Energie / Puissance moyenne finie

$$E_x = \int_R |x(t)|^2 dt < +\infty \qquad P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt < +\infty$$

$$x(t) \text{ à Energie fini si } E_x < +\infty \qquad x(t) \text{ à Puissance finie si } P_x < +\infty$$

Impulsion de Dirac

 $\int \delta (t) dt$ $\underline{Notation}: \delta(t) \ et \ v\acute{e}rifie: \delta(t) = 0 \quad \delta(0) = +\infty$

Propriétés:

Principe de localisation : $\mathbf{x}(\mathbf{t}).\delta(\mathbf{t}-\mathbf{t}_0) = \mathbf{x}(\mathbf{t}_0).\delta(\mathbf{t}-\mathbf{t}_0)$ $\int_{-\infty}^{+\infty} x(t).\delta(t-t_0)dt = x(t_0)$

Rappel convolution:
$$(x_1 * x_2)(t) = \int_{-\infty}^{+\infty} x_1(u) x_2(t-u) du$$

$$(x * \delta)(t - t_0) = \int x(u).\delta(t - t_0 - u)du = x(t - t_0)$$

→ Périodisation d'un signal : **Peigne de Dirac** :

$$x(t) * \sum_{k=-\infty}^{+\infty} \delta(t-kT) = \sum_{k=-\infty}^{+\infty} x(t-kT)$$

Convoluer un signal x(t) par le peigne de Dirac revient à périodiser x(t) à la

$$x(t)$$
. $\sum \delta(t - kT) = \sum x(kT)\delta(t - kT)$ discrétisation temporelle

Produit scalaire $\langle x, y \rangle = \sum_{k=0}^{n-1} x(k) y(k)$	négalité de Cauchy-Schwarz : $ \langle x, y \rangle \le x \cdot y $
--	---

$\langle x, y \rangle = \sum_{k=0}^{\infty}$	x(k)y(k)	< x, y	$> \leq x \cdot y $	
Espace des signaux à Energie finie				
	Signal à tps		Signal à tps discret l ₂	
Produit goalaira	+∞ r(t)	v * (t) dt	Σ (b) * (b)	

Produit scalaire (= <x,y>)</x,y>	$\int_{-\infty}^{+\infty} x(t) y^*(t)$) dt	$\sum_{-\infty}^{+\infty} x (k)$) y * (k)
Norme $ x $ (= $\sqrt{\langle x, x \rangle}$)	$\sqrt{\int_{-\infty}^{+\infty} x(t) ^2}$	dt	$\sqrt{\sum_{-\infty}^{+\infty}}$	x (k)
Distance $d(x,y)$ (= $ x-y $)	$\sqrt{\int_{-\infty}^{+\infty} x(t) - y(t) ^2}$	$\left \right ^2 dt$	$\sqrt{\sum_{-\infty}^{+\infty} x (k)}$	$(x) - y(k) ^2$
T 24	→ 10 −11-112			

L'énergie d'un signal de $L_2 \rightarrow E_x = ||x||^2$

Deux signaux sont orthogonaux si $\langle x,y \rangle = 0$ et colinéaires si $|\langle x,y \rangle| = ||x|| \cdot ||y||$ Signaux de puissance moyenne finie

Signaux périodiques	Temps continu	Temps discret	
Produit scalaire	$\frac{1}{T} \int_{T} x(t) y^{*}(t) dt$	$\frac{1}{N} \sum_{k=1}^{N} x(k) y^{*}(k)$	
Norme	$\sqrt{\frac{1}{T} \int_{T} x(t) ^{2} dt}$	$\sqrt{\frac{1}{N} \sum_{k=1}^{N} x(k) ^2}$	
Distance	$\sqrt{\frac{1}{T} \int_{T} \left x(t) - y(t) \right ^{2} dt}$	$\sqrt{\frac{1}{N}\sum_{k=1}^{N}\left x(k)-y(k)\right ^{2}}$	

	Sgnx non périodiques Temps c		Temps continu	l	Temps discret	
	Produit scalaire		$\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}x(t)y^*(t)$		$\lim_{N \to +\infty} \frac{1}{2N} \sum_{-N}^{N} x(k) y^{*}(k)$	
	Norme	$\sqrt{\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}\left x(t)\right ^2dt}$		$\sqrt{\frac{\mathrm{li}}{N}}$	$\underset{\rightarrow}{\text{m}} \frac{1}{2 N} \sum_{-N}^{N} x(k) ^{2}$	
	Distance	$ \left(\lim_{T\to+\infty}\frac{1}{T}\int_{-T}^{T/T}\right) $	$\frac{1}{ x(t)-y(t) ^2} dt$	$\sqrt{\lim_{N\to}}$	$\int_{-\infty}^{\infty} \frac{1}{2N} \sum_{N=1}^{N} x(k) - y(k) ^{2}$	

La puissance d'un signal : $P_x = ||x||^2$

Autocorrélation & Intercorrélation

→ Autocorrélation :

$$C_x(\tau) = \langle x(t), x(t-\tau) \rangle$$

→ Intercorrélation :
$$C_{xy}(\tau) = \langle x(t), y(t-\tau) \rangle$$

 $C_x(0)=P_x$ ou E_x suivant le type de signal

Si x est réel, l'autocorrélation de x est une fonction paire

 $\Leftrightarrow C_x(\tau) = C_x(-\tau)$

 $C_x(\tau)$ est maximal en 0

si $x=\delta \Longrightarrow C_x(\tau)=\delta(t)$

Série de Fourier

Attention : Ne concerne que les signaux périodiques

$$x(t) = \sum_{k \in \mathbb{Z}} x_k e^{2j\pi \frac{k}{T}t} \Big|_{\text{Avec}} \left[x_k = < x(t), e^{2j\pi \frac{k}{T}t} > = \frac{1}{T} \int_0^T x(t) e^{-2j\pi \frac{k}{T}t} dt \right]$$

 x_0 est la <u>composante continue de x(t)</u>, c'est aussi sa valeur moyenne $x_1e^{2j\pi t/T} + x_{-1}e^{-2j\pi t/T}$ est <u>la fondamentale de x(t)</u> $x_k e^{2j\pi kt/T}$ est <u>l'harmonique d'ordre k de x(t)</u>

Relation de Parseval $P_x = \|x(t)\|^2 = \sum \|x_k\|^2$

	$k \in Z$
Transformée de Fo	ourier [X=spectre]
Transformée de Fourier (TF)	Transformée de Fourier inverse (TF

 $X(f) = \int_{R} x(t). e^{-2 j\pi f t} dt$ $x(t) = \int_{R} X(f). e^{2 j\pi f t} df$

Translation:
$$x(t-t_0) \xrightarrow{F} e^{-2j\pi f t_0} X(f)$$

Modulation:
$$e^{2j\pi f_0 t} x(t) \xrightarrow{F} X(f - f_0)$$

Homothétie:
$$x (at) \longrightarrow F \rightarrow \frac{1}{|a|} X (\frac{f}{a})$$

Relation de Parseval

$$\langle x(t),y(t)\rangle = \langle X(t),Y(t)\rangle \Leftrightarrow \int_{R} x(t)y^{*}(t)dt = \int_{R} X(f)Y^{*}(f)df$$

Remarques: discrétisation temporelle -TF-> périodisation du spectre Périodisation temporelle -TF-> discrétisation du spectre Transformée Fourier a connaître

 $TF[rect(t)] = sinc(f) \ TF[sinc(t)] = rect(f) \ TF[\delta(t)] = 1 \ et \ TF^{-1}[\delta(f)] = 1$ $TF[trian(t)] = sinc^{2}(f) \quad TF[e^{2j\pi k\tau/T}] = \delta(f-k/T) \quad TF[sinc^{2}(t)] = trian(f)$

Densité Spectrale d'Energie

 $|\mathbf{x}(\mathbf{t})|^2$: densité temporelle d'énergie / <u>répartition de l'énergie dans le temps</u> $|\mathbf{X}(\mathbf{f})|^2$: densité spectrale d'énergie / répartition en fréquence de l'énergie

Notation:

Densité Spectrale de Puissance

Répartition de la puissance dans l'espace des fréquences

Notation: **Propriétés**

 \rightarrow Si $\underline{x(t)}$ à énergie finie : $S_x(f) = |X(f)|^2 = X(f).X^*(f)$

 \rightarrow S_x(f) > 0

 \rightarrow y(t)=x(t-t₀) \rightarrow S_y(f) = S_x(f)

Suivant le type de signal (DSE / DSP) on a :

$$E_{x} = \int_{R} S_{x}(f)df = C_{x}(0)$$

$$P_{x} = \int_{R} S_{x}(f)df = C_{x}(0)$$

 $S_x(f) = TF[C_x(\tau)]$

Filtre linéaire invariant dans le temps

Un filtre est un système linéaire invariant dans le temps (LIT) qui transforme un signal d'entrée x en un signal y appelé réponse de x

Si x et y sont à temps continu :

$$y(t) = \int_{\Omega} h(t - \tau) x(\tau) d\tau$$

Si x et y sont à temps discret :

$$y(k) = \sum_{k=-\infty}^{+\infty} h(k-i)x(i)$$

Le noyau h du filtre est appelé réponse impulsionnelle De manière générale

y(t) = (h * x)(t) échantillonnage du spectre

avec $\underline{y} = \underline{reponse}$ $\underline{h} = \underline{reponse}$ impulsionnelle $\underline{x} = \underline{excitation}$.

- H(f) = TF(h(t)):
- → fonction de transfert
- Y(f) = H(f).X(f)|H(f)|=gain fréquentiel / arg H=déphasage du filtre Propriétés :
- Causalité: Un filtre est causal ssi h(t) = 0, pour tout t<0
- Stabilité: Un filtre est dit stable ssi à toute excitation bornée (x(t)<x_M, ∀t), la réponse du filtre est aussi bornée.

 $\int_{\mathbb{R}} |h(t)| dt < +\infty$ Condition nécessaire et suffisante de stabilité : Densité spectrale de signaux filtrés

 $S_{v}(f) = |H(f)|^{2}.S_{x}(f)$

 $\underline{Signal~\grave{a}~spectre~born\acute{e}}:X(f)\!\!=\!\!X(f)1_{[\text{-fmax},fmax]}\!(f)$

↑ |H(f)|

_______ | H(f) |

Les Filtres

Filtre passe-bas idéal

$$h(t)=N_{j-i,-B}\cup [B,+i](1)$$
 \in
 $h(t)=\delta(t-t_0)-2Bsinc(2B(t+t_0))$

$$H(f) = e^{2j\pi ft0} 1I_{[ft0-B,ft0+B]}(f)$$

 $h(t) = 2Bsinc(2B(t+t_0)) e^{2j\pi f(t+t_0)}$

Permet de passer d'un signal à temps continu à un signal constitué d'une combinaison linéaire d'impulsion de Dirac :

$$x_e(t) = x(t).T_e \sum_{e}^{+\infty} \delta(t - kT_e)$$

$$X_e(f) = \sum_{-\infty}^{+\infty} X(f - \frac{k}{T_e})$$

Le spectre X_e(f) est la répétition sur l'axe des fréquences à la période f_e=1/T_e

Théorème de Shannon

La fréquence d'échantillonnage doit être supérieure à deux fois la fréquence maximale f_{max} du signal échantillonné : $f_e > 2.f_{max}$

2f_{max} est appelée fréquence de Shannon

Echantillonnage réel

$$\begin{split} x_{er}(t) &= T_e \sum_{e}^{+\infty} (x * h)(kT_e) . \delta(t - kT_e) = (x * h)(t) . T_e \sum_{e}^{+\infty} \delta(t - kT_e) \\ X_{er}(f) &= (X(f) . H(f)) * \sum_{-\infty}^{+\infty} \delta(f - \frac{k}{T_e}) = X_h(f) * \sum_{-\infty}^{+\infty} \delta(f - \frac{k}{T_e}) \end{split}$$

sin(-a)=-sin a cos(-a)=cos a tan(-a)=-tan a cotan(-a)=-cotan a	$\sin(\pi - a) = \sin a$ $\cos(\pi - a) = -\cos a$ $\tan(\pi - a) = -\tan a$ $\cot(\pi - a) = -\cot a$	$\sin(\pi/2-a) = \cos a$ $\cos(\pi/2-a) = \sin a$ $\tan(\pi/2-a) = \cot a$ $\cot(\pi/2-a) = \tan a$
$\sin(\pi+a) = -\sin a$ $\cos(\pi+a) = -\cos a$ $\tan(\pi+a) = \tan a$ $\cot(\pi+a) = \cot a$	$\cos 2a = \cos^2 a - \sin^2 a$ $\cos 2a = 1 - 2\sin^2 a$ $\cos 2a = 2\cos^2 a - 1$ $\cos^2 a = \frac{1}{2}(1 + \cos 2a)$	$\sin 3a = 3\sin a - 4\sin^3 a$ $\cos 3a = 4\cos^3 a - 3\cos$ $\tan 3a = \frac{3\tan a - \tan^3 a}{1 - 3\tan^2 a}$

