $\text{Mor}_n(A)$ consisting of all the objects $X_{(\phi_i)}$, where $X_i \in \mathcal{X}$ for $1 \leq i \leq n$, $\phi_i : X_{i+1} \hookrightarrow X_i$ is a monomorphism and $\text{Coker } \phi_i \in \mathcal{X}$ for $1 \leq i \leq n-1$. In particular, we have $\mathcal{S}_n(A\text{-mod}) = \{X_{(\phi_i)} \in \text{Mor}_n(A) \mid \phi_i \text{ is monic, } 1 \leq i \leq n-1\}$, which will be denoted by $\mathcal{S}_n(A)$. Dually, $\mathcal{F}_n(\mathcal{X})$ is the full subcategory of $\text{Mor}_n(A)$ consisting of all the objects $X_{(\phi_i)}$, where $X_i \in \mathcal{X}$, $1 \leq i \leq n$, $\phi_i : X_{i+1} \twoheadrightarrow X_i$ is an epimorphism and $\text{Ker } \phi_i \in \mathcal{X}$ for $1 \leq i \leq n-1$. We call $\mathcal{S}_n(\mathcal{X})$ and $\mathcal{F}_n(\mathcal{X})$ the monomorphism category and the epimorphism category of \mathcal{X} , respectively.

Lemma 1.1. *Let A be an Artin algebra and \mathcal{X} a full subcategory of $A\text{-mod}$.*

(i) *Let $0 \rightarrow Z_{(\psi_i)} \rightarrow Y_{(\theta_i)} \rightarrow X_{(\phi_i)} \rightarrow 0$ be an exact sequence in $\text{Mor}_n(A)$. Then the following induced sequences are exact for each $1 \leq i \leq n-1$*

$$\begin{aligned} 0 \rightarrow \text{Ker}(\psi_1 \cdots \psi_i) \rightarrow \text{Ker}(\theta_1 \cdots \theta_i) \rightarrow \text{Ker}(\phi_1 \cdots \phi_i) \rightarrow \\ \rightarrow \text{Coker}(\psi_1 \cdots \psi_i) \rightarrow \text{Coker}(\theta_1 \cdots \theta_i) \rightarrow \text{Coker}(\phi_1 \cdots \phi_i) \rightarrow 0, \end{aligned}$$

and

$$0 \rightarrow \text{Ker } \psi_i \rightarrow \text{Ker } \theta_i \rightarrow \text{Ker } \phi_i \rightarrow \text{Coker } \psi_i \rightarrow \text{Coker } \theta_i \rightarrow \text{Coker } \phi_i \rightarrow 0.$$

(ii) *$\mathcal{S}_n(\mathcal{X})$ is closed under extensions (resp., kernels of epimorphisms, direct summands) if and only if \mathcal{X} is closed under extensions (resp., kernels of epimorphisms, direct summands).*

(iii) *$\mathcal{S}_n(A)$ is closed under subobjects.*

(iv) *If \mathcal{X} is closed under extensions, then there is an equivalence of categories $\mathcal{S}_n(\mathcal{X}) \cong \mathcal{F}_n(\mathcal{X})$ given by*

$$\mathcal{S}_n(\mathcal{X}) \ni \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_{n-1} \\ X_n \end{pmatrix}_{(\phi_i)} \mapsto \begin{pmatrix} \text{Coker } \phi_1 \\ \text{Coker } (\phi_1 \phi_2) \\ \vdots \\ \text{Coker } (\phi_1 \cdots \phi_{n-1}) \\ X_1 \end{pmatrix}_{(\phi'_i)}$$

where $\phi'_i : \text{Coker}(\phi_1 \cdots \phi_{i+1}) \twoheadrightarrow \text{Coker}(\phi_1 \cdots \phi_i)$, $1 \leq i \leq n-2$, and $\phi'_{n-1} : X_1 \twoheadrightarrow \text{Coker}(\phi_1 \cdots \phi_{n-1})$, are the canonical epimorphisms, with a quasi-inverse

$$\mathcal{F}_n(\mathcal{X}) \ni \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_{n-1} \\ X_n \end{pmatrix}_{(\phi_i)} \mapsto \begin{pmatrix} \text{Ker}(\phi_1 \cdots \phi_{n-1}) \\ \vdots \\ \text{Ker}(\phi_{n-2} \phi_{n-1}) \\ \text{Ker } \phi_{n-1} \end{pmatrix}_{(\phi''_i)},$$

where $\phi''_i : \text{Ker}(\phi_i \cdots \phi_{n-1}) \hookrightarrow \text{Ker}(\phi_{i-1} \cdots \phi_{n-1})$, $2 \leq i \leq n-1$, and $\phi''_1 : \text{Ker}(\phi_1 \cdots \phi_{n-1}) \hookrightarrow X_n$, are the canonical monomorphisms.

Proof. Applying Snake Lemma to the following commutative diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & Z_{i+1} & \longrightarrow & Y_{i+1} & \longrightarrow & X_{i+1} \longrightarrow 0 \\ & & \downarrow \psi_1 \cdots \psi_i & & \downarrow \theta_1 \cdots \theta_i & & \downarrow \phi_1 \cdots \phi_i \\ 0 & \longrightarrow & Z_1 & \longrightarrow & Y_1 & \longrightarrow & X_1 \longrightarrow 0 \end{array}$$

we get the first exact sequence in (i); and the second one can be similarly obtained. (ii) follows from (i); (iii) can seen from (1.1), and (iv) is clear. \blacksquare

1.3. Let $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}_{(\phi_i)} \in \text{Mor}_n(A)$. We call X_i the i -th branch of X , and ϕ_i the i -th morphism of X . For each $1 \leq i \leq n$, we define a functor $\mathbf{m}_i : A\text{-mod} \rightarrow \mathcal{S}_n(A)$ as follows. For $M \in A\text{-mod}$, the j -th branch of $\mathbf{m}_i(M)$ is M if $j \leq i$, and 0 if $j > i$; and the j -th morphism of $\mathbf{m}_i(M)$ is id_M if $j < i$, and 0 if $j \geq i$. For each A -map $f : M \rightarrow N$, we define

$$\mathbf{m}_i(f) = \begin{pmatrix} f \\ \vdots \\ f \\ 0 \\ \vdots \\ 0 \end{pmatrix} : \mathbf{m}_i(M) = \begin{pmatrix} M \\ \vdots \\ M \\ 0 \\ \vdots \\ 0 \end{pmatrix} \longrightarrow \mathbf{m}_i(N) = \begin{pmatrix} N \\ \vdots \\ N \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Note that the restriction of \mathbf{m}_i to \mathcal{X} gives a functor $\mathcal{X} \rightarrow \mathcal{S}_n(\mathcal{X})$. A functor $\mathbf{p}_i : A\text{-mod} \rightarrow \mathcal{F}_n(A)$ is dually defined, $1 \leq i \leq n$. The j -th branch of $\mathbf{p}_i(M)$ is M if $j \geq n-i+1$, and 0 if $j < n-i+1$; and the j -th morphism of $\mathbf{p}_i(M)$ is id_M if $j \geq n-i+1$, and 0 if $j < n-i+1$. Also we define

$$\mathbf{p}_i(f) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f \\ \vdots \\ f \end{pmatrix} : \mathbf{p}_i(M) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ M \\ \vdots \\ M \end{pmatrix} \longrightarrow \mathbf{p}_i(N) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ N \\ \vdots \\ N \end{pmatrix}.$$

The restriction of \mathbf{p}_i to \mathcal{X} gives a functor $\mathcal{X} \rightarrow \mathcal{F}_n(\mathcal{X})$. We have $\mathbf{m}_n(M) = \mathbf{p}_n(M)$, $\forall M \in A\text{-mod}$.

The following facts imply that in fact there are six adjoint pairs between $A\text{-mod}$ and $\text{Mor}_n(A)$.

Lemma 1.2. *Let A be an Artin algebra. Then for each object $X = X_{(\phi_i)} \in \text{Mor}_n(A)$ and each A -module M , we have isomorphisms of abelian groups, which are natural in both positions*

$$\text{Hom}_{\text{Mor}_n(A)}(\mathbf{m}_i(M), X) \cong \text{Hom}_A(M, X_i), \quad 1 \leq i \leq n, \quad (1.2)$$

$$\text{Hom}_{\text{Mor}_n(A)}(X, \mathbf{m}_i(M)) \cong \text{Hom}_A(\text{Coker}(\phi_1 \cdots \phi_i), M), \quad 1 \leq i \leq n-1, \quad (1.3)$$

$$\text{Hom}_{\text{Mor}_n(A)}(X, \mathbf{m}_n(M)) \cong \text{Hom}_A(X_1, M), \quad (1.4)$$

$$\text{Hom}_{\text{Mor}_n(A)}(X, \mathbf{p}_i(M)) \cong \text{Hom}_A(X_{n-i+1}, M), \quad 1 \leq i \leq n, \quad (1.5)$$

$$\text{Hom}_{\text{Mor}_n(A)}(\mathbf{p}_i(M), X) \cong \text{Hom}_A(M, \text{Ker}(\phi_{n-i} \cdots \phi_{n-1})), \quad 1 \leq i \leq n-1, \quad (1.6)$$

$$\text{Hom}_{\text{Mor}_n(A)}(\mathbf{p}_n(M), X) \cong \text{Hom}_A(M, X_n). \quad (1.7)$$

Proof. We justify (1.3). Let $\pi_i : X_1 \twoheadrightarrow \text{Coker}(\phi_1 \cdots \phi_i)$ be the canonical epimorphism, $1 \leq i \leq n - 1$. Consider the homomorphism of abelian groups $\text{Hom}_A(\text{Coker}(\phi_1 \cdots \phi_i), M) \rightarrow \text{Hom}_{\text{Mor}_n(A)}(X, \mathbf{m}_i(M))$ given by

$$g \mapsto \begin{pmatrix} g\pi_i \\ g\pi_i\phi_1 \\ \vdots \\ g\pi_i\phi_1 \cdots \phi_{i-1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} : X \longrightarrow \begin{pmatrix} M \\ M \\ \vdots \\ M \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \forall g \in \text{Hom}_A(\text{Coker}(\phi_1 \cdots \phi_i), M).$$

By (1.1) we infer that it is surjective, and it is injective since π is epic. It is clear that the isomorphisms are natural in both positions. \blacksquare

1.4. Let $\mathcal{P}(A)$ (resp. $\mathcal{I}(A)$) be the full subcategory of $A\text{-mod}$ of projective (resp. injective) A -modules, and $\text{Ind}\mathcal{P}(A)$ (resp. $\text{Ind}\mathcal{I}(A)$) be the set of pairwise non-isomorphic indecomposable projective (resp. injective) A -modules.

