SECTION 3 LIQUID CRYSTAL DISPLAYS AN INTRODUCTION

MATERIALS, CONCEPTS & ELECTRO-OPTICS

Liquid Crystal Displays (2nd Edition)
Ernst Leuder. Pub Wiley / SID, Ch2, pp3-20.

Handbook of Visual Display Technology (2nd Edition)
Pub Springer 2016

Twisted Nematic and Supertwisted Nematic LCDs

Peter Raynes Pages 2077-2090 Optics of Liquid Crystals and Liquid Crystal Displays

Philip W. Benzie, Steve J. Elston Pages 1979-2002

Polarized Light

Visible light is a form of Electro-Magnetic Radiation (EMR) with wavelength in the region 390 - 750 nm (790 – 400 THz).

EMR has both electric and magnetic field components, which stand in a fixed ratio of intensity to each other, and which oscillate in phase perpendicular to each other and perpendicular to the direction of energy and wave propagation.

When projected on to the plane normal to the direction of propagation, the electric vector traces an ellipse. Special

cases include a circle (circularly polarized)

or a straight line (linearly polarized)

Definition – Liquid Crystal

The term "liquid crystal" describes a group of meso-phases between solid crystal and isotropic liquid that exist for a number of organic molecular

materials.

A <u>liquid</u>
<u>crystal</u>
<u>material</u> is a material that exhibits one or more of these mesophases.

The isotropic liquid

a disordered structure

The nematic mesophase

orientationally ordered

Definition – Liquid Crystal

LC molecules are usually of a particular shape – rod-like (used in LCDs) or disk-like (used for other purposes)

When captured in a thin layer between two flat plates the LC materials can often be "aligned" by surface forces.

An applied electric field can then alter the LC alignment to provide a visible effect (brightness change, colour change).

LC Molecules and Polarizability

Fig. 12 Typical material design for rodlike liquid crystals (Gray et al. 1973, 1989; Gray and Harrison 1971; Goodby and Gray 1976a). Materials **3** and **4** show the design of liquid crystals found in display devices

Polar and Polarizable molecular system

Order Parameter

The Order parameter S is a measure of how mutually well-aligned the molecules are.

$$S = \frac{1}{2} (3 \cos^2 \theta - 1)$$

where

S = 1

$$S = (1 - T/T_C)^b$$

S = 0.6

S = 0

Dielectric Permittivity

Dielectric properties of LCs are related to the response of LC molecules to the application of an electric field.

Permittivity ε is a physical quantity that describes how an electric field affects and is affected by a dielectric medium and is determined by the ability of a material to polarize in response to an applied electric field.

Dielectric Anisotropy and LC switching

The dielectric anisotropy

$$\Delta \varepsilon = \varepsilon_{\text{II}} - \varepsilon_{\perp}$$

can take positive and negative values.

If an electric field is applied orthogonal to its director the liquid crystal will tend to rotate to align the director with the electric field assuming that the director and the dipole moment (more precisely the larger component of the dielectric anisotropy) are essentially co-linear.

In LCs with a positive (*negative*) dielectric anisotropy will align the director parallel (*perpendicular*) to the applied electric field

 $\begin{array}{c} \epsilon_{\text{II}} \\ \downarrow \\ \downarrow \\ \downarrow \\ \epsilon_{\text{L}} \\ \end{array}$

Animated example of positive →

Birefringence (Optical Anisotropy)

Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. Optically anisotropic materials are said to be birefringent. The birefringence is often quantified by the maximum difference in refractive index within the material.

A **birefringent** material is one in which the refractive index along one axis (extra-ordinary) is different to that along the other two (ordinary) perpendicular axes.

Many LC configurations exhibit switchable birefringence.

LC Materials

Table 2.2 Properties of nematic LC materials with a wide temperature range

	7763			
	MLC-1380000	MLC-13800100	MLC-1390000	MLC-13900100
Transition temp.	< -40°C	< -40°C	< -40°C	< -40°C
Clearing pt T_c	110°C	111°C	110.5°C	110.5°C
Rotational				
viscosity, 20°C	228 mPas	151 mPas	235 mPas	167 mPas
$\Delta \varepsilon$ 1 kHz, 20°C	+8.9	+5.0	+8.3	+5.2
$n_0 = n_\perp$	1.4720	1.4832	1.4816	1.4906
$n_{\rm e} = n_{\parallel}$	1.5622	1.5735	1.5888	1.5987
Δn	+0.0902	+0.0903	+0.1073	+0.1081

Properties of LCs

Equilibrium configuration

Elastic constant K₁₁

Elastic constant K22 (b)

