0.1 Reduced Type Derivation

A reduced type derivation is one where subtype and sub-effect rules must, and may only, occur at the root or directly above an **if**, or **apply** rule.

In this section, I shall prove that there is at most one reduced derivation of $\Phi \mid \Gamma \vdash v$: A. Secondly, I shall present a function for generating reduced derivations from arbitrary typing derivations, in a way that does not change the denotations. These imply that all typing derivations of a type-relation have the same denotation.

0.2 Reduced Type Derivations are Unique

For each instance of the relation $\Phi \mid \Gamma \vdash v : A$, there exists at most one reduced derivation of $\Phi \mid \Gamma \vdash v : A$. This is proved by induction over the typing rules on the bottom rule used in each derivation.

Proof: We induct on the structure of terms.

Case Variables: To find the unique derivation of $\Phi \mid \Gamma \vdash x : A$, we case split on the type-environment, Γ

Case $\Gamma = \Gamma', x : A'$: Then the unique reduced derivation of $\Phi \mid \Gamma \vdash x : A$ is, if $A' \leq :_{\Phi} A$, as below:

(Subtype)
$$\frac{(\operatorname{Var})\frac{\Phi \vdash \Gamma', x : A' \ 0\mathbf{k}}{\Phi \mid \Gamma, x : A' \vdash x : A'} \quad A' \le : A}{\Phi \mid \Gamma', x : A' \vdash x : A}$$
(1)

Case $\Gamma = \Gamma', y : B$: with $y \neq x$.

Hence, if $\Phi \mid \Gamma \vdash x : A$ holds, then so must $\Phi \mid \Gamma' \vdash x : A$.

Let

(Subtype)
$$\frac{\left(\right)\frac{\Delta}{\Phi\mid\Gamma'\vdash x:A'} \quad A'\leq:A}{\Phi\mid\Gamma'\vdash x:A} \tag{2}$$

Be the unique reduced derivation of $\Phi \mid \Gamma' \vdash x : A$.

Then the unique reduced derivation of $\Phi \mid \Gamma \vdash x: A$ is:

(Subtype)
$$\frac{(\text{Weaken})\frac{()\frac{}{\Phi|\Gamma, x: A' \vdash x: A'}}{\Phi|\Gamma \vdash x: A'} \quad A' \leq :_{\Phi} A}{\Phi \mid \Gamma \vdash x: A}$$
(3)

Case Constants: For each of the constants, (\mathbb{C}^A , true, false, ()), there is exactly one possible derivation for $\Phi \mid \Gamma \vdash c$: A for a given A. I shall give examples using the case \mathbb{C}^A

$$(\text{Subtype}) \frac{(\text{Const}) \frac{\Gamma \mathbf{0k}}{\Gamma \vdash \mathbf{C}^A : A} \ A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash \mathbf{C}^A : B}$$

If A = B, then the subtype relation is the identity subtype $(A \leq :_{\Phi} A)$.

Case Lambda: The reduced derivation of $\Phi \mid \Gamma \vdash \lambda x : A.v: A' \rightarrow B'$ is:

(Subtype)
$$\frac{(\text{Lambda})\frac{()\frac{\Delta}{\Phi \mid \Gamma, x: A \vdash v: B}}{\Phi \mid \Gamma \vdash \lambda x: A. v: A' \to B'} \quad A \to B \leq :_{\Phi} A' \to B'}{\Phi \mid \Gamma \vdash \lambda x: A. v: A' \to B'}$$

Where

$$(Sub-Type) \frac{()\frac{\Delta}{\Phi \mid \Gamma, x: A \vdash v: B} \quad B \leq :_{\Phi} B'}{\Phi \mid \Gamma, x: A \vdash v: B'}$$

$$(4)$$

is the reduced derivation of $\Phi \mid \Gamma, x : A \vdash v : B'$ if it exists.

Case Return: The reduced derivation of $\Phi \mid \Gamma \vdash \text{return} v : M_{\epsilon}B$ is

$$(\text{Subtype}) \frac{(\text{Return}) \frac{() \frac{\Delta}{\Phi \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \mathbf{return} v : \mathbf{M}_{\underline{1}} A} \ (\text{Computation}) \frac{A \leq :_{\Phi} B}{\mathbf{M}_{\underline{1}} A \leq_{\Phi} \mathbf{M}_{\epsilon} B}}{\Phi \mid \Gamma \vdash \mathbf{return} v : B}$$

Where

$$(\text{Subtype}) \frac{() \frac{\Delta}{\Phi \mid \Gamma \vdash v : A} \ A \leq : B}{\Phi \mid \Gamma \vdash v : B}$$

is the reduced derivation of $\Phi \mid \Gamma \vdash v : B$

Case Apply: If

$$(\text{Subtype}) \frac{()\frac{\Delta}{\Phi \mid \Gamma \vdash v_1 : A \to B} \mid A \to B \leq : A' \to B'}{\Phi \mid \Gamma \vdash v_1 : A' \to B'}$$

and

$$(Subtype) \frac{()\frac{\Delta'}{\Phi \mid \Gamma \vdash v_2 : A''} \quad A'' \le : A'}{\Phi \mid \Gamma \vdash v_2 : A'}$$

Are the reduced type derivations of $\Phi \mid \Gamma \vdash v_1: A' \to B'$ and $\Phi \mid \Gamma \vdash v_2: A'$ Then we can construct the reduced derivation of $\Phi \mid \Gamma \vdash v_1 \ v_2: M_{\epsilon'}B'$ as

$$(\text{Subtype}) \frac{(\text{Apply})^{\frac{()\frac{\Delta}{\Phi \mid \Gamma \vdash v_1 : A \to B}}{(\Delta)}} (\text{Subtype})^{\frac{()\frac{\Delta'}{\Phi \mid \Gamma \vdash v_1 : A''}}{\Phi \mid \Gamma \vdash v_1}} \frac{A'' \leq :_{\Phi} A}{\Phi \mid \Gamma \vdash v_1 : v_2 : B}}{(\text{Computation})^{\frac{B \leq :_{\Phi} B'}{M_{\epsilon} B \leq :_{\Phi} M_{\epsilon'} B'}}}{\Phi \mid \Gamma \vdash v_1 : v_2 : M_{\epsilon'} B'}$$

Case If: Let

$$(Subtype) \frac{\left(\right) \frac{\Delta}{\Phi \mid \Gamma \vdash v : B} \quad B \le : Bool}{\Phi \mid \Gamma \vdash v : Bool} \tag{5}$$

(Subtype)
$$\frac{\left(\right)\frac{\Delta'}{\Phi\mid\Gamma\vdash\nu_1:A'}}{\Phi\mid\Gamma\vdash\nu_1:A} \stackrel{A'}{\leq}:A$$

(Subtype)
$$\frac{\left(\right)\frac{\Delta'}{\Phi\mid\Gamma\vdash v_2:A''} \quad A''\leq:A}{\Phi\mid\Gamma\vdash v_2:A} \tag{7}$$

Be the unique reduced derivations of $\Phi \mid \Gamma \vdash v$: Bool, $\Phi \mid \Gamma \vdash v_1$: A, $\Phi \mid \Gamma \vdash v_2$: A. Then the only reduced derivation of $\Phi \mid \Gamma \vdash \mathsf{if}_A v$ then v_1 else v_2 : A is:

TODO: Scale this properly

$$(Subtype) \frac{(If) \frac{(Subtype) \frac{()\frac{\Delta}{\Phi \mid \Gamma \vdash v:B} \quad B \leq :Bool}{\Phi \mid \Gamma \vdash v:Bool} \quad (Subtype) \frac{()\frac{\Delta'}{\Phi \mid \Gamma \vdash v_1 : A'} \quad A' \leq :A}{\Phi \mid \Gamma \vdash if_A \quad v \text{ then } v_1 \text{ else } v_2 : A \quad \epsilon \leq_\Phi \epsilon \quad A \leq :_\Phi A}}{\Phi \mid \Gamma \vdash if_A \quad v \text{ then } v_1 \text{ else } v_2 : A} }$$

$$(Subtype) \frac{(Subtype) \frac{()\frac{\Delta'}{\Phi \mid \Gamma \vdash v_2 : A''} \quad A'' \leq :A}{\Phi \mid \Gamma \vdash if_A \quad v \text{ then } v_1 \text{ else } v_2 : A}}{\Phi \mid \Gamma \vdash if_A \quad v \text{ then } v_1 \text{ else } v_2 : A}$$

Case Bind: Let

$$(Subtype) \frac{()\frac{\Delta}{\Phi \mid \Gamma \vdash v_1 : M_{\epsilon_1} A} \quad (Computation) \frac{A \leq :_{\Phi} A' \quad \epsilon_1 \leq _{\Phi} \epsilon'_1}{M_{\epsilon_1} A \leq :_{\Phi} M_{\epsilon'_1} A'}}{\Phi \mid \Gamma \vdash v_1 : M_{\epsilon'_1} A'}$$
(9)

$$(\text{Subtype}) \frac{()\frac{\Delta'}{\Phi \mid \Gamma, x: A \vdash v_2: M_{\epsilon_2}B} \quad (\text{Computation}) \frac{B \leq :_{\Phi} B'}{M_{\epsilon_2} B \leq :_{\Phi} M_{\epsilon'_2}B'}}{\Phi \mid \Gamma, x: A \vdash v_2: M_{\epsilon'_2}B'}$$

$$(10)$$

Be the respective unique reduced type derivations of the sub-terms.

By weakening, $\Phi \vdash \iota \times : \Gamma, x : A \triangleright \Gamma, x : A'$ so if there's a derivation of $\Phi \mid \Gamma, x : A' \vdash v_2 : B$, there's also one of $\Phi \mid \Gamma, x : A \vdash v_2 : B$.

$$(Subtype) \frac{()\frac{\Delta''}{\Phi \mid \Gamma, x : A' \vdash v_2 : \mathsf{M}_{\epsilon_2} B} \quad (Computation) \frac{B \leq :_{\Phi} B' \quad \epsilon_2 \leq _{\Phi} \epsilon'_2}{\mathsf{M}_{\epsilon_2} B \leq :_{\Phi} \mathsf{M}_{\epsilon'_2} B'}}{\Phi \mid \Gamma, x : A' \vdash v_2 : \mathsf{M}_{\epsilon'_2} B'}$$

$$(11)$$

Since the effects monoid operation is monotone, if $\epsilon_1 \leq_{\Phi} \epsilon_1'$ and $\epsilon_2 \leq_{\Phi} \epsilon_2'$ then $\epsilon_1 \cdot \epsilon_2 \leq_{\Phi} \epsilon_1' \cdot \epsilon_2'$ Hence the reduced type derivation of $\Phi \mid \Gamma \vdash \operatorname{do} x \leftarrow v_1$ in v-2: $\operatorname{M}_{\epsilon_1' \cdot \epsilon_2'} B'$ is the following:

TODO: Make this and the other smaller

$$(\text{Type}) \frac{(\text{Subtype}) \frac{(\frac{\Delta}{\Phi \mid \Gamma \vdash v_1 : \mathbb{M}_{\epsilon_1} A} \quad (\text{Computation}) \frac{A \leq :_{\Phi} A' \quad \epsilon_1 \leq \Phi \epsilon'_1}{\mathbb{M}_{\epsilon_1} A \leq :_{\Phi} \mathbb{M}_{\epsilon'_1} A'}}{\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : \mathbb{M}_{\epsilon_1} B} \quad (\text{Computation}) \frac{B \leq :_{\Phi} B' \quad \epsilon_2 \leq \Phi \epsilon'_2}{\mathbb{M}_{\epsilon_2} B \leq :_{\Phi} \mathbb{M}_{\epsilon'_2} B'}}{\mathbb{M}_{\epsilon_2} B \leq :_{\Phi} \mathbb{M}_{\epsilon'_2} B'}}{\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : \mathbb{M}_{\epsilon_1 \cdot \epsilon_2} B}$$

$$(\text{Type}) \frac{(\text{Subtype}) \frac{(D \mid \Phi \mid \Gamma \vdash v_1 : \mathbb{M}_{\epsilon'_1} A')}{\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : \mathbb{M}_{\epsilon'_1 \cdot \epsilon'_2} B}}{\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v - 2 : \mathbb{M}_{\epsilon'_1 \cdot \epsilon'_2} B'}}$$

Case Effect-Fn: The unique reduced derivation of $\Phi \mid \Gamma \vdash \Lambda \alpha.A: \forall \alpha.B$

(Sub-type)
$$\frac{(\text{Effect-Fn})\frac{()\frac{\Delta}{\Phi,\alpha|\Gamma\vdash v:A}}{\Phi|\Gamma\vdash \Lambda\alpha.v:\forall\alpha.A} \quad \forall \alpha.A \leq_{\Phi} \forall \alpha.B}{\Phi\mid\Gamma\vdash \Lambda\alpha.B:\forall\alpha.B}$$
(13)

Where

$$(Sub-type) \frac{\left(\right) \frac{\Delta}{\Phi, \alpha \mid \Gamma \vdash v : A} \quad A \leq :_{\Phi, \alpha} B}{\Phi, \alpha \mid \Gamma \vdash v : B}$$

$$(14)$$

Is the unique reduced derivation of Φ , $\alpha \mid \Gamma \vdash v : B$

Case Effect-App: The unique reduced derivation of $\Phi \mid \Gamma \vdash v \ \alpha : B'$

(Subtype)
$$\frac{\left(\text{Effect-App}\right)^{\left(\frac{\Delta}{\Phi\mid\Gamma\vdash\nu\forall\alpha..A}\right.}\frac{\Phi\vdash\epsilon}{\Phi\mid\Gamma\vdash\nu\epsilon:A[\epsilon/\alpha]} A\left[\epsilon/\alpha\right] \leq :_{\Phi} B'}{\Phi\mid\Gamma\vdash\nu\alpha:B'}$$

Where $B[\epsilon/\alpha] \leq :_{\Phi} B'$ and

(Subtype)
$$\frac{\left(\right)\frac{\Delta}{\Phi\mid\Gamma\vdash v:\forall\alpha.B} \quad \text{(Quantification)} \frac{A\leq:_{\Phi,\alpha}B}{\forall\alpha.A\leq:_{\Phi}\forall\alpha.B}}{\Phi\mid\Gamma\vdash v:\forall\alpha.B}$$
(16)

0.3 Each type derivation has a reduced equivalent with the same denotation.

We introduce a function, reduce that maps each valid type derivation of $\Phi \mid \Gamma \vdash v : A$ to a reduced equivalent with the same denotation. To do this, we do case analysis over the root type rule of a derivation and prove that the denotation is not changed.

Case Constants: For the constants true, false, C^A, etc, reduce simply returns the derivation, as it is already reduced.

is already reduced.
$$reduce((\mathrm{Const}) \tfrac{\Phi \vdash \Gamma \mathbf{0} \mathbf{k}}{\Phi \mid \Gamma \vdash \mathbf{C}^A : A}) = (\mathrm{Const}) \tfrac{\Phi \vdash \Gamma \mathbf{0} \mathbf{k}}{\Phi \mid \Gamma \vdash \mathbf{C}^A : A}$$

Case Var:

$$reduce((\operatorname{Var})\frac{\Phi \vdash \Gamma \mathtt{Ok}}{\Phi \mid \Gamma, x : A \vdash x : A}) = (\operatorname{Var})\frac{\Phi \vdash \Gamma \mathtt{Ok}}{\Phi \mid \Gamma, x : A \vdash x : A} \tag{17}$$

Case Weaken:

reduce **definition** To find:

$$reduce((\text{Weaken}) \frac{()\frac{\Delta}{\Phi \mid \Gamma \vdash x : A}}{\Phi \mid \Gamma, y : B \vdash x : A}) \tag{18}$$

Let

(Subtype)
$$\frac{\left(\right)\frac{\Delta'}{\Phi\mid\Gamma\vdash x:A} \quad A'\leq:_{\Phi}A}{\Phi\mid\Gamma\vdash x:A} = reduce(\Delta)$$
 (19)

In

(Subtype)
$$\frac{(\text{Weaken})\frac{()\frac{\Delta'}{\Phi|\Gamma,y:B\vdash x:A'}}{\Phi|\Gamma,y:B\vdash x:A'} \quad A' \leq :_{\Phi} A}{\Phi \mid \Gamma, y:B\vdash x:A}$$
(20)

Case Lambda:

reduce **definition** To find:

$$reduce((\operatorname{Fn})\frac{\left(\right)\frac{\Delta}{\Phi\mid\Gamma,x:A\vdash v:B}}{\Phi\mid\Gamma\vdash\lambda x:A.v:A\to\epsilon_2B})\tag{21}$$

Let

$$(\text{Sub-type}) \frac{\left(\right) \frac{\Delta'}{\Phi \mid \Gamma, x : A \vdash v : B'} \quad B' \leq :_{\Phi} B}{\Phi \mid \Gamma, x : A \vdash v : B} = reduce(\Delta)$$
(22)

In

$$(Sub-type) \frac{(\operatorname{Fn}) \frac{\Delta'}{\Phi \mid \Gamma, x: A \vdash v: M_{\epsilon_1} B'} \quad A \to \epsilon_1 B' \leq :_{\Phi} A \to \epsilon_2 B}{\Phi \mid \Gamma \vdash \lambda x: A.v: A \to \epsilon_2 B}$$

$$(23)$$

Case Subtype:

reduce **definition** To find:

$$reduce((Subtype) \frac{()\frac{\Delta}{\Phi \mid \Gamma \vdash v:A} \quad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash v:B})$$
 (24)

Let

(Subtype)
$$\frac{\left(\right)\frac{\Delta'}{\Phi\mid\Gamma\vdash x:A} \quad A'\leq:_{\Phi}A}{\Phi\mid\Gamma\vdash x:A} = reduce(\Delta)$$
 (25)

In

(Subtype)
$$\frac{\left(\right)\frac{\Delta'}{\Phi|\Gamma\vdash v:A'}}{\Phi\mid\Gamma\vdash v:B} \stackrel{A'\leq:_{\Phi}}{A} \stackrel{A\leq:_{\Phi}}{=} B$$
 (26)

Case Return:

reduce **definition** To find:

$$reduce((Return) \frac{()\frac{\Delta}{\Phi \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \mathtt{return} v : \mathtt{M}_{1} A}) \tag{27}$$

Let

$$(Sub-type) \frac{\left(\right) \frac{\Delta'}{\Phi \mid \Gamma \vdash v : A'} \quad A' \leq :_{\Phi} A}{\Phi \mid \Gamma \vdash v : A} = reduce(\Delta)$$
(28)

In

$$(\text{Sub-type}) \frac{(\text{Return}) \frac{\Delta'}{\Phi \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \text{return} v : \text{M}_{1} A} (\text{Computation}) \frac{1 \leq_{\Phi} 1}{M_{1} A' \leq_{:\Phi} M_{1} A}}{\Phi \mid \Gamma \vdash \text{return} v : \text{M}_{1} A}$$
(29)

Case Apply:

reduce definition To find:

$$reduce((Apply) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A \to B} \right) \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_2 : A}}{\Phi \mid \Gamma \vdash v_1 \ v_2 : B})$$
(30)

Let

(Subtype)
$$\frac{\left(\frac{\Delta_{1}'}{\Phi \mid \Gamma \vdash v_{1}: A' \to B'} \mid A' \to B' \leq :_{\Phi} A \to \epsilon B}{\Phi \mid \Gamma \vdash v_{1}: A \to B} = reduce(\Delta_{1})$$
(31)

(Subtype)
$$\frac{\left(\right)\frac{\Delta_{2}'}{\Phi\mid\Gamma\vdash\nu:A'}}{\Phi\mid\Gamma\vdash\nu_{1}:A} = reduce(\Delta_{2})$$
(32)

