Corso di Laurea in Fisica - Esame di Geometria e Algebra Lineare I Prova scritta del 6 Luglio 2021 – Soluzioni

Cognome	Nome
Corso (A o B)	

ATTENZIONE. Riportare lo svolgimento completo degli esercizi. I soli risultati, anche se corretti, non vengono presi in considerazione.

Esercizio 1

Si considerino gli spazi $\mathbb{R}^{2,2}$ con il prodotto scalare $A \cdot B := \operatorname{tr}(A^t B)$ e \mathbb{R}^3 con il prodotto scalare standard. Consideriamo inoltre l'applicazione lineare

$$f: \mathbb{R}^{2,2} \to \mathbb{R}^3$$
, $f\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\right) = (a_{11} + a_{22}, a_{12}, a_{21}).$

- 1. Determinare una matrice associata a f. (2 punti)
- 2. Determinare la dimensione e una base di ker(f) e im(f). (2 punti)
- 3. Sia $Z:=\{(x,y,z)\in\mathbb{R}^3:z=0\}$. Determinare una base di $f^{-1}(Z)$. (2 punti)
- 4. Si consideri l'applicazione trasposta f^t . Determinare la dimensione e una base di $\ker(f^t)$ e $\operatorname{im}(f^t)$. (4 punti)
- 5. Determinare l'intersezione $\ker(f)^{\perp} \cap \operatorname{im}(f^t)$. (2 punti)
- 6. Sia S il sottospazio delle matrici simmetriche. Si consideri la restrizione $f:S\to\mathbb{R}^3$. Determinare una matrice associata a tale applicazione lineare ed una base del suo ker e im. (4 punti)

Soluzione

1. Rispetto alle basi canoniche, f ha matrice

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

- 2. $\ker(f)$ è generato da $E_{11} E_{22}$, $\operatorname{im}(f) = \mathbb{R}^3$.
- 3. $f^{-1}(Z)$ è generato da E_{11}, E_{12}, E_{22} .

- 4. Guardando la matrice trasposta, si vede che $\ker(f^t) = \{0\}$, $\operatorname{im}(f^t)$ è generato da $E_{11} + E_{22}, E_{12}, E_{21}$.
- 5. Per la teoria generale, i due spazi coincidono.
- 6. S è generata da $E_{11}, E_{12} + E_{21}, E_{22}$. Usando questa base, la matrice associata è

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right),$$

quindi ker è generato da $E_{11} - E_{22}$, mentre im è generato da $e_1, e_2 + e_3$.

Esercizio 2

Si consideri la forma quadratica Q su \mathbb{R}^3 definita da:

$$Q((x_1, x_2, x_3)) = x_1^2 - 4x_1x_2 - 2x_1x_3 + 4x_2x_3 + x_3^2.$$

- 1. Determinare la segnatura di Q e dire se Q è degenere. (2 punti)
- 2. Determinare una base di \mathbb{R}^3 rispetto alla quale Q si scrive in forma canonica. (2 punti)
- 3. Determinare una base di \mathbb{R}^3 rispetto alla quale Q si scrive in forma normale. (2 punti)
- 4. Determinare la dimensione e una base del sottospazio vettoriale ortogonale a $W = \mathcal{L}((1, 1, 0))$, rispetto alla forma bilineare simmetrica φ associata a Q. (4 punti)
- 5. Determinare la dimensione e una base di ker φ e del suo sottospazio ortogonale rispetto a φ . (4 punti)
- 6. Determinare se Q ammette un vettore isotropo non nullo. (2 punti)

Soluzione

- 1. Q è una forma indefinita di segnatura (1,1). Inoltre è degenere poichè $\ker \varphi \neq \{0\}$.
- 2. Una base rispetto alla quale Q assume forma canonica $Q(x)=4y_1^2-2y_2^2$ è

$$\mathcal{B} = \left(f_1 = \frac{1}{\sqrt{3}}(-1, 1, 1), f_2 = \frac{1}{\sqrt{6}}(-1, -2, 1), f_3 = \frac{1}{\sqrt{2}}(1, 0, 1)\right).$$

3. Una base rispetto alla quale Q assume forma normale $Q(x)=z_1^2-z_2^2$ è

$$\mathcal{B}' = \left(\frac{1}{2}f_1, \frac{1}{\sqrt{2}}f_2, f_3\right).$$

- 4. Il sottospazio vettoriale ortogonale a \mathcal{W} rispetto a φ è $\mathcal{W}^{\perp \varphi} = \{(x_1, x_2, x_3 \in \mathbb{R}^3 | x_1 + 2x_2 x_3 = 0)\}$. Dunque dim $\mathcal{W}^{\perp \varphi} = 2$ e $\mathcal{W}^{\perp \varphi} = \mathcal{L}((1, 0, 1), (0, 1, 2))$.
- 5. dim $\ker \varphi = 1$, $\ker \varphi = \mathcal{L}((1,0,1))$ e il suo sottospazio ortogonale $(\ker \varphi)^{\perp \varphi}$ rispetto a φ è \mathbb{R}^3 .
- 6. Il vettore $(0,0,1)_{\mathcal{B}'}$ è isotropo.