

Lámpások

Feladatnév	Lanterns/Lámpások
Input file	standard input
Output file	standard output
Időkorlát	3 seconds
Memóriakorlát	1024 megabytes

János gazda elvitte a tehéncsordáját túrázni az Alpokban. Kis idő múltán besötétedett és ez véget vetett a túrának. Viszont néhány tehén a hegyvonulatok között ragadt, és János gazdának kell kimentenie őket.

A teheneket rejtő hegyvonulat n ponttal ábrázolható, amelyek egy függőleges, két dimenziós síkban helyezkednek el. Ezeket a pontokat a továbbiakban csúcsoknak nevezzük. A csúcsok 1-től n-ig vannak sorszámozva, sorrendben balról jobbra. Az i. csúcsnak a koordinátái (i, h_i) . A h_i érték az i. csúcs **magasságát** jelöli. Garantált, hogy a h_1, h_2, \ldots, h_n értékek az $1 \ldots n$ számok egy permutációját alkotják. (Ez azt jelenti, hogy minden $j = 1, \ldots, n$ esetén pontosan egy olyan $i \in \{1, \ldots, n\}$ van, amelyre $h_i = j$.)

Minden *i*-re $(1 \le i < n)$ az *i*. és i + 1. csúcs egy egyenes szakasszal van összekötve.

Mivel éjszaka van, János gazda csak úgy mozoghat a hegyvonulaton, ha van nála legalább egy működő lámpás. Szerencsére van k darab megvásárolható lámpás a csúcsokon. A j. lámpás ($1 \le j \le k$) a p_j csúcson vásárolható meg c_j frankért.

Sajnos a j. lámpás csak akkor működik, ha János gazda pillanatnyi magassága adott $[a_j,b_j]$ intervallumban van. Más szóval, a j. lámpás nem működik, ha János gazda jelenlegi magassága szigorúan kisebb mint a_j vagy szigorúan nagyobb, mint b_j . Tudjuk, hogy a lámpások nem mennek tönkre, ha elhagyják az intervallumukat. Például, ha János magassága túllépi b_j -t, akkor a j. lámpás nem működik, de amint ismét b_j magasságba ereszkedik, a lámpás megint működni fog.

Amennyiben János gazda jelenleg a p. csúcson van, az alábbi három dolgot teheti:

- Megvehet egyet a p. csúcson elérhető lámpások közül. Ha megvesz egy lámpást, azt utána örökké használhatja.
- Ha p > 1, átmehet a p 1. csúcsra.
- Ha p < n, átmehet a p + 1. csúcsra.

János soha sem mozoghat működő lámpás nélkül. Csak akkor sétálhat át egy csúcsról egy szomszédos csúcsra, ha a séta minden pillanatában legalább egy meglévő lámpása működik. (Egy séta alatt nem csak egy lámpást használhat.)

Például tegyük fel, hogy János gazda egy 4 magasságú csúcson van, és át szeretne menni egy szomszédos 1 magasságú csúcsra. Ha van neki két lámpása, amelyek közül az egyik az [1,3], a másik a [3,4] magasságintervallumban működik, akkor át tud sétálni az egyik csúcsról a másikra.

Viszont ha Jánosnak olyan lámpásai vannak, amelyek az [1,1] és [2,5] intervallumokban működnek, akkor nem tud átsétálni a két csúcs között, hiszen például egyik lámpás sem működik 1.47 magasságban.

Több független kérdésre kell meghatároznod a választ.

Minden olyan j-re $(1 \leq j \leq k)$, amelyre igaz, hogy $a_j \leq h_{p_j} \leq b_j$, tegyük fel, hogy János a p_j csúcson kezdi a bejárást, a j. lámpás megvételével. Ahhoz, hogy bejárja az egész hegyvonulatot, az n csúcs mindegyikét legalább egyszer meg kell látogatnia, a fenti háromféle lépés ismételt végrehajtásával. Minden ilyen j-re határozd meg azt a minimális teljes költséget frankban, amennyit ki kell fizetnie ahhoz, hogy bejárja a teljes hegyvonulatot. (Ez a költség tartalmazza a j. lámpás kezdeti megvásárlását.)

Input

A bemenet első sora két egész számot tartalmaz: n és k ($1 \le n \le 2000$, $1 \le k \le 2000$) – a hegycsúcsok számát és az elérhető lámpások számát, ilyen sorrendben.

A második sorban n darab, szóközzel elválasztott egész szám van: h_1,h_2,\ldots,h_n ($1\leq h_i\leq n$) - az egyes csúcsok magasságai. Biztosan tudjuk, hogy a h_i számok az $1\ldots n$ számok egy permutációja.

A j. sor a következő k sor közül négy, szóközzel elválasztott egész számot tartalmaz: p_j , c_j , a_j , és b_j ($1 \le p_j \le n$, $1 \le c_j \le 10^6$, $1 \le a_j \le b_j \le n$) – a j. lámpás melyik csúcson vásorolható meg, a lámpás árát és a működési intervallumának határait, ebben a sorrendben.

Output

Minden j -re $(1 \le j \le k)$:

- Ha h_{p_j} kívül esik az $[a_j,b_j]$ intervallumon, a kimenet legyen -1.
- Különben, ha János gazda nem tudja bejárni a teljes hegyvonulatot a j. lámpással kezdve a vásárlást, a kimenet legyen -1.
- ullet Különben, a kimenet legyen az elköltött teljes költség frankban, amit János gazdának a teljes hegyvonulat bejárására kell költenie, a j. lámpással kezdve a vásárlást,

Pontozás

Öt tesztcsoport van:

Az 1. csoport értéke 9 pont: $n \le 20$ és $k \le 6$.

A 2. csoport értéke 12 pont: $n \le 70$ és $k \le 70$.

A 3. csoport értéke 23 pont: $n \leq 300$, $k \leq 300$ és $h_i = i$ minden $1 \leq i \leq n$.

A 4. csoport értéke 16 pont: $n \leq 300$, $k \leq 300$.

Az 5. csoport értéke 40 pont: nincs további megkötés.

Példa

standard input	standard output
7 8	7
4231567	-1
3 1 2 4	4
1 2 1 3	10
4 4 1 7	30
6 10 1 7	-1
6 20 6 6	-1
6 30 5 5	-1
7 40 1 6	
7 50 7 7	

Megjegyzés

Ha János gazda az 1. lámpást a 2. csúcson vásárolja meg, akkor a következő módon tudja bejárni a hegyvonulatot:

- balra indul az 1. csúcsra
- megveszi a 2. sorszámú lámpást
- jobbra mozog a 4. csúcsig
- megveszi a 3. számú lámpást
- jobbra megy a 7. csúcsig.

Ekkor János gazda minden csúcson járt már legalább egyszer és összesen 1+2+4=7 frankot költött.

János gazda nem kezdheti a vásárlást a 2., 6., vagy a 7. lámpással, mivel azok nem működnek azokon a csúcsokon, amiken meg lehet őket vásárolni. Ezekre a lámpásokra a válasz-1.

Ha János gazda a 3. vagy a 4. lámpással kezd, akkor minden csúcsot meg tud látogatni újabb lámpás vásárlása nélkül.

Ha az 5. lámpással kezdi a vásárlást, akkor a 3. lámpást még később meg kell vennie.

Ha a 8. lámpással kezd, akkor megakad a 7. csúcsnál. Mégha megveszi a 7. lámpást is, akkor sem tud a 7. csúcsról a 6. csúcsra jutni.