УНИВЕРСИТЕТСКИЙ КОЛЛЕДЖ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Транспортная задача линейного программирования

Под названием — транспортная задача объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.

Различают два типа транспортных задач:

- ✓ по критерию стоимости (план перевозок оптимален, если достигнут минимум затрат на его реализацию)
- ✓ по критерию времени (план оптимален, если на его реализацию затрачивается минимум времени).

м

Общая постановка Т3

Имеется три поставщика и четыре потребителя однородной продукции. Известны затраты на перевозку груза от каждого поставщика каждому потребителю. Обозначим их c_{ij} , $i = \overline{1,3}$; $j = \overline{1,4}$. Запасы грузов у поставщиков равны a_i , $i = \overline{1,3}$. Известны потребности каждого потребителя b_j , $j = \overline{1,4}$. Будем считать, что суммарные потребности равны суммарным запасам:

$$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j.$$

Требуется составить такой план перевозок, чтобы обеспечить минимальные суммарные затраты при полном удовлетворении потребностей.

Введем переменные x_{ij} — количество груза, перевозимого от i-го поставщика j-му потребителю.

۲

Ограничения задачи

потребности всех потребителей должны быть удовлетворены полностью:

$$\begin{cases} x_{11} + x_{21} + x_{31} = b_1; \\ x_{12} + x_{22} + x_{32} = b_2; \\ x_{13} + x_{23} + x_{33} = b_3; \\ x_{14} + x_{24} + x_{34} = b_4; \end{cases}$$

$$\sum_{i=1}^{3} x_{ij} = b_j, \quad j = \overline{1,4};$$

груз от поставщика должен быть вывезен полностью:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = a_1; \\ x_{21} + x_{22} + x_{23} + x_{24} = a_2; \\ x_{31} + x_{32} + x_{33} + x_{34} = a_3; \end{cases} \qquad \sum_{j=1}^{4} x_{ij} = a_i, \quad i = \overline{1,3};$$

условие неотрицательности переменных:

$$x_{ij} \ge 0$$
, $i = \overline{1, 3}$, $j = \overline{1, 4}$.

м

Целевая функция

 Целевая функция должна минимизировать суммарные затраты на перевозку:

$$Z_{\min} = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$

Пример

Четыре овощехранилища каждый день обеспечивают картофелем три магазина. Магазины подали заявки соответственно на 17, 12 и 32 т. Овощехранилища имеют соответственно 20, 20, 15 и 25 т. Тарифы (в д.е. за 1 т) указаны в следующей таблице:

Овощехранилища	Магазины				
Овощехранизища	1	2	3		
-1	2	7	4		
2	3	2	1		
3	5	6	2		
4	3	4	7		

Составьте план перевозок, минимизирующий суммарные транспортные расходы.

Методы нахождения опорного плана

- Метод северо-западного угла;
- Метод минимального (максимального) элемента
- Метод аппроксимации Фогеля.

Метод северо-западного угла

На три базы A_1 , A_2 , A_3 поступил очередной груз в количествах равных Пример 140, 160, 120 ед. Этот груз требуется перевезти в четыре пунктов назначения B_1 , B_2 , B_3 , B_4 в количествах 150, 90, 100, 80. Тарифы перевозок представлена матрицей

$$C = \begin{bmatrix} 2 & 3 & 4 & 2 \\ 8 & 4 & 1 & 4 \\ 9 & 7 & 3 & 6 \end{bmatrix}$$

 $C = \begin{bmatrix} 2 & 3 & 4 & 2 \\ 8 & 4 & 1 & 4 \\ 9 & 7 & 3 & 6 \end{bmatrix}$ Найти план перевозок даной транспортной задачи методом северно-западного угла.

