## ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA



## ĐỒ ÁN ĐA NGÀNH - CÔNG NGHỆ PHẦN MỀM

#### SMART LIGHT & SMART FAN CHO SMART HOME

GVHD: Trần Thị Quế Nguyệt

SV thực hiện : Ngô Vũ Anh Khoa – 2011403

Lê Công Cường – 2010973 Nguyễn Đình Thi – 2012085 Nguyễn Quang Vinh – 2010430 Lê Nguyễn Đức Huy – 2010285

## Mục lục

| Ι            | Phân công                                                           |    |  |
|--------------|---------------------------------------------------------------------|----|--|
| II           | Giới thiệu:                                                         | 3  |  |
| III          | Danh sách các thiết bị:                                             | 5  |  |
| 1            | Thiết bị Input                                                      | 5  |  |
| 2            | Thiết bị Output                                                     | 6  |  |
| IV           | Yêu cầu của người dùng:                                             | 6  |  |
| $\mathbf{V}$ | Yêu cầu chức năng:                                                  | 7  |  |
| 1            | Khía cạnh hệ thống                                                  | 7  |  |
| 2            | Khía cạnh người dùng                                                | 8  |  |
| VI           | Yêu cầu phi chức năng:                                              | 8  |  |
| 1            | Khía cạnh hệ thống                                                  | 8  |  |
| 2            | Khía cạnh người dùng                                                | 8  |  |
| VII          | Use-case:                                                           | g  |  |
| 1            | Use-case scenario:                                                  | E  |  |
|              | 1.1 Use-case 1: Hiển thị trạng thái của đèn & quạt trên ứng dụng .  | S  |  |
|              | 1.2 Use-case 2: Sử dụng ứng dụng để điều khiển độ sáng của đèn $\&$ |    |  |
|              | tốc độ quay của quạt                                                | 10 |  |
|              | 1.3 Use-case 3: Cảm biến hồng ngoại nhận diện con người             | 11 |  |
|              | 1.4 Use-case 4: Nhận diện sự hiện diện của con người thông qua cảm  |    |  |
|              | biến khoảng cách                                                    | 12 |  |
|              | 1.5 Use-case 5: Tự động điều khiển quạt và đèn tùy thuộc vào môi    |    |  |
|              | trường xung quanh                                                   | 13 |  |
|              | 1.6 Use-case 6: Hẹn giờ điều khiển đèn & quạt trên ứng dụng         | 15 |  |
| 2            | Use-case diagram:                                                   |    |  |
| VIII         | Kiến trúc hệ thống:                                                 | 18 |  |

| 1    | Tổng quan hệ thống:        | 18 |
|------|----------------------------|----|
|      | 1.1 Front-end:             | 18 |
|      | 1.2 Back-end & Database:   | 19 |
|      | 1.3 Services:              | 19 |
|      | 1.4 Gateway:               | 20 |
| 2    | Định nghĩa Cơ sở dữ liệu:  | 21 |
|      | 2.1 Lịch hẹn - Schedules:  | 21 |
|      | 2.2 Ngưỡng - Thresholds:   | 22 |
| IX   | Back-end Implementation    | 23 |
| 1    | Model                      | 23 |
|      | 1.1 Threshold - Ngưỡng:    | 23 |
|      | 1.2 Schedule - Lịch trình: | 26 |
| 2    | API endpoint               | 28 |
| X    | Front-end Implementation   | 28 |
| XI   | Design Pattern:            | 31 |
| XII  | Các màn hình thực tế:      | 33 |
| 1    | Home Screen:               | 33 |
| 2    | Schedule:                  | 35 |
| 3    | Statistic:                 | 38 |
| 4    | Threshold:                 | 41 |
| XIII | Phụ lục:                   | 46 |
| 1    | AdafruitIO Feed:           | 46 |
| 2    | Thiết kế OhStem:           | 47 |
| 3    | Github Repo:               | 47 |

### I Phân công

| Thành viên        | Nhiệm vụ                             | Đóng góp |
|-------------------|--------------------------------------|----------|
| Lê Nguyễn Đức Huy | Lắp mạch Microbit, Set up            | 100%     |
|                   | adafruitIO, lập trình gateway, vẽ    |          |
|                   | usecase diagram tổng hợp             |          |
| Ngô Vũ Anh Khoa   | Code front-end phần Home             | 100%     |
|                   | Screen, Schedule và Edit Sched-      |          |
|                   | ule; Vẽ figma; viết usecase          |          |
|                   | scenario                             |          |
| Lê Công Cường     | Code back-end, front-end phần        | 100%     |
|                   | Statistics, Threshold và Edit        |          |
|                   | Threshold; Viết service; deploy      |          |
|                   | CSDL; xây dựng kiến trúc hệ          |          |
|                   | thống                                |          |
| Nguyễn Đình Thi   | Vẽ figma, viết giới thiệu, viết use- | 60%      |
|                   | case scenario                        |          |
| Nguyễn Quang Vinh | Vẽ figma, viết yêu cầu chức          | 50%      |
|                   | năng/phi chức năng, viết usecase     |          |
|                   | scenario                             |          |

### II Giới thiệu:

Trong thời đại công nghệ 4.0, IoT (Internet of Things) là một khái niệm ngày càng phổ biến và quan trọng. IoT là sự kết nối của các thiết bị thông minh với nhau và với internet, cho phép chúng giao tiếp, thu thập và trao đổi dữ liệu. IoT có thể ứng dụng vào nhiều lĩnh vực khác nhau, trong đó có lĩnh vực nhà thông minh (smart home).

Nhà thông minh là một hệ thống gồm nhiều thiết bị điện tử, điện gia dụng, an

ninh, chiếu sáng, điều hòa không khí và các thiết bị khác được kết nối với nhau qua mạng không dây hoặc có dây, cho phép người dùng điều khiển và quản lý chúng từ xa qua smartphone, tablet, laptop hoặc các thiết bị khác. Nhà thông minh mang lại nhiều lợi ích cho người dùng, như tiết kiệm năng lượng, tăng hiệu quả sử dụng, nâng cao an toàn và an ninh, tạo ra môi trường sống thoải mái và tiện nghi.

