

EPROM Products

1993/1994 Data Book/Handbook

Advanced Micro Devices

EPROM ProductsData Book/Handbook

1993/1994

© 1993 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for a particular application. AMD® assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD and the AMD logo are registered trademarks of Advanced Micro Devices, Inc.

ExpressROM, Flasherase and Flashrite are trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Advanced Micro Devices continues to be at the forefront of non-volatile memory technology. Our technology leadership is evidenced by the world's fastest and highest density EPROMs.

Our CMOS EPROM product portfolio is the broadest available. Today we offer EPROM densities ranging from 64K to 4 Megabit in both ceramic windowed and plastic one-time-programmable packages. Our superior EPROM process technology yields access times as fast as 35 ns enabling you to maximize system performance based on today's high speed microprocessors. Furthermore, we have expanded our product service by providing ExpressROMTM memories. These preprogrammed and fully tested devices provide users with a cost-effective alternative to EPROMs without the long lead-time associated with ROMs.

We are now proud to announce a family of true Low Voltage EPROMs to complement our product offering. Our low voltage product family consists of 1 Megabit and 2 Megabit devices with speeds of 120 ns and 150 ns respectively. The voltage range has been extended to make them suitable for systems that have regulated power supplies (3.0 V to 3.6 V) and those that are battery powered (2.7 V to 3.6 V). We have also expanded our package portfolio to include Thin Small Outline Packages (TSOP).

There has never been a better time to take advantage of AMD's family of non-volatile memories.

Walid Maghribi

Vice President and General Manager Non-Volatile Memory Division

TABLE OF CONTENTS

Introduction							
Section 1	Product Selector Guides Non-Volatile EPROM Memory Products UV & OTP EPROMs ExpressROM TM Memories						
Section 2		le Programmable Read Only Memories (EPROMs)	2-1				
	Inside AMD's (CMOS EPROM Technology	2-3				
	Am27C64	64K (8,192 x 8-Bit) CMOS EPROM	2-10				
	Am27C128	128K (16,384 x 8-Bit) CMOS EPROM	2-22				
	Am27C256	256K (32,768 x 8-Bit) CMOS EPROM	2-34				
	Am27C512	512K (65,536 x 8-Bit) CMOS EPROM	2-47				
	Am27C010	1 Mbit (131,072 x 8-Bit) CMOS EPROM	2-59				
	Am27C1024	1 Mbit (65,536 x 16-Bit) CMOS EPROM	2-72				
	Am27C020	2 Mbit (262,144 x 8-Bit) CMOS EPROM	2-84				
	Am27C2048	2 Mbit (131,072 x 16-Bit) CMOS EPROM	2-96				
	Am27C040	4 Mbit (524,288 x 8-Bit) CMOS EPROM	2-109				
	Am27C400	4 Mbit (524,288 x 8-Bit/262,144 x 16-Bit) ROM Compatible CMOS EPROM	2-121				
	Am27C4096	4 Mbit (262,144 x 16-Bit) CMOS EPROM	2-133				
	Am27C080	8 Mbit (1,048,576 x 8-Bit) CMOS EPROM	2-145				
	Am27C800	8 Mbit (1,048,576 x 8-Bit/524,288 x 16-Bit) ROM Compatible CMOS EPROM	2-157				
Section 3	High-Speed C Only Memorie	MOS Erasable Programmable Read s (EPROMs)	3-1				
	An Introduction	to High-Speed EPROMs	3-3				
	Am27H256	High-Speed 256K (32,768 x 8-Bit) CMOS EPROM	3-9				
	Am27H010	High-Speed 1 Mbit (131,072 x 8-Bit) CMOS EPROM	3-21				
Section 4	Low Voltage C	CMOS Erasable Programmable Read s (EPROMs)	4-1				
		to Low Voltage EPROMs	4-3				
	Am27LV010/	1 Mbit (131,072 x 8-Bit) Low Voltage					
	Am27LV010B	CMOS EPROM	4-4				
	Am27LV020/ Am27LV020B	2 Mbit (262,144 x 8-Bit) Low Voltage CMOS EPROM	4-21				
Section 5	ExpressROM ^T	Memories	5-1				
	An Introduction	to ExpressROM Memories	5-3				
	Am27X64	64K (8,192 x 8-Bit) CMOS ExpressROM Device	5-8				
	Am27X128	128K (16,384 x 8-Bit) CMOS ExpressROM Device	5-17				
	Am27X256	256K (32,768 x 8-Bit) CMOS ExpressROM Device	5-26				
	Am27X512	512K (65,536 x 8-Bit) CMOS ExpressROM Device	5-36				
	Am27X010	1 Mbit (131,072 x 8-Bit) CMOS ExpressROM Device	5-45				

Section 5	ExpressROM ^T	M Memories (continued)	
	Am27X1024	1 Mbit (65,536 x 16-Bit) CMOS ExpressROM Device	5-55
	Am27X020	2 Mbit (262,144 x 8-Bit) CMOS ExpressROM Device	5-64
	Am27X2048	2 Mbit (131,072 x 16-Bit) CMOS ExpressROM Device	5-73
	Am27X040	4 Mbit (524,288 x 8-Bit) CMOS ExpressROM Device	5-82
	Am27X400	4 Mbit (524,288 x 8-Bit/262,144 x 16-Bit) ROM Compatible ExpressROM Device	5-91
	Am27X4096	4 Mbit (262,144 x 16-Bit) CMOS ExpressROM Device	5-100
	Am27X080	8 Mbit (1,048,576 x 8-Bit) CMOS ExpressROM Device	5-109
	Am27X800	8 Mbit (1,048,576 x 8-Bit/524,288 x 16-Bit) ROM Compatible ExpressROM Device	5-118
Section 6	Programming	· · · · · · · · · · · · · · · · · · ·	6-1
	•	Methodology	6-3
		amming Flowchart	6-4
		ng Characteristics	6-5
		cteristics and Waveforms	6-5
		gramming Support	6-9
Section 7	Article Reprin	t	7-1
	"Making EPRO	M/Flash Trade-Offs" Article Reprint	7-3
Section 8	Physical Dime	nsions	8-1
	CDV028	28-Pin Ceramic DIP	8-3
	CDV032	32-Pin Ceramic DIP	8-3
	CDV040	40-Pin Ceramic DIP	8-4
	CDV042	42-Pin Ceramic DIP	8-4
	CLV044	44-Pin Square Leadless Chip Carrier	8-5
	PD 028	28-Pin Plastic Dual In-Line Package	8-6
	PD 032	32-Pin Plastic Dual In-Line Package	. 8-6
	PD 040	40-Pin Plastic Dual In-Line Package	8-7
	PD 048	48-Pin Plastic Dual In-Line Package	8-7
	PL 032	32-Pin Rectangular Plastic Leaded Chip Carrier	8-8
	PL 044	44-Pin Rectangular Plastic Leaded Chip Carrier	8-8
	TS 032	32-Pin Thin Small Outline	8-9

SECTION

PRODUCT SELECTOR GUIDES

Section 1	Product Selector Guides	1-1
	Non-Volatile EPROM Memory Products	1-3
	UV & OTP EPROMs	1-4
	ExpressROM [™] Memories	1-7

Non-Volatile EPROM Memory Products

Introduction

The Non-Volatile Memory Division manufactures a broad range of high performance memory products. These products include traditional windowed EPROMs, plastic OTP EPROMs, and ExpressROM devices. They offer the system designer an extensive choice of economical alternatives for program storage.

AMD's EPROM offerings are manufactured using advanced CMOS process technology yielding access times as fast as 35 ns. Product densities range from 64K to 4 megabits. Designers challenged with extending useful battery life in portable applications will appreciate the 3 Volt EPROM product family. All EPROM products are offered in windowed ceramic and One-Time Programmable (OTP) plastic packages.

A new concept from AMD is the ExpressROM device. These are quick-turn ROMs produced from EPROM wafers. Lead times of these devices are typically half that of ROMs.

AMD is committed to leadership in high-performance CMOS non-volatile memories. These products offer industry-leading speeds and densities that will contribute to the competitive advantages of your design.

UV EPROMs & OTP EPROMs

Part Number	Organization	Access Time (ns)	Temp Range¹	Package Type²	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C64-55	8K x 8	. 55	С	D, L	28/32	5 V ± 5%
Am27C64-70	8K x 8	70	C	D, L	28/32	5 V ± 10%
Am27C64-90	8K x 8	90	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-120	8K x 8	120	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-150	8K x 8	150	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-200	8K x 8	200	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-255	8K x 8	250	C, I	D, L, P, J	28/32	5 V ± 5%
Am27C128-55	16K x 8	55	С	D. L	28/32	5 V ± 5%
Am27C128-70	16K x 8	70	Č	Ď, Ĺ	28/32	5 V ± 10%
Am27C128-90	16K x 8	90	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-120	16K x 8	120	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-150	16K x 8	150	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-200	16K x 8	200	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-255	16K x 8	250	C, I	D, L, P, J	28/32	5 V ± 5%
Am27H256-35	32K x 8	35	С	D, L	28/32	5 V ± 10%
Am27H256-35V05	32K x 8	35	Č	D. L	28/32	5 V ± 15%
Am27H256-45	32K x 8	45	Č, I, E, M	Ď, Ľ, P, J	28/32	5 V ± 10%
Am27H256-55	32K x 8	55	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27H256-70	32K x 8	70 .	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C256-55	32K x 8	55	c	D, L	28/32	5 V ± 5%
Am27C256-70	32K x 8	70	Č	D, L	28/32	5 V ± 10%
Am27C256-90	32K x 8	90	C, I, E, M	D, L, P, J, E	28/32	5 V ± 10%
Am27C256-120	32K x 8	120				5 V ± 10%
				_		
Am27C256-255	32K x 8					
Am27C256-150 Am27C256-200	32K x 8 32K x 8	120 150 200 250	C, I, E, M C, I, E, M C, I, E, M C, I	D, L, P, J, E E D, L, P, J, E D, L, P, J	28/32 28/32 28/32 28/32	5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 5%

Notes: see page 1-8

UV EPROMs & OTP EPROMs (Cont.)

Part Number	Organization	Access Time (ns)	Temp Range¹	Package Type ²	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C512-75 Am27C512-90 Am27C512-120 Am27C512-150 Am27C512-200 Am27C512-255	64K x 8 64K x 8 64K x 8 64K x 8 64K x 8 64K x 8	70 90 120 150 200 250	C C, I, E, M C, I, E, M C, I, E, M C, I, E, M C, I, E, M	D, L D, L D, L, P, J D, L, P, J D, L, P, J	28/32 28/32 28/32 28/32 28/32 28/32	5 V ± 5% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 5%
Am27H010-45 Am27H010-45V05 Am27H010-55 Am27H010-70 Am27H010-90 Am27H010-90V05	128K x 8 128K x 8 128K x 8 128K x 8 128K x 8 128K x 8	45 45 55 70 90 90	C C, I, E, M C, I, E, M C, I, E, M C, I, E, M	D, L D, L D, L, P, J D, L, P, J D, L, P, J D, L, P, J	32/32 32/32 32/32 32/32 32/32 32/32	5 V ± 10% 5 V ± 5% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 5%
Am27C010-105	128K x 8	100	C	D, L	32/32	5 V ± 5%
Am27C010-120	128K x 8	120	C, I	D, L, P, J, E	32/32	5 V ± 10%
Am27C010-150	128K x 8	150	C, I, E, M	D, L, P, J, E	32/32	5 V ± 10%
Am27C010-200	128K x 8	200	C, I, E, M	D, L, P, J, E	32/32	5 V ± 10%
Am27C010-255	128K x 8	250	C, I	D, L, P, J, E	32/32	5 V ± 5%
Am27LV010-120	128K x 8	120	C, I, E	D, L	32	3.3 V ± 10%
Am27LV010-150	128K x 8	150	C, I, E, M	D, L, J, E	32	3.3 V ± 10%
Am27LV010-200	128K x 8	200	C, I, E, M	D, L, J, E	32	3.3 V ± 10%
Am27LV010-250	128K x 8	250	C, I, E, M	D, L, J, E	32	3.3 V ± 10%
Am27LV010-300	128K x 8	300	C, I, E, M	D, L, J, E	32	3.3 V ± 10%
Am27LV010B-150	128K x 8	150	C, I, E	D, L, J, E	32	2.7 V - 3.6 V
Am27LV010B-200	128K x 8	200	C, I, E	D, L, J, E	32	2.7 V - 3.6 V
Am27LV010B-250	128K x 8	250	C, I, E, M	D, L, J, E	32	2.7 V - 3.6 V
Am27LV010B-300	128K x 8	300	C, I, E, M	D, L, J, E	32	2.7 V - 3.6 V
Am27C1024-85	64K x 16	85	C	D	40	$5 V \pm 5\%$
Am27C1024-90	64K x 16	90	C, I	D, L	40/44	$5 V \pm 10\%$
Am27C1024-120	64K x 16	120	C, I, E, M	D, L	40/44	$5 V \pm 10\%$
Am27C1024-150	64K x 16	150	C, I, E, M	D, L	40/44	$5 V \pm 10\%$
Am27C1024-200	64K x 16	200	C, I, E, M	D, L, P, J	40/44	$5 V \pm 10\%$
Am27C1024-255	64K x 16	250	C, I	D, L, P, J	40/44	$5 V \pm 5\%$
Am27C020-120	256K x 8	120	C, I	D, L	32/32	5 V ± 10%
Am27C020-150	256K x 8	150	C, I, E, M	D, L, P, J*	32/32	5 V ± 10%
Am27C020-200	256K x 8	200	C, I, E, M	D, L, P, J*	32/32	5 V ± 10%
Am27C020-250	256K x 8	250	M	D, L*	32/32	5 V ± 10%
Am27C020-255	256K x 8	250	C, I	D, L, P, J*	32/32	5 V ± 5%
Am27LV020-150	256K x 8	150	C, I, E	D, L, J	32	3.3 V ± 10%
Am27LV020-200	256K x 8	200	C, I, E, M	D, L, J	32	3.3 V ± 10%
Am27LV020-250	256K x 8	250	C, I, E, M	D, L, J	32	3.3 V ± 10%
Am27LV020-300	256K x 8	300	C, I, E, M	D, L, J	32	3.3 V ± 10%
Am27LV020B-200	128K x 8	200	C, I, E	D, L, J	32	2.7 V – 3.6 V
Am27LV020B-250	128K x 8	250	C, I, E, M	D, L, J	32	2.7 V – 3.6 V
Am27LV020B-300	128K x 8	300	C, I, E, M	D, L, J	32	2.7 V – 3.6 V
Am27C2048-105* Am27C2048-120 Am27C2048-150 Am27C2048-200 Am27C2048-250 Am27C2048-255	128K x 16	100	C	D, L	40/44	5 V ± 5%
	128K x 16	120	C, I	D, L	40/44	5 V ± 10%
	128K x 16	150	C, I, E, M	D, L, P, J	40/44	5 V ± 10%
	128K x 16	200	C, I, E, M	D, L, P, J	40/44	5 V ± 10%
	128K x 16	250	M	D, L	40/44	5 V ± 10%
	128K x 8	250	C, I	D, L, P, J	40/44	5 V ± 5%

Notes: see page 1-8

UV EPROMs & OTP EPROMs (Cont.)

Part Number	Organization	Access Time (ns)	Temp Range¹	Package Type²	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C040-120 Am27C040-125 Am27C040-150 Am27C040-200 Am27C040-250 Am27C040-255	512K x 8 512K x 8 512K x 8 512K x 8 512K x 8 512K x 8 512K x 8	120 120 150 200 250 250	C, I C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L D, L, P, J D, L D, L, P, J	32/32 32/32 32/32 32/32 32/32 32/32 32/32	5 V ± 10% 5 V ± 5% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 5%
Am27C400-125 Am27C400-120 Am27C400-150 Am27C400-200 Am27C400-255	512K x 8/256K x 16 512K x 8/256K x 16	120 120 150 200 250	C, I C, I C, I C, I	D D D D	40 40 40 40 40	5 V ± 5% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 5%
Am27C4096-125 Am27C4096-120 Am27C4096-150 Am27C4096-200 Am27C4096-250 Am27C4096-255	256K x 16 256K x 16 256K x 16 256K x 16 256K x 16 256K x 16	120 120 150 200 250 250	C, I C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L, P, J	40/44 40/44 40/44 40/44 40/44 40/44	$5 V \pm 5\%$ $5 V \pm 10\%$ $5 V \pm 10\%$ $5 V \pm 10\%$ $5 V \pm 10\%$ $5 V \pm 5\%$
Am27C080-105* Am27C080-120* Am27C080-150* Am27C080-200* Am27C080-250* Am27C080-255*	1 Megabit x 8	100 120 150 200 250 250	C, I C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L, P, J	32/32 32/32 32/32 32/32 32/32 32/32	$\begin{array}{cccc} 5 \ V \pm & 5\% \\ 5 \ V \pm & 10\% \\ 5 \ V \pm & 5\% \end{array}$
Am27C800-125* Am27C800-120* Am27C800-150* Am27C800-200* Am27C800-250* Am27C800-255*	1 Megabit x 8/512K x 16 1 Megabit x 8/512K x 16	120 120 150 200 250 250	C, I C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L, P, J	42/44 42/44 42/44 42/44 42/44 42/44	5 V ± 5% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 5%

^{*}Contact the local AMD sales office for the availability of this device.

Notes: see page 1-8

ExpressROM Devices

Part Number	Organization	Access Time (ns)	Temp Range ¹	Package Type ²	Pin Count (PDIP/PLCC)	Supply Voltage
Am27X64-90	8K x 8	90	C, I	P, J	28/32	5 V ± 10%
Am27X64-120	8K x 8	120	C, i	P, J	28/32	5 V ± 10%
Am27X64-150	8K x 8	150	C, i	P, J	28/32	5 V ± 10%
Am27X64-200	8K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X64-255	8K x 8	250	C, I	P, J	28/32	5 V ± 5%
Am27X128-90	16K x 8	90	C, I	P, J	28/32	5 V ± 10%
Am27X128-120	16K x 8	120	C, I	P, J	28/32	5 V ± 10%
Am27X128-150	16K x 8	150	C, I	P, J	28/32	5 V ± 10%
Am27X128-200	16K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X128-255	16K x 8	250	C, I	P, J	28/32	5 V ± 5%
Am27X256-90	32K x 8	90	C, I	P, J	28/32	5 V ± 10%
Am27X256-120	32K x 8	120	C, I	P, J	28/32	5 V ± 10%
Am27X256-150	32K x 8	150	C, I	P, J	28/32	5 V ± 10%
Am27X256-200	32K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X256-255	32K x 8	250	C, I	P, J	28/32	5 V ± 5%
Am27XH256-45	32K x 8	45	C, I	P, J	28/32	5 V ± 10%
Am27XH256-55	32K x 8	55	C, I	P, J	28/32	5 V ± 10%
Am27XH256-70	32K x 8	70	C, I	P, J	28/32	5 V ± 10%
Am27X512-90	64K x 8	90	C, L	P, J	28/32	5 V ± 10%
Am27X512-120	64K x 8	120	C, I	P, J	28/32	5 V ± 10%
Am27X512-150	64K x 8	150	C, I	P, J	28/32	5 V ± 10%
Am27X512-200	64K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X512-255	64K x 8	250	C, I C, I	P, J	28/32	5 V ± 5%
Am27X010-105	128K x 8	105	C, I	P, J	32/32	5 V ± 5%
Am27X010-120	128K x 8	120	C, I	P, J	32/32	5 V ± 10%
Am27X010-150	128K x 8	150	C, I	P, J	32/32	5 V ± 10%
Am27X010-200	128K x 8	200	C, I	P, J	32/32	5 V ± 10%
Am27X010-255	128K x 8	250	C, I	P, J	32/32	5 V ± 5%
Am27XH010-55	128K x 8	55	C, I	P, J	32/32	5 V ± 10%
Am27XH010-70	128K x 8	70	C, I	P, J	32/32	5 V ± 10%
Am27XH010-90	128K x 8	90	C, I	P, J	32/32	5 V ± 10%

Notes: see page1-8

ExpressROM Devices (Cont.)

Part Number	Organization	Access Time (ns)	Temp Range¹	Package Type ²	Pin Count (PDIP/PLCC)	Supply Voltage
Am27X1024-120	64K x 16	120	C, I	P, J	40/44	5 V ± 10%
Am27X1024-150	64K x 16	150	C, I	P, J	40/44	5 V ± 10%
Am27X1024-200	64K x 16	200	C, I	P, J	40/44	5 V ± 10%
Am27X1024-255	64K x 16	250	C, I	P, J	40/44	5 V ± 5%
Am27X020-125	256K x 8	125	C, I	P	32/32	5 V ± 10%
Am27X020-150	256K x 8	150	C, I	P	32/32	5 V ± 10%
Am27X020-200	256K x 8	200	Ċ, i	Ρ .	32/32	5 V ± 10%
Am27X020-255	256K x 8	250	C, i	Р	32/32	5 V ± 5%
Am27X2048-125	128K x 16	120	C, I	P, J	40/44	5 V ± 10%
Am27X2048-150	128K x 16	150	C, i	P, J	40/44	5 V ± 10%
Am27X2048-200	128K x 16	200	C, i	P, J	40/44	5 V ± 10%
Am27X2048-255	128K x 16	250	Č, i	P, J	40/44	5 V ± 5%
Am27X040-150	512K x 8	150	C, I	P, J	32/32	5 V ± 10%
Am27X040-200	512K x 8	200	C, i	P, J	32/32	5 V ± 10%

Notes:

- 1. Temperature Range
 - C = Commercial (0°C to 70°C)
 - $I = Industrial (-40^{\circ}C to +85^{\circ}C)$
 - E = Extended Commercial (-55°C to +125°C)
 - M = Military (-55°C to +125°C) most products available in both APL and DESC versions.

