Каталог продукции: серия Powerware Трехфазные источники бесперебойного питания Eaton

Содержание

Подразделение Power Quality	5
Клиенты Eaton	6
Экологичность технологий	7
Защита электропитания на все случаи жизни	8
Передовые технологии Eaton	9
Система сохранения энергии	10
Адаптивная система управления модулями	12
Технология Hot Sync	14
Технология АВМ	16
ИБП Eaton 9155 и 9355	18
ИБП Eaton 9355	20
ИБП Eaton 9390	22
ИБП Eaton 9395	24
ИБП Eaton BladeUPS	26
Eaton ePDU	28
Стойки Eaton	34
Решения для управления электропитанием	36
Таблицы времени резервирования ИБП	40

Powering Business Worldwide

Powering Business Worldwide

Основанная в 1911 году многоотраслевая промышленная корпорация Eaton® предлагает своим клиентам комплексный подход к эффективному, рациональному и безопасному управлению энергией.

В состав компании входят две бизнес-группы:

Electrical (Электротехнический сектор)

Eaton — мировой лидер электротехнической промышленности в сфере производства оборудования для управления и распределения электропитания, источников бесперебойного питания и промышленной автоматики.

Электротехнический сектор специализируется на разработке технологических решений, нацеленных на удовлетворение потребностей различных отраслей промышленности, коммунального хозяйства, коммерческих предприятий, а также рынков жилья и информационных технологий.

Industrial (Промышленный сектор)

Промышленный сектор объединяет в себе четыре направления деятельности: производство гидравлического оборудования, комплектующих для аэрокосмической отрасли, компонентов для грузового и легкового автомобилестроения.

Подразделения Aerospace и Hydraulics занимаются изготовлением надежных и экономичных гидравлических систем.

Подразделение Truck разрабатывает и производит приводные системы, обеспечивающие безопасность и рациональное потребление топлива грузового транспорта.

Подразделение Automotive создает инновационные решения, помогающие повысить эксплуатационные качества и безопасность легковых автомобилей.

Объем продаж Eaton в 2010 году составил 13,7 миллиардов долларов США. Компания насчитывает 70 000 сотрудников и осуществляет продажи более чем в 150 странах мира. Штаб-квартира Eaton расположена в г. Кливленд (штат Огайо, США).

Подразделение Power Quality

Подразделение Power Quality, входящее в состав электротехнического сектора, более 45 лет работает в сфере разработки и производства инновационных решений для обеспечения качественного электропитания и предлагает полную линейку продуктов, позволяющих защитить критически важное оборудование клиентов от всех известных проблем, возникающих в питающей сети.

Продукция и услуги Eaton Power Quality

- ИБП переменного тока мощностью от 500 ВА до 4400 кВА
- системы постоянного тока (DC) от малогабаритных мобильных до мощных стационарных
- широкий ассортимент монтируемых в стойку модулей распределения нагрузки (ePDUTM)
- программное обеспечение для управления электропитанием, средства связи
- техническая поддержка и сервисное обслуживание

Производственные площадки компании Eaton расположены в Финляндии, США, Индии, Бразилии, Великобритании, Новой Зеландии, Китае и на Тайване.

Основным приоритетом деятельности Eaton является профессионализм сотрудников, их приверженность высоким стандартам деловой этики и готовность в любую минуту прийти на помощь заказчику. Именно поэтому при разработке инновационных решений для защиты электропитания компания ориентируется прежде всего на потребности клиентов.

Eaton обеспечивает бесперебойность бизнес-процессов в тех отраслях, где необходимо гарантированное электропитание, а потеря данных или выход из строя оборудования просто недопустимы:

- IT и центры обработки данных
- энергетика
- промышленность
- финансовые институты
- телекоммуникационные компании
- правительственные организации
- здравоохранение

- предприятия нефтегазового комплекса
- охранные предприятия
- розничная торговля
- оборонный сектор
- транспорт

Рациональное использование природных ресурсов всегда было важнейшей основой деятельности Eaton.
Поэтому экологичность (удовлетворение насущных потребностей общества с учетом потребностей будущих поколений) — непременное требование, учитываемое как в разработке продукции, так и в организации производственных процессов компании. Все наши продукты соответствуют самым высоким экологическим стандартам на любом этапе своего жизненного цикла.

An Eaton Green Solution

Стремление Eaton оказывать своей деятельностью минимальное воздействие на экологию выражается в применении «зеленых» технологий и разработке таких продуктов, которые помогают нашим клиентам более эффективно использовать электроэнергию и ответственно относиться к окружающей среде.

В последние годы реализация внутренних экологических программ Eaton позволила значительно сократить потребление электроэнергии и воды, а также объемы отходов производств. При этом среди важнейших задач компании следует особо отметить обязательство по сокращению к 2012 году выбросов парниковых газов на 18 процентов. Сегодня все без исключения производственные площадки Eaton Electrical имеют сертификацию ISO 14001.

В Eaton была разработана многоступенчатая процедура сертификации, основанная на рекомендациях ведущих международных организаций, таких как Европейский Союз, Федеральная торговая комиссия США и Международная организация по стандартизации (ISO). Продукция и услуги компании, прошедшие эту процедуру, получают сертификат «Green Leaf», который служит исключительной и независимо подтвержденной гарантией соответствия самым строгим требованиям по защите окружающей среды.

Защита электропитания на все случаи жизни

Существует девять наиболее распространенных проблем с электропитанием: пропадание, провал, всплеск напряжения, пониженный или повышенный уровни напряжения, сбои, связанные с переходными процессами при коммутации, электромагнитные и радиочастотные помехи и нелинейные искажения напряжения. Компания Eaton предлагает широкий выбор решений для защиты от различных проблем в энергоснабжении, созданных на основе трех топологий ИБП.

Топология passive standby (offline) — самая распространенная топология ИБП, предназначенных для защиты персональных компьютеров от пропадания, провалов и всплесков напряжения. В нормальном режиме такой ИБП подает питание на нагрузку непосредственно от сети — с фильтрацией, но без активного преобразования. Батарея источника заряжается от сети. В случае отключения или колебания сетевого напряжения ИБП обеспечивает нагрузке стабильное питание за счет ресурсов аккумулятора. Главными преимуществами ИБП данной топологии являются низкая стоимость и удобство эксплуатации в условиях дома и офиса. Однако такие источники не рекомендуется использовать при частых отключениях электроэнергии или в случаях, когда качество сетевого питания является спишком низким

напряжения, пониженного или повышенного напряжения. В нормальном режиме линейно-интерактивный ИБП управляется с помощью микропроцессора, который выполняет мониторинг качества сетевого напряжения и реагирует на любые его изменения. Цепи компенсации активируются в случае любых изменений напряжения, обеспечивая его стабилизацию. Основным преимуществом данной топологии является возможность компенсации повышенного и пониженного напряжения без использования ресурса аккумулятора.

AC

Топология двойного преобразования напряжения (online) используется в ИБП, предназначенных для непрерывной защиты критически важного оборудования от всех девяти проблем с электропитанием (пропадание, провал, всплеск напряжения, пониженный или повышенный уровни напряжения, сбои, связанные с переходными процессами при коммутации, электромагнитные и радиочастотные помехи и нелинейные искажения напряжения). Технология двойного преобразования обеспечивает непрерывную регулировку выходного напряжения (амплитуда и частота) и возможность производить сервисное обслуживание или ремонт, не прерывая питания нагрузки (за счет наличия байпаса). Питание генерируется конвертацией переменного тока в постоянный и обратно. Такой ИБП совместим с любой нагрузкой, поскольку он полностью исключает пагубное воздействие сбоев в электропитании при переходе ИБП на работу от батарей и обратно.

1. ПРОПАДАНИЕ НАПРЯЖЕНИЯ

2. ПРОВАЛ НАПРЯЖЕНИЯ

3. ВСПЛЕСК

4. ПОНИЖЕННОЕ НАПРЯЖЕНИЕ

5. ПОВЫШЕННО

6. ПЕРЕХОДНЫЕ ПРОЦЕССЫ ПРИ КОММУТАЦИИ

7. ЭЛЕКТРОМАГНИТ-НЫЕ И РАДИОЧАСТОТ-НЫЕ ПОМЕХИ

8. ОТКЛОНЕНИЯ ЧАСТОТЫ

9. НЕЛИНЕИНЫ ИСКАЖЕНИЯ НАПРЯЖЕНИЯ

Передовые технологии Eaton

Еаton занимается разработкой инновационных технических решений в сфере защиты электропитания с момента получения своего первого патента в 1962 году. Благодаря использованию запатентованных технологий продукция компании всегда соответствует стремительно растущим требованиям рынка, а Eaton уверенно сохраняет позиции технологического лидера отрасли.

Трехфазные ИБП Eaton серии Powerware® производятся в рамках единой технологической платформы и отличаются идентичной внутренней топологией, общей структурой, алгоритмами управления, унифицированными коммуникационными возможностями и пользовательским интерфейсом.

Преимущества бестрансформаторной технологии

- ИБП работают аналогичным образом и обладают сходными функциями
- идентичная для всех устройств процедура апгрейда
- более удобное обслуживание благодаря использованию общих запасных частей, аксессуаров, стандартных сервисных инструментов
- единообразие программ обучения и документации гарантирует высокое качество сервиса в любой стране мира
- значительно сокращается общая стоимость владения ИБП

Бестрансформаторная технология

Использование бестрансформаторной технологии, реализованной в ИБП Eaton на базе компактных и легких фильтров, высокотехнологичных IGBT-транзисторов в выпрямителе и инверторе и усовершенствованного алгоритма управления, обеспечивает пользователю целый ряд несомненных преимуществ. В сравнении с традиционной конструкцией, ИБП, не имеющий трансформатора, весит на 50% меньше и занимает на 60% меньшую площадь. Низкий показатель КНИ потребляемого тока на входе (<4,5%) при полной нагрузке и высокий входной коэффициент мощности (>0,99) гарантируют поддержку до 10% нагрузки без дополнительного фильтра входного тока. Кроме того, КПД бестрансформаторного источника при полной нагрузке может достигать 94,5% и более.

Преимущества бестрансформаторных ИБП

- высокий КПД до 94,5%
- меньший вес
- меньшая занимаемая площадь

Система сохранения энергии

Применения

Система ESS доступна во всех ИБП Eaton 9390 и 9395, включая:

- одиночные ИБП
- параллельные системы

Все установленные системы могут быть настроены на работу в режиме ESS.

Энергоэффективная архитектура (ЕАА)

Возрастающая потребность в доступном, надежном и эффективном электропитании - это постоянная проблема для центров обработки данных. Повышение энергоэффективности помогает снижать давление государственных, экологических и экономических требований.

В рамках концепции энергоэффективной архитектуры (EAA) компания Eaton разработала инновационные эксклюзивные технологии, повышающие эффективность систем без снижения надежности.

Одна из таких технологий - Система сохранения энергии (ESS).

Достижение максимального КПД

Уменьшая потери энергии ИБП на 85 процентов, технология ESS значительно снижает энергопотребление, воздействие на экологию и затраты на электроэнергию, при этом не оказывая влияние на качество защиты нагрузки. Такие выдающиеся показатели сохранения энергии позволяют полностью компенсировать затраты на ИБП в течении трех-пяти лет.

ESS позволяет добиться лучшего показателя КПД

на рынке - 99% во всем диапазоне работы. В сравнении с возможностями традиционного режима есо-mode в продуктах предыдущего поколения, ESS обеспечивает максимально возможный КПД и минимальное время переключения в режим двойного преобразования при сбое питания.

Система сохранения энергии

Без компромиссов в надежности

В режиме ESS ИБП питает нагрузку отфильтрованным сетевым напряжением, пока входные частота и напряжение находятся в допустимых пределах. Если параметры входной сети выходят за допустимые рамки по напряжению или частоте, ИБП переходит в режим двойного преобразования. Если входное питание выходит за ограничения корректной работы системы, ИБП переключается на питание от батарей.

Мощные алгоритмы мониторинга и управления позволяют ИБП постоянно отслеживать качество питания и включать силовые преобразователи менее чем за 2 мс в случае выхода сетевого питания за допустимые пределы. Таким образом нагрузка всегда защищена, а КПД максимален. Если ИБП фиксирует сбой в работе режима ESS, он определяет, вызван ли он нагрузкой или исходит от входной сети. Сбой в питании байпаса вызывает мгновенное переключение на инвертер, сбой в нагрузке оставляет ИБП в режиме ESS.

Проверенная технология Eaton гарантирует бесперебойное и энергоэффективное питание нагрузки без ухудшения защиты подключенного оборудования.

Широкие возможности конфигурирования

ИБП Eaton UPS с системой сохранения энергии ESS поддерживают три конфигурируемых режима работы:

- Режим двойного преобразования: ИБП работает в нормальном режиме, питание подается через преобразователи.
- Режим ESS: конверторы в режиме готовности, статический переключатель байпаса позволяет ИБП питать нагрузку напрямую от сети.
- Режим повышенной готовности: ИБП автоматически переключается из режима ESS в режим двойного преобразования и, в случае повторяющихся сбоев, питания остается в этом режиме в течение заданного времени (по умолчанию один час) до тех пор, пока не будет безопасным возвращение в режим ESS.

ИБП выполняет переключения между различными режимами работы без прерываний питания нагрузки. Это возможно только в бестрансформаторных топологиях.

Доступность

ESS доступен для всех ИБП серий 9390 и 9395. Параллельные системы ИБП также поддерживают работу в режиме ESS. Существующие системы могут быть настроены на работу в режиме ESS.

Адаптивная система управления модулями

Применения

Типичные применения в которых система VMMS особенно эффективна:

- Системы ИБП с резервированием N+1 и 2N
 - ИБП в таких системах обычно работают с нагрузкой < 45% от номинальной
- Центры обработки данных, особенно когда ИБП питают сервера по двулучевой схеме питания
- Любые применения с переменной нагрузкой

Энергоэффективная архитектура (ЕАА)

Новая технология, разработанная компанией Eaton в рамках концепции энергоэффективной архитектуры (EAA), предназначена для оптимизации работы модульных ИБП и повышения их КПД в режиме двойного преобразования при малых нагрузках.

Как правило, в реальных условиях ИБП часто работает с неполной нагрузкой, при этом ИБП не может достичь оптимального КПД.

В некоторых параллельных системах из нескольких ИБП при низком уровне нагрузки система управления повышает процент загрузки ИБП, временно выключая из работы часть источников и переводя их в режим ожидания. В результате можно получить некоторое энергосбережение, но только в параллельных системах из нескольких ИБП.

Типичные условия

Параллельная система мощностью 800 кВА с оптимизацией на уровне отдельных ИБП

Технология VMMS максимизирует КПД при неполной загрузке номинальной мощности не ухудшая надежности.

Адаптивная система управления модулями (VMMS)

Максимальный КПД

VMMS оптимизирует использование силовых модулей ИБП (UPM) для достижения максимального КПД в режиме двойного преобразования, повышая уровень загрузки оставшихся активными модулей с помощью переключения неиспользуемых модулей в режим ожидания*.

