Karta Ćwiczenia 1. Charakterystyki CMOS

Imię i Nazwisko: Andrzej Kapczynski	
Dzień tygodnia i godzina: .w. ore w 15:10	
Data wykonania ćwiczenia:	Podpis prowadzącego:

I. Przygotowanie do ćwiczenia

Wykonanie "przygotowania do ćwiczenia" jest warunkiem koniecznym dopuszczenia do ćwiczenia i powinno być przygotowane w domu.

Do niniejszej kartki dołącz (zszyte zszywaczem) <u>pisane odręcznie</u> (proszę o ręczne pisanie z wiadomych względów...) odpowiedzi na następujące zagadnienia:

Niektóre parametry technologii TSMC 65 nm wykorzystanej w laboratorium:

Nazwa, Symbole (SPICE symbol)	Wartość [jednostka]
Ruchliwość nośników - mobility	NMOS: $\mu = 110 \text{ [cm}^2/\text{V s]}$
μ (UO)	PMOS: $\mu = 45 \text{ [cm}^2/\text{V s]}$
Napięcie progowe – Threshold Voltage	NMOS: $Vtn = 0.4 [V]$
Vth/Vt (VTO)	PMOS: $Vtp = 0.48 [V]$

- Podaj znaczenie i jednostki podanych poniżej symboli używanych w opisie tranzystorów CMOS. Określ, które są stałymi, a które są różne dla NMOS i PMOS (wyróżnij je odpowiednio indeksem "n" i "p").
 Vt, μ, β, W, L, tox, Cox, ε=εsio2, εο
- Podaj wzór ogólny dla β=f(μ, ε, tox, W, L)
 Wylicz współczynnik "k" podstawiając dane używanej w LAB technologii (patrz tabela) β = k·(W/L) dla NMOS i PMOS.
 Przyjmując L_n=L_p=65 nm i W_n= 120 nm wyznacz W_p=? aby β_n= β_p
- 3. Napisz wzory opisujące zależność Ids=f(Vds) dla tranzystorów NMOS i PMOS w odpowiednich zakresach pracy. Wyjaśnij znaczenie wszystkich symboli użytych we wzorach, a w szczególności wskaż różnice we wzorach dla NMOS i PMOS. Co oznacza pkt o wartości |Vgs-Vt|=|Vds|?
 Określ w jakim zakresie pracy znajduje się NMOS dla wartości: (Vgs = 1 V, Vds=1 V) oraz ((Vgs = 1 V, Vds=0.2 V)
- 4. Narysuj dwa schematy pozwalające na wyznaczenie charakterystyk Ids=f(Vds) tranzystorów NMOS i PMOS. Jasno określ polaryzacje i podłączenie źródeł.
- 5. Wyjaśnij, co oznacza wartość Vgs, dla której prąd Ids zaczyna płynąć. Odczytaj z modelu jego przybliżoną wartość i wpisz do tabeli 4 w przygotowane nawiasy.
- 6. Wyjaśnij który/które parametry tranzystora może zmieniać projektant mając do dyspozycji daną technologię, aby zmieniać wartość prądu Ids. Jakie są ograniczenia?

	W	miki	CUM	ulacji
11.	**	IIII	SYLL	uiacji

	•		_1			
nr	ш	u	e,	KS	u	i

CZ. I. TRANZYSTOR NMOS

Parametr	Wartość
ASIM_MODEL	NCH
Length	0.065u
Width	1
Subtype	P
W	200nm
VGS	1V
VDS	1.2V

Netlista układu:

* Circuit definition

M1 YDD Gt GROUND GROUND NCH L=0.065u W=100 nm

* Source

VES GT GROUND DC AV

Tabela 2. Wartość prądu odczytana za pomocą kursora dla:					
Vds[V]	Ids[uA]				
0.1	25.51309 m A				
0.3	52.15923mA				
1.0	76.67086 mA				
Średnia wartość prądu dla całego wykresu	56. 314 mA				

