Forms of inhibition: Competitive

Where:
$$\alpha = \left(1 + \frac{[I]}{K_I}\right)$$

1/[S]

 $-1/\alpha K_M$

Can be linearized:

$$\frac{1}{v_{\rm o}} = \left(\frac{\alpha K_{\rm M}}{V_{\rm max}}\right) \frac{1}{[S]} + \frac{1}{V_{\rm max}}$$

Forms of inhibition: Uncompetitive

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} P + E$$

$$+$$

$$I$$

$$K'_1 \parallel$$

$$ESI \longrightarrow NO REACTION$$

$$\frac{1}{v_{\rm o}} = \left(\frac{K_{\rm M}}{V_{\rm max}}\right) \frac{1}{[S]} + \frac{\alpha'}{V_{\rm max}}$$

Increasing

 $\alpha'=1$ (no inhibitor)

 $\alpha' = 1.5$

 $\alpha'/V_{\rm max}$

Forms of inhibition: Mixed (non-competitive)

$$\Rightarrow v_o = \frac{V_{\text{max}}[S]}{\alpha K_M + \alpha'[S]}$$

$$\frac{1}{v_{\rm o}} = \left(\frac{\alpha K_M}{V_{\rm max}}\right) \frac{1}{[S]} + \frac{\alpha'}{V_{\rm max}}$$

