

SEQUENCE LISTING

<110> SPECHT, THOMAS
HINZMANN, BERND
SCHMITT, ARMIN
PILARSKY, CHRISTIAN
DAHL, EDGAR
ROSENTHAL, ANDRE

<120> HUMAN NUCLEIC ACID SEQUENCES FROM NORMAL BREAST TISSUE

<130> ALBRE 8

<140> 09/646,569
<141> 2000-09-20

<150> PCT/DE99/00909
<151> 1999-03-19

<150> DE 198 13 835.0
<151> 1998-03-20

<160> 210

<170> PatentIn Ver. 2.1

<210> 1
<211> 2031
<212> DNA
<213> Homo sapiens

<400> 1
attgcatacg cccgcctgga agaagtcaact gggaaagctac aagttagctcg gaaccttatac 60
atgaggggga cggagatgtg ccccaagagt gaagatgtct ggctggaagc agccaggttg 120
cagcctgggg acacagccaa ggcgtggta gcccagctg tccgtcatct cccacagttct 180
gtcaggattt acatcagagc cgcagagctg gaaacggaca ttctgtcaaa gaagcgggtt 240
cttcggaaag ccctcgagca tggtccaaac tcggttcgct tggaaagc agccgtttag 300
cttggaaagac ctgaagatgc tagaatcatg ctgagccgag ctgtggagtg ctgccccacc 360
agcgtggagc tctggcttgc tctggcaagg ctggagaccc atgaaaatgc ccgcaaggtc 420
ttgaacaagg cgccggagaa cattccatata gaccgacata tctggatcac ggctgctaag 480
ctggaggaag ccaatggaa cacgcagatg gtggagaaga tcatcgaccg agccatcacc 540
tcgctgcggg ccaacggtgt ggagatcaac cgtgagcagt ggatccagga tgccgagaa 600
tgtgacaggg ctgggagtgt ggccacctgc caggccgtca tgcgtggctg gattggatt 660
gggattgagg aggaagatcg gaagcatacc tggatggagg atgctgacag ttgttagcc 720
cacaatggcc tggagtgtgc acgagccatc taacgcctacg ccctgcagggt gttccccagc 780
aagaagagtg tggctgcgc cgccgcgtac ttgcagaaga accatggcac tcgggagtc 840
cttggaaagac tcctgcagag ggctgtggcc cactgcccc aagcagaggt gctgtggctc 900
atgggcggca agtccaagtg gctggcagggt gatgtgcctg cagcaaggag catcctggcc 960
ctggccttcc agggcaaccc caacagttag gatatctggc tggcagccgt gaagctggag 1020
tccgagaatg atgatgtacga gcggggccgg aggctgtgg ccaaggcgcg gacagtgcac 1080
ccaccgcgg ggtgttcatg aagtctgtga agtggagtg ggtgcaagac aacatcaggg 1140
cagcccaaga tctgtgcgag gaggccctgc ggcactatga ggacttcccc aagctgtgg 1200
tcatgtgggg gcaatgcgag gaggcagaagg agatgtggc gaaggcgcgg gaagcctata 1260
accagggtt gaagaagtgt ccccaactcca caccctgtg gctttgctc tctcggctgg 1320
aggagaagat tggcagctt actcgagcac gggccatccc ggaaaagtct cgtctgaaga 1380
acccaaagaa ccctgggctg tgggtggagt ccgtgcggct ggagtaccgt gcggggctga 1440
agaacatcgc aaatacactc atggccaagg cgctgcagga gtgccccaaac tccggtatcc 1500
tgtggctga ggcacatctt ctcgaggcaa ggccccagag gaggaccaag agcgtggatg 1560

ccctgaagaa gtgtgagcat gaccccatg tgctcctggc cgtggccaag ctgttttga 1620
 gtcagcggaa gatcaccaag gccaggagt ggttccaccc cactgtgaag attgactcg 1680
 acctggggaa tgcctggcc ttcttctaca agtttgagct gcagcatggc actgaggagc 1740
 agcaggagga ggtgaggaag cgctgtgaga gtgcagagcc tcggcatggg gagctgttgt 1800
 ggcgcgtgtc caaggacatc gccaactggc agaagaagat cggggacatc cttaggctgg 1860
 tggccggccg catcaagaac accttctgat tgagcgggtt ccattggccgg tctccgtggg 1920
 gcagggttgg gcccgtgtc gaagggtctc gagctgtgtc ctcccttcatt aaaagtttt 1980
 atgtctcgta tcagaaaaaaa aaagaaaaaaga aaaaagggggg cgccccggggg c 2031

<210> 2
<211> 1081
<212> DNA
<213> Homo sapiens

<400> 2
aagacccgt ctctacaaag caaaacgaaa aacaacaaat ggagttgtgc tatgttgat 60
tgcttgcac aaaatttagga acaggtgttt gacaattgaa tttgtttct gtgaattcta 120
acctctaaag gcatgcttag aggtcaagga cttcctgtg tagtttgtc aaaagcaatc 180
tccacaggac agcactgctt ccatgcttca tacatcagga aatgaggcca gaacttgagt 240
atttactaac acgttttca aaagatgtca gtgttataacc taaagctaaa aaaaagcaag 300
ggtttgcata agagggaaacc tctaaataat ttcaggggta ggggagatgt tgtcaatagg 360
aaatggata aaatatcaag agacaatgaa aacactgcct tgacatgagg accagcaagt 420
ttattcttt catttcagt gatgttggg atggactggg ttttaaaagg gagcttgaag 480
agggaatgtt tgacagtcac agaagggtcc tgcagcagat gcctcttta gccatttctc 540
attttttcc tcaaatttta cctactgagg ctcagcctt cacagtgagc tgatggctc 600
tacaggggag gggagtctag ggaattttt tggattttt aaggcaagag gtgatttctc 660
tctaataatct ctgagttatt gtcatttta aactgttaag tccagtataa tttccctga 720
tataaaaaaa tgcattttt tttcacttag caacaaagta cttcttaatt tccaatagtc 780
cgtgaaagtt gggctgaag tacctaagtg tgaatgtctc tcccgtaaa ctgagtgtag 840
aaatctgaat tttaaaaga gctgtaacta gttgtaagtg cttaggaaga aactttgcaa 900
acatttaatg aggatacact gttcattttt aaaattcctt cacactgtaa ttaatgtgt 960
tttatattct ttgttagtaa aacaacataa ctcagatttc tacaggagac agtggttta 1020
tttggattgt ctctgtat aggttcaat aaagctggat gaacttaaaa aaaaaaaaaa 1080
a 1081

<210> 3
<211> 1318
<212> DNA
<213> Homo sapiens

<400> 3
gccaaggcgc agggtcagcg acacttcttc cggcccaacg ccgtgcattgg agcccatcct 60
ggccgcacg cattacagcc agctgcgcaa gaagagctga gtcggccac cagccgcgc 120
gccccgggcc ggccgggttcc tctaacaat aaacagaacc cgcactgccc aggcgagcgt 180
tgccactttc aaagtggtcc cctggggagc tcagcctcat cctgatgatg ctgccaaggc 240
gcactttta ttttattttt attttattt ttttttagc atcctttgg ggcttcactc 300
tcagagccag ttttaaggg acaccagagc cgcagcctgc tctgattcta tggcttggtt 360
gttactataa gagaattgc ctaacttgc ttttcatctc tttaaccaa cttgtggcca 420
aaagatattt gaccgttcc aaaattcaga ttctgcctt gcggataaat atttgccacg 480
aatgagtaac tcctgtcacc actctgaagg tccagacaga aggtttgac acattcttag 540
cactgaactc ctctgtgatc taggatgatc tggatccccct ctgatgaaca tcctctgatg 600
atctaggctc ccagcaggct actttgaagg gaacaatcag atgcaaaagc tcttgggtgt 660
ttattnaaa tactagtgtc actttctgag taccggccgc ttcacaggct gagtccaggc 720
ctgtgtgtt tgtagagcca gctgctgtc cacagccaca tttcatttg catcattact 780
gccttcaccc gcatagtcac tctttgtat ctggggaaacc aaaatggta tgatataatag 840
actttatgtatgta tagccacagt tcataccccaa ccctagtc tggatgttca atatttgata 900

aatctagaaa atgcattcat acaattacag aattcaaata ttgcaaaagg atgtgtgtct 960
 ttctcccgta gctcccctgt tccccttcat tgaaaaccac cacggtgcca tctcttgtgt 1020
 atgcagggtc atgcacctgc aggcacgtgt gtatgcactc cccgcttgtg ttacacaag 1080
 ctgtgggtgt ttacgcatgc ctgctttt cacttaataa tacagcttgg agagatttt 1140
 gtatcacatt ataaatccca ctcgctctt ttgatggcca cataataact actgcataat 1200
 atggatacgc cttattttagt ttaacttagtt ccctaattgt ggacttttaa gttgtttcct 1260
 tttttttct ttttgcacat tgcaaacatg gctataataa atgtccttat caaaaatg 1318

<210> 4
 <211> 731
 <212> DNA
 <213> Homo sapiens

<400> 4
 ctgggacaa gactctcacc agcacatcac acacgttctc cttggaagag agaagcagta 60
 catcccggtt gagaggtcac aaagcattag tggaaagaaat gtggtaaagg gggaaaggtg 120
 ttatgcggct gctccctccg tcccagaggt ggcagtgtt ccataatgtg gagactagta 180
 actagatcct aaggcaaaaga ggtgttctc cttctggatg attcatccca aagccttccc 240
 acccaggtgt tctctgaaag cttagccta agagaacacg cagagatgtt ccctagatat 300
 actcctgcct ccaggtgctg ggacacacctt ttgcaaaatg ctgtgggaag caggagctgg 360
 ggagctgtgt taagtcaaag tagaaaccct ccagtgttt gtgttgtgtg gagaatagga 420
 catagggtaa agaggccaag ctgcctgttag ttagtagaga agaatggatg tggttcttct 480
 tgtgtattt tttgtatcat aaacacttgg aacaacaaag accataagca tcatttagca 540
 gtttagcca tttcttagtt aactcatgtt aacaagtaag agtaacataa cagtattacc 600
 ct当地ctgt tctcacagga catgtaccta attatggatc ttattttatgt agtcactgt 660
 tttctggatt tttaaattaa taaaaaagtt aattttgaaa aatcaaaaaa aaaagaaaagg 720
 aagtaaaagg a

<210> 5
 <211> 2719
 <212> DNA
 <213> Homo sapiens

<400> 5
 ggagaccagg cccacagaga acagggcaag gagcaggcca tggataa gaaggtgcag 60
 ctccagagaa tggtagacca aaggtcggtg atttcagatg aaaagaaagt tgccctcctc 120
 tatctagaca atgaggagga ggagaatgtt gggcattgtt ttataataagc agaaacattt 180
 tggtaatgt gcagcctgtt ggcgacgtgc caacatccaa aggccttaac ttatTTtaag 240
 aggccgaggg agtctatgaa aatctccct ttttacttt tttaaagagt actcccggca 300
 tggtaatgtt cctttagt taatccgtaa aggttccag ttaattcatg cttaaaagg 360
 cactgcaatt ttatTTtaa gttggactt ttacaaaaca ctttttccc tggagtctt 420
 tctccactt tggagatgaa ttctatgtt ttgcacctgg tcacagacat ggctgcattc 480
 tggtaaac tacaattat tatacatgtc aaaacattaa ccagattaa gtaatattt 540
 taagagtaaa ttttgcttgc atgtgtaat atgaaataac agactaacat tttagggaa 600
 aaataaatac aatttagact ctaaaaagtc tttaaaaaaa gaaatggaa ataggcagac 660
 tggtaatgtt aaaaaattt ttgcttaatg atttcatttt tagggaaaaaa ttacttgcca 720
 tatacatgtt aattcattt aagactgaa tgaattgtt tctatgtaca gaactttaaa 780
 caatatagtt ttatggcga ggacagctgt agtctgtgt gatatttcac attctattt 840
 cacaggttcc ctggcactgg tagggtagat gattattggg aatcgcttac agtaccattt 900
 catttttgg cacttaggtca ttatgtaca cacagtctga atgcctttt ctggagtgcc 960
 cagttcttat cagactgtgc agacttgcgc ttctctgcac cttatccctt agcaccctaa 1020
 catttaattt cactggtggg aggttagaccc tgaagacaat gaagagaatg ccgataactca 1080
 gactgcagct ggaccggcaa gctggotgtg tacaggaaaa ttgaaagcac acagtggact 1140
 gtgccttta aagatgcctt tcccaaccct ccattcatgg gatgcaggc tttctgagct 1200
 caagggtaaa agatgaatac aataacaacc atgaacccac ctcacggaaat ctttttttgc 1260
 actttaataa aacttgcattt cagttgggtt gtttgcacat gggaaacatg ttattaaataa 1320

gaaggatgtt ttggggaaagg aactggatat ctctcctgca gcccagcacc gagataccca 1380
 ggacgggcct gggggcgag aaaggcccc atgctcatgg gccgcggagt gtggacctgt 1440
 agataggcac caccgagtt aagatactgg gatgagcatg cttcatttga ttcattttat 1500
 tttacacgtc agtattgtt taaagtttct gtctgtaaag tgttagcatca tatataaaaa 1560
 gagtttcgct agcagcgcac ttttttagt tcaggctagc ttcttcaca taatgctgtc 1620
 tcagctgtat ttccagtaac acagcatcat cgcaactgact gtggcgcact ggggaataac 1680
 agtctgagct agcaccaccc tcagccaggc tacaacgaca gcactggagg gtctccctc 1740
 tcagattcac ctggaggccc tcagaccccc agggtgacag tctccccagg tcctgggagt 1800
 ggctaccgca gtagttctg gagagcacgt ttttttcatt gataagtgg aagaaaatgc 1860
 agcacagcct tcaagatact attttaaaaa caccatgaat cagataggaa aagaaaatgg 1920
 attggaatgg caagttaaa cctttgttgc ccatctgcca aatgaacttag tgattgtcag 1980
 actggatgg aggtgactgc tttgttaaggt tttgtcggtt ctaatacaga cagagatgtg 2040
 ctgattttgt ttttagctgta acaggtaatg gttttggat agatgattga ctggtgagaa 2100
 tttggtcaag gtgacagcct cctgtctgtat gacaggacag actgggtgtg aggagtctaa 2160
 gtgggctcag tttgatgtca gtgtctggc toatgacttg taaatggaaat ctgatgtgaa 2220
 caggttaatta atattatgac ccacttctat ttactttggg aaatatcttgc gatcttaatt 2280
 atcatctgca agttcaaga agtattctgc caaaagtatt tacaagtatg gactcatgag 2340
 ctattgttgg ttgctaaatg tgaatcacgc gggagttagt gtgccttca cactgtgaca 2400
 ttgtgacatt gtgacaagct ccatgtcctt taaaatcagt cactctgcac acaagagaaa 2460
 tcaacttcgt ggttggatgg ggccggaaca caaccagtct ttttgtattt attgttactg 2520
 agacaaaaca gtactcaactg agtgttttc agtttcctac tgggtgtttt gatattgtt 2580
 gtttaagatg tatatttaga atgacatcat ctaagaagct gattttgcta aactcctgtt 2640
 ccctacaatg ggaatgtca caagaatgtg caaaaataaa aatctgagga aaaaacccaa 2700
 aaaattccta aagagaatg 2719

<210> 6

<400> 6
000

<210> 7

<400> 7
000

<210> 8

<400> 8
000

<210> 9

<400> 9
000

<210> 10

<211> 1107

<212> DNA

<213> Homo sapiens

<400> 10

gggccgggca gcccagctga aggcaataag ctgggctcac cgctgcagca gagttctgtg 60
 ctagccgggc atagggcgaa gagaaggccc agaggcgacg tcagagagaa gcaactgcgc 120

cccggtaag agaagctcgccatcacccg ctgggagcca gctttcagtgaagatggcag 180
 ggcagaact gttgttgcaccaacatctgcctctgggt ggtcttaccc atcgatataca 240
 ctcttcgttag acatgatccg ccactacgttccatcctgc tggagagcga caagaagctc 300
 acccaggaac aagtatctga caggggacga ggcaccacaca gtcctctcc cataaggctg 360
 ccaagaagat tgatgtggcc cgtgtacgt ttgacctgtcaagctgaac ccacaggact 420
 tcattggctg cctgaacgtg aaggcgactt ttatgatacatactccctt tcctatgatc 480
 tgcactgtg tggggcaag cgcatcatga aggaagctt ccgctggcc ctcttcagca 540
 tgcaggccac agggcacgtatgccttgca cctcctgtta cctgcagcag ctccctegatg 600
 ctacggagga agggcagccc cccaaaggca aggcctcatc ccttatcccg acctgtctga 660
 agatactgca gtgaaagccc aagtccttgg aagcttccc cagtgaagga ctgactgggg 720
 gcctcacgct taactggtag tgcccacaag cctggcagct gtagagccgc gaacctcccc 780
 acacccctt caccgcgcag gaccctgagt gaggaggagg agctggaaac ctgggggtggg 840
 ttggccaaag gagaaccta agtccttggc ctgatccagc tccttcctgc ccaaggcagc 900
 ttagcccatc cagactggtc ctgaagtctg tccttcattt ggcatgaagt ctgccccctca 960
 gcagtccggc ctcacaggct gtactttcat ggtgctctt accttcgtgc ccccatccca 1020
 gaacattcgt gaggtaattc gcaagcatac tagcatgtga tattaggag tttgcaataa 1080
 attattgtatgtatgtaaaaaaa 1107

<210> 11
 <211> 1062
 <212> DNA
 <213> Homo sapiens

<400> 11
 gtgaatatgt gtgtatatgt gtgtgtatgt gtgtgtgggg tttggggtag aaggaggagg 60
 gggggcagga cagtgtggaa tctcttaggt gtatgggttag gtagggggca cagttatgtc 120
 taagtggct tttatgctaa aagcctctgg ggatatctgt tttggaaaata aagataggtg 180
 tcccctcctt gctgtcatct agcccaagaca ctctgcttc tctctggctg tctgtccct 240
 gggaggctt tagaggacc acccaggaca ggatgaccat gctccatct gctctggagc 300
 tgggtctcag tgcagaggga cagtgaactgt ggatgggtgc agtctctgtt gggagggtgag 360
 gatagaagtg ataaagagct aagaggagct tctgggagcc ttggaggagg tcagtcttc 420
 agtggtaag ccaggacata ggagatggag cagggtgtg agaggaggag attctgagga 480
 ggtgcaggaa gaaatcttgt ctgttaatga aatagggggtt ggggtgggtt tgggggtggg 540
 tggtcatttc cgttttagct gctgatttc atgatgcgcc ttcaaaactc tcgtgttaggg 600
 ttgacaatgt ggggggtgg gggatccagc ttattctttt attttcaagt ccattctgg 660
 ggctgggtgg gaggcaggag aataccctc cetaagccct tagtgtgtgc cgagcttgct 720
 ttgtgtatgtt ggcaggggag gggagacctg ggtgggtgact gagttccctt tatcaaacc 780
 ttcaatggc acaaattga gtgcttgatt ttaggttttta tttttttatg aatgtccaaa 840
 tctgtgtttc cccctgcctt cccagactgt gtggccagtt gaaagtgtct ggttgggttt 900
 catctctccc tcatttctgg agcagggcct gagaccctgc cacatctcct atgctctgca 960
 tccacgcctc tttggacat taaaggttga ttgtatgcataa acaactttac aacgggggtgg 1020
 cttggggaaag cctgggggttg gccggcttat ggggttgcgg cg 1062

<210> 12
 <211> 1471
 <212> DNA
 <213> Homo sapiens

<400> 12
 attacaggca tgagccactgtacccagcct ttccttataa aattcaaaga gaaaatttct 60
 acaccccttat ccctcaaata aaacaagtgc tcagttctt ccgtgccctt gcaagggtcta 120
 tatgtaaaag aaatctgaaa tttagctgtaa gataaaaact tgataaataaa aaagaaaaaaa 180
 catacatttc tccagttgggttgccttgc tttttttatg aatgtccaaa 240
 aaaatacttg ctgtaaaccc ccagtgcctt caactctttt ggcagaatat tttttaaagaa 300
 atccagcaag caaactttga ggtgctaatg aaagtaaagg aaggtggat ttctagttt 360
 ggcagaaatg aaaagtgtct cacaagagac atcactaccc acgtggggtc tggctgcttt 420

ctacccaaga	catttagaga	agaagtgaat	tgagtcaggg	tgatggtgaa	cactacatat	480
tttatacatg	gttaagttga	gaattaatta	tgtttatcat	ggatggctac	taataccaaag	540
ctcatgattt	ttgcagcctc	aacgtcttag	gcagtaaaaac	ttgtctgcag	cactaaaggg	600
ggagaaaacc	ttatattttt	caaactgtcc	attcgtaaa	tttattgtaa	cctaataccca	660
aaaactgccc	tttttcatat	tattccccca	cctcctactt	tttttttttt	tttttgctac	720
ttgtaaaata	acccttctta	gaaaataaagc	attaactgga	atgtttcaaa	caattttgct	780
tcattttact	atcagccact	agtgaactct	tacagagatg	tacatthaag	ataaaaattag	840
cttgtgctaa	gtgttttaaa	aacattgttt	actgttaaag	gggaattgca	cattatattt	900
aactgggatt	gctccctccc	tcagttcttt	aaaaaacaag	agtcaaggct	cacaccaact	960
tgtaggctgt	gggagctttg	ccataggtag	atacaatgta	gaagtatact	tttttaaagc	1020
atgaagaaga	caaggaacct	cattataatg	taccaggtag	aggacattat	tattcaaagg	1080
attatgcaca	gctcagtgaa	gatgaaggtt	caattttct	cgcagctttg	ttgctattat	1140
tttcttctgc	ataaaatgtat	gctcatttca	ttatgtgcct	tgctccctga	ttgtgcaaag	1200
cttatataata	tatataatata	gatagataga	tagatagata	gatatatgag	agagatataat	1260
tcagtaactac	tgaggatgtt	tttctgagga	tgtttttgtt	ctgctggatt	aagttatttt	1320
ccaagttact	cttgcgcagg	atgtcagtaa	actattgtaa	tggcttagca	cactagtcgt	1380
acagtcagtg	taaatgtttt	tcatttacat	gttttcattt	tatcagctta	tcaaatacctt	1440
aataaaaaaa	attcatagat	ttcatttaaa	c			1471

<210> 13

<211> 2738

<212> DNA

<213> Homo sapiens

<400> 13

gctccgtgcc agcatgctac cctgggaggc acatccaggc ttggaaacgc ggggtgtcct 60
ggatctcatg actccagcg caccagctgc tctcttcct cttccaagta gacttccgtt 120
cccccccaac ttgggtgttt ttgttgttt tagcaattca gagctcaaga taaagacctt 180
aaagataact ttgtgtgtct ctccccttct aggtatttgc ataggaatca gaggagttaa 240
tcttgtctct ttcacaggt ttgaatcttc agacaaactt ctgggaggac tcggtccatg 300
cctcgcagca gatgttccct gtcaatcagt aggcaaattt gctaccatt ctccccagaa 360
atctcaccag tggctcaact gtgagaagac gttcaaccgg aaagaccacc tgaaaaacca 420
cctccagacc cacgaccccc aaaaaatggc ctttgggtgt gaggagtg ggaagaagta 480
caacaccatg ctgggctata agaggcacct ggccctccat gcggccagca gtggggac 540
cacctgtggg gtctgtgccc tggagctagg gagcaccggag gtgctactgg accaccta 600
agcccatgcg gaagagaagc cccctagcgg aaccaaggaa aagaagcacc agtgcgacca 660
ctgtgaaaaga tgcttctaca cccggaagga tgtgcacgc cacctggtg tccacacagg 720
atgcaaggac ttctgtgcc agttctgtgc ccagagattt gggcgaagg atcacctcac 780
ccggcatacc aagaagaccc actcacagga gctgatgaaa gagagcttgc agacccggaga 840
ccttctgagc accttccaca ccattctgccc ttcatccaa ctgaaggctg ctgccttgcc 900
tcctttccct ttaggagctt ctgcccagaa cgggcttgca agtagcttgc cagctgaggt 960
ccatagcctc accctcagtc ccccaagaaca agccgcccag cctatgcagc cgctgccaga 1020
gtccctggcc tccttccacc ctcggatc ccctggctct cctccgccc ac ccttccaa 1080
tcacaagtac aacaccactt ctacccata ctccttcaactt gcaaggctg ccctcaaagc 1140
agatactaaa ggttttgc aatcagttt gtttggggac ttgcctctgc aagagctca 1200
gtcacctcaa aagctcaacc caggtttga tctggctaag gaaaatgtg gtaaagtaaa 1260
cctgccaag gagctgcctg cagatgtgt gaacctaaca atacctgcct ctctggac 1320
gtccccctg ttgggtttctt ggcagctgcc ccctcctgtt accccaaaata cctttggaa 1380
tagcactttt gcctggggc ctgggaatc tttggccac aggttaagct gtctgggca 1440
gcagcagcaa gaaccccccac ttgcattggg cactgtgagc ctgggcccagc tccccctgcc 1500
ccccatccct catgtgttct cagctggcac tggctctgccc atcctgcctc atttccatca 1560
tgcattcaga taattgattt taaaatgtt ttttcgtat tctggaaagat gtttaagaa 1620
gcattttaaa tgcagttac aatatgagaa agattggaa aacgagactg ggactatggc 1680
ttattcagtg atgactggct tgagatgata agagaattct cgaactgcatt gtattgtgcc 1740
aatctgtcct gagtgttcat gctttgtacc aaatthaatg aacgcgtgtt ctgtaatcaa 1800
actgcaaaa ttgtcataac caacatccaa aatgacggct gctatatata agtgtttgtc 1860
atatggaaatt taatcgtaaq ccatgatcat aatgttaact aaataacttt atgtggcact 1920

gcctagtaag ggaactatgg aaagggttgg atttctccaa atctgggaga attttcaaaa 1980
 taagaaaata acctttatat gataactat gactaggctg tgtatttctt ttcagggatt 2040
 tttctacctt caggggttggc tgttagtttag ttactattac catagccaac ctgtagttt 2100
 acatatacat ttcttctgtgg agcaatacgat ttctccatt tacagaagca ttttaaatgt 2160
 agtttgaata ttcttccacaa gatgctgcaa tgtgagttat cacttcattt atcttaaaga 2220
 aagactaaac tggttgcag ttacatctga cagaaaaaaa aaaaaaatca ctgtgtacc 2280
 aggttaagtgc gtaaaataat ccaggcgtca gtcaaaggca ttttgctgac tttatattg 2340
 attatatttt taacaggaat ttaagaaaat attactggaa ttaaaaatat atatataatta 2400
 aacaagaatt ttcttgctc tgtctagctt aaactactac tcaagctgct taagttctt 2460
 agtattgttt gtaatcacca ataaataagt gcatttgtaa ttcatcagtc attattagct 2520
 tttttaaaaa gaagattacg ttttacaatg taactataat ctcttgaatt tggtatctt 2580
 ttaatgagtt ttaaagatgt aaaacctaac cttttttaaa gtcattgtt cttatgtttt 2640
 tagaggctt tccgtaaaca tatatcttac atataataaa ctttcaaat cttgcaaaaa 2700
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2738

<210> 14
 <211> 1710
 <212> DNA
 <213> Homo sapiens

<400> 14
 cgccgcggcc ctcctccca gagcggcagc ctttcccgc gcgtgctgcc ttcggccgctc 60
 gggccgcggc gggaaaaaca tggcgtctgc cctggagcag ttcgtgaaca gtgtccgaca 120
 gctctcagct caagggcaaa tgacacagct ttgtgaactg atcaacaaga gtggggact 180
 ctttgcgaag aacttatccc atctggacac tgtgctcggg gctctggat tacaagaaca 240
 ctccttggc gtccttgctg ttttgggttgaagtttct atgcccagtg ttccctgactt 300
 cggaaacgcta ttctcacagg ttcatcgtt catcagcact tgtaatgggg agcacattcg 360
 atatgcaaca gacacttttgc ctgggctttg ccatcagcta acaaatgcac ttgtggaaag 420
 aaaacagtgca caacataaga tccaatgtgc tgccatctt gagaacttat ctgaaagaga 480
 tgtcatttct gacagccccct gcgaggaatt ggcatccttta agcaagccat agacaagatg 540
 cagatgaata caaaccagct gacctaata catgctgatc tctggcagct ttgtttgcta 600
 gcaaaatgtt ttaagcctgc cttccatat cttgacgtgg atatgatgga tatctgtaaa 660
 gagaatggag cctatgatgc aaaacacttt ttatgttact attattatgg agggatgatc 720
 tatactggc tgaagaactt tgaagagct ctctactttt atgaacaggc tataactact 780
 cctgccatgg cggcgtca tatcatgttgaatcatata aaaagtatat tttagtgtct 840
 ttgatattac ttggcaaaatg acaacagcta ccaaataata catctcaat tttgtggtaga 900
 ttcattaaagc ctcttagcaa tgcataaccac gagtttagcac aagtgttac aaccaacaac 960
 ccctcagaac tccgaaacactt ggtgaataag cacagtggaaa ctttcaactcg cgataacaac 1020
 atggggctgg tgaagcaatg ctgtcatct ctttataaga agaatattca gaggctaaca 1080
 aagaccttt taactctatc attacaagat atggcaagtc gtgtcagtt gtctggaccc 1140
 caggaggcag agaaatacgt tctgcacatg atagaagatg gtgagatttt tgcaagtatt 1200
 aaccagaagg acggatgggt cagtttccat gataaccctg aaaaatataa taaccaggcc 1260
 atgcttcata acattgatca ggagatgctg aagtgcattt agctggatga gcccgtgaaa 1320
 gcccggacc aggagatcac agtgaaccctt cagtttgcacaaa aaaaagatgatg gggctcaca 1380
 gaagatgatt caggaaacaa accatccagt tattcttggaa actaacatcc atcctgagct 1440
 aaacaagaga aactaccatc ttggccagtg acaagtgttc ggaggccagc agagaggacc 1500
 aaggcctgtgt cacctggaga ctaagaaattt aagtgggtt ttgacatctt cagtcctgtg 1560
 tgctttcaga aaaccatccc ctctgcaaaatg aaaggaaaca gatttgcaaa cttttaatgtc 1620
 tgcgtggat ttatattatcc tcagattattt gttactgcatt taaatctacc tttttgtttt 1680
 aagttgcattt aacattaaaa aaaaaaaaaa aaaaaaaaaa 1710

<210> 15
 <211> 3159
 <212> DNA
 <213> Homo sapiens

<400> 15

cgctggataa aagcatttaaac catcagatcg agtctcccaag taaaaggcgg aagtctataa 60
gtggaaagaa gctgtgctct tcctgtggc ttcccttggg taaaaggagct gcaatgatca 120
tcgagaccct caaatctctat tttcacatcc agtgtttcag gtgtggaatt tgtaaaggcc 180
agcttggaga tgcagttagt gggacggatg ttaggattcg aaatggtctc ctgaactgta 240
atgattgcta catgcgatcc agaagtgcg ggcagccatc aacattgtga cacggcttc 300
aagcttccgg atcaactcacc atttcttac tgagagtgtc ccctggcaac tgcttaacaa 360
aatcccaagc tcaggggctt ctcagcattt acctaatttca tgaaaggctc ttctgaaaagg 420
tggtatctgt tctttcgtag cacagtgttt atgttttcc tggttattgt tttggggttt 480
tggtttttt ttgcatttgc acagtataca caaaaagaata tgggggttgc atgatcctga 540
atagctaaa aaagggttta gcatggtcaa acaggcttac ggtttaaaat gtgttattct 600
cttcttggg aattagctaa atgatgcaat aaacctgttt tggtttagaa tgtcttagaa 660
ttaaacactt tatgtttaca gaattgagct gcagaaaatg caagacatgc caatttgaga 720
cacacggctt tctaagactg aaggataaaat ttaatgcatt tcagaaaacta aacatcacag 780
caagctctat ctctgagcta taatttgcatt ttaatgcataa gacactagtt tgataatata 840
tactgttaatc ctgaaacatt tggttactt acctttggag gtagaaaatta taccaataaa 900
ttattgcacc gttagttata gattctgtt accttggaaat ttatgtcatt aatataaggct 960
ggttcatcaa ataaaagcaaa accttgcattt atcagctaga tttacactcc gggacgttgc 1020
ccaaaggtag gaagaaagca gagggaaataa ttgcatttgcattt catttccaaa gtcattatca 1080
aaatctgtga ggaagtttaa tcttccaaag agtcaatgtc agacatcagg cctctgttgc 1140
ctgcttcctcg cgaggcacta gatttgcattt cttcaataaag agacttaaca tgaggatat 1200
ggaagatgag gcaccggat aagttcatca tttaggttgc gcaactgctca cccttgcgtgg 1260
caagttctcc ttaagggccctt gaagcacagg tggccaaaga aagcgttaa gtcattatca 1320
atagaatcta tgggttataat gatgtggtca gcccctgttgc tggatcaggc aagaacctac 1380
agcacagatt atgcccctgccc cacttcaatg aatacctact ctctccattt ctccatca 1440
tttttgcata tcaagaactc cggaccccttgc ccatggagaa gtttagagag gaactcttgc 1500
ggagagctgg ttatatttctt gcccctgttgc acgagtttca gctggccaag aaaggagtca 1560
agttattaaa aagcatcaca atgttagatct ccaggctgtt ttttgcattt ttgtgtttaa 1620
gactggggaa agggggacta ttatctgc cttaaatca tggcaaaataa gtcaagatga 1680
cattttgtga atgttagacta tggatataact cctaataatgat tgatgttagtca ataaaagggg 1740
gtcaagtaga tgggttctg ttatgttaa gataattttt ccgtgtctta ttgagttatgg 1800
ctagcgattt ttatttacat gctagatggg ttcttgcattt gtgggttcca tatagggtca 1860
gaaatttcctt cagccactgg agggatttcg accatatttgc tcatttggat gagctgtt 1920
tagattgaaa tctcacatc atttcattaa aatttgtcc ttagaaaacg caaagctgtt 1980
gcacatggcg ataaattatg gatgcagttac attgaagaga gatgaagtca ctcccaagtt 2040
tccaagactt ctcatggagg tgggttgcattt ttacagaa aaaataaaaaa taaaaaaaaga 2100
aaaaaaaaagag aaaaaattaa attcaaaaat tgggttgcattt atgtacagat caagtccat 2160
attttgatta tccacccgtca tgggttattt aatatttgcattt taatgtggat gtttacactt 2220
tgcatgatatt tagcagagta ccacttagtaa tgccacaaca tggatcataat ggtcattcat 2280
aaccgatttt tatagaataac ttatgttgcattt tgcaacttcca tccgtttagt aaggattaca 2340
tgaatattgc acatccctt ctgggttgcattt aaacccattt atacatattt cttagtgagg 2400
ctcattttgtac atgttattgaa gctagaatcg agtcaagaaa aataaagccc cattctccaa 2460
ctgcaaaatg tgggttccca taatgaacac tagtcaccag cacagaataa tctccaaat 2520
tttcttaattt ctaattgcata actgtttgcattt ttatatttgcattt attttgcattt 2580
ctgttacatg gcaagcttggc cagactagat cttgtttttt ccaatgcaggc ataatgtgtt 2640
tgatctattt ctgttgcattt aatctttgcattt atcccaggaa aaaaaaaaaatg ctctgttccaa 2700
ttgagctata atgttattgtt gtttgcattt aaaaacaggttgc aggcaagtga gtgattttt 2760
gttcctgtgg aagtatattctt gatgggttgcattt ctcatacttcc aaaagctgtt ccctactt 2820
taataaaaaat aatgggttgcattt tgggttgcattt tcacttagcga acttccatgaa cattttccctt 2880
ctatgttagt tgatattgtt aatacatattt atgttattgtt atacacagtttgc taagattttaa 2940
caaactgaaa tgatccacccatc catatgttgcattt tccgttccaaag agatgttactt gctctgggtt 3000
ggccagttgtt ctatatcggtt tataactaactt ttcattttttt gtagttatttgcattt taaaatgcct 3060
ctgagaaaca gtaaaaaataa aaaacaacaa gttgttgcattt aatgcacacgc ttttgcattt 3120
aatqtacatt tataaataaa atactcaat caaaaaaaaaa 3159

<210> 16

<211> 1680

<212> DNA

<213> Homo sapiens

<400> 16

aataatttga tgcattctggc atttatattt ctcattatgt tgtagatttt aacattgtat 60
ttttttcttt ttcttccct ccctgctgcc tctctccctc caacagtcct ggtacctggg 120
ctagcttggt tccttccaa gtgtcaaaa ggacaccat cttaaccggcc aatgtccaaa 180
attacggttt gaacataatt ggagaacctt tccttcaagg agaaaacaagg aactgaggga 240
aaaagaaaca caacaatagt ttaagaaatt ttttttttaa ataaaaaaaaa ggaaaagagg 300
aagactggac aaaacaacac aaaggcagaa aggaaagaaa ctgaagaaag aagataatag 360
accagcaatt gcagcactt caatcactaa ttcccctaag gttgaaactg taatgacata 420
aaaagggtcg atgatattt actgatggta gatcgacgg cctgcaacgt agccttgg 480
acatgaagtc cgctggaaaa tagatgttct gtctctatga caatataattt taactgactt 540
tctagatgcc ttaatattt catgataagg tagttttatt ggtttagtat tcttgggtt 600
tacgcatttgc attactattt ctgggttatct caccacggg ggctaggagg cggcgtcaga 660
gggtctgggt gacagagcca tgagccagcc attttataag cactctgatt tctaaaagg 720
aaaaaaaaata tatgaaatct ctgtagccctt tagttatcag tacagatttta ttaaatttcg 780
gcccttaacc cagcctttt cagtgtaa cccagttga aatcttaaaa aaagaaaaaa 840
tgaaaaaaaaa agaaaaaaaaa gaaaaaaggaa aaaaaacagt ttgaacacaa aggctctatg 900
gaagaaatgc ctctatgttag gtgaagtgtt ctctctgcat gcaacagtaa aaattaatat 960
aatattttcc ccacaaaaga aacacttaac agaggcaagt gcaatttata aatttataatc 1020
taaaggggaa tcatgattt aagtccctca gcccttggac tctaaattga ggggattaaaa 1080
aagaatttaa aataattttt aacgaattta tttccctc agtttttgag ggcattaaaa 1140
aggcattaaa tcaagacaaa tcatgtgctt gagaaaaata aaattaatga aaacacagca 1200
cttatgttgg tttagctgca gcctcccttgg aggtagaatt tattttattt aaatttactgg 1260
ttgcattcaag aacccatagg gtgtacaaaa ggttctataa aatctgcatt atagagacaa 1320
agaggcaggc aaatccatgt cacaagggtt aagcttacag ttacaaaact gggaaacgcca 1380
gggtgttagga tataaaaacg cactcttgag aaaacaaatg taatcagggt gctgaaaact 1440
tgcattgtgc tttcagacat tagccttggt caacaaattt ctgttattga cagatccata 1500
gtgtgcattgg gcagacacat tttgcctcta tgtctcttaa aatttttaatt aaaaataactc 1560
tttccagttt tcctaatttgc cacgaagata taatgtccac attacgtgccc ttgccttggaa 1620
atctaaaaaa caaaaaacaa aaaagaaaaag gaacaaaaaa atacaacaaa gtgacatcac 1680

<210> 17

<400> 17
000

<210> 18

<211> 1722

<212> DNA

<213> Homo sapiens

<400> 18

cattgtttgc	caaataccc	ggcagcatgg	acctcagtct	tctctggta	cttctgcccc	60
tagtcaccat	ggcctggggc	cagtatggcg	attatggata	cccataccag	cagtatcatg	120
actacagcga	tgatgggtgg	gtgaatttga	accggcaagg	cttcagctac	cagtgtcccc	180
aggggcaggt	gatagtggcc	gtgaggagca	tcttcagcaa	gaaggaaggt	tctgacagac	240
aatggaaacta	cgcctgcatg	cccacccac	agagcctcg	ggaacccacg	gagtgtgg	300
gggaggagat	caacagggc	ggcatggaat	ggtaccagac	gtgctccaac	aatgggctgg	360
tggcaggatt	ccagagccgc	tacttcgagt	cagtgtgg	tcgggagtg	cagtttact	420
gttgtcgcta	cagcaagagg	tgcccatatt	cctgctggct	aacaacagaa	tatccagg	480
actatggtga	ggaaaatggac	atgatttcct	acaattatga	ttactata	cgaggag	540
caaccactt	ctctgcagtg	gaaagggatc	gccagtggaa	gttcataatg	tgccggatg	600
ctgaatacga	ctgtgaattt	gcaaatgttt	agatttgcca	cataccaaat	ctgggtgaaa	660
qqaaaqqqqc	cqqqqacaaqq	aqqqtqtc	cataqttaa	catcagttg	atctccata	720

```

gaagtttctg ctgtctcttt tccttctccc tgagctggta actgcaatgc caacttcctg 780
ggccttctg actagtatca cacttctaataaaaatccaca attaaaccat gtttctcaact 840
tttcacatgt ttcatagcaa ctgcttata tgactgtatga tggcttcctt gcacaccaca 900
tatacagtgc gcatgcttac agccgggctt ctggagcacc agctgcagcc tggctactgc 960
tttttactgc agaatgaact gcaagttcag catagtgaggagggagaggca gaactggagg 1020
agagggtcag tgaagggttct ctacagctaa gcctgttga atgatacgtatgttccccac 1080
caaaagcagg ctttctgccctgagggacat cttccactc ccctgctcca catgagccat 1140
gcatgcttag caatccaagt gcagagctcttgccttgcagg agtgaggaga ctgggagggtg 1200
aaatggggaa atggaagggttgggaggcag agctgaaaaac aggggttggaa ggatttcctg 1260
aattagaaga caaacgttag catacccgat aaggaaaaatg agtgcagggg ccaggggaac 1320
ccgtgaggat cactctcaaa tgagattaaa aacaaggaag cagagaatgg tcagagaatg 1380
ggattcagat tgggaacttgcgggatgag agtgaccagg ttgaacttggg aagtggaaaa 1440
aggagttga gtcactggca cctagaagcc tgcccaagat tccttaggaag gctggcagac 1500
accctggAAC cctggggagc tactggcaaa ctctccttgcgggatgttggcctgatgg 1560
gggaaaggct gccctggggatcaactttcc ttctgtgtgt ggctcaggag ttcttctgca 1620
gagatggcgc tatcttcttgcgttgc ctcctgtga tgcctgttc ccaaccattt gtacttca 1680
ttacaaaaga aataaaaata ttaacgttca ctatgttgc aa

```

```
<210> 19  
<211> 1612  
<212> DNA  
<213> Homo sapiens
```

<400> 19
 ggccatggaa attaaagttt aaaaagactt gaagactgga gaaagtacag ttctgtcttc 60
 aattacctct gccatcagat gactttaaag gtacaggaat aaaagtttat gatgatgggc 120
 aaaagtcagt gtatgcagta agttctaatac acagtgcagc atacaatggc accgatggcc 180
 tggcaccagt tgaagtagag gaacttctaa gacaagcctc agagagaaac tctaaatccc 240
 caacagagta tcatgagct gtatatgcc a tcccttta caggccttaca accccacaga 300
 gagaaacggt gacccttggc ccaaacttcc aagaaaggat aaagattaaa actaatggac 360
 tgggtattgg tgtaaatgaa tccatatacaca atatggcaaa tggtcttca gaggaaagggg 420
 gaaacaactt caatcacatc agtcccattc cgccagtgcc tcataccccga tcagtgattc 480
 aacaagcaga agagaagctt cacaccccgcc aaaaaaggtt aatgactctt tgggaagaat 540
 cgaatgtcat gcaggacaaa gatgcaccct ctccaaagcc aaggctgagc cccagagaga 600
 caatatttgg gaaatctgaa caccagaatt ctccaccac ttgtcaggag gacgaggaag 660
 atgtcagata taatatcggtt cattccctgc ctccagacat aaatgataca gaaccgggtga 720
 caatgatttt catggggtat cagcaggcag aagacagtga agaagataag aagtttctga 780
 caggatatga tgggatcatc catgctgagc tggttgtat tgatgatgag gaggaggagg 840
 atgaaggaga agcagagaaaa ccgtccttacc accccatagc tccccatagt caggtgtacc 900
 agccagccaa accaacacca cttccctagaa aaagatcaga agctagtctt catgaaaaca 960
 caaatcataa atccccccac aaaaattcca tatctctgaa agagcaagaa gaaagcttag 1020
 gcagccctgt ccaccattcc ccatttgc tatctctgaa agagcaagaa gaaagcttag 1080
 catccttaac agctttaaagg atgagaatgg cttcccttacc accccatagc tccccatagt caggtgtacc 1140
 tgtaccacctt atataaacat ctttgcataa aaaaacttcc cttcccttacc accccatagc tccccatagt caggtgtacc 1200
 tctggatatt ttgtttattt tttctgaaat ttgttgcataa aaaaacttcc cttcccttacc accccatagc tccccatagt caggtgtacc 1260
 taagccatgt gaataagtag tagtcattat ttgttgcataa aaaaacttcc cttcccttacc accccatagc tccccatagt caggtgtacc 1320
 acaaattgtgt aacttttccca gttacttgac acgattcagt gggggaaaaac cagcattttt 1380
 tattctattt ataccaaaagc atttcttataa aaaaacttcc cttcccttacc accccatagc tccccatagt caggtgtacc 1440
 taaaaatataa aagagtatag tatattaact ggcattgtt aaaaacttcc cttcccttacc accccatagc tccccatagt caggtgtacc 1500
 aaagatcata gggaaaggcatt gcccattcatc acagaagtat tcaactctga caaataaata 1560
 tgcattctgtt aattaaaaat gccttataaa aagtacatcc tcctgttcaaa aa 1612

<210> 20

<400> 20
000

<210> 21
<211> 1304
<212> DNA
<213> Homo sapiens

<400> 21
agaagttccc aggatacgg ctttacctgg ctacactggc aggcaacttc cgaatgcctg 60
tgtttagggaa gtacctgtat tctggaggta tctgccctgt cagccgggac accatagact 120
atttgccttc aaagaatggg agtggcaatg ctatcatcat cgtggtcggg ggtgcggctg 180
agtctctgag ctcacatgcct ggcaagaatg cagtaccct gcggAACCGC aagggtttt 240
tggaaactggc cctcggtcat ggagctgacc tggttccat ctactccctt ggagagaatg 300
aagtgtacaa gcaggtgatc ttcgaggagg gtcctgggg ccgatgggtc cagaagaatg 360
tccagaaata catggtttc gccccatgca tcttccatgg tcgaggcctc ttctccctcg 420
acacactgggg gctgggtgcc tactccaagg ccatcaccac tggttgaaa gagcccatca 480
ccatccccaa gctggagcac ccaaccacgc aagacatcga cctgtaccac accatgtaca 540
tggaggccct ggtgaagctc ttgcacaagg acaagaccaa gttccgcctc ccggagactg 600
aggtcctgga ggtgaactga gccagcctc ggggccaatt ccctggagga accagctgca 660
aatcaacttt ttgtctgtat aatttggaaatgtcatgggt gtctgtgggt tatttaaaag 720
aaattataac aattttgtata aaccattaca atgttaggtc ttttttaaga agaaaaaaatg 780
cagtatttca agttcttca cttccagctt gccctgttct aggtgggtggc taaatctggg 840
cctaattctgg gtggctcagc taacctcttct tcttcccttc ctgaagtgc aaggaaact 900
cagtctctt ggggaagaag gattgcatt agtgacttgg accagttaga tgattcactt 960
tttgccttca gggatgagag gcgaaagcca cttctcatac aagccccctt attgccacta 1020
ccccacgctc gtctagtctt gaaactgcag gaccagtttct tctgccaagg ggaggagttg 1080
gagagcacag ttggccctt gtgtggggc agtagtaggc atctggaaatg ctccagttt 1140
atctcccttc tgcacccctt acctcaccctt tagtcaactca tatcgagggc tggactggcc 1200
tccaggatga ggatgggggtt ggcataatgaca gcctgcaggg gaaagagctt tcgcccgtgg 1260
acgatttttag ggggggtttc gccaccagg ggtgtgggggtt gtta 1304

<210> 22
<211> 1533
<212> DNA
<213> Homo sapiens

<400> 22
gcgaggagct ggcacgcagc cagggcctt gtcataaagg ccataccagc caagaattaa 60
aatctctaaa acatcagtgg atggatgtcc ccactttgtt gtggatttcc ccctgagcag 120
actcaccgtg tgcttcaaca ttgatggca gcccggggac atcctcaggc tggctctga 180
tcacaggggac tctgggtgtca cagtgaacgg agatgttatt ggggccccgg cccctccaaa 240
tggccacaag aaacagcgc a cttacttgcg cactatcacc atcctcatca acaagccaga 300
gagatcttat ctgcagatca caccgagcag agtcatctt gatgggtgggg acagacttgt 360
gctcccttc aaccagatgt tggtggggg gagctggggg ctggagggtgt ccgtgtctgc 420
caacgccaat gtcaccgtca ccattccagg ctccatagcc tttgtcatcc tcatccacct 480
ctacaaaaag ccggccctt tccagcgcaca ccacctgggt ttctacattt ccaacagcga 540
gggccttcc agcaactgcc acggactgt gggtcagttt ctgaatcagg atgccagact 600
cacagaagac cctgcaggcc ccagccagaa cctcactcac cctctgtctt ttcaggtggg 660
agagggccctt gagccgtcc taacagtggaa aggccaccaa gtcccagtgg tctggaaagca 720
aaggaagatt tacaacgggg aagagcagat agactgtgg tttggccagga acaatgcgc 780
caaactgatt gacggggagt acaaggatta cttggcatcc catccattt acacagggat 840
gacacttggc cagggatgt ccagggagct ctgaagctgg cagccctaaa gatgcaagtg 900
catgaaggac agtcatgtgg ggaggccgtg gggcagctt tttcatggct tgcacacgcc 960
tcagctcttgc gcaatttagct ggactccatg acccaccctt ggtgcagcat agatccgcac 1020
tctgtcttggc cgaagggttag ggggtgggttag gggcggggaaag cttggatgtca aatgtcattt 1080
ccctctacttgc ccttcccttgc cctctccca ccctgcacccac atccacagag gggagagaag 1140
ggtcataatgttgc aatgcaaca aagtctgtat cttgtcccaa cttgttttcc tttgtctgtt 1200

gcataatcata aagtaaggct ttctggtcaa ggaagggtgc tatgaaactt ttttcttgg 1260
 tggaaatggc caagtttagg cactctgctt ttgccttac actaatgctt agaaagctgt 1320
 ctttcagtg gtgtgcagc cccagatgt gtggccaacc tctgctgcaa aggaatctct 1380
 tgctgagtc agggcaccaa tcaggcaaat agcccataca tttgatcggtt gtaaaccatg 1440
 aagtctttc ttgcaagacg ttttcttct gctgtggat cttgcccttaaaattagtt 1500
 ttcattaaaa agaaatttga ttgaaaataaa aaa 1533

<210> 23
<211> 1304
<212> DNA
<213> Homo sapiens

<400> 23
 caagtgtgag ccaccacacc tggcctggaa ggaaccttctt aaaatcagtt tacgtcttgt 60
 atttgttct gtgatggagg acactggaga gagttgttat tccagtcaat catgtcgagt 120
 cactggactc tgaaaatcctt attggttcctt ttatTTATT tgagtttaga gttcccttct 180
 gggtttgtat tatgtctggc aaatgacactg ggttatcact tttccctccag gtttagatca 240
 tagatcttgg aaactcctta gagagcattt tgctcctacc aaggatcaga tactggagcc 300
 ccacataata gattcattt cactctagcc tacatagagc tttctgttgc tgtctcttgc 360
 catgcacttgc tgccgtgatt acacacttga cagtaccagg agacaaatga ttacagatc 420
 ccccgacatg cctttcccc ttggcaagct cagttgcctt gatagtagca tttttctgtt 480
 tctgatgtac ctttttctc ttcttcttgc catcagccaa ttcccagaat ttccccaggc 540
 aattttaga ggacctttt ggggtccttat atgagccatg tcctcaaagc ttttaaacct 600
 ctttgccttc ctacaatatt cagtagatc cactgtcat cctagaaggc ttctgaaaag 660
 aggggcaaga gccactctgc gccacaaaagg ttgggtccat cttctctccg aggttgtgaa 720
 agtttcaaa ttgtactaat aggctgggc cctgacttgg ctgtgggctt tgggaggggt 780
 aagctgcctt cttagatctct cccagtgagg catggaggtt tttctgaatt ttgtctaccc 840
 cacagggatg ttgtgaggct tgaaaaggc aaaaaatgat ggcccttgc gctctttgt 900
 agaaaggtag atgaaatatc ggtatgtatc tgaaaaaaaaatgatc acttcccttg 960
 ctctgtgcag cagtcgggctt ggtatgtctt tggccttgc tgggtcctca tgccacccca 1020
 cagctccagg aaccccttgc acaatctggg ggacttccat atgtttgaca aagaggtacc 1080
 aggccaaactt cctgctacac atgccttgc tgaattgtca aatttcaaaag gaaatggacc 1140
 ctgcttttaa ggatgtacaa aagtatgtct gcatcgatgt ctgtactgtt aatttctaatt 1200
 ttatcactgt acaaagaaaa ccccttgc tttatTTTg tattaaagga aaataaaagtt 1260
 ttgtttgtta aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaa 1304

<210> 24
<211> 2403
<212> DNA
<213> Homo sapiens

<400> 24
 gtcctggcg ccctgcctt agccgtgggg ccccccaccc caccctctgg gtttccttagg 60
 aatgtccagc ctccggagacc ttccacaaaagc cttggggagggt tgatgagtgcc tggcctctgac 120
 aagaggccgc tggggacact gtgctgtttt gtttcgttcc tggatctcc cggcacgttt 180
 ggagctggga agaccacact ggtggcagaa tcctaaaatt aaaggaggca ggctcctagt 240
 tgctgaaagt taaggaatgt tgaaaaccc cactgtactg tttggtgcat cttgacccctgg 300
 gaagacgcctt catgggaacgc aacttggaca ggtgttgggt tgaggcctct tctgcaggaa 360
 gtcctggcgc tgagacgc aa gttggctggg tggccacac cctggctctc ctgcagggtcc 420
 acacacccctt cagggcctgtt gcctgcctcc aaagatgtgc aaggcaggc tggctgcacg 480
 gggagaggga agtattttgc cgaaatatgaa gaaactggggc ctcctgctcc cagggagctc 540
 cagggccctt ctctcctccc acctggactt gggggggact gagaacact ttccctggagc 600
 tgctggcttt tgactttttt tgatggcaga agtgtgaccc gggggggctt gggggggctt 660
 aggaacgttag atgtcgggggt gtcttgcctt gggggggctt gggggggctt gggggggctt 720
 cggAACACCTT ggcattccctt cccagcactt gcatcgatgt ccctgctctt cccagggggc 780
 gacagtggcc caagcaaggc ctcactcgca gcaacttctt caagagctgc ctgcacactg 840

tcttgagca	tctgccttgt	gcctggact	ctggccgtgc	cttgggaagg	tcgaaagagt	900
ggactttgtc	ctggcattcc	cttcatggcg	tctatgacac	tttgtgttg	atggaaagca	960
tgggacctgt	cgtctcagcc	tgttggttc	tcctcatgc	ctcaaaccct	ggggtaggtg	1020
ggacgggggg	tctcgtgcc	agatgaaacc	atttggaaac	tcggcagcag	agtttgtcca	1080
aatgaccctt	ttcaggatgt	ctcaaagctt	gtgccaaagg	tcactttct	ttcctgcctt	1140
ctgctgtgag	ccctgagatc	ctcctcccag	ctcaaggac	aggtcctggg	tgagggtggg	1200
agatttagac	acctgaaact	gggcgtggag	agaagagccg	ttgctgtttg	tttttggga	1260
agagcttta	aagaatgcat	gttttttcc	tgggtggaaat	tgagtaggaa	ctgaggctgt	1320
gcttcaggta	tgttacaatc	aagtggggga	ttttcatgct	gaaccattca	agccctcccc	1380
gcccgttgca	cccaactttgg	ctggcgtctg	ctggagagga	tgtctctgtc	cgcattcccg	1440
tgcagctcca	ggctcgcgca	gttttctctc	tctccctgga	tgtttagtct	catcagaata	1500
tgtgggttagg	gggtggacgt	gcacgggtgc	atgattgtgc	ttaacttggt	tgtattttc	1560
gatttgcacat	ggaaggcctg	ttgctttgct	cttgagaata	gtttctcggt	tccccctcgc	1620
aggcctcatt	cttgaacat	caactctgaa	gtttgataca	gataggggct	tgatagctgt	1680
ggtccctct	cccctctgac	tacctaaaat	caataccctaa	atacagaagc	cttggctcaa	1740
cacgggactt	ttagtttgc	aaggccctag	atagggagag	aggtAACATG	aatctggaca	1800
gggagggaga	tactatagaa	aggagaacac	tgcctacttt	gcaagccagt	gacctgcctt	1860
ttgaggggac	atggacggg	ggccgggggc	gggggttggg	ttttagctac	agtcatgaac	1920
ttttggcgtc	tactgattcc	tccaaactctc	caccccacaa	aataacgggg	accaatattt	1980
ttaacttgc	ctatttgttt	ttgggtgagt	ttccccccctc	cttattctgt	cctgagacca	2040
cgggcaaaac	tcttcatttt	gagagagaag	aaaaactgtt	tggaaccaca	ccaatgatat	2100
ttttcttgt	aataactgaa	atttattttt	ttatttatttt	gatagcagat	gtgctattta	2160
tttatttaat	atgtataagg	agcctaaaca	atagaaagct	gtagagattt	ggtttcatgt	2220
ttaattggtt	tgggagcctc	ctatgtgtga	cttatgactt	ctctgtgttc	tgtgtatttg	2280
tctgaattaa	tgacctggga	tataaagcta	tgcttagctt	caaacaggag	atgcctttca	2340
gaaatttgta	tatTTTGCAG	ttgccagacc	aataaaatac	ctgggtgaaa	tacaaaaaaaaa	2400
aaa						2403

<210> 25
<211> 2517
<212> DNA
<213> Homo

<400> 25
cagagtaaaa ccttgtgcct ggtgacccaa gtcctccaa agtgctttc cttctgggtt 60
attcaaggca aatatctggg tttccccctc tcctcattcc ctagcaaacc ccaattatct 120
tccaagatag gagatatttc ccatccccctt cctttgtaaa tatctcatct cccactggag 180
agcccaggag cctattcctg gcatggatgt tctgtccaca cttgaggctg ggcgggttat 240
cagacccttc aagcagcctg gctggggccc aggactgagt ctggggtcag ctttacgg 300
cgctttccc ttgcgtcacca cccaccacag cccaccttgc atgcacggcc agcccctcca 360
ctccagcctg agccatgtgt gcccctgcgg gaggaccat tcatgccaga aagctggtaa 420
ctccctccca gcatccctgc ggaaggagtc agtttctgag agtgtgactt ttcaaggcga 480
atgatgggga agggttccccc agtccccaca gtggcccccac ctctggggcc tgacccagag 540
cccttctgtg tcaacggcggg ctgtgcaccc atgcacacac ctacgcacac acaacactcc 600
gcactgcagt atattcttgc caaaaggattt cttttaaaaggc aagcactttt actaattatt 660
attttgtaaa tgtttatctt cttctgtctt cttccctccct gaatctatt tactgttgtt 720
tatttgtgaa totgtgtgtc agccaggaga ggcgtgtctg gccttgaaca tgggctggga 780
tgggaaaggg totggggagaaa gatgggcaac aaagagccag ggagtcatgg acatcgccagc 840
gacgcagacc ccagcagggtt cagttccctgt ctgccaccag ctgtccagct gggtgtctgg 900
agggaaaggagg gcaaggaggagg gtcatgtccc ttcaagctggg ggagggggccc agtgagactcc 960
acgtggcttt ttcccaaagg gagcaagagg gaaggattgg gcgagaaaaac aatggagagg 1020
ggacctgcga agggaaaacag ggagggaaagtgg acgcgttga tcagcctgtc atcacgggt 1080
tctggctctc ttatttagcc aggcccttaa gggacagata catcacatcc taagtttggg 1140
aaaggcctt gaccatgtc atctgagcgt ctccctccagt agctctgaaa gctgtggaca 1200
ccaatggca ggattcccttc tccctgggtt tttgaggatc cctgggtctt ctgagactgg 1260
ccaggagagg gatgggtgggg ccagtgggtt tttgaaagca ggagggggcag ccctctgg 1320
caagtqtqat cccccataaa acggctctca qgaggttagt gagtaggaga ttctgccttg 1380

ttctgatgag cctgtgcagg ggctccaggg gagcatgctg tccagggggc acagaagggt 1440
 ggtgagtgtg atcaaatacta gtctcaactcc cacttttagt tctcaactcc acttttgcc 1500
 accacccctg cctcctggat ctctcccac ttttttttc agcttagga cctggggaga 1560
 tcctgtgagt caaggcagac acccaatcct gcccccacac tcggggctt ccaagagggt 1620
 gggggcaga gtcccagagc agcccttac cccaggtcca gcccctggaa tcctgagact 1680
 cgcgttccct tggccagttg taacacagga cgtgtgtcg catgtgcaag tgtggatgt 1740
 tgtgtgtcg tggccatgtc tcatttctt agggacttg ggagtcggg ttggagggtc 1800
 tgggcaatgg aacctcaaat tcaatgtcgc ccagcagtga ggggagtcgg gaggtgaggc 1860
 ctgtaggcca accaatttgtt ggagtctcg cgatacccg gtgagaagt gttcaccagg 1920
 agggcaggg tgggggcctc gggcagatct gtcctctt gcccctctgt cctcaaatgt 1980
 ccaaaatgtt ggaggacctc tggtcatatc ccacgcctgg gctctgcca gcagtggagt 2040
 tactgttagag ggatgtccca agcttgggg ccaatcgtt ttaagctgtt tgaaactctc 2100
 ctgtgtctgt gtttgggg tgctgtgtg tgagagcaca tcagtggtg caggctgtgt 2160
 ttccccatcc ctctcctccc ttccagaccca tcattggaaa caaatgttaag aaatccctc 2220
 ccaccaccc tccctgcctcc caggccctct gcggggggaaa caagatcacc cagcatcctt 2280
 ccccacccca gctgtgtatt tatataagatg gaaatataact ttatattttg tatcatcg 2340
 cctatagccg ctgccaccgt gtataaatcc tgggttatgc tccttattcct ggacatgaat 2400
 gtattgtaca ctgacgcgtc cccactcctg tacagctgtt ttgtttctt gcaatgcatt 2460
 gtatggctt ataaatgata aagttaaaga aaactcaaaa aaaaaaaaaa aaaaaaaaaa 2517

<210> 26
 <211> 1668
 <212> DNA
 <213> Homo sapiens

<400> 26
 gtatgccctc agaattcacga caactgttgc atgtaacatg gatctgtcta aatacccat 60
 ggacacacag acatgcaagt tgcagctgga aactggggct atgatggaaa ttagtggag 120
 ttcacctggc tgagagggaa cgactctgtg cgtggactgg aacacctgcg gcttgctcag 180
 tacaccatag agcggtattt caccttagtc accagatgcg agcaggagac agggaaattac 240
 actagatgg tcttacagtt tgagcttcgg aggaatgtt tttttttcat tttggaaacc 300
 tacgttcctt ccactttcct ggtgggttt tcctggggtt cattttggat ctctctcgat 360
 tcagtcctg caagaacctg cattggggac aacaaaggaa gttagaagaag tcagttttac 420
 taatatcatc aacagctcca tctccagtt taaacggaaatcagctttt ccagcatgtt 480
 aatttccagc gacaacgttg actacagtga ctgacaatg aaaaccagcg acaagttcaa 540
 gtttgtcttc cgagaaaaaa tgggcaggat tggtgattat ttcacaattc aaaaccccat 600
 taatgttcat cactattcca aactactgtt tcctttgatt tttatgttag ccaatgtatt 660
 ttactggca tactacatgt atttttggat caatgttaaa ttttttgcat gccataggc 720
 ttcaacagga caagataatg atgtaaatgg tatttttaggc caagtgtgca cccacatcca 780
 atgggtctac aagtgactga aataatattt gagtctttt gctcaaagaa tgaagctcca 840
 accattgttc taagctgtgt agaagtccta gcattatagg atcttgtat agaaacatca 900
 gtccattccct ctttcatctt aatcaaggac attcccatgg agcccaagat tacaatgtt 960
 ctcagggtctg tttattcggt ggctccctgg tttgcattt cctcatataa agaatgggaa 1020
 ggagaccatt gggtaaccct caagtgtcg aagttgtttc taaagtaact atacatgttt 1080
 tttactaaat ctctgcagtg ctataaaat acattgtgc ctatttaggg agtaacattt 1140
 tctagttttt gtttctgggtt aaaatgaaat atgggctt atgtcaatttcat tggaagtcaa 1200
 tgcactaact caataccaag atgagttttt aaataatgaa tattattt tccccacaaca 1260
 gaattatccc caatttccaa taagtccat cattgaaaat tcaaatataa gtgaagaaaa 1320
 aatttagtaga tcaacaatct aaacaaatcc ctgcgttcta agatacaatg gattcccat 1380
 actggaaagga ctctgaggct ttattcccc actatgcata tcttatttcat ttattttttt 1440
 acacacatcc atctaaact atactaaagc cttttccca tgcatggat gaaatggaaag 1500
 atttttttt aacttggctt agaagtctt atatgggctg ttgcattgaa ggcttgcaga 1560
 attgagttca ttttcttagct gccttatttcc acatagtgtt ggggtactaa aagtactggg 1620
 ttgactcaga gagtcgtgtt ccagtcgtt attgctgcta ctctaaaca 1668

<210> 27

<400> 27
000

<210> 28
<211> 1768
<212> DNA
<213> Homo

<400> 28

<210> 29
<211> 3479
<212> DNA
<213> Homo

<400> 29

ccaggagaca	ccttcggccc	agatggaagg	cttcctcaat	cgaaaacacg	agtgggaggc	60
ccacaataag	aaaggcctcaa	gcaggtcctg	gcacaatgtt	tattgtgtca	taaataacca	120
agaaaatgggt	ttctacaaag	atgcaaagac	tgctgttct	gaaattccct	accacagcga	180
ggtccctgtg	agtttggaaag	aagctgtctg	cgaagtggcc	cttgattaca	aaaagaagaa	240
acacgttattc	aagctaagac	taaatgatgg	caatgagatac	cttttccaag	ccaaagacaa	300
agagaagcgg	ttcagccttt	ttggaaaaaa	gaaatgaact	ccttccttc	acctcctgcc	360
cttctttac	ctttcagtc	aaactccagc	acgcaagctc	attgacacaaa	gaacacagat	420
tcttgccgct	tcctatgaac	tgcacaagtt	ttaccacat	gccaaggaga	tctttggcg	480
tatacaggac	aaacacaaga	aactccctga	ggagctggg	agagatcaga	acacagtgg	540

gacccatcac agaatgcaca ctacatttga gcatgacatc caggctctgg gcacacaggt 600
 gaggcagctg caggaggatg cagccgcct ccaggcggcc tatgcgggtg acaaggccga 660
 cgatatccag aagcgcgaga acgaggtcct ggaagcctgg aagtccctcc tggacgcctg 720
 tgagagccgc agggtgcggc tgggtggacac aggggacaag ttccgcttct tcagcatggt 780
 gcgacactc atgctcttgg aaggatgttgc catccggcag atcgaggccc aggagaagcc 840
 aaggatgtt tcatctgttg aactcttaat gaataatcat caaggcatca aagctgaat 900
 tgatgcacgt aatgacagtt tcacaaacctg cattgaactt gggaaatccc tggggcgag 960
 aaaacactat gcatctgagg agatcaagga aaaattactg cagttgacgg aaaagaggaa 1020
 agaaatgatc gacaagtggg aagaccatg ggaatggtta agactgattc tggaggtcca 1080
 tcagttctca agagacgcca gtgtggccga ggcctggctg cttggacagg agccgtaccc 1140
 atccagccga gagataggcc agagcgtgg a cgaggtggag aagctcatca agcgcacga 1200
 ggcatttggaa aagtctgcag caacctggg ttagaggttc tctggccctgg aaaggctgac 1260
 tacattggag ttacttggaa tgcgcagaca gcaagaggaa gaggagagga agaggcggcc 1320
 gccttctccc gagccgagca cgaagggttc agaggaagcc gagtcccagc agcagtggaa 1380
 tacttcaaaa ggagaacaag tttcccaaaa cggtttgcca gctgaacagg gatctccacg 1440
 gatggcagaa acgttggaca caagcgaat ggtcaacggc gctacagaac aaaggacgag 1500
 ctctaaagag tccagccccca tcccctcccc gaccctctgat cgtaaagccca agactgcct 1560
 cccagccca agtgcgcaca ctttaccagc cagaacccag gagacacccctt cggcccaagat 1620
 ggaaggcttc ctcaatcgga aacacgagtg ggaggcccac aataagaaag cctcaagcag 1680
 gtcctggcac aatgtttatt gtgtcataaa taaccaagaa atgggttct acaaagatgc 1740
 aaagactgct gcttctggaa tttccctacca cagcggggc cctgtgagtt taaaagaagc 1800
 tgtctgcgaa gtggcccttg attacaaaaa gaagaaacac gtattcaagc taagactaaa 1860
 tgatggcaat gagatcttct tccaagccaa agacgatgag gaaatgaaca catggatcca 1920
 ggctatctct tccgcattct cctctgataa acacgaggtg tctggcagca cccagagcac 1980
 gccagcatcc agccgcgcgc agaccctccc caccagcgtc gtcaccatca ccagcgagtc 2040
 cagtcggc aagcgggaaa aggacaaaga gaaagacaaa gagaagcggt tcagccttt 2100
 tggcaaaaag aaatgaactc ctttccttca cctcctggcc ttctcttacc ttttcagtg 2160
 aattccagca tgcaagctca gaaccaacac attactctct gtgcctaattt ttcctcaatg 2220
 tggttgattt tttttttttt ttaatttata gacatttcg ggggggggtgg gggaaacaca 2280
 cctaaacact ttatctccaa gttacaaaag tttgaggtgc agagggaaagg ccagatttt 2340
 ttttaatga aattatata tagatctc agtattttaa ctgtcctca attttgtgag 2400
 gctgtgtgg aaataacccg cctcttagtgc tgggtgtatg caaggcagcg gtgcattt 2460
 aatatttctt gtgtcattca gaggcaaat gtaccaatatt cctgacacca ttctcttcc 2520
 atttacttct ggtgttacc ctgacttttgc actcttagaa gtgcccggaa tggggcttaac 2580
 ctttattaaa cagatcgcat attatgatct tgctgcagcc acagtgcagc tccacattaa 2640
 ctctacagac caaaccattt gtatctggca tcacttacta acacacgaca tgcggcttt 2700
 ctgcatcaac tgcttatgacg gttaaaatg tcagtataca agaaggaata gaaaactgat 2760
 actgttttaa ataatctgtt atttcaattt tttttttttt gctgaaatac attatattgt 2820
 acgtttgaga taattcttagt acaaagtata ataaaacttag atgtataata aaccctttaa 2880
 atcattggta agtgtacaag tgggtggactt gaaagcattt ctggacaag taatgttact 2940
 ctaatggta cttgctcggt cgttgcacca ctgtgttata atttgcattca tttccttgct 3000
 atttgcatac tagtgcattt ttctctgtca ctgttaactat tgtaatgaca aattttcatc 3060
 ttactgcaca atcaaaaatga cattgatagg aatgaactcc agaggctggg cctgaacagg 3120
 gaggtggcgtc ctcaggcctg gtgctcagtc gtacgaccc tacctctcaa ttttgcctt 3180
 atctgtttaaa tataatgttat gtcattaaat gcttttaaat caaaaaaaaaaa aaaaagttgt 3240
 tggcttcctt ctgctcggtc tgcatgccc gttagggaaac tgcaaaaggaa agaaatgaca 3300
 aacaagaaac atttacaac cagtctggc tcacttttgc atttttatg catgtctgg 3360
 gcacaagctt tgaaaactac agcaaacagt aataaatgtt actgttttgc agttataaga 3420
 gaaaaaaaagaaaaaaa agaaaaaaa agaaagaaaa aagaagagga ggagagaac 3479

<210> 30
 <211> 933
 <212> DNA
 <213> Homo sapiens

<400> 30
 gctcctccctt tccctttttt tacatttttag tcttagcatt tactttcccc accccacattt 60

cttggAACAG CCTTGTGTTAC tacagggAAAT ggCACTGATG gacagaAGAC tagcattacc 120
 ttcATGAAAG ggCTGTAGA gCTGCCTGGG aagaaggcgt gccttggggA actgggaaga 180
 tgccgtcagt gtgggtgggc aggaggacag ccAGTCGTCC tgctGCCAGC ccaatAGCTT 240
 ccAGCGGAG gtGCCCAAGGT gCTACCGGAG cCCCTCATAG ggtagggc Agggactgca 300
 CCTCCTCCAG gcACTCATCG taAGCCCTCT ggtactCCCT atggggCTTG accattatca 360
 cacaggtggg gCGCTTGGG cCTGCGCTG cACCCAGGT CGTTAGAGG ggaaagaagt 420
 gCTGTTGGA aaaaAGCTGT aCAACCTGTA tgCCAGGAAG tcACCAACTG atgACCCACC 480
 agcctaATCT ggCCCAACAAC catgttCTGT tcGGTCCATG ttCTATTAA aAGCATCTG 540
 aattgggtgc catcattaa actcaatcag acTTTGAAGG catGGTCCAG ccACACAGGG 600
 CCTACATTCC cacatggcaa CTATGAAAGG gOTCCAGCCC AGCAGGGCT gtcccGGTCC 660
 ctGCCACCCCC CACTTCCTGT gCCTCAGATC tgGCCCTGT tacGtaAGAT aaggacAGCT 720
 acaggTCCTC CTGAGCCTAA ACCCACCTAA CCggACTAAC atgggtGAAG atCTTAGCTT 780
 acaaAGCTCT ttcacataca tCTATCTCTT tattCTCATA gtCCACAGAT aactGACTAT 840
 ttggTTCTTA ccatcaggCC aaacggtaAG ttCCCTCAGA acaggGCCTC ctGCTTTATC 900
 ccaAGAAGTG ataAtgtAGG tacCCAAGAT cca 933

<210> 31
 <211> 2783
 <212> DNA
 <213> Homo sapiens

<400> 31
 gactttaaaa aaatttttac agttattttt attttgtaga atgagctgaa agccAGTGGT 60
 ggcgaaatca aaattcataa aatggagcaa aaggagaatg tgccccagg tcctgaggtc 120
 tgcATCACCC atcAGGAAGG ggAAAAGATT tctgcaaATG agaataGcCT ggcAGTCGt 180
 tccACCCCTG ccGAAGATGA ctcccgtac tcccAGGTa agAGTgAGGT tcaACAGCCT 240
 gtccatCCCA agCCACTAAG tccAGATTCC agAGCCTCCA gtcttCTGA aagtTCTCCT 300
 cccAAAGCAA tGAAGAAGTT tcaggcacCT gCAAGAGAGA cCTGCGTGA atgtcAGAAg 360
 acAGTCTATC caATGGAGCG tctcttggCC aaccAGCAGG tgTTTcACAT cAGCTGCTC 420
 cgTTGCTCCT attGCAACAA caAAACTCAGT ctAGGAACAT atGCACTTT ACATGGAAGA 480
 atCTATTGTA agCCTCACTT caATCAACTC ttAAATCTA agggCAACTA tgATGAAAGG 540
 tttgggcaca gaccACACAA ggATCTATGG gCAAGCAAAA atgAAAACGA agAGATTtG 600
 gagagaccAG cccAGCTTGC aaATGCAAGG gagACCCCTC acAGCCCAGG ggtAGAAAGAT 660
 gcccCTATTG ctaAGGGGGG tgcctggCT gCAAGTATGG aAGCCAAGGC ctccTCTCAG 720
 caggAGAGG aAGACAAGCC agCTGAAACC aAGAAGCTGA ggATGCGCTG gCCACCCCC 780
 actGAACCTG gaAGTTCAGG aAGTGCCTG gAGGAAGGGT tcaAAATGTC AAAGCCAAA 840
 tggcCTCTG aAGACGAAAT cAGCAAGCCC gaAGTTCCTG aggATGTCGA tCTAGATCTG 900
 aAGAAGCTAA gACGATCTC ttCACTGAAG gAAAGAAGCC gcccATTcAC tGTAGCAGCT 960
 tcATTTCaaa gcACCTCTGT caAGAGCCCA AAAACTGTGT cCCCACTTAT cAGGAAAGGC 1020
 tggAGCATGT cAGAGCAGAG tGAAGAGTCT gtgggtggAA gagTTGCGAG AAGGAAACAA 1080
 gtggAAAATG ccaAGGCTTC taAGAAGAAAT gggAAATGTGG gAAAAACAAAC ctggcAAAC 1140
 aaAGAAATCTA aAGGAGAGAC agggAAAGAGA AGTAAGGAAG gTCATAGTTT ggAGATGGAG 1200
 aATGAGAAATC ttGTAGAAAAA tggTGCAGAC tCCGATGAAG ATGATAACAG ctTCCCTCAA 1260
 caACAAATCTC cacaAGAACc CAAGTCTCTG aATTGGTCGA gTTTGTAGA caACACCTT 1320
 gCTGAAGAAAT tcACTACTCA GAATCAGAAA tCCCAggATG tggACTCTG ggAGGGAGAA 1380
 gtggTCaaAG agCTCTGTGT gGAAGAACAG AtAAAGAGAA AtCGGTATTa tgATGAGGAT 1440
 gaggATGAAG agTgACAAAT tgCAATGATG CTGGGCCTTA aATTCACTGTT agTgTTAGCG 1500
 agCCACTGCC CTTGTCaaa AtGTGATGCA cATAAGCAGG tATCCAGCA tGAATGTA 1560
 tttACTTGGA agTAACCTTG gAAAAGAAATT CCTTCTTAAAt cACAAAACAA aaACAAA 1620
 acACAAACAAAC cACATTCTAA AtACTAGAGA TAACCTTACT TAAATTCTC ATTtTAGCAG 1680
 tGATGATATG cATAAGTGTCT GtAAGGCTTG TAACTGGGGAA aATATTCCAC ctGATAATAG 1740
 cCCAGATTCT ACTGTATTCC cAAAAGGCAA tATTAAGGTA gATAGATGAT tagTAGTATA 1800
 ttGTTACACA CTATTTGGA AtTAGAGAAC AtACAGAAGG AATTAGGGG CTTAAACATT 1860
 acGACTGAAT GCACCTTAGT AtAAAGGGCA CAGTTGTAT ATTtTAATt GAATAACCAAT 1920
 ttaATTTTTT agTATTACc tGTTAAGAGA TTATTAGTC ttAAATTTT tTAGGTTAAT 1980
 ttTCTTGCTG tGATATATAT gAGGAATTa CTACTTATG tCCTGCTCTC tAAACTACAT 2040
 cCTGAACtCG acGTCCtGAG GTATAATACA ACAGAGCACT tTTTGGGCA AtGAAAAC 2100

caacctacac tcttcgggtgc tttagagagat ctgctgtctc ccaaataaagc ttttgatct 2160
 gccagtgaat ttactgtact ccaaatgatt gcttctttt ctggatcat ctgtgctct 2220
 cataattact gaaagctgca atattttagt aataccctcg ggatcactgt cccccatctt 2280
 ccgtgttaga gcaaagtgaa gagtttaaag gaggaagaag aaagaactgt cttacaccac 2340
 ttgagctcag acctctaaac cctgtatttc ccttatgatg tccccctttt gagacactaa 2400
 tttttaaata cttacttagct ctgaaatata ttgatTTTA tcacagtatt ctcagggtga 2460
 aattaaacca actataggcc ttttcttgg gatgatTTT tagtcttaag gtttggggac 2520
 attataaaact ttagtacatt tggtgtacac agttgatatt ccaaattgta tggatgggag 2580
 ggagaggtgt cttaaagctgt aggctttct ttgtactgca tttatagaga ttttagctta 2640
 atatTTTta gagatgtaaa acattctgct ttcttagtct tacctagtc gaaacatTTT 2700
 tattcaataa agatttaat taaaattgta aaaaaaagga aaggggaggg ggggtggagg 2760
 aaaaaaaaaa gggcgccgc cgc 2783

<210> 32
 <211> 3411
 <212> DNA
 <213> Homo sapiens

<400> 32
 gaagctctgt tgtctcgaaa acatgtcttg gaattggaga acagcaaggg ccccagcctg 60
 gcctcttag agggggaaaga agataagggg aagagcagct catcccaggt ggtggggcca 120
 gtgcaggagg aagagtatgt agcagagaag ttgccaagta gtttcatcga gtcggctcac 180
 acagagctgg caaaggacga tgcggccca gcaccccccag tcgcagacgc caaagccag 240
 gatagaggtg tcgagggaga actgggcaat gaggagagct tggatagaaa tgaggagggc 300
 ttggatagaa atgaggaggg cttggataga aatgaggaga gcttggatag aatgaggag 360
 ggcttgata gaaatgagga gattaagcgg gctgccttcc agataatctc ccaagtgatc 420
 tcagaagcaa ccgaacacaggt gctggccacc acggttggca aggttgcagg tcgtgtgt 480
 caggccagtc agctccaagg gcagaaggaa gagagctgtg tcccagttca ccagaaaact 540
 gtcttggcc cagacactgc ggacctgcca cagcagaggg agctgttgcc cggccggatg 600
 ctggcctccc cttgccaggc ctaccacgg agggctcacc accaccaaag acctacgtga 660
 gctgctgaa gaggcttctg tccagccca ccaaggacag taagccaaat atctctgcac 720
 accacatctc cttggcctcc tgcctggcac tgaccacccc cagtaagag ttgcccggacc 780
 gggcaggcat cttggtgaa gatgccacct gtgtcacctg catgtcagac agcagccaaa 840
 gtgtccctt ggtggcttct ccaggacact gctcagatt ttcagact tcagggctt 900
 aagactctt cacagagacc agctcgagcc ccagggacaa ggccatcacc cggccactgc 960
 cagaaagtac tgtcccttc agcaatgggg tgctgaaggg ggagttgtca gacttgggg 1020
 ctgaggatgg atggaccatg gatgcggaag cagatcattt aggaggttct gacaggaaca 1080
 gcatggatcc cgtggatagc tttgcagtc tcaagaagac tgagagcttc caaaatgccc 1140
 aggccaggctc caaccctaag aaggtcgacc tcatcatctg ggagatcgag gtgccaaagc 1200
 acttagtcgg tcggctaatt ggcaagcagg ggcgcstatgt gagtttctg aagcaaacat 1260
 ctggtgccaa gatctacatt tcaaccctgc cttacaccca gagcgtccag atctgccaca 1320
 tagaaggctc tcaacatcat gttagacaaag cgctgaactt gattggaaag aagttcaag 1380
 agctgaacct caccataatc tacgctcccc cattgccttc actggcactg cttctctgc 1440
 cgatgacatc ctggctcatg tgcctgtatg gcatcacgtt ggaggtcatt gtgtcaacc 1500
 aggtcaatgc cggcacctg ttcgtgcagc agcacacaca ccctaccttc cacgcgctgc 1560
 gcagcctcga ccagcagatg tacctctgtt actctcagcc tggaaatcccc accttgccca 1620
 ccccagtgg aataacggtc atctgtgcgg cccctggc ggcacggggcc tggggcggag 1680
 cccaagtgg tgcctctac gaggagacca acgaagtgg gattcgatac gtggactacg 1740
 gcggatataa gagggtgaaa gttagacgtgc tccggcaaat caggtctgac tttgtcaccc 1800
 tggcgttca gggagcagaa gtccttctgg acagtgtgat gcccctgtca gacgatgacc 1860
 agtttcaacc ggaagcagat gcccgcattt gcgagatgac gggaaataca gcaactgctt 1920
 ctcaggtgac aagttacagt ccaactggc ttcctctgat tcagctgtgg agtgtgggg 1980
 gagatgaagt ggtgttgata aaccggtccc tggtgagcg aggcttgcc cagtggttag 2040
 acagctacta cacaaggcctt tgaccccccattt gctgccttccctt gagagtcttt ttttgcactg 2100
 ttgaaaattgg gcttggactt caagtcaaag atgaacatcg gaataacaaa cattgtcctc 2160
 tccagaaaagt ctttcttcc tccatactgt agtccttattt agaagacatt tcgtctctga 2220
 aaaaaaaaaa tggaactatg gtttcttcc gcaaagccaa aggatagtgt ttaacaagcc 2280

agctggctta tcctggttct cagctgttcc aaccagattg tcctattccc cctgttcat 2340
 tcccctttc ttcccttat ctccctcccc ggcaaaaacc aaacaaactg gcagacaggc 2400
 cagggatgta tggatgtgc ttgagagggt ttctttact tcaaaatctt tcttcaggg 2460
 gcaagacatg aactgactaa ttggatatcca ctacttgtac agcttacata aatgagttga 2520
 tgatatttaa ccagttttta taaacttcat ttaggtctct aaacacagac ttttaatt 2580
 gcaactgtaa atatgaaatg gtcatcacat ctgacccctgg tcagtgggg ggggaactgg 2640
 tatccctgcca agcctgggtt taatttgtaa ccattttcta tttgtgcaaa ctctgtaaat 2700
 atgtgtttaa acaaatgtaa tattttgtac aagatacact ggagaacaaa gggactcaa 2760
 gattcttcca gccacatgtc acctgttaggt agaagtaaac tctgcagtgc agttctgct 2820
 cttggccctt ctggccaggc cccctgtggc ttccctgcaca ctggacaggf gactgtatgg 2880
 tagagactgt gatctgggaa cttttgcgt tacaaatctg tttaaaaaaa agagttgatg 2940
 atatttaacc agttttata aacttcattt aggtctctaa acacagactt tttaaaattg 3000
 caactgtaaa tatgaaatgg tcatcacatc tgacccctgg cagtggggag gggactgg 3060
 atcctgcca gcctgggtgt aatttgtaaac cattttctat ttgtgcaaaac tctgtaaata 3120
 tgtgtttaaa caaatgtaat attttgtaca agatacactg gagaacaaaag ggaactcaag 3180
 attcttccag ccacatgtca cctgttagta gaagtaaact ctgcagtgc gcttctgctc 3240
 ttggcccttc tggccaggc ccctgtggct tcctgcacac tggacaggf actgtatgg 3300
 agagactgtg atctgggaac ttttgcgt acaaaaagta actcattgaa ttaacttgca 3360
 gtggtgtgtt tgattcttt ttagactggc tttagcattt tgcaaggtaa a 3411

<210> 33
 <211> 1393
 <212> DNA
 <213> Homo sapiens

<400> 33
 gaagaagaga aaaaagaggt gatgcttcag aatggagaga ccccaagga cctgaatgat 60
 gagaaacaga agaaaaatataaacaacgt ttcatgttta acattgcaga tggtggttt 120
 actgagttgc actccctttg gcagaatgaa gagcgggcaag ccacagttac caagaagact 180
 tatgagatct ggcacatcgacg gcatgactac tggctgttag ccggcattat aaaccatggc 240
 tatgcccgtt ggcaagacat ccagaatgac ccacgctatg ccattctcaa tgagccttcc 300
 aagggtgaaa tgaaccgtgg caatttctta gagatcaaga ataaatttct agctcgaagg 360
 ttaagctct tagaacaagc tctggtgatt gaggaacagc tgcggccggc tgcttacttg 420
 aacatgtcag aagacccttc tcacccttcc atggccctca acacccgctt tgctgaggtg 480
 gagtgttgg cgaaaagtca tcagcacctg tccaaggagt caatggcagg aaacaaggcca 540
 gccaatgcag tcctgcacaa agttctgaaa cagctggaaag aactgctgag tgacatgaaa 600
 gctgatgtga ctgcactccc agtaccatt gcccgaattc ccccaaggf tggaggtt 660
 cagatgtcag agcgttaacat tctcagccgc ctggcaaaacc gggcaccggc acctacc 720
 cagcaggtag cccagcagca gtgaagatgc agactgatac caccccccacc gctgagcagt 780
 gaccccttc actttcttctt gtcccaaggf ctccctggg ggcctgagag accctcacct 840
 tccttctgcc catctccat gttgtaaagg aacagccccca gtgcactggg ggaggggagg 900
 gagtgagggg cagtggtgcc ctccctgcag aagagacatg cagcagtagc gctggcgcca 960
 tctgcaggag ctggccggctt ggccttctgg accctggctt ctcccccactg taacgcctgt 1020
 tacacacaaa ctgttgcggg ttccctgcag gcttgaagaa aatgatctga atttttccct 1080
 cctttgtttt ttatttgttt ggtttatccc gtgtttctt ttccctttt tggggggat 1140
 tcagagttgg ctggggccctt gggcgagaca cagctaccc tggccatc ttttaataac 1200
 caggaaccca gcggctctag ccactgagcg gctaaatgaa ataaagtgg aaaaaaaaaa 1260
 aaggaaaaaaa ccaaagcat aaaaaaccac agcaaatttc ttgtgaaaaa ttgaaaataa 1320
 aagtttcctt gtattttaaa aaggaaaaaa aaggagaggg aaaaaggag 1380
 gggggagagg agt 1393

<210> 34
 <211> 1236
 <212> DNA
 <213> Homo sapiens

<400> 34
gtgggcacc cctaattcaact attgtttcct aaaggtaatt tcaccctctt cgccctggtaac 60
agccctaca gctcttcaga gcaagcactg gactacaagg gcatggctca caaaaaggta 120
atggatgggg gtacccatgc cctggctaat tcccccttcca ttcccaactc tctctctt 180
tttgaagaaa aatgtcaagg gcagccctgc ctggcccttccc catccccccgc tgtaaatata 240
caactttt gatagcacac atggggcccc catatctttt ggccttggtt ttgatgttga 300
aatcctggcc ttgggagaga tgcctccag gcagacacag ctgtctggtt caggccaagc 360
cccttgcaa tgcaagccct ttctgggtt atgaagtecc tctatgtcg tgcgtttcacc 420
agcaactgg gactgtccct tcgacacggg cctgcttga gatttcctga caggaaaaag 480
atttctgtcc atttttttcc tgcctcaac agcataattt ccttttctta tgtaaatatt 540
atgatgttgg atcaagacat aagtaaatga gcctttctgc ctacatcag ccctgtgtat 600
aaagccatta ttctctgtat cactgtttgc cccagtaact cactttaaaa cctcttttc 660
cagtgtccct tctctccctc cagggccact gcttgaagaa gaatatgtat gtttcttatct 720
tgtatgtctg tgcctccctc ctgccccgaa agtgctgact atggggaaat ctttagctg 780
ctgttttag actccaaggg gtggaaattt tggttggaa gcaaaccctga tacaatttgc 840
ccaaggtaaa cagtttgaaa agacaaaatgg gcctgccaaa ctgtacagtt tcttccccaa 900
gagctgttag gtatcaaaaat gttgtccctt ccccccctccg tgctttctg gttgagatca 960
tgtcatgtat gaactgccaa agtcaggggaa ggagggcaga gactttgtgt ttacatctgc 1020
atttctacat gtttagaca gagacaattt aaggccctgca ctcttatttc actaaagaaa 1080
aactaatgtc agcacatgtt gctaattttt gttttttttt ttttaataaa aaaagttac 1140
agatcaaatg tgaataaaat atgaatggag tggattttt ttatgg tggtccctt gtctgttatac tgagtttca 1200
aaagctttaa gactctggga acatctgtt ttatgg ttatgg 1236

<210> 35
<211> 749
<212> DNA
<213> Homo sapiens

```
<400> 35
ggagatgcag aggtaaaagt gtgagcagtg agtttacttt tcaaggcatc tttagcttcta 60
ttatagccac atcccttta aacaagataa ctgagaattt aaaaataaaa aaatacataa 120
gaccataaca gccaacaggt ggcaggacca ggactatagc ccaggtcctc tgatacccc 180
agcattacgt gagccaggtt atgagggact ggaaccaggg agaccgagcg ctttctggaa 240
aagaggagtt tcgaggtttt gtttgaagga ggtgagggat gtgaattgcc tgcaagagaga 300
agcctttttt gtttgaaggt ttgggtgtgt gagatgcaga gttaaaagtg tgagcagtga 360
gttacagcga gaggcagaga aagaagagac aggagggaaa gggccatgct gaagggacct 420
tgaaggtaa agaagtttga tattaaagga gtttaagagta gcaagttcta gagaagagggc 480
tggtgtgtg gccagggtga gagctgtct ggaaaatgtg acccagatcc tcacaaccac 540
ctaattcaggc tgaggtgtct taagcctttt gctcacaaaa cctggcacaa tggctaattc 600
ccagagtgtg aaacttccta agtataaatg gttgtctgtt tttgttaactt aaaaaaaaaa 660
aaaaaaaaat gggccgggtgc ggtggctcac gcctgtatc ccagcacttt gggaggccaa 720
ggtgaaaaaa tcaacaagggtc actagatgg 749
```

<210> 36
<211> 1251
<212> DNA
<213> *Homo sapiens*

```
<400> 36
gtgaccccca taggccttag gcttgtgcag gcagtggcg tgggtaagg cttcctgatg 60
ccccctgtcc ctgcccagaa cctgatggcc ctcattagtc ctggctttt atcttggaa 120
cacaggcgct gacagccgtc ccagcccttc tgtctgcggg cctgaaccaa acggtgccat 180
gggaaactgt ctgcacaggg cggagtctcc ccctaactg agaactcaag tcagctggac 240
ttcgaagatg tatggaattc ttccatggt gtgaatgatt cttcccaaga tggagactat 300
gatgccaacc tggaaagcagc tgccccctgc cactcctgtt acctgcttggg tgactctgca 360
ctqcccttct tcatacctcac caqtgtcctt qqtatcctttag ctatcaqac tqtccttcc 420
```

atgctttca gacctcttcc cgctggcag ctctgccctg gctggcctgt cctggcacag 480
 ctggctgtgg gcagtgcctt cttcagcatt gtggtgcccg tcttggcccc agggcttaggt 540
 agcactcgca gctctgcctt gtgttagcctg ggctactgtg tctggatgg ctcagccccc 600
 gcccaggcctt tgctgcttagg gtgcctatgcc tccctggggcc acagactggg tgcaggccag 660
 gtcggcggcc tcaccctggg gctcaactgtg ggaatttggg gagtggctgc cctactgaca 720
 ctgcctgtca ccctggccag tggtagctt ggtggactct gcaccctgtat atacagcacg 780
 gagctgaagg ctttcagggc cacacacact gttagcctgtc ttgcctatctt tgtcttggg 840
 ccattgggtt tggttggagc caaggggctg aagaaggcat tgggtatggg gccaggcccc 900
 tggatgaata tcctgtgggc ctggtttatt ttctgggtggc ctcatgggggt gggtcttagga 960
 ctggatttcc tggtagggc caagctgtt gttttgtcaa catgtctggc ccagcagggct 1020
 ctggacctgc tgctgaacctt ggcagaagcc ctggcaattt tgcaactgtgt ggctacggcc 1080
 ctgctcctcg ccctattctg ccaccaggcc accccgaccc tcttgcctc tctgcccctc 1140
 cctgaaggat ggctttctca tctggacacc cttggaaagca aatcttagtt ctcttccac 1200
 ctgtcaacctt gaattaaaatctt acactgtcc ttgtgaaaaaaa aaaaaaaaaa a 1251

<210> 37
 <211> 3283
 <212> DNA
 <213> Homo sapiens

<400> 37
 ctggcctcag cacccctcag aactggttac ctagtacccc cgccacccctcc tgggggtggac 60
 tcaccaggc cagaccaca gacaatggt gggagcagac tgccctgagc ccccaagagg 120
 ccccggttcc tggcatctcc acggcccccgg atgtgctcag tggtagggcccg gagcctgcct 180
 gggaaaggccgc agccactacc aaggggcctt cggactgacgt ggcgcacgttcc acccaagggg 240
 ccggcccccagg caggaggac acggggctt tgaccaccac acacggcccc gaagaaggccc 300
 cacgcttgc aatgctgcag aatgagttgg aggggctggg ggacatcttc caccctatgaa 360
 atgcggagga gcaagctcag ctggctgcct cccagcccg gccaagggtg ctgtcgccgg 420
 aacaggggag ctacttcgtt ctttttaggtg acctgggtcc cagttccgc cagcggccat 480
 ttgaacacgc ggtgagccac ctgcagcagc gccagttcca agccaggggac actctggccc 540
 agctccagga ctgcttcagg ctgattgaaa aggcccagca ggctccagaa gggcagccac 600
 gtctggacca gggctcagg gccagtgccg aggacgctgc tggccaggag gagcgggatg 660
 ccgggggttcc tgcagggtc tggcccttc tccggcagct gcacacggcc tacagtggcc 720
 tggcttcag cttccaggggc ctggccggc agctccagca gccagtgggg cgggcgcggc 780
 acagccctcg tgactcttat ggcategtgg cctcagctgg ctctgttagag gagctgccc 840
 cagagcggc ggtcagagc cgcgggggtg tgcaccaggc ttggcaggggg ttagagcagc 900
 tgctggaggg cctacagcac aatccccccgc tcaactgtt ggttagggccc ttgccttcgc 960
 ccgctggccg gcagtagctg taggacctt caggcccgcc gcggggctgc cctgtctgt 1020
 ccagggagga gtcgcctcag aactttctcc cccggcccaaa acctggatcg gttccctaaa 1080
 gcccstagacc ttggggctg cagctggctg agcggccgagg ggctgcggag gcagtgcac 1140
 tcttaactga gcccacccac gcccctgcctt gggcctgcct gcacatcccc cctccctcccc 1200
 agcgctgcct gcccctctcg gaggctgggg tcaactcagac caccagccaa gagcctttcc 1260
 ttgaagtccc caagcaagca ctgcaattttag gaaagagaaa aagcagcgtg cccagcctgg 1320
 aagggcatct gttggcccg ctagcaaccc ttttatatct agcagggtct ttccagtcct 1380
 gcagcacggg ccccccagcta tcagcgggtc aggcagtgct gtggcatccc aggctccggg 1440
 cagctccgtt ctcattgtt aagtgggtct cccggccttag cacacacacc ttgagggtct 1500
 taagaaccac attccctcat agtagaaaatg actagaaaaaa ggcacactgc catcatcatc 1560
 ccaaggcagg ctgtactgc ctttgcgtac ccccggggtg gcctcacggg ggggacaaag 1620
 ctggcaggag ccacagcagc cacagctggg gctttgcacc agcctggctt gagactgagc 1680
 agtttgcagg ggggggggggg tgcaaaaaac aagcaaacag gctgtgtctg cctccagctg 1740
 cccaccacac gctggccca ggcacctggg gctctgaggc ccctggggag gctggggccca 1800
 gcagctggccctt ctggagaaca cagacaaaagg acttccccgc agggaaactgt gcccataatgg 1860
 gggatcagac agggctgggg aacagccacag aggtgtcggt cctatggcac agcccttcct 1920
 ccggccgcaca ctccccctgg gtcctcaggc ccacccaagc gccgggctgc agaggaagcg 1980
 gggctggggg ggcgtcaggc atcagagaca ctgggtgggg cggacccggc cggccggggccc 2040
 cgtgctctca ggcttagccca ggtcggtggag gctggcaggc tcaggtcggtt gttgagacgt 2100
 gccgtggctg cgctcagtc acgggggagg agccgttcag cccggcctcc ccaggaagcc 2160

atatccccac tcacccggta agagaacctt gtcgtcccot ttccatgctc tccttaggaca 2220
 cgagccagg aaccccagac ccagggggag gaagggtgga ggggccccag gggtcaccat 2280
 gtgcaccagg ggcgtgagg ggccggggca ttcagctcg ctctgaaccg gggaaagctgg 2340
 cacggcaagg actgcctcag gtgacgggcc gtgagagggg acgggtcagg agccttcca 2400
 agccttctcc tcagcccgac acccatggcc atcggaggct aggatgccag acacagccat 2460
 ttgcagaaat caggcacagt gactgcagct cacgtccagc caaccaagca tggggccgca 2520
 gctcaggaag tccctcccg ccacaccaca gcctaattct tactgggacg gaggcaactc 2580
 ggctacgctg ggcaggacga caaacacgag acgccactgt ggaatgagca acttcggagc 2640
 acggggtgac ttgcttggga ccgtcccac gtgacagccc cttatgcaga ggagggaaaga 2700
 gaagcccca gtgggagggg aacctgtcca aagtcacacg gtgtgtgggt gacacagctg 2760
 gggtagtgc aggctggccc ctgaggccca tgctccctga acgctggaga ccactgtcgg 2820
 ctagcagcgg ctctcaggga aggccctggc tccaccctcc cagcctagcc tcgcggaccc 2880
 tcgtcctccc cacatcgac ctgctcacct gcctggaccc tgggctgcca gatgcagaa 2940
 gcatcaaacc ccccagcctc gtgggtgcgg ggcaggccgc aggccagcaca gcttagatgc 3000
 cctggtttgt ccctcttgc tcctgggaag agcttgcctc cgcccaagctc tcctgccact 3060
 ggcctttag ggttgggctg ggcccagagt gccttttagt cgcttctcac ggtggcctga 3120
 tggctcaacc cagtcccaa cgggcccagt gacactgccg actgcacccc agctcaggcc 3180
 cccactgcac cagaatgtct agaaaaaccaa gccaataaaaaa gtgatttctt ttttcataa 3240
 aaaaaagaaa aaaagagaca gaggaagtag atgctggccg ggc 3283

