TECHNICKÁ UNIVERZITA V KOŠICIACH Fakulta BERG

Ústav riadenia a informatizácie výrobných procesov

Výskum nepriameho merania teploty a uhlíka v procese skujňovania

(zmluva o dielo č. P-101-0030/17)

Riešiteľský kolektív:

Za zhotoviteľa:

doc. Ing. Marek Laciak, PhD. (vedúci riešiteľ projektu)
prof. Ing. Ivo Petráš, DrSc.
prof. Ing. Ján Terpák, CSc.
doc. Ing. Ján Kačur, PhD.
doc. Ing. Patrik Flegner, PhD.
doc. Ing. Milan Durdán, PhD.

Za objednávateľa:

Ing. Gabriel Tréfa, PhD., MBA

OBSAH:

	Zoznar	n tab	uliek:	3
	Zoznar	n obr	ázkov:	4
Ú	vod			5
1.	Mod	lely p	re nepriame meranie uhlíka	6
	1.1	Mod	lel bilancie uhlíka z koncentrácie CO a ${ m CO_2}$	6
	1.1.3	1	Vstupy a výstupy	8
	1.1.2	2	Algoritmus	9
	1.1.3	3	Dosiahnuté výsledky	10
	1.2	Mod	lel stanovenia gradientu relatívnej rýchlosti oduhličenia	14
	1.2.3	1	Vstupy a výstupy	15
	1.2.2	2	Algoritmus	16
	1.2.3	3	Dosiahnuté výsledky	16
	1.3	Kom	binácia modelov pre nepriame meranie uhlíka	22
2.	Mod	lel pr	e nepriame meranie teploty	23
	2.1	Vstu	py a výstupy	23
	2.2	Algo	ritmus a procedúry modelu	24
	2.3	Dosi	ahnuté výsledky	27
Zá	iver			35
Po	oužitá li	terat	úra	38
Pr	ílohy			39

Zoznam tabuliek:

Tab. 1.	Početnosť tavieb v jednotlivých triedach
Tab. 2.	Početnosť tavieb podľa rozdielu časov pre (drvC/d τ)min = –0.0049 s-1 a Nmin = 3
Tab. 3.	Početnosť tavieb podľa rozdielu časov pre (drvC/d τ)min = –0.0049 s-1 a Nmin = 25
Tab. 4.	Početnosť tavieb podľa rozdielu časov pre (drvC/d τ)min = –0.0049 s-1 a Nmin = 28
Tab. 5.	Početnosť tavieb v jednotlivých triedach presnosti (Var.1 – Var.3)
Tab. 6.	Početnosť tavieb v jednotlivých triedach presnosti (Var.4)
Tab. 7.	Početnosť tavieb v jednotlivých triedach presnosti (Var.5-Var.7)
Tab. 8.	Detailnejšia početnosť tav. v jednotlivých triedach presnosti (Var.5)
Tab. 9.	Početnosť tavieb v jednotlivých triedach presnosti (Var.8)
Tab. 10.	Detailnejšia početnosť tav. v jednotlivých triedach presnosti (Var.8)
Tab. 11.	Porovnanie výsledkov modelu NM teploty pre Var.5 a Var.8

Zoznam obrázkov:

Obr. 1.	Priebeh koncentrácie CO+CO2 a odpovedajúcej plochy
Obr. 2.	Závislosť plochy a hmotnosti uhlíka
Obr. 3.	Priebeh koncentrácie uhlíka pre tavbu č. 43608
Obr. 4.	Algoritmus realizácie metódy bilancie uhlíka z koncentrácie CO a CO₂
Obr. 5.	Závislosť plochy pod CO+CO2 na hmotnosti uhlíka
Obr. 6.	Závislosť plochy pod CO+CO2 na hmotnosti uhlíka korigovaná
Obr. 7.	Histogram početnosti absolútnej chyby koncentrácie uhlíka
Obr. 8.	Pareto diagram absolútnej chyby koncentrácie uhlíka
Obr. 10.	Koncentrácia CO, CO2 a relatívna rýchlosť oduhličenia pre tavbu číslo 45016
Obr. 11.	Relatívna rýchlosť oduhličenia a jej gradient pre tavbu číslo 45016
Obr. 12.	Algoritmus realizácie metódy relatívnej rýchlosti oduhličenia
Obr. 13.	Histogram početnosti tavieb pre (drvC/d τ)min = -0.0049 s-1 a Nmin = 3
Obr. 14.	Pareto diagram pre $(drvC/d\tau)$ min = -0.0049 s-1 a Nmin = 3
Obr. 15.	Histogram početnosti tavieb pre (drvC/d τ)min = -0.0049 s-1 a Nmin = 25
Obr. 16.	Pareto diagram pre $(drvC/d\tau)$ min = -0.0049 s-1 a Nmin = 25
Obr. 17.	Histogram početnosti tavieb pre (drvC/d τ)min = -0.0049 s-1 a Nmin = 28
Obr. 18.	Pareto diagram pre $(drvC/d\tau)$ min = -0.0049 s-1 a Nmin = 28
Obr. 19.	Principiálna schéma modelu pre nepriame meranie teploty
Obr. 20.	Algoritmus modelu teploty
Obr. 21.	Závislosť koeficienta strát na teplote surového železa
Obr. 22.	Závislosť koeficienta strát na čase od odsírenia po začiatok tavby
Obr. 23.	Závislosť koeficienta strát na súčte uhlíka a kremíka v tavenine
Obr. 24.	Histogram pre počet tavieb – Var.5
Obr. 25.	Histogram pre počet tavieb – Var.6
Obr. 26.	Histogram pre počet tavieb – Var.7
Obr. 27.	Detailnejší histogram pre počet tavieb – Var.5
Obr. 28.	Histogram pre počet tavieb – Var.8
Obr. 29.	Detailnejší histogram pre počet tavieb – Var.8
Obr. 30.	Obrazovka návrhu realizácie modelov nepriameho merania uhlíka a teploty
Obr. 31.	Detail z obrazovky návrhu realizácie modelov nepriameho merania uhlíka a teploty

Úvod

Predložená správa z projektu zahŕňa dosiahnuté výsledky overenia matematických modelov pre nepriame meranie teploty taveniny a obsahu uhlíka v tavenine v priebehu tavby. Je výstupom 3.etapy riešenia projektu s názvom "*Výskum nepriameho merania teploty a uhlíka v procese skujňovania*". V rámci tejto etapy boli off-line verifikované vybrané modely nepriameho merania uhlíka a teploty taveniny:

- Model bilancie uhlíka z koncentrácie CO a CO₂,
- Model stanovenia gradientu relatívnej rýchlosti oduhličenia,
- Kombinácia modelov pre nepriame meranie uhlíka,
- Deterministický model pre nepriame meranie teploty.

1. Modely pre nepriame meranie uhlíka

Pre nepriame meranie uhlíka boli navrhnuté a v predchádzajúcej správe [1] sú popísané viaceré modely nepriameho merania uhlíka. Na základe oponentúry bol zo strany objednávateľa vybraný model bilancie uhlíka z koncentrácie CO a CO₂, a taktiež model stanovenia gradientu relatívnej rýchlosti oduhličenia, ktoré sú v tejto správe podrobne popísané a off-line verifikované.

1.1 Model bilancie uhlíka z koncentrácie CO a CO₂

Metóda bilancie uhlíka vychádza z predpokladu, že plocha pod krivkou koncentrácie CO+CO₂ je priamo úmerná uhlíku, ktorý je na vstupe v surovom železe a šrote a následne na výstupe v podobe uhlíka spáleného na CO a CO₂. Napríklad v prípade tavby číslo 43653 je konkrétne hodnota plochy rovná 706.8406 m³m⁻³s a množstvo uhlíka na začiatku tavby je 7069.82 kg (Obr. 1).

Obr. 1. Priebeh koncentrácie CO+CO2 a odpovedajúcej plochy

Po skončení každej tavby je možné stanoviť aká bola plocha a aké množstvo uhlíka bolo na začiatku a pre väčšie množstvo vybraných tavieb vieme stanoviť závislosť medzi celkovou plochou a počiatočnou hmotnosťou uhlíka v lineárnom tvare

$$Plp = a_0 + a_1 HmCp, (1.1)$$

kde *Plp* – celková plocha pod priebehom CO a CO₂ (m³m⁻³s), *HmCp* – počiatočná hmotnosť uhlíka v kovonosnej vsádzke (kg). Na Obr. 2 je zobrazený príklad takejto závislosti.

Obr. 2. Závislosť plochy a hmotnosti uhlíka

Metóda potom vychádza z predpokladu, že na základe hmotnosti uhlíka na začiatku tavby a známej závislosti určíme plochu na konci tavby (vzťah 1.1). Následne potom počítame plochu priebežne podľa vzťahu

$$Pl = Pl + (P_{CO} + P_{CO2}) / 100,$$
 (1.2)

a s nárastom plochy potom úmerne aktuálnu hmotnosť uhlíka

$$HmC = HmCp (Plp - Pl)/Plp. (1.3)$$

Problém je v stanovení koncentrácie uhlíka, resp. k akej hmotnosti taveniny je potrebné vztiahnuť hmotnosť uhlíka, aby sme dostali percento uhlíka v tavenine, t.j.

$$PeC = HmC 100/HmTa. (1.4)$$

Problém je možné riešiť tak, že dlhodobo sledujeme výťažnosť kovonosnej vsádzky a z tejto hodnoty následne je možné určiť predpokladanú hmotnosť taveniny podľa vzťahu

$$HmTa = HmKoVs\cdot Vyt / 100, \tag{1.5}$$

kde Pl – aktuálna plocha pod priebehom CO a CO₂ (m³m³s), P_{CO} , P_{CO2} – percento CO a CO₂ (%), HmC – aktuálna hmotnosť uhlíka (kg), PeC – percento uhlíka v tavenine (%), HmTa – hmotnosť taveniny (kg), HmKoVs – hmotnosť kovonosnej vsádzky (kg), Vyt – výťažnosť kovonosnej vsádzky (%).

Konkrétny priebeh koncentrácie uhlíka napríklad pre tavbu číslo 43608 je znázornený na Obr. 3.

Obr. 3. Priebeh koncentrácie uhlíka pre tavbu č. 43608

1.1.1 Vstupy a výstupy

Pre realizáciu metódy sú potrebné statické a dynamické dáta. V prípade statických dát sú potrebné nasledujúce vstupy:

- požadované percento C v oceli nastavené operátorom (C_SET, hm.%) Cno,
- hmotnosť šrotu (SROT_VAHA, kg) Hsrc,
- hmotnosť jednotlivých druhov šrotu (kg) Hsr(i),
- percento C v jednotlivých druhov šrotu (hm.%) Csr(i),
- hmotnosť surového železa (HMOTN_SUZE, kg) Hsz,
- percento C v surovom železe (C_SUZE, hm.%) Csz,
- výťažnosť (VYTAZOK, hm.%) Voc.

V prípade dynamických dát sú potrebné vstupy:

- príznak fúkania kyslíka (OC2 COMM1 K4 FUKANIE, 0/1) PrF,
- koncentrácia oxidu uhoľnatého (K4_CO, obj.%) CO.
- koncentrácia oxidu uhličitého (K4_CO2, obj.%) CO2.

Výstupom je:

- hmotnosť uhlíka (kg) HmC, resp.
- koncentrácia uhlíka (%) PeC,
- príznak ukončenia tavby (0/1) PrUT.

