

Types of Machine Learning

Supervised Learning

- Build a mathematical model from labeled data (training data)
- Each training example has one or more inputs and a desired output

Semi-supervised Learning:

only part of the training data are annotated

Unsupervised Learning

The input data have no labels

Reinforcement Learning

 Design a software agent that can self-learn a model to maximize cumulative reward in an environment

Data Types (Measurement Scales)

Nominal Data (Labels)

- Nominal data are labeling variables without any quantitative value
- Encoded by one-hot encoding for machine learning
- Examples:

What is your Gender?	What languages do you speak?		
O Female	O Englisch		
O Male	O French		
	O German		
	O Spanish		

Ordinal Data

- Ordinal values represent discrete and ordered units
- The order is meaningful and important

What Is Your Educational Background?

- 1 Elementary
- 2 High School
- 3 Undegraduate
- 4 Graduate

Interval Data

- Interval values represent ordered units that have the same difference
- Problem of Interval: Don't have a true zero
- Example: Temperature Celsius (°C) vs. Fahrenheit (°F)

Temperature?

- O 10
- O -5
- O 0
- 0 + 5
- \bigcirc + 10
- 0 + 15

Ratio

- Same as interval data but have absolute zero
- Can be applied to both descriptive and inferential statistics
- Example: weight & height

Machine Learning vs. Statistics

 https://www.r-bloggers.com/whats-the-difference-betweenmachine-learning-statistics-and-data-mining/

Machine learning	Statistics		
network, graphs	model		
weights	parameters		
learning	fitting		
generalization	test set performance		
supervised learning	regression/classification		
unsupervised learning	density estimation, clustering		
large grant = \$1,000,000	large grant = \$50,000		
nice place to have a meeting: Snowbird, Utah, French Alps	nice place to have a meeting: Las Vegas in August		

scikit-learn.org

Home Install

Installation Documentation -

Examples

Google Custom Search

λ

scikit-learn

Machine Learning in Python

- · Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

— Examples

Clustering

Automatic grouping of similar objects into sets

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,
mean-shift. ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased

efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. — Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics. — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.

— Examples

Supervised and Unsupervised Learning

Supervised Unsupervised Learning Learning Clustering Regression **Dimension** Classification Reduction

Supervised and Unsupervised Learning

Supervised Unsupervised Learning Learning Clustering Regression **Dimension** Classification Reduction

Linear Regression

Least Squares

$$\min_{\boldsymbol{w}} \|\boldsymbol{w}^T \boldsymbol{x} - \boldsymbol{y}\|_2^2$$


```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear model
from sklearn.metrics import mean squared error, r2 score
# Load the diabetes dataset
diabetes = datasets.load diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes X train = diabetes X[:-20]
diabetes y train = diabetes.target[:-20]
diabetes X test = diabetes X[-20:]
diabetes v test = diabetes.target[-20:]
# Create linear regression object
regr = linear model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes X train, diabetes_y_train)
# Make predictions using the testing set
diabetes y pred = regr.predict(diabetes X test)
# Plot outputs
plt.scatter(diabetes X test, diabetes y test, color='black')
plt.plot(diabetes X test, diabetes y pred, color='blue',
linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()
```

Ridge Regression

Impose a penalty on the size of coefficients

$$\min_{w} \| \mathbf{w}^{T} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \alpha \| \mathbf{w} \|_{2}^{2}$$


```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear model
# X is the 10x10 Hilbert matrix
X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
y = np.ones(10)
# Compute paths
n = 200
alphas = np.logspace(-10, -2, n alphas)
coefs = []
for a in alphas:
   ridge = linear model.Ridge(alpha=a, fit intercept=False)
   ridge.fit(X, y)
   coefs.append(ridge.coef )
# Display results
ax = plt.gca()
ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set xlim(ax.get xlim()[::-1]) # reverse axis
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the
regularization')
plt.axis('tight')
plt.show()
```

