This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
Please do not report the images to the
Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(43)Date of publication of application: 17.09.1999 (11)Publication number: 11-248431

(51)Int.CL G01B 11/24 G06T 7/00

(21)Application number: 10-046876 (71)Applicant: SHARP CORP

(72)Inventor: URANO NAOKI

(22)Date of filing:

27.02.1998

KASHIWAGI KOICHI

(57)Abstract:

PROGRAM

READABLE MEDIUM RECORDED WITH THREE -DIMENSIONAL MODEL GENERATING (54) THREE-DIMENSIONAL MODEL FORMING APPARATUS AND COMPUTER

PROBLEM TO BE SOLVED: To easily extract feature points from a two-dimensional image taken by a depth information corresponding to a two-dimensional model without a plurality of cameras, by acquiring camera and generate an accurate three-dimensional coordinate system. dot array drawn by an operator on a device

extracted, based on the received coordinates, generator 4 from a designator 3, camera parameters segment to send coordinates corresponding to topology of the two-dimensional segments is are sent from a digital camera to the generator 4, the designated pixels in the designating order to a display 5 are traced by a pen on a digitizer every line SOLUTION: Feature points of an object shown on a

from a configuration chart and processed to obtain corresponding to the sampling coordinates is obtained are sampled in a memory 6, and the depth information coordinates of the intersection of the same segments

the camera facilitates extracting feature points and also forming a three-dimensional model line of a three-dimensional body 6 to be extracted from a two-dimensional image taken by normalized coordinates which are converted in modeling coordinates. Drawing the contour

ï 4

> 日夏 の名字は古典は

> > (19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-248431

(43)公開日 平成11年(1999)9月17日

G06T 7/00	G01B 11/	(51) Int. Cl.°
/00	/24	觀別記与
G06F	G01B	H.
15/62	11/24	
415	*	

			(22)出願日	(21)出願番号	
			平成10年(1998)2月27日	符願平10-46876	審查請求 未請求 請求項の数6
 (74)代理人	(72) 発明者		(72)発明者	(71)田駅人	or Or
ヤープ株式会社内 (74)代型人 弁理士 深見 久郎	柏木 宏一 大阪府大阪市阿倍野区長池町22番22号 シ	大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内	大阪府大阪市阿倍野区長池町22番22号 補野 直樹	(71)出駅人 000000049 シャープ株式会社	(全10頁)

(54)【発明の名称】3次元モデル生成装置および3次元モデル生成プログラムを記録したコンピュータ譲取可能な記録媒

(57)【販物】

函標とその座標に対応する奥行を情報とからカメラバラ 高い3次元モデルを容易に生成すること。 ラで撮像した2次元画像内で特徴点を指定して、精度の する。指示部3で特徴点の座標を入力する。入力された を、奥行き情報取得部2で画索ごとの奥行き情報を取得 【解決手段】 撮像部1で対象物を撮像して2次元画像 【課題】 複数のカメラを用いることなへ、1台のカメ

