Assignment #1

real analysis

April 4, 2022

2017-11362 통계학과 박건도

Problem 1. Let (X, \mathfrak{M}, μ) be a measure space, let Y be a non-empty measurable subset of X, and let \mathfrak{M}_Y be the collection of subsets of Y belonging to the σ -algebra \mathfrak{M} . Prove that \mathfrak{M}_Y is a σ -algebra and the measure μ restricted to \mathfrak{M}_Y is also a measure on \mathfrak{M}_Y (and thus (Y, \mathfrak{M}_Y, μ) consists a measure space).

Solution. First of all, let's show that \mathfrak{M}_Y is a σ -algebra.

- ① $Y \subseteq \mathfrak{M}_Y$ is trivial.
- ② $A \in \mathfrak{M}_Y \Rightarrow A^c \in \mathfrak{M}_Y$ Let $A \in \mathfrak{M}_Y$. Then $A \in \mathfrak{M}$ and so does A^c . Since $Y \in \mathfrak{M}$, $Y \setminus A = Y \cap A^c \in \mathfrak{M}$. $\therefore Y \setminus A \in \mathfrak{M}_Y$. $(\because Y \cap A^c \subseteq Y)$
- ③ $A_1, A_2, \ldots \in \mathfrak{M}_Y \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathfrak{M}_Y$ $A_1, A_2, \ldots \in \mathfrak{M}_Y \text{ means } A_k \subseteq Y \text{ for all } k, \text{ i.e., } \bigcup_{k=1}^{\infty} A_k \subseteq Y.$ Since \mathfrak{M} is a σ -algebra, $\bigcup_{k=1}^{\infty} A_k \in \mathfrak{M}$ for $A_1, A_2, \ldots \in \mathfrak{M}$. Therefore,

$$A_1, A_2, \ldots \in \mathfrak{M}_Y \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathfrak{M} \text{ and } \bigcup_{k=1}^{\infty} A_k \subseteq Y$$

$$\Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathfrak{M}_Y$$

Therefore, \mathfrak{M}_Y is a σ -algebra.

Then we have to show that the measure μ restricted to \mathfrak{M}_Y is a measure on \mathfrak{M}_Y . Since $\mu(\varnothing) = 0 < \infty$, countable additivity remains only to prove.

Let $A_1, A_2, \ldots \in \mathfrak{M}_Y$ be disjoint sets. Since \mathfrak{M}_Y belonging to $\mathfrak{M}, A_1, A_2, \ldots \in \mathfrak{M}$ and $\mu(\bigcup A_k) = \sum \mu(A_k)$.

Therefore, (Y, \mathfrak{M}_Y, μ) is a measure space.

Problem 2. Let (X, \mathfrak{M}, μ) be a measure space such that $\mu(X) < \infty$. Define

$$\mathfrak{M}_1 = \{ A \in \mathfrak{M} : \mu(A) = 0 \text{ or } \mu(A) = \mu(X) \}.$$
 (1)

- (1) Prove that (X, \mathfrak{M}_1, μ) is a measure space.
- (2) Let $f: X \to \mathbb{R}$ be a measurable function with respect to the σ -algebra \mathfrak{M} . Prove that f is measurable with respect to the σ -algebra \mathfrak{M}_1 if and only if there exists $c \in \mathbb{R}$ such that f(x) = c a.e. $[\mu]$.

Solution. (1) To show that (X, \mathfrak{M}_1, μ) is a measure space, we have to prove following statements:

- (i) \mathfrak{M}_1 is a σ -algebra.
- (ii) μ restricted to \mathfrak{M}_1 is a measure on (X,\mathfrak{M}_1)

First of all, let's show that \mathfrak{M}_1 is a σ -algebra. It is clear that $X \in \mathfrak{M}_1$. For $A \in \mathfrak{M}_1$, $\mu(A)$ is either 0 or $\mu(X)$. Then, $\mu(A^c) = \mu(X) - \mu(A) = \mu(X)$ or 0, so $A^c \in \mathfrak{M}_1$. And for $A_1, A_2, \ldots \in \mathfrak{M}_1$, there are two cases:

$$\begin{cases} \mu(A_1) = \mu(A_2) = \dots = 0 \\ \exists k \text{ s.t. } \mu(A_k) = \mu(X) \end{cases}$$

In first case, $\mu(\bigcup A_i) \leq \sum \mu(A_i) = 0$ means $\bigcup A_i \in \mathfrak{M}_1$. We can also lead the same conclusion from the other case since

$$\mu(X) = \mu(A_k) \le \mu(\bigcup A_i) \le \mu(X).$$

Therefore, \mathfrak{M}_1 is a σ -algebra. Next, to show that μ is a measure on (X, \mathfrak{M}_1) , we have to show the countable additivity $(\mu(\emptyset) = 0 < \infty$ is easy to show). Likewise the **Solution** of **Problem 1**., it is clear that (X, \mathfrak{M}_1, μ) is a measure space.