1.1.2 Algoritmus

Algoritmus pre realizáciu metódy bilancie uhlíka je znázornený na Obr. 4. Vychádza z načítania statických a dynamických dát, t.j. percento C v oceli nastavené operátorom (Cno), hmotnosť šrotu (Hsr), hmotnosť surového železa (Hsz), percento C v surovom železe (Csz), výťažnosť (Voc), príznak fúkania (PrF), koncentrácia CO (CO) a koncentrácia CO₂ (CO2).

Obr. 4. Algoritmus realizácie metódy bilancie uhlíka z koncentrácie CO a CO₂

1.1.3 Dosiahnuté výsledky

Navrhnutá metóda bola verifikovaná off-line na vybranej skupine tavieb. Vybranú skupinu tavieb sme rozdelili na dve podskupiny. Prvú podskupinu tvorilo 100 tavieb (č. tavby $45016 \div 45025$, $45041 \div 45044$, 45046, 45047, $45054 \div 45057$, 45059, 45060, 45062, $45080 \div 45083$, 45088, $45092 \div 45103$, $45105 \div 45107$, 45112, $45114 \div 45120$, $45125 \div 45133$, 45136, 45137, 45142, 45143, $45155 \div 45158$, $45162 \div 45194$).

Pre uvedené tavby boli realizované simulácie a výsledky závislosti plochy pod priebehom $CO+CO_2$ na hmotnosti uhlíka v kovonosnej vsádzke sú zobrazené na grafe Obr. 5. Metódou najmenších štvorcov boli stanovené parametre lineárnej závislosti, t.j. $a_0 = 231.48$, resp. $a_1 = 0.0648$.

Na grafe Obr. 5 sú taktiež zobrazené priebehy, ktoré sú posunuté o $\pm 10\%$ oproti závislosti (1.1). Mimo tieto priebehy je vidieť extrémne hodnoty, ktoré sme z ďalšej analýzy vylúčili a opätovne zistili parametre lineárnej závislosti, t.j. $a_0 = 333.86$, resp. $a_1 = 0.0495$ (viď Obr. 6), pričom hmotnosť uhlíka sa pohybuje v intervale <5933.55,7132.26> kg. Okrem parametrov bola na základe statických dát o skutočnej výťažnosti stanovená jej priemerná hodnota 92.0638 %, pričom štandardná odchýlka je ± 1.3473 %, resp. minimálna hodnota 88.2882 % a maximálna hodnota 94.5541 %.

Obr. 5. Závislosť plochy pod CO+CO2 na hmotnosti uhlíka

Na základe vyššie zistených parametrov závislosti a hodnoty výťažnosti boli následne realizované simulácie na druhej podskupine 140 tavieb (č. tavby 45195 ÷ 45200, 45209 ÷ 45212, 45227 ÷ 45230, 45235 ÷ 45241, 45249, 45255, 45257 ÷ 45259, 45261,

 $45264 \div 45277$, $45279 \div 45284$, $45291 \div 45298$, 45300, 45305, 45307, 45311, $45317 \div 45320$, $45322 \div 45328$, 45330, 45331, 45334, 45335, 45338, 45340, 45341, $45358 \div 45361$, $45363 \div 45366$, $45372 \div 45376$, 45384, 45387, $45389 \div 45391$, $45396 \div 45400$, $45402 \div 45405$, $45407 \div 45413$, $45415 \div 45417$, $45423 \div 45425$, $45427 \div 45429$, 45436, 45439, 45440, $45442 \div 45444$, $45446 \div 45449$, 45451, 45452, 45458, 45461, 45465, 45468, 45472, 45484, 45485, 45489).

Obr. 6. Závislosť plochy pod CO+CO2 na hmotnosti uhlíka korigovaná

Na základe simulácii boli vyhodnotené rozdiely medzi koncentráciou uhlíka z modelu a meranou hodnotou. V tabuľke Tab. 1 sú uvedené výsledky vyhodnotenia početnosti tavieb pre jednotlivé triedy absolútnej chyby koncentrácie uhlíka.

Tab. 1. Početnosť tavieb v jednotlivých triedach

C _{model} - C _{merane} / %	Počet	Kumulatívny počet
-0.10	0	0.00%
-0.08	0	0.00%
-0.06	9	6.43%
-0.04	24	23.57%
-0.02	72	75.00%
0.00	13	84.29%
0.02	4	87.14%
0.04	2	88.57%
0.06	3	90.71%
0.08	1	91.43%
0.10	1	92.14%
0.12	2	93.57%
viac	9	100.00%

Z tabuľky Tab. 1, resp. z histogramu Obr. 7 je vidieť, že väčšina tavieb má zápornú absolútnu chybu, t.j. model vykazuje vo všeobecnosti nižšie hodnoty koncentrácie uhlíka ako sú namerané hodnoty. V prípade absolútnej chyby v rozmedzí ± 0.06 sa nachádza 127 tavieb, čo je 90.71 % tavieb, resp. v prípade ± 0.04 je to 115 tavieb (82.14 % tavieb) a ± 0.02 je to 89 tavieb, čo predstavuje 63.57 % tavieb.

Obdobné výsledky je vidieť aj na Pareto diagrame (Obr. 8), kde podstatná väčšina absolútnych chýb, t.j. **80%** tavieb je pre hodnoty od **-0.04** do **0%**, pričom maximálne početnosti sú pre chybu **-0.02%**.

Dosiahnuté výsledky z off-line verifikácie modelu uhlíka vychádzajúceho z metódy bilancie uhlíka založenej iba na koncentrácii CO+CO₂ vykazujú pomerne dobré výsledky. V prípade merania prietoku konvertorového plynu by sme mohli dosiahnuť lepšie výsledky, avšak za predpokladu určitej neistoty merania prietoku. Ak by bola neistota merania prietoku vyššia ako je rozptyl hodnôt prietoku, výsledky by boli horšie. Vyplýva to zo samotnej metódy bilancie uhlíka, ktorá v sebe nepriamo zahŕňa hodnotu priemerného prietoku konvertorového plynu a jej rozptyl.

Obr. 7. Histogram početnosti absolútnej chyby koncentrácie uhlíka

Obr. 8. Pareto diagram absolútnej chyby koncentrácie uhlíka

1.2 Model stanovenia gradientu relatívnej rýchlosti oduhličenia

Základom tejto metódy riadenia procesu skujňovania je priebežný výpočet rýchlosti oduhličenia, ktorá je daná vzťahom

$$v_C = -dm_c/d\tau = V_{KP} (x_{CO,KP} + x_{CO2,KP}) Ah_C/(100 V_M)$$
 (1.6)

kde V_{KP} – objemový prietok konvertorového plynu (Nm³/s), $x_{CO,KP}$ – objemové percento CO v konvertorovom plyne (%), $x_{CO2,KP}$ – objemové percento CO₂ v konvertorovom plyne (%), Ah_C – atómová hmotnosť uhlíka (kg/kmol), V_M – molový objem plynu (m³/kmol).

Vzhľadom na rýchlosť oduhličenia danú vzťahom (1.6) je maximálna možná rýchlosť pri tom istom prietoku daná hodnotou kedy spaliny budú obsahovať iba CO a CO₂, resp. súčet $x_{CO,KP} + x_{CO2,KP}$ je rovný 100%, t.j.

$$v_{Cmax} = V_{KP} 100 Ah_C / (100 V_M). \tag{1.7}$$

Relatívna rýchlosť oduhličenia bude teda daná pomerom danej a maximálnej rýchlosti

$$rv_C = v_C / v_{Cmax} = (x_{CO.KP} + x_{CO2.KP})/100$$
 (1.8)

pričom jej hodnoty sa pohybujú v intervale od 0 po 1.

Na Obr. 10 je znázornený priebeh koncentrácie CO, CO₂ a relatívnej rýchlosti oduhličenia napríklad pre tavbu číslo 45016.

Obr. 10. Koncentrácia CO, CO2 a relatívna rýchlosť oduhličenia pre tavbu číslo 45016

Z grafu vyplýva, že tvar priebehu relatívnej rýchlosti predstavuje takzvanú obrátenú "U" krivku, čiže relatívna rýchlosť na začiatku narastá, potom je rýchlosť konštantná a v závere procesu fúkania rýchlosť klesá. Vzhľadom na rozkolísané hodnoty koncentrácie CO a CO_2 je potrebné realizovať výpočet kĺzavého priemeru relatívnej rýchlosti z posledných N_{kp} hodnôt (napr. N_{kp} =60).

Priebeh relatívnej rýchlosti z hľadiska kvalitatívneho je rovnaký, ale kvantitatívna hodnota relatívnej rýchlosti pri ukončení fúkania je rôzna. Analýza údajov ukázala, že gradient relatívnej rýchlosti $drv_C/d\tau$ sa pohybuje okolo nuly a pri ukončení procesu výrazne klesá pod určitou hodnotou $(drv_C/d\tau)_{\min}$, napr. $(drv_C/d\tau)_{\min} = -0.006$ ako je to vidieť aj na Obr. 11. Aby sa náhly pokles gradientu nezamieňal za ukončenie procesu, je potrebné, aby sa tá istá hraničná hodnota gradientu $(drv_C/d\tau)_{\min}$ viackrát opakovala spojite za sebou, t.j. N_{\min} krát.

Obr. 11. Relatívna rýchlosť oduhličenia a jej gradient pre tavbu číslo 45016

1.2.1 Vstupy a výstupy

Pre realizáciu metódy využívajúcej relatívnu rýchlosť oduhličenia sú potrebné nasledovné vstupy z dynamických dát:

- príznak fúkania kyslíka (OC2_COMM1_K4_FUKANIE, 0/1) PrF,
- koncentrácia oxidu uhoľnatého (K4_CO, obj.%) CO,
- koncentrácia oxidu uhličitého (K4_CO2, obj.%) CO2.

V porovnaní s modelom bilancie uhlíka nie je potrebný prietok spalín, resp. ich teplota a tlak, čo značne zjednodušuje realizáciu metódy. Výstupom je príznak ukončenia tavby (0/1) – PrUT, ktorý nadobúda hodnoty 0 – nie je koniec fúkania, resp. 1 – koniec fúkania.

1.2.2 Algoritmus

Algoritmus pre realizáciu metódy relatívnej rýchlosti oduhličenia je znázornený na Obr. 12. Vychádza z načítania dynamických dát, t.j. príznak fúkania (PrF), koncentrácie CO (CO) a CO₂ (CO2). Pokiaľ prebieha fúkanie, tak sa vypočíta gradient relatívnej rýchlosti oduhličenia (dRVC). Následne sa testuje gradient relatívnej rýchlosti voči hraničnej hodnote (hdRVC) a výsledkom je príznak pre ukončenie tavby (PrUT).

Obr. 12. Algoritmus realizácie metódy relatívnej rýchlosti oduhličenia

1.2.3 Dosiahnuté výsledky

Navrhnutá metóda bola verifikovaná na dvoch podskupinách tavieb. Na prvej podskupine 100 tavieb bol stanovený gradient relatívnej rýchlosti oduhličenia, pri ktorej dochádza k ukončeniu fúkania a taktiež počet hodnôt gradientu, ktoré idú spojite za sebou. Pri hodnote gradientu $(drv_C/d\tau)_{min} = -0.0049 \text{ s}^{-1}$ a $N_{min} = 3$ hodnotách gradientu za sebou je priemerná

hodnota medzi reálnym ukončením procesu a ukončením podľa modelu relatívnej rýchlosti rovná **48.96 s** a smerodajná odchýlka je ± **25.06 s**, pričom minimálna hodnota bola **9 s** a maximálna **112 s**. Z výsledkov teda vyplýva, že ukončenie podľa modelu relatívnej rýchlosti je posunuté, t.j. je stále skôr ako reálne ukončenie procesu. V Tab. 2 je uvedená početnosť, resp. kumulatívna početnosť tavieb pre rôzne rozdiely časov ukončenia. Hodnotám uvedeným v tabuľke odpovedá aj histogram na Obr. 13.

