Name:	

MASTERY QUIZ DAY 10

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\3-21a\\-7a\\12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$

Solution:

RREF
$$\left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & \frac{5}{7} & \frac{3}{7} \\ 0 & 1 & \frac{8}{7} & \frac{2}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} -\frac{5}{7}a - \frac{3}{7}b \\ -\frac{8}{7}a - \frac{2}{7}b \\ a \\ b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is $\left\{ \begin{bmatrix} -\frac{5}{7} \\ \frac{8}{7} \\ -\frac{1}{7} \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -\frac{3}{7} \\ \frac{2}{7} \\ 0 \\ 1 \end{bmatrix} \right\}$, or $\left\{ \begin{bmatrix} 5 \\ 8 \\ -7 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 0 \\ -7 \end{bmatrix} \right\}$.

V1. Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x, y \in V$ and $c \in \mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

Determine if V is a vector space or not.

Solution: Let $x, y \in V$, $c, d \in \mathbb{R}$.

- 1) Real addition is associative, so \oplus is associative.
- 2) $x \oplus 3 = x + 3 3 = x$, so 3 is the additive identity.
- 3) $x \oplus (6-x) = x + (6-x) 3 = 3$, so 6-x is the additive inverse of x.
- 4) Real addition is commutative, so \oplus is commutative.

5)

$$c \odot (d \odot x) = c \odot (dx - 3(d - 1))$$
$$= c (dx - 3(d - 1)) - 3(c - 1)$$
$$= cdx - 3(cd - 1)$$
$$= (cd) \odot x$$

6)
$$1 \odot x = x - 3(1 - 1) = x$$

7)

$$c \odot (x \oplus y) = c \odot (x + y - 3)$$

$$= c(x + y - 3) - 3(c - 1)$$

$$= cx - 3(c - 1) + cy - 3(c - 1) - 3$$

$$= (c \odot x) \oplus (c \odot y)$$

$$(c+d) \odot x = (c+d)x - 3(c+d-1)$$

= $cx - 3(c-1) + dx - 3(c-1) - 3$
= $(c \odot x) \oplus (d \odot x)$

Therefore V is a vector space.

E1: E3: E4: V1: E2: