MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

1N5139 1N5139A thru thru 1N5148 1N5148A

SILICON EPICAP DIODES

... designed for electronic tuning and harmonic-generation applications, and providing solid-state reliability to replace mechanical tuning methods.

- Guaranteed High-Frequency Q
- Guaranteed Wide Tuning Range
- Guaranteed Temperature Coefficient
- Standard 10% Capacitance Tolerance
- Complete Typical Design Curves

6.8-47 pF EPICAP VOLTAGE-VARIABLE CAPACITANCE DIODES

SILICON EPITAXIAL PASSIVATED

MAXIMUM RATINGS (TC = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Reverse Voltage	VR	60	Volts	
Forward Current	IF.	250	mA	
RF Power Input	Pin	5	Watts	
Device Dissipation (# TA = 25°C Derate above 25°C	PD	400 2.67	mW/°C	
Device Dissipation (a TC = 25°C Derate above 25°C	PC	2.0 13.3	Watts mW/°C	
Junction Temperature	ŢJ	+ 175	°C	
Storage Temperature Range	Tstg	- 65 to + 200	°C	

The RF power input rating assumes that an adequate heat sink is provided.

NOTES:

- 1) PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- 2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

	WILLIME I FH?		INCHES		
MIC	MIN	MAX	MIN	MAX	
A	5.84	7.62	0.230	0.300	
B	2.16	2.72	0.085	0.107	
D	0.46	0.56	0.018	0.022	
F		1.27	-	0.050	
K	25.40	38.10	1.000	1.500	

All JEDEC dimensions and notes apply

CASE 51-02 DO-204AA

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic — All Types	Test Conditions	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage	IR = 10 µAdc	BVR	60	70		Vdc
Reverse Voltage Leakage Current	VR = 55 Vdc, TA = 25°C VR = 55 Vdc, TA = 150°C	IR	_		0.02 20	μAdc
Series Inductance	f = 250 MHz, L = 1/16"	LS	_	5	_	nH
Case Capacitance	f = 1 MHz, L = 1/16"	СС		0.25	_	pF
Diode Capacitance Temperature Coefficient	VR = 4 Vdc, f = 1 MHz	TCC		200	300	ppm/°C

Device	CT, Diode Capacitance VR = 4 Vdc, f = 1 MHz pF		Q, Figure of Merit VR = 4 Vdc, f = 50 MHz	VR = 4 Vdc, f = 1 MHz		TR, Tuning Ratio C4/C60 f = 1 MHz		
	Min	Тур	Max	Min	Min	Тур	Min	Тур
1N5139	6.1	6.8	7.5	350	0.37	0.40	2.7	2.9
1N5139A	6.5	6.8	7.1	350	0.37	0.40	2.7	2.9
1N5140	9.0	10.0	11.0	300	0.38	0.41	2.8	3.0
1N5140A	9.5	10.0	10.5	300	0.38	0.41	2.8	3.0
1N5141	10.8	12.0	13.2	300	0.38	0.41	2.8	3.0
1N5141A	11.4	12.0	12.6	300	0.38	0.41	2.8	3.0
1N5142	13.5	15.0	16.5	250	0.38	0.41	2.8	3.0
1N5142A	14.3	15.0	15.7	250	0.38	0.41	2.8	3.0
1N5143	16.2	18.0	19.8	250	0.38	0.41	2.8	3.0
1N5143A	17.1	18.0	18.9	250	0.38	0.41	2.8	3.0
1N5144	19.8	22.0	24.2	200	0.43	0.45	3.2	3.4
1N5144A	20.9	22.0	23.1	200	0.43	0.45	3.2	3.4
1N5145	24.3	27.0	29.7	200	0.43	0.45	3.2	3.4
1N5145A	25.7	27.0	28.3	200	0.43	0.45	3.2	3.4
1N5146	29.7	33.0	36.3	200	0.43	0.45	3.2	3.4
1N5146A	31.4	33.0	34.6	200	0.43	0.45	3.2	3.4
1N5147	36.1	39.0	42.9	200	0.43	0.45	3.2	3.4
1N5147A	37.1	39.0	40.9	200	0.43	0.45	3.2	3.4
1N5148	42.3	47.0	51.7	200	0.43	0.45	3.2	3.4
1N5148A	44.7	47.0	49.3	200	0.43	0.45	3.2	3.4

PARAMETER TEST METHODS

1. Ls, SERIES INDUCTANCE

L₅ is measured on a shorted package at 250 MHz using an impedance bridge (Boonton Radio Model 250A RX Meter). L = lead length.

2. Cc, CASE CAPACITANCE

C_c is measured on an open package at 1 MHz using a ca-pacitance bridge (Boonton Electronics Model 75A or equivalent).

3. Ct, DIODE CAPACITANCE

 $(C_1 = C_c + C_i)$. C_i is measured at 1 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

4. TR. TUNING RATIO

TR is the ratio of Cr measured at 4 Vdc divided by Cr measured at 60 Vdc.

5. Q. FIGURE OF MERIT

Q is calculated by taking the G and C readings of an admit-

tance bridge at the specified frequency and substituting in the following equations:

$$Q = \frac{2*fC}{G}$$

(Boonton Electronics Model 33AS8).

8. a. DIODE CAPACITANCE REVERSE VOLTAGE SLOPE

The diode capacitance, C_T (as measured at $V_t=4$ Vdc, f=1 MHz) is compared to C_T (as measured at $V_t=60$ Vdc, $\alpha = \frac{\log C_1(4) - \log C_1(60)}{\log 60 - \log 4}$

$$\alpha = \frac{\log Cf(4) - \log Cf(60)}{\log 60 - \log 4}$$

Note that a C_T versus V_c law is assumed as shown in the following equation where C_c is included.

$$C_f = \frac{K}{V^{\alpha}}$$

7. TCc, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

TCc is guaranteed by comparing Cr at V_A = 4 Vdc, f = 1 MHz, $T_A = -65^{\circ}\text{C}$ with Cr at V_A = 4 Vdc, f = 1 MHz, $T_A = +85^{\circ}\text{C}$ in the following equation which defines TCc: $|C_c| \left| \frac{C_r(+85^{\circ}\text{C}) - C_r(-65^{\circ}\text{C})}{85 + 65} \right| \circ \frac{10^4}{\text{C}_r(25^{\circ}\text{C})}$

$$TC_{c} = \left| \frac{C_{r}(+85^{\circ}C) - C_{f}(-65^{\circ}C)}{85 + 65} \right| \cdot \frac{10^{4}}{C_{r}(25^{\circ}C)}$$