Supervised and Unsupervised Learning

Naïve Bayes

Probabilistic classifier based on Bayes' theorem

$$P(y|\mathbf{x}) = P(y|x_1, x_2, ..., x_n)$$

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

$$Posterior = \frac{Prior \times Liklihood}{Evidence}$$

• Bayes assumes features x_i are conditional independent

$$P(x|y) = P(x_1|y) P(x_2|y) \cdots P(x_n|y) = \prod_{i=1}^{n} P(x_i|y)$$

$$\Rightarrow P(y|\mathbf{x}) = \frac{P(y) \prod_{i=1}^{n} P(x_i|y)}{P(\mathbf{x})} \propto P(y) \prod_{i=1}^{n} P(x_i|y)$$

$$\Rightarrow \hat{y} = arg \max_{y} P(y) \prod_{i=1}^{n} P(x_i|y)$$

Gaussian Naive Bayes in Scikit

•
$$P(x_i|y_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{\left(-\frac{(x-\sigma\mu_k)^2}{2\sigma_k^2}\right)}$$

```
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
>>> print("Number of mislabeled points out of a total %d points : %d"
... % (iris.data.shape[0],(iris.target != y_pred).sum()))
Number of mislabeled points out of a total 150 points : 6
```

Logistic Regression (3-1)

Sigmoid function

$$S(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

Derivative of Sigmoid

$$S(x) = S(x)(1-S(x))$$

S-shaped curve

https://en.wikipedia.org/wiki/Sigmoid_function

Logistic Regression (3-2)

Binary classification with decision boundary t

$$y = P(x, w) = P_{\theta}(x) = \frac{1}{1 + e^{-(w^T x + b)}}$$

$$y = \begin{cases} 0, & x < t \\ 1, & x \ge t \end{cases}$$

Logistic Regression (3-3)

Loss function: cross entropy

loss=
$$\begin{cases} -\log(1 - P_{\theta}(x)), & \text{if } y = 1\\ -\log(P_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

$$\Rightarrow L_{\theta}(\mathbf{x}) = -y \log(1 - P_{\theta}(\mathbf{x})) + -(1 - y)\log(1 - P_{\theta}(\mathbf{x}))$$

$$\nabla L_W(\mathbf{x}) = -(y - P_{\theta}(\mathbf{x}))\mathbf{x}$$

Logistic Regression Example

```
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y)
>>> clf.predict(X[:2, :])
array([0, 0])
>>> clf.predict_proba(X[:2, :])
array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
      [9.7...e-01, 2.8...e-02, ...e-08]])
>>> clf.score(X, y)
0.97...
```

Support Vector Machine (SVM)

- SVM builds a model to assign each example to one category or the other
- Non-probabilistic binary linear classifier
- Hard margin

$$y_i(ec{w}\cdotec{x}_i-b)\geq 1, \quad ext{ for all } 1\leq i\leq n.$$

• Soft margin

$$\left[rac{1}{n}\sum_{i=1}^n \max\left(0,1-y_i(ec{w}\cdotec{x}_i-b)
ight)
ight] + \lambda \|ec{w}\|^2$$

SVM with Kernel

• Handle non-linear data

Support Vector Classification (SVC)

- Multi-class SVM
- One-against-One
- One-against-All

```
>>> X = [[0], [1], [2], [3]] >>>
Y = [0, 1, 2, 3]
>>> clf = svm.SVC(gamma='scale',
decision_function_shape='ovo')
>>> clf.fit(X, Y)
SVC(C=1.0, cache size=200, class weight=None,
coef0=0.0
decision_function_shape='ovo', degree=3,
gamma='scale', kernel='rbf',
max_iter=-1, probability=False, random_state=None,
shrinking=True,
tol=0.001, verbose=False)
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes: 4*3/2 = 66
>>> clf.decision_function_shape = "ovr"
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes 4
```

Training, Validation, Testing

- Tuning the hypterparameters of our model
- The information of test data should not be leaked into our model
- Better generalize the model to future unseen data

K-Fold Cross Validation

Lower the variance of validation set

Feature Engineering & Feature Learning

Data preprocessing

- Vectorization
- Normalization
- handling missing value

Feature engineering

Good features still make learning easier

Raw data: pixel grid		
Better features: clock hands' coordinates	{x1: 0.7, y1: 0.7} {x2: 0.5, y2: 0.0}	{x1: 0.0, y2: 1.0} {x2: -0.38, 2: 0.32}
Even better features: angles of clock hands	theta1: 45 theta2: 0	theta1: 90 theta2: 140

Capacity, Overfitting and Underfitting

• The more capacity the network has, the more quickly it can model the training data, but the more susceptible it is to overfitting

Regularization

Weight regularization – L1 and L2 norm

Dropout

- randomly dropping out (setting to zero) a number of output features of the layer during training
- Dropout applied to an activation matrix at training time
- At test time, the activation matrix is unchanged

0.3	0.2	1.5	0.0	500/	0.0	0.2	1.5	0.0
0.6	0.1	0.0	0.3	50% dropout	0.6	0.1	0.0	0.3
0.2	1.9	0.3	1.2		0.0	1.9	0.3	0.0
0.7	0.5	1.0	0.0		0.7	0.0	0.0	0.0

Adding Dropout to the IMDB Network

```
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
```


Machine Learning Workflow

- 1. Defining the problem and assembling a dataset
- 2. Choosing a measure of success
- 3. Deciding on an evaluation protocol
- 4. Preparing your data
- 5. Developing a model that does better than a baseline
- 6. Scaling up: developing a model that overfits
- 7. Regularizing your model and tuning your hyperparameters

Deep Learning for Classification & Regression

Choosing the right last-layer activation and loss function

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse Or binary_crossentropy

Pedro Domingos – Things to Know about Machine Learning

Useful Things to Know about Machine Learning

- 1. It's generalization that counts
- 2. Data alone is not enough
- 3. Overfitting has many faces
- 4. Intuition fails in high dimensions
- 5. Theoretical guarantees are not what they seem
- 6. More data beats a cleverer algorithm
- 7. Learn many models, not just one

Learning = Representation + Evaluation + Optimization

Representation	Evaluation	Optimization	
Instances	Accuracy/Error rate	Combinatorial optimization	
K-nearest neighbor	Precision and recall	Greedy search	
Support vector machines	Squared error	Beam search	
Hyperplanes	Likelihood	Branch-and-bound	
Naive Bayes	Posterior probability	Continuous optimization	
Logistic regression	Information gain	Unconstrained	
Decision trees	K-L divergence	Gradient descent	
Sets of rules	Cost/Utility	Conjugate gradient	
Propositional rules	Margin	Quasi-Newton methods	
Logic programs		Constrained	
Neural networks		Linear programming	
Graphical models		Quadratic programming	
Bayesian networks			
Conditional random fields			

It's Generalization that Count

 The goal of machine learning is to generalize beyond the examples in the training set

Don't use test data for training

Use cross validation to verify your model

Data Alone Is Not Enough

- No free lunch theorem (Wolpert)
 - Every learner must embody some knowledge or assumptions beyond the data
- Learners combine knowledge with data to grow programs

Overfitting Has Many Faces

- Overfitting get very good results on training data but very bad results on test data
- Overfitting has many forms. Example: bias & variance
- Combat overfitting
 - Cross validation
 - Add Regularization term to avoid overfitting

Overfitting Has Many Faces - Cont'd

- Strong false assumptions can be better than weak true ones
- Example: Naive Bayes can outperform a state-of-the-art rule learner (C4.5rules) even when the true classifier is a set of rules

Intuition Fails in High Dimensions

- Curse of Dimensionality
- Algorithms that work fine in low dimensions become intractable when the input is high-dimensional
- Generalizing correctly becomes exponentially harder as the dimensionality (number of features) of the examples grows
- Our intuition only comes from 3-dimension

Theoretical Guarantees Are Not What They Seem

- Theoretical bounds are usually very loose
- The main role of theoretical guarantees in machine learning is to help understand and drive force for algorithm design