VMMS стремится загрузить активные модули до заданного уровня (по умолчанию – до 80%) при требуемой конфигурации системы (рекомендуется резервирование).

Результатом является максимальная экономия электроэнергии.

Использование VMMS стало возможным благодаря модульной конструкции ИБП Eaton 9395. VMMS также может использоваться в одиночных многомодульных ИБП.

*В режиме ожидания силовой модуль (UPM) питает шину постоянного тока, генерирует логические сигналы ШИМ (широтно-импульсной модуляции) и фильтрует ВЧ-помехи и скачки напряжения.

VMMS Система модульных ИБП Eaton 9395 - 825 kBA c VMMS 0 ИБП1 ИБП2 **ИБП3** н 0 % Α Г Р У U U U U 3 P P P P P P Κ M M MM M M M M Α 2 3 3 2 КПД системы автоматически оптимизируется в соответствии с уровнем нагрузки

Без компромиссов в надежности

Когда происходят колебания или повышения нагрузки, все силовые модули, находящиеся в режиме ожидания, могут быстро среагировать и переключиться в режим двойного преобразования, подав готовые логические сигналы ШИМ к ключам IGBT.

В системе VMMS все модули переключаются на двойное преобразование если:

- колебания выходного напряжения составляют более 3% по любой причине
- любой из модулей достиг своего предельного тока или полностью разрядил свои батареи
- необходима зарядка батарей.

Если перечисленные условия перестают действовать, система переключается обратно на режим VMMS с задержкой, настраиваемой пользователем (от 1 до 60 часов): после стабилизации нагрузки, конструкция и алгоритмы, разработанные Eaton, позволяют определить, какой из модулей UPM должен вернуться в режим ожидания для повышения эффективности в новых условиях.

Широкие возможности конфигурирования

Пользователи могут решать, как сконфигурировать систему, задавая количество избыточных модулей и максимальный уровень их загрузки в процентах, при котором остальные модули будут переведены в режим ожидания.

VMMS может быть использована в модульных ИБП 9395:

- Одиночных устройствах 9395 мощностью от 550кВА до 1100кВА
- Распределенных параллельных системах (Nx550, Nx825, Nx1100)
- Системах с централизованным байпасом (SBM) Существующие системы также могут быть настроены на работу с VMMS:
- VMMS сохраняет резервирование и повышает КПД интеллектуально регулируя уровень загрузки модулей UPM.
- Количество резервных UPM может быть выбрано $(N+0,\ N+1,\ N+2,\ N+X)$
- Модули UPM в режиме ожидания могут быть использованы как резервные (N+0)

Центр обработки данных, использующий серверы с двулучевой схемой питания, ИБП 825 (3х275) кВА в лучах А и В, нагрузка 440 кВА

Конфигурация ИБП	Без VMMS	VMMS с резервированием N + 1	VMMS с резервированием N + 0	
КПД при нагрузке 440кВА	91.2%	92.8%	94.3%	
Экономия энергии	Используется для сравнения	56 МВтчас / год	108 МВтчас / год	
Дополнительные преимущества и комментарии	3 Лидер по эффективности в режиме двойного преобразования	Дополнительная экономия за счет снижения затрат на охлаждение при работе VMMS (обычно дополнительно 30-40% к энергосбережению ИБП) Модули UPM в режиме ожидания доступны для резервирования		
	А 220 кВА	А 220 кВА	A 220 KBA	
	В 220 кВА	В 220 кВА	В 220 кВА	

Технология Hot Sync

Технология параллельной работы ИБП

Бесперебойность питания ответственных нагрузок — залог стабильности бизнеса наших клиентов. Даже при использовании одного ИБП надежность защиты может быть увеличена, например, за счет модульности его конструкции (когда внутренние силовые модули образуют систему с резервированием). В этом случае при возникновении проблемы с одним модулем остальные смогут выполнять его функции.

Для увеличения надежности защиты рекомендуется создавать параллельные системы, когда два или более ИБП одновременно питают нагрузку. В случае отказа одного из них неисправный источник отключается от системы, а нагрузка равномерно распределяется между оставшимися. Большинство продуктов, представленных сегодня на рынке, поддерживают технологию параллельной работы, построенную по принципу master-slave. Этот принцип предполагает наличие общего блока управления, который контролирует работу всех ИБП в системе. Однако такая технология имеет один серьезный недостаток («точку отказа»): при неисправности блока управления вся параллельная система выходит из строя и прекращает питать нагрузку. Уровень надежности системы гарантированного электроснабжения можно довести до 100% благодаря использованию запатентованной Eaton технологии Hot Sync® (Рис. 1).

Технология Hot Sync позволяет организовать параллельную систему с резервированием по схеме N+1 (например, два модуля для защиты нагрузки и один для резервирования), обеспечивающую надежную круглосуточную защиту электропитания ответственных нагрузок. Технология Hot Sync также может применяться для создания масштабируемых параллельных систем, учитывающих возможность увеличения мощности защищаемой нагрузки в будущем.

Технология Hot Sync исключает недостаток традиционных параллельных систем (точку отказа): все источники могут работать в параллель и абсолютно синхронно питать единую нагрузку при отсутствии каких-либо управляющих кабелей между ними.

Преимущества технологии Hot Sync

- реализована в одно- и трехфазных ИБП Eaton, может применяться для построения систем мощностью до 4,4 MBA (400 B)
- простой (модульный) подход к модернизации, решающий задачи увеличения мощности или обеспечения дополнительного резервирования
- нет единой точки отказа системы

Рис. 1. Доступность электропитания при использовании различных конфигураций ИБП в условиях «загрязненной» сети и частых отключений электроэнергии.

Технология Hot Sync

[∨]иБП 1

Управляющий цифровой процессор (DSP) каждого ИБП работает по определенному алгоритму, благодаря которому все источники в параллельной системе автоматически синхронизируются и делят нагрузку поровну. Если имеется общий байпас, то он используется в качестве источника синхронизации. При отсутствии общего байпаса каждый из процессоров, управляя инвертором на основе данных собственных измерений выходных параметров, плавно изменяет фазу своей выходной синусоиды так, чтобы синхронизировать ее с другими источниками и сбалансировать нагрузку. Как показано на рис. 2, существует связь между неравномерным распределением мощности и разницей между

фазами входных напряжений. ИБП 1 90° ибП 2 P_1 Снижается разница уровней мощности P_2 Частота непрерывно регулируется в соответствии с P_1 и P_2 Напряжение не в фазе Выходы синхронизированы

Рис. 2. Равномерное распределение нагрузки достигается путем регулировки выходных частот; таким образом, разница между фазами выходных напряжений параллельно подключенных ИБП сводится к нулю.

Внутреннее выходное сопротивление ИБП имеет индуктивный характер, т.е. его можно представить в виде индуктивности, включенной последовательно с источником напряжения. Если фазы выходного напряжения отличаются, это значит, что между устройствами присутствует поток мошности, который и приводит к неравномерному распределению нагрузки. На рис. 3 представлены два устройства с равными амплитудами выходных напряжений, при этом имеется фазовый сдвиг их выходного напряжения.

Напряжение Vdiff и ток Idiff между устройствами образуют смещение фазы на 90°, что связано с сопротивлением индуктивного элемента. Напряжение сети (V1 или V2) и ток между устройствами Idiff находятся в фазе, вызывающей активный поток мощности.

Чем больше фазовый сдвиг, тем хуже распределяется мощность. Разность фаз можно уменьшить с помощью микропроцессора, управляющего инвертором ИБП. Чтобы обеспечить равномерное распределение нагрузки, необходимо снизить разницу фаз до нуля, а для этого используется корректировка выходной частоты ИБП. Для ускорения процесса изменения частоты и синхронизации ИБП в управляющий алгоритм микропроцессора вводится дополнительный коэффициент, учитывающий степень изменения нагрузки как отклик системы на изменение частоты.

На рис. 4 показан процесс распределения нагрузки. Выполняется мониторинг выходной мощности, новая частота рассчитывается 3000 раз в секунду. Эти же измерения, основанные на вычислении мгновенной мощности, также используются в целях диагностики и определения вышедшего из строя модуля.

Отрицательное значение, возникающее даже на короткий промежуток времени, свидетельствует о внутренней поломке, например, о коротком замыкании в инверторе IGBT. В этом случае ИБП сразу отключается, максимально снижая негативное влияние на нагрузку. Это называется «селективным отключением».

Кроме того, технология Hot Sync позволяет производить последовательное техническое обслуживание резервных модулей ИБП без использования внешнего сервисного байпаса. При этом не нужно отключать питание нагрузки.

Рис. 3. Сдвиг фаз между напряжениями параллельно подключенных ИБП (V1 и V2) приводит к образованию электрического тока между устройствами, нарушая равномерность распределения нагрузки.

Рис. 4. При использовании алгоритма Hot Sync угол фазы инвертора регулируется выходной мощностью и коэффициентом ее изменения.

Главной характеристикой, определяющей надежность системы защиты, является точное и равномерное распределение нагрузки независимо от того, используется ли она для обеспечения резервирования или увеличения мощности. С технологией Hot Sync можно создавать полностью избыточные параллельные системы, в которых резервирование осуществляется на уровне самих ИБП, объединенных только выходными силовыми кабелями и нагрузкой. За счет отсутствия кабелей связи в подобной системе исключается вероятность образования единой точки отказа, а соответственно сводятся к минимуму убытки, которые может вызвать неожиданный выход из строя системы гарантированного энергоснабжения.

Технология АВМ

Преимущества технологии АВМ

- превентивная и автоматическая диагностика состояния батарей
- значительное увеличение срока службы батарей по сравнению с традиционным методом заряда
- оптимизация времени заряда батарей благодаря трехступенчатому методу заряда
- автоматическая компенсация напряжения заряда батарей в диапазоне от 0 до +50°C

Непревзойденные возможности управления зарядом аккумуляторных батарей

Надежность ИБП во многом зависит от срока службы его батарей. Поскольку аккумуляторы являются электрохимическими компонентами, их производительность со временем снижается. Преждевременный выход из строя батарей приводит к дополнительным затратам и увеличивает общую стоимость владения ИБП, а изношенный аккумулятор в разы увеличивает риск сбоя в системе гарантированного электропитания. В основном питание ИБП осуществляется от сети — автономная работа источника требуется только в редких случаях. При этом качество защиты напрямую зависит от того, насколько полно заряжены аккумуляторы. С другой стороны, чрезмерный заряд является причиной быстрого старения батарей.

Значительное увеличение срока службы аккумуляторов

Компания Eaton разработала технологию ABM®, которая позволяет продлить срок службы герметичных свинцово-кислотных батарей путем оптимизации режима их заряда. Использование традиционного метода заряда приводит к ускорению процесса коррозии пластин и пересыханию электролита. Технология ABM — принципиально новый интеллектуальный подход к этому вопросу. ABM исключает перезаряд батарей, предотвращая их преждевременный износ. Кроме того, с помощью ABM пользователь может непрерывно отслеживать состояние аккумуляторов и заблаговременно (за 60 дней) получать предупреждение об окончании срока их службы. Также ABM оптимизирует время заряда, что особенно важно при частых отключениях электроэнергии. Технология ABM на протяжении многих лет используется в ИБП Eaton от 1 до 160 кВА, теперь ее удалось реализовать и в устройствах мощностью до 1100 кВА.

Технология АВМ значительно увеличивает срок службы батарей.

Технология АВМ

Как работает АВМ?

Основной принцип работы технологии АВМ состоит в том, что большую часть времени батареи находятся в режиме отдыха, заряжаясь только через определенные интервалы времени. Сначала заряд полностью или частично разряженных аккумуляторов производится постоянным током, соответствующим используемому типу батарей. Когда напряжение на батареях достигает заданного уровня, они переходят в режим плавающего заряда при сохранении постоянного напряжения, уровень которого ниже напряжения при заряде током, что обеспечивает оптимальное время заряда. Батареи держат данное напряжение на протяжении 24 часов, после чего выполняется первое тестирование. Процедура занимает около минуты, при этом измеряется падение напряжения на батареях, что позволяет получить представление о состоянии зарядки. Плавающий заряд продолжается еще 24 часа плюс время, равное 1,5 основного периода заряда, после чего система переходит в режим отдыха. При этом заряд может прекращаться на срок до 28 дней - батареи

находятся в режиме отдыха. Если в течение первых 10 дней напряжение на элементе одной батареи падает ниже 2,1В/элемент (в 12В аккумуляторных батареях 6 элементов), АВМ снова запускает процесс заряда, а пользователь получает предупреждение о возможной необходимости в дополнительном контроле/тесте аккумуляторных батарей. Если напряжение опускается ниже этой отметки по истечении 10-дневного периода, заряд продолжается без подачи предупреждающего сигнала. Таким образом, процесс заряда по технологии АВМ имеет три стадии: режим заряда постоянным током, режим плавающего заряда и режим отдыха. При этом батареи подвергаются гораздо меньшим разрушительным воздействиям, чем при традиционном методе заряда. Типичный цикл заряда батарей представлен на приведенном ниже графике.

Напряжение на батареях в процессе зарядки по технологии АВМ.

Для удобства пользователя предусмотрена возможность отключения функции ABM и выбора традиционного метода заряда батарей. По умолчанию функция ABM включена. Уровень напряжения при заряде внутренних батарей регулируется в зависимости от температуры. Эта функция называется температурной компенсацией и позволяет продлить

срок службы батарей. Существует два способа измерения температуры: через внутренний датчик ИБП (по умолчанию), либо с помощью дополнительного оборудования — адаптера Web/SNMP и датчика параметров окружающей среды (ЕМР).

Температурная компенсация. Зависимость напряжения заряда от температуры.

Адаптер Web/SNMP с датчиком параметров окружающей среды.

ИБП Eaton 9155 и 9355

8 - 15 kBA

Оптимальный выбор для защиты

- серверных комнат и небольших ЦОД
- сетевых устройств
- банковских приложений
- медицинской техники
- систем обеспечения безопасности
- АСУТП

ИБП с двойным преобразованием напряжения

Высокая производительность

- Топология двойного преобразования напряжения, реализованная в 9155/9355, обеспечивает максимальный уровень защиты подключенной электроники от всех возможных проблем, возникающих в питающей сети.
- Благодаря бестрансформаторному дизайну КПД 9155/9355 достигает 92%. Активная коррекция входного коэффициента мощности (0,99) при рекордно низких показателях КНИ потребляемого тока (менее 4,5%) сокращает помехи от ИБП, улучшая при этом его совместимость с генераторами.
- Высокое значение выходного коэффициента мощности 0,9 делает этот ИБП оптимальным решением для защиты современного IT-оборудования.

Непревзойденная надежность

- С технологией Hot Sync® два или более ИБП работают в параллель, обеспечивая равномерное распределение нагрузки, при этом, в отличие от традиционной параллельной системы, между ИБП отсутствуют управляющие кабели связи. В такой системе нет потенциально опасной единой точки отказа, а вероятность сбоев в ее работе практически сведена к нулю.
- В 9155/9355 реализована технология трехступенчатого заряда АВМ®, с помощью которой ИБП постоянно отслеживает состояние батарей, оптимизирует время заряда и продлевает срок их службы до 50%.

