Transitional Neoclassical Growth Dynamics with One-Sided Commitment

Dirk Krueger Fulin Li Harald Uhlig

University of Pennsylvania, CEPR and NBER University of Chicago University of Chicago, CEPR and NBER

June 4, 2022

Motivation

- Idiosyncratic income risk in macro:
 - ► Aiyagari (1994): self-insurance. Many applications: HANK . . .
 - ▶ But theoretically: **Pareto-improving trades!** What are the underlying frictions?
 - ▶ But empirically: More consumption smoothing than "self-insurance". Blundell, Pistaferri and Preston (2008), ...
- Empirically: Lots of long-term contracts with one-sided commitment:
 - ▶ Firms and Workers.
 - ▶ Insurers and insured.
 - ► Financial intermediaries and depositors/borrowers.
- Theoretically: Significant literature on limited commitment with exogenous outside option: Kehoe and Levine (1993, 2001), Kocherlakota (1996), Alvarez and Jermann (2000).
- Krueger-Uhlig, JME 2006: Fix discount rate r of intermediaries (partial equilibrium).
 - ► Competition between intermediaries ("firms").
 - ► Endogenous outside option for agents ("workers").

The Paper(s) Today

- Krueger-Uhlig, 2022: embed into neoclassical growth model.
 - Characterize steady state, including consumption distribution in closed form.
 - ▶ Alternative to Aiyagari (1994): heterogeneity with endogenous incomplete markets.
- This paper: transition in neoclassical growth model
 - ▶ One time permanent "MIT" shock in productivity at t = 0.
 - Characterize transition dynamics, including distributions analytically.
- This is a **theoretical exploration**: Take simplest version of the model, understand as much as possible.
- Eventual Goal, down the road: an attractive and improved quantitative alternative to Aiyagari (1994), Krusell & Smith (1998) workhorse model.

Environment: Household Preferences and Endowments

- Time $t \in (-\infty, \infty)$ is continuous.
- Mass one of agents $j \in [0, 1]$.
- Idiosyncratic labor productivity $z_{j,t}$: iid across j. Earn $z_{j,t}\mathbf{w}_t$.
 - $z_{j,t} \in Z = \{ \mathbf{0}, \zeta \}$ with $\zeta > 0$.
 - ▶ Poisson transition rates: $\nu dt = P(0 \to \zeta), \xi dt = P(\zeta \to 0).$
 - ► Stationary labor productivity distribution: $(\psi_l, \psi_h) = \left(\frac{\xi}{\xi + \nu}, \frac{\nu}{\xi + \nu}\right)$.
 - ▶ Normalize average labor productivity to one: $\frac{\nu}{\xi + \nu} \zeta = \mathbf{L} = \mathbf{1}$
- Preferences are CRRA. Lifetime utility:

$$U_0 = E_0 \left[\int_0^\infty e^{-\rho t} u(c_t) dt \right], \text{ where } u(c) = \frac{c^{1-\sigma} - 1}{1-\sigma}$$

Environment: Technology

 Neoclassical production function operated by representative firm renting capital and labor:

$$Y_t = \mathbf{A_t} K_t^{\theta} L_t^{1-\theta}$$

where $0 < \theta < 1$.

- Capital depreciates at rate δ .
- Wage, interest rate in equilibrium (with $L_t = 1$):

$$w_t = (1 - \theta) A_t K_t^{\theta}$$

$$r_t = \theta A_t (K_t)^{\theta - 1} - \delta$$

• Aggregate resource constraint

$$C_t + \dot{K}_t = Y_t - \delta K_t.$$

- Productivity process:
 - ▶ t < 0: $A_t \equiv \mathbf{A}^*$, "assumed" forever.
 - ▶ At t = 0: "MIT" shock to path A_t . Perfect foresight from t = 0 on.
- Closed form solution for transition if $\sigma = 1$, $A_t \equiv \tilde{\mathbf{A}} \neq A^*$ for t > 0, as long as permanent shock $\tilde{\mathbf{A}}$ not too large.

