(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

529319

(10) Numéro de publication internationale WO 2004/041841 A2

(51) Classification internationale des brevets⁷:

C07K

(21) Numéro de la demande internationale :

PCT/FR2003/003293

(22) Date de dépôt international:

4 novembre 2003 (04.11.2003)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 02/13792 5 novembre 2002 (05.11.2002)

- (71) Déposants (pour tous les États désignés sauf US): UNIVERSITE DE LA MEDITERRANEE (AIX-MAR-SEILLE II) [FR/FR]; Jardin du Pharo, 58, boulevard Charles Livon, F-13284 Marseille Cedex 07 (FR). CENTRE NATIONAL DE LA RECHERCHE SCI-ENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cédex 16 (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): RAOULT, Didier [FR/FR]; 16, rue de Lorraine, F-13008 Marseille (FR). DRANCOURT, Michel [FR/FR]; 9, Traverse de la Pauline, F-13012 Marseille (FR).
- (74) Mandataire: DOMANGE, Maxime; Cabinet Beau de Loménie, 232, avenue du Prado, F-13295 Marseille Cedex 08 (FR).

- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GO. GW, ML, MR, NE, SN, TD, TG).

Déclaration en vertu de la règle 4.17 :

relative à la qualité d'inventeur (règle 4.17.iv)) pour US seulement

Publiée:

sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: MOLECULAR IDENTIFICATION OF BACTERIA OF GENUS STREPTOCOCCUS AND RELATED GENUSES
- IDENTIFICATION MOLECULAIRE DES BACTERIES DU GENRE STREPTOCOCCUS ET GENRES (54) Titre : **APPARENTES**
- (57) Abstract: The invention concerns a method for detecting by molecular identification a bacterium of one of the species of genuses Streptococcus and four related genuses Enterococcus, Gemella, Abiotrophia et Granulicatella which consists in using as probe or primer: the rpoB gene or fragment of one said bacterium of sequences SEQ ID N°1 to 3, or an oligonucleotide or a mixture of oligonucleotides derived from sequences SEQ ID N° 8 to 35, or in particular oligonucleotides of sequences SEQ ID n° 6 and 7.
- (57) Abrégé: La présente invention a pour objet un procédé de détection par identification moléculaire d'une bactérie de l'une des espèces des genres Streptococcus et 4 genres apparentés Enterococcus, Gemella, Abiotrophia et Granulicatella pour lequel on utilise comme sonde ou amorce: -le gène ou fragment de gène rpoB d'une dite bactérie des séquences SEQ ID Nº1 à 3, ou - un olignoucléotide ou mélange d'oligonucléotides tiré des séquences SEQ ID N° 8 à 35, ou notamment les oligonucléotides des séquences SEQ ID n° 6 et 7.

10

15

20

25

30

IDENTIFICATION MOLECULAIRE DES BACTERIES DU GENRE STREPTOCOCCUS ET GENRES APPARENTES

La présente invention concerne le domaine du diagnostic. Plus précisément, l'invention concerne une méthode pour l'identification moléculaire des bactéries du genre *Streptococcus* et genres apparentés *Enterococcus*, *Gemella*, *Abiotrophia* et *Granulicatella* par les techniques de détection et/ou d'amplification et séquençage à l'aide de sondes ou d'amorces oligonucléotidiques appliquées à des souches de ces genres bactériens.

Les bactéries du genre Streptococcus et de quatre genres apparentés : Enterococcus, Gemella, Abiotrophia et Granulicatella, sont des bactéries cocciformes, gram positif et catalase négative dont on reconnaît actuellement plus d'une quarantaine d'espèces. Les bactéries du genre Lactococcus, précédemment classées parmi les streptocoques comme Streptococcus groupe N, n'entrent pas dans le champ de ce brevet du fait de leur rareté en pathologie humaine, et du fait qu'elles sont facilement discriminés des streptocoques par leur croissance à + 10°C. Le genre Streptococcus comporte officiellement 55 espèces. Le genre Gemella comporte 6 espèces, le genre Abiotrophia comporte 1 espèce, le genre Granulicatella comporte 3 espèces, le genre Enterococcus comporte 24 espèces [www.springer-ny.com/bergeysoutline/main.htm]. Ces espèces sont facilement et fréquemment cultivées à partir de prélèvements environnementaux, de prélèvements cliniques vétérinaires et de prélèvements cliniques humains [Ruoff Kl. (1999) in Manuel of Clinical Microbiology, pp. 283-296, ASM press]. Chez l'homme, différentes espèces du genre Streptococcus sont responsables d'infections communautaires éventuellement sévères du fait du caractère invasif des streptocoques considérés ou du fait de la production de toxines et de manifestations cliniques éventuellement graves à distance du foyer infectieux. Par exemple, Streptococcus pyogenes (Streptocoque groupe A) est responsable d'angines et de syndromes post-streptococciques incluant le rhumatisme articulaire aigu au cours duquel la destruction des valves cardiaques processus inflammatoire est responsable d'une valvulopathie éventuellement mortelle. Egalement, plusieurs espèces du genre Streptococcus en particulier les Streptocoques du groupe A, du groupe C, et du groupe G sont

10

15

20

25

30

responsables d'infections invasives mortelles en particulier de myosite c'est-àdire de destruction des tissus cutanés et sous cutanés et du tissu musculaire comme cela a été décrit depuis quelques années. Egalement par exemple Streptococcus pneumoniae (pneumocoque) est responsable de pneumonie, de méningite et de septicémie. Par ailleurs, les bactéries des genres Streptococcus, Enterococcus, Gemella, Abiotrophia, et Granulicatella sont responsables d'endocardites c'est-à-dire d'infection des valves cardiaques chez l'homme, lesquelles constituent des maladies infectieuses mortelles [Casalta JP et al. Journal Clinical Microbiology, 2002, 40: 1845-1847]. Egalement, certaines espèces des genres considérés sont responsables d'infections nosocomiales, par exemple, les bactéries du genre Streptococcus du groupe A sont responsables de bactériémies qui succèdent à des explorations par endoscopie digestive. Egalement, les bactéries du genre Enterococcus sont responsables d'infections urinaires nosocomiales après utilisation d'antibio-prophylaxie par des antibiotiques de la famille des céphalosporines auxquelles elles sont naturellement résistantes. Ces espèces bactériennes posent par ailleurs le problème de leur résistance croissante aux antibiotiques, résistance à la pénicilline G de Streptococcus pneumoniae [Garav J. Lancet Infect. Dis. 2002, 2: 404-415] et résistance à la vancomycine d'Enterococcus spp. [Gold H.S. Clin. Infect. Dis. 2001, 33: 210-219; Bonten M.J. et al. Lancet Infect. Dis. 2001, 1:314-325].

Ces différentes espèces bactériennes posent le problème de leur détection dans les prélèvements pathologiques chez l'homme et de leur identification lorsqu'elles ont été isolées à partir desdits prélèvements. Les méthodes conventionnelles de détection reposent en effet sur la mise en évidence de bactéries cocciformes gram positif, à l'examen direct du produit pathologique. Il est cependant connu que cette détection microscopique des bactéries du genre *Streptococcus* et de genres apparentés dans les prélèvements cliniques a un seuil de sensibilité de 10⁴ CFU/ml. Il est donc tout à fait possible qu'un prélèvement pathologique chez l'homme ou chez l'animal contienne une des espèces considérées qui ne soit pas détectée à l'examen microscopique direct de ce prélèvement pathologique. Par ailleurs, bien que leur structure soit celle de bactéries Gram — positif, elles peuvent apparaître

10

15

20

25

30

faussement Gram-négatif après coloration de Gram du prélèvement pathologique et donner lieu à une identification erronée ou à une impasse d'identification. Ceci est particulièrement fréquent pour les bactéries du genre *Gemella*. Chez l'homme, c'est en particulier le cas lors de l'examen anatomopathologique et bactériologique des valves cardiaques dans le cas d'une endocardite.

Lorsque qu'une bactérie d'une espèce des genres considérés est isolée au laboratoire, les méthodes conventionnelles d'identification phénotypique sont les plus couramment utilisées pour l'identification des bactéries des espèces du genre Streptococcus et des genres apparentés et plusieurs trousses d'identification ainsi que des automates ont été développés pour aider à l'identification phénotypique des bactéries du genre Streptococcus et des genres apparentés. Sur ce plan, le degré d'identification en pratique courante est variable. En particulier, un des tests utilisés pour l'identification des Streptocoques et des bactéries des genres apparentés est l'observation d'une réaction hémolytique, c'est-à-dire la destruction par la bactérie des hématies contenues dans une gélose au sang. Cependant cette réaction d'hémolyse peut être inhibée par la présence d'oxygène ou par la présence de péroxyde lorsque les bactéries Streptocoques sont cultivées en présence de concentration importante de dioxyde de carbone. Il est par ailleurs reconnu qu'il existe un certain degré de subjectivité dans l'appréciation de l'hémolyse par les colonies de Streptocoques et donc une variabilité d'inter opérateur qui nuit ensuite à la qualité de l'identification de ces bactéries. Pour les streptocoques alphahémolytiques, un deuxième test est celui de la sensibilité à l'optochine qui permet de reconnaître Streptococcus pneumoniae qui est sensible à ce composé. Cependant, des souches de Streptococcus pneumoniae résistant à l'optochine ont été rapportées [Lund E. Acta Patho. Microbiol. Immunol. Scand. 1959, 47, 308-315]. Un dernier test phénotypique est le sérotypage, ce test peut être faussement positif en particulier pour les streptocoques de sérogroupe D du fait d'antigénicité croisée entre les streptocoques du groupe D, Enterococcus et Pediococcus.

Plusieurs systèmes moléculaires ont été développés pour l'identification de certains sérogroupes ou de certaines espèces du genre Streptococcus, en

10

15

20

25

30

particulier les streptocoques du groupes A (Streptococcus pyogenes, Streptococcus anginosus, Streptococcus constellatus. Streptococcus intermedius) et du groupe B (Streptococcus agalactiae) [Daly J.A. et al. J Clin Microbiol. 1991, 29: 80-82; Heelan J.S. et al. Diagn. Microbiol. Infect. Dis. 1996, 24 : 65-69] de même que pour Streptococcus pneumoniae [Denys G.A. et Carrey R.B. J. Clin. Microbiol. 1992,30: 2725-2727] par hybridation de sondes spécifiques ciblant le gène codant l'ARN ribosomal 16S. Egalement, différents systèmes basés sur l'amplification par PCR de gènes codant pour des toxines ou des facteurs de virulence ont été développés pour la discrimination de Streptococcus pneumoniae parmi les Streptocoques α-hémolytiques [Salo P. et al. J. Infect. Dis. 1995, 171: 479-482; Morrisson K. et al. J. Clin. Microbiol. 2000, 38, 434-437; Kaijalainen T. et al. J. Microbiol. Meth. 2002, 51: 111-118], ainsi que pour la détection de Streptococcus agalactiae [Mawn J.A. et al. J. Clin. Pathol. 1993, 46: 633-636]. Ces différents systèmes cependant ne permettent l'identification que d'une ou quelques espèces du genre Streptococcus.

Un système d'identification de trois espèces de streptocoque a été développé, basé sur l'amplification de l'entretoise 16S-23S [Forsman P. et al. Microbiology, 1997, 143, 3491-3500], mais l'identification n'a été limitée dans ce travail qu'à certaines espèces d'intérêt animal: Streptococcus agalactiae, Streptococcus dysgalactiae et Streptococcus uberis. Par ailleurs, il est actuellement indispensable de disposer dans les laboratoires de 2 cibles moléculaires distinctes pour la détection et l'identification des streptocoques, ceci afin de pallier les risques de contamination moléculaire inhérents à l'utilisation d'une seule cible.

Enfin, aucun système de détection et d'identification des genres apparentés à *Streptococcus* n'a été développé et plus particulierement pour les bacteries du genre *Enterococcus*, *Gemella*, *Abiotrophia* et *Granulicatella*.

Les inventeurs ont démontré selon la présente invention, que le gène *rpoB* constitue un marqueur génétique permettant la détection et l'identification spécifique de la bactérie de chaque espèce du genre *Streptococcus* et de 4 genres apparentés : *Enteroccocus, Gemella, Abiotrophia* et *Granulicatella*.

Bien que ce gène ait été précédemment montré comme un outil d'identification bactérienne dans différents genres bactériens, aucune publication

10

15

20

25

30

ne fait mention de son utilisation pour l'identification des bactéries des genres *Streptococcus* et des quatre genres apparentés et il n'y avait donc aucune suggestion quant à l'intérêt de la séquence de ce gène pour l'identification des dites bactéries. Au contraire, quelques séquences partielles du gène *rpob* chez quelques espèces, disponibles dans GenBank montrait une faible hétérogénéité, faisant douter de l'intérêt de ce gène comme outil d'identification pour ces bactéries. Enfin, les inventeurs ont développé un outil d'identification de quatre genres bactériens simultanément, obligeant la mise au point d'amorces dégénérées qui ne pouvaient être déduites d'aucune des séquences *rpo*B déterminées pour chaque espèce.

Plus particulièrement, la présente invention concerne des séquences d'acides nucléiques spécifiques du genre ou de chaque espèce du genre *Streptococcus* et des genres apparentés dont la séquence nucléotidique est tirée du gène *rpoB* des dites bactéries.

Selon Lazcano et al. [J. Mol. Evol. (1988) 27:365-376], les ARN polymérases sont divisées en deux groupes selon leur origine, l'un constitué par les ARN polymérases virales ARN- ou ADN-dépendantes, et l'autre constitué par les ARN polymérases ADN-dépendantes d'origine eucaryote ou procaryotes (archaébactéries et eubactéries). Les ARN polymérases ADN-dépendantes eubactériennes sont caractérisées par une constitution multimérique simple et conservée notée « core enzyme », représentée par αββ', ou « holoenzyme » représentée par αββ'σ [Yura and Ishihama, Ann. Rev. Genet. (1979) 13:59-97].

De nombreux travaux ont mis en évidence le rôle fonctionnel, au sein du complexe enzymatique multimérique, de la sous-unité β de l'ARN polymérase eubactérienne. Les ARN polymérases archaébactérienne et eucaryote présentent, pour leur part, une structure plus complexe pouvant atteindre une dizaine, voire une trentaine de sous-unités [Pühlet et al. Proc . Natl. Acad. Sci. USA (1989) 86 :4569-4573].

Les gènes qui codent les différentes sous-unités $\alpha\beta\beta'\sigma$ de l'ARN polymérase ADN-dépendante chez les eubactéries, respectivement les gènes rpoA, rpoB, rpoC et rpoD, sont classés en différents groupes comprenant les gènes codant pour des protéïnes constitutives des sous-unités ribosomiques ou pour des enzymes impliqués dans la réplication et la réparation du génome

15

٠,٠.

20

25

30

[Yura and Yshihma, Ann. Rev. Genet. (1979) 13:59-97]. Certains auteurs ont montré que les séquences des gènes *rpoB* et *rpoC* pouvaient être utilisées afin de construire des arbres phylogénétiques [Rowland et al. Biochem. Soc. Trans. (1992) 21:40S] permettant de séparer les différents embranchements et sous-embranchements parmi les règnes du vivant.

Avant d'exposer plus en détail l'invention, différents termes, utilisés dans la description et les revendications, sont définis ci-après :

- Par « acide nucléique extrait de bactéries » on entend soit l'acide nucléique total, soit l'ADN génomique, soit les ARN messagers, soit encore l'ADN obtenu à partir de la transcription inverse des ARN messagers.
- Un « fragment nucléotidique » ou un « oligonucléotide » sont deux termes synonymes désignant un enchaînement de motifs nucléotidiques caractérisé par une séquence informationnelle des acides nucléiques naturels (ou éventuellement modifiés) et susceptibles de s'hybrider, comme les acides nucléiques naturels, avec un fragment nucléotidique complémentaire ou sensiblement complémentaire, dans des conditions prédéterminées de stringence stricte. L'enchaînement peut contenir des motifs nucléotidiques de structure différente de celle des acides nucléiques naturels. Un fragment nucléotidique (ou oligonucléotide) peut contenir par exemple jusqu'à 100 motifs nucléotidiques. Il contient généralement au moins 8, et en particulier au moins 12 motifs nucléotidiques, en particulier de 18 à 35, et peut être obtenu à partir d'une molécule d'acide nucléique naturelle et/ou par recombinaison génétique et/ou par synthèse chimique.
- Un motif nucléotidique est dérivé d'un monomère qui peut être un nucléotide naturel d'acide nucléique dont les éléments constitutifs sont un sucre, un groupement phosphate et une base azotée choisie parmi l'adénine (A), la guanine (G), l'uracile (U), la cytosine (C), la thymine (T); ou bien le monomère est un nucléotide modifié dans l'un au moins des trois éléments constitutifs précédents; à titre d'exemple, la modification peut intervenir soit au niveau des bases, avec des bases modifiées telles que l'inosine, qui peut s'hydrider avec toute base A, T, U, C ou G, la méthyl-5-désoxycytidine, la désoxyuridine, la diméthylamino-5-désoxyuridine ou toute autre base modéfiée capable d'hybridation, soit au

10

15

20

25

30

niveau du sucre, par exemple le ermplacement d'ua moins un désoxyribose par un polyamide [Nielsen PE et al., Science (1991) 254:1497-1500], soit encore au niveau du groupement phosphate, par exemple par remplacement par des esters choisis notamment parmi les diphosphates, les alkylphosphonates et les phosphorothioates.

Par « hybridation.», on entend le processus au cours duquel, dans des conditions appropriées, deux fragments nucléotidiques ayant des séquences suffisamment complémentaires sont susceptibles de s'associer par des liaisons hydrogène stables et spécifiques, pour former un double brin. Les conditions d'hybridation sont déterminées par la « stringence », c'est à dire la rigueur des conditions opératoires. L'hybridation est d'autant plus spécifique qu'elle est effectuée à plus forte stringence. La stringence est fonction notamment de la composition en bases d'un duplex sonde/cible, ainsi que par le degré de mésappariement entre deux acides nucléiques. La stringence peut également être fonction des paramètres de la réaction d'hybridation, tels que la concentration et le type d'espèces ioniques présentes dans la solution d'hybridation, la nature et la concentration d'agents dénaturants et/ou la température d'hybridation. La stringence des conditions dans lesquelles une réaction d'hybridation doit être réalisée dépend notamment des sondes utilisées. Toutes ces données sont bien connues et les conditions appropriées peuvent éventuellement être déterminées dans chaque cas par des expériences de routine. En général, selon la longueur des sondes utilisées, la température pour la réaction d'hybridation est comprise entre environ 20 et 65°C, en particulier entre 35 et 65°C dans une solution saline à une concentration d'environ 0,8 à 1 M.

Une « sonde » est un fragment nucléotidique possédant une spécificité d'hybridation dans des conditions déterminées pour former un complexe d'hybridation avec un acide nucléique ayant, dans le cas présent, une séquence nucléotidique comprise soit dans un ARN messager, soit dans un ADN obtenu par transcription inverse dudit ARN messager, produit de transcription; une sonde peut être utilisée à des fins de diagnostic (notamment sondes de capture ou de détection) ou à des fins de thérapie,

10

15

20

25

30

. - : - -

- Une « sonde de capture » est une sonde immobilisée ou immobilisable sur un support solide par tout moyen approprié, par exemple par covalence, par adsorption, ou par synthèse directe sur un solide. Des exemples de supports comprennent les plaques de microtitration et les puces à ADN.
- Une « sonde de détection » est une sonde marquée au moyen d'un agent marqueur choisi par exemple parmi les isotopes radioactifs, les enzymes, en particulier les enzymes susceptibles d'agir sur un substrat chromogéne, fluorigène ou luminescent (notamment une peroxydase ou une phosphatase alcaline), les composés chimiques chromophores, les composés chromogènes, fluorigènes ou luminescents, les analogues des bases nucléotidiques et les ligands tels que la biotine.
 - Une « sonde d'espèce » est une sonde permettant l'identification spécifique de l'espèce d'une bactérie.
 - Une « sonde de genre » est une sonde permettant l'identification spécifique du genre d'une bactérie.
 - Une « amorce » est une sonde comprenant par exemple 10 à 100 motifs nucléotidiques et possédant une spécificité d'hybridation dans des conditions déterminées pour les réactions d'amplification enzymatique.
 - Par « réaction d'amplification » on entend une réaction de polymérisation enzymatique, par exemple dans une technique d'amplification telle que la PCR, initiée par des oligonucléotides amorces et utilisant une ADN polymérase.
 - Par « réaction de séquençage », on entend l'obtention de la séquence d'un fragment d'acide nucléique ou d'un gène complet par un procédé de polymérisation abortive à partir d'amorces oligonucléotidiques et utilisant lesdits didésoxynucléotides (Sanger F, Coulson AR (1975), J.Mol.Biol. 94 : 441) ou hybridations multiples avec des sondes multiples fixées sur support solide telles qu'utilisées dans les puces ADN par exemple.

Les séquences des gènes *rpo*B des bactéries *Streptococcus pneumoniae*, *Streptococcus pyogenes*, *Streptococcus mutans et Streptococcus agalactiae* ont été décrites dans la littérature.

Les inventeurs ont déterminé les séquences complètes des gènes *rpoB* d'autres espèces de bactéries du genre *Streptococcus* et apparentées:

10

15

20

25

30

Streptococcus anginosus et Streptococcus equinus, d'Abiotrophia defectiva, et une très large portion du gène pour Streptococcus mutans et Enterococcus faecalis. Ces espèces ont été choisies par les inventeurs comme représentant les principaux groupes génétiques déterminés sur la base de l'étude du gène 16S dans les bactéries du genre Streptococcus et genres apparentés, encadrant l'ensemble des espèces actuellement décrites dans ce genre, de sorte que l'alignement des séquences rpoB obtenues chez ces espèces puisse encadrer vraisemblablement l'ensemble des séquences rpoB de toutes les espèces de ces genres bactériens plus précisément, il s'agit donc des espèces phylogénétiquement les plus divergentes parmi l'ensemble des espèces actuellement décrites dans ce genre, de sorte que l'alignement des séquences rpob obtenu chez ces espèces puisse encadrer phylogénétiquement vraisemblablement l'ensemble des séquences rpob de toutes les espèces de ce genre bactérien.

A partir de ces séquences complètes ou quasi complètes et après de nombreuses tentatives infructueuses tel que rapporté dans les exemples 1 et 2 ci-après, les inventeurs ont mis en évidence les séquences consensus et spécifiques SEQ.ID. n° 6 et 7 suivantes :

- SEQ ID N° 6: 5' AARYTNGGMCCTGAAGAAAT-3', et
- SEQ ID N°7: 5'-TGNARTTTRTCATCAACCATGTG-3',

dans lesquelles:

- N représente l'inosine ou l'un des 4 nucléotides A, T, C ou G,
- R représente A ou G,
- M représente A ou C. et
- Y représente C ou T.

et les séquences inverses et séquences complémentaires.

Les inventeurs ont déterminé lesdites séquences SEQ.ID.n°6 et 7 comme étant non seulement consensuelles entre toutes les bactéries du genre *Streptococcus* et desdits 4 genres apparentés mais en outre spécifiques de la famille des bactéries du genre *Streptococcus* et desdits 4 genres apparentés.

A la position correspondant à un nucléotide N, Y, M ou R dans les séquences SEQ.ID. n°6 et 7 on trouve des nucléotides variables dans les séquences cibles complémentaires en fonction de l'espèce de la bactérie

10

15

20

25

30

considérée, mais tous les autres nucléotides sont conservés dans toutes les espèces des bactéries du genre *Streptococcus* et desdits 4 genres apparentés.

Des séquences SEQ.ID n°6 et 7 ainsi définies sont présentes dans les gènes *rpoB* de toute bactérie du genre *Sreptococcus* et desdits 4 genres apparentés et spécifiques des bactéries du genre *Streptococcus* et desdits 4 genres apparentés et peuvent donc fournir des sondes de genre ou des amorces d'amplification pour détecter toute bactérie du genre *Streptococcus* et desdits 4 genres apparentés.

A cet effet, la présente invention a donc pour objet un oligonucléotide qui comprend une séquence d'au moins 8, de préférence au moins 12, de préférence encore de 18 à 35, motifs nucléotidiques, dont au moins une séquence de 8, de préférence 12, de préférence encore 18 motifs consécutifs inclus dans l'une des séquences SEQ.ID. n° 6 et 7 suivantes :

- SEQ ID N° 6: 5' AARYTNGGMCCTGAAGAAAT-3', et
- SEQ ID N°7: 5'-TGNARTTTRTCATCAACCATGTG-3',

dans lesquelles :

- N représente l'inosine ou l'un des 4 nucléotides A, T, C ou G,
- R représente A ou G,
- M représente A ou C, et
- Y représente C ou T,

et les séquences inverses et séquences complémentaires.

La présente invention a également pour objet un mélange d'oligonucléotides, caractérisé en ce qu'il est constitué d'un mélange équimolaire de d'oligonucléotides selon l'invention, ayant tous une séquence différente et comprenant tous une séquence incluse dans SEQ ID n°6 ou tous une séquence incluse dans SEQ ID n°7.

Plus particulièrement, la présente invention a également pour objet un mélange de dits oligonucléotides, constitué d'un mélange équimolaire de 32 oligonucléotides de séquences différentes comprenant chacune au moins 15, de préférence encore au moins 18 motifs nucléotidiques consécutifs inclus dans la séquence suivante :

- SEQ ID N° 6 : 5' AARYTNGGMCCTGAAGAAAT-3', dans laquelle :

- R représente A ou G.
- Y représente C ou T,
- M représente A ou C, et
- N représente A, T, C ou G,
- 5 et les séquences inverses et séquences complémentaires.

La présente invention a également pour objet un mélange de dits oligonucléotides, constitué d'un mélange équimolaire de 8 oligonucléotides de séquences différentes comprenant chacune au moins 15, de préférence encore au moins 18 motifs nucléotidiques consécutifs inclus dans la séquence suivante :

- SEQ ID N° 6: 5' AARYTNGGMCCTGAAGAAAT-3',

dans laquelle:

10

15

20

30

- R représente A ou G,
- Y représente C ou T,
- M représente A ou C, et
- N représente l'inosine,

et les séquences inverses et séquences complémentaires.

La présente invention a également pour objet un mélange de dits oligonucléotides, constitué d'un mélange équimolaire de 16 oligonucléotides de séquences différentes comprenant chacune au moins 15, de préférence encore au moins 21 motifs nucléotidiques consécutifs inclus dans la séquence suivante :

- SEQ ID N°7: 5'-TGNARTTTRTCATCAACCATGTG-3',

dans laquelle:

- R représente A ou G, et
- N représente A, T, C ou G.
- 25 et les séquences inverses et séquences complémentaires.

La présente invention a également pour objet un mélange de dits oligonucléotides, constitué d'un mélange équimolaire de 4 oligonucléotides de séquences différentes comprenant chacune au moins 15, de préférence encore au moins 21 motifs nucléotidiques consécutifs inclus dans la séquence suivante :

- SEQ ID N°7: 5'-TGNARTTTRTCATCAACCATGTG-3', dans laquelle :

- R représente A ou G, et
- N représente l'inosine,

20

25

30

et les séquences inverses et séquences complémentaires.

Lesdits mélanges d'oligonucléotides peuvent s'hybrider avec une séquence complémentaire incluse dans le gène *rpoB* de toutes les bactéries du genre *Streptococcus* et desdits 4 genres apparentés et peuvent donc être utilisés à titre de sonde de genre ou amorces d'amplification pour la détection ou respectivement l'amplification d'un fragment de gène *rpoB* d'une dite bactérie.

Pour préparer un dit mélange équimolaire d'oligonucléotides selon les synthèses d'oligonucléotides connues de l'homme de l'art, il suffit de mettre en œuvre un mélange équimolaire de 4 ou 2 nucléotides pour les nucléotides correspondant à N ou respectivement K, N, R ou Y, à savoir :

- un mélange équimolaire des 4 nucléotides, A, T, C et G pour les nucléotides correspondant à N dans lequel N représente A, T, C ou G, et
- un mélange équimolaire des 2 nucléotides T et G pour les nucléotides correspondant à K,
- un mélange équimolaire des 2 nucléotides A et C pour les nucléotides correspondant à N,
- un mélange équimolaire des 2 nucléotides A et G pour les nucléotides correspondant à R, et
- un mélange équimolaire des 2 nucléotides C et T pour un nucléotide représenté par Y.

On obtient ainsi un mélange équimolaire de 32 (2³x4) et 16 (2²x4) nucléotides de séquences différentes pour respectivement les 2 séquences SEQ ID n°6 et 7.

Dans lesdits mélanges équimolaires d'oligonucléotides selon l'invention, du fait que « N » représente l'inosine qui peut s'hybrider avec toute base ou un mélange équimolaire des 4 bases A, T, C, G, les séquences SEQ.ID.n° 6 et 7 peuvent s'hybrider avec la séquence complémentaire incluse dans le gène *rpoB* de toutes les bactéries du genre *Streptococcus* et desdits 4 genres apparentés.

En outre, ces séquences consensus SEQ.ID. n° 6 et SED ID n° 7 encadrent des séquences hyper variables dont la séquence est spécifique pour chaque espèce de bactérie du genre *Streptococcus*. Ces séquences encadrées par SEQ.ID. n° 6 et 7 peuvent donc être utilisées à titre de sonde d'espèce des bactéries du genre *Streptococcus* et desdits 4 genres apparentés.

10

15

20

25

30

De plus, les séquences SEQ.ID. n°6 et 7 ont été déterminées comme encadrant un fragment du gène *rpob* comprenant une zone dont la longueur variable est d'environ 720 pb et comme comprenant les plus courtes séquences spécifiques pour chaque espèce de la bactérie du genre *Streptococcus* et desdits 4 genres apparentés.

Les inventeurs ont ainsi pu mettre en évidence des sondes d'espèce pour chacune des 28 espèces de bactérie du genre *Streptococcus* et desdits 4 genres apparentés étudiées correspondant aux séquences SEQ.ID.n° 8 à 35 décrites à l'exemple 2 ci-après, encadrées par les séquences consensus SEQ.ID.n° 6 et 7.

Un autre objet de la présente invention est un gène ou fragment de gène rpob d'une bactérie du genre streptococcus ou d'un desdits 4 genres apparentés, excepté les séquences SEQ ID n°11, 12, 14 et des bactéries Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus mutans et Streptococcus agalactiae, les séquences inverses et séquences complémentaires, caractérise en ce qu'il comprend une séquence telle que décrite dans les séquences SEQ ID n° 8 à 35 décrites à l'exemple 2;.

