Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)

Of M. Pont, J. Vidal and J. Tierny

Samy H, Nicolas C, Mathias V, Mathis Embit

Ensemble datasets

Challenge: Several datasets for one phenomenon

- -> Each dataset is called an ensemble member
- -> Each ensemble member is represented by a Merge Tree

Merge Tree and BDT

We consider a manifold and a Piecewise Linear scalar function on it

$$f: \mathcal{M} \to \mathbb{R}$$

Merge tree = M/~ where p1~p2 if f(p1) = f(p2) and p1,p2 in the same connected component of the sublevel (or superlevel) set of f at f(p1).

Branch Decomposition Tree (BDT): A tree with nodes as the persistence branches and edges between adjacent branches.

Merge Tree and BDT

Wasserstein distance on persistence diagrams

- Partial assignment between
- Off-diagonal points
- \blacksquare Subset P_i
- lacksquare Complement $\overline{P_i}$
- \circ Bijection $\phi: P_i \to P_j$
- \circ Partial assignment $(\phi, \overline{P_i}, \overline{P_i}) \in \Phi$

$$W_{q}(\mathcal{D}(f_{i}), \mathcal{D}(f_{j})) = \min_{(\phi, \overline{P_{i}}, \overline{P_{j}}) \in \Phi} \left(\sum_{p_{i} \in P_{i}} d_{q}(p_{i}, \phi(p_{i}))^{q} + \sum_{p_{i} \in \overline{P_{i}}} d_{q}(p_{i}, \Delta(p_{i}))^{q} + \sum_{p_{j} \in \overline{P_{j}}} d_{q}(\Delta(p_{j}), p_{j})^{q} \right)^{1/q}$$

Wasserstein distance on Merge trees

• Same, for q = 2 but $\phi: P_i \to P_j$ must be a partial <u>rooted</u> isomorphism Partial isomorphism: Operates only on a subset P_i - no difference Rooted isomorphism: Conserves adjacency relationship.

Recall PCA in R^d

$$P = \{p_1, \dots, p_N\}, p_j \in \mathbb{R}^d, \forall j$$

$$B = \{v_1, \dots, v_q\}, v_i \cdot v_j = 0, \forall i \neq j$$

$$E_{L_2}(B) = \sum_{j=1}^{N} ||p_j - (\mathbf{o} + \sum_{i=1}^{q} \alpha_i^j v_i)||_2^2$$

$$P_{\text{roj. of } p_j \text{ onto } B}$$

$$\Delta_1(p_j)$$

$$\alpha_2^j \vec{b}_2$$

$$\alpha_2^j \vec{b}_2$$

A **geodesic** is a shortest path between two MT $\mathcal{G}(\mathcal{E}, \mathcal{E}') = \underset{\phi' \in \Phi'}{\operatorname{argmin}} W_q^{\mathcal{T}}(\mathcal{E}, \mathcal{E}')$

Geodesic dot product:

- Share extremity point
- Cartesian dot product in $\mathbb{R}^{2 \times |\mathcal{E}|}$

Orthogonal
$$\rightarrow \mathcal{G}(\mathcal{E}, \mathcal{E}') \cdot \mathcal{G}(\mathcal{E}, \mathcal{E}'') = 0$$

Collinear
$$\rightarrow \mathcal{G}(\mathcal{E}, \mathcal{E}') = \lambda \mathcal{G}(\mathcal{E}, \mathcal{E}'')$$

Geodesic axis is a pair of negatively collinear geodesics through the origin
$$\mathcal{E}_o$$

It's a geodesic and defines a direction vector $V_i = \mathcal{G}(\mathcal{E}_i, \mathcal{E}'_i)$ Between the extremities

• BDT(\mathcal{B}) geodesic axis ($\overleftrightarrow{\mathcal{A}_i}$) projection

$$\mathcal{B}_{\overleftrightarrow{\mathcal{A}_i}} = \operatorname*{arg\,min}_{\mathcal{B}' \in \overleftrightarrow{\mathcal{A}_i}} \left(W_2^{\mathcal{T}} ig(\mathcal{B}, \mathcal{B}'ig)
ight)$$

• BDT $(\mathcal{B}' \in \overleftrightarrow{\mathcal{A}_i})$ geodesic axis arc-length parametrization $\overrightarrow{\mathcal{G}_i'} = \overrightarrow{\mathcal{G}}(\mathcal{E}_O, \mathcal{E}_i')$ $\overrightarrow{\mathcal{G}_i} = \overrightarrow{\mathcal{G}}(\mathcal{E}_O, \mathcal{E}_i)$

$$\mathcal{B}' = \mathcal{E}_O + \overrightarrow{\mathcal{A}}_i(\mathcal{B}') = \mathcal{E}_O + \alpha_i \times \overrightarrow{\mathcal{G}}_i + (1 - \alpha_i) \times \overrightarrow{\mathcal{G}}_i'.$$

