DE 00/01944 BUNDESREPUBLIK DEUTSCHLAND

DE00/1944 REC'D 1 6 AUG 2000 **WIPO** PCT

Prioritätsbescheinigung über die Einreichung einer Gebrauchsmusteranmeldung

Aktenzeichen:

200 07 494.6

Anmeldetag:

26. April 2000

Anmelder/Inhaber:

Thomas Roitsch, Regensburg/DE

Bezeichnung:

Promotorsystem, dessen Herstellung und

Verwendung

IPC:

C 07 H, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.

> München, den 18. Juli 2000 **Deutsches Patent- und Markenamt** Der Präsident

> > Im Auftrag

*Promotorsystem; dessen Herstellung und Verwendung

Beschreibung

Die Erfindung bezieht sich auf die Genexpression und die Regulation von Genexpression in Pflanzen. Im Speziellen bezieht sich die Erfindung auf DNA-Promotor-Sequenzen, und auf Expressionskassetten, die in Pflanzen eingeführt werden können, um die Transkription einer benachbarten kodierenden Sequenz zeitlich und räumlich innerhalb der Pflanzen zu regulieren. Zusätzlich bezieht sich die Erfindung auf Expressionsvektoren, die solch eine Expressionskassette enthalten und die benützt werden können, um Pflanzen zu transformieren.

Ein Promotor-ist eine DNA-Sequenz, die Expressionsort und -menge eines Genes beeinflußt oder bestimmt, und die Stellen für die Bindung der RNA-Polymerase zur Verfügung stellt. Die Position eines Promotors ist im Genom eines Organismus relativ zum Transkriptionsstartpunkt fixiert. RNA-Polymerase ist ein Enzym, das anden Promotor binden kann und die Transkription eines Genes vollzicht, das unter der Kontrolle dieses Promotors steht. Dabei entsteht die messenger-RNA, die wiederum zur Synthese des Proteines verwendet wird.

Promotoren sind in verschiedenen Organismen untersucht worden. Für bestimmte Spezies konnten konservierte DNA-Bereiche (sog. Consensus-Sequenzen) innerhalb von Promotoren gefunden werden, die mit verschiedenen Genen assoziiert sind. Von diesen Bereichen wird angenommen, daß sie in die Rolle, die der Promotor im Transkriptionsprozeß spielt, eingebunden sind.

Die Initiation des Transkriptionsprozesses in Pflanzen schließt eine Interaktion des Promotors mit der RNA-Polymerase II ein. Innerhalb von Pflanzenpromotoren wurden Consensus-Sequenzen oberhalb des 5'-Endes des Transkriptionsstartpunktes gefunden. Eine dieser Sequenzen ist etwa 7 Basenpaare lang und befindet sich etwa 20-30 Basenpaare oberhalb des Transkriptionsstartpunktes. Diese Sequenz ist als sog. TATA-box bekannt und es wird angenommen, daß sie eine Rolle bei der RNA-Polymerase Bindung spielt. Eine andere Sequenz. mit einer Länge von ungefähr 9 Basenpaaren ist etwa 70-90 Basenpaare oberhalb des Transkriptionsstartpunktes zu finden. Diese Sequenz wird CAAT-box genannt und es wird angenommen, daß sie in der Regulation des Transkriptionslevels eine Rolle spielt. Es wurden

E 0 5

noch andere Regionen oberhalb des Transkriptionsstartpunktes identifiziert, die die Häufigkeit der Transkriptionsinitiation in Eukaryonten beeinflussen. Diese DNA-Bereiche, die Enbancer genannt werden, beeinflussen die Aktivität von Promotoren in ihrer Nachbarschaft. Diese Sequenzen sind jedoch der Definition nach keine Promotoren, da ihre Position nicht fixiert sein muß.

Um ein fremdes Gen in einem Organismus, z.B. einer Pflanze, exprimieren zu können, muß die kodierende Sequenz dieses Genes unter die Kontrolle eines Promotors gestellt werden und in die Pflanze eingebracht werden. Zur Insertion des zu exprimierenden Genes in das Pflanzengenom wird die fremde DNA meistens in das Ti-Plasmid von Agrobacterium tumefaciens gebracht, und dieses wird dann verwendet um die Pflanzen zu transformieren. Eine zweite häufig verwendete Methode ist die direkte Transformation von DNA z.B. mit Hilfe der sogenannten "particle gun". In den meisten Fällen werden hierfür bisher aus Bakterien isolierte Promotoren oder Promotoren von Pflanzenviren verwendet, die zur Expression des fremden Genes in den Pflanzen führen. Diese Promotoren haben den Nachteil, daß sie artfremd sind und daher den Kontrollmechanismen innerhalb der Pflanzen nicht unterliegen.

