Chapitre 20

Matrices

Objectifs

- Définir les matrices, le vocabulaire, les opérations sur les matrices, la structure d'espace vectoriel sur $\mathcal{M}_{n,p}(\mathbb{K})$ et le lien avec les applications linéaires.
- Définir le produit matriciel en rapport avec la composition des applications, étudier les propriétés de ce produit et les applications. Structure d'algèbre sur $\mathcal{M}_n(\mathbb{K})$.
- Étudier les matrices carrées inversibles : le groupe $GL_n(\mathbb{K})$.
- Étudier les formules du changement de bases pour les vecteurs et les applications linéaires.
- Définir le rang d'une matrice, les opérations élémentaires sur une matrice (interprétation en terme de produit matriciel). Méthodes de *Gauss* et de *Gauss-Jordan*.

Sommaire

I)	Matrices, liens avec les applications linéaires		:
	1)	Définitions	
	2)	Structure d'espace vectoriel sur les matrices	;
	3)	Matrice d'une application linéaire	Ţ
II)	Produit matriciel		(
	1)	Définition	1
	2)	Retour aux applications linéaires	
	3)	Propriétés du produit matriciel	
III)	Matrices carrées inversibles		1
	1)	Définition	1
	2)	Retour aux applications linéaires	1
IV)	Changement de bases		1
	1)	Matrice de passage	1
	2)	Formules du changement de bases	1
	3)	Changement de bases et applications linéaires	1
	4)	Trace d'un endomorphisme	1
V)	Rang d'une matrice		1
	1)	Définition	1
	2)	Propriétés du rang d'une matrice	1
VI)	Opérations élémentaires sur les matrices		1
	1)	Définition	1
	2)	Calcul pratique du rang d'une matrice	1
	3)	Calcul pratique de l'inverse d'une matrice	1
VII)	Exerc	cices	20

 \mathbb{K} désigne un sous-corps de \mathbb{C} .

Matrices, liens avec les applications linéaires I)

1) Définitions

DÉFINITION 20.1

Soient $n, p \in \mathbb{N}^*$, on appelle matrice à n lignes et p colonnes à coefficients dans \mathbb{K} , toute application $M: \llbracket 1..n \rrbracket \times \llbracket 1..p \rrbracket \rightarrow \mathbb{K}$. Pour $(i,j) \in \llbracket 1..n \rrbracket \times \llbracket 1..p \rrbracket$, on pose $M(i,j) = M_{i,j}$ (ou $m_{i,j}$), c'est le coefficient de la matrice M d'indices i et j, le premier indice est appelé indice de ligne, et le second indice de colonne.

L'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} est noté $\mathcal{M}_{n,p}(\mathbb{K})$, on a $donc\ \mathcal{M}_{n,p}(\mathbb{K}) = \mathcal{F}(\llbracket 1..n \rrbracket \times \llbracket 1..p \rrbracket, \mathbb{K})$

Notations: Si
$$M \in \mathcal{M}_{n,p}(\mathbb{K})$$
, on peut écrire: $M = (m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ ou bien $M = \begin{pmatrix} m_{1,1} & \cdots & m_{1,p} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,p} \end{pmatrix}$.

L'égalité entre deux matrices est en fait l'égalité entre deux fonctions, par conséquent deux matrices sont égales lorsqu'elles ont la même taille et les mêmes coefficients.

Cas particuliers:

- Lorsque n = p on dit que la matrice est **carrée**, l'ensemble des matrices carrées à n lignes est noté $\mathcal{M}_n(\mathbb{K})$ au lieu de $\mathcal{M}_{n,n}(\mathbb{K})$.
- Lorsque p = 1 on dit que M est une matrice **ligne** : $\begin{pmatrix} 1 & 2 & -3 \end{pmatrix} \in \mathcal{M}_{1,3}(\mathbb{K})$. Lorsque p = 1 on dit que M est une matrice **colonne** : $\begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{K})$.

ØDéfinition 20.2

Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$, pour $k \in [[1..p]]$:

On appelle k-ième vecteur colonne de M le vecteur $c_k(M) = (m_{1,k}, ..., m_{n,k})$, c'est un élément

$$\mathbb{K}^n$$
.

On appelle k -ième matrice colonne de M la matrice $\mathscr{C}_k(M) = \begin{pmatrix} m_{1,k} \\ \vdots \\ m_{n,k} \end{pmatrix} \in \mathscr{M}_{n,1}(\mathbb{K})$.

On appelle k-ième vecteur ligne de M le vecteur $L_k(M) = (m_{k,1}, \dots, m_{k,p})$, c'est un élément de \mathbb{K}^p .

On appelle k-ième matrice ligne de M la matrice $\mathcal{L}_k(M) = \begin{pmatrix} m_{k,1} & \cdots & m_{k,p} \end{pmatrix} \in \mathcal{M}_{1,p}(\mathbb{K})$.

DÉFINITION 20.3 (transposition)

Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle **transposée** de M la matrice de $\mathcal{M}_{p,n}(\mathbb{K})$ notée ^tM et définie par :

$$({}^{\mathsf{t}}M)_{i,j} = M_{j,i} \quad pour \ i \in \llbracket 1..p \rrbracket \quad et \ j \in \llbracket 1..n \rrbracket.$$

Autrement dit, la ligne i de ^tM est la colonne i de M.

Exemple: Soit
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{K})$$
, on a ${}^{t}M = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{K})$.

🍿 THÉORÈME 20.1 (propriétés de la transposition)

On a les propriétés suivantes :

- $\mathcal{M}_n(\mathbb{K})$ est stable pour la transposition.
- $-{}^{t}({}^{t}M)=M$, on en déduit en particulier que la transposition est une involution dans $\mathcal{M}_{n}(\mathbb{K})$.
- $-L_k({}^{\mathsf{t}}\!M) = C_k(M) \text{ et } C_k({}^{\mathsf{t}}\!M) = L_k(M).$

Preuve: Celle-ci est simple et laissée en exercice.

DÉFINITION 20.4 (trace d'une matrice carrée)

Soit $M \in \mathcal{M}_n(\mathbb{K})$, on appelle trace de M le scalaire noté $\operatorname{tr}(M)$ et défini par : $\operatorname{tr}(M) = \sum_{i=1}^n M_{i,i}$, c'est donc la somme des coefficients diagonaux.

Matrices particulières :

- Matrice nulle : la matrice nulle à n lignes et p colonnes est la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont tous les coefficients sont nuls, celle-ci est notée $O_{n,p}$. Lorsque p=n, la matrice $O_{n,n}$ est notée simplement O_n , c'est la matrice nulle de $\mathcal{M}_n(\mathbb{K})$.
- Matrice unité : la matrice unité de $\mathcal{M}_n(\mathbb{K})$ est la matrice carrée de taille n, notée I_n et définie par $I_n = (\delta_{i,j})_{1 \le i,j \le n}$, c'est à dire, I_n est la matrice dont tous les coefficients diagonaux sont égaux à 1, les autres (coefficients extra-diagonaux) sont tous nuls.

Exemple: $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est la matrice unité de $\mathcal{M}_3(\mathbb{K})$.

- Matrice diagonale : une matrice diagonale est une matrice carrée dont tous les

diagonaux sont nuls. C'est donc une matrice de la forme $M = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & 0 & a_2 \end{pmatrix}$, une telle

matrice est notée parfois $M = diag(a_1, ..., a_n)$.

Matrice élémentaire : une matrice élémentaire de $\mathcal{M}_{n,p}(\mathbb{K})$ est une matrice dont tous les coefficients sont nuls sauf un qui vaut 1. Il y a donc np matrices élémentaires dans $\mathcal{M}_{n,p}(\mathbb{K})$, pour $(i,j) \in$ $[\![1..n]\!] \times [\![1..p]\!]$, on note $E^{i,j}$ la matrice élémentaire qui possède un 1 ligne i colonne j, et des 0 ailleurs, plus précisément : $(E^{i,j})_{k,l} = \delta_{i,k}\delta_{j,l}$.

Exemple: Dans $\mathcal{M}_{2,3}(\mathbb{K})$, on a $E^{1,2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- Matrice triangulaire supérieure : c'est une matrice carrée dont tous les éléments situés sous la diagonale principale sont nuls. L'ensemble des matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$ est noté $\mathscr{T}_n^s(\mathbb{K})$, on a donc:

$$M \in \mathcal{T}_n^s(\mathbb{K}) \iff \forall i, j \in [[1..n]], i > j \Longrightarrow M_{i,j} = 0.$$

Matrice triangulaire inférieure : c'est une matrice carrée dont tous les éléments situés au-dessus de la diagonale principale sont nuls. L'ensemble des matrices triangulaires inférieures de $\mathcal{M}_n(\mathbb{K})$ est noté $\mathcal{T}_n^i(\mathbb{K})$, on a donc :

$$M \in \mathcal{T}_n^i(\mathbb{K}) \iff \forall i, j \in [[1..n]], i < j \Longrightarrow M_{i,j} = 0.$$

- Matrice symétrique : c'est une matrice qui est égale à sa transposée (elle est donc nécessairement carrée) : $M = {}^{t}M$. L'ensemble des matrices symétriques de taille n est noté $\mathcal{S}_{n}(\mathbb{K})$, on a donc :

$$M \in \mathcal{S}_n(\mathbb{K}) \iff \forall i, j \in [[1..n]], M_{i,j} = M_{j,i}.$$

- Matrice antisymétrique : c'est une matrice qui est égale à l'opposé de sa transposée (elle est donc nécessairement carrée) : $M = -{}^{t}M$. L'ensemble des matrices antisymétriques de taille n est noté $\mathscr{A}_n(\mathbb{K})$, on a donc :

$$M \in \mathcal{A}_n(\mathbb{K}) \iff \forall \ i,j \in \llbracket 1..n \rrbracket, M_{i,j} = -M_{j,i},$$

on en déduit en particulier que $M_{i,i}=0$ (les coefficients diagonaux sont nuls).

Structure d'espace vectoriel sur les matrices

DÉFINITION 20.5 (somme de deux matrices)

Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle somme de A et B la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ notée A+B et définie $par: \forall (i,j) \in [[1..n]] \times [[1..p]], (A+B)_{i,j} = A_{i,j} + B_{i,j}.$ On additionne entre eux les éléments ayant

Exemple: $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 1 \\ -2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 4 \\ 2 & 8 & 10 \end{pmatrix}$.

THÉORÈME 20.2

 $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe abélien. L'élément neutre est la matrice nulle : $O_{n,p}$, et si $A \in \mathcal{M}_{n,p}(\mathbb{K})$, l'opposé de A est la matrice -A définie par $\forall (i,j) \in [[1..n]] \times [[1..p]], (-A)_{i,j} = -A_{i,j}$.

Preuve: Celle-ci est simple et laissée en exercice.

DÉFINITION 20.6 (produit par un scalaire)

Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$ et soit $\lambda \in \mathbb{K}$, on appelle produit de la matrice M par le scalaire λ la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ notée $\lambda.M$ et définie par : \forall $(i,j) \in [[1..n]] \times [[1..p]], (\lambda.M)_{i,j} = \lambda \times M_{i,j}$. C'est à dire, chaque coefficient de M est multiplié par λ .

Exemple: $2 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{pmatrix}$.

Propriétés: On peut vérifier facilement : soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$, soient $\lambda, \mu \in \mathbb{K}$:

- -1.A = A.
- $-\lambda .(A+B) = \lambda .A + \lambda .B.$
- $-(\lambda + \mu)A = \lambda A + \mu A$.
- $(\lambda \mu) A = \lambda . (\mu . A).$

On peut donc énoncer le résultat suivant : $|(\mathcal{M}_{n,p}(\mathbb{K}),+,.)|$ est un \mathbb{K} -espace vectoriel.

