Implémenter un modèle de Scoring

- 1 Contexte
- 2 Traitement des données
- Modélisation
- Dashboard
- 5 Conclusions

- Contexte
- 2 Traitement des données
- 3 Modélisation
- 4 Dashboard
- 5 Conclusions

Contexte

Prêt à dépenser:

L'entreprise souhaite créer un outil de "scoring crédit" basé sur un algorithme de classification pour prédire la probabilité de remboursement d'un client et prendre des décisions d'accord ou de refus de crédit.

Mission:

- Construire un modèle de scoring automatisé pour prédire la probabilité de faillite d'un client.
- Développer un **Dashboard interactif** pour les gestionnaires de la relation client, permettant d'interpréter les prédictions du modèle et d'améliorer leur connaissance des clients.

Objectifs:

Les chargés de relation client ont souligné l'importance de la **transparence** dans les décisions d'octroi de crédit. Pour répondre à cette demande, l'entreprise prévoit de développer un tableau de bord **interactif** permettant d'expliquer les **décisions de crédit** de manière transparente et de donner aux clients un **accès facile** à leurs informations personnelles.

Contexte – déroulement

EDA

<u>Traitement des 8 fichiers</u> de prêt.

Stat, typage, données manquantes.

PRE-PROCESSING

Nettoyage des données

Typage, valeurs manquantes, imputation

Feature engineering

- Création nouveaux types de features (min, max, sum, ...)
- Encodage (cat encoding, ...)
- Elimination des fortes colinéarités
- Fusion des datasets nettoyés

Données test et entrainement

FEATURES SELECTION

LightGBM

- Recherche des features importances avec 2 itérations afin d'éliminer les 0 importances.

Permutation importance

- Permutationbased Importance avec sklearn
- Permutation importance avec eli5

Conservation des variables les plus fréquentes

MODELISATION

- Séparation du dataset
- Gestion du déséquilibre (SMOTE, ...)
- Sélection des métriques (métier, ...)
- Optimisation bayésienne des différents modèles (selon les métriques, ...):
- Détermination de la probabilité optimale.

Modèle Final

DASHBOARDING

Développement

Déploiement

- 1 Contexte
- 2 Traitement des données
- 3 Modélisation
- 4 Dashboard
- 5 Conclusions

Traitement des données – jeu datasets

application_train.csv (307511,122)

application_test.csv (48744,121)

> previous_application.c sv (1670214,37)

POS_CASH_balance.csv (10001358,8)

instalments_payments.cs v (13605401,8)

> credit_card_balance.c sv (3840312,23)

- Demandes précédentes de prêts immobiliers
- Instantanés mensuels du solde des points de vente précédents et des prêts en espèces
- Historique de remboursement des crédits précédents.
- Reçu mensuel du solde des cartes de crédits précédents

bureau.csv (3840312,23

bureau_balance.cs (3840312,23)

- Antécédents des crédits des clients
- Soldes mensuels des crédits précédents

8 datasets: 307511 clients et 530 variables

Traitement des données – Pré-processing sur les 8 datasets

Nettoyage

Typage des données

- Numérique

ordinal en object

- Optimisation

mémoire du

dataframe (int64

en int8, ...)

Valeurs
aberrantes,
valeurs
différentes sur
les données
train/test

Transformation

des valeurs

aberrantes de

ľEDA

Transformation

ou suppression

valeurs uniques

du train set ≠

test set

Valeurs manquantes

Imputation

1ère étape Imputation par la médiane

nan avec conservation des variables importantes de l'EDA

Suppression des

2ère étape Imputation par valeurs nulles 0 Imputation Qualitatives constante XNA

> 3^{ère} étape Imputation NaNImputer

Feature engineering

Variables métiers, statistiques

Manuel: Ajout variables métiers

Automatique: Ajouts variables Statistiques (min, max, sum, ...) Assemblage

Quantitatives:

StandardScaler(*)

Qualitatives:

LabelEncoder

(binaire)

pd.get dummies

(> 2 valeurs

.uniques)

Me

Fusion des 6 datasets avec les données train/test Colinéarité

Colinéarité

Suppression des variables fortement colinéaires

Traitement des données – Feature Engineering

Automatique

- Encodage features catégoriques
 - Création de features statistiques: quantitatives et qualitatives (min, max, sum, mean, count,...)
 - Fonction 'Feature Engineering' intégrant ces caractéristiques sur chaque dataset

Manuel

- Ratio/différence des variables métiers
- Conversion jours en années: ratio
- Nouveaux features crées par fusion d'autres features (addition, multiplication, ...)
- Données externes: ratio, moyenne, min, max

Traitement des données – Fusion datasets

Dataset initial	Dimensions initiales	Dimensions Datasets après le process FE	Fusion des datasets, imputation nan et var. colinéaires
application_train/test	(307 511, 122) (48744,121)	(307507, 259) (48744, 258)	
cc_balance	(3840312, 23)	credit_balance_fe (103558, 389)	(307507, 294) (48744, 292)
installments_payments	(13605401,8)	installment_fe (339587, 56)	(307507, 301) (48744, 292)
POS_CASH_balance	(10001358, 8)	pos_cash_fe (337252, 38)	(307507, 322) (48744, 314)
previous_application	(1670214, 37)	previous_application_fe (338857, 258)	(307507, 499) (48744, 488)
bureau_balance	(27299925, 3)	bureau_bb_fe (817395, 12)	(307507, 495) (48744, 485)
bureau	(1716428, 17)	bureau_fe (305811, 60)	(307507, 530) (48744, 521)

train set: 530 variables test set: 521 variables

FEATURE SELECTION
OBLIGATOIRE

Traitement des données – Feature Engineering

train set: 530 variables test set: 521 variables

DONNEES FINALES MODELISATION

- 1 Contexte
- 2 Traitement des données
- Modélisation
- 4 Dashboard
- 5 Conclusions

