

Faculty of Engineering & Technology Subject-Name: Data Analytics and

Data Visualization Subject-Code:303105315

B.Tech CSE Year: 3rd Semester: 5TH

Parul University

FACULTY OF ENGINEERING AND TECHNOLOGY

Data Analytics and
Data Visualization
(303105315)

5th SEMESTER

Laboratory Manual

Faculty of Engineering & Technology Subject-Name: Data Analytics and

Data Visualization Subject-Code:303105315

B.Tech CSE Year: 3rd Semester: 5TH

CERTIFICATE

This is to certify that **BAGADI PIYUSH MANGALCHAND** with enrolment no.

2203031050081 and 5th Semester/ CSE 5B33(Batch 2) has successfully

completed her laboratory experiments in the **Data Analytics and Data Visualization** (303105315)

from the department of Computer Science & Engineering during the academic year 2024-25

Staff In charge:	
	Head Of Department:

Enrollment No: 2203031050081

Date of Submission:

Faculty of Engineering & Technology Subject-Name: Data Analytics and

Data Visualization Subject-Code:303105315

B.Tech CSE Year: 3rd Semester: 5^{TH}

TABLE OF CONTENT

Sr.	F	Page	No	Date of	Date of	Sign	Marks
No	Experiment Title	From	То	Start	Completion		(out of 10)
1	Perform Exploratory Data Analysis on the given dataset using Python.						
2	Calculate mean, median and mode of the first 50 records in the given dataset using python.						
3	Perform Multiple Linear Regression on data.						
4	Perform the Logistic Regression on a dataset.						
5	Use a dataset & apply K means clustering to get insights from data.						
6	Perform the Decision tree classification algorithm using a dataset.						
7	Study and installation of the tools like PowerBI tool for data Visualization.						
8	Load a dataset from different sources in PowerBI and apply transformations to it.						
9	Study and Plot various graphs for Data Visualization on PowerBI.						
10	Given a case study: Interactive Data Analytics with Power BI Dashboard.						

Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

Practical-1

Aim: Perform Exploratory Data Analysis on the given dataset using Python.

Procedure:

- 1. Import the dataset
- 2. View the head of the data
- 3. View the basic information of data and description of data
- 4. Find the unique value of data and verify the duplication of data
- 5. Plot a graph for unique value of dataset
- 6. Verify the presence of null value and replace the null value
- 7. Visualize the needed data

Program:

```
#Load the required libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

```
#Load the data
df = pd.read_csv("C://Users//acrop//Downloads//archive//tested.csv")
```

```
#View the data
df.head()
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

#Describe the data

df.describe()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

```
#unique values

df['Pclass'].unique()

array([3, 2, 1], dtype=int64)
```

```
df['Survived'].unique()
array([0, 1], dtype=int64)
```

```
df['Sex'].unique()
```

array(['male', 'female'], dtype=object)

Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

```
#checking duplicate values
df.nunique()
              418
PassengerId
Survived
               2
Pclass
                3
Name
              418
               2
Sex
Age
               80
               7
SibSp
Parch
                8
Ticket
              363
              170
Fare
Cabin
              77
Embarked
dtype: int64
```

```
#Find null values or check for missing values
df.isnull().sum()
```

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	86
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	327
Embarked	0
dtype: int64	

```
#Replace null values
```

```
df.replace(np.nan,'0',inplace = True)
```

```
#Check the changes now
df.isnull().sum()
```

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	0
Embarked	0
dtype: int64	

Enrollment No: 2203031050081 3

Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

```
# Using Matplotlib to create a count plot
plt.figure(figsize=(8, 6))
plt.bar(quality_counts.index, quality_counts, color='PINK')
plt.title('Count Plot of Quality')
plt.xlabel('Quality')
plt.ylabel('Count')
plt.show()
```



```
#Swarm Plot

# Assuming 'df' is your DataFrame
plt.figure(figsize=(10, 8))

<Figure size 1000x800 with 0 Axes>
<Figure size 1000x800 with 0 Axes>
```


Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

```
# Using Seaborn to create a swarm plot
sns.swarmplot(x="quality", y="alcohol", data=df, palette='viridis')
plt.title('Swarm Plot for Quality and Alcohol')
plt.xlabel('Quality')
plt.ylabel('Alcohol')
plt.show()
```

Swarm Plot for Quality and Alcohol 15 14 13 10 9 3 4 5 6 7 8

```
#pair Plot

#set the color palette
sns.set_palette("Pastel1")
plt.figure(figsize=(10,7))
sns.pairplot(df)
plt.suptitle('Pair Plot for Dataframe')
plt.show()
```

Quality

Enrollment No: 2203031050081

Faculty of Engineering & Technology Subject-Name: Data Analytics and Data Visualization

Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

6

Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

#Heatmap
sns.heatmap(df.corr())

Subject-Code: 303105315

B.Tech [CSE] Year: 3rd / Semester: 5TH

Practical-2

Aim: Calculate mean, median and mode of the first 50 records in the given dataset using python

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

df=pd.read_csv("/content/winequality-red.csv")

df

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
m					***							
1591	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1592	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1593	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1594	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1595	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1596 rows × 12 columns

Faculty of Engineering & Technology Subject-Name: Software Engineering

Subject-Code:203105304

B.Tech CSE Year: 3RD Semester: 5TH

```
df.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1596 entries, 0 to 1595
 Data columns (total 12 columns):
     Column
                               Non-Null Count Dtype
    fixed acidity
volatile acidity
citric acid
residual sugar
                              1596 non-null float64
1596 non-null float64
  0
  1
                               1596 non-null
1596 non-null
  2
                                                  float64
  3
                               1596 non-null float64
  4
      chlorides
     free sulfur dioxide 1596 non-null float64
  5
  6 total sulfur dioxide 1596 non-null float64
  7
                               1596 non-null float64
                               1596 non-null float64
     density
     рН
  8
                               1596 non-null float64
1596 non-null float64
  9
      sulphates
     alcohol
  10
                                1596 non-null int64
  11 quality
 dtypes: float64(11), int64(1)
 memory usage: 149.8 KB
meanQ=df["quality"].mean()
print(meanQ)
```

5.637218045112782

```
medianQ=df["quality"].median()
print(medianQ)
```

6.0

```
Mode=df["quality"].mode()
print(Mode)
```

0 5

Name: quality, dtype: int64