Particle Image Velocimetry (PIV)

MAE 519, Fall 2019

Daniel Ruth, Luc Deike, Baptiste Néel, and Daniel Shaw

A sheet of particles is illuminated in the flow.

https://www.photonics.com/Articles/Particle_Image_Velocimetr y_Basics_Developments/a25121

Particles are small and neutrally buoyant so they follow the flow.

The motion of the particles reveals **two of the three velocity components** in a **single plane** in the flow.

Back-to-back images are correlated to determine the particle displacement between frames.

Compute the velocity in the window as $u = \Delta x / \Delta t$.

PIV calculates an average velocity in the interrogation window—it may filter out smaller-scale motions!

Back-to-back images are correlated to determine the particle displacement between frames.

Compute the velocity in the window as $\mathbf{u} = \Delta \mathbf{x} / \Delta t$.

PIV calculates an average velocity in the interrogation window—it may filter out smaller-scale motions!

Project: measuring the velocity field in a turbulent water jet

- Take two sets of PIV
 measurements: large-scale view
 and small-scale view
 - Calculate the seeding density, frame rate, etc. requirements for each
 - How do the statistics compare?
- Evaluate with two open-source PIV packages: OpenPIV (Python) and PIVLab (Matlab)
 - Different approaches to correlating particle displacements; how does this affect the results?

Designing the experiments

- Camera/optics → pixel size,
 a/b frame time separation
- Laser sheet/seeding → laser sheet intensity and thickness, seeding material and particle density
- Processing

 window size, correlation method, filtering

Designing the experiments

Two views: pixel size $\sim 100 \, \mu m$ (large-scale), 50 μm (zoomed-in).

Typical velocity is ~ 0.5 m/s.

To determine the **seeding density**:

- Want ~10 particles/PIV window
- Particles are spheres $\sim 30~\mu m$ in diameter, same density as water
- Window is ~ 32 x 32 pixels²
- Laser sheet is ~ 0.5 mm thick
- The tank holds 0.08 m³ of water

To determine the **frame rate**:

 Want particles to move ~ 1/4 of the window size between a/b frames

Before lab on Friday

Download/install **software** packages:

- Matlab
- PIVLab 2.20
- Python 3
- OpenPIV-python
- Sample processing code: https://github.com/DeikeLab/MAE519/tree/master/PIV (The list of required code is there as well)

Estimate experimental parameters for the two experiments to be conducted, given the guidelines in the previous slide (available on Github).

Complete the laser safety training.