FMI, Info, Anul I

Logică matematică și computațională

Seminar 9

(S9.1) Să se arate că pentru orice formule φ, ψ ,

$$\{\psi, \neg \varphi\} \vdash \neg(\psi \to \varphi).$$

Demonstrație: Avem

(1)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \psi$	Propoziția 1.40.(ii)
(2)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \varphi$	Propoziția 1.40.(ii)
(3)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \neg (\psi \to \varphi)$	Propoziția 1.40.(ii)
(4)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \neg (\psi \to \varphi) \to (\psi \to \varphi)$	(S8.3).(iii) şi Prop. 1.42.(ii)
(5)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \psi \rightarrow \varphi$	(MP): (3), (4)
(6)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \varphi$	(MP): (1), (5)
(7)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg \varphi \to (\varphi \to \neg (\varphi \to \varphi))$	(S8.3).(ii) şi Prop. 1.42.(ii)
(8)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \varphi \to \neg(\varphi \to \varphi)$	(MP): (2), (7)
(9)	$\{\psi, \neg \varphi, \neg \neg (\psi \to \varphi)\}$	$\vdash \neg(\varphi \to \varphi)$	(MP): (6), (8)
(10)	$\{\psi, \neg \varphi\}$	$\vdash \neg(\psi \to \varphi)$	(9) şi $(S8.2)$.

(S9.2) Să se arate, folosind substituția, că formula

$$\chi := (((v_0 \to \neg (v_3 \to v_5)) \to v_6) \land (\neg (v_4 \to v_{10}) \to v_2)) \to ((v_0 \to \neg (v_3 \to v_5)) \to v_6)$$

este tautologie.

Demonstrație: Ştim că $v_0 \wedge v_1 \to v_0$ este tautologie. Aplicăm Propoziția 1.24.(ii) pentru $\varphi := (v_0 \wedge v_1) \to v_0, \ v := v_0 \ \text{și} \ \theta := (v_0 \to \neg (v_3 \to v_5)) \to v_6 \ \text{pentru a obține că:}$

$$\psi := \varphi_v(\theta) = (((v_0 \to \neg(v_3 \to v_5)) \to v_6) \land v_1 \to ((v_0 \to \neg(v_3 \to v_5)) \to v_6)$$

este tautologie. Aplicăm încă o dată Propoziția 1.24.(ii) pentru $\varphi := \psi$, $v := v_1$ și $\theta := \neg(v_4 \to v_{10}) \to v_2$ pentru a obține că χ este tautologie.

(S9.3)

- (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
- (ii) Găsiți o mulțime infinită de formule care nu este semantic echivalentă cu nicio mulțime finită de formule.

Demonstraţie:

(i) Fie Γ o mulţime de formule ca în enunţ. Dat fiind că Γ este satisfiabilă, admite un model şi fie acesta e. Pe de altă parte, dat fiind că Γ este finită, există un $n \in \mathbb{N}$ cu proprietatea că $\bigcup_{\varphi \in \Gamma} Var(\varphi) \subseteq \{v_0, v_1, \dots, v_n\}$.

Fie, atunci, pentru orice $k \in \mathbb{N}$, câte o funcție $e_k : V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e_k(x) := \begin{cases} e(x), & \text{dacă } x \in \{v_0, \dots, v_n\} \\ 1, & \text{dacă } x \in \{v_{n+1}, \dots, v_{n+k}\} \\ 0, & \text{altfel.} \end{cases}$$

Atunci, pentru $k \neq l$ avem $e_k \neq e_l$. Prin urmare, $\{e_k \mid k \in \mathbb{N}\}$ este o mulţime numărabilă. Pentru orice $k \in \mathbb{N}$ şi $\varphi \in \Gamma$, aplicând Propoziţia 1.14 pentru φ , e şi e_k , avem că $e_k^+(\varphi) = e^+(\varphi) = 1$, deci $e_k \models \varphi$.

Am obţinut astfel că $\{e_k \mid k \in \mathbb{N}\} \subseteq Mod(\Gamma)$. Aşadar, $Mod(\Gamma)$ este infinită. (Cu ce mulţime este $Mod(\Gamma)$ echipotentă?)

