

FCC PART 22, 74, 80 and 90

TEST REPORT

For

Hytera Communications Co., Ltd.

Hyt Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen, China

FCC ID: YAMRD98XSU1

Report Type: **Product Type:** Digital Base Station Repeater Original Report Tiger He **Test Engineer:** Tiger Ye **Report Number:** RSZ130326001-00 **Report Date:** 2013-06-17 Hrand Alvin Huang RF Leader **Reviewed By:** Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Q
APPLICABLE STANDARD	
RESULT	
FCC §2.1046 & § 22.727 & §74.461 & § 80.215 & §90.205- RF OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	99
FCC §2.1047 & §74.463 & §80.213 & §90.207 - MODULATION CHARACTERISTIC	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §2.1049 & §22.357 & § 22.731 & §74.462 & § 80.205 & § 80.207 & §90.209 & §90.210 – OCCUPII BANDWIDTH & EMISSION MASK	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	18
FCC §2.1051 & §22.861 & §74.461 & § 80.211 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA	22
TERMINALS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §2.1053 & §22.861 & §74.461 & § 80.211 & §90.210 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §2.1055 & § 22.355 & §74.464 & § 80.209 & §90.213- FREQUENCY STABILITY	29

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Hytera Communications Co.*, *Ltd.*'s product, model number: *RD982S U(1) (FCC ID: YAMRD98XSU1)* or the "EUT" in this report was a *Digital Base Station Repeater*, which was measured approximately: 483 mm (L) x 366 mm (W) x 88 mm (H), rated with input voltage: DC 13.6V.

Note: The product, series model RD982S U(1), RD985S U(1), RD986S U(1) and RD988S U(1) are electrically identical, they are just different in model number due tomarket purposes, which was explained in the attached declaration letter. And the model RD982S U(1) was selected for fully testing.

* All measurement and test data in this report was gathered from production sample serial number: 1303099 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2013-03-26.

Objective

This test report is prepared on behalf of *Hytera Communications Co.*, *Ltd.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

- Part 22 Public Mobile Service
- Part 74 Experimental Radio, Auxiliary, Special Broadcast and other Program Distributonal Service
- Part 80 Stantions in the Maritme Service
- Part 90 Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI 63.4-2009.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Description Model	
Mean Well	DC Power	SP-320-13.5	N/A

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 (b)(1), §2.1091	Maximum Permissible Exposure (MPE)	Compliance
\$2.1046; \$ 22.727; \$74.461; \$ 80.215; \$90.205	RF Output Power	Compliance
\$2.1047; \$74.463; \$80.213;\$90.207	Modulation Characteristic	Compliance
\$2.1049;\$22.357;\$ 22.731; \$74.462; \$ 80.205; \$ 80.207;\$90.209; \$90.210	Occupied Bandwidth & Emission Mask	Compliance
\$2.1051; \$22.861; \$74.461; \$ 80.211; \$90.210	Spurious Emission at Antenna Terminal	Compliance
\$2.1053; \$22.861; \$74.461; \$ 80.211; \$90.210	Spurious Radiated Emissions	Compliance
\$2.1055; \$ 22.355; \$74.464; \$ 80.209; \$90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Note: The uncertainty of any RF tests which use conducted method measurement is 0.96 dB.

The uncertainty of any radiation emissions measurement is 4.0 dB.

FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

(A) Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Ante	Antenna Gain		Conducted Power		Evaluation Power	
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
469.9875	6.5	4.47	47.56	57016	350	0.17	1.57

Radiation Exposure Statement:

To comply with FCC RF exposure requirements, a minimum separation distance of 3.5 is required between the antenna and all public persons.