Широкие возможности

- Для защиты оборудования, требующего длительного резервирования, к ИБП подключаются внешние батарейные модули (ВБМ).
- Графический ЖК-дисплей с многоязычным меню (включая русский язык) упрощает процесс мониторинга статуса, настройки и управления ИБП.
- Модели 9155/9355 легко интегрируются в системы сетевого управления, промышленные системы и системы управления зданиями.
- Входящее в комплект поставки программное обеспечение Eaton Software Suite в случае продолжительного отсутствия электропитания отключает подключенное к ИБП оборудование в заранее заданной последовательности.

Экология и экономия

- КПД моделей 9155/9355 достигает 92%, что сокращает затраты на электроэнергию, увеличивает срок службы батарей и снижает нагрузку на системы охлаждения.
- Компактный башенный дизайн позволяет экономить ценное пространство серверных комнат и центров обработки данных.
- Входящие в комплект внутренние батареи избавляют пользователя от необходимости приобретения дорогостоящих и громоздких внешних батарейных блоков.
- Использование единой технологической платформы в конструкции всех трехфазных ИБП Eaton упрощает процесс их модернизации и обслуживания, что ведет к сокращению общей стоимости владения.
- В зависимости от потребностей и бюджета пользователя возможно заключение договоров на дополнительное сервисное обслуживание на гибких условиях.
- Компания Eaton использует качественные материалы и инновационные технологии производства, что позволяет снизить выбросы углерода в окружающую среду и выгодно отличает продукцию Eaton от других ИБП, представленных сегодня на рынке

ИБП Eaton 9155/9355 8 - 15 кВА

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ

Номи	нальна	я выход	ная моц	щность ИБП (коэфф. мощности 0,9		
кВА	8	10	12	15		
кВт	7,2	9	10,8	13,5		
Общи	іе хара	ктеристь	1КИ			
		ойного пре олной нагру				
		ойного пре вгрузке 50%				
КПД в режиме высокой эффективности		до 98	до 98%			
Параллельное подключение по технологии Hot Sync		по 4				
Возможность обновления на месте		Прис	Присутствует			
Топология инвертора/ выпрямителя		ШИМ	ШИМ на IGBT-транзисторах			
Уровень шума		< 50	< 50 дБ			
Высота			О м без понижения характеристик сс. 2000 м)			

Входные характеристики				
1 фаза или 3 фазы + N + PE				
220/380, 230/400, 240/415 В, 50/60 Гц				
±20% от номинала при 100% нагрузке, 50%, +20% от номинала при нагрузке 50%				
45-65 Гц				
0,99				
<4,5%				
Присутствует				
Присутствует				

1 фаза или 3 фазы + N + PE

220/380, 230/400, 240/415 В, 50/60 Гц

Искажение выходного	<3% (100% линейная нагрузка)	
напряжения	<5% (стандартная нелинейная нагрузка)	
Выходной коэффициент мощности	0,9 (т.е. 9 кВт при 10 кВА)	
Диапазон коэффициента мощ- ности нагрузки	0,7 индуктивного — 0,8 емкостного характера	
Допустимая перегрузка	10 мин. — 100-110%; 1 мин. — 110-125%; 5 сек. — 125-150%; 300 мс >150%	
Допустимая перегрузка при	60 мин. — 100-110%; 10 мин. — 110-125%;	
работе на байпасе	1 мин. — 125-150%	
Характеристики батар	ей	
Тип	VRLA, NiCD	
Метод зарядки	Технология ABM или Float	
Температурная компенсация	Дополнительно	
Номинальная мощность	384 B (32*12 B, 192 ячейки)	
Ток зарядки	По умолчанию 3 А*, максимально 30 А	
*Ограничено макс. номиналом і	BYOTHOTO TOKA MED	

Опции

Изолирующий трансформатор, батареи с увеличенным сроком службы, внешние батарейные модули, разъем X-слот (для подключения адаптеров Web/SNMP, ModBus/JBus, Relay, Hot Sync, удаленного дисплея ViewUPS), модуль параллельной работы Hot Sync, встроенный ручной байпас, внешний сервисный байпас.

Коммуникационные возможности				
X-Slot	2 коммуникационных разъема			
Последовательные порты	1 шт.			
Релейные входы/выходы	Программируемые, 2/1			
Сертификация				
Безопасность (сертификация CB) IEC 62040-1, IEC 60950-1				
EMC	IEC 62040-2			
Производительность	IEC 62040-3			

ИБП с однофазным входом

Номинальное напряжение

Выход

Код изделия	Наименование в каталоге	Емкость	Автономная работа	Габариты В*Ш*Г	Macca
код изделил	I I I I I I I I I I I I I I I I I I I	(коэф. мощности 0.7)	(мм)	(кг)	
1022532	9155-8-S-10-32x7Ач	8 кВА/7,2 кВт	10 мин.	817*305*702	155
1022533	9155-8-S-15-32х9Ач	8 кВА/7,2 кВт	15 мин.	817*305*702	160
1022534	9155-8-S-28-64x7Ач	8 кВА/7,2 кВт	28 мин.	1214*305*702	250
1022535	9155-8-S-33-64х9Ач	8 кВА/7,2 кВт	33 мин.	1214*305*702	275
1022536	9155-10-S-10-32х9Ач	10 кВА/9 кВт	10 мин.	817*305*702	160
1022537	9155-10-S-20-64x7Ач	10 кВА/9 кВт	20 мин.	1214*305*702	250
1022538	9155-10-S-25-64х9Ач	10 кВА/9 кВт	25 мин.	1214*305*702	275

ИБП с трехфазным входом

Код изделия 9155/9355	Наименование в каталоге	Емкость	Автономная работа	Габариты В*Ш*Г	Масса
тод подолин в 100/0000	наименование в каталоге	EMKOCI B	(коэф. мощности 0.7)	(мм)	(кг)
1022480	9155-8-N-10-32x7Aч	8 кВА/7,2 кВт	10 мин.	817*305*702	155
1022481/1023411	9155/9355-8-N-15-32х9Ач	8 кВА/7,2 кВт	15 мин.	817*305*702	160
1022482	9155-8-N-28-64x7Ач	8 кВА/7,2 кВт	28 мин.	1214*305*702	250
1022483/1023412	9155/9355-8-N-33-64х7Ач	8 кВА/7,2 кВт	33 мин.	1214*305*702	275
1022484/1023413	9155/9355-10-N-10-32х9Ач	10 кВА/9 кВт	10 мин.	817*305*702	160
1022485	9155-10-N-20-64x7Ач	10 кВА/9 кВт	20 мин.	1214*305*702	250
1022486/1023414	9155/9355-10-N-25-64x7Ач	10 кВА/9 кВт	25 мин.	1214*305*702	275
1022487/1023415	9155/9355-12-N-8-32х9Ач	12 кВА/10,8 кВт	8 мин.	817*305*702	160
1022488	9155-12-N-15-64x7Ач	12 кВА/10,8 кВт	15 мин.	1214*305*702	250
1022489/1023416	9155/9355-12-N-20-64x7Ач	12 кВА/10,8 кВт	20 мин.	1214*305*702	275
1022490/1023417	9155/9355-15-N-5-32х9Ач	15 кВА/13,5 кВт	5 мин.	817*305*702	160
1022491	9155-15-N-10-64x7Ач	15 кВА/13,5 кВт	10 мин.	1214*305*702	250
1022492/1023418	9155/9355-15-N-15-64x7Ач	15 кВА/13,5 кВт	15 мин.	1214*305*702	275

Внешние батарейные шкафы

Код изделия	Наименование в каталоге	Емкость	Автономная работа	Габариты В*Ш*Г	Macca
под подолии	THE MILE TO BE THE PROPERTY OF	EMROOTE	(коэф. мощности 0.7)	(мм)	(кг)
1022561	9X55-BAT5-64x7Ач	2х32х7 Ач	0 1	817*305*699	195
1022562	9Х55-ВАТ5-96х7Ач	3х32х7 Ач	- См. спецификацию	1214*305*699	310

ИБП Eaton 9355

20 - 40 kBA

Оптимальный выбор для защиты

- финансовых систем
- серверов и ЦОД среднего размера
- ответственных объектов инфраструктуры зданий
- промышленного оборудования

ИБП с двойным преобразованием напряжения

Высокая производительность

- Топология двойного преобразования напряжения, реализованная в 9355, обеспечивает максимальный уровень защиты подключенной электроники от всех возможных проблем, возникающих в питающей сети.
- Благодаря бестрансформаторному дизайну и высокоточным технологиям измерения и управления КПД 9355 достигает 93%.
- Активная коррекция входного коэффициента мощности (0,99) при рекордно низких показателях КНИ потребляемого тока (менее 4,5%) сокращает помехи от ИБП, улучшая при этом его совместимость с генераторами.
- Высокое значение выходного коэффициента мощности 0,9 делает этот ИБП оптимальным решением для защиты современного IT-оборудования.
- Модель 9355 также доступна с однофазным выходом (9155) в мощностном диапазоне 20-30 кВА.

Непревзойденная надежность

- С технологией Hot Sync® два или более ИБП работают в параллель, обеспечивая равномерное распределение нагрузки, при этом, в отличие от традиционной параллельной системы, между ИБП отсутствуют управляющие кабели связи. В такой системе нет потенциально опасной единой точки отказа, а вероятность сбоев в ее работе практически сведена к нулю.
- В 9355 реализована технология трехступенчатого заряда АВМ®, с помощью которой ИБП постоянно отслеживает состояние батарей, оптимизирует время заряда и продлевает срок их службы до 50%.

Широкие возможности

- Графический ЖК дисплей с многоязычным меню (включая русский язык) упрощает процесс мониторинга статуса, настройки и управления ИБП.
- Широкие коммуникационные возможности 9355 гарантируют простоту интеграции этого ИБП в различные системы управпочия.
- Входящее в комплект поставки программное обеспечение Eaton Software Suite в случае продолжительного отсутствия электропитания отключает подключенное к ИБП оборудование в заранее заданной последовательности.

Экология и экономия

- КПД 9355 достигает 93%, что сокращает затраты на электроэнергию, увеличивает срок службы батарей и снижает нагрузку на системы охлаждения.
- Компактный башенный дизайн позволяет экономить ценное пространство серверных комнат и центров обработки данных.
- Входящие в комплект внутренние батареи избавляют пользователя от необходимости приобретения дорогостоящих и громоздких внешних батарейных блоков.
- Использование единой технологической платформы в конструкции всех трехфазных ИБП Eaton упрощает процесс их модернизации и обслуживания, что ведет к сокращению общей стоимости владения.
- В зависимости от потребностей и бюджета пользователя возможно заключение договоров на дополнительное сервисное обслуживание на гибких условиях.

ИБП Eaton 9355 20 - 40 кВА

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ

Номинальная выходная мо	ощно	сть ИБ	П (коэфф	р. мощности 0,9
кВА	20	30	40	
кВт	18	27	36	
Общие характеристики				
КПД в режиме преобразования (при полной нагрузке)	93%			
КПД в режиме преобразования (при нагрузке 50%)	91%			
Параллельное подключение по технологии Hot Sync	4			
Возможность обновления на месте	Прис	утствуе	т	
Топология инвертора/выпря- мителя	ШИМ	1 на IGE	ВТ-транзис	торах
Уровень шума	< 50)	<u> </u>		
Высота	1000 (макс	м без г . 2000 м	юнижения и)	характеристик
Входные характеристики				,
Вход	3 фаз	вы + N -	+ PE	
Номинальное напряжение	220/3	80, 230	/400, 240/	415 В 50/60 Гц
Диапазон входного напряжения	±20% от номинала при 100% нагрузке 50%, +20% от номинала при нагрузке			
Диапазон частоты	45-65	5 Гц		
Входной коэффициент мощности	0,99			
КНИ потребляемого тока	< 4,5	%		
Плавный наброс нагрузки	Присутствует			
Защита от обратного напряжения	Прис	утствуе	т	
Выходные характеристики				
Выход	3 фаз	вы + N -	+ PE	
Номинальное напряжение	220/3	80, 230	/400, 240/	415 В 50/60 Гц
Искажение выходного напряжения			линейная і ртная нелі	нагрузка) инейная нагрузка)

Выходной коэффициент мощности	0,9 (т.е. 27 кВт при 30 кВА)
Диапазон коэффициента мощ- ности нагрузки	0,7 индуктивного — 0,8 емкостного характера
Допустимая перегрузка	10 мин. — 110%; 1 мин. — 110-125%; 5 сек. — 125-150%; 300 мс > 150%
Допустимая перегрузка при работе на байпасе	60 мин. — 100-110%; 10 мин. — 110-125%; 1 мин. > 125-150%
Характеристики батарей	
Тип	VRLA
Метод зарядки	Технология ABM или Float
Температурная компенсация	Дополнительно
Номинальная мощность	432 В (32*12 В, 216 ячеек)
Ток зарядки	По умолчанию 3 А*, максимально 60 А
*Ограничено макс. номиналом входн	юго тока ИБП.

Дополнительные возможности

Изолирующий трансформатор, батареи с увеличенным сроком службы, ВБМ, разъем X-слот (для подключения адаптеров Web/SNMP, ModBus/JBus, Relay, Hot Sync, удаленного дисплея ViewUPS), модуль параллельной работы Hot Sync, встроенный ручной байпас, внешний сервисный байпас.

Коммуникационные возможности					
X-Slot	2 коммуникационных разъема				
Последовательные порты	1 шт.				
Релейные входы/выходы	программируемые, 2/1				
Сертификация					
Безопасность (сертификация СВ)	IEC 62040-1, IEC 60950-1				
EMC	IEC 62040-2				
Производительность	IEC 62040-3				

ИБП с трехфазным входом

Код изделия 9355/9155	Наименование в каталоге	Емкость	Время автономной работы (коэффициент мощности 0,7)	Габариты В*Ш*Г (мм)	Масса (кг)
1025061/1026598	9355/9155-20-N-5-1х9Ач-MBS	20 кВА/18 кВт	5 мин.	1684*494*762	300
1025062/1026599	9355/9155-20-N-13-2x9Aч-MBS	20 кВА/18 кВт	13 мин.	1684*494*762	400
1025063/1026600	9355/9155-20-N-22-3x9Aч-MBS	20 кВА/18 кВт	22 мин.	1684*494*762	500
1025064/1026601	9355/9155-20-N-31-4x9Ач-MBS	20 кВА/18 кВт	31 мин.	1684*494*762	600
1025065/1026602	9355/9155-30-N-7-2х9Ач-MBS	30 кВА/27 кВт	7 мин.	1684*494*762	400
1025066/1026603	9355/9155-30-N-13-3х9Ач-MBS	30 кВА/27 кВт	12 мин.	1684*494*762	500
1025067/1026604	9355/9155-30-N-20-4x9Aч-MBS	30 кВА/27 кВт	20 мин.	1684*494*762	600
1025795	9355-40-N-8-3x9Ah-MBS	40 кВА/36 кВт	8 мин.	1684*494*762	517
1025796	9355-40-N-12-4x9Ah-MBS	40 кВА/36 кВт	12 мин.	1684*494*762	617

Внешние батарейные шкафы 9155/9355

Код изделия	Наименование в каталоге	Емкость	Время автономной работы	Габариты В*Ш*Г (мм)	Масс (кг)
1025169	9355-ВАТ-1х24Ач (30 кВА)	1х36х24 Ач	См. спецификацию	1684*494*758	510
1025170	9355-BAT-2x24Aч (30 кВА)	2х36х24 Ач	См. спецификацию	1684*494*758	870

ВРЕМЯ РЕЗЕРВИРОВАНИЯ БАТАРЕЙ (МИН.)*

Батареи	Кол-во	5	10	15	20	25	30	35	40	кВА
7 Aч 12 B	1 x 36	24	8	5	-	-	-	-	-	мин.
9 Ач 12 В	1 x 36	30	12	7	5	-	-	-	-	мин.
7 Aч 12 B	2 x 36	60	24	14	10	6	-	-	-	мин.
9 Au 12 B	2 x 36	70	28	18	13	10	7	5	-	мин.
7 Aч 12 B	3 x 36	103	41	26	17	12	10	7	5	мин.
9 Au 12 B	3 x 36	115	46	31	22	16	13	10	8	мин.
7 Aч 12 B	4 x 36	152	55	40	26	18	15	11	9	мин.
9 Au 12 B	4 x 36	158	63	42	31	23	20	15	12	мин.

