이변량/다변량 분석 (Bivariate/Multivariate Analysis)

• 이변량 분석 (Bivariate Analysis): 두 개의 변수 간의 관계를 분석합니다.

x (featrue) \ y (target)	수치형	범주형
수치형	시각화	시각화 • Boxplot • Histogram • Density plot
범주형	시각화 • 평균비교 barplot (sns.barplot) • Boxplot	시각화 • Barplot • Mosaic
	수치화 • T 검정 • ANOVA	수치화 • 교차표 • 카이 제곱 검정

• **다변량 분석 (Multivariate Analysis)**: 세 개 이상의 변수 간의 관계를 동시에 분석합니다. 이변량 분석을 확장하여, hue, size, style 등의 옵션을 추가하여 제3, 제4의 변수를 시각화에 포함시키는 방식으로 주로 수행됩니다. (e.g., 산점도에 색상과 크기로 추가 변수 표현)

적용 가능한 상황

- **가설 검증**: '객실 등급이 높을수록 생존율이 높을 것이다'(범주형 vs 범주형), '나이가 많을수록 운임 요금을 더 많이 냈을 것이다'(수치형 vs 수치형)와 같은 가설을 데이터로 확인할 때.
- **피처 엔지니어링**: 변수 간의 강한 상관관계를 확인하여 다중공선성 문제를 인지하거나, 변수들의 상호작용을 나타내는 새로운 파생 변수를 만들 아이디어를 얻을 때.
- 모델링 변수 선택: 타겟 변수(종속 변수)와 높은 상관관계를 갖는 독립 변수를 찾아 모델의 예측 변수로 사용하거나, 변수 간의 관계를 파악하여 모델링 전략을 수립할 때.

예제 데이터 생성

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Seaborn 내장 'titanic' 데이터셋 사용
df = sns.load_dataset('titanic')
```

수치형 → 수치형

시각화 예시

```
# 산점도 (Scatter Plot)
sns.scatterplot(x='age', y='fare', data=df)
plt.title('Age vs Fare')
plt.show()
# 산점도 + 히스토그램
sns.jointplot(x='age', y='fare', data = df)
plt.title('Age vs Fare by jointplot')
plt.show()
# 산점도 + 직선관계 + 95% 신뢰구간
sns.regplot(x='age', y='fare', data = df)
plt.title('Age vs Fare by regplot')
plt.show()
# 다변량 분석: 산점도에 'survived' 변수 추가 (hue)
sns.scatterplot(x='age', y='fare', hue='survived', data=df)
plt.title('Age vs Fare by Survival')
plt.show()
```

- 산점도를 보면 age와 fare 사이에 뚜렷한 선형 관계는 보이지 않습니다.
- hue 옵션을 추가한 다변량 산점도를 통해 생존 여부에 따른 분포 차이를 탐색해볼 수 있습니다.

수치화 예시

- 상관관계를 나타내는 2가지 숫자 : 공분산, 상관계수
- 상관계수(r): 분자가 공분산, 양의 상관관계일수록 값 ↑, 음의 상관관계일수록 값 ↓
 - o -1 ~ 1 사이의 값, 양단으로 갈수록 강한 상관관계를 나타냄
 - 경험적인 기준의 절댓값
 - 강한 관계: 0.5 ~ 1
 - 중간 관계: 0.2 ~ 0.5
 - 약한 관계:0~0.1

```
# 상관 계수 (Correlation Coefficient)
correlation = df[['age', 'fare']].corr(method='pearson')
print("--- Correlation between Age and Fare ---")
print(correlation)

# 전체 변수에 대한 상관 계수 출력
print("\n--- Correlation between All Features ---")
print(df.corr())

# 수치형 변수에 대한 상관 계수 출력
numeric_values = df.select_dtypes(include=["number"]).corr()
print("\n--- Correlation between Numerical Features ---")
print(numeric_values)

# 히트맵을 그려서 시각화 후 확인 가능
sns.heatmap(numeric_values, # 상관계수 출력한 DataFrame
```

```
annot = True, # 숫자(상관계수) 표기 여부
fmt = '.3f', # 숫자 포멧 : 소수점 3자리까지 표기
cmap = 'RdYlBu_r', # 칼라맵
vmin = -1, vmax = 1) # 값의 최소, 최대값
plt.show()
```

- 1. 같은 변수끼리 구한 값 1은 의미 없다.
- 2. 상관계수의 절대값이
 - 1에 가까울 수록 강한 상관관계
 - o 0에 가까울 수록 약한 상관관계
- 3. +는 양의 상관관계, -는 음의 상관관계
- scipy.stats의 피어슨 상관분석 함수
 - NaN 값이 있으면 계산 안됨 (.notnull() 이후 계산)
 - 결과 : (상관계수, p-value) 튜플 형태로 반

```
# age의 결측치 확인
print(df['age'].isna().sum())

# dropna 를 활용한 age에서 결측치 존재하는 행 제거
df_drop_na = df.dropna(subset=['age'])
# 혹은 결측치가 아닌 행만 선택하는 식으로 추출해 올 수도 있다.
df_drop_na = df.loc[df['age'].notnull()]

# age의 결측치 재확인
print(df_drop_na['age'].isna().sum())

import scipy.stats as spst
# 상관계수와 p-value
spst.pearsonr(df_drop_na['age'], df_drop_na['fare'])
# (0.09606669176903893, 0.010216277504442105)
```

- p-value<0.05 일 때 해당 상관계수가 의미 있다
 - → 귀무가설이 참일 때 해당 상관계수가 나올 확률이 5% 미만이므로, 귀무가설을 기각하고 대립가설을 채택할 근거가 있다.
 - → 상관분석에서의 귀무가설: "두 변수는 상관 관계가 없다."
- o age와 fare의 상관계수는 0.096 으로 매우 낮은 관계임을 알 수 있다. p-value가 0.01이므로, 해당 상관계수는 통계적으로 유의미하다.
- 상세한 상관분석 관련 내용은 2.3. 상관 및 회귀 분석/상관 분석 확인

범주형변수 → 수치형변수

시각화 예시

```
# 평균비교 막대 그래프 (Bar Plot)
plt.figure(figsize=(8, 6))
sns.barplot(x='pclass', y='age', data=df)
```

```
# age의 전체 평균 추가 (전체 평균과 각 범주별 평균 비교)
plt.axhline(df['age'].mean(), color = 'r')
plt.title('Age Distribution by Pclass')
plt.show()
# 다변량 분석: 막대 그래프에 'sex' 변수 추가 (hue)
plt.figure(figsize=(8, 6))
sns.barplot(x='pclass', y='age', hue='sex', data=df)
plt.title('Age Distribution by Pclass')
plt.show()
# 박스 플롯 (Box Plot)
plt.figure(figsize=(8, 6))
sns.boxplot(x='pclass', y='age', data=df)
plt.title('Age Distribution by Pclass')
plt.show()
# 다변량 분석: 박스 플롯에 'sex' 변수 추가 (hue)
plt.figure(figsize=(10, 6))
sns.boxplot(x='pclass', y='age', hue='sex', data=df)
plt.title('Age Distribution by Pclass and Sex')
plt.show()
```

- seaborn.barplot은 자동으로 평균 계산 및 신뢰구간 계산 후 표시해줌
 - 신뢰구간(세로선)이 짧을수록 해당 평균 값에 대한 신뢰도가 높다.
 - 데이터가 많을수록, 편차가 적을수록 신뢰구간은 좁아진다.
 - 두 평균에 차이가 크고, 신뢰구간이 안 겹칠 때, 대립가설을 채택한다.
- 범주 2개일 경우, 두 평균 차이를 비교하고, 3개 이상일 경우 전체 평균과 각 범주의 평균을 비교한다.
- seaborn.boxplot을 통해 중앙값과 이상치 확인이 가능하다.
- hue 파라미터를 추가하여 남녀 나이 분포를 다시 확인 가능하다.

수치화 예시

```
# 그룹별 기술 통계량

print("--- Age statistics by Survived ---")

print(df.groupby('survived')['age'].describe())

print("--- Age statistics by Pclass ---")

print(df.groupby('pclass')['age'].describe())
```

- groupby를 통해 각 그룹별 통계량 확인 및 수치 비교를 할 수 있다.
- 분석 도구를 통한 방법으로는 T-TEST 기법과 ANOVA(분산 분석)이 있다.

T-TEST

- 두 그룹의 평균 간 차이를 표준오차로 나눈 값 (두 평균의 차이로 이해해도 무관)
 - ㅇ 두 그룹 간의 평균 비교를 위해 사용됨

• t 통계량이 -2보다 작거나, 2보다 크면, 두 그룹 간 차이가 있다고 본다.

```
• ttest_ind(B, A, equal_var=False)
```

o equal var: A, B 분산이 같을 경우 True (default = True)

```
# NaN 행 제외
temp = df.loc[df['age'].notnull()]
# 두 그룹으로 데이터 저장
died = temp.loc[temp['survived']==0, 'age']
survived = temp.loc[temp['survived']==1, 'age']

# scipy.stats로 t-test 진행
import scipy.stats as spst

spst.ttest_ind(died, survived)
# Ttest_indResult(statistic=2.06668694625381, pvalue=0.03912465401348249)

spst.ttest_ind(died, survived, equal_var=False)
# Ttest_indResult(statistic=2.046030104393971, pvalue=0.041189651625866304)
```

- 두 그룹(생존자와 사망자) 간 분산이 다를 때, T 통계량은 2.04 정도이고, 이 때 p-value는 0.04이다.
- p-value를 통해, 생존자와 사망자의 나이 평균은 통계적으로 유의한 차이가 있다.
- 다만 T 통계량을 통해 평균 차이가 크지는 않음을 알 수 있다.

ANOVA (ANalysis Of VAriance)

- 집단 간 평균의 차이가 존재하는지 확인
- 전체 평균을 기준으로 각 범주의 평균을 비교하는 방법
- 범주가 3개 이상일 때, 전체 평균과 각 그룹 평균 간 비교를 위해 사용
- F 통계량 =
 - ㅇ (집단 간 분산)/(집단 내 분산) = (전체 평균 각 집단 평균)/(각 집단의 평균 개별 값)
 - 값이 대략 2~3 이상이면 차이가 있다고 판단 가능

```
# NaN 행 제외
temp = df.loc[df['age'].notnull()]
# 그룹별 저장
P_1 = temp.loc[temp['pclass'] == 1, 'age']
P_2 = temp.loc[temp['pclass'] == 2, 'age']
P_3 = temp.loc[temp['pclass'] == 3, 'age']

# scipy.stats로 f 통계량 계산 진행
import scipy.stats as spst
spst.f_oneway(P_1, P_2, P_3)
# F_onewayResult(statistic=57.443484340676214, pvalue=7.487984171959904e-24)
```

- F 통계량은 57.44, p-value는 7.48e-24이다.
- p-value를 통해, 객실별 나이 평균은 통계적으로 유의한 차이가 있다.
- F 통계량을 통해 나이 평균 차이가 존재함을 알 수 있다.
 - 얼마나 차이가 나는지는 사후분석을 통해 알아내야 한다.
 - ㅇ 자세한건 2.2. 추론 통계/분산분석 확인

범주형변수 → 범주형변수

• 교차표로 집계 후, 시각화나 카이 제곱 검정을 실시할 수 있다.

```
# 교차표 만들기
print("--- Crosstab: Pclass vs Survived ---")
print(pd.crosstab(df['survived'], df['sex']))

# normalize 옵션을 넣으면 정규화한 값으로 출력 (columns, index, all)
print("--- Crosstab: Pclass vs Survived with Ratio ---")
print(pd.crosstab(df['survived'], df['sex'], normalize = 'index'))
```

- crosstab의 normalize 옵션 값
 - o columns: 열의 값이 각각 합계가 1이 되도록 정규화
 - o index: 행의 값이 각각 합계가 1이 되도록 정규화
 - o all: 데이터프레임 전체의 값 합계가 1이 되도록 정규화

시각화 예시

```
# 그룹 막대 그래프 (Grouped Bar Chart)
crosstab ps ratio = pd.crosstab(df['survived'], df['sex'], normalize = 'index')
# stacked=True 작성 필수
crosstab ps ratio.plot(kind='bar', stacked=False)
# 전체 평균선 추가
plt.axhline(1-df['survived'].mean(), color = 'r')
# 추가적인 꾸미기 및 출력
plt.title('Survival Rate by Pclass')
plt.ylabel('Survival Rate')
plt.xticks(rotation=0)
plt.show()
# 모자이크 플롯은 statsmodels에서 불러와야 한다. mosaic(dataframe, [feature,
target])
from statsmodels.graphics.mosaicplot import mosaic
# Pclass별 생존여부를 mosaic plot으로 그리기
mosaic(df, [ 'pclass', 'survived'])
# 전체 평균선 추가
plt.axhline(1-df['survived'].mean(), color = 'r')
# 파일 내부 그래프 전체의 default 사이즈를 변경해주는 함수
plt.rcParams["figure.figsize"] = (12, 12)
# mosaic plot은 기존의 방식으로 그래프 크기 변경을 못하여 위와 같은 식으로 변경해야함
plt.show()
```

- 빨간 선은 전체 평균 (전체 사망률, 전체 생존율)
 - 평균선 추가시 1에서 뺀 값으로 추가한 이유: 그래프에 그려질 때, 생존 표시가 상단에 표시가 되어서 평균 값(생존율)을 상단에 그리기 위함
- 모자이크 플롯 해석
 - o x축 길이는 각 객실 등급별 승객 비율
 - y축 길이는 각 객실 승객 중에서 사망, 생존 비율
 - 만약 두 범주형 변수 간 상관이 없다면, 비율 차이가 거의 없다.

수치화 예시

- 카이제곱 검정: 범주형 변수들 사시에 어떤 관계가 있는지, 수치화 하는 방법
 - 귀무가설: 두 범주형 변수는 독립이다. (즉, 관계 없음)
 - 대립가설: 두 범주형 변수는 독립이 아니다. (즉, 관계 있음) \$\$ \chi^2 = \sum\frac{(관측빈도 기대빈도)^2}{기대빈도} \$\$
- 기대빈도: 아무런 관련이 없을 때 나올 수 있는 빈도 (확률적 독립일 때 기대되는 값)
- 카이 제곱 통계량은
 - 클수록 기대빈도로부터 실제 값에 차이가 크다는 의미.
 - 계산식으로 볼 때, 범주의 수가 늘어날 수록 값은 커지게 되어 있음.
 - 보통, 자유도의 2~3배 보다 크면, 차이가 있다고 본다.
- 범주형 변수의 자유도 = 범주의 수 1
 - 범주 중 하나는 무조건 선택되야하므로, 실질적으로 자유로운 선택 가능한 값은 <mark>범주의 수-1</mark>가지이다.
- 카이제곱검정에서는
 - \$x\$ 변수의 자유도 × \$y\$ 변수의 자유도
 - o 예: Pclass --> Survived
 - Pclass: 범주가 3개, Survived: 2개
 - \blacksquare (3-1) * (2-1) = 2
 - 그러므로, 2의 2~3배인 4~6 보다 카이제곱 통계량이 크면, 변수 간 차이가 있다고 볼수 있음.
- spst.chi2_contingency(교차표)

- statistic: 카이제곱 통계량 → 자유도의 2배보다 크면 관계가 있다.
- pvalue: p-value → 0.05보다 작으면 관계가 있다 / 유의하다.
- dof(자유도): Pclass 자유도(3-1) * Survived 자유도(2-1) = 2
- 기대빈도:계산된 값
- 해당 결과는 카이제곱 통계량이 자유도의 2배, 3배보다 크므로 두 변수 간 관계가 있으며, p-value가 0.05 보다 낮으므로 통계적으로 유의하다.
- 기대 빈도는, 생존 여부와 객실 등급이 독립일 경우, 교차표의 각 셀에 대한 기대빈도이다.

survived	pclass=1	pclass=2	pclass=3
0 (사망)	80	97	372
1 (생존)	136	87	119

위 표가 현재의 교차표이고, 기대 빈도와 맞춰서 해석하자면 "1등급 객실에서의 사망자는 133명일 것라고 해석"할 수 있다.

숫자형변수 → 범주형변수

히스토그램

• seaborn 0.11.0 이상일 경우, sns.histplot()을 통해 해결 가능