Result: Compliance

^{* =} Plane-wave equivalent power density

FCC §2.1046 & § 22.727 & §74.461 & § 80.215 & §90.205- RF OUTPUT POWER

Applicable Standard

FCC §2.1046, § 22.727, §74.461, § 80.215 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Tiger Ye on 2013-05-08 and 2013-05-12.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

Frequency (MHz)	Modulation	Power level	Conducted Output Power (dBm)	Conducted Output Power (W)
	Analog	High	47.49	56.10
400.0125	Analog	Low	37.64	5.81
400.0123	Digital	High	47.50	56.23
	Digital	Low	37.65	5.82
	Analog Digital	High	47.51	56.36
450.0125		Low	37.71	5.90
430.0123		High	47.53	56.62
		Low	37.73	5.93
	Analog	High	47.56	57.02
460.0075	Analog	Low	37.63	5.79
469.9875	Digital	High	47.54	56.75
	Digital	Low	37.63	5.79

FCC §2.1047 & §74.463 & §80.213 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047, §74.463, §80.213 and §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	RF Communication Test Set	8920A	3438A05201	2012-06-14	2013-06-13
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2013-05-09	2014-05-08

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Tiger Ye on 2013-05-12.

Test Mode: Transmitting

Result: Compliance.

Analog Modulation:

MODULATION LIMITING

Carrier Frequency: 450.0125 MHz, Channel Separation=12.5 kHz, Low Power

Audio Input	Freq	Frequency Deviation (kHz)			
Level [dB]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]	
20.0	2.162	2.187	2.277	2.5	
15.0	2.174	2.194	2.270	2.5	
10.0	1.427	2.188	2.267	2.5	
5.0	0.829	2.183	2.262	2.5	
0.0	0.492	1.500	2.263	2.5	
-5.0	0.303	0.866	2.269	2.5	
-10.0	0.197	0.505	1.500	2.5	
-15.0	0.137	0.311	0.876	2.5	
-20.0	0.105	0.204	0.514	2.5	

Carrier Frequency: 450.0125 MHz, Channel Separation=12.5 kHz, High Power

Audio Input	Freq	Limit		
Level [dB]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
20.0	2.154	2.189	2.272	2.5
15.0	2.185	2.196	2.282	2.5
10.0	1.426	2.194	2.269	2.5
5.0	0.849	2.191	2.264	2.5
0.0	0.489	1.500	2.267	2.5
-5.0	0.297	0.876	2.274	2.5
-10.0	0.192	0.511	1.511	2.5
-15.0	0.141	0.307	0.878	2.5
-20.0	0.110	0.204	0.512	2.5

Audio Frequency Response

Carrier Frequency: 450.0125 MHz, Channel Separation=12.5 kHz, Low Power

Audio Frequency (Hz)	Response Attenuation (dB)			
300	-8.54			
400	-6.82			
500	-5.07			
600	-3.72			
700	-2.50			
800	-1.37			
900	-0.65			
1000	0.00			
1200	1.80			
1400	3.11			
1600	4.49			
1800	5.24			
2000	6.42			
2200	7.23			
2400	8.23			
2600	8.58			
2800	9.21			
3000	9.54			

Carrier Frequency: 450.0125 MHz, Channel Separation=12.5 kHz, High Power

Audio Frequency (Hz)	Response Attenuation (dB)
300	-8.59
400	-6.74
500	-5.26
600	-3.85
700	-2.59
800	-1.39
900	-0.71
1000	0.00
1200	1.74
1400	3.03
1600	4.52
1800	5.35
2000	6.38
2200	7.13
2400	8.21
2600	8.54
2800	9.22
3000	9.51

Audio Frequency Low Pass Filter Response

Analog Modulation:

Carrier Frequency: 450.0125 MHz, Channel Separation=12.5 kHz

Audio Frequency (kHz)	Response Attenuation (dB)	FCC Limit (dB)
3.0	-2.2	0.0
3.5	-6.8	-4.0
4.0	-10.6	-7.5
5.0	-16.4	-13.3
7.0	-27.9	-22.1
10.0	-33.1	-31.4
15.0	-46.8	-42.0
20.0	-52.3	-50.0
30.0	-54.4	-50.0
50.0	-56.5	-50.0
70.0	-59.1	-50.0

FCC §2.1049 & §22.357 & § 22.731 & §74.462 & § 80.205 & § 80.207 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §22.357, § 22.731, §74.462, § 80.205, § 80.207, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

$$50+10\log P=50+10\log (1.574)=51.97 \text{ dB}$$

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.
- 2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.
- 3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

$$43+10\log P=43+10\log (1.622)=45.10 \text{ dB}$$

The resolution bandwidth was 300 Hz or greater for measuring up to 250 kHz from the edge of the authorized frequency segment, and 30 kHz or greater for measuring more than 250 kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
НР	RF Communication Test Set	8920A	3438A05201	2012-06-14	2013-06-13

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 35 kHz from the carrier frequency.