5.87 016PA

		-	.010101
Tabela 3. Dane odczytane	z rodziny cha	arakterystyk	
Przebieg	Vgs	Ids dla Vds=0.2 V	Ids dla Vds=1.0 V
Krzywa najbliższa osi x	٥٧	1.6925 V	26, 15695 pA
A SUPER TO SERVICE AND SERVICE AND	0.3V	25. 45395n	A 100.87721n
	0.6V	5.24156n	A 11-31068 4
	0.90	32.25109u	A 57.65474 u
Krzywa najdalsza od osi x	1.2V	59.914921	A 115.92,567

*	Simulation	settings

DG.	VDS	0120.01	0	1.2	0.01
	. v.m				

, STEP	nagam	VGS	0	1-2	0.3		
	P. P	.:				 · · · · · · · · · · ·	

	_					
*	D	r	-	h	0	C
	- 1	_	$\mathbf{\mathcal{L}}$	v	=	

, PROBE	DC.	! (41).	
, PROBE	DC	.! (MA)	

PR	0	0	E	41	-1	•

Tabela 4. Wyzn	iaczenie najmniejs	szej wartości Vgs dla któr	ej 10s>0.1 uA
Ids>0.1 uA dla	6.1028ux	Vgs= 0.29 1100 V	(O.4V)

Tabela 5 Ids=f(Vds) dla różn Vgs=1 V, Vds=1 V	ych szerokości tranzystora
W=0.36 um	Ids= 136.36174 ut
W=5*0.36 um=0.18 um	Ids= 0.69 474 mA
W=10*0.36 um=3.6 um	Ids= 1.39164 m A

Tabela 6 Maksymalny po	obór mocy w zależności od temperatury
Temp = 0°C	Pmax = 146 78 UW
$Temp = 50^{\circ}C$	Pmax = 141.28 4 W
Temp = 100°C	Pmax = 136. 81 4 W

. PRODE	DC	P(MA)	 	 	 	
, PROBE						
· TEMP						

CZ. II. TRANZYSTOR PMOS

Parametr	Wartość
ASIM_MODEL	PCH
Length	0.065u
Width	1
Subtype	P
W	0.200nm
VSG	1V
VSD	1.2V

Netlista układu:

* Circuit definition

* MOS DEVICE

M1 GROWND Gt VDD VDD PCH L=65n W=200nm

VSG VDD Gt DC 1V

WSD WDD GROUND DC 1.2V

Tabela 8. Wartość prądu odczytana za pomocą kursora dla:			
Vsd[V]	Isd[uA]		
0.1	- 12.93445ut		
0.3	- 27.10859 uA		
1.0	- 41.54835ul		
Średnia wartość prądu dla całego wykresu	- 29.7135ut		

Tabela 9. Dane odczytane z rodziny charakterystyk				
Przebieg	Vsg	Isd dla Vsd=0.2 V	Isd dla Vsd=1.0 V	
Krzywa najbliższa osi x	Ου	-2.65213PA	-10.9772804	
	0.3V	-6.60001nA	-2528036nd	
	0.60	- 2.32062 uh		
	0.90	-16.3x262ut	-30.42350u	
Krzywa najdalsza od osi x	NS. V @	-31.13310WA	-65.14094u	

Tabela 10. Wyznaczenie najmniej		rej rour our unr
Isd>0.1 uA dla - 0. 10185 uA	Vsg= 0.34684V	(O.48 V)

Tabela 11 Isd=f(Vsd) dla różi Vsg=1 V, Vsd=1 V	nych szerokości tranzystora
W=0.36 um	Isd= - 68.19792, uA
W=5*0.36 um=0.18 um	Isd= -297.34367 uA
W=10*0.36 um=3.6 um	Isd= -578.88448 u.A

Tabela 12 Maksymalny p	oobór mocy w zależności od temperatury
Temp = 0°C	Pmax = 42.350 uW
Temp = 50°C	Pmax = 40.932 uW
Temp = 100°C	Pmax = 39.624 uW