Trong số các thiết bị nhà thông minh, smart light (đèn thông minh) và smart fan (quạt thông minh) là hai thiết bị phổ biến và cần thiết. Smart light là đèn có khả năng điều chỉnh độ sáng, màu sắc, chế độ nhấp nháy và thời gian bật tắt theo ý muốn của người dùng hoặc theo các kịch bản được lập trình sẵn. Smart fan là quạt có khả năng điều chỉnh tốc độ, hướng gió, chế độ xoay và thời gian bật tắt theo ý muốn của người dùng hoặc theo các kịch bản được lập trình sẵn. Cả hai thiết bị này đều có thể kết nối với internet và được điều khiển từ xa qua smartphone hoặc các thiết bị khác.

Mục tiêu của đề tài này là thiết kế và xây dựng một hệ thống smart light và smart fan cho smart home, sử dụng công nghệ IoT. Hệ thống này sẽ bao gồm các thành phần sau:

- Các thiết bị smart light và smart fan, được trang bị các cảm biến và vi điều khiển để nhận và gửi dữ liệu qua mạng wifi.
- Một ứng dụng di động, được cài đặt trên smartphone của người dùng, để điều khiển và quản lý các thiết bị smart light và smart fan, cũng như hiển thị các thông tin về trạng thái, nhiệt độ, độ ẩm, ánh sáng và tiêu thụ năng lượng của chúng.
- Một máy chủ đám mây, được kết nối với internet, để lưu trữ và xử lý các dữ liệu từ các thiết bị smart light và smart fan

## III Danh sách các thiết bị:

#### 1 Thiết bị Input

- 1. Cảm biến hồng ngoại
  - Đặc tính: Phát hiện vật cản hiệu quả.
  - Úng dụng: Dùng để phát hiện sự hiện diện của con người ở trong nhà.
- 2. Camera kết nối cảm biến hồng ngoại
  - Đặc tính:
  - Úng dụng:
- 3. Cảm biến khoảng cách
  - Đặc tính: Xác định khoảng cách từ điểm đang xét đến vật thể
  - **Ứng dụng:** Kích hoạt các hành động được lập trình trước khi xác định có con người xuất hiện trong tầm hoạt động
- 4. Cảm biến nhiệt độ
  - $\bullet$  Đặc tính: Xác định nhiệt độ môi trường xung quanh
  - **Ứng dụng:** Kích hoạt các hành động đèn & quạt được lập trình trước khi xác định nhiệt độ đạt một ngưỡng nào đó
- 5. Cåm  $bi\acute{e}n$   $d\hat{\rho}$   $\mathring{a}m$ 
  - Đặc tính: Xác định<br/>độ ẩm môi trường xung quanh
  - **Úng dụng:** Kích hoạt các hành động đèn & quạt được lập trình trước khi xác định có con người xuất hiện trong tầm hoạt động
- 6. Yolo:Bit mainboard
  - Đặc tính: Đây là vi điều kiển chính.

• **Ứng dụng:** Kết nối với và nhận tín hiệu từ tất cả các thiết bị cảm biến. Đồng thời đảm nhiệm việc kết nối giữa server với các thiết bị quản lý (smartphone)

#### 2 Thiết bị Output

#### 1. Quat mini

- Đặc tính: Thiết bị điện tử phổ biến trong đời sống, khi được cung cấp điện sẽ làm xoay trực động cơ, từ đó tạo nên nhiều ứng dụng khác nhau.
- **Ứng dụng:** Mô phỏng quạt trong nhà mà được kết nối với ứng dụng Smart Home

#### $2. \, \, \boldsymbol{Den} \, \, \boldsymbol{LED}$

- Đặc tính: Thiết bị điện tử phổ biến trong đời sống, khi được cung cấp điện sẽ tạo ra ánh sáng.
- Úng dụng: Dùng để mô phỏng đèn trong nhà mà được kết nối với ứng dụng Smart Home

## IV Yêu cầu của người dùng:

Trong Smart House, đối với người dùng cuối, đèn thông minh và quạt thông minh phải vận hành đúng theo kỳ vọng của người dùng cho một thiết bị thông minh tiêu chuẩn, bao gồm các tiêu chí:

- 1. Điều khiển từ xa: Người dùng có thể điều khiển quạt và đèn thông qua ứng dụng điện thoại hoặc remote từ xa.
- 2. Điều chỉnh tốc độ quay của quạt: Người dùng có thể điều chỉnh tốc độ quay của quat theo các mức độ khác nhau.

- 3. Điều chỉnh cường độ ánh sáng: Người dùng có thể điều chỉnh độ sáng của đèn để tạo không gian phù hợp và đáp ứng đủ nhu cầu đối với môi trường xung quanh.
- 4. Điều chỉnh theo lịch trình: Người dùng có thể lập lịch trình để tự động bật/tắt quạt và đèn hoặc điều chỉnh mức độ của 2 thiết bị theo thời gian cụ thể.
- 5. Thông báo trạng thái: Hệ thống có thể thông báo cho người dùng về trạng thái hoạt động của quạt và đèn: trạng thái bật/tắt, tốc độ hiện tại, mức độ đèn sáng,...
- 6. Tích hợp cảm biến: Hệ thống có thể tích hợp cảm biến để tự động kích hoạt quạt và đèn khi phát hiện sự hiện diện hoặc khi môi trường trở nên thiếu sáng.
- 7. Cho phép kích hoạt theo điều kiện được cài đặt trước: Khi có một số yếu tố thoả mãn theo các yếu tố được cài đặt trước, hệ thống có thể kích hoạt quạt và đèn theo các ngưỡng đã được cài đặt.

## V Yêu cầu chức năng:

#### 1 Khía canh hê thống

- Tự động điều chỉnh ánh sáng theo độ sáng.
- Duy trì điều kiện ánh sáng lí tưởng trong nhà theo các cách khác nhau như thủ công, tự động hoặc định kì theo lịch trình.
- Báo cáo các vấn đề cần can thiệp thủ công cho người dùng như khi gặp trục trặc máy móc, ảnh hưởng xấu của thời tiết,...
- Định kì nhác nhở người dùng kiểm tra kĩ thuật cho các thiết bị cảm biến.
- Các cảm biến sẽ phát hiện xem có người ở trong nhà hay không và báo về cho người dùng

#### 2 Khía cạnh người dùng

- Cho phép người dùng điều chỉnh thủ công độ sáng, tốc độ quạt khi cần.
- Thông báo cho người dùng khi ánh sáng không đạt điều kiện lí tưởng.
- Người dùng có thể lên lịch điều chỉnh độ sáng như khi nào cần sử dụng hệ thống để điều chỉnh độ sáng lý tưởng.