2. Package Type

- D = Ceramic DIP
- L = Rectangular Ceramic Leadless Chip Carrier
- P = Plastic DIP
- J = Rectangular Plastic Leaded Chip Carrier
- E = Thin Small Outline Package standard pin-out
- F = Thin Small Outline Package reverse pin-out

2 CMOS ERASABLE PROGRAMMABLE READ ONLY MEMORIES (EPROMS)

Section 2	CMOS Erasak	ole Programmable Read Only Memories (EPROMs) 2-1
	Inside AMD's	CMOS EPROM Technology
	Am27C64	64K (8,192 x 8-Bit) CMOS EPROM 2-10
	Am27C128	128K (16,384 x 8-Bit) CMOS EPROM 2-22
	Am27C256	256K (32,768 x 8-Bit) CMOS EPROM 2-34
	Am27C512	512K (65,536 x 8-Bit) CMOS EPROM 2-47
	Am27C010	1 Mbit (131,072 x 8-Bit) CMOS EPROM 2-59
	Am27C1024	1 Mbit (65,536 x 16-Bit) CMOS EPROM 2-72
	Am27C020	2 Mbit (262,144 x 8-Bit) CMOS EPROM 2-84
	Am27C2048	2 Mbit (131,072 x 16-Bit) CMOS EPROM 2-96
	Am27C040	4 Mbit (524,288 x 8-Bit) CMOS EPROM 2-109
	Am27C400	4 Mbit (524,288 x 8-Bit/262,144 x 16-Bit)
		ROM Compatible CMOS EPROM 2-121
	Am27C4096	4 Mbit (262,144 x 16-Bit) CMOS EPROM 2-133
	Am27C080	8 Mbit (1,048,576 x 8-Bit) CMOS EPROM 2-145
	Am27C800	8 Mbit (1,048,576 x 8-Bit/524,288 x 16-Bit)
		ROM Compatible CMOS EPROM 2-157

INSIDE AMD'S CMOS EPROM TECHNOLOGY

TECHNOLOGY DESCRIPTION

AMD's CMOS EPROM memories use standard CMOS periphery with an n-channel floating-gate memory array. The output buffers of the devices are designed to be compatible with both TTL and CMOS circuits. An n-channel pull-down and a p-channel pull-up provide full rail-to-rail switching of the outputs. The CMOS technology also allows very low standby power dissipation: 1.0 mA maximum TTL standby and 100 μA maximum CMOS standby currents.

Figure 1 shows a cross-section of a basic inverter. The gates consist of polysilicon; the other connections are made with metal. The technology used for the periphery transistors is CMOS (Complementary MOS) technology which combines n and p channel devices on the same silicon. In this case, a non-epitaxial p-type substrate is used for the n-channel transistors and a deep diffused n-well is used for the p-channel transistors.

The fabrication of CMOS EPROM memories is a complex process where every step must be rigorously monitored and controlled. This complex processing is heavily dependent on the following underlying technologies:

Photolithography

The photo or masking technology is key to the manufacturing of integrated circuits (ICs). It allows the same circuits to be printed hundreds of times on the same wafer. It is also inherent to the patterning of the various structures on the wafer necessary to the fabrication of the ICs. Today, with the improved capability of wafer steppers, AMD's EPROM products are manufactured on geometries of one micron and below.

Figure 2-1 CMOS Inverter Cross-Section

17061A-1

Ion Implantation

lon implantation provides precision dopant control that is so critical for the manufacturing of AMD's EPROM products on sub-micron technology. Ion implantation equipment is a combination of mass spectrometry, linear acceleration, high resolution, current integration, ion beam scanning and high vacuum technologies. This process uses charged dopant atoms that are accelerated by an electric field and are implanted into the silicon wafer at a depth determined by the acceleration energy.

Diffusion

The furnace operations are required for silicon oxidation and driving in dopants. Oxidation cycles are used to grow the gate and isolation oxides inherent to the fabrication and operation of the MOS transistors. Drive cycles are used to diffuse the dopant material into the silicon to give the desired profile and depth.

Thin Films

Thin films deposited on the silicon include: polysilicon for gate electrodes and interconnection, interlayer dielectrics, metal layers for interconnection and passivation layers to seal the topside.

AMD EPROM Technology

The manufacturing technology for AMD's EPROM products involves a complex combination and blending of the previously mentioned processes. Each processing step requires a tremendous level of development, optimization and control. Before any new product is put into manufacturing, it must satisfy AMD's commitment to customer satisfaction, quality and reliability. To meet these standards, every new process and new product must pass many rigorous requirements. These requirements are outlined in greater depth in the reliability section.

The AMD EPROM products are being built on the CS19/19A family of technologies. These technologies are all based on a double-poly, single-metal n-well CMOS process. This process has been optimized for high density as well as high performance non-volatile memory devices. The basic features of this family of technologies are:

- n-well CMOS
- non-epitaxial, grounded substrate
- double-poly, single-metal

	CS19	CS19A
■ minimum feature (microns)	1.0	0.85
■ gate length (Leff) (microns)	0.9	0.7
■ gate oxide (Angstrom)	190	190
■ contacts (microns)	1.0	0.85
■ metal pitch (microns)	3.0	2.7

CS19

This is a 1.0 µm minimum feature conventional technology and is used to manufacture the low density and high speed EPROM products offered by AMD.

CS19A

This is an 0.85 µm minimum feature conventional technology and is used to manufacture the medium to high density EPROM products and the family of low voltage EPROM products offered by AMD.

UV-ERASABLE TECHNOLOGY

AMD's CMOS EPROM technology is based upon the concept of stored charge. The charge is stored on a floating gate, that is a gate that has no connection to the rest of the circuit. The storage transistor actually has two gates: one that floats, and the other that acts as a control gate. The control gate is used to establish the field across the floating gate (see Figure 2).

Figure 2-2 Floating-Gate MOS Transistor

17061A-2

Hot electron injection is used for programming EPROM devices. With this scheme, a bias is set up between the source and drain of the transistor, and between the control gate and the substrate (see Figure 3). The channel is pinched off, and a strong current flows. Because of the high fields, the electrons are hot. The two fields (source-to-drain, and substrate-to-control-gate) combine to form a field in a diagonal direction, but because of the oxide barrier, electrons cannot flow in that direction. Occasionally, electrons acquire enough energy to cross the barrier in the shortest direction—from the channel to the floating gate. This is referred to as hot electron injection.

Once an electron is on the other side of the oxide, it is on the floating gate, with no conductive path to get off. It is therefore effectively trapped and remains there. During programming, large fields are set up so that a significant number of electrons are injected.

Erasing these devices requires exposure to ultraviolet light. The energy from the ultraviolet light causes the electrons to cross back over the oxide barrier thereby erasing the device. For this to happen, the device package must have a window that lets the ultraviolet light pass through.

The program and erase mechanisms of all of AMD's EPROM products are fundamentally identical irrespective of the type of technology (CS19 or CS19A) used.

Figure 2-3 Programming by Hot-Electron Injection

17061A-3

Erasing AMD EPROMs

In order to clear all locations of their programmed contents, it is necessary to expose the EPROM to an ultraviolet light source. A dosage of 15 W sec/cm² is required to completely erase an EPROM. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 $\mu\text{W/cm}^2$ for 15 to 20 minutes. The EPROM should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the EPROM, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å, although erasure times will be much longer than with UV sources at 2537 Å. Nevertheless, the exposure to fluorescent light and sunlight will eventually erase the EPROM and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming AMD EPROMs

Upon delivery, or after each erasure, the EPROM has all bits in the "ONE," or HIGH state. "Zeros" are loaded into the EPROM through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, $\overline{\text{CE}}$ is at V_{IL} and $\overline{\text{OE}}$ is at V_{II}. For programming, the data to be programmed is applied in parallel to the data input-output pins.

The FlashriteTM programming algorithm reduces programming time by using an initial 100 µs pulse followed by a byte verification operation to determine whether the byte has been successfully programmed. If the data does not verify, an additional pulse is applied for up to a maximum of 25 pulses. This process is repeated while sequencing through each address of the EPROM.

The Flashrite programming algorithm programs and verifies at $V_{CC} = 6.25 \text{ V}$ and $V_{PP} = 12.75 \text{ V}$. After the final address is completed, all bytes are compared to the original data with $V_{CC} = V_{PP} = 5.25 \text{ V}$.

Every pin on the device is protected against electrostatic discharge (ESD), a formal name for static electricity shocks. Output pins rely on the large output drivers as protection. Inputs normally do not have large drivers, so a circuit must be added for input protection. In addition to ESD protection, these input protection circuits also help provide clamping against negative overshoot.

AMD CMOS EPROMs make use of ESD protection circuits as shown in Figures 4a through 4c. Most input pins use the circuit in Figure 4b. On output pins the ESD protection circuit has been modified as shown in Figure 4c.

Figure 2-4 ESD Protection: a. New Version; b. Standard; c. Output Pins

Latch-Up

All of AMD's CMOS devices are guaranteed to endure a current pulse of 100 mA into or out of the pin without inducing latch-up; most devices can actually withstand over 200 mA. Since AMD's CMOS EPROMs have true CMOS outputs, hot insertion is not recommended.

Latch-up may occur as a result of parasitic bipolar transistors between the n-channel and p-channel devices (see Figure 5a). These transistors form a parasitic Silicon Control Rectifier (SCR) (see Figure 5b), which turns ON when triggered, conducting large amounts of current. It is usually impossible to shut OFF without removing all the power from the device. The amount of current drain is so high that it can either overload

a power supply or, if the power supply can supply huge amounts of current, destroy the device.

Latch-up is normally triggered by an input or output at a voltage significantly above V_{CC} or below ground, with enough current drawn to cause the SCR to turn on. This condition usually occurs when hot-socketing a part; i.e., plugging a part into a powered-up board or inserting a board into a powered-up system. When this happens, the inputs and V_{CC} power up uncontrolled, and there is a risk of latch-up.

For CMOS outputs, the SCR is an intrinsic part of the CMOS structure and cannot be eliminated. The SCR must be made as difficult as possible to turn ON by using guard rings and very carefully laying out input and output circuits.

Figure 2-5 Latch-Up Mechanism: a. Cross-Section; b. Equivalent Schematic

a.

17061A-5

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4 μF bulk electrolytic capacitor should be used between V_{CC} and GND for every eight devices. The location of the capacitor should be as close to where the power supply is connected to the array.

SUMMARY

By concentrating on the needs of CMOS users, AMD has developed industry-leading CMOS technology that can provide cost-effective EPROMs of unsurpassed quality, reliability and performance. AMD provides value through:

- Robust technology and circuit design which
 - Does not generate high current transients, and
 - Has high immunity to system noise
- An extremely broad offering of products:
 - 64K through 4 Mbit commodity EPROM densities
 - High-speed family with access times as fast as 35 ns
 - Low-voltage products
 - Regulated (3.0 V − 3.6 V)
 - Unregulated (2.7 V − 3.6 V)

This note has detailed many of the aspects of the technology that make it superior to other alternatives. This, together with the information in the individual data sheets, qualification books, and a crew of applications engineers, should provide answers to your questions as you make use of AMD's CMOS EPROM technology.

Am27C64

64 Kilobit (8,192 x 8-Bit) CMOS EPROM

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 45 ns
- Low power consumption
 - 20 μA typical CMOS standby current
- **■** JEDEC-approved pinout
- Single +5 V power supply
- **■** ±10% power supply tolerance available
- 100% FlashriteTM programming
 - Typical programming time of 1 second

- Latch-up protected to 100 mA from −1 V to Vcc + 1 V
- High noise immunity
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages

GENERAL DESCRIPTION

The Am27C64 is a 64-Kbit ultraviolet erasable programmable read-only memory. It is organized as 8K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, and PLCC packages.

Typically, any byte can be accessed in less than 45 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C64 offers separate Output Enable (OE) and Chip Enable (CE)

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C64 supports AMD's Flashrite™ programming algorithm (100 µs pulses) resulting in a typical programming time of 1 second.

BLOCK DIAGRAM

Publication# 11419 Rev. C Amendment/0 Issue Date: July 1993

2-10

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C64							
Ordering Part No: Vcc ± 5%								-255
Vcc ± 10%	-45	-55	-70	-90	-120	-150	-200	-250
	45	55	70	90	120	150	200	250
Max Access Time (ns)	45	55	70	90	120	150	200	250
CE (E) Access Time (ns)	30	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

Notes:

- 1. JEDEC nomenclature is in parentheses.
- 2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A12

Address Inputs

CE (E)

Chip Enable

DQ0-DQ7

Data Inputs/Outputs

OE (G)

Output Enable Input

PGM (P)

Program Enable Input

Vcc

V_{CC} Supply Voltage

 V_{PP}

Program Supply Voltage

Vss

Ground

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations							
AM27C64-45	DC, DCB, DI, DIB,						
AM27C64-55	LC, LCB, LI, LIB						
AM27C64-70							
AM27C64-90	DC, DCB, DI,						
AM27C64-120	DIB, DE, DEB,						
AM27C64-150	LC, LCB, LI,						
AM27C64-200	LIB, LE, LEB						
AM27C64-255							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations							
AM27C64-55							
AM27C64-70							
AM27C64-90	JC. PC.						
AM27C64-120	JI, PI,						
AM27C64-150	01, 1 1,						
AM27C64-200	•						
AM27C64-255							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the lo-cal AMD sales office to confirm availability of specific valid combinations and to check on newly released combination.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations							
AM27C64-70							
AM27C64-90							
AM27C64-120	/BXA, /BUA						
AM27C64-150							
AM27C64-200							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C64

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C64 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C64. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 $\mu\text{W/cm}^2$ for 15 to 20 minutes. The Am27C64 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C64 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C64 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C64

Upon delivery or after each erasure the Am27C64 has all 65,536 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C64 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, $\overline{\text{CE}}$ is at V_{IL} and $\overline{\text{PGM}}$ is at V_{II}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μs programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C64. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = Vpp = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C64 in parallel with different data is also easily accomplished. Except for $\overline{\text{CE}}$, all like inputs of the parallel Am27C64 may be common. A TTL low-level program pulse applied to an Am27C64

 $\overline{\text{PGM}}$ input with V_{PP} = 12.75 V \pm 0.25 V and $\overline{\text{CE}}$ Low will program that Am27C64. A high-level $\overline{\text{CE}}$ input inhibits the other Am27C64 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\text{OE}}$ and $\overline{\text{CE}}$ at V_{IL} , $\overline{\text{PGM}}$ at V_{IH} , and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ambient temperature range that is required when programming the Am27C64.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C64. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C64, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc—toe.

Standby Mode

The Am27C64 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at Vcc \pm 0.3 V. The Am27C64 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V $_{\rm IH}$. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1-µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7-µF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	PGM	A0	A9	V _{PP}	Outputs
Read		VIL	VIL	Х	Х	X	Vcc	Dout
Output Disable		Χ	ViH	х	Х	Х	Vcc	Hi-Z
Standby (TTL)		ViH	Х	Х	Х	Х	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	Х	х	Х	Х	Vcc	Hi-Z
Program		VIL	Х	VIL	Х	Х	VPP	Din
Program Verify		VIL	VIL	VIH	X	Х	Vpp	Dout
Program Inhibit		ViH	Х	X	Х	Х	Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	ViL	VIL	х	VIL	VH	Vcc	01H
	Device Code	VIL	VIL	Х	ViH	VH	Vcc	15H

Notes:

- 1. $V_H = 12.0 V \pm 0.5 V$
- 2. $X = Either V_{IH} or V_{IL}$
- 3. $A1-A8 = A10-A12 = V_{IL}$
- 4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
All Other Products65°C to +150°C
Ambient Temperature with Power Applied –55°C to +125°C
Voltage with Respect To Vss
All pins except A9, VPP, Vcc0.6 V to Vcc + 0.5 V
A9 and V _{PP} 0.6 V to +13.5 V
V _{CC} 0.6 V to +7.0 V
Matan

Notes

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- 2. For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (Tc)55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages Vcc for Am27C64-XX5 +4.75 V to +5.25 V
V _{CC} for Am27C64-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the func- tionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	IOH = -400 μA	2.4	- Max	V	
Vol	Output LOW Voltage	lo _L = 2.1 mA			0.45	v
ViH	Input HIGH Voltage			2.0	Vcc + 0.5	v
VIL	Input LOW Voltage			-0.5	+0.8	v
I LI	Input Load Current	Vin = 0 V to Vcc		1	1.0	μА
llo	Output Leakage Current	Vout = 0 V to Vcc	C/I Devices		1.0	
			E/M Devices		5.0	μA
ICC1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 10 MHz, lout = 0 mA			25	mA
Icc2	Vcc TTL Standby Current	CE = VIH			1	mA
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μА
IPP1	VPP Current During Read	CE = OE = VIL, VPP = VCC			100	μА

Notes

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27C64 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

11419C-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

11419C-6

CAPACITANCE

Parameter		Test	CLV032		CDV028		PL 032		PD 028		
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	7	10	8	10	6	10	5	10	рF
Соит	Output Capacitance	Vout = 0	8	12	11	14	8	12	8	10	рF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	meter				Am27C64								
Sym JEDEC	bols Standard	Parameter Description	Test Conditions		-45	-55	-70	-90	-120	-150	-200	-255 -250	Unit
tavqv	tacc	Address to	CE = OE =	Min	_					_	·-	_	
3,,,,,	-,100	Output Delay	VIL	Мах	45	55	70	90	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	_	_	_	_				_	
IELGV	IOL	Output Delay		Max	45	55	70	90	120	150	200	250	ns
tgLqv	toe	Output Enable to	CE = VIL	Min	_	-	_						
, acar	.02	Output Delay		Max	30	35	40	40	50	50	50	50	ns
tehoz	tDF	Chip Enable HIGH or		Min	_	_	_	_					
tGHQZ	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Мах	25	25	25	25	30	30	30	30	ns
taxox	tон	Output Hold from		Min	0	0	0	0	0	0_	0	0	
, sada	.511	Addresses, CE, or OE, whichever occurred first		Max	-	-	-	_	_	_	_	_	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C64 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. For the -45, -55 and -70:

Output Load: 1 TTL gate and CL = 30 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V

Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and $C_L = 100 pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance (30 pF for -45, -55, -70)

11419C-7

SWITCHING TEST WAVEFORM

3 V
O V

1.5 V

Test Points
Output

Output

11419C-8

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -45, -55 and -70.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

1. \overline{OE} may be delayed up to t_{ACC} - t_{OE} after the falling edge of the addresses without impact on t_{ACC}.

11419C-9

2. tDF is specified from OE or CE, whichever occurs first.

Advanced Micro Devices

Am27C128

128 Kilobit (16,384 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 45 ns
- Low power consumption
 - 20 μA typical CMOS standby current
- JEDEC-approved pinout
- Single +5 V power supply
- ±10% power supply tolerance available
- 100% FlashriteTM programming
 - Typical programming time of 2 seconds

- Latch-up protected to 100 mA from −1 V to Vcc + 1 V
- High noise immunity
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages
- DESC SMD No. 5962-87661

GENERAL DESCRIPTION

The Am27C128 is a 128K-bit ultraviolet erasable programmable read-only memory. It is organized as 16K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 45 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C128 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE})

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C128 supports AMD's Flashrite TM programming algorithm (100 μ s pulses) resulting in a typical programming time of 2 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.		Am27C128								
Ordering Part No: Vcc ± 5%								-255		
Vcc ± 10%	-45	-55	-70	-90	-120	-150	-200	-250		
Max Access Time (ns)	45	55	70	90	120	150	200	250		
CE (E) Access Time (ns)	45	55	70	90	120	150	200	250		
OE (G) Access Time (ns)	30	35	40	40	50	65	75	100		

CONNECTION DIAGRAMS

Top View

Notes:

- 1. JEDEC nomenclature is in parentheses.
- 2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A13

Address Inputs

CE (E)

Chip Enable

DQ0-DQ7

Data Inputs/Outputs

OE (G)

Output Enable Input

PGM (P)

Program Enable Input

Vcc

V_{CC} Supply Voltage

 V_{PP}

Program Supply Voltage

 V_{SS}

Ground

LOGIC SYMBOL

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations								
AM27C128-45	DC, DCB, DI, DIB							
AM27C128-55	LC, LCB, LI, LIB							
AM27C128-70								
AM27C128-90	DC, DCB, DI,							
AM27C128-120	DIB, DE, DEB,							
AM27C128-150	LC, LCB, LI,							
AM27C128-200	LIB, LE, LEB							
AM27C128-255								

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27C128-55						
AM27C128-70						
AM27C128-90	JC, PC,					
AM27C128-120	JU, PU, JI, PI					
AM27C128-150	JI, FI					
AM27C128-200						
AM27C128-255						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27C128-70						
AM27C128-90						
AM27C128-120	/BXA, /BUA					
AM27C128-150						
AM27C128-200						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C128

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C128 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C128. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 $\mu\text{W/cm}^2$ for 15 to 20 minutes. The Am27C128 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C128 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C128 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C128

Upon delivery or after each erasure the Am27C128 has all 131,072 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C128 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, $\overline{\text{CE}}$ is at V_{IL}, and $\overline{\text{PGM}}$ is at V_I.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 µs programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C128. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = VPP = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C128 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C128 may be common. A TTL low-level program pulse applied to an Am27C128 \overline{PGM} input with $V_{PP}=12.75$ V \pm 0.25 V and

CE Low will program that Am27C128. A high-level CE input inhibits the other Am27C128 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\text{OE}}$ and $\overline{\text{CE}}$ at V_{IL} , $\overline{\text{PGM}}$ at V_{IH} , and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ambient temperature range that is required when programming the Am27C128.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C128. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V $_{\rm IL}$ to V $_{\rm IH}$. All other address lines must be held at V $_{\rm IL}$ during auto select mode.