Пункты отправления	Пунк	•			
	B_1	B_2	B_3	B_4	Запасы
A_1	2	3	4	2	140
A_2	8	4	1	4	160
A_3	9	7	3	6	120
Потребности	150	90	100	80	0

$$m+n-1=3+4-1=6$$

 $\Sigma A_i=140+160+120=420.$
 $\Sigma B_j=150+90+100+80=420.$
 $\Sigma A_i=\Sigma B_j.$

Пункты	Пун	-			
отправления	B_1	B_2	B_3	B_4	Запасы
A_1	2 140	3	4	2	0 [140]
A_2	8	4	1	4	160 [160]
A_3	9	7	3	6	120 [120]
Потребности	10 [150]	90	100	80	420

Пункты	Пун				
отправления	B_1	B_2	B_3	B_4	Запасы
A_1	2 140	3	4	2	0 [140]
A_2	8 10	4	1	4	150 [160]
A_3	9	7	3	6	120 [120]
Потребности	0 [150]	90 [90]	100 [100]	80 [80]	420

Пункты	Пун	КИІ			
отправления	B_1	B_2	B_3	B_4	Запасы
A_1	2 140	3	4	2	0 [140]
A_2	8 10	4 90	1 60	4	0 [160]
A_3	9	7	3 40	6 80	0 [120]
Потребности	0 [150]	0 [90]	0 [100]	0 [80]	420

$$X = \begin{bmatrix} \mathbf{140} & 0 & 0 & 0 \\ \mathbf{10} & \mathbf{90} & \mathbf{60} & 0 \\ 0 & 0 & \mathbf{40} & \mathbf{80} \end{bmatrix}$$

 $F=2\cdot140+8\cdot10+4\cdot90+1\cdot60+3\cdot40+6\cdot80=1380.$

7

Метод минимального элемента

- В отличие от метода северно-западного угла, в методе минимального элемента выбор пунктов отправления и пунктов назначения производится ориентируясь на тарифы перевозок, т.е. в каждом шаге нужно выбрать клетку с минимальным тарифом перевозок. Если таких клеток несколько, то выбираем один из них.
- Надо отметить, что при данном методе определения заполняемой клетки, стоимость перевозок как правило бывает меньше, чем при методе северно западного угла. Поэтому целесообразно начальный опорный план найти методом минимального элемента.

Метод минимального (максимального) элемента

- Суть метода заключается в том, что из всей таблицы стоимостей выбирают *наименьшую* и в клетку, которая ей соответствует, помещают *меньшее* из чисел a_i и b_i .
- Затем из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя.
- Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.

Пункты отправления	Пунк	Пункты назначения					
	B_1	B_2	B_3	B_4	Запасы		
A_1	2	3	1	2	150		
A_2	3	4	5	1	100		
A_3	3	6	3	4	100		
Потребности	140	100	70	40	0		

Пункты	Пун	ия			
отправления	B_1	B_2	B_3	B_4	Запасы
A_1	2	3	1 70	2	80 [150]
A_2	3	4	5	1	100 [100]
A_3	3	6	3	4	100 [100]
Потребности	140 140	100 [100]	0 [70]	40 [40]	350

Пункты	Пун	0			
отправления	B_1	B_2	B_3	B_4	Запасы
A ₁	2 80	3	1 70	2	0 [150]
A_2	3 60	4	5	1 40	0 [100]
A_3	3 0	6 100	3	4	0 [100]
Потребности	0 [140]	0 [100]	0 [70]	0 [40]	350

Пример

$$m+n-1=3+4-1=6$$

$$\Sigma A_{i}=150+100+100=350$$

$$\Sigma B_{i}=140+100+70+40=350$$

$$\sum A_i = \sum B_j$$
.

Пункты	Пун				
отправления	B_1	B_2	B_3	B_4	Запасы
A_1	2	3	1 70	2	80 [150]
A_2	3	4	5	1 40	60 [100]
A_3	3	6	3	4	100 [100]
Потребности	140 140	100 [100]	0 [70]	0 [40]	350

$$X = \begin{bmatrix} 80 & 0 & 70 & 0 \\ 60 & 0 & 0 & 40 \\ 0 & 100 & 0 & 0 \end{bmatrix}$$

$$F=2.80+1.70+3.60+1.40+3.0+6.100=1050$$
.