Un autre objet de la présente invention est la séquence complète du gène rpoB des bactéries, Streptococcus anginosus, Streptococcus equinus et Abiotrophia defectiva telles que décrites dans les séquences SEQ.ID. n° 1 à 3, utiles notamment pour un procédé selon l'invention.

Un autre objet de la présente invention est la séquence quasi complète du gène *rpob* de la bacterie *Enterococcus faecalis* telle que décrite dans la séquence SEQ.ID n° 5, utile notamment pour un procédé selon l'invention.

Dans les séquences SEQ.ID n° 1 à 3 et 5 et 8 à 35 décrites dans le listage de séquences en fin de description :

- le nucléotide M représente A ou C,
- le nucléotide K représente T ou G,
- le nucléotide R représente A ou G,
- le nucléotide W représente A ou T,
- le nucléotide Y représente C ou T,
- le nucléotide N représente A, T, C, G ou I,
- le nucléotide S représente C ou G,
- le nucléotide V représente A, C ou G.

10

15

20

Les séquences consensus tirées de SEQ.ID.n° 6 et 7 mises en évidence selon la présente invention, peuvent être utilisées à titre de sonde de genre, d'amorce d'amplification ou de réaction de séquençage dans des procédés de détection de bactérie du genre *Streptococcus* et desdits 4 genres apparentés par identification moléculaire.

Les séquences tirées des séquences SEQ.ID.n° 6 et 7 permettent dont non seulement de préparer des sondes de genre des bactéries du genre Streptococcus et desdits 4 genres apparentés mais aussi de détecter et identifier l'espèce de ladite bactérie par amplification et séquençage en utilisant lesdites séquences comme amorces.

La séquence complète du gène *rpoB* peut être utilisée pour identifier la bactérie pas seulement par l'étude de sa séquence primaire, mais aussi, par l'étude des structures secondaire et tertiaire de l'ARN messager provenant de la transcription de la séquence complète d'ADN.

Un autre objet de la présente invention est un oligonucléotide ou un fragment de gène *rpo*B ayant une séquence comprise ou consistant dans les séquences SEQ.ID.n°8 à 35, y compris donc les séquences SEQ ID n°11, 12, 14 et 22 des bactéries *Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus mutans* et respectivement *Streptococcus agalactiae* et parmi les oligonucléotides ou fragments de séquences inverses ou complémentaires tels que définis ci-dessus.

10

15

·4:

20

25

30

Les inventeurs, après analyse des différentes séquences, ont déterminé par comparaison deux à deux de toutes les séquences SEQ ID n°8 à 35, que, le taux d'homologie entre deux séquences différentes parmi lesdites séquences SEQ ID n°8 à 35 est au maximum de 98,7%. En dessous de 98,7% d'homologie entre les séquences, celles-ci identifient des bactéries d'espèces différentes. En conséquence, la présente invention a également pour objet des oligonucléotides ou des fragments de gènes *rpo*B de séquences comprises ou consistant dans lesdites séquences SEQ ID n°8 à 35, les séquences inverses, les séquences complémentaires ainsi que dans les séquences présentant au moins 98,7% d'homologie (c'est-à-dire un taux d'au moins 98,7% de similitude dans les séquences) par rapport aux dites séquences SEQ ID n°8 à 35, les séquences inverses et respectivement séquences complémentaires.

Les oligonucléotides, fragments de gène et gènes objets de la présente invention, ont été décrits comme comportant des séquences d'ADN, c'est-à-dire avec des oligonucléotides A, T, C et G. Toutefois, la présente invention a également pour objet des oligonucléotides comprenant des séquences d'ARN correspondantes, c'est-à-dire dans lesquelles T est remplacé par U.

Dans la présente description, on entend par "séquences inverses et séquences complémentaires", les séquences suivantes :

- la séquence inverse de ladite séquence,
- la séquence complémentaire de ladite séquence, et
- la séquence complémentaire de la séquence inverse de ladite séquence.

Les séquences SEQ.I. n°1 à 35 peuvent être préparées par génie génétique et/ou par synthèse chimique, notamment par synthèse automatique, en utilisant les techniques bien connues de l'homme du métier.

Une première application d'un oligonucléotide selon l'invention est son utilisation comme sonde pour la détection, dans un échantillon biologique, de bactéries de l'une des espèces du genre *Streptococcus* et desdits 4 genres apparentés qui comprend une séquence nucléotidique dans l'une des séquences SEQ.ID. n°6 à 35, et leurs séquences inverses ou complémentaires.

Un oligonucléotide comprenant les séquences SEQ.ID.n° 6 et 7 sera utilisé à titre de sonde de genre et un oligonucléotide comprenant une

15

20

25

30

séquence comprise dans ou comprenant l'une des séquences SEQ.ID. n° 8 à 35, sera utilisée à titre de sonde d'espèce.

Plus particulièrement, la présente invention a pour objet un oligonucléotide comprenant une séquence spécifique d'une espèce d'une bactérie du genre streptococcus et dits genres apparentés, de préférence d'au moins 20 nucléotides consécutifs, de préférence encore au moins 30 nucléotides consécutifs inclus dans l'une des dites séquences SEQ ID n°8 à 35,ou le cas échéant un mélange équimolaire de dits oligonucléotides de séquences différentes.

De préférence, lesdites séquences comprises dans l'une des séquences SEQ ID n°8 à 35, ayant de préférence au moins 20 nucléotides, de préférence encore au moins 30 nucléotides consécutifs inclus dans l'une des séquences SEQ ID n°8 à 35, constituent les séquences spécifiques des différentes espèces respectives les plus courtes, utilisables comme sonde d'espèces des bactéries *Streptococcus* et des dits 4 genres apparentés concernées.

Les sondes selon l'invention peuvent être utilisées, à des fins de diagnostic, comme mentionné précédemment, par la détermination de la formation ou de l'absence de formation d'un complexe d'hybridation entre la sonde et un acide nucléique cible dans un échantillon, selon toutes les techniques d'hybridation connues et notamment les techniques de dépôt ponctuel sur filtre, ditres « DOT-BLOT » [Maniatis et al. (1982) Molecular Cloning, Cold Spring Harbor], les techniques de transfert d'ADN dites « SOUTHERN BLOT » [Southern E.M., J. Mol. Biol. (1975) 98:503], les techniques de transfert d'ARN dites « NOTHERN BLOT », ou les techniques dites « sandwich », en particulier avec une sonde de capture et/ou une sonde de détection, lesdites sondes étant capables de s'hybrider avec deux régions différentes de l'acide nucléique cible, et l'une au moins desdites sondes (généralement la sonde de détection étant capable de s'hybrider avec une région de la cible qui est spécifique de l'espèce, étant entendu que la sonde de capture et la sonde de détection doivent avoir des séquences nucléotidiques au moins partiellement différentes.

L'acide nucléique à détecter (cible) peut être de l'ADN ou de l'ARN (le premier obtenu après amplification par PCR). Dans le cas de la détection d'une

15

20

25

30

cible de type acide nucléique double brin, il convient de procéder à la dénaturation de ce dernier avant la mise en œuvre du procédé de détection. L'acide nucléique cible peut être obtenu par extraction selon les méthodes connues des acides nucléiques d'un échantillon à examiner. La dénaturation d'un acide nucléique double brin peut être effectuée par les méthodes connues de dénaturation chimique, physique ou enzymatique, et en particulier par chauffage à une température appropriée, supérieure à 80°C.

Pour mettre en œuvre les technique d'hybridation précitées, et en particulier les techniques « sandwich », une sonde de l'invention, appelée sonde de capture est immobilisée sur un support solide, et une autre sonde de l'invention, appelée sonde de détection, est marquée avec un agent marqueur. Les exemples de support et d'agent marqueur sont tels que définis précédemment.

De manière avantageuse, une sonde d'espèce est immobilisée sur un support solide, et une autre sonde d'espèce est marquée par un agent marqueur.

Une autre application d'un oligonucléotide de l'invention est son utilisation comme amorce nucléotidique comprenant une oligonucléotide monocaténaire choisi parmi les oligonucléotides ayant une séquence d'au moins 12 motifs nucléotidiques inclus dans l'une des séquences SEQ.ID. nº 6 à 35, qui est utilisable dans la synthèse d'un acide nucléique en présence d'une polymérase par un procédé connu en soi, notamment dans des méthodes d'amplification utilisant une telle synthèse en présence d'une polymérase (PCR, RT-PCR, etc.). En particulier, une amorce de l'invention peut être utilisée pour la transcription inverse spécifique d'une séquence d'ARN messager de bactérie d'une espèce du genre Streptococcus et desdits 4 genres apparentés pour obtenir une séquence d'ADN complémentaire correspondante. Une telle transcription inverse peut constituer le premier stade de la technique RT-PCR, le stade suivant étant l'amplification par PCR de l'ADN complémentaire obtenu. On peut également utiliser les amorces de l'invention pour l'amplification spécifique par réaction de polymérisation en chaîne de la séquence totale de l'ADN du gène rpoB d'une espèce du genre Streptococcus et desdits 4 genres apparentés.

10

15

20

25

30

Selon un cas particulier ladite amorce comprenant un oligonucléotide de l'invention comprend en outre la séquence sens ou anti-sens d'un promoteur reconnu par une ARN polymérase (promoteurs T7, T3, SP6 par exemple [Studier FW, BA Moffatt (1986) J. Mol. Biol. 189:113]: de telles amorces sont utilisables dans des procédés d'amplification d'acide nucléique faisant intervenir une étape de transcription, tels que, par exemple, les techniques NASBA ou 3SR [Van Gemen B. et al. Abstract MA 1091, 7th International Conference on AIDS (1991) Florence, Italy].

Un autre objet de l'invention est une amorce nucléotidique comprenant un oligonucélotide choisi parmi les oligonucléotides ayant une séquence comprenant l'une des séquences SEQ ID n° 6 à 35 ou une séquence incluse dans SEQ.ID. n° 6 à 35 qui est utilisable pour le séquençage total ou partiel du gène *rpoB* d'une souche quelconque d'une espèce du genre *Streptococcus* et desdits 4 genres apparentés.

Le séquençage du gène *rpoB* partiel ou complet chez toute bactérie du genre *Streptococcus* et genres apparentés permet l'identification de toute bactérie *Streptococcus* et desdits 4 genres apparentés par analyse bio informatique de cette séquence et la reconnaissance de nouvelles espèces de bactéries *Streptococcus* et desdits 4 genres apparentés inconnues.

De préférence, dans une utilisation comme amorce ou pour le séquençage des gènes *rpoB*, on utilise un dit mélange d'oligonucléotides selon l'invention, et de préférence encore des dits mélanges d'oligonucléotides consistant dans les séquences SEQ ID n°6 et SEQ ID n°7.

Plus précisément, la présente invention fournit un procédé de détection par identification d'une bactérie de l'une des espèces du genre *Streptococcus* et desdits 4 genres apparentés caractérisé en ce qu'on utilise :

un gène *rpoB* complet ou quasi complet de ladite bactérie selon la présente invention ainsi qu'un gène ou fragment de gène *rpoB* d'une bactérie *streptococcus pyogenes*, streptococcus pneumoniae, streptococcus mutans et streptococcus agalactiae comprenant une séquence telle que décrite respectivement dans les séquences SEQ ID n°11, 12, 14 et 22, les séquences inverses et les séquences complémentaires, utiles notamment comme sonde d'espèces et/ou

10

15

20

25

30

- un dit fragment dudit gène rpoB de ladite bactérie selon la présente invention, comprenant une séquence nucléotidique choisie parmi l'une des séquences SEQ.ID.n° 8 à 35, les séquences inverses et les séquences complémentaires, utile notamment comme sonde d'espèces, et/ou
- un oligonucléotide selon la présente invention comprenant une séquence incluse dans l'une des séquences SEQ ID n°8 à 35, les séquences inverses et les séquences complémentaires, utile notamment comme sonde d'espèces, et/ou
- un oligonucléotide ou dit mélange d'oligonucléotides selon la présente invention comprenant une séquence constituée de motifs nucléotidiques consécutifs, inclus dans l'une des séquences SEQ.ID.n°6 et 7, utile notamment comme sonde de genre ou .amorce d'amplification.

De préférence, dans ledit procédé de détection selon l'invention, on utilise :

un dit fragment du gène *rpoB* de ladite bactérie comprenant une séquence choisie parmi l'une des séquences SEQ ID n° 8 à 35 ou un oligonucléotide de séquence comprise dans l'une des dites séquences SEQ ID n°8 à 35, les séquences inverses et séquences complémentaires, et/ou

- au moins un dit mélange d'oligonucléotides selon la présente invention, dont les séquences de préférence consistent dans les séquences SEQ ID n° 6 et 7, et leurs séquences inverses et séquences complémentaires dans lesquelles de préférence encore N représente l'inosine.

Dans un premier mode de réalisation d'un procédé de détection selon l'invention, on cherche à mettre en évidence la présence d'une bactérie du genre *Streptococcus* et desdits 4 genres apparentés, on réalise les étapes dans lesquelles :

1. on met en contact au moins une sonde de genre comprenant un dit mélange d'oligonucléotides de séquences comprenant ou comprises dans l'une des séquences SEQ.ID.n° 6 et 7, les séquences inverses ou les séquences complémentaires selon l'invention, avec un échantillon contenant ou susceptible de contenir des acides nucléiques d'au moins

10

15

20

25

30

une telle bactérie du genre Streptococcus et desdits 4 genres apparentés, et

2. on détermine la formation ou l'absence de formation d'un complexe d'hybridation entre ladite sonde de genre et les acides nucléiques de l'échantillon, et on détermine la présence d'une dite bactérie du genre Streptococcus et desdits 4 genres apparentés s'il y a formation d'un complexe d'hybridation.

Dans une deuxième mode de réalisation d'un procédé de détection d'une bactérie du genre *Streptococcus* et desdits 4 genres apparentés, on réalise les étapes dans lesquelles :

- 1. On met en contact des amorces d'amplification comprenant desdits mélanges d'oligonucléotides comprenant une séquence incluse dans lesdites séquences SEQ.ID. n° 6 et 7, séquences inverses et séquences complémentaires selon l'invention, avec un échantillon contenant ou susceptibles de contenir des acides nucléiques d'au moins une telle bactérie du genre Streptococcus et desdits 4 genres apparentés avec :
 - comme amorce 5' : un dit mélange d'oligonucléotides comprenant une séquence incluse dans la séquence SEQ.ID.n° 6, ou de préférence consistant dans ladite séquence SEQ ID n° 6 complète, ou une séquence complémentaire selon l'invention ;
 - comme amorce 3': un dit mélange d'oligonucléotides comprenant une séquence incluse dans la séquence la séquence SEQ.ID.n°
 7 ou de préférence consistant dans ladite séquence SEQ ID n°
 7 complète, ou respectivement une séquence complémentaire selon l'invention.
- 2. On réalise une amplification d'acides nucléiques par réaction de polymérisation enzymatique et on détermine l'apparition ou l'absence d'un produit d'amplification, et on détermine ainsi la présence d'une dite bactérie dans l'échantillon si un produit d'amplification est apparu.

Ce deuxième mode de réalisation peut être utilisé pour détecter spécifiquement le genre d'une bactérie du genre *streptococcus* ou desdits 4 genres apparentés.

10

15

20

25

30

Mais, à l'étape 2 de ce deuxième mode de réalisation, on peut chercher à détecter spécifiquement une espèce donnée d'une bactérie du genre Streptococcus choisie parmi les espèces Streptococcus mutans, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus salivarius. Streptococcus sanguinis, Streptococcus suis, Streptococcus acidominimus, . Streptococcusagalactiae, Streptococcus anginosus, Streptococcus constellatus, Streptococcus difficilis, Streptococcus dysgalactiae, Streptococcus equi, Streptococcus equinus, Streptococcus intermedius. Streptococcus mitis, Streptococcus bovis, Granulicatella adjacens, Abiotrophia defectiva, Enterococcus avium, Enterococcus casselliflavus, Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus sacharolyticus, Gemella haemolysans et Gemella morbillorum., comme décrit dans la variante de réalisation d'un procédé de détection spécifique d'une espèce de dites bactéries, décrite ci-après

Comme cela a été précédemment exposé en introduction, les genres Streptococcus, Enterococcus, Granulicatella, Abiotrophia, et Gemella comportent plus d'espèces bactériennes que celles qui ont été effectivement séquencées dans ce travail. Toutefois, les espèces séquencées ont été choisies telles qu'elles encadrent toutes les espèces connues dans ces genres bactériens et sont en nombre suffisant pour démontrer l'application de la séquence rpoB à l'identification des espèces de ces genres.

Dans une variante de réalisation d'un procédé de détection spécifique d'une espèces desdites bactéries selon l'invention, on réalise les étapes dans lesquelles :

1- on met en contact un échantillon contenant ou susceptible de contenir des acides nucléiques d'au moins une telle bactérie, avec au moins une sonde d'espèce consistant dans un dit gène, dit fragment de gène ou dit oligonucléotide comprenant une séquence incluse dans l'une des séquences SEQ.ID n° 8 à 35, de préférence un oligonucléotide consistant dans l'une desdites séquences SEQ.ID. n° 8 à 35, les séquences inverses et séquences complémentaires selon l'invention, et

2- on détermine la formation ou l'absence d'un complexe d'hybridation entre ladite sonde et les acides nucléiques de l'échantillon, et on détermine ainsi

10

15

20

25

30

la présence de ladite bactérie dans l'échantillon s'il y a formation d'un complexe d'hybridation.

Dans une autre variante de réalisation du procédé selon l'invention dans lequel on cherche à détecter spécifiquement une espèce donnée d'une bactérie du genre *Streptococcus* et desdits 4 genres apparentés choisie parmi les 28 espèces citées ci-dessus, le procédé comprend les étapes dans lesquelles, dans un échantillon contenant ou susceptible de contenir des acides nucléiques d'au moins une dite bactérie :

- a) on réalise une réaction de séquençage d'un fragment du gène *rpoB* amplifié d'une dite bactérie donnée à l'aide des amorces nucléotidiques consistant dans desdits mélanges d'oligonucléotides comprenant des séquences incluses dans la séquence SEQ.ID. n° 6 comme amorce 5', et SEQ.ID. n° 7 comme amorce 3', de préférence les séquences consistant dans lesdites séquences SEQ.ID. n° 6 et 7, et leurs séquences complémentaires, et
- b) on détermine la présence ou l'absence de l'espèce donnée de ladite bactérie en comparant la séquence dudit fragment obtenu avec la séquence du gène complet *rpoB* de ladite bactérie ou la séquence d'un fragment du gène *rpoB* de ladite bactérie comprenant lesdites séquences n° 8 à 35 et séquences complémentaires selon l'invention, et on détermine ainsi la présence de ladite bactérie dans l'échantillon si la séquence du fragment obtenue est identique à la séquence connue du genre ou du fragment de gène *rpoB* de ladite bactérie.

La présente invention a également pour objet une trousse de diagnostic utile dans un procédé selon l'invention comprenant au moins un dit fragment de gène ou dit oligonucléotide de séquence comprise ou consistant dans les séquences SEQ.ID. n° 8 à 35 ou un dit oligonucléotide ou mélange d'oligonucléotides comprenant une séquence incluse dans une des séquences SEQ.ID. n° 6 et 7, et/ou au moins un dit fragment de gène *rpoB* d'une dite bactérie comprenant les séquences SEQ.ID. n° 8 à 35, et les séquences complémentaires selon l'invention.

Avantageusement, un trousse selon la présente invention comporte des dits oligonucléotides sous forme de "biopuces", c'est-à-dire fixés sur des

10

15

20

25

30

 $\cdots , \quad \cdot \ \cdot \ \cdot \ \cdot$

supports solides, notamment en verre, selon le procédé décrit dans le brevet US 5 744 305 (Affymetrix, Fodor et al) en utilisant la stratégie de reséquençage décrite dans la demande WO 95/11995 (Affymax, Chee et al) ou selon la méthode décrite par A Troesch et al. dans J. Clin. Microbiol., vol. 37(1), p 49-55, 1999. Les oligonucléotides synthétisés sur la "biopuce" réalisent le reséquençage de la région hyper variable du gène rpoB. Ce procédé présente un avantage considérable en terme de coût de production et sans compromis sur la qualité de l'identification des différentes espèces de part le choix de ces séquences d'identification. De préférence, ces oligonucléotides fixés sur le support solide de la "biopuce" comportent de 10 à 30 bases par exemple 20 bases, avec une position d'interrogation située dans la région centrale comme par exemple en 12ème position par rapport à l'extrémité 3' de la séquence pour des oligonucléotides de 20 bases. Un autre exemple consiste à utiliser des oligonucléotides de 17 bases, avec 2 positions d'interrogations : une en 10ème et une en 8ème position. D'autres oligonucléotides ont des longueurs comprises entre 10 et 25 nucléotides. Les positions d'interrogation varient alors en fonction de la longueur de l'oligonucléotide:

L'analyse est effectuée sur le système complet GeneChip® (référence 900228, Affymetrix, Santa Clara, CA) qui comprend le lecteur GeneArray®, le four d'hybridation GeneChip®, la station fluidique GeneChip® et le logicel d'analyse GeneChip®.

Un oligonucléotide selon l'invention peut aussi être utilisé à titre de sonde de thérapie génique pour traiter les infections provoquées par une souche appartenant à une espèce du genre *Streptococcus* et desdits 4 genres apparentés, ladite sonde comprenant un oligonucléotide tel que défini précédemment. Cette sonde de thérapie génique, capable de s'hybrider sur l'ARN messager et/ou sur l'ADN génomique desdites bactéries, peut bloquer les phénomènes de traduction et/ou transcription et/ou de réplication.

Le principe des méthodes de thérapie génique est connu et repose notamment sur l'utilisation d'une sonde correspondant à un brin anti-sens : la formation d'un hybride entre la sonde et le brin sens est capable de perturber au moins l'une des étapes du décryptage de l'information génétique. Les sondes de thérapie génique sont donc utilisables comme médicaments antibactériens,

permettant de lutter contre les infections causées par les bactéries des espèces du genre *Streptococcus* et desdits 4 genres apparentés.

L'invention sera mieux comprise à l'aide de l'exposé ci-après, divisé en exemples, qui concernent des expériences effectuées dans le but de réaliser l'invention et qui sont données à titre purement illustratif.

La figure 1 représente la visualisation des produits d'amplification par coloration au bromure d'éthidium après électrophorèse sur un gel d'agarose obtenu à l'exemple 3.

10 Exemple 1. Séquence du gène *rpoB* de trois espèces du genre *Streptococcus* et genre apparenté: *Abiotrophia defectiva, Streptococcus anginosus* et *Streptococcus equinus*.

La séquence complète du gène *rpoB* des bactéries des espèces Abiotrophia defectiva, Streptococcus anginosus et Streptococcus equinus a été déterminée par amplification enzymatique et séquençage automatique disponible chez les Streptocoques. Le choix de ces espèces a été basé sur l'analyse de l'arbre 16S qui montre une divergence génétique couvrant l'ensemble de l'arbre phylogénétique des streptocoques.

Stratégie et Séquençage :

15

20

25

30

Plusieurs séquences partielles de 510 pb de gènes rpo-B sont disponibles sur GenBank pour les 10 espèces de streptocoques suivantes : Streptococcus intermedius. Streptococcus Streptococcus sanguinis, pneumoniae, Streptococcus parasanguinis, Streptococcus oralis, Streptococcus mitis, Streptococcus cristalus, Streptococcus constallatus, Streptococcus anginosus et Granulicatella adjacens. [Majewski, J., Zawadzki, P., Pickerill, P., Cohan, F.M. and Dowson, C.G. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation.J. Bacteriol. 182, 1016-1023 (2000)], mais les amorces utilisées par ces auteurs n'amplifient qu'une fraction des espèces du genre Streptococcus et il n'a donc pas été possible de mener à bien notre travail sur la base de ces seules données. Il a donc fallu déterminer des amorces capables d'amplifier l'ensemble des souches de streptocoques, enterocoques, Abiotrophia, Gemella, et Granulicatella. Ces amorces devaient en outre encadrer une région présentant une diversité génétique suffisante pour

15

25

30

permettre de distinguer deux espèces entre elles. Cependant, l'alignement de ces séquences partielles publiées a permis de déterminer les amorces communes suivantes : (la numération se réfère à la séquence complète du Streptococcus. pyogenes)

SEQ ID N° 36: 5'- AGACGGACCTTCTATGGAAAA -3' (amorce 748F), SEQ ID N° 37: 5'- GGACACATACGACCATAGTG -3' (amorce 116R), et SIQ N° 38: 5'- GTTGTAACCTTCCCAWGTCAT -3' (amorce 830R).

Ces amorces ont permis de séquencer la partie centrale du gène rpoB de 714pb pour les cinq espèces choisies (*Streptococcus equinus, Streptococcus mutans, Streptococcus anginosus, Enterococcus faecalis, et Abiotrophia defectiva* A partir de ce fragment central, le séquençage a été poursuivi par la technique dite du génome Walker.

En dehors de cette zone publiée [Majewski,J., et al. J. Bacteriol. 2002, 182, 1016-1023], l'alignement des deux séquences complètes disponibles dans GenBank (*Streptococcus pneumoniae* [GenBank numéro d'accès AE008542] et *Streptococcus pyogenes* [GenBank numéro d'accès AE006480) ont permis de choisir les amorces suivantes :

- SEQ ID N° 39: 5'- GTCTTCWTGGGYGATTTCCC -3' (amorce 2215R),
- SEQ ID N° 40 : 5'- ACCGTGGIGCWTGGTTRGAAT -3' (amorce 2057R),
- SEQ ID N° 41: 5'- AACCAATTCCGYATYGGTYT -3'(amorce 1252R),
 - SEQ ID N° 42 : 5'- AGIGGGTTTAACATGATGTC -3'(amorce 371F),
 - SEQ ID N° 43 : 5'- AGIGCCCAAACCTCCATCTC -3'(amorce 730F), et
 - SEQ ID N° 44 : 5'- CTCCAAGTGAACAGATGTGTA -3'(amorce 585R).

Ces amorces ont permis d'étendre la région séquencée pour certaines des cinq souches choisies. De façon tout à fait inattendue, *E. faecalis* n'est pas amplifiée par ces amorces; mais on a observé que la zone partielle séquencée présentait une homologie avec le gène *rpoB* de *Listeria monocytogenes*, c'est à dire avec une bactérie appartenant à un genre bactérien différent ce qui ne pouvait absolument pas être déduit des données existantes, on a donc choisi des amorces dans le gène *rpoB* de *Listeria* pour amplifier le gène *rpoB* de *Enterococcus faecalis*.

- SEQ ID N°45 : 5'- TTACCAAACTTAATTGAGATTCAAAC- 3' (amorce 180F)
- SEQ ID N°46 : 5'- AGTATTTATGGGTGATTTCCCA- 3' (amorce 410F)

20

25

30

- SEQ ID N°47 : 5'- GGACGTTATAAAATCAACAAAAAATT- 3' (amorce 910F)
- SEQ ID N°48 : 5'- AGTTATAACCATCCCAAGTCATG- 3' (amorce 2430R)
- SEQ ID N°49 : 5'- TGAAGTTTATCATCAACCATGTG- 3' (amorce 3280R)
- SEQ ID N°50 : 5'- CCCAAAACGTTGTCCACC- 3' (amorce 3360R)
- Les séquences partielles ainsi obtenues pour les cinq souches choisies (Streptococcus equinus, Streptococcus mutans, Streptococcus anginosus, Enterococcus faecalis, Abiotrophia defectiva) ont permis de choisir les amorces suivantes :
 - SEQ ID N°51 : 5'- AACCAAGCYCGGTTAGGRAT -3' (amorce 520R)
- SEQ ID N°52 : 5'- ATGTTGAACCCACTIGGGGTGCCAT -3' (amorce 2881F) pour le séquençage des zones C- et N- terminales par Génome Walker.

Le séquençage est alors complet, comme en témoignent la détermination de la région codante, et l'alignement des protéines traduites des séquences nucléotidiques avec les deux protéines RpoB publiées de *Streptococcus pneumoniae* et *Streptococcus pyogenes*.

Plusieurs amorces consensus potentielles ont fait l'objet d'investigations pour obtenir un fragment susceptible de conduire à la séquence complète des gènes *rpoB* par élongations successives à partir d'une série d'amorces spécifiques.

Dans chacune des étapes ci-dessus, un grand nombre de tentatives avec des amorces théoriquement ou potentiellement appropriées ont échoue avant de déterminer les amorces mentionnées ci-dessus pour permettre d'amplifier et de séquencer par étapes successives la totalité des gènes *rpob* décrite ci-après.

Les réactions de séquençage ont été réalisées en utilisant les réactifs du kit ABI Prism dRhodamine Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer Applied Biosystems) selon les recommandations du fournisseur suivant le programme suivant : 30 cycles comprenant une étape de dénaturation à 94°C pendant 10 sec., une étape d'hybridation de l'amorce à 50°C pendant 10 sec. et une étape d'extension à 60°C pendant 2 minutes. Les produits de séquençage ont été séparés par électrophorèse sur un gel de polyacrylamide sur un séquenceur 377 DNA Sequencer (Perkin) et analysés pour former des séquences consensus par le logicel Sequence Assembler (Applied Biosystems).

