Machine Learning & Pattern Recognition

SONG Xuemeng

sxmustc@gmail.com

http://xuemeng.bitcron.com/

Review of Linear Algebra

- Vectors
- Products and norms
- Linear dependence and independence
- Vector spaces and basis
- Matrices
- Linear transformations
- Eigenvalues and eigenvectors

Vectors

lacktriangle An d-dimensional column vector and its transpose (row vector) are represented as

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \qquad \boldsymbol{x}^{\mathrm{T}} = [x_1 \ x_2 \cdots \ x_d]$$

■ The inner product (dot product) of two vectors:

$$\langle x, y \rangle = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = \sum_{k=1}^a x_k y_k$$

Vectors

Euclidean norm or length

$$|\mathbf{x}| = \sqrt{\mathbf{x}^{\mathrm{T}}\mathbf{x}} = \left[\sum_{k=1}^{d} x_k x_k\right]^{1/2}$$

Normalized (unit) vector

$$|x| = 1$$

lacksquare Angle between vectors $oldsymbol{x}$ and $oldsymbol{y}$

$$\cos \theta = \frac{\langle x, y \rangle}{|x| \cdot |y|}$$

Vectors

- lacktriangle Two vectors $oldsymbol{x}$ and $oldsymbol{y}$ are
 - Orthogonal if $\cos \theta = 0$ or $\langle x, y \rangle = 0$
 - lacksquare Orthonormal if they are orthogonal and $|oldsymbol{x}|=|oldsymbol{y}|=1$

 \blacksquare Euclidean distance between vectors x and y

$$|\mathbf{x} - \mathbf{y}| = \sqrt{\sum_{k=1}^{d} (x_k - y_k)^2}$$

- A function $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ is called a vector norm if it has the following properties:
- 1. $\|\mathbf{x}\| \ge 0$ for any vector $\mathbf{x} \in \mathbb{R}^d$, and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- 2. $\|\alpha \mathbf{x}\| = \alpha \|\mathbf{x}\|$ for any vector $\mathbf{x} \in \mathbb{R}^d$ and any scalar $\alpha \in \mathbb{R}$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$
- The most commonly used vector norms is the family of p- norms, or l_p -norms, defined by

$$\|\mathbf{x}\|_p = (\sum_{i=1}^d |x_i|^p)^{1/p} \qquad \mathbf{x} \in \mathbb{R}^d$$

■ The most commonly used vector norms belong to the family of p-norms, or l_p -norms, defined by

$$\|\mathbf{x}\|_p = (\sum_{i=1}^d |x_i|^p)^{1/p} \qquad \mathbf{x} \in \mathbb{R}^d$$

- The following l_p -norms are of particular interest:
- p=1: the l_1 -norm

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_d|$$

■ The most commonly used vector norms belong to the family of p-norms, or l_p -norms, defined by

$$\|\mathbf{x}\|_p = (\sum_{i=1}^d |x_i|^p)^{1/p} \qquad \mathbf{x} \in \mathbb{R}^d$$

- The following l_p -norms are of particular interest:
- lacksquare p=1: the l_1 -norm

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_d|$$

■ p = 2: the l_2 -norm or Euclidean norm

$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$$

■ The most commonly used vector norms belong to the family of p-norms, or l_p -norms, defined by

$$\|\mathbf{x}\|_p = (\sum_{i=1}^d |x_i|^p)^{1/p} \qquad \mathbf{x} \in \mathbb{R}^d$$

- The following l_p -norms are of particular interest:
- \blacksquare p=1: the l_1 -norm

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_d|$$

 $p = 2 : the l_2$ -norm or Euclidean norm

$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$$

 $p=\infty$: the l_{∞} -norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le d} |x_i|$$

Linear Dependence and Independence

Vectors $x_1, x_2, ..., x_n$ are linearly dependent if there exists a set of coefficients $a_1, a_2, ..., a_n$ (at least one $a_i \neq 0$) such that

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

 \blacksquare Vectors $x_1, x_2, ..., x_n$ are linearly **independent** if

$$a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \dots + a_n \mathbf{x}_n = 0 \Rightarrow a_k = 0, \quad \forall k$$

- Vector Space:
 - lacktriangle The n-dimensional space, in which all the n-dimensional vectors reside.

