Ensembles

Rodrigo Fernandes de Mello
Invited Professor at Télécom ParisTech
Associate Professor at Universidade de São Paulo, ICMC, Brazil
http://www.icmc.usp.br/~mello
mello@icmc.usp.br

Ensembles

- Designed to reduce overfitting
 - It is central to remember the Bias-Variance Dilemma
 - The bias depends on the examples used for training
 - This is due to the Shattering Coefficient

Ensembles

- By producing several different datasets from the original
 - Based on uniform sampling with replacement
 - That brings perturbations to the input space
 - And as consequence to the distinct classifiers obtained
 - Can we formulate that and prove it?

Ensembles: Bagging

- Bagging or Bootstrap Aggregating
 - Proposed by Leo Breiman, 1994 to support the overfitting reduction
 - Given some dataset with n examples
 - It uses uniform sampling to form other m training sets with n' examples
 - If n=n' then, each new dataset is expected to contain approximately 63.2% of the examples of the original dataset
 - Observe this is a sampling with replacement
 - m models (proposed for trees) are build up:
 - Then models are combined to produce the outputs
 - By averaging, if regression
 - By voting, if classification

Ensembles: Boosting

- Boosting is based on the question posed by Kearns and Valiant (1988, 1989)
 - It attempts to convert weak learners to strong ones
 - A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing)
- Boosting is not algorithmically constrained
 - There are several algorithms
 - AdaBoost, LPBoost, XGBoost, etc.
 - They build up some model
 - Test it to check if it is more effective than guessing
 - Given some weight for it according to its performance

Ensembles: Random Forests

- Random forests or random decision forests:
 - It constructs a multitude of decision trees at training time
 - Using different uniform samples from the original training set
 - It outputs the:
 - The main class label after a voting system, when the problem involves classification
 - Or it combines the results of individual trees (models) in case of regression problems

Summary

• Questions...