

The columns in the given dataset are as follows:

The brief description of each columns in the dataset:

- 1. Name: The name of the car model.
- 2. **Year**: The manufacturing year of the car. This column indicates the year in which the car was originally produced.
- 3. **Selling Price**: The price at which the car is being sold. This is typically the amount the seller is asking for the vehicle.
- 4. **Kilometers Driven**: The total distance in kilometers that the car has been driven. This provides an insight into the usage and potential wear and tear of the vehicle.
- 5. **Fuel**: The type of fuel the car uses for propulsion. Common values could be "Petrol," "Diesel," "CNG" (Compressed Natural Gas), "Electric," etc.

- 6. **Seller Type**: This indicates the type of seller. It might include values like "Individual" (private seller) or "Dealer" (car dealership).
- 7. **Transmission**: The type of transmission the car has. It could be "Manual" or "Automatic," referring to the manual or automatic control of gears.
- 8. **Owner**: This column describes the number of previous owners the car has had. It's often represented as a number, such as 1st owner, 2nd owner, etc. It gives an idea of how extensively the car has been used.

These columns provide essential information about each car in the dataset and can be used for various analyses, such as predicting car prices, understanding market trends, and making recommendations to potential buyers or sellers.

Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Import Dataset

```
In [2]: car=pd.read_csv('car data.csv')
In [3]: car.head()
Out[3]:
            Car_Name
                        Year
                              Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Typ
         0
                       2014
                                      3.35
                                                                27000
                                                                            Petrol
                                                                                        Deale
                   ritz
                                                     5.59
         1
                   sx4
                       2013
                                      4.75
                                                     9.54
                                                                43000
                                                                            Diesel
                                                                                        Deale
                  ciaz 2017
         2
                                                                 6900
                                                                            Petrol
                                      7.25
                                                     9.85
                                                                                        Deale
         3
                                      2.85
                                                                 5200
                                                                            Petrol
                                                                                        Deale
               wagon r
                        2011
                                                     4.15
         4
                  swift 2014
                                      4.60
                                                     6.87
                                                                42450
                                                                            Diesel
                                                                                        Deale
In [4]: car.shape
Out[4]: (301, 9)
```

• 301 Rows and 9 Columns

In [5]: car.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 301 entries, 0 to 300 Data columns (total 9 columns): Column Non-Null Count Dtype 0 Car_Name 301 non-null object 1 Year 301 non-null int64 2 Selling_Price 301 non-null float64 3 Present_Price 301 non-null float64 4 Kms_Driven 301 non-null int64 5 Fuel_Type 301 non-null object 6 Seller_Type 301 non-null object 7 Transmission 301 non-null object 0wner 301 non-null int64 dtypes: float64(2), int64(3), object(4) memory usage: 21.3+ KB

In [6]: car.describe()

Out[6]:

	Year	Selling_Price	Present_Price	Kms_Driven	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.644115	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

Data Visualization

```
In [7]: # car count based on year
  plt.figure(figsize=(8, 6))
  ax = sns.countplot(data=car, x=car['Year'])
  ax.tick_params(axis='x', rotation=90)
```



```
In [8]: sns.set(style="whitegrid")

# Selling Price vs Present Price
plt.figure(figsize=(10, 6))
sns.scatterplot(data=car, x='Selling_Price', y='Present_Price')
plt.title('Selling Price vs Present Price')
plt.xlabel('Selling Price')
plt.ylabel('Present Price')
plt.tight_layout()
plt.show()
```



```
In [9]: # Year vs Selling Price
  plt.figure(figsize=(10, 6))
  sns.barplot(data=car, x='Year', y='Selling_Price')
  plt.title('Year vs Selling Price')
  plt.xlabel('Year')
  plt.ylabel('Selling Price')
  plt.tight_layout()
  plt.show()
```



```
In [10]: sns.set(style="whitegrid")
```



```
In [11]: # Owner Type Distribution

plt.figure(figsize=(8, 6))
ax = sns.countplot(data=car, x='0wner')
plt.title('Owner Type Distribution')
plt.xlabel('Owner Type')
plt.ylabel('Count')

# Add count numbers on top of the bars
for p in ax.patches:
```