<210> 38
 <211> 2720
 <212> DNA
 <213> Homo sapiens

<400> 38
 agaaaatagt ttcaagcaga ccatagccaa gatcaacttc aaagtttag attcagaaat 60
 ggtggcttt gtgacggaca aatggtcccc gtggacctgg gccagctctg tgagggctt 120
 acccttccac ccgaaggaca tcatggggc attcagccac tcagaaatgc agatgattaa 180
 ccaatactgc aaagacactc ggcagcaaca tcagcaggga gatgaatcac agaaaatgag 240
 aggggactat ggcaagttaa aggccctcat caatagtcgg aaaagttagaa acaggagaa 300
 tcagttgcca gagtcataat attttcttat gtgggtctt tgcttccatt aacaaatgct 360
 ctgtcttcaa tgatcaaatt ttgagcaaag aaacttgc tttaccaagg ggaattactg 420
 aaaaaggtga ttactcctga agtgagttt acacgaactg aaatgagcat gcattttctt 480
 gtatgatagt gactagcact agacatgtca tggtcctcat ggtgcataata aatataattha 540
 acttaaccca gattttattt atatctttat tcacctttc ttcaaaatcg atatggtggc 600
 tgcaaaacta gaattgttgc atccctcaat tgaatgaggg ccatatccct gtggtattcc 660
 tttcctgctt tggggcttta gaattctaat tgcgtgtat tttgtatatg aaaacaagtt 720
 ccaaatccac agctttacg tagaaaaagt cataaatgca tatgacagaa tggctatcaa 780
 aagaaataga aaaggaagac ggcatttaaa gttgtataaa aacacgagtt attcataaag 840
 agaaaatgat gagttttat ggttccaaatg aaatatgtt gggtttttt aagattgtaa 900
 aaataatcag ttactggat ctgtcaactga cctttgtttc cttattcagg aagataaaaa 960
 tcagtaacct accccatgaa gatatttggt gggagttata tcagtgaaagc agtttggtt 1020
 atattcttat gttatcacct tccaaacaaa agcacttact tttttggaa gttatttaat 1080
 ttattttaga ctcaaagaat ataatcttgc actactcagt tattactgtt ttttcttta 1140
 ttccttagtc tgcgtggcaa attaaacaat ataagaagga aaaatttggaa gtattagact 1200
 tctaaataag gggtaaaatc atcagaaaaga aaaatcaaag tagaaactac taattttta 1260
 agaggaattt ataaacaaata tggctagttt tcaacttcag tactcaaatt caatgattct 1320
 tcctttattt aaaaccagtc tcagatatac tactgattt taagtcaaca ctatataattt 1380
 tatgatctt tcagtgat ggcaggtgc ttgttatgtc tagaaagttt gaaaacaata 1440
 tgaggagaca ttctgtctt caaaaggtaa tggtacatac gttcaactggt ctctaagtgt 1500
 aaaagtagta aattttgtga tgaataaaat aattatctcc taattgtatg ttagaataat 1560
 tttatttagaa taatttcata ctgaaattat tttctccaaa taaaaattag atggaaaaat 1620
 gtgaaaaaaaaa ttattcatgc tctcatatat attttaaaaaa cactactttt gctttttat 1680
 ttaccttta agacattttc atgcttccag gtaaaaacag atattgtacc atgtaccaa 1740
 tccaaatatc atataaacat tttattata gttataatac tatgtatgaag gtaattaaag 1800
 tagattatgg ctttttaag tattgcagtc taaaacttca aaaactaaaa tcattgtcaa 1860

aattaatag attattaatc agaatatcg aatatgattc actatTTAA ctatgataaa 1920
ttatgataat atatgaggag gcctcgctat agcaaaaata gttaaaatgc tgacataaca 1980
ccaaacttca ttttttaaaa aatctgtgt tccaaatgtg tataatTTA aagtaatttc 2040
taaAGCAGT tattataatg gttgcctgc ttAAAAGGTA taattaaACT tctttctct 2100
tctacattga cacacagaaa tgggtcaatg taaAGCCAA accatTTCT gtgttatgg 2160
ccaatctatt ctcAAAGGTA aaagtAAAAT tgggtcAGAG tcACAGTTCC ctttatttca 2220
cataAGCCCA aactgataga cAGTAACGGT gtttagTTT atactatTTT tggctattt 2280
aattcttctt atttccacaa ttattaaATT gtgtacACT tcattacttt taaaaatgta 2340
gaaattcttca tGAACACATAA ctctgctgaa tggtaAAAGAG aattttttt caaaaatgct 2400
gttaatgtat actactggtg gttgattggt ttattttt gtagcttgac aattcagtga 2460
cttaatatctt attccatttg tattgtacat AAAATTTCt agaaatacac ttttttcaa 2520
agtgtaaagt gttgtAAAGTAGA tttagcatg atgAAACTGT cataatggtg aatgttcaat 2580
ctgtgtaaaga aaacAAacta aatgttagtt tcacactaaa atttaattgg atattgtatga 2640
aatcatttgc ctggcAAAtaaaacatgtt gaattccccca aaaaaagaaa gggaggacgg 2700
gaggggagaa ggaaggaagg 2720

<210> 39
<211> 1036
<212> DNA
<213> Homo sapiens

<400> 39
gccggccccc ctttttaacc cccttccctt ctttttttc tgggtctgaa tgatatttt 60
tttagcttgat aatttggcc tgccttagc attaataagc ttcaGACTA gtcacaAGAC 120
tttcatttcac tggggggaa actttcttgc tttaaaaaat gcaattcaag aaagggcac 180
tatttcttgg gggctgcgtt gacagcaggc ttctcttcac ggggtatggg aatgggtgcgc 240
tcagggccag agacctgttt ctttggtcca ttcaGAGTGA ggaccccac agatgacagg 300
gatgaagtaa tggtgagagg gtttacatca gctgggatcc ggtatttctt gtggaaCTCC 360
ctggagatga aaccatgtt accttggcgc tcttcatgtt ttccatgcac ctcaatcaca 420
tctcccaaca cctaactttt gagttctctt ggggagaagt gtttacatc caggttgaca 480
gagaacctgt ctttctccag gtcacatctt gagagtccag tggtaaaacca gctgggtgcc 540
cgccggaaagg agggtggccg aaggtagaag ggactcaggg aagttagacgt cgggaaaaga 600
tcagactcca acagggtctc tccgaagaac tggtaaaaga ggcggctggg ggagtggaaa 660
ggaaagaagg ggcggccgat ccagggtgg tggatggcga tggtaaaat ggtttaggtga 720
gtgtgagggg tcagctggcc tggtaagtc tttttttttt tttttttttt tttttttttt 780
atatgcagtc ttgtgaagct tcttggatgg tgatgtcagg ggttttattt tttttttttt 840
ccaggcagttc atggagactt gtgttgggg atttggcaat gtgacacata cccagtactc 900
actgagctaa gaaaagagag acacaaacac gtctgagccg gccagtgtact tttttttttt 960
ttgttttactt agctttctgt ccacacccaa tggcacccac cccacccctt tttttttttt 1020
gctggtaac agtca 1036

<210> 40
<211> 2659
<212> DNA
<213> Homo sapiens

<400> 40
acccacgggg ctggccctccc ctgcgcactc ccctcgctgc ccggggccgg agcgcagtgg 60
ggccgcacag attcacaatg ttgaaagccc ttttccataac tatgtctgact ctggcgctgg 120
tcaagtaca ggacacccaa gaaaccatca cgtacacgca atgcactgac ggatatgtagt 180
gggatctgtt gagacagcaa tgcaaaagata ttgatgtatg tgacattgtc ccagacgctt 240
gtaaagggtgg aatgaagtgt gtcaaccact atggaggata cctctgcctt ccggaaaacag 300
cccagattat tggtaataat gaaacggcctc agcagggaaac acaaccagca gaagggaaacct 360
cagggggcaac caccgggggtt gtgttgcctt gtcgtgcag tcgcaggccc tggtaatgcag actggccgaa 420
gggggtgggg tggtaatgcag tggtaatgcag tcgcaggccc tggtaatgcag actggccgaa 480
ataactttgtt catccggcgg aacccagctg accctcagcg cattccctcc aacccttccc 540

accgtatcca gtgtgcagca ggctacgagc aaagtgaaca caacgtgtgc caagacata 600
 acgagtgcac tgcaggacg cacaactgta gaggcagacca agtgtgcatt aatttacggg 660
 gatcccttc atgtcagtgc cctcctggat attcagaagcg aggggagcag tgcgtagaca 720
 tagatgaatg taccatccct ccatattgcc accaaagatg cgtgaataca ccaggctcat 780
 tttattgcca gtgcagtcct gggttcaat tggcagcaaa caactatacc tgcgtagata 840
 taaatgaatg tgatgccagc aatcaatgtg ctccagcgtg ctacaacatt cttggttcat 900
 tcatctgtca gtgcaatcaa ggatatgagc taagcagtga caggctcaac tgtgaagaca 960
 ttgatgaatg cagaacctca agctaccctgt gtcaatatca atgtgtcaat gaacctggg 1020
 aattctcatg tatgtgcccc caggatacc aagtggtagg aagttagaaca tgtcaagata 1080
 taaatgagtg tgagaccaca aatgaatgcc gggaggatga aatgtgttgg aattatcatg 1140
 gcggcttccg ttgttatcca cgaaatccctt gtcaagatcc ctacattcta acaccagaga 1200
 accgatgtgt ttgcccagtc tcaaattgca tggccgaga actgccccag tcaatagtct 1260
 acaaatacat gagcatccga tctgataggt ctgtgccatc agacatctc cagatacagg 1320
 ccacaactat ttatgccaac accatcaata ctttcggat taaatctgga aatgaaaatg 1380
 gagagttcta cctacgacaa acaagtccctg taagtcaat gcttgtgtc gtgaagtc 1440
 tattcaggacc aagagaacat atcgtggacc tggagatgct gacagtcaagc agtataggg 1500
 ccttccgcac aagctctgtg ttaagattga caataatagt gggccattt tcattttagt 1560
 cttttctaag agtcaaccac aggcatattaa gtcagccaaa gaatattgtt accttaaagc 1620
 actattttat ttatagatat atctagtgc tctacatctc tatactgtac actcaccat 1680
 aattcaaaca attacaccat ggtataaagt gggcatttaa tatgtaaaga ttcaaagtt 1740
 gtctttatta ctatatgtaa attagacatt aatccactaa actggcttc ttcaagagag 1800
 ctaagtatac actatctggt gaaacttggg ttcttccta taaaagtggg accaagcaat 1860
 gatgatctc tgggtgtctt aaggaaactt actagagctc cactaacatg ctcataagga 1920
 ggcagccatc ataaccattt aatagcatgc aagggtaaaga atgagtttt aactgcttg 1980
 taagaaaatg gaaaagggtca ataaagatat atttctttat aaaaatggg tctgcccatt 2040
 ttgtgttggt ttttattttc atatccagcc taaaggtggt tgtttattat atagaataa 2100
 atcattgctg tacaatatgc tggttctgt agggtatttt taattttgtc agaaatttt 2160
 gattgtgaat atttgtaaa aaacagtaag caaaattttc cagaattccc aaaaatgaacc 2220
 agatatcccc tagaaaatta tactatttgg aaatctatgg ggaggatatg aaaaaataaa 2280
 ttccttctaa accacattgg aactgacctg aagaagcaaa ctcggaaaat ataataacat 2340
 ccctgaattc aggacttcca caagatgcag aacaaaatgg ataaaaggta tttcactgg 2400
 gaagttttaa ttcttaagta aaatttaaat cctaacactt cactaattta taactaaaat 2460
 ttctcatctt cgtacttgat gtcacagag gaagaaaatg atgatggttt ttattcctgg 2520
 catccagagt gacagtgaac ttaagcaaat taccctccta cccaaattcta tggaatattt 2580
 tatacgtctc cttgtttaaa atgtcactgc ttactttga tgtatcatat tttaaataa 2640
 aaataaaatat tcctttaga 2659

<210> 41
 <211> 2939
 <212> DNA
 <213> Homo sapiens

<400> 41
 tttttttttt tttttttgt ggtaataaaa tgggtcaat tttattaaaa gctgattcca 600
 tttcttcaca cagttaaatgta cgtttcttc ttgttttggt aaaggccatt tcataagagt 120
 gagttggctc tggtagacca tcactgataa agacacatac agtttagcacc acacatttt 180
 aaatgcagat agccacaatg acctttccaa tatgtacaag ctccatttac acatccacac 240
 atgtatttac agctaataaa taaaatgtaa agccagaaca tccttgat atataacaaa 300
 gtttttggg gccagagttc ccagtgttat gtgtgtctt agtgaatctt ttaagttaat 360
 gcaccctggg tcacaaccca aatccagaaa ttaatgaat taataaaggg gatgccaaca 420
 acaaattata catcatttt ttttttagaga gaattcattt caaggctgtat gatgttaatc 480
 acaacatgg tcctactatt tataaggcactt atcatctctc tcagagaaag ggtcgaagtt 540
 ctggcacatc aggaacaaatt tctactccga catgttccaa tacatccctt gatcgactgt 600
 tttcccttcc gaattatgtt gaaaggacaac acacatgcag agctttctgtatgtgttca 660
 gatacatacat acttcacacg tcgggtcccc agctatagcc tctgagatat ttgacatctt 720
 tatcatttca tatttatacgt tagaagagca ttctgaaaaa taggagatct agtttataaa 780
 tagttgttca ctcactcttg attagttgtt aaaaacaaca aatagcaacc ctcatggac 840

tccatctggc	tcattgcacg	cgtatggttta	caagcactgc	ttaggaatcc	accccaggaa	900
cctctccacc	cttttactta	gtaaaaacgg	tccttgccta	aaatctgtag	aagctcacac	960
aatgaaaat	ttgaactcaa	acctatcttt	tcatgtcaaa	gccaggaaca	aaagagacgc	1020
actggaaagta	caactgaagc	atgaccaagg	taagcctaaa	actgaagagt	aactgtcaga	1080
tattgaatga	ttttaaattt	atgaaaatca	tttggagaat	ctaataataa	aattacggtt	1140
tctttttttt	tttctgcacc	attcaattt	tgtgtcagct	gaggattaca	ggctcatttt	1200
caacacctac	ccagagaaca	ttattataat	ataatcttga	gacaaaaaaag	aagggggaga	1260
gagggattaa	gcaataaaacg	ataaaagccta	ttaagaatta	attgatctag	attttatatc	1320
tccttgaatt	tgtacttttg	tcatgatgca	ggccaatgg	agggactgtt	taaaacctct	1380
gtgttatca	gaccctttct	tcgtccctct	ccaagttaca	tgttccctgg	tgacgtctgg	1440
accacattcc	aatagcaaga	gggaatcatt	ctaaaacatc	attcatactg	ctgtgttagat	1500
gagtcgtgatt	cgtgccgcgg	aaaagcattt	tctgtattct	tggagactta	gagtaaagtt	1560
tgagaaggcc	tcagtcgaa	agatccagaa	ttccaattaa	aataggaggt	tctaaccat	1620
tataggctat	ggcccaatac	gccacatgaa	ggagccctt	tttactctgc	gctcaaacaa	1680
ttatcttttt	ctcaaaggac	aaaacagcac	tttcatgat	ccactgtctt	ttaacgttgg	1740
aggatgtgct	atttggccac	tataccccat	aaattgaatt	agccactttt	tagtgcgttga	1800
gactgtctcc	taaaataact	aacaagggt	gggctgggat	taatattcag	gaaaatccac	1860
tttgaaaaca	ccccaaacac	tgggtatgtt	ttgtaaaagt	tacttcctcc	acttcattct	1920
tcacagaatt	cacatgccgt	tctttgttct	gtagattcgc	ccagttcag	cctgacttct	1980
tattcagaga	cttgtcatgg	catttcacaa	ataccgcagg	tgccttcct	ttctgcaaat	2040
gagacacttt	ctccctagaa	cagaagatca	cctttttctg	agtctctct	gcttttactc	2100
tgatcttctg	aatggcgaag	ccgggactgc	tccaccagtc	tgaccagcta	aagtatgaat	2160
cactcttcca	tttgagcttc	aacatgagta	gttctccaat	atctacctct	gtgtaaattta	2220
ggaaggagta	ggtcttattt	gtggaaactt	caggcagagt	gaatggatg	ttctcactct	2280
cggccacggt	gccatacaga	gaaatctcaa	aggcctgatt	ggtatgggtt	tcactctcag	2340
tcccagaaaa	atgaatctt	acttgtata	ggaagacttt	gtagggcattc	tgagaacgag	2400
tcttcaggtt	cattttgtcg	cttcttttgg	ctctgacttt	attgatctca	tagccagat	2460
tgttcagcg	gttctttctt	caactcaagc	agagccctt	ctcaaaggct	tccttggAAC	2520
tgcacctgta	ggccttactt	ggattttctt	cattcaacag	agagtcgtat	aagagatgaa	2580
tggagcgttc	gtgggagcac	ttcactagct	ggtccacatc	tccaagtctt	ctctctgcaa	2640
tcacgcggat	agcttctcca	atgttacatc	ctggctgaaa	agtacctcca	ttcgggtaaa	2700
tgtcaacatg	cccaactgg	ttctggattc	caatgcttcg	accaggggac	cctctggta	2760
atgtgttaa	gacgtctaca	aaatctgcat	catcaggaga	aagacgactc	ggggcttctg	2820
catactcaaa	gttaggtcca	gctggatcga	ggccagtaat	tctgttgaac	tttcttattt	2880
gtcagacttc	ctgcaatgcc	agcagcatgg	gctccaaggc	tgtatccaa	gagatggac	2939

<210> 42

<211> 3670

<212> DNA

<213> Homo sapiens

<400> 42

gcatcgccat	gacgcccggcc	aatgccaccg	aaggcctccaa	gccccaaggc	acaacgggtg	60
gtcctccctg	tgacaacgag	ttgaaatctg	aggccatcat	tgaacatctc	tgtgccagcg	120
agtttgcact	gaggatgaaa	ataaaaagaag	tgaaaaaaaga	aatggcgac	aagaagattg	180
tcccccaagaa	gaagaagccc	ctgaagtgg	ggcccatcaa	gaagaaggac	ctgaagaagc	240
tttgtctgt	cctgaagaat	ggggctgact	gtccctgcca	ccagctggac	aacctcagcc	300
accacttcct	catcatgggc	cgcaagggtga	agagccagta	cttgctgacg	gccatccaca	360
agtgggacaa	gaaaaacaag	gagttcaaaa	acttcatgaa	gaaaatgaaa	aaccatgagt	420
gccccacctt	tcagtccgt	ttaagtgtat	tctcccgggg	gcaggggtggg	gagggagcct	480
cggggtggggt	gggagcgggg	gggacagtgc	cccgggaaacc	cggtgtggtca	cacacacgca	540
ctgcgcctgt	cagttagtgg	cattgtaaatc	cagtcggctt	gttcttgacg	cattcccgct	600
cccttcctc	catagccacg	ctccaaaccc	cagggtagcc	atggccgggt	aaagcaaggg	660
ccattnagat	taggaaggtt	ttaagatcc	gcaatgtgga	gcagcagcca	ctgcacagga	720
ggaggtgaca	aaccatttcc	aacagcaaca	cagccactaa	aacacaaaaaa	gggggattgg	780
gcggaaagtg	agagccagca	gcaaaaacta	cattttgcaa	cttgggttg	tggatctatt	840
ggctgatcta	tgccttcaa	ctagaaaatt	ctaattgattg	gcaaqtcacq	ttgtttcaq	900

gtccagagta gtttctttct gtctgcttta aatggaaaca gactcataacc acacttacaa 960
 ttaaggtcaa gcccgaaaag tgataagtgc agggaggaaa agtgcagtc cattatgtaa 1020
 tagtgacagc aaagggacca ggggagggc attgccttct ctgcccacag tcttccgtg 1080
 tgattgtctt tgaatctgaa tcagccagtc tcagatgccc caaagttcg gttcctatga 1140
 gcccgggca tgatctgat cccaaagacat gtggaggggc agcctgtgcc tgcctttgtg 1200
 tcagaaaaag gaaaccacag tgagcctgag agagacggcg attttccggc tgagaaggca 1260
 gtagtttca aaacacatag ttaaaaaaaga aacaatgaa aaaaatttttta gaacagtcca 1320
 gcaaattgct agtcagggtg aattgtgaaa ttgggtgaag agcttaggat tctaattctca 1380
 tgtttttcc tttcacatt tttaaaagaa caatgacaaa caccactta ttttcaagg 1440
 tttaaaaca gtctacattg agcattgaa aggtgtgcta gaacaaggc tcctgatccg 1500
 tccgaggctg cttccagag gaggcgtct ccccaaggcat ttgccaaggg aggccgattt 1560
 ccctggtagt gtagctgtgt ggcttccctt cctgaagagt ccgtgggtgc cctagaacct 1620
 aacacccctt agcaaaaactc acagagctt ccgtttttt ctttcctgtt aagaaacatt 1680
 tccttgaac ttgattgcct atggatcaaa gaaattcaga acagcctgcc tgcctcccg 1740
 cacttttac atatatttgt ttcattctg cagatggaaa gttgacatgg gtgggtgtc 1800
 cccatccagc gagagagttt caaaagcaaa acatctctgc agttttccc aagtaccctg 1860
 agataactcc caaagccctt atgttaatc agcgatgtat ataagccagt tcacttagac 1920
 aactttaccc ttcttgcctt atgtacagga agtagttcta aaaaaaatgc atattaattt 1980
 ctccccccaa agccggattc ttaattctct gcaacacttt gaggacattt atgattgtcc 2040
 ctctgggca atgcttatac ccagtgagga tgctgcagtg aggctgtaaa gtggccccc 2100
 gcggccctag cctgacccgg aggaaaggat ggtagattct gttaactctt gaagactcca 2160
 gtataaaaat cagcatgccc gcctagttac ctaccggaga gttatccctga taaattaacc 2220
 tctcacagtt agtgcattctg tcctttaac accttttttgggggttctc tctgaccctt 2280
 catcgtaaag tgctgggac cttaaatgtt ttgcctgtttaa ttttggatga taaaaaatg 2340
 tgttatataa ttagctaatt agaaatattc tacttctctg ttgtctaaact gaaattcaga 2400
 gcaagttcctt gaggcgtgtt atctgggtct tagttctggt tgattcactc aagagttcag 2460
 tgctcatacg tatctgctca ttttgacaaa gtcctctatg caaccgggcc ctctctctgc 2520
 ggcagagttc ttagtggagg ggtttacctg gaacattagt agttaccaca gaatacggaa 2580
 gagcagggtga ctgtgctgtg cagctctta aatggaaatt ctcaggtagg aagcaacagc 2640
 ttcagaaaaga gctaaaata aattggaaat gtgaatcgca gctgtgggtt ttaccaccgt 2700
 ctgtctcaga gtcccaggac cttgagttgc attagttact ttattgaagg ttttagaccc 2760
 atagcagctt tgtctctgtc acatcagca tttcagaacc aaaagggagg ctctctgtag 2820
 gcacagagct gcactatcac gaggccttgc ttttctccac aaagtatcta acaaaaccaa 2880
 tgtgcagact gattggcctg gtcattggtc tccgagagag gaggttgc tgcattttcc 2940
 taattatcgc tagggccaag gtgggatttg taaagcttta caataatcat tctggataga 3000
 gtcctgggag gtccttggca gaactcagtt aaatcttga agaatatttgc tagttatctt 3060
 agaagatagc atgggagggtg aggattccaa aaacatttttta tttttaaaat atcctgtgt 3120
 acacttgctt cttgttacct gtgggattgc atcaagttct ccccaaggta gaattcaatc 3180
 agagctccag tttgcatttg gatgtgtaaa ttacagtaat cccattttccc aaacctaaaa 3240
 tctgttttc tcatcagact ctgagtaact gggtgctgtg tcataacttc atagatgcag 3300
 gaggctcagg tgatctgttt gaggagagca ccctaggcag cctgcaggaa ataacataact 3360
 ggcgttctg acctgttgcc agcagataca caggacatgg atgaaattcc cgtttccct 3420
 agtttctcc ttagtactc ctctttttaga tcctaagtct cttacaaaag ctttgaatac 3480
 tgtgaaaatg ttttacattt catttcattt gtgttgggtt tttaactgca ttttaccaga 3540
 tttttgtatg ttatcgctta tggtaatagt aattcccgta cgtgttcatt ttatccat 3600
 gcttttcag ccatgtatca atattcattt gactaaaatc actcaattaa tcaataaaaa 3660
 aaaaaaaaaaa 3670

<210> 43
 <211> 1025
 <212> DNA
 <213> Homo sapiens

<400> 43
 cttaaccag ttatccatc tggctcatt cgttcagaaa ttagatacaa aatctcaaga 60
 cctgttacta ctgatccat taaatcagag tctttatcc ttgcattttt gatcttaatt 120
 tctgaacgaa tgacactt ttaaccatc attacagtt accttttcc tttaaccgga 180

ttgtgaaagc ttcatgtatt ttaatttaga ttctgtgttt ttaagggttc tgagcatgaa 240
 gctggcagat agtcggcagg actcattttt tcatcatggc tggctgattt ctccatagat 300
 tgataacagt atttgttat cttgcttc ttagttttt catcagctgt ttaacttga 360
 gctgagttag gggagagggg taaagagaaa gaaaacttaag ttttcttca cagaactcca 420
 ccattgtggg ctttgagaga gccctaaagc attgtaccta gtggcacca gtgacttcca 480
 accaaagcctt ttgagatgc actaaatagg tgagaagaaa ggagagaagg tttttaggtt 540
 agaaaacctt aaccgataga aggatatggt atgttgtaaa gctggAACCA agtttgattt 600
 tttgagggct tgagatgaag ggaagactct taccagatag taagacagct gagttttcct 660
 cagtttctc gtcttaaacac tagtggacaa ttctagcatt ttgtttggag gatttcagag 720
 ttaacctcat ggaattcagg attttttagc aagtttgctt ttggtttat cttggcttt 780
 agtaatcatg ttggctggc tggcacagg tgactgtgaa acagatgccc tggctttgct 840
 ttcatcactc taggatcatg aagtgcattt ctatccctg gttatgaata ttaagggttgg 900
 aattacattt ttattgattt tttggatcag agctcagttc ctgtagaaaa cgaactgtaa 960
 aagaccatgc aagaggcaaa ataaaacttg aagtgaatgc taaaaaaaaa aaaaaaaaaa 1020
 aaaaaa 1025

<210> 44

<400> 44
000

<210> 45
 <211> 538
 <212> DNA
 <213> Homo sapiens

<400> 45
 ccaggaggct gtgagggggga gaatgttctt ttggccactg tgaaggctca ggaaggggct 60
 cggttgc aaggacccat gggagagagg aggcttgac tggctgcct gcctgtgagg 120
 tctctggact agaggtccaa cgcagtcagg ctgacaaggg tggaaatacgc catgaagtcc 180
 cttagccctc tctaccccaa gtccctctcc aggcatgtgt cagtcgtac ctctgtgtg 240
 acccagcagg tgctgtcgga gcccagcccc aaggccccca gggcccgccc ctgcccgcgt 300
 agcacggcgg atcgaagcgt gaggaaggc atcatggctt acagtcttga ggacctcctc 360
 ctcaagggtcc gggacactct gatgctggca gacaagccct tcttccttgt gctggagggaa 420
 gatggcacaa ctgtagagac agaagagtac ttccaagccc tggcaggggta tacagtgttc 480
 atggcctcc agaagggca gaaatggcag ccccatcag aacaggggac aaggcacc 538

<210> 46

<400> 46
000

<210> 47
 <211> 360
 <212> DNA
 <213> Homo sapiens

<400> 47
 gcccacggc cggccacggg tgcggccacg ggtccgacaa tagtatgcag ctaaaaaata 60
 attgtatgtc tttatataact aatatgtat aatcttcagg tgaaaaaggc aagccacaga 120
 aatgtgtata ggcacttcc catttgcgtt tcagaaaggc gtggaaatata aacacataat 180
 tgcttatgtt tgcctattca gaataaatgg gtaacactga ttactttgg gaggggaacc 240
 agtaggttga ggacaggaga gggagggc ttaacactta caccctttt tacattttga 300
 atttgaacc atgtgactgt attacctatt caaaataaac aataaatggg cccaaacagg 360

<210> 48
<211> 2192
<212> DNA
<213> Homo sapiens

<400> 48

```

gaggcctgcg cccacacccct ctccgttcca gcctcgccc gcctggcag ggcccggcgc 60
cgccgttgcg tgagccacag aacctttcc accttccgag cggagagaag ttccatcc 120
tccttcctt cctccctccgc tgccacccctt ccctccggct cccgtgtct cccggcccaag 180
gaccggccca tggagaaggc cctgagcatg tttccgatg actttggcag cttcatgcgg 240
ccccactcgg agccctggc ctcccagcc cgccccgggt gggcaggcaa catcaagacc 300
ctaggagacg cctatgagtt tgccgtggac gtgagagact tctcacctga agacatcatt 360
gtcaccacct ccaacaacca catcgaggtg cgggctgaga agctggcgc tgacggcacc 420
gtcatgaaca ccttcgttca caagtgccag ctgcccggagg acgtggaccc gacgtcggtg 480
acctcggttc tgccggagga cggcagccctt actatccggg cacggcgtca cccgcataca 540
gaacacgtcc agcagacccctt ccggacggag atcaaaatct gagtgcctct ccctccctt 600
tcctctgtcc ccccgccccca cgcctgcccag caaaggctcg ctaaccccat tacaacagct 660
ccaggacatc tcagccccagg ttctagcccc cacgcaccccc agacccccagg tggaccatcc 720
tcccaaacta gggcccttcca ctctatccag ggcaggccag ggactccctg gcctgacaca 780
tgatgcccag atttcagatt tggcctccgt cacttaatcc agagtagcagg ggctgggtc 840
agggaaagaa gatctaaaga acccactgtg ggtcagggga atgggaccag caggacatat 900
ggcgaagtc tgcaggacag acaggcagac aaaccctctg atctatgaag tctctgcagg 960
gcaaggggac caggacccctg gaacccttggcccaaggagg agtgggagag acagaggaa 1020
ggtcacaggc aagggtgcctt atctaagtgg aactaattgc ccgaggggctc agcaaggcca 1080
agaggagaca gccgtgacgg taaacttccc ctctaccagc ctccaagccccc cacgcccacg 1140
agcaggctgc ctgccccccca cgtgccccca gccagctggc tgcaggccaggg cagagccatg 1200
ccacatctgt atatacatgg gtttttcca atacagctgg ttcgtataa actgcataa 1260
actcctggcc tcctgcgcct gctggggcctt ccaggcaagg ccacgtgggg ttgggggtgg 1320
ggctggtcct tctccctccc acaggcctgt gttctgggg ctgctcccat gcagacagga 1380
tcacctaaca gagatggaa ccaggccatg gatggggctt tgggtcctcg aggttggacc 1440
ccagcttccctt gccaccccttcc cctccgggca gtcagctctc catccatccc cctcttaat 1500
ctatgaatct ataggctcggt tgcgtgttca acacacaccc ctatcgttgt ccttcaataa 1560
ctcagcatta ccattgggttggcccaattt cagacttttc tcaaatcaga ttataatct 1620
ccattttcat taacggggaa acatccccca gccactgagt gctgtgcctt gtcactgaag 1680
gttagatctg aaccagggtt gtcacacagct gctctcaact ccccacctt gggcactgag 1740
gagtatttcc cctcattctttaa cctctctaag gctatgcacc cctcccccacg tcttccagct 1800
ggggatgggg gggagtctata gaaaaagccc ccatctccca tctggatag ggaccttcca 1860
tcagccttaa ccctggggaaa tgcctgctgc ccccaagtgcac tcttggtttc gtctcccaca 1920
tacagaagca ggggggggg gaaagggtggg tctcagtttgc caggggtccc cagggcaagt 1980
cagcctcctc cctccatgccttctc tctctggtca gtgtgcctt gggggccctc tcactccac 2040
caactctgggc cccttgggggg aggactgggg agggggccgt gggagagccccc tgacgtcgga 2100
acctgtatac acaataaaagg acagtctcac agacaaaaag aggccgcctt ccggagttct 2160
caaaactttagg gcagggccctt acttgagaga aa 2192

```

<210> 49
<211> 2952
<212> DNA
<213> Homo sapiens

<400> 49

```

gtgcggatgc cggccggcag cagcatcatg gtcacgggc ccggcgcgt gatgctcaag 60
tgcgtgggtgg tcggcgacgg ggcgggtggc aagacgtgcc tactcatgag ctatgccaac 120
gacgccttcc cggaggagta cgtgcccacc gtcttcgacc actacgcgt cagcgtcacc 180
gtggggggca agcagtacctt cctaggactc tatgacacgg ccggacagga agactatgac 240
cgtctgaggc ctttatctta cccaatgacc gatgtttcc ttatatgctt ctcgggtggta 300

```

aatccaggct	catttcaaaa	tgtgaaagag	gagtgggtac	cggaacttaa	ggaatacgc	360
ccaaatgtac	cccccccccc	aataggaact	cagattgatc	tccgagatga	ccccaaaaact	420
ttagcaagac	tgaatgatat	gaaagaaaaa	cctatatgtg	tggacaagg	acagaaaacta	480
gcaaaagaga	taggagcatg	ctgctatgtg	gaatgttca	ctttaacc	gaagggattg	540
aagactgtt	tttatggggc	tatcatagcc	attttaactc	caaagaaaaca	cactgtaaaa	600
aaaagaatag	gtcaagatg	tataaactgt	tgtttaatta	cgtgagaaac	atcttcagtg	660
gccaggaaa	ctgtccattt	ctctcagaaa	gaaaatgaaa	tgctacagct	atacccagac	720
cttttatagg	taatgaagca	gttcaaaact	tgaaaagaaa	caaaacctgt	cctcagaatt	780
ctataaagtg	tattaagaat	gttccttaaa	ggtttaagaa	gcagtaagca	gcatctgaag	840
ccacaatcta	ttataaatac	tttatttcaa	ctagaaggta	caatctctca	ggggtttcat	900
agttaaaaaa	gctacaatca	catcatgtt	taactacgta	aaaaacagag	ctgttaatgg	960
aactgcttgg	cttgaccat	acacatttct	gcccagccct	tacagaatct	gcacaaagaa	1020
atatccctt	ttgtccagt	taattttct	tgtatgtta	ttgccttcta	ttccagttata	1080
tccagagtgg	tggaaataaca	aggccagcca	cgtagccaa	ggtcgctcca	agcgtacagg	1140
agatggcca	tacctgagga	gagaatgtat	gagatcaaaa	agaacaaaat	gttttattat	1200
tacttgagca	caagtgtaac	ctaaatattt	ctatattaa	gcttaatgt	ctttcttaaa	1260
gaatgccaaa	agtgtataaa	ggtcataact	gcatttatca	tgaacactaa	aatgtacac	1320
attttagtta	atgtgcatta	aactgttaaca	aggcttctgg	caattgtaga	tttagttga	1380
cgctcccaa	agtgcattgag	acacatgcta	aaattacaaa	ttaaaatttt	gggtcagact	1440
ttgcataat	gatagactca	attagctct	ctgaactagt	tggtaatttt	ttttttttaa	1500
ttcccacttt	ggctgtgtac	atcaaataa	atgagaagt	tgtatgctga	ccaaaccaca	1560
agaaacttcc	ttaagttgt	gttaaagagg	aaagacctag	aatccaagcg	tgttacatga	1620
aaattgtAAC	agagcagctg	cttccaccc	tcagatata	atgttggaa	cacagcagaa	1680
gttatacgac	gacaacttat	atacacaccc	agaatgtaa	ttaaaca	taccggcttc	1740
cagagacccc	ttttctccag	ccatattaca	tcaggctaga	agtaattaat	gttgatttat	1800
ttcatctaca	agcagttgg	ccctaagtga	aaggctctgc	ttgaaaaaaa	aaagaaaaaa	1860
aagtggagg	aaaatttca	tgttcttctg	tgaagctt	ttgttacact	ggagccattt	1920
ctaattttc	tctgggggg	acaggccaca	gaactgtgt	agaggtgaac	catcttaatt	1980
actagttcta	ttacctaatt	cagcttcctt	gttggctcg	ctgtggatct	gccttattgc	2040
atatgccatg	catcagataa	tggatgcattc	agataatgtt	gttagacaaa	gcttcattgt	2100
gaacaaccta	atgcatttt	gagaacaaat	ctcatcacat	tttttctagc	ctttccatca	2160
ttaaacttg	ctgttggcc	aattataatt	ttttaatgt	cttgggtgg	cttctgttaa	2220
ttcacatgac	tttagcttat	agctatgtct	actgcacaga	ttggtaatg	gaacactaaa	2280
cttttatact	tggaaatgac	agccttaaat	gctcatatca	gtcacaat	taggatgtac	2340
tgtcttgtt	tatgtgagct	ttgttagagat	ttttaaaaat	ataagcatca	cttcccattt	2400
gaagagtgg	gagagtctac	tggatgactg	gccaggaact	ttctctctga	atcggacatt	2460
tggatgtctt	cttcttcca	agaaatggtg	gttcacattt	aagtatcatg	gccttattgt	2520
tgctcaaatg	gaatcttata	taacttctt	atthaatttt	ggtctgctt	tttttagata	2580
aaattgtAAAG	gaattgtata	aatcaattaa	catattagct	gagttgtca	acacatggta	2640
taaacgaatt	acaacagtaa	actattacac	atttccaact	tgccttggg	gatttatgag	2700
gatttttttt	ggggggggg	gggggctcca	attcatatct	ctgaaaccct	tcacacttgg	2760
tttactaatt	caaagttga	agtctagaat	ttgcccgtcc	ctaacagaaa	cagatttaga	2820
atttgcattac	acaaactgg	gtcacctgtt	tcttgactgg	gatttggttt	cctcattata	2880
aatatggggag	gttagaaacaga	gatctccaac	gtctctccca	tttatcacag	taatttctt	2940
attcacagta	at					2952

```
<210> 50  
<211> 615  
<212> DNA  
<213> Homo sapiens
```

```
<400> 50
gcaaggatgg tctcaaatctc gacctcgta tccggccacc ttggcctccc aaagtgttgg 60
gattacaggc gtgactcacc atgccagcc acttagttt ttcttattcc caccttctta 120
tccccatagaa cactttttt tatctccct gaaccatatt gatgagataa atagggctgg 180
gggctggcc ccgctggta ctcaaacagag tatttcctt ggccgagatg gaagtttgt 240
cccaataqat qaqtqctqaa qtatcaacaa qqtqacattt ttctqctqcc catttqqtqtc 300
```

ctggagacgg tggtaaccctg aaggcagagg ccagctgccg caagacagca atgacagtcc 360
 acctgccgac ctgattcctg catcatggaa taaccacatg gctaccttct atccctctgtt 420
 cccaaatggt ggtggactt atcctgaagt cgtcaatgat ttccccttga aactactta 480
 ttttactaat ttaaactatt ttgtactgat gtagccctga ggtagttcat gaaaatgctg 540
 tgcactcatt ccatggaata aatgttggaa agctgatctt ttctgatata aaatgttcaa 600
 tgataaaaaaa aaaaaa 615

<210> 51
 <211> 1488
 <212> DNA
 <213> Homo sapiens

<400> 51
 ttttactgac cttgcttagaa gtttacagca aggaagtgc ggaacatttc acaaatctac 60
 aatctgtgag tttcacatcc tgtatacgtaa taaacactgg aataaggaag ggctgtatgc 120
 tttcagaaga tgaaggttaag tagaaaccgt tgatggact gagaaccagg agttaaaacc 180
 tctttggagc ttctgaggac tcagctggaa ccaacgggca cagttggca caccatcatg 240
 acatcacaac ctgttcccaa tgagaccatc atagtgcctt catcaaatgt catcaacttc 300
 tcccaagcag agaaacccga acccacaac cagggggcagg atagcctgaa gaaacatcta 360
 cacgcagaaa tcaaagttat tggactatc cagatcttgt gtggcatgat ggtattgagc 420
 ttggggatca ttttggatc tgcttccttc tctccaaatt ttacccaatg gacttctaca 480
 ctgttgaact ctgttaccc attcatagga ccctttttt ttatcatctc tggctctcta 540
 tcaatcgcca cagagaaaag gtttaccaag cttttggatc atagcagcct ggttggaaagc 600
 attctgagtg ctctgtctgc cttgggggt ttcattatcc tgcattgttca acaggccacc 660
 ttaaatcctg cctcaactgca gtgtgagttt gacaaaaata atataccaaac aagaagttat 720
 gtttcttact tttatcatga ttcactttt accacggact gctatacagc caaagccagt 780
 ctggctggaa ctctctctct gatgctgatt tgcactctgc tggattctg cctagctgt 840
 ctcactgctg tgctgcgggt gaaacaggct tactctgact tccctgggt gagtgtgt 900
 gccggcttca ctttaccccttgc cctagtgtat cttatccctg cactgtgtt gatgtgtcac 960
 caagagtgtt agaaggaaca accagccat cacgagatac acatggggagg gcatttgcac 1020
 tgtgtatggaa gacagagaag aaaagcagat ggcaatttgag tagctgataa gctgaaaatt 1080
 cactggatata gaaaatagtt aatcatgaga aatcaactga ttcaatcttc ctatggatc 1140
 agcgaagggg atgagactct gggaaatggaa atgactggcc tggcattatg ctatggat 1200
 gtgccttgc tgaggacact agaacctggc ttgcctccct tataagcaga aacaatttct 1260
 gccacaacca cttttttttttaatgttatt gacttggtaa agggcattta cacacgttaac 1320
 tggatccagt gaatgtctta tgctctgcat ttggccctgg tgatcttaaa attcgatgtc 1380
 ctttttaaag ctatattaaa aatgtattgt tgaatcaaaa aaaaaaaaaaaggg agtgagaggt 1440
 ggggtgggggg gggggaggag gggggggccgt ttaggggggg ccgggttt 1488

<210> 52

<400> 52
 000

<210> 53
 <211> 2262
 <212> DNA
 <213> Homo sapiens

<400> 53
 ctcgagccga ttccggctcgat gctaattttt aagtctcgat tggaaatcag tgagtaggtt 60
 cataatgtgc atgacagaaa taagctttat agtggtttac cttcatatgg ctttggaaatg 120
 tttctttggcc ttagttttgg aagtaaatttgc tagttttgttgc ttctcatatgg taatgaacac 180
 attaaccgact agattaaaat attgccttca agattgttct tacttacaag acttgctccct 240
 acttctatgc tgaaaatttgc ccctggatag aataactataa ggttttggatg tagctggaaa 300

agtgtatcaga	ttaataaaatg	tatattggta	gttgaattta	gcaaagaaaat	agagataatc	360
atgattatac	ctttatTTT	acaggaagag	atgatgtAAC	tagagtatGT	gtctacagga	420
gtaataatgg	tttccaaaga	gtatTTT	aaggaacaaa	acgagcatga	attaactctt	480
caatataaGC	tatgaagtaa	tagttggTT	tgaattaaAG	tggcaccAGC	tagcacCTCT	540
gtgttttaag	ggtcttcaa	tgtttctaga	ataaggCCCTT	atTTCAAGG	gttcataaca	600
ggcataaaat	ctcttctcCT	ggcaaaAGCT	gtatgaaaaa	gcctcagCTT	gggaagatag	660
atTTTTTCC	ccccaaattAC	aaaactaag	tatTTGGCC	cttcaatttg	gaggaggGCA	720
aaagttggaa	gtaagaagtt	ttatTTAAG	tactttcAGT	gctcaaaaaAA	atgcataatCAC	780
tgtgtgttat	ataatagttc	ataggttGAT	cactcataat	aattgactCT	aaggctttTA	840
ttaagaaaac	agcagaaaga	ttaaatCTTG	attaagtCT	ggggggaaAT	ggccactGCA	900
gatggagttt	tagagtagta	atgaaattCT	acctagaatG	caaaatttGGG	tatataGAATT	960
acatagcatg	ttgttgggat	tttttttaat	gtgcagaAGA	tcaaaagCTAC	ttggaaaggAG	1020
tgcctataat	ttGCCAGTAG	ccacagatta	agattataATC	ttatataATCA	gcagattAGC	1080
tttagcttag	ggggaggGGT	ggaaagTTG	ggggggggGGT	tgtgaagatt	tagggggACC	1140
ttgatagaga	actttataAA	cttcttCTC	ttaataaaAG	acttgtCTTA	caccgtgCTG	1200
ccattaaagg	cagctgttCT	agagttcAG	tcaacttaAGT	acacccacAA	aacaatATGA	1260
atatggagat	cttcctttaC	ccctcaACT	taatttGCC	agttataACCT	cagtgttGTA	1320
gcagttactGT	gatacctGGC	acagtGCTT	gatcttaCGA	tgcctctGT	actgacCTGA	1380
aggagaccta	agagtccTTT	cccttttGA	gttgaatCA	tagccttgAT	gtggtcttCT	1440
gttttatgtc	cttgttCCTA	atgtaaaAGT	gtttaactGC	ttcttggTT	tattgggTAG	1500
cattgggata	agattttAAC	tgggtattCT	tgaatttgott	ttacaataAA	ccaattttAT	1560
aatctttaaa	tttatcaact	ttttacattt	gtgttatttt	cagtcaggGC	ttcttagATC	1620
tacttatggT	tgtggagca	cattgatttG	gagtttcAGA	tcttccaaAG	cactatttGT	1680
tgtaataact	tttctaaatg	tagtgcCTT	aaaggaaaaA	tgaacacAGG	gaagtgtACT	1740
tgctacaat	aatgttgCTG	tgttaagtAT	tcataattAA	tacatgcCTT	ctatatGGAA	1800
catggcagaa	agactgaaaa	ataacagtaa	ttaattgtGT	aattcagaAT	tcataccaAT	1860
cagtgttGAA	actcaaACAT	tgcaaaAGT	ggtggcaATA	ttcagtgtCTT	aacactttTC	1920
tagcgTTGgt	acatctgaga	aatgagtGCT	caggTggatt	ttatcctcGC	aagcatgttG	1980
ttataagaat	tgtgggtGTG	cctatcataa	caattgtTTT	ctgtatCTG	aaaaagatTT	2040
ctccacattt	taaatgtTTT	atattagaga	attcttaat	gcacacttGT	caaataatATA	2100
tatatagtac	caatgttacc	tttttatttt	ttgttttagA	tgtaaGAGCA	tgctcatATG	2160
tttaggtactt	acataaatttG	ttacattatt	ttttctttagT	taatacCTT	ttgtttgttt	2220
atgtgggtca	aatatattct	ttccttaaac	tcttaaaaaAA	aa		2262

```
<210> 54  
<211> 1301  
<212> DNA  
<213> Homo sapiens
```

```

<400> 54
accagcaagc aaccggccga agtcttggaaag ggccgcggag ccccgcgaaac cggcccgacg 60
gagcgcagga ggtcccccgc cgccggccgc ttggccccga gttcttcgcag ccgcagccgg 120
cacggaggga gccaggccccg accttgcggcc gctgcggccc gcggctcccg gccaaacccc 180
cctcaggaaa gaggttttaa aatcaaagat gggaaaatcg gagaaaattg cccttccccca 240
tggccagctt gttcatggta tacacttgcata tgagcaacca aagataaaca gacagaaaag 300
caaataaac ttgccactaa ccaagatcac ctctgcaaaa agaaatgaaa acaacttttgc 360
gcaggattct gttcatctg acagaattca gaagcaggaa aaaaagcctt taaaaaatac 420
cgagaacatt aaaaattcgc atttgaagaa atcagcattt ctaactgaag tgagccaaaa 480
ggaaaattat gctggggcaa agtttagtga tccaccttct cctagtgttc ttccaaagcc 540
tccttagtcac tggatgggaa gcactgttgc aaattccaac caaaacaggg agctgatggc 600
agtacactta aaaacgctcc tcaaagttca aacttagatt tcagatttca gtatgtgtgt 660
aaaacataat tttccata tccctggact cttgagaaaa ttggtacaga aatggaaatt 720
tgccttgttgc caacatacaa ttgcaaaaga tgagttaaa aaattacata caaacagctt 780
gtattatatt ttatatttttgc taaatactgt ataccatgttgc ttatgtgtat attgttcata 840
cttgagaggt atattatagt tttgttatgttgc aagtatgttgc tttgccctgc ccacattgca 900
ggtgttttgttgc atatatacaa ttggataaaatttgc ttaagtgtgt gctaaggccac atggaaagacc 960
gattttatgttgc cacaaggta ctgagatttttgc tttcaagaaaa cagctgtcaa atctcaaggt 1020

```

gaagatctaa atgtgaacag tttactaatg cactactgaa gtttaaatct gtggcacaat 1080
 caatgtaaagc atggggtttg tttctctaaa ttgatttcta atctgaaatt actgaacaac 1140
 tcctattccc atttttgcta aactcaattt ctggtttgg tatatatcca ttccagctta 1200
 atgcctctaa ttttaatgcc aacaaaattt gttgtatca aattttaaaa taataataat 1260
 ttggcccccc ctttttaaaaa aaaaaaaaaa aaaaaaaaaa a 1301

<210> 55

<400> 55
000

<210> 56
 <211> 1265
 <212> DNA
 <213> Homo sapiens

<400> 56
 ccacgttagcc tcgtgccgct gcgtgcagct tctgtctccc tggtttctta atcaagggtt 60
 taggacttg ctatctctga gatgtctgct acttgctgca aattctgcag ctgtctgctg 120
 ctctaaagag tacagtgcac tagagggaaag tggtccctt aaaaataaga acaactgtcc 180
 tggctggaga attcacaag cgaccagag atctttttaa atccctgcta ctgtcccttc 240
 tcacaggcat tcacagaacc cttctgattc gtaagggtt cgaaactcat gttcttctcc 300
 agtcccctgt ggttctgtt ggagcataag gtttccagta agcgggaggg cagatccaac 360
 tcagaaccat gcagataagg agcctctggc aaatgggtgc tcatacagaac gcgtggattc 420
 tctttcatgg cagaatgctc ttggactcggtt ttctccaggg ctgattcccc gactccatcc 480
 ttttcaggg gttattttaaa aatctgcctt agattctata gtgaagacaa gcatttcaag 540
 aaagagttac ctggatcagc catgctcagc tggacgcct gaataactgt ctactttatc 600
 ttcactgaac cactcactct gtgtaaaggc caacagattt ttaatgtggg tttcatatca 660
 aaagatcatg ttgggattaa ctgcctttt tccccaaaaa ataaactctc aggcaagcat 720
 ttctttaaag ctattaaggg agtatatact tgacttata ttgaaatggc cagtaataag 780
 caaatgtct tataatgcta cctgatttct atgaaatgtt ttgacaagc caaaattcta 840
 ggatgtagaa atctggaaag ttcatttcct gggattcact tctccagggg ttttttaaag 900
 ttaatttggg aaattaacag cagttcaattt tattgtgagt ctttgcacca tttgactgaa 960
 ttgagctgtc atttgcattt ttAAAGCAGC tggtttgggg tctgtgagag tacatgtatt 1020
 atatacaagc acaacaggc ttgcactaaa gaattgtcat tgtaataaca ctacttgta 1080
 gcctaacttc atatatgtat tcttaattgc aaaaaaagtc aataattgt caccttgggg 1140
 ttttgaatgt ttgttttaag tggtggctat ttctatgttt tataaaccacaa aacaaaattt 1200
 ccaaaaacaa tgaaggaaac caaaataaat atttctgcatttcaatgaa aaaaaaaaaa 1260
 aaaaaa 1265

<210> 57
 <211> 274
 <212> DNA
 <213> Homo sapiens

<400> 57
 attgcgagtt tttttgttttgg tttttcaat gtgacttgc gtttatttca atgaaaattt 60
 aaatgattct tacaatctt ctgaaaagta aaactgatac ttttataaaac agaagtatat 120
 gcaaacagtc acaaatatgca ttggacgcac tgacgatatt tcttacatgc cagggagttc 180
 ttccatccca gcaaacacctt cttatctgaa agtgtttttt cttctataaa ttggcatctta 240
 agggattttt aaaaagtcaa aaacagtggc aggg 274

<210> 58
 <211> 2073

<212> DNA

<213> Homo sapiens

<400> 58

taaatttcca aatgttcact cgaggatctt agaaaccaac catacagacg agccgatgcg 60
 gtgaggagaa gcgtcaggcg ggcgttttat gatcagaact tgcgttctgt taatggtgcc 120
 gaaataacaa tgtgaacctg agactggcct gcatgaatac agggtgtgcg tgaatgaaac 180
 tgcccacatg aactttatgt gctacgattt aactgcagcc ttgaacacac aaaaaaatat 240
 tcttaaggc tcagatttag caaacacaga agaattttaa aatgagctct ccttcaacc 300
 cttgttaaca agtgcctaaa aatggaagta cctgttcaga ttaatcaaag caataggatt 360
 tgatttgatt aggtatctt ttacaccagt atgttatttt taacaaaat gtaaagtct 420
 tattaaactc attacctgcc attgtgattt tcccatcatg gcccacctgg tttcctgtatg 480
 ttgtaaataa catcaatgca tctgctgtgg gtccttgcg gagatgtctt cgaaggatt 540
 ttgttttagc catatccatc aacttgtat ttacttgca atttggaga aggaaagtca 600
 catgatgaaa ctccctttgt ctataaccag gcccctggcaa agtgc当地 gatgcaact 660
 gcagtggcac aaaggtcact caatcccttg ttccagttt cacattctac tacttctgt 720
 ctagagaacg atgctctgtg agaggcattc actagtgatg atgtgggat atagtgtata 780
 agacttattt gcagtaactgt gttcttcagc tagaggcagc tttttaata atgcaagtgt 840
 attttagc attaaaatta acatctcagt aatcagcatt agcattctg aggaccatta 900
 ttaattctga gaacagaaaat tgggccttg caaggaagtt tactagctct atcaacaagc 960
 attcaagggt acatctgcta gcagagtagt gtttaggaacc tggccttact ctccctgtac 1020
 aatcgcaatt ttttcttatt ttttataataa tcaagaagat acacttggca tcgtgtatcg 1080
 aggctaagtt ttcatgcattt ccctccagact acttatggag aattgcagtt taagttgt 1140
 aaaagtatta acatggattt aagcttaata aatacgtaat gggactagat gcccactaa 1200
 gccactgtt tttcccttcc tctctggcag ggcacttgcg ccattccaaa gtc当地act 1260
 ggactgaagc taaatttgc ttttccataa tatacattct gcttctggct tatcttctt 1320
 gtacatcaat atattaattt taaagtttat tggatgtat ttaaccgcgtg aagttccat 1380
 tttatgttgc gcttatgtgaa accccttgcg gaaggtccct ttcccttgggatgtt 1440
 tatgatctt ttaaatgtac agatatttttgcg ctataaaatc ggtgcagttt tttatgggtt 1500
 ttacacttctt ctttaatttcc cacctaagcc tctggtaat attgttaataa ttgttttaaa 1560
 atgcattcagc ctatgcataa caatctgaat gttattttaa cttatagttt tttttaat 1620
 atatatttaa ctataaggac agtttaggaa acaagttacc taccacattt cacttagt 1680
 tacctattt cagaaagattt aaactgccac ctgcgggcac attccataa atgtgtactt 1740
 tactttaaa agaacatgcc acgattttgtt cttctgtgg actcaacatt cacttcgatt 1800
 aaaaatagca atttgaccaa gttggactt cactacaaag cagctgtttt ccaaagtca 1860
 atgctgacat atatgtat taaaataattt gccttattttaat taaatctacaa atagacaacg 1920
 ttggcatgtt ctttctgtt tggatgtat tgggcctgc tcttagcaat attagaatgt 1980
 tttataaaaag caattcatgtt tactttctg gtctttcat ggcatatgag caaataataa 2040
 actatttaca ctactagaaa gaaaagagaa gaa 2073