Vector Spaces and Basis

Basis

A set of vectors $\{u_1,u_2,...,u_n\}$ are called a *basis* for a vector space if any vector x can be written as a linear combination of $\{u_i\}$

$$\boldsymbol{x} = a_1 \boldsymbol{u}_1 + a_2 \boldsymbol{u}_2 + \dots + a_n \boldsymbol{u}_n$$

- $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ are **independent** implies they form a basis and vice versa.
- lacksquare A basis $\{oldsymbol{u}_i\}$ is **orthonormal** if
 - Basis vectors are pairwise orthogonal
 - lacksquare Have unit length, i.e., $|u_i|=1$.

Orthonormal basis

An n by d matrix A and its **transpose** A^{T}

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1d} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & & a_{nd} \end{bmatrix}_{\mathbf{n} \times \mathbf{d}} A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ a_{13} & a_{23} & \cdots & a_{n3} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1d} & a_{2d} & & a_{nd} & \mathbf{d} \times \mathbf{n} \end{bmatrix}$$

Product of two matrices:

$$\mathsf{AB} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \cdots & \mathbf{a}_{1d} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \cdots & \mathbf{a}_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \mathbf{a}_{m3} & & \mathbf{a}_{md} \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \\ b_{21} \\ b_{31} \\ \vdots \\ b_{dl} \end{bmatrix} \begin{bmatrix} b_{12} \\ b_{22} \\ b_{22} \\ \cdots & b_{2n} \\ b_{32} \\ \vdots & \ddots & \vdots \\ b_{dl} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{11} & \mathbf{c}_{12} & \mathbf{c}_{13} & \cdots & \mathbf{c}_{1n} \\ \mathbf{c}_{21} & \mathbf{c}_{22} & \mathbf{c}_{23} & \cdots & \mathbf{c}_{2n} \\ \mathbf{c}_{31} & \mathbf{c}_{32} & \mathbf{c}_{33} & \cdots & \mathbf{c}_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{c}_{m1} & \mathbf{c}_{m2} & \mathbf{c}_{m3} & & \mathbf{c}_{mn} \end{bmatrix}$$

$$\blacksquare (AB)^T = B^T A^T$$

■ Identity matrix: *I*

$$IA = AI = A$$

Symmetric: $A = A^{T}$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 8 & 6 \\ 2 & 3 & 4 & 9 \\ 8 & 4 & 5 & 6 \\ 6 & 9 & 6 & 7 \end{bmatrix}$$

Inverse

The inverse of a square matrix A is A^{-1}

$$AA^{-1} = A^{-1}A = I$$

The inverse A^{-1} exists if and only if A is non-singular

$$|A| \neq 0$$

Inverse

The inverse of a square matrix A is A^{-1}

$$AA^{-1} = A^{-1}A = I$$

The inverse A^{-1} exists if and only if A is non-singular

$$|A| \neq 0$$

Inverse

■ The inverse of a square matrix A is A^{-1}

$$AA^{-1} = A^{-1}A = I$$

■ The inverse A^{-1} exists if and only if A is non-singular

$$|A| \neq 0$$

Pseudo-inverse

$$A^{\dagger} = [A^T A]^{-1} A^T$$
 with $A^{\dagger} A = I$

- \blacksquare Assuming A^TA is non-singular
- Used whenever A^{-1} does not exists, i.e., A is not square or A is singular.

- For a **square** matrix **A**
 - Positive definite:

if
$$x^T A x > 0$$
 for all $x \neq 0$

Semi-positive definite:

$$x^T A x \ge 0$$
 for all $x \ne 0$

For a square matrix A

Trace: sum of diagonal elements

$$tr(A) = \sum_{k=1}^{d} a_{kk}$$

- $tr(A) = tr(A^T)$
- $tr(\alpha A + \beta B) = \alpha tr(A) + \beta tr(B)$ (Linearity)
- tr(ABC) = tr(BCA) = tr(CAB) (Cyclic property)

For a **square** matrix **A**

Trace: sum of diagonal elements

$$tr(A) = \sum_{k=1}^{d} a_{kk}$$

- $tr(A) = tr(A^T)$
- $tr(\alpha A + \beta B) = \alpha tr(A) + \beta tr(B)$ (Linearity)
- tr(ABC) = tr(BCA) = tr(CAB) (Cyclic property)

How about?