$\widehat{\mathbb{Q}}^-$ THÉORÈME 20.3 (dimension de $\mathscr{M}_{n,p}(\mathbb{K})$)

 $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -e.v de dimension np, et les matrices élémentaires $(E^{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ constituent une

base de $\mathcal{M}_{n,p}(\mathbb{K})$. Cette base est appelée base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$, car les coordonnées d'une matrice $M \in \mathcal{M}_{n,p}(\mathbb{K})$ dans cette base sont les coefficients de M, c'est à dire :

$$M = \sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} M_{i,j}.E^{i,j}.$$

Preuve: Il reste à montrer que la famille des matrices élémentaires est libre et génératrice de $\mathcal{M}_{n,p}(\mathbb{K})$. Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$ $\mathcal{M}_{n,p}(\mathbb{K})$, posons $B = \sum_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}} M_{i,j}.E^{i,j}$, on a alors $\forall (k,l) \in \llbracket 1..n \rrbracket \times \llbracket 1..p \rrbracket$, $B_{k,l} = \sum_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}} M_{i,j}.(E^{i,j})_{k,l}$, ce qui donne

 $B_{k,l} = \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} M_{i,j} \delta_{i,k} \delta_{j,l}$, et donc $B_{k,l} = M_{k,l}$, d'où B = M. Ce qui prouve que toute matrice M s'écrit de manière unique

comme combinaison linéaire des matrices élémentaires, celles-ci constituent donc une base de $\mathcal{M}_{n,p}(\mathbb{K})$, or elles sont au nombre de np, donc dim $(\mathcal{M}_{n,p}(\mathbb{K})) = np$. Celle-ci est simple et laissée en exercice.

Exercice: Montrer que $\mathscr{T}_n^s(\mathbb{K}), \mathscr{T}_n^i(\mathbb{K}), \mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ sont des s.e.v de $\mathscr{M}_n(\mathbb{K})$. Pour chacun d'eux donner une base et la dimension.

MPSI - Cours

THÉORÈME 20.4 (propriétés de la transposition et de la trace)

On a les propriétés suivantes :

- La transposition est linéaire, plus précisément, c'est un isomorphisme de $\mathcal{M}_{n,p}(\mathbb{K})$ sur $\mathcal{M}_{p,n}(\mathbb{K})$
- La trace est une forme linéaire non nulle sur $\mathcal{M}_n(\mathbb{K})$.

Preuve: Pour le premier point, la linéarité est simple à vérifier. On peut voir ensuite que la transposition transforme la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ en la base canonique de $\mathcal{M}_{p,n}(\mathbb{K})$.

Pour le second point, il s'agit d'une simple vérification de la linéarité, d'autre part, $tr(I_n) = n \neq 0$.

Exercice: Montrer que la transposition dans $\mathcal{M}_n(\mathbb{K})$ est une symétrie, déterminer ses éléments caractéristiques.

Matrice d'une application linéaire

Soit E un \mathbb{K} -e.v de dimension p, soit $\mathfrak{B} = (e_1, \dots, e_p)$ une base de E. Soit F un \mathbb{K} -e.v de dimension pet soit $\mathfrak{B}' = (u_1, \dots, u_n)$ une base de F. Soit $f \in \mathcal{L}(E, F)$, on sait que f est entièrement déterminée par la donnée de $f(e_1), \ldots, f(e_p)$, mais chacun de ces vecteurs est lui-même déterminé par ses coordonnées dans la base \mathfrak{B}' de F. Notons $\operatorname{coord}(f(e_j)) = (a_{1,j}, \ldots, a_{n,j})$ pour $j \in [[1..p]]$, c'est à dire :

$$\forall j \in [[1..p]], f(e_j) = \sum_{i=1}^{n} a_{i,j} u_i.$$

On obtient ainsi une matrice $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ cette matrice est définie par : $c_j(A) = \operatorname{coord}_{\mathfrak{B}'}(f(e_j))$.

🚜 Définition 20.7

Soit $f \in \mathcal{L}(E,F)$, soit $\mathfrak{B}=(e_1,\ldots,e_p)$ une base de E et soit $\mathfrak{B}'=(u_1,\ldots,u_n)$ une base de F, on appelle matrice de f relative aux bases \mathfrak{B} et \mathfrak{B}' la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ notée $\max_{\mathfrak{B},\mathfrak{B}'}(f)$ et définie par : pour $j \in [[1..p]]$, le j-ième vecteur colonne de cette matrice est $\operatorname{coord}_{\mathfrak{B}'}(f(e_j))$, autrement dit, le coefficient de la ligne i colonne j est la coordonnée sur u_i du vecteur $f(e_i)$.

Construction de cette matrice :

$$\begin{aligned}
f(e_1) & \dots & f(e_p) \\
\downarrow & & \downarrow \\
\text{mat}(f) &= \begin{pmatrix} a_{1,1} & \dots & a_{1,p} \\
\vdots & \vdots & \vdots \\
a_{n,1} & \dots & a_{n,p} \end{pmatrix} & \to & u_1 \\
\vdots & \vdots & \vdots \\
& \vdots & \vdots \\
& \vdots & \vdots & & \vdots \\
& \vdots & \vdots & \vdots \\
& \vdots$$

Exemples:

Soit $\mathfrak{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{K}^3 et soit $\mathfrak{B}' = (u, v)$ la base canonique de \mathbb{K}^2 , soit $f \in \mathcal{L}(\mathbb{K}^3, \mathbb{K}^2)$

définie par
$$\forall (x, y, z) \in \mathbb{K}^3$$
, $f(x, y, z) = (2x - y + z, x + 2y - 3z)$.

Déterminons $A = \max_{\mathfrak{B}, \mathfrak{B}'} (f)$, on a
$$\begin{cases} f(e_1) = f(1, 0, 0) = (2, 1) = 2u + v \\ f(e_2) = f(0, 1, 0) = (-1, 2) = -u + v \\ f(e_3) = f(0, 0, 1) = (1, -3) = u - 3v \end{cases}$$
, donc la matrice de f est:

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \end{pmatrix}.$$

– Avec les notations précédentes, déterminons l'application linéaire $g:\mathbb{K}^3 \to \mathbb{K}^2$ donnée par :

$$\max_{\mathfrak{B},\mathfrak{B}'}(g) = \begin{pmatrix} 6 & -2 & 1\\ 4 & 5 & -1 \end{pmatrix}.$$

On a
$$g(x, y, z) = xg(e_1) + yg(e_2) + zg(e_3) = x(6, 4) + y(-2, 5) + z(1, -1) = (6x - 2y + z, 4x + 5y - z).$$

Cas particuliers des endomorphismes : lorsque l'espace d'arrivée est le même que celui de départ (F = E), on choisit en général la même base à l'arrivée qu'au départ $(\mathfrak{B}' = \mathfrak{B})$, on note alors $\max_{\mathfrak{B},\mathfrak{B}}(f) = \max_{\mathfrak{B}}(f)$, c'est une matrice carrée.

Exercices:

- Soit $E = \mathbb{K}_3[X]$ et soit 𝔞 la base canonique de E :
 - On note D la dérivation dans E, calculer $\max_{M}(D)$.

 - Soit Δ définie par $\Delta(P) = P(X+1) P(X)$, calculer $\max_{\mathfrak{B}}(\Delta)$. Soit $P_0 = 1, P_1 = X, P_2 = \frac{X(X-1)}{2}$ et $P_3 = \frac{X(X-1)(X-2)}{6}$, montrer que $\mathfrak{B}' = (P_0, P_1, P_2, P_3)$ est une base de E et
- Calculer la matrice de la transposition dans la base canonique de $\mathcal{M}_2(\mathbb{K})$.

THÉORÈME 20.5 (caractérisation de l'identité et de l'application nulle)

Soit E un e.v de dimension n et soit $\mathfrak B$ une base de E:

- Soit $f \in \mathcal{L}(E)$, alors $f = id_E \iff \max_{m} (f) = I_n$.
- Soit F un e.v de dimension p et soit $\widetilde{\mathfrak{B}}'$ une base de F, soit $f \in \mathcal{L}(E,F)$, alors :

$$f=0\iff \max_{\mathfrak{B},\mathfrak{B}'}(f)=O_{p,n}.$$

Preuve: Celle-ci est simple et laissée en exercice.

-`<mark>@</mark>-THÉORÈME **20.6**

Soient E, F deux \mathbb{K} -e.v, soit \mathfrak{B} une base de E et soit \mathfrak{B}' une base de F, soient $f, g \in \mathcal{L}(E, F)$ et soit $\lambda \in \mathbb{K}$. On a:

$$\max_{\mathfrak{R},\mathfrak{R}'}(f+g) = \max_{\mathfrak{R},\mathfrak{R}'}(f) + \max_{\mathfrak{R},\mathfrak{R}'}(g) \quad et \quad \max_{\mathfrak{R},\mathfrak{R}'}(\lambda.f) = \lambda. \max_{\mathfrak{R},\mathfrak{R}'}(f).$$

application linéaire. Plus précisément, cette application est un isomorphisme.

Preuve: La vérification de la linéarité est simple (elle découle de la linéarité de l'application coordonnées). Si $\max_{\mathfrak{B},\mathfrak{B}'}(f) = O_{n,p}$, alors on sait que f est nulle, donc l'application mat est injective, la surjectivité étant évidente, on a donc bien un isomorphisme.

[→]THÉORÈME 20.7

Soit E un \mathbb{K} -espace vectoriel de dimension p, soit F un \mathbb{K} -espace vectoriel de dimension n, et soit $u \in \mathcal{L}(E,F)$ une application linéaire de rang r, alors il existe une base \mathfrak{B} de E et une base \mathfrak{B}' de Ftelles que $\max_{\mathfrak{B},\mathfrak{B}'}(u) = J_{n,p,r}$ où $J_{n,p,r}$ désigne la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ définie par :

$$J_{n,p,r} = \begin{pmatrix} 1 & 0 & \cdots & & 0 \\ 0 & \ddots & & & \vdots \\ \vdots & & 1 & & & \\ 0 & \cdots & & 0 & \cdots & 0 \\ \vdots & & & \ddots & \\ 0 & & \cdots & & & 0 \end{pmatrix}$$

Il y a r fois le scalaire 1 sur la diagonale.

Preuve: D'après le théorème du rang, dim $(\ker(u)) = p - r$, soit H un supplémentaire de $\ker(u)$ dans E et soit (e_1, \dots, e_r) une base de H, soit (e_{r+1}, \dots, e_p) une base de $\ker(u)$, alors $\mathfrak{B} = (e_1, \dots, e_p)$ est une base de E. On sait que $(u(e_1), \dots, u(e_r))$ est une base de $\operatorname{Im}(u)$, on peut compléter en une base de $F: \mathfrak{B}' = (u(e_1), \dots, u(e_r), v_{r+1}, \dots, v_n)$ et la matrice de u dans les bases $\mathfrak B$ et $\mathfrak B'$ a exactement la forme voulue.