Bei Verwendung eines pflanzlichen Promotors ist die Expression eines fremden Genes möglich, die somit auch den pflanzlichen Kontrollmechanismen unterliegt. Durch Untersuchungen der Expression des Genes, vor dem der Promotor ursprünglich liegt, lassen sich genaue Kenntnisse über die Expressionsstärke, die Zeit, zu der das Gen exprimiert wird, und den Expressionsort sammeln, die auf die Expression eines fremden Genes, das unter die Kontrolle dieses Promotors gestellt wird, weitgehend übertragbar sind. Ein weiterer Vorteil ist, daß bei Verwendung eines genau charakterisierten, pflanzlichen Promotors gezielte Eingriffe und Untersuchungen in die Entwicklung bestimmter Pflanzenteile möglich ist.

Im vorliegenden Fall wurde der Promotor einer Invertase aus Tabak kloniert, die in sehr großen Mengen, aber nur in einem bestimmten Entwicklungsstadium und hochspezifisch, nur in den Antheren exprimiert wird. Zur Klonierung des Promotors wurde eine genomische Bank aus Tabak mit einer Sonde aus dem kodierenden Bereich der untersuchten Invertase durchsucht. Die erhaltenen genomischen DNA-Sequenzen wurden mit molekularbiologischen Methoden weiter charakterisiert und schließlich ein Klon isoliert, der die Promotorsequenz enthielt, die dann sequenziert wurde. Es wurden Expressionskassetten mit verschiedenen Genen hergestellt, die in Agrobakterium tumefaciens eingebracht wurden, um Tabakpflanzen damit zu transformieren. Dieses neue Promotorsystem kann num dazu verwendet werden, fremde Gene in Pflanzen in

einem bestimmten räumlichen und zeitlichen Rahmen zu exprimieren. Das Wort fremd meint dahei Gene, die nicht-natürlich in Werbindung mit diesem Promotor vorkommen. Außerdem kann mit Hilfordieses Promotorsystems die Expression von fremden und eigenen Genen in der Pflanze moduliert werden, d.h. Gene können überexprimiert oder reprimiert werden.

Ausführungsbeispiele:

1. Die Promotor-DNA-Sequenz, bestehend aus den 4300bp des 5' liegenden DNA-Bereiches, gezählt oberhalb vom Translationsstartpunkt der antherenspezifisch exprimierten Invertase aus Tabak, oder Teile davon, die dadurch gekennzeichnet sind, antherenspezifische Expression für dahinter gelegene Gene zu vermitteln, kann mit Hilfe molekularbiologischer Methoden so verändert werden, daß Restriktionsschnittstellen am 5'- oder 3'-Ende eingefügt werden.

- 2. Die wie in 1. veränderte Promotor-DNA-Sequenz oder Teile der Promotor-DNA-Sequenz können zur Herstellung einer Expressionskassette zur Expression fremder Gene in Pflanzen verwendet werden. So eine Expressionskassette ist dadurch gekennzeichnet, daß sie a) die Promotor DNA oder Teile davon aus 1. enthält; b) eine Verbindungs-DNA ohne spezielle Funktion bzw. fremde Gene, verbunden mit der ersten Schnittstelle beinhaltet; und c) eine 3'-Region, bestehend aus der 3'-Region eines eukaryontischen Genes enthält, wobei diese 3'-Region eine zweite Restriktionsschnittstelle an ihrem 5'-Ende besitzt und diese 3'-Region über diese zweite Restriktionsschnittstelle mit der Verbindungs-DNA bzw. den fremden Genen aus b) verbunden ist.
- 3. Eine Expressionskassette wie in 2. beschrieben, kann in einen Expressionsvektor kloniert werden. Dieser Expressionsvektor kann dazu verwendet werden, mit Hilfe verschiedener gängiger Methoden (z.B. Agrobakterien vermittelte Transformation; direkte Transformation) Pflanzen zu transformieren. Transgene Pflanzen können dann unter Bedingungen angezogen werden, unter denen das fremde Gen unter der transkriptionellen Kontrolle der beschriebenen Promotor-DNA-Sequenz exprimiert wird.
- 4. Die Promotor-DNA oder Teile davon können dazu verwendet werden, die Translation eines pflanzeneigenen Genes zu modulieren. So kann die Expression eines Genes durch Einbringen weiterer Kopien unter der Kontrolle dieses Promotors gesteigert werden oder die Expression kann mit Hilfe der Antisense-Technik unterdrückt werden. Dazu muß die DNA-Sequenz des zu unterdrückenden Genes in "verkehrter Richtung" in eine Expressionskassette wie unter 2. beschrieben kloniert werden und wie unter 3. beschrieben in Pflanzen transformiert werden.
- 5. Die spezifischen Eigenschaften der Promotor-DNA-Sequenz bzw. von Teilen davon, ermöglichen in transgenen Pflanzen, die wie unter 3. beschrieben hergestellt wurden, eine