^{*}Время автономной работы ИБП с внутренними батареями, коэф. мощности = 0,7 (стандартная компьютерная /серверная нагрузка).

ИБП Eaton 9390

40 - 160 kBA

Оптимальный выбор для защиты

- центров обработки данных (ЦОД)
- систем управления зданиями
- телекоммуникационного оборудования
- АСУТП
- банковских приложений
- медицинской техники

ИБП с двойным преобразованием напряжения

Высокая производительность

- Топология двойного преобразования напряжения, реализованная в 9390, обеспечивает максимальный уровень защиты подключенной электроники от всех возможных проблем, возникающих в питающей сети.
- Благодаря бестрансформаторному дизайну и высокоточным технологиям измерения и управления КПД 9390 достигает 94%
- Активная коррекция входного коэффициента мощности (0,99) при рекордно низких показателях КНИ потребляемого тока (менее 4,5%) сокращает помехи от ИБП в сети, улучшая при этом его совместимость с генераторами.
- Высокое значение выходного коэффициента мощности 0,9 делает этот ИБП оптимальным решением для защиты современного IT-оборудования.

Непревзойденная надежность

- С технологией Hot Sync® два или более ИБП работают в параллель, обеспечивая равномерное распределение нагрузки, при этом, в отличие от традиционной параллельной системы, между ИБП отсутствуют управляющие кабели связи. В такой системе нет потенциально опасной единой точки отказа, а вероятность сбоев в ее работе практически сведена к нулю.
- В 9390 реализована технология трехступенчатого заряда ABM®, с помощью которой ИБП постоянно отслеживает состояние батарей, оптимизирует время заряда и продлевает срок их службы до 50%.

Широкие возможности

- 9390 занимает меньше места в сравнении с другими моделями, представленными на рынке. Кроме того, кабели к этому ИБП могут подводиться как сверху, так и снизу это обеспечивает гибкость инсталляции.
- Графический ЖК-дисплей с поддержкой русского языка существенно упрощает мониторинг статуса ИБП.
- Широкий выбор адаптеров и программных компонентов позволяет осуществлять мониторинг, управление и плановое отключение защищаемых систем.
- Стандартные разъемы и дополнительные коммуникационные карты обеспечивают практически любые подключения: от последовательной связи до удаленного веб-мониторинга.

Экология и экономия

- Высокий КПД 9390 сокращает расходы на электроэнергию, увеличивает срок службы внутренних компонентов ИБП и снижает нагрузку на системы охлаждения.
- Компактный 9390 можно поставить вплотную к стене или даже в углу — с этой моделью у пользователя появляется больше возможностей, а сам инсталляционный процесс проходит быстрее и проще, при этом снижаются затраты и экономится ценное пространство для размещения другого оборулования.
- Использование единой технологической платформы в конструкции всех трехфазных ИБП Eaton упрощает процесс их модернизации и обслуживания, что ведет к сокращению общей стоимости владения.
- В зависимости от потребностей и бюджета пользователя возможно заключение договоров на дополнительное сервисное обслуживание на гибких условиях.
- Компания Eaton использует качественные материалы и инновационные технологии производства, что позволяет снизить выбросы углерода в окружающую среду и выгодно отличает продукцию Eaton от других ИБП, представленных сегодня на рынке.

ИБП Eaton 9390 40 - 160 кВА

кВА 40 60 80 100 120 160 кВТ 36 54 72 90 108 144 Общие характеристики КПД в режиме двойного преобразования (при полной нагрузке) КПД в режиме двойного преобразования (при нагрузке 50%) КПД в режиме экономии (ESM) до 99% Параллельное подключение по технологии Нот Sync Возможность обновления на месте Топология инвертора/выпрямителя Уровень шума <65 дБ Высота 1000 м без понижения характеристик (м.) Входные характеристики Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон частоты 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Выходные характеристики Выходные характеристики Присутствует Присутствует Выходные характеристики Присутствует	цности 0,9
Общие характеристики КПД в режиме двойного преобразования (при полной нагрузке) 94% КПД в режиме двойного преобразования (при нагрузке 50%) 92,5% КПД в режиме экономии (ESM) до 99% Параллельное подключение по технологии Hot Sync 6+1 Возможность обновления на месте Присутствует Топология инвертора/выпрямителя ШИМ на IGBТ-транзисторах Уровень шума <65 дБ Высота 1000 м без понижения характеристик (м Входные характеристики Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 B, 50/60 Гц Диапазон входного напряжения ±15%, +20% от номинала при нагрузке 50% Диапазон частоты 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Защита от обратного напряжения Присутствует	
КПД в режиме двойного преобразования (при полной нагрузке) КПД в режиме двойного преобразования (при нагрузке 50%) КПД в режиме экономии (ESM) Параллельное подключение потехнологии Hot Sync Возможность обновления на месте Топология инвертора/ выпрямителя ШИМ на IGBT-транзисторах ШИМ на IGBT-транзисторах Высота Виом без понижения характеристик (м.) Входные характеристики Вход З фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 B, 50/60 Гц Диапазон входного напряжения 45-65 Гц Входной коэффициент мощности Входной коэффициент мощности КНИ потребляемого тока 44,5% Плавный наброс нагрузки Присутствует	
разования (при полной нагрузке) КПД в режиме двойного преобразования (при нагрузке 50%) КПД в режиме экономии (ESM) Параллельное подключение потехнологии Hot Sync Возможность обновления на месте Топология инвертора/ выпрямителя ШИМ на IGBT-транзисторах ШИМ на IGBT-транзисторах Высота 1000 м без понижения характеристик (м.) Входные характеристики Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 B, 50/60 Гц Диапазон входного напряжения 45-65 Гц Входной коэффициент мощности Входной коэффициент мощности КНИ потребляемого тока 4,5% Плавный наброс нагрузки Присутствует	
зования (при нагрузке 50%) КПД в режиме экономии (ESM) Параллельное подключение по технологии Hot Sync Возможность обновления на месте Топология инвертора/ выпрямителя Уровень шума Входные характеристики Вход 3 фазы + N + PE Номинальное напряжения Диапазон входного напряжения Диапазон частоты Входной коэффициент мощности Входной коэффициент мощности КНИ потребляемого тока Плавный наброс нагрузки Присутствует 45-65 Гц Входной коэфот напряжения Счита на при нагрузке 50% Присутствует Присутствует	
Параллельное подключение по технологии Нот Sync Возможность обновления на месте Топология инвертора/ выпрямителя Уровень шума Высота Возможность обновления на поимения карактеристик (мараные характеристики Входные характеристики Вход З фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон входного напряжения ±15%, +20% от номинала при 100% на +20% от номинала при нагрузке 50% Диапазон частоты Входной коэффициент мощности 0,99 КНИ потребляемого тока 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока 44,5% Плавный наброс нагрузки Присутствует Защита от обратного напряжения Присутствует	
технологии Hot Sync Возможность обновления на месте Присутствует Топология инвертора/ выпрямителя Уровень шума 65 дБ Высота 1000 м без понижения характеристик (м. Входные характеристики Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 B, 50/60 Гц ‡15%, +20% от номинала при 100% на +20% от номинала при нагрузке 50% Диапазон входного напряжения 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока 4,5% Плавный наброс нагрузки Присутствует Присутствует	
месте Топология инвертора/ выпрямителя Уровень шума 465 дБ Высота 1000 м без понижения характеристик (м.) Входные характеристики Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон входного напряжения \$\pmathrm{\pmathrm	
Выпрямителя Уровень шума 465 дБ Высота 1000 м без понижения характеристик (м. Входные характеристики) Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон входного напряжения 45-65 Гц Входной коэффициент мощности Входной коэффициент мощности 45-65 Гц Входной коэффициент мощности О,99 КНИ потребляемого тока 4,5% Плавный наброс нагрузки Присутствует Присутст	
Высота 1000 м без понижения характеристик (м Входные характеристики Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон входного напряжения ±15%, +20% от номинала при 100% на +20% от номинала при нагрузке 50% Диапазон частоты 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Защита от обратного напряжения Присутствует	
Входные характеристики Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон входного напряжения ±15%, +20% от номинала при 100% на +20% от номинала при нагрузке 50% Диапазон частоты 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5%	
Вход 3 фазы + N + PE Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон входного напряжения ±15%, +20% от номинала при 100% на +20% от номинала при нагрузке 50% Диапазон частоты 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Защита от обратного напряжения Присутствует	макс. 2000 м)
Номинальное напряжение 220/380, 230/400, 240/415 В, 50/60 Гц Диапазон входного напряжения ±15%, +20% от номинала при 100% на +20% от номинала при нагрузке 50% Диапазон частоты 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Защита от обратного напряжения	
Диапазон входного напряжения ±15%, +20% от номинала при 100% на +20% от номинала при нагрузке 50% Диапазон частоты 45-65 Гц Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Защита от обратного напряжения	
Входной коэффициент мощности 0,99 КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Защита от обратного напряжения	агрузке, -30%
КНИ потребляемого тока <4,5% Плавный наброс нагрузки Присутствует Защита от обратного Присутствует	
Плавный наброс нагрузки Присутствует Защита от обратного Присутствует напряжения	
Защита от обратного Присутствует напряжения	-
напряжения Присутствует	
Выходные характеристики	
Выход 3 фазы + N + PE	
Номинальное напряжение 220/380, 230/400, 240/415 B, 50/60 Гц	

<3% (100% линейная нагрузка) <5% (стандартная нелинейная нагрузка)

Выходной коэффициент мощности	0,9 (т.е. 72 кВт при 80 кВА)
Диапазон коэффициента мощности нагрузки	0,7 индуктивного — 0,8 емкостного характера
Допустимая перегрузка	10 мин. — 100-110%; 30 сек. — 110-125%; 10 сек. — 125-150%; 300 мс >150%
Допустимая перегрузка при работе на байпасе	Непрерывная — 100-110%; 10 мин. — 110-150%; 5 мин. > 1000%. Примечание! Перегрузка может быть огранчена номиналом предохранителя.

Характеристики батар	ей				
Тип	VRLA, NiCd				
Метод зарядки	Технология ABM или Float				
Температурная компенсация	Дополнительно				
Номинальная мощность	480 B (40*12 B 240 ячеек)				
Ток зарядки/модель По умолчанию, А* Максимально, А	40 60 80 100 120 160 10 20 20 30 30 40 20 40 40 60 60 80				

*Ограничено макс. номиналом входного тока ИБП.

Опции

Внешние батарейные модули с батареями с увеличенным сроком службы, разъем X-Slot (для подключения адаптеров Web/SNMP, ModBus/JBus, Relay, Hot Sync, удаленного дисплея ViewUPS), модуль параллельной работы Hot Sync, встроенный ручной байпас до 80 кВА, внешний сервисный байпас.

Коммуникационные в	Коммуникационные возможности				
X-Slot	4 коммуникационных разъема				
Последовательные порты	1 шт.				
Релейные входы/выходы	Программируемые, 6/3				
Сертификация					
Безопасность (сертификация СВ)	IEC 62040-1, IEC 60950-1				
EMC	IEC 62040-2				
Производительность	IEC 62040-3				

Стандартный ИБП

Искажение выходного

Код изделия	Наименование в каталоге	Мощность	Габариты В*Ш*Г (мм)	Масса (кг)
1028510	9390-40-N-4xO	40 кВА/36 кВт	1879*519*808	257
1028511	9390-60-U-4xO	60 кВА/54 кВт	1879*519*808	313
1028512	9390-80-N-4xO	80 кВА/72 кВт	1879*519*804	313
1028513	9390-100-U-4xO	100 кВА/90 кВт	1879*944*804	430
1028514	9390-120-N-4xO	120 кВА/108 кВт	1879*944*804	430
1028515	9390-120-U-4xO	120 кВА/108 кВт	1879*944*804	530
1028516	9390-160-N-4xO	160 кВА/144 кВт	1879*944*804	530
Внешние батареі	йные модули			
1025570	9390-BAT10-S-40x38Au (250A)	38 Au	1877*575*773	700
1025572	9390-BAT10-S-200 (250A)	200 Вт	1877*575*773	1176
1026327	9390-BAT10-S-205 (250A)	205 Вт	1879*1125*808	1270
1025467	9390-BAT10-280 (250A)	280 Вт	1879*1125*808	1444
1025468	9390-BAT10-500 (250A)	500 Вт	1879*1125*808	2188
1025469	9390-BAT10-280 (400A)	280 Вт	1879*1125*808	1444
1025470	9390-BAT10-330 (400A)	330 Вт	1879*1125*808	1625
1025471	9390-BAT10-500 (400A)	500 Bτ	1879*1125*808	2188
Батарейные стой	iки			
1026273	9390-RACK10-1x40x200W	200 Вт	1714*566*1246	985
1026274	9390-RACK10-1x40x280W	280 Вт	1726*690*1246	1228
1026275	9390-RACK10-1x40x330W	330 Вт	1726*690*1546	1431
1026276	9390-RACK10-1x40x390W	390 Вт	1729*690*1546	1587
1026277	9390-RACK10-1x40x500W	500 Вт	1789*690*1546	1995
1026278	9390-RACK10-2x40x500W	500 Вт	1714*866*1856	3879
1026279	9390-RACK10-3x40x500W	500 Вт	1789*690*3666	5865
См. время автономной р	работы в соответствующей спецификации.			
Стандартное доп	олнительное оборудование			
1021887	Видиний переключатель байласа 60-80 кВА (насте	NIIII IX MOUTOW)	840*380*130	17

Стандартное	тандартное дополнительное оборудование					
1021887	Внешний переключатель байпаса 60-80 кВА (настенный монтаж)	840*380*130	17			
1021888	Внешний переключатель байпаса 120 кВА (настенный монтаж)	1040*560*130	25			
1024626	Внешний переключатель байпаса 160 кВА (настенный монтаж)	1040*560*130	25			
1025476	SPM-60-2 (настенный монтаж)	700*500*250	50			
1023540	SPM-80-4 (напольный монтаж)	1530*520*788	230			
1024687	9390 шкаф параллельной работы 3x120 кВА (напольный монтаж)	1879*519*808	217			
1024506	9390 сшкаф параллельной работы 3x160 кВА (напольный монтаж)	1879*519*808	217			

ИБП Eaton 9395

225 - 1100 κBA

An Eaton Green Solution

ИБП 9395 получил сертификат «An Eaton Green Solution»™

Оптимальный выбор для защиты

- больших ЦОД и серверных массивов
- банковских приложений
- систем управления зданиями
- телекоммуникационного оборудования
- медицинской техники

ИБП с двойным преобразованием напряжения

Высокая производительность

- Топология двойного преобразования напряжения, реализованная в 9395, обеспечивает максимальный уровень защиты подключенной электроники от всех возможных проблем, возникающих в питающей сети.
- Благодаря бестрансформаторному дизайну и высокоточным технологиям измерения и управления КПД 9395 достигает 94,5%.
- Активная коррекция входного коэффициента мощности (0,99) при рекордно низких показателях КНИ потребляемого тока (менее 4,5%) сокращает помехи от ИБП в сети, улучшая его совместимость с генераторами.
- Высокое значение выходного коэффициента мощности 0,9 делает этот ИБП оптимальным решением для защиты современного IT-оборудования.

