Probabilistic Algorithm

Algorithm: Design & Analysis [22]

In the Last Class...

- Polynomial Reduction
- Conquer the Complexity by Approximation
- Approximation Algorithm for Bin Packing
- Evaluate an Approximation Algorithm
- Online algorithm

Probabilistic Algorithm

- Adding Randomness into Algorithm
- Primality Problem
- Monte Carlo Algorithm for Primality Testing
- p-Correctness and Bias
- Decreasing Error Probability by Repeating

Randomization as a Choice

A More Serious Application

far far away

Computer B

Computer A

We want to verify the consistency between the two databases of size n ($n=10^{16}$, say) located on A and B.

For a deterministic answer, we have to transfer a message of at least *n* bits, and (!) without an error on the way. It doesn't look a pleasant task.

Randomness Can Help

Let the database in *A* is $x=x_1x_2...x_n$, and that in *B* is $y=y_1y_2,...,y_{n=1}$ Number (x) is the value of x as a binary number.

Randomized Protocol for Equality (A,B)

- 1. A chooses uniformly a prime p from [2, n^2] at random.
- 2. A computes s=number $(x) \mod p$, and sends s, p to B (note: s and p can each be represented in $\lceil \log_2 n^2 \rceil$ bits.)
- 3. B reads s and p, and computes q=number $(y) \mod p$
- 4. B sends message: "yes" if q=s; and "no" otherwise.

No Guarantee, but Pretty Good

- The protocol may err: x=01111(15), y=10110(22), if p=7, then s=1, and q=1. So, 7 is a "bad" prime in [2, n²].
- In fact, if x=y, the protocol always gives the correct answer, and if $x\neq y$, wrong result is give if a "bad" prime selected.
- So, the probability that the protocol errs is the ratio of "bad" prime in the set of all prime in $[2, n^2]$.
- Fortunately, the probability is low: $\ln n^2/n$, that is, no greater than 0.36892×10^{-14} for $n=10^{16}$
- Another good news: the length of the message transferred is no longer than $4 \lceil \log_2 n^2 \rceil$ (that is, 256 for $n=10^{16}$)

Two Categories of Randomness

- Introducing randomness to the process of solving a problem, but always give a correct result.
 - Quicksort using randomly selected pivot.
- Introducing randomness to the results. (which year was the PRC founded? as an example)
 - 1949, 1949, 1948, 1005, 1949, 654B.C, 1949, 1949, 2005, 1949
 - 1949, sorry, 1949, 1949, sorry, 1949, sorry, 1949, 1949, 1949
 - Between 1900 to 2000; between 1945 to 1950; between 1503 to 1845; between...

(the problem is: what should I believe?

Primality Testing

- Problem: Is a given (odd) positive integer a prime?
- The algorithm you are familiar with:

```
Boolean TestPrimality(n)
int i;
for (i=2; i \le \lfloor \sqrt{n} \rfloor; i++)
if (n \mod i = 0)
return false;
return true
```

The Algorithm is Exponential

- For number-theoretic algorithms, we usually take the input size to be the number of digits in n.
- Using decimal system, the number of digits in n is $m = \lceil \log_{10}(n+1) \rceil$
- The function *TestPrimality* executes the **for** loop $\lfloor \sqrt{n} \rfloor$ times in the worst case, which is about $10^{m/2}$.
- If *n* has more than 40 digits, it would take millions of years to say "yes".

Randomness Introduced Simply

```
Boolean
TestPrimalityRandom(n)
int j;
Random(\{2,..., \lfloor \sqrt{n} \rfloor \}, j)
if (n \mod j = 0)
return false;
else
return true;
```

However, the algorithm is *unacceptable* in practice.

Even though it is really "not" when returned value is "false", it has no any positive "fixed confidence level" if the returned value is "true".

Monte Carlo Algorithms

- For a (fixed) real number p, 0 , a <math>p-correct Monte Carlo algorithm is a probabilistic algorithm that returns the correct answer with probability not less than p no matter what input is considered.
- Note: the algorithm TestPrimalityRandom is 100% correct if it returns "false", (on the other hand, if $n=p_1p_2$ with primes $p_1 < p_2$, the algorithm has only $1/p_1$ probability to give a correct "false"), but is correct with ANY small probability if it returns "true".
- **Bad news**: there is usually no efficient method available to test whether an answer returned by a Monte Carlo algorithm for a given input is correct.

Help from as Early as 1640

- Fermat's little theorem:
 - If *n* is a prime, then for all positive a < n,

```
a^{n-1} \equiv 1 \pmod{n} (for example: 1^6 = 0 \times 7 + 1; 2^6 = 9 \times 7 + 1; ..., 5^6 = 2232 \times 7 + 1; 6^6 = 6665 \times 7 + 1)
```

- [Contraposition of Fermat's little theorem]
 - If n and a are integers such that $1 \le a \le n$, and the modular equation above does not hold for them, then n is NOT a prime.

(a **deterministic** result for negating an natural number being prime)

What about Positive Result

- The following statement DOESN'T hold:
 - If $a^{n-1} \equiv 1 \pmod{n}$ for some natural number n and a(a < n), then n is prime (false!).
 - If fact, there **do** exist **composite** numbers n, for which $a^{n-1} \equiv 1 \pmod{n}$ for most a < n. (even for all a < n)

However

- Good news: **most** composite numbers n have **many** integers a in $\{2,...,n-1\}$ such that $a^{n-1} \neq 1 \pmod{n}$
- It seems that a test for primality for THOSE composite numbers that has a high probability of being correct is to test whether $a^{n-1} \neq 1 \pmod{n}$ for a random choice of a.