Elastic constant K₃₃

- (a) Splay
- (b) Twist
- (c) Bend

Dielectric anisotropy

$$\Delta \mathcal{E} = \mathcal{E}_{\text{M}} - \mathcal{E}_{\perp}$$

$$C_{3}H_{11} \longrightarrow CN$$

$$C_{1}H_{12} \longrightarrow C00 \longrightarrow C_{3}H_{11}$$

$$C_{2}H_{13} \longrightarrow C00 \longrightarrow C_{4}H_{11}$$

$$\mathcal{E}_{\text{M}} = 3.5 \qquad \mathcal{E}_{\perp} = 5.6 \qquad \Delta \mathcal{E} = -2.1$$

Birefringence

$$\Delta n = n_{//} - n_{\perp}$$
 $c_s H_{II} \longrightarrow c_{00} \longrightarrow c_s H_{II}$
 $n_e = 1.529 \quad n_o = 1.472 \quad \Delta n = 0.057$

Nematic LC – typical properties

Parameter	Symbol	Typical value	Comments	
Clearing point	T_{Cl}	80 °C	Max operating temperature	
Sm-N transition	T _{S-N}	-40 °C	Min operating temperature	
Optical Anisotropy	$\Delta n = n$	1.562 - 1.477 = 0.085	Determines optical performance	
	$n_e - n_o$ $\Delta \varepsilon =$	- 0.000	portormanos	
Dielectric Anisotropy	$\varepsilon_{ll} - \varepsilon_{\underline{l}}$	10.5 - 3.5 = 7	Determines response to E field	
Threshold	17	161/	Voltage at 10% trans	
Voltage TN cell	$V_{th,10}$	1.6 V	(NB mode)	
Elastic Constants	K_{11}, K_{22}, K_{33}	10 ⁻¹¹ N	Important for response time	
	1133			
Rotl Viscosity at 20°C	η_r	100 mPa.s	Important for response time	

Basic LC cell

Details

- LC layer <1 to several μm thick
- Thickness uniformity is important
- Alignment layer is mechanical / chemical
- Indium Tin Oxide (ITO) is a transparent conductive material
- In a modern LCD there are very many additional features
- Anti-Reflection layers
- Circular polarizer
- Compensation layer(s) to aid viewing angle
- RGB Colour filters layer, etc

Freedericksz Transition

Recall the dielectric anisotropy in LCs

$$\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$$

orthogonal to the director the liquid crystal will tend to rotate to align the director with the electric field assuming that the director and the dipole moment (more precisely the larger component of the dielectric anisotropy) are essentially co-linear. The reorientation starts in the middle where there is little surface interaction.

Twisted Nematic (TN) Effect

Nematic LC
responds slowly
(>>ms) to the
RMS value of a
medium
frequency (>kHz)
ac drive
waveform

Crossed polarizers
Drive voltage = zero
Twisted Nematic LC
Light passes through

Intermediate voltage

Some light passes

Crossed polarizers
Drive voltage = Vmax
LC untwisted
Light blocked

Aside on real LCDs

It is relatively straightforward to explain the principle of how an LC cell operates (i.e., how to make a single cell of LC go dark or bright).

Making a high definition high performance LCD that works well is much more challenging

Many small close pixels

Colour (ie wide range of wavelengths)

- Wide viewing angle
- Large temperature range
- High brightness
- High contrast ratio, etc.

Much of that detail is beyond the scope of this course.

Effect of Temperature

35

Transmissive AMLCD Overview

TN LC Transmission-Voltage Curve

Typical TN LC material with crossed polarizers...

Same effect for +ve & -ve voltages! Important for inversion drive schemes.

TN LC Transmission-Voltage Curve

Some Characteristics of LC devices

Steady-state response

Detail follows – a few to a few 10's of Volts

Response speed

- Nematic analog response ~ ms
- (Ferroelectric binary (bistable) response ~ μs)

Other

- dc balance requirement
 - Long-term V d.c. causes electro-chemical degradation
 - Require a.c. drive for long lifetime
- Temperature limitations
 - At very low T, LC freezes solid
 - At very high T, LC melts to anisotropic liquid
 - In between, properties (e.g. switch speed) vary significantly

LC Switching Time

$$T_{rise} = \frac{\eta_r d^2}{\pi^2 K_{11}} \frac{1}{\left(\frac{\Delta \varepsilon}{\pi^2 K_{11}} (V_1 - V_{th})^2 - 1\right)}$$

$$T_{fall} = \frac{\eta_r d^2}{\pi^2 K_{11}}$$

Vertically Aligned LC

In vertical alignment (VA) LCDs, homeotropic liquid crystals – i.e. those aligned normal to the substrate surface – are switched parallel to the glass substrate by the application of an electric field which is normal to the substrate.

This requires liquid crystal mixtures with negative dielectric anisotropy which are aligned perpendicular to the electric field.

In-Plane Switching (IPS) LC

The IPS (in-plane switching) configuration puts the electrodes whose electrical fields are used to switch the LC molecules are only found on one of the two substrates in the form of strip electrodes.

The resulting electrical field is inhomogeneous and mostly aligned parallel to the substrate surface in the first approximation.

MMXXII