UNIVERSIDADE FEDERAL DE OURO PRETO CIÊNCIA DA COMPUTAÇÃO

CÉSAR GABRIEL DE PAULA BATISTA JULIANA APARECIDA BORGES MARIA CLARA MIRANDA DE SÁ

RELATÓRIO 10

Circuitos Combinacionais Codificadores e Decodificadores

INTRODUÇÃO:

Neste relatório vamos montar codificadores, cujo objetivo é transformar um sinal ou conjunto de sinais de uma forma a outra, e decodificadores, usado para ativar ou habilitar uma dentre suas m saídas por vez, bem como observar cada comportamento lógico. Para isso, vamos utilizar um BCD de 7 seguimentos, ou seja, é formado por 7 LEDS, também obteremos a função de codificação, usando as portas lógicas. E por fim, vamos apresentar a tabela verdade e todo o esquema do circuito apresentado.

DESENVOLVIMENTO:

PRATICA 1:

Nessa prática 1 deveríamos projetar um decodificador para um display BCD de 7 segmentos, deveríamos fazer isso usando o TinkerCad e usando portas lógicas.

A tabela desse circuito é feita com quatro entradas, ou seja, 16 resultados, sendo eles de 0 a 9 e de A até F, porém deveríamos considerar até o resultado do 9 apenas pois ele é o que será usado. O display BCD de 7 segmentos, possui 7 segmentos a qual para formar diferentes números deveríamos ascender o LED desejado, e esses LEDs são classificados de A até a G, como na imagem abaixo.

TABELA VERDADE DO CIRCUITO

TABELA VEROADE											
N°	Α	В	С	D	YA	YB	YC	YD	YE	YE	YG
0	0	0	0	0	1	0	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

Possuindo as 7 saídas, e seus respectivos resultados, e logo abaixo as equações extraídas.

PRÁTICA 2:

Na prática 2 foi pedido que através da equação que fosse dada aos grupos montássemos um circuito que exibisse na tela os números resultados da tabela verdade.

Grupo	Função
1	Z(Y) = Y
2	$Z(Y) = Y^2$
3	Z(Y) = 2Y
4	Z(Y) = 3Y
5	Z(Y) = Y+1
6	Z(Y) = Y+2

CONCLUSÃO:

Através deste relatório podemos aprender como eram exibidos os números nos antigos rádios relógio, além disso tivemos um contato a mais com o mapa de Karnaugh e tabela verdade, além disso como simplificar equações booleanas. Tivemos que usar portas lógicas diversas, para chegar em uma lógica exata para tal circuito.