LTER Time Series Complete Dataset R Analysis

Cat Luria July 13, 2015

Contents

1	Get	ting started	2		
2	Alpha Diversity				
	2.1	Getting the table set up correctly	2		
	2.2	Richness	2		
3	NM	IDS	8		
	3.1	Running NMDS with all samples	8		
	3.2	Subsetting samples	10		
4	Star	rting to Incorporate Ancillary Data	13		
	4.1	Data collected	13		
	4.2	envfit	13		

1 Getting started

First, load all the necessary packages.

```
## Loading required package: tcltk
## Loading required package: vegan
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.3-0
## BiodiversityR 2.5-2: use function 'BiodiversityRGUI()' to launch the BiodiversityR Graphical User In
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
##
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
## Attaching package: 'gdata'
## The following object is masked from 'package:data.table':
##
##
       last
##
## The following object is masked from 'package:stats':
##
##
       nobs
##
## The following object is masked from 'package:utils':
##
##
       object.size
```

Finally, I removed any OTUs identified as chloroplasts. This removed 0 OTUs from the OTU table.

2 Alpha Diversity

2.1 Getting the table set up correctly

2.2 Richness

Calculate diversity indices using BiodiversityR package. For this package, sites are rows and species are columns. Remember to exclude metadata columns.

```
#Turn your 'treatment' column into a character vector
#diversitytable$Date <- as.character(diversitytable$Date)</pre>
#Then turn it back into an ordered factor
diversitytable$Date <- as.Date(diversitytable$Date, "%m/%d/%y")
#plotting richness for each sample
# p <-ggplot(diversitytable, aes(x=Date, y=richness)) +</pre>
   geom_bar(stat="identity") +
#
  theme bw() +
   theme(text = element text(size=10),
          axis.text.x = element_text(angle=90, vjust=1))
# p + facet_grid(.~Season, scales="free")
dummy_diversitytable <-</pre>
  read.table("dummy_diversitytable_2015aug25.txt", header=T, sep="\t")
dummy_diversitytable$Date <- as.Date(dummy_diversitytable$Date, "%m/%d/%y")</pre>
dummydiv <- rbind(diversitytable, dummy_diversitytable)</pre>
season_labeller <- function(var, value){</pre>
  value <- as.character(value)</pre>
  if (var=="Season") {
    value[value=="PAL0910"] <- "2009-2010"</pre>
    value[value=="PAL1011"] <- "2010-2011"</pre>
    value[value=="PAL1112"] <- "2011-2012"</pre>
    value[value=="PAL1213"] <- "2012-2013"</pre>
 }
 return(value)
}
dummyp <-ggplot(dummydiv, aes(x=Date, y=richness)) +</pre>
  geom_bar(stat="identity", width=3, color="#0072B2") +
  vlab("richness (# of OTUs)") +
  xlab("") +
  scale_x_date(breaks = date_breaks("months"),
  labels = date_format("%b")) +
  theme_bw() +
  theme(text = element_text(size=10),
        axis.text.x = element_text(vjust=1))
dummyp + facet_grid(.~Season, scales="free", labeller=season_labeller)
```

Warning: position_stack requires non-overlapping x intervals

2.2.1 Compare across seasons

Surprisingly, ANOVA indicates that richness varies significantly between seasons. PAL1011 has signicantly higher richness than PAL1112 and PAL1213.

```
aov.richness.season= aov(richness~Season,data=diversitytable)
summary(aov.richness.season)
```


Figure 1: Observed OTUs per each individual library.

```
##
               Df Sum Sq Mean Sq F value Pr(>F)
                 49124 16374.8 4.1318 0.01112 *
## Season
## Residuals
               47 186264 3963.1
## ---
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
tuk <- Tukey HSD (aov.richness.season)
tuk
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = richness ~ Season, data = diversitytable)
##
## $Season
##
                         diff
                                      lwr
                                                 upr
                                                           p adj
## PAL1011-PAL0910 -37.300000 -110.559498
                                           35.959498 0.53270050
## PAL1112-PAL0910 -95.572727 -168.832225 -22.313230 0.00591378
## PAL1213-PAL0910 -48.615789 -114.120545
                                           16.888966 0.21132119
## PAL1112-PAL1011 -58.272727 -129.766676
                                           13.221222 0.14639770
## PAL1213-PAL1011 -11.315789 -74.839830
                                           52.208251 0.96434319
## PAL1213-PAL1112 46.956938 -16.567103 110.480978 0.21434960
#write a function to calculate SD
myFunc = function(x) {
```

```
result = c(mean(x) - sd(x), mean(x) + sd(x))
names(result) = c("ymin", "ymax")
result
}
#aggregate by month and apply SD function
aggregate(diversitytable$richness, by = list(diversitytable$Season), FUN = myFunc)
```

```
## Group.1 x.ymin x.ymax
## 1 PAL0910 246.22073 368.37927
## 2 PAL1011 228.25314 311.74686
## 3 PAL1112 162.17913 261.27541
## 4 PAL1213 180.25870 337.10973
```


Figure 2: Mean richness (observed OTUs) for each PAL LTER season. Mean is indicated by diamond.

2.2.2 Compare across months

Richness does not vary between months.

```
## Df Sum Sq Mean Sq F value Pr(>F)
## Month          5  79740 15948.1     4.6108 0.00176 **
## Residuals          45 155648     3458.8
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
##
     Group.1
                x.ymin
                          x.ymax
## 1
         Dec 172.80043 307.81496
## 2
         Feb 191.37626 302.62374
## 3
         Jan 184.84362 284.24729
## 4
         Mar 182.07687 315.01404
## 5
         Nov 282.77019 373.89648
## 6
         Oct
                    NA
```


Figure 3: Mean richness (observed OTUs) for each month grouped across all seasons. Error bars are standard deviation.

```
lm_richness_daylength <- lm(richness~DayLength, data=diversitytable)
summary(lm_richness_daylength)</pre>
```

```
##
## Call:
## lm(formula = richness ~ DayLength, data = diversitytable)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                         3Q
                                                  Max
                                            147.7555
## -119.4630 -56.0513
                         -0.6589
                                   49.3507
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 310.9835
                           55.7780 5.5754 1.048e-06 ***
## DayLength
                -2.7954
                            3.0440 -0.9183
                                               0.3629
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 68.721 on 49 degrees of freedom
## Multiple R-squared: 0.016919, Adjusted R-squared: -0.0031436
## F-statistic: 0.84331 on 1 and 49 DF, p-value: 0.36295

plot(richness-DayLength, data=diversitytable)
abline(lm_richness_daylength, col="red")
```


Figure 4: Richness (observed OTUs) versus day length (hours between sunrise and sunset) during summer months at Palmer Station.

Richness declines with increasing daylength but the relationship is weak (p=0.08).

```
lm_richness_BP <- lm(richness~Leucine, data=diversitytable)
summary(lm_richness_BP)</pre>
```

```
##
## Call:
## lm(formula = richness ~ Leucine, data = diversitytable)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                         3Q
                                                  Max
  -121.2060
              -53.0369
                          -1.5668
                                    59.5558
##
                                             133.9089
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 282.74818
                            13.56221 20.8482
                                              < 2e-16 ***
## Leucine
                -0.64324
                             0.28730 -2.2389 0.02973 *
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66.015 on 49 degrees of freedom
## Multiple R-squared: 0.092808, Adjusted R-squared: 0.074294
## F-statistic: 5.0128 on 1 and 49 DF, p-value: 0.029734

plot(richness~Leucine, data=diversitytable)
abline(lm_richness_BP, col="red")
```


Figure 5: Richness (observed OTUs) versus bacterial production during summer months at Palmer Station.

Looks like richness~Leucine may be a non-linear relationship.

3 NMDS

Run NMDS using vegan package. Then convert to resulting MDS coordinates to a data frame. Finally cbind map file to mds coordinate table.

3.1 Running NMDS with all samples

```
## Run 0 stress 0.16537558
## Run 1 stress 0.16783234
## Run 2 stress 0.16648396
## Run 3 stress 0.16651689
```

3.1.1 According to month

Figure 6: NMDS with all samples. Sample shape is coded by LTER season. Sample color is coded by month.

Figure 7: NMDS with all samples. Sample shape is coded by LTER season. Sample color is coded by month.

3.1.2 According to depth

3.1.3 According to daylength

3.2 Subsetting samples

```
## Run 0 stress 0.10193732
## Run 1 stress 0.10193732
## ... New best solution
## ... procrustes: rmse 3.7380853e-06 max resid 1.3178247e-05
## *** Solution reached
```


Figure 8: NMDS with all samples, results color-coded according to day length, i.e. hours between official sunrise and official sunset.

 $Figure \ 9: \ NMDS \ results \ without \ PAL0910 \ or \ PAL1011, \ samples \ color-coded \ according \ to \ day \ length, \ i.e. \ hours \ between \ official \ sunrise \ and \ official \ sunset.$

4 Starting to Incorporate Ancillary Data

4.1 Data collected

The following metadata has been collected so far. The remaining data are not yet on Datazoo. "X" indicates that the data has been compiled. "ND" indicates that the data does not exist.

Data	PAL0910	PAL1011	PAL1112	PAL1213	PAL1314
Temperature	X	X	X		
Salinity	X	X	X		
Abundance	X	X	X	X	X
Thymidine	X	ND	ND	ND	ND
Leucine	X	X	X	X	x
DOC	X	X	X		
POC	X	X	X		
PON	X	X	X		
Phosphate	X	X	X	X	X
Silicate	X	X	X	X	X
NitriteNitrate	X	X	X	X	x
PrimaryProd	X	X	X	X	X
PrimProdSTD	X	X	X	X	x
Chlorophyll	X	X	X	X	x
Phaeopigment	x	X	X	X	X
HPLC					

4.2 envfit