

COPY OF PAPERS ORIGINALLY FILED

#3

1

SEQUENCE LISTING

<110> CIHLAR, TOMAS	
<120> NOVEL GENE ENCODING ORGANIC ANION TRANSPORTER	
<130> 240.1PCD	
<140> 10/086,816 <141> 2002-02-28	
<150> 09/330,245 <151> 1999-06-10	
<150> 60/132,267 <151> 1999-05-03	
<150> 60/088,864 <151> 1998-06-11	
<160> 10	
<170> PatentIn Ver. 2.1	
<210> 1 <211> 2123 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (263)(1912)	
<400> 1 ttcctgccct gacccccaaa gtgaggagaa gctgcaaggg aaaagggag	g gacagatcag 60
ggagaccggg gaagaaggag gacgagccaa ggaggctgct gtcccccca	c agagcagete 120
ggactcagct cccgggaagc aacccagctg cggaggcaac ggcagtgct	g ctcctccagc 180
gaaggacagc aggcaggcag acagacagag gtcctgggac tggaaggcc	t cagececeag 240
ccactgggct gggcctggcc ca atg gcc ttt aat gac ctc ctg Met Ala Phe Asn Asp Leu Leu 1 5	cag cag gtg 292 Gln Gln Val 10
ggg ggt gtc ggc cgc ttc cag cag atc cag gtc acc ctg g Gly Gly Val Gly Arg Phe Gln Gln Ile Gln Val Thr Leu V 15 20	rtg gtc ctc 340 Val Val Leu 25
ccc ctg ctc ctg atg gct tct cac aac acc ctg cag aac t Pro Leu Leu Met Ala Ser His Asn Thr Leu Gln Asn P 30 35	
gcc atc cct acc cac cac tgc cgc ccg cct gcc gat gcc a Ala Ile Pro Thr His His Cys Arg Pro Pro Ala Asp Ala A 45 50 55	

														GJÀ aaa		484
			_		_				_	_			_	ccc Pro		532
				_	-					_				tgc Cys 105		580
_					_		_							gtg Val		628
														gcc Ala		676
	_		_				_			_	_			Gly		724
														tac Tyr		772
_		_					_	_	-					ttc Phe 185		820
														ggc		868
			_								_			cac His		916
	_	_				_				_		_	_	ggc Gly	_	964
														cac His	ctg Leu 250	1012
_		_	_						_					tcc Ser 265		1060
				_	_	_								ctg Leu	-	1108

L.																	
										3							
.•	ctc Leu	acc Thr	ctg Leu 285	agg Arg	gcc Ala	ctg Leu	cag Gln	aga Arg 290	gtc Val	gcc Ala	cgg Arg	atc Ile	aat Asn 295	Gly ggg	aag Lys	cgg Arg	1156
	gaa Glu	gaa Glu 300	gga Gly	gcc Ala	aaa Lys	ttg Leu	agt Ser 305	atg Met	gag Glu	gta Val	ctc Leu	cgg Arg 310	gcc Ala	agt Ser	ctg Leu	cag Gln	1204
	aag Lys 315	gag Glu	ctg Leu	acc Thr	atg Met	ggc Gly 320	aaa Lys	ggc Gly	cag Gln	gca Ala	tcg Ser 325	gcc Ala	atg Met	gag Glu	ctg Leu	ctg Leu 330	1252
	cgc Arg	tgc Cys	ccc Pro	acc Thr	ctc Leu 335	cgc Arg	cac His	ctc Leu	ttc Phe	ctc Leu 340	tgc Cys	ctc Leu	tcc Ser	atg Met	ctg Leu 345	tgg Trp	1300
	ttt Phe	gcc Ala	act Thr	agc Ser 350	ttt Phe	gca Ala	tac Tyr	tat Tyr	999 Gly 355	ctg Leu	gtc Val	atg Met	gac Asp	ctg Leu 360	cag Gln	ggc Gly	1348
	ttt Phe	gga Gly	gtc Val 365	agc Ser	atc Ile	tac Tyr	cta Leu	atc Ile 370	cag Gln	gtg Val	atc Ile	ttt Phe	ggt Gly 375	gct Ala	gtg Val	gac Asp	1396
·	ctg Leu	cct Pro 380	gcc Ala	aag Lys	ctt Leu	gtg Val	ggc Gly 385	ttc Phe	ctt Leu	gtc Val	atc Ile	aac Asn 390	tcc Ser	ctg Leu	ggt Gly	cgc Arg	1444
	cgg Arg 395	cct Pro	gcc Ala	cag Gln	atg Met	gct Ala 400	gca Ala	ctg Leu	ctg Leu	ctg Leu	gca Ala 405	ggc Gly	atc Ile	tgc Cys	atc Ile	ctg Leu 410	1492
	ctc Leu	aat Asn	G1 y 999	gtg Val	ata Ile 415	ccc Pro	cag Gln	gac Asp	cag Gln	tcc Ser 420	att Ile	gtc Val	cga Arg	acc Thr	tct Ser 425	ctt Leu	1540
	gct Ala	gtg Val	ctg Leu	999 Gly 430	aag Lys	ggt Gly	tgt Cys	ctg Leu	gct Ala 435	gcc Ala	tcc Ser	ttc Phe	aac Asn	tgc Cys 440	atc Ile	ttc Phe	1588
	ctg Leu	tat Tyr	act Thr 445	999 Gly	gaa Glu	ctg Leu	tat Tyr	ccc Pro 450	aca Thr	atg Met	atc Ile	cgg Arg	cag Gln 455	aca Thr	ggc Gly	atg Met	1636
	gga Gly	atg Met 460	ggc Gly	agc Ser	acc Thr	atg Met	gcc Ala 465	cga Arg	gtg Val	ggc Gly	agc Ser	atc Ile 470	gtg Val	agc Ser	cca Pro	ctg Leu	1684
	gtg Val 475	agc Ser	atg Met	act Thr	gcc Ala	gag Glu 480	ctc Leu	tac Tyr	ccc Pro	tcc Ser	atg Met 485	cct Pro	ctc Leu	ttc Phe	atc Ile	tac Tyr 490	1732
	ggt Gly	gct Ala	gtt Val	cct Pro	gtg Val 495	gcc Ala	gcc Ala	agc Ser	gct Ala	gtc Val 500	Thr	gtc Val	ctc Leu	ctg Leu	cca Pro 505	gag Glu	1780

acc ctg ggc cag cca ctg cca gac acg gtg cag gac ctg gag agc agg 182 Thr Leu Gly Gln Pro Leu Pro Asp Thr Val Gln Asp Leu Glu Ser Arg 510 515 520	28
aaa ggg aaa cag acg cga cag caa caa gag cac cag aag tat atg gtc 187 Lys Gly Lys Gln Thr Arg Gln Gln Gln Glu His Gln Lys Tyr Met Val 525 530 535	76
cca ctg cag gcc tca gca caa gag aag aat gga ctc tgaggactga 192 Pro Leu Gln Ala Ser Ala Gln Glu Lys Asn Gly Leu 540 545 550	22
gaaggggcct tacagaaccc taaagggagg gaaggtccta caggtctccg gccacccaca 198	32
caaggaggag gaagaggaaa tggtgaccca agtgtggggg ttgtggttca ggaaagcatc 204	12
ttcccagggg tccacctccc tttataaacc ccaccagaac cacatcatta aaaggtttga 210)2
ctgcgaaaaa aaaaaaaaa a 212	23
<210> 2 <211> 550 <212> PRT <213> Homo sapiens	
<pre><400> 2 Met Ala Phe Asn Asp Leu Leu Gln Gln Val Gly Gly Val Gly Arg Phe 1 5 10 15</pre>	
Gln Gln Ile Gln Val Thr Leu Val Val Leu Pro Leu Leu Met Ala 20 25 30	
Ser His Asn Thr Leu Gln Asn Phe Thr Ala Ala Ile Pro Thr His His 35 40 45	
Cys Arg Pro Pro Ala Asp Ala Asn Leu Ser Lys Asn Gly Gly Leu Glu 50 60	
Val Trp Leu Pro Arg Asp Arg Gln Gly Gln Pro Glu Ser Cys Leu Arg 65 70 75 80	
Phe Thr Ser Pro Gln Trp Gly Leu Pro Phe Leu Asn Gly Thr Glu Ala 85 90 95	
Asn Gly Thr Gly Ala Thr Glu Pro Cys Thr Asp Gly Trp Ile Tyr Asp 100 105 110	
Asn Ser Thr Phe Pro Ser Thr Ile Val Thr Glu Trp Asp Leu Val Cys 115 120 125	
Ser His Arg Ala Leu Arg Gln Leu Ala Gln Ser Leu Tyr Met Val Gly 130 135 140	
Val Leu Leu Gly Ala Met Val Phe Gly Tyr Leu Ala Asp Arg Leu Gly 145 150 155 160	