In

$$(Subtype) \frac{(Apply)^{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1}:A' \to B'}} (Sub-type)^{\frac{\Delta'_{2}}{\Phi \mid \Gamma \vdash v_{2}:A''}} {\frac{\Delta'_{2}}{\Phi \mid \Gamma \vdash v_{2}:A''}} (Computation)^{\frac{\epsilon' \leq \Phi \epsilon}{M \leq \frac{B' \leq \frac{1}{2}B}}}{\frac{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B'}{\Phi}} (Subtype)^{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B'}} (Sub-type)^{\frac{\Delta'_{2}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B'}} (Sub-type)^{\frac{\Delta'_{2}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B}} (Sub-type)^{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B}} (Sub-type)^{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B}} (Sub-type)^{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B}} (Sub-type)^{\frac{\Delta'_{2}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B}} (Sub-type)^{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1} \ v_{2}:B}} (Sub-type$$

Case If:

reduce definition

$$reduce((\mathrm{If})\frac{()\frac{\Delta_{1}}{\Phi\mid\Gamma\vdash v:\mathsf{Bool}}\ ()\frac{\Delta_{2}}{\Phi\mid\Gamma\vdash v_{1}:A}\ ()\frac{\Delta_{3}}{\Phi\mid\Gamma\vdash v_{2}:A}}{\Phi\mid\Gamma\vdash \mathsf{if}_{A}\ v\ \mathsf{then}\ v_{1}\ \mathsf{else}\ v_{2}:A}) = (\mathrm{If})\frac{()\frac{reduce(\Delta_{1})}{\Phi\mid\Gamma\vdash v:\mathsf{Bool}}\ ()\frac{reduce(\Delta_{2})}{\Phi\mid\Gamma\vdash v_{1}:A}\ ()\frac{reduce(\Delta_{3})}{\Phi\mid\Gamma\vdash v_{2}:A}}{\Phi\mid\Gamma\vdash \mathsf{if}_{A}\ v\ \mathsf{then}\ v_{1}\ \mathsf{else}\ v_{2}:A}$$

Case Bind:

reduce **definition** To find

$$reduce((\text{Bind}) \frac{\left(\right) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : M_{\epsilon_1} A} \quad \left(\right) \frac{\Delta_2}{\Phi \mid \Gamma, x : A \vdash v_2 : M_{\epsilon_2} B}}{\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : M_{\epsilon_1 \cdot \epsilon_2} B})$$

$$(35)$$

Let

$$(\text{Sub-Type}) \frac{()\frac{\Delta_{1}^{\prime}}{\Phi \mid \Gamma \vdash v_{1} : \mathbb{M}_{\epsilon_{1}^{\prime}} A^{\prime}}}{\Phi \mid \Gamma \vdash v_{1} : \mathbb{M}_{\epsilon_{1}} A} \quad (\text{Computation}) \frac{\epsilon_{1}^{\prime} \leq \Phi \epsilon_{1}}{\mathbb{M}_{\epsilon_{1}^{\prime}} A^{\prime} \leq \Phi \Phi_{1}} \frac{A^{\prime} \leq \Phi A}{\mathbb{M}_{\epsilon_{1}} A} \\ = reduce(\Delta_{1})$$
 (36)

Since $\Phi \vdash i, \times : \Gamma, x : A' \triangleright \Gamma, x : A$ if $A' \leq :_{\Phi} A$, and by Δ_2 , $\Phi \mid (\Gamma, x : A) \vdash v_2 : M_{\epsilon_2} B$, there also exists a derivation Δ_3 of $\Phi \mid (\Gamma, x : A') \vdash v_2 : M_{\epsilon_2} B$. Δ_3 is derived from Δ_2 simply by inserting a (Sub-type) rule below all instances of the (Var) rule.

