IN THE CLAIMS

The following claim listing is provided as a courtesy copy, as no amendments are being made herein:

- 1. (original) Electro-optically active display device with physical transport of the electro-optically active medium through the device, comprising at least one individually addressable pixel, each pixel being provided with an obstructing element, characterised in that a portion of at least one component, being one of an electrical or a mechanical component, is positioned beneath the obstructing element in such a way that the portion is not visible for a viewer of the display device.
- (original) Display device according to claim 1, wherein said at least one component is one of a spacer, a barrier a gate electrode, a data electrode, a storage capacitor, a sensor or a thin film transistor.
- 3. (original) Display device according to claim 1, wherein said display is a reservoir electrophoretic display device, comprising a reservoir light shield, beneath which one or more of an electrode, a storage capacitor, a sensor, and a thin film transistor is positioned.
- 4. (original) Display device according to claim 3, said pixel further comprising a reflective element for enabling transflective operation, whereby a portion an additional component, such as a source electrode is positioned beneath the reflective element, in such a way that the portion is not visible for a viewer of the display device.

5. (previously presented) Display device according to claim 1, wherein said display is one of an
electrophoretic display, an electro-wetting display or an electro-mechanical display.