Teoria della computazione

1. Problemi di decisione e macchine di Turing

Nella teoria della computazione si è interessati a classificare i problemi sulla base della loro difficoltà di risoluzione mediante strumenti o macchine di calcolo, dove per difficoltà di risoluzione si intende la difficoltà stimata rispetto all'uso di risorse di calcolo quali tempo e spazio.

I problemi classificati d'interesse sono quelli cosidetti di decisione definiti come:

```
Data una funzione booleana f:\{0,1\}^* \to \{0,1\}, l'insieme dei linguaggi o problemi di decisione associati alla funzione f sono dati dall'insieme L_f=\{x\in\{0,1\}^*\mid f(x)=1\} Si identifica inoltre il problema di calcolare f, ovvero dato x\in\{0,1\}^* calcolare f(x), con il problema di decidere il linguaggio L_f, ovvero dato x\in\{0,1\}^* decidere se x\in L_f
```

Breve recap sulla definizione di difficoltà di risoluzione di un problema da parte di un algoritmo:

Date $f,g:\mathbb{N} o \mathbb{N}$ allora diciamo che:

- 1. f=O(g) se $\exists c,n_0\in\mathbb{N}: f(n)\leq c\cdot g(n)\ \forall n\geq n_0$ ovvero se g limita "da sopra" f ($f(n)\leq c\cdot g(n)$) da un certo punto in avanti ($\forall n\geq n_0$)
- 2. $f=\Omega(g)$ se g=O(f), ovvero se g limita "da sotto" f
- 3. $f=\Theta(g)$ se $f=O(g)\wedge g=O(f)$, ovvero se f è limitata "da sopra" e "da sotto" da g
- 4. f = o(g) se $\forall \epsilon \in \mathbb{R}^+, f(n) \leq \epsilon \cdot g(n) \ \forall n \geq n_0$
- 5. $f = \omega(g)$ se g = o(f)

Come strumento o macchina di calcolo vengono utilizzate le Macchine di Turing.

Una macchina di Turing consiste in un *controllo finito*, un *nastro* diviso in *celle* ognuna delle quali può contenere un solo simbolo appartenente all'insieme dei simboli di nastro.

Inizialmente *l'input*, rappresentato da una stringa di lunghezza finita, viene posto sul nastro, un simbolo per cella. Tutte le altre celle contengono un simbolo detto *blank*.

La macchina è dotata di una *testina* che, posizionata su di una cella del nastro, legge o scrive un simbolo e può muoversi di una posizione a destra o a sinistra del simbolo letto/scritto.

Una TM M è definita come:

$$M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$$
 dove:

- ullet Q insieme finito degli stati
- ullet insieme finito dei simboli *in input*
- Γ insieme finito dei simboli di *nastro*
- $\delta:Q imes\Gamma o Q imes\Gamma imes\{L,R\}$ funzione di transizione che, presa in input una coppia composta dallo stato attuale e dal simbolo del nastro letto dalla testina, restituisce una tripla composta dallo stato successivo, il simbolo da scrivere sul nastro e il movimento che la testina deve eseguire (Left, Right)
- $q_0 \in Q$ è lo stato iniziale
- $B \in \Gamma$ è il simbolo di Blank
- F insieme di stati finali o d'accettazione

Sopra si è data la definizione di macchina di Turing deterministica, esiste anche una definizione di macchina di Turing $non\ deterministica$ in cui la funzione di transizione δ ritorna un'insieme finito di triple del tipo $Q \times \Gamma \times \{L,R\}$

Lo stato complessivo di una TM si può dunque così rappresentare:

$$X_1 X_2 ... X_{i-1} q X_i X_{i+1} ... X_n$$

dove:

- $X=X_1...X_n\in \Sigma^*$ è la stringa di input attualmente sul nastro
- $ullet \ q \in Q$ è lo stato attuale del controllo finito
- ullet X_i è il simbolo dell'input attualmente letto dalla testina da sinistra

Una mossa (descritta dalla funzione di transizione δ) è indicata dal simbolo \vdash , ad esempio se $\delta(q,X_i)=(p,Y,L)$ allora si avrà

$$X_1X_2...X_{i-1}qX_iX_{i+1}...X_n \vdash X_1X_2...X_{i-2}pX_{i-1}YX_{i+1}...X_n$$

Una o più mosse di una TM sono indicate con \vdash^*

Una TM M va nello stato **halt** se non esistono transizioni da applicare, ovvero se $\delta(q,X_i)=\emptyset$ per un qualche $q\in Q, X_i\in \Sigma$.

