1. MATRICES

* Matrix: - A rectangular array of m rows and n columns enclosed by [] is called a matrix of order mxn.

- * Difference between Determinant & Matrix
- * Types of Matrices:

* Square Matrix: - A metrix in which number of column equals number of rows is called a squere metrix.

mediux. → $[5]_{1\times1}$ $\begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix}_{2\times2}$ $\begin{bmatrix} -1 & 3 & 5 \\ 2 & 0 & 6 \\ 4 & -7 & 9 \end{bmatrix}_{3\times3}$

* Reetangle Matrix: - A medrix in which number of column does not equals number of rows is called Reetangle Matrix.

* Row Matrix !- A matrix herring one row and any number of column is called row mentains.

 $\rightarrow A = \begin{bmatrix} 6 & 8 \end{bmatrix}_{1 \times 2} \quad B = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}_{1 \times 3} \quad C = \begin{bmatrix} a & b & c & d & e \end{bmatrix}_{1 \times 5}$

* column Metrioc: - A meetrix having one column and any number at row is called column Matrix.

$$\Rightarrow A = \begin{bmatrix} 3 \\ -4 \end{bmatrix}_{2 \times 1}, \quad B = \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix}_{3 \times 1} \quad C = \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix}_{5 \times 1}$$

* Null Matrix: - Any Matrix in which all the elements are zero is called a zero Matrix or Null Matrix.

$$\begin{bmatrix} 0 & 0 \end{bmatrix}_{1\times 2} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{2\times 2}$$

* Diagonal Matrix 1- A square Matrix is called a digonal matrix it all its non-diagonal elements are zero.

$$\Rightarrow A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

* Scaler Matrix: - A digonal matrix in which all the elements of its principal dragonal are equal is called scaler Matrix.

$$\Rightarrow A = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

* Identity Matrix! - A Scalar matrix in aluch all the elements of its principal diagonal are unity is called Identity Matrix.

$$\rightarrow I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2\times 2}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}_{3\times 3} \quad \begin{array}{l} A_1 = \begin{bmatrix} aij \end{bmatrix}_{3\times 3} \\ aij = 1 & it i = j \\ aij = 0 & it i \neq j \end{array}$$

* Transpose of a Mateix: - If the rows and columns of a matrix are interchanged then the new matrix is known as the transpose of the original Matrix. (AT) T=A

$$\rightarrow A = \begin{bmatrix} 3 & -1 \\ 4 & 0 \end{bmatrix}_{2 \times 2} \Rightarrow A^{T} = \begin{bmatrix} 3 & 4 \\ -1 & 0 \end{bmatrix}_{2 \times 2}$$

$$\rightarrow B = \begin{bmatrix} -2 & 3 \\ 4 & 5 \\ 7 & 9 \end{bmatrix}_{3 \times 2} \Rightarrow B^{T} = \begin{bmatrix} -2 & 4 & 7 \\ 3 & 5 & 9 \end{bmatrix}_{2 \times 3}$$

* Symmetric Matrix: - For a square metrix A it A = A then it is said to be symmetric Matrix. (A)

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 3 & 2 & -2 \\ 0 & -2 & -5 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} -1 & 3 & 0 \\ 3 & 2 & -2 \\ 0 & -2 & -5 \end{bmatrix}_{3 \times 3}$$

-> A + AT is always symmetric metrix.

* s_{kew} symmetric matrix: - For a square matrix A it $A = -A^T$, then it is said to be skew symmetric matrix.

$$A = \begin{bmatrix} 0 & 4 & 7 \\ -4 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 0 & -4 & -7 \\ 4 & 0 & 3 \\ 7 & -3 & 0 \end{bmatrix} \Rightarrow -A^{T} = \begin{bmatrix} 0 & 4 & 7 \\ -4 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$$

-> A-AT is always skew symmetric Matrix.

* Singular Matrix: - For a square metrix A it IAI=0, then it is said to be singular meetrix.

$$A = \begin{bmatrix} 6 & 3 \\ 4 & 2 \end{bmatrix} \Rightarrow |A| = \begin{vmatrix} 6 & 3 \\ 4 & 2 \end{vmatrix} = 12 - 12 = 0 \Rightarrow |A| = 0.$$

so, Matrix A is singular Matrix.

* Non-singular Matrix: - For a square metrix A it IAI = 0, then it is said to be non-singular Matrix.

$$A = \begin{bmatrix} 7 & -2 \\ 5 & 4 \end{bmatrix} \Rightarrow |A| = \begin{vmatrix} 7 & -2 \\ 5 & 4 \end{vmatrix} = 28 - (-10) = 38 \pm 0 \Rightarrow |A| \pm 0$$

$$50, \text{ Matrix } A \text{ is non-singulus Matrix.}$$

* Addition and Substraction of Matrices:

> In addition and substruction mateix must herve same

order.

1) It
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 5 \\ 0 & 4 \end{bmatrix}$ then find $A + B$ and $A - B$.

2) It
$$A = \begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 5 \\ 2 & -1 \end{bmatrix}$ then tind $2A + 3B$ and $3A - B$.

3) It
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$ then tind (i) $A + B$ (ii) $A - B$ (iii) $A + B$ (iv) $A - B$.