Andrzej Rapczyński 145358 Grupa L8 Semestr 7 wtorch 15:10 Zadame 1 Vt - napiecie progone, jednostka [V] wolt, rome dla NMOS: PMOS Vtn = 0.4V Vtp = -0.48V μ - ruchiwość nośnikow, jednostka [cm²], różne dla NMOS; PMOS un = 110 cm (ruchlinosó elektrondu) up = 45 cm (rachtinosa dziwi) B - współczynnik transkonduktancji, jest stałą charakterystyczną de danego modelu transystoro, jednostka [5] siemens N - szerchosé kanatu] jednostha [m] netor, sa che rallenstjezne L - diugosé hanatu da danego modeln tranzystora tax - grubość warstwy to dunteniu wzemu SiOw izolującego elektrode old branki od hanatu, jednostka [m], toxn = 26 nm toxp = 28 nm E - przenilalność elektor ośrodka, w Horym induhowany fest hanot, jednostha [#] fared, jest to stata E=397-Eo Eo - premikalnosó elektryczno, jednostke [m], jest to stata E. = 8 854187... 10-12 = Cox - pojemność warstwy tlenowej (izolacyjnej bramki) na jednostky powierzchni boramli. Jest zależne od rodzaju tranzystora Zadanre 3 Wzóro ogólny dla B=f(u, E, tox, W, L) B= k, = z M. Cox Cox E B - toanskonduktanoja urządzema Cox - poj. trenkowa na jedn. powier 2 chmi brambi N- szerokość karatn M - ruchimosé electronou (NMOS) L - dt . hourth

a) NMOS $L_n = 65 \text{ nm} \qquad W_n = 120 \text{ nm} \qquad W_n = 110 \frac{\text{cm}^2}{\text{V-S}}$ $Vt_n = 0.4 \text{ V} \qquad Cox = \frac{E_{ox}}{\text{tox}} \qquad \text{tox}_n = 1.86 \text{ nm}$ B = k. L = an Cox W Eox = 3.9 Eo = 8.85.10-12 F L = 1,85 kn = un · Cox kn - 110 vs 3.9. Eo = 100 10 m . 3.3 Eo = 100.104, 5,8 8,85.10-12 E = -4+(-12)-(-3)=-41-12+9=-7 Cox = 392.885 10-12 = 35.1345 10-12 = 13,513 10-3 = 13,513 $k_n = 13, 153.10^{-3} = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 =$ Bn =0,00014683 F. 1,85 = 0,00026766 F.S Bn = Bo 6) PMOS μρ = μρ Cox Cox z tox z 2.8 nm μρ z 45 cm² tox, = 2.8 nm Cox = 3.97 · 8,85 · 10 - 12 F = 35, 15/124 · 10 - 12 F = 12.5539723 103 = 12.5539723 = 12.5539723 103 = 12.5539723 103 = 12.5539723 103 = 12.5539723 = 12.5539723 103 = 12.5539723 103 = 12.5539723 103 = 12.5539723 = 12.5539723 103 = 12.5539723 103 = 12.5539723 103 = 12.5539723 = 12.5539723 103 = 12.5539723 103 = 12.5539723 103 = 12.5539723 = 12.5539723 103 = 12.5539723 103 = 12.5539723 103 = 12.5539723 = 12.5539723 103 = 12.5539727 103 = 12.5539777 103 = 12.55397777 103 = 12.55397777 103 = 12.553977777 103 = 12.55777777777777777 kp = 45 - 10-4 m2 . 12,5539723 . 103 = 0,00005649 F Bp = 0,00026766 Fs Lp=65nm Bp= kp. Wo 0,00026766 · 65 um = 0,0005649 Ts · Wp Wp = 307, 381944 nm Odpowiedz: kp = 0,0005649 vs, kn = 0,000146683 vs, Wp = 807,981944 nm

Zadame 5 Yesti naprecre to jest moreisza od naprecia paggonego dane go tranzystora, ten jest zatkany a rezystancja jego hana Tu mynosi kilka megaomów. Gdy naprz cre przy Tażane do brambi jest wykoze od naprycia progowego tranzystor jest obwarty i medzy dremem D a znodtem S more ptyrac prad, litorego wartoso rahery od naprzera polaryzacji mrędzy dremem a źródtem. Iadame 6 Richard M. Projektant, prej planowanim tranzystora more imremac Pego sresolosó i ellugosó hanatu. Sa one myloszystywane do obliczema wartość B unec wpływaja na wartość pagalu los (panajduje se ne uzorze ne los). Lachouane transystora w obvodne scalonym zahery od jego geometri (W: L) dright temme aprigna to na szybbosé detaranta cry wydajność pogdową.