SAMUELE MOSCATELLI, NICOLÒ PINCIROLI, ANDREA POZZOLI

GESTIONE DEL TRAFFICO

DOCUMENTAZIONE DEL PROGETTO DI PROVA FINALE

Samuele Moscatelli, Nicolò Pinciroli, Andrea Pozzoli, Gestione del traffico Documentazione del progetto di prova finale

E-MAIL:

Samuele Moscatelli - sem.mosca97@libero.it Nicolò Pinciroli - nicolopinci.1997@gmail.com Andrea Pozzoli - pozzoliandrea97@gmail.com

Documentazione realizzata con \LaTeX .

INDICE

1	ANA	LISI DE	I REQUISITI	. 1
	1.1	Tema	del progetto	1
	1.2	Analis	si di fattibilità	2
		1.2.1	Analisi dei costi	3
		1.2.2	Dati trasmessi	3
		1.2.3	Conclusioni	3
	1.3	Diagra	amma i*	4
		1.3.1	Sistema centrale	5
		1.3.2	Centralina automobilistica	7
		1.3.3	Centralina stradale	8
		1.3.4	Applicazione mobile	9
		1.3.5	Utente	10
		1.3.6	Amministratore	11
	1.4	Data c	dictionary	13
A	APP	ENDICE		. 21
	A.1	Calcol	o dei costi	21
	A.2	.2 Calcolo dei dati trasmessi		22
RΙ	RIIO	. PAFIA		22

1 ANALISI DEI REQUISITI

1.1 TEMA DEL PROGETTO

Realizzare un sistema per il monitoraggio e il controllo integrato del traffico cittadino, composto dai seguenti sotto-sistemi che operano in modo distribuito:

- Sistema centrale: incaricato di memorizzare tutte le informazioni di stato, inviare notifiche a sistemi esterni in caso di specifici eventi, mostrare lo stato dell'intero sistema e sottosistemi. Il sistema quindi include una interfaccia utente che consente di esplorare le varie informazioni attuali.

 Opzionale: è possibile decidere di mostrare i dati anche in un qualche tipo di forma grafica (diagrammi, mappe. ecc.).
- Centraline stradali: incaricate di monitorare il flusso di traffico del segmento stradale in cui collocate e inviarlo al sistema centrale con periodicità proporzionale all'ammontare di traffico.
- Centraline automobilistiche: incaricate di inviare con periodicità fissa il dato di velocità (e posizione) del veicolo su cui sono installate.
- Applicazioni mobili: installate su telefono cellulare e incaricate di inviare al sistema centrale esplicite segnalazioni di traffico (coda, con posizione GPS) da parte degli utenti / guidatori.
 Le applicazioni inoltre ricevono notifiche dal sistema centrale per qualsiasi evento di traffico (coda, velocità lenta, traffico elevato) in un raggio fisso dalla posizione (ultima registrata) del telefono.

Specificare, progettare e implementare il sistema distribuito necessario, coprendo: sistema centrale, applicazione mobile, e una a scelta tra centralina stradale e centralina automobilistica.

Definire esplicitamente tutti i formati dei dati scambiati e le modalità di scambio (protocollo).

È possibile raffinare i requisiti ed aggiungere ipotesi e assunzioni sul contesto, sensate e in linea con quanto indicato nei requisiti. Tali estensioni devono essere esplicitamente riportate nella documentazione di progetto (sezione specifica requisiti).

ANALISI DI FATTIBILITÀ 1.2

In questa sezione si vuole analizzare la fattibilità del progetto descritto nella sezione precedente individuando i clienti, l'obiettivo, i benefici, le risorse disponibili, i possibili ostacoli e rischi e come minimizzarli. Inoltre, in due sottosezioni, vengono studiati i costi e la quantità di dati trasmessi dal sistema.

I clienti del progetto proposto sono:

- Il docente di ingegneria del software
- Il Comune di Como

L'obiettivo è quello di monitorare il traffico cittadino e ottimizzarne la gestione. Nonostante la portata iniziale del progetto sia limitata a livello comunale, il campo di azione può essere esteso ad aree geografiche più ampie senza che vengano introdotte modifiche significative.

