International Rectifier

IRGPC50UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

UltraFast CoPack IGBT

Features

- Switching-loss rating includes all "tail" losses
- HEXFRED[™] soft ultrafast diodes
- Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve

$$V_{CES} = 600V$$

$$V_{CE(sat)} \le 3.0V$$

$$@V_{GE} = 15V, I_C = 27A$$

Description

Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, motor control, UPS and power supply applications.

Absolute Maximum Ratings

-			
	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	55	
$I_C @ T_C = 100^{\circ}C$	Continuous Collector Current	27	
I _{CM}	Pulsed Collector Current ①	220	Α
I_{LM}	Clamped Inductive Load Current ②	220	
$I_F @ T_C = 100^{\circ}C$	Diode Continuous Forward Current	25	
I _{FM}	Diode Maximum Forward Current	220	
V_{GE}	Gate-to-Emitter Voltage	± 20	V
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	200	W
$P_D @ T_C = 100^{\circ}C$	Maximum Power Dissipation	78	
T_{J}	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT	_	_	0.64	
$R_{\theta JC}$	Junction-to-Case - Diode	_	_	0.83	°C/W
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	_	0.24	_	
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	40	
Wt	Weight	_	6 (0.21)	_	g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage 3	600	_	_	V	V _{GE} = 0V, I _C = 250μA
$\Delta V_{(BR)CES}/\Delta T_J$	Temp. Coeff. of Breakdown Voltage		0.60	_	V/°C	V _{GE} = 0V, I _C = 1.0mA
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		1.9	3.0		I _C = 27A
		_	2.4	_	V	I _C = 55A See Fig. 2, 5
		_	1.9	_		I _C = 27A, T _J = 150°C
$V_{GE(th)}$	Gate Threshold Voltage	3.0	_	5.5		$V_{CE} = V_{GE}$, $I_C = 250\mu A$
$\Delta V_{GE(th)}/\Delta T_{J}$	Temp. Coeff. of Threshold Voltage	_	-13	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
9 _{fe}	Forward Transconductance ④	16	24	_	S	V _{CE} = 100V, I _C = 27A
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	V _{GE} = 0V, V _{CE} = 600V
		_	_	6500		V _{GE} = 0V, V _{CE} = 600V, T _J = 150°C
V_{FM}	Diode Forward Voltage Drop	_	1.3	1.7	V	$I_C = 25A$ See Fig. 13
		_	1.2	1.5		$I_C = 25A, T_J = 150^{\circ}C$
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V _{GE} = ±20V

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)		110	140		I _C = 27A	
Q _{ge}	Gate - Emitter Charge (turn-on)		17	21	nC	$V_{CC} = 400V$	
Q _{gc}	Gate - Collector Charge (turn-on)	_	53	70		See Fig. 8	
t _{d(on)}	Turn-On Delay Time		73	_		$T_J = 25^{\circ}C$	
t _r	Rise Time		71	_	ns	$I_C = 27A, V_{CC} = 480V$	
t _{d(off)}	Turn-Off Delay Time	_	210	320		$V_{GE} = 15V, R_{G} = 5.0\Omega$	
t _f	Fall Time	_	150	280		Energy losses include "tail" and	
E _{on}	Turn-On Switching Loss	_	1.4	_		diode reverse recovery.	
E _{off}	Turn-Off Switching Loss	_	1.6	_	mJ	See Fig. 9, 10, 11, 18	
E _{ts}	Total Switching Loss	_	3.0	4.5			
t _{d(on)}	Turn-On Delay Time	_	73	_		T _J = 150°C, See Fig. 9, 10, 11, 18	
t _r	Rise Time	_	67	_	ns	$I_C = 27A$, $V_{CC} = 480V$	
t _{d(off)}	Turn-Off Delay Time	_	360	_		$V_{GE} = 15V$, $R_G = 5.0\Omega$	
t _f	Fall Time	_	230	_		Energy losses include "tail" and	
E _{ts}	Total Switching Loss	_	4.5	_	mJ	diode reverse recovery.	
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package	
C _{ies}	Input Capacitance	_	2900	_		V _{GE} = 0V	
C _{oes}	Output Capacitance	_	330	_	pF	$V_{CC} = 30V$ See Fig. 7	
C _{res}	Reverse Transfer Capacitance	_	40	_		f = 1.0MHz	
t _{rr}	Diode Reverse Recovery Time	_	50	75	ns	T _J = 25°C See Fig.	
		_	105	160		$T_J = 125^{\circ}C$ 14 $I_F = 25A$	
I _{rr}	Diode Peak Reverse Recovery Current	_	4.5	10	Α	T _J = 25°C See Fig.	
		_	8.0	15		T _J = 125°C 15 V _R = 200V	
Q _{rr}	Diode Reverse Recovery Charge	_	112	375	nC	T _J = 25°C See Fig.	
		_	420	1200		T _J = 125°C 16 di/dt = 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	250	_	A/µs	T _J = 25°C See Fig.	
	During t _b	_	160	_		T _J = 125°C 17	

Notes:

- Repetitive rating; V _{GE}=20V, pulse width limited by max. junction temperature. (See fig. 20)
- $@~V_{CC}\!\!=\!\!80\%(V_{CES}),~V_{GE}\!\!=\!\!20V,~L\!\!=\!\!10\mu H,$ $R_G\!\!=\!5.0\Omega,~($ See fig. 19)
- ③ Pulse width \leq 80µs; duty factor \leq 0.1%.
- Pulse width 5.0µs, single shot.

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature

Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 10 - Typical Switching Losses vs. Case Temperature

V_{GE} = 20V T_J = 125°C

SAFE OPERATING AREA

100

V_{CE}, Collector-to-Emitter Voltage (V)

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

Fig. 14 - Typical Reverse Recovery vs. di_f/dt

Fig. 15 - Typical Recovery Current vs. di_f/dt

Fig. 16 - Typical Stored Charge vs. dif/dt

Fig. 17 - Typical $di_{(rec)M}/dt$ vs. di_f/dt

 $\label{eq:Fig. 18a} \textbf{Fig. 18a} \textbf{ -} \text{ Test Circuit for Measurement of } \\ \textbf{I}_{LM}, \ \textbf{E}_{on}, \ \textbf{E}_{off(diode)}, \ \textbf{t}_{rr}, \ \textbf{Q}_{rr}, \ \textbf{I}_{rr}, \ \textbf{t}_{d(on)}, \ \textbf{t}_{r}, \ \textbf{t}_{d(off)}, \ \textbf{t}_{f} \\$

 $\label{eq:Fig. 18b} \textbf{Fig. 18b} \textbf{ -} \ \text{Test Waveforms for Circuit of Fig. 18a, Defining} \\ \textbf{E}_{\text{off}}, \ t_{\text{d(off)}}, \ t_{\text{f}}$

 $\label{eq:Fig. 18c - Test Waveforms for Circuit of Fig. 18a,} \textbf{Defining E}_{on}, \, t_{d(on)}, \, t_r$

Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec} , t_{rr} , Q_{rr} , I_{rr}

Refer to Section D for the following: Appendix D: Section D - page D-6

Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a

Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

Package Outline 3 - JEDEC Outline TO-247AC

Section D - page D-13

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/