- (2) To show iff condition, we have to show following 2 statements:
- (i) f(x) = c a.e. $[\mu] \Rightarrow f$ is measurable on \mathfrak{M}_1 . For open $V \subseteq \mathbb{R}$, $\exists N$ s.t. $\mu(N) = 0$, f(x) = c where $x \in X \setminus N$. Let's show $\mu(f^{-1}(V)) = 0$ or $\mu(X)$, so that $f^{-1}(V) \in \mathfrak{M}_1$.

If $c \in V$,

$$f^{-1}(V) = f^{-1}(\{c\} \cup V \setminus \{c\})$$
$$= f^{-1}(\{c\}) \cup f^{-1}(V \setminus \{c\})$$
$$\supseteq X \setminus N$$

$$\therefore \mu(X \setminus N) = \mu(X) - \mu(N) = \mu(X) \implies \mu(f^{-1}(V)) = \mu(X)$$

If $c \notin V$, $f(x) = c$ where $x \in X \setminus N$ and it means $f^{-1}(V) \subseteq N$.
$$\therefore \mu(f^{-1}(V)) = 0 \ (\because \mu(N) = 0).$$

$$\therefore f^{-1}(V) \in \mathfrak{M}_1.$$

(ii) f is measurable on $\mathfrak{M}_1 \Rightarrow f(x) = c$ a.e. $[\mu]$. Let $c = \sup\{a \in \mathbb{R} : \mu(f^{-1}((a,\infty)) = \mu(X)\}$. Then for $\epsilon > 0$, $\mu(f^{-1}((c - \epsilon, \infty)) = \mu(X)$ and $\mu(f^{-1}((c + \epsilon, \infty)) = 0$ by the definition of supremum. Then,

$$\mu(X) = \mu(f^{-1}((c - \epsilon, \infty)) - \mu(f^{-1}((c + \epsilon, \infty)))$$
$$= \mu(f^{-1}(c - \epsilon, c + \epsilon]))$$
$$\to \mu(f^{-1}(\{c\}) \quad (\text{as } \epsilon \to 0).$$

$$\therefore f(x) = c \text{ a.e. } [\mu]. \ (\because \mu(f^{-1}(\mathbb{R} \setminus \{c\})) = 0).$$

Problem 3. Let (X, \mathfrak{M}) be a measureable space and let $\mu_1, \mu_2, \ldots, \mu_k$ be positive measures on this space. Let $c_1, c_2, \ldots, c_k \geq 0$ be non-negative reals and define $\mu : \mathfrak{M} \to \mathbb{R}$ as

$$\mu(E) = \sum_{i=1}^{k} c_i \mu_i(E) \text{ for } E \in \mathfrak{M}$$

Prove that μ is a measure. (This measure is denoted by $c_1\mu_1 + \cdots + c_k\mu_k$).

Solution. $\mu(\varnothing) = \sum c_i \mu_i(\varnothing) = 0 < \infty$.

Let $A_1, A_2, \ldots \in \mathfrak{M}$ be disjoint sets. Since each μ_i is a measure, $\mu_i(\bigcup A_j) = \sum_j \mu_i(A_j)$.

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{i=1}^{k} c_i \mu_i \left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{i=1}^{k} c_i \sum_{j=1}^{\infty} \mu_i(A_j)$$
$$= \sum_{j=1}^{\infty} \sum_{i=1}^{k} c_i \mu_i(A_j)$$
$$= \sum_{j=1}^{\infty} \mu(A_j)$$

 $\therefore \mu$ is a measure.