Financial Market Structure

- Aiyagari (1994): self-insure by precautionary capital accumulation.
- Here instead: (risk-neutral) competitive financial intermediaries offer consumption insurance contracts against productivity risk.
- Every t households can save through capital with intermediary and buy insurance against z transitions (\approx Arrow securities).
 - ▶ Intermediaries honor capital and insurance contracts.
 - ▶ Key friction: **agents cannot commit**, can change intermediary at any point, without punishment. Thus capital can't become negative.
- Perfect competition: intermediaries make zero profits, offer actuarially fair contracts.
- Limited commitment & no punishment: individuals **cannot borrow**. See Krueger & Uhlig (2006), Alvarez & Jermann (2000).
- Assumptions on parameters will insure that individuals with high labor productivity $(z = \zeta)$ will not save.
- t = 0: After "MIT shock", capital account of agents unchanged on impact, but future consumption allocation altered.

The Optimal Contract: HJB Equation for Agents

Definition

For $z \in Z$, wages w_t and interest rates r_t , let \tilde{z} be the "other" z and let p_z be the transition rate $z \to \tilde{z}$. An optimal consumption insurance contract

$$C_t = \left(U_t(k; z), c_t(k; z), x_t(k; z), \tilde{k}_t(k; z) \right)_{k \ge 0, z \in Z}$$

solves

$$\begin{split} \rho U_t(k;z) &= \max_{c,\tilde{\mathbf{k}} \geq \mathbf{0},x} \left\{ u(c) + U_t'(k;z)x + p_z(U_t(\tilde{k},\tilde{z}) - U_t(k;z)) + \dot{U}_t(k;z) \right\} \\ \text{s.t.} & c + x + p_z(\tilde{k} - k) = r_t k + w_t z \\ & \mathbf{x} \geq \mathbf{0} \text{ if } \mathbf{k} = \mathbf{0} \end{split}$$

The Optimal Contract: Heuristic Derivation from Neoclassical Growth Model

• Competitive equilibrium (with constant factor prices) of standard Neoclassical growth model:

$$\rho U(k) = \max_{c,x} \left\{ u(c) + U'(k)x \right\}$$

s.t.
$$c + x = rk + w$$

 \bullet ... or plugging in the budget constraint to eliminate x

$$\rho U(k) = \max_{c} \left\{ u(c) + U'(k)(rk + w - c) \right\}$$

• Often k is used to denote x

$$\rho U(k) = \max_{c,\dot{k}} \left\{ u(c) + U'(k)\dot{k} \right\}$$
s.t.
$$c + \dot{k} = rk + w$$

• Denote co-state variable $\lambda = U'(k)$ associated with k as

$$\rho U(k) = \max_{c,\lambda} \left\{ u(c) + \lambda (rk + w - c) \right\} = \max_{c,\lambda} \left\{ \mathcal{H}(k,c,\lambda) \right\}$$

The Optimal Contract: Discrete vs. Continuous Time

• Period length Δ , discrete time DP, discount fac. $\beta(\Delta) = e^{-\rho \Delta} \approx 1 - \Delta \rho$

$$\begin{array}{lcl} U(k) & = & \max_{c,k_{\Delta}-k} \left\{ \Delta u(c) + e^{-\rho \Delta} U(k_{\Delta}) \right\} \\ \text{s.t.} & & k_{\Delta}-k = \Delta (rk+w-c) \end{array}$$

• Use $e^{-\rho\Delta} \approx 1 - \Delta \rho$, subtract $(1 - \Delta \rho)U(k)$ from both sides:

$$\begin{split} \rho \Delta U(k) &= & \max_{c,k_{\Delta}-k} \left\{ \Delta u(c) + (1-\Delta \rho) \frac{U(k_{\Delta}) - U(k)}{k_{\Delta}-k} (k_{\Delta}-k) \right\} \\ \text{s.t.} & k_{\Delta}-k = \Delta (rk+w-c) \end{split}$$