Cette approche nous a permis de déterminer la séquence complète du gène *rpoB* chez deux espèces du genre *Streptococcus* et chez *Abiotrophia defectiva* :

SEQ.ID. n°1: Séquence du gène *rpoB* de *Streptococcus anginosus*. Cette séquence mesure 4 523 paires de bases, possède un contenu en cytosine plus guanosine de 41 % et est déposée dans GenBank sous le numéro d'accession AF 535183:

5'-TCATACTTTAGAGTCAGATTTAGCTGCTCTTTTTGTGCCTGTTTTGGGGATTTTTGTCGTTTGT CATCAAAATTAAAGATTCTGAAAAATTACTCAAAAAGGATAAATGAAAATTGCTACTCTATTCCA 10 TTAATAGAGAATGTAGAAAGAAGAAGGAGTAAAAAACTTGGCAGGACATGAAGTTCAATACGGG AAACACCGTACTCGTCGTAGTTTTTCAAGAATCAAGGAAGTTCTTGATTTACCAAATTTGATTG AAATCCAGAGGATTCGTTCAAAGATTTTCTTGACCATGGTTTGAAAGAAGTATTTGAAGATGTA CTTCCTATCTCAAACTTTACAGATACAATGGAGCTAGAGTTTGTTGGTTATGAAATTAAAGGAT CTAAATACACTTTAGAAGAAGCACGTATCCATGATGCCAGCTATTCTGCACCTATTTTTGTGAC 15 ${\tt TTTCCGTTTGATTAATAAAGAAACTGGTGAAAATCAAAACCCAAGAAGTGTTCTTTGGCGATTTC}$ CCAATCATGACAGAAATGGGAACTTTCATTATCAATGGTGGTGAGCGGATTATCGTATCTCAGC TCGTTCGTTCTCCAGGTGTTTACTTCAACGATAAAGTAGACAAAAATGGTAAAGTTGGTTATGG TTCAACTGTCATTCCTAACCGTGGAGCTTGGTTAGAGCTGGAAACAGACTCAAAAGATATTGCT TATACTCGGATTGACCGTACTCGTAAGATTCCGTTTACGACACTTGTTCGTGCGCTTGGTTTTT 20 $\tt CTGGCGATGATGAAATCTTTGACATTTTCGGCGACAGCGATCTCGTTCGCAACACGATTGAAAA$ GGATATTCATAAAAATCCAATGGATTCACGTACGGATGAAGCGCTTAAAGAAATCTATGAACGT CTTCGTCCAGGTGAGCCTAAAACAGCTGATAGTTCACGTAGTCTATTGGTCGCTCGTTTCTTTG ATCCACATCGTTACGACTTGGCGGCAGTTGGTCGTTATAAAATCAATAAAAAATTAAACATTAA AACACGTTTGTTAAATCAAACGATTGCAGAGCCTTTGGTAGATCCAGAAACAGGTGAAATCTTG GTTGAAGCTGGAACGGTTATGACGCGTAGTGTCATTGATAGCATTGCAGAATACTTGGACGGTG ATTTGAATAAATCACTTATATTCCAAATGATGCAGCTGTGTTAACAGAGCCAGTTGTTCTTCA AAAATTCAAAGTGGTGGCGCCAACTGATCCAGATCGTGTGGTGACTATTATTGGTAATGCCAAC CCAGGAGATCGAGTTCATACGATTACGCCAGCAGATATTTTGGCTGAGATGAATTACTTCTTGA ACCTCGCTGAAGGACTTGGTCGTGTGGACGATATTGACCACTTGGGAAATCGTCGGATTCGTGC 30 ${\tt CGTTGGTGAATTGCTTAACCAAGTACGTCTTGGCTTGTCTCGTATGGAGCGAAACGTTCGG}$ GAGCGCATGAGTGTGCAAGATAATGAAGTGTTGACACCGCAACAAATCATTAACATCCGCCCAG TCACAGCAGCTATCAAAGAATTCTTTGGTTCATCTCAATTGTCTCAATTTATGGACCAACATAA TCCACTGTCTGAATTGTCTCACAAACGCCGTTTGTCAGCCTTGGGACCTGGTGGTTTGACTCGT GATCGTGCTGGATATGAAGTGCGTGACGTGCACTATACCCACTATGGTCGTATGTGTCCGATTG AAACGCCTGAAGGACCAAACATCGGTTTGATCAATAACTTGTCTTCTTATGGACACTTGAATAA ATATGGCTTTATCCAAACGCCGTATCGTAAAGTGGATCGTGAAACAGGTCTGGTCACCAATGAA CAGAAGATGGTCGTTTTGCAGAAGCGATTGTCATGGGACGTCACCAAGGGAACAACCAAGAATT TCCTTCAGATCAAGTAGACTTCATGGATGTATCGCCTAAGCAGGTAGTTGCGGTTGCGACAGCA TGTATTCCTTTGAAAACGACGACTCAAACCGTGCTCTCATGGGTGCCAACATGCAACGTC AGGCGGTACCGTTGATTGATCCGCATGCACCATATGTTGGTACTGGTATGGAATACCAAGCAGC TCATGACTCTGGTGCGGCGATTATTGCCCAACACGACGGTAAAGTTGTATATTCTGATGCAGCC AAAGTTGAAGTTCGTCGTGAAGATGGCTCACTTGATGTCTATCATATTACGAAATTCCGCCGTT CAAACTCTGGTACTTCTTACAACCAACGTACGCTGGTAAAAGTTGGCGATACAGTTGAAAAAGG TGACTTTATCGCAGACGGACCTTCTATGGAAAAAGGTGAAATGGCACTTGGACAAAATCCAATC TGAAAGACGATGTTTACACATCTGTTCACTTGGAGGAATTTGAATCAGAAACACGTGATACA<u>AA</u> STRF GCTTGGACCTGAAGAAATCACGCGCGAAATTCCAAACGTCGGTGAAGATGCTTTGAGAGACCTT GACGAAACGGGAATTATCCGCATTGGTGCTGAGGTAAAAGAAGGCGACATTCTTGTCGGTAAAG TAACACCGAAAGGTGAAAAAGACTTATCTGCTGAAGAACGCCTGCTTCATGCAATTTTCGGTGA 50 TAAATCTCGTGAAGTACGTGATACTTCCCTTCGTGTACCACATGGTGGTGCAGGGGTTGTCCGT GATGTGAAAATCTTTACTCGTGCGAACGGTGATGAATTGCAATCTGGTGTCAACATGTTGGTAC GTGTTTACATCGCTCAAAAACGGAAAATCCGTGTTGGGGATAAGATGGCTGGACGTCACGGAAA CAAAGGGGTTGTTTCCCGCATTGTTCCAGTTGAGGATATGCCGTATCTTCCAGATGGAACACCA

GTTGATATTATGTTGAACCCACTTGGGGTGCCATCTCGTATGAATATTGGTCAAGTTATGGAGC TTCACCTCGGTATGGCTGCTCGCAACCTTGGCATTCACATTGCAACACCAGTATTTGACGGGGC TAGCTCAGATGATCTTTGGGAAACCGTTCGTGAAGCTGGCATGGATAGCGATGCTAAGACAATC $\mathtt{CTTTATGATGGCCGTACTGGTGAGCCATTTGATAATCGTGTATCCGTTGGTGTCATGTACATGA}$ TCAAACTCCACCATATGGTTGATGATAAGCTCCATGCCCGTTCCGTTGGTCCTTATTCAACCGT STRR $ext{TACGCAACAAC}$ ${\tt TGGGCTCTTGAAGCCTACGGTGCTTCTAACGTCCTTCAAGAAATCTTGACTTACAAGTCAGATG}$ ACATCAATGGTCGTTTGAGAGCTTATGAAGCCATTACCAAAGGTAAGCCAATTCCAAAACCAGG $\tt CTTGATGAAGACGACAATGAAGTCGAACTTCGTGACTTGGACGAAGGCATGGATGATGTGA$ TTCATGTAGACGATCTTGAAAAAGCACGTGAAAAAGCAGCACAAGGAAGCAAAAGCCGCTTTTGA ATGTAAATCGTTTTCAAAGTATGCAAATCACCCTAGCTTCTCCTAGTAAAGTCCGCTCTTGGTC TTATGGAGAAGTGAAGAAACCTGAAACAATTAACTACCGCACACTAAAACCAGAACGCGAAGGG ${\tt CTTTTTGATGAAGTCATCTTTGGTCCTACGAAAGACTGGGAATGTGCGTGTGGAAAATATAAAC}$ 15 GGATTCGTTATAAAGGAATCATTTGTGACCGTTGTGGTGTTGAAGTAACTCGTACTAAAGTTCG TCGTGAACGTATGGGACATATTGAGTTGAAAGCCCCAGTCTCCTCATATTTGGTATTTTAAAGG AATTCCAANTCGCATGGGCTTGACCTTGGACATGAGCCCTCGTGCTCTTGAAGAAGTCATNTAN TTTGCAGCTTATGTGGTGANTGACCCTAAAGATACNCCACTTGAGCACAAATCCATTATGACAG AGCGGGATGGTTNGTGAACGCTGACNTGAATATGGCCAAGGCTCTTTTGTTGCAAAAATGGGTG 20 YTGAAGCAATCCAAGATCTNNTGAAACANGTAGACCTGGAAAAAGAAATTGCAGAGCTCAAAGA TGAATTAAAAACGGCAAGTGGGCAAAAGCGCGTAAAMGCTAANTTCGTCGNTNNGACTCTTTTC GATNCTTTCCAAAAATCATGGTACACAAAACCAGAACTGGATGGTCTTAAACCATCNTNTCACC GCTCATTCCAGACAC -3'

25

SEQ ID N°2: Séquence du gène *rpoB* de *Streptococcus equinus*. Cette séquence mesure 4 118 paires de bases et possède un contenu en cytosine plus guanosine de 41 % est déposée dans GenBank sous le numéro GenBank accession AF 535187:

 ${\tt 5'-CACGCGTGGTCGACGGCCCGGGCTGGTGAATTGTCATAAGTTGTGTAGTAGTAAATTCCCTTAT}$ 30 CAGTGTTGATGCATGAGCTATAAATAGTGTACTCATATTTGCCACTTTCATCGACATAGCAAAG TCCTTTTTGTTGTTCAACGGATTTTAAAATGTGGAAGAATTGATTAACACTGCTTTCTTGTT TCTTCAGCCACAGAATTTAATTTTGTAAAAGTAACTTTTACATAACGTGACATTGATGATAAAT CACCAGGCAAGCCAAGTCCACCCATGCCACGGCTATAAGTTTCAAGTTCTAACTCTTTAGCAAA ACGATTTTCTGAAACCTTTGGAGATAGATGACGATAGTTATTCAAATTGAATAATTGTTTATCA 35 AAAGTTGGATTATTAGTCAAAACACCTGTTGAGTTATTCGTAAACTTATAGGGCACGCGTGGTC ${\tt GACGGCCCGGGCTGGTAAAGACTTCTTGGATAACGGATTAAMAGAAGTTTTTGAAGATGTACTT}$ CCGATTACAAACTTTACGGATACTATGGAGCTTGAATTTGTTGGTTACGAATTGAAAGAGCCTA AGTATACGCTTGAAGAAGCTCGTATCCACGATGCATCTTATTCAGCACCTATTTTTGTAACCTT CCGTTTGATTAATAAAGAAACAGGAGAAATCAAAACTCAAGAAGTTTTCTTCGGTGATTTCCCA 40 ATTATGACTGAAATGGGTACATTCATCATCAACGGTGGTGAACGTATTATCGTTTCTCAGTTGG TTCGTTCTCCTGGTGTTTATTTCAACGATAAAGTTGATAAAAACGGTAAAGTTGGTTACGGTTC AACTGTAATCCCTAACCGTGGAGCATGGCTTGAATTAGAAACAGATTCAAAAGATATTGCTTAC ACACGTATCGACCGTACACGTAAAATTCCATTTACAACTCTTGTACGTGCGCTTGGTTTCTCAG GTGATGATGAAATCATGGATATCTTTGGTGATAGCGAACTTGTTCGTAACACAATCGAAAAAGA 45 TATTCACAAAAACCCAGCAGACTCACGTACTGACGAAGCTCTTAAAGAAATTTACGAACGCCTT CACGTCGTTATGACTTGGCAGCTGTTGGTCGTTACAAAATCAACAAAAAACTTAACATCAAGAC TCGTCTTTTGAACCAAACAATCGCTGAAAACTTGGTTGATGCTGAAACTGGTGAAATCCTTGTT GAAGCTGGTACAGTAATGACACGTGACGTGATTGATTCAATCGCTGATCAATTGGATGGTGACC 50 TTAACAAATTTGTTTACACACCAAATGATTACGCTGTTGTCACTGAACCTGTTGTTCTTCAAAA ATTCAAAGTTGTTGCACCAAACGATCCAGACCGCGTTGTTACAATCGTTGGTAACGCAAATCCT GATGACAAAGCGCGTGCGCTTACACCAGCTGATATCTTGGCAGAAATGTCTTACTTCCTTAACC TTGCTGAAGGTCTAGGTAAAGTTGATGATATCGACCACCTTGGGAATCGTCGTATTCGTGCCGT TGGTGAATTGCTTACCAATTCCGTATTGGTCTTGCTCGTATGGAACGTAACGTTCGGGAA 55 CGTATGTCAGTTCAAGACAACGAAGTGTTGACACCACAACAATCATCAACATTCGTCCTGTTA

1.25 :

CTGCAGCCGTTAAAGAATTCTTCGGTTCATCTCAATTGTCACAGTTCATGGACCAACACAACCC ${\tt ACTTTCTGAGTTGTCACAAACGTCGTTTGTCAGCCTTAGGACCTGGTGGTTTGACTCGTGAC}$ TGGTTTCATCCAAACACCATATCGTAAAGTTGACCGCGCTACAGGTGTGATTACAAACGAAATC 5 ${\tt GTTTGGTTGACTGCCGATGAAGAAGATGAATACACAGTAGCACAGGCTAACTCAAAACTTAACG}$ ${\tt AAGATGGAACATTTGCTGAAGACATCGTTATGGGACGTCACCAAGGTAATAACCAAGAGTTCCC}$ ${\tt AGCAAGCGTTGTTGACTTCGTAGACGTTTCACCTAAACAAGTAGTTGCCGTTGCGACAGCATGT}$ ${\tt ATTCCTTTGAAAACGATGACTCTAACCGTGCCCTTATGGGTGCCAACATGCAACGTCAAG}$ ${\tt CGGTGCCATTGATTGATCCACACGCACCATATGTTGGTACTGGTATGGAATATCAAGCAGCCCA}$ 10 CGACTCAGGTGCTGCAGTTATCGCTAAACACGATGGACGCGTTATCTTCTCTGATGCTGAAAAA ${\tt GTTGAAGTTCGTCGCGAAGATGGTTCACTTGATGTTTACCACATTACTAAATTCCGTCGTTCTA}$ ACTCAGGTACAGCTTATAACCAACATACACTTGTTAAAGTTGGCGATATCGTTGAAAAAGGTGA $\tt CTTCATCGCTGATGGTCCTTCAATGGAAAAAGGTGAAAATGGCCCTTGGTCAAAAACCCAATCGTC$ 15 ${\tt GCTTACATGACTTGGGATGGTTATAACTATGAAGATGCCATCATCTTGAGTGAACGTCTTGTTA}$ AAGAAGATGTTTATACATCAGTTCACTTGGAAGAATTTGAATCAGAAACACGTGATACTAAGTT STRF AGGCCCTGAAGAATCACTCGCGAAATTCCAAACGTTGGTGAAGAAGCTCTTAAAGACCTTGAC GAAATGGGTATTATCCGTATCGGTGCTGAAGTTAAAGAAGGTGACATCCTTGTAGGTAAAGTAA CACCTAAAGGTGAAAAAGACCTTTCTGCTGAAGAGCGCCTTCTTCACGCAATCTTCGGTGATAA 20 ${\tt GTTAAAATCTTTACACGTGCAAACGGTGATGAATTACAATCAGGTGTTAACATGCTCGTTGTG}$ TTTATATCGCACAAAAACGTAAAATCAAAGTCGGAGATAAAATGGCCGGTCGTCACGGTAACAA AGGGGTTGTTTCTCGTGTTGTTCCAGTTGAAGACATGCCTTATCTTCCAGACGGAACTCCAGTC GATATCATGTTGAACCCACTTGGGGTGCCATCTCGTATGAACATCGGACAAGTTATGGAGCTTC ${\tt ACCTTGGTATGGCTGCTCGTAACCTTGGTATTCACATTGCAACACCAGTCTTTGATGGGGCAAC}$ 25 TTCTGAAGACCTTTGGGATACAGTTAACGAAGCTGGTATGGCTAGCGACGCTAAGACAGTTCTT TACGATGGACGTACTGGTGAACCATTTGATAACCGTGTGTCAGTTGGTGTCATGTACATGATTA AACTTCACCACATGGTTGATGATAAACTTCACGCACGTTCAGTTGGTCCTTACTCACTTGTTAC STRR ${\tt GCAACAACCTCTTGGTGGTAAAGCACAATTTGGTGGACAACGTTTCGGTGAAATGGAAGTTTGG}$ 30 ${\tt GCTTTGGAAGCTTACGGTGCATCAAATGTTCTTCAAGAAATCTTGACTTACAAATCAGATGATG}$ ${\tt TCAACGGTCGTCTTAAAGCTTATGAAGCCATCACTAAAGGTAAACCAATTCCAAAACCAGGTGT}$ ${\tt TCCAGAATCATTCCGAGTTCTTGTAAAAGAATTGCAATCACTTGGTCTTGACATGCGCGTGCTT}$ ${\tt GATGAAGATGAAGTAGAACTTCGTGATCTTGATGAAGGTGAAGATGACGATGTTATGC}$ ACGTTGATGATCTTGAAAAAGCTCGTCAAAAACAAGAAGCAGAAGAAGCGGAAAAAGCAGAAGT TTCTGCAGAAGAAAACAAATAATAGGAAAGAACATTCAGACATGAGAGAGGCAAGACCTGCTTC 35 ${\tt TCTTGGTCAGATTGTTTGATTGAGTCCTATAACGATAAATGATGTCTTACGAATCATGAATTTG}$ ${\tt TAAGTCATGACAGTTAGAAAGTAGCGCAGCTATTTCAAAGTCATAAGAAGGTATCATGGTGACG}$ TAATCGTTACAGCCGGCGTC -3'

SEQ ID N°3 : Séquence du gène *rpoB* d'*Abiotrophia defectiva*. Cette séquence mesure 4 325 paires de bases, possède un contenu en cytosine plus guanosine de 47 %, et est déposée dans GenBank sous le numéro AF 535173 :

 ${\tt 5'-ATATAGGGCACGCGTGGTCGACGGCCCGGGCTGGTCCTAAACAACATGTAACGTCACTCCGATG}\\$ AGTTGGTTCTGTTGTCTTTTTTTTGCGCTTCAAAGACCGAAAAATGTCATTTGTCAACAATTAT TAATAATTGTAACCTTAATGTAAAGTGGTGTTCTTAGATTATATTATAGGGGTGAATCGCTTGA 45 GTCATATCGTGAAATACGGTAAAAAAGCTGAGCGTCGAAGCTATGCGCGTATCGACGAAGTCTT ${\tt AGAGTTGCCGAACTTGATTGAAATCCAAACGGATTCCTACAAATGGTTCTTGGATGAAGGGCTA}$ AAAGTGATGTTCGAGGACATTTCGCCGATTGTCGACCATTCGGAGAACTTGGAACTTCATTTTG TAGACTATGAGTTCAAGGAAGCTAAGTATAGCTTAGAAGAAGCTCGTAGCCATGACGCTAACTA CTCAAAACCAATCTATGTAACCTTGCGCCTGTTCAACAAAGAGACAGGTGAAGTCAAAGAACAA 50 GAAGTCTTCTTCGGGGACTTCCCAATCATGACCGAAATGGGGACCTTCATTATCAACGGGGCGG ${\tt AACGGGTTATCGTTTCCCAGTTGGTACGTTCTCCAGGTGTCTACTTCCACGACCGTATGGACAA}$ TCAGATGCTAAGGGGATTGCCTACGTCCGCATTGACCGGACCCGGAAGATTCCATTGACTGTCT TGATGCGTGCCTTAGGTTTTGGTTCAGATGACGAGATTTATGATATCTTCGGCCAATCTGAGCT 55 CTTAGACTTAACTATCGAGAAGGATGTTCACAAAAACATTCAAGACTCTCGTACGGAAGAAGCC TTGAAGGACATTTACGAGCGTCTCCGTCCAGGTGAACCTAAGACCGCAGAAAGCTCACGTAACC

TCTTGGTTGCGCGCTTCTTCGACCCACGTCGCTATGACTTAGCACCTGTAGGTCGTTATAAGAT ${\tt CAATAAAAAGCTCCACCTCAAGAACCGTTTGGTTTGGCTTGACTTTGGCTGAAACCTTGGTTAAC}$ CCAGAAACAGGCGAAGTGCTCTTTGAAGAAGGAACGGTCTTGGATCAAGAACGTGTTCAAGCCC ${f TGATTCCATACTTAGAGGCTGGCTTGAATAAGGTAACCCTCTATCCTTCTGAAGATAGTGTGGT}$ AGCTCAACCAATTGATTTACAAATCATCAAAGTTTATTCACCTAAGAACGCCGAGCAAGTGATT AACATCATCGGTAACGGGAACATTGAGAAGATTAAGTGCTTGACGCCAGCTGACATTATTGCGT CAATGAACTACTATCTCTATTTAGACCAAGGAATTGGTGTGACAGATGATATCGACCACTTGGC ${\tt TAACCGTCGTATTCGTTCAGTCGGTGAATTATTGCAAAACCAATTCCGTATCGGGCTATCCCGG}$ ATGGAACGGGTAGTGCGTGAACGTATGTCGCTCCAAGATGTTGCGACCATCACACCGCAACAAT ${\tt TGATTAACATTCGTCCAGTAGTGGCGGCTATTAAGGAATTCTTCGGTTCATCCCAGTTGTCACA}$ 10 ATTCATGGACCAAGTTAACCCACTCGGGGAATTGACCCACAAACGTCGTCTGTCAGCCTTAGGG CCTGGTGGTTTGACGCGGGACCGTGCCGGCTATGAAGTGCGGGACGTTCACTACTCTCACTACG GCCGTATGTGTCCAATCGAGACGCCAGAAGGTCCTAACATCGGGTTGATTAACAGCTTGTCTTC TTATGCCAAGATTAACAAGTATGGTTTTATTGAGACGCCTTACCGTAAAGTGGACAAATCGGTT ACGCCACACCGTGTCACGACCGAAATTGACTACCTAGCAGCGGACGAGGAAGACTTGTACGTAG 15 TAGCCCAAGCCAACTCTAAACTCAACGAAGACGGGACCTTCGCCAATGACCTAGTTATGGCGCG TTTCCGTTCACAAAACATTGAGGTTAACGTTGACCAAGTAGACTACATGGACGTATCGCCAAAA CAGGTTGTCGCTGTCGCGACTGCTAGCATTCCGTTCTTGGAAAACGACGACTCCAACCGGGGCT TGATGGGTGCCAACATGCAACGTCAAGCTGTGCCACTTATTAATCCACAATCCCCACTGATTGG ${\tt GACTGGGATGGAATATAAGGCAGCACACGACTCTGGGGCTGCGCTCTTATGTAAGCGCGCCGGT}$ 20 ${\tt GAAGTGGTTTATGTCGATGCTAACAAGGTGCGCGTGCGCACTCCAGAAGGTGAAGTTGACGAAT}$ ${\tt ATTAGGCGACCAAGTTGATGCCTTGGAAATCTTAGCAGATGGTCCATCTATGCAAAATGGGGAG}$ ${\tt ATGGCCCTCGGTCAAAACCCACTGGTAGCCTTCATGACTTGGGAAGGGTATAACTATGAGGACG}$ CGGTTATCATGTCTGAACGTCTGGTCAAAGACGATGTTTATACCTCTATCCACATTGAAGAATA 25 TGAATCAGAGTCCCGTGAYACYAAGTTAGGCCCTGAAGAAATTACACGCGAAATTCCAAACGTG STRF ${\tt TCCGAAGATGCCCTCAAGTACTTAGACAAAGACGGGATTATCTGTATCGGGGCGGAAGTAAAAG}$ ${\tt ACGGCGATATCTTAGTTGGTAAGGTAACACCAAAAGGTGTGACCGAGTTGTCTGCGGAAGAACG}$ CTTGCTCCATGCTATCTTCGGTGAGAAGGCGCGTGAAGTACGTGATACTTCCTTGCGTGTGCCA 30 CACGGCGGGGGGGATTGTCCACGACGTTAAAATCTTTACCCGCGAAGCTGGCGACGAATTGG CACCAGGTGTCAACAAGCTAGTCCGCGTCTACATCGTACAAAAACGTAAAATCAATGAAGGGGA TAAGATGGCCGGTCGCCACGGTAACAAAGGGGTTGTCTCCCTTATCATGCCGGAAGAAGATATG CCATTCTTACCAGATGGTACCCCAGTTGATATCATGTTGAACCCATTAGGGGTTCCATCCGTA TGAACATCGGGCAAGTCCTAGAGTTACACTTGGGGATGGCTGCTCGCGAAATGGGCATCAAGAT TGCAACACCTGTCTTTGACGGTGCTAGTGAAGAAGATGTCTGGGAAACAGTTAAGGAAGCCGGC 35 TTAGAAGCTGACGCTAAGACTATCTTATATGATGGTCGAACCGGTGAACCATTTGACCGTAAAG TCTCTGTTGGGGTTATGTACATGATTAAGTTGGCCCACATGGTCGATGACAAGTTGCACGCCCG STRR $\overline{\mathtt{TTCAACAGGTCCATACTCTGGTTACCCAACAACCATTGGGTGGTAAAGCTCAATTTGGTGGG}$ CAACGTTTCGGGGAGATGGAGGTTTGGGCCCTA -3'

SEQ ID N°4 : Séquence partielle du gène *rpoB* de *Streptococcus mutans*. Cette séquence mesure 3198 paires de bases, elle possède un contenu en cytosine plus guanosine de 42 %, et est déposée dans GenBank sous le numéro AF 535167.

TCAAGTCATTGGCTGAAAANNAGTAGATCTGAAACAGGCGAAATTCTTGTTGAAAGCTGGGACT GAAATGACACGCAGTGTAATTGATTCGATTGCAGATTATCTTGATGGAGATCTCAATAAAATTG ${\tt TTTATACGCCAAATGAATACGCTGTTTTGACAGAACCTGTTGTTCTTCAAAAATTCAAAGTTAT}$ GGCTCCAAATGATCCAGACCGCACGGTTACTGTTATTGGTAATGCCAGTCCAAGATGACAAAGT ${\tt ACGTCACTTGACACCAGCCGATACGTATTAGCTGAAATGTCTTATTTCCTTAACTTGGCTGAGG}$ GTNTAGGTAAAGTTGATGATATTGACCATTTAGGCAACCGACGTATTCGTGCTGTTGGTGAATT ${\tt GCTTGCTAATCAATTTCGTATTGGTTTGGCACGTATGGAACGCAATGTTCGTGAACGCATGTCC}$ GTTCAAGATAATGAAGTCTTAACGCCACAACAGATTATTAACATTCGCCCTGTAACAGCGGCAA ${\tt TTAAAGAGTTTTTTGGTTCTTCAATTGTCACAGTTCATGGACCAACACAATCCACTGTCTGA}$ 10 TATGAAGTCCGTGATGTGCACTATACGCÄTTATGGTCGTATGTGTCCAATTGAAACGCCTGAAG CCAAACACCATACCGTAAAGTTGACCGTGAGACAGGTAAAGTAACCAATGAAATCGAATGGCTT ACTGCTGATGAAGAAGATGAATTCACTGTAGCTCAGGCTAACTCAAAACTCAATGAAGATGG<u>AA</u> STRF $\overline{\texttt{GCTTTGCTGAAGAAAT}} \\ \overline{\texttt{CGTCATGGGACGTCATCAAGGGAATAACCAAGAGTTTCCAGCAAGTTC}}$ 15 TGTTGAATATATGGATGTTTCTCCTAAGCAGGTAGTTGCGGTAGCGACAGCATGTATTCCTTTC $\tt CTTGAAAATGATGACTCCAACCGTGCCCTTATGGGAGCTAACATGCAGCGCCAAGCTGTGCCAT$ TGATTGATCCTAAAGCACCTTTTGTTGGAACTGGTATGGAATATCAAGCAGCCCATGATTCTGG AGCCGCTATTATCGCTCAACATAATGGGAAAGTGGTTTATTCCGATGCAGATAAGATTGAAGTT 20 CGCCGTGAAGATGGCTCACTAGATGTTTATCATGTTACCAAATTCCGTCGTTCTAACTCTGGAA $\tt CTGCCTACAATCAACGTACTCTTGTTAGGGTAGGCGATAGTGTTGAGAAGGGGGACTTTATTGC$ ${f AGATGGTCCTTCTATGGAAAAGGGTGAGATGGCTCTTGGACAAAATCCAGTGGTTGCTTACATG}$ TTTATACTTCTGTCCATTTAGAAGAATTTGAATCTGAAACTCGTGATACAAAGCTTGGACCTGA 25 AGAAATTACGCGTGAAATCCCAAATGTTGGTGAAGATGCCCTGAAAGACCTTGATGAAATGGGA ${\tt ATTATTCGCATTGGTGCTGAGGTTAAAGAAGGTGATATTCTAGTTGGTAAAGTGACTCCTAAAG}$ GAGAAAAAGATCTTTCTGCAGAAGAACGCCTCTTGCATGCCATTTTTGGTGACAAATCACGTGA ${\tt AGTTCGTGATACTTCTTCGTGTACCTCATGGTGGCGACGGTGTTGTTGTGATGTGAAAATC}.$ ${\tt TTTAGACGTGCTAATGGAGATGAACTTCAATCAGGTGTTAACATGCTGGTTCGTGTTTATATCG:}$ 30 CTCAAAAACGTAAAATCAAGGTCGGAGATAAGATGGCCGGACGTCATGGTAACAAGGGTGTCGT ${\tt TTCCCGTATTGTACCAGTGGAAGATATGCCATATCTTCCAGATGGAACACCTGTTGATATCATG}$ CTTAATCCACTTGGGGTGCCATCACGGATGAACATTGGGCAAGTTATGGAACTCCATCTTGGTA TGGCTGCTCGTAATTTGGGCATTCATATTGCAACGCCTGTCTTTGACGGAGCAACTTCTGATGA TCTTTGGGAAACAGTAAAAGAAGCCGGTATGGATTCTGATGCTAAAACTGTTCTTTATGATGGT 35 ^ $\tt CGCACAGGGGAGCCGTTTGATAATCGTGTATCAGTTGGTGTTATGTATATGATTAAACTTCAC\underline{C_STRR}$ $\overline{ ext{ACATGGTTGATGAYAACCATTT}}$ TGTCTATGCAMAGWTCAGTTGGCCCTTAKTCAAYGAWTAMTC AGASGARTTCCTGCTWGGTGTAAAGGCTNCAATTGTCTTTAGAGGTTAAGGCTGGTGAAATAAC ${\tt GGTATGCTGGTATTGATGGCAATGGGCAAGTGAATANTCAACACCGGCCGTCTACANCGTGC-3}$

- SEQ ID N°5 : Séquence partielle du gène *rpoB* d'*Enterococcus faecalis*. Cette séquence mesure 3096 paires de bases, elle possède un contenu en cytosine plus guanosine de 42 %, et est déposée dans GenBank sous le numéro AF 535175
- 5'-GACCCTTATCAATTGGTTTTTAGATGAGGGACTTCGTGAAATGTTTGAAGACATTTTACCAATT

 GATGATTTCCAAGGAAACTTATCCTTAGAATTTGTTGACTATGAATTAAAAGAACCAAAGTACA
 CAGTAGAAGAAGCCCGCGCACATGATGCCAACTATTCTGCGCCATTAACATGTAACATTACGTTT
 AACCAACCGTGAAACAGGTGAAATTAAATCCCAAGAAGTCTTCTTCGGCGATTTCCCATTAATG
 ACAGAAATGGGTACCTTCATCATCAACGGGGCAGAACGTGTTATCGTTTCCCAATTAGTTCGTT
 CTCCAGGTGTTTACTTCCATGGAAAAGTGGACAAAAACGGCAAAGAAGGTTTTGGCTCAACAGT
 CTCCTAACCGTGGTGCATGGTTAGAAATGGAAACAGATGCGAAAGACATTTCTTATGTTCGG
 ATTGACCGCACACGTAAAATTCCTTTAACTGTTTAGTTCGTGCTTTAGGTTTCGGTTCAGATG
 ATACCATCTTCGAAATTTTCGGCGACAGCGAAAGCTTTACGCAACACAATTGAAAAAAGATTTACA
 CAAAAACGCAAGTGATTCTCGTACAGAAGAAGCTTTACGCAACACTTTATGAACAGTTTCGCCCA
 GGCGAACCAAAAACAGCAGATAGCTCACGTAGCTTTGTTAACTTGCACGTTTCTTTTGATCCAAAA
 CGTTATGATTTGGCAAACGTTGGTCGCTACAAAGTTAACAAAAAATTAGACTTAAAAAACACGTC
 TATTAAACTTAACCTTAGCTGAAACGCTAGTTGATCACAAAA

45

Dans les séquences qui précèdent, le nucléotide K désigne T ou G, le nucléotide M désigne A ou C, le nucléotide R désigne A ou G, le nucléotide W désigne A ou T, le nucléotide Y désigne C ou T et le nucléotide N désigne A, T, C ou G.