$$tr(AB)$$
 ? $tr(BA)$

$$tr(AB)$$
? $tr(BA)$ $tr(ABC)$? $tr(ACB)$

For a **square** matrix **A**

Trace: sum of diagonal elements

$$tr(A) = \sum_{k=1}^{d} a_{kk}$$

- $tr(A) = tr(A^T)$
- $tr(\alpha A + \beta B) = \alpha tr(A) + \beta tr(B)$ (Linearity)
- tr(ABC) = tr(BCA) = tr(CAB) (Cyclic property)

How about?

$$tr(AB)$$
 ? $tr(BA)$

$$tr(AB)$$
? $tr(BA)$ $tr(ABC)$? $tr(ACB)$

- The Entrywise matrix norms are of particular interest:
- Treat an $m \times n$ matrix as a vector of size mn, and use one of the familiar vector norms.

$$\|\mathbf{A}\|_{p} = \|\operatorname{vec}(\mathbf{A})\|_{p} = (\sum_{i=1}^{m} \sum_{j=1}^{n} |x_{ij}|^{p})^{1/p}$$
, $\mathbf{A} \in \mathbb{R}^{m \times n}$

- The Entrywise matrix norms are of particular interest:
- Treat an $m \times n$ matrix as a vector of size mn, and use one of the familiar vector norms.

$$\|\mathbf{A}\|_{p} = \|\operatorname{vec}(\mathbf{A})\|_{p} = (\sum_{i=1}^{m} \sum_{j=1}^{n} |x_{ij}|^{p})^{1/p}$$
, $\mathbf{A} \in \mathbb{R}^{m \times n}$

p=2: the Frobenius norm

$$||A||_F = (tr(A^T A))^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}$$

- The Entrywise matrix norms are of particular interest:
- Treat an $m \times n$ matrix as a vector of size mn, and use one of the familiar vector norms.

$$\|\mathbf{A}\|_{p} = \|\operatorname{vec}(\mathbf{A})\|_{p} = (\sum_{i=1}^{m} \sum_{j=1}^{n} |x_{ij}|^{p})^{1/p}$$
, $\mathbf{A} \in \mathbb{R}^{m \times n}$

p=2: the Frobenius norm

$$\|A\|_F = (tr(A^T A))^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}$$

 \blacksquare $l_{2,1}$ norm

$$a_i$$
: the *i*-th rows of $||A||_{2,1} = \sum_{i=1}^m ||a_i||_2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}^2\right)^{1/2}$ matrix A

- The Entrywise matrix norms are of particular interest:
- Treat an $m \times n$ matrix as a vector of size mn, and use one of the familiar vector norms.

$$\|\mathbf{A}\|_{p} = \|\operatorname{vec}(\mathbf{A})\|_{p} = (\sum_{i=1}^{m} \sum_{j=1}^{n} |x_{ij}|^{p})^{1/p}$$
, $\mathbf{A} \in \mathbb{R}^{m \times n}$

p=2: the Frobenius norm

$$||A||_F = (tr(A^T A))^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2} \qquad w_1 \qquad w_2 \qquad w_2$$

lacksquare $l_{2,1}$ norm

$$a_i$$
: the i -th rows of $||A||_{2,1} = \sum_{i=1}^m ||a_i||_2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}^2\right)^{1/2}$ matrix A

 \blacksquare $l_{2,1}$ norm can be generalized to the norm. $p, q \ge 1$, defined by

$$||A||_{p,q} = \left(\sum_{i=1}^{m} \left(\sum_{j=1}^{n} |a_{ij}|^{p}\right)^{q/p}\right)^{1/q}$$

p = 2, q = 1

$$\|A\|_{2,1} = \sum_{i=1}^{m} \|a_i\|_2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij}^2\right)^{1/2}$$

Determinant:
$$|A|$$
, $A_{n\times n}$ is a square matrix $|A| = \sum_{k=1}^{d} a_{ik} |A_{ik}| (-1)^{k+i}$

Minor matrix A_{ik} is formed by removing the i^{th} row and the k^{th} column of \boldsymbol{A} .

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \end{pmatrix} \qquad A_{23} = ?$$

■ **Determinant:** |A|, $A_{n\times n}$ is a square matrix

$$|A| = \sum_{k=1}^{d} a_{ik} |A_{ik}| (-1)^{k+i}$$

Minor matrix A_{ik} is formed by removing the i^{th} row and the k^{th} column of A.

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \end{pmatrix} \quad A_{23} = \begin{pmatrix} 1 & 4 \\ -1 & 9 \end{pmatrix}$$

■ **Determinant:** |A|, $A_{n\times n}$ is a square matrix

$$|A| = \sum_{k=1}^{d} a_{ik} |A_{ik}| (-1)^{k+i}$$

■ Minor matrix A_{ik} is formed by removing the i^{th} row and the k^{th} column of A.

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \end{pmatrix} \quad A_{23} = \begin{pmatrix} 1 & 4 \\ -1 & 9 \end{pmatrix}$$

- Properties
 - lacksquare |AB|=|A||B|, where $A_{n imes n}$ and $B_{n imes n}$
 - $|A^{-1}| = 1/|A|, |A^T| = |A|$
 - Singular or non-singular
 - A singular matrix has a zero determinant
 - A non-singular matrix has a non-zero determinant

rank: the number of linearly independent rows (or columns).

- **rank:** the number of linearly independent rows (or columns).
- More intuitive explanation:

Number of dimensions in the output

- **rank:** the number of linearly independent rows (or columns)
- Note:
- lacksquare Given a matrix $A_{m imes n}$ and $B_{n imes k}$, then we have

$$0 \le rank(A) \le min(m, n)$$

Full rank: rank(A) = min(m, n)

- **rank:** the number of linearly independent rows (or columns)
- Note:
- lacksquare Given a matrix $m{A}_{m imes n}$ and $m{B}_{n imes k}$, then we have

$$0 \le rank(A) \le min(m,n)$$

- Full rank: rank(A) = min(m, n)
- \blacksquare $rank(A + B) \le rank(A) + rank(B)$

- **rank:** the number of linearly independent rows (or columns)
- Note:
- \blacksquare Given a matrix $A_{m\times n}$ and $B_{n\times k}$, then we have

$$0 \le rank(A) \le min(m,n)$$

- Full rank: rank(A) = min(m, n)
- \blacksquare $rank(A + B) \le rank(A) + rank(B)$
- Given a square matrix $A_{n imes n}$,
 - Singular: rank(A) < n
 - Non-singular: rank(A) = n, $rank(A^{-1}) = rank(A)$

Linear Transformations

■ Mapping from vector space $X \in \mathbb{R}^N$ to vector space $Y \in \mathbb{R}^M$, represented by a matrix:

V,W are vector spaces. $f:V\to W$ is said to be a *linear map* if for any vectors u and $v\in V$ and any scalar c the following is satisfied:

- $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$
- $f(c\mathbf{u}) = cf(\mathbf{u})$

Note

- The dimensionality of the two spaces does not need to be the same.
- For machine learning, typically M < N, i.e., project onto a lower-dimensionality space.

Eigenvectors and Eigenvalues

■ **Definition:** v is an eigenvector of matrix $A \in \mathbb{R}^{m*m}$ if there exists a scalar λ , such that:

$$Av = \lambda v$$

$$\begin{cases} v: \text{ an eigenvector} \\ \lambda: \text{ the corresponding eigenvalue} \end{cases}$$

Computation

$$Av = \lambda v \qquad (A - \lambda I)v = 0$$

Trivial solution:
$$v = 0$$

Non-trivial solution:
$$v \neq 0$$
 $\Rightarrow |A - \lambda I| = 0$

Eigenvectors and Eigenvalues

■ **Definition:** v is an eigenvector of matrix $A \in \mathbb{R}^{m*m}$ if there exists a scalar λ , such that:

$$Av = \lambda v$$

$$\begin{cases} v: \text{ an eigenvector} \\ \lambda: \text{ the corresponding eigenvalue} \end{cases}$$

Note

- $\succ tr(A) = \sum_i \lambda_i$
- $\triangleright |A| = \prod_i \lambda_i$
- If λ is an eigenvalue of the matrix A, then λ^2 is an eigenvalue of A^2 . $(A^2 = AA)$
- If λ is an eigenvalue of the matrix A, prove then λ is an eigenvalue of A^T .

Eigenvectors and Eigenvalues

- Intepretation: an eigenvector represents an invariant direction in the vector space.
 - lacksquare Any point lying on the direction defined by $oldsymbol{v}$ remains on that direction.
 - Its magnitude is multiplies by the corresponding eigenvalue λ

Similar Matrix

Similar Matrix

In linear algebra, two n-by-n matrices \boldsymbol{A} and \boldsymbol{B} are called similar if $\boldsymbol{B} = \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}$, for some invertible n-by-n matrix \boldsymbol{P} .