メータを用いて3次元モデルを生成する。

3

を生成する3次元モデル生成装置であって、 【辭求項1】 対象物を非接触で測定して3次元モデル

前記2次元点列に対応する奥行き情報とから3次元モデ デバイス座標系に操作者によって描かれた2次元点列と ルを生成することを特徴とする、3次元モデル生成装

前記2次元点列と前記2次元点列に対応する奥行き情報 とから前記点列の正規化座標を算出する第1の算出手段 【請求項2】 前記3次元モデルの生成は、

ö

前記算出された正規化座標からモデリング座標を算出す る第2の算出手段とによりなされる請求項1に記載の3

【請求項3】 3次元モデルの対象物を損像する損像部

前記掃像部で操像された画像をデバイス座標系に表示す

2次元点列を指示するための指示部と 操作者が前記デバイス座標系に表示された回復に対して

2に記載の3次元モデル生成装置。 する奥行き情報取得部とをさらに備えた請求項1または 前記指示された2次元点列に対応する奥行き情報を取得

第1の抽出手段と、 【請求項4】 前記2次元点列のトポロジーを抽出する

備えた請求項1から3のいずれかに記載の3次元モデル 前記抽出された2次元点列のトポロジーに基づき3次元 点列のトポロジーを抽出する第2の抽出手段とをさらに

た2次元点列を入力するステップと、 【請求項5】 デバイス座標系に操作者によって描かれ జ

前記2次元点列に対応する奥行き情報を入力するステッ

|前記2次元点列と前記奥行き情報とから3次元モデルを **うムを記録したコンピュータ読取可能な記録媒体。** 6成するステップとをコンピュータに実行させるプログ

た2次元点列を入力するステップと、 【翻求項6】 デバイス座標系に操作者によって描かれ

前記2次元点列に対応する奥行き情報を入力するステッ

剪配2次元点列のトポロジーを抽出するステップと、

前記2次元点列と前記奥行き情報とからモデリング座標 を算出するステップと

点列のトポロジーを抽出するステップと、 前記抽出された2次元点列のトポロジーに基づき3次元

点列のトポロジーとから3次元モデルを生成するステッ 前記算出されたモデリング座標と前記抽出された 3 次元 コンピュータ説取可能な記録媒体。 プとをコンピュータに実行させる プログラムを記録した

【発明の詳細な説明】

5

係)を決定することが困難であり、計算負荷が大きくな

Ŋ

モデル生成装置に関し、特に所望する物体の輪郭線など する画像をもとに物体の3次元モデルを生成する3次元 を対話的に生成する3次元モデル生成装置に関する。 やユーサが描へことによって、その物体の3次元モデル 【発明の属する技術分野】この発明は、奥行き情報を有

対応しているのかを見つける処理(マッチング)が必要 領物体の指幹などの特徴点を抽出した他の原画のどこれ 体を測定する方法である。この方法はある原画中から対 は、三角閲距の原理を応用したもので、対象物体を異な 元モデルを生成する方法が知られており、コンピュータ 揖像した2次元画像を処理することにより非接触で3次 る位置から協像して待られた複数の視差原画から対象物 ビジョンの研究で多くなされている。特にステレオ法 【従来の技術】従来、対象物をディジタルカメラなどで

測定装置が特開平5-272943号公報に開示されて 複数の視差原画の対応点を一度に決定できる3次元画像 行なうことで、3次元ポクセルデータを構成するように 奥行きの部分のみの画像を抽出する逆フーリエ変換とを で傾きの成分だけをフィルタリングする処理と、一定の ステレオ画像を作成して、フーリエ変換と、周波数空間 から掻像して得られた複数の視差原画から対象物の連続 いる。この3次元画像測定装置は、対象物を異なる位置 【0003】また、特徴点の抽出処理を行なうことなく

CDカメラで受光することにより三角潮距の原理で対象 この3次元週定器によると、CCDカメラの国案ごとに 方で、ワーサピームを対象物に照射してその反射光をC 奥行き情報を得ることができる。 物の奥行き情報を得る3次元測定器が市販されている。 【0004】また、CCDカメラで対象物を撮像する一 [0005]

対応点の決定を簡単にするために行なう処理であるが、 するのが困難な場合がある。 原画の明るさや複雑さなどによって適当な特徴点を抽出 ステレオ法における特徴点の抽出は、他の視差原画中の 【発明が解決しようとする課題】しかしながら、従来の

の下ボロジー(どの点とどの点が結ばれているかの図 ので、緑で3次元モデルを生成する場合に緑分の3次元 としても3次元空間上の点データの集合として得られる きなかった。また、特徴点の抽出とマッチングができた があったため、確実に3次元モデルを生成することがで 対応点で対象物を測定して3次元モデルを生成すること つけることが困難であった。このような場合、間違った 掻像した画像によっては、視差原画間で適切な対応を見 トの変化が少ない場合や対象物が曲面をもつ場合などの 【0006】また、マッチングにおいては、コントラス

るといった欠点があった

があったため、制御が困難であるといった欠点があっ 方向に対して常に直角の状態で直線上を移動させる必要 原画を撮像できるが、この場合にはカメラの光軸が移動 を準備する必要があった。これは、コストアップにな **が必要で、必要となる視益原画の数と同じ台数のカメラ** ている3次元画像測定装置においては、複数の視差原画 る。また、1台のカメラを移動させることで複数の視差 【0007】また、特関平5-272943に関示され

