Business Intelligence Software Testing (BIST)

Speed. Agility. Imagination

Copyright © 2011 IGATE Corporation. All rights reserved. No part of this publication shall be reproduced in any way, including but not limited to photocopy, photographic, magnetic, or other record, without the prior written permission of IGATE Corporation.

IGATE Corporation considers information included in this document to be Confidential and Proprietary.

Document History

Date	Course Version No.	Software Version No.	Developer / SME	Change Record Remarks
16-Apr-09	0.1D	NA	Priya Rane	Content Updation
08-Feb-10	0.1D	NA	CLS Team	Review
20-July-11	0.1D	NA	Karthikeyan/Vandana	iGate Patni Integration
11-Sep-12	1.0	NA	Karthikeyan	iGate Format

June 22, 2015 Proprietary and Confidential - 2 -

IGATE Speed, Aprillips, Inchesional Co.

Course Goals and Non Goals

Course Goals

 At the end of this program, participants gain an understanding of the need of separate software testing for Business Intelligence (BI)

IGATE

Course Non Goals

 Detailed introduction of tools and implementation is not part of this course

June 22, 2015 Proprietary and Confidential - 3-

Page 0-3

Pre-r	equisites			
> Fair	Knowledge of	ВІ		
				IC ATE
June 22, 2015	Proprietary and Confidential	-4-		Speed.Agility.Imagination

Day Wise Schedule Day 1 Lesson 1: Introduction to BIST Lesson 2: Testing Concepts Lesson 3: Type of testing Lesson 4: Testing for BI

Table of Contents

➤ Lesson 1: Introduction to BIST

- 1.1. Business Requirements
- 1.2. BI Projects versus BI Program
- 1.3. Why is BI testing required?
- 1.4. How is BI testing different from code based testing?

Lesson 2: Testing Concepts

- 2.1. Testing Concepts
- 2.2. Principles of Testing

June 22, 2015 Proprietary and Confidential - 7 -

Table of Contents 2.3. Test Case 2.4. Test Suite & Test cycle 2.5. Testing Scope 2.6. Testing Strategy 2.7. Verification and Validation Lesson 3: Types of Testing 3.1. V Model for BI Testing

June 22, 2015

Table of Contents Lesson 4: Testing for BI 4.1. Testing Document Purpose (Test Documentation) 4.2. General BI Testing Principles 4.3. iGate Testing Mission 4.4. Production Verification Testing 4.5. Possible Areas of Automation **IGATE** Proprietary and Confidential - 9-

References - Student Material: - Class Book (presentation slides with notes) - Class Book (presentation slides with notes)

Othe	r Parallel ⁻	Technology Areas	i	
>	NA			
June 22, 2015	Proprietary and Confidential	-12-		IGATE Speed.Agility.Imagination

Soft (STI	tware Testing Business Intelligenc BI)	e
Les	sson 1: Introduction to STBI	
June 22, 2015	Proprietary and Confidential -1-	ICATE Speed Agility Imagination

Lesson Objectives > To understand the following topics: - Business requirements - BI Project versus BI Program - How is BI testing different from traditional code based testing? **IGATE** Proprietary and Confidential - 2 -June 22, 2015

1.1: Business requirements

Introduction to STBI

- BI solutions development uses a distinctly different lifecycle to conventional software development
- It is iterative in nature where a single project develops subset of a more extensive BI environment.
- Thus each deliverable must go beyond meeting just the stated requirements and provide a solid foundation upon which future solutions or iterations are built.
- Beyond the differences imposed by the different lifecycle, there are several other differences that add to the complexity

June 22, 2015 Proprietary and Confidential - 3 -

1.1: Business requirements Introduction to STBI (Cont...)

- Analysis for software development produces a relatively stable set of requirements that serve as the basis of system design.
- > BI requirements are less clear and change more rapidly.
- This circumstance makes testing of requirements difficult and creates downstream challenges when testing designs, software components, and other deliverables.

June 22, 2015 Proprietary and Confidential - 4 -

1.2: Bl Project verses Bl program What is BI project

- > A typical software development project is self-contained.
- > Dependencies are few and testing is finished when the project is completed.
- > The BI program is an ongoing program without a finite end.
- > Development is iterative and the system will evolve over time.
- > With the continuous nature of BI development and operation there is a demand for testing.