Tab. 2. Početnosť tavieb podľa rozdielu časov pre $(drvC/d\tau)min = -0.0049 \text{ s-1 a Nmin} = 3$

Δτ/	Počet	Kumulatívny
S		počet / %
-10	0	0.00%
0	0	0.00%
10	3	3.00%
20	7	10.00%
30	13	23.00%
40	20	43.00%
50	20	63.00%
60	10	73.00%
70	8	81.00%
80	4	85.00%
90	5	90.00%
100	6	96.00%
110	2	98.00%
viac	2	100.00%

Obr. 13. Histogram početnosti tavieb pre $(drvC/d\tau)min = -0.0049 \text{ s-}1 \text{ a Nmin} = 3$

Obdobné výsledky je vidieť aj na Pareto diagrame (Obr. 14), kde podstatná väčšina ukončenia, t.j. 80% časov je pre hodnoty od 20 do 70 s, pričom maximálne početnosti sú pre čas 40 a 50 s.

Obr. 14. Pareto diagram pre $(drvC/d\tau)$ min = -0.0049 s-1 a Nmin = 3

Ak sme posunuli počet hodnôt gradientu o 25 pod hodnotou $(drv_C/d\tau)_{min}$, potom ukončenie procesu sa posunulo v prospech modelu, ako je to vidieť aj v Tab. 3, resp. na grafoch Obr. 15a Obr. 16, kde podstatná väčšina ukončenia, t.j. 80% časov je pre hodnoty časov od 0 do 40 s, pričom maximálne početnosti sú pre čas 10 a 20 s.

Tab. 3. Početnosť tavieb podľa rozdielu časov pre $(drvC/d\tau)min = -0.0049 \text{ s-1}$ a Nmin = 25

Δτ/	Počet	Kumulatívny
S		počet / %
-10	6	6.00%
0	9	15.00%
10	19	34.00%
20	19	53.00%
30	16	69.00%
40	10	79.00%
50	4	83.00%
60	6	89.00%
70	3	92.00%
80	5	97.00%
viac	3	100.00%

Obr. 15. Histogram početnosti tavieb pre $(drvC/d\tau)$ min = -0.0049 s-1 a Nmin = 25

Obr. 16. Pareto diagram pre $(drvC/d\tau)min = -0.0049 \text{ s-1 a Nmin} = 25$

Pre testovanie ukončenia procesu podľa modelu relatívnej rýchlosti oduhličenia máme dve možnosti nastavenia. Jednak je to nastavenie hodnoty gradientu rýchlosti $(drv_C/d\tau)_{min}$ a taktiež nastavenie počtu N_{min} pod hodnotou stanoveného gradientu. V prvej podskupine 100 tavieb boli testované viaceré hodnoty gradientu rýchlosti a výsledky ukázali, že pri znižovaní hodnoty gradientu $(drv_C/d\tau)_{min}$ sa už nižšie hodnoty gradientu ako napr. -0.0055 a menej už v niektorých tavbách nevyskytovali. Tento fakt by potom spôsoboval, že v niektorých prípadoch by nebol stanovený koniec procesu. Preto sme realizovali druhú možnosť, t.j. pri nižších hodnotách gradientu $(drv_C/d\tau)_{min}$ sme zväčšili hodnotu počtu N_{min} .

Na základe stanovených hodnôt boli následne vyhodnotené dáta z druhej podskupiny tavieb, ktorá predstavuje množinu 140 tavieb. Pri hodnote gradientu $(drv_C/d\tau)_{min} = -0.0049 \text{ s}^{-1}$ a $N_{min} = 28$ hodnotách gradientu za sebou je priemerná hodnota medzi reálnym ukončením procesu a ukončením podľa modelu relatívnej rýchlosti rovná 17.49 s a smerodajná odchýlka je $\pm 22.65 \text{ s}$, pričom minimálna hodnota bola -27 s a maximálna 82 s. Zmenou hodnôt $(drv_C/d\tau)_{min}$ a N_{min} sme dosiahli posun rozdielu časov medzi ukončením procesu reálnym a modelom z priemernej hodnoty 48.96 s na hodnotu 17.49 s, čo je posun o 31.47 s, resp. zmenšila sa aj smerodajná odchýlka z 25.06 na 22.65 s, čo je o 2.41 s menej. Podrobnejšie výsledky môžeme vidieť aj v Tab. 4 a na grafoch Obr. 17 a Obr. 18, kde podstatná väčšina ukončenia, t.j. 80% časov je pre hodnoty časov od 0 do 40 s, pričom maximálne početnosti tavieb sú pre čas 10 a 0 s.

Ukončenie podľa modelu je aj po korekcii nastavení skôr ako reálne ukončenie procesu, avšak je potrebné si uvedomiť, že od vzniku takejto situácie cez uvedomenie si a prijatie rozhodnutia operátora až po vydanie pokynu ubehne určitý čas, ktorý môže byť podľa nášho názoru rádovo na úrovni aj 10 s.

Tab. 4. Početnosť tavieb podľa rozdielu časov pre $(drvC/d\tau)min = -0.0049 \text{ s-}1$ a Nmin = 28

Δτ/	Počet	Kumulatívny
S		počet / %
-10	10	7.14%
0	24	24.29%
10	29	45.00%
20	23	61.43%
30	17	73.57%
40	16	85.00%
50	7	90.00%
60	6	94.29%
70	4	97.14%
80	3	99.29%
viac	1	100.00%

Obr. 17. Histogram početnosti tavieb pre $(drvC/d\tau)$ min = -0.0049 s-1 a Nmin = 28

Obr. 18. Pareto diagram pre $(drvC/d\tau)min = -0.0049 \text{ s-1 a Nmin} = 28$

1.3 Kombinácia modelov pre nepriame meranie uhlíka

V kapitolách 1.1 a 1.2 sú popísané a off-line verifikované dva modely, t.j. model bilancie uhlíka z koncentrácie CO a CO₂ a model stanovenia gradientu relatívnej rýchlosti oduhličenia. Uvedené modely sa môžu používať v riadení procesu skujňovania samostatne, alebo je možné ich kombinovať. U oboch modelov je výstupom príznak ukončenia tavby PrUT, ktorý nadobúda hodnoty 0 − nie je koniec fúkania, resp. 1 − koniec fúkania. Ak označíme ukončenie tavby v prípade modelu bilancie uhlíka z koncentrácie CO a CO₂ ako PrUTb a v prípade modelu stanovenia gradientu relatívnej rýchlosti oduhličenia ako PrUTg, potom máme dve možnosti v podobe logického súčtu (PrUTb ∨ PrUTg), resp. logického súčinu (PrUTb ∧ PrUTg). V prípade logického súčtu bude signalizované ukončenie procesu ak nastala jedna z možností, t.j. ak jeden z modelov signalizuje ukončenie. V prípade logického súčinu bude signalizované ukončenie procesu až vtedy, ak obidva modely signalizujú ukončenie procesu.

Signalizácia ukončenia podľa modelu stanovenia gradientu relatívnej rýchlosti oduhličenia je v priemere o $17.49 \pm 22.65 \, s$ skôr ako je ukončenie tavby (viď kap.1.2). V prípade modelu bilancie uhlíka z koncentrácie CO a CO₂ je to o $77.01 \pm 38.74 \, s$ skôr ako je ukončenie tavby a teda je to aj o cca $60 \, s$ skôr ako vykazuje model podľa gradientu. Z analýzy vyplýva, že sú aj jednotlivé prípady kedy je to naopak. Preto boli vyhodnotené na skupine 140 tavieb aj prípady, kedy obidva modely signalizujú ukončenie. V uvedenom prípade je signalizované ukončenie v priemere o $12.47 \pm 19.99 \, s$ skôr ako je ukončenie tavby.

Z hľadiska modelov pre nepriame meranie uhlíka vyplývajú nasledujúce závery:

- Samostatne realizovať model bilancie uhlíka z koncentrácie CO a CO₂ a taktiež model stanovenia gradientu relatívnej rýchlosti oduhličenia.
- Ukončenie procesu signalizovať na základe súčasného ukončenia podľa obidvoch modelov (PrUTb \wedge PrUTg).
- Model bilancie uhlíka z koncentrácie CO a CO₂ je zatiaľ menej presný, ale je nevyhnutný pre model nepriameho merania teploty, ktorý je popísaný v nasledujúcej časti správy.

2. Model pre nepriame meranie teploty

Model pre nepriame meranie teploty taveniny v konvertore vychádza z deterministického prístupu. Výstupom z modelu je priebeh teploty taveniny v čase. Jedným zo vstupov do modelu je aj koncentrácia uhlíka v tavenine, ktorá je výstupom z modelu pre nepriame meranie uhlíka (kapitola 1). Principiálna schéma modelu, jeho vstupov a výstupov je znázornená na Obr. 19.

Obr. 19. Principiálna schéma modelu pre nepriame meranie teploty

2.1 Vstupy a výstupy

Potrebné vstupy resp. vstupné dáta do modelu môžeme rozdeliť na štyri skupiny:

- Statické dáta,
- Dynamické dáta,
- Priebeh koncentrácie uhlíka C z modelu,
- Priebeh koncentrácie Si, Mn, P.

<u>Statické dáta</u> sú dáta, ktoré model dostáva v zásade na začiatku tavby (napr. číslo akosti, hmotnosť a zloženie surového železa, požadované percentuálne chem. zloženie v oceli, a pod.). Ich označenie, štruktúra a popis je uvedený v predchádzajúcej výskumnej správe [2].

Medzi potrebné statické dáta (vstupy do modelu) patria:

- hmotnosť, teplota a zloženie vápna,
- hmotnosť, teplota a zloženie dolomitického vápna,
- hmotnosť jednotlivých tried šrotu, teplota a zloženie šrotu,
- hmotnosť, teplota a zloženie surového železa,
- požadovaná teplota a požadované zloženie ocele,
- čas od odmerania teploty surového železa po začiatok fúkania (min).

<u>Dynamické dáta</u> sú dáta, ktoré "prichádzajú" resp. sú merané v priebehu tavby v časovom intervale 1s. Model využíva riadiace veličiny procesu a to výška trysky a objemový prietok fúkaného kyslíka.

<u>Priebeh koncentrácie uhlíka</u> (%C) je získaný resp. vypočítaný pomocou modelu pre nepriame meranie uhlíka popísaného v kapitole 1.

Koncentrácie ostatných prímesí (%Si, %Mn, %P) v tavenine v priebehu tavby sú aproximované pred začiatkom tavby, ak sú známe počiatočné a konečné hodnoty týchto prímesí (statické dáta), prípadne ešte jeden bod určený empiricky približne v polovici tavby.