CCDカメラの画案ごとの奥行き情報を示す。ここで 対象物の奥行き情報との測定方法が異なるため、尺度を 対象物の大きさと、CCDカメラの画素ごとに得られる 0.5、点Cは0.5、点Dは0.8として得られる。 ボサンとへ回繋ごとに仰られ、点Aは0.5、点Bは 数6個、線分AD(L5)は画索数3個となる。奥行き 分AB (L1) は画紫数6個、緑分AC (L2) は画紫 は同じにしている。図7に示される画像と図8とから縁 ある。図8は、レーザビームの反射光を用いて測定した 整合させた3次元モデルを生成することが困難であっ ては、CCDカメラで撮像した2次元画像から得られる あるので、同一の長さであると判断できる。 存在する。このことは緑分ABと緑分ACとは、視線に た、線分AB,線分AC上のすべての点の奥行を情報は このことから点A、点B、点Cは、CCDカメラから同 情報は、0~1の範囲内に正規化された値として図8に は、CCDカメラの回路数と液晶ディスプレイの回路数 した画像を液晶ディスプレイに表示した状態を示す図で た。この3次元測定器を図7、図8を用いて説明する。 対して垂直な同一平面上に存在して、かつ同じ画案数で 0.5で同一なので、視線に対して垂直な同一平面上に 一珥雄にあり、同一平面内に存在することがわかる。ま 【0009】図7は、対象物をディジタルカメラで撮餡 8

異なるためである。 行き情報と図8に示される平面上の長さとでスケールが より長いのか、または短いのか判断できない。これは奥 ことから緑分ADがとの程度の大きさなのか、緑分AB 【0010】しかし、点Dの奥行き情報は0.8である

[0011]

とを目的とする。 された特徴点を用いて3次元モデルを容易に生成するこ 解決するためになされたもので、2次元国像中から抽出 【課題を解決するための手段】本発明は上述の問題点を

整合させた正確な3次元モデルを生成することを目的と 【0012】また、本発明はさらに、次元ごとの尺度を

徴点を容易に抽出することを目的とする。 いることなく1台のカメラで撮像した2次元画像から特 【0013】また、本発明はさらに、複数のカメラを用

【0014】また、本発明はさらに、3次元点列のトホ

特開平11-248431

ロジーを圧縮に求めることを目的とする。

9

座標系に操作者によって描かれた2次元点列と前記2次

元点列に対応する奥行き情報とから3次元モデルを生成

る局面に従うと、対象物を非接触で測定して3次元モデ

【0015】上述の目的を達成するため、この発明のあ

ルを生成する3次元モデル生成装置であって、デバイス

された特徴点を用いて3次元モデルを容易に生成するこ

【0016】この発明に従うと、2次元回像中から抽出

とが可能な3次元モデル生成装置を提供することが可能

【0017】さらに好ましくは、3次元モデルの生成

【0008】また、市販されている3次元測定器におい

な3次元モデル生成装置を提供することが可能となる。

させた正確な3次元モデルを生成することがさらに可能

【0018】この発明に従うと、次元ごとの尺度を整合

された正規化座標からモデリング座標を算出する第2の ら点列の正規化座標を貸出する第1の貸出手段と、貸出 は、2次元点列と2次元点列に対応する奥行き情報とか

算出手段とによりなされる。

は、3次元モデルの対象物を損像する協像部と、摄像部

【0019】さらに好ましくは、3次元モデル生成装置

ఆ を容易に抽出することがさらに可能な3次元モデル生成 ことなく 1 台のカメラで協像した 2 次元画像から特徴点 装置を提供することが可能となる。 【0020】この発明に従うと、複数のカメラを用いる

取得部とをさらに備える。

2次元点列に対応する奥行き情報を取得する奥行き情報

して2次元点列を指示するための指示部と、指示された

示部と、操作者がデバイス座標系に表示された画像に対 で協僚された画像をデバイス座標系に表示するための表

点列のトポロジーを抽出する第2の抽出手段とをさらに は、2次元点列のトポロジーを抽出する第1の抽出手段 と、抽出された2次元点列のトポロジーに基づき3次元 【0021】さらに好ましくは、3次元モデル生成装置

