TABLE A-25 Thermochemical Properties of Selected Substances at 298K and 1 atm

		1					
Substance	Formula	Molar Mass, M (kg/kmol)	Enthalpy of Formation, $\bar{h}_{\mathrm{f}}^{\circ}$ (kJ/kmol)	Gibbs Function of Formation, \overline{g}_{f}° (kJ/kmol)	Absolute Entropy, \bar{s}° (kJ/kmol·K)	Heating Values	
						Higher, HHV (kJ/kg)	Lower, LHV (kJ/kg)
Carbon Hydrogen Nitrogen Oxygen	$C(s) \\ H_2(g) \\ N_2(g) \\ O_2(g)$	12.01 2.016 28.01 32.00	0 0 0 0	0 0 0 0	5.74 130.57 191.50 205.03	32,770 141,780 —	32,770 119,950 —
Carbon monoxide Carbon dioxide Water Water	$CO(g)$ $CO_2(g)$ $H_2O(g)$ $H_2O(l)$	28.01 44.01 18.02 18.02	-110,530 -393,520 -241,820 -285,830	-137,150 -394,380 -228,590 -237,180	197.54 213.69 188.72 69.95	_ _ _ _	_ _ _
Hydrogen peroxide Ammonia Oxygen Hydrogen	H ₂ O ₂ (g) NH ₃ (g) O(g) H(g)	34.02 17.03 16.00 1.008	-136,310 -46,190 249,170 218,000	-105,600 -16,590 231,770 203,290	232.63 192.33 160.95 114.61	_ _ _ _	_ _ _ _
Nitrogen Hydroxyl Methane Acetylene	$N(g)$ $OH(g)$ $CH_4(g)$ $C_2H_2(g)$	14.01 17.01 16.04 26.04	472,680 39,460 -74,850 226,730	455,510 34,280 -50,790 209,170	153.19 183.75 186.16 200.85	55,510 49,910	50,020 48,220
Ethylene Ethane Propylene Propane	$C_2H_2(g)$ $C_2H_6(g)$ $C_3H_6(g)$ $C_3H_8(g)$	28.05 30.07 42.08 44.09	52,280 -84,680 20,410 -103,850	68,120 -32,890 62,720 -23,490	219.83 229.49 266.94 269.91	50,300 51,870 48,920 50,350	47,160 47,480 45,780 46,360
Butane Pentane Octane Octane Benzene	$\begin{array}{c} C_4H_{10}(g) \\ C_5H_{12}(g) \\ C_8H_{18}(g) \\ C_8H_{18}(l) \\ C_6H_6(g) \end{array}$	58.12 72.15 114.22 114.22 78.11	-126,150 -146,440 -208,450 -249,910 82,930	-15,710 -8,200 17,320 6,610 129,660	310.03 348.40 463.67 360.79 269.20	49,500 49,010 48,260 47,900 42,270	45,720 45,350 44,790 44,430 40,580
Methyl alcohol Methyl alcohol Ethyl alcohol Ethyl alcohol	$CH_3OH(g)$ $CH_3OH(l)$ $C_2H_5OH(g)$ $C_2H_5OH(l)$	32.04 32.04 46.07 46.07	-200,890 -238,810 -235,310 -277,690	-162,140 -166,290 -168,570 174,890	239.70 126.80 282.59 160.70	23,850 22,670 30,590 29,670	21,110 19,920 27,720 26,800

Source: Based on JANAF Thermochemical Tables, NSRDS-NBS-37, 1971; Selected Values of Chemical Thermodynamic Properties, NBS Tech.
Note 270-3, 1968; and API Research Project 44, Carnegie Press, 1953. Heating values calculated.