• Now divide both sides by Δ

$$\rho U(k) = \max_{\substack{c, \frac{k_{\Delta} - k}{\Delta}}} \left\{ u(c) + (1 - \Delta \rho) \frac{U(k_{\Delta}) - U(k)}{k_{\Delta} - k} \frac{(k_{\Delta} - k)}{\Delta} \right\}$$
s.t.
$$\frac{k_{\Delta} - k}{\Delta} = rk + w - c$$

• Now take $\Delta \to 0$

$$\rho U(k) = \max_{c, \dot{k}} \left\{ u(c) + U_t'(k)\dot{k} \right\} \text{ s.t. } \dot{k} = rk + w - c$$

Optimal Consumption-Savings Choice in the Standard Neoclassical Growth Model

$$\rho U(k) = \max_{c,x} \left\{ u(c) + U_t'(k)x \right\}$$
 s.t.
$$c + x = rk + w$$

• Determine FOCs, take derivative wrt to time, calculate:

$$\frac{\dot{c}}{c} = \frac{u'(c)}{cu''(c)} (\rho - r)$$
(for CRRA:) = $\frac{r - \rho}{\sigma}$
(for log:) = $r - \rho$

• For CRRA, when w = 0: "cake eating" problem:

$$c = \alpha k \text{ for some } \alpha$$

$$\frac{\dot{k}}{k} = \frac{x}{k} = \frac{\dot{c}}{c}$$

Heuristic Derivation from Neoclassical Growth Model

$$\rho U(k) = \max_{c,x} \left\{ u(c) + U_t'(k)x \right\}$$
 s.t.
$$c + x = rk + w$$

• With idiosyncratic risk and incomplete markets (Achdou et al, 2021):

$$\rho U(k, \mathbf{z}) = \max_{c, x} \left\{ u(c) + U'(k)x + \mathbf{p_z}(\mathbf{U}(\mathbf{k}, \tilde{\mathbf{z}}) - \mathbf{U}(\mathbf{k}, \mathbf{z})) \right\}$$

s.t.
$$c + x = rk + wz$$

• With actuarially fair insurance contracts:

$$\rho U(k,z) = \max_{c,\tilde{\mathbf{k}},x} \left\{ u(c) + U'(k)x + p_z(U(\tilde{\mathbf{k}},\tilde{z}) - U(k,z)) \right\}$$

s.t.
$$c + x + \mathbf{p_z}(\tilde{\mathbf{k}} - \mathbf{k}) = rk + wz$$

• Limited Commitment

$$\begin{split} \rho U(k,z) &=& \max_{c,x,\tilde{k}} \left\{ u(c) + U'(k)x + p_z(U(\tilde{k},\tilde{z}) - U(k,z)) \right\} \\ \text{s.t.} & c + x + p_z(\tilde{k} - k) = rk + wz \\ & \tilde{\mathbf{k}} \geq \mathbf{0}, \mathbf{x} \geq \mathbf{0} \text{ if } \mathbf{k} = \mathbf{0} \end{split}$$

The Optimal Contract: HJB Equation for Agents

- Transition adds time-varying w_t, r_t , makes $U_t(k; z)$ time-dependent and thus adds the term $\dot{U}_t(k; z)$ in the HJB equation.
- Thus contract solves:

$$\rho U_t(k;z) = \max_{\substack{c,\tilde{\mathbf{k}} \geq \mathbf{0}, x}} \left\{ u(c) + U_t'(k;z)x + p_z(U_t(\tilde{k},\tilde{z}) - U_t(k;z)) + \dot{U}_t(k;z) \right\}$$
s.t.
$$c + x + p_z(\tilde{k} - k) = r_t k + w_t z$$

$$\mathbf{x} \geq \mathbf{0} \text{ if } \mathbf{k} = \mathbf{0}$$

Optimal Contract in Steady State (Assume $r < \rho$)

