Rob 501 - Mathematics for Robotics Recitation #10

Nils Smit-Anseeuw (Courtesy: Abhishek Venkataraman, Wubing Qin)

Dec 4, 2018

1 Set Theory

- 1. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$,
 - The distance from vector $x \in \mathcal{X}$ to vector $y \in \mathcal{X}$ is defined as d(x, y) := ||x y||.
 - The distance from a vector $x \in \mathcal{X}$ to a set $S \subset \mathcal{X}$ is defined as $d(x, S) := \inf_{y \in S} \|x y\|$.
- 2. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, let $P \subset \mathcal{X}$ be a subset.
 - A point $x \in P$ is an interior point of P if $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset P$. The interior of P, denoted as \mathring{P} , is the set of all the interior points of P.
 - A point $x \in \mathcal{X}$ is a closure point of P if $\forall \epsilon > 0$, $B_{\epsilon}(x) \cap P \neq \emptyset$. The closure of P, denoted as \overline{P} , is the set of all the closure points of P.
 - P is open if $P = \mathring{P}$.
 - P is closed if $P = \overline{P}$.

Remark:

- The interior of P is the largest open set contained in P.
- The closure of P is the smallest closed set containing P.
- P is open $\iff P = \{x \in \mathcal{X} \mid \exists \epsilon > 0 : B_{\epsilon}(x) \subset P\}$ $\iff P = \{x \in \mathcal{X} \mid \exists \epsilon > 0 : B_{\epsilon}(x) \cap (\sim P) = \emptyset\}$ $\iff P = \{x \in \mathcal{X} \mid d(x, \sim P) > 0\}$
- P is closed $\iff P = \{x \in \mathcal{X} \mid \forall \epsilon > 0, \ B_{\epsilon}(x) \cap P \neq \emptyset\}$ $\iff P = \{x \in \mathcal{X} \mid \forall \epsilon > 0, \ \exists \ y \in P : ||x - y|| < \epsilon\}$ $\iff P = \{x \in \mathcal{X} \mid d(x, P) = 0\}$
- 3. **Proposition:** In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$,
 - A finite intersection of open sets is open.
 - A finite union of closed sets is closed.
 - An arbitrary union of open sets is open.
 - An arbitrary intersection of closed sets is closed.

Remark:

An infinite intersection of open sets can be either open or closed, or neither. An infinite union of closed sets can also be either open or closed, or neither.

- 4. Ex: In the following examples, I denote the set of irrational numbers.
 - (a) In $(\mathbb{R}, \mathbb{R}, |\cdot|)$, $d(\sqrt{2}, 1) = ?$ $d(\sqrt{2}, \mathbb{Q}) = ?$ If given $x \in \mathbb{I}$, $d(x, \mathbb{Q}) = ?$ $d(\sqrt{2}, 1) = \sqrt{2} 1$

Notice the fact that $\forall \epsilon > 0, \exists m, n \in \mathbb{Z}, m \text{ and } n \text{ are co-prime} : |\sqrt{2} - \frac{m}{n}| < \epsilon.$

In words, $\sqrt{2}$ can be approximated arbitrarily close by a rational number. Thus, $d(\sqrt{2}, \mathbb{Q}) = \inf_{y \in \mathbb{Q}} |\sqrt{2} - y| = \inf_{\epsilon > 0} \epsilon = 0$.

This can be extended to any irrational number $x \in \mathbb{I}$, i.e., $\forall x \in \mathbb{I}, \forall \epsilon > 0, \exists m, n \in \mathbb{Z}, m \text{ and } n \text{ are co-prime} : |x - \frac{m}{n}| < \epsilon.$ Thus, for a given $x \in \mathbb{I}$, $d(x, \mathbb{Q}) = 0$.

- (b) Are the sets below open or closed?
 - $\begin{array}{lll} \bullet & \text{In normed space } (\mathbb{R},\,\mathbb{R},\,\|\cdot\|), \\ P_1 &= \{0\} & \text{closed} \\ P_2 &= [0,\,1] & \text{closed} \\ P_3 &= (0,\,1) & \text{open} \\ P_4 &= [0,\,1) & \text{neither open nor closed} \\ P_5 &= \mathbb{R} & \text{both open and closed} \\ P_6 &= \emptyset & \text{both open and closed} \\ \end{array}$
 - In normed space $(\mathbb{R}^2, \mathbb{R}, \| \cdot \|)$, $P_1 = (0, 1) \times (0, 1)$ open $P_2 = [0, 1] \times (0, 1)$ neither open nor closed $P_3 = \{(x, y) \in \mathbb{R}^2 \mid y = 2x + 1\}$ closed
- (c) Recall from recitation 2, we have shown that the set of rational numbers \mathbb{Q} with standard + and \times operation is a field, and a field over itself is a vector space, so (\mathbb{Q}, \mathbb{Q}) is a vector space. If we define the norm in (\mathbb{Q}, \mathbb{Q}) as ||x y|| = |x y| for all $x, y \in \mathbb{Q}$, then $(\mathbb{Q}, \mathbb{Q}, ||\cdot||)$ is a normed space.
 - In normed space $(\mathbb{Q}, \mathbb{Q}, \|\cdot\|)$, $\overline{\mathbb{Q}} = ? \mathring{\mathbb{Q}} = ?$ Is \mathbb{Q} open or closed? $\overline{\mathbb{Q}} = \{x \in \mathbb{Q} \mid d(x, \mathbb{Q}) = 0\} = \mathbb{Q}$ $\mathring{\mathbb{Q}} = \{x \in \mathbb{Q} \mid d(x, \sim \mathbb{Q}) > 0\} = \mathbb{Q}$ \mathbb{Q} is both open and closed in the normed space $(\mathbb{Q}, \mathbb{Q}, \|\cdot\|)$.
 - In normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|)$, $\overline{\mathbb{Q}} = ? \mathring{\mathbb{Q}} = ?$ Is \mathbb{Q} open or closed? $\overline{\mathbb{I}} = ? \mathring{\mathbb{I}} = ?$ Is \mathbb{I} open or closed? $\overline{\mathbb{Q}} = \{x \in \mathbb{R} \mid d(x, \mathbb{Q}) = 0\} = \{x \in \mathbb{Q} \mid d(x, \mathbb{Q}) = 0\} \cup \{x \in \mathbb{I} \mid d(x, \mathbb{Q}) = 0\} = \mathbb{Q} \cup \mathbb{I} = \mathbb{R}$

