Feuille de travaux pratiques nº 3 Utilisation de GLPK en tant que bibliothèque de fonctions

Buts de la séance :

- Comprendre l'utilisation de GLPK en tant que bibliothèque de fonctions,
- Être capable de l'utiliser.

1 Compréhension et prise en main

Les exemples du fichier tp.pdf sont disponibles sur madoc, dans l'archive biblio.zip. Cette archive contient 3 fichiers permettant de résoudre le modèle de l'exercice 2.2 des TDs: musee.c (contenant le modèle avec toutes les données saisies "en dur" dans le code), generic.c (contenant le modèle générique présenté en CM) et DonneesEx22.txt (données de l'exercice 2.2 pour compléter le modèle générique).

Il sera important de bien comprendre ces exemples avant de commencer. On pourra aussi observer le résultat obtenu par la résolution de ces problèmes.

2 Exercice

On résoudra une nouvelle fois le problème modélisé dans l'exercice 2.8 des TDs, en utilisant la bibliothèque de fonctions de GLPK via un code en C. Pour rappel, la modélisation de ce problème est :

$$\max z = \sum_{j=A}^{M} p_{j}x_{j}$$

$$x_{A} \leq y_{A} + y_{B} + y_{C} + y_{D}$$

$$x_{B} \leq y_{A} + y_{B} + y_{C} + y_{D} + y_{E} + y_{F} + y_{G}$$

$$x_{C} \leq y_{A} + y_{B} + y_{C} + y_{D}$$

$$x_{D} \leq y_{A} + y_{B} + y_{C} + y_{D} + y_{E} + y_{F} + y_{G} + y_{J} + y_{K}$$

$$x_{E} \leq y_{B} + y_{D} + y_{E} + y_{F} + y_{G} + y_{I} + y_{J} + y_{K}$$

$$x_{F} \leq y_{B} + y_{D} + y_{E} + y_{F} + y_{G} + y_{I} + y_{J} + y_{K}$$

$$x_{G} \leq y_{B} + y_{D} + y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K}$$

$$x_{H} \leq y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L}$$

$$x_{I} \leq y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L}$$

$$x_{I} \leq y_{D} + y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L}$$

$$x_{K} \leq y_{D} + y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L}$$

$$x_{L} \leq y_{H} + y_{I} + y_{J} + y_{K} + y_{L} + y_{M}$$

$$\sum_{j=A}^{M} y_{j} = p$$

$$x_{j}, y_{j} \in \{0, 1\} \quad j \in \{A, \dots, M\}$$

où p_j indique la population de la ville j ($j \in \{A, ..., M\}$).

Nous avons ici deux ensembles de variables, que l'on avait déclaré à l'aide de deux tableaux de variables avec GNU MathProg. Cela n'est pas (directement) possible en utilisant la bibliothèque de fonctions de GLPK. Nous ne pouvons que déclarer un seul tableau de variables (avec des indices entiers partant de 1). Il est donc nécessaire de définir des indices pour les variables initialement appelées x_i et y_i , où $i \in \{A, \ldots, M\}$. Le tableau ci-dessous donne une possibilité.

Variable	x_A	x_B	x_C	x_D	x_E	x_F	x_G	x_H	x_I	x_J	x_K	x_L	x_M
Indice	1	2	3	4	5	6	7	8	9	10	11	12	13
Variable Indice	y_A	y_B	y_C	y_D	y_E	y_F	y_G	y_H	y_I	y_J	y_K	y_L	y_M
Indice	14	15	16	17	18	19	20	21	22	23	24	25	26

Suivant ces indices, la première contrainte peut donc être réécrite (en notant les variables simplement par x suivi des indices proposés ci-dessus)

$$x_1 - x_{14} - x_{15} - x_{16} - x_{17} \le 0.$$

Cette formulation indique plus clairement la première ligne de la matrice des contraintes. Les autres contraintes se reformulent de la même façon. À vous de finir...

Les fichiers (.c et éventuellement .dat) seront à déposer sur madoc dans l'espace correspondant à votre groupe, au plus tard à la date limite fixée par votre enseignant de TP. Dans le cas d'un travail en binôme, il sera important de préciser les deux noms en commentaire au début des fichiers.