Exemple 2 : Séquençage partiel du gène *rpoB* de 28 espèces du genre *Streptococcus* et genres apparentés.

A partir de l'alignement des séquences complètes du gènes *rpoB* chez *Streptococcus* spp. et *Abiotrophia defectiva* de l'exemple 1 et celles connues dans GenBank, (*Streptococcus pneumonia* AE008542 et *Streptococcus pyogenes* AE006480) un jeu d'amorces a été choisi pour l'amplification et le séquençage d'un fragment 709 à 740 pb de ce gène chez 28 souches type de ces genres bactériennes. Ces amorces ont pour séquence :

15

20

30

- SEQ ID N°6: 5'-AARYTIGMCCTGAAGAAAT-3'
- SEQ ID N°7: 5'-TGIARTTTRTCATCAACCATGTG-3'

La séquence SEQ ID n° 7 est utilisée à titre d'amorce 3' et représente donc la séquence inverse complémentaire du brin direct représenté dans les séquences SEQ ID n° 1 à 5 qui précèdent.

Ces amorces sont incorporées avec l'ADN extrait des bactéries dans une PCR selon les conditions suivantes : dénaturation à 95°C pendant 1 min suivie de 35 cycles comportant une étape de dénaturation à 94°C pendant 10 sec, une étape d'hybridation à 52°C pendant 10 sec et une étape d'élongation à 72°C pendant 30 sec.

Les produits amplifiés sont séquencés par les mêmes amorces SEQ ID N°6 et SEQ ID N°7 selon les conditions suivantes : dénaturation à 95°C pendant 1 min suivie de 30 cycles comportant une étape de dénaturation à 95°C pendant 30 sec, une étape d'hybridation à 52°C pendant 30 sec et une étape d'hybridation à 62°C pendant 1 min. Les produits de séquençage sont analysés par un séquenceur ABI PRISM 3100.

Les inventeurs ont déterminé la position de ces deux amorces SEQ.ID. n° 6 et SEQ.ID. n° 7, de façon à respecter les critères suivants :

- 1- séquence encadrée par ces deux amorces spécifiques de l'espèce de la bactérie. Cette condition est vérifiée après alignement des fragments de environ 720 pb avec l'ensemble des séquences des gènes bactériens *rpoB* disponibles dans les banques de données informatiques.
- 2- recherche d'une région d'identification la plus courte possible afin d'augmenter le plus possible la sensibilité de la détection moléculaire
- 25 3- la longueur des amorces de 18 à 22 pb.
 - 4- séquence des amorces présentant une température de fusion voisine,
 - 5- séquence des amorces ne permettant pas d'auto-hybridation ni de complémentarité.

Les fragments obtenus du gène *rpoB* des bactéries des espèces du genre *Streptococcus* et desdits genres apparentés ont environ 720 (709 A 732) paires de bases et leur séquence est spécifique de chaque espèce de ce genre et permettant donc l'identification moléculaire des bactéries des 28 espèces testées sont :

SEQ.ID. n°8 : séquence partielle du gène rpoB chez Streptococcus suis CIP 1032 17 $^{\rm T}$ mesurant 709 paires de bases :

5' - CGCGAAATTCCAAACGTTGGTGAAGATGCCCTTCGCAACTTGGACGAAA TGGGGATTATCCGTATTGGTGCCGAAGTTAAAGAGGGCGACATTCTTGTTGG TAAAGTCACACCAAAAGGTGAAAAAGATCTTTCTGCTGAAGAGCGTCTCTTGC ACGCAATCTTCGGTGACAAGTCACGTGAAGTACGTGATACCTCTCTTCGTGTA CCTCACGGTGCCGATGGTGTCGTTCGTGAAAAATCTTTACTCGTGCCAA CGGTGATGAATTGCAATCAGGTGTTAACATGTTGGTTCGTGTTTACATCGCTC AAAAACGTAAGATCAAGGTCGGAGATAAGATGGCCGGTCGTCACGGTAACAA 10 GGGTGTCGTTTCACGTATTGTACCTGTTGAGGATATGCCATATCTTCCAGATG GAACACCAGTTGACATCATGTTGAACCCACTCGGGGTGCCATCACGTATGAAC ATCGGTCAGGTTATGGAACTTCACTTGGGTATGGCGGCTCGCAACTTGGGCA TCCATATCGCAACACCAGTTTTCGATGGTGCAAGTTCAGAAGACCTCTGGTCA ACTGTTAAAGAAGCAGGTATGGACTCAGATGCCAAGACCATTCTTTACGATGG 15 ACGTACAGGTGAACCATTTGACAACCGTGTATCTGTTGGTGTCATGTACATGA TCAAGCTTCACCACATGGTTGATGACA - 3'

SEQ.ID.n°9 : séquence partielle du gène *rpoB Streptococcus sanguinis* CIP 55.128^T mesurant 725 paires de bases :

5'- TGTCATCAACCATGTGGTGAGCTTAATCATGTACATGACACCGACAGATA CACGGTTGTCAAACGGCTCACCGGTACGTCCATCGTAAAGAATAGTCTTGGCA TCGCTATCCATACCAGCTTCACGGACAGTATCCCAGAGGTCTTCTGAGCTTGC TCCATCAAAGACCGGTGTCGCAATATGGATGCCCAAGTTACGTGCTGCCATAC CAAGGTGAAGCTCCATAACCTGACCAATGTTCATACGTGATGGTACCCCGAGT 25 GGGTTCAGCATGATATCAACTGGTGTTCCGTCTGGCAAATAAGGCATGTCTTC CACAGGAACGATACGGGATACAACCCCCTTGTTTCCGTGACGACCAGCCATCT TATCTCCGACCTTGATCTTACGTTTTTGAGCGATGTAGACACGAACCAACATAT TAACGCCAGATTGCAACTCATCACCATTAGCACGGGTAAAGATCTTCACGTCA CGAACCACTCCATCAGCACCGTGCGGCACACGCAGAGAGGTATCACGGACTTC 30 - ACGAGACTTGTCTCCGAAGATAGCGTGCAAGAGGCGCTCTTCAGCAGAAAGA TCCGCCCGATGCGGATAATACCCATTTCGTCCAAATTGCGTAGGGCATCTTC CCCTACGTTTGGAATTTCGCGGGTAATTCTTCAGGTCA - 3°

25

30

SEQ.ID. n°10 : séquence partielle du gène *rpoB Streptococcus salivarius* CIP 102503^T mesurant 728 paires de bases :

5'- TTGTCATCAACCATGTGTGAAGTTTGATCATGTACATGACACCAACTGAT ACACGGTTATCAAATGGTTCACCTGTACGTCCATCGTAAAGGATTGTCTTAGC ATCACTATCCATACCTGCTTCACGAACAGTATCCCAGAGGTCTTCTGAGCTTGC CCCGTCAAAGACTGGTGTTGCGATGTGGATACCCAAGTTACGAGCAGCCATA CCAAGGTGAAGTTCCATAACCTGACCGATGTTCATACGTGATGGCACCCCAAG AGGGTTCAACATGATATCAACTGGTGTACCGTCTGGAAGGTAAGGCATGTCT TCAACAGGAACAATACGAGAAACAACCCCTTTGTTACCGTGACGACCGGCCAT 10 CTTATCTCCGACCTTAATCTTACGTTTTTGAGCGATGTAAACACGAACAAGCAT GTTAACACCTGATTGCAATTCATCACCGTTTGCACGTGTGAAGATTTTAACATC ACGAACGACACCATCACCACCGTGAGGTACACGGAGTGAGGTATCACGTACT TCACGAGATTTATCACCAAAGATAGCATGGAGAAGACGTTCTTCAGCAGAAA GGTCTTTTCACCCTTAGGTGTTACCTTACCAACAAGAATGTCACCTTCTTTAA 15 CCTCAGCACCGATACGGATAATACCCATTTCGTCAAGGTCTTTGAGAGCTTCTT ${\tt CACCAACGTTTGGCAATTCACGTGTAATTTCTTCAGGTCCA-3?}$

SEQ.ID. n°11 : séquence partielle du gène *rpoB* chez *Streptococcus pyogenes* CIP 56.41^T mesurant 725 paires de bases :

5'-TGTCATCAACCATGTGGTGAAGTTTGATCATATACATGACACCAACGGAT
ACACGGTTGTCAAATGGTTCACCGGTGCGACCATCATAAAGGACCGTCTTAGC
ATCGCTATCCATACCAGCTTCACGAACAGTGTCCCAAAGGTCTTCTGATGAAG
CCCCGTCAAAGACAGGTGTTGCAATGTGAATACCAAGATTACGAGCAGCCATA
CCAAGGTGAAGTTCCATAACCTGACCAATATTCATCCGTGATGGCACCCCAAG
AGGGTTCAACATGATGTCAACTGGTGTTCCGTCTGGAAGGTATGGCATGTCT
TCAACTGGTACAATACGTGAAACGACACCCTTGTTTCCGTGACGACCGGCCAT
ATTATCTCCGACCTTGATTTTACGTTTTTGAGCGATGTAAACACGCACAAGCAT
ATTAACACCTGATTGCAATTCATCGCCGTTAGCGCGTGTAAAGATTTTCACATC
ACGAACGATACCATCACCACCGTGAGGGACACGAAGTGAGGTATCACGCACT
TCACGCGATTTATCCCCAAAGATGGCGTGAAGTAAACGTTCTTCAGCAGAAAG
GTCTTTTTCACCTTTAGGTGTGACTTTACCTACTAAGATGTCGCCTTCTTTAAC
CTCAGCACCGATACGGATAATGCCCATTTCGTCAAGGTCTTTGAGGGCTTCTT
CACCCAACATTTGGGATTTCCGAGTGATTCTTCAGGGGCA - 3'

25

30

SEQ.ID. n°12 : séquence partielle du gène *rpoB* chez *Streptococcus* pneumoniae CIP 102911^T mesurant 724 paires de bases :

5' - CAACCATGTGGTGGAGTTTGATCATGTACATGACTCCGACAGAAAACACG GTTATCAAACGGTTCACCAGTACGTCCATCGTAAAGGATCGTTTTGGCATCGC 5 TATCCATACCTGCTTCTTTAACAGTTGACCAAAGATCTTCAGAACTTGCTCCAT CAAAGACTGGTGTCGCGATGTGAATACCAAGAGTACGAGCTGCCATACCAAG GTGAAGCTCCATAACCTGACCGATATTCATACGTGATGGTACCCCAAGTGGGT TCAACATGATGTCGACTGGAGTTCCGTCTGGAAGGTAAGGCATGTCTTCTACA GGAACGATACGAGAGACAACCCCTTTGTTTCCGTGACGTCCGGCCATTTTATC 10 TCCGACCTTAATCTTACGTTTTTGAGCGATGTAAACACGAACCAACATGTTAAC ACCTGATTGCAACTCATCTCCATTTACACGTGTAAAGATCTTAACATCACGAAC GACACCATCGGCACCGTGTGGTACACGAAGAGAAGTATCACGCACTTCACGA GACTTGTCTCCAAAGATAGCGTGCAAGAGACGTTCTTCAGCTGAAAGATCTTT CTCACCCTTAGGTGTTACCTTACCTACAAGAATATCACCTTCTTTAACCTCAGCA 15 CCAATACGGATAATCCCATTTCGTCAAGGTCTTTGAGGGCATCTTCACCAACG TTTTGGAATTTCGCGAGTGATTTCTTCAGGTCCAA - 3'

SEQ.ID. n°13 : séquence partielle du gène *rpoB* chez *Streptococcus oralis* CIP 102922^T mesurant 694 paires de bases : 5'-

ACTCGTGAAATTCCAAACGTTGGTGAAGATGCCCTTAAAGACCTTGACGAAAT
GGGTATTATCCGTATTGGTGCTGAGGTTAAAGAAGGAGATATCCTTGTAGGT
AAAGTCACACCTAAGGGTGAAAAAAGACCTTTCTGCTGAAGAACGTCTCTTGCA
CGCTATCTTCGGAGACAAGTCTCGTGAAGTGCGTGATACTTCTCTTCGAGTAC
CTCACGGTGCCGATGGTGTCGTTCGTGATGTTAAGATCTTTACACGTGCAAAT
GGTGATGAGTTGCAATCTGGTGTGAATATGCTGGTTCGTGTCTACATCGCTCA
AAAACGTAAGATCAAGTCGGAGATAAGATGGCCGGACGTCACGGAAACAAAG
GGGTTGTCTCTCGTATCGTTCCTGTAGAAGACATGCCTTACCTTCCAGATGGA
ACTCCAGTCGATATCATGTTGAACCCACTTGGGGTGCCATCACGTATGAATAT
CGGTCAGGTTATGGAACTCCACCTTGGTATGGCAGCCCGTACTCTTGGTATCC
ACATCGCAACACCAGTCTTTGACGGAGCAAGTTCGGAAGACCTTTGGGACACT
GTTAAAGAAGCAGGTATGGATAGCGATGCCAAAACAATCCTTTACGATGGAC

GTACAGGTGAGCCGTTTGACAACCGTGTATCAGTTGGTGTCATGTACATGATC AAACTCCA- 3'

SEQ.ID. n°14 : séquence partielle du gène *rpoB* chez *Streptococcus mutans* CIP 103220^T mesurant 728 paires de bases :

5'-TGTCATCAACCATGTGGTGAAGTTTAATCATATACATAACACCAACTGATA
CACGATTATCAAACGGCTCCCCTGTGCGACCATCATAAAGAACAGTTTTAGCA
TCAGAATCCATACCGGCTTCTTTTACTGTTTCCCAAAGATCATCAGAAGTTGCT
CCGTCAAAGACAGGCGTTGCAATATGAATGCCCAAATTACGAGCAGCCATACC
AAGATGGAGTTCCATAACTTGCCCAATGTTCATCCGTGATGGCACCCCAAGTG
GATTAAGCATGATATCAACAGGTGTTCCATCTGGAAGATATGGCATATCTTCC
ACTGGTACAATACGGGAAAACGACACCCTTGTTACCATGACGTCCGGCCATCTT

ATCTCCGACCTTGATTTTACGTTTTTGAGCGATATAAACACGAACCAGCATGTT AACACCTGATTGAAGTTCATCTCCATTAGCACGTGTAAAGATTTTCACATCACA

TTTTCTCCTTTAGGAGTCACTTTACCAACTAGAATATCACCTTCTTTAACCTCAG
CACCAATGCGAATAATTCCCATTTCATCAAGGTCTTTCAGGGCATCTTCACCAA
CATTTGGGATTTCACGCGTAATTTCTTCAGGTCCA – 3'

20

25

30

10

SEQ.ID.n°15 : séquence partielle du gène rpoB chez Streptococcus mitis CIP 103335^T mesurant 730 paires de bases :

5'- TGTCATCAACCATGTGGTGGAGTTTGATCATGTAACATGACTCCGACAGA
AAACACGGTTATCAAATGGTTCACCTGTACGTCCATCGTAAAGGATTGTTTTG
GCATCGCTATCCATACCAGCTTCTTTAACAGTTGACCAAAGATCTTCAGAACTT
GCTCCGTCAAAGACTGGTGTTGCGATGTGAATACCAAGAGTACGAGCTGCCA
TCCCAAGGTGGAGTTCCATAACCTGACCGATATTCATACGTGATGGCACCCCA
AGTGGGTTCAACATGATATCGACTGGAGTTCCATCTGGAAGGTAAGGCATAT
CTTCTACAGGAACGATACGAGAGACAACCCCTTTATTTCCGTGACGTCCGGCC
ATCTTATCTCCGACCTTGATCTTACGTTTTTGAGCGATGTAGACGCGAACCAG
CATGTTGACACCTGATTGCAATTCATCTCCATTTGCACGTGTAAAGATCTTAAC
ATCACGAACCACCATCAGCTCCGTGTGGTACACGAAGAAGAGTGTCACGTA
CTTCACGAGATTTATCTCCGAAGATAGCGTGCAAGAGCCGTTCTTCAGCTGAA
AGGTCTTTCTCACCCTTAGGTGTTACTTTACCTACAAGGATATCCCCTTCTTTA

15

20

ACCTCAGCACCGATACGGATAATACCCATTTCGTCAAGATCTTTAAGGGCATC TTCCCCAACGTTTGGGATTTCACGAGTAATTTCTTCAGGTCCA - 3°

SEQ.ID. n°16: séquence partielle du gène rpoB chez Streptococcus equinus CIP 102504^T mesurant 697 paires de bases : 5'-

CACTCGCGAAATTCCAAACGTTGGTGAAGAAGCTCTTAAAGACCTTGACGAAA TGGGTATTATCCGTATCGGTGCTGAAGTTAAAGAAGGTGACATCCTTGTAGG TAAAGTAACACCTAAAGGTGAAAAAGACCTTTCTGCTGAAGAGCGCCTTCTTC ACGCAATCTTCGGTGATAAATCACGTGAAGTTCGTGATACATCACTTCGTGTA CCACACGGTGGAGATGGTGTCGTTCGTGACGTTAAAATCTTTACACGTGCAAA AAAAACGTAAAATCAAAGTCGGAGATAAAATGGCCGGTCGTCACGGTAACAA AGGGGTTGTTCTCGTGTTGTTCCAGTTGAAGACATGCCTTATCTTCCAGACG GAACTCCAGTCGATATCATGTTGAACCCACTTGGGGTGCCATCTCGTATGAAC ATCGGACAAGTTATGGAGCTTCACCTTGGTATGGCTGCTCGTAACCTTGGTAT TCACATTGCAACACCAGTCTTTGATGGGGCAACTTCTGAAGACCTTTGGGATA CAGTTAACGAAGCTGGTATGGCTAGCGACGCTAAGACAGTTCTTTACGATGG ACGTACTGGTGAACCATTTGATAACCGTGTGTCAGTTGGTGTCATGTACATGA TTAAACTTCAC-3'

SEQ.ID. n°17 : séquence partielle du gène rpoB chez Streptococcus constellatus CIP 103247^T mesurant 731 paires de bases :

5'- AGTTGTCATCAACCATGTGTGCAATTTAATCATATACATGACACCGACAGA TACACGGTTGTCAAACGGCTCGCCCGTACGACCATCATAAAGAATCGTCTTGG 25 CATCGCTATCCATGCCTTCACGAACAGTATCCCAAAGGTCATCTGAGCTT GCTCCGTCAAATACTGGCGTTGCTATGTGGATACCAAGGTTGCGAGCAGCCA TACCAAGGTGAAGCTCCATAACCTGTCCGATATTCATACGTGATGGCACCCCA AGTGGGTTCAACATGATGTCTACTGGTGTTCCGTCTGGAAGATAAGGCATAT CCTCAACTGGAACGATACGGGAAACAACCCCTTTATTTCCGTGGCGTCCGGCC 30 ATCTTATCCCCAACGCGGATCTTTCGTTTTTGAGCAATGTAAACACGCACCAAC ATGTTGACACCAGATTGCAATTCATCACCGTTCGCACGAGTAAAGATTTTCAC ATCACGGACAACCCCAGCACCATGTGGTACACGAAGAGATGTGTCACGTA CTTCACGAGATTTATCACCGAAAATTGCATGAAGCAGGCGTTCTTCAGCGGAT

AAGTCTTTTCACCTTTCGGCGTTACTTTACCGACAAGAATGTCGCCCTCTTTC ACCTCAGCACCAATGCGGATAATTCCCATTTCGTCAAGGTCTCTTAGCGCATCT TCCCCAACGTTTGGAATTTCGCGCGTAATTTCTTCAGGTCCAA – 3'

SEQ.ID. n°18 : séquence partielle du gène *rpoB* chez *Streptococcus anginosus* CIP 102921^T mesurant 697 paires de bases :

5' --

- CACGCGCGAAATTCCAAACGTCGGTGAAGATGCTTTGAGAGACCTTGACGAA
 ACGGGAATTATCCGCATTGGTGCTGAGGTAAAAGAAGGCGACATTCTTGTCG
 GTAAAGTAACACCGAAAGGTGAAAAAGACTTATCTGCTGAAGAACGCCTGCT
 TCATGCAATTTTCGGTGATAAATCTCGTGAAGTACGTGATACTTCCCTTCGTGT
 ACCACATGGTGGTGCAGGGGTTGTCCGTGATGTAAAATCTTTACTCGTGCG
 AACGGTGATGAATTGCAATCTGGTGTCAACATGTTGGTACGTGTTTACATCGC
 TCAAAAACGGAAAATCCGTGTTGGGGATAAGATGGCTGGACGTCACGGAAAC

 15 AAAGGGGTTGTTTCCCGCATTGTTCCAGTTGAGGATATGCCGTATCTTCCAGA
 TGGAACACCAGTTGATATTATGTTGAACCCACTTGGGGTGCCATCTCGTATGA
 ATATTGGTCAAGTTATGGAGCTTCACCTCGGTATGGCTGCCAACCTTGGC
- AACCGTTCGTGAAGCTGGCATGGATAGCGATGCTAAGACAATCCTTTATGAT

 20 GGCCGTACTGGTGAGCCATTTGATAATCGTGTATCCGTTGGTGTCATGTACAT
 GATCAAACTCCAC- 3'
 - SEQ.ID. $n^{\circ}19$: séquence partielle du gène rpoB chez Streptococcus dysgalactiae CIP 102914^{T} mesurant 728 paires de bases :
- 5' TGTCATCAACCATGTGGTGGAGTTTAATCATGTACATGACACCAACGGAT
 ACACGGTTGTCAAATGGTTCGCCAGTACGTCCATCATAAAGGACCGTCTTAGC
 ATCGCTATCCATACCAGCTTCACGAACAGTGTCCCAAAGGTCTTCTGATGAAG
 CCCCGTCAAAGACAGGTGTTGCAATGTGAATACCAAGATTACGAGCAGCCATA
 CCAAGGTGAAGTTCCATAACCTGACCAATGTTCATCCGTGATGGCACCCCAAG
 AGGGTTCAACATGTCAACTGGTGTTCCATCTGGAAGGTATGGCATGTCTT
- AGGGTTCAACATGATGTCAACTGGTGTTCCATCTGGAAGGTATGGCATGTCTT
 CAACTGGTACAATACGTGAAACGACACCCTTGTTTCCGTGACGACCAGCCATT
 TTATCTCCGACTTTGATCTTACGTTTTTGAGCAATGTAAACACGCACAAGCATA
 TTAACACCTGATTGCAATTCATCGCCGTTAGCGCGTGTAAAGATTTTCACATCA
 CGAACGATACCATCACCACCGTGAGGTACACGAAGGGACGTATCACGAACTTC

ACGTGATTTATCTCCAAAGATGGCATGCAAGAGACGCTCTTCAGCAGAAAGGT CTTTTCACCTTTAGGTGTGACTTTACCTACTAAGATGTCGCCTTCTTTAACCTC AGCACCGATACGGATAATTCCCATTTCGTCAAGGTCTTTGAGCGCTTCTTCACC AACGTTTGGAATTTCGCGGGTGATTTCTTCAGGTCAA - 3'

5

10

15

20

SEQ.ID. n°20 : séquence partielle du gène rpoB chez Streptococcus bovis CIP 102302^T mesurant 728 paires de bases :

- 5' TGTCATCAACCATGTGGTGAAGTTTGATCATGTACATGATACCAACAGAG ACACGATTATCAAATGGTTCACCTGTACGACCGTCATAAAGAACTGTCTTAGC GTCGCTATCCATACCAGCTTCACGAACAGTATCCCAAAGGTCTTCTGAAGTTG CCCCGTCAAAGACTGGAGTTGCAATGTGAATACCGAGGTTACGAGCTGCCAT ACCAAGGTGAAGTTCCATAACTTGTCCGATATTCATACGAGATGGCACCCCAA GAGGGTTCAACATGATATCAACTGGAGTTCCGTCTGGAAGATATGGCATGTC TTCAACAGGAACGATACGAGAAACAACCCCTTTGTTTCCGTGACGACCGGCCA TGTTGACACCTGATTGCAATTCATCACCGTTAGCACGTGTGAAGATTTTAACA TCACGAACAACACCGTCTCCACCGTGTGGCACACGAAGTGATGTATCACGTAC TTCACGAGATTTATCACCGAAGATTGCGTGAAGAAGGCGTTCTTCAGCAGAAA GGTCTTTTCACCTTTAGGTGTTACTTTACCTACAAGGATATCACCTTCTTTAA CTTCAGCACCGATACGGATAATACCCATTTCGTCAAGGTCTTTAAGAGCTTCTT
 - SEQ.ID. n°21: séquence partielle du gène rpoB chez Streptococcus acidominimus CIP 82.4^T mesurant 728 paires de bases :

CACCAACGTTTGGAATTTCGCGAGTGATTTCTTCAGGTCAA -- 3'

5'- TTGTCATCAACCATGTGGTGGAGCTTAATCATGTACATGACACCAACAG 25 ACACACGGTTATCAAATGGTTCACCAGTACGACCATCATAAAGAATCGTTTTA GCATCGCTGTCCATTCCTGCCTCTTTAACAGTTGACCAGAGATCCTCTGAGCTC GCACCATCGAAAACCGGTGTTGCGATATGGATACCCAAGTTACGAGCAGCCAT ACCCAAGTGCAGTTCCATAACCTGACCAATATTCATACGAGATGGCACCCCAA GTGGGTTCAACATGATGTCAACTGGTGTTCCATCTGGAAGATATGGCATGTCT 30 TCAACTGGTACAATACGAGAAACGACACCCTTGTTACCGTGACGACCGGCCAT CTTATCTCCGACCTTAATCTTGCGTTTTTGAGCGATATACACACGTACCAGCAT ATTAACACCAGACTGTAGCTCATCACCATTAGCACGCGTAAAGATTTTCACATC ACGAACAACACCATCTGCACCGTGTGGCACACGTAGAGAGGTATCACGTACTT

CACGTGATTTGTCACCGAAGATAGCATGCAAGAGACGCTCCTCAGCAGAAAG ATCTTTTCACCTTTTGGTGTCACCTTACCAACAAGAATATCGCCTTCTTTAACT TCTGCACCGATACGGATAATACCCATTTCGTCAAGGTCTTTGAGGGCTTCTTC ACCAACGTTTGGAATTTCACGAGTAATTTCTTCAGGTCA - 3'

5

10

15

20

1. 12.5

SEQ.ID. n°22 : séquence partielle du gène rpoB chez Streptococcus agalactiae CIP 103227^T mesurant 733 paires de bases :

- 5' TGAGTTGTCATCAACCATGTGGTGAAGTTTGATCATGTACATGACACCAA CTGACACGGTTATCGAATGGTTCACCAGTACGACCATCATAAAGAACAGTC TTAGCATCTGAATCCATACCTGCTTCTTGAACAGTTTCCCAAAGGTCTTCTGAA GAAGCCCCATCAAAGACTGGCGTTGCAATATGAATACCTAAATTACGAGCAGC CATACCTAAATGAAGCTCCATAACTTGTCCGATATTCATACGTGATGGCACCCC CTTCAACAGGAACAATACGTGAGACGACCACCTTTGTTTCCGTGACGACCGGCC ATCTTATCACCGACTTTGATTTTACGTTTTTGAGCGATATAAACGCGGACAAG CATATTAACACCTGATTGCAATTCATCACCATTTGCACGAGTAAAGATTTTAAC GTCACGAACTACTCCATCGCCACCGTGAGGTACACGTAGTGAAGTATCACGAA CTTCACGTGATTTATCACCAAAAATGGCATGCAAGAGACGTTCTTCAGCAGAT AAGTCCTTTCACCCTTAGGTGTTACCTTACCAACAAGAATGTCACCTTCTTTT ACCTCAGCACCAATGCGGATAATTCCCATTTCATCGAGATCACGTAGTGAATC
 - SEQ.ID. n°23 : séquence partielle du gène rpoB chez Streptococcus difficilis CIP 103768^T mesurant 714 paires de bases :

TTCACCAACATTTTGGATTTCACGAGTAATTTCTTCAGGTCCA - 3'

5'- TTGTCATCAACCATGTGGTGAAGTTTGATCATGTACATGACACCAACTGAC 25 ACACGGTTATCGAATGGTTCACCAGTATGACCATCATAAAGAACAGTCTTAGCAT CTGAATCCATACCTGCTTCTTGAACAGTTTCCCAAAGGTCTTCTGAAGAAGCCCC ATCAAAGACTGGCGTTGCAATATGAATACCTAAATTACGAGCAGCCATACCTAAA TGAAGCTCCATAACTTGTCCGATATTCATACGTGATGGCACCCCAAGTGGGTTCA ACATGATATCAACTGGCGTTCCATCTGGTAAATAAGGCATATCTTCAACAGGAAC 30 AATACGTGAGACGACCTTTGTTTCCGTGACGACCGGCCATCTTATCACCGACT TTGATTTTACGTTTTTGAGCGATATAAACGCGGACAAGCATATTAACACCTGATT GCAATTCATCACCATTTGCACGAGTAAAGATTTTAACGTCACGAACTACTCCATC GCCACCGTGAGGTACACGTAGTGAAGTATCACGAACTTCACGTGATTTATCACCA

