An Introduction to R

Scott A. Handley, PhD Washington University St Louis

What is R?

A free software environment for statistical computing and graphics

Ordination of fuzzy clusters (PCoA)

Why is R useful?

- Data management and manipulation
- Well established system of packages and documentation
- Support for rich statistical simulation and modeling
- Active development and dedicated community
- Cutting-edge graphical data visualization
- Free!

Where to learn more about R

- The R Project Homepage: http://www.r-project.org
- Quick R Homepage: http://www.statmethods.net
- Bioconductor: http://www.bioconductor.org
- An Introduction to R (long!): http://cran.r-project.org/doc/manuals/R-intro.html
- Google there are tons of tutorials, guides, demos, packages and more

R for Biologists

- Bioconductor (http://bioconductor.org)
 - 2,140 packages (21-August, 2022):
 - Variant detection: coding changes, PolyPhen database
 - Annotation: pathway analysis, access GO, KEGG, NCBI and many others
 - High-throughput assays: flow cytometry, mass spec
 - Transcription factor binding detection
- Ecology (see: http://cran.r-project.org/web/views/Environmetrics.html)
 - Ordination
 - Cluster Analysis
 - Ecological Theory
 - Population Dynamics
 - Spatial Data Analysis
- Phylogenetics and Evolution (see: http://cran.r-project.org/web/views/Phylogenetics.html)
 - Ancestral State Reconstruction
 - Phylogenetic Inference
 - Trait Evolution

Obtaining R

Windows, Mac or Linux OS: https://www.r-project.org

Running R

- Install a R Integrated Development Environment (IDE)
 - RStudio: http://www.rstudio.com
 - Makes working with R much easier, particularly for a new R user
 - Run on Windows, Mac or Linux OS
- Or from the command line, type R

R Studio

Basic R functionality

```
Calculator
                                 (4+5^2)/3.14

    +, -, /, *, ^, log(), exp(), sqrt(),

                                 [1] 9.235669
   abs(), cos(), sin(), tan(), ...
                                y=13.4
                                                 y=c(1,2,3,4,5)
Set Variables /
                                >y
                                                  >y
   Vectors
                                                  [1] 1 2 3 4 5
                                 [1] 13.4
Sequences
                                 y=rep(2,10) [1] 2 2 2 2 2 2 2 2 2 2
                                                  [1] 2 3 4 5 6 7 8
                                 y=2:8
Statistics
                                 t.test(7:34, 5:29)
                                   t = 1.6348, df = 50.999, p-value = 0.1082
                                   alternative hypothesis: true difference in means is not
```

equal to 0

95 percent confidence interval:

17.0

-0.797982 7.797982

sample estimates:

20.5

mean of x mean of y

Manipulation I

n=c(3, 7, 12, 50, 103)	
n[4]	[1] 50
n[-2]	[1] 3 12 50 103
n[1:3]	[1] 3 7 12
n[c(1,3,5)]	[1] 3 12 103
n[n<50]	[1] 3 7 12
n[n>8 & n!=50]	[1] 12 103

Manipulation II

n=c(3, 7, 12, 50, 103)	
n+1	[1] 4 8 13 51 104
sum(n)	[1] 175
mean(n)	[1] 35
var(n)	[1] 1796.5
min(n)	[1] 3
max(n)	[1] 103

Basic Visualization I

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

barplot(y)

Basic Visualization II

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

boxplot(y)

Basic Visualization III

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

hist(y)

Basic Visualization III.i

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

hist(log(y))

Basic Visualization III.ii

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

Basic Visualization IV

y=(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

plot(y)

Basic Visualization IV.ii

y=(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

plot(y, type="l", col="dark red", lwd=100, main="y
variable", ylim=c(0,20), xlim=c(5,15), ylab="vert",
xlab="horiz.")

y variable

Help

- Do you need to remember all of the variables?
- ? is your friend
- ?plot

plot {graphics}

Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter arguments, see par.