Lemma 1.3. *Let A be an Artin algebra. Then*

- (i) *There is an equivalence of categories $\text{Mor}_n(A) \cong T_n(A)\text{-mod}$, which preserves the exact structures, where $T_n(A)$ is the $n \times n$ upper triangular matrix algebra* $\begin{pmatrix} A & A & \cdots & A \\ 0 & A & \cdots & A \\ \vdots & & \ddots & \\ 0 & 0 & \cdots & A \end{pmatrix}$.
- (ii) *Under this equivalence, we have*

$$\text{Ind}\mathcal{P}(T_n(A)) = \{\mathbf{m}_1(P), \dots, \mathbf{m}_n(P) \mid P \in \text{Ind}\mathcal{P}(A)\} \subseteq \mathcal{S}_n(A), \quad (1.8)$$

$$\text{Ind}\mathcal{I}(T_n(A)) = \{\mathbf{p}_1(I), \dots, \mathbf{p}_n(I) \mid I \in \text{Ind}\mathcal{I}(A)\} \subseteq \mathcal{F}_n(A). \quad (1.9)$$

Proof. (i) This is well-known, at least for $n = 2$ (see [ARS], p.71). For convenience we include a short justification. For $1 \leq i \leq j \leq n$, let $e_{ij} \in T_n(A)$ be the matrix with 1 in the (i, j) -entry, and 0 elsewhere. For a $T_n(A)$ -module M we have $M = e_{11}M \oplus \cdots \oplus e_{nn}M$ as A -modules, and for an A -map $f : M \rightarrow N$, the restriction f_i of f to $e_{ii}M$ gives an A -map $f_i : e_{ii}M \rightarrow e_{ii}N$. Consider a functor $F : T_n(A)\text{-mod} \rightarrow \text{Mor}_n(A)$ defined by $F(M) = \begin{pmatrix} e_{11}M \\ \vdots \\ e_{nn}M \end{pmatrix}_{(\phi_{M,i})}$, where $\phi_{M,i} : e_{i+1i+1}M \rightarrow e_{ii}M$ is the A -map given by $\phi_{M,i}(e_{i+1i+1}x) = e_{ii}e_{i+1}e_{i+1i+1}x \in e_{ii}M$, $1 \leq i \leq n - 1$, and

$$F(f) = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} : \begin{pmatrix} e_{11}M \\ \vdots \\ e_{nn}M \end{pmatrix}_{(\phi_{M,i})} \longrightarrow \begin{pmatrix} e_{11}N \\ \vdots \\ e_{nn}N \end{pmatrix}_{(\phi_{N,i})}.$$

Then F is fully faithful. For each object $\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}_{(\phi_i)} \in \text{Mor}_n(A)$, put $X = \bigoplus_{1 \leq i \leq n} X_i$, and write an element of X as $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ with $x_i \in X_i$. With a $T_n(A)$ -action on X defined by

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \ddots & & \ddots & \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \sum_{j>1} a_{1j}\phi_1 \cdots \phi_{j-1}(x_j) \\ \vdots \\ a_{ii}x_i + \sum_{j>i} a_{ij}\phi_i \cdots \phi_{j-1}(x_j) \\ \vdots \\ a_{nn}x_n \end{pmatrix},$$

X is a $T_n(A)$ -module such that $F(X) = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}_{(\phi_i)}$, i.e., F is dense.

(ii) Since $\text{End}_{T_n(A)}(\mathbf{m}_i(M)) \cong \text{End}_A(M) \cong \text{End}_{T_n(A)}(\mathbf{p}_i(M))$, $\forall M \in A\text{-mod}$, it follows that if M is indecomposable then $\mathbf{m}_i(M)$ and $\mathbf{p}_i(M)$ are indecomposable. Since \mathbf{m}_i and \mathbf{p}_i are additive functors, (1.8) follows from the decomposition $T_n(A) = \bigoplus_{1 \leq i \leq n} \mathbf{m}_i(A)$ as left $T_n(A)$ -modules. By (1.5) we see that $\mathbf{p}_i(I)$, $1 \leq i \leq n$, are indecomposable injective $T_n(A)$ -modules, where $I \in \text{Ind}\mathcal{I}(A)$, and then we infer (1.9), by comparing the number of pairwise non-isomorphic indecomposable injective $T_n(A)$ -modules. ■

From now on we identify $T_n(A)\text{-mod}$ with $\text{Mor}_n(A)$.

1.5. A full subcategory \mathcal{X} of $A\text{-mod}$ is *resolving* if \mathcal{X} contains all projective A -modules, \mathcal{X} is closed under extensions, kernels of epimorphisms, and direct summands. By Lemmas 1.3(ii) and 1.1(ii), and using functor $\mathbf{m}_1 : \mathcal{X} \rightarrow \mathcal{S}_n(\mathcal{X})$ we get

Corollary 1.4. *Let A be an Artin algebra and \mathcal{X} a full subcategory of $A\text{-mod}$. Then $\mathcal{S}_n(\mathcal{X})$ is a resolving subcategory of $\text{Mor}_n(A)$ if and only if \mathcal{X} is a resolving subcategory of $A\text{-mod}$.*

2. Functorially finiteness of $\mathcal{S}_n(A)$ in $\text{Mor}_n(A)$

The idea of the following result comes from [RS2] for $\mathcal{S}_2(A)$.

Theorem 2.1. (*Ringel - Schmidmeier*) *Let A be an Artin algebra. Then $\mathcal{S}_n(A)$ is a functorially finite subcategory in $\text{Mor}_n(A)$ and has Auslander-Reiten sequences.*

2.1. Let $X_{(\phi_i)} \in \text{Mor}_n(A)$. Fix an injective envelope $e'_i : \text{Ker } \phi_i \hookrightarrow \text{IKer } \phi_i$. Define object $r\text{Mon}(X) \in \mathcal{S}_n(A)$ as follows. We have an A -map $e_i : X_{i+1} \rightarrow \text{IKer } \phi_i$ such that the following diagram commutes for each $1 \leq i \leq n-1$

$$\begin{array}{ccc} \text{Ker } \phi_i & \xrightarrow{\quad} & X_{i+1} \\ e'_i \downarrow & \nearrow e_i & \\ \text{IKer } \phi_i & & \end{array} \quad (2.1)$$

Of course e_1, \dots, e_{n-1} are not unique. However we choose and fix them, and then define

$\theta_i : X_{i+1} \oplus \text{IKer } \phi_{i+1} \oplus \dots \oplus \text{IKer } \phi_{n-1} \longrightarrow X_i \oplus \text{IKer } \phi_i \oplus \text{IKer } \phi_{i+1} \oplus \dots \oplus \text{IKer } \phi_{n-1}$ to be

$$\theta_i = \begin{pmatrix} \phi_i & 0 & 0 & \dots & 0 \\ e_i & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}_{(n-i+1) \times (n-i)}, \quad (2.2)$$

and define

$$r\text{Mon}(X) = \begin{pmatrix} X_1 \oplus \text{IKer } \phi_1 \oplus \dots \oplus \text{IKer } \phi_{n-1} \\ X_2 \oplus \text{IKer } \phi_2 \oplus \dots \oplus \text{IKer } \phi_{n-1} \\ \vdots \\ X_{n-1} \oplus \text{IKer } \phi_{n-1} \\ X_n \end{pmatrix}_{(\theta_i)}. \quad (2.3)$$

By construction all θ_i 's are monomorphisms, and hence $r\text{Mon}(X) \in \mathcal{S}_n(A)$.

Remark 2.2. By definition $\text{rMon}(X)$ seems to be dependent on the choices of e_1, \dots, e_{n-1} . However, for an arbitrary choice of e_1, \dots, e_{n-1} , $\text{rMon}(X)$ will be proved to be a right minimal approximation of X in $\mathcal{S}_n(A)$. Thus, by the uniqueness of a right minimal approximation, $\text{rMon}(X)$ is in fact independent of the choices of e_1, \dots, e_{n-1} , up to isomorphism in $\text{Mor}_n(A)$.

2.2. Denote by $\widehat{\mathcal{X}}$ the full subcategory of $A\text{-mod}$ given by ([AR])

$$\widehat{\mathcal{X}} = \{X \in A\text{-mod} \mid \exists \text{ an exact sequence } 0 \rightarrow X_m \rightarrow \dots \rightarrow X_0 \rightarrow X \rightarrow 0 \text{ with } X_i \in \mathcal{X}, 0 \leq i \leq m\}.$$

A morphism $f : X \rightarrow M$ is *right minimal*, if every endomorphism g of X with $fg = f$ is an isomorphism. A *right approximation of M in \mathcal{X}* is a morphism $f : X \rightarrow M$ with $X \in \mathcal{X}$, such that the induced homomorphism $\text{Hom}_A(X', X) \rightarrow \text{Hom}_A(X', M)$ is surjective for each $X' \in \mathcal{X}$. A right approximation $f : X \rightarrow M$ is a *right minimal approximation* if f is right minimal. If every object M admits a right minimal approximation in \mathcal{X} , then \mathcal{X} is called a *contravariantly finite subcategory in $A\text{-mod}$* . Dually we have a *covariantly finite subcategory in $A\text{-mod}$* . If \mathcal{X} is both contravariantly and covariantly finite in $A\text{-mod}$, then \mathcal{X} is a *functorially finite subcategory in $A\text{-mod}$* .

Lemma 2.3. Let A be an Artin algebra. Then $\mathcal{S}_n(A)$ is a contravariantly finite subcategory in $\text{Mor}_n(A)$ with $\widehat{\mathcal{S}_n(A)} = \text{Mor}_n(A)$.

Explicitly, for each object $X_{(\phi_i)}$ of $\text{Mor}_n(A)$, the epimorphism

$$\begin{pmatrix} (1, 0, \dots, 0) \\ \vdots \\ (1, 0) \\ 1 \end{pmatrix} : \text{rMon}(X) \twoheadrightarrow X \quad (2.4)$$

is a right minimal approximation of X in $\mathcal{S}_n(A)$.

