Wavelets and Approximation

Ronald DeVore

University of South Carolina

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the property of the contract of the con	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 07 JAN 2005		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
Wavelets and Approximation				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of South Carolina				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 50, Wavelets and M nent contains color i	•	(WAMA) Works	hop held on	19-31 July 2004.,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	135	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

•
$$f(x), x \in [0,1]$$

- $f(x), x \in [0, 1]$
- Approximate f by piecewise constants

- $f(x), x \in [0, 1]$
- Approximate f by piecewise constants
- Types of approximation: Linear, Nonlinear

- $f(x), x \in [0, 1]$
- Approximate f by piecewise constants
- Types of approximation: Linear, Nonlinear
- Select a metric/norm | · | to measure distortion

$$||f||_{L_p(\Omega)} := (\int_{\Omega} |f(x)|^p dx)^{1/p}, \quad 0$$

- $f(x), x \in [0, 1]$
- Approximate f by piecewise constants
- Types of approximation: Linear, Nonlinear
- Select a metric/norm | · | to measure distortion

$$||f||_{L_p(\Omega)} := (\int_{\Omega} |f(x)|^p dx)^{1/p}, \quad 0$$

• Divide [0,1] into n equal length intervals

- ullet Divide [0,1] into n equal length intervals

ullet Divide [0,1] into n equal length intervals

$$\blacksquare$$
 $\Pi_n := \{ [\frac{k}{n}, \frac{k+1}{n}), \quad k = 0, \dots, n-1 \}$

• $S_n := \{S : S \text{ is constant on each } I \in \Pi_n \}$

- ullet Divide [0,1] into n equal length intervals
- \blacksquare $\Pi_n := \{ [\frac{k}{n}, \frac{k+1}{n}), \quad k = 0, \dots, n-1 \}$
- $S_n := \{S : S \text{ is constant on each } I \in \Pi_n \}$
- S_n is a linear space

Typical function in S_n

- ullet Divide [0,1] into n equal length intervals
- \blacksquare $\Pi_n := \{ [\frac{k}{n}, \frac{k+1}{n}), \quad k = 0, \dots, n-1 \}$
- $S_n := \{S : S \text{ is constant on each } I \in \Pi_n \}$
- $m{\mathcal{S}}_n$ is a linear space
- Given $f \in L_p[0,1]$, define error

$$E_n(f)_p := \inf_{S \in \mathcal{S}_n} \|f - S\|_{L_p}$$

• Divide [0,1] into n intervals $I_i = [\xi_i, \xi_{i+1}]$, $0 = \xi_0 < \xi_1 < \dots < \xi_n = 1$

- Divide [0,1] into n intervals $I_i = [\xi_i, \xi_{i+1}],$ $0 = \xi_0 < \xi_1 < \dots < \xi_n = 1$
- $\Sigma_n := \{S : S \text{ is constant on each } I_i, i = 1, \dots, n\}$

- Divide [0,1] into n intervals $I_i = [\xi_i, \xi_{i+1}],$ $0 = \xi_0 < \xi_1 < \dots < \xi_n = 1$
- $\Sigma_n := \{S : S \text{ is constant on each } I_i, i = 1, \dots, n\}$
- Σ_n is not a linear space: $S_1, S_2 \in \Sigma_n$ but $S_1 + S_2 \in \Sigma_{2n}$

- Divide [0,1] into n intervals $I_i = [\xi_i, \xi_{i+1}],$ $0 = \xi_0 < \xi_1 < \dots < \xi_n = 1$
- $\Sigma_n := \{S : S \text{ is constant on each } I_i, i = 1, \dots, n\}$
- Σ_n is not a linear space: $S_1, S_2 \in \Sigma_n$ but $S_1 + S_2 \in \Sigma_{2n}$
- Given $f \in L_p[0,1]$, define error

$$\sigma_n(f)_p := \inf_{S \in \Sigma_n} \|f - S\|_{L_p}$$

• For each interval I, E(I) the local L_p error in approximating f by constants

$$E(I) := \inf_{c} ||f - c||_{L_p(I)}$$

• For each interval I, E(I) the local L_p error in approximating f by constants

$$E(I) := \inf_{c} ||f - c||_{L_p(I)}$$

• Given error tolerance $\epsilon > 0$ generate partition \mathcal{P}_{ϵ} such that $E(I) \leq \epsilon$ for all $I \in \mathcal{P}_{\epsilon}$