Optimal Contract in Steady State with $r < \rho, \sigma = 1$

- Key 1: if $r < \rho$, individuals do not save for the $z = \zeta$ state
- Key 2: Limited commitment: poor individuals (z=0) cannot borrow against the $z=\zeta$ state
- Budget constraints under these "conjectures"

$$c + \xi \tilde{k} = \zeta w$$

$$c + x - \nu k = rk$$

- Optimal allocations
 - ▶ High productivity, $z = \zeta$: $\frac{c_h}{\zeta w} = \frac{\nu + \rho}{\xi + \nu + \rho}$ and $\frac{k}{\zeta w} = \frac{1}{\xi + \nu + \rho}$. A share of income $\frac{\xi}{\xi + \nu + \rho}$ is used to buy insurance for loss of productivity. Choice of \tilde{k} guarantees continuity of consumption upon negative productivity shock.
 - ▶ Low productivity, z = 0: $c = (\nu + \rho)k$ and $x \equiv \dot{k} = (r \rho)k$. Consumption and capital account drifts down at rate $\frac{\dot{c}}{c} = \frac{\dot{k}}{k} = r \rho < 0$ as in standard neoclassical growth model.

Asset Distribution in Steady State and Transition

Assumption (A1)

For all $t \geq 0$, assume that $\sigma = 1$ and

$$\frac{\dot{w}_t}{w_t} + \rho - r_t > 0$$

- Assumption on endogenous variables! Later replaced by assumptions on parameters only.
- In steady state, A1 requires $r < \rho$ since $\frac{\dot{w}_t}{w_t} = 0$ in the steady state.
- Assumption A1 insures that all high productivity $(z = \zeta)$ -agents do not hold capital: $x_t(0,\zeta) = \tilde{k}_t(k;0) = 0$ and are all identical.
- Low productivity (z=0) agents are only distinguished by the time τ elapsed since having had high productivity $z=\zeta$. Density of waiting times $\tau \geq 0$

$$\psi_l(\tau) = \frac{\xi \nu}{\xi + \nu} e^{-\nu \tau}$$

which integrates to the total mass $\xi/(\xi+\nu)$ of z=0 agents.

From Recursive to Sequential Allocations: Needed for Transition Path

- Low productivity agents hold capital $k_{s,t}$ depending on the date t and the time $s = t \tau$ of last transition to z = 0.
- Likewise, let $c_{s,t} = c_t(k_{s,t}, 0)$ be consumption of z = 0 agent at t, who lost productivity last at date $s \leq t$.
- Finally, (abusing notation), let $c_{h,t} = c_t(0,\zeta)$ denote consumption of individuals with currently high productivity $z = \zeta$.
- \bullet Time derivatives are always with respect to calendar time t.

Definition of Dynamic Equilibrium

Definition

Given an initial capital distribution $(k_{-\tau,0})$ for z = 0-agents, a dynamic equilibrium are contracts C_t , wages w_t , interest rates r_t , aggregate capital K_t and capital of z = 0 agents $(k_{s,t})_{s \le t}$, for all $t \ge 0$, such that

- Given the sequence of w_t, r_t , the contracts C_t are optimal.
- The contracts C_t have the "only z=0 agents hold capital" property: $\tilde{k}_t(k;0)=0$ for all $k=k_{t,\tau}, \tau \geq 0$ as well as $x_t(0;\zeta)=0$.
- **3** Capital held by z=0 agents are consistent with the contracts C_t , i.e. $k_{t,t}=\tilde{k}_t(0;\zeta)$ and $\dot{k}_{s,t}=x_t(k_{s,t};0)$, where $\dot{k}_{s,t}=\partial k_{s,t}/\partial t$.
- Factor prices satisfy $r_t = \theta A_t (K_t)^{\theta-1} \delta$ and $w_t = (1 \theta) A_t (K_t)^{\theta}$.
- **6** The goods markets and the capital markets clear:

$$\int_{0}^{\infty} c_{t-\tau,t} \psi_{l}(\tau) d\tau + \frac{\nu}{\xi + \nu} c_{h,t} = A_{t} (K_{t})^{\theta} - \delta K_{t}$$

