Wydział Informatyki i Telekomunikacji Laboratorium Podstaw Elektroniki

Sprawozdanie z ćwiczenia

Tytuł Oscyloskop; Badanie obwodu RC		Rok akademicki 2019/2020
Data wykonania ćwiczenia 22.04.2020 r.	Data oddania sprawozdania 23.04.2020 r.	Kierunek Informatyka
Skład grupy laboratoryjnej 1. Dawid Królak 2. Michał Matuszak 3. Mateusz Miłkowski 4. Dominik Pawłowski	Rok, semestr, grupa Rok 1, semestr 2, grupa I2.1	Ocena

1. Informacje na temat oscyloskopu na podstawie filmów instruktażowych:

Film 1 [Podstawy obsługi oscyloskopu cyfrowego RIGOL DS1052]:

- Obsługa kanałów oscyloskopu
- Zmiana czułości kanałów
- Odczytywanie woltów na oscyloskopie

Film 2 [Introduction to the function generator and the digital oscilloscope]:

- Ustawianie częstotliwości w generatorze funkcji
- Podłączanie urządzeń do oscyloskopu
- Ustawianie amplitudy w generatorze funkcji

Film 3 [Jak używać oscyloskopu? | #91 [Podstawy]]:

- Typy sygnałów
- Odwracanie sygnału
- Ustawianie filtrów

Film 4 [Oscyloskop - [RS Elektronika] # 15]:

- Działanie oscyloskopów analogowych
- Ustawianie podstawy czasu
- Ustawianie synchronizacji

Film 5 [#70 podstawy obsługi oscyloskopu]:

- Regulacja sondy
- Regulacja przesunięcia w osiach
- Zamrożenie przejścia prądu

Film 6 [How to use an oscilloscope / What is an oscilloscope / Oscilloscope tutorial]:

- Reprezentacja sygnału kwadratowego
- Reprezentacja sygnału sinusoidalnego
- Reprezentacja sygnału rosnącego

Film 7 [Introduction to Oscilloscopes (Part 1)]:

- Obliczanie amplitudy
- Sprzęganie sygnałów
- Przechwytywanie obrazu przez oscyloskop

2. Badanie obwodu RC

Przykładowy obwód do badania krzywej ładowania kondensatora:

Wykresy przedstawiające funkcje napięcia u(t) oraz natężenia i(t) = u'(t) na kondensatorze dla powyższego obwodu:

Kolorem czerwonym oznaczone zostały krzywe teoretyczne. Wyniki obliczeń niezauważalnie różnią się od tych symulowanych, jedynie kolejnymi cyframi po przecinku. Większe różnice między wykresami wynikają z prób odręcznego wygładzania wykresów pomiędzy wyliczonymi wartościami.

W celu wyznaczenia stałej czasowej τ (tau) możemy posłużyć się wzorem $\tau=RC$. Dla danego obwodu $\tau=1000000\cdot47\cdot10^{-6}=47s$. Dlatego też czas pomiarów dla wykresów wynosi 141 sekund.

Aby wyznaczyć wzór i(t) należy zróżniczkować obustronnie funkcję $u(t) = E(1 - e^{\frac{-t}{RC}})$ otrzymując $i(t) = u'(t) = Ee^{\frac{-t}{RC}} \frac{1}{RC}$.

Oscyloskop w powyższym obwodzie należałoby podłączyć w punktach A i B.