Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2020.

* If there is any problem, please contact TA Yiming Liu.

- * Name:Zehao Wang Student ID:518021910976 Email: davidwang200099@sjtu.edu.cn
- 1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! 1 and prove by contradiction)

Proof. Assume that there is no prime satisfying $n . Then <math>\forall m$ which satisfies n < m < n!, m is not a prime.

Consider m = n! - 1 which follows n < m < n!. $\forall p <= n, \frac{n!-1}{p} = \frac{n!}{p} - \frac{1}{p}, \frac{n!}{p}$ is an integer, $\frac{1}{p}$ is an integer, $\frac{1}{p}$ is not an integer.

- $\therefore n! 1$ is not divisible by primes smaller than n.
- $\therefore \exists$ prime $p_0 \in (n, n!)$, by which n! 1 is divisible, which is contradictive to the assumption.
- : the former statement makes sense.

2. Use the minimal counterexample principle to prove that for any integer n > 17, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$.

Proof. Assume that \exists a smallest $n_0 > 17$, there do not exist integers $i_{n_0} \ge 0$ and $j_{n_0} \ge 0$, such that $n_0 = i_{n_0} \times 4 + j_{n_0} \times 7$.

Then $\exists i_{n_0-1} \ge 0, j_{n_0-1} \ge 0$, such that $n_0 - 1 = i_{n_0-1} \times 4 + j_{n_0-1} \times 7$.

(a) $j_{n_0-1} = 0$ $\therefore n_0 - 1 > 17 \therefore i_{n_0-1} \ge 5.$

then $n_0 = (i_{n_0-1} - 5) \times 4 + 1 \times 7$, namely $\exists i_{n_0} = i_{n_0-1} - 5, j_{n_0} = 1$, such that $n_0 = i_{n_0} \times 4 + j_{n_0} \times 7$, which is objective to the assumption.

(b) $j_{n_0-1} > 0$

then $n_0 = (i_{n_0-1}+2) \times 4 + (j_{n_0-1}-1) \times 7$, namely $\exists i_{n_0} = i_{n_0-1}+2, j_{n_0} = j_{n_0-1}-1$, such that $n_0 = i_{n_0} \times 4 + j_{n_0} \times 7$, which is also objective to the assumption.

 \therefore for any integer n > 17, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$.

3. Let $P = \{p_1, p_2, \dots\}$ the set of all primes. Suppose that $\{p_i\}$ is monotonically increasing, i.e., $p_1 = 2, p_2 = 3, p_3 = 5, \dots$. Please prove: $p_n < 2^{2^n}$. (Hint: $p_i \nmid (1 + \prod_{j=1}^n p_j), i = 1, 2, \dots, n$.)

Proof. (a) When n=1, $p_1=2<2^{2^1}=4$. The former statement is true.

- (b) Assumes that when n = k, the former statement is true, namely $p_k < 2^{2^k}$
- (c) Then $\prod_{j=1}^{n} p_j < \prod_{j=1}^{n} 2^{2^j} = 2^{2^{n+1}-2} < 2^{2^{n+1}}$
 - $p_i \nmid (1 + \prod_{j=1}^n p_j), i = 1, 2, \dots, n.$
 - $\therefore \exists i_0 > n$, which satisfies that $p_{i_0} \mid (1 + \prod_{j=1}^n p_j)$
 - $\therefore p_{n+1} \leq p_{i_0}$
 - $\therefore p_{n+1} < (1 + \prod_{j=1}^{n} p_j) < 2^{2^{n+1}}$

From (a),(b) and (c), we can know that the former statement is true.

4. Prove that a plane divided by n lines can be colored with only 2 colors, and the adjacent regions have different colors.

Proof. To prove the statement, we first need to prove that n lines can divide a plain into at most $\frac{n^2+n+1}{2}$ areas.

- (a) When n=1, one line can divide a plain into at most $2=\frac{1^2+1+1}{2}$ areas.
- (b) Assumes that when n = k, k lines can divide a plain into at most $\frac{k^2 + k + 1}{2}$ areas.
- (c) Then when n = k + 1, line No.(k + 1) can be divided into (k + 1) parts by the former k lines. So it can add at most (k + 1) areas to the plain. So (k + 1) lines can divide a plain into at most $\frac{k^2 + k + 1}{2} + k + 1 = \frac{(k + 1)^2 + (k + 1) + 1}{2}$ areas. Therefore, it can be proved that n lines can divide a plain into at most $\frac{n^2 + n + 1}{2}$ areas.

Then we need to prove that to make sure adjacent areas have different colors, at most $\frac{n^2+n}{3}$ can be filled with the same color.

It does not matter to assume that the lines are not parallel. Assumes that there are m_k areas with k line segments or half-lines as their boundaries.

Then
$$\sum_{j=1}^{n} m_j \leq n^2$$
.

$$m_1 < n : \sum_{j=1}^n m_j \le \frac{m_2}{3} + \frac{\sum_{j=2}^n j m_j}{3} \le \frac{n^2 + n}{3}$$

Considering that we have 2 colors, there should be not more than $\frac{2n^2+2n}{3}$ areas to be filled.

Because n lines can divide a plain into at most $\frac{n^2+n+1}{2}$ areas, which is less than $\frac{2n^2+2n}{3}$, therefore we can prove that n lines can be colored with only 2 colors, and the adjacent regions have different colors.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.

2