Una TM M dunque:

- Accetta una stringa $w\in \Sigma^*$ se va in *halt* in uno stato stato finale, ovvero se $\delta(q,X_i)=\emptyset,\ q\in F, X_i\in \Sigma$
- **Rifiuta** una stringa $w\in \Sigma^*$ se va in *halt* in uno stato stato non finale, ovvero se $\delta(q,X_i)=\emptyset$ per un qualche $q\notin F,X_i\in \Sigma$ o se entra in un *loop infinito*

Definiamo dunque il linguaggio accettato da una TM M come:

```
Data una TM M L(M)=\{w\in \Sigma^*\mid q_0w\vdash^*\alpha p\beta, \text{con }p\in F\text{ e }\alpha,\beta\in\Gamma\}
```

Essendo di **decisione** i problemi d'interesse per la teoria della computazione, si può dimostrare che ogni stringa $w \in \Sigma^*$ può essere tradotta in una stringa binaria $x_w \in \{0,1\}^*$ e che per ogni macchina di Turing M che accetta stringhe $w \in \Sigma^*$ ne esiste un'altra M' che accetta le corrispettive traduzioni binarie $x_w \in \{0,1\}^*$.

Avevndo ora definito formalmente lo strumento/macchina di calcolo possiamo dare la definizione di funzione calcolabile/computabile in tempo T(n), ovvero:

```
Siano f:\{0,1\}^* \to \{0,1\}^*, \ T:\mathbb{N} \to \mathbb{N} e sia M una macchina di Turing. Allora diciamo che M calcola/computa f in tempo T(n) se \forall x \in \{0,1\}^*, \ q_0x \vdash^* pf(x) con p \in F in un numero di mosse al più pari a T(|x|=n) Diciamo che M calcola/computa f se M calcola f in tempo T(n) per qualche funzione T:\mathbb{N} \to \mathbb{N}
```

Dunque diciamo che

- un linguaggio L è **deciso (ricorsivo)** se esiste una macchina di Turing M che calcola la funzione $f_L:\{0,1\}^* \to \{0,1\}$ definita come $\forall x \in L, \ x \in L \implies f_L(x) = 1 \land \ x \notin L \implies f_L(x) = 0$
- un linguaggio L è **accettato (ricorsivamente enumerabile)** se esiste una macchina di Turing M che calcola la funzione $f_L:\{0,1\}^* \to \{0,1\}$ definita come $\forall x \in L, \ f_L(x) = 1 \iff x \in L$

Ovviamente se la funzione f_L è una funzione calcolabile in tempo T(n), allora il linguaggio L diventa deciso/accettato in tempo T(n)

2. Classi di problemi

2.1. Definizioni

 $\mathbf{P}=$ classe di problemi o linguaggi $\mathit{accettati}$ in tempo $T(n)=c\cdot n^p$ da una TM M deterministica

 ${f NP}=$ classe di problemi o linguaggi *accettati* in tempo $T(n)=c\cdot n^p$ da una TM M non deterministica, oppure più formalmente

 $\mathbf{NP}=$ classe di linguaggi o problemi tali per cui esistono un polinomio $p:\mathbb{N}\to\mathbb{N}$ e una TM M deterministica tale che $\forall x\in\{0,1\}^*,\,x\in L\subseteq\{0,1\}^*\iff\exists u\in\{0,1\}^{p(|x|)}:M(x,u)=1$, ovvero si riesce a verificare in tempo polinomiale che un input x è accettato (o è un'istanza SI del problema) se viene presentata una prova u di questo fatto.

