

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (IMAD)

Lezione 7: Fondamenti di stima Bayesiana

Corso di Laurea Magistrale in INGEGNERIA INFORMATICA

SPEAKER

Prof. Mirko Mazzoleni

PLACE

Università degli Studi di Bergamo

Syllabus

Parte I: sistemi statici

- 1. Richiami di statistica
- 2. Teoria della stima
 - 2.1 Proprietà degli stimatori
- 3. Stima a minimi quadrati
 - 3.1 Stima di modelli lineari
 - 3.2 Algoritmo del gradient descent
- 4. Stima a massima verosimiglianza
 - 4.1 Proprietà della stima
 - 4.2 Stima di modelli lineari

5. Regressione logistica

5.1 Stima di un modello di regressione logistica

6. Fondamenti di machine learning

- 6.1 Bias-Variance tradeoff
- 6.2 Overfitting
- 6.3 Regolarizzazione
- 6.4 Validazione

7. Cenni di stima Bayesiana

- 7.1 Probabilità congiunte, marginali e condizionate
- 7.2 Connessione con Filtro di Kalman

Parte I: sistemi statici

Stima parametrica $\hat{\theta}$

- θ deterministico
 - NO assunzioni su ddp dei dati
 - ✓ Stima parametri popolazione
 - ✓ Stima modello lineare: minimi quadrati
 - SI assunzioni su ddp dei dati
 - ✓ Stima massima verosimiglianza parametri popolazione
 - ✓ Stima modello lineare: massima verosimiglianza
 - ✓ Regressione logistica
- <u>θ variabile casuale</u>
 - SI assunzioni su ddp dei dati
 - ✓ Stima Bayesiana

Machine learning

Stima parametrica $\widehat{\theta}$

- <u>θ deterministico</u>
 - o NO assunzioni su ddp dei dati
 - ✓ Modelli lineari di pss
 - ✓ Predizione
 - ✓ Identificazione
 - ✓ Persistente eccitazione
 - ✓ Analisi asintotica metodi PEM
 - ✓ Analisi incertezza stima (numero dati finito)
 - ✓ Valutazione del modello

Outline

1. Probabilità congiunte, condizionate, marginali

2. Introduzione alla stima Bayesiana

3. Stima ottima

4. Stima ottima lineare

Outline

1. Probabilità congiunte, condizionate, marginali

2. Introduzione alla stima Bayesiana

3. Stima ottima

4. Stima ottima lineare

Supponiamo di avere **due variabili casuali discrete** e **binarie** a e b. Definiamo:

Distribuzione di probabilità congiunta

P(a,b): probabilità che sia a che b assumino un valore specifico

$$\sum_{a=0}^{1} \sum_{b=0}^{1} p(a,b) = 1$$

$$P(a,b) = P(b,a)$$

Distribuzione di probabilità marginale

La distribuzione marginale è la distribuzione di probabilità di un sottoinsieme di variabili casuali

Nel nostro esempio, siccome abbiamo **due variabili casuali** a e b, avremo **due marginali**, ovvero P(a) e P(b). Se avessimo tre v.c discrete a,b,c avremmo le marginali P(a),P(b),P(c),P(a,b),P(a,c),P(b,c)

Nel caso di v.c. discrete, la distribuzione marginale è ottenuta «marginando» (ovvero, sommando) rispetto alle variabili che non sono di interesse. Nel caso di v.c. continue, si deve integrare anziché sommare

Proviamo a calcolare la distribuzione marginale P(b) partendo dalla distribuzione congiunta P(a,b)

Non mi interessa che valore abbia

a, l'importante è che b=0

$$P(b = 0) = P(a = 0, b = 0) + P(a = 1, b = 0) = 0.3$$

$$P(b=1)=0.7$$

Proviamo a calcolare la distribuzione marginale P(a) partendo dalla distribuzione congiunta P(a,b)

$$P(a = 0) = P(a = 0, b = 0) + P(a = 0, b = 1) = 0.34$$

$$P(a = 1) = P(a = 1, b = 0) + P(a = 1, b = 1) = 0.66$$

Distribuzione di probabilità condizionata

La distribuzione condizionata indica come la probabilità si ridistribuisce dato che si restringe la popolazione ad un particolare sottoinsieme

