DS 2 - CHIMIE - Première S2

Durée: 1h00

Exercice 1 (6 points)

- 1 . Déterminer la quantité de matière de 10,0 mL d'eau liquide H₂O.
- 2. Déterminer la quantité de matière de 69 g de dioxygène gazeux O₂.
- 3 . Lors de l'hydrodistillation d'une grande quantité de feuilles de menthe poivrée, on obtient un volume V = 2,0 mL d'huile essentielle supposée exclusivement composée de carvone. Quelle est la quantité de matière de carvone extraite ?
- 4 . Quelle est la quantité de matière d'hélium gazeux dans un ballon de baudruche sphérique de 30 cm de diamètre gonflé en prévision d'un lâché de ballons ? On donne le volume molaire d'un gaz dans les conditions de l'expérience : $V_m = 24 \text{ L.mol}^{-1}$
- 5 . Quelle est la quantité de matière $n(I_2)$ de diiode dans 200 mL d'une solution telle que $C(I_2) = 0,50$ mol.L⁻¹? Que vaut la concentration massique de la solution (en g.L⁻¹)?
- 6 . Déterminer la quantité de matière d'un échantillon de mercure Hg liquide, de volume 0,050 L.

Données

Masses molaires moléculaires et atomique (g.mol¹)					
H₂O	O ₂	12	carvone	Hg	
18,0	32,0	254,0	150,0	200,6	

Masses volumiques		Densité	Volume d'une sphère
carvone	eau	mercure	de rayon r
0,92 g.cm ⁻³	1,0.10 ³ g.dm ⁻³	13,6	$\frac{4}{3}\pi r^3$

Exercice 2 (5 points) - Equilibrer (sur le sujet) les équations de réactions suivantes :

....
$$FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$$

.... $HCl + O_2 \rightarrow Cl_2 + H_2O$
.... $As_4O_6 + HO^- \rightarrow AsO_2^- + H_2O$
.... $AsO_2^- + I_2 + H_2O \rightarrow I^- + AsO_4^{3-} + H^+$
.... $H_2O_2 \rightarrow O_2 + H_2O$

On fera apparaître tous les coefficients stoechiométriques, même si ils sont égaux à 1.

Exercice 3 (9 points)

Les chameaux emmagasinent de la tristéarine C₅₇H₁₁₀O₆ dans leurs bosses.

Cette graisse est à la fois une source d'énergie et une source d'eau car lorsqu'elle est utilisée dans l'organisme, il se produit la réaction de combustion suivante :

$$2 C_{57}H_{110}O_6(s) + 169 O_7(g) \rightarrow 114 CO_7(g) + 110 H_7O(l)$$

- 1 . Construire et compléter de manière littérale le tableau d'avancement de la réaction. (3 pts)
- 2. Quel volume de dioxygène faut-il pour « brûler » exactement 1,0 kg de tristéarine ? (3 pts)
- 3 . Quelle est la masse d'eau et le volume de dioxyde de carbone produits lors de la combustion de 1,0 kg de cette graisse ? (3 pts)

Données:

Masses molaires atomiques (en g.mo Γ^1): $M(H) = 1.0 / M(C) = 12.0 / M(O) = 16.0 Volume molaire des gaz dans les conditions de l'expérience : <math>V_m = 24.0 \text{ L.mo}\Gamma^1$