

ELEC-E8126 - Robotic manipulation

Exercise 6 Report

Student Name: - ABHIJIT. K. KAMATH

Student Number: - 802664

Date: - 05/04/2020

1) P matrix

0	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1

The first diagonal element is 0 because the x co-ordinate is not controlled by the controller.

2) Mathematical equations used to compute position error

Error is calculated using the following code

const Eigen::Isometry3d desired_pose = Eigen::Translation3d(0.0,y,z)* starting_pose;

err = desired_pose.linear() * (desired_pose.inverse() * current_pose).translation();

The desired pose is formed using the translation of the starting pose by the y and z co-ordinate. The co-ordinates are obtained by updating the co-ordinates as shown in the graph.

3) Plots of the desired and applied force

Figure 1:- Expected Graph in the z direction

Figure 2:- Expected Graph in the y direction

Robot 1 Plots

Robot 2 Plots

4) Plots of the followed paths

Robot 1

Is the contact force equal to the desired force?

Yes the contact force is equal to the desired force as shown in the Force in x direction graph.

– Does the followed trajectory correspond to the desired one?

As seen in the graphs the trajectory is more or less following the expected trajectory but has a few spikes.

- Are all Cartesian degrees of freedom followed equally accurately? If not, explain why.

Well even though we control the x co-ordinate with force and y and z co-ordinates with the controller we see that x co-ordinates are also changing. Hence not all Cartesian degrees of freedom are followed equally.

Estimate of time spent: - 18 hours