For simple scatter plots, plot.default will be used. However, there are plot methods for many R objects, including functions, detailt objects, etc. Use methods (plot) and the documentation for these.

Usage

```
plot(x, y, ...)
```

R Documentation

type

what type of plot should be drawn. Possible types are

- "p" for points,
- "1" for lines,
- "b" for **b**oth,
- . "c" for the lines part alone of "b",
- "o" for both 'overplotted',
- "h" for 'histogram' like (or 'high-density') vertical lines,
- "s" for stair steps,
- . "S" for other steps, see 'Details' below,
- "n" for no plotting.

Data Frames

- A data.frame is essentially a table
- columns can be mixed types
 - numeric, text strings
- rows must be same type

	clostridia	proteobacteria	bacteroides
01_healthy	22	54	245
02_healthy	26	65	265
03_healthy	34	66	262
01_sick	32	32	116
02_sick	12	24	101
03_sick	9	18	87

	clostridia	bacteroides
02_healthy	26	265
03_healthy	34	262
01_sick	32	116
02_sick	12	101
03_sick	9	87

Data Frame Manipulations

	clostridia	proteobacteria	bacteroides
01_healthy	22	54	245
02_healthy	26	65	265
03_healthy	34	66	262
01_sick	32	32	116
02_sick	12	24	101
03_sick	9	18	87

data.frame\$proteobacteria

[1] 54 65 66 32 24 18

t.test(data.frame\$proteobacteria[1:3],
data.frame\$proteobacteria[4:6])

p-value = 0.002725

boxplot(data.frame\$proteobacteria[1:3],
data.frame\$proteobacteria[4:6])

Getting Help in R

?write.table

Description

write.table prints its required argument x (after converting it to a data frame if it is not one nor a matrix) to a file or connection.

Usage

Arguments

x file append the object to be written, preferably a matrix or data frame. If not, it is attempted to coerce x to a data frame. either a character string naming a file or a <u>connection</u> open for writing. " " indicates output to the console. logical. Only relevant if <u>file</u> is a character string. If <u>TRUE</u>, the output is appended to the file. If <u>FALSE</u>, any existing file of the name is destroyed.

Advanced and Other Applications in R

Spatial Epidemiology and Maps

```
library(SpatialEpi)

data(NYleukemia)
sp.obj <- NYleukemia$spatial.polygon
centroids <- latlong2grid(NYleukemia$geo[, 2:3])
population <- NYleukemia$data$population
cases <- NYleukemia$data$cases

plotmap(cases/population, sp.obj, log=TRUE, nclr=5)
points(grid2latlong(centroids), pch=4)</pre>
```


Anatomical Mapping

CerebroViz

https://github.com/ethanbahl/cerebroViz

COMICS

https://github.com/y-popov/COMICS

library("cerebroViz")
data(cerebroEx)
head(cerebroEx)[, c(1:7)]

Animation / Interactivity

Indicator Name	2011	2012	2013	2014	2015	2016	Average	Improvement
Prevalence of Obesity	19.1	23.6	23.3	20.5	24.0	23.2	22.28	-21.47
Prevalence of Tobacco Use	17.4	15.0	15.3	12.2	16.6	16.7	15.53	4.02
Prevalence of Cardiovascular Disease	5.0	4.9	1.5	4.4	4.9	6.2	4.48	-24.00
Prevalence of Diabetes	8.0	7.2	9.3	7.2	7.5	10.4	8.27	-30.00

Tidyverse

What is the tidyverse

The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

- ggplot2: a system for creating graphics (Grammar of Graphics)
- dplyr: a system for data manipulation
- tidyr: functions for tidying data
- readr: a system for reading in data
- purrr: functional programming in R
- string: system for working with strings
- forcats: system for working with factors (categorical

ggplot

Step 1: Initiate your data and aesthetics

ggplot(mtcars, aes(x=hp, y=mpg))