2.2 Algoritmus a procedúry modelu

Algoritmus modelu pre nepriame meranie teploty je rozdelený do troch nasledovných základných častí (blokov):

- Vstupná časť
- Cyklická časť
- Výstupná časť

Vstupná časť

Vo vstupnej časti sú načítané statické dáta pred tavbou resp. pred samotným výpočtom teploty taveniny. Táto časť pozostáva z nasledovných procedúr:

- <u>Nacitanie stat_dat_vstup</u> načítanie statických dát o surovom železe (teplota, hmotnosť, zloženie),
- <u>Nacitanie stat dat vystup</u> načítanie statických dát žiadaných o oceli (teplota a zloženie),
- CitajZlozSrot načítanie tabuľky so zložením jednotlivých šrotov podľa kódu,
- CitajHmotSrot načítanie kódov a hmotností šrotu použitých pre tavbu,
- <u>ZlozHmotSrotu</u> výpočet zloženia a hmotnosti výsledného šrotu pre tavbu,
- *Vsadzanie* načítanie hmotností troskotvorných prísad,
- <u>Pociatocny_stav</u> nastavenie počiatočných hodnôt veličín pred spustením výpočtu.

Cyklická časť

V cyklickej časti sa procedúry opakujú v cykle. Časová hodnota pre jeden cyklus je nastavená na 1s (samozrejme je možné ju nastaviť aj na inú hodnotu). Ide o nasledovné procedúry:

- <u>Rezim fukania</u> načítanie dynamických riadiacich veličín (výška trysky a objemový tok fúkaného kyslíka), v súčasnosti sú tieto dáta načítané z textového súboru,
- <u>Hustota</u> výpočet hustoty taveniny a trosky v závislosti na teplote a zložení,
- <u>Uhlik</u> načítanie percentuálneho obsahu uhlíka v tavenine z modelu NM uhlíka,

- <u>Kremik</u> výpočet percentuálneho obsahu kremíka v tavenine, pomocou aproximácie,
- <u>Mangan</u> výpočet percentuálneho obsahu mangánu v tavenine, pomocou aproximácie,
- Fosfor výpočet percentuálneho obsahu fosforu v tavenine, pomocou aproximácie,
- <u>Teplota</u> výpočet teploty taveniny na základe matematického modelu uvedeného v priebežnej správe projektu v roku 2018 [2].

Výstupná časť

Výstupná časť algoritmu zabezpečuje výpočet odchýlky modelovej teploty od nameranej teploty na konci tavby. Táto odchýlka je vyjadrená pomocou absolútnej a relatívnej odchýlky.

$$\Delta T_{abs} = abs(T^{mer} - T^{NM}) \tag{°C}$$

$$\Delta T_{rel} = \frac{abs(T^{mer} - T^{NM})}{T^{mer}} 100 \tag{\%}$$

kde T^{NM} je teplota ocele na konci tavby podľa modelu (nepriamo meraná), T^{mer} je meraná teplota ocele na konci tavby.

Taktiež v tejto časti algoritmu dochádza k zápisu vypočítaných dát do textových súborov a vykresleniu priebehu nepriamo meranej teploty.

Algoritmus modelu pre nepriame meranie teploty je zobrazený na Obr. 20.

Obr. 20. Algoritmus modelu teploty

2.3 Dosiahnuté výsledky

Overenie modelu nepriameho merania teploty bolo realizované na vzorke 240 tavieb, spôsobom ako to bolo aj pre verifikáciu modelu bilancie uhlíka (kapitola 1). Prvá skupina tavieb (100 tavieb) bola pre určenie strát pre každú tavbu z tejto skupiny a následne pre výpočet parametrov modelu pre koeficient strát.

Na základe výsledkov uvedených v predchádzajúcej priebežnej správe projektu sme zvolili pre overenie modelu nepriameho merania teploty nasledovné tvary lineárnych modelov pre výpočet koeficientu strát (2.3-2.5). V prvej variante (Var.1) je koeficient strát nastavený ako konštanta, v druhej (Var.2) je to lineárna závislosť na teplote surového železa (*Tsuze*) a v tretej (Var.3) je to závislosť na teplote surového železa, hmotnosti surového železa a hmotnosti šrotu (*Tsuze*, *msrot*). Na Obr. 21 je uvedená závislosť koeficientu strát práve na teplote surového železa, z ktorej je viditeľná závislosť na teplote surového železa. S narastajúcou teplotou narastá aj koeficient strát.

$$\underline{\text{Var.1}}: \qquad koef_{Qstraty} = konšt. \tag{2.3}$$

$$\underline{\text{Var.2}}: \qquad koef_{Qstraty} = a_0 + a_1 T_{suze} \tag{2.4}$$

$$\underline{\text{Var.3}}: \qquad koef_{Ostraty} = a_0 + a_1 T_{suze} + a_2 m_{srot} + a_3 m_{suze} \qquad (2.5)$$

Obr. 21. Závislosť koeficienta strát na teplote surového železa

V Tab. 5 sú uvedené dosiahnuté výsledky pre tri varianty modelu koeficienta strát, ktoré sú v podobe početnosti tavieb v jednotlivých triedach presnosti. Triedy presnosti sú definované pre absolútnu odchýlku teploty modelu NM od meranej teploty na konci tavby a to do 8, 16, 24, 32, 40°C. Z výsledkov môžeme vidieť, že presnosť modelu sa zväčšuje od Var.1 po Var.3. Najlepšie výsledky sú pre Var.3 kde cca 28% tavieb je do 16°C a cca 47% tavieb do 24°C.

Výsledky modelu NM teploty pre skupinu 140 tavieb sú uvedené v Prílohe 1. V tabuľke je uvedená nameraná teplota, NM teplota, absolútna a relatívna odchýlka pre každú tavbu.

Z hľadiska priemernej absolútnej odchýlky na skupine tavieb je pre Var.1 táto odchýlka cca 38°C, pre Var.2 je to cca 34°C a pre Var.3 cca 32°C.

	V	ar.1	V	ar.2	V	ar.3
∆T _{absl}	Počet tavieb	Cumulative %	Počet tavieb	Cumulative %	Počet tavieb	Cumulative %
8	13	9.29%	12	8.57%	21	15.00%
16	20	23.57%	24	25.71%	18	27.86%
24	17	35.71%	24	42.86%	27	47.14%
32	23	52.14%	17	55.00%	17	59.29%
40	9	58.57%	15	65.71%	11	67.14%
nad	58	100.00%	48	100.00%	46	100.00%

Tab. 5. Početnosť tavieb v jednotlivých triedach presnosti (Var.1 – Var.3)

Ďalší variant modelu pre výpočet strát (Var.4) spočíva v rozšírení Var.3 o čas od odsírenia surového železa (cas_{suze}), tzn. je to čas od zmerania teploty surového železa po začiatok tavby, resp. fúkania. Tento čas je rôzny pre každú tavbu a predpokladali sme, že by mal mať vplyv na teplotu surového železa a tým pádom aj na straty a výslednú teplotu modelu. Na Obr. 22 je uvedená závislosť koeficienta strát na čase. V prílohe 2 sú uvedené časy pre prvú skupinu tavieb, z ktorej bol vypočítaný koeficient strát.

$$\underline{\text{Var.4}}: \quad koef_{Ostraty} = a_0 + a_1 T_{suze} + a_2 m_{srot} + a_3 m_{suze} + a_4 cas_{suze} \quad (2.6)$$

Obr. 22. Závislosť koeficienta strát na čase od odsírenia po začiatok tavby

V Tab. 6 sú uvedené dosiahnuté výsledky pre štvrtý variant modelu koeficienta strát v podobe početnosti tavieb v jednotlivých triedach presnosti. Oproti variantu 3 došlo k miernemu zlepšeniu modelu, pri odchýlke do 16°C je 29% tavieb, ale zároveň sa mierne znížila početnosť tavieb do 24°C a to 45%.

Tab. 6. Početnosť tavieb v jednotlivých triedach presnosti (Var.4)

	Var.4		
ΔT_{absl}	Počet tavieb	Cumulative %	
8	22	15.71%	
16	19	29.29%	
24	22	45.00%	
32	18	57.86%	
40	12	66.43%	
nad	47	100.00%	

Po nasledovnej analýze jednotlivých tepiel v rámci tepelnej bilancie modelu sme zistili, že medzi podstatné veličiny v rámci presnosti modelu jednoznačne patrí koncentrácia C a Si. Z toho dôvodu sme sa rozhodli zakomponovať tieto veličiny do modelu pre výpočet koeficienta strát. Keďže koeficient strát je potrebné určiť pred začiatkom tavby, budeme v modeli pre koeficient strát uvažovať s obsahom uhlíka a kremíka v surovom železe, resp. v tavenine. Tento percentuálny obsah je prepočítaný z obsahu prvkov v surovom železe a obsahu prvkov v šrote podľa (2.7). Na Obr. 23 je znázornená závislosť koeficienta strát na súčte prepočítaného uhlík a kremíka na začiatku tavby v tavenine.

$$\%PX_{tav} = \frac{\frac{\%PX_{Suze}}{100}m_{suze} + \frac{\%PX_{Srot}}{100}m_{srot}}{m_{suze} + m_{srot}} 100$$
 (2.7)

kde $\%PX_{tav}$ je prepočítaný obsah prvku v tavenine (C, Si), $\%PX_{suze}$ je percentuálny obsah prvku v surovom železe, $\%PX_{srot}$ je percentuálny obsah prvku v šrote, m_{suze} je hmotnosť surového železa, m_{srot} je hmotnosť šrotu.

Obr. 23. Závislosť koeficienta strát na súčte uhlíka a kremíka v tavenine

Zostavili sme ďalšie tri varianty modelov pre výpočet koeficientu strát, doplnené práve o koncentráciu C a Si v tavenine. Variant 5 je model z varianty 3 rozšírený o prepočítané koncentrácie C a Si v tavenine (2.8), Var.6 je model z variantu 4 znovu rozšírený o koncentráciu C a Si v tavenine (2.9) a Var.7 je podobný Var.5 s tým rozdielom, že je tu uvedený súčet koncentrácie C a Si (2.10).

$$\underline{\text{Var.5}}: \quad koef_{Qstraty} = a_0 + a_1T_{suze} + a_2m_{srot} + a_3m_{suze} + a_4\%C_{tav} + a_5\%Si_{tav}$$
 (2.8)

$$\underline{\text{Var.6}}: \quad koef_{Qstraty} = a_0 + a_1 T_{suze} + a_2 m_{srot} + a_3 m_{suze} + a_4 \% C_{tav} + a_5 \% Si_{tav} + a_6 cas_{suze}$$
 (2.9)

Var.7:
$$koef_{Qstraty} = a_0 + a_1 T_{suze} + a_2 m_{srot} + a_3 m_{suze} + a_4 (\%C_{tav} + \%Si_{tav})$$
 (2.10)

V Tab. 7 sú uvedené dosiahnuté výsledky pre tri varianty modelu koeficienta strát(Var.5 – Var.7) v podobe početnosti tavieb v jednotlivých triedach presnosti. U všetkých modelov došlo k zlepšeniu výsledkov oproti variantu 3. U Var.5 je **cca 31% tavieb do 8°C, cca 46% tavieb do 16°C a 70% tavieb do 24°C**. Podobné výsledky sú aj u ostaných dvoch variant (Var.6 a Var.7) s miernym poklesom početnosti tavieb **do 24°C, na úrovni 65% tavieb**. K značnému zlepšeniu výsledkov u týchto troch modelov došlo aj u početnosti tavieb nad 40°C. U predchádzajúcich modelov to bolo viac ako 46 tavieb a u variant Var.5 – Var.7 je to len 19, 18 a 21 tavieb nad 40°C. Na Obr. 24 - Obr. 26 sú zobrazené histogrami početnosti tavieb pre Var.5 – Var.7.