Un linguaggio $A\in\{0,1\}^*$ si **riduce polinomialmente** ad un linguaggio $B\in\{0,1\}^*$ ($A\leq_p B$) se esiste una funzione computabile in tempo polinomiale f tale che $\forall x\in\{0,1\}^*$, $x\in A\iff f(x)\in B$

 $B
in \mathbf{NP}$ -hard se $\forall A \in \mathbf{NP}, \ A \leq_p B$

B è \mathbf{NP} -completo se B è \mathbf{NP} -hard e $B \in \mathbf{NP}$

Vale inoltre il seguente teorema:

1.
$$A \leq_p B \land B \leq_p C \implies A \leq_p C$$

2.
$$A \in \mathbf{NP}$$
-hard $\wedge A \in \mathbf{P} \implies \mathbf{P} = \mathbf{NP}$

3.
$$A \in \mathbf{NP} ext{-completo} \implies (A \in \mathbf{P} \iff \mathbf{P} = \mathbf{NP})$$

2.2. Problemi NP-completi

Alcuni esempi di problemi di decisione da noi trattati sono:

• 3-SAT: data una formula booleana ϕ in CNF form (Conjunctive Normal Form), ovvero del tipo $\phi=c_1 \wedge c_2 \wedge ... \wedge c_n$ dove ogni clausola c_i è la disgiunzione \vee di al più tre letterali (variabili logiche o

le loro negazioni \neg), stabilire se esiste un assegnamento alle varibili z tale che $\phi(z)=1$, ovvero stabilire se ϕ è soddisfacibile

- INDipendence-SET: dato un grafo G=(V,E) e un intero $k\in\mathbb{N}$, stabilire se esiste un sottoinsieme $I\subseteq V$ tale che $|I|\geq k\wedge \forall u,v\in I$ vale che $u,v\in I\implies (u,v)\notin E$, ovvero ci si chiede se esiste un sottoinsieme di almeno k vertici che presi a due a due non sono collegati da nessun arco in E
- **Vertex-Cover**: dato un grafo G=(V,E) e un intero $k\in\mathbb{N}$, stabilire se esiste un sottoinsieme $V'\subseteq V$ tale che $|V'|\le k \land \forall (u,v)\in E$ vale che $(u,v)\in E\implies u\in V'\lor v\in V'$, ovvero ci si chiede se esiste un sottoinsieme di al più k vertici che toccano tutti gli archi di G, formando appunto una copertura
- **Set-Cover**: dato un insieme universo U di n elementi, una collezione $S=\{S_1,S_2,...,S_m\}$ tale che $S_i\subseteq U \wedge \cup_{i=1}^m S_i=U$ e un intero $k\in \mathbb{N}$, stabilire se esiste una collezione $C\subseteq S$ tale che $|C|\leq k \wedge \cup_{i=1}^k C_i=U$
- **HAMILtonian-cycle**: dato un grafo G=(V,E), stabilire se esiste un cammino che visita, partendo da un nodo $v\in V$ e tornando in v, ogni nodo di G esattamente una sola volta
- TSP (Travelling Salesman Problem): dato un grafo G=(V,E,w) completo e pesato, con pesi sugli archi dati da w, tali che $\forall e \in E, w(e) > 0$, e un intero $k \in \mathbb{N}$, stabilire se esiste, preso un vertice $v \in V$, un cammino da v a v che visita ogni nodo di G esattamente una sola volta e di costo $c \leq k$

Andremo ora a dimostrare che:

- 3-SAT \leq_p IND-SET \leq_p VC \leq_p SC (3-SAT è ${f NP}$ -completo per il teorema di Cook-Levin)
- ullet HAMIL \leq_p TSP (non so chi, ma qualcuno ha sicuramente dimostrato che HAMIL è \mathbf{NP} -completo)

Per i problemi di cui sopra è stata fornita la variante decisionale, in cui viene posto il problema di "stabilire se esiste...". Per ognuno di essi si può enunciare il problema di ottimo associato, che mira a trovare la soluzione più generale possibile. Ad esempio VC sarà così formulato: "Qual'è *il più piccolo* insieme tale che...", mentre per IND-SET avremo: "Qual'è *il più grande insieme* tale che..."

2.2.1. 3-SAT \leq_p IND-SET

Data un'istanza I di 3-SAT, un grafo G=(V,E) e un intero $k\in\mathbb{N}$, I è soddisfacibile $\iff G$ ha un indipendent set di cardinalità k.

