

Relations Ex 1.1 Q5.

Reflexivity: Let a∈ R

$$\Rightarrow$$
 $(a,a) \notin R$

Symmetric: Let aR b

Transitive: Let a R b and b R c

$$\Rightarrow$$
 a-a> and b-c>0

Relations Ex 1.1 Q5(ii)

We have, aRb iff 1+ab>0Let R be the set of real numbers

Reflexive: Let a∈ R

$$\Rightarrow$$
 1+a² > 0

Symmetric: Let aRb

$$\Rightarrow$$
 1+ab>0

Transitive: Let aRb and bRc

$$\Rightarrow$$
 1+ab > 0 and 1+bc > 0

Relations Ex 1.1 Q5(iii)

Reflexivity: Let a & R

$$\Rightarrow$$
 $|a| \le a$ $[:: |-2| = 2 > -2]$

⇒ R is not reflexive

Symmetric: Let aRb

⇒ R is not symmetric

Transitive: Let aRb and bRc

$$\Rightarrow$$
 $|a| \le b$ and $|b| \le c$

⇒ R is transitive

Relations Ex 1.1 Q6.

Let $A = \{1, 2, 3, 4, 5, 6\}.$

A relation R is defined on set A as:

$$R = \{(a, b): b = a + 1\}$$

Therefore,
$$R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$$

We find $(a, a) \notin R$, where $a \in A$.

For instance, (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), $(6, 6) \notin R$

Therefore, R is not reflexive.

It can be observed that $(1, 2) \in R$, but $(2, 1) \notin R$.

Therefore, R is not symmetric.

Now,
$$(1, 2)$$
, $(2, 3) \in \mathbf{R}$

Therefore, R is not transitive

Hence, R is neither reflexive, nor symmetric, nor transitive.

********** END *******