Parent Review Guide: Chapter 7 Exponents and Logarithms

This guide will help you understand the math topics your student is learning. We'll keep it simple with clear explanations and easy examples.

1. Converting Between Logarithms and Exponents

Explanation

Logarithms and exponents are opposites. A logarithm answers the question:

"What power do I raise the base to in order to get this number?"

How to Convert

• Exponential Form: $a^b = c$

• Logarithmic Form: $\log_a c = b$

Example

Convert between forms:

• Exponential: $3^2 = 9$

• Logarithmic: $log_3 9 = 2$

This means 3 raised to the power of 2 equals 9.

Key Vocabulary

- Base The number being multiplied.
- Exponent The number of times the base is multiplied by itself.
- Logarithm The opposite of an exponent.

2. Change of Base Formula

Explanation

Most calculators only work with base 10 (log or base e/ln). The change of base formula helps when we need a different base:

$$log_ab = \frac{logb}{loga}$$

You can use a calculator to find log values and divide them.

Example

Find log_28 :

$$log_2 8 = \frac{log 8}{log 2} = \frac{3}{1} = 3$$

This means $2^3 = 8$.

Key Vocabulary

• Change of Base – A way to rewrite a logarithm using a different base.

3. Logarithm Rules: Multiplication and Division

Explanation

Logarithms follow simple rules:

• Multiplication (Product Rule):

$$\log_a(M * N) = \log_a M + \log_a N$$

(Multiplication turns into addition.)

• Division (Quotient Rule):

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$$

(Division turns into subtraction.)

Example

Using base 10 logs:

•
$$log(10) + log(100) = log(1000) = 3$$

•
$$log(100) - log(10) = log(10) = 1$$

Key Vocabulary

- Product Rule Log of multiplication becomes addition.
- Quotient Rule Log of division becomes subtraction.

4. Graphing Exponential and Logarithmic Functions

Explanation

When graphing exponentials or logarithms, we use:

- Two points to show the curve.
- An asymptote, which is a line the graph gets close to but never touches.

Example

For $y = 2^x$:

• If
$$x = 0$$
, then $y = 2^0 = 1$ (Point: (0,1))

• If
$$x = 2$$
, then $y = 2^2 = 4$ (Point: (2,4))

• The asymptote is the x-axis (y = 0) because the graph never goes below zero.

Key Vocabulary

ullet Asymptote – A boundary the graph never crosses.

5. Solving Word Problems with Exponential Functions

Explanation

We use exponential formulas to model things that grow or shrink over time, like money, population, or bacteria.

The formula is:

$$y = a \cdot b^x$$

- a Starting amount
- b Growth or decay factor
- x Number of time periods

Example

A town has 200 people and doubles every 5 years. How many people will there be in 10 years?

$$y = 200 \times 2^{\left(\frac{10}{5}\right)}$$

$$y = 200 \times 2^2 = 200 \times 4 = 800$$

After 10 years, there will be 800 people.

Key Vocabulary

- Growth Rate How fast something increases.
- Exponential Growth When something gets bigger quickly.

Final Tips for Parents

- Practice converting between logarithmic and exponential forms with simple numbers.
- Use graphing tools (like Desmos) to visualize exponential and logarithmic curves.
- Encourage real-world examples—talk about interest rates, bacteria growth, or even how viral videos spread!

Supporting your student in these topics will help them succeed in understanding exponents and logarithms!