Lösung zu Kapitel 5 und 6

(1) Se	i f eine total differenzierbare Funktion. Welche Aussagen sind richtig \hat{x}
[$\Box f$ ist partiell differenzierbar
[$\Box f$ kann stetig partiell differenzierbar sein
[\Box f ist dann immer stetig partiell differenzierbar
[\square f ist stetig
[$\Box f$ ist nicht stetig
Se	i nun f nicht total differenzierbar. Welche Aussagen sind richtig?
[$\supset f$ ist stetig partiell differenzierbar
[$\supset f$ ist nicht stetig partiell differenzierbar
Se	i nun f nicht stetig. Welche Aussagen sind richtig?
[$\supset f$ ist total differenzierbar
[$\Box f$ ist nicht total differenzierbar
[□ keine Aussage
	Loesung
Se	i f eine total differenzierbare Funktion. Welche Aussagen sind richtig?
	$\boxtimes f$ ist partiell differenzierbar
	$\boxtimes f$ kann stetig partiell differenzierbar sein
[$\Box f$ ist dann immer stetig partiell differenzierbar
	$\boxtimes f$ ist stetig
	$\Box f$ ist nicht stetig
	i nun f nicht total differenzierbar. Welche Aussagen sind richtig?
	$\Box f$ ist stetig partiell differenzierbar
	$\boxtimes f$ ist nicht stetig partiell differenzierbar
_	Sei nun f nicht stetig. Welche Aussagen sind richtig?
	$\Box f$ ist total differenzierbar
	$\boxtimes f$ ist nicht total differenzierbar
[□ keine Aussage
(2) Ge	egeben ist die Funktion:

$$f(x,y) = \begin{cases} (x^2 + y^2)\sin(\frac{1}{x^2 + y^2}) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Ist die Funktion stetig? Ist sie partiell Differenzierbar? $\mathbf{Loesung}$

Fr $(x,y) \neq (0,0)$ ist die Funktion als Zusammensetzung stetiger Funktionen stetig. Da

$$|f(x,y) - f(0,0)| = \left| (x^2 + y^2) \sin(\frac{1}{x^2 + y^2}) \right| \le |x^2 + y^2| \underbrace{\le}_{x^2 + y^2 \le 1} 1 \sqrt{x^2 + y^2}$$

ist sie auch bei (0,0) stetig.

Fr $(x,y) \neq (0,0)$ ist die Funktion partiell Differenzierbar und in (0,0) gilt:

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} h \sin(\frac{1}{h^2}) = 0$$

Analog gilt dies fr $f_y(0,0) = 0$.

(3) Sei $f: \mathbb{R}^2 \to \mathbb{R}$

(1)
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ & (x,y) = (0,0) \end{cases}$$

Berechne $\partial_1 f(x,y)$ und $\partial_1 f(0,0)$. Zeige, dass $\partial_1 f(x,y)$ am Ursprung stetig ist.

Loesung

Zunaechst bilden wir Ableitungen und erhalten:

(2)
$$\partial_x f(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$

(3)
$$\partial_x f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} 0 \frac{h}{h} = 0$$

Nun zeigen wir die Lipschitz-Stetigkeit bei (0,0):

$$|\partial_x f(x,y) - \partial_x f(0,0)| = \left| \frac{y (x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \right|$$

$$\leq \left| y \frac{2x^4 + 4x^2y^2 + 2y^4}{(x^2 + y^2)^2} \right| = \left| y \frac{2(x^2 + y^2)}{(x^2 + y^2)^2} \right|$$

$$\leq 2 |y| = 2\sqrt{y^2} \leq 2\sqrt{x^2 + y^2}$$

also gilt:

(5)
$$|\partial_x f(x,y) - \partial_x f(0,0)| \le 2 \begin{vmatrix} x \\ y \end{vmatrix}$$

(4) Gegeben ist $f: \mathbb{R}^2 \to \mathbb{R}$ mit

(6)
$$f(x,y) = \begin{cases} -\frac{6x^{-2}y^3}{2x^4 + 6y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Ist f stetig? Begruendung.