Produit matriciel II)

Matrice d'une composée : Soient $\mathfrak{B}=(e_1,\ldots,e_q)$ une base de $E,\,\mathfrak{B}'=(u_1,\ldots,u_p)$ une base de F, et $\mathfrak{B}''=(v_1,\ldots,v_n)$ une base de G, soit $f\in \mathscr{L}(E,F), g\in \mathscr{L}(F,G),$ on pose $B=\max_{\mathfrak{B},\mathfrak{B}'}(f)\in \mathscr{M}_{p,q}(\mathbb{K}), A=0$

 $\max_{\mathfrak{B}',\mathfrak{B}''}(g) \in \mathscr{M}_{n,p}(\mathbb{K}) \text{ et } C = \max_{\mathfrak{B},\mathfrak{B}''}(g \circ f) \in \mathscr{M}_{n,q}(\mathbb{K}). \text{ Il s'agit de calculer } g \circ f(e_j) \text{ dans la base } \mathfrak{B}'', \text{ on } a: f(e_j) = \sum_{k=1}^p B_{k,j}u_k, \text{ donc } : g \circ f(e_j) = \sum_{k=1}^p B_{k,j}g(u_k) = \sum_{k=1}^p \sum_{i=1}^n B_{k,j}A_{i,k}v_i, \text{ c'est à dire } : g \circ f(e_j) = \sum_{i=1}^n \left(\sum_{k=1}^p A_{i,k}B_{k,j}\right)v_i. \text{ On doit donc avoir } : C \in \mathscr{M}_{n,q}(\mathbb{K}) \text{ avec } C_{i,j} = \sum_{k=1}^p A_{i,k}B_{k,j}. \text{ On voit que l'opération à effectuer sur les matrices } A \text{ et } B \text{ pour obtenir } C \text{ n'est pas aussi simple que pour la somme. Nous allons définir cette opération comme étant le$ **produit entre les deux matrices**<math>A et B.

1) Définition

Définition 20.8

Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$, soit $B \in \mathcal{M}_{p,q}(\mathbb{K})$, on appelle produit de A par B la matrice de $\mathcal{M}_{n,q}(\mathbb{K})$ notée $A \times B$ et définie par :

$$\forall (i,j) \in [[1..n]] \times [[1..q]], [A \times B]_{i,j} = \sum_{k=1}^{p} A_{i,k} B_{k,j}.$$

On retient ceci en disant que le coefficient $[A \times B]_{i,j}$ est le résultat du « produit de la ligne i de A avec la colonne j de B ».

Disposition des calculs :

Remarques:

- Le produit A × B n'est possible que si le nombre de colonnes de A est égal au nombre de lignes de B. Le résultat a alors autant de lignes que A et autant de colonnes que B.
- Dans $\mathcal{M}_n(\mathbb{K})$ le produit matriciel est interne.
- En général $A \times B \neq B \times A$, il se peut même que $A \times B$ soit défini, mais pas $B \times A$.

Exemple:

$$\begin{pmatrix} 1 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ -1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 1 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & -2 & 6 \\ 3 & -3 & 9 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 3 \\ -1 & -2 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -5 & 0 \\ -2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -5 & 0 \\ -2 & 1 \end{pmatrix}$$

Retour aux applications linéaires

THÉORÈME 20.8

Soit \mathfrak{B} une base de E, soit \mathfrak{B}' une base de F et soit \mathfrak{B}'' une base de G, soit $f \in \mathcal{L}(E,F)$ et soit $g \in \mathcal{L}(F,G) \ avec \ A = \max_{\mathfrak{B}',\mathfrak{B}''}(g) \ et \ B = \max_{\mathfrak{B},\mathfrak{B}'}(f), \ alors :$

$$\max_{\mathfrak{B},\mathfrak{B}''}(g \circ f) = A \times B = \max_{\mathfrak{B}',\mathfrak{B}''}(g) \times \max_{\mathfrak{B},\mathfrak{B}'}(f).$$

Cas particulier des endomorphismes : Soit E un \mathbb{K} -e.v, soit $\mathfrak B$ une base de E et soient $u,v\in \mathcal L(E)$ avec $A = \max_{\mathfrak{R}}(u)$ et $B = \max_{\mathfrak{R}}(v)$, on a alors $\max_{\mathfrak{R}}(u \circ v) = \max_{\mathfrak{R}}(u) \times \max_{\mathfrak{R}}(v) = A \times B$, en particulier :

$$\forall n \in \mathbb{N}, \max_{\mathfrak{B}}(u^n) = \left[\max_{\mathfrak{B}}(u)\right]^n = A^n.$$

THÉORÈME 20.9 (relation fondamentale)

Soit $\mathfrak{B} = (e_1, \dots, e_p)$ une base de E, soit $\mathfrak{B}' = (u_1, \dots, u_n)$ une base de F et soit $f \in \mathcal{L}(E, F)$. Pour $x \in E$, on pose X la matrice colonne des coordonnées de x dans la base \mathfrak{B} , ce que l'on note : $X = \operatorname{Coord}(x) \in \mathcal{M}_{p,1}(\mathbb{K})$ et Y la matrice colonne des coordonnées de y = f(x) dans la base \mathfrak{B}' : $Y = \operatorname{Coord}_{\mathfrak{R}'}(f(x)) \in \mathcal{M}_{n,1}(\mathbb{K})$. En posant $A = \max_{\mathfrak{R},\mathfrak{R}'}(f)$, on a alors la relation suivante :

$$Y = A \times X$$
 i.e. $\operatorname{Coord}(f(x)) = \max_{\mathfrak{B}, \mathfrak{B}'} (f) \times \operatorname{Coord}(x)$.

 $\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$ et $Y = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$, comme $A \in \mathcal{M}_{n,p}(\mathbb{K})$ on voit que le produit $A \times X$ est bien défini et que

c'est une matrice colonne à n lignes. On a $f(x) = \sum_{k=1}^{p} x_k f(e_k)$, mais on a $f(e_k) = \sum_{k=1}^{n} a_{i,k} u_i$, ce qui donne :

$$f(x) = \sum_{i=1}^{n} \left(\sum_{k=1}^{p} a_{i,k} x_{k,1} \right) u_i = \sum_{i=1}^{n} [A \times X]_{i,1} u_i = \sum_{i=1}^{n} y_i u_i.$$

Ce qui prouve que $Y = A \times X$.

Exemples:

- Soient 𝔞 la base canonique de \mathbb{K}^3 et 𝔞' la base canonique de \mathbb{K}^2 , soit $f \in \mathcal{L}(\mathbb{K}^3, \mathbb{K}^2)$ définie par sa matrice dans les bases \mathfrak{B} et \mathfrak{B}' : $\max_{\mathfrak{B},\mathfrak{B}'}(f) = A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & -5 \end{pmatrix}$, calculer f(x, y, z).

Réponse: Coord $(x, y, z) = X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, d'où Coord $(f(x, y, z)) = A \times X = \begin{pmatrix} x - 2y + 3z \\ 2x + y - 5z \end{pmatrix}$, donc $f(x, y, z) = A \times X = \begin{pmatrix} x - 2y + 3z \\ 2x + y - 5z \end{pmatrix}$

(x-2y+3z,2x+y-5z) (\mathfrak{B}' est la base canonique de \mathbb{K}^2).

- Soit $\mathfrak{B} = (i, j, k)$ la base canonique de \mathbb{K}^3 , on pose $\mathfrak{B}' = (i, i+j, i+j+k)$, on vérifie que \mathfrak{B}' est une base de \mathbb{K}^3 . Soit $f \in \mathcal{L}(\mathbb{K}^3)$ défini par $\max_{\mathfrak{B}'}(f) = A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$, calculer f(x, y, z).

Réponse: On a (x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = X = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yi + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yi + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yi + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i, donc Coord(x, y, z) = xi + yi + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i.

$$\begin{pmatrix} x - y \\ y - z \\ z \end{pmatrix}, \text{ d'où Coord}(f(x, y, z)) = A \times X = \begin{pmatrix} x - 2y + z \\ 2y - 3z \\ z \end{pmatrix}, \text{ c'est à dire } f(x, y, z) = (x - 2y + z)i + (2y - 3z)(i + j) + z(i + j + k), \text{ et donc } f(x, y, z) = (x - z, 2y - 2z, z).$$

- Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$ telles que $\forall X \in \mathcal{M}_{p,1}(\mathbb{K}), AX = BX$, montrer que A = B.

Réponse: Soit \mathfrak{B} la base canonique de \mathbb{K}^p et \mathfrak{B}' la base canonique de \mathbb{K}^n , soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application linéaire définie par $\max_{\mathfrak{B},\mathfrak{B}'}(f) = A - B$. Pour $x \in \mathbb{K}^p$, posons $X = \operatorname{Coord}(x)$, on a alors $\operatorname{Coord}(f(x)) = (A - B)X = \operatorname{Coord}(x)$ $O_{n,1}$, ce qui montre que f est l'application nulle, donc sa matrice est nulle, ce qui donne A = B.

DÉFINITION 20.9 (application linéaire canoniquement associée)

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle application linéaire canoniquement associée à A l'application linéaire $f_A \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ dont la matrice dans **les bases canoniques** de \mathbb{K}^p et \mathbb{K}^n , est A.

Propriétés du produit matriciel

- « **Associativité** » : Si $A \in \mathcal{M}_{n,p}(\mathbb{K}), B \in \mathcal{M}_{p,q}(\mathbb{K})$ et $C \in \mathcal{M}_{q,r}(\mathbb{K})$, alors :

$$A \times (B \times C) = (A \times B) \times C \in \mathcal{M}_{n,r}(\mathbb{K}).$$

Preuve: Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application linéaire canoniquement associée à $A, g \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^p)$ canoniquement associée à B et $h \in \mathcal{L}(\mathbb{K}^r, \mathbb{K}^q)$ canoniquement associée à C. On a $f \circ (g \circ h) \in \mathcal{L}(\mathbb{K}^r, \mathbb{K}^n)$ et sa matrice dans les bases canoniques est $A \times (B \times C)$. De même $(f \circ g) \circ h \in \mathcal{L}(\mathbb{K}^r, \mathbb{K}^n)$ et sa matrice dans les bases canoniques est $(A \times B) \times C$, or la composition des applications est associative, ce qui donne l'égalité.

- « Élément neutre » : Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on a : $A \times I_p = A$ et $I_n \times A = A$. **Preuve**: Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application linéaire canoniquement associée à A, id $_{\mathbb{K}^n}$ est l'application linéaire canoniquement associée à I_n , la matrice dans les bases canoniques de $\mathrm{id}_{\mathbb{K}^n} \circ f$ est donc $I_n \times A$, or $\mathrm{id}_{\mathbb{K}^n} \circ f = f$, donc $A = I_n \times A$.
- « **Distributivité** » : Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$, soit $C \in \mathcal{M}_{p,q}(\mathbb{K})$ et $D \in \mathcal{M}_{r,n}$, on a :

$$(A+B) \times C = A \times C + B \times C$$
 et $D \times (A+B) = D \times A + D \times B$.

Preuve: Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application canoniquement associée à A, soit $g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application canoniquement associée à B, et soit $h \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^p)$ l'application canoniquement associée à C. L'application linéaire canoniquement associé à la matrice $(A+B) \times C$ est $(f+g) \circ h \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^n)$, et l'application linéaire canoniquement associée à $A \times C + B \times C$ est $f \circ h + g \circ h \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^n)$, or $(f + g) \circ h = f \circ h + g \circ h$, ce qui donne la première égalité. La seconde se montre de la même façon.

– Transposée d'un produit : Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$ alors : ${}^t\!(A \times B) = {}^t\!B \times {}^t\!A$.

Preuve:
$$[{}^{\mathsf{t}}(A \times B)]_{i,j} = [A \times B]_{j,i} = \sum_{k=1}^{p} a_{j,k} b_{k,i} = \sum_{k=1}^{p} [{}^{\mathsf{t}}B]_{i,k} [{}^{\mathsf{t}}A]_{k,j} = [{}^{\mathsf{t}}B \times {}^{\mathsf{t}}A]_{i,j}.$$

Exercice: Calculer le produit entre deux matrices carrées élémentaires de même taille.