一を正確に求めることがさらに可能な3次元モデル生成 【0022】この発明に従うと、3次元点列のトポロジ 接置を提供することが可能となる。

テップと、2次元点列に対応する奥行き情報を入力する 標系に操作者によって描かれた2次元点列を入力するス 体を提供することが可能となる。 された特徴点を用いて3次元モデルをコンピュータで容 ステップと、2次元点列と奥行き情報とから3次元モデ 【0023】この発明の他の局面に従うと、デバイス関 易に生成することが可能なプログラムを記録した記録媒 ルを生成するステップとをコンピュータに実行させる。 【0024】この発明に従うと、2次元回像中から抽出

標系に操作者によって描かれた2次元点列を入力するス 【0025】この発明の他の局面に従うと、デバイス座

ڒ

にした3次元モデルをコンピュータで容易に生成するこ された特徴点を用いて、3次元点列のトポロジーを正確 とが可能となる。 とが可能なプログラムを記録した記録媒体を提供するこ をコンピュータに実行させる。 【0026】この発明に従うと、2次元国像中から抽出 5

のトポロジーとから3次元モデルを生成するステップと

と、算出されたモデリング座標と抽出された3次元点列

表示する表示部5と、記憶部6とから構成される。 徴点座標とそれに対応する奥行き情報とから3次元モデ ルを生成する生成部4と、掻食部1で掻食された画像を 橋椒取得部2と、特徴点座標を指示する指示部3と、特 部1の回菜ごとに対象物の奥行き情報を取得する奥行き とつにおける3次元モデル生成装置の構成を示すプロッ ク図である。図を参照して3次元モデル生成装置は、デ イジタルカメラなどにより擀成される掻食部1と、掻傷 【発明の実施の形態】図1は、本発明の実施の形態のひ

の抽出が行なわれる。ステップ 6 4 で 2 次元線分のサン 3で、指示部3で入力された2次元線分間のトポロジー 行なわれる。ステップ82で、塌像部1より出力される 像が入力される。ステップ81で、2次元線分の入力が る。図を参照して、ステップ60で奥行き情報をもつ回 なう3次元モデルの生成処理を示すフローチャートであ 成を行なう。 次に図2のそれぞれのステップで行なわれ カメラバラメータが生成部4に入力される。ステップB 2gの値を求める。ステップg6で、3次元の穏分の生 プリングを行なう。ステップ85で2次元座標に対する 【0028】図2は、図1の3次元モデル生成装置が行 5処理を群しく説明する。

部2で協像部1の画索ごとに取得される奥行き情報とか 最初に奥行き情報をもつ回像入力がなされる。奥行き情 物を提像部1で提像した2次元画像と、奥行き情報取得 報をもつ画像とは、3次元モデル生成の対象となる対象 【0029】 [ステップs0] 3次元モデルの生成は

8

ŝ れる。この奥行き情報は、損像距離や焦点距離などの提 射して、その反射光を撥像部1で受光し、奥行き情報取 0.0、最も後の方面(後方面)の位置を1.0とし ができる最も前方(協像部側)の面(前方面)の位置を 影路域の違いに対応するくへ、趨象第1が複象すること 得部2で処理することにより、三角閲距の原理で取得さ た。 $0.0 \sim 1.0$ の範囲に正規化された実数値とな 【0030】奥行を情報は、ワーサピームを対象物に照

Ĺ Ŋ

ន

複数の画案を一まとめにして1つの奥行き情報を取得す は、็機像部1の画索ごとに取得する必要がなく、近傍の 俊部1の画案の配列に対応している。なお、奥行き情報 列の奥行き情報 Z , , (0≦ i≦n, 0≦ j≦m) は、描 るように粗い処理をしてもよい。 【0031】図3に奥行き情報の配列を示す。n×m配