Data Preprocessing

1) Checking Missing Values

```
In [12]: car.isnull().sum()
                           0
Out[12]: Car_Name
          Year
                           0
          Selling_Price
                           0
          Present_Price
                           0
          Kms_Driven
          Fuel_Type
                           0
          Seller_Type
                           0
          Transmission
                           0
          0wner
                           0
          dtype: int64
```

There is not any missing values

```
In [13]: num lst = [] # list of Numerical columns
         for i in car:
             if car[i].dtype != object:
                 num lst.append(i)
         num_lst.remove('Selling_Price')
In [14]: num_lst
Out[14]: ['Year', 'Present_Price', 'Kms_Driven', 'Owner']
In [15]: obj_lst=[]
                                         # list of Object Columns
         for i in car:
             if car[i].dtype==object:
                 obj_lst.append(i)
In [16]: obj_lst
Out[16]: ['Car_Name', 'Fuel_Type', 'Seller_Type', 'Transmission']
In [17]: car.duplicated().sum()
                                        # Check Duplicate values
Out[17]: 2
In [18]: car.drop duplicates(keep=False, inplace=True) # Drop the Duplicate values
In [19]: car.shape
Out[19]: (297, 9)
In [20]: car['Year'].unique()
Out[20]: array([2014, 2013, 2017, 2011, 2018, 2015, 2016, 2009, 2010, 2012, 2003,
                2008, 2006, 2005, 2004, 2007])
```

Handling Outlier

```
In [21]: #Distribution plots

def distplot(car, col):
    if df[col].dtype in [int, float]:
        sns.distplot(car[col])
        plt.title(f'Distribution plot of {col}')
        plt.show()
    else:
        print(f"{col} is not a numeric column. Skipping...")

# Display distribution plots using subplots in two rows
num_columns = [col for col in car.columns if car[col].dtype in [int, float]]
```

```
num_plots = len(num_columns)
num_rows = (num_plots + 1) // 2

fig, axes = plt.subplots(num_rows, 2, figsize=(12, 6 * num_rows))

for i, col in enumerate(num_columns):
    row = i // 2
    col = i % 2
    sns.distplot(car[num_columns[i]], ax=axes[row, col])
    axes[row, col].set_title(f'Distribution plot of {num_columns[i]}')

plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(12,10),dpi=100)

if 'selling price' in num_lst:
    num_lst.remove('selling price')

for i,j in enumerate(num_lst):

    plt.subplot(3,3,i+1)
    plt.boxplot(car[j])
    plt.title(j)
    plt.tight_layout()
    #plt.show()
```


plt.figure(figsize=(12,10),dpi=100)
if 'selling price' in num_lst:

```
num_lst.remove('selling price')

for i,j in enumerate(num_lst):

   plt.subplot(3,3,i+1)
   plt.boxplot(car[j])
   plt.title(j)
   plt.tight_layout()
   #plt.show()
```



```
In [26]: #Pair plots
sns.pairplot(car, size = 5, kind = 'scatter')
```

Out[26]: <seaborn.axisgrid.PairGrid at 0x12923dc30>

Encoding

In [27]:	car.head()							
Out[27]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Typ
	0	ritz	2014	3.35	5.59	27000	Petrol	Deale
	1	sx4	2013	4.75	9.54	43000	Diesel	Deale
	2	ciaz	2017	7.25	9.85	6900	Petrol	Deale
	3	wagon r	2011	2.85	4.15	5200	Petrol	Deale
	4	swift	2014	4.60	6.87	42450	Diesel	Deale