Proof. By (2.2) and (2.3) it is easy to see that (2.4) is an epimorphism of $\text{Mor}_n(A)$. Since $\mathcal{S}_n(A)$ is closed under subobjects, it follows that $\widehat{\mathcal{S}_n(A)} = \text{Mor}_n(A)$. Let $\begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} : Y_{(\psi_i)} \rightarrow X$ be a morphism of $\text{Mor}_n(A)$ with $Y = Y_{(\psi_i)} \in \mathcal{S}_n(A)$. We need to find a morphism $g = \begin{pmatrix} g_1 \\ \vdots \\ g_n \end{pmatrix} : Y \rightarrow \text{rMon}(X)$ such that

$$\begin{pmatrix} (1, 0, \dots, 0) \\ \vdots \\ (1, 0) \\ 1 \end{pmatrix} \begin{pmatrix} g_1 \\ \vdots \\ g_{n-1} \\ g_n \end{pmatrix} = \begin{pmatrix} f_1 \\ \vdots \\ f_{n-1} \\ f_n \end{pmatrix}. \quad (2.5)$$

We will inductively construct $g_i = \begin{pmatrix} f_i \\ \alpha_{ii} \\ \vdots \\ \alpha_{in-1} \end{pmatrix} : Y_i \rightarrow X_i \oplus \text{IKer } \phi_i \oplus \dots \oplus \text{IKer } \phi_{n-1}$, $1 \leq i \leq n-1$, such that $g : Y \rightarrow \text{rMon}(X)$ is a morphism of $\text{Mor}_n(A)$, i.e., $\theta_i g_{i+1} = g_i \psi_i$, or explicitly, such that

$$\begin{pmatrix} \phi_i f_{i+1} \\ e_i f_{i+1} \\ \alpha_{i+1 i+1} \\ \vdots \\ \alpha_{i+1 n-1} \end{pmatrix} = \begin{pmatrix} f_i \psi_i \\ \alpha_{ii} \psi_i \\ \alpha_{i+1 i} \psi_i \\ \vdots \\ \alpha_{in-1} \psi_i \end{pmatrix}. \quad (2.6)$$

Clearly $g_n = f_n$. Since $\psi_{n-1} : Y_n \hookrightarrow Y_{n-1}$ is monic and $\text{IKer } \phi_{n-1}$ is an injective object, it follows that the composition $Y_n \xrightarrow{f_n} X_n \xrightarrow{e_{n-1}} \text{IKer } \phi_{n-1}$ extends to a morphism $\alpha_{n-1 n-1} : Y_{n-1} \rightarrow \text{IKer } \phi_{n-1}$. Define $g_{n-1} = \begin{pmatrix} f_{n-1} \\ \alpha_{n-1 n-1} \end{pmatrix}$. Then we have $\begin{pmatrix} \phi_{n-1} f_n \\ e_{n-1} f_n \end{pmatrix} = \begin{pmatrix} f_{n-1} \psi_{n-1} \\ \alpha_{n-1 n-1} \psi_{n-1} \end{pmatrix}$. Assume that we have constructed g_{n-1}, \dots, g_t ($t \geq 2$), such that (2.6) holds for $t \leq i \leq n-1$. Since

$\psi_{t-1} : Y_t \hookrightarrow Y_{t-1}$ is monic and $\text{IKer } \phi_{t-1}$ is an injective object, it follows that the composition $Y_t \xrightarrow{f_t} X_t \xrightarrow{e_{t-1}} \text{IKer } \phi_{t-1}$ extends to a morphism $\alpha_{t-1t-1} : Y_{t-1} \rightarrow \text{IKer } \phi_{t-1}$. Similarly, for $t \leq j \leq n-1$, $\alpha_{tj} : Y_t \rightarrow \text{IKer } \phi_j$ extends to a morphism $\alpha_{t-1j} : Y_{t-1} \rightarrow \text{IKer } \phi_j$. Define

$$g_{t-1} = \begin{pmatrix} f_{t-1} \\ \alpha_{t-1t-1} \\ \alpha_{t-1t} \\ \vdots \\ \alpha_{t-1n-1} \end{pmatrix}.$$

By construction (2.6) holds for $i = t-1$, and then (2.5) is clearly satisfied. This proves that (2.4) is a right approximation of X in $\mathcal{S}_n(A)$.

Now we prove that (2.4) is right minimal. Assume that $\begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$ is an endomorphism of $\text{rMon}(X)$ such that $\begin{pmatrix} (1,0,\dots,0) \\ \vdots \\ (1,0) \\ 1 \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_{n-1} \\ h_n \end{pmatrix} = \begin{pmatrix} (1,0,\dots,0) \\ \vdots \\ (1,0) \\ 1 \end{pmatrix}$. We need to prove all h_i 's are isomorphisms. Write

$$h_{n-i+1} : X_{n-i+1} \oplus \text{IKer } \phi_{n-i+1} \oplus \cdots \oplus \text{IKer } \phi_{n-1} \longrightarrow X_{n-i+1} \oplus \text{IKer } \phi_{n-i+1} \oplus \cdots \oplus \text{IKer } \phi_{n-1}$$

as $\begin{pmatrix} h_{n-i+1}^{11} & \cdots & h_{n-i+1}^{1i} \\ \vdots & \cdots & \vdots \\ h_{n-i+1}^{i1} & \cdots & h_{n-i+1}^{ii} \end{pmatrix}$. Then h_{n-i+1} is of the form $h_{n-i+1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ h_{n-i+1}^{21} & h_{n-i+1}^{22} & \cdots & h_{n-i+1}^{2i} \\ \vdots & \vdots & \cdots & \vdots \\ h_{n-i+1}^{i1} & h_{n-i+1}^{i2} & \cdots & h_{n-i+1}^{ii} \end{pmatrix}$. It

suffices to prove that all h_{n-i+1} are lower triangular matrices with diagonal elements being isomorphisms. We do this by induction. Clearly $h_n = 1$. From the commutative diagram

$$\begin{array}{ccc} X_n & \xrightarrow{\theta_{n-1}} & X_{n-1} \oplus \text{IKer } \phi_{n-1} \\ \parallel & & \downarrow h_{n-1} \\ X_n & \xrightarrow{\theta_{n-1}} & X_{n-1} \oplus \text{IKer } \phi_{n-1} \end{array}$$

we have $\begin{pmatrix} 1 & 0 \\ h_{n-1}^{21} & h_{n-1}^{22} \end{pmatrix} \begin{pmatrix} \phi_{n-1} \\ e_{n-1} \end{pmatrix} = \begin{pmatrix} \phi_{n-1} \\ e'_{n-1} \end{pmatrix}$, i.e., $h_{n-1}^{21}\phi_{n-1} + h_{n-1}^{22}e_{n-1} = e'_{n-1} : X_n \rightarrow \text{IKer } \phi_{n-1}$. Restricting the both sides to $\text{Ker } \phi_{n-1}$ we get $h_{n-1}^{22}e'_{n-1} = e'_{n-1} : \text{Ker } \phi_{n-1} \rightarrow \text{IKer } \phi_{n-1}$ (see (2.1)). Since e'_{n-1} is an injective envelope, by definition h_{n-1}^{22} is an isomorphism.

Assume that h_{n-t+1} ($t \geq 2$) is a lower triangular matrix with diagonal elements being isomorphisms. Since $\begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} : \text{rMon}(X) \rightarrow \text{rMon}(X)$ is a morphism, we have

$$\begin{pmatrix} \phi_{n-t} & 0 & 0 & \cdots & 0 \\ e_{n-t} & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}_{(t+1) \times t} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ h_{n-t+1}^{21} & h_{n-t+1}^{22} & \cdots & h_{n-t+1}^{2t} \\ \vdots & \vdots & \cdots & \vdots \\ h_{n-t+1}^{t1} & h_{n-t+1}^{t2} & \cdots & h_{n-t+1}^{tt} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ h_{n-t}^{21} & h_{n-t}^{22} & \cdots & h_{n-t}^{2t+1} \\ \vdots & \vdots & \cdots & \vdots \\ h_{n-t}^{t+11} & h_{n-t}^{t+12} & \cdots & h_{n-t}^{t+1t+1} \end{pmatrix} \begin{pmatrix} \phi_{n-t} & 0 & 0 & \cdots & 0 \\ e_{n-t} & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix},$$

i.e.,

$$\begin{pmatrix} \phi_{n-t} & 0 & 0 & \cdots & 0 \\ e_{n-t} & 0 & 0 & \cdots & 0 \\ h_{n-t+1}^{21} & h_{n-t+1}^{22} & h_{n-t+1}^{23} & \cdots & h_{n-t+1}^{2t} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ h_{n-t+1}^{t1} & h_{n-t+1}^{t2} & h_{n-t+1}^{t3} & \cdots & h_{n-t+1}^{tt} \end{pmatrix}_{(t+1) \times t} = \begin{pmatrix} \phi_{n-t} & 0 & 0 & \cdots & 0 \\ h_{n-t}^{21}\phi_{n-t} + h_{n-t}^{22}e_{n-t} & h_{n-t}^{23} & h_{n-t}^{24} & \cdots & h_{n-t}^{2t+1} \\ h_{n-t}^{31}\phi_{n-t} + h_{n-t}^{32}e_{n-t} & h_{n-t}^{33} & h_{n-t}^{34} & \cdots & h_{n-t}^{3t+1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ h_{n-t}^{t+11}\phi_{n-t} + h_{n-t}^{t+12}e_{n-t} & h_{n-t}^{t+13} & h_{n-t}^{t+14} & \cdots & h_{n-t}^{t+1t+1} \end{pmatrix}_{(t+1) \times t}.$$

Comparing the second row of the both sides we see

$$h_{n-t}^{23} = 0, h_{n-t}^{24} = 0, \dots, h_{n-t}^{2t+1} = 0. \quad (2.7)$$

For $3 \leq i \leq t+1$, $2 \leq j \leq t$, comparing the (i, j) -entries in both sides we have

$$h_{n-t}^{ij+1} = h_{n-t+1}^{i-1j}. \quad (2.8)$$

Since $h_{n-t+1}^{ij} = 0$ for $j > i$ and $h_{n-t+1}^{22}, \dots, h_{n-t+1}^{tt}$ are isomorphisms, it follows from (2.7) and (2.8) that $h_{n-t}^{ij} = h_{n-t+1}^{i-1j-1} = 0$, $\forall j > i$, and that $h_{n-t}^{ss} = h_{n-t+1}^{s-1s-1}$ for $s = 3, \dots, t+1$. It remains to prove that h_{n-t}^{22} is an isomorphism. Comparing the $(2, 1)$ -entries we have

$$h_{n-t}^{21}\phi_{n-t} + h_{n-t}^{22}e_{n-t} = e_{n-t} : X_{n-t+1} \longrightarrow \text{IKer } \phi_{n-t}.$$

Again restricting the both sides to $\text{Ker } \phi_{n-t}$ and by a same argument we see that h_{n-t}^{22} is an isomorphism. This completes the proof. \blacksquare

2.3. Proof of Theorem 2.1. By Corollary 1.4 and Lemma 2.3 $\mathcal{S}_n(A)$ is a resolving contravariantly finite subcategory in $T_n(A)\text{-mod}$. Then by Corollary 0.3 of [KS] (which asserts that a resolving contravariantly finite subcategory in $A\text{-mod}$ is also covariantly finite in $A\text{-mod}$) $\mathcal{S}_n(A)$ is a functorially finite subcategory in $T_n(A)\text{-mod}$. Thus $\mathcal{S}_n(A)$ has Auslander-Reiten sequences, by Theorem 2.4 of [AS]. \blacksquare

2.4. For a later use we write down the dual of Theorem 2.1.

Theorem 2.1'. Let A be an Artin algebra. Then $\mathcal{F}_n(A)$ is a functorially finite subcategory in $\text{Mor}_n(A)$ and has Auslander-Reiten sequences.

