Штурм, площади и самый...

Задача 1. Доказать, что если сумма положительных чисел a_1, a_2, a_3, a_4, a_5 равна 1, то

$$(\frac{1}{a_1} - 1)(\frac{1}{a_2} - 1)(\frac{1}{a_3} - 1)(\frac{1}{a_4} - 1)(\frac{1}{a_5} - 1) \ge 1024$$

Задача 2. Для положительных чисел $a_1, a_2, \dots a_n$ докажите неравенство

$$\sqrt[n]{a_1 a_2 \dots a_n} \geqslant \frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}}$$

Задача 3. На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, что их среднее арифметическое не будет равно среднему арифметическому никаких девяти из выписанных чисел.

Задача 4. Дан треугольник ABC. Найдите геометрическое место точек X таких, что $S_{ABC} = S_{ABX}$.

Задача 5. Цифры числа A идут в порядке возрастания. Найдите сумму цифр числа 9A.

Задача 6. Дан четырёхугольник ABCD. а) Постройте равновеликий ему треугольник.

б) Проведите через вершину A прямую, делещую его на две равновеликие части.

Задача 7. Треугольник разрезан на несколько выпуклых многоугольников. Докажите, что среди них есть либо треугольник, либо два многоугольника с одинаковым количеством сторон.

Задача 8. Известно, что на сторонах CD и AD выпуклого четырёхугольника ABCD выбраны точки, соответственно, K и M такие, что каждая из прямых AK та CM делит четырёхугольник ABCD на две равновеликие части. Пусть P — точка пересечения прямых KM и BD. Найдите отношение площади четырёхугольника ABCD к площади четырёхугольника ABCP.

Задача 9. Каждый из двух равных отрезков разбили на 100 частей. Докажите, что из полученных кусков можно выбрать 101, из которых можно составить 101-угольник. (Известно, что из набора отрезков можно составить многоугольник, если каждый из этих отрезков меньше суммы остальных.)