Réponse: Soient $E^{i,j}$, $E^{k,l}$ deux matrices élémentaires de $\mathcal{M}_n(\mathbb{K})$, soient $(r,s) \in [[1..n]]^2$:

$$[E^{i,j} \times E^{k,l}]_{r,s} = \sum_{p=1}^{n} [E^{i,j}]_{r,p} [E^{k,l}]_{p,s} = \sum_{p=1}^{n} \delta_{i,r} \delta_{p,j} \delta_{p,k} \delta_{l,s} = \delta_{j,k} \delta_{i,r} \delta_{l,s} = \delta_{j,k} [E^{i,l}]_{r,s},$$

on a donc $E^{i,j} \times E^{k,l} = \delta_{i,k} E^{i,l}$.

$\stackrel{\cdot}{\mathbb{Q}}$ THÉORÈME 20.10 (structure de $\mathcal{M}_n(\mathbb{K})$)

On a le résultat suivant : $(\mathcal{M}_n(\mathbb{K}), +, \times, .)$ est une \mathbb{K} -algèbre (non commutative si $n \ge 2$).

Preuve: On sait déjà que $(\mathcal{M}_n(\mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel, le reste découle des propriétés du produit matriciel, il reste simplement à vérifier la compatibilité entre le produit interne et le produit externe, i.e. : $\forall \lambda \in \mathbb{K}, \forall A, B \in \mathbb{K}$ $\mathscr{M}_n(\mathbb{K})$:

$$\lambda . (A \times B) = (\lambda . A) \times B = A \times (\lambda . B),$$

ce qui est laissé en exercice. Donnons un contre-exemple pour la non commutativité : soit $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,

on a
$$AB = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$
, mais $BA = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

- L'algèbre $\mathcal{M}_n(\mathbb{K})$ n'est pas intègre lorsque $n \ge 2$. Par exemple : $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = O_2$. De ce fait, il y a dans $\mathcal{M}_n(\mathbb{K})$ des éléments nilpotents, par exemple : $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

- On peut utiliser dans $\mathcal{M}_n(\mathbb{K})$ les règles du calcul algébrique, en prenant garde toutefois au fait que le produit n'est pas commutatif. Par exemple, si $A,B \in \mathcal{M}_n(\mathbb{K})$ commutent (i.e. AB = BA), alors on peut utiliser le binôme de Newton pour calculer $(A+B)^n$. Mais si $AB \neq BA$ on peut néanmoins développer, par exemple : $(A+B)^2 = A^2 + AB + BA + B^2$.

Exercice: Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. En écrivant $A = I_3 + J$, calculer A^n pour $n \in \mathbb{N}$.

Réponse: On a
$$A = I_3 + J$$
 avec $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, de plus $J^2 = K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, et $J^3 = O_3$. Comme $I_3 \times J = J \times I_3$,

$$A^{n} = \sum_{k=0}^{n} \binom{n}{k} J^{k} = I_{3} + nJ + \frac{n(n-1)}{2} K = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Matrices carrées inversibles III)

1) Définition

L'ensemble $(\mathcal{M}_n(\mathbb{K}),+,\times)$ a une structure d'anneau, on peut donc s'intéresser aux éléments inversibles de cet anneau. C'est à dire aux matrices $M \in \mathcal{M}_n(\mathbb{K})$ pour lesquelles il existe une matrice $N \in \mathcal{M}_n(\mathbb{K})$ telle que $M \times N = N \times N = I_n$. Si $M \in \mathcal{M}_n(\mathbb{K})$ est inversible, son inverse sera noté M^{-1} .

DÉFINITION 20.10

Le groupe multiplicatif des inversibles de l'anneau $(\mathcal{M}_n(\mathbb{K}),+,\times)$ est noté $\mathrm{GL}_n(\mathbb{K})$.

Remarque: Puisque $(GL_n(\mathbb{K}), \times)$ est un groupe, on a :

- le produit de deux matrices inversibles est inversible.
- Si $M, N \in GL_n(\mathbb{K})$, alors $(M \times N)^{-1} = N^{-1} \times M^{-1}$.

Cas particuliers:

- Matrices diagonales inversibles : Soit $D = \text{diag}(a_1, \dots, a_n) \in \mathcal{M}_n(\mathbb{K})$, alors D est inversible ssi les coefficients diagonaux sont tous non nuls, auquel cas on a : $D^{-1} = \text{diag}(\frac{1}{a_1}, \dots, \frac{1}{a_n})$.

Preuve: Si les coefficients diagonaux sont tous non nuls, il est facile de vérifier que la matrice proposée est

bien l'inverse de D.

Réciproquement, supposons $D \in GL_n(\mathbb{K})$, alors l'équation $DX = O_{n,1}$ d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ admet comme unique solution $X = D^{-1} \times O_{n,1} = O_{n,1}$. Supposons $a_1 = 0$ et prenons $X \in \mathcal{M}_{n,1}(\mathbb{K})$ définie par $X_{i,1} = \delta_{i,1}$, il est facile de voir que le produit DX donne la première colonne de D, c'est à dire $O_{n,1}$, pourtant $X \neq O_{n,1}$: contradiction, donc $a_1 \neq 0$. Le raisonnement est similaire pour les autres coefficients.

- Polynômes de matrices : Soit $P \in \mathbb{K}[X]$ et $A \in \mathcal{M}_n(\mathbb{K})$, si $P = \sum_{k=1}^{n} a_k X^k$, alors la matrice P(A) est

 $P(A) = \sum_{k=1}^{r} a_k A^k$ (la substitution de X par A est un morphisme d'algèbres), on a alors le résultat

suivant : Si $P(A) = O_n$ et si $P(0) \neq 0$, alors A est inversible.

Preuve: $P(0) \neq 0$ signifie que $a_0 \neq 0$, on a alors :

$$I_n = A \times \left[\sum_{k=1}^r \frac{-a_k}{a_0} A^{k-1} \right] = \left[\sum_{k=1}^r \frac{-a_k}{a_0} A^{k-1} \right] \times A.$$

Par exemple, si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $ad - bc \neq 0$, on vérifie que $A^2 - (a+d)A + (ad - bc)I_2 = O_2$, donc A est inversible et $A^{-1} = \frac{1}{ad-bc}[(a+d)I_2 - A] = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Retour aux applications linéaires

THÉORÈME 20.11

Soient E et F deux \mathbb{K} -e.v de même dimension n, soit $\mathfrak B$ une base de E et $\mathfrak B'$ une base de F, soit $u \in \mathcal{L}(E,F)$, alors u est un isomorphisme de E vers F si et seulement si $\max_{\mathfrak{B},\mathfrak{B}'}(u) \in \mathrm{GL}_n(\mathbb{K})$, si c'est le

cas, alors:
$$\max_{\mathfrak{B}',\mathfrak{B}}(u^{-1}) = \left[\max_{\mathfrak{B},\mathfrak{B}'}(u)\right]^{-1}$$
.

Preuve: Si u est un isomorphisme, posons $A = \max_{\mathfrak{B},\mathfrak{B}'}(u)$ et $B = \max_{\mathfrak{B}',\mathfrak{B}}(u^{-1})$, on a $A, B \in \mathcal{M}_n(\mathbb{K})$. On sait que $u \circ u^{-1} = \mathrm{id}_F$, d'où $I_n = \max_{\mathfrak{B}'}(\mathrm{id}_F) = \max_{\mathfrak{B},\mathfrak{B}'}(u) \times \max_{\mathfrak{B}',\mathfrak{B}}(u^{-1}) = A \times B$, de même $B \times A = \max_{\mathfrak{B}}(\mathrm{id}_E) = I_n$.

Cas des endomorphismes : Si E est un \mathbb{K} -espace vectoriel de dimension n et \mathfrak{B} une base de E, alors on sait déjà que l'application mat : $\mathcal{L}(E) \to \mathcal{M}_n(\mathbb{K})$ est un isomorphisme d'espaces vectoriels, mais comme $(\mathcal{L}(E),+,\circ,.)$ et $(\mathcal{M}_n(\mathbb{K}),+,\overset{\circ}{\times};.)$ sont des \mathbb{K} -algèbres et que $\max_{\mathfrak{B}}(u\circ v)=\max_{\mathfrak{B}}(u)\times\max_{\mathfrak{B}}(v)$ et $\max_{\mathfrak{B}}(\mathrm{id}_E)=I_n$, on peut affirmer que l'application mat est **un isomorphisme d'algèbres**. En particulier celui-ci induit un isomorphisme de groupes : $\max_{\mathfrak{A}} : GL(E) \to GL_n(\mathbb{K})$.

THÉORÈME 20.12 (caractérisations des matrices carrées inversibles)

Soit $A \in \mathcal{M}_n(\mathbb{K})$, alors les assertions suivantes sont équivalentes :

- a) A est inversible.
- b) Il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que $BA = I_n$.
- c) L'équation $AX = O_{n,1}$ d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ admet une **unique solution** $X = O_{n,1}$.
- d) $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ admet une unique solution.
- e) $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ admet au moins une solution.

Preuve: L'implication i) $\Longrightarrow ii$) est évidente en prenant $B = A^{-1}$.

Montrons ii) $\Longrightarrow iii$): On a $BA = I_n$, d'où $AX = O_{n,1} \Longrightarrow BAX = O_{n,1} = X$.

Montrons $iii) \Longrightarrow iv$): Soit $f \in \mathcal{L}(\mathbb{K}^n)$ l'endomorphisme de \mathbb{K}^n canoniquement associé à A, soit $x \in \ker(f)$, posons X = Coord(x) où \mathfrak{B} désigne la base canonique de \mathbb{K}^n , on a alors $\text{Coord}(f(x)) = AX = O_{n,1}$, donc $X = O_{n,1}$ i.e.

x = 0, l'application f est donc injective, mais alors elle est bijective : $\forall y \in \mathbb{K}^n, \exists ! x \in \mathbb{K}^n, f(x) = y$, ce qui entraîne $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1}(\mathbb{K}), AX = Y \text{ (remarquons que } A \text{ est inversible puisque } f \text{ est bijective, et que } X = A^{-1}Y).$ L'implication $iv) \Longrightarrow v$) est évidente.

Montrons $v \implies i$: Avec les notations précédentes, l'application f est surjective par hypothèse, donc f est bijective et par conséquent sa matrice A est inversible.

Il découle en particulier de ce théorème que si $BA = I_n$ alors $AB = I_n$ (car $A \in GL_n(\mathbb{K})$ et donc $B = A^{-1}$), ce qui est remarquable.

Exemples:

- Si $A \in GL_n(\mathbb{K})$, montrer que ^tA est inversible et que (^tA)⁻¹ = ^t(A⁻¹).

Réponse: Posons $B = {}^{t}(A^{-1})$, alors $B \times {}^{t}A = {}^{t}(A \times A^{-1}) = {}^{t}I_{n} = I_{n}$, donc ${}^{t}A$ est inversible et son inverse est B.

- Soit $A = \begin{pmatrix} 1 & \lambda & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, déterminer en fonction de λ si A est inversible ou non, si c'est le cas, calculer A^{-1} .

Réponse: Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et soit $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, résolvons l'équation $AX = Y$:

$$AX = Y \iff \begin{cases} x + \lambda y - z = a \\ 2y + z = b \\ x + z = c \end{cases}$$

$$\iff \begin{cases} x + \lambda y - z = a \\ 2y + z = b \\ -\lambda y + 2z = c - a (L_3 \leftarrow L_3 - L_1) \end{cases}$$

$$\iff \begin{cases} x - z + \lambda y = a \\ z + 2y = b \\ -(4 + \lambda)y = c - a - 2b (L_3 \leftarrow L_3 - 2L_2) \end{cases}.$$

D'où la discussion:

- Si λ = −4 : alors le système n'a pas de solution lorsque c − a − 2b ≠ 0, la matrice A n'est donc pas inversible.