Lo sviluppo del sistema avrebbe un impatto positivo sia a livello ambientale, in quanto ridurrebbe le emissioni dovute alle code, sia in termini di efficienza degli spostamenti dei cittadini, grazie alla possibilità di scegliere percorsi meno trafficati.

Le risorse disponibili possono essere suddivise in tre categorie: persone, tempo e attrezzature. Per quanto riguarda le persone, è prevista la collaborazione di tre studenti, supportati da due esercitatori e due assistenti di laboratorio. Il tempo stimato per la realizzazione del progetto è di tre mesi, cadenzati da quattro scadenze. Le attrezzature necessarie sono di due tipologie:

- Software: Eclipse, OpenOme, StarUML, GitLab, LATEX;
- Hardware: centraline stradali, centraline per veicoli, sistema centrale, personal computer.

Alcuni dei potenziali ostacoli che rallenterebbero lo sviluppo del sistema potrebbero essere il tempo ridotto, i requisiti generici, l'integrazione con i sensori e il mondo esterno, l'insoddisfazione del cliente, i problemi di comunicazione e l'organizzazione tra i membri del team e gli assistenti e le difficoltà nell'apprendimento di nuovi sistemi.

Per quanto riguarda i rischi, bisogna considerare che il sistema potrebbe essere poco estensibile e poco comprensibile per altri sviluppatori. Un ulteriore possibile rischio è l'eccessiva ambiziosità dei progettisti in rapporto alle proprie competenze tecniche.

Al fine di minimizzare questi pericoli possono essere adottate diverse soluzioni, tra cui: mantenere contatti continui con il cliente, in modo da comprendere le sue richieste e mostrare il programma nelle sue fasi di sviluppo, apportando eventuali modifiche; commentare il codice e utilizzare il design pattern; fornire una documentazione

chiara ed esaustiva; preferire una programmazione ad oggetti; distinguere le parti fondamentali e indispensabili del progetto da quelle secondarie o opzionali; estendere le conoscenze del team.

Analisi dei costi 1.2.1

Si analizzano ora i costi di creazione e gestione nel tempo del sistema. Il risultato dei calcoli dipende da tre fattori: il costo dei dispositivi che costituiscono il sistema, il consumo elettrico all'ora, e il costo orario di manutenzione (sezione A.1). Si deduce quindi che il costo totale è in funzione del tempo t espresso in ore e in particolare vale:

$$C(t) = 425000 + 1.22t$$

dove il primo numero è il costo iniziale mentre il secondo è il costo elettrico e di manutenzione in funzione del tempo espresso in ore. Ponendo t = 8760h (1 anno), si ottiene quindi che il costo complessivo per il primo anno risulterebbe pari a circa 436000 €.

Dati trasmessi 1.2.2

Si può inoltre stimare la quantità di dati trasmessi nel caso peggiore (sezione A.2). Le centraline automobilistiche devono inviare al sistema centrale con velocità di trasmissione richiesta pari a 128 * 8000 = 1.024 * 10⁶ bit/s. Per quanto riguarda le centraline stradali si ha un volume di dati complessivo pari a $1.8 * 10^5$ bit/s. Infine è possibile stimare la quantità di dati inviati e ricevuti dall'applicazione mobile, risultando quindi $8 * 10^5$ bit/s.

Il traffico massimo raggiungibile sarebbe pari a circa 2 milioni di bit/s (2 * 10⁶bit/s), di conseguenza basterebbe un sistema centrale con una connessione da 0.25MB/s per trasmettere tutti i dati.

Conclusioni 1.2.3

Dallo studio complessivo di fattibilità risulta che le risorse e le tempistiche a disposizione sono sufficienti affinché gli obiettivi prefissati vengano pienamente raggiunti. Infatti l'attenta analisi dei rischi e degli ostacoli che possono presentarsi non ha rivelato motivi di un possibile insuccesso, dato che sono state individuate delle strategie per minimizzare i rischi e che i benefici giustificherebbero i costi, in ogni caso non elevati.

