GBC053 - Gerenciamento de Bancos de Dados

Aula 3 Armazenamento Secundário e Sistemas de Softwares

Humberto Razente humberto.razente@ufu.br

Discos

- Comparado com o tempo que leva para acessar um item na RAM, acessos a disco são sempre caros
 - entretanto, nem todos os discos são igualmente lentos
- Discos rígidos:
 - Direct Access Storage Devices
 - permitem acessar dados diretamente
 - em oposição aos dispositivos de fita nos quais é preciso percorrer a fita até alcançar uma posição

Mídias magnéticas

Mídias óticas

Discos rígidos

Discos de 8", 5.25", 3.5", 2.5", 1.8" e 1"

Discos rígidos

Organização de discos

- Disco rígido
 - superfície tem um ou mais pratos
 - arquivos são armazenados em trilhas (tracks) sucessivas
 - Trilhas são divididas em setores (sectors)
 - Um setor é a menor porção endereçável em um disco
 - quando um READ tenta ler 1 byte de um arquivo, o sistema operacional encontra o prato, trilha e setor, lê o setor inteiro para uma área da RAM chamada BUFFER, e então recupera o byte e retorna à aplicação

Disco rígido

Trilhas e setores

Cilindros

- Cilindro: trilhas diretamente acima ou abaixo formam um cilindro
 - importância: informações em um cilindro podem ser acessadas sem a movimentação do braço que segura as cabeças de leitura e gravação
 - movimentação do braço é chamado seeking
 - usualmente a tarefa mais lenta da leitura

Cilindros

Capacidades

 trilha = número de setores por trilha x bytes por setor

 cilindro = número de trilhas por cilindro x capacidade da trilha

 drive = número de cilindros x capacidade do cilindro

Exemplo

- Armazenar um arquivo de 20.000 registros de tamanho fixo de um disco rígido de 300 MB com as seguintes características
 - bytes por setor = 512
 - setores por trilha = 40
 - trilhas por cilindro = 11
 - cilindros = 1.331
- Quantos cilindros são necessários para armazenar o arquivo se um registro tiver 256 bytes?

Exemplo

20.000 registros x 256 bytes = 10.000 setores
 512 bytes por setor

1 cilindro = 40 x 11 = 440 setores

Logo, 10.000 / 440 = 22,7 cilindros

Blocos e setores

- Há basicamente 2 modos de organizar dados em um disco:
 - por setor
 - setores são segmentos adjacentes de uma trilha
 - por bloco definido pelo usuário
 - ainda na década de 90, muitas controladoras de disco não tinham capacidade suficiente para ler um setor, guardá-lo em BUFFER, e ler outro setor sem ter que esperar o disco executar uma rotação
 - opção era organizar blocos em setores não adjacentes → tarefa do sistema de arquivos, de modo transparente para o programador

Blocos e setores

 (b) fator interleaving = 5 → ao invés de ler os 32 setores com 32 rotações do disco, 5 rotações são necessárias

Fragmentação

- Em geral, todos os setores de um disco têm o mesmo número de bytes
- Se, por exemplo, tivermos um setor de 512 bytes e registros de 300 bytes
 - podemos guardar um registro por setor
 - resultado: fragmentação interna
 - permitir que registros ultrapassem o setor, continuando no próximo
 - início de um registro pode ser encontrado em um setor e final em outro
 - adequado quando acesso é sequencial

Custo do acesso a disco

Três operações físicas distintas:

tempo de seek

atraso rotacional

tempo de transferência

Tempo de seek

- Tempo de seek
 - movimentação do braço da cabeça de leitura/escrita para o cilindro correto
 - depende do número de cilindros a deslocar
- Se um arquivo estiver armazenado em blocos consecutivos e em cilindros consecutivos
 - leitura ideal, com tempo de seek de 1 trilha a cada leitura de vários setores
- Acesso simultâneo a dois arquivos armazenados em cilindros nos extremos
 - pior caso

Tempo de seek

- Muito custoso em ambientes multi-usuário
 - muitos processos simultâneos com uso de disco
 - alto custo para comportamento aleatório
- Como é usualmente impraticável determinar o tempo de seek para cada operação, em geral computa-se o "tempo médio de seek" para uma operação de arquivo em particular
 - Em 1991: 40 ms
 - Em 2009: até 2 ms, desktop comum 9 ms, notebook 15 ms
 - Muito grande em mídias óticas

Atraso rotacional

- Atraso rotacional
 - tempo necessário para o disco rotacionar até que o setor desejado esteja embaixo da cabeça de leitura/gravação
 - atualmente, a grande maioria dos HD para desktops tem velocidade de 7.200 rotações por minuto (IDE ou SATA)
 - 5.400 é padrão em notebooks
 - 10.000 e 15.000 rpm disponíveis em HDs de alta performance (padrão SAS ou SCSI)