– Si λ ≠ –4 : le système admet une unique solution qui est :

$$\begin{cases} y &= \frac{a+2b-c}{4+\lambda} \\ z &= \frac{-2a+\lambda b+2c}{4+\lambda} \\ x &= \frac{2a-\lambda b+(\lambda+2)c}{4+\lambda} \end{cases}$$

Or on sait que cette unique solution est $X = A^{-1}Y$, on en déduit alors que :

$$A^{-1} = rac{1}{4+\lambda} \left(egin{matrix} 2 & -\lambda & \lambda + 2 \\ 1 & 2 & -1 \\ -2 & \lambda & 2 \end{array}
ight).$$

- soit $T \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure, montrer que $T \in GL_n(\mathbb{K})$ ssi ses éléments diagonaux sont tous non nuls, si c'est le cas, montrer que T^{-1} est également triangulaire supérieure.

Réponse: Supposons les coefficients diagonaux tous non nuls, soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, lorsqu'on résout

le système TX = Y (d'inconnue X) par substitutions remontantes, on obtient une solution de la forme :

$$X = \begin{cases} x_n &= b_{n,n} y_n \\ x_{n-1} &= b_{n-1,n-1} y_{n-1} + b_{n-1,n} y_n \\ \vdots \\ x_1 &= b_{1,1} y_1 + \dots + b_{1,n} y_n \end{cases}.$$

Il y a une seule solution, donc T est inversible, on sait alors que $X = T^{-1}Y$, donc les coefficients de la matrice T^{-1} sont les coefficients $b_{i,j}$ ci-dessus, ce qui prouve que T^{-1} est triangulaire supérieure.

Réciproquement, si T est inversible, alors $T^{-1}T = I_n$, notons a_{ij} les coefficients de T^{-1} , alors on doit avoir : $a_{11}a_1 = 1$, donc $a_1 \neq 0$. Puis $a_{21}a_1 = 0$ donc $a_{21} = 0$, puis $a_{22}a_2 = 1$ donc $a_2 \neq 0$. On montre ainsi de proche en proche que T^{-1} est triangulaire supérieure et que les coefficients diagonaux de T sont tous non nuls.

IV) Changement de bases

1) Matrice de passage

DÉFINITION 20.11

Soit E un \mathbb{K} -espace vectoriel, soit $\mathfrak{B} = (e_1, \dots, e_n)$ une base de E, soit $S = (x_1, \dots, x_p)$ une famille de vecteurs de E, on appelle matrice du système S dans la base \mathfrak{B} , la matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ définie $par: \forall (i,j) \in [[1..n]] \times [[1..p]], a_{i,j}$ est la coordonnée sur e_i de x_j . Autrement dit, pour $j \in [[1..p]],$ le j-ième vecteur colonne de A est $C_j(A) = \operatorname{coord}(x_j)$. Cette matrice est notée $\mathcal{P}_{\mathfrak{B},S}$ et appelée matrice de passage de $\mathfrak B$ à S, elle exprime les vecteurs de S dans la base $\mathfrak B$:

$$x_1 \cdots x_p \rightarrow \text{vecteurs de } S$$

$$\downarrow \cdots \downarrow$$

$$\mathcal{P}_{\mathfrak{B},S} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,p} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix} \rightarrow \text{coordonn\'ee sur } e_1 \text{ premier vecteur de } \mathfrak{B}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1} & \cdots & a_{n,p} \end{pmatrix} \rightarrow \text{coordonn\'ee sur } e_n \text{ dernier vecteur de } \mathfrak{B}$$

Exemples:

- Soit $\mathfrak B$ la base canonique de $\mathbb K^3$, soit $x_1=(1,-1,0)$ et $x_2=(2,-1,3)$, alors la matrice de passage de la base $\mathfrak B$ au système $S = (x_1, x_2)$ est $\mathcal{P}_{\mathfrak{B},S} = \begin{pmatrix} 1 & 2 \\ -1 & -1 \\ 0 & 3 \end{pmatrix}$.
- Soit $\mathfrak{B}=(i,j,k)$ la base canonique de \mathbb{K}^3 , soit $\mathfrak{B}'=(i,i+j,i+j+k)$, on vérifie que \mathfrak{B}' est une base de \mathbb{K}^3 . Déterminons la matrice du système S précédent dans la base \mathfrak{B}' : on a $x_1=i-j=2i-(i+j)$ et $x_2 = 2i - j + 3k = 3(i + j + k) - 4(i + j) + 3i$, on a donc $\mathcal{P}_{\mathfrak{B}',S} = \begin{pmatrix} 2 & 3 \\ -1 & -4 \\ 0 & 3 \end{pmatrix}$.

Interprétations de la matrice de passage :

- a) Dans le cas où $p \neq n$: soit $\mathfrak{B} = (e_1, \dots, e_n)$ une base de E et soit $S = (x_1, \dots, x_p)$ une famille de p vecteurs de E. Soit $\mathfrak{B}'=(u_1,\ldots,u_p)$ la base canonique de \mathbb{K}^p , on définit l'application linéaire $f: \mathbb{K}^p \to E$ en posant pour $i \in [1..p]$, $f(u_i) = x_i$, alors : $\mathcal{P}_{\mathfrak{B},S} = \max_{w \neq w} (f)$.
- b) Dans le cas où p = n: on a $S = (x_1, ..., x_n)$, soit $u \in \mathcal{L}(E)$ défini par $\forall i \in [[1..n]], u(e_i) = x_i$, on a alors : $\mathcal{P}_{\mathfrak{B},S} = \max_{\mathfrak{B}}(u)$.

🌳 THÉORÈME 20.13 (caractérisation des bases)

Soit \mathfrak{B} une base de E, et soit $\mathfrak{B}' = (x_1, \dots, x_n)$ une famille de n vecteurs de E, alors \mathfrak{B}' est une base de E ssi la matrice de passage de \mathfrak{B} à \mathfrak{B}' est inversible ,i.e. $\mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \in GL_n(\mathbb{K})$.

Preuve: Cela découle directement de la deuxième interprétation.

Interprétation de la matrice de passage entre deux bases : Soient \mathfrak{B} et \mathfrak{B}' deux bases de E, en considérant l'application $\mathrm{id}_E:(E,\mathfrak{B}')\to(E,\mathfrak{B})$ avec \mathfrak{B}' comme base au départ et \mathfrak{B} comme base à l'arrivée, on a la relation : $\mathscr{P}_{\mathfrak{B},\mathfrak{B}'} = \max_{\mathfrak{B}',\mathfrak{B}} (\mathrm{id}_E).$

\ \(\gamma^-\) THÉORÈME **20.14** (application)

Soient $\mathfrak{B},\mathfrak{B}',\mathfrak{B}''$ trois bases de E, on a : $\mathscr{P}_{\mathfrak{B}',\mathfrak{B}} = \left[\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}\right]^{-1}$ et $\mathscr{P}_{\mathfrak{B},\mathfrak{B}''} = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \times \mathscr{P}_{\mathfrak{B}',\mathfrak{B}''}$.

Preuve: On a $\mathscr{P}_{\mathfrak{B}',\mathfrak{B}} = \max_{\mathfrak{B},\mathfrak{B}'}(\mathrm{id}_E) = \left[\max_{\mathfrak{B}',\mathfrak{B}}(\mathrm{id}_E^{-1})\right]^{-1} = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ car $\mathrm{id}_E^{-1} = \mathrm{id}_E$, ce qui prouve le premier point. Pour le second, on considère la composition : $\mathrm{id}_E \circ \mathrm{id}_E : (E,\mathfrak{B}'') \to (E,\mathfrak{B}') \to (E,\mathfrak{B})$, ce qui donne $\max_{\mathfrak{B}'',\mathfrak{B}}(\mathrm{id}_E) = \mathrm{id}_E$

 $\max_{\mathfrak{B}',\mathfrak{B}}(\mathrm{id}_E)\times \max_{\mathfrak{B}'',\mathfrak{B}'}(\mathrm{id}_E), \text{ c'est à dire } \mathscr{P}_{\mathfrak{B},\mathfrak{B}''}=\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}\times \mathscr{P}_{\mathfrak{B}',\mathfrak{B}''}.$

Formules du changement de bases

Soient \mathfrak{B} et \mathfrak{B}' deux bases de E, pour tout vecteur $x \in E$ on peut calculer ses coordonnées dans la base $\mathfrak{B}: X = \operatorname{Coord}(x)$, ou bien ses coordonnées dans la base $\mathfrak{B}': X' = \operatorname{Coord}(x)$, on cherche le lien entre X et

X'.

Considérons l'identité : $\mathrm{id}_E : (E, \mathfrak{B}') \to (E, \mathfrak{B})$, on sait que $\max_{x \in \mathcal{X}} (\mathrm{id}_E) = \mathscr{P}_{\mathfrak{B}, \mathfrak{B}'}$, mais on a $\mathrm{id}_E(x) = x$, d'où $\operatorname{Coord}(\operatorname{id}_E(x)) = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \times \operatorname{Coord}(x), \text{ ce qui donne la relation } \vdots X = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \times X', \text{ et donc } X' = \mathscr{P}_{\mathfrak{B}',\mathfrak{B}} \times X = \mathscr{P}_{\mathfrak{B}',\mathfrak{B}'} \times X'$ $\left[\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}\right]^{-1} \times X$, on peut donc énoncer :

√THÉORÈME 20.15 (formules du changement de bases)

Soient \mathfrak{B} et \mathfrak{B}' deux bases de E, soit $x \in E$, on pose $X = \operatorname{Coord}(x)$ et $X' = \operatorname{Coord}(x)$, on a les formules suivantes : $X = \mathcal{P}_{\mathfrak{B},\mathfrak{B}'} \times X'$ et $X' = \mathcal{P}_{\mathfrak{B}',\mathfrak{B}} \times X$.

Exercice: Soit \mathfrak{B} la base canonique de $\mathbb{K}_3[X]$, on pose $\mathfrak{B}'=(1,X,X(X-1),X(X-1)(X-2))$, montrer que \mathfrak{B}' est une base de $\mathbb{K}_3[X]$ et pour $P \in \mathbb{K}_3[X]$ calculer coord(P).