Step 2: Apply geometry

geom_point()

Step 3: Refine

labs(y="Miles per Gallon", x = "Horse Power")

ggplot(mtcars, aes(x=hp, y=mpg)) +
 geom_point() +
labs(y="Miles per Gallon", x = "Horse Power")

dplyr

- mutate() adds new variables that are functions of existing variables
- select() picks variables based on their names
- filter() picks cases based on their values
- summarise() reduces multiple values down to a single summary
- arrange() changes the ordering of the rows

dplyr::mutate

```
> head(mtcars)
                 mpg cyl disp
                               hp drat
                                         wt qsec vs am gear carb
                          160 110 3.90 2.620 16.46
Mazda RX4
                 21.0
Mazda RX4 Wag
                21.0
                       6 160 110 3.90 2.875 17.02
               22.8
Datsun 710
                       4 108 93 3.85 2.320 18.61 1
                       6 258 110 3.08 3.215 19.44
Hornet 4 Drive
              21.4
                                                               1
                       8 360 175 3.15 3.440 17.02
Hornet Sportabout 18.7
Valiant
                       6 225 105 2.76 3.460 20.22 1
                 18.1
```

mutate

mutate(mtcars, wt_mpg = wt/mpg)

```
head(mutate(mtcars, wt_mpg = wt/mpg))
  mpg cyl disp hp drat
                           wt qsec vs am gear carb
                                                      wt_mpg
1 21.0
           160 110 3.90 2.620 16.46
                                                 4 0.1247619
2 21.0
                                                 4 0.1369048
           160 110 3.90 2.875 17.02
3 22.8
               93 3.85 2.320 18.61 1 1
                                             4
                                                 1 0.1017544
           108
4 21.4
        6 258 110 3.08 3.215 19.44 1
                                                 1 0.1502336
5 18.7
                                             3
        8 360 175 3.15 3.440 17.02
                                                 2 0.1839572
6 18.1
           225 105 2.76 3.460 20.22
                                                 1 0.1911602
```

dplry::select

```
> head(mtcars)
                 mpg cyl disp hp drat
                                         wt qsec vs am gear carb
Mazda RX4
                         160 110 3.90 2.620 16.46
                 21.0
Mazda RX4 Wag
                 21.0
                       6 160 110 3.90 2.875 17.02
Datsun 710
                22.8
                       4 108 93 3.85 2.320 18.61 1
Hornet 4 Drive
                       6 258 110 3.08 3.215 19.44
                21.4
Hornet Sportabout 18.7
                       8 360 175 3.15 3.440 17.02
Valiant
                       6 225 105 2.76 3.460 20.22 1
                 18.1
```

select

select(mtcars, mpg, wt)

select(mtcars, starts_with(c))

	mpg	wt
Mazda RX4	21.0	2.620
Mazda RX4 Wag	21.0	2.875
Datsun 710	22.8	2.320
Hornet 4 Drive	21.4	3.215
Hornet Sportabout	18.7	3.440
Valiant	18.1	3.460

	cyl	carb
Mazda RX4	6	4
Mazda RX4 Wag	6	4
Datsun 710	4	1
Hornet 4 Drive	6	1
Hornet Sportabout	8	2
Valiant	6	1

dplyr::filter

```
> head(mtcars)
                 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4
                      6 160 110 3.90 2.620 16.46 0
                21.0
Mazda RX4 Wag
                21.0
                      6 160 110 3.90 2.875 17.02 0 1
Datsun 710
             22.8
                      4 108 93 3.85 2.320 18.61 1 1
Hornet 4 Drive 21.4
                      6 258 110 3.08 3.215 19.44 1
                                                            1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
Valiant
                      6 225 105 2.76 3.460 20.22 1 0
                18.1
```

```
filter fi
```

```
mpg cyl disp hp drat wt qsec vs am gear carb
1 21 6 160 110 3.9 2.620 16.46 0 1 4 4
2 21 6 160 110 3.9 2.875 17.02 0 1 4 4
```

