```
In [11]: import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
import numpy as np
import wooldridge as woo
import seaborn as sns
import statsmodels.api as sm
```

In [96]: df = pd.read_excel("430_Data_Cleaned.xlsx", index_col = "Country")
df

Out[96]:

	life_expectancy	adult_mortality	infant_deaths	alcohol	percentage_expenditure	hepatitis_b	bmi	under_five_deaths	polio	total_
Country										
Afghanistan	59.5	272	69	0.01	78.184215	67.0	17.6	93	67	
Albania	76.9	86	0	5.14	412.443356	99.0	55.8	1	99	
Algeria	75.1	113	21	0.66	555.926083	95.0	56.1	24	95	
Angola	56.0	358	72	8.24	256.122524	75.0	21.5	110	75	
Antigua and Barbuda	75.9	134	0	8.18	2156.229842	98.0	45.7	0	97	
Venezuela (Bolivarian Republic of)	73.7	161	9	6.70	0.000000	81.0	6.4	10	73	
Viet Nam	75.6	13	29	4.12	0.000000	97.0	15.3	36	97	
Yemen	64.7	236	36	0.04	0.000000	67.0	38.7	46	68	
Zambia	59.2	349	29	2.59	196.915250	78.0	21.7	43	7	
Zimbabwe	56.6	429	26	6.09	92.602336	97.0	3.3	39	95	

183 rows × 14 columns

```
In [45]: col = list(df.columns)
         col
Out[45]: ['life_expectancy',
          'adult_mortality',
          'infant_deaths',
          'alcohol',
          'percentage_expenditure',
          'hepatitis_b',
          'bmi',
          'under-five_deaths',
          'polio',
          'total_expenditure',
          'diphtheria',
          'hiv/aids',
          'gdp',
          'schooling']
```

```
In [26]: df.isnull().any()
Out[26]: life_expectancy
                                    False
         adult mortality
                                    False
         infant deaths
                                    False
         alcohol
                                     True
         percentage expenditure
                                    False
         hepatitis b
                                     True
                                     True
         bmi
         under-five_deaths
                                    False
         polio
                                    False
         total_expenditure
                                     True
         diphtheria
                                    False
         hiv/aids
                                    False
         qdp
                                     True
         schooling
                                     True
         dtype: bool
In [46]: df.life_expectancy
Out[46]: Country
         Afghanistan
                                                 59.5
                                                 76.9
         Albania
         Algeria
                                                 75.1
         Angola
                                                 56.0
                                                 75.9
         Antigua and Barbuda
                                                 . . .
         Venezuela (Bolivarian Republic of)
                                                 73.7
         Viet Nam
                                                 75.6
         Yemen
                                                 64.7
         Zambia
                                                 59.2
         Zimbabwe
                                                 56.6
         Name: life_expectancy, Length: 183, dtype: float64
```

In [27]:	<pre>df.isnull().sum()</pre>	
Out[27]:	life_expectancy	0
	adult_mortality	0
	infant_deaths	0
	alcohol	1
	percentage_expenditure	0
	hepatitis_b	13
	bmi	2
	under-five_deaths	0
	polio	0
	total_expenditure	2
	diphtheria	0
	hiv/aids	0
	gdp	29
	schooling	10
	dtype: int64	

In [28]: df.describe()

Out[28]:

	life_expectancy	adult_mortality	infant_deaths	alcohol	percentage_expenditure	hepatitis_b	bmi	under- five_deaths	polio	1
count	183.000000	183.000000	183.000000	182.000000	183.000000	170.000000	181.000000	183.000000	183.000000	_
mean	70.916940	148.792350	26.338798	4.138187	1011.471726	82.635294	40.099448	35.562842	83.939891	
std	8.562151	108.617944	96.811105	4.272119	2273.787938	24.861199	20.775655	127.826312	24.120387	
min	49.700000	2.000000	0.000000	0.010000	0.000000	2.000000	2.100000	0.000000	3.000000	
25%	64.500000	66.500000	0.000000	0.010000	32.597328	81.000000	21.900000	0.000000	83.000000	
50%	73.200000	138.000000	3.000000	2.890000	196.915250	94.000000	45.900000	3.000000	94.000000	
75%	76.500000	215.500000	19.500000	7.785000	847.322649	97.000000	58.500000	23.500000	98.000000	
max	88.000000	513.000000	1100.000000	16.350000	18379.329740	99.000000	76.200000	1400.000000	99.000000	

In [29]: # do we need harvey collier?

In [18]: pip install rpy2

Requirement already satisfied: rpy2 in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (3.5.5)

Requirement already satisfied: jinja2 in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (fr om rpy2) (2.11.3)

Requirement already satisfied: pytz in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (from rpy2) (2021.3)

Requirement already satisfied: tzlocal in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (f rom rpy2) (4.2)

Requirement already satisfied: cffi>=1.10.0 in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packag es (from rpy2) (1.15.0)

Requirement already satisfied: pycparser in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (from cffi>=1.10.0->rpy2) (2.21)

Requirement already satisfied: MarkupSafe>=0.23 in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (from jinja2->rpy2) (2.0.1)

Requirement already satisfied: pytz-deprecation-shim in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (from tzlocal->rpy2) (0.1.0.post0)

Requirement already satisfied: tzdata in /Users/rheasethi/opt/anaconda3/lib/python3.9/site-packages (from pytz-deprecation-shim->tzlocal->rpy2) (2022.5)

Note: you may need to restart the kernel to use updated packages.

