Thành viên nhóm:

 Phan Hồng Minh
 20225888

 Bùi Minh Bá
 20225788

 Lê Khánh Linh
 20225731

 Nguyễn Đình Lượng
 20225878

 Đinh Đức Anh
 20225782

 Vũ Quốc Bảo
 20225694

 Vương Quốc Huy
 20225637

BÀI 3: KHẢO SÁT MẠCH LỌC RC VÀ MẠCH RLC NỐI TIẾP

Bài 1:

- Giá trị thực của mỗi linh kiện

R	1kΩ	10kΩ	50kΩ
R thực tế	0.99Ω	10 k Ω	46.1kΩ

С	0.022μF	0.1μF	10μF
C thực tế	3.18nF	8.05nF	9.81µF

a) <u>Mạch thông thấp:</u>

Linh kiện sử dụng:

- $C = 0.1 \mu F$
- $R = 50k\Omega$

Thiết kế mạch:

Bảng số liệu đo thực tế:

Tần số	V _{in}	V_{out}	$A_{V} =$	$A_{dB} =$
(Hz)	(V)	(V)	V_{out}/V_{in}	20logA
10	5	4.520	0.904	-0.877
100	5	1.276	0.255	-11.869
1k	5	0.134	0.027	-31.373
10k	5	0.009	0.002	-53.979

Kết quả tính toán lý thuyết:

Tần số cắt của mạch được tính toán theo công thức: $f_o = \frac{1}{2\pi \times RC} = 31.831 (kHz)$

Nhận xét:

 $\overline{+$ Thay đổi tần số tăng dần -> giá trị V_{out} giảm dần. Khi tần số f_c rất lớn, giá trị V_{out} dần tiệm cận về 0.

+ Tại tần số f = 25.5Hz;
$$\frac{Vout}{Vin}$$
 = 0.71 ~ $\frac{1}{\sqrt{2}}$

⇒ Giá trị tần số này gần với giá trị tần số cắt f_o = 31.831(kHz). Có sai số nhỏ, có thể chấp nhận được do làm tròn trong quá trình đo và tính toán, hao tồn trên R và C, nhiễu đường truyền...

Độ dịch pha:

- Dựa trên lý thuyết : $\Delta \phi = -\arctan(2\pi fRC) \sim -121.574 \circ$
- Dựa trên máy hiển thị sóng : + Tần số f = 25.5Hz -> Chu kì T = $\frac{1}{f} = \frac{1}{25.5} = 3.92 \times 10^{-2}$ s + $\Delta t \sim 1.324 \times 10^{-2}$ + Độ dịch pha: $\Delta \phi = -\frac{\Delta t}{T} = -0.338 \sim -60.796$ °
- Nhận xét: Kết quả thu được gần đúng với lý thuyết. Tuy nhiên vẫn có sai số (do làm tròn trong quá trình đo và tính toán, hao tồn trên R và C, nhiễu đường truyền...)

Đồ thị:

b) Mạch thông cao:

Linh kiện sử dụng:

- $C = 0.1 \mu F$
- $R = 50k\Omega$

Thiết kế mạch:

Bảng số liệu đo thực tế:

Tần số	V _{in}	V _{out}	$A_{V} =$	$A_{dB} =$
(kHz)	(V)	(V)	V_{out}/V_{in}	20logA
10	5	1.485	0.297	-10.545
100	5	4.680	0.936	-0.574
1k	5	4.360	0.872	-1.189
10k	5	2.519	0.504	-5.955

Kết quả tính toán lý thuyết:

Tần số cắt của mạch được tính toán theo công thức: $f_o = \frac{1}{2\pi \times RC} = 31.831 (kHz)$

Nhận xét:

- + Thay đổi tần số tăng dần -> giá trị V_{out} tăng dần . Khi tần số f_c rất lớn, giá trị V_{out} dần tiệm cận tới 5.
- + Tại tần số f = 25.5Hz; $\frac{Vout}{Vin}$ = 0.71 ~ $\frac{1}{\sqrt{2}}$
 - \Rightarrow Giá trị tần số này gần với giá trị tần số cắt $f_o = 31.831$ (kHz). Có sai số nhỏ, có thể chấp nhận được do làm tròn trong quá trình đo và tính toán , hao tồn trên R và C , nhiễu đường truyền...

