(2)

5 The photograph shows a halogen lamp.

(a) The halogen lamp has a power of 50 W when operating at its normal voltage.

Calculate the amount of electrical energy transferred to the halogen lamp in 40 hours.

(b) A student notices that in addition to producing light, the lamp also gets hot.

She concludes that the lamp cannot be 100% efficient.

Explain whether the student's conclusion is correct.

(c) The lamp must not be connected directly to mains voltage.A step-down transformer must be used.Describe the structure of a step-down transformer.You may draw a diagram to help your answer.	
 (d) A step-down transformer reduces voltage from 230 V to 12 V. The secondary current is 4.2 A. (i) State the equation linking input power and output power for a transformer. [assume that the transformer is 100% efficient] (1) (ii) Calculate the primary current. 	
primary current = A (Total for Question 5 = 12 marks)	

