HAI722I — **DM**

Ivan Lejeune

8 octobre 2025

Table des matières

1	Partie théorique													2
2	Partie pratique.													4

Instructions

Ce devoir est à rendre avant le 12 décembre 2025 à 12h, soit par mail à l'adresse : rodolphe.giroudeau@lirmm.fr, soit en déposant votre devoir durant le cours

1 Partie théorique

Exercice 1 Algorithmes pour la programmation linéaire. Considérons la formulation suivante :

$$P_{\beta} = \begin{cases} \max z = 5x_1 + 2x_2 \\ 6x_1 + x_2 \ge 6 \\ 4x_1 + 4x_2 \ge 12 \\ x_1 + 2x_2 \ge 4 \\ x_i \ge 0, \quad \forall i \in \{1, 2\} \end{cases}$$

- 1. Résoudre le problème P_{β} par la méthode du big M.
- 2. Résoudre le problème P_{β} par la méthode à deux phases.
- 3. Difficile:
 - (a) Résoudre le problème P_β par la méthode dual-simplexe.
 - (b) Soit le programme linéaire P_{θ}

$$P_{\theta} = \begin{cases} \max z = x_1 + 3x_2 \\ x_1 + x_2 \ge 3 \\ x_1 - 2x_2 \ge 5 \\ -2x_1 + x_2 \le 5 \\ x_i \ge 0, \quad \forall i \in \{1, 2\} \end{cases}$$

Résoudre le problème P_{θ} par la méthode dual-simplexe.

Solution.

1. Commençons par poser le problème sous forme standard :

$$P_{\beta} = \begin{cases} \max z = 5x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5 - M \cdot (y_1 + y_2 + y_3) \\ 6x_1 + x_2 - x_3 + y_1 = 6 \\ 4x_1 + 4x_2 - x_4 + y_2 = 12 \\ x_1 + 2x_2 - x_5 + y_3 = 4 \\ x_i \ge 0, y_j \ge 0, \quad \forall i \in \{1, \dots, 5\}, \forall j \in \{1, 2, 3\}. \end{cases}$$

Ensuite on construit notre tableau du simplexe :

		c	5	2	0	0	0	-M	-M	-M
c^J	variables de base		x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
-M	$x_1^1 = y_1$	6	6	1	-1	0	0	1	0	0
-M	$x_2^1 = y_2$	12	4	4	0	-1	0	0	1	0
-M	$x_2^1 = y_3$	4	1	2	0	0	-1	0	0	1
	z(x)	-22M	-11M - 5	-7M - 2	M	M	M	0	0	0

et on déroule l'algorithme :

- on rentre x_1 ,
- on sort y_1 .

		c	5	2	0	0	0	-M	-M	-M
c^J	variable	es de base	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
5	$x_1^2 = x_1$	1	1	$\frac{1}{6}$	$-\frac{1}{6}$	0	0	$\frac{1}{6}$	0	0
-M	$x_2^2 = y_2$	8	0	$\frac{10}{3}$	$\frac{4}{6}$	-1	0	$-\frac{4}{6}$	1	0
-M	$x_2^2 = y_3$	3	0	<u>11</u> 6	$\frac{1}{6}$	0	-1	$-\frac{1}{6}$	0	1
	z(x)	-11M + 5	0	$-\frac{31}{6}M - \frac{7}{12}$	$-\frac{5}{6}M-\frac{5}{6}$	-M	-M	$\frac{1}{6}M + \frac{5}{6}$	0	0

Exercice 2 Dualité. Considérez le programme linéaire le plus général envisageable donné cidessous :

$$\begin{cases} \min z = c_1 x_1 + c_2 x_2 \\ A_{11} x_1 + A_{12} x_2 \le b_1 \\ A_{21} x_1 + A_{22} x_2 = b_2 \\ x_i \ge 0, \quad \forall i \in \{1, 2\} \end{cases}$$

où A est une matrice $(m_1 + m_2) \times (n_1 + n_2)$ et $c, x \in \mathbb{R}^{n_1 + n_2}$ et $b \in \mathbb{R}^{m_1 + m_2}$. Caractériser le dual.

Solution.

Exercice 3 Ensemble convexe. Soit C_1 et C_2 deux convexes de \mathbb{R}^{m+n} . Montrer que l'ensemble

$$C = \{(x, y_1 + y_2) \mid x \in \mathbb{R}^m, y_1 \in \mathbb{R}^n, y_2 \in \mathbb{R}^n, (x, y_1) \in C_1, (x, y_2) \in C_2\}$$

est également convexe.

Solution.

Exercice 4 Modélisation et dualité. Considérons un problème d'affectation avec m jobs et n travailleurs $(n \ge m)$. Chaque job doit être affecté à exactement un travailleur. Soit p_{ij} le rendement obtenu si on affecte le job i au travailleur j, où $i \in \{1, \ldots, m\}$ et $j \in \{1, \ldots, n\}$. On cherche une affectation qui maximise le rendement total.

- 1. Donner le programme linéaire.
- 2. Donner la formulation du dual de ce problème.

Solution.

Exercice 5 Programmation linéaire : Farkas. Considérons le programme linéaire suivant, qui dépend de $\varepsilon \in \mathbb{R}$:

$$\begin{cases} \min z = 4x_1 - 2x_2 \\ x_2 \le 3 \\ \varepsilon x_1 + (2 - \varepsilon)x_2 \le 4 \\ x_i \ge 0, \quad \forall i \in \{1, 2\} \end{cases}$$

- 1. Montrer que le problème est réalisable $\forall \varepsilon \in \mathbb{R}$.
- 2. Pour quelles valeurs de ε la valeur optimale est-elle non bornée?

Solution.

Exercice 6 Résolution numérique. Résoudre le programme linéaire suivant par la méthode Primal-Dual :

$$Primal = \begin{cases} \min z(x_1, x_2, x_3) = 2x_1 + x_2 + 2x_3 + 8x_4 \\ 2x_1 - x_2 + 3x_3 - 2x_4 = 3 \\ -x_1 + 3x_2 - 4x_3 = 1 \\ x_i \ge 0, \quad \forall i \in \{1, 2, 3, 4\} \end{cases}$$

Solution.

2 Partie pratique

Exercice 7.

Solution.

Exercice 8.

Solution.

Exercice 9.

Solution.