Recap

- Reasoning
- Types of reasoning:
 - Deductive
 - Inductive
 - Adbuctive
 - Analogical
 - common-sense
 - non-monotonic reasoning
- Logic: syntax, semantics, Proof systems
- Rules of inference: Modus ponens, Modus tolens, And-introduction, And-elimination
- Inference example

Resolution

- The deduction mechanism we discussed may be used in practical systems, but is not feasible. It uses a lot of inference rules, which introduces a large branch factor in the search for a proof.
- An alternative is Resolution, a strategy used to assert the determine the truth of an assertion.
- Only one Resolution rule:

$$\frac{\alpha \vee \beta}{\neg \beta \vee \gamma}$$

$$\frac{\alpha \vee \gamma}{\alpha \vee \gamma}$$

Resolution Rule

α	β	γ	$\neg \beta$	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	$\alpha \lor \gamma$
F	F	F	Т	F	Т	F
F	F	Τ	Т	F	Т	Т
F	T	F	F	Т	F	F
F	I	T	F	Т	T	T
Т	F	F	Т	T	T	T
Т	F	Т	Т	T	T	T
Т	Т	F	F	Т	F	Т
Т	Т	Т	F	T	T	T

Conjunctive Normal Form

- ANDs of ORs
- Resolution requires all sentences to be converted into a special form called Conjunctive Normal Form (CNF)
- A sentence written in CNF looks like

$$(A \lor B) \land (B \lor \neg C) \land (D)$$

$$note: D = (D \lor \neg D)$$

 Outermost structure is made up of conjunctions. Inner units called clauses are made up of disjunctions

Conjunctive Normal Form

Clause

– A clause is the disjunction of many things. $(B \lor \neg C)$

Literals

- The units that make up a clause are called literals. And a literal is either a variable or the negation of a variable. So you get an expression where the negations are pushed in as tightly as possible, then you have ors, then you have ands.
- You can think of each clause as a requirement. Each clause has to be satisfied to satisfy the

Convert to CNF

 Eliminate arrows (implications)

$$A \rightarrow B = \neg A \lor B$$

Convert to CNF

 Drive in negations using De Morgan's Laws

$$\neg (A \lor B) = (\neg A \land \neg B)$$

$$\neg (A \land B) = (\neg A \lor \neg B)$$

Convert to CNF

Distribute OR over AND

$$A \lor (B \land C)$$
$$= (A \lor B) \land (A \lor C)$$

Convert to CNF Example

$$(A \lor B) \to (C \to D)$$

$$1.\neg(A \lor B) \lor (\neg C \lor D)$$

$$2.(\neg A \land \neg B) \lor (\neg C \lor D)$$

$$3.(\neg A \lor \neg C \lor D) \land (\neg B \lor \neg C \lor D)$$

Resolution by Refutation

- Proof strategy called Resolution Refutation
 - Write all sentences in CNF
 - Negate the desired conclusion
 - Apply the resolution rule until you derive a contradiction or cannot apply the rule anymore.
- If we derive a contradiction, then the conclusion follows from the given axioms
- If we cannot apply anymore, then the conclusion cannot be proved from the given axioms

Resolution by Refutation

Step	Formula	Derivation
1	P v Q	Given
2	¬P∨R	Given
3	¬Q ∨ R	Given

1	$P \vee Q$
2	P→R
3	$Q \rightarrow R$

Step	Formula	Derivation
1	P v Q	Given
2	¬P∨R	Given
3	¬Q ∨ R	Given
4	¬R	Negated Conclusion

1	$P \vee Q$
2	P→R
3	$Q \rightarrow R$

Step	Formula	Derivation
1	P v Q	Given
2	¬P∨R	Given
3	¬Q∨R	Given
4	¬R	Negated Conclusion
5	Q v R	1,2 Resolution Rule

1	$P \vee Q$
2	P→R
3	$Q \rightarrow R$

Step	Formula	Derivation
1	P v Q	Given
2	¬P∨R	Given
3	¬Q∨R	Given
4	¬R	Negated Conclusion
5	$Q \vee R$	1,2
6	¬P	2,4

1	$P \vee Q$
2	P→R
3	$Q \rightarrow R$

Step	Formula	Derivation
1	$P \vee Q$	Given
2	¬P∨R	Given
3	¬Q ∨ R	Given
4	¬R	Negated Conclusion
5	$Q \vee R$	1,2
6	¬P	2,4
7	¬Q	3,4

1	P v Q
2	P→R
3	$Q \rightarrow R$

Step	Formula	Derivation
1	P v Q	Given
2	¬P∨R	Given
3	¬Q∨R	Given
4	¬R	Negated Conclusion
5	Q v R	1,2
6	¬P	2,4
7	¬Q	3,4
8	R	5,7 Contradiction!

1	P v Q
2	P→R
3	$Q \rightarrow R$

Note that you could have come up with multiple ways of proving R

Step	Formula	
1	P∨Q	Given
2	¬P∨R	Given
3	¬Q ∨ R	Given
4	¬R	
5	¬Q	3,4
6	Р	1,5
7	R	2,6
046		Engr. Afr

Step	Formula	
1	P∨Q	Given
2	¬P∨R	Given
3	¬Q ∨ R	Given
4	¬R	
5	Q∨R	1,2
6	¬P	2,4
7	¬Q	3,4
8	R	5,7

10/6/2016

1.
$$(P \rightarrow Q) \rightarrow Q$$

3.
$$\neg R \rightarrow \neg Q$$

Convert to CNF:

$$1.(P \rightarrow Q) \rightarrow Q$$

$$= (\neg P \lor Q) \to Q$$

$$= \neg (\neg P \lor Q) \lor Q$$

$$=(P \land \neg Q) \lor Q$$

$$= (P \lor Q) \land (\neg Q \lor Q)$$

$$=(P\vee Q)$$

$$2.P \rightarrow R = \neg P \lor R$$

$$3.\neg R \rightarrow \neg Q = R \lor \neg Q$$

Step	Formula	Derivation
1	Q v P	Given
2	¬P∨R	Given
3	R∨¬Q	Given
4	¬R	
5	Р	2,4
6	R	2,5

Step	Formula	Derivation
1	Q v P	Given
2	¬P∨R	Given
3	R∨¬Q	Given
4	¬R	
5	¬Q	3,4
6	P	1,5
7	R	2,6

Proof Strategies

- We may apply rules in an arbitrary order, but there are some rules of thumb
 - Unit preference: prefer using a clause with one literal. Produces shorter clauses
 - Set of support: try to involve the thing you are trying to prove. Chose a resolution involving the negated goal. These are relevant clauses. We move 'towards solution'