Esempio: siano date N persone, dove N_A è il numero di persone con capelli lunghi e N_B è il numero di persone che ascoltano i Black Sabbath. Definiamo gli eventi A e B come:

A: persone con capelli lunghi

$$P(A) = \frac{N_A}{N} = \frac{\text{# persone con capelli lunghi}}{\text{# totale di persone}}$$

B: persone che ascoltano i Black Sabbath

Consideriamo solo la popolazione che ascolta i Black Sabbath, con $N_B < N$ persone

La probabilità che una persona scelta a caso da questa popolazione abbia i capelli lunghi è

$$P(A|B) = \frac{N_{AB}}{N_{B}} = \frac{\text{# persone con capelli lunghi e che ascoltano i Sabbath}}{\text{# persone che ascoltano i Sabbath}}$$

Abbiamo ristretto la popolazione da N a N_B , e quindi la **probabilità si è ridistribuita.** Prima avevamo P(A), adesso abbiamo P(A|B)

P(A|B) è chiamata **probabilità condizionata** (condizionata al fatto che le persone ascoltino i Black Sabbath)

La probabilità di selezionare una persona con capelli lunghi che ascolti **anche** i Black Sabbath è la **probabilità congiunta** P(A, B)

$$P(A,B) = \frac{N_{AB}}{N} = \frac{\text{# persone con capelli lunghi e che ascoltano i Sabbath}}{\text{# totale di persone}}$$

Posso quindi esprimere P(A|B) come

$$P(A|B) = \frac{N_{AB}/N}{N_B/N} = \frac{P(A,B)}{P(B)}$$

P(B) è una marginale. E' la probabilità che una persona ascolti i Black Sabbath, indipendentemente dalla lunghezza dei capelli

Dall'esempio precedente abbiamo visto che

$$P(A|B) = \frac{P(A,B)}{P(B)} \qquad \qquad \Box \qquad P(A,B) = P(A|B)P(B)$$

<u>Osservazioni</u>

- La probabilità che accada sia A che B è la probabilità che si verifichi B per la probabilità che si verifichi A dato che B si è verificato. Attenzione: non c'è per forza una causalità temporale
- P(A,B) = P(A)P(B) solo se P(A|B) = P(A). Questo vuol dire che A e B sono eventi **indipendenti**, ovvero il verificarsi di B non modifica le probabilità di verificarsi di A

Teorema di Bayes

Esempio:

A: lancio un dado ed esce «4»

B: lancio una moneta ed esce «TESTA»

Anche se la moneta fosse uscita «CROCE», il dado ha la stessa probabilità di risultare in un «4»

Sappiamo che
$$P(A, B) = P(B, A)$$
. Inoltre $P(B, A) = P(B|A)P(A)$, e di conseguenza

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

TEOREMA DI BAYES

Teorema di Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Osservazioni

 Il teorema di Bayes permette di ridistribuire la probabilità: prima conoscevamo P(A), adesso conosco P(A|B). La probabilità di A è cambiata in seguito all'informazione portata da B

• La distribuzione marginale $P(B) = \sum_{A} P(A,B) = \sum_{A} P(A|B)P(B)$ appare come un

fattore di normalizzazione

Esempio: probabilità condizionata come ridistribuzione

Consideriamo un bersaglio da freccette con 20 cerchi. Supponiamo che un lanciatore abbia uguale probabilità di prendere ognuno dei 20 cerchi. Qual è la probabilità che colpisca il cerchio #5?

$$P(\#5) = \frac{1}{20}$$

Dopo un lancio, un amico gli dice che **non ha preso il cerchio #7**. Qual è ora la probabilità che abbia preso il cerchio #5?

Esempio: probabilità condizionata come ridistribuzione

Dato che sicuramente non ha preso il #7, la probabilità di aver preso il #5 è

$$P(#5|$$
 NOT $#7) = \frac{1}{19}$

poiché, dopo, l'esclusione del cerchio #7, rimangono solo 19 cerchi «prendibili»

Il condizionamento a «NOT #7» significa che certi «stati» sono ora inaccessibili, e di conseguenza la probabilità si deve ridistribuire su quelli accessibili

$$P(\#5|\ \mathbf{NOT}\ \#7) = \frac{P(\#5, \mathbf{NOT}\ \#7)}{P(\mathbf{NOT}\ \#7)} = \frac{P(\#5) \cdot P(\mathbf{NOT}\ \#7|\ \#5)}{P(\mathbf{NOT}\ \#7)} = \frac{\frac{1}{20} \cdot 1}{\frac{19}{20}} = \boxed{\frac{1}{19}}$$