Задание

■ Найти опорный план для задачи

	Пооторинии	П	отреб	бител	Запасы	
	Поставщики	B ₁	B ₂	B_3	B ₄	груза
	A ₁	2	6	3	1	11
X=	A ₂	3	7	8	5	11
	A_3	9	2	4	5	8
	Потребность в грузе	5	9	9	7	30

Метод аппроксимации Фогеля

- Для каждой строки и для каждого столбца находим разности между двумя записанными в них минимальными тарифами. Полученные разности записываем в специально отведенные для этого столбце и в строке в таблице условий задачи.
- Среди указанных разностей выбираем максимальную. В строке (или в столбце), которой данная разность соответствует, определяем минимальный тариф. Клетку, в которой он записан заполняем на данной итерации.
- Если минимальный тариф одинаков для нескольких клеток данной строки (столбца), то для заполнения выбираем ту клетку, которая соответствует наибольшей разности между двумя минимальными тарифами в данном столбце (строке).
- Применение метода аппроксимации Фогеля позволяет получить либо опорный план, близкий к оптимальному, либо сам оптимальный план.

Пункты отправления	Пунк	0			
	B_1	B_2	B_3	B_4	Запасы
A_1	2	3	1	2	150
A_2	3	4	5	1	100
A_3	3	6	3	4	100
Потребности	140	100	70	40	0

4	m-	+n-	1=	3+4	-1	=6
	,,,,		_	9.	_	_

$$\Sigma A_{i}=150+100+100=350$$

$$\Sigma B_{i}=140+100+70+40=350$$

$$\sum A_i = \sum B_j$$
.

Пункты	Пун	ікты на:	значен	п п		
отправления	B_1	B_2	<i>B</i> ₃	B_4	Запасы	Разности по строкам
A_1	2	3	1 70	2	80 [150]	1
A_2	3	4	5	1	100 [100]	2
<i>A</i> ₃	3	6	3	4	100 [100]	0
Потребности	140 [140]	100 [100]	0 [70]	40 [40]	350	
Разности по столбцам	1	1	2	1		•

Пункты	Пун	кты на:	значен	RNI	_			
отправления	B_1	B_2	B_3	B_4	Запасы	Разности по строкам		
A_1	2	3	1 70	2	80 [150]	1	0	
A_2	3	4	5	1 40	60 [100]	2	2	
A_3	3	6	3	4	100 [100]	0	1	
Потребности	140 [140]	100 [100]	0 [70]	0 [40]	350	*		
Разности по столбцам	1	1	2	1		:		

Пример

Пункты	Пун	кты наз	вначен	ия	_	Разности по строкам					
отправления	B_1	B_2	B_3	B_4	Запасы						
A_1	2 40	3 40	1 70	2	0 [150]	1	0	1	1	0	-
A_2	3	4 60	5	1 40	0 [100]	2	2	1	1	0	0
A_3	3 100	6	3	4	0 [100]	0	1	3	<u>6-8</u> 3	5 <u>1.0</u> 08	
Потребности	0 [140]	0 [100]	0 [70]	0 [40]	350			10 0	_	av .	
Разности по столбцам	1	1	2	1				X=	_	40 0 100	6
	1	1	1000	1	ľ					100	
	1	1	-	-							
	1	1	100	-	1						
		1	-	-	1	F	=2.4	10+	3.40	0+1	70

$$X = \begin{bmatrix} \mathbf{40} & \mathbf{40} & \mathbf{70} & 0 \\ 0 & \mathbf{60} & 0 & \mathbf{40} \\ \mathbf{100} & 0 & 0 & 0 \end{bmatrix}$$

1.70 + 4.60 + 1.40 + 3.100 = 850.

м

Метод потенциалов

Идея метода потенциалов для решения транспортной задачи сводиться к следующему.

Представим себе что каждый из пунктов отправления A_i вносит за перевозку единицы груза (всё ровно куда) какую-то сумму α_i ; в свою очередь каждый из пунктов назначения B_j также вносит за перевозку груза (куда угодно) сумму β_j .

Эти платежи передаются некоторому третьему лицу ("перевозчику"). $\alpha_i + \beta_j$ ($i{=}1..m$; $j{=}1..n$) будем называть "псевдостоимостью" перевозки единицы груза из A_i в B_j .

Заметим, что платежи α_i и β_j не обязательно должны быть положительными; не исключено, что "перевозчик" сам платит тому или другому пункту какую-то премию за перевозку.

Также надо отметить, что суммарная псевдостоимость любого допустимого плана перевозок при заданных платежах (α_i и β_j) одна и та же и от плана к плану не меняется.

w

Метод потенциалов

- До сих пор мы никак не связывали платежи (α_i и β_j) и псевдостоимости с истинными стоимостями перевозок с_{i,j}. Теперь мы установим между ними связь. Предположим, что план (x_{i,j}) невырожденный (число базисных клеток в таблице перевозок ровно (m + n -1). Для всех этих клеток x_{i,j}>0. Определим платежи (α_i и β_j) так, чтобы во всех базисных клетках псевдостоимости были ровны стоимостям:
 - $\alpha_i + \beta_j = c_{i,j}$, при $x_{i,j} > 0$.
- Что касается свободных клеток (где x_{i,j} = 0), то в них соотношение между псевдостоимостями и стоимостями может быть какое угодно.

м

Метод потенциалов

 Оказывается соотношение между псевдостоимостями и стоимостями в свободных клетках показывает, является ли план оптимальным или же он может быть улучшен. Существует специальная теорема: Если для всех базисных клеток плана (x_{i,j} > 0)

$$\bullet \alpha_i + \beta_j = \mathbf{c}_{i,j}, (1)$$

■ а для всех свободных клеток ($x_{i,j} = 0$)

$$\bullet \alpha_{i} + \beta_{j} \leq \mathbf{c}_{i,j}, (2)$$

• то план является <u>оптимальным</u> и никакими способами улучшен быть не может. Нетрудно показать, что это теорема справедлива также для вырожденного плана, и некоторые из базисных переменных ровны нулю. План обладающий этим свойством называется **потенциальным** планом, а соответствующие ему платежи (α_i и β_j) — потенциалами пунктов A_i и B_j (i=1,..., m; j=1,..., n).

Метод потенциалов

■ Для решения транспортной задачи нам нужно одно построить потенциальный план. Оказывается его можно построить методом последовательных приближений, задаваясь сначала какой-то произвольной системой платежей, удовлетворяющей условию (1). При этом в каждой базисной клетке получиться сумма платежей, равная стоимости перевозок в данной клетке; затем, улучшая план следует одновременно менять систему платежей. Так, что они приближаются к потенциалам. При улучшении плана нам помогает следующее свойство платежей и псевдостоимостей: Какова бы ни была система платежей (αі и βі) удовлетворяющая условию (1), для каждой свободной клетки цена цикла пересчёта равна разности между стоимостью и псевдостоимостью в данной клетке.

Процедура построения потенциального (оптимального) плана

В качестве первого приближения к оптимальному плану берётся любой допустимый план. В этом плане m+n-1 базисных клеток, где m - число строк, n - число столбцов транспортной таблицы. Для этого плана можно определить платежи (αi и βj), так, чтобы в каждой базисной клетке выполнялось условие:

$$\bullet \quad \alpha_{i} + \beta_{j} = \mathbf{c}_{i,j} \quad (3)$$

- Уравнений (3) всего m+n-1, а число неизвестных равно m+n. Следовательно, одну из этих неизвестных можно задать произвольно (например, равной нулю). После этого из m+n-1 уравнений (3) можно найти остальные платежи αi, βj, а по ним вычислить псевдостоимости для каждой свободной клетки.
- Если оказалось, что все эти псевдостоимости не превосходят стоимостей, то план потенциален и, значит, оптимален. Если же хотя бы в одной свободной клетке псевдостоимость больше стоимости, то план не является оптимальным и может быть улучшен переносом перевозок по циклу, соответствующему данной свободной клетке. Цена этого цикла равна разности между стоимостью и псевдостоимостью в этой свободной клетке.

Критерий оптимальности

- Если известны потенциалы решения X_0 транспортной задачи и для всех незаполненных ячеек выполняются условия $\alpha_i + \beta_j \le \mathbf{c}_{i,j}$, то X_0 является оптимальным планом транспортной задачи.
- Если план не оптимален, то необходимо перейти к следующему плану (таблице) так, чтобы транспортные расходы не увеличивались.
- **Цикл перерасчёта таблицы** это последовательность ячеек, удовлетворяющая условиям:
 - одна ячейка пустая, все остальные занятые;
 - любые две соседние ячейки находятся в одной строке или в одном столбце;
 - никакие три соседние ячейки не могут быть в одной строке или в одном столбце.
- Пустой ячейке присваивают знак + , остальным поочерёдно знаки и + .

м

Метод потенциалов

- Для перераспределения плана перевозок с помощью цикла перерасчёта сначала находят незаполненную ячейку (r, s), в которой $\alpha_r + \beta_s = \mathbf{c}_{r,s}$, и строят соответствующий цикл; затем в минусовых клетках находят число $X=\min(X_{i,j})$. Далее составляют новую таблицу по следующему правилу:
 - В плюсовых клетках добавляем X;
 - Из минусовых клеток вычитаем X;
 - Все остальные клетки вне цикла остаются без изменения.
- Получим новую таблицу, дающую новое решение X, такое, что F(X₁)<=F(X₀); оно снова проверяется на оптимальность через конечное число шагов, обязательно найдем оптимальный план транспортной задачи, ибо он всегда существует.

	B1	B2	B3	B4	ЗАПАСЫ	α_{i}
A1	1	2	3	4	60	
A2	4	3	2	0	80	
A3	0	2	2	1	100	
ПОТРЕ БНОСТ И	40	60	80	60	240	
$oldsymbol{eta_j}$						

$$N = m + n - 1$$
$$m + n - 1 = 6$$

	B1	B2	B3	B4	ЗАПАСЫ	α_{i}
A1	1 40	20 2	3	4	60	0
A2	4	3 40	40	0	80	1
A3	0	2	40	1 60	100	1
ПОТРЕ БНОСТ И	40	60	80	60	240	
$oldsymbol{eta_j}$	1	2	1	0		

$$N = m + n - 1$$
$$m + n - 1 = 6$$
$$\alpha_i + \beta_j = c_{ij}$$

$$Z = 40*0+20*2+40*3+40*2+40*2+60*1=420$$

	B1		B2		В3		B4	ЗАПАСЫ	αi
A1	p 40	1	<mark>3</mark> 20	2		3	4	60	0
A2		4	p 40	3	3 40	2	0	80	1
A3	4	0		2	40	2 p	1 60	100	1
ПОТРЕ БНОСТ И	40	0	60)	80	0	60	240	
βj	1		2		1		0		

$$\alpha_i + \beta_j \leq c_{ij}$$

$$\begin{bmatrix} 1 & 7 & 7 & 9 \\ 1-3 & \alpha_1 + \beta_3 = 0 + 1 \le 3 \\ 1-4 & 0+0 \le 4 \\ 2-1 & 1+1 \le 4 \end{bmatrix}$$

$$1-4 \quad 0+0 \le 4$$

$$2-1$$
 $1+1 \le 4$

$$2 - 4 \quad 0 + 1 \le 0 \quad \Delta c_{24} = 1$$

$$3-2$$
 $2+1 \le 1$ $\Delta c_{32} = 1$

 $min{40,40,40} = 40$

	B1	B2	B3	B4	ЗАПАСЫ	α_i
A1	0 1	2 60	3	4	60	0
A2	4	3	80 2	1 0	80	-1
A3	0 40	2	0 2	1 60 P	100	-1
ПОТРЕ БНОСТ И	40	60	80	60	240	
βί	1	2	3	2		

$$N = m + n - 1$$

$$m + n - 1 = 6$$

$$\alpha_i + \beta_j = c_{ij}$$

$$\alpha_i + \beta_j \le c_{ij}$$

$$1 - 3 \quad 3 + 0 \le 3$$

$$1 - 4 \quad 2 + 0 \le 4$$

$$2 - 1 \quad 1 + (-1) \le 4$$

$$2 - 3 \quad 2 + (-1) \le 3$$

$$2 - 4 \quad 2 + (-1) \le 0 \quad \Delta c_{24} = 1$$

$$3 - 2 \quad 2 + (-1) \le 2$$

$$min{60,80} = 60$$

$$Z = 60*2+80*2+60*1+40*0+40*2+60*1=340$$

	B1	B2	В3	B4	ЗАПАСЫ	αi
A1	0 1	2 60	3	4	60	0
A2	4	3	20 2	0 60	80	-1
A3	0 40	2	60	1	100	-1
ПОТРЕ БНОСТ И	40	60	80	60	240	
βί	1	2	3	1		

