Chương XIII - Mosfet

1. Giới thiệu về Mosfet

Mosfet là Transistor hiệu ứng trường (Metal Oxide Semiconductor Field Effect Transistor) là một Transistor đặc biệt có cấu tạo và hoạt động khác với Transistor thông thường mà ta đã biết, Mosfet có nguyên tắc hoạt động dựa trên hiệu ứng từ trường để tạo ra dòng điện, là linh kiện có trở kháng đầu vào lớn thích hợn cho khuyếch đại các nguồn tín hiệu yếu, Mosfet được sử dụng nhiều trong các mạch nguồn Monitor, nguồn máy tính .

Transistor hiệu ứng trường Mosfet

2. Cấu tạo và ký hiệu của Mosfet.

Ký hiệu và sơ đồ chân tương đương giữa Mosfet và Transistor

* Cấu tạo của Mosfet.

Cấu tạo của Mosfet ngược Kênh N

- G : Gate gọi là cực cổng
- S : Source gọi là cực nguồn
- D : Drain gọi là cực máng
- Mosfet kện N có hai miếng bán dẫn loại P đặt trên nền bán dẫn N, giữa hai lớp P-N được cách điện bởi lớp SiO₂ hai miếng bán

- dẫn P được nối ra thành cực D và cực S, nền bán dẫn N được nối với lớp màng mỏng ở trên sau đó được dấu ra thành cực G.
- Mosfet có điện trở giữa cực G với cực S và giữa cực G với cực
 D là vô cùng lớn, còn điện trở giữa cực D và cực S phụ thuộc
 vào điện áp chênh lệch giữa cực G và cực S (Ugs)
- Khi điện áp Ugs = 0 thì điện trở Ros rất lớn, khi điện áp Ugs > 0 => do hiệu ứng từ trường làm cho điện trở Ros giảm, điện áp Ugs càng lớn thì điện trở Ros càng nhỏ.

3. Nguyên tắc hoạt động của Mosfet

Mạch điện thí nghiệm.

Mạch thí nghiệm sự hoạt động của Mosfet

- Thí nghiệm: Cấp nguồn một chiều Up qua một bóng đèn D vào hai cực D và S của Mosfet Q (Phân cực thuận cho Mosfet ngược) ta thấy bóng đèn không sáng nghĩa là không có dòng điện đi qua cực DS khi chân G không được cấp điện.
- Khi công tắc K1 đóng, nguồn Ug cấp vào hai cực GS làm điện áp Ugs > 0V => đèn Q1 dẫn => bóng đèn D sáng.
- Khi công tắc K1 ngắt, điện áp tích trên tụ C1 (tụ gốm) vẫn duy trì cho đèn Q dẫn => chứng tỏ không có dòng điện đi qua cực GS.
- Khi công tắc K2 đóng, điện áp tích trên tụ C1 giảm bằng 0 => U_{GS}= 0V => đèn tắt
- => Từ thực nghiệm trên ta thấy rằng : điện áp đặt vào chân G không tạo ra dòng GS như trong Transistor thông thường mà điện áp này chỉ tạo ra từ trường => làm cho điện trở Ros giảm xuống .

4. Đo kiểm tra Mosfet

Một Mosfet còn tốt: Là khi đo trở kháng giữa G với S và giữa G với D có điện trở bằng vô cùng (kim không lên cả hai chiều đo) và khi G đã được thoát điện thì trở kháng giữa D và S phải là vô cùng.

Các bước kiểm tra như sau:

Đo kiểm tra Mosfet ngược thấy còn tốt.

- Bước 1 : Chuẩn bị để thang $x1K\Omega$
- Bước 2: Nạp cho G một điện tích (để que đen vào G que đỏ vào S hoặc D)
- Bước 3: Sau khi nạp cho G một điện tích ta đo giữa D và S
 (que đen vào D que đỏ vào S) => kim sẽ lên.
- Bước 4 : Chập G vào D hoặc G vào S để thoát điện chân G.
- Bước 5 : Sau khi đã thoát điện chân G đo lại DS như bước 3 kim không lên.

• => Kết quả như vậy là Mosfet tốt.

Đo kiểm tra Mosfet ngược thấy bị chập

- Đo giữa G và S hoặc giữa G và D nếu kim lên = 0 Ω là chập
- Đo giữa D và S mà cả hai chiều đo kim lên = 0 Ω là chập D S

5. Ứng dung của Mosfet trong thực tế

Mosfet trong nguồn xung của Monitor

Mosfet được sử dụng làm đèn công xuất nguồn Monitor

Trong bộ nguồn xung của Monitor hoặc máy vi tính, người ta thường dùng cặp linh kiện là IC tạo dao động và đèn Mosfet, dao động tạo ra từ IC có dạng xung vuông được đưa đến chân G của Mosfet, tại thời điểm xung có điện áp > 0V => đèn Mosfet dẫn, khi xung dao động = 0V Mosfet ngắt => như vậy dao động tạo ra sẽ điều khiển cho Mosfet liên tục đóng ngắt tạo thành dòng điện biến thiên liên tục chạy qua cuộn sơ cấp => sinh ra từ trường biến thiên cảm ứng lên các cuộn thứ cấp => cho ta điện áp ra.

* Đo kiểm tra Mosfet trong mạch.

Khi kiểm tra Mosfet trong mạch , ta chỉ cần để thang x 1Ω và đo giữa D và S => Nếu 1 chiều kim lên đảo chiều đo kim không lên => là Mosfet bình thường, Nếu cả hai chiều kim lên = 0 Ω là Mosfet bị chập DS.

6. Bảng tra cứu Mosfet thông dụng

Hướng dẫn :

- Loại kênh dẫn: P-Channel: là Mosfet thuận, N-Channel là Mosfet ngược.
- Đặc điểm ký thuật: Thí dụ: 3A, 25W: là dòng D-S cực đại và công xuất cực đại.

STT	Ký hiệu	Loại kênh dẫn	Đặc điểm kỹ thuật
1	2SJ306	P-Channel	3A, 25W
2	2SJ307	P-Channel	6A, 30W
3	2SJ308	P-Channel	9A, 40W
4	2SK1038	N-Channel	5A, 50W
5	2SK1117	N-Channel	6A, 100W
6	2SK1118	N-Channel	6A, 45W
7	2SK1507	N-Channel	9A, 50W
8	2SK1531	N-Channel	15A, 150W

9	2SK1794	N-Channel	6A,100W
10	2SK2038	N-Channel	5A,125W
11	2SK2039	N-Channel	5A,150W
12	2SK2134	N-Channel	13A,70W
13	2SK2136	N-Channel	20A,75W
14	2SK2141	N-Channel	6A,35W
15	2SK2161	N-Channel	9A,25W
16	2SK2333	N-FET	6A,50W
17	2SK400	N-Channel	8A,100W
18	2SK525	N-Channel	10A,40W
19	2SK526	N-Channel	10A,40W
20	2SK527	N-Channel	10A,40W
21	2SK555	N-Channel	7A,60W
22	2SK556	N-Channel	12A,100W
23	2SK557	N-Channel	12A,100W
24	2SK727	N-Channel	5A,125W
25	2SK727 2SK791	N-Channel	3A,100W
26	2SK791 2SK792	N-Channel	3A,100W 3A,100W
27	2SK792 2SK793	N-Channel	5A,150W
28	2SK793 2SK794	N-Channel	5A,150W 5A,150W
29	BUZ90	N-Channel	5A,70W
30	BUZ90A	N-Channel	4A,70W
31	BUZ91	N-Channel	8A,150W
32	BUZ 91A	N-Channel	
33		N-Channel	8A,150W
34	BUZ 92		3A,80W 3A,80W
35	BUZ 93 BUZ 94	N-Channel N-Channel	8A,125W
36	IRF 510	N-Channel	
37	IRF 520	+	5A,43W
38	IRF 530	N-Channel N-Channel	9A,60W
			14A,88W
39	IRF 540	N-Channel	28A,150W
40	IRF 610	N-Channel	3A,26W
41	IRF 620	N-Channel	5A,50W
42	IRF 630	N-Channel	9A,74W
43	IRF 634	N-Channel	8A,74W
44	IRF 640	N-Channel	18A,125W
45	IRF 710	N-Channel	2A,36W
46	IRF 720	N-Channel	3A,50W
47	IRF 730	N-Channel	5A,74W
48	IRF 740	N-Channel	10A,125W
49	IRF 820	N-Channel	2A,50W
50	IRF 830	N-Channel	4A,74W
51	IRF 840	N-Channel	8A,125W
52	IRF 841	N-Channel	8A,125W
53	IRF 842	N-Channel	7A,125W
54	IRF 843	N-Channel	7A,125W
55	IRF 9610	P-Channel	2A,20W
56	IRF 9620	P-Channel	3A,40W

57	IRF 9630	P-Channel	6A,74W
58	IRF 9640	P-Channel	11A,125W
59	IRFI 510G	N-Channel	4A,27W
60	IRFI 520G	N-Channel	7A,37W
61	IRFI 530G	N-Channel	10A,42W
62	IRFI 540G	N-Channel	17A,48W
63	IRFI 620G	N-Channel	4A,30W
64	IRFI 630G	N-Channel	6A,35W
65	IRFI 634G	N-Channel	6A,35W
66	IRFI 640G	N-Channel	10A,40W
67	IRFI 720G	N-Channel	3A,30W
68	IRFI 730G	N-Channel	4A,35W
69	IRFI 740G	N-Channel	5A,40W
70	IRFI 820G	N-Channel	2A,30W
71	IRFI 830G	N-Channel	3A,35W
72	IRFI 840G	N-Channel	4A,40W
73	IRFI 9620G	P-Channel	2A,30W
74	IRFI 9630G	P-Channel	4A,30W
75	IRFI 9640G	P-Channel	6A,40W
76	IRFS 520	N-Channel	7A,30W
77	IRFS 530	N-Channel	9A,35W
78	IRFS 540	N-Channel	
			15A,40W
79	IRFS 620	N-Channel	4A,30W
80	IRFS 630	N-Channel	6A,35W
81	IRFS 634	N-Channel	5A,35W
82	IRFS 640	N-Channel	10A,40W
83	IRFS 720	N-Channel	2A,30W
84	IRFS 730	N-Channel	3A,35W
85	IRFS 740	N-Channel	3A,40W
86	IRFS 820	N-Channel	2A-30W
87	IRFS 830	N-Channel	3A-35W
88	IRFS 840	N-Channel	4A-40W
89	IRFS 9620	P-Channel	3A-30W
90	IRFS 9630	P-Channel	4A-35W
91	IRFS 9640	P-Channel	6A-40W
92	J177(2SJ177)	P-Channel	0.5A-30W
93	J109(2SJ109)	P-Channel	20mA,0.2W
94	J113(2SK113)	P-Channel	10A-100W
95	J114(2SJ114)	P-Channel	8A-100W
96	J118(2SJ118)	P-Channel	8A
97	J162(2SJ162)	P-Channel	7A-100W
98	J339(2SJ339)	P-Channel	25A-40W
99	K30A/2SK304/ 2SK30R	N-Channel	10mA,1W
100	K214/2SK214	N-Channel	0.5A,1W
101	K389/2SK389	N-Channel	20mA,1W
102	K399/2SK399	N-Channel	10-100
103	K413/2SK413	N-Channel	8A
	_	-	

