Descriptive Statistics

Erasmus Q-Intelligence B.V.

Data Science and Business Analytics Programming

Content

- 1 Basics
- 2 First data interpretation
- 3 Descriptive statistics

Software requirements

Data from package datasets are used

```
R> data("iris")
R> ?iris
R> forsale <- readRDS('../../data/forsale.Rds')</pre>
```

```
R> library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
R> library(ggplot2)
```


Basics

Special values

NA Not available (represents missing value)

NaN Not a number (usually result of division 0/0)

Inf Positive infinity

-Inf Negative infinity

NULL Represents undefined value

Basic math

Operator or function	Operation	Example
+	addition	x + y
-	subtraction	х - у
	univariate minus	-x
*	multiplication	x * y
/	division	х / у
^	exponentiation	x ^ y
abs()	absolute value	abs(x)
sqrt()	square root	sqrt(x)
log()	logarithm	log(x)
exp()	exponential function	exp(x)

→ Vectorized arithmetic: operations are performed elementwise

First data interpretation

View data

→ Get overview of what the data look like

- \longrightarrow Using ?
- → Using head()
- → Using tail()
- → Using summary()
- → Using View()

Data dimensions

Number of observations and columns together:

```
R> dim(iris)
[1] 150 5
```

Number of observations and columns separately:

```
R> nrow(iris)
[1] 150
R> ncol(iris)
[1] 5
```


Names

Variable names:

```
R> colnames(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"
```

Row names:

R> rownames(iris)

Frequency

The frequencies can be counted with function table():

```
R> table(iris$Species)
    setosa versicolor virginica
    50    50    50
```


Descriptive statistics

Some useful statistical functions

Minimum and maximum separate:

```
R> min(iris$Sepal.Length)
[1] 4.3
R> max(iris$Sepal.Length)
[1] 7.9
```

Minimum and maximum together:

```
R> range(iris$Sepal.Length)
[1] 4.3 7.9
```


Quantiles

Default quantiles:

```
R> quantile(iris$Sepal.Length)

0% 25% 50% 75% 100%

4.3 5.1 5.8 6.4 7.9
```

Quantiles for specified probabilities:

```
R> quantile(iris$Sepal.Length,
+ probs = c(0.05, 0.25, 0.5, 0.75, 0.95))
5% 25% 50% 75% 95%
4.600 5.100 5.800 6.400 7.255
```


Center and dispersion

Mean and median:

```
R> mean(iris$Sepal.Length)
[1] 5.843333
R> median(iris$Sepal.Length)
[1] 5.8
```

Standard deviation and variance:

```
R> sd(iris$Sepal.Length)
[1] 0.8280661
R> var(iris$Sepal.Length)
[1] 0.6856935
```


Covariance and correlation

Only numerical variables from data

```
R> iris_num <- iris %>% select(where(is.numeric))
```

Covariance:

```
R> cov(iris_num)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707

Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394

Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094

Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063
```

Correlation:

Distribution of a variable

```
R> summary(forsale$living_area)
Min. 1st Qu. Median Mean 3rd Qu. Max.
40.0 75.0 102.0 117.6 139.5 758.0
```

```
R> summary(log(forsale$living_area))
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.689 4.317 4.625 4.661 4.938 6.631
```


Distribution of a variable

Exercises

Download and open the *Descriptives_Exercises.pdf* file from Canvas, and do the Exercises

