Verification and Control of CPS: Assignment 5 Due Date: Tuesday, Nov 4, 2014 (4:30 PM)

P1 Consider the third order differential equation below:

$$\frac{d^3y}{dt^3} + 1.2\frac{d^2y}{dt^2} - 2.7\frac{dy}{dt} + 15.1y = 0$$

- (a) Write it as a system of coupled ODEs by introducing new variables $w = \frac{d^2y}{dt^2}$, and $x = \frac{dy}{dt}$.
- (b) The resulting coupled ODE is a linear system:

$$\frac{d}{dt} \left(\begin{array}{c} w \\ x \\ y \end{array} \right) = A \left(\begin{array}{c} w \\ x \\ y \end{array} \right) + \vec{b}$$

What are the matrices A, \vec{b} ?

- (c) Calculate the matrix exponentials e^A , e^{2A} and e^{3A} .
- (d) For initial conditions given by w = 0.2, x = -0.1, z = 0.3, and y = 1, write down the value of y at times t = 1, 2 and 3 second.
- (e) Check whether the system is stable by computing its eigenvalues.

Note: You are free to use MATLAB (tm), Octave or Python to compute matrix exponentials and/or the eigenvalues. The Matlab/Octave function for matrix exponential is expm (and not exp).

P2 Consider the Vanderpol oscillator given by the system of coupled ODEs:

$$\begin{array}{rcl} \frac{dx}{dt} & = & y \\ \frac{dy}{dt} & = & (1 - x^2)y - x \end{array}$$

- 1. Find all the possible equilibria of this system. (**Hint**: set the RHS of the ODE to 0 and solve for x, y).
- 2. Using a Runge-Kutta solver (ode23 function in MATLAB and equivalents) solve the ODE for various initial conditions randomly chosen inside the box $x \in [-1,1]$ and $y \in [-1,1]$ for time $t \in [0,100]$ units. Plot the resulting trajectories.
- 3. Use the trajectories to decide if the system is stable or unstable at each of the equilibria found.
- 4. Draw a Simulink diagram for the Vanderpol system. Allow the simulation to set various values for x(0), y(0) and be able to plot the result.

P3 Consider the following control system:

$$\frac{d\vec{x}}{dt} = A\vec{x} + B\vec{u}\,,$$

1

wherein $A = \begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ 0.2 \end{pmatrix}$ with u as a single input.

- 1. Find a static state feedback stabilizing control law of the form $u = K\vec{x}$ using the idea of placing "eigenvalues" of the state space system as shown in the class. For this problem, the eigenvalues of the closed loop should be at $\lambda_1 = -1, \lambda_2 = -2$.
- 2. Implement a PID controller that will attempt to stabilize the value of x_1 to a reference point $x_1 = 3$. For this controller, do not use the values of x_2 in your feedback loop. Report the values of the various gains for this controller and show a plot of the closed loop simulation in Simulink.

P4 In this assignment you will model the different pieces of a simple artificial pancreas setup that controls blood glucose levels in people with type-1 diabetes.

The human insulin-glucose response is modeled by the Bergman minimal model with three state variables (G, I, X) wherein G is plasma glucose, concentration above the basal value G_B (units: mmol/L), and I is the plasma insulin concentration above the basal value I_B (units: U/L). X is the insulin concentration in an *interstitial chamber*. Note that time is measured in minutes for this model. The ODEs are

$$\begin{array}{rcl} \frac{dG}{dt} & = & -p_1G - X(G + G_B) + u_g(t) \\ \frac{dX}{dt} & = & -p_2X + p_3I \\ \frac{dI}{dt} & = & -n(I + I_b) + \frac{1}{V_I}u_i(t) \,. \end{array}$$

Typical parameter values are $p_1=0.01, p_2=0.025, p_3=1.3\times 10^{-5}, V_I=12, n=0.093, G_B=4.5, I_b=15.$

The functions $u_g(t)$ and $u_i(t)$ model the infusion of glucose and insulin into the bloodstream. Specifically, $u_g(t)$ is the rate at which glucose is appearing, while u_i is the rate at which insulin is appearing.

The initial values are

$$G(0) = 0, X(0) = 0, I(0) = 0.05$$

- (A) Draw a Simulink subsystem with two inputs: u_g, u_i for the meal glucose and meal insulin, respectively and one output G(t).
- (B) The control logic is a switched feedback controller with the following control law for the rate at which insulin is infused.

$$u_i(t) = \begin{cases} \frac{25}{3} & G(t) \le 4\\ \frac{25}{3}(G(t) - 3) & G(t) \in [4, 8]\\ \frac{125}{3} & G(t) \ge 8 \end{cases}$$

Model this in a control logic subsystem.

(C) The meal glucose model captures the rate at which the carbohydrates in a meal appear in the blood stream of the patient. A typical rate of appearance curve that is measured using trace-meal studies looks as follows:

Time Interval after meal (mins)	% of glucose appearing in interval
0 - 10	0 %
10 - 20	7 %
20 - 30	14 %
30 - 40	21 %
40 - 50	18 %
50 - 60	7 %
60 - 70	3 %
70 +	0 %

For instance, suppose a patient eats a meal with 110 gms of carbs at time T, then we can say that the value of $u_g(t)$ at time T + 55 is given by $\frac{7\%*110}{10} = 0.77 gms/min$.

Given a meal specified by gms of carbs + time of meal (minute after simulation start), implement a meal glucose module that generates the value of $u_q(t)$ for that meal using the table above.

(D) Close the loop and simulate the closed loop system for different meal sizes at time t=20. The meal sizes to be tried include $\{10gms, 20gms, 40gms, 80gms, 110gms, 125gms\}$. Simulate each scenario for $t \in [0, 240]mins$.

For each of the meal scenarios, compute the maximum and minimum values achieved for G(t) from simulation, the glucose output.