1.3 DIAGRAMMA I*

Figura 1: Diagramma i* del sistema di gestione del traffico

Sistema centrale 1.3.1

Figura 2: Il sistema centrale

Il sistema centrale è caratterizzato da tre hard goal. Il primo di essi riguarda il monitoraggio del traffico cittadino, ovvero la memorizzazione di tutte le informazioni di stato. I task relativi alla memorizzazione dello stato del sistema centrale e alla memorizzazione dello stato dei sottosistemi specificano in che modo viene raggiunto questo obiettivo. Con il termine stato si intende l'insieme dei dati raccolti riguardanti il traffico. Il secondo hard goal del sistema centrale è rendere consultabile lo stato del sistema complessivo. Questo obiettivo richiede una risorsa all'obiettivo precedente, lo stato memorizzato, e lo rende disponibile all'amministratore. Anche in questo caso, è possibile suddividere il goal in due task che specificano lo stato mostrato, ovvero lo stato del sistema centrale e lo stato dei singoli sottosistemi. Infine il sistema centrale ha il compito di controllare i sottosistemi. Quest'ultima operazione richiede quattro task:

- elaborare dati veicoli, che riceve dalle centraline automobilistiche i dati di posizione e velocità come risorse;
- elaborare dati di traffico stradale, che richiede alle centraline stradali i dati di traffico che rilevano:
- elaborare notifiche applicazioni mobili, che riceve la posizione e la segnalazione di coda inviata dall'applicazione mobile.
- inviare notifiche, che comunica con l'applicazione dopo aver elaborato una condizione di traffico.

1.3.2 Centralina automobilistica

Figura 3: Centralina automobilistica

La centralina automobilistica ha due hard goal, i quali condividono una risorsa. Il primo obiettivo è quello di monitorare lo stato del veicolo. Questo hard goal è raggiunto grazie a due task, ovvero rilevare la velocità e rilevare la posizione dell'automobile. Il secondo obiettivo, aggiornare il sistema centrale, viene raggiunto ricevendo lo stato del veicolo (cioè i dati raccolti) e inviando la velocità e la posizione a intervalli di tempo regolari al sistema centrale, ricorrendo quindi a due task.

Centralina stradale

Figura 4: Centralina stradale

Anche la centralina stradale ha due hard goal, molto simili a quelli della centralina automobilistica, che si scambiano una risorsa. Uno degli obiettivi di questo attore è quello di monitorare il traffico stradale. Questo viene raggiunto tramite i due task per il rilevamento delle variazioni di traffico e il calcolo della periodicità. Per variazioni di traffico si intende l'aumento o la diminuzione del numero di veicoli che vengono rilevati dalla centralina in un intervallo di tempo.

Con periodicità invece si intende l'intervallo di tempo che intercorre tra l'invio di uno o più dati da parte della centralina e l'invio successivo di dati da parte della stessa centralina. Si tratta di una quantità proporzionale al traffico medio nel tratto di strada controllato dalla centralina.

Il secondo obiettivo è l'aggiornamento del sistema centrale, portato a termine richiedendo al goal per il monitoraggio del traffico i dati di traffico rilevati e inviandoli come risorsa.

Applicazione mobile 1.3.4

Figura 5: L'applicazione mobile

L'applicazione mobile comunica con il sistema centrale e con l'utente. Presenta quindi due obiettivi, che sono notificare il sistema centrale e informare l'utente sul traffico. Il primo obiettivo, che riceve dall'utente una segnalazione di coda come risorsa, si raggiunge tramite due task (segnalare la presenza di coda e inviare la posizione da cui si manda la segnalazione), che inviano le risorse già analizzate nella descrizione del sistema centrale. Il secondo obiettivo è più articolato e si suddivide in quattro task:

- mostrare notifiche eventi, che riceve dal sistema centrale la notifica di un particolare evento di traffico e lo invia all'utente;
- segnalare velocità lenta, ovvero comunicare all'utente questo specifico evento nella notifica;
- segnalare traffico elevato, analogo a velocità lenta;
- segnalare coda, analogo a velocità lenta.

