Optimal Error Dynamics for Flight Guidance

Gaurav Kumar 190334

AE691A Course Project

Advisor: Prof. Mangal Kothari

This project is based on paper:

He, Shaoming and Lee, Chang-Hun. (2018). Optimality of Error Dynamics in Missile Guidance Problems. Journal of Guidance, Control, and Dynamics. 41. 1-10. 10.2514/1.G003343.

Motivation

General form of system dynamics:

$$\dot{\epsilon}(t) = g(t)u(t)$$

Error dynamics used by conventional controllers:

$$\dot{\epsilon}(t) + k\epsilon(t) = 0$$

Ensures asymptotic convergence with exponential rate k

This error dynamics has two major drawbacks:

- finite-time convergence is not strictly guaranteed.
- only focuses on how to drive the tracking error to 0.
- Never considers how to achieve zero tracking error optimally with respect to a meaningful performance index.

Optimal Error Dynamics

The cost function $J=\frac{1}{2}\int_t^{\tau_f}R(\tau)u^2(\tau)d\tau$ is minimised if the error dynamics is chosen as:

$$\dot{\epsilon}(t) + \frac{\Gamma(t)}{t_{aa}} = 0$$

where:

$$\Gamma(t) = \frac{t_{go}R^{-1}(\tau)g^{2}(\tau)}{\int_{t}^{t_{f}} R^{-1}(\tau)g^{2}(\tau)d\tau}$$

Extension to n-dimension

The cost function
$$J=\frac{1}{2}\int_t^{t_f}U^T(\tau)R(\tau)U(\tau)d\tau$$
 is minimised if

R is symmetric matrix and the error dynamics is chosen as:

$$\dot{\epsilon}(t) + \frac{\Gamma(t)}{t_{aa}} = 0$$

where:

$$\Gamma(t) = \frac{t_{go}G(\tau)R^{-1}(\tau)G^{T}(\tau)}{\int_{t}^{t_{f}} G(\tau)R^{-1}(\tau)G^{T}(\tau)d\tau}$$

Proof

Integrating the system dynamics equation:

$$-\epsilon(t) = \int_{t}^{t_f} G(\tau)U(\tau)d\tau$$
$$= \int_{t}^{t_f} G(\tau)e^{-\frac{1}{2}\log R(\tau)}e^{\frac{1}{2}\log R(\tau)}U(\tau)d\tau$$

where:

$$\log R = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(R-I)^k}{k}$$

Applying Schwarz's inequality:

$$\begin{split} [-\epsilon(t)]^2 & \leq \int_t^{t_f} G(\tau) e^{-\frac{1}{2}\log R(\tau)} e^{-\frac{1}{2}(\log R(\tau))^T} G^T(\tau) d\tau \int_t^{t_f} U^T(\tau) e^{\frac{1}{2}(\log R(\tau))^T} e^{\frac{1}{2}\log R(\tau)} U(\tau) d\tau \\ & \leq \int_t^{t_f} G(\tau) e^{-\frac{1}{2}\log R(\tau)} e^{-\frac{1}{2}\log R^T(\tau)} G^T(\tau) d\tau \int_t^{t_f} U^T(\tau) e^{\frac{1}{2}\log R^T(\tau)} e^{\frac{1}{2}\log R(\tau)} U(\tau) d\tau \end{split}$$

Where we use property:

$$(e^A)^T = e^{A^T}$$
$$(\log(A))^T = \log(A^T)$$

Now using the Baker-Campbell-Hausdorff formula:

$$e^X e^Y = e^Z$$

$$Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \dots$$

The inequality reduces to:

The inequality reduces to:
$$[-\epsilon(t)]^2 \leq \int_t^{t_f} G(\tau) R^{-1}(\tau) G^T(\tau) d\tau \int_t^{t_f} U^T(\tau) R(\tau) U(\tau) d\tau$$
 If R satisfies:

$$[R, R^T] = 0$$
$$\Rightarrow R = R^T$$

Application to Missile Guidance

Fig. 1 The homing engagement geometry and parameter definitions.

Kinematics Equation

$$\dot{y} = v$$

$$\dot{v} = a_{T_{\sigma}} \cos(\sigma - \sigma_0) - a_{M_{\sigma}} \cos(\sigma - \sigma_0)$$

$$a_{M_{\sigma}} = a_M \cos(\gamma_M - \sigma)$$

$$\dot{\sigma} = \frac{y + vt_{go}}{V_c t_{go}^2}$$

Error dynamics

ZEM control:
$$a_{M_{\sigma}} = NV_c\dot{\sigma} + \frac{N}{2}a_{T_{\sigma}}$$

Guidance To Collision Control: $a_M \sin \alpha = \frac{K V_M(t) \epsilon}{t_{go}}$

Numerical Simulation

Table 1

Parameters	Values
Missile-target initial relative range r(0), km	5
Initial LOS angle $\sigma(0)$, deg	0
Missile initial velocity $V_M(0)$, m/s	2500
Missile initial flight-path angle $\gamma_M(0)$, deg	160
Target velocity V_T , m/s	3000
Target initial flight-path angle $\gamma_M(0)$, deg	20

Application to Space Docking

$$\delta \ddot{x} - 3n^2 \delta x - 2n \delta \dot{y} = \frac{F_x}{m} = u_x$$

$$\delta \ddot{y} + 2n \delta \dot{x} = \frac{F_y}{m} = u_y$$

$$\delta \ddot{z} + n^2 \delta z = \frac{F_z}{m} = u_z$$

$$\Rightarrow \dot{X} = AX + BU$$

$$\dot{\epsilon} = A\epsilon + BU$$

$$\dot{\epsilon} + \frac{kI_6}{t_{ao}} = 0$$

$$\Rightarrow BU = -\left(\frac{kI_6}{t_{go}} + A\right)\epsilon$$

$$J = \frac{1}{2} \int_{t}^{t_f} \frac{U^{T}(\tau)U(\tau)}{t_{go}^{k-1}} d\tau$$

Numerical Simulation

Table 2 Simulation Parameters

Parameter	Value	Unit
m_1	200	kg
m_2	200	kg
n	7.29×10^{-5}	rad/sec
$\delta x(0)$	-15	m
$\delta y(0)$	-25	m
$\delta z(0)$	5	m
$\dot{\delta}x(0)$	0.5	m/s
$\dot{\delta}y(0)$	0.5	m/s
$\dot{\delta}z(0)$	0	m/s
t_f	12	days

Conclusion

- Finite time convergence is achieved
- Control effort required is optimal and less than PNG
- Can be applied to n-dimensional systems

Thank You