$$N = m + n - 1$$

$$m + n - 1 = 6$$

$$\alpha_i + \beta_j = c_{ij}$$

$$\alpha_i + \beta_j \le c_{ij}$$

$$1 - 3 \quad 3 + 0 \le 3$$

$$1 - 4 \quad 1 + 0 \le 4$$

$$2 - 1 \quad 1 + (-1) \le 4$$

$$2 - 3 \quad 2 + (-1) \le 3$$

$$3 - 2 \quad 2 + (-1) \le 2$$

$$3 - 4 \quad 1 + (-1) \le 1$$

$$Z = 60*2+20*2+60*2=280$$

Пример

- Найдём оптимальный план задачи.
- Фирма должна отправить некоторое количество кроватей с трёх складов в пять магазинов. На складах имеется соответственно 15, 25 и 20 кроватей, а для пяти магазинов требуется соответственно 20, 12, 5, 8 и 15 кроватей. Стоимость перевозки одной кровати со склада в магазин приведены в таблице.

Смиоти	Магазины								
Склады	B1	B2	В3	B4	B5				
Al	1	0	3	4	2				
A2	5	1	2	3	3				
A3	4	8	1	4	3				

v

Пример

- В качестве опорного плана возьмем план, полученный с помощью метода "минимального элемента" X11=3, X12=12, X21=2, X24=8, X25=15, X31=15, X33=5. Все остальные элементы равны 0.
- Составим систему уравнений для нахождения потенциалов решения, найдем сумму соответствующих потенциалов для каждой свободной ячейки и пересчитаем тарифы (стоимости) для каждой свободной ячейки.

	Bl	B2		B3		B4		B5		
Al	1		0		3		4		2	15
	3	12								3
A2	5		1		2		3		3	25 17
	4					8		15		2
A3	4		8		1		4		3	26
	15			5						15
	20 47 2	12		5		8		15		

$$\begin{pmatrix} \alpha 1 + \beta 1 = c11 = 1 \\ \alpha 1 + \beta 2 = c12 = 0 \\ \alpha 2 + \beta 1 = c21 = 5 \\ \alpha 2 + \beta 4 = c24 = 3 \\ \alpha 2 + \beta 5 = c25 = 3 \\ \alpha 3 + \beta 1 = c31 = 4 \\ \alpha 3 + \beta 3 = c33 = 1 \end{pmatrix} \begin{cases} \alpha 1 = 0 \\ \beta 1 = 1 \\ \alpha 2 = 4 \\ \beta 2 = 0 \\ \beta 3 = -2 \\ \beta 3 = -2 \\ \beta 4 = -1 \\ \alpha 3 = 3 \\ \beta 5 = -1 \end{cases} \begin{cases} c13 = -2 \\ c14 = -1 \\ c15 = -1 \\ c22 = 4 \\ c23 = 2 \\ c32 = 2 \\ c33 = 2 \\ c33 = 2 \\ c35 = 2 \end{cases} \begin{cases} c'13 = 5 \\ c'14 = 5 \\ c'15 = 3 \\ c'22 = -1 \\ c'23 = 0 \\ c'32 = 4 \\ c'34 = 2 \\ c'35 = 1 \end{cases}$$

Пример

 Так как у нас получились отрицательные значения, то полученный план не является оптимальным.
 Выберем ячейку для пересчета 22. Получим:

		Bl		B2			В3			B4		B5		
Al	+ 3	1		12	0			3			4		2	15
A2	-	-	;	+	1			2			3		3	25
	2								8			15		
A3		4	ŀ		8			1			4		3	20
	15					5								
		20		12			5			8		15		

$$X=\min\{2, 12\}=2$$

Строим следующую транспортную таблицу

		Bl		B2		B3			B4		B5	Í	
Al	+ 5	1	- 10	0			3			4		2	15
A2	-	5	+	1			2			3		3	25
	0		2					8			15		
A3		4		8			1			4		3	20
	15				5								
		20		12		5			8		15	l	

M

Пример

 Проверим полученный план на оптимальность. Теперь ячейка 12 не заполнена.

