Lab - 2 - Data Exploration

Step 1. Import the necessary libraries

In [1]:

```
import pandas as pd
```

Step 2. Import the dataset from this address

(https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user).

Step 3. Assign it to a variable called users and use the 'user_id' as index

In [5]:

users = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data/

Step 4. See the first 25 entries

In [6]:

III [0].				
users.h	ead(25)		
12	28	F	other	06405
13	47	М	educator	29206
14	45	М	scientist	55106
15	49	F	educator	97301
16	21	М	entertainment	10309
17	30	М	programmer	06355
18	35	F	other	37212
19	40	М	librarian	02138
20	42	F	homemaker	95660
21	26	М	writer	30068
22	25	М	writer	40206
23	30	F	artist	48197
24	21	F	artist	94533

Step 5. See the last 10 entries

```
In [7]:
users.tail(10)
```

Out[7]:

	age	gender	occupation	zip_code
user_id				
934	61	М	engineer	22902
935	42	М	doctor	66221
936	24	М	other	32789
937	48	М	educator	98072
938	38	F	technician	55038
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

Step 6. What is the number of observations in the dataset?

```
users.shape[0]
```

Out[8]:

In [8]:

943

Step 7. What is the number of columns in the dataset?

```
In [9]:
```

```
users.shape[1]
```

Out[9]:

4

Step 8. Print the name of all the columns.

```
In [13]:
users.columns
Out[13]:
Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

```
In [18]:
# "the index" (aka "the labels")
users.index
Out[18]:
                      3, 4, 5, 6, 7, 8, 9, 10,
Int64Index([ 1,
                 2,
           934, 935, 936, 937, 938, 939, 940, 941, 942, 943],
          dtype='int64', name='user id', length=943)
```

Step 10. What is the data type of each column?

```
In [19]:
users.dtypes
Out[19]:
               int64
age
              object
gender
occupation
              object
zip_code
              object
dtype: object
```

Step 11. Print only the occupation column

```
In [20]:
users["occupation"]
Out[20]:
user_id
          technician
1
2
                other
3
               writer
          technician
4
5
                other
939
              student
940
       administrator
941
              student
942
           librarian
              student
943
Name: occupation, Length: 943, dtype: object
```

Step 12. How many different occupations are in this dataset?

```
In [21]:
users["occupation"].value_counts().count()
Out[21]:
21
```

Step 13. What is the most frequent occupation?

Step 14. Summarize the DataFrame.

```
In [24]:
```

users.describe()

Out[24]:

	age		
count	943.000000		
mean	34.051962		
std	12.192740		
min	7.000000		
25%	25.000000		
50%	31.000000		
75%	43.000000		
max	73.000000		

Step 15. Summarize all the columns

In [25]:

users.describe(include="all")

Out[25]:

	age	gender	occupation	zip_code
count	943.000000	943	943	943
unique	NaN	2	21	795
top	NaN	М	student	55414
freq	NaN	670	196	9
mean	34.051962	NaN	NaN	NaN
std	12.192740	NaN	NaN	NaN
min	7.000000	NaN	NaN	NaN
25%	25.000000	NaN	NaN	NaN
50%	31.000000	NaN	NaN	NaN
75%	43.000000	NaN	NaN	NaN
max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

```
In [26]:

users.occupation.describe()

Out[26]:

count 943
unique 21
top student
freq 196
Name: occupation, dtype: object
```

Step 17. What is the mean age of users?

```
In [27]:
users.age.mean()
Out[27]:
34.05196182396607
```

Step 18. What is the age with least occurrence?

```
In [28]:

users.age.value_counts().tail()

Out[28]:

7     1
66     1
11     1
10     1
73     1
Name: age, dtype: int64
```