2.2.1.1. Parte 1

Data un'istanza $I\in$ 3-SAT creiamo un'istanza $(G,k)\in$ IND-SET in questo modo:

• il grafo G ha un triangolo per ogni clausola, con i tre vertici etichettati con i letterali di quest'ultima e collegati tra loro da un arco. Si collega inoltre ogni letterale con il suo negato (se esiste)

ullet Poniamo k uguale al numero di clausole in I

Figure 8.8 The graph corresponding to $(\overline{x} \lor y \lor \overline{z}) (x \lor \overline{y} \lor z) (x \lor y \lor z) (\overline{x} \lor \overline{y}).$

2.2.1.2. Parte 2

Ora dobbiamo dimostrare che:

- 1. IND-SET $\in \mathbf{NP}$, ma data una soluzione è facile verificare in tempo polinomiale che questa soddisfa IND-SET
- 2. Se $S\subseteq V$ è un indipendence set di k vertici allora I è soddisfacibile. Per ogni letterale x, S non può contenere sia x che $\neg x$, poichè tali vertici sono collegati da un arco per costruzione di G, inoltre essendo che S ha cardinalità k, sempre per costruzione di G conterrà un solo letterale per clausola. Dunque ponendo x=1 se S contiene un vertice etichettato con x o x=0 se S contiene un vertice etichettato con x0, si ottiene un assegnamento che rende veri tutti i letterali contenuti in S0, rendendo dunque vera S1
- 3. Se I ha un assegnamento che la rende soddisfacibile allora G ha un indipendence set di cardinalità k. Per ogni clausola prendo un letterale x tale che x=1 (ne esiste almeno uno per clausola) e lo aggiungo a S. Per le stesse considerazioni fatte al punto 1. S è un indipendence set

2.2.2. IND-SET \leq_p VC

Avendo dimostrato che IND-SET è un problema \mathbf{NP} -completo e notando che se un insieme $S\subseteq V$ è un insieme indipendente per un qualche grafo G=(V,E), allora l'insieme V-S è una copertura per G, la dimostrazione che IND-SET \leq_p VC risulta triviale (vale anche il viceversa). Infatti basta dimostare che, dato un grafo G=(V,E), un insieme $S\subseteq V$ è un insieme indipendente di $G\iff V-S$ è una copertura per G.

Figure 8.9 S is a vertex cover if and only if V - S is an independent set.

- 1. Se un insieme $S\subseteq V$ è un insieme indipendente di G allora V-S è una copertura per G. Per definizione di insieme indipendente vale che non esiste nessun arco $(u,v)\in E$ tale che $u\in S\land v\in S$. Allora deve valere che $u\in V-S\lor v\in V-S$, allora V-S è una copertura.
- 2. Se V-S è una copertura per G allora S è un insieme indipendente. Per definizione di copertura, $\forall (u,v) \in E, \ u \in V-S \lor v \in V-S$, dunque non può mai succedere che entrambi u e v appartengano a S

2.2.3. $VC \leq_p SC$

Dobbiamo dimostrare che esiste una funzione f che mappi ogni istanza di VC in un'istanza di SC, ovvero che esiste una funzione f(G,k)=(U,S,l) per cui G ha vertex cover di k elementi $\iff U$ ha un set cover di l elementi.

2.2.3.1. Parte 1

Avendo numerato i vertici di V da 1 a n, costruiamo f in questo modo:

- U = E
- $S = \{S_1, S_2, ..., S_m\}$ è tale che $S_i = \{$ archi incidenti al vertice $i\}, \ \forall i=1,...,n$
- k = l

2.2.3.2. Parte 2

Ora dobbiamo dimostrare che:

- 1. $SC \in \mathbf{NP}$. Avendo una collezione C' è banale provare in tempo polinomiale che questa sia una soluzione per SC.
- 2. Se G ha una copertura di k vertici allora U ha una copertura di l=k vertici. Supponiamo C sia una copertura per G di cardinalità k, allora per costruzione, ad essa corrisponde un insieme $C'\subseteq S$ di pari cardinalità. Essendo U=E ed essendo C una copertura per G, $\forall u\in U$ vale che uno dei suoi estremi appartiene a C, dunque C' contiene almeno un insieme associato agli estremi di u, e per definizione, entrambi contengono u. (Oppure, essendo C una copertura di G, per definizione essa forma un insieme i cui elementi toccano tutti gli archi di E. Sia $C'\subseteq U$ l'insieme

formato dalle collezioni associate ai vertici di C (|C'|=|C|=k). Ogni $C_j\in C'$ contiene gli archi incidenti al vertice j, la loro unione è dunque U)

