ПРОГРАММНАЯ РЕАЛИЗАЦИЯ АЛГОРИТМОВ ШИФРОВАНИЯ ЗАМЕНОЙ

Вариант №3

отчет о лабораторной работе №3 по дисциплине МЕТОДЫ И СРЕДСТВА КРИПТОГРАФИЧЕСКОЙ ЗАЩИТЫ ИНФОРМАЦИИ

Выполнила
ст. гр. №230711, Павлова В.С.
Проверила
HOHOUT WORD INF FORMUDE F.D.

доцент каф. ИБ, Басалова Г.В.

ХОД РАБОТЫ

Задание. Реализовать программно алгоритм шифрования по таблице Вижинера. Слово-ключ задаётся с клавиатуры.

Листинг 1 – Программная реализация алгоритма шифрования

Листинг 2 – Программная реализация алгоритма дешифрования

```
public static byte[] Decode(byte[] input, byte[] key)
{
    byte[] result = new byte[input.Length];
    int keyCharIndex = 0;
    for(int i = 0; i < input.Length; i++)</pre>
```

Листинг 2 – Программная реализация алгоритма дешифрования

(продолжение)

```
{ //формула обратного сдвига

//сдвиг = (код исходного симв. + мощность - код ключа) / мощность
int movementCount = (input[i] + 256 - key[keyCharIndex]) % 256;

result[i] = (byte)movementCount;
keyCharIndex++;
if ((keyCharIndex + 1) == key.Length)
keyCharIndex = 0;
}

return result;
}
```

Демонстрационный пример №1. Файл .txt, ключ k = book

Демонстрационный пример №2. Файл .jpg, ключ k = sobaka

Демонстрационный пример №3. Файл .docx, ключ $k = \text{cat_}34$

Зашифрованный файл не открылся:

После расшифрования все работает:

