Math 381H Test 1

Sara Patricia Huston

TOTAL POINTS

60.25 / 77

QUESTION 1 1 rewrite expression 7/7 √ - 0 pts ![1.jpeg](/files/392ed0e3-c549-4c35-bd2ae582bde78cfa)Correct **QUESTION 2** 2 valid proof method 5.25 / 7 $\sqrt{-1.75}$ pts Click here to replace this description. **QUESTION 3** 3 truth table 7/7 √ - 0 pts ![3.jpeg](/files/76611d28-530d-43c4-afa6b2d6c9f6cb66)Correct **QUESTION 4** 4 true or false 10 / 10 √ - 0 pts ![p4.jpeg](/files/470e142e-8637-4e02-986d-837746716e82)Correct

5 truth value of p 10 / 10

√-0 pts

![5.jpeg](/files/c7725f34-30c5-45f5-b683-8415c282a927)Correct

QUESTION 6
6 logical equivalence 12 / 12

√-0 pts

![6.jpeg](/files/e7c80a6c-e2f8-40be-9265-59685260a2bf)Correct

QUESTION 7
7 Induction Proof 6 / 12

√-6 pts see me for details

QUESTION 8

8 If n is prime >3, then n + 2 and n + 4 cannot both be prime 3 / 12

√ - 9 pts see me for details

QUESTION 5

PRINT Name 5000 HUSTON UNC email: Sova hust @ ad. unc.edu

WAIT, I SHOULD TOIN THIS HONOR SOCIETY TO SHOW COLLEGES I'M HONORABLE. AND I'M HONORABLE BECAUSE IM IN AN HONOR SOCIETY? BASICALLY. YES.

SOUNDSLIKE I COULD SAVE TIME BY JOINING THE TAUTOLOGY CLUB DIRECTLY. THAT'S NOT A REAL CLUB.

THENIM

- 1. There are 8 questions on the test, worth a total of 77 points.
- 2. No credit will be given for correct answers without supporting work and/or explanation.
- 3. Final answers must be clearly indicated. All supporting work must be legible and shown on these test pages.
- 4. All proofs must be written using correct notation and complete sentences where appropriate.

Sign the Honor Pledge

I have followed the guidleines listed on the Exam Instructions Sheet. I have neither given nor received any unauthorized help on this exam, and I have conducted myself within the guidelines of the University Honor Code.

Pledge:

You may assume the following statements are true.

Every positive integer greater than 1 is either prime, or has at least one prime divisor.

Let m and n be integers.					
m	n	$m \pm n$	$m \cdot n$		
even	even	even	even		
even	odd	odd	even		
odd	even	odd	even		
odd	odd	even	odd		

Let x and y	be real num	bers.		
х	J.	x± y	X - V	<u>x</u> <u>y</u>
rational	rational	rational	rational	rational, provided $y \neq 0$
rational	irrational	irrational, provided x = 0	irrational, provided $x \neq 0$	irrational, provided $x \neq 0$
irrational	irrational	irrational, provided $x \neq -y$		

Let n be an integer. n is even if and only if n^2 is even. n is odd if and only if n^2 is odd.

Every rational number is can be written in the form $r = \frac{m}{n}$, where m and n are not both even, i.e., r can be reduced to lowest terms.

 $\sqrt{2}$ is irrational.

1. Let w, r, and m be meaningful statements. Rewrite the following without using the negation operator.

7 points

2. Suppose p and q are meaningful statements. Which of the following represent a valid method to prove that $p \rightarrow q$ is true.

I Show that

II Show that

III Assume that

IV Assume that

 $\neg p \rightarrow \neg q$ is false.

 $\neg(\neg p \lor q)$ is false.

 $\neg q \rightarrow \neg p$ is true,

 $\neg p \lor q$ is false.

CONTACTORITING

O-I only

O II only

O III only

IV only

O I and II only

O I and III only

O II and IV only

O all of them

O none of them

P179 7 (P79)

3. Complete the truth table to answer the given question.

7(p+q) show that its true bc it con't be

F TT FF

TOUSE MAN) WAN MNN) = MNN

How many rows yield an outcome of FALSE for the statement $\neg (M \rightarrow (\neg N)) \equiv ((\neg M) \rightarrow N)$?

exactly

O exactly three

Oall of

them

O none of them

4. Let m and n be positive integers. Determine whether the given statement is true or false. If it is true, give a proof. If it is false, give a specific counterexample.

Determine the truth-value of statement p. You must show supporting work.

- O Statement *p* must be true.
- O Statement p must be false.

Not enough information to determine the truth-value of statement *p*.

be true. be false. the truth-value of statement
$$p$$
.

 $M=T$ $TK \rightarrow TM=T$ $K \rightarrow g=T$ $PVg=T$

Since $M=T$, for $TK \rightarrow TM$ $TM=T$ $TM=$

6. Let p, q, r, and w be meaningful statements.

Determine which of the following are logically equivalent to the statement $p \rightarrow (q \land r \land w)$. You must show supporting work.

$$\mathbf{I} \quad p \lor (\neg q \land \neg r \land \neg w) \qquad \mathbf{II} \quad ((q \land r) \to \neg w) \to \neg p \qquad \mathbf{III} \quad (p \land \neg r) \to (w \lor q)$$

- O I and III only
- O I only

 II only
- O II and III only
- O III only

- O I and II only
- O all of them
- O none of them

I. pv (79 A77 A7W)

7p -> (79 A77 A7W)

Not equivalent

P=T TT -> (7FA7FA7F)

Q=F

R=F

W=F

F → T

T→(F∧F∧F)

F

II. $((q \wedge v) \rightarrow \neg w) \rightarrow \neg p$ $(\neg (q \wedge v) \vee \neg w) \rightarrow \neg p$ $p \rightarrow \neg (\neg (q \wedge v) \vee \neg w)$ $p \rightarrow (q \wedge v \wedge w)$ equivalent

III. $(p \wedge \neg r) \rightarrow (w \vee q)$ $p = T \qquad w = T$ $r = F \qquad q = T$

NOT

 $T \rightarrow (T \wedge T \wedge F)$ $T \rightarrow F$

 $\begin{array}{ccc} (T \rightarrow \neg F) \rightarrow (T \vee T) \\ (T \rightarrow T) \rightarrow & T \\ \hline T \rightarrow & T \\ \hline T \end{array}$

7. Use Mathematical Induction to prove the given statement.

If *n* is a positive integer, then $n^3 - n$ is divisible by 6.

1. Basis step

$$\frac{n^3-n}{6}=\frac{1^3-1}{6}=\frac{0}{6}=0$$
 integer divisible by 6

2. Induction hypothesis

For some specific integer $k \ge 1$, $k^3 - k = 6L$ $k^3 = 6L + k$ $k = k^3 - 6L$

3. Induction Step

Thus, by induction on then n3-b=bL

8. Let n be an integer, with n > 3. Prove the given statement.

If n is prime, then n+2 and n+4 cannot both be prime.

2K+1+ 4 must be 2K+5 odd to be prime example both can of both or ease it being (an be divided by 12 14+5 19 14+3 2 since 17