乙パッファー法

「3次元CGの基礎と応用」より

隠面処理

- 見えてはいけない線や面を見えないように処理 すること
- ポリゴンではなくてラインでグラフィックを描 画していた時代は「陰線処理」とも呼んでいた。

隠面処理の例

処理なし

処理あり

隠面処理のアルゴリズム

- ・後面除去
- ・ペインタアルゴリズム
- スキャンライン法
- · Zバッファ法 ← 今回はこの手法を紹介

失敗する例 (a)

3すくみの場合

失敗する例 (b)

3角形が貫いている場合

失敗する例 (c)

奥の3角形を手前に表示する例

→重心が奥のAが手前のBを覆っている

乙パッファ法

- · 3次元の隠面消去問題を1次元の陰点消去問題 に帰着させる方法
- ・「Zバッファ」と呼ばれる、描画エリアと同じ大きさを持つ、画素の奥行きの情報を保存するメモリを使用する。

200

乙パッファー

描画エリアと同じ大きさを持つ 画素の奥行きの情報を保存するメモリ 320 320

描画エリア

Zバッファー

(今回のプログラム内では配列で確保)

一次元の隠点消去問題

点を描画するときに、すでに書かれた 点があれば、その奥行きを比較する

描画エリア

Zバッファー

特徴

- ・ Zバッファ分のデータをメモリ上に保持する必要があり、メモリ効率は悪い
- ・ピクセルごとに並列処理が可能なので、ハードウェア化がしやすい(但し透過が苦手)
- ・奥行き情報で計算誤差が発生する可能性がある

ソースコード

· https://github.com/nakaken0629/3dstudy2