SÉLECTION BI-OBJECTIFS AVEC COEFFICIENTS INTERVALLES

Darkaoui Mounswif & Dan Mimouni

Mini-projet MADMC, UPMC

INTRODUCTION DU PROBLÈME

Données:

- · n objets
- · un entier k
- · une valuation (c_1^i, c_2^i) pour chaque objet i
- · un intervalle I = $[\alpha_{min}, \alpha_{max}]$, avec $\alpha_{min} \neq \alpha_{max}, \alpha_{min} < 1, \alpha_{max} > 0$.

Solutions réalisables : tout sous-ensemble de k objets, caractérisé par un vecteur x = (x1, ..., xn) ($x_i = 1$ si l'objet i est sélectionné, 0 sinon).

But : déterminer une solution réalisable x minimisant :

$$f_I(y) = \max \alpha y_1 + (1 - \alpha)y_2 : \alpha \in I$$
.
où $y = c(x) = (\sum_{i=1}^n c_i^i x_i, \sum_{i=1}^n c_i^2 x_i)$ est le vecteur-coût de la solution x.

1

RÉSULTATS PRÉLIMINAIRES

- · Algorithme naïf: Pour chaque vecteur de la liste on le compare deux à deux avec les vecteurs qui le suivent dans la liste. Complexité: $O(n_2)$
- Algorithme lexicographique: On tri la liste sur le premier élément, puis un seul parcours de la liste suffit à trouver les vecteurs non dominés.

Complexité: O(n * log(n) + n) = O(n * log(n))

RÉSULTATS

Figure: Comparaison naïf et lexicographique

PROGRAMMATION DYNAMIQUE BI-OBJECTIF

Taille	{1}		{1,,j-1}	{1,,j}		{1,,n}	E: image des sous-ens Pareto optimaux de taille i dans {1,, }		
0	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	taille i dans (1,,j)		
1							F : image des sous-ens Pareto optimaux de taille i-1 dans {1,,j-1}		
							tamo i r dano (1,,j 1)		
i-1			F				G : image des sous-ens Pareto optimaux de taille i		
i			G	Е			dans {1,,j-1}		
							Relation de récurrence : E = OPT(F+f(j) U G)		
k							- S ((g) G G)		

PARETO

PREMIÈRE PROCÉDURE

- Dans cette procédure on détermine dans un premier temps les points non dominés au sens de Pareto par programmation dynamique bi-objectifs, puis on détermine un point minimax parmi ceux-ci.
- · Il existe toujours une solution minimax parmi las vecteurs non dominés au sens de Pareto.
- Pour déterminer les points minimax il suffit de calculer: $\max \{\alpha \ y_1 + (1 \alpha)y_2 : \alpha \} \text{ pour } \alpha \in \{\alpha_{\min}, \alpha_{\max}\}$

DEUXIÈME PROCÉDURE

La nature de la fonction minimax nous permet d'optimiser la recherche en utilisant une autre règle de dominance que Pareto qui est la règle de *I*-dominance:

y *I*-domine y' si
$$\begin{cases} \forall \alpha \in I, \alpha y_1 + (1-\alpha)y_2 \leq \alpha y_1' + (1-\alpha)y_2' \\ \exists \alpha \in I, \alpha y_1 + (1-\alpha)y_2 \leq \alpha y_1' + (1-\alpha)y_2' \end{cases}$$

DEUXIÈME PROCÉDURE

Pour pouvoir comparer les deux procédures il nous faut une transformation permettant de passer des résultats d'une des procédure à l'autre. Pour cela nous utilisons les transformations suivante:

- Pour passer de l'image des I-dominant au Pareto dominant : $y = \left(\frac{((1-\alpha_{max})y_1' (1-\alpha_{min})y_2')}{(\alpha_{min}-\alpha_{max})}, \frac{(\alpha_{min}y_2' \alpha_{max}y_1')}{(\alpha_{min}-\alpha_{max})}\right)$ avec y = (y_1, y_2) l'image d'un point non I-dominé et y' = (y_1', y_2') l'image d'un point non dominé au sens de Pareto
- · Pour passer d'une instance des points non I-dominés à une instance des points non-dominés au sens de Pareto: $y'_{=}(\alpha_{min}y_1 + (1-\alpha_{min})y_2, \alpha_{max}y_1 + (1-\alpha_{max})y_2)$ avec $y = (y_1, y_2)$ un point non dominé au sens de Pareto et $y' = (y'_1, y'_2)$ un point non I-dominé

COMPARAISON DES DEUX MÉTHODES

Figure: Comparaison entre Pareto et I dominance en fonction de ϵ