

หน้า 1 / 10

ภาควิชาวิศ	เวกรรมไฟฟ้าแล	ละคอมพิวเตย	ภาคการศึกษาที่1ปีการศึกษา25 4								
					หมายเลขโต๊ะ						
รหัสนักศึก	ษา <u>62010</u> '	1163/188	ชื่อ-นามสกุล	ากขังสาณ	สุขสุมบุรีเห็						
อาจารย์ผัส	ายน	SP	เวลาที่ทำการทดลอ	13,00-16,00	วันที่ 23/09/64						

การทดลองที่ 8

4-Digits Counters

วัตถุประสงค์

- 1. เพื่อให้สามารถใช้โปรแกรมคอมพิวเตอร์จำลองการทำงานของวงจรลอจิกเกทได้
- 2. เพื่อให้สามารถประยุกต์ใช้วงจรและอุปกรณ์ดิจิทัลเพื่อออกแบบระบบงานที่ซับซ้อนได้
- 3. เพื่อประยุกต์ใช้วงจรนับแบบ BCD Counter ร่วมกับวงจร 7-Segment ได้

<u>อุปกรณ์</u>

- ้ 1. ระบบคอมพิวเตอร์ 1 เครื่อง พร้อมติดตั้งโปรแกรม Quartus II เวอร์ชั่น 8.0 (Student Edition) ขึ้นไป
- 2. บอร์ดทดลอง Cyclone3-Lab01 1 บอร์ด
- 3. สาย J-TAG 1 เส้น ใช้รุ่น USB-Blaster (สำหรับเครื่อง Notebook) หรือรุ่น Byte-Blaster (สำหรับเครื่อง PC)
- 4. บอร์ดแสดงผล 7-segment (รุ่นแป้นพิมพ์ Keypad สีขาว)

การทดลอง การสร้างวงจรนับเลขฐานสิบ ขนาด 4 หลัก

ขั้นที่ 0 เตรียมการ ด้วยการนำเอาอุปกรณ์ที่เคยสร้างไว้ในการทดลองที่ 5, 7 มาใช้ (ไม่ต้องเขียนขึ้นใหม่)

คำสั่งการทดลอง

- 1. ให้ น.ศ. สร้างโฟลเดอร์สำหรับเก็บงานขึ้นใหม่เพื่อเก็บงานในการทดลองนี้ชื่อ "Lab08_4DigitCounter"
- 2. นำวงจรที่เคยสร้างไว้ในการทดลองที่ 5,7 (ทำการ copy ไฟล์ดังรายชื่อด้านล่าง) มาไว้ในโฟลเดอร์นี้
 - จากการทดลองที่ 7 ไฟล์ mux2to1.qpf และ mux2to1.bdf

ไฟล์ AsynchronousCounter.qpf และ AsynchronousCounter.bdf

ไฟล์ ClockDivider.qpf และ ClockDivider.bdf

- จากการทดลองที่ 5 ไฟล์ VHD_7SEGM.qpf และ VHD_7SEGM.∨hd

- 3. ให้ทำการเปิดโปรเจคทั้ง 4 โปรเจคตามในข้อ 2 มาทำการคอมไพล์ใหม่และสร้าง symbol ทั้งหมด โดยดำเนิน การตามขั้นตอนดังนี้
 - 3.1 ไปที่เมนู File >> Open Project... >> เลือกชื่อโปรเจคที่ต้องการจะเปิด
 - 3.2 เปิดไฟล้์วงจรขึ้นมา (Logic Diagram หรือ Schematic: *.gdf หรือ ไฟล์ *.vhd)
 - 3.3 ตั้งค่าอุปกรณ์โดยไปที่เมนู Assignments >> Device >> เลือกใช้ชิพเบอร์ EP3C10E144C8
 - 3.4 ทำการ**คอมไพล์** และสร้าง Symbol file ของอุปกรณ์
 - 3.5 ปิดโปรเจค File >> Close Project
 - น.ศ. จะต้องทำตามขั้นตอน 3.1 3.5 ให้ครบทั้ง 4 อุปกรณ์ก่อนจึงทำข้อต่อไป

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 2 / 10

ขั้นที่ 1 สร้างตัวมัลติเพล็กเซอร์ขนาด 7 บิต (7-bit 2 Channel Multiplexer)