Properties

- \blacksquare rank(A) = rank(B)
- $\blacksquare tr(A) = tr(B)$
- \blacksquare |A| = |B|
- \blacksquare A and B have the same eigenvalues!

Similar Matrix

- Similar Matrix
 - In linear algebra, two n-by-n matrices \boldsymbol{A} and \boldsymbol{B} are called similar if $\boldsymbol{B} = \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}$, for some invertible n-by-n matrix \boldsymbol{P} .

Properties

- \blacksquare rank(A) = rank(B)
- $\blacksquare tr(A) = tr(B)$
- \blacksquare |A| = |B|
- \blacksquare A and B have the same eigenvalues! WHY?

Assume that $Bv = \lambda v$, then $Bv = P^{-1}APv$.

Multiply P on both sides, $PBv = APv \Rightarrow P\lambda v = APv \Rightarrow \lambda(Pv) = A(Pv)$.

This means that λ is also the eigenvalue of A with the eigenvector Pv.

Given a square matrix with m linearly independent eigenvectors $A \in \mathbb{R}^{m*m}$, we have an eigenvalue decomposition

$$AV = V\Lambda$$
 $A = V\Lambda V^{-1}$

Note

- \blacksquare Columns of V are eigenvectors of A
- lacksquare Diagonal elements of Λ are eigenvalues of A

$$\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_m), \lambda_i \ge \lambda_{i+1}$$

- Note
- If *A* is non-singular
 - All eigenvalues are non-zero

(WHY?)

- Note
- \blacksquare If A is non-singular
 - All eigenvalues are non-zero

(WHY?)
$$|A| = \prod_i \lambda_i$$

- Note
- \blacksquare If A is non-singular
 - All eigenvalues are non-zero (WHY?) $|A| = \prod_i \lambda_i$
- If A is real and symmetric
 - All eigenvalues are real.

If
$$|A - \lambda I| = 0$$
 and $A = A^T \Rightarrow \lambda \in \mathbb{R}$

The eigenvectors for distinct eigenvalues are orthogonal.

$$Av_{\{1,2\}}=\lambda_{\{1,2\}}v_{\{1,2\}}$$
 and $\lambda_1 \neq \lambda_2 \Rightarrow v_1 \cdot v_2=0$

- Note
- \blacksquare If A is non-singular
 - All eigenvalues are non-zero (WHY?) $|A| = \prod_i \lambda_i$
- If A is real and symmetric
 - All eigenvalues are real.

If
$$|A - \lambda I| = 0$$
 and $A = A^T \Rightarrow \lambda \in \mathbb{R}$

The eigenvectors for distinct eigenvalues are orthogonal.

$$Av_{\{1,2\}}=\lambda_{\{1,2\}}v_{\{1,2\}}$$
 and $\lambda_1\neq\lambda_2\Rightarrow v_1\cdot v_2=0$

If A is positive definite, then all eigenvalues are positive.

$$\forall w \in \mathbb{R}^n, w^T A w > 0$$
, then if $A v = \lambda v \Rightarrow \lambda > 0$

■ "The highpoint of linear algebra"--- Gillert Strang

Awards and honors [edit]

- Rhodes Scholar (1955)
- Alfred P. Sloan Fellow (1966–1967)
- Chauvenet Prize, Mathematical Association of America (1976)
- Honorary Professor, Xian Jiaotong University, China (1980)
- American Academy of Arts and Sciences (1985)
- Honorary Fellow, Balliol College, Oxford University (1999)
- Honorary Member, Irish Mathematical Society (2002)
- Award for Distinguished Service to the Profession, Society for Industrial and Applied Mathematics (2003)
- Lester R. Ford Award (2005)^[3]
- Von Neumann Medal, US Association for Computational Mechanics (2005)
- Haimo Prize, Mathematical Association of America (2007)^[4]
- Su Buchin Prize, International Congress (ICIAM, 2007)
- Henrici Prize (2007)
- National Academy of Sciences (2009)
- Doctor Honoris Causa, University of Toulouse (2010)
- Fellow of the American Mathematical Society (2012)^[5]
- Doctor Honoris Causa, Aalborg University (2013)
- Fellow of the Society for Industrial and Applied Mathematics (2009) [6]

1934~

- "The highpoint of linear algebra"--- Gillert Strang
- Any $m \times n$ matrix A of rank r can be decomposed into: $A = U \Sigma V^T$

- "The highpoint of linear algebra"--- Gillert Strang
- lacksquare Any m imes n matrix A of rank r can be decomposed into: $A=U\Sigma V^T$

- Each of these matrices is defined to have a special structure:
 - The columns of U (i.e., left singular vectors) are orthogonal, i.e., $UU^T = I_{m \times m}$.
 - The columns of V (i.e., right singular vectors) are orthogonal, i.e., $VV^T = I_{n \times n}$.
 - We arrange the singular values as $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$.

- "The highpoint of linear algebra"--- Gillert Strang
- Any $m \times n$ matrix A of rank r can be decomposed into: $A = U\Sigma V^T$

- Each of these matrices is defined to have a special structure:
 - \blacksquare The columns of U (i.e., left singular vectors) are eigenvectors of AA^T .
 - \blacksquare The columns of V (i.e., right singular vectors) are eigenvectors of A^TA .
 - \blacksquare Eigenvalues $\lambda_1, \dots, \lambda_r$ of AA^T are the eigenvalues of A^TA .
 - Singular value $\sigma_i = \sqrt{\lambda_i}$.

- "The highpoint of linear algebra"--- Gillert Strang
- Any $m \times n$ matrix A of rank r can be decomposed into: $A = U\Sigma V^T$

$$\mathbf{For} \ m > n \qquad \mathbf{U}_{m \times m} \qquad \mathbf{\Sigma}_{m \times n} \qquad \mathbf{V}_{n \times n}$$

$$\mathbf{A} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_r & \mathbf{u}_{r+1} & \dots & \mathbf{u}_m \\ \vdots & \vdots & \vdots & & \vdots \end{bmatrix} \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & \ddots & \\ & & & & \ddots & \\ 0 & \dots & \dots & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{bmatrix} \begin{bmatrix} \dots & \mathbf{v}_1^\top & \dots \\ & \vdots & \\ \dots & \mathbf{v}_r^\top & \dots \\ & \vdots & \\ \dots & \mathbf{v}_n^\top & \dots \end{bmatrix}$$

- Each of these matrices is defined to have a special structure
 - \blacksquare The columns of U (i.e., left singular vectors) are eige
 - \blacksquare The columns of V (i.e., right singular vectors) are eig
 - \blacksquare Eigenvalues $\lambda_1, \dots, \lambda_r$ of AA^T are the eigenvalues of
 - Singular value $\sigma_i = \sqrt{\lambda_i}$.

- "The highpoint of linear algebra"--- Gillert Strang
- Any $m \times n$ matrix A of rank r can be decomposed into: $A = U\Sigma V^T$

$$A^T A = (U \Sigma V^T)^T U \Sigma V^T = V \Sigma^2 V^T$$

- \blacksquare Eigenvalues $\lambda_1, \dots, \lambda_r$ of AA^T are the eigenvalues of
- \blacksquare Singular value $\sigma_i = \sqrt{\lambda_i}$.

- "The highpoint of linear algebra"--- Gillert Strang
- lacksquare Any m imes n matrix A of rank r can be decomposed into: $A=U\Sigma V^T$

For
$$m>n$$
 $U_{m\times m}$ $\Sigma_{m\times n}$ $V_{n\times n}$

$$A^T A = (U \Sigma V^T)^T U \Sigma V^T = V \Sigma^2 V^T$$

This is the eigen-decomposition of A^TA .

V is the eigenvector matrix of A^TA , and Σ^2 is the eigenvalue matrix of A^TA , i.e., singular values are positive square roots of eigenvalues.

- \blacksquare Eigenvalues $\lambda_1, \dots, \lambda_r$ of AA^T are the eigenvalues of
- lacksquare Singular value $\sigma_i = \sqrt{\lambda_i}$.

- "The highpoint of linear algebra"--- Gillert Strang
- Any m imes n matrix A of rank r can be decomposed into: $A = U \Sigma V^T$
 - For m>n $U_{m\times m}$ $\Sigma_{m\times n}$ $V_{n\times n}$

$$A^T A = (U \Sigma V^T)^T U \Sigma V^T = V \Sigma^2 V^T$$

This is the eigen-decomposition of A^TA .

V is the eigenvector matrix of A^TA , and Σ^2 is the eigenvalue matrix of A^TA , i.e., singular values are positive square roots of eigenvalues.