Réponse: La matrice de passage de \mathfrak{B} à \mathfrak{B}' est $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, cette matrice est triangulaire et ses

éléments diagonaux sont tous non nuls, elle est donc inversible, ce qui prouve que \mathfrak{B}' est une base de $\mathbb{K}_3[X]$. On a la

relation $Coord(P) = A^{-1} \times Coord(P)$, il faut donc calculer A^{-1} , on peut résoudre l'équation $A \times \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$, ce qui

donne
$$\begin{cases} x = a \\ y = b + c + d \\ z = c + 3d \\ t = d \end{cases}$$
, on en déduit que $A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Finalement, si $P = a + bX + cX^2 + dX^3$, alors

$$\operatorname{Coord}_{\mathfrak{B}'}(P) = \begin{pmatrix} a \\ b+c+d \\ c+3d \\ d \end{pmatrix}.$$

Changement de bases et applications linéaires

Soient E et F deux \mathbb{K} -espaces vectoriels, soit \mathfrak{B}_1 une base de E et soit \mathfrak{B}_2 une base de F. Si $u \in \mathcal{L}(E,F)$ on peut calculer $A = \max_{\mathfrak{B}_1, \mathfrak{B}_2} (u)$. Si on prend une autre base dans $E : \mathfrak{B}'_1$ et une autre base dans F, \mathfrak{B}'_2 , alors on peut calculer A' = mat(u), on cherche le lien entre ces deux matrices.

on peut calculer $A' = \max_{\mathfrak{B}'_1,\mathfrak{B}'_2}(u)$, on cherche le nen entre ces ueux matrices. Soit $x \in E$ et y = u(x), on pose $X = \operatorname{Coord}(x), Y = \operatorname{Coord}(u(x)), X' = \operatorname{Coord}(x)$ et $Y' = \operatorname{Coord}(u(x))$. On a la relation $Y = A \times X = A \times \mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}'_1} \times X'$, d'autre part $Y' = \mathscr{P}_{\mathfrak{B}'_2,\mathfrak{B}_2} \times Y$, d'où finalement $Y' = \mathscr{P}_{\mathfrak{B}'_2,\mathfrak{B}_2} \times A \times \mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}'_1} \times X'$, c'est à dire $Y' = \mathscr{P}_{\mathfrak{B}_2,\mathfrak{B}'_2}^{-1} \times A \times \mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}'_1} \times X'$, mais de plus $Y' = A' \times X'$, l'égalité ayant lieu pour toute colonne X', on a : $A' = \mathscr{P}_{\mathfrak{B}_2,\mathfrak{B}'_2}^{-1} \times A \times \mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}'_1}$, on peut donc énoncer :

THÉORÈME 20.16 (effet d'un changement de bases sur la matrice d'une application linéaire)

Soient $\mathfrak{B}_1,\mathfrak{B}_1'$ deux bases de E et $P=\mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}_1'}$ la matrice de passage, soient $\mathfrak{B}_2,\mathfrak{B}_2'$ deux bases de F et soit $Q=\mathscr{P}_{\mathfrak{B}_2,\mathfrak{B}_2'}$ la matrice de passage, soit $u\in\mathscr{L}(E,F)$, on pose $A=\max_{\mathfrak{B}_1,\mathfrak{B}_2}(u)$, $A'=\max_{\mathfrak{B}_1',\mathfrak{B}_2'}(u)$, on a alors la relation : $A' = Q^{-1} \times A \times P$.

√ THÉORÈME 20.17 (cas des endomorphismes)

Soient $\mathfrak{B},\mathfrak{B}'$ deux bases de E et soit $P=\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ la matrice de passage, soit $u\in \mathscr{L}(E)$, si on pose $A = \max_{\mathfrak{S}}(u)$ et $A' = \max_{\mathfrak{S}'}(u)$, alors on a la relation : $A' = P^{-1} \times A \times P$.

Preuve: Cela découle du théorème précédent, puisque l'on a Q = P.

Exercice: Soit $\mathfrak{B} = (i,j)$ la base canonique de \mathbb{K}^2 et soit $u \in \mathcal{L}(\mathbb{K}^2)$ défini par $\max_{\mathfrak{B}}(u) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$. On pose $e_1 = (1, 1)$ et $e_2 = (1, -1)$, montrer que $\mathfrak{B}' = (e_1, e_2)$ est une base de \mathbb{K}^2 , et calculer la matrice de u dans la base \mathfrak{B}' . En déduire l'expression de $u^n(x, y)$.

Réponse: La matrice de passage de \mathfrak{B} à \mathfrak{B}' est $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, cette matrice est inversible et $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, on en déduit que \mathfrak{B}' est bien une base de \mathbb{K}^2 et que $\max_{\mathfrak{B}'}(u) = A' = P^{-1} \times A \times A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$. On en déduit que $A'^n = \begin{pmatrix} 1 & 0 \\ 0 & 3^n \end{pmatrix}$, on a alors $A^n = [P \times A' \times P^{-1}]^n = P \times A'^n \times P^{-1}$ ce qui donne : $A^n = \frac{1}{2} \begin{pmatrix} 1+3^n & 1-3^n \\ 1-3^n & 1+3^n \end{pmatrix}$, or $A^n = \max(u^n)$ per conséquent : $A^n = \max(u^n)$, par conséquent :

$$\forall (x,y) \in \mathbb{K}^2, u^n(x,y) = \frac{1}{2} \left((1+3^n)x + (1-3^n)y; (1-3^n)x + (1+3^n)y \right).$$

ØDéfinition 20.12

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, on dit que les matrices A et B sont semblables ssi il existe une matrice carrée inversible $P \in GL_n(\mathbb{K})$ telle que $A = P^{-1} \times B \times P$.

Remarques:

- Les matrices d'un endomorphisme dans deux bases sont semblables.
- Deux matrices sont semblables lorsque ce sont deux matrices d'un même endomorphisme exprimées dans deux bases (*P* étant la matrice de passage).
- La relation « ..est semblable à .. » est une relation d'équivalence dans $\mathcal{M}_n(\mathbb{K})$.

Trace d'un endomorphisme

-`<mark>@</mark>-THÉORÈME 20.18

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, on a la propriété : $tr(A \times B) = tr(B \times A)$.

Preuve: On a tr($A \times B$) = $\sum_{i=1}^{n} [A \times B]_{i,i} = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} A_{i,k} B_{k,i} \right)$, ce qui donne tr($A \times B$) = $\sum_{k=1}^{n} \left(\sum_{i=1}^{n} B_{k,i} A_{i,k} \right) = \sum_{k=1}^{n} [B \times A]_{k,k} = \sum_{k=1}^{n} \left(\sum_{k=1}^{n} A_{i,k} B_{k,k} \right)$ $tr(B \times A)$.

- (conséquence)

 $Si A \in \mathcal{M}_n(\mathbb{K}) \ et \ si \ P \in GL_n(\mathbb{K}), \ alors : tr(A) = tr(P^{-1} \times A \times P).$

Soit E un espace vectoriel de dimension n, soient \mathfrak{B} et \mathfrak{B}' deux bases de E, et soit $u \in \mathcal{L}(E)$, on note $A = \max_{\mathfrak{B}}(u)$ et $A' = \max_{\mathfrak{R}'}(u)$, on sait alors que $A' = P^{-1} \times A \times P$ avec $P = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ la matrice de passage, d'après le théorème précédent, on peut affirmer que tr(A) = tr(A').

Définition 20.13

Soit $u \in \mathcal{L}(E)$ et soit \mathfrak{B} une base de E, on appelle trace de l'endomorphisme u le scalaire noté tr(u)et défini par : tr(u) = tr(mat(u)), ce scalaire est indépendant de la base \mathfrak{B} choisie.

√ THÉORÈME 20.20

L'application trace, $\operatorname{tr}: \mathcal{L}(E) \to \mathbb{K}$, est une forme linéaire non nulle sur $\mathcal{L}(E)$, qui vérifie :

$$\forall u, v \in \mathcal{L}(E), \operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u).$$

Preuve: Soit \mathfrak{B} une base de E, soit $A = \max_{\mathfrak{B}}(u)$ et $B = \max_{\mathfrak{B}}(v)$, on a par définition, $\operatorname{tr}(u+v) = \operatorname{tr}(\max_{\mathfrak{B}}(u+v)) = \operatorname{tr}(\max_{\mathfrak{B}}(u+v))$ $\operatorname{tr}(\max_{\mathfrak{R}}(u)) + \operatorname{tr}(\max_{\mathfrak{R}}(v)) = \operatorname{tr}(u) + \operatorname{tr}(v)$. De la même façon, on montre que $\operatorname{tr}(\lambda u) = \lambda \operatorname{tr}(u)$ avec $\lambda \in \mathbb{K}$. On a donc une forme linéaire sur $\mathcal{L}(E)$, celle-ci est non nulle, car $\mathrm{tr}(\mathrm{id}_E)=\mathrm{tr}(I_n)=n=\mathrm{dim}(E)\geqslant 1.$ D'autre part : $\operatorname{tr}(u \circ v) = \operatorname{tr}(\max_{\mathfrak{B}}(u) \times \max_{\mathfrak{B}}(v)) = \operatorname{tr}(\max_{\mathfrak{B}}(v) \times \max_{\mathfrak{B}}(u)) = \operatorname{tr}(\max_{\mathfrak{B}}(v \circ u)) = \operatorname{tr}(v \circ u).$

Exercice: Soit E un espace vectoriel de dimension n, et soit $p \in \mathcal{L}(E)$ un projecteur, montrer que $\operatorname{tr}(p) = \operatorname{rg}(p)$.

Réponse: r = rg(p), on a $E = Im(p) \oplus ker(p)$, soit $(e_1, ..., e_r)$ une base de Im(p) et soit $(e_{r+1}, ..., e_n)$ une base de $\ker(p)$, alors $\mathfrak{B} = (e_1, \dots, e_n)$ est une base de E et il est clair que $\max_{\mathfrak{B}}(p) = J_{n,n,r}$ (car $\operatorname{Im}(p) = \ker(p - \operatorname{id}_E)$), d'où $tr(p) = tr(J_{n,n,r}) = r = rg(p).$

Rang d'une matrice

Définition

DÉFINITION 20.14

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ une matrice, on appelle rang de la matrice A, le rang dans \mathbb{K}^n du système constitué par ses p vecteurs colonnes, notation : $rg(A) = rg(C_1(A), ..., C_p(A))$.

[™]THÉORÈME 20.21

 $Soit \ u \in \mathcal{L}(E,F), \ soit \ \mathfrak{B} \ \ une \ base \ de \ E, \ soit \ \mathfrak{B}' \ \ une \ base \ de \ F, \ et \ soit \ A = \max_{\mathfrak{B},\mathfrak{B}'}(u), \ alors \ \mathrm{rg}(u) = \mathrm{rg}(A).$

Preuve: Soit $\mathfrak{B} = (e_1, \dots, e_p)$, $\mathfrak{B}' = (e_1', \dots, e_n')$ et soit $\mathfrak{B}'' = (e_1'', \dots, e_n'')$ la base canonique de \mathbb{K}^n . Soit $v \in \mathcal{L}(F, \mathbb{K}^n)$ défini par $\forall i \in [1..n]$, $v(e_i') = e_i''$, alors v est bijective (transforme une base en une base), donc $rg(u) = rg(v \circ u) = rg(v \circ u)$ $\operatorname{rg}(v(u(e_1)), \dots, v(u(e_p)))$; or $v(u(e_j)) = \sum_{k=1}^n A_{k,j} e_j'' = C_j(A)$, donc $\operatorname{rg}(u) = \operatorname{rg}(A)$ d'après la définition précédente. \square

🛜 THÉORÈME 20.22 (conséquence)

Soit E un espace vectoriel de dimension n, soit $S = (x_1, ..., x_p)$ une famille de p vecteurs de E et soit B une base de E, alors le rang de la famille S est égal au rang de la matrice de ce système dans la base B.

Preuve: Posons $\mathfrak{B}=(e_1,\ldots,e_n)$, soit $\mathfrak{B}'=(e_1',\ldots,e_p')$ la base canonique de \mathbb{K}^p , soit $u\in\mathcal{L}(\mathbb{K}^p,E)$ l'application linéaire définie par : $\forall i \in [[1..p]], u(e'_i) = x_i$, alors $A = \max_{\mathfrak{R}',\mathfrak{R}}(u)$ est la matrice du système S dans la base \mathfrak{B} , or $rg(A) = rg(u) = rg(x_1, ..., x_p)$, ce qui donne le résultat.

Calculer le rang d'une application linéaire, ou d'une famille de vecteurs, revient à calculer le rang d'une matrice.

Propriétés du rang d'une matrice

Les propriétés suivantes découlent de celles du rang des applications linéaires.