Inoltre, può essere preso in considerazione il soft goal riguardante la tempestività nell'aggiornare l'utente, favorita dai due hard goal precedentemente descritti.

1.3.5 Utente

Figura 6: L'utente

L'utente ha due hard goal: conoscere lo stato del traffico e avvisare gli altri utenti della situazione del traffico. Il primo viene eseguito grazie a un task (consultare l'applicazione), che riceve come risorsa la notifica che l'applicazione mobile invia all'utente per comunicargli un particolare evento di traffico. L'altro obiettivo viene raggiunto grazie ad un task (pressione del pulsante), che invia all'applicazione un avviso che indica la presenza di una coda su un determinato tratto stradale.

Amministratore

Figura 7: L'amministratore

L'amministratore ha un singolo hard goal, ovvero conoscere la condizione di traffico dell'area geografica coperta dal sistema. Tale obiettivo viene raggiunto attraverso due task, ovvero la consultazione dello stato del sistema centrale e la consultazione dello stato dei singoli sottosistemi. Per fare ciò il sistema centrale dispone di un'interfaccia utente apposita, che nel diagramma i* è rappresentata dalla risorsa "stato sistema".

L'amministratore avrà quindi l'obiettivo di gestire il sistema, rappresentato nel diagramma come soft goal in quanto la verifica del suo raggiungimento non è quantificabile in modo esatto.

DATA DICTIONARY 1.4

Le seguenti tabelle rappresentano i dati con i quali il sistema opera ed una loro descrizione, che ne considera la tipologia, la struttura e l'utilizzo.

Nome	Bottone
	Tasto a disposizione dell'utente di un'applicazione
Definizione	mobile per segnalare la presenza di coda in una
	determinata posizione
Tino di data	È formato da un booleano che indica lo stato
Tipo di dato	del bottone (premuto o non premuto).
Dimensione del dato	1 bit
Sinonimi	Tasto, pulsante
Esempi	True (premuto), false (non premuto)
Sottotipi	
Supertipi	
Attributi	Stato(bool)
Componenti	
Relazioni	Notifica, dati di traffico, posizione, coda,

Nome	Centralina automobilistica
	Centralina installata all'interno di un veicolo
Definizione	in grado di trasmettere al sistema centrale i dati
	di posizione e velocità del veicolo stesso.
	È formato da un dato di tipo posizione,
Tipo di dato	un dato di tipo velocità e uno di tipo
	intervallo di tempo.
Dimensione del dato	89 bit
Sinonimi	Centralina del veicolo
	-36.82065, 175.07823 30 25
	(Il sistema, attraverso dei sensori,
Esempi	riceve la velocità e la posizione
	del veicolo, trasmettendola a
	intervalli di tempo fissati al sistema centrale)
Sottotipi	
Supertipi	Centralina
Attributi	
Componenti	Posizione (70 bit), Periodo (10 bit), Velocità (9 bit)
Relazioni	Dati di traffico, Velocità, Posizione,
KCIaZiUili	Intervallo di tempo, Automobile

Nome	Centralina stradale
Definizione	Dispositivo adibito al controllo costante del flusso
Demiizione	di traffico in un determinato segmento stradale.
	È formato da una stringa che indica lo stato, da un
Tipo di dato	dato di tipo posizione, un dato di tipo velocità, uno
	di tipo conteggio e uno di tipo intervallo di tempo.
Dimensione del dato	134 bit
Sinonimi	Stazione stradale, cellula stradale
Ecompi	-36.82065, 175.07823 "accesa"
Esempi	-24.82065, 95.07823 "spenta"
Sottotipi	Stato(string)
Supertipi	Intervallo di tempo, conteggio, posizione
A 144 i b 1 i	Intervallo di tempo, notifica, dati di traffico,
Attributi	velocità, conteggio, posizione,
Componenti	Posizione (70 bit), Periodo (10 bit), Velocità (9 bit)
Relazioni	Dati di traffico, Velocità, Posizione,
Relazioni	Intervallo di tempo, Automobile