Byte 0 ($Ao = V_{IL}$) represents the manufacturer code, and byte 1 ($Ao = V_{IH}$), the device code. For the Am27C128, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc—toe.

Standby Mode

The Am27C128 has a CMOS standby mode which reduces the maximum VCC current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at VCC \pm 0.3 V. The Am27C128 also has a TTL-standby mode which reduces the maximum VCC current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V $_{IH}$. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1-µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7-µF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode		CE	ŌĒ	PGM	A0	A9	V _{PP}	Outputs
Read		VIL	VIL	Х	х	Х	Vcc	Dout
Output Disable		Х	VIH	Х	Х	Х	Vcc	Hi-Z
Standby (TTL)		ViH	X	Х	Х	Х	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	Х	X.	Х	Х	Vcc	Hi-Z
Program		VIL	Х	VIL	Х	Х	VPP	Din
Program Verify		VIL	VIL	ViH	Х	Х	VPP	Dout
Program Inhibit		ViH	Х	X	Х	Х	Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	х	VIL	VH	Vcc	01H
(Device Code	VIL	VIL	Х	ViH	VH	Vcc	16H

Notes:

- 1. $VH = 12.0 V \pm 0.5 V$
- 2. X = Either VIH or VIL
- 3. $A1-A8 = A10-A12 = V_{IL}$, A13 = X
- 4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

ABOOLO I E MAXIMOM III TII TII TII TII TII TII TII TII TI
Storage Temperature OTP Products -65°C to +125°C All Other Products -65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect To V_{SS} All pins except A9,V _{PP} ,V _{CC} 0.6 V to V _{CC} + 0.5 \
A9 and V _{PP} 0.6 V to +13.5 \
Vcc0.6 V to +7.0 \

Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (T _C)55°C to +125°C
Military (M) Devices
Case Temperature (Tc) –55°C to +125°C
Supply Read Voltages
V _{CC} for Am27C128-XX5 +4.75 V to +5.25 V
V _{CC} for Am27C128-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the func- tionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	loн = -400 μA		2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA			0.45	V
VIH	Input HIGH Voltage			2.0	Vcc + 0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
lLı .	Input Load Current	VIN = 0 V to +VCC			1.0	μA
llo	Output Leakage Current	Vout = 0 V to +Vcc	C/I Devices		1.0	_
	Osipat Ecanage Content	VOOT = 0 V 10 + VCC		5.0	μΑ	
lcc ₁	Vcc Active Current (Note 3)	CE = VIL, f = 10 MHz, lout = 0 mA			25	mA
lcc2	Vcc TTL Standby Current	CE = VIH			1.0	mA
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		····	100	<u>μ</u> Α
IPP1	VPP Current During Read	CE = OE = VIL, VPP =		100	μΑ	

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27C128 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

11420C-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

11420C-6

CAPACITANCE

Parameter		Test		CLV032		CDV028		PL 032		PD 028	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	7	10	8	10	6	10	5	10	pF
Соит	Output Capacitance	Vout = 0	8	12	11	14	8	12	8	10	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	meter				Am27C128										
Sym JEDEC	bols Standard	Parameter Description	Test Conditions		-45	-55	-70	-90	-120	-150	-200	-255 -250	Unit		
tavov	tacc	Address to	CE = OE =	Min		-	_	_	_	_					
1111		Output Delay	VIL	Мах	45	55	70	90	120	150	200	250	ns		
tELQV	tce	Chip Enable to	OE = VIL	Min	_	-	_		_						
l .c.c.v	.02	Output Delay		Max	45	55	70	90	120	150	200	250	ns		
tgLQV	toe	Output Enable to	CE = VIL	Min		-	_	_	_						
		Output Delay		Max	30	35	40	40	50	50	50	50	ns		
tehoz	tDF	Chip Enable HIGH or		Min	_				_	_					
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	25	30	30	30	30	ns		
taxqx	tон	Output Hold from		Min	0	0	0	0	0	0	0	0			
JAMAN	.5//	Addresses, CE, or OE, whichever occurred first		Мах	-	_	-	-	_	_	_	_	ns		

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C128 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. For the -45, -55 and -70:

Output Load: 1 TTL gate and CL = 30 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V

Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

C_L = 100 pF including jig capacitance (30 pF for -45, -55, -70)

11420C-7

SWITCHING TEST WAVEFORM

3 V

1.5 V

Test Points

1.5 V

Output

11420C-8

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -45, -55, and -70.

KEY TO SWITCHING TEST WAVEFORMS

KS000010

SWITCHING WAVEFORMS

- 1. \overline{OE} may be delayed up to tacc toe after the falling edge of the addresses without impact on tacc.
- 2. tof is specified from OE or CE, whichever occurs first.

Am27C256

256 Kilobit (32,768 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 55 ns
- Low power consumption
 - 20 μA typical CMOS standby current
- **■** JEDEC-approved pinout
- Single +5 V power supply
- ±10% power supply tolerance available
- 100% FlashriteTM programming
 - Typical programming time of 4 seconds

- Latch-up protected to 100 mA from −1 V to Vcc + 1 V
- High noise immunity
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin TSOP, LCC and LCC packages
- DESC SMD No. 5962-86063

GENERAL DESCRIPTION

The Am27C256 is a 256K-bit ultraviolet erasable programmable read-only memory. It is organized as 32K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP, and PLCC packages.

Typically, any byte can be accessed in less than 55 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C256 offers separate Output Enable ($\overline{\text{OE}}$) and Chip Enable ($\overline{\text{CE}}$)

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C256 supports AMD's Flashrite TM programming algorithm (100 μ s pulses) resulting in typical programming time of 4 seconds.

BLOCK DIAGRAM

Publication# 08007 Rev. G Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C256							
Ordering Part No: Vcc ± 5%							-255	
Vcc ± 10%	-55	-70	-90	-120	-150	-200	-250	
Max Access Time (ns)	55	70	90	120	150	200	250	
CE (E) Access Time (ns)	55	70	90	120	150	200	250	
OE (G) Access Time (ns)	35	40	40	50	65	75	100	

CONNECTION DIAGRAMS

Top View

- 1. JEDEC nomenclature is in parentheses.
- 2. Don't use (DU) for PLCC.

^{*}Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0-A14

Address Inputs

CE (E)

Chip Enable

DQ0-DQ7

Data Inputs/Outputs

OE (G) Vcc

Output Enable InputV_{CC} Supply Voltage

 V_{PP}

= Program Supply Voltage

 V_{SS}

= Ground

LOGIC SYMBOL

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations									
AM27C256-55	DC, DCB, DI, DIB								
AM27C256-70	LC, LCB, LI, LIB								
AM27C256-90	DC, DCB, DI,								
AM27C256-120	DIB, DE, DEB,								
AM27C256-150	LC. LCB. LI.								
AM27C256-200	LIB, LE, LEB								
AM27C256-255	LID, LL, LLD								

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27C256-55					
AM27C256-70					
AM27C256-90	10 00 50				
AM27C256-120	JC, PC, EC,				
AM27C256-150	JI, PI, EI				
AM27C256-200	100				
AM27C256-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27C256-70	,				
AM27C256-90					
AM27C256-120	OVA OUA				
AM27C256-150	/BXA, /BUA				
AM27C256-200					
AM27C256-250					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION Erasing the Am27C256

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C256 to an ultraviolet light source. A dosage of 15 W sec/cm² is required to completely erase an Am27C256. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 $\mu\text{W/cm}^2$ for 15 to 20 minutes. The Am27C256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C256 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C256

Upon delivery or after each erasure the Am27C256 has all 262,144 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C256 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, \overline{OE} is at V_{II}, and \overline{CE} is at V_{II}

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μs programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C256. This part of the algorithm is done at $V_{CC}=6.25 \, V$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{CC}=V_{PP}=5.25 \, V$.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C256 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C256 may be common. A TTL low-level program pulse applied to an Am27C256 \overline{CE} input with $V_{PP}=12.75~V\pm0.25~V$, and

OE High will program that Am27C256. A high-level OE input inhibits the other Am27C256 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} at V_{IL} , \overline{CE} at V_{IH} , and V_{PP} between 12.5 V to 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ambient temperature range that is required when programming the Am27C256.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address like A9 of the Am27C256. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V $_{\rm IL}$ to V $_{\rm IH}$. All other address lines must be held at V $_{\rm IL}$ during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C256, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable $(\overline{\text{CE}})$ is the power control and should be used for device selection. Output Enable $(\overline{\text{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from $\overline{\text{CE}}$ to output (t_CE). Data is available at the outputs toe after the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been LOW and addresses have been stable for at least t_{ACC} –t_{OE}.

Standby Mode

The Am27C256 has a CMOS standby mode which reduces the maximum VCC current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at VCC \pm 0.3 V. The Am27C256 also has a TTL-standby mode which reduces the maximum VCC current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	A0	A 9	V_{PP}	Outputs
Read		VIL	VIL	Х	Х	Vcc	Dout
Output Disable		Х	ViH ·	х	Х	Vcc	- Hi-Z
Standby (TTL)		ViH	Х	х	Х	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	×	х	х	Vcc	Hi-Z
Program		VIL	ViH	Х	Х	V_{PP}	DIN
Program Verify		ViH	VIL	Х	Х	V_{PP}	Douţ
Program Inhibit		ViH	ViH	х	х	V_{PP}	Hi-Z
Auto Select	Manufacturer Code	VIL	VIL	VIL	Vн	Vcc	01H
(Note 3)	Device Code	VIL	VIL	ViH	VH	Vcc	10H

Notes:

- 1. $V_H = 12.0 V \pm 0.5 V$
- 2. X = Either VIH or VII
- 3. $A1 A8 = A10 A14 = V_{IL}$
- 4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products -65°C to +125°C All Other Products -65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect To V _{SS} All pins except A9,V _{PP} ,V _{CC}
(Note 1)0.6 V to Vcc + 0.5 V
A9 and V _{PP} (Note 2)0.6 V to +13.5 V
Vcc0.6 V to +7.0 V

Notes:

- 1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot $V_{\rm SS}$ to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V_{\rm CC}$ + 0.5 V which may overshoot to $V_{\rm CC}$ + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

tionality of the device is guaranteed.

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (Tc)55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages Vcc for Am27C256-XX5 +4.75 V to +5.25 V
V _{CC} for Am27C256-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the func

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	IoH = -400 μA		2.4		٧
Vol	Output LOW Voltage	loL = 2.1 mA			0.45	٧
ViH	Input HIGH Voltage			2.0	Vcc + 0.5	٧
VIL	Input LOW Voltage			-0.5	+0.8	٧
ILI	Input Load Current	VIN = 0 V to +VCC		1.0	μΑ	
lLO .	Output Leakage Current	Vout = 0 V to +Vcc	C/I Devices		1.0	μА
			E/M Devices		5.0	μ., .
Icc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 10 MHz, lout = 0 mA				mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA	
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μΑ
IPP1	VPP Current During Read	CE = OE = VIL, VPP = VCC			100	μA

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27C256 must not be removed from (or inserted into) a socket when Vcc or Vpp is applied.
- 3. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

08007G-6

Figure 2. Typical Supply Current vs. Temperature $V_{CC} = 5.5 \text{ V}, f = 10 \text{ MHz}$

08007G-7

CAPACITANCE

Parameter	Parameter	Test	CLV	032	CDV	/028	PL	032	PD	028	TS	032	
Symbol	Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
Cin	Input Capacitance	VIN = 0	11	14	8	12	8	12	6	10	10	12	pF
Cout	Output Capacitance	Vout = 0	10	14	8	12	8	12	8	10	12	- 14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	ameter mbols						Α	m27C2	56			
JEDEC	Standard	Parameter Description	Test Conditions		-55	-70	-90	-120	-150	-200	-255 -250	Unit
tavqv	tacc	Address to	CE = OE =	Min	-	_	_		_	-	_	
		Output Delay	VIL	Max	55	70	90	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	_	_	_	_	_	_	_	
		Output Delay		Max	55	70	90	120	150	200	250	ns
tglav	toe	Output Enable to	CE = VIL	Min	_	_	_	_	_	_	_	
		Output Delay		Max	35	40	40	50	50	50	50	ns
tehaz,	tDF	Chip Enable HIGH or		Min		_	_	_	_	_	_	
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	30	30	30	30	ns
taxqx	tон	Output Hold from		Min	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	_	-	-	_	-	-	-	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C256 must not be removed from (or inserted into) a socket or board when V_{PP} or V_{CC} is applied.
- 4. For the -55 and -70:

Output Load: 1 TTL gate and $C_L = 30 pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V

Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and $C_L = 100 pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

C_L = 100 pF including jig capacitance (30 pF for -55, -70)

08007G-8

SWITCHING TEST WAVEFORM

3 V

1.5 V

Test Points

1.5 V

Output

Output

08007G-9

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -55 and -70.

KEY TO SWITCHING TEST WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	Don't Care, Any Change Permitted	Changing State Unknown
>>	Does Not Apply	Center Line is High Impedence "Off" State

KS000010

SWITCHING WAVEFORMS

- 1. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the falling edge of the addresses without impact on t_{ACC}.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

anced

Am27C512

512 Kilobit (65,536 x 8-Bit) CMOS EPROM

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 70 ns
- Low power consumption
 - 20 μA typical CMOS standby current
- JEDEC-approved pinout
- Single +5 V power supply
- **■** ±10% power supply tolerance available
- 100% FlashriteTM programming
 - Typical programming time of 8 seconds

- Latch-up protected to 100 mA from −1 V to Vcc + 1 V
- High noise immunity
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin TSOP, LCC and PLCC packages
- DESC SMD No. 5962-87648

GENERAL DESCRIPTION

The Am27C512 is a 512 K-bit ultraviolet erasable programmable read-only memory. It is organized as 64K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP and PLCC packages.

Typically, any byte can be accessed in less than 70 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C512 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE})

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C512 supports AMD's Flashrite™ programming algorithm (100 µs pulses) resulting in a typical programming time of 8 seconds.

BLOCK DIAGRAM

Publication# 08140 Rev. G Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.		Am27C512					
Ordering Part No: Vcc ± 5%	-75			×		-255	
Vcc ± 10%		-90	-120	-150	-200	-250	
Max Access Time (ns)	70	90	120	150	200	250	
CE (E) Access Time (ns)	70	90	120	150	200	250	
OE (G) Access Time (ns)	40	40	50	50	75	100	

CONNECTION DIAGRAMS

Top View

PLCC/LCC

Notes:

- 1. JEDEC nomenclature is in parentheses.
- 2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A15

Address Inputs

CE (E)

Chip Enable Input

DQ0-DQ7

DU

Data Inputs/Outputs = No External Connection

(Do Not Use)

NC

= No Internal Connection

 \overline{OE} (\overline{G})/V_{PP} =

Output Enable Input/

Vcc

Program Supply Voltage

= Vcc Supply Voltage

Vss

Ground

LOGIC SYMBOL

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27C512-75	DC, DCB, LC, LCB					
AM27C512-90						
AM27C512-120	DC, DCB, DI, DIB,					
AM27C512-150	DE, DEB, LC, LCB,					
AM27C512-200	LI, LIB, LE, LEB					
AM27C512-250	21, 210, 22, 220					
AM27C512-255						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27C512-90					
AM27C512-120					
AM27C512-150	PC, JC, EC Pl. Jl. El				
AM27C512-200	PI, JI, EI				
AM27C512-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27C512-90						
AM27C512-120						
AM27C512-150	/BXA, /BUA					
AM27C512-200						
AM27C512-250						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C512

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C512 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C512. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 $\mu\text{W/cm²}$ for 15 to 20 minutes. The Am27C512 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C512 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C512 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C512

Upon delivery or after each erasure the Am27C512 has all 524,288 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C512 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the \overline{OE}/V_{PP} and \overline{CE} is at V_{\parallel} .

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C512. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C512 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C512 may be common. A TTL low-level program pulse applied to an Am27C512 \overline{CE} input and $\overline{OE}/V_{PP}=12.75$ V \pm 0.25 V, will program that Am27C512. A high-level \overline{CE} input

inhibits the other Am27C512 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\text{CE}}$ at V_{IL} and $\overline{\text{OE}}/V_{PP}$ at V_{IL} . Data should be verified t_{DV} after the falling edge of $\overline{\text{CE}}$.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ambient temperature range that is required when programming the Am27C512.

To activate this mode, the programming equipment must force 12.0 \pm 0.5 V on address line A9 of the Am27C512. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 ($Ao = V_{IL}$) represents the manufacturer code, and byte 1 ($Ao = V_{IH}$), the device code. For the Am27C512, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable $(\overline{\text{CE}})$ is the power control and should be used for device selection. Output Enable $(\overline{\text{OE}}/V_{PP})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from $\overline{\text{CE}}$ to output (t_{CE}). Data is available at the outputs toe after the falling edge of $\overline{\text{OE}}/V_{PP}$, assuming that $\overline{\text{CE}}$ has been LOW and addresses have been stable for at least t_{ACC}—t_{OE}.

Standby Mode

The Am27C512 has a CMOS standby mode which reduces the maximum VCC current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at VCC \pm 0.3 V. The Am27C512 also has a TTL-standby mode which reduces the maximum VCC current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V $_{IH}$. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE}/V_{PP} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1-µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7-µF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode		CE OE/Vpp		A0	А9	Outputs	
Read		VIL	VIL	Х	Х	Dout	
Output Disable		Х	ViH	Х	Х	Hi-Z	
Standby (TTL)		ViH	X	x x		Hi-Z	
Standby (CMOS)		Vcc + 0.3 V	Х	Х	Х	Hi-Z	
Program		VIL	Vpp	X X		DIN	
Program Verify	Program Verify		VIL	Х	X	Dout	
Program Inhibit		ViH	Vpp	Х	Х	Hi-Z	
Auto Select (Note 3)	Manufacturer Code	Vil	VIL	, VIL	VH	01H	
	Device Code	VIL	VIL	VIH ·	VH	91H	

Notes:

- 1. $V_H = 12.0 \pm 0.5 V$
- 2. X = Either Vih or Vil
- 3. $A1-A8 = A10-A15 = V_{IL}$
- 4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products65°C to +125°C
All Other Products65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect To V _{SS} All pins except A9,
V _{PP} ,V _{CC} 0.6 V to V _{CC} + 0.5 V
A9 and V_{PP} 0.6 V to +13.5 V
Vcc0.6 V to +7.0 V

Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

tionality of the device is guaranteed.

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (Tc)55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages Vcc for Am27C512-XX5 +4.75 V to +5.25 V
Vcc for Am27C512-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the func-

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit		
Voн	Output HIGH Voltage	IOH = -400 μA	2.4		V		
Vol	Output LOW Voltage	IOL = 2.1 mA			0.45	V	
ViH	Input HIGH Voltage			2.0	Vcc + 0.5	V	
VIL	Input LOW Voltage		-0.5	+0.8	V		
lu	Input Load Current	VIN = 0 V to +Vcc		1.0	μΑ		
			C/I Devices		1.0		
llo	Output Leakage Current VouT = 0 V to +Vcc		E/M Devices		5.0	μА	
lcc ₁	Vcc Active Current (Note 3)	CE = V _{IL} , f = 10 MHz,		30	mA		
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA		
Іссз	Vcc CMOS Standby Current	<u>CE</u> = Vcc ± 0.3 V		100	μΑ		

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27C512 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

08140G-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

08140G-6

CAPACITANCE

Parameter	l de la companya de	Test Conditions	CLV032		CDV028		PL 032		PD 028		
Symbol	Parameter Description		Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	9	12	10	12	9	12	6	10	pF
Соит	Output Capacitance	Vout = 0	10	12	10	13	9	12	6	10	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, 4 and 5) (for APL Products, Group A, Subgroups 9,10, and 11 are tested unless otherwise noted)

Parameter Symbols				Am27C512							
JEDEC	Standard	Parameter Description	Test Conditions		-75	-90	-120	-150	-200	-255 -250	Unit
tavqv	tacc	Address to	CE = OE =	Min	_	-	-	-		_	l
		Output Delay	VIL	Max	70	90	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	_	_	_	-	_	_	
		Output Delay	•	Max	70	90	120	150	200	250	ns
tGLQV	tGLQV tOE Output Enable to		CE = VIL	Min	-	_	_	_	_	_	
		Output Delay		Max	40	40	50	50	75	75	ns
tehqz	tDF	Chip Enable HIGH or		Min		_		_	_	_	
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	30	30	30	30	30	ns
taxox	tон	Output Hold from		Min	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first	,	Max	-	-	_	-	-	-	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C512 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

5. For the Am27C512-75:

Output Load: 1 TTL gate and $C_L = 30 \text{ pF}$ Input Rise and Fall Times: 20 ns

Input Pulse Levels: 0 V to 3 V

Timing Measurement Reference Level: 1.5 V for inputs and outputs

SWITCHING TEST CIRCUIT

C_L = 100 pF including jig capacitance (30 pF for -75)

08140G-7

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

08140G-8

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -75 device.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} /VPP may be delayed up to tACC toE after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Advanced Micro Devices

Am27C010

1 Megabit (131,072 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 90 ns
- Low power consumption
 - 20 µA typical CMOS standby current
- **■** JEDEC-approved pinout
- Single +5 V power supply
- ±10% power supply tolerance available
- 100% FlashriteTM programming
 - Typical programming time of 16 seconds

- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions
- Compact 32-pin DIP, PDIP, TSOP, LCC and PLCC packages
- DESC SMD No. 5962-89614

GENERAL DESCRIPTION

The Am27C010 is a 1 Megabit ultraviolet erasable programmable read-only memory. It is organized as 128K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP, and PLCC packages.

Typically, any byte can be accessed in less than 90 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C010 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE})

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C010 supports AMD's Flashrite™ programming algorithm (100 µs pulses) resulting in a typical programming time of 16 seconds.

BLOCK DIAGRAM

Publication# 10205 Rev. D Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.		Am27C010								
Ordering Part No: Vcc ± 5%	-95	-105			*.	-255				
Vcc ± 10%	-90		-120	-150	-200					
Max Access Time (ns)	90	100	120	150	200	250				
CE (E) Access Time (ns)	90	100	120	150	200	250				
OE (G) Access Time (ns)	40	50	50	65	75	100				

CONNECTION DIAGRAMS

Top View

DIP

PLCC/LCC

' Notes:

- 1. JEDEC nomenclature is in parentheses.
- 2. The 32-pin DIP to 32-Pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0-A16

Address Inputs

CE (E)

Chip Enable

 \overline{OE} (\overline{G})

Data Inputs/Outputs
Output Enable Input

PGM (P)

Program Enable Input

Program Supply Voltage

Vcc

V_{CC} Supply Voltage

 V_{PP}

= Ground

LOGIC SYMBOL

ORDERING INFORMATION EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Con	Valid Combinations							
AM27C010-90	DO DOD DI DID							
- AM27C010-95	DC, DCB, DI, DIB, LC, LCB, LI, LIB							
AM27C010-105	LO, LOD, LI, LID							
AM27C010-120								
AM27C010-150	DC, DCB, DE, DEB,							
AM27C010-200	DI, DIB, LC, LCB,							
AM27C010-255	LI, LIB, LE, LEB							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27C010-105					
AM27C010-120	DO 10 50				
AM27C010-150	PC, JC, EC,				
AM27C010-200	PI, JI, EI				
AM27C010-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
- AM27C010-120					
AM27C010-150					
AM27C010-200	/BXA, /BUA				
AM27C010-250					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C010

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C010 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C010. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 $\mu\text{W/cm}^2\text{for 15 to 20 minutes}$. The Am27C010 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C010 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C010 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C010

Upon delivery or after each erasure the Am27C010 has all 1,048,576 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C010 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, $\overline{\text{CE}}$ and $\overline{\text{PGM}}$ are at V_{IL}, and $\overline{\text{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μs programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C010. This part of the algorithm is done at $V_{CC}=6.25\,V$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{CC}=V_{PP}=5.25\,V$.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C010 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C010 may be common. A TTL low-level program pulse applied to an Am27C010 \overline{CE} input and $V_{PP} = 12.75 \text{ V} \pm 0.25 \text{ V}$, \overline{PGM}

Low and $\overline{\text{OE}}$ High will program that Am27C010. A high-level $\overline{\text{CE}}$ input inhibits the other Am27C010 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\text{OE}}$ and $\overline{\text{CE}}$ at V_{IL} , $\overline{\text{PGM}}$ at V_{IH} , and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ambient temperature range that is required when programming the Am27C010.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C010. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V $_{\rm IL}$ to V $_{\rm IH}$. All other address lines must be held at V $_{\rm IL}$ during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C010, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) . Data is available at the outputs t_{OE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} — t_{OE} .

Standby Mode

The Am27C010 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27C010 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	PGM	A0	A9	V _{PP}	Outputs
Read		VIL	VIL	х	х	х	Vcc	Douт
Output Disable		Х	ViH	х	Х	Х	Vcc	Hi-Z
Standby (TTL)		ViH	х	Х	Х	X	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	х	Х	Х	X	Vcc	Hi-Z
Program		VIL	ViH	VIL	X	Х	Vpp	Din
Program Verify		VIL	VIL	ViH	Х	X	VPP	Dout
Program Inhibit		ViH	х	х	Х	Х	Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	х	VIL	Vн	Vcc	01H
	Device Code	VIL	VIL	х	ViH .	Vн	Vcc	0E

Notes:

- 1. $V_H = 12.0 V \pm 0.5 V$
- 2. X = Either VIH or VIL
- 3. $A1-A8 = A10-A16 = V_{IL}$
- 4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied –55°C to +125°C
Voltage with Respect To Vss All pins except A9,VPP,VCC . -0.6 V to Vcc + 0.5 V
A9 and V _{PP} 0.6 V to +13.5 V
V 0.6 V to 17.0 V

Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

tionality of the device is guaranteed.

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (Tc)55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages Vcc for Am27C010-XX5 +4.75 V to +5.25 V
V _{CC} for Am27C010-XX0 +4.50 V to +5.50 V

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	IOH = -400 μA		2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	٧	
Vн	Input HIGH Voltage		2.0	Vcc + 0.5	V	
VIL	Input LOW Voltage		-0.5	+0.8	٧	
I LI	Input Load Current	VIN = 0 V to VCC		1.0	μА	
llo	Output Leakage Current	Vout = 0 V to Vcc			10	μА
lcc1	Vcc Active Current	CE = V _{IL} , f = 5 MHz,	C/I Devices		30	
	(Note 3)	IOUT = 0 mA	E/M Devices		60	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA	
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		100	μА	
IPP1	VPP Current During Read	CE = OE = VIL, VPP = VCC		100	μА	

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27C010 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
- 3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

10205D-6

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

10205D-7

CAPACITANCE

Parameter Symbol	Parameter Description		CLV032		CDV032		PL 032		PD 032		TS 032		
			Тур	Max	Unit								
Cin	Input Capacitance	VIN = 0	. 9	12	9	12	8	12	8	12	10	12	рF
Соит	Output Capacitance	Vout = 0	11	14	13	15	11	14	11	14	12	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter Symbols			,	Am27C010							
JEDEC	Standard	Parameter Description	Test Conditions		-95 -90	-105	-120	-150	-200	-255 -250	Unit
tavqv	tacc	Address to	CE = OE =	Min	ı	_	-	_	1	-	
		Output Delay	VIL	Max	90	100	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	_	_	_	_	-	-	
		Output Delay		Max	90	100	120	150	200	250	ns
tgLQV	toe	Output Enable to	CE = VIL	Min	-	_	_	_	ı	1	
		Output Delay		Max	40	50	50	65	75	75	ns
tehqz	tDF	Chip Enable HIGH or		Min	1		_	_	-	-	
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Мах	25	25	35	35	40	40	ns
taxqx	tон	Output Hold from		Min	0	0	0	0	0	0	
	-	Addresses, CE, or OE, whichever occurred first		Max	-	_	-	-	-	1	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C010 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
>>	Does Not Apply	Center Line is High Impedance "Off" State

KS000010

SWITCHING WAVEFORM

- 1. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the falling edge of the addresses without impact on t_{ACC}.
- 2. top is specified from \overline{OE} or \overline{CE} , whichever occurs first.

PROGRAMMING FLOW CHART

Figure 1. Flashrite Programming Flow Chart

DC PROGRAMMING CHARACTERISTICS ($T_A = +25^{\circ}C \pm 5^{\circ}C$) (Notes 1, 2 and 3)

D				T	
Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
lu	Input Current (All Inputs)	VIN = VIL or VIH		10.0	μА
VIL	Input LOW Level (All Inputs)		-0.3	0.8	V
V _{IH}	Input HIGH Level		3.0	Vcc + 0.5	V
Vol	Output LOW Voltage During Verify	lo _L = 2.1 mA		0.45	V
VoH	Output HIGH Voltage During Verify	lo _H = -400 μA	2.4		٧
V _H	A ₉ Auto Select Voltage		11.5	12.5	V
lcc	Vcc Supply Current (Program & Verify)			50	mA
lpp	V _{PP} Supply Current (Program)	CE = VIL, OE = VIH		30	mA
Vcc	Flashrite Supply Voltage		6.00	6.50	V
V_{PP}	Flashrite Programming Voltage		12.5	13.0	V

SWITCHING PROGRAMMING CHARACTERISTICS ($T_A = +25$ °C ± 5 °C) (Notes 1, 2 and 3)

	Parameter Symbols				
JEDEC	Standard	Parameter Description	Min	Max	Unit
tavel	tas	Address Setup Time	2		μs
tozgl	toes	OE Setup Time	2		μs
tovel	tos	Data Setup Time	2	2	
tghax	tah	Address Hold Time	0		μs
tehox	tон	Data Hold Time	2		μs
tанаz	t _{DFP}	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	V _{PP} Setup Time	2		μs
teleh1	tpw	PGM Initial Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time	2		μs
telpl	tces	CE Setup Time	2		μs
tgLQV	toe	Data Valid from OE 150		ns	

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- When programming the Am27LV020, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

INTERACTIVE AND FLASHRITE PROGRAMMING ALGORITHM WAVEFORM (Notes 1 and 2)

Notes:

17342A-10

- 1. The input timing reference level is 0.8 V for VIL and 3 V for VIH.
- 2. toE and tDFP are characteristics of the device, but must be accommodated by the programmer.

5

ExpressROM™ MEMORIES

Section 5	ExpressROM	TM Memories	5-1
	An Introductio	n to ExpressROM™ Memories	5-3
	Am27X64	64K (8,192 x 8-Bit) CMOS ExpressROM™ Device	
	Am27X128	128K (16,384 x 8-Bit) CMOS ExpressROM™ Device 5	5-17
	Am27X256	256K (32,768 x 8-Bit) CMOS ExpressROM™ Device 5	5-26
	Am27X512	512K (65,536 x 8-Bit) CMOS ExpressROM™ Device 5	
	Am27X010	1 Menabit (131 072 x 8-Bit) CMOS	
		ExpressROM [™] Device	5-45
	Am27X1024	1 Megabit (65.536 x 16-Bit) CMOS	
		ExpressROM [™] Device	5-55
	Am27X020	2 Megabit (262,144 x 8-Bit) CMOS	
	407)/00/40	ExpressRÒM™ Device	o-64
	Am27X2048	2 Megabit (131,072 x 16-Bit) CMOS ExpressROM™ Device	- 70
	Am27X040)-/J
	A11127 AU40	4 Megabit (524,288 x 8-Bit) CMOS ExpressROM TM Device	5-82
	Am27X400		
	711112777700	4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) ROM Compatible CMOS ExpressROM™ Device	5-91
	Am27X4096	4 Megabit (262 144 x 16-Bit) CMOS	
		ExpressROM™ Device	100
	Am27X080	8 Megabit (1,048,576 x 8-Bit) CMOS	
		ExpressRÒM™ Device 5-	109
	Am27X800	8 Megabit (1,048,576 x 8-Bit/524,288 x 16-Bit) ROM	
		Compatible CMOS ExpressROM TM Device 5-	118

AN INTRODUCTION TO ExpressROMTM MEMORIES

ExpressROM memories are an exciting product family created by Advanced Micro Devices to offer the system manufacturer lower cost in the manufacturing process. ExpressROM devices are delivered pre-programmed with your stable code in a low cost plastic package and are 100% compatible with the EPROMs they replace. An ExpressROM device is manufactured with the same process as AMD's standard U.V. EPROM equivalent, with the topside passivation layer for plastic encapsulation. Since a standard EPROM die is used, you are assured that the ExpressROM family is identical in architecture, density, and pinout to both AMD's current and future generations of high performance CMOS EPROMs.

ExpressROM devices are inventoried unprogrammed. Upon verification of your code, every device is rigorously tested under both AC and DC operating conditions prior to shipment. Also, because ExpressROM memories are shipped board-ready with factory guaranteed quality, your ship-to-stock or Just-In-Time programs can be easily implemented. At Advanced Micro Devices, we ship them the way you want them—ready for your system. And there are none of the delays, costs or risks normally associated with custom ROMs.

Table 5-1 Non-Volatile Memory Alternatives

	UV EPROM	ОТР	ExpressROM Device	ROM
Leadtime	Manufacturer's Leadtime	Manufacturer's Leadtime	2 Weeks	6-10 Weeks
Set-up Charge	No	No	No	Yes
Minimum Quantity	0	0	5K	15–20K
Fully Tested Custom Pattern	No	No	Yes	Yes
User Programming Required	Yes	Yes	No	No
Auto Insertion	No	Yes	Yes	Yes
Flexibility	Reprogrammable	Cannot Reprogram	Fixed 2 Weeks Prior to Use	Fixed 6–10 Weeks Prior to Use

Plastic packaging inherently provides a cost savings over standard EPROMs packaged in expensive windowed ceramic DIPs. However, component price is only a small part of your true in-system cost. ExpressROM devices allow you to eliminate or reduce costs in several other areas: programming, testing, labeling and production. Since ExpressROM memories are delivered with your code, you will reap savings by eliminating programming costs and associated yield losses. Incoming inspection may often be eliminated since your ExpressROM devices have been thoroughly tested and are guaranteed to operate to full specifications with your code! Additional in-house cost savings can be attained by using automatic insertion equipment in lieu of manual placement into sockets.

ExpressROM devices were designed to provide a low cost alternative for EPROM users without the liabilities of other non-volatile memory alternatives. Although ROMs have a

lower component cost, they are economically feasible only at high volume and have the risks of long leadtimes and limited manufacturing flexibility. While OTP EPROMs offer the systems manufacturer the ability to respond to varying codes during production, they force the user to incur additional and hidden costs.

ExpressROM Memories Lower Cost

ExpressROM memories eliminate or reduce costs in several areas. These include programming, testing, marking and labeling. Standard programming of blank devices may reveal other hidden expenses such as costs associated with possible programming yield losses, capacity constraints, labels and other supplies, rework, inventory and associated queue time, handling, maintenance, labor and personnel, transit costs, inspections, floor space and other overhead. AMD's ExpressROM memories add value by eliminating or reducing all these costs in your system manufacturing environment.

Our mission at AMD is to deliver you the services and products you demand to build the cost competitive systems you need to win in your markets. The ExpressROM memory provides this opportunity. As one of the world's five largest IC manufacturers and the first to market with a 1 Mbit EPROM, we appreciate the value of efficient manufacturing. Compressing time-to-market cycles, improving yields and providing high levels of quality are invaluable strategies for today's manufacturer. At Advanced Micro Devices we are proud to offer another tool to give our customers this strategic advantage, the ExpressROM Memory: the ROM without the wait!

ExpressROM Memory Flow

AMD's OTP EPROM devices are taken from inventory in our off-shore testing facility and processed as shown.

ORDERING ExpressROM DEVICES

The following procedure outlines the method for ordering an ExpressROM device. For more information, contact your local AMD sales representative.

1) Send in the Code

Please have your field sales representative provide you with the latest version of the ExpressROM Code Approval Form (see Page 5-7). This form will provide all the necessary information required for processing your order. After receiving this form, fill out the Code Transmittal and Ordering Information sections. Then send the form with two (2) master copies of each code being ordered to your field sales representative. To minimize the verification turn-around process, supply two master copies of each code using standard EPROMs identical in architecture and density as the ExpressROM device being ordered. Two master copies per code are required in order to guarantee proper code transmission. Please be sure the checksum is clearly identified on each master EPROM.

2) AMD Checks the Code and Generates a Verification EPROM

We check that both EPROMs contain the same code to make certain there was not a mix-up in shipping your codes to the factory as well as ensuring that the integrity of your code has been preserved. After confirming this, a unique 5-digit code designation is assigned. The AMD part number is formed by adding the 5-digit code designation as a suffix to the ExpressROM Device number. See below:

AMD then logs in your code with the 5-digit code designation and generates a verification EPROM. The verification EPROM along with one of your master EPROMs and the ExpressROM Code Approval Form should be back in your hand for final approval within 2-3 days. The other master EPROM remains at AMD for our records. Please note: the verification EPROM is simply a means of transferring the code and is not necessarily indicative of the ExpressROM product being ordered.

3) Confirm the Copy and Place the Order

Once the verification EPROM is approved, sign the Approval Section of the ExpressROM Code Approval Form and return it to AMD with your purchase order. Upon receipt of the signed form and a purchase order, AMD enters the order and begins production. Logged codes are maintained for 60 days and then deleted if there is no purchase order placed.

TERMS AND CONDITIONS

You should be aware of the following when ordering ExpressROM devices.

- 1) AMD will maintain customer code confidentiality.
- 2) AMD will absorb all initial set-up costs.
- 3) All orders are subject to minimum quantities. The minimum quantity for initial orders is 5,000 pieces.
- 4) AMD may begin production 14 days in advance of the AMD scheduled ship date covered by a purchase order and requires 14 days minimum notification from the AMD scheduled ship date for code changes. The customer is liable for all work-in-process covered by the same purchase order.
- 5) No schedule changes may be made within 14 days of AMD scheduled ship date.
- 6) All unpackaged die product procured by the customer is for use exclusively in the customer's end products. Any other use of die product must be approved in writing by AMD.
- Code changes with Work-In-Process will require additional charges and may affect delivery schedules.
- 8) All other terms and conditions which normally apply to AMD's EPROMs (if any) also apply with AMD's ExpressROM memories.

ExpressROM™ Code Approval Form

CODE TRANSMITTAL AND ORDERING INFORMATION SECTION

Rev. 7 11/05/92

Please complete items 1 thru 9. To minimize the verification turn-around process, supply 2 master copies of

each code using EPROMs of the same architecture and density as the ExpressROMTM Device being ordered. Also, be sure the checksum is clearly identified on each master EPROM. CODE TRANSMITTAL SECTION _____ 2. Date: _____ 1. Company Name: _____ 3. Incoming Master's Part #: ______ 4. Master's Checksum: _____ **ORDERING INFORMATION SECTION** Please check the appropriate ExpressROM™ Memory data sheet for valid combinations and mark appropriate boxes below: 5. Part #: Am27X64
Am27X128
Am27X256 -90 □ -120 **-200** -150 -55 -55 <u>-90</u> ☐ -150 ☐ -200 -120 -90 -90 -90 -105 -120 -150 -150 ☐ Am27X512 ☐ Am27X010 **1** -120 -150 -150 -150 ☐ Am27X1024 ☐ Am27X020 -120 Ū -90 -150 -150 -150 -150 -120 -120 ☐ Am27X048 ☐ Am27X040 -120 -120 ☐ Am27X400 Q -255 ☐ Am27X4096 Q -255 -150 Plastic DIP
PLCC
TSOP Standard Pinout 6. Package and Temperature: ☐ Commercial (0°C to +70°C) ☐ Industrial (-40°C to +85°C) ☐ TSOP Reverse Pinout Other 7. AMD Standard Part Number: 8. Customer Ordering Part Number: 9. Please indicate the exact marking and complete the blank sections (11 characters per line including spaces, © = 2 spaces if required). AMD Logo ExpressROM™ **Date Code APPROVAL SECTION TERMS AND CONDITIONS** AMD will maintain customer code confidentiality. AMD will absorb all initial set-up costs.

AMD may begin production 14 days in advance of the AMD scheduled ship date covered by a purchase order and requires 14 days minimum notification from the AMD scheduled ship date for code changes. The customer is liable for all work-in-process covered by the same purchase order. No schedule changes may be made within 14 days of AMD scheduled ship date. All unpackaged die product procured by the customer is for use exclusively in the customer's end products. Any other use of die product must be approved in writing by AMD. All orders are subject to minimum quantities. Code changes with Work In Process will require additional charges and may affect delivery schedules. AMD Standard Part #: Am27X _____ Approved Checksum: _____ Customer Signature: Date: Name (Print):

Am27X64

Advanced Micro Devices

64 Kilobit (8,192 x 8-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 55 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X64 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 8,192 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X64 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

12084D-1

Publication# 12084 Rev. D Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No	Am27X64						
Ordering Part No: V _{CC} ±5%							-255
V _{CC} ±10%	-55	-70	-90	-120	-150	-200	
Max Access Time (ns)	55	70	90	120	150	200	250
CE (E) Access (ns)	55	70	90	120	150	200	250
OE (G) Access (ns)	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

1. JEDEC nomenclature is in parentheses.

12084D-3

PIN DESIGNATIONS

A0-A12 = Address Inputs CE (E) = Chip Enable Input DQ0-DQ7 = Data Inputs/Outputs

DU = No External Connection (Do Not Use) = No Internal Connection

OE (G) = Output Enable Input PGM (P) = Program Enable Input Vcc = Vcc Supply Voltage

 V_{PP} = Program Supply Voltage

Vss = Ground

NC

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combi	nations
AM27X64-55	
AM27X64-70	
AM27X64-90	
AM27X64-120	PC, JC, PI, JI
AM27X64-150	
AM27X64-200	
AM27X64-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from CE to output (tce). Data is available at the outputs to after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27X64 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when $\overline{\text{CE}}$ is at $V_{\text{CC}} \pm 0.3 \text{ V}$. The Am27X64 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTLstandby when CE is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum. a 0.1 µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7-μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	ŌĒ	PGM	V _{PP}	Outputs
Read	VIL	VIL	Х	Х	DOUT
Output Disable	Х	ViH	Х	Х	Hi-Z
Standby (TTL)	ViH	Х	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	х	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to Vss
All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc −0.6 V to +7.0 V

Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages Vcc for Am27X64-255 +4.75 V to +5.25 V
Vcc for all other valid +4.50 V to +5.50 V combinations

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = - 400 μA	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	٧
V _{IH}	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lıo	Output Leakage Current	Vout = 0 V to +Vcc		1.0	μА
lcc1	Vcc Active Current (Note 3)	CE = V _{IL} f = 10 MHz, lout = 0 mA		25	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
Іссз	Vcc CMOS Standby Current	CE = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X64 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V during transactions, the inputs may overshoot to −2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

12084D-5

12084D-6

CAPACITANCE

Parameter			PD			032	
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	5	10	10	12	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	8	10	11	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols			Am27X64									
JEDEC	Standard	Parameter Description	Test Conditions		-55	-70	-90	-120	-150	-200	-255	Unit
tavqv	trcc	Address to	CE = OE =	Min	_	_	-	-	_	-		
		Output Delay	VIL	Max	55	70	90	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	_	_	_	_	-	_	_	
		Output Delay		Max	55	70	90	120	150	200	250	ns
tglqv	toe	Output Enable to	CE = VIL	Min		-	-	_			-	
		Output Delay		Max	35	40	40	50	50	50	50	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	0	0	
tghaz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float	,	Мах	25	25	25	30	30	30	30	ns
taxqx	toн	Output Hold from		Min	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Мах	_	1	-	-	_	-	1	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X64 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. For the -55 and -70

Output Load: 1 TTL gate and $C_L = 30 pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V

Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions

Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

 C_L = 100 pF including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

3 V

1.5 V

Test Points

1.5 V

Output

12084D-8

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -55 and -70.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

- 1. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the falling edge of the addresses without impact on t_{ACC}.
- 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Advanced Micro Devices

Am27X128

128 Kilobit (16,384 x 8-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 55 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- **■** ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 µA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X128 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 16,384 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X128 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

12083D-1

Publication# 12083 Rev. D Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.			Am27X128					
Ordering Part No:								
Vcc ±5%							-255	
Vcc ±10%	-55	-70	-90	-120	-150	-200		
Max Access Time (ns)	55	70	90	120	150	200	250	
CE (E) Access (ns)	55	70	90	120	150	200	250	
OE (G) Access (ns)	35	40	40	50	65	75	100	

CONNECTION DIAGRAMS

Top View

Note:

1. JEDEC nomenclature is in parentheses.

12083D-3

PIN DESIGNATIONS

A0-A13

= Address Inputs

CE (E)

= Chip Enable Input

DQ0-DQ7 = Data Inputs/Outputs

DU

= No External Connection (Do Not Use)

NC

= No Internal Connection

OE (G)

= Output Enable Input

PGM (P)

= Program Enable Input

 V_{CC}

= Vcc Supply Voltage

 V_{PP}

= Program Supply Voltage

Vss

= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combi	nations
AM27X128-55	
AM27X128-70	
AM27X128-90	
AM27X128-120	PC, JC, PI, JI
AM27X128-150	
AM27X128-200	
AM27X128-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable \overline{OE} is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc—toe.

Standby Mode

The Am27X128 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at Vcc \pm 0.3 V. The Am27X128 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1\,\mu\text{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7\text{-}\mu\text{F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	PGM	Vpp	Outputs
Read		VIL	VIL	Х	Х	DOUT
Output Disable		X	ViH	Х	Х	Hi-Z
Standby (TTL)		VIH	Х	Х	Х	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	Х	Х	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages Vcc for Am27X128-255 +4.75 V to +5.25 V
Vcc for all other

Operating ranges define those limits between which the functionality of the device is guaranteed.

valid combinations +4.50 V to +5.50 V

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	IOH = - 400 μA	2.4		V
VoL	Output LOW Voltage	loL = 2.1 mA		0.45	V
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	V
VIL	Input LOW Voltage		- 0.5	+0.8	V
lu	Input Load Current	VIN = 0 V to +VCC		1.0	μА
lLO	Output Leakage Current	Vout = 0 V to +Vcc		1.0	μА
Icc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 10 MHz, lout = 0 mA		25	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		100	μА

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X128 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

12083D-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

12083D-6

CAPACITANCE

Davamatas			PD	028	PL	. 032	
Parameter Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	5	10	10	12	рF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	8	10	11	14	рF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Para Sym	meter						Ar	n27X1	28			
JEDEC	Standard	Parameter Description	Test Conditions		-55	-70	-90	-120	-150	-200	-255	Unit
tavqv	tacc	Address to	CE = OE =	Min	-	_	_	_	-	_	-	
		Output Delay	VIL	Max	55	70	90	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	1	_	1	-	1	_	-	
		Output Delay		Max	55	70	90	120	150	200	250	ns
tglqv	toE	Output Enable to	CE = VIL	Min		_	_	_	_	_	_	
		Output Delay		Max	35	40	40	50	50	50	50	ns
tehoz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	0	0	ns
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	30	30	30	30	
taxqx	toн	Output Hold from		Min	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	_	-	-	-	_	-	-	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X128 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. For the -55 and -70:

Output Load: 1 TTL gate and CL = 30 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V

Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

C_L = 100 pF including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -55 and -70.

12083D-8

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Am27X256

Advanced Micro Devices

256 Kilobit (32,768 x 8-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - -- 55 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- **■** ±10% power supply tolerance

- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), Plastic Leaded Chip Carrier (PLCC), and Thin Small Outline Package (TSOP)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X256 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 32,768 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC), and thin small outline (TSOP) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X256 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

12082D-1

Publication# 12082 Rev. D Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X256						
Ordering Part No: V _{CC} ±5%							-255
V _{CC} ±10%	-55	-70	-90	-120	-150	-200	
Max Access Time (ns)	55	70	90	120	150	200	250
CE (E) Access (ns)	55	70	90	120	150	200	250
OE (G) Access (ns)	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

1. JEDEC nomenclature is in parentheses.

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0-A14 = Ad

= Address Inputs

CE (E)

= Chip Enable Input

DQ0-DQ7 =

Data Inputs/OutputsNo External Connection (Do Not Use)

NC

= No Internal Connection

OE (G)

Output Enable InputVcc Supply Voltage

V_{CC}

= Program Supply Voltage

 V_{SS}

= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Comb	inations
AM27X256-55	
AM27X256-70]
AM27X256-90]
AM27X256-120	PC, JC, PI, JI, EC. EI
AM27X256-150] [0, [
AM27X256-200]
AM27X256-255	1

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) . Data is available at the outputs t_{OE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} — t_{OE} .

Standby Mode

The Am27X256 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X256 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at $V_{IH}.$ When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1\,\mu\text{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7\text{-}\mu\text{F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	ŌĒ	Vpp	Outputs
Read	VIL	VIL	Х	DOUT
Output Disable	Х	ViH	Х	Hi-Z
Standby (TTL)	ViH	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to V_{SS} All pins except V_{CC} -0.6 V to V_{CC} + 0.6 V
Vcc0.6 V to +7.0 V
Af - A

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot $V_{\rm SS}$ to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V_{\rm CC}$ + 0.5 V which may overshoot to $V_{\rm CC}$ + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Co	ommercial (C) Devices
	Case Temperature (Tc) 0°C to +70°C
Inc	dustrial (I) Devices
	Case Temperature (Tc)40°C to +85°C
Su	ipply Read Voltages
	Vcc for Am27X256-255 \ldots +4.75 V to +5.25 V
	Vcc for all other
	valid combinations +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
V _{OH}	Output HIGH Voltage	Іон = – 400 μΑ	2.4		V
VoL	Output LOW Voltage	loL = 2.1 mA		0.45	V.
ViH	Input HIGH Voltage		2.0	Vcc+ 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
I LI	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lLO	Output Leakage Current	Vout = 0 V to +Vcc		1.0	μА
lcc ₁	Vcc Active Current (Note 3)	CE = V _{IL} f = 10 MHz, louτ = 0 mA		25	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
Іссз	Vcc CMOS Standby Current	<u>CE</u> = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: the Am27X256 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is VCC + 0.5 V, which may overshoot to VCC + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

12082D-6

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

12082D-7

CAPACITANCE

Parameter		Test	PD	028	PL	032	TS	032	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	6	10	8	12	10	12	рF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	8	10	8	12	12	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

1	Parameter Symbols		Am27X256									
JEDEC	Standard	Parameter Description	Test Conditions		-55	-70	-90	-120	-150	-200	-255	Unit
tavqv	tacc	Address to	CE = OE =	Min	_	_	_	_	_	_	_	
		Output Delay	VIL	Max	55	70	90	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	-	-	_	_	-	-	_	
		Output Delay		Max	55	70	90	120	150	200	250	ns
tglqv	toe	Output Enable to	CE = VIL	Min	-	_	_	_	_	_	_	
		Output Delay		Max	35	40	40	50	50	50	50	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	0	0	
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	30	30	30	30	ns
taxqx	tон	Output Hold from		Min	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	_	_	-	_	_	_	-	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X256 must not be removed from (or inserted into) a socket or board when Vpp or V_{CC} is applied.
- 4. For the -55 and -70:

Output Load: 1 TTL gate and CL = 30 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V

Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

C_L = 100 pF including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

3 V

1.5 V

Test Points

1.5 V

Output

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -55 and -70.

12082D-9

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC
- 2. tor is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Am27X512

Advanced Micro Devices

512 Kilobit (65,536 x 8-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 90 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- **■** ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X512 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 65,536 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 90 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X512 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

12081D-1

Publication# 12081 Rev. D Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X512				
Ordering Part No: V _{CC} ± 5%					-255
V _{CC} ± 10%	-90	-120	-150	-200	
Max Access Time (ns)	90	120	150	200	250
CE (E) Access (ns)		120	150	200	250
OE (G) Access (ns)	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A15 = Address Inputs \overline{CE} (\overline{E}) = Chip Enable Input

DQ0-DQ7 = Data Inputs/Outputs

DU = No External Connection (Do Not Use)

 $\begin{array}{ll} {\hbox{NC}} & = \hbox{No Internal Connection} \\ {\hbox{\overline{OE}}\left({\overline G} \right)} & = \hbox{Output Enable Input} \\ {\hbox{V}_{CC}} & = \hbox{V}_{CC} \hbox{Supply Voltage} \\ {\hbox{V}_{PP}} & = \hbox{Program Supply Voltage} \end{array}$

Vss = Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27X512-90						
AM27X512-120]					
AM27X512-150	PC, JC, PI, JI, EC, EI					
AM27X512-200] [0, [1					
AM27X512-255						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable \overline{OE} is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs t_{DE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{OE} .

Standby Mode

The Am27X512 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X512 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}/\text{VPP}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1\,\mu\text{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7\text{-}\mu\text{F}$ bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	ŌE/V _{PP}	Outputs
Read	VIL	VIL	DOUT
Output Disable	Х	ViH	Hi-Z
Standby (TTL)	ViH	х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to V_{SS} All pins except V_{CC} -0.6 V to V_{CC} + 0.6 V
Vcc0.6 V to +7.0 V
Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_S to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X512-255 +4.75 V to +5.25 V
Vcc for all other
valid combinations +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = – 400 μА	2.4		V
VoL	Output LOW Voltage	loL = 2.1 mA		0.45	V
V _{IH}	Input HIGH Voltage		2.0	Vcc+ 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
llo	Output Leakage Current	Vour = 0 V to +Vcc		1.0	μА
lcc1	Vcc Active Current (Note 3)	CE = V _{IL,} f = 10 MHz, lout = 0 mA		30	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lccs	Vcc CMOS Standby Current	CE = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: the Am27X512 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
- 3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is Vcc + 0.5 V, which may overshoot to Vcc + 2.0 V for periods less than 20 ns.

30

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

12081D-6

CAPACITANCE

Parameter		Test	PD	028	PL	032	TS	032	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	6	10	9	12	10	12	рF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	8	10	9	12	12	14	рF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Para Sym	meter					Aı	m27X51	2		
JEDEC	Standard	Parameter Description	Test Conditions		-90	-120	-150	-200	-255	Unit
tavov	trcc	Address to Output Delay	CE = OE =VIL	Min Max	- 90	_ 120	_ 150	_ 200	_ 250	ns
tELQV	tce	Chip Enable to Output Delay	OE = VIL	Min Max	_ 90	- 120	_ 150	_ 200	_ 250	ns
tglqv	toe	Output Enable to Output Delay	CE = VIL	Min Max	- 40	- 50	 50	_ 50	_ 50	ns
tehaz tghaz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	30	30	30	30	30	ns
taxqx	toн	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0 –	<u> </u>	0 –	0 -	<u> </u>	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X512 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

C_L = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are < 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Advanced Micro Devices

Am27X010

1 Megabit (131,072 x 8-Bit) CMOS ExpressROM™ Device

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 105 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- ± 10% power supply tolerance

- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), Plastic Leaded Chip Carrier (PLCC), and Thin Small Outline Package (TSOP)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X010 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 131,072 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) and thin small outline (TSOP) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 105 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X010 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

12080D-1

Publication# 12080 Rev. D Amendment/0 Issue Date: July 1993

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27X010-105						
AM27X010-120]					
AM27X010-150	PC, JC, PI, JI, EC, EI					
AM27X010-200] [0, [1					
AM27X010-255	,					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs t_{DE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} — t_{CE} .

Standby Mode

The Am27X010 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 $\mu\text{A}.$ It is placed in CMOS-standby when $\overline{\text{CE}}$ is at $V_{\text{CC}} \pm 0.3$ V. The Am27X010 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when $\overline{\text{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\text{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on Express-ROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	ŌĒ	PGM	Vpp	Outputs
Read	VIL	VIL	Х	х	DOUT
Output Disable	Х	ViH	х	Х	Hi-Z
Standby (TTL)	ViH	х	X	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	х	х	Hi-Z

Note:

1. X = Either VIH or VII

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Co	ommercial (C) Devices Case Temperature (Tc) 0°C to +70°C
in	dustrial (I) Devices Case Temperature (Tc)40°C to +85°C
Sı	upply Read Voltages Vcc for Am27X010-XX5 +4.75 V to +5.25 V
	Vcc for Am27X010-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	lo _H = - 400 μA	2.4		V
VoL	Output LOW Voltage	lo _L = 2.1 mA		0.45	٧
VIH	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		- 0.5	+0.8	٧
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lLO	Output Leakage Current	Vout = 0 V to +Vcc		10	μА
lcc ₁	Vcc Active Current (Note 3)	CE = V _{IL,} f = 5 MHz, lout = 0 mA		30	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{\text{CE}} = \text{V}_{\text{CC}} \pm 0.3 \text{ V}$		100	μА

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X010 must not be removed from (or inserted into) a socket when VCC or Vpp is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

12080D-6

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

12080D-7

CAPACITANCE

Parameter		Test	PD	032	PL	032	TS	032	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	8	12	8	10	10	12	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	11	14	11	12	12	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Para Sym	meter	Am27X010								
JEDEC	Standard	Parameter Description	Test Conditions		-105	-120	-150	-200	-255	Unit
tavqv	tacc	Address to	CE = OE =	Min	-	_	_	_	_	
		Output Delay	VIL	Max	100	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	_	_	_	_	_	
		Output Delay		Max	100	120	150	200	250	ns
tGLQV	toe	Output Enable to	CE = VIL	Min	_				_	
		Output Delay		Max	50	50	65	75	75	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	
tghoz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	35	35	40	40	ns
taxqx	tон	Output Hold from		Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	_	1	-	_	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X010 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

12080D-9

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

12080D-10

- 1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable \overline{OE} is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs t_{DE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} — t_{DE} .

Standby Mode

The Am27X512 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X512 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}/\text{VPP}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1\,\mu\text{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7\text{-}\mu\text{F}$ bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	ŌE/V _{PP}	Outputs
Read	VIL	VIL	DOUT
Output Disable	Х	Viн	Hi-Z
Standby (TTL)	ViH	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to V_{SS} All pins except V_{CC} -0.6 V to V_{CC} + 0.6 V
Vcc0.6 V to +7.0 V
Mata.

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	•
Case Temperature (Tc)	0°C to +70°C
Industrial (I) Devices	
Case Temperature (Tc)	-40°C to +85°C
Supply Read Voltages	
Vcc for Am27X512-255 +4.7	75 V to +5.25 V
Vcc for all other	
valid combinations+4.	50 V to +5.50 V
Occupation was a define the conflict to the	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = – 400 μА	2.4		V
VoL	Output LOW Voltage	loL = 2.1 mA		0.45	V
VIH	Input HIGH Voltage		2.0	Vcc+ 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lLo	Output Leakage Current	Vout = 0 V to +Vcc		1.0	μА
lcc1	Vcc Active Current (Note 3)	CE = V _{IL,} f = 10 MHz, lout = 0 mA		30	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lcca	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		100	μА

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: the Am27X512 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
- 3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

12081D-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

12081D-6

CAPACITANCE

Parameter		Test	PD	028	PL	032	TS	032	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	V _{IN} = 0 V	6	10	9	12	10	12	рF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	8	10	9	12	12	14	рF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Para Sym	meter			Am27X512						
JEDEC	Standard	Parameter Description	Test Conditions		-90	-120	-150	-200	-255	Unit
tavqv	trcc	Address to Output Delay	CE = OE =VIL	Min Max	- 90	_ 120	_ 150	_ 200	_ 250	ns
tELQV	tce	Chip Enable to Output Delay	OE = VIL	Min Max	- 90	_ 120	_ 150	_ 200	_ 250	ns
tglqv	toe	Output Enable to Output Delay	CE = VIL	Min Max	- 40	_ 50	- 50	_ 50	_ 50	ns
tehqz tghqz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	30	30	30	30	30	ns
taxqx	toн	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0 -	0 -	0 -	0 -	0 -	ns

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X512 must not be removed from (or inserted into) a socket or board when Vpp or Vcc is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are < 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Advanced Micro Devices

Am27X010

1 Megabit (131,072 x 8-Bit) CMOS ExpressROM™ Device

- **As an OTP EPROM alternative:**
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 105 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- ± 10% power supply tolerance

- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), Plastic Leaded Chip Carrier (PLCC), and Thin Small Outline Package (TSOP)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X010 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 131,072 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) and thin small outline (TSOP) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 105 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X010 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

12080D-1

Publication# 12080 Rev. D Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.		Am27X010								
Ordering Part No: Vcc ±5%	-105				-255					
V _{CC} ±10%		-120	-150	-200						
Max Access Time (ns)	100	120	150	200	250					
CE (E) Access (ns)	100	120	150	200	250					
OE (G) Access (ns)	50	50	65	75	100					

CONNECTION DIAGRAMS

Top View

Notes:

12080D-

1. JEDEC nomenclature is in parentheses.

12080D-3

*Contact local AMD sales office for package availability

12080D-4

PIN DESIGNATIONS

A0-A16 = Address Inputs

 \overline{CE} (\overline{E}) = Chip Enable Input DQ0-DQ7 = Data Inputs/Outputs

DU = No External Connection (Do Not Use)

NC = No Internal Connection

OE (G) = Output Enable Input

PGM (P)= Enable InputVcc= Vcc Supply VoltageVPP= Program Supply Voltage

Vss = Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Comb	inations
AM27X010-105	
AM27X010-120]
AM27X010-150	PC, JC, PI, JI, EC. EI
AM27X010-200] =0, =1
AM27X010-255	,

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs t_{DE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} — t_{CE} .