## VI Yêu cầu phi chức năng:

### 1 Khía cạnh hệ thống

- Hệ thống hoạt động liên tục 24/7.
- Tốc độ phản hồi nhanh (<200ms).
- Hệ thống chỉ cho phép duy nhất 1 người (admin) thực hiện thao tác thiết lập, chỉnh sửa thông tin thiết bị.
- Hệ thống cho phép tối đa 5 người (không tính admin) được quyền truy xuất thông tin của hệ thống.

#### 2 Khía cạnh người dùng

- $\bullet$  Giao diện ứng dụng thiết kế đơn giản, trực quan, dễ tiếp cận.
- Người dùng biết và sử dụng thuần thục các chức năng của ứng dụng sau 10 phút training.
- Mọi công việc thiết lập, chỉnh sửa phải được tối giản hóa (thực hiện dưới 4 thao tác).

### VII Use-case:

#### 1 Use-case scenario:

### 1.1 Use-case 1: Hiển thị trạng thái của đèn & quạt trên ứng dụng

| Use case ID      | 1                                                      |
|------------------|--------------------------------------------------------|
| Use case         | Hiển thị trạng thái của đèn & quạt trên ứng dụng       |
| Actor            | Người dùng                                             |
| Description      | Người dùng xem được trạng thái hiện tại như độ sáng    |
|                  | đèn và tốc độ quay của quạt trong ứng dụng             |
| Trigger          | Người dùng mở ứng dụng                                 |
| Preconditions    | Người dùng đang ở màn hình chính điện thoại (không     |
|                  | phải màn hình chính ứng dụng)                          |
| Postconditions   | Người dùng vào được trang mặc định/trang chủ/trang     |
|                  | home của ứng dụng                                      |
| Main Flow        | 1. Người dùng truy cập vào ứng dụng                    |
|                  | 2. Hệ thống điều hướng người dùng vào trang chủ của    |
|                  | ứng dụng và hiện trạng thái của đèn và quạt trên ứng   |
|                  | dụng                                                   |
| Exception Flow   | Ở bước 2, nếu người chưa đăng nhập, hệ thống gửi thông |
|                  | báo và yêu cầu người dùng đăng nhập lại                |
| Alternative Flow | 2.1. Người dùng chọn hình thức đăng nhập bằng gmail    |
|                  | 2.2. Hệ thống gửi mã xác nhận về tài khoản của người   |
|                  | dùng                                                   |
|                  | 2.3. Người dùng nhập mã xác nhận vào giao diện và ấn   |
|                  | nút xác nhận                                           |
|                  | 2.4. Hệ thống xác nhận thành công và cho phép người    |
|                  | dùng sử dụng ứng dụng                                  |

# 1.2 Use-case 2: Sử dụng ứng dụng để điều khiển độ sáng của đèn & tốc độ quay của quạt

Sử dụng ứng dụng để điều khiển độ sáng của đèn

| UJsecase ID     | 2.1                                                    |
|-----------------|--------------------------------------------------------|
| Use-case        | Sử dụng ứng dụng để điều khiển độ sáng của đèn         |
| Diễn viên       | Người dùng                                             |
| Mô tả           | Ngoài việc sử dụng cảm biến ánh sáng để tự động cập    |
|                 | nhật, hệ thống của chúng tôi cho phép người dùng thay  |
|                 | đổi mức độ sáng của đèn thông qua giao diện người      |
|                 | dùng                                                   |
| Kích hoạt       | Không                                                  |
| Điều kiện trước | Đèn đã được bật và người dùng phải tắt tùy chọn tự     |
|                 | động trong cài đặt để thay đổi độ sáng một cách thủ    |
|                 | công                                                   |
| Điều kiện sau   | Độ sáng của đèn thay đổi theo mức độ của ứng dụng      |
| Luồng chính     | 1. Người dùng phải tắt chế độ tự động nhận tín hiệu từ |
|                 | cảm biến                                               |
|                 | 2. Hệ thống cung cấp hai tùy chọn cho người dùng: một  |
|                 | thanh trượt có 7 mức từ Độ sáng Ấm nhất đến Độ sáng    |
|                 | Lạnh nhất cho người dùng hoặc một nút cho chế độ đèn   |
|                 | đêm.                                                   |
|                 | 3 Người dùng có thể chọn chế độ đèn đêm giảm ánh       |
|                 | sáng xanh hoặc thanh trượt để chọn mức độ sáng phù     |
|                 | hợp                                                    |
|                 | 4 Màu sắc và độ sáng của đèn thay đổi tương ứng với    |
|                 | yêu cầu của người dùng.                                |

| Luồng ngoại lệ | Ở bước 1, nếu người dùng không tắt chế độ tự động, |
|----------------|----------------------------------------------------|
|                | người dùng không thể thay đổi độ sáng một cách thủ |
|                | công                                               |
| Luồng thay thế | Không                                              |

Sử dụng ứng dụng để điều khiển tốc độ quay của quạt

| Usecase ID      | 2.2                                                   |
|-----------------|-------------------------------------------------------|
| Use-case        | Sử dụng ứng dụng để điều khiển tốc độ quay của quạt   |
| Diễn viên       | Người dùng                                            |
| Mô tả           | Cho phép người dùng thay đổi mức độ quay của quạt     |
|                 | thông qua giao diện người dùng                        |
| Kích hoạt       | Không                                                 |
| Điều kiện trước | Không                                                 |
| Điều kiện sau   | Mức độ quay của quạt thay đổi theo mức độ của ứng     |
|                 | dụng                                                  |
| Luồng chính     | 1. Hệ thống cung cấp một tùy chọn cho người dùng: một |
|                 | thanh trượt có 5 mức từ Quay Chậm nhất đến Quay       |
|                 | Nhanh nhất cho người dùng.                            |
|                 | 3 Người dùng có thể chọn mức độ quay phù hợp nhất.    |
|                 | 4 Mức độ quay của quạt thay đổi tương ứng với yêu cầu |
|                 | của người dùng.                                       |
| Luồng ngoại lệ  | Không                                                 |
| Luồng thay thế  | Không                                                 |

### 1.3 Use-case 3: Cảm biến hồng ngoại nhận diện con người

| Usecase ID  | 3 |
|-------------|---|
| 0 200020 12 |   |

| Usecase          | Nhận diện sự hiện diện của con người qua cảm biến        |
|------------------|----------------------------------------------------------|
|                  | hồng ngoại (camera kết nối cảm biến hồng ngoại)          |
| Actor            |                                                          |
| Actor            | Cảm biến hồng ngoại (camera kết nối cảm biến hồng        |
|                  | ngoại)                                                   |
| Description      | Phát hiện sự hiện diện của con người ở trong nhà         |
| Trigger          | None                                                     |
| Precondition     | 1. Người dùng đã thiết lập trước các chức năng sẽ thực   |
|                  | hiện khi phát hiện thành công sự hiện diện (bật/tắt      |
|                  | đèn, bật/tắt quạt)                                       |
|                  | 2. Cảm biến hồng ngoại đã được kết nối với hệ thống      |
|                  | và đang hoạt động                                        |
| Postconditions   | None                                                     |
| Main Flow        | 1. Cảm biến hồng ngoại ở trạng thái standby cho tới      |
|                  | khi phát hiện sự hiện diện con người                     |
|                  | 2. Cảm biến hồng ngoại phát hiện ra hiện diện con người  |
|                  | trong nhà                                                |
|                  | 3. Cảm biến gửi tín hiệu tới hệ thống                    |
|                  | 4. Hệ thống thực hiện các chức năng liên quan (bật/tắt   |
|                  | đèn, bật/tắt quạt,)                                      |
| Exception Flow   | Exception xảy ra tại bước 3                              |
|                  | - Nếu qua trình gửi tín hiệu về hệ thống có vấn đề, flow |
|                  | sẽ không thể tiếp tục                                    |
| Alternative Flow | None                                                     |

# 1.4 Use-case 4: Nhận diện sự hiện diện của con người thông qua cảm biến khoảng cách

| TT TD      |   |
|------------|---|
| Usecase ID | 4 |

| Use case name    | Nhận diện sự hiện diện của con người thông qua cảm    |
|------------------|-------------------------------------------------------|
|                  | biến khoảng cách                                      |
| Actor            | Cảm biến khoảng cách                                  |
| Description      | Phát hiện sự hiện diện của con người trong một khoảng |
|                  | cách nhất định                                        |
| Trigger          | Khi có con người xuất hiện trong phạm vi của cảm      |
|                  | biến trong một khoảng cách nhất định                  |
| Precondition     | Cảm biến đã được kết nối với hệ thống và đang hoạt    |
|                  | động                                                  |
| Postconditions   | Hệ thống đèn, quạt đưược khởi động                    |
| Main Flow        | 1. Cảm biến phát hiện ra sự hiện diện của con người   |
|                  | trong một khoảng cách được cài đặt trước đó           |
|                  | 2. Cảm biến gửi tính hiệu tới hệ thống đèn, quạt      |
|                  | 3. Hệ thống đè, quạt tự động khởi động                |
| Exception Flow   | Ở bước 2, Nếu qua trình gửi tín hiệu về hệ thống có   |
|                  | vấn đề, flow sẽ không thể tiếp tục                    |
| Alternative Flow | Không                                                 |

# 1.5 Use-case 5: Tự động điều khiển quạt và đèn tùy thuộc vào môi trường xung quanh

| Use case ID | 5.1                                                   |
|-------------|-------------------------------------------------------|
| Use case    | Tự động điều khiển quạt và đèn tùy thuộc vào môi      |
|             | trường (trong trường hợp có người)                    |
| Actor       | Quạt, đèn, camera hồng ngoại cảm biến                 |
| Description | Hệ thống tự động khởi động quạt, đèn khi phát hiện có |
|             | người ở nhà                                           |
| Trigger     | Không                                                 |

| Preconditions    | Cảm biến hồng ngoại ở trạng thái standby cho tới khi    |  |
|------------------|---------------------------------------------------------|--|
|                  | phát hiện sự hiện diện con ngườ                         |  |
| Postconditions   | Hệ thống đèn, quạt được khởi động                       |  |
| Main Flow        | 1. Cảm biến hồng ngoại phát hiện ra hiện diện con người |  |
|                  | trong nhà                                               |  |
|                  | 2. Cảm biến gửi tín hiệu tới hệ thống đèn, quạt         |  |
|                  | 3. Hệ thống quạt, đèn tự động khởi động                 |  |
| Exception Flow   | Ở bước 2, Nếu qua trình gửi tín hiệu về hệ thống có     |  |
|                  | vấn đề, flow sẽ không thể tiếp tục                      |  |
| Alternative Flow | Không                                                   |  |

| Use case ID      | 5.2                                                  |  |
|------------------|------------------------------------------------------|--|
| Use case         | Tự động điều khiển quạt và đèn tùy thuộc vào môi     |  |
|                  | trường (trong trường hợp không có người)             |  |
| Actor            | Quạt, đèn, camera hồng ngoại cảm biến                |  |
| Description      | Hệ thống tự động tắt các quạt, đèn khi phát hiện có  |  |
|                  | người ở nhà                                          |  |
| Trigger          | Không                                                |  |
| Preconditions    | Cảm biến hồng ngoại ở trạng thái standby cho tới khi |  |
|                  | không phát hiện sự hiện diện con ngườ                |  |
| Postconditions   | Hệ thống đèn, quạt được tắt                          |  |
| Main Flow        | 1. Cảm biến hồng ngoại phát hiện ra không hiện diện  |  |
|                  | con người trong nhà                                  |  |
|                  | 2. Cảm biến gửi tín hiệu tới hệ thống đèn, quạt      |  |
|                  | 3. Hệ thống quạt, đèn tự động tắt                    |  |
| Exception Flow   | Ở bước 2, Nếu qua trình gửi tín hiệu về hệ thống có  |  |
|                  | vấn đề, flow sẽ không thể tiếp tục                   |  |
| Alternative Flow | Không                                                |  |

## 1.6~ Use-case 6: Hẹn giờ điều khiển đèn & quạt trên ứng dụng

| Use case ID    | 6                                                      |  |
|----------------|--------------------------------------------------------|--|
| Use case       | Hẹn giờ điều khiển đèn & quạt trên ứng dụng            |  |
| Actor          | Người dùng                                             |  |
| Description    | Người dùng có thể hẹn giờ để đặt trước các trạng thái  |  |
|                | như độ sáng đèn và tốc độ quay của quạt trong ứng      |  |
|                | dụng                                                   |  |
| Trigger        | Người dùng bấm vào mục "Hẹn giờ"                       |  |
| Preconditions  | Người dùng đang ở màn hình chính màn hình chính của    |  |
|                | ứng dụng                                               |  |
| Postconditions | Người dùng đặt thành công một bộ hẹn giờ               |  |
| Main Flow      | 1. Người dùng truy cập vào mục "Hẹn giờ"               |  |
|                | 2. Hệ thống hiển thị các bộ hẹn giờ đã được đặt trên   |  |
|                | ứng dụng                                               |  |
|                | 3. Người dùng bấm vào nút "Thêm"                       |  |
|                | 4. Hệ thống hiển thị các thông số mặc định để tạo một  |  |
|                | bộ hẹn giờ mới                                         |  |
|                | 5. Người dùng nhập khung giờ để kích hoạt bộ hẹn giờ,  |  |
|                | bao gồm nhưng không nhất thiết phải nhập tất cả: giờ,  |  |
|                | phút, giây, thứ, ngày, tháng, các ngày trong tuần (thứ |  |
|                | 2, thứ 3)                                              |  |
|                | 6. Người dùng thay đổi độ sáng của đèn và tốc độ quay  |  |
|                | của quạt                                               |  |
|                | 7. Người dùng chọn "Lưu"                               |  |
|                | 8. Hệ thống trở lại mục "Hẹn giờ" và hiển thị các bộ   |  |
|                | hẹn giờ với bộ hẹn giờ mới được xuất hiện              |  |

| Exception Flow   | Ở bước 5, nếu người dùng nhập khung giờ trùng với bộ    |
|------------------|---------------------------------------------------------|
|                  | hẹn giờ bất kỳ đã lưu, thì ở bước 7, khi người dùng bấm |
|                  | "Lưu" sẽ hiện thông báo không thể đặt bộ hẹn giờ do     |
|                  | xung đột với bộ hẹn giờ khác và trở lại với bước 5.     |
| Alternative Flow |                                                         |

## 2 Use-case diagram:



Hình 1: Use case diagram

## VIII Kiến trúc hệ thống:

### 1 Tổng quan hệ thống:



Hình 2: Sơ đồ kiến trúc tổng thể hệ thống

#### 1.1 Front-end:

Ứng dụng smart house sẽ được xây dựng bằng React Native, một thư viện JavaScript cho phép bạn tạo ra các ứng dụng di động native cho Android, iOS và nhiều hơn nữa bằng cách sử dụng React. React Native kết hợp những phần tốt nhất của phát triển native (native development) với React, một thư viện JavaScript phổ biến trong việc xây dựng giao diện người dùng.

#### 1.2 Back-end & Database:

Ứng dụng này được viết bằng ExpressJS, một framework ứng dụng web backend cho Node.js. ExpressJS bắt đầu bằng việc tạo API đơn giản trong khi thêm và phát triển các thành phần và tính năng mạnh mẽ hơn tùy thuộc vào trường hợp sử dụng của ứng dụng.

Ứng dụng này sử dụng CSDL MongoDB, một cơ sở dữ liệu NoSQL dựa trên tài liệu (record) phổ biến, dễ sử dụng, cung cấp lưu trữ hiệu quả và linh hoạt cho nhiều loại tập dữ liệu khác nhau. MongoDB cho phép hỗ trợ các tình huống sử dụng giao dịch (transaction), tìm kiếm, phân tích trong khi sử dụng giao diện truy vấn chung.

#### 1.3 Services:

1. Threshold Service: Service này có tác dụng chạy để nhận các ngưỡng dữ liệu được người dùng cấu hình trước. Nó sẽ liên tục kiểm tra xem các điều kiện có thoả mãn ngưỡng này để có thể kích hoạt các hành vi được cài đặt sẵn đối với đèn và quạt hay không.

Các tiêu chí để đánh giá ngưỡng có thoả mãn hay không bao gồm:

- Ngưỡng đó có được người dùng bật hay không
- Nhiệt độ cao hơn nhiệt độ ngưỡng
- $\bullet$  Độ ẩm cao hơn độ ẩm ngưỡng
- Khoảng cách (đo được từ cảm biến khoảng cách) nhỏ hơn khoảng cách ngưỡng
- Sự hiện diện của con người (đo được từ cảm biến hồng ngoại) trùng với ngưỡng hiện diện

Khi ngưỡng được thoả mãn, hệ thống sẽ gửi tín hiệu lên AdafruitIO nhằm gửi dữ liệu được về đèn với quạt có trong ngưỡng đó, từ đó AdafruitIO sẽ gửi tín hiệu về mạch thiết bị và gửi tín hiệu về cho đèn với quạt trên mạch đó.

2. Schedule Service: Service này có tác dụng chạy để nhận các lịch hẹn được lên lịch trước. Nó sẽ liên tục kiểm tra xem lịch hẹn được kích hoạt đã tới thời điểm khởi chạy chưa nhằm kích hoạt các hành vi được cài đặt sẵn đối với đèn và quạt.

Khi lịch được báo hiệu và kích hoạt, hệ thống sẽ gửi tín hiệu lên AdafruitIO nhằm gửi dữ liệu được về đèn với quạt có trong ngưỡng đó, từ đó AdafruitIO sẽ gửi tín hiệu về mạch thiết bị và gửi tín hiệu về cho đèn với quạt trên mạch đó.

#### 1.4 Gateway:

Nhóm có xây dựng Gateway IoT dựa trên ngôn ngữ Python, kết nối Yolo:Bit và Dashboard của Adafruit. Khi Yolo:Bit nhận được dữ liệu từ sensor ví dụ như là nhiệt độ hay độ ẩm, Yolo:Bit sẽ tiến hành gửi giá trị đo được lên gateway thông qua cửa sổ Serial. Cụ thể hơn, Yolo:Bit sẽ đóng gói giá trị sensor thành một dataframe có cấu trúc "ID:FIELD:VALUE#", với là SOF và # là EOF, rồi in ra cửa sổ Serial. Gateway sẽ theo dõi cửa sổ Serial, và khi có dòng dữ liệu mới được Yolo:Bit gửi vào, Gateway sẽ phân tách dataframe ra và gửi giá trị VALUE lên feed tương ứng với trường FIELD.



**Hình 3:** Format Dataframe

## 2 $\,$ Định nghĩa Cơ sở dữ liệu:

### 2.1 Lịch hẹn - Schedules:

| Trường (Field) | Kiểu dữ liệu  | Mô tả                                              |
|----------------|---------------|----------------------------------------------------|
| _id            | Mongodb Id    | ID duy nhất dùng để đánh chỉ mục trên CSDL         |
|                |               | MongoDB                                            |
| hour           | Number        | Giờ                                                |
| minute         | String        | Phút                                               |
| date           | Date          | Ngày tháng năm                                     |
| repeat         | Array[String] | các ngày lặp lại lịch hẹn                          |
| fanDevice      | String        | Thiết bị quạt dùng để điều khiển, tuân theo feed   |
|                |               | trên AdafruitIO                                    |
| lightDevice    | String        | Thiết bị đèn dùng để điều khiển, tuân theo feed    |
|                |               | trên AdafruitIO                                    |
| fanSpeed       | Number        | Trạng thái của thiết bị quạt khi lịch hẹn tới thời |
|                |               | điểm kích hoạt                                     |
| lightStatus    | Bool          | Trạng thái của thiết bị đèn khi lịch hẹn tới thời  |
|                |               | điểm kích hoạt                                     |
| notification   | Bool          | Lịch hẹn có đang được bật hay không                |

Bảng 10: Định nghĩa cho lịch hẹn - Schedules

#### 2.2 $\,$ Ngưỡng - Thresholds:

| Trường (Field)         | Kiểu dữ liệu | Mô tả                                 |
|------------------------|--------------|---------------------------------------|
| _id                    | Mongodb Id   | ID duy nhất dùng để đánh chỉ mục      |
|                        |              | trên CSDL MongoDB                     |
| fanDevice              | String       | Thiết bị quạt được dùng để điều       |
|                        |              | khiển, tuân theo feed trên AdafruitIO |
| lightDevice            | String       | Thiết bị đèn được dùng để điều khiển, |
|                        |              | tuân theo feed trên AdafruitIO        |
| tempSensor             | String       | Cảm biến nhiệt độ được dùng để đo,    |
|                        |              | tuân theo feed trên AdafruitIO        |
| hunidSensor            | String       | Cảm biến độ ẩm được dùng để đo,       |
|                        |              | tuân theo feed trên AdafruitIO        |
| distanceSensor         | String       | Cảm biến khoảng cách được dùng để     |
|                        |              | đo, tuân theo feed trên AdafruitIO    |
| humid                  | Decimal128   | Ngưỡng độ ẩm được cấu hình            |
| temp                   | Decimal128   | Ngưỡng nhiệt độ được cấu hình         |
| distance               | Number       | Ngưỡng khoảng cách được cấu hình      |
| pirSensor              | String       | Cảm biến hồng ngoại được dùng để      |
|                        |              | đo, tuân theo feed trên AdafruitIO    |
| presented              | Bool         | Ngưỡng có/không có sự hiện diện của   |
|                        |              | con người được cấu hình               |
| lightStatusWhenReached | Bool         | Trạng thái của đèn khi ngưỡng thoả    |
|                        |              | mãn                                   |
| fanSpeedWhenReached    | Number       | Trạng thái của quạt khi ngưỡng thoả   |
|                        |              | mãn                                   |
| lightStatusOriginal    | Bool         | Trạng thái của đèn khi ngưỡng không   |
|                        |              | thoả mãn                              |
| fanSpeedOriginal       | Number       | Trạng thái của quạt khi ngưỡng không  |
|                        |              | thoả mãn                              |
| currentState           | Bool         | Trạng thái ngưỡng có thoả mãn hay     |
|                        |              | không                                 |
| active                 | Bool         | Ngưỡng có đang được bật hay không     |

Bảng 11: Định nghĩa cho Ngưỡng - Thresholds

## IX Back-end Implementation

#### 1 Model

#### 1.1 Threshold - Ngưỡng:

```
const thresholdSchema = new mongoose.Schema({
        fanDevice: {
                type: String,
                default: "",
        },
        lightDevice: {
                type: String,
                default: "",
        },
        tempSensor: {
                type: String,
                default: "",
        },
        humidSensor: {
                type: String,
            default: "",
        },
        distanceSensor: {
                type: String,
                default: "",
        },
        pirSensor: {
                type: String,
                default: "",
        },
        fanSpeedOriginal: {
                type: Number,
                required: false,
                enum: [0, 20, 40, 60, 80, 100],
```



```
},
lightStatusOriginal: {
        type: Boolean,
        required: false,
},
{\tt fanSpeedWhenReached: } \{
        type: Number,
        required: false,
        enum: [0, 20, 40, 60, 80, 100],
},
lightStatusWhenReached: {
        type: Boolean,
        required: false,
},
humid: {
        type: "decimal128",
        required: true,
        default: 0.0,
},
temp: {
        type: "decimal128",
        required: true,
        default: 0.0,
},
distance: {
        type: Number,
        required: true,
        default: 0,
},
presented: {
        type: Boolean,
        default: false,
},
active: {
        type: Boolean,
```



```
required: true,
               default: true,
       },
       currentState: {
               type: Boolean,
               required: true,
               default: false,
       },
});
     {
1
         "_id": "6579c5225962c1b45060ecd0",
2
         "fanDevice": "fan-speed",
3
         "lightDevice": "light-switch",
4
         "tempSensor": "temp",
         "humidSensor": "humid",
6
         "distanceSensor": "distance",
         "humid": {
              "$numberDecimal": "60"
         },
10
         "temp": {
11
              "$numberDecimal": "38"
12
         },
13
         "distance": 29,
14
         "__v": 0,
15
         "active": true,
16
         "pirSensor": "pir",
17
         "presented": false,
         "lightStatusWhenReached": true,
19
         "fanSpeedWhenReached": 100,
20
         "lightStatusOriginal": false,
21
         "fanSpeedOriginal": 40,
22
         "currentState": false
23
     }
```

Listing 1: Ví dụ trả về của 1 bảng record threshold

#### 1.2 Schedule - Lịch trình:

```
const scheduleSchema = new mongoose.Schema({
        hour: {
                type: Number,
                required: true,
        },
        minute: {
                type: Number,
                required: true,
        },
        date: {
                type: Date,
                required: true,
        },
        repeat: {
                type: [String],
                required: true,
                enum: ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"],
        },
        fanDevice: {
                type: String,
                default: "",
        },
        lightDevice: {
                type: String,
                default: "",
        },
        fanSpeed: {
                type: Number,
                required: true,
                enum: [0, 20, 40, 60, 80, 100],
                default: 0,
        },
        lightStatus: {
```



```
type: Boolean,
               required: true,
               default: false,
       },
       notification: {
               type: Boolean,
               required: true,
       },
});
     {
2
              "_id": "6579c1eea11efb927b9c74b0",
3
              "hour": 13,
4
              "minute": 8,
              "date": "2023-12-16T00:00:00.000Z",
6
              "fanDevice": "fan-speed",
              "lightDevice": "light-switch",
              "fanSpeed": 20,
              "lightStatus": true,
10
              "notification": true,
11
              "__v": 0
12
         },
13
         {
14
              "_id": "6579c203a11efb927b9c74b3",
15
              "hour": 13,
16
              "minute": 5,
17
              "date": "2023-12-16T00:00:00.000Z",
              "fanDevice": "fan-speed",
19
              "lightDevice": "light-switch",
              "fanSpeed": 60,
21
              "lightStatus": false,
22
              "notification": true,
23
              "__v": 0
24
         }
25
     ]
26
```

Listing 2: Ví dụ trả về của 1 bảng record schedule

## 2 API endpoint

#### 1. Các API tương tác với bảng Schedule

| Method | Endpoint                                           |
|--------|----------------------------------------------------|
| GET    | https://smart-house-api.onrender.com/schedules     |
| GET    | https://smart-house-api.onrender.com/schedules/:id |
| POST   | https://smart-house-api.onrender.com/schedules     |
| PUT    | https://smart-house-api.onrender.com/schedules/:id |
| DELETE | https://smart-house-api.onrender.com/schedules/:id |

Bång 12: API Endpoints cho Schedules

#### 2. Các API tương tác với bảng Threshold

| Method | Endpoint                                            |
|--------|-----------------------------------------------------|
| GET    | https://smart-house-api.onrender.com/thresholds     |
| GET    | https://smart-house-api.onrender.com/thresholds/:id |
| POST   | https://smart-house-api.onrender.com/thresholds     |
| PUT    | https://smart-house-api.onrender.com/thresholds/:id |
| DELETE | https://smart-house-api.onrender.com/thresholds/:id |

**Bång 13:** API Endpoints for Thresholds

## X Front-end Implementation

Các API do AdafruitIO được gọi để hiển thị dữ liệu lên màn hình:

#### 1. Đối với hiển thị thông tin từ cảm biến & thiết bị

Các API này được gọi đồng thời với bước nhảy (interval) 1.5 giây, tức là mỗi 1.5 giây sẽ được gọi một lần để luôn đảm bảo dữ liệu hiển thị được cập nhật sát với thực tế môi trường nhất.

| Method | Endpoint                                                                           |
|--------|------------------------------------------------------------------------------------|
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.fan-speed/data/last    |
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.light-switch/data/last |
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.temp/data/last         |
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.humid/data/last        |

Bảng 14: API Endpoints để lấy dữ liệu gần nhất

# 2. Đối với hiển thị các dữ liệu gần đây của cảm biến & thiết bị (Vẽ biểu đồ đường thống kê)

Các API này được gọi đồng thời với bước nhảy (interval) 5 giây.

| Method | Endpoint                                                                               |
|--------|----------------------------------------------------------------------------------------|
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.temp/data?limit=20         |
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.distance/data?limit=20     |
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.humid/data?limit=20        |
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.fan-speed/data?limit=20    |
| GET    | https://io.adafruit.com/api/v2/dadnhk231nhom9/feeds/group-9.light-switch/data?limit=20 |

Bảng 15: API Endpoints để lấy 20 điểm dữ liệu gần nhất (recent data points)

Đối với các API gọi từ AdafruitIO, Nếu gọi API quá nhiều trong một khoảng thời gian ngắn thì sau một thời gian sẽ bị lỗi HTTP 429 do vượt giới hạn gọi API trong một khoảng thời gian (API rate limiting). Để tránh giới hạn gọi API thì khi người dùng đang ở màn hình nào, chỉ có các API được phục vụ để hiển thị cho màn hình đó sẽ hoạt động, các API ở các màn hình khác sẽ không được gọi cho

đến khi người dùng chuyển qua màn hình đó. Và tất nhiên khi người dùng chuyển qua màn hình khác thì các API được hiện thực cho màn hình này sẽ được khởi động để bắt đầu gọi, và các API của màn hình trước sẽ ngưng hoạt động.

Đối với các API để tương tác với CSDL, mặc dù nền tảng để triển khai lên đám mây (Onrender) cũng có giới hạn cho việc gọi API cũng như giới hạn băng thông (bandwidth) để gửi dữ liệu qua lại giữa CSDL và hệ thống, tuy nhiên giới hạn lại rộng hơn khá nhiều nên việc kiểm soát gọi API không khắt khe như các API bên AdafruitIO

#### 3. Đối với các thao tác CRUD khi đặt lịch hẹn

• GET: Lấy và hiển thị thông tin các lịch hẹn

• POST: Tạo một lịch hẹn mới

• PUT/id: Cập nhật một lịch hẹn cụ thể

• DELETE/id: Xoá một lịch hẹn cụ thể

• **GET/id**: Lấy và hiển thị một lịch hẹn cụ thể, thường được dùng để hiển thị thông tin trong màn hình sửa đổi lịch hẹn khi ta muốn sửa một lịch hẹn nào đó

#### 4. Đối với các thao tác CRUD khi cài đặt ngưỡng (threshold)

• GET: Lấy và hiển thị thông tin các ngưỡng

 $\bullet$   $\mathbf{POST}:$  Tạo một ngưỡng mới

• PUT/id: Cập nhật một ngưỡng cụ thể

• DELETE/id: Xoá một ngưỡng cụ thể

 GET/id: Lấy và hiển thị một ngưỡng cụ thể, thường được dùng để hiển thị thông tin trong màn hình sửa đổi ngưỡng khi ta muốn sửa một ngưỡng nào đó

#### XI Design Pattern:

Hệ thống sử dụng mô hình thiết kế MVC. MVC là viết tắt của cụm từ "Model-View-Controller". Đây là mô hình thiết kế được sử dụng trong kỹ thuật phần mềm. MVC là một mẫu kiến trúc phần mềm để tạo lập giao diện người dùng trên máy tính. MVC chia thành 3 phần được kết nối với nhau và mỗi thành phần đều có 1 nhiệm vụ riêng của nó và độc lập với các thành phần khác. Tên gọi 3 thành phần là:

- Model (dữ liệu): Là bộ phận có chức năng lưu trữ toàn bộ dữ liệu của ứng dụng và là cầu nối giữa 2 thành phần bên dưới là View và Controller. Một model là dữ liệu được sử dụng bởi chương trình. Đây có thể là cơ sở dữ liệu, hoặc file XML bình thường hay một đối tượng đơn giản.
- View (giao diện): Đây là phần giao diện (theme) dành cho người sử dụng. View là phương tiện hiển thị các đối tượng trong một ứng dụng. Chẳng hạn như hiển thị một cửa sổ, nút hay văn bản trong một cửa sổ khác. Nó bao gồm bất cứ thứ gì mà người dùng có thể nhìn thấy được.
- Controller (bộ điều khiển): Là bộ phận có nhiệm vụ xử lý các yêu cầu người dùng đưa đến thông qua View. Một controller bao gồm cả Model lẫn View.
   Nó nhận input đầu vào và thực hiện các update tương ứng.



Hình 4: Mô hình thiết kế MVC cụ thể cho hệ thống này

Trong hệ thống này. Dù CSDL có thể được thiết kế để scale các thiết bị & cảm biến để có thể được hiển thị cũng như làm đầu vào để lưu vào các bảng dữ liệu khác như Schedule & Threshold, giao diện hiện tại lại không hỗ trợ việc quản lý thiết bị & cảm biến. Mặc dù vậy hệ thống này vẫn tuân thủ đầy đủ các nguyên tắc thiết kế của MVC với khả năng thêm/sửa/xoá lịch hẹn & ngưỡng.

## XII Các màn hình thực tế:

#### 1 Home Screen:



**Hình 5:** *Màn hình chính* 

Ở góc trên bên phải màn hình khi bấm vào ta có thể nhập AdafruitIO Key trên 1 modal. Vì AdafruitIO Key tự động thay đổi sau một khoảng thời gian nên việc nhập key này là cần thiết để hệ thống có thể tiếp tục tương tác được với AdafruitIO



Hình 6: Màn hình hiển thị Modal nhập AdafruitIO Key

#### 2 Schedule:



Hình 7: Màn hình hiển thị danh sách lịch hẹn

Có 3 hành động mà ta có thể thực hiện ở màn hình Schedule này:

- Thêm lịch mới: Bấm vào nút trên bên phải
- $\bullet$  Sửa lịch: Bấm vào lịch muốn sửa
- Xoá lịch: Bấm và giữ vào lịch muốn xoá, sẽ hiện một dialog xác nhận xoá lịch.
   Bấm "Confirm" và lịch được xoá





Hình 8: Màn hình xác nhận xoá lịch hẹn



Hình 9: Màn hình chỉnh sửa/Tạo mới lịch hẹn

#### 3 Statistic:

Màn hình hiển thị 5 biểu đồ thể hiện 20 điểm dữ liệu gần nhất của các thiết bị và cảm biến bao gồm:

- Đèn
- Quạt
- Nhiệt độ
- $\bullet$ Độ ẩm
- Khoảng cách



Hình 10: Màn hình thống kê



Hình 11: Màn hình thống kê

#### 4 Threshold:

Một ngưỡng khi được bật có thể được kích hoạt nếu:

 $\bullet$ Nhiệt độ (temp) cao hơn ngưỡng

- Độ ẩm (humid) cao hơn ngưỡng
- Khoảng cách (distance) thấp hơn ngưỡng
- Trùng với sự xuất hiện (presented)

Khi đó ngưỡng sẽ kích hoạt và điều khiển quạt với đèn theo cài đặt có sẵn. Nếu ngưỡng đang được thoả nhưng sau đó 1 hoặc nhiều điều kiện trên không thoả nữa thì khi đó quạt với đèn sẽ được cài đặt theo mức không thoả "Original"



Hình 12: Màn hình hiển thị danh sách các ngưỡng

Có 3 hành động mà ta có thể thực hiện ở màn hình Threshold này:

- $\bullet$ Thêm ngưỡng mới: Bấm vào nút trên cùng
- $\bullet$  Sửa ngưỡng: Bấm vào ngưỡng muốn sửa

 Xoá ngưỡng: Bấm và giữ vào ngưỡng muốn xoá, sẽ hiện một dialog xác nhận xoá ngưỡng. Bấm "Confirm" và ngưỡng được xoá



Hình 13: Màn hình xác nhận xoá ngưỡng



Hình 14: Màn hình chỉnh sửa/Tạo mới ngưỡng

# XIII Phụ lục:

## 1 AdafruitIO Feed:

| Group 9        |                      |            |
|----------------|----------------------|------------|
| Feed Name      | Key                  | Last value |
| Distance       | group-9.distance     | 20         |
| ☐ Fan Speed    | group-9.fan-speed    | 60         |
| ☐ Humid        | group-9.humid        | 60         |
| ☐ Light Switch | group-9.light-switch | 0          |
| □ PIR          | group-9.pir          | CO NGUOI   |
| ☐ Temp         | group-9.temp         | 38         |

Hình 15: Các Feed trên AdafruitIO

## 2 Thiết kế OhStem:



Hình 16: Thiết kế mạch trên OhStem

Link thiết kế OhStem: https://app.ohstem.vn/#!/share/yolobit/2ZW4D 1aiWenERtkHAIIR5JVOPIk

## 3 Github Repo:

Link Github: https://github.com/Leino2604/smart-house