られ、2次元画像が表示部5で表示される。 情報取得部2で取得された奥行き情報とが生成部4に送 【0032】掻像部1で掻像された2次元画像と奥行き

列)として認識される。 標として出力され、ポインティングデバイスをデジタイ で始点信号が生成部に出力され、ポインティングデバイ ポインティングデバイスをデジタイザ上で指示した時点 **棚として生成部4に出力される。線を入力する場合は、** ジタイザ上の所望の位置を指示すると、指示位置に該当 な部材からなるデジタイザとポインティングデバイスと 薬にあたる。指示部3は、表示部5上に設けられた透明 表示されている2次元画像を見て、特徴点を入力する作 が指示部3で行なわれる。これは操作者が、表示部5に ザから離した時点で終点信号が出力される。これによ する2次元回像の回案の位置がデバイス座標系の指示座 スをデジタイザ上で移動させている間、指示位置に該当 する表示部5の画案の位置が、デバイス座標系の指示座 で構成される。操作者が、ポインティングデバイスでデ 把握する。したがって、線は指示座標の集合(2次元点 ジー(アの倒球アアの風球が指げれているかの関係)を **雄し、受信した指示座標の順番から指示座標間のトポロ** での間に受信した指示座標の集合を2次元点列として認 り、生成部4では始点信号の受信から終点信号の受信ま 【0033】 [ステップs1] 次に、2次元線分の入力

る。したがって、Xは1以上m以下の整数値で、Yは1 標、上にY座標の正の方向がとられる。それぞれのデバ 標の質番から指示座標間のトポロジーがわかるようにな を表わす。P1は始点の指示座標を、Prは終点の指示 数は50、11,12,13,16は直線(群)の名称 以上n以下の整数値である。 っている。デバイス座標系は左下を原点として右にX座 座標を、P2はその間の指示座標を示しており、指示座 線分とその穏分を構成する座標との関係を示す。 緑分の イス超標はn×mの攝像部1の画繋に1対1に対応す 【0034】図4に、指示部3の出力により認識される

終了で終了信号を出力するようにすれば、ポインティン 示されている2次元画像上の所望の画索の位置を、マウ 分の入力は、ドラッグの開始で始点信号を、ドラッグの を生成部4に出力するようにしてもよい。この場合に移 マウスポインタを移動させるようにして、表示部5に表 グデバイスとデジタイポとで構成した場合と同様にして スでクリックすることによりデバイス座標系の指示座標 【0035】なお、指示部3をデジタイザとポインティ ングデバイスで構成したが、マウスの操作で表示部5に

生成部4で群を認識することができる。

9

特開平11-248431

前方面と後方面の間にある対象物が像として映し出され 面をいい、後方面とは最も後方の面をいい、投像面とは 像部1で掃像することができる最も前方(掃像部側)の 後方面12の2vの値f,投像面(前方面と同じ面)1 を向いて置かれている。カメラバラメータは、撮像部に 標系を示す。機像部1は、その原点に2ヶ軸の正の方向 こでカメラスラメータについて図5で基力を説明する。 されるカメラバラメータが、生成部4に入力される。こ 置を前方面と同じにした。 で損像する場合の実測値で、前方面11の2vの値d, る面をいう。ここでは説明を簡単にするため投像面の位 1の2v軸からの高されである。ここで、前方面とは橇 【0037】 X v 軸, Y v 軸, Z v 軸は、モデリング座 【0036】 [ステップs2] 次に、掻像部1より出た

分が交差する座標が求められる。 いている関係をいい、トポロジーの抽出により2次元績 ジーとは、1つの2次元線分が他の2次元線分と結びつ 間のトポロジーの抽出を行なう。2次元線分間のトポロ 部4に入力されると、指示部3で入力された2次元線分 部3,表示部5を省いて装置を構成することができる。 合図1に示される撮像部1, 奥行き情報取得部2, 指示 ラバラメータを入力するように構成してもよい。この場 行ない、 2次元点列とそれに対応する奥行を情報とカメ ップを省略して、別の装置でいれらのステップの処理を 成装置では、ステップ80からステップs2までのステ 【0038】なお、本実施の形態に示する次元モデル生 【0039】[ステップs3]カメラパラメータが生成

が判断される。

が同一の座標 (5, 287) であるならば、 (5, 28 11, Y11)と線分L3を構成する座標 (X11, Y11)と る座標を示す。たとえば、線分L1を構成する座標(X s)を構成する座標から同一の座標を抽出し、それを記 入力された場合の2次元線分間のトポロジーの抽出につ 協部6に記憶する。この抽出された座標が穏分が交差す いて説明する。図4に表わされている鏡分(L 1~L 【0040】図4に示す8個の2次元線分が指示部3で

