```
1.1.1
In [1]:
            Author: A.Shrikant
         1.1.1
Out[1]: '\n
                Author: A.Shrikant\n'
In [2]: # Attributes Information:
        # step - maps a unit of time in the real world. In this case 1 step is 1 hour
        # of time. Total steps 744 (30 days simulation).
        # type - CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.
        # amount - amount of the transaction in local currency.
        # nameOrig - customer who started the transaction
        # oldbalanceOrg - initial balance before the transaction
        # newbalanceOrig - new balance after the transaction.
        # nameDest - customer who is the recipient of the transaction
        # oldbalanceDest - initial balance recipient before the transaction. Note that
        # there is not information for customers that start with M (Merchants).
        # newbalanceDest - new balance recipient after the transaction. Note that there
        # is not information for customers that start with M (Merchants).
        # isFraud - This is the transactions made by the fraudulent agents inside the
        # simulation. In this specific dataset the fraudulent behavior of the agents
        # aims to profit by taking control or customers accounts and try to empty the
        # funds by transferring to another account and then cashing out of the system.
        # isFlaggedFraud - The business model aims to control massive transfers from one
        # account to another and flags illegal attempts. An illegal attempt in this dataset
        # is an attempt to transfer more than 200.000 in a single transaction.
        # URL to download the Paysim dataset: https://www.kaggle.com/datasets/ealaxi/paysim1
```

```
import numpy as np
In [1]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.metrics import classification_report, confusion_matrix, f1_score
        from sklearn.model_selection import cross_val_score
        df1 = pd.read_csv('Money Laundering.csv')
In [2]:
        df1.shape
In [3]:
Out[3]:
         (6362620, 11)
        df1.head()
In [4]:
Out[4]:
                                        nameOrig oldbalanceOrg newbalanceOrig
                                                                                    nameDest oldbalanceDest newbalanceDest is
                             amount
           step
                      type
         0
                  PAYMENT
                             9839.64 C1231006815
                                                        170136.0
                                                                                                         0.0
                                                                                                                         0.0
                                                                       160296.36 M1979787155
                             1864.28 C1666544295
                  PAYMENT
                                                         21249.0
                                                                        19384.72 M2044282225
                                                                                                         0.0
        1
                                                                                                                         0.0
         2
              1 TRANSFER
                                                                                                         0.0
                                                                                                                         0.0
                              181.00 C1305486145
                                                           181.0
                                                                            0.00
                                                                                  C553264065
         3
              1 CASH_OUT
                              181.00
                                      C840083671
                                                           181.0
                                                                            0.00
                                                                                   C38997010
                                                                                                     21182.0
                                                                                                                         0.0
                                                                                                         0.0
         4
                  PAYMENT 11668.14 C2048537720
                                                         41554.0
                                                                        29885.86 M1230701703
                                                                                                                         0.0
        df1.info()
In [5]:
```

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 6362620 entries, 0 to 6362619
       Data columns (total 11 columns):
            Column
                            Dtype
            _____
                            ----
                            int64
            step
                            object
        1
            type
            amount
                            float64
            nameOrig
                            object
            oldbalanceOrg
                            float64
            newbalanceOrig float64
                            object
            nameDest
            oldbalanceDest float64
            newbalanceDest float64
            isFraud
                            int64
        10 isFlaggedFraud int64
       dtypes: float64(5), int64(3), object(3)
       memory usage: 534.0+ MB
        df1.duplicated().sum()
In [6]:
Out[6]: 0
In [7]: df1.isnull().sum()
Out[7]: step
                           0
         type
                           0
         amount
                           0
         nameOrig
                           0
         oldbalanceOrg
                           0
         newbalanceOrig
         nameDest
         oldbalanceDest
                           0
         newbalanceDest
                           0
         isFraud
        isFlaggedFraud
         dtype: int64
```

No duplicate and missing values are there.

Analysing transactions using 'type' variable:

```
In [8]: type_dist_ser = df1['type'].value_counts()
         type_dist_ser
 Out[8]: type
         CASH OUT
                     2237500
         PAYMENT
                     2151495
         CASH_IN
                     1399284
                      532909
         TRANSFER
         DEBIT
                       41432
         Name: count, dtype: int64
         pd.Series(type_dist_ser/type_dist_ser.sum(), name='proportion')
 In [9]:
Out[9]: type
         CASH_OUT
                     0.351663
          PAYMENT
                     0.338146
         CASH_IN
                     0.219923
         TRANSFER
                     0.083756
         DEBIT
                     0.006512
         Name: proportion, dtype: float64
In [10]: is_fraud_mask = df1['isFraud'] == 1
         is_not_fraud_mask = ~ is_fraud_mask
In [11]: plt.figure(figsize=(6,3))
         sns.countplot(df1[is_not_fraud_mask], x='type')
         plt.title('Genuine transactions')
         plt.show()
```