Problem 4. Suppose that (\mathbb{R}, τ) is the standard topological space, i.e.,

 $\tau = \{A: A \text{ is a countable union of open intervals in } \mathbb{R}\}\,.$

Denote by \mathfrak{B} the Borel σ -algebra associated to this topological space. Prove that the following set belongs to \mathfrak{B} .

$$A = \{ x \in \mathbb{R} : x = q_1 \sqrt{n_1} + \dots + q_k \sqrt{n_k} \text{ for some } k \in \mathbb{N}, \ q_1, \dots, q_k \in \mathbb{Q},$$
and $n_1, \dots, n_k \in \mathbb{N} \}$

Solution. For $a \in \mathbb{R}$, $[a, \infty) = \bigcup_{n=1}^{\infty} \left(a - \frac{1}{n}, \infty\right)$ and $(-\infty, a] = \bigcup_{n=1}^{\infty} \left(-\infty, a + \frac{1}{n}\right)$, so $[a, \infty)$, $(-\infty, a] \in \tau$ and therefore $\{a\} \in \mathfrak{B}$. Let

$$A_k = \{ x \in \mathbb{R} : x = q_1 \sqrt{n_1} + \dots + q_k \sqrt{n_k} \text{ for some } q_i \in \mathbb{Q}, \ n_i \in \mathbb{N}, i = 1, \dots, k \}$$

Since there exists an injection s.t. $A_k \to \mathbb{Q}^k \times \mathbb{N}^k$ and \mathbb{Q} , \mathbb{N} are countable, A_k is at most countable and $A_k = \bigcup_{x \in A_k} \{x\} \in \mathfrak{B}$.

$$\therefore A = \bigcup_{k=1}^{\infty} A_k \in \mathfrak{B}.$$

Problem 5. Let (X, \mathfrak{M}, μ) be a measure space such that $\mu(X) < \infty$ and let $f, g, h \in L^1(\mu)$. For $n \in \mathbb{N}$, define

$$B_n = \{x \in X : |f(x)| + |g(x)| \le n\} \in \mathfrak{M}.$$

Prove that

$$\lim_{n \to \infty} \int_{B_n} h \ d\mu = \int_X h \ d\mu.$$

Solution. Since $f, g \in L^1(\mu), \int_X |f| d\mu, \int_X |g| d\mu < \infty$ and so $\int_X |f| + |g| d\mu < \infty$. Then,

$$\infty > \int_{X} |f| + |g| \ d\mu = \int_{X \cap B_{n}} |f| + |g| \ d\mu + \int_{X \cap B_{n}^{c}} |f| + |g| \ d\mu$$
$$> \int_{X \cap B_{n}} |f| + |g| \ d\mu + n \cdot \mu(X \cap B_{n}^{c})$$

 $\therefore \mu(X \setminus B_n) \to 0 \text{ as } n \to \infty.$ Then,

$$\int_{X} |h - h\chi_{B_{n}}| d\mu = \int_{X} |h|(1 - \chi_{B_{n}}) d\mu$$

$$= \int_{X} |h| d\mu - \int_{X} |h|\chi_{B_{n}}| d\mu$$

$$= \int_{B_{n}} |h| d\mu + \int_{X\backslash B_{n}} |h| d\mu - \int_{X} |h|\chi_{B_{n}}| d\mu$$

$$= \int_{X\backslash B_{n}} |h| d\mu \to 0 \quad \text{as} \quad n \to \infty \quad (\because h \in L^{1}(\mu))$$

Since $0 \le \left| \int_X h - h \chi_{B_n} d\mu \right| \le \int_X |h - h \chi_{B_n}| d\mu \to 0$, $\lim_{n \to \infty} \int_X h - h \chi_{B_n} d\mu = 0$.

$$\therefore \int_X h \ d\mu = \lim_{n \to \infty} \int_X h \chi_{B_n} \ d\mu = \lim_{n \to \infty} \int_{B_n} h \ d\mu.$$

Problem 6. Let (X, \mathfrak{M}, μ) be a complete measure space and let $(f_n)_{n=1}^{\infty}$, $(g_n)_{n=1}^{\infty}$ be sequences of measurable functions such that

$$f_m \leq g_n$$
 a.e. $[\mu]$ for all $m, n \in \mathbb{N}$.