3. Monomorphism categories and cotilting theory

The promised reciprocity will be proved, and some consequences will be given.

3.1. Let D be the duality $A^{\text{op}}\text{-mod} \rightarrow A\text{-mod}$. For $M \in A\text{-mod}$, denote by $\text{add}(M)$ the full subcategory of $A\text{-mod}$ consisting of all the direct summands of finite direct sums of copies of M , and by ${}^\perp M$ the full subcategory of $A\text{-mod}$ given by $\{X \in A\text{-mod} \mid \text{Ext}_A^i(X, M) = 0, \forall i \geq 1\}$.

An A -module T is an *r-cotilting module* if the following three conditions are satisfied

- (i) $\text{inj.dim } T \leq r$;
- (ii) $\text{Ext}_A^i(T, T) = 0$ for $i \geq 1$; and
- (iii) there is an exact sequence $0 \rightarrow T_s \rightarrow \cdots \rightarrow T_0 \rightarrow D(A_A) \rightarrow 0$ with $T_i \in \text{add}(T)$, $0 \leq i \leq s$.

We refer to [HR] and [AR] for the tilting theory.

Given an A -module M , using functor $\mathbf{m}_i : A\text{-mod} \rightarrow T_n(A)\text{-mod}$ we have a $T_n(A)$ -module

$$\mathbf{m}(M) = \bigoplus_{1 \leq i \leq n} \mathbf{m}_i(M) = \begin{pmatrix} M \\ 0 \\ \vdots \\ 0 \end{pmatrix} \oplus \begin{pmatrix} M \\ 0 \\ \vdots \\ 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} M \\ M \\ \vdots \\ M \end{pmatrix}. \quad (3.1)$$

The key result of this paper is as follows.

Theorem 3.1. *Let A be an Artin algebra, and T an A -module.*

- (i) *If there is an exact sequence $0 \rightarrow T_s \rightarrow \cdots \rightarrow T_0 \rightarrow D(A_A) \rightarrow 0$ with $T_i \in \text{add}(T)$, $0 \leq i \leq s$, then $\mathcal{S}_n(\perp T) = {}^\perp \mathbf{m}(T)$.*
- (ii) *If T is a cotilting A -module, then $\mathbf{m}(T)$ is a unique cotilting $T_n(A)$ -module, up to multiplicities of indecomposable direct summands, such that $\mathcal{S}_n(\perp T) = {}^\perp \mathbf{m}(T)$.*

Taking $T = D(A_A)$ in Theorem 3.1(ii) we have

Corollary 3.2. *Let A be an Artin algebra. Then $\mathcal{S}_n(A) = {}^\perp \mathbf{m}(D(A_A))$.*

In fact, $\mathbf{m}(D(A_A))$ is the unique cotilting $T_n(A)$ -module, up to multiplicities of indecomposable direct summands, such that $\mathcal{S}_n(A) = {}^\perp \mathbf{m}(D(A_A))$; moreover, $\text{inj.dim } \mathbf{m}(D(A_A)) = 1$, and $\text{End}_{T_n(A)}(\mathbf{m}(D(A_A))) \cong (T_n(A))^{op}$. Note that the unique existence of a cotilting $T_n(A)$ -module C such that $\mathcal{S}_n(A) = {}^\perp C$ is also guaranteed by Theorem 5.5(a) in [AR]: since by Lemma 2.3 and Corollary 1.4 $\mathcal{S}_n(A)$ is a resolving contravariantly finite subcategory in $T_n(A)\text{-mod}$ with $\widehat{\mathcal{S}_n(A)} = T_n(A)\text{-mod}$.

If $\text{inj.dim } A_A < \infty$, we can take $T = {}_A A$ in Theorem 3.1(i) to get

Corollary 3.3. *Let A be an Artin algebra with $\text{inj.dim } A_A < \infty$. Then $\mathcal{S}_n(\perp A) = {}^\perp \mathbf{m}(A)$.*

3.2. The proof of Theorem 3.1 needs Theorem 2.1 and the six adjoint pairs between $A\text{-mod}$ and $T_n(A)\text{-mod}$, which were implied by Lemma 1.2 and will be further explored in the following.

Lemma 3.4. *Let A be an Artin algebra and M an arbitrary A -module. Then*

- (i) *For each $X \in T_n(A)\text{-mod}$, we have isomorphisms of abelian groups, which are natural in both positions*

$$\text{Ext}_{T_n(A)}^j(\mathbf{m}_i(M), X) \cong \text{Ext}_A^j(M, X_i), \quad j \geq 0, \quad 1 \leq i \leq n, \quad (3.2)$$

$$\text{Ext}_{T_n(A)}^j(X, \mathbf{m}_n(M)) \cong \text{Ext}_A^j(X_1, M), \quad j \geq 0, \quad (3.3)$$

$$\text{Ext}_{T_n(A)}^j(X, \mathbf{p}_i(M)) \cong \text{Ext}_A^j(X_{n-i+1}, M), \quad j \geq 0, \quad 1 \leq i \leq n, \quad (3.4)$$

$$\text{Ext}_{T_n(A)}^j(\mathbf{p}_n(M), X) \cong \text{Ext}_A^j(M, X_n), \quad j \geq 0. \quad (3.5)$$

- (ii) *For each $X = X_{(\phi_i)} \in \mathcal{S}_n(A)$, we have isomorphisms of abelian groups, which are natural in both positions*

$$\text{Ext}_{T_n(A)}^j(X, \mathbf{m}_i(M)) \cong \text{Ext}_A^j(\text{Coker}(\phi_1 \cdots \phi_i), M), \quad j \geq 0, \quad 1 \leq i \leq n-1. \quad (3.6)$$

(ii)' For each $X = X_{(\phi_i)} \in \mathcal{F}_n(A)$, we have isomorphisms of abelian groups, which are natural in both positions

$$\mathrm{Ext}_{T_n(A)}^j(\mathbf{p}_i(M), X) \cong \mathrm{Ext}_A^j(M, \mathrm{Ker}(\phi_{n-i} \cdots \phi_{n-1})), \quad j \geq 0, \quad 1 \leq i \leq n-1. \quad (3.7)$$

Proof. (i) We justify (3.3). Taking the 1-st branch of a projective resolution

$$\cdots \longrightarrow P_{(\psi_i^1)}^1 \longrightarrow P_{(\psi_i^0)}^0 \longrightarrow X_{(\phi_i)} \longrightarrow 0 \quad (*)$$

of $X = X_{(\phi_i)}$, by (1.8) we get a projective resolution $\cdots \rightarrow P_1^1 \rightarrow P_1^0 \rightarrow X_1 \rightarrow 0$ of X_1 . On the other hand, by (1.4) we get the following isomorphic complexes (for saving the space I omit Hom, and same convention below)

$$\begin{array}{ccccccc} 0 & \longrightarrow & (X, \mathbf{m}_n(M)) & \longrightarrow & (P^0, \mathbf{m}_n(M)) & \longrightarrow & (P^1, \mathbf{m}_n(M)) \longrightarrow \cdots \\ & & \downarrow \wr & & \downarrow \wr & & \downarrow \wr \\ 0 & \longrightarrow & (X_1, M) & \longrightarrow & (P_1^0, M) & \longrightarrow & (P_1^1, M) \longrightarrow \cdots. \end{array}$$

This implies (3.3).

(ii) By Corollary 1.4 $\mathcal{S}_n(A)$ is a resolving subcategory of $T_n(A)\text{-mod}$, hence by Lemma 1.1(i) we deduce from (*) that

$$\cdots \longrightarrow \mathrm{Coker}(\psi_1^1 \cdots \psi_i^1) \longrightarrow \mathrm{Coker}(\psi_1^0 \cdots \psi_i^0) \longrightarrow \mathrm{Coker}(\phi_1 \cdots \phi_i) \longrightarrow 0$$

is also exact (it is here we need the assumption $X_{(\phi_i)} \in \mathcal{S}_n(A)$). By (1.8) we see that $\mathrm{Coker}(\psi_1^j \cdots \psi_i^j)$ is again a projective A -module for every j (it suffices to see this for indecomposable projective $T_n(A)$ -modules, which is of the form $\mathbf{m}_i(P)$), it follows that this exact sequence turns out to be a projective resolution of $\mathrm{Coker}(\phi_1 \cdots \phi_i)$. On the other hand, for each $1 \leq i \leq n-1$, by (1.3) we get the following two isomorphic complexes

$$\begin{array}{ccccccc} 0 & \longrightarrow & (X, \mathbf{m}_i(M)) & \longrightarrow & (P^0, \mathbf{m}_i(M)) & \longrightarrow & (P^1, \mathbf{m}_i(M)) \longrightarrow \cdots \\ & & \downarrow \wr & & \downarrow \wr & & \downarrow \wr \\ 0 & \longrightarrow & (\mathrm{Coker}(\phi_1 \cdots \phi_i), M) & \longrightarrow & (\mathrm{Coker}(\psi_1^0 \cdots \psi_i^0), M) & \longrightarrow & (\mathrm{Coker}(\psi_1^1 \cdots \psi_i^1), M) \longrightarrow \cdots. \end{array}$$

This implies (3.6). ■

3.3. The proof of the following lemma needs Ringel - Schmidmeier's theorem.

Lemma 3.5. Let A be an Artin algebra and $X_{(\phi_i)}$ a $T_n(A)$ -module. If $X_{(\phi_i)} \in {}^\perp \mathbf{m}(D(A_A))$, then ϕ_i is monic, $1 \leq i \leq n-1$.

