<u>Página Principal</u> / Mis cursos / <u>GRADUADO-A EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS (2011) (297)</u> / <u>TOPOLOGÍA I (2122)-297 11 26 2122</u> / <u>Tema 2. Aplicaciones continuas</u> / <u>Prueba Tema 2</u>

Comenzado el	viernes, 10 de diciembre de 2021, 09:07
Estado	Finalizado
Finalizado en	viernes, 10 de diciembre de 2021, 09:51
Tiempo empleado	44 minutos 41 segundos
Calificación	

Pregunta 1

Finalizado

Se puntúa sobre 3,00

Sea T_S la topología de Sorgenfrey en $\mathbb R$. Marcar las aplicaciones f tales que $f:(\mathbb R,T_S) o (\mathbb R,T_S)$ es continua

a.
$$f(x)=\left\{egin{array}{ll} x, & x\leqslant 0, \ 1, & x>0. \end{array}
ight.$$

b.
$$f(x)=\left\{egin{array}{ll} 0, & x<0, \ 1, & x\geqslant 0. \end{array}
ight.$$

c.
$$f(x) = \left\{ egin{array}{ll} x, & x < 0, \ 1, & x \geqslant 0. \end{array}
ight.$$

d.
$$f(x)=\left\{egin{array}{ll} 0, & x\leqslant 0, \ 1, & x>0. \end{array}
ight.$$

Las aplicaciones están definidas en $(-\infty,0)\cup[0,+\infty)$ o en $(-\infty,0]\cup(0,+\infty)$. En el primer caso, como los conjuntos $(-\infty,0),[0,+\infty)$ son abiertos para la topología de Sorgenfrey, basta comprobar que f restringida a ambos abiertos es continua, y siempre lo es por ser constante o restricción de la identidad. En el segundo caso, $f^{-1}([0,\frac{1}{2}))=\{0\}$, que no es abierto en T_S .

Pregunta ${\bf 2}$

Finalizado

Se puntúa 4,00 sobre 4.00

Seleccionar las afirmaciones verdaderas

- lacksquare a. El conjunto $\{(x,y,z)\in\mathbb{R}^3:z=xy\}$ con la topología inducida por la usual de \mathbb{R}^3 es homeomorfo a \mathbb{R}^2 con la topología usual
- lacksquare b. Existe un homeomorfismo $f:(\mathbb{R},T) o (\mathbb{R},T)$, donde T es la topología usual en \mathbb{R} , tal que f([0,1))=(0,1).
- \square c. Los espacios topológicos (\mathbb{N}, T_{CF}) y (\mathbb{R}, T_{CN}) son homeomorfos (T_{CF}) es la topología de los complementos finitos y T_{CN} la de los complementos numerables).
- d. Sea (X,d) un espacio métrico y $A\subset X$. Entonces $x\in \overline{A}\Leftrightarrow \delta_A(x)=0$. La función δ_A es la función distancia al conjunto A.

Respuesta correcta

No puede existir un homeomorfismo $f:(\mathbb{R},T) \to (\mathbb{R},T)$ tal que f([0,1))=(0,1) porque [0,1) no es abierto y (0,1) sí lo es.

Si $x\in\overline{A}$, existe una sucesión $\{x_i\}_{i\in\mathbb{N}}$ de puntos en A que converge a x. Entonces $\delta_A(x)\leq d(x,x_i)$ para todo $i\in\mathbb{N}$ y, por tanto, $\delta_A(x)=0$. Si $\delta_A(x)=0$, existe una sucesión de puntos $\{x_i\}_{i\in\mathbb{N}}$ en A tal que $d(x,x_i)\to 0$. Esto implica que $x_i\to x$.

El conjunto $\{(x,y,z)\in\mathbb{R}^3:z=xy\}$ con la topología inducida por la usual de \mathbb{R}^3 es homeomorfo a \mathbb{R}^2 con la topología usual porque es el grafo de la aplicación continua $f:\mathbb{R}^2\to\mathbb{R}$ definida por f(x,y)=xy.

Los espacios topológicos (\mathbb{N},T_{CF}) y (\mathbb{R},T_{CN}) no pueden ser homeomorfos porque no tienen el mismo cardinal.

Pregunta **3**

Finalizado

Se puntúa sobre 3,00

Sea $X=\{(x,y)\in\mathbb{R}^2:y=0\ \text{\'o}\ y=1\}$. Consideramos en X la relación de equivalencia $(x_1,y_1)\,R\,(x_2,y_2)\Leftrightarrow x_1=x_2$. Sea T la topología usual de \mathbb{R}^2 restringida a X. El enunciado '(X/R,T/R) es homeomorfo a \mathbb{R} con la topología usual' es:

Seleccione una:

Verdadero

Falso

La aplicación $f:X\to\mathbb{R}$ definida por la igualdad f(x,y)=x para todo $(x,y)\in\mathbb{R}^2$ verifica $R_f=R$. Es sobreyectiva por definición, continua porque es la restricción a X de la proyección primera de \mathbb{R}^2 a \mathbb{R} , y casi-abierta porque un conjunto abierto f-saturado es de la forma $U\times\{0,1\}$, con $U\subset\mathbb{R}$ abierto para la topología usual.

→ Problemas Tema 2

Ir a...

Grabaciones teoría ►