$$sin(a+b) = sin a cos b + sin b cos a
sin(a-b) = sin a cos b - sin b cos a
cos(a+b) = cos a cos b - sin a sin b
cos(a-b) = cos a cos b + sin a sin b
tan(a+b) =
$$tan a + tan b
tan(a-b) =
$$tan a - tan b
tan(a-b) =
$$tan a - tan b
tan a tan b$$
sin² $a + cos^2 a = 1$

$$1 + tan^2 a = \frac{1}{cos^2 a}$$
sin² $a = 2 sin a cos a$

$$sin^2 a = \frac{1}{2}(1 - cos 2a)$$$$$$$$

$$2\sin a \cos b = \sin(a+b) + \sin(a-b)$$

$$2\cos a \cos b = \cos(a+b) + \cos(a-b)$$

$$2\sin a \sin b = \cos(a-b) - \cos(a+b)$$

$$\sin a + \sin b = 2\sin(\frac{a+b}{2}).\cos(\frac{a-b}{2})$$

$$\sin a - \sin b = 2\cos(\frac{a+b}{2}).\sin(\frac{a-b}{2})$$

$$\cos a + \cos b = 2\cos(\frac{a+b}{2}).\cos(\frac{a-b}{2})$$

$$\cos a - \cos b = -2\sin(\frac{a+b}{2}).\sin(\frac{a-b}{2})$$

$$\sin(\frac{a}{2}) = \pm \sqrt{\frac{1 - \cos a}{2}}$$

$$\cos(\frac{a}{2}) = \pm \sqrt{\frac{1 + \cos a}{2}}$$

$$\tan(\frac{a}{2}) = \pm \sqrt{\frac{1 - \cos a}{1 + \cos a}}$$

$$\tan(\frac{a}{2}) = \frac{1 - \cos a}{\sin a}$$

$$\tan(\frac{a}{2}) = \frac{\sin a}{1 + \cos a}$$

DERIVEES

PRIMITIVES

		DEIG	LLD
f(x)	f'(x)	f(x)	f'(x)
Cste	0	u^n ; $n \in N$	nu'u ⁿ⁻¹
X	1	e ^u	u' e ^u
x ⁿ	nx ⁿ⁻¹	ln u	u'/u
1/x	$-1/x^2$	sin u	u'cos u
\sqrt{x}	1/2√x	cos u	-u'sin u
ln x	1/x		
e ^x	e ^x		
sin x	cos x		
cos x	-sin x		
tan x	$\frac{1/(\cos^2 x)}{1+\tan^2 x}$	tan u	$u'/(\cos^2 u)$ $u'/(1+\tan^2 u)$

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$(g \circ f)' = (g' \circ f)f'$$

$\rightarrow \ln |x| + K$ $\rightarrow -\frac{1}{r} + K$ $\cos x \longrightarrow \sin x + K$

 $e^x \longrightarrow e^x + K$

$$\tan x = -\ln|\cos x| + K$$

$$\cot anx = \ln|\sin x| + K$$

$$thx = \ln(chx) + K$$

$$\cos(ax + b) = \frac{1}{a}\sin(ax + b) + K$$

$$\sin(ax + b) = -\frac{1}{a}\cos(ax + b) + K$$

$$\int \ln x dx = x \ln x - x + K$$

$$\int Arc \sin x dx = x Arc \sin x + \sqrt{1 - x^2} + K$$

$$\int Arc \cos x dx = x Arc \cos x - \sqrt{1 - x^2} + K$$

$$\frac{1}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + K$$

$$\frac{1}{\cos x} = \ln \left| \tan \frac{x}{2} \right| + K$$

$$\frac{1}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + K$$

$$\frac{1}{\sin x \cdot \cos x} = \ln \left| \tan x \right| + K$$

$$\frac{1}{\sin x \cdot \cos x} = \ln \left| \tan x \right| + K$$

$$u'(x)e^{u(x)} = e^{u(x)} + K$$

$$a^{x} = \frac{a^{x}}{\ln a} + K$$

$$\int f'[u(x)]u'(x)dx = f[u(x)] + K$$

$$\int f'(x)dx = \sqrt{f(x)} + K$$

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + K$$

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + K$$

$$\int \frac{f'(x)g(x) - g'(x)f(x)}{g^{2}(x)} = \frac{f(x)}{g(x)} + K$$

 $\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx + K$ Intégration par partie :

Formule de Moivre

$$\forall \theta \in R, \forall n \in Z, \begin{cases} (e^{i\theta})^n = e^{in\theta} \\ (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \end{cases}$$

 $\rho(\cos\phi + i\sin\phi) = \rho e^{i\phi}$