Výsledky modelu NM teploty pre skupinu 140 tavieb sú uvedené v Prílohe 3. V tabuľke je uvedená nameraná teplota, NM teplota, absolútna a relatívna odchýlka pre každú tavbu. Z hľadiska priemernej absolútnej odchýlky na skupine tavieb je pre Var.5 táto odchýlka cca 19°C, pre Var.6 a Var.7 je to cca 20°C.

	Var.5		Var.5 Var.6		Var.7	
∆T _{absl}	Počet tavieb	Cumulative %	Počet tavieb	Cumulative %	Počet tavieb	Cumulative %
8	43	30.71%	40	28.57%	43	30.71%
16	21	45.71%	27	47.86%	24	47.86%
24	34	70.00%	23	64.29%	26	66.43%
32	18	82.86%	19	77.86%	14	76.43%

13

18

87.14%

100.00%

12

21

85.00% 100.00%

40

nad

5

19

86.43%

100.00%

Tab. 7. Početnosť tavieb v jednotlivých triedach presnosti (Var.5-Var.7)

Obr. 24. Histogram pre počet tavieb – Var.5

Obr. 25. Histogram pre počet tavieb – Var.6

Obr. 26. Histogram pre počet tavieb – Var.7

V Tab. 8 a na Obr. 27 sú uvedené detailnejšie výsledky modelu NM teploty pre Var.5, s rozdelením tavieb do tried s kladnou aj zápornou absolútnou odchýlkou teploty. Záporná hodnota odchýlky znamená, že modelová teplota je vyššia ako nameraná teplota a pri kladnej hodnote odchýlky je to naopak. Najväčšia početnosť tavieb je pri odchýlke 0°C (25 tavieb) a potom je to do +8°C a +24°C (18 tavieb).

Tab. 8. Detailnejšia početnosť tavieb v jednotlivých triedach presnosti (Var.5)

Todch _{abs}	Frequency	Cumulative %
-32	9	6.43%
-24	8	12.14%
-16	16	23.57%
-8	13	32.86%
0	25	50.71%
8	18	63.57%
16	8	69.29%
24	18	82.14%
32	10	89.29%
40 3		91.43%
nad	12	100.00%

Obr. 27. Detailnejší histogram pre počet tavieb – Var.5

Z uvedených modelov pre výpočet koeficientu strát (Var.1-Var.7) boli najlepšie výsledky modelu pre nepriame meranie teploty dosiahnuté pre Var.5 a preto sme sa rozhodli overiť tento model ešte v jednej variante. Na základe informácie o čase od odsírenia surového železa po začiatok tavby, resp. fúkania (cas_{suze}), sme prepočítali teplotu surového železa podľa lineárneho modelu chladnutia (2.11). Túto teplotu (T_{suze}^{new}) sme následne použili ako vstup do modelu pre NM teploty. Vypočítali sme nové straty na prvej skupine tavieb (100 tavieb) a taktiež nové parametre modelu pre výpočet koeficientu strát (Var.5). Tento variant sme nazvali ako **Var.8.**

Model chladnutia suze:
$$T_{suze}^{new} = T_{suze} - 0.5cas_{suze}$$
 (2.11)

V Tab. 9 sú uvedené dosiahnuté výsledky pre Var.8 v podobe početnosti tavieb v jednotlivých triedach presnosti. Výsledky sú porovnateľné s výsledkami u variantu Var.5, k zlepšeniu došlo v početnosti tavieb **do 16°C kde je cca 51%** tavieb zo skupiny 140 tavieb. Na Obr. 28 je zobrazený histogram početnosti tavieb pre túto variantu. Detailné výsledky modelu NM teploty tejto varianty pre skupinu 140 tavieb sú uvedené v Prílohe 4. Z hľadiska priemernej absolútnej odchýlky na skupine tavieb je pre Var.8 táto odchýlka cca 19°C.

Tab. 9. Početnosť tavieb v jednotlivých triedach presnosti (Var.8)

ti rediciri pi correcti (1 di 10)							
ΔT_{absl}	Počet tavieb	Cumulative %					
8	40	28.57%					
16	31	50.71%					
24	22	66.43%					
32	24	83.57%					
40	6	87.86%					
nad	17	100.00%					

Obr. 28. Histogram pre počet tavieb – Var.8

V Tab. 10 a na Obr. 29 sú uvedené detailnejšie výsledky modelu NM teploty pre Var.8, s rozdelením tavieb do tried s kladnou aj zápornou absolútnou odchýlkou teploty. Najväčšia početnosť tavieb je pri odchýlke 0°C (22 tavieb) a potom je to do +8°C a -8°C (po 18 tavieb). V Tab. 11 je uvedené porovnanie výsledkov modelu NM teploty pre dve varianty modelu pre výpočet koeficientu strát (Var.5 a Var.8). U oboch týchto variant sú výsledky veľmi podobné, a to cca 75% tavieb s presnosťou ±24°C, 57% tavieb s presnosťou ±16°C cca 40% tavieb s presnosťou ±8°C.

Tab. 10. Detailnejšia početnosť tavieb v jednotlivých triedach presnosti (Var.8)

Todch _{abs}	Frequency	Cumulative %	
-32	8	5.71%	
-24	11	13.57%	
-16	10	20.71%	
-8	18	33.57%	
0	22	49.29%	
8	18	62.14%	
16	13	71.43%	
24	12	80.00%	
32	13 89.29%		
40	3 91.43%		
nad	12 100.00%		

Obr. 29. Detailnejší histogram pre počet tavieb – Var.8

Tab. 11. Porovnanie výsledkov modelu NM teploty pre Var.5 a Var.8

	Var.5		Var.8	
Rozsah	Počet tavieb	Percento	Počet tavieb	Percento
±24°C	106	75.71%	104	74.29%
±16°C	80	57.14%	81	57.86%
±8°C	56	40.00%	58	41.43%

Z hľadiska modelu pre nepriame meranie teploty vyplývajú nasledujúce závery:

- Model bilancie uhlíka z koncentrácie CO a CO₂ je potrebný pre teplotný model ako jeden zo základných vstupov tohto modelu.
- Najlepšie výsledky verifikácie teplotného modelu boli dosiahnuté pre <u>variant 5</u>, resp. <u>variant 8</u> modelu koeficienta strát, a to **cca** 57% **tavieb s presnosťou ±16°C cca** 75% **tavieb s presnosťou ±24°C**.
- Potreba adaptácie parametrov modelu pre koeficient strát.

Záver

Uvedená správa sa venuje overeniu modelov pre nepriame meranie uhlíka a teploty v procese skujňovania v konvertore. Na základe poslednej oponentúry projektu (november 2018) bol zo strany objednávateľa pre <u>nepriame meranie uhlíka</u> vybraný model bilancie uhlíka z koncentrácie CO a CO₂, a taktiež model stanovenia gradientu relatívnej rýchlosti oduhličenia a pre <u>nepriame meranie teploty taveniny</u> vybraný deterministický teplotný model, ktorých výsledky off-line verifikácie sú popísané v tejto správe.

Uvedené modely boli verifikované na vybranej skupine tavieb. Vybranú skupinu tavieb sme rozdelili na dve podskupiny. Prvú podskupinu tvorilo 100 tavieb, pre ktoré boli realizované simulácie na jednotlivých modeloch. Pre model bilancie uhlíka je potrebné stanoviť aká bola plocha pod priebehom CO+CO2 na hmotnosti uhlíka. Z prvej podskupiny tavieb sme stanovili závislosť medzi celkovou plochou a počiatočnou hmotnosťou uhlíka v lineárnom tvare (Obr. 5). Pre teplotný model bolo potrebné vypočítať parametre lineárneho modelu pre koeficient strát z výsledkov tohto modelu získaných na prvej podskupine tavieb. Na základe takto zistených parametrov dvoch lineárnych modelov boli následne realizované simulácie na druhej podskupine 140 tavieb.

Dosiahnuté výsledky z off-line verifikácie modelu bilancie uhlíka (Tab. 1, Obr. 7) vychádzajúceho z metódy bilancie uhlíka založenej iba na koncentrácii CO+CO₂ vykazujú pomerne dobré výsledky. V prípade merania prietoku konvertorového plynu by sme mohli dosiahnuť lepšie výsledky, avšak za predpokladu určitej neistoty merania prietoku. Ak by bola neistota merania prietoku vyššia ako je rozptyl hodnôt prietoku, výsledky by boli horšie.

Model stanovenia gradientu relatívnej rýchlosti oduhličenia bol taktiež verifikovaný na druhej podskupine tavieb. Pri hodnote gradientu $(drv_C/d\tau)_{\min} = -0.0049 \text{ s}^{-1}$ a $N_{\min} = 28 \text{ hodnotách gradientu za sebou je priemerná hodnota medzi reálnym ukončením procesu a ukončením podľa modelu relatívnej rýchlosti rovná 17.49 s a smerodajná odchýlka je <math>\pm 22.65 \text{ s}$. Zmenou hodnôt $(drv_C/d\tau)_{\min}$ a N_{\min} sme dosiahli posun rozdielu časov medzi ukončením procesu reálnym a modelom z priemernej hodnoty 48.96 s na hodnotu 17.49 s, čo je posun o 31.47 s, resp. zmenšila sa aj smerodajná odchýlka z 25.06 na 22.65 s, čo je o 2.41 s menej (Tab. 4, Obr. 17).

Uvedené modely pre nepriame meranie uhlíka sa môžu používať v riadení procesu skujňovania samostatne, alebo je možné ich kombinovať. U oboch modelov je výstupom príznak ukončenia tavby, ktorý nadobúda hodnoty 0 − nie je koniec fúkania, resp. 1 − koniec fúkania. Ak označíme ukončenie tavby v prípade modelu bilancie uhlíka z koncentrácie CO a CO₂ ako PrUTb a v prípade modelu stanovenia gradientu relatívnej rýchlosti oduhličenia ako PrUTg, potom máme dve možnosti v podobe logického súčtu (PrUTb ∨ PrUTg), resp. logického súčinu (PrUTb ∧ PrUTg). V prípade logického súčtu bude signalizované ukončenie procesu ak nastala jedna z možností, t.j. ak jeden z modelov signalizuje ukončenie. V prípade logického súčinu bude signalizované ukončenie procesu až vtedy, ak obidva modely signalizujú ukončenie procesu.

Model pre nepriame meranie teploty taveniny bol verifikovaný na druhej podskupine tavieb v niekoľkých variantoch pre model určenia koeficienta strát. Prvé tri varianty tohto modelu vyplynuli z poslednej oponentúry projektu v novembri 2018. V ďalších variantoch bol model rozšírený predovšetkým o obsah uhlíka a kremíka v surovom železe. Najlepšie výsledky verifikácie teplotného modelu boli dosiahnuté pre <u>variant 5</u>, resp. <u>variant 8</u> modelu koeficienta strát, a to **cca** 57% **tavieb s presnosťou** ±16°C **cca** 75% **tavieb s presnosťou** ±24°C.

Návrh realizácie modelov pre nepriame meranie uhlíka a teploty

Návrh realizácie modelov pre nepriame meranie uhlíka a teploty v tavenine v priebehu tavby spočíva v grafickom zobrazení priebehu uhlíka a teploty a je zobrazený na Obr. 30. Na osi x je obsah uhlíka a na osi y je teplota taveniny. Tieto hodnoty sú vypočítane podľa modelov uvedených v správe. V hornej časti obrazovky je číslo tavby a čas tavby a v dolnej časti pod grafom sú hodnoty uhlíka a teploty. V grafickom zobrazení by bol zobrazený aj cieľ procesu skujňovania, resp. ukončenie tavby z pohľadu požadovanej hodnoty obsahu uhlíka a teploty na konci tavby, napr. v podobe obdĺžnika. Na Obr. 31 je detail priebehu vypočítaných hodnôt na konci tavby so zobrazeným oknom (modrý obdĺžnik) pre ukončenie tavby.

Obr. 30. Obrazovka návrhu realizácie modelov nepriameho merania uhlíka a teploty

Obr. 31. Detail z obrazovky návrhu realizácie modelov nepriameho merania uhlíka a teploty

Použitá literatúra

- [1] Laciak, M. a kol.: Výskum nepriameho merania teploty a uhlíka v procese skujňovania (priebežná správa), 2018, Technická univerzita v Košiciach, 79 s.
- [2] Laciak, M. a kol.: Výskum nepriameho merania teploty a uhlíka v procese skujňovania (priebežná správa), 2017, Technická univerzita v Košiciach, 72 s.

Prílohy

<u>Príloha 1: Výsledky modelu NM teploty pre Var.1 – Var.3</u>

Príloha 2: Časy od odsírenia po začiatok tavby pre jednotlivé tavby z prvej skupiny

Príloha 3: Výsledky modelu NM teploty pre Var.5 – Var.7

Príloha 4: Výsledky modelu NM teploty pre Var.8

<u>Príloha 1: Výsledky modelu NM teploty pre Var.1 – Var.3</u>

			Var.1			Var.2			Var.3		
t a colora	T mer	T NM	ΔT_{abs}	ΔT_{rel}	T NM	ΔT_{abs}	ΔT_{rel}	T NM	ΔT_{abs}	$arDelta T_{rel}$	
tavba	(°C)	(°C)	(°C)	(%)	(°C)	(°C)	(%)	(°C)	(°C)	(%)	
45195	1644	1711	-67	4.09	1705	-61	3.74	1707	-63	3.81	
45196	1677	1624	53	3.19	1623	54	3.20	1608	69	4.11	
45197	1670	1588	82	4.92	1599	71	4.25	1584	86	5.13	
45198	1633	1657	-24	1.46	1664	-31	1.91	1664	-31	1.91	
45199	1647	1583	64	3.90	1604	43	2.58	1613	34	2.06	
45200	1607	1564	43	2.70	1599	8	0.50	1612	-5	0.34	
45209	1651	1575	76	4.61	1601	50	3.04	1592	59	3.56	
45210	1648	1649	-1	0.09	1656	-8	0.48	1665	-17	1.04	
45211	1678	1734	-56	3.34	1738	-60	3.59	1739	-61	3.61	
45212	1634	1594	40	2.48	1608	26	1.61	1616	18	1.08	
45227	1714	1709	5	0.32	1700	14	0.81	1699	15	0.88	
45228	1642	1611	31	1.90	1611	31	1.87	1603	39	2.37	
45229	1691	1699	-8	0.48	1699	-8	0.45	1688	3	0.18	
45230	1666	1632	34	2.02	1626	40	2.41	1625	41	2.47	
45235	1676	1623	53	3.14	1640	36	2.18	1644	32	1.89	
45236	1654	1637	17	1.00	1635	19	1.15	1641	13	0.77	
45237	1665	1641	24	1.42	1656	9	0.54	1662	3	0.20	
45238	1671	1677	-6	0.34	1674	-3	0.15	1668	3	0.20	
45239	1649	1683	-34	2.09	1691	-42	2.55	1690	-41	2.48	
45240	1675	1688	-13	0.78	1691	-16	0.98	1689	-14	0.81	
45241	1655	1682	-27	1.63	1683	-28	1.69	1674	-19	1.13	
45249	1634	1586	48	2.93	1595	39	2.39	1603	31	1.92	
45255	1634	1645	-11	0.70	1654	-20	1.22	1654	-20	1.22	
45257	1643	1712	-69	4.19	1707	-64	3.89	1710	-67	4.08	
45258	1658	1694	-36	2.14	1697	-39	2.33	1693	-35	2.11	
45259	1705	1784	-79	4.61	1782	-77	4.52	1765	-60	3.54	
45261	1671	1638	33	1.97	1626	45	2.70	1621	50	3.00	
45264	1658	1673	-15	0.89	1677	-19	1.12	1678	-20	1.23	
45265	1673	1620	53	3.19	1627	46	2.73	1641	32	1.92	
45266	1664	1626	38	2.29	1628	36	2.14	1637	27	1.60	
45267	1681	1653	28	1.68	1649	32	1.91	1649	32	1.89	
45268	1656	1726	-70	4.24	1714	-58	3.51	1714	-58	3.51	
45269	1650	1624	26	1.58	1628	22	1.36	1637	13	0.80	
45270	1642	1665	-23	1.39	1662	-20	1.23	1660	-18	1.08	
45271	1642	1708	-66	4.04	1706	-64	3.91	1706	-64	3.89	
45272	1673	1653	20	1.18	1651	22	1.34	1656	17	1.01	
45273	1669	1627	42	2.53	1644	25	1.49	1646	23	1.40	
45274	1677	1625	52	3.09	1634	43	2.55	1630	47	2.81	
45275	1649	1659	-10	0.60	1661	-12	0.71	1662	-13	0.76	

45276	1664	1610	54	3.27	1631	33	1.97	1630	34	2.04
45277	1710	1738	-28	1.66	1731	-21	1.21	1720	-10	0.60
45279	1639	1751	-112	6.81	1747	-108	6.60	1748	-109	6.64
45280	1645	1736	-91	5.53	1724	-79	4.81	1717	-72	4.37
45281	1621	1621	0	0.01	1632	-11	0.70	1636	-15	0.90
45282	1684	1695	-11	0.65	1677	7	0.39	1676	8	0.47
45283	1649	1737	-88	5.35	1739	-90	5.47	1735	-86	5.24
45284	1641	1682	-41	2.51	1671	-30	1.81	1667	-26	1.61
45291	1654	1608	46	2.81	1617	37	2.26	1608	46	2.79
45292	1644	1544	100	6.10	1570	74	4.51	1593	51	3.13
45293	1657	1717	-60	3.60	1717	-60	3.62	1721	-64	3.84
45294	1686	1668	18	1.08	1672	14	0.85	1681	5	0.29
45295	1672	1626	46	2.75	1635	37	2.23	1648	24	1.44
45296	1664	1612	52	3.14	1615	49	2.93	1626	38	2.30
45297	1670	1639	31	1.86	1641	29	1.71	1654	16	0.98
45298	1682	1588	94	5.62	1596	86	5.09	1609	73	4.32
45300	1662	1621	41	2.48	1626	36	2.16	1626	36	2.16
45305	1657	1656	1	0.07	1662	-5	0.31	1656	1	0.06
45307	1634	1666	-32	1.98	1668	-34	2.07	1660	-26	1.57
45311	1630	1695	-65	3.99	1696	-66	4.07	1688	-58	3.54
45317	1688	1714	-26	1.57	1707	-19	1.10	1696	-8	0.48
45318	1669	1690	-21	1.25	1694	-25	1.48	1694	-25	1.50
45319	1685	1732	-47	2.78	1734	-49	2.88	1728	-43	2.57
45320	1649	1673	-24	1.47	1688	-39	2.36	1688	-39	2.39
45322	1629	1712	-83	5.09	1703	-74	4.54	1699	-70	4.27
45323	1626	1707	-81	4.98	1700	-74	4.53	1692	-66	4.03
45324	1686	1736	-50	2.96	1735	-49	2.90	1722	-36	2.11
45325	1673	1712	-39	2.33	1709	-36	2.16	1707	-34	2.01
45326	1695	1722	-27	1.57	1717	-22	1.31	1709	-14	0.83
45327	1701	1692	9	0.53	1691	10	0.58	1696	5	0.30
45328	1656	1684	-28	1.67	1681	-25	1.51	1681	-25	1.54
45330	1679	1691	-12	0.73	1697	-18	1.05	1698	-19	1.14
45331	1664	1681	-17	1.00	1680	-16	0.95	1680	-16	0.98
45334	1646	1655	-9	0.52	1655	-9	0.53	1664	-18	1.10
45335	1637	1623	14	0.86	1625	12	0.75	1614	23	1.41
45338	1650	1706	-56	3.41	1690	-40	2.45	1697	-47	2.83
45340	1691	1637	54	3.19	1627	64	3.77	1625	66	3.89
45341	1638	1479	159	9.68	1489	149	9.12	1490	148	9.06
45358	1660	1661	-1	0.08	1660	0	0.00	1657	3	0.18
45359	1665	1680	-15	0.91	1686	-21	1.23	1667	-2	0.10
45360	1648	1624	24	1.47	1634	14	0.88	1639	9	0.56
45361	1648	1656	-8	0.49	1661	-13	0.79	1661	-13	0.78
45363	1659	1674	-15	0.92	1665	-6	0.34	1663	-4	0.24
45364	1620	1647	-27	1.67	1649	-29	1.79	1669	-49	3.03

45365	1641	1610	31	1.90	1618	23	1.41	1614	27	1.65
45366	1677	1603	74	4.42	1614	63	3.78	1611	66	3.95
45372	1672	1648	24	1.43	1645	27	1.64	1646	26	1.53
45373	1666	1650	16	0.93	1654	12	0.74	1666	0	0.03
45374	1664	1728	-64	3.85	1717	-53	3.18	1719	-55	3.29
45375	1638	1598	40	2.46	1627	11	0.64	1638	0	0.02
45376	1636	1618	18	1.10	1614	22	1.36	1621	15	0.90
45384	1664	1715	-51	3.07	1695	-31	1.84	1698	-34	2.06
45387	1613	1695	-82	5.11	1699	-86	5.30	1696	-83	5.16
45389	1627	1711	-84	5.17	1690	-63	3.86	1683	-56	3.45
45390	1652	1653	-1	0.06	1647	5	0.30	1646	6	0.38
45391	1678	1678	0	0.02	1681	-3	0.20	1676	2	0.14
45396	1652	1633	19	1.17	1636	16	0.94	1631	21	1.26
45397	1668	1586	82	4.91	1597	71	4.25	1594	74	4.42
45398	1658	1604	54	3.26	1616	42	2.54	1614	44	2.65
45399	1672	1568	104	6.23	1582	90	5.38	1584	88	5.26
45400	1690	1623	67	3.96	1623	67	3.93	1632	58	3.45
45402	1686	1673	13	0.78	1664	22	1.32	1675	11	0.64
45403	1615	1620	-5	0.29	1624	-9	0.55	1644	-29	1.78
45404	1657	1611	46	2.76	1613	44	2.67	1627	30	1.81
45405	1618	1671	-53	3.26	1664	-46	2.87	1668	-50	3.10
45407	1651	1673	-22	1.34	1668	-17	1.05	1675	-24	1.44
45408	1704	1730	-26	1.53	1716	-12	0.73	1711	-7	0.39
45409	1657	1658	-1	0.07	1660	-3	0.20	1661	-4	0.27
45410	1687	1669	18	1.07	1676	11	0.65	1686	1	0.07
45411	1645	1667	-22	1.33	1661	-16	0.98	1673	-28	1.72
45412	1683	1757	-74	4.42	1748	-65	3.85	1740	-57	3.36
45413	1665	1711	-46	2.75	1707	-42	2.54	1707	-42	2.54
45415	1670	1623	47	2.83	1626	44	2.63	1627	43	2.58
45416	1668	1609	59	3.51	1627	41	2.48	1645	23	1.36
45417	1625	1596	29	1.81	1614	11	0.65	1620	5	0.33
45423	1656	1627	29	1.75	1630	26	1.59	1635	21	1.26
45424	1634	1635	-1	0.06	1638	-4	0.26	1643	-9	0.52
45425	1662	1676	-14	0.84	1675	-13	0.79	1672	-10	0.60
45427	1648	1618	30	1.81	1629	19	1.15	1628	20	1.23
45428	1646	1676	-30	1.84	1683	-37	2.27	1691	-45	2.72
45429	1653	1621	32	1.96	1633	20	1.22	1637	16	0.96
45436	1641	1613	28	1.72	1614	27	1.62	1624	17	1.04
45439	1648	1616	32	1.93	1615	33	2.02	1621	27	1.63
45440	1687	1716	-29	1.69	1703	-16	0.94	1694	-7	0.44
45442	1663	1666	-3	0.15	1674	-11	0.69	1665	-2	0.13
45443	1680	1662	18	1.09	1667	13	0.80	1653	27	1.60
45444	1665	1620	45	2.73	1626	39	2.36	1616	49	2.97
45446	1667	1691	-24	1.42	1693	-26	1.58	1683	-16	0.97

45447	1696	1706	-10	0.60	1692	4	0.24	1674	22	1.31
45448	1666	1658	8	0.45	1645	21	1.27	1649	17	1.00
45449	1649	1660	-11	0.68	1666	-17	1.05	1657	-8	0.51
45451	1648	1593	55	3.34	1602	46	2.79	1603	45	2.73
45452	1680	1668	12	0.70	1663	17	1.02	1657	23	1.37
45458	1654	1717	-63	3.80	1714	-60	3.62	1714	-60	3.60
45461	1673	1682	-9	0.55	1684	-11	0.65	1686	-13	0.76
45465	1662	1558	104	6.28	1562	100	6.00	1565	97	5.82
45468	1655	1618	37	2.21	1624	31	1.86	1635	20	1.21
45472	1667	1616	51	3.06	1626	41	2.47	1624	43	2.56
45484	1657	1683	-26	1.58	1680	-23	1.38	1679	-22	1.31
45485	1653	1679	-26	1.60	1679	-26	1.58	1673	-20	1.22
45489	1642	1663	-21	1.29	1664	-22	1.35	1661	-19	1.18
priem. re	l. odch	ı. %		2.31			2.08			1.96

Príloha 2: Časy od odsírenia po začiatok tavby pre jednotlivé tavby z prvej skupiny

cis tav	cas od odsir (min)	cis tav	cas od odsir (min)
45016	28.97	45125	30.23
45017	20.97	45126	10.38
45018	8.12	45127	27.17
45019	15.42	45128	10.42
45020	21.98	45129	7.23
45021	17.23	45130	23.58
45023	57.95	45131	41.42
45024	51.13	45132	10.85
45025	44.38	45133	16.50
45041	22.08	45136	23.70
45042	18.83	45137	25.38
45043	8.83	45142	94.57
45044	7.33	45143	68.75
45046	9.40	45155	26.05
45047	28.73	45156	18.62
45054	39.88	45157	53.08
45055	57.33	45158	8.78
45056	57.12	45162	32.50
45057	27.33	45163	44.13
45059	49.43	45164	25.63
45060	34.45	45165	13.90
45062	41.90	45166	17.73
45080	24.85	45167	15.90
45081	43.83	45168	12.07
45082	32.78	45169	14.73
45083	7.13	45170	39.42
45088	12.67	45171	21.12
45092	19.72	45172	48.22
45093	17.18	45173	7.77
45094	18.22	45174	11.80
45095	10.80	45175	35.68
45096	25.73	45176	25.33
45097	48.28	45177	33.95
45098	46.73	45178	8.25
45099	34.13	45179	8.40
45100	33.62	45180	22.63
45101	26.63	45181	31.92
45102	18.43	45182	27.68
45103	17.55	45183	26.25
45105	51.15	45184	31.92
45106	38.48	45185	35.48
45107	40.80	45186	47.22

	ı	i	i
45112	11.97	45187	43.42
45114	23.42	45188	24.87
45115	30.42	45189	33.02
45116	13.32	45190	9.37
45117	19.17	45191	13.32
45118	13.42	45192	13.08
45119	19.42	45193	20.97
45120	45.45	45194	11.60

<u>Príloha 3: Výsledky modelu NM teploty pre Var.5 – Var.7</u>

			Var.5			Var.6			Var.7	
A a v da a	T mer	T NM	ΔT_{abs}	ΔT_{rel}	T NM	ΔT_{abs}	ΔT_{rel}	T NM	ΔT_{abs}	ΔT_{rel}
tavba	(°C)	(°C)	(°C)	(%)	(°C)	(°C)	(%)	(°C)	(°C)	(%)
45195	1644	1655	-11	0.65	1659	-15	0.92	1680	-36	2.17
45196	1677	1616	61	3.64	1620	57	3.38	1626	51	3.05
45197	1670	1602	68	4.09	1598	72	4.31	1607	63	3.79
45198	1633	1654	-21	1.31	1656	-23	1.42	1670	-37	2.26
45199	1647	1637	10	0.60	1638	9	0.56	1637	10	0.63
45200	1607	1629	-22	1.37	1629	-22	1.38	1628	-21	1.30
45209	1651	1605	46	2.80	1601	50	3.00	1604	47	2.82
45210	1648	1651	-3	0.17	1641	7	0.45	1652	-4	0.27
45211	1678	1676	2	0.12	1664	14	0.81	1685	-7	0.41
45212	1634	1640	-6	0.34	1635	-1	0.04	1636	-2	0.15
45227	1714	1671	43	2.54	1674	40	2.34	1674	40	2.35
45228	1642	1641	1	0.04	1643	-1	0.07	1643	-1	0.05
45229	1691	1674	17	0.99	1663	28	1.66	1672	19	1.13
45230	1666	1646	20	1.23	1638	28	1.65	1638	28	1.68
45235	1676	1650	26	1.54	1651	25	1.52	1633	43	2.54
45236	1654	1661	-7	0.41	1656	-2	0.14	1656	-2	0.11
45237	1665	1662	3	0.16	1654	11	0.68	1661	4	0.27
45238	1671	1673	-2	0.09	1667	4	0.26	1680	-9	0.54
45239	1649	1674	-25	1.49	1666	-17	1.05	1666	-17	1.01
45240	1675	1674	1	0.06	1667	8	0.45	1666	9	0.55
45241	1655	1677	-22	1.35	1677	-22	1.34	1676	-21	1.29
45249	1634	1626	8	0.49	1626	8	0.51	1609	25	1.55
45255	1634	1655	-21	1.31	1647	-13	0.80	1650	-16	1.01
45257	1643	1672	-29	1.77	1670	-27	1.66	1681	-38	2.30
45258	1658	1669	-11	0.66	1664	-6	0.39	1672	-14	0.83
45259	1705	1699	6	0.37	1695	10	0.56	1712	-7	0.40
45261	1671	1609	62	3.71	1604	67	4.01	1600	71	4.24
45264	1658	1656	2	0.12	1655	3	0.21	1665	-7	0.40
45265	1673	1648	25	1.51	1644	29	1.74	1639	34	2.02
45266	1664	1644	20	1.23	1643	21	1.24	1661	3	0.19
45267	1681	1662	19	1.16	1653	28	1.66	1654	27	1.60
45268	1656	1666	-10	0.57	1662	-6	0.34	1676	-20	1.20
45269	1650	1642	8	0.46	1647	3	0.19	1642	8	0.48
45270	1642	1661	-19	1.14	1657	-15	0.89	1646	-4	0.24
45271	1642	1671	-29	1.75	1671	-29	1.79	1687	-45	2.76
45272	1673	1648	25	1.47	1644	29	1.76	1657	16	0.97
45273	1669	1650	19	1.17	1649	20	1.21	1654	15	0.88
45274	1677	1649	28	1.65	1650	27	1.63	1643	34	2.04
45275	1649	1660	-11	0.66	1651	-2	0.11	1647	2	0.09

45276	1664	1647	17	1.04	1645	19	1.14	1646	18	1.11
45277	1710	1680	30	1.77	1677	33	1.91	1694	16	0.91
45279	1639	1680	-41	2.48	1679	-40	2.45	1695	-56	3.43
45280	1645	1678	-33	2.01	1679	-34	2.04	1676	-31	1.88
45281	1621	1650	-29	1.78	1648	-27	1.67	1641	-20	1.24
45282	1684	1673	11	0.66	1673	11	0.63	1677	7	0.40
45283	1649	1681	-32	1.93	1681	-32	1.95	1681	-32	1.95
45284	1641	1660	-19	1.15	1658	-17	1.06	1647	-6	0.39
45291	1654	1637	17	1.04	1637	17	1.01	1639	15	0.89
45292	1644	1631	13	0.77	1636	8	0.48	1639	5	0.29
45293	1657	1673	-16	0.95	1667	-10	0.62	1695	-38	2.30
45294	1686	1657	29	1.75	1654	32	1.88	1669	17	1.00
45295	1672	1649	23	1.37	1634	38	2.26	1666	6	0.38
45296	1664	1643	21	1.27	1629	35	2.12	1651	13	0.81
45297	1670	1646	24	1.43	1638	32	1.92	1653	17	0.99
45298	1682	1637	45	2.68	1635	47	2.80	1632	50	2.96
45300	1662	1643	19	1.15	1633	29	1.72	1649	13	0.76
45305	1657	1663	-6	0.38	1639	18	1.08	1659	-2	0.15
45307	1634	1668	-34	2.11	1666	-32	1.96	1655	-21	1.26
45311	1630	1677	-47	2.90	1677	-47	2.88	1676	-46	2.83
45317	1688	1681	7	0.44	1682	6	0.37	1696	-8	0.48
45318	1669	1673	-4	0.26	1672	-3	0.18	1671	-2	0.15
45319	1685	1686	-1	0.05	1689	-4	0.25	1687	-2	0.13
45320	1649	1675	-26	1.57	1674	-25	1.50	1680	-31	1.91
45322	1629	1676	-47	2.86	1667	-38	2.34	1671	-42	2.61
45323	1626	1680	-54	3.32	1676	-50	3.08	1678	-52	3.19
45324	1686	1686	0	0.02	1682	4	0.21	1706	-20	1.18
45325	1673	1680	-7	0.45	1680	-7	0.41	1685	-12	0.74
45326	1695	1680	15	0.87	1664	31	1.83	1684	11	0.67
45327	1701	1673	28	1.65	1643	58	3.40	1673	28	1.65
45328	1656	1673	-17	1.01	1654	2	0.12	1670	-14	0.83
45330	1679	1673	6	0.35	1664	15	0.88	1678	1	0.03
45331	1664	1674	-10	0.60	1668	-4	0.23	1669	-5	0.31
45334	1646	1664	-18	1.07	1661	-15	0.88	1651	-5	0.32
45335	1637	1635	2	0.11	1636	1	0.05	1630	7	0.40
45338	1650	1667	-17	1.06	1654	-4	0.26	1674	-24	1.47
45340	1691	1650	41	2.45	1640	51	2.99	1637	54	3.19
45341	1638	1561	77	4.69	1555	83	5.06	1549	89	5.45
45358	1660	1662	-2	0.15	1662	-2	0.14	1661	-1	0.08
45359	1665	1672	-7	0.42	1672	-7	0.43	1672	-7	0.40
45360	1648	1654	-6	0.35	1654	-6	0.39	1657	-9	0.53
45361	1648	1662	-14	0.83	1666	-18	1.10	1669	-21	1.27
45363	1659	1666	-7	0.44	1669	-10	0.63	1658	1	0.08
45364	1620	1637	-17	1.07	1638	-18	1.11	1653	-33	2.01

45365	1641	1645	-4	0.24	1647	-6	0.34	1642	-1	0.07
45366	1677	1642	35	2.08	1643	34	2.02	1641	36	2.16
45372	1672	1660	12	0.73	1655	17	1.03	1661	11	0.65
45373	1666	1658	8	0.47	1653	13	0.79	1661	5	0.29
45374	1664	1670	-6	0.36	1667	-3	0.16	1683	-19	1.12
45375	1638	1652	-14	0.88	1649	-11	0.70	1649	-11	0.65
45376	1636	1655	-19	1.14	1647	-11	0.68	1655	-19	1.18
45384	1664	1668	-4	0.22	1666	-2	0.14	1673	-9	0.53
45387	1613	1676	-63	3.93	1664	-51	3.18	1668	-55	3.41
45389	1627	1669	-42	2.56	1662	-35	2.16	1663	-36	2.18
45390	1652	1663	-11	0.69	1665	-13	0.80	1654	-2	0.11
45391	1678	1677	1	0.05	1673	5	0.31	1679	-1	0.03
45396	1652	1656	-4	0.22	1654	-2	0.11	1650	2	0.10
45397	1668	1643	25	1.50	1637	31	1.85	1634	34	2.01
45398	1658	1642	16	0.95	1640	18	1.09	1637	21	1.29
45399	1672	1630	42	2.51	1626	46	2.72	1617	55	3.29
45400	1690	1649	41	2.44	1651	39	2.30	1635	55	3.26
45402	1686	1665	21	1.25	1666	20	1.19	1673	13	0.79
45403	1615	1644	-29	1.81	1643	-28	1.71	1645	-30	1.86
45404	1657	1654	3	0.18	1649	8	0.48	1654	3	0.20
45405	1618	1669	-51	3.17	1668	-50	3.08	1661	-43	2.68
45407	1651	1667	-16	0.96	1659	-8	0.51	1670	-19	1.13
45408	1704	1676	28	1.64	1674	30	1.77	1678	26	1.51
45409	1657	1661	-4	0.27	1666	-9	0.55	1663	-6	0.35
45410	1687	1670	17	1.00	1673	14	0.81	1668	19	1.12
45411	1645	1664	-19	1.16	1660	-15	0.94	1665	-20	1.24
45412	1683	1690	-7	0.42	1688	-5	0.28	1699	-16	0.98
45413	1665	1673	-8	0.48	1670	-5	0.30	1679	-14	0.83
45415	1670	1643	27	1.62	1638	32	1.93	1641	29	1.75
45416	1668	1646	22	1.32	1646	22	1.32	1660	8	0.46
45417	1625	1642	-17	1.07	1642	-17	1.02	1620	5	0.28
45423	1656	1651	5	0.31	1650	6	0.34	1644	12	0.72
45424	1634	1652	-18	1.10	1642	-8	0.48	1652	-18	1.12
45425	1662	1668	-6	0.39	1654	8	0.45	1661	1	0.03
45427	1648	1653	-5	0.33	1651	-3	0.19	1650	-2	0.11
45428	1646	1673	-27	1.63	1668	-22	1.34	1674	-28	1.73
45429	1653	1649	4	0.23	1640	13	0.79	1652	1	0.07
45436	1641	1648	-7	0.45	1646	-5	0.28	1628	13	0.78
45439	1648	1611	37	2.22	1609	39	2.35	1611	37	2.25
45440	1687	1681	6	0.35	1684	3	0.15	1663	24	1.44
45442	1663	1668	-5	0.33	1669	-6	0.34	1669	-6	0.36
45443	1680	1659	21	1.26	1654	26	1.53	1652	28	1.70
45444	1665	1627	38	2.26	1624	41	2.44	1618	47	2.85
45446	1667	1669	-2	0.12	1673	-6	0.34	1664	3	0.17

45447	1696	1675	21	1.24	1679	17	1.01	1684	12	0.71
45448	1666	1655	11	0.64	1658	8	0.51	1647	19	1.14
45449	1649	1659	-10	0.59	1659	-10	0.59	1646	3	0.20
45451	1648	1637	11	0.67	1631	17	1.02	1631	17	1.00
45452	1680	1662	18	1.05	1658	22	1.31	1658	22	1.32
45458	1654	1673	-19	1.15	1670	-16	0.98	1686	-32	1.91
45461	1673	1673	0	0.01	1670	3	0.21	1671	2	0.12
45465	1662	1594	68	4.12	1585	77	4.61	1599	63	3.79
45468	1655	1604	51	3.06	1595	60	3.60	1605	50	3.00
45472	1667	1645	22	1.30	1642	25	1.51	1655	12	0.74
45484	1657	1666	-9	0.56	1665	-8	0.50	1663	-6	0.37
45485	1653	1668	-15	0.93	1666	-13	0.79	1662	-9	0.56
45489	1642	1665	-23	1.42	1665	-23	1.42	1665	-23	1.38
priem. rel. odch. %			1.20			1.25			1.24	

<u>Príloha 4: Výsledky modelu NM teploty pre Var.8</u>

toubo	T ^{mer}	T NM	∆T _{abs}	ΔT_{rel}	toubo	T ^{mer}	T NM	∆T _{abs}	ΔT_{rel}
tavba	(°C)	(°C)	(°C)	(%)	tavba	(°C)	(°C)	(°C)	(%)
45195	1644	1657	-13	0.78	45330	1679	1669	10	0.61
45196	1677	1623	54	3.22	45331	1664	1671	-7	0.41
45197	1670	1601	69	4.12	45334	1646	1661	-15	0.91
45198	1633	1658	-25	1.54	45335	1637	1639	-2	0.09
45199	1647	1641	6	0.39	45338	1650	1661	-11	0.66
45200	1607	1631	-24	1.48	45340	1691	1645	46	2.72
45209	1651	1604	47	2.86	45341	1638	1561	77	4.72
45210	1648	1645	3	0.16	45358	1660	1664	-4	0.26
45211	1678	1668	10	0.60	45359	1665	1675	-10	0.58
45212	1634	1639	-5	0.32	45360	1648	1657	-9	0.57
45227	1714	1671	43	2.48	45361	1648	1667	-19	1.15
45228	1642	1649	-7	0.44	45363	1659	1669	-10	0.57
45229	1691	1668	23	1.34	45364	1620	1637	-17	1.02
45230	1666	1644	22	1.32	45365	1641	1650	-9	0.56
45235	1676	1649	27	1.61	45366	1677	1647	30	1.78
45236	1654	1662	-8	0.47	45372	1672	1660	12	0.73
45237	1665	1659	6	0.37	45373	1666	1656	10	0.60
45238	1671	1673	-2	0.10	45374	1664	1667	-3	0.18
45239	1649	1669	-20	1.21	45375	1638	1652	-14	0.87
45240	1675	1670	5	0.31	45376	1636	1655	-19	1.14
45241	1655	1679	-24	1.48	45384	1664	1667	-3	0.18
45249	1634	1626	8	0.46	45387	1613	1669	-56	3.49
45255	1634	1652	-18	1.08	45389	1627	1664	-37	2.28
45257	1643	1670	-27	1.65	45390	1652	1666	-14	0.86
45258	1658	1666	-8	0.49	45391	1678	1677	1	0.06
45259	1705	1695	10	0.59	45396	1652	1658	-6	0.34
45261	1671	1603	68	4.08	45397	1668	1644	24	1.46
45264	1658	1655	3	0.15	45398	1658	1644	14	0.86
45265	1673	1646	27	1.62	45399	1672	1631	41	2.45
45266	1664	1648	16	0.96	45400	1690	1650	40	2.35
45267	1681	1658	23	1.38	45402	1686	1666	20	1.16
45268	1656	1662	-6	0.34	45403	1615	1644	-29	1.78
45269	1650	1646	4	0.23	45404	1657	1654	3	0.15
45270	1642	1658	-16	0.96	45405	1618	1669	-51	3.13
45271	1642	1672	-30	1.81	45407	1651	1664	-13	0.78
45272	1673	1647	26	1.53	45408	1704	1673	31	1.79
45273	1669	1652	17	1.02	45409	1657	1666	-9	0.52
45274	1677	1652	25	1.51	45410	1687	1672	15	0.90
45275	1649	1654	-5	0.31	45411	1645	1664	-19	1.14
45276	1664	1648	16	0.94	45412	1683	1688	-5	0.27

45277	1710	1679	31	1.84	45413	1665	1670	-5	0.33
45279	1639	1677	-38	2.29	45415	1670	1642	28	1.67
45280	1645	1676	-31	1.87	45416	1668	1649	19	1.15
45281	1621	1650	-29	1.77	45417	1625	1641	-16	1.01
45282	1684	1675	9	0.51	45423	1656	1652	4	0.23
45283	1649	1678	-29	1.74	45424	1634	1648	-14	0.89
45284	1641	1657	-16	1.00	45425	1662	1662	0	0.01
45291	1654	1642	12	0.73	45427	1648	1655	-7	0.45
45292	1644	1639	5	0.29	45428	1646	1670	-24	1.48
45293	1657	1671	-14	0.83	45429	1653	1647	6	0.38
45294	1686	1656	30	1.80	45436	1641	1647	-6	0.36
45295	1672	1646	26	1.57	45439	1648	1609	39	2.36
45296	1664	1639	25	1.48	45440	1687	1681	6	0.38
45297	1670	1643	27	1.61	45442	1663	1671	-8	0.47
45298	1682	1639	43	2.58	45443	1680	1656	24	1.40
45300	1662	1641	21	1.27	45444	1665	1626	39	2.35
45305	1657	1651	6	0.37	45446	1667	1671	-4	0.22
45307	1634	1667	-33	2.03	45447	1696	1682	14	0.85
45311	1630	1678	-48	2.92	45448	1666	1657	9	0.55
45317	1688	1684	4	0.22	45449	1649	1658	-9	0.56
45318	1669	1672	-3	0.15	45451	1648	1638	10	0.64
45319	1685	1685	0	0.02	45452	1680	1661	19	1.13
45320	1649	1675	-26	1.60	45458	1654	1672	-18	1.07
45322	1629	1670	-41	2.51	45461	1673	1671	2	0.11
45323	1626	1678	-52	3.21	45465	1662	1591	71	4.25
45324	1686	1686	0	0.01	45468	1655	1596	59	3.55
45325	1673	1680	-7	0.42	45472	1667	1648	19	1.14
45326	1695	1672	23	1.36	45484	1657	1665	-8	0.51
45327	1701	1660	41	2.44	45485	1653	1667	-14	0.85
45328	1656	1664	-8	0.46	45489	1642	1668	-26	1.60