SITE INVESTIGATION REPORT FOR IRP SITES NO. 25 AND NO. 26

VOLUME II

148th FIGHTER WING MINNESOTA AIR NATIONAL GUARD DULUTH AIR NATIONAL GUARD BASE DULUTH, MINNESOTA

DISTRIBUTION STATEMENT A

Approved for public released
Distribution Unlimited

JUNE 1996

19960809 040

Prepared For

HQ ANG/CEVR ANDREWS AFB, MARYLAND

SITE INVESTIGATION REPORT FOR IRP SITES NO. 25 AND NO. 26

VOLUME II

148th FIGHTER WING MINNESOTA AIR NATIONAL GUARD DULUTH AIR NATIONAL GUARD BASE DULUTH, MINNESOTA

JUNE 1996

Prepared For

HQ ANG/CEVR

ANDREWS AFB, MARYLAND

Prepared By

Operational Technologies Corporation 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253 (210) 731-0000

REPORT DOCUMENTATION PAGE

Unclassmed

Form Approved

OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, standhing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send common's reporting this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Sudget, Paperwork Reduction Project (8764-6188), Washington, OC 20563. 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) Site Investigation Report July, 1996 S. FUNDING NUMBERS A TITLE AND SUBTITLE Site Investigation Report for IRP Sites No. 25 and No. 26, 148th Fighter Wing, Duluth Air National Guard Base, Duluth, MN. Volume II 6. AUTHOR(S) NA 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER Operational Technologies Corp. 4100 N.W. Loop 410, Suite 230 Commence of the Commence San Antonio, TX 78229-4253 PROFILE DESTRUCTION 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER ANGRC/CEVR 3500 Fetchet Avenue Andrews AFB MD 20762-5157 11. SUPPLEMENTARY NOTES and in the common than the second of the sec 12b. DISTRIBUTION CODE 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; The second secon distribution is unlimited #1881 P. C. 195 13. ABSTRACT (Maximum 200 words) Site Investigation Report for IRP Sites No. 25 and No. 26, 148th Fighter Wing, Duluth Air National Guard Base, Duluth, MN, Volume II, Appendix A through L. This is the second volume of a four volume site investigation report. This investigation involves two sites; site 25 -- Old Motor Pool area, and site 26 -- Ramp Disposal Area. Soil and groundwater contamination above state action levels were found at site 25; no significant contamination was found at site 26. Site 25 cleanup will be included in the scheduled cleanup of site 21. **智慧** 化二甲烷基甲酰基磺胺 医克尔克 医克克德曼 14. SUBJECT TERMS Installation Restoration Program; Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); Air National Guard; Site Investigation [4] . First cook Minnesota Air National Guard; Duluth, MN.

17. SECURITY CLASSIFICATION

18. SECURITY CLASSIFICATION

OF THIS PAGE Classified 26. LIMITATION OF ABSTRACT SECURITY CLASSIFICATION

of Assistantified

None

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

APPENDIX A
BORING LOGS

INTRODUCTION

Boring log diagrams have been compiled for each borehole location drilled during this study. Diagrams are presented in numerical order within each site. The borehole identification is keyed to the site number (017-01BH), borehole (BH), or monitor well designation (MW). The diagrams combine in one page both a verbal and graphical illustration of the lithology encountered during drilling, water level data encountered during drilling, and surveyed elevation of the ground surface at the borehole location.

Drilling records are organized sequentially by number for boreholes and the monitor well. The borehole identification is keyed to the site number and borehole type such as soil boring for acoustic topography survey (BH) or monitor well designation (MW).

The soil core was scanned for volatile organic compounds prior to describing the soil core and results were recorded on the boring logs. As soon as the soil core was removed from the sampling assembly, a portable Thermo Instrument Model 580B photoionization detector was used to monitor for volatile organic compounds and a portable HMX251 explosimeter was used to monitor the lower explosive limit and percent oxygen.

The sample description includes the primary major component or components, color, consistency, relative density, texture, moisture, and observations of each distinct lithologic change encountered. Each distinct lithologic change that was encountered was defined by the Unified Soil Classification System (USCS), which is based on texture, sorting of clasts, and plasticity of soils. The color was determined by visually comparing the color of the sample with the Munsell Soil Color Charts. The texture was visually estimated and described suing the following semi-quantitative adjectives:

<u>Adjective</u>	Estimated Percent of Total Sample
Trace	0 - 5
Little	5 - 12
Some	12 - 35
Add	35 - 50

These adjectives precede the lithology, such as little clay (5 - 12% clay) or some sand (12 - 35% sand).

The classification: Sand, granule, cobble, and boulder, was assigned using the grain-size scale given in the USCS. Gravel clast sizes, boulder, cobble, and pebbles were measured using a steel tape in the field. On the original field lithologic logs, clasts that were 4 inches or greater in size and those that were from 2 to 4 inches in size were reported as boulders and cobbles, respectively.

The fine fraction was described using one of the following terms: Silt, silt and clay, or clay. These are field terms and take into account plasticity as well as grain size. The distinction between clay and silt was based on how easily a small piece of soil could be rolled into a thin ribbon. Clay can easily be smeared into a ribbon when wet while silt is smeared with more difficulty. A dry sample of clay is difficult to crush with fingers while a dry sample of silt is more easily crushed.

LITHOLOGIC LOGS

Lithologic symbols are derived and generalized from the USCS shown in Figure A.1.

In the boring logs that follow, the column headings have the following meaning:

Depth: Depth in feet below surface.

Blows: The number of blows required to drive a split-spoon

sampler an additional 24 inches into the ground beyond

the initial 6-inch set.

Ambient Temperature The reading of photoionizable compounds detected in Headspace Analysis (ATHA): the contained soil sample by a photoionization

detector.

Samples: The interval of sample cored below land surface.

Percent Recovery: The percentage of sample recovered in the split-spoon

sampler per sampling run.

USCS: Unified Soil Classification System based on texture,

sorting of clasts and plasticity of soils.

KEY TO BORING LOG SYMBOLS

	UNIFIED SO	OIL CLASSIFICAT	TION	SYS'	TEM - ASTM D2487
	MAJOR DIV	ISIONS		BOL/ P HI C	DESCRIPTIONS
	GD LVTL C	Clean gravels with	GW	00000	Well-Graded Gravels, Gravel - Sand Mixtures
S sve)	GRAVELS	little or no fines	GP		Poorly Graded Gravels, Gravels - Sand Mixtures
ID SOILS #200 Sieve)	(More than 50% of coarse fraction is	Gravels with over	GM		Silty Gravels, Poorly Graded Gravel- Sand-Clay Mixtures
GRAINED r Than #2	larger than the #4 sieve size.)	12% fines	GC		Clayey Gravels, Poorly Graded Gravel- Sand-Clay Mixtures
-GRA ler Th	CANDC	Clean sands with	sw		Well-Graded Sands, Gravelly Sands
RSE	SANDS	little or no fines	SP		Poorly Graded Sands, Gravelly Sands
CO4/	(More than 50% of coarse	Sands with over	SM		Silty Sands, Poorly Graded Sand-Silt Mixtures
	fraction is smaller than the #4 sieve size.)	12% fines	SC		Clayey Sands, Poorly Graded Sand- Clay Mixtures
eve)			ML		Inorganic Silts and Very Fine Sands, Silty or Clayey Fine Sands
SOILS #200 Sieve)		ND CLAYS it less than 50)	CL		Inorganic Clays of Low to Medium Plasticity: Gravelly, Sandy or Silty Clays; Lean Clays
i i	(Elquiu IIII)	it less than oo,	OL		Organic Clays and Organic Silty Clays of Low Plasticity
FINE-GRAINED (>50% Smaller Than	OTI MO AT	ND CLAYS	МН		Inorganic Silts, Micaceous or Diatomacious Fine Sandy or Silty Soils, Elastic Silts
INE-(greater than 50)	СН		Inorganic Clays of High Plasticity Fat Clays
F]	(2.44.4	6 ,	он		Organic Clays of Medium to High Plasticity, Organic Silts
	HIGHLY OR	GANIC SOILS	Pt		Peat and Other Highly Organic Soils

Sample retained for on-site screening.

Sample prepared for laboratory analysis.

PID Photo-Ionization Detector readings (ppm).

ND Parameter Not Detected

NA Measurement Not Applicable, Groundwater Not Detected

- No Measurement Performed

NR No Sample Recovery

	Asphaltic Concrete
A A A A	Portland Cement Concrete
	Cement Grout
	Boulders or Bedrock

DRAFT FIGURE A.1

FORMS\KEYLOG2

KEY TO BORING LOG SYMBOLS

Duluth Air National Guard Base

Duluth, Minnesota

AUGUST 1995

PID:

A Photoionization Detector used to monitor volatile organic compounds in uncontained soil and/or groundwater samples.

REFERENCES

Casagrande, A., 1948. Classification and identification of soils. Transactions of the American Society of Civil Engineers 113:901.

Folk, R. L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company. Austin, TX. p. 182.

PTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-01BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/15/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

7 ft.

Depth To Water:

NA

Date Measured:

05/15/95

Surface Elevation:

1421.34 ft

Date Dri			5/15/95 follow-St	em Auger	Surface Elevation:	1421.34 f	•		
					<u> </u>]	FIELD SC	REENIN	√G
Depth (ft.)	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID	АТНА	-	-
- 7 - 6 - 6		X		Asphalt Silt, trace sand (fine), trace g Soft, Dry dark brown (7.5	gravel (up to pebble). YR 4/4).	0	0		
10	2 2			Strong hydrocarbon odor. Si coarse). Slightly moist. Da Boring Terminat Note: Drilling terminated at explosive limit of 12 and bre PID of 45 ppm.	rk brown (7.5 YR 4/4) ted at 7 ft. BLS 7 feet BLS due to lowe	er	2 1096		

PTECH OPERATIONAL TECHNOLOGIES

CORPORATION

LOG OF BORING 025-02BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Tuura

05/15/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

15 ft.

Depth To Water:

11 ft

Date Measured:

05/15/95

Surface Elevation:

1421.24 ft.

Samples Hollow-St Graphic	em Auger	FII	ELD SCF	REENIN	G
nples aphic					
Gra	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
	Asphalt Silt, little sand (fine), trace gravel (pebble-cobble) dry. Dark Brown (7.5 YR 4/4). Same as above.	541	1391		
	Strong hydrocarbon odor, silt, some sand (coarse) Moist to wet (10 YR 2/2) Very dark brown. Boring terminated at 15 ft. BLS Note: Drilling terminated at 15 feet BLS due to high LEL (12.0) & PID (421 ppm) reading.	330	1339		
	Gra	Asphalt Silt, little sand (fine), trace gravel (pebble-cobble) dry. Dark Brown (7.5 YR 4/4). Same as above. Strong hydrocarbon odor, silt, some sand (coarse) Moist to wet (10 YR 2/2) Very dark brown. Boring terminated at 15 ft. BLS Note: Drilling terminated at 15 feet BLS due to high	Asphalt Silt, little sand (fine), trace gravel (pebble-cobble) dry. Dark Brown (7.5 YR 4/4). Same as above. Strong hydrocarbon odor, silt, some sand (coarse) Moist to wet (10 YR 2/2) Very dark brown. Boring terminated at 15 ft. BLS Note: Drilling terminated at 15 feet BLS due to high	Asphalt Silt, little sand (fine), trace gravel (pebble-cobble) dry. Dark Brown (7.5 YR 4/4). Same as above. Strong hydrocarbon odor, silt, some sand (coarse) Moist to wet (10 YR 2/2) Very dark brown. Boring terminated at 15 ft. BLS Note: Drilling terminated at 15 feet BLS due to high	Asphalt Silt, little sand (fine), trace gravel (pebble-cobble) dry. Dark Brown (7.5 YR 4/4). Same as above. 541 1391 Strong hydrocarbon odor, silt, some sand (coarse) Moist to wet (10 YR 2/2) Very dark brown. Boring terminated at 15 ft. BLS Note: Drilling terminated at 15 feet BLS due to high

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-03BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura 05/15/95

Date Drilled:

Sampling Method:

Split Spoon Sampler

Depth Drilled:

25 ft.

Depth To Water:

23 ft. BLS

Date Measured:

05/15/95

Surface Elevation:

1420.48 ft.

Drilli	ng Me	thod:	H	ollow-St	em Auger				
ft.)	9	ery	sa	ic		FI	ELD SC	REENIN	I G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
	4 5 7 5	60			Asphalt Silt, little sand (fine, trace clay. Dry. Soft. Dark brown. (7.5 YR 4/4)	0	0		
5 - - -	8 8 11 11	75	X		Silt, trace sand (fine), trace gravel. Firm. Slightly moist. Dark brown (7.5 YR 3/4).	0	467		
10 —	8 16 14 9	75	X		Strong hydrocarbon odor. Silt, trace sand (fine to coarse), trace gravel. Slightly moist. Dark brown (7.5 YR 4/4).	273	727		
15 — 	9 11 13 16	80	X		Silt, trace sand (fine), slightly moist. Dark brown (7.5 YR 4/4).	133	53		
20 —	10	80	X		Same as above.	9.5	10.6		

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-03BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled:

J. Tuura

05/15/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

25 ft.

Depth To Water:

23 ft. BLS

Date Measured:

05/15/95

Surface Elevation: 1420.48 ft.

Drill	ing Me	ethod:	H	lollow-S	tem Auger	Surface Dievation.	1420.40 16.			
(ft.)	9,	very	səl	ic		FI	ELD SO	CREENI	NG	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID	АТНА	-	-
	6 6		X		No recovery					
25 —	6 4 5 5	0 3 0	X		Silt, little sand (up to coarse) cobble). Wet, dark brown (7		- 0	- 0		
					Boring terminate Note: Duplicate samples taken Duplicate samples taken Sidewall collapsed 23-25 24-25 ft. for screening only.	d at 25 ft. BLS in from 11.0-11.5 ft. from 16.0-16.5 ft. ft., recollected from				,
30 -										
35 -	_									
40 -	-									

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-04BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

Date Drilled:

05/16/95

J. Tuura

Sampling Method:

Split Spoon Sampler

Depth Drilled:

20 ft.

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1423.53 ft.

	Drilleding Me			5/16/95 ollow-St	em Auger	Surface Elevation: 142	3.33 H.			
								ELD SCI	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	OF MATERIALS	PID	АТНА	-	-
	8 8 12 12	10			Asphalt Fill material, silt, trace sand	, trace gravel. Dry.	0	0		
5 - -	11 16 13 13	75			Silt, platy structure, fragile t Dark brown (7.5 YR 3/4).	race gravel (cobble). Dry.	0	0		
10 -	10 6 9 16	75			Silt and sand, dry, fragile. I	Oark brown (7.5 YR 3/4).	0	0		
- - - 20 -	6 6 3 4	30			Silt, trace sand (fine). fragil YR 3/4). Boring terminat	e. dry. Dark brown (7.5 ed at 20 ft. BLS	0	0		

PTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-05BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/16/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

22 ft.

Depth To Water:

14 ft. BLS

Date Measured:

05/16/95

Surface Elevation:

1423.87 ft.

	ng Mei		Ho	ollow-Ste	em Auger				
						FI	ELD SCF	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	•
	5 8 6 8	40			Silt, trace clay, dry. Dark brown (7.5 YR 4/4).	1.8*	0		
5 - 	15 16 10 10	0			No recovery.	0	0		
10 -	10 13 16 10	80			Silt, some sand (medium). Soft dark brown (7.5 YR 4/4).	0	0		
20	12 10 8 8 4 7	75			No recovery. Silt, trace sand (medium), trace gravel (up to cobble) dark brown (7.5 YR 3/4). Very moist to wet.	0	0		

PTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-05BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/16/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

22 ft.

Depth To Water:

14 ft. BLS

Date Measured:

05/16/95

Surface Elevation:

1423.87 ft.

Drilling Method: Hollow-Stem Auger				Surface Dievation: 14	25.07 IL.			
Drilling Method:	H	ollow-Ste	em Auger	11000	T			
Depth (ft.) Blows/6" % Recovery	Samples	Graphic	DESCRIPTION O	OF MATERIALS	PID	ELD SCI	-	- -
25 —			Boring terminate Note: * was background PID compensated for on future sa	od at 22 ft. BLS O value, that was amples.				

DULUTH SI

OPTECH

DULUTH, MINNESOTA, SITE 25

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-06BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:
Driller:

American Engineering Testing

J. Tuura

Date Drilled:

05/12/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

22 ft.

Depth To Water:

NA

Date Measured:

05/12/95

Surface Elevation:

1421.05 ft.

Drilli	ing Me	thod:	Н	ollow-St	em Auger				
÷	_	Ţ.				FI	ELD SC	REENIN	IG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
_	5 6 7 7	80			Asphalt Silt, little sand, fine to coarse grained sand, dry, fragile, dark brown (7.5 YR 4/4).	0	0		
5 —	10 10 11 12	80			Same as above: slightly moist.	0	0		
10 - - - -	5 9 13 17	80			Silt trace sand, trace gravel: fine to coarse grained sand; granite cobble clasts, slightly moist; dark brown (7.5 YR 4/4).				
15 — ———————————————————————————————————	22 38 28	0			No recovery.				
20 —	21 9 14		X		Same as above, moist.	0.7	0		

PTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-06BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Sampling Method:

Split Spoon Sampler

Depth Drilled:

22 ft.

Depth To Water:

NA

Date Measured:

05/15/95

	Drille			5/12/95		Surface Elevation:	1421.05 ft.			
Drilli	ing Me		H	ollow-St	em Auger		Т	ELD CO	DEENIN	· ·
(ft.)	9/	very	es	ıic			F1	ELD SC	KEENIN	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	F MATERIALS	PID	ATHA	-	-
De	2	%	S	O						
	30 16		X							
					Boring terminate	ed at 22 ft. BLS				
l –										
_	<u> </u>									
25 —										
-										
							-			
-										
	-									
30 —										
_										
_										
35 –	_									
-										
-	-									
-										
-	-									
40 -										
-	-									

PTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-07BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/16/95 Hallow Ct Sampling Method:

Split Spoon Sampler

Depth Drilled:

22 ft.

Depth To Water:

14 ft. BLS

Date Measured:

05/16/95

Surface Elevation:

1425.96 ft.

Drilli	Drilling Method: Hollow-Stem Auger								
t.	1.6	ery	S	ic		FI	ELD SC	REENIN	√G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
	1 2 3 5	35			Silt, trace sand (fine), trace gravel (up to cobble) slightly moist. Soft (7.5 YR 4/4).	0	0		
5 - -	7 15 15 9	50			Silt, little sand (fine) slightly moist. Firm. Dark brown (7.5 YR 4/4).	0	0		
10 -	10 10 13 17	75			Same as above.	0	0		
 15 	5 . 3 4 6	20			Same as above.	0	0		
- 20 -	2 5	10			Silt, trace clay, trace gravel (up to cobble) trace sand (fine) Wet. Brown (7.5 YR 5/4).	0	0		

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-07BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled:

J. Tuura 05/16/05

Sampling Method:

Split Spoon Sampler

Depth Drilled:

Depth To Water:

22 ft. 14 ft. BLS

Date Measured:

05/16/95

	Drill		0 H	5/16/95 Hollow-S	tem Auger	Surface Elevation:	1425.	.96 ft.				
1		ĺ						FIELD SCREENING				
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	OF MATERIALS		PID	АТНА	-	-	
_	6 7		X									
					Boring Termin	ated at 22 ft.						
_												
25 —	_									į		
_												
_												
_												
30 —	-				·							
_												
35	-											
-												
_				ļ						,		
									;			
40	-											

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-08BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/12/95

Walley Stom And

Sampling Method:

Split Spoon Sampler

Depth Drilled:

15 ft.

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1421.97 ft.

Drill	Drilling Method: Hollow-Stem Auger									
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	ELD SC	REENII -	NG -	
	2 2 4 4	25			Silt, little sand (fine to coarse), trace gravel (up to cobble). Dry dark brown (7.5 YR 4/4).	0	0			
5 — 5 — 10 — 15 — 20 —	4 5 5 4 7 16 9 11 5 9 13 11	0 10 80			Silt, little sand (fine to coarse) trace gravel (up to cobble). Moist dark brown (7.5 YR 4/4). Silt, trace sand (fine), trace gravel (up to cobble) dark brown (7.5 YR 4/4). Same as above. Boring Terminated at 15 ft.	2 .5	0			

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-09BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: **Date Drilled:** J. Tuura

Sampling Method:

Split Spoon Sampler

Depth Drilled:

15 ft.

Depth To Water:

NA

Date Measured:

05/12/95

Date	Date Drilled: 05/12/95 Drilling Method: Hollow-S					Surface Elevation:	1417.29 ft.			
Drilli	ng Me		H	ollow-St	em Auger		ET	ELD SCI	DEENIN	JC
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	ATHA	-	
_	2 3 7 8	30			Silt, organics, trace sand (fin Dark brown (7.5 YR 4/4).	e) trace gravel. Dry.	0	0		
5 — — —	2 4 4 4	30			Silt, trace sand (fine to media brown (7.5 YR 4/4).	um) Very moist, Dark	0	0		
10 -	3 5 12 11	50	X		Same as above.	LAM 24-72-72-11	0	0		
15 -	3 5 7 6	60			Same as above. Boring Termin	nated at 15 ft.	0	0		
20 -										

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-10BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura 05/12/95

Date Drilled:

Sampling Method:

Split Spoon Sampler

Depth Drilled: 7 ft.

Depth To Water:

6.5 ft. BLS

Date Measured:

05/12/95

Surface Elevation:

1398.19 ft.

Drillin	Drilling Method: Hollow-Stem Auger								
·	=	ıry		•)		FI	ELD SC	REENIN	īG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	•	-
	1 1 2 3	40			Silt, some sand (fine to coarse), trace gravel (up to cobble) moist, dark brown (7.5 YR 4/4).	0	NA		
10	5 6 3 3 3	50			Boring Terminated at 7 ft. Note: Interval .5-2.5 was redrilled approx 1 ft. away due to poor recovery.	0	0		

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-11BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Tuura 05/12/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

7 ft.

Depth To Water:

6.5 ft. BLS

Date Measured:

05/12/95

Surface Elevation:

1397.29 ft.

Drilling Method: Hollow-Stem A				em Auger	Surface Dievations					
						1	FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	OF MATERIALS	PID	АТНА	-	•
_	1 3 4 5	30			Silt, trace (fine), moist Dark	brown (7.5 YR 4/4).	0	0		
5 - -	7 9 9	75			Same as above; wet. Boring Termi	inated at 7 ft.	0	-		
10 - -					-					
15 -										
20 -										

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-12BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/17/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

20 ft.

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1421.29 ft.

Drilli	ing Me	thod:	Н	ollow-St	em Auger					
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID	ELD SC	REENII -	NG -
	7 7 6 6	90			Asphalt Silt, trace sand (medium), tra Fragile. Dry. Dark brown (7	nce gravel (pebble). .5 YR 3/4).	0	2.8		
5 - -	4 8 9 18	50			Silt, trace sand (fine). Firm. brown (7.5 YR 3/4).	Slightly moist. Dark	9.6	6.9		
10 -	8 13 17 13	75	X		Same as above.		7.5	6.5		
15 - - - - - 20 -	3 5 4 5	60			Silt, trace sand (fine), trace Firm. Slightly moist. Dark t Boring Termin	orown (7.5 YR 3/4).	4.5	3.2		

OPERATIONAL TECHNOLOGIES

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-13BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/17/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

20 ft.

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1421.97 ft.

Drilling Method: Hollow-Stem Auger									
	3					FIJ	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
-	6 4 4 9	80			Asphalt Silt, trace sand (fine), trace gravel (pebble) Fragile. Soft. Dry. Dark Brown (7.5 YR 4/4).	0	0		
5	12 10 18 24	20			Same as above.	0	0		
10 15 -	5 10 19 14	75			Silt, little gravel (up to brass sleeve 1.6"). Trace sand. Firm. Moist Dark brown (7.5 YR 3/4).	0	0		
20	6 13 16 18	75			Silt, little to some sand (medium) well sorted, moist. Soft. Dark brown (7.5 YR 3/4). Boring Terminated at 20 ft.	0	10.6		

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-01BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura 05/03/95

Date Drilled:

Hollow Stom

Sampling Method:

Split Spoon Sampler

Depth Drilled:

10 ft.

Depth To Water:

6.8 ft.

Date Measured:

05/04/95

Surface Elevation:

1422.28 ft.

Drilli	ing Me	thod:	H	ollow-St	em Auger					
ř.)	2"	ery	SS	2			FI	ELD SC	REENIN	√G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERI	ALS	PID	АТНА	•	-
	4 10 7 10 3 5 7	30 75			Silt, little gravel (cobble) trace clay, trace medium) moist Dark brown (7.5 YR 3/3)	e sand (fine to	0 -	0 -		
5 -	25 20 25 23 8 8	25 75 75			Gravel (cobble) and clay. Dark brown (7	.5 YR 5/3).	0 -	0 -		
10 — 115 — 15 — 20 —	11 13 8 8 13 14	75			Silt & sand (med-coarse), trace clay. Darvery moist (7.5 YR 3/3). Boring Terminated at 10 ft Note: Intervals .5-2.5 and 5-7 were redrifoot from original location.		0	0		

PTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-02BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Turra

05/03/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

7 ft.

Depth To Water:

7 ft.

Date Measured:

05/04/95

Surface Elevation:

1421.61 ft.

Drilling M	etnoa:	Н	onow-Si	tem	Auger

Drilli	ng Met	noa:	н	ollow-St	em Auger				
£	F.	ery	S	္		FI	ELD SC	REENIN	iG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	•	-
10 — 15 — 120 —	3 3 5 10 3 4 5 5 3 4 5 16 13 36 18 50 13 18 16	10 20 50 35 50			No recovery (cobble) Sand, some gravel, trace silt. Very moist. Dark brown (7.5 YR 3/4). Boring Terminated at 7 ft. Note: Second set of intervals drilled approximately 1 foot from original location.	0 0 0	0 0 0 0		

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-03BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Turra

Date Drilled:

05/03/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

7 ft.

Depth To Water:

7 ft.

Date Measured:

05/04/95

Surface Elevation:

1422.21 ft.

Drilling Method: Hollow-Stem Auger									
<u> </u>	=	iry	S	ပ		FI	ELD SC	REENII	₹G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
	6 9 13 13 3 7 16	75			Silt, some sand (fine to coarse), some gravel, trace clay. Dry. Dark brown (7.5 Yr 3/3).	0 0	0 0		
5 	8 19 22 21	55			Same as above (very moist). Boring Terminated at 7 ft.	0	0		
10 — ———————————————————————————————————									
20 —									

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-04BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:
Date Drilled:

J. Turra

05/03/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

10 ft.

Depth To Water:

10 ft.

Date Measured:

05/03/95

Surface Elevation:

1423.90 ft.

Date Drilled: 05/03/9 Drilling Method: Hollow			Surface Elevation: 1423		23.90 ft.						
							FIELD SCREE			ENING	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID	АТНА	-	-	
	5 6 9 12	70			Silt, trace sand (fine) trace grabrown (7.5 YR 3/4).	avel (cobble). Dry, Dark	0	0			
5 - -	8 10 11 16	10			Sand (medium), some silt, litt Dark brown (7.5 YR 3/4).	le gravel (cobble) dry.	0	0			
	6 6 8 9	50	X		Same as above (slightly moist	-wet).	0	0.2			
10 — — — — — — — — — — — — — — — — — — —	50		Action to proper living a contract and the proper living and the proper living and the proper living and the property living a		Boring Termina	ted at 10 ft.					
20 –											

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-05BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Turra

05/03/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

10 ft.

Depth To Water:

NA

Date Measured:

05/03/95

Surface Elevation:

1424.77 ft.

Drillin	Drilling Method: Hollow-Stem Auger								
:	<u>.</u>	ery	Si	ic		Fl	ELD SC	REENI	٧G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		АТНА	-	-
_	4 7 7 7	75			Silt and sand (fine), some gravel (cobble) dry. Dark brown (7.5 YR 3/4).	0	0		
5 —	3 21 19 5	75			Sand (fine to medium), some silt, trace gravel (cobble Dry. Dark brown (7.5 YR 3/4).	0	0		
10	10 10 11 12	15			Sand (medium) and silt, some gravel (cobble). Slightl moist, dark brown (7.5 YR 3/3). Boring Terminated at 10 ft.	y 0	0.3		

O P T E C H

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 026-06BH

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Turra

05/03/95

Sampling Method:

Split Spoon Sampler

Depth Drilled:

12 ft.

Depth To Water:

NA

Date Measured:

05/03/95

Surface Elevation:

1425.43 ft.

Date Drilled: 05/03/95 Drilling Method: Hollow-S			em Auger	Surface Elevation: 14.	25.43 It.					
							FIELD SCREENIN			1G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	OF MATERIALS	PID	АТНА	-	•
	7 9 9 7	70			Silt and sand (fine), some grabrown (7.5 YR 3/4).	avel (cobble), loose, dark	0	0		
5 - -	11 13 10 10	75	X		Silt, little gravel (cobble) tra slightly moist, dark brown (7	ce clay, trace sand (fine) 7.5 YR 4/4).	0	0		
_	17 14 17 21	0			No recovery		0	0		
10 -	9 15 20 21	90			Silt and clay, traces and (fine gravel, moist, dark brown (7	7.5 YR 3/4).	0	0		
					Boring Termin	nated at 12 ft.				
15 -										
-										The second of
<u></u>			<u>. </u>							

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-01MW

Project No.:

1315-197

Logged By: Drilling Co.:

Kathleen Merino

Driller:

American Engineering Testing J. Tuura

Date Drilled:

05/10/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

39.8 ft.

Depth To Water:

32.4 ft.

Date Measured:

05/10/95

Surface Elevation:

1422.59 ft.

Drilli	ng Me	thod:	H	ollow St	em Auger	TOC Elevation:	1422.56 ft.					
	=	гy	,	•)			FII	ELD SC	REENI	NG	gu	
h (ft	Blows/6"	cove	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	itori	Well
Depth (ft.)	Blo	% Recovery	San	Gra			(ppm)	(ppm)	(ppb)	(ppb)	Monitoring	^
					Asphalt							
	3 4 4 5	50	X		Silt, trace sand (fine), trace of (up to pebble) moist Dark br 4/4).	clay, trace gravel own (7.5 YR	0	0				
			/						·			*************************************
5 - -	2 5 16 16	50	X		Silt, trace sand (fine to medi (up to pebble) dry Dark brov	um) trace gravel vn.	0	0				
10 —												
- -	6 3 4 7	60			Silt, trace sand (fine), trace gebble), trace clay Soft, brit YR 5/3). Slightly Moist	gravel, (up to tle Brown (7.5	0	0				
15 — — —	11 16 18 18	100			Silt, trace sand (fine), trace (up to cobble) Dry. Dark bro 4/4).	clay, trace gravel own (7.5 YR	0	0				
_												
20 -	7 13	60	X		Silt, trace clay, trace sand (f brown (7.5 YR 4/4).	ine). Dark	0	0				

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-01MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled:

J. Tuura

05/10/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

39.8 ft.

Depth To Water:

32.4 ft.

Date Measured:

05/10/95

Surface Elevation:

1422.59 ft.

D	rilli	ng M	ethod:	F	Hollow S	tem Auger	TOC Elevation:	n: 1422.56 ft.				
((11.)	9,	very	es	ic				ELD SC		NG	gı
	Deptin (II.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MA	ATERIALS	PID	АТНА	втех	Benzene	Monitoring Well
	5		160	S				(ppm)	(ppm)	(ppb)	(ppb)	Мог
İ	_	37 5 0		X		Sand (medium to coarse) and gravel. Dark brown (7.5 YR	silt, trace 4/4).					
25	5 -	14 20 24 7	75			Sand (fine to coarse) and grar gravel (up to cobble). Dark by 4/4) wet. Silt, trace sand (fine), trace graphy. Dark brown (7.5 YR 4/4)	nular, little rown (7.5 YR	0	0			
30	, —	11 13 19 35	50	X		Silt, trace sand (fine). trace gracobble) firm. Slightly moist. I (7.5 YR 4/4).	ravel (up to Dark brown	0	0			
35		8 11 17 18	60			Same as above (moist to satural Boring Terminated at		0	0			
40												

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-02MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Tuura 05/10/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

17.0 ft.

Depth To Water:

6.0 ft.

Date Measured:

05/11/95

Surface Elevation:

1397.83 ft.

Date Drilled: 05/10/95			em Auger TOC Elevation:		i: 13. 14				
Drilling Method:	H	onow St	em Auger	Too Blove and		ELD SC		NG	В
Depth (ft.) Blows/6" % Recovery	Samples	Graphic	DESCRIPTION OF M	DESCRIPTION OF MATERIALS		ATHA (ppm)	BTEX (ppb)	Benzene (ppb)	Monitoring Well
3 60 5 7 - 11			Silt, some sand (medium). D (7.5 YR 4/4).	ry dark brown	0	0			
5 — 3 60 — 4 7 — 8 —			Same as above.		0	0			
10 — 6 60 — 8 11 — 11 — 11			Silt, trace sand (fine), trace cobble). Dry to very moist. YR 4/4).	gravel (up to Dark brown (7.5	0	0			
15 — 2 60 — 3 6 — 8 — —			Silt, trace sand (fine), trace (up to pebble) wet. Dark br 4/4). Boring Terminated	rown (7.5 YR	0	0			
20									

PTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 025-03MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled:

J. Tuura

05/11/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

22.0 ft.

Depth To Water:

12.7 ft.

Date Measured:

05/11/95

Surface Elevation:

1402.71 ft.

Drilling Method: Hollow Ste					em Auger	TOC Elevation:		05.32 ft.			
								ELD SC		NG	gu
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID (ppm)	ATHA (ppm)	BTEX (ppb)	Benzene (ppb)	Monitoring Well
-	3 4 7 9	60	X		Silt, little sand (fine to coarse (up to cobble). Soft Moist. DYR 4/4).	e) trace gravel Park brown (7.5	0	0			
5 -	11 11 24 14	60			Silt, trace sand (fine), trace pebble). dry. Soft. Dark bro 4/4).	gravel (up to wn (7.5 YR	0	0			
- 10 -	11 11 7 7	25	X		Silt, little sand (fine to coars (up to cobble). Brown (7.5 \)	e), trace gravel VR 3/4).	.8	25.8			
15 -	5 1 2 2	75			Clay, wood fragments & pe. (10 YR 2/1).	at. Moist. Black	15.6	5			
- 20 -	1 1	50	X		Silt, sand lenses (1-2" thick' trace gravel (up to cobble),	. Trace clay, high organics and	0	0.8			

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 025-03MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/11/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

22.0 ft.

Depth To Water:

12.7 ft.

Date Measured:

Surface Elevation:

05/11/95

1402.71 ft.

•	Elevation:	1405.32 f

Drill	ing Me	thod:	H	ollow St	em Auger	TOC Elevation:					
3	11.	ery	S	ວ		!	FII	ELD SC	REENI	NG	g B
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
Dep	Blo	% R	Sa	Gr			(ppm)	(ppm)	(ppb)	(ppb)	Mor
	5		V		wood fragments. Wet Dark to (10 YR 2/1).	prown to black					
-	9		A		(10 YR 2/1). Boring Terminated	at 22 ft.					
-				,	, ,						.
-	-										-
25 -											_
_	-										-
_											
_											_
_											-
30 -											_
30											
										:	
-											-
-											
35 -	+										_
-											
-	_										-
-	-										_
-											-
40 -	<u> </u>										_
-											-

PTEC

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-01MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Sampling Method:

Split-Spoon Sampler

Depth Drilled: 26.0 ft.

17.2 ft. Depth To Water:

Date Measured:

05/05/95

Surface Flavotion

1424 60 ft

	Drilled			5/05/95		Surface Elevation		24.69 ft.				j
Drilli	ng Me	thod:	H	ollow St	em Auger	TOC Elevation:	14	24.62 ft.			T	
t.)		ery	S	ပ္			FI	ELD SC	REENI	NG	ing	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring	well
Dep	B	% R	Sa	Ğ			(ppm)	(ppm)	(ppb)	(ppb)	Mo	1
					Asphalt							器
_	5 5 5 5	60	\bigvee		Silt, some gravel (fine to me gravel (up to cobble), moist (7.5 YR 4/4).	dium), trace dark red-brown	0	0				10000 10000
_ _												X0000
5	15 20 15 14	80	X		Silt, some gravel (up to cobb (fine), dry. Dark brown (7.5	ole), trace sand YR 4/4).	0	0				
_												
10	4 2 3 4	30	X		Silt, trace clay, trace gravel trace sand (fine-coarse) Moi (7.5 YR 4/4).	(up to cobble), st. Dark brown	0	0				
	8 11 13 40	80	X		Silt, trace little clay, trace sa coarse) trace gravel (up to codark brown (7.15 YR 4/4).	and (fine to obble) very moist	0	0				
15 -	6 10 11 13	80	X	100 March 100 Ma	Same as above.		0	0				
_	-											
20 -	11 9	60	X		Silt and sand (fine to medium	n) Dark brown.	0	0				

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 026-01MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Tuura

05/05/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

26.0 ft.

Depth To Water:

17.2 ft.

Date Measured: **Surface Elevation:** 05/05/95

1424.69 ft.

	no Me			ollow St	em Auger	TOC Elevation:		24.62 ft.			
	118						i	ELD SC		NG	50
Depth (ft.)	9/s	% Recovery	Samples	Graphic						1	Monitoring Well
pth	Blows/6"	Rec	ami	Jrap	DESCRIPTION OF M.	ATERIALS	PID	ATHA	BTEX	Benzene	onit We
ă	m	86	נט				(ppm)	(ppm)	(ppb)	(ppb)	M
	8 11		X		Sand and granular, some grade (pebble-cobble) poorly sorted	vel					
_	**				(pennie-connie) poorty sortec	i. Dark brown.					
-											
_	8	70			Silt, little-trace sand (fine to	coarse) trace	_	_			
25 —	9	,,			clay, Grain size decreasing d Dark brown (7.5 YR 4/4).	ownward, wet.	_	_			
	13 19		$/ \setminus$		Dark brown (7.5 YR 4/4).						
					Boring terminated a Note: Boulder encountered a	nt 26 ft.					
_					110to. Boulder encountered a	10.5 It DE5.					-
-											-
-											-
30 —											_
											_
_											-
											-
35 —											 -
_											
_											-
									:		
40 —											
-											

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-02MW

Project No.: Logged By:

1315-197

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller: Date Drilled: J. Tuura

05/06/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

22.0 ft.

Depth To Water:

11.3 ft.

Date Measured:

05/08/95

Surface Elevation:

1421.90 ft.

2	ing Me			ollow St	em Auger	TOC Elevation:		24.28 ft.			
						L		ELD SC		NG	g,
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
		%					(ppm)	(ppm)	(ppb)	(ppb)	Σ
<u>-</u>	2 3 7 7 5	50 50			Asphalt Silt, little sand (fine to mediu (up to cobble) dry dark brow	im), trace gravel in (7.5 YR 3/4).	0	0			
- 5 -	7 9 8 9	25	7		Same as above, slightly mois	st.	0	0			
_ _ _	11 16 14		X								
10 -	8 19 14 17	60			Same as above, very moist to	saturated.	0	0			
- - 15 -	7			1 T T T T T T T T T T T T T T T T T T T	Silt, little to some clay, trace	e sand trace					
- -	4 7 7				gravel, fine to coarse grained sized clasts.	d sand, pebble					
20 –	4 5	45	X		Silt and sand; little to some g	gravel, trace sand, pebble					

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-02MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura 05/06/95

Date Drilled:

Drilling Method: Hollow Stem Auger

Sampling Method:

Spl

Split-Spoon Sampler

Depth Drilled:

22.0 ft.

Depth To Water:

11.3 ft.

Date Measured: Surface Elevation: 05/08/95 1421.90 ft.

TOC Elevation:

1424.28 ft.

Drilli	ng Me	thod:	H	ollow St	em Auger	TOC Elevation:	14.	24.28 ft.			
t.)	F_	ery	S	၁			FII	ELD SC	REENI	NG	ing
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
Dep	B	% R	Sa	ى ت			(ppm)	(ppm)	(ppb)	(ppb)	Mo
	10 12		X		sized clasts, soft to firm; fini section.						
_				<u>- 1- - 1- - </u>	Boring Terminated	at 22 ft.					
_					Boring Terminated Note: Second sample was co - 2.5 ft. approximately 1 foo borehole.	t away from					-
25 —	_										:
				·							-
											-
											-
30 —	_										_
											-
-											_
-											-
											_
35 —											
_											
_											_
_											
_											
40 -]		
_											
		<u> </u>		<u></u>	<u> </u>					-	

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 026-03MW

Project No.:

1315-197

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

17.0 ft.

Depth To Water:

6.3 ft.

Date Measured:

05/06/95

	Drilleding Me			5/06/95 (ollow St	em Auger	Surface Elevation:		20.44 ft 22.90 ft				
ft.)	9	ery	es	ာ့			FI	ELD SC	REENII	NG	ing	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring	Well
De	B	%	S				(ppm)	(ppm)	(ppb)	(ppb)	Mo	3
-	2 3 4 6	25			Asphalt Silt, some sand (fine) trace c brown (7.5 YR 4/4).	lay, wet, dark	0	0			788888	1918181B
5 - -	48 16 19 20			Manager programmer	Sand and gravel, trace granu wet, fine-grained to coarse-g dark brown (7.5 YR 4/4).	lar, little silt, rained sand,	0	0				
10 -	 45 15 23 24	50			Same as above.		0	0				
15 —	1 8 10 12	75			Same as above. Boring Terminated	at 17 ft.	0	0				
20 —												

APPENDIX B

FIELD GAS CHROMATOGRAPH ANALYSIS RESULTS

INTRODUCTION

This appendix describes the field gas chromatography (GC) analysis results of the Site Investigation (SI) for IRP Sites No. 25 and No. 26 at the Minnesota Air National Guard Base, Duluth, Minnesota. A PHOTOVAC 10S Plus portable gas chromatograph was used for field analysis. A summary of the GC results is presented in Table B.1, followed by the raw data.

THIS PAGE INTENTIONALLY LEFT BLANK

Table B.1
Field Gas Chromatograph Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

					hand believed a success of	trations pb)		
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
			4 M	ay 1995				
100 ppb BTEX	_	_	100	100	100	200	100	600
1 ppm BTEX	-		1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX	-	_	10,000	10,000	10,000	20,000	10,000	60,000
Air Blank	-	-	10	4	8	14	9	45
026-004BH	0.5'-2.5' 5'-7' 8'-10'	10 10 10	11 7 1	4 3 2	5 2 2	9 5 4	4 2 3	33 19 12
026-001BH	0.5'-2.5' 5'-7'	10 10	7 ND	1 2	3 ND	17 ND	26 ND	54 2
100 ppb BTEX	-	_	100	102	101	211	105	619
Air Blank	_	_	ND	1	ND	ND	ND	1
026-004BH Reshot	0.5'-2.5'	10	ND	2	1	14	11	28
026-001BH	8'-10'	10	ND	2	2	11	5	20
026-005BH	1.0'-1.5' 6'-6.5' 10'	10 10 10	ND ND ND	2 2 1	ND 2 ND	5 5 2	3 ND 1	10 9 4
100 ppb BTEX	-		93	. 89	83	171	95	531
Recal	_	_	100	100	100	200	100	600
Air Blank	-		ND	ND	1	ND	ND	1
026-006BH	0.5'-2.5' 6'-6.5' 11'-11.5'	10 10 10	7 ND 5	2 1 2	2 ND ND	4 3 4	4 ND 2	19 4 13
026-002BH	0.5'-2.5' 5'-7'	10 10	ND ND	2 1	1 ND	2 ND	ND ND	5 1
100 ppb BTEX	_	_	90	81	81	159	73	483
Recal	_	_	100	100	100	200	100	600
Air Blank	_	_	ND	ND	1	ND	ND	1
026-003BH	0.5'-2.5' 5'-7'	10 10	ND ND	2 2	1 ND	8 4	2 ND	13 6

Table B.1 (Continued)
Field Gas Chromatograph Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

					200, 100, 200, 100, 100, 100, 100, 100,	trations		
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
			4 May 199	5 (Conclude	d)			
100 ppb BTEX	-	_	109 100	96 100	95 100	181 200	88 100	569 600
			5 M	ay 1995				
1 ppm BTEX	-	_	1,000	1,000	1,000	1,000	1,000	5,000
10 ppm BTEX	-	_	10,000	10,000	10,000	20,000	10,000	60,000
1 ppm BTEX	_	_	1,000	1,000	1,000	2,000	1,000	6,000
Air Blank	_	-	4	4	6	13	ND	27
026-001MW	1'-2' 5'-7' 10'-12' 12.5'-14.5' 15'-17'	10 10 10 10 10	ND 4 3 3 ND	3 3 3 3 ND	ND 3 2 3 6	ND 6 6 9 13	ND ND 5 8 ND	3 16 19 26 19
100 ppb BTEX	_	-	100	96	106	216	115	633
Air Blank	_	_	ND	1	ND	ND	ND	1
026-001MW	20'-22' 24'-26'	10 10	ND ND	2 2	1 1	4 3	ND ND	7 6
100 ppb BTEX		-	84 100	90 100	102 100	215 200	174 100	665 600
			6 M	lay 1995				
1 ppm BTEX	-	_	1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX		_	10,000	10,000	10,000	20,000	10,000	60,000
Air Blank	_	_	4	3	8	21	ND	36
026-003MW	0.5'-2.5' 5'-7' 10'-12'	10 10 10	5 3 3	4 3 3	6 10 11	26 25 32	5 27 28	46 68 77
026-002MW	0.5'-2.5' 5'-7'	10 10	ND ND	3 2	12 3	31 15	32 17	78 37
100 ppb BTEX	_	_	100	90	86	169	78	523
Recal	-	-	100	100	100	200	100	600
Air Blank	_	_	ND	1	ND	ND	ND	1
026-002MW	10'-12' 15'-17'	10 10	1 3	3 3	3 2	9 7	7 4	23 19

Table B.1 (Continued)
Field Gas Chromatograph Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

	Sample	Sample			a maran katalah sa dalam k	ntrations pb)		
Boring	Interval (ft. BLS)	Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
			6 May 199	5 (Conclude	e d)			
100 ppb BTEX	-	-	100 100	94 100	91 100	185 200	97 100	567 600
			8 M	ay 1995				
1 ppm BTEX			1,000	1,020	1,010	2,030	1,290	6,350
10 ppm BTEX	_	_	10,000	10,000	10,000	20,000	10,000	60,000
Air Blank	-	_	2	8	7	13	14	44
026-002MW	20'-22'	10	4	6	7	13	11	41
100 ppb BTEX	- -	-	99 100	80 100	72 100	133 200	47 100	431 600
			11 N	Iay 1995				
1 ppm BTEX		_	1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX	-	_	10,000	10,000	10,000	20,000	10,000	60,000
Air Blank		-	8	18	22	51	21	120
025-001MW	0.5'-2.5' 5'-7' 10'-12' 15'-17' 20'-22'	10 10 10 10 10	6 1 2 1	6 4 4 4	8 8 13 3	18 21 19 11 8	ND ND ND ND ND	38 34 38 19 16
100 ppb BTEX		_	91	87	89	193	87	547
Recal	_		100	100	100	200	100	600
Air Blank	_		ND	2	2	ND	ND	4
025-001MW	25'-27' 30'-32' 35'-37'	10 10 10	3 3 ND	4 4 4	2 5 18	5 9 29	ND ND ND	14 21 51
025-002MW	0.5'-2.5' 5'-7'	10 10	ND 3	4 4	2 1	7 3	ND ND	13 11
100 ppb BTEX	_	_	108	104	104	212	108	636
Air Blank	_	_	ND	1	1	ND	ND	2
025-002MW	10'-12' 15'-17'	10 10	4 ND	4 4	2 1	7 4	4 3	21 12
100 ppb BTEX	_		86	85	81	166	83	501

Table B.1 (Continued)
Field Gas Chromatograph Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

	Sample				Concent (pp	1 10 1 10 2 2 5 1 195 1 100 5		
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
			11 May 199	95 (Conclud	ed)			
Recal	-	_	100	100	100	200	100	600
Air Blank	_	_	ND	1	ND	27	ND	28
025-003MW	0.5'-2.5' 5'-7' 10'-12'	10 10 10	ND 25 774	5 4 350	3 2 297	13 15 1,840	9 ND 827	30 46 4,090
025-003MW Reshot	10'-12'	10	665	515	540	2,220	985	4,930
025-003MW	15'-17'	10	2,220	140	ND	ND	ND	2,360
1 ppm BTEX	_	-	696	679	658	1,389	586	4,008
Recal	-	_	1,000	1,000	1,000	2,000	1,000	6,000
Air Blank	-	_	ND	1	1	3	ND	5
025-003MW	20'-22'	10	149	15	9	25	16	214
Air Blank	_		ND	1	1	2	ND	4
			13 N	May 1995				
100 ppb BTEX	_		100	100	100	200	100	600
1 ppm BTEX	_	_	1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX	_	_	10,000	10,000	10,000	20,000	10,000	60,000
Air Blank		_	4	3	8	14	ND	29
025-009BH	0.5'-2.5' 5'-7' 10'-12'	10 10 10	4 3 3	4 4 3	4 3 ND	9 2 ND	ND ND ND	21 12 6
025-011BH	0.5'-2.5' 5'-7'	10 10	2 ND	3 4	1 2	4 6	ND ND	10 12
100 ppb BTEX	-		106	100	101	207	99	613
Air Blank	-	_	ND	1	ND	3	ND	4
025-008BH	0.5'-2.5' 7'-9'	10 10	ND 36	3 92	1 635	3 645	ND 9,450	7 10,858
025-008BH Reshot	7'-9'	10	35	110	630	790	4,030	5,595
025-008BH	9'-11'	10	ND	ND	ND	ND	ND	ND

Table B.1 (Continued) Field Gas Chromatograph Results – IRP Sites No. 25 and No. 26 148th FW, Duluth ANGB, Duluth, Minnesota

					Concent (pp	 Maria Minima and Section (Maria Section) 		
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
			13 May 199	5 (Conclude	ed)			
025-008BH Reshot	9'-11'	10	4	4	12	ND	60	80
100 ppb BTEX	-	-	108	95	101	214	144	662
Recal	_		100	100	100	200	100	600
Air Blank	-	-	1	2	1	2	ND	6
025-008BH	13'-15'	10	ND	3	2	ND	ND	5
025-010BH	0.5'-2.5' 5'-7'	10 10	ND 3	3 3	7 1	17 3	9 2	36 12
025-006BH	0.5'-2.5' 5'-7'	10 10	ND ND	3 3	1 1	3 3	1 1	8 8
100 ppb BTEX	_	_	89	97	88	159	34	467
Recal	-	_	100	100	100	200	100	600
Air Blank	-	_	ND	12	ND	3	ND	15
025-006BH	10'-12' 20'-22'	10 10	ND 3	5 32	5 35	ND ND	14 78	24 148
100 ppb BTEX	-		93 100	92 100	96 100	193 200	101 100	575 600
			15 P	May 1995				
1 ppm BTEX	_	_	1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX	_		10,000	10,000	10,000	20,000	10,000	60,000
Air Blank		_	2	1	3	4	ND	10
1 ppm BTEX	_	_	827	778	664	1,300	632	4,201
Recal	_	_	1,000	1,000	1,000	2,000	1,000	6,000
Air Blank	_		1	2	3	3	ND	9
025-003BH	0.5'-2.5' 5'-7'	10 10	7 ND	10 ND	41 3,620	ND 35,650	82 15,050	140 54,320
025-003BH Re-Reshot	5'-7'	10	ND	23,950	3,740	13,700	20,150	61,540
025-003BH	10'-12'	10	ND	47,550	5,200	36,450	27,000	116,200
10 ppm BTEX	_	_	8,720	8,470	5,510	11,620	5,810	40,130

Table B.1 (Continued)
Field Gas Chromatograph Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

	Sample		Concentrations (ppb)									
Boring	Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX				
15 May 1995 (Concluded)												
Recal	_	_	10,000	10,000	10,000	20,000	10,000	60,000				
Air Blank	_	-	11	5 .	11	25	ND	52				
025-003BH	15'-17' 20'-22'	10 10	140 276	215 314	205 246	1,140 1,832	420 1,110	2,120 3,778				
025-003BH Reshot	25'	10	20	276	42	364	47	749				
025-002BH	0.5'-2.5'	10	13	152	12	31	ND	208				
1 ppm BTEX	_	-	900	828	718	1,440	824	4,710				
Recal	_	_	1,000	1,000	1,000	2,000	1,000	6,000				
Air Blank	_	-	ND	2	3	6	ND	11				
025-002BH Reshot	5'-7'	10	5,800,000	263,000	25,500	205,000	114,000	6,407,500				
025-002BH	10'-12'	10	20,200	214,000	2,700	156,000	104,000	496,900				
025-002BH Re-Reshot	5'-7'	10	73,800	209,000	3,360	145,000	93,000	524,160				
10 ppm BTEX		_	9,050	8,790	8,290	16,840	8,390	51,360				
Recal	_	_	10,000	10,000	10,000	20,000	10,000	60,000				
Air Blank	<u>-</u>	<u>-</u> -	11 3	38 4	41 1	521 3	103 ND	714 11				
025-001BH	0.5'-2.5' 5'-7'	10 10	60 ND	207 613,000	27 6,600	107 387,000	ND 180,000	401 1,186,600				
10 ppm BTEX	-	-	10,940	9,800	8,540	16,560	7,750	53,590				
			16 M	lay 1995								
100 ppb BTEX	-		100	100	100	200	100	600				
1 ppm BTEX	-	_	1,000	1,000	1,000	2,000	1,010	6,010				
10 ppm BTEX	_	_	10,000	10,000	10,000	20,000	10,000	60,000				
Air Blank	_	_	ND	9	5	6	ND	20				

Table B.1 (Continued)
Field Gas Chromatograph Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

			- 1981年 名出 - 1873年 1 - 日本書		GUGGG MANAGANAN AND AND AND AND AND AND AND AND AND	trations pb)		
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
			16 May 19	95 (Conclud	ed)			
025-007BH	0.5'-2.5' 5'-7' 10'-12' 15'-17' 20'-22'	10 10 10 10 10	2 5 4 4 ND	6 12 4 11 4	1 5 ND 1 1	3 14 ND ND ND	ND ND ND ND 21	12 36 8 16 26
100 ppb BTEX	_	_	101	83	54	75	1	314
Recal		_	100	100	100	200	100	600
Air Blank	-	_	ND	5	ND	ND	ND	5
025-005BH	0.5'-2.5' 10'-12' 20'-22'	10 10 10	2 ND 3	4 4 4	ND 2 1	9 ND 9	ND ND ND	14 6 17
025-004BH	0.5'-2.5' 5'-7'	10 10	ND 2	4 4	ND 10	ND 178	ND 157	4 351
100 ppb BTEX	-	_	100	100	100	200	100	600
1 ppm BTEX	-	_	1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX	_	_	10,000	10,000	10,000	20,000	10,000	60,000
Air Blank	_	_	1	1	6	9	ND	17
025-004BH	10'-12' 18'-20'	10 10	1 1	4 3	4 ND	8 ND	ND ND	17 4
025-004BH Reshot	5'-7'	10	1	3	2	6	ND	12
100 ppb BTEX			106 100	103 100	98 100	188 200	68 100	563 600
			17 N	May 1995				
1 ppm BTEX	_	_	1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX	_		10,000	10,000	10,000	20,000	10,000	60,000
Air Blank	-	-	1	12	ND	83	20	116
100 ppb BTEX	_	-	97	70	62	119	51	399
Recal	-	_	100	100	100	200	100	600
Air Blank	_	_	3	ND	1	ND	ND	4
025-012BH	0.5'-2.5' 5'-7'	10 10	3 ND	21 ND	17 ND	ND ND	39 ND	80 ND

Table B.1 (Concluded) Field Gas Chromatograph Results - IRP Sites No. 25 and No. 26 148th FW, Duluth ANGB, Duluth, Minnesota

	Sample	Sample				entrations (ppb)		
Boring	Interval (ft. BLS)	Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
			17 May 1	995 (Conclud	led)			
025-012BH Reshot	5'-7'	10	ND	ND	ND	ND	ND	ND
025-012BH	10'-12' 18'-20'	10 10	48 41	31 46	4 ND	ND ND	14 ND	97 87
100 ppb BTEX	_	_	77	84	80	151	78	470
Recal		_	100	100	100	200	100	600
Air Blank		_	3	ND	1	ND	73	77
025-013BH	0.5'-2.5' 5'-7' 10'-12' 18'-20'	10 10 10 10	4 3 4 10	3 2 2 17	1 20 4 3	3 ND 2 ND	ND 106 ND 4	11 131 12 34
100 ppb BTEX	<u>-</u>	-	96 100	92 100	87 100	178 200	93 100	546 600
			20 N	1ay 1995				
1 ppm BTEX	_	_	1,000	1,000	1,000	2,000	1,000	6,000
10 ppm BTEX	-		10,000	10,000	10,000	20,000	10,000	60,000
Air Blank	-		13	5	28	40	95	181
026-001MW	Water	10 ml	10	2	3	ND	ND	15
026-002MW	Water	10 ml	1	ND	ND	ND	ND	1
026-003MW	Water	10 ml	ND	ND	ND	ND	ND	ND
025-001MW	Water	10 ml	ND	ND	ND	ND	ND	ND
025-002MW	Water	10 ml	4	ND	ND	ND	ND	4
100 ppb BTEX	-	-	109	97	92	178	77	553
Recal	_		100	100	100	200	100	600
Air Blank		_	ND	ND	ND	ND	ND	ND
025-003MW	Water	10 ml	1,920	963	318	1,400	1,090	5,690
1 ppm BTEX		_	1,020	1,040	1,110	2,300	1,130	6,600

MW - Monitor Well.

BH - Borehole.

ml - milliliters.

Recal - Recalibration.

ppb - parts per billion.

ppm - parts per million. ND - Non-Detect.

ft. BLS - feet Below Land Surface.

BTEX - Benzene, Toluene,

Ethylbenzene, and Xylenes.

Table B.2
PID Screening Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth International Airport, Duluth, Minnesota

Boring	Interval	PID Screening	ATHA Screening
	(ft. BLS)	Results	Results
025-01BH	0.5-2.5	0	0
	5.0-7.0	742	1,096
025-02BH	0.5-2.5	0	58
	5.0-7.0	541	1,391
	10.0-12.0	330	1,339
025-03BH	0.5-2.5	0	0
	5.0-7.0	0	467
	10.0-12.0	273	727
	15.0-17.0	133	53
	20.0-22.0	9.5	10.6
	23.0-25.0	0	0
025-04BH	0.5-2.5 5.0-7.0 10.0-12.0 18.0-20.0	0 0 0 0	0 0 0
025-05BH	0.5-2.5	0	0
	5.0-7.0	0	0
	10.0-12.0	0	0
	20.0-22.0	0	0
025-06ВН	0.5-2.5	0	0
	5.0-7.0	0	0
	10.0-12.0	NA	NA
	20.0-22.0	0.7	0
025-07BH	0.5-2.5	0	0
	5.0-7.0	0	0
	10.0-12.0	0	0
	15.0-17.0	0	0
	20.0-22.0	0	0
025-08BH	0.5-2.5	0	0
	7.0-9.0	2	12.4
	9.0-11.0	0.5	0
	13.0-15.0	0	0
025-09BH	0.5-2.5	0	0
	5.0-7.0	0	0
	10.0-12.0	0	0
	13.0-15.0	0	0
025-10BH	0.5-2.5	0	NA
	5.0-7.0	0	0
025-11BH	0.5-2.5	0	0
	5.0-7.0	0	NA

Table B.2 (Continued)
PID Screening Results – IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

Boring	Interval	PID Screening	ATHA Screening
	(ft. BLS)	Results	Results
025-12BH	0.5-2.5	0	2.8
	5.0-7.0	9.6	6.9
	10.0-12.0	7.5	6.5
	18.0-20.0	4.5	3.2
025-13BH	0.5-2.5	0	0
	5.0-7.0	0	0
	10.0-12.0	0	0
	18.0-20.0	0	10.6
025-01MW	0.5-2.5 5.0-7.0 10.0-12.0 15.0-17.0 20.0-22.0 25.0-27.0 30.0-32.0 35.0-37.0	0 0 0 0 0 0 0	0 0 0 0 0 0 0
025-02MW	0.5-2.5	0	0
	5.0-7.0	0	0
	10.0-12.0	0	0
	15.0-17.0	0	0
025-03MW	0.5-2.5	0	0
	5.0-7.0	0	0
	10.0-12.0	0.8	25.8
	15.0-17.0	15.6	5
	20.0-22.0	0	0.8
026-01ВН	0.5-2.5	0	0
	5.0-7.0	0	0
	8.0-10.0	0	0
026-02BH	0.5-2.5	0	0
	5.0-7.0	0	0
026-03ВН	0.5-2.5	0	0
	5.0-7.0	0	0
026-04BH	0.5-2.5	0	0
	5.0-7.0	0	0
	8.0-10.0	0	0.2
026-05ВН	0.5-2.5	0	0
	5.0-7.0	0	0
	8.0-10.0	0	0.3

Table B.2 (Concluded) PID Screening Results - IRP Sites No. 25 and No. 26 148th FW, Duluth ANGB, Duluth, Minnesota

Boring	Interval (ft. BLS)	PID Screening Results	ATHA Screening Results
026-06ВН	0.5-2.5 5.0-7.0 8.0-10.0 10.0-12.0	0 0 0 0	0 0 0
026-01 MW	0.5-2.5 5.0-7.0 10.0-12.0 12.5-14.5 15.0-17.0 20.0-22.0 24.0-26.0	0 0 0 0 0 0 0 NA	0 0 0 0 0 0 0 0 NA
026-02MW	0.5-2.5 5.0-7.0 10.0-12.0 15.0-17.0 20.0-22.0	0 0 0 NA NA	0 0 0 0 NA NA
026-03MW	0.5-2.5 5.0-7.0 10.0-12.0 15.0-17.0	0 0 0 0	0 0 0 0

MW - Monitor Well.

BH - Borehole.

ft. BLS - feet Below Land Surface.

PID - Photoionization Detector.

ATHA - Ambient Temperature Headspace Analysis.

NA - Not Analyzed.

THIS PAGE INTENTIONALLY LEFT BLANK

ANALYSIS	8 #1	10S+	GC f	FUNCT	TION ANALYSIS REPORT
0 2	4	6 (x	8 10 N	10 vV)	TIME PRINTED: MAY 4,95 12:03 SAMPLE TIME: MAY 4,95 11:55
35 / 3 4 5	2				METHOD SLOPE UP 1.000 MV/SEC SLOPE DOWN 3.000 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71			6		Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min
107 	, 7		-		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178					PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.058 MVS 15.0 2 UNKNOWN 81.39 MVS 16.6 3 UNKNOWN 32.20 MVS 23.7 4 UNKNOWN 62.06 MVS 28.2
214				•	5 UNKNOWN 6.436 MVS 51.3 6 UNKNOWN 218.4 MVS 58.5 7 UNKNOWN 161.5 MVS 117.3 8 UNKNOWN 0.852 MVS 215.8
250) 9					9 UNKNOWN 117.2 MVS 242.6 10 UNKNOWN 100.4 MVS 261.0 11 UNKNOWN 34.73 MVS 309.3
285					
321 11				,	
3 \$7 _.					
392				·	NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
428					TOO ITD DIEA

Analysis #2	10S+ GC FUNC	TION ANALYSIS REPORT
0 2 4	6 8 10 (x 100 mV)	TIME PRINTED: MAY 4,95 12:22 SAMPLE TIME: MAY 4,95 12:14
35 2 3 4		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV/SEC
71 6		MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
107	-	WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
		PEAK REPORT
178		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.068 MVS 14.9 2 UNKNOWN 28.17 MVS 16.6 3 UNKNOWN 66.61 MVS 18.2
214		4 UNKNOWN 37.96 MVS 23.8 5 UNKNOWN 67.48 MVS 28.2 6 UNKNOWN 5.910 MVS 50.8 7 BENZENE 1.730 PPM 59.0
250 9		8 TOLUENE 1.797 PPM 117.7 9 ETHYLBENZENE 2.311 PPM 243.4 10 M,P-XYLENE 1.977 PPM 261.8 11 UNKNOWN 1.319 VSec 267.7 12 O-XYLENE 2.571 PPM 309.8
285		12 O-XYLENE 2.571 PPM 309.8
N 32 <u>1</u> 12		
357	·	
392		NOTES
4 2 8		NOTES JOE BYRD, JR. DULUTH ANGB 1 PPM BTEX

ΔĖΔ

ANALYS	SIS #3	10S+ GC	Funci	TION ANALYSIS REPORT
0	2 4	6 8 (x 100	10 мV)	TIME PRINTED: MAY 4,95 12:38 SAMPLE TIME: MAY 4,95 12:30
71 35 2 3 4 5	2			METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71 6	<u></u>			ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107	·		 9	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
142				ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
178				1 UNKNOWN 0.082 MVS 15.0 2 UNKNOWN 21.60 MVS 16.8 3 UNKNOWN 98.39 MVS 18.4 4 UNKNOWN 49.99 MVS 24.0 5 UNKNOWN 65.05 MVS 28.4
2 1 4 10				6 UNKNOWN 11.28 MVS 43.6 7 UNKNOWN 4.007 MVS 51.2 8 BENZENE 5.510 PPM 60.2 9 TOLUENE 8.414 PPM 119.3
250			11 12	10 UNKNOWN 7.344 MVS 211.2 11 ETHYLBENZENE 10.08 PPM 246.6 12 M,P-XYLENE 39.30 PPM 262.9 13 O-XYLENE 7.916 PPM 311.4
285			·	
321	13	· ·		
357				
392				NOTES JOE BYRD, JR. DULUTH ANGB 10 PPM BTEX
428				

	Fs N	G.C. Readu Analysis K O Name	109	3+ GC Funct Run at : Conc/Area	ion May - May	4,95 12:44 5 12:30 - Ret.Time
		Unknown Unknown Unknown benzene toluene Unknown ethylbenz m.p-xylene o-xylene etected 13	ene e peaks.	######################################	- No- - No- - No- - No- - No- - No- - No- - No-	28.4
į	995 749	(mU)				234.0 uU
	459					10
	249	· . · . · . · . · . · . · . · . · . · .				
1	3	1945 3 24	. 7 48	75 126	10) () 189 - 255	<u> </u>

·

ANALY	ve i e	#4	109	S+ CC	Fune	TIA	N ANGLYGIG REDA	ДT		
. 0	2	4	6 (x	8 1000	10 uV)			May 4,95 May 4,95		
Ī					0 , ,	:		THOD	12.	70
35				-	2	<u> </u>	SLOPE UP	0.500	mV/S	EC
	ستممسم				3	:	SLOPE DOWN	1.500	MV/S	
1 : 4			4			:	MIN AREA	0.000		C
71	 _						MIN HEIGHT	0.000	ΜV	
14	. 6					1	ANALYSIS DELAY		SEC	
: !							WINDOW PERCENT DET FLOW		%	-
							B/F FLOW	12 12	ML/M	
107						1	AUX FLOW	0	ML/M ML/M	
1-7.				-		:	OVEN TEMP	40	C C	I IN
₽ 7							AMB TEMP	31	Č	
1						:	MAX GAIN	1000	O	
142						!	ANALYSIS TIME	500.0	SEC	:
			•	•			PEAK			
						Pĸ	COMPOUND NAME	AREA/(CONC	R.T.
						1	Unknown	0.061	мVS	14.8
178						2	UNKNOWN	9.807		16.8
						3	UNKNOWN	110.7		18.3
						4	UNKNOWN		мVS	23.8
21/1						5	Unknown	0.851		51.3
214			•			6	BENZENE	10.25	PPB	58.8
						7	TOLUENE	4.357		117.7
						8	ETHYLBENZENE	8.333		244.2
250						10	M,P-XYLENE O-XYLENE	14.48	1	262.1
8	•	. ,				10	UTATLENE	9.373	PPB	308.8
9	•						•			į .
285										
	•		•		•					
			•	•						
321	10									
		·	·			!				
			•					•		
7										
357			•			:				į
						:				
						:				
700								· · · · · · · · · · · · · · · · · · ·		
392						:		OTES		
							JOE BYRD, JR.			
						i	DULUTH ANGB			
428						i	AIR BLANK			
440										

		11011	
JOE	BYRD,	JR.	
DUL	JTH AN	BB	
026-	-004вн	0.5-2.5	16
			100 3
			7

NOTES

392

428

ANALYS	sis #6	5	10S+	GC	Func	TIOI	N ANALYSIS REPOR	Т	
0	1	2	3 (x	4 10	5 MV)	3	TIME PRINTED: M. SAMPLE TIME: M. MET	AY 4,95	
-5	3 4 6	2					SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT	0.500 1.500 0.000 0.000 0.0 10.0	MV/SEC MV/SEC MVSEC MV SEC
107 7 142							DET FLOW B/F FLOW AUX FLOW OVEN TEMP AMB TEMP MAX GAIN ANALYSIS TIME	12 12 0 40 32 1000 500.0	ML/MIN ML/MIN C C SEC
178						1 2 3 4	PEAK COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	REPORT AREA/C 0.437 26.13 56.24 94.17	ONC R.T. MVS 14.2 MVS 16.7 MVS 18.2 MVS 23.7
214						5 6 7 8 9	UNKNOWN BENZENE TOLUENE UNKNOWN	10.21 7.368 3.415 1.338	PPB 58.7 PPB 118.1 MVS 217.2
250 9						10	ETHYLBENZENE M,P-XYLENE O-XYLENE	1.945 4.567 2.291	PPB 262.6
10 285									
321	11	,							
357									
392 428			· · · · · · · · · · · · · · · · · · ·]	JOE BYRD, JR. Duluth ANGB D26-004bh	TES	
4∠0							5.0-7.0 10g		

An	ALYSIS ;	# 7	10S+	GC	Func	TION ANALYSIS REPORT
0	1	2	3 (x	4 10	5 MV)	TIME PRINTED: MAY 4,95 13:30 SAMPLE TIME: MAY 4,95 13:22
35	3	2				METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mV/SEC
71	5 6					MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
10				12.		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
14	7 2					AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
17	8 .				·	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.136 MVS 15.1 2 UNKNOWN 187.5 MVS 16.8 3 UNKNOWN 1.429 MVS 18.1
21	4					4 UNKNOWN 0.261 MVS 23.6 5 UNKNOWN 1.893 MVS 51.2 6 BENZENE 1.171 PPB 59.0 7 TOLUENE 2.182 PPB 118.0
25	9 .	·				8 UNKNOWN 2.267 MVS 220.2 9 ETHYLBENZENE 1.928 PPB 246.6 10 M,P-XYLENE 4.476 PPB 261.6 11 O-XYLENE 2.643 PPB 308.2
28	10 5					
32	1 11					
35	7				٠.	
39	2	,			,	NOTES JOE BYRD, JR.
42	8				,	Duluth ANGB 026-004BH 8.0-10.0 10g

<u>Α</u> Ν	ALY	YSIS	#8	10S+ GC	FUNC	TION ANALYSIS REPORT	Т
0		4	8	12 16 (x 1000	20	TIME PRINTED: MA SAMPLE TIME: MA	AY 4,95 13:42 AY 4,95 13:34
35	1	_				METI SLOPE UP SLOPE DOWN	HOD 0.500 mV/SEC 1.500 mV/SEC
71	±4 14 7	5		-		MIN AREA MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT DET FLOW	0.000 MVSEC 0.000 MV 0.0 SEC 10.0 %
10	17					B/F FLOW AUX FLOW	12 ML/MIN :
				-		OVEN TEMP	40 C
***	6					AMB TEMP	32 C
14	2					Max Gain Analysis Time	1000 500.0 sec
			•				REPORT
	7			•		PK COMPOUND NAME	AREA/CONC R.T.
17	7 '8					1 UNKNOWN	0.094 MVS 14.8
1	O					2 Unknown 3 Unknown	20.19 MVS 16.7
						4 UNKNOWN	133.7 MVS 18.5 6.334 MVS 51.6
	8					5 BENZENE	6.536 PPB 56.4
21					_	6 TOLUENE	1.377 PPB 117.7
	9		•		•	7 UNKNOWN	2.237 MVS 156.8
*						8 UNKNOWN	3.125 MVS 199.0
25	0	10				9 Unknown 10 Unknown	7.984 MVS 212.8 2.627 MVS 239.6
,	11	.=0			•	11 UNKNOWN	2.627 MVS 239.6 2.442 MVS 243.7
	12					12 ETHYLBENZENE	3.062 PPB 248.5
	13	٠,		•		13 UNKNOWN	2.040 MVS 253.8
- 1		.14				14 M,P-XYLENE	16.95 PPB 261.0
	15 16					15 UNKNOWN	9.501 MVS 272.2
	10		•			16 Unknown 17 o-xylene	2.552 MVS 293.3 26.25 PPB 311.4
32	1	17				18 UNKNOWN	1.003 MVS 328.5
		•			٠	19 UNKNOWN	0.501 MVS 346.3
	18						
35	7	19					
		•	•	•			:
39 39	2) NO	ΓES
	•			•		JOE BYRD, JR.	IEO
						DULUTH ANGB	!
	:8					026-001вн	<u>!</u> !
	~					0.5- 2.5 100	

ANAL	YSIS	#9	109	S+ GC	Func	TION ANALYSIS REPORT
() ()	4		12 (x	16 1000	20 uV)	TIME PRINTED: MAY 4,95 13:55 SAMPLE TIME: MAY 4,95 13:46 METHOD
35 71/	<u>2</u> / 5		 -	3 4	·	SLOPE UP 1.000 MV/SEC SLOPE DOWN 3.000 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
107		·				ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
)6 142	7					OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
178	· .*					PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.073 MVS 13.2 2 UNKNOWN 0.415 MVS 14.8 3 UNKNOWN 18.78 MVS 16.7
214						4 UNKNOWN 130.6 MVS 18.4 5 UNKNOWN 1.900 MVS 50.8 6 TOLUENE 1.843 PPB 117.4 7 UNKNOWN 0.187 MVS 129.4 8 UNKNOWN 0.915 MVS 217.6
250	·					
285						•
321						
357						
392				. ,	·	NOTES JOE BYRD, JR.
428	·					DuLuth ANGB 026-001вн 5.0- 7.0 10g

Α	NAL)	YSIS	#10	10S+	GC	Func	TION ANALYSIS REPORT
	(). - 	2	4	6 (x	8 10	10 MV)	TIME PRINTED: MAY 4,95 14:06 SAMPLE TIME: MAY 4,95 13:58
3	5	- 2 3 4					METHOD SLOPE UP 1.000 MV/SEC SLOPE DOWN 3.000 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
7	I/77	6			8		ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
1	07 	(9	·	-		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
1	42			•			ANALYSIS TIME 500.0 SEC
1	78						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.188 MVS 15.1 2 UNKNOWN 20.11 MVS 16.8 3 UNKNOWN 57.93 MVS 18.4 4 UNKNOWN 36.16 MVS 23.9
2	14						5 UNKNOWN 63.57 MVS 28.2 6 UNKNOWN 0.929 MVS 51.4 7 UNKNOWN 4.714 MVS 52.2 8 BENZENE 99.98 PPB 58.8 9 TOLUENE 101.7 PPB 117.7
2	50)	.11					10 UNKNOWN 0.518 MVS 214.0 11 ETHYLBENZENE 101.0 PPB 244.0 12 M,P-XYLENE 210.8 PPB 262.6
2	85	.				·	13 O-XYLENE 105.0 PP3 310.6
3	21 21	13					
3	57		· .				
	92 28						NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
***************************************	:			-			

A	YSIS 9	<u> </u>	R	8	10	TION ANALYSIS REPORT TIME PRINTED: MAY 4,95 14:18
<u> </u>			. (x 1000		SAMPLE TIME: MAY 4,95 14:18
				=		METHOD
35			7 .	. 2		SLOPE UP 1.000 MV/SEC
قمر \	مسمم		3			SLOPE DOWN 3.000 MV/SEC
₩	4					MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71/						MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
<i></i>						WINDOW PERCENT 10.0 %
1						DET FLOW 12 ML/MIN
107						B/F FLOW 12 ML/MIN
107				ا ساد		AUX FLOW 0 ML/MIN OVEN TEMP 40 C
} 5						OVEN TEMP 40 C AMB TEMP 32 C
						MAX GAIN 1000
42		·				ANALYSIS TIME 500.0 SEC
						PEAK REPORT
						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 7.535 MVS 17.0
178	,					2 UNKNOWN 80.74 MVS 18 3
					•	3 UNKNOWN 0.327 MVS 23.7
	•					4 UNKNOWN 0.953 MVS 50.9
214						5 TOLUENE 1.192 PPB 117.6
		•	•			:
			i			
250						
				•		
	•					
285						•
1 .	, ,		•	•		
3 2 1						
7.		•				
				•		
X E 7				•		
357					.	
	•		,	•		
5 9 2		,		. ,	. }	NOTES
					-	JOE BYRD, JR.
			•	•		DULUTH ANGB
28						AIR BLANK
		•		•		
					!	
64						

_					_	
ANA	4	#12 8	12	16	20	TIME PRINTED: MAY 4,95 14:30
Ţ			(X	1000	UV)	SAMPLE TIME: MAY 4,95 14:22 METHOD
35	5	4	3	2		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71/	6					ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107	7 · 3			-		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
9 142	10					MAX GAIN 1000 Analysis Time 500.0 sec
178	11			•		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.234 MVS 15.2 2 UNKNOWN 19.07 MVS 16.8 3 UNKNOWN 48.59 MVS 18.8
214	ł 12					3 UNKNOWN 48.59 MVS 18.8 4 UNKNOWN 24.11 MVS 23.8 5 UNKNOWN 53.65 MVS 28.2 6 UNKNOWN 19.48 MVS 51.5 7 UNKNOWN 0.081 MVS 109.6
250	13					8 TOLUENE 1.932 PPB 118.1 9 UNKNOWN 0.439 MVS 125.8 10 UNKNOWN 0.094 MVS 131.7 11 UNKNOWN 0.041 MVS 135.0
285	. 4	. ,				12 UNKNOWN 2.430 MVS 216.4 13 ETHYLBENZENE 1.452 PPB 242.6 14 M,P-XYLENE 14.26 PPB 267.2 15 O-XYLENE 11.15 PPB 311.4
321	. 15					16 UNKNOWN 29.59 MVS 378.6
357						
392	2 16					NOTES JOE BYRD, JR. DULUTH ANGB

DULUTH ANGB
026-004BH RESHOT
0.5-2.5 10G

428

<u> </u>	ANAI	LYSI	s #	13		108	S+ G	C Fu	JNC	CTIC	ON ANALYSIS REPORT
1	0		ļ 	8		2 (x	16		20		TIME PRINTED: MAY 4,95 14:42 SAMPLE TIME: MAY 4,95 14:34
	71.	7	6	5	_	3				entre un merchania describirar de la companya de l	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
	78	·								1 2 3 4 5	PEAK REPORT COMPOUND NAME
***************************************	9			٠						6 7 8 9	UNKNOWN 68.98 MVS 28.4 UNKNOWN 26.22 MVS 51.0 TOLUENE 1.859 PPB 118.2
2	0 10 11				•			٠		10 11	UNKNOWN 1.215 MVS 224.0 ETHYLBENZENE 2.415 PPB 244.8 M,P-XYLENE 10.99 PPB 262.9 O-XYLENE 4.920 PPB 309.6
28	35		•		٠						
32	21	12	,								
35	57								AND DESCRIPTION OF THE PERSON		
39	2					,					NOTES -
42	8						· .			D	OE BYRD, JR. PULUTH ANGB PG-001BH 8.0-10.0 10G

ANALYSIS #14	10S+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 4,95 14:54 SAMPLE TIME: MAY 4,95 14:46
35 4 71 6	2 3	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107 7 142	-	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.056 MVS 14.8 2 UNKNOWN 13.59 MVS 16.8 3 UNKNOWN 45.94 MVS 18.4 4 UNKNOWN 24.28 MVS 23.6
214		5 UNKNOWN 50.52 MVS 28.2 6 UNKNOWN 18.28 MVS 51.4 7 TOLUENE 1.567 PPB 118.9
250		8 UNKNOWN 1.430 MVS 218.6 9 M,P-XYLENE 5.282 PPB 263.2 10 O-XYLENE 2.772 PPB 311.7
9 285		
321 10		
357		
392 428		NOTES JOE BYRD, JR. DULUTH ANGB 026-005BH 1.0- 1.5 10G

	NA	LYSI	s #	15	1	08-	+ GC	Func	CTIC	N ANALYSIS REPORT
		4		8	12 (=		16 1000	20 uV)		TIME PRINTED: MAY 4,95 15:06 SAMPLE TIME: MAY 4,95 14:58
7	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 6		4	3	2 .				METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 MI /MIN
	7						æ		:	OVEN TEMP 40 C AMB TEMP 31 C
14	2						•			ANALYSIS TIME 500.0 SEC
1	78			·					PK 1 2 3 4	PEAK REPORT COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.055 MVS 15.0 UNKNOWN 14.32 MVS 16.8 UNKNOWN 86.62 MVS 18.4 UNKNOWN 2.331 MVS 23.8
2.	14 8 9 10			·				·	56789	UNKNOWN 35.27 MVS 32.4 UNKNOWN 17.73 MVS 51.6 TOLUENE 1.834 PPB 118.9 UNKNOWN 1.032 MVS 215.4
2	50 11			٠					10 11	UNKNOWN 3.830 MVS 225.6 ETHYLBENZENE 2.298 PPB 247.4
28	12 35						•		12	M, P-XYLENE 4.692 PPB 265.8
32	21									
35	57									
39	12								· · · · · ·	NOTES
42	8							Total college	D	OE BYRD, JR. ULUTH ANGB 26-005BH 6.0- 6.5 10G

ANALY	SIS	#16	108	S+ GC	FUNC	fion Analysis Report
0	4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 4,95 15:18 SAMPLE TIME: MAY 4,95 15:10
I				-		METHOD
35—71/11/11/11/11/11/11/11/11/11/11/11/11/1	5 6	 4	-	2 3		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
107				٤		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
) 7			•			AMB TEMP 31 C
142						MAX GAIN 1000 Analysis Time 500.0 sec
±7∠ :			•	•		PEAK REPORT
178		·				PK Compound Name AREA/Conc R.T. 1 Unknown 0.071 mVS 14.9 2 Unknown 16.64 mVS 16.8 3 Unknown 184.9 mVS 18.4 4 Unknown 0.728 mVS 23.8
214						5 UNKNOWN 1.182 MVS 51.0 6 BENZENE 0.063 PPB 58.6 7 TOLUENE 1.379 PPB 118.4
8						8 Unknown 0.892 MVS 219.6
250 9						9 ETHYLBENZENE 0.282 PPB 248.2 10 M,P-XYLENE 2.216 PPB 265.8 11 O-XYLENE 1.157 PPB 307.4
10			•			
285						
321	17	•	•	•		
		•	•	٠.,		
į	1					
357						
١٧٧	•		٠	, ,		
700				•		
392 428		·				NOTES JOE BYRD, JR. DULUTH ANGB 026-005BH 10.0 10G
.20	٠					10.0

