Math 459 Lecture 23

Todd Kuffner

Hierarchical Linear Models (part 2)

- ▶ random slope, random intercept model
- application to bird species abundance
- ▶ implementation with Stan

Setup

```
library(reshape2)
library(dplyr)
library(ggplot2)
library(xtable)
library(lme4)
library(rstan)
library(blme)
library(mcmcse)
set.seed(2)
```

```
d = read.csv("Ch15b-bird_yeartotal.csv") %>%
  filter(forestN=='Chippewa') %>%
  mutate(y=log(count+1)/samples)
ggplot(d, aes(year, y)) +
  geom_point() +
```

facet_wrap(~abbrev, scales='free')

Independent regressions

Initially, we could consider the model

$$y_{st} \stackrel{ind}{\sim} N(\beta_{s,0} + x_{st}\beta_{s,1}, \sigma_s^2)$$

where

- \triangleright y_{st} is the mean log count (+1) for species s at time t
- $ightharpoonup x_{st}$ is the year (minus 2005) for species s at time t

This model treats each species completely independently.

```
ggplot(d, aes(year, y)) +
  geom_point() +
  facet_wrap(~abbrev, scales='free') +
```

geom_smooth(method='lm')


```
slopes = plyr::ddply(d, 'abbrev', function(x) {
  m = lm(y \sim I(year - 2005), x)
  ci = confint(m)
 data.frame(lower = ci[2,1],
            upper = ci[2,2],
            midpoint = coef(m)[2])
})
slopes$abbrev = factor(slopes$abbrev,
                       levels(slopes$abbrev)[order(slopes$upper)
ggplot(slopes,
       aes(x=abbrev, y=midpoint, ymin=lower, ymax=upper))
  geom_pointrange() +
  coord_flip() +
  labs(title='Estimated slopes and 95% confidence intervals'
```

y = 'Slopes', x='Species abbreviation')

Random intercept, random slope model

A reasonable assumption is to treat these species exchangeably and put a distribution on the intercept and slope.

Then a random intercept, random slope model is

$$y_{st} \stackrel{ind}{\sim} N(\beta_{s,0} + x_{st}\beta_{s,1}, \sigma^2)$$

 $\beta_s \stackrel{ind}{\sim} N(\mu_{\beta}, \Sigma_{\beta})$

where $\beta_s = (\beta_{s,0}, \beta_{s,1})'$ and σ^2 , μ_{β} , and Σ_{β} are parameters to be estimated.

Notice that there is now a common variance for all species. Equivalently,

$$y_j \stackrel{ind}{\sim} N(X_j \beta_j, \sigma_y^2 I_{n_j}), \quad \beta_j \stackrel{ind}{\sim} N(\mu_\beta, \Sigma_\beta)$$

where $y_j = (y_{1j}, \dots, y_{n_j j})'$ and the $i^{(th)}$ row of X_j is $(1, x_{st})$.

Random intercept and random slope model in R

```
m2 = lmer(y \sim I(year - 2005) + (I(year - 2005) \mid abbrev), d)
summary(m2)
Linear mixed model fit by REML ['lmerMod']
Formula: y \sim I(year - 2005) + (I(year - 2005) \mid abbrev)
  Data: d
REML criterion at convergence: -13786.6
Scaled residuals:
   Min 1Q Median 3Q Max
-4.6888 -0.5157 0.0381 0.5437 3.6365
Random effects:
                Variance Std.Dev. Corr
Groups Name
abbrev (Intercept) 1.799e-05 4.242e-03
         I(year - 2005) 5.998e-09 7.745e-05 0.49
```

2.015e-06 1.419e-03

Number of obs: 1387, groups: abbrev, 73

Residual

```
m = lm(log(count+1)/samples \sim I(year-2005), x)
 data.frame(individual = c(coef(m)[1],coef(m)[2]),
             parameter = c("intercept", "slope"))
joint = data.frame(abbrev = rownames(ranef(m2)$abbrev),
                   joint = c(fixef(m2)[1] + ranef(m2)$abbrev[,1],
                             fixef(m2)[2] + ranef(m2)$abbrev[,2])
                   parameter = rep(c("intercept", "slope"),
                                   each=nrow(ranef(m2)$abbrev)))
ggplot(merge(ind, joint), aes(individual, joint)) +
 geom_point() +
 facet_wrap(~parameter, scales='free') +
 geom_abline(intercept=0, slope=1) +
 geom_hline(data=data.frame(parameter=c('intercept', 'slope'),
                              value = fixef(m2)),
             aes(yintercept=value), color='gray') +
 geom_smooth(method="lm", se=FALSE) +
 coord_equal() +
```

ind = plyr::ddply(d, 'abbrev', function(x) {

labs(title="Shrinkage of point estimates")

Which species have significant decline?

The quantities of interest here are $\beta_{s,1}$ and whether these quantities are negative, i.e. indicating an average decease in counts over time. But how can we calculate pvalues or confidence intervals for the random effects themselves?

Bayesian random intercept, random slope model

The model

$$y_{st} \stackrel{ind}{\sim} N(\beta_{s,0} + x_{st}\beta_{s,1}, \sigma^2)$$
$$\beta_s \stackrel{ind}{\sim} N(\mu_{\beta}, \Sigma_{\beta})$$

and a prior

$$p(\sigma, \mu_{\beta}, \Sigma_{\beta}) \propto p(\sigma)p(\mu_{\beta})p(\Sigma_{\beta})$$

and

- $\sigma \sim Ca^+(0,1)$,
- ▶ $p(\mu_{\beta}) \propto 1$, and
- $\Sigma_{\beta} \sim ?$

Conjugate prior for a covariance matrix

The natural conjugate prior for a covariance matrix is the *inverse-Wishart* distribution, which has density

$$p(\Sigma) \propto |\Sigma|^{-(\nu+d+1)/2} \exp\left(-\frac{1}{2}\operatorname{tr}\left(S\Sigma^{-1}\right)\right)$$

with $\nu > d-1$ and S is a positive definite matrix. The expected value is

$$E[\Sigma] = \frac{S}{\nu - d - 1}$$

for $\nu > d+1$. We write $\Sigma \sim IW(\nu, S^{-1})$.

Special cases:

- ▶ If $\nu = d + 1$ and S is diagonal, then each of the correlations in Σ has a marginal uniform prior.
- ▶ Jeffreys prior

$$p(\Sigma) = |\Sigma|^{-(d+1)/2}$$

Issues with the inverse-Wishart distribution

If $\Sigma \sim IW(\nu, S)$, then $\Sigma_{ii} \sim IG([\nu - (d-1)]/2, S_{ii}/2)$. In particular, if $\nu = d+1$ and S = I (to ensure marginally uniform priors on the correlations), then $\Sigma_{ii} \sim IG(1, 1/2)$.

The problems

- ▶ although the correlations are marginally uniform, they are not independent *a priori* of the variances (diagonal elements of Σ),
- ▶ the inverse gamma distribution has a region near zero of extremely low density that can cause extreme bias toward larger values for truly small variances,
- ▶ this in turn causes the correlation to be shrunk toward zero.

Deconstructing the covariance matrix

Let

$$\Sigma = \operatorname{diag}(\sigma)\Omega\operatorname{diag}(\sigma)$$

where

- $\triangleright \sigma$ is a vector of standard deviations
- $\triangleright \Omega$ is a correlation matrix

which results in the standard deviations and correlations being independent $a\ priori$.

Now we can put whatever prior we want on σ and Ω , e.g. $\sigma_i \stackrel{ind}{\sim} Ca^+(0,?)$.

LKJ correlation matrix prior

The LKJ (Lewandowski, Kurowicka, and Joe 2009) distribution is

$$p(\Omega) = |\Omega|^{\eta - 1}$$

where Ω is a correlation matrix with implicit dimension d and $\eta > 0$ is the shape parameter.

- if $\eta = 1$, then the density is uniform over correlation matrices of dimension d
- if $\eta > 1$, the identity matrix is the modal correlation matrix with a sharper peak in the density for larger values of η
- if $\eta < 1$, the density has a trough at the identity matrix.

Stan implementation

```
model = "
```

```
tmp = reshape2::dcast(d[,c('year','abbrev','y')],
                    abbrev~year, value.var='y')
dat = list(n_species = nrow(tmp),
          n years = ncol(tmp)-1,
          y = tmp[,-1],
          X = cbind(1, as.numeric(names(tmp)[-1])
          prior_scale = 0.01)
m = stan model(model code=model)
r = sampling(m, dat)
```

```
SAMPLING FOR MODEL 'bec085ae9301179f3728ab3b0612c7d6' NOW (CCC)
Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
```

(Warmup)

(Warmup)

(Warmup)

(Warmup)

(Warmup)

Chain 1, Iteration: 200 / 2000 [10%]

Chain 1, Iteration: 400 / 2000 [20%]

Chain 1, Iteration: 600 / 2000 [30%]

Chain 1, Iteration: 800 / 2000 [40%]

Chain 1, Iteration: 1000 / 2000 [50%]

```
beta = plyr::adply(extract(r, 'beta')$beta, 2, function(x)
 data.frame(parameter = c("intercept", "slope"),
             median = apply(x, 2, median),
             lower = apply(x,2,quantile,prob=.025)
            upper = apply(x,2,quantile,prob=.975)
})
beta$abbrev = factor(beta$X1, labels=tmp$abbrev)
beta$abbrev = factor(beta$abbrev,levels =
levels(beta$abbrev) [order(beta$upper[beta$parameter== slope
ggplot(subset(beta, parameter=='slope'),
       aes(abbrev, y=median, ymin=lower, ymax=upper))
```

geom pointrange() +

coord flip()

Hierarchical model for the variances

The model

$$y_{st} \stackrel{ind}{\sim} N(\beta_{s,0} + x_{st}\beta_{s,1}, \sigma_s^2)$$
$$\beta_s \stackrel{ind}{\sim} N(\mu_{\beta}, \Sigma_{\beta})$$
$$\sigma_s \stackrel{ind}{\sim} LN(\mu_{\sigma}, \tau_{\sigma})$$

and a prior

$$p(\mu_{\sigma}, \tau_{\sigma}, \mu_{\beta}, \Sigma_{\beta}) \propto p(\mu_{\sigma})p(\tau_{\sigma})p(\mu_{\beta})p(\Sigma_{\beta})$$

and

- $ightharpoonup p(\mu_{\sigma}) \propto 1,$
- $\tau_{\sigma} \sim Ca^{+}(0,1),$
- ▶ $p(\mu_{\beta}) \propto 1$, and
- $\triangleright \Sigma_{\beta}$ as before

```
model2 = "
 beta ~ multi_normal(mu_beta, diag_matrix(sigma_beta) * L * diag_matri
```