

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 1

INTRODUÇÃO A ELEMENTOS DE TRANSMISSÃO MECÂNICA

Professor: Dr. Paulo Sergio Olivio Filho

EMENTA DA DISCIPLINA

- Dimensionamento de Eixos;
- Uniões Eixo-Cubo e Eixo-Eixo;
- Mancais de Escorregamento e de Rolamento;
- Parafusos de Fixação e Movimento;
- Elementos de Vedação Estáticos;
- Molas;
- Transmissões por Elementos Flexíveis (correias, correntes, etc.);
- Cinemática de Engrenagens;
- Dimensionamento de Engrenagens;
- Capacidade de Cargas de Engrenagens;
- Freios e Embreagens.

REFERÊNCIAS BIBLIOGRÁFICAS

BIBLIOGRAFIA BÁSICA

- MELCONIAN, Sarkis. Elementos de máquinas. São Paulo: Érica, 2000. 342p. ISBN 8571947031
- NIEMANN, Gustav. Elementos de máquinas. São Paulo: Edgard Blucher, c1960. nv.
- SHIGLEY, Joseph Edward; MISCHKE, Charles R.; BUDYNAS, Richard G. Projeto de engenharia mecânica. 7. ed. Porto Alegre: Bookman, 2005. 960 p. ISBN 85-363-0562-2.

BIBLIOGRAFIA COMPLEMENTAR

- PROVENZA, Francesco. Projetista de máquinas. 71. ed. São Paulo: Pro-Tec, 1990. 1 v. (várias paginações)
- SHIGLEY, Joseph Edward. Elementos de maquinas. Rio de Janeiro: LTC- Livros Técnicos e Científicos, 1984. 2v. ISBN 85-216-0369-X (obra comp
- NORTON, Rob. Projeto de máquinas: uma abordagem integrada. 2. ed. Porto Alegre, RS: Bookman, 2004. xiii, 931 p. + 1 CD-ROM 4 ¾ pol. ISBN 8536302739.
- SPOTTS, M.F Proyecto de elementos de maquinas: un estudio completo y documentado de los principios basicos del proyecto de los elementos de Maquinas. Barcelona: Reverte, c1966. 690p.
- DOBROVOLSKY, V. Machine elements: a textbook. Moscow: Foreign Languages, 1962. 579 p.

PROVAS E TRABALHOS

Avaliação Oficial

- ➤ 08/05 Avaliação 1 + Atividades. (60% + 40%)
- ➤ 20/06 Avaliação 2 + Atividades. (60% + 40%)
 - > Atividades entregas em atraso no classroom não serão computadas.
- ➤04/07 Avaliação Substitutiva (toda a matéria).

Fique atento!

As datas podem sofre pequenas alterações durante o andamento da disciplina

CONTEÚDO DA AULA

- INTRODUÇÃO A TRANSMISSÃO DE POTÊNCIA
 - Tipos de energia
 - Conversão e transformação de energia
 - Principais sistemas de transmissão de potência
- PRINCIPAIS ELEMENTOS DE TRANSMISSÃO MECÂNICA
 - Polias e correia
 - Engrenagens
 - Correntes
 - Acoplamentos
 - Rodas por atrito
- REVISÃO DE MOVIMENTO CIRCULAR

TIPOS DE ENERGIA

O MEGNICA

- Química
- Nuclear
- Eletromagnética

FORÇA EM MOVIMENTO

Antoine-Laurent de Lavoisier - "na natureza nada se cria, nada se perde; tudo se transforma"

SISTEMAS DE CONVERSÃO DE ENERGIA

EXEMPLO:

SISTEMAS DE TRANSMISSÃO DE POTÊNCIA UTEPR

TURBINA DE VENTO

MOTOR DE COMBUSTÃO INTERNA

MOTOR ELÉTRICO

RODA D'ÁGUA E **TURBINA D'AGUA**

SISTEMAS DE TRANSMISSÃO DE POTÊNCIA UTEPR

ELEMENTOS DE TRANSMISSÃO MECÂNICA UTEPR CORNÉLIO PROCÓPIO

A rotação de um eixo pode ser transmitida por engrenagens, correntes, correias ou poratrito

ELEMENTOS DE TRANSMISSÃO MECÂNICA UTEPR CORNÉLIO PROCÓPIO

CORREIAS E POLIAS

CORREIAS EM V

CORREIAS ESTRIADAS

CORREIAS DENTADAS

ELEMENTOS DE TRANSMISSÃO MECÂNICA UTEPR CORNÉLIO PROCÓPIO

EIXOS - ÁRVORES

EIXOS-ARVORES LISOS E COMPOSTOS

Geralmente estão ligados a engrenagens, polias, rolamentos, mancais, volantes, manípulos, etc...