Loesung

Fuer $(x, y) \neq 0$ ist f als komposition stetiger Funktionen wieder stetig. Fuer (0, 0) waehle man z.B. $x_n = \frac{1}{n}$, $y_n = \frac{1}{n^2}$ und zeige so:

(7)
$$f(x_n, y_n) = -6\frac{n^2 \frac{1}{n^6}}{2\frac{1}{n^4} + 6\frac{1}{n^4}} = -6\frac{1}{2+6} \xrightarrow{n \to \infty} -\frac{3}{4} \neq 0$$

Da wir Nullfolgen gefunden haben, fuer die der Grenzwert nicht 0 ist, ist f nicht stetig in (0,0)

(5) Gegeben ist $f: \mathbb{R}^2 \to \mathbb{R}$:

(8)
$$f(x,y) = \begin{cases} \frac{e^{x^2 + y^2 - 1}}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a): Uberpruefe, ob f in \mathbb{R}^2 stetig ist? (Hinweis: Polarkoordinaten)
- (b): Berechne

(9)
$$\lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} \quad \text{und} \quad \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h}$$

Ist f differenzierbar?

(c): Berechne die stetige Fortsetzung, falls sie existiert.

Loesung

(a): Uberpruefe, ob f in \mathbb{R}^2 stetig ist?

Fuer $(x, y) \neq (0, 0)$ ist f als Komposition stetiger Funktionen stetig. Mit $x = r \cos(\phi)$ und $y = r \sin(\phi)$ folgt fuer (x, y) = (0, 0):

(10)
$$f(x,y) = \tilde{f}(r,\phi) = \begin{cases} \frac{e^{r^2 - 1}}{r^2} & r \neq 0\\ 0 & r = 0 \end{cases}$$

Mit

(11)
$$\lim_{r \to 0} \frac{e^{r^2 - 1}}{r^2} = \infty \neq 0 = f(0, 0) \Rightarrow \text{ nicht stetig}$$

(b): Berechne

(12)
$$\lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{e^{h^2 - 1}}{h^2} - 0}{h} = \infty$$

(13)
$$\lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \infty$$

Nicht differenzierbar, weil die Limiten nicht existieren.

(c): Berechne die stetige Fortsetzung, falls sie existiert.

Da f nicht stetig ist, kann sie nicht stetig fortgesetzt werden.

(6) Sei $f: \mathbb{R}^2 \to \mathbb{R}$

(14)
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a): Beweisen Sie, dass f im Nullpunkt nicht stetig ist.
- (b): Berechnen Sie die partiellen Ableitungen $\partial_1 f(0,0)$ und $\partial_2 f(0,0)$.
- (c): Ist f total differenzierbar?

Loesung

(a): Beweisen Sie, dass f im Nullpunkt nicht stetig ist. Mit $x_n = \frac{1}{n^3}$ und $y_n = \frac{1}{n}$ folgt:

(15)
$$f(x_n, y_n) = \frac{\frac{1}{n^3} \frac{1}{n^3}}{\frac{1}{n^6} + \frac{1}{n^6}} = \frac{1}{2} \neq 0$$

Also ist f nicht stetig.

(b): Berechnen Sie die partiellen Ableitungen $\partial_1 f(0,0)$ und $\partial_2 f(0,0)$.

(16)
$$\partial_1 f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{1}{h} \, 0 - 0}{h} = 0$$

Analog findet man $\partial_2 f(0,0) = 0$

(c): Ist f total differenzierbar?

Da f nicht stetig ist, ist f auch nicht total differenzierbar.

(7) Sei $f: \mathbb{R}^2 \to \mathbb{R}$:

(17)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a): Fuer den Punkt P = (0,0) und den Vektor $\mathbf{v} = (v_1, v_2)^T \in \mathbb{R}^2$ mit $|\mathbf{v}| = 1$ berechne man die Richtungsableitung in P (Achtung, ist f stetig?) und $\partial_x f(0,0)$, $\partial_y f(0,0)$.
- (b): Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist. Loesung
- (a): Fuer den Punkt P = (0,0) und den Vektor $\mathbf{v} = (v_1, v_2)^T \in \mathbb{R}^2$ mit $|\mathbf{v}| = 1$ berechne man die Richtungsableitung in P (Achtung, ist f stetig?) und $\partial_x f(0,0)$, $\partial_y f(0,0)$.