<210> 59

<211> 850

<212> DNA

<213> Homo sapiens

<400> 59

ctattacaca tgaggtttttt aatgttattt gacctgacaa taggggtgtc acttagatgt 60
 gatctcagtgc ttgtggtaa ctttgcgtgt cttaatttgcg aaatctggaa catagatgtat 120
 gatttttcc tttgaatttgc ttaatgtgt tctcttccctt acagatttca gaacttataat 180
 ttccacctctt tccaatgtgg cacccttgc ccagaaaaaa gccaggaatg tatcgaggg 240
 atggccatca gaatcactat cttcttgcgtt ccattttggg ttatccaaat cagggaaagaa 300
 aaaataaacc atatcgccca attccagtgcg catgggtacc tcctccttgcg atgcattgt 360
 accggaaatca ctggattat cttccatgt tagcacctca ctaacttgcgt ttttgcgtt 420
 gttgggtgtca tggatgtat tgggcctgc tcttagcaat attagaatgt 480
 tcttactaat agtagtgcgtt ttagatggc caaaccatca aacttatttt tatagaatgt 540
 attgagaata atctttcttta aaaaatataat gcactttaga tatttgcgtt gtttgcgtt 600
 ttttattttttt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 660

```
gtgcataaac tctgttggat acgagaacac tgtagaagtg gacgatttgt tctagcacct 720  
ttgagaattt actttatgga gcgtatgtaa gttatttata tacaaggaaa tctattttat 780  
gtcgttgttt aagagaattt tgtgaaatca tgttagttgca aataaaaaat agtttgaggc 840  
atqaaaaaaaaa 850
```

```
<210> 60  
<211> 2091  
<212> DNA  
<213> Homo sapiens
```

<400> 60
aagagacaga ctattaactc cacagttaat taaggacgta tgttccatgt ttatttggta 60
aagcagtgtg aatagccttc aagcatgtga ataatcttc atctccccg ccgccttttg 120
tttctttcag gtagacacct tttaaaatgc agaactaact gaggcatttc agtaactttg 180
cttcaaaatc aataaaagtca aatgtatgga aacatTTTGT gccctactct ccataccccc 240
tgtactcaaa ttctctactg tatgaattat gcttaagta gaattcagtg ccaaggagaa 300
cttggtgaaa taaattattt taattttttt tttatcctt acaaagccat ggattttatt 360
tgggtgatgt gtgctctgta cacaagccat ttcaatagga tggagctgtt aattattttc 420
caaagagtaa tagacatgca aaagttcaa taaaaactgg gccattaaca aataaattaa 480
taaactaata agcattccct tctaggttt tgccaaactg cctatccaat aacaatttg 540
agaatcggtg aaaaagctag ttatatttca gagaatgat tttcatttatt gaaactgttc 600
tccctagcag gccattttcc cttttcctg ggagtttagc aagtttagga gagaatagtc 660
atgaaaagaa aggaaagaaa ggggagaagg gaagaggta aaaagtaagt gctcagacct 720
atgaacgtaa tcccttgct agaaatattt aagagcagct cagcttggtt gaaactgagt 780
tttgcattct tccatatttgc caggaaggta tttctgact tgcaatgcag cttagatgtaa 840
aattttattt tatcatccta gaaaggcttgc actagaaaaa tgaataaata ttgaggggtt 900
cctgtccata tctggcttgc atgtgccaga aagcagagaa tagaaaaatgt aatctccaa 960
atccaagcat cgaaacccaa ggggtaggca attctatgtt ggtttggac atgaagttg 1020
gtgcattttg gtttatgctg gctcaactgc tattaaacct ctctggctt tagtctttc 1080
attctatttag acaagcacgt atcgaacact tgcttcgcac aaggctttt agttaacaat 1140
tttagcagcta ctgtttgtgt taaacacact tttcacccaa taggttctga ggcaaacgag 1200
agcaatgact atttaaagaa aggcttccc agcatcaattt acacatccca aaactaaaaa 1260
gatcaactct tccaactgag aaaagactcc tggcttggaa tggaaactta cagcagagag 1320
tcacagggca cgccaacaaac aacgacaaca acaaacattt ggaatattt tctcaactca 1380
cggtttaata atacatcttta ttattttct agtagagaaa ctacaaatca gcctcttcaa 1440
catttataa cagtttaata agccttgc agttacttgc ttctctcacc tgaggtattt 1500
ttttcctccc caccttgcctt ctgtttctcc cttccctcttcc tccctttgca agagggaaata 1560
ttaacatata ttgggtccaa cttcaataat gtaataattt atacattttt agcatttaac 1620
ttcctttcta gaaaaatgca caggctaagg catagacaaa acaaagagaa atgctgagaa 1680
atttgccact ggagacaagg aatctgaata aatatttgcc aaaagttctt tttatgtcat 1740
atagtgtcag gatttgaagg agctattttt ttttaatgtt gcaactagca actcatctt 1800
ggaagacaca gccaggagaa tgaagttagaa gtgaaagggtt tataatccca ttgttaagca 1860
tttatcccat atattttaaa ttcaagaaaa attgtgttta tctttagaat ttgttattca 1920
atactttatg tactatgtga ctcatgttcc tggataaaata aagcaccaaaa tatgtatctg 1980
taaccacaaat cacacatattt atattaaata tatatctata taacagccaa aaaaaaaaaaa 2040
aqaaqagaaq aaaaagaaag qaqagqqqqq qggqaqaaq qqqqqqqqagg t 2091

```
<210> 61  
<211> 2952  
<212> DNA  
<213> Homo sapiens
```

```
<400> 61
ctcgccccaa accaggacac cctcttaca gtaaatatcat gcgtggggat gtacttgtga 60
tgctgaagca gacggaaaat aattacttgg agtgccaaaa gggagaagac actggcagag 120
ttcacctgtc tcaaataqaa attatcactc cacttqatqa acatcttqaa aqcaqaccaa 180
```

```
<210> 62  
<211> 2313  
<212> DNA  
<213> Homo sapiens
```

```
<400> 62
cataatagtt aactctactt actgttttaa catacatttg atttaacaaa ttgttcagca 60
taacaccttct aattaagttt atcaagttgt actgtatttag ataatcagca gtgtatctgg 120
aqtatqttta aaqqaqaacaaq ttcqcaatac aaaaqttac atqqaqcttt acatcttaac 180
```

tttctttgtc aatttaaatg caatgtataa aaagtttatt ttgcttattgt gaaaaactaa 240
 atgtaaaagga aatcacctac tttcatgcag gtgtataatc ttgaaaagga aaaatgcctc 300
 catgttgaag ccagatttc tgttagtaaaa cttttaataa ttatTTaaa agaaaatatgt 360
 atataaatat ctctatattc tttggaatga tactaaagtc tctggcttag gaccatact 420
 tatataaaagg tataagagac catgacaatg tctgaaaatg gaatagataa tgatgcctt 480
 tatttaaagt ggcccacata atatacattg agtactccat ctctccaaat gtatttccat 540
 aatgtgtga aaacatgcta acatttgtat gatTTTata cttctgccga atagacttag 600
 aatcagatga attgtctgtg tgtctgcaa aagagttggg gacaacttgg gcaggccat 660
 gaagtgcata gggagtgtat gtcttctgaa tggTTTattt gttcttgtaa tctagctaa 720
 agaaaatgtt actgggaggg tgctgaggcc actcactgca ttaattttgt gtgttagag 780
 ttctgttgc aaaagaaaac taatgaataa attagttgt cattctagaa tttaaagttc 840
 taagattagt ataaagagta tatagattgt taatccccac cagcttagact ttgaacttaa 900
 gtcagactta aagatttgag aaattatttgc tgcatttac tagacgtat ttttagttct 960
 gtttgattat atttcctaca caaacttctt atttaacagg atagcctact aaatttaatg 1020
 tttcttattt cacttaactc atttgattaa actgtattct aaaacatttgc gggTTTcc 1080
 ccctattcag ttttaatctt ggaatatgca tttgtaaattt gtgatgtcat tgagactata 1140
 tttatatttgc acttggcaac attaacatgt cctaagactt agtgcagaga agctggcag 1200
 tacgttctt gacttaagga tggcataaaa taatcatttt tgaacctgtg taataaagct 1260
 taaaagcagg gaaaagaatt tcctttccc cctttttgt gttgtctata ggaattaact 1320
 tgggattgtt ttgtgggttt ttgtttgtt taaatgtaaa ttgagaatct tttataagaa 1380
 ataaaagcat tattgggtgc ctggTTTgtt aaacccaaaaa gtaataatg aatccctata 1440
 tttccattat agtattttt gtatTTTtat gttctgaaaa ttacccatgg aacaatatgc 1500
 ttaggattac aggaagcagt ccttacttac acttcttgc tggTTTtaggt gtacttgta 1560
 attcttatgt cctaattttt ttaattctg agttccttac acagcatttt agggaaagaa 1620
 tacaggcagg atgacacttt gtgttaaagt gttattttt tggatttttgc ggaatgaggg 1680
 aggtttttt ctgtttctt aaaagagtaa ccaagatacc tccagggtgt cattgggtc 1740
 cagctgcctc cttccacatt gaatgatatc ttgttaattt ataggcacat ttgtggtaat 1800
 ttatatgtct atagagtaag tataagagat aattcattttg taataggaat taactgaccc 1860
 ctggatg gggagagca tcaggctggg gtcaggtaag tggaaatggc cttctgagca 1920
 tgcttcttca ggctgactcc cagccctgac ttgaaaccat tagcgctaac ttgctctgtt 1980
 ttgaaaaaa cttccaaac ttgtcatga gaaacttagaa aaaggaaatgt atgccacgt 2040
 actggattac agaaatgagt taattgtctc tggatTTTTTaaatggatggaaatgg 2100
 ttattgaatt aatatttttgc tcttgaagca ttttcttagt atagaatgtt tttgtcttt 2160
 ttcctgggg tacccttca gcatatatct ttgtatccct taagatctt aacaaatcat 2220
 ctggatgttca taagtatagt tggcaaaaaa ttgttaatc ctggatgtttt attaaagaaa 2280
 aatttgagta aaaaaaaaaaaa aaaaaaaaaaaa aaa 2313

<210> 63
 <211> 1650
 <212> DNA
 <213> Homo sapiens

<400> 63
 ccgcggggct gggggagctc ggggagcctg cgggaccggg ggagccccaa ggccagggggg 60
 atcccgccgc ggcgccaggg aggccggagga gcaggcgggtg gaggcgaggc aggaagagga 120
 gcaggacttgc gatgggtgaga agggggccatc atcggaaaggc cctgaggagg ggggacggag 180
 aaggcttctc cttcaataac agccccggga agctgagggg aaaccagtac aagaagatgt 240
 tgaccaaaaga ggagctggag gaggagcaga gaactgaaga ataacgaagt tattcttagc 300
 gtccctcttca aggttttcc ttggatgttca ttttggatgtt gagagataaa acggaaaccc 360
 cagagaggag tctggcagg ctcccagggt gcatgctgcc tccataaaatc tgctgagctc 420
 tagaccctca atcaggactt gtccttgc tagcaggatc ctggaaacac ctggccct 480
 gccctgttca gagatgttca tggatgttca ttttggatgttca tggatgttca tggatgttca 540
 taagaggtt agctcagacc ctggactggg atttttcttca ccactcaaaatc ttgtatccca 600
 cacaccctgc acacctttaga taaaagaaac attttaaaag cagatgttca ttctactcca 660
 gtctcccttc tttggccctc actgaagcca aaccacagaa gactttgggg aatgagagac 720
 aaatgaggtt gagctcacct gtgctcacca gctccgtcag ggtggtcagc cgaccctttt 780
 ccctggaaac cccacttctc tctgtggctg gcttgggtgt cgggggtgag atgccatattt 840

gattacaggg cagcaaagaa ccagtaccag gaatttactt gaccattccc cttatTTTC 900
 atcttagagga atctcggtt cagccCTTc attgctaaga cacCTTca ctgaggTTCT 960
 taccagctca gccaaatCTC cactCTGCTA tagcagaAGC aataatGTTT gCTTaaaAA 1020
 gatttCTGA CCTATGCCTT ttCTTAGAAA gTTGATAGA TTAGTTAGAA CTTCAGATCA 1080
 tcagatcagt CTCAAATGGG ttCTTGAA TTTATATT GACAATATT ATACTATAAC 1140
 aaactcattt gcagTTCTTA ggTTGTGG taaaACATT TTTAAAGC AGTAAGTTA 1200
 tagaaaaATGT ttCATTTAA TgGAAGGCTG gggAAATGTCC AGCATCAACC CCTATGGCAT 1260
 gcattcccAG tggcCTTCTC atCTGGGCTT ggaACCTTG GTTCAGGGCT TAGGGGAGAA 1320
 caggccacat ggcaACAGCC acACAGTCAT TgcCTTCAAC ACAGAGCCAC GTGTCCCAC 1380
 acagcaatAG tcATGCCCTT gtCCAGGCTG ggATCTAATT GATACAATAG GTCGTTGACT 1440
 CCCTCTAGT agAGCTATCT aggttGtCT ggAAAGTTTc CGACCCtGGC ttATAGGCAC 1500
 cacacCTCAT gtACTCCTCA tggCTTGGAT CTCTGTATTc AGCCTTGTt CAGTCCAATA 1560
 aactttgagt agatgatCTC aaaaaaaaaa aaaaaaaaaaAg gggagaAGGG aagaaggaga 1620
 gggcacAAAG gcgGAATGGG ggtgagCTT 1650

<210> 64
 <211> 2851
 <212> DNA
 <213> Homo sapiens

<400> 64
 cgccccGCGC cggccccGCG ctgtcagCTC CCTCAGCGTC CGGCCGAGGC GCGGTGTATG 60
 ctgagccGCT gcccGAGCCG gctgCTCCAC gtcCTGGGCC ttagCTTCCt gctgcAGACC 120
 CGCCGGCCGA ttCTCCTCTG ctctCCACGT CTCATGAAGC CGCTGGTCGT GTTCGTCTC 180
 ggcggccccG gcccGGGCAA gggGACCCAG TGCGCCCGCA TCgtCGAGAA ATATGGCTAC 240
 acacacCTTt CTGcAGGAGA gctgCTTCGT gatGAAAGGA AGAACCCAGA TTCACAGTAT 300
 ggtGAACCTTA ttGAAAAGTA CATTAAAGAA ggAAAGATTG TACCAgTTGA gataaccATC 360
 agtttattAA agAGGGAAAT ggATCAgACA atGGCTGCA atGCTCAGAA GAATAAAATTc 420
 ttGATTGATG ggttCCAAg AAATCAAGAC AACCTTCAAG GATGGAACAA GACCAtGGAT 480
 gggAAGGCAg ATGATCTTt CGTTCTCTT TTGACTGTA ATAATGAGAT TTGTATTGAA 540
 CGATGTCTG AGAGGGAAA gAGTAGTGT AGGAGTGTG ACAACAGAGA GAGCTTGGAA 600
 aAGAGAAATTc AGACCTACCT tcAGTCAACA AAGCCAATTt TTGACTTATA TGAAGAAATG 660
 gggAAAGTCa AGAAAATAGA tgCTTCTAA tCTGTTGATG AAGTTTTGA TGAAGTTGTG 720
 cAGATTTtG ACAAGGAAGG CTAATTCTAA ACCTGAAAGC ATCCtGAAA TCAgTCTGA 780
 ATATTGCTTt GATAgCTGTt ATCATGACCC CTTTTAAGG CAATTCTAA CTTTcATAAC 840
 tacatCTCAA ttAGTGGCTG gaaAGTACAT ggtAAAACAA AGTAATTTT TTtATGTTCT 900
 ttttttGgt cacAGGAGTA gACAGTGAAT tCAGGTTAA CTCACCTTA GTTATGGTGC 960
 tcaccaaACG aAGGtATCA gCTATTtTTT TTtAAATTCA AAAAGAATAT CCCTTTATA 1020
 gtttGtGCT tCTGTGAGCA AAACtTTTA GTACGCGTAT ATATCCCTt AGTAATCACA 1080
 acatTTAGG ATTAGGGAT ACCCGCTTCC tCTTTTCTT gCAAGTTTA AATTCCAAc 1140
 CTTAAGTGAa tttGtGGACC AAATTCTAA ggaACTTTT GTGAGTcAG ttCTTGCACA 1200
 ATGTGTTGG TAACACAAACT CAAAATGGAT tCTTAgGAGC ATTtAGTGT ttATTAAATA 1260
 ACTGACCATT tGCTGTAGAA AGATGAGAAA ACTTAAGCT tGTTTACTA CAACtGTAC 1320
 AAAGTTGtAT gACAGGGCAT ATTCTTGTCT tCCAAGATTt gggTTGGGG CACTAGGGT 1380
 tcAGAGCCTG gCAGAAATTGT CAGCTTGTAGT CTGACATAAT CTAAGGGTAT gggGCAAGGA 1440
 tcACATCTAA tGCTTGTGTT CCTTATACTC TATTATATAG TGTtATTcAT GATTcAGCTG 1500
 ATCTTAACAA AATTcGTAGC AGTGGAACCT TgAAATGcAT GTGGCTAGAT ttATGCTAA 1560
 ATGATTCTCA GTTAgCATTt TAGTAACACT tCAAAGGTTT TTtTTGTTT GTTTCTAGA 1620
 CTTAATAAA GCTTAGGATT AATTAGAAGA AGCAATCTAG TtAAATTCC CATTGtATT 1680
 TTATTTCTT GAATACtTTT tTCATAGTT tttGTTAAA AAGATTAAA AATCATTGCA 1740
 CTTTGGTCAg AAAAATAATA AATATACTT ATAAATGTT GATTCCCTC CTTGCTATT 1800
 TTATTcAGTA GATTTTGTt TGGCATCATG ttGAAGCACC gAAAGATAAA TGATTTTAA 1860
 AAGGCTATAG AGTCCAAAGG AATATTCTT TACACCAATT CTCCTTAA AAATCTCTGA 1920
 ggaATTGTT tTCGcCTTAC ttttttCTT tCTGTCACAA TGCTAAGTGG TATCCGAGGT 1980
 tCTTAATATG AGATTAAAAA TCTTAAATG TTTCTTATT TCAGCACTTA CATCATTGG 2040
 TACACAGGGT CAAATAGGGC AAATAATTt GTCTTGTAT AATAGATTG ATATTTAAAG 2100
 TCACTGGAAA TAGGACAAGT TAATGGATGT TTTATATT TAATAGAAATC ATTtATTCT 2160

atgtgtttagt aaattcaactt aatgataaaat ttttcaacat acttgccatt agaaaacaaa 2220
 gtattgctaa gtactataac atattggcca ctaaaaattca tattgagatt atcttggttt 2280
 ctttggaaagag ataggaatga gttcttatct agtgttgcag gccagcaa atcagagggtgg 2340
 tttaatcaaa cagctctagt atgaagcaag agttaaagact aaggttcga gagcattcct 2400
 actcacataa gtgaagaaat ctgtcagata ggaatctaaa tatttatagt gagattgtga 2460
 aagcaacacctt aaagtttga agaagactga tgagactagg tgctttgctt cctttcatca 2520
 ggtatcttc tggcattt gagaacagaa accaagaaac atggtaatta ctaaattatg 2580
 aggctttgct ttttgttgc tttaaagttag aaaaacatgt tggcaacatt gagttttgga 2640
 gttgattttagt ataataatgac ttaacttagt ttgtcattcc atttgttaaa gatacagtc 2700
 ccaagaatgt ttgagttt ttgaaagacc ccaatttaag ccttgcttattttaaat 2760
 ttccatca gtgtatgttgg atgtatatca attatattgt aaataatctc aataaaat 2820
 gtgtgttgc cttgtctaaa aaaaaaaaaa t 2851

<210> 65
 <211> 1071
 <212> DNA
 <213> Homo sapiens

<400> 65
 attccaaaca tggcggtcc actagggggt atgtttctg ggcagccacc cggccccct 60
 caggccccgc cggcccttcc gggccaaagct tcgcttctt aggccagctcc aggcgcctcc 120
 agaccccttcca gcagtactttt ggtggacgag ttggagtcat cttdcgaggc ttgctttgca 180
 tctctggta gtcaggacta tgtcaatggc accgatcagg aagaatttcg aaccgggtt 240
 gatcagtgtt tccagaagtt tctggatatt gcaagacaga cagaatgttt tttcttacaa 300
 aaaagatgc agttatctgt ccagaaacca gagcaagtt tcaaagagga tgggtcagaa 360
 ctaaggaatg aattacagcg gaaagatgc cttagccaga agcacttgac aaagctgagg 420
 cattggcagc aggtgcttgg ggacatcaac gtgcagcaca aaaagccgc cgacatccct 480
 cagggcttcc tggcttaccc ggacggca tctgccaaca tccctgcacc tctgaagcca 540
 acgtgagcaa agggcagagg cagttggctt atgagtggc tgatgcgtga ggttggccac 600
 acattccccc ctgtggactt gacattttgg aagaacttcc tgccagataa tgagttcatt 660
 ttatgtttt gctccattt aaaaattttc cactatttt ataagctgtt aatttcttga 720
 gtactttata acatgtctgt agcttggata aaccaagtaa gtatttttt tttgtcttta 780
 gcgaaatgtt gactgtaat atgatgacac agattttttt ttatgtgttgc tttgcttgc 840
 ttaaattttt gcatgacttt tcattttttt atgtgtgtt cctgttagtt gatccgaagg 900
 aaaagatgtt agtagccctga gaatcaggag atgggagttt tagtcgttgc ccttatgata 960
 attaccccgc ggtgggtgtt agaaaatgtt gtaaatttgc tctgtttaa gactttgaac 1020
 tacctaaga agaggaatct aatacaatat ttgtatgtt tccagaaaaa a 1071

<210> 66
 <211> 2375
 <212> DNA
 <213> Homo sapiens

<400> 66
 agttgcctaa ttctgttaact ctttggata tcttgcttagt cttaatttgc gctgccactc 60
 atgatcttggta tcattccagggt gttaatcaac ctttcccttataaaaacttac cattacttgg 120
 caactttata caagaataacc tcagtactgg aaaatcacca ctggagatct gcagtgggt 180
 tattgagaga atcaggctt ttctcacatc tgccatttgc aagcaggca caaatggaga 240
 cacagatagg tgctctgtata cttagccacag acatcagtcg ccagaatggat tatctgtctt 300
 tggtttaggtc ccattttggat agaggtgatt tatgccttgc agacaccaga cacagacatt 360
 tggtttata gatggctttt gaaatgtgttgc atattttgtt cccatgttcgg acgtggaaat 420
 taagcaagca gtggagttgaa aaagtaacgg aggaatttctt ccatcaagga gatataaaaa 480
 aaaaatataca ttgggtgtt agtccactttt gcgatgcgtca cactgaatctt attgccaaca 540
 tccagatgg tttatgtact taccttagtgg agcctttatt tacagaatgg gccaggtttt 600
 ccaatacaag gctatcccg acaatgtttg gacacgtggg gctgaataaa gccagcttgg 660
 agggactgca gagagaacag tcgagcagtg aggacactga tgctgcattt gagttgaact 720

cacagtattt	acctcaggaa	aatcggttat	cataaccccc	agaaccagtg	ggacaaactg	780
cctccctggag	gttttagaa	atgtaaaatg	gggtcttgag	gtgagagaac	ttaactctt	840
actgccaagg	tttccaagtg	agtgatgcc	gccagcatta	tttatttcca	agatttcctc	900
tgttggatca	tttgaaccca	cttgttaatt	gcaagaccgg	aacatacagc	aatatgaatt	960
tggcttccat	gtgaaacctt	gaatatgc当地	agcccagcag	gagagaatcc	gaaaggagta	1020
acaaggaaag	ttttgatatg	tgccacgact	tttcaaagc	atctaatttt	caaaacgtga	1080
aacttgaatt	gttcagcaac	aatcttgg	atttaacca	gtctgtatgc当地	acaatgtgt	1140
tcttgcaccc	tccactaagt	tctctctgag	aaaatggaaa	tgtgaagtgc	ccagcctctg	1200
ctgcctctgg	caagacaatg	tttacaaaatc	aactctgaaa	atattggttc	taaattgcct	1260
tggagcatga	tttgtgaagga	accactcaaa	caaatttaaa	gatcaaactt	tagactgc当地	1320
ctcttcccc	ctgggttgcc	tttttcttct	ttggatgcca	ccaaaggcctc	ccatttgcta	1380
tagtttatt	tcatgcactg	gaaaactgagc	atttatcgta	gagtaccgc当地	aagcttccac	1440
tccagtgc当地	tttggcaatg	caatttttt	tagcaattag	tttttaattt	gggggtgggag	1500
gggaagaaca	ccaatgtcct	agctgttata	tgattctgca	gtgaagacat	tgcatgtt	1560
tttcaactact	gtacacttga	cctgcacatg	cgagaaaaag	gtggaatgtt	taaaacaccca	1620
taatcagctc	agggtatttgc当地	ccaaatctgaa	ataaaaagttg	gatgggagag	tgtgcctt	1680
agatcaaggg	tactaaagtc	cctttcgctg	cagtggatgt	gaggtatgtt	gtgtgtgaat	1740
gtacggatgt	gtgtttgcgt	gcatgtttgt	gcatgtgtg	ctgtgcatgt	tatgtttctc	1800
catgtgggca	aagatttgaa	atgtaaagctt	ttattttatta	ttttagaaatg	tgacataatg	1860
agcagccaca	ctcgggggag	gggaagggtt	gtaggtaa	tgtaacagat	tgctccagg	1920
gccttaaact	atgcacatag	ctaagtgacc	aaacttctt	ttttgatttgc当地	aaaaaagtgc	1980
attgtttct	tgtccctccc	tttgatgaaa	cggttaccc	tgacgggcct	tttgatgtga	2040
acagatgttt	tctaggacaa	actataagga	ctaattttaa	acttcaaaca	ttccactttt	2100
gtaatttgc当地	ttaaatttgtt	ttatgtatag	taagcacaac	tgtaatctag	tttaagaga	2160
aaccgggtgct	ttcttttagt	tcatttgtat	ttcccttgc当地	actgtaaaag	actgtttatt	2220
aattgtttac	agtttgc当地	aacagccatt	ttcttgggag	aaagcttgc当地	tgtaaagcc	2280
tttgc当地	gtcttgccat	actcatttt	atatgtgc当地	gttgctgtt	acttttgatg	2340
aataaaaaacc	tatctttca	taaaaaaaaaa	aaaaaa			2375

```
<210> 67  
<211> 1823  
<212> DNA  
<213> Homo sapiens
```

```

<400> 67
gtcaggataa ccttaaggat agatgaaggg ttgagagcct gtgcctcatt tctgagttct 60
cagctgtat gccgtggaaa tcctgtttac tttctgcatt tgctccgtca agactctgga 120
gccagtcttgc aggtcctaca tctccgaaag caagctcttc tagaagttga tagcttcca 180
atgatttagac gaattgattc tttctgtgac tcatcagttc atttcctgtta aaattcatgt 240
cttgcgtttg atttgtgaat aagaaccaga gcttgttagaa accactttaa tcataatccag 300
gagttgcaa gaaacaggtg cttaacacta attcacccctt tgaacaagaa aaatgggctg 360
tgaccggAAC tggggctca tcgctggggc tgcattttgtt gctgtcctgg ctgtgtttgg 420
aggtattcta atgcgcgtt gagacgtgt tatccagaag acaattaaaa agcaagttgt 480
cctcgaagaa ggtacaatttgc cttttaaaaa ttgggttaaa acaggcacag aagtttacag 540
acagtttgg atctttgtat tgcaaaatcc acaggaagtgc atgtgaaca gcagcaacat 600
tcaagtttaag caaaagaggc cttatacgta cagagttcgtt tttctagcca aggaaaatgt 660
aaccccaggac gctgaggaca acacagtctc tttccgtcag cccaatgggt ccatttcgt 720
accttcaacta tcagttggaa cagaggctga caacttcaca gtttcaatc tggctgtggc 780
agctgcatcc catatctatc aaaatcaatt tgttcaatgc atcccaattt cacttattaa 840
caagtcaaaaa tttcttatgt tccaaatcgaa aactttgaga gaactgttat ggggctatag 900
ggatccattt ttgagtttgg ttccgtaccc tgtttactacc acagttggc tggtttatcc 960
ttacaacaat actgcagatg gagtttataa agtttcaat ggaaaagata acataagtaa 1020
agttgccata atcgacacat ataaaggtaa aaggaatctg tcctattggg aaagtcactg 1080
cgacatgatt aatggtacag atgcagcctc atttccaccc ttgttggaa aaagccaggt 1140
attgcagttc ttttcttctg atatttgcag gtcaatctat gctgttatttgc aatccgcacgt 1200
taatctgaaa ggaatccctg tgcataatggatt tgttcttcca tccaaaggcct ttgcctctcc 1260
agttqaaaaac ccagacaact attgtttctg cacagaaaaa attatctcaaaaattgtac 1320

```

atcatatatggt	gtgcttagaca	tcagcaaatg	caaagaaggg	agacctgtgt	acatttca	1380
tcctcatttt	ctgtatgcaa	gtcctgtatgt	ttcagaacct	attgatggat	taaacccaa	1440
tgaagaagaa	cataggacat	acttgatata	tgaacctata	actggattca	ctttacaatt	1500
tgcaaaaacgg	ctgcaggtca	acctattggt	caagccatca	aaaaaaattc	agtgagtc	1560
ttgaaaatgg	gtatTTTgtat	atgatctgtat	gtatcgtagt	atctcttgt	aaggacatga	1620
gtaaatctat	gtaagtaagt	gggaaaataaca	tctggatatca	acttatctt	agcttaatgt	1680
caccaatcag	tattaaatgc	ttatgactaa	tttcacagat	tttggaatgg	ttttatggtt	1740
ttatTTTgagc	atttgatagc	atctctgatt	ttgttagctg	cgcaaataatt	tctatgacaa	1800
taattaattt	tttggaaattca	tat				1823

```
<210> 68  
<211> 2403  
<212> DNA  
<213> Homo sapiens
```

<400> 68
tggaaactcct gtttccgaa gatcagcaag gcgggtctct ggaacagctg ctgcagaggt 60
tctcataca gtttgtgagc aaaggcgact tgcagacat gctgcgagac ctgcagctgc 120
agatcccgcg gaacgtcacc caccacgtt ccgtgaccaa gcaagctcca acctcagaag 180
ccgtgggtc tgctgtgagc gaggcggggg cgtctgaaat aacagaggcg caagcacgt 240
ccatcgaa cagcgccttg aagctgtatt cccaaagataa gaccggatg gtggactttg 300
ctctggaatc tgggtgggtgc agcatcttga gtactcgctg ttctgaaact tacgaaacca 360
aaacggcgct gatgagtctg tttgggatcc cgctgtgta ctttcgcag tccccgcgc 420
tggtcatcca gcctgacatt taccggta actgctggc atttaaggc tcccagggt 480
acctgggtg gaggctctcc atgatgatcc acccagccgc cttcaactctg gagcacatcc 540
ctaagacgct gtcgccaaca ggcaacatca gcagcgcgg caaggacttc gccgtctatg 600
gattaaaaaa tgtagttaga gaagaaggc agttctgg acagttcactg tatgatcagg 660
atggggagtc gtcgcagatg ttccaggccc tgaaaagacc cgacgcacaca gctttccaaa 720
tagtggaaact tcggatttt tctaactggg gccatccctga gtataccctgt ctgtatcggt 780
tcagagttca tggcgaacct gtcaagtgaa gacactactc attattttt tacattttg 840
tatatactgg gacagcgtga aacactggaa tccttcattgg acgagggcat atacaatgt 900
gggacagtgc cacactccct caataaacgt ggctgctggc cagaggacgt gagcgtgtga 960
cggggccctt ggcgccaccc gttgggtgct cactgcctct gcaggtgcag aggggtcagc 1020
agcaggagaa gctgtttgaa cacgtggctc tcagacactc cttgtttta acggaaagct 1080
ctttgcattt gcatttcctt aacaaaggag caaagcagag gaagctgaga gtctggcgtg 1140
ttcttgacgc tttggctttc agccttgcac tggctcttct aaaggacttt tggaggccag 1200
ataatttcat ctgttaaattt caacacacat ttctttcagg gaaaaacaat gtcaccaaat 1260
tttcagagtt ctaaactcct ttccattcaag ccgaaattt cttttttca gcaccagtag 1320
gtactaagtc tccagatggg gaaataacta aaatgtttt ttctgctttt ttcgcctta 1380
cttctgagga agtttccag tcaggactcg ctgtaccaat atccatggag gaatatggga 1440
gcgtttcgct ctccctgttag gctgaagtca gtctgactt aaggggcctg gtttgatct 1500
aagcaaacac ccagatgggg ttctctggc tcagcaaggc ttttcctgtt gggagtcaca 1560
gtaaaacagaa accaaaaat ctcatcttgg gtgttttcag ggcttgtttt gagtttgc 1620
gaataggggg cgcacacgc cctgagccctc cctctcaactg gtggtgataa gaggagccgt 1680
ctgggtgtc agggtcacga acccgttaca tttcaggacg atccttttc cttcagcagc 1740
atttcttact ggctgtggc ggaatctgcc ttttatcaca gctgtcacca ttctcacgtg 1800
attcttgc gactctttt ggttataattt actatttaat atttagacta ttttactgag 1860
cagactttat aaatgagata tctacaaggc acttaaaatg ttacagatgt tttacctta 1920
gaattatttta agttgtgtt ggttaagaca gttttcaactg taccgtaaat gttgtgttt 1980
cagaaaaaaga caaaacgatg gtgctgactg gttttctgtt tattgcacaa cagtccctaa 2040
atacactgat gtatgaaact attcatacat caagcagcat tttttcact ctccttagaa 2100
ttggaaactat gcagtttaagg cagataaaat gtacagatgt ttcatatatatt acaggttaca 2160
tatataaaatc aaaatttccct atataaaact gatttggat ttgggggtgaa aatattttga 2220
atattaattt atttttaaag atgcaagata ggactttgtg caatgtattt ttgttaatgc 2280
ttttcaaaat atctgtctt ggttagtgcct ctgctgc caccaaattt gatagatgt 2340
attaagaggt ttaaataaag agtttaatt tttaaaaggg aaaaaaaaaa aaaaaaaaaa 2400
aaa 2403

<210> 69
 <211> 1246
 <212> DNA
 <213> Homo sapiens

<400> 69
 actaagattt tatgttggag atacttcttt aaataaccta cagcttgggt ctatggcttg 60
 tgacccccag attcatggag gggctttagc aatcagctt gtacatcatc attttctga 120
 atgaccaatc ccactaaaca tctttgaagt cggccttagag aggtccttca gatgattcag 180
 aaatacgctgg ctgtcttag tccagatttc tcataactg gcaatacaa gaaaaatatg 240
 gtacaggagt tagtttagaaa ggtcttattt attttacttc tactttcac tacagttaca 300
 ggtagaatac tggtaggaagt cagtgcagg tgcgtcttgc attgatagat attgattgtt 360
 tttcagtc tgggtcagt tttgtgttt ctgtttctt gcctaaatca aagactattt 420
 caagtcaaca acactgaaaaa ctgctttcg cctccactct tacagctgtg cctaataata 480
 attaattaat aaacgcacag ccctatgtga acagacagga atttcttgc caatgtggag 540
 caaatggaaat ggctcccttc cgcaagtctt tttaatcctc atatctggag tacaaggta 600
 gacctctggc ttaccacata cactatgcta aagtcatcag ccactgctac tacatctgc 660
 cagaagggtt ccctcgccaa caaacagttg aaatttaagg gaagaagcaa aagctaaact 720
 gtcttgcacc ctaagataga tagaaagctt tttatttgc ttcagtgttc aaggcatgac 780
 tagtatttctt aattagccta ataaattccc acactttctg aagtgaacac taatggtatt 840
 gtcctactaa aactgtcatt gtttctttt tttaactgg tcagtcattc acaataagct 900
 atgagggtaa ataaatatgt gttataacaa gtaaaccgta gttgcaagaa tataccatga 960
 agattaaagt aggctgggtt tcatttccat cttcccacac atctcattga atttgcattgtt 1020
 tgacttaatt ggcaccataa ctttgtatga tattatacat taacccttat ttatgtaaag 1080
 taaaatgcct tatataattaa agagtaagtg caataatatg aaatagcctg tacattttaa 1140
 aaatgttgc accaagttat ataaatccac atctctgtaa acaacctttt ttaagtaatt 1200
 taaaaaaaaa taaacactct gcttactact tgaaaaaaaaaaaaaa aaaaaaa 1246

<210> 70

<400> 70
 000

<210> 71
 <211> 1950
 <212> DNA
 <213> Homo sapiens

<400> 71
 ggggtcgccgg gccctgattt cgccgtttcc cccgcgcagag ctcgcggcgccccgacgggg 60
 ccccgagca gcgccccccg gccggcccg cctcagcctg gagctccagc taccacatg 120
 caccttacctt gggttccggcc cggtccctga gtccccacaa aatggctgat ggaggaagcc 180
 cttccttagg tcggagggac tttgtctacc cttcctcaac ccgcgcacccct agtgcctcta 240
 acggagggggg cagcccgccaggaggaaag agaagaagag aaaggccgccc aggctcaagt 300
 ttgacttcca ggcgcagtcc cccaggagc tgactctgca gaagggtgac attgtctaca 360
 tccacaagga ggtggacaag aactggctgg agggagagca ccacggccgc ctgggcattct 420
 tccctgctaa ttatgtggag gtgctggcccg cagatggat ccctaagcccc atcaagcccc 480
 cgacctacca ggtgctggag tatggagagg ctgtggccca gtacacccctt aagggggacc 540
 tggaggtgga gctgtcttc cgcaaggag agcacatctg cctgatccgc aaggtgaacg 600
 agaactggta cgagggacgc atcacggca cggggcgccca aggcataattc cctgccagct 660
 acgtgcaggt gtctcgtaa ccccgctcc ggctctgtga cgacggcccc cagctcccc 720
 cgtctccccc cctgaccgcgt gccgcggct cagcccgta ccccaacgcgc ccctcagcccc 780
 tgcgcagcccc agctgacccc accgacttgg ggggacagac ctccccccgt cgcaactggct 840
 tctccttccc caccaggag cctagacccc agaccccgaaa tcttggcacc cctggccag 900

ctctgtccca	ctctcgaggt	cccagccatc	ccctggacct	ggggacacctc	tctcctaaca	960
cctctcagat	acactggacc	ccgtaccggg	cgatgtacca	gtacaggccc	cagaacgaag	1020
acgagctgga	gctgcgcgag	ggggacaggg	tgatgtcat	gcagcagtgt	gacgatggct	1080
ggtttgtggg	tgtctcccg	aggaccaga	aattcgaaac	gttccctgga	aattacgttg	1140
ccccgggtgt	agtggctcc	atggcaactt	ggagccagcc	aggatgggg	ggggagcggt	1200
ggcactcg	ggagggagag	gaccccccgc	cacatcctcc	ttccccagga	cctgagctcc	1260
cagcatctgc	agacgacccc	cgcagcatt	ccctcgacc	cccctcgaag	ccccctggac	1320
tgattccac	ccacgactca	caggcattcc	tcccacagcc	ctttcatttc	ctccccaccc	1380
cactccccaa	atacagaggt	ctgcttcaa	ggggagacca	tttccaggcc	ttattgagac	1440
cagccccaa	gtccccccacc	cccatcctgc	tccagcg	cctctaacag	ggaccagctc	1500
tccgcttgc	ccccacgggg	ttcctctaac	cagaaccagc	ttccttagct	cgtagagacc	1560
aaaggccg	cccgctgtct	ggggttcctc	ccagcacccc	agctgctgg	ctgccctt	1620
tgccctctgg	cctccagctg	ggtgtgggg	ggcggacaag	gcgggggaca	gacgcagcac	1680
cttcttagcg	atctaggcc	ggcaagagct	ctggcccaa	ggcctcctct	tcccagggc	1740
tgccaagtcc	tggccctgg	cctggcatat	caccccgac	tgtggggcca	ggcaccacta	1800
gcctggctca	aatattcccc	agggagactg	ctgtgtgtct	cccgctg	tgctggctct	1860
cccccagccc	cacatcccc	ctggaaagaga	atgtaaaata	aacctggaca	caaggaaag	1920
aaaaaaatag	attgggggg	aggaaaaaaa				1950

```
<210> 72  
<211> 814  
<212> DNA  
<213> Homo sapiens
```

```

<400> 72
cggggcgag cccggcctgc gcggtagtgg gacccgaccc tgtctccagt gggcgtcttg 60
ggccccggct ctattctggg ctgcgggcct gggaaagggtcg cgccgggtgc caaatgagct 120
gtcctaactc tgcggggctg cagcttcctg catgatgctg gggagcttgg cgccctgaccc 180
aggatctaga aggcaactctg ggcaggccgc gctccgcccga aaggtacc caaccctctg 240
ggatagatgc aggaagcgat ggtaagacc cattttcacc caacttctcg ccgcagtctg 300
gcttaccaca cgctcctccc cattcccagt gagccgctt ttgcagcacc aggcgaacac 360
ttacaccagt gcttgtaaa ggaatcttat tgtccacccc gtgtcttggc aaaagaacag 420
tgatcacaca gattcctact tgggctctt ccttaatct tcggaggctg agtttgcaca 480
actcagggtt aaccaccaag gactctgaga gctggcaggt ctgagtaacc ctggtaacaa 540
ttctcttcac cttatcaaaa cctgagctaa aaccaatgca tcagctgtat atgacacgcag 600
agagtggcag ggctgaggac ccaaagtcat ttcccaggt ggcggagaat aaactgccag 660
ggagaagaat gagaagacag gagacaaact gtttggaaag ctaaatcttc cctcttaatg 720
aataaagggtt tttgccttgc cttaaaaaat aacaggaaga agcagggaaa aataaaataac 780
ttatggtaat ctggattgt attttgtat atta 814

```

<210> 73

<400> 73
000

<210> 74
<211> 747
<212> DNA
<213> Homo sapiens

```
<400> 74
tggcacgccc cggcccgta cccggccccgc tgtcgccgcc gccccgaggcc ccggccgtgg 60
agagcggcga gccgctgggg cccggggcccg atctgtgggc cgacgtggac ctcaccgagt 120
tcgaccagta cctcaactgc agccggactc ggccccqacgc ccccccgggctc ccgttaccacg 180
tqqqactqqc caaaactqqqc ccqqcqccca tqtctctqqcc aqaqqqaaqc aqccctgatct 240
```

ccgcgcgtgct ggacgcgcgc agcgccgtct attacagcgc gtgcacatctcc ggcttagggccg 300
 cccggcgcgc cccgggtccct gcagcgcttc ctccccgcgc ccccgccgacc gatccgaccg 360
 cgtcgcgtgcc gctctgtct ctcatacgcg tttatgtttt gttccatgtc acagccccct 420
 aggagccagt gatgctcgcc cttgcgcgcg ttccacctcc caggccaccc ttccctggct 480
 tctggccac ctgcgcctcg ggggcccctg cgagggtgcc tggagttccc acgtgtcccg 540
 gggctttcc aggaagcccg agcccaggac ctgttggcag agttgccagg gttacattt 600
 tgaagcacct gctccctttc ttgcagtgtt tttctacaa ccagattgtt ttaatatttt 660
 ttactttgcc cttttaaaaa atatacccaa tacaatataat ttaatttttta attaaactct 720
 taaaactttc ttccaagaga aaggagc 747

<210> 75

<400> 75
000

<210> 76

<211> 2419

<212> DNA

<213> Homo sapiens

<400> 76

ctttgccac ccagtaccgg atagtggacc tgctgggttga agccgcgggg cccggccagg 60
 gatcgctgca tggaaatttct ggtggagccct gtcggccagg aagggttccg ggtacctcag 120
 gccgagtggg gcagggcagt tctgctttat tcagccctcg catgagcggc tgctaaggcc 180
 gggtgtctc ctggcctcg gctgaggccct ttcccccgt gtctgcccct ggcctgcgt 240
 ggacctgcta agtggccac agtggcagcg aggtcccggt cccggggctg gggtgggaga 300
 ccccggtg agtgcgtgtt gtttctgtt gggggcgatg gaaacaggaa accaaggcagt 360
 gggatcgcac cgttggcac tgcgaggcga gtggccggct ttctgtttct gcctgtccc 420
 tccccacggc acctgggtcc caggtaaaaa taaaaggagg ggagaaggatg agaacagaac 480
 attccataaa ggatatttcc taataggctg caagatgctg atgcccggaa tgatgatttt 540
 cttectgca gatgaaacta tttagaaaggg tcttagattt tggcaggtag gctttggagc 600
 aggccgcac acatttctga gcatgaggac gagctacagc agtcctggg gtggggctgc 660
 ctgcgggatg gcgggagagg atgccttggc gaaccgtccct cccagtgtgg aaggcccttt 720
 tccctgagga gtggccatttcc tggccagcc ggcgcgtggc tcgtgcctcc acgtgggcca 780
 gccccagctg ctccgtgtt cctggcggtt gcaattttact gtgcgtctga gtgtgaggtc 840
 atctccggag cgttttcagc agcccccggc tctgcggcgt ctcttccggg ctgtgggcat 900
 gcagggaaatg ggctgtgagg cagtctgcgc tttggccctg cctctgccc gcgagaggcc 960
 gtgggctctg gacaagccgc ctttcaggct ggggttagcag gtcagtccag gcaggaagca 1020
 gcacctgccc cccgcgcac cccagccca gctgtgatgc aggagctgca ggaccgcgg 1080
 gggctttcc agctactctg ttcccttcacg tctcccttc tcagcctcgat ccaagcaccg 1140
 ggaagacactc cagctgacc ctttgagcag cagtcagcac aggtgcgtgg gggcgtgagg 1200
 gaggcagggc ctttaccaca ggcgccttcc tctgtccttc ctgctctttc ttctctgccc 1260
 aggccgctgc agctgcacag cctctgctac acctgggtt cctgggaggc ttctgggtgt 1320
 ggtgtctgga cccacggcc ttgggtcatac ctgtggctgg tctgggggtgg ggtctgttgt 1380
 ggtccttcca cggtgtcagt ggcctgaatg ccctcgctt tggggggggg gtctctcacc 1440
 cccaggccac ataggccac tggtaggggt tccctctatg tcggccagtg ctgagggtcg 1500
 ggatgctctg tgaccccac tggagccac acctaagggc tggcatccac atcatttcac 1560
 cctgcagtgaa gggaaaggac caccagggtt cagcacagcc acacccgttc ccacgtcaga 1620
 ggagggcaag gctgggtact cagcaggccac tctgagccgg ggctccttcc aggagctgaa 1680
 atccacctgt ctccatcttc ttgcctgccc tgggtactca tgccaaaggc agactggat 1740
 taggggttct gtgtcttgc ctaatttaga acattctccc atgtctttt tttgggtccca 1800
 gaaggagaag ttaggttgc aaggatatgg ggcaggaggc tccctctgtt gaccccccgc 1860
 agcctggagc cagcccgccgg actgtctgg gtggagggca ggtgaacaca agtgcgtgcc 1920
 ggggactgtc ctgggtggac ggcagggtt gcaaggccgc tgcccatgtt agccactcac 1980
 tcgactttt ttcaagctgtt accatttcgtt ggagctttt gggctttct gtctcatgg 2040
 gaaccagggg gaaccaggaa gggccttgc ggcctctgtt gtcctctgtt gttgggggttg 2100

tggggggcgc agatccacgc cttgctgccc ttctttcatg aagtctgttt ttttaagtgc 2160
 ggttcccccg aatattttat gcagaggagg gaaaatttat agtggcaatt attttctcac 2220
 agtctggta gcaggcaatt aatttaggat aaggggggcct agtagagcgt ggcgtgtggc 2280
 agaatcgcac cgccccggct ccccagccca ccgcctatgca gggctcgctg gcgaaaac 2340
 taatatgccg gcgtttaagc ctgtccccct ctgctgggtg taactgcgct gaaataaatg 2400
 atctgacaat gtaaaaaaa 2419

<210> 77
 <211> 366
 <212> PRT
 <213> Homo sapiens

<400> 77
 Ile Ala Ser Ala Arg Leu Glu Glu Val Thr Gly Lys Leu Gln Val Ala
 1 5 10 15
 Arg Asn Leu Ile Met Arg Gly Thr Glu Met Cys Pro Lys Ser Glu Asp
 20 25 30
 Val Trp Leu Glu Ala Ala Arg Leu Gln Pro Gly Asp Thr Ala Lys Ala
 35 40 45
 Val Val Ala Gln Ala Val Arg His Leu Pro Gln Ser Val Arg Ile Tyr
 50 55 60
 Ile Arg Ala Ala Glu Leu Glu Thr Asp Ile Arg Ala Lys Lys Arg Val
 65 70 75 80
 Leu Arg Lys Ala Leu Glu His Val Pro Asn Ser Val Arg Leu Trp Lys
 85 90 95
 Ala Ala Val Glu Leu Glu Glu Pro Glu Asp Ala Arg Ile Met Leu Ser
 100 105 110
 Arg Ala Val Glu Cys Cys Pro Thr Ser Val Glu Leu Trp Leu Ala Leu
 115 120 125
 Ala Arg Leu Glu Thr Tyr Glu Asn Ala Arg Lys Val Leu Asn Lys Ala
 130 135 140
 Arg Glu Asn Ile Pro Thr Asp Arg His Ile Trp Ile Thr Ala Ala Lys
 145 150 155 160
 Leu Glu Glu Ala Asn Gly Asn Thr Gln Met Val Glu Lys Ile Ile Asp
 165 170 175
 Arg Ala Ile Thr Ser Leu Arg Ala Asn Gly Val Glu Ile Asn Arg Glu
 180 185 190
 Gln Trp Ile Gln Asp Ala Glu Glu Cys Asp Arg Ala Gly Ser Val Ala
 195 200 205
 Thr Cys Gln Ala Val Met Arg Ala Val Ile Gly Ile Gly Ile Glu Glu
 210 215 220
 Glu Asp Arg Lys His Thr Trp Met Glu Asp Ala Asp Ser Cys Val Ala
 225 230 235 240

