4

5

6

7

1

2

3

1

2

3

4

5

6

7

8

9

1

2

3

4

IN THE	CLAIMS:

	1 .			
1. A tamper i	tecictant	ntacessar s	vetem	comprising
1. A tamper i	Porotaire	processor s	y Storri	comprising.

a multi-component chip module (MCM) including:

a CPU

one or more memory chips; and

one or more chip means containing at least one each of a de-encryption key and algorithm therein; and

an obscurant covering the contents of said multi-component chip module.

- 2. A tamper resistant processor system according to claim 1, further comprising said multi-component chip module in a bus configuration with other multi-component chip modules and said one or more memory chips.
 - 3. A tamper resistant processor system, comprising:

processor boards;

an encrypted computer program;

a non-volatile memory, operatively connected to said processor boards, for storing said encrypted computer program and sending said encrypted computer programs to address destinations on said processor boards;

multi-component chip modules for receiving and de-encrypting said encrypted computer program and sending said de-encrypted computer programs to memory components on said multi-component chip modules.

- 4. A method for protecting a processor system from tampering, said method comprising the steps of:
- a) mounting IC components on a single substrate as a multi-component module or as the contents of a multi-component module;
- b) converting an encrypted computer program, received over a bus from a nonvolatile memory, into its original un-encrypted form;

	7	c) sending the de-encrypted computer program to appropriate locations in					
	8	memory located in the multi-component module; and					
	9	d) protecting the multi-component module using one or a combination of an					
	10	obscurant, deceptive patterns, and tamper detection/destruction mechanisms.					
	1	5. A tamper resistant processor system, comprising:					
	2	processor boards;					
	3	encrypted code;					
	4	a non-volatile memory, operatively connected to said processor boards, for storing					
	5	said encrypted code and sending said encrypted code to address destinations on said					
	6	processor boards; and					
	7	multi-component chip modules for receiving and de-encrypting said encrypted					
	8	code and sending said de-encrypted code to memory components on said multi-chip					
	9	modules.					
	1	6. A method for protecting a processor system from tampering, said method					
,	2	comprising the steps of:					
	3	a) mounting C components on a single substrate a s a multi-component module					
	4	or as the contents of a multi-component module;					
	5	b) converting encrypted code, received over a bus from a non-volatile memory,					
	6	into its original un-encrypted form;					
	7	c) sending the de-encrypted code to appropriate locations in memory located in					
	8	the multi-component module; and					
	9	d) protecting the multi-component module using one or a combination of an					
	10	obscurant, deceptive patterns, and tamper detection/destruction mechanism.					
		lacksquare					
	1	7. A tamper resistant processor system, comprising:					
	2	processor boards;					
	3	encrypted data;					
	4	a non-volatile memory or network data source, operatively connected to said					
	5	processor boards, for storing said engrapted data and sending said engrapted data to					

	6	address destinat	ions on said processor boards and for receiving and storing encrypted
	7	data resulting fr	om the processing of the input data; and
	8	multi-co	mponent chip modules for receiving and de-encrypting said encrypted
	9	data, sending sa	id de-encrypted data to memory components on said multi-chip modules,
1	0	for storing the	esults of processing the de-encrypted data, and for encrypting the results
1	1	before sending	to storage or network external to the multi-component chip modules.
	1	8. A me	thod for protecting a processor system from tampering, said method
	2	comprising the	steps of:
ŧ	3	a) moun	ting IC components on a single substrate as a multi-component module or
	4	as the contents	of a multi-component module;
	5	b) conve	rting encrypted data, received over a bus from a non-volatile memory,
	6	into its original	unencrypted form;
į	7	c) sendir	g the de-encrypted data to appropriate locations in memory located in the
	8	multi-compone	nt module;
	9	d) encry	pting processing result data that is being sent to storage or networks
1	.0	external to the	multi-component module; and
1	1	e) protec	ting the multi-component module using one or a combination of an
1	.2	obscurant, dece	ptive patterns, and tamper detection/destruction mechanisms.
	1	9. A tam	per resistant processor system, comprising:
	2	a multi-c	omponent chip module including:
	3	а	CPU; and
	4	а	n in-line real time de-encryption chip;
	5	one or m	ore memory chips, operatively connected to said in-line real time de-
	6	encryption chip	said multi-component chip module encrypting out put to said one or
	7	more memory c	hips; and
	8	a memor	y controller selecting between secured and un-secured memory over a
	9	processor buss.	