Nome	Coda
Definizione	Indicazione della presenza o dell'assenza di
	una coda in una determinata posizione.
Tipo di dato	È formato da un booleano che indica la
Tipo di dato	presenza di coda e da un dato di tipo posizione.
Dimensione del dato	71 bit
Sinonimi	Incolonnamento
Esempi	1, -36.82065, 175.07823 significa che in
Esempi	posizione -36.82065, 175.07823 è presente una coda.
Sottotipi	esiste_coda (1 bit)
Supertipi	Posizione (70 bit)
Attributi	Dati di traffico, Notifica, Automobile
Componenti	Posizione (70 bit), Periodo (10 bit), Velocità (9 bit)
Relazioni	Dati di traffico, Velocità, Posizione,
Kelazioiii	Intervallo di tempo, Automobile

Nome	Conteggio veicoli
	Classe per il conteggio dei veicoli rilevati da una
Definizione	centralina stradale in un determinato intervallo
	di tempo.
	È formato da un intero positivo che rappresenta
Tipo di dato	il numero di veicoli e da due flag che indicano il
Tipo di dato	comando di reset del conteggio e la presenza
	di overflow.
Dimensione del dato	32 bit (può contare un numero di automobili
Difficusione del dato	dell'ordine di grandezza della popolazione mondiale)
Sinonimi	Conteggio passaggi
	75 o o (esempio di dato)
	Per ogni veicolo rilevato il contatore aumenta
Esempi	di un'unità, a meno che reset non valga 1.
Esempi	Se supera il limite massimo del conteggio
	segnala un errore di overflow ponendo
	l'attributo overflow a 1.
Sottotipi	
Supertipi	
Attributi	numero_veicoli (30 bit), reset (1 bit), overflow (1 bit)
Componenti	
Relazioni	Dati di traffico, Centralina stradale, Intervallo di tempo

Nome	Dati di traffico
	Variabile che identifica la mobilità di un tratto
Definizione	stradale in funzione della velocità dei veicoli e
	del loro numero in un intervallo di tempo
	È formato da un intero positivo che rappresenta
Tipo di dato	la velocità media, dalla posizione geografica espressa
Tipo di dato	con due numeri di dieci cifre, e da una stringa di
	massimo 16 caratteri per il tipo di traffico
Dimensione del dato	16bit+70bit+ 240bit=326bit
Sinonimi	Stato del traffico, flusso
Esempi	30 -36.82065, 175.07823 "velocità lenta"
Sottotipi	Coda, traffico elevato, velocità lenta
Supertipi	Tipo di traffico (string)
Attributi	Velocità, posizione
Componenti	Velocità, posizione, app mobile, sistema centrale,
	centralina stradale, centralina automobile
Relazioni	Dati di traffico, Centralina stradale, Intervallo di tempo

Nome	Diagramma
Definizione	Rappresentazione grafica di dati
Demiizione	riguardanti le condizioni del traffico.
	È formato da una lista puntata di
Tipo di dato	coordinate e da informazioni sul colore
	espresse in formato RGBA.
Dimensione del dato	variabile
Sinonimi	Grafico
Esempi	Diagramma2D, Diagramma3D, Diagramma4D
Cattatini	Lista_punti (ogni punto da 20 a 40 bit),
Sottotipi	colore (10 bit)
Supertipi	Punto, Dati di traffico, Mappa
Attributi	Velocità, posizione
Componenti	Velocità, posizione, app mobile, sistema centrale,
Componenti	centralina stradale, centralina automobile
Relazioni	Dati di traffico, Centralina stradale,
Kelaziuiii	Intervallo di tempo

