UK Patent Application GB GB 2 168 450 A

(43) Application published 18 Jun 1986

(21) Application No 8530495

(22) Date of filing 11 Dec 1985 (31) 680421

(30) Priority data

(32) 11 Dec 1984

(33) US

(71) Applicant

Exxon Production Research Company (USA-Delaware), 3120 Buffalo Speedway, P O Box 2189, Houston, Texas 77252, United States of America

(72) Inventor Alexander Samuel Adorian

(74) Agent and/or Address for Service R N Field, A Mitchell, R W Pitkin, H A Somers, Esso Engineering (Europe) Ltd, Patents & Licences, Apex Tower, High Street, New Malden, Surrey, KT3 4DJ

(51) INT CL4 F16L 59/14 9/06

(52) Domestic classification (Edition H): F2P 1A19A 1A19B 1A35 1B3 1B7E 1B7V C12

(56) Documents cited GB 1476065 GB 1210275

GR 1202557 GB 1160013 GR 1181765

(58) Field of search

Selected US specifications from IPC sub-class F16L

(54) Insulated pipe

(57) In a pipeline system which is capable of withstanding a range of extreme temperatures, a pipe section (10) is surrounded by a vapor barrier (12) which has a corrugated surface facing the pipe. The vapor barrier is surrounded by moulded insulation material (16) having an outer vapor barrier (18) thereon. The amplitude of the corrugations changes so as to absorb the stress imposed by extreme temperatures, especially those at which liquefied natural gas is carried.

FIG 1

GB 2 168 450A

SPECIFICATION

Improvements in and relating to pipeline systems

The invention is concerned with improvements in and relating to pipeline systems with insulation surrounding a transport pipe. The invention more particularly though not exclusively

10 relates to pipeline systems designed for use in a submarine environment as a liquefied natrual gas carrier. Pipelines often transport products at temper-

atures which must be maintained at a con-15 stant level in order to prevent loss of product. For example, Liquefield Natural Gas (LNG) is generally transported at approximately

-160°C; evaporation will occur if the temperature of the pipeline increases.

20 In order to minimize heat loss, and the resulting loss of the product, thermal insulation is a necessary component of pipeline systems in which a substantially constant temperature must be maintained. Polyurethane foam is

must be maintained. Polyurethane foam is 25 conventionally used because of its low thermal conductivity.

Thermal insulation must be protected in order to retain its effectiveness. The insulation may be destroyed if it is placed in contact 30 with a transport pipe which is subject to ex-

pansion and contraction. As the transport pipe expands and contracts, the insulation material in contact with the pipe may move and tear, exposing the pipe, which may result in greater 35 heat loss. A gap is conventionally left be-

35 heat loss. A gap is conventionally left between the pipe and the insulation to allow free pipe movement and prevent contact with the insulation. However, water or gases with comparatively high thermal conductivity can diffuse to into the insulation from the gap. The thermal

conductivity of the Insulation will increase over time as gases or water continue to diffuse. The diffusion process and the resulting degradation of the insulation's effectiveness are 45 called "asing".

Aging occurs more rapidly proportionally with temperature increases. So, it would appear that the aging would not be a concern at the low temperature at which LNG is transpor-

50 ted. However, because of thermal stress caused by the low temperature, cracks may form in the insulation in which water vapor or water may enter and freeze, causing mechanical damage.

5 Gases and water can be kept out of the insulation by using vapor barriers of low permeability to encase the insulation. The vapor barrier also prevents destruction of the insulation resulting from pipe movement.

60 However, conventional vapor barriers are not effective where a product such as LNG is beng transported at extremely low temperatures. The barriers are typically secured by field joints which prevent expansion and conf

subjected to thermal stress (which is a product of the total thermal contraction resulting from the temperature change and the material's modulus of elasticity), if this stress ex-70 ceeds the tensile strength of the vapor barrier,

failure may occur. The same problems previously discussed may result. If the vapor barrier or insulation is destroyed, detection of damage and repair are expensive and logisti-75 cally difficult.

There is clearly a need for an insulated pipeline system designed to withstand the thermal stress caused by transport of products at extreme temperatures without an increased 80 loss of product.

According to the invention from one aspect, there is provided a section of a pipeline system, comprising:

tem, comprising: —a section of pipe;

 —a first vapor barrier surrounding said pipe section having an inner surface facing said pipe section and an outer surface opposite said inner surface, said inner surface having a corrucated construction;

90 —insulation material having an inner surface and an outer surface, said insulation material being concentric with and spaced from said pipe section, the inner surface of said insulation material encesing and adhering to the outer surface of said vapor barrier; and

asecond vapor barrier which is concentric with and spaced from said pipe section, said vapor barrier encasing and adhering to the outer surface of said insulation material.

100 According to the invention from another aspect there is provided a method of encasng a section of insulation material for use in a pipeline system, comprising the steps of:

—applying a first vapor barrier having an inner surface opposite said insulation material and an outer surface facing such insulation material, to the interior surface of said insulation material, said vapor barrier being applied so that said inner surface has a corrupated

construction; and —applying a second vapor barrier of the exterior surface of said insulation material.

5 A third aspect of the invention provides a pipeline system, comprising:

—a plurality of similar pipe sections connected in end-to-end relationship;

—a first vapor barrier surrounding said pipe 129 sections, having an inner surface facing said pipe sections and an outer surface opposite said inner surface, said inner surface having a corrugated construction;

—insulation material having an inner surface
5 and an outer surface, said insulation material
being concentric with and spaced apart from
said pipe section, the inner surface of said
insulation material encasing and adhering to
the outer surface of said vapor barrier; and
130 —a second vanor barrier which is concen-

tric with and spaced from said pipe sections, said vapor barrier encasing and adhering to an outer surface of said insulation material

A preferred embodiment of the invention 5 comprises a pipeline system having insulation surrounding an inner pipe. The pipe carries a product, such as LNG, at an extreme temperature compared to ambient temperaure. The insulation material is encapsulated by an interior 10 vapor barrier and an exterior vapor barrier,

preferably made of glass reinforced epoxy resin. The interior barrier, which separates the insulation material from the inner pipe, has two corrugated surfaces. The corrugations act 15 like bellows to allow the interior vapor barrier

to move without failure enabling it to withstand stresses such as the thermal stress caused by the low temperature of a LNG carrying pipe.

In a preferred embodiment, the pipeline systern includes a first interior vapor barrier having two corrugated surfaces with one surface facing the outer surface of the inner pipe. Insulation material is molded to the outer sur-25 face of the first vapor barrier. A second vapor

barrier is molded to, and encases, the insulation material which is thereby completely en-The invention will be better understood from

30 the following description given by way of example and with reference to the accompanying drawings, wherein:-

Figure 1 is a longitudinal cross-sectional view of a pipe section surrounded byn an in-35 terior vapor barrier having a corrugated inner surface

Figure 2 is a longitudinal cross-sectional view of the pipe section of Fig. 1 in which the interior vapor barrier is subjected to an ex-40 tremely cold temperature.

Figure 3 is a view, partly in cross-sectional view and partly in elevational view, of an interior vapor barrier (shown in elevational view), having a bellows-like shape, and an ex-45 terior vapor barrier and Insulation material

(both shown in longitudinal cross-sectional view) surrounding the interior vapor barrier. Figure 4 is a view, partly in cross-sectional

view and partly in elevational view, of an in-50 terior vapor barrier (shown in elevational view), having a helical shape, and an exterior vapor barrier and insulation material (both shown in longitudinal cross-sectional view) surrounding the interior vapor barrier.

The improved pipeline system to be described hereinbelow with reference to the accompanying drawings includes a vapor barrier separating a transport pipe from surrounding insulation material. The vapor barrier minimizes 60 heat loss in the transport pipe by preventing the entry of water and gases into the insula-

tion, thus preventing subsequent aging of the insulation. The corrugations allow the vapor barrier to withstand stresses such as the ther-65 mal stress imposed by the low temperature of

a LNG pipeline. While the pipeline system will be discussed in a submarine LNG pipeline system application, it is not intended that the use of the pipeline system be limited to submarine 70 LNG pipeline systems. For example, extremely hot substances such as oil having a high temperature may be carried though a pipeline system having a corrugated vapor barrier.

With reference to Fig. 1, conventional pipe 75 section 10 is surrounded by first vapor barrier 12, preferably made of glass reinforced epoxy resin. In Fig. 1, both the interior and exterior surfaces of vapor barrier 12 are corrugated. Vapor barrier 12 surrounds the outer surface

80 of pipe 10. Brace 15 centers pipe 10 and vapor barrier 12. Insulation material 16 is molded in a cylindrical shape to the exterior surface of vapor barrier 12. Second vapor barrier 18, also preferably made of class rein-85 forced epoxy resin, encases insulation material 16, so that insulation material 16 is completely encapsulated by vapor barriers 12 and

In contrast to a smooth vapor barrier, corrugated vapor barrier 12 can withstand much larger thermal stress. The amplitude of the corrugation profile will be decreased as vapor barrier 12 is subjected to increased thermal stress. The stress is absorbed by the de-95 crease in amplitude of the corrugated inner surface of vapor barrier 12. Thus, the material will not fail due to the stress resulting from

the extremely low LNG temperature, Fig. 2 shows the vapor barrier 12 as it appears dur-100 ing the transport of a product such as LNG at an extremely low temperature. Glass reinforced epoxy resin is the preferred

material for vapor barriers 12 and 18. Epoxy resin is highly impermeable and has a high 105 tensile strength. In addition, the use of epoxy resin allows encapsulation of the insulation prior to installation in a pipeline system. Epoxy resin can be applied in a liquid state to both surfaces of hollow, cylindrically shaped insula-110 tion material by pouring or spraying. The insulation is encased as the epoxy resin hardens. The corrugations can be formed by machining after application, or by use of a mold having a

corrugated surface. The encased section of in-115 sulation material can then be placed around a pipe section. Insulation material 16 is preferably a polyurethane foam produced by using a halogen-

ated hydrocarbon such as trichlorofluorometh-120 ane as a blowing agent. A halogenated hydrocarbon is chosen because it has a high molecular weight which results in a low gaseous thermal conductivity. In addition, polyurethane foam has a small solid content which contri-

125 butes to the low thermal conductivity. The pipeline system offers numerous advantages over conventional pipeline systems. The corrugations on vapor barrier 12 relieve stresses such as the thermal stress caused by 130 the extremely low temperature of a LNG carrying pipe. Without the corrugations, vapor barriers 12 and 18 would be vulnerable to cracking due to thermal stress, and water and gases would be free to enter the insulation.

In the pipeline system, gases and water cannot permeate insulation material 16, which will retain its low thermal conductivity. Thus, insulation material 16 will not have to be replaced as frequently, lessening the cost and 10 risk of destruction of a pipeline system. In a

isk of destruction of a pipeline system. In a submarine LNG pipeline system, for example, there is no convenient way to replace the insulation without pulling the system out of the water.

Pipe 10 tends to expand and contract. As discussed previously, insulation material 16 can be torn if it is not protected. Vapor barrier 12 provides a strong surface against which pipe 10 can move without damaging

20 the insulation.

The corrugations in vapor barrier 12 may desirably be formed in any of a variety of shapes. Fig. 3 shows corrugated vapor barrier 12 having a bellows-like configuration. Fig. 4 5 shows corrugated vapor barrier 12 having a

helical shaped corrugation.

Each of these views shows vapor barrier 12 prior to installation in a pipeline system. Further, while the surface of vapor barrier 12

30 which faces pipe 10 is always corrugated, the surface of vapor barrier 12 which faces insulation material 16 may be smooth or corrugated.

35 CLAIMS

- A section of a pipeline system, comprising:
- —a section of pipe;
 —a first vapor barrier surrounding said pipe
 40 section having an inner surface facing said
- section naving an inner surrace racing said pipe section and an outer surface opposite said inner surface, said inner surface having a corrugated construction;
 —insulation material having an inner surface
- 45 and an outer surface, said insulation material being concentric with and spaced from said pipe section, the inner surface of said insulation material encasing and adhering to the outer surface of said vapor barrier; and
 - —a second vapor barrier which is concentric with and spaced from said pipe section, said vapor barrier encasing and adhering to the outer surface of said insulation material.
 A pipeline system section according to
- 55 claim 1, wherein the first vapor barrier and the second vapor barrier are made of glass reinforced epoxy resin.
- A pipeline system section according to claim 1 or 2, wherein the insulation material is 60 polyurethane foam.
 - 4. A pipeline system section according to any preceding claim, wherein the inner corrugated surface of the first vapor barrier has a generally helical configuration.
- 65 5. A pipeline system section according to

- any one of claims 1 to 3, wherein the inner corrugated surface of the first vapor barrier has a generally bellows-shaped configuration.
- A pipeline system section according to 70 any preceding claim, wherein the outer surface of the first vapor barrier has a corrugated construction.
- 7. A pipeline system section according to any preceding claim, wherein said first vapor barrier and said second vapor barrier are fabricated so as to encase insulation material having a hollow cylindrical shape prior to installa-
- A pipeline system section according to 80 claim 7, wherein said pipe section is surrounded by the encased insulation material

tion.

- prior to installation.

 9. A method of encasing a section of insulation metallation and prior in a pipeline system.
- lation material for use in a pipeline system, 85 comprising the steps of:
 - forming a section of insulation material that is hollow and cylindrically shaped;
 applying a first vapor barner an inner sur-
- of face opposite said insulation material and an outer surface facing such insulation material, to the interior surface of said insulation material, said vapor barrier being applied so that said inner surface has a corrugated construction; and
- —applying a second vapor barrier to the exterior surface of said insulation material.
 10. A method according to claim 9,
- wherein the outer surface of said first vapor barrier is formed with a corrugated construc-100 tion.
 - A method according to claim 9 or 10, wherein said first vapor barrier and said second vapor barrier are made of glass reinforced epoxy resin.
- 105 12. A method according to claim 9 or 10, wherein said first vapor barrier and said-second vapor barrier are applied to said insulation material in a liquid form.
- 13. A method according to any one of tlaims 9 to 12, wherein said encased insulation material is fitted around a pipe section prior to installation in a pipeline system.
- 14. A method according to any one of claims 9 to 13, wherein the corrugated sur115 face of said first vapor barrier is formed by applying said vapor barrier to said insulation
- material while surrounding a corrugated mould.

 15. A method according to any one of claims 9 to 14, wherein the insulation material
- 120 is polyurethane foam.
 16. A method according to any one of claims 9 to 15, wherein the inner corrugated surface of the first vapor barrier is formed
- with a generally helical configuration.

 17. A method according to any one of claims 9 to 15, wherein the inner corrugated surface of the first vapor barrier is formed with a generally bellows-shaped configuration.
- A pipeline system, comprising:
 —a plurality of similar pipe sections con-

nected in end-to-end relationship;

—a first vapor barrier surrounding said pipe sections, having an inner surface facing said pipe sections and an outer surface connects

pipe sections and an outer surface opposite 5 said inner surface, said inner surface having a corrugated construction;

—insulation material having an inner surface and an outer surface, said insulation material being concentric with and spaced apart from 10 said pipe section, the inner surface of said insulation material encesing and adhering to the outer surface of said vapor barrier; and —a second vapor barrier which is concen-

tric with and spaced from said pipe sections, said vapor barrier encasing and adhering to an outer surface of said insulation material.

 A section of a pipeline system substantially as hereinbefore described with reference to Figs. 1 to 3 or Figs. 1, 2 and 4 of the accompanying drawings.

20. A method of encasing a section of insulation material for use in a pipeline system, substantially as hereinbefore described with reference to Figs. 1 to 3 or Figs. 1, 2 and 4 25 of the accompanying drawings.

21. A pipeline system substantially as hereinbefore described with reference to Figs. 1 to 3 or Figs. 1, 2 and 4 of the accompanying drawings.

Printed in the United Kingdom for Her Mayasty's Stationery Office, Dd 8818935, 1986, 4235, Published at The Patent Office, 25 Southampton Buildings, London, WCZA 1AY, from which copies may be obtained.