Prof.: Rodrigo Alvarino	Física	Data:
Nome:		Turma:
		Valor: 13 • Nota:

Capacitores e Dielétricos

- 1. (1 Ponto) As armaduras de um capacitor plano a vácuo apresentam área $A=0.20~\rm m^2e$ estão situadas a uma distância $d=2.0~\rm cm$. Esse capacitor é carregado sob ddp $U=1000~\rm V$. Determine:
 - (a) a capacitância do capacitor;
 - (b) a carga elétrica do capacitor.
- 2. (2 Pontos) Entre as armaduras horizontais de um capacitor plano, é aplicada uma ddp de 10^3 V. A distância entre elas é d=5 cm. Uma pequena esfera de massa $m=10^{-3}$ kg e carga q>0 desconhecida cai entre as armaduras com movimento uniforme. Seja q=10 m/s²a aceleração da gravidade.
 - (a) Determine a intensidade do campo entre as placas.
 - (b) Qual \acute{e} o valor de q?
 - (c) Dobrando-se a distância entre as armaduras do capacitor, o que ocorre com sua capacitância?
- 3. (1 Ponto) Uma pequena esfera de peso $P=10^{-3}$ N e carga $q=10^{-9}$ C está suspensa por um fio isolante entre as armaduras, supostas verticais e distanciadas de 10 cm de um capacitor plano a vácuo carregado. Sabendo-se que na posição de quilíbrio o fio forma com a vertical um ângulo θ , tal que tan $\theta=0,5$, determine:
 - (a) a intensidade do campo elétrico entre as placas;
 - (b) a ddp entre as placas;
 - (c) a densidade elétrica superficial, em valor absoluto, de cada placa, sabendo-se que a permitividade absoluta do vácuo é $\varepsilon_0=8,8\cdot 10^{-12}$ unidades SI.
- 4. (1 Ponto) Um capacitor de $0.1~\mu\text{F}$ é ligado em série com outro de $0.5~\mu\text{F}$. O conjunto é ligado aos terminais de uma bateria de 6 V. Determine a carga e a ddp de cada capacitor.
- 5. (1 Ponto) Um capacitor de capacitância $C=2\cdot 10^{-6}$ F é ligado aos terminais de uma pilha de fem 3 V e resistência interna r=0,1 Ω . Calcule a carga e a energia potencial elétrica do capacitor.
- 6. (1 Ponto) Para o circuito esquematizado, determine a carga e a energia potencial elétrica do capacitor.

7. (2 Pontos) Dois dielétricos de constantes K e K' são colocados entre as armaduras de um capacitor plano, conforme a figura. Determine a capacitância do capacitor assim formado.

8. (2 Pontos) Dois dielétricos de constantes K e K' são colocados entre as armaduras de um capacitor plano, conforme a figura. Determine a capacitância do capacitor assim formado.

9. (1 Ponto) Analogamente à questão 8, calcule a capacitância equivalente do capacitor a seguir, de dielétricos paralelos.

Dados: $A = 200 \text{ m}^2$, d = 9 cm, $K_1 = 1$, $K_2 = 2$, $K_3 = 3$.

10. (1 Ponto) Que relações podemos extrair das duas últimas questões quanto à *constante dielétrica equivalente* de uma associação de dielétricos?