	FUNCTION ANALYSIS REPORT
0 2 4 6 8 (x 10	10 TIME PRINTED: MAY 4,95 15:30 MV) SAMPLE TIME: MAY 4,95 15:22 METHOD
35/ 2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71/-67	ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107 ————————————————————————————————————	AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.118 MVS 12.8 2 UNKNOWN 0.121 MVS 15.2 3 UNKNOWN 14.51 MVS 16.8 4 UNKNOWN 46.10 MVS 18.4
214	5 UNKNOWN 29.96 MVS 24.0 6 UNKNOWN 47.06 MVS 28.5 7 UNKNOWN 11.54 MVS 43.5 8 UNKNOWN 6.932 MVS 51.2
250 /12	9 BENZENE 92.64 PPB 59.2 10 TOLUENE 88.84 PPB 118.5 11 UNKNOWN 1.017 MVS 222.2 12 ETHYLBENZENE 83.08 PPB 245.0
/13 285 	13 M,P-XYLENE 171.0 PPB 264.2 14 O-XYLENE 94.51 PPB 311.4
321 14	
357	
392	NOTES JOE BYRD, JR. DULUTH ANGR

DULUTH ANGB -026-005BH -10.0 106 100 PP BTEX

	ā.C. Reac Analysis Mo Nam	Äo 17 ¹⁶ = =	+ GC Functi Run at - Conc/Area	on del 4 May 12.95 Alema	755 75 15:22 Ret.Ti	TE Me
	Unknown Unknown Unknown benzene toluene Unknown ethylben m.p-xyle o-xylene Detected 1		47.06 mUS 11.54 mUS 6.53 0 ppb 10.06 pppb 100.07 ppb 100.09 pp 100.09 ppb 100.09 ppb Use	- No- - No- - No- - No- - No-		5eC 5eC 5eC 5eC 5eC 5eC 5eC 5eC 5eC
66 49	(mU)	(i)			302.0	uU
33 16	945	***************************************	1 Ü	1.2		
4	g <u>1716-</u>	7 8 1	<u> </u>	139 Iss	14 	

-

An.	AL.	YSI	s #	18		10	15+	GC	Func	TION ANALYSIS REPORT
0	1	2		4	····	6 (x	: 1	8 000	10 uV)	TIME PRINTED: MAY 4,95 15:53 SAMPLE TIME: MAY 4,95 15:38
35 71		ر مستر 5			 4	2	3		•	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
10	7	•								WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
142	Û									AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178	8						•		·	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 0.090 MVS 14. 2 UNKNOWN 6.144 MVS 16. 3 UNKNOWN 97.76 MVS 18.
214	4	,							,	4 UNKNOWN 0.285 MVS 23. 5 UNKNOWN 1.108 MVS 51. 6 TOLUENE 0.653 PPB 118. 7 ETHYLBENZENE 1.473 PPB 220.
250	7 n									, EINTEDENZENE 1.475 PPB 220.
	J	•		٠					•	-
285	5		·							·
32]	1								,	
357	7						,			
392	2									NOTES Joe Byrd, Jr.
428)							,		DULUTH ANGB AIR BLANK

-4		<u> </u>	#	10		05+	<u> </u>	-Func	Fion_A	MALVOIS EED	201			
Ī	A	R		8	19		18 000	98 11V)	T t	ME PREUTER:	May May	η O.		1.A5
ì	<u> </u>				<u>``</u>	· .		J , ,	37.	11	MAY	4,99	2 12	5:56
; . z	1	ي					2		C,		ETHOI		\ /	· C = 5
3		7				3	2	•	ļ.	OPE UP		500		SEC
	را	<i>(</i>	<u>/1</u>			2				OPE DOWN		1.500		(SEC
		_	4						r .	A AREL		0.000	M\S	EC
7	 	5								N HEIGHT		0.000	ΜŅ	
/	1/	6								ALYSIS DELA		0.0	SEC	2
	ľ								•	NDOW PERCEN		10.0	%	ı
:									1	T FLOW		12		MIN
7	07									F FLOW		12		MIN
1	y /						-			X FLOW EN TEMP		0		MIN
	7											40 21	C	
	,								i	B TEMP		31	С	
<u>.</u> L4	2								1	X GAIN	г/	1000	0==	
_+					•				ANA	LYSIS TIME		0.00	SEC	
									ר כי סר כי	PE:		PORT	20112	р т
									;	MPOUNI NAME KNOWN		AREA/		R.T.
٦	78								•	KNOWN		0.076		15.2
_									i	KNOWN		L9.72		16.9
										KNOWN		56.59		18.4
					•				\$	KNOWN		11.56		28.5
2	14								i	NZENE		7.335		51.4
_	T '	•		•					1	LUENE		L.900	PPB	59.2
	8									KNOWN		2.853	PPB MVS	118.9
									:	HYLBENIENE		L.824		219.6 246.4
2	\$0								i	P-XYLENE		3.847		265.3
	9	•		٠	•	•		•	11 Un			309		273.0
										XYLENE		3.561		307.4
	10		•		•		•				-		112	207.4
2	\$ 5	11												
		•		•	•	•		•						
	ı								I					
					•		•							
3	21	12												
		•		•		•	•	•						
	1	ŧ			•		•							
3	\$ 7								<u> </u>					
		•		•	•	•								
									- :					
	-													
3	92										YOTES	····		
		•		•	•	•		•	Joe	BYRD, JR.				
										JTH ANGB				
									026	-006вн				
	28									.5- 2.5 1				

	NALYS								TION ANALYSIS REPORT	
(] 	4		8	12		16 1000	20 uV)	TIME PRINTED: MAY 4,95 16:23 SAMPLE TIME: MAY 4,95 16:15	
7]	5		4		3				METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN	
142	6								AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT	* ***
17	78		,						PK COMPOUND NAME AREA/CONC R 1 UNKNOWN 0.044 MVS 14 2 UNKNOWN 12.28 MVS 16 3 UNKNOWN 45.55 MVS 16 4 UNKNOWN 79.58 MVS 20	.T. 4.7 6.9 8.7 3.8
21	_4 7			٠					5 UNKNOWN 23.34 MVS 53 6 TOLUENE 1.173 PPB 118 7 UNKNOWN 0.500 MVS 21	1.2 8.8 7.0
25	8									7.0 5.3
28	9 .						•			
32	1					•		·		
35	7									
39:	2								NOTES Joe Byrd, Jr.	-
428	8								DULUTH ANG3 026-006BH 0.5- 2.5 10G	

ANAL	ysis #21	10S+ GC Fund	CTION ANALYSIS REPORT
0	4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 4,95 16:35 SAMPLE TIME: MAY 4,95 16:27
35 	5	2 3	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107			B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
142 8			ANALYSIS TIME 500.0 SEC PEAK REPORT
9			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.011 MVS 14.8 2 UNKNOWN 13.43 MVS 16.8 3 UNKNOWN 130.2 MVS 18.4 4 UNKNOWN 8.796 MVS 51.4 5 UNKNOWN 1.760 MVS 58.6
214 10 250	11		6 BENZENE 5.456 PP3 59.3 7 TOLUENE 2.228 PPB 118.2 8 UNKNOWN 2.715 MVS 140.6 9 UNKNOWN 3.136 MVS 160.8 10 UNKNOWN 1.860 MVS 213.6
12 285	2		11 ETHYLBENZENE 0.483 PPB 244.0 12 M,P-XYLENE 3.539 PPB 266.1 13 O-XYLENE 1.761 PPB 312.0
321	13		
357		, , , , , , , , , , , , , , , , , , ,	
392			NOTES JOE BYRD, JR. DULUTH ANGB 026-006BH
428			11.0-11.5 lJG

r	Δ,	JΔL	.¥.¢	· I (#22		···	10	2 +	<u></u>	_F	JMC	TIC	ON ANALYSIS REPORT	•
.	ļ	Û.		4		8		1	2		16		20		TIME PRINTED: MAY 4,95	16:47
. !		ĺ							(X		<u>0</u> 00			i	SAMPLE TIME: MAY 4,95	
1		I					=						' /	ŀ	METHOD	16:39
	3	}					_		2					ŀ		MV/SEC
			<i>/</i>					3	_					:		MV/SEC MV/SEC
														į		MVSEC
		74													11	MV :
	7;	! /														SEC
													•			% .
İ															D	ML/MIN :
							*					٠			_ /	ML/MIN
	1(7												;	• -	ML/MIN
		_										٠		1	^ -	C .
		5														C
-	1. /							•							Max Gain 1000	!
+	42	2													ANALYSIS TIME 500.0 SE	EC
-															PEAK REPORT	
														;	K COMPOUND NAME AREA/COM	
	7 -	78												1	UNKNOWN 0.059 M	- •
	Τ,	0												2	UNKNOWN 15.59 M	
														1	UNKNOWN 112.8 M	· · · - ·
į									,					4	UNKNOWN 16.84 M	
	21	4							•					5	TOLUENE 1.598 PR UNKNOWN 1.160 MV	
Ì	_		•		•									7		
		6												8	ETHYLBENZENE 0.860 PF M,P-XYLENE 2.493 PF	
					•		. •	•			•			9	UNKNOWN 0.077 M	
	25	50													0.077 M	/S 433.6
		7	•		•	•		٠		•			•		·	
					,											
		8						·								:
	28	35											*			# 1 m
l				٠				-			·		•			
																#
	<u>,</u>	. =												İ		i it de equipe
-	32	1									٠.					a de la companya de l
														l	•	- -
			•											!	•	
:	ا ۲ ت	7												<u>!</u>		## to ##
-	35	1												i :		
	į															
								٠								<u> </u>
	39	2													Notes	
	Ī	_	•					٠							NOTES JOE BYRD, JR.	Í
															DULUTH ANGB	<u> </u>
	-							٠						:	026-002BH	:
L	ŧŻ	8												! `	0.5- 2.5 10g	
	-					•		•		•				;	2.2 2.2 400	
į	-	9														: :
1	:															1

ΔΝ	۷۲,	VQ] Q	_#:	23	10	s+ cc	Func	ŢL	ON ANALYSIS REPORT
9		11		8-	1 7≎	ተሕየአ	ĭ ∂ ₽	İ	EINEL SE THE THE MARKET THE TELEPHORE
35	مرم.	A CONTRACTOR OF THE PARTY OF TH			2				SLOPE UP 1.000 MV/SEC SLOPE DOWN 3.000 MV/SEC MIN AREA 0.000 MVSEC
71	<i>y</i> 3								MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
10	17								DET FLOW 12 ML/MIN 12 ML/MIN 12 ML/MIN 14 AUX FLOW 0 ML/MIN 15
	4			•		<u>-</u>			OVEN TEMP 40 C AMB TEMP 31 C
142)							-	MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
17	78							P 1 2 3 4	UNKNOWN 101.2 MVS 18.8 UNKNOWN 2.405 MVS 51.2
2.	<u>.</u>							5	•
	5		. "						
25) 	•			· .	· .			
28	35					: .	• •		
32	21				•				
	-	•	•	•	•		• • :		
35	57							:	
39	92								NOTES JOE BYRD, JR.
42	28	٠.			<i>:</i>		* *		DULUTH ANGB 026-002BH 5.0- 7.5 10G
45	64								

ï	Δм	<u>Λ⊢¥91</u>	#		1.0	12+ 0	<u> </u>	Enne	ICTION ANALYSIS REPORT	
ĺ	P)	4	f _X	ŕ	, 30 °			
		1,2							METHOD	:
!	35	£ 2							SLOPE UP 0.500 MV/SEC	
1		_ 3							SLOPE DOWN 1.500 MV/SEC	
	i/	4							MIN AREA 0.000 MVSEC	
i		<u> </u>							MIN HEIGHT 0.000 MV	
1	/ 1/	- 6			7				ANALYSIS DELAY 0.0 SEC	
	200				/				WINDOW PERCENT 10.0 % DET FLOW 12 MI/MIN	
									- /	*
	10	7							B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN	,
						-			OVEN TEMP 40 C	
ĺ		8							AMB TEMP 31 C	
-	٧,	.							MAX GAIN 1000	
	142	-							ANALYSIS TIME 500.0 SEC	:
									PEAK REPORT	
ļ									PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 0.071 MVS 14.	
	178	3							1 UNKNOWN 0.071 MVS 14. 2 UNKNOWN 11.67 MVS 16.	
i	-			•					3 UNKNOWN 44.68 MVS 18.	
					•				4 UNKNOWN 29,68 MVS 24	
,	214	ı							5 UNKNOWN 55.88 MVS 28.	
4	-14	}				•			6 UNKNOWN 7.417 MVS 50.	
	9	}							7 BENZENE 89.53 PPB 59.3 TOLUENE 80.78 PPB 118	
			•				•		00,70 11B 110.	
2	250	1 .						Ç	9 UNKNOWN 0.824 MVS 220.2 10 ETHYLBENZENE 80.83 PPB 245.3	
	H	10	•	•	•		•	•	11 M,P-XYLENE 158.9 PPB 264.	
									12 O-XYLENE 72.85 PPB 312.	- ;
	2 8 5	11								
4	-	•	•		•	:				į
ı	,									ı,
	Å		•		•		•			-
3	321	12						İ		Į
			٠							
3	5 7							:		ļ
	1	•		٠	•					
								:		ļ
								:		
3	92							. !	NOTES	_
ļ								:	JOE BYRD, JR.	
İ								i	DULUTH ANGB	•
4	28							:	100 PPB BTEX	!
!	Ī	•		*	•					l
:	:									•
	:									•

Δ	ΙΔΊ	v.c	T C	#	26	·.	1	വട	.	CC	Ę,	INC.	-10	DN ANALYSIS REPORT
	A		4		R	,	79	Y M	17	ĥn	111/	R I		TIME PRINTER MAY 4.95 17.39 SAMPLE TIME MAY 4.95 17.31
1	 			<u> </u>		_	1					·		METHOD
3	5			<u>, </u>		2	, -							SLOPE UP 0.500 MV/SEC
ر	نز. ا	- Jane	- 3			ے	• ,							SLOPE DOWN 1.500 MV/SEC
	نم ا	<i>[</i>												MIN AREA 0.000 MVSEC
	H_{l}	ı												MIN HEIGHT 0.000 MV
7	4/7	т												ANALYSIS DELAY 0.0 SEC
'	1													WINDOW PERCENT 10.0 %
														DET FLOW 12 ML/MIN
														B/F FLOW 12 ML/MIN
1	.07													AUX FLOW 0 ML/MIN
	-	•								-			!	OVEN TEMP 40 C
	5											•		AMB TEMP 31 C
!						٠,								MAX GAIN 1000
14	12													ANALYSIS TIME 500.0 SEC
		į								٠.			_	PEAK REPORT
							٠						ı	COMPOUND NAME AREA/CONC R.T.
7	70												1	UNKNOWN 15.15 MVS 16.9
1	.78								•				2	UNKNOWN 67.29 MVS 19.0
				,									4	UNKNOWN 52.60 MVS 28.6 UNKNOWN 19.23 MVS 51.0
											٠		5	UNKNOWN 19.23 MVS 51.0 TOLUENE 1.779 PPB 118.2
	214												6	ETHYLBENZENE 0.834 PPB 245.0
. 2				•	•				•				7	M,P-XYLENE 7.643 PPB 263.4
													8	0-XYLENE 2.089 PPB 314.4
				•			•							2 7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	250													
	6	•		•	•		•		•	•				
1	į												ı	
	7													
2	285													
-	7 0 7		,											
	321	3	3											
Ì				٠										
:	357					,								
	7,			•			•		٠			•		
				•			•							
-	392													NOTES
,		•		•	:		٠		•					JOE BYRD, JR.
							٠.							DULUTH ANGB
				-									1	AIR BLANK
1	428													026-003BH
. !	•												!	0.5'-2.5' 10g
:														
												· ·		

1	ہ∆ے	400	-va	10	#2	27		יחד	S+ (20_	-Fu	uc:	TION ANALYSIS REPORT
(x 1000 UV) SAMPLE TIME: MAY 4,95 17:43		רָן ק		2		71							
SLOPE UP								(x	100	00	υV)	
3 SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MYSEC MIN HEIGHT 0.000 MYSEC MIN HEIGHT 0.000 MYSEC MIN HEIGHT 0.000 MYSEC MIN HEIGHT 0.000 MYSEC MINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PEAK REPORT PY COMPOUND NAME AREA/CONC R. T. 1 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 18.5 4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 4 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 3 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 357 357 357 357 357 357 357 358 357 357 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358	1 1	:			<u> </u>					Ė			
MIN AREA 0.000 MVSec MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 14.7 2 UNKNOWN 12.82 MVS 15.9 3 UNKNOWN 110.8 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.585 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 392 DOE BYRD, JR. DULUTH ANGB 026-003BH	35	-			,			· · · · · · · · · · · · · · · · · · ·		-		2	111,020
MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN B/F FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 18.6 4 UNKNOWN 12.82 MVS 157.0 7 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH			ممسر	grand.							3		• • •
ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN B/F FLOW 0 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAR REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 14.7 2 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 7 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 8 285 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH			ممح دول							•		!	· ·
WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN DET FLOW 12 ML/MIN DET FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 18.6 4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 11.596 PPB 11.596 PPB 11.596 PPB 11.596 PPB 13.7 7 UNKNOWN 0.432 MVS 218.0 7 WINKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 STORES 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH	7-	/	/4										
DET FLOW	/-										٠.		
B/F FLOW		Å											
AUX FLOW													
OVEN TEMP	10	7	٠										
AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.034 MVS 14.7 2 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 18.6 4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.452 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 357 392 JOE BYRD, JR. DULUTH ANGB 026-003BH			•							•			-
ANALYSIS TIME		5									•		
PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.034 MVS 14.7 2 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 18.6 4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 8 285 301 302 302 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH													MAX GAIN 1000
PK COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.034 MVS 14.7 2 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 18.6 4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M, P-XYLENE 3.998 PPB 266.4 250 8 285 3 JOE BYRD, JR. DULUTH ANGB 026-0038H	142	2										į	·
1													
2 UNKNOWN 12.82 MVS 16.9 3 UNKNOWN 110.8 MVS 18.6 4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 8 285 321 JOE BYRD, JR. DULUTH ANGB 026-003BH		6			•								,
3 UNKNOWN 110.8 MVS 18.6 4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 8 285 321 357 392 JOE BYRD, JR. DULUTH ANGB 026-0038H	7-												‡
4 UNKNOWN 18.07 MVS 51.2 5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 8 285 321 357 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH	+ '							•	•		,		
5 TOLUENE 1.596 PPB 118.4 6 UNKNOWN 0.583 MVS 157.0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 8 285 321 357 JOE BYRD, JR. DULUTH ANGB 026-003BH			٠										
214 7 8 0 UNKNOWN 0.583 MVS 157,0 7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 8 285 321 357 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH					•			•		•			20,0, 1,10
7 UNKNOWN 0.432 MVS 218.0 8 M,P-XYLENE 3.998 PPB 266.4 250 321 357 392 NOTES DULUTH ANGB 026-003BH	2	14											6 UNKNOWN 0.583 MVS 157.0
250 8 285 321 357 JOE BYRD, JR. DULUTH ANGB 026-003BH		_								•	•		7 UNKNOWN 0.432 MV\$ 218.0
321 357 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH	İ	7											8 M,P-XYLENE 3.998 PPB 266.4
321 357 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH	25	1											
357 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH	2.	טק				•			•		•		1
357 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH	! !	i ,				-							
357 392 NOTES JOE BYRD, JR. DULUTH ANGB 026-003BH		8			•		•			٠			•
357 Notes Joe Byrd, Jr. Duluth ANGB 026-003BH	28												
357 Notes Joe Byrd, Jr. Duluth ANGB 026-003BH			•		•	•	•		•	•	•	ļ	
357 Notes Joe Byrd, Jr. Duluth ANGB 026-003BH												ļ	
357 Notes Joe Byrd, Jr. Duluth ANGB 026-003BH	7	, -											
JOE BYRD, JR. DULUTH ANGB 026-003BH	22	ζΤ.									٠.		
JOE BYRD, JR. DULUTH ANGB 026-003BH			I									į	
JOE BYRD, JR. DULUTH ANGB 026-003BH													
JOE BYRD, JR. DULUTH ANGB 026-003BH	35	7										;	
JOE BYRD, JR. DULUTH ANGB 026-003вн			•		•	•						į	
JOE BYRD, JR. DULUTH ANGB 026-003вн					ı		-						
JOE BYRD, JR. DULUTH ANGB 026-003вн				,			•			•			
DULUTH ANGB 026-003BH	39	12		,						:			
026-003вн													
1 . 1												!	· · · · · · · · · · · · · · · · · · ·
5.0-7.0 10G	42	8											· · · · ·
	74	U				•		•					5.0-7.0 106
	! :	:		. '									·

	A		# 0 0	1001	00	F	A Vara Depart
	O	_YSIS 	#28 4	6 (x	8	10 MV)	TION ANALYSIS REPORT TIME PRINTED: MAY 4,95 18:04 SAMPLE TIME: MAY 4,95 17:56
A MARIE DE TRANSPORTE DE CONTRACTOR DE LA CONTRACTOR DE L	71	4 5 6	3	 - 7	· · ·		METHOD SLOPE UP 1.000 mV/Sec SLOPE DOWN 3.000 mV/Sec MIN AREA 0.000 mVSec MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 mL/MIN B/F FLOW 12 mL/MIN AUX FLOW 0 mL/MIN OVEN TEMP 40 C AMB TEMP 31 C
	ىر 142			• • •			Max Gain 1000 Analysis Time 500.0 sec
	178 214 9 250 285) 10 11					PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.203 MVS 13.5 2 UNKNOWN 13.51 MVS 17.0 3 UNKNOWN 302.0 MVS 18.7 4 UNKNOWN 6.501 MVS 24.3 5 UNKNOWN 1.111 MVS 28.8 6 UNKNOWN 0.778 MVS 51.1 7 BENZENE 108.6 PPB 59.4 8 TOLUENE 96.42 PPB 118.5 9 UNKNOWN 1.804 MVS 218.8 10 ETHYLBENZENE 95.01 PPB 245.3 11 M,P-XYLENE 180.8 PPB 311.2
1	321	. 12					
	357		•			·	
	392	2 .					NOTES DESTRY GREENWAY DULUTH ANGB 100 PPB BTEX
	428	3					

ANALYSIS #	2 10S+	GC FUNC	TION ANALYSIS REPORT
0 2	4 6 (x	8 10 10 MV)	TIME PRINTED: MAY 5,95 12:09 SAMPLE TIME: MAY 5,95 12:01
31 2			METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
62——6——	· · · · · · · · · · · · · · · · · · ·	3	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
94			B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C
12510	:		MAX GAIN 1000 ANALYSIS TIME 440.0 SEC PEAK REPORT
157			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.050 MVS 15.5 2 UNKNOWN 15.29 MVS 17.0 3 UNKNOWN 46.72 MVS 18.5 4 UNKNOWN 34.06 MVS 24.2
188			5 UNKNOWN 19.27 MVS 28.8 6 UNKNOWN 31.97 MVS 32.2 7 UNKNOWN 18.06 MVS 44.5 8 BENZENE 108.0 PPB 58.4
 220 11			9 UNKNOWN 1.828 MVS 73.2 10 TOLUENE 89.07 PPB 117.8 11 UNKNOWN 1.712 MVS 218.2 12 ETHYLBENZENE 83.53 PPB 244.0
251) 12	• • •		13 UNKNOWN 72.21 MVS 262.9 14 O-XYLENE 72.36 PPB 308.5
282 ¹³			
314 14			
345 377			NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX

ANAL	YSIS	#3	108	+ GC	FUNC	TION ANALYSIS REPORT
0 1	2	4	,6 , (x	8 100	10 mV)	TIME PRINTED: MAY 5,95 12:29 SAMPLE TIME: MAY 5,95 12:22
3 1 3 4 5 62	2					METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DEL: (0.0 SEC
94						WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
125		== 8				AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 440.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
157	•	·				1 UNKNOWN 0.035 MVS 15.0 2 UNKNOWN 18.43 MVS 17.0 3 UNKNOWN 56.33 MVS 18.6 4 UNKNOWN 37.44 MVS 24.2 5 UNKNOWN 53.75 MVS 28.6
188 220				· · ·		6 UNKNOWN 16.94 MVS 44.6 7 BENZENE 1.472 PPM 58.6 8 TOLUENE 1.635 PPM 117.3 9 UNKNOWN 0.590 MVS 211.0
251) 10		•			10 ETHYLBENZENE 2.139 PPM 243.2 11 M,P-XYLENE 3.952 PPM 261.6 12 O-XYLENE 2.758 PPM 307.4
	· .			,		
282						
314	12		•			
345	•					JOE BYRD, JR. DULUTH ANGB 1 PPM BTEX
377			•			

Fy. b	G.C.A Readu Analysıs Ar Lo Name	169. : 4	r 60 Fun - Run a Conc/Ar	ctic t	
400000000000000000000000000000000000000	Unanown Unanown Unanown Denzene tolwene Unanown etaglienz n. Paglene caglene setected 12	ine :		mUS mUS mUS PPM mUS PPM PPM PPM PCM FCM	
909 749	(mal)		**************************************		LEE Q L
499					
249		:			
e	12 45 Ø 23	+5	<u> </u>		

ANA	LYSIS #5	10S+ GC FUNC	CTION ANALYSIS REPORT
0	2 4	6 8 10 (x 100 mV)	TIME PRINTED: MAY 5,95 13:10 SAMPLE TIME: MAY 5,95 13:02
31 31 3	2		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
4 5 62			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
94		· · · · · · · · · · · · · · · · · · ·	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
125	8		MAX GAIN 1000 ANALYSIS TIME 440.0 SEC
157			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.057 MVS 15.1 2 UNKNOWN 16.91 MVS 17.0 3 UNKNOWN 57.57 MVS 18.6 4 UNKNOWN 36.89 MVS 24.3
188	•		5 UNKNOWN 55.05 MVS 28.8 6 UNKNOWN 17.90 MVS 44.8 7 BENZENE 1.231 PPM 58.8
220	9		8 TOLUENE 1.111 PPM 117.8 9 UNKNOWN 0.829 MVS 210.6 10 ETHYLBENZENE 1.074 PPM 244.0 11 M,P-XYLENE 1.310 PPM 259.4 12 O-XYLENE 1.060 PPM 307.7
251)10 _. .		
282	11 ر		
314	12		
345 377			NOTES JOE BYRD, JR. DULUTH ANGB 1 PPM BTEX
		•	

0	2	4	6 . (x	8 1000	10 uV)			1AY 5,95		: 24 : 17
62	2 . 6 . 7 . 3		3 5	4	•			0.500 1.500 0.000 0.000 0.0 10.0 12 12 0 40 31	MV/S MV/S MV SEC % ML/M ML/M C	SEC SEC EC
125	9		•	,			Max Gain Analysis Time	1000 440.0	SEC	
157						1 2 3	PEAK COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	REPORT AREA/0 0.021 0.059 5.599 33.16	MVS MVS MVS	R.T. 13.3 15.5 17.2 18.8
188		•	·	• • • • • • • • • • • • • • • • • • •		6 7	Unknown Unknown Benzene Unknown	58.27 14.17 3.586	MVS	24.2 44.8 58.2 72.9
220	•	· .			•	9 10 11	TOLUENE UNKNOWN ETHYLBENZENE M,P-XYLENE	4.090 0.604 6.202 13.28	PPB MVS PPB	116.9 219.2 243.7 261.8
251	.11	•	•							1
12	,					1	1		•	ŀ
282							. .			l
314						mar,				
345						-		TES		
37 7						Dι	DE BYRD, JR. JLUTH ANGB R BLANK			

ANALYSIS #7	10S+ GC	FUNC	TION ANALYSIS REPORT
0 4 8	12 16 (x 1000	20 uV)	TIME PRINTED: MAY 5,95 13:35 SAMPLE TIME: MAY 5,95 13:28 METHOD
31 3	2		SLOPE UP 3.500 MV/SEC SLOPE DOWN 10.50 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
94			WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
.25) 4		·	AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 440.0 SEC PEAK REPORT
157			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 16.23 MVS 17.0 2 UNKNOWN 89.25 MVS 18.6 3 UNKNOWN 0.487 MVS 24.2 4 TOLUENE 3.253 PPB 118.6
88			
220			
251			**************************************
282			The Control of the Co
314			
345			NOTES JOE BYRD, JR.
377			DULUTH ANGB 026-001mw 1.0- 2.0 10g

ፈብጸ

ANALYSIS #8	10S+ GC Func	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 5,95 13:46 SAMPLE TIME: MAY 5,95 13:39 METHOD
31 4	= - 2 3	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
62		MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
94		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
125 8		MAX GAIN 1000 ANALYSIS TIME 440.0 SEC PEAK REPORT
157		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.071 MVS 14.5 2 UNKNOWN 16.13 MVS 17.0 3 UNKNOWN 131.0 MVS 18.6
188		4 UNKNOWN 0.543 MVS 24.0 5 UNKNOWN 21.36 MVS 44.9 6 BENZENE 3.592 PPB 58.2 7 UNKNOWN 8.024 MVS 73.6 8 TOLUENE 2.854 PPB 118.0
220		8 TOLUENE 2.854 PPB 118.0 9 UNKNOWN 2.154 MVS 219.2 10 ETHYLBENZENE 3.111 PPB 245.6 11 M,P-XYLENE 5.708 PPB 261.0
251 10		
314		
345		NOTES JOE BYRD, JR.
377		DULUTH ANGB 026-001mw 5.0- 7.0 10g

ANAL	YSIS	#9	10S+ GC	Func	CTION ANALYSIS REPORT
0	4	8	12 16	20	TIME PRINTED: MAY 5,95 13:57
-			(x 1000	υV)	SAMPLE TIME: MAY 5,95 13:50
31	· ·				METHOD
			3		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
-	(-		4		MIN AREA 0.000 MVSEC
		5	•		MIN HEIGHT 0.000 MV
62/	6	5	•		ANALYSIS DELAY 0.0 SEC
	7	•			WINDOW PERCENT 10.0 %
	-8 ⋅				DET FLOW 12 ML/MIN
94	10				B/F FLOW 12 ML/MIN
34	10				AUX FLOW 0 ML/MIN OVEN TEMP 40 C
			-		AMB TEMP 32 C
					MAX GAIN 1000
125	11				ANALYSIS TIME 440.0 SEC
		•			PEAK REPORT
					PK COMPOUND NAME AREA/CONC R.T.
157					1 UNKNOWN 0.036 MVS 13.2 2 UNKNOWN 0.107 MVS 15.4
			•		2 UNKNOWN 0.107 MVS 15.4 3 UNKNOWN 15.60 MVS 17.0
					4 UNKNOWN 50.46 MVS 18.6
			•		5 UNKNOWN 29.63 MVS 24.2
188					6 UNKNOWN 41.96 MVS 28.8
	• .				7 UNKNOWN 6.564 MVS 42.2
					8 UNKNOWN 21.19 MVS 44.6 9 BENZENE 3.097 PPB 58.2
220	12			•	9 BENZENE 3.097 PPB 58.2 10 UNKNOWN 11.87 MVS 73.4
			• • •	•	11 TOLUENE 2.977 PPB 117.3
					12 UNKNOWN 2.619 MVS 213.0
					13 ETHYLBENZENE 2.198 PPB 245.0
251	13				14 M,P-XYLENE 6.394 PPB 261.0
14					15 O-XYLENE 5.036 PPB 299.2
1 1 4	-				
282					
	•		• • • •	•	
			·		
15					
314				ξ.	
345					NOTES
		•	•		JOE BYRD, JR.
					DULUTH ANGB
377					026-001mw
11/			•		10.0-12.0 10g
1100					

ANA	LYSIS	#10	10S+ G	C Func	CTION ANALYSIS REPORT
0	4	8	12 16	20 0 uV)	TIME PRINTED: MAY 5,95 14:08 SAMPLE TIME: MAY 5,95 14:01
3		4 5	2 3		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
62/	6 7 8 9	• · · · · · · · · · · · · · · · · · · ·		·	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
94	10		· · · · · ·		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
125	11	. ,		,	MAX GAIN 1000 ANALYSIS TIME 440.0 SEC PEAK REPORT
157			•		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.104 MVS 15.3 2 UNKNOWN 16.73 MVS 17.0 3 UNKNOWN 49.92 MVS 19.0 4 UNKNOWN 27.33 MVS 24.0
188		•			5 UNKNOWN 19.98 MVS 28.6 6 UNKNOWN 20.61 MVS 34.1 7 UNKNOWN 10.60 MVS 42.2 8 UNKNOWN 21.18 MVS 44.6
220	2	•	· ·		9 BENZENE 2.955 PPB 58.0 10 UNKNOWN 6.841 MVS 73.4 11 TOLUENE 3.365 PPB 117.7 12 UNKNOWN 2.170 MVS 219.4 13 ETHYLBENZENE 2.637 PPB 244.5
251 14	. 13 '4				14 M,P-XYLENE 9.060 PPB 261.0 15 O-XYLENE 8.235 PPB 299.7
282	•				
314	_	• •		. ;	
345					NOTES
377			·		JOE BYRD, JR. DULUTH ANGB 026-001mw 12.5-14.5 10g
					<u> </u>

LH

ANALY	sis #11	10S+ GC FUNC	TION ANALYSIS REPORT
0	4 8	12 16 20 (x 1000 UV)	SAMPLE TIME: MAY 5,95 14:12
31	3	2	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
62	5		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
94			DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
			OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
125			ANALYSIS TIME 440.0 SEC PEAK REPORT
157			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 23.28 MVS 17.7 2 UNKNOWN 63.67 MVS 19.5
188			3 UNKNOWN 63.73 MVS 24.8 4 UNKNOWN 33.38 MVS 35.0 5 UNKNOWN 86.99 MVS 42.8 6 UNKNOWN 14.85 MVS 74.0
			7 UNKNOWN 10.06 MVS 219.8 8 ETHYLBENZENE 5.634 PPB 246.9 9 M,P-XYLENE 12.66 PPB 265.8
220			
251 8			
282	•		
314			
	• .		
345	. · · · · · · · · · · · · · · · · · · ·		NOTES JOE BYRD, JR. DULUTH ANGB
377	• • •		026-001mw 15.0-17.0 10g
		•	

ANALVOIC #12	10S+ GC	FUNC	TION ANALYSIS REPORT
) i	6 8 (x 10	10 MV)	TIME PRINTED: MAY 5,95 14:30
· 1	(V TÓ	MY)	SAMPLE TIME: MAY 5,95 14:23 METHOD
312			SLOPE UP 0.500 MV/SEC
 3		•	SLOPE DOWN 1.500 MV/SEC
4			MIN AREA 0.000 MVSEC
5			MIN HEIGHT 0.000 MV
62 6	 7		ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
	,		WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
			B/F FLOW 12 ML/MIN
94			AUX FLOW . 0 ML/MIN
	·•·		OVEN TEMP 40 C
			AMB TEMP 31 C
125 == 9			MAX GAIN 1000
1259			ANALYSIS TIME 440.0 SEC PEAK REPORT
			PK COMPOUND NAME AREA/CONC R.T.
			1 UNKNOWN 0.063 MVS 15.0
157			2 UNKNOWN 20.57 MVS 17.1
			3 UNKNOWN 63.82 MVS 18.6
			4 UNKNOWN 40.08 MVS 24.4
188			5 UNKNOWN 70.89 MVS 28.8 6 UNKNOWN 47.49 MVS 45.0
			6 UNKNOWN 47.49 MVS 45.0 7 BENZENE 99.93 PPB 58.6
			8 UNKNOWN 1.494 MVS 73.6
			9 TOLUENE 95.88 PPB 118.1
220			10 UNKNOWN 7.576 MVS 219.4
10			11 ETHYLBENZENE 106.2 PPB 245.0
			12 M,P-XYLENE 216.4 PPB 263.4 13 O-XYLENE 115.1 PPB 309.6
251) 11	•		13 O-XYLENE 115.1 PPB 309.6
	• •	• .	
1 12			
	•		
242		•	
314		,	
13			
	•		
345			NOTES
		•	JOE BYRD, JR.
			DULUTH ANGB
377			100 PPB BTEX
408			

ANALYSIS #13	10S+ GC FUNCTION	N ANALYSIS REPORT
0 1 2	3 4 5 (x 1000 UV)	TIME PRINTED: MAY 5,95 14:42 SAMPLE TIME: MAY 5,95 14:35 METHOD
62 62	3	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
6 94 1 2 5 7		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN ANALYSIS TIME 440.0 SEC
157	PK 1 2 3 4 5	UNKNOWN 0.037 MVS 15.0 UNKNOWN 37.15 MVS 18.6 UNKNOWN 0.826 MVS 24.4 UNKNOWN 8.563 MVS 31.5 UNKNOWN 2.321 MVS 45.2
188 	7 8	UNKNOWN 1.706 MVS 73.7 TOLUENE 0.729 PPB 118.5 UNKNOWN 0.451 MVS 218.6
8		
251		
282		
314		Transfer to the state of the st
345 ₁		NOTES JOE BYRD, JR.
377		DULUTH ANGB AIR BLANK
/IOS		

ΔΝΔΙ	LYSIS	#1	7	10	S+ GC	FUNC	TION ANALYSIS REPORT
0	4		3	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 5,95 14:53 SAMPLE TIME: MAY 5,95 14:45
31 62/	5	4	3	. 2			METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1:500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
94 125	7						DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 440.0 SEC
157							PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.127 MVS 15.4 2 UNKNOWN 14.43 MVS 17.0 3 UNKNOWN 42.18 MVS 18.6 4 UNKNOWN 62.32 MVS 24.2 5 UNKNOWN 23.02 MVS 45.2
220 8							6 UNKNOWN 4.527 MVS 73.8 7 TOLUENE 2.123 PPB 118.4 8 UNKNOWN 1.504 MVS 218.6 9 ETHYLBENZENE 1.180 PPB 248.8 10 M,P-XYLENE 3.769 PPB 264.5
251 9 10 282		•					
314			<u> </u>				
345 377						The state of the s	NOTES JOE BYRD, JR. DULUTH ANGB 026-001mw 20.0-22.0 10g
408		:		·			

	Δ,	MALYSIS #15 10S+ GC FUNCT								GC	FUN	СТ	TION ANALYSIS REPORT				
	(2		4		6 (x	10	8	10 uV)					5:04 4:56	
	3. 62						- 	3		2	2	COR COLOMBO COMPAN COMPANIAN MICHIGAN		SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY	0.500 MV 1.500 MV 0.000 MV 0.000 MV 0.0 SE		
	94		5									es and influence of the second		WINDOW PERCENT DET FLOW B/F FLOW AUX FLOW OVEN TEMP AMB TEMP MAX GAIN	12 ML 12 ML	/MIN /MIN /MIN	
1	.25	9	6									!	P	NALYSIS TIME	440.0 SEC	į	
- Advanced Company of the state application was to severe of the state of the security of the		7			•			·					1 2 3 4 5	PEAK COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	AREA/CONC 11.79 MVS 99.93 MVS 0.232 MVS 21.68 MVS 4.262 MVS	17.0 19.0 24.0 45.0 73.7	
		20									٠		6 7 8 9	TOLUENE UNKNOWN ETHYLBENZENE M,P-XYLENE	1.845 PPB 1.310 MVS 0.787 PPB 2.676 PPB	218.6 243.7	
		7	•						•							٠.	
	2:	51	.8		•	•			•	٠							
		9						•									
	28	32				•			•		•						
	3:	14	•					• .	•	,							
	34	ļ ‡5								٠				N	OTES		
	3	77							•				I	OE BYRD, JR. OULUTH ANGB 026-001mw	10 g		
		1						•		·							

ANAL	YSIS	#16	105+	GC	FUNC	TION ANALYSIS REPORT
0	2	4	6 (x	8 10	10 MV)	TIME PRINTED: MAY 5,95 15:43 SAMPLE TIME: MAY 5,95 15:36
3 7 62	2 3 4					METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec MIN AREA 0.000 mVSec MIN HEIGHT 0.000 mV
62-			7			ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
94				•		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
125	_==9	·				MAX GAIN 1000 ANALYSIS TIME 440.0 SEC
157						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.050 MVS 15.4 2 UNKNOWN 14.91 MVS 17.0 3 UNKNOWN 41.23 MVS 18.5 4 UNKNOWN 29.35 MVS 24.3
188				•		5 UNKNOWN 46.76 MVS 28.8 6 UNKNOWN 16.81 MVS 44.6 7 BENZENE 84.43 PPB 58.6 8 UNKNOWN 1.497 MVS 73.7 9 TOLUENE 90.34 PPB 118.0
220 10 251)	11					10 UNKNOWN 11.32 MVS 218.8 11 ETHYLBENZENE 101.7 PPB 245.0 12 M,P-XYLENE 214.6 PPB 263.2 13 O-XYLENE 174.3 PPB 308.8 14 UNKNOWN 6.110 MVS 356.3
282 ¹	L2					
314	12		•			
714	٠.				•	
345					•	NOTES JOE BYRD, JR.
377	!			• •		DULUTH ANGB 100 PPB BTEX
408			· .			

0 2 4 6 8 10	·	
(x 10 mV	SAMPLE TIME: MAY 6,95 14:04 METHOD	
32 2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC	
646	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %	
96	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN	
	OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000	
128,8	ANALYSIS TIME 450.0 SEC	
160	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.052 MVS 15.2 2 UNKNOWN 54.75 MVS 17.0 3 UNKNOWN 22.54 MVS 24.2	
192	4 UNKNOWN 36.42 MVS 28.9 5 UNKNOWN 9.592 MVS 46.1 6 UNKNOWN 220.1 MVS 58.7 7 UNKNOWN 1.278 MVS 73.8	
225 9	8 UNKNOWN 171.3 MVS 118.1 9 UNKNOWN 0.605 MVS 222.0 10 UNKNOWN 123.0 MVS 244.8 11 UNKNOWN 97.45 MVS 263.2 12 UNKNOWN 18.42 MVS 308.8	
257 10	10.42 MVG 500.6	
289		
321 12		
353	NOTES	
	Join ByRd, JR Duluth ANGB 100 PPB BTEX	

P

	G.C. Ready Amalysis Po O Mame		<u>3C Functio</u> Run et - onc/Area		-95 <u>14:12</u> -4:64 - Pet.Tine
	Unkrown Unknown benzene Unknown toluene Unknown ekkelbenker mis-xulene omiwiene	ne Geaker 1	6.42 mUS 7.592 mUS 100,0 mpn 100,0 mpn 100,0 mus 100,0 mus 100,0 mus 100,0 mus 100,0 mus 100,0 mus 100,0 mus		28. 9 5ec 46. 1 5ec 13. 6 5ec 13. 6 5ec 12. 7 5ec 24. 2 5ec 248. 6 5ec
	sandi 🦠				190.5 uc
. 3 . 3	2 1 3 4 5 25 2	5	» ————————————————————————————————————	10 10	1 12

ANALYSIS #4	10S+ GC FUNCT	TION ANALYSIS REPORT
0 1 2	3 4 5 (x 1000 uV)	TIME PRINTED: MAY 6,95 15:04 SAMPLE TIME: MAY 6,95 14:56
32		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
5 64 ===		MIN HEIGHT 0.000 MV Analysis Delay 0.0 sec
6 >7		WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
96		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
128 8		MAX GAIN 1000 ANALYSIS TIME 450.0 SEC PEAK REPORT
160		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.035 MVS 15.0 2 UNKNOWN 3.828 MVS 17.4
100		3 UNKNOWN 61.37 MVS 13.9 4 UNKNOWN 0.887 MVS 24.2 5 UNKNOWN 1.597 MVS 46.9
192		6 BENZENE 4.051 PPB 59.0 7 UNKNOWN 4.909 MVS 74.1 8 TOLUENE 2.628 PPB 118.2 9 ETHYLBENZENE 8.036 PPB 244.8
225		10 M,P-XYLENE 20.56 PPB 262.4 11 UNKNOWN 2.611 MVS 276.5
257 9		
10 289 11		
321		
353		NOTES
385		JOE BYRD, JR. DULUTH ANGB AIR BLANK

ANAL'	VSIS ;	#5	109	S+ GC	FUNC	TION ANALYSIS REPORT
0	4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 6,95 15:15 SAMPLE TIME: MAY 6,95 15:07
32 64= 7 8	5	4	3	2		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
96				· -		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
128	9	•	. •			ANALYSIS TIME 450.0 SEC
160	· ·		•			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.039 MVS 15.2 2 UNKNOWN 19.40 MVS 17.2 3 UNKNOWN 47.14 MVS 19.0 4 UNKNOWN 27.92 MVS 24.4
192					÷	5 UNKNOWN 46.99 MVS 29.0 6 UNKNOWN 14.15 MVS 46.0 7 BENZENE 5.185 PPB 58.7 8 UNKNOWN 5.073 MVS 73.8 9 TOLUENE 4.483 PPB 118.4
225	10	·	· .			10 UNKNOWN 0.857 MVS 217.6 11 ETHYLBENZENE 5.565 PPB 244.8 12 M,P-XYLENE 25.66 PPB 263.2 13 O-XYLENE 4.846 PPB 298.6 14 UNKNOWN 0.793 MVS 320.0
12		·	·		•	
289						
13	•					
321	<u> </u> 4	•	. •			
353						NOTES
385		;				NOTES JOE BYRD, JR. DULUTH ANGB 026-003mw 0.5- 2.5 10g
		•		•	.•	

ANAL	YSIS #	6	105+	- GC	FUNCT	TION ANALYSIS REPORT
0	2	4	6 (x 1	.000	10 uV)	TIME PRINTED: MAY 6,95 15:26 SAMPLE TIME: MAY 6,95 15:18
32					2	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
64	6	5	!			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DEL÷ 0.0 SEC
>8	. · ·					WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
96						AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
128	9					MAX GAIN 1000 ANALYSIS TIME 450.0 SEC PE÷K REPORT
160						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.062 MVS 15.1 2 UNKNOWN 12.69 MVS 17.2 3 UNKNOWN 37.68 MVS 18.8
192			•	· <u>·</u>		4 UNKNOWN 21.67 MVS 24.3 5 UNKNOWN 36.54 MVS 28.8 6 UNKNOWN 12.38 MVS 45.8 7 BENZENE 3.038 PPB 58.7
225	10	•				8 UNKNOWN 4.963 MVS 73.8 9 TOLUENE 3.301 PPB 118.9 10 UNKNOWN 62.07 MVS 214.8 11 ETHYLBENZENE 10.46 PPB 246.4
257	11	•				12 M,P-XYLENE 24.58 PPB 264.2 13 O-XYLENE 26.56 PPB 307.2
12				,		
289						
13 321		. •	•			
353						NOTES
385			•			JOE BYRD, JR. DULUTH ANGB 026-003mw 5.0- 7.0 10g

	ANAL	YSIS	#7	109	S+ GC	Func	tion Analysis Report
	0	4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 6,95 15:37 SAMPLE TIME: MAY 6,95 15:29
	32 64 7 7 8	5	4	2 3			METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 mL/MIN
	96	·			e Sec. 1	·	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
	128	9					ANALYSIS TIME 450.0 SEC
	160						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.044 MVS 15.0 2 UNKNOWN 13.20 MVS 17.0 3 UNKNOWN 41.40 MVS 18.8 4 UNKNOWN 23.35 MVS 24.3
	192		•			•	5 UNKNOWN 39.98 MVS 28.8 6 UNKNOWN 13.45 MVS 45.8 7 BENZENE 2.672 PPB 58.8 8 UNKNOWN 2.669 MVS 73.8 9 TOLUENE 2.630 PPB 119.2
•	225	10	• •				10 UNKNOWN 7.318 MVS 218.0 11 UNKNOWN 9.277 MVS 227.0 12 ETHYLBENZENE 10.93 PPB 245.3 13 M,P-XYLENE 31.80 PPB 265.3
	257	.12		•			14 O-XYLENE 28.49 PPB 305.6
	13		•	•			
LH	289 		•	•			
	321			•		·	
	385						NOTES JOE BYRD, JR. DULUTH ANGB 026-003mw 10.0-12.0 10g

ANAL	ysis #8	10S+ GC	FUNC	TION ANALYSIS REPORT
0	4 8	12 16 (x 1000	20 uV)	TIME PRINTED: MAY 6,95 15:48 SAMPLE TIME: MAY 6,95 15:40
32		2 3		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
64 / 7 / 8	5 6			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
96		• • • • • • • • • • • • • • • • • • •		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
128	9			AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 450.0 SEC
160				PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.073 MVS 15.4 2 UNKNOWN 14.66 MVS 17.1 3 UNKNOWN 179.2 MVS 18.8 4 UNKNOWN 1.237 MVS 24.4
192				5 UNKNOWN 0.375 MVS 28.9 6 UNKNOWN 1.424 MVS 45.8 7 BENZENE 0.219 PPB 58.8 8 UNKNOWN 1.723 MVS 74.2 9 TOLUENE 3.058 PPB 118.5
225 10 11	•		• .	10 UNKNOWN 12.68 MVS 220.6 11 UNKNOWN 10.55 MVS 221.2 12 ETHYLBENZENE 12.44 PPB 247.2 13 M,P-XYLENE 30.50 PPB 262.9
257 13	12			14 O-XYLENE 32.28 PPB 306.9
289			٠	
14 321				
353				No
385				NOTES JOE BYRD, JR. DULUTH ANGB 026-002MW 0.5- 2.5 10G

	ΔΝΔΙ	_	#9	109	S+ GC	FUNC	TION ANALYSIS REPORT
	0	4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 6,95 15:59 SAMPLE TIME: MAY 6,95 15:51 METHOD
	32 64	7 4 5			3		SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC
	6 :96			:			WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
	128	7			ry.		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 450.0 SEC
	160			•		•	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.055 MVS 15.6
	192			•			2 UNKNOWN 16.14 MVS 17.2 3 UNKNOWN 140.7 MVS 18.8 4 UNKNOWN 29.08 MVS 46.4 5 BENZENE 0.065 PPB 58.7 6 UNKNOWN 4.194 MVS 74.0
	225 8						7 TOLUENE 2.309 PPB 118.8 8 UNKNOWN 3.213 MVS 220.0 9 ETHYLBENZENE 3.285 PPB 247.4 10 M,P-XYLENE 15.49 PPB 263.2 11 UNKNOWN 0.819 MVS 294.1 12 O-XYLENE 16.70 PPB 310.4
	257	9					
LH	10			•	• •	-	
	289	•	•	•			
	321	12					
	353						NOTES
	385		· .			To the parties of the	JOE BYRD, JR. DULUTH ANGB 026-002mw 5.0- 7.0 10g
:	: ! : :						

ANALYSIS #10	10S+ GC FUNCT	TION ANALYSIS REPORT	· ·
0 2 4	6 8 10 (x 10 MV)	TIME PRINTED: MAY 6,95 SAMPLE TIME: MAY 6,95	
32,5 2 - 3 - 4 64 <u>- 6</u> - 8	7	METHOD SLOPE UP 0.500 SLOPE DOWN 1.500 MIN AREA 0.000 MIN HEIGHT 0.000 ANALYSIS DELAY 0.0 WINDOW PERCENT 10.0 DET FLOW 12 B/F FLOW 12 AUX FLOW 0 OVEN TEMP 40 AMB TEMP 32	MV/SEC MV/SEC MVSEC MV SEC % ML/MIN ML/MIN ML/MIN C C
1289		MAX GAIN 1000 ANALYSIS TIME 450.0	SEC
160		1	MVS 15.4 MVS 17.2 MVS 18.8 MVS 24.5
192		6 UNKNOWN 16.18 7 BENZENE 99.53	PPB 59.0
225 10 257 11		9 TOLUENE 90.08	PPB 264.2
289			
321 13			
353		NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX	
385			

0			2	3 (4 100		5 (V)	TIME PRINTED: MAY 6,95 16:24 SAMPLE TIME: MAY 6,95 16:16 METHOD	
32				<u></u>	3	2			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC	
ز 64	74			•					MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC	
يسر	5								WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN	
96						٠			AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C	
.28> 6	5 .								MAX GAIN 1000 ANALYSIS TIME 450.0 SEC	
				· · · · ·			e.		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.036 MVS 15.1	
160						٠	٠		2 UNKNOWN 47.07 MVS 19.0 3 UNKNOWN 0.948 MVS 24.3 4 UNKNOWN 1.060 MVS 46.6	
192									5 UNKNOWN 1.159 MVS 74.6 6 TOLUENE 1.214 PPB 118.6	
									7 ETHYLBENZENE 0.196 PPB 221.8	
225 7								•		
257										
289				•						
7	•	· :				•		٠		
321								•		
353		•				, .			NOTES	
TO CANADA MANAGEMENTAL PROPERTY.					٠.				JOE BYRD, JR. DULUTH ANGB AIR BLANK	•
385				,						

Д	NAL	/SIS	#12	109	S+ GC	FUNC	TION ANALYSIS REPORT
	0	4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 6,95 16:35 SAMPLE TIME: MAY 6,95 16:27
3	2	2		3	. 4		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
6	V	6 7	5				MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
0	8						DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
9	6						AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
1	28	9	•				MAX GAIN 1000 ANALYSIS TIME 450.0 SEC
1	60		· :	•			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.046 MVS 13.2 2 UNKNOWN 0.141 MVS 15.7
7	92						3 UNKNOWN 14.33 MVS 17.2 4 UNKNOWN 186.6 MVS 18.8 5 UNKNOWN 0.450 MVS 24.2 6 UNKNOWN 3.903 MVS 45.4
-	10	•	•	•		٠	6 UNKNOWN 3.903 MVS 45.4 7 BENZENE 0.559 PPB 59.3 8 UNKNOWN 1.832 MVS 73.8 9 TOLUENE 3.005 PPB 118.6
2	25 11					٠	10 UNKNOWN 1.907 MVS 204.2 11 UNKNOWN 0.129 MVS 233.6 12 ETHYLBENZENE 2.733 PPB 248.0
2	57	12					13 M,P-XYLENE 8.597 PPB 266.4 14 O-XYLENE 7.251 PPB 293.0
28	13		•				
1	† 14		· .	•			
3	21 	•	. :	•	. ,		
3	53 ₁						NOTES JOE BYRD, JR.
3	85						DULUTH ANGB 026-002mw 10.0-12.0 10e

:

Λ.	LAT V	C T C	#13		100	5T C	C :	EUNCT	· T ()	N ANALYSIS REPORT
C)	4	8	1	2 (x	16		20	101	TIME PRINTED: MAY 6,95 16:46 SAMPLE TIME: MAY 6,95 16:38
32	1 2				-	2		•		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
64	6	5								ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
96	5		. · · · ·							AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
128	3 7	•								ANALYSIS TIME 450.0 SEC PEAK REPORT
16	50								1 2 3 4	COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.062 MVS 16.0 UNKNOWN 14.80 MVS 17.6 UNKNOWN 128.4 MVS 19.2 UNKNOWN 19.73 MVS 46.6
	92 25	8							5 6 7 8 9	BENZENE 3.345 PPB 58.8 UNKNOWN 4.052 MVS 74.2 TOLUENE 2.511 PPB 118.9 UNKNOWN 1.280 MVS 219.2 ETHYLBENZENE 1.660 PPB 245.0 M,P-XYLENE 7.493 PPB 264.2
2	5 7	9	•	•					1	1 UNKNOWN 0.300 MVS 295.4 2 O-XYLENE 4.160 PPB 313.3
	10			•						
2	89		•	•			•			
3	21	12	•		•			· .		
*	53 85									NOTES JOE BYRD, JR. DULUTH ANGB 026-002MW 15.0-17.0 10G
:										

0	2	4	6	+ GC 8	10	TIME PRINTED: MAY 6,95 16:56
	_	·	(x		MV)	SAMPLE TIME: MAY 6,95 16:49
1	7					METHOD
24	` <u>ک</u> ح			•		SLOPE UP 0.500 MV/SEC
	4					SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
						MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
64	6					ANALYSIS DELAY 0.0 SEC
		•		7		WINDOW PERCENT 10.0 %
8						DET FLOW 12 ML/MIN
96						B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
		•				AUX FLOW 0 ML/MIN OVEN TEMP 40 C
				-		AMB TEMP 32 C
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				•		MAX GAIN 1000
128-	g	•				ANALYSIS TIME 450.0 SEC
						PEAK REPORT
						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.037 MVS 15.2
160					,	1 UNKNOWN 0.037 MVS 15.2 2 UNKNOWN 17.16 MVS 17.2
				•	•	3 UNKNOWN 54.15 MVS 18.8
						4 UNKNOWN 34.42 MVS 24.6
192						5 UNKNOWN 54.19 MVS 29.0
172		• • •		•		6 UNKNOWN 18.71 MVS 45.8 7 BENZENE 99.81 PPB 59.0
						7 BENZENE 99.81 PPB 59.0 8 UNKNOWN 0.464 MVS 73.8
_			•	•		9 TOLUENE 94.48 PPB 118.5
225	.10					10 UNKNOWN 1.151 MVS 219.2
[11 ETHYLBENZENE 91.20 PPB 245.8
		•	•	•		12 M,P-XYLENE 184.7 PPB 264.5 13 O-XYLENE 96.60 PPB 310.4
257	11					13 O-XYLENE 96.60 PPB 310.4
$\prod_{i=1}^{n}$	•	•		•	•	
/1	2					,
289						
1						· !
Ì						
74-			•	•		
321	13			•		
Ī						
		•			;	
353						NOTES
1	•	•		•		JOE BYRD, JR.
			٠			DULUTH ANGB
385						100 PPB BTEX
ノロリ						

ANALVO	ere #	3	105+	GC	FUNC	CTION ANALYSIS REPORT
0	2	4	6 (x	8 10	10 MV)	TIME PRINTED: MAY 8,95 10:17 SAMPLE TIME: MAY 8,95 10:10 METHOD
28 3 4 4 57	2	· ·				SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
8	10			9		WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
114	 11	: :				AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
142		;				1 UNKNOWN 0.086 MVS 14.1 2 UNKNOWN 6.964 MVS 15.5 3 UNKNOWN 31.05 MVS 16.9 4 UNKNOWN 15.11 MVS 22.1 5 UNKNOWN 8.947 MVS 24.3
200					,	6 UNKNOWN 17.48 MVS 26.0 7 UNKNOWN 12.30 MVS 33.5 8 UNKNOWN 11.79 MVS 40.6 9 UNKNOWN 229.1 MVS 53.0 10 UNKNOWN 2.303 MVS 66.5
	14	•				11 UNKNOWN 158.5 MVS 106.6 12 UNKNOWN 6.444 MVS 121.6 13 UNKNOWN 2.258 MVS 195.4 14 UNKNOWN 106.2 MVS 221.6 15 UNKNOWN 84.78 MVS 238.2 16 UNKNOWN 17.20 MVS 278.9
257						
285	16				•	
314						NOTES DESTRY GREENWAY (TRAINEE) DULUTH ANGB 100 PPB BTEX
342						J. BYRD, JR. (OPERATOR)

A	VAI	_VSIS	#4	108+		Fuk	C	TION ANALVEIS REPORT
	1	2	4	6 (x	8 100	10 MV)		Time Printed: May 8,95 10:36 Sample Time: May 8,95 10:29 Method
28		2						SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
	4 5							MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
5	7						8	Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 14 ml/min
8!	5		• .		•		Ī	B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
	.				-			OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
1	14		- ⇒9					ANALYSIS TIME 400.0 SEC PEAK REPORT
14	42		•					PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.057 MVS 13.8 2 UNKNOWN 11.66 MVS 15.4 3 UNKNOWN 44.28 MVS 17.0
1	71		•					4 UNKNOWN 66.64 MVS 22.1 5 UNKNOWN 0.543 MVS 26.0 6 UNKNOWN 0.962 MVS 33.2 7 UNKNOWN 12.23 MVS 40.8
2	00	10						8 BENZENE 1.492 PPM 53.4 9 TOLUENE 1.648 PPM 106.9 10 UNKNOWN 1.098 MVS 192.2 11 ETHYLBENZENE 1.870 PPM 221.2
2:	28))11				:		12 M,P-XYLENE 3.156 PPM 237.8 13 O-XYLENE 1.683 PPM 279.2
)12				•		
2!	57 							
2	8 5	13						
				•				
3.	14							NOTES DESTRY GREENWAY (TRAINEE) DULUTH ANGB
3	42	ı						1 PPM BTEX
1				•				J. BYRD, JR. (OPERATOR)

				119 00	
ΔΝΔ	VE 18	# <u>5</u>	108+ 66	Func	TIAN ANALVRIR REPART
0	2	4	6 8 (x 100	10 mV)	TIME PRINTED: MAY 8,95 10:51 SAMPLE TIME: MAY 8,95 10:45
28			•		METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN ÅREA 0.600 mVSEC
57- 57- 7	- 6				MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85-				9	B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
114	+			1	MAX GAIN 1000 O ANALYSIS TIME 400.0 SEC PEAK REPORT
142	2	· · ·			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.037 MVS 14.0 2 UNKNOWN 8.568 MVS 15.6 3 UNKNOWN 72.20 MVS 17.1
17]	L				4 UNKNOWN 70.96 MVS 22.2 5 UNKNOWN 0.449 MVS 26.2 6 UNKNOWN 19.37 MVS 33.5 7 UNKNOWN 11.09 MVS 40.6 8 UNKNOWN 3.611 MVS 46.4
200) 11	· ·			9 BENZENE 5.418 PPM 54.2 10 TOLUENE 7.524 PPM 108.2 11 UNKNOWN 5.501 MVS 193.2 12 ETHYLBENZENE 9.005 PPM 223.4
228	3			1	13 M,P-XYLENE 16.83 PPM 239.6 214 O-XYLENE 5.844 PPM 280.8
257				[°] 13	
285	14			•	
314	1				NOTES
342	•			•	DESTRY GREENWAY (TRAINEE) DULUTH ANGB 10 PPM BTEX 35 J. BYRD, JR. (OPERATOR)
					STEPHEN ON LANDON

ANALYSIS #8	10S+ GC FUNCTION ANALYSIS REPORT	
θ 2 4	6 8 10 TIME PRINTED: MAY 8,95 12:07 (X 1000 UV) SAMPLE TIME: MAY 8,95 12:00	
28 5 57-6 7	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN	
85 114>9	AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC	
10 142	PEAK REPORT PK COMPOUND NAME AREA/CONC R.7 1 UNKNOWN 0.076 MVS 14. 2 UNKNOWN 5.985 MVS 15. 3 UNKNOWN 23.16 MVS 17.	.1
171	4 UNKNOWN 38.31 MVS 22 5 UNKNOWN 0.409 MVS 33 6 UNKNOWN 8.861 MVS 40 7 BENZENE 2.184 PPB 53 8 UNKNOWN 4.767 MVS 67 9 TOLUENE 8.239 PPB 108	.8 .8 .2
200 11 228	9 TOLUENE 8.239 PPB 108 10 UNKNOWN 3.575 MVS 125 11 UNKNOWN 3.601 MVS 199 12 ETHYLBENZENE 7.450 PPB 224 13 M,P-XYLENE 12.76 PPB 240 14 O-XYLENE 13.91 PPB 276	.2
12 12 13 257	TO ATELLE 19.51 TIB 270	. 4
285 14		
314	NOTES DESTRY GREENWAY (TRAINEE) DULUTH ANGB AIR BLANK	***************************************
342	J. BYRD, JR. (OPERATOR)	

ANALYSIS #10	10S+ GC FUNC	TION ANALYSIS REPORT
0 2 4	6 8 10 (x 1000 uV)	TIME PRINTED: MAY 8,95 13:03 SAMPLE TIME: MAY 8,95 12:56
28 5 5 6	2 3 4	METHOD SLOPE UP 0.500 MV/SEC SLOPE DCWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
8 85 85		WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
114>9		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.090 MVS 14.2 2 UNKNOWN 8.805 MVS 15.7 3 UNKNOWN 38.35 MVS 17.1 4 UNKNOWN 66.22 MVS 22.4
171		5 UNKNOWN 0.200 MVS 33.8 6 UNKNOWN 18.82 MVS 40.8 7 BENZENE 3.501 PPB 53.6 8 UNKNOWN 7.348 MVS 67.6 9 TOLUENE 5.687 PPB 108.2
200 10 228		10 UNKNOWN 5.390 MVS 201.8 11 ETHYLBENZENE 7.190 PPB 225.8 12 M,P-XYLENE 12.61 PPB 241.0 13 O-XYLENE 10.59 PPB 276.0
/11 12 257		
285 13		
314		NOTES DESTRY CREENWAY (TRAINES)
342		DESTRY GREENWAY (TRAINEE) DULUTH ANGB 026-002mw 20.0-22.0 10g J. BYRD, JR. (OPERATOR)

0 2	4	6	8	10	TIME PRINTED: MAY 8,95 13:13
 -]	<u> </u>	, (X	10	MV)	SAMPLE TIME: MAY 8,95 13:07 METHOD
2=					SLOPE UP 0.500 MV/SEC
	3				SLOPE DOWN 1.500 MV/SEC
1/_	4	· 			MIN AREA 0.000 MVSEC
					MIN HEIGHT 0.000 MV
,		 7			Analysis Delay 0.0 sec Window Percent 10.0 %
		,			DET FLOW 14 ML/MIN
∤ 8					B/F FLOW 14 ML/MIN
35					AUX FLOW 0 ML/MIN
		•	•	•	OVEN_TEMP 40 C
					AMB TEMP 32 C
L149					MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
					PEAK REPORT
!					PK COMPOUND NAME AREA/CONC R.T.
	•	•			1 UNKNOWN 0.073 MVS 14.1
142 10		· .			2 UNKNOWN 15.64 MVS 15.7
					3 UNKNOWN 113.8 MVS 17.1
	•	•			4 UNKNOWN 247.1 MVS 22.4 5 UNKNOWN 2.439 MVS 33.8
171					5 UNKNOWN 2.439 MVS 33.8 6 UNKNOWN 3.491 MVS 41.0
~ 1 -	•	•		•	7 BENZENE 98.54 PPB 53.7
					8 UNKNOWN 1.653 MVS 67.4
		ē	•	-	9 TOLUENE 80.12 PPB 108.2
200	.•			•	10 UNKNOWN 2.313 MVS 134.1
11					11 UNKNOWN 1.798 MVS 199.6 12 ETHYLBENZENE 71.95 PPB 224.6
l K	• :	•			12 ETHYLBENZENE 71.95 PPB 224.6 13 M,P-XYLENE 132.6 PPB 241.3
228		*			14 O-XYLENE 47.18 PPB 282.9
/12				•	
17	•	•		•	
13		•			
57					
			•		
	•	•	•		
285					
14					
	•				
314					NOTES
					DESTRY GREENWAY (TRAINEE)
					DULUTH ANGB
	•	•	•		100 PPB BTEX STANDARD
342					
					J. BYRD, JR. (OPERATOR)

Q	2	4	6	8	10	TIME PRINTED: MAY 11,95 08:01
	<u> </u>		(x		MV)	SAMPLE TIME: MAY 11,95 08:01 METHOD
28	2 3 1					SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
57- /	<u>6</u>			7		ANALYSIS DEL:Y 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85			,			B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 28 C
114	9					MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PE÷K REPORT
142	?			•		PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 0.084 MVS 14. 2 UNKNOWN 47.29 MVS 15. 3 UNKNOWN 15.14 MVS 21.
171						4 UNKNOWN 9.843 MVS 25. 5 UNKNOWN 3.327 MVS 33. 6 UNKNOWN 7.071 MVS 41. 7 UNKNOWN 238.5 MVS 52. 8 UNKNOWN 3.147 MVS 66.
200	10				•	9 UNKNOWN 170.2 MVS 105. 10 UNKNOWN 1.826 MVS 192. 11 UNKNOWN 104.2 MVS 218. 12 UNKNOWN 73.10 MVS 234.
228	•				•	13 UNKNOWN 13.85 MVS 275.
257	12			•	-	
285	13		•			
314			•			NOTES
342	٠.					JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX STANDARD

Fk r	E.C. Ready Analysis Mo Jo Mame	1 1 1	EL Flattice Fun et - , milles		
	Unknown Unknown benzene Unknown toluene Unknown ethylbenzer m.p-x.lene c-xylane etected 13 :		27 800 27 800 27 800 20 47 800 20 47 800 20 900 20		
76 56	(mU)				219. (U
57 18 - 1	2 \ = -			1. 1.	:0
	g <u>12</u>		10	<u> </u>	

ANALVOIQ #2	104+ CC FHNP	TIAM DMOLVGIG BEDART
0 2 4	6 8 10 (x 100 MV)	TIME PRINTED: MAY 11,95 08:17 SAMPLE TIME: MAY 11,95 08:10
1 28 2 3		METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec
5 5 5		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
	7	WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
85		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C
114 8		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.092 MVS 14.0 2 UNKNOWN 14.71 MVS 15.3 3 UNKNOWN 34.69 MVS 16.8
171		4 UNKNOWN 20.17 MVS 21.9 5 UNKNOWN 19.19 MVS 25.8 6 UNKNOWN 7.857 MVS 41.0 7 BENZENE 1.579 PPM 52.9 8 TOLUENE 1.844 PPM 106.2
200		9 ETHYLBENZENE 2.122 PPM 219.6 10 M,P-XYLENE 3.912 PPM 235.6 11 O-XYLENE 2.662 PPM 276.5
228 9	· · · · · · ·	
257		
285 11		
314		NOTES JOE BYRD, JR. DULUTH ANGB
342		1 PPM BTEX STANDARD

0		2		4	6	X	10		1 MV	.0		TIME PRINTED: SAMPLE TIME:	May 11,95 May 11,95		:31 :24
اد 2 8		2	•		. \	^	10	,0	1*1 ¥	,			THOD 0.500	MV/	
7			•					,				SLOPE DOWN MIN AREA	1.500	MV/ MVS	
57		6		·	·					- - 7		MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT	0.000 0.0 10.0	MV SEC %	
			•									DET FLOW . B/F FLOW	14 14	ML/	MIN
85-												AUX FLOW OVEN TEMP AMB TEMP	0 40 29	ML/ C C	MIN
 14		<u></u>		_				•		_ _8		MAX GAIN ANALYSIS TIME	1000 400.0	SEC	
***************************************							- -					PEAK COMPOUND NAME	AREA/C		R.T
142	2						•	٠		•	1 2 3	Unknown Unknown Unknown	0.109 12.12 62.90		13. 15. 16.
7	-		•					•••	•		4 5	Unknown Unknown	27.77 37.16	mVS mVS	21. 25.
17:	1			•				٠			6 7 8	UNKNOWN BENZENE TOLUENE	9.167 5.231 6.822	MVS PPM PPM	40. 53. 107.
200	0	10				e e		•			9 10	Unknown Unknown	68.48 8.051	MVS MVS	142. 189.
	·~~	·			<u>.</u>					~ ,	12	ETHYLBENZENE M,P-XYLENE O-XYLENE	8.435 15.70 5.318	PPM	220. 236. 276.
228 -	8			•	•	~				11 لب					
25)			<u>;_</u>	<u> </u>				مېس <i>د</i>	> 12	<u>.</u>					
			•				•						•		
28! /	5)	13													
314	/1												OTES		
✓ † •	- T				٠		•	•				JOE BYRD, JR. DULUTH ANGB	OIES		-
342	•		•		•			•			4	10 PPM BTEX ST	ANDAR		

ANAL	VEIE	#4	108+ 60	Fund	ACTION ANALYSIS REPORT
0	2	4	6 8 (x 1000	10 (VU	
28		4	_ 2 3	٠.	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
57 85	 - 7	6	· .		ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
114-	³ 8				OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
142	9				PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.109 MVS 13.8 2 UNKNOWN 6.790 MVS 15.4 3 UNKNOWN 75.27 MVS 16.9 4 UNKNOWN 0.583 MVS 21.7
171					5 UNKNOWN 1.864 MVS 41.6 6 BENZENE 8.416 PPB 52.5 7 UNKNOWN 31.31 MVS 66.4 8 TOLUENE 17.84 PPB 106.2
200		• • • •			9 UNKNOWN 1.272 MVS 131.0 10 ETHYLBENZENE 21.50 PPB 220.6 11 M,P-XYLENE 51.14 PPB 236.6 12 O-XYLENE 21.45 PPB 276.8
228 11	10	. , ·			
257	· •,			•	
285	12	•		•	
314	; · · · · · · · · · · · · · · · · · · ·	·	·		NOTES JOE BYRD, JR.
342			·		DULUTH ANGB AIR BLANK
:					•

· Δ.Ν.Δ.L.	vere	#5	109	s+ 6C	Func	TION ANALYSIS REPORT
0	4	8	12 .(x	16 1000	20 uV)	TIME PRINTED: MAY 11,95 08:54 SAMPLE TIME: MAY 11,95 08:47
28	6	4			2	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C
114	.8					MAX GAIN 1000 Analysis Time 400.0 sec
142 9 171 200 10						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.065 MVS 13.8 2 UNKNOWN 18.17 MVS 15.6 3 UNKNOWN 128.6 MVS 17.1 4 UNKNOWN 0.478 MVS 22.0 5 UNKNOWN 1.634 MVS 40.9 6 BENZENE 5.813 PPB 52.8 7 UNKNOWN 14.78 MVS 66.4 8 TOLUENE 6.031 PPB 106.5 9 UNKNOWN 0.885 MVS 147.2 10 UNKNOWN 0.988 MVS 196.2 11 ETHYLBENZENE 8.347 PPB 220.2 12 M,P-XYLENE 18.19 PPB 235.2
228	11	•.				
12		•	•			
257				•	•	
285			•			
314			•			NOTES JOE BYRD, JR. DULUTH ANGB 025-001mw 0.5- 2.5 10g

ANALVEIC #6	108+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 11,95 09:04 SAMPLE TIME: MAY 11,95 08:57
28 3 57 5 5	2	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85		B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000
114 7		ANALYSIS TIME 400.0 SEC PEAK REPORT
142		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 13.02 mVS 15.4 2 UNKNOWN 142.8 mVS 17.0 3 UNKNOWN 0.893 mVS 21.9 4 UNKNOWN 1.472 mVS 40.9 5 BENZENE 0.867 ppb 52.8
200		6 UNKNOWN 3.967 MVS 66.6 7 TOLUENE 3.873 PPB 106.6 8 UNKNOWN 7.840 MVS 197.8 9 UNKNOWN 2.642 MVS 216.8
228 9		10 ETHYLBENZENE 8.407 PPB 220.2 11 M,P-XYLENE 20.59 PPB 237.8
11 257		
285		
314		NOTES JOE BYRD, JR.
342		DULUTH ANGB 025-001mw 5.0- 7.0 10g
371		

	711	<u>ν</u>	010	#7	109	3 4 60	Funct	TION ANALYSIS REPORT
	0		4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 11,95 09:14 SAMPLE TIME: MAY 11,95 09:07
						2		METHOD SLOPE UP 0.500 MV/SEC
				4	3	3		SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
1	57	/5	• .		•			MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
		_6 -₃7	•	•	•			WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
	¥ 8 5	•						B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
	-, -1					• •		OVEN TEMP 40 C AMB TEMP 30 C
	1Ĵ	À	8					MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
	*							PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
	14	2			•	•		1 UNKNOWN 0.549 MVS 13.9
	-		•	•	•			2 UNKNOWN 16.42 MVS 15.3 3 UNKNOWN 42.95 MVS 16.8 4 UNKNOWN 54.88 MVS 21.8
	17	1				•		5 UNKNOWN 10.85 MVS 40.8 6 BENZENE 2.496 PPB 52.9
				•	•			7 UNKNOWN 6.488 MVS 66.5 8 TOLUENE 3.826 PPB 106.8
	20							9 UNKNOWN 20.58 MVS 198.8 10 ETHYLBENZENE 13.00 PPB 221.2
		9		•				11 M,P-XYLENE 19.44 PPB 237.2
	22	8	10					
		11		•	٠			
	25	7 .	•	, ·				
	28	5				•	•	
					•			
	31	4		•	٠	•		NOTES JOE BYRD, JR.
	-				÷			DULUTH ANGB 025-001mw
	34	2	•	• •	•			10.0-12.0 10g
		1	. *		·			
!	37	1						

	Δ,	J Δ.L	VQIQ				108+	- 60	Func	TION ANALYSIS REPORT	
	(1	1 		2		3 (x	4 10	5 MV)	TIME PRINTED: MAY 11,95 09:24 SAMPLE TIME: MAY 11,95 09:17	
	28	:	4)		3				METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC	
	57	1 2				*				MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN	
	85									B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C	
	1]	4	8					٠.		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT	
	14	12	•				.,.	•		PK COMPOUND NAME AREA/CONC R. 1 UNKNOWN 0.023 MVS 13 2 UNKNOWN 10.91 MVS 15 3 UNKNOWN 163.0 MVS 16	.6 .4 .9
	17	'1		•			•			4 UNKNOWN 0.510 MVS 21 5 UNKNOWN 1.974 MVS 41 6 BENZENE 0.538 PPB 52 7 UNKNOWN 5.595 MVS 66 8 TOLUENE 4.293 PPB 106	.0 .6 .5
	20	9			• .	•				9 UNKNOWN 1.612 MVS 198 10 ETHYLBENZENE 3.302 PPB 222 11 M,P-XYLENE 10.60 PPB 237	. 4 . 4
	22		10						•		
	25 	11 7				,					and Marie and Andrews and Angeles and Ange
	28	5				•					
	31	4		•			, .	,		NOTES JOE BYRD, JR.	
***************************************	34:	2								DULUTH ANGB 025-001mw 15.0-17.0 10g	anderde and the first or executive and the standard of the sta
	37:	1							:		suddillinadd B., d. B

Δ.	N O.L.	VCIC	#0			108-	+ GC	Func	TION ANALYSIS REPORT
	0	1	j	2		3 (x	4 10	5 MV)	TIME PRINTED: MAY 11,95 09:34 SAMPLE TIME: MAY 11,95 09:28 METHOD
2	8 / 4	3				2			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
5	5 6								Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 14 ml/min
8	-						-	•	B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
1	14	7							MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
1	42					· · · · ·		. •	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 11.31 MVS 15.4 2 UNKNOWN 230.9 MVS 16.8 3 UNKNOWN 1.058 MVS 21.8 4 UNKNOWN 0.781 MVS 40.8
1	71	٠.			٠				5 BENZENE 0.853 PPB 52.8 6 UNKNOWN 4.015 MVS 66.4 7 TOLUENE 3.931 PPB 106.9 8 UNKNOWN 0.980 MVS 199.2
2	00			•				.•	9 ETHYLBENZENE 2.896 PPB 222.2 10 M,P-XYLENE 8.366 PPB 237.2
2	28 10	9					· .•		
2	\$7		•			. ,			
2	<u>8</u>								
3	14		•	. •					NOTES JOE BYRD, JR. DULUTH ANGB
3	42		,				•		025-001MW 20.0-22.0 10G
য	71								

:	ΔΝΔ	LVCIC	#3	LΩ	10	S+	GC	FUNC	TIO	ON ANALYSIS REPORT
	0	2		4	6 (x		8	10 mV)		TIME PRINTED: MAY 11,95 09:44 SAMPLE TIME: MAY 11,95 09:38 METHOD
	28 	2 3 4 5		-					According to the second	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
	85						7		and the second s	WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
	114		9	:		•				ANALYSIS TIME 400.0 SEC PEAK REPORT
	142	• •	• .			• •			1 2 3 4	COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.058 MVS 13.7 UNKNOWN 12.61 MVS 15.5 UNKNOWN 49.87 MVS 17.0 UNKNOWN 28.65 MVS 22.1
	171			•		•			56789	UNKNOWN 40.87 MVS 26.0 UNKNOWN 18.72 MVS 40.7 BENZENE 90.56 PPB 53.0 UNKNOWN 25.81 MVS 66.6 TOLUENE 87.03 PPB 106.5
	200	10	•	•	•					
	2 5 7	12								
eder dielehje 19.000 gang is 18.000 gang ist die 19.000 gang ist dieleh 19.000 gang ist.	285	13		•	•	•				
***************************************	314			. •						NOTES JOE BYRD, JR.
	342	•		•						DULUTH ANGB 100 ppb btex

0 2 4 6	8 10	T D W 11 OF OO F7
(x 1	000 uV)	TIME PRINTED: MAY 11,95 09:57 SAMPLE TIME: MAY 11,95 09:50
28 2	•	METHOD
3.		SLOPE UP 0.500 MY/SEC SLOPE DOWN 1.500 MV/SEC
4		MIN AREA 0.000 MVSEC
57		MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
(6	· · ·	WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
		B/F FLOW 14 ML/MIN
85		AUX FLOW 0 ML/MIN OVEN TEMP 40 C
		AMB TEMP 31 C
114 8		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
	•	PEAK REPORT
		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.279 mVS 14.0
142		2 UNKNOWN 5.590 MVS 15.5
		3 UNKNOWN 68.33 MVS 16.9 4 UNKNOWN 0.416 MVS 21.8
171	•	5 UNKNOWN 2.456 MVS 41.4
		6 BENZENE 0.367 PPB 52.4 7 UNKNOWN 6.480 MVS 66.6
	•	8 TOLUENE 1.803 PPB 106.9
200	, ,	10 ETHYLBENZENE 2.298 PPB 220.6
9		11 UNKNOWN 4.276 MVS 227.2
000 10	· .	
228 ₁₁ 10		
	1	
257		
285		
314	•	NOTES
		JOE BYRD, JR. Duluth ANGB
342		AIR BLANK J
	:	Approximately the second of th
371		· · · · · · · · · · · · · · · · · · ·

ANALYSIS #12	108+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 11,95 10:08 SAMPLE TIME: MAY 11,95 10:02
28 4	2	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN ARE: 0.000 MVSEC
57/ 6		MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85		B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
114 8		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.038 MVS 13.6 2 UNKNOWN 16.49 MVS 15.5 3 UNKNOWN 101.0 MVS 16.8 4 UNKNOWN 0.359 MVS 21.8
171		5 UNKNOWN 13.46 MVS 40.9 6 BENZENE 2.862 PPB 52.8 7 UNKNOWN 6.725 MVS 66.9 8 TOLUENE 3.946 PPB 106.9
200		9 UNKNOWN 2.595 MVS 198.8 10 ETHYLBENZENE 1.967 PPB 223.2 11 M,P-XYLENE 4.725 PPB 238.2
228 10		
11 257		
285		
314		NOTES
342		JOE BYRD, JR. DULUTH ANGB 025-001mm 25.0-2 ⁻ .0 13g

ANALYSIS #1	.3 10S+ GC	Func-	TION ANALYSIS REPORT
0 4	8 12 16 (× 1000	20 uV)	TIME PRINTED: MAY 11,95 10:19 SAMPLE TIME: MAY 11,95 10:12
28 //	2 3		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
57/ ₅			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
7	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
85			AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
114 8			MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		•	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.033 MVS 13.7 2 UNKNOWN 15.19 MVS 15.5 3 UNKNOWN 44.66 MVS 16.9
171		•	4 UNKNOWN 61.80 MVS 21.9 5 UNKNOWN 15.08 MVS 40.7 6 BENZENE 2.966 PPB 52.5
200 9 10			7 UNKNOWN 5.615 MVS 66.6 8 TOLUENE 4.089 PPB 106.6 9 UNKNOWN 3.376 MVS 198.4 10 UNKNOWN 4.178 MVS 201.6 11 ETHYLBENZENE 4.732 PPB 223.4 12 M,P-XYLENE 8.636 PPB 236.8
228 11			
12			·
257			
285		**************************************	
314	•	! !	NOTES
			NOTES JOE BYRD, JR. DULUTH ANGB
342			025-001mw 30.0-32.0 10g

....

