- 21. A secant, a radius, and a tangent of $\bigcirc O$ are shown.
 - **a.** Explain why $(r + h)^2 = r^2 + d^2$.
 - **b.** Simplify the equation in part (a) to show that $d^2 = h(2r + h)$.
 - c. You have proved a special case of a theorem. What theorem is this?

- **22.** \overrightarrow{PT} is tangent to $\bigcirc O$. Secant \overrightarrow{BA} is perpendicular to \overrightarrow{PT} at P. If TA = 6 and PA = 3, find (a) AB, (b) the distance from O to \overrightarrow{AB} , and (c) the radius of $\bigcirc O$.
- 23. A bridge over a river has the shape of a circular arc. The span of the bridge is 24 meters. (The span is the length of the chord of the arc.) The midpoint of the arc is 4 meters higher than the endpoints. What is the radius of the circle that contains this arc?

- **24.** A circle can be drawn through points X, Y, and Z.
 - a. What is the radius of the circle?
 - **b.** How far is the center of the circle from point *W*?

- 25. Draw two intersecting circles with common chord \overline{PQ} and let X be any point on \overline{PQ} . Through X draw any chord \overline{AB} of one circle. Also draw through X any chord \overline{CD} of the other circle. Prove that $AX \cdot XB = CX \cdot XD$.
- **26.** A line is tangent to two intersecting circles at P and Q. The common chord is extended to meet \overline{PQ} at T. Prove that T is the midpoint of \overline{PQ} .
- **C** 27. In the diagram at the left below, \overline{PT} is tangent to $\bigcirc O$ and \overline{PN} intersects $\bigcirc O$ at J. Find the radius of the circle.

Ex. 27

Ex. 28

★28. In the diagram at the right above, \overrightarrow{CD} is a tangent, $\widehat{AC} \cong \widehat{BC}$, AB = 3, AF = 6, and FE = 10. Find ED. (Hint: Let ED = x and CD = y. Then write two equations in x and y.)