BDT($oldsymbol{\mathcal{B}}$) geodesic axis ($\overrightarrow{\mathcal{A}_i}$) projection

$$\mathcal{B}_{\overleftrightarrow{\mathcal{A}}_{i}} = \underset{\mathcal{B}' \in \overleftrightarrow{\mathcal{A}}_{i}}{\operatorname{arg\,min}} \left(W_{2}^{\mathcal{T}} \left(\mathcal{B}, \mathcal{E}_{O} + \overrightarrow{\mathcal{A}}_{i}(\mathcal{B}') \right) \right)$$

• BDT axis translation: $\overleftrightarrow{\mathcal{A}_j}(\mathcal{B}) = \left((\mathcal{B}, \mathcal{B} + \overrightarrow{\mathcal{G}_j}), (\mathcal{B}, \mathcal{B} + \overrightarrow{\mathcal{G}_j'}) \right)$

BDT geodesic orthogonal basis

Orthogonal basis of d' geodesic axes $B_{\mathbb{B}} = \{\overrightarrow{\mathcal{A}}_1, \overrightarrow{\mathcal{A}}_2, \dots, \overrightarrow{\mathcal{A}}_{d'}\}$ with origine $\underline{\mathcal{E}}_0$. Project an arbitrary BDT \mathcal{B} on $\overrightarrow{\mathcal{A}}_1$: $\widehat{\mathcal{B}}_1 = \mathcal{B}_{\overleftarrow{\mathcal{A}}_1} = \mathcal{B}_{\overleftarrow{\mathcal{A}}_1}(\mathcal{E}_0)$

Recursively:
$$\widehat{\mathcal{B}}_{d'} = \mathcal{B}_{\overleftarrow{\mathcal{A}}_{d'}(\widehat{\mathcal{B}}_{d'-1})} \Longrightarrow \widehat{\mathcal{B}}_{d'} = \mathcal{E}_O + \sum_{i=1}^{d'} \overrightarrow{\mathcal{A}}_i(\widehat{\mathcal{B}}_i)$$

MT-PGA formulation: distance to the constructed basis of BDT

 \mathcal{B}^* : Wasserstein barycenter

$$E_{W_2^{\mathcal{T}}}(\pmb{B}_{\mathbb{B}}) = \sum_{j=1}^N W_2^{\mathcal{T}} \Big(\mathcal{B}(f_j), \mathcal{B}^* + \sum_{i=1}^{d'} \overrightarrow{\mathcal{A}}_i \Big(\widehat{\mathcal{B}}_i(f_j)\Big)\Big)^2$$

Algorithm

Finding an orthogonal basis of principal geodesics in the Wasserstein metric space of MTs

Constrained optimization problem

$$egin{aligned} \mathbf{min} \ B_{\mathbb{B}} = \{ \overleftrightarrow{\mathcal{A}_1}, \overleftrightarrow{\mathcal{A}_2}, \ldots, \overleftarrow{\mathcal{A}_{2 imes|\mathcal{B}^*|}} \} \end{aligned}$$

$$E_{W_2^{\mathcal{T}}}(B_{\mathbb{B}}) = \sum_{j=1}^N W_2^{\mathcal{T}} \Big(\mathcal{B}(f_j), \mathcal{B}^* + \sum_{i=1}^{d'} \overrightarrow{\mathcal{A}_i} \Big(\widehat{\mathcal{B}_i}(f_j) \Big) \Big)^2$$

- subject to geodesics
 - negative collinearity
 - orthogonality

Algorithm

- For d' in {1, ..., d_max}
 - While $E_{W_2^{\mathcal{T}}}(B_{\mathbb{B}})$ decreases
 - Find A_d' such that it minimizes $E_{W_2^T}(B_{\mathbb{B}})$
 - enforce the 3 constraints on A_d'

As constraint enforcements are not necessarily compatible together -> while loop until convergence:

while
$$\overleftrightarrow{\mathcal{A}_{d'}}$$
 evolves **do**

$$\overleftrightarrow{\mathcal{A}_{d'}} \leftarrow \text{EnforceGeodesics}(\mathcal{B}^*, \overleftrightarrow{\mathcal{A}_{d'}});$$

$$\overleftrightarrow{\mathcal{A}_{d'}} \leftarrow \text{EnforceNegativeCollinearity}(\overleftarrow{\mathcal{A}_{d'}});$$

$$\overleftrightarrow{\mathcal{A}_{d'}} \leftarrow \text{EnforceOrthogonality}(\mathcal{B}_{\mathbb{B}}, \overleftarrow{\mathcal{A}_{d'}});$$

Applications

1. Data reduction → Lossy compression

- 2. Dimensionality reduction
- 3. Clustering

Thank you!