In [28]: car['Fuel_Type'].value_counts()

```
Out[28]: Petrol
                    239
         Diesel
                     56
         CNG
                      2
         Name: Fuel_Type, dtype: int64
In [29]: car['Transmission'].value_counts()
Out[29]: Manual
                       259
         Automatic
                        38
         Name: Transmission, dtype: int64
In [30]: car['Owner'].value_counts()
Out[30]: 0
               297
         Name: Owner, dtype: int64
In [31]: # Label Encoder
         car['Fuel_Type'] = car['Fuel_Type'].astype('category')
         car['Fuel_Type'] = car['Fuel_Type'].cat.codes
         car['Seller_Type'] = car['Seller_Type'].astype('category')
         car['Seller_Type'] = car['Seller_Type'].cat.codes
         # One Hot Encoder
         car = pd.get_dummies(car, columns=['Seller_Type'])
         car = pd.get_dummies(car, columns=['Transmission'])
         car = pd.get_dummies(car, columns=['Owner'])
In [32]: car = car.drop(['Transmission_Automatic','Owner_0','Seller_Type_0'], axis=1)
In [33]:
         car.head()
Out[33]:
                             Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Typ
             Car_Name
                       Year
         0
                       2014
                                                                             2
                   ritz
                                     3.35
                                                   5.59
                                                              27000
          1
                   sx4
                       2013
                                     4.75
                                                   9.54
                                                              43000
          2
                  ciaz 2017
                                     7.25
                                                               6900
                                                                             2
                                                   9.85
          3
               wagon r
                        2011
                                     2.85
                                                   4.15
                                                               5200
                                                                             1
          4
                  swift 2014
                                     4.60
                                                   6.87
                                                              42450
```

Feature Scaling

```
In [34]: # split the data into independent variable and dependent variable
x = car.drop(['Car_Name', 'Selling_Price'],axis=1)
y = car['Selling_Price']
```