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	56 %		
ATM Pressure:	100.1 kPa		

The testing was performed by Tiger Ye on 2013-05-10.

Modulation	Frequency (MHz) 99% Occupied Bandwidth (kHz)		26 dB Emissions Bandwidth (kHz)	Power Level
Analog Modulation	450.0125	9.92	10.32	High Power
	450.0125	9.92	10.32	Low Power
Digital Modulation	450.0125	8.02	9.92	High Power
Digital Modulation	450.0125	8.02	9.92	Low Power

Analog Modulation: 99% Occupied & 26 dB Bandwidth with High Power

Analog Modulation: 99% Occupied & 26 dB Bandwidth with Low Power

Analog Modulation: Emission Mask with High Power

Analog Modulation: Emission Mask with Low Power

Digital Modulation: 99% Occupied & 26 dB Bandwidth with High Power

Digital Modulation: 99% Occupied & 26 dB Bandwidth with Low Power

Digital Modulation: Emission Mask with High Power

Digital Modulation: Emission Mask with Low Power

FCC §2.1051 & §22.861 & §74.461 & § 80.211 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.
- 2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.
- 3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

The resolution bandwidth was 300 Hz or greater for measuring up to 250 kHz from the edge of the authorized frequency segment, and 30 kHz or greater for measuring more than 250 kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV13	8512003602	2012-08-25	2013-08-24
ANRITSU CORP.MADE IN JAPAN	HP Filter(UHF band)	MP526 D	995245	2012-11-4	2013-11-3
ANRITSU CORP.MADE IN JAPAN	HP Filter(VHF band)	MP526 B	995501	2012-11-4	2013-11-3

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at $100 \mathrm{kHz}$ for below $1 \mathrm{GHz}$, and $1 \mathrm{MHz}$ for above $1 \mathrm{GHz}$. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Tiger Ye on 2013-05-16 and 2013-05-21.

Test Mode: Transmitting

Please refer to the following plots.

Analog Modulation (450.0125 MHz):

0 – 1 GHz, Spacing Channel 12.5 kHz

1 GHz – 5 GHz, Spacing Channel 12.5 kHz

Digital Modulation (450.0125 MHz):

0 - 1 GHz

1 GHz - 5 GHz

FCC Part 22, 74, 80 and 90

Page 26 of 35

FCC §2.1053 & §22.861 & §74.461 & § 80.211 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053, §22.861, §74.461, § 80.211 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2014-11-30
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
HP	Signal Generator	8657A	3217A04699	2012-12-19	2013-12-18
A.H. System	Horn Antenna	SAS-200/571	135	2012-02-11	2015-02-10
HP	Synthesized Sweeper	8341B	2624A00116	2013-05-09	2014-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \, Log_{10}$ (power out in Watts) Spurious attenuation limit in dB = $50+10 \, Log_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Tiger Ye on 2013-05-09.

