Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Exercices sur les matrices

- 1. L'inverse d'une matrice comme somme de ses puissances
- 2. Centre de $M_n(k)$
- 3. Matrices qui commutent à une matrice donnée
- 4. Matrice nilpotente et matrice inversible
- 5. Matrice d'un endomorphisme de $\mathbb{R}_n[X]$
- 6. Calcul d'inverse de matrice
- 7. Calcul de déterminant
- 8. Déterminant de matrice par bloc
- 9. Déterminant de matrice par bloc
- 10. Système avec un paramètre
- 11. Endomorphismes de $M_n(\mathbb{k})$
- 12. Forme linéaire de $M_n(\mathbb{k})$ et matrices élémentaires

2006-2007

Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Exercices sur les matrices

Énoncés

1. – L'inverse d'une matrice comme somme de ses puissances

Soit $A \in M_n(\mathbb{k})$

a. On suppose qu'il existe $k \in \mathbb{N}^*$, $\lambda_0 \in \mathbb{k}^*$, $\lambda_1, \ldots, \lambda_k \in \mathbb{k}$ tels que

$$\lambda_0 I_n + \lambda_1 A + \dots + \lambda_k A^k = 0$$

Prouver que A est inversible et déterminer A^{-1} en fonction de A et des λ_i .

b. Montrer qu'il existe $k \in \mathbb{N}^*$, $\lambda_0, \lambda_1, \dots, \lambda_k \in \mathbb{k}$ non tous nuls tels que

$$\lambda_0 I_n + \lambda_1 A + \dots + \lambda_k A^k = 0$$

Montrer que, si A est inversible, on peut en outre obtenir une telle relation avec $\lambda_0 \neq 0$.

2. – Centre de
$$M_n(k)$$

Soit $n \in \mathbb{N}^*$. Soit $i, j \in \{1, ..., n\}$. On note $E_{i,j}$ la matrice de $M_n(\mathbb{k})$ n'ayant que des 0 sauf en position (i, j) où le coefficient vaut 1.

a. Soit $i, j, k, \ell \in \{1, \dots, n\}$. Montrer que

$$E_{i,j}E_{k,\ell} = \delta_{j,k}E_{i,\ell}$$

où $\delta_{j,k}$ est le symbole de Kronecker.

b. Montrer que le centre de $M_n(k)$ est l'ensemble des matrices scalaires.

3. – Matrices qui commutent à une matrice donnée

- a. Soit $A \in M_2(\mathbb{k})$ et \mathcal{C} son commutant (l'ensemble des matrices qui commutent à A) dans $M_2(\mathbb{k})$. Montrer que dim \mathcal{C} est 2 ou 4.
- b. Soit $A, B \in GL_2(\mathbb{k})$ et $C = ABA^{-1}B^{-1}$. On suppose que A et B commutent à C. Prouver que AB = BA ou AB = -BA.

4. – Matrice Nilpotente et matrice inversible

Soit $A, B \in M_n(\mathbb{C})$, A inversible et B nilpotente. Montrer que $I_n + A^{-1}BA$ et $I_n + ABA^{-1}$ sont inversibles et déterminer leurs inverses.

5. – Matrice d'un endomorphisme de $\mathbb{R}_n[X]$

Soit $A = (a_{i,j})_{1 \leq i,j \leq n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ définie par

$$a_{i,j} = \begin{cases} C_{j-1}^{i-1} & \text{si } i \leqslant j \\ 0 & \text{sinon} \end{cases}$$

On note $\mathcal{E} = (1, X, X^2, \dots, X^n)$ la base de $\mathbb{R}_n[X]$, l'espace vectoriel des polynômes de degré inférieur ou égal à n.

Déterminer $u \in \mathcal{L}(\mathbb{R}_n[X])$ tel que $A = \text{mat}(u, \mathcal{E})$. En déduire A^{-1} et A^k pour $k \in \mathbb{N}^*$.

6. – Calcul d'inverse de matrice

Vérifier que les matrices suivantes de $M_3(\mathbb{R})$ sont inversibles et calculer leur inverse

$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

7. – CALCUL DE DÉTERMINANT

Soit $A_n = (a_{i,j})_{1 \leq i,j \leq n} \in M_n(\mathbb{R})$ définie par :

$$\forall i, j \in \{1, \dots, n\}$$
 $a_{i,j} = 2\delta_{i,j} + \delta_{i+1,j} + 3\delta_{i,j} + 1$

Calculer le déterminant de A_n .

8. – Déterminant de matrice par bloc

Soit M une matrice carrée d'ordre n=p+q de la forme

$$M = \begin{pmatrix} A & C \\ 0_{q,p} & B \end{pmatrix}$$

où $A \in M_p(\mathbb{k}), B \in M_q(\mathbb{k})$ et $C \in M_{p,q}(\mathbb{k})$. Montrer $\det(M) = \det(A) \det(B)$.

9. – Déterminant de matrice par bloc

Soit $A, B, C, D \in M_n(\mathbb{k})$ telles que AC = CA et A inversible. Montrer que

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - CB)$$

Que peut-on dire si A n'est pas inversible?

10. – Système avec un paramètre

Résoudre et discuter suivant les valeurs de λ le système

$$\begin{cases} 2(\lambda+1)x + 3y + \lambda z = \lambda+4 \\ (4\lambda-1)x + (\lambda+1)y + (2\lambda-1)z = 2\lambda+4 \\ (5\lambda-4)x + (\lambda+1)y + (3\lambda-4)z = \lambda-1 \end{cases}$$

11. – Endomorphismes de
$$M_n(k)$$

Soit $A, B \in \mathcal{M}_n(\mathbb{k})$. On définit trois endomorphismes φ , χ et ψ de $\mathcal{M}_n(\mathbb{k})$ en posant, pour tout $M \in \mathcal{M}_n(\mathbb{k})$

$$\varphi(M) = AM, \quad \chi(M) = MB, \quad \psi(M) = AMB$$

Déterminer les traces de ces endomorphismes.

12. – Forme Linéaire de $M_n(k)$ et matrices élémentaires

a. Soit $i, j \in \{1, ..., n\}$, on pose $E_{i,j} = (\delta_{i,r}\delta_{j,s})_{1 \leqslant r,s \leqslant n} \in \mathcal{M}_n(\mathbb{k})$ et pour $r \in \{1, ..., n-1\}$, on pose

$$A_r = E_{1,1} + E_{2,2} + \dots + E_{r,r}$$

$$B_r = E_{1,2} + E_{2,3} + \dots + E_{r,r+1}$$

$$C_r = E_{2,1} + E_{3,2} + \dots + E_{r+1,r}$$

Soit $r \in \{1, ..., n-1\}$. Montrer que $A_r B_r = B_r$, $B_r A_r = B_{r-1}$ si $r \neq 1$, $B_1 A_1 = 0$ et $B_r C_r = A_r$.

b. Soit $f: M_n(\mathbb{k}) \to \mathbb{k}$ une application non constante telle que

$$\forall M, N \in M_n(\mathbb{k})$$
 $f(MN) = f(M)f(N)$

Déterminer l'ensemble $\{M \in \mathcal{M}_n(\mathbb{k}); f(M) = 0\}.$

2006-2007

Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Exercices sur les matrices

Indications

1. – L'INVERSE D'UNE MATRICE COMME SOMME DE SES PUISSANCES Indication

- a. Diviser par λ_0 et mettre A en facteur.
- b. Remarquer que la famille $(I_n, A, A^2, \dots, A^p)$ est liée dès que $p > n^2$ et que s'il existe une matrice B non nulle telle que AB = 0 alors A n'est pas inversible.

2. – CENTRE DE $M_n(k)$ Indication

- a. Écrire la matrice $E_{i,j}$ avec le symbole de Kronecker.
- b. Soit A une matrice commutant avec toutes les autres matrices. Écrire A dans la base canonique $(E_{i,j})_{i,j}$ et dire que A commute avec les matrices $E_{i,j}$.

3. – Matrices qui commutent à une matrice donnée Indication

- a. Montrer que si A n'est pas une matrice scalaire, \mathcal{C} est de dimension supérieure ou égale à 2 et montrer que si dim $\mathcal{C} \geqslant 3$ alors A est scalairee nconsidérant un endomorphisme dont \mathcal{C} est le noyau.
- b. On pourra discuter suivant la liberté de la famille (I_2, A, B) .

4. – Matrice nilpotente et matrice inversible Indication

Considérer $I_n - (-1)^n C^n$ pour une certaine matrice C.

5. – Matrice d'un endomorphisme de $\mathbb{R}_n[X]$ Indication

Pour k = 0, ..., n, on a $u(X^k) = (X+1)^k$.

6. - Calcul d'inverse de matrice Indication

Utiliser la matrice complémentaire. La dernière matrice est une matrice de permutation.

7. – CALCUL DE DÉTERMINANT Indication

Faire une récurrence.

8. – DÉTERMINANT DE MATRICE PAR BLOC Indication

Distinguer les cas A inversible et A non inversible et faire un produit de matrices par bloc.

9. – Déterminant de matrice par bloc Indication

Multiplier la matrice par une matrice inversible de déterminant 1. Dans le deuxième cas, remplacer A par $A-\lambda I_n$, $\lambda\in \Bbbk^*$.

10. – Système avec un paramètre Indication

Utiliser les formules de Cramer lorsque le déterminant du système est non nul.

11. – Endomorphismes de $M_n(k)$ Indication

Appliquer ces endomorphismes à la base canonique $(E_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{k})$.

12. – FORME LINÉAIRE DE $M_n(\Bbbk)$ ET MATRICES ÉLÉMENTAIRES Indication

- a. Montrer que $E_{i,j}E_{k,\ell} = \delta_{j,k}E_{i,\ell}$.
- b. Déterminer $f(I_n)$, puis $f(0_n)$, étudier f(M) pour $M \in GL_n(\mathbb{k})$ puis pour $M \in M_n(\mathbb{k})$ non inversible. Pour le dernier cas, si r est le rang de M, il existe deux matrices inversibles P et Q telles que $M = PA_rQ$.

2006-2007

Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Exercices sur les matrices

Solutions

1. – L'inverse d'une matrice comme somme de ses puissances Solution

a. Puisque λ_0 est non nul, on a

$$A\left(-\frac{\lambda_1}{\lambda_0}I_n - \frac{\lambda_2}{\lambda_0}A - \dots - \frac{\lambda_k}{\lambda_0}A^{k-1}\right) = I_n$$
$$\left(-\frac{\lambda_1}{\lambda_0}I_n - \frac{\lambda_2}{\lambda_0}A - \dots - \frac{\lambda_k}{\lambda_0}A^{k-1}\right)A = I_n$$

Donc A est inversible et

$$A^{-1} = -\frac{\lambda_1}{\lambda_0} I_n - \frac{\lambda_2}{\lambda_0} A - \dots - \frac{\lambda_k}{\lambda_0} A^{k-1}$$

b. L'espace vectoriel $M_n(\mathbb{k})$ étant de dimension n^2 , la famille (I_n, A, \dots, A^{n^2}) est liée, donc il existe $\lambda_0, \dots, \lambda_{n^2} \in \mathbb{k}$ non tous nuls tels que

$$\lambda_0 I_n + \lambda_1 A + \dots + \lambda_{n^2} A^{n^2} = 0$$

En fait d'après le théorème de Cayley-Hamilton, il existe $\lambda_0, \ldots, \lambda_n \in \mathbb{k}$ non tous nuls $(\lambda_n = 1)$ tels que

$$\lambda_0 I_n + \lambda_1 A + \dots + \lambda_n A^n = 0$$

Énoncé Indication

Supposons A inversible. Soit $\lambda_0, \ldots, \lambda_k$ non tous nuls tels que

$$\lambda_0 I_n + \lambda_1 A + \dots + \lambda_k A^k = 0$$

On pose

$$r = \min\{i \in \mathbb{N}; i \leqslant k \text{ et } \lambda_i \neq 0\}$$

Alors

$$\lambda_r \neq 0$$
 et $\forall i \in \{0, \dots, r-1\}$ $\lambda_i = 0$

et

$$\lambda_r A^r + \lambda_{r+1} A^{r+1} + \dots + \lambda_k A^k = 0$$

$$A^r (\lambda_r I_n + \lambda_{r+1} A + \dots + \lambda_k A^{k-r}) = 0$$

$$\lambda_r I_n + \lambda_{r+1} A + \dots + \lambda_k A^{k-r} = 0$$

car A^r est inversible.

2. – CENTRE DE $M_n(k)$ Solution

a. On a $E_{i,j} = (\delta_{i,r}\delta_{j,s})_{r,s}$ et $E_{k,\ell} = (\delta_{k,r}\delta_{\ell,s})_{r,s}$. Posons $E_{i,j}E_{k,\ell} = (a_{r,s})_{t,s}$, alors pour $r,s \in \{1,\ldots,n\}$, on a

$$a_{r,s} = \sum_{t=1}^{n} \delta_{i,r} \delta_{j,t} \delta_{k,t} \delta_{\ell,s} = \delta_{i,r} \delta_{j,k} \delta_{\ell,s}$$

donc

$$E_{i,j}E_{k,\ell} = (\delta_{i,r}\delta_{j,k}\delta_{\ell,s})_{r,s} = \delta_{j,k}(\delta_{i,r}\delta_{\ell,s})_{r,s} = \delta_{j,k}E_{i,\ell}$$

b. Soit A une matrice commutant avec toutes les autres matrices de $M_n(\mathbb{k})$. On pose $A = (a_{i,j})_{i,j}$ et alors

$$A = \sum_{1 \leqslant i, j \leqslant n} a_{i,j} E_{i,j}$$

Pour tous $i, j \in \{1, \dots, n\}$

$$E_{i,j}A = E_{i,j} \sum_{1 \leqslant k,\ell \leqslant n} a_{k,\ell} E_{k,\ell} = \sum_{1 \leqslant k,\ell \leqslant n} a_{k,\ell} E_{i,j} E_{k,\ell} = \sum_{1 \leqslant k,\ell \leqslant n} a_{k,\ell} \delta_{j,k} E_{i,\ell} = \sum_{\ell=1}^n a_{j,\ell} E_{i,\ell}$$

$$AE_{i,j} = \left(\sum_{1 \leqslant k, \ell \leqslant n} a_{k,\ell} E_{k,\ell}\right) E_{i,j} = \sum_{1 \leqslant k, \ell \leqslant n} a_{k,\ell} E_{k,\ell} E_{i,j} = \sum_{1 \leqslant k, \ell \leqslant n} a_{k,\ell} \delta_{\ell,i} E_{k,j} = \sum_{k=1}^{n} a_{k,i} E_{k,j}$$

donc

$$a_{j,j} = a_{i,i}$$
 et $\forall \ell \neq j$ $a_{j,\ell} = 0$

Ainsi

$$a_{i,j} = \begin{cases} a_{1,1} & \text{si } i = j\\ 0 & \text{sinon} \end{cases}$$

et $A = a_{1,1}I_n$.

Réciproquement, il est clair que toute matrice scalaire commute avec l'ensemble des matrices de $M_n(\mathbb{R})$.

Donc le centre de $M_n(k)$ est constitué des matrices scalaires.

3. – Matrices qui commutent à une matrice donnée Solution

a. L'ensemble \mathcal{C} est un sous-espace vectoriel qui contient A et I_2 . Si A n'est pas une matrice scalaire, la famille (A, I_2) est libre et donc $\dim \mathcal{C} \geq 2$ et si A est une matrice scalaire, toute matrice commute avec A, donc $\mathcal{C} = M_2(\mathbb{R})$ et $\dim \mathcal{C} = 4$.

Supposons que \mathcal{C} est de dimension supérieure ou égale à 3. Soit φ l'endomorphisme de $M_2(\mathbb{k})$ qui à la matrice $M \in M_2(\mathbb{k})$ associe AM - MA. Son noyau est \mathcal{C} . Soit $a, b, c, d \in \mathbb{k}$ tels que

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

On a

$$\varphi(E_{11}) = \begin{pmatrix} 0 & -b \\ c & 0 \end{pmatrix} \qquad \varphi(E_{21}) = \begin{pmatrix} b & 0 \\ d-a & -b \end{pmatrix}$$
$$\varphi(E_{12}) = \begin{pmatrix} -c & a-d \\ 0 & c \end{pmatrix} \qquad \varphi(E_{22}) = \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$$

L'image de φ est engendrée par ces quatre matrices. Si $\mathcal{C} = \ker(\varphi)$ est de dimension supérieure ou égale à 3, $\operatorname{im}(\varphi)$ est de dimension inférieure ou égale à 1, i.e. ces quatre matrices sont proportionnelles. Ainsi b = c = 0 et a = d, i.e. la matrice A est scalaire. Mais dans ce cas $\mathcal{C} = \operatorname{M}_2(\mathbb{k})$.

Énoncé Indication

Par conséquent, C est de dimension 4 si A est une matrice scalaire et 2 sinon. b. Si la famille (I_2, A, B) est liée, alors la matrice A ou la matrice B s'exprime en fonction de I_2 et de l'autre matrice. Ainsi les matrices A et B commutent, i.e. AB = BA.

Sinon, la famille (I_2, A, B) est libre, le commutant de C est de dimension supérieure ou égale à 3. Donc d'après la première question, C est une matrice scalaire, i.e. il existe $\lambda \in \mathbb{k}$ tel que $C = \lambda I_2$. Mais

$$\lambda^2 = \det(\lambda I_2) = \det(C) = \det(ABA^{-1}B^{-1}) = \det(A)\det(B)\det(A^{-1})\det(B^{-1}) = 1$$

donc $\lambda = 1$ ou $\lambda = -1$, i.e. $AB = BA$ ou $AB = -BA$.

Énoncé Indication F. Geoffriau

4. – Matrice nilpotente et matrice inversible Solution

Montrons tout d'abord que $I_n + B$ est inversible (cas particulier où $A = I_n$). Soit p l'indice de nilpotence de B, alors

$$(I_n + B) \left(\sum_{k=0}^{p-1} (-1)^k B^k \right) = \sum_{k=0}^{p-1} (-1)^k B^k + \sum_{k=0}^{p-1} (-1)^k B^{k+1}$$
$$= \sum_{k=0}^{p-1} (-1)^k B^k + \sum_{k=1}^{p} (-1)^{k-1} B^k$$
$$= I_n + (-1)^{p-1} B^p = I_n$$

De plus les matrices $I_n + B$ et $\sum_{k=0}^{p-1} (-1)^k B^k$ commutent, donc la matrice $I_n + B$ est inversible d'inverse la matrice $\sum_{k=0}^{p-1} (-1)^k B^k$.

Par récurrence, on montre que pour tout $k \in \mathbb{N}$, on a $(A^{-1}BA)^k = A^{-1}B^kA$. Donc la matrice B étant nilpotente, il en est de même de la matrice $A^{-1}BA$ avec un indice de nilpotence inférieur ou égal (en fait égal). Donc d'après ce qui précède, la matrice

Énoncé Indication F. Geoffriau

 $I_n + A^{-1}BA$ est inversible d'inverse

$$\sum_{k=0}^{p-1} (-1)^k (A^{-1}BA)^k = \sum_{k=0}^{p-1} (-1)^k A^{-1}B^k A = A^{-1} \left(\sum_{k=0}^{p-1} (-1)^k B^k\right) A$$

Montrons d'une autre manière que $I_n + ABA^{-1}$ est inversible. On a

$$I_n + ABA^{-1} = AI_nA^{-1} + ABA^{-1} = A(I_n + B)A^{-1}$$

Les matrices $I_n + B$ et $I_n + ABA^{-1}$ sont donc semblables, la première étant inversible, la deuxième l'est aussi et

$$(I_n + ABA^{-1})^{-1} = (A(I_n + B)A^{-1})^{-1} = (A^{-1})^{-1}(I_n + B)^{-1}A^{-1} = A\left(\sum_{k=0}^{p-1}(-1)^kB^k\right)A^{-1}$$

Énoncé Indication F. Geoffriau

5. – Matrice d'un endomorphisme de $\mathbb{R}_n[X]$ Solution

On a

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & \mathbf{C}_{j-1}^{0} & \cdots & \cdots & \mathbf{C}_{n}^{0} \\ 0 & 1 & 2 & 3 & & \mathbf{C}_{j-1}^{1} & & & \mathbf{C}_{n}^{1} \\ 0 & 0 & 1 & 3 & & \vdots & & & \vdots \\ 0 & 0 & 0 & 1 & & \vdots & & & \vdots \\ \vdots & & & \ddots & \ddots & \vdots & & & \vdots \\ \vdots & & & & \ddots & \mathbf{C}_{j-1}^{j-1} & & & \vdots \\ \vdots & & & & & 0 & \ddots & \vdots \\ \vdots & & & & & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \cdots & 0 & \mathbf{C}_{n}^{n} \end{pmatrix}$$

c'est une matrice triangulaire supérieure n'ayant que des 1 sur la diagonale, son déterminant est donc égal à 1 et cette matrice est inversible.

Soit $u \in L(\mathbb{R}_n[X])$ tel que $A = \max(u, \mathcal{E})$. Pour $j = 1, \dots, n+1$, l'image de X^{j-1} par

u est

$$\sum_{i=1}^{n+1} a_{i,j} X^{i-1} = \sum_{i=1}^{j} C_{j-1}^{i-1} X^{i-1} = \sum_{i=0}^{j-1} C_{j-1}^{i} X^{i} = (X+1)^{j-1}$$

Ainsi u coïncide sur la base $(1, X, X^2, \dots, X^n)$ avec l'application qui à un polynôme P associe la polynôme P(X+1). Puisque ce sont des applications linéaires, elles coïncident partout. Ainsi

$$\forall P \in \mathbb{R}_n[X]$$
 $u(P) = P(X+1)$

On montre facilement que pour tout $P \in \mathbb{R}_n[X]$,

$$u^{-1}(P) = P(X-1)$$
 et $\forall k \in \mathbb{N}$ $u^k(P) = P(X+k)$

donc

$$u^{-1}(X^{j-1}) = (X-1)^{j-1} = \sum_{i=0}^{j-1} (-1)^{j-1-i} C_{j-1}^{i} X^{i} = \sum_{i=1}^{j} (-1)^{j-i} C_{j-1}^{i-1} X^{i-1}$$

et pour $k \in \mathbb{N}$,

$$u^{k}(X^{j-1}) = (X+k)^{j-1} = \sum_{i=1}^{j} k^{j-i} C_{j-1}^{i-1} X^{i-1}$$

Et puisque
$$A^{-1} = \max(u^{-1}, \mathcal{E})$$
 et pour $k \in \mathbb{N}$, $A^k = \max(u^k, \mathcal{E})$, on a

$$A^{-1} = \begin{pmatrix} 1 & -1 & 1 & -1 & \cdots & (-1)^{j-1} \operatorname{C}_{j-1}^{0} & \cdots & \cdots & (-1)^{n-1} \operatorname{C}_{n}^{0} \\ 0 & 1 & -2 & 3 & & (-1)^{j-2} \operatorname{C}_{j-1}^{1} & & & (-1)^{n-2} \operatorname{C}_{n}^{1} \\ 0 & 0 & 1 & -3 & & \vdots & & & \vdots \\ 0 & 0 & 0 & 1 & & \vdots & & & \vdots \\ \vdots & & & \ddots & \ddots & \vdots & & & \vdots \\ \vdots & & & & \ddots & \ddots & \vdots & & & \vdots \\ \vdots & & & & & \ddots & (-1)^{j-j} \operatorname{C}_{j-1}^{j-1} & & & \vdots \\ \vdots & & & & & \ddots & \ddots & \vdots \\ \vdots & & & & & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & \cdots & 0 & (-1)^{n-n} \operatorname{C}_{n}^{n} \end{pmatrix}$$

Agrégation Interne de Mathématiques, Université de La Rochelle, Exercices sur les matrices et pour $k \in \mathbb{N}$,

$$A^{k} = \begin{pmatrix} 1 & k & k^{2} & k^{3} & \cdots & k^{j-1} C_{j-1}^{0} & \cdots & \cdots & k^{n-1} C_{n}^{0} \\ 0 & 1 & 2k & 3k^{2} & & k^{j-2} C_{j-1}^{1} & & & k^{n-2} C_{n}^{1} \\ 0 & 0 & 1 & 3k & & \vdots & & & \vdots \\ 0 & 0 & 0 & 1 & & \vdots & & & \vdots \\ \vdots & & & \ddots & \ddots & \vdots & & & \vdots \\ \vdots & & & & \ddots & \ddots & \vdots & & & \vdots \\ \vdots & & & & & 0 & \ddots & \vdots \\ \vdots & & & & & 0 & \ddots & \vdots \\ \vdots & & & & & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & k^{n-n} C_{n}^{n} \end{pmatrix}$$

6. – Calcul d'inverse de matrice Solution

Les trois matrices sont inversibles et leurs inverses respectifs sont

$$\begin{pmatrix} -1 & 1 & 1 \\ 2 & -1 & 2 \\ -2 & 1 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & -3 \\ -1 & 1 & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

7. – CALCUL DE DÉTERMINANT Solution

On note Δ_n le déterminant de la matrice A_n . Alors en développant par rapport à la première ligne puis par rapport à la première colonne, on obtient

$$\Delta_{n} = \begin{vmatrix} 2 & 1 & 0 & 0 & \cdots & 0 \\ 3 & 2 & 1 & 0 & \vdots \\ 0 & 3 & 2 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & 3 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 & 0 & \cdots & 0 \\ 3 & 2 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 3 & 2 \end{vmatrix} - \begin{vmatrix} 3 & 1 & 0 & \cdots & 0 \\ 0 & 2 & 1 & \ddots & \vdots \\ \vdots & 3 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 3 & 2 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 2 & 1 & 0 & \cdots & 0 \\ 3 & 2 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 3 & 2 \end{vmatrix} - 3 \begin{vmatrix} 2 & 1 & 0 & 0 \\ 3 & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & 1 \\ 0 & 0 & 3 & 2 \end{vmatrix} = 2\Delta_{n-1} - 3\Delta_{n-2}$$

L'équation caractéristique associée $r^2 - 2r + 3 = 0$ possède deux solutions complexes

 $1+i\sqrt{2}$ et $1-i\sqrt{2}$. Il existe donc deux complexes λ et μ tels que

$$\forall n \in \mathbb{N}^* \quad \Delta_n = \lambda (1 + i\sqrt{2})^n + \mu (1 - i\sqrt{2})^n$$

On a $\Delta_1 = 2$ et on peut supposer $\Delta_0 = 1$ (en effet $\Delta_2 = 1 = 2 \times 2 - 3 \times 1$). Alors

$$\lambda + \mu = 1$$
 et $\lambda(1 + i\sqrt{2}) + \mu(1 - i\sqrt{2}) = 2$

ainsi

$$\lambda = \frac{1}{2} - \frac{1}{4}i\sqrt{2}$$
 et $\mu = \frac{1}{2} + \frac{1}{4}i\sqrt{2}$

et pour $n \in \mathbb{N}$,

$$\Delta_n = \left(\frac{1}{2} - \frac{1}{4}i\sqrt{2}\right)(1 + i\sqrt{2})^n + \left(\frac{1}{2} + \frac{1}{4}i\sqrt{2}\right)(1 - i\sqrt{2})^n$$

et Δ_n est un entier!

8. – DÉTERMINANT DE MATRICE PAR BLOC Solution

En développant suivant les lignes ou les colonnes, on a

$$\det\begin{pmatrix} A & C \\ 0_{p,q} & I_q \end{pmatrix} = \det(A) \quad \text{ et } \quad \det\begin{pmatrix} I_p & C \\ 0_{p,q} & B \end{pmatrix} = \det(B)$$

Supposons que A soit inversible, alors

$$M = \begin{pmatrix} A & C \\ 0_{q,p} & B \end{pmatrix} = \begin{pmatrix} A & 0_{q,p} \\ 0_{p,q} & I_q \end{pmatrix} \begin{pmatrix} I_p & A^{-1}C \\ 0_{q,p} & B \end{pmatrix}$$

donc

$$\det(M) = \det\begin{pmatrix} A & C \\ 0_{q,p} & B \end{pmatrix} = \det\begin{pmatrix} A & 0_{q,p} \\ 0_{p,q} & I_q \end{pmatrix} \det\begin{pmatrix} I_p & A^{-1}C \\ 0_{q,p} & B \end{pmatrix} = \det(A)\det(B)$$

Si A est non inversible, ses vecteurs-colonne sont liés et donc les vecteurs-colonne de la matrice M sont aussi liés, ainsi M est non inversible. Par conséquent les déterminants de A et de M sont nuls et $\det(M) = \det(A) \det(B)$.

9. – DÉTERMINANT DE MATRICE PAR BLOC Solution

On a

$$\begin{pmatrix} A^{-1} & 0 \\ -C & A \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I_n & A^{-1}B \\ 0 & AD - CB \end{pmatrix}$$

La première et la troisième matrices sont triangulaires par bloc, leurs déterminants sont donc le produit des déterminants des blocs diagonaux et donc

$$\det(A^{-1})\det(A)\det\begin{pmatrix}A & B\\ C & D\end{pmatrix} = \det(I_n)\det(AD - BC)$$

et ainsi puisque $\det(A^{-1}) = 1/\det(A)$,

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC)$$

Si la matrice A n'est pas inversible, pour tout $\lambda \in \mathbb{k} \setminus \operatorname{Sp}(A)$ (où $\operatorname{Sp}(A)$ désigne le spectre de A, i.e. l'ensemble des valeurs propres de A), la matrice $A - \lambda I_n$ est inversible et d'après ce qui précède,

$$\det\begin{pmatrix} A - \lambda I_n & B \\ C & D \end{pmatrix} = \det((A - \lambda I_n)D - BC)$$

On obtient donc deux expressions polynomiales en λ égales en une infinité de points (la matrice A a au plus n valeurs propres), elle sont donc égales partout et en particulier pour $\lambda=0$ et ainsi

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC)$$

10. – Système avec un paramètre Solution

On a

$$\Delta = \begin{vmatrix} 2(\lambda+1) & 3 & \lambda \\ 4\lambda - 1 & \lambda + 1 & 2\lambda - 1 \\ 5\lambda - 4 & \lambda + 1 & 3\lambda - 4 \end{vmatrix} = \begin{vmatrix} 2(\lambda+1) & 3 & \lambda \\ 4\lambda - 1 & \lambda + 1 & 2\lambda - 1 \\ \lambda - 3 & 0 & \lambda - 3 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda + 2 & 3 & \lambda \\ 2\lambda & \lambda + 1 & 2\lambda - 1 \\ 0 & 0 & 1 \end{vmatrix} = (\lambda - 3) \begin{vmatrix} \lambda + 2 & 3 \\ 2\lambda & \lambda + 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 3 \\ \lambda - 1 & \lambda + 1 \end{vmatrix} = (\lambda - 3)(\lambda - 1) \begin{vmatrix} 1 & 3 \\ 1 & \lambda + 1 \end{vmatrix} = (\lambda - 1)(\lambda - 2)(\lambda - 3)$$

Le système est donc de Cramer pour λ distinct de 1, 2 et 3. Et dans ce cas

$$\Delta_{x} = \begin{vmatrix} \lambda + 4 & 3 & \lambda \\ 2\lambda + 4 & \lambda + 1 & 2\lambda - 1 \\ \lambda - 1 & \lambda + 1 & 3\lambda - 4 \end{vmatrix} = 2\lambda^{3} + 4\lambda^{2} - 27\lambda + 39$$

$$\Delta_{y} = \begin{vmatrix} 2(\lambda + 1) & \lambda + 4 & \lambda \\ 4\lambda - 1 & 2\lambda + 4 & 2\lambda - 1 \\ 5\lambda - 4 & \lambda - 1 & 3\lambda - 4 \end{vmatrix} = 3\lambda^{2} + 21\lambda - 34$$

$$\Delta_{z} = \begin{vmatrix} 2(\lambda + 1) & 3 & \lambda + 4 \\ 4\lambda - 1 & \lambda + 1 & 2\lambda + 4 \\ 5\lambda - 4 & \lambda + 1 & \lambda - 1 \end{vmatrix} = -3\lambda^{3} + 2\lambda^{2} + 40\lambda - 49$$

L'unique solution du système est le triplet

$$\left(\frac{\Delta_x}{\Delta}, \frac{\Delta_y}{\Delta}, \frac{\Delta_z}{\Delta}\right) = \left(\frac{2\lambda^3 + 4\lambda^2 - 27\lambda + 39}{(\lambda - 1)(\lambda - 2)(\lambda - 3)}, \frac{3\lambda^2 + 21\lambda - 34}{(\lambda - 1)(\lambda - 2)(\lambda - 3)}, \frac{-3\lambda^3 + 2\lambda^2 + 40\lambda - 49}{(\lambda - 1)(\lambda - 2)(\lambda - 3)}\right)$$

Si $\lambda = 1$, on a

$$\begin{cases} 4x + 3y + z = 5 \\ 3x + 2y + z = 6 \\ x + 2y - z = 0 \end{cases} \iff \begin{cases} 5x + 5y = 5 \\ 4x + 4y = 6 \\ z = x + 2y \end{cases} \iff \begin{cases} x + y = 1 \\ 4 = 6 \\ z = x + 2y = 0 \end{cases}$$

Si
$$\lambda = 2$$
, on a

$$\begin{cases} 6x + 3y + 2z = 6 \\ 7x + 3y + 3z = 8 \\ 6x + 3y + 2z = 1 \end{cases} \implies 6 = 1$$

Si $\lambda = 3$, on a

$$\begin{cases} 8x + 3y + 3z = 7 \\ 11x + 4y + 5z = 10 \implies 10 = 2 \\ 11x + 4y + 5z = 2 \end{cases}$$

Ainsi dans les trois cas, le système n'a donc pas de solutions.

11. – Endomorphismes de $M_n(k)$ Solution

La trace d'un endomorphisme étant indépendant de la base choisie, on considère la base canonique $(E_{i,j})_{1 \le i,j \le n}$ de $M_n(\mathbb{k})$.