Atraso rotacional

- Atraso rotacional
 - em média, atraso rotacional é de meia volta
 - alto custo para comportamento aleatório

Tempo de transferência

- Tempo de transferência
 - tempo que leva a leitura de um setor que está sob a cabeça de leitura/gravação

número de bytes transferidos x tempo rotação número de bytes na trilha

 Para calcular por setor, divide-se pelo número de setores por trilha

Custo do acesso a disco

Tempo médio para leitura de um arquivo =

```
tempo de seek

+
atraso rotacional

+
tempo de transferência
```

O disco visto como um gargalo

- Mesmo com o desempenho dos discos crescendo rapidamente, tal velocidade ainda perde para as velocidades das redes locais
 - resultado: CPU e rede têm que esperar grande quantidade de tempo para disco atender às requisições
- Uma alternativa é a técnica de stripping
 - envolve quebrar um arquivo em partes e colocá-las em discos diferentes (de modo transparente para o usuário)

O disco visto como um gargalo

- Com o custo das memórias RAM caindo, outra alternativa é criar discos virtuais em memória
 - um RAM Disk é uma grande parte da memória RAM configurada para simular um disco mecânico em todos os aspectos exceto
 - velocidade e volatilidade

O disco visto como um gargalo

Cache

- o cache de disco é um grande bloco de memória RAM configurado para conter páginas ou setores de um disco
 - quando dados são requisitados, primeiro verifica-se se está no cache, senão busca-o no disco, incluindo ou substituindo no cache

Fita magnética

 Não provê a facilidade do acesso direto aos dados

- Mas pode prover acesso sequencial rápido
 - fitas são compactas, fáceis de transportar
 - são muito menos custosas que discos

Fita magnética – aplicações

- Mídia apropriada para processamento sequencial se
 - arquivos processados não serão utilizados por aplicações que requerem acesso direto
 - exemplo: contribuintes tem prazo para enviar declarações de imposto de renda
 - processamento pode ser feito após encerramento do prazo
 - com o constante barateamento dos discos rígidos por MB armazenado, atualmente é raro o processamento de dados diretamente em fita

Disco rígido vs fita magnética

- No passado, discos e fitas dividiam o mercado de mídias para armazenamento secundário
 - disco permitia acesso aleatório e imediato
 - fita permitia processamento sequencial e armazenamento de longo prazo
- Com o tempo, a relação tendeu em favor dos discos
 - disco permite acesso multi-usuário
- Ainda assim, as fitas são utilizadas para armazenamento de longo prazo (backup)

Hierarquia de armazenamento

Tipos de memória

Dispositivos e mídias

Primárias

Registradores RAM RAM disk Disk cache

Núcleos (cores) e semicondutores

Secundárias

Acesso direto Sequencial

Discos magnéticos Fitas

Offline

Backup

Discos magnéticos removíveis, mídias óticas, fitas

A jornada de um byte

- O que acontece quando um programa escreve um byte em um arquivo em disco?
 - WRITE(...);
- O comando WRITE resulta em uma chamada ao sistema operacional
 - que tem a função de acompanhar o restante da jornada até que seja completada com sucesso

A jornada de um byte

- Gerenciador de arquivos: componente do SO
 - várias camadas de procedimentos
 - camadas superiores lidam com aspectos lógicos
 - camadas inferiores lidam com aspectos físicos
 - cada camada fala com a inferior, até que a última camada realmente escreve no disco
- Funcionamento
 - determinar se arquivo está aberto, se usuário tem permissão, etc
 - determinar local onde o byte será colocado
 - localização física do setor onde será gravado

A jornada de um byte

- A seguir, o gerenciador de arquivos determina se o setor está na RAM ou precisa ser lido
 - denominado I/O buffer
- Então o byte pode ser incluído na posição
- O sistema de I/O buffer controla se o setor foi gravado ou não de volta no disco
 - idéia é adiar a gravação, permitindo que outros bytes possam ser gravados sem acesso ao disco
 - usuário pode requisitar flush para persistir buffer ou fechar arquivo
 - ambos resultam na gravação do setor no disco

Gerenciamento de buffer

 Buffering envolve trabalhar com grandes pedaços de dados em RAM para que o número de acessos ao armazenamento secundário seja reduzido

- Suponha que há apenas 1 buffer disponível:
 - uma aplicação que lê 1 byte por vez de um arquivo e grava em outro arquivo
 - geraria um grande número de leituras/gravações (um par para cada byte)
 - torna-se óbvio que o gerenciador de buffers deva poders gerenciar várias páginas simultaneamente

Gerenciamento de buffer

- Estratégias
 - buffering múltiplo (multiple buffering)
 - move mode and locate mode
 - scatter/gather I/O

Leitura complementar

- Capítulo "Secondary storage and system storage" do livro
 - Folk et al. "File Structures: An Object-Oriented Approach with C++", Editora Pearson, 3^a edição, 1998