Proof. Taking a right minimal approximation of $X_{(\phi_i)}$ in $\mathcal{S}_n(A)$, by (2.4) we have an exact sequence

$$0 \longrightarrow K_{(\theta'_i)} \longrightarrow (\mathrm{rMon}(X))_{(\theta_i)} \longrightarrow X_{(\phi_i)} \longrightarrow 0. \quad (**)$$

Applying $\mathrm{Hom}_{T_n(A)}(-, \mathbf{m}_i(D(A_A)))$ to (**) we get an exact sequence, and by (1.3) this exact sequence is

$$0 \longrightarrow (\mathrm{Coker}(\phi_1 \cdots \phi_i), D(A_A)) \longrightarrow (\mathrm{Coker}(\theta_1 \cdots \theta_i), D(A_A)) \longrightarrow (\mathrm{Coker}(\theta'_1 \cdots \theta'_i), D(A_A)) \longrightarrow 0,$$

and hence we get the following exact sequence, which is induced by (**)

$$0 \longrightarrow \text{Coker}(\theta'_1 \cdots \theta'_i) \longrightarrow \text{Coker}(\theta_1 \cdots \theta_i) \longrightarrow \text{Coker}(\phi_1 \cdots \phi_i) \longrightarrow 0.$$

On the other hand, since $\theta_1 \cdots \theta_i$ is monic, by Lemma 1.1(i) we get the following exact sequence, which is again induced by (**)

$$0 \longrightarrow \text{Ker}(\phi_1 \cdots \phi_i) \longrightarrow \text{Coker}(\theta'_1 \cdots \theta'_i) \longrightarrow \text{Coker}(\theta_1 \cdots \theta_i) \longrightarrow \text{Coker}(\phi_1 \cdots \phi_i) \longrightarrow 0.$$

Thus $\text{Ker}(\phi_1 \cdots \phi_i) = 0$, and hence ϕ_i is monic for $1 \leq i \leq n-1$. ■

Given an A -module M , using functor $\mathbf{p}_i : A\text{-mod} \rightarrow T_n(A)\text{-mod}$ we get a $T_n(A)$ -module

$$\mathbf{p}(M) = \bigoplus_{1 \leq i \leq n} \mathbf{p}_i(M) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ M \end{pmatrix} \oplus \begin{pmatrix} 0 \\ \vdots \\ 0 \\ M \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} M \\ M \\ \vdots \\ M \end{pmatrix}.$$

Proposition 3.6. *Let A be an Artin algebra and T an arbitrary A -module. Then*

$$\mathcal{S}_n(\perp T) = {}^\perp \mathbf{m}(T) \cap {}^\perp \mathbf{p}(T) \cap {}^\perp \mathbf{m}(D(A_A)).$$

Proof. By (3.4) we have $\mathcal{S}_n(\perp T) \subseteq {}^\perp \mathbf{p}(T)$. By (3.3) and (3.6) we have $\mathcal{S}_n(\perp T) \subseteq {}^\perp \mathbf{m}(D(A_A))$. Let $X_{(\phi_i)} \in \mathcal{S}_n(\perp T)$. By definition $\phi_i : X_{i+1} \hookrightarrow X_i$ is monic and $\text{Coker } \phi_i \in {}^\perp T$, $1 \leq i \leq n-1$. By the exact sequence $0 \rightarrow \text{Coker } \phi_i \rightarrow \text{Coker}(\phi_1 \cdots \phi_i) \rightarrow \text{Coker}(\phi_1 \cdots \phi_{i-1}) \rightarrow 0$ we inductively see $\text{Coker}(\phi_1 \cdots \phi_i) \in {}^\perp T$ for $1 \leq i \leq n-1$, and then by (3.6) and (3.3) this means $X_{(\phi_i)} \in {}^\perp \mathbf{m}(T)$. This proves $\mathcal{S}_n(\perp T) \subseteq {}^\perp \mathbf{m}(T) \cap {}^\perp \mathbf{p}(T) \cap {}^\perp \mathbf{m}(D(A_A))$.

Conversely, let $X_{(\phi_i)} \in {}^\perp \mathbf{m}(T) \cap {}^\perp \mathbf{p}(T) \cap {}^\perp \mathbf{m}(D(A_A))$. Then by (3.4) we have $X_i \in {}^\perp T$, $1 \leq i \leq n$, and by Lemma 3.5 $\phi_i : X_{i+1} \hookrightarrow X_i$ is monic, $1 \leq i \leq n-1$. By (3.6) we know $\text{Coker}(\phi_1 \cdots \phi_i) \in {}^\perp T$ for $1 \leq i \leq n-1$, and from the exact sequence $0 \rightarrow \text{Coker } \phi_i \rightarrow \text{Coker}(\phi_1 \cdots \phi_i) \rightarrow \text{Coker}(\phi_1 \cdots \phi_{i-1}) \rightarrow 0$ we know $\text{Coker } \phi_i \in {}^\perp T$, $1 \leq i \leq n-1$. This proves $X_{(\phi_i)} \in \mathcal{S}_n(\perp T)$ and completes the proof. ■

3.4. Now we deal with cotilting modules.

Lemma 3.7. *Let A be an Artin algebra and T an r -cotilting A -module. Then $\mathbf{m}(T)$ is an $(r+1)$ -cotilting $T_n(A)$ -module with $\text{End}_{T_n(A)}(\mathbf{m}(T)) \cong (T_n(\text{End}_A(T)))^{\text{op}}$.*

Proof. By (1.2) we have

$$\text{Hom}_{T_n(A)}(\mathbf{m}_i(T), \mathbf{m}_j(T)) \cong \begin{cases} 0, & i > j, \\ \text{End}_A(T), & i \leq j, \end{cases}$$

we infer that $\text{End}_{T_n(A)}(\mathbf{m}(T)) \cong (T_n(\text{End}_A(T)))^{\text{op}}$.

Assume that $\text{inj.dim } T = r$ with a minimal injective resolution $0 \rightarrow T \rightarrow I_0 \rightarrow \cdots \rightarrow I_r \rightarrow 0$. Since $\mathbf{m}_n : A\text{-mod} \rightarrow T_n(A)\text{-mod}$ is an exact functor and $\mathbf{m}_n(I_j) = \mathbf{p}_n(I_j)$ is an injective $T_n(A)$ -module for each j , it follows that $\text{inj.dim } \mathbf{m}_n(T) = r$. Similarly, $\text{inj.dim } \mathbf{p}_{n-i}(T) = r$ for

$1 \leq i \leq n - 1$, and then by the following exact sequence

$$0 \longrightarrow \mathbf{m}_i(T) = \begin{pmatrix} T \\ \vdots \\ \dot{T} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \longrightarrow \mathbf{m}_n(T) = \begin{pmatrix} T \\ \vdots \\ \dot{T} \\ T \\ \vdots \\ T \end{pmatrix} \longrightarrow \mathbf{p}_{n-i}(T) = \begin{pmatrix} 0 \\ \vdots \\ \dot{0} \\ T \\ \vdots \\ T \end{pmatrix} \longrightarrow 0$$

we see $\text{inj.dim } \mathbf{m}_i(T) \leq r + 1$. Thus $\text{inj.dim } \mathbf{m}(T) \leq r + 1$.

By (3.2) we have

$$\text{Ext}_{T_n(A)}^j(\mathbf{m}_i(T), \mathbf{m}(T)) = \text{Ext}_A^j(T, (\mathbf{m}(T))_i) = \text{Ext}_A^j(T, \underbrace{T \oplus \cdots \oplus T}_{n-i+1}) = 0, \quad j \geq 1, \quad 1 \leq i \leq n.$$

This proves $\text{Ext}_{T_n(A)}^j(\mathbf{m}(T), \mathbf{m}(T)) = 0$ for $j \geq 1$.

Since T is a cotilting A -module, we have an exact sequence

$$0 \longrightarrow T_s \longrightarrow T_{s-1} \longrightarrow \cdots \longrightarrow T_2 \xrightarrow{d_2} T_1 \xrightarrow{d_1} T_0 \xrightarrow{d_0} D(A_A) \longrightarrow 0$$

with every $T_j \in \text{add}(T)$. Clearly we have an exact sequence

$$0 \longrightarrow \mathbf{m}_n(T_s) \longrightarrow \cdots \longrightarrow \mathbf{m}_n(T_1) \xrightarrow{\mathbf{m}_n(d_1)} \mathbf{m}_n(T_0) \xrightarrow{\mathbf{m}_n(d_0)} \mathbf{m}_n(D(A_A)) = \mathbf{p}_n(D(A_A)) \longrightarrow 0$$

with every $\mathbf{m}_n(T_j) \in \text{add}(\mathbf{m}_n(T)) \subseteq \text{add}(\mathbf{m}(T))$. For $1 \leq i \leq n - 1$, we have the following exact sequence of $T_n(A)$ -modules

$$0 \longrightarrow \begin{pmatrix} T_0 \\ \vdots \\ \dot{T}_0 \\ \text{Ker } d_0 \\ \vdots \\ \text{Ker } d_0 \end{pmatrix}_{(\phi_j^0)} \xrightarrow{\begin{pmatrix} 1 \\ \vdots \\ \dot{1} \\ a \\ \vdots \\ a \end{pmatrix}} \mathbf{m}_n(T_0) = \begin{pmatrix} T_0 \\ \vdots \\ \dot{T}_0 \\ T_0 \\ \vdots \\ \dot{T}_0 \end{pmatrix} \xrightarrow{\begin{pmatrix} 0 \\ \vdots \\ \dot{0} \\ d_0 \\ \vdots \\ d_0 \end{pmatrix}} \mathbf{p}_i(D(A_A)) = \begin{pmatrix} 0 \\ \vdots \\ \dot{0} \\ D(A) \\ \vdots \\ D(A) \end{pmatrix} \longrightarrow 0,$$

where

$$\phi_j^0 = \begin{cases} \text{id}_{T_0}, & 1 \leq j \leq n - i - 1, \\ a, & j = n - i, \\ \text{id}_{\text{Ker } d_0}, & n - i + 1 \leq j \leq n - 1, \end{cases}$$

and $a : \text{Ker } d_0 \hookrightarrow T_0$ is the embedding. Consider the following sequence of $T_n(A)$ -modules

$$0 \longrightarrow \begin{pmatrix} T_1 \\ \vdots \\ \dot{T}_1 \\ \text{Ker } d_1 \\ \vdots \\ \text{Ker } d_1 \end{pmatrix}_{(\phi_j^1)} \xrightarrow{f} \begin{pmatrix} T_1 \\ \vdots \\ \dot{T}_1 \\ T_1 \\ \vdots \\ T_1 \end{pmatrix} \oplus \begin{pmatrix} T_0 \\ \vdots \\ \dot{T}_0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xrightarrow{\left(\begin{pmatrix} d_1 \\ \vdots \\ \dot{d}_1 \\ d_1 \\ \vdots \\ d_1 \end{pmatrix}, \begin{pmatrix} 1 \\ \vdots \\ \dot{1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right)} \begin{pmatrix} T_0 \\ \vdots \\ \dot{T}_0 \\ \text{Ker } d_0 \\ \vdots \\ \text{Ker } d_0 \end{pmatrix}_{(\phi_j^0)} \longrightarrow 0, \quad (3.8)$$

where

$$f = \begin{pmatrix} \left(\begin{smallmatrix} 1 \\ -d_1 \end{smallmatrix} \right) \\ \vdots \\ \left(\begin{smallmatrix} i \\ -d_1 \\ a \end{smallmatrix} \right) \\ \vdots \\ a \end{pmatrix} : \begin{pmatrix} T_1 \\ \vdots \\ T_1 \\ \text{Ker } d_1 \\ \vdots \\ \text{Ker } d_1 \end{pmatrix} \longrightarrow \begin{pmatrix} T_1 \oplus T_0 \\ \vdots \\ T_1 \oplus T_0 \\ T_1 \\ \vdots \\ T_1 \end{pmatrix}.$$

It is routine to see that f and all other maps in (3.8) are $T_n(A)$ -maps (i.e., (1.1) is satisfied for each map). Since both $0 \rightarrow T_1 \xrightarrow{\left(\begin{smallmatrix} 1 \\ -d_1 \end{smallmatrix} \right)} T_1 \oplus T_0 \xrightarrow{(d_1, 1)} T_0 \rightarrow 0$ and $0 \rightarrow \text{Ker } d_1 \xrightarrow{a} T_1 \xrightarrow{d_1} \text{Ker } d_0 \rightarrow 0$ are exact, it follows that (3.8) is exact.

