Entwicklungsprojekt: Evakuierungssimulation

Dina Sukhova & Julien Buschbacher

Problemstellung

- Die Planung von Fluchtwegen wird heutzutage von Evakuierungssimulationen unterstützt
 - -> Dabei werden verschiedene Schwerpunkte modelliert
- Die Agenten der Simulation modellieren in den meisten Fällen keine invaliden Personen oder Kinder
- Unsere Anwendung deckt diesen Fall ab

Zielsetzung

- Die Anwendung soll eine möglichst Realistische Bewegung der Agenten in einer Evakuierungssituation abbilden
- Es sollen relevante Daten aus der Simulation erfasst und möglichst benutzerfreundlich dargestellt werden (Evakuierungszeit, meist besuchte Routen/Zonen etc.)

Vorgehen

- Analyse und Recherche von und über bereits bestehende Modelle und Herangehensweisen
- Spezifizierung der Art der Simulation:
 - -> Diskret oder Kontinuierlich? (Räumlich)
 - -> Agentenbasiert/Regelbasiert?
 - -> Zelluläre Automaten?
 - -> Potentialbasiert?
- Entwurf
- -> Modellierung des Verhaltens von Agenten
- -> Modellierung der Umgebung

Domänenmodell

Technische und Architekturelle Spezifikationen

- Die Anwendung verwendet die Entwicklungsplattform Unity
- Es werden Hindernisse, Agenten und Ziele und Quellen modelliert und können durch den Benutzer gezielt gesetzt werden
- Parameter können durch den Benutzer angepasst werden
- Die Wegfindung der Agenten wird durch Hindernisse, andere Agenten, eigene Strategie und die Position des Ziels beeinflusst

Rapid Prototype

- Durch die Fast Marching Method wird ein Weg um das Hindernis gefunden (Alternative zu Dijkstra)
- Mit einer einfachen Anziehungskraft zum Ziel (Schwarzer Punkt neben "C") blieben die Agenten in dem Hindernis

Modellierung

- Das System verwendet für die Evakuierungssimulation folgende Eigenschaften / Methoden:
- -> Zelluläre Automaten
- -> Social Force Field Model (Mikroskopisch)
- -> Navigationsgraphen (Makroskopisch)

Modellierung

- Das System besitzt ein diskretes Gitter aus quadratischen Zellen
- Es existieren Agenten, Hindernisse, Quellen & Ziele
- Das Verhalten eines Agenten ist abhängig von Position, Umgebung, anderen Agenten und den Eigenschaften des Agenten selbst
- Die Bewegung der Agenten ist abhängig von Zielpotential, Personenpotential und Hindernispotential, sowie von globalen Wegfindungsstrategien, womit individuelle Strategien abgebildet werden können

Modellierungsbegründung

- Mikroskopisch & Makroskopisch => Agentenverhalten wird präziser modelliert (Bewegung & Strategie), Abbildung von individuellen Personen (z.B. invalide und Kinder) ist möglich
- Zelluläre Automaten => nicht so rechenintensiv wie kontinuierliche Modelle,
 Potentiale können durch Zellen abgebildet werden (travel time, Objekttyp)
- Social Force Field Model => Bewegung von Gruppen kann durch Potentiale modelliert werden

Stand Nebenperspektive: MCI

- Konkurrenzanalyse (Schwächen und Stärken anderer Anwendungen)
- Stakeholderanalyse
- Erfordernisse und Anforderungen
- User Profiles
- Personae
- Use Cases, Essential & Concrete

Konkurrenzanalyse und Stakeholderanalyse

Konkurrenzanalyse

Die meisten auf dem Markt erhältlichen Evakuierungssimulationsanwendungen sind proprietär, da sie für hochspezialisierte Zwecke für den professionellen Einsatz entwickelt und angewendet werden.