- **Theorem1:** Every symmetric matrix M is orthogonally diagonalizable, i.e., there exists an orthogonal matrix Q (i.e., $Q^T = Q^{-1}$) such that $Q^T A Q = D$ (i.e., $A = QDQ^T$) is a diagonal matrix. (https://en.wikipedia.org/wiki/Diagonalizable_matrix)
 - \blacksquare Eigenvalues $\lambda_1, \dots, \lambda_r$ of AA^T are the eigenvalues of
 - lacksquare Singular value $\sigma_i = \sqrt{\lambda_i}$.

- Arrange $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$, $r = \operatorname{rank}(A)$

$$\Sigma_r = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$$

SVD--Principal Component Analysis (PCA)

SVD--Latent Semantic Indexing (LSI)

Index Words	Titles								
	T1	T2	Т3	T4	T5	T6	T7	T8	Т9
book			1	1					
dads						1			1
dummies		1						1	
estate							1		1
guide	1					1			
investing	1	1	1	1	1	1	1	1	1
market	1		1						
real							1		1
rich						2			1
stock	1		1					1	
value				1	1				

book	0.15	-0.27	0.04
dads	0.24	0.38	-0.09
dummies	0.13	-0.17	0.07
estate	0.18	0.19	0.45
guide	0.22	0.09	-0.46
investing	0.74	-0.21	0.21
market	0.18	-0.30	-0.28
real	0.18	0.19	0.45
rich	0.36	0.59	-0.34
stock	0.25	-0.42	-0.28
value	0.12	-0.14	0.23

					-
*	3.91	0	0	*	1
	0	2.61	0		١
	0	0	2.00		
					۳

1	T1	T2	Т3	T4	T5	T6	T7	T8	T9
*	0.35	0.22	0.34	0.26	0.22	0.49	0.28	0.29	0.44
	-0.32	-0.15	-0.46	-0.24	-0.14	0.55	0.07	-0.31	0.44
	-0.41	0.14	-0.16	0.25	0.22	-0.51	0.55	0.00	0.34

A

 \boldsymbol{U}_k

 $oldsymbol{\Sigma}_k$

 V_k^T

Derivatives

Differentiate

	scalar –scalar: e.g.	$, \frac{d}{dx}x^2 = 2$
--	----------------------	-------------------------

w.r.t

scalar-vector: e.g., f(x) is a scalar function of vector x matrix

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \qquad \frac{df}{d\mathbf{x}} = \begin{bmatrix} \frac{\sigma f}{\sigma x_1} \\ \vdots \\ \frac{\sigma f}{\sigma x_d} \end{bmatrix}$$

scalar-matrix: f(A) is a scalar function and $m \times n$ matrix A

$$\frac{df}{d\mathbf{A}} = \begin{bmatrix} \frac{\sigma f}{\sigma a_{11}} & \dots & \frac{\sigma f}{\sigma a_{1d}} \\ \vdots & \ddots & \vdots \\ \frac{\sigma f}{\sigma a_{m1}} & \dots & \frac{\sigma f}{\sigma a_{mn}} \end{bmatrix}$$

Commonly Used Derivatives

$$\blacksquare \quad \frac{dx}{dx} = I$$

Summary

- Vectors
 - Products and norms
 - Vector norms l_1 -norm, l_2 -norm, l_{∞} -norm
 - **■** Linear dependence and independence
 - Vector spaces and basis
 - \blacksquare $u_1,...,u_n$ are independent \Leftrightarrow they form a basis
 - Orthonormal and Orthogonal

Summary

- Matrices
 - Trace
 - \blacksquare tr(ABC) = tr(BCA) = tr(CAB) (Cyclic property)
 - Determinant
 - A singular matrix has a zero determinant
 - $|A^{-1}| = 1/|A|$
 - $\blacksquare |AB| = |A||B|$
 - rank: the number of linearly independent rows (or columns); the number of dimensions in the output
 - Positive definite and semi-positive definite matrix
 - \blacksquare $x^T A x > 0$ for all $x \neq 0$ (\bigstar all eigenvalues are positive)

Summary

- Matrices
 - **■** (Real) Symmetric matrix
 - All eigenvalues are *real*.
 - The eigenvectors for distinct eigenvalues are orthogonal.
 - Norms
 - **■** Eigenvalues and eigenvectors
 - lacksquare Eigen-decomposition ($AV = V\Lambda$)
 - $\succ tr(A) = \sum_i \lambda_i$
 - $\triangleright |A| = \prod_i \lambda_i$
 - Singular Value Decomposition ($A = U\Sigma V^T$)