

Prof. André Renato

Departamento de Ciência da Computação

PURO/UFF

Primeiros "computadores"

Ábaco: Mesopotâmia ~ 3500 a.C.

Primeiros "computadores"

Calculadoras: ~1650

Revolução industrial

 Tear controlado por cartões perfurados (Joseph Marie Jacquard:

1752-1834)

Revolução industrial

- Tear programável
 - Charles Babbage (1792-1871);
 - Ada Augusta (1815-1852);
- Herman Hollerith (1860-1929)
 - Máquina de cartões perfurados
 - Utilizava eletricidade
 - Ajudou na execução do censo de 1890
 - Fundou uma empresa que depois passou a chamar-se International Business Machines (IBM)

Revolução industrial

 Máquina de diferenças, Charles Babbage (1822)

A segunda guerra mundial

- Harvard Mark I
 - Computador de uso geral baseado nos trabalhos de Babbage
 - 130m³
 - Multiplicava dois números de 10 dígitos em 3 segundos
 - Partes mecânicas baixa velocidade e pouca confiabilidade
- Mark II não saiu do papel

A segunda guerra mundial

- ENIAC (primeiro computador digital)
 - J. Presper Eckert e John Mauchy
 - Objetivo de fazer cálculos balísticos
 - 5000 operações por segundo
 - Programação feita em painéis
 - Só ficou pronto em 1946
 - 30 toneladas, 140 Kwatts e 800 km de cabos
- Von Neumann e o projeto lógico

A segunda guerra mundial

- Primeira geração (1951-1958):
 - Primeiro computador produzido industrialmente: UNIVAC
 - Preço entre \$1.250.000,00 e\$1.500.000,00
 - Usava 5200 válvulas, pesava 13 toneladas, realizava 1905 segundo (2,23MHz) e ocu
 - Inúmeros problemas

 A função de uma válvula eletrônica é regular o fluxo de corrente elétrica que passa por uma parte de um circuito

- Segunda Geração (1959-1964):
 - Impulsionada pelo advento do transistor;
 - Mais rápido, menor e mais confiável
 - Linguagens de programação de alto-nível
 - Criar programas independentes do hardware
 - Armazenamento em disco magnético
 - Utilizado por grandes empresas, universidades e organizações governamentais

1⁸ geração válvulas

2ª geração transistor

3ª geração LSI

- Terceira Geração (1965-1970):
 - Surgimento do circuito integrado (CI), também chamado de chip
 - IBM/360 para uso comercial e científico
 - Desvinculação do software e do hardware

- Quarta Geração (1971-199x)
 - Extensão tecnológica da terceira geração
 - Processador de uso geral em um único chip: microprocessador
 - Surgimento dos computadores pessoais

- Quinta Geração (199x-????)
 - ULSI (Ultra Large Scale Integration)
 - Componentes cada vez menores de mais baixo custo, o que permitiu a evolução de aplicações computacionais mais complexas.
 - Evolução das aplicações:
 - Sistemas especialistas, sistemas multimídia, banco de dados distribuídos, inteligência artificial, redes neurais, etc.
 - Necessidade de maior capacidade de processamento e armazenamento de dados.

- Quinta Geração
 - Novos paradigmas no projeto de computadores:
 - Arquiteturas Paralelas;
 - Processamento Distribuído nos Sistemas Operacionais;
 - Redes de Alta Velocidade;
 - Linguagens e metodologias de programação concorrentes;
 - Linguagens naturais: interface homem/máquina.

Novas aplicações:

- Caixas eletrônicos;
- Computadores em automóveis;
- Laptops;
- Projeto genoma;
- World Wide Web;
- · Computação distribuído em casalo mundial

Figura 2.8 Crescimento na contagem de transistores da CPU (BOHR, 2003º)

Figura 2.12 Desempenho do microprocessador Intel (Gibbs, 2004º)

- O futuro
 - Inteligência artificial
 - Robótica
 - Realidade Virtual
 - · ????

- "Não há razão para que alguém queira ter um computador em casa".
 - Ken Olson, presidente e fundador da Digital Equipment Corp. (DEC), fabricante de computadores mainframe, discutindo os computadores pessoais, em 1977.

"Mas... para o que serve isso?"

 Robert Lloyd, executivo da IBM, sobre o microprocessador, em 1968.

 "Na medida em que uma calculadora no ENIAC é equipada com 18 mil tubos de vácuo e pesa 30 toneladas, os computadores do futuro deverão ter apenas mil tubos de vácuo e pesar 1,5 mil toneladas".

Revista Popular Mechanics, em 1949.

 "Eu viajei por todos os cantos deste país e conversei com as melhores pessoas, e posso assegurar a você que o processamento de dados é uma moda e não vai durar até o final do ano".

 Editor responsável por livros de negócios da Prentice Hall, em 1957.

 "O potencial mercado de máquinas de cópia é de, no máximo, cinco mil (unidades)."

 IBM, para os eventuais fundadores da Xerox, dizendo que as fotocopiadoras não teriam um mercado tão grande que justificasse a sua produção, em 1959.