Riprendiamo l'esempio iniziale e proviamo a calcolare la distribuzione P(a|b)

Outline

1. Probabilità congiunte, condizionate, marginali

2. Introduzione alla stima Bayesiana

3. Stima ottima

4. Stima ottima lineare

Abbiamo finora considerato il vettore di parametri ignoto $\theta \in \mathbb{R}^{d \times 1}$ come una variabile deterministica. Spesso però, ancora prima di collezionare i dati, abbiamo delle informazioni (o supposizioni) sui possibili valori che potrebbe assumere θ

Esempi:

- 1. Stima della concentrazione di una sostanza nell'aria: si ha un'idea dell'ordine di grandezza, per esempio in base a studi precedenti
- 2. Stima della probabilità che una moneta risulti «TESTA» dopo un lancio: so già che il valore sarà intorno a 0.5, se suppongo non sia truccata

Ha quindi senso considerare θ come una variabile casuale: in questo modo, posso specificare una distribuzione di probabilità per θ , per descriverne i valori (e la probabilità che θ li assuma) che io credo che possa assumere

 assegno maggior probabilità ai valori che io credo siano più probabili che θ possa assumere, e minor probabilità ai valori che io credo non possa assumere

Esempio: Sia θ la probabilità che una moneta risulta in «TESTA». Una possibile distribuzione (continua) $f_{\theta}(\theta)$ per θ , se suppongo che la moneta non sia truccata, è:

Osservazioni

• $f_{\theta}(\theta)$ ha dominio [0,1] poiché θ , modellando una probabilità, deve stare tra 0 e 1

- Siccome suppongo che la moneta non è truccata, $\theta=0.5$ sarà il valore che io suppongo sia più probabile, mentre $\theta\approx 0$ o $\theta\approx 1$ saranno poco probabili
- Data f_θ(θ), abbiamo già una stima del valore di θ ancora prima di aver osservato i dati (STIMA A-PRIORI). Ad esempio (ma non per forza) posso prendere come valore puntuale per la stima di θ il suo valore atteso. L'incertezza sulla stima sarà allora la varianza di θ (INCERTEZZA A-PRIORI)

Con l'osservazione dei dati, ci si aspetta che:

- 1. La stima puntuale di θ cambi
- 2. L'incertezza sulla stima decresca (ho più informazioni!)

Abbiamo quindi due elementi che portano informazione:

- 1. La distribuzione a-priori $f_{\theta}(\theta)$ sui possibili valori di θ
- 2. L'informazione che portano i dati sui possibili valori di θ , ovvero la likelihood $f_{Y|\theta}(Y|\theta)$

Quello che veramente ci interessa è sapere quanto può valere θ dato che ho osservato i dati, ovvero la distribuzione $f_{\theta|Y}(\theta|Y)$

Distribuzione a-posteriori

Usando il teorema di Bayes possiamo unire i due elementi di informazione:

LIKELIHOOD PRIOR
$$f_{\theta|Y}(\theta|Y) = \frac{f_{Y|\theta}(Y|\theta) \cdot f_{\theta}(\theta)}{f_{Y}(Y)}$$
 MARGINAL LIKELIHOOD POSTERIOR

Osservazioni

- $f_{\theta|Y}(\theta|Y)$ è una distribuzione a-posteriori di possibili valori di θ . Le probabilità di questi valori, rispetto a $f_{\theta}(\theta)$, sono state riallocate dall'aver osservato i dati Y
- Nel caso in cui $f_{Y|\theta}(Y|\theta)$ e $f_{\theta}(\theta)$ sono pdf continue, allora $f_{Y}(Y) = \int_{-\infty}^{+\infty} f_{Y|\theta}(Y|\theta) f_{\theta}(\theta) d\theta$

Distribuzione a-posteriori

Conosciamo la forma funzionale di $f_{\theta}(\theta)$ e $f_{Y|\theta}(Y|\theta)$ poiché derivano dalle nostre assunzioni sui dati Y e sui parametri θ . Posso dire qualcosa su $f_{\theta|Y}(\theta|Y)$?

- In generale, **non posso dire nulla**. Solo in alcuni casi fortunati ho che $f_{m{ heta}}(m{ heta}|Y)$ ha un'espressione analitica nota
- Un altro problema è che $f_Y(Y)$, nel caso di dati intesi come v.c. continue, è un integrale che potremmo non sapere come risolvere. In questo caso si usano tecniche numeriche note come Markov Chain Monte Carlo (MCMC)
- Un caso fortunato avviene, per esempio ma non solo, se $f_{\theta}(\theta)$ è Gaussiana e anche $f_{Y|\theta}(Y|\theta)$ è Gaussiana. Allora, anche $f_{\theta|Y}(\theta|Y)$ è Gaussiana

Distribuzione a-posteriori

Quando la posterior $f_{\theta|Y}(\theta|Y)$ ha la stessa forma della prior $f_{\theta}(\theta)$ (e.g. sono entrambe delle Gaussiane) allora la likelihood e la prior si dicono coniugate

Un modo (computazionalmente oneroso ma semplice) per calcolare la posterior $f_{\theta|Y}(\theta|Y)$ è quello di **discretizzare** il range di valori del parametro θ tramite una griglia di valori

- In questo modo valuto $f_{\theta}(\theta)$ e $f_{Y|\theta}(Y|\theta)$ solo in quei valori di θ all'interno della griglia
- Questo metodo va bene se θ consiste di un paio di parametri. Altrimenti, diventa troppo oneroso ed è meglio ricorrere ad MCMC (a meno che non esista un'espressione analitica nota per la posterior)

Vogliamo stimare la probabilità $\theta \equiv \pi$ che la moneta risulti in «TESTA». Supponiamo di lanciare una moneta N=10 volte, e di osservare $N_s=7$ «TESTA» (y=1) e $N-N_s=3$ «CROCE» (y=0). I dati $\mathcal D$ sono (l'ordine non importa essendo i dati i.i.d. per ipotesi):

$$Y = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]^{\mathsf{T}}$$

Modelliamo i dati come realizzazioni i.i.d. di una v.c. avente distribuzione di Bernoulli:

$$y(i) \sim \text{Bernoulli}(\pi)$$
, i.i.d. $\Longrightarrow f_y(y(i)|\pi) = \pi^{y(i)} \cdot (1-\pi)^{(1-y(i))}$

Likelihood:
$$f_{Y|\theta}(Y|\pi) = \prod_{i=1}^{N} \pi^{y(i)} \cdot (1-\pi)^{(1-y(i))} = \pi^{\sum_{i=1}^{N} y(i)} \cdot (1-\pi)^{\sum_{i=1}^{N} 1-y(i)}$$

Se facessimo una stima a massima verosimiglianza, prenderemmo come stima il valore $\hat{\pi}_{\rm ML}$ che massimizza la verosimiglianza, ovvero $\hat{\pi}_{\rm ML} = N_{\rm S}/N = 0.7$

Supponiamo però di avere una buona confidenza che la moneta non sia truccata. Potremmo esprimere questa nostra informazione a-priori tramite una distribuzione $f_{\theta}(\pi)$

In questa «rappresentazione della nostra credenza», diamo più probabilità al fatto che $\pi=0.5$.

Possiamo prendere come stima di π il valore $\hat{\pi}_{\text{PRIOR}} = 0.5$

Unendo le informazioni di prior e di likelihood ottengo una distribuzione di valori di π che è un **compromesso** tra la prior e la likelihood

In questo senso, la procedura di stima Bayesiana **«regolarizza»** la stima di π

Il valore di $\hat{\pi}_{MAP}$ che massimizza la posterior è chiamato **stima MAP** (Maximum A Posteriori)

$$f_Y(Y) = \sum_{\pi} f_{Y|\theta}(Y|\pi) \cdot f_{\theta}(\pi)$$
$$= 9.683 \cdot 10^{-4}$$

Outline

1. Probabilità congiunte, condizionate, marginali

2. Introduzione alla stima Bayesiana

3. Stima ottima

4. Stima ottima lineare

Stima ottima

Supponiamo di avere la **posterior** $f_{\theta|Y}(\theta|Y)$. Abbiamo quindi una distribuzione di valori dei parametri ignoti θ . Spesso però ci serve un **valore solo**, **puntuale**. Abbiamo varie scelte:

- Stima MAP: $\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}|Y}(\boldsymbol{\theta}|Y)$
- Valore atteso a posteriori: $\widehat{\boldsymbol{\theta}} = \mathbb{E}_{\boldsymbol{\theta}} \big[f_{\boldsymbol{\theta}|Y}(\boldsymbol{\theta}|Y) \big] \equiv \mathbb{E}[\boldsymbol{\theta}|Y]$, ovvero il valore atteso della posterior
- Altre quantità, come la mediana, ecc...