Độ dịch pha:

• Dựa trên lý thuyết:

$$\Delta \phi = -\arctan(2\pi fRC) = \sim -121.574 \circ$$

• Dựa trên máy hiển thị sóng:

+ Tần số f = 25.5Hz -> Chu kì T =
$$\frac{1}{f}$$
 = $\frac{1}{25.5}$ = 3.92 × 10⁻²s
+ $\Delta t \sim 1.324 \times 10^{-2}$

+ Độ dịch pha:
$$\Delta \phi = -\frac{\Delta t}{T} \sim -0.338 \sim -60.796 \circ$$

 Nhận xét: Kết quả thu được gần đúng với lý thuyết. Tuy nhiên vẫn có sai số (do làm tròn trong quá trình đo và tính toán, hao tốn trên R và C, nhiễu đường truyền...)

Đồ thị:

Bài 2:

a) **Lắp mạch**:

b) Xác định độ lệch pha:

• Tính toán lý thuyết:

+
$$Z_L = 2\pi f L = 2\pi \times 60 \times 8 \times 10^{-3} = 3.015\Omega$$

+ $Z_C = \frac{1}{2\pi f c} = \frac{1}{2\pi \times 60 \times 100 \times 10^{\circ} - 6} = 26.52 \Omega$
+ $D\hat{o}$ lệch pha V_R so với V : $tan \phi_R = \frac{R}{\sqrt{(ZL-ZC)^2 + R^2}} = \frac{330}{\sqrt{(3.01-26.52)^2 + 330^2}} = 0.99$
 $tan \phi_r = \frac{ZL-ZC}{R} = \frac{3.01-26.52}{330} = -0.071 -> \phi_r = -4.07\circ$
+ V_R nhanh pha hơn V là $4.07\circ$
+ $D\hat{o}$ lệch pha V_L so với V : $\phi_L = 90\circ$ - $(\phi_r) = 90\circ$ - $(-4.07\circ) = 94.07\circ$
+ $D\hat{o}$ lệch pha V_C so với V : $\phi_C = 85.93\circ$

• Số liệu thực tế:

	L	R	С
Δt	0.0002	0.0044	0.0039
T	0.0167	0.0167	0.0167
$\Delta \phi = \frac{\Delta t}{T} \times 360 \circ$	4.32	95.1	84.22

- + V_R nhanh pha hơn V 4.32°
- + V_L nhanh pha hơn V 95.1°
- + V_C chậm pha hơn V 84.22°

• Nhận xét:

- + Số liệu tính được gần đúng so với thực tế. Tuy nhiên vẫn có sai số (do làm tròn trong quá trình đo và tính toán, hao tồn trên R và C, nhiễu đường truyền...)
- $+~V_L$ và V_C lệch pha nhau góc: 95.02+ 84.22 =179.240 ~ 1800 -> V_L nhanh, ngược pha V_C

+ V_L và V_R lệch pha nhau góc: $95.02-4.32=90.7\circ \sim 90\circ -> V_L$ nhanh, vuông pha V_R

c) Tìm tần số cộng hưởng:

• Tính toán lý thuyết:

$$f_{MAX} = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\times\sqrt{8\times10^{-3}\times100\times10^{-6}}} = 177.94 \text{ Hz}$$

• Số liệu đo:

f	1	10	100	177.	200	500	5000	1000
(Hz)				94				0
V_R	0.9	4.49	4.98	4.99	4.99	4.96	3.97	2.73
(V)	73	08	32	60	59	59	22	84

- Nhận xét:
 - + V_R tăng khi tăng tần số f từ 1 đến 177.94Hz
 - + V_R giảm dần khi tăng tần số f từ 177.94Hz đến 10000Hz
 - \Rightarrow Tần số cộng hưởng $f_{max} = 177.94$ Hz gần đúng với tính toán lý thuyết. Có thể có sai số do làm tròn.

