Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Feuille 2 — Formes linéaires et dualité

Exercice 1. À toute matrice $A \in M_n(K)$ on associe l'application ϕ_A définie sur $M_n(K)$ par $\phi_A(M) = \operatorname{tr}(AM)$.

- 1. Montrer que ϕ_A est une forme linéaire.
- 2. Réciproquement, montrer que toutes les formes linéaires sur $M_n(K)$ s'écrivent de cette façon.
- 3. En déduire que l'application $A \mapsto \phi_A$ est un isomorphisme de $M_n(K)$ sur son dual.

Exercice 2. Déterminer la forme linéaire f définie sur \mathbb{R}^3 telle que

$$f(1,1,1) = 0$$
 $f(2,0,1) = 1$ $f(1,2,3) = 4$.

Donner une base de ker(f).

Exercice 3. On note $e_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. Montrer que (e_1, e_2) forme une base de \mathbf{R}^2 et déterminer sa base duale (f_1, f_2) . Sans calcul, déterminer ker f_1 et ker f_2 .

Exercice 4. Soient f_1 et f_2 les deux formes linéaires sur \mathbf{R}^2 définies par

$$f_1(x,y) = x + y$$
 et $f_2(x,y) = x - y$

- 1. Montrer que (f_1, f_2) forme une base de $(\mathbf{R}^2)^*$ et déterminer sa base préduale.
- 2. On définit des formes g et h par

$$g(x,y) = x$$
 et $h(x,y) = 2x - 6y$

Exprimer ces formes linéaires dans la base (f_1, f_2) .

Exercice 5. Soient E un espace vectoriel et f et g deux formes linéaires sur E. Montrer que fg = 0 si et seulement si f = 0 ou g = 0.