Devoir maison 1.

Exercice

Partie 1: Étude de f

1°) a) La fonction g est définie et dérivable sur \mathbb{R}_+^* par somme de fonctions dérivables sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$,

$$g'(x) = 3x^2 - 2\frac{1}{x} = \frac{3}{x}\left(x^3 - \frac{2}{3}\right).$$

Pour $x \in \mathbb{R}_+^*$:

$$g'(x) = 0 \iff x^3 - \frac{2}{3} = 0 \iff x = \sqrt[3]{\frac{2}{3}}$$

et

$$g'(x) > 0 \Longleftrightarrow x > \sqrt[3]{\frac{2}{3}}$$

par stricte croissance de la fonction cube et car $\frac{3}{x} > 0$.

On en tire que g' < 0 sur $\left]0, \sqrt[3]{\frac{2}{3}}\right[$ donc $\left[g \text{ est strictement décroissante sur }\right]0, \sqrt[3]{\frac{2}{3}}\right]$, et

strictement croissante sur
$$\left[\sqrt[3]{\frac{2}{3}}, +\infty\right[$$
.

b) Ainsi, g possède un minimum atteint en $\sqrt[3]{\frac{2}{3}}$. Calculons :

$$g\left(\sqrt[3]{\frac{2}{3}}\right) = \frac{2}{3} - 2\ln\left(\sqrt[3]{\frac{2}{3}}\right) + 1 = \frac{5}{3} - 2\ln\left(\sqrt[3]{\frac{2}{3}}\right)$$

 $\text{Mais comme } \frac{2}{3} \in]0,1[, \text{ on a } \sqrt[3]{\frac{2}{3}} \in]0,1[, \text{ et donc } -2\ln\left(\sqrt[3]{\frac{2}{3}}\right) > 0.$

Ainsi,
$$g\left(\sqrt[3]{\frac{2}{3}}\right) > 0$$
.

Puisqu'il s'agit de la valeur minimale de g, on a bien, pour tout x > 0, g(x) > 0

2°) Par somme et quotient de fonctions dérivables, f est dérivable, et pour tout $x \in \mathbb{R}_+^*$,

$$f'(x) = \frac{\frac{1}{x}x^2 - \ln(x)2x}{(x^2)^2} + 1$$
$$= \frac{x - 2x\ln(x)}{x^4} + 1$$
$$= \frac{1 - 2\ln(x) + x^3}{x^3} = \frac{g(x)}{x^3}$$

Pour tout $x \in \mathbb{R}_+^*$, $x^3 > 0$ et g(x) > 0, donc f'(x) > 0. D'où le tableau de variation de f:

La limite en $+\infty$ s'explique par le fait que $\lim_{x\to +\infty}\frac{\ln(x)}{x^2}=0$ (croissance comparée). En 0, on sait que $\lim_{x\to 0}\ln(x)=-\infty$, $\lim_{x\to 0}x^2=0$ et x^2 est une quantité positive, d'où $\lim_{x\to 0}\frac{\ln(x)}{x^2}=-\infty$.

3°) Pour tout $x \in \mathbb{R}_+^*$, $f(x) - (x - 1) = \frac{\ln(x)}{x^2}$, donc $\lim_{x \to +\infty} f(x) - (x - 1) = 0$. Cela signifie que la droite \mathcal{D} d'équation y = x - 1 est asymptote à la courbe de \mathcal{C} en $+\infty$.

De plus, connaissant le signe de ln et sachant que pour tout x > 0, $\frac{1}{x^2} > 0$, on a f(x) - (x-1) < 0 pour $x \in]0,1[$, f(x)-(x-1)=0 pour x=1, et f(x)-(x-1)>0 pour x>1. Cela signifie que $\boxed{\mathcal{C}}$ est en dessous de $\boxed{\mathcal{D}}$ sur $\boxed{0,1[}$, que $\boxed{\mathcal{C}}$ est au dessus de $\boxed{\mathcal{D}}$ sur $\boxed{1,+\infty[}$, et que $\boxed{0}$ les deux courbes se croisent uniquement au point d'abscisse $\boxed{0}$.

- 4°) Une équation de T est : y = f'(1)(x-1) + f(1). On a $f'(1) = \frac{1 - 2\ln(1) + 1^3}{1^3} = 2$ et $f(1) = \frac{\ln(1)}{1^2} + 1 - 1 = 0$, donc T : y = 2(x-1).
- 5°) Tracé de C, T, et D:

Partie 2: Travail sur une aire

6°) Nous avons vu que sur $[1, +\infty[$ (et donc sur $[1, \lambda]$), \mathcal{C} est au-dessus de \mathcal{D} , donc l'aire demandée est égale à $\mathcal{A}_1(\lambda) - \mathcal{A}_2(\lambda)$, où $\mathcal{A}_1(\lambda)$ l'aire sous la courbe \mathcal{C} entre les points d'abscisses 1 et λ , et $\mathcal{A}_2(\lambda)$ l'aire sous la droite \mathcal{D} entre les points d'abscisses 1 et λ .