```
In [12]: plt.figure(figsize=(5,2))
    sns.countplot(df1[is_fraud_mask], x='type')
    plt.title('Fraud transactions')
    plt.show()
```


Analysing transactions using 'isFraud' variable:

Inference: Almost 99.88% of transactions are Genuine and only 0.13% of transactions are Fraudulent. This implies a highly imbalanced dataset.

Analysing transactions using 'isFlaggedFraud' variable:

Out[16]:		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalance
	19	1	TRANSFER	215310.30	C1670993182	705.00	0.0	C1100439041	22425.00	
	24	1	TRANSFER	311685.89	C1984094095	10835.00	0.0	C932583850	6267.00	271917
	82	1	TRANSFER	224606.64	C873175411	0.00	0.0	C766572210	354678.92	
	84	1	TRANSFER	379856.23	C1449772539	0.00	0.0	C1590550415	900180.00	1916920
	85	1	TRANSFER	1505626.01	C926859124	0.00	0.0	C665576141	29031.00	551576
	•••							•••		
	6362608	742	TRANSFER	258355.42	C1226129332	258355.42	0.0	C1744173808	0.00	
	6362612	743	TRANSFER	1258818.82	C1531301470	1258818.82	0.0	C1470998563	0.00	
	6362614	743	TRANSFER	339682.13	C2013999242	339682.13	0.0	C1850423904	0.00	
	6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C1881841831	0.00	
	6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.0	C2080388513	0.00	

409110 rows × 11 columns

In [17]: df1[df1['isFlaggedFraud'] == 1]

Out	[17]	
out	L ± /]	

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanc
2736446	212	TRANSFER	4953893.08	C728984460	4953893.08	4953893.08	C639921569	0.0	
3247297	250	TRANSFER	1343002.08	C1100582606	1343002.08	1343002.08	C1147517658	0.0	
3760288	279	TRANSFER	536624.41	C1035541766	536624.41	536624.41	C1100697970	0.0	
5563713	387	TRANSFER	4892193.09	C908544136	4892193.09	4892193.09	C891140444	0.0	
5996407	425	TRANSFER	10000000.00	C689608084	19585040.37	19585040.37	C1392803603	0.0	
5996409	425	TRANSFER	9585040.37	C452586515	19585040.37	19585040.37	C1109166882	0.0	
6168499	554	TRANSFER	3576297.10	C193696150	3576297.10	3576297.10	C484597480	0.0	
6205439	586	TRANSFER	353874.22	C1684585475	353874.22	353874.22	C1770418982	0.0	
6266413	617	TRANSFER	2542664.27	C786455622	2542664.27	2542664.27	C661958277	0.0	
6281482	646	TRANSFER	10000000.00	C19004745	10399045.08	10399045.08	C1806199534	0.0	
6281484	646	TRANSFER	399045.08	C724693370	10399045.08	10399045.08	C1909486199	0.0	
6296014	671	TRANSFER	3441041.46	C917414431	3441041.46	3441041.46	C1082139865	0.0	
6351225	702	TRANSFER	3171085.59	C1892216157	3171085.59	3171085.59	C1308068787	0.0	
6362460	730	TRANSFER	10000000.00	C2140038573	17316255.05	17316255.05	C1395467927	0.0	
6362462	730	TRANSFER	7316255.05	C1869569059	17316255.05	17316255.05	C1861208726	0.0	
6362584	741	TRANSFER	5674547.89	C992223106	5674547.89	5674547.89	C1366804249	0.0	
4									•

Inference: Dataset show that not all transactions with amount > 200000 and type=TRANSFER have 'isFraudFlagged' 1. This is incontrary to what the meta data says for 'isFraudFlagged'.

Analysing transactions using variables 'nameOrig' and 'nameDest':

```
df1['nameOrig'].unique().size
In [18]:
Out[18]: 6353307
         df1['nameDest'].unique().size
In [19]:
Out[19]: 2722362
         df1[df1['nameOrig']==df1['nameDest']]
In [20]:
Out[20]:
           step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlagg
         customers_in_orig_mask = df1['nameOrig'].str.startswith('C')
         customers_in_orig_mask.sum()
Out[21]: 6362620
In [22]: merchants_in_orig_mask = ~ customers_in_orig_mask
         merchants_in_orig_mask.sum()
Out[22]: 0
         customers_in_dest_mask = df1['nameDest'].str.startswith('C')
In [23]:
         customers_in_dest_mask.sum()
Out[23]: 4211125
In [24]: merchants_in_dest_mask = ~ customers_in_dest_mask
         df1[merchants in dest mask]
```

Out[24]:		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDe
	0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	0.0	(
	1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	0.0	(
	4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	0.0	(
	5	1	PAYMENT	7817.71	C90045638	53860.0	46042.29	M573487274	0.0	(
	6	1	PAYMENT	7107.77	C154988899	183195.0	176087.23	M408069119	0.0	(
	6362312	718	PAYMENT	8178.01	C1213413071	11742.0	3563.99	M1112540487	0.0	(
	6362314	718	PAYMENT	17841.23	C1045048098	10182.0	0.00	M1878955882	0.0	(
	6362316	718	PAYMENT	1022.91	C1203084509	12.0	0.00	M675916850	0.0	(
	6362318	718	PAYMENT	4109.57	C673558958	5521.0	1411.43	M1126011651	0.0	(
	6362319	718	PAYMENT	8634.29	C642813806	518802.0	510167.71	M747723689	0.0	(

2151495 rows × 11 columns

```
In [25]: TT = df1.shape[0]
N_CC_T = customers_in_dest_mask.sum()
N_CM_T = TT - N_CC_T

print(f'Percentage of CC_T: {N_CC_T/TT}')
print(f'Percentage of CM_T: {N_CM_T/TT}')
```

Percentage of CC_T: 0.6618539218120837 Percentage of CM_T: 0.3381460781879163

Inference: 2/3 of the transactions are CC_T and 1/3 are CM_T.

```
In [26]: N_F_CC_T = (customers_in_dest_mask & is_fraud_mask).sum()
    N_G_CC_T = N_CC_T - N_F_CC_T

    N_F_CM_T = (merchants_in_dest_mask & is_fraud_mask).sum()
    N_G_CM_T = N_CM_T - N_F_CM_T

    print(f'Percentage of fraud transactions in CC_T: {N_F_CC_T/N_CC_T}')
    print(f'Percentage of genuine transactions in CC_T: {N_G_CC_T/N_CC_T}')

    print(f'Percentage of fraud transactions in CM_T: {N_F_CM_T/N_CM_T}')
    print(f'Percentage of genuine transactions in CM_T: {N_G_CM_T/N_CM_T}')

Percentage of fraud transactions in CC_T: 0.001950310190269821
    Percentage of genuine transactions in CC_T: 0.9980496898097302
```

Inference: All the fraud cases mentioned in the dataset occurred in CC_T and no fraud occurred in CM T.

