Lingfu Zhang February 10, 2015

6.046 Problem 1-1

Collaborators: none

- (a) Consider the situation of $V = u_0, u_1, u_2$ and $E = (u_0, u_1), (u_1, u_2)$, with $p_0 = 2, p_1 = 3$, $p_2 = 2$. Using the "greedy" algorithm described in the problem, we will choose u_1 at the first step, and remove u_1, u_0 and u_2 , as u_0 and u_2 are neighbors of u_1 . Then the total profit we get is 3. However, if we select u_0 and u_2 instead, we can get a total profit of 4, which indicates that the "greedy" algorithm doesn't work.
- (b) This problem is that given a tree every vertex of whom has a weight related to it, we need to find a set of vertices with maximum total weight and no two of selected vertices are adjacent.

Let's randomly select a vertex u_0 as the root of the tree. For a given vertex u_i , there is exactly one path from u_i to u_0 .

Then give some definitions:

Let's call the next vertex on the path from u_i to u_0 the "Father" of u_i . Then every vertex in V, except for u_0 itself, has a unique "Father".

For two vertices u_a and u_b , if u_a is the "Father" of u_b , we call u_b a "Child" of u_a . Then any adjacent vertex of u_i is either its "Father" or "Child". (Otherwise the paths from both vertices to u_0 don't contain each other, and we can get a circle.)

Let G_i be a subgraph of G, such that G_i consists of all u_j that u_i is on the path from u_j to u_0 , and all edges among these vertices. Then $G_0 = G$, and for any $i, u_i \in G_i$. G_i contains all children of u_i .

Let A[i] be the maximum total weight of G_i (with no two adjacent vertices selected), and N[i] be the maximum total weight of G_i while u_i itself is not selected (with no two adjacent vertices selected). We now have n subproblems (of getting A[i] and N[i]). Then we can calculate A[i] and N[i] by:

$$N[i] = \sum_{u_j \text{ is child of } u_i} A[j]$$

$$A[i] = \max \left(p_i + \sum_{u_j \text{ is child of } u_i} N[j], N[i] \right)$$

The reason of doing this is that any G_i can be devided into many G_j and u_i , where u_j are all children of u_i (u_i might also have no child at all). When calculating N[i], u_i itself is not selected, so we have the freedom of selecting the children of u_i . As all the G_j do not influence

Lingfu Zhang 6.046 Problem 1-1

each other (there are no edges connecting them), we know that N[i] is simply the sum of all A[j].

When calculating A[i], there are mainly two situations: u_i is selected or not. If u_i is not selected, the result is simply N[i]; if u_i is selected, all its children cannot be selected, then the maximum total weight should be the sum of all N[j] adds p_i . A[i] should be the maximum value of these two.

We shall initialize a list Father[i] to all -1. Then define a function "calculateValues(i)", which first get the list of all adjacent vertices of u_i . If the list has no element other than Father[i], let $A[i] = p_i$ and N[i] = 0, then return; else, for every u_j in the list, if $j \neq Father[i]$: let Father[j] = i, and do "calculateValues(j)". Finally, calculate A[i] and N[i] using all A[j] and N[j].

We directly call "calculateValues(0)". Then it will call "calculateValues" for all children of u_i , then the all grandchildren of u_i , etc. As this graph is connected, all vertices will be called, and exactly once, because every vertex, except for u_0 , has exactly one Father.

For every subproblem, (every calling of "calculateValues"), it does some addings and a comparing. However, as every vertex has one Father, every A[i] and N[i] is added exactly once. The total running time of the above process is $\Theta(n)$.

Now we have all A[i] and N[i], the next step is to find the list "selected Vertices". This can be done by running a "check(i)" function: first compare A[i] and N[i]. If A[i] is greater than N[i], add i to "selected Vertices" and check all its grand children; else, check all its children. We can prove that after running "check(i)", total weight of selected vertices in G_i is A[i]. We can prove this by induction. For a vertex u_i without any child, running "check(i)" adds itself to "slected Vertices" list, which makes sure that A[i] is reached. For any u_i , if A[i] is greater than N[i], we know that A[i] is calculated from

$$A[i] = p_i + \sum_{u_j ischild of u_i} N[j]$$

By running "check" on every grandchild u_k of u_i , A[k] is reached in G_k for all u_k . Then for every child u_j of u_i , the total weight of selected vertices in G_j is N[j]. Then the total weight of selected vertices in G_i is A[i].

On the other side, if A[i] = N[i], we know that

$$A[i] = N[i] = \sum_{u_j i s child of u_i} A[j]$$

By running "check" on every child u_j of u_i , the total weight of selected vertices in G_j is A[j], and then the total weight of selected vertices in G_i is A[i].

This step run "check" at most n times, and there is only one comparing every running. Thus the running time is also $\Theta(n)$. Then the total running time is $\Theta(n)$.

Your solution to Problem 1-1 goes here. Remember, each problem should be in a separate LaTeX file so that you can generate one PDF per problem to submit to Stellar.