Vertex of the Quadratic

Given a quadratic $t(e) = a e^2 + b e + c$ compute its value at $e_1 = -\frac{b}{2a}$ namely $t(e_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at ${\sf e}_{1^+}{\sf h}$, namely $t(e_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = t(e_1 + h) - t(e_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$t(e) = 4e^2 + 32e + 60$

1000

Example 2.

$t(e) = -2e^2 - 4e + 43$