```
In [27]: cols_to_remove_1 = ['nameOrig', 'nameDest', 'isFlaggedFraud']
    df2 = df1.drop(columns=cols_to_remove_1)
    df2['is_CM_T'] = np.where(merchants_in_dest_mask, 1, 0)
In [28]: df2
```

Percentage of fraud transactions in CM_T: 0.0 Percentage of genuine transactions in CM_T: 1.0

Out[28]:		step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	is_CM_T
	0	1	PAYMENT	9839.64	170136.00	160296.36	0.00	0.00	0	1
	1	1	PAYMENT	1864.28	21249.00	19384.72	0.00	0.00	0	1
	2	1	TRANSFER	181.00	181.00	0.00	0.00	0.00	1	0
	3	1	CASH_OUT	181.00	181.00	0.00	21182.00	0.00	1	0
	4	1	PAYMENT	11668.14	41554.00	29885.86	0.00	0.00	0	1
	•••									
	6362615	743	CASH_OUT	339682.13	339682.13	0.00	0.00	339682.13	1	0
	6362616	743	TRANSFER	6311409.28	6311409.28	0.00	0.00	0.00	1	0
	6362617	743	CASH_OUT	6311409.28	6311409.28	0.00	68488.84	6379898.11	1	0
	6362618	743	TRANSFER	850002.52	850002.52	0.00	0.00	0.00	1	0
	6362619	743	CASH_OUT	850002.52	850002.52	0.00	6510099.11	7360101.63	1	0

6362620 rows × 9 columns

Analysing the balance of both sender's and recipient's account:

```
orig_bal_match_after_credit_mask = (orig_bal_should_increase_mask &
                                              (abs(df2['newbalanceOrig'] - df2['oldbalanceOrg'] - df2['amount']) <= 0.02))</pre>
         dest_bal_mismatch_after_credit_mask = (orig_bal_should_increase_mask &
                                                 (abs(df2['oldbalanceDest'] - df2['newbalanceDest'] - df2['amount']) > 0.02))
         dest_bal_match_after_credit_mask = (orig_bal_should increase mask &
                                              (abs(df2['oldbalanceDest'] - df2['newbalanceDest'] - df2['amount']) <= 0.02))</pre>
         orig_bal_mismatch_after_debit_count = orig_bal_mismatch_after_debit_mask.sum()
In [30]:
         orig_bal_match_after_debit_count = orig_bal_match_after_debit_mask.sum()
         dest bal mismatch after debit count = dest bal mismatch after debit mask.sum()
         dest_bal_match_after_debit_count = dest_bal_match_after_debit_mask.sum()
         print(f'orig_bal_mismatch_after_debit_count: {orig_bal_mismatch_after_debit_count}')
         print(f'orig_bal_match_after_debit_count: {orig_bal_match_after_debit_count}')
         print(f'dest_bal_mismatch_after_debit_count: {dest_bal_mismatch_after_debit_count}')
         print(f'dest_bal_match_after_debit_count: {dest_bal_match_after_debit_count}')
        orig bal mismatch after debit count: 3601560
        orig bal match after debit count: 1361776
        dest bal mismatch after debit count: 2424660
        dest bal match after debit count: 2538676
In [31]: orig_bal_mismatch_after_credit_count = orig_bal_mismatch_after_credit_mask.sum()
         orig_bal_match_after_credit_count = orig_bal_match_after_credit_mask.sum()
         dest_bal_mismatch_after_credit_count = dest_bal_mismatch_after_credit_mask.sum()
         dest bal match_after_credit_count = dest_bal_match_after_credit_mask.sum()
         print(f'orig_bal_mismatch_after_credit_count: {orig_bal_mismatch_after_credit_count}')
         print(f'orig bal match after credit count: {orig bal match after credit count}')
         print(f'dest_bal_mismatch_after_credit_count: {dest_bal_mismatch_after_credit_count}')
         print(f'dest_bal_match_after_credit_count: {dest_bal_match_after_credit_count}')
        orig_bal_mismatch_after_credit_count: 33
        orig_bal_match_after_credit_count: 1399251
        dest_bal_mismatch_after_credit_count: 367245
        dest_bal_match_after_credit_count: 1032039
         (orig_bal_match_after_debit_mask & dest_bal_match_after_debit_mask).sum()
In [32]:
```

```
Out[32]: 279804

In [33]: (orig_bal_match_after_credit_mask & dest_bal_match_after_credit_mask).sum()

Out[33]: 1032039

In [34]: (orig_bal_mismatch_after_debit_mask & dest_bal_mismatch_after_debit_mask).sum()

Out[34]: 1342688

In [35]: (orig_bal_mismatch_after_credit_mask & dest_bal_mismatch_after_credit_mask).sum()

Out[35]: 33
```

Inference: The simulation is not taking into account of the data integrity constraint i.e. in the dataset the rule amount deducted must be equal to amount added is not followed.

```
((df2['oldbalanceOrg'] == df2['newbalanceOrig'])).sum()
In [36]:
         2089037
Out[36]:
         ((df2['oldbalanceDest'] == df2['newbalanceDest'])).sum()
Out[37]: 2317292
In [38]:
         orig same old and new bal during bal mismatch debit = ((df2['oldbalanceOrg'] == df2['newbalanceOrig']) &
                                                                 orig_bal_mismatch_after_debit_mask).sum()
         orig_same_old_and_new_bal_during_bal_mismatch_credit = ((df2['oldbalanceOrg'] == df2['newbalanceOrig']) &
                                                                  orig bal mismatch after credit mask).sum()
         dest_same_old_and_new_bal_during_bal_mismatch_debit = ((df2['oldbalanceDest'] == df2['newbalanceDest']) &
                                                                 dest bal mismatch after debit mask).sum()
         dest_same_old_and_new_bal_during_bal_mismatch_credit = ((df2['oldbalanceDest'] == df2['newbalanceDest']) &
                                                                  dest_bal_mismatch_after_credit_mask).sum()
         print(f'orig same old and new bal during bal mismatch debit: {orig same old and new bal during bal mismatch debit}')
         print(f'orig same old and new_bal_during_bal_mismatch_credit: {orig_same_old_and_new_bal_during_bal_mismatch_credit}
```

```
print(f'dest_same_old_and_new_bal_during_bal_mismatch_debit: {dest_same_old_and_new_bal_during_bal_mismatch_debit}')
         print(f'dest_same_old_and_new_bal_during_bal_mismatch_credit: {dest_same_old_and_new_bal_during_bal_mismatch_credit}
        orig_same_old_and_new_bal_during_bal_mismatch_debit: 2088985
        orig_same_old_and_new_bal_during_bal_mismatch_credit: 33
        dest_same_old_and_new_bal_during_bal_mismatch_debit: 2157268
        dest_same_old_and_new_bal_during_bal_mismatch_credit: 160005
In [39]: orig same old and new bal during bal match debit = ((df2['oldbalanceOrg'] == df2['newbalanceOrig']) &
                                                                 orig bal match after debit mask)
         orig_same_old_and_new_bal_during_bal_match_credit = ((df2['oldbalanceOrg'] == df2['newbalanceOrig']) &
                                                                  orig bal match after credit mask)
         dest_same_old_and_new_bal_during_bal_match_debit = ((df2['oldbalanceDest'] == df2['newbalanceDest']) &
                                                                 dest bal match after debit mask)
         dest_same_old_and_new_bal_during_bal_match_credit = ((df2['oldbalanceDest'] == df2['newbalanceDest']) &
                                                                  dest bal match after credit mask)
         print(f'orig same old and new bal during bal match debit: {orig same old and new bal during bal match debit.sum()}')
         print(f'orig same_old_and_new_bal_during_bal_match_credit: {orig_same_old_and_new_bal_during_bal_match_credit.sum()}
         print(f'dest same old and new bal during bal match debit: {dest same old and new bal during bal match debit.sum()}')
         print(f'dest same old and new bal during bal match credit: {dest same old and new bal during bal match credit.sum()}
        orig_same_old_and_new_bal_during_bal_match_debit: 19
        orig_same_old_and_new_bal_during_bal_match_credit: 0
        dest same old and new bal during bal match debit: 19
        dest same old and new bal during bal match credit: 0
In [40]: df2['err in bal org'] = np.where(orig bal should increase mask, df2['newbalanceOrig'] - df2['oldbalanceOrg']
                                           - df2['amount'], df2['oldbalanceOrg'] - df2['newbalanceOrig'] - df2['amount'])
         df2['err in bal dest'] = np.where(orig bal should increase mask, df2['oldbalanceDest'] - df2['newbalanceDest']
                                           - df2['amount'], df2['newbalanceDest'] - df2['oldbalanceDest'] - df2['amount'])
In [41]:
         df2
```

Out[41]:		step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	is_CM_T	err_
	0	1	PAYMENT	9839.64	170136.00	160296.36	0.00	0.00	0	1	1.4
	1	1	PAYMENT	1864.28	21249.00	19384.72	0.00	0.00	0	1	-1.1
	2	1	TRANSFER	181.00	181.00	0.00	0.00	0.00	1	0	0.0
	3	1	CASH_OUT	181.00	181.00	0.00	21182.00	0.00	1	0	0.0
	4	1	PAYMENT	11668.14	41554.00	29885.86	0.00	0.00	0	1	0.0
	•••										
	6362615	743	CASH_OUT	339682.13	339682.13	0.00	0.00	339682.13	1	0	0.0
	6362616	743	TRANSFER	6311409.28	6311409.28	0.00	0.00	0.00	1	0	0.0
	6362617	743	CASH_OUT	6311409.28	6311409.28	0.00	68488.84	6379898.11	1	0	0.0
	6362618	743	TRANSFER	850002.52	850002.52	0.00	0.00	0.00	1	0	0.0
	6362619	743	CASH_OUT	850002.52	850002.52	0.00	6510099.11	7360101.63	1	0	0.0

6362620 rows × 11 columns

Out[42]:		err_in_bal_org	err_in_bal_dest
	count	6.362620e+06	6.362620e+06
	mean	-1.267959e+05	-2.427970e+03
	std	5.943125e+05	4.116677e+05
	min	-9.244552e+07	-5.695142e+07
	25%	-1.145037e+05	-8.493712e+03
	50%	-5.797990e+03	-1.746230e-10
	75%	0.000000e+00	0.000000e+00
	max	1.000001e-02	7.588573e+07

Analysing transactions using the 'step' variable:

```
In [44]: plt.figure(figsize=(8,5))
     sns.histplot(df2, x='step', binwidth=24)
     plt.show()
```



```
In [45]: plt.figure(figsize=(8,5))
    sns.histplot(df2[is_not_fraud_mask], x='step', binwidth=24)
    plt.show()
```



```
In [46]: plt.figure(figsize=(8,5))
    sns.histplot(df2[is_fraud_mask], x='step', binwidth=24)
    plt.show()
```


Inference: Most of the genuine transactions are done on days 1-2 and days 6-17 of the month. Whereas the fraud transactions are done uniformly across all days of the month.

```
In [47]: df2['hour_of_day'] = df2['step'] % 24
df2
```

Out[47]:		step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	is_CM_T	err_
	0	1	PAYMENT	9839.64	170136.00	160296.36	0.00	0.00	0	1	1.₄
	1	1	PAYMENT	1864.28	21249.00	19384.72	0.00	0.00	0	1	-1.1
	2	1	TRANSFER	181.00	181.00	0.00	0.00	0.00	1	0	0.0
	3	1	CASH_OUT	181.00	181.00	0.00	21182.00	0.00	1	0	0.0
	4	1	PAYMENT	11668.14	41554.00	29885.86	0.00	0.00	0	1	0.0
	•••										
	6362615	743	CASH_OUT	339682.13	339682.13	0.00	0.00	339682.13	1	0	0.0
	6362616	743	TRANSFER	6311409.28	6311409.28	0.00	0.00	0.00	1	0	0.0
	6362617	743	CASH_OUT	6311409.28	6311409.28	0.00	68488.84	6379898.11	1	0	0.0
	6362618	743	TRANSFER	850002.52	850002.52	0.00	0.00	0.00	1	0	0.0
	6362619	743	CASH_OUT	850002.52	850002.52	0.00	6510099.11	7360101.63	1	0	0.0

6362620 rows × 12 columns

```
In [48]: plt.figure(figsize=(8,5))
    sns.histplot(df2, x='hour_of_day', discrete=True)
    plt.show()
```



```
In [49]: plt.figure(figsize=(10,5))
    sns.histplot(df2[is_not_fraud_mask], x='hour_of_day', discrete=True)
    plt.show()
```



```
In [50]: plt.figure(figsize=(8,5))
    sns.histplot(df2[is_fraud_mask], x='hour_of_day', discrete=True)
    plt.show()
```


Inference: Most of the genuine transactions are done on hour of the day 9-23. Whereas the fraud transactions are done uniformly across all hours of the day.

