Unit 8 – TF-IDF

CS 201 - Data Structures II
Spring 2022
Habib University

Syeda Saleha Raza

Bag of words

```
1. The sun is shining
     The weather is sweet
     3. The sun is shining and the weather is sweet
{ 'the ': 5, 'shining': 2, 'weather': 6, 'sun': 3, 'is': 1, 'sweet': 4,
'and': 0}
        [[0 1 1 1 0 1 0]
          [0 1 0 0 1 1 1]
          [1 2 1 1 1 2 1]]
```

Some things to be careful of...

Need some notion of the length of a document

Term Frequency

• In document d, the frequency represents the number of instances of a given word t.

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{k,j}}$$

Pitfall with term frequency

Most frequent word on twitter in each state in the United States .

<u>Terrible Maps on Twitter: "The most popular word in each state</u>
https://t.co/LY7LewNohn" / Twitter

Some things to be careful of...

Need some notion of the importance of words

Term importance

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection
- How to quantify rareness of a term?

Document frequency

- Terms that occur in many documents are weighted less, since overlapping with these terms is very likely
 - In the extreme case, take a word like the that occurs in EVERY document
- Terms that occur in only a few documents are weighted more

Inverse Document Frequency (IDF)

Inverse Document Frequency (IDF)

$$idf_i = log \frac{|D|}{|d: t_i \in d|}$$

 Calculates how common a word is across documents. Most common terms are less significant.

TF-IDF

 TF-IDF (term frequency-inverse document frequency) is a statistical measure that evaluates how relevant a word is to a document in a collection of documents.

$$tf-idf_{i,j} = tf_{i,j} \times idf_i$$

Bag of Words

1. The sun is shining
2. The weather is sweet
3. The sun is shining and the weather is sweet

{'the': 5, 'shining': 2, 'weather': 6, 'sun': 3, 'is': 1, 'sweet': 4, 'and': 0}|

[[0 1 1 1 0 1 0]

[0 1 0 0 1 1 1]

[1 2 1 1 1 2 1]]

TF-IDF

Interpreting TF-IDF

In other words, tf- $idf_{t,d}$ assigns to t a weight in document d that is:

- highest when t occurs many times within a small number of documents (thus lending high discriminating power to those documents);
- lower when the term occurs fewer times in a document, or occurs in many documents (thus offering a less pronounced relevance signal);
- lowest when the term occurs in virtually all documents.

Exercise

	Doc1	Doc2	Doc3
car	27	4	24
auto	3	33	0
insurance	0	33	29
best	14	0	17

• Compute TF-IDF score of each term in this corpus.

Cosine Similarity

$$\cos(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a}\mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{b}_{i}}{\sqrt{\sum_{i=1}^{n} (\mathbf{a}_{i})^{2}} \sqrt{\sum_{i=1}^{n} (\mathbf{b}_{i})^{2}}}$$

Example

An example is measuring the similarity between documents based on word counts:

Document	Advertising	Auto	Car	Detroit	Engine	Germany	Sales
а	5	88	123	43	35	0	36
b	71	125	42	76	0	27	88

$$a \cdot b = (5 \times 71) + (88 \times 125) + \dots + (36 \times 88) = 22957$$

$$||a|| = \sqrt{5^2 + 88^2 + 123^2 + 43^2 + 35^2 + 0^2 + 36^2} = 165.13$$

$$||b|| = \sqrt{71^2 + 125^2 + 42^2 + 76^2 + 0^2 + 27^2 + 88^2} = 191.52$$

$$||a|| ||b|| = 165.13 \times 191.52 = 31626$$

$$cosine \ similarity = cos \theta = \frac{a \cdot b}{||a|| \, ||b||} = \frac{22957}{31626} = .73$$

Interpreting Results

The Three Documents and Similarity Metrics

Considering only the 3 words from the above documents: 'sachin', 'dhoni', 'cricket'

Doc Sachin: Wiki page on Sachin Tendulkar

Dhoni - 10 Cricket - 50

Sachin - 200

Doc Dhoni: Wiki page on Dhoni

Dhoni - 400 Cricket - 100

Sachin - 20

Doc Dhoni_Small: Subsection of wiki on Dhoni

Dhoni - 10 Cricket - 5

Sachin - 1

Document - Term Matrix (Word Counts)

Word Counts	"Dhoni"	"Cricket"	"Sachin"
Doc Sachin	10	50	200
Doc Dhoni	400	100	20
Doc Dhoni_Small	10	5	1

Similarity Metrics

Similarity or Distance Metrics	Total Common Words	Euclidean distance	Cosine Similarity
Doc Sachin & Doc Dhoni	10 + 50 + 10 = 70	432.4	0.15
Doc Dhoni & Doc Dhoni_Small	20 + 10 + 7 = 37	204.0	0.23
Doc Sachin & Doc Dhoni_Small	10 + 10 + 7 = 27	401.85	0.77

Projection of Documents in 3D Space

Projection of documents in 3D space

Precision vs Recall

https://en.wikipedia.org/wiki/Precision and recall

Thanks