Mathematics Homework Sheet 3

Author: Abdullah Oguz Topcuoglu & Yousef Farag

Problem 1 (a)

For i=0:

$$f_1(-1) = -1$$

$$f_1(0) = 0$$

$$f_1(1) = 0$$

Meaning that:

$$f_1(\{-1,0,1\}) = \{-1,0,0\} = \{-1,0\}$$

Now lets take a look at the inverse:

$$f_1(-1) = -1$$

$$f_1(0) = 0$$

$$f_1(1) = 0$$

$$f_1(2) = 1$$

These are the only values we can get -1, 0, 1. Meaning that:

$$f_1^{-1}(\{-1,0,1\}) = \{-1,0,1,2\}$$

Now, for i=2 (the second function):

$$f_2(-1) = -4$$

$$f_2(0) = -3$$

$$f_2(1) = -2$$

Meaning that:

$$f_2(\{-1,0,1\}) = \{-4,-3,-2\}$$

Now lets take a look at the inverse:

$$f_2(2) = -1$$

 $f_2(3) = 0$
 $f_2(4) = 1$

These are the only values we can get -1, 0, 1. Meaning that:

$$f_2^{-1}(\{-1,0,1\}) = \{2,3,4\}$$

Now, for i=3 (the third function):

$$f_3(-1) = -2$$
$$f_3(0) = 0$$
$$f_3(1) = 2$$

Meaning that:

$$f_3(\{-1,0,1\}) = \{-2,0,2\}$$

Now lets take a look at the inverse:

 $f_3(x)=-1$, No such x exists in the domain of f_3 In other words, $f_3^{-1}(\{-1\})=\emptyset$ $f_3(0)=0$ $f_3(x)=1$, No such x exists in the domain of f_3 In other words, $f_3^{-1}(\{1\})=\emptyset$

These are the only values we can get -1, 0, 1. Meaning that:

$$f_3^{-1}(\{-1,0,1\}) = \{0\}$$

Problem 1 (b)

Lets start with f_1 :

 f_1 is not injective because it maps 0 and 1 to the same value, that is:

$$f_1(0) = f_1(1) = 0$$

 f_1 is surjective because it maps to all the values in the codomain.

Lets take an element from the codomain $z \in \mathbb{Z}$.

If $z \leq 0$ then we can find an element in the domain of f_3 , $x \in Z$ that maps to z. Simply x = z works.

If z > 0 then we can find an element in the domain of f_3 , $x \in Z$ that maps to z. Simply x = z + 1 works.

Now, lets take a look at f_2 :

 f_2 is injective because it maps each element in the domain to a unique element in the codomain, that is:

$$f_2(x) = f_2(y) \Rightarrow x = y$$

$$f_2(x) = x - 3, \quad f_2(y) = y - 3$$

 $x - 3 = y - 3 \Rightarrow x = y$

 f_2 is surjective because it maps to all the values in the codomain.

Lets take an element from the codomain of f_2 , $z \in \mathbb{Z}$.

We cand find an element in the domain of f_2 , $x \in Z$ that maps to z. Simply x = z + 3 works.

Now, lets take a look at f_3 :

 f_3 is injective because it maps each element in the domain to a unique element in the codomain, that is:

$$f_3(x) = f_3(y) \Rightarrow x = y$$

$$f_3(x) = 2x$$
, $f_3(y) = 2y$
 $2x = 2y \Rightarrow x = y$

 f_3 is not surjective because it does not map to all the values in the codomain. For example there is no element in the domain of f_3 that maps to 1. Generally all the odd numbers are not in the range of f_3 .

Problem 1 (c)

By looking at Problem 1 (b),

We see that f_1 is not injective thus f_1 is not bijective.

We see that f_2 is injective and surjective thus f_2 is bijective.

We see that f_3 is not surjective thus f_3 is not bijective.

Inverse of f_2 :

$$f_2: Z \to Z, \quad x \leadsto x - 3$$

$$f_2^{-1}: Z \to Z, \quad x \leadsto x + 3$$

Problem 2

Proof of Problem 2(a)

We are given that $f_s: A \to B$ is a surjective function, and we want to show that if $g \circ f_s = h \circ f_s$, then g = h.

1. **Assume** $g \circ f_s = h \circ f_s$, such that for every $x \in A$ we have:

$$g(f_s(x)) = h(f_s(x)).$$

- 2. Since f_s is surjective, for every $y \in B$, there exists some $x \in A$ such that $f_s(x) = y$.
- 3. By substituting $f_s(x) = y$ into the equation $g(f_s(x)) = h(f_s(x))$, we get:

$$g(y) = h(y).$$

This equality is true for all $y \in B$, since f_s is surjective and thus covers all elements of B.

Thus, the implication $(g \circ f_s = h \circ f_s) \Rightarrow g = h$ holds true when f_s is surjective.

Problem 2 (b)

We are given that $f_i: C \to D$ is an injective function, and we want to show that if $f_i \circ g = f_i \circ h$, then g = h.

1. **Assume** $f_i \circ g = f_i \circ h$ such that for every $x \in B$ we have:

$$f_i(g(x)) = f_i(h(x))$$

- 2. Since f_i is injective thus for each $y1, y2 \in C$, $f_i(y1) = f_i(y2) \Rightarrow y1 = y2$
- 3. By substituting g(x), h(x) into 2 we get

$$f_i(g(x)) = f_i(h(x)) \Rightarrow g(x) = h(x)$$

from 1 and 2 we get that g = h for all $x \in B$

Problem 3

Problem 3 (a)

Lets assume that opposite of the statement is true, that is there are more than one identity element. We are going to try to find a contradiction. Lets name them e_1 and e_2 .

We know that both identity elements are in the set:

$$e_1 \in F$$

$$e_2 \in F$$

$$e_1 = e_1 \cdot e_2$$
 (By definition of identity element e_2) (1)
 $= e_2 \cdot e_1$ (By commutative property of multiplication) (2)
 $= e_2$ (By definition of identity element e_1) (3)

So, this is a contradiction, we assumed there are two different identity elements but they turned out to be the same element. Thus, there can be only one identity element in a field.

Problem 3 (b)

$$\forall a,b,c \in F \quad a+c=b+c \implies a=b$$

Lets go step by step:

a = a + 0	Identity element of addition	(4)
= a + (c - c)	Inverse element of addition	(5)
= (a+c) - c	Associative property of addition	(6)
= (b+c) - c	Given $(a+c = b+c)$	(7)
= b + (c - c)	Associative property of addition	(8)
= b + 0	Inverse element of addition	(9)
= b	Identity element of addition	(10)

So, we have proven that if a + c = b + c then a = b.