Ricordiamo che in generale indichiamo uno **stimatore** come una funzione $T(\)$ dei dati \mathcal{D} :

$$\widehat{\boldsymbol{\theta}} = T(\mathcal{D})$$

Stima ottima

Consideriamo il caso θ scalare per semplicità. Vorremmo che la variabile casuale $\hat{\theta}$ fosse «vicina» alla variabile casuale θ . Per quantificare questa «distanza», usiamo il concetto di Mean Squared Error (MSE) già visto in precedenza (si veda Lezione 02)

$$MSE \equiv \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^{2}\right] = \mathbb{E}\left[\left(T(\mathcal{D}) - \theta\right)^{2}\right]$$

Lo **stimatore ottimo di Bayes** è quella funzione $T^{\text{opt}}(\)$ tale che:

$$\mathbb{E}[(T^{\text{opt}}(\mathcal{D}) - \theta)^2] < \mathbb{E}[(T(\mathcal{D}) - \theta)^2], \ \forall T(\mathcal{D})$$

cioè che minimizza il MSE

Stima ottima

Si dimostra che

$$T^{\mathrm{opt}}(Y) = \mathbb{E}[\boldsymbol{\theta}|\mathcal{D} = Y]$$

Ovvero, lo stimatore che minimizza il MSE è il valore atteso condizionato (al fatto che i dati \mathcal{D} abbiano assunto i valori in Y)

Nota

Nel caso in cui θ sia un vettore di parametri, il calcolo del MSE si modifica come segue

$$MSE \equiv tr \left\{ \mathbb{E} \left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}) (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^{\mathsf{T}} \right] \right\} = \mathbb{E} \left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^{\mathsf{T}} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}) \right] = \mathbb{E} \left[\|(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})\|_{2}^{2} \right]$$

$$\underset{d \times 1}{\underset{1 \times d}{}} \underset{1 \times d}{\underset{1 \times d}{}} \underset{1 \times 1}{\underset{1 \times d}{}}$$

Stima ottima: il caso Gaussiano

Supponiamo ora di avere un dato interpretato come realizzazione di una variabile casuale Gaussiana $y \sim \mathcal{N}(0, \lambda_{vv}^2)$, e che anche il parametro ignoto (scalare per comodità) sia Gaussiano $\theta \sim \mathcal{N}(0, \lambda_{\theta\theta}^2)$.

$$\begin{bmatrix}
y \\
\theta \\
2 \times 1
\end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\
2 \times 1 \end{bmatrix}, \begin{bmatrix} \lambda_{yy}^2 & \lambda_{y\theta} \\ \lambda_{\theta y} & \lambda_{\theta \theta}^2 \end{bmatrix} \right)$$

$$\mathbf{z} \qquad \boldsymbol{\mu} \qquad \boldsymbol{\Sigma}$$

La loro pdf congiunta $f_{v\theta}(y,\theta)$ è ancora Gaussiana

$$f_{y\theta}(y,\theta) = \frac{1}{\sqrt{(2\pi)^2 \det \Sigma}} \exp\left(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1} (\mathbf{z} - \boldsymbol{\mu})\right)$$
Al quadrato perché ho 2 variabili

Stima ottima: il caso Gaussiano

La pdf dei dati
$$f_y(y)$$
 è:
$$f_y(y) = \frac{1}{\sqrt{2\pi \lambda_{yy}^2}} \exp\left(-\frac{1}{2\lambda_{yy}^2}(y-0)^2\right)$$

Si dimostra che la **posterior** $f_{\theta|y}(\theta|y) = f_{y\theta}(y,\theta)/f_y(y)$ è ancora **Gaussiana** con:

$$\mu_{\theta|y} = \frac{\lambda_{\theta y}}{\lambda_{yy}^2} \cdot y$$

$$\lambda_{\theta|y}^2 = \lambda_{\theta\theta}^2 - \frac{\lambda_{\thetay}^2}{\lambda_{yy}^2}$$