Repeating this process we get the following exact sequence of $T_n(A)$ -modules

$$\begin{aligned} 0 \longrightarrow \mathbf{m}_{n-i}(T_s) &\longrightarrow \mathbf{m}_n(T_s) \oplus \mathbf{m}_{n-i}(T_{s-1}) \longrightarrow \cdots \longrightarrow \mathbf{m}_n(T_2) \oplus \mathbf{m}_{n-i}(T_1) \\ &\longrightarrow \mathbf{m}_n(T_1) \oplus \mathbf{m}_{n-i}(T_0) \longrightarrow \mathbf{m}_n(T_0) \longrightarrow \mathbf{p}_i(D(A_A)) \longrightarrow 0. \end{aligned}$$

By definition $\mathbf{m}(T)$ is a cotilting $T_n(A)$ -module. ■

3.5. Proof of Theorem 3.1. (i) By Proposition 3.6 we have $\mathcal{S}_n(\perp T) \subseteq {}^\perp \mathbf{m}(T)$. Let $X = X_{(\phi_i)} \in {}^\perp \mathbf{m}(T)$. By the assumption on T we have an exact sequence

$$0 \longrightarrow \mathbf{m}_i(T_s) \longrightarrow \cdots \longrightarrow \mathbf{m}_i(T_0) \longrightarrow \mathbf{m}_i(D(A_A)) \longrightarrow 0, \quad 1 \leq i \leq n,$$

with $\mathbf{m}_i(T_j) \in \text{add}(\mathbf{m}_i(T))$, $0 \leq j \leq s$. It follows from $X_{(\phi_j)} \in {}^\perp \mathbf{m}_i(T)$ that $X_{(\phi_j)} \in {}^\perp \mathbf{m}_i(D(A_A))$, and hence by Lemma 3.5 ϕ_i is monic for $1 \leq i \leq n-1$. Now we can use (3.6) to get $\text{Coker}(\phi_1 \cdots \phi_i) \in {}^\perp T$ for $1 \leq i \leq n-1$, and by (3.3) we have $X_1 \in {}^\perp T$. From the exact sequence $0 \rightarrow X_{i+1} \xrightarrow{\phi_1 \cdots \phi_i} X_1 \rightarrow \text{Coker}(\phi_1 \cdots \phi_i) \rightarrow 0$ we know $X_{i+1} \in {}^\perp T$, $1 \leq i \leq n-1$. From the exact sequence $0 \rightarrow \text{Coker } \phi_i \rightarrow \text{Coker}(\phi_1 \cdots \phi_i) \rightarrow \text{Coker}(\phi_1 \cdots \phi_{i-1}) \rightarrow 0$ we know $\text{Coker } \phi_i \in {}^\perp T$, $1 \leq i \leq n-1$. This proves $X_{(\phi_i)} \in \mathcal{S}_n(\perp T)$ and hence $\mathcal{S}_n(\perp T) = {}^\perp \mathbf{m}(T)$.

(ii) It follows from (i) and Lemma 3.7 that $\mathbf{m}(T)$ is a cotilting $T_n(A)$ -module with $\mathcal{S}_n(\perp T) = {}^\perp \mathbf{m}(T)$. The remaining uniqueness follows from D. Happel's result on the number of pairwise non-isomorphic direct summands of a cotilting module ([H1]). This completes the proof. ■

3.6. With the similar arguments one can prove

Proposition 3.8. *Let A be an Artin algebra and T an arbitrary A -module. Then*

$$\mathcal{S}_n(T^\perp) = \mathbf{m}(T)^\perp \cap {}^\perp \mathbf{m}(D(A_A)).$$

Moreover, if there is an exact sequence $0 \rightarrow T_s \rightarrow \cdots \rightarrow T_0 \rightarrow D(A_A) \rightarrow 0$ with $T_i \in \text{add}(T)$, $0 \leq i \leq s$, then $\mathcal{S}_n(\perp T \cap T^\perp) = {}^\perp \mathbf{m}(T) \cap \mathbf{m}(T)^\perp$.

As an application of Theorem 3.1, we get an answer to the main problem in Introduction.

Theorem 3.9. *Let A be an Artin algebra and \mathcal{X} a full subcategory of $A\text{-mod}$. Then $\mathcal{S}_n(\mathcal{X})$ is a resolving contravariantly finite subcategory in $T_n(A)\text{-mod}$ with $\widehat{\mathcal{S}_n(\mathcal{X})} = T_n(A)\text{-mod}$ if and only if \mathcal{X} is a resolving contravariantly finite subcategory in $A\text{-mod}$ with $\widehat{\mathcal{X}} = A\text{-mod}$.*

Proof. If \mathcal{X} is a resolving contravariantly finite subcategory in $A\text{-mod}$ with $\widehat{\mathcal{X}} = A\text{-mod}$, then by Theorem 5.5(a) of Auslander-Reiten [AR] there is a cotilting A -module T such that $\mathcal{X} = {}^\perp T$. By Theorem 3.1(ii) $\mathbf{m}(T)$ is a cotilting $T_n(A)$ -module such that $\mathcal{S}_n(\mathcal{X}) = {}^\perp \mathbf{m}(T)$. Again by Theorem 5.5(a) in [AR] we know that $\mathcal{S}_n(\mathcal{X})$ is a resolving contravariantly finite subcategory in $T_n(A)\text{-mod}$ with $\widehat{\mathcal{S}_n(\mathcal{X})} = T_n(A)\text{-mod}$. Conversely, assume that $\widehat{\mathcal{S}_n(\mathcal{X})} = T_n(A)\text{-mod}$. By Corollary 1.4 \mathcal{X} is a resolving subcategory of $A\text{-mod}$. Since $\mathcal{S}_n(\mathcal{X})$ is contravariantly finite in $T_n(A)\text{-mod}$ with $\widehat{\mathcal{S}_n(\mathcal{X})} = T_n(A)\text{-mod}$, by using functor $\mathbf{m}_1 : A\text{-mod} \rightarrow \mathcal{S}_n(A)$, which induces a functor $\mathbf{m}_1 : \mathcal{X} \rightarrow \mathcal{S}_n(\mathcal{X})$, we infer that \mathcal{X} is contravariantly finite subcategory in $A\text{-mod}$ with $\widehat{\mathcal{X}} = A\text{-mod}$. \blacksquare

3.7. For a later use we write down the dual versions of Theorem 3.1, Corollaries 3.2 and 3.3, Propositions 3.6 and 3.8.

Theorem 3.1'. *Let A be an Artin algebra and T an arbitrary A -module.*

- (i) *We have $\mathcal{F}_n(T^\perp) = \mathbf{p}(T)^\perp \cap \mathbf{m}(T)^\perp \cap \mathbf{p}(A)^\perp$.*
- (ii) *If there is an exact sequence $0 \rightarrow A \rightarrow T_0 \rightarrow \cdots \rightarrow T_s \rightarrow 0$ with $T_i \in \text{add}(T)$, $0 \leq i \leq s$, then $\mathcal{F}_n(T^\perp) = \mathbf{p}(T)^\perp$.*
- (iii) *If T is a tilting A -module, then $\mathbf{p}(T)$ is a unique tilting $T_n(A)$ -module, up to multiplicities of indecomposable direct summands, such that $\mathcal{F}_n(T^\perp) = \mathbf{p}(T)^\perp$.*
- (iv) *$\mathbf{p}(A)$ is the unique tilting $T_n(A)$ -module, up to multiplicities of indecomposable direct summands, such that $\mathcal{F}_n(A) = \mathbf{p}(A)^\perp$. Moreover, $\text{proj.dim } \mathbf{p}(A) = 1$, and $\text{End}_{T_n(A)}(\mathbf{p}(A)) \cong (T_n(A))^{\text{op}}$.*
- (v) *If $\text{inj.dim}_A A < \infty$, then $\mathcal{F}_n(D(A_A)^\perp) = \mathbf{p}(D(A_A))^\perp$.*
- (vi) *We have $\mathcal{F}_n({}^\perp T) = {}^\perp \mathbf{p}(T) \cap \mathbf{p}(A)^\perp$.*
- (vii) *If there is an exact sequence $0 \rightarrow A \rightarrow T_0 \rightarrow \cdots \rightarrow T_s \rightarrow 0$ with $T_i \in \text{add}(T)$, $0 \leq i \leq s$, then $\mathcal{F}_n(T^\perp \cap {}^\perp T) = \mathbf{p}(T)^\perp \cap {}^\perp \mathbf{p}(T)$.*

3.8. We have the following

Remark 3.10. (i) *The converse of Theorem 3.1(i) is not true. For example, let k be a field and A be the path k -algebra of the quiver $1\bullet \longrightarrow 2\bullet$. Then $T_2(A)$ is the algebra given by the quiver*

with relation $\beta\alpha - \delta\gamma$. The Auslander-Reiten quiver of $T_2(A)$ is

$$\begin{array}{ccccc}
& \left(\begin{smallmatrix} P(1) \\ 0 \end{smallmatrix} \right) & \left(\begin{smallmatrix} 0 \\ S(2) \end{smallmatrix} \right) & \left(\begin{smallmatrix} S(1) \\ S(1) \end{smallmatrix} \right) & \\
\left(\begin{smallmatrix} S(2) \\ 0 \end{smallmatrix} \right) & \nearrow & \nearrow & \nearrow & \\
& \left(\begin{smallmatrix} P(1) \\ S(2) \end{smallmatrix} \right)_\sigma & \longrightarrow & \left(\begin{smallmatrix} P(1) \\ P(1) \end{smallmatrix} \right) & \longrightarrow \left(\begin{smallmatrix} S(1) \\ P(1) \end{smallmatrix} \right)_p \\
& \searrow & \searrow & \searrow & \\
& \left(\begin{smallmatrix} S(2) \\ S(2) \end{smallmatrix} \right) & \left(\begin{smallmatrix} S(1) \\ 0 \end{smallmatrix} \right) & \left(\begin{smallmatrix} 0 \\ P(1) \end{smallmatrix} \right) & \left(\begin{smallmatrix} 0 \\ S(1) \end{smallmatrix} \right)
\end{array}$$

Let $T = S(1) \oplus S(2)$. Then $\mathcal{S}_2(\perp T) = \mathcal{S}_2(\perp S(2)) = \mathcal{S}_2(\text{add}(A))$, and

$$\perp \mathbf{m}(T) = \perp \left(\left(\begin{smallmatrix} S(1) \oplus S(2) \\ 0 \end{smallmatrix} \right) \oplus \left(\begin{smallmatrix} S(1) \oplus S(2) \\ S(1) \oplus S(2) \end{smallmatrix} \right) \right) = \perp \left(\begin{smallmatrix} S(1) \\ 0 \end{smallmatrix} \right) \cap \perp \left(\begin{smallmatrix} S(2) \\ 0 \end{smallmatrix} \right) \cap \perp \left(\begin{smallmatrix} S(2) \\ S(2) \end{smallmatrix} \right).$$

It is clear that

$$\mathcal{S}_2(\perp T) = \mathcal{S}_2(\text{add}(A)) = \text{add} \left(\left(\begin{smallmatrix} S(2) \\ 0 \end{smallmatrix} \right) \oplus \left(\begin{smallmatrix} P(1) \\ 0 \end{smallmatrix} \right) \oplus \left(\begin{smallmatrix} S(2) \\ S(2) \end{smallmatrix} \right) \oplus \left(\begin{smallmatrix} P(1) \\ P(1) \end{smallmatrix} \right) \right) = \perp \mathbf{m}(T),$$

but T does not satisfy the condition in Theorem 3.1(i).

Nevertheless, even in this example, for many A -modules T not satisfying the condition in Theorem 3.1(i), we have $\mathcal{S}_n(\perp T) \neq \perp \mathbf{m}(T)$. For examples, this is the case when $T = S(1)$, or $T = S(2)$, or $T = P(1)$.

(ii) Many cotilting $T_n(A)$ -modules are not of the form $\mathbf{m}(T)$, where T is a cotilting A -module. For example, if k is a field, then $T_3(k)$ is the path k -algebra of the quiver $1\bullet \rightarrow 2\bullet \rightarrow 3\bullet$. There two basic cotilting $T_3(k)$ -modules having the simple module $S(2)$ as a direct summand, which are not of the form $\mathbf{m}(T)$, where $T \in k\text{-mod}$.

4. Application to Gorenstein algebras

Applying Theorem 3.1 to Gorenstein algebras, we explicitly determine all the Gorenstein-projective $T_n(A)$ -modules. We characterize self-injective algebras by monomorphism categories.

4.1. Modules in $\perp_{(A,A)}$ are called *Cohen-Macaulay A-modules*. Denote $\perp A$ by $\mathbf{CM}(A)$. An A -module G is *Gorenstein-projective*, if there is an exact sequence $\cdots \rightarrow P^{-1} \rightarrow P^0 \xrightarrow{d^0} P^1 \rightarrow \cdots$ of projective A -modules, which stays exact under $\text{Hom}_A(-, A)$, and such that $G \cong \text{Ker } d^0$. Let $A\text{-Gproj}$ be the full subcategory of $A\text{-mod}$ of Gorenstein-projective modules. Then $A\text{-Gproj} \subseteq \mathbf{CM}(A)$; and if A is a *Gorenstein algebra* (i.e., $\text{inj.dim } _AA < \infty$ and $\text{inj.dim } A_A < \infty$), then $A\text{-Gproj} = \mathbf{CM}(A)$ (Enochs - Jenda [EJ2], Corollary 11.5.3). Determining all the Cohen-Macaulay A -modules and all the Gorenstein-projective A -modules in explicit way, is a basic requirement in applications (see e.g. [AM], [B], [BGS], [CPST], [EJ2], [GZ], [K]).

Corollary 4.1. (i) Let A be an Artin algebra with $\text{inj.dim } A_A < \infty$. Then

$$\mathbf{CM}(T_n(A)) = \mathcal{S}_n(\mathbf{CM}(A)).$$

(ii) Let A be a Gorenstein algebra. Then $T_n(A)\text{-Gproj} = \mathcal{S}_n(A\text{-Gproj})$.

Proof. (i) is a reformulation of Corollary 3.3 since $\mathbf{m}(A_A) = {}_{T_n(A)}T_n(A)$. If A is Gorenstein, then it is well-known that $T_n(A)$ is again Gorenstein (for $n = 2$ see e.g. [FGR] or [H2]; in general see e.g. [XZ], Lemma 4.1(i)), and hence (ii) follows from (i). \blacksquare

Corollary 4.1(ii) was obtained for $n = 2$ in Theorem 1.1(i) of [LZ2] (see also Proposition 3.6(i) of [IKM]).

4.2. Dually, denote $D(A_A)^\perp$ by $\mathbf{CoCM}(A)$. An A -module G is *Gorenstein-injective* ([EJ1]), if there is an exact sequence $\cdots \rightarrow I^{-1} \rightarrow I^0 \xrightarrow{d^0} I^1 \rightarrow \cdots$ of injective A -modules, which stays exact under $\text{Hom}_A(D(A_A), -)$, and such that $G \cong \text{Ker } d^0$. Let $A\text{-Ginj}$ be the full subcategory of $A\text{-mod}$ of Gorenstein-injective modules. Then $A\text{-Ginj} \subseteq \mathbf{CoCM}(A)$; and if A is Gorenstein then $A\text{-Ginj} = \mathbf{CoCM}(A)$. By Theorem 3.1'(v) and Corollary 4.1 we have

Corollary 4.2. (i) *Let A be an Artin algebra with $\text{inj.dim}_A A < \infty$. Then $\mathbf{CoCM}(T_n(A)) = \mathcal{F}_n(\mathbf{CoCM}(A))$.*

(ii) *Let A be a Gorenstein algebra. Then $T_n(A)\text{-Ginj} = \mathcal{F}_n(A\text{-Ginj})$, and the set of $T_n(A)$ -modules which are simultaneously Gorenstein-projective and Gorenstein-injective is*

$$\{\mathbf{m}_n(M) \mid M \text{ is simultaneously a Gorenstein-projective and Gorenstein-injective } A\text{-module}\}.$$

4.3. Let $D^b(A)$ be the bounded derived category of A , and $K^b(\mathcal{P}(A))$ the bounded homotopy category of $\mathcal{P}(A)$. The singularity category $D_{sg}^b(A)$ of A is defined to be the Verdier quotient $D^b(A)/K^b(\mathcal{P}(A))$. If A is Gorenstein, then there is a triangle-equivalence $D_{sg}^b(A) \cong \underline{\mathbf{CM}}(A)$, where $\underline{\mathbf{CM}}(A)$ is the stable category of $\mathbf{CM}(A)$ modulo $\mathcal{P}(A)$ ([H2], Theorem 4.6; see also [Buc], Theorem 4.4.1). Thus by Corollary 4.1 we have

Corollary 4.3. *Let A be a Gorenstein algebra. Then there is a triangle-equivalence*

$$D_{sg}^b(T_n(A)) \cong \underline{\mathcal{S}_n(\mathbf{CM}(A))}.$$

In particular, if A is a self-injective algebra, then $D_{sg}^b(T_n(A)) \cong \underline{\mathcal{S}_n(A)}$.

4.4. We have the following characterization of self-injective algebras.

Theorem 4.4. *Let A be an Artin algebra. Then A is a self-injective algebra if and only if $T_n(A)\text{-Gproj} = \mathcal{S}_n(A)$.*

Proof. The “only if” part follows from Corollary 4.1(ii). Conversely, by assumption $\begin{pmatrix} D(A_A) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathcal{S}_n(A)$ is a Gorenstein-projective $T_n(A)$ -module. Then there is an exact sequence $\cdots \rightarrow P^{-1} \rightarrow P^0 \xrightarrow{d^0} P^1 \rightarrow \cdots$ of projective $T_n(A)$ -modules with $\begin{pmatrix} D(A_A) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \cong \text{Ker } d^0$. By taking the 1-st branch we get an exact sequence $\cdots \rightarrow P_1^{-1} \rightarrow P_1^0 \xrightarrow{d_1^0} P_1^1 \rightarrow \cdots$ of projective A -modules with $\text{Ker } d_1^0 \cong D(A_A)$. This implies that $D(A_A)$ is a projective module, i.e., A is self-injective. \blacksquare

5. Finiteness of monomorphism categories

This section is to characterize $\mathcal{S}_n(A)$ which is of finite type.

5.1. An additive full subcategory \mathcal{X} of $A\text{-mod}$, which is closed under direct summands, is of *finite type* if there are only finitely many isomorphism classes of indecomposable A -modules in \mathcal{X} . If $A\text{-Gproj}$ is of finite type, then A is said to be *CM-finite*.

An A -module M is an *A -generator* if each projective A -module is in $\text{add } M$. A $T_n(A)$ -generator M is a *bi-generator* of $\mathcal{S}_n(A)$ if $M \in \mathcal{S}_n(A)$ and $\mathbf{m}(D(A_A)) \in \text{add}(M)$.

Theorem 5.1. *Let A be an Artin algebra. Then $\mathcal{S}_n(A)$ is of finite type if and only if there is a bi-generator M of $\mathcal{S}_n(A)$ such that $\text{gl. dim } \text{End}_{T_n(A)}(M) \leq 2$.*

If A is self-injective, then $\mathbf{m}(D(A_A))$ is a projective $T_n(A)$ -module, and hence in $\text{add}(M)$ for each $T_n(A)$ -generator M . Combining Theorems 5.1 and 4.4 we have

Corollary 5.2. *Let A be a self-injective algebra. Then $T_n(A)$ is CM-finite if and only if there is a $T_n(A)$ -generator M which is Gorenstein-projective, such that $\text{gl. dim } \text{End}_{T_n(A)}(M) \leq 2$.*

Corollary 5.2 also simplifies the result in [LZ1] in this special case.

5.2. The proof of Theorem 5.1 will use Corollary 3.2, and Auslander's idea in proving his classical result cited in Introduction. Given modules $M, X \in A\text{-mod}$, denote by $\Omega_M(X)$ the kernel of a minimal right approximation $M' \rightarrow X$ of X in $\text{add}(M)$. Define $\Omega_M^0(X) = X$, and $\Omega_M^i(X) = \Omega_M(\Omega_M^{i-1}(X))$ for $i \geq 1$. Define $\text{rel.dim}_M X$ to be the minimal non-negative integer d such that $\Omega_M^d(X) \in \text{add}(M)$, or ∞ if otherwise. The following fact is well-known.