• For each interval I, E(I) the local L_p error in approximating f by constants

$$E(I) := \inf_{c} ||f - c||_{L_p(I)}$$

- Given error tolerance $\epsilon > 0$ generate partition \mathcal{P}_{ϵ} such that $E(I) \leq \epsilon$ for all $I \in \mathcal{P}_{\epsilon}$
- I is good if $E(I) \leq \epsilon$

• For each interval I, E(I) the local L_p error in approximating f by constants

$$E(I) := \inf_{c} ||f - c||_{L_p(I)}$$

- Given error tolerance $\epsilon > 0$ generate partition \mathcal{P}_{ϵ} such that $E(I) \leq \epsilon$ for all $I \in \mathcal{P}_{\epsilon}$
- I is good if $E(I) \leq \epsilon$
- I is bad if $E(I) > \epsilon$

Initially if $E([0,1]) \le \epsilon$ then algorithm terminates and $\mathcal{P}_{\epsilon} := \{[0,1]\}$

- Initially if $E([0,1]) \le \epsilon$ then algorithm terminates and $\mathcal{P}_{\epsilon} := \{[0,1]\}$
- if $E([0,1]) > \epsilon$ then set $\mathcal{B}_{\epsilon} := \{[0,1]\}$ and $\mathcal{G}_{\epsilon} := \emptyset$

- Initially if $E([0,1]) \le \epsilon$ then algorithm terminates and $\mathcal{P}_{\epsilon} := \{[0,1]\}$
- if $E([0,1]) > \epsilon$ then set $\mathcal{B}_{\epsilon} := \{[0,1]\}$ and $\mathcal{G}_{\epsilon} := \emptyset$
- **▶** Recursion: For each $I ∈ \mathcal{B}_{\epsilon}$ put child J of I in \mathcal{G}_{ϵ} if it is good, put it in \mathcal{B}_{ϵ} if it is bad. Remove I from \mathcal{B}_{ϵ}

- Initially if $E([0,1]) \le \epsilon$ then algorithm terminates and $\mathcal{P}_{\epsilon} := \{[0,1]\}$
- if $E([0,1]) > \epsilon$ then set $\mathcal{B}_{\epsilon} := \{[0,1]\}$ and $\mathcal{G}_{\epsilon} := \emptyset$
- **●** Recursion: For each $I \in \mathcal{B}_{\epsilon}$ put child J of I in \mathcal{G}_{ϵ} if it is good, put it in \mathcal{B}_{ϵ} if it is bad. Remove I from \mathcal{B}_{ϵ}
- Stop when $\mathcal{B}_{\epsilon} = \emptyset$, $\mathcal{P}_{\epsilon} := \mathcal{G}_{\epsilon}$, $N_{\epsilon} := \#(\mathcal{P}_{\epsilon})$

 $m{P}_{\epsilon}(f)$ best approximation to f by piecewise constants on $m{P}_{\epsilon}$

- $a_n(f)_p := \inf\{\epsilon : N_\epsilon \le n\}$

Adaptively generated partition

Tree associated to adaptive partition

Comparison

• Approximation classes: $\alpha>0$ define $\mathcal{A}^{\alpha}(L_p,\ linear\ splines)$ as the set of all $f\in L_p[0,1]$ such that

$$E_n(f)_p \le Cn^{-\alpha}, \quad n \ge 1$$

Comparison

• Approximation classes: $\alpha > 0$ define $\mathcal{A}^{\alpha}(L_p, \ linear \ splines)$ as the set of all $f \in L_p[0,1]$ such that

$$E_n(f)_p \le C n^{-\alpha}, \quad n \ge 1$$

• Similarly define $\mathcal{A}^{\alpha}(L_p)$ for the other forms of approximation

Comparison

• Approximation classes: $\alpha > 0$ define $\mathcal{A}^{\alpha}(L_p, \ linear \ splines)$ as the set of all $f \in L_p[0,1]$ such that

$$E_n(f)_p \le C n^{-\alpha}, \quad n \ge 1$$

- Similarly define $\mathcal{A}^{\alpha}(L_p)$ for the other forms of approximation
- $\mathcal{A}_q^{\alpha}(L_p)$ finer scaling: same approximation order α

$$|f|_{\mathcal{A}_q^{\alpha}(L_p)} := (\sum_{n=1}^{\infty} [n^{\alpha} E_n(f)_p]^q)^{1/q}$$

Approximation Classes: Linear

ullet Fix the L_p space to measure error

Approximation Classes: Linear

- Fix the L_p space to measure error
- $A^s(L_p, linear) = B^s_{\infty}(L_p)$

Approximation Classes: Linear

- Fix the L_p space to measure error
- $A^s(L_p, \ linear) = B^s_{\infty}(L_p)$
- Proved by Scherer +

pproximation: ${\cal A}_{\infty}^s(L_p)$ Besov space of smo

Approximation Classes: free knot splines

• Fix the L_p space to measure error

Approximation Classes: free knot splines

- Fix the L_p space to measure error
- $A_{\tau}^{s}(L_{p}, nonlinear) = B_{\tau}^{s}(L_{\tau}), \frac{1}{\tau} = s + \frac{1}{p}$

Approximation Classes: free knot splines

- Fix the L_p space to measure error
- $A_{\tau}^s(L_p, nonlinear) = B_{\tau}^s(L_{\tau}), \frac{1}{\tau} = s + \frac{1}{p}$
- Petrushev, DeVore-Popov (splines); DeVore-Jawerth-Popov (wavelets)

Approximation class: free knot splines

Adaptive approximation

• $p = \infty$ approximation order $O(n^{-1})$

- $p = \infty$ approximation order $O(n^{-1})$
- Linear approximation $f' \in L_{\infty}$

- $p = \infty$ approximation order $O(n^{-1})$
- Linear approximation $f' \in L_{\infty}$
- Nonlinear approximation (free knot splines) $f' \in L_1$ or $f \in BV$

- $p = \infty$ approximation order $O(n^{-1})$
- Linear approximation $f' \in L_{\infty}$
- Nonlinear approximation (free knot splines) $f' \in L_1$ or $f \in BV$
- Adaptive approximation $f' \in LlogL$: for example $f' \in L_p$ for some p > 1

Example: $f(x) = x^{\alpha}$, $0 < \alpha < 1 - 1/p$

$$E_n(f)_p \approx C n^{-(\alpha+1/p)}$$
 $\sigma_n(f)_p \leq C n^{-1}$

Break points/ wavelets concentrate near singularity at 0

Example: piecewise smooth

$$E_n(f)_p \ge Cn^{-1/p}$$
 $\sigma_n(f)_p \le Cn^{-1}$

Breakpoints/wavelets concentrate near singularities

Wavelets: Haar Wavelet

$$H(x) := \begin{cases} -1, & x \in [0, 1/2) \\ +1, & x \in [1/2, 1], \end{cases}$$

Wavelets: Haar Basis

$$H_I(x) := 2^{j/2}H(2^jx-k), I = [k2^{-j}, (k+1)2^{-j}]$$

Wavelets: Haar Basis

- $H_I(x) := 2^{j/2}H(2^jx k), I = [k2^{-j}, (k+1)2^{-j}]$
- $\mathcal{D}_+ := \{ I \in \mathcal{D} : |I| \le 1 \}$

Wavelets: Haar Basis

- $H_I(x) := 2^{j/2}H(2^jx-k), I = [k2^{-j}, (k+1)2^{-j}]$
- $\mathcal{D}_{+} := \{ I \in \mathcal{D} : |I| \le 1 \}$
- $\{\chi_{[0,1]}\} \cup \{H_I\}_{I \in \mathcal{D}_+} \text{ is a complete orthonormal system in } L_2[0,1]$

Haar Basis

Wavelet tree

Natural ordering of dyadic intervals

- Natural ordering of dyadic intervals
- ullet X_n span of first n Haar functions

- Natural ordering of dyadic intervals
- ullet X_n span of first n Haar functions
- ullet X_n is a linear space

- Natural ordering of dyadic intervals
- ullet X_n span of first n Haar functions
- ullet X_n is a linear space
- $E_n^w(f)_p := \inf_{g \in X_n} \|f g\|_{L_p[0,1]}$

- Natural ordering of dyadic intervals
- ullet X_n span of first n Haar functions
- ullet X_n is a linear space
- $E_n^w(f)_p := \inf_{g \in X_n} \|f g\|_{L_p[0,1]}$
- This is linear approximation because X_n is a linear space

- Natural ordering of dyadic intervals
- ullet X_n span of first n Haar functions
- ullet X_n is a linear space
- $E_n^w(f)_p := \inf_{g \in X_n} \|f g\|_{L_p[0,1]}$
- This is linear approximation because X_n is a linear space
- The approximation classes for linear approximation with Haar wavelets are identical to those with piecewise constants.

Linear Wavelet: $\mathcal{A}_{\infty}^{s}(L_{p})=B_{\infty}^{s}(L_{p})$

n-term approximation

n-term approximation

- n-term approximation

- n-term approximation
- Σ_n is not a linear space

- n-term approximation
- Σ_n is not a linear space
- $\sigma_n^w(f)_p := \inf_{S \in \Sigma_n} \|f S\|_{L_p[0,1]}$

- n-term approximation
- Σ_n is not a linear space
- $\sigma_n^w(f)_p := \inf_{S \in \Sigma_n} \|f S\|_{L_p[0,1]}$
- This is nonlinear approximation because decisions are made dependent on f

- n-term approximation
- Σ_n is not a linear space
- $\sigma_n^w(f)_p := \inf_{S \in \Sigma_n} \|f S\|_{L_p[0,1]}$
- This is nonlinear approximation because decisions are made dependent on f
- The approximation classes for nonlinear approximation with Haar wavelets are identical to those with piecewise constants.

roximation class n-term Haar approxima

Simplicity of numerical implementation

- Simplicity of numerical implementation
- How can we find best n-term approximation??

- Simplicity of numerical implementation
- \blacksquare How can we find best n-term approximation??
- In L_2 take n terms with largest coefficients

- Simplicity of numerical implementation
- How can we find best n-term approximation??
- In L_2 take n terms with largest coefficients
- DJP: Same strategy works in L_p , 1 , and other spaces (Sobolev)

 \blacksquare Write $f = \sum_{I \in \mathcal{D}} c_I(f) \psi_I$ with $\|\psi_I\|_X = 1$

- Write $f = \sum_{I \in \mathcal{D}} c_I(f) \psi_I$ with $\|\psi_I\|_X = 1$
- $\Lambda_n(f)$ indicies of n largest coefficients $|c_I(f)|$

- Write $f = \sum_{I \in \mathcal{D}} c_I(f) \psi_I$ with $\|\psi_I\|_X = 1$
- $\Lambda_n(f)$ indicies of *n* largest coefficients $|c_I(f)|$
- $G_n(f) := \sum_{I \in \Lambda_n(f)} c_I(f) \psi_I$

- Write $f = \sum_{I \in \mathcal{D}} c_I(f) \psi_I$ with $\|\psi_I\|_X = 1$
- $\Lambda_n(f)$ indicies of n largest coefficients $|c_I(f)|$
- $G_n(f) := \sum_{I \in \Lambda_n(f)} c_I(f) \psi_I$
- Temlyakov:

$$||f - G_n(f)||_X \le C_X \sigma_n(f)_X$$

- Write $f = \sum_{I \in \mathcal{D}} c_I(f) \psi_I$ with $\|\psi_I\|_X = 1$
- $\Lambda_n(f)$ indicies of n largest coefficients $|c_I(f)|$
- $G_n(f) := \sum_{I \in \Lambda_n(f)} c_I(f) \psi_I$
- Temlyakov:

$$||f - G_n(f)||_X \le C_X \sigma_n(f)_X$$

Greedy strategy is near optimal

Thresholding is near optimal in ${\cal L}_p$

• $\Lambda(f,\eta) := \{I : |c_I(f)| > \eta\}, N := \#(\Lambda(f,\eta))$

Thresholding is near optimal in L_p

- $\Lambda(f,\eta) := \{I : |c_I(f)| > \eta\}, \ N := \#(\Lambda(f,\eta))$
- $T_{\eta}(f) := \sum_{I \in \Lambda(f,\eta)} c_I(f) \psi$

Thresholding is near optimal in L_p

- $\Lambda(f,\eta) := \{I : |c_I(f)| > \eta\}, \ N := \#(\Lambda(f,\eta))$
- $T_{\eta}(f) := \sum_{I \in \Lambda(f,\eta)} c_I(f) \psi$

• X a Banach space: $\{\psi_j\}$ basis

- X a Banach space: $\{\psi_j\}$ basis

- X a Banach space: $\{\psi_j\}$ basis
- $\Lambda_n(f)$ set of indices of n largest $|c_j(f)|$

- X a Banach space: $\{\psi_j\}$ basis
- $\Lambda_n(f)$ set of indices of n largest $|c_j(f)|$
- $G_n(f) := \sum_{j \in \Lambda_n(f)} c_j(f) \psi_j$

- X a Banach space: $\{\psi_j\}$ basis
- $\Lambda_n(f)$ set of indices of n largest $|c_j(f)|$
- $G_n(f) := \sum_{j \in \Lambda_n(f)} c_j(f) \psi_j$
- When do we have $||f G_n(f)||_X \le C_X \sigma_n(f)_X$?

- X a Banach space: $\{\psi_j\}$ basis
- $\Lambda_n(f)$ set of indices of n largest $|c_j(f)|$
- $G_n(f) := \sum_{j \in \Lambda_n(f)} c_j(f) \psi_j$
- When do we have $||f G_n(f)||_X \le C_X \sigma_n(f)_X$?
- Konjagin-Temlyakov: Near optimal equivalent to the basis is unconditional and democratic

- X a Banach space: $\{\psi_j\}$ basis
- $\Lambda_n(f)$ set of indices of n largest $|c_j(f)|$
- $G_n(f) := \sum_{j \in \Lambda_n(f)} c_j(f) \psi_j$
- When do we have $||f G_n(f)||_X \le C_X \sigma_n(f)_X$?
- Konjagin-Temlyakov: Near optimal equivalent to the basis is unconditional and democratic
- Democratic

$$\frac{\|\sum_{I \in \Lambda} \psi_I\|_X}{\|\sum_{I \in \Lambda'} \psi_I\|_X} \le C$$

whenever $\#(\Lambda) = \#(\Lambda')$

Wavelet Bases

• Wavelet bases are democratic in L_p , $1 , in <math>H_p$, $p \le 1$

Wavelet Bases

- Wavelet bases are democratic in L_p , 1 H_p,
 $p \le 1$

Wavelet Bases

- Wavelet bases are democratic in L_p , $1 , in <math>H_p$, $p \le 1$

$$C_1 \min_{j \in \Lambda} |c_j(f)| (\#(\Lambda)^{1/p} \le \|\sum_{j \in \Lambda} c_j(f)\psi_j\|_{L_p}$$

$$\| \sum_{j \in \Lambda} c_j(f) \psi_j \|_{L_p} \le C_2 \max_{j \in \Lambda} |c_j(f)| (\#(\Lambda)^{1/p})$$

• ℓ_{τ} : $\|(c_j)\|_{\ell_{\tau}} := (\sum_{j=1}^{\infty} |c_j|^{\tau})^{1/\tau}$

- ℓ_{τ} : $\|(c_j)\|_{\ell_{\tau}} := (\sum_{j=1}^{\infty} |c_j|^{\tau})^{1/\tau}$
- rearrangement of (c_j) : c_n^* the n-th largest of $|c_j|$, $j \in \{1, 2, ..., \}$

- ℓ_{τ} : $\|(c_j)\|_{\ell_{\tau}} := (\sum_{j=1}^{\infty} |c_j|^{\tau})^{1/\tau}$
- rearrangement of (c_j) : c_n^* the n-th largest of $|c_j|$, $j \in \{1, 2, \dots, \}$
- weak- ℓ_{τ} : $c_n^* \leq M n^{-1/\tau}$

- ℓ_{τ} : $\|(c_j)\|_{\ell_{\tau}} := (\sum_{j=1}^{\infty} |c_j|^{\tau})^{1/\tau}$
- rearrangement of (c_j) : c_n^* the n-th largest of $|c_j|$, $j \in \{1, 2, \dots, \}$
- weak- ℓ_{τ} : $c_n^* \leq M n^{-1/\tau}$
- smallest M gives $|(c_j)|_{w\ell_{\tau}}$

- ℓ_{τ} : $\|(c_j)\|_{\ell_{\tau}} := (\sum_{j=1}^{\infty} |c_j|^{\tau})^{1/\tau}$
- rearrangement of (c_j) : c_n^* the n-th largest of $|c_j|, j \in \{1, 2, \dots, \}$
- weak- $\ell_{ au}$ $c_n^* \leq M n^{-1/\tau}$
- smallest M gives $|(c_j)|_{w\ell_{\tau}}$
- $X = L_p$, $1 , <math>\{\psi_j\}$ greedy basis. $(c_j) \in w\ell_\tau$, $1/\tau = \alpha + 1/p \leftrightarrow$

$$\sigma_n(f)_p, ||f - G_n(f)||_{L_p} \le CMn^{-\alpha}, \quad n = 1, 2, \dots$$

- ℓ_{τ} : $\|(c_j)\|_{\ell_{\tau}} := (\sum_{j=1}^{\infty} |c_j|^{\tau})^{1/\tau}$
- rearrangement of (c_j) : c_n^* the n-th largest of $|c_j|$, $j \in \{1, 2, \dots, \}$
- weak- ℓ_{τ} : $c_n^* \leq M n^{-1/\tau}$
- smallest M gives $|(c_j)|_{w\ell_{\tau}}$
- $X = L_p$, $1 , <math>\{\psi_j\}$ greedy basis. $(c_j) \in w\ell_\tau$, $1/\tau = \alpha + 1/p \leftrightarrow$

$$\sigma_n(f)_p, ||f - G_n(f)||_{L_p} \le CMn^{-\alpha}, \quad n = 1, 2, \dots$$

n-term approximation not numerically implementable: wavelet positions scattered and uncontrolled

- n-term approximation not numerically implementable: wavelet positions scattered and uncontrolled
- Require that the wavelet positions chosen in the approximation lie on a tree with n-nodes

- n-term approximation not numerically implementable: wavelet positions scattered and uncontrolled
- Require that the wavelet positions chosen in the approximation lie on a tree with n-nodes
- $\Sigma_n^t := \{ S = \sum_{I \in \Lambda} c_I H_I : \Lambda \text{ a tree } \#(\Lambda) \le n \}$

- n-term approximation not numerically implementable: wavelet positions scattered and uncontrolled
- Require that the wavelet positions chosen in the approximation lie on a tree with n-nodes
- $\Sigma_n^t := \{ S = \sum_{I \in \Lambda} c_I H_I : \Lambda \text{ a tree } \#(\Lambda) \le n \}$
- $\sigma_n^t(f)_p := \inf_{S \in \Sigma_n^t} \|f S\|_{L_p[0,1]}$

- n-term approximation not numerically implementable: wavelet positions scattered and uncontrolled
- Require that the wavelet positions chosen in the approximation lie on a tree with n-nodes
- $\Sigma_n^t := \{ S = \sum_{I \in \Lambda} c_I H_I : \Lambda \text{ a tree } \#(\Lambda) \le n \}$
- $\sigma_n^t(f)_p := \inf_{S \in \Sigma_n^t} \|f S\|_{L_p[0,1]}$
- Numerical algorithm $\Lambda_{\eta}(f)$ as before complete $\Lambda_{\eta}(f)$ to a tree Λ_{η}^t

$$T_{\eta}^{*}(f) := \sum_{I \in \Lambda_{n}^{t}(f)} c_{I}(f)\psi_{I}$$

- n-term approximation not numerically implementable: wavelet positions scattered and uncontrolled
- Require that the wavelet positions chosen in the approximation lie on a tree with n-nodes
- $\Sigma_n^t := \{ S = \sum_{I \in \Lambda} c_I H_I : \Lambda \text{ a tree } \#(\Lambda) \le n \}$
- $\sigma_n^t(f)_p := \inf_{S \in \Sigma_n^t} \|f S\|_{L_p[0,1]}$
- Numerical algorithm $\Lambda_{\eta}(f)$ as before complete $\Lambda_{\eta}(f)$ to a tree Λ_{η}^{t}

$$T_{\eta}^{*}(f) := \sum_{I \in \Lambda_{n}^{t}(f)} c_{I}(f)\psi_{I}$$

Approximation properties analogous to adaptive approximation
Cargese – p.36/49

Tree approximation

Extensions

Can replace Haar wavelets by biorthogonal wavelets

Extensions

- Can replace Haar wavelets by biorthogonal wavelets
- Approximation results now hold provided $\alpha < r$ where ψ has r vanishing moments and smoothness C^r ,

Multidimensional results

ullet Multidimensional: Results hold in \mathbb{R}^d with basis ψ_I^e

Multidimensional results

- ullet Multidimensional: Results hold in \mathbb{R}^d with basis ψ_I^e
- Wavelet Tree Approximation equivalent to adaptive triangulation with isotropic partitioning

Multidimensional results

- ullet Multidimensional: Results hold in \mathbb{R}^d with basis ψ_I^e
- Wavelet Tree Approximation equivalent to adaptive triangulation with isotropic partitioning

- ullet Multidimensional: Results hold in \mathbb{R}^d with basis ψ_I^e
- Wavelet Tree Approximation equivalent to adaptive triangulation with isotropic partitioning
- Nonlinear Approximation?

- ullet Multidimensional: Results hold in \mathbb{R}^d with basis ψ_I^e
- Wavelet Tree Approximation equivalent to adaptive triangulation with isotropic partitioning
- Nonlinear Approximation?
- No analogue of free knot splines: general triangulation

- ullet Multidimensional: Results hold in \mathbb{R}^d with basis ψ_I^e
- Wavelet Tree Approximation equivalent to adaptive triangulation with isotropic partitioning
- Nonlinear Approximation?
- No analogue of free knot splines: general triangulation
- n-term approximation using multivariate wavelets the same

- ullet Multidimensional: Results hold in \mathbb{R}^d with basis ψ_I^e
- Wavelet Tree Approximation equivalent to adaptive triangulation with isotropic partitioning
- Nonlinear Approximation?
- No analogue of free knot splines: general triangulation
- n-term approximation using multivariate wavelets the same
- $\mathcal{A}_{\tau}^{\alpha/d}(wavelets, L_p) = B_{\tau}^{\alpha}(L_p), \frac{1}{\tau} = \frac{\alpha}{d} + \frac{1}{p}$

How can we evaluate encoders

- How can we evaluate encoders
- Experimental:

Encoders designed on heuristics

- How can we evaluate encoders
- Experimental:

Encoders designed on heuristics

Precise Mathematical Formulation

Understand rules of game; what it means to be a winner

- How can we evaluate encoders
- Experimental:

Encoders designed on heuristics

Precise Mathematical Formulation
 Understand rules of game; what it means to be a winner

- Two essential ingredients
 - a. metric ρ to measure distortion
 - b. Precise definition of classes K_{α} to be compressed

• Distortion: $\rho(S, D_n E_n(S))$

- Distortion: $\rho(S, D_n E_n(S))$
- Evaluate Performance on a set K of surfaces

$$\delta(K; D_n, E_n) := \sup_{S \in K} \rho(S, D_n E_n(S))$$

- Distortion: $\rho(S, D_n E_n(S))$
- Evaluate Performance on a set K of surfaces

$$\delta(K; D_n, E_n) := \sup_{S \in K} \rho(S, D_n E_n(S))$$

Given bit budget n

$$\delta_n(K) := \inf_{E_n, D_n} \delta(K, D_n E_n(S))$$

- Distortion: $\rho(S, D_n E_n(S))$
- Evaluate Performance on a set K of surfaces

$$\delta(K; D_n, E_n) := \sup_{S \in K} \rho(S, D_n E_n(S))$$

Given bit budget n

$$\delta_n(K) := \inf_{E_n, D_n} \delta(K, D_n E_n(S))$$

smallest distortion for the given bit budget

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

near optimal

$$\delta(K, D_n E_n(S)) \le C \delta_n(K)$$

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

near optimal

$$\delta(K, D_n E_n(S)) \le C\delta_n(K)$$

• Typically: $\delta_n(K) \approx n^{-s}$ for some s > 0

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

near optimal

$$\delta(K, D_n E_n(S)) \le C\delta_n(K)$$

- Typically: $\delta_n(K) \approx n^{-s}$ for some s > 0
- Game: Find encoder/decoder E/D: for all values of n and all classes K_{α} , encoder is near optimal

• Given $\epsilon > 0$

- Given $\epsilon > 0$
- ullet Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(S_i, \epsilon)$

- Given $\epsilon > 0$
- Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(S_i, \epsilon)$
- Kolmogorov Entropy $H_{\epsilon}(K) := \log_2 N_{\epsilon}(K)$

Covering

Covering

Kolmogorov Entropy

- Given $\epsilon > 0$
- ullet Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(S_i, \epsilon)$
- Kolmogorov Entropy $H_{\epsilon}(K) := \log_2 N_{\epsilon}(K)$

• $\delta_n(K) = \inf\{\epsilon: H_{\epsilon}(K) \le n\}$

- Given $\epsilon > 0$
- Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(x_i, \epsilon)$
- Kolmogorov entropy of K gives our benchmark
- Usually not practical encoder

The Issues

- 1. The metric: least squares
- 2. The classes
- 3. Determine Entropy of Classes
- 4. Build near optimal Encoders/Decoders

Tree approximation can be turned into an encoder

- Tree approximation can be turned into an encoder
- Tree with n nodes can be encoded with n bits

- Tree approximation can be turned into an encoder
- Tree with n nodes can be encoded with n bits
- Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard) This encoder is optimal on all Besov classes compactly embedded into L_2

- Tree approximation can be turned into an encoder
- Tree with n nodes can be encoded with n bits
- Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard) This encoder is optimal on all Besov classes compactly embedded into L_2
- EZW, Said-Pearlman,