TASK-5

Analyze traffic accident data to identify patterns related to road conditions, weather and time of day.visualize accident hotspots and contributing factors

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [11]:

```
df_USA=pd.read_csv('D:\\mlworld\\mlobs\\usa.csv')
df_USA.head()
```

Out[11]:

	ID	Source	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	End_Lat	End_Lng	С
0	A- 1	Source2	3	08-02-2016 05:46	08-02- 2016 11:00	39.865147	-84.058723	NaN	NaN	
1	A- 2	Source2	2	08-02-2016 06:07	08-02- 2016 06:37	39.928059	-82.831184	NaN	NaN	
2	A- 3	Source2	2	08-02-2016 06:49	08-02- 2016 07:19	39.063148	-84.032608	NaN	NaN	
3	A- 4	Source2	3	08-02-2016 07:23	08-02- 2016 07:53	39.747753	-84.205582	NaN	NaN	
4	A- 5	Source2	2	08-02-2016 07:39	08-02- 2016 08:09	39.627781	-84.188354	NaN	NaN	

5 rows × 46 columns

In [8]:

```
df_USA.columns
```

```
Out[8]:
```

In [9]:

```
df_USA.dtypes.value_counts()
```

Out[9]:

object 20 bool 13 float64 12 int64 1 dtype: int64

In [12]:

```
df_USA.shape
```

Out[12]:

(1048575, 46)

In [13]:

```
df_USA.describe()
```

Out[13]:

	Severity	Start_Lat	Start_Lng	End_Lat	End_Lng	Distance(mi)	Temper
count	1.048575e+06	1.048575e+06	1.048575e+06	0.0	0.0	1.048575e+06	1.0326
mean	2.321943e+00	3.606598e+01	-9.463107e+01	NaN	NaN	1.748895e-01	6.4830
std	5.464841e-01	4.899255e+00	1.732592e+01	NaN	NaN	1.475837e+00	1.7263
min	1.000000e+00	2.455480e+01	-1.244974e+02	NaN	NaN	0.000000e+00	-7.7800
25%	2.000000e+00	3.293387e+01	-1.173193e+02	NaN	NaN	0.000000e+00	5.4000
50%	2.000000e+00	3.527291e+01	-8.793123e+01	NaN	NaN	0.000000e+00	6.7000
75%	3.000000e+00	4.011330e+01	-8.089787e+01	NaN	NaN	1.000000e-02	7.7000
max	4.000000e+00	4.899809e+01	-6.816079e+01	NaN	NaN	3.365700e+02	1.9600
4							

In [14]:

df_USA.State.unique

Out[14]:

```
<bound method Series.unique of 0</pre>
                                             ОН
           ОН
2
           ОН
3
           ОН
4
           OH
            . .
1048570
           TX
1048571
           TX
1048572
           TX
           TX
1048573
1048574
           TX
Name: State, Length: 1048575, dtype: object>
```

In [15]:

```
df1=df_USA[df_USA['State']=='CA']
df1['IDD'] = df1['ID'].astype('str').str.extractall('(\d+)').unstack().fillna('').sum(ax
df1
```

C:\Users\91939\AppData\Local\Temp\ipykernel_13252\206313945.py:2: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df1['IDD'] = df1['ID'].astype('str').str.extractall('(\d+)').unstack().f
illna('').sum(axis=1).astype(int)

Out[15]:

	ID	Source	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	End_Lat
728	A-729	Source2	3	21-06-2016 10:34	21-06- 2016 11:04	38.085300	-122.233017	NaN
729	A-730	Source2	3	21-06-2016 10:30	21-06- 2016 11:16	37.631813	-122.084167	NaN
730	A-731	Source2	2	21-06-2016 10:49	21-06- 2016 11:19	37.896564	-122.070717	NaN
731	A-732	Source2	3	21-06-2016 10:41	21-06- 2016 11:11	37.334255	-122.032471	NaN
732	A-733	Source2	2	21-06-2016 10:16	21-06- 2016 11:04	37.250729	-121.910713	NaN
1047395	A- 1057166	Source2	3	06-05-2021 17:56	06-05- 2021 18:41	33.909714	-117.281723	NaN
1047396	A- 1057167	Source2	3	06-05-2021 18:47	06-05- 2021 19:17	34.029724	-118.402946	NaN
1047397	A- 1057168	Source2	2	06-05-2021 19:15	06-05- 2021 19:44	34.075108	-118.231964	NaN
1047398	A- 1057169	Source2	3	06-05-2021 19:40	06-05- 2021 20:40	33.913177	-118.125137	NaN
1047399	A- 1057170	Source2	3	06-05-2021 20:14	06-05- 2021 21:28	34.026962	-118.250504	NaN
264077 rows x 47 columns								