(ii) Considerăm $\Gamma := V = \{v_n \mid n \in \mathbb{N}\}$, o mulțime infinită de formule. Demonstrăm că Γ nu este echivalentă cu nicio mulțime finită de formule. Observăm că o evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă și numai dacă $e(v_n) = 1$ pentru orice $n \in \mathbb{N}$ dacă și numai dacă e este funcția constantă 1. Prin urmare, $Mod(\Gamma)$ are un singur element, pe e.

Fie acum Δ o mulțime finită de formule. Avem două cazuri:

- (a) Δ nu este satisfiabilă. Atunci $Mod(\Delta) = \emptyset$.
- (b) Δ este satisfiabilă. Atunci aplicăm (i) pentru a concluziona că $Mod(\Delta)$ este infinită.

În ambele cazuri, obținem că $Mod(\Delta) \neq \{e\} = Mod(\Gamma)$, deci Γ nu este echivalentă cu Δ .

Definiția 1. Un graf (neorientat) este o pereche (X, E) unde X e o mulțime și E este o relație ireflexivă și simetrică pe X. Spunem că un graf (X, E) este finit (respectiv numărabil) dacă X este finită (respectiv numărabilă).

Definiția 2. Fie (X, E) un graf și $k \in \mathbb{N}$. O k-colorare a lui (X, E) este o funcție $c: X \to \{0, ..., k-1\}$ astfel încât pentru orice $x, y \in X$ cu $(x, y) \in E$ avem $c(x) \neq c(y)$. Spunem că (X, E) este k-colorabil dacă există o k-colorare a lui (X, E).

Definiția 3. Fie (X, E), (X', E') grafuri. Spunem că (X', E') este subgraf al lui (X, E) dacă $X' \subseteq X$ și $E' \subseteq E$.

(S9.4) Fie (X, E) un graf numărabil şi $k \in \mathbb{N}$. Arătaţi că dacă orice subgraf finit al lui (X, E) este k-colorabil, avem că şi (X, E) este k-colorabil.

Demonstrație: Considerăm $X = \{x_0, x_1, x_2, ...\}$. Notăm, pentru orice $i \in \mathbb{N}$ şi $j \in \{0, ..., k-1\}$, $a_{i,j} := v_{i\cdot k+j}$ (unde v_0, v_1, v_2 etc. sunt variabilele logicii propoziționale). De remarcat că asocierea este bijectivă, adică pentru orice $n \in \mathbb{N}$ există o unică pereche $(i, j) \in \mathbb{N}^2$ cu $v_n = a_{i,j}$. (Intuitiv, $a_{i,j}$ va fi "adevărat" când vârful x_i va fi colorat în culoarea j.)

Considerăm următoarele mulțimi de formule:

$$\Gamma_1 := \{a_{i,0} \vee ... \vee a_{i,k-1} \mid i \in \mathbb{N}\}$$
 (intuitiv, spune că fiecare vârf al grafului e colorat în cel puțin o culoare)

$$\Gamma_2 := \{a_{i,j_1} \to \neg a_{i,j_2} \mid i \in \mathbb{N}, 0 \leq j_1 < j_2 < k\}$$
 (intuitiv, spune că fiecare vârf al grafului e colorat în cel mult o culoare)

$$\Gamma_3 := \{a_{i,j} \to \neg a_{p,j} \mid i, p \in \mathbb{N}, (x_i, x_p) \in E, 0 \leq j < k\}$$
 (intuitiv, spune că două vârfuri adiacente sunt colorate prin culori diferite)

$$\Gamma := \Gamma_1 \cup \Gamma_2 \cup \Gamma_3.$$

Afirmaţie: Dacă Γ este satisfiabilă, atunci (X, E) este k-colorabil.

Demonstrație: Fie $e \models \Gamma$. Deoarece $e \models \Gamma_1 \cup \Gamma_2$, rezultă că pentru orice $i \in \mathbb{N}$ există un unic $J_i \in \{0, ..., k-1\}$ a.î. $e(a_{i,J_i}) = 1$. Definim atunci

$$c: X \to \{0, ..., k-1\}, \quad c(x_i) = J_i.$$

Demonstrăm că c este o k-colorare a lui (X, E). Fie $i, p \in \mathbb{N}$ a.î. $(x_i, x_p) \in E$. Trebuie să arătăm că $c(x_i) \neq c(x_p)$, adică, $J_i \neq J_p$. Presupunem prin reducere la absurd că $J_i = J_p$ şi notăm cu J valoarea comună. Atunci $e(a_{i,J}) = e(a_{p,J}) = 1$.

Deoarece $e \vDash \Gamma_3$, avem că

$$1 = e^+(a_{i,J} \to \neg a_{p,J}) = e(a_{i,J}) \to \neg e(a_{p,J}) = 1 \to \neg 1 = 1 \to 0 = 0,$$

o contradicție.

Rămâne să arătăm că Γ este satisfiabilă. Din Teorema de compacitate, e suficient să demonstrăm că orice submulțime finită Δ a lui Γ este satisfiabilă.

Fie o asemenea mulțime Δ . Definim

$$\begin{array}{lll} A &:=& \bigcup_{\varphi \in \Delta} \{i \in \mathbb{N} \mid \text{ există } j \in \{0,...,k-1\} & \text{a.î. } a_{i,j} \in Var(\varphi)\}, \\ Y &:=& \{x_i \mid i \in A\}. \end{array}$$

Deoarece Δ este finită, se arată uşor că A este finită. Prin urmare, Y este o mulțime finită de vârfuri ale grafului (X, E). Ca urmare, subgraful indus $(Y, E \cap (Y \times Y))$ este un subgraf finit al lui (X, E), ce admite, din ipoteza problemei, o k-colorare - să o notăm cu h_Y .

Definim $e: V \to \{0,1\}$ astfel: pentru orice $i \in \mathbb{N}$ şi $j \in \{0,...,k-1\}$,

$$e(a_{i,j}) := \begin{cases} 1, & \text{dacă } i \in A \text{ şi } h_Y(x_i) = j; \\ 0, & \text{altfel.} \end{cases}$$

Rezultă că pentru orice $i \in A$ există un unic $J_i \in \{0, ..., k-1\}$ a.î. $h_Y(x_i) = J_i$, deci $e(a_{i...l_i}) = 1$.

Demonstrăm că e este model al lui Δ . Fie $\varphi \in \Delta$. Avem cazurile:

- (i) $\varphi \in \Gamma_1$, adică $\varphi = a_{i,0} \vee ... \vee a_{i,k-1}$ pentru un $i \in \mathbb{N}$. Atunci $i \in A$ şi $e(a_{i,J_i}) = 1$, adică $e \models a_{i,J_i}$. Rezultă că $e \models \varphi$.
- (ii) $\varphi \in \Gamma_2$, adică $\varphi = a_{i,j_1} \to \neg a_{i,j_2}$ pentru un $i \in \mathbb{N}$ și $0 \le j_1 < j_2 < k$. Atunci $i \in A$. Avem cazurile:
 - (a) $j_1 \neq J_i$, deci $e(a_{i,j_1}) = 0$. Atunci $e^+(\varphi) = e(a_{i,j_1}) \rightarrow \neg e(a_{i,j_2}) = 1$, deci $e \models \varphi$.
 - (b) $j_1 = J_i$, deci $e(a_{i,j_1}) = 1$. Atunci $e(a_{i,j_2}) = 0$. Obţinem că $e^+(\varphi) = 1 \rightarrow \neg 0 = 1$.
- (iii) $\varphi \in \Gamma_3$, adică $\varphi = a_{i,j} \to \neg a_{p,j}$, cu $i, p \in \mathbb{N}$ a.î. $(x_i, x_p) \in E$, $0 \le j < k$. Atunci $i, p \in A$, aşa că $x_i, x_p \in Y$ şi, prin urmare, (x_i, x_p) este o muchie a grafului $(Y, E \cap (Y \times Y))$. Deoarece h_Y este o k-colorare, avem că $h_Y(x_i) \ne h_Y(x_p)$, adică $J_i \ne J_p$. Avem cazurile:
 - (a) $j \neq J_i$, deci $e(a_{i,j}) = 0$. Atunci $e^+(\varphi) = 1$, deci $e \models \varphi$.
 - (b) $j = J_i$, deci $e(a_{i,j}) = 1$. Atunci $j \neq J_p$, deci $e(a_{p,j}) = 0$. Obţinem că $e^+(\varphi) = 1$.