CES Data Scientist 2016 MongoDB Project youcef KACER

Summary

IntroductionIntroduction	2
Data integration	
Data queries	
1. select number of light industrial in New York	
2. select the site with the biggest annual average consumption	
3. Select the average consumption during winter for site 766	
4. Select the peak consumption among all nothern sites (LAT>37°)	
5. Select the peak consumption among all southern sites (LAT<37)	
Data computation	
1. Calculate the sum LD for the 100 sites (timestamp interval : 5 minutes)	
2. Calculate the average LD by sector of activity (imestamp interval : 5 minutes)	
3. Calculate the total LD for the 100 sites (timestamp interval : a week)	
4. Calculate the average LD by sector of activity (timestamp interval : a week)	
SOL comparison.	

Introduction

We present here how to solve MongoDB Project.

One can see whole result by executing bash file **run_mongodb.sh**.

We present three different steps:

- data integration: to show how data are put into mongodb collections
- data queries: that shows 5 simple queries on collections
- **data computation:** that performs the 4 Load Curve statistics on collections
- SQL comparison: that compares time execution between sql and mongodb for the 4 Load Curves statistics.

Data integration

First of all, we get energy data from website and de-tar it into « data » folder :

- > wget https://open-enernoc-data.s3.amazonaws.com/anon/all-data.tar.gz
- > mkdir data
- > tar -xzvf all-data.tar.gz -C data

Then, we pass all_sites.csv file and all conso .csv files from DOS format to Unix format :

- > sed -i -e 's/\r/\n/g' data/meta/all_sites.csv
- > for conso_csv in `ls data/csv/*csv`
- > do
- > sed -i -e 's $\r\rangle$ n/g' \$conso_csv
- > done

We use mongoimport binary to import all_sites.csv and create « sites » collection into « enernoc » database :

- > mkdir data/db
- > mongoimport --type csv -d enernoc -c sites --file data/meta/all_sites.csv -headerline

We use **mongodb_integration.js** file in a bash loop to integrate each xxx.csv consumption to its

```
site document as an array of documents. This array of documents is a new field « CONSO » in
« sites » collection
> for conso csv in `ls data/csv/*.csv`
> do
> site_number=$(basename ${conso_csv%%.*}) # example : site_number=14 for data/csv/14.csv
> echo "currently importing site $site_number ..."
> mongoimport --type csv -d enernoc --file $conso_csv --headerline
> mongo mongodb_1_data_integration.js --eval "var site_id = $site_number"
> done
mongodb 1 data integration.js file is as follow:
db = db.getSiblingDB('enernoc')
var n = site_id.toString();
db.getCollection(n).remove({anomaly :{$ne:""}});
db.getCollection(n).find().forEach(function(cs){ cs.iso_date = new Date(cs.timestamp*1000);
db.getCollection(n).save(cs);})
db.sites.update({'SITE_ID':site_id},{'$set': {"CONSO":
db.getCollection(n).find().toArray()}});
As one can see, this .js file removes measures that has field « anomaly » non empty and create
iso_date field for each consumption measure.
We can summarize fields of our « sites » collection by mongodb shell command :
db = db.getSiblingDB('enernoc');
var doc = db.sites.findOne();
for (var key in doc) {print(key)};
_id
SITE ID
INDUSTRY
SUB_INDUSTRY
SQ_FT
LAT
LNG
TIME_ZONE
TZ OFFSET
```

Data queries

```
We launch mongodb_2_data_queries.js to execute 5 simple queries > mongo mongodb_2_data_queries.js

This javascript file containing 5 simple queries, is as follow:
```

1. select number of light industrial in New York

2. select the site with the biggest annual average consumption

```
db = db.getSiblingDB("enernoc")
print("*** select the site that has the biggest annual average consumption:");
biggest = db.sites.aggregate([
              {$project:
                     {
                           site: "$SITE_ID",
                           avg_conso : {$avg:"$CONSO.value"}
                     }
             },
              {$sort:
                     {
                            avg_conso:-1
                     }
              },
              {$limit: 1}
       ]).next()
print("site",biggest.site,"(annual average consu:",biggest.avg_conso,")");
results:
*** select the site that has the biggest annual average consumption:
site 766 (annual average consu: 327.6069601453762)
```

3. Select the average consumption during winter for site 766

```
db = db.getSiblingDB("enernoc")
print("*** select average consumption during winter (between January and Mars) for site
766:");
d = ISODate("2012-04-01T00:00:00Z")
winter = db.getCollection("766").aggregate([
             {$match:
                    {
                           iso_date : {$lt:d}
                    }
             },
             {$group:
                    {
                           _id: null,
                           avg_consu : {$avg:"$value"}
                    }
             }
       ]).next()
print(winter.avg_consu)
results:
*** select average consumption during winter (between January and Mars) for site 766:
308.8343864349126
```

4. Select the peak consumption among all nothern sites (LAT>37°)

```
db = db.getSiblingDB("enernoc")
print("*** select the peak consumption among all northern sites (LAT>37):");
peak1 = db.sites.aggregate([
             { $match:
                    {
                          LAT: { $gt: 37 }
                    }
             },
             {$project:
                    {
                          SITE_ID: 1,
                           "CONSO.value": 1,
                           "CONSO.iso_date": 1
                    }
             },
             {\$unwind: "\$CONSO"},
             {$sort:
                    {
                           "CONSO.value":-1
                    }
             },
             {$limit: 1}
      ]).next()
print(peak1.CONSO.value,"in site", peak1.SITE_ID,
"on",peak1.CONSO.iso_date.toDateString());
results:
*** select the peak consumption among all northern sites (LAT>37):
651.5774 in site 14 on Mon Dec 17 2012
```

5. Select the peak consumption among all southern sites (LAT<37°)

```
db = db.getSiblingDB("enernoc")
print("*** select the peak consumption among all southern sites (LAT<37):");</pre>
peak2 = db.sites.aggregate([
             {$match:
                    {
                           LAT: { $lt: 37 }
                    }
             },
             {$project:
                    {
                           SITE_ID: 1,
                           "CONSO.value": 1,
                           "CONSO.iso_date": 1
                    }
             },
             {\$unwind: \"\$CONSO\"\},
             {$sort:
                    {
                           "CONSO.value": -1
                    }
             },
             {$limit: 1}
       ]).next()
print(peak2.CONSO.value,"in
site",peak2.SITE_ID,"on",peak2.CONSO.iso_date.toDateString());
results:
*** select the peak consumption among all southern sites (LAT<37):
528.0193 in site 45 on Thu Jul 26 2012
```

Data computation

1. Calculate the sum LD for the 100 sites (timestamp interval : 5 minutes)

```
db = db.getSiblingDB("enernoc")
print("*** Calculate the sum LD for the 100 sites (timestamp interval: 5 minutes");
db.getCollection("sites").aggregate([
             {$project:
                    {
                           site: "$SITE_ID",
                           sum_consu : {$sum : "$CONSO.value"}
                    }
             },
             {$sort:
                    {
                           sum_consu:-1
                    }
             }
      ]).forEach( function(doc)
             {
                    print("site:",doc.site,"\tLD sum:",doc.sum_consu)
             }
      );
```

results:

results:	
site: 766	LD sum: 34532394.45500381
site: 45	LD sum: 33584845.293399945
site: 10	LD sum: 33544015.780299693
site: 716	LD sum: 33052978.79500011
site: 55	LD sum: 28665910.440900173
site: 786	LD sum: 24303213.122100715
site: 14	LD sum: 22980050.54469993
site: 654	LD sum: 18468253.636890393
site: 718	LD sum: 18050961.867009155
site: 755	LD sum: 12869687.531899346
site: 44	LD sum: 11039816.321199633

• • •

site: 92	LD sum: 257495.60190021462
site: 731	LD sum: 245819.5833999371
site: 673	LD sum: 222026.40789988433

site: 690 LD sum: 10931770.223702736

site: 648 LD sum: 215914.86370002138

2. Calculate the average LD by sector of activity (imestamp interval : 5 minutes)

```
db = db.getSiblingDB("enernoc")
print("*** Calculate the average LD by sector of activity (timestamp interval : 5 minutes)");
db.getCollection("sites").aggregate([
             {\$unwind: "\$CONSO"},
             {$group:
                   {
                          _id:"$INDUSTRY",
                          avg_consu:{$avg:"$CONSO.value"}
                   }
             },
             {$project:
                   {
                          " id":1,
                          "avg_consu": 1
                   }
             }
      ]).forEach( function(doc)
             {
                   print("industry:",doc._id,"\tavg LD:",doc.avg_consu);
             }
      );
results:
industry: Light Industrial
                         avg LD: 80.53685010874234
industry: Education avg LD: 10.958672942424123
industry: Food Sales & Storage
                               avg LD: 18.18906005717468
                                avg LD: 89.74365052873605
industry: Commercial Property
```

3. Calculate the total LD for the 100 sites (timestamp interval : a week)

```
db = db.getSiblingDB("enernoc")
print("*** Calculate the total LD for the 100 sites (timestamp interval: a week)")
db.sites.aggregate([
             {\$unwind: "\$CONSO"},
             {$group:
                    {
                           _id:
                           {
                                  site_id : "$SITE_ID",
                                 week : {\$week : "\$CONSO.iso_date"}
                           },
                           sum_consu :
                           {
                                  $sum: "$CONSO.value"
                           }
                    }
             },
             {$sort :
                    {
                           _id:1
                    }
             }
      ]).forEach( function(doc)
             {
                    print("site:",doc._id.site_id,"\tweek:",
                    doc._id.week,"\tsum LD:",doc.sum_consu);
             }
      );
```

results:

- site: 6 week: 7 sum LD: 67114.5973
- site: 6 week: 8 sum LD: 69002.77129999992
- site: 6 week: 9 sum LD: 72621.84069999975
- site: 6 week: 10 sum LD: 63043.608699999924
- site: 6 week: 11 sum LD: 57509.87500000002
- site: 6 week: 12 sum LD: 62142.37510000003
- site: 6 week: 13 sum LD: 56268.33180000011
- site: 6 week: 14 sum LD: 57764.874999999905
- site: 6 week: 15 sum LD: 55838.3174
- site: 6 week: 16 sum LD: 57434.407099999975
- site: 6 week: 17 sum LD: 61371.365699999835
- site: 6 week: 18 sum LD: 57144.03630000009
- site: 6 week: 19 sum LD: 58461.13940000005
- site: 6 week: 20 sum LD: 61338.27580000002
- site: 6 week: 21 sum LD: 58787.90820000011
- site: 6 week: 22 sum LD: 59991.46150000001
- site: 6 week: 23 sum LD: 57395.69489999985
- site: 6 week: 24 sum LD: 54521.47599999996
- site: 6 week: 25 sum LD: 57670.9434
- site: 6 week: 26 sum LD: 62107.20630000006
- site: 6 week: 27 sum LD: 62821.19369999994
- site: 6 week: 28 sum LD: 66124.71800000002
- site: 6 week: 29 sum LD: 64931.259799999956

site: 6 week: 49 sum LD: 59331.08529999999

site: 6 week: 50 sum LD: 64454.69609999995

site: 6 week: 51 sum LD: 72631.36310000008

site: 6 week: 52 sum LD: 72311.03349999996

site: 6 week: 53 sum LD: 23185.245899999998

site: 8 week: 0 sum LD: 27.9357

site: 8 week: 1 sum LD: 165833.21360000226

site: 8 week: 2 sum LD: 199761.07999999935

site: 8 week: 3 sum LD: 193803.78939999978

site: 8 week: 4 sum LD: 216076.93600000197

site: 8 week: 5 sum LD: 212590.53560000192

.

site: 6 week: 47 sum LD: 59483.10930000006

site: 6 week: 48 sum LD: 57885.16380000005

4. Calculate the average LD by sector of activity (timestamp interval : a week)

```
db = db.getSiblingDB("enernoc");
print("*** Calculate the average LD by sector of activity (timestamp interval: a week)");
db.sites.aggregate([
             {$unwind: "$CONSO"},
             {$group:
                    {
                          _id:
                          {
                                 industry: "$INDUSTRY", week:
{$week:"$CONSO.iso_date"}
                          },
                          avg_consu:
                          {
                                 $avg:"$CONSO.value"
                          }
                    }
             },
             {$sort:
                    {
                          _id:1
                    }
             }
      ]).forEach( function(doc)
             {
                    print("industry:",doc._id.industry,"\tweek:",doc._id.week,"\tsum
LD:",doc.avg_consu)
             }
      );
```

results:

results.		
industry: Commercial Property	week: 0	sum LD: 69.906064
industry: Commercial Property	week: 1	sum LD: 81.8237099681427
industry: Commercial Property	week: 2	sum LD: 91.4887902052395
industry: Commercial Property	week: 3	sum LD: 94.48737770436513
industry: Commercial Property	week: 4	sum LD: 93.39917154365088
industry: Commercial Property	week: 5	sum LD: 91.20474614880696
industry: Commercial Property	week: 6	sum LD: 91.92764593452262
industry: Commercial Property	week: 7	sum LD: 92.71759324801408
industry: Commercial Property	week: 8	sum LD: 90.72024977579011
industry: Commercial Property	week: 9	sum LD: 91.01131014285522
industry: Commercial Property	week: 10	sum LD: 89.33322925991897
industry: Commercial Property	week: 11	sum LD: 90.10230121626647
industry: Commercial Property	week: 12	sum LD: 93.63770055753429
industry: Commercial Property	week: 13	sum LD: 89.08985976983729
industry: Commercial Property	week: 14	sum LD: 85.16025684920123
industry: Commercial Property	week: 15	sum LD: 83.3563983531696
industry: Commercial Property	week: 16	sum LD: 85.2688094126914
industry: Commercial Property	week: 17	sum LD: 84.9506929781688
industry: Commercial Property	week: 18	sum LD: 90.30943476387927
industry: Commercial Property	week: 19	sum LD: 90.11328439508686
industry: Commercial Property	week: 20	sum LD: 90.52765755158012
industry: Commercial Property	week: 21	sum LD: 91.70135157756431
industry: Commercial Property	week: 22	sum LD: 81.911028029759
industry: Commercial Property	week: 23	sum LD: 89.0749083068501
industry: Commercial Property	week: 24	sum LD: 94.56863999007561
industry: Commercial Property	week: 25	sum LD: 98.6916351726162
industry: Commercial Property	week: 26	sum LD: 97.41820529364593
industry: Commercial Property	week: 27	sum LD: 91.02007079703819
industry: Commercial Property	week: 28	sum LD: 101.13927387499722
industry: Commercial Property	week: 29	sum LD: 101.70688131349178

industry: Commercial Property	week: 30	sum LD: 101.90584847420102
industry: Commercial Property	week: 31	sum LD: 102.74853501983748
industry: Commercial Property	week: 32	sum LD: 102.19573332340961
industry: Commercial Property	week: 33	sum LD: 99.27649011309177
industry: Commercial Property	week: 34	sum LD: 91.24082630158397
industry: Commercial Property	week: 35	sum LD: 102.21700040872958
industry: Commercial Property	week: 36	sum LD: 91.34941175443164
industry: Commercial Property	week: 37	sum LD: 95.95129207936058
industry: Commercial Property	week: 38	sum LD: 90.06436633332761
industry: Commercial Property	week: 39	sum LD: 84.13700926785428
industry: Commercial Property	week: 40	sum LD: 87.05259087698066
industry: Commercial Property	week: 41	sum LD: 83.74384150793156
industry: Commercial Property	week: 42	sum LD: 85.74106816864568
industry: Commercial Property	week: 43	sum LD: 85.01873010515648
industry: Commercial Property	week: 44	sum LD: 81.48760832738208
industry: Commercial Property	week: 45	sum LD: 86.30356095237909
industry: Commercial Property	week: 46	sum LD: 85.05145403372674
industry: Commercial Property	week: 47	sum LD: 68.50369249167241
industry: Commercial Property	week: 48	sum LD: 84.34925334841124
industry: Commercial Property	week: 49	sum LD: 84.78240724007368
industry: Commercial Property	week: 50	sum LD: 86.72400969444112
industry: Commercial Property	week: 51	sum LD: 87.53539991467996
industry: Commercial Property	week: 52	sum LD: 67.4417095714268
industry: Commercial Property	week: 53	sum LD: 66.934555576387
industry: Education week: 0	sum LD: 7.77	77043999999998
industry: Education week: 1	sum LD: 10.0	035345357448085
industry: Education week: 2	sum LD: 11.1	78326577381965
industry: Education week: 3	sum LD: 11.0	035917702381193
industry: Education week: 4	sum LD: 11.0	002216700397817
industry: Education week: 5	sum LD: 11.0	05387033730232

•••

SQL comparison

We have performed data integration into mysql database (see **mysql_1_data_integration.sql**) and compute the 4 Load Curve statistics on it (see **mysql_2_data_queries.sql**).

One car performe both by running bash file **run_mysql.sh.**

Here after, the table resumes time comparison between mongoDB and Mysql for the 4 Load Curve queries:

Time execution (s)	mysql	mongodb
Calculate the sum LD for the 100 sites (timestamp interval : 5 minutes)	6	5
Calculate the average LD by sector of activity (imestamp interval : 5 minutes)	9	12
Calculate the total LD for the 100 sites (timestamp interval : a week)	9	14
Calculate the average LD by sector of activity (timestamp interval : a week)	12	14

One can execute:

> ./run_mongo.sh > mongodb_results

to get time execution in mongodb_results file.

and execute:

>./run_mysql.sh >mysql_results

to get time execution in mysql_results file.