In [35]:	x.ł	nead()							
Out[35]:		Year	Present	_Price	Kms_Driven	Fuel_Type	Seller_Type_	1 Transmi	ission_Manual
	0	2014		5.59	27000	2	(0	1
	1	2013		9.54	43000	1	(0	1
	2	2017		9.85	6900	2		0	1
	3	2011		4.15	5200	2	(0	1
	4	2014		6.87	42450	1	(0	1
In [36]:	y . ł	nead()							
Out[36]:	0 1 2 3 4 Nar	3.3 4.7 7.2 2.8 4.6 ne: Se	75 25 35	rice, d	type: float	64			
In [37]:	£				_				
111 [3/].	SC_	= Sta _x = s	earn.pro indardSca ic.fit_t rame(sc	aler() ransfor		StandardS	caler		
Out[37]:	SC_	= Sta _x = s	ndardSca c.fit_t	aler() ransfor				5	
	sc sc_ pd	= Sta _x = s .DataF	indardSca c.fit_t rame(sc	aler() ransfor	m(x)	2 3	4	5 0.383038	
	sc sc_ pd	= Sta _x = s .DataF	indardSca c.fit_t rame(sc_	aler() ransfor _x)	m(x) 1 2 49 -0.307742	2 3	4 -0.744966		
	sc sc_ pd	= Sta _x = s .DataF 0 0.1	indardSca c.fit_t rame(sc_ 0	eler() ransfor _x) -0.22114	m(x) 1 2 49 -0.307742 33 0.362442	2 0.483368 2 -1.909305	4 -0.744966 -0.744966	0.383038	
	sc sc_ pd	= Sta x = s DataF 0 0.1 1 -0.1 2 1.	ndardSca c.fit_t rame(sc_ 0 128696 231895 210467	-0.22114 0.44403	m(x) 1 2 49 -0.307742 33 0.362442 37 -1.149662	2	4 -0.744966 -0.744966	0.383038 0.383038 0.383038	
	sc sc_pd	= Sta x = s DataF 0 0.0 1 -0.0 2 1. 3 -0.9	ndardSca c.fit_t rame(sc_ 0 128696 231895 210467	-0.22114 0.44403	m(x) 1 2 49 -0.307742 33 0.362442 37 -1.149662 45 -1.220869	2	4 -0.744966 -0.744966 -0.744966	0.383038 0.383038 0.383038 0.383038	
	sc sc_pd	= Sta x = s DataF 0 0.0 1 -0.0 2 1. 3 -0.9	ndardSca c.fit_t rame(sc_ 0 128696 231895 210467	-0.22114 0.44403 -0.46364	m(x) 1 2 49 -0.307742 33 0.362442 37 -1.149662 45 -1.220869	2 0.483368 2 -1.909305 2 0.483368 3 0.483368 5 -1.909305	-0.744966 -0.744966 -0.744966 -0.744966 -0.744966	0.383038 0.383038 0.383038 0.383038	
	sc sc_pd	= Sta x = s DataF 0 0.0 1 -0.0 2 1. 3 -0.9 4 0.0	ndardSca c.fit_t rame(sc_ 0 128696 231895 210467 953076	-0.22114 0.44403 -0.46364	m(x) 1 2 49 -0.307742 33 0.362442 37 -1.149662 45 -1.220869 96 0.339408	2 0.483368 2 -1.909305 2 0.483368 0 0.483368 5 -1.909305	-0.744966 -0.744966 -0.744966 -0.744966 -0.744966 	0.383038 0.383038 0.383038 0.383038 0.383038	
	sc sc_pd	= Sta x = s DataF 0 0.0 1 -0.0 2 1. 3 -0.9 4 0.0 	ndardSca c.fit_t rame(sc_ 0 128696 231895 210467 953076 128696	-0.22114 0.44403 0.49623 -0.46364	m(x) 1 2 49 -0.307742 33 0.362442 37 -1.149662 45 -1.220869 96 0.339408 38 -0.015039	2 0.483368 2 -1.909305 2 0.483368 3 0.483368 5 -1.909305 	4 -0.744966 -0.744966 -0.744966 -0.744966 -0.744966	0.383038 0.383038 0.383038 0.383038 0.383038	
	sc sc_pd	= Sta x = s DataF 0 0.0 1 -0.0 2 1. 3 -0.9 4 0.0 2 0.8 3 0.4	ndardSca c.fit_t rame(sc_ 0 128696 231895 210467 953076 128696 	-0.22114 0.44403 0.49623 -0.46364 -0.00559	m(x) 1 2 49 -0.307742 33 0.362442 37 -1.149662 45 -1.220869 96 0.339408 38 -0.015039 45 1.074514	2 0.483368 2 -1.909305 2 0.483368 3 0.483368 5 -1.909305 9 -1.909305 4 0.483368	-0.744966 -0.744966 -0.744966 -0.744966 -0.744966 -0.744966 -0.744966	0.383038 0.383038 0.383038 0.383038 0.383038	
	sc sc_pd	 Sta X = S DataF 0 0.0 1 -0.0 2 1. 3 -0.9 4 0.0 2 0.8 3 0.4 4 -1.0 	ndardSca c.fit_t rame(sc_ 0 128696 231895 210467 953076 128696 349876	-0.22114 0.44403 0.49623 -0.46364 -0.00559 0.79093 -0.16894	m(x) 1 2 49 -0.307742 33 0.362442 37 -1.149662 45 -1.220869 96 0.339408 38 -0.015039 45 1.074514 97 2.244573	2 0.483368 2 -1.909305 2 0.483368 3 0.483368 5 -1.909305 5 -1.909305 6 0.483368 7 0.483368	4 -0.744966 -0.744966 -0.744966 -0.744966 -0.744966 -0.744966 -0.744966 -0.744966	0.383038 0.383038 0.383038 0.383038 0.383038 0.383038 0.383038	

297 rows × 6 columns

Finding correlation

```
In [38]: plt.figure(figsize=(20,15))
   corr = car.corr()
```


VIF - Variance Inflation Factor (to check multicollinearity)

-0.67

-0.33

Seller_Type_1

Transmission Manual

-0.033

0.0052

-0.56

-0.33

Selling_Price

```
In [39]: variable = sc_x
variable.shape

Out[39]: (297, 6)

In [40]: from statsmodels.stats.outliers_influence import variance_inflation_factor
variable = sc_x

vif = pd.DataFrame()

vif['Variance Inflation Factor'] = [variance_inflation_factor(variable, i )

vif['Features'] = x.columns
In [41]: vif
```