```
In [51]: amount_by_type_df = df2.groupby(by=['isFraud', 'type'])[['amount']].sum().reset_index()
amount_by_type_df
```

Out[51]:		isFraud	type	amount
	0	0	CASH_IN	2.363674e+11
	1	0	CASH_OUT	3.884238e+11
	2	0	DEBIT	2.271992e+08
	3	0	PAYMENT	2.809337e+10
	4	0	TRANSFER	4.792248e+11
	5	1	CASH_OUT	5.989202e+09
	6	1	TRANSFER	6.067213e+09

```
In [52]: plt.figure(figsize=(6,3))
    sns.barplot(data=amount_by_type_df, y='amount', x='type', hue='isFraud')
    plt.title('Genuine transactions')
    plt.show()
```



```
In [53]: exclude_cols_1 = ['type', 'step', 'isFraud', 'is_CM_T', 'hour_of_day']
    selected_columns = [col_name for col_name in df2.columns.values if col_name not in exclude_cols_1]
```

```
selected_columns
Out[53]: ['amount',
           'oldbalanceOrg',
           'newbalanceOrig',
           'oldbalanceDest',
           'newbalanceDest',
           'err_in_bal_org',
           'err_in_bal_dest']
          df2[selected columns].describe()
In [54]:
Out[54]:
                      amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest err in bal org
                                                                                                             err in bal dest
          count 6.362620e+06
                                6.362620e+06
                                                6.362620e+06
                                                                6.362620e+06
                                                                                 6.362620e+06
                                                                                                6.362620e+06
                                                                                                               6.362620e+06
          mean 1.798619e+05
                                8.338831e+05
                                                                1.100702e+06
                                                                                 1.224996e+06 -1.267959e+05
                                                                                                              -2.427970e+03
                                                 8.551137e+05
            std 6.038582e+05
                                2.888243e+06
                                                 2.924049e+06
                                                                3.399180e+06
                                                                                 3.674129e+06
                                                                                                5.943125e+05
                                                                                                               4.116677e+05
            min 0.000000e+00
                                0.000000e+00
                                                 0.000000e+00
                                                                0.000000e+00
                                                                                 0.000000e+00
                                                                                               -9.244552e+07
                                                                                                              -5.695142e+07
           25%
                1.338957e+04
                                0.000000e+00
                                                0.000000e+00
                                                                0.000000e+00
                                                                                 0.000000e+00
                                                                                             -1.145037e+05
                                                                                                              -8.493712e+03
           50% 7.487194e+04
                                1.420800e+04
                                                 0.000000e+00
                                                                1.327057e+05
                                                                                 2.146614e+05 -5.797990e+03
                                                                                                              -1.746230e-10
           75% 2.087215e+05
                                1.073152e+05
                                                 1.442584e+05
                                                                9.430367e+05
                                                                                 1.111909e+06
                                                                                                0.000000e+00
                                                                                                               0.000000e+00
           max 9.244552e+07
                                5.958504e+07
                                                4.958504e+07
                                                                3.560159e+08
                                                                                 3.561793e+08
                                                                                                1.000001e-02
                                                                                                               7.588573e+07
In [55]:
          plt.figure(figsize=(5,3))
          sns.kdeplot(df2['amount'])
          plt.title('PDF of Amount')
          plt.show()
```



```
In [56]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_not_fraud_mask], x='amount')
    plt.title('PDF of Amount for Genuine transactions')
    plt.xlim([-1000,10000000])
    plt.show()
```

PDF of Amount for Genuine transactions


```
In [57]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_fraud_mask], x='amount')
    plt.title('PDF of Amount for Fraud transactions')
    plt.show()
```

PDF of Amount for Fraud transactions

The distribution for 'amount' is not normally distributed.

```
In [58]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2['oldbalanceOrg'])
    plt.title('PDF of oldbalanceOrg')
    plt.show()
```



```
In [59]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_not_fraud_mask], x='oldbalanceOrg')
    plt.title('PDF of oldbalanceOrg for Genuine transactions')
    plt.xlim([-1000,10000000])
    plt.show()
```

PDF of oldbalanceOrg for Genuine transactions


```
In [60]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_fraud_mask], x='oldbalanceOrg')
    plt.title('PDF of oldbalanceOrg for Fraud transactions')
    plt.show()
```

PDF of oldbalanceOrg for Fraud transactions

The distribution for 'oldbalanceOrg' is not normally distributed.

```
In [61]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2['newbalanceOrig'])
    plt.title('PDF of newbalanceOrig')
    plt.show()
```



```
In [62]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_not_fraud_mask], x='newbalanceOrig')
    plt.title('PDF of newbalanceOrig for Genuine transactions')
    plt.xlim([-1000,10000000])
    plt.show()
```

PDF of newbalanceOrig for Genuine transactions


```
In [63]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_fraud_mask], x='newbalanceOrig')
    plt.title('PDF of newbalanceOrig for Fraud transactions')
    plt.show()
```


The distribution for 'newbalanceOrig' is not normally distributed.

```
In [64]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2['oldbalanceDest'])
    plt.title('PDF of oldbalanceDest')
    plt.show()
```


PDF of oldbalanceDest for Genuine transactions


```
In [66]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_fraud_mask], x='oldbalanceDest')
    plt.title('PDF of oldbalanceDest for Fraud transactions')
    plt.show()
```


The distribution for 'oldbalanceDest' is not normally distributed.

```
In [67]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2['newbalanceDest'])
    plt.title('PDF of newbalanceDest')
    plt.show()
```



```
In [68]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_not_fraud_mask], x='newbalanceDest')
    plt.title('PDF of newbalanceDest for Genuine transactions')
    plt.xlim([-1000,10000000])
    plt.show()
```

PDF of newbalanceDest for Genuine transactions


```
In [69]: plt.figure(figsize=(5,3))
    sns.kdeplot(df2[is_fraud_mask], x='newbalanceDest')
    plt.title('PDF of newbalanceDest for Fraud transactions')
    plt.show()
```


The distribution for 'newbalanceDest' is not normally distributed.