Standby Mode

The Am27X010 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X010 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on Express-ROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	ŌĒ	PGM	Vpp	Outputs
Read	VIL	VIL	Х	х	DOUT
Output Disable	Х	ViH	Х	Х	Hi-Z
Standby (TTL)	ViH	Х	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied –55°C to +125°C
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X010-XX5 +4.75 V to +5.25 V
Vcc for Am27X010-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Ιοн = - 400 μΑ	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	٧
V _{IH}	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		- 0.5	+0.8	V
I LI	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
llo	Output Leakage Current	Vout = 0 V to +Vcc		10	μА
lcc ₁	Vcc Active Current (Note 3)	CE = V _{IL} ,f = 5 MHz, lout = 0 mA	,	30	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{\text{CE}} = \text{V}_{\text{CC}} \pm 0.3 \text{ V}$		100	μА

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X010 must not be removed from (or inserted into) a socket when VCC or Vpp is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

12080D-6

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

12080D-7

CAPACITANCE

Parameter		Test	PD	032	PL	032	TS	032	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	8	12	8	10	10	12	pF
Соит	Output Capacitance	V _{OUT} = 0 V	11	14	11	12	12	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Para Sym	meter						Am27X01	0		
JEDEC	Standard	Parameter Description	Test Conditions	;	-105	-120	-150	-200	-255	Unit
tavqv	tacc	Address to	CE = OE =	Min	-	-	_	_	_	
		Output Delay	VIL	Max	100	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	_	_	_	_	_	
		Output Delay		Max	100	120	150	200	250	ns
tglav	toe	Output Enable to	CE = VIL	Min	_	_	_	_	-	
		Output Delay		Max	50	50	65	75	75	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	
tghaz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	35	35	40	40	ns
taxqx	toн	Output Hold from		Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	-	_	-	_	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X010 must not be removed from (or inserted into) a socket or board when Vpp or VCC is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

12080D-9

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Advanced Micro Devices

Am27X1024

1 Megabit (65,536 x 16-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- MAS an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 90 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- **■** ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X1024 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 65,536 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 90 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X1024 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

Publication# 12079 Rev. D Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.			Am27X1024		
Ordering Part No:					
V _{CC} ±5%	<u> </u>				-255
V _{cc} ±10%	-90	-120	-150	-200	
Max Access Time (ns)	90	120	150	200	250
CE (E) Access (ns)	90	120	150	200	250
OE (G) Access (ns)	45	50	65	75	100

CONNECTION DIAGRAMS

Top View

Note:

1. JEDEC nomenclature is in parentheses.

12079D-3

PIN DESIGNATIONS

DU = No External Connection (Do Not Use)

NC = No Internal Connection

OE (G) = Output Enable Input

PGM (P) = Program Enable Input

Vcc = Vcc Supply Voltage

Vpp = Program Supply Voltage

 V_{SS} = Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X1024-90	PC, JC				
AM27X1024-120					
AM27X1024-150	DO 10 DI 11				
AM27X1024-200	PC, JC, PI, JI				
AM27X1024-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) . Data is available at the outputs t_{OE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least $t_{ACC} - t_{OE}$.

Standby Mode

The Am27X1024 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μA . It is placed in CMOS-standby when $\overline{\text{CE}}$ is at $V_{CC} \pm 0.3$ V. The Am27X1024 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when $\overline{\text{CE}}$ is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\text{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	CE	ŌĒ	PGM	V _{PP}	Outputs
Read	VIL	VIL	X	Х	DOUT
Output Disable	Х	ViH	Х	Х	Hi-Z
Standby (TTL)	ViH	Х	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied –55°C to +125°C
Voltage with Respect to Vss
All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot $V_{\rm SS}$ to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V_{\rm CC}$ +0.5 V which may overshoot to $V_{\rm CC}$ +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X1024-255 +4.75 V to +5.25 V
Vcc for all other
valid combinations 4 FO V to 4 F FO V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = – 400 μА	2.4		V
Vol	Output LOW Voltage	lo _L = 2.1 mA		0.45	V
V _{IH}	Input HIGH Voltage		2.0	Vcc+0.5	V
V _{IL}	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
llo	Output Leakage Current	Vout = 0 V to +Vcc		1.0	μА
lcc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 10 MHz, louτ = 0 mA		50	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	CE = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X1024 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 10 MHz

CAPACITANCE

B				040	PL		
Parameter Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	. 7	12	8	10	pF
Соит	Output Capacitance	V _{OUT} = 0 V	11	14	11	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols			·			A	m27X10	24		
JEDEC	Standard	Parameter Description	Test Condition	าร	-90	-120	-150	-200	-255	Unit
tavqv	tacc	Address to	CE = OE = VIL	Min			_	_	_	
		Output Delay		Max	90	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min			_		_	
		Output Delay		Max	90	120	150	200	250	ns
tglqv	toe	Output Enable to	CE = VIL	Min	_	_	_		_	
		Output Delay		Max	45	50	65	75	75	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	40	50	50	50	50	ns
taxqx	toн	Output Hold from		Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	_	_	-		_	ns

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X1024 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. Output Load: 1 TTL gate and $C_L = 100 pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

 $C_L = 100 pF$ including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Am27X020

Advanced Micro Devices

2 Megabit (262,144 x 8-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 100 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X020 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 262,144 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X020 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

Publication# 15652 Rev. B Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.		Am27X020					
Ordering Part No: V _{CC} ±5%	-105				-255		
V _{CC} ±10%	-100	-120	-150	-200			
Max Access Time (ns)	100	120	150	200	250		
CE (E) Access (ns)	100	120	150	200	250		
OE (G) Access (ns)	50	50	65	75	100		

CONNECTION DIAGRAMS

Top View

15652B-3

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

 $\begin{array}{lll} \hbox{A0-A17} &=& \hbox{Address Inputs} \\ \hline \hline \hbox{CE (\overline{E})} &=& \hbox{Chip Enable Input} \\ \hline \hbox{DQ0-DQ7} &=& \hbox{Data Inputs/Outputs} \\ \end{array}$

DU = No External Connection (Do Not Use)

 $\begin{array}{lll} NC & = & No \; Internal \; Connection \\ \hline \overline{OE} \; (\overline{G}) & = & Output \; Enable \; Input \\ \hline \overline{PGM} \; (\overline{P}) & = & Program \; Enable \; Input \\ Vcc & = & Vcc \; Supply \; Voltage \\ Vpp & = & Program \; Supply \; Voltage \\ \end{array}$

Vss = Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X020-100					
AM27X020-105					
AM27X020-120	PC, JC, PI, JI				
AM27X020-150	FC, JC, FI, JI				
AM27X020-200					
AM27X020-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc. — toe.

Standby Mode

The Am27X020 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 $\mu A.$ It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X020 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	CE	ŌĒ	PGM	V _{PP}	Outputs
Read	VIL	VIL	Х	Х	DOUT
Output Disable	VIL	ViĤ	х	Х	Hi-Z
Standby (TTL)	ViH	Х	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Х	Hi-Z

Note:

1. $X = Either V_{IH} or V_{IL}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products -65°C to +125°C All Other Products -65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to V_{SS} All pins except V_{CC} -0.6 V to V_{CC} + 0.6 V
Vcc0.6 V to +7.0 V

Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Case Temperature (Tc)	0°C to +70°C
Industrial (I) Devices	
Case Temperature (Tc)	40°C to +85°C
Supply Read Voltages	
Vcc for Am27X020-XX5	+4.75 V to +5.25 V
Vcc for Am27X020-XX0	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	lo _H = - 400 μA	2.4		٧
Vol	Output LOW Voltage	lo _L = 2.1 mA		0.45	٧
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	٧
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lLo	Output Leakage Current	Vout = 0 V to +Vcc		5.0	μА
lcc ₁	V _{CC} Active Current (Note 3)	CE = V _{IL} , f = 5 MHz, I _{OUT} = 0 mA		30	mA
lcc2	V _{CC} TTL Standby Current	CE = V _{IH}		1.0	mA
lcca	V _{CC} CMOS Standby Current	<u>CE</u> = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. Caution: The Am27X020 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

Figure 2. Typical Supply Current vs. Temperature $V_{CC} = 5.5 \text{ V}, f = 5 \text{ MHz}$

CAPACITANCE

Parameter			PD	PD 032		PL 032	
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	10	12	8	10	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	12	15	9	12	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols					Am27X020					
JEDEC	Standard	Parameter Description	Test Conditions		-105 -100	-120	-150	-200	-255	Unit
tavqv	tacc	Address to	CE = OE = VIL						_	
		Output Delay		Max	100	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min			_		_	
		Output Delay		Max	100	120	150	200	250	ns
tGLQV	toe	Output Enable to	CE = VIL	Min					_	
		Output Delay		Max	50	50	55	60	75	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	30	30	30	40	60	ns
taxqx	tон	Output Hold from	· · · · · · · · · · · · · · · · · · ·	Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	_	_		_	ns

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X020 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

15652B-8

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Advanced Micro Devices

Am27X2048

2 Megabit (131,072 x 16-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 100 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X2048 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 131,072 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X2048 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

15653B-1

Publication# 15653 Rev. B Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.		Am27X2048						
Ordering Part No:								
V _{CC} ±5%	-105	-125			-255			
V _{CC} ±10%	-100	-120	-150	-200				
Max Access Time (ns)	100	120	150	200	250			
CE (E) Access (ns)	100	120	150	200	250			
OE (G) Access (ns)	50	50	65	75	100			

CONNECTION DIAGRAMS

Top View

Note:

1. JEDEC nomenclature is in parentheses.

15653B-3

PIN DESIGNATIONS

A0-A16

= Address Inputs

CE (E)

= Chip Enable Input

DQ0-DQ15 = Data Inputs/Outputs

DU NC = No External Connection (Do Not Use)

OE (G)

= No Internal Connection

PGM (P)

= Output Enable Input

= Program Enable Input

Vcc

= Vcc Supply Voltage

 V_{PP}

= Program Supply Voltage

 V_{SS}

= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X2048-100					
AM27X2048-105					
AM27X2048-120					
AM27X2048-125	PC, JC, PI, JI				
AM27X2048-150					
AM27X2048-200					
AM27X2048-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X2048 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tACC – toe.

Standby Mode

The Am27X2048 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS-standby when $\overline{\text{CE}}$ is at Vcc \pm 0.3 V. The Am27X2048 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when $\overline{\text{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\text{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	CE	ŌĒ	PGM	V_{PP}	Outputs
Read	VIL	VIL	х	X	DOUT
Output Disable	Х	ViH	х	Х	Hi-Z
Standby (TTL)	ViH	Х	х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	х	Х	Hi-Z

Note:

1. $X = Either V_{IH} or V_{IL}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products -65°C to +125°C All Other Products -65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to V_{SS} All pins except V_{CC} -0.6 V to V_{CC} + 0.6 V
Vcc0.6 V to +7.0 V

Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X2048-XX5 +4.75 V to +5.25 V
Vcc for Am27X2048-XX0 +4 50 V to +5 50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
V _{OH}	Output HIGH Voltage	Ι _{ΟΗ} = – 400 μΑ	2.4		V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA		0.45	٧
VIH	Input HIGH Voltage		2.0	V _{CC} + 0.5	٧
V _{IL}	Input LOW Voltage		-0.5	+0.8	٧
I LI	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lo	Output Leakage Current	V _{OUT} = 0 V to +V _{CC}		5.0	μΑ
I _{CC1}	V _{CC} Active Current (Note 3)	$\overline{CE} = V_{IL}, f = 5 \text{ MHz},$ $I_{OUT} = 0 \text{ mA}$		50	mA
I _{CC2}	V _{CC} TTL Standby Current	CE = V _{IH}		1.0	mA
I _{CC3}	V _{CC} CMOS Standby Current	CE = V _{CC} ± 0.3 V	-	100	μА

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X2048 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

CAPACITANCE

Parameter	·		PD	040	PL	044	
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	10	12	7	10	pF
Cout	Output Capacitance	V _{OUT} = 0 V	12	15	12	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Parameter Symbols						А	m27X20	48		
JEDEC	Standard	Parameter Description	Test Condition	าร	-100 -105	-120 -125	-150	-200	-255	Unit
tavqv	tacc	Address to Output Delay	CE = OE = VIL	Min Max	 100	 120	 150	 200	 250	ns
tELQV	tce	Chip Enable to Output Delay	OE = VIL	Min Max	 100	120	— 150		 250	
tglqv	toe	Output Enable to Output Delay	CE = VIL	Min Max	 50	— 50	_	_	_	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	55 0	60 0	75 0	ns ns
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	30	30	30	40	60	
taxox	toн	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0	0	0	0	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X2048 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

15653B-8

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

- 1. OE may be delayed up to tACC toE after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Am27X040

Advanced Micro Devices

4 Megabit (524,288 x 8-Bit) CMOS ExpressROM™ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 120 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X040 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 524,288 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X040 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

15654B-1

Publication# 15654 Rev. B Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.		Am27	7X040	
Ordering Part No:				
Vcc ±5%	-125			
V _{CC} ±10%	-120	-150	-200	-250
Max Access Time (ns)	120	150	200	250
CE (E) Access (ns)	120	150	200	250
OE (G) Access (ns)	50	65	75	100

CONNECTION DIAGRAMS

Top View

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A18

= Address Inputs

CE (E)

Chip Enable Input

DQ0-DQ7

Data Inputs/Outputs

DU

No External Connection (Do Not Use)

NC

No Internal Connection

OE (G)

0.15.15.11.1

Vcc

= Output Enable Input

V CC

Vcc Supply Voltage

Vpp

Program Supply Voltage

 V_{SS}

= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Comb	Valid Combinations					
AM27X040-120						
AM27X040-125						
AM27X040-150	PC, JC, PI, JI					
AM27X040-200						
AM27X040-255	7					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X040 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable $(\overline{\text{CE}})$ is the power control and should be used for device selection. Output Enable $(\overline{\text{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from $\overline{\text{CE}}$ to output (tc_E). Data is available at the outputs to_E after the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been LOW and addresses have been stable for at least tacc—to_E.

Standby Mode

The Am27X040 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS-standby when $\overline{\text{CE}}$ is at Vcc \pm 0.3 V. The Am27X040 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when $\overline{\text{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\text{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	CE	ŌĒ	V _{PP}	Outputs
Read	VIL	VIL	х	DOUT
Output Disable	VIL	ViH	Х	Hi-Z
Standby (TTL)	ViH	х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Hi-Z

Note:

1. $X = Either V_{IH} or V_{II}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products -65°C to +125°C All Other Products -65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to V_{SS} All pins except V_{CC} -0.6 V to V_{CC} + 0.6 V
Vcc0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{cc} +0.5 V which may overshoot to V_{cc} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X040-XX5 +4.75 V to +5.25 V
V _{CC} for Am27X040-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = – 400 μА	2.4		V
VoL	Output LOW Voltage	loL = 2.1 mA		0.45	V
Vін	Input HIGH Voltage		0.7 Vcc	Vcc+0.5	V
VıL	Input LOW Voltage		-0.5	+0.8	V
lLı	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lıo	Output Leakage Current	Vout = 0 V to +Vcc		5.0	μА
lcc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 5 MHz, lout = 0 mA		40	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
Іссз	Vcc CMOS Standby Current	CE = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X040 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns.
 Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

CAPACITANCE

Danamatan	Dovometer		PD	032	PL		
Parameter Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
Cin	Input Capacitance	V _{IN} = 0 V	10	12	8	10	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	12	15	9	12	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

	ameter					Am27	7X040		
	mbols Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-250	Unit
tavqv	tacc	Address to Output Delay	CE = OE = VIL	Min Max	<u> </u>	— 150	<u> </u>	 250	ns
tELQV	tce	Chip Enable to Output Delay	OE = VIL	Min Max	— 120	— 150	 200	 250	ns
tglqv	toE	Output Enable to Output Delay	CE = VIL	Min Max	- 50	— 55	<u> </u>	— 60	ns
tehqz tghqz	t _{DF} (Note 2)	Chip Enable HIGH or Output Enable		Min	0	0	0	0	
IGHQZ	(Note 2)	HIGH, whichever comes first, to Output Float		Max	30	30	40	60	ns
taxqx	toн	Output Hold from Addresses, CE, or		Min	0	0	0	0	ns
		OE, whichever occurred first		Max	_	_	_	_	

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X040 must not be removed from or inserted into a socket or board when V_{PP} or V_{CC} is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: 20 ns

Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

15654B-8

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from OE or CE, whichever occurs first.

Am27X400

Advanced Micro Devices

4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) CMOS ExpressROM™ Device

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 120 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- **■** ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X400 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 524,288 by 8 bits/262,144 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X400 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

17344A-1

Publication# 17344 Rev. A Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No		Am27X400				
Ordering Part No:						
V _{CC} ±5%	-125			-255		
V _{CC} ±10%	-120	-150	-200			
Max Access Time (ns)	120	150	200	250		
CE (E) Access (ns)	120	150	200	250		
OE (G) Access (ns)	50	65	75	100		

CONNECTION DIAGRAMS

Top View

Note:

PIN DESIGNATIONS

AB = Address Input (BYTE Mode)

 $\begin{array}{lll} \hline \text{A0-A17} & = & \text{Address Inputs} \\ \hline \hline \text{BYTE} & = & \text{Byte/Word Switch} \\ \hline \text{CE}(\overline{\text{E}}) & = & \text{Chip Enable Input} \\ \hline \text{DQ0-DQ15} & = & \text{Data Inputs/Outputs} \\ \hline \end{array}$

DU = No External Connection (Do Not Use)

Vss = Ground

LOGIC SYMBOL

^{1.} JEDEC nomenclature is in parentheses.

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X400-120					
AM27X400-125					
AM27X400-150	PC, JC, PI, JI				
AM27X400-200] ' ' ', ' ', ' ', ' '				
AM27X400-255]				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X400 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc—toe.

Byte Mode

The user has the option of reading data in either 16-bit words or 8-bit bytes under control of the BYTE input. With the BYTE input HIGH, inputs A0–A17 will address 256K words of 16-bit data. When the BYTE input is LOW, AB functions as the least significant address input and 512K bytes of data can be accessed. The 8 bits of data will appear on DQ0–DQ7.

Standby Mode

The Am27X400 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μA . It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X400 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	CE	ŌĒ	V _{PP}	Outputs
Read	VIL	VIL	х	DOUT
Output Disable	VIL	Vıн	Х	Hi-Z
Standby (TTL)	ViH	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

,
Storage Temperature
OTP Products
All Other Products65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to Vss
All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages Vccfor Am27X400-XX5 +4.75 V to +5.25 V
Vcc for Am27X400-XX3 +4.75 V to +5.25 V Vcc for Am27X400-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = −400 μА	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	V
VIH	Input HIGH Voltage		2.0	Vcc+ 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	VIN = 0 V to +Vcc		1.0	μА
lıo	Output Leakage Current	Vout = 0 V to +Vcc		5.0	μА
lcc ₁	Vcc Active Current (Note 3)	GE = V _{IL} , f = 5 MHz, lout = 0 mA		50	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
Іссз	Vcc CMOS Standby Current	CE = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. Caution: The Am27X400 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

17344A-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

17344A-6

CAPACITANCE

			PD	PD 040		PL 044	
Parameter Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	6	8	9	11	рF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	9	11	13	15	рF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter						Am27	'X400		
Sym JEDEC	Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-255	Unit
tavqv	trcc	Address to	CE = OE =	Min	_	_	_		
		Output Delay	VIL	Max	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	-	1	_	-	
		Output Delay		Max	120	150	200	250	ns
tgLQV	toE	Output Enable to	CE = VIL	Min	-		_		
		Output Delay		Max	50	55	60	75	ns
tEHQZ	tDF	Chip Enable HIGH or		Min	0	0	0	0	
tgнqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Мах	30	30	40	60	ns
taxqx	tон	Output Hold from		Min	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	_	_	_	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X400 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17344A-8

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

- 1. \overline{OE} may be delayed up to t_{ACC} – t_{OE} after the falling edge of the addresses without impact on t_{ACC} .
- 2. tof is specified from OE or CE, whichever occurs first.

Am27X4096

Advanced Micro Devices

4 Megabit (262,144 x 16-Bit) CMOS ExpressROM™ Device

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 120 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X4096 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 262,144 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X4096 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

17345A-1

PRODUCT SELECTOR GUIDE

Family Part No		Am27X4096				
Ordering Part No:						
V _{CC} ±5%	-125			-255		
V _{CC} ±10%	-120	-150	-200			
Max Access Time (ns)	120	150	200	250		
CE (E) Access (ns)	120	150	200	250		
OE (G) Access (ns)	50	65	75	100		

CONNECTION DIAGRAMS

Top View PDIP V_{PP} 40 **[**] Vcc CE (E) [A17 39 2 DQ15 38 A16 DQ14 [37 **|** A15 DQ13 [A14 36 DQ12 A13 35 DQ11 [34 A12 DQ10 T A11 33 DQ9 [32 A10 DQ8 31 Α9 10 Vss 🔲 11 30 Vss 29 **A8** DQ7 12 28 Α7 DQ6 13 27 Α6 DQ5 14 26 Α5 DQ4 🔲 15 25 h A4 DQ3 16 24 ∏ A3 DQ2 17 23 Π A2 DQ1 🛘 18 22 | A1 DQ0 19 ΑO ŌE (G) ☐ 20 Note: 17345A-2

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A17 = Address Inputs

CE (E) = Chip Enable Input

DQ0-DQ15 = Data Inputs/Outputs

DU = No External Connection (Do Not Use)
NC = No Internal Connection

= Program Supply Voltage

 OE (G)
 = No line may confidented

 Vcc
 = Output Enable Input

 Vcc
 = Vcc Supply Voltage

Vss = Ground

 V_{PP}

LOGIC SYMBOL

17345A-3

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X4096-120					
AM27X4096-125					
AM27X4096-150	PC, JC, PI, JI				
AM27X4096-200					
AM27X4096-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc—toe.

