

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКО"

Факультет прикладної математики Кафедра системного програмування і спеціальних комп'ютерних систем

Лабораторна робота №1

3 дисципліни «Комп'ютерна схемотехніка» «Проектування комбінаційних схем»

Виконав:

студент III-го курсу групи КВ-41 Горпинич-Радуженко Іван

Постановка задачі

Мета роботи – опанувати методику проектування комбінаційних схем у заданому елементному базисі та дослідження їх характеристик.

Вхідні данні

Варіант: 5;

Таблиця 1.2

X1		X3	X4	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	I	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1		0		1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Таблиця 1.3

	Bxc	оди			Вих	оди	!
X1	X2	X3	X4	Z 1	Z2	Z 3	Z 4
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	1	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	0	1
1	0	1	1	1	1	1	0
1	1	0	0	1	1	1	0
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	1	0

Таблиця 1.4

$\alpha_3\alpha_2\alpha_1$	Тип елементів	Кількість елементів у	Час затримки сигналу t , нс
		корпусі мікросхеми	
101	2I-HE	4	20
	2АБО	4	22

Канонічні форми

X2

				1		
X1	1		1			
ı		1	1		X3	
		1	1			
			X4		I	

$$Y = \overline{x_1}x_4 \cup \overline{x_2}x_3x_4 \cup x_1\overline{x_2}\overline{x_3}\overline{x_4} \cup x_1x_2x_3\overline{x_4}$$

Операторні форми

Згідно таблиці 1.4 можливо реалізувати форми: АБО/І-НЕ, І-НЕ / І-НЕ.

Операторна форма АБО/І-НЕ:

$$Y = \overline{(x_1 \cup \overline{x_4}) \cap (x_2 \cup x_3 \cup \overline{x_4}) \cap (\overline{x_1} \cup \overline{x_2} \cup \overline{x_3} \cup x_4) \cap (\overline{x_1} \cup x_2 \cup x_3 \cup x_4)} =$$

$$= \overline{(x_1 \cup \overline{x_4}) \cap ((x_2 \cup \overline{x_4}) \cup x_3) \cap ((\overline{x_1} \cup \overline{x_2}) \cup (\overline{x_3} \cup x_4)) \cap ((\overline{x_1} \cup x_2) \cup (x_3 \cup x_4))}$$

Операторна форма І-НЕ / І-НЕ:

$$Y = \overline{\overline{x_1}x_4} \cap \overline{\overline{x_2}x_3x_4} \cap \overline{x_1x_2x_3\overline{x_4}} \cap \overline{x_1\overline{x_2}x_3\overline{x_4}} =$$

$$= \overline{(\overline{\overline{x_1}x_4}) \cap (\overline{\overline{\overline{x_2}x_4}}) \cap (\overline{(\overline{x_1}\overline{x_2}) \cap (\overline{\overline{x_3}\overline{x_4}})} \cap \overline{(\overline{\overline{x_1}\overline{x_2}}) \cap (\overline{\overline{x_3}\overline{x_4}})})};$$

Побудова функції на мультиплексорі

Розклад за: x_1, x_2

$$F_0=x_4$$

$$F_1 = x_4$$

$$F_2 = x_3 x_4 \cup \overline{x_3 x_4} = \overline{\overline{x_3 x_4} \cap \overline{\overline{x_3 x_4}}}$$

$$F_3 = x_3 \bar{x}_4 = \overline{\overline{x_3 \bar{x}_4}}$$

$$N=]5/4[*14/14+]1/2[*16/14=2+0.57=2.57]$$

Розклад за : x_1, x_3

$$F_0=x_4$$

$$F_1 = x_4$$

$$F_2 = \overline{x_2} \overline{x}_4 = \overline{\overline{\overline{x_2}} \overline{\overline{x}_4}}$$

$$F_3 = \overline{x_2} x_4 \cup x_2 \overline{x_4} = \overline{\overline{\overline{x_2}} x_4} \cap \overline{\overline{x_2} \overline{\overline{x_4}}}$$

$$N=$$
 $[5/4[*14/14+]1/2[*16/14=2+0.57=2.57]$

Розклад за: x_1, x_4

$$F_0 = 0$$

$$F_1 = 1$$

$$F_2 = x_2 x_3 \cup \overline{x_2 x_3} = \overline{\overline{x_2 x_3} \cap \overline{\overline{x_2 x_3}}}$$