On pose $A = (a_{i,j})_{i,j}$ et $B = (b_{i,j})_{i,j}$.

Soit $i, j \in \{1, \ldots, n\}$. Alors

$$\varphi(E_{i,j}) = AE_{i,j} = \left(\sum_{k,\ell} a_{k,\ell} E_{k,\ell}\right) E_{i,j} = \sum_{k=1}^{n} a_{k,i} E_{k,j}$$

$$\chi(E_{i,j}) = E_{i,j} B = E_{i,j} \sum_{k,\ell} b_{k,\ell} E_{k,\ell} = \sum_{\ell=1}^{n} b_{j,\ell} E_{i,\ell}$$

$$\psi(E_{i,j}) = AE_{i,j} B = \left(\sum_{k=1}^{n} a_{k,i} E_{k,j}\right) \left(\sum_{r,s} b_{r,s} E_{r,s}\right) = \sum_{k,s} a_{k,i} b_{j,s} E_{k,s}$$

donc le coefficient en position ((i,j),(i,j)) de la matrice de φ dans la base canonique est $a_{i,i}$, celui de la matrice de χ est $b_{j,j}$ et celui de la matrice de ψ est $a_{i,i}b_{j,j}$. Ainsi

$$\operatorname{tr}(\varphi) = \sum_{i,j} a_{i,i} = n \operatorname{tr}(A) \quad \operatorname{tr}(\chi) = \sum_{i,j} b_{j,j} = n \operatorname{tr}(B) \quad \operatorname{tr}(\psi) = \sum_{i,j} a_{i,i} b_{j,j} = \operatorname{tr}(A) \operatorname{tr}(B)$$

Une vérification possible est de remplacer A ou B par I_n , en particulier si $A = I_n$, alors $\psi = \chi$.

12. – FORME LINÉAIRE DE $M_n(\Bbbk)$ ET MATRICES ÉLÉMENTAIRES Solution

a. Pour $i, j, k, \ell \in \{1, \dots, n\}$, on a $E_{i,j}E_{k,\ell} = \delta_{j,k}E_{i,\ell}$. On a

$$A_r B_r = \left(\sum_{i=1}^r E_{i,i}\right) \left(\sum_{i=1}^r E_{i,i+1}\right) = \sum_{1 \leqslant i,j \leqslant r} E_{i,i} E_{j,j+1} = \sum_{i=1}^r E_{i,i+1} = B_r$$

$$B_r A_r = \left(\sum_{i=1}^r E_{i,i+1}\right) \left(\sum_{i=1}^r E_{i,i}\right) = \sum_{1 \leqslant i,j \leqslant r} E_{i,i+1} E_{j,j} = \sum_{i=1}^{r-1} E_{i,i+1} = \begin{cases} B_{r-1} & \text{si } r > 1\\ 0 & \text{sinon} \end{cases}$$

$$B_r C_r = \left(\sum_{i=1}^r E_{i,i+1}\right) \left(\sum_{i=1}^r E_{i+1,i}\right) = \sum_{1 \leqslant i,j \leqslant r} E_{i,i+1} E_{j+1,j} = \sum_{i=1}^r E_{i,i} = A_r$$

b. On a $f(I_n) = f(I_n)^2$, donc $f(I_n) = 0$ ou $f(I_n) = 1$. Si $f(I_n) = 0$, alors

$$\forall M \in \mathcal{M}_n(\mathbb{k}) \quad f(A) = f(AI_n) = f(A)f(I_n) = 0$$

ce qui est impossible car f est supposée non constante. Donc $f(I_n) = 1$.

Puisque f est supposée non constante, il existe une matrice $M \in \mathcal{M}_n(\mathbb{k})$ telle que $f(M) \neq 1$ et alors

$$f(0_n) = f(M0_n) = f(M)f(0_n)$$

et donc $f(0_n) = 0$.

Soit $M \in GL_n(\mathbb{k})$. On a

$$f(M)f(M^{-1}) = f(MM^{-1}) = f(I_n) = 1$$

donc $f(M) \neq 0$.

Soit $r \in \{2, \ldots, n-1\}$. On a

$$f(B_1) = f(A_1B_1) = f(A_1)f(B_1) = f(B_1)f(A_1) = f(B_1A_1) = f(0_n) = 0$$

$$f(B_r) = f(A_rB_r) = f(A_r)f(B_r) = f(B_r)f(A_r) = f(B_rA_r) = f(B_{r_1})$$

$$f(A_r) = f(B_rC_r) = f(B_r)f(C_r)$$

donc, d'après le principe de récurrence, pour tout $r \in \{1, ..., n\}$, on a $f(B_r) = 0$, d'où $f(A_r) = 0$.

Soit $M \in \mathcal{M}_n(\mathbb{k})$ de rang r < n. Il existe deux matrices inversibles P et Q telles que $M = PA_rQ$ et

$$f(M) = f(Pa_rQ) = f(P)f(A_r)f(Q) = 0$$

Ainsi $f^{-1}(0) = M_n(\mathbb{k}) \setminus GL_n(\mathbb{k})$.