$$\int_{0}^{\infty} k_{t-\tau,t} \psi_{l}(\tau) d\tau = K_{t}$$

Partial Insurance Steady State

• Capital demand in steady state solves

$$r = \theta A \left(K^d(r) \right)^{\theta - 1} - \delta$$

• Steady state allocations $(c_{-\tau}, k_{-\tau})$. Capital supply in steady state

$$K^s(r) = \int_0^\infty k_{-\tau}(r) \psi_l(\tau) d\tau$$

- Evidently, $K^d(r=-\delta)=\infty>K^s(r=-\delta)$.
- The following assumption guarantees that $K^d(r = \rho) < K^s(r = \rho)$

Assumption (A2)

Let the exogenous parameters of the model satisfy $\theta, \nu, \xi, \rho > 0$ and

$$\frac{\theta}{(1-\theta)(\rho+\delta)} < \frac{\xi}{\nu(\rho+\nu+\xi)}$$

and $\sigma = 1$ (log-utility).

Partial Insurance Steady State

Proposition (Krueger-Uhlig, 2022)

There is a unique stationary equilibrium r^* satisfying $K^d(r^*) = K^s(r^*)$ with

$$r^* = \frac{\theta(\xi + \nu + \rho)(\nu + \rho) - \xi\delta(1 - \theta)}{\xi + \theta(\nu + \rho)} \in (-\delta, \rho)$$

Equilibrium consumption (deflated by wage w) distribution is truncated Pareto below mass point c_h/w :

$$\phi_{r^*}(c) = \begin{cases} \frac{\xi \nu (c_h/w)^{-\frac{\nu}{\rho - r^*}}}{(\rho - r^*)(\nu + \xi)} (c/w)^{\frac{\nu}{\rho - r^*} - 1} & if \quad c/w \in (0, c_h/w) \\ \frac{\nu}{\nu + \xi} & if \quad c/w = c_h/w = \frac{\nu + \rho}{\xi + \nu + \rho} \zeta \end{cases}$$

Capital Market: Steady State Partial Insurance

- Assumption guarantees $\frac{K^d(r=\rho)}{w} = \kappa^d(r=\rho) < \kappa^s(r=\rho) = \frac{K^s(r=\rho)}{w}$
- Since $r^* < \rho$, then $z = \zeta$ -individuals don't want to save.
- Full comparative statics with respect to $(\theta, \delta, \rho, \xi, \nu)$.
- If $\sigma > 2$, two steady states with $r_1^* < r_2^* < \rho$ possible as $\kappa^s(r)$ slopes down

Thought Experiment and Construction of Equilibrium

- For all t < 0 economy is in stationary equilibrium associated with productivity A^* .
- At t = 0 productivity changes unexpectedly to new time path A_t , for $t \ge 0$. Perfect foresight from t = 0 on.
- Transition path is solution to the following fixed point problem (computational algorithm):
 - Conjecture a path for capital K_t , $t \geq 0$.
 - ② Compute $r_t = \theta A_t (K_t)^{\theta-1} \delta$ and $w_t = (1 \theta) A_t (K_t)^{\theta}$.
 - 3 Compute the paths of individual household consumption and capital, given the path for r_t and w_t .
 - Compute the path of aggregate capital supply K_t^S by aggregating across individual households using density ψ_l .
 - **6** Check whether this is the conjectured path, $K_t = K_t^S$.

Characterization of Optimal Contract under A1

- Consumption of high-income people: $c_{h,t} = c_t(0,\zeta) = \frac{\nu + \rho}{\nu + \rho + \xi} \zeta w_t$
- Capital upon receiving bad shock: $k_{t,t} = \tilde{k}(0,\zeta) = \frac{1}{\nu + \rho + \xi} \zeta w_t$
- Evolution of individual capital stock: $x_t(0,\zeta) = 0$ and $x_t(k,0) = (r_t \rho)k < 0$. Thus, $\frac{\dot{k}_{s,t}}{k_{s,t}} = r_t \rho$.
- Consumption of the income poor $c_t(k,0) = (\rho + \nu)k$
- Note (1): current allocation does not depend on future interest rates or wages. Only true with log-utility. This implies that it is irrelevant if the MIT-shock is anticipated or unanticipated.
- Note (2): All capital owners (z = 0) consume and save the same share of their capital (income). High-productivity individuals $(z = \zeta)$ don't save (but buy insurance).