5

- SEQ.ID. n°24 : séquence partielle du gène *rpoB* chez *Streptococcus intermedius* CIP 103248^T mesurant 728 paires de bases :
- 5'- TGTCATCAACCATGTGGTGAAGCTTAATCATGTACATGACACCAACGGAC
 ACACGGTTATCAAACGGTTCGCCAGTACGTCCATCATAAAGGATTGTCTTAGC
 ATCGCTATCCATACCTGCTTCACGAACGGTTTCCCAAAGATCATCTGAGCTAGC
 TCCGTCAAAGACTGGCGTTGCAATGTGGATACCAAGTTGCGAGCAGCCATAC
 CGAGGTGCAATTCCATAACTTGTCCGATATTCATACGTGACGGCACCCCAAGA
 GGATTCAACATGATATCAACTGGTGTCCCGTCTGGAAGATACGGCATATCCTC
 AACTGGAACAATGCGGGAAACAACCCCTTTGTTTCCGTGGCGTCCGGCCATCT
 TATCTCCAACGCGGATTTTCCGTTTTTGAGCGATATAAACACGTACCAACATGT
- TATCTCCAACGCGGATTTTCCGTTTTTGAGCGATATAAACACGTACCAACATGT
 TGACACCGGATTGCAATTCATCACCGTTCGCACGAGTAAAGATTTTTACATCAC
 GGACAACACCTGCACCACCGTGTGGTACACGAAGGGGAGGTATCACGCACTTC
 ACGAGACTTATCACCAAAAAATTGCATGAAGCAGGCGTTCTTCAGCGGATAAAT
 CTTTTTCACCTTTCGGCGTTACTTTACCGACAAGAATGTCGCCTTCTTTTACCTC
- 20 AGCACCAATGCGGATAATTCCCATCTCGTCAAGGTCTCTCAAAGCATCTTCCCC GACGTTTGGAATTTCGCGCGTGATTTCTTCAGGTCCA - 3'
 - SEQ.ID. $n^{\circ}25$: séquence partielle du gène rpoB chez $Sreptococcus equi CIP <math>102910^{T}$ mesurant 728 paires de bases
- 5'- TGTCATCAACCATGTGGTGAAGCTTAATCATATACATGACACCAACTGAC
 ACACGATTATCAAACGGCTCACCAGTACGGCCATCATAAAGAACAGTCTTAGC
 ATCGCTATCCATACCTGCTTCACGAACAGTTTCCCAAAGGTCCTCAGACGTAGC
 TCCGTCAAAGACCGGTGTTGCGATATGGATACCCAAATTACGAGCAGCCATAC
 CTAGGTGAAGCTCCATAACCTGTCCAATGTTCATACGAGACGGCACCCCAAGA

 30 GGGTTCAGCATGATGTCAACAGGGGTTCCGTCTGGCAGATATGGCATATCCT
 CAACCGGTACAATACGTGAGACGACACCCTTGTTACCATGACGCCCGGCCATT
 TTATCTCCGACCTTGATTTTACGCTTTTGAGCAATGTAAACACGCACCAGCATA
 TTAACACCTGATTGAAGCTCATCACCATTTGCGCGTGTAAAGATCTTCACATCA
 CGTACAATCCCGTCACCACCATGAGGAACACCTTAACGAGGTATCACGAACCTC

ACGTGATTTATCACCAAAGATAGCATGCAGGAGACGTTCTTCAGCAGAAAGG TCTGCACCGATACGGATAATACCCATTTCATCAAGGTCCTTGAGGGCTTCTTCA CCAACGTTTGGCACTTCACGTGTGATTTCTTCAGGTCCA - 3'

5

30

SEQ.ID. n°26 : séquence partielle du gène rpoB chez Enteroçoccus gallinarum CIP 103013^T mesurant 694 paires de bases :

5'-

CACTCGTGAAATCCCGAATGTCGGGGAAGACGCATTGAAAGATCTAGACGAA 10 GTAAAGTAACGCCTAAAGGGGTAACGGAACTATCTGCAGAAGAACGCTTGCT TCATGCAATCTTTGGTGAAAAAGCCCGCGAAGTCCGCGATACTTCTCTGCGCG TACCTCACGGTGGTGGCGGAATCGTCCATGATGTGAAAATCTTTACCCGCGAA GCTGGCGATGAATTGTCACCAGGTGTCAATATGCTCGTTCGCGTGTATATCGT 15 AAAGGGGTCGTTTCTCGCATTATGCCAGAAGAAGACATGCCTTTCTTACCAGA CGGTACACCAGTTGATATCATGTTGAACCCATTAGGGGTGCCTTCACGGATGA ACATTGGACAAGTATTGGAATTACACTTAGGAATGGCTGCCCGCCAATTAGGA ATCCACGTGGCTACACCAGTCTTTGATGGTGCCAGCGATGAAGATGTCTGGG CAACAGTTGCAGAAGCCGGCATGGCTAGCGACGCCAAAACCGTTTTGTATGA 20 TGGCCGTACTGGAGAACCATTTGATGGTCGAATCTCCGTAGGTGTCATGTATA TGATCAAATTGGCC-3'

SEQ.ID. n°27: séquence partielle du gène rpoB chez Enterococcus casseliflavus CIP 103018^T mesurant 727 paires de bases : 25

5'- TGTCATCAACCATGTGGGCCAATTTGATCATGTACATGACACCAACGGAG ATGCGGCCATCAAATGGTTCGCCGGTACGTCCGTCAAAGCACTGTTTTGGC ATCGCTGGCCATTCCTGCTTCAGCAACCGTTGCCCAAACATCTTCATCGCTGGC TCCATCAAAGACTGGTGTTGCCACGTGAATGCCTAATTGACGCGCAGCCATTC CTAAGTGTAACTCTAATACTTGTCCAATGTTCATCCGAGAAGGTACCCCTAATG GGTTCAGCATGATATCGACTGGTGTGCCATCTGGTAAGAAAGGCATGTCTTCT TCTGGCATAATGCGAGAAACGACCCCTTTGTTTCCGTGACGTCCGGCCATTTT ATCCCCTTCATGGATTTTCCGTTTTTGAACGATATAAACGCGAACCAGCATGTT CACACCTGGTGACAATTCATCGCCAGCTTCGCGGGTAAAGATTTTGACATCGT

25

30

GGACGATTCCGCCGCCGCCGTGAGGCACGCGTAGAGAAGTGTCACGCACTTC
GCGGGCTTTTTCACCAAAGATTGCGTGCAACAAACGCTCTTCTGCTGAAAGTT
CCGTTACCCCTTTTGGCGTGACTTTCCCAACAAGCAGATCGCCATCTTTGACTT
CCGCACCAATGCGGATAATGCCCATTTCGTCTAGGTCTTTCAACGCGTCTTCCC
AACGTTCGGGATTTCGCGAGTGATTTCTTCAGGTCCA – 3'

SEQ.ID. n°28 : séquence partielle du gène *rpoB* chez *Enterococcus* saccharolyticus CIP 103246^T mesurant 721 paires de bases :

5'- TGTCATCAACCATGTGGGCAAGTTTAATCATGTACATTACCCCAACAGAG ATACGACCATCGAATGGTTCACCCGTACGTCCGTCATAAAGAACAGTTTTCGC 10 ATCGCGCGCCATGCCCGCTTCGCGAACTGTTTCCCATACGTCATCATCTGATGC ACCATCAAATACTGGTGTAGCTACATGGATGCCTAACTGACGTGCAGCCATCC CTAAGTGTAATTCCAATACTTGTCCGATGTTCATACGAGATGGTACTCCTAGT GGGTTCAACATGATATCAACTGGTGTGCCGTCTGGTAAGAATGGCATGTCTTC TTCTGGCATAATGCGAGAGACAACCCCTTTGTTACCATGACGTCCCGCCATTTT 15 ATCTCCTTCGTGAATCTTACGTTTTTGCACGATATAAACACGAACTAACATGTT CACACCTGGAGATAATTCGTCGCCTGCTTCACGGGTAAAGATTTTAACATCGT GAACGATACCGCCACCGCCGTGAGGAACACGTAATGATGTATCACGTACTTCA CGTGCTTTTTCACCGAAGATTGCGTGCAATAGACGTTCTTCTGCAGATAATTC 20 GGTTACCCCTTTAGGAGTGACTTTACCTACTAATAAGTCGCCATCTTGTACTTC GGCACCGATACGGATAATACCCATTTCGTCTAAGTCTTTTAATGCGTCTTCCCC AACGTTAGGAATTTCGCGTGTATTCTTCAG - 3'

SEQ.ID. n°29 : séquence partielle du gène *rpoB* chez *Enterococcus faecium* CIP 103014^T mesurant 727 paires de bases :

5'- TGTCATCAACCATGTGAGCAAGTTTGATCATGTACATCACACCGACAGAC
ACACGTCCATCAAATGGTTCACCTGTACGTCCGTCGTACAGAACAGTTTTCGC
ATCGCTGGCCATACCGGCTTCACGAACTGTTTCCCCATACGTCTTCATCACTTGC
ACCATCAAATACTGGCGTTGCTACGTGGATACCTAACTGACGTGCAGCCATAC
CCAAGTGTAATTCCAATACTTGCCCGATGTTCATACGTGAAGGCACCCCTAAA
GGATTCAGCATGATATCGATTGGTGTTCCATCAGGTAGGAATGGCATATCTTC
TTCCGGCATAATACGGGATACAACCCCTTTATTTCCGTGACGACCGGCCATTTT
ATCCCCTTCATGGATTTTACGTTTTTGAACGATATAAACACGAACTAACATGTT
TACGCCTGGTGACAAATTCATCTCCAGCTTCACGAGTAAAGATTTTCACATCGT

GAACGATACCGCCGCCGCCATGTGGTACACGTAATGATGTATCGCGGACTTCA CGAGCTTTTTCGCCAAAGATCGCATGCAATAGACGTTCTTCTGCAGATAATTCT GTTACCCCTTTTGGCGTGACTTTCCCTACAAGCAAATCGCCATCTTGGACTTCT GCACCAATACGGATGATACCCATTTCGTCTAAATCTTTTAATGCGTCTTCCCGA CATTAGGGATTTCGCGTGTGATTTCTTCAGGTCCA – 3'

SEQ.ID. n°30 : séquence partielle du gène *rpoB* chez *Enterococcus faecalis* CIP 103015^T mesurant 724 paires de bases :

5'- TGTCATCAACCATGTGGGCTAATTTAATCATATACATGACACCAACGGAA ATACGGTTATCAAATGGTTCACCTGTACGTCCATCGTAAAGAACTGTTTTAGC 10 ATCGCTAGCCATACCAGCTTCACGAACAGTTTCCCAAACGTCTTCATCGGTTGC CCCATCGAAAACAGGTGTTGCGACGTGAATACCTAATTGGCGAGCAGCCATAC CTAAGTGTAATTCAAGTACTTGTCCGATATTCATACGAGAAGGTACCCCTAAT GGGTTCAACATGATATCAACAGGTGTTCCGTCAGGTAAGAATGGCATATCTTC TTCCGGCATAATACGGGAAACAACCCCTTTATTTCCGTGACGTCCCGCCATTTT 15 ATCTCCTTCGTGAATTTTACGTTTTTGAACGATATAGACACGAACTAACATGTT ·GACACCTGGTGATAATTCATCGCCAGCTTCACGAGTAAAGATTTTCACATCAT GAACGATACCGCCGCCACCGTGAGGTACACGGAGAGACGTATCACGAACTTC GCGGGCTTTTTCCCCGAAGATTGCGTGTAATAAACGTTCTTCTGCAGATAATT CTGTGACCCCTTTAGGTGTGACTTTCCCAACTAGTAAGTCGCCATCTTGAACTT 20 CAGCACCAATGCGGATAATCCCCATTTCGTCTAAGTCTTTCAACGCGTCTTCCC AACGTTTGGAATTTCACGGGTATTTCTTCAGGTCA - 3'

SEQ.ID. n°31 : séquence partielle du gène *rpoB* chez *Enterococcus avium* CIP 103019^T mesurant 570 paires de bases :

5'- GTCCATCATAAAGAACGGTCTTAGCATCTGCTGCCATACGAGCTTCACGA
ACTGTTTCCCAAACATCGCTATCTTGCGCACCATCGAAGACTGGTGTCGCAAC
ATGGATACCTAGTTGGCGAGCCGCCATTCCCAAGTGTAATTCCAACACTTGTC
CGATGTTCATCCGAGATGGCACACCTAATGGGTTCAACATGATATCAACTGGC
30 GTACCGTCTGGTAAGAAAGGCATGTCTTCTTCTGGCATAATGCGAGAAACGA
CCCCTTTATTTCCGTGACGGCCGGCCATTTTATCCCCTTCATGAATCTTACGTT
TTTGCACGATGTACACGCGCACTAACATATTTACACCTGGAGATAATTCATCGC
CTGCTTCACGAGTAAAGATCTTCACATCGTGAACGATCCCGCCGCCACCATGC
GGTACACGAAGAGATGTATCACGAACTTCACGAGCCTTTTCACCAAAGATCGC

ATGCAACAAACGTTCTTCAGCTGATAATTCTGTTACCCCTTTAGGAGTGACTTT ACCAACTAATAAATCACCATCATGAACTTCAGCACCAATAC -3'

SEQ.ID. n°32 : séquence partielle du gène *rpoB* chez *Abiotrophia defectiva* CIP 103242^T mesurant 732 paires de bases :

5'- GAAGTTGTCATCAACCATGTGGGCCAACTTAATCATGTACATAACCCCAA CAGAGACTTTACGGTCAAATGGTTCACCGGTTCGACCATCATATAAGATAGTC TTAGCGTCAGCTTCTAAGCCGGCTTCCTTAACTGTTTCCCAGACATCTTCTTCA CTAGCACCGTCAAAGACAGGTGTTGCAATCTTGATGCCCATTTCGCGAGCAGC CATCCCCAAGTGTAACTCTAGGACTTGCCCGATGTTCATACGGGATGGAACCC 10 CTAATGGGTTCAACATGATATCAACTGGGGTACCATCTGGTAAGAATGGCATA TCTTCTTCCGGCATGATAAGGGAGACAACCCCTTTGTTACCGTGACGACCGGC CATCTTATCCCCTTCATTGATTTTACGTTTTTGTACGATGTAGACGCGGACTAG CTTGTTGACACCTGGTGCCAATTCGTCGCCAGCTTCGCGGGTAAAGATTTTAA CGTCGTGGACAATCCCGCCCCGCCGTGTGGCACACGCAAGGAAGTATCACG 15 TACTTCACGCGCCTTCTCACCGAAGATAGCATGGAGCAAGCGTTCTTCCGCAG ACAACTCGGTCACACCTTTTGGTGTTACCTTACCAACTAAGATATCGCCGTCTT TTACTTCCGCCCCGATACAGATAATCCCGTCTTGGTCTAAGTACTTGAGGGCA TCTTCGGACACGTTTGGAATTTCGCGTGTAATTTCTTCAGGTCA - 3'

20

25

30

SEQ.ID. $n^{\circ}33$: séquence partielle du gène rpoB chez $Gemella\ morbilorum$ CIP 81.10^{T} mesurant 727 paires de bases:

5'- TGTCATCAACCATGTGTGCAAGTTTATCATGTACATTACCCCTACAGATAC
ACGGCTATCAAATGGCTCACCTGTACGTCCGTCATAAAGAACTGTCTTAGCAT
CTTTAGCCATTCCAGCTTCCGCAACTGTAGACCAAACATCTTCATCAGTAGCAC
CATCGAATACTGGTGTAGCTACGTGGATTCCAAGTTGTTTAGCAGCCATACCT
AAGTGTAGCTCTAATACTTGTCCAATGTTCATACGAGATGGAACCCCAAGTGG
GTTTAACATTACGTCAACTGGTGTACCATCTGGTAGGTAAGGCATATCTTCTT
CTGGTAAGATATTTGAGATAACCCCTTTGTTACCGTGACGACCGGCCATTTTA
TCTCCTACACGAATTTTACGTTTTTGGACGATAAATACACGAACAAGTTCATTT
ACACCGTTAGGTAATTCAGCACCATCTTCACGTTTAAAGATTTTAACATCAGCA
ACTACTCCATCAGCACCGTGAGGTACACGTAATGAAGTATCACGTTCTTTA
GATTTAGCTCCAAAGATAGCATTAAATAATTTTTCTTCTGGAGTTTTAACTTCAGCT
AATCCTTTCGGTGTAACTTTACCTACTAAAATATCTCCATCTTTAACTTCAGCC

15

25

30

CCAATACGAATGATTCCTCGTGCATCTAAGTTCTAAGTGCATTTTCACCCTAC GTTTGGAATCTCACGAGTAATTTCTTCAGGTCA - 3'

SEQ.ID. n°34 : séquence partielle du gène *rpoB* chez *Gemella haemolysans* CIP 101126^T mesurant 726 paires de bases :

GTTTGGAATCTCACGAGTATTCTTCAGGTCCA – 3° 20

SEQ.ID. n°35 : séquence partielle du gène *rpoB* chez *Granulicatella adjacens* CIP 103243^T mesurant 719 paires de bases :

CCCAATACGAATGATTCCTCGTGCATCTAAGTTTCTAAGTGCATTTTCACCTAC

5'- CATCAACCATGTGAGCAAGTTTGATCATGTACATAACCCCTACTGACACA
CGGTTATCGAATGGTTCCCCTGTACGTCCATCATATAGAATTGTTTTCGCATCA
CGAGCCATACCCGCTTCTGCAACAGTTCCCCATACGTCTTCATCTTGCGCACCA
TCGAATACTGGTGTTGCGATGTAAATACCTAATTCACGAGCAGCCATCCCTAA
GTGTAACTCTAACACTTGTCCGATGTTCATACGTGAAGGTACCCCTAATGGGT
TTAACATGATGTCAACTGGTGTTCCATCTGGTAAGAATGGCATATCTTCTTCC
GGCATAATACGGGAAACAACCCCTTTATTACCGTGACGTCCGGCCATCTTATC
CCCTTCATTGATTTTACGTTTTTGTACAATATATACACGAACTAATTTGTTTACG
CCAGGTGCTAATTCATCACCTGCTGCACGTGTGAATACACGTACATCACGGAC
AATACCGCCACCGCCGTGAGGTACACGTAGAGATGTCTCACGAACTTCACGA
GCTTTTTCACCGAAGATTGCGTGTAATAAACGTTCCTCTGGTGATTGTTCTGTT
AACCCTTTAGGAGTTACTTTACCAACTAAGATGTCACCATCTTTAACTTCGGCA

20

25

30

 ${\tt CCGATACGAATAATTCCGTCTGCGTCTAGGTTCTTCAATGCGTCTTCCCAACGTTTGGAATCTCACGAGTAATTCTTCAGG-3'}$

Dans les séquences ci-dessus, le nucléotide M désigne A ou C, le nucléotide R désigne A ou G, le nucléotide W désigne A ou T, le nucléotide Y désigne C ou T et le nucléotide N désigne A, T, C ou G.

Dans les séquences ci-dessus, les références CIP se rapportent à des dépôts à la Collection Nationale de Culture des Microorganismes (CNCM) de l'Institut Pasteur à Paris (France).

Exemple 3. Identification en aveugle d'une collection de 20 souches bactériennes comprenant 10 souches de bactéries appartenant aux genres Streptococcus et genres apparentés.

Une collection de vingt souches appartenant aux espèces bactériennes suivantes: Steptococcus pyogenes, Streptococcus sanguis, Granulicatella adjacens, Abiotrophia defectiva, Enterococcus avium, Enterococcus faecalis, Gemella haemolysans, Gemella morbilorum, Streptococcus equi, Streptococcus anginosus, Staphylococcus aureus, Pseudomonas oleovorans, Mycobacterium avium, Bacillus cereus, Acinetobacter anitratus, Corynebacterium amycolatum, Klebsiella terrigena, Pasteurella, Lactobacillus rhamnosus, Staphylococcus, a été codée de façon à réaliser une identification moléculaire en aveugle (l'expérimentateur ne connaissant pas a priori l'identité des souches) des souches selon le procédé décrit dans la présente demande de brevet. L'extraction des acides nucléiques ainsi que l'amplification du fragment du gène rpoB ont été réalisées comme décrites dans l'exemple n°2 en incorporant des amorces consistant dans des mélanges de 4 oligonucléotides qui ont des séquences consistant dans les séquences SEQ ID N°6 (comme amorce 5')° et SEQ ID N°7 (comme amorce 3') avec N représentant l'inosine, dans une amplification PCR (Fig. 1). Le séquençage de ces 10 amplifiats a été réalisé en incorporant dans la réaction de séquençage les amorces SEQ ID N°6 et SEQ ID N°7 comme décrit dans l'exemple n°2 et la comparaison des séquences obtenues avec les séquences SEQ.ID n° 1 à 5 et 8 à 35 a permis d'identifier les dix souches amplifiées comme étant Steptococcus pyogenes, Streptococcus sanguis, Granulicatella adjacens, Abiotrophia defectiva, Enterococcus avium,

10

15

20

Enterococcus faecalis, Gemella haemolysans, Gemella morbilorum, Streptococcus equi, Streptococcus anginosus. Le décodage de ces 10 souches a montré 100% de concordance entre l'identification moléculaire selon le procédé faisant l'objet de la présente invention et l'identification établie antérieurement par les méthodes phénotypiques standard. Ce résultat illustre la spécificité du jeu d'amorces SEQ ID N°6/SEQ ID N° 7 utilisé pour ce travail.

Les autres bactéries choisies pour ce qu'elles sont fréquemment isolées dans les prélèvements cliniques humains ou animaux susceptibles de contenir également des bactéries du genre *Streptococcus*, n'ont pas été amplifiées, démontrant ainsi la spécificité des amorces utilisées pour le genre *Streptococcus* et dits 4 genres apparentés dans les conditions d'utilisation pour la détection des bactéries du genre *Streptococcus* et dits 4 genres apparentés selon l'invention par rapport aux bactéries d'un autre genre.

Sur la figure 1 sont représentés les produits d'amplification PCR obtenus à partir de dix souches bactériennes codées, comportant 7 souches appartenant au genre *Streptococcus* et lesdits 4 genres apparentés (colonnes 2, 3, 4, 7 -11) et 3 souches bactériennes de genres bactériens autres que *Streptococcus* et lesdits 4 genres apparentés (colonnes 5,6 et 12). Les colonnes 1 et 13 représentent le marqueur de poids moléculaire. Les produits d'amplification sont obtenus après incorporation des amorces SEQ ID N°6 et SEQ ID N° 7 décrits cidessus et sont visualisés par coloration au bromure d'éthidium après électrophorèse sur un gel d'agarose.

10

20

30

REVENDICATIONS

- 1. Gène ou fragment de gène *rpoB* d'une bactérie du genre Streptococcus et des 4 genres apparentés Enterococcus, Gemella, Abiotrophia et Granulicatella, caractérisé en ce qu'il comprend une séquence choisie parmi les séquences SEQ.ID. n° 8 à 35 dans lesquelles :
 - le nucléotide K représente T ou G,
 - le nucléotide M représente A ou C,
 - le nucléotide R représente A ou G.
 - le nucléotide W représente A ou T,
 - le nucléotide Y représente C ou T,
 - le nucléotide N représente A, T, C, G ou I, et

les séquences inverses et séquences complémentaires ainsi que les séquences présentant au moins 98,7% d'homologie, à l'exclusion des séquences SEQ ID n°11, 12, 14 et 22.

- 2. Gène *rpoB* d'une des bactéries *Streptococcus anginosus*, *Streptococcus equinus, Abiotrophia defectiva et Enterococcus faecalis* selon la revendication 1, caractérisé en ce qu'il correspond à l'une des séquences choisie parmi les séquences SEQ.ID. n° 1 à 3 et SEQ ID n°5, dans lesquelles :
 - le nucléotide K représente T ou G,
 - le nucléotide M représente A ou C,
 - le nucléotide R représente A ou G,
 - le nucléotide W représente A ou T,
 - le nucléotide Y représente C ou T,
 - le nucléotide N représente A, T, C, G ou I,
- et les séquences inverses et séquences complémentaires, ainsi que les séquences présentant au moins 98,7% d'homologie.
 - 3. Fragment d'un gène *rpoB* d'une bactérie du genre *Streptococcus* et des 4 genres apparentés *enterococcus*, *Gemella, Abiotrophia et Granulicatella*, caractérisé en ce que sa séquence est comprise ou consiste dans l'une des séquences SEQ.ID. n° 8 à 35, dans lesquelles :
 - le nucléotide K représente T ou G,
 - le nucléotide M représente A ou C,
 - le nucléotide R représente A ou G,

10

15

20

25

30

25.0%

- le nucléotide W représente A ou T,
- le nucléotide Y représente C ou T,
- le nucléotide N représente A, T, C, ou G

et les séquences inverses et séquences complémentaires, ainsi que les séquences présentant au moins 98,7% d'homologie.

- 4. Oligonucléotide caractérisé en ce qu'il comprend une séquence spécifique d'une espèce d'une bactérie du genre streptococcus et dits genres apparentés, de préférence d'au moins 20 nucléotides consécutifs, de préférence encore au moins 30 nucléotides consécutifs inclus dans l'une des dites séquences SEQ ID n°8 à 35., dans lesquels :
 - le nucléotide K représente T ou G,
 - le nucléotide M représente A ou C,
 - le nucléotide R représente A ou G,
 - le nucléotide W représente A ou T,
 - le nucléotide Y représente C ou T,
 - le nucléotide N représente A, T, C, ou G

et les séquences inverses et séquences complémentaires, ainsi que les séquences présentant au moins 98,7% d'homologie.

- 5. Utilisation d'un gène, fragment de gène ou oligonucléotide selon l'une des revendications 1 à 4 à titre de sonde d'espèce d'une bactérie du genre streptococcus et dits genres apparentés.
- 6. Oligonucléotide caractérisé en ce qu'il comprend une séquence d'au moins 8, de préférence au moins 12, de préférence encore 18 à 35 motifs nucléotidiques, dont au moins une séquence de 8 motifs nucléotidiques consécutifs inclus dans l'une des séquences SEQ.ID. n° 6 et 7 suivantes :
 - SEQ ID N° 6: 5' AARYTNGGMCCTGAAGAAAT-3', et
 - SEQ ID N°7: 5'-TGNARTTTRTCATCAACCATGTG-3',

dans lesquelles:

- N représente l'inosine ou l'un des 4 nucléotides A, T, C ou G,
- R représente A ou G.
- M représente A ou C, et
- Y représente C ou T,

et les séquences inverses et séquences complémentaires.

- 7. Mélange d'oligonucléotides, caractérisé en ce qu'il est constitué d'un mélange équimolaire d'oligonucléotides selon la revendication 6, ayant tous une séquence différente et comprenant tous une séquence incluse dans SEQ ID n°6 ou tous une séquence incluse dans SEQ ID n°7.
- 8. Mélange d'oligonucléotides, caractérisé en ce qu'il est constitué d'un mélange équimolaire de 32 oligonucléotides selon la revendication 7, de séquences différentes comprenant chacune au moins 15, de préférence au moins 18 motifs nucléotidiques consécutifs, inclus dans la séquence suivante :
 - SEQ ID N° 6: 5' AARYTNGGMCCTGAAGAAAT-3',
- 10 dans laquelle:

25

30

- R représente A ou G,
- Y représente C ou T,
- M représente A ou C, et
- N représente A, T, C ou G,
- 15 et les séquences inverses et séquences complémentaires.
 - 9. Mélange d'oligonucléotides, caractérisé en ce qu'il est constitué d'un mélange équimolaire de 8 oligonucléotides selon la revendication 7 de séquences différentes comprenant chacune au moins 15, de préférence au moins 18 motifs nucléotidiques consécutifs inclus dans la séquence suivante :
 - SEQ ID N° 6:5' AARYTNGGMCCTGAAGAAAT-3', dans laquelle :
 - R représente A ou G,
 - Y représente C ou T,
 - M représente A ou C, et
 - N représente l'inosine,

et les séquences inverses et séquences complémentaires.

- 10. Mélange d'oligonucléotides, caractérisé en ce qu'il est constitué d'un mélange équimolaire de 16 oligonucléotides selon la revendication 7, de séquences différentes comprenant chacune au moins 15, de préférence au moins 21 motifs nucléotidiques consécutifs inclus dans la séquence suivante :
- SEQ ID N°7: 5'-TGNARTTTRTCATCAACCATGTG-3', dans laquelle :
 - R représente A ou G, et

10

15

20

25

- N représente A, T, C ou G,
- et les séquences inverses et séquences complémentaires.
- 11. Mélange d'oligonucléotides, caractérisé en ce qu'il est constitué d'un mélange équimolaire de 4 oligonucléotides selon la revendication 7, de séquences différentes comprenant chacune au moins 15, de préférence au moins 21 motifs nucléotidiques consécutifs inclus dans la séquence suivante.:
- SEQ ID N°7: 5'-TGNARTTTRTCATCAACCATGTG-3', dans laquelle :
 - R représente A ou G, et
 - N représente l'inosine,

et les séquences inverses et séquences complémentaires.

- 12. Mélange d'oligonucléotides selon l'une des revendications 7 à 11, caractérisé en ce que lesdites séquences consistent dans les séquences SEQ.ID. n° 6 et 7 dans lesquelles, de préférence, N représente l'inosine, et les séquences inverses et séquences complémentaires.
- 13. Utilisation d'un oligonucléotide ou mélange d'oligonucléotides selon l'une des revendications 6 à 12, à titre d'amorce d'amplification ou sonde de genre d'une bactérie du genre Streptococcus et dits genres apparentés.
- 14. Procédé de détection par identification moléculaire d'une bactérie de l'une des espèces du genre *Streptococcus* et des 4 genres apparentés *Enterococcus, Gemella, Abiotrophia et Granulicatella,* caractérisé en ce qu'on utilise :
- un gène ou fragment de gène *rpoB* ou un oligonucléotide selon l'une des revendications 1 à 4 ainsi qu'un gène ou fragment de gène *rpoB* d'une bactérie *Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus mutans et Streptococcus* agalactiae comprenant une séquence telle que décrite respectivement dans les séquences SEQ. ID n°11, 12, 14 et 22, ainsi que les séquences inverses et séquences complémentaires, et séquences présentant au moins 98,7% d'homologie, et/ou
- au moins un oligonucléotide ou mélange d'oligonucléotides selon l'une des revendications 6 à 12.