Modélisation – variable cible

Constat variable cible

Fort déséquilibre entre les clients à risque (Target =1) ou sain (Target = 0)

Modélisation

Rééchantillonnage des classes déséquilibrées: SMOTE, ADASYN

Modélisation – les métriques

Utilisation de plusieurs métriques standards (minimisation du déséquilibre des classes):

Accuracy, ROC, F1 Score, F2 Score, FBeta, Custom metric

Précision: - défaillants = classe **positive**

non-défaillants = classe négative

Minimisation des pertes de bénéfices (prédiction):

- un client non-défaillant s'il est défaillant ==> minimiser le nombre de faux négatifs (erreur de type II) (prédit nondéfaillant mais client défaillant) ==> maximiser le Recall
- le client n'est pas défaillant
 ==> minimiser les faux positifs (erreur de type I) (classe 1 défaillant alors que non-défaillant) ==> maximiser la Précision

Modélisation – déroulement

Modélisation – Oversampling methods (désequilibre des classes)

Méthodes utilisées

UNDERSAMPLING - **SMOTE**

OVERSAMLPING - ADASYN

COMBINAISON OVERSAMLPING et UNDERSAMPLING - **SMOTE**

Modélisation – Conclusion meilleurs modèles

Modèle	Jeu_donnees	FN	FP	TP	TN	Metrique	Optimisation	Class_weight	Rappel	Précision	F1	F5	F10	ROC_AUC
lgbm_optuna_opt_F1	train	1500	16369	3465	40168	F1	optuna	oui	0.697885	0.174700	0.279447	0.625803	0.677788	0.770713
lgbm_optuna_opt_F5	train	1508	16182	3457	40355	F5	optuna	non	0.696274	0.176027	0.281011	0.625205	0.676479	0.771812
lgbm_optuna_opt_F10	train	1514	15871	3451	40666	F10	optuna	non	0.695065	0.178605	0.284185	0.625499	0.675720	0.776303
lgbm_optuna_opt_10_train	train	1544	15089	3421	41448	F10	optuna	oui	0.689023	0.184819	0.291459	0.623592	0.670902	0.780011

MODELE RETENU: LGBM_OPTUNA_OPT_F5

Modélisation – Hyperparamètres retenus

MODELE LIGHTGBM:Meilleurs Paramètres

Hyperparamètre	Meilleurs paramètres			
n_estimators	100 (par défaut)			
learning_rate	0,1 (par défaut)			
objective	binary			
boosting_type	gbdt			
class_weight	balanced			
colsample_tree	0.883696173865355			
max_depth	4			
min_child_samples	37			
min_child_weight	0.9053832802852111			
num_leaves	8			
reg_alpha	0.0013343227256418153			
reg_lambda	1.1168060057563535e-06			
subsample	0.876335534267455			
subsample_freq	4			

Modélisation – Graphes d'interprétation

VUE GLOBALE

VUE CLIENT

- 1 Contexte
- Traitement des données
- Modélisation
- Dashboard
- 5 Conclusions

Navigation

Menu

- Accueil
- O Analyse Client
- O Profil Client
- O Score Client

Bienvenue sur l'application de Crédit 🏠

© 2024 Prêt à dépenser. Tous droits réservés.

eploy

Lien Github:

https://github.com/YannickQuerin/OC-DS-P7-Implementez_modele_scoring_dashboard/blob/main /P7_Modelisation_risque_defaut_credit/App_dashbo ard_streamlit.py

Lien local: App_dashboard_streamlit.py

Lien Streamlit:

https://yannickquerin-p07-dashboard.streamlit.app

☆ ດ ≡

2. Quel est l'Impact de chaque caractéristique sur la

Le diagramme des valeurs SHAP ci-dessous indique également comment chaque caractéristique impacte la prédiction. Les valeurs de Shap sont représentées pour chaque variable dans leur ordre d'importance. Chaque point représente une valeur de Shap (pour un client).

Les points rouges représentent des valeurs élevées de la variable et les points beiges des valeurs basses de la variable.

Navigation

Menu

- O Accueil
- Analyse Client Profil Client
- O Score Client

1. Quel est le profil de votre client?

Veuillez sélectionner le numéro de votre client à l'aide du menu déroulant 👇

100001

Vous avez sélectionné l'identifiant n° : 100001

Le client dont l'identifiant est 100001 a obtenu le score de 40.4%.

Il y a donc un risque de 40.4% que le client ait des difficultés de paiement.

Profil socio-économique

Sexe de l'individu : **Féminin**

Situation familiale: Married

Nbre enfants: 0

Niveau éducation : Higher education

Type revenu: Working

Ancienneté emploi : 6 ANS

Revenus: 135000.0 \$

Profil emprunteur

Type de prêt : Cash loans

Montant du crédit: 568800.0 \$

Annuités: 20560.5\$

Montant du bien: 450000.0 \$

Type de logement : House / apartment

- 1 Contexte
- 2 Traitement des données
- 3 Modélisation
- 4 Dashboard
- Conclusions

Conclusions

- Manque de connaissance précise du secteur bancaire: vérification au niveau métier des variables retenus lors du pré-process
- Définir de façon plus détaillée la **métrique d' évaluation** et de **fonction de cout** avec les équipes métiers
- Développer un dashboard avec une page **Données bancaires** coté décideur et une page **Données Clients** de façon à séparer, et sécuriser certaines données sensibles détenus uniquement du côté de la banque, sans pour autant certaines données au client.
- Entrevoir une section de recommandation qui permettrait au client de voir quelle variable aurait pu influencer sur son obtention ou pas du prêt en question.