- 15. Given two segments with lengths r and s, it is $\frac{?}{}$ possible to construct a segment of length $\frac{3}{4}\sqrt{2rs}$.
- **16.** A median of a triangle ? separates the triangle into two triangles with equal areas.
- 17. A composite of reflections in two lines is _? a translation.

Construction Exercises

- A 1. Construct an angle of measure $22\frac{1}{2}$.
 - 2. Draw a circle O and choose a point T on $\bigcirc O$. Construct the tangent to $\bigcirc O$ at T.
 - 3. Draw a large triangle. Inscribe a circle in the triangle.

For Exercises 4–7, draw two long segments. Let their lengths be x and y, with x > y.

- **4.** Construct a segment of length $\frac{1}{2}(x + y)$.
- **B** 5. Construct a rectangle with width y and diagonal x.
 - 6. Construct any triangle with area xy.
 - 7. Construct a segment with length $\sqrt{3xy}$.
 - 8. Draw a very long \overline{AB} . Construct a rectangle with perimeter AB and sides in the ratio 3:2.

Proof Exercises

- **A** 1. Given: $\overline{PQ} \parallel \overline{RS}$ Prove: $\frac{PO}{RO} = \frac{PQ}{RS}$
 - 2. Given: $\overline{PR} \perp \overline{QS}$; $\overline{PS} \cong \overline{QR}$; $\overline{OS} \cong \overline{OR}$ Prove: $\angle PSO \cong \angle QRO$
- **B** 3. Given: $\angle OSR \cong \angle ORS$; $\angle OPQ \cong \angle OQP$ Prove: $\triangle PSR \cong \triangle QRS$
 - 4. Prove: The diagonals of a rectangle intersect to form four congruent segments.

Exs. 1-3

- 5. Use coordinate geometry to prove that the triangle formed by joining the midpoints of the sides of an isosceles triangle is an isosceles triangle.
- **C** 6. Use an indirect proof to show that a trapezoid cannot have two pairs of congruent sides.
 - 7. Prove: If two coplanar circles intersect in two points, then the line joining those points bisects a common tangent segment.