

# Predicting the direction of the DAX by using indicators

#### **Table of Contents**



#### How does the data of a stock market look?

- The typical representation of market prices is the candlestick chart
- Each candle represents a period (in this example, one day)
- Each candle contains four prices (open, high, low, close)
- The direction can be defined by the difference between the close and open prices
- When the difference is positive, the direction is upward; when the difference is negative, the direction is downward



#### How is the DAX calculated?

- The DAX is calculated from the price of the 30 largest German companies
- The price development of individual companies is generally influenced by supply and demand
- There are many different factors that influence the market behaviors



#### **Data Collection**

- I have collected data from 1987 to the present by using the yfinance library
- The data includes open, high, low, close (OHLC) prices and the volume of the market
- The target variable is the direction, calculated by the difference between close-price and openprice
- As input variables, I have calculated multiple indicators across different timeframes

#### **Indicators**

- Use 10 different types of indicators
  - Simple Moving Average
  - Relative Strength Index
  - Average True Range
  - Bollinger Bands
- Each indicator was calculated for three different time periods
- For each indicator that returns a market price, i created a categorical column
  - 1 if the price is above the indicator price
  - 0 if the price is lover then the indicator price



### **Data Cleaning**

- Before 2000 there are missing Values for the volume of the market
  - started from 2000
- By computing an Indicator with a timeperiod of 14 day, the first 13 rows has missing values
  - I dropped the first 13 days

# Time Dependency

|                   |            | open | low  | high close |      | moving average | direction |
|-------------------|------------|------|------|------------|------|----------------|-----------|
|                   | 01.01.2024 | 5975 | 6048 | 5974       | 6048 | 6050           | Up        |
|                   | 02.01.2024 | 6843 | 6068 | 60 5       | 6082 | 6042           | Down      |
| $\longrightarrow$ | 03.01.2024 | 6032 | 6047 | 5997       | 6034 | 6040           | Up        |

#### Feature Selection

- Varianace Threshold to drop features with a variance less then 0.02
- Correlation Matrix to identify multicorrelarity with a threshold = 0.99
- End up with 43 features

## Transforming, Scaling and Sampling

- Power Transformer
- Min Max Scaler for X
- My target is allready in a range between 0 and 1
- Class Imbalance: Train-Set = 0.045 Test-Set = 0.044 -> So I did not use any sampling method

# X-y Split



# Logistic - Regression



**Test-Set** 

**Validation-Set** 







Accuracy

Карра

0.552

0.094

0.496

-0.015

0.501

0.005

#### Random Forest with GridSearchCV



Test-Set

Validation-Set







Accuracy Kappa 0.833

0.532

-0.032

#### **Neural Network**



**Test-Set** 

**Validation-Set** 

















#### Final Results

| Validation Set      | Accuracy | F1    | Recall | Precission | Kappa  |
|---------------------|----------|-------|--------|------------|--------|
| Logistic Regression | 0.502    | 0.547 | 0.565  | 0.530      | -0.006 |
| Random Forest       | 0.498    | 0.593 | 0.685  | 0.522      | -0.030 |
| Neural Network      | 0.506    | 0.655 | 0.879  | 0.522      | -0.041 |

- The performance of all models is realy bad -> they are not practical for actual use
- Financial markets are known for their unpredictability and constant changes
- The performance of a model heavely relies on the input
- Next Steps: Is there an improvement, if I add features from different sources like more pattern related indicators and fundamental data from the companies?



# Thank you for your attention!

- Better trust a goldfish then my model! -