104	K1058/2SK1058	N-Channel	
105	K2221/2SK2221	N-Channel	8A-100W
106	MTP6N10	N-Channel	6A-50W
107	MTP6N55	N-Channel	6A-125W
108	MTP6N60	N-Channel	6A-125W
109	MTP7N20	N-Channel	7A-75W
110	MTP8N10	N-Channel	8A-75W
111	MTP8N12	N-Channel	8A-75W
112	MTP8N13	N-Channel	8A-75W
113	MTP8N14	N-Channel	8A-75W
114	MTP8N15	N-Channel	8A-75W
115	MTP8N18	N-Channel	8A-75W
116	MTP8N19	N-Channel	8A-75W
117	MTP8N20	N-Channel	8A-75W
118	MTP8N45	N-Channel	8A-125W
119	MTP8N46	N-Channel	8A-125W
120	MTP8N47	N-Channel	8A-125W
121	MTP8N48	N-Channel	8A-125W
122	MTP8N49	N-Channel	8A-125W
123	MTP8N50	N-Channel	8A-125W
124	MTP8N80	N-Channel	8A-75W

Thyristor

1. Cấu tạo và nguyên lý hoạt động của Thyristor

Cấu tạo Thyristor Ký hiệu của Thyristor Sơ đồ tương tương

Thyristor có cấu tạo gồm 4 lớp bán dẫn ghép lại tạo thành hai Transistor mắc nối tiếp, một Transistor thuận và một Transistor ngược (như sơ đồ tương đương ở trên). Thyristor có 3 cực là Anot, Katot và Gate gọi là A-K-G, Thyristor là Diode có điều khiển , bình thường khi được phân cực thuận, Thyristor chưa dẫn điện, khi có một

điện áp kích vào chân G => Thyristor dẫn cho đến khi điện áp đảo chiều hoặc cắt điện áp nguồn Thyristor mới ngưng dẫn..

Thí nghiệm sau đây minh hoạ sự hoạt động của Thyristor

Thí nghiêm minh hoạ sự hoạt động của Thyristor.

- Ban đầu công tắc K2 đóng, Thyristor mặc dù được phân cực thuận nhưng vẫn không có dòng điện chạy qua, đèn không sáng.
- Khi công tắc K1 đóng, điện áp U1 cấp vào chân G làm đèn Q2 dẫn => kéo theo đèn Q1 dẫn => dòng điện từ nguồn U2 đi qua Thyristor làm đèn sáng.
- Tiếp theo ta thấy công tắc K1 ngắt nhưng đèn vẫn sáng, vì khi Q1 dẫn, điện áp chân B đèn Q2 tăng làm Q2 dẫn, khi Q2 dẫn làm áp chân B đèn Q1 giảm làm đèn Q1 dẫn, như vậy hai đèn định thiên cho nhau và duy trì trang thái dẫn điện.
- Đèn sáng duy trì cho đến khi K2 ngắt => Thyristor không được cấp điện và ngưng trang thái hoạt động.
- Khi Thyristor đã ngưng dẫn, ta đóng K2 nhưng đèn vẫn không sáng như trường hợp ban đầu.

Hình dáng Thyristor

Đo kiểm tra Thyristor

Đo kiểm tra Thyristor

Đặt động hồ thang $x1\Omega$, đặt que đen vào Anot, que đỏ vào Katot ban đầu kim không lên, dùng Tovit chập chân A vào chân G => thấy đồng hồ lên kim, sau đó bỏ Tovit ra => đồng hồ vẫn lên kim => như vậy là Thyristor tốt.

Ứng dụng của Thyristor

Thyristor thường được sử dụng trong các mạch chỉnh lưu nhân đôi tụ động của nguồn xung Ti vi mầu :

Thí dụ mạch chỉnh lưu nhân 2 trong nguồn Ti vi mầu JVC 1490 có sơ đồ như sau :

Ứng dụng của Thyristor trong mạch chính lưu nhân 2 tự động của nguồn xung Tivi mầu JVC