```
# Age에 대한 히스토그램을, Survived 범주로 나눠서 그리기 sns.histplot(x='age', data = df, hue = 'survived') plt.show()
```

• seaborn 0.9.0에서는 아래와 같은 방식으로 가능

```
# distplot + 루프
import seaborn as sns
import matplotlib.pyplot as plt

# 결측치 제거
temp = df.loc[df['age'].notnull()]
# 반복문을 통해 생존 여부별 히스토그램 작성
for survived_value in [0, 1]:
    subset = temp[temp['survived'] == survived_value]
    sns.distplot(subset['age'], hist=True, kde=False, label=f"Survived={survived_value}")
```

```
plt.legend()
plt.show()

# FacetGrid 활용 (범주별 색 자동 분리)
g = sns.FacetGrid(df, hue="survived", height=5, aspect=1.5)
g.map(sns.distplot, "age", hist=True, kde=False)
g.add_legend()
plt.show()
```

밀도 함수

- 일부 방식은 seaborn.kdeplot에서 hue 파라미터를 지원해야한다.
- seaborn 0.11.0 이상부터 지원 / 0.9.0에서는 불가
- 1. kdeplot(, hue = 'Survived')
 - 생존여부의 비율이 유지된 채로 그려짐
 → 두 범주 간 비율을 비교 가능
 - ㅇ 두 그래프의 아래 면적의 합이 1

```
# seaborn 0.11.0 이상에서 진행 방식
sns.kdeplot(x='age', data=df, hue ='survived')
plt.show()
```

- 2. kdeplot(, hue = 'Survived', common_norm = False)
 - 생존여부 각각 아래 면적의 합이 1인 그래프
 - 생존자 그래프 면적 1, 사망자 그래프 면적 1이므로,만약 나이에 따른 생존여부가 관련 없다면 두 그래프가 완전 겹친다.

```
# seaborn 0.11.0 이상에서 진행 방식
sns.kdeplot(x='age', data=df, hue ='survived', common_norm = False)
plt.show()
```

```
# seaborn 0.9.0 에서 진행 방식
for label, group in df.groupby('survived'):
    sns.kdeplot(group['age'], label=f'Survived={label}')

plt.legend()
plt.show()
```

- 3. kdeplot(, hue = 'Survived', multiple = 'fill')
 - 나이에 따라 생존여부 **비율** 비교 가능 (양의 비교가 아닌 비율)
 - ㅇ 2번 그래프에서 두 그래프가 겹치는 구간 = 3번 그래프에서 평균선이 그래프와 겹치는 구간

- 서로 관련이 없다면(독립이라면), 평균선을 기준으로 상하가 정확히 나눠진다.
- 그래프 양 끝이 올라가는 이유는 전체를 확률로 표현하기 때문이다.

```
# seaborn 0.11.0 이상에서 진행 방식
sns.kdeplot(x='age', data=df, hue ='survived', multiple = 'fill')
plt.axhline(df['survived'].mean(), color = 'r')
plt.show()
```

- 히스토그램 그려서 kde그래프와 비교해볼 수 있다.
- 서로 관련이 없다면(독립이라면), 나이에 따른 생존여부 히스토그램이 평균선 근처를 지난다.

```
# seaborn 0.11.0 이상에서 진행 방식

sns.histplot(x='age', data = df, bins = 16, hue ='survived', multiple =
'fill')

plt.axhline(df['survived'].mean(), color = 'r')

plt.show()
```

• 결과 해석

- ㅇ 약 15세 이하는 생존율이 전체 평균보다 높다.
- 20~30대 생존율이 전체 평균보다 낮다.
- 60~70대는 대부분 사망.

대표적인 다변량 시각화 도구

- seaborn.pairplot: 데이터프레임의 모든 수치형 변수 쌍에 대한 산점도와 각 변수의 분포를 한 번에 그려주어, 변수 간의 전반적인 관계를 탐색하는 데 매우 강력합니다.
- seaborn.heatmap: 상관계수 행렬을 시각화하여 여러 변수 간의 상관관계를 한눈에 파악하는 데 유용합니다.
- seaborn.catplot, relplot, displot: hue, col, row, size, style 등의 인자를 활용하여 3개 이상의 변수를 포함하는 다차원적인 시각화를 쉽게 구현할 수 있습니다.