-0.27

-0.093

Kms_Driven

0.056

Fuel_Type

0.054

Seller_Type_1

0.054

Transmission_Manual

- -0.4

- -0.6

Out[41]:		Variance Inflation Factor	Features
	0	1.983920	Year
	1	2.562714	Present_Price
	2	2.351141	Kms_Driven
	3	1.324415	Fuel_Type
	4	1.975662	Seller_Type_1
	5	1.207843	Transmission_Manual

Split the data into training and test for building the model and for prediction

```
In [42]: from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, ran
    print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
    (267, 6) (30, 6) (267,) (30,)
```

Linear Regression

Approach no - 1

Approach no 2 - OLS Method

```
In [49]: from statsmodels.regression.linear_model import OLS
import statsmodels.regression.linear_model as smf

In [50]: reg_model = smf.OLS(endog = y_train, exog=x_train).fit()

In [51]: reg_model.summary()
```

Dep. Variable:	Selling_Price	R-squared (uncentered):	0.877
Model:	OLS	Adj. R-squared (uncentered):	0.874
Method:	Least Squares	F-statistic:	309.6
Date:	Fri, 11 Aug 2023	Prob (F-statistic):	1.41e-115
Time:	20:04:37	Log-Likelihood:	-607.85
No. Observations:	267	AIC:	1228.
Df Residuals:	261	BIC:	1249.
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Year	0.0039	0.001	7.125	0.000	0.003	0.005
Present_Price	0.6563	0.039	16.878	0.000	0.580	0.733
Kms_Driven	-5.363e-05	6.63e-06	-8.089	0.000	-6.67e-05	-4.06e-05
Fuel_Type	-2.6753	0.407	-6.574	0.000	-3.477	-1.874
Seller_Type_1	-0.1055	0.421	-0.251	0.802	-0.934	0.723
Transmission_Manual	-1.2727	0.477	-2.670	0.008	-2.211	-0.334

Omnibus:	214.194	Durbin-Watson:	2.169
Prob(Omnibus):	0.000	Jarque-Bera (JB):	8238.353
Skew:	2.755	Prob(JB):	0.00
Kurtosis:	29.649	Cond. No.	1.46e+05

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 1.46e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Lasso Regularization (L1 - Regularization)

```
In [52]: from sklearn.linear_model import Lasso
lasso = Lasso(alpha=0.1)
lasso.fit(x_train, y_train)
print("Lasso Model :", (lasso.coef_))
```

```
Lasso Model: [ 2.85799746e-01 6.79778301e-01 -2.69952914e-05 -1.47777073e+0
         0.00000000e+00 -1.36332863e-01]
In [53]: y_pred_train_lasso = lasso.predict(x_train)
         y pred test lasso = lasso.predict(x test)
In [54]: print("Training Accuracy :", r2_score(y_train, y_pred_train_lasso))
         print("Test Accuracy :", r2_score(y_test, y_pred_test_lasso))
       Training Accuracy: 0.777991797308078
       Test Accuracy: 0.7886203090155269
         Ridge Regression (L2 - Regularization)
```

```
In [55]: from sklearn.linear_model import Ridge
         ridge = Ridge(alpha=0.3)
         ridge.fit(x_train, y_train)
         print("Ridge Model :", (ridge.coef_))
       Ridge Model : [ 2.77968481e-01 6.45856007e-01 -2.92536686e-05 -2.31132688e+0
          8.94330979e-02 -1.17803735e+001
In [56]: y_pred_train_ridge = ridge.predict(x_train)
         y pred test ridge = ridge.predict(x test)
In [57]: print("Training Accuracy :", r2_score(y_train, y_pred_train_ridge))
         print("Test Accuracy :", r2_score(y_test, y_pred_test_ridge))
       Training Accuracy: 0.7856983656070035
```

Test Accuracy: 0.7574686092905991

ElasticNet

(L1- Regularization + L2- Regularization)

```
In [58]: from sklearn.linear_model import ElasticNet
         elastic = ElasticNet(alpha=0.3, l1 ratio=0.1)
         elastic.fit(x_train, y_train)
Out[58]: 🔻
                       ElasticNet
         ElasticNet(alpha=0.3, 11 ratio=0.1)
In [59]: y_pred_train_elastic = elastic.predict(x_train)
         y_pred_test_elastic = elastic.predict(x_test)
```

```
In [60]: print("Training Accuracy :", r2_score(y_train, y_pred_train_elastic))
    print()
    print("Test Accuracy :", r2_score(y_test, y_pred_test_elastic))

Training Accuracy : 0.7687033386771955

Test Accuracy : 0.7895248686762874

Performance Matrix
```