- a) Soit $f \in \mathcal{L}(E, F)$, soit \mathfrak{B} une base de E avec $\dim(E) = p$, soit \mathfrak{B}' une base de F avec $\dim(F) = n$, et soit $A = \max_{\mathfrak{R},\mathfrak{R}'} (f) \in \mathcal{M}_{n,p}(\mathbb{K})$, on a :
 - i) $rg(A) \leq min(n, p)$.
 - ii) $rg(A) = n \iff f$ est surjective.
 - iii) $rg(A) = p \iff f$ est injective.
- b) Si $A \in \mathcal{M}_n(\mathbb{K})$, alors $A \in GL_n(\mathbb{K}) \iff rg(A) = n$.
- c) Si $A \in \mathcal{M}_{n,p}(\mathbb{K}), B \in \mathcal{M}_{p,q}(\mathbb{K}),$ alors $\operatorname{rg}(A \times B) \leq \min(\operatorname{rg}(A), \operatorname{rg}(B)).$
- d) Si $A \in GL_n(\mathbb{K}), B \in \mathcal{M}_{n,p}(\mathbb{K})$, alors $rg(A \times B) = rg(B)$.
- e) Si $A \in \mathcal{M}_{n,p}(\mathbb{K}), B \in GL_p(\mathbb{K}), \text{ alors } rg(A \times B) = rg(A).$

-`<mark>`@</mark>-THÉORÈME **20.23**

 \bullet Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, alors : $\operatorname{rg}(A) = r \iff \exists U \in \operatorname{GL}_n(\mathbb{K}), \exists V \in \operatorname{GL}_p(\mathbb{K}), UAV = J_{n,p,r}$.

Preuve: Si U et V existent alors $rg(A) = rg(UAV) = rg(J_{n,p,r}) = r$.

Réciproquement, si rg(A) = r, soit \mathfrak{B} la base canonique de \mathbb{K}^p , soit \mathfrak{B}_1 la base canonique de \mathbb{K}^n , et soit $u \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ défini par $\max_{m \in \mathcal{L}}(u) = A$ (u est l'application linéaire canoniquement associée à A), on a rg(u) = rg(A) = r, on sait alors qu'il existe une base \mathfrak{B}' de \mathbb{K}^p et une base \mathfrak{B}'_1 de \mathbb{K}^n telles que $\max_{\mathfrak{B}',\mathfrak{B}'_1}(u)=J_{n,p,r}$, soit $P=\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ et $Q = \mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}_1'}$, d'après les formules de changement de bases, on a $J_{n,p,r} = Q^{-1} \times A \times P$, ce qui termine la preuve, en prenant $U = Q^{-1}$ et V = P.

Exercice: Montrer qu'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et sa transposée ont le même rang.

Réponse: Il existe $U \in GL_n(\mathbb{K})$, $V \in GL_p(\mathbb{K})$ telles que $UAV = J_{n,p,r}$ avec r = rg(A). On a alors ${}^tV{}^tA{}^tU = {}^tJ_{n,p,r} = {}^tV{}^tA{}^tV = {}^tJ_{n,p,r} = {}$ $J_{p,n,r}$, ce qui donne le résultat.

Opérations élémentaires sur les matrices VI)

Définition

Définition 20.15

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle opérations élémentaires sur A les opérations suivantes :

- Permuter deux lignes de A (ou deux colonnes), notation : $L_i \leftrightarrow L_j$ (respectivement $C_i \leftrightarrow C_j$).
- Multiplier une ligne (ou une colonne) par un scalaire non nul, notation : $L_i \leftarrow \alpha L_i$ (respectivement $C_i \leftarrow \alpha C_i$).
- Ajouter à une ligne (ou une colonne) un multiple d'une autre ligne (respectivement une autre colonne), notation : $L_i \leftarrow L_i + \alpha L_j$, avec $i \neq j$ (respectivement $C_i \leftarrow C_i + \alpha C_i$)).

്റ്റ⁻THÉORÈME **20.2**4

Effectuer une opération élémentaire sur une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ revient à multiplier A à gauche par une matrice inversible pour les opérations sur les lignes (à droite pour une opération sur les colonnes).

Preuve: On désigne par $\mathcal{L}_i(A)$ la ligne i de A sous forme d'une matrice ligne.

Pour l'opération $L_i \leftrightarrow L_j$ (avec $i \neq j$): soit $P_{ij} \in \mathcal{M}_n(\mathbb{K})$ la matrice obtenue en effectuant cette opération sur la matrice I_n , alors $P_{ij} \times A$ est la matrice que l'on obtient en effectuant l'opération $L_i \longleftrightarrow L_j$ dans A, en effet : si $k \notin \{i, j\}$, alors $\mathcal{L}_k(P_{ij} \times A) = \mathcal{L}_k(P_{ij}) \times A = \mathcal{L}_k(I_n) \times A = \mathcal{L}_k(A)$, si k = i, alors $\mathcal{L}_i(P_{ij} \times A) = \mathcal{L}_i(P_{ij}) \times A = \mathcal{L}_j(I_n) \times A = \mathcal{L}_j(A)$, de même $\mathcal{L}_i(P_{ij} \times A) = \mathcal{L}_i(A)$. De plus, par définition même, $P_{ij} \times P_{ij} = I_n$, donc P_{ij} est inversible et $P_{ij}^{-1} = P_{ij}$.

Pour l'opération $L_i \leftarrow \alpha L_i$, avec $\alpha \in \mathbb{K}^*$: soit $D_i(\alpha) \in \mathcal{M}_n(\mathbb{K})$ la matrice obtenue en effectuant cette opération sur I_n , alors $D_i(\alpha) \times A$ est la matrice que l'on obtient en effectuant cette même opération sur A, en effet : si $k \neq i$, alors $\mathfrak{L}_k(D_i(\alpha) \times A) = \mathfrak{L}_k(D_i(\alpha)) \times A = \mathfrak{L}_k(I_n) \times A = \mathfrak{L}_k(A), \text{ et } \mathfrak{L}_i(D_i(\alpha) \times A) = \mathfrak{L}_i(D_i(\alpha)) \times A = \alpha. \mathfrak{L}_i(I_n) \times A = \alpha. \mathfrak{L}_i(A). \text{ De } \mathfrak{L}_i(A) \times A = \mathfrak{L}_i(A$ plus, il est clair que $D_i(\alpha) \times D_i(1/\alpha) = I_n$, donc cette matrice est inversible et $D_i(\alpha)^{-1} = D_i(1/\alpha)$.

Pour l'opération $L_i \leftarrow L_i + \alpha L_j$, avec $i \neq j$ et $\alpha \in \mathbb{K}$: soit $T_{ij}(\alpha) \in \mathscr{M}_n(\mathbb{K})$ la matrice obtenue en effectuant cette opération sur I_n , alors $T_{ij}(\alpha) \times A$ est la matrice que l'on obtient en effectuant cette même opération sur A, en effet : si $k \neq i$, $\mathfrak{L}_k(T_{ij}(\alpha) \times A) = \mathfrak{L}_k(T_{ij}(\alpha)) \times A = \mathfrak{L}_k(I_n) \times A = \mathfrak{L}_k(A)$, et $\mathfrak{L}_i(T_{ij}(\alpha) \times A) = \mathfrak{L}_i(T_{ij}(\alpha)) \times A = \mathfrak{L}_i(T_{ij}(\alpha)) \times$ $(\mathfrak{L}_i(I_n) + \alpha \mathfrak{L}_j(I_n)) \times A = \mathfrak{L}_i(I_n) \times A + \alpha \mathfrak{L}_j(I_n) \times A = \mathfrak{L}_i(A) + \alpha \mathfrak{L}_j(A)$. De plus, il est clair que $T_{ij}(\alpha) \times T_{ij}(-\alpha) = I_n$, donc cette matrice est inversible et $T_{ij}(\alpha)^{-1} = T_{ij}(-\alpha)$.

-`<mark>⊙</mark>-THÉORÈME **20.25**

Les opérations élémentaires conservent le rang de la matrice.

Preuve: Découle directement des propriétés du rang et du théorème précédent.

2) Calcul pratique du rang d'une matrice

La méthode découle du résultat qui dit que si $U \times A \times V = J_{n,p,r}$ avec U,V inversibles, alors $\operatorname{rg}(A) = r$. La méthode consiste à transformer la matrice A en la matrice $J_{n,p,r}$ à l'aide des opérations élémentaires sur les lignes ou les colonnes (méthode de Gauss), à chaque étape, la matrice obtenue a le même rang que A, plus précisément, à chaque étape la nouvelle matrice s'écrit sous la forme $U_k \times A \times V_k$ avec U_k, V_k inversibles.

À l'étape n° k, le principe est le suivant :

- a) On choisit un pivot (i.e. un coefficient non nul) dans les lignes L_k à L_n et dans les colonnes C_k à C_n .
- b) On amène le pivot à sa place, c'est à dire sur la ligne L_k dans la colonne C_k en échangeant éventuellement deux lignes et/ou deux colonnes.
- c) On fait des éliminations **en dessous** du pivot et **au-dessus** du pivot pour faire apparaître des 0, avec les opérations du type : $L_i \leftarrow L_i + \alpha L_k$.

Le processus s'arrête lorsqu'il n'y a plus de pivot, il reste alors à diviser chaque ligne par le pivot correspondant (s'il y en a un) pour faire apparaître un 1 à la place.

Exemple: Soit
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ -1 & 2 & -12 \end{pmatrix}$$

Étape 1 : premier pivot : 1 (ligne L_1 colonne C_2)

$$C_1 \longleftrightarrow C_2 \text{ donne } \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \\ 2 & -1 & -12 \end{pmatrix}, L_3 \leftarrow L_3 - 2L_1 \text{ donne } \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & -7 & -14 \end{pmatrix}.$$

Étape 2 : deuxième pivot : 1 (ligne L_2 colonne C_2)

$$L_1 \leftarrow L_1 - 3L_2 \text{ donne } \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & -7 & -14 \end{pmatrix}, L_3 \leftarrow L_3 + 7L_2 \text{ donne } \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Étape 3 : pas de troisième pivot.

$$C_3 \leftarrow C_3 + 5C_1$$
 donne $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$, $C_3 \leftarrow C_3 - 2C_2$ donne $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Donc rg(A) = 2, on remarquera que les deux dernières opérations ne sont pas indispensables pour conclure.

Exercice: Avec la matrice A précédente, déduire de la méthode deux matrices inversibles U et V telles que $UAV = J_{3,3,2}$. **Réponse**: On a effectué les opérations suivantes :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 7 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \times A \times \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Ce qui donne:

$$U = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ -2 & 7 & 1 \end{pmatrix} \text{ et } V = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 5 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exemple: (Variante) Il peut être parfois avantageux de n'effectuer que des transformations sur les colonnes, les éliminations se font alors à gauche et à droite du pivot avec les opérations du type $C_i \leftarrow C_i + \alpha C_k$ (à l'étape k). Voici quel peut être l'intérêt :

Soit $\mathfrak{B} = (i, j, k)$ une base de E et soit $u \in \mathcal{L}(E)$ défini par $\max_{\mathfrak{B}}(u) = A$ (la matrice précédente), calculons le rang de A (donc le rang de u) en utilisant la variante :

Étape 1 : premier pivot 1 (ligne L_1 colonne C_2)

$$C_1 \longleftrightarrow C_2$$
 donne
$$\begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \\ 2 & -1 & -12 \end{pmatrix}$$

$$C_2 \leftarrow C_2 - 3C_1$$
 donne $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & -7 & -12 \end{pmatrix}$, $C_3 \leftarrow C_3 - C_1$ donne $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & -7 & -14 \end{pmatrix}$.