```
In [70]: cols_to_remove_2 = ['step', 'err_in_bal_org', 'err_in_bal_dest']
    df3 = df2.drop(columns=cols_to_remove_2)
In [71]: df3
```

Out[71]:	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	is_CM_T	hour_of_d
	0 PAYMENT	9839.64	170136.00	160296.36	0.00	0.00	0	1	
	1 PAYMENT	1864.28	21249.00	19384.72	0.00	0.00	0	1	
	2 TRANSFER	181.00	181.00	0.00	0.00	0.00	1	0	
	3 CASH_OUT	181.00	181.00	0.00	21182.00	0.00	1	0	
	4 PAYMENT	11668.14	41554.00	29885.86	0.00	0.00	0	1	
	•••								
636261	5 CASH_OUT	339682.13	339682.13	0.00	0.00	339682.13	1	0	
636261	6 TRANSFER	6311409.28	6311409.28	0.00	0.00	0.00	1	0	
636261	7 CASH_OUT	6311409.28	6311409.28	0.00	68488.84	6379898.11	1	0	
636261	8 TRANSFER	850002.52	850002.52	0.00	0.00	0.00	1	0	
636261	9 CASH_OUT	850002.52	850002.52	0.00	6510099.11	7360101.63	1	0	

6362620 rows × 9 columns

```
In [72]: df4 = pd.get_dummies(df3, columns=['type'], drop_first=True, dtype=int)
    print(df4.shape)
    df4.head()
    (6362620, 12)
```

file:///C:/Users/user/Downloads/Money Laundering Classification V2 (3).html

Out[72]:		amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	is_CM_T	hour_of_day	type_CASH_OUT
	0	9839.64	170136.0	160296.36	0.0	0.0	0	1	1	0
	1	1864.28	21249.0	19384.72	0.0	0.0	0	1	1	0
	2	181.00	181.0	0.00	0.0	0.0	1	0	1	0
	3	181.00	181.0	0.00	21182.0	0.0	1	0	1	1
	4	11668.14	41554.0	29885.86	0.0	0.0	0	1	1	0
	4									•

Separate the dependent and independent variables:

```
In [73]:
         feature_variable_names = [col_name for col_name in df4.columns.values if col_name != 'isFraud']
         feature_variable_names
Out[73]: ['amount',
           'oldbalanceOrg',
           'newbalanceOrig',
           'oldbalanceDest',
           'newbalanceDest',
           'is_CM_T',
           'hour_of_day',
           'type_CASH_OUT',
           'type_DEBIT',
           'type_PAYMENT',
           'type_TRANSFER']
In [74]: X = df4[feature_variable_names]
         y = df4[['isFraud']]
         print(X.shape)
         print(y.shape)
        (6362620, 11)
        (6362620, 1)
In [75]: y.value_counts()
```

```
Out[75]: isFraud
0 6354407
1 8213
Name: count, dtype: int64
```

Splitting the data into train and test:

```
In [76]: from sklearn.model_selection import train_test_split
In [77]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
                                                              stratify=y, random_state=42)
         print(X_train.shape)
         print(X_test.shape)
          print(y_train.shape)
         print(y_test.shape)
        (4771965, 11)
        (1590655, 11)
        (4771965, 1)
        (1590655, 1)
In [78]: y_train.value_counts()
Out[78]: isFraud
          0
                     4765805
          1
                        6160
          Name: count, dtype: int64
In [79]: y_train.value_counts(normalize=True)
Out[79]: isFraud
          0
                     0.998709
                     0.001291
          Name: proportion, dtype: float64
In [80]: y_test.value_counts()
```

```
Out[80]: isFraud
          0
                     1588602
          1
                        2053
          Name: count, dtype: int64
In [81]: y_test.value_counts(normalize=True)
Out[81]: isFraud
          0
                     0.998709
          1
                     0.001291
          Name: proportion, dtype: float64
In [82]:
         from imblearn.over_sampling import SMOTE
In [83]: smote = SMOTE(random_state=42)
         # Creating synthetic samples for minority class to handle data imbalance.
         X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
In [84]: y_train_resampled.value_counts()
Out[84]: isFraud
          0
                     4765805
          1
                     4765805
          Name: count, dtype: int64
         Feature Scaling:
In [85]: from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
In [86]:
         SC
Out[86]:
             StandardScaler
         StandardScaler()
         numerical_col_names = ['amount', 'oldbalanceOrg', 'newbalanceOrig', 'oldbalanceDest',
                                 'newbalanceDest', 'hour_of_day']
```

```
X_train_resampled_numerical = X_train_resampled[numerical_col_names]
          X_test_numerical = X_test[numerical_col_names]
          sc_X_train_resampled_numerical = pd.DataFrame(sc.fit_transform(X_train_resampled_numerical),
In [88]:
                                               columns=X train resampled numerical.columns,
                                               index=X_train_resampled_numerical.index)
          sc_X_test_numerical = pd.DataFrame(sc.transform(X_test_numerical),
                                              columns=X_test_numerical.columns,
                                              index=X_test_numerical.index)
In [89]:
          sc X train resampled numerical.describe()
Out[89]:
                      amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest
                                                                                                hour of day
          count 9.531610e+06
                                9.531610e+06
                                                9.531610e+06
                                                                9.531610e+06
                                                                                               9.531610e+06
                                                                                9.531610e+06
                                                                                               -1.671260e-16
          mean
                 1.574410e-18
                                 4.193179e-16
                                                 3.736361e-16
                                                                 1.366755e-16
                                                                                -1.696915e-16
            std 1.000000e+00
                                1.000000e+00
                                                1.000000e+00
                                                                1.000000e+00
                                                                                1.000000e+00
                                                                                               1.000000e+00
            min -4.420213e-01
                                -3.801114e-01
                                                -2.085385e-01
                                                                -2.608949e-01
                                                                                -3.470146e-01
                                                                                              -2.412995e+00
           25% -4.218874e-01
                                -3.768577e-01
                                                -2.085385e-01
                                                                -2.608949e-01
                                                                                -3.470146e-01
                                                                                              -5.793190e-01
           50% -3.495696e-01
                                -3.435397e-01
                                                -2.085385e-01
                                                                -2.608949e-01
                                                                                -3.123898e-01
                                                                                               1.541514e-01
           75% -1.502317e-01
                                -1.348851e-01
                                                -2.085385e-01
                                                                -9.917847e-02
                                                                                -4.316985e-02
                                                                                               8.876219e-01
           max 4.929353e+01
                                1.787004e+01
                                                1.945329e+01
                                                                1.131066e+02
                                                                                9.950677e+01
                                                                                               1.804460e+00
In [90]:
          categorical_col_names = [col_name for col_name in feature_variable_names if col_name not in numerical_col_names]
          sc_X_train_resampled = pd.concat([sc_X_train_resampled_numerical, X_train_resampled[categorical_col_names]], axis=1)
          sc_X_test = pd.concat([sc_X_test_numerical, X_test[categorical_col_names]], axis=1)
In [91]:
          categorical col names
         ['is_CM_T', 'type_CASH_OUT', 'type_DEBIT', 'type_PAYMENT', 'type_TRANSFER']
Out[91]:
In [92]: X_train_numerical = X_train[numerical_col_names]
```

Building the Logistic Regression model:

```
In [93]: from sklearn.linear_model import LogisticRegression
In [94]: logistic regression = LogisticRegression(random state=42)
         logistic regression.fit(sc X train resampled, y train resampled.iloc[:, 0])
         y pred train logistic = logistic regression.predict(sc X train resampled)
         y pred test logistic = logistic regression.predict(sc X test)
In [95]: print('Logistic Regression model')
         print('Classification report for Train data:')
         print(classification_report(y_train_resampled, y_pred_train_logistic))
         print("*"*80)
         print('Classification report for Test data:')
         print(classification_report(y_test, y_pred_test_logistic))
         print('Confusion matrix for Train data:')
         print(confusion_matrix(y_train_resampled, y_pred_train_logistic))
         print('Confusion matrix for Test data:')
         print(confusion_matrix(y_test, y_pred_test_logistic))
```

```
Logistic Regression model
       Classification report for Train data:
                     precision
                                  recall f1-score
                                                    support
                  0
                          0.96
                                    0.96
                                             0.96
                                                    4765805
                  1
                          0.96
                                    0.96
                                             0.96
                                                    4765805
                                             0.96
                                                    9531610
           accuracy
                          0.96
                                    0.96
                                             0.96
                                                    9531610
          macro avg
       weighted avg
                          0.96
                                    0.96
                                             0.96
                                                    9531610
       ***********************************
       Classification report for Test data:
                     precision
                                  recall f1-score
                                                    support
                  0
                          1.00
                                    0.96
                                             0.98
                                                    1588602
                  1
                          0.03
                                    0.94
                                             0.05
                                                       2053
                                             0.96
                                                    1590655
           accuracy
          macro avg
                          0.51
                                    0.95
                                             0.52
                                                    1590655
       weighted avg
                          1.00
                                    0.96
                                             0.98
                                                    1590655
       Confusion matrix for Train data:
       [[4559649 206156]
        [ 213565 4552240]]
       Confusion matrix for Test data:
       [[1519819 68783]
             122
                    1931]]
         accuracy logistic regression = cross val score(logistic regression, sc X train resampled,
                                                      y train resampled.values.ravel(), cv=5)
         print(f'Cross validation accuracy for the Logistic Regression based model: {accuracy logistic regression.mean()}')
       Cross validation accuracy for the Logistic Regression based model: 0.9559461622957717
In [97]: from sklearn.tree import DecisionTreeClassifier
In [98]:
         decision tree = DecisionTreeClassifier(random state=42)
         decision tree.fit(sc X train resampled, y train resampled.iloc[:, 0])
```

```
y_pred_train_dt = decision_tree.predict(sc_X_train_resampled)
y_pred_test_dt = decision_tree.predict(sc_X_test)

In [99]: print('Decision Tree model')
    print('Classification report for Train data:')
    print(classification_report(y_train_resampled, y_pred_train_dt))
    print("*"*80)
    print('Classification report for Test data:')
    print(classification_report(y_test, y_pred_test_dt))
    print('Confusion matrix for Train data:')
    print(confusion_matrix(y_train_resampled, y_pred_train_dt))
    print('Confusion matrix for Test data:')
    print('Confusion_matrix for Test data:')
    print(confusion_matrix for Test data:')
    print(confusion_matrix(y_test, y_pred_test_dt))
```

```
Decision Tree model
        Classification report for Train data:
                                  recall f1-score
                      precision
                                                     support
                   0
                           1.00
                                    1.00
                                              1.00
                                                     4765805
                   1
                           1.00
                                    1.00
                                              1.00
                                                     4765805
                                              1.00
                                                     9531610
            accuracy
                           1.00
                                              1.00
                                                     9531610
           macro avg
                                    1.00
        weighted avg
                           1.00
                                    1.00
                                              1.00
                                                     9531610
        ********************************
        Classification report for Test data:
                      precision
                                  recall f1-score
                                                     support
                   0
                           1.00
                                    1.00
                                              1.00
                                                     1588602
                   1
                           0.69
                                    0.95
                                              0.80
                                                        2053
                                              1.00
                                                     1590655
            accuracy
           macro avg
                           0.85
                                    0.98
                                              0.90
                                                     1590655
        weighted avg
                           1.00
                                    1.00
                                              1.00
                                                     1590655
        Confusion matrix for Train data:
        [[4765805
                        0]
                0 4765805]]
        Confusion matrix for Test data:
        [[1587733
                      869]
               94
                     1959]]
         accuracy_decision_tree = cross_val_score(decision_tree, sc_X_train_resampled,
In [100...
                                                       y train resampled.values.ravel(), cv=5)
          print(f'Cross validation accuracy for the Decision Tree based model: {accuracy decision tree.mean()}')
        Cross validation accuracy for the Decision Tree based model: 0.999598388939539
In [101...
        from xgboost import XGBClassifier
```

```
xg_boost = XGBClassifier(seed=42)
In [102...
          xg_boost.fit(sc_X_train_resampled, y_train_resampled.iloc[:, 0])
          y_pred_train_xb = xg_boost.predict(sc_X_train_resampled)
          y_pred_test_xb = xg_boost.predict(sc_X_test)
In [103...
          print('XGBoost model')
          print('Classification report for Train data:')
          print(classification_report(y_train_resampled, y_pred_train_xb))
          print("*"*80)
          print('Classification report for Test data:')
          print(classification_report(y_test, y_pred_test_xb))
          print('Confusion matrix for Train data:')
          print(confusion_matrix(y_train_resampled, y_pred_train_xb))
          print('Confusion matrix for Test data:')
          print(confusion_matrix(y_test, y_pred_test_xb))
```