Proprietary and Confidential -5-

Why is BI testing required?

- DW/BI pose a significant threat to organizations or applications with huge volume of data. For Eg: Banks/Financial Institutes, Insurance, Telecom etc.
- In such Institutes, the Information accuracy, consistency and reliability, information validation, data loss, reporting inefficiencies and data security are some of the important challenges that needs to be tested.
- To address these issues, the primary focus of DW/BI testing is to ensure competent and perfect database structures, ETL processes, front-end access and BI reports generations processes.

June 22, 2015 Proprietary and Confidential - 6 -

1.4: How is BI testing different from traditional code based testing?

Objective of BI testing

- > Software testing is predominantly testing of program code
- Verifying that it works correctly and does not fail.
- > BI testing is directed at data, information and reports.
- Code failure is more readily defined and isolated than failure of data and information.
- Testing Strategy plays critical role in ensuring a common best practice testing process for the implementation of the BI Solutions.

June 22, 2015 Proprietary and Confidential - 7 -

1.4: Howis BI testing different from traditional code based testing? Objective of BI testing (Cont...)

- The strategy brings in a broad understanding of Business Intelligence architecture
- > It highlights the testing challenges and the value addition to the SDLC process
- It identifies generic validation approaches and the best practices for testing BI Applications.

June 22, 2015 Proprietary and Confidential - 8 -

Summary

➤ In this lesson, you have learnt:

- Business intelligence software testing uses a distinctly different lifecycle to conventional software development
- It identifies generic validation approaches and the best practices for testing BI Applications.

Aune 23,2475 Proprietary and Confidential - 9-

Review Questions

- Question 1: Data Warehouse Development Life Cycle has ____
 - Option 1:5
 - Option 2:6
 - Option 3:7

- Question 2: Analysis phase identifies the data sources
 - Option: True / False
- > Question 3: A data warehouse is really a completed project.
 - Option: True / False

Proprietary and Confidential - 10 -

Page 02-1

Lesson Objectives To understand the following topics: - What is testing? • Testing - Why? • Testing - How? - Principles of Testing - Test Case and Test Suite - Testing scope - Test strategy - Verification and Validation

Testing is successful if you can prove that the product does what it should not do and does not do what it should do.

Why is testing becoming such a crucial activity? – Because applications are becoming very complex with n-tiers in an application.

When one tests a program one adds value to it through improved quality and reliability.

If not tested it can cause an unpleasant navigational error in case of a browsing applications or death or injury in case of safety critical applications.

End customers are becoming more demanding & conscious about quality (defects)?

Why are company's outsourcing the testing phase? – It is being realized that testing is an extremely important phase, customers today are conscious of quality as they need to be more competitive in the market.

It is being realized that the best people to test an application are the ones who have not developed the application. The testers would have the approach of a user and have an unbiased mind.

Trainer Notes

Page 02-5

2.2: Testing concepts Principles of Testing

- Economics of Testing It is both the driving force and the limiting factor
- Driving Earlier the errors are discovered and removed in the lifecycle, lower the cost of their removal
- Limiting Testing must end when the economic returns cease to make it worth while i.e the costs of testing process significantly outweigh the returns

Aune 22, 2015 Proprietary and Confidential - 6 -

Although testing is itself an expensive activity, the cost of not testing is potentially much higher.

The most damaging errors are those which are not discovered during the testing process and therefore remain when the system goes live.

Limiting - It is infeasible to test exhaustively all but the most simple or the most vital of s/w.

Here we discuss how exhaustive testing is impossible to achieve, start with a small example and then show how for it is impossible, uneconomical and unfruitful to test all the test cases.

Following example for the Exhaustive input testing (Black box)

Example of a function say ax2 +bx + c=0.

Assume 16 bit numbers.

So each input is 2power16.

And so total test cases is 2

power16*2power16=2power48 test cases which is impractical.

If cost of testing increases and no. of defects come down and the need to strike a balance to achieve optimum testing.