Prove that

$$\sup_{n\in\mathbb{N}} f_n \le \int_{n\in\mathbb{N}} g_n \quad \text{a.e. } [\mu].$$

Solution. There exists $N \in \mathfrak{M}$ s.t. $\mu(N) = 0$, and $\exists m, n \in \mathbb{N}$ s.t. $f_m(x) > g_n(x)$ for all $x \in N$. Then, $f_m(x) \leq g_n(x)$ for $\forall m, n \in \mathbb{N}$, $\forall x \in X \setminus N$. It suffices to show that $\sup f_n(x) \leq \inf g_n(x)$, $\forall x \in X \setminus N$. Let $x \in X \setminus N$ is given and assume that $\sup f_n(x) > \inf g_n(x)$. Then, $\exists M \in \mathbb{N}$ satisfying followings:

$$\begin{cases} f_M(x) > \sup f_n(x) - \frac{1}{2} \left(\sup f_n(x) - \inf g_n(x) \right) = \frac{1}{2} \left(\sup f_n(x) + \inf g_n(x) \right) \\ g_M(x) < \inf g_n(x) + \frac{1}{2} \left(\sup f_n(x) - \inf g_n(x) \right) = \frac{1}{2} \left(\sup f_n(x) + \inf g_n(x) \right) \end{cases}$$

It concludes that $g_M(x) < f_M(x)$, which contradicts to $f_m \leq g_n$, $\forall m, n$.

$$\therefore \sup f_n(x) \le \inf g_n(x), \, \forall x \in X \setminus N, \, \mu(N) = 0.$$

$$\therefore \sup f_n(x) \leq \inf g_n(x)$$
 a.e. $[\mu]$.

Problem 7. Let (X, \mathfrak{M}, μ) be a measure space, and let $f \in L^1(\mu)$. Prove that, for all $\epsilon > 0$, there exists a simple measurable function s such that

$$\int_X |f - s| \ d\mu < \epsilon.$$

Solution. If above statment holds on all non-negative lebesgue measurable functions, then since $f = f^+ - f^-$ and $s = s^+ - s^-$,

$$0 \le \int_X |f - s| \ d\mu \le \int_X |f^+ - s^+| + |f^- - s^-| \ d\mu < 2\epsilon$$

WLOG, it suffices to show above statement where $f \geq 0$.

Thm $1.17 \Rightarrow \exists$ simple $(s_n)_{n=1}^{\infty}: X \to [0, \infty)$ s.t. $s_n \nearrow f$. Then $s_n \in L^1(\mu)$. Then, we can see following holds:

$$\begin{cases} (s_n)_{n=1}^{\infty}, f: X \to \mathbb{R} \text{ MFs.} \\ \lim_{n \to \infty} s_n(x) = f(x), \ \forall x \in X. \\ \exists f \in L^1(\mu) \text{ s.t. } |s_n(x)| \le f(x), \ \forall x \in X, \ \forall n \in \mathbb{N}. \end{cases}$$

DCT $\Rightarrow \int_X |f - s_n| \ d\mu \to 0 \text{ as } n \to \infty.$ $\therefore \exists N \in \mathbb{N} \text{ s.t. } \int_X |f - s_N| \ d\mu < \epsilon \text{ and take } s = s_N.$

Problem 8. Let $X = \{1, 2, ..., 3n\}$ for some positive integer $n \in \mathbb{N}$, and let $\mathfrak{M} = \{A \subset X : |\{3k-2, 3k-1, 3k\} \cap A| = 0 \text{ or } 3 \text{ for all } 1 \leq k \leq n\}.$

- (1) Prove that (X, \mathfrak{M}) is a measurable space.
- (2) Let $(a_k)_{k=1}^{3n}$ be a sequence of non-negative reals. Define $\mu: \mathfrak{M} \to [0, \infty)$ as

$$\mu(A) = \sum_{i \in A} a_i.$$

Prove that μ is a measure on (X, \mathfrak{M}) and hence (X, \mathfrak{M}, μ) is a measure space. (3) Suppose that the sequence $(a_k)_{k=1}^{3n}$ given above satisfies $a_1 = a_2 = a_3 = 0$ and $a_k > 0$ for all $k \geq 4$. Prove that the measure space (X, \mathfrak{M}, μ) is not complete and derive the completion of the measure space (X, \mathfrak{M}, μ) .

Solution. (1) To show that (X, \mathfrak{M}) is a measurable space, we have to show three things:

①
$$|\{3k-2,3k-1,3k\} \cap X| = 3 \text{ for all } k = 1,2,\ldots,n \implies X \in \mathfrak{M}$$

② Assume $A \in \mathfrak{M}$. For $k = 1, 2, \ldots, n$,

$$\begin{cases} |\{3k-2,3k-1,3k\} \cap A| = 3 & \Rightarrow & \{3k-2,3k-1,3k\} \subseteq A \\ & \Rightarrow & |\{3k-2,3k-1,3k\} \cap A^c| = 0 \\ |\{3k-2,3k-1,3k\} \cap A| = 0 & \Rightarrow & |\{3k-2,3k-1,3k\} \cap A^c| = 3 \end{cases}$$

 $A^c \in \mathfrak{M}$.

 $\mathfrak{J}(A_1, A_2, \ldots \in \mathfrak{M})$ is given.

For k = 1, 2, ..., n,

i)
$$|\{3k-2,3k-1,3k\} \cap A_i| = 0, \forall i$$

$$\emptyset = \bigcup_{i=1}^{\infty} (\{3k - 2, 3k - 1, 3k\} \cap A_i)$$
$$= \{3k - 2, 3k - 1, 3k\} \cap \left(\bigcup_{i=1}^{\infty} A_i\right)$$

:.
$$|\{3k-2, 3k-1, 3k\} \cap \bigcup A_i| = 0$$

ii) $\exists A_i \text{ s.t. } |\{3k-2, 3k-1, 3k\} \cap A| = 3$

$$\{3k - 2, 3k - 1, 3k\} \subseteq \bigcup_{i=1}^{\infty} (\{3k - 2, 3k - 1, 3k\} \cap A)$$
$$= \{3k - 2, 3k - 1, 3k\} \cap \bigcup_{i=1}^{\infty} A_i$$
$$\subseteq \{3k - 2, 3k - 1, 3k\}$$

$$\therefore |\{3k-2, 3k-1, 3k\} \cap \bigcup A_i| = 3$$
$$\therefore \bigcup A_i \in \mathfrak{M}$$

 $\therefore (X, \mathfrak{M})$ is a measurable space.

(2) Since $\mu(\emptyset) = 0 < \infty$, it suffices to show countable additivity of μ . Let $A_1, A_2, \ldots \in \mathfrak{M}$ be disjoint sets.

Since $|X| < \infty$ and $\mathfrak{M} \subseteq 2^X$, $|\mathfrak{M}| < \infty$ and $\exists N$ s.t. $A_{N+1} = A_{N+2} = \cdots = \varnothing$. Then, when we show that $A_1, A_2 \in \mathfrak{M}$ disjoint $\Rightarrow \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$, it can be easily expanded to conclusion by induction.

$$\mu(A_1 \cup A_2) = \sum_{i \in A_1 \cup A_2} a_i = \sum_{i \in A_1} a_i + \sum_{i \in A_2} a_i = \mu(A_1) + \mu(A_2).$$

 $\therefore (X, \mathfrak{M}, \mu)$ is a measure space.

(3) First of all, let's show that given measure space (X, \mathfrak{M}, μ) is not complete.

Let $N = \{1, 2, 3\} \in \mathfrak{M}$ and $A = \{1\} \subseteq N$.

Then $\mu(N) = 0$ but $A \notin \mathfrak{M}$ (:: $|\{1, 2, 3\} \cap A| = 1$), so we can conclude that (X, \mathfrak{M}, μ) is not compelete.

The completion of above measure space is,

$$\mathfrak{M}^* = \{ E \subseteq X : {}^{\exists} A, B \in \mathfrak{M} \text{ s.t. } A \subseteq E \subseteq B, \ \mu(B \setminus A) = 0 \}$$

Let's find largest $N \subseteq X$ s.t. $\mu(N) = 0$.

$$\mu(N) = \sum_{i \in N} a_i = 0 \quad \Rightarrow \quad N = \emptyset \text{ or } a_i = 0, \ \forall i \in N$$

 $N \in 2^{\{1,2,3\}}$

 $\therefore \mathfrak{M}^* = \{ N \cup E : E \in \mathfrak{M}, N \in 2^{\{1,2,3\}}.$

Extend μ so that satisfies $\mu(N \cup E) = \mu(E)$.

Then, (X, \mathfrak{M}^*, μ) is a complete measure space.