```
XGBoost model
        Classification report for Train data:
                      precision
                                  recall f1-score
                                                     support
                   0
                           1.00
                                    1.00
                                              1.00
                                                     4765805
                   1
                           1.00
                                    1.00
                                              1.00
                                                     4765805
                                              1.00
                                                     9531610
            accuracy
                           1.00
                                              1.00
                                                     9531610
           macro avg
                                    1.00
        weighted avg
                           1.00
                                    1.00
                                              1.00
                                                     9531610
        *******************************
        Classification report for Test data:
                      precision
                                  recall f1-score
                                                     support
                   0
                           1.00
                                    1.00
                                              1.00
                                                     1588602
                   1
                           0.36
                                    0.99
                                              0.53
                                                        2053
                                              1.00
                                                     1590655
            accuracy
           macro avg
                           0.68
                                    0.99
                                              0.76
                                                     1590655
        weighted avg
                           1.00
                                              1.00
                                                     1590655
                                    1.00
        Confusion matrix for Train data:
        [[4755189 10616]
         [ 4653 4761152]]
        Confusion matrix for Test data:
        [[1585002
                     3600]
                     2030]]
               23
         accuracy_xgboost = cross_val_score(xg_boost, sc_X_train_resampled,
In [104...
                                                       y train resampled.values.ravel(), cv=5)
          print(f'Cross validation accuracy for the XGBOOST based model: {accuracy xgboost.mean()}')
        Cross validation accuracy for the XGBOOST based model: 0.9983476033954389
In [105...
         from sklearn.ensemble import IsolationForest
         isolation forest = IsolationForest(contamination=0.013, random state=42)
In [106...
          isolation_forest.fit(sc_X_train)
         # Predict the anomaly score
```

```
y_pred_train_if = isolation_forest.predict(sc_X_train)
          y_pred_test_if = isolation_forest.predict(sc_X_test)
          offset_if = isolation_forest.offset_
         np.unique(y_pred_train_if)
In [107...
Out[107... array([-1, 1])
In [108...
         y_pred_train_if = np.where(y_pred_train_if == -1, 1, 0)
          y_pred_test_if = np.where(y_pred_test_if == -1, 1, 0)
          print('Isolation Forest model')
In [109...
          print('Classification report for Train data:')
          print(classification_report(y_train, y_pred_train_if))
          print("*"*80)
          print('Classification report for Test data:')
          print(classification_report(y_test, y_pred_test_if))
          print('Confusion matrix for Train data:')
          print(confusion_matrix(y_train, y_pred_train_if))
          print('Confusion matrix for Test data:')
          print(confusion_matrix(y_test, y_pred_test_if))
```

```
Isolation Forest model
        Classification report for Train data:
                      precision
                                   recall f1-score
                                                     support
                   0
                           1.00
                                     0.99
                                              0.99
                                                     4765805
                   1
                           0.01
                                     0.08
                                              0.01
                                                        6160
                                              0.99
                                                     4771965
            accuracy
                           0.50
                                     0.53
                                              0.50
                                                     4771965
           macro avg
        weighted avg
                           1.00
                                     0.99
                                              0.99
                                                     4771965
        *******************************
        Classification report for Test data:
                      precision
                                   recall f1-score
                                                     support
                   0
                           1.00
                                     0.99
                                              0.99
                                                     1588602
                   1
                           0.01
                                     0.07
                                              0.01
                                                        2053
                                              0.98
                                                     1590655
            accuracy
           macro avg
                           0.50
                                     0.53
                                              0.50
                                                     1590655
        weighted avg
                           1.00
                                     0.98
                                              0.99
                                                     1590655
        Confusion matrix for Train data:
        [[4704258
                   61547]
             5671
                      48911
        Confusion matrix for Test data:
        [[1565787
                    22815]
             1917
                      136]]
In [110...
         # Anomaly score returned by sklearn IsolationForest decision function() is (0.5 - scores)
          # where scores is the Anomaly score as per the original IsolationForest paper.
          # https://github.com/scikit-learn/scikit-learn/blob/5491dc695/sklearn/ensemble/ iforest.py#L357
          # https://stats.stackexchange.com/questions/335274/scikit-learn-isolationforest-anomaly-score
          anomaly score train if = (isolation forest.decision function(sc X train) * -1 -
                                   isolation forest.offset )
          anomaly_score_test_if = (isolation_forest.decision_function(sc_X_test) * -1 -
                                  isolation forest.offset )
          print(anomaly score train if.shape)
```

print(anomaly score test if.shape)

```
(4771965,)
         (1590655,)
In [111... print((anomaly_score_train_if < -1*offset_if).sum())</pre>
          print((anomaly_score_train_if == -1*offset_if).sum())
          print((anomaly_score_train_if > -1*offset_if).sum())
         4709929
         0
         62036
          print(f'Train threshold for anomaly detection: {-1*offset_if}')
In [112...
         Train threshold for anomaly detection: 0.6301001936111721
In [113...
          plt.figure(figsize=(8,5))
          plt.subplot(1,2,1)
          sns.histplot(anomaly_score_train_if)
          plt.title('Train data')
          plt.xlabel('Average Anaomaly score')
          plt.subplot(1,2,2)
          sns.histplot(anomaly_score_test_if)
          plt.title('Test data')
          plt.xlabel('Average Anaomaly score')
          plt.tight_layout()
          plt.show()
```


Conclusion:

The Decision Tree model is best suited for this task of detecting transactions involving Money Laundering because it has the least False Positives among all the tried models and a very good precision and recall for the positive and negative class in both train and test dataset.

Train data:

- Precision for +ve class: 1.0
- Precision for -ve class: 1.0
- Recall for +ve class: 1.0
- Recall for -ve class: 1.0
- Accuracy: 1.0

Test data:

- Precision for +ve class: 0.69
- Precision for -ve class: 1.0
- Recall for +ve class: 0.95
- Recall for -ve class: 1.0
- Accuracy: 1.0