Lemma 5.3. *(M. Auslander) Let A be an Artin algebra and M be an A -module, and $\Gamma = (\text{End}_A(M))^{\text{op}}$. Then $\text{proj.dim } \Gamma \text{Hom}_A(M, X) \leq \text{rel.dim}_M X$ for all A -modules X . If M is a generator, then equality holds.*

For an A -module T , denote by \mathcal{X}_T the full subcategory of $A\text{-mod}$ given by

$$\{X \mid \exists \text{ an exact sequence } 0 \rightarrow X \rightarrow T_0 \xrightarrow{d_0} T_1 \xrightarrow{d_1} \cdots, \text{with } T_i \in \text{add}(T), \text{ Ker } d_i \in {}^\perp T, \forall i \geq 0\}.$$

Note that $\mathcal{X}_T \subseteq {}^\perp T$, and $\mathcal{X}_T = {}^\perp T$ if T is a cotilting module ([AR], Theorem 5.4(b)).

Lemma 5.4. *Let A be an Artin algebra and M be an A -generator with $\Gamma = (\text{End}_A(M))^{\text{op}}$, and $T \in \text{add}(M)$. Then for every A -module $X \in \mathcal{X}_T$ and $X \notin \text{add}(T)$, there is a Γ -module Y such that $\text{proj.dim}_\Gamma Y = 2 + \text{proj.dim}_\Gamma \text{Hom}_A(M, X)$.*

Proof. By $X \in \mathcal{X}_T$ there is an exact sequence $0 \rightarrow X \xrightarrow{u} T_0 \xrightarrow{v} T_1$ with $T_0, T_1 \in \text{add}(T) \subseteq \text{add}(M)$. This yields an exact sequence

$$0 \longrightarrow \text{Hom}_A(M, X) \xrightarrow{u_*} \text{Hom}_A(M, T_0) \xrightarrow{v_*} \text{Hom}_A(M, T_1) \longrightarrow \text{Coker } v_* \longrightarrow 0.$$

Since the image of v_* is not projective (otherwise, u_* splits, and then one can deduce a contradiction $X \in \text{add}(T)$), putting $Y = \text{Coker } v_*$ we have $\text{proj.dim}_\Gamma Y = 2 + \text{proj.dim}_\Gamma \text{Hom}_A(M, X)$. \blacksquare

5.3. Proof of Theorem 5.1. Assume that $\mathcal{S}_n(A)$ is of finite type. Then there is a $T_n(A)$ -module M such that $\mathcal{S}_n(A) = \text{add}(M)$. Since $\mathbf{m}(D(A_A)) \in \mathcal{S}_n(A) = \text{add}(M)$ and $\mathcal{S}_n(A)$ contains all the projective $T_n(A)$ -modules, by definition M is a bi-generator of $\mathcal{S}_n(A)$. Put $\Gamma = (\text{End}_{T_n(A)}(M))^{\text{op}}$. For every Γ -module Y , take a projective presentation $\text{Hom}_{T_n(A)}(M, M_1) \xrightarrow{f_*} \text{Hom}_{T_n(A)}(M, M_0) \rightarrow Y \rightarrow 0$ of Y , where $M_1, M_0 \in \text{add}(M)$, and $f : M_1 \rightarrow M_0$ is a $T_n(A)$ -map. Since $\text{inj.dim } \mathbf{m}(D(A_A)) = 1$ (Lemma 3.7) and $M_1 \in \mathcal{S}_n(A) = {}^\perp \mathbf{m}(D(A_A))$ (Corollary 3.2), it follows that $\text{Ker } f \in {}^\perp(\mathbf{m}(D(A_A))) = \text{add}(M)$. Thus

$$0 \longrightarrow \text{Hom}_{T_n(A)}(M, \text{Ker } f) \longrightarrow \text{Hom}_{T_n(A)}(M, M_1) \longrightarrow \text{Hom}_{T_n(A)}(M, M_0) \longrightarrow Y \longrightarrow 0$$

is a projective resolution of Γ -module Y , i.e., $\text{proj.dim}_\Gamma Y \leq 2$. This proves $\text{gl. dim } \Gamma \leq 2$. Since A is an Artin algebra, we have $\text{gl. dim } \text{End}_{T_n(A)}(M) = \text{gl. dim } \Gamma \leq 2$.

Conversely, assume that there is a bi-generator M of $\mathcal{S}_n(A)$ such that $\text{gl. dim } \text{End}_{T_n(A)}(M) \leq 2$. Put $\Gamma = (\text{End}_{T_n(A)}(M))^{\text{op}}$. Then $\text{gl. dim } \Gamma \leq 2$. We claim that $\text{add}(M) = {}^\perp \mathbf{m}(D(A_A))$, and hence by Corollary 3.2 $\mathcal{S}_n(A)$ is of finite type. In fact, since $M \in \mathcal{S}_n(A) = {}^\perp \mathbf{m}(D(A_A))$, it follows that $\text{add}(M) \subseteq {}^\perp \mathbf{m}(D(A_A))$. On the other hand, let $X \in {}^\perp \mathbf{m}(D(A_A))$. By Corollary 3.2 $\mathbf{m}(D(A_A))$ is a cotilting $T_n(A)$ -module, and hence ${}^\perp \mathbf{m}(D(A_A)) = \mathcal{X}_{\mathbf{m}(D(A_A))}$, by Theorem 5.4(b) in [AR]. If $X \in \text{add}(\mathbf{m}(D(A_A)))$, then $X \in \text{add}(M)$ since by assumption $\mathbf{m}(D(A_A)) \in \text{add}(M)$. If $X \notin \text{add}(\mathbf{m}(D(A_A)))$, then by Lemma 5.4 there is a Γ -module Y such that $\text{proj.dim}_\Gamma Y = 2 + \text{proj.dim}_\Gamma \text{Hom}_{T_n(A)}(M, X)$. Now by Lemma 5.3 we have

$$\text{rel.dim}_M X = \text{proj.dim}_\Gamma \text{Hom}_{T_n(A)}(M, X) = \text{proj.dim}_\Gamma Y - 2 \leq \text{gl. dim } \Gamma - 2 \leq 0,$$

this means $X \in \text{add}(M)$. This proves the claim and completes the proof. \blacksquare

REFERENCES

- [Ar] D. M. Arnold, Abelian groups and representations of finite partially ordered sets, Canad. Math. Soc. Books in Math., Springer-Verlag, New York, 2000.
- [Au] M. Auslander, Representation dimension of artin algebras, Queen Mary College Math. Notes, London, 1971.
Also in: Selected works of Maurice Auslander, Part 1 (II), Edited by I. Reiten, S. Smalø, Ø. Solberg, Amer. Math. Soc. (1999), 505-574.
- [AR] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86(1991), 111-152.
- [ARS] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math. 36., Cambridge Univ. Press, 1995.
- [AS] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69(1981), 426-454.
- [AM] L. L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85(3)(2002), 393-440.
- [B] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra 288(1)(2005), 137-211.
- [Bir] G. Birkhoff, Subgroups of abelian groups, Proc. Lond. Math. Soc. II, Ser. 38(1934), 385-401.
- [Buc] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Unpublished manuscript, Hamburg (1987), 155pp.
- [BGS] R.-O. Buchweitz, G.-M. Greuel, F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88(1)(1987), 165-182.
- [C] X. W. Chen, Stable monomorphism category of Frobenius category, available in arXiv: 0911.1987.

- [CPST] L. W. Christensen, G. Piepmeyer, J. Striuli, R. Takahashi, Finite Gorenstein representation type implies simple singularity, *Adv. Math.* 218(2008), 1012-1026.
- [EJ1] E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, *Math. Z.* 220(4)(1995), 611-633.
- [EJ2] E. E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Exp. Math. 30. Walter De Gruyter Co., 2000.
- [FGR] R. Fossum, P. Griffith, I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Math. 456, Springer-Verlag, 1975.
- [GZ] N. Gao, P. Zhang, Gorenstein derived categories, *J. Algebra* 323(2010), 2041-2057.
- [H1] D. Happel, Triangulated categories in representation theory of finite dimensional algebras, London Math. Soc. Lecture Notes Ser. 119, Cambridge Uni. Press, 1988.
- [H2] D. Happel, On Gorenstein algebras, in: Representation theory of finite groups and finite-dimensional algebras, *Prog. Math.* 95, 389-404, Birkhäuser, Basel, 1991.
- [HR] D. Happel, C. M. Ringel, Tilted algebras, *Trans. Amer. Math. Soc.* 274(2)(1982), 399-443.
- [IKM] O. Iyama, K. Kato, J. I. Miyachi, Recollement on homotopy categories and Cohen-Macaulay modules, available in arXiv: math. RA 0911.0172.
- [K] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, *Invent. Math.* 88(1)(1987), 153-164.
- [KS] H. Krause, Ø. Solberg, Applications of cotorsion pairs, *J. London Math. Soc.* 68(3)(2003), 631-650.
- [KLM] D. Kussin, H. Lenzing, H. Meltzer, Nilpotent operators and weighted projective lines, available in arXiv: math. RT 1002.3797.
- [LZ1] Z. W. Li, P. Zhang, Gorenstein algebras of finite Cohen-Macaulay type, *Adv. Math.* 223(2010), 728-734.
- [LZ2] Z. W. Li, P. Zhang, A construction of Gorenstein-projective modules, *J. Algebra* 323(2010), 1802-1812.
- [RW] F. Richman, E. A. Walker, Subgroups of p^5 -bounded groups, in: Abelian groups and modules, Trends Math., Birkhäuser, Basel, 1999, 55-73.
- [RS1] C. M. Ringel, M. Schmidmeier, Submodules categories of wild representation type, *J. Pure Appl. Algebra* 205(2)(2006), 412-422.
- [RS2] C. M. Ringel, M. Schmidmeier, The Auslander-Reiten translation in submodule categories, *Trans. Amer. Math. Soc.* 360(2)(2008), 691-716.
- [RS3] C. M. Ringel, M. Schmidmeier, Invariant subspaces of nilpotent operators I, *J. rein angew. Math.* 614 (2008), 1-52.
- [S] D. Simson, Representation types of the category of subprojective representations of a finite poset over $K[t]/(t^m)$ and a solution of a Birkhoff type problem, *J. Algebra* 311(2007), 1-30.
- [SW] D. Simson, M. Wojewodzki, An algorithmic solution of a Birkhoff type problem, *Fundamenta Informaticae* 83(2008), 389-410.
- [XZ] B. L. Xiong, P. Zhang, Cohen-Macaulay modules over triangular matrix Artin algebras, preprint (2009).