His Asn Ala Leu Glu Cys Ala Arg Ala Ile Tyr Ala Tyr Ala Leu Gln			
245	250	255	
Val Phe Pro Ser Lys Lys Ser Val Trp Leu Arg Ala Ala Tyr Phe Glu			
260	265	270	
Lys Asn His Gly Thr Arg Glu Ser Leu Glu Ala Leu Leu Gln Arg Ala			
275	280	285	
Val Ala His Cys Pro Lys Ala Glu Val Leu Trp Leu Met Gly Ala Lys			
290	295	300	
Ser Lys Trp Leu Ala Gly Asp Val Pro Ala Ala Arg Ser Ile Leu Ala			
305	310	315	320
Leu Ala Phe Gln Ala Asn Pro Asn Ser Glu Glu Ile Trp Leu Ala Ala			
325	330	335	
Val Lys Leu Glu Ser Glu Asn Asp Glu Tyr Glu Arg Ala Arg Arg Leu			
340	345	350	
Leu Ala Lys Ala Arg Thr Val Pro Pro Pro Gly Cys Ser			
355	360	365	

<210> 78

<211> 62

<212> PRT

<213> Homo sapiens

<400> 78

Met Arg Thr Ser Lys Phe Ile Leu Phe Ile Phe Ser Asp Val Gly Asn			
1	5	10	15

Gly Leu Gly Phe Lys Arg Glu Leu Glu Glu Gly Met Phe Asp Ser His			
20	25	30	

Arg Arg Phe Leu Gln Gln Met Pro Leu Leu Ala Ile Ser His Phe Phe			
35	40	45	

Pro Gln Ile Leu Pro Thr Glu Ala Gln Ala Phe Thr Val Ser			
50	55	60	

<210> 79

<211> 39

<212> PRT

<213> Homo sapiens

<400> 79

Arg Pro Arg Leu Tyr Lys Ala Lys Arg Lys Thr Thr Asn Gly Val Val			
1	5	10	15

Leu Cys Cys Ile Ala Leu His Lys Ile Arg Asn Arg Cys Leu Thr Ile			
20	25	30	

Glu Phe Val Phe Cys Glu Phe

35

<210> 80
<211> 25
<212> PRT
<213> Homo sapiens

<400> 80
Lys Thr Pro Ser Leu Gln Ser Lys Thr Lys Asn Asn Lys Trp Ser Cys
1 5 10 15

Ala Met Leu Tyr Cys Phe Ala Gln Asn
20 25

<210> 81
<211> 29
<212> PRT
<213> Homo sapiens

<400> 81
Asp Pro Val Ser Thr Lys Gln Asn Glu Lys Gln Gln Met Glu Leu Cys
1 5 10 15

Tyr Val Val Leu Leu Cys Thr Lys Leu Gly Thr Gly Val
20 25

<210> 82
<211> 32
<212> PRT
<213> Homo sapiens

<400> 82
Pro Lys Arg Arg Val Ser Asp Thr Ser Ser Gly Pro Thr Pro Cys Met
1 5 10 15

Glu Pro Ile Leu Gly Arg Thr His Tyr Ser Gln Leu Arg Lys Lys Ser
20 25 30

<210> 83
<211> 54
<212> PRT
<213> Homo sapiens

<400> 83
Leu Gly Gln Asp Ser His Gln His Ile Thr His Val Leu Leu Gly Arg
1 5 10 15

Glu Lys Gln Tyr Ile Pro Val Glu Arg Ser Gln Ser Ile Ser Gly Arg
20 25 30

Asn Val Val Lys Gly Gly Arg Cys Tyr Ala Ala Ala Pro Ser Val Pro
35 40 45

Glu Val Ala Val Ile Pro

50

<210> 84
<211> 54
<212> PRT
<213> Homo sapiens

<400> 84
Gly Asp Gln Ala His Arg Glu Gln Gly Lys Glu Gln Ala Met Phe Asp
1 5 10 15

Lys Lys Val Gln Leu Gln Arg Met Val Asp Gln Arg Ser Val Ile Ser
20 25 30

Asp Glu Lys Lys Val Ala Leu Leu Tyr Leu Asp Asn Glu Glu Glu
35 40 45

Asn Asp Gly His Trp Phe
50

<210> 85
<211> 116
<212> PRT
<213> Homo sapiens

<400> 85
Gly Thr Arg His Pro Leu Ser Leu Ser His Lys Pro Ala Lys Lys Ile
1 5 10 15

Asp Val Ala Arg Val Thr Phe Asp Leu Tyr Lys Leu Asn Pro Gln Asp
20 25 30

Phe Ile Gly Cys Leu Asn Val Lys Ala Thr Phe Tyr Asp Thr Tyr Ser
35 40 45

Leu Ser Tyr Asp Leu His Cys Cys Gly Ala Lys Arg Ile Met Lys Glu
50 55 60

Ala Phe Arg Trp Ala Leu Phe Ser Met Gln Ala Thr Gly His Val Leu
65 70 75 80

Leu Gly Thr Ser Cys Tyr Leu Gln Gln Leu Leu Asp Ala Thr Glu Glu
85 90 95

Gly Gln Pro Pro Lys Gly Lys Ala Ser Ser Leu Ile Pro Thr Cys Leu
100 105 110

Lys Ile Leu Gln
115

<210> 86

<400> 86
000

<210> 87
 <211> 71
 <212> PRT
 <213> Homo sapiens

<400> 87
 Asn Arg Gly Gly Val Gly Phe Gly Val Gly Trp Ser Leu Pro Phe Glu
 1 5 10 15

Leu Leu Ile Phe Met Ser Arg Leu Gln Asn Ser Arg Val Gly Leu Thr
 20 25 30

Met Trp Gly Gly Gly Ser Ser Leu Phe Phe Tyr Phe Gln Val His
 35 40 45

Ser Trp Gly Trp Trp Gly Gly Arg Arg Ile Pro Leu Pro Lys Pro Leu
 50 55 60

Val Cys Ala Glu Leu Ala Leu
 65 70

<210> 88
 <211> 55
 <212> PRT
 <213> Homo sapiens

<400> 88
 Tyr Arg His Glu Pro Leu Tyr Pro Ala Phe Pro Tyr Lys Ile Gln Arg
 1 5 10 15

Glu Asn Phe Tyr Thr Phe Ile Pro Gln Ile Lys Gln Val Leu Ser Ser
 20 25 30

Tyr Arg Ala Leu Ala Arg Ser Ile Cys Lys Arg Asn Leu Lys Phe Ser
 35 40 45

Cys Arg Ile Lys Leu Asp Lys
 50 55

<210> 89
 <211> 411
 <212> PRT
 <213> Homo sapiens

<400> 89
 Leu Ala Thr His Ser Pro Gln Lys Ser His Gln Cys Ala His Cys Glu
 1 5 10 15

Lys Thr Phe Asn Arg Lys Asp His Leu Lys Asn His Leu Gln Thr His
 20 25 30

Asp Pro Asn Lys Met Ala Phe Gly Cys Glu Glu Cys Gly Lys Lys Tyr
 35 40 45

Asn Thr Met Leu Gly Tyr Lys Arg His Leu Ala Leu His Ala Ala Ser

50	55	60
Ser Gly Asp Leu Thr Cys Gly Val Cys Ala Leu Glu Leu Gly Ser Thr		
65	70	75
Glu Val Leu Leu Asp His Leu Lys Ala His Ala Glu Glu Lys Pro Pro		
85	90	95
Ser Gly Thr Lys Glu Lys Lys His Gln Cys Asp His Cys Glu Arg Cys		
100	105	110
Phe Tyr Thr Arg Lys Asp Val Arg Arg His Leu Val Val His Thr Gly		
115	120	125
Cys Lys Asp Phe Leu Cys Gln Phe Cys Ala Gln Arg Phe Gly Arg Lys		
130	135	140
Asp His Leu Thr Arg His Thr Lys Lys Thr His Ser Gln Glu Leu Met		
145	150	155
Lys Glu Ser Leu Gln Thr Gly Asp Leu Leu Ser Thr Phe His Thr Ile		
165	170	175
Ser Pro Ser Phe Gln Leu Lys Ala Ala Ala Leu Pro Pro Phe Pro Leu		
180	185	190
Gly Ala Ser Ala Gln Asn Gly Leu Ala Ser Ser Leu Pro Ala Glu Val		
195	200	205
His Ser Leu Thr Leu Ser Pro Pro Glu Gln Ala Ala Gln Pro Met Gln		
210	215	220
Pro Leu Pro Glu Ser Leu Ala Ser Leu His Pro Ser Val Ser Pro Gly		
225	230	235
Ser Pro Pro Pro Pro Leu Pro Asn His Lys Tyr Asn Thr Thr Ser Thr		
245	250	255
Ser Tyr Ser Pro Leu Ala Ser Leu Pro Leu Lys Ala Asp Thr Lys Gly		
260	265	270
Phe Cys Asn Ile Ser Leu Phe Glu Asp Leu Pro Leu Gln Glu Pro Gln		
275	280	285
Ser Pro Gln Lys Leu Asn Pro Gly Phe Asp Leu Ala Lys Gly Asn Ala		
290	295	300
Gly Lys Val Asn Leu Pro Lys Glu Leu Pro Ala Asp Ala Val Asn Leu		
305	310	315
Thr Ile Pro Ala Ser Leu Asp Leu Ser Pro Leu Leu Gly Phe Trp Gln		
325	330	335
Leu Pro Pro Pro Ala Thr Gln Asn Thr Phe Gly Asn Ser Thr Leu Ala		
340	345	350
Leu Gly Pro Gly Glu Ser Leu Pro His Arg Leu Ser Cys Leu Gly Gln		
355	360	365

Gln Gln Gln Glu Pro Pro Leu Ala Met Gly Thr Val Ser Leu Gly Gln
 370 375 380
 Leu Pro Leu Pro Pro Ile Pro His Val Phe Ser Ala Gly Thr Gly Ser
 385 390 395 400
 Ala Ile Leu Pro His Phe His His Ala Phe Arg
 405 410

<210> 90
 <211> 314
 <212> PRT
 <213> Homo sapiens

<400> 90
 Lys Arg Cys Gln Arg Lys Gln Pro Leu Arg Gly Ile Gly Ile Leu Lys
 1 5 10 15

Gln Ala Ile Asp Lys Met Gln Met Asn Thr Asn Gln Leu Thr Ser Ile
 20 25 30

His Ala Asp Leu Cys Gln Leu Cys Leu Leu Ala Lys Cys Phe Lys Pro
 35 40 45

Ala Leu Pro Tyr Leu Asp Val Asp Met Met Asp Ile Cys Lys Glu Asn
 50 55 60

Gly Ala Tyr Asp Ala Lys His Phe Leu Cys Tyr Tyr Tyr Tyr Gly Gly
 65 70 75 80

Met Ile Tyr Thr Gly Leu Lys Asn Phe Glu Arg Ala Leu Tyr Phe Tyr
 85 90 95

Glu Gln Ala Ile Thr Thr Pro Ala Met Ala Val Ser His Ile Met Leu
 100 105 110

Glu Ser Tyr Lys Lys Tyr Ile Leu Val Ser Leu Ile Leu Leu Gly Lys
 115 120 125

Val Gln Gln Leu Pro Lys Tyr Thr Ser Gln Ile Val Gly Arg Phe Ile
 130 135 140

Lys Pro Leu Ser Asn Ala Tyr His Glu Leu Ala Gln Val Tyr Ser Thr
 145 150 155 160

Asn Asn Pro Ser Glu Leu Arg Asn Leu Val Asn Lys His Ser Glu Thr
 165 170 175

Phe Thr Arg Asp Asn Asn Met Gly Leu Val Lys Gln Cys Leu Ser Ser
 180 185 190

Leu Tyr Lys Lys Asn Ile Gln Arg Leu Thr Lys Thr Phe Leu Thr Leu
 195 200 205

Ser Leu Gln Asp Met Ala Ser Arg Val Gln Leu Ser Gly Pro Gln Glu
 210 215 220

Ala Glu Lys Tyr Val Leu His Met Ile Glu Asp Gly Glu Ile Phe Ala
 225 230 235 240
 Ser Ile Asn Gln Lys Asp Gly Met Val Ser Phe His Asp Asn Pro Glu
 245 250 255
 Lys Tyr Asn Asn Pro Ala Met Leu His Asn Ile Asp Gln Glu Met Leu
 260 265 270
 Lys Cys Ile Glu Leu Asp Glu Arg Leu Lys Ala Met Asp Gln Glu Ile
 275 280 285
 Thr Val Asn Pro Gln Phe Val Gln Lys Ser Met Gly Ser Gln Glu Asp
 290 295 300
 Asp Ser Gly Asn Lys Pro Ser Ser Tyr Ser
 305 310

<210> 91
 <211> 58
 <212> PRT
 <213> Homo sapiens

<400> 91
 Val Leu Gln Glu Lys Ile Lys Ile Lys Lys Glu Lys Lys Glu Lys Ile
 1 5 10 15
 Lys Phe Lys Asn Cys Phe Glu Asn Val Gln Ile Lys Ser Asn Ile Leu
 20 25 30

Ile Ile His Leu His Val Leu Leu Asn Ile Leu Ile Met Trp Met Phe
 35 40 45

Thr Leu Cys Met Ile Leu Ala Glu Tyr His
 50 55

<210> 92
 <211> 201
 <212> PRT
 <213> Homo sapiens

<400> 92
 Met Asp Leu Ser Leu Leu Trp Val Leu Leu Pro Leu Val Thr Met Ala
 1 5 10 15

Trp Gly Gln Tyr Gly Asp Tyr Gly Tyr Pro Tyr Gln Gln Tyr His Asp
 20 25 30

Tyr Ser Asp Asp Gly Trp Val Asn Leu Asn Arg Gln Gly Phe Ser Tyr
 35 40 45

Gln Cys Pro Gln Gly Gln Val Ile Val Ala Val Arg Ser Ile Phe Ser
 50 55 60

Lys Lys Glu Gly Ser Asp Arg Gln Trp Asn Tyr Ala Cys Met Pro Thr

65	70	75	80
Pro Gln Ser Leu Gly Glu Pro Thr Glu Cys Trp Trp Glu Glu Ile Asn			
85		90	95
Arg Ala Gly Met Glu Trp Tyr Gln Thr Cys Ser Asn Asn Gly Leu Val			
100		105	110
Ala Gly Phe Gln Ser Arg Tyr Phe Glu Ser Val Leu Asp Arg Glu Trp			
115		120	125
Gln Phe Tyr Cys Cys Arg Tyr Ser Lys Arg Cys Pro Tyr Ser Cys Trp			
130		135	140
Leu Thr Thr Glu Tyr Pro Gly His Tyr Gly Glu Glu Met Asp Met Ile			
145		150	155
Ser Tyr Asn Tyr Asp Tyr Tyr Ile Arg Gly Ala Thr Thr Thr Phe Ser			
165		170	175
Ala Val Glu Arg Asp Arg Gln Trp Lys Phe Ile Met Cys Arg Met Thr			
180		185	190
Glu Tyr Asp Cys Glu Phe Ala Asn Val			
195		200	
<210> 93			
<211> 247			
<212> PRT			
<213> Homo sapiens			
<400> 93			
Met Gly Asn Gly Leu Ser Glu Glu Arg Gly Asn Asn Phe Asn His Ile			
1	5	10	15
Ser Pro Ile Pro Pro Val Pro His Pro Arg Ser Val Ile Gln Gln Ala			
20		25	30
Glu Glu Lys Leu His Thr Pro Gln Lys Arg Leu Met Thr Pro Trp Glu			
35		40	45
Glu Ser Asn Val Met Gln Asp Lys Asp Ala Pro Ser Pro Lys Pro Arg			
50		55	60
Leu Ser Pro Arg Glu Thr Ile Phe Gly Lys Ser Glu His Gln Asn Ser			
65		70	75
Ser Pro Thr Cys Gln Glu Asp Glu Glu Asp Val Arg Tyr Asn Ile Val			
85		90	95
His Ser Leu Pro Pro Asp Ile Asn Asp Thr Glu Pro Val Thr Met Ile			
100		105	110
Phe Met Gly Tyr Gln Gln Ala Glu Asp Ser Glu Glu Asp Lys Lys Phe			
115		120	125
Leu Thr Gly Tyr Asp Gly Ile Ile His Ala Glu Leu Val Val Ile Asp			

130	135	140
Asp Glu Glu Glu Glu Asp Glu Gly Glu Ala Glu Lys Pro Ser Tyr His		
145	150	155
Pro Ile Ala Pro His Ser Gln Val Tyr Gln Pro Ala Lys Pro Thr Pro		
165	170	175
Leu Pro Arg Lys Arg Ser Glu Ala Ser Pro His Glu Asn Thr Asn His		
180	185	190
Lys Ser Pro His Lys Asn Ser Ile Ser Leu Lys Glu Gln Glu Glu Ser		
195	200	205
Leu Gly Ser Pro Val His His Ser Pro Phe Asp Ala Gln Thr Thr Gly		
210	215	220
Asp Gly Thr Glu Asp Pro Ser Leu Thr Ala Leu Arg Met Arg Met Ala		
225	230	235
Lys Leu Gly Lys Lys Val Ile		
245		

<210> 94

<400> 94

000

<210> 95

<211> 188

<212> PRT

<213> Homo sapiens

<400> 95

Met Pro Val Leu Arg Glu Tyr Leu Met Ser Gly	Gly Ile Cys Pro Val		
1	5	10	15

Ser Arg Asp Thr Ile Asp Tyr Leu Leu Ser Lys Asn Gly Ser Gly Asn		
20	25	30

Ala Ile Ile Ile Val Val Gly	Gly Ala Ala Glu Ser Leu Ser Ser Met	
35	40	45

Pro Gly Lys Asn Ala Val Thr Leu Arg Asn Arg Lys Gly Phe Val Lys		
50	55	60

Leu Ala Leu Arg His Gly Ala Asp Leu Val Pro Ile Tyr Ser Phe Gly			
65	70	75	80

Glu Asn Glu Val Tyr Lys Gln Val Ile Phe Glu Glu Gly Ser Trp Gly		
85	90	95

Arg Trp Val Gln Lys Lys Phe Gln Lys Tyr Ile Gly Phe Ala Pro Cys		
100	105	110

Ile Phe His Gly Arg Gly Leu Phe Ser Ser Asp Thr Trp Gly Leu Val

115

120

125

Pro Tyr Ser Lys Pro Ile Thr Thr Val Val Gly Glu Pro Ile Thr Ile
 130 135 140

Pro Lys Leu Glu His Pro Thr Gln Gln Asp Ile Asp Leu Tyr His Thr
 145 150 155 160

Met Tyr Met Glu Ala Leu Val Lys Leu Phe Asp Lys His Lys Thr Lys
 165 170 175

Phe Gly Leu Pro Glu Thr Glu Val Leu Glu Val Asn
 180 185

<210> 96

<211> 290

<212> PRT

<213> Homo sapiens

<400> 96

Arg Gly Ala Gly Thr Gln Pro Gly Pro Leu Leu Lys Lys Pro Tyr Gln
 1 5 10 15

Pro Arg Ile Lys Ile Ser Lys Thr Ser Val Asp Gly Asp Pro His Phe
 20 25 30

Val Val Asp Phe Pro Leu Ser Arg Leu Thr Val Cys Phe Asn Ile Asp
 35 40 45

Gly Gln Pro Gly Asp Ile Leu Arg Leu Val Ser Asp His Arg Asp Ser
 50 55 60

Gly Val Thr Val Asn Gly Glu Leu Ile Gly Ala Pro Ala Pro Pro Asn
 65 70 75 80

Gly His Lys Lys Gln Arg Thr Tyr Leu Arg Thr Ile Thr Ile Leu Ile
 85 90 95

Asn Lys Pro Glu Arg Ser Tyr Leu Glu Ile Thr Pro Ser Arg Val Ile
 100 105 110

Leu Asp Gly Gly Asp Arg Leu Val Leu Pro Cys Asn Gln Ser Val Val
 115 120 125

Val Gly Ser Trp Gly Leu Glu Val Ser Val Ser Ala Asn Ala Asn Val
 130 135 140

Thr Val Thr Ile Gln Gly Ser Ile Ala Phe Val Ile Leu Ile His Leu
 145 150 155 160

Tyr Lys Lys Pro Ala Pro Phe Gln Arg His His Leu Gly Phe Tyr Ile
 165 170 175

Ala Asn Ser Glu Gly Leu Ser Ser Asn Cys His Gly Leu Leu Gly Gln
 180 185 190

Phe Leu Asn Gln Asp Ala Arg Leu Thr Glu Asp Pro Ala Gly Pro Ser

195

200

205

Gln Asn Leu Thr His Pro Leu Leu Leu Gln Val Gly Glu Gly Pro Glu
 210 215 220

Ala Val Leu Thr Val Lys Gly His Gln Val Pro Val Val Trp Lys Gln
 225 230 235 240

Arg Lys Ile Tyr Asn Gly Glu Glu Gln Ile Asp Cys Trp Phe Ala Arg
 245 250 255

Asn Asn Ala Ala Lys Leu Ile Asp Gly Glu Tyr Lys Asp Tyr Leu Ala
 260 265 270

Ser His Pro Phe Asp Thr Gly Met Thr Leu Gly Gln Gly Met Ser Arg
 275 280 285

Glu Leu
 290

<210> 97

<211> 66

<212> PRT

<213> Homo sapiens

<400> 97

Asn Gln Phe Thr Ser Cys Ile Leu Phe Cys Asp Gly Gly His Trp Arg
 1 5 10 15

Glu Leu Leu Phe Gln Ser Ile Met Ser Ser His Trp Thr Leu Lys Ile
 20 25 30

Leu Leu Val Pro Leu Phe Tyr Leu Ser Leu Glu Phe Pro Ser Gly Phe
 35 40 45

Val Leu Cys Leu Ala Asn Asp Leu Gly Tyr His Phe Ser Ser Arg Val
 50 55 60

Arg Ser
 65

<210> 98

<211> 54

<212> PRT

<213> Homo sapiens

<400> 98

Val Pro Gly Ala Leu Pro Leu Ala Val Gly Pro Pro Pro Pro Pro Ser
 1 5 10 15

Gly Phe Pro Arg Asn Val Gln Pro Arg Arg Pro Ser Gln Ser Leu Gly
 20 25 30

Arg Val Met Ser Ala Gly Pro Asp Lys Arg Pro Leu Gly Thr Leu Cys
 35 40 45

Cys Phe Val Ser Phe Leu
50

<210> 99
<211> 49
<212> PRT
<213> Homo sapiens

<400> 99
Phe Phe Leu Tyr Phe Asn Gln Val Phe Tyr Trp Ser Gly Asn Cys Lys
1 5 10 15

Ile Tyr Lys Phe Leu Lys Gly Ile Ser Cys Leu Lys Ala Ser Ile Ala
20 25 30

Leu Tyr Pro Arg Ser Leu Ile Gln Thr Asn Thr Gln Asn Thr Glu Lys
35 40 45

Ser

<210> 100
<211> 98
<212> PRT
<213> Homo sapiens

<400> 100
Met Gly Asn Lys Glu Pro Gly Ser His Gly His Arg Ser Asp Ala Asp
1 5 10 15

Pro Ser Arg Phe Ser Pro Val Leu Pro Pro Ala Val Gln Leu Gly Val
20 25 30

Trp Arg Glu Glu Gly Arg Gly Ser Cys Pro Phe Ser Trp Gly Arg
35 40 45

Gly Pro Val Ser Ser Thr Trp Leu Phe Pro Lys Gly Ser Lys Arg Glu
50 55 60

Gly Leu Gly Glu Lys Thr Met Glu Arg Gly Pro Ala Lys Glu Asn Arg
65 70 75 80

Glu Glu Val Ser Gly Leu Ile Ser Leu Leu Ser Arg Cys Ser Gly Ser
85 90 95

Leu Ile

<210> 101
<211> 117
<212> PRT
<213> Homo sapiens

<400> 101
Met Gly Lys Gly Leu Gly Glu Asp Gly Gln Gln Arg Ala Arg Glu Ser

1

5

10

15

Trp Thr Ser Gln Arg Arg Arg Pro Gln Gln Val Gln Ser Arg Ala Ala
 20 25 30

Thr Ser Cys Pro Ala Gly Cys Leu Glu Gly Arg Gly Gln Arg Arg Val
 35 40 45

Met Ser Leu Gln Leu Gly Glu Gly Pro Ser Glu Leu His Val Ala Phe
 50 55 60

Ser Gln Arg Glu Gln Glu Gly Arg Ile Gly Arg Glu Asn Asn Gly Glu
 65 70 75 80

Gly Thr Cys Glu Gly Lys Gln Gly Ser Glu Arg Phe Asp Gln Pro
 85 90 95

Ala Ile Thr Val Phe Trp Leu Ser Tyr Leu Ala Arg Arg Leu Arg Asp
 100 105 110

Arg Tyr Ile Thr Ser
 115

<210> 102

<211> 145

<212> PRT

<213> Homo sapiens

<400> 102

Met Asn Arg Gly Pro Pro Thr Phe Trp Thr Phe Glu Asp Arg Gly Ala
 1 5 10 15

Lys Arg Asp Arg Ser Ala Arg Gly Pro His Pro Ala Pro Leu Gly Glu
 20 25 30

Pro Leu Leu Thr Trp Val Ser Leu Arg Leu His Gln Leu Val Gly Leu
 35 40 45

Gln Ala Ser Pro Pro Asp Ser Pro His Cys Trp Ala Thr Leu Asn Leu
 50 55 60

Lys Phe His Cys Pro Ala Pro Pro Thr Pro Thr Pro Lys Phe Pro Lys
 65 70 75 80

Glu Met Ser Lys Thr His Ala His Thr Tyr Ile His Thr Cys Thr Cys
 85 90 95

Ala His Thr Ser Cys Val Thr Thr Gly Gln Gly Asn Ala Ser Leu Arg
 100 105 110

Ile Pro Gly Pro Gly Pro Gly Val Lys Gly Cys Ser Gly Thr Leu Pro
 115 120 125

Pro Asn Leu Leu Glu Asp Pro Glu Cys Gly Arg Ile Gly Cys Leu
 130 135 140

Pro

145

<210> 103
<211> 197
<212> PRT
<213> Homo sapiens

<400> 103
Met Arg Thr His Val Leu Cys Tyr His Trp Pro Arg Lys Arg Glu Ser
1 5 10 15
Gln Asp Ser Arg Ala Trp Thr Trp Gly Lys Gly Leu Leu Trp Asp Ser
20 25 30
Ala Pro Gln Pro Leu Gly Gly Pro Arg Val Trp Gly Gln Asp Trp Val
35 40 45
Ser Ala Leu Thr His Arg Ile Ser Pro Gly Pro Lys Ala Glu Lys Lys
50 55 60
Ser Gly Arg Arg Ser Arg Arg Gln Gly Trp Trp Thr Lys Val Gly Val
65 70 75 80
Arg Leu Lys Ser Gly Ser Glu Thr Arg Phe Asp His Thr His His Pro
85 90 95
Ser Val Pro Pro Gly Gln His Ala Pro Leu Glu Pro Leu His Arg Leu
100 105 110
Ile Arg Thr Arg Gln Asn Leu Leu Leu Thr Asn Leu Leu Arg Ala Val
115 120 125
Tyr Arg Gly Ile Thr Leu Val Gln Glu Gly Cys Pro Ser Cys Phe His
130 135 140
Thr Thr Thr Gly Pro Thr Ile Pro Leu Leu Ala Ser Leu Arg Arg Pro
145 150 155 160
Arg Asp Pro Gln Lys Pro Gly Glu Lys Glu Ser Trp Pro Leu Val Ser
165 170 175
Thr Ala Phe Arg Ala Thr Gly Asp Ala Gln Met Thr Trp Val Lys
180 185 190
Gly Leu Ser Gln Thr
195

<210> 104
<211> 152
<212> PRT
<213> Homo sapiens

<400> 104
Ser Glu Ala Arg Asn Ala Pro Ser Gly Thr Ala Gln Thr Phe Ala Met
1 5 10 15

Gly Phe Met Thr Gly Thr Ile Ser Ser Met Tyr Gln Thr Lys Ala Val
 20 25 30

 Ile Ile Ala Met Ile Ile Thr Ala Val Val Ser Ile Ser Val Thr Ile
 35 40 45

 Phe Cys Phe Gln Thr Lys Val Asp Phe Thr Ser Cys Thr Gly Leu Phe
 50 55 60

 Cys Val Leu Gly Ile Val Leu Leu Val Thr Gly Ile Val Thr Ser Ile
 65 70 75 80

 Val Leu Tyr Phe Gln Tyr Val Tyr Trp Leu His Met Leu Tyr Ala Ala
 85 90 95

 Leu Gly Ala Ile Cys Phe Thr Leu Phe Leu Ala Tyr Asp Thr Gln Leu
 100 105 110

 Val Leu Gly Asn Arg Lys His Thr Ile Ser Pro Glu Asp Tyr Ile Thr
 115 120 125

 Gly Ala Leu Gln Ile Tyr Thr Asp Ile Ile Tyr Ile Phe Thr Phe Val
 130 135 140

 Leu Gln Leu Met Gly Asp Arg Asn
 145 150

<210> 105
 <211> 66
 <212> PRT
 <213> Homo sapiens

 <400> 105
 His Leu Leu Ser Pro Pro His Ile Leu Gly Thr Ala Phe Ser Ser Thr
 1 5 10 15

 Gly Asn Gly Thr Asp Gly Gln Lys Thr Ser Ile Thr Phe Met Lys Gly
 20 25 30

 Leu Leu Glu Leu Pro Gly Lys Lys Ala Cys Leu Gly Glu Leu Gly Arg
 35 40 45

 Cys Arg Gln Cys Gly Trp Ala Gly Gly Gln Pro Val Val Leu Leu Pro
 50 55 60

 Ala Gln
 65

<210> 106
 <211> 91
 <212> PRT
 <213> Homo sapiens

 <400> 106
 Pro Thr Ser Leu Ile Trp Pro Thr Thr Met Phe Cys Ser Val His Val
 1 5 10 15

Leu Phe Lys Ser Ile Leu Asn Trp Leu Pro Ser Phe Lys Leu Asn Gln
 20 25 30

Thr Leu Lys Ala Trp Ser Ser His Thr Gly Pro Thr Phe Pro His Gly
 35 40 45

Asn Tyr Glu Arg Ala Pro Ala Gln Gln Gly Leu Ser Arg Ser Leu Pro
 50 55 60

Pro Pro Leu Pro Val Pro Gln Ile Trp Pro Leu Leu Arg Lys Ile Arg
 65 70 75 80

Thr Ala Thr Gly Pro Ser Glu Pro Lys Pro Thr
 85 90

<210> 107

<211> 41

<212> PRT

<213> Homo sapiens

<400> 107

Leu Leu Pro Ser Phe Phe Leu His Phe Ser Leu Ser Ile Tyr Phe Pro
 1 5 10 15

His Pro Thr Phe Leu Glu Gln Pro Leu Val Leu Gln Glu Met Ala Leu
 20 25 30

Met Asp Arg Arg Leu Ala Leu Pro Ser
 35 40

<210> 108

<211> 471

<212> PRT

<213> Homo sapiens

<400> 108

Asn Glu Leu Lys Ala Ser Gly Gly Glu Ile Lys Ile His Lys Met Glu
 1 5 10 15

Gln Lys Glu Asn Val Pro Pro Gly Pro Glu Val Cys Ile Thr His Gln
 20 25 30

Glu Gly Glu Lys Ile Ser Ala Asn Glu Asn Ser Leu Ala Val Arg Ser
 35 40 45

Thr Pro Ala Glu Asp Asp Ser Arg Asp Ser Gln Val Lys Ser Glu Val
 50 55 60

Gln Gln Pro Val His Pro Lys Pro Leu Ser Pro Asp Ser Arg Ala Ser
 65 70 75 80

Ser Leu Ser Glu Ser Ser Pro Pro Lys Ala Met Lys Lys Phe Gln Ala
 85 90 95

Pro Ala Arg Glu Thr Cys Val Glu Cys Gln Lys Thr Val Tyr Pro Met

100	105	110
Glu Arg Leu Leu Ala Asn Gln Gln Val Phe His Ile Ser Cys Phe Arg		
115	120	125
Cys Ser Tyr Cys Asn Asn Lys Leu Ser Leu Gly Thr Tyr Ala Ser Leu		
130	135	140
His Gly Arg Ile Tyr Cys Lys Pro His Phe Asn Gln Leu Phe Lys Ser		
145	150	155
Lys Gly Asn Tyr Asp Glu Gly Phe Gly His Arg Pro His Lys Asp Leu		
165	170	175
Trp Ala Ser Lys Asn Glu Asn Glu Glu Ile Leu Glu Arg Pro Ala Gln		
180	185	190
Leu Ala Asn Ala Arg Glu Thr Pro His Ser Pro Gly Val Glu Asp Ala		
195	200	205
Pro Ile Ala Lys Gly Gly Val Leu Ala Ala Ser Met Glu Ala Lys Ala		
210	215	220
Ser Ser Gln Gln Glu Lys Glu Asp Lys Pro Ala Glu Thr Lys Lys Leu		
225	230	235
240		
Arg Ile Ala Trp Pro Pro Pro Thr Glu Leu Gly Ser Ser Gly Ser Ala		
245	250	255
Leu Glu Glu Gly Ile Lys Met Ser Lys Pro Lys Trp Pro Pro Glu Asp		
260	265	270
Glu Ile Ser Lys Pro Glu Val Pro Glu Asp Val Asp Leu Asp Leu Lys		
275	280	285
Lys Leu Arg Arg Ser Ser Leu Lys Glu Arg Ser Arg Pro Phe Thr		
290	295	300
Val Ala Ala Ser Phe Gln Ser Thr Ser Val Lys Ser Pro Lys Thr Val		
305	310	315
320		
Ser Pro Pro Ile Arg Lys Gly Trp Ser Met Ser Glu Gln Ser Glu Glu		
325	330	335
Ser Val Gly Gly Arg Val Ala Glu Arg Lys Gln Val Glu Asn Ala Lys		
340	345	350
Ala Ser Lys Lys Asn Gly Asn Val Gly Lys Thr Thr Trp Gln Asn Lys		
355	360	365
Glu Ser Lys Gly Glu Thr Gly Lys Arg Ser Lys Glu Gly His Ser Leu		
370	375	380
Glu Met Glu Asn Glu Asn Leu Val Glu Asn Gly Ala Asp Ser Asp Glu		
385	390	395
400		
Asp Asp Asn Ser Phe Leu Lys Gln Gln Ser Pro Gln Glu Pro Lys Ser		
405	410	415

Leu Asn Trp Ser Ser Phe Val Asp Asn Thr Phe Ala Glu Glu Phe Thr
420 425 430

Thr Gln Asn Gln Lys Ser Gln Asp Val Glu Leu Trp Glu Gly Glu Val
435 440 445

Val Lys Glu Leu Ser Val Glu Glu Gln Ile Lys Arg Asn Arg Tyr Tyr
450 455 460

Asp Glu Asp Glu Asp Glu Glu
465 470

<210> 109

<400> 109
000

<210> 110

<400> 110
000

<210> 111

<400> 111
000

<210> 112

<211> 94

<212> PRT

<213> Homo sapiens

<400> 112

Arg Lys Met Leu Arg Ala Ala Leu Pro Ala Leu Pro Ile Pro Arg Cys
1 5 10 15

Lys Tyr Thr Leu Phe Leu Ile Ala His Met Gly Pro Pro Tyr Leu Leu
20 25 30

Ala Leu Val Leu Met Leu Lys Ser Trp Pro Trp Glu Arg Cys Leu Pro
35 40 45

Gly Arg His Ser Cys Leu Val Gln Ala Lys Pro Leu Cys Asn Ala Ser
50 55 60

Pro Phe Trp Cys Tyr Glu Val Pro Leu Cys Arg Arg Phe His Gln Gln
65 70 75 80

Leu Val Thr Val Pro Ser Thr Arg Thr Cys Phe Glu Ile Ser
85 90

<210> 113

<211> 324
<212> PRT
<213> Homo sapiens

<400> 113
Gly Leu Ser Thr Phe Gln Asn Trp Leu Pro Ser Thr Pro Ala Thr Ser
1 5 10 15
Trp Gly Gly Leu Thr Ser Ser Arg Thr Thr Asp Asn Gly Gly Glu Gln
20 25 30
Thr Ala Leu Ser Pro Gln Glu Ala Pro Phe Ser Gly Ile Ser Thr Pro
35 40 45
Pro Asp Val Leu Ser Val Gly Pro Glu Pro Ala Trp Glu Ala Ala Ala
50 55 60
Thr Thr Lys Gly Leu Ala Thr Asp Val Ala Thr Phe Thr Gln Gly Ala
65 70 75 80
Ala Pro Gly Arg Glu Asp Thr Gly Leu Leu Thr Thr Thr His Gly Pro
85 90 95
Glu Glu Ala Pro Arg Leu Ala Met Leu Gln Asn Glu Leu Glu Gly Leu
100 105 110
Gly Asp Ile Phe His Pro Met Asn Ala Glu Glu Gln Ala Gln Leu Ala
115 120 125
Ala Ser Gln Pro Gly Pro Lys Val Leu Ser Ala Glu Gln Gly Ser Tyr
130 135 140
Phe Val Arg Leu Gly Asp Leu Gly Pro Ser Phe Arg Gln Arg Ala Phe
145 150 155 160
Glu His Ala Val Ser His Leu Gln His Gly Gln Phe Gln Ala Arg Asp
165 170 175
Thr Leu Ala Gln Leu Gln Asp Cys Phe Arg Leu Ile Glu Lys Ala Gln
180 185 190
Gln Ala Pro Glu Gly Gln Pro Arg Leu Asp Gln Gly Ser Gly Ala Ser
195 200 205
Ala Glu Asp Ala Ala Val Gln Glu Glu Arg Asp Ala Gly Val Leu Ser
210 215 220
Arg Val Cys Gly Leu Leu Arg Gln Leu His Thr Ala Tyr Ser Gly Leu
225 230 235 240
Val Ser Ser Leu Gln Gly Leu Pro Ala Glu Leu Gln Gln Pro Val Gly
245 250 255
Arg Ala Arg His Ser Leu Cys Glu Leu Tyr Gly Ile Val Ala Ser Ala
260 265 270
Gly Ser Val Glu Glu Leu Pro Ala Glu Arg Leu Val Gln Ser Arg Glu
275 280 285

Gly Val His Gln Ala Trp Gln Gly Leu Glu Gln Leu Leu Glu Gly Leu
290 295 300

Gln His Asn Pro Pro Leu Ser Trp Leu Val Gly Pro Phe Ala Leu Pro
305 310 315 320

Ala Gly Gly Gln

<210> 114
<211> 148
<212> PRT
<213> *Homo sapiens*

<400> 114
Ile Ala Met Thr Pro Pro Asn Ala Thr Glu Ala Ser Lys Pro Gln Gly
1 5 10 15

Thr Thr Val Cys Pro Pro Cys Asp Asn Glu Leu Lys Ser Glu Ala Ile
 20 25 30

Ile Glu His Leu Cys Ala Ser Glu Phe Ala Leu Arg Met Lys Ile Lys
35 40 45

Glu Val Lys Lys Glu Asn Gly Asp Lys Lys Ile Val Pro Lys Lys Lys
 50 55 60

Lys Pro Leu Lys Leu Gly Pro Ile Lys Lys Lys Asp Leu Lys Lys Leu
65 70 75 80

Val Leu Tyr Leu Lys Asn Gly Ala Asp Cys Pro Cys His Gln Leu Asp
85 90 95

Asn	Leu	Ser	His	His	Phe	Leu	Ile	Met	Gly	Arg	Lys	Val	Lys	Ser	Gln
	100							105						110	

Tyr Leu Leu Thr Ala Ile His Lys Trp Asp Lys Lys Asn Lys Glu Phe
115 120 125

Lys Asn Phe Met Lys Lys Met Lys Asn His Glu Cys Pro Thr Phe Gln
 130 135 140

Ser Val Phe Lys
145

<210> 115
<211> 45
<212> PRT
<213> *Homo sapiens*

<400> 115
Pro Val Ile Tyr Ser Val Leu Ile Arg Ser Glu Ile Arg Tyr Lys Ile
1 5 10 15

Ser Arg Pro Val Thr Thr Asp Phe Ile Lys Ser Glu Ser Leu Ile Leu

20

25

30

Ala Cys Leu Tyr Leu Ile Ser Glu Arg Met Ser Thr Leu
35 40 45

<210> 116
<211> 40
<212> PRT
<213> Homo sapiens

<400> 116
Pro Asp Cys Glu Ser Phe Met Tyr Phe Asn Leu Asp Ser Val Phe Leu
1 5 10 15

Arg Val Leu Ser Met Lys Leu Ala Asp Ser Arg Gln Asp Ser Phe Phe
20 25 30

His His Gly Trp Leu Ile Ser Pro
35 40

<210> 117
<211> 27
<212> PRT
<213> Homo sapiens

<400> 117
Thr Asn Glu His Thr Leu Thr Ser Tyr Leu Gln Leu Pro Phe Ser Phe
1 5 10 15

Asn Arg Ile Val Lys Ala Ser Cys Ile Leu Ile
20 25

<210> 118

<400> 118
000

<210> 119
<211> 135
<212> PRT
<213> Homo sapiens

<400> 119
Arg Ser Asn Ala Val Gln Leu Thr Arg Met Glu Tyr Ala Met Lys Ser
1 5 10 15

Leu Ser Leu Leu Tyr Pro Lys Ser Leu Ser Arg His Val Ser Val Arg
20 25 30

Thr Ser Val Val Thr Gln Gln Leu Leu Ser Glu Pro Ser Pro Lys Ala
35 40 45

Pro Arg Ala Arg Pro Cys Arg Val Ser Thr Ala Asp Arg Ser Val Arg
50 55 60

Lys Gly Ile Met Ala Tyr Ser Leu Glu Asp Leu Leu Leu Lys Val Arg
 65 70 75 80

Asp Thr Leu Met Leu Ala Asp Lys Pro Phe Phe Leu Val Leu Glu Glu
 85 90 95

Asp Gly Thr Thr Val Glu Thr Glu Tyr Phe Gln Ala Leu Ala Gly
 100 105 110

Asp Thr Val Phe Met Val Leu Gln Lys Gly Gln Lys Trp Gln Pro Pro
 115 120 125

Ser Glu Gln Gly Thr Arg His
 130 135

<210> 120

<400> 120
000

<210> 121

<400> 121
000

<210> 122
<211> 193
<212> PRT
<213> Homo sapiens

<400> 122
 Glu Ala Cys Ala His Thr Leu Ser Cys Pro Ala Leu Ala Arg Leu Gly
 1 5 10 15

Arg Ala Arg Arg Arg Pro Trp Met Ser His Arg Thr Ser Ser Thr Phe
 20 25 30

Arg Ala Glu Arg Ser Phe His Ser Ser Ser Ser Ser Ala Ala
 35 40 45

Thr Ser Ser Ser Ala Ser Arg Ala Leu Pro Ala Gln Asp Pro Pro Met
 50 55 60

Glu Lys Ala Leu Ser Met Phe Ser Asp Asp Phe Gly Ser Phe Met Arg
 65 70 75 80

Pro His Ser Glu Pro Leu Ala Phe Pro Ala Arg Pro Gly Gly Ala Gly
 85 90 95

Asn Ile Lys Thr Leu Gly Asp Ala Tyr Glu Phe Ala Val Asp Val Arg
 100 105 110

Asp Phe Ser Pro Glu Asp Ile Ile Val Thr Thr Ser Asn Asn His Ile
 115 120 125

Glu Val Arg Ala Glu Lys Leu Ala Ala Asp Gly Thr Val Met Asn Thr
 130 135 140

Phe Ala His Lys Cys Gln Leu Pro Glu Asp Val Asp Pro Thr Ser Val
 145 150 155 160

Thr Ser Ala Leu Arg Glu Asp Gly Ser Leu Thr Ile Arg Ala Arg Arg
 165 170 175

His Pro His Thr Glu His Val Gln Gln Thr Phe Arg Thr Glu Ile Lys
 180 185 190

Ile

<210> 123

<400> 123
000

<210> 124
<211> 38
<212> PRT
<213> Homo sapiens

<400> 124
Met Ala Thr Phe Tyr Pro Leu Phe Pro Asn Gly Gly Gly Thr Tyr Pro
 1 5 10 15

Glu Val Val Asn Asp Phe Pro Leu Lys Leu Leu Tyr Phe Thr Asn Leu
 20 25 30

Asn Tyr Phe Val Leu Met
 35

<210> 125
<211> 65
<212> PRT
<213> Homo sapiens

<400> 125
Met Trp Leu Phe His Asp Ala Gly Ile Arg Ser Ala Gly Gly Leu Ser
 1 5 10 15

Leu Leu Ser Cys Gly Ser Trp Pro Leu Pro Ser Gly Tyr His Arg Leu
 20 25 30

Gln Asp Thr Asn Gly Gln Gln Lys Asn Val Thr Leu Leu Ile Leu Ser
 35 40 45

Ser Ser Ser Ile Gly Thr Lys Leu Pro Ser Arg Pro Arg Glu Ile Leu
 50 55 60

Cys

65

<210> 126

<211> 250

<212> PRT

<213> Homo sapiens

<400> 126

Glu	Thr	Arg	Val	Lys	Thr	Ser	Leu	Glu	Leu	Leu	Arg	Thr	Gln	Leu	Glu
1				5					10			15			

Pro	Thr	Gly	Thr	Val	Gly	Asn	Thr	Ile	Met	Thr	Ser	Gln	Pro	Val	Pro
						20			25					30	

Asn	Glu	Thr	Ile	Ile	Val	Leu	Pro	Ser	Asn	Val	Ile	Asn	Phe	Ser	Gln
							35		40			45			

Ala	Glu	Lys	Pro	Glu	Pro	Thr	Asn	Gln	Gly	Gln	Asp	Ser	Leu	Lys	Lys
						50		55			60				

His	Leu	His	Ala	Glu	Ile	Lys	Val	Ile	Gly	Thr	Ile	Gln	Ile	Leu	Cys
65					70				75				80		

Gly	Met	Met	Val	Leu	Ser	Leu	Gly	Ile	Ile	Leu	Ala	Ser	Ala	Ser	Phe
							85		90			95			

Ser	Pro	Asn	Phe	Thr	Gln	Val	Thr	Ser	Thr	Leu	Leu	Asn	Ser	Ala	Tyr
						100		105				110			

Pro	Phe	Ile	Gly	Pro	Phe	Phe	Phe	Ile	Ile	Ser	Gly	Ser	Leu	Ser	Ile
						115		120			125				

Ala	Thr	Glu	Lys	Arg	Leu	Thr	Lys	Leu	Leu	Val	His	Ser	Ser	Leu	Val
						130		135			140				

Gly	Ser	Ile	Leu	Ser	Ala	Leu	Ser	Ala	Leu	Val	Gly	Phe	Ile	Ile	Leu
145						150				155			160		

Ser	Val	Lys	Gln	Ala	Thr	Leu	Asn	Pro	Ala	Ser	Leu	Gln	Cys	Glu	Leu
						165			170			175			

Asp	Lys	Asn	Asn	Ile	Pro	Thr	Arg	Ser	Tyr	Val	Ser	Tyr	Phe	Tyr	His
						180		185			190				

Asp	Ser	Leu	Tyr	Thr	Thr	Asp	Cys	Tyr	Thr	Ala	Lys	Ala	Ser	Leu	Ala
						195		200			205				

Gly	Thr	Leu	Ser	Leu	Met	Leu	Ile	Cys	Thr	Leu	Leu	Glu	Phe	Cys	Leu
					210			215			220				

Ala	Val	Leu	Thr	Ala	Val	Leu	Arg	Trp	Lys	Gln	Ala	Tyr	Ser	Asp	Phe
225						230				235		240			

Pro	Gly	Val	Ser	Val	Leu	Ala	Gly	Phe	Thr						
						245		250							

<210> 127

<400> 127
000

<210> 128
<211> 61
<212> PRT
<213> *Homo sapiens*

```

<400> 128
Met His Thr Cys Gln Ile Tyr Ile Tyr Ser Thr Asn Val Thr Phe Leu
      1           5           10          15

Phe Phe Val Leu Asp Val Arg Ala Cys Ser Tyr Val Arg Tyr Leu His
      20          25          30

Lys Leu Leu His Tyr Phe Phe Leu Cys Asn Thr Phe Leu Phe Val Tyr
      35          40          45

Val Val Gln Ile Tyr Ser Phe Leu Lys Leu Leu Lys Lys
      50          55          60

```

```
<210> 129  
<211> 211  
<212> PRT  
<213> Homo sapiens
```

<400> 129
 Pro Ala Ser Asn Arg Pro Lys Ser Gly Arg Ala Pro Glu Pro Arg Glu
 1 5 10 15

 Pro Ala Arg Arg Ser Ala Gly Gly Ser Pro Pro Pro Pro Pro Trp Pro
 20 25 30

 Arg Val Pro Ala Ala Ala Gly Thr Glu Gly Ala Ser Pro Asp Leu
 35 40 45

 Ala Pro Leu Arg Pro Ala Ala Pro Gly Gln Thr Pro Leu Arg Lys Glu
 50 55 60

 Val Leu Lys Ser Lys Met Gly Lys Ser Glu Lys Ile Ala Leu Pro His
 65 70 75 80

 Gly Gln Leu Val His Gly Ile His Leu Tyr Glu Gln Pro Lys Ile Asn
 85 90 95

 Arg Gln Lys Ser Lys Tyr Asn Leu Pro Leu Thr Lys Ile Thr Ser Ala
 100 105 110

 Lys Arg Asn Glu Asn Asn Phe Trp Gln Asp Ser Val Ser Ser Asp Arg
 115 120 125

 Ile Gln Lys Gln Glu Lys Lys Pro Phe Lys Asn Thr Glu Asn Ile Lys
 130 135 140

Asn Ser His Leu Lys Lys Ser Ala Phe Leu Thr Glu Val Ser Gln Lys
 145 150 155 160

Glu Asn Tyr Ala Gly Ala Lys Phe Ser Asp Pro Pro Ser Pro Val
 165 170 175

Leu Pro Lys Pro Pro Ser His Trp Met Gly Ser Thr Val Glu Asn Ser
 180 185 190

Asn Gln Asn Arg Glu Leu Met Ala Val His Leu Lys Thr Leu Leu Lys
 195 200 205

Val Gln Thr
 210

<210> 130

<400> 130
 000

<210> 131
<211> 48
<212> PRT
<213> Homo sapiens

<400> 131
Met Ile Leu Thr Asn Pro Leu Lys Ser Lys Thr Asp Thr Phe Ile Asn
 1 5 10 15

Arg Ser Ile Cys Lys Gln Ser Gln Tyr Ala Leu Gly Arg Leu Thr Ile
 20 25 30

Phe Leu Thr Cys Gln Gly Val Leu Pro Ser Gln Gln Thr Pro Leu Ile
 35 40 45

<210> 132
<211> 78
<212> PRT
<213> Homo sapiens

<400> 132
Leu Gly Ile Phe Leu His Gln Tyr Val Ile Phe Asn Gln Asn Val Lys
 1 5 10 15

Phe Leu Leu Asn Ser Leu Pro Ala Ile Val Ile Val Pro Ser Trp Pro
 20 25 30

Thr Trp Phe Pro Asp Val Val Asn Asn Ile Asn Ala Ser Ala Val Gly
 35 40 45

Pro Leu Leu Arg Cys Leu Arg Arg Asn Phe Val Leu Ala Ile Ser Ile
 50 55 60

Asn Phe Val Phe Tyr Leu Gln Phe Gly Arg Arg Lys Val Thr
 65 70 75

<210> 133

<211> 72

<212> PRT

<213> Homo sapiens

<400> 133

Met	Asp	Met	Ala	Lys	Thr	Lys	Phe	Leu	Arg	Arg	His	Leu	Ser	Lys	Gly
1															

Pro	Thr	Ala	Asp	Ala	Leu	Met	Leu	Phe	Thr	Thr	Ser	Gly	Asn	Gln	Val
20															30

Gly	His	Asp	Gly	Thr	Ile	Thr	Met	Ala	Gly	Asn	Glu	Phe	Asn	Lys	Asn
35															45

Phe	Thr	Phe	Trp	Leu	Lys	Ile	Thr	Tyr	Trp	Cys	Lys	Lys	Ile	Pro	Asn
50															60

Gln	Ile	Lys	Ser	Tyr	Cys	Phe	Asp
65							70

<210> 134

<400> 134

000

<210> 135

<211> 87

<212> PRT

<213> Homo sapiens

<400> 135

Leu	Asn	Val	Phe	Ser	Ser	Leu	Gln	Ile	Ser	Glu	Leu	Ile	Phe	Pro	Pro
1															

Leu	Pro	Met	Trp	His	Pro	Leu	Pro	Arg	Lys	Lys	Pro	Gly	Met	Tyr	Arg
20															30

Gly	Asn	Gly	His	Gln	Asn	His	Tyr	Pro	Pro	Pro	Val	Pro	Phe	Gly	Tyr
35															45

Pro	Asn	Gln	Gly	Arg	Lys	Asn	Lys	Pro	Tyr	Arg	Pro	Ile	Pro	Val	Thr
50															60

Trp	Val	Pro	Pro	Pro	Gly	Met	His	Cys	Asp	Arg	Asn	His	Trp	Ile	Asn
65															80

Pro	His	Met	Leu	Ala	Pro	His
85						

<210> 136

<400> 136

000

<210> 137
<211> 83
<212> PRT
<213> Homo sapiens

<400> 137

Met	Tyr	Gly	Asn	Ile	Leu	Cys	Pro	Thr	Leu	His	Thr	Pro	Cys	Thr	Gln
1				5					10				15		

Ile Leu Tyr Cys Met Asn Tyr Ala Leu Ser Arg Ile Gln Cys Gln Gly

20				25						30					
----	--	--	--	----	--	--	--	--	--	----	--	--	--	--	--

Glu Leu Gly Glu Ile Asn Tyr Phe Asn Phe Phe Ile Leu Tyr Lys

35				40					45						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Ala Met Asp Phe Ile Trp Leu Met Cys Ala Leu Tyr Thr Ser His Phe

50				55					60						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Asn Arg Met Glu Leu Leu Ile Ile Phe Gln Arg Val Ile Asp Met Gln

65				70					75				80		
----	--	--	--	----	--	--	--	--	----	--	--	--	----	--	--

Lys Phe Gln

<210> 138
<211> 366
<212> PRT
<213> Homo sapiens

<400> 138

Arg	Pro	Lys	Pro	Gly	His	Pro	Leu	Tyr	Ser	Lys	Tyr	Met	Arg	Gly	Asp
1							5			10			15		

Val Leu Val Met Leu Lys Gln Thr Glu Asn Asn Tyr Leu Glu Cys Gln

20				25						30					
----	--	--	--	----	--	--	--	--	--	----	--	--	--	--	--

Lys Gly Glu Asp Thr Gly Arg Val His Leu Ser Gln Met Lys Ile Ile

35				40					45						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Thr Pro Leu Asp Glu His Leu Arg Ser Arg Pro Asn Asp Pro Ser His

50				55					60						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Ala Gln Lys Pro Val Asp Ser Gly Ala Pro His Ala Val Val Leu His

65				70					75				80		
----	--	--	--	----	--	--	--	--	----	--	--	--	----	--	--

Asp Phe Pro Ala Glu Gln Val Asp Asp Leu Asn Leu Thr Ser Gly Glu

85				90					95						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Ile Val Tyr Leu Leu Glu Lys Ile Asp Thr Asp Trp Tyr Arg Gly Asn

100				105					110						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Cys Arg Asn Gln Ile Gly Ile Phe Pro Ala Asn Tyr Val Lys Val Ile

115				120					125						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Ile Asp Ile Pro Glu Gly Gly Asn Gly Lys Arg Glu Cys Val Ser Ser
 130 135 140

His Cys Val Lys Gly Ser Arg Cys Val Ala Arg Phe Glu Tyr Ile Gly
 145 150 155 160

Glu Gln Lys Asp Glu Leu Ser Phe Ser Glu Gly Glu Ile Ile Ile Leu
 165 170 175

Lys Glu Tyr Val Asn Glu Glu Trp Ala Arg Gly Glu Val Arg Gly Arg
 180 185 190

Thr Gly Ile Phe Pro Leu Asn Phe Val Glu Pro Val Glu Asp Tyr Pro
 195 200 205

Thr Ser Gly Ala Asn Val Leu Ser Thr Lys Val Pro Leu Lys Thr Lys
 210 215 220

Lys Glu Asp Ser Gly Ser Asn Ser Gln Val Asn Ser Leu Pro Ala Glu
 225 230 235 240

Trp Cys Glu Ala Leu His Ser Phe Thr Ala Glu Thr Ser Asp Asp Leu
 245 250 255

Ser Phe Lys Arg Gly Asp Arg Ile Gln Ile Leu Glu Arg Leu Asp Ser
 260 265 270

Asp Trp Cys Arg Gly Arg Leu Gln Asp Arg Glu Gly Ile Phe Pro Ala
 275 280 285

Val Phe Val Arg Pro Cys Pro Ala Glu Ala Lys Ser Met Leu Ala Ile
 290 295 300

Val Pro Lys Gly Arg Lys Ala Lys Ala Leu Tyr Asp Phe Arg Gly Glu
 305 310 315 320

Asn Glu Asp Glu Leu Ser Phe Lys Ala Gly Asp Ile Ile Thr Glu Leu
 325 330 335

Glu Ser Val Asp Asp Asp Trp Met Ser Gly Glu Leu Met Gly Lys Ser
 340 345 350

Gly Ile Phe Pro Lys Asn Tyr Ile Gln Phe Leu Gln Ile Ser
 355 360 365

<210> 139
<211> 68
<212> PRT
<213> Homo sapiens

<400> 139
Met Asn Pro Tyr Ile Ser Ile Ile Val Phe Ile Val Phe Leu Cys Ser
 1 5 10 15

Glu Asn Tyr Pro Trp Asn Asn Met Leu Arg Ile Thr Gly Ser Ser Pro
 20 25 30

Tyr Leu His Phe Leu Ser Val Leu Gly Val Leu Val Asn Ser Tyr Val
35 40 45

Leu Ile Leu Phe Asn Ser Glu Phe Leu Thr Gln His Phe Arg Glu Arg
50 55 60

Ile Gln Ala Gly
65

<210> 140
<211> 28
<212> PRT
<213> Homo sapiens

<400> 140
Phe Phe Phe Phe Phe Leu Leu Leu Lys Phe Phe Phe Asn Lys Asp
1 5 10 15

Lys Gly Phe Asn Asn Phe Cys Ala Thr Ile Leu Asn
20 25

<210> 141
<211> 22
<212> PRT
<213> Homo sapiens

<400> 141
Glu Gly Thr Thr Arg Lys Lys Asp Lys Tyr Ile Leu Ser Leu Glu Asn
1 5 10 15

Ala Ser Arg Gln Lys Tyr
20

<210> 142
<211> 46
<212> PRT
<213> Homo sapiens

<400> 142
Met Pro Phe Leu Arg Lys Phe Asp Arg Leu Val Arg Thr Ser Asp His
1 5 10 15

Gln Ile Ser Leu Lys Trp Val Ser Trp Asn Phe Ile Phe Asp Asn Ile
20 25 30

Tyr Thr Ile Pro Asn Ser Phe Ala Val Leu Arg Phe Val Gly
35 40 45

<210> 143
<211> 56
<212> PRT
<213> Homo sapiens

<400> 143

Met Glu Gly Trp Gly Met Ser Ser Ile Asn Pro Tyr Gly Met His Ser
 1 5 10 15

Gln Trp Pro Ser His Leu Gly Leu Glu Pro Leu Val Gln Gly Leu Gly
 20 25 30

Glu Asn Arg Pro His Gly Asn Ser His Thr Val Ile Ala Phe Asn Thr
 35 40 45

Glu Pro Arg Val Pro Lys Gln Gln
 50 55

<210> 144

<211> 56

<212> PRT

<213> Homo sapiens

<400> 144

Met Asn Ile Ser Thr Gln Gly Arg Ala Lys Gly Val Pro Arg Ile Leu
 1 5 10 15

Leu Ala Lys Gly Gln Val Leu Ile Glu Gly Leu Glu Leu Ser Arg Phe
 20 25 30

Met Glu Ala Ala Cys Thr Leu Gly Ala Cys Pro Asp Ser Ser Leu Gly
 35 40 45

Phe Pro Phe Tyr Leu Ser Ser Phe
 50 55

<210> 145

<211> 109

<212> PRT

<213> Homo sapiens

<400> 145

Met Pro Lys Gly Lys Ala Phe Arg Arg Thr Leu Arg Ile Thr Ser Leu
 1 5 10 15

Phe Phe Ser Ser Leu Leu Leu Gln Leu Leu Phe Gly His His Leu
 20 25 30

Leu Val Leu Val Ser Pro Gln Leu Pro Gly Ala Val Phe Glu Gly Glu
 35 40 45

Ala Phe Ser Val Pro Pro Gln Ala Leu Pro Met Met Ala Pro Ser
 50 55 60

His His Pro Ser Pro Ala Pro Leu Pro Ala Ser Pro Pro Pro Pro Ala
 65 70 75 80

Pro Pro Pro Pro Trp Arg Arg Gly Ile Pro Leu Ala Phe Gly Leu
 85 90 95

Pro Arg Ser Arg Arg Leu Pro Glu Leu Pro Gln Pro Arg
 100 105

<210> 146

<211> 247

<212> PRT

<213> Homo sapiens

<400> 146

Arg	Pro	Ala	Pro	Ala	Pro	Arg	Cys	Gln	Leu	Pro	Gln	Arg	Pro	Ala	Glu
1															15

Ala	Arg	Cys	Met	Leu	Ser	Arg	Cys	Arg	Ser	Arg	Leu	Leu	His	Val	Leu
															30
20								25							

Gly	Leu	Ser	Phe	Leu	Leu	Gln	Thr	Arg	Arg	Pro	Ile	Leu	Leu	Cys	Ser
															45
35								40							

Pro	Arg	Leu	Met	Lys	Pro	Leu	Val	Val	Phe	Val	Leu	Gly	Gly	Pro	Gly
															60
50								55							

Ala	Gly	Lys	Gly	Thr	Gln	Cys	Ala	Arg	Ile	Val	Glu	Lys	Tyr	Gly	Tyr
															80
65								70			75				

Thr	His	Leu	Ser	Ala	Gly	Glu	Leu	Leu	Arg	Asp	Glu	Arg	Lys	Asn	Pro
															95
85								90							

Asp	Ser	Gln	Tyr	Gly	Glu	Leu	Ile	Glu	Lys	Tyr	Ile	Lys	Glu	Gly	Lys
															110
100								105							

Ile	Val	Pro	Val	Glu	Ile	Thr	Ile	Ser	Leu	Leu	Lys	Arg	Glu	Met	Asp
															125
115								120							

Gln	Thr	Met	Ala	Ala	Asn	Ala	Gln	Lys	Asn	Lys	Phe	Leu	Ile	Asp	Gly
															140
130								135							

Phe	Pro	Arg	Asn	Gln	Asp	Asn	Leu	Gln	Gly	Trp	Asn	Lys	Thr	Met	Asp
															160
145								150			155				

Gly	Lys	Ala	Asp	Val	Ser	Phe	Val	Leu	Phe	Phe	Asp	Cys	Asn	Asn	Glu
															175
165								170							

Ile	Cys	Ile	Glu	Arg	Cys	Leu	Glu	Arg	Gly	Lys	Ser	Ser	Gly	Arg	Ser
															190
180								185							

Asp	Asp	Asn	Arg	Glu	Ser	Leu	Glu	Lys	Arg	Ile	Gln	Thr	Tyr	Leu	Gln
															205
195								200							

Ser	Thr	Lys	Pro	Ile	Ile	Asp	Leu	Tyr	Glu	Met	Gly	Lys	Val	Lys
210								215			220			

Lys	Ile	Asp	Ala	Ser	Lys	Ser	Val	Asp	Glu	Val	Phe	Asp	Glu	Val	Val
															240
225								230			235				

Gln	Ile	Phe	Asp	Lys	Glu	Gly									
															245

<210> 147

<211> 181

<212> PRT

<213> Homo sapiens

<400> 147

Ile	Pro	Asn	Met	Ala	Ala	Pro	Leu	Gly	Gly	Met	Phe	Ser	Gly	Gln	Pro
1				5				10						15	

Pro	Gly	Pro	Pro	Gln	Ala	Pro	Pro	Gly	Leu	Pro	Gly	Gln	Ala	Ser	Leu
					20			25					30		

Leu	Gln	Ala	Ala	Pro	Gly	Ala	Pro	Arg	Pro	Ser	Ser	Ser	Thr	Leu	Val
					35			40				45			

Asp	Glu	Leu	Glu	Ser	Ser	Phe	Glu	Ala	Cys	Phe	Ala	Ser	Leu	Val	Ser
					50		55				60				

Gln	Asp	Tyr	Val	Asn	Gly	Thr	Asp	Gln	Glu	Glu	Ile	Arg	Thr	Gly	Val
					65		70		75			80			

Asp	Gln	Cys	Ile	Gln	Lys	Phe	Leu	Asp	Ile	Ala	Arg	Gln	Thr	Glu	Cys
					85			90			95				

Phe	Phe	Leu	Gln	Lys	Arg	Leu	Gln	Leu	Ser	Val	Gln	Lys	Pro	Glu	Gln
					100			105				110			

Val	Ile	Lys	Glu	Asp	Val	Ser	Glu	Leu	Arg	Asn	Glu	Leu	Gln	Arg	Lys
					115			120			125				

Asp	Ala	Leu	Val	Gln	Lys	His	Leu	Thr	Lys	Leu	Arg	His	Trp	Gln	Gln
					130		135			140					

Val	Leu	Glu	Asp	Ile	Asn	Val	Gln	His	Lys	Lys	Pro	Ala	Asp	Ile	Pro
					145		150		155			160			

Gln	Gly	Ser	Leu	Ala	Tyr	Leu	Glu	Gln	Ala	Ser	Ala	Asn	Ile	Pro	Ala
					165			170			175				

Pro	Leu	Lys	Pro	Thr
			180	

<210> 148

<211> 236

<212> PRT

<213> Homo sapiens

<400> 148

Met	Leu	Arg	Asp	Leu	Gln	Leu	Gln	Ile	Leu	Arg	Asn	Val	Thr	His	His
1				5				10				15			

Val	Ser	Val	Thr	Lys	Gln	Leu	Pro	Thr	Ser	Glu	Ala	Val	Val	Ser	Ala
					20			25				30			

Val	Ser	Glu	Ala	Gly	Ala	Ser	Gly	Ile	Thr	Glu	Ala	Gln	Ala	Arg	Ala
					35			40			45				

Ile	Val	Asn	Ser	Ala	Leu	Lys	Leu	Tyr	Ser	Gln	Asp	Lys	Thr	Gly	Met
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

50	55	60
Val Asp Phe Ala Leu Glu Ser Gly Gly Ser Ile Leu Ser Thr Arg		
65	70	75
Cys Ser Glu Thr Tyr Glu Thr Lys Thr Ala Leu Met Ser Leu Phe Gly		
85	90	95
Ile Pro Leu Trp Tyr Phe Ser Gln Ser Pro Arg Val Val Ile Gln Pro		
100	105	110
Asp Ile Tyr Pro Gly Asn Cys Trp Ala Phe Lys Gly Ser Gln Gly Tyr		
115	120	125
Leu Val Val Arg Leu Ser Met Met Ile His Pro Ala Ala Phe Thr Leu		
130	135	140
Glu His Ile Pro Lys Thr Leu Ser Pro Thr Gly Asn Ile Ser Ser Ala		
145	150	155
Pro Lys Asp Phe Ala Val Tyr Gly Leu Glu Asn Glu Tyr Gln Glu Glu		
165	170	175
Gly Gln Leu Leu Gly Gln Phe Thr Tyr Asp Gln Asp Gly Glu Ser Leu		
180	185	190
Gln Met Phe Gln Ala Leu Lys Arg Pro Asp Asp Thr Ala Phe Gln Ile		
195	200	205
Val Glu Leu Arg Ile Phe Ser Asn Trp Gly His Pro Glu Tyr Thr Cys		
210	215	220
Leu Tyr Arg Phe Arg Val His Gly Glu Pro Val Lys		
225	230	235
<210> 149		
<211> 57		
<212> PRT		
<213> Homo sapiens		
<400> 149		
Met Glu Trp Ser Pro Ser Ala Ser Leu Phe Asn Pro His Ile Trp Ser		
1	5	10
15		
Thr Arg Val Asp Leu Trp Leu Thr Thr Tyr Thr Met Leu Lys Ser Ser		
20	25	30
Ala Thr Ala Thr Thr Ser Cys Gln Lys Val Ser Leu Ala Asn Lys Gln		
35	40	45
Leu Lys Phe Lys Gly Arg Ser Lys Ser		
50	55	

<210> 150
<211> 52
<212> PRT

<213> Homo sapiens

<400> 150

Met His Leu Ala Leu Thr Ser Tyr Ser Ile Leu Pro Val Thr Val Val			
1	5	10	15

Lys Ser Arg Ser Lys Ile Asn Lys Thr Phe Leu Thr Asn Ser Cys Thr		
20	25	30

Ile Phe Ser Phe Val Leu Pro Val Asp Glu Lys Ser Gly Leu Arg Gln		
35	40	45

Ala Ser Tyr Phe

50

<210> 151

<211> 377

<212> PRT

<213> Homo sapiens

<400> 151

Leu Arg Arg Phe Pro Ala Gln Ser Ser Pro Ala Pro Arg Arg Ala Pro			
1	5	10	15

Glu Gln Arg Pro Pro Ala Gly Pro Ala Ser Ala Trp Ser Ser Ser Tyr		
20	25	30

Pro His Ala Pro Tyr Leu Gly Ser Ala Arg Ser Leu Ser Pro His Lys		
35	40	45

Met Ala Asp Gly Gly Ser Pro Phe Leu Gly Arg Arg Asp Phe Val Tyr		
50	55	60

Pro Ser Ser Thr Arg Asp Pro Ser Ala Ser Asn Gly Gly Ser Pro			
65	70	75	80

Ala Arg Arg Glu Glu Lys Lys Arg Lys Ala Ala Arg Leu Lys Phe Asp		
85	90	95

Phe Gln Ala Gln Ser Pro Lys Glu Leu Thr Leu Gln Lys Gly Asp Ile		
100	105	110

Val Tyr Ile His Lys Glu Val Asp Lys Asn Trp Leu Glu Gly Glu His		
115	120	125

His Gly Arg Leu Gly Ile Phe Pro Ala Asn Tyr Val Glu Val Leu Pro		
130	135	140

Ala Asp Glu Ile Pro Lys Pro Ile Lys Pro Pro Thr Tyr Gln Val Leu			
145	150	155	160

Glu Tyr Gly Glu Ala Val Ala Gln Tyr Thr Phe Lys Gly Asp Leu Glu		
165	170	175

Val Glu Leu Ser Phe Arg Lys Gly Glu His Ile Cys Leu Ile Arg Lys		
180	185	190

Val Asn Glu Asn Trp Tyr Glu Gly Arg Ile Thr Gly Thr Gly Arg Gln
 195 200 205

Gly Ile Phe Pro Ala Ser Tyr Val Gln Val Ser Arg Glu Pro Arg Leu
 210 215 220

Arg Leu Cys Asp Asp Gly Pro Gln Leu Pro Thr Ser Pro Arg Leu Thr
 225 230 235 240

Ala Ala Ala Arg Ser Ala Arg Asp Pro Ser Ala Pro Ser Ala Leu Arg
 245 250 255

Ser Pro Ala Asp Pro Thr Asp Leu Gly Gly Gln Thr Ser Pro Arg Arg
 260 265 270

Thr Gly Phe Ser Phe Pro Thr Gln Glu Pro Arg Pro Gln Thr Gln Asn
 275 280 285

Leu Gly Thr Pro Gly Pro Ala Leu Ser His Ser Arg Gly Pro Ser His
 290 295 300

Pro Leu Asp Leu Gly Thr Ser Ser Pro Asn Thr Ser Gln Ile His Trp
 305 310 315 320

Thr Pro Tyr Arg Ala Met Tyr Gln Tyr Arg Pro Gln Asn Glu Asp Glu
 325 330 335

Leu Glu Leu Arg Glu Gly Asp Arg Val Asp Val Met Gln Gln Cys Asp
 340 345 350

Asp Gly Trp Phe Val Gly Val Ser Arg Arg Thr Gln Lys Phe Gly Thr
 355 360 365

Phe Pro Gly Asn Tyr Val Ala Pro Val
 370 375

<210> 152

<211> 29

<212> PRT

<213> Homo sapiens

<400> 152

Trp Asp Pro Thr Leu Ser Pro Val Gly Val Leu Gly Pro Gly Ser Ile
 1 5 10 15

Leu Gly Cys Gly Pro Gly Lys Gly Ser Pro Gly Ala Lys
 20 25

<210> 153

<211> 58

<212> PRT

<213> Homo sapiens

<400> 153

Met Gln Glu Ala Met Val Lys Thr His Phe His Pro Thr Ser Arg Arg
 1 5 10 15

Ser Leu Ala Tyr His Thr Leu Leu Pro Ile Pro Ser Glu Pro Leu Phe
 20 25 30

Ala Ala Pro Gly Glu His Leu His Gln Cys Phe Val Lys Glu Ser Tyr
 35 40 45

Cys Pro Pro Arg Val Leu Ala Lys Glu Gln
 50 55

<210> 154

<211> 41

<212> PRT

<213> Homo sapiens

<400> 154

Gly Gly Glu Pro Gly Leu Arg Gly Ser Gly Thr Arg Pro Cys Leu Gln
 1 5 10 15

Trp Ala Ser Trp Ala Pro Ala Leu Phe Trp Ala Ala Gly Leu Gly Arg
 20 25 30

Ala Arg Arg Val Pro Asn Glu Leu Ser
 35 40

<210> 155

<211> 75

<212> PRT

<213> Homo sapiens

<400> 155

Met Met Leu Gly Ser Leu Ala Pro Asp Pro Gly Ser Arg Arg His Ser
 1 5 10 15

Gly Gln Ala Ala Leu Arg Pro Arg Arg Tyr Pro Thr Leu Trp Asp Arg
 20 25 30

Cys Arg Lys Arg Trp Leu Arg Pro Ile Phe Thr Gln Leu Leu Ala Ala
 35 40 45

Val Trp Leu Thr Thr Arg Ser Ser Pro Phe Pro Val Ser Arg Phe Leu
 50 55 60

Gln His Gln Ala Asn Thr Tyr Thr Ser Ala Leu
 65 70 75

<210> 156

<211> 50

<212> PRT

<213> Homo sapiens

<400> 156

Gly Ala Ser Arg Ala Cys Ala Val Val Gly Pro Asp Pro Val Ser Ser
 1 5 10 15

Gly Arg Leu Gly Pro Arg Leu Tyr Ser Gly Leu Arg Ala Trp Glu Gly
 20 25 30

Leu Ala Gly Cys Gln Met Ser Cys Pro Asn Ser Ala Gly Leu Gln Leu
 35 40 45

Pro Ala
 50

<210> 157
<211> 97
<212> PRT
<213> Homo sapiens

<400> 157
Gly Thr Pro Gly Pro Tyr Pro Gly Pro Leu Ser Pro Pro Pro Glu Ala
 1 5 10 15

Pro Pro Leu Glu Ser Ala Glu Pro Leu Gly Pro Ala Ala Asp Leu Trp
 20 25 30

Ala Asp Val Asp Leu Thr Glu Phe Asp Gln Tyr Leu Asn Cys Ser Arg
 35 40 45

Thr Arg Pro Asp Ala Pro Gly Leu Pro Tyr His Val Ala Leu Ala Lys
 50 55 60

Leu Gly Pro Arg Ala Met Ser Cys Pro Glu Glu Ser Ser Leu Ile Ser
 65 70 75 80

Ala Leu Ser Asp Ala Ser Ser Ala Val Tyr Tyr Ser Ala Cys Ile Ser
 85 90 95

Gly

<210> 158
<211> 173
<212> PRT
<213> Homo sapiens

<400> 158
Gly Leu Phe Pro Ala Val Cys Pro Trp Pro Ala Leu Asp Leu Leu Ser
 1 5 10 15

Gly Pro Gln Trp Gln Arg Gly Pro Gly Pro Gly Ala Gly Val Gly Asp
 20 25 30

Pro Gly Leu Ser Ala Val Ala Phe Trp Trp Gly Ala Met Glu Thr Gly
 35 40 45

Asn Gln Ala Val Gly Ser Gln Arg Trp Ser Leu Arg Gly Glu Trp Arg
 50 55 60

Ala Phe Cys Phe Cys Leu Val Pro Pro His Gly Thr Trp Phe Pro Gly
 65 70 75 80

Glu Asn Glu Arg Arg Gly Glu Val Glu Asn Arg Thr Phe His Lys Gly
 85 90 95

Tyr Phe Leu Ile Gly Cys Lys Met Leu Met Pro Arg Met Met Ile Phe
 100 105 110

Phe Pro Ala Asp Glu Thr Ile Arg Lys Gly Leu Arg Leu Trp Gln Val
 115 120 125

Gly Phe Gly Ala Gly Ala Glu Thr Phe Leu Ser Met Arg Thr Ser Tyr
 130 135 140

Ser Ser Ser Trp Gly Gly Ala Ala Cys Gly Met Ala Gly Glu Asp Ala
 145 150 155 160

Leu Glu Asn Arg Pro Pro Ser Val Glu Gly Pro Phe Pro
 165 170

<210> 159

<211> 109

<212> PRT

<213> Homo sapiens

<400> 159

Gly His Leu Arg Ser Val Phe Ser Ser Pro Trp Leu Cys Gly Val Ser
 1 5 10 15

Ser Gly Leu Trp Ala Cys Arg Glu Val Ala Val Arg Gln Ser Ala Leu
 20 25 30

Trp Pro Cys Leu Cys Pro Ala Arg Gly Arg Gly Leu Trp Thr Ser Arg
 35 40 45

Pro Ser Gly Trp Gly Ser Arg Ser Val Gln Ala Gly Ser Ser Thr Cys
 50 55 60

Pro Pro Arg Gln Pro Ser Pro Ser Leu Ser Ala Gly Ala Ala Gly Pro
 65 70 75 80

Ala Gly Ala Phe Pro Ala Thr Leu Phe Leu His Val Leu Pro Ser Gln
 85 90 95

Pro Arg Pro Ser Thr Gly Lys Thr Ser Arg Leu Thr Pro
 100 105

<210> 160

<211> 152

<212> PRT

<213> Homo sapiens

<400> 160

Asn Ile Arg Gly Asn Gln His Leu Lys Asn Arg Leu His Glu Arg Arg
 1 5 10 15

Ala Ala Arg Arg Gly Ser Ala Pro Pro Thr Thr Pro Thr Ala Glu Asp

20

25

30

Thr Glu Arg Pro Gly Ala Pro Ser Trp Phe Pro Leu Val Pro Asn Glu
 35 40 45

Thr Glu Arg Leu Lys Glu Leu Pro Gly Met Val Thr Ala Glu Lys Lys
 50 55 60

Ser Ser Glu Trp Leu His Ala Ala Ala Ala Cys Val His Leu Pro Ser
 65 70 75 80

Thr Gln Asp Ser Pro Arg Gln Gln Leu Val Phe Thr Cys Pro Pro Pro
 85 90 95

Arg Thr Val Pro Gly Leu Ala Pro Gly Cys Arg Gly Ser Ala Glu Gly
 100 105 110

Ala Ser Cys Pro Ile Ser Leu Ala Asn Ser Leu Leu Leu Leu Gly Pro
 115 120 125

His Lys Arg His Gly Arg Met Phe Leu Ile Arg Gln Glu His Arg Thr
 130 135 140

Pro Asn Pro Ser Leu Cys Leu Ala
 145 150

<210> 161

<211> 3096

<212> DNA

<213> Homo sapiens

<400> 161

gcgggtgacg cgacgacggc tcgacacttt gctacggagt gcacggacg tcgaagccta 60
 gagtctctgc gtcttcctt cttccgctgc ctcattcctt tccttcctag ccttggtcgt 120
 cggccgccacc atgaacaaga agaagaaaacc gttccttaggg atgcccgcgc ccctcggtta 180
 cgtgccgggg ctggggccggg ggcgcactgg cttcaccacg cggtcagaca ttggggccgc 240
 ccgtgatgca aatgaccctg tggatgatcg ccatgcaccc ccaggcaaga gaaccgttgg 300
 ggaccagatg aagaaaaatc aggctgctga cgatgacgac gaggatctaa atgacaccaa 360
 ttacgatgag tttaatggct atgctggag cctcttctca agtggaccct acgagaaaaga 420
 ttagtggagaa gcagatgcta tctatgcagc cctggataaa aggtggatg aaagaagaaa 480
 agaaaagacgg gagcaaaggg agaaaagaaga aatagagaaa tatcgatgg aacgccccaa 540
 aatccaacacg cagttctcag acctcaagag gaagttggca gaagtcacag aagaagagt 600
 gctgagcatc cccgagggttgc ggcgtgccag aaataaacgt cagcggacc cacgctatga 660
 gaagctgacc cctgttctg acagtttctt tgccaaacat ttacagaccg gagagaacca 720
 tacctcagtgc gatccccgac aaactcaatt tggaggtctt aacacaccct atccaggtgg 780
 actaaacact ccatacccgat gtggaatgac gccaggactg atgacacctg gcacagttag 840
 ctggacatgaa ggaagattgg ccaagcgagg aacactctga tggacatgag gctgagccag 900
 gtgtctgact ccgtgagtgg acagaccgtc gttgacccca aaggttacct gacggattta 960
 aattccatgaa tcccgacaca cggaggagac atcaatgata tcaagaaggc ggcactgctc 1020
 ctcaagtctg ttccggagac gaaccctcat caccggccag cctggattgc atcagccgc 1080
 ctggaaagaag tcactggaa gctacaagta gtcggaaacc ttatcatgaa ggggacggag 1140
 atgtgccccca agagtgaaga tgtctggctg gaagcagcca ggttgcagcc tggggacaca 1200
 gccaaggcccg tggtagccca agctgtccgt catctccac agtctgtcag gatttacatc 1260
 agagccgcag agctggaaac ggacattcgt gcaaagaagc gggttcttcg gaaagccctc 1320
 gagcatgttc caaaactcggt tcgcttggaa aaagcagccg ttgagctgga agaacctgaa 1380
 gatgcttagaa tcatgctgag ccgagctgtg gagtgcgtcc ccaccagcgt ggagctctgg 1440
 cttgctctgg caaggctgga gacctatgaa aatgccccca aggtcttgaa caaggcgcgg 1500

gagaacatc ctacagaccg acatatctgg atcacggctg ctaagctgga ggaagccaat 1560
 gggAACACGC agatggtgg aagatcatc gaccgagcca tcaccccgct gcggggccaaac 1620
 ggtgtggaga tcaaccgtga gcagtggatc caggatgcg aggaaatgtga cagggctggg 1680
 agtgtggcca cctgccaggc cgtcatcggt gccgtgattt ggattggat tgaggaggaa 1740
 gatcggaaagc atacctggat ggaggatgtc gacagtgtg tagcccacaa tgccctggag 1800
 tgtgcacgag ccacatctacgc ctacgcctgt cagggtttcc ccagcaagaa gagtggtgtgg 1860
 ctgcgcggc cgtacttcga gaagaaccat ggcactcggg agtccctgga agcactcctg 1920
 cagagggctg tggcccaactg ccccaaagca gaggtgtctgt ggctcatggg cgccaaagtcc 1980
 aagtggctgg cagggatgt gcctgcagca aggagcatcc tggccctggc cttccaggcc 2040
 aaccccaaca gtgaggagat ctggctggc gccgtgaagc tggagttccga gaatgtatgg 2100
 tacgagcggg cccggaggct gctggccaag ggcggacag tgccccccacc gcccgggtgt 2160
 tcatgaagtc tgtgaagctg gagtggtgtc aagacaacat cagggcagcc caagatctgt 2220
 gcgaggaggc cctgcggcac tatgaggact tccccaagct gtggatgtg aaggggcaga 2280
 tcgaggagca gaaggagatg atggagaagg cgccggaaagc ctataaccag ggttgaaga 2340
 agtgtccca ctccacaccc ctgtggctt tgctctctcg gctggaggag aagattgggc 2400
 agcttactcg agcacgggccc attttggaaa agtctcgct gaagaaccca aagaaccctg 2460
 ggctgtggtt ggagtccgtg cggctggagt accgtgcggg gctgaagaac atcgcaaata 2520
 cactcatggc caaggcgctg caggagtgc ccaactccgg tatccctgtgg tctgaggcc 2580
 tcttcctcga ggcaaggccc cagaggagga ccaagagcgt ggtatccctg aagaagtgtg 2640
 agcatgaccc ccatgtgtc ctggccgtgg ccaagctgtt ttggagtcag cggaagatca 2700
 ccaaggccag ggagtggttc caccgcactg tgaagattga ctcggacctg ggggatgcct 2760
 gggccttctt ctacaagttt gagctgcagc atggcactga ggagcagcag gaggaggtga 2820
 ggaagcgtg tgagagtgc ggcctcgcc atggggagct gtggtgccgc gtgtccaagg 2880
 acatcgccaa ctggcagaag aagatcgaaa acatccttag gctggtgccg ggcgcacatca 2940
 agaacacccctt ctgattgagc ggttgcctatg gccgtctcc gtggggcagg gttggccgc 3000
 atgtggaaagg gctctgagct gtgtcccttc tcattaaaag ttttatgtc tcgtgtcaga 3060
 aaaaaaaaaaaa aaagaaaaaaa gggggccccc gggggc 3096

<210> 162
 <211> 1987
 <212> DNA
 <213> Homo sapiens

<400> 162
 ctttgaattt tagaatgtca tgggttcttt taaaaaaatt agtcccccatt cttccctcct 60
 cacgcgtcc ctccctcctt ctctctctct ctctctctcc ctctctcaca gacacacaca 120
 cacacacaca cacacgcaca cgcacgtcca cactcacatt aaactaaagc ttatattgaa 180
 gcaaagctag ccaaattct acgttacttt tcccttgact ggatcccaag tagcttgaa 240
 gtttttgc ccaggagagt aaataactgt gaacaagagg ctctgcctt aggtctttgt 300
 ggctgtttaa gtcaccaaca atagagtca ggttaagaat aaaaacactt tcatagcctc 360
 attcattcac ttagaagtgg taataatttt tccctaattt taccactttt cttttcccc 420
 tgtacctatg ggacttccag aaagaagtta aattgagtaa aatcatcaga aactgaatcc 480
 atgtaaagaaa aaataattgt tgaagaaaaga agttgataga attcaaaaag gccatcttt 540
 tgcttcaca tcaataaaaat ttaccaagta atagatcagt actcactaat atttttgaga 600
 ccatagttgt ctggtcagaa aaattatatt aaatttagtaa attctagaag ctctttaaaa 660
 gggaaagttt cttcttcctc caattatagg agttgatttt tacttgcaa agtggctcg 720
 tcctcatgag catctgcattt ttgactttc agttaagaaa attgttgcattt attagggag 780
 gtggatattc tgatgaagat ctttattccta aaccccttca ctatccctgtt cttattcattc 840
 aagcagatatt tttatgtcaag aattccagag aaggctgcgc cttaaatgtc tacttgccagc 900
 ccaataccag agcataaaact atccattctg gggctcggtt ttagaaatca tctttgtggg 960
 aagacctaatt tcttcacagc aaggatctca ggcattgcctt ctatgttgcattt tccctctgag 1020
 gggcaggaat gaactgtaga aatgttttaa ggaccccgaaa accccatatg tctcattcca 1080
 tgactataagg tgagagaattt ctttccatgg agggtttgcattt accaataagg gaaaatgtaa 1140
 aatgttcagt ctttatgaca acctggcata aaggagtcattt ttctttatgtaa agagacacaa 1200
 gggccttattg gccagggtttt cttgggacaa gactctcacc agcacatcac acacgttctc 1260
 ctttggaaagg agaaggcgtt catcccggtt gagaggtcac aaagcattag tggaaagaaat 1320
 gtggtaaagg ggggaaggtt ttatgcggct gtcctccctcg tccctcgatggcaggat 1380

ccataatgtg gagactagta actagatcct aaggcaaaga ggttttctc cttctggatg 1440
 attcatccca aaggcttccc acccaggtgt tctctgaaag cttagcctta agagaacacg 1500
 cagagagttt ccctagatactcctgcct ccaggtgtg ggacacacct ttgcaaaatg 1560
 ctgtggaaag caggagctgg ggagctgtg taagtcaaag tagaaaccct ccagtgttg 1620
 gtgttgtga gagaatagga cataggtaa agaggccaag ctgcctgt tagtagaga 1680
 agaatggat tggttcttct tttgtattt tttgtatcat aaacacttg aacaacaaag 1740
 accataagca tcatttagca gtttagcca ttttcttagt aactcatgt aacaagtaag 1800
 agtaacataa cagtattacc ctttactgt ttcacagga catgtaccta attatggta 1860
 ttatattatgt agtcaactgtt tttctggatt tttaaattaa taaaaaagtt aatttgaaa 1920
 aatcaaaaaa aaaaaaaaaa aaagtgcacc ggcagcgaat ttagtagtag tagtagtagt 1980
 agtaggc 1987

<210> 163
 <211> 1107
 <212> DNA
 <213> Homo sapiens

<400> 163
 gggccgggca gcccagctga aggcaataag ctgggctcac cgctgcagca gagttctgtg 60
 ctagccggc ataggggcga gagaaggccc agaggcgacg tcagagagaa gcaactgcgc 120
 cccggtaag agaagctcgc ccatcaccgg ctgggagcca gcttcagtg aagatggcag 180
 ggcgcagaact gttcttgac tccaacatct gcctctgggt gtccttaccc atcgttatca 240
 ctcttcgtag acatgatccg ccactacgtg tccatcctgc tggagagcga caagaagctc 300
 acccaggaac aagtatctga caggggacga ggcacccaca gtccctctcc cataagcctg 360
 ccaagaagat tgatgtggcc cgtgtaacgt ttgatctgtt caagctgaac ccacaggact 420
 tcattggctg cctgaacgtg aaggcgactt tttatgatac atactccctt tcctatgatc 480
 tgcactgtg tggggccaag cgcacatcga aggaagctt ccgcctggcc ctcttcagca 540
 tgcaggccac agggcacgtt ctgcttggca ctcctgttta ctcgcagcag ctccctcgatg 600
 ctacggagga agggcagccc cccaaggggca aggccctatc ctttatcccg acctgtctga 660
 agataactgca gtgaaagccc aagtccttgg aagcttccc cagtaagga ctgactgggg 720
 gcctcacgt taactgttag tggccacacaag ctcgcagct gttagagccgc gaacctcccc 780
 acacccctt caccgcgcag gaccctgagt gaggaggagg agctggaaac ctgggggtggg 840
 ttggccaaag gagaacctca agtccttggc ctgatccagc tccttcctgc ccaaggcagc 900
 tttagccatc cagactggtc ctgaagtctg tccctccatt ggcacatgtt ctgcccccta 960
 gcaatccgc ctcgcaggct gtactttcat ggtctctt accttctggc ccccatcccc 1020
 gaacattcctt gaggtaattt gcaagcgcac tagcatgtga tattaggag tttgcaataa 1080
 attattgagg ctgatgtaaa aaaaaaaaaa 1107

<210> 164
 <211> 1062
 <212> DNA
 <213> Homo sapiens

<400> 164
 gtgaatatgt gtgttatatgt gtgtgtatgt gtgtgtgggg tttggggtag aaggaggaga 60
 gggggcagga cagtgtggaa tctcttaggt gtatgggtag gttaggggca cagttatcc 120
 taagtggct tttatgtttaa aagcctctgg ggatatctgt tttggaaaata aagataggtg 180
 tcccttcctt gctgtcatct agcccaagaca ctctgcctgc tctctggctg tctgctccct 240
 gggaaaggctt taggaggacc acccaggaca ggatgaccat gtcgcacatc gctctggagc 300
 tgggtctcag tgcagaggaa cagtgcactgt ggatgggtgc agtctctggt gggaggttag 360
 gatagaagtg ataaagagct aagaggagct tctgggagcc ttggaggagg tcagtcttgc 420
 agtgggtgaag ccaggacata ggagatggag cagggtgtg agaggaggag attctgagga 480
 ggatgcaggg gaaatcttgc ctgttaatga aatagggggtg ggggtgggtt tgggggtgggg 540
 tggtcatgtc cgtttgcgtt gctgatttc atgagtcgcc ttcaaaaactc tcgtgttaggg 600
 ttgacaatgt ggggggggtgg gggatccagc ttattctttt atttcaagt ccattcttgg 660
 ggctgggtggg gaggcaggag aatacccttc cctaagccct tagtgtgtgc cgagcttgct 720

ttgtgatgtt	ggcaggggag	gggagacctg	ggtgtgact	gagtccctt	tatcaaacc	780
ttcaatggc	acaaaattga	gtgcggatt	ttagggttta	ttttttatg	aatgtccaa	840
tctgtgttc	ccctgcct	cccagactgt	gtggccagtt	gaaagtgtct	ggtttgtgtt	900
catctctccc	tcatttctgg	agcagggcct	gagaccctgc	cacatctcct	atgctctgca	960
tccacgcctc	tttggacat	taaagggttga	ttgatgcaaa	aaaaaaaatac	aacgggggtgg	1020
cttggggaaag	cctggggttg	gccggcttat	ggggttgcgg	cg		1062

<210> 165
<211> 2770
<212> DNA
<213> Homo sapiens

<400> 165	ctactatgga	taatttcaaa	gtagaatcac	tctatgctta	gagtttgcc	accaatgtg	60
	tagggcagca	gaatctattc	tcagtaaaat	aacttatgtt	ttatttagata	ttctgtattt	120
	gattttacca	gcttgacttt	tactgctcag	atgctttctt	tccccccctt	agacgctgt	180
	attctcttgg	gaagagtaac	tattcttaag	gtttttacag	ataccacct	tagttgtaaa	240
	ttggatagtt	tatatttctg	ggactttta	aatgaaaatg	tggaatgtt	agttacaaaa	300
	gactttcat	cagaaaattt	caaacaatgt	aaacatggcg	ttttagtgc	ctctaaaatc	360
	taggtgc	caccaccaa	aggcataatcc	tgcaaaggcc	tgtgaactat	cttggtaaac	420
	tgtcttgggt	ccccttcca	tgtatgttt	cttgcactg	aaaacaaca	acgctgagtt	480
	tatcaagaaa	attaaatttgc	ggggatcata	ataattccaa	ccaagtgaca	actctgacat	540
	caaggttatt	aggagctgt	catccaattt	aagtttattt	tgctgttatt	ctgggagaat	600
	aaacttgtat	atggagaata	aactaataaa	cttgcata	ggaatccat	aaagttataa	660
	attagcctga	aaaatatttgc	aggtaatgtt	gtggattggc	ctgccttgac	tctcagccac	720
	caacagaaat	cttgcacc	tttgcctc	agctaaaatg	aattttgtt	taaacacaaa	780
	gtgactttaa	acaggtaaaa	aaccattcc	tattttgc	cattacaaa	agtttttcat	840
	atacctacag	agctaactaa	ttacaactga	tttgcattc	tcaagtttgc	accagttaaa	900
	cccataggat	cctgtatgg	tatcaatgt	atgccttgc	tttcataaaaa	taggtataat	960
	tgggtcatac	acttgacgag	agggtgactg	tttctagggg	aagaaaaccc	tttagattgc	1020
	aggttaactt	cactttttt	ttttaaata	tacactttac	atttgtataa	attatgcagg	1080
	gtactcctaa	ccctgtagaa	atgtatgacc	tctcacaag	tttagatttg	atccaaagag	1140
	aaatgcaagt	ataaaaagaat	tagatacatt	attatcttt	aagtttttt	ttttttttt	1200
	gtagagatgg	gggtctact	gtgttgc	ggctggctc	aaactcctgg	ccacaagtga	1260
	tcttcctg	tcagcctccc	aaaatgctga	gattacagcc	atgagccact	gtacccagcc	1320
	tttccttata	aaattcaaaag	agaaaatttgc	tacaccttta	tccctcaat	aaaacaatgt	1380
	ctcagtttt	accgtgc	tgcaaggtct	atatgtaaa	gaaatctgaa	atttagctgt	1440
	agaataaaac	ttgataaaata	aaaagaaaaa	acatacattt	ctccagttgg	tttgctctt	1500
	gcttggtaa	gtaataaaacc	gtttttaaga	gaaaataactt	gctgtaaacc	cccagtgc	1560
	tcaactctt	ttggcagaata	ttttttaaga	aatccagcaa	gcaaactttg	aggtgcta	1620
	gaaagtaaag	gaagggtgg	tttctagttt	ttggcagaat	gaaaagtgtc	tcacaagaga	1680
	catcactacc	cacgtgggt	ctggctgctt	tctaccaaa	acatttagag	aagaagtgaa	1740
	ttgagtcaagg	gtgatgggt	acactacata	ttttagatgt	gtttaagttt	agaattaatt	1800
	atgtttatca	ttggatggct	ctaataccaa	gctcatgatt	gttgcagcc	caacgttca	1860
	ggcagtaaaa	cttgc	gcactaaagg	gggagaaacc	cttataattt	gcaaaactgtc	1920
	cattcgtaa	atttattgt	acctaatacc	aaaaactgccc	gttttgcata	ttatttcccc	1980
	accttctact	ttttttgtt	tttttgc	tttgcata	aaaaatcttct	agaaaataa	2040
	cattaactgg	aatgtttca	acaatttgc	ttcattttac	tatcagccac	tagtgaactc	2100
	ttacagagat	gtacatttaa	gataaaattt	gcttgc	agtgtttaa	aaacattgtt	2160
	tactgttaaa	ggggatttgc	acattatatt	taactggat	tgctccctcc	ctcagttctt	2220
	aaaaaaaacaa	gagtcaaggc	tcacaccaac	tttgc	ttggagctt	gccataggt	2280
	gatacaatgt	agaagtatac	ttttttaaag	catgaagaag	acaaggaact	tcattataat	2340
	gtaccaggt	gaggacatta	ttatttcaaa	gattatgcac	agctcagt	agatgaagtt	2400
	acaatttttc	tcgcagctt	gttgc	ttttctctg	cataatgt	tgctcattt	2460
	attatgtgc	ttgctccctg	attgt	ttttatata	tatata	tatagataga	2520
	tagatagata	gatatatgag	agagatata	tca	tgaggatgtt	tttctgagga	2580
	ttttttgtt	ctgctggatt	aa	tttgc	tttgc	tttgc	2640

actattgtaa tggcttagca cactagtcgt acagtcagtg taaatgttt tcatttacat 2700
 gttttcatta tatcagctta tcaaattcctt aataaaaaaa attcatagat ttcatttaaa 2760
 caaaaaaaaaa 2770

<210> 166
 <211> 4242
 <212> DNA
 <213> Homo sapiens

<400> 166
 ggccattgac cctagagggtg aaaccgaagc tctgatggac tctcacagct ggagatgaaa 60
 atacgaggtt tacacggaga atgcacccac tgagaaaacg gaacccaata gtcaagagga 120
 caagaatgtt ggtggaaaat caagaaaagg gaatataaaaa cttgcctcat cagaaccaca 180
 gcattttaca acaactgtga ctgcgtcgac cccgaccgtg gcctttgtgg aatttccctc 240
 cagccccccag ctgaagaatg atgtgtcgga agaaaaagac cagaagaaac cagaaaaatga 300
 aatgagtgga aaggtggagt tgggtgtgc acaaaaagggtg gttaaagccaa aatctccaga 360
 acccgaagca acgctgacat ttccatttct ggacaaaatg cctgaagccaa accaactaca 420
 tttgccaaat ctcaattctc aagtggattc tccaaaggcgt gagaagtcac ctgttatgac 480
 accttttaag ttctgggcat gggaccaga agaggagcgc aggccacagg aaaaatggca 540
 acaggaacag gaacgtttgc tccaggagag ataccagaag gaggcaggaca agctgaaaga 600
 agagtggaa aaggccaaa aggaggtgg aagggaaagaa cgccgataact atgaggagga 660
 gcgtaagata attgaagaca ctgtgggtcc atttactgtt tcttcagtt ccgctgacca 720
 gctgtctacc tcttccttcca tgactgaagg cagtgggaca atgaataaga tagacctggg 780
 aaactgtcaa gataaaaaac aagacagaag atgaaagaaa tcattccagg gagatgacag 840
 tgacttattt ctgaagacta gggaaagtga tcgactggag gagaagggca gcctaactga 900
 agggggccttgc gctcattctg ggaaccctgt atcaaaagga gtccatgaag accatcaact 960
 ggataccgag gctggggccc cacactgtgg aacaaaaccca cagcttgc tccaggatccatc 1020
 ccagaatcatcag cagacatcaa atccaaacgc cagttcagaa gatgtgaagc caaaaaccc 1080
 cccgctgat aaaagcatta accatcagat cgagtctccc agtggaaaggc ggaagtctat 1140
 aagtggaaag aagctgtgtct cttcctgtgg gcttccttgg ggttaaaggag ctgcaatgat 1200
 catcgagacc ctcaatctc attttacat ccagtgtttc aggtgtggaa ttgttaaagg 1260
 ccagcttggaa gatgcgtgtga gtgggacgga tgggtggattt cgaaaatggc tcctgaactg 1320
 taatgatgc tacatgcgtat ccagaagtgc cgggcagcct acaacattgt gacacggc 1380
 tcaagcttcc ggatcactca ccattttttt actgagagtg tcccctggca actgcttaac 1440
 aaaatcccaa gctcaggggc ttctcagcat ttacctaatt tctgaaaggc tcttctgaaa 1500
 ggtggatct gtttttcgt agcacagtgt ttatgtttt cctgtttt gttttgggtt 1560
 tttgtttttt ttttgcatt tgcacagtat acacaaaaga atatgggtt gtaatgatcc 1620
 tgaatagtc aaaaaagggtt ttagcatggt caaacaggct tatgtttaa aatgtgttat 1680
 tctcttcttt ggaaatttagc taaatgatgc aataaaacctg ttttgttttta gaatgtctag 1740
 gaattaaaca ctttatgttt acagaattga gctgcagaaa gtcagacata tgccaatttg 1800
 agacacacgg tcttctaaga ctgaaggata aatttaatgc atttcagaaaa ctaaacatca 1860
 cagcaagctc tatctctgag ctataatttgg ttttaatgc aaagacacta gtttgataat 1920
 atataactgtatc atcctgaaac atttgtgtta cttaccttgg gaggttagaaa ttataccaat 1980
 aaattattgc accgttagta tttagattctg tgcacatggaa aagttatgtc attaataatag 2040
 gctggttcat caaataaaagc aaaacccatgc aatatcagct agatttacac tccgggacgt 2100
 tgcccaaaagg taggaagaaaa gcagaggggaa atatttcagt catcatttcc aaagtcatta 2160
 tcaaaatctg tgaggaagtt taatcttcca aagagtcaat gtcagacatc aggccctctgt 2220
 tgcctgttcc tctcgaggca cttagattgg agtcttcaat aagagactta acatgaggtt 2280
 tatggaagat gaggcaccga gataagttca tcatttaggtt tgacgtactgc tcacccttgc 2340
 tggcaaggatc tccttaaggg cctgaagcac aggtgtccaa agaaaaagcgt taagtccatc 2400
 ttaatagaat ctatgtggta tatgtatgtgg tcagccccctg gtctgtgatc agcaagaacc 2460
 tacagcacatc attatgcctt gcccacttca atgaataacct actctccatc attctccatc 2520
 acttttttttgc tctcaagaa ctccggaccc tgccttgc gaaatgttgc gatggactct 2580
 tggggagatc tgggttattt tctgcctgt ggcacgttgc tcagctggcc aagaaaggag 2640
 tcaagttattt aaaaagcatc acaatgtaga tctccaggtt ggtttttgt ttttgttgc 2700
 taagactggg gaaagggggc ctatttatttgcctttaat caatggcaaa taagtcaaga 2760
 tgacatttttgc tgaatgtaga tctatggatac actcctaata gattgtatc gtcataaaag 2820

ggggtcaagt agatgtttt ctgttatgta agcaataatt tttccgtgtc ttattgagta 2880
 tggcttagcga ttatttatta catgctagat gggttcttg catgtgggtt ccatataagg 2940
 gcagaaaattt cctcagccac tggagggatt tcgaccatat ttgtcatttg gatgagctgt 3000
 tattagattt aaatctcac acatattcat taaaaatttg gccttagaaa acgcaaagct 3060
 gttgcacatg gcgataaattt atggatgcag tacattgaag agagatgaag tcacttcaa 3120
 gtttccaaga cttctcatgg aggtgtttgc tggttacag gaaaaaaataa aaataaaaaaa 3180
 agaaaaaaaaa gagaaaaaaat taaattcaa aattgttttgg aaaaatgtaca gatcaagtcc 3240
 aatattttga ttatccaccc gcatgttttta ttaaatattt tgataatgtg gatgtttaca 3300
 ctttgcatttga tattagcaga gtaccactag taatgcacaa acatgtacaa tatggtcatt 3360
 cataaccgtt tttttagaa tacttttac atgtgcaact ccattccgtt tgtaaggatt 3420
 acatgaatattt tgcacattcc cttctgttt cacaaacccaa tttatata tttcttagtg 3480
 aggctcattt tacatgtattt gaagctagaa tcgagtcag aaaaataaag ccccattctc 3540
 caactgcaaa atgtgttttcc ccataatgaa cactagtac cagcacagaa taatctcaa 3600
 cattttctaa attctaatttgc ccaactgtttt ctatttataat ttgatttata tttcatttgg 3660
 agtctgttac atggcagctt aggcagacta gatcttgg tttccaatgc agcataatga 3720
 gtatgatcta tttctttca aataatctt gtagtccca gaaaaaaaaa atgctctgct 3780
 ccattgagct ataatgtaaa tgggtttttt gaaaaaacag gtgaggcaag tgagtgattt 3840
 attgttcctg aggaagtata tctgattttt tttctcatac tccaaaagct agtccctact 3900
 cttaataaaa aataatgggt aacttttgc ttttcaacta cgaacttcca tgacatttcc 3960
 tttctatgtt ggtgtattaa tgcaatacat attatagttt tctatacaca gtgttaagatt 4020
 taacaaaactg aaatgatcca cctcataatgtt ggtccgtcc aaaagatgtt actgctctgg 4080
 gtgggccagt gttctatatc gtttatacta actttcattt aaagtattta ttctaaaatg 4140
 cctctgagaa acagaaaaaa ataaaaacaa caagttgtctt aaaaatgcaac agctttata 4200
 gtaaatgtac atttataataaa aataactca aatcaaaaaaaaaaa 4242

<210> 167
 <211> 2640
 <212> DNA
 <213> Homo sapiens

<400> 167
 ctagcaagca ggttaaacggc ctttgtacaa acacacacac accaacaacat ccggggatgg 60
 ctgtgttttgc ctagagcaga ggctgattaa acactcagtg tggtggctct ctgtgccact 120
 cctggaaaat aatgaatttgg gtaaggaaca gtaataaga aaatgtgcct tgctaactgt 180
 gcacattaca acaaaagagct ggcagcttcc gaaggaaaag ggcttgcct gctgccgttc 240
 aaacttgcata gtcactcat gccagcagcc tcagcgtctg cttccccagc acaccctcat 300
 tacatgtgtc tggctggctt gatctgtcata tctgctcggg gacgctcctg acaagtcggg 360
 aatttctcta ttttccact ggtgcaaaaga gccggatttctt ccctgcttctt cttctgtcact 420
 ccccgcttcc ctccccccagg aggctcctt gttatggta gctttggact tgcttccccg 480
 tctgactgtc cttgacttctt agaatggaaag aagctgagct ggtgaaggaa agactccagg 540
 ccatcacaga taaaagaaaaa atacaggaag aaatctcaca gaagcgtctg aaaatagagg 600
 aagacaaaact aaagcaccag catttgaaga aaaaggcctt gagggagaaaa tggcttcttag 660
 atggaaatcag cagcggaaaaa gaacaggaag agatgaagaa gcaaaatcaa caagaccagg 720
 accagatcca ggttcttagaa caaagtatcc tcaggcttga gaaagagatc caagatctt 780
 aaaaagctga actgcaatc tcaacgaagg aagaggccat tttaaagaaaa ctaaagtccaa 840
 ttgagcggac aacagaagac attataagat ctgtgaaagt ggaaagagaa gaaagagcag 900
 aagagtcaat tgaggacatc tatgctataa tccctgaccc tccaaagtcc tacataacctt 960
 ctaggttaag gaaggagata aatgaagaaaa aagaagatga tgaacaaaat aggaaagctt 1020
 tatatgcat gggaaattaaa gttgaaaaag acttgaagac tggagaaaatg acagttctgt 1080
 cttccaatac ctctggccat cagatgactt taaaaggtac aggataaaa gtttaagatg 1140
 atgggcaaaa gtccagtgtt ttcagtaaag tgctaatcac aagttggagg tcaatggcac 1200
 cgatggcttgc gcaccagttt aagttagagga acttcttgc caagcctcag agagaaaactc 1260
 taaaatccccca acagagtatc atgagctgtt atatgcaat cccttttaca ggcctacac 1320
 cccacagaga gaaacgggtga cccctggacc aaactttcaa gaaaggataa agattaaaaac 1380
 taatggactg ggttattgggtt taaatgaatc catacacaat atgggcaatg gtcttccaga 1440
 ggaaagggaa aacaacttca atcacaatcag tcccatccg ccagtcctc atccccgatc 1500
 agtgattccaa caagcagaag agaagcttca caccggcaaa aaaaggctaa tgactccctt 1560

ggaagaatcg aatgtcatgc aggacaaaaga tgcaccctct ccaaagccaa ggctgagccc 1620
 cagagagaca atatttggga aatctgaaca ccagaattct tcaccactt gtcaggagga 1680
 cgaggaagat gtcagatata atatcggtca ttccctgcct ccagacataa atgatacaga 1740
 accgggtgaca atgattttca tggggtatca gcagggcagaa gacagtgaag aagataagaa 1800
 gtttctgaca ggatatgtatg ggatcatcca tgctgagctg gttgtgattg atgatgagga 1860
 ggaggaggat gaaggagaag cagagaaacc gtcctaccac cccatagctc cccatagtc 1920
 ggtgtaccag ccagccaaac caacaccact tcctagaaaa agatoagaag ctatgcctca 1980
 taaaaacaca aatcataaat ccccccacaa aaattccata tctctgaaag agcaagaaga 2040
 aagcttaggc agccctgtcc accattcccc atttgatgtc cagacaactg gagatggac 2100
 tgaggatcca tccttaacag cttaaggat gagaatggca aagctggaa aaaaggtgat 2160
 ctaagagttg taccacctat ataaacatcc ttgaagaag aaactaagaa gcatttgc 2220
 atttctcttc tggatattt gtttatttt tctgaagtcc aaaaattat cattacagt 2280
 taccatatta agccatgtga ataagtagta gtcattattt gtaaaaattt cccaaaaagc 2340
 tggggaaaac aaatgtgtaa ctttccagt tacttgacac gattcagtgg gggaaaacca 2400
 gcattttta ttctattgt accaaagcat ttctaataag agcttgtaa attaagaat 2460
 aaagttattt aaaatattct gagtagatg tattaactgg cattgttaatt ttgatgatac 2520
 aaagattgaa agatcatagg aaagcattgc cttcatcac agaagtattc aactctgaca 2580
 aataaatatg tcatcctgaa ttaataatgc cttataaaaa gtacatcctc ctgctaaaaa 2640

<210> 168

<211> 1558

<212> DNA

<213> Homo sapiens

<400> 168

gcgaggagct ggcacgcagc cagggccttt gctcaagaag ccataccagc caagaattaa 60
 aatctctaaa acatcagtgg atgggtatcc ccactttgtt gtggatttcc ccctgagcag 120
 actcaccgtg tgcttcaca ttgatggca gcccggggac atcctcaggc tggctctga 180
 tcacaggggac tctgggtca cagtgaacgg agagtttaatt gggcaccgg cccctccaa 240
 tggccacaag aaacagcgc cttacttgcg cactatcacc atcctcatca acaagccaga 300
 gagatcttat ctcgagatca caccgagcag agtcatctt gatgggtggg acagactggt 360
 gctccctgc aaccagagtg tgggtgggg gagctgggg ctggagggtgt ccgtgtctgc 420
 caacgc当地 gtcaccgtca ccatccaggg ctccatagcc tttgtcatcc tcatccacct 480
 ctacaaaag ccggccct tccagcaca ccacctggg ttctacattt ccaacagcga 540
 gggccttcc agcaactgccc acggactgct gggtcagttt ctgaatcagg atgccagact 600
 cacagaagac cctgcaggggc ccagccagaa cctcactcac cctctgtcc ttcaggtggg 660
 agaggggcct gaggccgtcc taacagtggaa aggccaccaa gtcccagtgg tctggaaagca 720
 aaggaagatt tacaacgggg aagagcagat agactgctgg tttgccagga acaatgcgc 780
 caaactgatt gacggggagt acaaggatta cttggccatcc catccattt acacaggat 840
 gacacttggc cagggatgt ccagggagct ctgaagctgg cagccttaaa gatgcaagt 900
 catgaaggac agtcatgtgg ggaggccgtg gggcagctct tttcatggct tgtacacgccc 960
 tcagctctg gcaattagct ggactccatg acccaccctt ggtgcagcat agatccgac 1020
 tctgtctggg cgaagggttag ggggtggtag gggcgggaaag cctgagtgca aatgtcattt 1080
 ccctctactg cctctccctg cctctccccca ccctgcccac atccacagag gggagagaag 1140
 ggtcatagct aaatgcaaca aagtctgtat ctgtcccaa cctgctttc ttttctgtt 1200
 gcatatata aagtaaggct ttctgggtaa ggaagggtgc tatgaaactt ttttcttgg 1260
 tggaaatggc caagtttagg cactctgtt tttgccttac actaatgctt agaaagctgt 1320
 ctttcagtg gtgtgcagc ccccgatgt gtggccaacc tctgctgcaaa aggaatctct 1380
 tgctgatcc agggcaccctt tcaggccaaat agccatatac tttgatcgat gtaaaccatg 1440
 aagtctttc ttgcaagacg ttttcttct gctgtggat cttggccctt aaaaattatgtt 1500
 ttcattaaaa agaaatttga ttgaaaaataa aaaacccggaa tggaaaaaaa attgtttt 1558

<210> 169

<211> 1388

<212> DNA

<213> Homo sapiens

<400> 169

cggggttcac tgtgttgcc aggctggtct cgaactcctg acctcatgat ctgcccgcct 60
 cagcctcca aagtgtggg attacaagtg tgagccacca cacctggcct ggaaggaacc 120
 tcttaaaatc agttacgtc ttgtatttg ttctgtgatg gaggacactg gagagagttg 180
 ctattccagt caatcatgtc gagtcactgg actctgaaaa tcctatttgt tcctttattt 240
 tatttgagtt tagagttccc ttctgggtt gtattatgtc tggcaaataatga cctgggttat 300
 cactttcct ccagggtag atcatagatc ttggaaactc ctttagagagc atttgtcc 360
 taccaaggat cagatactgg agccccacat aatagatttc atttactct agcctacata 420
 gagctttctg ttgctgtctc ttgccatgca ctgtgcggg gattacacac ttgacagttac 480
 caggagacaa atgacttaca gatccccga catgcctctt ccccttggca agctcagttg 540
 ccctgatagt agcacgttc tgttctgtat gtacctttt tctcttctc tttgcatcag 600
 ccaattccca gaatttcccc aggcaatttg tagaggacct ttttgggtc ctatatgagc 660
 catgtcctca aagctttaa acctccttgc ttcctacaa tattcagttac atgaccactg 720
 tcatcctaga aggcttctga aaagagggc aagagccact ctgcgccaca aagggtgggt 780
 ccatcttctc tccgaggttg tgaaaatttt caaattgtac taataggctg gggccctgac 840
 ttggctgtgg gctttggag gggtaagctg ctttcttagat ctctccctgt gaggcatgga 900
 ggtgtttctg aattttgtct acctcacagg gatgttgc ggcttggaaa ggtcaaaaaaa 960
 tgatggcccc tttagcttctt tgtaaaaag gttagatgaaa tatcgatgt aatctgaaaa 1020
 aaagataaaaa tgtgacttcc cctgctctgt gcagcagttc ggctggatgc tctgtggcct 1080
 ttcttgggtc ctcatgccac cccacagctc caggaacctt gaagccaatc tgggggactt 1140
 tcagatgttt gacaaagagg taccaggcaa acttcctgct acacatgccc tgaatgaatt 1200
 gctaaatttc aaaggaaatg gaccctgtt ttaaggatgt aaaaaagtat gtctgcatcg 1260
 atgtctgtac tgtaaaatttc taatttatca ctgtacaaag aaaacccctt gctatttaat 1320
 tttgtattaa agggaaaataa agtttgggtt gttaaaaaaaa aaaaaaaaaa 1380
 aaaaaaaaaa 1388

<210> 170

<211> 2416

<212> DNA

<213> Homo sapiens

<400> 170

gtccctggcg ccctgccttt agccgtgggg cccccacctc caccctctgg gtttcttagg 60
 aatgtccagc ctggagacc ttcacaaaagc cttggaggg ttagtgc tggtctgtac 120
 aagaggccgc tggggacact gtgctttt gttcgttt tgcgtatctcc cggcacgttt 180
 ggagctggga agaccacact ggtggcagaa tcctaaaatt aaaggaggca ggctcctagt 240
 tgctgaaagt taaggaatgt gtaaaacctc cacgtgactg tttgtgc tttgacctgg 300
 gaagacgcct catgggaacg aacttggaca ggtgttgggt tgaggcctct tctgcagaa 360
 gtccctgagc tgagacgcaa gttggctggg tggccacac cctgctctc ctgcaggccc 420
 acacacctc caggcctgtg gcctgcctcc aaagatgtc aagggcaggc tggctgcacg 480
 gggagagggg agtattttgc cgaaatatga gaactggggc ctcctgcctc cagggagctc 540
 cagggccct ctctcctccc acctggactt ggggggaact gagaacact ttccctggagc 600
 tgctggcttt tgcaactttt tgatggcaga agtgcgttgc gagatccc cttctcttc 660
 aggaacgttag atgtcggtt gtcttgcctt gggggcttg gaacctctga aggtggggag 720
 cggAACACCTT ggcacccctt cccagcactt gcattaccgt ccctgcctt cccaggtggg 780
 gacagtggcc caagcaagcc ctcactcgca gccacttctt caagagctgc ctgcacactg 840
 tcttggagca tctgccttgc gcctggcact ctggccgtgc cttggaaagg tcggaaaggt 900
 ggactttgtc ctggccttcc cttcatggcg tctatgacac ttttgggtt atggaaagca 960
 tggacctgt cgtctcagcc tggtgggttgc tctatcattgc ctcaaaacctt ggggttaggt 1020
 ggacgggggg tctcgtgccc agatgaaaacc atttggaaac tcggcagcag agttgtcca 1080
 aatgaccctt ttcaggatgt ctcaaaacctt gtgccaagg tcactttctt ttccctgcctt 1140
 ctgctgtgag ccctgagatc ctccctccag ctcaaggac aggtcctggg tgagggtggg 1200
 agatttagac acctgaaaact gggcgtggag agaagagccg ttgctgtttt tttttggg 1260
 agagtttta aagaatgcat gttttttcc ttgttggaaat tgtagtagaa ctgaggctgt 1320
 gcttcaggta tggtaacaatc aagtggggaa ttcatgtc gaaccattca agccctcccc 1380
 gcccgttgc cccactttgg ctggcgtctg ctggagagga tgtctctgtc cgccattcccg 1440

tgcagctcca ggctcgacca gtttcttc tctccctgga tggtgagtct catcagaata 1500
 tggggtagg ggggtggacgt gcacgggtgc atgattgtgc ttaacttggt tggattttc 1560
 gatttgacat ggaaggcctg ttgcttgct cttgagaata gtttctcggt tccccctcgc 1620
 aggccctatt ctgttgaacat caactctgaa gtttgataca gataggggct tgatagctgt 1680
 gttcccctt cccctctgac tacctaaaat caatacctaa atacagaagc cttggctaa 1740
 cacgggactt tttagttgcg aagggcctag ataggagag aggtaacatg aatctggaca 1800
 gggagggaga tactatagaa aggagaacac tgccctactt gcaagccagt gacctgcctt 1860
 ttgaggggac attggacggg ggccggggc ggggggttggg tttagctac agtcatgaac 1920
 ttttggcgc tactgattcc tccaaacttc caccaccaa aataacggg accaatattt 1980
 ttaactttgc ctatttttt ttgggtgagt ttccccctc cttattctgt cctgagacca 2040
 cgggcaaaac tcttcatttt gagagagaag aaaaacttgtt tggaaccaca ccaatgatat 2100
 ttttctttgt aatacttcaa atttattttt ttattttt gatagcagat gtgctattta 2160
 tttatattaat atgtataagg agcctaaaca atagaaagct gtagagattt ggttcattt 2220
 ttaattggtt tgggagcctc ctatgtgtga ctatgactt ctctgtgtt tggatattt 2280
 tctgaattaa tgacctggga tataaagcta tgctagctt caaacaggag atgccttca 2340
 gaaatttgta tattttgcag ttgccagacc aataaaaatac ctgggtgaaa tacaaaaaaa 2400
 aaaaaaaaaa ctcgag 2416

<210> 171
<211> 2720
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (17)
<223> a, c, t, g, other or unknown

<400> 171
ggagctgtcc ctgactntgc aggccctgagc gagtgtgtga gcatgcggg acatgggtgt 60
gtatggcaca cataggtgcg tggatgtctt ttgtattttt ttcctccaa ggagctgtgt 120
cagtgtggac gttctgtttc agggagttgg aaaggagggt gtctgcagaa ggtggagac 180
aggggcagag gccccactgg ccacccctg cttccctgg tgaaaccttg tgcctggta 240
ccaaagtccc tccaaagtgc tcccttctt ggttattca agccaaatat ctgggttcc 300
ccctctccctc attccctagc aaaccccaat tatcttcaa gataggagat attcccatc 360
ccctccctt gtaaatatct catctccac tggagagccc aggacctat tcctggcatg 420
gatgttctgt ccacacttga ggctggcgg tttatcgac cttcaagca gcctggctgg 480
ggcccaggac tgagtctggg gtcagcttc acggtcgtt ttcccttcctt caccaccac 540
cacagcccac cttgcattca tggccagccc ctccactcca gcctgagcca tggatgtcccc 600
tgcgggagga cccattcatg ccagaaagct ggtactccc tccacgcattt cctgcggaaag 660
gagtcagttt ctgagagtgt gacttttcaa ggcgaatgtat ggggaagggt tccccagtc 720
ccacagtggc cccacacttgc ggccctgcac cagacccctt ctgtgtcactt gcgggctgtg 780
caccatgca cacacactacg cacacacaac actccgcact gcagtatattt ctggccaaag 840
atttccttta aaagcaagca cttttactaa ttattttttt gtaaatgtttt atcttcttct 900
gtcttctccc tccctgaatc tattttactg ttgttttattt ttgaatctgtt gtgtcagcca 960
ggagagcgct gtctggcctt gaacatggc tggatggga aagggtctgg gagaagatgg 1020
gcaacaaaga gccaggaggt catggacatc gcagcgcacgc agaccccagc agttcagtc 1080
ccgtgtgtcc accagctgtc cagctgggtg tctggagggg agagggcaga ggagggctcat 1140
gtcccttcag ctgggggagg ggcccagtga gtcacgttgc gcttttccc aaaggagca 1200
agagggaaagg attggggcagaaaacaaatgg agaggggacc tgcaaggaa aacagggagg 1260
aagtgagcgg tttgatcagc ctgctatcac ggtgttctgg ctcttattt tagccaggcg 1320
cttaaggagac agatacatca catcctaagt ttgggaaagg ctttgaccc atgtcatctg 1380
agcgtctcct ccagtagctc tgaaagctgt ggacaccaat ggccaggatt cttctcccc 1440
tggtttttga ggatccctgg gtcttctgag actggccagg agagggatgg tggggccagt 1500
ggttgtgtga aagcaggagg ggcagccctc ctggacaagt gtgatcccc tataaacggc 1560
tctcaggagg ttagttagtgg gtagattctg cttgttctg atgagctgt gcaggggctc 1620
caggggagca tgctgtccag ggggcacacaga aggggtggta gtgtgatcaa atctagtc 1680

actcccactt ttttagtctc actcctactt ttgtccacca cccctgcctc ctggatcttc 1740
 tcccacttt ttttcagct ttaggacctg gggagatcct gtgagtcaag gcagacaccc 1800
 aatcctgccc ccacactcg gggtcctccc aagagggttg ggggcagagt cccagagcag 1860
 cccttaccc caggtccagg ccctggaaatc ctgagactcg cgtttcctt gccagtggta 1920
 acacaggacg tgtgtgcga tggcaagtg tgatgtatg tgtgtgcgtg tggtttgctc 1980
 atttcttag ggaacttggg agtcgggtt ggaggtgctg ggcaatggaa cttcaaattc 2040
 aatgtcgccc agcagtgagg ggagtccggg ggtgaggcct gtaggccaac caattgggtg 2100
 agtctcagcg atagcccagg tgagaagtgg ttccaccaga ggggcagggt gggggcctcg 2160
 ggcagatctg tccctcttgg gcacctctgt cctcaaattgt caaaatgtt ggaggaccc 2220
 tggtcatatc ccacgcctgg gcttgcga gcagtggagt tactgttagag ggatgtccca 2280
 agcttgttt ccaatcagtg ttaagctgtt tgaaactctc ctgtgtctgt gtttgtttg 2340
 tgcgtgtgtg tgagagcaca tcagtggtg caggctgtgt ttccccattt ctctcctccc 2400
 ttcagaccca tcattgagaa caaatgtaag aaatcccttc ccaccacccct ccctgcctcc 2460
 caggccctct gcggggggaaa caagatcacc cagcatcctt ccccacccca gctgtgtatt 2520
 tatataagatg gaaataact ttatattttg tattatcgat cctatagccg ctgccaccgt 2580
 gtataaatcc tggtgtctgc tccttatcct ggacatgaat gtattgtaca ctgacgcgtc 2640
 cccactcctg tacagctgct ttgtttctt gcaatgcatt gtatggctt ataaatgata 2700
 aagttaaaga aaactcaaaa 2720

<210> 172
 <211> 2987
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (2937)..(2938)
 <223> a, c, t, g, other or unknown

<220>
 <221> modified_base
 <222> (2941)
 <223> a, c, t, g, other or unknown

<220>
 <221> modified_base
 <222> (2946)
 <223> a, c, t, g, other or unknown

<220>
 <221> modified_base
 <222> (2953)
 <223> a, c, t, g, other or unknown

<400> 172
 ctcaatgcag aggatttaat ctaaaagcat acagaaatgc agctgaaatt gtgcagtatg 60
 gagtaaaaaaa taacaccact tttctggagt gtgcaccccaa gtctccgcag gcatctatca 120
 agtggctgtt acagaaagac aaagacagga gggaaagaggt taagctgaat gaacgaataa 180
 tagccacttc acagggactc ctgatccgct ctgttcaggg ttctgaccaa ggactttatc 240
 actgcattgc tacagaaaat agtttcaagc agaccatagc caagatcaac ttcaaaatgtt 300
 tagattcaga aatgggtggct gttgtgacgg acaaattggtc cccgtggacc tggccagct 360
 ctgtgagggc tttacccttc caccgcaggc acatcatggg ggcattcagc cactcagaaa 420
 tgcagatgtatc taaccaatac tgcaaaagaca ctcggcagca acatcagcag ggagatgaat 480
 cacagaaaat gagagggggc tatggcaagt taaaggccct catcaatagt cggaaaagta 540
 gaaacaggag gaatcagttg ccagagtcat aatattttct tatgtgggtc ttatgcttcc 600
 attaacaat gctctgtctt caatgatcaa attttgagca aagaaacttg tgctttacca 660
 aggggaattha ctgaaaaagg tgattactcc tgaagtgagt ttacacgaa ctgaaatgag 720

catgcatttt ctgttatgat agtgactagc actagacatg tcatggctt catggcat 780
 ataaatatata ttaactaac ccagattta ttatatatctt tattcacctt ttcttcaaaa 840
 tcgatatggt ggctgcaaaa ctagaattgt tgcatccctc aattgaatga gggccatatc 900
 cctgtggat tccttcctg ctttggggct ttagaattct aattgtcagt gattttgtat 960
 atgaaaacaa gttccaaatc cacagcttt acgttagtaaa agtcataaat gcataatgaca 1020
 gaatggctat caaaagaaat agaaaaggaa gacggcatt aaagttgtat aaaaacacga 1080
 gttattcata aagagaaaat gatgagttt tatggttcca atgaaatatg ttggggttt 1140
 ttaagattg taaaaataat cagttactgg tatctgtcac tgaccttgc ttccttattc 1200
 aggaagataa aaatcagtaa cctaccatc gaagatattt ggtgggagtt atatcagtg 1260
 agcagttgg tttatattct tatgttatca ccttccaaac aaaagcactt acttttttg 1320
 gaagttattt aattttttt agactcaag aataataatc tgcaactc agttattact 1380
 gtttgttctc ttattcccta gtctgtgtgg caaattaaac aatataagaa ggaaaaattt 1440
 gaagtattag acttctaaat aagggtgaa atcatcagaa agaaaaatca aagtagaaac 1500
 tactaattt ttaagaggaa ttataaacaat atatggctag tttcaactt cagtaactcaa 1560
 attcaatgat tctccctttt attaaaacca gtctcagata tcataactgat ttttaagtca 1620
 acactatata ttttatgatc ttttcagttt gatggcaagg tgcttgc tgcctagaaag 1680
 taagaaaaca atatgaggag acattctgtc tttcaaaagg taatggtaca tacgttca 1740
 ggtctctaag tgtaaaagta gtaaattttt tgatgaataa aataatttc tcctaattgt 1800
 atgttagaat aattttttaa gaataatttc atactgaaat tattttctcc aaataaaaaat 1860
 tagatggaaa aatgtgaaaa aaattattca tgctctcata tatattttaa aaacactact 1920
 tttgtttt tatttacattt ttaagacatt ttcatgcttc caggtaaaaa cagatattgt 1980
 accatgtacc taatccaaat atcatataaa cattttattt atagttataa atctatgatg 2040
 aaggttaatta aagtagatta tggcctttt aagtattgca gtctaaaact tcaaaaaacta 2100
 aaatcatgtt caaaaattat atgattatttta atcagaatataat cagaatatgat ttcactattt 2160
 aaatctatgat aaattatgat aatatatgag gaggcctcgc tatagcaaaa atagttaaaa 2220
 tgctgacata acaccaaact tcattttta aaaaatctgt tggtccaaat gtgtataatt 2280
 ttaaagttaat ttctaaagca gtttattata atgggttgc tgcttaaaag gtataattaa 2340
 acttcctttc tcttctacat tgacacacag aaatgtgtca atgtaaaagcc aaaaccatct 2400
 tctgtgtt tggccaaatctt atctctaaag tttaaaagtaa aattgtttca gagtcacagt 2460
 tccctttattt tcacataagc ccaaactgtat agacagtaac ggtgttttagt tttatactat 2520
 atttgtgcta tttaatttttca tcttattttca caatttattaa atttgtgtaca ctttcattac 2580
 ttttaaaaaat gtagaaatttca ttcatgaaca taactctgtc gaatgtaaaa gaaaattttt 2640
 tttcaaaaaat gctgttaatg tatactactg gtgggttgcattt ggttttattt tatgttagctt 2700
 gacaatttcg tgacttaata tcttattttca ttgttattgttata cttttttttt tcttagaaata 2760
 cacttttttc caaagtgtaa gtttgcattt agattttagc atgtgaaac tgcataatg 2820
 gtgaatgttc aatctgtgtt agaaaaacaa cttaaatgttag ttgtcacact aaaatttaat 2880
 tggatattga tgaatcattt ggcctggcaa aataaaaacat gttgaattcc cccaaaanngt 2940
 ncttnaaaaa gangacttgc aggggtgcaca gtcagaaattt gaggcaaa 2987

```

<210> 173
<211> 892
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (252)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (290)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (377)
  
```

```
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (383)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (396)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (412)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (419)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (422)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (428)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (435)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (440)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (445)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (453)  
<223> a, c, t, g, other or unknown  
  
<220>  
<221> modified_base  
<222> (457)  
<223> a, c, t, g, other or unknown  
  
<220>
```

```
<221> modified_base
<222> (462)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (474)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (482)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (487)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (495)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (510)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (524)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (528)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (532)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (546)..(548)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (553)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (557)
<223> a, c, t, g, other or unknown
```

```
<220>
<221> modified_base
<222> (571)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (576)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (581)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (601)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (644)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (649)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (673)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (686)..(687)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (710)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (726)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
<222> (782)
<223> a, c, t, g, other or unknown

<220>
<221> modified_base
```

<222> (811)
 <223> a, c, t, g, other or unknown

<220>
 <221> modified_base
 <222> (865)..(866)
 <223> a, c, t, g, other or unknown

<400> 173

ttttttcggg	aggcagagtc	tcccttgtc	gccaggctgg	agtgcagtgg	tgccatctcg	60
gctcaactgca	gcaactgtctc	ggctcaactgc	agcctccggc	ctcccgattt	caagcgattc	120
tcctgtctca	gcctcctgag	tagctggac	tacaggtgtg	caccaccacg	cccggttaat	180
ttttgtatTT	ttagtagaga	cggggttca	ctgtgttggc	caggatggc	tcaatctcga	240
cctcgtgatc	cngccccacct	tggcctccc	aagtgttggg	attacaggcn	gtgactcacc	300
atgcccagcc	acttagttt	ttcttattcc	caccttctta	tcccataaaaa	cactctttt	360
tatctccct	gaaccantat	tgnatgagat	aaatangggc	tggggctgg	gncccccgcnt	420
gngtcacntc	aacangagtn	atttncctt	ggncgnaga	tnggaagttt	tgtncccaat	480
angatgnagc	tgcgtngagta	tcaacaagg	tgacattttt	ctgnctgncc	cnatttggt	540
cctggnnnag	acnggtnggt	accctgaagg	ncagangggc	nagctgccgc	aagacagcaa	600
ntgacagtc	acctgcccac	ctgattctg	catcatggaa	taanccacna	tggctacctt	660
ctatcctctg	ttncccaaat	ggtggntgg	cacttatcct	gaagtcgtcn	aatgatttcc	720
ctttgnaaac	tacttttattt	tactaattt	aactatTTT	tactgatgt	gccctgaggt	780
angttcatga	aaatgctgtg	cactcattcc	natgaaataa	atgttggaaa	gctgatctt	840
tctgatataa	aatgttgaat	gatannaaaa	aaaaaaaaaa	aaaaaaaaaa	aa	892

<210> 174

<211> 1679

<212> DNA

<213> Homo sapiens

<400> 174

gcacccactg	gaaacacaga	cggaactctg	cgaaagagga	aggggcgc	ggagcttgg	60
ttagaaaact	gaagcttcaa	gaacagactt	gcctaacaac	aggaactt	tatgtctcga	120
agtggcaatt	cacacataag	gctccatgac	tctgaacgc	ctcacaaata	ttagttggct	180
cttttcatgg	tttactgaa	cttgctagaa	gtttacaggc	aaggaaagtgc	aggaacattt	240
cacaaatcta	caatctgtga	gtatcacatc	ctgtatagct	gtaaacactg	gaataaggaa	300
gggctgtatga	ctttcagaag	atgaaggtaa	gtagaaacccg	ttgtatggac	tgagaaacca	360
gagttaaaac	ctcttggag	cttctgagga	ctcagctgga	accaacgggc	acagttggca	420
acaccatcat	gacatcacaa	ctgttccc	atgagaccat	catagtgc	ccatcaaatt	480
tcatcaactt	ctcccaagca	gagaaacccg	aacccaccaa	ccagggcag	gatagcc	540
agaaaacatct	acacgcagaa	atcaaagtta	ttgggactat	ccagatctt	tgtggcatga	600
tggtattttag	cttgggatc	attttggcat	ctgcttcctt	ctctccaaat	tttacccaaag	660
tgacttctac	actgttgaac	tctgcttacc	cattcatagg	accctttttt	tttatcatct	720
ctggctctct	ataaatcgcc	acagaaaaaa	ggttaaccaa	gttttggtg	catagcagcc	780
tggttggaaag	cattctgagt	gtctgtctg	ccctgggtgg	tttcattatc	ctgtctgtca	840
aacaggccac	cttaaatctt	gcctcaactgc	agtgtgagtt	ggacaaaaat	aatataccaa	900
caagaagtt	tgtttcttac	ttttatcatg	attacttta	taccacggac	tgctataacag	960
ccaaaggccag	tctggcttgg	actctcttc	tgatgtgt	ttgcactctg	ctggaaattt	1020
gccttagctgt	gctcaactgt	gtgctgcgg	ggaaacaggg	ttactctgac	ttccctgggg	1080
tgagtgtgt	ggccggcttc	acttaacctt	gccttagtga	tcttacccct	gcactgtgtt	1140
gagtagatgtca	ccaaagagtgg	tagaaggaac	aaccagccaa	tcacgagata	cacatgggag	1200
ggcatttgc	ttgtgtatgg	agacagagaa	gaaaaggcaga	tggcaattga	gtagctgata	1260
agctgaaaat	tcaactggata	tgaaaatagt	taatcatgag	aaatcaactg	attcaatctt	1320
cctattttgt	cagcgaaggg	aatgagactc	tgggaagtt	aatgactggc	ctggcattat	1380
gctatgagtt	tgtgcctttg	ctgaggacac	tagaacctgg	cttgcctccc	ttataaagcag	1440
aaacaatttc	tgcacacaacc	actagtc	ttaatagtt	tgacttggta	aaggcattt	1500
acacacgtaa	ctggatccag	tgaatgtctt	atgctctgca	tttgccttg	gtgatcttaa	1560

aattcgtttgcctttaaa gctatattaa aaatgtattt ttgaatcaaa aaaaaaaaaagg 1620
 gagtgagagg tgggggtgggg ggggggagga gggggggccg ttttagggggg gccgggttt 1679

<210> 175
 <211> 2411
 <212> DNA
 <213> Homo sapiens

<400> 175
 ttccaacgtt ccccttgcgt aaaatgtcct ggcaaaccat ggaagctttg atgcaagaac 60
 cctgttgcac tggagtttc ctccccgtg aaaacgtaac ttactgttgg gagtgaattt 120
 aggatgtaga aagggtgggt gaaccaaatt gtggtaatg gaaataggag aatatggttc 180
 tcactctga gaaaaaaacc taagattagc ccaggttagt gcctgtact tcagttttc 240
 tgcctgggt tgatatagtt taggggtggg gttagattaa gatctaaatt acatcaggac 300
 aaagagacag actattaact ccacagttaa ttaaggacgt atgtccatg tttatttgg 360
 aaagcagtgt gaatagcctt caagcatgtg aataatcttc catctcccc gcccacacata 420
 cacacacaca cttttgttt ctttcaggtt gacaccttt aaaatgcaga actaactgag 480
 gcatttcagt aaccttgctt tcaaataat aaagtcaaat gtatggaaac attttgtgcc 540
 ctactctcca taccccggtt actcaaattt tctactgtat gaattatgct ttaagttagaa 600
 ttcagtgcca aggagaactt ggtgaataaa attattttaa tttttttt atcctttaca 660
 aagccatgga ttttatttgg ttgatgtgtg ctctgtacac aagccatttc aataggatgg 720
 agctgttaat tattttccaa agagtaataag acatgcaaaa gttcaataa aaactgggcc 780
 attaacaaat aaattaataa actaataagc attcccttct aggttttgc caaactgcct 840
 atccaataac aaatttgaga atcgaaa aagctgttta tatttcagag aatgatttt 900
 cattattgaa actgttctcc ctgcaggcc attttccctt ttcctggga gtttagcaag 960
 ttttaggagag aatagtcatg aaaagaaaagg gaagaaagg gagaaggaa gaggttaaaa 1020
 agtaagtgtc cagacctatg aacgtaatcc ctttgctaga aatatttaag agcagctcag 1080
 cttgggttcaa actgagttt gtcatcttcc atatttgcag gaaggattt tctgacttgc 1140
 aatgcagcta gatgtaaaat ttttattttt catactagaa agccttgact agaaaaatga 1200
 ataaatatttgg aggtttccct gtccatatct ggcttgcatt tgccagaaag cagagaatag 1260
 aaaatgtaat ctccaaacatc caagcatcgaa aacccaaagggtt gtaggcaatt ctatgttagt 1320
 tttggacatg aagtttgggtt catcttgggtt tatgctggct caactgctat taaaccttcc 1380
 tggcttatag tcttttcattt ctattagaca agcactgttgc gaacacttgc ttcgcacaag 1440
 gctcttagt taacaatttgc gtagctactg tttgtttttaa acacactttt caccaaatag 1500
 gttctgagggc aaacgagagc aatgactatt taaagaaagg ctttcccagc atcacttaca 1560
 catccaaaaa ctaaaaagat caactcttcc aactgagaaa agactcctgg ctttgaatgg 1620
 aaacttacag cagagactca caggccacgg caacaacaac gacaacaaca aacatttgg 1680
 atattatttctt caactcacgt ttttataata catcttattt ttttcttagt agagaaacta 1740
 caaatcagcc tcttcaacat ttatataacat ttttataataagc ctcttgcag ttacttggc 1800
 tctcacctga ggtattttt tcctcccccac cttggccctt ttccttccctt cctcttcc 1860
 ctggcaaga ggaatattt aacatatttgc ggtccaaactt caataatgtt ataatttata 1920
 cattaaaagc atttaacttc ctttcttagaa aaatgcacag gcttggcat agacaaaaca 1980
 aagagaaaatg ctgagaaattt tgccacttgg gacaagcaat ctgaaataat atttgccaaa 2040
 agttctttt atgtcatata gtgtcaggat ttgaaggagc tttttttt taatgttgca 2100
 actagcaact catttcgga agacacagcc aggagaatgtt agttagaagtgg aaaggtttat 2160
 aaatccattt gtaagcattt atcccatata tttttaatttca aagaaaaattt gtgtttatct 2220
 tttagatattt gtattcaata cttttagtac tatgtgactc atgcttctgg ataaataaag 2280
 caccaaatat gtatctgttccacatatttata tttttaatataat atcttatataa 2340
 cagccaaaaa aaaaaaaaaaa aaacacaaga aaaagaaagg gagagggggg gggagagaag 2400
 gggggggagg t 2411

<210> 176
 <211> 3450
 <212> DNA
 <213> Homo sapiens

<400> 176

ctcttaatt tttgacataa atctatacta

3450

<210> 177
<211> 874
<212> DNA
<213> Homo sapiens

<400> 177
cgggggcag ccgggcctgc gcggtagtgg gacccgaccc tgttcctcagg gggcgctttg 60
ggccccggct ctattctggg ctgcgggcct gggaaagggtc cgccgggtgc caaatgagct 120
gtcctaactc tgccgggctg cagcttcctg catgatgctg gggagcttgg cgccgtaccc 180
aggatctaga aggcactctg ggcaggccgc gctccgccc cgaagggtacc caaccctctg 240
ggatagatgc aggaaggcat ggttaagacc cattttcacc caacttctcg cgcagtcgt 300
gcttaccaca cgctcctccc cattcccaact gagccgctt ttgcagcacc aggccaacac 360
ttacaccagt gcttgtaaa ggaatcttat tgtccacccc gtgtcttggc aaaagaacag 420
tgatcacaca gattcctact tgggctctt ccttaatct tcggaggctg agttgccca 480
actcagggtt aaccaccaag gactctgaga gctggcagggt ctgagtaacc ctggtaacaa 540
ttctcttcac cttatcaaaa cctgagctaa aaccaatgca tcagctgtat atgacagcag 600
agagtggcag ggctgaggac ccaaagtcat ttcccaggct ggcggagaat aaactgccag 660
ggagaagaat gagaagacag gagacaaact gtttggaaag ctaaatctc cctcttaatg 720
aataaagtt ttgccttgt cttaaaaaat aacaggaaga agcagggaaa aataaataac 780
ttatgttaat ctgaaattgt attttgtat attaagtgtt ttgaacctct aacatttacc 840
ttccccaaaa atcgaacctt caggttcaa aaat 874

<210> 178
<211> 3265
<212> DNA
<213> Homo sapiens

<400> 178
tacttctgca tgatgacaga agccgagcag gacaagtggc aggctgtgct gcaggactgc 60
atccggcact gcaacaatgg aatcccttag gactccaagg tagagggccc tgcgttcaca 120
gatgccatcc gcatgtaccg acagtccaag gagctgtacg gcacctggg gatgctgtgt 180
ggAACGAGG tgcagatcct gagcaacctg gtgatggagg agctgggccc tgagctgaag 240
gcagagctcg gcccggct gaagggaaa ccgcaggagc ggcagcggca gtggatccag 300
atctcggaacg ccgtgtacca catgggtac gaggcggcca aggccgcctt cgaggaggtg 360
ctgtccaaagg tgcagcagggt gcagccggc atgcaggccg tcatccgaac tgacatggac 420
caaattatca cctccaagga gcacccgtt agcaagatcc gaggcttcat cctcccaag 480
gcagaggtgt gcgtgcggaa ccatgtccag ccctacatcc catccatcct ggaggccctg 540
atggtccca ccagccaggg cttcaactgag gtgcgagatg tcttcttcaa ggaggtcacg 600
gacatgaacc tgaacgtcat caacgaggcc ggcattgaca agctgggcga gtacatggag 660
aagctgtccc ggctggcgta ccacccctg aagatgcaga gctgctatga gaagatggag 720
tcgctgcgac tggacgggct gcagcagcga tttgatgtgt ccagcacgtc cgtgttcaag 780
cagcgagccc agatccacat gccccggcaaa atggacaatg ccgtgtatac gtgcgagacc 840
ctcctgcacc aggagctggg gaagggccc accaaggagg agctgtgcaa gtccatccag 900
cgggtccctgg agccgggtgct gaagaaatac gactacgaca gcagctctgt gcggaaagagg 960
ttcttccggg aggcgctgct gcagatcagc atcccgatcc tgctcaagaa gctggccct 1020
acctgcaagt cggagctgcc ccgggttccag gagctgatct tcgaggactt tgccagggttc 1080
atcctgggtgg aaaacacgtt cggagggtg gtgctgcaga ccgtcatgaa ggacatccctg 1140
caggctgtga aggaggccgc ggtgcagagg aagcacaacc tctaccggg cagcatggtc 1200
atgcacaaca ggcaccccaa cctgcacccgt ctggccgagg ggcaccccat cgactgggc 1260
gaggagtaca gcaacagcgg cggggccggc agcccagccc cagcaccccg gagtcagcca 1320
ccctctcgga aaagcgcacgg cgcgcacccg aggtggcttc tgcgttccag gatgaggagg 1380
tggggctgcc ctttgggtct agccctgagt caccaccacc tgcgtccctg gacgggtgtca 1440
ctgagatccg aggcctgctg gcccaagggtc tgccggctga gagccccca ccagccggcc 1500
ccctgctcaa cggggccccc gctggggaga gtccccagcc taaggccgccc cccgaggcct 1560

cctcgccgccc tgcttcaccc ctccagcata tcctgcctgg aaaggctgtg gaccttggc 1620
 ccccccaagcc cagcgaccag gagactggag agcaggtgtc cagccccagc agccaccccg 1680
 ccctccacac caccaccgag gacagtgcag gggtgtcagac tgagttctag gccagtgggt 1740
 ccctgactgc tgcacatggc acaggccgtt cccttcggc cccaggcagg ctcagctctg 1800
 gggagggcac ccttgtctgt gccttgtggg tggaggcggg gcagggctgt gtggcacccgc 1860
 cagggagccg gcccacactga gtcactttat tgggttcagt caacacttc ttgtccctg 1920
 ttttctcttc tggggatgtc ttcagatgc aggggctgtt tttgggggtt tcctgctgt 1980
 gccaagggct ggacactgtc gggggctgg aaagccctc ctttcctgtc cttctgtggc 2040
 ctccatcccc tcatgggtgc tgccatcctt cctggagaga gggaggtgaa agctgggtg 2100
 agcccagtgg gttcccgccc actcaccctag gagctggctg ggccaggacc gggagaggg 2160
 gcaactgtgc ctttcctggcc ctgctccttc cgcaagttagg ggtggaccga gcttcgtt 2220
 cccccactgtt ctggagggaa gggaaaggag ggggtcttca ggctggagcc aggctgggg 2280
 tgctgggtgg agagatgaga tttaggggt gcctcatggg gtggcaggc ctggggtaa 2340
 atgagaaagg cccagaacgt gcaggtctgc ggaggggaaag tgtcctgagt gaaggaggg 2400
 accccccatcc tggggatgtc tgggagttagt tgagttagt agatggctga gtgagggtt 2460
 tggggagccct gagttttat gggcctgtgt atcccccttcc cccggcccca gcttcctcc 2520
 ctccctgcccc cctggccac aggtctccct ctggtccctg tccctctggt ggtggggat 2580
 ggagcggcag caaggggtgt aatggggctg ggttctgtct tctacaggcc accccgaggt 2640
 cctcagtgtt tgctctggga gccggacggg gctcctgagg ggtacagggt ggtggggcc 2700
 tccctgaggg tctgggtca ggcttggcc tctgctgcct ctcagtcacc aagtccaccc 2760
 cctctgaaaa tccagtccct tctttggatg tccttgtagt tcactctggg cctggctgtc 2820
 gtccctcctc agttcttgc tccctggaca agggtaagc caggatggc ccaggcctgg 2880
 gatccccccac cccaggaccc ccaggcccccc tccctgtct ctgtggggg ggcaggcag 2940
 aaatggactc ctttgggtc cccgaggtgg ggtccccctcc cagccctgca tccctcggtc 3000
 cgtagacctg ctccccagag gaggggcctt gaccacagg acgtgtggtg gcgcctggca 3060
 ctcagggacc cccagctgcc ccagccctgg tctctggcgc atcttccc tcttgcctcc 3120
 aagatctgcg cctctagtgc ctttgaggg gttccatca tccctccctg atattgtatt 3180
 gaaaatatta tgcacactgt tcatgcttct actaatcaat aaacgcttta tttaaagcca 3240
 aaaaaaaaaaag agggcggaaaa aaggg 3265

<210> 179

<211> 262

<212> PRT

<213> Homo sapiens

<400> 179

Ser	Leu	Cys	Val	Phe	Pro	Ser	Ser	Ala	Ala	Ser	Phe	Leu	Ser	Phe	Leu
1								10					15		

Ala	Leu	Val	Val	Ala	Ala	Thr	Met	Asn	Lys	Lys	Lys	Lys	Pro	Phe	Leu
							20		25				30		

Gly	Met	Pro	Ala	Pro	Leu	Gly	Tyr	Val	Pro	Gly	Leu	Gly	Arg	Gly	Ala
							35		40			45			

Thr	Gly	Phe	Thr	Thr	Arg	Ser	Asp	Ile	Gly	Pro	Ala	Arg	Asp	Ala	Asn
							50		55			60			

Asp	Pro	Val	Asp	Asp	Arg	His	Ala	Pro	Pro	Gly	Lys	Arg	Thr	Val	Gly
							65		70		75		80		

Asp	Gln	Met	Lys	Lys	Asn	Gln	Ala	Ala	Asp	Asp	Asp	Glu	Asp	Leu
							85		90			95		

Asn	Asp	Thr	Asn	Tyr	Asp	Glu	Phe	Asn	Gly	Tyr	Ala	Gly	Ser	Leu	Phe
							100		105			110			

Ser	Ser	Gly	Pro	Tyr	Glu	Lys	Asp	Asp	Glu	Glu	Ala	Asp	Ala	Ile	Tyr
115					120						125				
Ala	Ala	Leu	Asp	Lys	Arg	Met	Asp	Glu	Arg	Arg	Lys	Glu	Arg	Arg	Glu
130					135						140				
Gln	Arg	Glu	Lys	Glu	Glu	Ile	Glu	Lys	Tyr	Arg	Met	Glu	Arg	Pro	Lys
145					150					155					160
Ile	Gln	Gln	Gln	Phe	Ser	Asp	Leu	Lys	Arg	Lys	Leu	Ala	Glu	Val	Thr
	165						170					175			
Glu	Glu	Glu	Trp	Leu	Ser	Ile	Pro	Glu	Val	Gly	Asp	Ala	Arg	Asn	Lys
	180						185					190			
Arg	Gln	Arg	Asn	Pro	Arg	Tyr	Glu	Lys	Leu	Thr	Pro	Val	Pro	Asp	Ser
	195						200					205			
Phe	Phe	Ala	Lys	His	Leu	Gln	Thr	Gly	Glu	Asn	His	Thr	Ser	Val	Asp
	210					215					220				
Pro	Arg	Gln	Thr	Gln	Phe	Gly	Gly	Leu	Asn	Thr	Pro	Tyr	Pro	Gly	Gly
	225				230					235					240
Leu	Asn	Thr	Pro	Tyr	Pro	Gly	Gly	Met	Thr	Pro	Gly	Leu	Met	Thr	Pro
	245					250						255			
Gly	Thr	Val	Ser	Trp	Thr										
	260														

<210> 180

<211> 467

<212> PRT

<213> Homo sapiens

<400> 180

His	Thr	Leu	Ser	Arg	Trp	Thr	Lys	His	Ser	Ile	Pro	Arg	Trp	Asn	Asp
1								10					15		

Ala	Arg	Thr	Asp	Asp	Thr	Trp	His	Ser	Glu	Leu	Asp	Met	Arg	Lys	Ile
	20							25					30		

Gly	Gln	Ala	Arg	Asn	Thr	Leu	Met	Asp	Met	Arg	Leu	Ser	Gln	Val	Ser
	35							40					45		

Asp	Ser	Val	Ser	Gly	Gln	Thr	Val	Val	Asp	Pro	Lys	Gly	Tyr	Leu	Thr
	50						55				60				

Asp	Leu	Asn	Ser	Met	Ile	Pro	Thr	His	Gly	Gly	Asp	Ile	Asn	Asp	Ile
	65				70				75						80

Lys	Lys	Ala	Arg	Leu	Leu	Leu	Lys	Ser	Val	Arg	Glu	Thr	Asn	Pro	His
		85						90					95		

His	Pro	Pro	Ala	Trp	Ile	Ala	Ser	Ala	Arg	Leu	Glu	Glu	Val	Thr	Gly
			100					105					110		

Lys Leu Gln Val Ala Arg Asn Leu Ile Met Lys Gly Thr Glu Met Cys
 115 120 125

Pro Lys Ser Glu Asp Val Trp Leu Glu Ala Ala Arg Leu Gln Pro Gly
 130 135 140

Asp Thr Ala Lys Ala Val Val Ala Gln Ala Val Arg His Leu Pro Gln
 145 150 155 160

Ser Val Arg Ile Tyr Ile Arg Ala Ala Glu Leu Glu Thr Asp Ile Arg
 165 170 175

Ala Lys Lys Arg Val Leu Arg Lys Ala Leu Glu His Val Pro Asn Ser
 180 185 190

Val Arg Leu Trp Lys Ala Ala Val Glu Leu Glu Glu Pro Glu Asp Ala
 195 200 205

Arg Ile Met Leu Ser Arg Ala Val Glu Cys Cys Pro Thr Ser Val Glu
 210 215 220

Leu Trp Leu Ala Leu Ala Arg Leu Glu Thr Tyr Glu Asn Ala Arg Lys
 225 230 235 240

Val Leu Asn Lys Ala Arg Glu Asn Ile Pro Thr Asp Arg His Ile Trp
 245 250 255

Ile Thr Ala Ala Lys Leu Glu Ala Asn Gly Asn Thr Gln Met Val
 260 265 270

Glu Lys Ile Ile Asp Arg Ala Ile Thr Ser Leu Arg Ala Asn Gly Val
 275 280 285

Glu Ile Asn Arg Glu Gln Trp Ile Gln Asp Ala Glu Glu Cys Asp Arg
 290 295 300

Ala Gly Ser Val Ala Thr Cys Gln Ala Val Met Arg Ala Val Ile Gly
 305 310 315 320

Ile Gly Ile Glu Glu Asp Arg Lys His Thr Trp Met Glu Asp Ala
 325 330 335

Asp Ser Cys Val Ala His Asn Ala Leu Glu Cys Ala Arg Ala Ile Tyr
 340 345 350

Ala Tyr Ala Leu Gln Val Phe Pro Ser Lys Lys Ser Val Trp Leu Arg
 355 360 365

Ala Ala Tyr Phe Glu Lys Asn His Gly Thr Arg Glu Ser Leu Glu Ala
 370 375 380

Leu Leu Gln Arg Ala Val Ala His Cys Pro Lys Ala Glu Val Leu Trp
 385 390 395 400

Leu Met Gly Ala Lys Ser Lys Trp Leu Ala Gly Asp Val Pro Ala Ala
 405 410 415

Arg Ser Ile Leu Ala Leu Ala Phe Gln Ala Asn Pro Asn Ser Glu Glu

420

425

430

Ile Trp Leu Ala Ala Val Lys Leu Glu Ser Glu Asn Asp Glu Tyr Glu
 435 440 445

Arg Ala Arg Arg Leu Leu Ala Lys Ala Arg Thr Val Pro Pro Pro Pro
 450 455 460

Gly Cys Ser
 465

<210> 181

<211> 284

<212> PRT

<213> Homo sapiens

<400> 181

Val Arg Ala Gly Pro Glu Ala Ala Gly Gln Gly Ala Asp Ser Ala Pro
 1 5 10 15

Thr Ala Arg Val Phe Met Lys Ser Val Lys Leu Glu Trp Val Gln Asp
 20 25 30

Asn Ile Arg Ala Ala Gln Asp Leu Cys Glu Ala Leu Arg His Tyr
 35 40 45

Glu Asp Phe Pro Lys Leu Trp Met Met Lys Gly Gln Ile Glu Glu Gln
 50 55 60

Lys Glu Met Met Glu Lys Ala Arg Glu Ala Tyr Asn Gln Gly Leu Lys
 65 70 75 80

Lys Cys Pro His Ser Thr Pro Leu Trp Leu Leu Leu Ser Arg Leu Glu
 85 90 95

Glu Lys Ile Gly Gln Leu Thr Arg Ala Arg Ala Ile Leu Glu Lys Ser
 100 105 110

Arg Leu Lys Asn Pro Lys Asn Pro Gly Leu Trp Leu Glu Ser Val Arg
 115 120 125

Leu Glu Tyr Arg Ala Gly Leu Lys Asn Ile Ala Asn Thr Leu Met Ala
 130 135 140

Lys Ala Leu Gln Glu Cys Pro Asn Ser Gly Ile Leu Trp Ser Glu Ala
 145 150 155 160

Ile Phe Leu Glu Ala Arg Pro Gln Arg Arg Thr Lys Ser Val Asp Ala
 165 170 175

Leu Lys Lys Cys Glu His Asp Pro His Val Leu Leu Ala Val Ala Lys
 180 185 190

Leu Phe Trp Ser Gln Arg Lys Ile Thr Lys Ala Arg Glu Trp Phe His
 195 200 205

Arg Thr Val Lys Ile Asp Ser Asp Leu Gly Asp Ala Trp Ala Phe Phe

210	215	220
Tyr Lys Phe Glu Leu Gln His Gly Thr Glu Glu Gln Gln Glu Glu Val		
225	230	235
Arg Lys Arg Cys Glu Ser Ala Glu Pro Arg His Gly Glu Leu Trp Cys		
245	250	255
Ala Val Ser Lys Asp Ile Ala Asn Trp Gln Lys Lys Ile Gly Asp Ile		
260	265	270
Leu Arg Leu Val Ala Gly Arg Ile Lys Asn Thr Phe		
275	280	

<210> 182
<211> 75
<212> PRT
<213> Homo sapiens

<400> 182		
Gln Pro Gly Ile Lys Glu Ser Ile Leu Met Lys Glu Thr Gln Gly Pro		
1	5	10
Tyr Gly Gln Gly Phe Leu Gly Gln Asp Ser His Gln His Ile Thr His		
20	25	30
Val Leu Leu Gly Arg Glu Lys Gln Tyr Ile Pro Val Glu Arg Ser Gln		
35	40	45
Ser Ile Ser Gly Arg Asn Val Val Lys Gly Gly Arg Cys Tyr Ala Ala		
50	55	60
Ala Pro Ser Val Pro Glu Val Ala Val Ile Pro		
65	70	75

<210> 183
<211> 75
<212> PRT
<213> Homo sapiens

<400> 183		
Thr Phe Leu Leu Ser Leu Ser Tyr Ser Ser Arg Tyr Phe Ser Gln		
1	5	10
Glu Phe Gln Arg Arg Leu Leu Leu Lys Cys Leu Leu Ala Ala Gln Tyr		
20	25	30
Gln Ser Ile Asn Tyr Pro Phe Trp Gly Leu Ala Leu Glu Ile Ile Phe		
35	40	45
Val Gly Arg Pro Asn Ser Ser Gln Gln Gly Ser Gln Ala Cys Leu Leu		
50	55	60
Asp Leu Phe Pro Leu Arg Gly Arg Asn Glu Leu		
65	70	75

<210> 184

<211> 117

<212> PRT

<213> Homo sapiens

<400> 184

Gln	Gly	Thr	Arg	His	Pro	Gln	Ser	Leu	Ser	His	Lys	Pro	Ala	Lys	Lys
1															
					5					10					15

Ile	Asp	Val	Ala	Arg	Val	Thr	Phe	Asp	Leu	Tyr	Lys	Leu	Asn	Pro	Gln
					20				25						30

Asp	Phe	Ile	Gly	Cys	Leu	Asn	Val	Lys	Ala	Thr	Phe	Tyr	Asp	Thr	Tyr
					35			40				45			

Ser	Leu	Ser	Tyr	Asp	Leu	His	Cys	Cys	Gly	Ala	Lys	Arg	Ile	Met	Lys
					50			55			60				

Glu	Ala	Phe	Arg	Trp	Ala	Leu	Phe	Ser	Met	Gln	Ala	Thr	Gly	His	Val
					65		70			75					80

Leu	Leu	Gly	Thr	Ser	Cys	Tyr	Leu	Gln	Gln	Leu	Leu	Asp	Ala	Thr	Glu
					85			90							95

Glu	Gly	Gln	Pro	Pro	Lys	Gly	Lys	Ala	Ser	Ser	Leu	Ile	Pro	Thr	Cys
					100			105				110			

Leu	Lys	Ile	Leu	Gln											
					115										

<210> 185

<211> 143

<212> PRT

<213> Homo sapiens

<400> 185

Lys	Ser	Ala	Ala	Gln	Thr	Ala	Met	Thr	Thr	Pro	Pro	Gln	Thr	Pro	Pro
1															
					5			10						15	

His	Pro	Tyr	Phe	Ile	Asn	Arg	Gln	Asp	Phe	Pro	Cys	Ile	Leu	Leu	Arg
					20			25							30

Ile	Ser	Ser	Ser	His	Ser	Pro	Ala	Pro	Ser	Pro	Met	Ser	Trp	Leu	His
				35			40				45				

His	Cys	Lys	Thr	Asp	Leu	Leu	Gln	Gly	Ser	Gln	Lys	Leu	Leu	Leu	Ala
					50			55			60				

Leu	Tyr	His	Phe	Tyr	Pro	His	Leu	Pro	Pro	Glu	Thr	Ala	Thr	Ile	His
					65		70			75					80

Ser	His	Cys	Pro	Ser	Ala	Leu	Arg	Pro	Ser	Ser	Arg	Ala	Asp	Gly	Ser
					85			90				95			

Met	Val	Ile	Leu	Ser	Trp	Val	Val	Leu	Leu	Lys	Pro	Ser	Gln	Gly	Ala
					100			105				110			

Asp Ser Gln Arg Ala Ser Arg Val Ser Gly Leu Asp Asp Ser Lys Glu
 115 120 125

Gly Thr Pro Ile Phe Ile Phe Lys Thr Asp Ile Pro Arg Gly Phe
 130 135 140

<210> 186

<211> 84

<212> PRT

<213> Homo sapiens

<400> 186

Thr Gln Thr Arg His Phe Gln Leu Ala Thr Gln Ser Gly Arg Ala Gly
 1 5 10 15

Gly Asn Thr Asp Leu Asp Ile His Lys Lys Ile Lys Pro Lys Ile Lys
 20 25 30

His Ser Ile Leu Cys Pro Leu Lys Gly Leu Ile Lys Gly Thr Gln Ser
 35 40 45

Pro Pro Arg Ser Pro Leu Pro Cys Gln His His Lys Ala Ser Ser Ala
 50 55 60

His Thr Lys Gly Leu Gly Arg Gly Ile Leu Leu Pro Pro His Gln Pro
 65 70 75 80

Gln Glu Trp Thr

<210> 187

<211> 114

<212> PRT

<213> Homo sapiens

<400> 187

Arg His Trp Gly Phe Thr Ala Ser Ile Phe Ser Leu Lys Arg Phe Ile
 1 5 10 15

Thr Ser Thr Ser Lys Glu Gln Thr Asn Trp Arg Asn Val Cys Phe Phe
 20 25 30

Phe Leu Phe Ile Lys Phe Tyr Ser Thr Ala Lys Phe Gln Ile Ser Phe
 35 40 45

Thr Tyr Arg Pro Cys Lys Gly Thr Val Arg Thr Glu His Leu Phe Tyr
 50 55 60

Leu Arg Asp Lys Gly Val Glu Ile Phe Ser Leu Asn Phe Ile Arg Lys
 65 70 75 80

Gly Trp Val Gln Trp Leu Met Pro Val Ile Ser Ala Phe Trp Glu Ala
 85 90 95

Glu Ala Gly Arg Ser Leu Val Ala Arg Ser Leu Arg Pro Ala Trp Ala

100

105

110

Thr Gln

<210> 188

<211> 98

<212> PRT

<213> Homo sapiens

<400> 188

Asn	Leu	Ile	Asn	Lys	Lys	Lys	His	Thr	Phe	Leu	Gln	Leu	Val	Cys
1				5				10					15	

Ser	Leu	Leu	Val	Glu	Val	Ile	Asn	Arg	Phe	Lys	Glu	Lys	Ile	Leu	Ala
						20		25					30		

Val	Asn	Pro	Gln	Cys	Leu	Gln	Leu	Phe	Trp	Gln	Asn	Ile	Phe	Lys	Glu
					35			40				45			

Ile	Gln	Gln	Ala	Asn	Phe	Glu	Val	Leu	Met	Lys	Val	Lys	Glu	Gly	Gly
					50			55			60				

Ile	Ser	Ser	Phe	Gly	Arg	Asn	Glu	Lys	Cys	Leu	Thr	Arg	Asp	Ile	Thr
65					70				75			80			

Thr	His	Val	Gly	Ser	Gly	Cys	Phe	Leu	Pro	Lys	Thr	Phe	Arg	Glu	Glu
						85			90			95			

Val Asn

<210> 189

<211> 437

<212> PRT

<213> Homo sapiens

<400> 189

Lys	Tyr	Glu	Leu	Tyr	Thr	Glu	Asn	Ala	Thr	Thr	Glu	Lys	Thr	Glu	Pro
1					5				10			15			

Asn	Ser	Gln	Glu	Asp	Lys	Asn	Asp	Gly	Gly	Lys	Ser	Arg	Lys	Gly	Asn
					20			25			30				

Ile	Glu	Leu	Ala	Ser	Ser	Glu	Pro	Gln	His	Phe	Thr	Thr	Thr	Val	Thr
35						40					45				

Arg	Cys	Ser	Pro	Thr	Val	Ala	Phe	Val	Glu	Phe	Pro	Ser	Ser	Pro	Gln
50						55				60					

Leu	Lys	Asn	Asp	Val	Ser	Glu	Glu	Lys	Asp	Gln	Lys	Lys	Pro	Glu	Asn
65					70				75			80			

Glu	Met	Ser	Gly	Lys	Val	Glu	Leu	Val	Leu	Ser	Gln	Lys	Val	Val	Lys
					85				90			95			

Pro Lys Ser Pro Glu Pro Glu Ala Thr Leu Thr Phe Pro Phe Leu Asp
 100 105 110
 Lys Met Pro Glu Ala Asn Gln Leu His Leu Pro Asn Leu Asn Ser Gln
 115 120 125
 Val Asp Ser Pro Ser Ser Glu Lys Ser Pro Val Met Thr Pro Phe Lys
 130 135 140
 Phe Trp Ala Trp Asp Pro Glu Glu Glu Arg Arg Arg Gln Glu Lys Trp
 145 150 155 160
 Gln Gln Glu Gln Glu Arg Leu Leu Gln Glu Arg Tyr Gln Lys Glu Gln
 165 170 175
 Asp Lys Leu Lys Glu Glu Trp Glu Lys Ala Gln Lys Glu Val Glu Glu
 180 185 190
 Glu Glu Arg Arg Tyr Tyr Glu Glu Glu Arg Lys Ile Ile Glu Asp Thr
 195 200 205
 Val Val Pro Phe Thr Val Ser Ser Ser Ser Ala Asp Gln Leu Ser Thr
 210 215 220
 Ser Ser Ser Met Thr Glu Gly Ser Gly Thr Met Asn Lys Ile Asp Leu
 225 230 235 240
 Gly Asn Cys Gln Asp Glu Lys Gln Asp Arg Arg Trp Lys Lys Ser Phe
 245 250 255
 Gln Gly Asp Asp Ser Asp Leu Leu Leu Lys Thr Arg Glu Ser Asp Arg
 260 265 270
 Leu Glu Glu Lys Gly Ser Leu Thr Glu Gly Ala Leu Ala His Ser Gly
 275 280 285
 Asn Pro Val Ser Lys Gly Val His Glu Asp His Gln Leu Asp Thr Glu
 290 295 300
 Ala Gly Ala Pro His Cys Gly Thr Asn Pro Gln Leu Ala Gln Asp Pro
 305 310 315 320
 Ser Gln Asn Gln Gln Thr Ser Asn Pro Thr His Ser Ser Glu Asp Val
 325 330 335
 Lys Pro Lys Thr Leu Pro Leu Asp Lys Ser Ile Asn His Gln Ile Glu
 340 345 350
 Ser Pro Ser Glu Arg Arg Lys Ser Ile Ser Gly Lys Lys Leu Cys Ser
 355 360 365
 Ser Cys Gly Leu Pro Leu Gly Lys Gly Ala Ala Met Ile Ile Glu Thr
 370 375 380
 Leu Asn Leu Tyr Phe His Ile Gln Cys Phe Arg Cys Gly Ile Cys Lys
 385 390 395 400
 Gly Gln Leu Gly Asp Ala Val Ser Gly Thr Asp Val Arg Ile Arg Asn

1

111

405 410 415

Gly Leu Leu Asn Cys Asn Asp Cys Tyr Met Arg Ser Arg Ser Ala Gly
420 425 430

Gln Pro Thr Thr Leu
435

<210> 190
<211> 331
<212> PRT
<213> Homo sapiens

<400> 190
Ser Ala Asn His Lys Leu Glu Val Asn Gly Thr Asp Gly Leu Ala Pro
1 5 10 15

Val Glu Val Glu Glu Leu Leu Arg Gln Ala Ser Glu Arg Asn Ser Lys
20 25 30

Ser Pro Thr Glu Tyr His Glu Pro Val Tyr Ala Asn Pro Phe Tyr Arg
35 40 45

Pro Thr Thr Pro Gln Arg Glu Thr Val Thr Pro Gly Pro Asn Phe Gln
50 55 60

Glu Arg Ile Lys Ile Lys Thr Asn Gly Leu Gly Ile Gly Val Asn Glu
65 70 75 80

Ser Ile His Asn Met Gly Asn Gly Leu Ser Glu Glu Arg Gly Asn Asn
85 90 95

Phe Asn His Ile Ser Pro Ile Pro Pro Val Pro His Pro Arg Ser Val
100 105 110

Ile Gln Gln Ala Glu Glu Lys Leu His Thr Pro Gln Lys Arg Leu Met
115 120 125

Thr Pro Trp Glu Glu Ser Asn Val Met Gln Asp Lys Asp Ala Pro Ser
130 135 140

Pro Lys Pro Arg Leu Ser Pro Arg Glu Thr Ile Phe Gly Lys Ser Glu
145 150 155 160

His Gln Asn Ser Ser Pro Thr Cys Gln Glu Asp Glu Asp Val Arg
165 170 175

Tyr Asn Ile Val His Ser Leu Pro Pro Asp Ile Asn Asp Thr Glu Pro
180 185 190

Val Thr Met Ile Phe Met Gly Tyr Gln Gln Ala Glu Asp Ser Glu Glu
195 200 205

Asp Lys Lys Phe Leu Thr Gly Tyr Asp Gly Ile Ile His Ala Glu Leu
210 215 220

Val Val Ile Asp Asp Glu Glu Glu Asp Glu Gly Glu Ala Glu Lys

225	230	235	240
Pro Ser Tyr His Pro Ile Ala Pro His Ser Gln Val Tyr Gln Pro Ala			
245	250	255	
Lys Pro Thr Pro Leu Pro Arg Lys Arg Ser Glu Ala Ser Pro His Glu			
260	265	270	
Asn Thr Asn His Lys Ser Pro His Lys Asn Ser Ile Ser Leu Lys Glu			
275	280	285	
Gln Glu Glu Ser Leu Gly Ser Pro Val His His Ser Pro Phe Asp Ala			
290	295	300	
Gln Thr Thr Gly Asp Gly Thr Glu Asp Pro Ser Leu Thr Ala Leu Arg			
305	310	315	320
Met Arg Met Ala Lys Leu Gly Lys Lys Val Ile			
325	330		

<210> 191

<211> 216

<212> PRT

<213> Homo sapiens

<400> 191

Leu Ser Leu Thr Ser Arg Met Glu Glu Ala Glu Leu Val Lys Gly Arg			
1	5	10	15

Leu Gln Ala Ile Thr Asp Lys Arg Lys Ile Gln Glu Glu Ile Ser Gln			
20	25	30	

Lys Arg Leu Lys Ile Glu Glu Asp Lys Leu Lys His Gln His Leu Lys			
35	40	45	

Lys Lys Ala Leu Arg Glu Lys Trp Leu Leu Asp Gly Ile Ser Ser Gly			
50	55	60	

Lys Glu Gln Glu Glu Met Lys Lys Gln Asn Gln Gln Asp Gln His Gln			
65	70	75	80

Ile Gln Val Leu Glu Gln Ser Ile Leu Arg Leu Glu Lys Glu Ile Gln			
85	90	95	

Asp Leu Glu Lys Ala Glu Leu Gln Ile Ser Thr Lys Glu Glu Ala Ile			
100	105	110	

Leu Lys Lys Leu Lys Ser Ile Glu Arg Thr Thr Glu Asp Ile Ile Arg			
115	120	125	

Ser Val Lys Val Glu Arg Glu Glu Arg Ala Glu Glu Ser Ile Glu Asp			
130	135	140	

Ile Tyr Ala Asn Ile Pro Asp Leu Pro Lys Ser Tyr Ile Pro Ser Arg			
145	150	155	160

Leu Arg Lys Glu Ile Asn Glu Glu Lys Glu Asp Asp Glu Gln Asn Arg			
---	--	--	--

113

165 170 175

Lys Ala Leu Tyr Ala Met Glu Ile Lys Val Glu Lys Asp Leu Lys Thr
180 185 190

Gly Glu Ser Thr Val Leu Ser Ser Asn Thr Ser Gly His Gln Met Thr
195 200 205

Leu Lys Gly Thr Gly Val Lys Val
210 215

<210> 192
<211> 290
<212> PRT
<213> Homo sapiens

<400> 192
Arg Gly Ala Gly Thr Gln Pro Gly Pro Leu Leu Lys Lys Pro Tyr Gln
1 5 10 15

Pro Arg Ile Lys Ile Ser Lys Thr Ser Val Asp Gly Asp Pro His Phe
20 25 30

Val Val Asp Phe Pro Leu Ser Arg Leu Thr Val Cys Phe Asn Ile Asp
35 40 45

Gly Gln Pro Gly Asp Ile Leu Arg Leu Val Ser Asp His Arg Asp Ser
50 55 60

Gly Val Thr Val Asn Gly Glu Leu Ile Gly Ala Pro Ala Pro Pro Asn
65 70 75 80

Gly His Lys Lys Gln Arg Thr Tyr Leu Arg Thr Ile Thr Ile Leu Ile
85 90 95

Asn Lys Pro Glu Arg Ser Tyr Leu Glu Ile Thr Pro Ser Arg Val Ile
100 105 110

Leu Asp Gly Gly Asp Arg Leu Val Leu Pro Cys Asn Gln Ser Val Val
115 120 125

Val Gly Ser Trp Gly Leu Glu Val Ser Val Ser Ala Asn Ala Asn Val
130 135 140

Thr Val Thr Ile Gln Gly Ser Ile Ala Phe Val Ile Leu Ile His Leu
145 150 155 160

Tyr Lys Lys Pro Ala Pro Phe Gln Arg His His Leu Gly Phe Tyr Ile
165 170 175

Ala Asn Ser Glu Gly Leu Ser Ser Asn Cys His Gly Leu Leu Gly Gln
180 185 190

Phe Leu Asn Gln Asp Ala Arg Leu Thr Glu Asp Pro Ala Gly Pro Ser
195 200 205

Gln Asn Leu Thr His Pro Leu Leu Leu Gln Val Gly Glu Gly Pro Glu

210	215	220
Ala Val Leu Thr Val Lys Gly His Gln Val Pro Val Val Trp Lys Gln		
225	230	235
Arg Lys Ile Tyr Asn Gly Glu Glu Gln Ile Asp Cys Trp Phe Ala Arg		
245	250	255
Asn Asn Ala Ala Lys Leu Ile Asp Gly Glu Tyr Lys Asp Tyr Leu Ala		
260	265	270
Ser His Pro Phe Asp Thr Gly Met Thr Leu Gly Gln Gly Met Ser Arg		
275	280	285
Glu Leu		
290		

<210> 193
<211> 87
<212> PRT
<213> Homo sapiens

<400> 193			
Gly His Gly Ser Tyr Arg Thr Pro Lys Arg Ser Ser Thr Asn Cys Leu			
1	5	10	15
Gly Lys Phe Trp Glu Leu Ala Asp Ala Lys Lys Lys Arg Lys Lys Val			
20	25	30	
His Gln Lys Gln Lys Arg Ala Thr Ile Arg Ala Thr Glu Leu Ala Lys			
35	40	45	
Gly Lys Arg His Val Gly Gly Ser Val Ser His Leu Ser Pro Gly Thr			
50	55	60	
Val Lys Cys Val Ile Thr Ala Gln Val His Gly Lys Arg Gln Gln Gln			
65	70	75	80
Lys Ala Leu Cys Arg Leu Glu			
85			

<210> 194
<211> 82
<212> PRT
<213> Homo sapiens

<400> 194			
Gln Phe Ile Gln Gly Met Cys Ser Arg Lys Phe Ala Trp Tyr Leu Phe			
1	5	10	15
Val Lys His Leu Lys Val Pro Gln Ile Gly Phe Lys Val Pro Gly Ala			
20	25	30	
Val Gly Trp His Glu Asp Pro Arg Lys Ala Thr Glu His Pro Ala Arg			
35	40	45	

Leu Leu His Arg Ala Gly Glu Val Thr Phe Tyr Leu Phe Phe Arg Leu
 50 55 60

His Pro Ile Phe His Leu Pro Phe Leu Gln Arg Ala Gln Gly Ala Ile
 65 70 75 80

Ile Phe

<210> 195
 <211> 251
 <212> PRT
 <213> Homo sapiens

<400> 195
 Asp Asp Arg Ser His Ala Phe His His His Lys Ser Val Ile Asp Ala
 1 5 10 15

Met Lys Gly Arg Pro Gly Gln Ser Pro Leu Phe Arg Pro Ser Gln Gly
 20 25 30

Thr Gly Arg Val Pro Gly Thr Arg Gln Met Leu Gln Asp Ser Val Gln
 35 40 45

Ala Ala Leu Glu Glu Val Ala Ala Ser Glu Ala Leu Leu Gly Pro Leu
 50 55 60

Ser Pro Pro Gly Lys Ser Arg Asp Gly Asn Ala Ser Ala Gly Glu Gly
 65 70 75 80

Cys Gln Val Phe Arg Ser Pro Pro Ser Glu Val Pro Ser Pro Pro Gly
 85 90 95

Gln Asp Thr Pro Thr Ser Thr Phe Leu Lys Arg Arg Trp Asp Ser Gln
 100 105 110

Val Thr Leu Leu Pro Ser Lys Lys Cys Lys Ser Gln Gln Leu Gln Glu
 115 120 125

Ser Val Ser Gln Phe Pro Pro Ser Pro Gly Gly Arg Arg Glu Gly Pro
 130 135 140

Trp Ser Ser Leu Gly Ala Gly Gly Pro Ser Ser His Ile Ser Ala Lys
 145 150 155 160

Tyr Phe Pro Leu Pro Val Gln Pro Ala Cys Pro Cys Thr Ser Leu Glu
 165 170 175

Ala Gly His Arg Pro Gly Arg Cys Val Asp Leu Gln Glu Ser Gln Gly
 180 185 190

Val Asp His Pro Ala Asn Leu Arg Leu Ser Ser Gly Thr Ser Cys Arg
 195 200 205

Arg Gly Leu Asn Pro Thr Pro Val Gln Val Arg Ser His Glu Ala Ser
 210 215 220

Ser Gln Val Lys Met His Gln Thr Val Thr Trp Arg Phe Tyr Thr Phe
225 230 235 240

Leu Asn Phe Gln Gln Leu Gly Ala Cys Leu Leu
245 250

<210> 196
<211> 149
<212> PRT
<213> *Homo sapiens*

<400> 196
Phe Ala Lys Gly Leu Asp Arg Glu Arg Gly Asn Met Asn Leu Asp Arg
1 5 10 15

Glu Gly Asp Thr Ile Glu Arg Arg Thr Leu Pro Thr Leu Gln Ala Ser
 20 25 30

Asp Leu Pro Phe Glu Gly Thr Leu Asp Gly Gly Arg Gly Arg Gly Leu
35 40 45

Gly Leu Ser Tyr Ser His Glu Leu Leu Ala Ser Thr Asp Ser Ser Asn
50 55 60

Ser Pro Pro His Lys Ile Thr Gly Thr Asn Ile Phe Asn Phe Ala Tyr
65 70 75 800

Leu Phe Leu Gly Glu Phe Pro Pro Ser Leu Phe Cys Pro Glu Thr Thr
85 90 95

Gly Lys Ala Leu His Phe Glu Arg Glu Glu Lys Leu Phe Gly Thr Thr
100 105 110

Pro Met Ile Phe Phe Phe Val Ile Leu Glu Ile Tyr Phe Phe Ile Ile
115 120 125

Asn Asn Arg Lys Leu
145

<210> 197
<211> 143
<212> PRT
<213> *Homo sapiens*

<400> 197
Gly Gln Arg Cys Pro Arg Gly Thr Asp Leu Pro Glu Ala Pro Thr Leu
1 5 10 15

Pro Leu Trp Val Asn His Phe Ser Pro Gly Leu Ser Leu Arg Leu His
20 25 30

Gln Leu Val Gly Leu Gln Ala Ser Pro Pro Asp Ser Pro His Cys Trp
35 40 45

Ala	Thr	Leu	Asn	Leu	Lys	Phe	His	Cys	Pro	Ala	Pro	Pro	Thr	Pro	Thr
50						55				60					
Pro	Lys	Phe	Pro	Lys	Glu	Met	Ser	Lys	Thr	His	Ala	His	Thr	Tyr	Ile
65					70			75						80	
His	Thr	Cys	Thr	Cys	Ala	His	Thr	Ser	Cys	Val	Thr	Thr	Gly	Gln	Gly
					85			90					95		
Asn	Ala	Ser	Leu	Arg	Ile	Pro	Gly	Pro	Gly	Pro	Gly	Val	Lys	Gly	Cys
					100			105				110			
Ser	Gly	Thr	Leu	Pro	Pro	Asn	Leu	Leu	Gly	Gly	Pro	Pro	Ser	Val	Gly
					115			120				125			
Ala	Gly	Leu	Gly	Val	Cys	Leu	Asp	Ser	Gln	Asp	Leu	Pro	Arg	Ser	
					130			135				140			

<210> 198

<211> 142

<212> PRT

<213> Homo sapiens

<400> 198

Ser	His	Thr	Met	His	Cys	Lys	Glu	Thr	Lys	Gln	Leu	Tyr	Arg	Ser	Gly
1					5			10					15		

Asp	Ala	Ser	Val	Tyr	Asn	Thr	Phe	Met	Ser	Arg	Ile	Arg	Ser	Arg	His
							20			25			30		

Gln	Asp	Leu	Tyr	Thr	Val	Ala	Ala	Ile	Gly	Thr	Met	Ile	Gln	Asn
						35		40				45		

Ile	Lys	Tyr	Ile	Ser	Ile	Tyr	Ile	Asn	Thr	Gln	Leu	Gly	Trp	Gly	Arg
						50		55				60			

Met	Leu	Gly	Asp	Leu	Val	Ser	Pro	Ala	Glu	Gly	Leu	Gly	Gly	Arg	Glu
65					70				75				80		

Gly	Gly	Lys	Gly	Phe	Leu	Thr	Phe	Val	Leu	Asn	Asp	Gly	Ser	Glu
					85			90				95		

Gly	Arg	Arg	Glu	Met	Gly	Lys	His	Ser	Leu	His	Thr	Leu	Met	Cys	Ser
						100		105				110			

His	Thr	His	Ala	Gln	Thr	Lys	His	Arg	His	Arg	Arg	Val	Ser	Asn	Ser
						115		120				125			

Leu	Thr	Leu	Ile	Gly	Lys	Gln	Ala	Trp	Asp	Ile	Pro	Leu	Gln		
					130			135			140				

<210> 199

<211> 189

<212> PRT

<213> Homo sapiens

<400> 199
 Gln Cys Arg Gly Phe Asn Leu Lys Ala Tyr Arg Asn Ala Ala Glu Ile
 1 5 10 15
 Val Gln Tyr Gly Val Lys Asn Asn Thr Thr Phe Leu Glu Cys Ala Pro
 20 25 30
 Lys Ser Pro Gln Ala Ser Ile Lys Trp Leu Leu Gln Lys Asp Lys Asp
 35 40 45
 Arg Arg Lys Glu Val Lys Leu Asn Glu Arg Ile Ile Ala Thr Ser Gln
 50 55 60
 Gly Leu Leu Ile Arg Ser Val Gln Gly Ser Asp Gln Gly Leu Tyr His
 65 70 75 80
 Cys Ile Ala Thr Glu Asn Ser Phe Lys Gln Thr Ile Ala Lys Ile Asn
 85 90 95
 Phe Lys Val Leu Asp Ser Glu Met Val Ala Val Val Thr Asp Lys Trp
 100 105 110
 Ser Pro Trp Thr Trp Ala Ser Ser Val Arg Ala Leu Pro Phe His Pro
 115 120 125
 Lys Asp Ile Met Gly Ala Phe Ser His Ser Glu Met Gln Met Ile Asn
 130 135 140
 Gln Tyr Cys Lys Asp Thr Arg Gln Gln His Gln Gln Gly Asp Glu Ser
 145 150 155 160
 Gln Lys Met Arg Gly Asp Tyr Gly Lys Leu Lys Ala Leu Ile Asn Ser
 165 170 175
 Arg Lys Ser Arg Asn Arg Asn Gln Leu Pro Glu Ser
 180 185

<210> 200
<211> 97
<212> PRT
<213> Homo sapiens

<220>
<221> MOD_RES
<222> (97)
<223> Any amino acid

<400> 200
 Phe Phe Arg Glu Ala Glu Ser Pro Phe Val Ala Arg Leu Glu Cys Ser
 1 5 10 15
 Gly Ala Ile Ser Ala His Cys Ser Thr Val Ser Ala His Cys Ser Leu
 20 25 30
 Arg Pro Pro Val Phe Lys Arg Phe Ser Cys Leu Ser Leu Leu Ser Ser
 35 40 45

Trp Asp Tyr Arg Cys Ala Pro Pro Arg Pro Ala Asn Phe Cys Ile Phe
 50 55 60

Ser Arg Asp Gly Val Ser Leu Cys Trp Pro Gly Trp Ser Gln Ser Arg
 65 70 75 80

Pro Arg Asp Pro Ala His Leu Gly Leu Pro Lys Cys Trp Asp Tyr Arg
 85 90 95

Xaa

<210> 201

<211> 354

<212> PRT

<213> Homo sapiens

<400> 201

Glu Thr Arg Val Lys Thr Ser Leu Glu Leu Leu Arg Thr Gln Leu Glu
 1 5 10 15

Pro Thr Gly Thr Val Gly Asn Thr Ile Met Thr Ser Gln Pro Val Pro
 20 25 30

Asn Glu Thr Ile Ile Val Leu Pro Ser Asn Val Ile Asn Phe Ser Gln
 35 40 45

Ala Glu Lys Pro Glu Pro Thr Asn Gln Gly Gln Asp Ser Leu Lys Lys
 50 55 60

His Leu His Ala Glu Ile Lys Val Ile Gly Thr Ile Gln Ile Leu Cys
 65 70 75 80

Gly Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe
 85 90 95

Ser Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr
 100 105 110

Pro Phe Ile Gly Pro Phe Phe Phe Ile Ile Ser Gly Ser Leu Ser Ile
 115 120 125

Ala Thr Glu Lys Arg Leu Thr Lys Leu Leu Val His Ser Ser Leu Val
 130 135 140

Gly Ser Ile Leu Ser Ala Leu Ser Ala Leu Val Gly Phe Ile Ile Leu
 145 150 155 160

Ser Val Lys Gln Ala Thr Leu Asn Pro Ala Ser Leu Gln Cys Glu Leu
 165 170 175

Asp Lys Asn Asn Ile Pro Thr Arg Ser Tyr Val Ser Tyr Phe Tyr His
 180 185 190

Asp Ser Leu Tyr Thr Thr Asp Cys Tyr Thr Ala Lys Ala Ser Leu Ala
 195 200 205

Gly Thr Leu Ser Leu Met Leu Ile Cys Thr Leu Leu Glu Phe Cys Leu
 210 215 220
 Ala Val Leu Thr Ala Val Leu Arg Trp Lys Gln Ala Tyr Ser Asp Phe
 225 230 235 240
 Pro Gly Val Ser Val Leu Ala Gly Phe Thr Glu Lys Thr Pro Gly Phe
 245 250 255
 Glu Trp Lys Leu Thr Ala Glu Ser His Arg Pro Arg Gln Gln Gln Arg
 260 265 270
 Gln Gln Gln Thr Phe Gly Ile Leu Phe Ser Thr His Val Leu Ile Ile
 275 280 285
 His Leu Ile Ile Phe Leu Val Glu Lys Leu Gln Ile Ser Leu Phe Asn
 290 295 300
 Ile Tyr Ile Gln Phe Asn Lys Pro Leu Ala Ser Tyr Leu Phe Ser His
 305 310 315 320
 Leu Arg Tyr Phe Phe Pro Pro His Leu Ala Pro Val Pro Pro Phe Leu
 325 330 335
 Phe Ser Leu Cys Lys Arg Lys Tyr Leu Thr Tyr Leu Gly Pro Thr Ser
 340 345 350

Ile Met

<210> 202
 <211> 104
 <212> PRT
 <213> Homo sapiens

<400> 202
 Glu Lys Thr Pro Gly Phe Glu Trp Lys Leu Thr Ala Glu Ser His Arg
 1 5 10 15

Pro Arg Gln Gln Gln Arg Gln Gln Thr Phe Gly Ile Leu Phe Ser
 20 25 30

Thr His Val Leu Ile Ile His Leu Ile Ile Phe Leu Val Glu Lys Leu
 35 40 45

Gln Ile Ser Leu Phe Asn Ile Tyr Ile Gln Phe Asn Lys Pro Leu Ala
 50 55 60

Ser Tyr Leu Phe Ser His Leu Arg Tyr Phe Phe Pro Pro His Leu Ala
 65 70 75 80

Pro Val Pro Pro Phe Leu Phe Ser Leu Cys Lys Arg Lys Tyr Leu Thr
 85 90 95

Tyr Leu Gly Pro Thr Ser Ile Met
 100

<210> 203

<211> 93

<212> PRT

<213> Homo sapiens

<400> 203

His	Lys	Lys	Asn	Phe	Trp	Gln	Ile	Phe	Ile	Gln	Ile	Ala	Cys	Leu	Gln
1				5					10					15	

Trp	Gln	Ile	Ser	Gln	His	Phe	Ser	Leu	Phe	Cys	Leu	Cys	Leu	Ser	Leu
					20			25					30		

Cys	Ile	Phe	Leu	Glu	Arg	Lys	Leu	Asn	Ala	Phe	Asn	Val	Leu	Ile	Ile
					35			40				45			

Thr	Leu	Leu	Lys	Leu	Asp	Pro	Asn	Met	Leu	Asn	Ile	Ser	Ser	Cys	Lys
					50			55			60				

Gly	Arg	Arg	Gly	Arg	Glu	Glu	Gln	Gly	Gln	Gly	Gly	Glu	Glu	Lys	Asn
					65		70		75			80			

Thr	Ser	Gly	Glu	Arg	Thr	Ser	Asn	Leu	Gln	Glu	Ala	Tyr		
					85			90						

<210> 204

<211> 113

<212> PRT

<213> Homo sapiens

<400> 204

Arg	Pro	Lys	Pro	Gly	His	Pro	Leu	Tyr	Ser	Lys	Tyr	Met	Arg	Gly	Asp
1					5				10			15			

Val	Leu	Val	Met	Leu	Lys	Gln	Thr	Glu	Asn	Asn	Tyr	Leu	Glu	Cys	Gln
					20			25			30				

Lys	Gly	Glu	Asp	Thr	Gly	Arg	Val	His	Leu	Ser	Gln	Met	Lys	Ile	Ile
					35			40			45				

Thr	Pro	Leu	Asp	Glu	His	Leu	Arg	Ser	Arg	Pro	Asn	Asp	Pro	Ser	His
					50			55		60					

Ala	Gln	Lys	Pro	Val	Asp	Ser	Gly	Ala	Pro	His	Ala	Val	Val	Leu	His
					65		70		75			80			

Asp	Phe	Pro	Ala	Glu	Gln	Val	Asp	Asp	Leu	Asn	Leu	Thr	Ser	Gly	Glu
					85			90			95				

Ile	Gly	Leu	Ser	Ser	Gly	Glu	Asp	Arg	Tyr	Arg	Leu	Val	Gln	Arg	Glu
					100			105			110				

Leu

<210> 205

<211> 225

<212> PRT

<213> Homo sapiens

<400> 205

Thr	Ser	Leu	Leu	Glu	Lys	Leu	Val	Tyr	Leu	Leu	Glu	Lys	Ile	Asp	Thr
1				5					10				15		

Asp	Trp	Tyr	Arg	Gly	Asn	Cys	Arg	Asn	Gln	Ile	Gly	Ile	Phe	Pro	Ala
					20			25				30			

Asn	Tyr	Val	Lys	Val	Ile	Ile	Asp	Ile	Pro	Glu	Gly	Gly	Asn	Gly	Lys
					35			40				45			

Arg	Glu	Cys	Val	Ser	Ser	His	Cys	Val	Lys	Gly	Ser	Arg	Cys	Val	Ala
					50			55			60				

Arg	Phe	Glu	Tyr	Ile	Gly	Glu	Gln	Lys	Asp	Glu	Leu	Ser	Phe	Ser	Glu
					65			70			75		80		

Gly	Glu	Ile	Ile	Ile	Leu	Lys	Glu	Tyr	Val	Asn	Glu	Glu	Trp	Ala	Arg
					85			90				95			

Gly	Glu	Val	Arg	Gly	Arg	Thr	Gly	Ile	Phe	Pro	Leu	Asn	Phe	Val	Glu
					100			105			110				

Pro	Val	Glu	Asp	Tyr	Pro	Thr	Ser	Gly	Ala	Asn	Val	Leu	Ser	Thr	Lys
					115			120			125				

Val	Pro	Leu	Lys	Thr	Lys	Lys	Glu	Asp	Ser	Gly	Ser	Asn	Ser	Gln	Val
					130			135			140				

Asn	Ser	Leu	Pro	Ala	Glu	Trp	Cys	Glu	Ala	Leu	His	Ser	Phe	Thr	Ala
					145			150			155		160		

Glu	Thr	Ser	Asp	Asp	Leu	Ser	Phe	Lys	Arg	Gly	Asp	Arg	Ile	Gln	Ile
					165			170			175				

Leu	Glu	Arg	Leu	Asp	Ser	Asp	Trp	Cys	Arg	Gly	Arg	Leu	Gln	Asp	Arg
					180			185			190				

Glu	Gly	Ile	Phe	Pro	Ala	Val	Phe	Val	Arg	Pro	Cys	Pro	Ala	Glu	Ala
					195			200			205				

Lys	Ser	Met	Leu	Ala	Ile	Val	Pro	Lys	Gly	Gln	Glu	Gly	Gln	Ser	Leu
					210			215			220				

Ile

225

<210> 206

<211> 105

<212> PRT

<213> Homo sapiens

<400> 206

Cys Ile Gly Phe Ser Ser Gly Phe Asp Lys Val Lys Arg Ile Val Thr
 1 5 10 15

Arg Val Thr Gln Thr Cys Gln Leu Ser Glu Ser Leu Val Val Lys Pro
 20 25 30

Glu Leu Gly Lys Leu Ser Leu Arg Arg Leu Lys Glu Arg Ala Gln Val
 35 40 45

Gly Ile Cys Val Ile Thr Val Leu Leu Pro Arg His Gly Val Asp Asn
 50 55 60

Lys Ile Pro Leu Gln Ser Thr Gly Val Ser Val Arg Leu Val Leu Gln
 65 70 75 80

Lys Ala Ala His Trp Glu Trp Gly Gly Ala Cys Gly Lys Pro Asp Cys
 85 90 95

Gly Glu Lys Leu Gly Glu Asn Gly Ser
 100 105

<210> 207
 <211> 83
 <212> PRT
 <213> Homo sapiens

<400> 207
 Leu Cys Gly Ala Ala Ala Ser Cys Met Met Leu Gly Ser Leu Ala Pro
 1 5 10 15

Asp Pro Gly Ser Arg Arg His Ser Gly Gln Ala Ala Leu Arg Pro Arg
 20 25 30

Arg Tyr Pro Thr Leu Trp Asp Arg Cys Arg Lys Arg Trp Leu Arg Pro
 35 40 45

Ile Phe Thr Gln Leu Leu Ala Ala Val Trp Leu Thr Thr Arg Ser Ser
 50 55 60

Pro Phe Pro Val Ser Arg Phe Leu Gln His Gln Ala Asn Thr Tyr Thr
 65 70 75 80

Ser Ala Leu

<210> 208
 <211> 581
 <212> PRT
 <213> Homo sapiens

<400> 208
 Tyr Phe Cys Met Met Thr Glu Ala Glu Gln Asp Lys Trp Gln Ala Val
 1 5 10 15

Leu Gln Asp Cys Ile Arg His Cys Asn Asn Gly Ile Pro Glu Asp Ser
 20 25 30

Lys Val Glu Gly Pro Ala Phe Thr Asp Ala Ile Arg Met Tyr Arg Gln
 35 40 45

 Ser Lys Glu Leu Tyr Gly Thr Trp Glu Met Leu Cys Gly Asn Glu Val
 50 55 60

 Gln Ile Leu Ser Asn Leu Val Met Glu Glu Leu Gly Pro Glu Leu Lys
 65 70 75 80

 Ala Glu Leu Gly Pro Arg Leu Lys Gly Lys Pro Gln Glu Arg Gln Arg
 85 90 95

 Gln Trp Ile Gln Ile Ser Asp Ala Val Tyr His Met Val Tyr Glu Gln
 100 105 110

 Ala Lys Ala Arg Phe Glu Glu Val Leu Ser Lys Val Gln Gln Val Gln
 115 120 125

 Pro Ala Met Gln Ala Val Ile Arg Thr Asp Met Asp Gln Ile Ile Thr
 130 135 140

 Ser Lys Glu His Leu Ala Ser Lys Ile Arg Ala Phe Ile Leu Pro Lys
 145 150 155 160

 Ala Glu Val Cys Val Arg Asn His Val Gln Pro Tyr Ile Pro Ser Ile
 165 170 175

 Leu Glu Ala Leu Met Val Pro Thr Ser Gln Gly Phe Thr Glu Val Arg
 180 185 190

 Asp Val Phe Phe Lys Glu Val Thr Asp Met Asn Leu Asn Val Ile Asn
 195 200 205

 Glu Gly Gly Ile Asp Lys Leu Gly Glu Tyr Met Glu Lys Leu Ser Arg
 210 215 220

 Leu Ala Tyr His Pro Leu Lys Met Gln Ser Cys Tyr Glu Lys Met Glu
 225 230 235 240

 Ser Leu Arg Leu Asp Gly Leu Gln Gln Arg Phe Asp Val Ser Ser Thr
 245 250 255

 Ser Val Phe Lys Gln Arg Ala Gln Ile His Met Arg Glu Gln Met Asp
 260 265 270

 Asn Ala Val Tyr Thr Phe Glu Thr Leu Leu His Gln Glu Leu Gly Lys
 275 280 285

 Gly Pro Thr Lys Glu Glu Leu Cys Lys Ser Ile Gln Arg Val Leu Glu
 290 295 300

 Arg Val Leu Lys Lys Tyr Asp Tyr Asp Ser Ser Ser Val Arg Lys Arg
 305 310 315 320

 Phe Phe Arg Glu Ala Leu Leu Gln Ile Ser Ile Pro Phe Leu Leu Lys
 325 330 335

Lys Leu Ala Pro Thr Cys Lys Ser Glu Leu Pro Arg Phe Gln Glu Leu
 340 345 350
 Ile Phe Glu Asp Phe Ala Arg Phe Ile Leu Val Glu Asn Thr Tyr Glu
 355 360 365
 Glu Val Val Leu Gln Thr Val Met Lys Asp Ile Leu Gln Ala Val Lys
 370 375 380
 Glu Ala Ala Val Gln Arg Lys His Asn Leu Tyr Arg Asp Ser Met Val
 385 390 395 400
 Met His Asn Ser Asp Pro Asn Leu His Leu Leu Ala Glu Gly Ala Pro
 405 410 415
 Ile Asp Trp Gly Glu Glu Tyr Ser Asn Ser Gly Gly Gly Ser Pro
 420 425 430
 Ala Pro Ala Pro Arg Ser Gln Pro Pro Ser Arg Lys Ser Asp Gly Ala
 435 440 445
 Pro Ser Arg Trp Ser Leu Trp Ser Arg Met Arg Arg Trp Gly Cys Pro
 450 455 460
 Leu Arg Leu Ala Leu Ser His His His Leu Arg Pro Arg Thr Val Ser
 465 470 475 480
 Leu Arg Ser Glu Ala Cys Trp Pro Lys Val Cys Gly Leu Arg Ala Pro
 485 490 495
 His Gln Pro Ala Pro Cys Ser Thr Gly Pro Pro Leu Gly Arg Val Pro
 500 505 510
 Ser Leu Arg Pro Pro Pro Arg Pro Pro Arg Arg Leu Pro His Pro Ser
 515 520 525
 Ser Ile Ser Cys Leu Glu Arg Leu Trp Thr Leu Gly Pro Pro Ser Pro
 530 535 540
 Ala Thr Arg Arg Leu Glu Ser Arg Cys Pro Ala Pro Ala Ala Thr Pro
 545 550 555 560
 Pro Ser Thr Pro Pro Pro Arg Thr Val Gln Gly Cys Arg Leu Ser Ser
 565 570 575
 Arg Pro Val Gly Pro
 580

<210> 209
 <211> 466
 <212> PRT
 <213> Homo sapiens

<400> 209
 Pro Gln Arg Ala Ala Pro Pro Pro His Pro Gly Pro Gln Arg Pro Pro
 1 5 10 15

Ala Trp Arg Ala Val Ala Phe Pro Arg Gly Trp Leu Thr Pro Gly Cys
 20 25 30

 Trp Gly Trp Ala Ala Ala Pro Ala Ala Val Ala Val Leu Leu Ala Pro
 35 40 45

 Val Asp Gly Gly Ala Leu Gly Gln Gln Val Gln Val Gly Val Ala Val
 50 55 60

 Val His Asp His Ala Val Pro Val Glu Val Val Leu Pro Leu His Arg
 65 70 75 80

 Gly Leu Leu His Ser Leu Gln Asp Val Leu His Asp Gly Leu Gln His
 85 90 95

 His Leu Leu Val Arg Val Phe His Gln Asp Glu Pro Gly Lys Val Leu
 100 105 110

 Glu Asp Gln Leu Leu Glu Pro Gly Gln Leu Arg Leu Ala Gly Arg Gly
 115 120 125

 Gln Leu Leu Glu Gln Glu Arg Asp Ala Asp Leu Gln Gln Arg Leu Pro
 130 135 140

 Glu Glu Pro Leu Pro His Arg Ala Ala Val Val Val Val Phe Leu Gln
 145 150 155 160

 His Pro Leu Gln Asp Pro Leu Asp Gly Leu Ala Gln Leu Leu Leu Gly
 165 170 175

 Gly Pro Leu Pro Gln Leu Leu Val Gln Glu Gly Leu Glu Arg Ile His
 180 185 190

 Gly Ile Val His Leu Leu Pro His Val Asp Leu Gly Ser Leu Leu Glu
 195 200 205

 His Gly Arg Ala Gly His Ile Lys Ser Leu Leu Gln Pro Val Gln Ser
 210 215 220

 Gln Arg Leu His Leu Leu Ile Ala Ala Leu His Leu Gln Gly Val Val
 225 230 235 240

 Arg Gln Pro Gly Gln Leu Leu His Val Leu Ala Gln Leu Val Asn Ala
 245 250 255

 Ala Leu Val Asp Asp Val Gln Val His Val Arg Asp Leu Leu Glu Glu
 260 265 270

 Asp Ile Ser His Leu Ser Glu Ala Leu Ala Gly Gly Asp His Gln Gly
 275 280 285

 Leu Gln Asp Gly Trp Asp Val Gly Leu Asp Met Val Pro His Ala His
 290 295 300

 Leu Cys Leu Gly Glu Asp Glu Gly Ser Asp Leu Ala Gly Lys Val Leu
 305 310 315 320

 Leu Gly Gly Asp Asn Leu Val His Val Ser Ser Asp Asp Gly Leu His

127

325

330

335

Gly Arg Leu His Leu Leu His Leu Gly Gln His Leu Leu Glu Ala Arg
340 345 350

Leu Gly Leu Leu Val His His Val Val His Gly Val Arg Asp Leu Asp
355 360 365

Pro Leu Pro Leu Pro Leu Leu Arg Phe Pro Leu Gln Pro Arg Ala Glu
370 375 380

Leu Cys Leu Gln Leu Arg Ala Gln Leu Leu His His Gln Val Ala Gln
385 390 395 400

Asp Leu His Leu Val Pro Thr Gln His Leu Pro Gly Ala Val Gln Leu
405 410 415

Leu Gly Leu Ser Val His Ala Asp Gly Ile Cys Glu Arg Arg Ala Leu
420 425 430

Tyr Leu Gly Val Leu Arg Asp Ser Ile Val Ala Val Pro Asp Ala Val
435 440 445

Leu Gln His Ser Leu Pro Leu Val Leu Leu Gly Phe Cys His His Ala
450 455 460

Glu Val
465

<210> 210

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
sequence

<400> 210

atgtcctagc ctcagaattat cagatgcaa

29