Nous savons que $\mathcal{A}_1(\lambda) = \int_1^{\lambda} f(x) dx$ et que $\mathcal{A}_2(\lambda) = \int_1^{\lambda} (x-1) dx$ d'où, par linéarité de l'intégrale :

$$\mathcal{A}(\lambda) = \int_1^{\lambda} (f(x) - (x - 1)) \, \mathrm{d}x = \int_1^{\lambda} \frac{\ln(x)}{x^2} \, \mathrm{d}x.$$

Posons $u = \ln$ et $v : x \mapsto \frac{-1}{x}$; ces fonctions sont dérivables sur $[1, \lambda]$, de dérivées continues, et pour tout $x \in [1, \lambda]$,

$$u'(x) = \frac{1}{x}, \qquad v'(x) = \frac{1}{x^2}$$

D'où, par intégration par parties,

$$\mathcal{A}(\lambda) = \left[\ln(x)\frac{-1}{x}\right]_{1}^{\lambda} - \int_{1}^{\lambda} \frac{1}{x} \frac{-1}{x} dx$$

$$= -\frac{\ln(\lambda)}{\lambda} + 0 + \int_{1}^{\lambda} \frac{1}{x^{2}} dx$$

$$= -\frac{\ln(\lambda)}{\lambda} + \left[\frac{-1}{x}\right]_{1}^{\lambda}$$

$$\mathcal{A}(\lambda) = -\frac{\ln(\lambda)}{\lambda} - \frac{1}{\lambda} + 1$$

- 7°) Nous savons que $\lim_{\lambda \to +\infty} \frac{1}{\lambda} = 0$ et que $\lim_{\lambda \to +\infty} \frac{\ln(\lambda)}{\lambda} = 0$ par croissances comparées, donc $L = \lim_{\lambda \to +\infty} \mathcal{A}(\lambda) = 1$.
- 8°) Soit $\lambda \geq 1$.

$$\mathcal{A}(\lambda) = \frac{L}{2} \Longleftrightarrow -\frac{\ln(\lambda)}{\lambda} - \frac{1}{\lambda} + 1 = \frac{1}{2}$$

$$\iff \frac{1}{2} = \frac{\ln(\lambda)}{\lambda} + \frac{1}{\lambda}$$

$$\iff \lambda = 2\ln(\lambda) + 2$$

$$\boxed{\mathcal{A}(\lambda) = \frac{L}{2} \Longleftrightarrow 2\ln(\lambda) - \lambda + 2 = 0 : (*)}$$

9°) Posons, pour tout $x \in [1, +\infty[$, $h(x) = 2\ln(x) - x + 2$. On a donc $(*) \iff h(\lambda) = 0$.

Par somme, la fonction h est dérivable sur $[1, +\infty[$, et pour tout $x \in [1, +\infty[$,

$$h'(x) = \frac{2}{x} - 1 = \frac{2 - x}{x}$$

Pour $x \in [1, +\infty[$, x > 0 donc h'(x) est du signe de 2 - x. On en tire le tableau de variation suivant :

x	1 2 +	$-\infty$
h'(x)	+ 0 -	
h	h(2)	$-\infty$

Ainsi, h est croissante sur [1,2], donc pour tout $x \in [1,2]$, $h(x) \ge h(1) = 1$. On en tire que l'équation (*) n'a pas de solution sur [1,2], et que h(2) > 0.

Par ailleurs, h est strictement décroissante sur $[2, +\infty[$; de plus, $[2, +\infty[$ est un intervalle, et h y est continue. D'après le théorème de la bijection, h réalise une bijection de $[2, +\infty[$ sur $h([2, +\infty[) =] - \infty, h(2)]$.

Comme h(2) > 0, on a donc $0 \in]-\infty, h(2)]$. Donc 0 a un unique antécédent par h sur $[2, +\infty[$. Autrement dit, il existe un unique réel $x \in [2, +\infty[$ tel que h(x) = 0.

Comme il n'y a pas de solution sur [1,2], l'équation (*) admet une unique solution λ dans $[1,+\infty[$

Calculons: $h(4) = 2 \ln(4) - 2 = 2 (\ln(4) - 1)$. Or 4 > 3 > e, donc $\ln(4) > 1$, donc h(4) > 0.

Si on avait $\lambda \leq 4$, comme λ et 4 sont dans $[2, +\infty[$ où h est décroissante, on aurait $h(\lambda) \leq h(4)$ i.e. $0 \leq h(4)$. Ce n'est pas le cas, donc on a bien $[\lambda > 4]$.