Standby Mode

The Am27X4096 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when $\overline{\text{CE}}$ is at V_{CC} \pm 0.3 V. The Am27X4096 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when $\overline{\text{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\text{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	ŌĒ	Vpp	Outputs
Read	VIL	VIL	Х	DOUT
Output Disable	×	ViH	Х	Hi-Z
Standby (TTL)	ViH	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Hi-Z

Note:

1. $X = Either V_{IH} or V_{II}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
All Other Products65°C to +150°C
Ambient Temperature with Power Applied –55°C to +125°C
Voltage with Respect to Vss
All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X4096-XX5 +4.75 V to +5.25 V
Vcc for Am27X4096-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
V _{OH}	Output HIGH Voltage	Іон = — 400 μА	2.4		V
VoL	Output LOW Voltage	lo _L = 2.1 mA		0.45	V
ViH	Input HIGH Voltage		2.0	Vcc+ 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lLO	Output Leakage Current	Vour = 0 V to +Vcc		5.0	μА
lcc ₁	Vcc Active Current (Note 3)	CE = V _{IL} , f = 5 MHz, lout = 0 mA		50	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{\text{CE}} = \text{V}_{\text{CC}} \pm 0.3 \text{ V}$		100	μΑ

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X4096 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

17345A-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

17345A-6

CAPACITANCE

Parameter			PD	PD 040		PL 044	
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Мах	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	6	8	10	13	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	8	10	12	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols					Am27X4096				
JEDEC	Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-255	Unit
tavqv	trcc	Address to	CE = OE =	Min	-	-	_	_	
		Output Delay	VIL	Max	120	150	200	250	ns
tELQV	tce	Chip Enable to	OE = VIL	Min	-	1		_	
	Output Delay			Max	120	150	200	250	ns
tglqv	toe	Output Enable to	CE = VIL	Min		-		_	
		Output Delay		Max	50	55	60	60	ns
tehqz	tDF	Chip Enable HIGH or		Min	0	0	0	0	
tghaz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	40	<u>4</u> 0	40	60	ns
taxqx	ton	Output Hold from		Min	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	_	-	_	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X4096 must not be removed from (or inserted into) a socket or board when Vpp or Vcc is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the falling edge of the addresses without impact on t_{ACC}.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

17345A-9

anced

Am27X080

8 Megabit (1,048,576 x 8-Bit) CMOS ExpressROM™ Device

Advanced Micro Devices

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 120 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control function

GENERAL DESCRIPTION

The Am27X080 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 1,048 K words by 8 bits per word and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X080 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

17346A-1

PRODUCT SELECTOR GUIDE

Family Part No.		Am27	X080	
Ordering Part No V _{CC} ±5%	-125			-255
V _{CC} ±10%	-120	-150	-200	
Max Access Time (ns)	120	150	200	250
CE (E) Access (ns)	120	150	200	250
OE (G) Access (ns)	50	65	75	100

CONNECTION DIAGRAMS Top View

Notes:

PIN DESIGNATIONS

A0-A19

= Address Inputs

CE (E)

= Chip Enable Input

DQ0-DQ17

= Data Inputs/Outputs

OE (G)

= Output Enable Input

· / - -

- Output Enable Input

Vcc

= Vcc Supply Voltage

Vpp

= Program Supply Voltage

Vss

= Ground

LOGIC SYMBOL

^{1.} JEDEC nomenclature is in parentheses.

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X080-120					
AM27X080-125	PC, JC, PI, JI				
AM27X080-150]				
AM27X080-200					
AM27X080-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X080 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}/V_{PP}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs to after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc—to E.

Standby Mode

The Am27X080 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μA . It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X080 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}/\text{V}_{PP}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	CE	OE/V _{PP}	Outputs
Read	VIL	VIL	DOUT
Output Disable	Х	ViH	Hi-Z
Standby (TTL)	VIH	х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Hi-Z

Note:

1. $X = Either V_{IH} or V_{IL}$

ABSOLUTE MAXIMUM RATINGS

0	age Temperature TP Products65°C to +125°C Il Other Products65°C to +150°C
	ient Temperature Power Applied –55°C to +125°C
	age with Respect to Vss I pins except A9,Vpp,Vcc0.6 V to Vcc + 0.6 V
V	cc

Notes:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V_{cc} + 0.5$ V which may overshoot to $V_{cc} + 2.0$ V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X080-XX5 +4.75 V to +5.25 V
Vcc for Am27X080-XX0 +4.50 V to +5.50 V
One with a manager of the state

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
V _{OH}	Output HIGH Voltage	Іон = – 400 μА	Vcc-0.8		٧
VoL	Output LOW Voltage	loL = 2.1 mA		0.45	٧
V _{IH}	Input HIGH Voltage		0.7 V _{CC}	Vcc+0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	٧
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
luo .	Output Leakage Current	Vout = 0 V to +Vcc		5.0	μА
lcc ₁	Vcc Active Current (Note 3)	CE = V _{IL,} f = 5 MHz, lout = 0 mA		40	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	CE = V _{CC} ± 0.3 V		100	μА

Notes:

- 1. V_{CC} must be simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X080 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V during transitions, the inputs may overshoot -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

15453B-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

15453B-6

CAPACITANCE

Parameter			PD	PD 032		PL 032	
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	7	12	7	12	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	12	16	12	16	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols					Am27X080				
JEDEC	Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-255	Unit
tavqv	trcc	Address to Output Delay	CE = OE = VIL	Min Max	_ 120	_ 150	_ 200	_ 250	ns
tELQV	tce	Chip Enable to Output Delay	OE = VIL	Min Max	_ 120	; – , 150	200	_ 250	ns
tGLQV	toe	Output Enable to Output Delay	CE = VIL	Min Max	- 50	_ 55	_ 60	_ 60	ns
tehaz tghaz	t _{DF} (Note 2)	Chip Enable HIGH or Output Enable HIGH,		Min	0	0	0	0	
whichever com	whichever comes first, to Output Float		Max	40	40	40	60	ns	
taxqx	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0 ·	0 - ·	0 –	ns

Notes:

- 1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
- 2. This parameter is only sample and not 100% tested.
- 3. Caution: The Am27X080 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17346A-8

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
>>	Does Not Apply	Center Line is High- Impedance "Off" State

KS000010

SWITCHING WAVEFORMS

- 1. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the falling edge of the addresses without impact on t_{ACC} .
- 2. top is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Am27X800

8 Megabit (1,048,576 x 8-Bit/524,288 x 16-Bit) CMOS ExpressROM™ Device

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
- -- 150 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- **■** ±10% power supply tolerance
- High noise immunity
- **■** Low power dissipation
 - 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from −1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X800 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 1,048,576 by 8 bits/524,288 x 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 150 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X800 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

17347A-1

PRODUCT SELECTOR GUIDE

Family Part No		Am27X800	
Ordering Part No:			
V _{CC} ±5%	-155		-255
V _{CC} ±10%	-150	-200	
Max Access Time (ns)	150	200	250
CE (E) Access (ns)	150	200	250
OE (G) Access (ns)	65	75	100

CONNECTION DIAGRAMS

1. JEDEC nomenclature is in parenthesis.

PIN DESIGNATIONS

AB

= Address Inputs (BYTE Mode)

A0-A18 = Address Inputs BYTE = Byte/Word Switch

CE (E) = Chip Enable Input

DQ0-DQ15 = Data Inputs/Outputs
NC = No Internal Connection

 \overline{OE} (\overline{G}) = No Internal Connection = Output Enable Input

Vcc = Vcc Supply Voltage

V_{PP} = Program Supply Voltage

Vss = Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations						
Am27X800-150	-					
Am27X800-155	PC, JC, PI, JI					
Am27X800-200] FO, JO, FI, JI					
Am27X800-255]					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X800 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc—toe.

Byte Mode

The user has the option of reading data in either 16-bit words or 8-bit bytes under control of the BYTE input. With the BYTE input HIGH, input A0–A18 will address 512K words of 16-bit data. When the BYTE input is LOW, AB functions as the least significant address input and 1 Mbyte of data can be accessed. The 8 bits of data will appear on DQ0–DQ7.

Standby Mode

The Am27X800 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μA . It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X800 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM Device arrays, a 4.7 μF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	CE	ŌĒ	V _{PP}	Outputs
Read	VIL	VIL	Х	DOUT
Output Disable	VIL	ViH	Х	Hi-Z
Standby (TTL)	VIH	Х	Х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

-65°C to +125°C
-65°C to +150°C
–55°C to +125°C
6 V to Vcc + 0.6 V
-0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X800-XX5 +4.75 V to +5.25 V
Vcc for Am27X800-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the

functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = – 400 μА	2.4		V
VoL	Output LOW Voltage	loL = 2.1 mA		0.45	V
ViH	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μА
lo	Output Leakage Current	Vout = 0 V to +Vcc		5.0	μА
lcc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 5 MHz, lout = 0 mA		50	mA
lcc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		100	μА

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X800 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

17344A-5

17344A-6

CAPACITANCE

			PD	042	PL	. 044	
Parameter Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	10	18	10	18	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	10	18	10	18	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

	ameter				,	Am27X800		
JEDEC	mbols Standard	Parameter Description	Test Conditions		-155 -150	-200	-255	Unit
tavqv	trcc	Address to Output Delay	CE = OE = VIL	Min Max	_ 150	_ 200	_ 250	ns
tELQV	tce	Chip Enable to Output Delay	OE = VIL	Min Max	_ 150	_ 200	_ 250	ns
tglav	toE	Output Enable to Output Delay	CE = VIL	Min Max	 55	_ 60	 60	ns
tehqz tghqz	t _{DF} (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	0 40	0 40	0 60	ns
taxqx	toн	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	<u> </u>	0 -	<u> </u>	ns

Notes:

- 1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sample and not 100% tested.
- 3. Caution: The Am27X800 must not be removed from (or inserted into) a socket or board when Vpp or Vcc is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns

Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17347A-8

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
>>	Does Not Apply	Center Line is High- Impedance "Off" State

KS000010

SWITCHING WAVEFORMS

Notes:

- 1. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the falling edge of the addresses without impact on t_{ACC}.
- 17347A-9

2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

SECTION

PROGRAMMING

Section 6	Programming 6-1
	Programming Methodology 6-3
	Flashrite Programming Flowchart
	DC Programming Characteristics 6-5
	Switching Characteristics and Waveforms 6-5
	Third-Party Programming Support

口

PROGRAMMING

All of AMD's CMOS EPROMs now utilize the fast Flashrite™ programming algorithm. Programming the 256K EPROM typically takes 4 seconds, the 1 Mbit EPROM 16 seconds, and the 4 Mbit 1 minute. Bit locations may be programmed singly, in blocks or at random.

PROGRAMMING METHODOLOGY

Upon delivery or after each erasure, AMD's CMOS EPROM has all bits in the "ONE" or HIGH state. "ZEROs" are loaded into the device through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, $\overline{\text{CE}}$ and $\overline{\text{PGM}}^*$ are at V_{IL}, and $\overline{\text{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 8- or 16-bits in parallel (depending upon the device organization) to the data output pins.

The flowchart on the next page shows AMD's Flashrite programming algorithm. The Flashrite algorithm reduces programming time by using 100 μs programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum pulse count is reached. This process is repeated while sequencing through each address of the device. This part of the algorithm is done at $V_{\rm CC}=6.25$ V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage.

Program Verify

A program verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL} , \overline{PGM}^* at V_{IH} , and V_{PP} between 12.5 V and 13.0 V.

Read Verify

After the final address is programmed, a read verify on the entire EPROM is performed at $V_{\text{CC}} = V_{\text{PP}} = 5.25 \text{ V}$.

^{*}Not all devices have the PGM pin.

Figure 6-1 Flashrite Programming Flowchart

Table 6-1 DC Programming Characteristics $(T_A = +25^{\circ}C \pm 5^{\circ}C)$ (Notes 1, 2 and 3)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
lu.	Input Current (All Inputs)	VIN = VIL or VIH		1.0	μА
VIL	Input LOW Level		-0.5	0.8	v
ViH	Input HIGH Level		0.7 Vcc	Vcc + 0.5	V
Vol	Output LOW Voltage During Verify	loL = 2.1 mA		0.45	V
Vон	Output HIGH Voltage During Verify	loн = -400 μA	2.4		V
Vн	A9 Auto Select Voltage		11.5	12.5	V
lcc3	Vcc Supply Current (Program & Verify)		1	50	mA
IPP2	VPP Supply Current (Program)	CE = VIL, OE = VIH		30	mA
Vcc ₁	Flashrite Supply Voltage		6.00	6.50	V
V _{PP1}	Flashrite Programming Voltage		12.5	13.0	V

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- When programming an AMD CMOS EPROM, a 0.1 μF capacitor is required across Vpp and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Switching Characteristics and Waveforms

These programming switching characteristics and waveforms apply to the following AMD EPROM devices: Am27C64, Am27C128, Am27C010, Am27H010, Am27LV010, Am27C1024, Am27C020, Am27LV020 and Am27C2048.

Table 6-2 Switching Programming Characteristics $(T_A = +25^{\circ}C)$ (Notes 1, 2 and 3)

Parameter Symbols					
JEDEC	Standard	Parameter Description	Min	Max	Unit
tAVEL	tas	Address Setup Time	2		μs
tDZGL	toes	OE Setup Time	2		μs
tDVEL	tos	Data Setup Time	2		μs
tghax	tah	Address Hold Time	0		μs
tEHDX	tDH	Data Hold Time	2		μs
tghqz	tDFP	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	VPP Setup Time	2		μs
tELEH1	tpw	PGM Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time	2		μs
tELPL	tces	CE Setup Time	2		μs
tglqv	toe	Data Valid from OE		150	ns

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- When programming the above devices, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-2 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:

17061A-

- 1. The input timing reference level is 0.8 V for V_{IL} and 2 V for V_{IH}.
- 2. toE and tdpp are characteristics of the device, but must be accommodated by the programmer.

These programming switching characteristics and waveforms apply to the following EPROM devices: Am27C256, Am27H256, Am27C040, Am27C400, Am27C4096 and Am27C800.

Table 6-3 Switching Programming Characteristics $(T_A = +25^{\circ}C \pm 5^{\circ}C)$ (Notes 1, 2 and 3)

	meter nbols				
JEDEC	Standard	Parameter Description	Min	Max	Unit
tavel	tas	Address Setup Time	2		μs
tdzgl	toes	OE Setup Time	2		μs
tdvel	tDS	Data Setup Time	2		μs
tghax	tah	Address Hold Time	0		μs
tEHDX	tDH	Data Hold Time	2		μs
tghqz	tDFP	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	Vpp Setup Time	2		μs
tELEH1	tpw	PGM Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time	2		μs
tglqv	toe	Data Valid from OE	1 .	150	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- When programming the above devices, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-3 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:

17061A-

- 1. The input timing reference level is 0.8 V for VIL and 2 V for VIH.
- 2. top and topp are characteristics of the device, but must be accommodated by the programmer.

These programming switching characteristics and waveforms apply to the Am27C512 and Am27C080 devices.

Table 6-4 Switching Programming Characteristics $(T_A = +25^{\circ}C)$ (Notes 1, 2 and 3)

Parameter Symbols					
JEDEC	Standard	Parameter Description	Min	Max	Unit
tavel	tas	Address Setup Time	2		μs
tDVEL	tos	Data Setup Time	2		μs
tghax	tah	Address Hold Time	0		μs
tEHDX	tDH	Data Hold Time	2		μs
tehqz	tDFP	Chip Enable to Output Float Delay	0	130	ns
tvps	tvps	Vpp Setup Time	2		μs
tELEH	tpw	CE Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time	2		μs
tELQV	t _{DV}	Data Valid from OE		150	ns
tehgl	toeh	OE/V _{PP} Hold Time	2		ns
tGLEL	tvr	OE/V _{PP} Recovery Time	2		ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. When programming the above devices, a 0.1 μ F capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-4 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

- 1. The input timing reference level is 0.8 V for VIL and 2 V for VIH.
- 2. toe and tdep are characteristics of the device, but must be accommodated by the programmer.

THIRD-PARTY PROGRAMMING SUPPORT

Recommended Vendors

Advin Systems

PILOT-U84 Programmer PILOT-U40 Programmer PILOT-145 Programmer PILOT-GCE Programmer PILOT-832D Programmer

BP Microsystems

BP-1200 Programmer CP-1128 Programmer EP-1132 Programmer EP-1140 Programmer EP-1 Programmer

Data I/O Corporation

2900 Programmer UniPak 2B Programmer BoardSite Programmer HandlerSite Programmer UniSite 40 Programmer S1000 Programmer 3900 Programmer

Elan Digital Systems Ltd

132 Programmer 142 Programmer 232 Programmer 532 Programmer 832 Programmer 840 Programmer 928 Programmer 932 Programmer 940 Programmer

Logical Devices

ALLPRO 88/XR Programmer Husky Programmer GangPro-8+ Programmer GangPro-S Model II Programmer

Stag Microsystems

39M101 Programmer 41M101 Programmer 41M102 Programmer 41M111 Programmer 42M101 Programmer 2M3000 Programmer Orbit Programmer Solar Programmer Stratus-2 Programmer System 1040/84 Programmer

PROGRAMMING UPDATE

The following charts provide the latest information on programming support for AMD's CMOS EPROMs from the following vendors:

Advin Systems, Inc. BP Microsystems Data I/O Corporation Elan Digital Systems Ltd. Logical Devices Stag Microsystems

These charts indicate the Versions as well as the Family code (where appropriate) that incorporates the **FLASHRITE™ Programming Algorithm** for all of their "popular" models.

Table 6-6 Advin Systems

			Version		
Part Number	PILOT	PILOT	PILOT	PILOT	PILOT
Package	-U84	-U40	-145	-GCE	-832D
Am27C64					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C128					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C256					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27H256	-				
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C512					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C010		· · · · · · · · · · · · · · · · · · ·			
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27H010					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C100					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C1024					
DIP	V10.42	V10.42	V10.42		V10.43
PLCC	V10.42*	V10.42*	V10.42*		V10.43

Table 6-6 Advin Systems (continued)

			Version		
Part Number Package	PILOT -U84	PILOT -U40	PILOT -145	PILOT -GCE	PILOT -832D
Am27C020					
DIP PLCC	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	V10.43 V10.43
Am27C2048					
DIP PLCC	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*		V10.43 V10.43
Am27C040					
DIP PLCC	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	V10.43 V10.43
Am27C400					
DIP PLCC	V10.42	V10.42	V10.42		V10.43
Am27C4096					
DIP PLCC	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	-	V10.43 V10.43

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. Programmer models PILOT-U84, PILOT-U40, PILOT-145 and PILOT-GCE are single socket programmers whereas PILOT-832D is a gang programmer.
- 3. Programmer model PILOT-GCE does not support the X16 organizations.
- 4. PLCC packages for all devices (marked with an *) for the following programmers: PILOT-U84, PILOT-U40, PILOT-145 and PILOT-GCE require separate modules. These modules are listed below:
 - PX-32 32-pin PLCC (X8 organizations)
 - PX-44 44-pin PLCC (X16 organizations)
- 5. For further information please contact Advin Systems directly at (408) 243-7000.

Table 6-7 BP Microsystems

	Version (DIP Packages only)				
Part Number	BP-1200	CP-1128	EP-1140	EP-1132	EP-1
Am27C64	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C128	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C256	V2.05	V2.05	V2.05	V2.05	V2.05
Am27H256	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C512	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C010	V2.05		V2.05	V2.05	
Am27H010	V2.05		V2.05	V2.05	
Am27C100	V2.05		V2.05	V2.05	
Am27C1024	V2.05		V2.05		
Am27C020	V2.05		V2.05	V2.05	
Am27C2048	V2.05		V2.05		
Am27C040	V2.05		V2.05	V2.05	
Am27C400	V2.05				
Am27C4096					

- 1. Information listed above applies for all speed grades of that particular device/package.
- There is a reason for the "blanks" above due to the fact that each module serves a specific DIP Package Pin-count(s):

Model	Package Pin-Count
BP-1200	28, 32 and 40 pins
CP-1128	28 pin
EP-1140	28, 32 and 40 pins
EP-1132	28 and 32 pins
EP-1	28 pin

- 3. All LCC/PLCC packages require adapters. These adapters are common for all programmers. Please contact BP Microsystems directly for availability of these adapters.
- 4. For further information please contact BP Microsystems directly at (713) 461-9430.

Table 6-8 Data I/O

	Version (Family Code)					
Part Number Package	2900	UNIPAK 2B	AutoSite			
Am27C64						
DIP PLCC	V1.0 (D6) V1.4 (D6)	V23 (5C) V24 (5C)	V3.6 (D6) V3.6 (D6)			
Am27C128						
DIP PLCC	V1.0 (11D) V1.5 (D6)	V23 (5C) V25 (5C)	V3.6 (D6) V3.6 (D6)			
Am27C256						
DIP PLCC	V1.0 (5C) V1.4 (5C)	V23 (5C) V24 (5C)	V3.6 (5C) V3.6 (5C)			
Am27H256						
DIP PLCC	V1.7 (1DF)	V27 (D6)	V3.6 (1DF)			
Am27C512						
DIP PLCC	V1.0 (5E) V1.4 (5E)	V23 (5E) V24 (5E)	V3.6 (5E) V3.6 (5E)			
Am27C010						
DIP PLCC	V1.0 (D6) V1.2 (D6)	V24 (5C) V24 (5C)	V3.6 (D6) V3.6 (D6)			
Am27H010						
DIP PLCC	V1.4 (D6)	V24 (5C)	V3.6 (D6)			
Am27C100			•			
DIP	V1.0 (D6)	V20 (D6)	3.6 (D6)			
Am27C1024						
DIP PLCC	V1.0 (5F) V1.5 (5F)	V18 (5F) V25 (5F)	V3.6 (5F) V3.6 (5F)			

Table 6-8 Data I/O (continued)

	Version (Family Code)					
Part Number Package	2900	UNIPAK 2B	AutoSite			
Am27C020		·				
DIP PLCC	V1.0 (D6)	V19 (D6)	V3.6 (D6)			
Am27C2048						
DIP PLCC	V1.1 (5F) V1.9 (5F)	V21 (5F)	V3.6 (5F)			
Am27C040						
DIP PLCC	V1.3 (D6)	V23 (5C)	V3.6 (D6)			
Am27C400						
DIP PLCC	V2.0 (5F)		3.9			
Am27C4096						
DIP PLCC	V2.0 (5F) V2.1 (5F)		1.1 1.5			

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 3. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- All AMD EPROMs not specifically supported by Data I/O can be programmed using Intel's Quick-Pulse™
 Programming algorithm. Intel's pin-out code must be manually entered as "Autoselect" will not work.