10

15

25

30

- 15. Procédé selon la revendication 14 dans lequel on cherche à détecter la présence d'une bactérie du genre *streptococcus* ou desdits 4 genres apparentés, caractérisé en ce qu'il comprend les étapes dans lesquelles:
- 1- on met en contact au moins une sonde de genre comprenant un dit mélange d'oligonucléotides selon l'une des revendications 7 à 12, avec un échantillon contenant ou susceptible de contenir des acides nucléiques d'au moins une telle bactérie du genre *Streptococcus* et ses dits 4 genres apparentés, et
- 2- on détermine la formation ou l'absence de formation d'un complexe d'hybridation entre ladite sonde de genre et les acides nucléiques de l'échantillon, et on détermine ainsi la présence de ladite bactérie dans l'échantillon s'il y a formation d'un complexe d'hybridation.
- 16. Procédé selon la revendication 14, caractérisé en ce qu'il comprend les étapes dans lesquelles :
- 1- on met en contact les amorces d'amplification comprenant desdits mélanges d'oligonucléotides selon l'une des revendications 7 à 12, avec un échantillon contenant ou susceptible de contenir des acides nucléiques d'au moins une telle bactérie du genre *Streptococcus* et lesdits 4 genres apparentés, et avec :
- comme amorce 5', un dit mélange d'oligonucléotides comprenant une séquence incluse dans la séquence SEQ.ID. n°6, de préférence consistant dans ladite séquence SEQ ID N°6 complète, ou une dite séquence complémentaire selon l'une des revendications 7, 8, 9 ou 12, et
 - comme amorce 3' un dit mélange d'oligonucléotides comprenant une séquence incluse dans la séquence SEQ.ID. n°7, ou de préférence consistant dans ladite séquence SEQ ID N°7 complète ou une séquence complémentaire selon l'une des revendications 7, 10, 11 ou 12
 - 2- on réalise une amplification d'acides nucléiques par réaction de polymérisation enzymatique et on détermine l'apparition ou l'absence d'un produit d'amplification, et on détermine ainsi la présence de ladite bactérie dans l'échantillon si un produit d'amplification est apparu.

10

15

20

17. Procédé selon la revendication 14 ou 16, caractérisé en ce qu'on cherche à détecter spécifiquement une espèce donnée d'une bactérie du groupe *Streptococcus* et lesdits 4 genres apparentés choisie parmi les espèces :

Streptococcus mutans, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus suis, Streptococcus acidominimus, Streptococcus agalactiae, Streptococcus anginosus, Streptococcus constellatus, Streptococcus difficilis, Streptococcus dysgalactiae, Streptococcus equi, Streptococcus equinus, Streptococcus intermedius, Streptococcus mitis. Streptococcus bovis. Streptococcus alactolyticus, Streptococcus gallolyticus, Streptococcus macedonicus, Streptococcus infantarius, Streptococcus hominis, Granulicatella adjacens, Abiotrophia defectiva. Enterococcus avium, Enterococcus casselliflavus, Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus sacharolyticus, Gemella haemolysans et Gemella morbillorum.

'procédé dans lequel :

- 1- on met en contact un échantillon contenant ou susceptible de contenir des acides nucléiques d'au moins une telle bactérie, avec au moins une sonde d'espèce consistant dans un gène ou fragment de gène selon l'une des revendications 1 à 3, ou un oligonucléotide selon la revendication 4, et
- 2- on détermine la formation ou l'absence d'un complexe d'hybridation entre ladite sonde et les acides nucléiques de l'échantillon, et on détermine ainsi la présence de ladite bactérie dans l'échantillon s'il y a formation d'un complexe d'hybridation.
- Procédé selon la revendication 14, caractérisé en ce qu'on cherche 25 18. à détecter une espèce donnée d'une bactérie du genre Streptococcus et lesdits 4 genres apparentés choisie parmi les espèces : Streptococcus mutans, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus suis, Streptococcus acidominimus, Streptococcus agalactiae, 30 Streptococcus anginosus, Streptococcus constellatus, Streptococcus difficilis, Streptococcus dysgalactiae, Streptococcus equi, Streptococcus equinus, Streptococcus intermedius, Streptococcus mitis, Streptococcus bovis.

10

15

20

25

ï

Streptococcus alactolyticus, Streptococcus gallolyticus, Streptococcus macedonicus, Streptococcus infantarius, Streptococcus hominis, Granulicatella adiacens. Abiotrophia defectiva, Enterococcus avium, Enterococcus casselliflavus, Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus sacharolyticus, Gemella haemolysans et Gemella morbillorum, procédé dans lequel, dans un échantillon contenant ou susceptible de contenir des acides nucléiques d'au moins une telle bactérie du genre Staphylococcus, on effectue les étapes dans lesquelles :

- a) on réalise une réaction de séquençage d'un fragment du gène *rpoB* amplifié d'une dite bactérie donnée à l'aide des amorces nucléotidiques consistant dans desdits mélanges d'oligonucléotides selon l'une des revendications 7 à 12 comprenant des séquences incluses dans la séquence SEQ.ID. n° 6 comme amorce 5' et SEQ.ID.n° 7 comme amorce 3', de préférence des séquences consistant dans lesdites séquences SEQ.ID. n° 6 et 7, et lesdites séquences complémentaires, et
- b) on détermine la présence ou l'absence de l'espèce donnée de ladite bactérie en comparant la séquence dudit fragment obtenu avec la séquence du gène complet *rpoB* de ladite bactérie ou la séquence d'un fragment du gène *rpoB* de ladite bactérie comprenant respectivement lesdites séquences SEQ ID n° 8 à 35 selon l'une des revendications 1 à 4 et séquences complémentaires, et on détermine ainsi la présence de ladite bactérie dans l'échantillon si la séquence du fragment obtenue est identique à la séquence connue du gène ou du fragment de gène *rpoB* de ladite bactérie.
- 19 Trousse de diagnostic utile dans un procédé selon l'une des revendications 14 à 18, caractérisée en ce qu'elle comprend au moins un dit oligonucléotide, mélange d'oligonucléotides, ou fragment de gène selon l'une des revendications 1 à 4 et 6 à 12.

1 2 3 4 5 6 7 8 9 10 11 12 13

FIG. 1

SEQUENCE LISTING

<110> UNIVERSITE DE LA MEDITERRANEE (Aix-Marseille II) et CENTRE NATIONA L DE LA RECHERCHE

SCIENTIFIQUE - CNRS

UNIVERSITE DE LA MEDITERRANEE (Aix-Marseille II) et CENTRE NATIONA L DE LA RECHERCHE SCIENTIFIQUE - CNRS

- <120> Identification moléculaire des bactéries du genre Strepetococcus
- <130> H52 437 cas 10 PCT MD
- <160> 52
- <170> PatentIn version 3.1
- <210> 1
- <211> 4523
- <212> DNA
- <213> Streptococcus anginosus
- <220>
- <221> misc_feature
- <222> (266)..(2087)
- <223> n représente a, t, c, g ou i
- <220>
- <221> misc_feature
- <222> (266)..(4430)
- <223> n représente a, t, c, g ou i
- <220>
- <221> misc_feature
- <222> (4430)..(4503)
- <223> n représente a, t, c, g ou i
- <400> 1

tcatactttt	agagtcagat	ttagctgctc	tttttgtgcc	tgttttggga	tttttgtcgt	60
ttgtcatcaa	aattaaagat	tctgaaaatt	actcaaaaag	gataaatgaa	aattgctact	120
ctattccatt	aatagagaat	gtagaaagaa	gaaggagtaa	aaaacttggc	aggacatgaa	180
gttcaatacg	ggaaacaccg	tactcgtcgt	agtttttcaa	gaatcaagga	agttcttgat	240
ttaccaaatt	tgattgaaat	ccaganggat	tcgttcaaag	attttcttga	ccatggtttg	300
aaagaagtat	ttgaagatgt	acttcctatc	tcaaacttta	cagatacaat	ggagctagag	360
tttgttggtt	atgaaattaa	aggatctaaa	tacactttag	aagaagcacg	tatccatgat	420
gccagctatt	ctgcacctat	ttttgtgact	ttccgtttga	ttaataaaga	aactggtgaa	480
atcaaaaccc	aagaagtgtt	ctttggcgat	ttcccaatca	tgacagaaat	gggaactttc	540

				•		
attatcaatg	gtggtgagcg	gattatcgta	tctcagctcg	ttcgttctcc	aggtgtttac	600
ttcaacgata	aagtaracaa	aaatggtaaa	gttggttatg	gttcaactgy	cattcctaac	660
cgtggagctt	ggttagagct	ggaaacagac	tcaaaagata	ttgcttatac	tcggattgac	720
cgtactcgta	agattccgtt	tacgacactt	gttcgtgcgc	ttggtttttc	tggcgatgat	780
gaaatctttg	acattttcgg	cgacagcgat	ctcgttcgca	acacgattga	aaaggatatt	840
cataaaaatc	caatggattc	acgtacggat	gaagcgctta	aagaaatcta	tgaacgtctt	900
cgtccaggtg	agcctaaaac	agctgatagt	.tcacgtagtc	tattggtcgc	tegtttettt	960
gatccacatc	gttacgactt	ggcggcagtt	ggtcgttata	aaatcaataa	aaaattaaac	1020
attaaaacac	gtttgttaaa	tcaaacgatt	gcagagcctt	tggtagatcc	agaaacaggt	1080
gaaatcttgg	ttgaagctgg	aacggttatg	acgcgtagtg	tcattgatag	cattgcagaa	1140
tacttggacg	gtgatttgaa	taaaatcact	tatattccaa	atgatgcagc	tgtgttaaca	1200
gagccagttg	ttcttcaaaa	attcaaagtg	gtggcgccaa	ctgatccaga	tcgtgtggtg	1260
actattattg	gtaatgccaa	cccaggagat	cgagttcata	cgattacgcc	agcagatatt	1320
ttggctgaga	tgaattactt	cttgaacctc	gctgaaggac	ttggtcgtgt	ggacgatatt	1380
gaccacttgg	gaaatcgtcg	gattcgtgcc	gttggtgaat	tgcttgctaa	ccaagtacgt	1440
cttggcttgt	ctcgtatgga	gcgaaacgtt	cgggagcgca	tgagtgtgca	agataatgaa	1500
gtgttgacac	cgcaacaaat	cattaacatc	cgcccagtca	cagcagctat	caaagaattc	1560
tttggttcat	ctcaattgtc	tcaatttatg	gaccaacata	atccactgtc	tgarttgtct	1620
cacaaacgyc	gtttgtccgc	cttgggacct	ggtggtttga	ctcgtgaycg	tgctggatat	1680
gaargtgcgt	gacgtgcact	acacncacta	tggtcgtatg	tgtccgattg	aaacncctga	1740
vggaccaaac	atcggtttga	tcaayaactt	gtcttcttat	ggtcanttga	ataaatatgg	1800
ctttatccaa	acgccgtatc	gtaaagtgra	tcgtgaaaca	ggtctggtca	chaatgaaat	1860
cgtttggttg	acagcggang	aagaagatga	atttattgta	gcgcaagcaa	attctaaatt	1920
aacagaagat	ggtcgttttg	cagaagcgat	tgtcatggga	cgtcaccaag	ggaacaacca	1980
agaatttcct	tcagatcarg	trgatttcat	ggatgtgtcg	cctaagcagg	tagttgccgt	2040
tgcgacagca	tgtantccnk	ttccytgaaa	aygnacgact	caarccntgn	tstcatgggt	2100
gccaacatgc	aacgtcaagc	sgtaccgttg	attgatccgc	atgcaccata	ygywggtana	2160
tggtatggaa	taccaagcag	antsaygamt	ctggtgcggc	tgattantgc	mcaacacgac	2220
ggtaaagttg	tmtattytga	tgcagccaaa	gttgaagttc	gtcgtgaaga	tggctcactt	2280

gtatgtntat catag	ntoac gaaattccg	r cattnesset	astaatsaat	h	07.40
					2340
acaacgtagc ggstg	gtaaa agattggcga	a tacagntgta	aaaaggtgta	stttatcgca	2400
gacggacctt ctatg	gaaaa aggtgaaat	g gcrcttggac	aaaayccaat	cgttgcttat	2460
atgacatggg aaggt	tacaa ctttgaagai	gccgttatca	tgagtgagcg	httagtgaaa	2520
gacgatgttt acaca	tctgt tcacttggag	g gaattcgaat	cagaaacacg	tgatacwaag	2580
cttaggmcct gaaga	aatca ckcgcgaaai	tccaaacgty	ggtgaagatg	ccnttygasa	2640
gaccttggac gaaay	gggra ttataccgya	a ttggtgcyga	rgttaaagag	ggcgacattc	2700
ttgttggtaa agtcad	cacca aaaggtgaaa	a aagatctttc	tgctgaagag	cgtctcttgc	2760
acgcaatctt cggtg	acaag tcacgtgaaq	y tacgtgatac	ytcycttcgt	gtaccwcayg	2820
gtgsygcatg gkgyyg	gtycg tgatgtgaaa	a atcttwactc	gtgcsaacgg	tgatgaattg	2880
caatcwggtg tcaaca	atgtt ggtacgtgtt	wcacntcgct	caaaaacgka	araycamgtg	2940
tyggrgataa gatgg	cyggw cgtcacggaa	a acaaaggggt	tgtttcccgc	attgttccag	3000
ttgaggatat gccgta	atctt ccagatggaa	a caccagttga	tattatgttg	aacccacttg	3060
gggtgccatc tcgta	tgaat attggtcaag	g ttatggagct	tcacctcggt	atggctgctc	3120
gcaaccttgg cattca	acatt gcaacaccag	g tatttgacgg	ggctagctca	gatgatcttt	3180
gggaaaccgt tcgtga	aagct ggcatggata	gcgatgctaa	gacaatcctt	tatgatggcc	3240
gtactggtga gccatt	ttgat aatcgtgtat	ccgttggtgt	catgtacatg	atcaaactcc	3300
accatatggt tgatga	ataag ctccatgccc	gttccgttgg	tccttattca	accgttacgc	3360
aacaacctct tggtgg	gtaaa gcgcagtttg	gtggacaacg	ttttggagaa	atggaagttt	3420
gggctcttga agccta	acggt gcttctaacg	, tccttcaaga	aatcttgact	tacaagtcag	3480
atgacatcaa tggtcg	gtttg agagcttatg	aagccattac	caaaggtaag	ccaattccaa	3540
aaccaggtgt tccaga	aatcc ttccgtgtcc	: ttgtaaaaga	attgcaatca	cttggťcttg	3600
acatgcgtgt ccttga	atgaa gacgacaatg	aagtcgaact	tcgtgacttg	gacgaaggca	3660
tggatgatga tgtgat	ttcat gtagacgato	ttgaaaaagc	acgtgaaaaa	gcagcacaag	3720
aagcaaaagc cgcttt	ttgat gctgaaggga	aagaataaga	actgattcaa	tagataataa	3780
agaaaggtaa gaaata	agtgg ttgatgtaaa	tcgttttcaa	agtatgcaaa	tcaccctagc	3840
ttctcctagt aaagtc	ccgct cttggtctta	tggagaagtg	aagaaacctg	aaacaattaa	3900
ctaccgcaca ctaaaa	accag aacgcgaagg	gctttttgat	gaagtcatct	ttggtcctac	3960
gaaagactgg gaatgt	gcgt gtggaaaata	taaacggatt	cgttataaag	gaatcatttg	4020

ſ

	•					
tgaccgttgt	ggtgttgaag	taactcgtac	taaagttcgt	cgtgaacgta	tgggacatat	4080
tgagttgaaa	gccccagtct	cctcatattt	ggtattttaa	aggaattcca	antcgcatgg	4140
gcntgacctt	ggacatgagc	cctcgtgctc	ttgaagaagt	catntanttt	gcagcttatg	4200
tggtgantga	ccctaaagat	acnccacttg	agcacaaatc	cattatgaca	gagcgggatg	4260
gttngtgaac	gctgacntga	atatggccaa	ggctcttttg	ttgcaaaaat	gggtgytgaa	4320
gcaatccaag	atctnntgaa	acangtagac	ntggaaaaag	aaattgcaga	gctcaaagat	4380
gaattaaaaa	cggcaagtgg	gcaaaagcgc	gtaaamgcta	anttegtegn	tnngactctt	4440
ttcgatnctt	tccaaaaatc	atggtacaca	aaaccagaac	tggatggtct	taaaccatcn	4500
ntntcaccgc	tcattccaga	cac				4523
<400> 2	eptococcus e					
				ttgtgtagta		60
				atttgccact		120
				ggaagaattg		180
				aagtaacttt		240
				tgccacggct		300
				gagatagatg ,		360
ttcaaattga	ataattgttt	atcaaaagtt	ggattattag	tcaaaacacc	tgttgagtta	420
ttcgtaaact	tatagggcac	gcgtggtcga	cggcccgggc	tggtaaagac	ttcttggata	480
acggattaam	agaagttttt	gaagatgtac	ttccgattac	aaactttacg	gatactatgg	540
agcttgaatt	tgttggttac	gaattgaaag	agcctaagta	tacgcttgaa	gaagctcgta	600
tccacgatgc	atcttattca	gcacctattt	ttgtaacctt	ccgtttgatt	aataaagaaa	660
caggagaaat	caaaactcaa	gaagttttct	tcggtgattt	cccaattatg	actgaaatgg	720
gtacattcat	catcaacggt	ggtgaacgta	ttatcgtttc	tcagttggtt	cgttctcctg	780
gtgtttattt	caacgataaa	gttgataaaa	acggtaaagt	tggttacggt	tcaactgtaa	840
tccctaaccg	tggagcatgg	cttgaattag	aaacagattc	aaaagatatt	gcttacacac	900
gtatcgaccg	tacacgtaaa	attccattta	caactcttgt	acgtgcgctt	ggtttctcag	960

gtgatgatga	aatcatggat	atctttggtg	g atagegaact	tgttcgtaac	acaatcgaaa	1020
aagatattca	caaaaaccca	gcagactcac	gtactgacga	agctcttaaa	ı gaaatttacg	1080
aacgccttcg	tccaggtgaa	a ccaaaaacag	r ctgatagctc	: acgtagctto	g cttgtagete	1140
gtttctttga	cccacgtcgt	tatgacttgg	cagctgttgg	tcgttacaaa	atcaacaaaa	1200
aacttaacat	caagactcgt	cttttgaacc	: aaacaatcgc	tgaaaacttg	gttgatgctg	1260
aaactggtga	. aatccttgtt	: gaagctggta	cagtaatgac	acgtgacgtg	attgattcaa	1320
tegetgatea	attggatggt	gaccttaaca	aatttgttta	cacaccaaat	gattacgctg	1380
ttgtcactga	acctgttgtt	cttcaaaaat	tcaaagttgt	tgcaccaaac	gatccagacc	1440
gcgttgttac	aatcgttggt	aacgcaaatc	ctgatgacaa	agcgcgtgcg	cttacaccag	1500
ctgatatctt	ggcagaaatg	tcttacttcc	ttaaccttgc	tgaaggtcta	ggtaaagttg	1560
atgatatcga	ccaccttggg	aatcgtcgta	ttcgtgccgt	tggtgaattg	cttgctaacc	1620
aattccgtat	tggtcttgct	cgtatggaac	gtaacgttcg	ggaacgtatg	tcagttcaag	1680
acaacgaagt	gttgacacca	caacaaatca	tcaacattcg	tcctgttact	gcagccgtta	1740
aagaattctt	cggttcatct	caattgtcac	agttcatgga	ccaacacaac	ccactttctg	1800
agttgtctca	caaacgtcgt	ttgtcagcct	taggacctgg	tggtttgact	cgtgaccgtg	1860
ctggttatga	agttcgtgac	gtgcactaca	ctcactatgg	tcgtatgtgt	ccgattgaaa	1920
ctcctgaagg	acctaacatc	ggtttgatca	ataacttgtc	aacatacgga	caccttaata	1980
		ccatatcgta				2040
acgaaatcgt	ttggttgact	gccgatgaag	aagatgaata	cacagtagca	caggctaact	2100
		acatttgctg				2160
	•	agcgttgttg				2220
		attcctttcc			•	2280
		caagcggtgc				2340
		gcagcccacg				2400
		gatgctgaaa				2460
		aaattccgtc				2520
		gatatcgttg				2580
	•	gcccttggtc				2640
aaggttacaa	cttcgaggat	gcggttatca	tgtctgaacg	ccttgtgaaa	gatgatgtct	2700

WO 2004/041			6/32		1/FR2003/0	003293
atacatctgt	tcacttggaa	gaatacgaat		tgatactaag	ttaggccctg	2760
	tcgcgaaatt					
						2820
	ccgtattggt					2880
caccaaaagg	tgaaaaagat	ctttctgctg	aagagcgtct	cttgcacgca	atcttcggtg	2940
acaagtcacg	tgaagtacgt	gatacctctc	ttcgtgtacc	tcacggtgcc	gatggtgtcg	3000
ttcgtgatgt	gaaaatcttt	actcgtgcca	acggtgatga	attgcaatca	ggtgttaaca	3060
tgttggttcg	tgtttcacat	cgctcaaaaa	cgtaagatca	aggtcggaga	taagatggcc	3120
ggtcgtccac	ggtaacaagg	gtgtcgtttc	acgtaywgta	cctgttgagg	atatgccata	3180
tcttccagat	ggaacaccag	ytgacawcat	gttgaaccca	ctsggggtgc	catcwcgtat	3240
gaacatcgga	caagttatgg	agcttcacct	tggtatggct	gctcgtaacc	ttggtattca	3300
cattgcaaca	ccagtctttg	atggggcaac	ttctgaagac	ctttgggata	cagttaacga	3360
agctggtatg	gctagcgacg	ctaagacagt	tctttacgat	ggacgtactg	gtgaaccatt	3420
tgataaccgt	gtgtcagttg	gtgtcatgta	catgattaaa	cttcaccaca	tggttgatga	3480
taaacttcac	gcacgttcag	ttggtcctta	ctcacttgtt	acgcaacaac	ctcttggtgg	3540
taaagcacaa	tttggtggac	aacgtttcgg	tgaaatggaa	gtttgggctt	tggaagctta	3600
cggtgcatca	aatgttcttc	aagaaatctt	gacttacaaa	tcagatgatg	tcaacggtcg	3660
tcttaaagct	tatgaagcca	tcactaaagg	taaaccaatt	ccaaaaccag	gtgttccaga	3720
atcattccga	gttcttgtaa	aagaattgca	atcacttggt	cttgacatgc	gcgtgcttga	3780
tgaagatgac	aatgaagtag	aacttcgtga	tcttgatgaa	ggtgaagatg	acgatgttat	3840
gcacgttgat	gatcttgaaa	aagctcgtca	aaaacaagaa	gcagaagaag	cggaaaaagc	3900
agaagtttct	gcagaagaaa	acaaataata	ggaaagaaca	ttcagacatg	agagaggcaa	3960
gacctgcttc	tcttggtcag	attgtttgat	tgagtcctat	aacgataaat	gatgtcttac	4020
gaatcatgaa	tttgtaagtc	atgacagtta	gaaagtagcg	cagctatttc	aaagtcataa	4080
gaaggtatca	tggtgacgta	atcgttacag	ccggcgtc			4118

<210> 3

<211> 3425

<212> DNA

<213> Abiotrophia defectiva

<400> 3

atatagggca cgcgtggtcg acggcccggg ctggtcctaa acaacatgta acgtcactcc gatgagttgg ttctgttgtc ttttttttgc gcttcaaaga ccgaaaaatg tcatttgtca 120

acaattatta	. ataattgtaa	ccttaatgta	aagtggtgtt	cttagattat	attatagggg	180
tgaatcgctt	gagtcatatc	gtgaaatacg	gtaaaaaagc	tgagcgtcga	agctatgcgc	240
gtatcgacga	agtcttagag	ttgccgaact	tgattgaaat	ccaaacggat	tcctacaaat	300
ggttcttgga	tgaagggcta	aaagtgatgt	tcgaggacat	ttcgccgatt	gtcgaccatt	360
cggagaactt	ggaacttcat	tttgtagact	atgagttcaa	ggaagctaag	tatagcttag	420
aagaagctcg	tagccatgac	gctaactact	caaaaccaat	ctatgtaacc	ttgcgcctgt	480
tcaacaaaga	gacaggtgaa	gtcaaagaac	aagaagtctt	cttcggggac	ttcccaatca	540
tgaccgaaat	ggggaccttc	attatcaacg	gggcggaacg	ggttatcgtt	tcccagttgg	600
tacgttctcc	aggtgtctac	ttccacgacc	gtatggacaa	gaaaggccgc	cacagctata	660
cttctacggt	tattcctaac	cgtggggctt	ggttggaatt	tgaatcagat	gctaagggga	720
ttgcctacgt	ccgcattgac	cggacccgga	agattccatt	gactgtcttg	atgcgtgcct	780
taggttttgg	ttcagatgac	gagatttatg	atatcttcgg	ccaatctgag	ctcttagact	840
taactatcga	gaaggatgtt	cacaaaaaca	ttcaagactc	tcgtacggaa	gaagccttga	900
aggacattta	cgagcgtctc	cgtccaggtg	aacctaagac	cgcagaaagc	tcacgtaacc	960
tcttggttgc	gcgcttcttc	gacccacgtc	gctatgactt	agcacctgta	ggtcgttata	1020
agatcaataa	aaagctccac	ctcaagaacc	gtttggttgg	cttgactttg	gctgaaacct	1080
tggttaaccc	agaaacaggc	gaagtgctct	ttgaagaagg	aacggtcttg	gatcaagaac	1140
gtgttcaagc	cctgattcca	tacttagagg	ctggcttgaa	taaggtaacc	ctctatcctt	1200
ctgaagatag	tgtggtagct	caaccaattg	atttacaaat	catcaaagtt	tattcaccta	1260
agaacgccga	gcaagtgatt	aacatcatcg	gtaacgggaa	cattgagaag	attaagtgct	1320
tgacgccagc	tgacattatt	gcgtcaatga	actactatct	ctatttagac	caaggaattg	1380
gtgtgacaga	tgatatcgac	cacttggcta	accgtcgtat	tcgttcagtc	ggtgaattat	1440
tgcaaaacca	attccgtatc	gggctatccc	ggatggaacg	ggtagtgcgt	gaacgtatgt	1500
cgctccaaga	tgttgcgacc	atcacaccgc	aacaattgat	taacattcgt	ccagtagtgg	1560
cggctattaa	ggaattcttc	ggttcatccc	agttgtcaca	attcatggac	caagttaacc	1620
cactcgggga	attgacccac	aaacgtcgtc	tgtcagcctt	agggcctggt	ggtttgacgc	1680
gggaccgtgc	cggctatgaa	gtgcgggacg	ttcactactc	tcactacggc	cgtatgtgtc	1740
caatcgagac	gccagaaggt	cctaacatcg	ggttgattaa	cagcttgtct	tcttatgcca	1800
agattaacaa	gtatggtttt	attgagacgc	cttaccgtaa	agtggacaaa	teggttaege	1860

cacaccgtgt	cacgaccgaa	attgactacc	tagcagcgga	cgaggaagac	ttgtacgtag	1920
tagcccaagc	caactctaaa	ctcaacgaag	acgggacctt	cgccaatgac	ctagttatgg	1980
cgcgtttccg	ttcacaaaac	attgaggtta	acgttgacca	agtagactac	atggacgtat	2040
cgccaaaaca	ggttgtcgct	gtcgcgactg	ctagcattcc	gttcttggaa	aacgacgact	2100
ccaaccgggg	cttgatgggt	gccaacatgc	aacgtcaagc	tgtgccactt	attaatccac	2160
aatccccact	gattgggact	gggatggaat	ataaggcagc	acacgactct	ggggctgcgc	2220
tcttatgtaa	gcgcgccggt	gaagtggttt	atgtcgatgc	taacaaggtg	cgcgtgcgca	2280
ctccagaagg	tgaagttgac	gaataccgtt	taaccaagtt	tgcacgttct	aacgctggga	2340
cctgttacaa	ccaacgtcca	atcgtagaat	taggcgacca	agttgatgcc	ttggaaatct	2400
tagcagatgg	tccatctatg	caaaatgggg	agatggccct	cggtcaaaac	`ccactggtag	2460
ccttcatgac	ttgggaaggg	tataactatg	aggacgcggt	tatcatgtct	gaacgtctgg	2520
tcaaagacga	tgtttatacc	tctatccaca	ttgaagaata	tgaatcagag	tcccgtgaya	2580
cyaagttagg	ccctgaagaa	attacacgcg	aaattccaaa	cgtgtccgaa	gatgccctca	2640
agtacttaga	caaagacggg	attatctgta	tcggggcgga	agtaaaagac	ggcgatatct	2700
tagttggtaa	ggtaacacca	aaaggtgtga	ccgagttgtc	tgcggaagaa	cgcttgctcc	2760
atgctatctt	cggtgagaag	gcgcgtgaag	tacgtgatac	ttccttgcgt	gtgccacacg	2820
gcgggggcgg	gattgtccac	gacgttaaaa	tctttacccg	cgaagctggc	gacgaattgg	2880
caccaggtgt	caacaagcta	gtccgcgtct	acatcgtaca	aaaacgtaaa	atcaatgaag	2940
gggataagat	ggccggtcgt	cacggtaaca	aaggggttgt	ctcccttatc	atgccggaag	3000
aagatatgcc	attcttacca	gatggtaccc	cagttgatat	catgttgaac	ccattagggg	3060
ttccatcccg	tatgaacatc	gggcaagtcc	tagagttaca	cttggggatg	gctgctcgcg	3120
aaatgggcat	caagattgca	acacctgtct	ttgacggtgc	tagtgaagaa	gatgtctggg	3180
aaacagttaa	ggaagccggc	ttagaagctg	acgctaagac	tatcttatat	gatggtcgaa	3240
ccggtgaacc	atttgaccgt	aaagtctctg	ttggggttat	gtacatgatt	aagttggccc	3300
acatggtcga	tgacaagttg	cacgcccgtt	caacaggtcc	atactctctg	gttacccaac	3360
aaccattggg	tggtaaagct	caatttggtg	ggcaacgttt	cggggagatg	gaggtttggg	3420
cccta						3425

