

Lineare Algebra (61112)

Wiederholungsaufgaben zu den Grundlagen

- WiSe 2024/25-

Aufgabe 1.

Berechnen Sie das Matrizenprodukt

$$\begin{pmatrix} 1+i & 0 & 1 \\ 0 & -i & 2-2i \\ -1-2i & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & i \\ 0 & 1-i & 0 \\ -2-i & 1+2i & -2 \end{pmatrix}.$$

Aufgabe 2.

Zeigen Sie, dass die Vektoren

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$$

linear unabhängig im \mathbb{R}^3 sind.

Aufgabe 3.

Bestimmen Sie eine Basis für den Kern der reellen Matrix

$$\begin{pmatrix} 1 & 2 & 1 & -1 \\ 1 & 1 & -1 & -2 \\ 3 & 4 & -1 & -5 \\ -1 & 0 & 3 & 3 \end{pmatrix} \in M_{4,4}(\mathbb{R}).$$

Aufgabe 4.

Bestimmen Sie die Matrixdarstellung von

$$f: \mathbb{R}^3 \to \mathbb{R}^2, \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 2x_2 - x_3 \\ 3x_1 + x_2 \end{pmatrix}$$

bezüglich der Basen
$$\mathcal{B}_1 = \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} \right) \text{ und } \mathcal{B}_2 = \left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right).$$

Aufgabe 5.

Sei $U = \{A^T - A \mid A \in M_{33}(\mathbb{Q})\}$. Bestimmen Sie $\dim_{\mathbb{Q}}(U)$ mithilfe des Rangsatzes.

Aufgabe 6.

Es sei K ein Körper und es sei $B \in \mathcal{M}_{n,n}(K)$ gegeben. Zeigen Sie, dass

$$Z(B) = \{ A \in \mathcal{M}_{n,n}(K) \mid AB = BA \}$$

ein Unterraum von $M_{n,n}(K)$ ist.