zeitlich (nur während der Pollenbildung) und räumlich (nur in Antheren) definierte Expression von fremden Genen in Rflanzen.

- 6. Aufgrund des starken Expressionslevels der antherenspezifischen Invertase in Tabak, lassen sich mit Hilfe dieser Promotor-DNA-Sequenz bzw. mit Teilen davon, in transgenen Pflanzen große Mengen eines bestimmten Proteins zu einem bestimmten Zeitpunkt und in einem bestimmten Ort der Pflanze (siehe 5.) herstellen. Dieses Protein kann dann durch ernten der Antheren, Aufschluß und für das hergestellte Protein spezifische Reinigungsverfahren in großen Mengen gewonnen werden.
- 7. Die Promotor-DNA-Sequenz, oder Teile davon, können dazu verwendet werden, in die Entwicklung der Antheren in Pflanzen einzugreifen. So können transgene Pflanzen hergestellt werden, bei denen beispielsweise durch Antisense-Expression von Invertasesequenzen die Proteinmengen für die extrazelluläre Invertase verringert werden. Dies führt zu männlich sterilen Pflanzen, die in der Landwirtschaft, bei der Herstellung von Hybridsaatgut von großer Bedeutung sind.
- 8. Die Verwendung des Promotorsystems zur Herstellung männlich steriler Pflanzen, wie z.B. unter 7. beschrieben kann als Sicherheitssystem bei der Herstellung anderer, kommerziell oder wissenschaftlich nutzbarer transgener Pflanzen verwendet werden. So besteht bei Verwendung männlich steriler Pflanzen nicht die Gefahr des Auskreuzens der genetischen Veränderungen auf Pflanzen die auf benachbarten Feldern oder wild wachsen. Die begrenzte Natur des Eingriffes der zur männlichen Sterilität bei Verwendung dieses Promotorsystems führt stellt einen besonderen Vorteil dar, da nicht in das vegetative Wachstum der Pflanze eingegriffen wird und keine Wechselwirkungen mit den zusätzlich eingebrachten genetischen Veränderungen zu erwarten sind.
- 9. Die Promotor-DNA-Sequenz, oder Teile davon, können dazu verwendet werden, transgene Pflanzen-herzustellen, die pflanzeneigene Stoffe in großer Menge herstellen, die positiv auf ihre Entwicklung, insbesonders betreffend den Ertrag von früchtetragenden Pflanzen, wirken können. Beispiele für solche pflanzeneigene Stoffe wären Wachstumshormone oder Proteine die zur Energieversorgung der wachsenden Gewebe (z.B. Invertasen, Zuckertransporter) notwendig sind.

- 11. Um Erträge von männlich sterilen, früchtetragenden Pflanzen zu erhalten und zur Vermehrung männlich steriler Pflanzen, die unter Verwendung des Promotorsystems wie z.B. unter 7. beschrieben hergestellt wurden können Restorerstämme hergestellt werden, die nach einer Kreuzung mit den männlich sterilen Stämmen zu fertilen Pflanzen in der F1-Generation führen. Restorerstämme für die unter 7. beschriebenen männlich sterilen Pflanzen könnten Proteine enthalten, die die Kohlenhydratversorgung der Antheren wieder herstellen können, wie z.B. artfremde Invertasen (z.B. aus Saecharomyces cerevisiae oder Bakterien), oder Saecharosetransporter in Verbindung mit intrazellulären saecharosespaltenden Enzymen (z.B. Saecharose Synthase, neutrale oder vakuoläre Invertasen).
- 12. Alternativ zur Herstellung von Restorerstämmen wie unter 11. könnten Pollen von männlich sterilen Pflanzen in einer in vitro Kultivierung zu fertilen Pollen entwickelt werden, mit denen dann eine Befruchtung der transgenen Pflanzen stattfinden kann.
- 13. Pollen können durch eine in vitro Embryogenese zu haploiden Pflanzen herangezogen werden. Diese haploiden Pflanzen können dann zu homozygoten diploiden Pflanzen gezüchtet werden. Zur Induktion dieser in vitro Embryogenese ist ein Hunger- und Stress-Schritt nötig. Da transgene Pflanzen, die unter Verwendung des Promotorsystems wie z.B. unter 7. beschrieben hergestellt wurden, in ihrer Zuckerversorgung gestört sind, sind die Pollen dieser Pflanzen bereits in Richtung Embryogenese determiniert und es bedarf keiner zusätlichen Hunger- oder Stress Behandlung mehr. Die Embryogenese läuft in diesen Pflanzen daher schneller und effizienter ab.