Test Mode: Transmitting

30MHz - 5GHz:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FCC I	Part 90	
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
	Analog Modulation (400.0125 MHz), Channel Spacing 12.5 kHz										
3600.0	48.32	25	1.9	V	-48.7	2.45	10.50	-40.65	-20	20.65	
3600.0	42.38	295	1.8	Н	-54.6	2.45	10.50	-46.55	-20	26.55	
800.0	29.29	246	1.9	Н	-68.2	0.67	0	-68.87	-20	48.87	
800.0	28.96	128	1.8	V	-68.5	0.67	0	-69.17	-20	49.17	
		Analog N	Modulation	ı (450.012	25 MHz),	Channel S	pacing 12.5	kHz			
3600.0	48.47	125	1.4	V	-48.5	2.45	10.50	-40.45	-20	20.45	
3600.0	42.33	25	1.8	Н	-54.7	2.45	10.50	-46.65	-20	26.65	
900.0	34.71	18	1.8	V	-62.2	0.70	0	-62.9	-20	42.9	
900.0	32.17	232	1.4	Н	-64.7	0.70	0	-65.4	-20	45.4	
	Analog Modulation (469.9875 MHz), Channel Spacing 12.5 kHz										
1400.0	41.13	1.8	1.9	Н	-55.9	0.88	9.00	-47.78	-20	27.78	
1400.0	40.55	1.7	1.8	V	-56.4	0.88	9.00	-48.28	-20	28.28	
940.0	35.62	19	1.9	V	-61.3	0.73	0	-62.03	-20	42.03	
940.0	34.71	132	1.8	Н	-62.2	0.73	0	-62.93	-20	42.93	
			Digit	al Modul	ation (400	.0125 MH	(z)				
3600.0	49.23	222	1.5	V	-47.8	2.45	10.50	-39.75	-20	19.75	
3600.0	42.86	341	1.4	Н	-54.1	2.45	10.50	-46.05	-20	26.05	
800.0	30.45	78	1.4	V	-67.1	0.67	0	-67.77	-20	47.77	
800.0	28.12	125	1.5	Н	-69.4	0.67	0	-70.07	-20	50.07	
	•		Digit	al Modul	ation (450	.0125 MH	(z)				
3600.0	48.23	2	1.4	V	-48.8	2.45	10.50	-40.75	-20	20.75	
3600.0	42.17	115	1.6	Н	-54.8	2.45	10.50	-46.75	-20	26.75	
900.0	34.87	144	1.6	V	-62.0	0.70	0	-62.7	-20	42.7	
900.0	32.69	225	1.4	Н	-64.2	0.70	0	-64.9	-20	44.9	
			Digit	al Modul	ation (469	.9875 MH	(z)			•	
1400.0	41.78	157	1.6	V	-55.2	0.88	9.00	-47.08	-20	27.08	
1400.0	41.58	177	1.7	Н	-55.4	0.88	9.00	-47.28	-20	27.28	
940.0	35.98	12	1.7	V	-60.9	0.73	0	-61.63	-20	41.63	
940.0	34.17	234	1.6	Н	-62.7	0.73	0	-63.43	-20	43.43	

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

FCC §2.1055 & § 22.355 & §74.464 & § 80.209 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055, § 22.355, §74.464, § 80.209 and §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2013-05-09	2014-05-09
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2012-11-02	2013-11-01

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	56 %	
ATM Pressure:	100.1 kPa	

The testing was performed by Tiger Ye on 2013-05-12.

Test Mode: Transmitting

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
НР	RF Communication Test Set	8920A	3438A05201	2012-06-14	2013-06-13
R&S	Spectrum Analyzer	FSV13	8512003602	2012-08-25	2013-08-24

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ± 4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .

k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Tiger Ye on 2013-05-10 and 2013-06-13.

Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	<10 (t1)	+/-12.5 kHz	
12.5	<25 (t2)	+/-6.25 kHz	Pass
	<10 (t3)	+/-12.5 kHz	

Please refer to the following plots.

Analog Modulation, Turn on

Analog Modulation, Turn off

Digital Modulation, Turn on

Digital Modulation, Turn off

PRODUCT SIMILARITY DECLARATION LETTER

Hytera Communications Corporation Ltd.

Add: HYT Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen China.

518057

Tel:+86-0755-26972999

Fax:+86-755-86137130

Product Similarity Declaration

To Whom It May Concern,

We, Hytera Communications Corporation Ltd., hereby declare that our Digital Base Station Repeater, Model Number: RD985S U(1),RD986S U(1) and RD988S U(1) are the same with RD982S U(1) which was tested by BACL. They are just different in model number due to market purposes.

Please contact me if you have any question.

Leixions

Signature:

Lei Xiong

General Director

2013-5-9

***** END OF REPORT *****

FCC Part 22, 74, 80 and 90

Page 35 of 35