るすべての座標にしいて、同一在が躓くられ、同一の座 療が記憶部6八記憶される。 【0041】同様にして、緑分(L1~Ls)を構成す 7)が記憶部6に記憶される。

の数を減らすことができ、後の処理の計算負荷を減らす である。サンプリングにより2次元線分を構成する座標 グを行なう。 2次元線分のサンプリングは、指示部3で 次に説明する2次元線分のサンプリングに用いられる。 **勢である。もちろんこの処理をしないようにしてもよ** ことができる。特に、2次元線分が直線である場合に有 入力された2次元線分を構成する座標を間引きする処理 ーの抽出が行なわれると、次に2次元様分のサンアニン 【0043】 [ステップs4] 2次元線分間のトポロジ 【0042】2次元線分間のトポロジーの抽出結果は

【0044】2次元線分のサンプリングは、指示部3で

れだけ離れているかが判断される。今、サンプリング幅 点座標P1 (X:1, Y:1) がサンプリングされ、次の座 される。たとえば、2次元線分し1については、まず始 **すのサンプリング幅の低囲外である屈禕ダサンプリング** 記憶されている座標は、2次元線分が交差する座標を示 いる座標とが優先してサンプリングされる。記憶部6に 風操のうち始点風標と終点風標と記憶部 6 に記憶されて AND |Y₁₂-Y₁₁|≧2)、座標P2(X₁₃, 方向ともに 2以上離れていれば (| X₁₂ − X₁₁ | ≥ 2 を縦方向と横方向ともに2とした場合、座標P1 標P2 (X12, Y12) が座標P1 (X11, Y11) からと 入力された2次元線分について、2次元線分を構成する 13) が座標 P 2 (X12, Y12) ととれだけ離れているか Y₁₂) がサンプリングされて、次の母碌P3 (X₁₃, Y す。その他の屈様については、サンプリングされた屈様 (X₁₁, Y₁₁)と座標P2 (X₁₂, Y₁₂)が概方向と模

するためすべての座標がサンプリングされたものとす <2)、座標P2(X₁₂, Y₁₂)はサンプリングされず、次の座標P3(X₁₃, Y₁₃)が座標P1(X₁₁, Y₁₃)が なければ (|X₁₃-X₁₁|<2 OR |Y₁₃-Y₁₁| かかわらず必ずサンプリングされる。以下説明を簡単に と終点座標は、サンプリング層の範囲外にあるが否なに で繰返される。ただし、記憶部6に記憶されている座標 【0045】座様P1 (X11, Y11)と座様P2 い)とどれだけ侮れているなな些難される。 (X12, Y1a)が概方向と横方向ともに2以上離れてい 【0046】この処理が終点座模Pr (Xir, Yir)ま

られる。たとえばサンプリングされた座標が(i,j) 奥行き情報2gが、奥行き情報の配列(図3)から求め ップ 8 4) でサンプリングされた座標に対応する画像の る2mの値を求める。2次元線分のサンプリング (ステ である場合のZsはZi」となる。 【0047】 [ステップ s 5] 次に、2次元座標に対す

標Xsは次の(1)式で、座標Y。の正規化座標Ysは 模(Xs, Ys, Zs)を求める。座標X。の正規化座 する座標 (X , Y ,)のX座標とY座標を-1.0以 なる。正規化座標を求める処理では、2次元線分を構成 と、正規化座標をモデリング座標に変換する処理とから **座標と画像の奥行き情報とから正規化座標を求める処理** 猫の形態の苺合n×mの風媒の配列であるからX gmax= 次の(2)式で求められる。ただし、X_{dmex}およびY を行なう。3次元線分の生成は、2次元線分を構成する amaxは、X。およびY。がとり得る最大値をいう。本実 【0048】 [ステップs6] 次に3次元の線分の生成 上1.0以下の範囲に正規化することにより、正規化座

m, Y_{dmax}=nとなる。 Z nの概囲は (3) 式で示され

땅

[0049]

$$X_{s} = \frac{2X_{d}}{X_{dreau}} - I.0 \; ; \; X_{d} \in [0, X_{dreau}] \; , \; X_{dreau} \neq 0$$
 (1)

$$Y_{i} = \frac{2Y_{d}}{Y_{donor}} - 1.0 ; Y_{d} \in [0, Y_{donor}], Y_{donor} \neq 0$$
 (2)

