Operator Automata Theory

1 Introduction

Descriptive text

2 Preliminaries

Monoid

Semiring

Semimodule

Linear transform

Norm

Automata

3 Operators

Text goes here

3.1 M-Semimodules and Operator Norms

Let Σ be a finite set and M to be the free monoid finitely generated by Σ :

$$M = (\Sigma, \cdot, \mathbf{1})$$

Definition 1 (Normed Monoid). A normed monoid is a monoid M equipped with norm $\|\cdot\|_M$.

Because monoids lack addition, such norms only concern multiplication.

We may extend monoids in general to define the notion of a M-semiring with respect to a monoid M. In particular, M-semirings are generated by the power set of M, $\mathcal{P}(M)$.

Definition 2 (M-Semiring). A M-semiring R_M is a semiring with respect to a monoid M defined as:

$$R_M = (\mathcal{P}(M), \cup, \cdot, \mathbf{0}, \mathbf{1})$$

Where semiring addition is set union \cup with identity $\mathbf{0}$, and semiring multiplication \cdot and identity $\mathbf{1}$ are carried over from M.

We may write R_M as just R when context is clear. Sometimes we will also just call Msemirings as semirings, because they are just special cases of semirings. As with the case of
normed monoids, we may extend this to normed M-semirings:

Definition 3 (M-Semiring p-Norm). For $1 \le p \le \infty$, a normed M-semiring is a M-semiring R_M equipped with a norm $\|\cdot\|_{R_{M,p}}$ defined as:

$$\forall x \in R : ||x||_{R_M,p} = \left(\sum_{a \in R} ||a||_M^p\right)^{1/p}$$

Observe that because M is finitely generated, each $x \in R$ is therefore countable, and hence so is the sum. When $p = \infty$, this is just a sup norm. Similar definitions can be found in literature [1].

Extending M-semirings, we define (M, n)-semimodules:

Definition 4 ((M, n)-Semimodule). A(M, n)-semimodule R_M^n is a semimodule consisting of n isomorphic copies of R_M .

If $x \in R_M^n$, write x_i to denote the *i*th element from R_M in some canonical representation of R_M^n . Often this is just a row (horizontal) or column (vertical) vector of length n.

We write \mathbb{R}^n instead of \mathbb{R}^n_M when M is understood from context. Again, we extend norms to (M, n)-semimodules:

Definition 5 ((M, n)-Semimodule (p, q)-Norm). Let R_M^n be a (M, n)-semimodule and take $1 \le p, q \le \infty$. Define the (M, n)-semimodule (p, q)-norm $\|\cdot\|_{R_M^n, p, q}$:

$$\forall x \in R_M^n : \|x\|_{R_M^n, p, q} = \left(\sum_{i=1}^n \|x_i\|_{R_M, p}^q\right)^{1/q}$$

When $p = q = \infty$, these are just the sup-norm. Often we may only care about the case of $p = \infty$ and q = 1, which is the sup-norm over each R_M , and the 1-norm over the n copies of R_M in R_M^n .

With the notion of norms, we again extend such notions to linear operators between some R_M^n and R_M^m .

Definition 6 (Linear Operator Norm). Take R_M^n equipped with norm $\|\cdot\|_{p_n,q_n}$ and R_M^m equipped with norm $\|\cdot\|_{p_m,q_m}$. Define the linear operator norm $\|\cdot\|_L$ for operators in $\mathcal{L}\left(R_M^n,R_M^m\right)$ as:

$$\forall T \in \mathcal{L}(R_{M}^{n}, R_{M}^{m}) : \|T\|_{L} = \inf \left\{ c \in \mathbb{R}_{\geq 0} : \|Tx\|_{p_{m}, q_{m}} \leq c \cdot \|x\|_{p_{n}, q_{n}}, \forall x \in R_{M}^{n} \right\}$$

4 On Automata

References

[1] Manfred Kudlek. "Iteration Lemmata for Normed Semirings (Algebraic Systems, Formal Languages and Computations)". In: (2000).