绍兴市 2021 学年第二学期高中期末调测 高二物理参考答案和评分标准

一、选择题 I (每小题 3 分, 共 33 分)

题号	1	2	3	4	5	6	7	8	9	10	11
答案	A	C	A	В	D	В	В	D	C	D	С

二、选择题 II (每小题 3 分, 共 15 分)

题号	12	13	14	15	16
答案	AD	BD	BCD	AD	AC

三、实验题(共16分)

17. (6 %) (1) $3m_1\sqrt{2gd}$ (1 %) $2m_1 = m_2$ \vec{y} $3m_1\sqrt{2gd} = -m_1\sqrt{2gd} + 2m_2\sqrt{2gd}$ (2 %)

- (2) A (1分)
- (3) 小于(1分) 能(1分)
- 18. (5分)(1) C(1分) (2) 1.775 (1分) 5.0×10⁻⁷ (2分) (3) D(1分)
- 19. (5分)(1) CD(2分)(漏选得1分) (2)4.4(1分) ABC(2分)(漏选

得1分)

四、分析计算题(共36分)

20. (8分)

(1) 花盆下落高度 h=28.8m, 根据自由落体运动规律 $v^2=2$ gh v=24 m/s ……1 分 花盆与居民头顶碰撞的过程,选竖直向上为正方向,由动量定理得

 $(F-mg)t_1 = 0 - (-m_1 v) \cdots 1$

F = 106N

由牛顿第三定律,头顶受到平均撞击力大小 F'=F=106 N ······1 分

(2) 设非常短时间 Δt 内吹到广告牌上的空气质量为 m, $m = \rho Sv\Delta t$

对 Δt 时间内吹到广告牌上的空气,由动量定理得 $_{-F}\Delta t = 0 - osv^2\Delta t$ ······1 分

 $F = \rho S v^2$ ……1分

代入数据解得: $F = 1.3 \times 10^4 \text{ N}$ ······1 分

由牛顿第三定律,广告牌受到的最大风力大小 $F'=F=1.3\times10^4N$ ······1 分

评分标准:第(1)小题 4分,第(2)小题 4分,共8分;其他解法正确的也给分。

高二物理答案 第1页(共3页)

21. (8分)

(1) 当管口向上竖直放置时, 空球内的气体压强为 $P_1=P_0+\Delta P$

当管口向下竖直放置时, 空球内的气体压强为 $P_2=P_0-\Delta P$ ······1 分

根据玻意耳定律: $P_1V_1=P_2V_2$ $(P_0+\Delta P)$ $V_1=(P_0-\Delta P)$ V_2 ······1 分

(2) 根据盖-吕萨克定律: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$; $T_2 = \frac{V_2 T_1}{V_1}$ ······1 分

代入数据得: $T_2 = \frac{100 \times 278}{100 + 0.2 \times 20} \text{ K} \approx 267.3 \text{K} \cdots 1$ 分

同理: $\frac{V_1}{T} = \frac{V_3}{T_1}$ $T_3 = \frac{V_3 T_1}{V_1}$

代入数据得: $T_3 = \frac{(100 + 0.2 \times 100) \times 278}{100 + 0.2 \times 20} \text{K} \approx 320.8 \text{K} \cdots 1$ 分

∴温度测量的范围为: -5.7℃~47.8℃ ······1 分

评分标准:第(1)小题 4分,第(2)小题 4分,共8分;其他解法正确的也给分。

22. (10分)

(1) 由x-t 图像得: 金属棒匀速下滑时,速度v=7 m/s ······1 分

由平衡条件得: mg = BIL ······1 分 $mg = \frac{B^2L^2v}{R_1+v}$ ······1 分

代入数据得: $B=0.5 \text{ T} \cdots 1 \text{ 分}$

(2) 金属棒产生的感应电动势为 E=BLv=3.5 V ······1 分

电路中的电流为 $I = \frac{E}{R+r} = 2 \text{ A}$ ······1 分

金属棒两端的电压为 $U_{ba} = IR = 3 \text{ V}$ ······1 分

(3) 在 2.1s 内, 由 x-t 图像得金属棒的位移为 x=9.8 m

以金属棒 ab 为研究对象,由能量守恒定律得: $mgx = \frac{1}{2}mv^2 + Q$

代入数据得 Q=7.35J ······1 分

电阻 R 上产生的热量为 $Q_R = \frac{R}{R+r}Q = 6.3 \text{ J}$ ······1 分

评分标准: 第(1) 小题 4分, 第(2) 小题 3分, 第(3) 小题 3分, 共 10分; 其他解 法正确的也给分。

> 高二物理答案 第2页(共3页)

23. (10分)

(1) 由
$$B_0qv = m\frac{v^2}{r}$$
 得 $v = \frac{B_0qr}{m}$ ······1 分
当 $r=R$ 时,速度最大 $v_m = \frac{B_0qR}{m}$;
离开磁场时的动能 $E_k = \frac{1}{2}mv^2 = \frac{B_0^2q^2R^2}{2m}$ ······1 分

(2) 加速次数
$$N = \frac{E_k}{q \frac{U_0}{2}} = \frac{B_0^2 q R^2}{m U_0}$$
1 分

粒子从静止开始加速到出口处所需的时间 $t_{\dot{a}} = N \frac{T}{2} = \frac{\pi B_0 R^2}{U_0}$ ······1 分

(3) 每加速一次, 粒子在磁场中转半个圆周

若 $B = B_0(1+\alpha)$,则粒子在磁场中转半个圆周的时间比 $B = B_0$ 时缩短

$$\Delta t_1 = \frac{\pi m}{B_0 q} - \frac{\pi m}{B_0 (1+\alpha)q} = \frac{\alpha \pi m}{B_0 q (1+\alpha)} \cdots 1$$
分
$$n-1 次半圆周累计缩短时间 t_{\stackrel{\circ}{\otimes} \acute{\pi}} = (n-1) \Delta t_1 = \frac{(n-1)\alpha \pi m}{B_0 q (1+\alpha)}$$

要实现连续
$$n$$
 次加速 $t_{\text{def}} < \frac{T}{4} = \frac{\pi m}{2B_0 q}$ ······1 分

$$\alpha_1 < \frac{1}{2n-3} (n = 2\sqrt{3}\sqrt{4}....)$$

最大可波动系数的上限
$$\alpha_{\text{LR}} = \frac{1}{2n-3} (n = 2\sqrt{3}\sqrt{4}.....)$$
 ······1 分

若 $B = B_0(1-\alpha)$,则粒子在磁场中转半个圆周的时间比 $B = B_0$ 时延长

$$\Delta t_2 = \frac{\pi m}{B_0 (1 - \alpha) q} - \frac{\pi m}{B_0 q} = \frac{\alpha \pi m}{B_0 q (1 - \alpha)} \cdots 1 \ \ \%$$

$$n-1$$
 次半圆周累计延长时间 $t_{eta \in \mathbb{Z}} = (n-1)\Delta t_2 = \frac{(n-1)\alpha\pi m}{B_0 q(1-\alpha)}$ ······1 分

$$\alpha_2 < \frac{1}{2n-1} (n = 2.3.4...)$$

评分标准: 第(1) 小题 2分, 第(2) 小题 2分, 第(3) 小题 6分, 共 10分; 其他解法正确的也给分。