- Se $\lambda_{\theta y} = 0$, ovvero se y non porta informazioni su θ , la stima di θ rimane quella a priori
- Notiamo che $\frac{\lambda_{\theta y}^2}{\lambda_{yy}^2} > 0$. Quindi, **l'incertezza a** posteriori è minore di quella a priori
- Se λ_{yy}^2 è **grande**, la varianza **diminuisce di poco**, perché i dati sono molto incerti

Stima ottima: il caso Gaussiano

Avendo osservato il valore y(1) di y, lo stima ottenuta dallo **stimatore ottimo Bayesiano nel caso Gaussiano** sarà:

$$\hat{\theta}_{\text{opt}} = \mathbb{E}[\theta|y = y(1)] = \frac{\lambda_{\theta y}}{\lambda_{yy}^2} \cdot y(1)$$

Outline

1. Probabilità congiunte, condizionate, marginali

2. Introduzione alla stima Bayesiana

3. Stima ottima

4. Stima ottima lineare

Non è sempre detto che y e θ siano congiuntamente Gaussiane. Vogliamo quindi trovare uno stimatore che non faccia ipotesi sulla ddp congiunta di $y \in \theta$

Supponiamo y e θ due variabili casuali scalari con valore atteso nullo e varianza $\lambda_{\nu\nu}^2$ e $\lambda_{\theta\theta}^2$ rispettivamente

•
$$\mathbb{E}[y] = 0$$

•
$$\mathbb{E}[\theta] = 0$$

•
$$\mathbb{E}[y^2] = \lambda_{yy}^2$$

•
$$\mathbb{E}[\theta^2] = \lambda_{\theta\theta}$$

•
$$\mathbb{E}[y] = 0$$
 • $\mathbb{E}[\theta] = 0$ • $\mathbb{E}[y^2] = \lambda_{yy}^2$ • $\mathbb{E}[\theta^2] = \lambda_{\theta\theta}$ • $\mathbb{E}[\theta y] = \lambda_{\theta y}$

Vogliamo stimare θ tramite uno **stimatore lineare**, del tipo:

$$\hat{\theta}^{\text{lin}} = \alpha \cdot y + \beta, \qquad \alpha, \beta \in \mathbb{R}$$

Per trovare α e β , minimizziamo la funzione di costo data dal Mean Square Error

$$MSE \equiv J(\alpha, \beta) = \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^{2}\right] = \mathbb{E}\left[\left(\alpha \cdot y + \beta - \theta\right)^{2}\right]$$

Calcoliamo il gradiente e poniamolo uguale a zero (non verifichiamo sia un minimo):

$$\frac{\partial J(\alpha, \beta)}{\partial \alpha} = 0 \quad \Longrightarrow \quad 2 \cdot \mathbb{E}[(\alpha \cdot y + \beta - \theta) \cdot y] = 0 \quad \Rightarrow \quad \mathbb{E}[\alpha y^2] + \mathbb{E}[\beta y] - \mathbb{E}[\theta y] = 0$$

$$\Rightarrow \quad \alpha \cdot \lambda_{yy}^2 + \beta \cdot 0 - \lambda_{\theta y} = 0 \quad \Rightarrow \quad \alpha \cdot \lambda_{yy}^2 = \lambda_{\theta y}$$

$$\Rightarrow \quad \alpha = \lambda_{\theta y} / \lambda_{yy}^2$$

$$\frac{\partial J(\alpha, \beta)}{\partial \beta} = 0 \quad \Longrightarrow \quad 2 \cdot \mathbb{E}[(\alpha \cdot y + \beta - \theta) \cdot 1] = 0 \quad \Rightarrow \quad \mathbb{E}[\alpha y] + \mathbb{E}[\beta] - \mathbb{E}[\theta] = 0$$

$$\Rightarrow \quad \alpha \cdot 0 + \beta - 0 = 0 \quad \Rightarrow \quad \beta = 0$$

$$\begin{cases} \frac{\partial J(\alpha, \beta)}{\partial \alpha} = 0 \\ \frac{\partial J(\alpha, \beta)}{\partial \beta} = 0 \end{cases} \Rightarrow \begin{cases} \alpha = \lambda_{\theta y} / \lambda_{yy}^2 \\ \beta = 0 \end{cases}$$

$$\alpha = \lambda_{\theta y} / \lambda_{yy}^2$$

$$\beta = 0$$

Lo stimatore lineare ottimo è quindi dato da

$$\hat{\theta}_{\mathrm{opt}}^{\mathrm{lin}} = \hat{\alpha} \cdot y + \hat{\beta} = \frac{\lambda_{\theta y}}{\lambda_{yy}^2} \cdot y$$