 $Z_{i} \in [0.0, 1.0]$

9

深から次の(4)(5)(6)式が導かれる。 する処理を行なう。正規化座様とモデリング座標との関 【0050】次に、正規化監標をモデリング座標に変換 **%**[0051]

$$X_{i} = d \frac{X_{i}}{hZ_{i}} ; X_{i} \in [-1.0, 1.0]$$
 (4)

$$Y_{i} = d \frac{Y_{i}}{hZ_{i}} ; Y_{i} \in [-1.0, 1.0]$$
 (9)

$$Z_{r} = \frac{f(I - dZ_{r})}{f - d}$$
 ; $Z_{r} \in [0.0, I.0]$ (6)

【0052】(4)(5)(6)式を変形して次の式が ☆[0053]

$$X_{r} = \frac{X_{r}hZ_{r}}{d} = \frac{X_{r}hf}{f \cdot Z_{r}(f \cdot d)}$$
 ; $f \neq 0$, $d \neq 0$ \emptyset

$$Y_{r} = \frac{Y_{r}hZ_{r}}{d} = \frac{Y_{r}hf}{f - Z_{r}(f-d)}$$
 ; $f \neq 0$, $d \neq 0$ (8)

Z, ::

 $f \cdot Z_{r}(f-d)$

; f ≠0, d ≠ 0

いて行なえば、図6に示すごとへ3次元線分ごとに各線 いこと (d ≠ 0 AND f ≠ 0) が条件となる。 になく(d≠f)、かつモデリング座標の原点を含まな バラメータである。また、(7)(8)(9)式が成立 Zv)に変換する。ただし、d, f, hは上述のカメラ 匨禄に変換する処理とを、2次元線分のサンプリング するためには、前方面11と後方面12とが同一平面上 (ステップ s 4) たサンアリングされた函額すくてにし 【0055】この正規化座標を求める処理とモデリンク (Xs, Ys, Zs) をモデリング座標 (Xv, Yv, ន

ز Y

> 【0054】 (7) (8) (9) 式により、正規化座標 40 分を構成する3次元座標と3次元座標間のトポロジーヴ 物の特徴点を操作者がベンでなそった場合を示す。LI なっている。図9にディスプレイに表示されている対象 き情報取得部で取得した奥行き情報の配列を示し、各枠 ディスプレイに表示されている場合を示す。図8は奥行 得られる。そして処理の結果を記憶部6に記憶する。 デジタイザが設けられており、ペンで指示すると液晶デ が画媒に対応している。液晶ディスプレイ上には透明な る。図7にディジタルカメラで撮像した対象物が、液晶 イスプレイのどの国際が指示されたのかがわかるように 【0056】次に上述の処理の具体例について説明す

> > が、移動した時点で指示座標が、雌した時点で終点信号 **たは鎌分ごろにアジタイが上をくンたなみしたのた、く** 番で指示部3から生成部4に送られる。 **かからスソた指示した回繋に対応する屈膝が指示した肩** と指示巫標が緑分ごとに出される。これによりデジタイ ンをデジタイザ上に当てた時点で始点信号と指示座標 ~L9は対象物の特徴となる緑分を示す。本実施の形態

何、徴方向ともに2としてある。サンプリングの結果サ 線分のトポロジーの抽出が行なわれ、同じ座標、すなわ d=10.0, f=20.0, h=5.0とした。 ソプルされたサンプル座標と線分との関係を図10に示 **プリングが行なわれる。ここではサンプリング幅を縦方** ち線分が交差する座標が記憶部6に記憶された後、サン 【0058】生成部4では受信した屈膝をもとに2次元

から生成館4に送られる。ここではカメラスラメータを

5

【0057】次にカメラバラメータガディジタルカメラ

鐡別番号C1~C16を付して図11に示す。また、サ **困惑のとの点で位置するかをサンプリングされた困様で** X座標X。およびY座標Y。を図12に示す。 ンプリングされた座標に識別番号の1~016を付して 【0059】また、サンプリングされた座標がデバイス

は10×10であるのでX_{dmax}=10, Y_{dmax}=10で 巫標(X s, Y s, Z s)を求める。ここでは画案配列 ンプリングされた座標のデバイス座標(Xa, Ya)を 正規化座標を求める処理が行なわれる。図12に示すサ 報乙gを奥行き情報の配列(図8)より求める。そして (1) (2) 式により正規化して、図13に示す正規化 【0060】次にサンノリング風橇に対応する奥行を備

線分(L1~L9)との関係は図15に示すごとへであ に示す。 求められたモデリング 屈標 (C1~C16) と 式によりモデリング座標に変換する。その結果を図14

奥行き情報とから3次元のモデルを容易に作成すること 特徴点の抽出が容易となり、よらに抽出された特徴点と 回像で、抽出したい3次元物体の輪野緑を描へいてた。 が可能となる。 【0062】このようにしてカメラで協像した2次元の

次元情報として入力される場合であれば同様に適用でき ることはいうまでもない。 入力される場合にしいて既思したが、点や曲線などの2 【0063】なお、本実施の形態では指示部3で緑分が

れる処理をコンピュータに実行させることができるプロ 成を有する3次元モデル生成装置としたが、図2に示さ 【0064】また、本実備の形態においては、図1の雄

【0061】そして、正規化座標を(7)(8)(9)

 Ξ 特開平11-248431

など)に記録させ、コンピュータにより実行させるよう グラムを記録媒体(CD-ROM、フロッピィディスク

【図面の簡単な説明】

デル生成の処理の流れを示すフロー図である。 デル生成装置の機能構成を示すプロック図である。 【図3】本発明の実施の形態のひとつにおける奥行き情 【図2】本発明の実施の形態のひとつにおける3次元モ 【図1】本発明の実施の形態のひとつにおける3次元モ

بان 18 18 報の配列を示す図である。 **グ座標系とカメラバラメータの関係を説明するための図** 分と穏分を構成する座標との関係を示す図である。 【図4】本発明の実施の形態のひとつにおける2次元線 【図5】本発明の実施の形態のひとつにおけるモデリン

画像を被晶ディスプレイに表示した状態を示す図であ 分と穏分を構成する座標との関係を示す図である。 【図7】本発明の実施の形態のひとつにおける掻像した 【図6】本発明の実施の形態のひとつにおける3次元線

報の配列と指示線分との関係を説明するための図であ 【図8】本発明の実施の形態のひとつにおける奥行き情

ベンで指示した状態を示す図である。 【図9】本発明の実施の形態のひとつにおける特徴点を 【図10】本発明の実施の形態のひとつにおける緑分と

サンプリング座標との関係を示す図である。 ス座標におけるサンプリング座標の位置を示す図であ 【図11】本発明の実施の形態のひとつにおけるデバイ

コング屈標を示す図ためる。 【図12】本発明の実施の形態のひとつにおけるサンプ

された座標を示す図である。 【図13】本発明の実施の形態のひとしにおける正規化

ング座標への変換結果を示す図である。 【図14】本発明の実施の形態のひとつにおけるモデリ

モデリング座標との関係を示す図である。 【図15】本発明の実施の形態のひとしておける観分と

【符号の説明】

奥行き情報取得部

描象部

指示部

生成部

表示部

記憶部

12 後方面 11 前方面,投像面

[図14]

ũ	£	CIA	CI3	CIZ	3	CIO	8	Q	C	Ø.	Ω	2	0	ជ	CI	Coordinate
٤	8	1.67	ಬ	20	-1.67	B	267	261	2.67	267	0.0	-2.67	-2.61	-267	-267	X۷
g	267	6.67	-1.67	6.67	4.67	4,0	4.0	-2.67	0.0	2.67	2.67	40	-2.67	8	267	Ϋ́
16.67	16.67	16.67	16.67	16.67	16.67	13.33	13.33	19.33	19.33	13.33	13.33	13.33	13.33	13.23	13.33	Zy

4-10.0, f-20.0, h-5.0