

Finding optimal portfolio (S&P500)

FIN580. Advanced Data Science and Python for Finance

Aizhan Kassym-Ashim

Agenda

	Х
Introduction	Х
Code explanation	Х
Finding optimal portfolio	Х
Optimization algorithm	Х
Results	Х
Conclusion	Х

Introduction

Introduction

Our goal of this project is to find the optimal portfolio of all component stocks of S&P 500.

- Largest Sharpe ratio
- Assume short sales are not allowed

Code Explanation

Code Explanation


```
In [1]: import pandas as pd
    import numpy as np
    import pandas_datareader as pdr
    from scipy.optimize import minimize
    import matplotlib.pyplot as plt
```

Finding the optimal portfolio

```
In [2]: df9=pd.read_csv("ticker.csv")
df9
```

```
Out[2]:
             MMM
            AOS
              ABT
          2 ABBV
          3 ABMD
              ACN
             YUM
         500
             ZBRA
         501
              ZBH
             ZION
         502
         503
              ZTS
```

504 rows × 1 columns


```
In [3]: l9=df9['MMM'].values.tolist()
         19
Out[3]: ['AOS',
          'ABT',
          'ABBV',
          'ABMD',
          'ACN',
          'ATVI',
          'ADM',
          'ADBE',
          'AAP',
          'AMD',
          'AES',
          'AFL',
          'Α',
          'APD',
          'AKAM',
          'ALB',
          'ALK',
          'ARE',
          'ALGN',
          'ALLE',
          'LNT',
          'ALL',
          'G00GL',
          'G00G',
          'MO',
          'AMZN',
```


In [4]: df1 = pdr.get_data_yahoo(l9, start='2020-01-01',end='2020-12-31')["Adj Close"]
df1

		1:

Symbols	AOS	ABT	ABBV	ABMD	ACN	ATVI	ADM	ADBE	AAP	AMD	 XLNX	XYL
Date												
2020- 01-02	46.011990	84.297455	80.968918	168.809998	204.304413	57.986031	43.546410	334.429993	156.409714	49.099998	 100.115349	78.062714
2020- 01-03	45.607437	83.269798	80.200363	166.820007	203.964157	58.005798	43.461418	331.809998	156.419510	48.599998	 97.810677	78.522194
2020- 01-06	45.896400	83.706055	80.833298	179.039993	202.632248	59.063690	43.121429	333.709991	153.848801	48.389999	 95.771927	78.013840
2020- 01-07	45.588173	83.240707	80.372162	180.350006	198.257416	59.656895	42.602009	333.390015	152.023834	48.250000	 97.958405	77.720558
2020- 01-08	45.520748	83.580032	80.941788	178.690002	198.646317	59.202103	42.129807	337.869995	150.277359	47.830002	 97.682640	77.984505
2020- 12-24	54.548294	106.700706	98.533798	303.410004	254.158463	90.521706	48.271736	499.859985	158.870193	91.809998	 141.990005	99.302422
2020- 12-28	54.685944	106.149239	98.715103	312.910004	256.509399	90.989441	48.525597	498.950012	157.011383	91.599998	 141.520004	99.421288
2020- 12-29	53.791225	106.681015	99.907890	320.929993	254.612854	90.929733	48.281498	502.109985	154.925156	90.620003	 139.899994	98.569412
2020- 12-30	53.791225	106.789345	100.451790	323.920013	254.395569	91.138718	48.730629	497.450012	155.884232	92.290001	 142.100006	99.827400
2020- 12-31	53.899380	107.823357	102.245758	324.200012	258.020752	92.402596	49.218815	500.119995	155.735901	91.709999	 141.770004	100.827858

253 rows × 504 columns


```
In [5]: # log return
    df1=df1.dropna(axis='columns')
    df2=np.log(df1/df1.shift(1))
    df2
```

Out[5]:

Symbols	AOS	ABT	ABBV	ABMD	ACN	ATVI	ADM	ADBE	AAP	AMD	 WLTW	WYNN	XEL	
Date														
2020- 01-02	NaN	 NaN	NaN	NaN										
2020- 01-03	-0.008831	-0.012266	-0.009537	-0.011858	-0.001667	0.000341	-0.001954	-0.007865	0.000063	-0.010236	 0.000245	-0.014944	0.004798	-0.0
2020- 01-06	0.006316	0.005225	0.007861	0.070694	-0.006552	0.018073	-0.007854	0.005710	-0.016571	-0.004330	 0.001223	-0.001981	-0.001437	-0.0
2020- 01-07	-0.006738	-0.005575	-0.005721	0.007290	-0.021826	0.009993	-0.012119	-0.000959	-0.011933	-0.002897	 -0.002055	0.004734	-0.002079	0.0
2020- 01-08	-0.001480	0.004068	0.007062	-0.009247	0.001960	-0.007653	-0.011146	0.013348	-0.011555	-0.008743	 0.001126	0.006254	-0.000961	-0.0
2020- 12-24	0.006691	0.008341	-0.000194	-0.002107	-0.000544	0.008280	0.001822	0.005919	0.008688	0.002836	 0.014217	-0.007924	0.004964	0.0
2020- 12-28	0.002520	-0.005182	0.001838	0.030831	0.009207	0.005154	0.005245	-0.001822	-0.011769	-0.002290	 -0.018440	0.009397	0.010620	-0.0
2020- 12-29	-0.016496	0.004997	0.012011	0.025307	-0.007421	-0.000656	-0.005043	0.006313	-0.013376	-0.010756	 -0.000722	-0.010097	0.001530	-0.0
2020- 12-30	0.000000	0.001015	0.005429	0.009274	-0.000854	0.002296	0.009259	-0.009324	0.006171	0.018261	 -0.004550	-0.007993	0.003510	0.0
2020- 12-31	0.002009	0.009636	0.017701	0.000864	0.014150	0.013772	0.009968	0.005353	-0.000952	-0.006304	 0.021785	-0.005039	0.015418	-0.0

253 rows × 499 columns

Code Explanation

Code Explanation --- Second Part


```
In [6]: a1=np.array([1/499]*499)
        a1
Out[6]: array([0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401. 0.00200401. 0.00200401. 0.00200401. 0.00200401.
               0.00200401. 0.00200401. 0.00200401. 0.00200401. 0.00200401.
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
               0.00200401, 0.00200401, 0.00200401, 0.00200401, 0.00200401,
```

Code Explanation --- Second Part


```
In [18]: def portfolio(a1):
    ret=np.dot(df2.mean(),a1)*250
    std=np.dot(a1.T, np.dot(df2.cov()*250, a1))**0.5
    sharpe=(ret-0.03)/std
    return ret,std,sharpe
```

Code Explanation

Optimization algorithm

```
In [7]: def neg_sharpe(weight):
             ret=np.dot(df2.mean(),weight)*250
             std=np.dot(weight.T, np.dot(df2.cov()*250, weight))**0.5
             sharpe=(ret-0.03)/std
             return -sharpe
In [8]:
         def sum weight(weight):
             return np.sum(weight)-1
In [9]: constraint = ({'type':'eq','fun': sum_weight})
In [10]: a = [(0,1)]
         for i in range (2,500):
             a.append((0,1))
         bound = tuple(a)
```



```
optimal=minimize(fun=neg sharpe, x0=a1, method = 'SLSQP', bounds = bound, constraints = constraint)
         optimal
Out[11]:
             fun: -3.127336989026013
              jac: array([ 4.98219818e-01, 7.92526841e-01, 3.91312242e-01, -6.40838444e-02,
                8.43842208e-01. 2.22447127e-01. 7.89779007e-01. 9.42335278e-01.
                1.13843456e+00.
                                 9.10358995e-01.
                                                 9.27755743e-01, 1.77799413e+00,
                                 8.10843289e-01,
                                                 8.05052727e-01, 1.41149044e-01,
                6.39208883e-01,
                1.85421380e+00. 8.61424983e-01. 7.23451465e-01. 1.42273220e+00.
                9.80596066e-01, 1.35138485e+00, 7.35773176e-01, 7.33243287e-01,
                1.01666349e+00. 1.91648364e-01. 1.01345748e+00. 9.56726164e-01.
                2.59758949e+00. 9.76282805e-01.
                                                 1.47589305e+00. 2.25853074e+00.
                1.24020571e+00.
                                 5.96796781e-01, 1.60119000e+00, 5.33291101e-01,
                                                 9.75444406e-01. 1.11373520e+00.
                1.08039489e+00.
                                 1.19501984e+00.
                1.12668625e+00.
                                 1.25751632e+00.
                                                 1.16131207e+00, 4.25717226e+00,
                5.70046842e-01.
                                 1.39264381e+00,
                                                 1.25165936e+00, 7.01599270e-01,
                5.50157398e-01.
                                 8.96026194e-01.
                                                 1.33629969e+00. 1.15256292e+00.
                8.69406968e-01.
                                 1.15797475e+00.
                                                 9.83800679e-01, 1.54080778e+00,
                7.01221615e-01,
                                 2.03017938e+00.
                                                 2.94963062e-01. 1.50783917e+00.
                4.11790609e-01,
                                 9.73041952e-01.
                                                 9.59782511e-01, 1.41181856e+00,
                4.19522673e-01,
                                 4.57958698e-01,
                                                 1.65988755e+00.
                                                                  7.30666935e-01.
                1.31444719e+00, 3.22694984e+00,
                                                 9.46482062e-01, 1.37410846e+00,
```



```
In [12]: a3=optimal["x"]
         a3
Out[12]: array([8.22400804e-14, 4.33998271e-14, 9.21210576e-14, 2.02547871e-01,
                3.36878425e-14. 1.15367909e-13. 5.07039452e-14. 6.82438913e-15.
                5.65926022e-15, 0.00000000e+00, 1.53706126e-14, 0.00000000e+00,
                5.57106967e-14, 4.25369022e-14, 4.56867289e-14, 1.01279191e-13,
                0.0000000e+00. 3.39654280e-14. 2.85501307e-14. 0.00000000e+00.
                3.52186673e-14, 0.00000000e+00, 4.41110783e-14, 4.00321343e-14,
                3.12210943e-14, 1.00741997e-13, 1.72384160e-14, 3.47707978e-14,
                0.0000000e+00. 4.05843267e-14. 0.00000000e+00. 0.0000000e+00.
                0.00000000e+00, 7.89301665e-14, 0.00000000e+00, 8.11600795e-14,
                9.38069833e-16, 5.94137156e-15, 1.44835132e-14, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 3.67435750e-15, 0.000000000e+00,
                4.44224012e-14, 0.00000000e+00, 0.00000000e+00, 4.58757225e-14,
                6.66248390e-14, 4.39500460e-14, 0.00000000e+00, 1.56436486e-14,
                1.04724487e-14, 4.80897409e-15, 2.31289211e-14, 0.00000000e+00,
                5.60125545e-14, 0.00000000e+00, 9.99772556e-14, 0.00000000e+00,
                5.71939386e-14, 2.77754420e-14, 4.19872963e-14, 0.00000000e+00,
                7.79478365e-14, 7.56771311e-14, 0.00000000e+00, 4.10914437e-14,
                0.00000000e+00, 0.00000000e+00, 2.79187056e-14, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 5.52612719e-14, 0.00000000e+00,
```



```
In [13]: w3=pd.Series(data=a3,index=df2.columns)
         w3
Out[13]: Symbols
         A0S
                 8.224008e-14
         ABT
                 4.339983e-14
         ABBV
                 9.212106e-14
         ABMD
                 2.025479e-01
         ACN
                 3.368784e-14
         YUM
                 2.304345e-14
         ZBRA
                 2.622887e-14
         ZBH
                 0.000000e+00
         ZION
                 2.093827e-14
         ZTS
                 3.364809e-14
         Length: 499, dtype: float64
In [19]: # ret, std, and sharpe ratio of the optimal portfolio
         ret3, std3, sharpe3=portfolio(a3)
In [20]: ret3
Out [20]: 1.5201044455060653
In [21]: std3
Out [21]: 0.4764770956039975
In [22]: sharpe3
Out [22]: 3.127336989026013
```



```
In [23]: weight=pd.DataFrame({"optimal":w3})
          weight
Out [23]:
                        optimal
           Symbols
              AOS 8.224008e-14
              ABT 4.339983e-14
              ABBV 9.212106e-14
                    2.025479e-01
              ACN 3.368784e-14
              YUM 2.304345e-14
                   2.622887e-14
              ZBRA
              ZBH 0.000000e+00
              ZION 2.093827e-14
               ZTS 3.364809e-14
```

499 rows × 1 columns


```
In [24]: weight.plot(kind="bar",figsize = (100,1), edgecolor='black')
    plt.xlabel('stocks')
    plt.ylabel('weights')
    plt.title('weights of individual stocks');
```


Result

Result --- Return, std and Sharpe ratio


```
In [19]: # ret, std, and sharpe ratio of the optimal portfolio
    ret3,std3,sharpe3=portfolio(a3)

In [20]: ret3
Out[20]: 1.5201044455060653

In [21]: std3
Out[21]: 0.4764770956039975

In [22]: sharpe3
Out[22]: 3.127336989026013
```

Result --- Portfolio

Conclusion

Conclusion

- The industry chosen by the algorithm match the sectors that have been popular in the market, indicating that Sharp target and historical covariance can be used to analyze market trend.
- A good Sharpe ratio does not necessarily depend on a high degree of diversification.
- The optimization algorithm is based on historical data, and when using Sharp as a single target, the result may be less realistic and difficult to help with investment decisions, but it is an excellent tool for observing markets and analyzing portfolio performance and structure.