"A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement." (...IEEE) In other words, a planned sequence of actions (with the objective of finding errors)

A Test case is a planned sequence of actions.

2.3: Good Test Case? What is a Test Case?

- Test cases help us discover information (.. Kaner)
- The success of a test case is finding more number of errors with a finite number of test cases
- Identifies set of inputs that can lead to erroneous output
- Finds any deviation from Customer requirement
- Help managers decide deliver or not to deliver the s/w or product developed
- Documentation should be balanced in detail and describes each condition that is to be tested along with the inputs in a simple way
- > Should be understandable for future reference

Lane 22, 2015 Proprietary and Confidential -8-

Testing at the boundary values has a higher probability of revealing errors and in case the test case detects an error it turns out to be a successful test case as well. The tester must understand the software and attempt to develop a mental picture of how the software might fail.

Every Test case should be Atomic, Repeatable, Self contained.

Information Objectives

So what are we trying to learn or achieve when we run tests? Here are some examples:

- Find defects. This is the classic objective of testing. A test is run in order to trigger failures that expose defects. Generally, we look for defects in all interesting parts of the product.
- Maximize bug count. The distinction between this and "find defects" is that total number of bugs is more important than coverage. We might focus narrowly, on only a few high-risk features, if this is the way to find the most bugs in the time available.
- Help managers make ship / no-ship decisions. Managers are typically concerned with risk in the field. They want to know about coverage (maybe not the simplistic code coverage statistics, but some indicators of how much of the product has been addressed and how much is left), and how important the known problems are. Problems that appear significant on paper but will not lead to customer dissatisfaction are probably not relevant to the ship decision.

 Page 02-8

- Minimize technical support costs. Working in conjunction with a technical support or help desk group, the test team identifies the issues that lead to calls for support. These are often peripherally related to the product under test. For example, getting the product to work with a specific printer or to import data successfully from a third party database might prevent more calls than a low-frequency, datacorrupting crash.
- Assess conformance to specification. Any claim made in the specification is checked. Program characteristics not addressed in the specification are not (as part of this objective) checked.
- Conform to regulations. If a regulation specifies a certain type of coverage (such as, at least one test for every claim made about the product), the test group creates the appropriate tests. If the regulation specifies a style for the specifications or other documentation, the test group probably checks the style. In general, the test group is focusing on anything covered by regulation and (in the context of this objective) nothing that is not covered by regulation.
- Minimize safety-related lawsuit risk. Any error that could lead to an accident or injury is of primary interest. Errors that lead to loss of time or data or corrupt data, but that don't carry a risk of injury or damage to physical things are out of scope.
- Find safe scenarios for use of the product (find ways to get it to work, in spite of the bugs). Sometimes, all that you're looking for is one way to do a task that will consistently work—one set of instructions that someone else can follow that will reliably deliver the benefit they are supposed to lead to. In this case, the tester is not looking for bugs. He is trying out, empirically refining and documenting, a way to do a task.
- Assess quality. This is a tricky objective because quality is multi-dimensional. The nature of quality depends on the nature of the product. For example, a computer game that is rock solid but not entertaining is useless a game. To assess quality -- to measure and report back on the level of quality -- you probably need a clear definition of the most important quality criteria for this product, and then you need a theory that relates test results to the definition.

• For example, reliability is not just about the number of bugs in the product. It is (or is often defined as being) about the number of reliability-related failures that can be expected in a period of time or a period of use. (Reliability-related? In measuring reliability, an organization might not care, for example, about misspellings in error messages.) To make this prediction, you need a mathematically and empirically sound model that links test results to reliability. Testing involves gathering the data needed by the model. This might involve extensive work in areas of the product believed to be stable as well as some work in weaker areas. Imagine a reliability model based on

counting bugs found (perhaps weighted by some type of severity) per N lines of code or per K hours of testing. Finding the bugs is important. Eliminating duplicates is important. Troubleshooting to make the bug report easier to understand and more likely to fix is (in the context of assessment) out of scope.

• Verify correctness of the product. It is impossible to do this by testing. You can prove that the product is not correct or you can demonstrate that you didn't find any errors in a given period of time using a given testing strategy. However, you can't test exhaustively, and the product might fail under conditions that you did not test. The best you can do (if you have a solid, credible model) is assessment-test-based estimation of the probability of errors. (See the discussion of reliability, above).

• Assure quality. Despite the common title, quality assurance, you can't assure quality by testing. You can't assure quality by gathering metrics. You can't assure quality by setting standards. Quality assurance involves building a high quality product and for that, you need skilled people throughout development who have time and motivation and an appropriate balance of direction and creative freedom. This is out of scope for a test organization. It is within scope for the project manager and associated executives. The test organization can certainly help in this process by performing a wide range of technical investigations, but those investigations are not quality assurance.

Given a testing objective, the good test series provides information directly relevant to that objective. Different types of tests are more effective for different classes of information.

2.3: Test Suite & Test Cycle

What is a test suite and test cycle?

- Test Suite A set of individual test cases/scenarios that are executed as a
 package, in a particular sequence and to test a particular aspect.
 E.g. Test Suite for a GUI or Test Suite for functionality
- Test Cycle A test cycle consists of a series of test suites which comprises a complete execution set from the initial setup to the test environment through reporting and clean up. E.g. Integration test cycle / regression test cycle

June 22, 2015 Proprietary and Confidential - 11-

IGATE
Speed.Agility.Imagination

- **Test case** is a triplet [I, S, O] where
 - I is input data
 - S is state of system at which data will be input
 - O is the **expected** output

Test Suite – Test suite is set of all test cases. Suites are usually related by the area of the application they exercise or by their priority or content.

For E.g. When you Login to the screen, some functionalities like validating user name, password with different invalid inputs can act as Test suites.

Test Cycle – It's a combination of series of test suites.

For E.g. The Test Cycle for the same application is combination of multiple Test Suites like, Functional validations, Database validations, GUI validations, etc. form the Test Cycle.

Test Scenario — A set of test cases that ensure that the business process flows are tested from end to end. They may be independent tests or a series of tests that follow each other, each dependent on the output of the previous one. The terms "test scenario" and "test case" are often used synonymously.

Test cases are not randomly selected. Instead even they need to be designed.

June 22, 2015

2.4: Testing scope What is the scope of BI testing?

- Business Intelligence testing needs to be done at various levels to ensure that all requirements, both business and technical have been met.
- Typically Business Intelligence architecture adheres to a target BI reference architecture that is used as a framework to build BI solutions.
- Testing of any BI solution will cover all the layers utilized by the BI Solution within this architecture and also the complete end-to-end process

Proprietary and Confidential - 12-

24: Testing scope What is the scope of BI testing? (Cont...)

> This testing process includes

- Sourcing and transformation of Business Data
- Reporting and Presentation of Business Data
- Configuration of the BI Tools
- Scalability and Performance
- Operational characteristics including scheduling, security, metadata

_ IGATE
Speed.Agility.Imagination

June 22, 2015 Proprietary and Confidential - 13 -

The table gives an overview of the typical BI specific test coverage involving the different BI specific layers.

Page 02-14

What is testing strategy?

- It provides a road map that describes the steps to be conducted as part of testing, when these steps are planned and then undertaken, and how much effort, time and resources will be required.
- It must incorporate test planning, test case design, test execution and resultant data collection and evaluation.

- IGATE
Speed.Agility.Imagination

June 22, 2015 Proprietary and Confidential - 15 -

2.6: Verification and Validation What is Verification?

Verification

June 22, 2015

Proprietary and Confidential - 16 -

- Verification refers to a set of activities which ensures that software correctly implements a specific function.
- Purpose of verification is to check: Are we building the product right?
- Example: code and document reviews, inspections, walkthroughs.

V&V encompasses many of the activities that are encompassed by S/w quality assurance that include formal technical reviews, quality and configuration audits, performance monitoring, simulation, feasibility study, documentation review, database review, algorithm analysis, development testing, usability testing, installation testing. Verification is a process of determining whether output of one phase of development conforms to its previous phase. Verification is concerned with phase containment of errors

For example, On Login screen if user logs in to screen, user should be navigated to user account details page. Checking for this functionality is verification.

Example of Verification: code and document inspections, walkthroughs, and other techniques.

Example of Verification: unit testing, integration testing, system testing (validation of software typically includes evidence that all software requirements have been implemented correctly and completely and are traceable to system requirements.)

If we are in a shopping centre and buy a thing with a code number 2342 and when we go to till and they check the number of that item and find it wrong then system will check all product number of the relevant number but don't find any number of this kind then we can say that the verify thing is wrong. Verification is a process, which performs testing to ensure implemented functions meeting to designed functions.

2.6: Verification and Validation What is Validation?

Validation

- Purpose of Validation is to check: Are we building the right product?
 - Validation refers to a different set of activities which ensures that the software that has been built is traceable to customer requirements.
 - Process of determining whether a fully developed system conforms to its SRS document
 - Validation is concerned about the final product to be error free

Arre 22, 2015 Proprietary and Confidential -17-

For example, when user logs in to screen, user should provide valid data for user account. User input data will be validated for login process.

Validation is nothing but execution of Test cases, a process to check whether the Executed and Actual results are same. Validation is a process, which performs testing to ensure designed functions meeting to customer's requirements.

The word Validation resembles that all the functionalities are correctly working or not is validated for correctness.

If we are in a shopping centre and buy a thing with a code number 2342 and when we go to till and they check the number of that item and find it right then we can say that this product is valid. 2.6: Verification and Validation What is Validation? (Cont...)

Validation

- After each validation test has been conducted, one of two possible conditions exist:
 - The function or performance characteristics conform to specification and are accepted, or
 - Deviation from specification and a deficiency list is created.
- Example: A series of black box tests that demonstrate conformity with requirements.

Aune 22, 2015 Proprietary and Confidential - 18-

Summary

> In this lesson, you have learnt:

- Testing is to find greatest possible number of errors with manageable amount of efforts
- Testing is carried out for the contribution to the delivery of higher quality software product
- Driving and limiting are the basic principles of testing

Aure 22, 2015 Proprietary and Confidential -19-

Summary

> In this lesson, you have learnt:

- Verification refers to a set of activities which ensures that software correctly implements a specific function.
- Validation is concerned about the final product to be error free

Anne 22, 2015 Proprietary and Confidential 2-20-

Review Questions

- Question 1: Test cases help us discover_____
- Question 2: ______ is a set of test cases/scenarios that are executed as a package

- Question 3: Validation refers to a set of activities which ensures that software correctly implements a specific function.
 - True / False

June 22, 2015 Proprietary and Confidential - 21-

IGATE

Software Testing Bi	usiness Intelligence (STBI)	Types of Testing
		ness Intelligence (STBI)
	June 22, 2015 Proprietary and Confidential -1-	IGATE Spend, Agility, Integlisation

Lesson Objectives To understand the following topics: V Model for BI Testing Unit Testing Unit Testing User Acceptance Testing Operational Acceptance Testing Topical Acceptance Testing Testing Testing Testing Testing Testing Testing

3.1: V Model

V Model for BI Testing

- There are some distinct test phases that take place in the implementation of BI project
- It is easier to visualize through the famous Waterfall model of development and V-model of testing
- The V proceeds from left to right, depicting the basic sequence of development and testing activities

June 22, 2015 Proprietary and Confidential - 3 -

IGATE
Speed.Agility.Imagination

V model represents various phases of software development life cycle. Each phase is been tested with different testing types. Each testing type here is concerned for the separate phase of the life cycle.

There are various phases as follows:

Requirements

Specifications

Design

Implementation

Each of these phases has corresponding testing associated with it.

Unit testing - It is done at Implementation phase.

Integration testing – It is carried out in Design phase.

System testing – It is done at Specification phase

User & Operational acceptance test – This is done at Requirement phase.

Regression Testing is the testing of software after a modification has been made to ensure the reliability of each software release. Testing after changes have been made to ensure that changes did not introduce any new errors into the system. It applies to systems in production undergoing change as well as to systems under development Re-execution of some subset of test that have already been conducted.

Test phases for BI

Unit Testing
System Testing
System Integration Testing (SIT)
User Acceptance Testing (UAT)
Operational Acceptance Testing (OAT)

Unit Testing

- > It ensures that each component within the system successfully performs its individual responsibility when executed individually.
- The BI Solution development team should perform this testing on the BI development environment.
- There are some guidelines as to the general tasks that need to be executed during this testing type.

Layer/Area	Typical Tasks
ETL Testing	Checking extraction rules
	> Transformation validation
	> Target system data integrity
	 Checking input data validation
	> Test the error-handling logic
	> Test slowly changing dimension implementation by checking
	the integrity of surrogate keys
	Test Notifications/Warnings/Error messages

Layer/Area	Typical Tasks
Report Testing	Fields appearing in the reports, proper layout
	> Drills down features, Report printed with proper format
	> Column heading for business sense and functionality
	 Column headers for 'Units' displayed, wherever applicable and conversion of data elements as per unit specified.
	> Report Type, colour, labels and legends
	> Header, footer, page header, page footer
	> Charts and graphs, Archival of reports in different mode
	> Data elements and labels to in the charts and the graphs

Layer/Area	Typical Tasks
Universe Testing	 Connection parameter and control and SQL parameters. Refresh universe structure. Check parsing. Perform context and loop check. Joins and cardinalities Naming conventions Hierarchy of class, sub-class, objects Import/Export universe

3.1: V Model for BI Testing System Testing

- It ensures that the system successfully supports the business requirements
- > It also confirms that all functional requirements have been met.

June 22, 2015 Proprietary and Confidential - 10-

> Successful source access > Application and validation of cleansing algorithm/logic > Proper delivery of the files to staging area/ODS – > formatting, layouts, file naming convention, order of > precedence > File Loads, Dependencies, Completeness > Formats and layouts > Naming conventions > Scripts and Triggers	Layer/Area	Typical Tasks
 Application and validation of clearsing algorithmogic Proper delivery of the files to staging area/ODS – formatting, layouts, file naming convention, order of precedence File Loads, Dependencies, Completeness Formats and layouts Naming conventions 	Data	> Successful source access
 formatting, layouts, file naming convention, order of precedence File Loads, Dependencies, Completeness Formats and layouts Naming conventions 	Acquisition	> Application and validation of cleansing algorithm/logic
 precedence File Loads, Dependencies, Completeness Formats and layouts Naming conventions 		Proper delivery of the files to staging area/ODS –
 File Loads, Dependencies, Completeness Formats and layouts Naming conventions 		> formatting, layouts, file naming convention, order of
Formats and layoutsNaming conventions		> precedence
➤ Naming conventions		 File Loads, Dependencies, Completeness
		> Formats and layouts
Scripts and Triggers		Naming conventions
		Scripts and Triggers

Layer/Area	Typical Tasks
ETL Testing	> Successful staging area access, Order of Extraction
	> Successful extraction of data
	> Application and validation of transformation logic
	> Rejects based on applied algorithms
	 Recovery and Restart, Data Auditing/Logs
	> Proper generation of the code
	 Scheduling, Job triggers, Job decencies
	> Alerts and notification, Warnings and check point validations
	Metadata recording/deliver to internal/external repositories

Layer/Area	Typical Tasks
OLAP/ Reporting	 Correct reflection of the schema in the tool architecture Source to object mappings Correct formatting of the object, Report schedules Correct definitions, constructions of derived measure/metrics Population of universe, triggers, data and structures Hierarchical Organization of Dimension, user friendliness Online analytical computation, e.g. drill downs, running sums Time computations, Report layouts, formatting

System Integration Testing

- It ensure seamless run of the entire process within an application or a specific stage.
- > It focuses on the details of each of the steps/modules.
- > It helps in capturing the responses as the data moves across the system.

ICATE
Speed.Agility.tmagination

June 22, 2015

Proprietary and Confidential - 14 -

3.1: V Model for BI Testing System Integration Testing (Cont...) Layer/Area Typical Tasks Data > Successful runs of each job Acquisition Successful execution of each script > Proper delivery of the files to staging area in the order Capture of errors > Capture of rejects Processing of statistics/audits trails OLAP Report Schedules Correct reflection of data from data warehouse onto reports, Query generation to test table joins **IGATE** June 22, 2015 Proprietary and Confidential - 15 -

Layer/Area	Typical Tasks
ETL	➤ Triggered start of the ETL process
	> Successful extraction in order of precedence
	Count of rejects based on applied algorithm
	 Successful run of dependent jobs, Failure of jib runs
	Restarts, Alerts and notification deliveries
Operational/Da	Audit trails, Triggered start of the Data Feedback process
ta Quality	Successful audit trail in order
	Count of rejects based on applied algorithm, Restarts
	 Successful run of dependent jobs, Failure of job runs

Layer/Area	Typical Tasks
End-to-End	Black-box Testing, Random Testing, Time computations
	> Source (File load) to object (OLAP) mappings
	> Report layouts, formatting, user friendliness
	> Hierarchical Organization of Dimension
	➤ Correct reflection of data onto reports
	➤ Ad-hoc features/builders, Online analytical computation
Performance	> Benchmarking, Gauge the impact of configuration, Tuning
	> Load/Volume Test, Availability, Log into Application

User Acceptance Testing

- Business users of the system, Business Analysts and Test Analysts execute predefined Test Cases emulating production business scenarios.
- The test shall be designed to ensure that the users can interact with the system and accomplish daily business operations.
- Specific test cases need to be established, and expected results identified.
- This testing should be for specific BI functions, including data transformation rules, and data correctness.

June 22, 2015 Proprietary and Confidential -18-

IGATE

User Acceptance Testing (Cont...)

- User acceptance testing should be completed in the BI testing environment, during the construction stage and then in production at the implementation.
- Business Stakeholders should have a nominated Testing manager who will ensure that all UAT testing, is planed, prepared and executed, to the satisfaction of the BI Program Manager.
- UAT Testing covers

June 22, 2015

- Functional testing
- Business BI information testing

Proprietary and Confidential - 19 -

IGATE
Speed Agility Imagination

Layer/Area	ceptance Testing (Cont) Typical Tasks]
Business Testing	 Information accuracy Source data rejections Data transformation/aggregation rules Key performance metrics/reports Information presentation User access points to OLAP tools, query tools 	-

Operational Acceptance Testing

- > It verifies that a solution is able to operate at the expected volumes in production and is able to support the response times as specified.
- > It mainly focuses on system performance, deployments, backup and
- > Operation Acceptance Testing (OAT) should be carried out by the IT team to ensure the technical operation of the EDW solution is acceptable to both the business users and to the IT's operational staff.

June 22, 2015

Proprietary and Confidential - 21-

IGATE

Layer/Area	Typical Tasks
Database	> Multiple users logging in the system
	 Queries retrieving massive amount of data, e.g., across multiple time units
	> Simultaneous queries lunched to the system
	Multiple users running large queries
Enhancement	 Ensuring all task change are carried out from previous baseline
Availability	> Availability of various components of BI solution

3.1: V Model for BI Testing Operational Acceptance Testing (Cont...)

Layer/Area	Typical Tasks
Deployment	> Completeness
Disaster Recovery	> Disaster Recovery procedures
	> Recovery using the customer daily back-ups procedure
Documentation	> Various documents as specified in OAT certification template
Monitoring	> Checking Automated Alerting
Middleware	> Checking Performance and Load of the system
Network	> Checking Performance and Load of the system

June 22, 2015 Proprietary and Confidential - 23-

Summary

➤ In this lesson, you have learnt:

- There are various test phases of V model for BI testing like
 - Unit Testing
 - System Testing
 - System Integration Testing (SIT)
 - User Acceptance Testing (UAT)
 - Operational Acceptance Testing (OAT)

June 23, 2015 Proprietary and Confidential - 24-

Review Questions

- Question 1: Testing a software with execution on a computer
 - Option 1: Static testing
 - Option 2: Dynamic testing
 - Option 3: Automated testing

 Question 2: Operational acceptance testing ensures that the system successfully supports the business requirements

- True / False

IGATE
Speed.Agility.Imagination

June 22, 2015 Proprietary and Confidential - 25 -

Software Testing Business Intelligence (STBI)

Lesson 4: Testing for BI

Lesson Objectives

- > To understand the following topics:
 - Testing document purpose (Test documentation)
 - General BI Testing Principles
 - BI Testing Mission
 - Production Verification Testing
 - Possible Areas of Automation

Proprietary and Confidential -2-2

4.1: Testing document purpose Test documentation

- > The purpose of this document is to define a template for the Testing Strategy of Business Intelligence Solutions.
- > The document will:
 - Identify and describe each testing phase
 - Identify and describe each test type
 - Define entry and exit criteria of each test phase including test activities and validation tasks

IGATE

4.1: Testing document purpose Test documentation (Cont...)

