Three Tier Architecture

Team Wildcards

Azizi Penn Chandini Nagendra Dane Jew Steven Mackey

> CSC 230, Spring 2018 April 19th, 2018

Architecture Style Purpose

Architecture Style Purpose

- Ensure that critical tasks of a system are separated into modules at different tiers so that any modification or enhancement will not affect the development of the modules at the other tiers
 - The user interface in the "Presentation Layer", aka. the "first tier" or "Front End".
 - The data retrieval and internal logic in the "Application Layer",
 - aka. the "middle tier" or "middle -ware".
 - Some diagrams call it "Business Logic".
 - The database and database management system software is housed in the "Data Layer", aka.
 the "Back End."

Applicability

Example: Three Tier System for a website for movie reviews

- Presentation Layer:
 - The User Interface, including form logic and validation.
 - Allows user to create account and enter review data.
 - Housed on a web server.
- Application Layer:
 - Web API, Implemented by a Web service or REST service.
 - Middleware. Contains application logic.
 - Solely responsible to make requests to dbms to create, retrieve, update, and delete data.
- Data Layer:
 - The backend contains the database, dbms, and perhaps a files system.

Strengths/Advantages of Three Tier Architecture

- Lower Coupling
 - Can make changes, updates to one tier with minimal(if any) impact to the other tiers.
 - Especially useful for interfacing with legacy systems and/or multiple backend systems.
- Productivity
 - Software developers can work on separate parts of the application
 - Software developers can work within their expertise.
- Scaleable/Redundancy
 - Greater ability to scale backend servers thus handling larger amounts of traffic.

Strengths/Advantages of Three Tier Architecture

- Security
 - Offers greater security of data layer, since client layer does not have direct access to it.
- Maintainability
 - Technology upgrades can be made on one tier at a time.
- Data Hiding
 - Presentation layer does not need to expose all functionality of application layer. Data layer does not need to expose all data to the application layer.

Concerns/Issues of Three Tier Architecture

Complexity

Communication points are doubled when compared to client-server architecture. Need to create interface between client and middle tier, Middle tier and backend.

Cost

Adding additional tier increases the overall cost of the system

Effort

- Train existing developers to use different technologies to build 3- different tiers
- Hire new developers
- Need more developers to build an additional tier.
- Need more time to perform integration and end to end testing

Concerns/Issues of Three Tier Architecture

- Reliability
 - Tiers are statistically independent
 - The system functions if all tiers of the system function

Let E be an event where the system functions as expected

- Let Ei be an event where the ith tier functions as expected. Where i= 1,2,3
- P(E) is the probability of the 3-tier system functioning properly
- Then, P(E) = P(E1)*P(E2)*P(E3)
- That means the Probability of the system working reliably would be less than the probability of the least reliable component

Ex: Tier 1 = 92%, Tier 2 = 85%, Tier 3 = 95% System reliability is only 74%

Issue Management

- Cost
 - Leverage Web/cloud based services
- Effort
 - Hiring developers who are flexible/trained to work on different technologies
 - Making use of continuous integration technique
- Reliability
 - Improving the reliability of each tier.

Questions?