Theory of Computation

Shukla Banik

Siksha 'O' Anusandhan University shuklabanik@soa.ac.in

October 9, 2020

Q 8 Construct a DFA, that accepts set of strings over $\Sigma = \{a, b\}$ which ends with "ab"

Explanation:

- 1. We have to create DFA that accepts set of strings which ends with "ab".
- 2. First we will make DFA for accepting the smallest string that is "ab".
- 3. In DFA we have to take care of all the input alphabets at every state.
- 4. So we have to take care of input symbol 'b' on state q_0 , that is we made self-loop on start state.
- 5. On state q_1 if 'a' comes then we will accept it as repetition of 'a' and that 'a' will not ruin anything. Because, we want "ab" in the end.
- 6. On State q_2 if 'b' comes then that will be a problem as we only want "ab" in the end not "bb", so we will direct 'b' to state q_0 .
- 7. If 'a' comes on state q_2 then we will direct it to state q_1 and if one 'b' comes then we will be good by getting "ab" in the end.

Q 8 Construct a DFA, that accepts set of strings over $\Sigma = \{a, b\}$ which ends with "ab"

DFA can be described as $(\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\}).$

 $L = \{AII \text{ the strings which ends with "ab"}\}$

 $L = \{ab, abab, abbab, abaabbab, bbabaabab, \ldots\}$

Q 8

Q 8

Q 8

The transition table is:

States	а	Ь	
$\overrightarrow{q_1}_{q_2*}$	$\begin{array}{c} q_1 \\ q_1 \\ q_1 \end{array}$	90 92 90	

$$\delta(q_0, a) = (q_1)$$
, $\delta(q_0, b) = (q_0)$
 $\delta(q_1, a) = (q_1)$, $\delta(q_1, b) = (q_2)$
 $\delta(q_2, a) = (q_1)$, $\delta(q_2, b) = (q_0)$

Q 9 Construction of a DFA, that accepts set of strings over $\Sigma = \{a, b\}$ starts with a 'a'

DFA can be described as $(\{q_0, q_1, D\}, \{a, b\}, \delta, q_0, \{q_1\})$. $L = \{All \text{ the strings that start with a 'a'}\}$ $L = \{a, aa, ab, aaa, aab, \dots\}$

Q 9

The transition table is:

States	а	Ь
$\overline{ {\displaystyle \mathop{ riangle}_{q_1 *} \atop p_1 *} }$	9 ₁ 9 ₁ D	D 91 D

$$\delta(q_0, a) = (q_1)$$
, $\delta(q_0, b) = (D)$
 $\delta(q_1, a) = (q_1)$, $\delta(q_1, b) = (q_1)$
 $\delta(D, a) = (D)$, $\delta(D, b) = (D)$

Q 10 Construction of a DFA, that accepts set of strings over $\Sigma = \{a, b\}$ which contains 'a'

DFA can be described as $(\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$.

 $L = \{AII \text{ the strings which contains 'a'}\}$

 $L = \{a, aa, ab, ba, aaa, aab, abb, baa, bab, bba, \ldots\}$

Q 10

The transition table is:

States	а	Ь	
$\rightarrow q_0$	q_1	q_0	
41↑	91	41	

$$\delta(q_0,a)=(q_1)$$
 , $\delta(q_0,b)=(q_0)$ $\delta(q_1,a)=(q_1)$, $\delta(q_1,b)=(q_1)$

Q-11 Construct a DFA, that accepts set of strings over $\Sigma=\{0,1\}$ which when interpreted as binary number is divisible by '2'

For example, 110 in binary is equivalent to 6 in decimal and 6 is divisible by 2.

Explanation:

- 1. We have to create DFA that accepts set of strings which when interpreted as binary number is divisible by '2'.
- 2. First write the input alphabets, example 0, 1.
- 3. If there will n states,
- 4. Then start writing states, as for n = 2: q_0 under 0, q_1 under 1.
- 5. Continue the process as, q_0 under 0 and q_1 under 1.

11 / 17

Shukla Banik (SOA) TC October 9, 2020

Q 11 Construction of a DFA, that accepts set of strings over $\Sigma = \{0, 1\}$ which when interpreted as binary number is divisible by '2, is shown below where,

DFA can be described as $(\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\})$. $L = \{\text{All the strings which interpreted as binary number is divisible by '2'} \}$ $L = \{\epsilon, 0, 00, 10, 100, 110, \ldots\}$

12 / 17

Q 11

The transition table is:

States	0	1	
$\stackrel{ ightarrow}{q_1} q_0 st$	$\frac{q_0}{q_0}$	$rac{q_1}{q_1}$	_

$$\delta(q_0,0)=(q_0)$$
 , $\delta(q_0,1)=(q_1)$ $\delta(q_1,0)=(q_0)$, $\delta(q_1,1)=(q_1)$

Q 12

Construct a DFA, that accepts set of strings over $\Sigma = \{0, 1\}$ which when interpreted as binary number is divisible by '3'.

For example, 110 in binary is equivalent to 6 in decimal and 6 is divisible by 3.

Q 12 Construct a DFA, that accepts set of strings over $\Sigma = \{0,1\}$ which when interpreted as binary number is divisible by '3'.

DFA can be described as $(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_0\}).$

 $L = \{All \text{ the strings which when interpreted as binary number is divisible by '3'} \}$

 $L = \{\epsilon, 0, 00, 11, 110, 1001, \ldots\}$

Q 12

Q 12

The transition table is:

States	0	1
$\overrightarrow{q_1}$	90 92 91	9 ₁ 9 ₀ 9 ₂

$$\delta(q_0,0) = (q_0)$$
, $\delta(q_0,1) = (q_1)$
 $\delta(q_1,0) = (q_2)$, $\delta(q_1,1) = (q_0)$
 $\delta(q_2,0) = (q_1)$, $\delta(q_2,1) = (q_2)$