Непревзойденная надежность

- С технологией Hot Sync® два или более ИБП работают в параллель, обеспечивая равномерное распределение нагрузки, при этом, в отличие от традиционной параллельной системы, между ИБП отсутствуют управляющие кабели связи. В такой системе нет потенциально опасной единой точки отказа, а вероятность сбоев в ее работе практически сведена к нулю.
- В мультимодульных 9395 предусмотрена возможность внутреннего резервирования – если нагрузка падает ниже 50%, система автоматически становится избыточной.
- В 9395 реализована технология трехступенчатого заряда АВМ®, с помощью которой ИБП постоянно отслеживает состояние батарей, оптимизирует время заряда и продлевает срок их службы до 50%.

Широкие возможности

- ИБП 9395 является полностью интегрированной системой, сконфигурированной на этапе заводской сборки.
- Графический ЖК-дисплей с поддержкой русского языка существенно упрощает мониторинг статуса ИБП.
- Широкий выбор адаптеров и программных компонентов позволяет осуществлять мониторинг, управление и плановое отключение защищаемых систем.

Экология и экономия

- Высокий КПД 9395 сокращает затраты на электроэнергию, увеличивает срок службы батарей и снижает нагрузку на системы охлаждения.
- В отличие от ИБП с трансформатором, источник, в котором реализована бестрансформаторная технология, весит на 50% меньше и занимает на 60% меньше места, что упрощает его транспортировку и инсталляцию.
- Благодаря инновационному дизайну 9395 расход энергии в процессе его производства снижается на 50-80%.
- Подключение внутренней силовой проводки на этапе сборки позволяет оптимизировать затраты на приобретение силовых кабелей и уменьшить время инсталляции. Возможность фронтального подключения сводит к минимуму расходы на установку и экономит ценное пространство серверных комнат.
- Функция Easy Capacity Test позволяет тестировать ИБП без необходимости подключения внешних нагрузок.
- Использование единой технологической платформы в конструкции всех трехфазных ИБП Eaton упрощает процесс их модернизации и обслуживания, что ведет к сокращению общей стоимости владения.
- Более 90% комплектующих 9395 подлежат вторичной переработке, что снижает негативное воздействие на окружающую среду.

ИБП Eaton 9395 225 – 1100 кВА

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ

Номи	нальная	я выход	ная мо	рщност	ь ирц (коэфф	мощно	ости 0,9)
кВА	225	275	450	550	675	825	900	1100
кВт	204	250	408	500	612	750	816	1000
Общи	іе харан	стеристи	ІКИ					
преобр	режиме , разования разования		>9	94,5%				
преобр	режиме , разования агрузке 5		94	:%				
КПД в (ESM)	режиме	экономии	до	99%				
	пельное г нологии I	подключе Hot Sync	ние 5+	-1				
N+1, c	возможн	ервирован ностью дключени	ОТ	225 до 8	325 кВА			
Возмо		бновлени	я Пр	оисутству	ует			
Тополо выпряг	огия инве мителя	ертора/	Ш	им на Ю	GBT-тран	ізистора:	κ	
Уровен	нь шума		< 7	76 дБ; <8	80 дБ (82	!5 и 1100	кВА)	
Высота				1000 м без понижения характеристик (макс. 2000 м)				
Вході	ные хар	актерис	тики					
Вход			3 (фазы + N	l + PE			
Номин	альное н	апряжени	e 22	0/380, 2	30/400, 2	240/415	3, 50/60	-ц
Диапа: напрях	зон входн кения	ЮГО	+1	0%/-15%	%			
Диапа:	зон часто	ты	45	-65 Гц				
Входно мощно	ой коэфф ости	ициент	0,9	99	,			
КНИ п	отребляе	мого тока	< 3	3-5%				
Плавні	ый набро	с нагрузкі	и Пр	оисутству	ует			
Защит напрях	а от обра кения	тного	Пр	оисутству	ует станд	артно		
Выхо	дные ха	арактері	1СТИКИ					
Выход			3 (фазы + М	N + PE			
—- Номин	альное н	апряжени	e 22	0/380, 2	30/400, 2	 240/415 I	3, 50/60	
	ение вых	одного			% линейн		/зка); ная нагру	зка)
				- / - (- : - : - : - :	дартпал			
напрях Выход	кения ной коэф	фициент			0 кВт прі	и 275 кВ	a) 	
напря> Выход мощно Диапа:	кения ной коэф эсти	фициента	0,9	9 (т.е. 25	0 кВт прі			характера
напрях Выход мощно Диапа: мощно	кения ной коэф эсти зон коэфо	фициента узки	0,5	9 (т.е. 25) 7 индукті мин.—	0 кВт при ивного — 100-110	- 0,8 емк %; 30 се		

Тип	VRLA-A	AGM			
Метод зарядки	Технол	огия ABI	Л или Floa	t	
Температурная компенсация	Дополн	ительно			
Номинальная мощность	480 B (40*12 B,	240 ячеен	()	
Ток зарядки/модель	275	550	825	1100	
По умолчанию, А	38	76	114	152	
Максимально, А*	83	166	249	332	
*Ограничено макс. номиналом	входного то	ка ИБП.			
Габариты и масса					
225 кВА, 275 кВА	1350*880)*1880 M	ıм (Ш*Г*В	3)	830 кг
225 кВА с избыточностью 275 кВА с избыточностью	1890*880)*1880 ผ	IM		1430 кг
450, 500, 550 кВА	1890*880	0*1880 ₪	IM		1430 кг
450, 550 кВА, с избыточностью	2520*880*1880 мм 203				2030 кг
Модуль расширения	740*880*1880 мм				600 кг
675, 825 кВА	3710*880*1880 мм 2520				2520 кг
675, 825 кВА + 1 с избыточностью	4450*880*1880 мм 3120 к			3120 кг	
1100 кВА	4450*880)*1880 ผ	IM		3120 кг
Опции					
	с увелич (для поды ModBus)	енным ср ключения JBus, Re ViewUPS	іные модул роком слух я адаптерс вlay, Hot Sy s), встроен	кбы, разт в Web/S /nc, удал	ьем X-сло NMP, енного
Коммуникационные в	озможно	сти			
X-Slot	4 коммун	никацион	ных разъе	ма	
Последовательные порты	1 шт.				
Релейные входы/выходы	Програм	мируемь	ie, 5/1		
Сертификация		0-1, IEC	60950-1		
Безопасность	IEC 6204				
Сертификация Безопасность (сертификация СВ) ЕМС	IEC 6204	0-2			

ИБП Eaton BladeUPS

12 - 60 кВт

An Eaton Green Solution

Оптимальный выбор для защиты

- небольших, средних и крупных ЦОД
- Blade-серверов
- сетевых устройств
- оборудования PBX и VoIP
- сетевых приложений: IPTV, безопасности
- систем хранения данных: RAID, SAN

Высокопроизводительный ИБП для ЦОД

Высокая производительность

- BladeUPS обеспечивает гибкое резервное питание для blade-серверов и IT-оборудования.
- BladeUPS это 12 кВА мощности при высоте всего 6U (включая батареи).
- BladeUPS масштабируемое решение, позволяющее наращивать мощность системы с 12 кВт до 60 кВт в одной стойке.
- Этот ИБП отличается рекордными показателями КПД (97%), что помогает снизить расходы на электроэнергию и охлаждение.

Непревзойденная надежность

- Используя запатентованную технологию параллельной работы Hot Sync®, можно объединить до шести модулей BladeUPS и в одной девятнадцатидюймовой стойке создать избыточную резервную систему защиты мощностью 60 кВт.
- Технология ABM® подразумевает заряд аккумуляторов только по мере необходимости, что уменьшает коррозию и продлевает срок их службы до 50%.
- Благодаря возможности «горячей замены» батарей, не требующей прерывания питания нагрузки, значительно повышается степень доступности электропитания защищаемого оборудования.

Широкие возможности

- BladeUPS легко адаптируется под индивидуальные требования пользователя и возможные изменения в конфигурации центров обработки данных.
- Благодаря низкому тепловыделению требования к кондиционированию помещений, где устанавливается BladeUPS, снижаются на треть. Поэтому этот источник можно размещать рядом с другим IT-оборудованием.
- Для создания параллельной системы на основе BladeUPS требуется только шина параллельной работы. Все подключенные к параллельной системе модули автоматически настраиваются на необходимый режим работы.
- Модуль, предназначенный для работы в параллельной системе, можно всегда переконфигурировать для одиночной работы и наоборот.
- К каждому BladeUPS можно подключать собственные внешние батарейные модули.
- Распределение электропитания в стойках с BladeUPS осуществляется с помощью устройства Rack Power Module (RPM). RPM обеспечивает организованную и упорядоченную подачу до 36 кВт питания нагрузкам с различными напряжениями, кабелями питания и компоновками. RPM размером 3U можно разместить в одной стойке с ИБП и другим IT-оборудованием.
- Мониторинг BladeUPS выполняется через локальную сеть или Internet.

Экология и экономия

- Высокая производительность BladeUPS приводит к сокращению стоимости владения: решение 60 кВт N+1 окупается за 5 лет только за счет экономии на электроэнергии и охлаждении.
- Благодаря своим компактным размерам BladeUPS позволяет экономить ценное пространство стоек.
- Компания Eaton использует качественные материалы и инновационные технологии производства, что ведет к снижению выбросов углерода в окружающую среду и выгодно отличает продукцию Eaton от других ИБП, представленных сегодня на рынке.

Общие характерист	ики
— Номинальная мощность	12 кВт на модуль ИБП
кпд	До 97%
Тепловыделение	371В/1266 БТЕ/ч при 100% номинальной нагрузке
	Охлаждение вентилятором;
Охлаждение	микропроцессор следит за температурой; вход воздуха с передней стороны, выход – с задней
Уровень шума	
Нормальный режим работы	<60 дБА на расстоянии 1 метр
Высота	1000 метров
Входные характери	стики
Входное напряжение	400 В переменного тока
Диапазон напряжения	400 В: 311 – 519 В переменного тока, между фазами
Диапазон частоты	50 или 60 Гц, ±5 Гц
КНИ потребляемого тока	<5% с ІТ нагрузками
Входной коэффициент	
мощности	>0.99 с ІТ нагрузками
Пусковой ток	Зависит от нагрузки
Гребования к входным подключениям	Три фазы, четыре провода+заземление
Источник байпаса	Совпадает с входом (одиночное питание)
Совместимость	Высокая скорость нарастания напряжения
с генераторами	для синхронизации с генератором
Выходные характер	оистики
Номинальное выходное напряжение	400 B: 180-240 В переменного тока, фаза-нейтраль
Зыходная конфигурация	Три фазы, четыре провода+заземление
Выходная частота (номинальная)	50/60 Гц, автоматический выбор при запуске
^Р егулировка частоты	В пределах 0,1 Гц
Диапазон коэффициента мощности нагрузки	0,7 индуктивного -0,9 емкостного характера
Искажение выходного напряжения	<3% с IT нагрузками (PFC) <5% при нелинейном электроснабжении
Характеристики бат	- гарей
Тип аккумуляторов	VRLA-AGM
Время работы от внутренних батарей	13 минут при нагрузке 50% 4,7 минуты при нагрузке 100%
Напряжение на батареях	240 В постоянного тока
	Автоматический мониторинг
Мониторинг параметров	(возможно дистанционное составление графика)
работы батарей	Мониторинг параметров работы батарей вручную с помощью ЖК-дисплея
Способ зарядки батарей	Технология трехступенчатой зарядки АВМ
Напряжение отсечки	От 1,67 В РС при рабочем цикле <5 мин.
аккумулятора Разряд	Предупреждающий сигнал
батарей Возможность добавления	Можно добавить до 4 дополнительных батарейных модулей
дополнительных батарей	(3U~34 мин. при нагрузке 100%, >1 часа при нагрузке 50%
Габариты и масса	
Габариты (В*Ш*Г)	261 (6U)*442*660 мм 132 (6U)*437*660 мм
Общий вес шасси без батарей и электроники	46 кг
Общий вес шасси с батареями и электроникой	, 140 kr
Общий вес ИБП без батарей	61 кг
 Общий вес ИБП с батареями	140 кг

Вес ВБМ

77 кг

Программное обеспечение	ИБП поставляется с компакт-диском Software Suite, включающим в себя ПО для управления питанием LanSafe и пробную							
	версию ПО PowerVision							
X-Slot	Два для перечисленных ниже карт							
	Две строки по 20 символов							
ЖК-дисплей	Четыре клавиши интерфейса, управляемые с помощью менк Четыре светодиода для индикации статуса							
Языки	Английский язык в качестве стандарта; доступно 20 языков							
Изменение конфигурации	Выполняется пользователем, автоподстройка аппаратно-программного обеспечения							
Сухие контакты на входе	Два входа, конфигурируются пользователем							
Сухие контакты на выходе	Один выход, конфигурируется пользователем							
Обслуживание								
Монтаж	Выполняется пользователем, расположение в ІТ-стойках							
Профилактическое обслуживание	Выполняется пользователем, выезд инженеров Eaton — по желанию заказчика							
Ремонтное	Выполняется пользователем, выезд инженеров Eaton —							
обслуживание	по желанию заказчика							
	Аккумуляторы и электронные модули, заменяемые							
Удобство обслуживания	в процессе работы; автоматический внутренний байпас для техобслуживания; автоподстройка аппаратно-программного							
	обеспечения; возможность flash-обновления ПО							
EMI	IEC 62040							
Защита от перенапряжения	ANSI C62.41, Cat B-3							
Опасные материалы (RoHS)	Директива EU 2002/95/EC, категория 3 (4 или 5)							
—————————————————————————————————————								
 Стандартная	12 месяцев							
Гарантийный ремонт	Ремонт с использованием заводских запчастей или замена устройства							
Опции								
Шнур питания ИБП								
Шнур питания нагрузки								
Внешние батарейные модул	ти (ВБМ)							
3U RPM								
0U - 3U разветвители								
Шина параллельной работь	I ИБП до 60 кВт							
Комплект дополнительных	полозьев для стойки							
Дополнительные ко	оммуникационные адаптеры X-Slot							
Применение	Адаптер							
Web SNMP	Адаптер ConnectUPS-X Web/SNMP							
Мониторинг окружающей среды	Датчик EMP Environmental Monitoring Probe (требуется карта Web/SNMP)							
Modbus® RTU	Адаптер Modbus							
IBM eServer™ (i5™, iSeries™,								
или AS/400),	Адаптер релейных контактов							
промышленные системы Параллельная работа	Адаптер Hot Sync							
Удаленный мониторинг	Modem Card							
Удаленный ЖК-дисплей	ViewUPS-X							
Рекомендованные і	модули распределения нагрузки (ePDU):							
Y032440CD100000	RPM — Rack Power Module (BladeUPS вход, 12*C13 + 6*C19 выход)							
PW107BA0UC08	ePDU — Basic (0U, Dual 16A C20 вход, 24*C13+ 8*C19 выход используется дополнительно с RPM							
PW107MI0UC08	ePDU — IP Monitored (0U, Dual 16A C20 вход, 24*C13+ 8*C1 выход), используется дополнительно с RPM							

