

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (AUTONOMOUS Madhurawada, Visakhapatnam Affiliated to Andhra University, Visakhapatnam B. Tech. I-Semester Regular Examinations, March 2023

Calculus and Linear Algebra [Common to CH, CE, CS, EC, EE, IT, ME & ME (Robotics)]			
		1-03-2023 Time: 3 Hours M:	ax. Marks: 70
2.	All	over ONE Question from each UNIT parts of a Question must be answered in one place to get valued. questions carry equal marks.	
		UNIT-I	
1.	a)	root test.	7 Mark
	b)	of the following functions	7 Mark
2.	a)	$f(x) = \sqrt{x}, g(x) = \frac{1}{\sqrt{x}} \text{ in } [a, b], 0 < a < b$ Examine the convergence of the infinite series	7 Mar
		$\frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots + \left(\frac{n+1}{n+2}\right)^n x^n + \dots, \ x > 0$	
	b)	Using mean value theorem show that $\frac{\pi}{4} + \frac{3}{25} < tan^{-1} \left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{1}{6}$	7 Mar
		UNIT-II	
3)	a)	If $u = x + y + z$, $uv = y + z$, $uvw = z$, show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v$	7 Mar
	b)	Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	7 Mar
4.	a)	If $u = y^2 e^{\frac{y}{x}} + x^2 \tan\left(\frac{x}{y}\right)$ compute $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$	7 Mar
	b)	Find the maximum and minimum values of the function $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$	7 Mai
		UNIT-III	-24
5.	a)	Evaluate $\iint_R xydxdy$, where R is the region bounded by $x - axis$, the line $x = 2a$	Ma 7 Ma
		and the curve $x^2 = 4ay$	16
	b)	Evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$ by changing the order of integration.	7 Ma
5.	a)	Evaluate $\iint_R (x+y)^2 dxdy$, Where R is the parallelogram in the $xy-plane$ with vertical $(1,0)$, $(3,1)$, $(2,2)$, $(0,1)$, using the transformation $u=x+y$ and $v=x-2y$	ices 7 Ma
	b)	Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z dz dx dy$	7 M:

UNIT-IV

7. a) Find the values a and b for which the equations x + y + z = 3, x + 2y + 2z = 6, x + ay + 3z = b have
 (i) no Solution (ii) unique Solution and (iii) many solutions.

7 Marks

b) Find Eigen values and Eigen vectors of $A = \begin{bmatrix} -1 & -1 & 2 \\ 0 & 5 & 3 \\ 0 & 0 & 2 \end{bmatrix}$

7 Marks

8. a) Solve the system of equations x + 3y + 8z = 4; 4x + 4y + 3z = -2; x + 3y + 4z = 1.

7 Marks

b) Find the rank of the matrix, $A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 5 \end{bmatrix}$

7 Marks

UNIT-V

9. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the value of 14 Marks A^{-1} and A^{4}

Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ into canonical form. Hence 14 Marks find rank, index, signature and nature of the quadratic form.

-