## Mecânica do Voo

## Lista de exercícios 9 – Movimento Látero-direcional 2

**Questão 1** – No estudo simplificado do movimento látero-direcional, considere o movimento de rolamento puro. Discuta esse movimento, apresentando as simplificações realizadas e a equação do movimento. Se a solução da equação do movimento a uma entrada do tipo degrau negativa nos ailerons, para valor inicial de p(0) = 0 é dada por:

$$p(t) = -\frac{l_{\delta_a}}{l_p} \left(1 - e^{l_p t}\right) \delta_{a,o}$$

Qual a atuação no manche e posicionamento da asa esquerda?

**Questão 2** – Considere o movimento de rolamento puro para uma entrada do tipo degrau negativa nos ailerons  $\delta_{a,o}=-5^\circ$  (manche à direita), para valor inicial de p(0)=0 para o avião Airbus nos nas condições de voo  $H_e=9120~km,~M_e=0.8 \rightarrow V_e=242,54~m/s$ . Determine sua respectiva equação do movimento.

**Questão 3** – Considere o movimento de rolamento puro para uma entrada do tipo degrau negativa nos ailerons  $\delta_{a,o}=0.2^\circ$  (manche à esquerda), para valor inicial de p(0)=0 para o avião Mirage III nos nas condições de voo  $H_e=9120\,km,\,M_e=0.8\,\rightarrow\,V_e=242.54\,m/s.$  Determine sua respectiva equação do movimento.

**Questão 4** – No estudo simplificado do movimento látero-direcional, considere o movimento espiral. Se a solução da equação do movimento é dada por:

$$r = r_0 e^{at}$$

$$\beta = -\frac{Q_{p_r} r_0}{Q_{p_\beta} a} e^{at}$$

$$p = -\frac{Q_{r_\beta} r_0}{Q_{p_\beta} a} e^{at}$$

$$\phi = -\frac{Q_{r_\beta} r_0}{Q_{n_\alpha} a} (e^{at} - 1)$$

Analise o sinal de a.

**Questão 5** — Para o movimento látero-direcional, analise o sinal de a para o movimento espiral para os seguintes aviões:

- i. Airbus pra  $I_{xz}=0$ , V=242,84m/s,  $H=9120\,m$ ,  $Q_{p_r}=0,5090$ ,  $Q_{p_\beta}=-4,529$ ,  $Q_{r_\beta}=-0,8577$ ;  $1+\frac{Y_\beta}{V}\frac{Q_{p_r}}{Q_{p_\beta}}=1,0230\,$  e W=247,46.
- ii. Mirage III pra  $I_{xz}=0$ , V=242,84m/s,  $H=9120\,m$ ,  $Q_{p_r}=0,9671$ ,  $Q_{p_\beta}=-9,0418$  ,  $Q_{r_\beta}=-6,7648$ ,  $\frac{y_\beta}{V_e}=-0,1622$  ,  $1+\frac{Y_\beta}{V}\frac{Q_{p_r}}{Q_{p_\beta}}=1,01753$  e W=246,77

Questão 6 – No estudo simplificado do movimento látero-direcional, considere o movimento de dutch roll. Discuta esse movimento, apresentando as simplificações realizadas, a equação do movimento e a respectiva equação característica do modo vibracional.

Questão 7 – No estudo simplificado do movimento látero-direcional, considere o movimento de dutch roll. Encontre as respectivas raízes da equação característica e dessa forma determine a frequência natural  $w_{\alpha i}$  o amortecimento  $\xi$  e o período de oscilação do respectivo modo de vibração para os seguintes aviões:

- i. Airbus nas condições de voo V = 242,84 m/s, H = 9120 m
- Mirage III nas condições de voo V = 242,84 m/s, H = 9120 mii.

Questão 8 – No estudo completo do movimento látero-direcional encontre a equação característica do movimento definida por:

$$A_0 s^4 + A_1 s^3 + A_2 s^2 + A_3 s + A_4 = 0$$

E determine os respectivos coeficientes.

Questão 9 - No estudo completo do movimento látero-direcional considere o caso de resposta a uma perturbação externa. Encontre as respectivas raízes da equação característica e dessa forma determine a frequência natural  $w_0$ , o amortecimento  $\xi$  e o período de oscilação dos respectivos modos de vibração para os seguintes aviões:

- Airbus nas condições de voo  $V=242,84~m/s,~H=9120 \mathrm{m},F_e=85057~N~$  ;  $\alpha_e=1000~\mathrm{m}$  $\theta_e=\alpha_e=3{,}838^\circ \quad e \quad q_e=0$
- Mirage III nas condições de voo  $V=242,\!84\,m/s$ ,  $H=9120\mathrm{m}$  ,  $F_e=0.00$ ii. 85057 N ;  $\alpha_e = 3.838^{\circ}$ ,  $\theta_e = \alpha_e = 3.838^{\circ}$  e  $q_e = 0$

Questão 10 – No estudo completo do movimento látero-direcional considere o caso de resposta aos controles ailerons e leme. Obtenha as funções de transferência do movimento láterodireciona  $G_{\varphi\delta_i}$ ,  $G_{\beta\delta_i}$ ,  $G_{p\delta_i}$ ,  $G_{r\delta_i}$ , que são obtidas por uma fração racional da forma:

$$\frac{N_o s^3 + N_1 s^2 + N_2 s + N_3}{(s-a)(s-b)((s+u)^2 + v^2)}$$

Em seguida encontre o formato geral da solução dos estados considerando uma entrada degrau nos controles apresentada como:

$$f(t) = A(e^{at} - 1) + B(e^{bt} - 1) + Ke^{ut}(\sin(vt + \psi) + \sin\psi)$$

Para f(0) = 0.

Questão 11 – No estudo completo do movimento látero-direcional considere o caso de resposta aos controles ailerons e leme. Obtenha as funções de transferência do movimento láterodireciona  $G_{\varphi\delta_i}$ ,  $G_{\beta\delta_i}$ ,  $G_{p\delta_i}$ ,  $G_{r\delta_i}$ , para o Mirage III na seguinte condição de voo H=9120m,  $Ve=242.5\,m/s$ ,  $\rho=0.4583kg/m^3$ ,  $\alpha_e=3.838^\circ$ . Em seguida considere as seguintes entradas nas superfícies de controle e encontre a solução geral dos estados para f(0) = 0.

- Reposta a uma entrada degrau dos ailerons  $\delta_a = -0.1^\circ$
- Reposta a uma entrada degrau no leme  $\delta_r=1^\circ$



**Questão 12** – No estudo completo do movimento látero-direcional considere o caso de resposta aos controles ailerons e leme. Obtenha as funções de transferência do movimento látero-direciona  $G_{\varphi\delta_i}$ ,  $G_{\beta\delta_i}$ ,  $G_{p\delta_i}$ ,  $G_{r\delta_i}$ , para o Airbus na seguinte condição de voo H=9120m, Ve=242,5~m/s,  $\rho=0,4583kg/m^3$ ,  $\alpha_e=3,838^\circ$ . Em seguida considere as seguintes entradas nas superfícies de controle e encontre a solução geral dos estados para f(0)=0.

- i. Reposta a uma entrada degrau dos ailerons  $\delta_a=-0.1^\circ$
- ii. Reposta a uma entrada degrau no leme  $\delta_r=1^\circ$