- IFES
- SIMTEGO
- EXODUS Software
- Accu:rate
- **SIMTREAD**

[∞] Stakeholderanalyse

(E) - Einzelperson (O) - Organisation

Stakeholder	Bezug zum System	Erwartung/Erfordernis
Gebäudeinhaber (E)	Interesse	-Möchte eine Vorstellung von der Sicherheit des Gebäudes haben
Architekt (E)	Interesse, Anspruch	-Möchte ein komfortables und sicheres Gebäude entwerfen -Möchte eine visuelle Darstellung der Sicherheit des Gebäudes während der Evakuierung unter verschiedenen Bedingungen erhalten, um Engpässe während der Planung zu minimieren
Baufirmen (O)	Interesse	- Zeit und Ressourcen sparen, die für die Gebäudeplanung erforderlich sind -Die Wahrscheinlichkeit notwendigen Änderungen von Bauprojekten verringern, um ihre Sicherheit zu erhöhen
Notfalldienste (O)	Interesse	- Möchten eine Vorstellung von den gefährlichsten Orten im Gebäude zu bekommen und die Einsatzkräfte angemessen und effektiv zu verteilen, um den Menschen zu helfen
Wissenschaftler/ Evakuierungsexperte (E)	Interesse, Anrecht, Anspruch	 Möchte ein System zur Simulation und Untersuchung des Verhaltens der Menschen, ihrer Interaktionen und Faktoren, die sie während der Evakuierung beeinflussen Das System muss Hindernisse, die Anzahl der Personen, ihre physischen Eigenschaften und ihre Geschwindigkeit berücksichtigen
Veranstalter (E)	Interesse	- Möchten eine Vorstellung über die Auswirkungen der Besucherzahlen auf die Sicherheit machen und geeignete Maßnahmen treffen, um dies zu gewährleisten
TÜV-Experte (E)	Interesse, Anspruch, Anteil, Anrecht	 Ein System zur Simulation der Evakuierung haben, um festzustellen, ob das Gebäude die Sicherheitsanforderungen erfüllt Möchte eine Vorstellung davon bekommen, ob eine Evakuierung zu einer festgelegten Zeit möglich ist

Persona

TÜV-Experte

Merkmal	Merkmalsausprägung
Alter	30 -65 Jahre alt
Sprachkompetenz	Deutsch, Englisch
Bildungsabschluss	Bachelor, Master, Doktor
Computer Literacy	Mittel, Hoch
Arbeitsstunden	ca. 25 Stunden pro Woche
Arbeitszeit	Voll-, Teilzeit
Engagement	mittel, typisch:hoch
Selbständigkeit	hoch
Technische Ausstattung	PC, Laptop, Tablet
Lohn	ca. 30000- 60000 pro Jahr
Familie	Single oder verheiratet (typisch verheiratet mit einem Kind)
Körperliche Einschränkung	eingeschränkt, nicht eingeschränkt

Erfordernisse und Anforderungen

 Basierend auf der Analyse der Erfordernisse und Erwartungen von Stakeholdern, User Profiles und Personae wurden 13 funktionale Anforderungen formuliert, die das System erfüllen sollte.

Use Case

F01 User intention	System responsibility
Der Benutzer möchte eine neue Simulation starten	Das System prüft, ob die Simulation bereits läuft, wenn ja, dann schießt es diese Simulation ab.
	Das System startet eine neue Simulation und den Evakuierungszeitzähler.

F02 User intention	System responsibility
Der Benutzer möchte die laufende Simulation anhalten	Das System prüft, ob die Simulation bereits läuft.
	Das System halt diese Simulation an und stoppt den Evakuierungszeitzähler.

F03 User intention	System responsibility
Der Benutzer möchte die angehaltene Simulation starten	Das System prüft, ob die Simulation bereits läuft.
	Das System läuft diese Simulation und zählt den Evakuierungszeitzähler weiter.

F04 User intention	System responsibility
Der Benutzer möchte die Zeit der Evakuierung anzugeben.	Das System ermöglicht die Eingabe der Evakuierungszeit.
	Das System prüft die Angabe nach der Richtigkeit. Wenn die Angabe nicht korrekt ist, dann zeigt das System eine Benachrichtigung.

Weiteres Vorgehen in der Nebenperspektive

- Objects und Actions, Content Model (in der Arbeit)
- Navigation Map (in der Arbeit)
- Wireframes
- Evaluierung (Cognitive Walkthrough), Usability Test und Redesign (Analyse-Design-Zyklus)

Quellen

 Methoden zur Abbildung menschlichen Navigation Verhaltens bei der Modellierung von Fußgängerströmen:

https://www.tib.eu/de/suchen/id/TIBKAT%3A751153419/Methoden-zur-Abbildung-menschlichen-Navigationsverhaltens/

Fully Isotropic Fast Marching Methods on Cartesian Grids:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214613/