BBM413 Fundamentals of Image Processing

Fundamentals

Contents

- **♦**This lecture will cover:
 - ♦ The human visual system
 - ♦ Light and the electromagnetic spectrum
 - ♦ Image representation
 - ♦ Image sensing and acquisition
 - ♦ Sampling, quantisation and resolution

Human Visual System

- ♦The best vision model we have!
- Knowledge of how images form in the eye can help us with processing digital images
- We will take just a whirlwind tour of the human visual system

Structure Of The Human Eye

- ♦The lens focuses light from objects onto the retina
- ◆The retina is covered with light receptors called cones (6-7 million) and rods (75-150 million)
- ♦ Cones are concentrated around the fovea and are very sensitive to colour
- ◆Rods are more spread out and are sensitive to low levels of illumination

Image Formation In The Eye

Muscles within the eye can be used to change the shape of the lens allowing us focus on objects that are near or far away

♦An image is focused onto the retina causing rods and cones to become excited which ultimately send signals to the brain

image from: Do Women see More Colors than Men? https://www.bibalex.org/SCIplanet/

Blind-Spot Experiment

◆Draw an image similar to that below on a piece of paper (the dot and cross are about 6 inches apart)

- Close your right eye and focus on the cross with your left eye
- ♦ Hold the image about 20 inches away from your face and move it slowly towards you
- ♦The dot should disappear!

Brightness Adaptation & Discrimination

- ♦The human visual system can perceive approximately 10¹⁰ different light intensity levels
- However, at any one time we can only discriminate between a much smaller number - brightness adaptation
- ◆Similarly, the *perceived intensity* of a region is related to the light intensities of the regions surrounding it

Log of intensity (mL)

FIGURE 2.4 Range of subjective brightness sensations showing a particular adaptation level.

FIGURE 2.4

Range of subjective brightness sensations showing a particular adaptation level.

FIGURE 2.6
Typical Weber ratio as a function of intensity.

Brightness Adaptation & Discrimination (cont...)

Brightness Adaptation & Discrimination (cont...)

Brightness Adaptation & Discrimination (cont...)

An example of simultaneous contrast

Optical Illusions

Our visual systems play lots of interesting tricks on us

Optical Illusions (cont...)

Optical Illusions (cont...)

Stare at the cross in the middle of the image and think circles

Mind Map Exercise: Mind Mapping For Note Taking

Light And The Electromagnetic Spectrum

- ♦ Light is just a particular part of the electromagnetic spectrum that can be sensed by the human eye
- ♦ The electromagnetic spectrum is split up according to the wavelengths of different forms of energy

Reflected Light

- The colours that we perceive are determined by the nature of the light reflected from an object
- ♦For example, if white light is shone onto a green object most wavelengths are absorbed, while green light is reflected from the object

Sampling, Quantisation And Resolution

- ♦In the following slides we will consider what is involved in capturing a digital image of a real-world scene
 - ♦ Image sensing and representation
 - ♦ Sampling and quantisation
 - ♦ Resolution

igotimes Before we discuss image acquisition recall that a digital image is composed of M rows and N columns of

pixels each storing a value

◆Pixel values are most often grey levels in the range 0-255(black-white)

♦ We will see later on that images can easily be represented as matrices

Image Acquisition

♦ Images are typically generated by *illuminating* a *scene* and absorbing the energy reflected by the objects in that scene

- Typical notions of illumination and scene can be way off:
 - X-rays of a skeleton
 - Ultrasound of an unborn baby
 - Electro-microscopic images of molecules

Image Sensing

- ♦ Incoming energy lands on a sensor material responsive to that type of energy and this generates a voltage
- Collections of sensors are arranged to capture images

Line of Image Sensors

Array of Image Sensors

Image Sampling And Quantisation

- ♦ A digital sensor can only measure a limited number of **samples** at a **discrete** set of energy levels
- ♦ Quantisation is the process of converting a continuous analogue signal into a digital representation of this signal

Image Sampling And Quantisation

Image Sampling And Quantisation

Sampling

Image Sampling And Quantisation (cont...)

◆Remember that a digital image is always only an approximation of a real world scene


```
Origin
         · .5 .5 .5 · ·
           .5.5
    0
 0
```


Spatial Resolution

- ♦ The spatial resolution of an image is determined by how sampling was carried out
- ♦ Spatial resolution simply refers to the smallest discernable detail in an image
 - Vision specialists will often talk about pixel size
 - Graphic designers will talk about dots per inch (DPI)

256

512

Spatial Resolution (cont...)

Spatial Resolution (cont...)

Spatial Resolution (cont...)

Intensity Level Resolution

- ♦ Intensity level resolution refers to the number of intensity levels used to represent the image
 - The more intensity levels used, the finer the level of detail discernable in an image
 - Intensity level resolution is usually given in terms of the number of bits used to store each intensity level

Number of Bits	Number of Intensity Levels	Examples
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	00110011, 01010101
16	65,536	1010101010101010

Saturation & Noise

Resolution: How Much Is Enough?

- The big question with resolution is always how much is enough?
 - This all depends on what is in the image and what you would like to do with it
 - ♦ Key questions include
 - ♦ Does the image look aesthetically pleasing?
 - ◆Can you see what you need to see within the image?

Resolution: How Much Is Enough? (cont...)

♦ The picture on the right is fine for counting the number of cars, but not for reading the number plate

Low Detail Medium Detail High Detail

Summary

- ♦ We have looked at:
 - ♦ Human visual system
 - ♦ Light and the electromagnetic spectrum
 - ♦ Image representation
 - ♦ Image sensing and acquisition
 - ♦ Sampling, quantisation and resolution