3. Dimostriamo ora il viceversa. Sia C' una copertura di U. Allora $\forall u \in U$ sicuramente C' contiene almeno un insieme che include u. Tale insieme corrisponde ad un nodo che è estremo di u (poichè contiene i suoi incidenti), quindi C deve contenere almeno un estremo di u

2.2.4. HAMIL \leq_p TSP

Dati due grafi G=(V,E) e G'=(V',E',w) e due interi $k,c\in\mathbb{N}$ con c>k, G ha un ciclo hamiltoniano di lunghezza $k\iff G'$ ha un ciclo che visita tutti i nodi di G' una sola volta e di costo k|V|

2.2.4.1. Parte 1

Dobbiamo prima di tutto costruire una funzione che mappi ogni instanza di HAMIL in un'istanza di TSP in modo che HAMIL risponde $1 \iff TSP$ risponde 1.

Dunque:

- V' = V
- $E' = \{(u, v) \mid u, v \in V \land u \neq v\}$
- $w:E' o \{k,c\}$ è tale che $\forall e \in E'$ vale che $e \in E \implies w(e) = k \land e \notin E \implies w(e) = c$

2.2.4.2. Parte 2

Si dimostra dunque che:

- 1. TSP \in \mathbf{NP} , ma avendo un cammino e un intero $h \in \mathbb{N}$ è facile verificare in tempo polinomiale che questo è soluzione di TSP
- 2. Se esiste un ciclo che visita tutti i nodi di G' una e una sola volta e di costo k|V| ciò sigifica che deve per forza essere costituito da archi di peso k, infatti se ci fosse anche solo un arco di peso c allora il costo complessivo supererebbe k|V|. Tali archi sono anche in G e quindi esiste il ciclo hamiltoniano.
- 3. Se esiste un ciclo hamiltoniano in G, questo è sicuramente costituito da |V| archi. Percorrendo gli stessi archi in G' otteniamo un cammino lungo |V| archi tutti di peso k, quindi di costo k|V|

2.3. Algoritmi ϵ -approssimanti

I problemi ${f NP}$ -hard sono i più difficili problemi di ottimizzazione, dunque, a meno che ${f P}={f NP}$ non esistono algoritmi efficienti che li risolvano.

Entrano dunque in gioco i cosiddetti algoritmi ϵ -approssimanti, che trovano una soluzione ammissibile

del problema in tempo polinomiale che dista dalla soluzione ottima per una fattore ϵ . Dunque:

Dato un problema π e un'istanza x, indichiamo con $\mathbf{opt}(x)$ il costo della soluzione ottima di π sull'istanza x, mentre con $\mathcal{A}(x)$ il costo della soluzione ammissibile su x calcolato da un algoritmo \mathcal{A}

Un **algortimo** ϵ -approssimato per un problema π di ottimizzazione è un algoritmo \mathcal{A} polinomiale tale che restituisce una soluzione ammissibile che dista dalla soluzione ottima di un fattore costante ϵ , ovvero:

- $\mathbf{opt}(x) < \mathcal{A}(x) \leq \epsilon \cdot \mathbf{opt}(x)$, per $\epsilon > 1$ se π è un *problema di minimo*
- $\mathbf{opt}(x) > \mathcal{A}(x) \geq \epsilon \cdot \mathbf{opt}(x)$, per $0 < \epsilon < 1$ se π è un problema di massimo

Un polynomial-time approximation scheme (PTAS) è una famiglia di algoritmi $\{A_{\epsilon}\}$ in cui esiste un algoritmo $\forall \epsilon > 0$, tale che A_{ϵ} è un algoritmo $(1+\epsilon)$ -approssimato (per un problema di minimo) o un algoritmo $(1-\epsilon)$ -approssimato (per un problema di massimo)

Esistono problemi di ottimizzazione che **non ammettono** un algoritmo ϵ -approssimato

2.3.1. 2-approssimazione per VC

Dato un grafo G=(V,E), definiamo un algoritmo 2-approssimato per VC in questo modo:

- 1. $C = \emptyset$
- 2. Scelto un arco $e=(u,v)\in E,\ C=C\cup\{u,v\}$
- 3. Rimuovi da E gli archi incidenti a u e v
- 4. Torna al punto 2. se $E
 eq \emptyset$

Questo algoritmo restituisce una copertura di dimensione 2|M|, ovvero $\mathcal{A}(x)=2|M|$, dove M è l'insieme degli archi scelti dall'algoritmo.

OSSERVAZIONE: L'insieme M degli archi scelti forma un cosidetto matching, ovvero un insieme di archi che non condividono vertici.

In questo caso M è un maximal matching, ovvero è tale per cui $\forall e \notin M, \ M \cup \{e\} \implies M$ non è più un matching.

Dunque l'algoritmo di cui sopra può essere così riformulato:

- 1. Trova un ${\it maximal matching } M$ di G
- 2. $C = \{u, v \in V \mid (u, v) \in M\}$

Dimostriamo prima di tutto che una minima copertura di vertici $V'\subseteq V$ ha dimensione maggiore o uguale a quella del matching M.

Una copertura ottima di vertici deve coprire ogni arco in M, dunque vale che $\forall (u,v) \in M, \ u \in V' \lor v \in V'$, quindi varrà che $\mathbf{opt}(x) \geq |M|$. in definitiva si avrà che $2 \cdot \mathbf{opt}(x) \geq 2|M| = \mathcal{A}(x)$

2.3.2. TSP non ha un' ϵ -approssimazione

Nel problema del TSP, nella sua versione di ottimizzazione, viene fornito un grafo G=(V,E,w), con $w(e)>0 \ \forall e\in E$, e si chiede di trovare un ciclo hamiltoniano di costo minimo (un ciclo è detto hamiltoniano se visita ogni vertice in V esattamente una sola volta).

TSP è un problema \mathbf{NP} -hard, dunque non possiamo trovare un algortimo che approssima TSP in tempo polinomiale a meno che $\mathbf{P} = \mathbf{NP}$, questo perchè se un tale algoritmo esistesse allora potremmo risolvere in tempo polinomiale HAMIL, che è \mathbf{NP} -completo, il che non è possibile a meno che $\mathbf{P} = \mathbf{NP}$.

Vale dunque il seguente teorema:

TSP non ha un'approssimazione costante a meno che ${f P}={f NP}$

Sia G=(V,E) un grafo di cui vogliamo determinare se esiste un ciclo hamiltoniano. Costruiamo l'input G'=(V,E',w) per TSP in questo modo:

- $\bullet \ \ E' = \{(u,v) \mid u,v \in V \land u \neq v\}$
- $orall e \in E', \ w(e)$ è tale che $e \in E \implies w(e) = 1 \land e \notin E \implies w(e) = |V|/(1-1/\epsilon)$

Assumiamo esista un algoritmo ${\mathcal A}$ polinomiale che sia ϵ -approssimante per TSP. Si avranno allora due casi:

- 1. ${\cal A}$ restituisce cammino di costo pari a |V|, ciò significa che sono stati scelti solo archi di peso 1 e quindi il ciclo hamiltoniano esiste
- 2. \mathcal{A} restituisce un cammino di costo >V, ciò significa che il cammino include almeno uno degli archi di peso $|V|/(1-1/\epsilon)$, dunque il costo totale sarà almeno $|V|-1+|V|/(1-1/\epsilon)$. Semplificando si ottiene $\mathcal{A}(x)>\epsilon |V|$, ma per definizione di ϵ -approssimazione si ha che ϵ · $\mathbf{opt}(x)\geq \mathcal{A}(x)>\epsilon |V|$, ovvero $\mathbf{opt}(x)\geq \mathcal{A}(x)/\epsilon>|V|$, ovvero il cammino ottimo ha costo strettamente maggiore di |V|, quindi il ciclo hamiltoniano non esiste poichè non c'è modo di ottenere un cammino di costo |V|

Pertanto \mathcal{A} diventa un algoritmo che decide in tempo polinomiale se, dato un grafo G=(V,E), esiste un ciclo hamiltoniano, ed essendo HAMIL un problema \mathbf{NP} -completo, allora $\mathbf{P}=\mathbf{NP}$, poichè potrei ridurre ogni problema in \mathbf{NP} ad HAMIL e risolverlo polinomialmente.

2.3.3. TSP metrico

Abbiamo appena dimostrato che TSP, nella sua versione di ottimizzazione, non ha un' ϵ -approssimazione.

Viene ora fornita una variante di TSP chiamata TSP metrico, che si basa appunto sul concetto di *metrica*:

una **distanza** (o **metrica**) $d: X \times X \to \mathbb{R}$ è una funzione che soddisfa le seguenti proprietà $\forall x,y,z \in X$:

- 1. $d(x,y) \geq 0$
- 2. $d(x,y) = 0 \iff x = y$
- 3. d(x, y) = d(y, x)
- 4. $d(x,y) \le d(x,z) + d(z,y)$

Dunque TSP metrico è tale per cui, dato un grafo G=(V,E,w) tale che w è una metrica, si chiede di trovare un ciclo hamiltoniano di costo minimo.

Si dimostra che tale variante di TSP ha un algoritmo 2-approssimante.

Diamo innanzitutto dunque la seguente definizione:

un cammino euleriano è un cammino che utilizza ogni arco esattamente una volta

Vale inoltre il seguente teorema:

Ogni grafo non orientato ha un *ciclo euleriano* se e solo se ogni vertice ha grado pari e tutti i vertici di grado > 0 appartengono ad una singola componente connessa

Inoltre:

Ogni grafo connesso e con ogni nodo di grado pari è detto grafo euleriano

2.3.3.1. Algoritmo 1

Dunque, un possibile algoritmo 2-approssimante per TSP metrico è il seguente:

- 1. Calcola il Minimum Spanning Tree T^{st} di G (polinomiale)
- 2. Raddoppia ogni arco di T^st ottenendo un grafo euleriano
- 3. Trova un ciclo euleriano ${\mathcal E}$ (polinomiale)
- 4. Costruisci un ciclo hamiltoniano $\mathcal H$ da $\mathcal E$, partendo da un vertice arbitrario $u\in \mathcal E$, procedendo su $\mathcal E$ e saltando i nodi già presenti in $\mathcal H$ (ciò è lecito poichè w è una metrica, e in particolare vale la disuguaglianza triangolare)

Tale algoritmo è una 2-approssimazione per TSP metrico, infatti vale che:

- 1. $c(\mathcal{H}) \leq c(\mathcal{E})$, per la disuaglianza triangolare
- 2. $c(\mathcal{E})=2c(T^*)$, avendo raddoppiato gli archi di T^* per ottenere \mathcal{E}

3. $c(\mathcal{T}^*) \leq c(\mathcal{H}^*)$, infatti, preso il ciclo hamiltoniano di costo ottimo e rimuovendo un arco, otteniamo l'MST ottimo, che non può costare più del ciclo

Dunque si ha: $c(\mathcal{H}) \leq c(\mathcal{E}) = 2c(T^*) \leq 2c(\mathcal{H}^*)$, ovvero il costo del ciclo hamiltoniano trovato dall'algoritmo non supera due volte il costo del ciclo ottimo.

2.3.3.2. Algoritmo 2

Un'altro algoritmo 2-approssimante per TSP metrico è il seguente:

- 1. Calcola il Minimum Spanning Tree T^st di G
- 2. Scegli un nodo root $r \in T^*$ e visita in *pre-order* l'albero: $v_1, v_2, ..., v_n$
- 3. Ritorna il tour: $v_1
 ightarrow v_2
 ightarrow ...
 ightarrow v_n
 ightarrow v_1$

Dimostriamo che l'algoritmo è una 2-approssimazione per TSP metrico.

Sia σ una visita completa in pre-order di T^* , ovvero rivisitiamo i vertici ogni volta che risaliamo all'indietro l'albero.

Come si evince dalla figura di cui sopra, $c(\sigma)=2c(T^*)$ ed essendo il tour ritornato da $\mathcal A$ una sottosequenza di σ , per la disuguaglianza triangolare si avrà che $\mathcal A(x)\leq 2c(T^*)$.

Inoltre, supponiamo σ^* sia un tour ottimo, dunque $\mathbf{opt}(x)=c(\sigma^*)$. Cancellando da σ^* un arco otteniamo uno spanning tree T tale che $c(T)\geq c(T^*)$. Varrà quindi che $\mathbf{opt}(x)=c(\sigma^*)\geq c(T)\geq c(T^*)$

In definitiva, combinando i risultati si avrà $\mathcal{A}(x) \leq 2c(T^*) \leq 2 \cdot \mathbf{opt}(x)$