

Algoritmos Genéticos

Teoria e Prática

Prof. Dr. Diego Bruno

Education Tech Lead na DIO Doutor em Robótica e *Machine Learning* pelo ICMC-USP

Algoritmos Genéticos

O que são Algoritmos Genéticos?

Etapas do AG

O que são Algoritmos Genéticos?

Criação de novos

indivíduos através do cruzamento

Algoritmos baseados na genética biológica

de indivíduos já existentes pelo operador de Crossover Solução através de Algoritmo Genético gerando População ordenada Função População criada novos fatores de escala Forma do gene de um indivíduo segundo valor da de criado aleatoriamente segundo ____ ___ função de fitness Fitness restricões de T ___ _____ E1 E2 E3 A1 B1 A2 B2 A3 B3 _____ ___ Seleção do n Melhores ___ Valor de indivíduos Fitness do melhor para formar Indivíduo insatisfatório nova população Função de Fitness Melhor indivíduo Alteração de Valor de Nova da geração indivíduos através do população Resposta do Fitness do operador de Mutação problema De tamanho melhor gerando novos fatores de n+x ordenada indivíduo escala seaundo satisfatório valor da função de fitness

O que são Algoritmos Genéticos?

Algoritmos baseados na genética biológica

Soluções

Heurísticas e não
determinísticas

Gerar o melhor valor possível: ótimo global

AG são heurísticos

Onde aplicamos AG? Exemplo: encontrar um funcionário

Trabalhamos com regiões de busca

Soluções Heurísticas e não determinísticas

Definição para AG

Definições

Onde aplicamos AG?

Um **Algoritmo Genético (AG)** é uma técnica de busca utilizada na ciência da computação para achar soluções aproximadas em problemas de otimização e busca.

Aplicações de AG

Aplicações de AG

Onde aplicamos AG?

- Navegação robótica
- Inteligência Artificial
- Geração de novos dados ®
- Jogos digitais

Aplicações de AG

Exemplo: Aplicações em ensino e chatbots

Gerar combinações de respostas para o usuário

Gerar combinações de perguntas

Deixar o sistema mais próximo de uma interação humana

Exemplo: Planejamento de rotas em robôs móveis

Métodos para AG

Passo 0: Gera população inicial

Gera população de forma aleatória

Define a população dentro de uma região de busca

Como implementar um AG?

Passo 1: Seleção dos melhores indivíduos iniciais

Como implementar um AG?

Passo 2: Recombinação de indivíduos

110101

100100

(a)

A recombinação vai recombinar os dois melhores indivíduos

A meta e gerar um indivíduo melhor do que seus pais

Como implementar um AG?

Passo 3: Seleção dos melhores indivíduos iniciais

Antes da Mutação: 11100

Selecionar um ponto do cromossomo e gerar mutação

Evita a convergência prematura do AG

Funcionamento

Gerar soluções para o comportamento dos personagens em um game

Evitar comportamentos repetidos entre os agentes do game

Gerar comportamentos novos para cada agente

Ensinar um agente em seu funcionamento desde o ponto "zero".

Ensinar o comportamento do agente do "zero"

Aprendizado por tentativa e erro

Vamos ver algo mais simples...

Vamos ver algo mais simples...

Ensinar o comportamento do agente do "zero"

Aprendizado por tentativa e erro

Implementação

Implementação do algoritmo no Colab

Fonte: https://colab.research.google.com/github/scottire/fastpages/blob/master/_notebooks/2020-07-20-interactive-genetic-algorithm-dashboard-from-scratch-in-python.ipynb#scrollTo=TSrmSBdE7r0q

Algoritmo genético para resolver o problema da mochila

Instalação das bibliotecas necessárias.

O problema da mochila é um problema de optimização combinatório. Nesse caso, a mochila aguenta uma certa carga máxima e o objetivo é preenchela com uma certa quantidade de objetos. Cada objeto tem um peso e um valor. O objetivo central é preencher a mochila com o maior valor possível sem ultrapassar a carga máxima.

Problema NP-Completo

Fonte:https://colab.research.google.com/github/duducosmos/problemadamochila/blob/main/ProblemaDa Mochila.ipynb#scrollTo=LpqGIGoa48vn

Obrigado!

