3Dセルオートマトンの実装

この実験で何をやったか

• オートマトンの一種であるConwayのライフゲームの拡張

ライフゲームの基本ルール

誕生	生存(維持)	死(過疎)	死 (過密)

https://ja.wikipedia.org/wiki/ライフゲーム

Conwayのライフゲームと何が違うのか

- ・3次元空間への拡張
- 複数状態を保持
- •寿命の概念の導入

なぜこれをやろうと思ったか

- 当初何をしようとしていたか
 - 3DにしたらopenGLの良さが出せそう。
- 実装してみたけどなんか見栄えがよくない...
 - セルの着色
 - 何に対して? → 状態
 - 「ライフゲームっぽい」セルの発生を視覚的に感じたい。
- じゃあ状態数を拡張してみよう
 - ・ルールの変更
 - •編集(デバッグ)モードを追加

技術的な工夫・苦労した点

• グラデーションの作成

• 対話性の向上

• 描画の高速化

• (ライフゲームのルール策定)

グラデーションの作成

- HSV色空間
- Hueを15°ずつ変化

• HSV → RGB

HSV 色空間の図

https://jp.mathworks.com/help/images/convert-from-hsv-to-rgb-color-space.html

対話性の向上

- 使いそうな機能は一通り追加
 - ・停止・再生
 - ・セルの追加・消去
 - セルの更新を加速・減速
 - セルのリセット
 - オートローテーションモード
 - etc...

描画の高速化

•必要ないセルを描画しない

• ノイマン近傍のセルが全て生きている場合

(ライフゲームのルール策定)

• OpenGLで苦労した点ではないが...

- 正直一番大変だった。
 - 大半をここに費やした。

Birth: 4

Number of States: 5

Birth: 4

Number of States: 10

・初期値によってすべて決まる

Birth: 4, 8

Number of States: 5

Birth: 4, 6, 7, 12, 13

Number of States: 10