264077 rows × 47 columns

In [20]:

df1.isna().sum()/len(df1)*100

Out[20]:

ID 0.000000 Source 0.000000 Severity 0.000000 Start_Time 0.000000 End_Time 0.000000 0.000000 Start_Lat Start_Lng 0.000000 End_Lat 100.000000 100.000000 End Lng Distance(mi) 0.000000 Description 0.001086 Street 0.321435 City 0.000000 0.000000 County State 0.000000 Zipcode 0.000000 0.000000 Country Timezone 0.000000 Airport_Code 0.000000 Weather_Timestamp 0.000000 Temperature(F) 0.000000 Wind Chill(F) 0.000000 Humidity(%) 0.000000 Pressure(in) 0.000000 Visibility(mi) 0.000000 Wind_Direction 0.000000 Wind_Speed(mph) 0.000000 Precipitation(in) 10.120864 Weather_Condition 0.000000 Amenity 0.000000 Bump 0.000000 Crossing 0.000000 Give Way 0.000000 Junction 0.000000 No Exit 0.000000 0.000000 Railway Roundabout 0.000000 Station 0.000000 0.000000 Stop Traffic Calming 0.000000 Traffic_Signal 0.000000 Turning Loop 0.000000 Sunrise_Sunset 0.062984 Civil Twilight 0.062984 Nautical_Twilight 0.062984 Astronomical Twilight 0.062984 IDD 0.000000

localhost:8888/notebooks/Untitled37.ipynb?kernel_name=python3

dtype: float64

In [21]:

Out[21]:

ID 0.000000 Source 0.000000 Severity 0.000000 Start_Time 0.000000 End_Time 0.000000 Start_Lat 0.000000 Start Lng 0.000000 End_Lat 100.000000 End Lng 100.000000 Distance(mi) 0.000000 Description 0.001087 Street 0.321638 City 0.000000 County 0.000000 State 0.000000 Zipcode 0.000000 Country 0.000000 Timezone 0.000000 Airport_Code 0.000000 Weather_Timestamp 0.000000 Temperature(F) 0.000000 Wind Chill(F) 0.000000 Humidity(%) 0.000000 Pressure(in) 0.000000 Visibility(mi) 0.000000 Wind Direction 0.000000 Wind_Speed(mph) 0.000000 Precipitation(in) 10.127242 Weather_Condition 0.000000 Amenity 0.000000 Bump 0.000000 Crossing 0.000000 Give Way 0.000000 0.000000 Junction No Exit 0.000000 Railway 0.000000 Roundabout 0.000000 Station 0.000000 Stop 0.000000 Traffic Calming 0.000000 Traffic_Signal 0.000000 Turning Loop 0.000000 Sunrise Sunset 0.000000 Civil Twilight 0.000000 Nautical_Twilight 0.000000 Astronomical_Twilight 0.000000 IDD 0.000000

dtype: float64

In [22]:

df1['Weather_Condition'].value_counts()

Out[22]:

odc[22]:	
Fair	57558
Cloudy	10793
Mostly Cloudy	6496
Partly Cloudy	4798
Haze	2537
Fog	2246
Light Rain	2157
Clear	1749
Fair / Windy	826
Smoke	698
Rain	622
Overcast	423
Heavy Rain	240
Scattered Clouds	131
Mostly Cloudy / Windy	80
Partly Cloudy / Windy	76
Light Rain / Windy	66
Cloudy / Windy	61
-	57
Rain / Windy	46
Shallow Fog	43
Light Snow	43 37
Patches of Fog	
Light Drizzle	36
Heavy Rain / Windy	34
Mist	34
Thunder in the Vicinity	25
Drizzle	24
T-Storm	21
Showers in the Vicinity	21
Snow	16
Haze / Windy	10
Thunder	9
Blowing Dust / Windy	6
Fog / Windy	6
Blowing Dust	6
Smoke / Windy	6
Light Rain with Thunder	5
Heavy Snow	5
N/A Precipitation	4
Snow / Windy	3
Light Rain Shower	3
Light Freezing Fog	3
Widespread Dust / Windy	3
Widespread Dust	2
Light Rain Showers	2
Light Snow / Windy	1
Light Freezing Rain	1
Rain Showers	1
Light Thunderstorms and Rain	1
Heavy T-Storm	1
Name: Weather_Condition, dtype:	int64