Optimal Contract: Response to MIT Shock

- Consumption of s < 0-agents does not jump at t = 0: $c_{s,0} = (\rho + \nu)k_{-s}^*$.
- Consumption of $z = \zeta$ -individuals remains $\frac{c_{h,t}}{w_t} = \frac{\nu + \rho}{\nu + \rho + \xi} \zeta$ for all $t \ge 0$.
- Log-utility key for both results.

Aggregation

- Since all individuals with capital have the same propensity to save out of capital, the model aggregates.
- Law of motion for aggregate capital is given by

$$\dot{K}_{t} = \left(\frac{\xi}{\rho + \nu + \xi} (1 - \theta) + \theta\right) A_{t} K_{t}^{\theta} - (\delta + \rho + \nu) K_{t}$$

$$= s A_{t} K_{t}^{\theta} - \hat{\delta} K_{t}$$

• This differential equation is a Bernoulli equation that has a closed form solution (Jones, 2000) for arbitrary path of $\{A_t\}$.

$$K_t = \left(e^{-(1-\theta)(\delta+\rho+\nu)t} \left(K^*\right)^{1-\theta} + (1-\theta) \int_0^t e^{-(1-\theta)(\delta+\rho+\nu)(t-s)} a_s ds\right)^{\frac{1}{1-\theta}}$$

where

$$a_s = \left(\frac{(1-\theta)\,\xi}{\rho + \nu + \xi} + \theta\right)A_s.$$

Summary for log utility, perm. prod. change

- Consumption of high-income people: $c_{h,t} = c_t(0,\zeta) = \frac{\rho + \nu}{\rho + \nu + \xi} \zeta w_t$
- Capital upon receiving bad shock: $k_{t,t} = \tilde{k}(0,\zeta) = \frac{1}{\rho + \nu + \xi} \zeta w_t$
- Evolution of individual capital stock: $x_t(0,\zeta) = 0$ and $x_t(k,0) = (r_t \rho)k < 0$. Thus, $\frac{\dot{k}_{s,t}}{k_{s,t}} = r_t \rho$.
- Consumption of the income poor $c_t(k,0) = (\rho + \nu)k$
- Since all individuals with capital have the same saving rate, the model aggregates. Law of motion for aggregate capital is given by

$$\dot{K}_t = \left(\frac{\xi}{\rho + \nu + \xi} (1 - \theta) + \theta\right) A_t K_t^{\theta} - (\delta + \rho + \nu) K_t$$

$$= s A_t K_t^{\theta} - \hat{\delta} K_t$$

- This differential equation is a Bernoulli equation that has a closed form solution (Jones, 2000) for arbitrary path of $\{A_t\}$.
- True, even if shocks are anticipated. Could do bus. cycle analysis!

Intuition for the Closed-Form Solution

- No closed-form solution in the neoclassical growth model.
- This environment has idiosyncratic risk that is not fully insured. Non-degenerate consumption distribution that changes over time. far richer model!
- So: why a closed form solution here?
- Log-utility: low-productivity agents consume according to a constant savings rate.
- High-productivity agents only insure against switch to low productivity, but they do not accumulate new capital.
- Together, the model **aggregates** since all agents with positive wealth have the same constant savings rate. See also Moll (2014).
- The Solow model (which assumes a constant aggregate saving rate) has a closed form solution, see Jones (2000).
- Now: Numerical Illustration
 - ► Aggregate dynamics.
 - ► Consumption distribution dynamics.