28 3 57,5 5	16 20 000 uV) - 2	TIME PRINTED: MAY 11,95 SAMPLE TIME: MAY 11,95 METHOD SLOPE UP 0.500 SLOPE DOWN 1.500 MIN AREA 0.000 MIN HEIGHT 0.000 ANALYSIS DELAY 0.0	10:29 10:22 MV/SEC MV/SEC MVSEC MV
57 5 5	- - 2	SLOPE UP 0.500 SLOPE DOWN 1.500 MIN AREA 0.000 MIN HEIGHT 0.000 ANALYSIS DELAY 0.0	MV/SEC MVSEC
/5 		ANALYSIS DELAY 0.0	ΜV
11/0-		WINDOW PERCENT 10.0 DET FLOW 14	SEC % ML/MIN
85 85	-	B/F FLOW 14 AUX FLOW 0 OVEN TEMP 40 AMB TEMP 31 MAX GAIN 1000	ML/MIN ML/MIN C C
114 7		ANALYSIS TIME 400.0 PEAK REPORT	SEC
142		PK COMPOUND NAME AREA/CO 1 UNKNOWN 13.95 M 2 UNKNOWN 164.0 M 3 UNKNOWN 0.404 M 4 UNKNOWN 1.981 M	MVS 15.5 MVS 17.0
171	· 	5 BENZENE 0.211 6 UNKNOWN 3.515 7 TOLUENE 3.644 8 UNKNOWN 7.567	PPB 52.8
200 8		10 M,P-XYLENE 29.24	
228 9	:	**************************************	ļ
10 257			
285			
314		NOTES JOE BYRD, JR. DULUTH ANGB 025-001mw 35.0-37.0 10g	

0	4		8		12 (x		16 000	20 uV)	4		r 11,95		:39 :32
28			4	=		2	3			SLOPE UP SLOPE DOWN MIN AREA	0.500 1.500 0.000	MV/S	SEC
57 <i>(</i> 6	5				•			·		MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT DET FLOW	0.00 0.0 10.0 14	MV SEC % ML/!	M T NI
85 85	•									B/F FLOW AUX FLOW OVEN TEMP AMB TEMP	14 0 40	ML/I ML/I C C	MIN
114	.8									MAX GAIN ANALYSIS TIME	31 1000 400.0 PORT	SEC	<u> </u>
142			•						PK 1 2 3 4	COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN	AREA/C 0.037 13.23 153.8	MVS MVS MVS	R. 13 15 17
171	•		•						5 6 7 8	UNKNOWN UNKNOWN BENZENE UNKNOWN TOLUENE	0.479 1.531 0.007 3.143 4.295	MVS ^I PPB MVS	22 40 53 66 107
200	•		•				•	· · · · ·	9 10 11	UNKNOWN ETHYLBENZENE M,P-XYLENE UNKNOWN	1.512 i 1.673 i 7.019 i 0.276 i	MVS PPB PPB	198 223 236 334
228 ,11	10	•	•			•	•.			• `			
257	•					•				.			į
285			•										
314	•									NOTE	S	·	
342	12								I	OLUTH ANGB 25-002mw 0.5- 2.5 10g			

	Δι	JΔL	VCIC	. #	16		10).S-	+ G(2 (Func	OITS	N ANALYSIS REPORT
	()	4		8		12 ()	(]	16 1000) ι	20 uV)		TIME PRINTED: MAY 11,95 10:49 SAMPLE TIME: MAY 11,95 10:42
	28 57	7	67	5		4			2 3				METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
,	85								***				DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
	13	L4 	10										ANALYSIS TIME 400.0 SEC
	14	12										1 2 3 4	COMPOUND NAME AREA/CONC R.T. UNKNOWN 2.050 MVS 14.2 UNKNOWN 16.34 MVS 15.4 UNKNOWN 51.06 MVS 17.2 UNKNOWN 38.17 MVS 22.0
	17	71			•							56780	UNKNOWN 37.86 MVS 27.8 UNKNOWN 0.233 MVS 35.2 UNKNOWN 18.12 MVS 40.6 BENZENE 3.339 PPB 52.5
	20	0 11			•			•		•			UNKNOWN 1.393 MVS 196.4 ETHYLBENZENE 1.147 PPB 220.2
	22	8	12				;				•	13	M,P-XYLENE 2.739 PPB 234.4
	25	13 7	·	•			•						
	28	35			•		•				•		
	71	<i>j</i> i .		•			•	-	•				
	31		•		•					•			NOTES JOE BYRD, JR. DULUTH ANGB 25-002MW 5.0- 7.0 103
	. !				,								

Δ	NΔL	VCI	_ #:	17	1	+20.	SC	Func	TIO	N ANALYSIS REPOR	RT	
	0	2		4	6	X	8	10		TIME PRINTED:		
	1	_ _	٠		,	^	ΤŲ	MV)			MAY 11,95 THOD	10:52
2	8/	2	z `		÷					SLOPE UP	0.500	MV/SEC
	$\ / \ $	4	2							SLOPE DOWN Min Area	1.500 0.000	MV/SEC
	∦ 5	;			•					MIN HEIGHT	0.000	MVSEC MV
5	7-	_6_						, .		ANALYSIS DELAY	0.0	SEC
	8						,			WINDOW PERCENT DET FLOW	10.0 14	% ML/MIN
										B/F FLOW	14	ML/MIN
8	5									AUX FLOW	0	ML/MIN
							-		!	OVEN TEMP AMB TEMP	40 32	C
	٠	<u></u> _					•			MAX GAIN	1000	
1	14_ /		- 9	•	. ,					ANALYSIS TIME	400.0	SEC
-	/			•					Рĸ	PEAK COMPOUND NAME	REPORT AREA/C	onc R.T.
									1	UNKNOWN	0.042	1
1.	12								2	Unknown Unknown	15.78	
									4	UNKNOWN	153.1 3.226	,
٦.	71								5	UNKNOWN	0.753	мVS' 26.0¦
1	1		• .	• -	•	•			6 7	Unknown Benzene	2.630 (107.6	
						ι	•		8	UNKNOWN	4.014	
20	0								9	TOLUENE Unknown	103.7	
	10	•	•	•	•	•	•	•	1	ETHYLBENZENE	1.214 i 103.7 i	
									12	M, P-XYLENE	212.2	PPB 237.6
22	28)	11				•			13	O-XYLENE	108.1	PPB 279.7
	4	•	•	•	•	•.	•	٠		•		
	<i>)</i> 1.	2	•									
25	7	•										
									1			
28	5	13										
		رب			•	•		٠				
3]	4									· NO	TES	
		•	•		•	•	•	÷		JOE BYRD, JR.	IES	1
									Ι	OULUTH ANGB		• •
34	2								<u>.</u>	00 PPB BTEX		•
		,	•	•	•	•	•	•				
							,					

ANA	7-LACIC	#18	10	<u>s+ cc</u>	Func	TION ANALYSIS REPORT
Ф	1	2	3 (x	4 1000	5 uV) 1	TIME PRINTED: MAY 11,95 12:33 SAMPLE TIME: MAY 11,95 12:26 METHOD
28					 1 2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
57	73					MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
85	4					DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
					• .	OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
114	5	· Company				ANALYSIS TIME 400.0 SEC
142	2					PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 4.790 MVS 15.6 2 UNKNOWN 62.29 MVS 17.0 3 UNKNOWN 2.728 MVS 40.8 4 UNKNOWN 3.254 MVS 66.8
17:	1	•				5 TOLUENE 0.924 PPB 107.3 6 ETHYLBENZENE 0.653 PPB 202.6
200	o					
	5	•	• :			
228	3			·	•	
25	7		•		• .	
285	5	•	•			
314	' 4			•		NOTES
342	•				•	JOE BYRD, JR. DULUTH ANGB AIR BLANK
242	۷					

Δι	MALV	eie	#19		10	S+	GC	Func	CTION ANALYSIS REPORT	
) -1	4			12 (x		000 16	20 uV)	SAMPLE TIME: MAY 11,95 12:41	
28		5	4	<u></u> -		3	2,		METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC	
57	7 / 6							÷	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %	
85	7		• • .	· · · · · · · · · · · · · · · · · · ·		,	-		DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C	
1:	14	8	<i>,</i>	٠			٠		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC	
14	12								PEAK REPORT PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 0.020 MVS 14. 2 UNKNOWN 15.82 MVS 15. 3 UNKNOWN 51.09 MVS 17. 4 UNKNOWN 72.26 MVS 22.	0.6.0
17	71		· ·				•		5 UNKNOWN 20.40 MVS 40. 6 BENZENE 3.548 PPB 53. 7 UNKNOWN 6.041 MVS 67. 8 TOLUENE 4.294 PPB 107.	8 1 2
20)0 9	•				•		•	9 UNKNOWN 1.462 MVS 200. 10 ETHYLBENZENE 1.859 PPB 223. 11 M,P-XYLENE 7.298 PPB 238. 12 O-XYLENE 3.791 PPB 275.	4
22	28	10						•		
25	11 57					• .	•			
28	35	12								
31	4				*				Notes	
					•	•			NOTES JOE BYRD, JR. DULUTH ANGB 025-002MW	
34	2							٠.	10.0-12.0 10g	

ANALVOIC #20	108+ GC FUNCT	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 11,95 12:59 SAMPLE TIME: MAY 11,95 12:52 METHOD
28 4	2 3	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
57 / 6 / 6 - 7		ANALYSIS DEL= 0.000 MV ANALYSIS DEL= 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
85	÷	AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
11,4 8		ANALYSIS TIME 400.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
142		1 UNKNOWN 0.015 MVS 13.6 2 UNKNOWN 14.80 MVS 15.4 3 UNKNOWN 147.3 MVS 16.8 4 UNKNOWN 0.221 MVS 21.8
171		5 UNKNOWN 1.845 MVS 41.1 6 BENZENE 0.130 PPB 52.9 7 UNKNOWN 6.636 MVS 66.6 8 TOLUENE 3.593 PPB 106.9 9 UNKNOWN 1.148 MVS 194.4
200 9		10 ETHYLBENZENE 0.972 PPB 223.4 11 M,P-XYLENE 4.297 PPB 236.4 12 O-XYLENE 3.309 PPB 274.6
228 10	• • • • • • • •	
257		
285 12		
314		NOTES
342		JOE BYRD, JR. DULUTH ANGB 025-002MW 15.0-17.0 10G

A١	NALYSIS #21	10S+ G	C Func	TION ANALYSIS REPORT
) 2 4		3 10 .0 mV)	TIME PRINTED: MAY 11,95 14:14 SAMPLE TIME: MAY 11,95 14:07
28	1 7 37 2 4 3 5 4			METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
57	1	7		Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 14 ml/min
85	8 9	· .	<u>.</u>	B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
11	14 10	· .		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
14	12			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.045 MVS 13.8 2 UNKNOWN 14.20 MVS 15.4 3 UNKNOWN 38.20 MVS 16.8 4 UNKNOWN 23.60 MVS 22.0
17	71			5 UNKNOWN 39.14 MVS 26.0 6 UNKNOWN 16.85 MVS 40.8 7 BENZENE 85.59 PPB 53.2 8 UNKNOWN 1.026 MVS 66.8 9 UNKNOWN 0.226 MVS 84.0
20	0			10 TOLUENE 85.32 PPB 107.3 11 UNKNOWN 0.833 MVS 198.0 12 ETHYLBENZENE 81.49 PPB 222.6
22	128 12 H			13 M,P-XYLENE 165.5 PPB 239.0 14 O-XYLENE 83.28 PPB 281.8
25		•		
28	1 1 1			
3.	14			NOTES
34	 			JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX

_ <i>F</i>	N F	IAL	_Y:	SI	s	#2	22			10:	S+	G() i	Fui	VC.	ГІС	۸C	ON ANALYSIS REPORT
	0			2			4		(5		8 000		10)			TIME PRINTED: MAY 11,95 14:28 SAMPLE TIME: MAY 11,95 14:21
	28		75	garen e			L		· •	3								METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
8	35		6															DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
11	.4		7				•.											MAX GAIN 1000 Analysis Time 400.0 sec
1	4	2	J				•									1 2 3 4		PEAK REPORT COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.094 MVS 14.0 UNKNOWN 4.452 MVS 15.6 UNKNOWN 75.34 MVS 17.1 UNKNOWN 0.534 MVS 22.0
	7	1					•					•		٠.		5 6 7 8 9		UNKNOWN 2.527 MVS 41.2 UNKNOWN 4.760 MVS 66.8 TOLUENE 1.151 PPB 106.6 UNKNOWN 13.58 MVS 196.8 M,P-XYLENE 27.29 PPB 237.8
2	0(8) 8	•				٠				•					•	•	M,P-XYLENE 27.29 PPB 237.8
2:	28						. •							•				
2	5 7	7	•				•		·.									
28		5	-				•					•						
32																Ι)ι	NOTES JOE BYRD, JR. DULUTH ANGB IR BLANK
37	71		•		•					•		•		•				

ANALVEIS #2	3 10S+ GC	FUNCT	TION ANALYSIS REPORT
.	8 12 16 (x 1000	20 uV)	TIME PRINTED: MAY 11,95 14:38 SAMPLE TIME: MAY 11,95 14:31 METHOD
28	2 3		SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC
57 6			MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85 85			B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
11,4 8			MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
142			1 UNKNOWN 0.189 MVS 14.0 2 UNKNOWN 13.81 MVS 15.6 3 UNKNOWN 185.6 MVS 17.0 4 UNKNOWN 0.392 MVS 22.0
171		•	5 UNKNOWN 2.708 MVS 40.8 6 BENZENE 0.191 PPB 52.4 7 UNKNOWN 3.600 MVS 66.9 8 TOLUENE 4.826 PPB 107.3
200			9 UNKNOWN 1.442 MVS 198.4 10 ETHYLBENZENE 2.736 PPB 223.0 11 M,P-XYLENE 13.47 PPB 239.8 12 O-XYLENE 8.640 PPB 280.0
228 10			
11 257		•	
285 12		. •	
314			NOTES JOE BYRD, JR. DULUTH ANGB
342		٠.	025-003mw 0.5- 2.5 10G

P

Δ	.i Δ.L.\	ve i e	#2	4		109	3+	GC	FUNC	TION ANALYSIS REPORT	
		4		8	1:	2 (x	10		20 uV)	TIME PRINTED: MAY 11,95 SAMPLE TIME: MAY 11,95	
28	1 3 			4		2 3				METHOD SLOPE UP 0.500 SLOPE DOWN 1.500 MIN AREA 0.000	MV/SEC MV/SEC MVSEC
57	7- ¹ / ₋	> 			- 6		÷			MIN HEIGHT 0.000 ANALYSIS DELAY 0.0 WINDOW PERCENT 10.0	MV SEC %
85	7			•				•		DET FLOW 14 B/F FLOW 14 AUX FLOW 0 OVEN TEMP 40 AMB TEMP 32	ML/MIN ML/MIN ML/MIN C C
1:]4	8	•							MAX GAIN 1000 ANALYSIS TIME 400.0 PEAK REPORT	SEC
14	1 2								. • •	PK COMPOUND NAME AREA/O 1 UNKNOWN 0.048 2 UNKNOWN 12.86 3 UNKNOWN 137.7 4 UNKNOWN 0.534	MVS 13.8 MVS 15.6 MVS 17.0
17	71									5 UNKNOWN 1.728 6 BENZENE 25.07 7 UNKNOWN 1.511 8 TOLUENE 4.365 9 UNKNOWN 5.100	MVS 40.8 PPB 53.4 MVS 66.9 PPB 107.4
20)0 9			•			•	•		10 ETHYLBENZENE 2.137 11 UNKNOWN 2.585 12 M,P-XYLENE 15.13	PPB 221.2 MVS 225.4
22	28 11	10	•								
25	12 57										
28	35		•								
31	4									NOTES	
34	2						•			JOE BYRD, JR. DULUTH ANGB 025-003mw 5.0- 7.0 10g	

•

•

ANALYSIS #25 1	OS+ GC FUNCT	ION ANALYSIS REPORT	
0 2 4 6	8 10	TIME PRINTED: MAY 11,95 14:5	.8
(x 100 mV)	SAMPLE TIME: MAY 11,95 14:5	
<u> </u>		METHOD	
28 2==		SLOPE UP 0.500 MV/SE	.C
	3	SLOPE DOWN 1.500 MV/SE	
<u></u>	4	MIN AREA 0.000 MVSEC	
	5	MIN HEIGHT 0.000 MV	
57 ==6		ANALYSIS DELAY 0.0 SEC	
		WINDOW PERCENT 10.0 %	:
H 8		DET FLOW. 14 ML/MI	N :
9		B/F FLOW 14 ML/MI	:
85 10		AUX FLOW 0 ML/MI	-
11	:	OVEN TEMP 40 C	
— — — — — — — — — — — — — — — — — — —	12	AMB TEMP 32 C	:
13	· ·	MAX GAIN 1000	:
114 14		ANALYSIS TIME 400.0 SEC	:
√15 T		PEAK REPORT	
16	•	· _	R.T.
17		1 UNKNOWN 26.22 MVS	15.6
142		i .	18.2
			22.4
	٠.		25.0
	•		26.3
171		6 UNKNOWN 296.1 MVS	31.2
	. •	· ·	33.5
			37.4
		_ · · · · · · · · ·	42.0
200	•		44.7
240		11 UNKNOWN 597.3 MVS	46.9
		12 BENZENE 773.7 PPB	53.5
	:	13 UNKNOWN 18.20 MVS	73.0
228 18		14 UNKNOWN 10.26 MVS	78.4
1220 10 1 H		15 UNKNOWN 2.362 MVS	
			83.3
1)19			92.8 107.3
257		\$	
[2]			222.6
			239.2
	•	†	280.8
285 20		21 UNKNOWN 50.55 MVS 3	328.8
207 20	e e e e e e e e e e e e e e e e e e e	,	
			<u>:</u>
	•		
314	the second of	NOTES	
	. •	JOE BYRD, JR.	
	:	DULUTH ANGB	:
21		025-003mw	
342		10.0-12.0 10g	
	•	200	:
			:

ANGL	veis	#26	108	+ GC	Func	CTION ANALYSIS REPORT	
0	- 1	2	. 3 (x	100	5 MV)	TIME PRINTED: MAY 11,95 15:18 SAMPLE TIME: MAY 11,95 15:11	
4_			(^	100	141 4 7	SAMPLE TIME: MAY 11,95 15:11 METHOD	
28 -	2 =					SLOPE UP 0.500 MV/SEC	
}		4				SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC	
3		5	•			MIN HEIGHT 0.000 MV	
57-		6	•			ANALYSIS DELAY 0.0 SEC	
7-7 -0						WINDOW PERCENT 10.0 %	
85						DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN	
8 5	10					B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN	
1	7			e gare		OVEN TEMP 40 C	
		1 7				AMB TEMP 32 C	
114	14	13				MAX GAIN 1000	
114	.1-			٠		ANALYSIS TIME 400.0 SEC PEAK REPORT	
16						PK COMPOUND NAME AREA/CONC R.T	-
17						1 UNKNOWN 0.384 MVS 14.	
142	18					2 UNKNOWN 4.163 MVS 15.	2
19	Ω			•			
2	O		•	•		4 UNKNOWN 289.0 MVS 22. 5 UNKNOWN 369.2 MVS 24.	
171						6 UNKNOWN 262.5 MVS 26.	
	,			. ,	•	7 UNKNOWN 40.58 MVS 31.	
						8 UNKNOWN 87.46 MVS 33.	
200	*					9 UNKNOWN 40.63 MVS 37. 10 UNKNOWN 129.7 MVS 41.	
	•	•			•	10 UNKNOWN 129.7 MVS 41. 11 UNKNOWN 28.65 MVS 44.	
						12 UNKNOWN 105.1 MVS 46.	
220	21					13 BENZENE 133.0 PPB 53.	
228	21					14 UNKNOWN 135.9 MVS 55. 15 UNKNOWN 1.420 MVS 61.	
1						15 UNKNOWN	
/22		•	•	•		17 UNKNOWN 21.78 MVS 72.	
257						18 UNKNOWN 30.69 MVS 78.	
						19 UNKNOWN 14.12 MVS 92.	
			•	٠		20 TOLUENE 103.3 PPB 106. 21 ETHYLBENZENE 107.5 PPB 221.	
285	23					21 ETHYLBENZENE 107.5 PPB 221. 22 M,P-XYLENE 442.9 PPB 238.	
	•				•.	23 O-XYLENE 197.2 PPB 280.	
314						NOTES	
'	•					JOE BYRD, JR.	
						DULUTH ANGB	
7/10						025-003MW RESHOT	
342						10.0-12.0 10g	
						5x dilution 20 microliter injection	
						ZO MICKULITER INJECTION	:

ΔΝΔΙ	SISV	#27	108	+ GC	FUNC	TION	ANALYSI	s REP	ORT			
0	4	8	12 (x	16 10	20 MV)	: !	TIME PRIN			11,99		
1		· .		20	1*1 ¥ /				ETHO	D .		
28	<u> </u>		3			:	SLOPE UP	ΝN		0.500 1.500	MV/S MV/S	
	4_	٠.					MIN AREA			0.000	MVS	
52	5					:	MIN HEIGH		, .	0.000	MV SEC	
		7			,	!	WINDOW P			10.0	%	:
	9	8				:	DET FLOW B/F FLOW			14 14	ML/N	
85	10				•		Aux FLow			0	ML/S	•
12	l >			•			OVEN TEMP	D '		40 33	C	: : :
13						:	MAX GAIN			1000	C	
114	5				1	4	ANALYSIS	TIME		400.0 PORT	SEC	
116	5					Рк	COMPOUND			AREA/(R.T.
142	7					1 2	Unknown Unknown			3.0427.031		14.0 1 15.1
			٠			3	UNKNOWN			321.0	мVS	18.1
						4 5	Unknown Unknown			1.326 52.37		20.6
171						6	Unknown			77.05	MVS	23.7
:					•	7 8	Unknown Unknown			62.94 148.1		24.8 26.2
		•		•		9	UNKNOWN			51,26	мVS	31.0
200	•	•		•		10 11	Unknown Unknown			69.98 15.28		33.0 40.7
			•			12	Unknown			27.29	MVS	42.2
228						i	Unknown Benzene			25.43 221.8		46.6 53.1
		•	•		•	15	Unknown	•		0.109	MVS	66.4
			•			1	TOLUENE Unknown			13.57 10.33		106.5 120.0
257										,		220.0
						•	-					
285				•								
205						•					•	i
									*		•	
314						-			NOTE	S		
	,	•	. · ·			:	JOE BYRD, DULUTH AN					
						1	025-003MW					:
342							15.0-17 10x DIL		10g			
						:	10x DIL			JECTI	NO.	

LH

ANALYSIS #28		CTION ANALYSIS REPORT
0 2 4	6 8 10 (x 100 mV)	TIME PRINTED: MAY 11,95 15:52 SAMPLE TIME: MAY 11,95 15:45 METHOD
28 2 3 4		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
5 57 <u>-6-</u>		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
		WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
85		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 33 C
1148		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 0.038 MVS 14. 2 UNKNOWN 14.35 MVS 15. 3 UNKNOWN 43.29 MVS 17.
171		4 UNKNOWN 29.01 MVS 22. 5 UNKNOWN 40.85 MVS 26. 6 UNKNOWN 11.51 MVS 40. 7 BENZENE 696.2 PPB 53. 8 TOLUENE 679.1 PPB 107
200		8 TOLUENE 679.1 PPB 107. 9 ETHYLBENZENE 658.2 PPB 222. 10 M,P-XYLENE 1.389 PPM 239. 11 O-XYLENE 585.5 PPB 280.
228 9		
× /10 257		
285 11		
314	.·	NOTES
342		JOE BYRD, JR. DULUTH ANGB 1 PPM BTEX STD

	A۱	NALY	SIS	#29		103	S+ G	C	FUNC	TIO	N ANALYSIS REPORT
) -1	2	<u>.</u>		6 (x	100		10 uV)		TIME PRINTED: MAY 11,95 16:07 SAMPLE TIME: MAY 11,95 16:01 METHOD
	28	//5		4	2	3					SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
	85	5					· .			Value of the second of the sec	AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 33 C MAX GAIN 1000
•	114	↓ 7 _.				•	•		,		ANALYSIS TIME 400.0 SEC PEAK REPORT
	14	12		•						Рк 1 2 3	COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.015 MVS 14.1 UNKNOWN 4.188 MVS 15.6 UNKNOWN 72.35 MVS 17.1
	17	'1				·				4 5 6 7	UNKNOWN 0.135 MVS 22.0 UNKNOWN 2.584 MVS 41.0 UNKNOWN 1.104 MVS 67.0
	20	00 8				•	.•			8 9 10	UNKNOWN 0.831 MVS 201.4 ETHYLBENZENE 0.887 PPB 222.4
2	228	3 -9								-	
		10									
	25	57					• .		•	Strander of the late of the la	
	28	5		•			,	•			
	31	4			,						NOTES JOE BYRD, JR.
	34	2	·							-1-	DULUTH ANGB - PPM-BTEX STD AIR BLANK 53

LH

ANALYSIS #30	10S+ GC FUNCT	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 10 mV)	TIME PRINTED: MAY 11,95 16:18 SAMPLE TIME: MAY 11,95 16:12
28 <u>2</u> 3 5 5 5 5 <u>6</u> 8 9 85 10 11 13 114 14	4 = 12	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 33 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
15 16 17 142 171 200		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 2.360 MVS 14.2 2 UNKNOWN 18.66 MVS 15.6 3 UNKNOWN 107.0 MVS 18.2 4 UNKNOWN 191.1 MVS 22.3 5 UNKNOWN 46.24 MVS 26.4 6 UNKNOWN 30.62 MVS 28.6 7 UNKNOWN 7.651 MVS 31.1 8 UNKNOWN 7.651 MVS 33.5 9 UNKNOWN 54.63 MVS 33.5 9 UNKNOWN 39.68 MVS 36.8 10 UNKNOWN 26.07 MVS 42.4 11 UNKNOWN 36.19 MVS 47.0 12 BENZENE 148.8 PPB 53.4
228 18 19 257		13 UNKNOWN 49.73 MVS 66.9 14 UNKNOWN 0.370 MVS 72.9 15 UNKNOWN 0.114 MVS 78.9 16 UNKNOWN 17.78 MVS 84.0 17 TOLUENE 14.79 PPB 107.4 18 ETHYLBENZENE 9.370 PPB 223.2 19 M,P-XYLENE 24.88 PPB 240.5 20 0-XYLENE 15.88 PPB 284.2
285 20		
314 342		NOTES JOE BYRD, JR. DULUTH ANGB 025-003mw 20.0-22.0 10g

	Δ	4ALV	SIS	#31	109	S+ GC	FUNC	TIO	N ANALYSIS REPOR	RT	
) - 1	2	<u>4</u>	6 (x	8 1000	10 uV)				5:34 5:27
	28	7 6 7		4	3			The second secon	SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT DET FLOW B/F FLOW AUX FLOW OVEN TEMP	0.500 MV/ 1.500 MV/ 0.000 MVS 0.000 MV 0.0 SEC 10.0 % 14 ML/ 14 ML/ 40 C	
	11	<u>.</u> 4	8						AMB TEMP MAX GAIN ANALYSIS TIME	33 C 1000 400.0 SEC	
		'1)0 9						PK 1 2 3 4 5 6 7 8 9 10 11			R.T. 14.2 15.7 17.1 22.0 41.0 53.0 67.3 107.6 200.8 228.2 238.4
	25			•							n
	28	5		•							Tanada a sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da sa da
	31							D	NO OE BYRD, JR. OULUTH ANGB R BLANK	TES	de production de la constantina del constantina de la constantina de la constantina del constantina de la constantina de la constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantina del constantin
;	ĺ			4			***************************************				***

LH

ANALVQIQ #1	108+ CC (FUNCTION ANALYSIS REPORT
0 2 4	6 8 (x 10 m	· · · · · · · · · · · · · · · · · · ·
28 ⁵ 2 3 4 5	 6	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
7 85		WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 4C C
114 8		AMB TEMP 27 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
142		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.050 MVS 13.4 2 UNKNOWN 38.52 MVS 15.2 3 UNKNOWN 14.16 MVS 21.4 4 UNKNOWN 11.85 MVS 25.4
171		5 UNKNOWN 3.772 MVS 41.4 6 UNKNOWN 212.0 MVS 51.8 7 UNKNOWN 0.858 MVS 64.9 8 UNKNOWN 162.2 MVS 104.2 9 UNKNOWN 0.840 MVS 192.0
200 9 228 10		10 UNKNOWN 106.4 MVS 216.8 11 UNKNOWN 78.16 MVS 233.0 12 UNKNOWN 16.18 MVS 273.8
257		
285 12		
314		NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
342		

G.C. Ready Analysis No 1 Pk No - Name	108+ GC Function Run at - Fa Conc/Area	May 13,95 89:83 y 13,95 88:43 - Hlarm Ret.Time
4 Unknown 5 Unknown 6 Unknown 7 Unknown 8 toluene 9 Unknown 10 ethy!benzene 11 m.p-xylene 12 o-xylene 1 Detected 12 pea	11.85 mVS 3.772 mVS 190.0 ppb 0.858 mVS 190.0 ppb 0.840 mVS 190.0 ppb 130.0 ppb ks. Use + + to sc	- No - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
72 (mU)	· · · · · · · · · · · · · · · · · · ·	205.0 uV
53 35	*	
17 2 -1 7.34 5		10 5 <u>1</u> 1 12
		<u> 211 301 400</u>

	LYSIS	- 				TION ANALYSIS REPORT
0	2	4	6 (x	8 100	10 MV)	TIME PRINTED: MAY 13,95 09:11 SAMPLE TIME: MAY 13,95 09:04
;1 28	2					METHOD SLOPE UP 0.500 mV/Sec
3	-					SLOPE DOWN 1.500 MV/SEC
4 5	•			;		MIN AREA 0.000 MVSEC
د 57	- 6	·				MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
					7	WINDOW PERCENT 10.0 %
1						DET FLOW 14 ML/MIN
85		. *				B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
קט				. •-		AUX FLOW 0 ML/MIN OVEN TEMP 40 C
				•		AMB TEMP 28 C
7 /				•		MAX GAIN 1000
.14		- ŏ				ANALYSIS TIME 400.0 SEC PEAK REPORT
W.					٠	PK COMPOUND NAME AREA/CONC R.T.
1/0	1					1 UNKNOWN 0.038 MVS 13.4
142	•	•			-	2 UNKNOWN 13.15 MVS 15.2 3 UNKNOWN 31.12 MVS 16.8
						4 UNKNOWN 18.11 MVS 21.6
1	•					5 UNKNOWN 15.68 MVS 25.6
171	•			÷		6 UNKNOWN 2.735 MVS 41.4 7 BENZENE 1.639 PPM 52.5
						7 BENZENE 1.639 PPM 52.5 8 TOLUENE 1.852 PPM 105.4
		•	•			9 ETHYLBENZENE 2.147 PPM 217.6
200)					10 M, P-XYLENE 3.827 PPM 233.8
N. A.	_			·		11 O-XYLENE 2.327 PPM 274.1
	-	•				
228	3 / 9					
\	ر10 أسر	•				
257	7	*				
1	•	•	•		•	
À			• .			
285	, 11					
24-					•	
			•			
71/						NOTES
314	†	•	•			NOTES JOE BYRD, JR.
						DULUTH ANGB
74.0	,			•		1 PPM BTEX
342	2					

Pk >	i.C. A Analys O	is No Name		- Kun : Conc/Ar		Mag Syling Flans	3,95 : 5 09:	7:16 1me
	Unkno Unkno Unkno Unkno Denze tolue ethyl m.pyl o-xyl etecte	wh Wn wn ne henzen		31.13 18.724 18.7240 19.7200 10.0000 11.0000 11.0000 11.0000 Use	99m 99m 99m 99m		16. 5 16. 5 10. 14. 6 10. 14. 6 10. 15 10. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	SEC SEC
999	(mU)		1	-			196.2	uU
749								
499			1	8	:			
245				Ä		9	ı	
Ø	13	***************************************	\$ <u> </u>		. _	i A	10 11	
	<u> </u>	1 4	4 -	6 105	1 1 -		<u> </u>	41414

0		2		4		5 (x	10		10 MV			TIME PRINTED: MAY 13,95 09:24 SAMPLE TIME: MAY 13,95 09:18
57	3 4 5 7 8	2 6	<u> </u>				-	-		9		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV/SEC MIN HEIGHT 0.000 MV ANALYSIS DEL= 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 28 C
11	4		<u>_</u>							- - 10)	MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
14 1 2 2 2	1 11 0									12 13	1 2 3 4 5 6 7 8 9 10 11 12 3	PE-K REPORT COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.054 MVS 13.8 UNKNOWN 10.38 MVS 15.2 UNKNOWN 55.30 MVS 16.8 UNKNOWN 30.16 MVS 21.8 UNKNOWN 31.95 MVS 25.7 UNKNOWN 1.252 MVS 39.4 UNKNOWN 2.252 MVS 40.6 UNKNOWN 0.157 MVS 45.6 BENZENE 4.828 PPM 53.2 TOLUENE 6.827 PPM 106.2 UNKNOWN 17.78 MVS 187.8 ETHYLBENZENE 8.992 PPM 218.8 M,P-XYLENE 16.59 PPM 234.4 O-XYLENE 6.053 PPM 274.9
25	7	, ,										
· [· Andrews											
28	5.	14			•	,						
31	4											HOTES
34	2							•		-]	JOE BYRD, JR. DULUTH ANGB LO PPM BTEX
-								• •				
1												

. |

Analysis #4	10S+ GC	FUNCT	FICN ANALYSIS REPORT
0 2 4	6 8 (x 1000	10 uV)	TIME PRINTED: MAY 13,95 09:38 SAMPLE TIME: MAY 13,95 09:31 METHOD
28 2 4 57 = 6	3		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
85 114 8			WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 28 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
142 171			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.082 MVS 13.5 2 UNKNOWN 4.908 MVS 15.4 3 UNKNOWN 64.84 MVS 16.8 4 UNKNOWN 0.384 MVS 21.5 5 UNKNOWN 1.583 MVS 41.5 6 BENZENE 4.368 PPB 52.1 7 UNKNOWN 5.403 MVS 65.6 8 TOLUENE 2.513 PPB 105.7
200			9 ETHYLBENZENE 7.607 PPB 218.4 10 M,P-XYLENE 14.32 PPB 233.4
228 9			
10 257		•	
285		•	
314			NOTES JOE BYRD, JR. DULUTH ANGB AIR BLANK
342		:	

-	Δ	OOL.	vere:	#5	109	2+ GC	Func	TION ANALYSIS REPORT
)	4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 13,95 09:48 SAMPLE TIME: MAY 13,95 09:41
	28 57	5 7-5 77	6		2 3			METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 mL/MIN B/F FLOW 14 mL/MIN AUX FLOW 0 mL/MIN
		A	8			- -		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
	1.	42 71 9						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.031 MVS 13.6 2 UNKNOWN 11.75 MVS 15.3 3 UNKNOWN 94.62 MVS 16.7 4 UNKNOWN 0.457 MVS 21.6 5 UNKNOWN 1.048 MVS 41.0 6 BENZENE 3.724 PPB 52.2 7 UNKNOWN 3.857 MVS 66.1 8 TOLUENE 4.311 PPB 105.7 9 UNKNOWN 3.199 MVS 177.6 10 ETHYLBENZENE 4.346 PPB 218.8
	22	28 11	10	•.				11 M,P-XYLENE 9.210 PPB 233.4
	2	57			•		·	
	28	35		,	•			
		14						NOTES JOE BYRD, JR. DULUTH ANGB 025-009BH 0.5- 2.5 10G

Δ	NOLV	CIC	#6	109	3+ CC	Func.	TION ANALYSIS REPORT
	0	4	8	.12 (x	16 1000	20 uV)	TIME PRINTED: MAY 13,95 09:59 SAMPLE TIME: MAY 13,95 09:52
	1		4	2 3			METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
	14	8					AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
	9.42					•	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.570 MVS 13.9 2 UNKNOWN 12.84 MVS 15.2 3 UNKNOWN 39.49 MVS 16.8 4 UNKNOWN 50.78 MVS 21.7
	171 10 200						5 UNKNOWN 10.41 MVS 41.0 6 BENZENE 3.098 PPB 52.6 7 UNKNOWN 4.202 MVS 66.2 8 TOLUENE 3.969 PPB 105.6 9 UNKNOWN 0.294 MVS 124.2 10 UNKNOWN 0.474 MVS 180.2
	228 13	12			· ·		11 UNKNOWN 3.136 MVS 198.4 12 ETHYLBENZENE 3.380 PPB 218.8 13 M,P-XYLENE 2.321 PPB 234.6 14 UNKNOWN 1.483 MVS 237.6
	2574		•	• .	. · · · · · · · · · · · · · · · · · · ·	·	
	285	:					NOTES
	342						JOE BYRD, JR. DULUTH ANGB 025-009BH 5.0- 7.0 10G

	Δ١	MAL.	VOIO	<i>#</i>	7	1	20	3+ GC	FUNC	TIO	N ANALYSIS REPORT		
	(1	. 4		8	12	Χ	16 1000	. 20 uV)		TIME PRINTED: MAY 13,9 SAMPLE TIME: MAY 13,9		
		1			-	<u> </u>		1000	0,7	:	METHOD	10:05	:
	28	3	A ROBERT BOOK	-		2				•	SLOPE UP 0.500	,	:
•			•	4		3					SLOPE DOWN 1.500 MIN AREA 0.000	•	:
	ļ !	7 5		·							MIN HEIGHT 0.000		i :
	5	11 -	6					•		:	ANALYSIS DELAY 0.0	SEC	
		, ,8 ,9								:	WINDOW PERCENT 10.0 DET FLOW 14		
										:	B/F FLOW 14		:
	8!									:	AUX FLOW	ML/MIN	
		710						٠.		:	OVEN TEMP 40	-	
		4									AMB TEMP 29 MAX GAIN 1000		
	1	14	11							ŧ	ANALYSIS TIME 400.0	-	
					,					רי	PEAK REPORT		
										PK 1	COMPOUND NAME AREA, UNKNOWN 0.048		T.:
	14	12								2			5.2
								•		3	UNKNOWN 83.8	5 MVS 17	7.2
								, .		4 5	UNKNOWN 0.924 UNKNOWN 0.015		8
	17	71								6).2 ¦).8 :
			·	·						7	BENZENE 2.510) PPB 52	2.5
										8			1.2
	20	0								10			.6
		12	• ,	•	•			• •	•	11	TOLUENE 3.17	3 PPB 105	
										1		MVS 197	
	22	8	13									2 PPB 216) MVS 222	
		14	• •	•				•	•		•	, 1170 222	•
				•				•		:			
	25	7			,	•			ē	!			Ì
				•		.*							
	28	35		,					·	!			
	į												
	3]	4	, •							:	NOTES		
											JOE BYRD, JR.		:
											Ой∟итн ANGB 25—009вн		:
	34	12								: 02	10.0-12.0 10g		:
***************************************								··	. ·	:			
-	į												:
	37	1											:

	Δλ	اسلاما	V C I C	# \$	3 .	10	Ω.S.⊣	- GC	Fun	сī	CTION ANALYSIS REPORT	
	()) -	4		8	12	x]	16 .000	20 uV)		TIME PRINTED: MAY 13,95 10:20 SAMPLE TIME: MAY 13,95 10:13	
	28 57	/ 4	5	3	2						METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %	
	85							<u>:</u>			DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000	***************************************
•	14	12	7.								ANALYSIS TIME 400.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 13.55 MVS 15.2 2 UNKNOWN 32.71 MVS 16.3 3 UNKNOWN 40.86 MVS 21.4 4 UNKNOWN 10.27 MVS 40.5 5 BENZENE 2.234 PPB 52.5	4 8 8 8 2
	20	8 9									6 UNKNOWN 2.847 MVS 66.7 TOLUENE 3.209 PPB 106.8 UNKNOWN 0.121 MVS 177.9 UNKNOWN 0.113 MVS 183.10 UNKNOWN 1.343 MVS 196.11 ETHYLBENZENE 1.352 PPB 222.12 M,P-XYLENE 4.279 PPB 236.	10606
	22	28 12	11						,			**************************************
	25	57	•				•					
	28	15	A 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		•	• .			٠.			
	31										NOTES JOE BYRD, JR. DULUTH ANGB 025-011BH 0.5- 2.5 10G	
-	37		•							:	U. Z. J. 100	1

	Δ	ا ۵۰ ا	LV	o I C	#0)		108+	೧೭	Func	TIO	ON ANALYSIS REPORT
	() .		1		2		3 (x	4 10	5 MV)	1	TIME PRINTED: MAY 13,95 10:30
				1		_			10	141 A)		SAMPLE TIME: MAY 13,95 10:23 METHOD
	28	3	م میناند میناند			-	2				!	SLOPE UP 1.000 MV/SEC
		1/	/	3								SLOPE DOWN 3.000 MV/SEC
		\mathbf{V}									<u>:</u>	MIN AREA 0.000 MVSEC
		1 I	4									MIN HEIGHT 0.000 MV
	57	7 }										ANALYSIS DELAY 0.0 SEC
		_										WINDOW PERCENT 10.0 %
		<u>احرا</u>									!	DET FLOW 14 ML/MIN
	85											B/F FLOW 14 ML/MIN
	0.)						•			1	AUX FLOW 0 ML/MIN
		-							•			OVEN TEMP 40 C
												AMB TEMP 29 C MAX GAIN 1000
	14)	6									ANALYSIS TIME 400.0 SEC
	_	1	- · ·									PEAK REPORT
											Рк	COMPOUND NAME AREA/CONC R.T.
								,			1	UNKNOWN 9.868 MVS 15.4
	14	12									2	UNKNOWN 121.7 MVS 16.9
											3	UNKNOWN 1.529 MVS 21.9
											4	UNKNOWN 0.973 MVS 41.0
	17	77									5	UNKNOWN 2.854 MVS 66.4
	1	1	•						•		6 7	TOLUENE 3.718 PPB 106.2 UNKNOWN 1.185 MVS 194.8
											8	1110 110
							•		•		9	ETHYLBENZENE 2.205 PPB 221.2 M,P-XYLENE 5.703 PPB 238.0
	20	0	7	7						4	_	7.705 FFB 230.0
			•			•	•	• .	•	•		
	22	8	8.	}								•
					•	•		• *	•			
		9										
		_										
	25) /										
.	(
	i											
	28	5										
	_	_	•						٠	1		
	1									ļ		
	31	4										NOTES
					٠			•				JOE BYRD, JR.
!	1											DULUTH ANGB
:	7 /-	റ									(025-011вн
	34	2										5.0- 7.0 10g
:	!						•			. :		

	Δκ	ا ۱۵	v c I	c ±	ŧ1Ω	 10	S+	೯೮	FUNC	HOIT	ANALYSIS REPORT
	C)	2		4	6 (x	,	8 10	10 mV)		TIME PRINTED: MAY 13,95 10:40 SAMPLE TIME: MAY 13,95 10:33
•	28	5	2 3 4 <u>6</u>			 		7		alpha desire come come come come come come come com	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV/SEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
	85	8						·		the control of the co	DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000
	1	4_	 	=9							ANALYSIS TIME 400.0 SEC
	14	2								PK 12345	PEAK REPORT COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.037 MVS 13.6 UNKNOWN 9.026 MVS 15.4 UNKNOWN 36.52 MVS 15.9 UNKNOWN 25.22 MVS 22.0 UNKNOWN 35.84 MVS 26.0
		71		•						1	UNKNOWN 10.47 MVS 40.8 BENZENE 105.9 PPB 52.7 UNKNOWN 1.140 MVS 65.7 TOLUENE 100.4 PPB 106.1 UNKNOWN 0.797 MVS 195.6 ETHYLBENZENE 101.4 PPB 220.0 M,P-XYLENE 206.9 PPB 236.2
	2:	28) [(,	11	• .	٠.					17	O-XYLENE 99.11 PPB 277.0
	2!	,/1 5 7	.2			•	•				
	28	85	13	5			•	٠.			
	3.	14									NOTES JOE BYRD, JR. DULUTH ANGB
	3	42									100 PPB BTEX
	z	! 71				ı			,		

	<u>A</u>	ΝΔ	LVEIS	#11	109	S+ GC	FUNC	TION ANALYSIS REPORT
		9	2	4	6 (x	8 1000	10 UV)	TIME PRINTED: MAY 13,95 10:50 SAMPLE TIME: MAY 13,95 10:43
	2 5 8	7	6	4	2	3		METHOD SLOPE UP 0.500 m//SEC SLOPE DOWN 1.500 m//SEC MIN AREA 0.000 m/SEC MIN HEIGHT 0.000 m/ ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 mL/MIN B/F FLOW 14 mL/MIN AUX FLOW 0 mL/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000
	114	4	1.					ANALYSIS TIME 400.0 SEC PEAK REPORT
-	14	42						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 1.070 MVS 14.2 2 UNKNOWN 5.542 MVS 15.5 3 UNKNOWN 85.71 MVS 16.8 4 UNKNOWN 0.629 MVS 21.8
	***************************************	71	_		•			5 UNKNOWN 2.354 MVS 41.0 6 UNKNOWN 1.092 MVS 66.2 7 TOLUENE 0.753 PPB 106.4 8 UNKNOWN 0.597 MVS 193.8 9 M,P-XYLENE 3.468 PPB 238.8
	20	0	8	•			. ·	
1	22	28						
	25	9						
	28	35			,			The state of the s
	31	.4	· ·	•		,	**************************************	JOE BYRD, JR.
***************************************	34	2						DULUTH ANGB AIR BLANK
	37	1						

ANALVOIC #12	10S+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 13,95 11:00 SAMPLE TIME: MAY 13,95 10:54
28 3 4 57 5	2	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85 114 6		DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
142		PERK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 10.91 MVS 15.4 2 UNKNOWN 108.4 MVS 16.8 3 UNKNOWN 0.369 MVS 21.8 4 UNKNOWN 1.166 MVS 40.8
171 200		5 BENZENE 0.216 PPB 52.5 6 TOLUENE 2.543 PPB 106.2 7 UNKNOWN 0.790 MVS 195.4 8 ETHYLBENZENE 1.204 PPB 220.6 9 M,P-XYLENE 2.719 PPB 236.4
228 8 9		
257		
314		NOTES
342		JOE BYRD, JR. DULUTH ANGB 025-008BH 0.5- 2.5 10G

ANAL	VCIC	#13	202	+ GC	Func.	TION ANALYSIS REPORT
0	1	2	3	4	5	TIME PRINTED: MAY 13,95 11:10
			(x	100	MV)	SAMPLE TIME: MAY 13,95 11:04
	2					METHOD S. FOO. N. (0-1)
20/ /z	2					SLOPE UP 0.500 MV/SEC
ر الا						SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC
5						
57	6					MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
			*			WINDOW PERCENT 10.0 %
₩8	Ġ					DET FLOW 14 ML/MIN
/~~	9					B/F FLOW 14 ML/MIN
85	_10_	<u>. </u>				AUX FLOW 0 ML/MIN
	-11-	•		-		OVEN TEMP 40 C
\perp		12				AMB TEMP 29 C
1	3					MAX GAIN 1000
114	14				*	ANALYSIS TIME 400.0 SEC
	_			•	•	PEAK REPORT
		<u>.</u>				PK COMPOUND NAME AREA/CONC R.T.
/		15				1 UNKNOWN 29.13 MVS 15.4
L42<	· .		3		•	2 UNKNOWN 75.27 MVS 17.4
)16					3 UNKNOWN 64.53 MVS 22.1
1	/					4 UNKNOWN 17.10 MVS 28.0
171						5 UNKNOWN 41.53 MVS 33.4
-				•	•	6 UNKNOWN 36.00 MVS 36.4 7 UNKNOWN 28.57 MVS 40.2
						7 UNKNOWN 28.57 MVS 40.2 8 UNKNOWN 72.05 MVS 46.4
1	Market Ma	•	•	•		9 BENZENE 72.22 PPB 55.8
00		- Warner of the same of the sa				10 UNKNOWN 146.3 MVS 60.4
İ	• •		17	•	•	11 UNKNOWN 379.0 MVS 66.9
] .	particular					12 UNKNOWN 781.9 MVS 83.6
		- -		•		13 UNKNOWN 212.3 MVS 96.2
22/8		$\supset 18$				14 TOLUENE 183.9 PPB 102.0
	Name and Associated Property a					15 UNKNOWN 1.647 VSEC 125.7
	7.0	•				16 UNKNOWN 1.545 VSEC 144.2
7 = -	_J19					17 UNKNOWN 5.131 VSEC 198.0
257	Jan .					18 ETHYLBENZENE 1.274 PPM 223.4
		20		•		19 M, P-XYLENE 1.291 PPM 244.0
4	14	-0	•			20 O-XYLENE
285						21 UNKNOWN 1.441 MVS 291.4
-				•	•	
Ţ	21	•				
1/	•	•	•			
314						NOTES
III		•		•	• •	JOE BYRD, JR
						Duluth ANGB
						025-008вн
342						7.0- 9.0 20g

Ann. voza #1/4 100 00 F	
0 4 8 12 16 20 (x 1000 UV)	TION ANALYSIS REPORT TIME PRINTED: MAY 13,95 11:28 SAMPLE TIME: MAY 13,95 11:21
28 2 28 2 57 6 8 = 9 85 — 10 — 12	METHOD SLOPE UP SLOPE UP SLOPE DOWN MIN AREA MIN AREA MIN HEIGHT ANALYSIS DELAY DET FLOW B/F FLOW AUX FLOW OVEN TEMP AMB TEMP O.500 MV/SEC MV/MV ANALYSIS DELAY 0.0 \$EC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN O ML/MIN OVEN TEMP 40 C AMB TEMP 29 C
13 114 14 15	MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
142 171 171	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.322 MVS 14.0 2 UNKNOWN 3.064 MVS 14.9 3 UNKNOWN 13.60 MVS 17.2 4 UNKNOWN 13.18 MVS 21.6 5 UNKNOWN 3.867 MVS 27.6 6 UNKNOWN 6.124 MVS 32.9 7 UNKNOWN 4.646 MVS 36.0
200 18	8 UNKNOWN 4.462 MVS 40.6 9 UNKNOWN 9.834 MVS 46.2 10 BENZENE 7.096 PPB 55.6 11 UNKNOWN 13.83 MVS 59.5 12 UNKNOWN 34.50 MVS 66.5 13 UNKNOWN 67.10 MVS 83.3 14 UNKNOWN 17.99 MVS 95.6
257 20 21 285	15 TOLUENE 21.83 PPB 101.8 16 UNKNOWN 118.9 MVS 125.6 17 UNKNOWN 112.7 MVS 143.8 18 UNKNOWN 324.6 MVS 198.2 19 ETHYLBENZENE 126.4 PPB 223.6 20 M,P-XYLENE 157.6 PPB 244.0 21 O-XYLENE 805.7 PPB 266.1
314	NOTES

JOE BYRD, JR
DULUTH ANGB
025-008BH RESHOT
7.0-9.0 20G
10 MICROLITER INJECTION

ANAL	VCIC	#15	108	+ GC	FUNC	TION ANALYSIS REPORT
0		8	12 (x	16 10	20 mV)	TIME PRINTED: MAY 13,95 11:43 SAMPLE TIME: MAY 13,95 11:36 METHOD
28 / 2 3 57						SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
85						DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000
114						ANALYSIS TIME 400.0 SEC PEAK REPORT
142						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 485.5 MVS 16.6 2 UNKNOWN 0.538 MVS 34.8 3 UNKNOWN 1.735 MVS 40.7 4 UNKNOWN 0.343 MVS 66.9
71		•.				
200		· .				
			•	•		
228	• . •	. •				
257					•	
285						
			•			
314		•				NOTES JOE BYRD, JR. DULUTH ANGB 025-008BH
342		•	•		•	9.0-11.0 10g 10 MICROLITER INJECTION

-	ΔN	۵۲۷	cic	#16		LOS+	GC	FUNCT	TION ANALYSIS REPORT
	G)	2	4	6		8	10	TIME PRINTED: MAY 13,95 11:54
:		7			(x 1	.000	υV)	SAMPLE TIME: MAY 13,95 11:47
:	28	1 -			_==			2	METHOD SLOPE UP 0.500 mV/Sec
:			prevenue.				3	~	SLOPE DOWN 1.500 MV/SEC
					4				MIN AREA 0.000 MVSEC
ì		-/ 5)	•					MIN HEIGHT 0.000 MV
:	57	,	,6			•			ANALYSIS DELAY 0.0 SEC
:	Ī	$\langle \alpha' \rangle$							WINDOW PERCENT 10.0 %
:		> 8 9							DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
	85			1 4					AUX FLOW 0 ML/MIN
				•			<u>.</u> .		OVEN TEMP 40 C
				•					AMB TEMP 31 C
	11	<u>)</u> ,	10	1					MAX GAIN 1000
	11	11	ΤÜ	•					ANALYSIS TIME 400.0 SEC PEAK REPORT
		12							PK COMPOUND NAME AREA/CONC R.T.
į		_		•					1 UNKNOWN 0.023 MVS 13.6
	14	12						•	2 UNKNOWN 10.76 MVS 15.2 3 UNKNOWN 30.78 MVS 16.7
									201,
				•	•				4 UNKNOWN 46.44 MVS 21.7 5 UNKNOWN 1.399 MVS 41.0
ļ	17	1							6 UNKNOWN 5.266 MVS 42.0
	-				•	•	•		7 UNKNOWN 4.864 MVS 46.0
			٠				٠		8 BENZENE 2.285 PPB 52.4
	20	90							9 UNKNOWN 3.342 MVS 66.1 10 TOLUENE 1.706 PPB 105.0
.	_	13	•	•	•	•	. •	• .	11 UNKNOWN 0.121 MVS 115.3
									12 UNKNOWN 0.133 MVS 122.5
	20	0	14						13 UNKNOWN 6.735 MVS 197.4
.	22	10	14	• .	•	٠	•	·	14 ETHYLBENZENE 6.271 PPB 222.6 15 O-XYLENE 30.13 PPB 266.4
									15 0 ATELNE 50.15 PPB 200.4
				-	•		•		
	25	/				٠			
	-	15		•					
	26	35							
	z c	٠ رر	•	•	•				
	į								
	_]				•		•		
	31	.4						•	NOTES
									JOE BYRD, JR. DULUTH ANGB
:	1				• •		•		025-008BH RESHOT
	34	12							9.0-11.0 106
						·			50 MICROLITER INJECTION

ANALYSIS #17 10S+	SC	FUNCT	TION ANALYSIS REPORT
0 2 4 6 (x	8 10	10 MV)	TIME PRINTED: MAY 13,95 12:04 SAMPLE TIME: MAY 13,95 11:58
28	7		METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 mL/MIN B/F FLOW 14 mL/MIN AUX FLOW 0 mL/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142 171 200 10 228) 11			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.056 MVS 13.8 2 UNKNOWN 12.71 MVS 15.4 3 UNKNOWN 61.14 MVS 16.9 4 UNKNOWN 107.9 MVS 22.0 5 UNKNOWN 0.194 MVS 26.0 6 UNKNOWN 1.020 MVS 40.4 7 BENZENE 108.4 PPB 53.0 8 UNKNOWN 1.131 MVS 66.0 9 TOLUENE 94.77 PPB 106.5 10 UNKNOWN 8.266 MVS 197.2 11 ETHYLBENZENE 100.7 PPB 220.8 12 M,P-XYLENE 214.4 PPB 237.2 13 O-XYLENE 143.7 PPB 278.4 14 UNKNOWN 0.912 MVS 318.9
)12 257			
285 13		•	
314			NOTES
14		·	JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
342			
!			

0 2 4 6 8 10	True Darwen May 17 OF 10 17
0 2 4 6 8 10 (x 1000 uV)	TIME PRINTED: MAY 13,95 12:17 SAMPLE TIME: MAY 13,95 12:10
1 1 1000 007	SAMPLE TIME: MAY 13,95 12:10 YETHOD
282	SLOPE UP 0.500 MV/SEC
3	SLOPE DOWN 1.500 MV/SEC
4	MIN AREA 0.000 MVSEC
75	MIN HEIGHT 0.000 MV
57년	ANALYSIS DELAY 0.0 SEC
/6	WINDOW PERCENT 10.0 %
<u> </u>	DET FLOW 14 ML/MIN
	B/F FLOW 14 ML/MIN
85	AUX FLOW O ML/MIN
-	OVEN TEMP 40 C
	AMB TEMP 31 C
	Max Gain 1000
114 7	ANALYSIS TIME 400.0 SEC
	PEAK REPORT
	PK COMPOUND NAME AREA/CONC R.T.
142	1 UNKNOWN 0.162 MVS 14.0
142	2 UNKNOWN 5.943 MVS 15.5 3 UNKNOWN 24.13 MVS 16.8
171	
	6 BENZENE 0.516 PPB 52.4 7 TOLUENE 1.721 PPB 106.9
	8 UNKNOWN 1.523 MVS 197.0
	9 ETHYLBENZENE 0.947 PPB 228.4
200	10 M,P-XYLENE 2.371 PPB 235.4
8	
228	
9	
10	
257	
1	
285	
314	YOTES
	JOE BYRD, JR.
	DULUTH ANGB
740	AIR BLANK
342	
371	
711	

ΔN	VLACIC	#19	109	S+ GC	Func	CTION ANALYSIS REPORT
G	4	8	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 13,95 12:27 SAMPLE TIME: MAY 13,95 12:21 METHOD
28	· journ		2		3	SLOPE UP 1.000 MV/SEC SLOPE DOWN 3.000 MV/SEC
57	\\\ 5 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	4				MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
						WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
85	> 6	<i>1</i> 2		-		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
	4 7					MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
14	2			* .		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.392 MVS 14.1 2 UNKNOWN 11.99 MVS 15.4 3 UNKNOWN 107.8 MVS 16.8
17	1			•	•	4 UNKNOWN 1.300 MVS 21.9 5 UNKNOWN 0.212 MVS 40.7 6 UNKNOWN 5.854 MVS 86.4 7 TOLUENE 3.075 PPB 106.8
20	0 8			· ·		8 UNKNOWN 0.903 MVS 200.8 9 ETHYLBENZENE 2.494 PPB 228.4
22	8	· .				
25	7	•			٠.	
28	5				. ·	
31	4					NOTES
34	2					JOE BYRD, JR. DULUTH ANGB 025-008BH 13.0-15.0 10G
!!!						

Δ	NALV	orc	#20	10	s+ GC	FUNC	TION ANALYSIS REPORT
	0	4	 	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 13,95 12:37 SAMPLE TIME: MAY 13,95 12:31
2	8		3		2		METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV
5	7, !	5					ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
8	"		· .		· ·		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
11	4 7						ANALYSIS TIME 400.0 SEC PEAK REPORT
1	42						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 13.18 MVS 14.8 2 UNKNOWN 144.0 MVS 16.3 3 UNKNOWN 1.143 MVS 21.3 4 UNKNOWN 0.577 MVS 40.9
1	71						5 BENZENE 0.124 PPB 52.3 6 UNKNOWN 1.633 MVS 66.1 7 TOLUENE 3.441 PPB 106.2 8 UNKNOWN 7.815 MVS 196.4 9 ETHYLBENZENE 7.276 PPB 220.4
2	00 .		•				9 ETHYLBENZENE 7.276 PPB 220.4 10 M,P-XYLENE 16.50 PPB 237.4 11 O-XYLENE 8.636 PPB 273.6
2	28 9	9			•		
2	10 57			•			
2	 11 85 .						
3	14						NOTES
3	42				÷ ,		JOE BYRD, JR. DULUTH ANGB 025-010BH 0.5- 2.5 10G
3	71						

1	Δ	N D.I	_VCI	c #	21	10	S+ GC	Func	CTIC	ON ANALYSIS REPO	RT	
		0	2		4	6 (x	8 1000	10 UV)			May 13,95 12:42	
	2 5	8		parameter		4			2	SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY	THOD 0.500 MV/SEC 1.500 MV/SEC 0.000 MVSEC 0.000 MV	
	8:	1/7	6 7 3	•						WINDOW PERCENT DET FLOW B/F FLOW AUX FLOW OVEN TEMP	10.0 % 14 ML/MIN 14 ML/MIN 0 ML/MIN 40 C	
	1	4	9			•				AMB TEMP MAX GAIN ANALYSIS TIME	32 C 1000 400.0 SEC REPORT	
erafina fermando de esse estando astemas e estados mismos escues	14	42	•	•	•	•			PK 1 2 3 4	COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN UNKNOWN	AREA/CONC R.1 0.191 MVS 13. 11.09 MVS 15. 39.59 MVS 17. 61.22 MVS 22.	9 5 0
	;	71				•			56789	Unknown BENZENE Unknown Unknown Toluene	16.12 MVS 40. 3.302 PPB 52. 5.111 MVS 66. 3.420 MVS 86. 2.678 PPB 107.	9 9 1 5
)0 10 28								UNKNOWN ETHYLBENZENE M,P-XYLENE O-XYLENE	1.370 MVS 199. 1.206 PPB 226. 2.937 PPB 238. 1.854 PPB 276.	2 2 6
	25	11 12 7										
	2 8	35	13		•			٠	TORSE THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERT			
101	31	.4	1		• .	•	•				OTES	
77	34	2			•	•			I	JOE BYRD, JR. DULUTH ANGB 25-010BH 5.0- 7.0 10G		
7	57	1		•			•					

ΔΝΔΙ	LVCIC	#28	108+	GC FUNC	TION ANALYSIS REPORT
0	2	4	6 (x	8 10 10 MV)	TIME PRINTED: MAY 13,95 14:11 SAMPLE TIME: MAY 13,95 14:04
287	2 3 4				METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec MIN AREA 0.000 mVSec
57-	5 <u>6-</u> -		7	• :	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
8			:	•	WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
8# - 	•				AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
114	9				MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142					PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.042 MVS 14.0 2 UNKNOWN 10.70 MVS 15.5 3 UNKNOWN 38.65 MVS 17.0 4 UNKNOWN 26.49 MVS 22.1
					5 UNKNOWN 40.37 MVS 26.0 6 UNKNOWN 12.84 MVS 40.8 7 BENZENE 92.50 PPB 53.1
200)				8 UNKNOWN 0.126 MVS 66.1 9 TOLUENE 91.84 PPB 106.8 10 UNKNOWN 3.060 MVS 197.4 11 ETHYLBENZENE 95.59 PPB 221.8 12 M,P-XYLENE 192.6 PPB 238.2
228) H	11				13 O-XYLENE 100.5 PPB 279.2
257	L2				
285	.13				
314			•		Notes
342	•				JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
371			•	•	

A	VALY	SIS	#1	10S+	GC	Func	TION ANALYSIS REPORT
(2	4	6	8	10	TIME PRINTED: MAY 15,95 08:18
	17-		•	(x	ΤŃ	MV)	SAMPLE TIME: MAY 15,95 08:12 METHOD
28	3,7	2					SLOPE UP 0.500 MV/SEC
	3					·	SLOPE DOWN 1.500 MV/SEC
	4 5			•	•		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
5		6			-		ANALYSIS DELAY 0.0 SEC
		•	•		7		WINDOW PERCENT 10.0 %
			:		•		DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
8!	Į P					•	AUX FLOW 0 ML/MIN
		•		•	•	•	OVEN TEMP 40 C
			Ŕ	•	•		AMB TEMP 29 C MAX GAIN 1000
1	1,4		J		*		ANALYSIS TIME 400.0 SEC
		•	•				PEAK REPORT
				• "			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.084 MVS 13.2
14	12			* * * * * * * * * * * * * * * * * * *			2 UNKNOWN 36.63 MVS 14.7
		•	• • •		•	•	3 UNKNOWN 16.31 MVS 21.0
				•			4 UNKNOWN 12.82 MVS 24.8 5 UNKNOWN 7.370 MVS 31.0
1	71						5 UNKNOWN 7.370 MVS 31.0 6 UNKNOWN 4.747 MVS 41.1
		•	•		•		7 UNKNOWN 233.6 MVS 50.8
	0	•	•				8 UNKNOWN 168.8 MVS 101.6
20	9 0						9 UNKNOWN 2.133 MVS 187.0 10 UNKNOWN 114.5 MVS 210.0
		•	•		•		11 UNKNOWN 85.61 MVS 225.8
	1),		•				12 UNKNOWN 22.68 MVS 265.3
2:		LO			٠		
24		Ĺ	•		•	•	
	1						
2] 57						
4.	T '	•		•	•	•	
	12		•	•			
2	85 85						
20	ر ب ا	•			•	•	
7	 						
7.	14		• . •		•	•	NOTES JOE BYRD, JR.
					-		DULUTH ANGB
-		,	•		•		100 PPB BTEX
3	42	•	•	•		•	
			•	•	•		
13	71					-	

ī	٨N	NA L	_YS	IS	* #	4		_1	0S-	+ G	C	Fu	NC	CTION ANALYSIS REPORT	
) 1-		1		2		3		4 LOO			5	TIME PRINTED: MAY 15,95 09:18 SAMPLE TIME: MAY 15,95 09:12 METHOD	
	28	3		-		3	-	2	. •				•	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC	
	57		ļ 5	,										MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC	
		>	6					٠.						WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN	
	85	5	•								•			AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C	
44	14	+	7.											MAX GAIN 1000 ANALYSIS TIME 400.0 SEC	
	14	2												PEAK REPORT PK COMPOUND NAME AREA/CONC R. 1 UNKNOWN 0.080 MVS 13 2 UNKNOWN 29.12 MVS 16 3 UNKNOWN 0.246 MVS 20	.5 .1 .8
	17	1	٠			•						. •		4 UNKNOWN 3.645 MVS 41.5 BENZENE 1.693 PPB 50.6 UNKNOWN 4.391 MVS 63.7 TOLUENE 0.895 PPB 102.8 ETHYLBENZENE 3.152 PPB 211.	. 8 . 9 . 4
	20	0	٠.			•					· .			8 ETHYLBENZENE 3.152 PPB 211. 9 M,P-XYLENE 4.396 PPB 227.	
	8 22 9	8				•			•						
	آ 1 25								-						
	د ۲	<i>)</i>							•		٠				
4	28!	5				•									
	314	4	· .					•						NOTES	
	342	2	•		•	•		•						JOE BYRD, JR. DULUTH ANGB AIR BLANK	*
7	× 7 -							•		•					

ANAL	YSIS	#5	10S+ GC	Func	TION ANALYSIS REPORT
0	2	. 4	6 8 (x 100	10 mV)	TIME PRINTED: MAY 15,95 11:10 SAMPLE TIME: MAY 15,95 11:03 METHOD
28 3	.2		· · · ·		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
57	<u>_6</u>	·		, 	MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
\\\\\		•	•	/	WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
85					AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 28 C
114-		8		• •	MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
142	•	•		•	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.042 MVS 13.2 2 UNKNOWN 3.328 MVS 15.1 3 UNKNOWN 18.02 MVS 16.6
171					4 UNKNOWN 42.86 MVS 21.3 5 UNKNOWN 0.498 MVS 25.2 6 UNKNOWN 0.852 MVS 40.8 7 BENZENE 827.2 PPB 51.6
200				·	8 TOLUENE 778.3 PPB 103.0 9 ETHYLBENZENE 664.2 PPB 213.0 10 M,P-XYLENE 1.304 PPM 228.8 11 O-XYLENE 631.7 PPB 268.5
228	.0 .0	•		•	
257	•				
11 285	•	•			
314					NOTES JOE BYRD, JR. DULUTH ANGB 1 PPM BTEX
342	•				

ANA	LYSIS	#6	108	+ GC FUN	CTION ANALYSIS REPORT
0	1	2	3 (x	4 5 1000 uV)	SAMPLE TIME: MAY 15,95 11:17
28		- Townson of the last of the l		 2 3	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
57	74 5-5	-		•	MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
85	 6	•	•	· .	DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
114	7	•			AMB TEMP 28 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		•		•	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.030 MVS 13.3 2 UNKNOWN 74.80 MVS 16.6 3 UNKNOWN 0.021 MVS 21.2
171				•	4 UNKNOWN 2.117 MVS 41.1 5 BENZENE 0.690 PPB 51.3 6 UNKNOWN 5.865 MVS 64.6 7 TOLUENE 1.606 PPB 103.3
200	8	** ** **			8 UNKNOWN 1.127 MVS 191.0 9 ETHYLBENZENE 2.951 PPB 212.6 10 M,P-XYLENE 3.487 PPB 229.8
9 228 10)			•	
257			•	. 1.	
285				•	
314		•	•		NOTES JOE BYRD, JR.
342		•	•		DULUTH ANGB -1 PPM BTEX AIR BLANK IB
	•		•		

025-003вн 0.5 - 2.510_G

342

スカコ

ΔN	ALVE	I &	#10		108-	+ GC	FUNC	TIO	N ANALYSIS REPO	RT		
P)	2	4		6	8	10		TIME PRINTED:			
	_1				(X	T00	MV)			MAY 15,95 THOD	5 12:	:01
28	}	2		· · · · · ·	······································				SLOPE UP	0.500	MV/S	SEC
	•								SLOPE DOWN	1.500	MV/S	
							4		MIN AREA	0.000	MVSE	
	,						=== 5 -		MIN HEIGHT	0.000	ΜV	
57						•	—— 6 7		ANALYSIS DELAY WINDOW PERCENT	0.0 10.0	SEC %	
									DET FLOW	14	ML/N	NIN
						_=	8		B/F FLOW	14	ML/N	
85	,		· <u></u>						AUX FLOW	0	ML/N	NIN
			1	Λ			9		OVEN TEMP	40	C	
			<u></u>	0_					AMB TEMP MAX GAIN	30 1000	C	
11	4							1,	ANALYSIS TIME	400.0	SEC	
-1	•		No.	. ·	•	٠	. —	$\overline{}$	PEAK			
				12.				Pĸ		AREA/(R.T.
		•						1	UNKNOWN	0.276		13.6
14	2							2	UNKNOWN	329.3		17.4
		13						4	Unknown Unknown	18.56 14.87		23.3 34.4
	p. Professional Contraction of the Contraction of t		•	•		•		5	UNKNOWN	5.542		39.8
17	1							6	UNKNOWN	5.542		45.4
			. ,	·	·	·		7	UNKNOWN	77.85		57.9
	1 /		•	;		٠		8	UNKNOWN	5.012	1	70.6
20	14							9	Unknown Unknown	7.924 3.185		81.0 88.2
							•	11	TOLUENE	4.792		103.2
	\							1	UNKNOWN	8.105		
	{15					·		i	UNKNOWN			148.0
22	8	3 3 6	٠,			•		1	UNKNOWN	1.677		185.8
	· server	16	1	7				•	ETHYLBENZENE M,P-XYLENE	747.1 2.743		212.6 227.8
	[•		′ .	•	•		1	UNKNOWN			233.6
25	7 1	8				•		:	UNKNOWN	305.3		250.9
	1		•	•	•	•	•	19	O-XYLENE	4.034	PPM	266.4
] 19										ŀ	
28	_											
120	٠ .	•	•	:		•	•					
		•		•		•			* *			
31	4 .		•							OTES		
								1	JOE BYRD, JR. Duluth ANGB			
				•				1		RESHO		
34	2							'	5.0-7.0 10			
	•	•		•	•	•	• ,		20 MICROLITER I			
		. •								•		
37	1											!
. , ,	*								•			

Analysis #13 10S+	· GC	FUNCTION	ANALYSIS	REPORT
-------------------	------	----------	----------	--------

0 2 4 6 8 1	
(x 1000 uV) SAMPLE TIME: MAY 15,95 12:43
28 3	METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec
5 5 6 7 5 T 5 T 5 T 5 T 5 T 5 T 5 T 5 T 5 T 5	MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
8 9 9 85 10 11 12	DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C
13 114 14 15	MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.235 MVS 13.6 2 UNKNOWN 4.557 MVS 15.2 3 UNKNOWN 24.47 MVS 16.4 4 UNKNOWN 15.12 MVS 21.4
	5 UNKNOWN 25.13 MVS 23.8 6 UNKNOWN 10.78 MVS 32.4 7 UNKNOWN 6.933 MVS 35.4
200	9 UNKNOWN 8.078 MVS 40.8 10 UNKNOWN 10.13 MVS 45.4 11 BENZENE 10.50 PPB 51.4
16 228 17	12 UNKNOWN 20.04 MVS 64.5 13 UNKNOWN 0.209 MVS 70.5 14 UNKNOWN 7.013 MVS 81.0 15 TOLUENE 5.070 PPB 103.4 16 ETHYLBENZENE 10.61 PPB 214.8
257	17 M,P-XYLENE 25.08 PPB 229.6
285	
314	NOTES
342	JOE BYRD, JR. DULUTH ANGB AIR BLANK

Δ.	NΔL	V010	#14		10.9	+ 60	Func	TION ANALYSIS REPORT
	Q	4	8		12	16	20	TIME PRINTED: MAY 15,95 13:02
			•		, (x	10	MV)	SAMPLE TIME: MAY 15,95 12:55
2	g =				_			METHOD STORE HE
-		_ _			•			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
		3	-		. 4			SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC
	-5	⊋ ≽		5				MIN HEIGHT 0.000 MV
5	75	3	6					ANALYSIS DELAY 0.0 SEC
	7	-	•		•		•	WINDOW PERCENT 10.0 %
	 	8						DET FLOW 14 ML/MIN
0		9						B/F FLOW 14 ML/MIN
8	2)	10						AUX FLOW 0 ML/MIN
	Y	11 12			,	•		OVEN TEMP 40 C
	ľ.	13	•		•	•		AMB TEMP 30 C MAX GAIN 1000
1	1/4	14						MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
	1				•	,	•	PEAK REPORT
	16							PK COMPOUND NAME AREA/CONC R.T.
	[17				•	,		1 UNKNOWN 0.265 MVS 13.7
1	42	18	. ,					2 UNKNOWN 4.559 MVS 14.8
	19							3 UNKNOWN 85.55 MVS 17.5
					•			4 UNKNOWN 191.6 MVS 21.4
٦.	71			٠				5 UNKNOWN 170.6 MVS 23.8 6 UNKNOWN 118.8 MVS 25.3
-	1		•			•	•	22010 1110 2019
					•			/ UNKNOWN 19.67 MVS 30.2 8 UNKNOWN 98.63 MVS 32.5
		•			•	•		9 UNKNOWN 67.94 MVS 35.6
20	0	20					•	10 UNKNOWN 45.24 MVS 39.5
				٠,		•	•	11 UNKNOWN 55.97 MVS 40.5
	2							12 UNKNOWN 77.21 MVS 45.2
22	21 28							13 BENZENE 28.22 PPB 51.4
~	22		٠		•		•	14 UNKNOWN 89.39 MVS 54.2 15 UNKNOWN 40.05 MVS 64.8
	<i>[</i>			÷				
		.•			• '	•		16 UNKNOWN 34.25 MVS 70.6 17 UNKNOWN 53.57 MVS 80.6
25	7							18 TOLUENE 42.57 PPB 103.0
		•	•			• ,		19 UNKNOWN 2.261 MVS 119.6
	2							20 UNKNOWN 0.776 MVS 190.2
28	23		1					21 ETHYLBENZENE 40.78 PPB 213.6
20	ָ ענ	•			•	•		22 M,P-XYLENE 228.3 PPB 229.4
								23 O-XYLENE 83.58 PPB 268.8
			-	•		•		
3	4						1	NOTES
		•	•	•	•	•	.	JOE BYRD, JR.
								DULUTH ANGB
7/	10							025-003вн
34	12							15-17 10g
								15-17 10g > 30 pl 20y 20 20 33
		•				• .	į	
37	1							

ANALVOIC #15 10S+ GC	Funct	TION ANALYSIS REPORT
0 1 2 3 4	5	TIME PRINTED: MAY 15,95 13:13
(x 100		SAMPLE TIME: MAY 15 95 13:06
\ \ \\\		METHOD
28		SLOPE UP 0.500 MV/SEC
5_3	•	SLOPE DOWN 1.500 MV/SEC
4		MIN AREA 0.000 MVSEC
5		MIN HEIGHT 0.000 MV
57 6		ANALYSIS DELAY 0.0 SEC
↓ □ ₹ / • • • • • • • • • • • • • • • • • •	•	WINDOW PERCENT 10.0 %
8		DET FLOW 14 ML/MIN
 		B/F FLOW 14 ML/MIN
	•	AUX FLOW 0 ML/MIN OVEN TEMP 40 C
12		AMB TEMP 30 C
13		MAX GAIN 1000
11/4 14		ANALYSIS TIME 400.0 SEC
15		PEAK REPORT
16		PK COMPOUND NAME AREA/CONC R.T.
17		1 UNKNOWN 0.842 MVS 13.8
142 18		2 UNKNOWN 6.142 MVS 14.8
19		3 UNKNOWN 238.5 MVS 17.6
20		4 UNKNOWN 510.2 MVS 21.5
		5 UNKNOWN 622.9 MVS 24.0
171		6 UNKNOWN 492.6 MVS 25.4 7 UNKNOWN 85.06 MVS 30.2
		,
		8 UNKNOWN 376.1 MVS 32.6 9 UNKNOWN 254.6 MVS 35.6
200		10 UNKNOWN 402.8 MVS 39.6
		11 UNKNOWN 296.3 MVS 45.4
<u> </u>		12 BENZENE 137.7 PPB 51.6
21		13 UNKNOWN 388.1 MVS 54.2
228	_	14 UNKNOWN 197.7 MVS 64.9
22	·	15 UNKNOWN 144.0 MVS 70.8
23		16 UNKNOWN 155.2 MVS 80.9
0.57		17 UNKNOWN 55.99 MVS 88.4
257		18 TOLUENE 156.7 PPB 102.8
		19 UNKNOWN 4.711 MVS 120.5 20 UNKNOWN 3.300 MVS 148.6
24		21 ETHYLBENZENE 122.6 PPB 213.2
285	÷	22 M,P-XYLENE 916.4 PPB 228.2
	•	23 UNKNOWN 444.7 MVS 232.8
		24 O-XYLENE 553.4 PPB 268.5
314		NOTES
	•	JOE BYRD, JR.
		DULUTH ANGB
740		025-003вн
342		20.0-22.0 10g
		50 MICROLITER INJECTON
		1
スプコ		1

ΔΝΔ	LYSIS	#16	10S+	GC	Func	TION ANALYSIS REPORT
	1	2	3 (x		мV)	TIME PRINTED: MAY 15,95 13:45 SAMPLE TIME: MAY 15,95 13:39
28			•	٠		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
			•			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
57 '		•			•	ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85	>	•				B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
. (`					OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000
114 (,					ANALYSIS TIME 400.0 SEC PEAK REPORT
			•			PK COMPOUND NAME AREA/CONC R.T.
142		•				
171	•				,	
						• .
200	•	•				
228		1		•		
	• * · · · • • •				•	
257						
		•				
285					:	
314			•	•		NOTES
	•		•		·	JOE BYRD, JR. DULUTH ANGB 025-003BH
342		•		•	٠.	25.0' 10G 20 MICROLITER INJECTON
371			•	•		

-	Δ,	4 O. L	vei	0 #	17		10	<u>c</u> +	GC	Fun	CTI	N ANALYSIS REPOR	२ T	
	()	.4		8	•	12		16	20		TIME PRINTED: N	MAY 15.95	13:57
Ì							(x			ΜV)			1AY 15,95	
ļ		-1					•		•	ŕ	!		ГНОД	10.01
	28	3		2=								SLOPE UP		MV/SEC
1		-52		=-			· 3	٠	•	•		SLOPE DOWN		MV/SEC
			-	=		- 4					İ	MIN AREA		MVSEC
			<u> </u>	. 5)		•					MIN HEIGHT		MV
	57	<u>ر جر</u>	- `			6						ANALYSIS DELAY		SEC
				•	7		•	•	•	•		WINDOW PERCENT		%
				- 8	}							DET FLOW		ML/MIN
		,,,,,	-	ġ			•		•		-	B/F FLOW		ML/MIN
	85		<u>-</u> 10		,							AUX FLOW		ML/MIN
1		_رَّ	1.	1	•		•	•	•	•	İ	OVEN TEMP	-	C
		-(12							İ	AMB TEMP		Č
		1	, .	13			•		•			MAX GAIN	1000	i
	11	4		14							-	ANALYSIS TIME		SEC
į	-	Ì	15	•	•	•		•	•	. •	-		REPORT	000
)	16	5							Pĸ	COMPOUND NAME	AREA/Co	NC R.T.
		(1	7	•		•	•		•		1	UNKNOWN	16.03 M	
	14	2	18								2	UNKNOWN	122.2 M	
l	ĺ	11	9	•	•	•		•	•	•	3	UNKNOWN		VS 21.6
	į	20					•				4	UNKNOWN	160.9 M	
l						,			•		5	UNKNOWN		VS 25.4
-	17	1									6	UNKNOWN		VS 32.9
	Ì			•	•	•		•	•	•	7	Unknown	164.4 M	
]										8	UNKNOWN	217.5 M	
	1								·		9	Unknown	172.4 M	
2	20	0	21								10	BENZENE	20.46 PF	
	Ü				•	•		•	•	•	11	UNKNOWN	96.80 M	
					:						12	UNKNOWN	143.5 M	
		22				•						UNKNOWN	115.1 M	1
2	22		_, .								14	UNKNOWN	242.2 M	
	Ì	23	3						•	•	15	UNKNOWN	161.4 M	
	1	•									16	Unknown	206.2 M	
		_									17		96.68 m\	1
2	25	/										TOLUENE	118.3 PF	
										•	19		275.6 M	
		.								•		UNKNOWN	118.0 MV	
1		24										Unknown	92.00 MV	
2	8	5	•									ETHYLBENZENE	42.25 PF	PB 214.4
												M, P-XYLENE	363.7 PF	В 230.0
											24	O-XYLENE	46.73 PF	
7]	/ı												1
12	14	+		•									TES	
												OE BYRD, JR.		ł
												OULUTH ANGB		
7)									(125-003BH RESHO	Γ	
12	42	_			. •		,				-	25.0′ 106		1 1
												.00 MICROLITER II	NJECTION	
				•		•			•					
3	ļ 71	i									İ			1
														•

Δι	AVTARIE	#18	108+	GC	FUNC	TION ANALYSIS REPORT
(2	4	6	8	10	TIME PRINTED: MAY 15,95 14:08
			(x	10	MV)	SAMPLE TIME: MAY 15,95 14:02
	1>					METHOD
28		•	•		•	SLOPE UP 0.500 MV/SEC
	<u></u>					SLOPE DOWN 1.500 MV/SEC
	5 -	. 4	•			MIN AREA 0.000 MVSEC
5	7(6					MIN HEIGHT 0.000 MV
)	- 7-	•	, i	٠		ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
	ر	8 =				WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
	9			٠		B/F FLOW 14 ML/MIN
8	5 10 T					AUX FLOW 0 ML/MIN
	Kii	• • • • • •		•		OVEN TEMP 40 C
	<u>-4</u> 2					AMB TEMP 30 C
		}	•	•		MAX GAIN 1000
1	14,		14			ANALYSIS TIME 400.0 SEC
	├ 15		•		•	PEAK REPORT
	/ 16					PK COMPOUND NAME AREA/CONC R.T.
	П	17				1 UNKNOWN 0.077 MVS 13.8
11	12 18					2 UNKNOWN 9.573 MVS 15.1
	150 173		÷			3 UNKNOWN 49.16 MVS 17.6
	20	•	•			4 UNKNOWN 61.85 MVS 21.7 5 UNKNOWN 33.52 MVS 23.8
1.	// //1					, · · · · · · · · · · · · · · · · · · ·
		•		•		6 UNKNOWN 17.83 MVS 25.5 7 UNKNOWN 18.59 MVS 27.6
						8 UNKNOWN 63.77 MVS 32.7
		• .	•			9 UNKNOWN 52.54 MVS 35.7
20	0 21					10 UNKNOWN 39.50 MVS 39.5
		•		•	•	11 UNKNOWN 58.61 MVS 46.0
	<u> </u> 		•			12 BENZENE 12.64 PPB 54.6
	22					13 UNKNOWN 78.24 MVS 58.0
2	28 					14 UNKNOWN 337.6 MVS 66.0
	23					15 UNKNOWN 51.08 MVS 81.3
	!	•	•			16 UNKNOWN 65.62 MVS 89.4 17 TOLUENE 152.1 PPB 101.8
21	5 7					
12.			•	•		18 UNKNOWN 63.00 MVS 120.9 19 UNKNOWN 42.42 MVS 131.2
						20 UNKNOWN 48.59 MVS 147.8
		•	•			21 UNKNOWN 41.26 MVS 191.8
28	\$5				. *	22 ETHYLBENZENE 12.14 PPB 214.8
	'		•	• •	•	23 M,P-XYLENE 30.80 PPB 229.8
		•	•			
				•		
3.	14			•		NOTES
						JOE BYRD, JR.
		•	•			DULUTH ANGB
7	 } 2					025-002вн
'ر ا			•			0.5- 2.5 10G
		• .	•	•		
3	71					
•						i . Maria de la companya de la companya de la companya de la companya de la companya de la companya de la companya

ΔΝΔΙ	LYSIS	#19	108-	- GC	FUNC	TION ANALYSIS REPORT
	2	. 4	6 (x	8 100	10 MV)	TIME PRINTED: MAY 15,95 14:24 SAMPLE TIME: MAY 15,95 14:18
28 3 4 5	2					METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec MIN AREA 0.000 mVSec MIN HEIGHT 0.000 mV
57 7 8 9 85	6			 10) • _	ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
114		11		•		OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		•			•	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.042 MVS 13.3 2 UNKNOWN 10.22 MVS 15.2 3 UNKNOWN 47.62 MVS 16.6 4 UNKNOWN 113.9 MVS 21.7
171	2			•	•	5 UNKNOWN 0.348 MVS 25.4 6 UNKNOWN 1.325 MVS 32.4 7 UNKNOWN 0.311 MVS 38.9 8 UNKNOWN 0.614 MVS 40.8 9 UNKNOWN 0.499 MVS 44.9
200	13		·			10 BENZENE 899.5 PPB 52.0 11 TOLUENE 828.1 PPB 103.3 12 UNKNOWN 11.85 MVS 186.6 13 ETHYLBENZENE 717.6 PPB 213.2
1 7 7	14					14 M,P-XYLENE 1.437 PPM 228.6 15 O-XYLENE 823.8 PPB 268.2
15 285	5			•	•	
314						NOTES JOE BYRD, JR. DULUTH ANGB
342		,		•	٠	1 PPM BTEX

ANALVEIS #2	0 10S+ GC Fund	TIAN ANALYRIR REPART
	2 3 4 5 (x 1000 uV)	TIME PRINTED: MAY 15,95 14:39 SAMPLE TIME: MAY 15,95 14:32
28	3	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
57 56		MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
85		DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
8		OVEN TEMP 40 C AMB TEMP 31 C
114 9		MAX GAIN 1000 ANALYSIS TIME 400.0 SEC PEAK REPORT
142		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.042 MVS 13.7 2 UNKNOWN 67.73 MVS 16.7 3 UNKNOWN 0.590 MVS 21.5 4 UNKNOWN 0.214 MVS 32.7
		5 UNKNOWN 1.780 MVS 40.8 6 BENZENE 0.374 PPB 51.8 7 UNKNOWN 5.497 MVS 65.0 8 UNKNOWN 0.105 MVS 81.0
200 10		9 TOLUENE 1.837 PPB 103.8 10 UNKNOWN 1.726 MVS 195.0 11 ETHYLBENZENE 2.816 PPB 215.0 12 M,P-XYLENE 5.882 PPB 229.0
2\$7		
285		
314		NOTES JOE BYRD, JR.
342		DULUTH ANGB 1 PPM BTEX AIR BLANK 33
371		

@

ANAL	YSIS	#22	10S+	GC	Funci	TION ANALYSIS REPORT
0	2	4	6 (x	8 100	10 mV)	TIME PRINTED: MAY 15,95 15:00 SAMPLE TIME: MAY 15,95 14:54 METHOD
28	2				7	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
57 85				•	. 3	ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN
114				===		OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
142		<u></u>	5			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.373 MVS 13.8 2 UNKNOWN 55.12 MVS 14.8 3 BENZENE 1160. PPM2 47.6 4 TOLUENE 52.51 PPM2 110.4
171	7					5 UNKNOWN 177.7 MVS 130.8 6 UNKNOWN 7.988 VSEC 149.2 7 UNKNOWN 3.961 VSEC 186.4 8 ETHYLBENZENE 5.104 PPM 214.0 9 M,P-XYLENE 41.04 PPM 229.6
200				•		10 o-xylene 22.70 ppm 268.0
- 4 -					9	
257		•		•	may turi in . turanga ^{turinga} sagang tanggan "	
285	/ 10	•	•	•		
314			•		-	PPM1 = ALARM 1 PPM2 = ALARM2 NOTES
342		·	•	· · · · · · · · · · · · · · · · · · ·		JOE BYRD, JR. DULUTH ANGB 025-002BH RESHOT 5.0- 7.0 10G 20 MICROLITER INJECTION

17	0 2	4 6 (x	8 10 100 mV)	TIME PRINTED: MAY 15,95 15:47 SAMPLE TIME: MAY 15,95 15:41
MIN HEIGHT	28 2		<u></u>	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
S	57		5 6 7	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
12	85		_	B/F FLOW 14 ML/MIN O ML/MIN
16	114	> 14	12 — 13 ———————————————————————————————————	AMB TEMP 31 C MAX GAIN 1000
2 UNKNOWN 4.945 MVS 14. 3 UNKNOWN 1.234 VSEC 17. 4 UNKNOWN 19.65 VSEC 23. 5 UNKNOWN 12.70 VSEC 34. 6 UNKNOWN 6.993 VSEC 40. 7 UNKNOWN 4.180 VSEC 46. 8 BENZENE 1.011 PPM 52. 9 UNKNOWN 2.146 VSEC 55. 10 UNKNOWN 5.807 VSEC 58. 11 UNKNOWN 5.636 VSEC 66. 12 UNKNOWN 3.708 VSEC 71. 13 UNKNOWN 4.322 VSEC 81. 14 UNKNOWN 4.322 VSEC 81. 14 UNKNOWN 2.574 VSEC 89. 15 TOLUENE 10.71 PPM 104. 16 UNKNOWN 85.76 MVS 115. 17 UNKNOWN 85.76 MVS 121. 18 UNKNOWN 465.4 MVS 149. 19 UNKNOWN 97.55 MVS 186. 20 ETHYLBENZENE 135.1 PPB 214. 21 M.P-XYLENE 7.808 PPM 230. 22 UNKNOWN 97.55 MVS 186. 22 UNKNOWN 0.019 MVS 252. 23 UNKNOWN 134.7 MVS 257. 24 0-XYLENE 5.188 PPM 269. 314 NOTES JOE BYRD, JR. DULUTH ANGB 025-002BH 10.0-12.0 106		16 17	15	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T
171	· \(\lambda \) \(\)			2 UNKNOWN 4.945 MVS 14. 3 UNKNOWN 1.234 VSEC 17.
9 UNKNOWN 2.146 VSEC 55. 10 UNKNOWN 5.807 VSEC 58. 11 UNKNOWN 5.636 VSEC 66. 12 UNKNOWN 3.708 VSEC 71. 13 UNKNOWN 4.322 VSEC 81. 14 UNKNOWN 2.574 VSEC 89. 15 TOLUENE 10.71 PPM 104. 16 UNKNOWN 85.76 MVS 115. 17 UNKNOWN 594.7 MVS 121. 18 UNKNOWN 465.4 MVS 149. 19 UNKNOWN 97.55 MVS 186. 20 ETHYLBENZENE 135.1 PPB 214. 21 M,P-XYLENE 7.808 PPM 230. 22 UNKNOWN 97.55 MVS 252. 23 UNKNOWN 134.7 MVS 257. 24 0-XYLENE 5.188 PPM 269. 314 NOTES JOE BYRD, JR. DULUTH ANGB 025-002BH 10.0-12.0 106	171			5 UNKNOWN 12.70 VSEC 34. 6 UNKNOWN 6.993 VSEC 40. 7 UNKNOWN 4.180 VSEC 46.
20 12 UNKNOWN 3.708 VSEC 71. 13 UNKNOWN 4.322 VSEC 81. 14 UNKNOWN 2.574 VSEC 89. 15 TOLUENE 10.71 PPM 104. 16 UNKNOWN 594.7 MVS 121. 17 UNKNOWN 594.7 MVS 121. 18 UNKNOWN 465.4 MVS 149. 19 UNKNOWN 97.55 MVS 186. 20 ETHYLBENZENE 135.1 PPB 214. 21 M,P-XYLENE 7.808 PPM 230. 22 UNKNOWN 0.019 MVS 252. 23 UNKNOWN 134.7 MVS 257. 24 O-XYLENE 5.188 PPM 269. 314	; 4			9 UNKNOWN 2.146 VSEC 55. 10 UNKNOWN 5.807 VSEC 58.
16 UNKNOWN 85.76 MVS 115. 17 UNKNOWN 594.7 MVS 121. 18 UNKNOWN 465.4 MVS 149. 19 UNKNOWN 97.55 MVS 186. 20 ETHYLBENZENE 135.1 PPB 214. 21 M,P-XYLENE 7.808 PPM 230. 22 UNKNOWN 0.019 MVS 252. 23 UNKNOWN 134.7 MVS 257. 24 O-XYLENE 5.188 PPM 269. NOTES JOE BYRD, JR. DULUTH ANGB 025-002BH 10.0-12.0 10G	228			12 UNKNOWN 3.708 VSEC 71. 13 UNKNOWN 4.322 VSEC 81.
19 UNKNOWN 97.55 MVS 186. 20 ETHYLBENZENE 135.1 PPB 214. 21 M,P-XYLENE 7.808 PPM 230. 22 UNKNOWN 0.019 MVS 252. 23 UNKNOWN 134.7 MVS 257. 24 0-XYLENE 5.188 PPM 269. NOTES JOE BYRD, JR. DULUTH ANGB 025-002BH 10.0-12.0 10G				16 UNKNOWN 85.76 MVS 115. 17 UNKNOWN 594.7 MVS 121.
22 UNKNOWN 0.019 MVS 252. 23 UNKNOWN 134.7 MVS 257. 24 O-XYLENE 5.188 PPM 269. 314 NOTES JOE BYRD, JR. DULUTH ANGB 025-002BH 10.0-12.0 10G	22 23			19 UNKNOWN 97.55 MVS 186.0 20 ETHYLBENZENE 135.1 PPB 214.0
314 NOTES JOE BYRD, JR. DULUTH ANGB 025-002BH 10.0-12.0 10G	11	• • •		22 UNKNOWN 0.019 MVS 252.2 23 UNKNOWN 134.7 MVS 257.2
025-002вн 342 10.0-12.0 10g	314			NOTES JOE BYRD, JR.
	342			025-002вн 10.0-12.0 10g

ANALVOIC #24	108+ GC FUNCT	ION ANALYSIS REPORT
0 2 4	6 8 10	TIME PRINTED: MAY 15,95 16:03
	(x 100 MV)	SAMPLE TIME: MAY 15,95 15:57
20 2 ===		METHOD SLOPE UP 0.500 mV/Sec
28—2	3	SLOPE DOWN 1.500 MV/SEC
	4	MIN AREA 0.000 MVSEC
	5	MIN HEIGHT 0.000 MV
57	6	ANALYSIS DELAY 0.0 SEC
		WINDOW PERCENT 10.0 %
	======================================	DET FLOW 14 ML/MIN B/F FLOW 14 ML/MIN
85	- · · · · · · · · · · · · · · · · · · ·	
	11	OVEN TEMP 40 C
	12	AMB TEMP 31 C
13		MAX GAIN 1000
114	 1/	
1		PEAK REPORT
15		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.062 MVS 13.8
142/		1 UNKNOWN 0.062 MVS 13.8 2 UNKNOWN 5.352 MVS 14.8
142/		3 UNKNOWN 2.011 VSEC 17.8
1 1/16		4 UNKNOWN 22.01 VSEC 24.2
		5 UNKNOWN 11.79 VSEC 34.7
171		6 UNKNOWN 6.533 VSEC 40.4
		7 UNKNOWN 3.705 VSEC 46.1
		8 BENZENE 3.685 PPM 52.5
117		9 UNKNOWN 5.181 VSEC 58.2 10 UNKNOWN 9.488 VSEC 66.2
200		10 UNKNOWN 9.488 VSEC 66.2 11 UNKNOWN 181.3 MVS 71.2
		12 UNKNOWN 3.222 VSEC 81.7
		13 UNKNOWN 2.352 VSEC 89.8
228		14 TOLUENE 10.45 PPM 104.2
)19		15 UNKNOWN 143.5 MVS 120.4
I promote the second		16 UNKNOWN 215.5 MVS 149.6
	•	17 UNKNOWN 42.78 MVS 186.8
25 7		18 ETHYLBENZENE 167.7 PPB 214.8 19 M,P-XYLENE 7.234 PPM 230.0
		20 O-XYLENE 4.654 PPM 269.3
20		1 20 0 XIZENZ
285		
314		NOTES
	. `	JOE BYRD, JR. DULUTH ANGB
		025-002BH RE-RESHOT
342		5.0- 7.0 10g
		5 MICROLITER INJECTION
371		I .

0	2	2	4	6	8	10		TIME PRINTED:	MAY 15,9	5 18	5:44
	1			, (x	100	MV)	4 20 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAMPLE TIME:	MAY 15,9 ETHOD		5:38
28 1	. <u>2</u> 3		•					SLOPE UP SLOPE DOWN	0.500 1.500		'SEC 'SEC
- 7	4 5		* 1			*		MIN AREA MIN HEIGHT	0.000	MVS	SEC
57	6 7	<u>.</u>						ANALYSIS DELAY WINDOW PERCENT	y 0.0	SEC	
	8 / B			•.	,			DET FLOW B/F FLOW	14	ML/	MIN
35	⁷ 10		•		•	·		Aux FLow	14 0	,	MIN MIN
	_					11		OVEN TEMP AMB TEMP	40 31	C C	
	 /:	<u> </u>	<u> </u>		<u> </u>			MAX GAIN	1000		
L '	4				•.	1	2	ANALYSIS TIME PEAK	400.0 REPORT	SEC	
			**		•		1	COMPOUND NAME	AREA/		R.T
142	2						2	Unknown Unknown	0.030 10.39		13. 15.
		·	•.	, ,		•	3	UNKNOWN	55.41	MVS	16.
-		•		•	•		4 5	Unknown Unknown	43.66 0.439		21.8 23.
L7:	1					.•		UNKNOWN	35.54	MVS	25.6
							i	Unknown Unknown	18.13 12.13		33.0 35.6
	13 1				•		9	UNKNOWN	18.84	MVS	39.6
	, 	•	•	•		•		Unknown Benzene	9.326 9.052		45.8 53.0
		•		~~~ _{>} 1	.4			TOLUENE	8.789	PPM	104.6
28	}	-	<u></u>	1 سمسي	. -T			Unknown ETHYLBENZENE	0.797 8.293		184.2 214.8
			> 15)	ŕ		15	M,P-XYLENE O-XYLENE	16.84	PPM	229.8
$I_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$		•		•	•		10	U-XILENE	8.391	PPM	269.3
57	·		•		•			-			
1	\			•	•						
&5	19										
	•	•		•	•	.					
		•		•	•						
1 4						. }		No	OTES		
								DE BYRD, JR. JLUTH ANGB	•		
		•		•	•			PPM BTEX			
12	•				•						
Ī					•						
ļ 77											

A	NAL	YSIS	#26	10S	+ GC	Func	TION ANALYSIS REPORT
	0	1	. 2	3 (x	4 100	5 MV)	TIME PRINTED: MAY 15,95 16:58 SAMPLE TIME: MAY 15,95 16:52
2		,			2		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
5	3 4 7	; ; 5		٠			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
	6 7					•	WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
8	8						B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
	14	10					AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
							PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.046 MVS 13.5
14	42				•		2 UNKNOWN 2.393 VSEC 16.6 3 UNKNOWN 11.94 MVS 34.8 4 UNKNOWN 1.233 MVS 39.5
1	71				•		5 UNKNOWN 6.099 MVS 45.6 6 BENZENE 11.05 PPB 52.0 7 UNKNOWN 8.683 MVS 58.0
20	00		•				8 UNKNOWN 21.30 MVS 65.8 9 UNKNOWN 2.818 MVS 81.6 10 TOLUENE 37.93 PPB 103.7
	 	•				•	11 ETHYLBENZENE 40.74 PPB 214.4 12 M,P-XYLENE 521.2 PPB 229.6 13 O-XYLENE 103.4 PPB 269.3
22	18 12		•	•			100.4 PPB 209.9
25	7		•				
28	13 5		•				
			• •			•	
3]	4	•	•	•			NOTES JOE BYRD, JR. DULUTH ANGB
34	12		•				AIR BLANK
			•				

ANALYCIC #27		TION ANALYSIS REPORT
0 2 4	6 8 10 (x 1000 uV)	TIME PRINTED: MAY 15,95 17:09 SAMPLE TIME: MAY 15,95 17:02
28	2	METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec
57 - 3		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
55		WINDOW PERCENT 10.0 % DET FLOW 14 ML/MIN
85 6		B/F FLOW 14 ML/MIN AUX FLOW 0 ML/MIN OVEN_TEMP 40 C
114 7		AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 400.0 SEC
		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 153.8 MVS 17.0
142	· · · · · · · · · · · · · · · · · · ·	2 UNKNOWN 1.587 MVS 21.6 3 UNKNOWN 3.106 MVS 41.1 4 BENZENE 10.19 PPB 52.6
171		5 UNKNOWN 20.02 MVS 66.4 6 UNKNOWN 7.491 MVS 81.2 7 TOLUENE 13.63 PPB 104.9
200 8		8 UNKNOWN 0.142 MVS 190.4 9 UNKNOWN 0.037 MVS 193.4 10 ETHYLBENZENE 3.794 PPB 216.0 11 M,P-XYLENE 12.62 PPB 231.2
10 228		
11 257		
285		
314		NOTES
342		JOE BYRD, JR. DULUTH ANGB AIR BLANK 400 MICROLITER INJECTON

371

	71	ΙΔΙ	LVS	I S	#3	0		10	S+	GC	Fu	NC.	TIO	N ANALYSIS REPORT
-	C)		2		4		6		8	1			TIME PRINTED: MAY 15,95 17:43
		7		٠.				, (X	•	100	ΜV)		SAMPLE TIME: MAY 15,95 17:36
	28	≱L Ž	2											METHOD SLOPE UP 0.500 MV/SEC
-	- 4	3	2		•	•			: .		. •			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
		4												MIN AREA 0.000 MVSEC
-		5						•						MIN HEIGHT 0.000 MV
-	7		-6	·								7		ANALYSIS DELAY 0.0 SEC
		7										•		WINDOW PERCENT 10.0 %
		8	A CONTRACTOR OF THE PARTY OF TH		•.	-								DET FLOW 14 ML/MIN
) 	y												B/F FLOW 14 ML/MIN
0	35	5	•		•							1		AUX FLOW 0 ML/MIN
										•				OVEN TEMP 40 C AMB TEMP 31 C
		<u> </u>												AMB TEMP 31 C MAX GAIN 1000
1	נו	4] -	1	ANALYSIS TIME 400.0 SEC
								•	•	٠,	•		F	PEAK REPORT
	-	A											Pĸ	COMPOUND NAME AREA/CONC R.T.
										•			1	UNKNOWN 0.037 MVS 13.5
1	[4	2											2	UNKNOWN 26.19 MVS 15.4
													3	UNKNOWN 266.1 MVS 16.8
										•			4	UNKNOWN 5.603 MVS 21.8
1	1	1											5	UNKNOWN 0.872 MVS 25.7
1	- 4		• . •			•	•	•					7	UNKNOWN 3.337 MVS 33.1 UNKNOWN 1.531 MVS 35.8
				,									8	UNKNOWN 1.531 MVS 35.8 UNKNOWN 2.619 MVS 40.5
					•		·,			•			9	UNKNOWN 1.366 MVS 45.8
2	20	0											10	BENZENE 10.94 PPM 53.4
			٠.		•	•	. •	•	•	•	•		11	TOLUENE 9.802 PPM 105.3
-				<u> </u>									1	ETHYLBENZENE 8.544 PPM 215.8
1	ا دور	8						, T.Z					1	M,P-XYLENE 16.56 PPM 230.8
2	7	<u></u>			A. A.	13							14	O-XYLENE 7.747 PPM 270.4
					فممس	رد								
_		_	مسمو				•		•	•				
2	25	7					,							
),	4											
2	8	1 -	-1											
-	1	_	•			•	•		•		•	Ì		
	-								,					
	1			•		*	. •			•				
3	1	4								•				NOTES
	ĺ										,			JOE BYRD, JR.
	ļ									. •				DULUTH ANGB
7	4	2											T(PPM BTEX
را	1	_	•			.•								
						•								
	1			•			•							
3	7	1						-						
•	•					•	•		•	•		1		

ANAL	LYSIS	#1	10S+	GC	Func	TION ANALYSIS REPORT
0 7	2	. 4	6 (x	8 10	10 MV)	TIME PRINTED: MAY 16,95 08:11 SAMPLE TIME: MAY 16,95 08:03
357	2	, .	· .		· •	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
71	4 _ 6	•			. •	MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
8	10		9			WINDOW PERCENT 10.0 % DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN
107	10					AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 28 C
142	:11	1				MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
178		•		- -		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.081 MVS 16.3 2 UNKNOWN 5.752 MVS 18.5 3 UNKNOWN 18.19 MVS 20.0
214	·		•			4 UNKNOWN 14.28 MVS 26.2 5 UNKNOWN 10.32 MVS 31.0 6 UNKNOWN 4.422 MVS 39.4
250				. •		7 UNKNOWN 1.263 MVS 47.4 8 UNKNOWN 4.876 MVS 51.4 9 UNKNOWN 243.3 MVS 63.3 10 UNKNOWN 0.726 MVS 79.6
	12				•	11 UNKNOWN 167.5 MVS 126.2 12 UNKNOWN 98.87 MVS 260.8 13 UNKNOWN 76.18 MVS 280.2
285 /	13	•		•	•	14 UNKNOWN 16.68 MVS 329.3
321		•		. •		
357	· .			•		
392						NOTES
		•			•	JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
428		•			•	

×

1,4,

Analysis #2	10S+ GC FUNC	TION ANALYSIS REPORT
0 2 4	6 8 10 (x 100 MV)	TIME PRINTED: MAY 16,95 08:28 SAMPLE TIME: MAY 16,95 08:20
32 2 33 2		METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec
4 5 64 <u>6</u>		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
7 8 96	9	WINDOW PERCENT 10.0 % DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN
	•	OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000
128		ANALYSIS TIME 450.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
160		1 UNKNOWN 0.046 MVS 16.4 2 UNKNOWN 7.395 MVS 18.4 3 UNKNOWN 83.33 MVS 20.3 4 UNKNOWN 64.17 MVS 26.4
192		5 UNKNOWN 0.337 MVS 30.9 6 UNKNOWN 42.69 MVS 35.6 7 UNKNOWN 0.630 MVS 39.6
225		8 UNKNOWN 36.11 MVS 47.5 9 BENZENE 1.763 PPM 62.9 10 TOLUENE 1.857 PPM 126.0 11 ETHYLBENZENE 1.583 PPM 260.0
257		12 M,P-XYLENE 2.249 PPM 278.9 13 O-XYLENE 814.9 PPB 325.0
289 12		
321		
13	· · · · · · · · · · · · · · · · · · ·	
353		NOTES JOE BYRD, JR. DULUTH ANGB
385		1 РРМ ВТЕХ

	ANAL	YSIS	#4	108	S+ GC	Func	TION ANALYSIS REPORT
	1	1	2	3 (x	4 1000	5 uV)	TIME PRINTED: MAY 16,95 08:58 SAMPLE TIME: MAY 16,95 08:50 METHOD
	64/	6		L	3	5	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 11 ML/MIN
	96				·-		B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
	128—. 		3	٠	•	,	ANALYSIS TIME 450.0 SEC PEAK REPORT
	160						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.024 MVS 16.2 2 UNKNOWN 5.093 MVS 18.5 3 UNKNOWN 4.879 MVS 19.9
	192				•	•	5 UNKNOWN 24.61 MVS 26.2 6 UNKNOWN 1.683 MVS 47.2 7 UNKNOWN 2.792 MVS 79.2 8 TOLUENE 9.145 PPB 126.2
* *	225		•	•		•	9 UNKNOWN 2.044 MVS 233.4 10 ETHYLBENZENE 5.341 PPB 261.6 11 M,P-XYLENE 5.740 PPB 280.0
	257						
	10					. •	
	289	11		,			
	321						
	353					•	NOTES JOE BYRD, JR. DULUTH ANGB
	385						AIR BLANK

0 2 4 5 X	8 10 1000 uV)	TIME PRINTED: MA SAMPLE TIME: MA	.y 16,95 09:31 .y 16,95 09:23
1		METH	
2	2	SLOPE UP	0.500 MV/SEC
procedure	3	SLOPE DOWN	1.500 MV/SEC
4		MIN AREA	0.000 MVSEC
<u> </u>		MIN HEIGHT	0.000 MV
4/_		ANALYSIS DELAY	0.0 SEC
/6		WINDOW PERCENT	10.0 %
**************************************		DET FLOW	11 ML/MIN
		B/F FLOW	11 ML/MIN
6		Aux FLow	0 ML/MIN
	•	OVEN TEMP	40 C
		AMB TEMP	31 C
28 8		MAX GAIN	1000
	2	ANALYSIS TIME	450.0 SEC
V J		PEAK R PK COMPOUND NAME	
		1 UNKNOWN	AREA/CONC R.T. 0.034 MVS 16.4
60		2 UNKNOWN	0.034 MVS 16.4 9.450 MVS 18.4
		3 UNKNOWN	35.21 MVS 20.4
		4 UNKNOWN	47.42 MVS 26.4
		5 UNKNOWN	14.86 MVS 47.4
92	٠	6 BENZENE	2.024 PPB 63.4
	•	7 UNKNOWN	3.477 MVS 79.4
		8 UNKNOWN	0.332 MVS 115.4
		9 TOLUENE	5.726 PPB 127.4
25		10 UNKNOWN	1.940 MVS 235.6
		11 ETHYLBENZENE	1.140 PPB 264.8
10		12 M,P-XYLENE	3.136 PPB 282.9
157			
11			
			•
89 12			•
T			
		! !	
	•		
21			
53		Non	TES .
	•	JOE BYRD, JR.	
		DULUTH ANGB	
		025-007вн	
\$5		0.5- 2.5 100	3
The second secon			

	ANALYSIS	#6	10S+ GC	Func	TION ANALYSIS REPORT	
,	0 4	8	12 16 (x 1000	20 uV)	TIME PRINTED: MAY 16,95 09:4 SAMPLE TIME: MAY 16,95 09:3	
	32	<u> </u>	- 3		SLOPE UP 0.500 MV/SE SLOPE DOWN 1.500 MV/SE	С
	64/ 6 7	5			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %	
	8 9 96/ 10		•••		DET FLOW 11 ML/MI B/F FLOW 11 ML/MI AUX FLOW 0 ML/MI	N
	12 13 128		· .		OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 450.0 SEC	
	14 آشم		· · · · · · · · · · · · · · · · · · ·	•	PEAK REPORT PK COMPOUND NAME AREA/CONC 1 UNKNOWN 0.030 MVS	R.T. 14.4
	160		· · · · · · · · · · · · · · · · · · ·		2 UNKNOWN 8.287 MVS 3 UNKNOWN 55.67 MVS 4 UNKNOWN 23.76 MVS	18.7 20.9 26.8
	192				6 UNKNOWN 15.75 MVS 7 UNKNOWN 11.21 MVS	29.3 40.8 44.5 48.4
	225 15				9 UNKNOWN 12.59 MVS 10 BENZENE 4.591 PPB 11 UNKNOWN 7.745 MVS	55.8 63.0 70.8
,	257	·		•	13 UNKNOWN 7.600 MVS 1 14 TOLUENE 12.05 PPB 1	80.0 00.1 27.6 29.2
	16 289 17				16 ETHYLBENZENE 4.553 PPB 2	63.7 80.8
9	321			•		
***************************************						**
	353				NOTES JOE BYRD, JR. DULUTH ANGB 025-007BH	
	385			•	5.0- 7.0 10g	

ANALYSIS #7 10S+ GC FUNC	TION ANALYSIS REPORT
0 4 8 12 16 20	TIME PRINTED: MAY 16,95 09:53
(x 1000 uV)	SAMPLE TIME: MAY 16,95 09:46
72	METHOD
32	SLOPE UP 0.500 MV/SEC
3	SLOPE DOWN 1.500 MV/SEC
4	MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
64 / 5	· · · · · · · · · · · · · · · · · · ·
7 6	ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
7	DET FLOW 11 ML/MIN
8	B/F FLOW 11 ML/MIN
96	AUX FLOW 0 ML/MIN
	OVEN TEMP 40 C
	AMB TEMP 31 C
	MAX GAIN 1000
128	ANALYSIS TIME 450.0 SEC
9	PEAK REPORT
	PK COMPOUND NAME AREA/CONC R.T.
160	1 UNKNOWN 8.202 MVS 18.8 2 UNKNOWN 52.16 MVS 20.6
	2 UNKNOWN 52.16 MVS 20.6 3 UNKNOWN 78.47 MVS 26.8
	4 UNKNOWN 0.281 MVS 40.2
	5 UNKNOWN 1.207 MVS 45.6
192	6 UNKNOWN 27.46 MVS 48.0
	7 BENZENE 3.721 PPB 63.5
	8 UNKNOWN 6.346 MVS 79.6
205	9 TOLUENE 3.690 PPB 127.2
225	10 UNKNOWN 4.395 MVS 230.4
10	11 ETHYLBENZENE 0.293 PPB 263.7
	•
257	
11	
289	
321	
353	
	NOTES JOE BYRD, JR.
	DULUTH ANGB
	025-007вн
385	10.0-12.0 10g

Δ.	NALVCIC	#Q	108-	+ GC	FUNC	TION ANALYSIS REPORT
	0 4	 	12 (x	16 1000	20 uV)	TIME PRINTED: MAY 16,95 10:15 SAMPLE TIME: MAY 16,95 10:08 METHOD
3	2		2			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
6	7	. 4				MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
9						DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
1:				21		AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 450.0 SEC PEAK REPORT
1	60					PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 1.758 MVS 17.0 2 UNKNOWN 14.10 MVS 18.6 3 UNKNOWN 46.77 MVS 20.7 4 UNKNOWN 96.10 MVS 26.6
19	92					4 UNKNOWN 96.10 MVS 26.6 5 UNKNOWN 0.429 MVS 31.6 6 UNKNOWN 1.834 MVS 45.7 7 BENZENE 0.073 PPB 63.1 8 UNKNOWN 4.684 MVS 80.1
2:	 - 10					9 TOLUENE 3.829 PPB 127.2 10 UNKNOWN 2.850 MVS 232.4 11 ETHYLBENZENE 0.917 PPB 266.6 12 O-XYLENE 20.52 PPB 354.0
2	 		•		٠.	13 UNKNOWN 6.573 MVS 408.3
28	11 39					
32	 21			•		
35	53 12		•			NOTES JOE BYRD, JR. DULUTH ANGB
38	35		, .			025-0078H 20.0-22.0 10G

ANALYSIS #10	10S+ GC FUNC	CTION ANALYSIS REPORT
0 2 4	6 8 10 (x 10 MV)	TIME PRINTED: MAY 16,95 10:26 SAMPLE TIME: MAY 16,95 10:19
32 1 2 3 4 5 6 8 96	7	METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 11 mL/MIN B/F FLOW 11 mL/MIN AUX FLOW 0 mL/MIN OVEN TEMP 40 C AMB TEMP 32 C
128_		MAX GAIN 1000 ANALYSIS TIME 450.0 SEC
160 192 225 10 11 257 12		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 10.44 MVS 18.8 2 UNKNOWN 44.21 MVS 20.6 3 UNKNOWN 91.00 MVS 27.0 4 UNKNOWN 0.303 MVS 32.0 5 UNKNOWN 0.032 MVS 45.8 6 UNKNOWN 1.332 MVS 47.6 7 BENZENE 101.2 PPB 63.8 8 UNKNOWN 1.176 MVS 80.0 9 TOLUENE 82.93 PPB 127.8 10 UNKNOWN 0.119 MVS 229.0 11 UNKNOWN 0.557 MVS 236.0 12 UNKNOWN 1.248 MVS 239.0 13 ETHYLBENZENE 53.62 PPB 263.4 14 M,P-XYLENE 74.61 PPB 283.2 15 O-XYLENE 0.577 PPB 309.6
289 14		
321 15		
353 385		NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX

LH

7 hon-	Tr. T. S.M. 1991			or. Mag Mag.12-1 Alarm	-5 10119 Ret.Ti	ime
	Jene Yown Yown Yown Jibenzene -xulene	10 .0	00000000000000000000000000000000000000	-NO- -NO- -NO- -NO- -NO- -NO- -NO- -NO-		Secosecos
63 (mV 47 31 15 0 <u>a</u>	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	6 8	118	1: 170 24:	262.0	uU 450

	ſ	ANA	LYS	SIS	#1	1	103	S+	GC	Func	TIO	n Analysis Report
		0		2	-	4	6 (x		8 00	10 uV)		TIME PRINTED: MAY 16,95 10:40 SAMPLE TIME: MAY 16,95 10:33
		64 96	4					3	-			METHOD SLOPE UP 1.500 MV/SEC SLOPE DOWN 4.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000
]	.28_	-ر -								· -	ANALYSIS TIME 450.0 SEC
		160 192									PK 1 2 3 4 5 6	PEAK REPORT COMPOUND NAME AREA/CONC R.T. UNKNOWN 5.396 MVS 19.3 UNKNOWN 30.84 MVS 21.4 UNKNOWN 32.57 MVS 27.6 UNKNOWN 2.044 MVS 81.7 TOLUENE 5.320 PPB 128.8 UNKNOWN 1.942 MVS 234.2
LH	<i>{</i>	225				•					***************************************	
	25	7							•			
	28	9				•						
	32											
-	35 38						Duli	Byri uth / Blai		NOTES		

ΔΝΔΙ	_vcic	#12	109	3 + 60	Func	TION ANALYSIS REPORT
0	2	4	6	8	10	TIME PRINTED: MAY 16,95 10:52
			(X	1000	υV)	SAMPLE TIME: MAY 16,95 10:44
1	· · · · · · · · · · · · · · · · · · ·				_	METHOD
32_					2_	SLOPE UP 0.500 MV/SEC
_			-		3	SLOPE DOWN 1.500 MV/SEC
_	— <u></u> ; ,		4			MIN AREA 0.000 MVSEC
C /	/			,		MIN HEIGHT 0.000 MV
64_	√ 6 7					Analysis Delay 0.0 sec Window Percent 10.0 %
1 1/9	વ '					DET FLOW 11 ML/MIN
	9					B/F FLOW 11 ML/MIN
96						AUX FLOW 0 ML/MIN
	•	*		-		OVEN TEMP 40 C
						AMB TEMP 32 C
						MAX GAIN 1000
128				·		ANALYSIS TIME 450.0 SEC
//	10					PEAK REPORT
						PK COMPOUND NAME AREA/CONC R.T.
160		•				1 UNKNOWN 0.124 MVS 17.0
100						2 UNKNOWN 12.16 MVS 18.9 3 UNKNOWN 42.08 MVS 21.2
						4 UNKNOWN 42.00 MVS 21.2
						5 UNKNOWN 9.365 MVS 41.1
192			ė			6 UNKNOWN 4.525 MVS 45.6
	•				• •	7 UNKNOWN 15.22 MVS 48.2
						8 BENZENE 2.218 PPB 64.4
						9 UNKNOWN 4.415 MVS 80.2
225	•,					10 TOLUENE 3.665 PPB 127.7
	1					11 UNKNOWN 2.179 MVS 233.4
1	1					12 ETHYLBENZENE 0.108 PPB 261.0
257						13 M,P-XYLENE 8.921 PPB 285.6
27/	•	• •			•	
1	2		è			
			•	•		
289	3	:			•	
1	ر.					
		•				
321						
		•		•	•	
353	,)	•				NOTES
					. '	JOE BYRD, JR.
			•			DULUTH ANGB
705	, !					025-005вн
385				• *		0.5- 2.5 10g
1				*		

_		ALVS		#13	109	S+ GC	FUNC	CTION ANALYSIS REPORT
	0		2	4	6 (x	8 1000	10 uV)	TIME PRINTED: MAY 16,95 11:03 SAMPLE TIME: MAY 16,95 10:55
	3 <u>2</u> -						<u>l</u>	METHOD SLOPE UP 0.500 MV/SEC
(54	5	4		3			MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
	96	>6				· -		DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
]	.28 (3 7						MAX GAIN 1000 ANALYSIS TIME 450.0 SEC
1	.6C) 			•			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 12.46 MVS 20.4 2 UNKNOWN 131.2 MVS 22.5 3 UNKNOWN 0.901 MVS 29.0 4 UNKNOWN 3.375 MVS 46.0
1	92	8		. •	•		·	5 BENZENE 0.146 PPB 66.6 6 UNKNOWN 2.614 MVS 82.6 7 TOLUENE 3.560 PPB 129.6 8 UNKNOWN 31.51 MVS 185.4
2	25 	•		•				10 ETHYLBENZENE 16.89 MVS 237.6 2.280 PPB 272.0
2	9 57 	•		•.				
2	 1 89 	0					-	
3:	21	The second secon						
3!	53	٠,		· .				NOTES
38	35					·	to company to the second secon	JOE BYRD, JR. DULUTH ANGB 025-005BH 10.0-12.0 10G

ANALYSIS #14 10S+ GC FUNCT	TION ANALYSIS REPORT
0 4 8 12 16 20 (x 1000 uV)	TIME PRINTED: MAY 16,95 11:13 SAMPLE TIME: MAY 16,95 11:06
32 2 3 3 5 64 6 7 7 8 9 96	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
128 /10	AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 450.0 SEC
192 225 11	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 3.842 MVS 17.5 2 UNKNOWN 16.93 MVS 19.0 3 UNKNOWN 49.84 MVS 21.4 4 UNKNOWN 66.94 MVS 27.4 5 UNKNOWN 0.246 MVS 36.9 6 UNKNOWN 6.842 MVS 45.9 7 UNKNOWN 17.36 MVS 48.7 8 BENZENE 2.509 PPB 64.0 9 UNKNOWN 5.014 MVS 80.6 10 TOLUENE 4.305 PPB 128.0 11 UNKNOWN 3.062 MVS 235.2 12 ETHYLBENZENE 0.934 PPB 267.4 13 M,P-XYLENE 8.781 PPB 281.3
257 	
289 13	
321	
353 385	NOTES JOE BYRD, JR. DULUTH ANGB 025-005BH 20.0-22.0 10G

ANALYSIS #	‡15	S+ GC	FUNC	TION ANALYSIS REPORT
0 2	4 6 (x	8 1000	10 uV)	TIME PRINTED: MAY 16,95 11:49 SAMPLE TIME: MAY 16,95 11:42
32 64 5 96	3	1 2		METHOD SLOPE UP 0.50C MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.00C MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
128				MAX GAIN 1000 ANALYSIS TIME 450.0 SEC
160 192 225				PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 11.13 MVS 19.2 2 UNKNOWN 124.8 MVS 21.2 3 UNKNOWN 0.611 MVS 27.4 4 UNKNOWN 2.818 MVS 45.8 5 BENZENE 0.068 PPB 63.2 6 UNKNOWN 2.953 MVS 80.6 7 TOLUENE 3.688 PPB 128.5 8 UNKNOWN 2.329 MVS 235.4 9 ETHYLBENZENE 0.387 PPB 269.3
8				
257				
9 289	•	• •		
321				
3 53			-	NOTES
385				NOTES JOE BYRD, JR. DULUTH ANGB 025-004BH 0.5- 2.5 10G

ΔN	V'LACIC	#16	109	S+ GC	FUNC	CTION ANALYSIS REPORT	•
0	4	8	12 (x	16 1000	20 uV.)	TIME PRINTED: MAY 16,95 12:00 SAMPLE TIME: MAY 16,95 11:53 METHOD	
32	4	3	1			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %	
96				- -		DET FLOW 11 ML/MIN B/F FLOW 11 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000	
16						ANALYSIS TIME 450.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 15.08 MVS 19. 2 UNKNOWN 46.38 MVS 21. 3 UNKNOWN 61.38 MVS 27.	.4 : .5 :
19	2					4 UNKNOWN 21.33 MVS 46. 5 BENZENE 2.193 PPB 64. 6 UNKNOWN 4.145 MVS 80. 7 TOLUENE 3.670 PPB 128. 8 UNKNOWN 11.97 MVS 237.	4 1 9 2 2
22	5					9 ETHYLBENZENE 9.949 PPB 268. 10 M,P-XYLENE 177.7 PPB 283. 11 O-XYLENE 156.5 PPB 319.	. 4
25	8 7	•					:
28	9 9 10	• .	•	•			!
32	1 11		•				:
35	3	•	•			NOTES JOE BYRD, JR.	:
38	5	•			·	DULUTH ANGB 025-004BH 5.0- 7.0 10G	•
-1	7						:

ANALYSIS #20	10S+ GC FUNCTION ANALYSIS REPORT
0 2 4	6 8 10 TIME PRINTED: MAY 16,95 15:38 (X 10 MV) SAMPLE TIME: MAY 16,95 15:30
35 2 3 4 5 71 6	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
10 142	AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178 214	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.050 MVS 16.6 2 UNKNOWN 8.773 MVS 18.7 3 UNKNOWN 32.01 MVS 20.3 4 UNKNOWN 22.56 MVS 26.8 5 UNKNOWN 12.13 MVS 32.0 6 UNKNOWN 25.04 MVS 36.3 7 UNKNOWN 9.629 MVS 51.0
11 250)12 285 13	8 UNKNOWN 201.0 MVS 64.2 9 UNKNOWN 0.299 MVS 80.0 10 UNKNOWN 130.8 MVS 126.1 11 UNKNOWN 0.086 MVS 230.2 12 UNKNOWN 79.92 MVS 258.4 13 UNKNOWN 58.90 MVS 277.8 14 UNKNOWN 9.116 MVS 324.5
321 14 357	
392 428	NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX

1.0

	in.L. Aes. Poelus.a Po						
		ir.a					384 ·
-		: 1634			 Ī.	*** **** ******* * *****	E E E E
7-3	,		Approximation of the second				
45.							
2-3 6		-4,F		.	4	÷	
		1					T.KIL

ANALYSIS #22	10S+ GC Fund	CTION ANALYSIS REPORT
0 2 4	6 8 10 (x 100 mV)	Time Printed: May 16,95 16:11 Sample Time: May 16,95 16:02
35 2 3		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
7I 6 7		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
107	3	WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
142		MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
178 10		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.060 MVS 16.7 2 UNKNOWN 7.290 MVS 18.9 3 UNKNOWN 53.09 MVS 20.6
214		4 UNKNOWN 36.55 MVS 27.0 5 UNKNOWN 20.70 MVS 31.9 6 UNKNOWN 38.02 MVS 36.4
250		7 UNKNOWN 11.98 MVS 50.9 8 BENZENE 3.009 PPM 65.2 9 TOLUENE 6.233 PPM 127.7 10 UNKNOWN 18.33 MVS 179.2 11 UNKNOWN 2.078 MVS 223.2
285 13		12 ETHYLBENZENE 5.917 PPM 260.2 13 M,P-XYLENE 11.75 PPM 278.4 14 O-XYLENE 3.681 PPM 325.3
321	• • • • • • •	
357		
392 428		NOTES JOE BYRD, JR. DULUTH ANGB 10 PPM BTEX
1	•	

ANALVOIC #23 108+ GC FUNC	TION ANALYSIS REPORT
0 1 2 3 4 5 (x 1000 uV)	TIME PRINTED: MAY 16,95 16:26 SAMPLE TIME: MAY 16,95 16:17 METHOD
35 2 3 4	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV/SEC
71 6 71 7	MIN HEIGHT 0.000 MV ANALYSIS DEL=Y 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
8 142 9	MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PE-K REPORT
178	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.040 MVS 16.5 2 UNKNOWN 6.238 MVS 19.1 3 UNKNOWN 85.06 MVS 20.5 4 UNKNOWN 0.599 MVS 26.9
214	5 UNKNOWN 3.556 MVS 51.5 6 BENZENE 1.098 PPB 64.5 7 UNKNOWN 1.293 MVS 80.6 8 TOLUENE 0.887 PPB 126.9 9 UNKNOWN 0.162 MVS 129.3
250 11	10 UNKNOWN 0.658 MVS 229.8 11 ETHYLBENZENE 6.002 PPB 261.0 12 M,P-XYLENE 8.717 PPB 278.4
285 12	
321	
357	
392	NOTES JOE BYRD, JR. DULUTH ANGB
428	AIR BLANK

	TION ANALYSIS REPORT
0 2 4 6 8 10	TIME PRINTED: MAY 16,95 16:38
(x 1000 uV)	SAMPLE TIME: MAY 16,95 16:30 METHOD
35 2	SLOPE UP 0.500 MV/SEC
3	SLOPE DOWN 1.500 MV/SEC
	MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71,5 (5) (1 + 1) (3) (1 + 1) (1 + 1)	ANALYSIS DELAY 0.0 SEC
1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107	AUX FLOW 0 ML/MIN
	OVEN TEMP 40 C AMB TEMP 31 C
7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AMB TEMP 31 C MAX GAIN 1000
142	ANALYSIS TIME 500.0 SEC
	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 9.815 MVS 19.1
178	2 UNKNOWN 129.2 MVS 20.9
	3 UNKNOWN 1.162 MVS 27.1 4 UNKNOWN 3.264 MVS 51.0
	5 BENZENE 1.026 PPB 64.6
214	6 UNKNOWN 1.713 MVS 81.0
	7 TOLUENE 4.015 PPB 127.0 8 UNKNOWN 9.807 MVS 231.2
8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 ETHYLBENZENE 4.295 PPB 260.5
250	10 M,P-XYLENE 8.423 PPB 278.4
9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
285 10	
201	
321	
357	
392	NOTES
	JOE BYRD, JR.
	DULUTH ANGB
428	025-004вн 10.0-12.0 10e

	TION ANALYSIS REPORT
0 2 4 6 8 10	TIME PRINTED: MAY 16,95 16:51
(x 1000 UV)	SAMPLE TIME: MAY 16,95 16:43
352	METHOD SLOPE UP 0.500 MV/SEC
3 /	SLOPE DOWN 1.500 MV/SEC
4	MIN AREA 0.000 MVSEC
71 2 6	MIN HEIGHT 0.000 MV
1/1.3 0	ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
57	WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
	B/F FLOW 12 ML/MIN
	AUX FLOW 0 ML/MIN
	OVEN TEMP 40 C
8	AMB TEMP 31 C MAX GAIN 1000
	MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
	PE-K REPORT
	PK COMPOUND NAME AREA/CONC R.T.
178	1 UNKNOWN 0.354 MVS 17.6 2 UNKNOWN 10.22 MVS 19.3
	3 UNKNOWN 127.6 MVS 21.6
	4 UNKNOWN 1.419 MVS 27.4
21/	5 UNKNOWN 3.965 MVS 51.0
214	6 BENZENE 0.823 PPB 65.0 7 UNKNOWN 1.873 MVS 81.4
	7 UNKNOWN 1.873 MVS 81.4 8 TOLUENE 3.459 PPB 127.7
9	9 UNKNOWN 1.753 MVS 232.8
250	10 ETHYLBENZENE 0.258 PPB 264.0
10	•
285	
321	
357	
700	
392	NOTES
	JOE BYRD, JR. DULUTH ANGB
	025-004BH
428	18.0-20.0 10g
	

/i C /

:

,	Δı	JAL	YSIS	#28	3	10	S+ GC	Func	TIO	N ANALYSIS REPORT
	() -1-	2	L	+	6 (x	8 1000	10 uV)		TIME PRINTED: MAY 16,95 17:27 SAMPLE TIME: MAY 16,95 17:19
	35		<u> </u>				2 4	3		METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
	7	7	/ 5 6	•						MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
)7 }8					ine y Land		A THE COMMENSATION OF THE	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
1	42	2		ž.						ANALYSIS TIME 500.0 SEC
	17	78		• •				 	1 2 3	PEAK REPORT COMPOUND NAME AREA/CONC R.T. UNKNOWN 0.095 MVS 17.4 UNKNOWN 10.08 MVS 19.3 UNKNOWN 153.9 MVS 21.4
	2:	L 4	•	. *					4 5 6 7 8	UNKNOWN 1.521 MVS 27.6 UNKNOWN 3.825 MVS 51.0 BENZENE 0.627 PPB 65.0 UNKNOWN 1.483 MVS 81.0
	25	9	•	•		•		• • •	9	TOLUENE 2.780 PPB 127.3 UNKNOWN 2.663 MVS 231.4 ETHYLBENZENE 1.715 PPB 264.0 M,P-XYLENE 5.519 PPB 278.9
	28	10 35	11		•					
	32	21		•	•	•				
	35	57	•						Nat of management of the contract of the contr	
				•			•	•		
	39				•			· •]	NOTES JOE BYRD, JR. DULUTH ANGB D25-004BH RESHOT
	42	28				•				5.0- 7.0 10g

ANALYSIS #29 10S+ GC	FUNCTION ANALYSIS REPORT
0 2 4 6 8 (x 10	10 TIME PRINTED: MAY 16,95 17:39 MV) SAMPLE TIME: MAY 16,95 17:31 METHOD
35 2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
107 107 142	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178 214	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.059 MVS 16.9 2 UNKNOWN 10.52 MVS 19.2 3 UNKNOWN 52.81 MVS 21.0 4 UNKNOWN 37.52 MVS 27.6 5 UNKNOWN 57.25 MVS 32.6 6 UNKNOWN 19.65 MVS 51.1
250 211	7 BENZENE 106.2 PPB 65.2 8 UNKNOWN 0.651 MVS 80.6 9 TOLUENE 103.2 PPB 127.0 10 UNKNOWN 1.272 MVS 231.2 11 ETHYLBENZENE 98.22 PPB 259.2 12 M,P-XYLENE 188.0 PPB 278.1 13 O-XYLENE 68.30 PPB 324.2
285 12	
321 13	
357	
392 428	NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX

ANALVOIC #3	10S+ GC	FUNC	CTION ANALYSIS REPORT
0 2 4 - <u>1</u>	6 8	10 mV)	TIME PRINTED: MAY 17,95 08:06 SAMPLE TIME: MAY 17,95 07:57 METHOD
35/ 2			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
8 107 9 142	-		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178			PERK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.097 MVS 18.6 2 UNKNOWN 8.173 MVS 20.9 3 UNKNOWN 35.18 MVS 22.6 4 UNKNOWN 19.48 MVS 29.8 5 UNKNOWN 18.64 MVS 35.6
250			6 UNKNOWN 0.398 MVS 54.6 7 UNKNOWN 277.1 MVS 76.5 8 UNKNOWN 2.155 MVS 84.0 9 UNKNOWN 0.483 MVS 93.4 10 UNKNOWN 182.4 MVS 138.5 11 UNKNOWN 107.3 MVS 267.2 12 UNKNOWN 130.4 MVS 285.6
285	•	•	13 UNKNOWN 48.03 MVS 337.3
321			
13 357			
392 428		The section of the se	NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX

:

71 中,

Analysis #6	10S+ GC Func	CTION ANALYSIS REPORT
0 1 2	3 4 5 (x 1000 uV)	TIME PRINTED: MAY 17,95 08:54 SAMPLE TIME: MAY 17,95 08:45 METHOD
35 71 4 5 107 6	2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C
142		MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
7 8 178 214 250		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.067 MVS 18.5 2 UNKNOWN 52.43 MVS 22.8 3 UNKNOWN 0.196 MVS 29.5 4 BENZENE 0.795 PPB 76.9 5 UNKNOWN 5.512 MVS 84.9 6 UNKNOWN 27.63 MVS 94.4 7 TOLUENE 11.98 PPB 140.6 8 UNKNOWN 5.801 MVS 161.0 9 M,P-XYLENE 83.47 PPB 289.8 10 0-XYLENE 19.58 PPB 347.0
285		
357 10		
392 428		NOTES JOE BYRD, JR. DULUTH ANGB AIR BLANK

11 C 11

	٠											
	ΔΝ	۵،۲	VOIC	#12		105+	GC	FUNC	TION	ANALYSIS REP	ORT	
	Q	1	2	4		6 (x		10 MV)	:	TIME PRINTED: SAMPLE TIME:		10:06 09:58
	ろ フ	7 / 4 5	2 3		 (5				SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DEL: WINDOW PERCEY DET FLOW	0.500 1.500 0.000 0.000 - 0.0 - 10.0	MV/SEC MV/SEC MVSEC MV SEC % ML/MIN
	10	17	7 ⊃3							B/F FLOW AUX FLOW OVEN TEMP AMB TEMP MAX GAIN ANALYSIS TIME		ML/MIN ML/MIN C C SEC
	17								PK 1 2 3 4 5	COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN		1VS 19.4 1VS 22.1 1VS 24.2 1VS 31.2
•	25	-							11	BENZENE UNKNOWN TOLUENE UNKNOWN ETHYLBENZENE M, P-XYLENE O-XYLENE	96.58 F 2.715 N 70.20 F 1.079 N 61.78 F 118.6 F 51.25 F	PPB 79.8 4VS 96.5 PPB 141.7 4VS 246.1 PPB 273.0 PPB 290.9
	28	35 þ1	10									
32	21			•			•					
3	5	2							The second secon			
3.	97					Joe 3.	7N63	NOTES				

	· · · · · · · · · · · · · · · · · · ·		
Analysis #13	10S+ GC FUNCT	ION ANALYSIS REPORT	
0 2 4	6 8 10 (x 1000 uV)	TIME PRINTED: MAY 17,99 SAMPLE TIME: MAY 17,99 METHOD	
71	2	SLOPE UP 0.500 SLOPE DOWN 1.500 MIN AREA 0.000 MIN HEIGHT 0.000 ANALYSIS DELAY 0.0 WINDOW PERCENT 10.0	MV/SEC MVSEC MV SEC
107 6 142		DET FLOW 12 B/F FLOW 12 AUX FLOW 0 OVEN TEMP 40 AMB TEMP 29 MAX GAIN 1000 ANALYSIS TIME 500.0	ML/MIN ML/MIN C C
214		PEAK REPORT PK COMPOUND NAME AREA/ 1 UNKNOWN 0.077 2 UNKNOWN 119.7 3 UNKNOWN 0.911 4 UNKNOWN 1.426 5 BENZENE 2.879 6 UNKNOWN 13.61 7 ETHYLBENZENE 0.985	CONC R.T. MVS 19.7 MVS 24.4 MVS 31.4 MVS 42.8 PPB 85.3 MVS 97.3
250			
7			
285			
321			
357			
392		NOTES	
428		JOE BYRD, JR. DULUTH ANGB AIR BLANK	

					N ANALYSIS REPOR		
0 2	4	6 (x	8 1: 10 mV		TIME PRINTED: N		
Li ·		(^	TO MY		SAMPLE TIME: N		_0:34
35 ===					SLOPE UP	THOD	/0==
		.			SLOPE DOWN	0.500	M./SEC
		4		•		1.500	M./SEC
	5	4			MIN AREA	0.000	M.SEC
7 12 6					MIN HEIGHT	0.000	M.
7	,				ANALYSIS DELAY WINDOW PERCENT	- · ·	SEC
₹ 8 °				:	DET FLOW	10.0	57. 75.
9.				:	B/F FLOW	12 12	M_/MIN
107- 10				:	Aux FLow		M_/MIN
11			٠		OVEN TEMP	40	M_/MIN
12				: .	AMB TEMP	30	
13				*:	MAX GAIN	1000	
142 14	÷				ANALYSIS TIME		
15	•					REPORT	SEC
[16				Pĸ	COMPOUND NAME	AREA/Co	ons R.T.
17				1	UNKNOWN	0.876 M	
178 18				2	UNKNOWN	10.80 M	
				3	UNKNOWN	90.23 M	
19				4	UNKNOWN	138.2 M	
20	•		•	5	UNKNOWN	113.7 M	
214				6	UNKNOWN	37.41 M	
		•	•	7	Unknown	92.95 M	
				8	Unknown	67.48 M	
1.				9	Unknown	50.40 M	IVS 59.1
50	,				UNKNOWN	58.45 M	VS 70.6
21	•				BENZENE	3.206 P	
				12		18.85 M	
205					UNKNOWN	35.74 M	
285 22	. :				UNKNOWN	65.71 M	
					UNKNOWN	19.15 M	
					UNKNOWN	13.99 M	
321			4	17	TOLUENE	20.95 P	
721					UNKNOWN	17.51 M	
					Unknown Unknown	10.29 M	
23			•	21		9.078 M	
357					ETHYLBENZENE	21.56 M	
					O-XYLENE	17.04 P 38.68 P	
					UNKNOWN	2.272 M	
			•	27	ONKNOWN	2.2/2 M	IVS 413.0
392					· NO	TES	
		·	•		JOE BYRD, JR.	1 23	
1							
			,	1	DULUTH ANGE		•
24				;	DULUTH ANGB 025-012bh		· •

Analysis #15	10S+ GC Func	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 10 MV)	METHOD SLOPE UP 0.500 MV/Sec
71		SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107	-	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
214		
250		
285		
321		
357		
392 428		NOTES JOE BYRD, JR. DULUTH ANGB 025-012BH 5.0- 7.0 10G

Analysis #16	109+ GC FUNC	TION ANALYSIS REPORT
0 2 4		TIME PRINTED: MAY 17,95 11:09
71		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
107		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000
142		ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
178		
214		
250		
285		
321		
35 7		
392		NOTES
428		JOE BYRD, JR. DULUTH ANGB 025-012BH RESHOT 5.0-7.0 10G 20 MICROLITER INJECTION

Analysis #17	10S+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 10 mV)	TIME PRINTED: MAY 17,95 11:20 SAMPLE TIME: MAY 17,95 11:12
71 8	= 3 = 3 4 5 6	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV/SEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107 10 11 12 13 142 14	• •	AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 1.160 MVS 20.6 2 UNKNOWN 17.70 MVS 22.6 3 UNKNOWN 421.9 MVS 26.6 4 UNKNOWN 347.6 MVS 32.7 5 UNKNOWN 360.0 MVS 36.4
214 250 17		6 UNKNOWN 341.5 MVS 38.6 7 UNKNOWN 60.44 MVS 45.9 8 UNKNOWN 170.8 MVS 49.6 9 UNKNOWN 108.6 MVS 54.2 10 UNKNOWN 136.4 MVS 60.8 11 UNKNOWN 158.6 MVS 71.3 12 BENZENE 48.28 PPB 83.8
285 18		13 UNKNOWN 167.5 MVS 86.6 14 UNKNOWN 71.74 MVS 98.4 15 UNKNOWN 57.25 MVS 117.4 16 TOLUENE 31.41 PPB 143.6
321	· ·	17 UNKNOWN 5.800 MVS 244.2 18 ETHYLBENZENE 4.454 PPB 272.2 19 O-XYLENE 13.64 PPB 341.3
19 357		
392		NOTES JOE BYRD, JR. DULUTH ANGB 025-012BH
428		10.0-12.0 13g

Analysis #18	10S+ GC FUNC	CTION ANALYSIS REPORT	
0 1 2	3 4 5 (x 100 MV)	TIME PRINTED: MAY 17,95 11:32 SAMPLE TIME: MAY 17,95 11:24	
35 5 71 6 7 8 9 107 10 11 12	4	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELA! 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C	
13 142		MAX GAIN 1000 ANALYSIS TIME 500.0 SEC	
178		PEAK REPORT PK COMPOUND NAME AREA/CONC R. 1 UNKNOWN 5.800 MVS 20 2 UNKNOWN 19.48 MVS 22 3 UNKNOWN 405.5 MVS 26 4 UNKNOWN 684.6 MVS 32	.8
15 214		4 UNKNOWN 684.6 MVS 32 5 UNKNOWN 754.6 MVS 36 6 UNKNOWN 15.49 MVS 38 7 UNKNOWN 263.0 MVS 50 8 UNKNOWN 175.4 MVS 54 9 UNKNOWN 109.4 MVS 60	.4 .8 .1
250		10 UNKNOWN 141.9 MVS 72 11 BENZENE 40.98 PPB 87 12 UNKNOWN 77.65 MVS 99	.0
285		13 UNKNOWN 63.48 MVS 118 14 TOLUENE 45.51 PPB 145 15 UNKNOWN 3.486 MVS 195	.0
321			į
357			
392 428		NOTES JOE BYRD, JR. DULUTH ANGB 025-012BH 18.0-20.0 10G	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	Analysis #19	10S+ GC	FUNCTION ANALYSIS REPORT
	0 1 2	3 4 (x 10	5 TIME PRINTED: MAY 17,95 13:29 D MV) SAMPLE TIME: MAY 17,95 13:21 METHOD
	35 2 3 4 5 71 6		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
	107 8	_ 7	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C MAX GAIN 1000
•	1429		ANALYSIS TIME 500.0 SEC PEAK REPORT
	178 214		PK COMPOUND NAME AREA/CONG P.T. 1 UNKNOWN 0.889 MVS 2 UNKNOWN 2.797 MVS 3 UNKNOWN 0.411 MVS 4 UNKNOWN 126.7 MVS 5 UNKNOWN 1.455 MVS 5 UNKNOWN 0.765 MVS 6 UNKNOWN 0.765 MVS
	250 10		7 BENZENE 76.67 PPB 83.8 8 UNKNOWN 0.453 MVS 98.4 9 TOLUENE 83.95 PPB 144.4 10 UNKNOWN 0.186 MVS 246.1 11 ETHYLBENZENE 79.82 PPB 276.2 12 M,P-XYLENE 151.3 PPB 293.8 13 O-XYLENE 78.02 PPB 347.0
	285 11 		
	35 7 1 3		
	392 428	· · · · · · · · · · · · · · · · · · ·	NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX

Fk i	ā.c. Kesdy Anslysis No L C. Hame	1989 EC No Born Run Wancas	at - Ma		
	inkelon Urknokn Seozene Grande Uranoen Grandene Ozagene Erezhed 13 oe		m/S m/S ppo m/S ppo m/S sec peo * to sc		
13'3 125	SERVICE .				10.50
19 9	12 9 - <u>1</u>		9	* * * * * * * * * * * * * * * * * * *	19
			6 109		757 530

Analysis #20	10S+ GC FUN	OCTION ANALYSIS REPORT	· · · · · · · · · · · · · · · · · · ·
0 1 2	3 4 5 (x 1000 uV)	•	
71/	7 2 3	SLOPE UP 0.500 SLOPE DOWN 1.500 MIN AREA 0.000 MIN HEIGHT 0.000 ANALYSIS DELAY 0.0 WINDOW PERCENT 10.0 DET FLOW 12 B/F FLOW 12	MV/SEC MV/SEC MVSEC MV SEC %
107>5 142		AUX FLOW 0 OVEN TEMP 40 AMB TEMP 29 MAX GAIN 1000 ANALYSIS TIME 500.0	ML/MIN ML/MIN C C SEC
178		PEAK REPORT PK COMPOUND NAME AREA/C 1 UNKNOWN 0.033 2 UNKNOWN 74.26 3 UNKNOWN 1.632 4 BENZENE 2.989 5 UNKNOWN 4.932	MVS 20.0 MVS 25.4 MVS 32.0 PPB 86.5
214		6 ETHYLBENZENE 0.816 7 O-XYLENE 73.16 8 UNKNOWN 4.197	PPB 251.4 PPB 349.0
250 6			
285			
321			
357 7			
392		NOTES JOE BYRD, JR. DULUTH ANGB	
428 8		-025-613BH 3 -0	

		#21				TION ANALYSIS REPORT
_1	2	4	6 (x	8 1000	10 uV)	TIME PRINTED: MAY 17,95 13:56 SAMPLE TIME: MAY 17,95 13:47
35			- <u>-</u> 	= - 3		METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec MIN AREA 0.000 mV/Sec
71/	-					MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
				,		WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
07	6			-		AUX FLOW 0 ML/MIN OVEN TEMP 40 C
7						AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
8						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.157 MVS 20.1
78						2 UNKNOWN 9.574 MVS 22.6 3 UNKNOWN 180.6 MVS 25.0
14				· .		4 UNKNOWN 0.528 MVS 31.6 5 BENZENE 3.574 PPB 84.9 6 UNKNOWN 17.75 MVS 98.4
			•		·	7 UNKNOWN 16.86 MVS 119.3 8 TOLUENE 2.556 PPB 142.9 9 ETHYLBENZENE 1.346 PPB 251.2
50 9	٠.	•		•		10 M,P-XYLENE 3.317 PPB 294.4
85	• •		•		,	
10	•		•			
21	•	. ·				
5 7						
	٠.		··			
92	,					NOTES JOE BYRD, JR. DULUTH ANGB
		ı	•			025-013BH 0.5- 2.5 10G

ANAL	YSIS #	26	105+	- GC	FUNC	TION ANALYSIS REPORT
0 1 35	1	2	3 (x	4 100	5 MV)	TIME PRINTED: MAY 17,95 15:18 SAMPLE TIME: MAY 17,95 15:09 METHOD
35 71/3					2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
107 107 6 7	5			·		WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
142						MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
178						PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.025 MVS 20.5 2 UNKNOWN 4.491 VSEC 26.8 3 UNKNOWN 21.96 MVS 54.2 4 BENZENE 1.045 PPB 84.4
214						5 UNKNOWN 2.850 MVS 91.8 6 UNKNOWN 3.364 MVS 95.8 7 UNKNOWN 7.268 MVS 100.5
250					•	
285		1.		. • •		
321	1 • 1					
357						
392				·		NOTES
428				,		JOE BYRD, JR. DULUTH ANGB AIR BLANK
					:	

: :/:</

Analysis #25	LOS+ GC	FUNCT	TION ANALYSIS REPORT
: •	8 (x 10	10 MV)	TIME PRINTED: MAY 17,95 14:49 SAMPLE TIME: MAY 17,95 14:41
35 2 -33 -4 71 			METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
142			Analysis Time 500.0 sec
178 214			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.042 MVS 20.6 2 UNKNOWN 55.58 MVS 25.6 3 UNKNOWN 31.74 MVS 32.8 4 UNKNOWN 56.63 MVS 39.0 5 BENZENE 95.93 PPB 84.2 6 UNKNOWN 1.090 MVS 98.9 7 TOLUENE 91.85 PPB 145.2 8 UNKNOWN 0.577 MVS 253.0
			9 ETHYLBENZENE 87.00 PPB 277.0
	•		10 M,P-XYLENE 177.5 PPB 294.4 11 O-XYLENE 92.84 PPB 347.3
285 9		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10	•	######################################	
321			
357 11		**************************************	
392			NOTES
428		The state of the s	JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
/IR/I		i	

0	2	Ή,	6	8	10		TIME PRINTED: 1			:37
: : •			(x	10	MV)			1AY 17,9	5 14	:29
_ <u>ئ</u> ـــ	_{>-}							THOD		_
35		7				:	SLOPE UP	0.500	MV/	
		5				t	SLOPE DOWN	1.500	MV/	
==	= -		4			-	MIN AREA	0.000	MVS	EC
	, 2					· P	MIN HEIGHT	0.000	м٧	
	5	e.					ANALYSIS DELAY	0.0	SEC	
7	_ /						WINDOW PERCENT	10.0	%	
7	8					:	DET FLOW	12		
29	10						B/F FLOW	12	ML/	
10,7	10					:	AUX FLOW	0	ML/	MIN
1 1	.1			•		:	OVEN TEMP	40	С	
	.2						AMB TEMP	30	С	
	.3					:	MAX GAIN	1000		:
142							ANALYSIS TIME	500.0	SEC	
15							PEAK			: :
16	,					PK	COMPOUND NAME	AREA/		R.
	. -7					1	UNKNOWN	1.594		20
178	17					2	UNKNOWN	10.75		22
						•	UNKNOWN	131.2		28
		•	* .			4	UNKNOWN	150.6		32
21/						5	UNKNOWN	68.97		35
214						6	UNKNOWN	83.15		38
İ						7	UNKNOWN	50.90		49
						8	UNKNOWN	46.04		53
250						9	UNKNOWN	27.65		59
18	, , ,					1	UNKNOWN	37.62		73
1.0							BENZENE Unknown	9.781		86
								23.48		90
285							Unknown Unknown	45.55 11.10		99
رںے	•		•	•	•	15	UNKNOWN	7.675		118
						1	TOLUENE	16.38		127 143
				•		17	UNKNOWN	3.007		166
321							ETHYLBENZENE	2.832		249
-	•		•	•	•		O-XYLENE	3.779		348
									٠ ، ،	J 70
	•	•								
357	19									
!	•			'	•					
	#									
392								OTES		
						.*	JOE BYRD, JR.			
			•			L.	DULUTH ANGB			
						02	25-013вн			
428							13.0-20.0 106	3		

ANAL	YSIS	#23	103	S+ GC	FUNC	TION ANALYSIS PEPORT
0	4	8	12	16	20	TIME PRINTED: MAY 17,95 14:19
1_1_			(X	1000	UV)	SAMPLE TIME: MAY 17,95 14:11 METHOD
35			= 2			SLOPE UP 0.500 MV/SEC
	and a second	3				SLOPE DOWN 1.500 MV/SEC
						MIN AREA 0.000 MVSEC
71			÷			MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
				•	*	WINDOW PERCENT 10.0 %
>4						DET FLOW 12 ML/MIN
107	6					B/F FLOW 12 ML/MIN
107	6			٠.		AUX FLOW 0 ML/MIN OVEN TEMP 40 C
						AMB TEMP 30 C
. 7						MAX GAIN 1000
142	• .	• .		÷	ř.	ANALYSIS TIME 500.0 SEC
0		•				PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
						1 UNKNOWN 0.243 MVS 20.6
178	•					2 UNKNOWN 242.3 MVS 25.2
			•			3 UNKNOWN 2.060 MVS 31.8 4 UNKNOWN 2.665 MVS 82.1
						4 UNKNOWN 2.665 MVS 82.1 5 BENZENE 3.515 PPB 84.1
214						6 UNKNOWN 4.841 MVS 98.2
	•					7 UNKNOWN 0.440 MVS 120.5
						8 TOLUENE 2.497 PPB 143.8 9 ETHYLBENZENE 3.962 PPB 251.2
250						9 ETHYLBENZENE 3.962 PPB 251.2 10 M,P-XYLENE 2.483 PPB 299.2
9	•,			•	•	21.100 11.00 2001
					,	
285						**
1 :						
10		•		•		
321						
			·		•	
					,	
357						
	, i					
	ŧ		,			
392						NOTES
		•		·:		JOE BYRD, JR.
						DULUTH ANGB
1120						025-013вн
428						10.0-12.0 10g
		.*				

์ บริก • 1 to 1

ANALYSIS #22 10S+ GC Fund	CTION ANALYSIS REPORT
0 2 4 6 8 10 (x 1000 uV)	TIME PRINTED: MAY 17,95 14:07 SAMPLE TIME: MAY 17,95 13:59 METHOD
71	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
75 -07 6 - 7	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1999
142	ANALYSIS TIME 500.0 SEC
178 9	PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.106 MVS 19.8 2 UNKNOWN 13.53 MVS 22.4 3 UNKNOWN 169.6 MVS 25.0 4 UNKNOWN 0.441 MVS 31.6
214	5 BENZENE 2.935 PPB 85.4 6 UNKNOWN 4.997 MVS 98.6 7 UNKNOWN 0.426 MVS 117.2 8 TOLUENE 2.283 PPB 143.7 9 UNKNOWN 0.406 MVS 165.6
250 /10 285 11	10 UNKNOWN 15.39 MVS 249.6 11 ETHYLBENZENE 19.64 PPB 274.9 12 O-XYLENE 105.9 PPB 342.0 13 UNKNOWN 6.306 MVS 414.3
321	
12 357	
392	NOTES JOE BYRD, JR. DULUTH ANGB 025-013BH
428 13	5.0- 7.0 10g

APPENDIX C

MONITOR WELL CONSTRUCTION RECORDS

INTRODUCTION

The monitor wells for IRP Sites No. 25 and No. 26 were constructed as specified in the Site Investigation Work Plan. The monitor well construction diagram displays the water level data and well construction information for the well. Monitor well construction information includes an outline of the monitor well and contains the depth of the borehole, the screened interval, and the sand packed and bentonite interval.

Also included in this appendix are copies of the well record for the Minnesota Department of Health.

