Math 11, Fall 2007 Lecture 13

Scott Pauls 1

¹Department of Mathematics Dartmouth College

10/24/07

Outline

- Review and overview
 - Last class
- Today's material
 - Integration in two variables
- Group Work
- Mext class

Outline

- Review and overview
 - Last class
- 2 Today's material
 - Integration in two variables
- Group Work
- A Next class

Finding extrema

- First derivative test: $\nabla f = \vec{0}$
- Second derivative test: $D = f_{xx}f_{yy} f_{xy}^2$
- Absolute max/min

Outline

- Review and overview
 - Last class
- Today's material
 - Integration in two variables
- Group Work
- 4 Next class

If f(x) is defined for $a \le x \le b$, we calculate the integral as follows:

- ① Divide [a, b] into n subintervals, $[x_{i-1}, x_i]$ of uniform width $\Delta x = (b-a)/n$.
- 2 Pick $x_i^* \in [x_{i-1}, x_i]$
- Form the Riemann sum:

$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$

This is an approximation of the integral.

- **1** Take the limit as $\Delta x \to 0$, or equivalently $n \to \infty$.
- This defines the definite integral:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

The integral of a function of two variables

Given f(x, y) defined on a rectangle $[a, b] \times [c, d]$. We follow similar reasoning:

- Divide both [a, b] and [c, d] into equal portions to create a rectangle subdivision of $[a, b] \times [c, d]$. Precisely:
 - **1** [a, b]: sub intervals $[x_{i-1}, x_i]$ of width $\Delta x = (b-a)/m$
 - ② [c, d]: sub intervals $[y_{i-1}, y_i]$ of width $\Delta y = (d-c)/n$
- ② Pick a point (x_{ii}^*, y_{ii}^*) in $R_{ii} = [x_{i-1}, x_i] \times [y_{i-1}, y_i]$
- Form a Riemann sum:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta x \, \Delta y$$

Take a limit to define the definite integral:

$$\int \int_{R} f(x,y) \, dxdy = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta x \, \Delta y$$

Estimation Techniques

The Endpoint, Midpoint, Trapezoid, and Simpson's Rules all have generalizations to the multivariable case, providing us with numerical estimations for integrals, i.e. volume under a surface.

Compute an integral!

Use the definition to compute the following integral:

$$f(x,y) = x^2 + y^2$$
, $a = 0, b = 1, c = 0, d = 1$. Find

$$\int_{R} (x^2 + y^2) \, dx \, dy$$

(Potentially) helpful formulae:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Work for next class

Reading: 16.2

• f07hw14