- Arg Arg Lys Val Leu Ile Leu Asn Tyr Leu Gln Thr Ala Val Ser Gly 165 170 175
- Thr Cys Ala Ala Phe Ala Pro Asn Phe Pro Ile Tyr Cys Ala Phe Arg 180 185 190
- Leu Leu Ser Gly Met Ala Leu Ala Gly Ile Ser Leu Asn Cys Met Thr 195 200 205
- Leu Asn Val Glu Trp Met Pro Ile His Thr Arg Ala Cys Val Gly Thr 210 215 220
- Leu Ile Gly Tyr Val Tyr Ser Leu Gly Gln Phe Leu Leu Ala Gly Val 225 230 235 240
- Ala Tyr Ala Val Pro His Trp Arg His Leu Gln Leu Leu Val Ser Ala 245 250 255
- Pro Phe Phe Ala Phe Phe Ile Tyr Ser Trp Phe Phe Ile Glu Ser Ala 260 265 270
- Arg Trp His Ser Ser Ser Gly Arg Leu Asp Leu Thr Leu Arg Ala Leu 275 280 285
- Gln Arg Val Ala Arg Ile Asn Gly Lys Arg Glu Glu Gly Ala Lys Leu 290 295 300
- Ser Met Glu Val Leu Arg Ala Ser Leu Gln Lys Glu Leu Thr Met Gly 305 310 315 320
- Lys Gly Gln Ala Ser Ala Met Glu Leu Leu Arg Cys Pro Thr Leu Arg 325 330 335
- His Leu Phe Leu Cys Leu Ser Met Leu Trp Phe Ala Thr Ser Phe Ala 340 345 350
- Tyr Tyr Gly Leu Val Met Asp Leu Gln Gly Phe Gly Val Ser Ile Tyr 355 360 365
- Leu Ile Gln Val Ile Phe Gly Ala Val Asp Leu Pro Ala Lys Leu Val 370 375 380
- Gly Phe Leu Val Ile Asn Ser Leu Gly Arg Arg Pro Ala Gln Met Ala 385 390 395 400
- Ala Leu Leu Leu Ala Gly Ile Cys Ile Leu Leu Asn Gly Val Ile Pro 405 410 415
- Gln Asp Gln Ser Ile Val Arg Thr Ser Leu Ala Val Leu Gly Lys Gly
 420 425 430
- Cys Leu Ala Ser Phe Asn Cys Ile Phe Leu Tyr Thr Gly Glu Leu 435 440 445
- Tyr Pro Thr Met Ile Arg Gln Thr Gly Met Gly Met Gly Ser Thr Met 450 455 460

Ala Arg Val Gly Ser Ile Val Ser Pro Leu Val Ser Met Thr Ala Glu 475 470 465 Leu Tyr Pro Ser Met Pro Leu Phe Ile Tyr Gly Ala Val Pro Val Ala 490 485 Ala Ser Ala Val Thr Val Leu Leu Pro Glu Thr Leu Gly Gln Pro Leu 505 Pro Asp Thr Val Gln Asp Leu Glu Ser Arg Lys Gly Lys Gln Thr Arg Gln Gln Gln Glu His Gln Lys Tyr Met Val Pro Leu Gln Ala Ser Ala 535 Gln Glu Lys Asn Gly Leu <210> 3 <211> 77 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 3 accgtctaga attcttttta tttttaattt tctttcaaat acgtccacca tggcctttaa 60 tgacctcctg cagcagg <210> 4 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 4 tactcacgtg gatcctgatc agacgtctgt aggaccttcc ctccctttag g 51 <210> 5 <211> 9 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Kozak consensus sequence <400> 5 ccaccatgg

<210><211><212><212><213>	25			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> cccgct	6 Eggca ctectectee gggag		2	2 5
<210><211><212><212><213>	26			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> gtagag	7 gctcg gcagtcatgc tcacca		2	? 6
<210><211><212><212><213>	24			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> ccagc	8 gctgt cactgtcctc ctgc		2	2.4
<210><211><212><212><213>	29			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> aacccc	9 ccaca cttgggtcac catttectc		2	9
<210><211><211><212><213>	14			

<220>

<223> Description of Artificial Sequence: Synthetic immunogenic peptide

<400> 10

Thr Val Gln Asp Leu Glu Ser Arg Lys Gly Lys Gln Thr Arg

1 5 10