$$F_3 = \overline{x_2}x_3 = \overline{\overline{\overline{x_2}}\overline{x_3}}$$

<2)))) 	0 0 1 1 0	X4 0 1 0 1 0) 0 1 0 1 0
))))	0 0 1 1 0	0 1 0 1	0 1 0 1
))) 	0 1 1 0	0 1 0 1	0 1 0 1
)) 	1 1 0	0 1 0	0 1 0
) 	1 0 0	1	1 0
l	0	0	0
l	0		
		1	1
	-		
	1	0	0
1	1	1	1
)	0	0	1
)	0	1	0
)	1	0	0
)	1	1	1
l	0	0	0
	0	1	0
1	1	0	1
	1	1	0
)) 1 0 0	0 1 1 0 0 0 1 1 0

N=]5/4[*14/14+]1/2[*16/14=2+0.57=2.57]

Розклад за : *x*₂, *x*₃

$$F_{0} = x_{1}\overline{x}_{4} \cup \overline{x_{1}}x_{4} = \overline{x_{1}}\overline{x_{4}} \cap \overline{\overline{x_{1}}x_{4}}$$

$$F_{1} = x_{1}x_{4} \cup \overline{x_{1}}x_{4} = \overline{\overline{x_{1}}x_{4}} \cap \overline{\overline{x_{1}}x_{4}}$$

$$F_{2} = \overline{x_{1}}x_{4} = \overline{\overline{\overline{x_{1}}x_{4}}}$$

$$F_{3} = x_{1}\overline{x}_{4} \cup \overline{x_{1}}x_{4} = \overline{\overline{x_{1}}\overline{x_{4}}} \cap \overline{\overline{x_{1}}x_{4}}$$

N=]6/4[*14/14+]1/2[*16/14=2+0.57=2.57]

Розклад за : x_2 , x_4

$$F_0 = x_1 \bar{x}_3 = \overline{\overline{x_1} \overline{\overline{x_3}}}$$

$$F_1 = x_3 \cup \overline{x_1 x_3} = \overline{\overline{x_3} \cap \overline{\overline{x_1} \overline{x_3}}}$$

$$F_2 = x_1 x_3 = \overline{\overline{x_1 x_3}}$$

$$F_3 = \overline{x_1}$$

N=]6/4[*14/14+]1/2[*16/14=2+0.57=2.57]

Розклад за : x_3 , x_4

$$F_0 = x_1 \bar{x}_2 = \overline{\overline{x_1} \overline{\overline{x_2}}}$$

$$F_1 = \overline{x_1}$$

$$F_2 = x_1 x_2 = \overline{\overline{x_1} \overline{x_2}}$$

$$F_3 = \overline{x_1} \cup x_1 \overline{x_2} = \overline{x_1 \cap \overline{x_1} \overline{x_2}}$$

$$N=]6/4[*14/14+]1/2[*16/14=2+0.57=2.57]$$

<u>Складність схем за умовними корпусами є однаковою для всіх варіантів.</u>

Побудова системи на дешифраторі

$$z_1 = 5 \cup 6 \cup 7 \cup 8 \cup 9 \cup 10 \cup 11 \cup 12 = \overline{\overline{567}} \cap \overline{\overline{8910}} \cap \overline{\overline{1112}}$$

$$z_2 = 1 \cup 2 \cup 3 \cup 4 \cup 9 \cup 10 \cup 11 \cup 12 = \overline{\overline{123}} \cap \overline{\overline{4910}} \cap \overline{\overline{1112}}$$

$$z_3 = 0 \cup 3 \cup 4 \cup 7 \cup 8 \cup 11 \cup 12 \cup 15 = \overline{\overline{034}} \cap \overline{\overline{7815}} \cap \overline{\overline{1112}}$$

$$z_4 = 1 \cup 2 \cup 4 \cup 7 \cup 9 \cup 10 = \overline{\overline{1}\overline{2}\overline{4}} \cap \overline{\overline{7}\overline{9}\overline{10}}$$

N=]22/3[+22/14=8+1.6=9.6]