Tecnologías para la Web Semántica

Ingeniería Ontológica I Methontology

Metodologías para la construcción de ontologías

La IEEE define una metodología como:

"Serie comprensiva, integrada de técnicas o métodos para crear una teoría general de sistemas de cómo debería realizarse una clase de trabajo de pensamiento intensivo"

Metodologías para la construcción de ontologías

Método

Procedimiento general

Tarea

La asignación detrabajo bien definido por uno o mas miembros de un proyecto

Técnica

Aplicación específica de un método y la manera en que se ejecuta

Proceso de desarrollo de ontologías

- Basado en el estandar para el desarrollo de software (IEEE, 1996)
- Actividades que se llevan a cabo cuando se construyen ontologías:
 - Actividades de gestion de ontologías
 - Actividades orientadas al desarrollo de ontologías
 - Actividades de soporte de ontologías

Proceso de desarrollo

Management

Control

Development oriented

Support

Actividades de gestion de ontologías

- Cronograma
 - Identifica tareas a realizar y su orden
 - Especifica horarios y recursos necesarios
- Control
- Aseguramiento de calidad

Actividades orientadas al desarrollo de ontologías

- Pre-desarrollo
 - Estudio de entorno (plataformas, aplicaciones, etc.)
 - Estudio de factibilidad
- Desarrollo
 - Especificación de razones de construcción, usos de la ontología, usuarios finales
 - Conceptualización
 - Formalización
 - Implementación
- Post-desarrollo
 - Mantenimiento
 - Re(utilización)

Actividades de soporte de ontologías

- Se realizan en forma simultánea con las actividades de desarrollo
- Incluyen adquisición de conocimiento, evaluación, integración, mezclado, alineación, documentación y configuración

Metodologías para la construcción de ontologías

- Método Cyc (1980) Conocimiento con sentido comun.
- Método Uschold and King (1995). Enterprise Ontology
- Método Grüninger and Fox Proyecto TOVE: dominio de empresa.
- Método KACTUS (1996). Factibilidad de la reutilización de conocimiento en sistemas técnicamente complejos.
- METHONTOLOGY. Ontology group. UPM.
- Método SENSUS. Vincular términos específicos a una ontología mayor.
- Método On-To-Knowledge (2001). Mejora de grandes organizaciones distribuidas..

Methontology Proceso de desarrollo-Ciclo de vida

Methontology ontology development process life cycle [Corcho05]

Methontology

- Especificación: Desarrollar un documento que contenga la meta de la ontología, nivel de granularidad, alcance y propósito. Identificar los términos a representar, sus características y relaciones
- Conceptualización: Organizar el conjunto de términos y sus características en una representación intermedia que el desarrollador de la ontología y los expertos puedan entender. En este caso se construye un glosario de términos, diagrama de relaciones binarias, diccionario de conceptos, tablas de atributos instancias, tablas de atributos clases, tablas de axiomas lógicos, tablas de constantes, tablas de instancias

Methontology

- 3. Adquisición de conocimiento: Este paso se lleva a cabo de manera independiente en la metodología y su ejecución puede coincidir con otros pasos. Por lo general la adquisición de conocimiento se realiza en tres etapas: reuniones preliminares con los expertos, análisis y revisión de la bibliografia asociada al dominio y, una vez que se tiene un conocimiento base, se refina y detalla hasta completar la ontología
- 4. Integración: Identificar ontologías candidatas que puedan ser reutilizadas en la ontología que se esta construyendo e incorporar aquellas piezas de conocimiento que sean de utilidad

Methontology

- Implementación: codificación del modelo conceptual en un modelo codificado en lenguaje ontológico.
- 6. **Evaluación**: Realizar un juicio técnico a la ontología, al ambiente de software asociado y a la documentación con respecto a un esquema de referencia en cada paso de la metodología (requerimientos de especificación, preguntas de competencia y/o el mundo real).
- 7. **Documentación**: Detallar clara y exhaustivamente cada paso completado y los productos generados

Proceso de desarrollo

management

Especificación Preguntas de competencia

- Propuestas en la metodología Grüninger and Fox
- Dado un conjunto de escenarios informales, se identifican un conjunto de preguntas de competencia en lenguaje natural
- Serán respondidas por la ontología una vez que este expresada en lenguaje formal
- Juegan el rol de un tipo de especificación de requerimientos con la que la ontología podra ser evaluada
- Ejemplo:

CQ

Dadas las preferencias de un pasajero (viaje cultural, viaje en la montaña, playa, etc.) y algunas restricciones económicas, que destino es el mas apropiado?

Especificación Preguntas de competencia

	Α	В				
1	ID	Perguntas de Competencia (CQ)				
_	CQ1	¿Dada una evaluación, quién es el autor?				
3	CQ2	¿Cuál es la fecha de creación de una evaluación?				
4	CQ3	¿Cuáles son las evaluaciones creadas por un profesor?				
5	CQ4	¿Cuál es el contexto para el cual una evaluación fue creada?				
6	CQ5	¿Cuánto tiempo tardaría un alumno, perteneciente a la audiencia pretendida, en responder la evaluación?				
7	CQ6	¿Cuál es el nivel de complejidad de una evaluación?				
8	CQ7	¿Cuál es el título de una evaluación?				
9	CQ8	Dado una asignatura, un tema y un nivel de complejidad, ¿que actividades están disponibles para conformar una evaluacióin?				
10	CQ9	¿Cuál es el estado de una evaluación?				
11	CQ10	Dada una asignatura y un tema, ¿que actividades se encuentran en estado borrador?				
12	CQ11	¿Cuál es el formato de una evaluación?				
13	CQ12	¿Cuáles son las cuestiones técnicas asociadas a una evaluación? Qué formato tiene el archivo correspondiente?				
14	CQ13	¿Cuáles son los derechos de autor asociados a una evaluación?				
15	CQ14	¿Cuales son los descriptores generales de una evaluación?				
16	CQ15	Dada una asignatura y un tema, ¿que actividades se encuentran en estado "en revisión"?				
17	CQ16	Dada una asignatura y un tema, ¿que actividades no se encuentran disponibles"?				
18	CQ17	¿Cuáles son los recursos educativos relacionados con una evaluación?				
19	CQ18	¿Para qué audiencia fue diseñada una dada evaluación?				
20	CQ19	Dada una serie de palabras clave, ¿cuales son las evaluaciones asociadas?				
21	CQ20	Dada una asignatura, ¿cuáles son las evaluaciones que no están disponibles?				
22	CQ21	Dada una evaluación, ¿de qué tipo es?				
23	CQ22	¿Qué actores están involucrados en una hetero-evaluación?				
24	CQ23	¿Qué alumnos respondieron una evaluación?				

Escenarios

Diseñar una evaluación

Objetivo: Seleccionar técnicas e instrumentos a utilizar en una evaluación y diseñar las actividades correspondientes

Contexto:

Un docente determinó las unidades, temas y conceptos a incluir en la evaluación

Actores: Usuario 1

Recursos: evaluación

Episodios:

- 1. Seleccionar tipo de evaluación
- 2. Seleccionar el momento de la evaluación
- 3. Para cada concepto a evaluar:
 - 3.1. Diseñar la/las actividad/es
 - 3.2. Identificar los reactivos involucrados en la actividad.
 - 3.3. Seleccionar el instrumento adecuado a utilizar en cada reactivo.
 - 3.4. Definir las rúbricas y métricas a utilizar en cada una de las actividades.

Excepciones:

Proceso de desarrollo

Management

Control

Development oriented

Support

Técnicas de adquisición de conocimiento

Reglas generales:

- Aislar al experto de su trabajo por períodos cortos de tiempo
- Enfocarse sobre el conocimiento esencial
- Recolectar conocimiento de diferentes expertos

Resultados:

- Personas no expertas podrán entender el conocimiento
- El conocimiento podrá ser evaluado

Técnicas de adquisición de conocimiento

Técnicas de generación de protocolo:

- Diferentes tipos de entrevistas no estructuradas, semiestructuradas y estructuradas
- Diferentes técnicas de reporte
- Diferentes tipos de técnicas de observación

Técnicas de análisis de protocolo

- Usadas con transcripciones de entrevistas u otra información textual
- Utiles para identificar varios tipos de conocimiento (objetivos, decisiones, relaciones y atributos.
- Actúan como vínculo entre el uso de técnicas basadas en protocolo y técnicas de modelado de conocimiento.

Técnicas de generación de jerarquías (laddering)

 Útiles para construir taxonomías u otras estructuras jerárquicas (árboles de decisión).

Técnicas de adquisicion de conocimiento

Técnicas basadas en matrices

Se basan en construir y rellenar una matriz de dos dimensiones(tabla)

Por ejemplo: Tabla de conceptos y propiedades (atributos y valores); problemas y soluciones; tareas y recursos

Técnicas basadas en diagramas

- Generación y uso de mapas conceptuales, redes de transición de estados, diagramas de evento y mapas de procesos.
- Utiles para capturar el "qué, cómo, donde, quién y por qué" de tareas y eventos.
- Se ha comprobado empíricamente que la gente comprende muy bien la notación gráfica, mucho mejor que otros formalismos como la lógica de predicado

Técnicas de ordenamiento

- Utilizadas para capturar la forma en que las personas comparan y ordenan conceptos.
- Conducen al descubrimiento de conocimiento acerca de las clases, las propiedades y las prioridades.

Técnicas de adquisición de conocimiento

- Manuales de instrucciones o libros almacenan conocimiento que puede ser extraído sin necesidad de entrevistas.
- Dificultad por parte de algunos expertos, incluso si tienen voluntad de ayudar, de explicar con palabras cómo resuelven un problema, aunque lo sepan resolver perfectamente. Utilizar técnicas alternativas (sin preguntas)
- Técnicas de observación, en las que el ingeniero observa al experto trabajando e intenta entender y duplicar sus métodos de resolver el problema.
- Técnicas intuitivas, en las que el ingeniero intenta actuar como si fuera él el experto e implementar su propio conocimiento sobre el dominio.

Especificación de requerimientos

- El objetivo de la especificación de requerimientos en el desarrollo de la ontologías es establecer el propósito con que se construye la ontología, cuáles van a ser sus usos y usuarios posibles y qué requisitos debe cumplir esa ontología.
- El resultado es un DERO

Propósito							
El objetivo principal de AONet es dar soporte a la generación de evaluaciones válidas y confiables en entornos o learning.	le e-						
Alcance							
Se considerará tanto el dominio de la evaluación propiamente dicho como el de los recursos educativos (OA) utiliz para el proceso de enseñanza aprendizaje y el área de conocimiento que se está evaluando correspondiente materia, asignatura o curso que se desea impartir. Se considerará solamente los objetos de aprendizaje de tipo evaluación.							
Nivel de formalidad							
La red de ontologías será expresada en un lenguaje rigurosamente formal como OWL2 SWRL.							
Usuarios finales previstos							
Usuario 1 : docente evaluador (en todos los niveles de responsabilidad)							
Usuario 2: investigador en el área del elearning.							
Usos previstos							
Uso 1: Determinar los conceptos a incluir en la evaluación Uso 2: Diseñar una evaluación Uso 3: Describir una evaluación como recurso educativo Uso 4: Mejorar la evaluación desde una perspectiva pedagógica.							
Requerimientos no funcionales							
1. El trabajo debe ser modular.							
 El idioma de la red de ontologías debe ser el inglés tomando como base el idioma de los estándares utilizado. Se implementará la versión en español de cada término utilizado.	ados.						
3. El idioma en el que se van a completar las evaluaciones y sus actividades es el español dado que es el idion el que se imparten las clases en las universidades involucradas en el proyecto de desarrollo.	ıa en						

Proceso de desarrollo

Management

Control

Development oriented

Support

Methontology Modelado conceptual

- Determina el resto de la construcción de la ontología
- Tiene como objetivo organizar y estructurar el conocimiento adquirido durante la actividad de adquisición del conocimiento (fuerte relación entre ambas actividades)

Methontology Modelado conceptual

- Convierte una vista informal de un dominio en una especificacion semi-formal
- Utiliza un conjunto de representaciones intermedias (intermediate representations, IRs) tabulares y graficas
- IRs facilitan el proceso de transformación entre la percepción de las personas y lenguajes utilizados para la implementación de ontologías

Methontology - Modelado conceptual

- Incluye los términos relevantes del dominio:
 - Conceptos
 - Instancias
 - Atributos (propiedades)
 - Relaciones entre conceptos
- Descripciones en lenguaje natural
- Sinónimos acrónimos (siglas)

Heteroassessment	Hetero- evaluación	Es la evaluación clásica que se presenta tradicionalmente en el proceso de enseñanza-aprendizaje, donde el educador desempeña el papel de evaluador y el alumno asume el rol de ser evaluado.
Coassessment	Co-evaluación	Es la evaluación por pares. Se puede hacer entre los alumnos o entre los educadores quienes juegan los dos papeles de evaluador y de evaluado.
Selfassessment	Auto- evaluación	La autoevaluación es la evaluación en la que un alumno evalúa su propio progreso en el proceso de aprendizaje. Luego, el alumno asume dos papeles: ser evaluador y evaluado.
Agent	Agente	Concepto abstracto que engloba a toda persona que que juega un rol en la evaluación
Manager	Administrador	Administrador de la evaluación
Score	Calificación	Calificación asignada a una evaluación o actividad relacionada.
Moment	Momento	Momento del proceso de enseñanza aprendizaje en el que la evaluación tiene lugar.
Pedagogical Principles	Principios pedagógicos	Recomendaciones o buenas prácticas para diseñar evaluaciones pedagógicamente correctas

Nome	ganorgana	$\Lambda_{exonyme}$	Description	Type
American Airlines		AA Flight	Flight operated by American	Concept
Flight		_	Airlines.	_
Bed and Breakfast			An establishment (as an inn)	Concept
			offering lodging and breakfast	
British Airways Flight		BA Flight	Flight operated by British	Concept
			Airways.	
Business Trip			A special package for	Concept
_			businessmen, consisting of a flight	_
			and a good quality hotel.	
Camping			Temporal lodging in a camp.	Concept
Ecoromy Trip			An economic package, usually	Concept
			costing less than 1000\$.	_
European Location			A location in Europe.	Concept
Five-stars Hotel			High quality hotel	Concept
Flight			A journey by plane identified by a	Concept
ŭ			flight mumber.	•
Hotel			An establishment that provides	Concept
			lodging and usually meals,	-
			entertainment, and various	
			personal services for the public	
Iberia Flight		IB Flight	Flight operated by Iberia	Concept
Japan Location			A location in Japan.	Concept
Location	Place		A position or site occupied or	Concept
			available for occupancy or marked	•
			by some distinguishing feature.	
Lodging	Accommodation		A temporary place to stay during a	Concept
			trip, sleeping accommodations	_
Luxury Trip			A birury and expensive trip.	Concept
Spain Location			A location in Spain.	Concept
Train Travel	Rail Travel		A journey by train	Concept
Travel			A journey from place to place.	Concept
Travel Package			A travel package that a person can	Concept
ū			ask for. It consists of one or	•
			several means of transport and one	
			or several accommodations.	
****	-		TOUC FIGURE 1881 's TOTAL	

Name	Synonyms	Acronyms	Description	Туре
adult age in Spain	-	-	The adult age in Spain is 18	Constant
court	juridical tribunal	-	Although 'court' can be understood as a physical place or as a judge, we assume (in this ontology) that a court is a judicial tribunal	Concept
birth day			The day when a person was born	Instance Attribute
is defendant(person, lawsuit)		_	It is the lawsuit of a defendant	Relation

Methontology Taxonomía

- Define la jerarquía de conceptos
- Top-down, bottom-up, middle-out
- Relaciones
 - Sublcass-off
 - Disjoint–decomposition
 - Exhaustive-decomposition
 - Partition

Methontology- taxonomía

Methontology- taxonomía

Partición de un concepto C es un conj. de clases que cubren C y no tienen instancias comunes

ED de un concepto C es un conj. De clases que cubren C y pueden tener instancias comunes DD de un concepto C es un conj. de clases que no cubren C y no tienen instancias comunes

Methontology- taxonomía

- Establece relaciones entre conceptos de una taxonomía
- Se debe establecer si los dominios y rangos de cada argumento de cada relación delimita exactamente las clases que son apropiadas para esa relación.

Los errores aparecen cuando dominios y rangos son imprecisos o sobre-especificados

Plaintiff: demandante

Lawsuit: juicio

- Especifica cuales son las propiedades y relaciones que describen cada concepto de la taxonomía.
- Opcionalmente se incluyen:
 - Instancias
 - Atributos de clase e instancias
- Las relaciones especificadas para cada concepto son aquellas cuyo dominio es el concepto

Concept name	Class attributes	Instance attributes	Relations
AA7462			same Flight as
American Airlines Flight	company Name		
British Airways Flight	company Name		
Five-stars Hotel	number of Stars		
Flight			same Flight as
Location		name	is ArrivalPlace of
		size	is Departure Place of
Lodging		price of Standard Room	placed in
Travel		arrival Date	arrival Place
		company Name	departure Place
		departure Date	
		retum Fare	
		single Fare	
Travel Package		budget	amival Place
		finalPrice	departure Place
		name	accommodated in
		number of Days	travels in
		travel Restrictions	
USA Location			

Instance attribute name	Concept name	Value type	Measurement unit	Preci- sion	Range of values	Cardi- nality
budget	Business Trip	Float	Currency Quantity	0.01	10003000	(0,1)
budget	Economy Trip	Float	Currency Quantity	0.01	01000	(0,1)
name	Location	String				(l,N)
size	Location	Integer	Square Meters	1		(1,1)
price of Standard	Lodging	Float				(0,1)
Room						
budget	Luxury Trip	Float	Currency Quantity	0.01		(0,1)
arrival Date	Travel	Date				(0,1)
company Name	Travel	String				(0,0)
departure Date	Travel	Date				(0,1)
retum Fare	Travel	Float	Currency Quantity	0.01		(0,1)
single Fare	Travel	Float	Currency Quantity	0.01		(0,1)
budget	Travel Package	Float	Currency Quantity	10.0		(0,1)
finalPrice	Travel Package	Float	Currency Quantity	10.0		(0,1)
number of Days	Travel Package	Integer	days	1		(0,1)
travel Restrictions	TravelPackage	String				(0,1)

Attribute name	Defined at concept	Value	Measurement	Precision	Cardinality	Values
		type	unit			
company Name	American Airlines	String			(1,1)	AA
	Flight					
company Name	British Airways Flight	String			(1,1)	BA
company Name	Iberia Flight	String			(1,1)	ΙB
number of Stars	Five-stars Hotel	Integer	star	1	(1,1)	5
number of Stars	Four-stars Hotel	Integer	star	1	(1,1)	4
number of Stars	Three-stars Hotel	Integer	star	1	(1,1)	3
number of Stars	Two-stars Hotel	Integer	star	1	(1,1)	2
number of Stars	One-stars Hotel	Integer	star	1	(1,1)	1

Concept name	Instances	Class attributes	Instance attributes	Relations
court	Constitutional Court National Court Supreme Court Albacete Provincial Court		number of members seat territorial jurisdiction	hears
company	-	type of control	name	
lawsuit				has defendant has plaintiff is heard
person				is defendant is plaintiff
physical person			age birth day death day first family name first name nationality second family name	is mother of has father has mother is father of

Methontology Detalle de relaciones

- Describe en detalle todas las relaciones binarias incluidas en el diccionario de conceptos
- Para cada relacion se debe especificar nombre, nombre del concepto fuente y destino, cardinalidad, su relacion inversa y su relacion matemática

Methontology Detalle de relaciones

Relation name	Source concept	Source cardinality (Max)	Target concept	Inverse relation
is defendant	Person	N	1awsuit	has defendant
is plaintiff	Person	N	1awsuit	has plaintiff
hears	Court	N	1awsuit	is heard
has defendant	Lawsuit	N	person	is defendant
has plaintiff	Lawsuit	N	person	is plaintiff
is heard	Lawsuit	N	court	hears

Methontology Detalle de relaciones

Nombre de la relación	Concepto fuente	Cardinalidad fuente (max)	Concepto destino	Relación inversa
HasMoment	Assessment	1	Moment	isMomentOf
IsComposedBy	Assessment	N	Activity	isPartOf
HasRubric	Assessment	N	Rubric	isRubricOf
isComposedByR eactive	Activity	N	Reactive	isReactiveOf
HasDegree	Score	1	Degree	is Degree Of
HasAspect	Score	1	Aspect	isAspectOf
HasAgent	Assessment	N	Agent	isAgentOf

Methontology Atributos de instancia

- Describe en detalle los atributos de instancia incluidos en el diccionario de conceptos
- Los atributos de instancia poseen valores que pueden diferir para cada instancia del concepto
- Se especifica nombre, tipo, unidad de medida, precision y rango de valores (en el caso de valores numéricos), valores por default si existen, cardinalidad mínima y máxima; atributos de instancia, atributos de clase y constantes utilizadas para inferir valores; atributos que pueden ser inferidos utilizando valores del atributo; fórmulas o reglas que permiten inferir valores del atributo y referencias utilizadas para definir el atributo

Methontology Atributos de instancia

Instance attribute name	Concept name	Value type	Measurement unit	Preci- sion	Range of values	Cardi- nality
budget	Business Trip	Float	Currency Quantity	0.01	10003000	(0,1)
budget	Economy Trip	Float	Currency Quantity	0.01	01000	(0,1)
name	Location	String				(I,N)
size	Location	Integer	Square Meters	1		(1,1)
price of Standard	Lodging	Float				(0,1)
Room						
budget	Luxury Trip	Float	Currency Quantity	0.01		(0,1)
arrival Date	Travel	Date				(0,1)
company Name	Travel	String				(N,0)
departure Date	Travel	Date				(0,1)
retum Fare	Travel	Float	Currency Quantity	0.01		(0,1)
single Fare	Travel	Float	Currency Quantity	0.01		(0,1)
budget	TravelPackage	Float	Currency Quantity	0.01		(0,1)
finalPrice	TravelPackage	Float	Currency Quantity	0.01		(0,1)
number of Days	TravelPackage	Integer	days	1		(0,1)
travel Restrictions	Travel Package	String				(0,1)

Methontology Atributos de instancia

Instance attribute name	Concept name	Value type	Value Range	Cardinality
number of members	court	Integer	1	(1, 1)
seat	court	String		(1, 1)
territorial jurisdiction	court	String		(1, 1)

Methontology Atributos de clase

- Describe en detalle los atributos de clase incluidos en el diccionario de conceptos
- Describen conceptos y toman su valor en la clase donde se definen
- Se especifica nombre, nombre del concepto donde se define el atributo, tipo, unidad de medida, precisión y rango de valores (en el caso de valores numéricos), cardinalidad; atributos de instancia que pueden ser inferidos utilizando valores del atributo; etc.

Methontology Atributos de clase

Attribute name	Defined at concept	Value	Measurement	Precision	Cardinality	Values
		type	unit			
company Name	American Airlines Flight	String			(1,1)	AA
company Name	British Airways Flight	String			(1,1)	BA
company Name	Iberia Flight	String			(1,1)	IB
number of Stars	Five-stars Hotel	Integer	star	1	(1,1)	5
number of Stars	Four-stars Hotel	Integer	star	1	(1,1)	4
number of Stars	Three-stars Hotel	Integer	star	1	(1,1)	3
number of Stars	Two-stars Hotel	Integer	star	1	(1,1)	2
number of Stars	One-stars Hotel	Integer	star	1	(1,1)	1

Methontology Atributos de clase

Class attribute name	Defined concept	Value type	Cardinality	Values
type of control	private company	[private,public]	(1,2)	private
type of control	public company	[private,public]	(1,2)	public

Methontology - Constantes

- Describe en detalle las constantes definidas en el glosario de términos
- Se especifica nombre, tipo de valor, unidad de medida para las constantes numéricas, los atributos que pueden ser inferidos usando la constante

Name	Value type	Value	Measurement unit
Maximun number of Travelers in a Plane	Integer	200	person

Name	Value type	Value	Measurement unit
adult age in Spain	Cardinal	18	year

Methontology Axiomas formales

- Componentes de modelado importantes en ontologias heavyweight
- Expresiones lógicas siempre verdaderas utilizadas para especificar restricciones en la ontología
- Para cada axioma se especifica nombre, descripción, la expresión lógica que describe formalmente el axioma utilizando FOL; los conceptos, atributos y relaciones a los que se refiere el axioma y las variables utilizadas

Methontology Axiomas formales

Axiom name	Train inside Europe					
Description	Every train that departs from a European location					
_	must arrive at another European location					
Expression	forall(?X,?Y,?Z)					
	([Train Travel](?X) and					
	[departure Place](?X,?Y) and					
	[arrival Place](?X,?Z) and					
	[European Location](?Y) ->					
	[European Location](ξZ))					
Concepts	Train Travel					
	European Location					
Referred attributes						
Ad-hoc binary	departure Place					
relations	arrival Place					
Variables	?X					
	?Y					
	?ℤ					

Methontology Axiomas formales

Axiom name	Description	Expression	Referred concepts	Referred relations	Variables
incompatibility plaintiff defendant	A person cannot be plaintiff and defendant in the same lawsuit	not (exists(?X,?Y) (person(?X) and lawsuit(?Y) and [is plaintiff](?X,?Y) and [is defendant](?X,?Y)))	person lawsuit	is plaintiff is defendant	?X ?Y

- Componentes de modelado importantes en ontologias heavyweight
- Utilizadas para inferir conocimiento en la ontología como valores de atributos, relaciones de instancia, etc.
- Methontology propone describirlas en forma paralela con los axiomas formales una vez definidos los conceptos, sus taxonomías, relaciones, atributos y constantes

- Para cada regla se especifica nombre, descripción, la expresión que describe formalmente la regla; los conceptos, atributos y relaciones a los que se refiere la regla y las variables utilizadas en la expresion. Methontology propone especificar expresiones de reglas utilizando el template if <conditions> then <consequent>
- Lado izquierdo de la regla consiste de conjunciones y átomos
- Lado derecho de la regla es un átomo simple

Descripción	Lógica
Una coevaluación tiene lugar	$\Im = (\forall x,y,z) (CoAssessment(x) \land hasCoEvaluator(x,y) \land hasCoAssessed(x))$
entre pares educadores	$(z) \land y \neq z) \Rightarrow ((Educator(y) \land Educator(z))))$
Una heteroevaluación tiene	$\mathfrak{I}=(\forall x,y,z)$ (HeteroAssessment(x) \land hasEvaluator(x,y) \land hasAssessed(x,z)
un educador como	$)) \Rightarrow (Educator(y) \land Learner(z)))$
evaluador y un alumno	
como evaluado	
Una autoevaluación tiene un	$\mathfrak{I}=(\forall x,y(SelfAssessment(x)\land hasSelfEvaluator(x,y)\land hasSelfAssessed($
alumno que asume los roles	x,y))⇒Learner(y))
de evaluador y evaluado	
Una evaluación siempre	$\mathfrak{I}=(\forall x \ Assessment(x) \Rightarrow \exists y \ (hasAgent(x,y) \land Author(y)))$
tiene un autor	

Rule name	Costa Cruises rule					
Description	Every ship that departs from Europe is					
	arranged by the company Costa Cruises					
Expression	if [European Location] (? Y) and					
	Ship(?X) and					
	[departure Place](?X,?Y)					
	then [company Name](?X, "Costa Cruises")					
Concepts	Ship					
	European Location					
Referred attributes	company Name					
Ad-hoc binary	departure Place					
relations						
Variables	?X					
	?Y					

Rule name	Description	Expression	Concepts	Referred attributes	Referred relations	Variables
juvenile courts for juveniles	Lawsuits where juveniles up 14 years old are defendants are heard by a juvenile court	If juvenile(?X) and lawsuit(?Z) and court(?W) and age(?X, ?Y) and ?Y > 14 and [is defendant](?X, ?Z) and hears(?W, ?Z) then [juvenile court](?W)]	juvenile lawsuit court	age	is defendant hears	?X ?Z ?W

Methontology Instancias

- Define las instancias relevantes que aparecen en el diccionario de conceptos en una tabla de instancias
- Se especifica nombre, el nombre del concepto al que pertenece y valores de atributos si se conocen

Methontology Instancias

Instance Name	Concept Name	Attribute	Values
AA7462_Feb08_2002	AA7462	company Name	American Airlines
		departure Date	02/08/2002
		arrival Date	02/08/2002
		single Fare	300
AA7462_Feb16_2002	AA7462	company Name	American Airlines
		departure Date	02/16/2002
		arrival Date	02/16/2002
		single Fare	300

Methontology Instancias

Instance name	Concept name	Attribute	Values
National Court	court	seat	Madrid
		territorial jurisdiction	Spain
Supreme Court	court	territorial jurisdiction	Spain
Constitutional Court	court	number of members	12
	court	territorial jurisdiction	Spain