dplyr::summarise

```
> head(mtcars)
                 mpg cyl disp hp drat
                                        wt qsec vs am gear carb
                21.0
                       6 160 110 3.90 2.620 16.46
Mazda RX4
Mazda RX4 Wag
                21.0
                       6 160 110 3.90 2.875 17.02 0
Datsun 710
             22.8
                       4 108 93 3.85 2.320 18.61 1 1
Hornet 4 Drive 21.4
                       6 258 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
Valiant
                       6 225 105 2.76 3.460 20.22 1
                18.1
```

```
summarise
```

summarise(mtcars, mean = mean(disp)

```
mtcars %>%
group_by(cyl) %>%
summarise(mean = mean(disp))
```

```
mean
1 230.7219
```

```
cyl mean 

<dbl> <dbl>
1 4 105.
2 6 183.
3 8 353.
```


Basic Data Science Workflow with R and RStudio

R Analysis Workflow Overview

RMarkdown

YAML

Yet Another Markdown Language

TEXT

CHUNK

"`{r title} contents

```
CHUNK
TEXT
```

```
1 ---
2 title: "Untitled"
3 author: "Scott A. Handley"
4 date: "10/7/2018"
5 output: html_document
6 ---
```

```
## R Markdown

13

14 This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <a href="http://rmarkdown.rstudio.com">http://rmarkdown.rstudio.com</a>.

15

16 When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
```

EXAMPLE: Star Wars Data

tidyverse example

Starwars data set

```
head(starwars)
 A tibble: 6 x 13
                height mass hair_color
                                         skin_color
                                                      eye_color birth_year gender homeworld species films
                                                                                                              vehicles starships
 name
                  <int> <dbl> <chr>
                                                      <chr>
                                                                     <dbl> <chr>
                                                                                 <chr>
                                                                                            <chr>>
                                                                                                    st>
                                                                                                              st>
                                                                                                                        st>
  <chr>
                                          <chr>
 Luke Skywalker
                   172
                           77 blond
                                          fair
                                                                      19
                                                                           male
                                                                                                    <chr [5]> <chr [2]> <chr [2]>
                                                      blue
                                                                                  Tatooine
                                                                                            Human
2 C-3P0
                   167
                           75 NA
                                         gold
                                                      yellow
                                                                     112
                                                                                  Tatooine
                                                                                                    <chr [6]> <chr [0]> <chr [0]>
                                                                                            Droid
 R2-D2
                    96
                          32 NA
                                         white, blue red
                                                                                                    <chr [7]> <chr [0]> <chr [0]>
                                                                      33
                                                                                  Naboo
                                                                                            Droid
 Darth Vader
                   202
                                         white
                                                                      41.9 male
                                                                                  Tatooine Human
                                                      yellow
                                                                                                    <chr [4]> <chr [0]> <chr [1]>
                          136 none
                                                                           female Alderaan
 Leia Organa
                   150
                                                                                                    <chr [5]> <chr [1]> <chr [0]>
                           49 brown
                                         light
                                                      brown
                                                                                            Human
                         120 brown, grey light
6 Owen Lars
                   178
                                                      blue
                                                                      52
                                                                           male
                                                                                  Tatooine Human
                                                                                                    <chr [3]> <chr [0]> <chr [0]>
```

next steps

Tutorial

R tutorial: http://evomics.org/learning/programming/ggplot2-introduction/

Links

- Backup Plan! Do not do unless we have issues with terra.bio
- Rstudio Cloud Link: https://rstudio.cloud/project/3430201

- Make an account at Rstudio Cloud
 - https://rstudio.cloud
- Log into Rstudio cloud
- Copy and paste this link into your browser
 - https://rstudio.cloud/project/3430201