Преимущества Eaton ePDU

- разработаны специально для ответственного оборудования
- рассчитаны на любую мощность: от стандартной (0-4 кВт) до ультравысокой (15 кВт и более)
- большой выбор разъемов, включая UK, Schuko, French, Nema, C13, C19
- возможность совмещать до трех типов розеток на одном устройстве размером 0U
- различные технологии: Basic, Metered, Monitored и Managed
- вертикальное (0U) или горизонтальное (1U/2U) исполнение
- конфигурация под конкретные требования заказчика
- предустановленные крепежные элементы
- высококачественные розетки
- множество вариантов инсталляции с возможностью адаптировать систему на месте установки

Модули распределения нагрузки для стоек

Быстрое развитие технологий и увеличение требований к надежности IT-систем заставляют специалистов использовать сложное оборудование для контроля энергопотребления серверных комнат и центров обработки данных.

Широкий выбор моделей

Модули распределения нагрузки компании Eaton обладают обширным набором функций и отличаются множеством модификаций, способных полностью удовлетворить требованиям практически любого центра обработки данных. Различные технологии работы, широкий диапазон мощностей, возможность индивидуальной конфигурации в соответствии с требованиями заказчика (число и тип розеток) и производство устройств с учетом стандартов входных разъемов различных стран делают Eaton ePDU универсальными, качественными и надежными продуктами.

Семейство ePDU — это множество моделей с широким выбором количества и типов входных и выходных разъемов (розеток). В ePDU используются розетки и входные разъемы, соответствующие стандартам страны, в которой они продаются — UK, French, Schuko и IEC (С13 и С19), EN 60309, IEC (С14 и С20) или клеммные колодки для прямого подключения к выходным разъемам ИБП. Розетки устройств, предназначенных для токов выше 16 А, обеспечиваются выключателями или защитными предохранителями.

Устройства имеют клеммы заземления, а для увеличения надежности все печатные платы изолированы от силовых розеток.

Перечень производимых Eaton ePDU включает в себя устройства как в вертикальном (занимают 0U стоечного пространства), так и в горизонтальном исполнении (размером 1 и 2U). Удобная система монтажа позволяет легко устанавливать ePDU при различных конфигурациях оборудования в стойках. Кроме того, предлагается дополнительное оборудование для мониторинга параметров окружающей среды. Все продукты сертифицированы и отвечают российским и международным стандартам.

Выберите идеальное решение

Каждый ЦОД уникален. Выбрать подходящее именно Вам решение помогут ответы на три простых вопроса:

1. Какая необходима мощность?

Мы предлагаем устройства как со стандартной мощностью (от 1 до 4 кВт), так и решения с высокой мощностью (от 15 кВт и более), однофазные (10A, 13A, 16A, 32A и 63A) и трехфазные (16A и 32A).

2. Тип входных и выходных разъемов?

ePDU имеют множество конфигураций: в одном устройстве можно сочетать несколько типов розеток.

3. Для чего будет использоваться ePDU?

B Eaton ePDU может быть реализован любой из 4 типов функциональных технологий – Basic, Metered, Monitored и Managed.

Managed ePDU

Линейка Managed ePDU — это сочетание передовых технологий и революционных решений для работы с оборудованием высокой плотности мощности. Имея встроенный микропроцессор, устройства отличаются беспрецедентными возможностями по управлению и мониторингу.

Вы можете управлять питанием путем отключения отдельных розеток. Определяемая пользователем последовательность включения розеток, а также выставляемые временные задержки включения позволяют производить контролируемую удаленную загрузку и перезагрузку серверов. 256 - битное кодирование гарантирует защищенную связь и IPMI, а SMASH CLI обеспечивает согласованный доступ к компьютерному оборудованию и ePDU.

- Детальный мониторинг на уровне отдельной розетки (А, В, Вт)
- Включение /отключение отдельных розеток для удаленной загрузки /отключения серверов
- Пользовательские группы и последовательности выходных разъемов с сочетанием нескольких устройств ePDU (для линий A и B)
- Связь через SSL, TELNET, http, https, SNMP, IPMI, SMASH CLI, последовательный канал; 256-битное шифрование и встроенный брэндмауэр
- Мгновенные оповещения пользователя о сбоях в работе по электронной почте
- Мониторинг нескольких тысяч устройств ePDU в пределах одной сети по протоколу SNMP
- Дополнительные датчики температуры и влажности

Интеллектуальные ePDU с мониторингом

Интеллектуальные модули распределения питания (ePDU) предлагают пользователям возможности обычных модулей с возможностями мониторинга, но при этом каждая из розеток может контролироваться дистанционно по сети Ethernet. Интеллектуальные ePDU так же оснащены цифровым амперметром, упрощающим местный контроль и выравнивание нагрузки питания серверов.

- Контроль текущего тока по сети Ethernet
- Доступный цифровой амперметр для 8 розеток
- Балансировка нагрузки питания
- Измерение реального действующего значения тока обеспечивает высокую точность
- Ручная или автоматическая прокрутка значений тока на выходах

Monitored ePDU

Monitored ePDU осуществляют удаленный мониторинг состояния отдельных розеток через RS232 или сеть Ethernet, что позволяет пользователю объединять и анализировать информацию, полученную от тысяч ePDU. Все Monitored ePDU также оснащены цифровым амперметром, помогающим балансировать и равномерно распределять нагрузку по выходным розеткам.

- Мониторинг текущего потребления через сеть Ethernet
- Легко читаемый цифровой амперметр с возможностью использования на 8 контурах
- Точная балансировка нагрузки
- Амперметр True RMS обеспечивает точность измерений
- Ручной или автоматический выбор контуров

Monitored ePDU

In-Line Monitored ePDU

Модификация существующих PDU без измерения мощности. Разработанные для новых или модернизируемых систем, устройства осуществляют локальный или удаленный мониторинг питания. Доступны как с технологией Metered, так и с технологией Monitored (с цифровым амперметром).

- Возможность мониторинга распределения электропитания для существующих или старых центров обработки данных
- Номинал 16 и 32 А, с одним или двумя вводами
- Горизонтальный монтаж в стандартную 19-дюймовую стойку или вертикальный монтаж 0U
- Один или два ввода возможность мониторинга линий А и В
- Конструкция без применения предохранителей и размыкателей: без внутренних разрывов цепи

Metered ePDU

Metered ePDU, оснащенные удобным цифровым амперметром, могут автоматически отображать величину тока нагрузки (также существует возможность ручного выбора режима индикации). Яркий и большой цифровой индикатор виден издалека и сквозь перфорированные двери шкафов и стоек. Устройство ePDU обеспечивает простое управление и мониторинг систем.

- Дисплей амперметра помогает балансировать и равномерно распределять нагрузку по выходным розеткам
- Информация отображается в удобном цифровом виде
- True RMS амперметр обеспечивает высокую точность измерений

Различные варианты монтажа

Basic ePDU

Все модули распределения нагрузки Eaton, включая ePDU в базовом исполнении, производятся в усиленных алюминиевых корпусах и имеют скрытые выключатели.

- Прочная конструкция
- Различные варианты монтажа
- Полностью изолированные выключатели
- Доступны устройства высокой мощности для blade-серверов и сетевых маршрутизаторов

Контролируйте параметры работы ePDU с помощью Intelligent Power Manager

Intelligent Power® Manager (IPM) — новое программное обеспечение от компании Eaton. ПО IPM поддерживают как ИБП Eaton, так и источники других производителей. Также IPM совместимо с Monitored и Managed ePDU. С помощью IPM пользователи могут осуществлять мониторинг и управлять работой ePDU через единый интерфейс и IP-адрес.

Интеграция с платформами виртуализации

Интеграция IPM с Vmware vCenter и Microsoft SCVMM повышает производительность и оперативность реагирования. Благодаря взаимодействию с vMotion™ vCenter и Live Migration SCVMM возможно прозрачное перемещение виртуальных машин с сервера, на котором потеря питания неизбежна, на другой физический сервер, питание которого в норме, гарантируя целостность данных и обеспечивая нулевое время простоя.

Преимущества ІРМ

- мониторинг и управление ePDU или ИБП через IP-сеть с помощью стандартного веб-браузера
- ІРМ детально отображает все параметры, измерения и настройки модулей распределения нагрузки и может контролировать их работу из любого места сети, используя IP-адреса ePDU
- настраиваемые пользователем аварийные предупреждения, включая возможность отправки предупреждений по электронной почте или в SMS-сообщении
- контроль и управление всей системой через единый интерфейс
- автоматическое обнаружение подключенных устройств
- бесплатная версия для управления работой до 10 ePDU или ИБП

Преимущество
IE IE 6 и 7; Firefox 2 и 3; Safari. Систему можно установить локально или на главном сервере с возможностью доступа через веб-браузер.
Быстрая установка — автоматическое обнаружение устройств, подключенных к сети.
Приложение имеет несколько защищенных паролем уровней доступа.
Интерфейс на основе веб, позволяющий осуществлять удаленный мониторинг и доступ к системам.
Упрощает управление несколькими устройствами, установленными в различных местах, благодаря возможности их группировки.
Визуальное отображение физического расположения устройств на схемах или чертежах.
Единый интерфейс для просмотра всех сигналов тревоги сокращает время реагирования и ремонта. Отсылка предупреждений на мобильный телефон или электронную почту.
Группировка нескольких сходных устройств для простоты управления ими. Единый интерфейс с возможностью доступа из любой точки сети через веб-браузер.
Сокращает до минимума время на установку и обслуживание коммуникационных адаптеров благодаря использованию функций массового конфигурирования и обновления (в настоящее время не доступны для ePDU).
Позволяет выполнять безопасное отключение серверов.
Предлагает установить последнюю из доступных версий ПО.
Индивидуальные веб-интерфейсы ИБП и ePDU доступны для изменения и конфигурирования.
Пользователь может выбирать наиболее важные ему данные для их быстрого просмотра и сортировки.

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ

		Форм-		Тип вуолного	Тип и количество			Bec
Модель	Код изделия	фактор	Ток (А)	разъема	вых. разъемов	Автоматы	Размеры (мм)	(кг)
Managed IEC								
	PW102MA0UC60	0U	10	C14	C13, 16	-	57x1525x52	10
	PW104MA0UC34	0U	16	IEC309 16A	C13, 16: C19, 4	-	57x1676x52	10
	PW104MA0UC61	0U	16	C20	C13, 16: C19, 4	-	57x1676x75	10
	PW107MA0UB61	0U	32	IEC309 32A	C13, 16: C19, 4	2 однополюсных	57x1837x75	10
	PW104MA1UB44	1U	16	IEC309 16A	C13, 8	-	45x482x190	5
	PW107MA2UC93	2U	32	IEC309 32A	C13, 16	2 однополюсных	89x440x267	5,5
Advanced Monit	ored IEC							
	PW322MI0UC58	0U	32 3P	IEC309 32A 3P	C19, 6	6 однополюсных	57x1475x116	10
	PW104AM1UC59	1U	16	IEC309 16A	C13, 8	-	45x482x150	5
IP Monitored IEC								
	PW102MI0UB95	0U	10	C14	C13, 16	-	57x838x52	7
	PW104MI0UB96	0U	16	IEC309 16A	C13, 20: C19, 4	-	57x1097x52	7
	PW104MI0UB97	0U	16	C20	C13, 20: C19, 4	-	57x1097x52	7
	PW107MI0UB88	0U	32	IEC309 32A	C13, 20: C19, 4	2 однополюсных	57x1429x91	7
	PW312MI0UC07	0U	16 3Ph	IEC309 16A 3P	C13, 36: C19, 6	-	57x1682x52	10
Inline Monitored	IEC							
	PW104IM0UC05	0U 19"	16	IEC309 16A	IEC309 16A	-	57x436x52	6,5
	PW107IM0UC04	0U 19"	32	IEC309 32A	IEC309 32A	-	57x436x52	6,5
	PW322IM0UC17	0U 19"	32 3P	IEC309 32A 3P	IEC309 32A 3P	-	57x436x75	6,5
	PW107IM0UB81	0U 19"	2x16	2x IEC309 16A	2x IEC309 16A	-	57x436x75	6,5
	PW344IM0UC18	0U 19"	2x32	2x IEC309 32A	2x IEC309 32A	-	57x573x75	6,5
Basic IEC								
	ePBZ03	OU	16	C20	C13, 16	-	48x635x60	1,5
	ePBZ05	0U	10	C14	C13, 16	-	48x635x60	1,4
	ePBZ32	0U	16	IEC309 16A	C13, 20: C19, 4	-	45x768x50	1,7
	ePBZ33	0U	16	C20	C13, 20: C19, 4	-	45x768x50	1,6
	ePBZ31	0U	32	IEC309 32A	C13, 20: C19, 4	2 однополюсных	45x921x50	2,7
	PW312BA0UC07	0U	16 3Ph	IEC309 16A 3P	C13, 36: C19, 6	-	57x1400x52	10
	PW322BA0UC56	0U	32 3Ph	IEC309 32A 3P	C13, 3: C19, 6	6 однополюсных	57x1200x116	10
	PW322BA0UC57	0U	32 3Ph	IEC309 32A 3P	C19, 6	6 однополюсных	57x1135x116	10
	ePBZ06	1U	16	C20	C13,10: C19,2	-	43x439x59	1,6
	ePBZ04	1U	16	C20	C13,12	-	43x439x59	1,6
	ePBZ01	0U	10	C14	C13, 8	-	43x439x59	1,4
	ePBZ02	0U	10	C14	C13, 12	-	43x439x59	1,4

Разъем Schuko								
Модель	Код изделия	Форм- фактор	Ток (А)	Тип входного разъема	Тип и количество вых. разъемов	Автоматы	Размеры (мм)	Bec (кг)
Basic Schuko	ePBZ25	0U, 19"	16	Schuko	schuko, 4	-	45x444x50	1,4
Basic Schuko	ePBZ26	0U, 19"	16	Schuko	schuko, 8	-	45x444x50	1,5
Basic Schuko	ePBZ27	0U	16	Schuko	schuko, 12	-	45x667x50	2
Monitored Schuko	PW104MI0UC72	0U	16	Schuko	schuko, 16	-	57x1328x52	8
Monitored Schuko	PW102MI0UC73	0U	10	C14	schuko, 16	-	57x1328x52	8
Monitored Schuko	PW104MI0UC74	0U	16	C20	schuko, 20: C19, 4	-	57x1850x52	8
Monitored Schuko	PW107MI0UC75	0U	32	IEC309 32A	schuko, 20: C19, 4	2 однополюсных	57x1860x116	10
Monitored Schuko	PW104MI0UC76	0U	16	IEC309 16A	schuko, 20: C19, 4	-	57x1850x52	8
Managed Schuko	PW104MA0UC77	0U	16	Schuko	schuko, 16	-	57x1425x75	10
Managed Schuko	PW102MA0UC78	0U	10	C14	schuko, 16	-	57x1425x75	10
Managed Schuko	PW104MA0UC79	0U	16	C20	schuko, 16: C19, 4	-	57x1695x75	10
Managed Schuko	PW107MA0UC80	0U	32	IEC309 32A	schuko, 16: C19, 4	2 однополюсных	57x1840x116	10
Managed Schuko	PW104MA0UC81	0U	16	IEC309 16A	schuko, 16: C19, 4	-	57x1695x75	10

Стойки Eaton

Надежное распределение электропитания для

- центров обработки данных
- коммутационных шкафов
- офисного оборудования
- провайдерских систем и приложений

Стойки для ІТ-оборудования

В условиях роста зависимости современного бизнеса от бесперебойной работы электронного оборудования обеспечение надежности и доступности электропитания IT-инфраструктур становится одним их самых актуальных вопросов.

