

Custo de seguro saúde

Contexto

Prever corretamente os custos para um paciente em um seguro de saúde é uma forma de realizar cobranças mais justas e mesmo de prever os futuros negócios da empresa.

Conteúdo

data.head(4)

O seguinte dicionário de dados pode ser usado para melhor entendimento dos atributos.

Variável	Definição							
age	Idade do beneficiário principal							
sex	Sexo do contratante de seguro feminino, masculino							
bmi	Índice de massa corporal							
children	Número de filhos cobertos pelo seguro de saúde / Número de dependentes							
smoker	Se o contratante é fumante							
region	A área residencial do beneficiário nos EUA, nordeste, sudeste, sudoeste, nor							
charges	Custos médicos individuais cobrados pelo seguro de saúde							

```
In []: import pandas as pd
import numpy as np
import seaborn as sea
import matplotlib.pyplot as plt
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
In []: data = pd.read csv(r'dados/insurance.csv',sep=',')
```

```
Out[]:
                         bmi children smoker
                                                 region
                                                           charges
            19 female 27.900
                                          yes southwest 16884.92400
                                    0
                 male 33.770
            18
                                          no southeast
                                                        1725.55230
                 male 33.000
                                    3
                                                        4449.46200
         2
            28
                                              southeast
                 male 22.705
            33
                                          no northwest 21984.47061
         3
                                    0
        from sklearn.preprocessing import LabelBinarizer,LabelEncoder
        dummies = pd.get dummies(data['region'],prefix='region',dtype=int)
In [ ]:
                = pd.concat([
            data.drop(columns='region'),
            dummies
         1,axis=1)
        data['sex']
                        = LabelBinarizer().fit transform(data['sex'])
In [ ]:
        data['smoker'] = LabelBinarizer().fit transform(data['smoker'])
        #data['region'] = LabelEncoder().fit transform(data['region'])
In [ ]: data.head(3)
Out[]:
                      bmi children smoker
                                             charges region_northeast region_northwest region_southeast region_southwest
           age sex
            19
                  0 27.90
                                0
                                        1 16884.9240
                                                                   0
                                                                                   0
                                                                                                   0
                                                                                                                    1
            18
                  1 33.77
                                           1725.5523
                                                                   0
                                                                                   0
                                                                                                   1
                                                                                                                    0
         2
            28
                  1 33.00
                                3
                                            4449.4620
                                                                   0
                                                                                   0
                                                                                                   1
                                                                                                                    0
```

In []: data.describe()

Out[]:		age	sex	bmi	children	smoker	charges	region_northeast	region_northwest	region_southeast	region
	count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1
	mean	39.207025	0.505232	30.663397	1.094918	0.204783	13270.422265	0.242152	0.242900	0.272048	
	std	14.049960	0.500160	6.098187	1.205493	0.403694	12110.011237	0.428546	0.428995	0.445181	
	min	18.000000	0.000000	15.960000	0.000000	0.000000	1121.873900	0.000000	0.000000	0.000000	
	25%	27.000000	0.000000	26.296250	0.000000	0.000000	4740.287150	0.000000	0.000000	0.000000	
	50%	39.000000	1.000000	30.400000	1.000000	0.000000	9382.033000	0.000000	0.000000	0.000000	
	75%	51.000000	1.000000	34.693750	2.000000	0.000000	16639.912515	0.000000	0.000000	1.000000	
	max	64.000000	1.000000	53.130000	5.000000	1.000000	63770.428010	1.000000	1.000000	1.000000	

In []: plt.figure(figsize=(10,4))
 sea.heatmap(data.drop(columns=['sex','region_northeast','region_northwest','region_southeast','region_southwest']).corr(),annot


```
In []: plt.figure(figsize=(40,25))
    sea.pairplot(data.drop(columns=data.columns.to_list()[6:]),hue='smoker')

Out[]: <seaborn.axisgrid.PairGrid at 0x7f5f49b5f8d0>
    <Figure size 4000x2500 with 0 Axes>
```


In []: for i in range(np.size(y pred)):

if (i==10):**break**

print(y test[i], ' <=>', y pred[i], end='\n')

```
27000.98473 <=> 13742.821584824138
      43578.9394 <=> 37660.94925715869
      1725.5523 <=> 3748.5217773528966
      10269.46 <=> 11793.058183212655
      2689.4954 <=> 7635.578075198664
      42124.5153 <=> 34898.01941099474
      27533.9129 <=> 36257.720044815025
      2902.9065 <=> 4156.399699828524
      34779.615 <=> 28634.836637508655
      4349.462 <=> 5937.746281116077
      11987.1682 <=> 12841.5149469467
In [ ]: r2 score(y test,y pred)
Out[]: 0.7640857127574718
In [ ]: coefs = regressao.coef
        intercept = regressao.intercept
        xs = np.tile(np.arange(61), (61,1))
        ys = np.tile(np.arange(61), (61,1)).T
        zs = xs*coefs[0]+ys*coefs[1]+intercept
        fig = plt.figure(figsize=(10, 5))
        ax = fig.add subplot(projection='3d')
        x = x_test[:,0]
        y = x_test[:,1]
        z = y \text{ test}
        z pred = y pred
        ax.scatter(x,y,z,c='r')
        ax.plot surface(xs,ys,zs,alpha=0.5)
        ax.view init(10, -30,10)
```