THIS PAGE INTENTIONALLY LEFT BLANK

WELL LOCATION		A DEPARTMENT OF HEALTH	MINNESOTA UNIQUE WELL NO.
County Name	and the second s	ELL RECORD	564549
Township Name Township No. Range No. Section No.		tota Statutes Chapter 103I	004040
DUWTH SON 14W 6	Fraction KW,SW,LC		rk Completed
Numerical Street Address and City of Well Location	or Fire Number	DRILLING METHOD	5-70-95
4680 Viper =1		☐ Cable Tool ☐ Driven Auger ☐ Rotary	□ Dug
Show exact location of well in section grid with X: 545	tch map of well location. Showing property lines, roads and buildings.	D	□ Jetted
	roads and buildings.	Mone.	
	T	JUSE	
	,	☐ Domestic	☐ Heating/Cooling ☐ Industry/Commercial
" + + + + + + + + + + + + + + + + + + +	5	☐ Test Well ☐ Dewatering	☐ Remedial
	5	CASING Drive Shoe? ☐ Yes ♣	
		☐ Steel] Welded
Į mie	- A		
PROPERTY OWNER'S NAME	/ \	CASING DIAMETER WEIGHT	2 20
MN. A.R. NATIONA / GOVARS	•	in. toft	lbs./ft. 8.0 in. to 7. ft.
Mailing address if different than proporty address and included	<u> </u>	in. toft.	lbs./ftin. toft.
4680 Viper. STRE Duluth MN. 558	eT	SCREEN / OPE	N HOLE
11111111111	11	Make Jourson from	ft.toft.
Duloth Mr. 530	L I	Type Sch. 40 Duc Dian	"
		Set between 39. 4 tt. and 39. 4 tt.	ith 10.
- Juppy 500	25	STATIC WATER LEVEL	1111103320.77201710.00
GEOLOGICAL MATERIALS COLOR HARDNESS COLOR	FROM TO	1 7 0 1/	face Date measured 5-16-95
Plante -		PUMPING LEVEL (below land surface)	
SIACK 10p.	0 .8	ft. after f	nrs. pumpingg.p.m.
sity south will be med	0 110	WELL HEAD COMPLETION	
source! + dobbe-Fill Brown Dolle.	.8 11.0	Pitless adapter manufacturer Casing Protection 4 X4 Couchest PA	Model
5 17 6 nove bobble Brown Dense.	11.0 23.5	GROUTING INFORMATION	Shole.
UATOR BEARING 1 WARY	11.0 23.5	Well grouted? X Yes : No	
And + GRAVE BROWN DENSE	. 235 378	Grout Material & Neat cement _ Bentonite	
		Scatter te. from 27.0 to 22.0 t. Near concert from 22.0 to 1/2 t.	
		CONCRET from 12 to ft.	
		NEAREST KNOWN SOURCE OF CONTAMINATION	
		—feet Well disinfected upon completion? ☐ Yes ☐ No	type
	 	PUMP Not installed Date installed	
		Manufacturer's name	
		Model number HP	10.00
		Length of drop pipeft. C	apacityg.p.m.
		Type: Submersible L.S. Turbine Reciprocating	ng 🗆 Jet 🖂
	 	ABANDONED WELLS	
		Does property have any not in use and not sealed well(s)?	□ Yes □ No
	+	WELL CONTRACTOR CERTIFICATION	
		This well was drilled under my supervision and in accordance	with Minnesota Rules, Chapter 4725.
		The information contained in this report is true to the best of r	ny knowledge.
Use a second sheet, if needed		AMenican Engineeria	19.Testing MODES
MEMBERS, ELEVATION, SOURCE OF DATA, etc. MEN:CAN Engineering. Tob#	EC 26/	Licensee Business Mafine	Lic. or Reg. No.
MUCHLICHN ENGINEERING. VOD	2 211	The Kind	16-12-95
		Authorized Representative Signature	Date
EI. BY KREWI 142	2.56	JAMie TOURA	5-10-95
El. By RREM INC. Top of Riser. El. 142 Ground surface El. 14		Name of Driller	Date
bround surface El. 14	2256		
OF TEACH COPT 3	<u>64549 </u>		HE-01205-04 (Rev. 5/92)

- - - - - - - -

WELL LOCATION			MIN		DEPARTMENT OF HEALTH	MINNESOTA UNIQUE WELL NO.			
County Name					LL RECORD	564550			
51, 605.				Minnesot	a Statutes Chapter 103I	- Work Completed			
Township Name Township	.		action USW	des	WELL DEPTH (completed) 15.0	e Work Completed			
Numerical Street Address and City of W			Fire Numb		DRILLING METHOD ☐ Cable Tool ☐ Driven	□ Dug			
4680 Uipen					★Auger	□ Jetted			
Show exact location of well in section gr	rid with "X". Blo	Sho	nap of well wing prope	rty lines,					
N N I I	<u> </u>	42	roads and b	uildings.	DRILLING FLUID				
X] /			USE	ng □ Industry/Commercial □ Remedial			
w	T 3	13 12	le L		☐ Test Well ☐ Dewater	ing			
	½ mi.	3 00 W	laek to		CASING Drive Shoe? ☐ Yes	No HOLE DIAM.			
		10 kg 62	2-003	(RJ)	☐ Steel Threaded	□ Weided			
1 mile		9 3 6							
PROPERTY OWNER'S NAME	17		-MA	<u>s</u> ^.	CASING DIAMETER WEIGHT 2 1 in. to 5-0 ft.	tbs./ft. 80 in. to 17.0.			
MN. A.R MA	15/10/	6-200	\mathcal{A}		in. to ft	lbs./ft. in. to ft.			
Mailing address if different than propert	y address indicated a	bove.	<u></u>		in. toft.	lbs./ftin. toft.			
Mailing address if different than propert 4680 UI OULUHA	Dell 5	TreeT	_		SCREEN	OPEN HOLE			
40000		ه مسند	. /		Make Johnson Type self 40 Puc	fromft.toft.			
Destalla	MN.	538	11		Siot/Gauze -0/0	Length 10.			
NOIVAN			,		Set between 15.0 ft. and 5.0	th. FITTINGS: M/Fun. Flush			
		HARDNESS OF	T		STATIC WATER LEVEL	- 11.05			
GEOLOGICAL MATERIALS	COLOR	MATERIAL	FROM	то		and surface Date measured 5-11-95			
- 1	0. 1			.7	PUMPING LEVEL (below land surface) ft. after	hrs. pumping g.p.m.			
Silty sand Wesone	GREEN		0	٠. ح	WELL HEAD COMPLETION				
GRAVEL + Bookers	Brown		.3	70	☐ Pitless adapter manufacturer	Model			
ORGANIC. SANDY	DANK.				*Casing Protection 6" 27 5ch 4	OSTECT 12 in. above grade			
s.it	Brown		7.0	7-5	GROUTING INFORMATION				
State 5.14 SLANE	<i>-</i>	٠.	7	ار سا	Well grouted? X Yes ☐ No Grout_Material X Neat cement, ☐ Bentonite	e			
"Same GRADE COODE	Brown		75	170	Bartars. te. from 3/2 to 3 Consorrer from 2' to 0	ft gyds bags			
					from	ft □ yds. □ bags ft □ yds. □ bags			
					NEAREST KNOWN SOURCE OF CONTAMINATION	N			
·					feet	type			
·									
			<u> </u>		PUMP Not installed Date installed				
					Manufacturer's name	<u> </u>			
	<u> </u>				Model number				
					Pressure Tank Capacity				
					Type: Submersible L.S. Turbine Rec	ciprocating			
			<u> </u>		ABANDONED WELLS				
					Does property have any not in use and not sealed w	ell(s)? 🗆 Yes 🗆 No			
	· .				WELL CONTRACTOR CERTIFICATION	_			
					This well was drilled under my supervision and in acc The information contained in this report is true to the	cordance with Minnesota Rules, Chapter 4725. best of my knowledge.			
lisa a sacono	sheet if needed				Amenical Engineer;	wr. Testan MM3			
Use a second sheet, if needed REMARKS, ELEVATION, SOURCE OF DATA, etc.					Licensee Business Name	Lic. or Reg. No.			
AMEN: CLAN ENGE	veckin	i. 106 m			2. 2/	-6-12.85			
E/ 21 DD	ENT. IN	c.			Authorized Representative Signature	Date			
El. By RRE	con =1	1400	.2/	•	JAMie TOURA	5-11-95			
1			•		Name of Driller	Date			
Ground so	rfuce	.El. 1.	397.	83					
MINN, DEPT. OF HEALTH COPY 564550					HE-01205-04 (Rev. 5/92)				

				MIN		DEPARTMENT OF HEALTH	MINNESOTA UNIQUE WELL NO.		
County Name			1	**	WE	LL RECORD 564551			
51. Low	15				Minneso	ta Statutes Chapter 103l	004001		
	Township No.	Range No.	Section No.	Fraction		WELL DEPTH (completed)	Date Work Completed		
Distralla	mel	1460	ا م ا	((6),54	2 110)	177	5-11-95		
DOIO TO	3074		9			DOUGLAND ASSESSED	3-11 73		
Numerical Street Address and	•			or Fire Numl	ber .	DRILLING METHOD Cable Tool Driven	Dug		
		STIR.				Auger 🗆 Rotary			
Show exact location of well in	section grid wit	th X.	Sket	ch map of well Showing prop	l location. erty lines.				
·N		1 2	43	roads and	buildings.	DRILLING FLUID			
╽╌╌╌┼╌┽╌┥╸						NONE			
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	: 		a			USE	Unoting/Casling		
w/->		1 13	Ø			☐ Domestic	oring Deductor/Commercial		
" : : : : :			<u>بر</u> لم	Black		☐ Test Well ☐ Dewat	rering Remedial		
		. 11	1	/ 'CK 7		*****			
	·	"	mm	Black by	2		HOLE DIAM.		
	النلنا		0 025-1	α3 , ~	(0)	☐ Steel	☐ Welded		
1 mile			~			A 1333			
			·	MAN E	" Come	CASING DIAMETER WEIGHT			
PROPERTY OWNER'S N	IAME		, ,	/		a in to 7.2 t.	tbs./ft. 8.0 in. t 22.0t.		
MN. A.R.	NOT	FON. A.	1 600	42		in. to ft.	lbs./ft. in. to ft.		
Mailing address if different that	an property add	ress indicated a	bove.			in. to ft.	lbs./ft. in. to ft.		
468	0 12.	Per	STRE	e/		SCREEN /	OPEN HOLE		
100		.		/		Make Johnson	fromti.tott.		
n.,	101/10	MN	l. 55	811		Type son 40. ovc.	Diam.		
100	10100			- •		Slot/Gauze	Length 10.0		
						Set between 17.2 ft. and 7.3	L ft. FITTINGS: M/FUL-FICS.		
						STATIC WATER LEVEL			
GEOLOGICAL MATER	IALS	COLOR	HARDNESS (MATERIAL	DF FROM	ТО		land surface Date measured 5- 11-25		
			MATERIAL	_					
ELITOR	./				-	PUMPING LEVEL (below land surface)			
54,54,61,64).			0	.3	ft. after	hrs. pumpingg.p.m.		
0.114 - 100	The -	/	٠,	7		WELL HEAD COMPLETION			
CODDIES & BOU	does is	ROUN		:3	13.0	☐ Pitless adapter manufacturer ** Casing Protection ** 7. 5 du 40.	Steel Model		
2	. _	,	med	- ^		3-4" 5 reel	12 in above grade		
PEAT	. BR	con,	Dense	. 13.0	19.0	GROUTING INFORMATION			
olganing. 5.1	1 GA	144.54		.		Well grouted? X Yes 🗆 No			
LY SAND + (MA	vel BI	raen	Loose	19.0	20	Grout Material Neat cement Benton			
					1	CONTINUE from 7.6 to 4			
						could from 4.0 to 6			
						NEAREST KNOWN SOURCE OF CONTAMINATION			
						feet			
							No type		
					} · }				
						PUMP Not installed Date installed			
						Not installed Date installed			
						Model number	HPVolts		
						Length of drop pipe	ft. Capacityg.p.m.		
						Pressure Tank Capacity			
				.	1	Type: Submersible L.S. Turbine Re	ciprocating		
					<u> </u>	ARANDONED MELLO	.,		
						ABANDONED WELLS Does property have any not in use and not sealed wealth and the sealed well are sealed with the sealed well and the sealed well are sealed with the sealed well are sealed with the sealed well are sealed with the sealed well are sealed with the sealed wi	woll(s)? E Yes E No		
							vell(s)? ☐ Yes ☐ No		
						WELL CONTRACTOR CERTIFICATION			
						This well was drilled under my supervision and in ac	ccordance with Minnesota Rules, Chapter 4725.		
				1		The information contained in this report is true to the			
Use	t a second sheet	, if needed				AVUALICAN FACTOREMIN	CRESTING MANGES		
REMARKS, ELEVATION,	SOURCE OF	DATA etc				MUGLICAN ENGINEERIN	Lic or Reg. No.		
			756	#95	29		· /		
AMERICAN E	ng.ne	renny	, 100			The 15. 25	- 6-12.95		
-10	DDA	-m	- 14	**		Authorized Representative Signature	Date		
Z1. 134	KKE	111.2			1	JAMIR TOURA	-1/-9-		
El. By	f Ri	Ser	El. 1	405	, ~!	Name of Driller	3-71-75		
		<u>, </u>				Name of Driller	Date		
GROWN	19 20	rence	. El.	1402	2.7/1				
A 610 14 1	<u> </u>								
MINN. DEPT.	OF HEA	ALTH CC	PY I	645	5] [•	HE-01205-04 (Rev. 5/92)		

WELL LOCATION]			DEPARTMENT OF HEALTH	MINNESOTA UNIQUE WELL NO.
County Name	1	1	WEL	L RECORD	564552
ST. LOU.5		Mit	nnesota	a Statutes Chapter 103l	004002
Township Name Township No. Range No.	Section No. Fracti	ion	T	WELL DEPTH (completed) Date W	ork Completed
potota SOX 15W	1 HE	NE_S	E	24.2	5-5-95
Numerical Street Address and City of Well Location	or Fire	e Number		DRILLING METHOD ☐ Cable Tool ☐ Driven	□ Dug
MN. A.R XLATIONA/ burnd B	45e (Dulcill)			☐ Cable Tool ☐ Driven Auger ☐ Rotary	☐ Jetted
Show exact location of well in section grid with "X"	Sketch map Showin	of well loca ng property li	ines, 📙	0	
N I	road	ds and buildi	ings.	DRILLING FLUID	
	2	• .	MA	Hone.	
		1 .	256	.USE ☐ Domestic ★ Monitoring	☐ Heating/Cooling ☐ Industry/Commercial
w ====================================	2º 2º 2º) X		☐ Irrigation ☐ Public ☐ Test Well ☐ Dewatering	☐ Remedial
	7 2 2 7	. 1.			
W			3:45	CASING Drive Shoe? ☐ Yes ☐ Steel	No HOLE DIAM.
1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		- 120	۵.	Plastic	
1 mile	Mu.020-001	Har I			
N I I	11/0-020-001	Gask		CASING DIAMETER WEIGHT	80 70
PROPERTY OWNER'S NAME	()			2.0 in. to 14.2 ft.	
MALION AL	burro.	·		in. toft	lbs./ft. in. to ft. in. to ft.
Mailing address if different than property address indicated 4680 Vipen and the second	above.		-		PEN HOLE
4680 Viperc.	31/2001			= 1.1(0.1)	pen HOLE
and the male	55811		į	40/1/0 24/4	am
DOIOTAL MAR					ength 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			. [FITTINGS: M/FWA-FRS Y
GEOLOGICAL MATERIALS COLOR	HARDNESS OF F	ROM	то	STATIC WATER LEVEL 17.2 ft. \$\times\$ below \$\Boxed{\Boxes}\$ above land \$\times\$	surface Date measured <u>\$-5-</u> 95
Plank To			/	PUMPING LEVEL (below land surface) ft. after	hrs. pumpingg.p.m.
Black 100		0 -	4		
Supply State Formy		./		WELL HEAD COMPLETION Pitless adapter manufacturer	Model
FIL 70 3' chara Braun	Dense 1	• 7		2 Casing Protection 4X4 CONCher	2 in. above grade
TO SANLEY 5.TT.		_ /-	2.0	GROUTING INFORMATION	ganore.
SALLY S. Itw	mes			Well grouted? ★Yes □ No	
Some Grove Brain		7.0 20	ا۵.۵	Grout Material & Neat cement Bentonite Benton: + from 11. 7 to 9.7	ft C yds. D bags
				New Tomat from 9.7 to 40	ft D yds. D bags
				applement from 4D to 6	ft 🖸 yds. 🗀 bags
				NEAREST KNOWN SOURCE OF CONTAMINATION	
				teet	type
			ļ		
			-	PUMP Not installed Date installed	
	1		1	Manufacturer's name	
				Model number H	
			1	Length of drop pipe ft. Pressure Tank Capacity	Capacityg.p.m.
	+			Type: Submersible L.S. Turbine Recipro	cating
			1		
			-	ABANDONED WELLS	.)? □ Yes □ No
			1	Does properly have any not in use and not sealed well(s	7: L. 162 L. 140
				WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accord	lance with Minnesota Rules, Chanter 4725
				The information contained in this report is true to the bes	st of my knowledge.
Use a second sheet, if needed				HMENICAN ENC. NEONING Licensee Business Name	r lesting 140063
REMARKS, ELEVATION, SOURCE OF DATA, etc	-1 the	- 70	9/	Licensee Business Name	
AMERICAN Engineerini	100 " To	2- V	4	Authorized Representative Signature	(-6-12.8
I a prem to	ic.		İ	Authorized Representative Signature	Date
El. By. KKER!	el 1424	62.		JAMIE TOURA	2-5-6
Top of Kusek.	-1, 17-		ŀ	Name of Driller	Date
Came (en al.	10 El 10	246	9		
REMARKS, ELEVATION, SOURCE OF DATA, etc. AMONEMAN Engineering El. By. RREM I Top of Ruser. Groons sorting	re. E: 17	مارا سر	•	•	
MININ DEPT OF HEALTH	102Y 56	3455	521		HE-01205-04 (Rev. 5/92)

.

						MINNESOTA UNIQUE WELL NO.
WELL LOCATION County Name			MIN		DEPARTMENT OF HEALTH LL RECORD	
ST. Louis	5				ta Statutes Chapter 103l	564553
Township Name Township No.	Range No.	Section No. F	raction		WELL DEPTH (completed) Date Wo	rk Completed
Numerical Street Address and City of Well Lo	1500		W.SE		19. d	5-8-95
MN . A: R Gumd Base		rath)	r Fire Numb	er	DRILLING METHOD ☐ Cable Tool ☐ Driven Auger ☐ Rotary	☐ Dug ☐ Jetted
Show exact location of well in section grid with	h X/ /4	Sketch :	map of well owing prope	rtv lines.	0	
N N I I I I I I I I I I I I I I I I I I		Sketch	roads and b	uldings.	DRILLING FLUID	
	1 8	A 14	\sum_{i}	HALE.	HONE.	☐ Heating/Cooling
W	1 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	,,	☐ Domestic Monitoring ☐ Irrigation ☐ Public	☐ Industry/Commercial ☐ Remedial
	3 6	,		Hanys	☐ Test Well ☐ Dewatering	
	Rencom	500		Nd.	CASING Drive Shoe? ☐ Yes ② ☐ Steel ☐ Threaded [No HOLE DIAM.
	Rekle Mes of the Control of the Cont	1300			Plastic 🗆	
	128	<u> </u>	<u> </u>	1	CASING DIAMETER WEIGHT	
PROPERTY OWNER'S NAME	1. 1	<i>C</i>	1		2" in. to 9. 4 ft.	lbs./ft. 8.0 in. to 22.0
Mailing address if different than property addr	ace indicated ab	GUARCIOVE.			in. toftin. toft.	lbs./ftin. toftin. toft.
4686 V. Dulutl	Per	STRE	et	-		EN HOLE
- / //	,	,	-1/		Make John Son from Type Sch 40 - Pre Dia	
DUICHL	1 Mx	1. 538	011		Slot/Gauze Ler	
		•			Set between 14.4 ft. and 9.4 ft.	FITTINGS: M/FM FIOS4
GEOLOGICAL MATERIALS	COLOR	HARDNESS OF MATERIAL	FROM	то	STATIC WATER LEVEL	irface Date measured_5=8-85
silly course or	ME				PUMPING LEVEL (below land surface)	
ORGANIES: H TODON BY	raen		0	.6	ft. after	hrs. pumpingg.p.m.
5:14, SANG. WGNOWN	BROWN		,	22.0	WELL HEAD COMPLETION Pitless adapter manufacturer	
120 bbles - Few Baldy)	SKULVA		26	24.0	Casing Protection 47 50040 5	2 in. above grade
of sure silt +					GROUTING INFORMATION	**B 70313
GRAVEL FREM 18'					Well grouted?	
0,0,0	<u> </u>		ļ		Bestoute from 6.4 to 4.4	t D yds. D bags
	į				CONCREAT from 4.0 to 0	t
				·	NEAREST KNOWN SOURCE OF CONTAMINATION	
		<u> </u>			feet	type
				,	PUMP	
					Not installed Date installed	
					Manufacturer's name Model number HP	Volts
					Length of drop pipe ft.	Capacityg.p.m.
					Pressure Tank Capacity	ating 🗆 Jet 🗆
	1				ABANDONED WELLS	
					Does property have any not in use and not sealed well(s)?	☐ Yes ☐ No
			 		WELL CONTRACTOR CERTIFICATION	
	*				This well was drilled under my supervision and in accordar The information contained in this report is true to the best	
Use a second sheet	t, if needed	•			Auch CLAX Engineer Name	Testing, M0663
REMARKS, ELEVATION, SOURCE OF	F DATA, etc.		Ł		Licensee Busineed Name	
AMER: CHAN ENG: NO EL. BY RR TOP OF R GROCHES S	eer:n	9 506	⁷ 95-	7091	Authorized Representative Signature	- 6-12-75 Date
El Ru PR	Em 3	EXIC.			Talla: To a	
E DY RR	isel.	El. 142	24. 2	8	JAMie TuchA Name of Driller	5-8-95 Date
Grand S	unfa	e El. l	421.	90		
MINN. DEPT. OF HEA		DV E	2/5	<u> </u>		HE-01205-04 (Rev. 5/92)
WIGHT DELTE	TETTI OC	<u>ال ا "</u>	O + O	ر. ں		

WELL LOCATION	Ми		A DEPARTMENT OF HEALTH	MINNESOTA UNIQUE WELL NO.
County Name		WE	ELL RECORD	564554
57. 400:5	· .	Minnes	sota Statutes Chapter 103I	004004
Township Name Township No. Range No.	Section No. Fraction	_		/ork Completed
Numerical Street Address and City of Well Location	\ \ \$E \SE			5-6-95
	or Fire Num	ber	DRILLING METHOD Cable Tool Driven	□ Dug
Character to action of well in a still in the A	Duluty 5 k Sketch map of we	II location	Auger □ Rotary	☐ Jetted
N I	Sketch map of we Showing prop roads and	aprhy linae	DRILLING FLUID	
	SE	GUANS.		
1	`	House	e	
w	1 ~ ~ ~	×□×	☐ Domestic ▲ Monitoring	☐ Heating/Cooling ☐ Industry/Commercial
"	2 8 80 8 C	,	☐ Irrigation ☐ Public ☐ Dewatering	☐ Remedial
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Haius	CASING Drive Shoe?	TNO HOLE DIAM.
W		' \	☐ Steel ☐ Threaded	□ Welded
$-1 \frac{s}{mile} - \sqrt{V} \frac{s}{s}$		IRD.	S Plastic 🗆	
		N	CASING DIAMETER WEIGHT	
PROPERTY OWNER'S NAME	1		2.0 in. to 5.5 ft.	
MA. HIR NATIONAL GUI	ard		in. to ft.	lbs./ft. in to ft
Mailing address if different than property address indicated at	pove.		in. to ft.	lbs./ftin. toft.
Mailing address if different than property address indicated at 4680 V.PeR. DUWH MN.	SIKEEI		SCREEN OF	PEN HOLE
Dul Ha Mark	55811		Make Johnson fro	5 //
DOTOFIL			(2/()	am
			Set between 15.5 ft. and 5.5 ft.	
	HADDNESS OF		STATIC WATER LEVEL	
	HARDNESS OF FROM	то	6.2 ft. below above land si	urface Date measured 5-6-25
Top Soil, silty Land BARK			PUMPING LEVEL (below land surface)	
ORGUIZ BROWN		0.	ft. after	hrs. pumpingg.p.m.
SANGY SAF CYCLURE			WELL HEAD COMPLETION	
Cobbles + Bailders Brain	.6	22.0	☐ Pitless adapter manufacturer **X Casing Protection 6	Model
@ 4.25			3- 44x7.5/ee	12 in above grade
			GROUTING INFORMATION Well grouted?	
:			Grout Material Alleat cement ABentonite	. · · ·
			Benton te from 4.0 to 2.5	t □ yds □ bags
			Contenent 1 from 2.5 to 0	t 🗆 yds. 🗆 bags
			from to f	t 🗆 yds. 🗀 bags
			NEAREST KNOWN SOURCE OF CONTAMINATION	direction type
			Well disinfected upon completion? Yes No	type
			PUMP	
			X Not installed Date installed	
			Manufacturers name	
			Model number HP Length of drop pipe ft.	Consists Volts
			Pressure Tank Capacity ft.	Capacityg.p.m.
			Type: Submersible L.S. Turbine Reciproca	ting D Jet D
			ABANDONED WELLS	
		•	Does property have any not in use and not sealed well(s)?	□ Yes □ No
			WELL CONTRACTOR CERTIFICATION	
		l		
			This well was drilled under my supervision and in accordange The information contained in this report is true to the best of	f my knowledge.
Use a second sheet, if needed			_	
BEMARKS ELEVATION SOURCE OF DATA ata			AMOLTAN ENGINEER V	Lic. or Red. No.
AMORCAN ENGINEARING. OF El. By RREM IX Top of Riser. Ground surface.	Tol forma	/		
-1 2 DAEM	10 70-10 C	•	Authorized Representative Signature	6-12-757 Date
El. DY KKEM IX	1/ 1/12	90	•	i
Top of Riser.	Elita	· ,	JAM'E TORA	5-6-95
Curry Service	El. 1420.	44	Name of Driller	Date
GRONS JUSTICE				
MININ DEDT OF HEALTH OO	DV ECAE	E 1	40	
MINN. DEPT. OF HEALTH CO	PY 5645	04	<u> </u>	HE-01205-04 (Rev. 5/92)

APPENDIX D

WELL DEVELOPMENT, PURGING, AND SAMPLING LOGS

INTRODUCTION

This appendix contains the well development, purging, and sampling logs for the monitor wells installed during the Site Investigation for IRP Sites No. 25 and No. 26 at the Minnesota Air National Guard Base, Duluth, Minnesota.

THIS PAGE INTENTIONALLY LEFT BLANK

Installation: Duluth ANGB Well No.: 025-001MW

Client/Project: Site: 25

Sample Start: (Date) 12 May 95 (Time): 1030 Sample End: (Date) 12 May 95 (Time): 1236

Developed By: J. Byrd, G. Wirtz

Background PID Reading: 0.0 ppm PID Reading: 0.0 ppm

Depth to Water (BTOC): 21.78' Depth to Bottom of Well (BTOC): 38.32'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (16.54') (0.1632) = 2.7 gal.

Volume of Water in Well x 3 = 8.1 gal.

Development method: PVC Bailer (1st 7.5 gal.) stainless-steel submersible pump thereafter.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: 70s, Sunny, Breezy.

Comments: Very silty, causing problems with stainless-steel submersible pump.

Never did clear up.

	riever did clear up.					
Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (μS/cm)	Clarity (NTU)	Remarks
1053	7.5	12°	7.38	6.05		Cloudy
1104	10.0	12°	7.68	6.31		Cloudy
1110	12.5	12°	7.61	7.43	**	Cloudy
1122	15.0	12°	7.75	6.90		Cloudy
1130	17.5	12°	7.65	6.95		Cloudy
1137	20.0	12°	7.64	5.79		Cloudy
1145	22.5	12°	7.75	5.55		Cloudy
1153	25.0	12°	7.69	6.06		Cloudy
1201	27.5	12°	7.66	6.15		Cloudy
1208	30.0	12°	7.66	6.34		Cloudy
1215	32.5	12°	7.60	6.39		Cloudy
1222	35.0	12°	7.71	6.25		Cloudy
1231	37.5	12°	7.71	6.74	640,000	Cloudy

[°] C - Degrees Centigrade. NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB Well No.: 025-002MW

Client/Project: Site: 25

Sample Start: (Date) 12 May 95 (Time): 1308 Sample End: (Date) 12 May 95 (Time): 1513

Developed By: J. Byrd, G. Wirtz

Background PID Reading: 0.0 ppm PID Reading: 0.0 ppm

Depth to Water (BTOC): 7.49' Depth to Bottom of Well (BTOC): 15.98'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (8.49') (0.1632) = 1.4 gal.

Volume of Water in Well x 3 = 4.2 gal.

Development method: PVC Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water: Weather: Partly cloudy, windy, cool.

Comments: Recharges slowly.

Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (μS/cm)	Clarity (NTU)	Remarks
1321	4	8°	6.93	11.18	·	Very Cloudy
1332	6	8°	6.83	12.33		Clearing
1345	8	8°	6.65	12.27		Clearing
1355	10	8°	6.64	12.19	644,000	Silty, Cloudy
1405	12	8°	6.60	12.16	657,000	Silty, Cloudy
1415	14	8°	6.59	12.15		Silty, Cloudy
1425	16	8°	6.62	12.98	405,000	Silty, Cloudy
1435	18	8°	6.67	12.22	683,000	Silty, Cloudy
1444	20	8°	6.62	12.33		Silty, Cloudy
1454	22	8°	6.63	12.32		Silty, Cloudy
1503	24	8°	6.72	11.85		Silty, Cloudy
1510	26	8°	6.65	12.18		Silty, Cloudy

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB Well No.: 025-003MW

Client/Project: Site: 25

Sample Start: (Date) 12 May 95 (Time): 1530 Sample End: (Date) 12 May 95 (Time): 1735

Developed By: J. Byrd, G. Wirtz

Background PID Reading: 0.0 ppm PID Reading: 80.0 ppm

Depth to Water (BTOC): 10.10' Depth to Bottom of Well (BTOC): 21.94' Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (11.84') (0.1632) = 1.9 gal.

Volume of Water in Well x 3 = 5.8 gal.

Development method: PVC Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Partly cloudy, breezy (10-15 mph), cool.

Comments: Recharging slowly.

Time	Amount of Water Removed (gallons)	Temperature (° C)	рН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
	6	,		,		
1547	. 8	9°	6.64	14.72		Very Cloudy
1559	10	9°	6.48	15.20		Very Cloudy
1610	12	9° .	6.47	15.10		Very Cloudy
1617	14	9°	6.37	15.03		Very Cloudy
1627	16	9°	6.47	14.87		Very Cloudy
1638	18	9°	6.33	15.08		Very Cloudy
1650	20	9°	6.44	15.32	180,000	Clearing
1701	22	9°	6.37	15.26		Clearing
1717	24	9°	6.40	15.41	·	Clearing
1729	26	9°	6.39	15.89	175,000	Clearing

° C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB

Well No.: 026-001MW

Client/Project:

Site: 25

Sample Start: (Date) 10 May 95

(Time): 10:49 am

Sample End: (Date)

(Time): 11:55 am

Developed By: J. Byrd, Gary Wirtz

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 17.34'

Depth to Bottom of Well (BTOC): (24.2') 23.89'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (6.55') (0.1632) = 1.07 gal. = 1.1 gal.

Volume of Water in Well x 3 = 3.3 gal.

Development method: PVC Bailer (1st 5 gals.) (Stainless-steel submersible pump thereafter).

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Cloudy, 45° F, Wind 10 mph N.

Water Level: 19.11' (BTOC) after development. Comments:

Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
1057	3	7°	8.06	4.18		Cloudy
1103	4	7°	7.91	4.51		Cloudy
1105	5	7°	7.72	4.74	698	Cloudy
1115	7	7°	7.64	5.13		Cloudy
1117	8	7°	7.63	4.50		Cloudy
1122	9	7°	7.62	5.42	477	Cloudy
1134	10	7°	7.41	5.51	688	Cloudy
1137	11	. 7°	7.39	5.14		Cloudy
1140	12	7°	7.35	5.13	39	Cloudy
1143	13	7°	7.34	5.38	522	Cloudy
1145	14	7°	7.34	5.26	469	Cloudy
1147	. 15	7°	7.31	5.13		Cloudy
1150	16	7°	7.32	5.31	236	Cloudy

(Concluded on next page)

Well Development Log (Concluded) Well No.: 026-001MW Duluth ANGB

Ending Water Level: 18.4 (BTOC) and Rising.

Comment: Stainless-steel submersible pumps dry in a matter of seconds on lowest setting. We pump, grab samples for peramiters, and allow to recharge. Reached two-hour limit.

Time	Amount of Water Removed (gallons)	Temperature (°C)	pН	Conductivity (μS/cm)	Clarity (NTU)	Remarks
1153	17	7°_	7.36	5.56	680	Cloudy
1330	18	7°	7.83	5.33	694	Cloudy
1333	20	7°	7.63	4.77		Cloudy
1337	22	7°	7.51	4.60	112	Clearing
1345	23	7°	7.63	4.64	51	Clearing
1350	24	7°	7.48	4.71	32	Clearing
1355	25	7°	7.46	4.69	35	
1400	26	7°	7.39	4.62	38	
1405	27	7°	7.40	4.75	57	
1411	28	7°	7.42	4.66	35	
1416	29	7°	7.42	4.68	25.7	NTU (x100)
1421	30	7°	7.41	4.71	21.1	NTU (x100)
1426	31	7°	7,41	4.73	31.9	NTU (x100)
1431	32	7°	7.33	4.81	32.5	NTU (x100)
1436	33	7°	7.34	4.72	12.7	NTU (x100)

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

 μ S/cm - microSiemens per centimeter.

pH - [p(otential) of H(ydrogen)].

Installation: Duluth ANGB

Well No.: 026-002MW

Client/Project:

Site: 26

Sample Start: (Date) 10 May 95

(Time): 1506

Sample End: (Date) 10 May 95

(Time): 1710

Developed By: J. Byrd, Gary Wirtz

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 11.07'

Depth to Bottom of Well (BTOC): (19.4') 21.40'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (10.33') (0.1632) = 1.7 gal.

Volume of Water in Well x 3 = 5.1 gal.

Development method: PVC Bailer (1st 15 gals.) (Stainless-steel submersible pump).

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Cloudy, 45° F, Wind 10 mph N.

Comments:

Recal Hydac when pH drops below 7. Water level at 1710: 11.21' (BTOC) and

rising.

Time	Amount of Water Removed (gallons)	Temperature (° C)	рН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
1516	5	7°	7.24	3.2		Very Cloudy
1520	7	7°	7.04	2.9		Very Cloudy
1523	9	7°	6.94	2.86		Very Cloudy
1538	11	7°	6.45	2.86		Very Cloudy
1541	13	7°	6.53	2.87		Very Cloudy
1545	15	7°	6.55	2.88		Very Cloudy
1553	16.7	7°	6.62	3.05	788,000	Very Cloudy
1557	18.4	7°	6.73	3.13		Very Cloudy
1601	20.1	7°	6.65	2.99		Very Cloudy
1604	21.8	7°	6.65	2.98		Very Cloudy
1609	23.5	7°	6.80	3.16		Clearing

(Concluded on next page)

Well Development Log (Concluded) Well No.: 026-002MW Duluth ANGB

Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
1613	25.2	7°	6.74	3.09	679,000	Clearing
1617	26.9	7°	6.68	3.18	445,000	Clearing
1621	28.6	7°	6.68	3.09	356,000	
1625	30.3	7°	6.63	3.14	293,000	
1629	32.0	7°	6.66	3.22	249,000	
1633	33.7	7°	6.68	3.17	260,000	
1637	35.4	7°	6.63	3.02	400,000	
1641	37.1	7°	6.60	3.11	278,000	
1645	38.8	7°	6.65	3.07	248,000	
1649	40.5	7°	6.67	3.04	649,000	
1653	42.2	7°	6.67	3.07	380,000	
1657	43.9	7°	6.68	3.05	275,000	
1701	45.6	7°	6.67	4.39	208,000	
1705	47.3	7°	6.62	3.07	232,000	
1709	49.0	7°	6.63	3.05	229,000	

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

 μ S/cm - microSiemens per centimeter.

pH - [p(otential) of H(ydrogen)].

Installation: Duluth ANGB

Well No.: 026-003MW

Client/Project:

Site: 26

Sample Start: (Date) 12 May 95

(Time): 0728

Sample End: (Date) 12 May 95

(Time): 0938

Developed By: J. Byrd, Gary Wirtz

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 8.29'

Depth to Bottom of Well (BTOC): (15.5') 16.15'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (7.86') (0.1632) = 1.3 gal.

Volume of Water in Well x 3 = 3.9 gal.

Development method: PVC Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Sunny, High in the 70s, Breeze 10-15 mph 5.

Comments: Bails dry (almost) 5-6 bailers.

Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (μS/cm)	Clarity (NTU)	Remarks
0754	5	7°	7.49	4.30		Cloudy
0816	7.5	7° :	7.05	3.94		Clearing
0829	10	7°	6.84	3.83	699,000	
0844	12.0	· 7°	6.39	3.99	201,000	
0850	13.0	7°	6.56	3.68	85,000	
0856	14.0	7°	6.48	3.88	112,000	
0902	15.0	, 7°	6.48	3.69	110,000	
0908	16.0	· 7°	6.46	3.64	184,000	÷
0914	17.0	7°	6.42	3.70	61,000	
0920	18.0	7°	6.47	3.71	199,000	
0926	19.0	7°	6.48	3.71	109,000	
0934	20.0	7°	6.49	3.71	119,000	

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB

Well No.: 025-001MW

Client/Project:

Site: 25

Sample Start: (Date) 19 May 95

(Time): 1315

Sample End: (Date) 19 May 95

(Time): 1420

Developed By: Byrd, Greenway

PID Reading: 0.0 ppm

Background PID Reading: 0.0 ppm Depth to Water (BTOC): 21.74'

Depth to Bottom of Well (BTOC): 39.28'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (17.54') (0.1632) = 2.9 gal.

Volume of Water in Well x 3 = 8.6 gal.

Development method: Teflon™ Bailer.

Γeflon™ Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Sunny, 70s.

Comments:

Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
1353	9	9°	7.60	9.39		Cloudy
1400	12	9°	7.68	8.13		Cloudy
1409	15	9°	7.73	8.08		Cloudy
1417	18	9°	7.74	8.02		Cloudy

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB

Well No.: 025-002MW

Client/Project:

Site: 25

Sample Start: (Date) 18 May 95 Sample End: (Date) 18 May 95

(Time): 1530 (Time): 1628

Developed By: Byrd, Greenway

PID Reading: 0.0 ppm

Background PID Reading: 0.0 ppm Depth to Water (BTOC): 7.32'

Depth to Bottom of Well (BTOC): 18.80'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (11.48') (0.1632) = 1.9 gal.

Volume of Water in Well x 3 = 5.6 gal.

Development method: Teflon™ Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Sunny, 60s.

Comments:

Time	Amount of Water Removed (gallons)	Temperature (° C)	рН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
1549	6	7°	6.80	12.12		
1602	8	7°	7.22	11.57		Slow Recharge
1613	10	7°	7.25	11.54		
1626	12	7°	7.21	11.45		

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

 μ S/cm - microSiemens per centimeter.

pH - [p(otential) of H(ydrogen)].

Installation: Duluth ANGB

Well No.: 025-003MW

Client/Project:

Site: 25

Sample Start: (Date) 19 May 95

(Time): 1554

Sample End: (Date) 19 May 95 Developed By: Byrd, Greenway

(Time): 1637

Background PID Reading: 0.0 ppm

PID Reading: 17.0 ppm

Depth to Water (BTOC): 10.05'

Depth to Bottom of Well (BTOC): 22.35'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (12.30') (0.1632) = 2.0 gal.

Volume of Water in Well x 3 = 6.0 gal.

Development method: Teflon™ Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Sunny, 70s.

Comments:

Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (µS/cm)	Clarity (NTU) Remarks
1612	6	6°	6.65	16.17	Cloudy
1618	8	6°	6.64	14.12	Cloudy
1628	10	6°	6.67	14.07	Cloudy
1634	12	6°	6.61	14.13	Clearing

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB

Well No.: 026-001MW

Client/Project:

Site: 26

Sample Start: (Date) 18 May 95

(Time): 0840

Sample End: (Date) 18 May 95

(Time): 0932

Developed By: Byrd, Greenway Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 17.05'

Depth to Bottom of Well (BTOC): 25.28'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (8.23') (0.1632) = 1.3 gal.

Volume of Water in Well x 3 = 4.0 gal.

Development method: Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Sunny, 50s, Breezy.

Comments: Depth at end: 17.2' (BTOC) and rising.

Time	Amount of Water Removed (gallons)	Temperature (° C)	рН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
0856	. 4	7°	7.21	5.18		Cloudy
0859	5	7°	7.25	4.72		Cloudy
0902	6	7°	7.28	4.83		Cloudy
0906	7	7°	7.28	4.93		Cloudy
0910	. 8	7°	7.34	4.89		Cloudy
0914	9	7°	8.09	5.21		Cloudy
0918	10	7°	7.65	4.75		Cloudy
0921	11	7°	7.49	4.74		Cloudy
0923	12	7°	7.45	4.71		Cloudy
0927	13	7°	7.41	4.85		Cloudy

[°] C - Degrees Centigrade. NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB

Well No.: 026-002MW

Client/Project:

Site: 26

Sample Start: (Date) 18 May 95

(Time): 1044

Sample End: (Date) 18 May 95

(Time): 1125

Developed By: Byrd, Greenway

PID Reading: 0.0 ppm

Background PID Reading: 0.0 ppm Depth to Water (BTOC): 9.74'

Depth to Bottom of Well (BTOC): 21.44'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (11.7') (0.1632) = 1.9 gal.

Volume of Water in Well x 3 = 5.7 gal.

Development method: Teflon™ Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Sunny, 50s, Breezy.

Comments: Depth at end: 9.72' (BTOC).

Time	Amount of Water Removed (gallons)	Temperature (° C)	pН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
1101	6	6°	7.40	3.04	-	Cloudy
1109	8	6°	7.27	2.62		Cloudy
1113	10	6°	7.17	2.61		Cloudy
1119	12	6°	7.16	2.58		Cloudy
1123	14	6°	7.13	2.60		Cloudy

[°] C - Degrees Centigrade. NTU - Nephelometer Turbidity Units.

Installation: Duluth ANGB

Well No.: 026-003MW

Client/Project:

Site: 26

Sample Start: (Date) 18 May 95

Sample End: (Date) 18 May 95

(Time): 1220 (Time): 1309

Developed By: Byrd, Greenway

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 7.20'

Depth to Bottom of Well (BTOC): 17.94'

Volume of Water in Well (gallons) = (0/0408) x (well diameter (feet)² x height of water column

(feet) (10.74') (0.1632) = 1.8 gal.

Volume of Water in Well x 3 = 5.3 gal.

Development method: Teflon™ Bailer.

Development Water Containment: Plastic-lined, 55-gal. steel drum.

Average Rate of Removal of Water:

Weather: Sunny, 60s, Breezy.

Comments: Recharging slower than others.

Time	Amount of Water Removed (gallons)	Temperature (° C)	рН	Conductivity (µS/cm)	Clarity (NTU)	Remarks
1234	5	6°	6.97	7.18		Clear
1239	7	6°	6.96	3.93		Clear
1244	. 9	6°	6.97	3.76		Clear
1251	11	6°	6.97	3.89		Clear
1304	13	6°	6.95	3.82		Clear

[°] C - Degrees Centigrade.

NTU - Nephelometer Turbidity Units.

μS/cm - microSiemens per centimeter. pH - [p(otential) of H(ydrogen)].

D - 16

Installation: Duluth ANGB

Well No.: 025-001MW

Client/Project:

Site: 25

Sample Start: (Date) 19 May 95

(Time): 1503

Sample End: (Date) 19 May 95

(Time):

Sampled By: J. Byrd, D. Greenway

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 22.05'

Screen Interval:

Sampling Method: Teflon™ Bailer

Sampling Equipment Decontamination method: Liqui-Nox, Potable water rinse, DI Water

Rinse.

Lab Analyses:

VOCs - SW8010/8020

Metals - SW7421, SW6010, SW7196, SW7470

SVOCs - SW8270

QA/QC Samples:

Weather: Sunny, 70s

Installation: Duluth ANGB

Well No.: 025-002MW

Client/Project:

Site: 25

Sample Start: (Date) 18 May 95

(Time): 1654

Sample End: (Date) 18 May 95

(Time): 1705

Sampled By: J. Byrd, D. Greenway

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 7.39'

Screen Interval:

Sampling Method: Teflon™ Bailer

Sampling Equipment Decontamination method: Liqui-Nox, Potable water rinse, DI Water

Rinse.

Lab Analyses:

VOCs - SW8260

SVOCs - SW8270

Metals - SW7421, SW6010, SW7196, SW7470

QA/QC Samples:

Weather: Sunny, 60s, Breezy.

Installation: Duluth ANGB Well No.: 025-003MW

Client/Project: Site: 25

Sample Start: (Date) 19 May 95 (Time): 1706 Sample End: (Date) 19 May 95 (Time): 1720

Sampled By: J. Byrd, D. Greenway

Background PID Reading: 0.0 ppm PID Reading: 8.0 ppm

Depth to Water (BTOC): 14.01'

Screen Interval: Sampling Method: Teflon™ Bailer

Sampling Equipment Decontamination method:

Lab Analyses:

SVOCs - SW8270 VOCs - SW8010, SW8020

Metals - SW7421, SW6010, SW7196, SW7470

QA/QC Samples:

025-003RB @ 1532 025-003AMW @ 1715

Weather:

Installation: Duluth ANGB

Well No.: 026-001MW

Client/Project:

Site: 26

Sample Start: (Date) 18 May 95

(Time): 1012

Sample End: (Date) 18 May 95

(Time): 1020

Sampled By: J. Byrd, D. Greenway

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC): 17.2'

Screen Interval:

Sampling Method: Teflon™ Bailer

Sampling Equipment Decontamination method: Liqui-Nox, Rinse with Potable Water, Rinse

with DI Water.

Lab Analyses:

SVOCs - SW8270 VOCs - SW8260

QA/QC Samples:

SI - 001FB

Weather: Sunny, Breezy, 50s.

Installation: Duluth ANGB

Well No.: 026-002MW

Client/Project:

Site: 26

Sample Start: (Date) 18 May 95

(Time): 1125

Sample End: (Date) 18 May 95

(Time): 1144

Sampled By: J. Byrd, D. Greenway

Background PID Reading: 0.0 ppm

Depth to Water (BTOC): 9.74'

PID Reading: 0.0 ppm

Screen Interval:

Sampling Method: Teflon™ Bailer

Sampling Equipment Decontamination method: Liqui-Nox, Rinse with Potable Water, Rinse

with DI Water.

Lab Analyses:

VOCs - SW8260 SVOCs - SW8270

QA/QC Samples:

None

Weather: Sunny, Breezy, 80s

Installation: Duluth ANGB

Well No.: 026-003MW

Client/Project:

Site: 26

Sample Start: (Date) 18 May 95

(Time): 1333

Sample End: (Date) 18 May 95

(Time): 1355

Sampled By: J. Byrd, D. Greenway

Background PID Reading: 0.0 ppm

PID Reading: 0.0 ppm

Depth to Water (BTOC):

Screen Interval:

Sampling Method: Teflon™ Bailer

Sampling Equipment Decontamination method: Liqui-Nox, Potable water rinse, DI water rinse.

Lab Analyses:

VOCs - SW8260 SVOCs - SW8270

QA/QC Samples:

026-003RB - taken at 1212 026-003AMW - 6W01

Weather:

APPENDIX E

AQUIFER SLUG TEST DATA ANALYSIS

E.1 INTRODUCTION

Six aquifer slug tests on six monitor wells were performed to investigate the hydraulic properties of the unconsolidated glacial till. A detailed description of the data collection and analysis is presented in the following sections.

The slug test method is used to obtain data necessary to calculate the hydraulic conductivity of the subsurface material around the screened portion of a well. The technique is based on measurements of the water level as a function of time after withdrawing a slug of known volume from the monitor well. Both rising-head and falling-head test methods were run on each well. However, only rising-head test data is used to evaluate and interpret the hydraulic properties of the aquifer at both IRP sites.

E.2 AQUIFER SLUG TEST PROCEDURE

The equipment used for slug testing included a Hermit Environmental Data Logger model 1000C manufactured by *In Situ*, Inc., of Laramie, Wyoming. Also used was a pressure transducer model PTX-161, manufactured by *In Situ*, Inc. An acrylic slug that was 1.25 inches in diameter and 4 feet in length was used to produce the initial water displacement.

Prior to testing, the well was developed and the water level allowed to stabilize. The slug was decontaminated using standard procedures prior to performing the slug test.

Immediately upon opening, the headspace of the well to be slug tested was tested for volatile organic vapors and lower explosive limit and oxygen percentages using a photoionization detector and explosimeter respectively. Next, the initial water level was measured and recorded in the field logbook and the pressure transducer was placed in the well and allowed to equilibrate. The proper operating parameters such as time, date, test number, sample rate, number of inputs, data type, and scale factor and offset values of the transducer were inserted to properly program the data logger for the slug test. The decontaminated slug was rapidly lowered into the well in such a manner as to minimize turbulence and splashing. The injection of the slug created a nearly instantaneous rise in the water level or hydraulic head as well as some transient oscillations (minimized by the smooth slug injection). After the initial rise, the water level of the well dropped as it returned to equilibrium. The water level altitudes were recorded by the data logger.

After equilibrium was attained, the slug was rapidly and smoothly removed from the well and the subsequent rise of the water level in the well versus the time since the start of the test was also recorded by the data logger.

After the slug test was completed, the data was downloaded onto a computer and printed out by a portable printer.

E.3 SLUG TEST DATA ANALYSIS METHODS

The method used for analysis of the slug test data depends on the setting of the monitor well being tested. For monitor wells in unconfined conditions, the Bouwer and Rice (1976) method is the appropriate method to use for reduction of the slug test data to determine values of hydraulic conductivity. The Bouwer and Rice method can also be used for semi-confined and confined conditions (Bouwer, 1989). Because of the heterogeneous nature of the lenticular stratigraphy and discontinuous layers of intermixed clays, silts, sands, and gravel which are representative of glacial stratigraphy, some uncertainty exists whether the hydrologic unit is defined as an unconfined, semi-confined, or confined aquifer.

The data plots and data reduction for both methods discussed in the previous paragraph were accomplished using the AQTESOLV software package Version 2.0 developed by Geraghty & Miller (1994).

The slug test data analyses using Bouwer and Rice (1976) method is presented in this section. The slug test results are presented in Section E.4.

The method described by Bouwer and Rice (1976) is used to calculate the hydraulic conductivity of an aquifer or hydrologic unit in the vicinity of a well screen from the rate of rise or fall of the water level or hydraulic head in the well after a known volume or "slug" is suddenly injected or withdrawn. This particular method is based on the following assumptions: (1) drawdown of the water table around the well is negligible, (2) flow above the water table (in the capillary fringe) can be ignored, (3) head losses as water enters the well (well losses) are negligible, and (4) the aquifer is homogeneous and isotropic.

The rate of flow of groundwater into a well after the water level has been lowered a distance, y, below the static water table around the well is calculated using the Thiem equation (Equation 1).

$$Q = 2\pi KL \frac{y}{\ln(R_e/r_w)}, \text{ where}$$
 (1)

Where:

Q = rate of flow into the well;

 π = 3.14159, the ratio of the circumference to the diameter of a circle.

K = hydraulic conductivity of the hydrologic unit in the vicinity of the well screen;

L = length of screened interval;

y = vertical difference between water level inside the well and the static water level outside the well;

R_e = effective radial distance over which y is dissipated; and

 r_w = radial distance to the undisturbed portion of the hydrologic unit from the centerline of the well.

The value of r_w is the radius of the screened section of the well plus the thickness of the sand pack and the developed zone around the well. Because the take only the thickness of the sand pack into account (Bouwer, 1989).

The rate of rise of the water level (dy/dt) in the well after the water level has been quickly lowered can be regarded as:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{-Q}{\pi r_{\rm c} 2} \tag{2}$$

dy/dt = rate of rise of the water level within the well;

Q = volume rate of flow into well;

 π = 3.14159, the ratio of the circumference to the diameter of a circle; and

 r_c = radius of the casing.

If the water level rises in the screened section of the well with a sand pack around it, then the thickness and porosity of the sand pack should be taken into account when calculating the equivalent value of r_c for the rising water level. The equivalent value of r_c is then calculated using Equation (3) if the water level is within the screened interval of the well.

$$r_c = [(1 - n)r_c^2]^{1/2}$$
, where (3)

n = porosity of the sand pack;

 r_c = radius of the casing;

r_w = radius distance to the undisturbed portion of the aquifer from the centerline of the well.

By solving Equation (2) for Q, and using it in Equation (1), it is possible to integrate, and solve for hydraulic conductivity, K, in Equation (4).

$$K = r_c^2 \ln \frac{(R_e/r_w)}{2L} \frac{1}{t} \ln \frac{y_o}{y_t}$$
, where (4)

K = Hydraulic conductivity;

 r_c = radius of casing;

R_e = effective radial distance over which y is dissipated;

r_w = radial distance to the undisturbed portion of the aquifer from the centerline of the well;

y_o = y at time zero; and

 $y_t = y$ at time t.

This equation was used to calculate hydraulic conductivity of the sediments of Site 10.

Values of R_e , effective radius, for various system geometries are expressed in terms of the dimensionless ratio $ln(R_e/r_w)$ and were determined empirically with an electrical resistance network analog for different values of r_w , L, length of water column in the well, H, and hydrologic unit thickness, b, (Bouwer and Rice, 1976). The data are used in one of two equations: Equation (5) is used when H is less than b, and Equation (6) when H is equal to b. These equations are:

$$\ln \frac{R_e}{r_w} = \left[\frac{1.1}{\ln(H/r_w)} + \frac{A + B\ln[(b - H)/r_w]}{L/r_w} \right]^{-1}$$
, and (5)

$$\ln \frac{R_e}{r_w} = \left[\frac{1.1}{\ln(H/r_w)} + \frac{C}{L/r_w} \right]^{-1}, where$$
 (6)

A, B, and C = dimensionless values as a function of L/r_w ;

R_e = Effective radial distance over which y is dissipated;

r_w = Radial distance to the undisturbed portion of the aquifer from the center line of the well;

H = length of water column in the well;

b = hydrologic unit thickness; and

L = length of screened interval.

Because y and t are the only variables in Equation (4), a plot of $\ln y_t$ versus t semilogarithmic paper may be used to determine $[\ln(y_o/y_t)]/t$. The straight line through the data points can also be used to select two values of y, namely y_o and y_t , along the time interval t for substitution into Equation (4). Because drawdown of the groundwater table around the well increases exponentially and time increases linearly as the test progresses, the points begin to deviate from the straight line for large t and small y. Thus, only the linear portion of the curve should be used to evaluate $[\ln(y_o/y_t)]/t$ for the calculation of K using Equation (4) (Bouwer, 1989).

E.4 SLUG TEST RESULTS

The graphs illustrating the plotted displacement values versus time are presented in this section. The computed hydraulic conductivity values for the monitor wells at IRP Sites No. 25 and No. 26 are presented in Table E.1.

Table E.1 Slug Test Results, IRP Sites No. 25 and No. 26 148th FW, Duluth ANGB, Duluth, Minnesota

Monitor Well	Hydraulic Conductivity (ft/min)	Hydraulic Conductivity (gpd/ft²)
	IRP Site No. 25	
025-001MW	9.946 x 10⁴	10.9
025-002MW	8.604 x 10 ⁻⁴	9.26
025-003MW	3.043 x 10 ⁻⁴	3.28
	IRP Site No. 26	
026-001MW	9.481 x 10 ⁻³	102
026-002MW	2.926 x 10 ⁻²	315
026-003MW	1.442 x 10 ⁻³	15.5

ft/min - feet per minute.

gpd/ft² - gallons per day per square foot.

CLIENT: HQ ANG/CEUR company: OpTech LOCATION: Duluth ANGB - Site 25 **РВОЈЕСТ: 1315-197** 025-001MW DATA SET: 25-001MW.DAT 08/17/95 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATA: Displacement (ft) H0= 1.531 ft r_c= 0.0833 ft r_w= 0.375 ft L = 10. ft b = 17. ft H = 16.76 ft PARAMETER ESTIMATES: 0.1 $K = 0.0009946 \, \text{ft/min}$ y0 = 1.246 ft 0.01 12. 24. 36. **48**. 60. Time (min) AQTESOLV

CLIENT: HQ ANG/CEUR company: OpTech LOCATION: Duluth ANGB - Site 25 **РВОЈЕСТ: 1315-197** 025-002MW DATA SET: 25-002MW.DAT 08/17/95 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATA: Displacement (ft) 1. H0= 1.986 ft r_c= 0.083 ft r_w= 0.375 ft L = 10. ft b = 12. ft H = 10.1 ft PARAMETER ESTIMATES: 0.1 K = 0.0008604 ft/min y0 = 1.559 ft 0.01 10. 20. 30. 40. 50. Time (min)

CLIENT: HQ ANG/CEUR company: OpTech LOCATION: Duluth ANGB - Site 26 рвојест: 1315-197 026-001MW DATA SET: 26-001MW.DAT 08/17/95 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice 1. TEST DATA: Displacement (ft) H0= 1.05 ft r_c= 0.083 ft r_u= 0.375 ft L = 10. ft b = 18. ft H = 8.25 ft 0.1 PARAMETER ESTIMATES: K = 0.009481 ft/min y0 = 0.9395 ft 0.01 0.001 Θ. 2. 8. Time (min) AQTESOL

CLIENT: HQ ANG/CEUR company: OpTech LOCATION: Duluth ANGB - Site 26 рвојест: 1315-197 026-003MW DATA SET: 26-003MW.DAT 08/17/95 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATA: Displacement (ft) H0= 1.947 ft r_c= 0.083 ft r_w= 0.375 ft L = 10. ft b = 29. ft H = 10.6 ft 0.1 PARAMETER ESTIMATES: K = 0.001442 ft/min y0 = 1.902 ft 0.01 0.001 20. 80. 100. Time (min)

APPENDIX F

FIELD LOG BOOK DATA

INTRODUCTION

Field logbooks were maintained by Operational Technologies Corporation (OpTech) personnel for documentation of the field activities for the Site Investigation at Duluth Air National Guard Base, Duluth, Minnesota. The field work was conducted between 1 May 1995 and 20 May 1995.

THIS PAGE INTENTIONALLY LEFT BLANK

atheyn Ritchett

me that all utilities that required and such assentence bein climated, and temeral. Set 1 armed to Durech anned at Buse live pose whileles well to built suy the ויידינירו Enjencer 18647 54/1/5 Monday A COMMENTS REFERENCE

warrings to obtained the softend of the falls of the ocquare darbie of fair box Box did not hims the Engineer - bauce buy in a nation will 1015, o binned at hand quarter to neet light Sterk Walnivety to obtained morning neeting divined at Dulath ANGB did not lawre at the hotel. Stopped by Base Civil Jue End, A. Distances Distry Coree men Kathy Pretekell effect, The be office until ~ , Kathleen Mering Deput hotick Breakfast and ent act 5/2/95 Mon frience Tuesday arived at Save Seavedy. Staked soil boung and mouter well leading left Dubut ANGB. dewit southered it site 26 byld, D. al Desty Excernant armied at Melith 5/1/62 AN60.

1300 - Called 120th Court	1330 (MPCA) TO divinis	1330 - with lake (GA/DC) (C.R.) DRO method (J.) TPH 1330 - wild over Stees 2T + 1430 - Wild over Stees 2T + 1430 - Wild over Stees 2T +	mar Eaulan (c) 724) to copier the pertaining labo to in my in the contact passes in the latter passes in the false (216) 7411-9295 Called Duilers to	1525 Kuthleen meening at 150. Kuthleen meins of the 17 th the position desired at Site 17 to still become the locations. Kathy Lizhert becker locations.
12/95 buil #	3/0 " Saline at 900 Toting 3/0 " Saline at 900 Toting 021-0268# 021-0268#	Clo Church at Ele 2 c. 12/00 pr. Colo Church at Ele 2 c. 14/00 by al pr. Destry Creening	t to the contract of the contr	Let mossing

infam then of an presence for purject at Site 26 - we shall he dulling at Site 16 from 3 may - 5 may Witny Crecumny frience of Kathyn Frience Cleady, Teny: Cir. arrived at Duluth ANCB Kithlen marian Destry, Crecuman be morely like to utilities.

Salled Witness authority

I alled to Ruly be interest 46961-122 A admy Badose Skry (Base Ciril Engineer) absent Clearance for Site 26 176-001mm needs to Check with Bruce Calibrated 17 D> Determinator Wednesday 5/3/95 Weuther left Site 17 awied at Duluth, AN 68.

at 3.5' 1865-march 1.5' O LEL 70.8 % C. Cortextile 5-7 garand ile rost ambating drill Stated "OLG-COLBH Coellicted C.5-2.5" Armsed at Ste 2 6 Health 4 Safety Derry Greenway De Brach Printed Klethy Printed Stated Oll - ColoBt Frankied boulder Dillera finnsked Kithleen Meuns Knachen Calvial meeting " 5/5/95 Copin Chaused 1252 Boulde O LEL BG PID 1127 1200 215-215 1045 1255 [300 Cineman Engineery Testing Gary Maintan Jourtes Galrich Exploranted Protunnity Co.

Exploranter 1- Andwarmal

Scintific mx 25/

9/0/059-002 desortamination preseduns
of dist nig and august
arines at Hadgusters watravety alast durns.
The 24 durns that very
arailaite one being used.
It durns are indientle Dectactivene 100 gm neins will downant dueting and august or on order sent by Cathleen Authorisen Certified on site to racked to Capit. to decontaminati 5/3/95 1 lethe litabent

Mare to OCC-COYBH 10100 -370 182110 Collected 5-4 (collected 8-10) Cathetal C, 5 - 2.5" Nayt to Cle-col1814 (0, 8% Or Callated 5-7 1 DLEL 20,8 % CL Cattested 0.5-2.5 0 9,207 Collected 6-101 Klaum Pidaleck 0.% fewery Collected which Copin Mined to 5/3/95 7270 Oppor つりつつ 1438 7251 Collected 8-10' from Poor Recovery on 8-10' Collected 10-12' Anternal OLEL 20,8 % 02 Photo Collecting, is 0,5 - 1.5 Arternal Collected 5-7 Antennal culterting a seil cange of 11.5-Collected 0,5-2.5 CLEL 20,8% 02 Kathken mount LEUNO LEL X techn I watched 5/3/95 Bachele 1358 1344 1342

Guest mantage Jose Byd Jr. Dental Stated Dilling
Collicial 0.5-2.5

5-6 Reway
Collected 5-7

0.66 Co.5-02 Kathlein Mount ferrie Tucca U. C. G. 70 ' BLS Only 50% Recovery checked water in Divisions aported at Kath Pitesta 026-006BH 0 26-001BH 026-00 5BH 026-604BH 026 - 002 BH 25/h/S berehier Engendering Testing amerian 10 water We have two soil bosing remaining — we will duil 15' to search for water (believe to be ~ 12'815) 026-001 my to determine Dullers arrived.
Dullers at fire
department to
fill up 200-galler
water tumb Greenway is exturnering Dillers decentamenting on the rest sixt bring, of we fail to encounter water -The durino. Destry to meet us at FOD area, at Site 26 the purediush, Called Bare Security Patalett Health & Safety water level. 5/4/95 neeting / Ath

insurance, dieling Stopped Dieling Left Site 24 26 Left Dubecth SPANGB anived at Duluth ANGB diller can have Diennik Dill for acting and aver for 026-coloned as long as there is proof of for two casos, John money, untertal Base Security Destry Encenuary Katheen Meune for eserct to Site 26 Arwiel at lite 26 OLE L'AM COR Collected 5-7 Wellected 0.5-2,51 0. LEL 20.5% 0L Prisabett 2/h/62 Kathr 1217 1315 007/ 1355 13/8 1335 01 EL 20, 6% 0.,
0 pm
Upleted 0.5 - 2.5'
0 LEL 20.6 % 0. We will receivent one of y-6 parteurl due dillere wiring to Dramord Dieding to cut pad from aspect Duller moved to to par rouver. Uppm Called Russ Cason Coptack) about the Russ will clear with 026 - 003 macy BH Started dully 11/15 Collected 4-61 Kath Pawate 5/H/az 35. 955 100/

1545 709] myed with potable water a 7 gallow per 100 16 minture.
Deport Site 26 Dillera decontamenty Danord Dull had arined at 1215 and ith 97% Neat Cements 3% Bentvite Aurter VOC (8640) (3) 40-ml VOA viels Hel bill his singers (allocted equipment sinseste blank 5 VOC (8270) (1) SVCC anter 12 metals. (1) 16 poly HNO3 stayed on like 26 until Dillers were starting (thy Pitchett Re-Callected 0.5 at 026-0038# to grout brisholes with no " 5/4/95 (6276) metals. C. C. (6010) 1435 800

Destry Experiments

Kathly Enterty

Kathly Fixebett

Stated difficult

Stated difficult

Stated difficult

Stated difficult

Stated difficult

Site 26

Depart for Hilling

The boarbole for the

monitor wells

Site 26

Depart Site 26

annied at Fedex

Depart Fedex

5/4/95

Staby Pricated

Bot Byd fr. Bernary Services Stated Brilling - 2.5 Student Heather Super hummeung split-you For recovery Coffeeted 5-7 / fermie Tueral Ranay Wolf Kathleon Meine termie pipe (IVC) was steam claumed yesterdy veternos 1 - W who en couraged Souther OLEL 20.7 % 02 5/4/95 815 832 63 Destry Creenway

Kathy Fictibes

Millers arrived at Site 21 divised at Duduct, ANG B for Byrd, fr. Destry Greenway Kathry Postuck Calibrated PID some pureduos as stated in sy 20 of field legbook stated on per 20 of field logsboke (believeted MX251) Joe Byd of Wains Weather; Suring; 40%, Jame protedures do Je S / wwa (24) Sobunday 5/6/95 Engineery Exting Windrican

Health of Safety Meeting Health Tuesand Monothan Cubuid Rathern meund The batteries in the PIDs Weither: Cloudy 1405 / gentle wint NE 50 dained Duluth ANGB in sleep mede), anived site 26 Kathleen merine Kathr friesed Dielew anied were drin darr - left pin in (but it was Joe Byld BILD Calebrating PID 4 MX251 PIDS-MORAN Doty Greenway for bys , J. . Kuthyn Product from Turns monday 5/8/95 4ht رد دري 750 700

U. L. 11, 3 mes Started construction of OLG-00 2 mod 9-191 0 LEL 20.8 % OL W.L. 11.3'815 20.72 Suen Juternal TD 20 755 026-002mJ W.L. 13.4 Bld of or the Ballowse W.L. 830 - W.L. 845 W.C. 8 5-0

5/8/95

Why Freehold

ath futural

hig will be used for sites firsted of the mindlest Left Dilleth ANGB Returned Ford Extrem hillers decontaminated or per curentulas stated of paye 24 of this held lostook. to exchange for another. Budget request) Dillers arwed at Joe Byer, A. Destry Creenway Keepleen meund Weather. Windy, and 400, arnied at Juluth all tensin dill reg Kath Patabat Twendowy 5/4/95 Duluch ANGB deportaninating ANGE 819 development should start tonorms of weather Kuthleen normo Kathyn Pickota Duellers are finishing auface completion.

Cain Steady cold

Capart Site 26

- concept pads are grand part will be installed towards and permits deput Outeth ANGB arrived at site 26 5/8/95 complete

23.6 BLS (famie) ~ 23.5 6/5 23.5 8 613 23.2 8 65 0 LEW 20,606 02 Court Wist & Unity Underly Testing annied it side ? 20-25 Upper 10,606 De Collected 15-17-Open 15-27 W.L. 723.8 BLS Sand Gravel lon 22.5 - 25 K Why Pitalet Can wint for the Exercise to the total fronter wells at Site 5/0/5 wileted W.C. Diller BC+ Bretole c)0) 2 937 932 (o 53 930 Vesting Creening Kuthleen neumo Stated Dulling Justical Health & Safety meeting - Site 25 forme Turn foresten Calriel collected 0.5 - 2.5 Uppm LOSS Oppur 10-12.

Bressele Oppur
District 5 topped to patuene showel at 5-sta Le Continued bulling Ful pum 0-1 Collected 5-7' 5/10/45 K thy Fither 825 830

Sholls	1231 W.L. 34,7'BCs,	34.7	Sueen Artemal, 29-39 1565 (235 Started contraction of 025-00/17m	1530 horbored construction 1531 Pullers decortaminating	dull rig , augus, a temie pyso as or a	paye 24 of this	hirsh de	1615 Collected 0.5-2.5' BG Offm 22.19.	Collected	(630 Collected 10-12"	A oth Paint
5/10/18	1040 (cellested 30-32 0 ppm 20,6% or	2 8 2	o instructed diviles to collect 35-37 (1104 Collected 35-37	0 Let 20.6602 0 Let 32.4' 815.	· advancing durpes to 40, 365 then	allow to set for water	m boutole 1815	4. C. C. 34.9' Bels.	1230 Return to Dubuth ANGE	

Opproced 20.6% deleted 5-7 ses UPPROLEL 20.5% OLEL ZOLL Returned from lanch Collected 0.5 - 4025 Joph OLEL 20.5% nord to OLT-OCHOIGH Collected 13-15' BLS Murel to 025-00 1154 Collected O. 5 - 7.5 Oppur OLEL 20.6° Oppm mored to 025-009 AH Cidraid bather (MPCA) Collected 0,5-2,5) Offin constant arrived at Ret 26; 5/1995 Ath fried Borchale Borehole
1340 knehole 1332 1415 e0/) 1300 (305 1323 1400 1250 0621 1/30 Cullers are decontamenty dield in faugus as per procedure stated on pays 24 of this field legerse. moved to 015-008 BH Stated drilling Collected 5 -7 record offer 20,660e collected 7-9' finished decontaminations Dillers are durening grand port holes of b Collected 9-11 Oppin 20.6% Kay Putered 5/11/95 1030 1015 1002 1000

for End, for and Card Card With are developing the last monter well 0 25 - 00 3 ms. Collected equipment Apout Feder Expass Reput Palluth A, NGB to Federal Express America "cr5-00, 40 ml von Hel depart Dulick 5/H/gr 3/0x (81.75)

(4 (6010)

(2 (7496)

(4 (6010)

(6010)

(6010)

(6010)

(6010)

(6010) (oh 8) JOD 0 LEL 20.0% a 11-12 - Surple) (10-11 dup) Collected 10-12, 825 Diller grout soil bourge 1 o por 15-0063H Brekelo Oppor Oce-Dupliste collected Tupliste collected pleated 0.5-2.5' olleited 13-15" O's Remen Coelected 20-22' 0 ppm 20,6 % 0. Collected 5-7 /16 Collected 5-7 Upon 18-20 Lollected 10-12' this Prituct 5/2/8 1507 1523 5/5 1518 1913

Sport 20.620c M(251 - Radon Collected 15-17, BLS 246 Plr 10.5% Or 5 LEL 20.5% Or Stateming for MKL5/ 0 LELP 20500E 293 John 333 John 200 Collected F-7 86= Collected 0.5-2.5 117 PM 20,5 % O. 5 % O. Collected 18-20 5/15/95 Breathing you 1023 Budule Boselvole 955 coaloff 645 030 otated or paye by of field labout, ANCS to Chuired at site 25 Restrict Creening, Kethice Prities Calificated FIX & MRST (60) modery 5/15/95
Weather: J. Turny his 6000,
words - him no west, gentle
640 audred at Delath ANGE moved to C75-C03BH 20.6% OL OLEL augus as propertures this field legerate.
Duiliste aimed Pullers desortaminated onather babiel 62 per procedures ofther Hamie Turna 745

335 Apr 1.5-8.5 Boulder 27.5-8.5 342 cm. 7 LE [11 20.5% Breuthing you of from 10-12' bus Rissell Cash rafe about diffin That down can stop dielling wherether outh (John Illiam needs to be 12 5/15/65 for visiliand kalth a Sax (athy Pritchil Brishale Brehole 1315 1324 Bachule Offin 20.5% Oz.
Brehole 72.5%

Brehole 72.5%

Brehole 72.5%

Brehole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 72.5%

Strekole 7 Bockwlo 205 ppm - 40 2 LEL 20.5 2 Or swening Water encarteed "22, hole collapsed — 565 24-25 sidewall from 240 ppr 20,5%g. 6 LEL 20,5%g. Be-collected 25-27/Pages Collected 23-25 that interval 5/15/95 ing Fither orby 25' (130 / (230) (230)

7 Brehole 250 pm 11 LEL 20.7% Bright tule baryone purped 15 + inso at cenain
for 5 inno for consensative
The 3 = 1, Offer 20.5% C. El 20.5% C. OLEL 20.5% Or Collected 5-7 gr. 20.5 6 dr - strong petroleun frem. the for dilling of Collected 10-12 5/15/95 OLEL on hours Brehele 1545 1451 th51 due to law oxygen downhole

- duiller (firme Tumer) informet

wo that he had experienced
explosions downhole in the past in he felt unauge with disting deeper. He augus to art boun 025-002BH. Evelyone felt unage + wneary about advancing mode to 025-00/8/4 mised desertaminating per prosesumes stated or layerer. of this jeld the auges. Dullered becortamistery died his ad augue is should cease when before pulling ang durn on fulness. 5/15/95 recommend

2) 50% gentle forgy or the hill of at mant ANGB Inashen Gulrias Meeting Destry Greenway 67 Kathy Potent Weather; Clearly chauers Creenway n Indoheth Jame Thura informed Hamie Tuena Expost to op this field legal for Byd, R. Kathleen nering DIOA ouredues oftel or ath, Padesa the that he felt into the right, MXLS/ BO Tuesday 5/16/95 morning (? Diller deport Site 25
Kestrleen merins
and Destry Enemy
degrat Dubuth ANGB
federal Express
(3) 2012 samples (3) noit suples (1) Trip Black 5/15/15

1.5 ppm 86 1.5 pm 45 1.5 pm 45 1.5 pm 45 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 86 1.5 pm 0 LEL 120.4802 Muse to 025-005BH Uffer believe he may Called Russell Casor Copterly informed him have enemoted water at 145 865 Lot Richard 20-Collected 15-171 Doeloe gm OLEL 20.4% 5/10/45 10th, Putiled Borehole Everyone else felt pressure of ols-cot Bil 20, 5 % Or brither Gabrial said that the funco smell fire in Pucked on in meding one in meding one 5/10/95 Oppur marine . Capt Backale Bosehale

5/16/45	(150 Calleted 16-20 865	bowhile Offm	1350 moch 021-0602th 1350 collected 0.5-25	2.8 Mm 5- Collected 5-	zaetale	B .	Collected Opportude Opport	ofter 20,5 to Collected 4.	Kar hall
	- must	(000) watch (1)	1350 Collected 20-22	salula Oppin OLEC	avon a per possens.	1/17 moreh to sis-0043H 1/15 (ollected 0,5-2.5)	1135 Collected 5-71.	1140 Collected 10-12, Open Boehole Open	Kay Independent

Oppur 20.5 % Oz Colletes 10-12 Datus Creenwary Kathein Meine Kathy Pitchet Muned to 025-0128# 30 lletted 3.5-2.70 8.5 poin before Dangle Oppin after aungle Och 20.5% 0. 800 5.5 Pm 2 LEC 20,5:00 9.19 (what howed to 025-0084) 926 West to 0.5-2.5 restly moises are Kothy Fathett Collected 5-7' Selected 15-20' ndd st 5/12/95 4.5 ppm Burchale Bachate 4 86 Brehalo Boehole 843 838 630 field bolover, by this duspus as per protedura Weather: Surmy Good -hip 50's. Can 40's justed diel 132°F just winy; NW MX251 ad per proveduca stated or pay 20 of this field support.

Dillows amined Health & Safety moeting Amie Tuwa Monastan Calnial Dillers decortuminating driver at Dulut ANG / Both Creening Wednesday anines ext 600 9

1317 5/17/45 (72) 1322 Collected 0.5-2.5'	1337 Collected 46' Brochee Offor 20.506 Dr. 466 OLELPOSO Dr. (350 Person Six 0-6.5 - 10' (350 Proved to 017-025 8th	1405 Opportune of Sitters Opportune of Sitters Soldented 4-6 Part Door Water countries Opportune of 20.5°4 02. 1415 Nove to 017-02284 14720 Collected 0.5-2.5	Bowlode O. L. 20.5 % O. L. Lawer Kuth Metalet
(46) 5/17/95.	Booksell Offer 20,5% O. Booksell Offer 20,4% a. (615 Explain Offer 20,4% a. Booksell Offer 20,4% a.	1100 Dieles decodaminating deit 10,5 % Or dieles decodaminating augmentes of this field of persone 24 of this field of liverity autes bookseles augmentes bookseles gentles at site 7 the field of feelings at site 7.	1145 Dieles let Dueut Mes to mility to site 13 Kath Patalett

Tunsducer (7.10 5 tax soluy test

injection at 025-00/med

5 torted withdianal

start or 025-00/med Kathleen Merino Kathry Priteste Joe Bya, had ad Lesty Greenvay at Site 26 welesty Stopped test Stopped to cool down animedat ors-odmu BTOC TEND 1202, 40 pm 8 70 c to W.L. = 22.9 8 8 70 c to TO = 39.81 870 c to grombuster sergeles 5/18/95 1 lun, . 53.6 pm 8 W.L. 46,027 B K with Indust 1521 1337 1345 ch 21 1515 9/1/ 940 At he will inform move to copter. Destry Covernory
Kethleen Morines
Kathr Pathett for Byd, h. Creenings a 24 hour turnament (Tim buck) to confirm obtaining analysical Calles Rosell Goon Theohy + wednesdy Stated that those well by Joe 13yd , B. of all of or page to of this Liebert (Kathlern) (B) Thursday 5/16/95 Lake Syranor lab-Nesutts for avit the threat Weather: Summy 606 of5 anniel at Dulut clast the alread

Dupliste weletted

Son SNOC (4, (SPL)

LATER Symin) Duilen grouter laborish boung with 30% bortolice powder 4 WONR GROPES (3) 40 ml VILL HER SFUL (8270) (1) 1 R Conter 14 (7470) (1) 12 Pay, HNO3 4330 Most Leve Superior Late 1027 Culletted 0.5+25 water another 15 % Receivery 1035 Recollected 0.5-2. Delucter ANGB Gotte relinguish:

17) 50:1 Says

19 Uplicate
mis/msD collectes impette 5/16/18 Calletter 0.5-2,5 ander Upon Biel 605 Koz Revoluted 0.5-2.5 1506 Kewy Open 0.5-2.5 Dupliste collected for noved 017-92984

Kath Piccott mared to 10/7-030BH 10 (letted 0,5-7.5 mod for 017021 EH Collected 0.5-2.5 Coelected 4-6 5/19/15 with ontountered 4001 0/0,

		lots armed at Duleth ANGE	130 drived by site 20	Latin Putoka	Wells 026-001my 870c			~ 845 Stypen test Prived to 626-00:1 mW	70, 17, 92, 870c X ath Pritheth	
ED) >/19/95	1340 aunel at 625-002 mm	1406 Thursday T.D. 17, 45, 870.	1450 Stopped tout 1505 Stated wildraw	1530 bill anderson wick RREM winner of	~ 2 3-	to the state of th	, , , , , , , , , , , , , , , , , , ,	1830 report outured ANGOS 1810 Brogged Kathleen Front Mexico et the hisport	Karty Patalox	

MEAN PROSESSION ONLY BY ALDS

Duluth ANG 1315-197

Destry
Operational Tec.
4100 NW Loop
San Antonio, TX 7820
1-800-677-8073

1. Wash with mix of potable water and
Liquinox. Scrub with brush
3. Rinse with potable water
3. Rinse with deionized water
4. Allow to gir dry completely
5. Wrap with aluminum toil (shiny cidents)

REPLANTICE

Decon procedure

Depart for Duluth
Arrive in Duluth
Begin unloading equip, etc,
Begin staking locations for site Leave base Arrive at motel to check in, Monday 4820 -1-95 Pre-mob moeting for Duluth ANG Meeting over Friday 4-38-95

Wednesday 5-3-95	05:50 Leave motel 06:40 Depart breakfast 06:45 Arrive at base. Load equip. for moving to Site 26. 07:25 Calibrated PIDs. to 100 PPM	11.30 Break lor lunch 11.30 Return from lunch 11.45 Arrive at Site 26. Set up		Dab-O05BH Cave Site	Leave 1945e Mo Min Thomas Con Nico
Tuesday 5-2-95	07:15 Leave motel 08:00 Breakfast meeting 08:40 Arrive at base 09:20 Called Fedex to track packages 09:20 Prepare stakes for Site 26;	10:20 Head to Site 26 to stake BH's. 11:10 Site 26 completed 13:30 Return from lunch. Unload GC	13:25 50 to store to get supplies 14:50 Return from store 15:10 Begin helping Joo with G C set-up		San San San San San San San San San San

•

Thursday 5-4-95 (continued) Take pictures of grouting by drillers. Resume decon at Site 26 Leave Site 26 1dg 247. Unload for next day. Return to bla cquip. Prepare for 18:30 1350 3. Angers wrapped in visquent Decon of augers complete
Arrive at Site 26
Health and Safety meeting with drillers and Optech crew.
Set up decon and sample preptables. Begin decon (procedure explained on page 1,) on Site 26 Break for lunch Return from lunch Site, Lood equip. to Steam clean wit potable water . Steam statinse Thursday 5-4-95 Waler Pave mote 0550 0640 0650 0060 0800 0810 0810 0/60 <u>@</u>

	Ð	ď	402	in. Jers	пазар			
	5	l egui	up dr	lech ere . 1) ve dril	B eg in			. 57
	6-9-5	tast se, Lou	ately	200 Pg 100 Sery 100 100 100 100 100 100 100 100 100 10	1 2 2 6. 1 to 2 6. 1	. 9	20/24	May 8
	r day	ofel break at ba	site S	Ceon. (complete	from Lun	Sité 's base	A SA	n
2.00	Saturd	Pave m	or the	Spain of	Sreak t Prive	Pave		
		2550 L	900	350	56 rot	10 L	/	
		0,00	-683	200	= GOW	22		
		and pro	con,	:	; ;			
38		to 44/04	26. Set up decoity meeting with	>	Sprve J.		× ×	
	- 45		26. Set up 4 meeting	ich crowi pop 1) r lynch	lunch, Observe ting well.	-	Ent Ora	M
	Friday 5.5-95	el reaklas base.	Site	drillers + Uplech cr Begin decon (spop) Decon complete Leave Base for lyng	Kethrn from Junch. C drillers completing we Leave Site 26		0/1/2	
	Frida	part by	Arrive of Hoalth	Hers gin dei gin dei gin dei	rillers pave Sieave			
) 24 6:15	1/		
	(®	0550 0640 0650	0800	0820 1015 1215	13.50 (5.30 (5.30)			

10, day 5.8-95 * Benzene * Folgene * M.P-Xylene * O-Xylene * O-Xylene Unusally high v. X Renzene
X Foluene
X Ethylbenzene
X m, P-xylene
X o-xylene Depart break fast Arrive at base set up and take count of sample Kits, I C I I I II Programmed GC + built all 3 standards under supervision of se Byrd-6 (operator Monday 5-8-95 Gain Lanier Gas Flor Injection vol. 0101 5401 6001

Deet Swarpies Thursday 5-11-95 1400 0460 5180 0000 Depart break fast
Arrive at base Set up decon, get
ready for drilling at Site 25.
Begin decon (see pg. 1)
Health and Safety meeting with Decon complete, Break for lunch Return from lunch. Observe drillers completing well. Move decon equip, to next well. Begin decon Decon complete. Check on Joe at Site 26. Wednesday 5-10-95 Resump decon 1755 0061

Depart Breakfast

Depart Breakfast

Arrivo at Base Set up decon.

Prepare for day's drilling.

Health and Safety meeting with

drillers and Optech crew.

Copy log forms and Field Copying complete. Observe

Joe and GC work.

Break for Lunch 17 to check

Krive at Site 17 to check

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

Stakes

S

Eguip.
Begin decon (see pg. 1)
Health and Safety meeting
Resum c decon
Break for lunch. Resume Jacon
Neturn from lunch. Resume Jacon
Seturn for pase Resume decon
Return to base Resume decon
Actum to base Resume decon
Actum to base Resume decon was discontinued because of LEL alarm atter contening with drillers.
Resume decon
Decon couplete. Break down Leave motel Depart break Fast Arrive at base. Set up decon, other De tuther entries Monday 5-15-95 equip. Leave base Arrive of Fedex Leave Fedex 0800 0930 0930 1305 1430 Leave motel

Depart break tast

Arrive at base, Calibrate Hydacs
and turbidity meters,
Catific Set up decon,
Health and Satety meeting with
drillers and Optoch crew.

Begin decon (see pg. 1) on site 25
boreholes

Break for lunch

Return from lunch, Begin decon,
Decon complete, Break down equip.

Pepare for Monday.

Leave base

Arrive at Frdex

Leave Fedex Friday 5-12-95 0710 1015

equip, Sto 25 Arrive at Site 17. Set up equip. For sampling.

Break for lunch
Return from lunch
Begin decon lunch
Decon complete, Pack up equip.
Leave Site 17

Rerive at Base
Leave base 0555 Leave motel
0620 Arrive of base
0730 Begin decon (see pg. 1)
0835 Health and Safety meeting
0821030 Decon complete Break down Wednesday 5-17-95 for day.
Health and Safety meeting with drillers and Optech crew,
Begin decon (see pg. 1)
Decon complete. Break for funch
Return from lunch, Resume decon
Decon complete, Break down Depart break fast Arrive at base, Set up decon, Prepare Tuesday 5-16.95

Begin purging

Purging completed.

Begin sampling

Sampling completed.

Segin sampling

Segin decon

Break for lunch

Nrive at Site 25, Set up

for 025-002 MW

Fegon Purging

Begin Sampling completed. Break

Arrive at Tedex

Leave base

Arrive at Tedex

Leave base

Arrive at Tedex

Leave Fodex Deck No Further entries Rinsate blank taken Segin purging,
begin semplished

Ampling completed, Decon bailer

Arrive and sejup at 036-003MW Calibrated Hydres

Arrive at Site 26

Nerive at Site 26

Pocon bailers and Hoo tetet

evel meters and Hoo tetet

evel meters and Hoo tetet

Sof up at well 026.001MW

Regin purging

Elid blank taken. sale

Rinsate blank taken. sale

Rinsate blank taken. sale

Anging complete. Decon bailer

Annivo atomand set up at

026.002MW Leave motel Depart break fast Arrive at break fast base, Load Thursday 5-18-95

ging completed,
ging completed,
potable water field blank
to waiting for 035-0011711 to Leave motel
Depart breakfast
Arrive at base, Load equip. for Sampling complete

Take rinsate blank,

Arrive at 025-003MW to set w.

Begin purging derive at Site 17, Set up equip. lealth and Satety meeting with frillers, and Opteth crew, Take rinsale blank Arrive of 025-001MW. Set up Friday 5-19.95

1835 Boxe purging completed. Waiting for recharge complete. Maring 1730 Sampling complete. Mave GC 835 Leave base.

Saturday 5-20-95

0555 Leve mote 1
06 45

06 45 Depart breakfast
06 45

Arrive at Dare. Lood truck for
sly tost ing at 036-00 1My. Set

Mrive at 036-00 1My. Set

Up equip 10 sly test
1720 Loof 447 Site 26

Lunch break
1230 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch break
1255 Lunch
125 Leave Site 26
1420 Arrive at Bldy 347 to
125 Leave base
1725 Leave base
1725 Leave base

A. Kathleen Herino (K.M.)

4100 NW Loop 410,5te230 San Antonio, TX 78229 (210) 731-0000 1-800-677-8072

Duluth 51 Sites 26,225

Ladisson Hotel (218) 727-8981

. Comment Line of

K.M. Kathryn Prittedt K.P. Kathryn Prittedt D.G. Destry Greenway S.B. See Byrd

6 May 95 0515 Depat for SH Hirport 0620 Flight departs for Dulyth, MN HE 1245 Arrived at Dulyth 1315-1400 LUNCH 1400 Arrived of Buse met

1430 Met with base Security—Capt Kovach 1515-1615 Staked locations at Site 25 1630 Left base

END OF DAY

A. K. Dr.

2 May 95

2 May 95

0715-0830 Breakfast but
0715-0830 Breakfast but
2 days events
130-1230 Luxiy
1203-1230 Luxiy
1203-1215 IL.M. Organizes
1315-1525 Propared labels
1525-1630 Staked locations
1525-1630 Staked locations
1645 Left base.

M. M.

4

nilles rinse truck, augus LNMCH
Frepared site 26 For
soil boring diffing
Site Safety Meeting
Regan dulleing sonya Onot collected no recovery 0.5-2.5 1325 Janyle @ 2.0-2.5 10-12 1365 Surgel @ 11.5-12 026-006 BH 5-7865 Sumpe @ 6.5-7 870 1365 70=12'845 3 Mars 11/13/19/10 4/15/14411 4/6/6/1 0930-1245

Surple Q 2.0-2.5 (1.5-2.5)* Sample B1.5-2 (.5-1.5)* * Las dosignation 5-2-1am 0.5-2.5 BLS 6.5-7 sample (a) collected Moved to 1026-0058H Mobed to (026-0048H Sumple @ 2.0-2.5 BLS 9.5-10 sample collect for Bab 5 MM 95 1356 Coh/ 1430

nepare locant organize -026-001 BU 48100-929 7 8240 8270 601071967121 9-9.5 M5/MSD 2.0.2.5 9.2-10 11.5-12 626-001BH 9.5-10 secontast of 026-004 BH 026-005BH 026-006BH 026'006BH 026-00184 Samples 18 100-920 Air 5:11 3 MAY 93

3 MAY 95 1815 Anive back at Hotel

Heelth & Safety Heeting Drillers mas to 1026-002 Confected fire dapt. For white supply for differs finck fame.

Arise site 26 begin site. Arrived at Site, loaded Van Waiting for drillers. Fot of water level = 6.8 hor ground sufer. Begger drilling Met lobby, breakfast VO26-00 2BH Planning Meetins 4 May 95 0655-0715-0260 2760 0815-0900-0060

No recovery. Sample collected & 5-7'. Water Recovery problemen. 15' 315, 15-2.5 (mored hole again) 0.5-2.0 BLS Surpe@ 2.5-2.0 Jange (2) 2.5-20 from (026-003 BH) sample (2) 6.5-7.0 Cleanup gite Sample (D 2.0-2. ang 11 cort e 22 for 02c -003 BH 0.5-2.5 Sample @ LNUND Brook Waited f 4 MA495 3/3/5/10 5246 425 128

Supplies Arrive Sacle at hotel to watch drillers decon Returned to Bldg 247 Begin dilling Briller needing Samples to be Sample Coole 02c - 002 13H ENDOFINAGOOD-RB Samples sent: right truck U16.003 BI 016-003 BH leave site. equipment 4 MAN9S 1630 1830 008/-1200

10 sections) + cap Return to BLDG 247
to Dack up supplies.
Left site to go
first to Tampel
for supplies
Returned to hotel 24.2 Bittom of screen Elus honorment ti will be done at (+501/5 aps of same 13 Entonite scal Well casing lef on hole wibe 万つりっている LUNCH 5 May 95 1115 130 1500 1615

Het for breakfast a planning meeting Arrived on base buslens annie Decon split spours Lealth & Sabely bracking.

Soldan Split spours Collarling.

Collar Split spours Collarling.

Fetter recollected

6.5-2.5 annimiliest

8.5-2.5 annimiliest

8.5-2.5 annimiliest

8.5-2.5 annimiliest

8.5-2.5 annimiliest

No recovered: 15-17

Recollect 0.5-2.5

recollect 0.5-2.5 15.5 /26 11.30 6 May 95 0545 0645 2540 0832 0000 0837

hotherson 15.41 BLS 10:20 10:20 Luvell Surface completion of welle Keave Site due Co Site due Co Site due Co Depart Dueute DESART DUEUTE BMA4 95 1530

END OF DAY 9 May 95 0700 1000/ 5790

D21-009 M Met-lobby, breakfast, planning meeting frive on base set up at site 25 Measure what oct-000000 11.64' BTOC c1 = 23.2 13cs

Dalled to 35'

w1 = 3532.5

Willed to 45' 15cs

with bedrock ~328

according to viz Drillers arrive -1025-001MW 1455 Meeting 1 /3 10 MMy 95 0735--0730 0955 (000) (010) (020) 1100 SHLO 0810 21

11 MAY 95 Weather summy 40-65°F 0545 Merice Dearly with 0 645 Merice Dearly with 0730 Drilles where of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 247 South of 25:40.25 Merical angra, 16.0° Set 40 PUC Screen

hay z

47

Wenthor Sunny, Warn 80-70°F Met hotel 10564, breakfast, planning	Arrive at base Set up at Site 25. Drillers completing guard post and	Z V	to (025-00884) screen some (0 0.5 -2.5 32	000	54 Boshol distiscion 21/4 apper fr lunch Broke down fr lunch	MM
12MAY195 0545	0630	0930	. (020)	1027 1035 1046	5711	

Begin doilling (025-006 BH 10-12 22-07 Jeturto site MS/MSD Sanyle(G Sample (g) Move 0 430 1250

24

10.5-11

14.5-15

11-12 10-12 (DNP)

14.0 -14.5 14.5 -15 MS/MSD Equip blanc DES -000 13H

CAMB 8270 Ply Meta

Load sample

16.0-165 (16-17) 20-22 Weeking Safery
Meching
Solup over chiefling
on 025-003 84
sample 9 5-2-6 23-25 recovery 11.0-11.5(10-12) 16.5-17 (16-17 drilling. Drillers obta 015-00-310 15 MAY95 0545 A 1000 (1005) 1032 1032 (1040) 1040 1052 7308015 0633 0001 7560 8hb0 0830 5860

209-06 hassel , leas , from Suple of the sure sure Decor site for nexthele, drillers growting TD=25" on or5-003BH 5-7 3 suyele (3) 15-2.5 slough from 24-25 025-003 BH. Return from orter or 025-002 15 May 95 0771 12.50 13.05 13.10 325 1320

Novel to pis-og By Same O :5-2.5 LEL=11, Shut Novembre hale Begindering by Site and selecting MYW 15 MAY95 1430 1500 1542 1750 041

TD = 22, Dille's 1º move augen Aullu decon augen te (025-005 BH Med histed, brieddows 21 (225-037811 Simple (0) 5-7 10-12 1 15-17 18-20 16 play 95 0630 0645 0800 0201 0900 0935 6940 0950 1001 0835 0835 0840 0850

7.9.5-10 marked 7.0.9.5 8-19 5.2.3 Macom Sond Q 15-2.5 8-10 UB925 1025-004BH 1-026 BH More to 21-027 BM 8-10 LAB 18-20 Wore to Same しょびん 1510 1525 1535444 10: P1 1350-1350-1400-1415/ 1415/ 1430-1430-1450-1450-1450-1450-1535 1125 1135 1140 1150

Puched sample couler dryzed Ex curst
dryzed Site 2/
Sungee @ Lab
Superior FebEND 01= DAU 16 May 55 1400-0 1800

1.5-2.5 5-7 148 65-73 10-12 648 11572 35.60 18-22/18 M3-20 to 625-013 BH Willer decon dill rigarchiez tub and Check bl remeter 1025-MW-1 (dem) MW-2 (C 1/18re 50 0730 0730-0815 0830 0630-0837 0845 0850 0435

Pack worker, clean-in site, wort MOTODA 17 May 95 1600 2 1805 (842)

Weather: sumy warm to 70%.
Het in boldy, breakfast
Marrywing meeting Cho voulls now-DRS will come Menils from is 18 May 0545 0630 0 835

Touchest shing has for for Stoppiest last 1800 19/6

19 May 95 Summy women Sample (2) 5-2.5 Jany 6 @ 5-25 none to 1 Same (a) More to Mark B 1032 0045/ 1006/4 1000 (015 0920 0925

CUNH Sung Test O25-032MW Pack supplies and samples 19 1444 95 1100-1800 1200-1345 1500-1800 0887-0081 193020 May 55 B/645 Joe Byrd, JR.
Project Scientist

4100 NW LOOP 410, #230

5AN Antonio, TX 78229

(210)731-0000 1-800-677-8072

DULUTH 1315-197 % CAPL, Stephen WABROWETZ 148 FG/LGPT, Bldg, 240 4625 Deuce Dututh, MN 55811 (218) 723-7476, FAX

RAdisson Hotel - Duluth 505 W. Superior STreet Duluth, MN 55802 (218)727-8981

home why 1995 home whith, Goto Awas to the stuff & 60 stake base & decked 12
W, Goto ANGE to W KP-KM LAFF & Go SKAKE & cleaked IN
t checked 1W
9
7,4,3
12.2
(C-/C-M2)

DAY 3	THURSDAY 4 MAY 1995	osys herre hotel	Obys On Base	OTIO CALIBRAte both PIDS to	100 ppm w/ Isobutyhene	0715 DRILLERS decom Augers	0841 60to 5, te 26	0851 HEALTH & SAFERY WE 9	. 5B, DG, KM, JAMIE, JONAthou	KP mcs.	· Emekgenry #	· DRILLER PROME	· Jet 86.457	TRIPPING HAZARD	obss sed-up for drilling	6~1771YQ	1049 herve sike 26. 60 get	PRINTER # CAL 9 MS	60to B252 4 3ctup	66	Harak	大学の 新聞 大学 高神典の 歌の 自己 から は 歌音を かった から まいま に 野 ない かった かいま に 野 ない かった かいま に 野 ない かいかい かいかい かいかい かいかい かいかい かいかい かいかい

			- Parasas							
Ð			CAL	911 001	100 pps 200 (ps 100 (ps	:	60%			
9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	801	90)		1 9 9 7 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4,	-2.5 (pg	2,005 2,006	901 7	
6-65	445	10.0/	re l	93	1 to 2 to 2 to 3 to 3 to 3 to 3 to 3 to 3		<i>8</i> .			Syral
P058H	Toluene E-Benzone MP-Xykone	026-005 BH • Tokuene	של אל	ene	E-Benzeme MP-XYLene O-XYLene	AIR BLANK	026-006BH Benzene	Toluene E-Benzene	MP-KYLENE 10-KyLENE	K
	• Toluene • E-Benzon • MP-Xylon			Benzene Toluene	E-Benzeme MP-XYLene O-XYLene		0	• Toluene • E-Benzen	0 MP-1	
1458		0151	1522			1538	1556			
			. •							
										i
				· ·	*	٠.		,•		
				Z.						

20	**	66	2601
H 6.0'-6.5' 107 1 ppb 12 300b		2,006 2,006 2,006 1,006 1,006	5-7' PP PP PP PP PP PP PP
1615 026-006BH • TOLYENE • EMP-XYLENE	1627 026-006BH • Ben zewe • Toluene • Mp. Xylene	O-XYKene OZ6-002 BH Toluene E-Benzene MP-XYKene	026-0026H • Toluene 100 PPB R
5191	£291	1639	1651

1719 AIR BLANK
• E-BENEEUE

900

100

90 81 81 34

Benzene Toluene E-Benzene MP-Xylene O-Xylene

(II)	0.5'-2.	16 K S-7.	Toluene 2 ppb MP-Xylene 4ppb 1756 100 PPB BTEX	Benzene 109 ppb 7014ene 181 ppb FBenzene 181 ppb MP-XYLene 181 ppb 0-VYLene 181 ppb	66 54u 8252	1829 LONE BASE 1848 At Hotel	Derny 12.4m
				18.8			

Toluene

S) 26 KW 5	1435 AIR BLANK TOLUENE 1445 026-001MW 20-22' 109	otolyene 2ppb of 1ppb 1.00-11/000	5 24'-26' 10g	پ پ	~ more	make samples for toda	87ex 574	Obertere 84 ppb Toluere 90 ppb	we 102	• o-xylene	G .	. Set up for bomoraom	Xphyl	

8

1425 boto Front GAte to hand-off BLUILDING 100 POPB & 18PM 1211 At 5, te 26. bet Ready to dail Lust MW GEO-Tech samples Samples are handed off 600d Rum. Set L.GRARY. 10 PPM BTCK STD. 0001 100 H 6000 Run. Set Library 60to BZSZ. Continue 6000 Run. Set Library Ge serup & STD 1404 100 PPB BTEK STA I PPM BTCK STD BACK At 6252. GARREA GAS FLO INJECTION VOL GC OVEN TEMP ANALYSIS TIME AIR BLANK GAIR 1345 1422 1456 1430 SEN

6-Benzewe FAJAGA

Benzene

6 MAY 95 (Z)	OET-BENTENNE OND-XYLENNE 1649 100 PPB BTCK STD 1609 PPB BTCK STD ** RENTENNE ** RENTENNE ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB ** RO-XYLENNE 185 PPB 197 PPB 198

30 1757 hour base for charging 1818 At hotel 10 May 95 1000/2

				·					
	GC= PRO	CEARNES:	The second second second second second second second second second second second second second second second se	or to the first of the second	e financia i denomina di serie			and the second s	
			•		·				Ì
70			He	a-0 11	٠ ٩ ٩٠	e otra-	0-0-0	ه مهاه	
	8 96 81	222	2009	6 50	100 x 8	25 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 E1	2 2 2	
}		. N N N.	57	4		10-12		15-17	K
			8.	λ,		. Y			
	Ask	in the second of	1 3 E	Lene Lene	Benzewe Toluene E-Benzeme	OMP-XYLENK 025-001 MW Benzene	zene Lene	025-001 MW • Benzewe • Toluene	
	DENZENE	E-Benzone MP-XYlewe	025-001 MW • Benzene • Toluene	• E-Benzere • MP-XY Len e 025-001 MW	Benzene Toluene E-Benze	MP-XYLE 125-001 M Benzene	Tohuewe E-Berzeur MP-XY Lene	025-001r Benzewe Toluene	0
	A	6 6 6		• • 0			0 0 0	· · · · · · · · · · · · · · · · · · ·	
10 m m m m m m m m m m m m m m m m m m m	0837 AIR BLANK OBENZENE		£ #80	£580		5060		7160	
-		-					· ·		
			•			e "			
· · · · · · ·					•		*		
								-	
				annellin vikininet i me uma ugamini. I					
		Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Sa							\
			1 Ser •			The second second second second second second second second second second second second second second second se			

M)	2	900	ne de provinció de la companya de la	
3 pb 3 pb 11 ppb 20-22' 109	- 200 - 4 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	91 ppb 100 87 ppb 100 193 ppb 100 193 ppb 200 87 ppb 100	296b 28-23' 296b	2 99 6 4 99 6 2 4 9 6 5 9 6 6
500	رع	Benzene Tokuene E-Benzene MP-XYKene O-XYKene	え うき	Toluene Foluene MP-Xylene
0928	0438		0450	
			,	

		* ************************************			Name of the second	ing An	englig og grande gglig		- Stanger	S TOWN OF THE		- 1 - 4 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			25,0,0		
3	£0/00	900	dop	9-8-	999	96	9 9 2	4 pp	3 pb	900	3006	CAL	101	S. S. S. S. S. S. S. S. S. S. S. S. S. S		200	
561	30-32'	שר אר.	6,22,	ж Э	2 00	0.5′-2.5′ ′′	<i>d</i> ×	7 , 2 , 2 , 2	•	# -	· W	STD	901 80			717 601	of the
11 MAY 95		ene. Izene	Yhene 20'		lene		N.C.	_		96 176.000	rkene	PPB BTEX					A STA
	2 OZS-OOIMW • Benzene	OTOLYENE OF-BENZENE	•	_	• E-Benzeme • MP-XYLENE	2 025-002MW	6-Benzene	• MP-Xylene 2 025-002MW	•	Tolyene • E-Ronzene	OMP-XY LENE		Benzene	drahlal	E-Benzeme	mp-xylewe o-xylewa	
	1012			7	·	1032		10%2	h			1052					· · · · · · · ·
					. ·						***					•	
															· ·		
						2	Z		2	_		<i>:</i>					**************************************
										•				· ·	_		The second of th
						•			in nen	·	, -	-					

			rain to hour	The state of the s	18.18 ST 18.18						
(35) (35)	1108 60to hunch (0.7) 1151 At Site 17 to walk 5120	1241 025-002MW \$10-12' 100	• Benzene • Totuene	OMP-XYLENE 7 ppb OMP-XYLENE 7 ppb	16-17	5 & S	1305 Out of AAmples. Goto site 25	1404 BACK @ GC	PAGO. SAmple	A Shipped St.	
					. 						
•											
											·•··
	. · <u>.</u> ·		·		ರಾರಾ ಚಿತ್ರ	题。cotemen co.co		· ·	·		

			111 MAY 95	38	
		01 60#1	100 PPB BTEX STD		
	\	•	•		
		8e T		de 00/ de	
		- W	36 81		·
		Y	991	200 66	
		0	o-xyhene 83 p	. 901 001 90	
		1421 Au	AIR BLANK		
				g of a	
		•	o)	27 ppb	
		1431 02	025-003MW 0.5'-2.5'	60%	· ·
		1 that 0	Toluene	Spok	
		•	E-Benzene	3 905	·
		•	mp-xxene	13 906	
	٠	•	No-Xylene	9006	,
2.25	•	1441 02	025-003MW 5'7'	100	
			Bevzere	25/pb	
			Toluene	466	•
			E-Benzene	200	
Nation 1		•	MP-XY Lene	15,00	
		1951 02	,21-,01	601	
		•	_1	god htt	
		•	otoluene 3	50 pps	
			of Brollin		

11 may 95 (37)		103 ppb (20 pt 103 ppb (105) 105 195 195 195 195 155 155 155 155 155 15	ZZZ ZZZ ZZ ZZ ZZ ND ND S7B	696 106 1,000 peb 658 1,000 peb 658 1,389 peb 658 1,389 peb 658 1,389 peb 658 1,500 pe	There
"	• E-Benzene • mp-xylene • 0- xylene 1511 025-003mw	• Toluewe • E-Benzene • MP-Xylewe • 0- Xylewe 1531 025-003MW	• Benzene • Toluene • E-Benzene • MP-XYLENE • O-XYLENE 1545 I PPM BTEX	Benzene Toluene E-Benzene MP-XYlene O-Xylene	R.
					1000年代の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の

(4)	SATURDAY 13 MAY 1995	70	OBTO ON BASE (0.3)	Seting GC. Build NOPPM, S	378	3	GO OVEN TERMS 45°C	•	x sta	Good Rus. Set LIDRARY	0904 1 PPM BYEX SYD	Good Run, Set Library	0918 10 PPM BTEX STB.		v	otoluena 3 mb	E-Benton 8,pb	Mp-xykeme 140pb	TO1 , 5.2-5.00 H8 POO-250 1490	Benzer 4 ppb	2 kayaka
						4.5	7.8														

(E)	780	PROCE	dure 3	900															
45	570	106 116		207 FOS 99 196	<u>.</u>	100	05-2.5' 104	3 66	1 ppb	7-9' 209		184 06	1,270 606	1,290 66	18,90	7-9' 202		gdd _t	
WW 517	100 PPB BTEX	Bentem	I gruent E-Bevzent	Mr-Xylew O-Xylewe	AIR BLANK	Toluene MP-XVlone		Tolutue	K-Kenzene MP-XYLENE	-	Benzeme	Tolyene	E-Benzene	MP-XYlene			10 pl impetion	Den Kene	No.
	1033	60		€ 0	1043 A		1004 0.			1104 0.						1121 0%	i		
													er Welderma						•
			\			• • • • • • • • • •					- ·• ·			emolis a	d	r nina y			
						Z		, 						••					
												<u></u>		· ·	_				

(Sh)	2 pp 6	300	2000	3 ppb	9014	30/	3 665	900	3 906	766	ر کھ	3,06	900)	20 K	9001	
13 MAY 95	● E-Benzene ● MP-XYLene	1221 025-008BH 13'-15'	0 E-Benzerc 1231 025-0108H 0.5'-2.5'	Tokuene F. Ranzame		1242 025-0108H 5'-7'	5-1747 OBENEENE	● E-Genfene	OMP-Xylene	1300 025-006BH 0.5'-2.5'	- Toluene	OMP-XY COME		1310 OZS-006 BH 5-7	• E-Benzenc	Sphole
							44							-	<u>,</u>	
					2											

(36)	3 pob 1 pob	CAL	900 001	900 001	200 166	901 001		12 ppb	3000	100	5 206	2/06	14 pp	3 25	32 pb	35 pb	+8 pob		
113 MBY 95	~	100 PPB BTEX STA	60	E-Benzem 88 006	150	34	AIR BIAWK	• Tokuene	Kylone	025-006 AH 10-12		O E-Benzene	00-XYLANC 20,127		Polutur	6-Benzeme	O-Kylene	April	A second
		1320					1333			2 # 2 1)		1361		· · · ·	······································			
•							Z	×											- - -
	i de la companya de l							- 0											

	600	90
ソ		

15 MAY 95

20 106 276 106 42 106 138 ppb 157 ppb 123 ppb 916 ppb 553 ppb --- 20,0 wrection • ALL NDS (NO ROAD-OUT) 1 025-003BH AS' 104 Roshot --- 100 pl myelon wreckien 1255 025-003 84 15-17 -- - Soul enjection 015-0038H 025-0038# 1317 Golo Rig SAmples O-XYLENE >majAX-dw mp-xylene E-Benzene E-Benzene o-Kylene Benzene --- 20 mg E-Bergere Benzene Toluene Tohnewe Bentemp Tolaeve 339 35

1000年間間でいるだめ

De

GC PRocedures	21 pb 2 1,000 pp 6 49 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 pop 3 god 6 god	80/ 200 '091'1
MP-Xylene O D-Xylene HOZ 025-0028H O.5'-2.5 Benzene Toluene F-BENZENE	7eX 900 828 718 1,440	AIR BLANK TOLUNK F-BENZENE MP-XYLENE MP-XYLENE	1454 025-0028H 5-7 1454 025-0028H 5-7 50 L INJECTION Benzenc 1,16
	5		

25 SE	180 CA1			11 ppb 38 ppb	41 ppb	103 ppb	90001	4 prob	3 40g 3g	703 mb 9 pb	od h	
787	9,050	9,290	5.5%	ere ere	stere ylere	lene (400m)	es e	tene	5-001 BH 05-7.5		9 6	HARL
	Ben	E-Benzene MP-XYLene O-XV/ess	1652 AIR BLANK	• Senzene • Tolaene	• E-Benzene • MP-XYLene	1702 AIR BLANK	O Ben Zewe	• E-Benzene • MP-XYLENE	1713 025-001 8H	- Benzene Toluene	• E- Ben	
										· <u>-</u>		
					2	7 ·						
			-	-								

SS .	8010	erob 6 vob	2009	J 109	5 ppb 0	2 606	5 pob	601	4 6 6	<u>.</u>	20/20	l pob	9001	201	d pap o	(pp b		9d) 001	100	901 001	
MAY 45	0.5-2.5		. :	5-7		•		,21-,01			t)- </th <th></th> <th></th> <th>20-22</th> <th></th> <th>22196</th> <th>थ</th> <th></th> <th>83 Ab</th> <th>54 Ppb 1</th> <th>- Apar</th>			20-22		22196	थ		83 Ab	54 Ppb 1	- Apar
	025-0078#	• Toluene	OE-Benzene OMP-VVIOLU	025-0078H	• Benzene	Toluene	omp-xylene	025-0078#	Benteng	Tolague	- KS- 00 + BIT	Toluene	OE-BENZENE	025-0078H	•Tohuene	3	100 998	BENZENE	Tolucne	E-BENEENE	B
	0923			0935				9460			7 2 7 3			800)	-		6101				
•					_			~	· · · · · · · · · · · · · · · · · · ·		-										
s-								0								_					
					•								n							\(\sigma\)	

Goto Rig to help them set and move,

100 pob 87EX

---- Stund Ard 1s FLAE.

Rebuild 1 PPM & 100 PPB

BYEX STDS.

1 ERASE LIBRARY

2 100 PPB BYEX STD.

Reset CARRIER GAS FLOW LO.

(62) day 95 (62)	24 5'-7' Reshot 10g	OE-BENZENE 2 ppb OMP-XY lame 6 ppb 1731 100 PPB BYEK SYD	• Benzewe 106 ppb • Takuewe 103 ppb • E-Benzewe 98 ppb	96 52	1748 Legue 1824 1805 At Hotel	10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Many Many
			8.01				

							in the second second second	** \$1.2.30	4		- A. C. A.			
	GC	PROCE	lures											
(6) 121 (Cd)	0830 10 PPM BTEX 5TD GOOD RUP. Set LIBRARY	OBYS AIR BLANK	Toluene 12 pb	20/10	0858 021-02784 4-6 1pb	w − 8	0910 021-027BH 8-10 10g	Otokara 3ppb OE-Berton 3006	80 3	OGZI AIR BLANK	• Ben Eano 2 ppb	8BH as	● Toluene 2 ppb ● E-Benzone 2 pp	Hopele
										· · · · · · · · · · · · · · · · · · ·				
		•						-						

(S9) Sb WW t/	Og46 O21-0288H OTOluene 2 pb Toluene 3 pb OF-Berzene 5 pb O-xylene 5 pb	87ex	3 fob 18 3 fob 18 0.5-2.5 3 96 21 21 005	fess,

	■ E-BENZENC 4 ppb ■ 0-xylene 14 ppb 1124 025-0126H 18-20 10g ■ BENZENE 41 ppb ■ Toluene 46 ppb (Kegn AREA 46 ppb 1145 4000(-35 Goto 5, te 17. 1200 6unch (1.0) 1200 6unch (1.0)	100 PPB BTC Benzeur Toluene E-Benzeme MP-Xylene O-Xylene	The state of the s

89	GC 760	ao)	200	200 Ap 001		70	6		20		126	601			
17 MAY 95	BTEX STD	9 9 b	۳ ۱	93		1996	3	0 7	4-6 4-8	900 1 7 7	l Q) 0		40%	Hanney
	1 100 988	Benzere	F- Benzene	mp-xyleme o-xyleme			2 • (3 017-024BH • Benzene	o Tolueve one-xylene	HS16-210-9		• Bestene • Tokuene	• E-Benzeme	K
	hh1				200		Y ?		1533		\$	1546			

				1				\$	2			4			and the second s
		. Name													

	GC PROG	cedures					n de la la la company de la company de la company	
69	So	-o4	aAL	5 6 5	I		Est	
* .	₹	0,00	1	888		·. •		
2	960	982,99	4 8 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	229	1	5 pps	5 -25 S	add
17 may 45	6-10-8	7- 20	7 2	96 96) ·	4, S. 3	, &
#/	Leve 24BH	ieve eve 258H	ene PPB B	2020	lene pro	BIANK Penc Engent	ene 228H	and the same of th
	•MP-XYlene 017-024BH •Benzene	OE-BENZENC OO-XYKENC OI 7-025BH OBENZENC	Toluene E-Benzene 100 PPB B	Benzene Toluene E-Benzeme	o-XYLene	AIR BIAN Genzent F. Pentent	0-XYhene 017-0228H Benzene	1 or new
	1558 0	0 0 191	1622	60 F 61	20	1636 A	0 8 4 9 1	
	~				- Linear speciments and the con-	Andrew Views and Same at the		
					:			
	· · · · · · · · · · · · · · · · · · ·				<u> </u>			•

• .			کے		フ ヘ			
							- 1 1	
samilikk illine akken episatunne Tu				·	· <u></u> .			
					en e manime e e	· • · · · · · · ·		
	•						_	

SUMMARY OF GC ANALYSIS PROCEDURE

Calibration

Prepare 100-ppb, 1-ppm, and 10-ppm working standards fresh each day according to the GC CALIBRATION section. Create a 3-point enforter with these three standards, according to the GC CALIBRATION and GC CANALVSIS sections. Be sure that correct standards concentration values are used for peaks representing more than one component. as recognized by the GC (e.g., 2 ppm for m,p-xylene peak).

Sample Analysis

samples are achieved either by injecting smaller gas volumes onto the GC or using less soil in preparing the headspace sample, as detailed in the GC ANALYSIS section. After analysis of every five samples (or after a lapse in GC operation of more than 2 hours), a QA/QC check must be performed, consisting of a calibration check and an air blank. Prepare and analyze headspace from soil and water samples according to SOIL AND WATER SAMPLE PREPARATION. All samples will be consistently warmed in the water bath before headspace injection. If sample results are significantly greater than the 10-ppm sandard (e.g., greater than 60 ppm for total BTEX), then the sample must be reanalyzed with dilution as needed to bring it into range of the standard used.

QA/QC Check

Perform a calibration check by analyzing an appropriate working standard again. If, after shooting a working standard, correct identification of all standard compounds and concentrations within the range of 80-120% of the specified calibration concentration is not achieved, then restore the standard compounds, peak numbers, and calibration concentrations in the library as detailed in GC CALIBRATION CHECK.

parameters must also be recorded as analyses progress. All concentrations reported on the SUMMARY should be recorded with no more than three significant digits, with the last digit reported being the ppb singles digit (e.g., record 5.673 ppb as 5,670 ppb, and Perform an air blank check by injecting an open air sample into the GC. If the results are not "clean" (close to or less than 10 ppb for all analytes), then perform more stringent decontamination procedures on the syringe used for sample injection or evaluate whether there are significant volatiles present in the ambient air. Once a successful All injections, including successful and unsuccessful QA/QC checks, must be reported on the FIELD GC DATA SUMMARY. Changes in flowrate and other GC operating OA/QC check has been completed, proceed with analysis of samples again.

must be reported

Reporting Data

INSTRUMENT AND ASSOCIATED EQUIPMENT

record 24.856 ppb as 25 ppb).

- Photovac 10S+ with a dot matrix printer, electrical power cords (GC main cord and GC oven cord with wall transformer), and printer serial cable.
- Photovac-provided replacement injection port septa.
- Single stape (dual gauge) regulator with tubing, quick disconnect fitting, and tee with valve for gas syringe decontamination.

Photovac 10S+ GC SOP

October 11, 1994

- Cylinder of zero-grade compressed air for use as the carrier gas
- Photovae digital (bubble) flowmeter or Photovae dual gas rotameters. If digital flowmeter is used, a goap solution is also required.
- 2000-ppm stock standard solution of BTEX and/or other chemicals (in methanol), contained in small, 1.5-mL vials with little or no headspace.
 - 10-µL. 100-µL, and 500-µL gas syringes for gas headspace injection and working standard menaration.
- Electronic balance.
- 10-mL glass pipenes and rubber pipene bulb.
- 40-mL VOA vials (to prepare soil samples and working standards).
- 100% Nitrile gloves and safety glasses.
- Small ice chest for storage of samples and standards.
- Deionized water (10 mL to 10 grams of soil).
- Methanol (lab grade).
- Brush for decontamination of VOA vials.
- Small plastic tub, aquarium heater, and thermometer,
- All references herein refer to the Photovac 10S+ GC manual

GC SETUP PROCEDURE

Location

Place the GC upwind from the drilling locations and any other nearby engine exhaust sources. The GC should also be within reach of a 110 VAC power source. Refer to Figure 1 for setting up the GC.

Figure 1 10S+ Top Panel.

Power & Connect AC line power to the 10S+ GC at the DC IN port on the upper left corner of Loading the GC, and then turn the unit on by pressing the ON button on the computer keyboard. Loading The 10S+ SYSTEM FUNCTION screen will be showing, with a message that a RAM The 10S+ SYSTEM FUNCTION screen will be showing, with a message that a RAM card is not present. At this time, the APPLICATIONS CARD (blue with red dots) cannot be inserted into: the host pack of the computer, in order to load the GC should be inserted into: the adopter enalyses. Using the LOAD command, load the file GC FUNCTION (see Figure 2).

While still in the 10S+ SYSTEM FUNCTION, use the TIME/SETUP command to set the correct time and date, as shown in Figure 3. After this is correctly set, switch to the GC operation software by pressing the FCN botton. The screen which appears is

Photovac 10S+ GC 5:0P

October 11, 1994

STREET, STREET

referred to as the results screen, and is titled 10S+ GC FUNCTION. This screen shows current GC operation, and the chromatogram and detected peaks of the last analysis (see Figure 4.

GC Function 6CSYS. BIN	· .
Filense (1975 States Franchisch Filense (1925 Filense 4129 Filense (1925 States)	

Figure 2 Loading GC Software,

Figure 3 Setting Time and Date.

1.00 Cal 92. 74. 151.21.04		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	** *** ***
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.5.2.2.3.	•.	
Pt 16 1138	Elected States	(0°) 646	

Figure 4 10S+ GC Function

October 11, 1994 SE VOC FUNCTION 105+ NOT

GC SOP

connects to the GC at the upper right corner of the video screen. Connect AC power to the printer, turn it on and be sure it is on-line. Communication between the GC and the printer can be tested by using the PRINT SCRN key to print out a copy of the current Connect the dot matrix printer to the GC using the serial output cable. The cable video screen display.

Printer

The earrier gas for the GC is provided by continuous supply through direct connection to the air cylinder. The connection of gas to the GC follows this procedure (see pages 4-6 to 4-7); Gas Cylinder

gauges to the air cylinder, using teflon tape on the cylinder adapter threads to theure a good seal. Attach the quick connect coupling to the CARRIER IN port on the GC. Open the valve on the quick connect coupling to the CARRIER IN port on the GC. The treplator so that the second pressure gauge reads 40 psi. Open the small on/off valve on the regulator to supply air to the GC. Attach regulator with DIRECT CONNECTION TO AIR CYLINDER:

thus the correct chemical Identification of those peaks. Therefore, the accurate setting and close monitoring of the flowarte is of utmost importance. Once sich so flowarte must never be altered during a GC run. If the flowarte is altered in the midst of a series of analyses, then a recalibration must be performed to correctly reset the retention times The carrier gas flowrate through the GC column affects the retention time of peaks and of the components in the standard.

Gas Flow

The carrier gas flowrate is adjusted with the use of a flowmeter provided with the instrument. The flowmeter may be either a digital bubble flowmeter (requires a dilute soap solution in the pipette bulb) or dual rotameters. Use the following procedure (refer to page 4-7); With the dual rotameter, attach the left flowmeter to the DET OUT and the right flowmeter to the BK FLUSH OUT using the 1/8° Swagelok fittings and lines provided figure 1 for location of fittings). If the digital bubble flowmeter is used, then switching the line between DET OUT and BK FLUSH OUT is required. With pas flowing to the GC, observe the flowrate readings on both of these lines. Both of these Nowrates must be adjusted to the same value, in the range of 10-15 mL/min. The adjustment is made using two valves, the CARRIER CONTROL and the BK FLUSH OUT flowrates should be checked regularly during operation. After checking the flowrates, be sure the sample loop connector is reattached between the BK FLUSH CONTROL. These valves interact with each other, so adjustments will have to be made iteratively. Once the flowrates are set, they should not have to be changed. The DET OUT and SAMPLE IN ports. Completely invalid chromatograms will be obtained if this loop connector is not in place.

The final step in setup of the 10S+ is to turn on the PID lamp and the oven. NEVER TURN ON THE PID LAMP BEFORE BEING SURE AIR IS FLOWING THROUGH THE UNIT. Turn on the lamp and oven by selecting and checking GC DETECTOR ON under the STATUS command (see Figure 5). Once this is done, lamp status will change PID Lamp & GC Oven

Photovac 10S+ GC SOP

October 11, 1994

では、10mmのでは、1

approximately 10 minutes, then it may be overheating. Turn the whole unit off, allow to ecol for 15-20 minutes, and then turn it on and try again. Once the lamp is tuned and ready, successful gas chromatograms will be obtained only if OFFSET LEVEL is less than 100.0 mV and DETECTOR VOLTAGE is greater than 300 V (under STATUS to STARTUP AND TUNING for several minutes. If the lamp does not com

मा न्यान कारड महास्थ	ob (al Ret. fine	200		154 Cat 1 1054 01	1 1	1225	
PRINCIPLE INTO CHAIR SERVING	H 161. 6C function vl.4	E &C Natery in 17.	from teres	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 mars 2 mars 100 m		

Figure 5 PID Lamp Status.

The oven temperature is set by selecting the OVEN SET parameter (see Figure 6) under the METHOD/SETUP commands and entering an appropriate temperature (see page 4.2). The difference between the AMB TEMP and the oven temperature setting can be no greater than 25 °C. 40 °C is a suitable oven temperature to select, as long as the ambient temperature is not below 15 °C (59 °F). It will take about 20 minutes to insure the oven is at constant temperature. The GC oven warmup can be monitored by viewing the OVEN TEMP versus OVEN SET values under the METHOD/SETUP Selecting GC DETECTOR ON under the STATUS command also turns on the GC oven.

NULS HISTORY	Cal Ret. 15me		i its	** *** ***
THE MISS	Cone/Gree	ere ere	Ours fee 33 Ours Set 138 Inc. Tee 24 (Sept 0	
CA MANUAL PROPERTY AND ADDRESS OF	9 6		0/2 for	3.9

Figure 6 Setting GC Oven.

October 11, 1994

+ GC SOP

GC PROGRAMMING FOR ANALYSIS

Before carrying out analyses, certain operating parameters must be set (or their values checked) for proper and efficient operation of the GC to occur. The important parameters, their suggested values, and the command under which they are accessed are given in Table 1.

GC Operating Parameter Values

hijection, injection volume, analysis time, and integration method. If auto integration is selected, the window and minimum area parameters do not need to be set. If manual integration is selected, enter a window value of 10% under METHOD/INTEGRATION METHOD. When the GAIN is set to 1000 and the Normalized Chromatogram is selected, the computer will Use the commands specified in Table 1 to set the required values, including gain, syringe automatically select the best gain value for the current chromatogram.

ri

User-supplied data can be entered for record purposes using the NOTES command. This will be used to keep track of samples on ANG field projects. Simply enter the desired information using the keyboard on the computer. The following information should be entered:

mi

<rume of GC operator>
<rume of National Guard Base or Station>
<monitoring well or borehole designation, depth of sample interval (feet)>

Photovac 10S+ GC SOP

October 11, 1994

The last line of information will be changed appropriately for each soil or water sample analyzed. These data lines must be filled out correctly for each sample and standard analyzed for record purposes. As shown in Figure 7, there is a large area available for further information in this NOTEPAD.

Figure 7 GC Notepad.

GC ANALYSIS OF SAMPLES OR STANDARDS

- Headspace from samples or working standards are analyzed on the GC to determine the presence and concentration of BTEX or other compounds of interest. Before injecting headspace from a sample or working standard into the GC, the working standard VOA vial must be warmed to room temperature. This will be accomplished by placing the VOA vial containing the warmed or sample in the water bath for 15 minutes prior to vapor sample injection. The temperature of the water in this bath will be kept constant, at anywhere from 25° to 30° C, using the small aquarium bester and a thermometer.
- To perform a GC analysis or GC run, push RUN AUTO and select SAMPLE. Take a 100-μL
 or 500-μL sample syringe and draw in 100 μL of clean air. Insert the needle through the septa
 in the vial and repeatedly purge and draw 100 μL (0.100 mL) of headpace into the syringe
 10-15 times. Then draw exactly 100 μL of beadspace into the syringe.
- Push ENTER on the GC. Now quickly extract the syringe from the working standard vial and insert it into the INJECTION PORT 1. Let the receile go down until you feel the resistance of the septa in the injection port. Once the alarm begins to sound, push the syringe through the septa and all the way down into the injection port. IMMEDIATELY after the alarm goes off, QUICKLY inject the contents of the syringe into the GC and pull the syringe out of the injection port.
- The GC will now analyze the sample or standard. The duration of the analysis will be that time, in seconds, which was entered for ANALYSIS TIME during the GC programming steps. Pealss will appear representing the compounds in the sample. To stop the run before it is complete (e.g., if an obvious error has been made), press the RUN AUTO button. After a run is complete, the compounds detected and their concentrations will be printed in a table format above the chromatogram on the video screeu.

Photovac 10S + GC SOP 10

October 11, 1994

- During a GC analysis, information identifying the sample should be entered in the notes. This is done by simply typing information in the screen using the NOTES command. When an analysis is complete, be sure to always print out a hard copy of it for project records by using the PRINTIANALYSIS command. If any keyboard keys are hit during the time that the hardsis Report is printing, the printer is stopped, and the process will have to be started over assitn.
- One method for dilution of samples for analysis is to inject a smaller volume of gas onto the GC column. For example, if the standard injection volume is 100 p.L., then the injection of only 20 p.L. on sample headspace represents a dilution of 1 to 5. A second method of dilution is to use a mass of soil less than ten grams in preparation of the headspace sample. Thus, using a 1 gram stample would represent a dilution of 1 to 10.
- 7. The 500-µL syringe is decontaminated after each sample and standard injection by removing the plunger and putting the syringe barrel onto the plustic hose coming from the tee of the air supply line. Slightly open the value on the teel line to allow air to strip BTEX and other compounds out of the syringe barrel for several minutes.
- The FIELD GC DATA SUMMARY form (attached to this SOP) should be used to keep track of sampling activities and results in the field. For each injection (all tamples, standards, and air blanks), the following information should be entered on the form:
- The depth of the soil sample in feet, or appropriate identification of the injection.
 GC results (concentrations) of all individual analytes and of total BTEX (ppb). All concentrations should be reported in ppb, and with no more than three significant digits (last digit reported is single ppb digit).
 - Actual weight of the soil determined by difference (approximately 10 grams).
 - Any dilution of the sample required for analysis.

Additionally, important GC operating parameters should be recorded on the form, both initial values used and any changes made during analyses, including:

- Temperature of GC oven.
- Analysis time and gain settings.
 - Carrier gas flowrate.
 - Injection volume.

Finally, once the entire 3-point calibration has been initially established for the day, the response factor values (under LIBRARY) STORE WINDOW (see Figure 9)) and retemion times (under METHOD/LIBRARY) for each analyte should be recorded in the bottom table of the Field GC Summany Data.

GC CALIBRATION WITH HEADSPACE STANDARDS

 Daily working standards are prepared in a clean 40-mL glass VOA vial with tefton septa following the formula below.

10pm = 14000 1,000

20 × (SV) × 5C

5V= 1,000 m

Where:

C = Working standard concentration (ppm);

SV = Volume of stock solution (in microliters); WV = Volume of deionized water (in microliters) = 10,000 µL typical (10 mL); and

SC = Stock solution concentration (ppm).

Three standards will be prepared and used each day (0.1- (100 pmb), 1.0- and 10.0-ppm standards) to create a 3-point calibration. A standard is prepared by puting 10 mL of DI water in a 40-mL VOA viel, and then adding the required amount of concentrated standard from the stock solution. Preparation of the 100-ppb standard is performed by taking liquid (not headspace) from the 1-ppm achibration standard and diluting it with 10 mL of water in a second 40-mL VOA vial. Table 2 outlines the volumes and final concentrations for these three standards (as calculated by the above formula).

Table 2 Working Standards Preparation

Working Standard Concentration	Stock Solution	Volume Taken from Stock
10 ppm	2000 ppm stock solution	50 µL
1 ppm	2000 ppm stock solution	S µL
100 ppb	1 ppm working standard	1000 µL (1.0 mL)

Always use the appropriate syringe for dispensing very small volumes accurately (e.g., use 500-µL syringe to dispense 500 µL; use 10-µL syringe to dispense 5 µL or less). Shake the vial vigorously to mix after adding all components. Both the stock solution and working standards must always be stored inverted in a refrigerator or an ice chest. New working standards MUST be made fresh daily.

If other components are to be analyzed in addition to BTEX (such as trichloroethylene), then the 10- or 1-pm standards are prepared by adding the specified volume (50 or 5 μ L) from each separate stock solution. Never mix any separate 2000-ppm stock solutions directly together.

- Analyze standards as described in the GC ANALYSIS section. An example chromatogram of a BIEX working standard is shown in Figure 8, including pypical peaks for all of the components. Note that m.p.xvlene is artually two components represented by one peak. If this is a 1-ppm standard, then this particular peak represents 2 ppm of those components.
- If additional analytes (trichlorochylene, etc.) are being employed, the peaks are identified amongst the recognizable BTEX peaks and the order of analytes on the chromatogram

established as follows: (a) analyze standards containing each analyte separately, and compare retention times to those obtained for the BTEX standard; (b) compare the order of analytes established in (a) to the order (as given by relative retention times) given in Table 3.

Table 3 Characteristic Retention Times

	Reten	tion Times (Nor	Retention Times (Normalized to Benzene)	ene)
Compound	Amblent 20° C	.30°C	40. C	20.05
Vinyl Chloride	0.288	0.306	0.361	0,413
Freon 11	0.365	0.379	0.428	0.448
Methylene Chloride	0.475	0.489	0.539	0.585
trans-1,2-Dichloroethylene	0.517	0.529	0.563	0.580
1.1-Dichloroethane	0.550	0.557	0.611	0.669
Chloroform	0.715	0.720	0.742	0.752
1,2-Dichloroethane	0.840	0.851	0.868	0.872
1.1.1-Trichloroethane	0.948	0.950	0.959	1.000
Benzene	00.1	1.000	1.000	1.000
Carbon Tetrachloride	1.095	1.050	1.048	1.086
1.2-Dichloropropane	1.266	1.254	1.214	1.192
Trichloroethylene	1.413	1.396	1.342	1.361
2-Chloroethyl Vinyl Ether	1.667	1.64	1.551	1.539
1.1.2-Trichloroethane	2.293	2.211	1.976	1.860
Toluene	2.693	2.621	2.358	2.339
Tetrachloroethylene	3.985	3.853	3.314	3.272
Chlorobenzene	5.153	4.962	4.148	4.076
Ethyl Benzene	6.223	5.985	4.882	4.743
Вготоботи	6.282	5.261	4.713	4.351
m-xylene	6.767	6.490	5.247	5.071
o-xylene	8.145	7.826	6.234	5.979
1,1,2,2-Tetrachloroethane	8.311	7.190	5.943	5.345

The ANALYSIS TIME, DRV3, and DRV4 times can be adjusted to obtain a suitable chromatogram of the working standard, if one like that in Figure 8 is not initially obtained. If the chromatogram does not show any of the last peaks (sylenes or ethylbenzzene), the following adjustments should be made in order. After each adjustment, reinject a headspace sample of the working standard and watch for the latter peaks to appear on the new chromatogram.

Adjustment I. I

Increase ANALYSIS TIME, to 600 or 700 seconds. As an alternative, carefully adjust the carrier gas flowrate upwards to 15 mL/min.

Adjustment II.

Adjust the DRV3 and DRV4 off times (under METHOD/TIMING/CONFIG command) to the formula 5 + A/6 (A represents the analysis time).

4

のである。 · 直接 · 会送 · 会社

The 3-point calibration is initially created by analyzing the three standards in succession, starting with the lowest concentration, and atoring the calibration information (using METHOD/LIBRARY/STORE) for each campoint after each chromatogram is obtained. The process is performed as follows: select METHOD/LIBRALY, select STORE, press ENTER for each compound you with to store, bear fill in the appropriate entries in the LIBRARY STORE WINDOW (peat 8, compound name, and Conc.) for each compound (see Figure 9). THIS PROCESS CAN BE SUCCESSFULLY COMPLETED ONLY AFFER THE CHROMATOGRAPHIC ANALYSIS OF A WORRING STAMDARD APPEARS IN THE RESULTS WINDOW. The 100-ppb standard is emerced as Conc. 1, as each standard is analyzed. Also, Alam 1 and 2 values should be set to 80 ppm. After the correct concentration is emerced for the current analysis, press BNTER. At this time, the GC calculates and stores the correct response factor and remain move on to the analysis and literary storing of the next higher in the current standard, the move on to the analysis and literary storing of the next higher in the unrant analysis, press BNTER, to the analysis and literary storing of the next higher while Figure 9 shows the library information for hences after all calibrations are complete while Figure 9 shows the library information for hences after all calibrations are complete while Figure 10 shows the 3-point calibration which has been created.

Figure 9 Library Store Window

After all compound peak numbers and standard concentrations have been entered in the library, select METHOD and REINTECRATE to reanalyze the last chromatogram and set all compounds to the specified concentrations. Finally, to obtain a hard copy, print out the standard chromatogram by selecting the PRINT/ANALYSIS command.

GC CALIBRATION CHECK

- The calibration must be checked after analysis of every five samples. Only one of the three standards is used to check the calibration, namely that standard whose nominal concentration is closest to but greater than the concentrations of recent sample results (see ranges shown on calibration curve of Figure 10). For example, if most sample results are running around 300 to 700 ppb, then the 1-ppm standard (medium range) would be used for the calibration check.
- A calibration check includes performing a repeated analysis of the chosen working standard headspace and reviewing the results printed out. If the compounds are not correctly identified and/or if the concentrations are not close to the nominal standard concentration (80-120% of

Figure 10 3-Point Calibration.

specified value), then a recalibration is necessary. This is done by storing again the peak mimbers and concentrations of the chear strandral that LIBRARY STORE WINDOW under the METHOD/LIBRARY/STORE command. Finally, REINTERARE and use PRINT/ANALYSIS to provide a hard copy record of the updated calibration.

SOIL AND WATER SAMPLE PREPARATION AND ANALYSIS

Consistency is very important in the preparation of soil samples. Collection and preparation of all soil samples should follow exact and consistent procedures in order to obtain meaningful results.

- The soil samples are collected in glass jars and placed in a cooler of fee which should be maintained at 4° C (± 2° C). Dispense 10 mL of DI water to each 40-mL VOA vial by use of a 10-mL pipet and an aspirator bulb. Approximately 10 grams of soil is collected from the glass jar and added to the 10 mL of DI water already in the 40-mL VOA vial. The weight of the soil added is determined by difference using the small electronic balance (water plus soil wr. water wr. = soil wr.). The sample is expect with a tellon cap and is staken for 30 seconds to mix and volatilize the BTEX or similar compounds. All samples must be warmed in the water bath for 15 minutes before hijsciton of headspace onto the GC.
- Water samples are prepared by simply dispensing 10 mL of aqueous sample, using a 10-mL pipet and an appriator bulb, into a 40-mL VOA vial, and shaking for 30 seconds to volatilize the components present. All samples must be warmed in the water bath for 15 minutes before injection of bandspace onto the GC.

- Analyze headspace from prepared soil or water samples according to the procedures given in the GC ANALYSIS section. Be careful not to inject any liquid water into the GC, as it will SEVERELY DAMAGE the column and render the instrument unusable. Remember to update the NOTEPAD with sample ID information. This can be done while the GC is performing an analysis.
- Once the peak and concentration information is obtained from the analysis printout, the concentration of the compounds in the soil can be calculated using the formula below:

X = (PR) (assume for water: 1 gram = 1 ml)

Where:

X - Contaminant concentration in soil sample (in ppm);

PR = Plotter reading (in ppm);
WY = Weight of deionized water solution (in grams); and
SS = Exact weight of soil sample (in grams).

Note: WV = 10 mL or 10 grams.

SS should be as close to 10 grams as possible.

I ppm = 1 µg/mL.

If the soil sample is exactly 10 grams, then X = PR and no calculation is required.

SHUTDOWN

- Shut down the 10S + GC by first selecting GC DETECTOR OFF under the STATUS command.
 This will turn off the PID lamp and the GC oven. Then select REMOVE FUNCTION under
 the STATUS command in order to clear out the GC for the next analysis session. The computer
 will prompt "Data will be lost," to which you can answer "Yes."
- Press OFF. Replace the injection port septum every day or every other day (see page 8-7). Be sure the Tellon face of the septum is down and that the septum retainer is not over tightened upon replacement.

TROUBLESHOOTING

- The instrument has been known to completely freeze up electronically, that is, no response
 occurs upon pressing any of the keys. To remedy this situation, open the computer module to
 reveal the column and electronics inside. In the upper left corner the inside chamber, there
 is a red_and black RESET switch. Press this switch to completely reset the instrument
 electronics. Close the computer module cover, and restart by pressing the main ON button.
 All setup and library information will have to be reprogrammed.
- In the Instance that a working standard is injected and the chromatogram comes out completely
 flat, check that carrier gas flow is on and set correctly, and that the DRV3 and DRV4 off times
 have not been accidently reset to 0.

ALL WEATHER WHITING PAPER -

- 3. The septum in the INJECTION PORT I needs .e./acement if it loses resistance when the syrings is pushed through it. See page 8-7 for instructions on replacement.
- . Figure 11 presents some example problem chromatograms.
- A. The latter standard peaks (eithylbentzene, m.p-xylene, and o-xylene) do not come out. The ANALYSIS TIME or DRV3 or DRV4 time off operating parameters need to be adjusted as described in step 4 of GC CALIBRATION.
- B. The methanol peak is obscuring the benzena and tolluene peaks. Too much methanol is being carried over from decontamination activities. Allow methanol to dry off of the injection syringe before use.
- C. Multiple peaks go significantly off the chromatogram right edge. Reduce the gain value to bring all of each peak within the chromatogram width.

باد ـ د ...

D. Benzene or other component saturates the entire chromatogram for an extended period of time. Dilute and reanalyze sample until separate (though perhaps overlapping) peaks appear on the chromatogram. Chapter 9 provides a helpful table of other problem conditions and instructions for remedying the situation.

For other difficult problems, call Matt Alexander at the OpTech corporate office (1-800-677-8072) or a IAACO representative (preferably Scott Robinson or Jeff Rogers) at 1-800-332-0435. When calling either OpTech or IIAZCO, have available a clear description of the problem and example chromatograms. Also be prepared to receive instructions for conducting troubleshooting on-site.

REFERENCE

10S plus Digital Gas Chromatograph User's Manual. Photovac, Inc., 25-B Jefryn Blvd. West, Deer Park, NY, (516) 254-4199.

\$433HG (HL)

ALDENA MEGATA

. Pr

FOLY-CLIFF

Pold daja, ... if it's way a collecting, it's worth producting.

ACH SHELL

desilver

118 MAY 95 (73)	1012 Sample 026:001 MW	Decon Equipment Move to 026-002 MW	1144 63 END SAMPLING	1204 At 026-003 MW Set-up.	1212 TAKE 026-003 KB 1210 Begin Purging 1309 Dove Purging	1315 DRILLERS MOVE IN TO SET	1333 Start Sampling 026-003MW	1410 Escented off 26 1418 At 6247.	

1530 Goto B247 to Decow 1530 Take Sample 025-003RB 545 Goto 025-003MW CALL BURLINGTON EXPRESS 4 025-00 A Move GC 5Tuff from 19 MAY 95 B252 # 8247 B Reak d wext

(c8) [20 MAY 95]	1157 026-001 MW 10ml water	OTOLNENC Z 1/6	E-Benzene 3	TKOT OKE-COKMW TOWN WALK	W 10ml	• ALL NDS	1227 025-001MW 10ml water	 1236 025-002MW 10ml water	• Benzene	1245 100 PPB BTEX STD	VA Trb	601	46	····	0-xykena 77 328,8	Recal to 100,00,100,20,00	1255 AIR BLANK	1304 025-003MW 10ml water	Byen ETR	,这一个是一个人,我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	

(B)	963ppb 318ppb	920000	908 0111 908 0201	300 ppb				7 1- 1-	1.4%	
Sb Nyw		TS X	011'1 2ho'1 720'1	N	\$0-					
80 1	Toluene E-Bonzene	MP-XYLENE O-XYLENE I PPM BTE,	Benzeme 72 Lucade 6-Benzeme	- mp-xylene - o-xylene Shut down Go	and McKi			\sim	H.) (
	076	7	@ x w	1-1-8 1-1-8 1-1-8	5tact 1723 Legar 1749 At ho				2))
		<u> </u>								
	23				•	6.48 H, H				one basings, is to
· .										
					D		. !			
· · · · · · · · · · · · · · · · · · ·	and the second s									e r us
		-						:		

APPENDIX G

SURVEY REPORTS

INTRODUCTION

This appendix contains the survey report for the SI on soil borings and monitor wells at IRP Sites No. 25 and No. 26, and includes information such as elevation, depth and Minnesota State plane coordinates. The elevations for monitor wells were taken at the top of the well casings on the north side of the well. This appendix also includes surveyors' reports for wells and boreholes at IRP Sites No. 25 and No. 26.

THIS PAGE INTENTIONALLY LEFT BLANK

Table G.1
Summary of Elevations and Coordinates for
Monitor Wells and Boreholes at IRP Sites No. 25 and No. 26
148th FW, Duluth ANGB, Duluth, Minnesota

19 (19) (19) (19) (19) (19) (19) (19) (1	and the second s		
North	East	Surface Elevation	Top of Casing Monitor Wells only
	Soil Borings		
406,337.47	432,901.10	1,421.34	NA
406,391.88	432,901.10	•	NA
406,264.35	432,897.70	•	NA
406,273.70	432,754.82	1,423.53	NA
406,228.64	432,745.46		NA
406,143.67	432,877.29	•	NA
406,271,15	432,698.68	•	NA
406,108.76			NA
406,092.61	432,909.61	7.	NA
406,003.34			NA
406,107.06	432,988.71		NA
406,386.78	432,897.70		NA
406,301.76	432,850.92	1,421.97	NA
	Monitor Wells		
406,482.33	432,810.44	1,422,59	1,422.56
406,024.17	432,953.32		1,400.21
406,246.50	432,982.35	1,402.71	1,405.32
North			Top of Casing
1,01,111	East	Elevation	Monitor Wells only
TOILI	East Soil Borings	Elevation	Monitor Wells only
3,775.61			
3,775.61 3,692.45	Soil Borings	1,422.28 1,421.61	NA NA
3,775.61	Soil Borings	1,422.28 1,421.61	NA NA
3,775.61 3,692.45	Soil Borings 10,876.74 10,873.01	1,422.28	NA NA NA
3,775.61 3,692.45 3,621.55	Soil Borings 10,876.74 10,873.01 10,873.01	1,422.28 1,421.61 1,422.21 1,423.90	NA NA NA NA
3,775.61 3,692.45 3,621.55 3,775.61	Soil Borings 10,876.74 10,873.01 10,873.01 10,978.40	1,422.28 1,421.61 1,422.21	NA NA NA
3,775.61 3,692.45 3,621.55 3,775.61 3,687.66	Soil Borings 10,876.74 10,873.01 10,873.01 10,978.40 10,972.20	1,422.28 1,421.61 1,422.21 1,423.90 1,424.77	NA NA NA NA NA
3,775.61 3,692.45 3,621.55 3,775.61 3,687.66	Soil Borings 10,876.74 10,873.01 10,873.01 10,978.40 10,972.20 10,968.46 Monitor Wells	1,422.28 1,421.61 1,422.21 1,423.90 1,424.77 1,425.43	NA NA NA NA NA NA
3,775.61 3,692.45 3,621.55 3,775.61 3,687.66 3,614.09	Soil Borings 10,876.74 10,873.01 10,873.01 10,978.40 10,972.20 10,968.46	1,422.28 1,421.61 1,422.21 1,423.90 1,424.77	NA NA NA NA NA
The state of the s	406,337.47 406,391.88 406,264.35 406,273.70 406,228.64 406,143.67 406,271.15 406,108.76 406,092.61 406,003.34 406,107.06 406,386.78 406,301.76 406,482.33 406,024.17 406,246.50	Soil Borings 406,337.47 432,901.10 406,391.88 432,901.10 406,264.35 432,897.70 406,273.70 432,754.82 406,228.64 432,745.46 406,143.67 432,877.29 406,271.15 432,698.68 406,108.76 432,921.52 406,092.61 432,909.61 406,003.34 432,939.38 406,107.06 432,988.71 406,386.78 432,897.70 406,301.76 432,850.92 Monitor Wells 406,482.33 432,810.44 406,024.17 432,953.32 406,246.50 432,982.35	North East Elevation Soil Borings 406,337.47 432,901.10 1,421.34 406,391.88 432,901.10 1,421.24 406,264.35 432,897.70 1,420.98 406,273.70 432,754.82 1,423.53 406,228.64 432,745.46 1,423.87 406,143.67 432,877.29 1,421.05 406,271.15 432,698.68 1,425.96 406,108.76 432,921.52 1,421.97 406,092.61 432,909.61 1,417.29 406,003.34 432,939.38 1,398.19 406,107.06 432,988.71 1,397.29 406,386.78 432,897.70 1,421.29 406,301.76 432,850.92 1,421.97 Monitor Wells 406,024.17 432,953.32 1,397.83 406,246.50 432,982.35 1,402.71

BH - Borehole.

NA - Not Applicable.

MW - Monitor Well.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX H

INVESTIGATION DERIVED WASTE MANAGEMENT

INTRODUCTION

This appendix concerns the contents of the five drums of investigation derived waste which was generated during the SI at the 148th Fighter Wing, Minnesota ANGB, Duluth, Minnesota. Four of these drums contain soil cuttings and one contains monitor well development and purge water. Attached Table H.1 is a summary of the recommended disposition for each of these drums. Attached Table H.2 is a summary of the maximum concentrations of analytes contained in each drum containing soil from drill cuttings. Attached Table H.3 is a summary of the maximum concentrations of analytes contained in the drum containing well development and purge water.

THIS PAGE INTENTIONALLY LEFT BLANK

Table H.1
Recommended Disposition of Investigation Derived Waste
148th FW, Duluth ANGB, Duluth, Minnesota

Drum Identification	Origin	Recommended Disposition	Rationale
025-001BH 025-003BH	Drill cuttings Soil	Soil cuttings should be treated as petroleum-contaminated soil before returning to the site.	Based on analytical results, BTEX concentrations are greater than 5 ppm.
025-002BH 025-013BH	Drill cuttings Soil	Soil cuttings should be treated as petroleum-contaminated soil before returning to the site.	Based on analytical results, BTEX concentrations are greater than 5 ppm.
025-006ВН	Drill cuttings Soil	The soil cuttings can be returned to the site.	Based on analytical results, BTEX concentration is 0.005 ppm.
025-003MW	Drill cuttings Soil	Soil cuttings should be treated as petroleum-contaminated soil before returning to the site.	Based on GC screening results, BTEX concentrations are greater than 5 ppm.
025-003MW	Development and Purge Water	Determine whether City of Duluth Waste-Water Management will allow BTEX-contaminated water to be disposed of in the City sewer system.	Based on analytical results, BTEX concentrations exceeded the Federal and State ARARs.

BH - Borehole.

MW - Monitor Well.

ppm - parts per million.

GC - Gas Chromatograph.

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes. ARARs - Applicable or Relevant and Appropriate Requirements.

Table H.2
Site Investigation Derived Waste - Drums Containing Soil Cuttings
148th FW, Duluth ANGB, Duluth, Minnesota

Analyte	Maximum Concentrations (μg/kg)	Action Level Concentrations (μg/kg*)	Standards Used
	BTEX		
Benzene Ethylbenzene Toluene Xylenes	84,000 140,000 460,000 680,000	NA NA NA NA	- - -
	SVOCs		
2-methylnaphtalene Naphthalene Pyrene Flouranthene	12,000 14,000 360 420	NA NA NA NA	· -
	Metals		
Nickel	25	NA	_

^{* -} There are no State cleanup levels for the above analytes $\mu g/L$ - micrograms per liter.

Table H.3
Site Investigation Derived Waste – Drum Containing Development and Purge Water
148th FW, Duluth ANGB, Duluth, Minnesota

Analyte	Maximum Concentrations in Development an Purge Water (μg/L)	Action Level Concentration (µg/L)	Standard Used
	втех		
Benzene Ethylbenzene Xylenes (total)	2,600 1,300 1,450	10 700 10,000	HRL HRL HRL
	SVOCs		
4-Methylphenol	8	3	HRL

 μ g/L - micrograms per liter.

APPENDIX I

GEOTECHNICAL REPORT

INTRODUCTION

This appendix presents geotechnical data for soil samples from the Site Investigation at IRP Site No. 26. On the following pages are grain-size distribution reports for soil samples collected from monitor wells 026-002MW and 026-003MW. Also presented in this appendix are permeability test lab data (vertical hydraulic conductivity) and information on pH cation exchange capacity for soil samples collected from monitor wells. The chain-of-custody forms for these soil samples are also included in this appendix. Grain size ranged from clay-sized particles to fine gravel, with silt and fine sand making up the majority of the soil constituents.

THIS PAGE INTENTIONALLY LEFT BLANK

NORTHEAST TECHNICAL SERVICES, INC.

P.O. Box 1142

315 Chestnut Street

Virginia, Minnesota 55792

(218) 741-4290

Fax (218) 741-4291

GRAIN SIZE DISTRIBUTION REPORT

Project: OTC - Duluth Air Base

Job # 3482.09

Sample #: #1 226-002MW 0.5' - 2.5'

Date: 24-May-95

Size	Percentages	Classification	Percent Moisture	Organic Content	
Clay	4	SM silty sand	17.8	0%	
Silt	18	with gravel			
Fine Sand	24	·			
Medium Sand	18				
Coarse Sand	7				
Fine Gravel	29				

NORTHEAST TECHNICAL SERVICES, INC.
P.O. Box 1142
315 Chestnut Street
Virginia, Minnesota 55792
(218) 741-4290 Fax (218) 741-4291

GRAIN SIZE DISTRIBUTION REPORT

Project: OTC - Duluth Air Base

Job # 3482.09

Sample #: #2 026-003MW 15-17

Date: 24-May-95

Size	Percentages	Classification	Percent Moisture		Organic Content	
Clay	5	SM silty sand	14.8		13.80%	
Silt	- 34					
Fine Sand	36					
Medium Sand	13					····
Coarse Sand	5			· · · · · · · · · · · · · · · · · · ·		
Fine Gravel	: 7					

PERMEABILITY TEST LAB DATA

DATE:

5/17/95

PROJECT #:

3482.09

REPORT Operational Technologies Corp.

4100 NW Loop, Suite 230 San Antonio, TX 78229-4253 Permeability Tests on Brass Sleeve Samples from the Duluth Air Base

IRP Site 26

Duluth, MN

Sample Number:

#1 026-002MW

#2 026-003MW

Sample Location:

0.5 - 2.5

15 - 17

Soil Classification:

SM silty sand w/gravl

SM silty sand

Elevation:

Type of Sample:

Brass liner sample

Brass liner sample

Specimen Height (cm):

14.5

13.35

Specimen Diameter (cm):

3.5

3.5

Water Content %:

8.4

14.8

Dry Unit Weight (lbs/cf)

106.2

123.3

Max. Head Differential (ft):

4.00

4.00

Confining Pressure (psi):

2.00

2.00

Coefficient of Permeability

K @ 20 C (cm/sec)

1.10 x 10 -3

3.55 x 10 -6

Permeant Liquid Used

distilled water

distilled water

Northeast Technical Services, Inc.

315 CHESTNUT STREET • P.O. BOX 1142 • VIRGINIA, MINNESOTA 55792 • (218) 741-4290 • FAX (218) 741-4291

Lab Number:

95 - 3701

TO:

Duluth Ang/Duth SI

MN Environmental Lab No:

#027-137-157

Date Collected: 05/06/95 Date Received: 05/08/95

Date Reported: 05/23/95

Sample Description: 026-002-MW-0.5-2.5

Parameter

Result

рН

6.56 SU

Cation Exchange Capacity 127 meg/100 grams

Report approved by: JOHN H. SEURER ANALYTICAL SERVICES

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties. either expressed or implied.

Northeast Technical-Services, Inc.

315 CHESTNUT STREET • P.O. BOX 1142 • VIRGINIA, MINNESOTA 55792 • (218) 741-4290 • FAX (218) 741-4291

Lab Number:

95-3700

TO: Duluth Ang/Duth SI

MN Environmental Lab No:

#027-137-157

Date Collected: 05/06/95 05/08/95 Date Received: 05/23/95 Date Reported:

Sample Description: 026-003MW-15-17

Parameter

Result

Cation Exchange Capacity 45.6 meq/100 grams

Report approved by: JOHN H. SEURER ANALYTICAL SERVICES

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties, either expressed or implied.

***		×	Environmental L	de Dirig	ķ	Analysis Request and Chain of Custody Record	of Cus	lody Record
	T		Housiah, 1650	100 P4			•	
Project No.		Client/Project Name	NG/124	不らろ	- L	Project Location Site 26	***	
Field Date Sample No./ and Ime	Grab	Sample Container	Sample Type (Liquid, Studge, Etc.)	Preser-		STED DISMIC MATERIC	nt	
35	15	BRASS (3)	5016	NONE	Astm Metho.	for 17 H, Union exchange	soil partie	le Sirodistribution
- 4	\ ×			\ <u></u>				
が大きない	×				· · · • • • • • • • • • • • • • • • • •			
016-00-MW 6 K1 AH	×	(A)		/	***			
103	X		*			The state of the s	3	
 	×	->		\rightarrow				
divis Date	1							
	1		1	1		1		
	1			1		1		
Samplers: (Signature)		Relinquished by:	10 (CPrecl		(Signature)	Date: Time:	intact ४८ ऽ
ar ma	$\langle $	Relinquished by:	1/1/	100	Date:	Received by: (Signatury)	Date: -8. 95	Intact
ODTECH		Relinquished by:	an / var		Date:		Date:	Intact
SAMPLEB, REMARKS:	Sample		ביש בורצו-ש	ntain	4 3 Br 455 Strue	Received for taboratory: (Signature)	Date: Time:	Laboratory No.
100	Grandle	.1	076-002 MW-0-5-2.5 contams	con taun 2	4	Data Results to:		
Seal *								

Page _

APPENDIX J

HAZARDOUS RANKING SYSTEM DATA PACKAGE

INTRODUCTION

This appendix presents information needed by personnel performing a Hazardous Ranking System (HRS) study.

THIS PAGE INTENTIONALLY LEFT BLANK

SITE INVESTIGATION (SI) DATA REQUIREMENTS FOR FEDERAL FACILITY DOCKET SITES

DULUTH AIR NATIONAL GUARD STATION DULUTH, MINNESOTA

1. Supply copies of all previous sampling data, on-site and off-site, including location map, detection limits, raw data sheets, QA/QC documents, date(s) sampled, analytical method(s) used, well or boring logs, and sampling technique(s).

On-site and off-site sampling data, detection limits, and sampling techniques are found in Section 5 of this SI Report. Location maps are found in several sections of the SI Report including Section 1, Figure 1.1, Section 2, Figures 2.1 and 2.2. Raw data sheets, dates of sampling, and analytical methods are found in Appendix M of the SI. Well and boring logs can be found in Appendices C and A respectively. QA/QC documents are found in Appendix L.

2. Locate and identify on a map all known or suspected sources. Supply all information about source(s) such as: dates of operation, use, or spillage, amounts of material deposited, stored, or spilled, dimensions of source(s), known or suspected hazardous substances, etc.

A map of IRP Site No. 25 is shown on Figure 2.1 of this SI. The source of contamination for the site is the old motor pool building which has been used for vehicle refueling, repair, storage, and maintenance. The source of suspected contamination is the outfall of the floor drains from the motor pool location. The old motor pool was in use from the late 1940s until the new motor pool was built in 1986. Known hazardous substances in use include unleaded and leaded gasoline, diesel fuel, waste solvents, and detergents.

As shown in Figure 2.2 of this SI, IRP Site No. 26, Ramp Disposal Area, is located to the west of Building (Bldg.) 500, which was built in 1952. The building has been in continuous use as an aircraft hangar and maintenance facility since that time. The aircraft parking ramp in front of Bldg. 500 has also been in continuous use since the earliest days of Duluth ANGB. Unknown quantities of contaminated aviation fuels and waste solvents were stored or disposed of on the soil adjacent to the ramp, according to information gathered from interviewees and aerial photography.

3. Provide a description of all aquifers beneath the site, including a description of overlying materials, depth first encountered, thickness, and composition.

A description of groundwater and soil conditions is included in Section III of the Preliminary Assessment (PA) conducted for Duluth ANGB by OpTech in 1993. A Generalized Stratigraphic Column and a Diagrammatic Geologic Cross-Section of the Duluth Complex are shown in Figures III-1 and III-2 of the 1993 PA, respectively. The U. S. Geological Survey (USGS) publishes Water Resources of the Lake Superior Watershed, Northeastern Minnesota, Hydrologic Investigations Atlas HA-582 and Water Resources of the St. Louis River Watershed, Northeastern Minnesota, Hydrogeologic Investigations Atlas HA-586, both of which may be obtained from USGS.

4. For each source, choose one description from Table 1 that describes the groundwater contaminant. Provide complete documentation (i.e., engineering diagrams, original photos, etc.) as to why the source meets that description.

<u>IRP Site No. 25 source</u>: Evidence of hazardous substance migration from source area (i.e., source area includes source and any associated containment structures); no liner.

Rationale: As noted in the RCRA Facility Investigation by OpTech in August 1992 free product was detected downgradient from the old motor pool area. Interviewee information provided information that the 10,000-gallon (gal.) motor vehicle gasoline (MOGAS) underground storage tank (UST) in the old motor pool had been abandoned and filled with water in 1990. However, in the Spring of 1992, the tank was discovered with only 9 inches of water in it, leading the interviewee to conclude that the tank had a leak in it. BTEX and SVOCs in the naphthalene group, were detected in high concentrations in the soil samples taken near the former diesel and MOGAS USTs and waste solvent UST, respectively. BTEX, SVOCs, and 1,2 dichloroethane were detected in groundwater samples taken downgradient from the former diesel and MOGAS USTs.

IRP Site No. 26 source: Evidence of hazardous substance migration from source area (i.e., source area includes source and any associated containment structures); no liner.

Rationale: The non-paved area adjacent to the aircraft ramp west of Bldg. 500 and extending up to the area west of Bldg. 499 was used to store unknown numbers of 55-gal. drums containing contaminated jet fuel. In addition, buckets of contaminated fuel were poured on the ground along the edge of the ramp. Discoloration of soil was visible

on aerial photos and soil staining was reported by former aircraft maintenance personnel. VOCs were detected in a duplicate, but not in the original soil sample. Polyaromatic hydrocarbons (PAHs) were detected in a near-surface soil sample taken near the aircraft ramp.

5. Provide the location of all drinking water wells in all aquifers beneath the site in a 4-mile radius from the site (property boundary) by HRS distance ring and locate the wells within a one mile radius on a 7.5-minute topographic map. Provide information on depth of wells, screening intervals, depth of aquifers encountered, population served for multiple wells (i.e., municipal system), the number of wells, location of all wells (regardless of 4-mile limit), average annual pumpage from each well (regardless of 4-mile limit), and total population served by the system. Include information on all standby wells.

A map with all drinking water wells within a 1-mile radius of Duluth ANGB is shown in Figure 3.1 of this SI. Additional private wells are located between two and four miles of the Duluth International Airport. All water well logs for these 63 privately-owned wells within this area are shown in Section Q of the appendices of the 1993 PA. The City of Duluth and nearby townships draw their drinking water from Lake Superior. Population figures are included in the response to Question 13. According to local agencies, no standby wells exist.

6. Provide information and location (on a 7.5-minute topographic map) of wells within 4 miles that are used to irrigate 5 or more acres of commercial food or forage crops, or watering of commercial livestock, or ingredient in commercial food preparation, or supply for aquaculture, or supply for a major or designated water recreation area, excluding drinking water use.

Two factors rule out well water being used extensively to support the commercial food chain in the Duluth area: (1) water for the irrigation of local crops and the watering of livestock is drawn from abundant surface water sources, and (2) commercial agriculture in the Duluth area is negligible. Literally hundreds of small creeks and ponds surround the Duluth ANGB; the water table is very high. An annotated topographic map, showing wetlands is shown in Section Q of the appendices of the 1993 PA, as well as an annotated topographic map showing local agricultural activity.

7. What is the average number of persons per residence for the county (or counties) that the site is located in per the U. S. Census Bureau?

According to 1990 Census data, the population of St. Louis County is 2.43 persons per residence.

8. Identify and locate all surface water bodies within 2 miles of the site, marking off on the drainage routes (shown on a 7.5-minute topographic map) from each source to applicable surface water bodies. Provide the average annual cubic feet per second flow for each surface water body within 15 miles downriver, or 15-mile radius from the point of probable entry into surface water. For lakes, provide information on inflow and outflow.

Miller Creek, which flows past the eastern perimeter of Duluth ANGB, is a minimally flowing water body, especially during the winter months, according the City of Duluth Area Hydrologist. The creek flow is not officially measured by local officials. Beaver Creek flows north from a north-south drainage ditch and eventually empties into Wild Rice Lake, north of Duluth International Airport. The annual cubic flow is not measured. Both creeks and the reservoir are shown on Figures III-3 and III-4 of the 1993 PA.

9. What is the number of acres in each drainage basin?

Miller Creek drains approximately 1,200 acres before it empties into Lake Superior. The creek traverses a broader plain as it passes Duluth ANGB and then becomes more channelized as it flows southeastward and eventually empties into Lake Superior. Beaver Creek drains both the 2,000-acre Duluth International Airport and an area of approximately 1,300 acres as it flows northward into Wild Rice Lake.

10. Choose the predominant soil group (surface soil) which comprises the largest total area within each drainage area.

The area within a 2-mile radius of Duluth ANGB is classified as Highland Moraine. Five major soil groups are found in this area. Soil Interpretations Records for the five major soil groups (Ahmeek, Hermantown, Twig, Cathro, and Rifle) are found in the Q Section of the appendices of the 1993 PA.

11. What is the 2-year, 24-hour rainfall?

The 2-year, 24-hour rainfall is 2.5 inches, according to the State of Minnesota Department of Natural Resources Area Hydrologist.

12. Choose the floodplain category for each source (supply FEMA floodplain map) and determine if each source meets the selected floodplain criteria.

Because Duluth ANGB is located on an elevated hill above the level of any flood sources, the Base is not located within any historic floodplains. Additionally, the Federal Emergency Management Agency has elected not to map either Duluth International Airport or the ANGB because of the non-existent flood threat.

13. Provide the location of all drinking water intakes within 15 miles downstream (for rivers) or 15-mile radius (lakes, bays, etc.). Provide information on the population served. For multiple intakes (i.e., municipal systems) provide information on the number of intakes, the location of all intakes (regardless of the 15-mile limit), and the total population served by the system. Include information on all standby intakes.

A map of the location of the single drinking water intake on Lake Superior that serves as the City of Duluth municipal water supply is found in the Q Section of the appendices of the 1993 PA. Section Q also provides a cross-section schematic of the City of Duluth municipal water supply. According to the Chief Engineer of the City of Duluth Water and Gas Department, the system averages 13 million gallons per day during the year, with summer peaks rising to 30 million gallons per day. The municipal water system serves approximately 105,000 people in the greater Duluth area, including the Duluth ANGB.

14. Provide information and the location of all water intakes within 15 miles downriver (radius in lake or bay) that are used to irrigate 5 or more acres of commercial food or forage crops, or watering of commercial livestock, or ingredient in commercial food preparation, or supply for aquaculture, or supply for a major or designated water recreation area, excluding drinking water use.

As discussed in Question 13, only one water intake serves the greater Duluth area. Abundant surface water augments City Water supplies for the resident population.

15. Is any surface water body 15 miles downriver (radius in lakes or bay) used for drinking water?

Lake Superior is within 15 miles of Duluth ANGB. It is the major surface water body that provides drinking water to the Duluth population.

16. What is the average human food chain production (pounds per year) for each surface water body 15 miles downriver or 15-mile radius in lake?

Not applicable. Source: Minnesota Department of Natural Resources.

17. Within a 4-mile radius from the site and 15 miles downriver or radius in a lake, identify all sensitive environments that exist. Provide original documentation (USF&W, Natural Heritage Database, State agencies, NOAA, etc.) and locate each area by HRS distance ring. Note that there could be multiple sensitive environments within a sensitive environment.

Sensitive environments are discussed in Section 3.0 of this SI Report. Figure 3.4 of the SI includes the locations of all sensitive environments in the vicinity of the Base. The Base itself does not include any sensitive environments.

18. What is the linear frontage of all wetlands 15 miles downriver or within a 15-mile radius from a lake?

To determine extent of wetland frontage, a National Wetlands Inventory Map overlay, dated November 1978, showing wetlands within the Duluth Heights 7.5-minute topographic map was utilized. Literally hundreds of wetlands, seasonal and permanent, exist within a 15-mile radius of the Base, and on all sides of the Base. The linear frontage, as a result, may be expressed in hundreds of miles. A topographic map of the Duluth ANGB area with the National Wetlands Inventory Map overlay is provided in Section Q of the appendices for the 1993 PA.

19. What is the location and number of persons residing, working, attending school or day care within 200 feet of each source?

No schools or day care centers are located on Duluth ANGB. The nearest schools, Kenwood Elementary (population: 252), Home Craft Elementary (population: 445), and Central High School (population: 1,700) are located two miles or more from the Base.

IRP Site No. 25, Old Motor Pool: Bldgs. 240 and 242 are located in the old motor pool area. Four personnel work between both buildings. Across the street adjacent to the abandoned unleaded gasoline UST, 23 personnel work in Bldg. 231 and 2 people work in Bldg. 230. A map showing the 200-foot radius and population information is found Section Q of the appendices for the 1993 PA.

IRP Site No. 26, Ramp Disposal Area: A variety of aircraft maintenance facilities are located within 200 feet of Bldg. 500. A total of 32 personnel work in Bldgs. 203, 204, 199, 497, 498, and 214. A map showing the 200-foot radius and population information is found in Section Q of the appendices for the 1993 PA.

In all cases, on-Base population figures represent normal, daily use of the facilities. On guard weekends, the Base population greatly expands. Figures for Guard weekends are unavailable from Duluth ANGB sources.

20. Identify all terrestrial sensitive environments that exist on-site. Provide original documentation (USF&W, Natural Heritage Database, State agencies, NOAA, etc.) and locate each on a 7.5-minute topographic map. Note that there could be multiple sensitive environments within a sensitive environment.

No terrestrial sensitive environments exist on-site.

21. For each source, choose one description from Table 8 that describes the accessibility of the site to a human population. Provide complete documentation (i.e., engineering diagrams, photographs (originals)) as to why the source meets that description.

IRP Site No. 25, Old Motor Pool: Physically inaccessible to the public, with no evidence of public recreation use. Figure IV-1 of the 1993 PA shows the motor pool in a fenced area within the confines of the Duluth ANGB.

IRP Site No. 26, Ramp Disposal Area: Physically inaccessible to the public, with no evidence of public recreation use. Figure IV-2 of the 1993 PA shows the area adjacent to active aircraft taxiway/aircraft parking and maintenance area, which, at present, is also restricted from Base personnel.

22. What is the total number of people in the following distance rings from source(s)?

<u>Distance</u>	Ring <u>Total</u>	Aggregate <u>Total</u>
0-1/4 mile:	126	126
1/4-1/2 mile:	41	167
1/2-1 mile:	750	917
1-2 miles:	2,058	2,975
2-3 miles:	13,046	16,021
3-4 miles:	4,495	20,516

Use 1990 Census data and/or actual house counts. Document how calculated.

Raw 1990 Census data was gathered from the Arrowhead Regional Development Commission, Duluth, Minnesota. Data from Duluth and the townships of Canosia, Hermantown, and Rice Lake were included in computations. Mileage circles were used as overlays on 1990 Census tract maps, which were subdivided into Census blocks. All census blocks that fell within the mileage circles were included in their entirety. Partial blocks were interpolated for the percentage of the total census that was included. Direct computational involvement by the Arrowhead Regional Development Commission ensured accuracy in 1990 Census figures. A copy of the 1990 Census Tract Map is attached for informational purposes.

23. For each source, choose one description from Table 9 that describes the gaseous containment. Provided complete documentation (i.e., engineering diagrams, photographs (originals)) as to why the source meets that description. From Table 10, choose the appropriate description of each source type. For each source, choose one description from Table 11 that describes the particulate containment.

Provide complete documentation (i.e., engineering diagrams, photographs (originals)) as to why the source meets the description.

IRP Site No. 25, Old Motor Pool: Source covered with essentially impermeable, regularly inspected, maintained cover.

Rationale: The old motor pool facility is fully paved with an asphalt surface. Metal hatches are used to access the USTs. There are no open pathways for volatile gases to escape from the USTs. Figure IV-1 shows the configuration of the old motor pool area — the configuration is taken from current Base Civil Engineering drawings.

IRP Site No. 26, Ramp Disposal Area: Uncontaminated soil cover > 3 feet: Source substantially vegetated with little exposed soil.

24. What is the location and area (in acres) of all wetlands within a 4-mile radius of the site?

See response to Question 18. According to the U. S. Fish and Wildlife Service National Wetlands Inventory Map dated November 1978, there are hundreds of acres of wetlands within a 4-mile radius of Duluth ANGB. The maximum HRS rating for this item should be used. The topographic map which includes wetlands is found in Section Q of the appendices of the 1993 PA.

25. Contact the United States Environmental Protection Agency (USEPA) Regional Office immediately if any radionuclides are present or suspected at a site and supply all radiological information known to date.

No radioactivity has been recorded at IRP Sites No. 25 and No. 26.

26. For all of the above information, use primary data sources and supply 2 copies or specify where copies may be obtained.