Компания Eaton предлагает широкий выбор корпусов и аксессуаров для шкафов с сетевым оборудованием, серверных комнат и центров обработки данных.

Разработанные специально для IT-оборудования, современные стойки Eaton размером 42U * 600 мм (Ш) * 1000 мм (Г) — надежное и универсальное решение для размещения ответственной техники.

Стойки Eaton обеспечивают гибкий подход к расположению устройств и позволяют экономить место. Уникальная 16-компонентная конструкция рамы гарантирует им максимальную устойчивость и несущую способность. Кроме того, доступен целый ряд аксессуаров (для размещения кабелей, вентиляционного оборудования и модулей распределения нагрузки), помогающих конфигурировать стоечное пространство под конкретные потребности пользователя.

Преимущества стоек Eaton

- разработаны специально для ІТ-оборудования
- полная линейка аксессуаров
- прекрасные показатели теплоотдачи
- прочная конструкция рамы

Спецификация

- Многоуровневая стальная конструкция рамы обеспечивает прочность и устойчивость
- Отсутствие горизонтальных или вертикальных опор структура, открытая для размещения оборудования и расположения кабелей
- Перфорированная верхняя часть с четырьмя отверстиями (114 мм) с уплотнителями для верхней прокладки кабелей
- Установка без применения крепежа
- Большое количество поверхностей и точек для установки оборудования
- Большой внутренний объем по отношению к занимаемой площади
- Внешний доступ ко всем точкам установки на стенках и дверях
- Максимальная несущая способность 907 кг

Внешние поверхности — двери и стенки

- Двери можно легко снимать или переворачивать
- Боковые стенки можно прикручивать или фиксировать на месте
- Внутреннее расположение фиксаторов дверей и точек крепления обеспечивает максимальную надежность и безопасность
- Усиливающие элементы на дверях придают дополнительную устойчивость и могут использоваться как дополнительные поверхности для установки оборудования
- Перфорированная поверхность дверей обеспечивает приток воздуха к оборудованию, что соответствует требованиям производителей серверов
- Шпильки заземления на всех поверхностях
- Наличие внешних поверхностей не влияет на несущую способность — одинаковая нагрузка с боковыми стенками или без них
- Дверная ручка обеспечивает различные варианты запирания
- Раздельные задние двери максимально увеличивают доступное пространство

Вертикальные монтажные рейки

- Спроектированы в соответствии со стандартами EIA-310-D
- Регулируемая глубина для обеспечения оптимальной нагрузки вне зависимости от положения реек
- Плавающая система изоляции: вертикальные рейки не закрепляются на элементах рамы или боковых направляющих — их можно регулировать независимо
- «Z»-образный, многоуровневый профиль гарантирует высокую несущую способность и увеличивает монтажную поверхность
- «U»-образные вырезы на передней и задней ближних поверхностях каждой рейки для упрощения монтажа

Аксессуары

- Боковые стенки для обеспечения безопасности и терморегуляции
- Комплекты для соединения нескольких стоек обеспечивают гибкость компоновки
- Полки (482 мм) с несущей способностью 68 113 кг
- Ролики для простоты перемещения по ровной поверхности
- Возможность прокладки кабелей без специальных инструментов позволяет сократить время и затраты на монтаж
- Комплекты болтов для закрепления шкафов на месте установки
- Перекрытия устанавливаются без специальных инструментов, обеспечивают контроль за потоком воздуха и повышают эффективность охлаждения
- Цоколи, вентиляторы и выдвижные стабилизаторы
- Дополнительно в стойку Eaton можно установить модули распределения нагрузки Eaton (ePDU)

Описание	Габариты (мм)	Масса (кг)	Транспортные габариты (мм)	Масса брутто (кг)	Код изделия
Без боковых панелей и роликов	2000*600*1000	99	2160*800*1200	116	1052734
С боковыми панелями, без роликов	2000*600*1000	116	2160*800*1200	133	1052735
Без боковых панелей, с роликами	2000*600*1000	104	2160*800*1200	121	1052736
С боковыми панелями и роликами	2000*600*1000	121	2160*800*1200	138	1052737

Повышение надежности оборудования и гарантия целостности данных

Источники бесперебойного питания (ИБП) используются в качестве резервных систем для предотвращения простоя оборудования при возникновении проблем с электропитанием. Такая защита является необходимой, однако максимальная ее эффективность достигается только при том условии, что пользователь полностью контролирует ситуацию. Используя системы управления электропитанием компании Eaton, пользователь получает немедленные уведомления о состоянии и качестве электропитания и распределительных систем, может инициализировать автоматическую реакцию системы на те или иные события, выполнять удаленный контроль системы и более эффективно управлять ситуацией.

Преимущества использования устройств управления электропитания компании Eaton

- Оповещение в режиме реального времени упрощает профилактику и анализ возможных неисправностей
- Контролируемое отключение серверов и операционных систем ПК позволяет предотвратить потерю данных
- Возможность просмотра и анализа событий и показаний, зафиксированных в журнале
- Экономия времени и денег благодаря возможности удаленного управления оборудованием, что избавляет от необходимости дополнительного посещения удаленных помещений для перезапуска оборудования. Также система помогает увеличить время работы ключевого оборудования при отключении сетевого питания, так как позволяет в нужном порядке и удаленно выключать некритичные системы и процессы

Подключение к сетям ІР

Есть два способа подключения ИБП к сети IP:

- Установка на ИБП карты Web/SNMP, которая будет использоваться в качестве сетевого интерфейса
- Использование соседних ПК или серверов, подключенных к сети, в качестве прокси

Карта Network Management Card

Карты Web/SNMP рекомендуется использовать для централизованных ИБП систем, обеспечивающих защиту всей сети, или для систем ИБП, установленных для защиты критичного оборудования. После установки карты ИБП получает собственный IP адрес со следующими локальными возможностями:

- Работа с веб-страницами отчетов, настроек и предупреждений
- Подключение к системам управления сетями на основе SNMP, таким как Openview, IBM, Tivoli Netview и Computer Associates Unicenter
- Взаимодействие с программным обеспечением для автоматического завершения работы, установленным на защищаемых серверах

Контроль систем ИБП

Контроль с использованием веб-браузера

Карта Network Management Card позволяет управлять ИБП с помощью обычного веб-браузера. Веб-интерфейс используется для просмотра всех параметров ИБП, измерений и настроек из любого места в сети, через IP-адреса каждого ИБП.

Контроль с использованием системы Network Management System (NMS)

Протокол SNMP — это стандартный способ мониторинга сетевых устройств, таких как серверы, маршрутизаторы, роутеры, диски и ИБП и т.д. Карты Eaton Network Management Cards взаимодействуют с основными системами NMS, например, HP OpenView, IBM Tivoli и CA Unicenter, через SNMP. Сетевые администраторы могут использовать хорошо знакомые средства и методы аварийного предупреждения и при мониторинге ИБП наряду с другими компонентами IT-окружения. Eaton предоставляет SNMP MIB (базы управляющей информации), которые работают со всеми функциями устройств Eaton и с различными данными. Их можно легко внедрять в NMS или в программное обеспечение для управления серверами.

Контроль с использованием Intelligent Power Manager

Intelligent Power® Manager — это программное средство для более простого управления сетевыми ИБП и устройствами распределения электропитания и с более низкими затратами в сравнении с большинством платформ NMS; этот инструмент также используется как специализированное средство для функций управления электропитанием. Администраторы получают общую, консолидированную картину основных рабочих параметров всех систем ИБП. Используется интуитивный и простой веб-интерфейс, который в то же время обладает широкими возможностями конфигурации и высокой функциональностью. Устройства можно группировать по функциям или по месту расположения, а также сортировать в соответствии с параметрами, такими как описание статуса, тип и размещение. Ярлыки устройств можно легко размещать на фоновых изображениях, таких как карты или планы этажей, что упрощает идентификацию.

Мощные средства аварийного предупреждения

Intelligent Power Manager централизует функции управления аварийными предупреждениями. Можно объединять несколько событий в одно сообщение, которое отправляется по электронной почте или посредством SMS. События и действия хранятся в журнале системных событий для упрощения анализа и устранения проблем с электропитанием. Отображение в виде календаря позволяет быстро просматривать историю событий.

Простота развертывания

Intelligent Power Manager устанавливается очень просто — потребуется лишь несколько раз щелкнуть мышью. После запуска программы будут автоматически обнаружены совместимые устройства управления электропитанием и в течение нескольких секунд система будет готова к работе.

Информативный интерфейс

Intelligent Power Manager использует несколько визуальных панелей для вывода рабочего статуса ИБП. Пользователь может на свое усмотрение выбирать нужные виды. Полная информация и контроль осуществляются одним щелчком мыши, так как для веб-интерфейса каждого индивидуального устройства отображается отдельная ссылка.

Безопасная работа

Intelligent Power Manager использует Secure Sockets Layer (SSL) и несколько уровней паролей (администратор, пользователь и т. д.) для обеспечения полной безопасности.

Масштабируемость и экономичность

С каждым сетевым ИБП бесплатно предоставляется версия Intelligent Power Manager с ограниченным количеством контролируемых устройств — до 10 единиц. Эту версию также можно использовать для оценки программного обеспечения в более обширных сетях перед покупкой полной версии программы, которая может управлять 100 и более устройствами электропитания (ИБП и устройства распределения электропитания).

Интеграция с платформами виртуализации

Интеграция IPM с Vmware vCenter и Microsoft SCVMM повышает производительность и оперативность реагирования. Благодаря взаимодействию с vMotion $^{\text{TM}}$ vCenter и Live Migration SCVMM возможно прозрачное перемещение виртуальных машин с сервера, на котором потеря питания неизбежна, на другой физический сервер, питание которого в норме, гарантируя целостность данных и обеспечивая нулевое время простоя.

Защита: выключение серверов

Для обеспечения целостности системы и данных завершение работы операционной системы компьютера должно выполняться в нужной последовательности. Следует установить специализированное программное обеспечение на серверах для выполне-ния необходимого набора действий перед выключением питания.

Среди таких действий используются:

- Выполнение сценария завершения приложений, запущенных на сервере
- Инициализация процедуры выключения или перехода в спящий режим по истечении определенного промежутка времени или при полной разрядке аккумулятора
- Автоматическая или ручная перезагрузка операционной системы при возобновлении сетевого питания
- Вывод предупреждающих сигналов ИБП для пользователя Intelligent Power Protector поддерживает возможность сетевого подключения к ИБП Eaton, а так же подключение через последовательный порт и порт USB.

Все установленные модули IPP могут контролироваться и централизованно настраиваться с помощью программного обеспечения Intelligent Power Manager.

Работая вместе, эти два программных пакета легко взаимодействуют друг с другом, сокращая затраты и увеличивая надежность системы управления питанием. Пакет ПО Inteligent Power Software обладает полной поддержкой вирутуальных сред. IPP производит корректное отключение хостов VMware и Hyper-V вместе с установленными на них операционными системами, в то время как IPM производит управление этими процессами, взаимодействуя с Vmware vCenter.

Дополнительные функции

Индивидуальное управление выходными розетками

Многие системы Eaton используют индивидуальные выходные разъемы для группового включения и выключения устройств. Данная функция особенно полезна в следующих случаях:

- Отключение некритичных систем при сбоях питания
- Настройка последовательности включения
- Индивидуальное управление несколькими ІТ-системами, подключенными к центральному ИБП

Удаленное управление включением/выключением

Поскольку можно включать и отключать весь ИБП или некоторые его разъемы индивидуально, система превращается в интеллектуальный распределитель IT-оборудования. Эта функция позволяет, к примеру, перезапускать подключенные устройства из удаленной точки. Управление выходами может выполняться в автоматическом режиме или вручную как удаленно, так и на местном уровне.

Функция энергосбережения

Данная функция может использоваться для программирования последовательностей включения-выключения всех устройств, защищаемых ИБП. Например, рабочие станции, принтеры, сетевые устройства и выбранные серверы могут быть отключены в нерабочее время.

Коммуникационные опции для контроля и мониторинга ИБП

Адаптер ConnectUPS Web/SNMP — это законченное решение для мониторинга, управления и завершения работы ИБП в сетевом окружении. В случае возникновения аварийной ситуации Web/SNMP оповещает об этом пользователей по электронной почте или протоколу SNMP. При длительном отсутствии электроэнергии работа защищаемых компьютерных систем может быть корректно завершена при помощи программного обеспечения Intelligent Power Protector. Уникальный 3-х портовый коммутатор (хаб) в моделях X-Slot обеспечивает дополнительные сетевые подключения.

ConnectUPS-X

Код изделия 116750221-001: для Eaton 9155, 9355, 9390, 9395, BladeUPS.

ConnectUPS-E

Код изделия 116750223-001 — внешний адаптер, подключающийся к последовательному порту ИБП.

Датчик параметров окружающей среды Environmental Monitoring Probe (EMP) добавляет адаптеру ConnectUPS Web/SNMP возможность мониторинга температуры, влажности, а также два дополнительных входа для подключения внешних датчиков (сухие контакты). Он подходит для мониторинга температуры стеллажей и положения дверей. Завершение работы системы может быть инициировано в случае превышения установленных пользователем пороговых значений или изменения состояния сухих контактов.