$$\begin{pmatrix} \alpha 1 + \beta 1 = c11 = 1 \\ \alpha 1 + \beta 2 = c12 = 0 \\ \alpha 2 + \beta 2 = c22 = 1 \\ \alpha 2 + \beta 4 = c24 = 3 \\ \alpha 3 + \beta 1 = c31 = 4 \\ \alpha 3 + \beta 3 = c33 = 1 \end{pmatrix} \begin{cases} \alpha 1 = 0 \\ \beta 1 = 1 \\ \alpha 2 = 1 \\ \beta 2 = 0 \\ \beta 3 = -2 \\ \alpha 3 = 2 \\ \alpha 3 = 2 \\ \beta 5 = -1 \end{cases} \begin{cases} c13 = -2 \\ c14 = 2 \\ c15 = -2 \\ c12 = 0 \\ c23 = -1 \\ c32 = 3 \\ c32 = 3 \\ c34 = 5 \\ c35 = -2 \end{cases}$$

м

Пример

 Построенный план не является оптимальным, следовательно, производим пересчет. Выберем ячейку 35.

		Bl		B2		В3			B4			B5		
Al	+	1	- 10	0			3			4			2	15
A2		5	+	1			2			3	-		3	25
	0		2					8			15			
A3	-	4		8			1			4	+		3	20
	15				5									
		20		12		5			8			15		

 $X=min\{15, 10, 15\}=10$

Пример

Строим следующую транспортную таблицу.

	В	1	B2		В3		I	34	B5		
Al	15	1	1	0		3		4		2	15
A2		5		1		2		3		3	25
	0		12				8		5		
A3		4	-	8		1		4		3	20
	5				5				10		
	2	0	12		5			8	15		

10

Пример

Проверим построенный план на оптимальность.

$$\begin{cases} \alpha 1 + \beta 1 = c11 = 1 \\ \alpha 2 + \beta 2 = c22 = 1 \\ \alpha 2 + \beta 4 = c24 = 3 \\ \alpha 2 + \beta 5 = c25 = 3 \\ \alpha 3 + \beta 1 = c31 = 4 \\ \alpha 3 + \beta 5 = c35 = 3 \end{cases} \begin{cases} \alpha 1 = 0 \\ \beta 1 = 1 \\ \alpha 2 = 3 \\ \beta 2 = -2 \\ \beta 3 = -2 \\ \beta 4 = 0 \\ \alpha 3 = 3 \\ \beta 5 = 0 \end{cases} \begin{cases} c12 = -2 \\ c13 = -2 \\ c14 = 0 \\ c15 = 1 \\ c21 = 4 \\ c23 = 1 \\ c32 = 1 \\ c32 = 1 \\ c34 = 1 \end{cases}$$

- Полученный план является оптимальным. X11=15, X22=12, X24=8, X25=5, X31=5, X35=10. Все остальные Xij=0.
- F=1*15+1*12+3*8+3*5+4*5+1*5+3*10=121

Задания

2	4	7	9	200
5	1	8	12	270
11	6	4	3	130
122	82	242	154	

18	2	3	12	180
3	4	8	7	160 140
4	5	6	12	140
7	1	5	6	120
152	152	122	174	

4	5	3	7	280
7	6	2	9	175
1	3	9	8	125
2	4	5	6	130
92	182	304	132	

Литература

Основные источники

- Половников Виктор Антонович Экономико-математические методы и модели: компьютерное моделирование: Учебное пособие / И.В. Орлова, В.А. Половников. 3-е изд., перераб. и доп. М.: Вузовский учебник: НИЦ ИНФРА-М, 2019. 389 с.: 60х90 1/16. (п) ISBN 978-5-9558-0208-4 http://znanium.com/catalog/product/424033
- Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: Учеб. пособие. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2018. 432 с: ил.

Дополнительные источники

- Математическое и имитационное моделирование: учеб. пособие / А.И. Безруков, О.Н. Алексенцева. М.: ИНФРА-М, 2017. 227 с. + Доп. материалы, http://znanium.com/catalog/product/811122
- Моделирование систем управления с применением Matlab: Учебное пособие / Тимохин А.Н., Румянцев Ю.Д; Под ред. А.Н.Тимохина М.: НИЦ ИНФРА-М, 2016. 256 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт) ISBN 978-5-16-010185-9 http://znanium.com/catalog/product/590240
- Интернет-ресурсы
- http://window.edu.ru
- http:// edu.ru
- http://Fcior.edu.ru