

planetmath.org

Math for the people, by the people.

Myhill-Nerode theorem

Canonical name MyhillNerodeTheorem
Date of creation 2013-03-22 18:52:13
Last modified on 2013-03-22 18:52:13
Owner Ziosilvio (18733)
Last modified by Ziosilvio (18733)

Numerical id 14

Author Ziosilvio (18733)

Entry type Theorem
Classification msc 68Q70
Classification msc 20M35

Synonym Myhill-Nerode theorem for languages

Let L be a language on the finite alphabet A and let \mathcal{N}_L be its Nerode equivalence. The following are equivalent.

- 1. L is recognized by a deterministic finite automaton.
- 2. A^*/\mathcal{N}_L is finite.

Moreover, the number of classes of \mathcal{N}_L is the smallest number of states of a DFA recognizing L.

Proof. First, suppose $A^*/\mathcal{N}_L = \{q_0 = [\lambda]_{\mathcal{N}_L}, \dots, q_{k-1}\} = Q$, where λ is the empty word on A. Construct a DFA $\mathcal{A} = \langle Q, A, q_0, \delta, F \rangle$ (called the *Nerode automaton* for L) with $\delta: Q \times A \to Q$ defined by

$$\delta(q, a) = [wa]_{\mathcal{N}_L} , \quad w \in q , \tag{1}$$

and

$$F = \{ q \in Q \mid \exists w \in L \mid w \in q \} . \tag{2}$$

Then δ is well defined because $w_1 \mathcal{N}_L w_2$ implies $w_1 u \mathcal{N}_L w_2 u$. It is also straightforward that \mathcal{A} recognizes L.

On the other hand, let $\mathcal{A} = \langle Q, A, q_0, \delta, F \rangle$ be a DFA that recognizes L. Extend δ to $Q \times A^*$ by putting $\delta(q, \lambda) = q$ and $\delta(q, aw) = \delta(\delta(q, a), w)$ for every $q \in Q$, $a \in A$, $w \in A^*$. Define $f : Q \to A^*/\mathcal{N}_L \cup \{\emptyset\}$ as

$$f(q) = \begin{cases} [w]_{\mathcal{N}_L} & \text{if } \delta(q_0, w) = q\\ \emptyset & \text{if } \delta(q_0, w) \neq q \forall w \in A^* \end{cases}$$
 (3)

Then f is well defined. In fact, suppose $q_1 = q_2 = q$: then either $f(q_1) = f(q_2) = \emptyset$, or there are $w_1, w_2 \in A^*$ such that $\delta(q_0, w_1) = \delta(q_0, w_2) = q$. But in the latter case, $\delta(q_0, w_1u) = \delta(q_0, w_2u) = \delta(q, u)$ for any $u \in A^*$, hence $w_1 \mathcal{N}_L w_2$ since \mathcal{A} recognizes L. Finally, for any $w \in A^*$ we have $[w]_{\mathcal{N}_L} = f(\delta(q_0, w))$, so every class of \mathcal{N}_L has a preimage according to f; consequently, $|Q| \geq |A^*/\mathcal{N}_L|$.