Код изделия 116750224-001: для всех ИБП с картой Web/ SNMP.

Адаптер Relay/AS400 обеспечивает легкое подключение к компьютерам стандарта IBM AS/400, а также к системам управления зданиями и промышленным оборудованием.

Код изделия 1018460: для Eaton 9155, 9355, 9390, 9395, BladeUPS.

Адаптер X-Slot ModBus используется для подключения ИБП к промышленным системам и системам управления зданиями через протокол ModBus/JBUS RTU.

Код изделия 103002510-5501: для Eaton 9155, 9355, 9395.

Удаленный дисплей ViewUPS-X — это ЖК-панель для мониторинга состояния ИБП на расстоянии. ViewUPS-X оснащен четырьмя светодиодами, которые отображают статус работы ИБП. В случае возникновения проблем дисплей включает звуковую сигнализацию. В комплект ViewUPS-X входит панель мониторинга, специальная карта для X-слот, крепежи для установки на стол или стену и 10 м кабеля. Максимальное расстояние между картой и дисплеем составляет 100 м. Помимо этого, карта имеет 15-пиновый релейный изолированный порт, позволяющий использовать устройство на судах и в незаземленных электрических сетях, а также подключать его к системам мониторинга и компьютерам стандарта AS/400.

Код изделия 1027020: для Eaton 9155, 9355, 9390, 9395, BladeUPS.

Таблицы времени резервирования ИБП

BladeUPS

Нагрузка			Стойка 42U	4 кВт	8 кВт	12 кВт	24 кВт	36 кВт	48 кВт	60 кВт
1 x BladeUPS (внутренние батареи 12 кВт)	6	6	1	23	8,7	4,7				
+ 1 B6M	9	9	1	41	17,6	9,5				
+ 2 B6M	12	12	1	65	28	17				
+ 3 B6M	15	15	1	93	43	27				
+ 4 B6M	18	18	1	119	55	34				
2 x BladeUPS (внутренние батареи 12 кВт N+1)	12	18	1	44	23	13,6				
+ 1 B6M	18	24	1	85	41	27				
+ 2 B5M	24	30	1	137	65	41				
+ 3 ВБМ	30	36	1	198	93	59				
+ 4 B6M	36	42	2	257	119	76				
$\overline{3}$ x BladeUPS (внутренние батареи 24 кВт N+1)	18	24	1		34	23	8,7			
+ 1 B6M	27	33	1		34	41	17,6			
+ 2 B6M	36	42	2		102	65	28			
+ 3 B6M	45	51	2		147	93	43			
+ 4 B6M	54	60	2		190	119	55			
4 x BladeUPS (внутренние батареи 36 кВт N+1)	24	30	1			30	13,6	7,3		
+ 1 B6M	36	42	2			56	27	14,7		
+ 2 B6M	48	54	2			89	41	24		
+ 3 ВБМ	60	66	2			128	59	37		
+ 4 B6M	72	78	2			165	76	47		
5 x BladeUPS (внутренние батареи 48 кВт N+1)	30	36	1				19	10	6,6	
+ 1 B6M	45	51	2				34	21	13,3	
+ 2 B6M	60	66	2				54	31	23	
+ 3 B6M	75	81	2				77	48	35	
+ 4 B6M	90	96	3				98	61	44	
6 x BladeUPS (внутренние батареи 60 кВт N+1)	36	42	2				23	13,5	8,7	6,2
+ 1 B6M	54	60	2				41	27	17,6	12,6
+ 2 B6M	72	78	2				65	41	28	21,6
+ 3 B6M	90	96	3				93	59	43	33
+ 4 B6M	108	114	3				119	76	55	42

^{*} Примечание: к каждому ИБП подключается одинаковое количество внешних батарейных модулей (ВБМ).

9155 и 9355 8 – 15 кВА

Время резе	Время резервирования внутренних батарей ИБП (типичные нагрузки с коэффициентом мощности 0,7)														
Батареи	Кол-во	3	4	5	6	7	8	9	10	11	12	13	14	15	кВА
7 Aч 12 B	1 x 32	36	26	20	15	12	10	7	6	-	-	-	-	-	мин.
9 Ач 12 В	1 x 32	42	32	24	21	16	15	12	10	9	8	7	6	5	мин.
7 Aч 12 B	2 x 32	86	66	46	38	33	28	23	20	16	15	13	12	10	мин.
9 Au 12 B	2 x 32	95	74	61	44	38	33	29	25	22	20	18	16	15	мин.

Время резервирования ИБП с внешними батарейными шкафами														
Кол-во	3	4	5	6	7	8	9	10	11	12	13	14	15	кВА
3 x 32	130	100	81	68	57	44	39	35	27	24	22	20	18	мин.
4 x 32	200	133	108	91	78	69	61	47	40	35	32	29	27	мин.
5 x 32	250	182	141	114	95	81	70	61	53	47	43	39	36	мин.
6 x 32	316	230	178	144	120	102	89	78	67	60	54	50	45	мин.
7 x 32	385	280	217	176	146	124	106	93	82	73	66	60	55	мин.
8 x 32	458	333	258	209	174	147	126	110	97	87	79	72	66	мин.
	Кол-во 3 x 32 4 x 32 5 x 32 6 x 32 7 x 32	Кол-во 3 3 x 32 130 4 x 32 200 5 x 32 250 6 x 32 316 7 x 32 385	Кол-во 3 4 3 x 32 130 100 4 x 32 200 133 5 x 32 250 182 6 x 32 316 230 7 x 32 385 280	Кол-во 3 4 5 3 x 32 130 100 81 4 x 32 200 133 108 5 x 32 250 182 141 6 x 32 316 230 178 7 x 32 385 280 217	Kon-Bo 3 4 5 6 3 x 32 130 100 81 68 4 x 32 200 133 108 91 5 x 32 250 182 141 114 6 x 32 316 230 178 144 7 x 32 385 280 217 176	Кол-во 3 4 5 6 7 3 x 32 130 100 81 68 57 4 x 32 200 133 108 91 78 5 x 32 250 182 141 114 95 6 x 32 316 230 178 144 120 7 x 32 385 280 217 176 146	Кол-во 3 4 5 6 7 8 3 x 32 130 100 81 68 57 44 4 x 32 200 133 108 91 78 69 5 x 32 250 182 141 114 95 81 6 x 32 316 230 178 144 120 102 7 x 32 385 280 217 176 146 124	Кол-во 3 4 5 6 7 8 9 3 x 32 130 100 81 68 57 44 39 4 x 32 200 133 108 91 78 69 61 5 x 32 250 182 141 114 95 81 70 6 x 32 316 230 178 144 120 102 89 7 x 32 385 280 217 176 146 124 106	Кол-во 3 4 5 6 7 8 9 10 3 x 32 130 100 81 68 57 44 39 35 4 x 32 200 133 108 91 78 69 61 47 5 x 32 250 182 141 114 95 81 70 61 6 x 32 316 230 178 144 120 102 89 78 7 x 32 385 280 217 176 146 124 106 93	Кол-во 3 4 5 6 7 8 9 10 11 3 x 32 130 100 81 68 57 44 39 35 27 4 x 32 200 133 108 91 78 69 61 47 40 5 x 32 250 182 141 114 95 81 70 61 53 6 x 32 316 230 178 144 120 102 89 78 67 7 x 32 385 280 217 176 146 124 106 93 82	Кол-во 3 4 5 6 7 8 9 10 11 12 3 x 32 130 100 81 68 57 44 39 35 27 24 4 x 32 200 133 108 91 78 69 61 47 40 35 5 x 32 250 182 141 114 95 81 70 61 53 47 6 x 32 316 230 178 144 120 102 89 78 67 60 7 x 32 385 280 217 176 146 124 106 93 82 73	Кол-во 3 4 5 6 7 8 9 10 11 12 13 3 x 32 130 100 81 68 57 44 39 35 27 24 22 4 x 32 200 133 108 91 78 69 61 47 40 35 32 5 x 32 250 182 141 114 95 81 70 61 53 47 43 6 x 32 316 230 178 144 120 102 89 78 67 60 54 7 x 32 385 280 217 176 146 124 106 93 82 73 66	Кол-во 3 4 5 6 7 8 9 10 11 12 13 14 3 x 32 130 100 81 68 57 44 39 35 27 24 22 20 4 x 32 200 133 108 91 78 69 61 47 40 35 32 29 5 x 32 250 182 141 114 95 81 70 61 53 47 43 39 6 x 32 316 230 178 144 120 102 89 78 67 60 54 50 7 x 32 385 280 217 176 146 124 106 93 82 73 66 60	Кол-во 3 4 5 6 7 8 9 10 11 12 13 14 15 3 x 32 130 100 81 68 57 44 39 35 27 24 22 20 18 4 x 32 200 133 108 91 78 69 61 47 40 35 32 29 27 5 x 32 250 182 141 114 95 81 70 61 53 47 43 39 36 6 x 32 316 230 178 144 120 102 89 78 67 60 54 50 45 7 x 32 385 280 217 176 146 124 106 93 82 73 66 60 55

Время указано в минутах.

Таблицы времени резервирования ИБП

9155 и 9355 20 - 40 кВА

Время резервирования ИБП с внутренними батареями (4 x 36 шт., 9 Ач) и шкафами с аккумуляторами емкостью 24 Ач (в одном шкафу можно установить 2 линейки батарей емкостью 24 Ач)

Внутренние	е батареи	Внешние ба	Внешние батареи											
Батареи	Кол-во	Батареи	Кол-во	5	10	15	20	25	30	35	40	кВА		
9 Ач 12 В	4 x 36	24 Au 12 B	1 x 36	268	113	77	56	43	34	25	20	мин.		
9 Ач 12 В	4 x 36	24 Au 12 B	2 x 36	402	175	115	84	69	57	47	38	мин.		
9 Ач 12 В	4 x 36	24 Au 12 B	3 x 36	555	243	154	121	90	75	63	54	мин.		
9 Ач 12 В	4 x 36	24 Au 12 B	4 x 36	>10 часов	318	197	147	123	100	77	66	мин.		

Шкафы с аккумуляторами Panasonic LC X1224AP с четырьмя линейками батарей для ИБП мощностью 20-40 кВА и типичных нагрузок с коэффициентом мощности 0,7.

Время резервирования ИБП с внутренними батареями (4 x 36 шт., 9 Ач) и шкафами с аккумуляторами мощностью 110 Вт (в одном шкафу можно установить 2 линейки батарей емкостью 24 Ач)

Внутренние	е батареи	Внешние бат	Знешние батареи												
Батареи	Кол-во	Батареи	Кол-во	5	10	15	20	25	30	35	40	кВА			
9 Ач 12 B	4 x 36	110 WPC12 B	1 x 36	318	132	82	62	47	41	32	25	мин.			
9 Ач 12 B	4 x 36	110 WPC12 B	2 x 36	518	225	138	104	81	66	50	42	мин.			
9 Ач 12 B	4 x 36	110 WPC12 B	3 x 36	>10 часов	318	204	147	114	95	77	66	мин.			
9 Ач 12 B	4 x 36	110 WPC12 B	4 x 36	>10 часов	430	266	198	153	124	103	87	мин.			

Шкафы с аккумуляторами CSB HRL 12110W с четырьмя линейками батарей для ИБП мощностью 20-40 кВА и типичных нагрузок с коэффициентом мощности 0,7.

9390 40 - 160 кВА с внешними батарейными шкафами

Конфигурация батарей	Нагрузка	с коэффициен	Нагрузка с коэффициентом мощности 0,8												
	40	60	80	100	120	160	кВА								
1xBAT (HR250)	30	17	10	-	-	-	мин.								
2xBAT (HR250)	73	44	30	22	15	10	мин.								
3xBAT (HR250)	128	72	51	35	30	21	мин.								
4xBAT (HR250)	180	106	75	54	41	30	мин.								
1xBAT (HR305)	39	22	15	-	-	-	мин.								
2xBAT (HR305)	96	57	40	25	22	15	мин.								
3xBAT (HR305)	160	96	64	45	37	26	мин.								
4xBAT (HR305)	220	136	96	72	55	40	мин.								
1xBAT (HRL12280)	40	24	15	10	7	-	мин.								
2xBAT (HRL12280)	100	57	33	30	24	15	мин.								
3xBAT (HRL12280)	144	96	69	50	30	28	мин.								
1xBAT (HRL12330)	47	30	20	13	10	6	мин.								
2xBAT (HRL12330)	116	72	50	36	30	20	мин.								
3xBAT (HRL12330)	163	105	84	60	48	35	мин.								
1xBAT (HRL12500)	80	49	35	24	18	12	мин.								
2xBAT (HRL12500)	196	121	81	60	48	34	мин.								
3xBAT (HRL12500)	266	178	121	92	80	57	мин.								
1xBAT (NSB125)	87	53	36	27	20	12	мин.								
2xBAT (NSB125)	200	128	91	69	55	38	мин.								
3xBAT (NSB125)	305	200	145	115	94	64	мин.								

9395 225 – 275 кВА с внешними батарейными шкафами

Конфигурация батарей	Нагрузка с коэффициентом мощности 0,9						
	160	200	225	250	275	кВА	
1xBAT CSB HRL 500	9	5	-	-	-	мин.	
2xBAT CSB HRL 500	29	20	17	14	12	мин.	
3xBAT CSB HRL 500	49	37	32	28	24	мин.	

Конфигурация батарей	Нагрузка с коэффициентом мощности 0,8						
	160	200	225	250	275	кВА	
1xBAT CSB HRL 500	12	7	5	3	-	мин.	
2xBAT CSB HRL 500	34	25	20	17	15	мин.	
3xBAT CSB HRL 500	57	43	37	33	28	мин.	

Разряд батарей производится до напряжения 1.70 В /элемент при температуре +25°C.

т азряд остарей производится до напряжения 1.70 в элемент при температуре 4.23 с. Учитывается, что батарей прошли не менее 5 циклов полного заряда-разряда и полностью заряжены.

Для заметок	
-	

Электротехническое подразделение Eaton (Electrical Sector) - мировой лидер в разработке и производстве решений для обеспечения качества, распределения и управления электропитанием, оборудования для промышленного контроля и промышленной автоматики

Широкий перечень продукции в совокупности с высококвалифицированной сервисной поддержкой дают Eaton возможность предлагать клиентам комплексные решения, созданные на основе концепции PowerChain Management® и нацеленные на удовлетворение растущих потребностей различных отраслей промышленности, рынков альтернативных источников энергии, жилья, информационных технологий, центров обработки данных, учреждений социальной сферы, общественных организаций, коммунальных и коммерческих предприятий, а также ОЕМ-клиентов во всем мире. Чтобы получить более подробную информацию, посетите сайт

www.eaton.ru/electrical.

ООО «Итон» Электротехнический сектор

Россия 107076 Москва, ул. Электрозаводская, 33,стр. 4

Тел.+7(495) 981-3770 Факс +7(495)981-3771 Техническая поддержка: 8-800-555-6060

E-mail: UPSRussia@Eaton.com Internet: www.eaton.ru/ups