In [24]:

```
df_cat=df1.select_dtypes('object')
df_num=df1.select_dtypes(np.number)
df_cat=df_cat.drop('ID',axis=1)
```

In [25]:

```
df_cat=df1.select_dtypes('object')
col_name=[]
length=[]

for i in df_cat.columns:
    col_name.append(i)
    length.append(len(df_cat[i].unique()))
df_2=pd.DataFrame(zip(col_name,length),columns=['feature','count_of_unique_values'])
df_2
```

Out[25]:

	feature	count_of_unique_values
0	ID	92029
1	Source	2
2	Start_Time	82191
3	End_Time	76183
4	Description	82672
5	Street	9200
6	City	938
7	County	58
8	State	1
9	Zipcode	10733
10	Country	1
11	Timezone	2
12	Airport_Code	132
13	Weather_Timestamp	46093
14	Wind_Direction	23
15	Weather_Condition	50
16	Sunrise_Sunset	2
17	Civil_Twilight	2
18	Nautical_Twilight	2
19	Astronomical_Twilight	2

```
In [26]:
df1.drop(['Description','Zipcode','Weather_Timestamp'],axis=1,inplace=True)
del df1['Airport_Code']
df_num.columns
Out[26]:
Index(['Severity', 'Start_Lat', 'Start_Lng', 'End_Lat', 'End_Lng',
        'Distance(mi)', 'Temperature(F)', 'Wind_Chill(F)', 'Humidity(%)', 'Pressure(in)', 'Visibility(mi)', 'Wind_Speed(mph)',
        'Precipitation(in)', 'IDD'],
       dtype='object')
In [27]:
len(df_num.columns)
Out[27]:
14
In [28]:
df cat.columns
Out[28]:
Index(['ID', 'Source', 'Start_Time', 'End_Time', 'Description', 'Street',
        'City', 'County', 'State', 'Zipcode', 'Country', 'Timezone',
        'Airport_Code', 'Weather_Timestamp', 'Wind_Direction',
        'Weather_Condition', 'Sunrise_Sunset', 'Civil_Twilight', 'Nautical_Twilight', 'Astronomical_Twilight'],
       dtype='object')
In [31]:
len(df_cat['City'].unique())
```

Out[31]:

938

In [32]:

```
df_num=df1.select_dtypes(np.number)
col_name=[]
length=[]

for i in df_num.columns:
    col_name.append(i)
    length.append(len(df_num[i].unique()))

df_2=pd.DataFrame(zip(col_name,length),columns=['feature','count_of_unique_values'])
df_2
```

Out[32]:

	feature	count_of_unique_values
0	Severity	4
1	Start_Lat	46496
2	Start_Lng	46057
3	End_Lat	1
4	End_Lng	1
5	Distance(mi)	533
6	Temperature(F)	163
7	Wind_Chill(F)	285
8	Humidity(%)	98
9	Pressure(in)	628
10	Visibility(mi)	37
11	Wind_Speed(mph)	66
12	Precipitation(in)	53
13	IDD	92029

In [33]:

```
plt.figure(figsize=(15 ,9))
sns.heatmap(df_num.corr() , annot=True)
```

Out[33]:

<AxesSubplot:>

In [34]:

```
cities = df1['City'].unique()
len(cities)
```

Out[34]:

938

In [35]:

```
accidents_by_cities = df1['City'].value_counts()
accidents_by_cities
```

Out[35]:

Los Angeles 8329 Sacramento 3160 San Jose 2560 San Diego 2168 0akland 1574 Potter Valley 1 Birds Landing 1 1 Trona Raymond 1 Fall River Mills 1 Name: City, Length: 938, dtype: int64

