Линейная алгерба 1 из 2

Алгебра скалярных полиномов

]K- поле, над которым задано множество полиномов $K_{\infty}[\lambda]$, также обозначается $P_{\infty}[K]$

$$P_{\infty}[K] = \{p_n(\lambda) = \sum_{i=1}^n \alpha_i \lambda^i \quad \forall n\}$$

Примечание. $P_{\infty}[K]$ — линейное пространство:

$$]p,q\in P_{\infty}[K];\lambda\in K\Rightarrow\begin{cases} (p+q)(\lambda)=p(\lambda)+q(\lambda)\\ (\lambda p)(\lambda)=\alpha p(\lambda) \end{cases} \Rightarrow P_{\infty}[K]-\text{ линейное пространство}$$

Примечание. $P_{\infty}[K]$ — коммутативная алгебра Зададим операцию умножения в $P_{\infty}[K]$:

$$\forall p,q \in P_{\infty}[K] \quad (p \cdot q)(\lambda) = p(\lambda)q(\lambda)$$

$$(p \cdot q)(\lambda) = p(\lambda)q(\lambda) = q(\lambda)p(\lambda) = (qp)(\lambda) \Rightarrow \text{коммутативность}$$

$$(p \cdot q) \cdot r = p \cdot (q \cdot r) = p \cdot q \cdot r$$

$$(p+q)r = pr + qr$$

$$(\lambda p)q = p(\lambda q) = \lambda(pq)$$

Нейтральный элемент:

- по сложению: $0(\lambda) = 0$
- по умножению: $1(\lambda) = 1$

Примечание. $\{1,t,t^2\dots t^n\dots\}$ — базис $P_\infty[K]\Rightarrow \dim P_\infty[K]=\infty$

Определение. Идеалом J алгебры $P_{\infty}[K]$ называется такое её подпространство, что

$$\forall q \in J \ \forall p \in P_{\infty}[K] \quad q \cdot p \in J$$

Пример. Тривиальные идеалы:

- {0}
- $P_{\infty}[K]$

Пемма 1. J- линейное подпространство $P_{\infty}[K]$

Доказательство. $]q_1,q_2\in J \quad q_1+q_2\in J?$ $q_1,q_2\in J\Rightarrow \forall p \ q_1p,q_2p\in J$ $q_1=r\tilde{q}_1,q_2=r\tilde{q}_2 \quad (q_1+q_2)p=r(\tilde{q}_1+\tilde{q}_2)p$ $(\tilde{q}_1+\tilde{q}_2)p\in P_\infty[K]\Rightarrow r(\tilde{q}_1+\tilde{q}_2)p\in J$

Пемма 2. J- подалгебра $P_{\infty}[K]$

Доказательство.

$$(q_1 \cdot q_2)p = q_1(q_2p) \in J$$

Пример. $J_{\alpha} = \{ p \in P_{\infty}[K] : p(\alpha) = 0 \}$ — идеал

Лемма 3.] $q \in P_{\infty}[K] \Rightarrow J_q = q \cdot P_{\infty}[K] - \mathit{udean} \; \mathit{6} \; P_{\infty}[K]$

М3137у2019 Лекция 7

Линейная алгерба 2 из 2

Доказательство.
$$]r\in J_q\Rightarrow\exists p\in P_\infty[K]:r=q\cdot p$$
 $]\tilde{p}\in P_\infty[K]$ $r\tilde{p}=(qp)\tilde{p}=q(p\tilde{p})$ $p\tilde{p}\in P_\infty[K]\Rightarrow q(p\tilde{p})\in q\cdot P_\infty[K]=J_q\Rightarrow J_q$ – идеал

Определение. Полином $q:J_q=q\cdot P_\infty[K]$ называется порождающим полиномом идеала J_q

Примечание. Если идеал содержит $1(\lambda)$, то данный идеал совпадает с $P_{\infty}[K]$:

$$J_1 = 1 \cdot P_{\infty}[K] = P_{\infty}[K]$$

Определение. $]J_1$ и J_2 — идеалы в $P_{\infty}[K]$

1. Суммой J_1+J_2 называется множество

$$J_s = \{ p \in P_{\infty}[K] : p = p_1 + p_2 \quad p_1 \in J_1, p_2 \in J_2 \}$$

2. Пересечением $J_1 \cap J_2$ называется множество:

$$J_r = \{ p \in P_{\infty}[K] : p \in J_1 \land p \in J_2 \}$$

Лемма 4. J_s и J_r — идеалы в $P_{\infty}[K]$

Доказательство. $J_s=J_1+J_2$ — идеал? $\begin{aligned} &]q\in J_s\Rightarrow q=q_1+q_2 &\quad q_1\in J_1,q_2\in J_2 \\ &]p\in P_\infty[K] &\quad qp=(q_1+q_2)p=q_1p+q_2p \\ &q_1p\in J_1,q_2p\in J_2\Rightarrow q_1p+q_2p\in J_s \\ &J_r=J_1\cap J_2$ — идеал? $\begin{aligned} &]q\in J_r\Rightarrow q\in J_1;q\in J_2 \\ &]p\in P_\infty[K] &\quad qp\in J_1;qp\in J_2\Rightarrow qp\in J_r \end{aligned}$

Определение. Нетривиальный полином минимальной степени, содержащийся в идеале, называется **минимальным полиномом** идеала.

Пемма 5. Любой полином идеала J делится на p_J без остатка:

$$]p \in J \Rightarrow p \mid p_J$$

Доказательство.] $\exists p: p \nmid p_J \Rightarrow p = qp_J + r; \deg r < \deg p_J \Rightarrow r = p - qp_J : \min$ полином — противоречие.

Примечание. Если p_1 и p_2 — минимальные полиномы $J\Rightarrow p_1=\alpha p_2; \alpha\in K$

Теорема 1. Минимальный полином идеала является его порождающим полиномом.

Доказательство.
$$\forall p \in J \quad p \mid p_J \Rightarrow p = p_J \cdot q \in p_J \cdot P_\infty[K]$$
 $\forall p \in q \cdot P_\infty[K] \Rightarrow p = qr; r \in P_\infty[K] \Rightarrow \forall p \mid q \Rightarrow q = p_J$

М3137у2019 Лекция 7