EIXO-ÁRVORE DE MANIVELA

EIXO-ARVORE DE COMANDO (ARVORE DE CAMES)

ACOPLAMENTOS EM EIXOS-ARVORE

ACOPLAMENTOS

ACOPLAMENTO TIPO CRUZETA

ACOPLAMENTO RIGIDO

ACOPLAMENTO FLEXÍVEL PARA EIXOS DESALINHADOS

ACOPLAMENTO FLEXÍVEL

ACOPLAMENTO FLEXÍVEL

ENGRENAGENS

Engrenagens são usadas para transmitir **torque e velocidade angular** em uma ampla variedade de aplicações.

Para produzir o movimento de rotação as rodas devem estar engrenadas, encaixadas nos vãos dos dentes uma da outra.

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

VELOCIDADE ANGULAR

Deslocamento de um ponto material "P" sobre uma trajetória circular de raio "r" apresenta uma variação angular ($\Delta\theta$) em um determinado intervalo de tempo (Δt).

Em que:

 ω = velocidade angular [rad/s]; $\Delta\theta$ = variação angular [rad]; Δt = variação de tempo [s];

$$\omega = \frac{\Delta \theta}{\Delta t}$$

PERÍODO

Tempo necessário para que um ponto material "P" movimentando-se em uma trajetória circular de raio "r" complete um ciclo.

Em que:

T = período[s];

 $\omega = \text{velocidadeangular}[\text{rad/s}];$

 $\pi = constante trigonométrica 3,1415 ...$

$$T = \frac{2\pi}{\omega}$$

FREQUÊNCIA

Número de ciclos que um ponto material "P" descreve em um segundo, movimentando se em uma trajetória circular de raio "r". A frequência (f) é o inverso do período (T).

Em que:

f = freqüência [Hz];

T = período[s];

 $\omega = \text{velocida de angular } [\text{rad/s}];$

 $\pi = \text{constante trigonométrica 3,1415} \dots$

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

ROTAÇÃO

Número de ciclos que um ponto material "P", movimentando se em uma trajetória circular de raio "r" descreve em um minuto.

Em que:

$$n = rotação [rpm];$$

 $f = frequência [Hz];$
 $\omega = velocidade angular [rad/s];$

$$n = 60 \cdot f = \frac{30 \cdot \omega}{\pi}$$

VELOCIDADE TANGENCIAL

Velocidade periférica ou tangencial do ponto material "P" em relação ao movimento circular de raio "r". É o resultado do produto entre a velocidade angular " ω " e o raio "r" da trajetória.

Em que:

 $\nu = \text{velocidade tangencial } [m/s];$ n = rotação [rpm]; r = raio do movimento [m]; $\pi = \text{constante trigonométrica } 3,1415 ...$

$$v = \omega \cdot r = \frac{\pi \cdot n \cdot r}{30}$$

EXEMPLO 1

A roda de uma bicicleta com diâmetro de 300 mm, gira com uma velocidade angular de 10π rad/s. Determinar para o movimento da roda:

Período *(T)*; Frequência *(f)*; Rotação *(n)*; Velocidade periférica *(Vp)*;

Resp: 0,2s; 5Hz; 300rpm; 4,71m/s

EXEMPLO 2

Um motor elétrico possui uma característica de desempenho a rotação de 1740 rpm. Determine as seguintes características de desempenho do motor:

Velocidade angular (ω); Período (T); Frequência (f);

Resp: 182,21 rad/s; 0,0345 s; 29 Hz

EXEMPLO 3

Um ciclista monta em uma bicicleta aro 26 (Diâmetro = 660 mm), viajando com um movimento que faz com que as rodas girem com 240 rpm (n = 240 rpm). Qual a velocidade do ciclista em Km/h?

Resp. 30 km/h

TORQUE

Produto entre a carga "F", e a distância entre o ponto de aplicação da carga e o centro da peça que esta recebendo a aplicação.

Em que:

```
M_t = Momento torçor [N \cdot m];
```

F = força aplicada[N];

L = distância entre ponto de aplicação e centro da peça[m];

 $F_t = força tangencial[N];$

r = raio da peça[m];

$$M_t = F \cdot L$$
 ou $M_t = F_t \cdot r$

POTÊNCIA

Define-se através do trabalho realizado na unidade de tempo:

$$P = \frac{trabalho}{tempo} = \frac{\tau}{t}$$

$$P = F_T \cdot V_T$$

RELAÇÃO TORQUE x POTÊNCIA

Podemos definir uma relação entre o torque e a potência fazendo:

$$P = M_{t} \cdot \omega$$

Ou ainda é possível escrever em função da rotação:

$$M_{t} = \frac{30 \cdot P}{\pi \cdot n}$$
$$M_{t} = \cdots [N \cdot m]$$

$$M_{t} = \frac{30000 \cdot P}{\pi \cdot n}$$
$$M_{t} = \cdots [N \cdot mm]$$

RELAÇÃO TORQUE x POTÊNCIA x Ft

A força tangencial pode ser calculada através da seguinte equação:

Em que:

$$\begin{split} F_t &= \text{força tangencial[N];} \\ M_t &= \text{torque[N} \cdot m]; \\ r &= \text{raio da peça[m];} \\ P &= \text{potência[W];} \\ V_t &= \text{velocidade tangencial[}^m/_S]; \\ \omega &= \text{velocidade angular[}^{\text{rad}}/_S]; \end{split}$$

$$F_{t} = \frac{M_{T}}{r} = \frac{P}{V_{T}} = \frac{P}{\omega \cdot r}$$

Transmissão redutora de velocidade

Em que:

$$\begin{split} i &= \text{relação de transmissão [admensional];} \\ d &= \text{diâmetro da polia [m];} \\ \omega &= \text{velocidade angular } [\text{rad/}_S]; \\ f &= \text{frequência [Hz];} \\ n &= \text{rotação [rpm];} \\ M_T &= \text{momento torçor ou torque [N \cdot m];} \end{split}$$

Transmissão ampliadora de velocidade

$$i = \frac{d_2}{d_1} = \frac{\omega_1}{\omega_2} = \frac{f_1}{f_2} = \frac{n_1}{n_2} = \frac{M_{T_2}}{M_{T_1}}$$

$$i \geq 1$$

As engrenagens são padronizadas com base no modulo ou passo diametral

$$P_d = \frac{N}{D_p}$$

(FPS)

(SI)

$$m = \frac{D_p}{N}$$

$$m = \frac{1}{P_d}$$

Módulos métricos padronizados

Módulo métrico (mm)	Equivalente p_{4} (in ⁻¹)
0,3	84,67
0,4	63,50
0,4	50,80
0,8	31,75
1	25,40
1,25	20,32
1,5	16,93
2	12,70
3	8,47
4	6,35
5	5,08
6	4,23
8	3,18
10	2,54
12	2,12
16	1,59
20	1,27
25	1,02

RELAÇÃO DE ENGRENAMENTO

$$i = \frac{N_{maior}}{N_{menor}} \ge 1$$

EXEMPLO 1:

$$i_{AB} = \frac{28}{14}$$

RELAÇÃO DE ENGRENAMENTO

$$i = \frac{N_{maior}}{N_{menor}} \ge 1$$

EXEMPLO 2:

$$i_{BC} = \frac{42}{28}$$

EXERCÍCIO 1

- 1. Sabendo a entrada e saída de potência da caixa de redução, por que o diâmetro do eixo-árvore de entrada é menor que o diâmetro do eixo-árvore de saída?
- 2. Qual a relação de engrenamento entre a engrenagem A e B e a engrenagem C e D, sabendo que o número de dentes de cada engrenagem é A=15; B=30; C=15; D=40

EXERCÍCIO 2 - ENTREGAR

A transmissão da figura é acionada por um motor elétrico com potência P = 7.5 [kW] ($P \cong 10CV$) e rotação n = 1140 [rpm], que por sua vez está acoplado à polia 1. As polias possuem os seguintes diâmetros: $d_1=120$ mm; $d_2=220$ mm

- a) Velocidade angular da polia (1) $\omega_1[\pi \cdot rad/s]$;
- b) Frequência da polia (1) $f_1[Hz]$;
- c)Torque da polia (1) $M_{T_1}[N \cdot m]$;
- d) Velocidade angular da polia (2) $\omega_2[\pi \cdot rad/s]$;
- e)Frequência da polia (2) f₂[Hz];
- f)Rotação da polia (2) n₂[rpm];
- g)Torque da polia (2) $M_{T_2}[N \cdot m]$;
- h) Velocidade tangencial da transmissão $v_p[m/s]$;
- i) Força tangencial $F_T[N]$;
- h)Relação da transmissão(i)[admensional];

Crie um programa em python que resolva o exercício!

EXERCÍCIO 3 - ENTREGAR

Um motorista com seu carro parado, ao engatar a primeira marcha do carro e tirar o pé da embreagem, faz facilmente com que seu carro saia da inercia, começando a se deslocar em velocidade constante.

Pesquise e explique detalhadamente o porque em um carro com a marcha engatada em segunda ou terceira marcha é necessário que o motorista acelere o carro em alta rotação para conseguir sair da inercia.

Na explicação englobe questões de energia cinética, potência e torque transmitido, envolvendo os elementos de transmissão mecânica de um automóvel.