In [36]:

```
#top 10 cities by number of accident
accidents_by_cities[:10]
```

Out[36]:

Los Angeles 8329 Sacramento 3160 San Jose 2560 San Diego 2168 0akland 1574 Long Beach 1332 San Francisco 1273 Riverside 1253 San Bernardino 1109 Ontario 1108 Name: City, dtype: int64

In [37]:

In [38]:

```
accidents_severity = df1.groupby('Severity').count()['ID']
accidents_severity
```

Cities

Out[38]:

Severity 1 43

4354
 58678

3 28800

4 197

Name: ID, dtype: int64

In [39]:

Accident by Severity


```
In [41]:
```

```
df1['Start_Time'].dtypes
```

Out[41]:

dtype('0')

```
In [42]:
df1['End_Time'].dtypes
Out[42]:
dtype('0')
In [44]:
df1 = df1.astype({'Start_Time': 'datetime64[ns]', 'End_Time': 'datetime64[ns]'})
df1['Start_Time'].dtypes
Out[44]:
dtype('<M8[ns]')</pre>
In [52]:
df1['Start_Time']
Out[52]:
5041
          2016-11-30 16:07:00
          2016-11-30 18:32:00
5063
5073
          2016-11-30 19:20:00
5075
          2016-11-30 19:33:00
5080
          2016-11-30 19:40:00
1047395
          2021-06-05 17:56:00
          2021-06-05 18:47:00
1047396
          2021-06-05 19:15:00
1047397
1047398
          2021-06-05 19:40:00
          2021-06-05 20:14:00
1047399
Name: Start_Time, Length: 92029, dtype: datetime64[ns]
In [54]:
df1['End Time']
Out[54]:
          2016-11-30 17:22:00
5041
5063
          2016-11-30 19:17:00
5073
          2016-11-30 20:05:00
5075
          2016-11-30 20:18:00
5080
          2016-11-30 20:25:00
1047395
          2021-06-05 18:41:00
1047396
          2021-06-05 19:17:00
1047397
          2021-06-05 19:44:00
1047398
          2021-06-05 20:40:00
1047399
          2021-06-05 21:28:00
Name: End_Time, Length: 92029, dtype: datetime64[ns]
```

In [55]:

```
df1['start_date'] = [d.date() for d in df1['Start_Time']]
df1['start_time'] = [d.time() for d in df1['Start_Time']]
```

In [56]:

```
df1['end_date'] = [d.date() for d in df1['End_Time']]
df1['end_time'] = [d.time() for d in df1['End_Time']]
df1['end_time']
```

Out[56]:

```
17:22:00
5041
5063
           19:17:00
           20:05:00
5073
5075
           20:18:00
           20:25:00
5080
1047395
           18:41:00
1047396
           19:17:00
1047397
           19:44:00
1047398
           20:40:00
1047399
           21:28:00
Name: end_time, Length: 92029, dtype: object
```

In [57]:

```
fig, ax = plt.subplots(figsize=(8,5))
sns.histplot(df1['Start_Time'].dt.hour, bins = 24)

plt.xlabel("Start Time")
plt.ylabel("Number of Occurence")
plt.title('Accidents Count By Time of Day')

plt.show()
```


In [58]:

```
fig, ax = plt.subplots(figsize=(8,5))
sns.histplot(df1['Start_Time'].dt.hour, bins = 24)

plt.xlabel("End_Time")
plt.ylabel("Number of Occurence")
plt.title('Accidents Count By Time of Day')

plt.show()
```


In [67]:

```
del df1['Start_Time']
del df1['End_Time']
```

In [68]:

```
%matplotlib inline import os
```

In [77]:

```
df1.groupby('Severity').count()['IDD']
```

Out[77]:

```
Severity
1     4354
2     58678
3     28800
4     197
Name: IDD, dtype: int64
```

In [78]:

```
df_num.plot(kind='scatter', y='Start_Lat', x='Severity')
```

Out[78]:

<AxesSubplot:xlabel='Severity', ylabel='Start_Lat'>

In [79]:

```
sns.jointplot(x=df_num.Start_Lat.values , y=df_num.Start_Lng.values,height=10)
plt.ylabel('Start lattitude', fontsize=12)
plt.xlabel('Start lattitude', fontsize=12)
plt.show()
```


In []:

In []: