Introducing finite state automata

Computational Linguistics (LING 455)

Rutgers University

October 15, 2021

ı

Finite state machines

Some FSAs we've encountered

Automata and FSAs

Automaton (pl. automata): abstract machine that represents...

- the memory a computation requires
- the complexity of a computation

Finite state acceptor (FSA): parses a string, accepts or rejects it

equivalent to regular expressions!

What strings does this FSA recognize?

What is an RE that characterizes this pattern?

What strings does this FSA recognize?

• Strings over $\Sigma = \{a, b\}$ with at least one b

What is an RE that characterizes this pattern?

What strings does this FSA recognize?

• Strings over $\Sigma = \{a, b\}$ with at least one b

What is an RE that characterizes this pattern?

$$\bullet \ \Sigma^* \cdot b \cdot \Sigma^*$$

[or, $a^* \cdot b \cdot \Sigma^*$]

FSA practice

What strings does this FSA recognize?

What is an RE that characterizes this pattern?

FSA practice

What strings does this FSA recognize?

• Strings over $\Sigma = \{C, V\}$ ending with CV

What is an RE that characterizes this pattern?

FSA practice

What strings does this FSA recognize?

• Strings over $\Sigma = \{C, V\}$ ending with CV

What is an RE that characterizes this pattern?

 $\bullet \ \Sigma^* \cdot C \cdot V$

More FSA practice

What strings does this FSA recognize?

What is an RE that characterizes this pattern?

More FSA practice

What strings does this FSA recognize?

 \bullet Strings over $\Sigma = \{C,V\}$ with 2 adjacent C's, or 2 adjacent V's

What is an RE that characterizes this pattern?

More FSA practice

What strings does this FSA recognize?

• Strings over $\Sigma = \{C, V\}$ with 2 adjacent C's, or 2 adjacent V's

What is an RE that characterizes this pattern?

$$\bullet \ \Sigma^* \cdot ((C \cdot C) \mid (V \cdot V)) \cdot \Sigma^*$$

Even more FSA practice

What strings does this FSA recognize?

What is an RE that characterizes this pattern?

Even more FSA practice

What strings does this FSA recognize?

• Strings over $\Sigma = \{C, V\}$ built from repetitions of (C)V(C)

What is an RE that characterizes this pattern?

Even more FSA practice

What strings does this FSA recognize?

• Strings over $\Sigma = \{C, V\}$ built from repetitions of (C)V(C)

What is an RE that characterizes this pattern?

• $((C \mid \varepsilon) \cdot V \cdot (C \mid \varepsilon))^*$

FSAs formally

Official definition

An FSA is a 5-tuple $(Q, \Sigma, I, F, \Delta)$ where:

Q is a set of states	we'll use numbers to name states
--	----------------------------------

• Σ is an alphabet of symbols

same as REs

• *I* is the states in *Q* that are initial

entering arrow circled 2x

• *F* is the states in *Q* that are final

labeled arrows

- Δ is the set of transitions
 - Transitions are triples (q, σ, q') of a starting state q, an ending state q', and a letter σ

Example: the data in an FSA graph

- $Q = \{1, 2, 3\}$
- $\bullet \ \Sigma = \{C, V\}$
- $I = \{1\}$
- $F = \{3\}$
- $\bullet \ \Delta = \{(1, C, 1), (1, V, 1), (1, C, 2), (2, V, 3)\}$

Another example

- $Q = \{40, 41, 42, 43\}$
- *I* = {40}
- $F = \{43\}$
- $\Delta = \{(40, C, 40), (40, V, 40), (40, C, 41), (41, C, 43), (40, V, 42), (42, V, 43), (43, C, 43), (43, V, 43)\}$

On 'isomorphism'

You should convince yourself that the two representations of FSAs convey equivalent information:

- Given $(Q, \Sigma, I, F, \Delta)$ you could draw the picture
- Given the picture you could determine $(Q, \Sigma, I, F, \Delta)$

Moreover, you could always convert one representation to another, and then convert it back. You wouldn't ever lose anything by doing so. This is just what is meant by **isomorphism**.

It is true that the 'flat' representation leaves out certain pictorial details, like the orientation of the graph. But all such details are unimportant to how the FSA actually works.

Two equivalent FSA graphs

- $Q = \{0, 1\}$
- $\Sigma = \{a, b\}$
- $I = \{0\}$
- $F = \{1\}$
- $\quad \bullet \ \ \Delta = \{(0,a,0), (0,b,1), (1,a,1), (1,b,1)\}$

When does an FSA accept a string?

If we have a string of 3 symbols, xyz, $(Q, \Sigma, I, F, \Delta)$ generates it if there are 4 states q_0 , q_1 , q_2 , q_3 in Q such that:

• $q_0 \in I$	q_0 is initial
$\bullet \ (q_0, x, q_1) \in \Delta$	$q_0 \xrightarrow{x} q_1$
$\bullet \ (q_1,y,q_2) \in \Delta$	$q_1 \xrightarrow{y} q_2$
$\bullet \ (q_2,z,q_3) \in \Delta$	$q_2 \stackrel{z}{\longrightarrow} q_3$
 q₃ ∈ F 	q_3 is final

Less formally: if you can walk a path in the FSA starting with an initial state, ending with the final state, labeled with x, y, and z.

More generally

 $(Q, \Sigma, I, F, \Delta)$ generates $x_1 \dots x_n$ if there are states $q_0 \dots q_n$ such that:

- $q_0 \in I$
- $\bullet \ (q_0, x_1, q_1) \in \Delta$
- (q_1, x_2, q_2) ∈ ∆
- ...
- $\bullet \ (q_{n-1}, x_n, q_n) \in \Delta$
- $q_n \in F$

 q_0 is initial

 $q_0 \xrightarrow{x_1} q_1$

 $q_1 \xrightarrow{x_2} q_2$

 $q_{n-1} \xrightarrow{x_n} q_n$

 q_n is final

$$\Delta = \{ (\overset{/}{40}, C, 40), (40, V, 40), (40, C, 41), (41, C, 43), \\ (40, V, 42), (42, V, 43), (43, C, 43), (43, V, 43) \}$$

$$\Delta = \{ (\overset{1}{40}, C, 40), (40, V, 40), (40, C, 41), (41, C, 43), \\ (\overset{1}{40}, V, 42), (42, V, 43), (43, C, 43), (43, V, 43) \}$$

$$\Delta = \{ (\overset{1}{40}, C, 40), (40, V, 40), (40, C, 41), (41, C, 43), \\ (40, V, 42), (\overset{1}{42}, V, \overset{1}{43}), (43, C, 43), (43, V, \overset{1}{43}) \}$$

$$\Delta = \{ (\overset{1}{40}, C, 40), (40, V, 40), (40, C, 41), (41, C, 43), \\ (40, V, 42), (42, V, 43), (43, C, 43), (43, V, 43) \}$$

$$\Delta = \{ (\overset{1}{40}, C, 40), (40, V, 40), (40, C, 41), (41, C, 43), \\ (40, V, 42), (42, V, 43), (43, C, 43), (43, V, \overset{43}{F}) \}$$

$$\Delta = \{ (\overset{1}{40}, C, 40), (40, V, 40), (40, C, 41), (41, C, 43), \\ (40, V, 42), (42, V, 43), (43, C, 43), (43, V, 43) \}$$

FSAs in Haskell

The type of FSA's

Recalling: an FSA is a 5-tuple $(Q, \Sigma, I, F, \Delta)$ where:

- *Q* is a set of states (we'll use numbers)
- Σ is an alphabet (same as REs)
- *I* is the states in *Q* that are initial
- F is the states in Q that are final
- Δ is the set of transitions

Example FSA

Checking that an FSA is legal

```
*W7> validFSA fsaCCVV
True
```

Parsing

The logic of parsing

 $(Q, \Sigma, I, F, \Delta)$ generates $x_1 \dots x_n$ if there are states $q_0 \dots q_n$ such that:

$$\begin{array}{ll} \bullet \ q_0 \in I & q_0 \text{ is initial} \\ \bullet \ (q_0,x_1,q_1) \in \Delta & q_0 \xrightarrow[x_2]{x_1} q_1 \\ \bullet \ (q_1,x_2,q_2) \in \Delta & q_1 \xrightarrow[x_2]{x_2} q_2 \\ \bullet \ \dots & \dots & \dots \\ \bullet \ (q_{n-1},x_n,q_n) \in \Delta & q_{n-1} \xrightarrow[x_n]{x_n} q_n \\ \bullet \ q_n \in F & q_n \text{ is final} \end{array}$$

Informally this is very simple, and suggests a natural algorithm:

- Start at an initial state
- Given x_1 , go wherever Δ allows
- Repeat in the new state for x₂
- Keep going
- Once no letters are left, succeed if you are in a final state

Zooming in

We'll start with a simpler task. If we are currently in a given state q, we know that the only relevant transitions are those with source q:

Zooming in

We'll start with a simpler task. If we are currently in a given state q, we know that the only relevant transitions are those with source q:

Zooming in

We'll start with a simpler task. If we are currently in a given state q, we know that the only relevant transitions are those with source q:


```
focus :: [Transition a] -> State -> [Transition a] focus delta q = [(r,x,r') | (r,x,r') <- delta, r==q]
```



```
step :: Eq a => [Transition a] -> a -> State -> [State] step delta x q = [ r' \mid (r,y,r') < focus delta q, y==x ]
```

This tells us how to traverse a FSA with a string:

- Take a step with the first symbol
- For each possible next state, keep taking steps
- Do it till you run out of string, then rest

This tells us how to traverse a FSA with a string:

- Take a step with the first symbol
- For each possible next state, keep taking steps
- Do it till you run out of string, then rest

This tells us how to traverse a FSA with a string:

- Take a step with the first symbol
- For each possible next state, keep taking steps
- Do it till you run out of string, then rest

This tells us how to traverse a FSA with a string:

- Take a step with the first symbol
- For each possible next state, keep taking steps
- Do it till you run out of string, then rest

This tells us how to traverse a FSA with a string:

- Take a step with the first symbol
- For each possible next state, keep taking steps
- Do it till you run out of string, then rest

How to use step to walk

You are in some state q with a string x:xs...

• Taking one x-step opens up new options for where to travel next:

```
nexts = step delta x q
-- :: [State]
```

 By repeatedly taking step's — walk-ing — you can construct a path to some final dests using the tail xs:

```
dests q' = walk delta xs q'
-- :: State -> [State]
```

• Once the string is consumed, your journey is done.

Where we're at

```
walk delta (x:xs) q =
-- ...
let nexts = step delta x q
-- nexts :: [State]
    dests q' = walk delta xs q' in
-- dests :: State -> [State]
-- ...
```

If we map dests over nexts, we construct a list of final dests **for each** potential next state, type: [[State]]. Flatten with concat.

Or simply concatMap dests nexts!

Putting it all together

```
walk :: Eq a => [Transition a] -> [a] -> State -> [State]
walk delta str q =
 case str of
    x:xs -> let nexts = step delta x q
                nexts :: [State]
                dests q' = walk delta xs q' in
                dests :: State -> [State]
                concatMap dests nexts
    [] -> [q]
   good job, you consumed the string you can rest!
```

accept-ance

The only remaining thing is to ensure that we begin in an initial state, and conclude in a final (i.e., accepting) state:

```
accepts :: Eq a => FSA a -> [a] -> Bool
accepts (states, syms, i, f, delta) str =
  or [ elem qn f | q0 <- i, qn <- walk delta str q0 ]</pre>
```

- Start at some q0 <- i
- Walk delta-paths from q0, parsing str letter by letter
- Test that the destinations qn are in f
- If at least one is (the job of or), the FSA accepts str