More Data Beats a Cleverer Algorithm

Try simplest algoritm first

Learn Many Models, Not Just One

- Ensembling methods: Random Forest ,XGBoost, Late Fusion
- Combining different models can get better results

Decision Forest

Metrics

		True condition		https://en.wikipedia.org/wiki/Confusion_matrix		
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	Accuracy (ACC Σ True positive + Σ True Σ Total popula	ue negative
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$ Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative		
		True positive rate (TPR), Recall, Sensitivity, probability of detection = Σ True positive Σ Condition positive False negative rate (FNR), Miss rate = Σ False negative Σ Condition positive	False positive rate (FPR), Fall-out, probability of false alarm = Σ False positive Σ Condition negative Specificity (SPC), Selectivity, True negative rate (TNR) = Σ True negative Σ Condition negative	Positive likelihood ratio (LR+) = TPR FPR Negative likelihood ratio (LR-) = FNR TNR	Diagnostic odds F ratio (DOR) = LR+ LR-	1 score = 1 sall + Precision 2

Popular Metrics

- The notations represent the number of
 - P: positive samples, N: negative samples, P': predicted positive samples,
 TP: true positives, TN: true negatives
- Recall = $\frac{TP}{P}$
- Precision = $\frac{TP}{P'}$
- Accuracy = $\frac{TP+TN}{P+N}$

ROC (Receiver Operating Characteristic)

- Evaluate binary classifier's ability
- Plot the true positive rate (TPR) against the false positive rate (FPR) at various thresholds (decision boundaries)
- Use area under curve (AUC) to evaluate performance

```
from sklearn.datasets import make classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train test split
from sklearn.metrics import roc curve, roc auc score
from matplotlib import pyplot
# generate 2 class dataset
X, y = make classification(n samples=1000, n classes=2, weights=[1,1],
random state=1)
trainX, testX, trainy, testy = train test split(X, y, test size=0.5, random state=2)
model = KNeighborsClassifier(n neighbors=3)
model.fit(trainX, trainy)
probs = model.predict proba(testX) # predict probabilities
probs = probs[:, 1] # keep probabilities for the positive outcome only
# calculate AUC
auc = roc auc score(testy, probs)
print('AUC: %.3f' % auc)
fpr, tpr, thresholds = roc curve(testy, probs) # calculate roc curve
pyplot.plot([0, 1], [0, 1], linestyle='--')
pyplot.plot(fpr, tpr, marker='.')
pyplot.show()
```


Precision-Recall (PR) Curve

- Plot Precision vs. Recall
- Popular in information retrieval

```
from sklearn.datasets import make classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train test split
from sklearn.metrics import precision_recall_curve
from matplotlib import pyplot
# generate 2 class dataset
X, y = make classification(n samples=1000, n classes=2,
weights=[0.9,0.09], random state=1)
trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5,
random state=2)
# fit a model
model = KNeighborsClassifier(n neighbors=3)
model.fit(trainX, trainy)
probs = model.predict proba(testX)[:, 1]
# predict class values
yhat = model.predict(testX)
# Calculate precision recall curve
precision, recall, thresholds = precision recall curve(testy, probs)
pyplot.plot(recall, precision, marker='.')
pyplot.show()
```

Precision

ROC Curve & PR Curve

- ROC curves should be used when there are roughly equal numbers of observations for each class
- Precision-Recall curves should be used when the data are imbalance and we only care about the positive class
- Note! ROC may be harmful
 - ROC curves can present an overly optimistic view of an algorithm's performance if there is a large skew in the class distribution

References

- Francois Chollet, "Deep Learning with Python", Chapter 4
- Pedro Domingos, "A Few Useful Things to Know about Machine Learning,"
 Commun. ACM, 2012
- https://ml-cheatsheet.readthedocs.io/en/latest/index.html
- https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
- https://towardsdatascience.com/data-types-in-statistics-347e152e8bee
- https://en.wikipedia.org/wiki/Naive Bayes classifier