Mean Absolute Error (MAE)

Mean Absolute Percent Error (MAPE)

```
In [63]: print("MAPE :", metrics.mean_absolute_error(y_test, y_pred_price)/100)

MAPE : 0.012843754119933342
```

Mean Squared Error (MSE)

```
In [64]: print("MSE :", metrics.mean_squared_error(y_test, y_pred_price))

MSE : 4.014650600732763
```

Root Mean Squared Error (MSE)

Gradient Descent

```
In [66]: from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(sc_x, y, test_size=0.25,
    print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
    (222, 6) (75, 6) (222,) (75,)
In [67]: from sklearn.linear_model import SGDRegressor
In [68]: gd_model = SGDRegressor()
    gd_model.fit(x_train, y_train)
```

```
Out[68]:
         ▼ SGDRegressor
         SGDRegressor()
In [69]: y_pred_gd_train = gd_model.predict(x_train)
         y_pred_gd_test = gd_model.predict(x_test)
In [70]: print("GD Trainging Accuracy :", r2_score(y_train, y_pred_gd_train))
         print()
         print("GD Test Accuracy :", r2_score(y_test, y_pred_gd_test))
       GD Trainging Accuracy: 0.7880810276204224
       GD Test Accuracy: 0.7167233857543006
         Decision Tree
In [71]: from sklearn.tree import DecisionTreeRegressor
         dtree = DecisionTreeRegressor()
         dtree.fit(x_train, y_train)
Out[71]: ▼ DecisionTreeRegressor
         DecisionTreeRegressor()
In [72]: y_pred_DT_train = dtree.predict(x_train)
         y_pred_DT_test = dtree.predict(x_test)
In [73]: # Evaluate the model
         from sklearn.metrics import r2_score
In [74]: print(r2_score(y_train, y_pred_DT_train))
         print()
         print(r2_score(y_test, y_pred_DT_test))
       1.0
       0.9298870446456924
In [75]: sns.regplot(x=y_test, y=y_pred_DT_test)
         sns.regplot(x=y_train, y=y_pred_DT_train)
```

Out[75]: <Axes: xlabel='Selling_Price'>

Random Forest


```
In [80]: #Model Accuracy Comparison
         model_names = ["Linear Regression", "Lasso Regularisation", "Ridge Regularis
         accuracy_data = {
             'train_accuracies': [0.7564489097398766, 0.777991797308078, 0.7856983656
             'test_accuracies': [0.7857015229799365, 0.7886203090155269, 0.7574686092
         }
         x = list(range(len(model_names)))
         plt.figure(figsize=(10, 6))
         plt.bar(x, accuracy_data['train_accuracies'], width=0.4, label='Train Accura
         plt.bar([i + 0.4 for i in x], accuracy_data['test_accuracies'], width=0.4, l
         plt.xlabel('Models')
         plt.ylabel('Accuracy')
         plt.title('Model Accuracy Comparison')
         plt.xticks([i + 0.2 for i in x], model_names, rotation=45, ha='right')
         plt.ylim(0.6, 1.1)
         plt.legend()
         plt.tight_layout()
         plt.show()
```


Conclusion

Here's a simplified conclusion with bullet points highlighting the performance of each model:

- **Linear Regression**: Shows steady accuracy on both training and testing.
- Lasso Regularization: Performs well with consistent accuracy scores.
- Ridge Regularization: Also does well with steady accuracy on both datasets.
- **ElasticNet Regularization**: Maintains similar accuracy on both training and testing.
- Gradient Descent: Has okay accuracy but not the highest.
- **Decision Tree**: Perfect on training but drops on testing (overfitting risk).
- Random Forest: Stands out with high accuracy on both training and testing.

In terms of the best performer, the **Random Forest** model demonstrates strong overall performance on both training and testing data.