Zur Analysis-Ausbildung im Lehramtsstudium an der Universität Wien

Stefan Götz, Roland Steinbauer*

Fakultät für Mathematik, Universität Wien Oskar-Morgenstern-Platz 1, A-1090 Wien

{Stefan.Goetz, Roland.Steinbauer}@univie.ac.at

18. ÖMG Kongress, Innsbruck, September 2013

Worum es geht es? — Die Ausgangssituation

Grundlegende Konzepte der Analysis

- Schwerpunkt zu Beginn der fachlichen Ausbildung
- Schulrelevanz: von Studierenden kaum gesehen von Lehrenden kaum betont
- Konsequenz: Konzepte nicht
 - als fundamentale Ideen der Mathematik wahrgenommen
 - in den **Grundvorstellung**svorrat aufgenommen

Eine **Sinnstiftung** dieser im Studium prominent platzierten Ausbildungsteile passiert auf diese Weise nicht. **Hochschul**- und **Schul**analysis werden als scharf getrennte Studienteile wahrgenommen.

Evidenz: Studierende reihen **Fachwissenschaft** an **vorletzte Stelle** einer Relevanzbewertung der Wissensbereiche in ihrer Ausbildung (ETZLSTORFER 2010).

Die Idee — Eine Verzahnung

Enge Anbindung der schulmathematischen an die fachmathemtischen Analysis-Lehrveranstaltungen

- Pilotprojekt im Wintersemesester 2012/13 im starren Rahmens des derzeitigen Studienplans
- Enge Abstimmung der Lehrveranstaltungen
 - Schulmathematik Differential & Integralrechnung
 - Analysis-Zyklus, insbes. zeitgleicher 2. Teil, A. in einer Var. f. LAK
- im Geiste von Schnittstellenmodulen (BAUER, PARTHEIL 2009): Explizit machen von Verknüpfungen aber auch Differenzen zwischen Schul- und Hochschulanalysis
- personelle Verzahnung

Curriculares Umfeld

- 1. Sem. Einführung math. Arbeiten (3+2)
- 2. Sem. Einführung i. d. Analysis (3+2) gem. m. Bach.
- 3. Sem. Analysis in einer Variable f. LAK (2+2) Schulmathematik 6 (Diff & Int) (2+1)
- 4. Sem. Relle A. mehrerer, komplexe A. einer V. LAK (5+2)

Analysis-Zyklus f. LAK. (S2012 – S2013, R. S.)

- speziell auf LAK zugeschnitten (mehr Bilder, weniger Technik, ...)
- bewusstes Setzen expliziter Referenzpunkte

Schulmathematik 6 (Diff & Int) Wahlpfl. (WS2012/13, S. G.)

- Aufgreifen der Referenzpunkte
- Aufzeigen inhaltlicher Zusammenhänge, unterschiedlicher Zugänge
- keine "Mini-Analysis", keine ausgearbeitete Aufgabensammlung

Fachdidaktischer Hintergrund

Schulrelevanz unterschiedlich sichtbar themen- und zugangsbedingtbedingt (z.B. Folgen vs. Winkelfunktionen)

- → Brüche in den Grundvorstellungen
- → Sonderrolle der Analysis i. d. Schulmath., Spannungsfelder
 - ◆ Anschauung Strenge: Alltagsdenken findet keine bruchlose Fortsetzung in der Analysis (z.B. Vollständigkeit von ℝ)
 - **②** normative Stoffbilder individuelle Sinnkonstruktionen (zB. Stetigkeit: ε - δ -Definition vs. keine Sprünge)
 - Systematik Heuristik: Kalküllastigkeit

 → Sinnstiftung (Auch CAS hilft nicht immer) z.B.

$$\int \sin 2x \, dx \stackrel{2x=z}{=} \int \sin z \cdot \frac{1}{2} \, dz = -\frac{1}{2} \cos 2x + c$$

$$\int \sin 2x \, dx = \int 2 \sin x \cos x \, dx \stackrel{z=\sin x}{=} \int 2z \cos x \frac{dz}{\cos x} = \sin^2 x + c'$$

(Danckwerts, Vogel 2006)

Eine inhaltliche Kostprobe

Reaktionen, Ausblick

• Rückmeldungen: Polarisierung der Studierenden

- "Die Verbindung zwischen Analysis und Schulmathe wird sichtbar (sehr interessant!)"
- "Mir hat sich oft das eine oder andere, das wir in der Analysis VO durchgenommen hatten, besser erschlossen, als wir es wiederholt und dann aus einem anderen Blickwinkel betrachtet haben."
- "(Bei) Manchen Themen nicht klar, warum die Analysis in der Schule gebraucht wird. Habe ich persönlich in der Schule noch nie gehört und finde es auch nicht notwendig, dies zu erläutern."

Resümee:

- gelungener Auftakt zur Annäherung zweier Säulen der LA-Ausbildung
- Verständigung von Fach und Fachdidaktik
- neues Curriculum...

Literatur

- Bauer, T., Partheil, U.: Schnittstellenmodule in der Lehramtsausbildung im Fach Mathematik. Math. Semesterber. 56, 85-103 (2009)
- Bauer, T.: Schnittstellen bearbeiten in Schnittstellenaufgaben. In:
 C. Ableitinger, J. Kramer und S. Prediger (Hrsg.): Zur doppelten Diskontinuität in der Gymnasiallehrerbildung. Springer Spektrum, Wiesbaden 2013, S. 39–56.
- Danckwerts, R. und Vogel, D.: Analysis verständlich unterrichten.
 Mathematik Primar- und Sekundarstufe. Elsevier Spektrum
 Akademischer Verlag, München 2006.
- Etzlstorfer, S.: $a^2 + b^2 = c^2 iQué$ significa eso? Vergleich der Fachdidaktiken in Mathematik und Romanistik an der Universität Wien. Diplomarbeit, Universität Wien 2010.