Wir berechnen die Richtungsableitung mit der Definition:

(18)
$$\partial_{\mathbf{v}} f(0,0) = \lim_{h \to 0} v \frac{f(\mathbf{0} + h\mathbf{v}) - f(\mathbf{0})}{h}$$
$$= \frac{1}{h} \left(\frac{h^2 v_1^2 h v_2}{t^2 v_1^2 + h^2 v_2^2} - 0 \right)$$
$$= \frac{v_1^2 v_2}{v_1^2 + v_2^2} = v_1^2 v_2$$

Fuer $\partial_x f(0,0)$ setzt man $\mathbf{v}=(1,0)^t$ und fuer $\partial_y f(0,0)$ setzt man $\mathbf{v}=(0,1)^T$ und erhaelt:

(19)
$$\partial_x f(0,0) = 0 \quad \partial_y f(0,0) = 0$$

(b): Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist. Nach Definition ist f total differenzierbar in $\mathbf{0}$, wenn gilt:

(20)
$$\lim_{h_1, h_2 \to 0, 0} \frac{f(\mathbf{0} + \mathbf{h}) - f(\mathbf{0}) - A(h_1, h_2)}{\|\mathbf{h}\|} = 0$$

mit $A = \operatorname{grad} f(0,0)$ fuer Skalarfelder.

Wir waehle $h_1 = h_2 = h$ und mit $\operatorname{grad} f(0,0) = (0,0)^T$ folgt:

(21)
$$\lim_{h \to 0} \frac{\frac{h^3}{h^2 + h^2} - 0}{\sqrt{h^2 + h^2}} = \frac{1}{2\sqrt{2}} \frac{h}{|h|} \neq 0$$

Also ist f nicht total differenzierbar.

(8) Gegeben ist $f: \mathbb{R}^2 \to \mathbb{R}$

(22)
$$f(x,y) = \begin{cases} \frac{x^3 y^2}{x^6 + 4y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a): Sei $\mathbf{v} \in \mathbb{R}^2$ mit $\mathbf{v} \neq 0$. Wie lautet die Richtungsableitung $\partial_{\mathbf{v}} f(0,0)$ von f am Ursprung?
- (b): Zeigen Sie, dass f im Ursprung unstetig ist.
- (c): Ist f im Ursprung partiell differenzierbar?
- (d): Ist f im Ursprung total differenzierbar?

Loesung

(a): Sei $\mathbf{v} \in \mathbb{R}^2$ mit $\mathbf{v} \neq 0$. Wie lautet die Richtungsableitung $\partial_{\mathbf{v}} f(0,0)$ von f am Ursprung?

$$\partial_{\mathbf{v}} f(0,0) = \lim_{h \to 0} \frac{f(hv_1, hv_2) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{h^5 v_1^3 v_2^2}{h^4 (h^2 v_1^6 + 4 v_2^4)}$$

$$= \lim_{h \to 0} \frac{v_1^3 v_2^2}{h^2 v_1^6 + 4 v_2^4}$$

$$= \begin{cases} 0 & v_2 = 0 \\ \frac{v_1^3}{4v_2^2} & v_2 \neq 0 \end{cases}$$

(b): Zeigen Sie, dass f im Ursprung unstetig ist. Man waehle $u = x^{\frac{3}{2}}$:

(24)
$$f(x, x^{\frac{3}{2}}) = \frac{x^3 x^3}{x^6 + x^6} = \frac{1}{2} \neq 0 = f(0, 0)$$

(c): Ist f im Ursprung partiell differenzierbar?

Da die partiellen Ableitungen existieren, ist f partiell differenzierbar.

Mit $\mathbf{v} = (1,0)^T$, erhaelt man $\partial_x f(0,0) = 0$ und mit $\mathbf{v} = (0,1)^T$ $\partial_u f(0,0) = 0$.

- (d): Ist f im Ursprung total differenzierbar?

 Da f nicht stetig ist, ist f auch nicht total differenzierbar.
- (9) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ mit

(25)
$$f(x,y) = \begin{cases} \frac{\sin(x) \sin(y)}{xy} & (x,y) \neq (0,0) \\ 1 & (x,y) = (0,0) \end{cases}$$

- (a): Wieso ist f auf \mathbb{R}^2 stetig? (Hinweis: Taylorreihe von $\sin(\ldots)$)
- **(b):** Berechne $\partial_x f(0,0)$ und $\partial_y f(0,0)$.

Loesung

(a): Wieso ist f auf \mathbb{R}^2 stetig? (Hinweis: Taylorreihe von $\sin(\ldots)$)

Fuer $(x,y) \neq (0,0)$ ist f als Komposition stetiger Funktionen stetig

Mit $\sin(x) = x - \frac{x^3}{3!} + \ldots$ folgt:

$$\frac{\sin(x) \sin(y)}{xy} = \frac{1}{xy} \left(x - \frac{x^3}{3!} + \dots \right) \left(y - \frac{y^3}{3!} + \dots \right)
= \frac{1}{xy} \left(xy - \frac{xy^3}{3!} - \frac{yx^3}{3!} + \dots \right) = 1 - \frac{y^2}{3!} - \frac{x^2}{3!} + \dots \xrightarrow{x \to 0} 1 = f(0, 0) \quad \checkmark$$

(b): Berechne $\partial_x f(0,0)$ und $\partial_y f(0,0)$.

(27)
$$\partial_x (1 - \frac{y^2}{3!} - \frac{x^2}{3!} + \dots)|_{(x,y)=(0,0)} = 0$$
 Analog $\partial_y f(0,0) = 0$

(10) Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ und eine Konstante $a \in \mathbb{R}$ mit

(28)
$$f(x,y) = \begin{cases} \frac{\sin(2\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ a & (x,y) = (0,0) \end{cases}.$$

Wie muss die Konstante a gewhlt werden, damit f(x, y) in (0, 0) stetig ist? (Hinweis: bergang zu Polarkoordinaten)

Loesung

bergang zu Polarkoordinaten liefert:

$$a = \lim_{r \to 0} \frac{\sin(2r)}{r} = \lim_{r \to 0} \frac{2\sin(r)\cos(r)}{r} = 2 \cdot \lim_{r \to 0} \frac{\sin(r)}{r} \cdot \lim_{r \to 0} \cos(r) = 2 \cdot 1 \cdot 1 = 2$$

Lösungen zu Kapitel 7

Aufgabe 1: Sei (M, d) metrischer Raum, $A \subset M$. $d_A(x) := \inf_{y \in A} d(x, y)$ (a)

$$\operatorname{sdist}(x, A) := \begin{cases} d_A(x), & x \notin A \\ -d_{M \setminus A}(x), & x \in A \end{cases}$$

(i) $\operatorname{sdist}(x, A) < 0 \Leftrightarrow x \in \mathring{A}$

Beweis. Sei sdist $(x, A) < 0 \Rightarrow d_{M \setminus A}(x) =: \varepsilon > 0 \Rightarrow U_{\varepsilon}(x) \subset A \Rightarrow x \in \mathring{A}$.

Sei
$$x \in \mathring{A} \Rightarrow \exists \varepsilon > 0 : U_{\varepsilon}(x) \subset A \Rightarrow d_{M \setminus A}(x) \geq \varepsilon > 0 \Rightarrow \text{sdist}(x, A) < 0.$$

(ii) $\operatorname{sdist}(x, A) = 0 \Leftrightarrow x \in \partial A$.

Beweis. Sei $\operatorname{sdist}(x,A) = 0 \Rightarrow d_A(x) = 0 \land d_{M \setminus A}(x) = 0 \Rightarrow \forall \varepsilon > 0 : U_{\varepsilon}(x) \cap A \neq \emptyset \land U_{\varepsilon}(x) \cap M \setminus A \neq \emptyset \Rightarrow x \in \partial A.$ Sei $x \in \partial A \Rightarrow \forall \varepsilon > 0 : U_{\varepsilon}(x) \cap A \neq \emptyset \land U_{\varepsilon}(x) \cap M \setminus A \neq \emptyset \Rightarrow d_A(x) \geq 0 \land d_{M \setminus A} \geq 0 \Rightarrow \operatorname{sdist}(x,A) = 0.$

(iii) $\operatorname{sdist}(x, A) > 0 \Leftrightarrow x \in M \setminus \overline{A}$.

Beweis. Sei sdist $(x,A) > 0 \Rightarrow d_A(x) =: \varepsilon > 0 \Rightarrow U_{\varepsilon}(x) \subset M \setminus A \Rightarrow x \in \text{int}(M \setminus A) = M \setminus \overline{A}$. Sei $x \in M \setminus \overline{A} \Rightarrow \exists \varepsilon > 0 : U_{\varepsilon}(x) \subset M \setminus A \Rightarrow d_A(x) \geq \varepsilon > 0 \Rightarrow \text{sdist}(x,A) > 0$.

(b) $x \mapsto d_A(x)$ ist LIPSCHITZ-stetig.

Beweis. Es gilt $d_A(x) \leq d(x,a) \leq d(x,y) + d(y,a) \ \forall a \in A$, also auch für das Infimum über alle a:

$$d_A(x) \le d(x,y) + d_A(y)$$

Dasselbe gilt für x und y vertauscht, also $d_A(y) \leq d(x, y) + d_A(x)$. Insgesamt ergibt sich dann

$$|d_A(x) - d_A(y)| \le d(x, y)$$

oder genauer

$$d^{\mathbb{R}}(d_A(x), d_A(y)) \le d^M(x, y)$$

Damit ist $d_A: M \to \mathbb{R}$ LIPSCHITZ-stetig.

Aufgabe 2: Zu zeigen ist $\forall x, y \in M, x \neq y \exists$ Umgebung U von x, Umgebung V von y mit $U \cap V = \emptyset$.

Beweis. $x \neq y \Rightarrow d(x,y) = r \neq 0$. Setze $\varepsilon \leq \frac{r}{2}$ und $U = U_{\varepsilon}(x), V = U_{\varepsilon}(y)$, dann gilt offensichtlich $U \cap V = \emptyset$.

Sei nämlich
$$z \in U$$
, dann $2\varepsilon \le d(x,y) \le d(x,z) + d(z,y) < \varepsilon + d(z,y) \Rightarrow d(z,y) > \varepsilon$.

Aufgabe 3:

(O1) Der Durchschnitt endlich vieler offener Mengen ist offen.

Beweis. Es genügt zu zeigen $A \cap B$ offen für A, B offen.

Sei also $x \in A \cap B \Rightarrow x \in A$ und $x \in B$.

$$A \text{ offen} \Rightarrow \exists \varepsilon_1 > 0 : U_{\varepsilon_1}(x) \subset A$$

$$B \text{ offen} \Rightarrow \exists \varepsilon_2 > 0 : U_{\varepsilon_2}(x) \subset B$$

Setze $\varepsilon := \min\{\varepsilon_1, \varepsilon_2\}$, dann $U_{\varepsilon}(x) \subset U_{\varepsilon_i}(x)$ für i = 1, 2 und damit $U_{\varepsilon}(x) \subset A \cap B$, also $A \cap B$ offen.

(A1) Die Vereinigung endlich vieler abgeschlossener Mengen ist abgeschlossen.

Beweis. Es genügt wieder zu zeigen, dass $A \cup B$ abgeschlossen für A, B abgeschlossen. Bezeichne wie üblich $M \setminus A =: A^c$.

A, B abgeschlossen heißt A^c, B^c offen $\stackrel{\mathrm{(O1)}}{\Rightarrow} A^c \cap B^c = (A \cup B)^c$ offen, also $A \cup B$ abgeschlossen. \square

(A2) Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen.

Beweis. Sei I beliebige Menge und $(A_i)_{i\in I}$ eine Familie abgeschlossener Mengen, dann ist für jedes $i\in I$ die Menge A_i^c offen. Aus (O2) folgt dann

$$\bigcup_{i \in I} A_i^c = \left(\bigcap_{i \in I} A_i\right)^c \text{ offen}$$

und somit $\bigcap_{i \in I} A_i$ abgeschlossen.

Aufgabe 4: Sei (M,d) metrischer Raum, $A \subset M$. Zu zeigen ist \overline{A} und ∂A sind abgeschlossen in M.

- (\overline{A}) : Der Abschluss ist $\overline{A} = \{x \in M : x \text{ Berührpunkt von } A\}$, wobei für einen Berührpunkt gilt: x Berührpunkt von A, wenn für alle Umgebungen U von x gilt: $U \cap A \neq \emptyset$. Sei also $y \in M \setminus \overline{A} = (\overline{A})^c$. y ist damit kein Berührpunkt von A, \exists Umgebung U von y mit $U \cap A = \emptyset$, also $U \subset M \setminus \overline{A}$. Damit ist $M \setminus \overline{A} = (\overline{A})^c$ offen und somit \overline{A} abgeschlossen.
- (∂A) : Der Rand von A ist $\partial A = \{x \in M : x \text{ Randpunkt von } A\}$. Ein Randpunkt von A ist ein Punkt x, für den gilt: \forall Umgebungen U von x ist $U \cap A \neq \emptyset \land U \cap A^c \neq \emptyset$.

Das Komplement des Randes ist

 $(\partial A)^c = \{ y \in M : \exists \text{ Umgebung } U \text{ von } y \text{ mit } U \cap A = \emptyset \lor U \cap A = \emptyset \}$ also $(\partial A)^c = \{ y \in M : U \subset A \lor U \subset A^c \}$. Damit ist $(\partial A)^c$ offen und ∂A abgeschlossen.

Aufgabe 5: Aus Lipschitz-Stetigkeit folgt gleichmäßige Stetigkeit und somit Stetigkeit.

Beweis. Sei $f:X\to Y$ LIPSCHITZ-stetig, also existiert ein $L\geq 0$ sodass

$$d^{Y}(f(x), f(y)) \le Ld^{X}(x, y) \quad \forall x, y \in X$$

f gleichmäßig stetig bedeutet

$$\forall \varepsilon < 0 \,\exists \delta > 0 : \forall x, y \in X \text{ mit } d^X(x, y) < \delta : d^Y(f(x), f(y)) < \varepsilon$$

Setze also $\delta := \frac{\varepsilon}{L}$, dann folgt sofort die Behauptung. f stetig heißt $\forall y \in X$ gilt:

$$\forall \varepsilon < 0 \,\exists \delta > 0 : \forall x \in X \text{ mit } d^X(x,y) < \delta : d^Y(f(x),f(y)) < \varepsilon$$

Dies folgt aber direkt aus der gleichmäßigen Stetigkeit.

Bemerkung: Die gewöhnliche Stetigkeit ist die Stetigkeit in jedem Punkt (punktweise Stetigkeit), insbesondere hängen ε und δ vom betrachteten Punkt ab. Gleichmäßige Stetigkeit ist stärker, hier sind ε und δ für alle Punkte gleich.

Aufgabe 6: $f \in \mathcal{C}(\mathbb{R}^n, \mathbb{R}^m)$, $M \subset \mathbb{R}^m$ offen. Zu zeigen ist $f^{-1}(M) \subset \mathbb{R}^n$ offen.

Beweis. Alternative 1: Mit $\varepsilon - \delta$ Definition.

Sei $x \in f^{-1}(M)$. Da M offen ist, gibt es ein $\varepsilon > 0$ mit $U_{\varepsilon}(f(x)) \subset M$. Da f stetig ist, gibt es zu diesem ε ein $\delta > 0$, so dass für alle $y \in U_{\delta}(x)$ auch $f(y) \in U_{\varepsilon}(f(x))$, d.h. $y \in F^{-1}(M)$. Also ist $f^{-1}(M)$ offen.

Alternative 2: Das Komplement von M, M^c , ist abgeschlossen. D.h., ist $y_n \in M^c$, $n \in \mathbb{N}$, mit $y_n \to y$, so ist auch $y \in M^c$. Wir zeigen, dass $(f^{-1}(M))^c$ abgeschlossen und damit, dass $f^{-1}(M)$ offen ist: Sei $x_n \in (f^{-1}(M))^c$, $n \in \mathbb{N}$ mit $x_n \to x \in \mathbb{R}^n$. Damit ist $f(x_n) \in M^c$ und, wegen der Stetigkeit von f gilt $f(x_n) \to f(x) \in M^c$, da M^c abgeschlossen ist. Das bedeutet aber, dass $x \in (f^{-1}(M))^c$.

Aufgabe 7: Sei $f: X \to Y$ stetig, $K \subset X$ kompakt. Zu zeigen ist f(K) kompakt.

Beweis. Sei also $(x_n)_{n\in\mathbb{N}}$ Folge in K. Da K kompakt gibt es eine in K konvergente Teilfolge $(x_{n_k})_{k\in\mathbb{N}}$ mit $x_{n_k} \stackrel{k\to\infty}{\longrightarrow} x \in K$. Es ist $(f(x_n))_{n\in\mathbb{N}}$ Folge in f(K) und $(f(x_{n_k}))_{k\in\mathbb{N}}$ Teilfolge mit

$$\lim_{k \to \infty} f(x_{n_k}) \stackrel{f \text{ stetig}}{=} f(\lim_{k \to \infty} x_{n_k}) = f(x) \in f(K)$$

Damit besitzt $(f(x_n))_{n\in\mathbb{N}}$ die gegen f(x) konvergente Teilfolge $(f(x_{n_k}))_{k\in\mathbb{N}}$ woraus die Behauptung folgt.