Arc42 Documentation

Navid Gharapanjeh

Delvin Bacho

2025-02-07

Table of contents

arc42	Pata Science Architecture Template	1
1.	Introduction and Goals	1
2.	Constraints	1
3.	System Scope and Context	2
4.	Solution Strategy	2
5.	Building Block View	2
6.	Runtime View	2
7.	Deployment View	2
8.	Cross-cutting Concepts	3
9.	Architecture Decisions	3
10	O. Quality Requirements	3
11	Risks and Technical Debt	3
12	2. Glossary	3

arc42 Data Science Architecture Template

1. Introduction and Goals

- Objective: Describe the purpose of the project.
- Stakeholders: Identify key roles (Data Scientists, Engineers, Business Users, etc.).
- Key Performance Indicators (KPIs): Define success metrics.

2. Constraints

- Technical constraints: Hardware, software, cloud providers.
- Regulatory & Compliance: GDPR, AI ethics, data security.
- Operational constraints: Budget, team skills, deadlines.

3. System Scope and Context

- **Scope**: Define what is included/excluded in the project.
- Context Diagram: Illustrate data sources, models, and outputs.

4. Solution Strategy

- Data pipeline strategy: Batch vs. real-time.
- ML model strategy: Pre-trained vs. custom models.
- **Deployment strategy**: On-premises, cloud, or edge.
- Scaling strategy: Horizontal vs. vertical scaling.

5. Building Block View

- Components Overview:
 - Data ingestion
 - Data preprocessing
 - Feature engineering
 - Model training
 - Model evaluation
 - Model deployment
- Component Diagram: Visualize these blocks and their interactions.

6. Runtime View

- Data flow: How data moves through the system.
- Model serving process: How predictions are generated and served.
- Monitoring & logging: Performance tracking and debugging.

7. Deployment View

- Infrastructure choices: Cloud services, local servers.
- CI/CD pipeline for ML models.
- Containerization strategy: Docker, Kubernetes.
- Versioning & rollback mechanisms.

8. Cross-cutting Concepts

- Security & Access Control.
- Data Governance & Lineage.
- MLOps Best Practices.
- Bias & Fairness Considerations.

9. Architecture Decisions

- ADR (Architecture Decision Records)
 - Choice of model framework
 - Database selection
 - API design choices
 - Model versioning policy

10. Quality Requirements

- Model Performance Metrics.
- Scalability & Maintainability.
- Explainability & Interpretability.
- Fault tolerance & disaster recovery.

11. Risks and Technical Debt.

- Potential biases in data and models.
- Computational cost and resource constraints.
- Integration challenges with existing systems.

12. Glossary

• Define key terms related to ML, AI, and MLOps.

This template provides a structured way to document your data science and ML project architecture while integrating MLOps and software engineering best practices. Let me know if you'd like adjustments!