Coincide con lo stimatore ottimo di Bayes per il caso Gaussiano!

La varianza della stima si ricava essere uguale al caso Gaussiano:

$$Var[\hat{\theta}_{opt}^{lin} - \theta] = \lambda_{\theta\theta}^2 - \frac{\lambda_{\theta y}^2}{\lambda_{yy}^2}$$

Osservazioni

• Lo stimatore ottimo lineare non fa nessuna ipotesi su che tipo di distribuzione hanno y e θ . Assume solo che siano v.c. con una certa media e una certa varianza

 Potrebbe dunque esserci uno stimatore migliore (nel senso che ha MSE minore) rispetto a quello lineare ottimo

• Se però y e θ sono congiuntamente Gaussiani, allora non esiste nessuno stimatore migliore di quello lineare ottimo

Generalizzazione 1: valore atteso non nullo, $y \in \theta$ scalari

Se: •
$$\mathbb{E}[y] = \mu_y \neq 0$$

Generalizzazione 2: $Y \in \mathbb{R}^{N \times 1}$ e $\theta \in \mathbb{R}^{d \times 1}$ vettoriali

Se:
$$\mathbf{E}[Y] = \mu_Y \neq \mathbf{0}$$
 $\mathbf{E}[\theta] = \mu_{\theta} \neq \mathbf{0}$

•
$$\mathbb{E}[\boldsymbol{\theta}] = \boldsymbol{\mu}_{\boldsymbol{\theta}} \neq \mathbf{0}$$

$$\operatorname{Var}\begin{bmatrix} Y \\ Y \\ \boldsymbol{\theta} \end{bmatrix} = \begin{bmatrix} \Lambda_{YY} & \lambda_{Y\boldsymbol{\theta}} \\ \Lambda_{XX} & \lambda_{XX} \\ \Lambda_{\boldsymbol{\theta}\boldsymbol{\theta}} & \Lambda_{\boldsymbol{\theta}\boldsymbol{\theta}} \end{bmatrix}$$

$$\widehat{\boldsymbol{\theta}}_{\text{opt}}^{\text{lin}} = \mu_{\boldsymbol{\theta}} + \Lambda_{\boldsymbol{\theta}Y} \cdot \Lambda_{YY}^{-1} \cdot (Y - \boldsymbol{\mu}_{Y})$$

$$d \times 1 \qquad d \times 1 \qquad d \times N \qquad N \times N \qquad N \times 1$$

$$\operatorname{Var}\left[\widehat{\boldsymbol{\theta}}_{\operatorname{opt}}^{\operatorname{lin}} - \boldsymbol{\theta}\right] = \Lambda_{\boldsymbol{\theta}\boldsymbol{\theta}} - \Lambda_{\boldsymbol{\theta}\boldsymbol{Y}} \cdot \Lambda_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} \cdot \Lambda_{\boldsymbol{Y}\boldsymbol{\theta}}$$

$$d \times d \qquad d \times N \qquad N \times N \qquad N \times d$$

Connessione con il Filtro di Kalman

Le formule appena viste ammettono una forma ricorsiva: appena arriva un dato osservato nuovo, si aggiorna la stima corrente senza considerare nuovamente tutti i dati

Queste espressioni ricorsive dello stimatore lineare ottimo sono alla base del Filtro di Kalman, un algoritmo che ha l'obiettivo di stimare lo stato x(t) di un sistema dinamico

- lo stato x(t) e l'uscita y(t) del sistema dinamico lineare sono visti come variabili casuali
- si vuole stimare lo stato x(t), visto come l'incognita θ , sulla base dello stato stimato al tempo precedente (stima a priori) e sui dati che man mano arrivano dalle misure dei sensori y(t) (dati osservati)

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione