Chapter 9

15. Show that every prime is either in the form 4k+1 or 4k+3 $k \in 2^+$. For an interpor n, n can be written in firm of 4k+r where $r \in [0,1,2,3]$. Among these 4 cases, 4k+0 and 4k+2 cannot represent prime number as both are at least divisible with 2.

Thous. Only 4k+1 and 4k+3 can represent a prime number.

17. Find the value of $\phi(29)$, $\phi(32)$, $\phi(80)$, $\phi(100)$, $\phi(101)$.

- i) 29 is a prime. $\rightarrow \phi(29) = 29-1 = 28$.
- ii) $32 = 2^{5}$, $\rightarrow \phi(32) = 2^{5} 2^{4} = 16$.
- (ii) $80 = 2^9 \times 5 \rightarrow \phi(80) = (2^9 2^7) \times (5 1) = 8 \times 4 = 32$.
- iv) $100 = 2^2 \times 5^1 \rightarrow \phi(100) = (2^1 2) \times (5^2 5) = 2 \times 20 = 40$.
- v.) 101 % a prime. -> \$\phi(101) = 107 -1 = 100.
- 21. Find the following using Fermat's little theorem.
 - a. $5^{15} \mod 13 = (5^2 \mod 13) \times (5^{13} \mod 13) \mod 13$. = $((-1 \mod 17) \times (5 \mod 13)) \mod 13 = \boxed{8 \mod 13}$
 - b. 15¹⁸ mod 17 = ((15 mod 17) × (15¹⁷ mod 17)) mod 17. = ((13 mod 17) × (15 mod 17)) mod 17 = 4 mod 17
 - c. 456 mod 17 = 456 mod 17 = 174 mod 17
 - d. 145¹⁰² mod 101 = ((145¹⁶¹ mod 101) x (145 mod 701)) mod 101. =((44 mod 101) x (44 mod 101)) mod 101 = (17 mod 101)
- 23. Find the following using Euler's theorem.
 - $0. 12^{-1} \mod 77 = 12^{6(77)+1} \mod 77. \quad (\phi(17) = 6\times 10 = 60)$ $= 12^{59} \mod 77 = \sqrt{45 \mod 77}$
 - 6. $16^{-1} \mod 323 = 16^{6(323)-1} \mod 923 \pmod{323} = 16 \times 18 = 288$ $= 16^{287} \mod 323 = 101 \mod 323$
 - C. $20^{-1} \mod 403 = 20^{9(407)-1} \mod 403 \quad (\emptyset(403) = 30 \times 12 \neq 360)$ = $20^{251} \mod 403 = 262 \mod 403$
 - d. 44-1 mod 667 = 44 (667)-1 mod 667 (\$(667) = 22×28 = 616)
 =44 613 mod 667 = 379 mod 667

25. Can 2n-1 be used for primality test?

Using the online database of known sequences, a lot of n that makes 2^{n-1} , prime are primes. These examples are 2, 3, 5, 7 where $2^{n}-1$ equals to 3, 7, 31, 127, respectively. The smallest prime n that makes composite $2^{n}-1$ is 17. as $2^{11}-1=2047$, which can be divisible with 23, 89.

26. Run the Fermat primality test.

- i) 1100-1 mod 100 = 88 (x) : compaste
- ii) 2110-1 mad 110 = 72 (x) : compasite
- iii) 2¹³⁰⁻¹ mod 130 = 88 (X) : Composite
- (v) 1150-1 mod 150 = 88 (X) : Composite
- v) 2200-1 mad 200 = 88 (x) : Comparite
- vi) 2250-1 mod 250 = 62 (X) : Composite
- Vii) 2291-1 mod 271 = 1 (0) ... maybe prine? => prine!
- viii) 2347-1 mad 347 = 1 (D) : may be prime? =) (Dimposite.
- (x) 2567-7 mod 367 = 1 (d) : maybe prine? 7 comparite.

27. Run the Miller-Rabin primality test.

- i) n = 100, m = 100-1 = 99, k = 0. =) Composite.
- ii) n = 109, m = 27, k = 2 $T = 2^{27} \mod 109 = 33$, k = 8 $T = 33^2 \mod 109 = 108 \mod 109 = (-1) \mod 109$, k = 1. \Rightarrow Pseudoprime.
- (iii) n = 201, m = 25, k = 3. $T = 2^{25} \mod 201 = 95$, k = 0 $T = 95^2 \mod 201 = 181 \mod 201$, k = 1. $T = 181^2 \mod 201 = 199 \mod 201$, k = 2. \Rightarrow Compasite.
- iv) n = 271, m = 135, k = 1 $T = 2^{195} \mod 271 = 1 \mod 271 \Rightarrow Pseudoprime.$
- V) $\eta = 341$, m = 85, k = 2. $T = 235 \mod 341 = 32$. k = 0 $T = 327 \mod 341 = 1 \mod 341$, $k = 1 \Rightarrow 0$ Composite.
- Vi) n=349, m=87, k=2 T=287 mod 349=213, k=0 $T=213^2$ mod 349=348 mod 349, =(-1) mod 349, ==1 =1 pseudoprime

Vii) N = 2047, M = 1023, k = 1 $T = 2^{1023} \mod 2047 = 1 \mod 2047$, k = 0. \Rightarrow Assudoprime.

- 28. We the recommended test to determine whether integers are primer.
 - i) 271 is not easy to divide. \rightarrow Miller-Rabin test. n=271, m=135, k=1for a=2, $T=2^{135} \mod 271=1$. for a=3, $T=3^{135} \mod 271=-1$. \rightarrow pseudoprime. for a=4, $T=4^{135} \mod 271=1$.
 - ii) 3149 is not easy to divide. \rightarrow Miller-Ratin test. n=3149, m=787, k=2. for $\alpha=1$, $T=2^{787}$ mod 3149=2523 (k=0) \rightarrow Composite. $T=2523^2$ mod 3149=140 (k=1).
 - iii) 9673 is easy to divide: 9673 ÷ 17 = 569 ... Ø. → Composite.