Let

$$(\text{Sub-effect}) \frac{\left(\right) \frac{\Delta_{3}'}{\Phi \mid \Gamma, x: A' \vdash v_{2}: \mathsf{M}_{\epsilon_{2}'} B'}}{\Phi \mid \Gamma, x: A' \vdash v_{2}: \mathsf{M}_{\epsilon_{2}} B} \quad (\text{Computation}) \frac{\epsilon_{2}' \leq_{\Phi} \epsilon_{2}}{\mathsf{M}_{\epsilon_{2}'} B' \leq_{\Box_{\Phi}} \mathsf{M}_{\epsilon_{2}} B}}{\Phi \mid \Gamma, x: A' \vdash v_{2}: \mathsf{M}_{\epsilon_{2}} B} = reduce(\Delta_{3})$$
(37)

Since the effects monoid operation is monotone, if $\epsilon_1 \leq_{\Phi} \epsilon'_1$ and $\epsilon_2 \leq_{\Phi} \epsilon'_2$ then $\epsilon_1 \cdot \epsilon_2 \leq_{\Phi} \epsilon'_1 \cdot \epsilon'_2$ Then the result of reduction of the whole bind expression is:

$$(\text{Sub-Type}) \frac{(\text{Bind}) \frac{O_{\Phi|\Gamma \vdash v_1: M_{\epsilon'_1} A'}^{\Delta'_1}}{\Phi|\Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2: M_{\epsilon'_1 \cdot \epsilon'_2} B'}}{\Phi|\Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2: M_{\epsilon'_1 \cdot \epsilon'_2} B}} (\text{Computation}) \frac{\epsilon'_1 \cdot \epsilon'_2 \leq_{\Phi} \epsilon_1 \cdot \epsilon_2}{M_{\epsilon'_1 \cdot \epsilon'_2} B' \leq_{:\Phi} M_{\epsilon_1 \cdot \epsilon_2} B}}{\Phi|\Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2: M_{\epsilon_1 \cdot \epsilon_2} B}$$

$$(38)$$

Case Effect-Fn:

reduce **definition** To find

$$reduce((\text{Effect-Lambda}) \frac{()\frac{\Delta_1}{\Phi,\alpha|\Gamma \vdash v:A}}{\Phi \mid \Gamma \vdash \Lambda \alpha.v: \forall \alpha.A}) \tag{39}$$

Let

(Subtype)
$$\frac{\left(\right)\frac{\Delta_{1}'}{\Phi,\alpha|\Gamma\vdash v:A'}}{\Phi,\alpha\mid\Gamma\vdash v:A} = reduce(\Delta_{1})$$

$$(40)$$

in

$$(Subtype) \frac{(\text{Effect-Fn}) \frac{() \frac{\Delta_1'}{\Phi, \alpha \mid \Gamma \vdash v : A'}}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A'} \quad (\text{Quantification}) \frac{A' \leq :_{\Phi, \alpha}}{\forall \alpha . A' \leq :_{\Phi} \forall \alpha . A}}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A}$$

$$(41)$$

Case Effect-Application:

reduce definition To find

$$reduce((\text{Effect-App}) \frac{()\frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \epsilon : A \left[\epsilon / \alpha\right]})$$

$$(42)$$

Let

(Subtype)
$$\frac{\left(\frac{\Delta_{1}'}{\Phi \mid \Gamma \vdash v : \forall \alpha. A'}\right) \left(\text{Quantification}\right) \frac{A' \leq :_{\Phi, \alpha} A}{\forall \alpha. A' \leq :_{\Phi} \forall \alpha. A}}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} = reduce(\Delta_{1})$$
(43)

 In

(Subtype)
$$\frac{\left(\text{E-app}\right) \frac{\left(\frac{\Delta_{1}'}{\Phi \mid \Gamma \vdash v : \forall \alpha..A} \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \; \epsilon : A[\epsilon/\alpha]} \quad A'\left[\epsilon/\alpha\right] \leq :_{\Phi} A\left[\epsilon/\alpha\right]}{\Phi \mid \Gamma \vdash v \; \epsilon : A\left[\epsilon/\alpha\right]}$$
(44)

0.4 Denotations are Equivalent

For each type relation instance $\Phi \mid \Gamma \vdash v : A$ there exists a unique reduced derivation of the relation instance. For all derivations Δ , Δ' of the type relation instance, $[\![\Delta]\!]_M = [\![reduce\Delta']\!]_M = [\![reduce\Delta']\!]_M = [\![\Delta']\!]_M$, hence the denotation $[\![\Phi \mid \Gamma \vdash v : A]\!]_M$ is unique.