<210> 4 <211> 3198

<212> DNA

<213> Streptococcus mutans

<220>

<221> misc_feature

<222> (619)..(3193) <223> n représente a, t, c, g ou i

<400> 4

<400> 4						
ggaccctttt	atgacttctt	ggatacaggt	ctgaaggaag	tttttgaaga	tgtgcttcca	60
atttccaatt	tcacagacac	tatggaatta	gagtttgtgg	gttatgagtt	gaaagagcct	120
aagtatacat	tggaagaagc	acgtgctcat	gatgcacatt	attctgcccc	catctttgtt	180
actttccgtc	tcatcaataa	agaaactggt	gaaattaaga	cacaagaagt	attttttggt	240
gattttccct	tgatgactga	aatgggtact	tttattatta	atggtgctga	acgtattatc	300
gtttctcagt	tggtacgttc	accaggtgtt	tattttaatg	ataaagtgga	taaaaatggg	360
aaaattggct	atggttcaac	tgttatccct	aaccgcggtg	cttggcttga	gcttgaaacg	420
		tactcgtatt				480
		ttccggggat				540
gaattggttc	gtaataccat	tgaaaaagat	atccataaaa	atcctaatga	ctctcgtaca	600
		tatgaacgtc				660
		gcacgtttct				720
		aagttaaacg				780
		aacaggcgaa				840
		ttgcagatta		•		900
		ttttgacaga				960
		gcacggttac				1020
		gccgatacgt			•	1080
		ttgatgatat				1140
		atcaatttcg				1200
		aagataatga				1260
		ttaaagagtt				1320
		ctgaattgtc				1380
		gtgctggtta	•			1440
			_			

tggtcgtatg	tgtccaattg	aaacgcctga	aggaccaaat	attggattga	ttaataactt	1500
gtcttcctat	ggtcatctta	ataaatatgg	atttatccaa	acaccatacc	gtaaagttga	1560
ccgtgagaca	ggtaaagtaa	ccaatgaaat	cgaatggctt	actgctgatg	aagaagatga	1620
attcactgta	gctcaggcta	actcaaaact	caatgaagat	ggaagctttg	ctgaagaaat	1680
cgtcatggga	cgtcatcaag	ggaataacca	agagtttcca	gcaagttctg	ttgaatatat	1740
ggatgtttct	cctaagcagg	tagttgcggt	agcgacagca	tgtattcctt	tccttgaaaa	1800
tgatgactcc	aaccgtgccc	ttatgggagc	taacatgcag	cgccaagctg	tgccattgat	1860
tgatcctaaa	gcaccttttg	ttggaactgg	tatggaatat	caagcagccc	atgattctgg	1920
agccgctatt	atcgctcaac	ataatgggaa	agtggtttat	tccgatgcag	ataagattga	1980
agttcgccgt	gaagatggct	cactagatgt	ttatcatgtt	accaaattcc	gtcgttctaa	2040
ctctggaact	gcctacaatc	aacgtactct	tgttagggta	ggcgatagtg	ttgagaaggg	2100
ggactttatt	gcagatggtc	cttctatgga	aaagggtgag	atggctcttg	gacaaaatcc	2160
agtggttgct	tacatgactt	gggagggtta	caactttgaa	gatgctgtta	tcatgagcga	2220
gcgtcttgtc	aaggatgatg	tttatacttc	tgtccattta	gaagaatttg	aatctgaaac	2280
tcgtgataca	aagcttggac	ctgaagaaat	tacgcgtgaa	atcccaaatg	ttggtgaaga	2340
tgccctgaaa	gaccttgatg	aaatgggaat	tattcgcatt	ggtgctgagg	ttaaagaagg	2400
tgatattcta	gttggtaaag	tgactcctaa	aggagaaaaa	gatctttctg	cagaagaacg	2460
cctcttgcat	gccatttttg	gtgacaaatc	acgtgaagtt	cgtgatactt	ctcttcgtgt	2520
acctcatggt	ggcgacggtg	ttgtttgtga	tgtgaaaatc	tttacacgtg	ctaatggaga	2580
tgaacttcaa	tcaggtgtta	acatgctggt	tcgtgtttat	atcgctcaaa	aacgtaaaat	2640
caaggtcgga	gataagatgg	ccggacgtca	tggtaacaag	ggtgtcgttt	cccgtattgt	2700
accagtggaa	gatatgccat	atcttccaga	tggaacacct	gttgatatca	tgcttaatcc	2760
acttggggtg	ccatcacgga	tgaacattgg	gcaagttatg	gaactccatc	ttggtatggc	2820
tgctcgtaat	ttgggcattc	atattgcaac	gcctgtcttt	gacggagcaa	cttctgatga	2880
tctttgggaa	acagtaaaag	aagccggtat	ggattctgat	gctaaaactg	ttctttatga	2940
tggtcgcaca	ggggagccgt	ttgataatcg	tgtatcagtt	ggtgttatgt	atatgattaa	3000
acttcaccac	atggttgatg	ayaaccattt	tgictatgca	magwtcagtt	ggcccttakt	3060
caaygawtam	tcagasgart	tcctgctwgg	tgtaaaggct	ncaattgtct	ttagaggtta	3120
aggctggtga	aataacggta	tgctggtatt	gatggcaatg	ggcaagtgaa	tantcaacac	3180

cggccgtcta cancgtgc

3198

1500

<210> 3096 <212> DNA

<213> Enterococcus faecalis

<400> gacccttatc aattggtttt tagatgaggg acttcgtgaa atgtttgaag acattttacc 60 aattgatgat ttccaaggaa acttatcctt agaatttgtt gactatgaat taaaagaacc 120 aaagtacaca gtagaagaag cccgcgcaca tgatgccaac tattctgcgc cattacatgt 180 aacattacgt ttaaccaacc gtgaaacagg tgaaattaaa tcccaagaag tcttcttcgg 240 cgatttccca ttaatgacag aaatgggtac cttcatcatc aacggggcag aacgtgttat 300 cgtttcccaa ttagttcgtt ctccaggtgt ttacttccat ggaaaagtgg acaaaaacgg 360 caaagaaggt tttggctcaa cagtcattcc taaccgtggt gcatggttag aaatggaaac 420 agatgcgaaa gacatttett atgtteggat tgaeegeaea egtaaaatte etttaaetgt 480 gttagttcgt gctttaggtt tcggttcaga tgataccatc ttcgaaattt tcggcgacag 540 cgaaagctta cgcaacacaa ttgaaaaaga tttacacaaa aacgcaagtg attctcgtac 600 agaagaaggc ttgaaagaca tttatgaacg tcttcgccca ggcgaaccaa aaacagcaga 660 tagctcacgt agcttgttaa cttgcacgtt tctttgatcc aaaacgttat gatttggcaa 720 acgttggtcg ctacaaagtt aacaaaaaat tagacttaaa aacacgtcta ttaaacttaa 780 ccttagctga aacgctagtt gatccagaaa ctggtgtaaa tcattgtcga aaaaggcaca 840 gttttaacac actacatcat ggaaacatta aggcrataca ttgacaaacg gcttaaacag 900 cgtaacttac tatccaagtg aagatgcggt agtaactgaa ccaatgacga tccaagtgat 960 tcaagttctt tcaccaaaag atcctgaacg tatcgtaaat gtgattggta acggctatcc 1020 agacgacage gtaaaaacag ttegteeage agatategtt getteaatga getaettett 1080 caacttaatg gaagatatcg gtaatgtcga tgacatcgac cacttaggta atcgtcgtat 1140 ccgttcagta ggcgaattat tacaaaacca attccgtatt ggtttagccc gtatggaacg 1200 tgtggttcgt gaaagaatgt ctattcaaga cacagaaaca ttgacaccac aacaattaat 1260 taacatccgt ccagtggtag caagtatcaa agaattcttt ggttcttcac agttatcaca 1320 gttcatggac caaacaaacc cattaggtga gttaacccat aaacgtcgtc tatcagcctt 1380 agggeetggt ggtttgaete gtgategtge eggttatgaa gttegtgaeg tteaetaete 1440 tcactatggt cgtatgtgtc caattgaaac gcctgaggga ccaaatatcg ggttgatcaa

tagcttatct	agttatgcga	aagtgaataa	atttggtttc	atcgaaacgc	cttatcgccg	1560
tgttgatcgt	gcgacaggcc	gtgttactga	tcaagtagat	tacttaacag	cagacatcga	1620
agaccattat	atcgtagcgc	aagcgaactc	acttttaaat	gaagatggca	catttgccaa	1680
tgatgttgtt	atggcgcgtc	tacaaagtga	aaacttagaa	gttgccgtag	acaaagttga	1740
ctacatggac	gtttcaccaa	aacaagtagt	cgcagtcgca	acagcatgta	ttcctttctt	1800
agaaaacgat	gactccaacc	gtgccttgat	gggtgccaac	atgcagcgtc	aagcggtgcc	1860
gttaattcaa	ccacgctctc	cgtgggtagg	tacaggtatg	gaatataaat	cagcccatga	1920
ctcaggtgct	gctttactat	gtaaacatga	cggtgtcgta	gaattcgtcg	atgcaaaaga	1980
aattcgcgtt	cgtcgcgaca	atggcgcatt	agacaaatat	atggttacaa	aattccgtcg	2040
ttctaactca	ggaacaagct	acaaccaacg	cccaattgtt	cacttaggtg	aaaagttgaa	2100
aaggcgatac	tttaccggat	ggaccttcta	tggaagaagc	gaaatggctt	tatggcaaaa	2160
cgtcttagtt	gccttcatga	catgggaagg	ttacaactac	gaggatgcca	ttatcatgag	2220
ccgtcgttta	gttaaagacg	atgtctacac	ttctgtgcat	attgaagaat	atgaatcaga	2280
agcacgtgat	acaaaattag	gacctgaaga	aattacccgt	gaaattccaa	acgttgggga	2340
agacgcgttg	aaagacttag	acgaaatggg	gattatccgc	attggtgctg	aagttcaaga	2400
tggcgactta	ctagttggga	aagtcacacc	taaaggggtc	acagaattat	ctgcagaaga	2460
acgtttatta	cacgcaatct	tcggggaaaa	agcccgcgaa	gttcgtgata	cgtctctccg	2520
tgtacctcac	ggtggcggcg	gtatcgttca	tgatgtgaaa	atctttactc	gtgaagctgg	2580
cgatgaatta	tcaccaggtg	tcaacatgtt	agttcgtgtc	tatatcgttc	aaaaacgtaa	2640
aattcacgaa	ggagataaaa	tggcgggacg	tcacggaaat	aaaggggttg	tttcccgtat	2700
tatgccggaa	gaagatatgc	cattcttacc	tgacggaaca	cctgttgata	tcatgttgaa	2760
cccattaggg	gtaccttctc	gtatgaatat	cggacaagta	cttgaattac	acttaggtat	2820
ggctgctcgc	caattaggta	ttcacgtcgc	aacacctgtt	ttcgatgggg	caaccgatga	2880
			tatggctagc			2940
			ccgtatttcc			3000
			gcatgctcgt	tcaatcggac	cttactctct	3060
tgttacgcaa	caaccgttgg	gtgtaaagct	caattc			3096

<210> 6 <211> 20

```
<212> DNA
<213> amorce
<220>
<221> misc_feature
<222> (6)..(6)
<223> n représente a, t, c ou g ou i
<400> 6
aarytnggmc ctgaagaaat
                                                                      20
<210> 7
<211> 23
<212> DNA
<213> amorce
<220>
<221> misc_feature
<222> (3)..(3)
<223> n représente i
<220>
<221> misc_feature
<222> (3)..(3)
<223> n représente a, t, c ou g ou i
<400> 7
tgnartttrt catcaaccat gtg
                                                                      23
<210> 8
<211> 709
<212> DNA
<213> Streptococcus suis
<400> 8
cgcgaaattc caaacgttgg tgaagatgcc cttcgcaact tggacgaaat ggggattatc
cgtattggtg ccgaagttaa agagggcgac attcttgttg gtaaagtcac accaaaaggt
                                                                    120
gaaaaagatc tttctgctga agagcgtctc ttgcacgcaa tcttcggtga caagtcacgt
                                                                    180
gaagtacgtg atacctctct tegtgtacct caeggtgeeg atggtgtegt tegtgatgtg
                                                                    240
aaaatettta etegtgeeaa eggtgatgaa ttgeaateag gtgttaaeat gttggttegt
                                                                    300
gtttacatcg ctcaaaaacg taagatcaag gtcggagata agatggccgg tcgtcacggt
                                                                    360
aacaagggtg tegttteacg tattgtacet gttgaggata tgecatatet teeagatgga
                                                                    420
acaccagttg acatcatgtt gaacccactc ggggtgccat cacgtatgaa catcggtcag
                                                                    480
gttatggaac ttcacttggg tatggcggct cgcaacttgg gcatccatat cgcaacacca
                                                                    540
```

WO 2004/041841 TT/FR2003/	003293
gttttcgatg gtgcaagttc agaagacctc tggtcaactg ttaaagaagc aggtatggac	600
tcagatgcca agaccattct ttacgatgga cgtacaggtg aaccatttga caaccgtgta	660
tctgttggtg tcatgtacat gatcaagctt caccacatgg ttgatgaca	709
<210> 9 <211> 725 <212> DNA <213> Streptococcus sanguinis	
<400> 9 tgtcatcaac catgtggtga gcttaatcat gtacatgaca ccgacagata cacggttgtc	60
aaacggctca ccggtacgtc catcgtaaag aatagtcttg gcatcgctat ccataccagc	120
ttcacggaca gtatcccaga ggtcttctga gcttgctcca tcaaagaccg gtgtcgcaat	180
atggatgccc aagttacgtg ctgccatacc aaggtgaagc tccataacct gaccaatgtt	240
catacgtgat ggtaccccga gtgggttcag catgatatca actggtgttc cgtctggcaa	300
ataaggcatg tettecaeag gaacgataeg ggatacaaee eeettgttte egtgaegaee	360
agccatctta tctccgacct tgatcttacg tttttgagcg atgtagacac gaaccaacat	420
attaacgcca gattgcaact catcaccatt agcacgggta aagatcttca cgtcacgaac	480
cactccatca gcaccgtgcg gcacacgcag agaggtatca cggacttcac gagacttgtc	540
tccgaagata gcgtgcaaga ggcgctcttc agcagaaaga tctttttcac ccttaggggt	600
aactttacct acaaggatat cgccttcctt gacttccgcc ccgatgcgga taatacccat	660
ttcgtccaaa ttgcgtaggg catcttcccc tacgtttgga atttcgcggg taattcttca	720
ggtca :	725
<210> 10 <211> 728 <212> DNA <213> Streptococcus salivarius	
ttgtcatcaa ccatgtgtga agtttgatca tgtacatgac accaactgat acacggttat	6 0
caaatggttc acctgtacgt ccatcgtaaa ggattgtctt agcatcacta tccatacctg	120

cttcacgaac agtatcccag aggtcttctg agcttgcccc gtcaaagact ggtgttgcga

tgtggatacc caagttacga gcagccatac caaggtgaag ttccataacc tgaccgatgt

tcatacgtga tggcacccca agagggttca acatgatatc aactggtgta ccgtctggaa

ggtaaggcat gtcttcaaca ggaacaatac gagaaacaac ccctttgtta ccgtgacgac

180

240

300

360

WO 2004/041841		15/32		T/FR2003	/003293
cggccatctt atctccgacc	ttaatcttac	gtttttgagc	gatgtaaaca	cgaacaagca	420
tgttaacacc tgattgcaat	tcatcaccgt	ttgcacgtgt	gaagatttta	acatcacgaa	480

0550000000	deceegace	ccaaccccac	gccccgage	gatgtaaaca	cgaacaagca	420
tgttaacacc	tgattgcaat	tcatcaccgt	ttgcacgtgt	gaagatttta	acatcacgaa	480
cgacaccatc	accaccgtga	ggtacacgga	gtgaggtate	acgtacttca	cgagatttat	540
caccaaagat	agcatggaga	agacgttctt	cagcagaaag	gtctttttca	cccttaggtg	600
ttaccttacc	aacaagaatg	tcaccttctt	taacctcagc	accgatacgg	ataataccca	660
tttcgtcaag	gtctttgaga	gcttcttcac	caacgtttgg	caattcacgt	gtaatttctt	720
caggtcca		,•				728
.010. 11						

<210>	11
<211>	725
<212>	DNA
<213>	Streptococcus pyogenes

<400> 11 tgtcatcaac catgtggtga agtttgatca tatacatgac accaacggat acacggttgt 60 caaatggttc accggtgcga ccatcataaa ggaccgtctt agcatcgcta tccataccag 120 cttcacgaac agtgtcccaa aggtcttctg atgaagcccc gtcaaagaca ggtgttgcaa 180 tgtgaatacc aagattacga gcagccatac caaggtgaag ttccataacc tgaccaatat 240 tcatccgtga tggcacccca agagggttca acatgatgtc aactggtgtt ccgtctggaa 300 ggtatggcat gtcttcaact ggtacaatac gtgaaacgac accettgttt ccgtgacgac 360 cggccatttt atctccgacc ttgattttac gtttttgagc gatgtaaaca cgcacaagca 420 tattaacacc tgattgcaat tcatcgccgt tagcgcgtgt aaagattttc acatcacgaa 480 cgataccatc accaccgtga gggacacgaa gtgaggtatc acgcacttca cgcgatttat 540 ccccaaagat ggcgtgaagt aaacgttctt cagcagaaag gtctttttca cctttaggtg 600 tgactttacc tactaagatg'tcgccttctt taacctcagc accgatacgg ataatgccca 660 tttcgtcaag gtctttgagg gcttcttcac caacatttgg gatttccgag tgattcttca 720 gggca 725

<210>	12
<211>	724
<212>	DNA
<213>	Streptococcus pneumoniae

<400> 13	2					
caaccatg	tg gtggagtttg	atcatgtaca	tgactccgac	agaaaacacg	gttatcaaac	60
ggttcacca	ag tacgtccatc	gtaaaggatc	gttttggcat	coctatccat	acctocttct	120

T/FR2003/003293

ttaacagttg	accaaagatc	ttcagaactt	gctccatcaa	agactggtgt	cgcgatgtga	180
ataccaagag	tacgagetge	cataccaagg	tgaagctcca	taacctgacc	gatattcata	240
cgtgatggta	ccccaagtgg	gttcaacatg	atgtcgactg	gagttccgtc	tggaaggtaa	300
ggcatgtctt	ctacaggaac	gatacgagag	acaacccctt	tgtttccgtg	acgtccggcc	360
attttatctc	cgaccttaat	cttacgtttt	tgagcgatgt	aaacacgaac	caacatgtta	420
acacctgatt	gcaactcatc	tccatttaca	cgtgtaaaga	tcttaacatc	acgaacgaca	480
ccatcggcac	cgtgtggtac	acgaagagaa	gtatcacgca	cttcacgaga	cttgtctcca	540
aagatagcgt	gcaagagacg	ttcttcagct	gaaagatctt	tctcaccctt	aggtgttact	600
ttacctacaa	gaatatcacc	ttctttaacc	tcagcaccaa	tacggataat	cccatttcgt	660
caaggtcttt	gagggcatct	tcaccaacgt	tttggaattt	cgcgagtgat	ttcttcaggt	720
ccaa						724

<210> 13

<400> 13

actcgtgaaa	ttccaaacgt	tggtgaagat	gcccttaaag	accttgacga	aatgggtatt	60
atccgtattg	gtgctgaggt	taaagaagga	gatatccttg	taggtaaagt	cacacctaag	120
ggtgaaaaag	acctttctgc	tgaagaacgt	ctcttgcacg	ctatcttcgg	agacaagtct	180
cgtgaagtgc	gtgatacttc	tcttcgagta	cctcacggtg	ccgatggtgt	cgttcgtgat	240
gttaagatct	ttacacgtgc	aaatggtgat	gagttgcaat	ctggtgtgaa	tatgctggtt	300
cgtgtctaca	tcgctcaaaa	acgtaagatc	aagtcggaga	taagatggcc	ggacgtcacg	360
gaaacaaagg	ggttgtctct	cgtatcgttc	ctgtagaaga	catgccttac	cttccagatg	420
gaactccagt	cgatatcatg	ttgaacccac	ttggggtgcc	atcacgtatg	aatatcggtc	480
aggttatgga	actccacctt	ggtatggcag	cccgtactct	tggtatccac	atcgcaacac	540
cagtctttga	cggagcaagt	tcggaagacc	tttgggacac	tgttaaagaa	gcaggtatgg	600
atagcgatgc	caaaacaatc	ctttacgatg	gacgtacagg	tgagccgttt	gacaaccgtg	660
tatcagttgg	tgtcatgtac	atgatcaaac	tcca			694

<210> 14

<211> 694 <212> DNA

<213> Streptococcus oralis

<211> 728

<212> DNA

<213> Streptococcus mutans

tgtcatcaac catgtggtga agtttaatca tatacataac accaactgat acacgattat	60
caaacggete ceetgtgega ecateataaa gaacagtttt agcateagaa teeataeegg	120
cttcttttac tgtttcccaa agatcatcag aagttgctcc gtcaaagaca ggcgttgcaa	180
tatgaatgcc caaattacga gcagccatac caagatggag ttccataact tgcccaatgt	240
tcatccgtga tggcacccca agtggattaa gcatgatatc aacaggtgtt ccatctggaa	300
gatatggcat atettecaet ggtacaatae gggaaaegae aeeettgtta eeatgaegte	360
cggccatctt atctccgacc ttgattttac gtttttgagc gatataaaca cgaaccagca	420
tgttaacacc tgattgaagt tcatctccat tagcacgtgt aaagattttc acatcacaaa	480
caacaccgtc gccaccatga ggtacacgaa gagaagtatc acgaacttca cgtgatttgt	540
caccaaaaat ggcatgcaag aggcgttctt ctgcagaaag atctttttct cctttaggag	600
tcactttacc aactagaata tcaccttett taacetcage accaatgega ataatteeca	660
tttcatcaag gtctttcagg gcatcttcac caacatttgg gatttcacgc gtaatttctt	720
caggtcca	728
<210> 15 <211> 730 <212> DNA	
<213> Streptococcus mitis <400> 15	
A COLD	60
<400> 15	60 120
<400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt	
<pre><400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc</pre>	120
<pre><400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc agcttctta acagttgacc aaagatcttc agaacttgct ccgtcaaaga ctggtgttgc</pre>	120 180
<pre><400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc agcttcttta acagttgacc aaagatcttc agaacttgct ccgtcaaaga ctggtgttgc gatgtgaata ccaagagtac gagctgccat cccaaggtgg agttccataa cctgaccgat</pre>	120 180 240
<pre><400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc agcttcttta acagttgacc aaagatcttc agaacttgct ccgtcaaaga ctggtgttgc gatgtgaata ccaagagtac gagctgccat cccaaggtgg agttccataa cctgaccgat attcatacgt gatggcaccc caagtgggtt caacatgata tcgactggag ttccatctgg</pre>	120 180 240 300
<pre><400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc agcttcttta acagttgacc aaagatcttc agaacttgct ccgtcaaaga ctggtgttgc gatgtgaata ccaagagtac gagctgccat cccaaggtgg agttccataa cctgaccgat attcatacgt gatggcaccc caagtgggtt caacatgata tcgactggag ttccatctgg aaggtaaggc atatcttcta caggaacgat acgagagaca acccctttat ttccgtgacg</pre>	120 180 240 300 360
<pre><400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc agcttcttta acagttgacc aaagatcttc agaacttgct ccgtcaaaga ctggtgttgc gatgtgaata ccaagagtac gagctgccat cccaaggtgg agttccataa cctgaccgat attcatacgt gatggcaccc caagtgggtt caacatgata tcgactggag ttccatctgg aaggtaaggc atatcttcta caggaacgat acgagagaca acccctttat ttccgtgacg tccggccatc ttatctccga ccttgatctt acgtttttga gcgatgtaga cgcgaaccag</pre>	120 180 240 300 360 420
<400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc agcttcttta acagttgacc aaagatcttc agaacttgct ccgtcaaaga ctggtgttgc gatgtgaata ccaagagtac gagctgccat cccaaggtgg agttccataa cctgaccgat attcatacgt gatggcaccc caagtgggtt caacatgata tcgactggag ttccatctgg aaggtaaggc atatcttcta caggaacgat acgagagaca acccctttat ttccgtgacg tccggccatc ttatctccga ccttgatctt acgtttttga gcgatgtaga cgcgaaccag catgttgaca cctgattgca attcatctcc atttgcacgt gtaaagatct taacatcacg	120 180 240 300 360 420 480
<pre><400> 15 tgtcatcaac catgtggtgg agtttgatca tgtaacatga ctccgacaga aaacacggtt atcaaatggt tcacctgtac gtccatcgta aaggattgtt ttggcatcgc tatccatacc agcttcttta acagttgacc aaagatcttc agaacttgct ccgtcaaaga ctggtgttgc gatgtgaata ccaagagtac gagctgccat cccaaggtgg agttccataa cctgaccgat attcatacgt gatggcaccc caagtgggtt caacatgata tcgactggag ttccatctgg aaggtaaggc atatcttcta caggaacgat acgagagaca acccctttat ttccgtgacg tccggccatc ttatctccga ccttgatctt acgtttttga gcgatgtaga cgcgaaccag catgttgaca cctgattgca attcatctcc atttgcacgt gtaaagatct taacatcacg aaccacacca tcagctccgt gtggtacacg aagagaagtg tcacgtactt cacgagattt</pre>	120 180 240 300 360 420 480 540

ttcaggtcca						730
<210> 16 <211> 697 <212> DNA <213> Str		equinus				
<400> 16						
cactcgcgaa	attccaaacg	ttggtgaaga	agctcttaaa	gaccttgacg	aaatgggtat	60
tatccgtatc	ggtgctgaag	ttaaagaagg	tgacatcctt	gtaggtaaag	taacacctaa	120
aggtgaaaaa	gacctttctg	ctgaagagcg	ccttcttcac	gcaatcttcg	gtgataaatc	180
acgtgaagtt	cgtgatacat	cacttcgtgt	accacacggt	ggagatggtg	tcgttcgtga	240
cgttaaaatc	tttacacgtg	caaacggtga	tgaattacaa	tcaggtgtta	acatgctcgt	300
tcgtgtttat	atcgcacaaa	aacgtaaaat	caaagtcgga	gataaaatgg	ccggtcgtca	360
cggtaacaaa	ggggttgttt	ctcgtgttgt	tccagttgaa	gacatgcctt	atcttccaga	420
cggaactcca	gtcgatatca	tgttgaaccc	acttggggtg	ccatctcgta	tgaacatcgg	480
acaagttatg	gagcttcacc	ttggtatggc	tgctcgtaac	cttggtattc	acattgcaac	540
accagtcttt	gatggggcaa	cttctgaaga	cctttgggat	acagttaacg	aagctggtat	600
ggctagcgac	gctaagacag	ttctttacga	tggacgtact	ggtgaaccat	ttgataaccg	660
tgtgtcagtt	ggtgtcatgt	acatgattaa	acttcac			697
<210> 17 <211> 731 <212> DNA <213> Str	eptococcus (constellatus	5	·,		
<400> 17						
	aaccatgtgt					60
gtcaaacggc	tegecegtae	gaccatcata	aagaatcgtc	ttggcatcgc	tatccatgcc	120
tgcttcacga	acagtatccc	aaaggtcatc	tgagcttgct	ccgtcaaata	ctggcgttgc	180
tatgtggata	ccaaggttgc	gagcagecat	accaaggtga	agctccataa	cctgtccgat	240
attcatacgt	gatggcaccc	caagtgggtt	caacatgatg	tctactggtg	ttccgtctgg	300
aagataaggc	atatcctcaa	ctggaacgat	acgggaaaca	acccctttat	ttccgtggcg	360
tccggccatc	ttatccccaa	cgcggatctt	tcgtttttga	gcaatgtaaa	cacgcaccaa	420
catgttgaca	ccagattgca	attcatcacc	gttcgcacga	gtaaagattt	tcacatcacg	480
gacaacccca	gcaccaccat	gtggtacacg	aagagatgtq	tcacgtactt	cacgagattt	540

19/32 T/FR2003/003293

atcaccgaaa attgcatgaa gcaggcgttc ttcagcggat aagtcttttt cacctttcgg	600
cgttacttta ccgacaagaa tgtcgccctc tttcacctca gcaccaatgc ggataattcc	660
catttcgtca aggtctctta gcgcatcttc cccaacgttt ggaatttcgc gcgtaatttc	720
ttcaggtcca a	731
<210> 18 <211> 697	
<212> DNA	
<213> Streptococcus anginosus	
<400> 18	
cacgcgcgaa attccaaacg tcggtgaaga tgctttgaga gaccttgacg aaacgggaat	60
tatccgcatt ggtgctgagg taaaagaagg cgacattctt gtcggtaaag taacaccgaa	120
aggtgaaaaa gacttatctg ctgaagaacg cctgcttcat gcaattttcg gtgataaatc	180
tegtgaagta egtgataett eeettegtgt accaeatggt ggtgeagggg ttgteegtga	240
tgtgaaaatc tttactcgtg cgaacggtga tgaattgcaa tctggtgtca acatgttggt	300
acgtgtttac atcgctcaaa aacggaaaat ccgtgttggg gataagatgg ctggacgtca	360
cggaaacaaa ggggttgttt cccgcattgt tccagttgag gatatgccgt atcttccaga	420
tggaacacca gttgatatta tgttgaaccc acttggggtg ccatctcgta tgaatattgg	480
tcaagttatg gagcttcacc tcggtatggc tgctcgcaac cttggcattc acattgcaac	540
accagtattt gacggggcta gctcagatga tctttgggaa accgttcgtg aagctggcat	600
ggatagcgat gctaagacaa tcctttatga tggccgtact ggtgagccat ttgataatcg	660
tgtatccgtt ggtgtcatgt acatgatcaa actccac	697
<210> 19 <211> 728	
<212> DNA	
<213> Streptococcus dysgalactiae	
<400> 19	
tgtcatcaac catgtggtgg agtttaatca tgtacatgac accaacggat acacggttgt	60
caaatggttc gccagtacgt ccatcataaa ggaccgtctt agcatcgcta tccataccag	120
cttcacgaac agtgtcccaa aggtcttctg atgaagcccc gtcaaagaca ggtgttgcaa	180
tgtgaatacc aagattacga gcagccatac caaggtgaag ttccataacc tgaccaatgt	240
tcatccgtga tggcacccca agagggttca acatgatgtc aactggtgtt ccatctggaa	300
ggtatggcat gtcttcaact ggtacaatac gtgaaacgac acccttgttt ccgtgacgac	360