4) It
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 4 & 0 & 2 \\ 1 & 1 & -1 \\ 3 & 2 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 4 & -2 \\ -5 & 2 & -2 \end{bmatrix}$ then that

ci) A+B+C (ii) A+B-C (iii) 3A-2B+C (iv) 2A+3B-C

5) It
$$A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$$
 $B = \begin{bmatrix} 4 & 2 \\ -5 & 1 \end{bmatrix}$ and $2A + 3B - C = 0$ then tind media:

6) It
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 3 & 0 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 & 0 & 3 \\ 4 & 4 & -1 \\ 3 & -1 & -2 \end{bmatrix}$ and $2A - B + C = 0$ then tind matrix (c)

7) It
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 5 & 2 \end{bmatrix}$$
 $B = \begin{bmatrix} -3 & 8 & 2 \\ 3 & 2 & 4 \end{bmatrix}$ and $X + A + B = 0$ then tind matrix 'X'.

8) It
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -3 & 2 & 8 \end{bmatrix}$$
 $B = \begin{bmatrix} 5 & 6 & 3 \\ -2 & 3 & 2 \end{bmatrix}$ and $3(x+B)+5A=0$ then tring meatrix x' .

g) It
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
 $B = \begin{bmatrix} -1 & -2 \\ 2 & 1 \end{bmatrix}$ then prove that $(A+B)^T = A^T + B^T$.

10) It
$$3A-2B=\begin{bmatrix} 2 & 1 \\ -2 & -3 \end{bmatrix}$$
 and $B-4A=\begin{bmatrix} -1 & 2 \\ -4 & 4 \end{bmatrix}$ then tind A and B.

* Matrix Multiplication:

FOR two metrices A and B, multiplication AB is possible it the number of columns of A equals to the number of rows of B.

→ A_{2×3} B_{3×2} ⇒ AB_{2×2} is possible → A_{2×3} B_{2×3}

⇒ BA3×3 is possible >> AB is not possible

=> BA is not possible.

 \rightarrow A_{3×3} B_{2×3} \Rightarrow AB is not possible

BA2x3 is possible

1) If $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ then find AB and BA.

2) It $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$ then tind AB and BA whichever exists

3) It $A = \begin{bmatrix} -1 & 2 & 3 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 5 \end{bmatrix}$ then that AB and BA cubichever exist.

4) It $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ then P.T. AB = AC.

5) It $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then tind A^2 .

6) It $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ then that A^2 .

7) It $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ then tind A^2 .

8) It $A = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}$ then P.T. $A^2 = A$.

9) It A=[1 2] then P.T. A2-5A-2I=0

10) It A = [2 3] then P.T. A2-4A+7I=0

11) It
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then P.T. $A^{2} - 4A - SI = 0$.

13) It
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$ then $P.T. (AB)^T = B^T. A^T$.

1) It
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
 then that $Adj(A)$.

2) It
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 then tind $Adj(A)$.

3) It
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 then P.T. $Adj(A) = A$.

$$\Rightarrow 2\times2$$

$$A = \begin{bmatrix} a & b \\ - & t \end{bmatrix} \begin{bmatrix} + - \\ - & t \end{bmatrix} \qquad a_{11} = d$$

$$a_{12} = c$$

$$Adj'(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \qquad a_{21} = b$$

$$a_{22} = da$$

$$\begin{array}{c|ccccc}
* & 3x3 \\
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix} = \begin{bmatrix}
+ & - & + \\
- & + & - \\
+ & - & +
\end{bmatrix}$$

$$\rightarrow$$
 It $|A| = 0$ then A^{-1} does not exist.
 \rightarrow It $|A| \neq 0$ then A^{-1} exist.

* It
$$A = \begin{bmatrix} 5 & -3 \\ 2 & 1 \end{bmatrix}$$
 then tind A^{-1}

* It
$$A = \begin{bmatrix} 3 & 5 \\ -2 & -3 \end{bmatrix}$$
 then thind $A^{\frac{1}{2}}$

* It
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 then that A^{1} .

* It
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$
 then that A^{-1}

* It
$$A = \begin{bmatrix} 3 & -10 & -1 \\ -2 & 8 & 2 \\ 2 & -4 & -2 \end{bmatrix}$$
 then that A^{-1} .

* It
$$A+B=\begin{bmatrix}1 & -1\\3 & 0\end{bmatrix}$$
 and $A-B=\begin{bmatrix}3 & 1\\1 & 4\end{bmatrix}$ then think $(AB)^{-1}$

* It
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 24 \\ 13 \end{bmatrix}$ then P. T. $(AB)^{-1} = B^{-1} A^{-1}$.

* Solution of Linear Simultaneous Equations.

* Solve the eqn 3x-y=1 and x+2y=5 using metrix method.

* Solve the eqn 2x+5y=7 and 8x-3y=5 Using metrix method.

* Solve the eqn 2x+3y=1 and y-4x=2 using matrix method.

* Solve the eqn 2x-3y=-5 and 3x+y=9 using matrix method.

* Solve the eqn 3x+3y=7 and 11x-4y=3 using metrix method.

* Solve the eqn 3x+3y=7 and 3x+3y=1 using matrix method.

* Solve the eqn 3x+3y=7 and 3x+3y=1 using matrix method.

* Solve the eqn 3x+3y=5 and 3x-y=1 using matrix method.