Example 12

The Sturm-Liouville problem of example 9 has the set of orthogonal characteristic functions $\{\phi_n\}$, where $\phi_n(x)=c_n\sin nx$ $(n=1,\,2,\,3,.....;\,0\leq x\leq\pi)$ and c_n $(n=1,\,2,\,3....)$ are nonzero constants. We now form the sequence of orthonormal characteristic functions $\{k_n\phi_n\}$, where k_n is defined as above. We have

$$\begin{split} K_n &= \int_0^\pi \left(c_n \, \sin nx \right)^2 \, (1) \, dx = \frac{c_n^2 \pi}{2}, \\ k_n &= \frac{1}{\sqrt{K_n}} \, = \frac{1}{c_n} \sqrt{\frac{2}{\pi}} \, , \\ k_n \varphi_n(x) &= \left(\frac{1}{c_n} \sqrt{\frac{2}{\pi}} \, \right) \, \left(c_n \, \sin nx \right) = \sqrt{\frac{2}{\pi}} \, \sin nx \quad \, (n = 1, \, 2, \, 3.....) \end{split}$$

Thus the Sturm-Liouville problem under consideration has the set of orthonormal characteristic functions $\{\psi_n\}$, where $\psi_n(x) = \sqrt{2/\pi} \sin nx$ (n = 1, 2, 3,; $0 \le x \le \pi$). We see that this is the set of orthonormal functions considered in