Erreichte Vorteile:

Mit Verwendung dieses Promotorsystems sieht ein Werkzeug zur Verfügung, mit dem man zeitlich und örtlich gezielt fremde Proteine in Pflanzen exprimieren kann und pflanzeneigene Gene in ihrem Expressionslevel modulieren kann.

- 1. Promotorsystem, gekennzeichnet durch einen Klon aus genomischen DNA-Sequenzen.
- 2. Promotorsystem, gekennzeichnet durch Expressionskassetten.
- 3. Verwendung eines Promotorsystems nach Anspruch 1 oder 2 zum Beeinflussen eines Genes.
- 4. Verfahren zur Herstellung eines Promotorsystems nach Anspruch 1 oder 2.
- 5. Verfahren zum Experimentieren mit einem Promotorsystem nach Anspruch 1 oder 2.

дзииът

G

Zeichnung 1: Promotor-DNA-Sequenz der extrazellulären Invertase aus Tabak

ı	TCTAGAATGA	CGCCACCGGC	CAGGACGGGG	AGTATGATTT	CCCCGAATGT
51		GCATTGTTAA			
101		GAGTTTCATT			
151		CATCGTCCAC			
201		ATANCGAGGG			
251		ATCGAAGATG			
301.		ACTGTTTGAG			
351		TCGTCTCCGC			
401		TTTCGGCGGT			
451		CTCGGTCACA		TTGAGGTGTC	
501		ACCICTTGTC			
551		GTGGAACTCG			
601		TCTTTTGTGG			
651		ATTTCTGAGG			
701		ACCTCTCTCG			
751	GGGCCCTCTT			ATGGCACTTT	
801	TTGATCCATT			TGCAAGATCT	
851		ATCCTTCCTG			
901	GTTGGCCCAT			CGGGCCTCAG	
951	GTTGTGTATT			ATATITCATA	
1001		GGTCGCCCTC			
1051		CCATICCTTC			
1101		GCGAGGAAGT			
1151		ATCGTTCACT			
1201		ACTIGTCGGC			
1251		GAATACCAAG			
1301		CAAGATGGAG			
1351	TTTACCGCAG	TGACATAATG	ATTACATGAT	CTTCGGGGTC	GGTCGTACCA
1401	TCATAAATTT	TCAGATAAGG	TGGCATCTTG	AACGTCTTGG	GTATGGCATA
1451	TGGGGCGGCT			GACTAACCGA	
1501	TTTTTCGAAA	TATTTTTGGG			
1551	TGTTCTCTCA	TTTGATCCCG	AAGCATTITA	TTTTCGTTTT	CCATTTCTTC
1601	CATTTTCTTC	AGAATGGCCG	TGAGGGTGTC	ATTACCTGCA	TTATTAATAT
1651		ACCTGTTACT			TITGGTCATT
1701	GCTGGTGCAA	TGCAAGTCCT	TGCATTTTCT	CTAAATACCT	CCTGAGTGGG
1751		ATGCCGGTCA		CAGCCAAGCT	TCGAGTAGCT
1801	TCTTCACCGC	TGGTGGCGCC	TCTTCCGTTG	TGGACGTGGA	AGCTCCTTTA
1851	CCGCGGGATG	TTGCGATACT	GCTGTGAGGG	AGGGGTGATC	CACTTCGTCG
1901	GGGAGAGGTG	TTAGGCGTTA	TGCCTTCGCC	TTCTATTTCG	GAGACCTCA'T
1951	TGATGGTGTT	TAAGAGGTTG	GTAGTGAGAT	TGGCCACTGC	CTTCATCCTT
2001	TCTTCTCCCT	TACCIGCCAT	GTCAGATCTG	GGTGTACAAG	GAAGTAGGAG
2051	CTTCTCTTCT	TCTTTTTTTT	GAATTGTGCC	AGTTATAGAT	CTANAAGAAA
2101		AAC'INGACI'N			
2151		GACTTTTGAT			
2201	TAAACCTAGT	TAATGATAAT	AACTTCAGAT	CTATAATCAA	TTAACAGCAA
2251	TCACGGTCAT	AGCAGCGTTG	AGAGAAGATT	AAATGTGATG	TYCATTCAAT
2301		CATTAATGAT			
2351		AGTAAATAAG			
2401		TCTTTTTGAC			
2451		TCTCGGATCT			
2501		AGAAAGGTAG			

CTTTTCAAAG AATATTTTTA TCAGAGAATA TIACATCCCC CTCTCTCCCT 2551 2601 ATCTCTTTTT CTATTATAT GGGACATTCC TCAATGAATC CTAAAAGTAC 2651 *ATACACCAAG AAATATTCAAT AAAATATTT TITGAATATT CTATTATAAA 2701 LAACTAGCIGT TAGCACTCGA CCTGGGICGY TATTGACTAC TCGGTTACGA 2751 GCCCTGTCAT TTACTAATCG ACCTCGATTA CATCACTTTC TACGATACTG CTTCATGTCA AATCTTAATG AAAGCAGATT TTGACCCATA CAATAATATG ACAAAATTGC TTCCAAAGAA AACATGGCTC TTATAGTGAA ATATCGTTAG 2851 TTCTTTTCAT ATCTAAGGAG TAAAGCAACC ATGAATAGAA AAGGCTTAGT 2951 AACTATATAT CAAAGGAATG GTGTTTTTTC TTTAAATATG GATAAAAATT 3001 3051 TGTGAATATA GAAGATTAGA TCAATTAACA AAGGTTATGG TGGAGTGGTA AGCAGAGGCG GACCTATGTG TTATAGTAAG GGGTCACCCA CTACTAGAAA 3101 TCCGGTAAAG ATCGATCAAA AAACCGACCA ACATTGGTCG GTAATGGCCA 3201 AAAACTGACC AAAACGCGAT CATTTACGTG TGAACGGTAT TTTTATGGTC 3251 GGAAAGGAAT ACCGACCAAA GTTGGTCGGA AATTACCGAC CAACTTTGGT CGGTCAATTA AATTCAAAAA AAATATTGTA AAAAAAAACC GACCAAAGTT 3301 GATCGGTATT TTAATTATGT AATAAAAGA TTCACTATCT GGGAATCGAA 3351 CCGGGGTCTG TACTATGGCA AGATACTATT CTACCACTAG ACCATTGGTT 3401 CATTTTGTTT TAAGACTGTC TTTTATTTGA TTTATACTCT TTAATTATAT 3451 3501 TITTGCACGA AAATAACCGA CCAAAGTTGG TGGATTTTAT TAAAAAGTAA 3551 *AATTACTTAC CAAAGTTGGT CGATTTTTT AAATGATCCG CCGAATTAAC 3601 _CGACCAATTT TGGTAGGTTT TTTTAATATT AATTTTTATT TATTTTAATT 3651 GAAAAACTAA CCAAAGTTAG TCGCTTTCTT GAAACATAAA TTTCGCGGGA 3701 CCTCARARATA GTTTCCCGCA TTTTTGCGCC ARAGARARCC_GACCARAGTT 3801 GGACCAACTT TAGTCGGTTT TTTGGTCGAT TTTTTGACCG ACCAAAGTTG 3851 GTCGGTCGAC CTTGGTCGGT TTTTGCCGAA TTTGTAGTAG TGACCGAACC CTGTAAGCTT CGGGAGAAAT TTTGTATATG TATATGTGTA TATCCTTAAA ATGATTAATT TAAAGAACGT GGCACCCTGA ATACTAGAAG CCTTTAGGGG CACTAGATGA GCAGAATAAC GTGTTCTCGT CGCGTAAAAA TACTTGGATC 4001 4051 CGCCTATGAT GGTAAGTACT TCTTCGTCCT TAATCAGAGG TTTCGACTTC GAGCTCCAGA TATAAACTAT ACACTCGTCT TTATAGCACC TTTTAATAAG 4101 ACTATGACTI CATCIGATTI CTCTATAAAI ACTCCTCAAG CTTTCGGTTC 4151 4201 AAGAAGAAGA AGAAGAAGAA AAATAAAGAG TTTCTGTCAA ATTAAGTCCA 4251 4301 ATAGGGAAAA TO

T T S