Grupo: Quebrando códigos

Software: Skillforge

1) Overview do Projeto

1.1) Instrutor

O instrutor responsável pelo projeto é o professor Sérgio Teixeira de Carvalho, de Software Concorrente e Distribuído. Com vasta experiência em arquitetura de sistemas distribuídos e tecnologias de streaming, ele guiou o desenvolvimento da plataforma com foco em performance e escalabilidade.

1.2) Contextualização

Este projeto envolve a criação de uma plataforma de streaming de conteúdo educacional focado em jogos. Inspirando-se em plataformas populares como Netflix e Prime Video, o objetivo é proporcionar uma experiência de usuário fluida e eficiente, utilizando tecnologias de ponta para distribuição de conteúdo em escala global. A plataforma foi construída utilizando o CloudFront como CDN (Content Delivery Network) e o S3 como serviço de armazenamento de mídia, visando otimizar a entrega de vídeos e reduzir a latência.

1.3) Objetivos do Projeto

- Utilizar uma base arquitetural similar às plataformas de streaming comerciais:
 Aproveitar o conhecimento e as tecnologias aplicadas em serviços como Netflix e

 Prime Video para criar uma plataforma de streaming educacional.
- Implementar requisições parciais de dados: Desenvolver uma API capaz de calcular e fornecer apenas a quantidade de bytes necessária para exibir o timestamp desejado dos vídeos, melhorando a experiência do usuário.
- Reduzir o tempo de carregamento dos vídeos: Implementar técnicas que minimizem a espera para o carregamento dos vídeos, especialmente os de longa duração, através de requisições parciais.
- Utilizar o CloudFront como CDN para escala global: Garantir que o conteúdo esteja disponível com baixa latência em qualquer parte do mundo, utilizando o cache nas edge locations do CloudFront.

1.4) Discussões de Relevância

- Eficiência e performance: A abordagem de requisições parciais de dados é crucial para otimizar a performance, especialmente para vídeos longos, garantindo uma experiência de usuário satisfatória.
- Escalabilidade global: A utilização do CloudFront como CDN permite que a plataforma atenda usuários de diferentes regiões com baixa latência, independentemente da localização geográfica do servidor principal.

- Tecnologia e inovação: O projeto demonstra a aplicação prática de tecnologias modernas de streaming e armazenamento em nuvem, servindo como um estudo de caso relevante para desenvolvedores e arquitetos de sistemas.
- Educação acessível: Ao disponibilizar conteúdo educacional de forma eficiente e escalável, a plataforma contribui para a democratização do conhecimento, permitindo que mais pessoas acessem materiais educativos de qualidade sobre jogos, independente de sua localização.

1.5) Trabalhos relacionados

 Não foi encontrado nenhum trabalho semelhante disponibilizado em sites de código aberto como por exemplo o Github.

2) Requisitos do Projeto

2.1) Requisitos de Usuários

- RU01 Acesso fácil ao conteúdo educacional: Os usuários devem poder navegar e acessar o conteúdo educacional de maneira intuitiva e rápida.
- **RU02 Carregamento rápido de vídeos**: Os vídeos devem carregar rapidamente, minimizando o tempo de espera.
- RU03 Reprodução de vídeos de alta qualidade: A plataforma deve oferecer vídeos em alta qualidade, ajustando a resolução conforme necessário para garantir uma experiência de visualização fluida.
- **RU04 Disponibilidade global do conteúdo**: Usuários de qualquer parte do mundo devem ter acesso ao conteúdo com baixa latência.
- **RU05 Capacidade de continuar de onde parou**: Os usuários devem ser capazes de retomar a reprodução dos vídeos a partir do ponto onde pararam.

2.2) Requisitos Funcionais

- RF01 Implementação de requisições parciais de dados: A API deve calcular a quantidade de bytes necessária para exibir apenas o timestamp desejado dos vídeos.
- **RF02** Integração com **S3** para armazenamento de mídia: Os vídeos devem ser armazenados no **S3**, com acessos gerenciados de forma segura.
- RF03 Utilização do CloudFront como CDN: O CloudFront deve ser configurado para distribuir o conteúdo em escala global, utilizando edge locations para armazenar em cache e entregar os vídeos com baixa latência.
- **RF04 Interface de usuário intuitiva**: A plataforma deve ter uma interface amigável e fácil de usar, facilitando a navegação e a busca de conteúdo.
- RF05 Sistema de autenticação e autorização: Deve existir um sistema para autenticar usuários e controlar o acesso ao conteúdo.

2.3) Requisitos Não-Funcionais

- RNF01 Desempenho: A plataforma deve ter alta performance, garantindo tempos de resposta rápidos e carregamento eficiente de vídeos.
- **RNF02 Escalabilidade**: A solução deve ser escalável para suportar um grande número de usuários simultâneos, sem degradação na qualidade do serviço.
- RNF03 Segurança: Dados dos usuários e conteúdos devem ser protegidos contra acesso não autorizado. A comunicação entre cliente e servidor deve ser criptografada.
- **RNF04 Confiabilidade**: A plataforma deve ser confiável, com alta disponibilidade e mecanismos de recuperação em caso de falhas.
- **RNF05 Manutenibilidade**: O sistema deve ser fácil de manter e atualizar, permitindo a adição de novas funcionalidades e correções de bugs de forma eficiente.
- RNF06 Compatibilidade: A plataforma deve ser compatível com diversos dispositivos e navegadores, oferecendo uma experiência consistente para todos os usuários.

3) Fundamentos de SD relacionados ao projeto

3.1) Princípios de sistemas distribuídos

- Escalabilidade: O sistema deve ser capaz de lidar com um número crescente de usuários e dados sem perder performance. A utilização do CloudFront como CDN e o armazenamento no S3 ajudam a alcançar esse objetivo.
- Tolerância a Falhas: A plataforma deve continuar funcionando mesmo quando partes do sistema falham. A replicação de dados e o uso de múltiplas edge locations no CloudFront ajudam a garantir alta disponibilidade.
- Desempenho: É crucial que o sistema responda rapidamente às requisições dos usuários. O buffer implementado para os vídeos e a distribuição dos servidores através da CDN melhoram significativamente o tempo de resposta e a qualidade do streaming.

3.2) Fundamentos de arquitetura de sistemas distribuídos e dos estilos arquiteturais

- **Arquitetura Cliente-Servidor**: A plataforma segue um modelo cliente-servidor, onde o cliente faz requisições à API para acessar o conteúdo armazenado nos servidores.
- Arquitetura em Camadas: O sistema é organizado em camadas, separando a lógica de apresentação (interface do usuário), lógica de aplicação (API), e a lógica de dados (armazenamento em S3 e distribuição via CloudFront).

3.3) Fundamentos de paradigmas de comunicação em sistemas distribuídos

 Comunicação Assíncrona: A API deve suportar requisições assíncronas, permitindo que o cliente continue operando enquanto aguarda a resposta do servidor.

3.4) Robustez em sistemas distribuidos: nomeação, coordenação, consenso, consistência e replicação, e tolerância a falhas

- Nomeação: Utilizamos URLs únicas e consistentes para acessar os recursos, garantindo que o conteúdo esteja sempre acessível de maneira previsível.
- Coordenação e Consenso: Para garantir que os servidores CDN estejam sempre atualizados com o conteúdo mais recente, utilizamos mecanismos de coordenação e consenso, como algoritmos de consenso distribuído.
- Consistência e Replicação: Os dados são replicados em múltiplas localizações para garantir alta disponibilidade e consistência. O CloudFront cuida da replicação dos vídeos nas edge locations.
- Tolerância a Falhas: O sistema é projetado para ser tolerante a falhas, utilizando replicação de dados e estratégias de failover para minimizar o impacto de falhas em componentes individuais.

4) Resultados

4.1) Design arquitetural

Camada de Apresentação (Frontend):

- Interface de Usuário: Desenvolvida com React, a interface oferece uma experiência de navegação intuitiva e responsiva, permitindo aos usuários acessar facilmente o conteúdo educacional.
- **Player de Vídeo:** Um player customizado que suporta buffering eficiente e controle de qualidade de vídeo, garantindo uma reprodução suave e de alta qualidade.

Camada de Aplicação (Backend):

 API RESTful: Implementada utilizando Node.js com Express, a API gerencia requisições de usuários, autenticação, autorização e controle de acesso aos vídeos armazenados no S3.

Camada de Dados:

- Armazenamento em Nuvem (S3): Os vídeos são armazenados no Amazon S3, garantindo escalabilidade e segurança. O S3 facilita a gestão de grandes volumes de dados e oferece alta durabilidade e disponibilidade.
- Content Delivery Network (CDN): O Amazon CloudFront distribui os vídeos globalmente, utilizando edge locations para reduzir a latência e melhorar a performance de entrega de conteúdo.

4.2) Design dos dados

Estrutura de Armazenamento:

 Bucket S3: Os vídeos são armazenados em buckets do S3, organizados por categorias e níveis de acesso. Cada vídeo é dividido em segmentos para facilitar o buffering e a entrega eficiente.

5) Limitações, trabalhos futuros e perspectivas do Projeto

5.1) Limitações

Embora a plataforma de streaming educacional tenha sido projetada com foco em performance e escalabilidade, algumas limitações ainda podem ser observadas:

- 1. Latência em Regiões Remotas: Apesar do uso do CloudFront, algumas regiões muito remotas podem ainda experimentar latências maiores devido à distância física das edge locations.
- 2. Dependência de Serviços da AWS: A plataforma depende fortemente dos serviços da AWS, como S3 e CloudFront. Isso pode limitar a flexibilidade e aumentar os custos, especialmente se a escala de uso aumentar significativamente.

5.2) Trabalhos Futuros

- 1. Implementação de Comunidade: Desenvolver uma seção dedicada à comunidade dentro da plataforma, onde os usuários podem interagir, compartilhar experiências, e colaborar em projetos relacionados a jogos.
- 2. Sistema de Comentários: Adicionar a funcionalidade de comentários nos vídeos e cursos, permitindo que os usuários façam perguntas, compartilhem opiniões e troquem ideias sobre o conteúdo educacional.
- **3. Funcionalidade de Interação:** Incorporar funcionalidades de interação, como fóruns de discussão, grupos de estudo e eventos ao vivo, onde os usuários podem participar de webinars e sessões de Q&A com instrutores.
- 4. Gamificação: Introduzir elementos de gamificação, como badges, níveis e recompensas, para incentivar a participação ativa e o engajamento dos usuários na comunidade e nos cursos.
- **5. Perfis de Usuários:** Permitir que os usuários criem perfis personalizados, onde possam exibir suas conquistas, cursos concluídos e áreas de interesse, facilitando a conexão com outros membros da comunidade com interesses semelhantes.