Nome	Intervallo di tempo
	Periodicità con cui viene notificato lo stato del
Definizione	traffico da parte dei sottosistemi al sistema centrale.
Deminzione	Può essere un intervallo fisso o variabile a seconda
	del sottosistema da cui viene inviato.
Tipo di dato	Intero positivo che indica la durata della periodicità.
Dimensione del dato	15 bit (espresso in secondi)
Sinonimi	Periodo, frequenza
Esempi	100, 300, 640, 120 (secondi)
Sottotipi	Notifica, centralina stradale, traffico elevato,
Sottotipi	dati di traffico, conteggio, centralina auto
Supertipi	Punto, Dati di traffico, Mappa
Attributi	Velocità, posizione
Componenti	Velocità, posizione, app mobile, sistema centrale,
	centralina stradale, centralina automobile
Relazioni	Dati di traffico, Centralina stradale,
Kelazioiii	Intervallo di tempo

Nome	Марра
	Rappresentazione grafica delle strade
Definizione	caricabili dalla posizione individuata
Definizione	dall'applicazione mobile con i relativi
	dati di traffico
	Dato che rappresenta un'interpolazione
Tipo di dato	di coordinate colorate in RGBA e che
	segnala i tratti di strada che presentano
	traffico.
Dimensione del dato	Variabile
Sinonimi	Cartina stradale
Esempi	Traffico, colore, segnali, lista punti
Sottotipi	Posizione, dati di traffico
Supertipi	Coda, velocità lenta, traffico elevato,
Supertipi	posizione, raggio, veicolo, app mobile
Attributi	Velocità, posizione
Componenti	Velocità, posizione, app mobile, sistema centrale,
Componenti	centralina stradale, centralina automobile
Relazioni	Dati di traffico, Centralina stradale,
ICIaZIUIII	Intervallo di tempo

Nome	Notifica
	Segnalazione dell'avvenimento di un
	dato evento stradale riguardante il traffico.
Definizione	Può essere indirizzata da un sottosistema
Definizione	verso il sistema centrale o dal sistema centrale
	verso le applicazioni mobili, oppure anche da
	queste ultime verso l'utente.
Tipo di dato	È formato da una stringa che indica il tipo di notifica,
Tipo di dato	e un dato di tipo posizione.
Dimensione del dato	Variabile
Sinonimi	Segnalazione, avviso, allarme
Esempi	"coda" 36.82065, 175.07823
	"velocità lenta" 36.82065, 175.07823
Sottotipi	NotificaDaSC,notificaASC
Supertipi	Tipo(string)
Attributi	Posizione
	Dati di traffico, velocità lenta, raggio, conteggio,
Componenti	posizione, centralina auto, coda, intervallo di tempo,
	centralina stradale, bottone, traffico elevato
Relazioni	Dati di traffico, Centralina stradale,
Relazioni	Intervallo di tempo

Nome	Posizione
Definizione	Posizione espressa in coordinate GPS
	(latitudine e longitudine)
Tino di data	È formato da due numeri espressi
Tipo di dato	in virgola mobile.
Dimensione del dato	70 bit
Sinonimi	Posizione GPS, Coordinate
Esempi	-36.82065, 175.07823 (esempio di dato)
Sottotipi	
Supertipi	Posizione
Attributi	Latitudine (35 bit, virgola mobile),
Attibuti	longitudine (35 bit, virgola mobile)
Componenti	
Relazioni	Mappa, Coda, Centralina stradale, Centralina
Relazioni	automobilistica, Traffico elevato, Automobile

Nome	Raggio
Definizione	Distanza in metri tra la posizione rilevata
	dall'applicazione mobile e la porzione di
	mappa caricabile sullo smartphone
	(viene caricata una area circolare)
Tipo di dato	Intero positivo
Dimensione del dato	16 bit
Sinonimi	500 m
Esempi	Mappa, app mobile, posizione
Sottotipi	
Supertipi	Posizione
Attributi	Latitudine (35 bit, virgola mobile),
	longitudine (35 bit, virgola mobile)
Componenti	
Relazioni	Mappa, Coda, Centralina stradale, Centralina
	automobilistica, Traffico elevato, Automobile