See 1993 PA Report.

27. Have any removals or remedial actions taken place at the site(s)?

IRP Site No. 25, Old Motor Pool: The USTs at the old motor pool were emptied and abandoned in 1986 when the new motor pool area was constructed. Actions were not taken as environmentally-focused remedial or removal actions, but as a normal part of the transition to the new motor pool facility.

IRP Site No. 26, Ramp Disposal Area: Remedial actions are under review at Duluth ANGB.

APPENDIX K

SUMMARY OF ANALYTICAL RESULTS FOR SOIL AND GROUNDWATER SAMPLES

INTRODUCTION

The following is a list of analytical results for soil and groundwater samples collected at IRP Sites No. 25 and No. 26.

IRP SITE NO. 25

SOIL SAMPLES

- K.1 Volatile Soil Analytical Results for IRP Site No. 25
- K.2 Semivolatile Soil Analytical Results for IRP Site No. 25
- K.3 Metals Soil Analytical Results for IRP Site No. 25

GROUNDWATER SAMPLES

- K.4 Halogenated Volatile Groundwater Analytical Results for IRP Site No. 25
- K.5 Semivolatile Groundwater Analytical Results for IRP Site No. 25
- K.6 Metals Groundwater Analytical Results for IRP Site No. 25

IRP SITE NO. 26

SOIL SAMPLES

- K.7 Volatile Soil Analytical Results for IRP Site No. 26
- K.8 Semivolatile Soil Analytical Results for IRP Site No. 26
- K.9 Metals Soil Analytical Results for IRP Site No. 26

GROUNDWATER SAMPLES

- K.10 Volatile Groundwater Analytical Results for IRP Site No. 26
- K.11 Semivolatile Groundwater Analytical Results for IRP Site No. 26

THIS PAGE INTENTIONALLY LEFT BLANK

Volatile Soil Analytical Results for Site No. 25 that Air National Guard Base, Duluth, Minnesota

Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted)

oc.: 9505556-02 9505556-03 9505556-04 Matrix Soil Soil Soil soil Soil Soil Soil stood 12000 U 2500 U 250 U stood 12000 U 2500 U 25 U stood 12000 U 1200 U 25 U stood 12000 U 2500 U 25 U stood 12000 U 2500 U 25 U stood 12000 U 2500 U 25 U stood 12000 U 1200 U 25 U stood 12000 U 2500 U 25 U stood 12000 U 1200 U 25 U stood 12000 U 2500 U 25 U stood 12000 U 2500 U 25 U stood 12000 U 1200 U 25 U stood 12000 U 1200 U 25 U stood 12000 U 1200 U 25 U stood 12000 U 1200 U 25 U <tr< th=""><th>Location No.: 025</th><th>025-001BH 6.5-7</th><th>025-002BH 11.5-12</th><th>025-003BH 11-12 0</th><th>25-003BH 11-12 D</th><th>up 025-004BH 11.5</th><th>025-003BH 11-12 Dup 025-004BH 11,5-12 025-004BH 19,5-20</th></tr<>	Location No.: 025	025-001BH 6.5-7	025-002BH 11.5-12	025-003BH 11-12 0	25-003BH 11-12 D	up 025-004BH 11.5	025-003BH 11-12 Dup 025-004BH 11,5-12 025-004BH 19,5-20
9504556-042 9504556-043 9504556-043 9504556-043 9504556-043 9504556-043 9504556-043 950556-043 950556-043 950560 U 25000 U		05/15/95	05/15/95	05/15/95	05/15/95	05/16/95	05/16/95
Soil Soil Soil Soil 250000 U 25000 U 2500 U 25000 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 25000 U 2500 U 25 U 1200 U 25000 U 2500 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 25000 U 25 U 1200 U 1200 U 25000 U 25 U 1200 U 1200 U 12000 U 25 U 1200 U 1200 U 12000 U 25 U 1200 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U		9505556-02	9505556-03	9505556-04	9505556-05	9505612-05	9505612-06
250000 U 2500 U 2500 U 2500 U 84000 1700 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 2500 U 25 U 1200 U 25000 U 2500 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 2500 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U <		Soil	Soil	Soil	Soil	Soil	Soil
84000 1700 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 2500 U 25 U 1200 U 25000 U 2500 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 25000 U 2500 U 25 U 1200 U 25000 U 25 U 1200 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U </td <td>Acetone</td> <td>250000 U</td> <td>25000 U</td> <td>500 U</td> <td>25000 U</td> <td>100 U</td> <td>100 U</td>	Acetone	250000 U	25000 U	500 U	25000 U	100 U	100 U
12000 U 1200 U 25 U 1200 U 1200 U 1200 U 25 U 1200 U 2500	Benzene	84000	1700	25 U	1200 U	5 U	5 U
12000 U 1200 U 25 U 1200 U 12	Bromodichloromethane	12000 U	1200 U	25 U	1200 U	5 U	5 U
25000 U 2500 U 50 U 2500 U 50000 U 5000 U 100 U 5000 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 25000 U 2500 U 25 U 1200 U 25000 U 2500 U 2500 U 2500 U 25000 U 2500 U 2500 U 1200 U 25000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U <td>Bromoform</td> <td>12000 U</td> <td>1200 U</td> <td>25 U</td> <td>1200 U</td> <td>5 U</td> <td>5 U</td>	Bromoform	12000 U	1200 U	25 U	1200 U	5 U	5 U
\$0000 U \$000 U 100 U \$000 U \$0000 U \$000 U 25 U \$000 U \$12000 U \$25 U \$1200 U \$25000 U \$2500 U \$2500 U \$25000 U \$2500 U \$2500 U \$25000 U \$2500 U \$2500 U \$25000 U \$2500 U \$2500 U \$25000 U \$2500 U \$2500 U \$25000 U \$2500 U \$2500 U \$25000 U \$2500 U \$2500 U \$25000 U \$25 U \$2500 U \$25000 U \$25 U \$200 U \$2000 U \$25 U \$200 U \$2000 U \$25 U \$200 U \$2000 U \$25 U \$200 U \$2000 U \$25 U \$200 U \$2000 U \$25 U \$200 U \$2000 U \$250 U \$2500 U \$2000 U \$25 U \$2500 U \$2000 U \$25 U \$200 U \$2000 U \$25 U \$200 U \$2000 U \$250	Bromomethane	25000 U	2500 U	50 U	2500 U	10 U	10 U
12000 U 1200 U 25 U 1200 U 12	2-Butanone	50000 U	2000 U	100 U	2000 U	20 U	20 U
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 25000 U 2500 U 2500 U 2500 U 25000 U 2500 U 2500 U 2500 U 12000 U 1200 U 2500 U 1200 U 12000 U 2500 U 2500 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U	Carbon Disulfide	12000 U	1200 U	25 U	1200 U	5 U	5.0
1200 U 25 U 1200 U 25000 U 2500 U 2500 U 25000 U 2500 U 2500 U 25000 U 2500 U 2500 U 12000 U 1200 U 2500 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U <	Carbon Tetrachloride	12000 U	1200 U	25 U	1200 U	5 U	5 U
25000 U 2500 U 2500 U 2500 U 25000 U 2500 U 2500 U 2500 U 25000 U 2500 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U </td <td>Chlorobenzene</td> <td>12000 U</td> <td>1200 U</td> <td>. 25 U</td> <td>1200 U</td> <td>2 U</td> <td>S U</td>	Chlorobenzene	12000 U	1200 U	. 25 U	1200 U	2 U	S U
25000 U 2500 U 2500	Chloroethane	25000 U	2500 U	20 U	2500 U	O 01	10 U
12000 U 25 U 1200 U 25000 U 2500 U 2500 U 25000 U 2500 U 2500 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U	2-Chloroethylvinylether	25000 U	2500 U	. 50 U	2500 U	O 01	O 01
25000 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U	Chloroform	12000 U	1200 U	25 U	1200 U	5 U	5 U
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 250 U 250 U 250 U 2500 U 250 U 250 U 250 U <t< td=""><td>Chloromethane</td><td>25000 U</td><td>2500 U</td><td>50 U</td><td>2500 U</td><td>O 01</td><td>O 01</td></t<>	Chloromethane	25000 U	2500 U	50 U	2500 U	O 01	O 01
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 250 U 250 U 250 U 2500 U 250 U 250 U	Dibromochloromethane	12000 U	1200 U	25 U	1200 U	5 U	\$ 0
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 2500 U 1200 U 12000 U 1200 U 2500 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 250 U 250 U 250 U 2500 U 250 U 250 U 250 U 2500 U 250 U 250 U 250 U 250 U 250 U 250 U	1,1-Dichloroethane	12000 U	1200 U	25 U	1200 U	5 U	2 O S
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 1200 U 1200 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 2500 U 250 U 250 U 2500 U 250 U 250 U 2500 U 250 U 25	1,1-Dichloroethene	12000 U	1200 U	25 U	1200 U	5 U	5 U
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 140000 9700 120 5300 2500 U 2500 U 2500 U 2500 U 12000 U 1200 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 25 U 1200 U 1200 U 12000 U 25 U 1200 U 1200 U 12000 U 25 U 1200 U 1200 U 2500 U 25 U 1200 U 1200 U 2500 U 25 U 1200 U 250 U 2500 U 250 U 250 U 250 U	1,2-Dichloroethane	12000 U	1200 U	25 U	1200 U	5 U	\$ n
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 140000 9700 120 5300 25000 U 2500 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 250 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 250 U 2500 U 2500 U 250 U 250 U </td <td>total-1,2-Dichloroethene</td> <td>12000 U</td> <td>1200 U</td> <td>25 U</td> <td>1200 U</td> <td>5 U</td> <td>S U</td>	total-1,2-Dichloroethene	12000 U	1200 U	25 U	1200 U	5 U	S U
12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 140000 9700 120 5300 25000 U 2500 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 12000 U 25 U 1200 U 2500 U 25 U 1200 U 2500 U 250 U 250 U 2500 U 250 U 2500 U	1,2-Dichloropropane	12000 U	1200 U	25 U	1200 U	5 U	5 U
12000 U 1200 U 1200 U 140000 9700 120 5300 25000 U 2500 U 2500 U 2500 U 12000 U 1200 U 2500 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 25 U 1200 U 1200 U 12000 U 25 U 1200 U 1200 U 2500 U 25 U 1200 U 1200 U 2500 U 250 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U	cis-1,3-Dichloropropene	12000 U	1200 U	25 U	1200 U	SU	5 U
140000 9700 120 5300 25000 U 2500 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 25000 U 2500 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 460000 26000 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 25 U 1200 U 1200 U 2500 U 25 U 1200 U 1200 U 2500 U 25 U 1200 U 1200 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U	trans-1,3-Dichloropropene	12000 U	1200 U	25 U	1200 U	5 U	5 U
25000 U 2500 U 250 U 250 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 12000 U 2500 U 12000 U 250 U 12000 U 1200 U 250 U 12000 U 1200 U 250 U 12000 U 2500 U 2	Ethylbenzene	140000	0026	120	5300	5 U	5 U
12000 U 1200 U 25 U 1200 U 2500 U 2500 U 2500 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 460000 26000 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 12000 U 1200 U 25 U 1200 U 2500 U 2500 U 250 U 1200 U 2500 U	2-Hexanone	25000 U	2500 U	. 50 U	2500 U	10 U	0.01
25000 U 2500 U 2500 U 2500 U 2500 U 12000 U 12000 U 1200 U 25 U 12000 U 1200 U 25 U 1200 U 1200 U 25 U 1200 U 1200 U 25 U 1200 U 1200 U 25 U 1200 U 1200 U 25 U 1200 U 1200 U 25 U 1200 U 1200 U 25 U 1200 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 25 U 2500 U	Methylene Chloride	12000 U	1200 U	25 U	1200 U	5 U	50
12000 U 1200 U 25 U 1200 U aloroethane 12000 U 1200 U 25 U 1200 U ene 460000 26000 25 U 1200 U ethane 12000 U 1200 U 25 U 1200 U bethane 12000 U 1200 U 25 U 1200 U c 12000 U 1200 U 25 U 1200 U c 12000 U 25 U 1200 U c 12000 U 25 U 1200 U 25000 U 2500 U 2500 U 2500 U 52000 U 5200 U 2500 U 2500 U	4-Methyl-2-Pentanone	25000 U	2500 U	20 U	2500 U	10 U	10 O
aloroethane 12000 U 1200 U 1200 U ene 12000 U 1200 U 25 U 1200 U 460000 26000 25 U 1200 U 26000 U 1200 U 25 U 1200 U c 12000 U 1200 U 25 U 1200 U c 12000 U 1200 U 25 U 1200 U c 12000 U 25 U 1200 U c 2500 U 25 U 2500 U c 2500 U 2500 U 2500 U c 2500 U 2500 U 2500 U	Styrene	12000 U	1200 U	25 U	1200 U	5 U	5.0
ene 12000 U 1200 U 25 U 1200 U 460000 26000 25 U 1200 U 25 U 1200 U 1200 U 1200 U 25 U 1200 U c 12000 U 1200 U 25	1, 1, 2, 2-Tetrachloroethane	12000 U	1200 U	25 U	1200 U	2 O	5 U
460000 26000 25 U 1200 U bethane 12000 U 1200 U 1200 U c 12000 U 1200 U 25 U 1200 U c 12000 U 1200 U 25 U 1200 U s 12000 U 25 U 1200 U s 2500 U 2500 U 2500 U c 2500 U 2500 U 2500 U c 2500 U 2500 U 2500 U c 2500 U 2500 U 2500 U	Tetrachloroethene	12000 U	1200 U	25 U	1200 U	5 U	5 U
oethane 12000 U 1200 U 1200 U sethane 12000 U 1200 U 25 U 1200 U omethane 12000 U 1200 U 25 U 1200 U strong U 1200 U 25 U 1200 U strong U 2500 U 2500 U 2500 U strong U 2500 U 2500 U 2500 U strong U 2500 U 2500 U 2500 U	Toluene	460000	26000	25 U	1200 U	5 U	5 U.S.
bethane 12000 U 1200 U 25 U 1200 U c 12000 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 1200 U 25 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U 2500 U	1,1,1-Trichloroethanc	12000 U	1200 U	25 U	1200 U	5 U	5 U
c 12000 U 1200 U 25 U 1200 U Dimethane 12000 U 1200 U 25 U 1200 U 25000 U 2500 U 50 U 2500 U 25000 U 2500 U 50 U 2500 U 25000 U 50 U 2500 U 25000 U 2500 U 2500 U	1, 1,2-Trichloroethane	12000 U	1200 U	25 U	1200 U	5 U	S U
omethane 12000 U 1200 U 25 U 1200 U 25000 U 2500 U 50 U 2500 U 25000 U 2500 U 50 U 2500 U 52000 U 5200 U 2500 U 2500 U	Trichloroethene	12000 U	1200 U	25 U	1200 U	5 U	5 U
25000 U 2500 U 50 U 2500 U 25000 U 2500 U 50 U 2500 U 680000	Trichlorofluoromethane	12000 U	1200 U	25 U	1200 U	5 U	S U
5 25000 U 2500 U 50 U 2500 U 680000 52000 800 29000	Vinyl Acetate	25000 U	2500 U	50 U	2500 U	D 01	0.01
680000 52000	Vinyl Chloride	25000 U	2500 U	50 U	2500 U	D 01	0.01
	Xylenes (total)	680000	52000	800	29000	5 U	0 C

BH - Borehole VOC - Volatile Organic Compounds

U - Indicates compound was analyzed for but not detected

Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted) Appendix K.1 Volatile Soil Analytical Results for Site No. 25

I ocation No.:	The property of the second second	(resuits in microg		vise noted)		
		025-006BH 21.5-22	025-007BH 11.5-12 025-008BH 10.5-11.0 025-008BH 14.5-15.0	5-008BH 10.5-11.0 0		025-009RH 11-
	05/16/95	05/12/95	05/16/95	05/12/95		05/17/05
Lab Sample No.: VOCs Matrix	9505612-04 Sail	9505512-08	9505612-03	9505512-02	9505512-03	9505512-10
	1001	1001	5011	Soil	Soil	Soil
Benzene	5 U	511	100 0	100 0	100 U	100 U
Bromodichloromethane	5 U	2 11	0.0	0.0	5.0	5 U
Bromoform	5 U	5 11		0.0	0.0	5 U
Bromomethane	10 U	10 17	10.1	3.0	0.0	5 U
2-Butanone	20 U	20 U	20.01	001	10 U	10 U
Carbon Disulfide	5 U	5 11	0 07	0.07	20 U	20 U
Carbon Tetrachloride	5 U	5.11	0.0	0.0	50	5 U
Chlorobenzene	5 U	5 U	11.5	0.0	5.0	5 U
Chloroethane	10 U	101	11 01	0.0	5.0	5 U
2-Chloroethylvinylether	10 U	10 U	10 11	0.07	10 U	0 OI
Chloroform	5 U	5 U	511	0.01	0.01	10 U
Chloromethane	10 U	10 U	10 11	10 L	0.00	5.0
Dibromochloromethane	5 U	5 U	115	2.11	0.01	0.01
1,1-Dichloroethane	5 U	.50	5 U	5.11	0.0)) (
1, 1-Dichloroethene	5 U	5 U	115	511	0.5	0 0
1,2-Dichloroethane	5 U	5 U	5 U	511	0.0) C
total-1,2-Dichloroethene	5 U	5 U	5 U	511	0.0	0.0
1,2-Dichloropropane	5 U	5 U	5 U	511	11.5	0.0 11.5
cis-1,3-Dichloropropene	5 U	5 U	5 U	511	0.6	0.0
trans-1,3-Dichloropropene	5 U	5 U	511	5 1	. 11	000
Ethylbenzene	5 U	5 U	5 U	511	3.0	5.0
2-Hexanone	10 U.	10 U	11 01	101	30	0.00
Methylene Chloride	5 U	5 U	511	0.01	0.01	0.01
4-Methyl-2-Pentanone	10 U	10 U	1101	101	0.0	0.5
Styrene	5 U	5.0	5 U	5 11	. O OI	0.01
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	511) C
Tetrachloroethene	5 U	5 U	5 U	11.5	0.5	0.5
Toluene	5 U	5 U ·	5 U	5 11	000	0.5
1, l, l - Trichloroethane	5 U	5 U	5 U	5 U	115	06
1,1,2-Trichloroethane	5 U	5 U	S U	5 U	511	06
Irichloroethene	5 U	5 U	5 U	5 11	511	0.5
Trichlorofluoromethane	5 U	5 U	5 U	511	115	0.5
Vinyl Acetate	10 U	10 U	10 U	101	101	3.0
Vinyl Chloride	10 U	10 U	1011	1011	10.1	0 01
Xylenes (total)	5 U	2	5 U	511	10 U	10 U
				· ·	0.07	o ر

BH - Borchole

Volatile Soil Analytical Results for Site No. 25

Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted)

=			- 8		3 C C HIGH O 3 C	T S J Hall O SCU
	025-009BH 11-12 Dup 0 05/17/05	Dup 025-009BH 14-14.5 025-010BH 2-2.5 05/12/95 05/12/95		023-010BB 0-0.3 (05/12/95	05/12/95	05/12/95
Date. mple No.: Metriv	9505512-09 Soil	9505512-11 Soil	9505512-04 Snil	9505512-05 Soil	9505512-06 Soil	9505512-07 Soil
VOCS Mallin	10011	100 U	100 U	100 U	100 U	100 U
Benzene	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U	5 U
Bromoform	5 U	5 U	5 U	5 U	5.U	5 U
Bromomethane	10 U	10 U	10 U	10 U	10 U	10 U
2-Butanone	20 U	20 U	20 U	20 U	20 U	20 U
Carbon Disulfide	5 U	5 U	5 U	5.U	5 U	5 U
Carbon Tetrachloride	5.0	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5 U	5 U	5 U	5 U	S U	5 U
Chloroethane	10 U	10 U	10 U	10 N	10 O	0.01
2-Chloroethylvinylether	10 U	10 U	10 U	10 O	10 O	n or
Chloroform	5.0	5 U	5 U	5 U	5.0	0.5
Chloromethane	10 U	10 U	10 O	10 O	10 U	10 O
Dibromochloromethane	5 U	5 U	5 U	5 U	5.0) C
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5.0	200
1,1-Dichloroethene	5 U	5 U	5 U	5 U	5.0	0.5
1,2-Dichloroethane	5 U	5 U	5 U	. S.U	0 6	0.0
total-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	00
1,2-Dichloropropane	5 U	5 U ·	2 O	\$ O	n c	0 5
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	50	200
trans-1,3-Dichloropropene	5 U	5 U	5 U	2 U	5 U	2.0
Ethylbenzene	5 U	5 U	5 U	7	5 U	0.00
2-Hexanone	10 U	10 U	10 U	10 U	10 U	0.01
Methylene Chloride	5 U	5.0	5 U	5 U	5 U	0.5
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 O	0.01	0.01
Styrene	5 U	5 U	5.0	5 U.	0.5	0.00
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5.0	0.0	0.0
Tetrachloroethene	5 U	20	5 U	5.0)) (0.5
Toluene	5 U	5 U	5 U	17	0 6	0.0
1,1,1-Trichloroethane	5 U	S U	5 U	5 U	5.0) C
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	20	0.0
Trichloroethene	· 2 U	5 U	5 U	5 U) c	0 0
Trichlorofluoromethane	5 U	5 U	5 U	5 U	0.5	5.0
Vinyl Acetate	10 U	10 U	10 U	0.01	10 O	100
Vinyl Chloride	10 U	10 U	10 0	10 C	0.01	0.01
Xylenes (total)	2.0	0	0			

BH - Borchole VOC - Volatile Organic Compounds

U - Indicates compound was analyzed for but not detected

Duluth Air National Guard Base, Duluth, Minnesota Appendix K.1 Volatile Soil Analytical Results for Site No. 25

(Results in micrograms per kilogram unless otherwise noted)

Location No.:	02S-012BH 11.5-12	025-012BH 19,5-20 025-013BH 11,5-12	025-013BH 11.5-12
Sample Date:	5/11/95	5/11/95	5/11/95
Lab Sample No.:	9505673-02	9505673-03	9505673-04
VOCs Matrix	Soil	Soil	Soil
Acetone	100 U	100 U	100 U
Benzene	29	5 U	5 U
Bromodichloromethane	5 U	5 U	5 U
Bromoform	5 U	5 U	5 U
Bromomethane	10 U	10 U	10 U
2-Butanone	20 U	20 U	20 U
Carbon Disulfide	5 U	5 U	5 U
Carbon Tetrachloride	5 U	5 U	5 U
Chlorobenzene	5 Ú	5 U	5 U
Chloroethane	10 U	10 N	10 U
2-Chloroethylvinylether	10 U	10 U	10 U
Chloroform	5 U	5 U	5 U
Chloromethane	10 U	10 U	10 U
Dibromochloromethane	5 U	5 U	5 U
1,1-Dichloroethane	5 U	5 U	5 U
1,1-Dichloroethene	5 U	5 U	5 U
1,2-Dichloroethane	5 U	5 U	5 U
total-1,2-Dichloroethene	5 U	5 U	5 U
1,2-Dichloropropane	5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U
trans-1,3-Dichloropropene	5 U	5 U	5 U
Ethylbenzene	5 U	S U	5 U
2-Hexanone	10 U	10 U	10 U
Methylene Chloride	. 5 U	5 U	5 U
4-Methyl-2-Pentanone	10 U	10 U	10 U
Styrene	2 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U
Tetrachloroethene	5.0	5 U	5 U
Toluene	∞	5 U	5 U
1,1,1-Trichloroethane	5 U s	5 U	5 U
1,1,2-Trichloroethane	5 U	5 U	5 U
Trichloroethene	2 U	5 U	5 U
Trichlorofluoromethane	5 U	5 U	5 U
Vinyl Acetate	10 U	10 U	10 U
Vinyl Chloride	10 U	10 U	10 U
Xylenes (total)		n c	3 U

Semivolatile Soil Analytical Results for Site No. 25
Duluth Air National Guard Base, Duluth, Minnesota
(Results in micrograms per kilogram unless otherwise noted) Appendix K.2

Location No.:	025-001BH 6.5-7	025-002BH 11 5-12	6.5-7 025-002BH 11 5-12 075-003BH 11-12 035 003BH 11-13 B	05 002 DTI 11 12 D		
Sample Date:	05/15/95	05/15/95	71-1171000-cz. 05/15/05	42-005BA [1-12 Dup 05/15/05	025-004BH 11.5-12	025-004BH 19.5-20
Lab Sample No.:	9505556-02	9505556-03	PU-955056	0505555 05	05/16/95	05/16/95
SVOCs Matrix	Soil	Soil	Cail	CU-0CCCUCX	9505612-05	9505612-06
Acenaphthene	330 U	330 11	330 11	32011	Soil	Soil
Acenaphthylene	330 U	330 11	220 T	330 U	330 U	330 U
Aniline	330 11	330 11	330 U	330 U	330 U	330 U
Anthracene	330 11	230.00	330 U	330 U	330 U	330 U
Benzo(a) Anthracene	330.11	330 U	330 U	330 U	330 U	330 U
Benzo(h)Fluoranthene	330 U	330 U	330 U	330 U	330 U	330 U
Benzo(k) Fluoranthene	330 0	330 U	330 U	330 U	330 U	330 U
Benzo(a)Dirana	330 U	330 U	330 U	330 U	330 U	330 11
Denzoio A cid	330 0	330 U	330 U	330 U	330 11	330 11
Penzole Acid	1600 U	1600 U	1600 U	1600 U	1600 U	11 0091
Denzo(g,it,) reryiene	330 U	330 U	330 U	330 U	330 11	330 11
Defizyl alconol	330 U	330 U	330 U	330 U	330 11	330 11
4-Bromophenylphenyl ether	330 U	330 U	330 U	330 U.	330 11	220 11
Butylbenzylphthalate	330 N	330 U	330 U	330 11	220 11	330 0
dı-n-Butyl phthalate	330 U	330 U	330 U	330 11	220 U	330 0
Carbazole	330 U	330 U	330 11	330 11	330 0	330 U
4-Chloroaniline	330 U	330 U	330 11	230.11	330 U	330 U
bis(2-Chloroethoxy)Methane	330 U	330 U	330 11	330 0	330 U	330 U
bis(2-Chloroethyl)Ether	330 U	330 11	230 11	330 U	330-U	330 U
bis(2-Chloroisopropyl)Ether	330 U	330 11	330.0	330 U	330 U	330 U
4-Chloro-3-Methylphenol	330 11	330 11	330.0	330 U	330 U	330 U
2-Chloronaphthalene	330 11	320 0	330 U	330 U	330 U	330 U
2-Chlorophenol	330 11	330 U	330 U	330 U	330 U	330 U
4-Chlorophenylphenylether	320 U	330.0	330 U	330 U	330 N	330 U
Chrysene	330 11	330 U	330 U	330 U	330 U	330 U
Dibenz(a h)Anthracene	230 11	330 U	330 U	330 U	330 U	330 U
Dibenzofiran	330.11	330 0	330 U	330 U	330 U	330 U
1 2-Dichlorohouzono	0.000	330.0	330 U	330 U	330 U	330 11
1.3 Diehlembene	330 U	330 U	330 U	330 U	330 U	330 11
1.7-Dichiological	330 U	330 U	330 U	330 U	330 U	330 11
1,4-Dicinoropenzene	330 U	330 U	330 U	330 U	330 11	320 11
3,3-Dichlorobenzidine	330 U	330 U	330 U	330 11	330 11	330.0
2,4-Dichlorophenol	330 U	330 U	330 U	330 11	220 11	330 0
Diethylphthalate	330 U	330 U	330 U	330 11	330 11	330 U
2,4-Dimethylphenol	330 U	330 U	330 U	330 11	330 11	330 U
Dimethyl Phthalate	330 U	330 U	330 U	330 11	330 11	330 0
				2	O OCC	330.0

BH - Borehole SVOC - Semivolatile Organic Compounds

U - Indicates compound was analyzed for but not detected

Appendix K.2 Semivolatile Soil Analytical Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota

	2 2 11d 100 200	CI SILITACUU SCU L 2	035 003BH 11 13	125 003RH 11:12 Dur	025 003RH 11:12 Dun 025-004RH 11 5:12	025-004RH 195-20
Location Moss	/-070 TGT//-070	**************************************			05116.05	
Sample Date:	05/15/95	05/15/95	56/SI/S0	ck/cl/ch	c//01/cn	CC/01/C0
nple N	9505556-02	9505556-03	9505556-04	9505556-05	9505612-05	90-7195056
SVOCs Matrix	Soil	Soil	Soil	Soil	2011	Soil
4,6-Dinitro-2-Methylphenol	M 008	N 008	008 O	008 n	008 n	008 n
2,4-Dinitrophenol	008 n	800 U	800 U	008 n	Ω 008	008 O
2,4-Dinitrotoluene	330 U	330 U	330 U	330 U	330 U	330 U
2.6-Dinitrotoluene	330 U	330 U	330 U	330 U	330 U	330 U
1.2-Diphenylhydrazine	330 U	330 U	330 U	330 U	330 U	330 U
bis(2-Ethylhexyl)Phthalate	330 U	330 U	330 U	330 U	330 U	330 U
Fluoranthene	330 U	330 U	330 U	330 U	330 U	330 U
Fluorene	330 U	330 U	330 U	330 U	330 U	330 U
Hexachlorobenzene	330 U	330 U	330 U	330 U	330 U	330 U
Hexachlorobutadiene	330 U	330 U	330 U	330 U	330 U	330 U
Hexachloroethane	330 U	330 U	330 U	330 U	330 U	330 U
Hexachlorocyclopentadiene	330 U	330 U	330 U	330 U	330 U	330 U
Indeno(1,2,3-cd)Pyrene	330 U	330 U	330 U	330 U	330 U	330 U
Isophorone	330 U	330 U	330 U	330 U	330 U	330 U
2-Methylnaphthalene	12000	2300	330 U	330	330 U	330 U
2-Methylphenol	330 U	. 330 U	330 U	330 U	330 U	330 U
4-Methylphenol	330 U	330 U	330 U	330 U	330 U	330 U
Naphthalene	14000	2100	330 U	330 U	330 U	330 U
2-Nitroaniline	008 n	800 U	008 n	008 n	N 008	800 U
3-Nitroaniline	M 008	M 008	M 008	008 n	N 008	008 n
4-Nitroaniline	008 n	M 008	M 008	008 n	N 008	008 n
Nitrobenzene	330 U.	330 U	330 U	330 U	330 U	330 U
2-Nitrophenol	330.U	330 U	330 U	330 U.	330 U	330 U
4-Nitrophenol	M 008	008 n	800 U	008 n	008 n	008
N-Nitrosodiphenylamine (1)	330 U	330 U	330 U	330 U	330 U	330 U
N-Nitroso-Di-n-Propylamine	330 U	330 U	330 U	330 U	330 U	330 U
Di-n-Octyl Phthalate	330 U	330 U	330 U	330 U	330 U	330 U
Pentachlorophenol	Ω 008	M 008	0008	008 n	008 n	800 U
Phenanthrene ·	330 U	330 U	330 U	330 U	330 U	330 U
Phenol	350	330 U	330 U	330 U	330 U	330 U
Pyrene	330 U	330 U	330 U	330 U	330 U	330 U
Pyridine	330 U	330 U	330 U	330 U	330 U	330 U
1,2,4-Trichlorobenzene	330 U	330 U	330 U	330 U	330 U	330 U
2,4,5-Trichlorophenol	008 n	008 n	008 n	Ω 008	008 n	008
2.4.6-Trichlorophenol	330 U	330 U	330 U	330 U	330 U	330 U

Semivolatile Soil Analytical Results for Site No. 25
Duluth Air National Guard Base, Duluth, Minnesota
(Results in micrograms per kilogram unless otherwise noted)

54.12/95 50.1 50.1 50.1 50.1 50.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0 60.0	951		05/12/95
Soil Soil Soil 330 U			() () () () () () () ()
Soil 330 U 990 U 330 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 990 U 330 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 6ther 330 U 990 U 990 U 6ther 330 U 990 U 990 U 6ther 330 U 990 U 990 U 6ther 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 330 U 990 U 330 U 3		950	9505512-10
330 U 330 U		Soil	Soil
330 U 990 U 330 U 990 U	330 U 330 U		330 U
330 U 990 U 330 U 990 U	330 U 330 U		330 U
330 U 990 U 330 U 990 U	330 U 330 U		330 U
330 U 330 U 330 U 330 U 330 U 330 U 330 U 4800 U 330 U	330 U 330 U	J 330 U	330 U
330 U 330 U 330 U 330 U 330 U 330 U 4800 U 330 U	330 U 330 U	J. 330 U.	330 U
330 U 330 U 330 U 330 U 4800 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 990 U 330 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U	330 U 330 U		330 U
330 U 4800 U 1600 U 4800 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 500 U 6ther 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U		330 U
1600 U 4800 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 101 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 990 U 590 U 330 U 990 U 990 U 990 U 330 U 990 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U	1600 U 1600 U	U 1600 U	1600 U
330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 990 U 50 U 51 U 52 U 530 U	330 U 330 U		. 330 U
ether 330 U 990 U 330 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 330 U 390 U 330 U 330 U 390 U 330 U	330 U 330 U		330 U
330 U 330 U 330 U 330 U 330 U 330 U 330 U 990 U 10 11 12 130 U 990 U 990 U 990 U 330 U 990 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U		330 U
330 U 330 U 330 U 330 U 330 U 990 U 1 1 230 U 990 U 990 U 101 330 U 990 U 990 U 330 U 990 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 330 U 330 U 330 U 990 U 1 1 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 990 U 1 330 U 990 U Ether 330 U 990 U 10 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
ethane 330 U 990 U r 330 U 990 U ether 330 U 990 U 330 U 990 U 330 U 990 U 990 U 990 U 930 U 990 U 930 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
Ether 330 U 990 U 101 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U		330 U
Ether 330 U 990 U 330 U 330 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U		330 U
ether 330 U 990 U 330 U 330 U 990 U 390 U 390 U 390 U 990 U 990 U 990 U 990 U 330 U 990 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 990 U 330 U 990 U 990 U	330 U 330 U	J 330 U	330 U
330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U		330 U
330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U			330 U
ether 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U			330 U
330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U		330 U
330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U			330 U
330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 990 U 330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 990 U 330 U 990 U 330 U 990 U	330 U 330 U	ř.	330 U
330 U 990 U 330 U 990 U	330 U 330 U	J 330 U	330 U
330 U 990 U	330 U 330 U	J 330 U	330 U
	330 U 330 U	J 330 U	330 U
2,4-Dimethylphenol 330 U 330 U	330 U 330 U		330 U
Dimethyl Phthalate 330 U 330 U 330 U	330 U 330 U	J 330 U	330 U

Appendix K.2
Semivolatile Soil Analytical Results for Site No. 25
Duluth Air National Guard Base, Duluth, Minnesota

Location No:	025-005BH 11.5-12	5-12 025-006BH 21.5-22	20.00	025-008BH 10.5-11.0	025-07BH 11.5-12 025-008BH 10.5-11.0 025-008BH 14.5-15.0 025-009BH 11-12	025-009BH 11-12
Sample Date:	05/16/95	05/12/95	96/91/50	05/12/95	05/12/95	05/12/95
Lab Sample No.:	9505612-04	9505512-08	9505612-03	9505512-02	9505512-03	9505512-10
SVOCs Matrix	Soil	Soil	Soil	Soil	Soil	Soil
4,6-Dinitro-2-Methylphenol	008 n	2400 U	008 n	N 008	008 n	008 n
2,4-Dinitrophenol	800 U	2400 U	800 U	008 n	008 n	008 n
2,4-Dinitrotoluene	330 U	Ω 066	330 U	330 U	330 U	330 U
2,6-Dinitrotoluene	330 U	Ω 066	330 U	330 U	330 U	330 U
1,2-Diphenylhydrazine	330 U	Ω 066	330 U	330 U	330 U	330 U
bis(2-Ethylhexyl)Phthalate	330 U	D 066	330 U	330 U	330 U	330 U
Fluoranthene	330 U	Ω 066	330 U	330 U	330 U	330 U
Fluorene	330 U	Ω 066	330 U	330 U	330 U	330 U
Hexachlorobenzene	330 U	Ω 066	330 U	330 U	330 U	330 U
Hexachlorobutadiene	330 U	Ω 066	330 U	330 U	330 U	330 U
Hexachloroethane	330 U	Ω 066	330 U	330 U	330 U	330 U
Hexachlorocyclopentadiene	330 U	Ω 066	330 U	330 U	330 U	330 U
Indeno(1,2,3-cd)Pyrene	330 U	066 U	330 U	330 U	330 U	330 U
Isophorone	330 U	O 066	330 U	330 U	330 U	330 U
2-Methylnaphthalene	330 U	O 066	330 U	330 U	330 U	330 U
2-Methylphenol	330 U	Ω 066	330 U	330 U	330 U	330 U
4-Methylphenol	330 U	Ω 066	330 U	330 U	330 U	330 U
Naphthalene	330 U	Ω 066	330 U	330 U	330 U	330 U
2-Nitroaniline	800 N	2400 U	800 U	008 n	008 n	008 n
3-Nitroaniline	008 n	2400 U	008 n	008 O	008 n	008 n
4-Nitroaniline	M 008	2400 U	008 n	N 008	008 n	008 n
Nitrobenzene	330 U	O 066	330 U	330 U	330 N	330 U
2-Nitrophenol	330 U	O 066	330 U	330 U	330 U	330 U
4-Nitrophenol	008 n	2400 U	N 008	008 n	008 n	800 U
N-Nitrosodiphenylamine (1)	330 U	Ω 066	330 U	330 U	330 U	330 U
N-Nitroso-Di-n-Propylamine	330 U	Ω 066	330 U	330 U	330 N	330 U
Di-n-Octyl Phthalate	330 U	Ω 066	330 U	330 U	330 U	330 U
Pentachlorophenol	008 n	2400 U	008 n	008 n	Ω 008	Ω 008
Phenanthrene	330 U	O 066	330 U	330 U	330 U	330 U
Phenoi	330 U	Ω 066	330 U	330 U	330 U	330 U
Pyrene	330 U	Ω 066	330 U	330 U	330 U	330 U
Pyridine	330 U	O 066	330 U	330 U	330 U	330 U
1,2,4-Trichlorobenzene	330 U	O 066	330 U	330 U	330 U	330 U
2,4,5-Trichlorophenol	008 n	2400 U	008 n	O 008	008 n	008 n
2,4,6-Trichlorophenol	330 U	990 U	330 U	330 U	330 U	330 U

Semivolatile Soil Analytical Results for Site No. 25
Duluth Air National Guard Base, Duluth, Minnesota

025-009BH 11-12 Dup 025-009BH 14-14.5 025-010BH 2-2.5 025-010BH 6-6.5 025-011BH 2-2.5 025-011BH 6.5-9505512-07 05/12/95 3300 U 16000 U 3300 U 9505512-06 05/12/95 Ω 009 330 U 9505512-05 05/12/95 D 009 330 U 9505512-04 05/12/95 U 0091 330 U 9505512-11 05/12/95 D 0091 330 U 9505512-09 05/12/95 1600 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330.U 330 U 3 is(2-Chloroethoxy)Methane is(2-Chloroisopropyl)Ether -Bromophenylphenyl ether -Chlorophenylphenyl ether -Chloro-3-Methylphenol is(2-Chloroethyl)Ether Dibenz(a,h)Anthracene 3enzo(b)Fluoranthene Matrix 3'-Dichlorobenzidine 3enzo(k)Fluoranthene **3utylbenzylphthalate** 3cnzo(g,h,i)Perylene -Chloronaphthalene 3enzo(a)Antluracene ,3-Dichlorobenzene 4-Dichlorobenzene i-n-Butyl phthalate 2-Dichlorobenzene .,4-Dimethylphenol 4-Dichlorophenol **Dimethyl Phthalate** Jab Sample No.: **Diethylphthalate** Acenaphthylene 3enzo(a)Pyrene -Chloroaniline -Chlorophenol 3cnzyl alcohol Dibenzofuran sample Date: cenaphthene Location No. 3enzoic Acid Anthracene Carbazole Thrysene SVOCS Aniline

BH - Borehole

SVOC - Semivolatile Organic Compounds

Appendix K.2 Semivolatile Soil Analytical Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota

Location No.:	025-009BH 11-12 Dun	109BH 11-12 Dim 075-009BH 14-14 5 075 010BH 3-2 5 025 040BH	BH 14 14 5 005 010BH 75 5 05 01	Ode Otopia V. V.	3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Sample Date:	05/12/95	05/12/95	05/12/95	042-010BH 0-6.5	025-011BH 2-2.5	025-011BH 6.5-7
nple N	9505512-09	9505512-11	9505512-04	9505512-05	9505512-06	05/12/55 9505512-07
SVOCs Matrix	Soil	Soil	Soil	Soil	Soil	Soil
4,6-Dinitro-2-Methylphenol	008 n	800 U	800 U	800 U	800 11	8000 11
2,4-Dinitrophenol	008 n	008 n	N 008	008 n	008 U	8000 11
2,4-Dinitrotoluene	330 U	330 U	330 U	330 U	330 U	3300 U
2,6-Dinitrotoluene	330 U	330 U	330 U	330 U	330 U	3300 U
1,2-Diphenylhydrazine	330 U	330 U	330 U	330 U	330 U	3300 11
bis(2-Ethylhexyl)Phthalate	330 U	330 U	330 U	330 U	330 U	3300 U
Fluoranthene	330 U	330 U	420	330 U	330 U	3300 U
Fluorene	330 U	330 U	330 U	330 U	330 U	3300 U
Texachlorobenzene	330 U	330 U	330 U	330 U	330 U	3300 U
r iexachtorobutadiene	330 U	330 U	330 U	330 U	330 U	3300 U
l lexachlorocthane	330 U	330 U	330 U	330 U	330 U	3300 U
l'Iexachiorocyciopentadiene	330 U	330 U	330 U	330 U	330 U	3300 U
Indeno(1,2,3-cd)Pyrene	330 U	330 U	330 U	330 U	330 U	3300 U
Isophorone	330 U	330 U	330 U	330 U	330 U	3300 U
2-Methylnaphthalene	330 U	330 U	330 U	330 U	330 U	3300 U
2-ivietnylphenol	330 U	330 U	330 U	330 U	330 U	3300 U
4-ivieunylphenol	330 U	330 U	330 U	330 U	330 U	3300 U
inaphinalene	330 U	330 U	330 U	330 U	330 U	3300 U
2 Nitili	000 n	008 n	Ω 008	008 n	M 008	0008 n
3-Nitroaniline	008 n	008 O	800 U	800 U	008 N	0008 n
4-Nitroaniline	008 n	Ω 008	008 n	008 n	008 n	0008 n
Nitrobenzene	330 U	330 U	330 U	330 U	330 U	3300 U
z-initrophenol	330 U	330 U	330 U	. 330 U	330 U	3300 U
4-Nitrophenol	008 n	M 008	800 U	800 U	008 n	0008 n
N. Mitters D. C. C. C. C. C. C. C. C. C. C. C. C. C.	330 U	330 U	330 U	330 U	330 U	3300 U
N-1010S0-LDI-n-Propylamine	330 U	330 U	330 U	330 U	330 U	3300 U
Doutest	330 U	330 U	330 U	330 U	330 U	3300 U
r entacinor opnenol	0 008	0 008	008 n	008 n	008 O	0008 n
Finenantificane	330 U	330 U	330 U	330 U	330 U	3300 U
Friend!	330 U	330 U	330 U	330 U	330 U	3300 U
r yrelle D•=:d:	330 U	330 U	360	330 U	330 U	3300 U
ryndine 134 Trichlorobouzano	330 U	330 U	330 U	330 U	330 U	-3300 U
1,2,4-111cluolooelizene	330 U	330 U	330 N	330 U	330 U	3300 U
2,4,3-111clitotophenol 2 4 6.Trichlorophenol	800 O	800 U	800 U	008 O	M 008	0008 n
	230 0	330 U	330 U	330 U	330 U	3300 U

BH - Borehole

SVOC - Semivolatile Organic Compounds

Appendix K.2

Semivolatile Soil Analytical Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted)

Location No.:	.5-12	.5-20	025-013BH 11.5-12
Sample Date:	5/11/95	5/11/95	5/17/95
Lab Sample No.:	9505673-02	9505673-03	9505673-04
SVOCs Matrix	Soil	Soil	Soil
Acenaphthene	330 U	330 U	330 U
Acenaphthylene	330 U	330 U	330 U
Aniline	330 U	330 U	330 U
Anthracene	330 U	330 U	330 U
Benzo(a)Anthracene	330 U	330 U	330 U
Benzo(b)Fluoranthene	330 U	330 U	330 U
Benzo(k)Fluoranthene	330 U	330 U	330 U
Benzo(a)Pyrene	330 U	330 U	330 U
Benzoic Acid	1600 U	1600 U	1600 U
Benzo(g,h,i)Perylene	330 U.	330 U	330 U
Benzyl alcohol	330 U	330 U	330 U
4-Bromophenylphenyl ether	330 U	330 U	330 U
Butylbenzylphthalate	330 U	330 U	330 U
di-n-Butyl phthalate	330 U	330 U	330 U
Carbazole	330 U	330 U	330 U
4-Chloroaniline	330 U	330 U	330 U
bis(2-Chloroethoxy)Methane	330 U	330 U	330 U
bis(2-Chloroethyl)Ether	330 U	330 U	330 U
bis(2-Chloroisopropyl)Ether	330 U	330 U	330 U
4-Chloro-3-Methylphenol	330 U	330 U	330 U
2-Chloronaphthalene	330 U	330 U	330 U
2-Chlorophenol	330 U	330 U	330 U
4-Chlorophenylphenyl ether	330 U	330 U	330 U
Chrysene	330 U	330 U	330 U
Dibenz(a,h)Anthracene	330 U	330 U	330 U
Dibenzofuran	330 U	330 U	330 U
1,2-Dichlorobenzene	330 U	330 U	330 U
1,3-Dichlorobenzene	330 U	330 U	330 U
1,4-Dichlorobenzene	330 U	330 U	330 U
3,3'-Dichlorobenzidine	330 U	330 U	330 U
2,4-Dichlorophenol	330 U.	330 U	330 U
Diethylphthalate	330 U	330 U	330 U
2,4-Dimethylphenol	330 U	330 U	330 U
Dimethyl Phthalate	330 U	330 U	330 U

Appendix K.2

Semivolatile Soil Analytical Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted)

Location No.:	025-012BH 11.5-12	025-012BH 19.5-20	025-012BH 11.5-12 025-012BH 19.5-20 025-013BH 11 5-12
Sample Date:	5/11/95	5/17/95	5/17/95
nple N	9505673-02	9505673-03	9505673-04
SVOCs Matrix	Soil	Soil	Soil
4,6-Dinitro-2-Methylphenol	008 n	800 U	M 008
2,4-Dinitrophenol	M 008	M 008	N 008
2,4-Dinitrotoluene	330 U	330 U	330 U
2,6-Dinitrotoluene	330 U	330 U	330 U
1,2-Diphenylhydrazine	330 U	330 U	330 U
bis(2-Ethylhexyl)Phthalate	330 U	330 U	330 U
Fluoranthene	330 U	330 U	330 U
Fluorene	330 U	330 U	330 U
Hexachlorobenzene	330 U	330 U	330 U
Hexachlorobutadiene	330 U	330 U	330 U
Hexachloroethane	330 U	330 U	330 U
Hexachlorocyclopentadiene	330 U	330 U	330 U
Indeno(1,2,3-cd)Pyrene	330 U	330 U	330 U
Isophorone	330 U	330 U	330 U
2-Methylnaphthalene	330 U	330 U	330 U
2-Methylphenol	330 U	330 U	330 U
4-Methylphenol	330 U	330 U	330 U
Naphthalene	330 U	330 U	330 U
2-Nitroaniline	008 n	N 008	800 U
3-Nitroaniline	N 008	008 n	800 U
4-Nitroaniline	n 008	800 U	008 n
Nitrobenzene	330 U	330 U	330 U
2-Nitrophenol	330 U	330 U	330 U
4-Nitrophenol	800 U	008 n	O 008
N-Nitrosodiphenylamine (1)	330 U	330 U	330 U
N-Nitroso-Di-n-Propylamine	330 U	330 U	330 U
Di-n-Octyl Phthalate	330 U	330 U	330 U
Pentachlorophenol	. O 008	008 n	008 O
Phenanthrene	330 U	330 U	330 U
Phenol	330 U	330 U	330 U
Pyrene	330 U	330 U	330 U
Pyridine	330 U	330 ·U	330 U
1,2,4-Trichlorobenzene	330 U	330 U	330 U
2,4,5-1 richlorophenol	008 O	008 n	800 U
2,4,0-1 richlorophenol	330 U	330 U	330 U

Duluth Air National Guard Base, Duluth, Minnesota (Results in milligrams per kilogram unless otherwise noted) Metals Soil Analytical Results for Site No.25 Appendix K.3

					_
025-004BH 11.5-12 05/16/95 9505612-05 Soil	0.1 U	0.5 U	6	17	2.0
H.6.5-7 025-002BH 11.5-12 025-003BH 11-12 0025-003BH 11-12 Dup 025-004BH 11.5-12 (195 05/15/95 05/15/95 05/16/95 05/16/95 05/15/95 05/16/95 05/16/95 05/16/95 05/05/25/6-03 9505556-04 9505556-05 9505512-05 05/16/95 05/16	0.1 U	0.5	11	26	2.6
025-003BH 11-12 05/15/95 9505556-04 Soil	0.1 U	0.4 U	15	22	3.0
025-002BH 11.5-12 05/15/95 9505556-03 Soil	0.1 U	0.4 U	9	21	1.7
025-001BH 6,5-7 05/15/95 9505556-02 Soil	0.1 U	0.4 U	6	25	3.2
Location No.: Sample Date: Lab Sample No.: Metals Matri	Mercury, Total	Cadmium, Total	Chromium, Total	Nickel, Total	Lead, Total

H 19.5-20 025-005BH 11.5-12 025-006BH 21.5-22 6/95 05/16/95 05/12/95 12-06 9505612-04 9505512-08	J	0.5 U 0.5 U	6 7 7 16	17 18	1.9 7.6
025-005E 05/: 95056 S					
025-004BH 19.5-20 025-005B 05/16/95 05/1 9505612-06 95056	0.1 U	0.5 U	18	23	4.5

Duluth Air National Guard Base, Duluth, Minnesota (Results in milligrams per kilogram unless otherwise noted) Metals Soil Analytical Results for Site No.25 Appendix K.3

Location No.: 02 Sample Date: Lab Sample No.: Metals Matri	5-008BH 14.5-15.0 05/12/95 9505512-03 Soil	025-009BH 11-12 05/12/95 9505512-10 Soil	025-008BH 14.5-15.0	p 025-009BH 14-14.5 05/12/95 9505512-11 Soil	025-010BH 2-2.5 05/12/95 9505512-04 Soil
Mercury, Total	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cadmium, Total	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chromium, Total	12	18	24	17	15
Nickel, Total	27	. 19	22	18	. 20
Lead, Total	6.8	5.5	5.8	3.8	4.6

Location No.:	025-010BH 6-6.5	025-011BH 2-2.5	025-011BH 6.5-7	025-012BH 11.5-12	025-012BH 19.5-20
	05/12/95	05/12/95	5/12/95	5/12/95 5/17/95	5/17/95
Lab Sample No.:	9505512-05	9505512-06	9505512-07	9505673-02	9505673-03
Metals Matri	Soil	Soil	Soil	Soil	Soil
Mercury, Total	0.1 U	0.1 U	0.1 U	0.1 U	
Cadmium, Total	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chromium, Total	19	19	17	11	13
Nickel, Total	25	21	81	15	6
Lead, Total	3.6	5.2	6.3	4.3	5.3

025-013BH 11:5-12 5/17/95 9505673-04 Soil	0.1 U	0.5 U	9	16	3.2
Location No.: Sample Date: Lab Sample No.: Metals Matri	Mercury, Total	Cadmium, Total	Chromium, Total	Nickel, Total	Lead, Total

Appendix K.4

Halogenated Volatile Groundwater Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota (Result in micrograms per liter unless otherwise noted)

Location No.:	025-001MW-GW01	025-002MW-GWI	025-003MW-GW01	025-001MW-GW01 025-002MW-GW1 025-003MW-GW01 025-003MW-GW01 Dup
Sample Date: For Sample No.	56/61/50 50 1913050	05/18/93	56/61/50 50 F3F3030	05/01/50 05/05/50
VOC'S (8010) Matrix	Vater Water	Water	Water Water	Vater Water
Dichlorodifluoromethane	1 U	10	25 U	25 U
Chloromethane	10	1 U	25 U	25 U
Vinyl chloride	1.0	1 U	25 U	25 U
Bromomethane	1.0	1 U	25 U	25 U
Chloroethane	10	10	25 U	25 U
Trichlorofluoromethane	1 U	1 U	25 U	25 U
1,1-Dichloroethene	1 U	1 U	25 U	25 U
Methylene chloride	1 U	1 U	30	25 U
Trans-1,2-Dichloroethene	1 U	1.0	25 U	25 U
1,1-Dichloroethane	1 U	1 U	25 U	25 U
chloroform	10	1.0	25 U	25 U
1,1,1-Trichloroethane	10	1.0	25 U	25 U
carbon tetrachlorode	10	1.0	25 U	25 U
1,2-Dichloroethane	10	=	25 U	25 U
2-Chloroethylvinyl ether	1 U	10	25 U	25 U
Trichloroethene	n I	1.U	25 U	25 U
1,2-Dichloropropane	1.0	1.0	25 U	25 U
Bromodichloromethane	1 U	1 U	25 U	25 U
cis-1,3-Dichloropropene	1.0	1 U	25 U	25 U
trans-1,3-Dichloropropene	1 U	1 U	25 U	25 U
1,1,2-Trichloroethane	1 U	1 U	25 U	. 25 U
Tetrachloroethene	1 U	1 U	25 U	25 U
Dibromochloromethane	10	10	25 U	25 U
Chlorobenzene	1 U	1.0	25 U	25 U
Bromoform	1.0	1 U	25 U	25 U
1,1,2,2-Tetrachloroethane	10	10	25 U	25 U
1,3-Dichlorobenzene	1.0	ΠI	25 U	25 U
1,4-Dichlorobenzene	10	10	25 U	25 U
1,2-Dichlorobenzene	1 U	1 U	25 U	25 U

Appendix K.4

Aromatic Volatile Groundwater Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per liter unless otherwise noted)

Location No.:	025-001MW-GW01	025-002MW-GW1	025-003MW-GW0	025-001MW-GW01 025-002MW-GW1 025-003MW-GW01 025-003MW-GW01 Dup
Sample Date:	05/19/95	05/18/95	05/19/95	05/19/95
Lab Sample No.:	9505767-03	9505714-08	9505767-05	9505767-06
BTEX(8020) Matri	Water	Water	Water	Water
Benzene	1.0	-	2600	2300
Toleune	1.0	10	1300	1300
Ethylbenzene	1 U	10	570	540
Xylenes (total)	10	10	1450	1390

Semivolatile Groundwater Analytical Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per liter unless otherwise noted)

Location No.:	025-001MW-GW01 025-002MW-GW1	100000	025-003MW-GW01 (025-003MW-GW01 025-003MW-GW01 Dup
Sample Date:	05/19/95	05/18/95	05/19/95	05/19/95
Lab Sample No.:	9505767-03	9505714-08	9505767-05	9505767-06
SVOCs Matrix	Water	Water	Water	Water
Acenaphthene	5 U	5 U	5 U	S U
Acenaphthylene	5 U	5.0	5.0	5 U
Aniline	5 U	5 U	5 U	5 U
Anthracene	5 U	5 U	5 U	5 U
Benzo(a)Anthracene	5 U	5 U	5 U	5 U
Benzo(b)Fluoranthene	5 U	5 U ·	5 U	5 U
Benzo(k)Fluoranthene	5 U	5 U	5 U	5.0
Benzo(a)Pyrene	5 U	5 U	. 5 U	5 U
Benzoic Acid	25 U	25 U	25 U	25 U
Benzo(g,h,i)Perylene	5 U	5.0	5 U	S U
Benzyl alcohol	5 U	5 U	5 U	5 U
4-Bromophenylphenyl ether	5 U	5 U	5 U	S U
Butylbenzylphthalate	5 U	. 5 U	5 U	5 U
di-n-Butyl phthalate	5 U	5 U	5 U	5 U
Carbazole	5.0	5 U	5 U s	5 U
4-Chloroaniline	5 U	5 U	5 U	5 U
bis(2-Chloroethoxy)Methane	5 U	5 U	5 U	5 U
bis(2-Chloroethyl)Ether	5 U	5 U	5 U	5 U
bis(2-Chloroisopropyl)Ether	5 U	5 U	5 U	5 U
4-Chloro-3-Methylphenol	5 U	5 U	5 U	5 U
2-Chloronaphthalene	5 U	5 U	5 U	5 U
2-Chlorophenol	5 U	5 U	5 U	5 U
4-Chlorophenylphenyl ether	5 U	5.U	5.0	5 U
Chrysene	5 U	N S U	5 U S	5 U
Dibenz(a,h)Anthracene	5 U	5 U	5.υ	5 U
Dibenzofuran	5 U	5 U	5 U	. ns
1,2-Dichlorobenzene	0 S U	5 U	5 U	5 U
1,3-Dichlorobenzene	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	5 U	5 U	5 U	5 U
3,3'-Dichlorobenzidine	5 U	5 U	5 U	5.0
2,4-Dichlorophenol	5 U	5 U	5 U	5 U
Diethylphthalate	5 U	5 U	5 U	5 U.
2,4-Dimethylphenol	2 U	5 U	5 U.	2 U
Dimethyl Phthalate	5 U	5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	25 U	25 U	25 U	25 U
2,4-Dinitrophenol	25 U	25 U	25 U	25 U

MW - Monitoring Well GW - Groundwater

 \boldsymbol{U} - Indicates compound was analyzed for but not detected SVOC - Semivolatile Organic Compounds

Appendix K.5

Semivolatile Groundwater Analytical Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota

١
١
ı
ł
ı
,
į
:
i
ì
1
s
l
i
ï
į
,
i
ı
ì
۱
,
í
١
2
,
1
_

•	TOTAL TANK FOR A CO.		TOTAL TOTAL CONTROL	035:003 M11/ C11/01 035:003 M11/ C11/01 Dun
Location 186.: Samnle Date:	025-001MW-GW01 025-002MW-GW1		05/19/95	05/19/95
Lab Sample No.:	9505767-03	9505714-08	9505767-05	9505767-06
SVOCs Matrix	Water	Water	Water	Water
2,4-Dinitrotoluene	5 U	5 U	5 U	5 U
2,6-Dinitrotoluene	5.0	5 U	5 U	5.0
1,2-Diphenylhydrazine	5 U	5 U	5 U	5 U
bis(2-Ethylhexyl)Phthalate	5 U	5 U	5 U	5 U
Fluoranthene	5 U	5 U	2 U	5 U
Fluorene	5 U .	5 U	5 U	5 U
Hexachlorobenzene	5 U	5 U	5 U	5 U
Hexachlorobutadiene	5 U	5 U	5 U	5 U
Hexachloroethane	5 U	5 U	5 U	5 U
Hexachlorocyclopentadiene	5 U	5 U	5 U	5.0
Indeno(1,2,3-cd)Pyrene	5 U	5 U	5 U	5 U
Isophorone	2 U	5 U	5 U	5 U
2-Methylnaphthalene	5 U	5 U	11	&
2-Methylphenol	· 5 U	5 U	5 U	5 U
4-Methylphenol	5 U	5 U	6	∞
Naphthalene	5 U	5 U	75	51
2-Nitroaniline	25 U	25 U	25 U	25 U
3-Nitroaniline	25 U	25 U	25 U	25 U
4-Nitroaniline	25 U	25 U	25 U	25 U
Nitrobenzene	5 U	5 U	5 U	5 U
2-Nitrophenol	25 U	25 U	25 U	25 U
4-Nitrophenol	25 U	25 U	25 U	25 U
N-Nitrosodiphenylamine (1)	5 U	5 U	5 U	5 U
N-Nitroso-Di-n-Propylamine	5 U	5 U	5 U	5 U
Di-n-Octyl Phthalate	5 U ·	5 U	5 U	5 U
Pentachlorophenol	25 U	25 U	25 U	25 U
Phenanthrene	5 U	5 U	5 U	5 U
Phenol	51	51	15	12
Pyrene	5 U	5 U	5 U	5 U
Pyridine	5.0	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5 U	5.0	5 U	5 U
2,4,5-Trichlorophenol	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol	5 U	5 U	5 U	SU

Appendix K.6

Metals Groundwater Analytical Results for Site No. 25 Duluth Air National Guard Base, Duluth, Minnesota

(Results in milligrams per liter unless otherwise noted)

Location No.:	025-001MW-GW01 (25-002MW-GW1	025-003MW-GW01	025-003MW-GW01 Dup
Sample Date:	05/19/95	05/18/95	05/19/95	05/19/95
Lab Sample No.:	9505767-03	9505174-08	9505767-05	9505767-06
Metals Matri	Water	Water	Water	Water
Mercury, Total	0.0004 U	0.0004 U	0.0004 U	0.0004 U
Cadmium, Total	0.005 U	0.005 U	0.005 U	0.005 U
Chromium, Total	0.036	0.011	0.015	0.019
Nickel, Total	0.07	0.03	0.03	0.04
Lead, Total	0.008	0.004 U	0.005	0.007

Appendix K.7

Volatile Soil Analytical Results for Site No. 26 Duluth Air National Guard Base, Duluth, Minnesota

(Results in micrograms per kilogram unless otherwise noted)

Location No.: 026-0	026-001BH 2-2.5 026	026-001BH 9.5-10 (026-001BH 9.5-10 Dup	Dup 026-002BH 2-2.5	026-002BH 6.5-7 0	026-003BH 1.5-2.5
	05/03/95	05/03/95	05/03/95	05/04/95	05/04/95	05/04/95
Lab Sample No.: 92 VOCs Matrix		Soil Soil	Soil Soil	FO-COTCOCK	520262-03 Soil	Soil
Acetone	100 U	100 Ū	100 U	100 U	100 U	100 U
Benzene	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U .	5 U
Bromoform	5 U	5 U	2 U	S U	5.0	5 U
Bromomethane	10 U	10 U	10 U	10 U	10 U	10 O
2-Butanone	20 U	20 U	20 U	20 U	20 U	20 U
Carbon Disulfide	5 U	5 U	5 U	5 U	5 U	5 U
Carbon Tetrachloride	5 U	S U	5 U	5 U	5 U	5 U.
Chlorobenzene	5 U	5 U	5 U	2 U	S U	5 U
Chloroethane	10 U	10 O	10 U	10 U	10 O	10 O
2-Chloroethylvinylether	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	5 U	5 U	5.0	5 U	5 U	5 U
Chloromethane	10 U	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	.5 U	.5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5 U	5 U .	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5 U	5 U	5 U	S U	5 U	5 U
total-1,2-Dichloroethene	5.U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5 U	. 5 U	5 U	5 U	5 U	5 U
2-Hexanone	10 U	10 U	10 U	10 O	10 U	10 U
Methylene Chloride	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 O	10 U	10 U
Styrene	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5 U	5 U	5 U	2.0	5 U	5 U
Toluene	5 U.	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichlorocthane	5 U	5 U	5 U	5 U ·	S U	5 U
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5.0
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	. 5 U	5 U	5 U	5 U	5 U	5 U
Vinyl Acetate	10 U	10 U	10 U	10 O	10 U	10 U
Vinyl Chloride	10 U	10 U	10 U	10 U	10 U	10 U
Xylenes (total)	5 U	5 U	5 U	5 U	5 U	5 U
					>	

Volatile Soil Analytical Results for Site No. 26
Duluth Air National Guard Base, Duluth, Minnesota
(Results in micrograms per kilogram unless otherwise noted)

			9 c 1141,00 200	F. S. O. TITLE OF A		037 005 DIT 1 5 3 5 03 005 DIT 1 5 1 5 Dim	Hasuu ze	46767
	026-003BH 1.5-2.5 Dup	/- - -	() 	U20-004BH 9.3-10		0 C.2-C.1 H8	H G C00-074	dna 6.2-6.1
	05/04/95	05/04/95	05/03/95	05/03/95	हें इ	05/03/95	<u></u>	56/50/50
mple No.:	9505209-01	9505209-03	9505164-03	9505164-04	9505	9505164-05	9505	9505164-09
VOCs Matrix	Soil	Soil	Soil	Soil	S	Soil	S	Soil
Acetone	100 U	100 U	100 U	100 U	10	100 U	10	100 U
Benzene	5 U	5 U	5 U	5 U	.	5 U	S	s U
Bromodichloromethane	5 U	5 U	5 U	5 U	•	5 U	S	5 U
Bromoform	5 U	5 U	5 U	5.0	(7)	5 U	S	5 U
Bromomethane	10 U	10 U	10 U	10 U	-	10 U	1	10 U
2-Butanone	20 U	20 U	20 U	20 U	Ä	20 U	73	20 U
Carbon Disulfide	5 U	5 U	5.0	5 U	, i	5 U	\$	S U
Carbon Tetrachloride	5 U	5 U	S U	5 U	4 0.	5 U.	3	SU
Chlorobenzene	5 U	5 U	S U	5 U	vo.	5 U	5	5.U
Chloroethane	10 U	10 U	10 O	10 U	-	10 U	=	10 D
2-Chloroethylvinylether	10 U	10 U	U 01	10 U	=	10 U	=	10 U
Chloroform	5 U	5.0	5 U	5 U		5 U	5	5 U
Chloromethane	10 U	10 U	10 U	10 U	-	10 U) 	10 U
Dibromochloromethane	5 U	5 U	5 U	5 U		5 U .		5 U
1,1-Dichloroethane	5 U	5 U	5 U	5 U	.	5 U	\$	5 U
1,1-Dichloroethene	5 U	5 U	5 U	5 U ·	Y)	5 U	S.	5 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U S	ינא	n		n
total-1,2-Dichloroethene	5 U	5 U	5 U	5 U		s U	5	n
1,2-Dichloropropane	5 U	5 U	5 U	5 U	ν.	5 U	5	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	.	5 U	ς.	s U
trans-1,3-Dichloropropene	. 5 U	5 U	2 U	5 U	\$	5 U	S	5 U
Ethylbenzene	5 U	5 U	5 U	. 5 U	Y)	5 U	2	5 U
2-Hexanone	10 U	10 U	10 U	10 U	<u> </u>	10 U	=	10 U
Methylene Chloride	5 U	5.0	5 U	5 U	5	5 U	3	5 U
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 U	1	10 U	=	10 U
Styrene	5 U	5 U	2 O	5 U	.	5 U	.	s u
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U.	S.	5 U	.	5 U
Tetrachloroethene	5 U	5 U	5 U	5 U	S.	5 U ·	5	5 U
Toluene	5 U	5 U	5 U	5 U	v)	s U		7
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U		S U	'	s U
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	.	5 U	ς.	5 U
Trichloroethene	5 U	5 U	5 U	5 U		5 U	5	5 U
Trichlorofluoromethane	5 U	5 U	5 U	5 U	v)	s U	\$	5 U
Vinyl Acetate	10 U	10 U	10 U	10 U	~	10 U	=	10 U
Vinyl Chloride	10 U	10 U	10 U	10 U	-	10 U	Ξ,	10 U
Xylenes (total)	5 U	5 U	5 U	5.0	S	S U	S	5 U

BH - Borehole VOC - Volatile Organic Compounds

U - Indicates compound was analyzed for but not detected

Appendix K.7

Volatile Soil Analytical Results for Site No. 26
Duluth Air National Guard Base, Duluth, Minnesota
(Results in micrograms per kilogram unless otherwise noted)

Location No.:	026-005BH 9.5-10	5-10 026-006BH 2-2.5	-2.5 026-006BH 11.5-12
Sample Date:	05/03/95		05/03/95
Lab Sample No.:	9505164-06	6 9505164-08	8 9505164-07
VOCs Matrix	Soil	Soil	Soil
Acetone	100 U	100 U	100 U
Benzene	5 U	5 U	5 U
Bromodichloromethane	5 U	2 O	5 U
Bromoform	5 U	5 U	5.0
Bromomethane	U 01	U 01	0.01
2-Butanone	20 U	20 U	20 N
Carbon Disulfide	5 U	5 U	5 U
Carbon Tetrachloride	5 U	5 U	5 U
Chlorobenzene	5 U	0.5 S.U	2 U
Chloroethane	10 U	10 U	10 N
2-Chloroethylvinylether	10 U	10 U	10 U
Chloroform	5 U	5 U	5 U
Chloromethane	10 U	10 U	10 N
Dibromochloromethane	5 U	5 U	5.0
1,1-Dichloroethane	5 U	5 U	5 U
1,1-Dichloroethene	5 U	0 S	5 U
1,2-Dichloroethane	5 U	5.0	5.0
total-1,2-Dichloroethene	5 U	2 U	5 U
1,2-Dichloropropane	. 5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U
trans-1,3-Dichloropropene	5 U	5 U	5 U
Ethylbenzene	5 U	5 U	3 O
2-Hexanone	10 U	10 U	10 N
Methylene Chloride	. 5 U	5 U	5 U
4-Methyl-2-Pentanone	10 O	10 U	O 01
Styrene	2 U	5 U	D &
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U
Tetrachloroethene	5 U	5 U	S U
Toluene	SU	5 U	S U
1,1,1-Trichloroethane	5 U	5 U	5.0
1,1,2-Trichloroethane	5 U	5 U	5 U
Trichloroethene	5 U	5 U	5 U
Trichlorofluoromethane	5 U	5 U	5 U
Vinyl Acetate	10 U	10 U	10 U
Vinyl Chloride	10 U	10 U	10 U
Xylenes (total)	5.0	5.0	0.5

Semivolatile Soil Analytical Results for Site No. 26

Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted)

	3 C 6 TIG 100 26	01 2 0 maroa 200	22.5. AND THE SECOND PROPERTY OF THE SECOND BIRD SECOND BIRD SECOND BIRD SECTION SECTI	026-007RH 2-2 5	026-002BH 6 5-7	026-003BH 1.5-2.5
Location No.: 0.	20-001BH 2-23 05/03/95	05/03/95	dec 07:5:7110100-070	05/04/95	05/04/95	05/04/95
Sample Date.	05/05/75	9505164.07	9505164-10	9505209-04	9505209-05	9505209-02
Lab Sample 146.: SVOCs Matrix	Soil	Soil	Soil	Soil	Soil	Soil
thene	330 U	330 U	330 U	330 U	330 U	330 U
Acenaphthylene	330 U	330 U	330 U	330 U	330 U	330 U
Aniline	330 U	330 U	330 U	330 U	330 U	330 U
Antluacene	330 U	330 U	330 U	330 U	330 U	330 U
Benzo(a)Antluracene	330 U	330 U	330 U	330 U	330 U	330 U
Benzo(b)Fluoranthene	330 U	330 U	330 N	330 U	330 U	330 U
Benzo(k)Fluoranthene	330 U	330 U	330 U	330 U	330 U	330 U
Benzo(a)Pyrene	330 U	330 U	330 U	330 U	330 U	330 U
Benzoic Acid	1600 U	1600 U	1600 U	1600 U	1600 U	1600 U
Benzo(g,h,i)Perylene	330 U	330 U	330 U	330 U	330 U	330 U
Benzyl alcohol	330 U	330 U	330 U	330 U	330 U	330 U
4-Bromophenylphenyl ether	330 U	330 U	330 U	330 U	330 U	330 U
Butylbenzylphthalate	330 U	330 U	330 U	330 U·	330 U	330 U
di-n-Butyl phthalate	330 U	330 U	330 U	330 U	330 U	330 U
Carbazole	330 U	330 U	330 U	330 U	330 U	330 U
4-Chloroaniline	330 U	330 U	330 U	330 U	330 U	330 U
bis(2-Chloroethoxy)Methane	330 U	330 U	330 U	330 U	330 U	330 U
bis(2-Chloroethyl)Ether	330 U	330 U	330 U	330 U	330 U	330 U
bis(2-Chloroisopropyl)Ether	330 U	330 U	330 U	330 U	330 U	330 U
4-Chloro-3-Methylphenol	330 U	330 U	330 U	330 U	330 U	330 U
2-Chloronaphthalene	330 U	330 U	330 U	330 U	330 U	330 U
2-Chlorophenol	330 U	330 U	330 U	330 U	330 U	330 U
4-Chlorophenylphenyl ether	330 U	330 U	330 U	330 U	330 U	330 U
Chrysene	330 U	330 U	330 U	330 U	330 N	330 U
Dibenz(a,h)Anthracene	330 U	330 U	330 U	330 U	330 N	330 U
Dibenzofuran	330 U	330 U	330 U	330 U	330 U	330 U
1.2-Dichlorobenzene	330 U	330 U	330 U	330 U	330 U	330 U
1.3-Dichlorobenzene	330 U	330 U	330 U	330 U	330 U	330 U
1.4-Dichlorobenzene	330 U	330 U	330 U	330 U	330 U	330 U
3.3'-Dichlorobenzidine	330 U	330 U	330 U	330 U	330 U	330 U
2,4-Dichlorophenol	330 U	330 U	330 U	330 U	330 U	330 U
Diethylphthalate	330 U	330 U	330 U	330 U	330 U	330 U
2,4-Dimethylphenol	330 U	330 U	330 U	330 U	330 N	330 U
Dimethyl Phthalate	330 U	330 U	330 U	330 U	330 U	330 U

Appendix K.8

Duluth Air National Guard Base, Duluth, Minnesota Semivolatile Soil Analytical Results for Site No. 26

(Results in micrograms per kilogram unless otherwise noted)

Location No.:	026-001BH 2-2.5	026-001BH 9.5-10	BH 2-2.5 026-001 BH 9.5-10 026-001 BH 9.5-10 Dup 026-002 BH 2-2.5	026-002BH 2-2.5	026-002BH 6.5-7	026-003BH 1.5-2.5
Sample Date:	05/03/95	05/03/95	05/03/95	05/04/95	200000000	05/04/95
Lab Sample No.:	9505164-01	9505164-02 Soil	9505164-10	9505209-04 Seil	9505209-05 Soil	9505209-02 Soil
tro-2-N	U 008	008 D	N 008	008	800 U	800 U
2,4-Dinitrophenol	N 008	M 008	Ω 008	008 U	008 U	800 U
2,4-Dinitrotoluene	330 U	330 U	330 U	330 U	330 U	330 U
2,6-Dinitrotoluene	330 U	330 U	330 U	330 U	330 U	330 U
1,2-Diphenylhydrazine	330 U	330 U	330 U	330 U	330 U	330 U
bis(2-Ethylhexyl)Phthalate	330 U	330 U	330 U	330 U	330 U	330 U
Fluoranthene	330 U	330 U	330 U	330 U	330 U	330 U
Fluorene	330 U	330 U	330 U	330 U	330 U	330 U
Hexachlorobenzene	330 U	330 U	330 U	330 U	330 U	330 U
Hexachlorobutadiene	330 U	330 U	330 U	330 U	330 U	330 U
Hexachloroethane	330 U	330 U	330 U	330 U	330 U	330 U
Hexachlorocyclopentadiene	330 U	330 U	330 U	330 U	330 U	330 U
Indeno(1,2,3-cd)Pyrene	330 U	330 U	330 U	330 U	330 U	330 U
Isophorone	330 U	330 U	330 U	330 U	330 U	330 U
2-Methylnaphthalene	330 U	. 330 U	330 U	330 U	330 U	330 U
2-Methylphenol	330 U	330 U	330 U	330 U	330 U	330 U
4-Methylphenol	330 U	330 U	330 U	330 U	330 U	330 U
Naphthalene	330 U	330 U	330 U	330 U	330 U	330 U
2-Nitroaniline	M 800 U	800 U	008 N	M 008	N 008	008 n
3-Nitroaniline	N 008	008 U	008 n	008 n	008 n	008 n
4-Nitroaniline	N 008	008 n	000 N	008	008 n	008 n
Nitrobenzene	330 U	330 U	330 U	330 U	330 U	330 U
2-Nitrophenol	330 U	330 U	330 U	330 U	330 U	330 U
4-Nitrophenol	008 n	008 n	M 800 U	008 n	008 U	M 008
N-Nitrosodiphenylamine (1)	330 U	330 U.	330 U	330 U	330 U	330 U
N-Nitroso-Di-n-Propylamine	330 U	330 U	330 U	330 U	330 U	330 U
Di-n-Octyl Phthalate	330 U	330 U	330 U	330 U	330 U	330 U
Pentachlorophenol	N 008	800 U	800 U	M 008	800 U	008 n
Phenanthrene	330 U	330 U	330 U	330 U	330 U	330 U
Phenol	330 U	330 U	330 U	330 U	330 U	330 U
Pyrene	330 U	330 U	330 U	330 U	330 U	330 U
Pyridine	330 U	330 U	330 U	330 U	330 U	330 U
1,2,4-Trichlorobenzene	330 U	330 U	330 U	330 U	330 U	330 U
2,4,5-Trichlorophenol	800 U	800 U	N 008	M 008	N 008	N 008
2,4,6-Trichlorophenol	330 U	330 U	330 U	330 N	330.U	330 U

- U - Indicates commoned was analyzed far but not detected

Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted) Semivolatile Soil Analytical Results for Site No. 26

	003BH 1.5-2.5 Dup	026-003BH 6.5-7	026-004BH 2-2.5	026-004BH 9.5-10	026-005BH 1 5-2 5	026-003BH 1:5-2.5 Dup 026-003BH 6.5-7 026-004BH 2-2.5 026-004BH 9.5-10 026-005BH 1-5-2 5 026-005BH 1-5-2 5 Dun
	05/04/95	05/04/95	05/03/95	05/03/95	05/03/05	05/03/05
nple d	9505209-01	9505209-03	9505164-03	9505164-04	9505164-05	05/15/15/0 05/15/15/19
SVOCs Matrix	Soil	Soil	Soil	Soil	Soil	Coll
Acenaphthene	O 099	330 U	330 U	330 U	330 11	000 11
Acenaphthylene	O 099	330 U	330 U	330 U	330 11	0 066
Aniline	Ω 099	330 U	330 U	330 U	330 11	0 060
Anthracene	· · · · · · · · · · · · · · · · · · ·	330 U	330 U	330 U	330 11	000
Benzo(a)Anthracene	N 099	330 U	330 U	330 U	330 11	0 066
Benzo(b)Fluoranthene	099 n	330 U	330 U	330 11	330 11	0.066
Benzo(k)Fluoranthene	O 099	330 U	330 U	330 U	330 11	0.066
Benzo(a)Pyrene	O 099	330 U	330 U	330 U	330 11	0.066
Benzoic Acid	3200U	1600 U	1600 U	1600 U	110091	480011
Benzo(g,h,i)Perylene	n 099	330 U	330 U	330 U	330 U	990 1
Benzyl alcohol	Ω 099	330 U	330 U	330 U	330 U	11 066
4-Bromophenylphenyl ether	O 099	330 U	330 U	330 U	330 U	11 066
Butylbenzylphthalate	O 099	330 U	330 U	330 U	330 U	11 066
di-n-Butyl phthalate	Ω 099	330 U	330 U	330 U	330 U	11 066
Carbazole	Ω 099	330 U	330 U	330 U	330 U	11 066
4-Chloroaniline	O 099	330 U	330 U	330 U	330 11	11 066
bis(2-Chloroethoxy)Methane	n 099	330 U	330 U	330 U	330 U	11 066
bis(2-Chloroethyl)Ether	099 n	330 U	330 U	330 U	330 U	11 066
bis(2-Chloroisopropyl)Ether	O 099	330 U	330 U	330 U	330 U	11 066
4-Chloro-3-Methylphenol	O 099	330 U	330 U	330 U	330 U	11 066
2-Chloronaphthalene	0 099	330 U	330 U	330 U	330 U	11 066
2-Chlorophenol	O 099	330 U	330 U	330 U	330 U	N 066
4-Chlorophenylphenyl ether	O 099	330 U	330 U	330 U	330 U	Ω 066
Chrysene	099 n	330 U	330 U	330 U	330 U	Ω 066
Uibenz(a,h)Anthracene	099 O	330 U	330 U	330 U	330 U	Ω 066
Ulbenzoruran	n 099	330 U	330 U	330 U	330 U	Ω 066
1,2-Dichlorobenzene	099 n	330 U	330 U	330 U	330 U	Ω 066
(,)-Uichlorobenzene	0099 n	330 U	330 U	330 U	330 U	Ω 066
1,4-Dichlorobenzene	0 099	330 U	330 U	330 U	330 U	U 099
3,3-Lichlorobenzidine	0 099	330 U	330 U	330 U	330 U	Ω 066
2,4-Ulchlorophenol	0 099	330 U	330 U	330 U	330 U	U 099
Oleunyiphunalate	099 U	330 U	330 U	330 U	330 U	D 066
2,4-Umethylpnenol Dimothyl Bl-th-ol-4	009 U	330 U	330 U	330 U	330 U	N 066
Diniculyi r ilulalare	0 ngq	330 U	330 U	330 U	330 U	O 066

Appendix K.8

Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted) Semivolatile Soil Analytical Results for Site No. 26