- Each phase will have its own test plan prepared and accepted that will cover all aspects in detail appropriate to that phase.
- > It will reference this document where necessary.
- > The document also sets some high-level guidelines for BI testing.

IGATE

Page 04-4

4.2: BI testing principles General BI testing strategy

- For each Reporting Solutions, all canned reports specified with the business should each be tested individually.
- To demonstrate the add-hoc capabilities of the system, the solution development vendor should demonstrate that all canned reports within the scope of the application can be produced using the ad-hoc toolset.
- Following release to production there should be process to support retro fitting of minor changes done by the application-support team and with major changes done by the development team.

June 22, 2015

oprietary and Confidential

-

IGATE
Speed Agility. Imagination

4.2: BI testing principles
General BI testing strategy (Cont...)

- BICC should record defects in a tool (such as excel or better) with the intention to display bugs per modules and bug discovery rate
- As data quality is a major consideration in these type of projects the following should apply:
 - Data quality issues should be fixed in the upstream system, rather in the data warehouse.
 - A review of the data quality should be performed at each project decision point.

IGATE Speed.Agillity.Imagination

June 22, 2015 Propriet

orietary and Confidential

General BI testing strategy (Cont...)

The usability test should be conducted as follows.

- Step 1 Untrained users should be trained on the usage of the system.
- Step 2 These users should then be given a list of tasks to perform within the environment. The users performance should be monitored.
- Step 3 Based on the users feedback and performance either the training data set, or the training material should be improved.

June 22, 2015 Proprietary and Confidential

IGATE

General BI testing strategy (Cont...)

- In case of unavailability of sufficient test data a test data-generating engine such as GS Data Generator or DBUnit may be used.
- For data security purposes, test data should be generated by appropriately massaging production data

June 22, 2015 Proprietary and Confidential - 8

IGATE Speed.Agility.Imagination

Page 04-9

4.4: Production verification testing

Production Verification Testing

Production Verification Testing (PVT)

- It verifies that the correct functionality, architecture and procedures have been defined and implemented.
- It allows for the running, maintenance and support of the system in production in accordance with common practice and agreed standards.
- PVT also confirms that all necessary hardware, software, application functionality migrated from validated test environments, converted data, connectivity and interface capability are available and confirmed for the system to be implemented into production.

June 22, 2015

oprietary and Confidentia

tial - 10

IGATE
Speed Agility. Imagination

ETL Layer	Generic Data Reconciliation: Programs to automate Data Reconciliation process
	 Generic Data Auditing Routines: Programs to collect statistic related to the data being loaded from source to target
Portal/OLAP Reporting Layer	➤ Portal Look and Feel Check
	Reports Generation & Data Validation (CSV File Compare)
Performance /Stress Testing	> ETL Process Performance
	> Report Generation Time
	Response times OLAP & Presentation Layer
	1 .

Summary

> In this lesson, you have learnt:

- Test document identifies and describes each testing phase.
- Each phase has its own test plan prepared and accepted.
- The objective of testing is to verify that the deliverables of BI solutions meets the agreed business requirements.

contd.

IGATE
Speed.Agility.Imagination

June 22, 2015 Proprietary a

tial - 12 -

Summary (Cont...)

➤ In this lesson, you have learnt:

- Production verification testing confirms the system to be implemented into production.
- There are various areas of BI where in testing can be automated.

Proprietary and Confidential | -13-

Review Questions

- Question 1: ______ is to define a template Strategy of Business Intelligence Solutions is to define a template for the Testing
- Question 2: Data quality issues should be fixed in the Data

IGATE