Nome	Stato veicolo
Definizione	Insieme di dati inviati dalla centralina
	automobilistica riguardanti la posizione,
	la velocità e l'identificativo del veicolo.
Tipo di dato	È formato da un intero positivo che definisce
	l'identificativo e da un dato posizione e uno velocità.
Dimensione del dato	100 bit
Sinonimi	Auto, automobile, macchina, unità
Esempi	NumeroID
Sottotipi	Posizione, velocità
Supertipi	Centralina auto, centralina stradale, utente, app
Attributi	Latitudine (35 bit, virgola mobile),
	longitudine (35 bit, virgola mobile)
Componenti	
Relazioni	Mappa, Coda, Centralina stradale, Centralina
	automobilistica, Traffico elevato, Automobile

Nome	Traffico elevato
Definizione	Dato che definisce la presenza di molti
	veicoli in un determinato tratto stradale;
	viene scambiato tra sistema centrale e
	applicazioni mobili
Tipo di dato	È formato da un booleano che indica
	la presenza di traffico elevato e da un
	dato di tipo posizione.
Dimensione del dato	71 bit
Sinonimi	True -36.82065, 175.07823
Esempi	Traffico(bool)
Sottotipi	Posizione
Supertipi	Notifica, dati di traffico, mappa,
	conteggio, posizione
Attributi	Latitudine (35 bit, virgola mobile),
	longitudine (35 bit, virgola mobile)
Componenti	
Relazioni	Mappa, Coda, Centralina stradale, Centralina
	automobilistica, Traffico elevato, Automobile

Nome	Velocità
Definizione	Spazio percorso da un veicolo in un
	intervallo di tempo, viene raccolta da
	appositi sensori, misurata in metri al secondo
Tipo di dato	Intero positivo.
Dimensione del dato	16 bit
Sinonimi	10 m/s , 50m/s
Esempi	Dati di traffico, veicolo
Sottotipi	Posizione
Supertipi	Notifica, dati di traffico, mappa,
	conteggio, posizione
Attributi	Latitudine (35 bit, virgola mobile),
	longitudine (35 bit, virgola mobile)
Componenti	
Relazioni	Mappa, Coda, Centralina stradale, Centralina
	automobilistica, Traffico elevato, Automobile

Nome	Velocità lenta
Definizione	Tratto di strada in cui i veicoli si
	muovono a una velocità inferiore
	alla media.
	È formato da un booleano che
Tipo di dato	indica la presenza di velocità lenta
	e fornisce un dato di tipo posizione.
Dimensione del dato	71 bit
Sinonimi	Rallentamento
	1 -36.82065, 175.07823, significa che
Esempi	nella posizione indicata dai due numeri con
	la virgola c'è velocità lenta
Sottotipi	Vlenta (bool)
Supertipi	Posizione
Attributi	Velocità, posizione, dati di traffico, notifica
Componenti	
Relazioni	Mappa, Coda, Centralina stradale, Centralina
	automobilistica, Traffico elevato, Automobile

A.1 CALCOLO DEI COSTI

Siano SC il sistema centrale, CS una centralina stradale, CA una centralina automobilistica, EL la corrente elettrica e t il tempo in ore. Si indichi con C un costo, con P una potenza, con N un numero e con M la manutenzione. Il costo complessivo può essere espresso come somma di una parte fissa (il costo dei componenti) e di una parte variabile (che dipende dal consumo di corrente e dal costo periodico di manutenzione). Il costo complessivo, di conseguenza, è dato dalla formula seguente:

$$C(t) = C_{CS}N_{CS} + C_{CA}N_{CA} + C_{CS} + C_{EL}t(P_{CS}N_{CS} + P_{SC}) + \frac{t}{8760}(M_{CS} + M_{SC})$$

Supponendo che:

- ullet il numero di centraline stradali (N_{CS}) sia 100;
- il numero di centraline delle automobili (N_{CA}) sia 8000;
- il costo della corrente elettrica (C_{EL}) sia pari a 0.20 €/kWh [ARE];
- il costo del sistema centrale (C_{SC}) sia di 5000 €;
- il costo di una centralina stradale (C_{CS}) sia di 200 €;
- il costo di una centralina auto (C_{CA}) sia di 50 €;
- la potenza di una centralina stradale (P_{CS}) sia di 1 W;
- la potenza del sistema centrale (P_{SC}) sia di 10 W.
- il costo di manutenzione di una centralina stradale (M_{CS}) sia di 100 €/anno;
- il costo di manutenzione del sistema centrale (M_{SC}) sia di 500 €/anno;

si ottiene quindi un costo complessivo pari a:

$$C(t) = 200 * 100 + 50 * 8000 + 5000 + 0.20 * t * (0.001 * 100 + 0.01)$$
$$+ \frac{t}{8760} (100 * 100 + 500) = 425000 + 1.22t$$

dove il primo numero è il costo iniziale e il secondo è il costo elettrico e di manutenzione in funzione del tempo espresso in ore. Ponendo t=8760 h si ottiene quindi che il costo complessivo per il primo anno risulterebbe quindi pari a circa $436000 \in$.

CALCOLO DEI DATI TRASMESSI A.2

Si può quindi stimare la quantità di dati trasmessi nel caso peggiore. Le centraline automobilistiche devono inviare al sistema centrale velocità e posizione. Supponendo che un veicolo non superi la velocità di 511km/h, 9 bit risultano sufficienti per la trasmissione del dato. Per esprimere la posizione in termini di latitudine e longitudine, supponendo che ogni valore abbia una precisione di 10 cifre decimali, sono necessari $log_2(10^{20}) = 67bit$.

Complessivamente, di conseguenza, devono essere trasmessi 75 bit. Supponendo di ricorrere a un protocollo di invio di tipo TCP/IP (in cui i pacchetti comprendono anche un header e un codice di controllo) e un invio per ogni secondo, la velocità di trasmissione richiesta è pari a 128 bit/s.

Per quanto riguarda le centraline stradali, queste devono inviare la velocità ed, eventualmente, il numero identificativo della centralina. Si può supporre che venga utilizzato un protocollo analogo a quello delle centraline automobilistiche, per un volume di dati complessivo pari a 36 bit/s.

Supponendo di installare le centraline su 8000 auto, nel caso peggiore trasmetteranno $128 * 8000 = 1.024 * 10^6 \text{ bit/s}$. Le centraline stradali, assumendo che siano posizionate tutte in strade con un alto flusso di traffico, trasmettono il proprio identificativo e la velocità di ogni macchina che passa. Per assurdo si può ipotizzare che tutte le macchine viaggino a 180 km/h (50m/s), che ogni macchina sia distanziata di 5 metri dalla precedente e sia lunga altrettanto e che invii i dati ogni secondo. Se passano 5 macchine al secondo, quindi, si ottiene $5 * 36 * 100 = 1.8 * 10^5 \text{ bit/s}$.

Infine è possibile stimare la quantità di dati inviati e ricevuti dall'app mobile. Nel caso peggiore a Como circolano contemporaneamente 30000 auto, ognuna delle quali riceve i dati dal sistema centrale (ad esempio una notifica da 100 caratteri, pari a 800 bit ogni 60 secondi), e invia altrettanti bit nello stesso tempo. Il traffico di bit riguardanti l'app mobile risulta quindi essere $40000 * 800 * \frac{2}{60} =$ $8 * 10^{5} \text{ bit/s}.$

In base a queste considerazioni, il traffico massimo raggiungibile sarebbe pari a circa 2 milioni di bit/s, di conseguenza basterebbe un sistema centrale con una connessione da 0.25MB/s per trasmettere tutti i dati.

BIBLIOGRAFIA

[ARE] ARERA. ARERA - Prezzi e tariffe. URL: https://www.arera.it/it/prezzi.htm.