Spreading disease through the air.

presentation summary

Data exploration

How have we built our network from the data?

Spectral clustering

How have we achieved meaningful clusters using K-Means?

Graph signal processing

How have we used the heat kernel to evaluate the efficiency of propagation?

Methods & results

What methods were used and how do they compare?

network creating steps

from data to network

- data collected
- 2 datasets : routes & airports ~ edges & nodes
- adjacency matrix

cleaning

- self-loops
- isolated nodes

1 2 3

enhancing

- directed > undirected
- adding weights

giant component

- 7 connected component
- 1 giant component
- 6 small components

Our network.

- 3 154 airports ~ nodes
- 18 592 edges
- 11.8 average degree
- 12 diameter
- 0.49 average clustering coefficient
- 3.96 average shortest path

Model

simulation

Modeling disease as a signal

- The **infection score** of each airport
- Initial state is a sum of 5 **Dirac** functions with magnitude 1/8

Heat kernel describing the evolution over time

- Complexity does not depend on the number of sources
- Continuous over time

measurement

Signal properties

- Always sum up to 1 on the whole graph

Our score

- Number of infected airports

When is an airport infected?

- Threshold of 1/N

Clustering

motivation

NP: cannot try all solution

The possible k sources over N nodes is C(N, k), not polynomial!

→ need to make assumptions

Our solution : clustering

- Compute the effect of each source individually
- Cluster the network in k groups
- Final solution: the strongest source of each cluster
- → the clustering must be equally sized

Why spectral?

What we want:

- few interconnections between clusters
- many intra-connections inside each clusters
- Balanced clusters

=> We need to use the **Normalized** one

How:

Algorithm: Normalized Spectral Clustering

Compute the matrix H of first k eigenvectors of \mathbf{L}_{norm}

Apply k-means to rows of H to obtain cluster assignments

tweaking parameters

Find the best embedding dimension d

It shouldn't be too high.

Adapt k to the problem

For our question, just take 5.

Use Normalized Spectral Clustering

We should avoid unbalanced clusters

Before Filtering

After Filtering

Results

Our solution

Beijing, Atlanta, Sao Polo, Amsterdam, Istanbul

Top-5 degree

Beijing, Atlanta, Chicago, Paris, London

Can we do better?

Beijing, Atlanta, Istanbul, London, Moscow

conclusion? "it works!"

We found a solution

We answered our main question

Visually, the solution is intuitive

- The k points are all important cities
- The k points are well spread geographically

The whole process is efficient

- Complexity does not explode even when k is large

Questions

thank you.

k=20

k=50

k=100