20/32

T/FR2003/003293

tattaacacc tgattgcaat tcatcgccgt tagcgcgtgt aaagattttc acatcacgaa 4 cgataccatc accaccgtga ggtacacgaa gggacgtatc acgaacttca cgtgatttat 5 ctccaaagat ggcatgcaag agacgctctt cagcagaaag gtctttttca cctttaggtg 6 tgactttacc tactaagatg tcgccttctt taacctcagc accgatacgg ataattccca 6 tttcgtcaag gtctttgagc gcttcttcac caacgtttgg aatttcgcgg gtgatttctt 7 caggtcaa 7 <210> 20 <211> 728 <212> DNA <213> Streptococcus bovis <400> 20 tgtcatcaac catgtggtga agtttgatca tgtacatgat accaacagag acacgattat caaatggttc acctgtacga ccgtcataaa gaactgtctt agcgtcgcta tccataccag cttcacgaac agtatcccaa aggtctctg aagttgccc gtcaaagact ggagttgcaa 12 tgtgaatagg gaggttagga ggtttgatca gagttgccc gtcaaagact ggagttgcaa 12 tgtgaatagg gaggttagga ggagttgcaa gaggttgccc gtcaaagact ggagttgcaa 12 tgtgaatagg gaggttagga ggttgcaa gagttgccc gtcaaagact ggagttgcaa 12 tgtgaatagg gaggttagga gagttgcaa gaggttgccc gtcaaagact ggagttgcaa 12 tgtgaatagg gaggttagga gagttgcaa gaggttgccc gtcaaagact ggagttgcaa 12 tgtgaatagg gaggttagga gagttgcaa gaggttgccc gtcaaagact ggagttgcaa 12 tgtgaatagg gaggttagga gaggttgcaa gaggtgcaa gaggtgcaa gaggtgcaa gaggtgcaa 12 tgtgaatagg gaggttagga gaggtgcaa gaggtgcaa gaggtgcaa gaggtgcaa gaggtgcaa gaggtgcaa gaggtggaa gaggtggaa 12 tgtgaatagg gaggtgaa gagggtgaa gagggtgaa gaggtggaa gaggtggaa gaggtggaa gaggaggaa gagggaa gaggaggaa gaggaa gaggaagaa	20 80 40 00 60 20
cgataccatc accaccgtga ggtacacgaa gggacgtatc acgaacttca cgtgatttat ctccaaagat ggcatgcaag agacgctctt cagcagaaag gtctttttca cctttaggtg tgactttacc tactaagatg tcgccttctt taacctcage accgatacgg ataattccca tttcgtcaag gtctttgagc gcttcttcac caacgtttgg aatttcgcgg gtgatttctt caggtcaa	40 00 60 20
ctccaaagat ggcatgcaag agacgctctt cagcagaaag gtcttttca cctttaggtg 66 tgactttacc tactaagatg tcgccttctt taacctcagc accgatacgg ataattccca 66 tttcgtcaag gtctttgagc gcttcttcac caacgtttgg aatttcgcgg gtgatttctt 73 caggtcaa 73 <210> 20 <211> 728 <212> DNA <213> Streptococcus bovis <400> 20 tgtcatcaac catgtggtga agtttgatca tgtacatgat accaacagag acacgattat caaatggttc acctgtacga ccgtcataaa gaactgtctt agcgtcgcta tccataccag 12 cttcacgaac agtatcccaa aggtcttctg aagttgccc gtcaaagact ggagttgcaa 13	00 60 20
tgactttacc tactaagatg tegeettett taaceteage accgatacgg ataatteeca 60 tttegteaag gtetttgage gettetteac caacgtttgg aatttegegg gtgatttett 7: caggteaa 7: <210> 20 <211> 728 <212> DNA <213> Streptococcus bovis <400> 20 tgteateaac catgtggtga agtttgatea tgtacatgat accaacagag acacgattat caaatggtte acctgtacga cegteataaa gaactgtett agegtegeta tecataceag 1: caaatggtte acctgtacga cegteataaa gaactgtett agegtegeta tecataceag ctteacagaac agtateecaa aggtettetg aagttgeece gteaaagact ggagttgeaa 1:	60 20
tttcgtcaag gtctttgagc gcttcttcac caacgtttgg aatttcgcgg gtgatttctt caggtcaa	20
caggtcaa <210> 20 <211> 728 <212> DNA <213> Streptococcus bovis <400> 20 tgtcatcaac catgtggtga agtttgatca tgtacatgat accaacagag acacgattat caaatggttc acctgtacga ccgtcataaa gaactgtctt agcgtcgcta tccataccag cttcacgaac agtatcccaa aggtcttctg aagttgccc gtcaaagact ggagttgcaa 12	
<pre><210> 20 <211> 728 <212> DNA <213> Streptococcus bovis <400> 20 tgtcatcaac catgtggtga agtttgatca tgtacatgat accaacagag acacgattat caaatggttc acctgtacga ccgtcataaa gaactgtctt agcgtcgcta tccataccag cttcacgaac agtatcccaa aggtcttctg aagttgccc gtcaaagact ggagttgcaa 12</pre>	28
<pre><211> 728 <212> DNA <213> Streptococcus bovis <400> 20 tgtcatcaac catgtggtga agtttgatca tgtacatgat accaacagag acacgattat caaatggttc acctgtacga ccgtcataaa gaactgtctt agcgtcgcta tccataccag cttcacgaac agtatcccaa aggtcttctg aagttgccc gtcaaagact ggagttgcaa 12</pre>	
tgtcatcaac catgtggtga agtttgatca tgtacatgat accaacagag acacgattat caaatggttc acctgtacga ccgtcataaa gaactgtctt agcgtcgcta tccataccag cttcacgaac agtatcccaa aggtcttctg aagttgccc gtcaaagact ggagttgcaa 12	
cttcacgaac agtatcccaa aggtcttctg aagttgcccc gtcaaagact ggagttgcaa 18	50
	20
tgtgaatacc gaggttacga gctgccatac caaggtgaag ttccataact tgtccgatat 24	30
•	40
tcatacgaga tggcacccca agagggttca acatgatatc aactggagtt ccgtctggaa 30	00
gatatggcat gtcttcaaca ggaacgatac gagaaacaac ccctttgttt ccgtgacgac 36	50
cggccatttt atctccgact ttgattttac gtttttgtgc aatgtaaaca cgaacgagca 42	20
tgttgacacc tgattgcaat tcatcaccgt tagcacgtgt gaagatttta acatcacgaa 48	30
caacaccgtc tccaccgtgt ggcacacgaa gtgatgtatc acgtacttca cgagatttat 54	10
	00
•	50
	0 0
caggtcaa 72	8
<210> 21 <211> 728 <212> DNA <213> Streptococcus acidominimus <400> 21	
tratcatcaa coatatoata cacattaata ata	0
tcaaatggtt caccagtacg accatcataa agaatcgttt tagcatcgct gtccattcct 12	

gcctctttaa	cagttgacca	gagatcctct	gagctcgcac	catcgaaaac	cggtgttgcg	180
atatggatac	ccaagttacg	agcagccata	cccaagtgca	gttccataac	ctgaccaata	240
ttcatacgag	atggcacccc	aagtgggttc	aacatgatgt	caactggtgt	tccatctgga	300
	tgtcttcaac					360
	tatctccgac					420
	cagactgtag					480
	ctgcaccgtg					540
	tagcatgcaa					600
	caacaagaat					660
	ggtctttgag	ggcttcttca	ccaacgtttg	gaatttcacg	agtaatttct	720
tcaggtca						728
<210> 22 <211> 733 <212> DNA <213> Stre	eptococcus a	agalactiae				
<400> 22						
tgagttgtca	tcaaccatgt	ggtgaagttt	gatcatgtac	atgacaccaa	ctgacacacg	60
	ggttcaccag					120
	tgaacagttt					180
	atacctaaat					240
	cgtgatggca					300
	ggcatatett					. 360
	atcttatcac				•	420
	acacctgatt					480
	ccatcgccac	•				540
	aaaatggcat					600
	ttaccaacaa					660
	tcgagatcac	gtagtgaatc	ttcaccaaca	ttttggattt	cacgagtaat	720
ttcttcaggt	cca					733

CT/FR2003/003293

<211> 714

<212> DNA

<213> Streptococcus difficilis

<400> 23

ttgtcatcaa	ccatgtggtg	aagtttgatc	atgtacatga	caccaactga	cacacggtta	60
tcgaatggtt	caccagtatg	accatcataa	agaacagtct	tagcatctga	atccatacct	120
gcttcttgaa	cagtttccca	aaggtcttct	gaagaagccc	catcaaagac	tggcgttgca	180
atatgaatac	ctaaattacg	agcagccata	cctaaatgaa	gctccataac	ttgtccgata	240
ttcatacgtg	atggcacccc	aagtgggttc	aacatgatat	caactggcgt	tccatctggt	300
aaataaggca	tatcttcaac	aggaacaata	cgtgagacga	cacctttgtt	tccgtgacga	360
ccggccatct	tatcaccgac	tttgatttta	cgtttttgag	cgatataaac	gcggacaagc	420
atattaacac	ctgattgcaa	ttcatcacca	tttgcacgag	taaagatttt	aacgtcacga	480
actactccat	cgccaccgtg	aggtacacgt	agtgaagtat	cacgaacttc	acgtgattta	540
tcaccaaaaa	tggcatgcaa	gagacgttct	tcagcagata	agtccttttc	acccttaggc	600
gttaccttac	caacaagaat	gtcaccttct	tttacctcag	caccaatgcg	gataattccc	660
atttcatcga	gatcacgtag	tgaatcttca	ccaacatttg	gaatttcacg	agta	714

<210> 24

<211> 728 <212> DNA

<213> Streptococcus intermedius

<400> 24

tgtcatcaac catgtggtga agcttaatca tgtacatgac accaacggac acacggttat 60 caaacggttc gccagtacgt ccatcataaa ggattgtctt agcatcgcta tccatacctg 120 cttcacgaac ggtttcccaa agatcatctg agctagctcc gtcaaagact ggcgttgcaa 180 tgtggatacc aaggttgcga gcagccatac cgaggtgcaa ttccataact tgtccgatat 240 tcatacgtga cggcacccca agaggattca acatgatatc aactggtgtc ccgtctggaa 300 gatacggcat atcctcaact ggaacaatgc gggaaacaac ccctttgttt ccgtggcgtc 360 cggccatctt atctccaacg cggattttcc gtttttgagc gatataaaca cgtaccaaca 420 tgttgacacc ggattgcaat tcatcaccgt tcgcacgagt aaagattttt acatcacgga 480 caacacctgc accaccgtgt ggtacacgaa gggaggtatc acgcacttca cgagacttat caccaaaaat tgcatgaagc aggcgttctt cagcggataa atctttttca cctttcggcg 600 ttactttacc gacaagaatg tcgccttctt ttacctcagc accaatgcgg ataattccca 660

W O 2004/041841			
	T	32/2	-

WO 2004/041841	j	23/32		CT/FR2003/	003293
tctcgtcaag gtctctcaaa	gcatcttccc		aatttcgcgc	gtgatttctt	720
caggtcca					728
<210> 25	·				. = 0
<211> 728					
<212> DNA <213> Streptotoccus	equi				
<400> 25					
tgtcatcaac catgtggtga	agcttaatca	tatacatgac	accaactgac	acacgattat	60
caaacggctc accagtacgg	ccatcataaa	gaacagtctt	agcatcgcta	tccatacctg	120
cttcacgaac agtttcccaa	aggtcctcag	acgtagctcc	gtcaaagacc	ggtgttgcga	180
tatggatacc caaattacga	gcagccatac	ctaggtgaag	ctccataacc	tgtccaatgt	240
tcatacgaga cggcacccca	agagggttca	gcatgatgtc	aacaggggtt	ccgtctggca	300
gatatggcat atcctcaacc	ggtacaatac	gtgagacgac	accettgtta	ccatgacgcc	360
cggccatttt atctccgacc	ttgattttac	gcttttgagc	aatgtaaaca	cgcaccagca	420
tattaacacc tgattgaagc	tcatcaccat	ttgcgcgtgt	aaagatcttc	acatcacgta	480
caatcccgtc accaccatga	ggaacacgta	acgaggtatc	acgaacctca	cgtgatttat	540
caccaaagat agcatgcagg	agacgttctt	cagcagaaag	gtctttttca	cccttaggag	600
ttaccttacc aacaagaata	tegeetteet	tgacctctgc	accgatacgg	ataataccca	660
tttcatcaag gtccttgagg	gcttcttcac	caacgtttgg	cacttcacgt	gtgatttctt	720
caggtcca					728
<210> 26					
<211> 697					
<212> DNA <213> Enterococcus ga	llinarum				
<400> 26				,	
cactcgtgaa atcccgaatg	tcggggaaga	cgcattgaaa	gatctagacg	aaatgggtat	60
catccgcatt ggtgcggaag	tcaaagatgg	cgatctgttg	gttggtaaag	taacgcctaa	120
aggggtaacg gaactatctg	cagaagaacg	cttgcttcat	gcaatctttg	gtgaaaaagc	180
ccgcgaagtc cgcgatactt	ctctgcgcgt	acctcacggt	ggtggcggaa	tcgtccatga	240
tgtgaaaatc tttacccgcg	aagctggcga	tgaattgtca	ccaggtgtca	atatgctcgt	300
tcgcgtgtat atcgttcaaa	aacggaaaat	ccatgaaggg	gataaaatgg (ccggccgtca	360

cggaaataaa ggggtcgttt ctcgcattat gccagaagaa gacatgcctt tcttaccaga 420

WO 2004/041841			(CT/FR2003/0	03293
		24/32			
cggtacacca gttgata	tca tgttgaaccc	attaggggtg	ccttcacgga	tgaacattgg	480
acaagtattg gaattac	act taggaatggc	tgcccgccaa	ttaggaatcc	acgtggctac	540
accagtcttt gatggtg	cca gcgatgaaga	tgtctgggca	acagttgcag	aagccggcat	600
ggctagcgac gccaaaa	ccg ttttgtatga	tggccgtact	ggagaaccat	ttgatggtcg	660
aatctccgta ggtgtca	tgt atatgatcaa	attggcc			697
<210> 27 <211> 727 <212> DNA					
<213> Enterococcu	s casseliflavu	5			
<400> 27					
tgtcatcaac catgtgg	gcc aatttgatca	tgtacatgac	accaacggag	atgcggccat	60
caaatggttc gccggta	cgt ccgtcgtaaa	gcactgtttt	ggcatcgctg	gccattcctg	120
cttcagcaac cgttgcc	caa acatetteat	cgctggctcc	atcaaagact	ggtgttgcca	180
cgtgaatgcc taattga	cgc gcagccattc	ctaagtgtaa	ctctaatact	tgtccaatgt	240
tcatccgaga aggtacc	cct aatgggttca	gcatgatatc	gactggtgtg	ccatctggta	300
agaaaggcat gtcttct	tct ggcataatgc	gagaaacgac	ccctttgttt	ccgtgacgtc	360
cggccatttt atcccct	tca tggattttcc	gtttttgaac	gatataaacg	cgaaccagca	420
tgttcacacc tggtgaca	aat tcatcgccag	cttcgcgggt	aaagattttg	acatcgtgga	480
cgattccgcc gccgccg					540
caccaaagat tgcgtgca					600
tgactttccc aacaagca	aga tcgccatctt	tgacttccgc	accaatgcgg	ataatgccca	660
tttcgtctag gtctttca	ac gegtetteee	aacgttcggg	atttcgcgag	tgatttcttc	720
aggtcca					727
<210> 28 <211> 721 <212> DNA <213> Enterococcus	s saccharolytic	:us			

tgtcatcaac catgtgggca agtttaatca tgtacattac cccaacagag atacgaccat

cgaatggttc acccgtacgt ccgtcataaa gaacagtttt cgcatcgcgc gccatgcccg

cttcgcgaac tgtttcccat acgtcatcat ctgatgcacc atcaaatact ggtgtagcta

catggatgcc taactgacgt gcagccatcc ctaagtgtaa ttccaatact tgtccgatgt

60

120

180

240

<400> 28

WO 2004/041841	
	0.5 /

WO 2004/0418	841		25/32		CT/FR2003/00	3293
tcatacgaga	tggtactcct	agtgggttca	acatgatatc	aactoototo	Goot start	240
					•	300
			gagagacaac			360
ccgccatttt	atctccttcg	tgaatcttac	gtttttgcac	gatataaaca	cgaactaaca	420
tgttcacacc	tggagataat	tcgtcgcctg	cttcacgggt	aaagatttta	acatcgtgaa	480
cgataccgcc	accgccgtga	ggaacacgta	atgatgtatc	acgtacttca	cgtgcttttt	540
caccgaagat	tgcgtgcaat	agacgttctt	ctgcagataa	ttcggttacc	cctttaggag	600
tgactttacc	tactaataag	tcgccatctt	gtacttcggc	accgatacgg	ataataccca	660
tttcgtctaa	gtcttttaat	gcgtcttccc	caacgttagg	aatttcgcgt	gtattcttca	720
g						721
<210> 29 <211> 727 <212> DNA <213> Ente	erococcus fa	aecium				
- -	catgtgagca	agtttgatca	tgtacatcac	accgacagac	acacgtccat	60
caaatggttc	acctgtacgt	ccgtcgtaca	gaacagtttt	cgcatcgctg	gccataccgg	120
cttcacgaac	tgtttcccat	acgtcttcat	cacttgcacc	atcaaatact	ggcgttgcta	180
cgtggatacc	taactgacgt	gcagccatac	ccaagtgtaa	ttccaatact	tgcccgatgt	240
tcatacgtga	aggcacccct	aaaggattca	gcatgatatc	gattggtgtt	ccatcaggta	300
ggaatggcat	atcttcttcc	ggcataatac	gggatacaac	ccctttattt	ccgtgacgac	360
cggccatttt	atccccttca	tggattttac	gtttttgaac	gatataaaca	cgaactaaca	420
tgtttacgcc	tggtgacaat	tcatctccag	cttcacgagt	aaagattttc	acatcgtgaa	480
cgataccgcc	gccgccatgt	ggtacacgta	atgatgtatc	gcggacttca	cgagcttttt	540
cgccaaagat	cgcatgcaat	agacgttctt	ctgcagataa	ttctgttacc	ccttttggcg	600
tgactttccc	tacaagcaaa	tcgccatctt	ggacttctgc	accaatacgg	atgataccca	660
tttcgtctaa	atcttttaat	gcgtcttccc	gacattaggg	atttcgcgtg	tgatttcttc	720
aggtcca						727
<210> 30						

T/FR2003/003293

<210> 30

<211> 725

<212> DNA

<213> Enterococcus faecalis

<400> 30

WO 2 004/04184	1 🛔

	CT/FR2003/003293
--	------------------

			20/32			
tgtcatcaac	catgtgggct	aatttaatca	tatacatgac	accaacggaa	atacggttat	60
caaatggttc	acctgtacgt	ccatcgtaaa	gaactgtttt	agcatcgcta	gccataccag	120
cttcacgaac	agtttcccaa	acgtetteat	cggttgcccc	atcgaaaaca	ggtgttgcga	180
cgtgaatacc	taattggcga	gcagccatac	ctaagtgtaa	ttcaagtact	tgtccgatat	240
tcatacgaga	aggtacccct	aatgggttca	acatgatatc	aacaggtgtt	ccgtcaggta	300
agaatggcat	atcttcttcc	ggcataatac	gggaaacaac	ccctttattt	ccgtgacgtc	360
ccgccatttt	atctccttcg	tgaattttac	gtttttgaac	gatatagaca	cgaactaaca .	420
tgttgacacc	tggtgataat	tcatcgccag	cttcacgagt	aaagattttc	acatcatgaa	480
cgataccgcc	gccaccgtga	ggtacacgga	gagacgtatc	acgaacttcg	cgggcttttt	540
ccccgaagat	tgcgtgtaat	aaacgttctt	ctgcagataa	ttctgtgacc	cctttaggtg	600
tgactttccc	aactagtaag	tcgccatctt	gaacttcagc	accaatgcgg	ataatcccca	660
tttcgtctaa	gtctttcaac	gcgtcttccc	aacgtttgga	atttcacggg	tatttcttca	720
ggtca						725
<210> 31 <211> 570 <212> DNA <213> Ente	erococcus av	ium				
	aagaacggtc	ttagcatctg	ctgccatacg	agcttcacga	actgtttccc	60
aaacatcgct	atcttgcgca	ccatcgaaga	ctggtgtcgc	aacatggata	cctagttggc	120
gagccgccat	tcccaagtgt	aattccaaca	cttgtccgat	gttcatccga	gatggcacac	180
ctaatgggtt	caacatgata	tcaactggcg	taccgtctgg	taagaaaggc	atgtcttctt	240
ctggcataat	gcgagaaacg	acccctttat	ttccgtgacg	gccggccatt	ttatcccctt	300
catgaatctt	acgtttttgc	acgatgtaca	cgcgcactaa	catatttaca	cctggagata	360
attcatcgcc	tgcttcacga	gtaaagatct	tcacatcgtg	aacgatcccg	ccgccaccat	420
gcggtacacg	aagagatgta	tcacgaactt	cacgagcctt	ttcaccaaag	atcgcatgca	480
acaaacgttc	ttcagctgat a	aattctgtta	cccctttagg	agtgacttta	ccaactaata	540
aatcaccatc	atgaacttca 🤉	gcaccaatac				570

<210> 32 ·

<211> 732

<212> DNA

<213> Abiotrophia defectiva

<400> 32					
gaagttgtca tcaaccatgt	gggccaactt	aatcatgtac	ataaccccaa	cagagacttt	60
acggtcaaat ggttcaccgg	ttcgaccatc	atataagata	gtcttagcgt	cagcttctaa	120
gccggcttcc ttaactgttt	cccagacatc	ttcttcacta	gcaccgtcaa	agacaggtgt	180
tgcaatcttg atgcccattt	cgcgagcagc	catccccaag	tgtaactcta	ggacttgccc	240
gatgttcata cgggatggaa	cccctaatgg	gttcaacatg	atatcaactg	gggtaccatc	300
tggtaagaat ggcatatctt	cttccggcat	gataagggag	acaacccctt	tgttaccgtg	360
acgaccggcc atcttatccc	cttcattgat	tttacgtttt	tgtacgatgt	agacgcggac	420
tagcttgttg acacctggtg	ccaattcgtc	gccagcttcg	cgggtaaaga	ttttaacgtc	480
gtggacaatc ccgccccgc	cgtgtggcac	acgcaaggaa	gtatcacgta	cttcacgcgc	540
cttctcaccg aagatagcat	ggagcaagcg	ttcttccgca	gacaactcgg	tcacaccttt	600
tggtgttacc ttaccaacta	agatatcgcc	gtcttttact	tccgccccga	tacagataat	660
cccgtcttgg tctaagtact	tgagggcatc	ttcggacacg	tttggaattt	cgcgtgtaat	720
ttcttcaggt ca					732
<210> 33 <211> 727 <212> DNA <213> Gemella morbilo <400> 33	rum				
tgtcatcaac catgtgtgca	agtttatcat	gtacattacc	cctacagata	cacggctatc	60
aaatggctca cctgtacgtc	cgtcataaag	aactgtctta	gcatctttag	ccattccagc	120
ttccgcaact gtagaccaaa	catcttcatc	agtagcacca	tcgaatactg	gtgtagctac	180
gtggattcca agttgtttag	cagccatacc	taagtgtagc	tctaatactt	gtccaatgtt	240
catacgagat ggaaccccaa	gtgggtttaa	cattacgtca	actggtgtac	catctggtag	300
gtaaggcata tcttcttctg	gtaagatatt	tgagataacc	cctttgttac	cgtgacgacc	360
ggccatttta tctcctacac	gaattttacg	tttttggacg	ataaatacac	gaacaagttc	420
atttacaccg ttaggtaatt	cagcaccatc	ttcacgttta	aagattttaa	catcagcaac	480
tactccatca gcaccgtgag	gtacacgtaa	tgaagtatca	cgtacttctt	tagatttagc	540
tccaaagata gcatataata a	atttttcttc	tggagtttgt	tcagttaatc	ctttcggtgt	600
aactttacct actaaaatat (ctccatcttt	aacttcagcc	ccaatacgaa	tgattcctcg	660

caggtca					727
<210> 34 <211> 726 <212> DNA <213> Gemella h	naemolysans				
<400> 34					
tgtcatcaac catgt	gtgca agtttaatc	a tgtacattac	ccctacagat	acacggctat	60
caaatggctc acctg	stacgt ccgtcataa	a gaactgtctt	agcatcttta	gccattccag	120
cttccgcaac tgtag	gaccaa acatcttca	t cagtagcacc	atcgaatact	ggtgtagcta	180
cgtggattcc aagtt	gttta gcagccata	c ctaagtgtag	ctctaatact	tgtccaatgt	240
tcatacgaga tggaa	cccca agtgggttt	a acattacgtc	aactggtgta	ccatctggta	300
ggtaaggcat atctt	cttct ggtaagata	t ttgagataac	ccctttgtta	ccgtgacgac	360
cggccatttt atctc	ctaca cgaattta	c gtttttggac	gataaataca	cgaacaagtt	420
catttacacc gttag	gtaat tcagcacca	t cttcacgttt	aaagatttta	acatcagcaa	480
ctactccatc agcac	cgtga ggtacacgt	a atgaagtatc	acgtacttct	ttagatttag	540
ctccaaagat agcat	ataat aatttttct	t ctggagtttg	ttcagttaat	cctttcggtg	600
taactttacc tacta	aaata tctccatct	t taacttcagc	cccaatacga	atgattcctc	660
gtgcatctaa gtttc	taagt geattttca	c ctacgtttgg	aatctcacga	gtattcttca	720
ggtcca					726
<210> 35 <211> 719 <212> DNA <213> Granulica	tella adjacens		:		
<400> 35 catcaaccat gtgago	caagt ttgatcatg	acataacccc	tactgacaca	cggttatcga	60
atggttcccc tgtac	gtcca tcatatagaa	a ttgttttcgc	atcacgagcc	atacccgctt	120
ctgcaacagt tcccca	atacg tetteatett	gcgcaccatc	gaatactggt	gttgcgatgt	180
aaatacctaa ttcaco	gagca gccatcccta	a agtgtaactc	taacacttgt	ccgatgttca	240
tacgtgaagg taccco	ctaat gggtttaaca	tgatgtcaac	tggtgttcca	tctggtaaga	300
atggcatatc ttcttc	cegge ataataegge	aaacaacccc	tttattaccg	tgacgtccgg	360
ccatcttate ccctto	cattg attttacgtt	tttgtacaat	atatacacga	actaatttgt	420
ttacgccagg tgctaa	ati a tcacctgctg	cacgtgtgaa	tacacgtaca	tcacggacaa	480

taccgo	ccacc	gccgtgaggt	acacgtagag	atgtgtcacg	aacttcacga	gctttttcac	540
cgaaga	attgc	gtgtaataaa	cgttcctctg	gtgattgttc	tgttaaccct	ttaggagtta	600
ctttac	ccaac	taagatgtca	ccatctttaa	cttcggcacc	gatacgaata	attccgtctg	660
cgtcta	aggtt	cttcaatgcg	tcttcccaac	gtttggaatc	tcacgagtaa	ttcttcagg	719
<210>	36	•					
<211>	21						
<212>	DNA						
<213>	amor	ce					
				•			
<400>	36						
agacgg	racct	tctatggaaa	a				
		33	-				21
<210>	37						
<211>.	20						
<212>	DNA						
<213>	amor	ce					
<400>	37						
ggacac	atac	gaccatagtg					20
							20
<210>	20						
<211>	38						
<211>	21						
	DNA						
<213>	amor	ce					
<400>	38						
		tcccawgtca	-				
5 5		ccccawgcca	C				21
		•					
<210>	39						
<211>	20						
<212>	DNA						
<213>	amor	ce					
	39				,		
gtette	wtgg g	gygatttccc				•	20
<210>	40						
<211>	21						
<212>	DNA		•				
<213>	amor	ce control					
<220>							
	misc	_feature					
	(8)						
		résente i					

WO 2	004/041841	30/32 T/FR2003/003293	3
accgt	ggngc wtggttrgaa t	2	1
<210>			
<211>			
	DNA		
<213>	amorce		
<400>	41		
	attcc gyatyggtyt		_
		2	O
<210>	`42		
<211>			,
	DNA		
<213>			
<220>			
<221>	misc_feature		
<222>	(3)(3)		
<223>	n représente i		
<400>			
agngg	gttta acatgatgtc	20)
<210>			
<211>			
<212>	DNA		
<213>	amorce		
<220>			
	misc_feature		
<222>	(3)(3)		
<223>	n représente i		
	•		
<400>	43		
	caaa cctccatctc		
		20	
<210>	44		
<211>	21		
<212>	DNA	•	
<213>			
. 4 0 0			
<400>	44		
CCCCaa	gtga acagatgtgt a	21	
<210>			
<211>			
<212>	<u>-</u>		
<213>	amorce		
<400>	45		
	aact taattgagat tcaaac	22	
		26	

<210>	46		
<211>			
<212>			
<213>	amorce		
<400>			
agtat	ttatg ggtgatttcc ca		22
			22
<210>			
<211>	26		
<212>	DNA		
<213>			
<400>	47		
	ttata aaatcaacaa aaaatt		
	addit	:	26
<210>	48		
<211>			
<212>			
<213>	amorce		
<400>	40		
		-	
agital	taacc atcccaagtc atg	3	23
			_
-210-			
<210>			
<211>			
<212>			
<213>	amorce		
<400>			
tgaagt	ttat catcaaccat gtg	_	. ~
		2	23
	,		
<210>	50		
<211>	18		
<212>	DNA		
<213>	amorce		
<400>	50	•	
cccaaa	acgt tgtccacc		
		1	8
<210>	51 .		
<211>			
<212>			
<213>			
	WINOT CE		
<400>	51		
uuccaag	gcyc ggttaggrat	2	0
		_	
-210-	E2		
<210>	52		
<211>	25		

WO 2004/041841

32/32

<212> DNA

<213> amorce

<220>

<221> misc_feature

<222> (15)..(15)

<223> n représente i

<400> 52

atgttgaacc cactnggggt gccat