Permanent Change in Productivity

- Suppose productivity changes permanently from A^* to \tilde{A} .
- Then the aggregate capital stock is given in closed form by

$$K_t = \left(\frac{a}{b} + \left(\left(K^*\right)^{1-\theta} - \frac{a}{b}\right)e^{-(1-\theta)bt}\right)^{\frac{1}{1-\theta}}$$

where

$$a = \left(\frac{\xi}{\rho + \nu + \xi} (1 - \theta) + \theta\right) \tilde{A}$$

$$b = \delta + \rho + \nu$$

$$K^* = \text{Old Steady State Capital Stock}$$

- If $\tilde{A} > A^*$, then $(K^*)^{1-\theta} < \frac{a}{b}$. Capital monotonically increasing from old to new steady state.
- If $\tilde{A} < A^*$, then $(K^*)^{1-\theta} > \frac{a}{b}$. Capital monotonically declining from old to new steady state.

A Loose End

- Thus far have assumed that $\frac{\dot{w}_t}{w_t} + \rho r_t > 0$ for all t.
- \bullet Now can replace this assumption with assumption on exogenous parameters: permanent increase in A cannot be too large:

Assumption (A3)

Let $\tilde{A} < \bar{A}$, where $\bar{A} < A^*$ is defined as

$$\bar{A} = A^* \left(1 + \frac{\nu \left(\rho + \delta \right)}{\theta \left(\rho + \nu + \delta \right)} \left(1 + \frac{\xi}{\rho + \nu} \right) \left(\frac{\xi}{\nu \left(\rho + \nu + \xi \right)} - \frac{\theta}{\left(1 - \theta \right) \left(\rho + \delta \right)} \right) \right)$$

Proposition

Assume A2 and A3. Then Assumption A1

$$\frac{\dot{w}_t}{w_t} + \rho - r_t > 0$$

is satisfied for all t > 0.

Transitional Dynamics: Productivity Increase

 Parameters $\theta=0.25, \delta=0.16, \nu=\xi=0.2, \rho=0.4, A^*=1, \tilde{A}=1.2$

Consumption:

Interest Rate:

Wage:

The no-savings condition: $\frac{\dot{w}}{w} > r - \rho$

Productivity Increase vs Decrease

Consumption:

Consumption Paths: c_h vs. c_l (z = 0 for long time)

$$\tilde{A} = 0.8 < A^* = 1$$
:

$$\tilde{A} = A^* = 1:$$

$$\tilde{A} = 1.2 > A^* = 1$$
:

$$\tilde{A} = 1.4 > A^* = 1$$
:

Lorenz Curve for Consumption

Increase in A:

Decrease in A:

Consumption Inequality

Increase in A:

Decrease in A:

A useful decomposition:

$$\underbrace{\log\left(\frac{c_t^h}{c_{t-\tau,t}}\right)}_{\text{consumption gap}} = \underbrace{\log\left(\frac{w_t}{w_{t-\tau}}\right)}_{\text{wage gap}} \underbrace{-\int_{t-\tau}^t g_u du}_{\text{discounting gap}}$$

Wage Gap and Discounting Gap

Increase in A:

Decrease in A:

Wage Gap:

Discounting Gap:

Conclusion

Model:

- ▶ Two-state idiosyncratic income risk, $z \in \{0, \zeta > 0\}$.
- ▶ Households insured by intermediaries: one-sided commitment.
- ► Embed in neoclassical growth model with CRRA utility, Cobb-Douglas production.
- ▶ Characterize transition after "MIT" shock to productivity.

• Results:

- ► Closed-form solution for log utility.
- ▶ Rich set of analytical implications for the dynamics of the consumption and wealth distribution.
- Why is this interesting? Because (we think):
 - ► It provides a theory of imperfect consumption insurance based on micro-founded friction: one-side limited commitment.
 - ▶ No "missing markets". Scope for meaningful policy experiments.
 - ► Attractive and analytically tractable alternative to Aiyagari-style workhorse model.
 - ▶ Wide open questions: quantitative implications, confront empirical facts, aggregate shocks, other frictions, nominal rigidities.