In [19]: import rpy2

import warnings
warnings.filterwarnings('ignore')

from rpy2.robjects import pandas2ri
import rpy2.rinterface as rinterface
pandas2ri.activate()

%load_ext rpy2.ipython

```
In []: # adult mortality + infant deaths + alcohol + percentage expenditure + hepatitis b + bmi + under-five de
In [100]: model = smf.ols('life expectancy ~ adult mortality', data = df)
          reg = model.fit()
          reg.params
Out[100]: Intercept
                             79.451273
          adult mortality
                             -0.057357
          dtype: float64
In [101]: |model2 = smf.ols('life_expectancy ~ infant_deaths', data = df)
          reg2 = model2.fit()
          reg2.params
Out[101]: Intercept
                           71.434985
          infant deaths
                           -0.019669
          dtype: float64
In [102]: model3 = smf.ols('life expectancy ~ alcohol', data = df)
          reg3 = model3.fit()
          reg3.params
Out[102]: Intercept
                       66.767526
          alcohol
                        1.022519
          dtype: float64
In [103]: model4 = smf.ols('life expectancy ~ percentage expenditure', data = df)
          reg4 = model4.fit()
          reg4.params
Out[103]: Intercept
                                     69.245494
          percentage_expenditure
                                      0.001652
          dtype: float64
```

```
In [104]: model5 = smf.ols('life expectancy ~ hepatitis b', data = df)
          reg5 = model5.fit()
          reg5.params
Out[104]: Intercept
                         64.733057
          hepatitis b
                          0.071774
          dtype: float64
In [105]: model6 = smf.ols('life expectancy ~ bmi', data = df)
          reg6 = model6.fit()
          reg6.params
Out[105]: Intercept
                       62.278638
                        0.218540
          bmi
          dtype: float64
In [106]: model7 = smf.ols('life_expectancy ~ under_five_deaths', data = df)
          reg7 = model7.fit()
          req7.params
Out[106]: Intercept
                               71.510258
          under_five_deaths
                               -0.016684
          dtype: float64
In [107]: model8 = smf.ols('life_expectancy ~ polio', data = df)
          reg8 = model8.fit()
          reg8.params
Out[107]: Intercept
                       58.501361
          polio
                        0.147910
          dtype: float64
```

```
In [108]: model9 = smf.ols('life expectancy ~ total expenditure', data = df)
          rea9 = model9.fit()
          reg9.params
Out[108]: Intercept
                                66.546236
          total_expenditure
                                0.715904
          dtype: float64
In [109]: |model10 = smf.ols('life expectancy ~ diphtheria', data = df)
          req10 = model10.fit()
          req10.params
Out[109]: Intercept
                        54.783967
          diphtheria
                         0.187796
          dtype: float64
In [110]: model11 = smf.ols('life_expectancy ~ hiv_aids', data = df)
          reg11 = model11.fit()
          reg11.params
Out[110]: Intercept
                       73.487502
          hiv aids
                       -2.773660
          dtype: float64
In [111]: model12 = smf.ols('life_expectancy ~ gdp', data = df)
          reg12 = model12.fit()
          reg12.params
Out[111]: Intercept
                       68.345096
                        0.000266
          qdp
          dtype: float64
```

15/02/23, 5:27 PM

```
In [112]: model13 = smf.ols('life_expectancy ~ schooling', data = df)
    reg13 = model13.fit()
    reg13.params

Out[112]: Intercept    41.821061
```

schooling 2.293171 dtype: float64

```
In [53]: # model = smf.ols('life_expectancy ~ adult_mortality', data = df)
### reg = model.fit()

plt.figure(figsize = (10, 4))
sns.regplot(x = df.adult_mortality, y = df.life_expectancy, lowess = True)
plt.axhline(0, linestyle = '--', color = "red")
plt.ylabel("Residuals")
plt.title("Residuals Plot")
plt.show()
```



```
In [57]: # leverage = reg.get_influence().hat_matrix_diag

###plt.figure(figsize = (10, 4))
plt.scatter(df.adult_mortality, leverage)
plt.axhline(0, color = 'red')
plt.vlines(x = df.adult_mortality, ymin = 0, ymax = leverage)
plt.xlabel('Index')
plt.ylabel('Leverage')
plt.title("Diagnostic Plot")
plt.grid()
```



```
In [ ]: # adult_mortality + infant_deaths + alcohol + percentage_expenditure + hepatitis_b + bmi + under-five_de
```

In []: # Outliers

In [74]: #plots for all predictors

In [73]:

```
figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```



```
In [113]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg2, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg2, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```



```
In [114]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg3, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg3, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```



```
In [115]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg4, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg4, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```


als


```
figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg6, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg6, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```



```
In [118]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg7, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg7, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```


-1


```
In [119]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg8, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg8, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```



```
In [120]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg9, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg9, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```



```
In [122]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg11, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg11, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```

Influence Plot

Swaziland

3 -


```
figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg12, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg12, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```



```
In [124]: figd, ax = plt.subplots(figsize=(12,8))
figd = sm.graphics.influence_plot(reg13, ax = ax, criterion="DFFITS")
figd.tight_layout(pad=1.0)

fige, ax = plt.subplots(figsize=(12,8))
fige = sm.graphics.influence_plot(reg13, ax = ax, criterion="cooks")
fige.tight_layout(pad=1.0)
```


