LA FONCTION CARRÉ E03

Construction d'un point de la parabole d'équation $y=x^2$

Objectif:

Dans le repère orthonormé $(O; \vec{i}; \vec{j})$. Pour x un réel donné, on veut justifier la construction du point $M(x; x^2)$

EXERCICE N°1 Le protocole de construction

- 1) Placer un point A sur l'axe des abscisses. On note x son abscisse, ainsi A(x; 0).
- 2) Placer le point U(1;0).
- 3) Construire le point E(1; x) (Pensez au compas...).
- 4) Tracer la droite (UE) et la droite (d) passant par A et parallèle à (UE).
- 5) Tracer la droite (OE), elle coupe la droite (d) en M.

EXERCICE N°2 La justification

Nous devons justifier que le point $M(x; x^2)$, qui appartient évidemment à la droite (d), appartient aussi à la droite (OE).

- 1) Calculer les coordonnées des vecteurs \overrightarrow{OE} et \overrightarrow{OM} .
- 2) Démontrer que \overline{OE} et \overline{OM} sont colinéaires.
- 3) Conclure.

LA FONCTION CARRÉ E03

Construction d'un point de la parabole d'équation $y=x^2$

Objectif:

Dans le repère orthonormé $(O;\vec{i};\vec{j})$. Pour x un réel donné, on veut justifier la construction du point $M(x;x^2)$

EXERCICE N°1 Le protocole de construction

- 1) Placer un point A sur l'axe des abscisses. On note x son abscisse, ainsi . A(x; 0)
- 2) Placer le point U(1;0).
- 3) Construire le point E(1; x) (Pensez au compas...).
- 4) Tracer la droite (UE) et la droite (d) passant par A et parallèle à (UE).
- 5) Tracer la droite (OE), elle coupe la droite (d) en M.

EXERCICE N°2 La justification

Nous devons justifier que le point $M(x;x^2)$, qui appartient évidemment à la droite (d), appartient aussi à la droite (OE).

- 1) Calculer les coordonnées des vecteurs \overrightarrow{OE} et \overrightarrow{OM} .
- 2) Démontrer que \overrightarrow{OE} et \overrightarrow{OM} sont colinéaires.
- 3) Conclure.

LA FONCTION CARRÉ E03

Construction d'un point de la parabole d'équation $y=x^2$

Objectif:

Dans le repère orthonormé $(O; \vec{i}; \vec{j})$. Pour x un réel donné, on veut justifier la construction du point $M(x; x^2)$

EXERCICE N°1 Le protocole de construction

- 1) Placer un point A sur l'axe des abscisses. On note x son abscisse, ainsi A(x; 0).
- 2) Placer le point U(1;0).
- 3) Construire le point E(1; x) (Pensez au compas...).
- 4) Tracer la droite (UE) et la droite (d) passant par A et parallèle à (UE).
- 5) Tracer la droite (OE), elle coupe la droite (d) en M.

EXERCICE N°2 La justification

Nous devons justifier que le point $M(x; x^2)$, qui appartient évidemment à la droite (d), appartient aussi à la droite (OE).

- 1) Calculer les coordonnées des vecteurs \overrightarrow{OE} et \overrightarrow{OM} .
- 2) Démontrer que \overline{OE} et \overline{OM} sont colinéaires.
- 3) Conclure.

LA FONCTION CARRÉ E03

Construction d'un point de la parabole d'équation $y=x^2$

Objectif:

Dans le repère orthonormé $(O;\vec{i};\vec{j})$. Pour x un réel donné, on veut justifier la construction du point $M(x;x^2)$

EXERCICE N°1 Le protocole de construction

- 1) Placer un point A sur l'axe des abscisses. On note x son abscisse, ainsi . A(x; 0)
- 2) Placer le point U(1;0).
- 3) Construire le point E(1; x) (Pensez au compas...).
- 4) Tracer la droite (UE) et la droite (d) passant par A et parallèle à (UE).
- 5) Tracer la droite (OE), elle coupe la droite (d) en M.

EXERCICE N°2 La justification

Nous devons justifier que le point $M(x;x^2)$, qui appartient évidemment à la droite (d), appartient aussi à la droite (OE).

- 1) Calculer les coordonnées des vecteurs \overrightarrow{OE} et \overrightarrow{OM} .
- 2) Démontrer que \overrightarrow{OE} et \overrightarrow{OM} sont colinéaires.
- 3) Conclure.