Location No.:	026-003BH 1.5-2.5 Dup 026-003BH 6.5-7	р 026-003ВН 6.5-7	026-004BH 2-2.5	026-004BH 9.5-10	026-005BH 1.5-2.5	026-004BH 9.5-10 026-005BH 1.5-2.5 026-005BH 1.5-2.5 Dup
Sample Date:	05/04/95	05/04/95	05/03/95	05/03/95	05/03/95	05/03/95
nple N	9505209-01	9505209-03	9505164-03	9505164-04	9505164-05 Secti	9505164-09 Soil
SVOCS Matrix	20071	2001	2000	11 000	200 II	2400 I.I
4,6-Unituo-z-ivietnyipinenoi	1600 11	0.008	0.008	2 008	800 11	2400 U
2,4-Dinitrotolnene	U 066	330 U	330 U	330 U	330 U	N 066
2.6-Dinitrotoluene	N 099	330 U	330 U	330 U	330 U	D 066
1,2-Diphenyllydrazine	Ω 099	330 U	330 U	330 U	330 U	O 066
bis(2-Ethylhexyl)Phthalate	n 099	330 U	330 U	330 U	330 U	D 066
Fluoranthene	Ω 099	330 U	330 U	330 U	330 U	O 066
Fluorene	Ω 099	330 U	330 U	330 U	330 U	066 n
Hexachlorobenzene	Ω 099	330 U	330 U	330 U	330 U	O 066
Hexachlorobutadiene	Ω 099	330 U	330 U	330 U	330 U	066 N
[[exachloroethane	N 099	330 U	330 U	330 U	330 U	O 066
Hexachlorocyclopentadiene	Ω 099	330 U	330 U	330 U	330 U	Ω 066
Indeno(1,2,3-cd)Pyrene	O 099	330 U	330 U	330 U	330 U	066 N
Isophorone	Ω 099	330 U	330 U	330 U	330 U	Ω 066
2-Methylnaphthalene	Ω 099	330 U	330 U	330 U	330 U	O 066
2-Methylphenol	O 099	330 U	330 U	330 U	330 U	D 066
4-Methylphenol	O 099	330 U	330 U	330 U	330 U	Ω 066
Naphthalene	N 099	330 U	330 U	330 U	330 U	O 066
2-Nitroaniline	1600 U	N 008	008 n	800 U	N 008	2400 U
3-Nitroaniline	1600 U	M 008	008 n	800 U	N 008	2400 U
4-Nitroaniline	1600 U	M 800 U	008 n	008 n	M 008	2400 U
Nitrobenzene	Ω 099	330 U	330 U	330 U	330 U	Ω 066
2-Nitrophenol	Ω 099	330 U	330 U	330 U	330 U	Ω 066
4-Nitrophenol	1600 U	N 008	008 n	800 U	008 n	2400 U
N-Nitrosodiphenylamine (1)	Ω 099	330 U	330 U	330 U	330 U	O 066
N-Nitroso-Di-n-Propylamine	Ω 099	330 U	330 U	330 U	330 U	O 066
Di-n-Octyl Phthalate	O 099	330 U	330 U	330 U	330 U	Ω 066
Pentachlorophenol	1600 U	008 n	008 n	800 U	008 n	2400 U
Phenanthrene	O 099	330 U	330 U	330 U	330 U	Ω 066
Phenol	O 099	330 U	330 U	330 U	330 U	Ω 066
Pyrene	O 099	330 U	330 U	330 U	330 U	Ω 066
Pyridine	Ω 099	330 U	330 U	330 U	330 U	O 066
1,2,4-Trichlorobenzene	Ω 099	330 U	330 U	330 N	330 U	D 066
2,4,5-Trichlorophenol	1600 U	008 n	008 n	N 008	800 U	2400 U
2,4,6-Trichlorophenol	099 O	330 U	330 U	330 U	330 U	066 N

Semivolatile Soil Analytical Results for Site No.26 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted)

Location No.:	026-005BH 9.5-10	026-006BH 2-2.5	026-006BH 11.5-12
Sample Date:	05/03/95	05/03/95	05/03/95
Lab Sample No.:	9505164-06	9505164-08	9505164-07
SVOCs Matrix	Soil	Soil	Soil
Acenaphthene	330 U	Ω 099	330 U
Acenaphthylene	330 U	O 099	330 U
Amiline	330 U	N 099	330 U
Anthracene	330 U	N 099	330 U
Benzo(a)Anthracene	330 U	N 099	330 U
Benzo(b)Fluoranthene	330 U	O 099	330 U
Benzo(k)Fluoranthene	330 U	N 099	330 U
Benzo(a)Pyrene	330 U	n 099	330 U
Benzoic Acid	1600 U	3200U	O 0091
Benzo(g,h,i)Perylene	330 U	N 099	330 U
Benzyl alcohol	330 U	O 099	330 U
4-Bromophenylphenyl ether	330 U	N 099	330 U
Butylbenzylphthalate	330 U	N 099	330 U
di-n-Butyl phthalate	330 U	N 099	330 U
Carbazole	330 U	N 099	330 U
4-Chloroaniline	330 U	Ω 099	330 U
bis(2-Chloroethoxy)Methane	330 U	N 099	330 U
bis(2-Chloroethyl)Ether	330 U	n 099	330 U
bis(2-Chloroisopropyl)Ether	330 U	N 099	330 U
4-Chloro-3-Methylphenol	330 U	O 099	330 U
2-Chloronaphthalene	330 U	n 099	330 U
2-Chlorophenol	330 U	O 099	330 U
4-Chlorophenylphenyl ether	330 U	O 099	330 U
Chrysene	330 U	O 099	330 U
Dibenz(a,h)Anthracene	330 U	n 099	330 U
Dibenzofuran	330 U	O 099	330 U
1,2-Dichlorobenzene	330 U	N 099	330 U
1,3-Dichlorobenzene	330 U	N 099	330 U
1,4-Dichlorobenzene	330 U	N 099	330 U
3,3'-Dichlorobenzidine	330 U	n 099	330 U
2,4-Dichlorophenol	330 U	Ω 099	330 U
Diethylphthalate	330 U	n 099	330 U
2,4-Dimethylphenol	330 U	O 099	330 U
Dimethyl Phthalate	330 U	099 N	330 U

Appendix K.8

Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per kilogram unless otherwise noted) Semivolatile Soil Analytical Results for Site No.26

I continu No .	026 005RH 0 5 10	026-006RH 2-2 5	026-006RH 115-12
		05/03/95	05/03/95
Lab Samule No:	9505164-06	9505164-08	9505164-07
SVOCs Matrix	Soil	Soil	Soil
4,6-Dinitro-2-Methylphenol	M 008	1600 U	M 008
2,4-Dinitrophenol	N 008	1600 U	008 n
2,4-Dinitrotoluene	330 U	Ω 099	330 U
2,6-Dinitrotoluene	330 U	Ω 099	330 U
1,2-Diphenylhydrazine	330 U	N 099	330 U
bis(2-Ethylhexyl)Phthalate	330 U	n 099	330 U
Fluoranthene	330 U	870	330 U
Fluorene	330 U	O 099	330 U
Hexachlorobenzene	330 U	N 099	330 U
Hexachlorobutadiene	330 U	N 099	330 U
Hexachloroethane	330 U	N 099	330 U
Hexachlorocyclopentadiene	330 U	N 099	330 U
Indeno(1,2,3-cd)Pyrene	330 U	Ω.099	330 U
Isophorone	330 U	O 099	330 U
2-Methylnaphthalene	330 U	Ω 099	330 U
2-Methylphenol	330 U	· 0 099	330 U
4-Methylphenol	330 U	N 099	330 U
Naphthalene	330 U	O 099	330 U
2-Nitroaniline	N 008	1600 U	008 n
3-Nitroaniline	008 n	1600 U	008 n
4-Nitroaniline	008 n	1600 U	008 n
Nitrobenzene	330 U	O 099	330 U
2-Nitrophenol	330 U	O 099	330 U
4-Nitrophenol	N 008	1600 U	0 008
N-Nitrosodiphenylamine (1)	330 U	O 099	330 U
N-Nitroso-Di-n-Propylamine	330 U	O 099	330 U
Di-n-Octyl Phthalate	330 U	Ω 099	330 U
Pentachlorophenol	008 n	1600 U	008 n
Phenantlurene	330 U	800	330 U
Phenol	330 U	Ω 099	330 U
Pyrene	330 U	710	330 U
Pyridine	330 U	O 099	330 U
1,2,4-Trichlorobenzene	330 U	O 099	330 U
2,4,5-Trichlorophenol	008 n	1600 U	008 n
2,4,6-Trichlorophenol	330 U	O 099	330 U

Appendix K.9

Metals Soil Analytical Results for Site No. 26 Duluth Air National Guard Base, Duluth, Minnesota (Results in milligrams per kilogram unless otherwise noted)

80000			
L .			ı
026-002BH 6.5-7 05/04/95 9505209-05 Soil			ı
9 25 0			- 1
5-002BH 6,5 05/04/95 9505209-05 Soil	8 U	∞	'n
S, 52	œ	ω.	-i
) (S			
92			
0			
3			
2. 20			Ì
H & & -	_		
026-001BH 9.5-10 Dup 026-002BH 2-2.5 05/03/95 05/04/95 9505164-10 9505209-04 Soil Soil	2	3.1	3.2
50.50	•		
3 S 1			
0.7			
d'n			
•			
₩ e			
01BH 9.5-1 05/03/95 9505164-10 Soil	_		
H 9. 3/03/9 5164 Soil	3.0	9	2.5
85 85 85 85 85	8		•
12 . R			
9			
8			
0			
9	l		٠.
05/03/95 05/03/95 9505164-02 Soil			
-001BH 9.5 05/03/95 9505164-02 Soil	İ		
1BH 3/03/9 5164 Soil	Ω	0	4.
S 55 58	8	_	7
8 % %			
9 6			
0.7	ĺ		
	ļ		
3			
là	l		
田 g 4 T	_		
01BH 2-2.5 5/03/95 05164-01 Soil	3.	13	2.8
5 X 8 3	~		•
7 8	ŀ		
0.2			
	ı		
E	L	_	
: 	흅)ta	
e: t. No.: Matri	ျို	ĭ	臣
[호 발 호	ΞÉ	É	Ţ,
	1.∄	hromium, Total	ead, Total
ior an	ΙĒ	uo	ĝ
Location No.: Sample Date: Lab Sample No. Metals Mi	Cadmium, Total	ij	Н
Te a se	ı۷	Ü	
	1		

Location No.: 026-003 Sample Date: 05. Lab Sample No.: 9505 Metals Matri	BH 1.5-2.5 026-0 04/95 \$209-02 Soil		026-003BH 6.5-7 026-00 05/04/95 05 9505209-03 950 Soil	026-004BH 2-2,5 026-004BH 9,5-10 05/03/95 05/03/95 9505164-03 9505164-04 Soil Soil	-004BH 9.5-10 05/03/95 9505164-04 Soil
Cadmium, Total	8 U	N 8	8 U	8 U	8 U
Chromium, Total	18	9	3.2	6	7
Lead, Total	5.9	3.2	4.6	5.3	2.5

026-006BH 2-2.5 026-006BH 11.5-12 05/03/95 05/03/95 9505164-08 9505164-07 Soil Soil	8 U	4	2.6
026-006BH 2-2.5 05/03/95 9505164-08 Soil	N 8	5	2.4
026-005BH 9.5-10 05/03/95 9505164-06 Soil	8 U	.	2.4
 05BH 1.5-2.5 026-005BH 1.5-2.5 Dup 05/03/95 05/03/95 s05164-05 9505164-09 Soil Soil	8 U	∞	4.2
026-005BH 1.5-2.5 05/03/95 9505164-05 rri Soil	8 U	7	4.6
Location No.: 0 Sample Date: Lab Sample No.: Metals Matri	Cadmium, Total	Chromium, Total	Lead, Total

Appendix K.10

Volatile Groundwater Analytical Results For Site No. 26 Duluth Air National Guard Base, Duluth. Minnesota

otherwise noted)
unless
r liter
be
micrograms
Ξ.
esults

Location No.:)26-001MW-GW1	026-002MW-GW1	026-003MW-GW1	026-001MW-GW1 026-002MW-GW1 026-003MW-GW1 026-003MW-GW1 Dup
Sample Date:	05/18/95	05/18/95	05/18/95	05/18/95
Lab Sample No.:	9505714-03 Water	9505714-01 Water	9505714-04 Water	9505714-02 Water
	1.0	1 U	10	10
Bromobenzene	1 U	10	1 U	1.0
Bromochloromethane	10	1 U	1 U	10
Bromodichloromethane	110	10	10	10
Bromoform	10	1 U	. 10	10
Bromomethane	2 U	2 U	2 U	2 U
n-Butylbenzene	1 U	1 U	10	1.0
sec-Butylbenzene	1 U	10	10	10
tert-Butylbenzene	.10	n I	10	nı
Carbon tetrachloride	10	1 U	10	I U
Chlorobenzene	1.0	1 0	10	0.1
Chlorodibromomethane	10	1 U	10	1.0
Chloroethane	4 U	4 U .	4 U	4 U
Chloroform	1 U	10	1 U	10
Chloromethane	. 1 U	10	ΙΩ	n n
2-Chlorotoluene	1 U	10	1 U	10
4-Chlorotoluene	1 U	1 U	10	10
1,2-Dibromo-3-chloropropane	10	10	10	10
1,2-Dibromoethane	1 U	10	10	0 :
Dibromomethane	1 U	1 U	ΩÏ	<u> </u>
1,2-Dichlorobenzene	10	10	10	10
1,3-Dichlorobenzene	1 U	10	10	10
1,4-Dichlorobenzene	1 U	10	10	10
Dichlorodifluoromethane	1 U	n i	10	0.1
1,1-Dichloroethane	1 U	10	1 U	0:
1,2-Dichloroethane	1.0	10	10	0 ;
1,1-Dichloroethene	1.0	10	10	
1,2-Dichloropropane	1 U	10	10	n i
1,3-Dichloropropane	1 U	10	10	D.
2,2-Dichloropropane	1 U	10	10	ΩI
1,1-Dichloropropene	1 U	10	10	n l
Ethylbenzene	1.0	D.	10	10
Hexachlorobutadiene	1 n	10	10	2:
Isopropylbenzene	10	10	10) I
p-rsopropyrromene	0	0 1		

Volatile Groundwater Analytical Results For Site No. 26
Duluth Air National Guard Base, Duluth. Minnesota

	CALL CALLS	LIMO MANAGORA	026 003 WW.CW1	CES CHILLY CHILD AS COSMW CW1 076 003MW-CW1 076-003MW-CWI Dun
Location No.:	TW2-WI/100-620	T 11 O-11 TITOO-070		05/10/05
Sample Date:	05/18/95	05/18/95	05/18/95	C6/91/C)
f ab Samule No :	9505714-03	9505714-01	9505714-04	9505714-02
Dan Sumpression	Water	Water	Water	Water
VOUS (820V) Matter		1.1.	1 1 1	111
Methylene chloride	10	0.1); 	
Naphthalene	10	n n	. 01) : -
n-Propylbenzene	10	I U	1 N	
Churene	n	10	1 U	01
otyrono 1 1 1 2 Totrochloroethone	111	1.0	10	1 U.
1, 1, 1, 2-1 eu acinon ocurano		111	1111	10
1,1,2,2-Tetrachioroethane	0) ;		111
Tetrachloroethene	10	10	O ;	
Toluene	10	10	O I	
1 2 3-Trichlorobenzene	10	1 U	1 U	O T
1 2 4-Trichlorobenzene	10	10	10	10
1 1 1-Trichloroethane	1 0	1 U	1.0	n I
1,1,1 Trichloroethane	10	10	10	10
1, 1,2-111011101001111110 Trichloroethene	111	10	10	1 U
Trickless finence	0.1	10	10	10
1 Helifolding of the second of) I	111	110	1.0
1,2,3-1 richloropropane)	2 -		111
1,2,4-Trimethylbenzene	07	0 :		- T
1,3,5-Trimethylbenzene	10	10	10);
Vinyl chloride	10	10	10	O ; .
Xvlenes (total)	10	1 U	10) I
1 2-Dichloroethene (total)	1.0	1 U	10	10

U - Indicates compound was analyzed for but not detected VOC-8260 - Volatile Organic Compounds-USEPA SW-846/8260

Appendix K.11

Semivolatile Groundwater Analytical Results for Site No. 26 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per liter unless otherwise noted)

Location No.:	026-001MW-GW1	026-002MW-GW1	026-003MW-GW1	026-001MW-GW1 026-002MW-GW1 026-003MW-GW1 026-003MW-GW1 Dup
Sample Date:	05/18/95	05/18/95	05/18/95	05/18/95
Lab Sample No.:	9505714-03	9505714-01	9505714-04	9505714-02
SVOCs Matrix	Water	Water	Water	Water
Acenaphthene	5 U	5 U	S U	5 U
Acenaphthylene	5 U	5 U	5 U	5 U
Aniline	5.0	5 U	5 U	5 U
Anthracene	5 U	5 U	5 U	5 U
Benzo(a)Anthracene	5 U	5 U	5 U	5 U
Benzo(b)Fluoranthene	5 U	5 U	2 N	5 U
Benzo(k)Fluoranthene	· 5 U	. S U	5 U	5 U
Benzo(a)Pyrene	5 U	5 U .	5 U	5 U S
Benzoic Acid	25 U	25 U	25 U	25 U
Benzo(g,h,i)Perylene	5 U	5 U	5 U	5 U
Benzyl alcohol	5 U	5.0	5 U	5 U
4-Bromophenylphenyl ether	5 U	5 U	5 U	5 U
Butylbenzylphthalate	5 U	5 U	5 U	5 U
di-n-Butyl phthalate	5.0	5 U	5 U	5 U
Carbazole	5 U	5 U	5 U	5 U
4-Chloroaniline	5 U	5 U	5 U	5 U
bis(2-Chloroethoxy)Methane	5 U	5 U	5 U	5 U
bis(2-Chloroethyl)Ether	5 U	5 U	Śυ	5 U
bis(2-Chloroisopropyl)Ether	5 U	. 5 U	2 U	5 U
4-Chloro-3-Methylphenol	5 U	5 U	5 U	2 N S
2-Chloronaphthalene	5 U	5 U	5 U	5 U
2-Chlorophenol	5 U	5 U	5 U	5 U
4-Chlorophenylphenyl ether	5 U	5 U	5 U	5 U
Chrysene	.5 U	5 U	5 U	5 U
Dibenz(a,h)Anthracene	5 U	2 U	5 U	5 U
Dibenzofuran	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	5 U	5 U	5 U	S U
1,3-Dichlorobenzene	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	5 U.	5 U	5 U	5 U
3,3'-Dichlorobenzidine	5 U	5 U	5 U	5 U
2,4-Dichlorophenol	5 U	5 U	5 U	5 U
Diethylphthalate	5 U S	5 U	5 U	5 U
2,4-Dimethylphenol	5.0	5 U	5 U	5 U
Dimethyl Phthalate	5 U	5 U	5 U	5 U

Semivolatile Groundwater Analytical Results for Site No. 26 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per liter unless otherwise noted)

Location 140.:	1W2-WINIUM-62VI	1 M-0-070	026-001MW-GW1 026-002MW-GW1 026-003MW-GW1 026-003MW-GW1 Dup	ng T.A.S-AATAIC00-070
Sample Date;	05/18/95	05/18/95	05/18/95	05/18/95
Lab Sample No.:	9505714-03	9505714-01	9505714-04	9505714-02
SVOCs Matrix	Water	Water	Water	Water
4,6-Dinitro-2-Methylphenol	25 U	25 U	25 U	25 U
2,4-Dinitrophenol	25 U	25 U	25 U	25 U
2,4-Dinitrotoluene	5 U	5 U	5 U	5 U
2,6-Dinitrotoluene	5 U	5 U	5 U	5 U
1,2-Diphenylhydrazine	5 U	5 U	5 U	5 U
bis(2-Ethylhexyl)Phthalate	5 U	. 5 U	5 U	5 U
Fluoranthene	5 U	5 U.	° 0.5°	5 U
Fluorene	5 U	5 U	N S N	5 U
Hexachlorobenzene	5 U	5 U	5 U	5 U s
Hexachlorobutadiene	5 U	5 U	5 U	5 U
Hexachloroethane	5 U	5 U	S U	5 U
Hexachlorocyclopentadiene	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)Pyrene	5 U	5 U	5 U	5 U
Isophorone	5 U	S U	. 5 U	S U
2-Methylnaphthalene	5 U	5 U	5 U	5 U
2-Methylphenol	5 U	5 U S	5 U	5 U
4-Methylphenol	5 U	5 U	5 U	5 U
Naphthalene	5 U	5 U	5 U	5 U
2-Nitroaniline	25 U	25 U	25 U	. 25 U
3-Nitroaniline	25 U	25 U	25 U	25 U
4-Nitroaniline	25 U	25 U	25 U	25 U
Nitrobenzene	5 U	5 U	5 U	5 U
2-Nitrophenol	25 U	25 U	25 U	25 U
4-Nitrophenol	25 U	25 U	25 U	25 U
N-Nitrosodiphenylamine (1)	5 U	5 U	5 U	5 U
N-Nitroso-Di-n-Propylamine	5 U	5 U	5 U	5 U
Di-n-Octyl Phthalate	5 U	5 U	5 U	5 U
Pentachlorophenol	25 U	25 U	25 U	25 U
Phenanthrene	5 U	5 U.	5 U	. 5 U
Phenol	51	51	51	51
Pyrene	ε Ω ς	5 U	. 5 U	5 U
Pyridine	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5 U	5 U	5 U	5 U
2,4,5-Trichlorophenol	10 U	10 U	10 U	10 U
2 4 6-Trichloronhenol	5 U	5 U	5 U	5 U

 ${\bf U}$ - Indicates compound was analyzed for but not detected ${\bf SVOC}$ - Semivolatile Organic Compounds

APPENDIX L

SUMMARY OF THE QA/QC ANALYTICAL RESULTS

INTRODUCTION

The following is a list of analytical results for QA/QC samples collected at IRP Sites No. 25 and No. 26.

IRP SITES NO. 25 AND NO. 26

SOIL SAMPLES

- L.1 Volatile QA/QC Summary Results for IRP Sites No. 25 and No. 26
- L.2 Semivolatile QA/QC Summary Results for IRP Sites No. 25 and No. 26
- L.3 Metals QA/QC Summary Results for IRP Sites No. 25 and No. 26

GROUNDWATER SAMPLES

- L.4 Volatile QA/QC Summary Results for IRP Sites No. 25 and No. 26
- L.5 Semivolatile QA/QC Summary Results for IRP Sites No. 25 and No. 26
- L.6 Metals QA/QC Summary Results for IRP Sites No. 25 and No. 26

THIS PAGE INTENTIONALLY LEFT BLANK

Volatile QA/QC Summary Results for Sites No.25 and No.26 Duluth Air National Guard Base, Duluth, Minnesota

(Results in micrograms per kilogram unless otherwise noted)

Sample Date:	05/12/95 05/12/95 05/03/95 05/03/95	05/12/95	05/03/95	05/03/95
mple No.:	9505512-12	9505512-13	9505164-12	9505164-13
VOCs Matrix	Soil	Soil	Soil	Soil
Acetone	100 U	100 U	100 U	100 U
Benzene	46	46	47	49
Bromodichloromethane	42	43	5 U	5 U
Bromoform	37	39	5 U	5 U
Bromomethane	31	31	10 U	10 U
2-Butanone	20 U	20 U	20 U	20 U
Carbon Disulfide	5 U	\$ N	5 U	5 U
Carbon Tetrachloride	38	39	5 U	5 U
Chlorobenzene	43	42	41	43
Chloroethane	35	35	10 U	10 U
2-Chloroethylvinylether	47	48	10 U	10 U
Chloroform	48	48	5 U	5 U
Chloromethane	34	34	10 U	Π 01
Dibromochloromethane	41	42	5.0	5 U
1,1-Dichloroethane	49	48	5 U	5 U
1,1-Dichloroethene	36	35	44	46
1,2-Dichloroethane	46	47	5 U	S U
total-1,2-Dichloroethene	84	83	5 U	5 U
1,2-Dichloropropane	48	48	5.0	S U
cis-1,3-Dichloropropene	38	40	5 U	5 U
trans-1,3-Dichloropropene	42	43	5 U	5 U
Ethylbenzene	44	42	5 U	S U
2-Hexanone	10 U	10 O	10 U	10 U
Methylene Chloride	40	42	5 U	5 U
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 U
Styrene	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	44	46	5 U	2 U
Tetrachloroethene	40	38	5 U	5.0
Toluene	47	46	43	45
1,1,1-Trichloroethane	46	46	5 U	5 U
1,1,2-Trichloroethane	43	46	5 U	5.U
Trichloroethene	38	43	44	46
Trichlorofluoromethane	5 U	37	5.0	5 U
Vinyl Acetate	10 U	10 U	10 U	10 O
Vinyl Chloride	33	33	10 U	10 U
Xylenes (total)	35	34.	5 U	5 U

MS - Matrix Spike MSD - Matrix Spike Duplicate VOC - Volatije Organic Compounds

BH - Borehole U - Indicates compound was analyzed for but not detected QA/QC - Quality Assurance/Quality Control

Appendix L.2

Semivolatile QA/QC Summary Results for Sites No. 25 and No. 26 Duluth Air National Guard Base, Duluth, Minnesota

3
8
otherwise 1
unless
kilogram
per l
grams
micro
.≣
(Results

Location No.:	025-008BH 10.5-11MS 025-008BH 10.5-11 MSD 026-001BH 9-9.5 MS 026-001BH 9-9.5 MSD	025-008BH 10:5-11 MSD	026-001BH 9-9.5 MS	026-001BH 9-9.5 MSD
Sample Date:	05/12/95	05/12/95	05/03/95	05/03/95
Lab Sample No.:	9505512-14	9505512-15	9505164-12	9505164-13
SVOCs Matrix	Soil	Soil	Soil	Soil
Acenaphthene	1300	1300	1200	1200
Acenaphthylene	330 U	330 U	330 U	330 U
Aniline	330 U	330 U	330 U	330 U
Anthracene	330 U	330 U	330 U	330 U
Benzo(a)Anthracene	330 U	330 U	330 U	330 U
Benzo(b)Fluoranthene	330 U	330 U	330 U	330 U
Benzo(k)Fluoranthene	330 U	330 U	330 U	330 U
Benzo(a)Pyrene	330 U	330 U	330 U	330 U
Benzoic Acid	1600 U	1600 U	1600 U	1600 U
Benzo(g,h,i)Perylene	330 U	330 U	330 U	330 U
Benzyl alcohol	330 U	330 U	330 U	330 U
4-Bromophenylphenyl ether	330 U	330 U	330 U	330 U
Butylbenzylphthalate	330 U	330 U	330 U	330 U
di-n-Butyl phthalate	330 U	330 U	330 U	330 U
Carbazole	330 U	330 U	330 U	330 U
4-Chloroaniline	330 U	330 U	330 U	330 U
bis(2-Chloroethoxy)Methanc	330 U	330 U	330 U	330 U
bis(2-Chloroethyl)Ether	330 U	330 U	330 U .	330 U
bis(2-Chloroisopropyl)Ether	330 U	330 U	330 U	330 U
4-Chloro-3-Methylphenol	2000	2000	2100	2200
2-Chloronaphthalene	330 U	330 U	330 U	330 U
2-Chlorophenol	2200	2100	1500	1600
4-Chlorophenylphenyl ether	330 U	330 U	330 U	330 U
Chrysene	330 U	330 U	330 U	330 U
Dibenz(a,h)Anthracene	330 U	330 U	330 U	330 U
Dibenzofuran	330 U	330 U	330 U	330 U
1,2-Dichlorobenzene	330 U	330 U	330 U	330 U
1,3-Dichlorobenzene	330 U	330 U	330 U	330 N
1,4-Dichlorobenzene.	1100	1100	1100	1200
3,3'-Dichlorobenzidine	330 U	330 U	330 U	330 U
2,4-Dichlorophenol	330 U	330 U	330 U	330 U
Diethylphthalate	330 U	330 U	330 U	330 U
2,4-Dimethylphenol	330 U	330 U	330 U	330 U
Dimethyl Phthalate	330 U	330 U	330 U	330 U

Semivolatile QA/QC Summary Results for Sites No. 25 and No. 26
Duluth Air National Guard Base, Duluth, Minnesota

Location No.:	025-008BH 10.5-11MS	025-008BH 10.5-11MS 025-008BH 10.5-11 MSD		02/4-001 BH 9-0 5 MC 07/4 001 BH 0 0 5 MCH
Sample Date:	05/12/95	05/12/95		040-001DILV-9.3 MSD 04/03/04
nple No.:	9505512-14	9505512-15	9505164-12	9505164-13
ACD: COLOR	Soil	Soil	Soil	Soil
4,0-Dinitro-2-Methylphenol	008 n	008 n	008 n	M 008
2,4-Dinitrophenol	800 U	008 n	008 n	800 11
2,4-Dinitrotoluene	1300	1300	1600	1600
2,6-Dinitrotoluene	330 U	330 U	330 U	330 11
1,2-Diphenylhydrazine	330 U	330 U	330 11	330 11
bis(2-Ethylhexyl)Phthalate	330 U	330 U	330 U	330.11
Fluoranthene	330 U	330 U	330 U	330 11
Fluorene	330 U	330 U	3301)	330 11
Hexachlorobenzene	330 U	330 U	330 U	330 U
Hexachlorobutadiene	330 U	330 U	330 U	330 11
Hexachloroethane	330 U	330 U	330 U	330 U
Hexachlorocyclopentadiene	330 U	330 U	330 U	330 U
Indeno(1,2,3-cd)Pyrene	330 U	330 U	330 U	330 U
Sopnorone	330 U	330 U	330 U	330 U
z-ivieutymaphthalene	330 U	330 U	330 U	330 U
z-ivieutytphenol	330 U	330 U	330 U	330 U
Trickly pictor Nanhthalana	330 U	330 U	330 U	330 U
2-Nitrosniline	330 0	330 U	330 U	330 U
3. Nitroanilina	900 0	800 U	008 n	800 U
7-Ivitoanilina 4-Nitroanilina	0.008	0 008	008 n	800 U
Trundallille Nitrohanzana	800 U	M 008	008 n	008 n
Nitronical and	330 U	330 U	330 U	330 U
z-iniuopnenoi	330 U	330 U	330 U	330 U
4-Iviu opnenol	1600	1800	3300	3700
N-1Mu osodipnenylamine (1)	330 U	330 U	330 U	330 U
N-Nitroso-Di-n-Propylamine	1300	1300	1500	1700
On-n-Octyl Phthalate	330 U	330 U	330 U	330 U
Pentachiorophenol	1800	1700	2400	2400
Phenanthrene Ph1	330 U	330 U	330 U	330 U
lienoi	2000	2000	1200	1200
ryrene Beridio	1300	1300	1100	1000
7.4 Tricklens	330 U	330 U	330 U	330 U
1,2,4-111Cilloropenzene	1300	1300	1200	1400
2,4,2-111cmoropnenol	0 008 130 H	008 n	008 n	008 n
, ,, 0-111011011011011	330 U	330 U	330 U	330 U

MS - Matrix Spike MSD - Matrix Spike Duplicate SVOC - Semivolatile Organic Compounds

U - Indicates compound was analyzed for but not detected
QA/QC - Quality Assurance/ Quality Control

Appendix L.3

Metals QA/QC Summary Results for Sites No. 25 and No. 26 Duluth Air National Guard Base, Duluth, Minnesota

(Results in milligrams per kilogram unless otherwise noted)

Location No.: Sample Date: Lab Sample No.: Metals Matrix Mercury, Total Cadmium, Total Chromium, Total Nickel, Total
--

Volatile QA/QC Summary Results for Sites No.25 and No.26 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per liter unless otherwise noted)

Location No.:	SI-001-FB	SI-002FB	SI-001-TB	026-003-RB
Sample Date:	05/18/95	05/19/95	96/80/90	05/18/95
Lab Sample No.:	9505714-05	9505767-02	9505714-06	9505714-07
VOCs (8260) Matrix	Water	Water	Water	Water
Benzene	1 U	5 U	1 U	1 U
Bromobenzene	1 U	5 U	10	1 U
Bromochloromethane	1 U	5 U	1 U	1.0
Bromodichloromethane	1 U	5 U	1 0	1 U
Bromoform	10	5 U	1 0	1 0
Bromomethane	2 U	10 O	2 U	2 U
n-Butylbenzene	1 N	5 U	1 U	I U
sec-Butylbenzene	1 U	5 U	10	10
tert-Butylbenzene	ΩI	5 U	1 U	n n
Carbon tetrachloride	1 U	5 U	1 U	1 U
Chlorobenzene	1 U	5 U	1 U	1 U
Chlorodibromomethane	1 U	5 U .	1 U	1 U
Chloroethane	4 U	10 U	4 U	4 U
Chloroform	5	9	1 U	4
Chloromethane	1 U	10 U	1 U	1 U
2-Chlorotoluene	1 N	5 U	1 U	10
4-Chlorotoluene	1 N	5 U	1 N	1 U
1,2-Dibromo-3-chloropropane	1 N	5 U	1 U	1 U
1,2-Dibromoethane	1 U	5 U	1 U	1 U
Dibromomethane	1 U	5 U	1 U	1 U
1,2-Dichlorobenzene	1 U	5 U	1 U	1 U
1,3-Dichlorobenzene	1 U	5 U	1 U	1 U
1,4-Dichlorobenzene	1 U	5 U	1 U	. 1 U
Dichlorodifluoromethane	10	10 U	10	1 U
1,1-Dichloroethane	1 U	SU	10	1 U
1,2-Dichloroethane	1 U	5 U	10	10
1,1-Dichloroethene	ΩI	5 U	10	10
1,2-Dichloropropane	1 U	5 U	1 U	1 U
1,3-Dichloropropane	1 U	5 U	1 0	10
2,2-Dichloropropane	1 N	5 U	1 U	1.0
1,1-Dichloropropene	1 U	5 U	10	10
Ethylbenzene	10	5 U	10	1 U
Hexachlorobutadiene	υ.	5 U	1 U	10
Isopropylbenzene	1 U	5 U	10	1 U
p-Isopropyltoluene	1 U	S U	1 U	1 U

U - Indicates compound was analyzed for but not detected VOC 8260 - Volatile Organic Compounds-Meth. 8260 QA\QC - Quality Assurance\Quality Control

Appendix L.4
Volatile QA/QC Summary Results for Sites No.25 and No.26
Duluth Air National Guard Base, Duluth, Minnesota
(Results in micrograms per liter unless otherwise noted)

Sample Date:				
	05/18/95	05/19/95	05/08/95	05/18/95
Lab Sample No.:	9505714-05	9505767-02	9505714-06	9505714-07
VOCs (8260) Matrix	Water	Water	Water	Water
Methylene chloride	4	5 U	1 U	3
Naphthalene	1 U	5 U	1 U	1 N
n-Propylbenzene	1 U	5 U	1 U	1 U
Styrene	1 U	5 U	1 U	1 U
1,1,1,2-Tetrachloroethane	1 U	5 U	1 U	1 U
1,1,2,2-Tetrachloroethane	10	5 U	1 U	1 U
Tetrachloroethene	1 U	5 U	1 U	1 U
Toluene	1 U	5 U	1 U	1 U
1,2,3-Trichlorobenzene	10	5 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	SU	1 U	1 U
1,1,1-Trichloroethane	1 U	S U	1 U	1 U
1,1,2-Trichloroethane	1 U	5 U	1 U	1 U
Trichloroethene	1 U	5 U	1 U	1 U
Trichlorofluoromethane	10	5 U	1 U	1 U
1,2,3-Trichloropropane	10	5 U	1 U	1 U
1,2,4-Trimethylbenzene	10	5 U	1 U	1 U
1,3,5-Trimethylbenzene	10	5 U	1 U	1 U
Vinyl chloride	10	10 U	1 U	1 U
Xylenes (total)	10	5 U	1 U	1 U
1,2-Dichloroethene (total)	1 U	5 U	1 U	1 U

Volatile QA/QC Summary Results for Sites No.25 and No.26 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per liter unless otherwise noted)

I oration No :	00 100 200	H 4 500 350		1		ŀ	
Sample Date:	05/11/95	05/16/95	05/04/95	05/15/95	025-003-TB 05/16/95	Trip Blank J	Equipment Blank
Lab Sample No.:	9505512-01	9505612-02	9505209-06	9505556-01	9505612-01	9505209-07	05/05/95 95/05/164_11
VOCs Matrix	Water	Water	Water	Water	Water	Water	Water
Acetone	100 U	100 U	100 U	100 U	100 U	100 U	1001
Benzene	S U	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromoform	5 U	5 U s	S U	5 U	5 U	5 U	211
Bromomethane	10 U	10 U	10 U	10 U	10 U	10 U	1011
2-Butanone	20 U	20 U	20 U	20 U	20 U	20 U	20 11
Carbon Disulfide	5 U	5 U.	5 U	5 U	5 U	511	5 11
Carbon Tetrachloride	5 U	5 U	5 U	5 U	5 1)	5 11	200
Chlorobenzene	5 U	5 U	5 U	2 U	2 O	511	200
Chloroethane	10 U	10 U	10 U	10 O	10 O	10 11	101
2-Chloroethylvinylether	10 U	10 U	10 U	10 U	10 O	10 01	10.1
Chloroform	5 U	\$	ς.	5 U	5 U	5 U	
Chloromethane	10 U	10 U	10 U	10 U	10 U	10 U	101
Dibromochloromethane	S U	5 U	5 U	5 U	5 U	5 U	511
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
total-1,2-Dichloroethene	5 U	S U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	S U	S U	5 U	S U	5 U
trans-1,3-Dichloropropene	5 U	5 U	5 U	s u	5 U	S U	5 U
Ethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene Chloride	5 U	5 U	5 U	SU	5 U	5 U	5.0
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 U	10 U	10 U	10 O
Styrene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5 U	. 5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	S U	5 U	5 U	5 U	5 U	5 U	5.0
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5 U	5 U	5.U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	5 U	5 U	5 U	SU	5 U	5 U	5.0
Trichloroethene	5 U	5 U	SU	5 U	5 U	5 U	5.0
Trichlorofluoromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl Acetate	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Vinyl Chloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Aylenes (total)	2.0	5.0	5 U	5 U	5 U	5 U	5 U

RB - Rinsate Blank FB - Field Blank TB - Trip Blank

QA/QC - Quality Assurance/Quality Control U - Indicates compound was analyzed for but not detected VOC - Volatile Organic Compounds

Appendix L.4
Aromatic Volatile QA\QC Summary Results for Site No. 25
Duluth Air National Guard Base, Duluth, Minnesota
(Results in micrograms per liter unless otherwise noted)

Location No.:	025-003-RB	025-TB
Sample Date:	05/19/95	05/19/95
BTEX(8020) Matrix		Water
Benzene	1 Ü	10
Toleune	1 U	10
Ethylbenzene	1 U	10
Xylenes (total)	10	1 U

Appendix L.4

Halogenated Volatile QA\QC Summary Results for Site No.25 Duluth Air National Guard Base, Duluth, Minnesota

(Results in micrograms per liter unless otherwise noted)

Location No.:	025-003-RB	02S-TB
Sample Date:	05/19/95	05/19/95
Lab Sample No.:	9505767-01	9505767-04
VOC's (8010) Matrix	Water	Water
Dichlorodifluoromethane	1 U	1 U
Chloromethane	1 U	1 U
Vinyl chloride	10	1 U
Bromomethane	1 U	1 U
Chloroethane	10	1 U
Frichlorofluoromethane	1 U	ΩI
1,1-Dichloroethene	U I	ΩI
Methylene chloride	4	B3
Trans-1,2-Dichloroethene	1 U	ΩI
1,1-Dichloroethane	1 U	1 U
chloroform	5	ΩI
1,1,1-Trichloroethane	1 U	1 U
carbon tetrachlorode	10	1 U
1,2-Dichloroethane	1 U	1 U
2-Chloroethylvinyl ether	1 U	1 U
Frichloroethene	1 U	10
1,2-Dichloropropane	1 N	1 U
Bromodichloromethane	1 0	10
cis-1,3-Dichloropropene	1.0	1 U
trans-1,3-Dichloropropene	1 0	1 U
1,1,2-Trichloroethane	1 N	1 U
Tetrachloroethene	1 U	1 U
Dibromochloromethane	1 U	10
Chlorobenzene	1 U	1 U
Bromoform	1 U	1 U
1,1,2,2-Tetrachloroethane	10	10
1,3-Dichlorobenzene	1 U	1 U
1,4-Dichlorobenzene	1 O	1 U
1,2-Dichlorobenzene	1.0	10

B - Indicates compound was detected in the Method Blank RB - Rinsate Blank TB - Trip Blank

 \mathbf{U} - Indicates compound was analyzed for but not detected PAH 8010-Polynuclear Aromatic Hydrocarbon Compounds

Semivolatile QA/QC Summary Results for Sites No. 25 and No. 26 Duluth Air National Guard Base, Duluth, Minnesota Appendix L.5

(Results in micrograms per liter unless otherwise noted)

Location No.:	025-001-RB	025-002-RB	025-003-RB	026-002-RB	026-003-RB	Equipment Blank	SI-001-FB
Sample Date:	05/11/95	05/16/95	05/19/95	05/04/95	05/18/95	05/03/95	05/18/95
Lab Sample No.:	9505512-01	9505612-02	10-29/2056	9505209-06	9505714-07	9505164-11	9505714-05
SVOCs Matrix	Water	Water	Water	Water	Water	Water	Water
Acenaphthene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acenaphthylene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Aniline	5 U	S U	5 U	5 U	S U	5 U	5 U
Anthracene	5 U	5 U	5 U	5 U	5 U s	5 U	5 U
Benzo(a)Anthracene	5 U	5 U	5 U	N 5.	5 U	5 U	5 U
Benzo(b)Fluoranthene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzo(k)Fluoranthene	5 U	5 U	5 U	S U	5 U	5 U	5 U
Benzo(a)Pyrene	S U	5 U	5 U	5 U	S U	5 U	5 U
Benzoic Acid	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Benzo(g,h,i)Perylene	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzyl alcohol	S U	SU	5 U	5 U	5 U	5 U	5 U
4-Bromophenylphenyl ether	S U	5 U	5 U	5 U	5 U	5 U	5 U
Butylbenzylphthalate	5 U	5 U	5 U	5 U	5 U	5 U	5 U
di-n-Butyl phthalate	S U	5	5 U	5 U	5 U	5 U	5
Carbazole	5 U	5 U	n s	S U	5 U	5 U	5 U
4-Chloroaniline	5 U	5 U	5 U	5 U	5 U	5 U	5 U
bis(2-Chloroethoxy)Methane	5 U ·	5 U	5 U	5 U	S U	S U	5 U
bis(2-Chloroethyl)Ether	5 U	5 U	5 U	5 U	5 U	5 U	5 U
bis(2-Chloroisopropyl)Ether	5 U	5 U	5 U	5 U.	5 U	5 U	5 U
4-Chloro-3-Methylphenol	5 U	S U	5 U	∞	5 U	5 U	5 U
2-Chloronaphthalene	5 U	5 U	S U	5 U	5 U	5 U	5 U
2-Chlorophenol	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Chlorophenylphenyl ether	5 U	S U	5 U	S U	5 U	5 U	5.0
Chrysene	5 U	S U	5 U	5 U	S U	5 U	5 U
Dibenz(a,h)Anthracene	5 U	5 U	5 U	5 U	S U	5 U	5 U
Dibenzofuran	5 U	5 U	· 5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	5 U	5 U	5 U	5 U	S U	5 U	5 U
1,3-Dichlorobenzene	5 U	5 U	S U	5 U	. 5 U	5 U	5 U
1,4-Dichlorobenzene	5 U	N S U	5 U	5 U	5 U	5 U	5 U
3,3'-Dichlorobenzidine	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2,4-Dichlorophenol	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Diethylphthalate	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	25 U	25 U	25 U	25 U	25 U	25 U	25 U
2,4-Dinitrophenol	25 U	25 U	25 U	25 U	25 U	25 U	25 U

RB - Rinsate Blank FB - Field Blank QA/QC - Quality Assurance/ Quality Control

U - Indicates compound was analyzed for but not detected SVOC - Senivolatile Organic Compounds SI - Site Investigation

Semivolatile QA/QC Summary Results for Sites No. 25 and No. 26 Duluth Air National Guard Base, Duluth, Minnesota (Results in micrograms per liter unless otherwise noted)

105/11/95 05/11/95	05 V.	3-06	9505714-07 Water 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	05/03/95 9505164-11 Water 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	95/18/95 9505714-05 Water 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U
Matrix Water uene 5 U uene 5 U uene 5 U uene 5 U uene 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U sydrazine (1) 5 U			9505714-07 Water 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	9505164-11 Water 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	9505714-05 Water 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U
tene		0 S O O O O O O O O O O O O O O O O O O	0 5 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	5 U S U S U S U S U S U S U S U S U S U	5 U S U S U S U S U S U S U S U S U S U
bene success yelvazine success yelyllytthalate success succes		2 C C C C C C C C C C C C C C C C C C C	5 U S U S U S U S U S U S U S U S U S U	5 U S U S U S U S U S U S U S U S U S U	5 U S U S U S U S U S U S U S U S U S U
bene 5 U sydrazine 5 U syl)Phthalate 5 U syl)Phthalate 5 U solution		5 U S U S U S U S U S U S U S U S U S U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 8 0 0 0 8 0
sydrazine 5 U sydrazine 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U syll'huthalate 5 U		5 C C C C C C C C C C C C C C C C C C C	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	5 U S U S U S U S U S U S U S U S U S U
ydrazine 5 U yyl)Phthalate 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 5 U substance 6 U substance 7 U substance 7 U substance 7 U substance 8 U substance 6 U sub		5 U S U S U S U S U S U S U S U S U S U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 U S U S U S U S U S U S U S U S U S U
(yl)Puthalate 5 U (zene 5 U (solution 5 U (solution 5 U (solution 5 U (solution 5 U (solution 5 U (solution 5 U (solution 6 U (solut		2 C C C C C C C C C C C C C C C C C C C	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U	5 U S U S U S U S U S U S U S U S U S U
s U substance su		5 U S U S U S U S U S U S U S U S U S U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U
s U tadiene su tadiene su su slopentadiene su su su su su su su su su su su su su		5 U S U S U S U S U S U S U S U S U S U	5 U 5 U 5 U 5 U 5 U 8 U 8 U	5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U
tadiene 5 U tadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 5 U slopentadiene 6 U slopen		5 U S U S U S U S U S U S U S U S U S U	5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U
tadiene 5 U slopentadiene 5 U		5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U	5 U 5 U 5 U 5 U
S U C U C U		5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U	5 U 5 U	5U 5U 5U
Substitute Sub		2 C C C C C C C C C C C C C C C C C C C	5 U 5 U 5 U 5 U	5U 511	5 U 5 U
4)Pyrene 5 U 5 U 6 ol 5 U 6 ol 5 U 6 Ol 5 U 7 Ol 5 U 7 Ol 5 U 7 Ol 7 Ol 7 Ol 7 Ol 7 Ol 7 Ol 7 Ol 7 Ol		5 U 5 U 5 U 5 U	5 U 5 U 5 U	411	5 U
5 U thalene 5 U ol 5 U ol 5 U 25 U 4ndlante 5 U		5 U 5 U 5 U	5 U 5 U	2	11.5
thalene 5 U ol 5 U ol 5 U 5 U 5 U 25 U 25 U 25 U 25 U 25 U 25		5 U 5 U	S U	5 U))
ol 5 U ol 5 U 5 U 5 U 25 U 25 U 25 U 25 U 25 U 25		S U		5 U	5 U
ol 5 U 5 U 25 U 25 U 25 U 25 U 5 U 25 U 25			5 U	5 U	5 U
5 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 2		5 U	5 U	5 U	5 U
25 U 25 U 25 U 25 U 5 U 5 U 25 U 25 U 25	5 0 5 0	5 U	5 U	5.0	5 U
25 U 25 U 25 U 5 U 25 U 25 U 25 U 25 U 2	25 U 25 U -	25 U	25 U	25 U	25 U
25 U 5 U 25 U 25 U 25 U 10-Propylamine 5 U 4halate 5 U	25 U 25 U	25 U	25 U	25 U	25 U
5 U 25 U 25 U 25 U 25 U n-Propylamine 5 U thalate 5 U	25 U 25 U	25 U	25 U	25 U	25 U
25 U 25 U 25 U 26 U 27 U 27 U 28 U 28 U 28 U 28 U	SU SU	5 U	5 U	5 U	5 U
25 U enylamine (1) 5 U h-Propylamine 5 U thalate 5 U	25 U 25 U	25 U	25 U	25 U	25 U
enylamine (1) 5 U n-Propylamine 5 U thalate 5 U	25 U 25 U	25 U	25 U	25 U	25 U
n-Propylamine 5 U thalate 5 U tenol 25 U	SU SU	5 U	5 U	5 U	5 U
thalate 5 U 25 U	5 U S U	5 U	5 U	5 U	5 U
ienol 25 U	5U 5U	5 U	5 U	5 U	5 U
	25 U 25 U	25 U	25 U	25 U	25 U
Phenanthrene 5 U 5 U	su su	S U	5 U	5 U	5 U
Phenol 51 5 U	su su	5 U	5 U	5 U	2 U
Pyrene 5 U S U	5 U S U S	5 U	5 U	5 U	5 U
Pyridine 5 U 5 U	5U. 5U	5 U	5 U	5 U	2 U
1,2,4-Trichlorobenzene 5 U 5 U	SU SU	5.0	5 U	5 U	5 U
2,4,5-Trichlorophenol 10 U 10 U	10 U 10 U	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol 5 U 5 U	SU SU	5 U.	5 U	5 U	5 U

RB - Riusate Blank FB - Field Blank QA/QC - Quality Assurance/ Quality Control

U - Indicates compound was analyzed for but not detected SVOC - Semivolatile Organic Compounds SI - Site Investigation

 $QA/QC - Quality \ Assurance \ (Quality \ Conrtol \ U - Indicates \ compound \ was \ analyzed \ for \ but \ not \ detected$

Appendix L.6
Metals QA/QC Summary Results for Sites No.25 and No.26
Duluth Air National Guard Base, Duluth, Minnesota
(Results in milligrams per liter unless otherwise noted)

Location No.:	025-001-RB	025-002-RB	125-002-RB 025-003-RB 026-002-RB	026-002-RB
Sample Date:	05/11/95	05/16/95	05/19/95	05/04/95
Lab Sample No.:	9505512-01	9505612-02	9505767-01	9505209-06
Metals Matrix	Water	Water	Water	Water
Mercury, Total	0.0004 U	0.0004 U	0.0004 U	N/A
Cadmium, Total	0.004 U	0.004 U	0.005 U	0.004 U
Chromium, Total	0.01 U	0.002 U	0.002 U	0.01 U
Nickel, Total	0.02 U	0.02 U	0.02 U	N/A
Lead, Total	900'0	0.006	0.004 U	0.004 U

Location No.: Sample Date: Lab Sample No.: Metals Matrix	Equipment Blank S1-001-kB 05/03/95 05/18/95 9505164-11 9505174-05 Water Water	 \$1.001.FB 05/18/95 9505174-05 Water 	SI-002EB 05/19/95 9505767-02 Water
Mercury, Total	N/A	N/A	0.0004 U
Cadmium, Total	0.004 U	0.005 U	$0.005 \mathrm{U}$
Chromium, Total	0.01 U	0.002 U	$0.002~\mathrm{U}$
Nickel, Total	N/A	$0.02~\mathrm{U}$	0.02 U
Lead, Total	0.004 U	0.004 U	0.004 U

OPERATIONAL TECHNOLOGIES

CORPORATION

Minnesota Air National Guard Remedial Investigation/Feasible Study
Duluth, Minnesota 1315-197/1315-213
Southern Petroleum Laboratories Inc.
Houston, Texas
Data Evaluation Review

SAMPLE:

SOIL

026-001BH 2-2.5

Lab ID# H9-9505164-01

Date Sampled:

05/03/95

Date Received: 05/04/95

*Sample Identification needs to be corrected to read from 026-00BH 2-2.5 to 026-001BH 2-2.5.

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.8 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*No sample results were reported for Chromium-SW7191.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*No sample results were reported for Cadmium-SW6010.

*Met 6 month holding times. *COC information verified.

SOIL

026-001BH 9.5-10

Lab ID# H9-9505164-02

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.
*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.4 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 10 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

SOIL

026-004BH 2-2.5

Lab ID# H9-9505164-03

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.
*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 5.3 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Hit was detected at 9 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.

*COC information verified.

SOIL

026-004BH 9.5-10

Lab ID# H9-9505164-04

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

- *No hits were detected above the assigned detection limits.
- *All met 14 day holding time.
 *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

- *No hits were detected above the assigned detection limits.
- *Met 14 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits but Percent
- Difference was greater than 20% on internal standards.
 *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *Hit was detected at 2.5 mg/kg with the detection limit of 0.4 mg/kg.
- *Met 6 month holding times. *COC information verified.

Chromium-SW7191=

- *Hit was detected at 7 mg/kg with the detection limit of 2 mg/kg.
- *Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

- *No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.
- *Met 6 month holding times.
- *COC information verified.

SOIL

026-005BH 1.5-2.5

Lab ID# H9-9505164-05

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.
*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 4.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 7 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

SOIL

026-005BH 9.5-10

Lab ID# H9-9505164-06

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.4 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 3 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times.

*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.

*COC information verified.

SOIL

026-006BH 11.5-12

Lab ID# H9-9505164-07

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191=

*Hit was detected at 4 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.

*COC information verified.

SOIL

026-006BH 2-2.5

Lab ID# H9-9505164-08

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*Hits was detected on Fluoranthene at 870 ug/kg, Phenanthrene at 800 ug/kg, and

Pyrene at 710 ug/kg with detection limits of 660 ug/kg.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.
*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.4 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 5 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

026-005BH .5-1.5

Lab ID# H9-9505164-09

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

- *Hit was detected on Toluene at 7 ug/kg with the detection limit of 5 ug/kg.
- *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

- *No hits were detected above the assigned detection limits. Why was a 3x dilution was performed?
- *Met 14 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits but Percent Difference was greater than 20% on internal standards.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *Hit was detected at 4.2 mg/kg with the detection limit of 0.4 mg/kg.
- *Met 6 month holding times.
- *COC information verified.

Chromium-SW7191=

- *Hit was detected at 8 mg/kg with the detection limit of 1 mg/kg.
- *Met 6 month holding times.
- *COC information verified.

Cadmium-SW6010=

- *No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.
- *Met 6 month holding times.
- *COC information verified.

SOIL

026-001BH 9-9.5

Lab ID# H9-9505164-10

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

-SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.
*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.5 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 6 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is

questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

WATER

EQUIPMENT BLANK

Lab ID# H9-9505164-11

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

*Hit was detected on Chloroform at 5 ug/l with the detection limit of 5 ug/l.

*All met 14-day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.
*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*No hit was detected above the assigned detection limit of 0.004 mg/l.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*No hit was detected above the assigned detection limit of 0.01 mg/l.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.004 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.004 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.

*COC information verified.

SOIL

026-001BH 9-9.5 MS

Lab ID# H9-9505164-12

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles SW846-8240 =

*Spiked compounds were all recovered within acceptable QA/QC Criteria.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*Spiked compounds were all recovered within acceptable QA/QC Criteria.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on internal standards.
*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421= *Spi

*Spiked compound was recovered within QC Limits.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Spiked compound was recovered within QC Limits.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*Spiked compound was recovered within QC Limits.

*Met 6 month holding times. *COC information verified.

SOIL

026-001BH 9-9.5 MSD

Lab ID# H9-9505164-13

Date Sampled:

05/03/95

Date Received: 05/04/95

Volatiles

SW846-8240 =

- *Spiked compounds were all recovered within acceptable QA/QC Criteria. All RPD's were within QC Limits.
- *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

- *Spiked compounds were all recovered within acceptable QA/QC Criteria. All RPD's were within QC Limits.
- *Met 14 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits but Percent Difference was greater than 20% on internal standards.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *Spiked compound was recovered within QC Limits. RPD was within QC Limits.
- *Met 6 month holding times.
- *COC information verified.

Chromium-SW7191=

- *Spiked compound was recovered within QC Limits. RPD was within QC Limits.
- *Met 6 month holding times.
- *COC information verified.

Cadmium-SW6010=

- *Spiked compound was recovered within QC Limits. RPD was within QC Limits.
- *Met 6 month holding times.
- *COC information verified.

SOIL

026-003BH 0.5-1.5

Lab ID# H9-9505209-01

Date Sampled:

05/04/95

Date Received: 05/05/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits. A dilution factor of 2x was

applied but was not stated as to what reason it was performed?

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on a few internal standards. *All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 3.2 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 6 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is

questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

SOIL

026-003BH 1.5-2.5

Lab ID# H9-9505209-02

Date Sampled:

05/04/95

Date Received: 05/05/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on a few internal standards. *All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 5.9 mg/kgwith the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 18 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.

*COC information verified.

SOIL

026-003BH 6.5-7.0

Lab ID# H9-9505209-03

Date Sampled:

05/04/95

Date Received: 05/05/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on a few internal standards. *All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421= *Hit was detected at 4.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Hit was detected at 3.2 mg/kg with the detection limit of 0.2 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.

*COC information verified.

SOIL

026-002BH 2-2.5

Lab ID# H9-9505209-04

Date Sampled:

05/04/95

Date Received: 05/05/95

Volatiles

SW846-8240

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 3.2 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 3.1 mg/kg with the detection limit of 0.2 mg/kg.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

SOIL

026-002BH 6.5-7

Lab ID# H9-9505209-05

Date Sampled:

05/04/95

Date Received: 05/05/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits but Percent

Difference was greater than 20% on a few internal standards. *All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 1.5 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 3.8 mg/kg with the detection limit of 0.2 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 8 mg/kg. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 8 mg/kg as opposed to what was requested in the SOW at 0.5 mg/kg. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

WATER

026-002 RB

Lab ID# H9-9505209-06

Date Sampled:

05/04/95

Date Received: 05/05/95

Volatiles

SW846-8240 =

- *Hit was detected on Chloroform at 5 ug/l with the detection limit of 5 ug/l.
- *All met 14 day holding time.
 *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

- *Hit was detected on 4-Chloro-3-Methylphenol at 8 ug/l above the detection limit of 5
- *Met 7 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *All RPD's, initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *No hit was detected above the assigned detection limit of 0.004 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Chromium-SW7191=

- *No hit was detected above the assigned detection limit of 0.01 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.004 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.004 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

WATER

TRIP BLANK

Lab ID# H9-9505209-07

Date Sampled:

4/26/95

Date Received: 05/05/95

Volatiles SW846-8240 =

- *No hits were detected above the assigned detection limits.
- *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

WATER

025-001 RB

Lab ID# H9-9505512-01

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*No hit was detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*Hit was detected on Phenol at 51 ug/l with the detection limit of 5 ug/l. *Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 0.006 mg/l above the assigned detection limit of 0.004 mg/l.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*No hit was detected above the assigned detection limit of 0.01 mg/l.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.004 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.004 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.
*COC information verified.

Nickel-SW6010=

*No hit was detected above the assigned detection limit of 0.02 mg/l. Detection limit for this element should be at 0.01 mg/l as compared to 0.02 mg/l. Please provide an

explanation for detection variance.

*Met 6 month holding times.
*COC information verified.

Mercury-SW7470=

*No hit was detected above the assigned detection limit of 0.0004 mg/l.

*Met 6 month holding times.

*COC information verified.

SOIL

025-008BH 10.5-11

Lab ID# H9-9505512-02

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421= *Hit was detected at 4.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191= *Hit was detected at 18 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times.

*COC information verified.

Cadmium-SW6010= *No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times.

*COC information verified.

Nickel-SW6010= *Hit was detected at 26 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times.

*COC information verified.

Mercury-SW7471= *No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

SOIL

025-008BH 14.5-15

Lab ID# H9-9505512-03

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*Hits were detected on Ethylbenzene at 30 ug/kg, Toluene at 29 ug/kg, and Xylenes (Total) at 230 ug/kg with detection limits of 5 ug/kg.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits. One RPD was not within limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 6.8 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Hit was detected at 12 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 27 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-010BH 2-2.5

Lab ID# H9-9505512-04

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*Hits on Fluoranthene at 420 ug/kg and Pyrene at 360 ug/kg with detection limits 330 ug/kg.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits. One RPD was not within limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 4.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 15 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 20 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-010BH 6-6.5

Lab ID# H9-9505512-05

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*Hits were detected on Ethylbenzene at 7 ug/kg, Toluene at 17 ug/kg, and Xylenes (Total) at 5 ug/kg with detection limits of 5 ug/kg.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits. One RPD

was not within limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 3.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191=

*Hit was detected at 19 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times.

*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times.

*COC information verified.

Nickel-SW6010=

*Hit was detected at 25 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times.

*COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

SOIL

025-011BH 2-2.5

Lab ID# H9-9505512-06

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 5.2 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 19 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 21 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times.

*COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

025-011BH 6.5-7

Lab ID# H9-9505512-07

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*Hit was detected on Xylenes (Total) at 6 ug/kg with the detection limit of 5 ug/kg. Please confirm why Acetone at 53 ug/kg and 2-Butanone at 15 ug/kg were not quantitated on the report forms.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits. A 10x dilution was noted as being performed but the accompanying raw data displays only a 1x dilution. Also, the Quantitation Report does not display surrogate on the listing, only the internal

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were diluted outside acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 6.3 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 17 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010= *Hit was detected at 18 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-006BH 21.5-22

Lab ID# H9-9505512-08

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*Hit was detected on Xylenes (Total) at 5 ug/kg with the detection limit of 5 ug/kg. Please confirm why Acetone at 36 ug/kg and 2-Butanone at 12 ug/kg were not quantitated on the report forms.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits. A 3x dilution was noted as being performed but the accompanying raw data displays only a 1x dilution.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 7.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 16 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 18 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times.
*COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

SOIL

025-009BH 10-11

Lab ID# H9-9505512-09

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits. Two Internal Standard % Differences were greater than 20% in ratio but were within QC Area Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 5.8 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 24 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010= *Hit was detected at 22 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

SOIL

025-009BH 11-12

Lab ID# H9-9505512-10

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 5.5 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Hit was detected at 18 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 19 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-009BH 14-14.5

Lab ID# H9-9505512-11

Date Sampled:

05/12/95

Date Received: 05/13/95

Volatiles SW846-8240 =

*Hit was detected on Xylenes (Total) at 8 ug/kg with the detection limit of 5 ug/kg. Please confirm why Acetone at 54 ug/kg and 2-Butanone at 17 ug/kg were not quantitated on the report forms.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421= *Hit was detected at 3.8 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191= *Hit was detected at 17 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 18 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-009BH 14.5-15 MS

Lab ID# H9-9505512-12

Date Sampled:

05/12/95

Date Received: 05/13/95

*Sample ID Name needs to read 025-009BH 14.5-15 from 025-009BH 14-14.5 MS. Please Correct.

Volatiles

SW846-8240 =

- *All spiked compounds were recovered within QC acceptance criteria.
- *All met 14 day holding time. *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *Spiked amount was recovered within QC acceptable criteria.
- *Met 6 month holding times. *COC information verified.
- Chromium-SW7191=
- *Spiked amount was recovered within QC acceptance criteria.
- *Met 6 month holding times. *COC information verified.
- Cadmium-SW7610=
- *Spiked amount was recovered within QC acceptance criteria.
- *Met 6 month holding times. *COC information verified.
- Nickel-SW6010=
- *Spiked amount was recovered within QC acceptance criteria.
 - *Met 6 month holding times. *COC information verified.
- Mercury-SW7471=
- *Spiked amount was recovered within QC acceptance criteria.
- *Met 6 month holding times.
- *COC information verified.

025-009BH 14.5-15 MSD

Lab ID# H9-9505512-13

Date Sampled:

05/12/95

Date Received: 05/13/95

*Sample ID Name needs to read 025-009BH 14.5-15 from 025-009BH 14-14.5 MSD. Please Correct.

Volatiles

SW846-8240 =

*All spiked compounds were recovered within QC acceptance criteria. All RPD's are within QC Criteria.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Spiked amount was recovered within QC acceptable criteria. All RPD's are within QC Criteria.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Spiked amount was recovered within QC acceptance criteria. All RPD's are within

QC Criteria.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*Spiked amount was recovered within QC acceptance criteria. All RPD's are within

QC Criteria.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Spiked amount was recovered within QC acceptance criteria. All RPD's are within

QC Criteria.

*Met 6 month holding times.
*COC information verified.

Mercury-SW7471=

*Spiked amount was recovered within QC acceptance criteria. All RPD's are within

QC Criteria.

*Met 6 month holding times. *COC information verified.

SOIL

025-008BH 10.5-11 MS

Lab ID# H9-9505512-14

Date Sampled:

05/12/95

Date Received: 05/13/95

Semivolatiles SW846-8270 =-

*All spiked compounds were recovered within QC acceptable criteria.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits. Internal Standard RPD's were not within QC Criteria but with areas remaining within.

*All surrogate recoveries were within acceptable QC limits.

SOIL

025-008BH 10.5-11

Lab ID# H9-9505512-15

Date Sampled:

05/12/95

Date Received: 05/13/95

Semivolatiles SW846-8270 =

- *All spiked compounds were recovered within QC acceptable criteria. All RPD's were within QC Criteria.
- *Met 14 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits. Internal Standard RPD's were not within QC Criteria but with areas remaining within.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

WATER

025-001 TB

Lab ID# H9-9505556-01

Date Sampled:

05/15/95

Date Received: 05/16/95

Volatiles SW846-8240 =

- *No hits were detected above the assigned detection limits.
 *All met 14 day holding time.
 *COC information verified.

- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

SOIL

025-001BH 6.5-7.0

Lab ID# H9-9505556-02

Date Sampled:

05/15/95

Date Received: 05/16/95

Volatiles

SW846-8240 =

*Hits were detected on Benzene at 84,000 ug/kg, Ethylbenzene at 140,000 ug/kg, Toluene at 460,000 ug/kg, and Xylenes (Total) at 680,000 ug/kg with detection limits of 12,000 ug/kg. Dilution Factor of 2,500x was applied for analysis.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits. All surrogate recoveries for the Diluted analysis were recovered outside of QC Range.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*Hits were detected on 2-Methylnaphthalene at 12,000 ug/kg. Naphthalene at 14,000 ug/kg with detection limits of 3,300 ug/kg and Phenol at 350 ug/kg with the detection limit of 330 ug/kg. A 10x dilution was performed for this analysis.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits. All surrogates for the 10x

dilution were diluted out of QC Range.
*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 3.2 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191=

*Hit was detected at 9 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times.

*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.4 mg/kg.

*Met 6 month holding times.

*COC information verified.

Nickel-SW6010=

*Hit was detected at 25 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times.

*COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

SOIL

025-002BH 11.5-12.0

Lab ID# H9-9505556-03

Date Sampled:

05/15/95

Date Received: 05/16/95

Volatiles

SW846-8240 =

*Hits were detected on Benzene at 1,700 ug/kg, Ethylbenzene at 9,700 ug/kg, Toluene at 26,000 ug/kg, and Xylenes (Total) at 52,000 ug/kg with detection limits of 12,000 ug/kg. Dilution Factor of 250x was applied for analysis.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits. All surrogates were diluted out of QC Range for the diluted sample.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*Hits were detected on 2-Methylnaphthalene at 2,300 ug/kg and Naphthalene at 2,100 ug/kg with detection limits of 330 ug/kg

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 1.7 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 6 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 21 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-003BH 11-12

Lab ID# H9-9505556-04

Date Sampled:

05/15/95 ---

Date Received: 05/16/95

Volatiles

SW846-8240 =

*Hits were detected on Ethylbenzene at 120 ug/kg and Xylenes (Total) at 800 ug/kg with detection limits of 25 ug/kg. Dilution Factor of 5x was applied for analysis.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 3.0 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Hit was detected at 15 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 22 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

To a manifestation verified.

SOIL

025-003BH 10'-11'

Lab ID# H9-9505556-05

Date Sampled:

05/15/95

Date Received: 05/16/95

Volatiles

SW846-8240 =

- *Hits were detected on Ethylbenzene at 5,300 ug/kg and Xylenes (Total) at 29,000 ug/kg with detection limits of 1,200 ug/kg. Dilution Factor of 250x was applied for analysis.
- *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits. Surrogates that were applied to the dilution were diluted out of QC Range.
- *Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

- *Hit was detected on 2-Methylnapthalene at 330 ug/kg with the detection limit of 330 ug/kg
- *Met 14 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *One RPD's was outside QC Limits; Initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.6 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.
*COC information verified.

Chromium-SW7191=

*Hit was detected at 11 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*Hit was detected at 0.5 mg/kg with a detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 26 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

WATER

025-003 TB

Lab ID# H9-9505612-01

Date Sampled:

05/16/95 -

Date Received: 05/17/95

Volatiles SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

WATER

025-002 RB

Lab ID# H9-9505612-02

Date Sampled:

05/16/95

Date Received: 05/17/95

Volatiles

SW846-8240 =

- *Hit was detected on Chloroform at 5 ug/l with the detection limit of 5 ug/l.
- *All met 14 day holding time. *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

- *Hit was detected on Di-n-butylphthalate at 5 ug/l with the detection limit of 5 ug/l.
- *Met 7 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits..
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *Hit was detected at 0.006 mg/l above the assigned detection limit of 0.004 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Chromium-SW7191=

- *No hit was detected above the assigned detection limit of 0.002 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.004 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.004 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.
*COC information verified.

Nickel-SW6010=

*No hit was detected above the assigned detection limit of 0.02 mg/l. Detection limit for this element should be at 0.01 mg/l as compared to 0.02 mg/l. Please provide an

explanation for detection variance.
*Met 6 month holding times.

*COC information verified.

Mercury-SW7470=

- *No hit was detected above the assigned detection limit of 0.0004 mg/l.
- *Met 6 month holding times.
- *COC information verified.

SOIL

025-007BH 11.5'-12'

Lab ID# H9-9505612-03

Date Sampled:

05/16/95

Date Received: 05/17/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but

within area QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 6.1 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 6 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*No hit was detected above the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 16 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-005BH 11.5'-12'

Lab ID# H9-9505612-04

Date Sampled:

05/16/95

Date Received: 05/17/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but

within area QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 1.9 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 6 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*No hit was detected above the detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 17 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-004BH 11.5'-12'

Lab ID# H9-9505612-05

Date Sampled:

05/16/95

Date Received: 05/17/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 2.0 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 9 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 17 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

SOIL

025-004BH 19.5'-20'

Lab ID# H9-9505612-06

Date Sampled:

05/16/95

Date Received: 05/17/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 4.5 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191=

*Hit was detected at 18 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times.

*COC information verified.

Cadmium-SW6010=

*No hit was detected above the detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

"COC information vention

Nickel-SW6010=

*Hit was detected at 23 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times.

*COC information verified.

Mercury-SW7471=

*No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

025-003 RB

WATER

Lab ID# H9-9505767-01

Date Sampled:

05/19/95

Date Received: 05/20/95

Volatiles -

SW846-8010 =

- *Hits were detected on Chloroform at 5 ug/l a nd Methylene Chloride at 4 ug/l with the
- detection limit of 1 ug/l.
 *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.
- *Missing BTEX raw data and chromatograms for this sample.

Volatiles

SW846-8020 =

- *No hits were detected above the assigned detection limits of 1 ug/l.
- *All met 14 day holding time.
 *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.
- *Missing raw data and chromatograms for this sample.

Semivolatiles SW846-8270 =

- *Hit was detected on Di-n-butylphthalate at 5 ug/l with the detection limit of 5 ug/l.
- *Met 7 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits..
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *No hit was detected above the assigned detection limit of 0.004 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Chromium-SW7191=

- *No hit was detected above the assigned detection limit of 0.002 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Cadmium-SW6010=

- *No hit was detected above the assigned detection limit of 0.005 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.005 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.
- *Met 6 month holding times.
- *COC information verified.

Nickel-SW6010=

- *No hit was detected above the assigned detection limit of 0.02 mg/l. <u>Detection limit for this element should be at 0.01 mg/l as compared to 0.02 mg/l. Please provide an explanation for detection variance.</u>
- *Met 6 month holding times.
- *COC information verified.

Mercury-SW7470=

- *No hit was detected above the assigned detection limit of 0.0004 mg/l.
- *Met 6 month holding times.
- *COC information verified.

WATER

SI-002FB

Lab ID# H9-9505767-02

Date Sampled:

05/19/95

Date Received: 05/20/95

Volatiles

SW846-8260 =

*Hit was detected on Chloroform at 6 ug/l with the detection limit of 5 ug/l.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*It was noted on the COC to perform a Semi-volatile analysis but the laboratory received the sample broken and informed us to not being able to perform the analysis. But, Raw data was accompanied with the sample report forms and not documented on the report forms.

Metals

Lead-SW7421=

*No hit was detected above the assigned detection limit of 0.004 mg/l.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191=

*No hit was detected above the assigned detection limit of 0.002 mg/l.

*Met 6 month holding times.

*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.005 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.005 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.
*COC information verified.

Nickel-SW6010=

*No hit was detected above the assigned detection limit of 0.02 mg/l. <u>Detection limit for this element should be at 0.01 mg/l as compared to 0.02 mg/l.</u> Please provide an

explanation for detection variance.*Met 6 month holding times.

*COC information verified.

Mercury-SW7470=

*No hit was detected above the assigned detection limit of 0.0004 mg/l.

*Met 6 month holding times.

*COC information verified.

025-001-MW-GW01

WATER

Lab ID# H9-9505767-03

Date Sampled:

05/19/95

Date Received: 05/20/95

Volatiles

SW846-8010 =

*No hits were detected above the assigned detection of 1 ug/l.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits."

*Blanks were clean of any contamination.

*Missing BTEX raw data and chromatograms for this sample.

Volatiles

SW846-8020 =

*No hits were detected above the assigned detection limits of 1 ug/l.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

*Missing raw data and chromatograms for this sample.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.
*Missing raw data and chromatograms.

Metals

Lead-SW7421=

*Hit was detected at 0.008 mg/l above the assigned detection limit of 0.004 mg/l.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 0.036 mg/l above the assigned detection limit of 0.002 mg/l.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.005 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.005 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is

questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010=

*Hit was detected at 0.07 mg/l above the assigned detection limit of 0.02 mg/l.

*Met 6 month holding times. *COC information verified.

Mercury-SW7470=

*No hit was detected above the assigned detection limit of 0.0004 mg/l.

*Met 6 month holding times.

*COC information verified.

WATER

025-TB

Lab ID# H9-9505767-04

Date Sampled:

05/19/95

Date Received: 05/20/95

Volatiles

SW846-8010 =

*No hits were detected above the assigned detection of 1 ug/l.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

*Missing BTEX raw data and chromatograms for this sample.

Volatiles

SW846-8020 =

*Hit was detected at Methylene Chloride at 3 ug/l above the assigned detection limits

of 1 ug/l. Hit was confirmed to be detected in the method blank.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

*Missing raw data and chromatograms for this sample.

WATER

025-003 MW-GW04

Lab ID# H9-9505767-05

Date Sampled:

05/19/95

Date Received: 05/20/95

Volatiles

SW846-8010 =

*Hit was detected on Methylene Chloride at 30 ug/l with the detection limit of 25 ug/l.

A 25x dilution factor was applied.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

*Missing BTEX raw data and chromatograms for this sample.

Volatiles

SW846-8020 =

*Hits were detected for Total BTEX at 5,920 ug/l above the assigned detection limits of

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

*Missing raw data and chromatograms for this sample.

Semivolatiles

SW846-8270 =

*Hit was detected on 2-Methylnaphthalene at 11 ug/l, 4-Methylphenol at 9 ug/l, Naphthalene at 75 ug/l, and Phenol at 15 ug/l with the detection limits of 5 ug/l.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits..

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*Hit was detected at 0.005 mg/l above the assigned detection limit of 0.004 mg/l.

*Met 6 month holding times.

*COC information verified.

Chromium-SW7191=

*Hit was detected at 0.015 mg/l with the assigned detection limit of 0.002 mg/l.

*Met 6 month holding times.

*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.005 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.005 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is

questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.

*COC information verified.

Nickel-SW6010=

*Hit was detected at 0.03 ug/l above the assigned detection limit of 0.02 mg/l.

*Met 6 month holding times.

*COC information verified.

Mercury-SW7470=

*No hit was detected above the assigned detection limit of 0.0004 mg/l.

*Met 6 month holding times.

*COC information verified.

WATER

025-003A-GW01

Lab ID# H9-9505767-06

Date Sampled:

05/19/95

Date Received: 05/20/95

Volatiles

SW846-8010 =

*No hits were detected above the assigned detection limits. A 25x dilution was performed on this analysis but no hits were encountered, what was the reason for the dilution?

- *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.
- *Missing BTEX raw data and chromatograms for this sample.

Volatiles

SW846-8020 =

- *Hits were detected for Total BTEX at 5,530 ug/l above the assigned detection limits of
- *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.
- *Missing raw data and chromatograms for this sample.

Semivolatiles

SW846-8270 =

- *Hit was detected on 2-Methylnaphthalene at 8 ug/l, 4-Methylphenol at 8 ug/l, Naphthalene at 51 ug/l, and Phenol at 12 ug/l with the detection limits of 5 ug/l.
- *Met 7 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits..
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Metals

Lead-SW7421=

- *Hit was detected at 0.007 mg/l above the assigned detection limit of 0.004 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Chromium-SW7191=

- *Hit was detected at 0.019 mg/l with the assigned detection limit of 0.002 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Cadmium-SW6010=

- *No hit was detected above the assigned detection limit of 0.005 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.005 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.
- *Met 6 month holding times.
- *COC information verified.

Nickel-SW6010=

- *Hit was detected at 0.04 ug/l above the assigned detection limit of 0.02 mg/l.
- *Met 6 month holding times.
- *COC information verified.

Mercury-SW7470=

- *No hit was detected above the assigned detection limit of 0.0004 mg/l.
- *Met 6 month holding times.
- *COC information verified.
- *Need Metals Raw data for all analytes run.

WATER

026-002-MW-GW1

Lab ID# H9-9505714-01

Date Sampled:

05/18/95

Date Received: 05/19/95

Volatiles

SW846-8260 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits..

*All surrogate recoveries were within acceptable QC limits.

WATER

026-003A-MW-GW1

Lab ID# H9-9505714-02

Date Sampled:

05/18/95

Date Received: 05/19/95

Volatiles

SW846-8260 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits..

*All surrogate recoveries were within acceptable QC limits.

WATER

026-001-MW-GW1

Lab ID# H9-9505714-03

Date Sampled:

05/18/95

Date Received: 05/19/95

Volatiles

SW846-8260 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits...

*All surrogate recoveries were within acceptable QC limits.

WATER

SI-001-FB

Lab ID# H9-9505714-05

Date Sampled:

05/18/95

Date Received: 05/19/95

Volatiles

SW846-8260 =

*Hit on Chloroform at 5 ug/l was detected with a detection limit of 1 ug/l.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*Hit was detected on Di-n-butylphthalate at 5 ug/l with the detection limit of 5 ug/l.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but

within area QC Limits..

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*No hit was detected above the assigned detection limit of 0.004 mg/l.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*No hit was detected above the assigned detection limit of 0.002 mg/l.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.005 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.005 mg/l as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is questionable without a valid explanation of the elevated detection limit.

*Met 6 month holding times.
*COC information verified.

Nickel-SW6010=

*No hit was detected above the assigned detection limit of 0.02 mg/l. The limit for Nickel as stated in the SOW is to be at 0.01 mg/l but is reported at 0.02 mg/l. Please

explain the variance in the detection limits.

*Met 6 month holding times. *COC information verified.

Mercury-SW7470=

*No hit was detected above the assigned detection limit of 0.0004 mg/l.

*Met 6 month holding times.

*COC information verified.

WATER

SI-001-TB

Lab ID# H9-9505714-06

Date Sampled:

Date Received: 05/19/95

Volatiles

SW846-8260 =

- *No hits were detected above the assigned detection limits.
- *All met 14 day holding time.
- *COC information verified.

 *All initial and continuing calibrations were within acceptable QC Limits.

 *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

WATER

026-003-RB

Lab ID# H9-9505714-07

Date Sampled:

05/18/95

Date Received: 05/19/95

Volatiles

SW846-8260 =

- *Hit was detected on Chloroform at 4 ug/l and Methylene Chloride at 3 ug/l with detection limits of 1 ug/l.
- *All met 14 day holding time.
- *COC information verified.
- *All initial and continuing calibrations were within acceptable QC Limits.
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

- *No hits were detected above the assigned detection limits.
- *Met 7 day extraction holding time and 40 day extract holding time.
- *COC information verified.
- *Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits..
- *All surrogate recoveries were within acceptable QC limits.
- *Blanks were clean of any contamination.

WATER

025-002-MW-GW1

Lab ID# H9-9505714-08

Date Sampled:

05/18/95

Date Received: 05/19/95

Volatiles

SW846-8010 =

*Hit was detected on 1,2-Dichloroethane at 11 ug/l with the detection limit of 1 ug/l.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

*Missing raw data and chromatograms for this sample.

Volatiles

SW846-8020 =

*Hits were detected for Total BTEX at 1 ug/l above the assigned detection limits of 1

ug/l.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable OC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

*Missing BTEX raw data and chromatograms for this sample.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Initial and continuing calibrations had % Differences that were outside QC Ranges but

within area QC Limits..

*All surrogate recoveries were within acceptable QC limits.
*Blanks were clean of any contamination.

Metals

Lead-SW7421=

*No hit was detected above the assigned detection limit of 0.004 mg/l.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191=

*Hit was detected at 0.011 mg/l with the assigned detection limit of 0.002 mg/l.

*Met 6 month holding times.
*COC information verified.

Cadmium-SW6010=

*No hit was detected above the assigned detection limit of 0.005 mg/l. The detection limit for Cadmium for this batch analyzed had an elevated detection limit of 0.005 mg/l

as opposed to what was requested in the SOW at 0.0006 mg/l. Usability of the data is

questionable without a valid explanation of the elevated detection limit.
*Met 6 month holding times.

*COC information verified.

Nickel-SW6010=

*Hit was detected at 0.03 ug/l above the assigned detection limit of 0.02 mg/l.

*Met 6 month holding times.

*COC information verified.

Mercury-SW7470=

*No hit was detected above the assigned detection limit of 0.0004 mg/l.

*Met 6 month holding times.

*COC information verified.

SOIL

025-012BH 11.5'-12'

Lab ID# H9-9505673-02

Date Sampled:

05/17/95

Date Received: 05/18/95

Volatiles SW846-8240 =

*Hits were detected on Benzene at 29 ug/kg, Toluene at 8 ug/kg, and Xylenes (Total) at

11 ug/kg with detection limits of 5 ug/kg.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 = .

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits. *Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421= *Hit was detected at 4.3 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191= *Hit was detected at 11 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010= *No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010= *Hit was detected at 15 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471= *No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.

SOIL

025-012BH 19.5'-20'

Lab ID# H9-9505673-03

Date Sampled:

05/17/95

Date Received: 05/18/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles

SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits. *Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421= *Hit was detected at 5.3 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified.

Chromium-SW7191= *Hit was detected at 13 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010= *No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010= *Hit was detected at 9 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471= *No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times.

*COC information verified.

025-013BH 11.5'-12'

Lab ID# H9-9505673-04

Date Sampled:

05/17/95

Date Received: 05/18/95

Volatiles

SW846-8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Semivolatiles SW846-8270 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All RPD's, initial and continuing calibrations were within acceptable QC Limits. *Initial and continuing calibrations had % Differences that were outside QC Ranges but within area QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Metals

Lead-SW7421= *Hit was detected at 3.2 mg/kg with the detection limit of 0.4 mg/kg.

*Met 6 month holding times. *COC information verified:

Chromium-SW7191= *Hit was detected at 6 mg/kg with the detection limit of 1 mg/kg.

*Met 6 month holding times. *COC information verified.

Cadmium-SW6010= *No hit was detected above the assigned detection limit of 0.5 mg/kg.

*Met 6 month holding times. *COC information verified.

Nickel-SW6010= *Hit was detected at 16 mg/kg with the detection limit of 2 mg/kg.

*Met 6 month holding times. *COC information verified.

Mercury-SW7471= *No hit was detected above the assigned detection limit of 0.1 mg/kg.

*Met 6 month holding times. *COC information verified.