Photometric Data Reduction Pipeline for the Spectral Energy Distribution Machine Version 2 (SEDMv2)

Saarah Hall,' on behalf of the SEDMv2 Collaboration 'Northwestern University

The Instrument

What is SEDMv2?

- 2nd generation roboticspectrograph designed for transient classification
- ultra-low resolution IFU CCD
- EMCCD for guiding and imaging in *u*, *g*, *r*, *i*, and *z*
- 2x more effective imaging area than SEDM¹

Kitt Peak 84-inch telescope (KP84), the telescope that SEDMv2 is built on. **Credit:** NOIRLab/KPNO/NSF/AURA/P. Marenfeld

Quirky
photometry:
light in the
center of the
EMCCD is
obscured
and sent to
the IFU
channel

False-color image made from 3 reduced SEDMv2 images taken in *g*, *r*, and *i* bands on 06/09/2023. The absence of sources in the center is the result of masking the IFU shadow.

The target observed is ZTF J1946+3203. This image was made with the astropy² module

make_lupton_rgb.

The Pipeline

Modular Image Reduction and Analysis Resource (MIRAR)

MIRAR is an open source data reduction package created by Robert Stein and Viraj Karambelkar. The package makes it easy to construct a pipeline out of a series of pre-written processors. Install the package and apply it to your optical/IR instrument today!

pip install mirar

Progress

= new/updated processors to benefit SEDMv2 and future MIRAR users

Next steps for MIRAR+SEDMv2:

- refine photometric calibration
- optimize image subtraction
- incorporate DarkCalibrator
- automate:
- uploading to SkyPortal,³ the SEDMv2 follow up portal
- real-time reduction at KittPeak

github.com/winter-telescope/mirar
github.com/saarahhall

Flowchart of the "default" configuration for SEDMv2's MIRAR pipeline. Each MIRAR processor is denoted as a rectangle in grey. These and (any other unpictured) processors can be easily re-ordered and modified to benefit any optical or IR instrument. Raw and intermediate data products are visualized to the left, processor descriptions are on the right.

- 1. Blagorodnova et al. 2018, The SED Machine: A Robotic Spectrograph for Fast Transient Classification. *Publications of the Astronomical Society of the Pacific*, 130, 035003.
- 2. Astropy Collaboration 2022, The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package. *The Astrophysical Journal*, 935, 2.
- 3. Coughlin et al. 2023, A data science platform to enable time-domain astronomy. arxiv:2305.00108v2 [astro-ph.IM]