Monte Carlo Algorithm for Primality

```
Boolean FermatTestPrimality(n)
int a;
Random ( {2,3,..., n-2}, a);
if expomod (a, n-1, n) =1
   return true;
return false;
```

```
Note the facts:

xy \mod z =

(x \mod z) (y \mod z) \mod z;

(x \mod z)^y \mod z = x^y \mod z;
```

```
int expomod (a,n,z) // computes a^n \mod z

int i, r, x;

i=n; r=1; x=a \mod z;

while (i>0)

if i is odd

r=rx \mod z;

x=x^2 \mod z;

i=i \operatorname{div} 2;

return r;
The loop is executed about \log n times
```

False Witness of Primality

- When FermatTestPrimality returns "false", n is NOT a prime with certainty, but what about a returned value of "true"?
- Examples of fails: $(n-1)^{n-1} \mod n = 1$ for all odd $n \ge 3$; and a nontrivial example: $4^{14} \mod 15 = 1$. (4 is called a *false witness of primality*)

What's the Risk

- Good news false witness are rather few: for all odd composite less than 1000, more than half have only 2 false witness, and less than 16% have more than 15. The average error probability on odd composite smaller than 1000 is less than 3.3%.
- Bad news some odd composites admit a significant proportion of false witness: the worst case among odd composites smaller than 1000 is 561 with 318 false witness, and 651693055693681 is a composite but return "true" with probability of 99.9965%.
- In fact, FermatTestPrimality is NOT p-correct for any p>0.

A Special Set for Testing

Let n be an odd integer greater than 4, and n-1=2st, where t is odd. Define set B(n) as follows:

Which implies a is Fermat

false witness as well.

- $a \in B(n)$ if and only if $2 \le a \le n-2$, and
- $a^t \mod n = 1$, or
- there is an integer i, $0 \le i < s$, such that $a^{(2it)} \mod n = n-1$
- Example: 158∈B(289)
 - $= 289-1 = 288 = 2^5 \times 9, \text{ so s} = 5, t = 9$
 - $x=158^9 \mod 289 = 131 \neq 1$, so, condition 1 does not hold; but
 - We successively square x (mod n) up to 4 times (s-1=4)
 131² mod 289=110; 110² mod 289=251; 251² mod 289=288
 - \blacksquare So, $158 \in B(289)$

Extension of Fermat's Little Theorem

- If n is prime, then $a \in B(n)$ for all $2 \le a \le n-2$.
- If n>4 is an odd composite number and there is some a in [2,n-2] satisfying $a \in B(n)$, a is called a strong false witness of primality for n.
- Good news:
 - Strong false witnesses are much rarer than Fermat false witness. For example, 4 is NOT strong false witness for 15.
 - For all odd composites smaller than 1000, the average probability of randomly selecting a strong false witness is less than 1%, more than 72% of them do not admit strong false witness.
 - At least one of 2,3,5,7 or 61 is NOT a strong false witness for every odd composite integer between 5 and 10^{13} .
 - Most importantly, there is a guarantee that the proportion of strong false witness is small for every odd composite.

Improved Algorithm – Miller-Rabin

```
Boolean MillRab(n)
//only for n>4 is odd
int a;
Random ({2,...n-2}, a);
return Btest(a,n)
```

It can be proved that if n is composite, then |B(n)|≤(n-9)/4, which means that MillRab is 3/4-correct Monte-Carlo algorithm

```
Boolean Btest(a,n)
  int i,s,t,x;
  s=0; t=n-1;
  while ((t mod 2)\neq1)
     s=s+1; t=t/2;
  x=expomod(a,t,n);
  if (x==1 \text{ or } x==n-1) return true;
  for (i=1; i<s; i++)
     x=x^2 \text{ mod } n;
     if (x = n-1) return true;
  return false;
```

Repeat for Better

- The answer "false" is guaranteed to be correct.
- If n>4 is prime, MillRab always return the correct answer, on the other hand, if n>4 is an odd composite, MillRab has probability at most ¼ of hitting a strong false witness and erroneously returning "true".
- So, the following algorithm is (1-4-k)-correct:

```
Boolean RepeatMillRab(n,k)//only for n>4 is odd
int i;
for (i=1; i≤k; i++)
if MillRab(n)=false return false;
return true;
```

The Complexity

- How much time does it take to decide on the primality of n with an error probability bounded by ε ?
 - Repeat the Miller-Rabin algorithm test k times such that $4^{-k} \le \epsilon$, that is, $2^{2k} \ge 1/\epsilon$, so, $k = \lceil 0.5 \lg(1/\epsilon) \rceil$
 - Each call of MillRab involves one modular exponentiation, with t as exponent and s-1 modular squaring, which is dominated by modular multiplication, in $O(\log n)$ times, each taking a time in $O(\log^2 n)$, resulting $O(\log^3 n)$
 - So, the complexity is $O(\log^3 n \lg(1/\epsilon))$.
 - This is reasonable in practice for thousand-digit numbers and error probability less than 10⁻¹⁰⁰.

Probability Algorithm in General

- Motivation: wrong guess vs. high cost
- Characteristics: behave differently on same input
- Understanding:
 - What's the real meaning of the sentence: "it is a prime with the probability of 99.99999%"?
 - What's the meaning of the sentence: "I believe that it IS a prime."

Home Assignment

Do anything you think helpful for your exam.

OK! That's all for the semester. Thank you all! Good luck, for everything in general, and for the exam in specific!