- 4. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 2-3 ก่อนที่จะดำเนินการต่อไป
 - a) ให้สร้างโปรเจคชื่อ 7CH_2to1MUX และเปิดไฟล์ขึ้นมาเพื่อเขียนวงจรในรูปที่ 1 ซึ่งเป็นมัลติเพล็กซ์เซอร์ ขนาด 7 บิต (ภายในประกอบไปด้วย mux2to1 จำนวน 7 ตัว)

ขั้นที่ 2 สร้างตัวหารความถี่ (Clock divider) จาก 20 MHz ให้เหลือ 25Hz, 50Hz

- 5. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 4 ก่อนที่จะทำการทดลองต่อไป
- 6. ให้สร้างโปรเจคชื่อ Clock_Divider25xHz เพื่อเป็นวงจรหารความถื่นาฬิกา (Clock divider) จาก 20 MHz ลงเหลือประมาณ 25 , 50 Hz ตามวงจรในรูปที่ 2 เมื่อสร้างเสร็จให้ทำการคอมไพล์และสร้าง Symbol file

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 3 / 10

หมายเหตุ 2 การกำหนดขนาดความกว้างของบัสข้อมูล
เส้นหนาทึบสีม่วงเข้มในวงจรมีชื่อเรียกว่า Orthogonal bus
ซึ่งจะต้องระบุ

- 1.ชื่อของสาย และจำนวนเส้นของสายตัวนำ
- 2.การเชื่อมต่อปลายทั้งด้านต้นทาง/ปลายทาง

สามารถดำเนินการได้ดังนี้

ก) ใช้เม้าส์คลิ๊กที่เส้นบัส (Orthogonal bus) ที่ต้องการ จะปรากฏ**สีของบัสเปลี่ยนเป็นสีน้ำเงิน**จากนั้นใช้ปลาย เม้าส์ชี้ที่เส้นบัสแล้วคลิ๊กขวา เลือกเมน

>> Property

Bus Line

ข) จะปรากฏหน้าต่างให้ตั้งชื่อบัส ตั้งชื่อเป็น W1[1..7]

W1 = ชื่อของบัส

[1..7] = จำนวนเส้นของบัสมีทั้งหมด 7 เส้น มีหมายเลขกำกับแต่ละเส้นคือ [1], ... , [7]

ค) การเลือกเชื่อมต่อเฉพาะแต่ละปลายของสายจะใช้วิธีเขียนชื่อ ให้ตรงกัน ระหว่าง**สายเส้นเล็กสีม่วง** (Orthogonal node) กับ**สายทึบสีม่วงเข้ม** (**Orthogonal bus**)

ดังตัวอย่าง ปลายสายเส้นที่ 3 หรือ W1[3] จากบัส W1[1..7] ถูกเชื่อม ต่อไปที่ขา w1 ของอุปกรณ์ชื่อ inst4 ซึ่งเป็นอุปกรณ์ประเภท mux2to1

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 4 / 10

ขั้นที่ 3 สร้างตัวแก้สัญญาณเบ้าซ์ (การรบกวนแบบอาร์คที่หน้าสัมผัส) ที่สวิทซ์ (Debounce)

- 7. ให**้ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 6 ก่อนที่จะดำเนินการต่อไป
- 8. สร้างอุปกรณ์ Debounce ซึ่งเป็นวงจรสำหรับแก้ปัญหาเรื่อง bounce (bounce : การสวิงระหว่างค่า '1' และ '0' ถี่ๆ ในขณะที่กดสวิทซ์) โดยดำเนินการตามขั้นตอนดังนี้
 - 8.1 สร้างโปรเจคชื่อ "Debounce" ให้เก็บไว้ในโฟลเดอร์เดียวกันกับโปรเจคที่สร้างตอนก่อนหน้า จากนั้นสร้างวงจรในรูปที่ 3 ใช้ชิพ EP3C10E144C8

8.2 จากรูปที่ 3 จะพบว่ามีอุปกรณ์อยู่ 2 ตัวที่ไม่ใช่อุปกรณ์ทั่วๆไป และเราไม่รู้จักคือ COUNTER และ OR16

วิธีการสร้างอุปกรณ์ชื่อ COUNTER ให้ดำเนินการโดยไปที่แมนู symbol Tools จากนั้นกดปุ่ม button ชื่อ MegaWizard Plug-In Manager ดังรูปที่ 4 แล้วเลือก

>> Create a new custom megafunction variation จะปรากฏหน้าต่างสำหรับให้เลือกอุปกรณ์ขึ้นมา

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 5 / 10

8.4 **เลือกจำนวนบิท**เป็น 16 บิต และเป็นวงจรนับ แบบนับลง ดังรูปที่ 6

ฐปที่ 6

8.5 เลือกวิธีการนับเป็นแบบปกติ

- Plain binary
- ให้มี**ขาควบคุม Enable** แบบ synchronous ดังรูปที่ 7
- เลือกความสามารถสำหรับ การกำหนดค่าตั้งต้นนับได้ ดังรูปที่ 8

รูปที่ 7

รูปที่ 8

เมื่อทำไปจนจบขั้นตอนก็จะได้วงจรนับเลขขนาด 16 บิทสามารถนำไปใช้งานได้ทันที ค่าตัวเลขนับสูงสุดจะถูกกำหนดไว้จากที่อื่นและส่งมาให้**ที่ขา data[15..0]**

ค่าตัวเลขนี้จะเป็นตัวกำหนดให้วงจร debounce ถ่วงเวลาไว้ก่อนเมื่อสวิทซ์ถูกกด โดยการรอนี้ จะนานเท่ากับ จำนวนเลขคูณกับค่าคาบสัญญาณนาฬิกา ก่อนที่จะปล่อยเอ้าท์พุทที่ถูกต้องออกมาให้เรา

>> MegaWizard Plug-In Manager เลือกสร้างอุปกรณ์ประเภท Gates — และสร้างอุปกรณ์เป็น LPM_OR ____ จากนั้นให้ตั้งชื่อเป็น OR16 ดังรูปที่ 9

รูปที่ 9

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 6 / 10

9. เมื่อได้อุปกรณ์ COUNTER, OR16 แล้วก็เขียนวงจรในรูปที่ 3 ต่อและทำการคอมไพล์ พร้อมสร้าง symbol file ของวงจรขึ้นมาเตรียมไว้ใช้ในขั้นถัดไป

ขั้นที่ 4 สร้างวงจรนับเลขฐานสิบ ขนาด 4 หลัก (นับจาก 0000 ถึง 9999)

- 10. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 8-9 ก่อนที่จะดำเนินการต่อไป
- 11. สร้างโปรเจคชื่อ "Last4DigitStudentID VHDL" ขึ้นมาและให้เก็บไว้ในโฟลเดอร์เดิม
 - a) สร้างวงจรนับเลขในรูปที่ 10 ใช้ภาษา vhdl
 - b) ใช้ชิพเบอร์ EP3C10E144C8 ให้ทำการคอมไพล์ และสร้าง symbol file ไว้ใช้งานขั้นต่อไป

```
LIBRARY ieee ;
     USE ieee std_logic_1164.all ;
                                                                   น.ศ. สามารถคัดลอกโปรแกรมได้จาก
    USE ieee.std_logic_unsigned.all ;
                                                                   โค๊ดภาษา VHDL ที่ด้านท้ายเอกสารแล็บ
    USE ieee.std_logic_arith.all;
                                                                   (ไฟล์เอกสารอิเล็กทรอนิกส์ ***.pdf)
 6 ENTITY Last4DigitStudentID_VHDL IS
   PORT (Clock : IN STD_LOGIC;
Clear, En : IN STD_LOGIC;
BCD3, BCD2 : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
BCD1, BCD0 : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
 8
 9
10
11
   END Last4DigitStudentID VHDL ;
12
13 ARCHITECTURE Behavior OF Last4DigitStudentID_VHDL IS
14
         SIGNAL E , EQUAL : STD_LOGIC;
          SIGNAL PBCD1, PBCD0 : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL PBCD3, PBCD2 : STD_LOGIC_VECTOR(3 DOWNTO 0);
15
16
                      PBCD3, PBCD2 : STD LOGIC VECTOR(3 DOWNTO 0);
          CONSTANT DIGITO : STD LOGIC VECTOR(3 DOWNTO 0) := "0100" ; -- Digit0 = 4
17
         CONSTANT DIGIT1 : STD_LOGIC_VECTOR(3 DOWNTO 0) := "1000" ; -- Digit1 = 8
18
19 CONSTANT DIGIT2: STD_LOGIC_VECTOR(3 DOWNTO 0):= "0111"; -- Digit2 = 7
20 CONSTANT DIGIT3: STD_LOGIC_VECTOR(3 DOWNTO 0):= "0110"; -- Digit3 = 6
21 BEGIN
22 PROCESS ( Clock )
23
23
24 =
         IF Clock'EVENT AND Clock = '1' THEN
25
                   IF Clear = '1' THEN
26
                       PBCD1 <= "0000"; PBCD0 <= "0000";
27
                       PBCD3 <= "0000"; PBCD2 <= "0000";
                  ELSIF E = '1' THEN
28
29
                       IF PBCD0 = "1001" THEN
30
                            PBCD0 <= "0000";
31
                            IF PBCD1 = "1001" THEN
                                PBCD1 <= "0000";
32
                                 IF PBCD2 = "1001" THEN
33
    PBCD2 <= "0000";
34
35
                                    IF PBCD3 = "1001" THEN
                                       PBCD3 <= "0000";
36
37
                                       PBCD3 <= PBCD3 + '1';
38
39
                                    END IF ;
40
41
                                   PBCD2 <= PBCD2 + '1';
42
                                 END IF ;
43
                            ELSE
                                PBCD1 <= PBCD1 + '1';
44
45
                            END IF ;
46
                        ELSE
                            PBCD0 <= PBCD0 + '1';
                                                                                       รูปที่ 10
47
                        END IF ;
```

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 7 / 10

```
END IF :
50.
             END IF:
51
         END PROCESS;
52
         E <= En AND EQUAL;
53
         BCD3 <= PBCD3;
54
         BCD2 <= PBCD2;
         BCD1 <= PBCD1;
55
56
        BCDO <= PBCDO;
57
       PROCESS ( PBCD3, PBCD2, PBCD1, PBCD0 )
58
        BEGIN
59 🔳
                 IF PBCD3 = DIGIT3 THEN
60 =
                     TF PBCD2 = DTGTT2 THEN
                         IF PBCD1 = DIGIT1 THEN
61
                             IF PBCD0 = DIGITO THEN
62
63
                                EQUAL <= '0';
   64
                             ELSE
                                EQUAL <= '1' ;
65
                             END IF:
67
                         END IF:
68
                     END IF:
69 ■
                 ELSE
70
                    EQUAL <= '1';
71
                 END IF:
       END PROCESS:
72
                                                            รูปที่ 10 (ต่อ)
73
     END Behavior ;
```

ขั้นที่ 5 ปรับแต่ง (ดัดแปลง) ให้ชุดวงจร 7-segment ให้แสดงผลได้อย่างเหมาะสม

เนื่องจากบอร์ดทดลองสำหรับแสดงผลเป็นตัวเลข 7-Segment มีการทำงานที่เรียกว่า active low (ต้องป้อน สัญญาณลอจิก '0' ให้ตัวหลอด LED; ไดโอดส่องแสง) วงจร LED จะส่องแสงสีแดงขึ้นมาได้ก็ต่อเมื่อเราต้องจ่าย แรงดันไฟสถานะลอจิก '0' ให้มันเท่านั้น ซึ่งถ้าหากเราใช้ชุดวงจร VHD_7SEGM.vhd จากการทดลองที่ 5 ก็จะ แสดงผลตัวเลขได้ไม่เหมาะสม (LED ดวงที่ควรจะติดก็จะดับ ส่วนดวงที่ควรจะดับกลับกลายเป็นติดแทน) จึงต้องมี การปรับเปลี่ยนโปรแกรมบ้างเล็กน้อยด้วยการเพิ่ม NOT gate และสายไฟตัวนำชื่อ temp ใส่เข้าไป ดังรูปที่ 11

```
LIBRARY ieee ;
   USE ieee.std_logic_1164.all;
 4 = ENTITY VHD_7SEGM IS
                       : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
: OUT STD_LOGIC_VECTOR(1 TO 7));
 5 PORT ( bcd leds
   END VHD 7SEGM ;
 9 =ARCHITECTURE Behavior OF VHD_7SEGM IS
                                                                     ดัดแปลงแก้ไขด้วยการใส่
10
         signal temp: STD LOGIC VECTOR(1 TO 7);
11
                                                                     เพิ่ม "NOT"เกท เข้าไปใน
12
13
  =BEGIN
                                                                     วงจรก่อนที่จะส่งสัญญาณ
        PROCESS ( bcd )
14 =
15
        BEGIN
                                                                     ออกที่พอร์ทชื่อ leds
16
         CASE bcd IS
                                                  abcdefg
                 WHEN "0000"
                                 => temp
                                             <= "11111110" ;
17
                 WHEN "0001"
                                             <= "0110000";
                                 => temp
                                                                     หมายเหตุ: น.ศ.จะต้องเปิด
                                             <= "1101101" ;
                 WHEN "0010"
19
                                 => temp
                                             <= "1111001"
                 WHEN "0011"
20
                                 => temp
                                                                    โปรเจคขึ้นมาทำเช่นเดียว
                 WHEN "0100"
                                             <= "0110011" ;
21
                                 => temp
                 WHEN "0101"
                                 => temp
                                             <= "1011011"
22
                                                                     กันกับที่เคยทำในขั้นตอนที่
                 WHEN "0110"
                                             <= "1011111"
                                 => temp
23
                                             <= "1110000"
                 WHEN "0111"
24
                                 => temp
                                                                    2-3 เพียงแต่ในขั้นนี้ให้
                 WHEN "1000"
                                             <= "11111111" ;
25
                                 => temp
                                             <= "1110011" ;
                WHEN "1001"
26
                                 => temp
                                                                     น.ศ. จะต้องมีการปรับแก้
                WHEN OTHERS
                                 => temp
                                             <= "00000000";
27
            END CASE ;
2.8
        END PROCESS ;
29
                                                                    ไขโปรแกรมด้วย
30
        leds <= NOT temp;</pre>
31
                                                                                   รูปที่ 11
32
33 END Behavior ;
```

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 8 / 10

ขั้นที่ 6 ทำการประกอบวงจรที่สร้างมาทั้งหมดมารวมเข้าด้วยกันเป็นวงจรที่สมบูรณ์

- 12. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 11 ก่อนที่จะดำเนินการต่อไป
- 13. สร้างโปรเจคชื่อ "CounterWithDebounce" ขึ้นมาและให้เก็บไว้ในโฟลเดอร์เดิม
 - a) เปิดไฟล์ขึ้นมาสำหรับเขียนวงจรในดังรูปที่ 12 ให้ใช้ชิพเบอร์ EP3C10E144C8 และคอมไพล์วงจร

หมายเหตุ : การสร้างอุปกรณ์ชื่อ DelayTimeSet อุปกรณ์ DelayTimeSet ค่าคงที่ (constant) มีไว้สำหรับ เป็นค่าการหน่วงเวลาให้กับวงจรสวิทซ์ (debounce) สร้างได้โดยใช้เครื่องมือ MegaWizard...

>> MegaWizard Plug-In Manager เลือกอุปกรณ์ที่จะสร้างเป็นประเภท

>> gates >> LPM_CONSTANT
ตั้งชื่อเป็น DelayTimeSet
ให้ขนาดความกว้าง**บัสข้อมูล = 16 บิท**และแสดงข้อมูลเป็นเลขฐานสิบ

ขั้นที่ 7 นำวงจรที่สมบูรณ์ไปทำการโปรแกรม (Configuration) ลงบอร์ดทดลอง

14. ทำการคอมไพล์วงจรและนำชิ้นงานต้นแบบที่ได้จากขั้นตอนที่ 13 ลงในบอร์ดทดลอง Cyclone3-Lab01

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 9 / 10

โดยกำหนดขาต่าง ๆ ตามรูปที่ 13

		Node Name	Direction	Location	I/O Bank	Vref Group	I/O Standard				
1		Clear	Input	PIN_33	2	B2_N0	3.3-V LVTTL (default)				
2		clk	Input	PIN_22	1	B1_N0	3.3-V LVTTL (default)				
3	•	Digit2_1[1]	Output	PIN_110	7	B7_N0	3.3-V LVTTL (default)				
4	•	Digit2_1[2]	Output	PIN_112	7	B7_N0	3.3-V LVTTL (default)				
5	•	Digit2_1[3]	Output	PIN_111	7	B7_N0	3.3-V LVTTL (default)				
6	•	Digit2_1[4]	Output	PIN_114	7	B7_N0	3.3-V LVTTL (default)				
7	•	Digit2_1[5]	Output	PIN_113	7	B7_N0	3.3-V LVTTL (default)				
8	•	Digit2_1[6]	Output	PIN_119	7	B7_N0	3.3-V LVTTL (default)				
9	•	Digit2_1[7]	Output	PIN_115	7	B7_N0	3.3-V LVTTL (default)				
10	•	Digit3[1]	Output	PIN_121	7	B7_N0	3.3-V LVTTL (default)				
11	•	Digit3[2]	Output	PIN_125	7	B7_N0	3.3-V LVTTL (default)				
12	0	Digit3[3]	Output	PIN_124	7	B7_N0	3.3-V LVTTL (default)				
13	•	Digit3[4]	Output	PIN_127	7	B7_N0	3.3-V LVTTL (default)				
14	•	Digit3[5]	Output	PIN_126	7	B7_N0	3.3-V LVTTL (default)				
15	•	Digit3[6]	Output	PIN_129	8	B8_N0	3.3-V LVTTL (default)				
16	•	Digit3[7]	Output	PIN_128	8	B8_N0	3.3-V LVTTL (default)				
17	•	Digit4[1]	Output	PIN_133	8	B8_N0	3.3-V LVTTL (default)				
18	•	Digit4[2]	Output	PIN_136	8	B8_N0	3.3-V LVTTL (default)				
19	•	Digit4[3]	Output	PIN_135	8	B8_N0	3.3-V LVTTL (default)				
20	•	Digit4[4]	Output	PIN_138	8	B8_N0	3.3-V LVTTL (default)				
21	•	Digit4[5]	Output	PIN_137	8	B8_N0	3.3-V LVTTL (default)				
22	•	Digit4[6]	Output	PIN_142	8	B8_N0	3.3-V LVTTL (default)				
23	•	Digit4[7]	Output	PIN_141	8	B8_N0	3.3-V LVTTL (default)				
24		Enable	Input	PIN_32	2	B2_N0	3.3-V LVTTL (default)				
25	•	On_Digit1	Output	PIN_144	8	B8_N0	3.3-V LVTTL (default)				
26	•	On_Digit2	Output	PIN_143	8	B8_N0	3.3-V LVTTL (default)				

รูปที่ 13

- 15. เมื่อตรวจสอบความถูกต้องของขาอุปกรณ์เรียบร้อยแล้วให้ทำการคอมไพล์วงจรอีกครั้ง
- 16. นำบอร์ดทดลองมาต่อแหล่งจ่ายไฟ 12 โวลท์ เปิดสวิทซ์ จากนั้นต่อสายสำหรับดาวน์โหลดจากคอมพิวเตอร์ ลงในบอร์ดทดลองโดยใช้สาย

Byte Blaster สำหรับเครื่องคอมพิวเตอร์ PC (ติดตั้งไว้แล้วที่ PC ทุกเครื่องในห้องปฏิบัติการ)
USB Blaster สำหรับเครื่องคอมพิวเตอร์โน๊ตบุค (น.ศ. ต้องติดตั้งไดรฟ์เวอร์ก่อน)

- 17. ต่อ**บอร์ดแสดงผล 7-Segment** ของ Smart Prototype เข้ากับช่องต่อคอนเน็คเตอร์ Expansion Port B เปิดสวิทซ์ป้อนไฟเลี้ยงให้กับวงจร
- 18. ดาวน์โหลดโปรแกรมเพื่อทำ configuration ชิ้นงานต้นแบบลงบอร์ด

ผลการทดลอง

	ากคู่มือบอร์ดหน้า 19-20 (4.WARRIOR CTCLONE3 Education Board User's Manual.PDF)
_	สวิทซ์เลื่อน SW7 ถูกต่อเข้าที่พอร์ทชื่อ PIN_33 ในวงจรรูปที่ 12 ทำหน้าที่เป็น 村 clear shiples กำ ป้อน ลอริก ำ イ マコ Clear = hìqh → ส่วผสิน Cutput จูกเคลียร์ และเริ่มทั้งในว
	กำ ข้อนลอจิก '1' an Clear = high -> ส่วนสินั Output ภาเคลือร์ และเรื่องับในว
	สวิทซ์เลื่อน SW6 ถูกต่อเข้าที่พอร์ทชื่อ PIN - 32 ในวงจรรูปที่ 12 ทำหน้าที่เป็น ทา Enable ดำ ชื่อน ลงจิก`า′ ชา emable = high → มารเกิดการนับเลง

ข) ปรับสวิทซ์เลื่อน SW7 , SW6 บันทึกการทำงานของวงจร[®] (สิ่งที่เห็นจาก 7-segment) SW7= Low , SW6= Low การทำงานของวงจร **ไม่ทำ**อาน CClear & En = 0)

SW7= Low, SW6= High การทำงานของวงจร ทำการนับเลบ (Clear = 0 & En=1)

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 10 / 10

	SW7= High, SW6= Low การทำงานของวงจร <u>ค่า Clear = 1 (SW=high))) จริง ใน</u>
•	Output = 0000 masa to onsolo
	SW7= High, SW6= High การทำงานของวงจร แล้ว enable = 1 แต่ A Clear = 1
- \	วงจรนี้นับถึงเลขสุดท้ายและค้างค่าไว้ลำดับเลขที่ 6784
ብ) <i>'</i>	วงจรนนบถงเลขสุดทายและคางคาเวลาดบเลขท
ĩ	กต่องการจะเบลยนเลขนเหตุงงกับเลขทาย4ตาของรหลนกศักษาจะต่องทายอาจเร เรือไฟล์ VHDI ชื่อ Last 4 Digit Student – VHDI ใช่ทัศลัง constant digit 3 –digit
9	ักต้องการจะเปลี่ยนเลขนี้ให้ตรงกับเลขท้าย4ตัวของรหัสนักศึกษาจะต้องทำอย่างไร เปิดไฟล์ VHPL 80 Last 4Digit Student – VHPL ใปที่ศาสัง constant digit 3 -digit (บับปลั่ยน ลาก 0110 , 0111 , 1000 , 0100 เป็น 0001 , 0001 ,1000 และ 1000 ตามลิเธิ
ง) ใ	นรูปที่ 12 ที่ตัวอุปกรณ์ Clock_Divider25xHz ถ้าสัญญาณเอ้าท์พุทถูกย้ายไปต่อที่พอร์ท clk25XHz จะเกิด อะไรขึ้น
• •	อะไรขึ้น X เพราะเหตุใด ในได้ต่อ ปลูร่ 6m ด ม อ ง
จ) เ	ก้าต้องการให้การนับเลขมีความเร็วเพิ่มมากขึ้น หรือนับช้าลงจะต้องดัดแปลงวงจรอย่างไร
	ไม่ไถ้ต่อขอร่ดาดลออ
• •	
• •	
	นมอบหมายท้ายการทดลอง
	ให้เขียนลงบนกระดาษ A4 ที่มีเส้นบรรทัดและรวมใส่ท้ายเอกสารการทดลอง ส่งอาจารย์ผู้สอนในคราวถัดไป)
	1. ให้อธิบายเรื่อง bounce และการแก้ปัญหาด้วยการทำ debounce
	2. ให้ดัดแปลงวงจร โดยเริ่มนับจากรหัสนักศึกษา (4ตัวท้าย) ลดค่าลงครั้งละ 1 และให้หยุดนับเมื่อลดลงถึง 0

1.) Simulation (SW7 10W, SW6 10W)

2) Simulation (SW+ low, SW6 high)

4.) Simulation (sw + high, sw + high)

ourside atalianis surcer were mus

SW 6 = low

SW 6 = (0W

SW 6 = high

(ให้เ 1. ใ	ห้อธิบาย	เนกระต เรื่อง b	กาษ A4 ounce	ที่มีเส้นบ และการ	แก้ปัญห	าด้วยกา	รทำ del	oounce	ทดลอง ส่																		
1																								ฤ i	ว่ ก ำ กำ	lú	
lì	16)	Ã	vic.	ทุต	b	Lo	W -	→	Ηç	3h	4	ำเกิ	ାମ	n }	i ŽV	'n	กใช่	Ä	Vαj	าณ	าใว	ไม่เ	3	สาว	ทสเ	a	
										·																	
									นับ	•	l.ce	.	รเมา	4 0	ı Ω . 1	ก่	ء (وا	ורן א	141	žO	<u>م</u>	מת	โกเล	a' 1-	ร กค	₩	
1	V C	/ U	.\	110		1	\ \ \	110	,	ļ	LI()(<i>)</i>	VEU	. A.	ולייל	11/0	יי	1 46 /	(0)	uci	ועפ	510	N U6	ط ۱۱	710 [1 10	
7	003	ฟาก	M	กุ๊ก	า	<i>1</i> 9°	lu	M ·	zw.	JΜ.	กูก	6X 93	וגנ	ฤทิ	X6	X	X										
																()	ζ,										

ason major Clear in otien of they

