2.7 Nonhomogeneous ODEs

$$y'' + p(x)y' + q(x)y = r(x)$$

undetermined coefficients

-) easier -) range of] - r(x) is wall variation of
parameters
parameters
slightly tedius
wire general

2.7 Nonhomogeneous ODEs

Stop® solve a corresponding homogenous of
$$Y'' + PY' + PY = 0$$

I stop® find a particular solution Y_p wither by $Y'' + PY' + YY = Y$
 $Y'' + PY' + YY = Y$

Variation of porander

C) find strp:
$$y = y_n + y_p$$
 [general solution of Eq. (*)

End Sem:

May 7

-> mode: similar to mid term

-) syllabous: everything covered this semester

So far we have been solving homogeneous 2nd order DDE

NOW we will solve non-homogenous and order ODE

$$\exists'' + \alpha \exists' + b \exists = \sigma(x)$$

Stepa find a goneral solution of the corresponding homogenous sol":

In + a Yn + b Yn = 0

step2) find a particular solv: 2/2 which solves Fq (*)

Doed = 1/4 the solve Exx 7 = 7+7p is called general solution of E2 (F) Variations et evol parameters Sec 2.10 method of undetermined coefficients

Method of Undetermined Coefficients

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$Ce^{\gamma x}$ $K_{n}x^{n} + K_{n-1}x^{n-1} + \dots + K_{1}x + K_{0}$ $K \cos \omega x + M \sin \omega x$ $e^{\alpha x}(K \cos \omega x + M \sin \omega x)$

$$4"+7=0$$

$$7_{h}=C_{1}\omega sx+C_{2}\sin x$$

-) find Ipusing undetermined coefficients:

$$\gamma(x) = 1$$

·· our r(x) is a constant

The toble is suggesting that It will also be a constart

G we substitute $Z_p = c$ in the given ode A (c)"+ (c) = 1

Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$Ce^{\gamma x}$ $K_{n}x^{n} + K_{n-1}x^{n-1} + \dots + K_{1}x + K_{0}$ $\begin{cases} K\cos \omega x + M\sin \omega x \\ e^{\alpha x}(K\cos \omega x + M\sin \omega x) \end{cases}$

Ap = C [C neers to be found]

solve for C General 8012 H = Gwent Cz sinx +1

$$A_{n} = C_{1} \cos x + C_{2} \sin x$$

Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$Ce^{\gamma x}$ $K_{n}x^{n} + K_{n-1}x^{n-1} + \dots + K_{1}x + K_{0}$ $\begin{cases} K\cos \omega x + M\sin \omega x \\ e^{\alpha x}(K\cos \omega x + M\sin \omega x) \end{cases}$

$$Y''+Y=0$$

$$X_{h}=C_{1}\omega sx+C_{2}\sin x$$

Try
$$x_p = Ce^{-\lambda n}$$
, need to find C

Try $y_p = Ce^{-\lambda n}$ in $y'' + y = e^{-\lambda x}$

$$4ce^{-\lambda x} + ce^{-\lambda x} = e^{-\lambda x}$$

$$5ce^{-\lambda x} = e^{-\lambda x}$$

$$5ce^{-\lambda x} = e^{-\lambda x}$$

$$5c = 1$$

$$c = 1$$

Method of Undetermined Coefficients

	Term in $r(x)$	Choice for $y_p(x)$
	$ke^{\gamma x}$	$Ce^{\gamma x}$
	$kx^n (n = 0, 1, \cdots)$	$K_n x^n + K_{n-1} x^{n-1} + \cdots + K_1 x + K_0$
	$k \cos \omega x$	$K \cos \omega x + M \sin \omega x$
ð	$k \sin \omega x$	$\int_{0}^{\infty} K \cos \omega x + M \sin \omega x$
	$ke^{\alpha x}\cos\omega x$	$e^{\alpha x}(K\cos\omega x + M\sin\omega x)$
	$ke^{\alpha x}\sin \omega x$	J = (== 202 and 1 and 200)

$$|y| = \frac{1}{5}e^{-2x}$$

$$|y| = c_1 \cos x + c_2 \sin x + \frac{e^{-2x}}{5}$$

EXAMPLE 1

Solve the initial value problem

(5)
$$y'' + y = 0.001x^2$$
, $y(0) = 0$, $y'(0) = 1.5$.

What should be 4p?
$$4p = k_0 + k_1 x + k_2 x^2$$

we need to find Koskiskz by

substituting up in y"+y = 0.001x2

$$K_{x}X^{2} + K_{1}X + (K_{0} + 2K_{2}) = 0.001 X^{2}$$

-) matching

the x, x^2, k constants in LHSA RHS $K_{\lambda} = 0.001$

Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$	$Ce^{\gamma x}$
$kx^n (n = 0, 1, \cdots)$	$K_n x^n + K_{n-1} x^{n-1} + \cdots + K_1 x + K_0$
$k \cos \omega x$	$K \cos \omega x + M \sin \omega x$
$k \sin \omega x$	A cos ax + M sin ax
$ke^{\alpha x}\cos\omega x$	$e^{\alpha x}(K\cos\omega x + M\sin\omega x)$
$ke^{\alpha x}\sin \omega x$	J ·

general solu:

Temaining work: find Circle value <math>A(0) = 0 A'(0) = 1.5 A'(0) = 1.5 A'(0) = 1.5

EXAMPLE 2

Solve the initial value problem

(6)
$$y'' + 3y' + 2.25y = -10e^{-1.5x}, \quad y(0) = 1, \quad y'(0) = 0.$$

$$A^{2} + 34 + 2.25 = 0$$

$$A = -3 \pm \sqrt{9 - 9} = -3/2$$

$$A = -3/2 \times -3/2 \times -3/2 \times$$

$$A = C_{1} - 3/2 \times -3/2 \times -3/2 \times$$

$$\rightarrow 2p = CC^{-1.5x}$$
 should have worked but it's not.
trick: try $4p = CxC^{1.5x}X$

Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$Ce^{\gamma x}$ $K_{n}x^{n} + K_{n-1}x^{n-1} + \dots + K_{1}x + K$ $\begin{cases} K\cos \omega x + M\sin \omega x \end{cases}$ $\begin{cases} e^{\alpha x}(K\cos \omega x + M\sin \omega x) \end{cases}$

$$-100 = 200^{-1.5}$$

$$C = -5$$

$$\Rightarrow$$
 general solu: $Y = C_1 e^{-1.5X} + C_2 x e^{1.5X} - 5 x^2 e^{-1.5X}$
then find $C_1 + C_2 x e^{1.5X} + C_3 x e^{1.5X} = 0$

EXAMPLE 3

Solve the initial value problem

(7)
$$y'' + 2y' + 0.75y = 2\cos x - 0.25\sin x + 0.09x$$
, $y(0) = 2.78$, $y'(0) = -0.43$.

2.8 Modeling: Forced Oscillations. Resonance

$$my'' + cy' + ky = F_0 \cos \omega t.$$

https://www.youtube.com/watch?v=XwlZBJlp1AA