Étape 2 : deuxième pivot 1 (ligne L_2 colonne C_2)

$$C_3 \leftarrow C_3 - 2C_2$$
 donne $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -7 & 0 \end{pmatrix}$, (on termine avec $L_3 \leftarrow L_3 - 2L_1$ puis $L_3 \leftarrow L_3 + 7L_2$).

À l'étape 1, la première matrice obtenue est celle du système (u(j), u(i), u(k)), la deuxième est la matrice du système (u(j), u(i-3j), u(k)) et la troisième est celle du système (u(j), u(i-3j), u(k-j)). À la fin de l'étape 2 on a la matrice du système (u(j), u(i-3j), u(i-3j), u(-2i+5j+k)), on en déduit que non seulement le rang de u est égal à 2, mais en plus $\ker(u) = \operatorname{Vect}\left[-2i+5j+k\right]$ et $\operatorname{Im}(u) = \operatorname{Vect}\left[u(j), u(i-3j)\right] = \operatorname{Vect}\left[u(j), u(i)\right]$.

3) Calcul pratique de l'inverse d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$, supposons qu'en r opérations **sur les lignes** de A on obtienne la matrice I_n , on a alors une relation du type $G_r \times \cdots \times G_1 \times A = I_n$, où G_i est la matrice correspondant à l'opération numéro i. On peut alors en déduire que la matrice A est inversible et que son inverse est $A^{-1} = G_r \times \cdots \times G_1$, pour obtenir cette matrice, il suffit d'effectuer les mêmes opérations (dans le même ordre) sur la matrice I_n en même temps que sur A. La méthode consiste donc à écrire la matrice A suivie de la matrice I_n :

Les opérations sont effectuées sur toute la longueur de chaque ligne. L'objectif est d'obtenir la matrice I_n à la place de A, alors on pourra conclure que A est inversible, et là où il y avait I_n on aura A^{-1} , on utilise la méthode de Gauss-Jordan :

À l'étape k:

- On choisit un pivot (i.e. un coefficient non nul) dans les lignes $L_k \dots L_n$ et dans la colonne C_k .
- On amène le pivot à sa place : ligne L_k (en échangeant éventuellement deux lignes).
- − On fait les éliminations (pour faire apparaître des zéros) **en dessous et au-dessus** du pivot avec les opérations : $L_i \leftarrow L_i + \alpha L_k$.

Il y a donc au plus n étapes.

Il y a deux cas possibles au cours du processus :

- Si à chaque étape on peut trouver un pivot, alors après l'étape n, il ne reste plus qu'à diviser chaque ligne par le pivot correspondant pour obtenir la matrice I_n : c'est le cas où la matrice A est inversible.
- Si au cours de l'étape k on ne peut pas trouver de pivot dans la colonne C_k et dans les lignes $L_k \dots L_n$, alors on est dans la situation suivante, à l'issue de l'étape k-1:

 p_1, \ldots, p_{k-1} désignent les pivots des k-1 étapes précédentes, ces pivots étant non nuls, il est facile de voir qu'avec des opérations sur les colonnes, on peut faire apparaître des zéros dans la colonne k sur les lignes $L_1 \ldots L_{k-1}$, sans changer les coefficients des lignes $L_k \ldots L_n$ de cette même colonne. La matrice ainsi obtenue possède une colonne nulle, donc son rang est inférieur ou égal à n-1, or cette matrice a le même rang que A, donc nous sommes dans le cas où A est **non inversible**.

^{1.} JORDAN Camille (1838 – 1922) : mathématicien français dont l'œuvre considérable touche tous les domaines des mathématiques.

Exemple: Soit
$$A = \begin{pmatrix} 2 & 4 & 2 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$$
, appliquons la méthode de *Gauss-Jordan*: $\begin{pmatrix} 2 & 4 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 2 & -1 & | & 0 & 0 & 1 \end{pmatrix}$.

Étape 1 : pivot $p_1 = 1$, ligne L_1 colonne C_1 , éliminations : $L_3 \leftarrow L_3 - L_1$, ce qui donne :

Étape 2 : pivot $p_2=1$, ligne L_2 , colonne C_2 , éliminations : $L_1 \leftarrow L_1 - 4L_2$ et $L_3 \leftarrow L_3 + 2L_2$, ce qui donne :

Étape 3 : pivot $p_3 = -1$, ligne L_3 , colonne C_3 , éliminations : $L_1 \leftarrow L_1 - 2L_3$ et $L_2 \leftarrow L_2 + L_3$, ce qui donne :

En conclusion, la matrice A est inversible et son inverse est : $A^{-1} = \begin{pmatrix} 3/2 & -4 & -1 \\ -1 & 3 & 1 \\ 1 & -2 & -1 \end{pmatrix}$.

VII) Exercices

★Exercice 20.1

Soit $E = \mathbb{R}_4[X]$, soit $f: E \to E$ définie par f(P) = (X-1)P' - P.

- a) Vérifier que f est linéaire et calculer sa matrice dans la base canonique de E.
- b) Calculer, le rang de f, une base de ker(f), une base de Im(f).
- c) Déterminer f^2 , une base de $ker(f^2)$, une base de $Im(f^2)$.

★Exercice 20.2

Soient $E = \mathbb{R}^3$, $F = \text{Vect}\left[\overrightarrow{e_1}\right]$ où $\overrightarrow{e_1} = (1, 1, 1)$, et G le plan d'équation 2x - y + z = 0. Montrer que F et G sont supplémentaires et déterminer la matrice dans la base canonique de la projection sur G parallèlement à F, puis la matrice de la symétrie par rapport à G et parallèlement à F.

★Exercice 20.3

Soit E un \mathbb{K} -espace vectoriel de dimension 3, soit $f \in \mathcal{L}(E)$ telle que $f \neq 0$ et $f^2 = 0$. Montrer qu'il existe une base \mathfrak{B} de E telle que $\max_{\mathfrak{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

★Exercice 20.4

- a) Soit $E = \{f : x \mapsto P(x)e^x \mid P \in \mathbb{K}_n[X]\}$, on note \mathfrak{B} la base naturelle de E. Calculer la matrice de la dérivation dans la base \mathfrak{B} , étudier son inversibilité.
- b) Étudier les polynômes P de degré inférieur ou égal à 3 tels que la fonction $x \mapsto P(x)e^{x^2}$, admette une primitive de la forme $x \mapsto Q(x)e^{x^2}$ où Q désigne un polynôme.

★Exercice 20.5

Soit $E = \{ \begin{pmatrix} a-b & b-c & 2c \\ 2a & a+b & -b \\ b & c & a \end{pmatrix} / a, b, c \in \mathbb{K} \}$, montrer que E est un \mathbb{K} -espace vectoriel, calculer sa dimension. Est-ce une algèbre?

★Exercice 20.6

Soit $E = \{ \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \ / \ a,b,c \in \mathbb{K} \}$, montrer que E est une \mathbb{K} -algèbre, calculer sa dimension.

Déterminer U(E) le groupe des inversibles de E. Pour $M \in E$, calculer M^n $(n \in \mathbb{N})$.

★Exercice 20.7

- a) Soit $A = \frac{1}{3} \begin{pmatrix} 0 & -2 & -2 \\ 2 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$, on pose $B = A^2$, $C = A^3$, $U = A^4$. Montrer que $(\{U, A, B, C\}, \times)$ est un groupe multiplicatif. Montrer que ces quatre matrices ont le même rang.
- b) Soit G une partie de $\mathcal{M}_n(\mathbb{K})$, on suppose que (G, \times) est un groupe, on note E son élément neutre. Montrer que E est un projecteur. Montrer que les endomorphismes canoniquement associés aux éléments de G ont tous le même noyau, la même image et que ces deux s.e.v sont supplémentaires dans \mathbb{K}^n .

★Exercice 20.8

On considère trois suites réelles $(a_n),(b_n)$ et (c_n) qui vérifient pour tout entier $n\in\mathbb{N}$: $\begin{cases} a_{n+1}=b_n+c_n\\ b_{n+1}=a_n+c_n \end{cases}$ Déterminer l'expression de a_n,b_n et c_n en fonction de a_0,b_0,c_0 et de n. On $c_{n+1}=a_n+b_n$

$$\begin{pmatrix} c_{n+1} &= a_n + b_n \\ \text{pourra introduire les matrices} : A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \text{ et } B = A + I_3.$$

★Exercice 20.9

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ définies par $a_{i,j} = \delta_{i+1,j}$ et $b_{i,j} = \delta_{i,j} + \delta_{i+1,j}$. Calculer A^p , en déduire B^p .

★Exercice 20.10

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^n = O_n$ et $A^{n-1} \neq O_n$, montrer que A semblable à la matrice :

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & & \ddots & 1 \\ 0 & 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

★Exercice 20.11

Soit $F = \mathscr{T}_n^s(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures dans $\mathscr{M}_n(\mathbb{K})$. Montrer que F est une sous-algèbre de $\mathscr{M}_n(\mathbb{K})$, calculer sa dimension, et déterminer le groupe des inversibles.

★Exercice 20.12

Déterminer l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ qui commutent avec toutes les autres. Quelle est la structure de cet ensemble ?

★Exercice 20.13

Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ qui vérifie :

$$\forall A, B \in \mathcal{M}_n(\mathbb{K}), \varphi(A \times B) = \varphi(B \times A).$$

Montrer qu'il existe un scalaire λ tel que $\forall A \in \mathcal{M}_n(\mathbb{K}), \varphi(A) = \lambda \operatorname{tr}(A)$.

★Exercice 20.14

Pour
$$a, b, c \in \mathbb{C}$$
, on note $M(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$, on pose $I = I_3 J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, et $E = \{M(a, b, c, c) \mid a, b, c \in \mathbb{C}\}$.

- a) Calculer J^n pour $n \in \mathbb{N}$. Montrer que E est un \mathbb{C} -espace vectoriel de dimension 3 et que $\mathfrak{B} = (I,J,J^2)$ est une base de E.
- b) Montrer que E est une sous-algèbre commutative de $\mathcal{M}_3(\mathbb{C})$.
- c) Soit $P \in \mathbb{C}[X]$, montrer qu'il existe $a,b,c \in \mathbb{C}$ tels que P(J) = M(a,b,c), en déduire que $E = \{M \in \mathcal{M}_3(\mathbb{C}) \mid \exists P \in \mathbb{C}[X], M = P(J)\}.$
 - Soient U la base canonique de \mathbb{C}^3 , et u l'endomorphisme de \mathbb{C}^3 canoniquement associé à J.
- d) Montrer que $\ker(u \mathrm{id})$, $\ker(u j\mathrm{id})$ et $\ker(u j^2\mathrm{id})$ sont trois droites vectorielles, on les note respectivement D_1, D_2, D_3 . Pour $i \in [1..3]$, on pose $\overrightarrow{e_i}$ le vecteur de D_i dont la première composante vaut 1, et on pose $U' = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$. Montrer que U' est une base de \mathbb{C}^3 .
- e) Soit P la matrice de passage de U à U', sans calculer P^{-1} , déterminer D la matrice de u dans la base U'.
- f) Montrer que $P^{-1} \times M(a, b, c) \times P$ est une matrice diagonale, en déduire $[M(a, b, c)]^n$, pour $n \in \mathbb{N}$, en fonction de a, b, c, n et P.
- g) Montrer que la matrice M(a, b, c) est inversible ssi les complexes $1, j, j^2$ ne sont pas racines du polynôme $a + bX + cX^2$.
- h) Montrer que M(a, b, c) est inversible ssi $pgcd(a + bX + cX^2, X^3 1) = 1$. En déduire que lorsque M(a, b, c) est inversible, alors son inverse est dans E.