CM042 - Cálculo II

11 de Maio de 2018 - Prova 2

Gabarito

1. 15 Encontre os pontos críticos de $f(x,y) = x^3 - 3x + y^3 - 12y$ e classifique-os.

Solution: $\nabla f(x,y) = \langle 3x^2 - 3, 3y^2 - 12 \rangle = 0 \Rightarrow x = \pm 1, y = \pm 2.$

$$f_{xx} = 6x, f_{xy} = 0, f_{yy} = 6y.$$

$$D = 36xy.$$

Em (1,-2) e (-1,2), temos D=-72<0, logo são pontos de sela.

Em (1,2), temos D=72>0 e $f_{xx}=6>0$, logo é um minimizador local.

Em (-1,-2), temos D=72>0 e $f_{xx}=-6<0$, logo é um maximizador local.

2. 15 Encontre os valores máximos e mínimos de $f(x,y) = x - y^2$ no conjunto $x^2 + y^2 \le 1$.

Solution: Primeiro verificamos os pontos críticos no interior do conjunto. Como $\nabla f(x,y) = \langle 1, -2y \rangle$, então não é possível zerar o gradiente. Ou seja, não existem pontos críticos no interior.

Na borda, temos a equação $g(x,y)=x^2+y^2=1$. Daí, podemos buscar os candidatos pelo método dos multiplicadores de Lagrange.

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
 e $g(x,y) = 1$,

implicam em

$$\begin{cases} 1 = 2x\lambda \\ -2y = 2y\lambda \\ x^2 + y^2 = 1. \end{cases}$$

Daí, y = 0, ou $\lambda = -1$.

Se y = 0, então $x = \pm 1$. $f(\pm 1, 0) = \pm 1$.

Se
$$\lambda = -1$$
, então $x = -\frac{1}{2}$ e $y = \pm \frac{\sqrt{3}}{2}$. $f(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}) = -\frac{1}{2} - \frac{3}{4} = -\frac{5}{4}$.

Comparando os valores de função, vemos que o mínimo é -5/4 em dois pontos: $(-1/2, \pm \sqrt{3}/2)$ e o máximo é 1 no ponto (1,0).

3. Calcule

(a)
$$\boxed{8} \int_1^2 \int_1^2 y e^{xy} dx dy$$

Solution:

$$\int_{1}^{2} \int_{1}^{2} y e^{xy} \, dx dy = \int_{1}^{2} y e^{xy} \frac{1}{y} \Big|_{1}^{2} dx = \int_{1}^{2} (e^{2x} - e^{x}) dx = \left[\frac{e^{2x}}{2} - e^{x} \right]_{1}^{2}$$
$$= \frac{e^{4} - e^{2}}{2} - e^{2} + e = \frac{e^{4}}{2} - \frac{3}{2} e^{2} + e.$$

(b)
$$\boxed{8} \int_1^e \int_1^x \frac{\ln y}{xy} \, \mathrm{d}y \, \mathrm{d}x.$$

Solution:

$$\int_{1}^{e} \int_{1}^{x} \frac{\ln y}{xy} \, dy dx = \int_{1}^{e} \frac{1}{x} \int_{1}^{x} \frac{\ln y}{y} dy dx = \int_{1}^{e} \frac{1}{x} \int_{0}^{\ln x} u du dx$$
$$= \int_{1}^{e} \frac{(\ln x)^{2}}{2x} dx = \int_{0}^{1} \frac{u^{2}}{2} du = \frac{1}{6}.$$

(c) 8
$$\iint_D \frac{\sqrt{x^2 + y^2}}{x^2} dA$$
 onde D é delimitada por $x^2 + y^2 = 1$, $x^2 + y^2 = 2$, $y \le \sqrt{3}x$ e $x \le \sqrt{3}y$.

Solution: Para $y \le \sqrt{3}x$ e $x \le \sqrt{3}y$, devemos ter D no primeiro quadrante. Daí $x = r\cos\theta$ e $y = r\sin\theta$: D é $1 \le r \le \sqrt{2}$. Para $y = \sqrt{3}x$, temos $\sin\theta = \sqrt{3}\cos\theta$, logo $\tan\theta = \sqrt{3}$, de modo que $\theta = \frac{\pi}{3}$. Aí, $x = \sqrt{3}y$, temos $\theta = \frac{\pi}{6}$.

$$\iint_{D} \frac{\sqrt{x^{2} + y^{2}}}{x^{2}} dA = \int_{\pi/6}^{\pi/3} \int_{1}^{\sqrt{2}} \frac{r}{r^{2} \cos^{2} \theta} r \, dr d\theta$$

$$= \int_{\pi/6}^{\pi/3} \sec^{2} \theta d\theta \int_{1}^{\sqrt{2}} dr = \left(\tan \frac{\pi}{3} - \tan \frac{\pi}{6}\right) (\sqrt{2} - 1)$$

$$= \left(\sqrt{3} - \frac{\sqrt{3}}{3}\right) (\sqrt{2} - 1) = 2\frac{\sqrt{3}}{3} (\sqrt{2} - 1)$$

(d) 8
$$\iint_D x dA$$
 onde D é a região limitada pelas curvas $y = x^2$ e $y = x + 2$.

Solution: Interseção $x^2 = x + 2 \Rightarrow x = -1$ e x = 2.

Temos $-1 \le x \le 2$ e $x^2 \le y \le x + 2$.

$$\iint_D x dA = \int_{-1}^2 \int_{x^2}^{x+2} x dy dx = \int_{-1}^2 x (x+2-x^2) dx = \int_{-1}^2 (x^2+2x-x^3) dx$$
$$= \left[\frac{x^3}{3} + x^2 - \frac{x^4}{4} \right]_{-1}^2 = \frac{9}{4}.$$

(e) 8
$$\iiint_E \frac{x^2}{(x^2+y^2)^{3/2}} dV$$
 onde E é delimitada pelos cilindros de raio 1 e 2, o parabolóide $z=1+x^2+y^2$ e cone $z=3\sqrt{x^2+y^2}$.

Solution: Usando coordenadas cilíndricas $x=r\cos\theta,\ y=r\sin\theta$ e z=z, a região E fica definida por $0\leq\theta\leq 2\pi,\ 1\leq r\leq 2$ e $1+r^2\leq z\leq 3r.$ Note que $1+r^2<3r$ no intervalo

 $r \in [1, 2]$, de modo que a limitação $1 \le r \le 2$ deve ser usada.

$$\begin{split} \iiint_E \frac{x^2}{(x^2 + y^2)^{3/2}} \; \mathrm{d}V &= \int_0^{2\pi} \int_1^2 \int_{1+r^2}^{3r} \frac{r^2 \cos^2 \theta}{r^3} r \; \mathrm{d}z \mathrm{d}r \mathrm{d}\theta = \int_0^{2\pi} \cos^2 \theta \int_1^2 \int_{1+r^2}^{3r} \mathrm{d}z \mathrm{d}r \\ &= \pi \int_1^2 (3r - 1 - r^2) \mathrm{d}r = \pi \left[\frac{3r^2}{2} - r - \frac{r^3}{3} \right]_1^2 = \pi \left(\frac{9}{2} - 1 - \frac{7}{3} \right) \\ &= \frac{7\pi}{6}. \end{split}$$

(f) 8 $\iiint_E y^2(z^2-x^2-y^2) dV$ onde E é a região limitada pela esfera de raio 1.

Solution: Usando coordenadas esféricas $x = \rho \cos \theta \sin \varphi$, $y = \rho \sin \theta \sin \varphi$, $z = \rho \cos \varphi$ a região E é dada por $0 \le \rho \le 1$, $0 \le \varphi \le \pi$, e $0 \le \theta \le 2\pi$. Veja que $x^2 + y^2 = \rho^2 \sin^2 \varphi$ e lembre-se que $dV = \rho^2 \sin \varphi d\rho d\theta d\varphi$. Daí,

$$\iiint_{E} y^{2}(z^{2} - x^{2} - y^{2}) \, dV = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{1} \rho^{2} \sin^{2}\theta \sin^{2}\varphi (\rho^{2} \cos^{2}\varphi - \rho^{2} \sin^{2}\varphi) \rho^{2} \sin\varphi \, d\phi d\rho d\theta
= \int_{0}^{1} \rho^{6} d\rho \int_{0}^{2\pi} \sin^{2}\theta d\theta \int_{0}^{\pi} (\cos^{2}\varphi - \sin^{2}\varphi) \sin^{3}\varphi d\varphi
= \frac{1}{7} \times \pi \times \int_{0}^{\pi} (2\cos^{2}\varphi - 1)(1 - \cos^{2}\varphi) \sin\varphi d\varphi
= \frac{\pi}{7} \int_{-1}^{1} (2u^{2} - 1)(1 - u^{2}) du = \frac{2\pi}{7} \int_{0}^{1} (3u^{2} - 1 - 2u^{4}) du
= \frac{2\pi}{7} \left(1 - 1 - \frac{2}{5}\right) = -\frac{4\pi}{35}.$$

(g) 8 $\iiint_E \frac{xz\sqrt{x^2+y^2}e^{x^2+y^2+z^2}}{x^2+y^2+z^2} dV$ no primeiro octante, entre as esferas de raio 1 e 4.

Solution: No primeiro octante obtemos $0 \le \theta \le \pi/2$ e $0 \le \varphi \le \pi/2$. Das esferas obtemos $1 \le \rho \le 4$. Daí, obtemos

$$\iiint_{E} \frac{xz\sqrt{x^{2}+y^{2}}e^{x^{2}+y^{2}+z^{2}}}{x^{2}+y^{2}+z^{2}} dV = \int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{1}^{4} \frac{\rho \cos \theta \sin \varphi \rho \cos \varphi \sqrt{\rho^{2} \sin^{2} \varphi e^{\rho^{2}}}}{\rho^{2}} \rho^{2} \sin \varphi d\rho d\phi d\theta
= \int_{0}^{\pi/2} \cos \theta d\theta \int_{0}^{\pi/2} \sin^{3} \varphi \cos \varphi d\varphi \int_{1}^{4} \rho^{3} e^{\rho^{2}} d\rho
= 1 \times \int_{0}^{1} u^{3} du \int_{1}^{16} \frac{v e^{v}}{2} dv = \frac{1}{8} \left[v e^{v} - e^{v} \right]_{1}^{16}
= \frac{1}{8} (16e^{16} - e^{16} - e + e) = \frac{15e^{16}}{8}$$

(h) 8 $\iint_D xy(x^2+y^2) dA$ onde D é delimitada por $1 \le xy \le 2$ e $1 \le y^2-x^2 \le 2$ no 1° quadrante.

Solution: Faremos a mudança u=xy e $v=y^2-x^2$, obtendo o conjunto $1\leq u\leq 2$ e $1\leq v\leq 2$. Também obtemos

$$\frac{\partial(u,v)}{\partial(x,y)} = y(2y) - (x)(-2x) = 2(x^2 + y^2),$$

de onde tiramos

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{2(x^2 + y^2)}.$$

Daí,

$$\iint_D xy(x^2 + y^2) dA = \int_1^2 \int_1^2 \frac{u}{2} du dv = \int_1^2 \frac{3}{4} dv = \frac{3}{4}.$$

(i) 8 $\iint_D (x-y)^{2017} (3y-2x+2)^{1104} dA$ onde D é o quadrilátero de vértices $\begin{cases} (-2,-2), (1,0) \\ (-1,-1), (2,1) \end{cases}$

Solution: Vamos fazer a mudança dessa região usando o (-2, -2) como origem do novo eixo, e as direções de (-2, -2) a (1, 0) e de (-2, -2) a (-1, -1). A mudança é

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} -2 \\ -2 \end{array}\right] + \left[\begin{array}{c} 3 \\ 2 \end{array}\right] u + \left[\begin{array}{c} 1 \\ 1 \end{array}\right] v.$$

Veja que o ponto que sobra vira

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2+2 \\ 1+2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Ou seja, a região vira o quadrado $[0,1] \times [0,1]$.

Daí.

$$x = -2 + 3u + v$$
 e $y = -2 + 2u + v$,

de modo que

$$x - y = u e 3y - 2x + 2 = v.$$

Também temos $\frac{\partial(x,y)}{\partial(u,v)} = 1$. Portanto,

$$\iint_D (x-y)^{2017} (3y - 2x + 2)^{1104} dA = \int_0^1 \int_0^1 u^{2017} v^{1104} du dv = \frac{1}{2018} \times \frac{1}{1105}.$$

(j) 8 $\iint_D x dA$ onde D é delimitada por $x^2 + y^2 = 2y$ e $x^2 + y^2 = 4$ no primeiro quadrante.

Solution: Em coordenadas polares: $x^2 + y^2 = 2y \Rightarrow r = 2\sin\theta$. A região é limitada

inferiormente por $r=2\sin\theta$ e superiormente por r=2.

$$\iint_D x dA = \int_0^{\pi/2} \int_{2\sin\theta}^2 r^2 \cos\theta dr d\theta = \int_0^{\pi/2} \frac{8 - 8\sin^3\theta}{3} \cos\theta d\theta$$
$$= \frac{8}{3} \int_0^{\pi/2} (1 - \sin^3\theta) \cos\theta d\theta = \frac{8}{3} \int_0^1 (1 - u^3) du = \frac{8}{3} \left(1 - \frac{1}{4}\right) = 2.$$

Considere a seção cônica de altura h e base circular de raio R, ilustrada 4. 15 na figura ao lado. Encontre o volume dessa região em função de R e h, utilizando integração múltipla.

Solution: O cone pode ser em coordenadas cilíndricas como $z=\alpha r$. Para que z=h quando r=R, temos $h=\alpha R$, ou seja, $\alpha=\frac{h}{R}$. Daí, buscamos o volume da região dada por $0\leq\theta\leq 2\pi$, $0\leq r\leq R$, e $\frac{hr}{R}\leq z\leq h$.

$$V = \int_0^{2\pi} \int_0^R \int_{hr/R}^h r \, dz dr d\theta = 2\pi \int_0^R r \left(h - \frac{h}{R} r \right) = 2\pi \left(\frac{hR^2}{2} - \frac{hR^2}{3} \right)$$
$$= \frac{\pi hR^2}{3} = \frac{1}{3} \times \pi R^2 \times h$$