 $\mathring{\mathbb{Q}} = \{ x \in \mathbb{R} \mid d(x, \sim \mathbb{Q}) > 0 \} = \{ x \in \mathbb{R} \mid d(x, \mathbb{I}) > 0 \}$ $= \{ x \in \mathbb{Q} \mid d(x, \mathbb{I}) > 0 \} \bigcup \{ x \in \mathbb{I} \mid d(x, \mathbb{I}) > 0 \} = \emptyset$

 \mathbb{Q} is neither open nor closed in the normed space $(\mathbb{R}, \mathbb{R}, \| \cdot \|)$. Similarly,

 $\overline{\mathbb{I}} = \{ x \in \mathbb{R} \mid d(x, \mathbb{I}) = 0 \} = \mathbb{R}$

 $\check{\mathbb{I}} = \{ x \in \mathbb{R} \, | \, \mathrm{d}(x, \sim \mathbb{I}) > 0 \} = \{ x \in \mathbb{R} \, | \, \mathrm{d}(x, \mathbb{Q}) > 0 \} = \emptyset$

 $\mathbb I$ is neither open nor closed in the normed space ($\mathbb R,\,\mathbb R,\,\|\cdot\|).$

(d)

$$\bigcap_{n=1}^{\infty} \left(-1 + \frac{1}{n}, \ 1 \right) = (0, \ 1),$$

$$\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, \ 1 + \frac{1}{n} \right) = [-1, \ 1],$$

$$\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, \ 1 \right) = [-1, \ 1),$$

$$\bigcap_{n=1}^{\infty} \left(-1 + \frac{1}{n}, 1 \right) = (0, 1), \qquad \bigcup_{n=1}^{\infty} \left[-1, \frac{1}{n} \right] = [-1, 1],
\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n} \right) = [-1, 1], \qquad \bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = (-1, 1),
\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 \right) = [-1, 1), \qquad \bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, \frac{1}{n} \right] = (-1, 1].$$

2 Completeness and compactness

1. A sequence (x_n) in a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is a Cauchy sequence if

$$\forall \epsilon > 0, \exists N(\epsilon) < +\infty : \forall n, m \ge N, ||x_n - x_m|| < \epsilon.$$

2. A sequence (x_n) in a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is a <u>convergent sequence</u> if there exists an $x^* \in \mathcal{X}$ such that

$$\forall \epsilon > 0, \exists N(\epsilon) < +\infty : \forall n \ge N, ||x_n - x^*|| < \epsilon.$$

- 3. A normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is <u>complete</u> if every Cauchy sequence in \mathcal{X} converges to a limit in \mathcal{X} . A complete normed space is called <u>Banach</u> space.
- 4. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset $P \subset \mathcal{X}$ is a <u>complete set</u> if every Cauchy sequence in P converges to a limit in P.
- 5. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset $P \subset \mathcal{X}$ is (sequentially) compact if every sequence in P has a convergent subsequence whose limit belongs to P.

6. Theorem:

- In a finite dimensional normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset of \mathcal{X} is compact if and only if it is closed and bounded.
- In a finite dimensional normed space, every bounded sequence has a convergent subsequence.
- In a normed space, any finite dimension subspace is complete.
- Any closed subset of a complete set is complete.

7. Ex:

- (a) Consider the sequence (x_n) below.
 - $x_n = \left(1 + \frac{1}{n}\right)^n$ Notice that $x_n \in \mathbb{Q}$, but $x_n \to e \notin \mathbb{Q}$
 - $x_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1}$. Considering Taylor series $\arctan x = \sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k-1} x^k$.

Notice that $x_n \in \mathbb{Q}$, but $x_n \to \frac{\pi}{4} \notin \mathbb{Q}$

- (b) Is the normed space $(\mathbb{Q}, \mathbb{Q}, \|\cdot\|)$ complete? How about normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|)$? $(\mathbb{Q}, \mathbb{Q}, \|\cdot\|)$ is not complete since the sequence given in (a) doesn't have a limit in it. $(\mathbb{R}, \mathbb{R}, \|\cdot\|)$ is complete.
- (c) In normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|)$, whether the following sets are compact and complete?
 - $[0, +\infty)$ It is complete because it is a closed subset of a Banach space. However, it is not compact due to its unboundedness. Or, you can think about a sequence, such as $x_n = n$, which doesn't have a convergent subsequence, so it is not compact.
 - [0, 1)It is neither complete nor compact. You can consider a Cauchy sequence $x_n = 1 - \frac{1}{n}$. The limit doesn't belong to [0, 1).
 - [0, 1]
 It is both complete and compact.