2

What is claimed is:

- 1 1. A system for determining a natural color depth of a digital image, 2 comprising:
- a color distance module determining color distances between each pair of
 colors in a color palette stored for a digital color image;
- a merge module selecting a closest neighboring color for each color in the color palette separated by a substantially minimum color distance, and merging, in iterative sequence, each color pair that is visually indistinct.
- A system according to Claim 1, further comprising:
 an averaging module generating a weighted average of the colors in each
 color pair that are visually indistinct.
 - 3. A system according to Claim 2, wherein the weighted average z is calculated, in accordance with the equation:

$$z = \frac{[count(x) \times x] + [count(y) \times y]}{count(x) + count(y)};$$

- where x and y are the colors in the color pair, and count() denotes the number of occurrences of each color in the digital color image.
- 4. A system according to Claim 1, wherein visual distinctness is
 determined based on an output of a function f of visual area, in accordance with
 the equation:

4
$$f(x) = \frac{c}{x + c(y_2 - y_1)^{-1}} + y_1;$$

- where x is a visual area occupied by one of the colors in the color pair, y₁ denotes a horizontal asymptote, y₂ denotes a y-intercept, and c represents a fitted curve constant.
- A system according to Claim 4, further comprising:
 a visualization module determining visual distinction △, in accordance
 with the equation:

4
$$\Delta(x,y) = \begin{cases} \text{TRUE,} & \text{if } |x-y| \ge f(v(x)); \\ \text{FALSE,} & \text{if } |x-y| < f(v(x)); \end{cases}$$

- 5 where ν is a visual area comprising a largest four-way block of contiguous pixels
- 6 of one of the colors in the color pair.
- 1 6. A method for determining a natural color depth of a digital image,
- 2 comprising:
- determining color distances between each pair of colors in a color palette
- 4 stored for a digital color image;
- 5 selecting a closest neighboring color for each color in the color palette
- 6 separated by a substantially minimum color distance; and
- 7 merging, in iterative sequence, each color pair that is visually indistinct.
- 1 7. A method according to Claim 6, further comprising:
- 2 generating a weighted average of the colors in each color pair that are
- 3 visually indistinct.
- 1 8. A method according to Claim 7, further comprising:
- 2 calculating the weighted average z, in accordance with the equation:

$$z = \frac{[count(x) \times x] + [count(y) \times y]}{count(x) + count(y)};$$

- 4 where x and y are the colors in the color pair, and count() denotes the number of
- 5 occurrences of each color in the digital color image.
- 1 9. A method according to Claim 6, further comprising:
- determining visual distinctness based on an output of a function f of visual
- 3 area, in accordance with the equation:

4
$$f(x) = \frac{c}{x + c(y_2 - y_1)^{-1}} + y_1;$$

- 5 where x is a visual area occupied by one of the colors in the color pair, y_1 denotes
- 6 a horizontal asymptote, y_2 denotes a y-intercept, and c represents a fitted curve
- 7 constant.
- 1 10. A method according to Claim 9, further comprising:
- determining visual distinction Δ , in accordance with the equation:

3
$$\Delta(x,y) = \begin{cases} \text{TRUE,} & \text{if } |x-y| \ge f(v(x)); \\ \text{FALSE,} & \text{if } |x-y| < f(v(x)); \end{cases}$$

- 4 where ν is a visual area comprising a largest four-way block of contiguous pixels
- 5 of one of the colors in the color pair.
- 1 11. A computer-readable storage medium holding code for performing
- 2 the method according to Claims 6, 7, 8, 9, or 10.
- 1 12. A system for reducing a color palette of a digital image to a natural
- 2 color depth, comprising:
- a distance module selecting a neighboring color closest in color distance in
- 4 a color space for each unique color in the color palette of a digital image; and
- 5 a merge module merging the unique color and the closest neighboring
- 6 color, comprising determining visual distinctness of the unique color based on the
- 7 visual area occupied by the unique color in the digital image, and combining the
- 8 unique color and the closest neighboring color when visually indistinct and
- 9 reducing the color palette by replacing all occurrences of the unique color and the
- 10 closest neighboring color with the combined color.
- 1 13. A system according to Claim 12, wherein selecting the closest
- 2 neighboring color and merging the unique color and the closest neighboring color
- 3 is repeated until no further colors in the color palette merge.
- 1 14. A system according to Claim 12, further comprising:
- a statistical module counting occurrences of the unique color, counting
- 3 occurrences of the closest neighboring color, and calculating a weighted average

3

4	of the unique color and the closest neighboring color to combine the unique color
5	and the closest neighboring color.
1	15. A system according to Claim 12, further comprising:
2	a visual distinctness module evaluating the visual area occupied by the
3	unique color relative to color distances in the color space from other colors to
4	determine a threshold below which the unique color and any other such color are
5	visually indistinct.
1	16. A system according to Claim 15, wherein visual distinctness is set
	, , , , , , , , , , , , , , , , , , , ,
2	as occurring when the color distance between the unique color and the closest
3	neighboring color exceeds the threshold.
1	17. A system according to Claim 15, wherein the color distance is
2	determined as a Euclidean distance in the color space.
1	18. A system according to Claim 12, wherein the digital image is
2	received as an output from another color reduction process.
2	received as an output from another color reduction process.
1	19. A system according to Claim 12, wherein the digital image is
2	forwarded as an input to another color reduction process.
1	20. A system according to Claim 12, further comprising:
2	a non-natural color depth color reduction process performing a color
3	reduction of the color palette of the digital image prior reducing the color palette
4	to a natural color depth.
1	21. A system according to Claim 12, further comprising:

a compression module compressing the digital image following reduction

of the color palette to a natural color depth.

27.

0262.01.ap6

1	22. A system according to Claim 12, wherein the color space is
2	selected from the group comprising CIELAB, RGB, sRGB, YUV, HSV, HSB,
3	and YCbCr.
1	23. A method for reducing a color palette of a digital image to a
2	natural color depth, comprising:
3	selecting a neighboring color closest in color distance in a color space for
4	each unique color in the color palette of a digital image; and
5	merging the unique color and the closest neighboring color, comprising:
6	determining visual distinctness of the unique color based on the
7	visual area occupied by the unique color in the digital image; and
8	combining the unique color and the closest neighboring color when
9	visually indistinct and reducing the color palette by replacing all occurrences of
10	the unique color and the closest neighboring color with the combined color.
1	24. A method according to Claim 23, further comprising:
2	repeatedly selecting the closest neighboring color and merging the unique
3	color and the closest neighboring color until no further colors in the color palette
4	merge.
1	25. A method according to Claim 23, further comprising:
2	counting occurrences of the unique color;
3	counting occurrences of the closest neighboring color; and
4	calculating a weighted average of the unique color and the closest
5	neighboring color to combine the unique color and the closest neighboring color.
1	26. A method according to Claim 23, further comprising:
2	evaluating the visual area occupied by the unique color relative to color
3	distances in the color space from other colors to determine a threshold below
4	which the unique color and any other such color are visually indistinct.

- 19 -

A method according to Claim 26, further comprising:

2	setting visual distinctness as occurring when the color distance between
3	the unique color and the closest neighboring color exceeds the threshold.
1,	28. A method according to Claim 26, further comprising:
2	determining the color distance as a Euclidean distance in the color space.
1	29. A method according to Claim 23, further comprising:
2	receiving the digital image as an output from another color reduction
3	process.
1	30. A method according to Claim 23, further comprising:
2	forwarding the digital image as an input to another color reduction
3	process.
1	31. A method according to Claim 23, further comprising:
2	
	performing a color reduction of the color palette of the digital image prior
3	reducing the color palette to a natural color depth.
1	32. A method according to Claim 23, further comprising:
2	compressing the digital image following reduction of the color palette to a
3	natural color depth.
1	33. A method according to Claim 23, wherein the color space is
2	selected from the group comprising CIELAB, RGB, sRGB, YUV, HSV, HSB,
3	and YCbCr.
1	34. A computer-readable storage medium holding code for performing
	2 It computer readucte storage medium nording code for performing

the method according to Claims 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33.