Docket No.: 22129-00005-US

AMENDMENTS TO THE CLAIMS

1. (currently amended) An aluminum alloy brazing sheet material comprising a core alloy and a clad brazing alloy, wherein when said sheet material is peak aged, said sheet material being capable of having a room temperature yield strength of at least about 111 MPa, and wherein said core alloy comprises in weight percent based on the weight of the core alloy:

Si < 0.2 %

Fe < 0.2 %

Mn: 1.3 - 1.7 %

Mg: 0.4 - 0.8 %

Cu: 0.3 - 0.7 %

Ti < 0.2 %

and at least one element selected from the group consisting of Cr, Sc, V, Zr, Hf, and Ni, and

balance aluminum and unavoidable impurities.

- 2. (previously presented) An aluminum alloy brazing sheet material according to claim 1, wherein at least two elements selected from the group consisting of Cr, Sc, V, Zr, Hf, and Ni, are included.
- 3. (previously presented) An aluminum alloy brazing sheet material as claimed in claim 1, wherein Sc is included and is present in an amount from 0.08 to 0.15 %.
- 4. (previously presented) An aluminum alloy brazing sheet material as claimed in claim 1, wherein V is included and is present in an amount from 0.08-0.15 %.
- 5. (previously presented) An aluminum alloy brazing sheet material as claimed in claim 1, wherein Zr is included and is present in an amount from 0.08-0.15 %.

Docket No.: 22129-00005-US

- 6. (previously presented) An aluminum alloy brazing sheet material as claimed in claim 1, wherein Ni is included and is present in an amount from 0.3 to 0.65 %.
- 7. (previously presented) An aluminum alloy brazing sheet material as claimed in claim 1, that is capable of being used at temperatures of up to at least 325°C.
- 8. (currently amended) A method for increasing the yield strength of an aluminum alloy brazing sheet material such that said sheet material is capable of having a room temperature yield strength of at least about 111 MPa, said method comprising at least a core alloy and a clad alloy, wherein the method comprises:

subjecting said brazing sheet material to a brazing cycle, to form an as-brazed sheet material, and

subjecting the as-brazed sheet material to aging at its peak-aged temperature,

wherein said core alloy comprises in percent by weight based on the weight of the core alloy:

Si < 0.2 %

Fe < 0.2 %

Mn: 1.3 - 1.7 %

Mg: 0.4 - 0.8 %

Cu: 0.3 - 0.7 %

Ti < 0.1 %.

at least one element from the group consisting of Cr, Sc, V, Zr, Hf and Ni, and

balance Al and unavoidable impurities.

9. (previously presented) A method according to claim 8, wherein Ni is present in the core alloy in an amount from 0.3 to 0.65 weight %.

Docket No.: 22129-00005-US

- 10. (previously presented) A charge air cooler prepared from an aluminum alloy brazing sheet material as claimed in claim 1.
- 11. (previously presented) An aluminum alloy brazing sheet material according to claim 1, which exhibits a yield strength > 90 MPa at 175°C, when in an as-brazed temper.
- 12. (previously presented) An aluminum alloy brazing sheet material according to claim 11, which exhibits a yield strength > 110 MPa, at 175°C, when in a post-braze, peak-aged temper.
- 13. (previously presented) An aluminum alloy brazing sheet material according to claim 1, which exhibits a yield strength > 88 MPa at 225°C, when in an as-brazed temper.
- 14. (previously presented) An aluminum alloy brazing sheet material according to claim 1, which exhibits a yield strength > 100 MPa at 225°C, when in the post-braze-peak-aged temper.
- 15. (previously presented) An aluminum alloy brazing sheet material according to claim 1, that exhibits a yield strength in the peak aged temper that is up to 20% higher than in the asbrazed temper at 225°C.
- 16. (previously presented) An aluminum brazing sheet material as claimed in claim 1, wherein, when said at least one element is Cr, Sc, V, Zr, or Hf, said element is present in an amount from 0.05 0.2 %, and when said at least one element is Ni, said element is present in an amount from 0.20 1.0 %.
- 17. (previously presented) A method according to claim 8, wherein when said at least one element is Cr, Sc, V, Zr, or Hf, said element is present in an amount from 0.05 0.20 % and, when said at least one element is Ni, said element is present in an amount from 0.20 1.0 %.
- 18. (previously presented) A method according to claim 8, wherein said method renders said brazing sheet material suitable for use in the manufacture of a charge air cooler.

BEST AVAILABLE COPY

Docket No.: 22129-00005-US

19. (previously presented) An aluminum alloy brazing sheet material according to claim 1, which exhibits a yield strength in the peak aged temper that is about 17% higher than in the asbrazed temper at 175°C and about 13% higher at 225°C.

BEST AVAILABLE COPY