Corso di Laurea in Informatica - A.A. 2016 - 2017 Esame di Fisica - 19/12/2017

Esercizio 1

In un sistema di assi cartesiani siano dati i vettori $\vec{a} = 2\vec{i} + \vec{j}$ e $\vec{b} = 2\vec{i} - \vec{j}$ e $\vec{c} = -\vec{i} + 2\vec{j}$. Calcolare il modulo dei tre vettori e dire quali vettori sono tra loro perpendicolari giustificando algebricamente la risposta.

Esercizio 2

Consideriamo il piano xy. Nel punto $(x_0, 3y_0)$ vi è una carica elettrica q, nel punto (x_0, y_0) vi è una carica elettrica q e nel punto $(x_0, -y_0)$ vi è una carica elettrica -2q. Tutte le cariche sono puntiformi e $x_0 = y_0 = A$. Calcolare in funzione di A e E_0 :

- a) la carica qsapendo che il campo elettrico nel punto $(x_0,0)$ vale $\vec{E}=E_0\vec{j};$
- b) il potenziale elettrico nel punto $(x_0, 0)$ sapendo che il potenziale all'infinito vale $V_{\infty}=0$;
- c) il vettore campo elettrico \vec{E} nel punto $(0, y_0)$;
- d) il lavoro fatto dal campo elettrico per spostare una carica Q dal punto $(x_0, 0)$ al punto $(0, y_0)$.

Esercizio 3

Si consideri il circuito mostrato in figura. Tutti i resistori valgono R ed il condensatore ha capacità C. Inizialmente l'interruttore T è aperto ed il condensatore C è scarico. All'istante t=0 s si chiude l'interruttore T. Si calcoli, in funzione di R, C e V_0 , la corrente i erogata dalla f.e.m. V_0 nei seguenti istanti:

- a) subito prima di chiudere T;
- b) subito dopo aver chiuso T;
- c) quando il circuito ha raggiunto la stazionarietà.

Si calcoli infine il valore della corrente i all'istante in cui la carica presente sulle armature del condensatore è metà di quella che sarà presente alla stazionarietà.

