Dummit & Foote Abstract Algebra 3rd Ed

October 31, 2013

Chapter 0

0.1.1

This exercise is contained within 0.1.4

0.1.2

$$(Q+P)X = QX + PX = XQ + XP = X(Q+P)$$
 Thus $(Q+P) \in B$

0.1.3

$$(QP)X = Q(PX) = Q(XP) = (QX)P = (XQ)P = X(QP)$$
 Thus $(QP) \in B$

0.1.4

Take $p, q, r, s \in \Re$ s.t.

$$A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \text{ and } AX = XA \implies \begin{pmatrix} p & p+q \\ r & r+s \end{pmatrix} = \begin{pmatrix} p+r & q+s \\ r & s \end{pmatrix}$$

From here, we compare the entries on either side; we see $p=p+r \implies r=0$, and $p+q=q+s \implies p=s$

Thus the general form for $A \in B$ is $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$

As a sanity check, we check AX = XA and get $\begin{pmatrix} a & a+b \\ 0 & a \end{pmatrix} = \begin{pmatrix} a & a+b \\ 0 & a \end{pmatrix}$

0.1.5

- (a) No, take f(1/2) = 1 and f(2/4) = 2, thus $a = a \implies f(a) = f(a)$
- (b) Yes, since there is no information lost in this map, it must be well defined (i.e. you aren't throwing away any piece of the input)

0.1.6

This is a well defined map; each real number has a unique decimal representation, thus there is no way to change the first digit after the decimal point.

0.1.7

This relation is predicated on the = relation under the image of f, so this is clearly a equivalence relation, but we will show the properties nonetheless:

```
Reflexive - a \sim a \implies f(a) = f(a) \checkmark
```

Symmetric -
$$a \sim b \implies f(a) = f(b) \implies f(b) = f(a) \implies b \sim a \checkmark$$

Transitive - $a \sim b$, $b \sim c \implies f(a) = f(b)$, $f(b) = f(c) \implies f(a) = f(c) \implies a \sim c \checkmark$

This relation is the definition of a fiber, as it relates all elements of the domain with the same value under f. If f were not surjective, we could find some element $b \in B$ such that $f(a) \neq b \ \forall a \in A$, and the fiber of f over b is the empty set. This empty set breaks our equivalence partitioning for our relation; however if we restrict f to surjection, the relation partitions A nicely into equivalence classes!

0.2.1

Syntax: ax + by = gcd; lcm = (xy)/gcd

- (a) 2 * 20 + (-3) * 13 = 1; lcm = (20 * 13)
- (b) 27 * 69 + (-5) * 372 = 3; lcm = (23 * 372)
- (c) 8*792 + (-23)*275 = 11; lcm = (792*25)
- (d) (-126) * 11391 + 253 * 5673 = 3; lcm = (3797 * 5673)
- (e) (-105) * 1761 + 118 * 1567 = 1; lcm = (1761 * 1567)
- (f) (-17) * 507885 + 142 * 60808 = 691; lcm = (735 * 60808)

0.2.2

We have for $a, b, n, m \in \mathbb{Z}$; a = nk; $b = mk \implies as + bt = (nk)s + (mk)t = k(ns + mt)$ and k divides $as + bt \ \forall s, t \in \mathbb{Z}$

0.2.3

We have n = mk for some $m, k \in \mathbb{Z}$. Take a = mq and b = kp where $k \nmid q$ and $m \nmid p$, thus $n \nmid a$ and $n \nmid b$. Consider $ab = mqkp = (mk)qp = n(qp) \implies n|ab$

0.2.4

 $ax + by = a(x_0 + \frac{b}{d}t) + b(y_0 - \frac{a}{d}t) = ax_0 + \frac{ab}{d}t + by_0 - \frac{ab}{d}t = ax_0 + by_0 + (\frac{ab}{d} - \frac{ab}{d})t = ax_0 + by_0 + 0t$; this is clearly invariant under choice of t and represents a valid solution space.

0.2.5

$$\begin{array}{l} \varphi(1)=1; \ \varphi(2)=1; \ \varphi(3)=2; \ \varphi(4)=2; \ \varphi(5)=4; \\ \varphi(6)=2; \ \varphi(7)=6; \ \varphi(8)=4; \ \varphi(9)=6; \ \varphi(10)=4; \\ \varphi(11)=10; \ \varphi(12)=4; \ \varphi(13)=12; \ \varphi(14)=6; \ \varphi(15)=8; \\ \varphi(16)=8; \ \varphi(17)=16; \ \varphi(18)=6; \ \varphi(19)=18; \ \varphi(20)=8; \\ \varphi(21)=12; \ \varphi(22)=10; \ \varphi(23)=22; \ \varphi(24)=8; \ \varphi(25)=20; \\ \varphi(26)=12; \ \varphi(27)=18; \ \varphi(28)=12; \ \varphi(29)=28; \ \varphi(30)=8; \end{array}$$

0.2.6

Take $S \subset \mathbb{N}$ and P to be the complement of S with $1 \in S$ and $s \in S \implies s+1 \in S$ Now take $p \in P$ such that p is the minimal element in P. We know $p \neq 1$ since $1 \in S$ Thus p-1 exists and can't be in P since p is the minimal element of P. $p-1 \notin P \implies p-1 \in S \implies p-1+1=p \in S$. From here we see p is in S and the complement of S and can not exist, Thus S must be empty and S and S is S and S and S is S is S and S is S and S is S and S is S and S is S is S is S is S in S and S is S is S is S in S is S is S.

0.2.7

The power of p in pb^2 is bound to be odd, where the power of p in a^2 is bound to be even. More explicitly, taking $a,b\in\mathbb{Z}$ we can write $a=k_1^{a_1}\dots k_n^{a_n}p^{a_p}; b=q_1^{b_1}\dots q_n^{b_n}p^{b_p}$ where q_i,k_i are primes. This means $a^2=k_1^{2a_1}\dots k_n^{2a_n}p^{2a_p}$ and $pb^2=q_1^{2b_1}\dots q_n^{2b_n}p^{2b_p+1}$, so we need to find a_p,b_p s.t. $2a_p=2b_p+1$ though this is impossible.

0.2.8

First we start by counting up to n by multiples of p. Note there are $\left\lfloor \frac{n}{p} \right\rfloor$ such numbers. At this point, we have counted up all single multiples of p, though we have yet to account for the multiples of p^2 (i.e. every p^{th} multiple of p). In order to get the number of p^2 terms, we count up to p^2 over multiples of p^2 for a total number of $\left\lfloor \frac{n}{p^2} \right\rfloor$ (looks familiar). This counting method continues up to the p^2 terms. Now to arrive at the largest power of p^2 that divides into p^2 0, we sum up all these terms: p^2 1 p^2 2 p^2 3 p^2 4.

0.2.9

```
Haskell implementation  \begin{aligned} &linearGCD :: Int - > Int - > (Int, Int, Int) \\ &linearGCD \ a \ b = (d, u, v) \ where \\ & (d, x, y) = eGCD \ 0 \ 1 \ 1 \ 0 \ (abs \ a) \ (abs \ b) \\ & u \mid a < 0 = negate \ x \\ & \mid otherwise = x \\ & v \mid b < 0 = negate \ y \\ & \mid otherwise = y \\ & eGCD \ n1 \ o1 \ n2 \ o2 \ r \ s \\ & \mid (s == 0) = (r, o1, o2) \\ & \mid otherwise = case \ r \ `quotRem` \ s \ of \\ & (q, t) - > eGCD \ (o1 - q * n1) \ n1 \ (o2 - q * n2) \ n2 \ s \ t \end{aligned}
```

0.2.10

Let p be a prime larger than N+1 such that $\varphi(p^k)=(p-1)(p^{k-1})>N$. Therefore any prime q dividing n is no larger than N+1 and there are only finitely many choices for this q. Furthermore, we know $\varphi(n)=\varphi(q^k)\varphi(m)$ for some number m that is not divisible by q. Note that $\varphi(m)$ is constant, so this equation relies on k. This limits $k \leq log_q(\frac{N}{m})$. Now we see that both the choice for q and k are of a finite set, thus there are finitely many numbers such that $\varphi(n)=N$.

Let's say there is some number M such that $\varphi(n) < M \forall n \in \mathbb{N}$. Since we are mapping an infinite set, \mathbb{N} , onto a finite set, we are bound to break the finite ceiling we set in the last previous portion (i.e. at least one of the numbers from $1 \dots M$ will have an infinite amount of numbers mapped to it). Thus we may not incur a maximum M.

0.2.11

Take $d=p_1^{a_1}\dots p_n^{a_n}$ where p_i is a prime that divides d. Since $d|n,\,n=p_1^{b_1}\dots p_n^{b_n}q$ where $a_i\leq b_i$. From here, $\varphi(d)=\varphi(p_1^{a_1})\dots\varphi(p_n^{a_n})=p_1^{a_1-1}\dots p_n^{a_n-1}(p_1-1)\dots(p_n-1)$ and $\varphi(n)=\varphi(p_1^{b_1})\varphi(p_2^{b_2})\dots\varphi(p_n^{b_n})\varphi(q)=p_1^{b_1-1}\dots p_n^{b_n-1}(p_1-1)\dots(p_n-1)\varphi(q)$ Now since $a_i-1\leq b_i-1,\,\varphi(d)|\varphi(n)$

0.3.1

$$\mathbb{Z}/18\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}, \overline{12}, \overline{13}, \overline{14}, \overline{15}, \overline{16}, \overline{17}\}$$
 Where $\overline{a} = \{x \in \mathbb{Z} | x = 18k + a\}$

- 0.3.2
- 0.3.3
- 0.3.4
- 0.3.5
- 0.3.6
- 0.3.7
- 0.3.8
- 0.3.9
- 0.3.10
- 0.3.11
- 0.3.12
- 0.3.13
- 0.3.14
- 0.3.15
- 0.3.16

Chapter 1