Table 6-8

Data I/O (continued)

	Version (Family Code)					
Part Number Package	UniSite 40	\$1000	3900			
Am27C64						
DIP PLCC	V3.2 (D6) V3.3 (D6)*	V19 (B5C) V19 (B5C)	V1.0 (D6) V1.0 (D6)			
Am27C128						
DIP PLCC	V3.2 (D6) V3.4 (D6)*	V19 (B5C) V20 (B5C)	V1.0 (D6) V1.0 (D6)			
Am27C256						
DIP PLCC	V3.2 (5C) V3.3 (5C)*	V18 (B5C) V20 (B5C)	V1.0 (5C) V1.0 (5C)			
Am27H256						
DIP PLCC	V3.6 (1DF)	V23 (B5C)	V1.0 (1DF) V1.0 (D6)			
Am27C512						
DIP PLCC	V3.2 (5E) V3.3 (5E)*	V19 (B5E) V22 (B5E)	V1.0 (5E) V1.0 (5E)			
Am27C010						
DIP PLCC	V2.7 (D6) V3.1 (D6)*	V15 (D5C) V20 (D5C)	V1.0 (D6) V1.0 (D6)			
Am27H010						
DIP PLCC	V3.3 (D6)	V19 (D5C)	V1.0 (D6)			
Am27C100						
DIP	V2.7 (D6)	V14 (C5C)	V1.0 (D6)			
Am27C1024						
DIP PLCC	V2.5 (5F) V3.4 (5F)*	V17 (5F) V20 (5F)	V1.0 (5F) V1.0 (5F)			

Table 6-8 Data I/O (continued)

	Version (Family Code)					
Part Number Package	UniSite 40	S1000	3900			
Am27C020						
DIP PLCC	V2.6 (D6)	V13 (D5C)	V1.0 (D6)			
Am27C2048						
DIP PLCC	V3.0 (5F) V3.8 (5F)*	V16 (E5F) V24 (E5F)	V1.0 (5F)			
Am27C040						
DIP PLCC	V3.2 (D6)	V19 (FD6)	V1.0 (D6)			
Am27C400		*				
DIP PLCC	V3.9 (5F)	V26 (F5F)	V1.4 (5F)			
Am27C4096						
DIP PLCC	V3.9 (5F) V4.0 (5F)	V26 (F5F) V26 (F5F)	V1.4 (5F) V1.5 (5F)			

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. UNISITE 40 requires an optional PinSite Programming Module for PLCC Packages (marked with an *).
- The 3900 programmer model requires an optional PLCC Package Base as it uses the Universal Package System™.
- 4. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- All AMD EPROMs not specifically supported by Data I/O can be programmed using Intel's Quick-Pulse™
 Programming algorithm. Intel's pin-out code must be manually entered as "Autoselect" will not work.

Table 6-9 ELAN

	Version					
		,	132 232 532 832	840	Ada	pter
Part Number	142	928	932	940	LCC	PLCC
Am27C64	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C128	E 5.00	E 5.00	E 5.00		-A86A	A86
Am27C256	E 5.00	E 5.00	E 5.00		A86A	A86
Am27H256					,	
Am27C512	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C010	E 5.00		E 5.00		A104	A104
Am27H010						
Am27C1024	E 5.00			E 5.00	A94A	A94
Am27C020	E 5.01		E 5.01		A104	A104
Am27C2048	E 5.01			E 5.01	A94A	A94
Am27C040	E 5.01		E 5.01		A104	A104
Am27C400			٠			
Am27C4096						

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. There is a reason for the "blanks" above due to the fact that each ZIFPAK model serves a specific DIP Package Pin-count (s):

Model	DIP Package Pin-Count
142	28, 32 and 40 pins
928	28 pin
132, 232, 532, 832 and 932	28 and 32 pins
840 and 940	40 pin

- 3. All LCC and PLCC Packages require the specific adapter listed. Each adapter supports all ZIFPAK models listed for a specific device.
- The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.

Table 6-10 Logical Devices

	Version						
Part Number Package	ALLPro 88/XR	Husky	GangPro -8+	GangPro-S Model II			
Am27C64							
DIP PLCC	V2.1 V2.1		V1.0 V1.0*	V1.0 V1.0*			
Am27C128							
DIP PLCC	V2.1 V2.1		V1.0 V1.0*	V1.0 V1.0*			
Am27C256							
DIP PLCC	V2.2 V2.2		V1.0 V1.0*	V1.0 V1.0*			
Am27H256							
DIP PLCC	V2.2 V2.2						
Am27C512							
DIP PLCC	V2.2 V2.2		V1.0 V1.0*	V1.0 V1.0*			
Am27C010							
DIP PLCC	V2.2 V2.2						
Am27H010							
DIP PLCC	V2.2 V2.2						
Am27C100							
DIP							
Am27C1024							
DIP PLCC	V2.2 V2.2			V1.0			

Table 6-10 Logical Devices (continued)

	Version					
Part Number Package	ALLPro 88/XR	Husky	GangPro -8+	GangPro-S Model II		
Am27C020						
DIP PLCC	V1.5C V1.5C	V2.10 V2.10*	V1.0 V1.0*	V1.0 V1.0*		
Am27C2048						
DIP PLCC	V2.2 V2.2			V1.0-3		
Am27C040						
DIP PLCC	V2.2 V2.2	V2.4R1 V2.4R1*	V1.1 V1.1*	V1.0 V1.0*		
Am27C400						
DIP PLCC						
Am27C4096						
DIP PLCC	V2.2 V2.2			V1.0-3		

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. The ALLPRO programmer model has PLCC Package programming capability.
- The programmer models HUSKY and GANGPRO-8+ need separate adapters for PLCC Packages.
 These adapters are not currently offered by Logical Devices and need to be procured from third-party vendors. Please contact Logical Devices for additional information on these adapters.
- 4. The programmer model GANGPRO-S MODEL II needs a separate adapter OPTGP2-E32 for 32-pin PLCC Packages and is currently offered directly by Logical Devices. 44-pin PLCC Packages are currently not supported on this programmer.
- The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 6. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- 7. For further information please contact Logical Devices directly at (305) 974-0967.

Table 6-11 Stag Microsystems

			Software Revision					
Part Number Package	Pin-Out Code	39M101	41M101	41M102	41M111	41M121	42M101	ZM300
Am27C64	9FDA							
DIP PLCC		9.0	6.0		6.0		6.0	11.1 11.1¹
Am27C128	9FDB							
DIP PLCC		9.0	6.0		6.0		6.0	9.0 9.0¹
Am27C256	9FDC							
DIP PLCC		4.0	4.3		4.3		4.3	9.0 9.0¹
Am27H256								
DIP PLCC								
Am27C512	9FDD							
DIP PLCC		4.0	4.0		4.0		4.0	9.0 9.0¹
Am27C010	9FE1							
DIP PLCC		4.0	4.0			4.0	4.0	9.0 9.0¹
Am27H010								
DIP PLCC								
Am27C100	9FE3				0.0			
DIP		9.0	6.0			6.0	6.0	11.1
Am27C1024	9FF1							
DIP PLCC		4.0		5.0				10.0 10.0²
Am27C020	9FE2							
DIP PLCC		7.0	6.0			6.0	6.0	8.0 8.0¹

Table 6-11 Stag Microsystems (continued)

		Software Revision						
Part Number Package	Pin-Out Code	39M101	41M101	41M102	.41M111	41M121	42 M 101	ZM300
Am27C2048	9FF2							
DIP PLCC		7.0		6.0				11.1 11.1 ²
Am27C040 DIP PLCC	9FE4	10.0	7.0				7.0	
Am27C400 DIP PLCC								
Am27C4096 DIP PLCC	9FF4	9.0		6.0				11.3 11.3²

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. There is a reason for the "blanks" above as each module serves a specific package and pin-count(s):

Model	Package	Pin-Count
39M101	DIP	28, 32 and 40 pins
41M101	DIP	28 and 32 pins
41M102	DIP	40 pin
41M111	LCC/PLCC	32 pin
41M121	LCC/PLCC	32 pin
42M101	DIP	28 and 32 pins
ZM3000 (UNIVERSAL)	All	All

- PLCC Packages require separate adapters. The Legend for these adapters is as follows: 1 requires Zs3001 Adapter, 2 requires Zs3009 Adapter.
- 4. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- For further information please contact Stag Microsystems directly at (408) 988-1118 in the U.S. and 707-332148 in the U.K.

Table 6-11 Stag Microsystems (continued)

	Software Revision					
Part Number	Orbit	Solar	Stratos 2	System 1040/84		
Am27C64	3.7	1.0	1.2	10.41		
Am27C128	3.7	1.0	1.2	10.41		
Am27C256	3.7	1.0	1.2	10.41		
Am27H256		1.0				
Am27C512	3.7	1.0	1.2	10.41		
Am27C010	3.7	1.0	1.2	10.41		
Am27H010		1.0		10.41		
Am27C1024	3.7	2.0		10.41		
Am27C020	3.7	1.0		10.41		
Am27C2048		2.0		10.41		
Am27C040	-	1.0	1.2	10.41		
Am27C400						
Am27C4096		2.0		10.41		

Notes:

- 1. Information listed above applies for all speed grades of that particular device.
- 2. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 3. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- For further information please contact Stag Microsystems directly at (408) 988-1188 in the U.S. and 707-332148 in the U.K.

SECTION

7 ARTICLE REPRINT

Section 7	Article Reprint	7-1
	"Making EPROM/Flash Trade-Offs" Article Reprint	7-3

Making EPROM/flash trade-offs

BY DATAR LALVANI
STRATEGIC MARKETING MANAGER
AND KURT WOLF
SENIOR PRODUCT
MARKETING ENGINEER
ADVANCED MICRO DEVICES INC.
SUNNYVALE, CALIF.

he non-volatile memory market, long the bastion of the UV EPROM, has been fissured with the recent emergence of in-system reprogrammable flash memories as a viable technology. Today, both EPROMs and flash memories coexist and they will continue to run parallel paths, with the choice of technology influenced by the requirements of the end product.

Flash memories were born of the marriage between EPROM and E²PROM devices. Flash incorporates the same programming capability as an EPROM with the added benefit of E²PROM-like electrical erasability, so it can be reprogrammed without removing it from the circuit board. This makes flash an ideal choice for applications that require insystem reprogrammability. While the same benefit can be obtained from either E²PROM or battery-backed SRAM, flash memories are less expensive than both.

In light of the projected rapid growth in demand for flash, the product-development plans announced by the ever-increasing number of vendors, and the recent public announcements by some large vendors—who have stated that their strategy is to "de-emphasize" EPROMs in favor of flash memories—the future of EPROMs has become unclear. This has caused some confusion in the memory marketplace. Technical factors such as scalability, die cost, erasure and package considerations—as well as

market-based factors such as demand, applications and features—factor into the decisions to build and use either EPROM or flash products.

EPROMs and flash memories will coexist with the choice of technology influenced by the requirements of the end product as used by the customer. While some vendors have stated that flash memories are more scalable than EPROMs with the addition of double-layer metal, even down at 0.5-micron geometries, Advanced Micro Devices Inc. sees no need for multilayer metal for EPROMs. AMD's single-layer metal process for EPROMs using 0.5-micron technology not only will provide the high density—up to the 16-Mbit level—but is also capable of generating the smallest die size and highest performance in the industry.

It is a fact that, at the same density, the flash-memory die is more expensive than an EPROM because it has the slightly larger cell size required to support high endurance. Also, the flash process complexity is greater due to additional masking steps, and it requires longer test times to perform electrical erasure in the tester, as opposed to UV-erase in an oven.

Flash pricing today remains at a multiple of EPROM. However, flash pricing will continue to drop until it settles at around a 20 percent to 30 percent premium over a comparable EPROM. Memory designers are not going to increase the cost of their systems by using flash when there is no need for future reprogramming. In these designs, reprogrammability does not represent value to the customer. Consequently, flash technology will not ubiquitously replace OTP EPROM designs.

The market's demand for various price/performance products supports the coexistence of both EPROM and flash technology.

There is no question that flash technology has already reserved a bright spot in the history of non-volatile memories. In some designs, however, EPROM and flash memories can coexist comfortably.

Laser-printer designs are becoming commodity-oriented items. Memory-design requirements are dictated by the pagesper-minute output of the printer. Memory designers can make a trade-off between designing interleaved systems with slower/less expensive devices or non-interleaved systems using faster/higher-cost devices. The software requirements for these systems are also fairly straightforward. Firmware that typically does not change in this system are the PCL-5 and/or Postscript engine-control codes.

In addition, the code for font types does not typically change. The density requirements for this code range from 2 to 4 Mbytes of storage, depending on the font types available and the number of scaling options. EPROMs instead of ROMs are used to provide manufacturing flexibility. The EPROMs are programmed just-in-time, depending on the printer engine and font options

Datar Lalvani holds a BSEE from the University of Madras, India, and an MBA from the Wharton Graduate School of Business, University of Pennsylvania. Kurt Wolf holds a BSEE from the University of Michigan.

Copyright© 1991 by CMP Publications, Inc. Reprinted from *Electronic Engineering Times* with Permission.

16611A

SEMICONDUCTOR MEMORIES

Choosing flash or EPROM

Continued

required for that day's manufacturing run. Flash memory is then incorporated as an option that allows end users to store customized fonts or screen images in the printer. This eliminates the repetitive delay associated with transferring the bit-map-generated images between the computer and printer. This decrease in productivity is eliminated when the code is resident on the printer in flash memory, a clear example of a very high-volume product that requires both high-density EPROM and flash-memory devices.

Each technology is employed to take advantage of its strengths. OTP EPROMs are used in the most cost-sensitive portion of the memory system where the code typically does not change once the system is shipped. OTP EPROMs also allow for smooth transitions between manufacturing runs that incorporate different printer engines and/or font type options.

The higher-priced flash devices provide customers with the ability to personalize their systems. The value of this functionality more than offsets the incremental cost of the devices.

8

PHYSICAL DIMENSIONS*

Section 8	Physical	Dimensions	8-1
	CDV028	28-Pin Ceramic DIP	8-3
	CDV032	32-Pin Ceramic DIP	8-3
	CDV040	40-Pin Ceramic DIP	8-4
	CDV042	42-Pin Ceramic DIP	8-4
	CLV044	44-Pin Square Leadless Chip Carrier	8-5
**	PD 028	28-Pin Plastic Dual In-Line Package	8-6
	PD 032	32-Pin Plastic Dual In-Line Package	8-6
	PD 040	40-Pin Plastic Dual In-Line Package	8-7
	PD 048	48-Pin Plastic Dual In-Line Package	8-7
	PL 032	32-Pin Rectangular Plastic Leaded Chip Carrier	8-8
	PL 044	44-Pin Rectangular Plastic Leaded Chip Carrier	
	TS 032	32-Pin Thin Small Outline	

^{*}For reference only. BSC is an ANSI standard for Basic Space Centering.

CDV028 28-Pin Ceramic DIP (measured in inches)

CDV032 32-Pin Ceramic DIP (measured in inches)

CDV040 40-Pin Ceramic DIP (measured in inches)

CDV042 42-Pin Ceramic DIP (measured in inches)

CLV044
44-Pin Square Ceramic Leadless Chip Carrier (measured in inches)

PD 028 28-Pin Plastic Dual In-Line Package (measured in inches)

PD 032 32-Pin Plastic Dual In-Line Package

PD 040 40-Pin Plastic Dual In-Line Package (measured in inches)

PD 048 48-Pin Plastic Dual In-Line Package (measured in inches)

PL 032 32-Pin Rectangular Plastic Leaded Chip Carrier (measured in inches)

PL 044 44-Pin Square Plastic Leaded Chip Carrier (measured in inches)

TS 032 32-Pin Thin Small Outline (measured in inches)

*For the standard form/pin-out, the pin one is a round dimple. For the reverse form/pin-out, an inverted triangle will be marked here indicating pin one.

Sales Offices

Sales Offices			IIILEITIALIOTIAI (Con	ntinuea)	
North America	n		Tokyo		(03) 3346-7550
		(205) 882-9122			(03) 3342-5196
		(602) 242-4400	Osaka		(06) 243-3250
CALIFORNIA,		(002) 242-4400			(06) 243-3253
Culver City		(310) 645-1524	KOREA, Seoul		(82) 2-784-0030
Newport Beach	•••••	(714) 752-6262		FAX	(82) 2-784-8014
		(916) 786-6700	LATIN AMERICA,		
San Diego	,	(619) 560-7030	Ft. Lauderdale		(305) 484-8600
San Jose		(408) 452-0500			(305) 485-9736
		(818) 878-9988	SINGAPORE		(65) 3481188
CANADA, Ontario,		, ,		FAX	(65) 3480161
Kanata		(613) 592-0060	SWEDEN,		
		(416) 222-7800	Stockholm area		(08) 98 61 80
		(303) 741-2900	(Bromma)	FAX	(08) 98 09 06
		(203) 264-7800	TAIWAN, Taipei	TEL	(886) 2-7153536
FLORIDA,		(203) 204-7800		FAX	(886) 2-7122183
		(813) 530-9971	UNITED KINGDOM,		
		(407) 361-0050	Manchester area	TEL	(0925) 830380
		(407) 862-9292			(0925) 830204
					(0483) 740440
		(404) 449-7920	(Woking)		(0483) 756196
		(208) 377-0393			• • •
ILLINOIS,			North Americar	n Repres	entatives
		(708) 773-4422	CANADA		
		(708) 505-9517		EK MARKETI	NG(604) 430-3680
		(301) 381-3790			ICS(613) 592-0060
		(617) 273-3970			RONICS (416) 564-9720
	····	(612) 938-0001			NICS(514) 636-5951
NEW JERSEY,			ILLINOIS		
		(609) 662-2900	Skokie – INDUSTRIAL		
Parsippany	····	(201) 299-0002			(708) 967-8430
NEW YORK,			IOWA		
		(914) 279-8323			(319) 377-4666
Rochester		(716) 425-8050	KANSAS		(0.10) 077 4000
NORTH CAROLINA				ALES	(913) 469-1312
		(704) 875-3091			(316) 721-0500
Raleigh		(919) 878-8111	MICHIGAN		
OHIO,			Holland - COM-TEK S	SALES, INC.	(616) 335-8418
Columbus (Westervi	lle)	(614) 891-6455			(313) 227-0007
Dayton		(513) 439-0268	MINNESOTA		
OREGON		(503) 245-0080	Mel Foster Tech. Sale	s, Inc	(612) 941-9790
		(215) 398-8006	MISSOURI		. ,
TEXAS,			LORENZ SALES		(314) 997-4558
Austin		(512) 346-7830	NEBRASKA		
		(214) 934-9099	LORENZ SALES		(402) 475-4660
		(713) 376-8084	NEW MEXICO		
			THORSON DESERT	STATES	(505) 883-4343
International _			NEW YORK		. ,
BELGIUM, Antwerpen .	TEL	(03) 248 43 00	East Syracuse - NYC	OM, INC	(315) 437-8343
	FAX	(03) 248 46 42	Hauppauge – COMPC		` '
FRANCE, Paris		(1) 49-75-10-10	CONSULTANTS, INC		(516) 273-5050
,		(1) 49-75-10-13	ОНЮ		•
GERMANY,		(,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,			O(513) 433-6776
	TFI	(06172)-24061			O(614) 885-4844
Dad Hombarg		(06172)-23195	Westlake – DOLFUSS	ROOT & CC	216) 899-9370
München	TEI	(08172)-23193	PENNSYLVANIA		•
MUNOTON		(089) 45053-0		CO.,INC	(412) 242-9500
HONG KONG	TEI	(852) 865-4525	PUERTO RICO		
				NC	(809) 746-6550
Wanchai		(852) 865-4335	UTAH		
I I ALY, MII ano		(02) 3390541	Front Range Marketin	g	(801) 288-2500
	FAX	(02) 38103458	WASHINGTON	_	
			ELECTRA TECHNICA	LOVIES	(206) 821-7442
				L OALLO	(200) 021-7442
	TEL	(0462) 29-8460	WISCONSIN	L OALLO	(200) 021-7442
	FAX	(0462) 29-8458			(200) 021-7442
Atsugi	FAXTEL	(0462) 29-8458 (0462) 47-2911	WISCONSIN Brookfield – INDUSTRI	AL	(414) 574-9393
Atsugi	FAXTEL	(0462) 29-8458	WISCONSIN Brookfield – INDUSTRI	AL	

International (Continued)

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES, INC. 901 Thompson Place P.O. Box 3453 Sunnyvale, California 94088-3453 (408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

APPLICATIONS HOTLINE & LITERATURE ORDERING USA (800) 222-9323 USA (408) 749-5703 JAPAN 011-81-3-3346-7561 UK & EUROPE 44-(0)256-811101 TOLL FREE USA (800) 538-8450 FRANCE 0590-8621 GERMANY 0130-813875 ITALY 1678-77224

RECYCLED & RECYCLABLE

Printed in USA BAN-60M-7/93-0 17061A