Avem

$$\frac{d_{G''}(x) - m}{2} \le \frac{\sum_{z \in V - \{x\}} d_{G''}(z) - m}{2},$$

deoarece acestă inegalitate este echivalentă cu următoarea

$$2d_{G^{\prime\prime}}(x) \le \sum_{z \in V} d_{G^{\prime\prime}}(z),$$

iar din (b) ştim că

$$2 \max\{d_{G''}(z) \mid z \in V\} \le \sum_{z \in V} d_{G''}(z). \quad \Box$$

Teoremă 3.5. (Havel şi Hakimi) Un multiset $s_0 = \{d_1 \geq \cdots \geq d_n\} \in \mathbb{N}_{\geq 0}^{\langle n \rangle}$, unde $n \geq 2$ şi $d_1 \leq n-1$, este multisetul gradelor unui graf simplu dacă și numai dacă multisetul $s_0' = (d_2-1, d_3-1, \ldots, d_{d_1+1}-1, d_{d_1+2}, d_{d_1+3}, \ldots, d_n)$ este multisetul gradelor unui graf simplu.

Demonstrație. \Rightarrow Să presupunem că există un graf simplu G=(V,E) cu $s(G)=s_0$, mai precis $V=\{x_1,\ldots,x_n\}$ și $d_G(x_t)=d_t$ pentru $t\in[n]$. Vom construi un graf simplu G'=(V',E') cu $s(G')=s_0'$.

Cazul 1. Dacă pentru orice $i \in \{2, \dots, d_1 + 1\}$ avem $x_1 x_i \in E$, atunci definim $G' := G - x_1$ și evident G' este graf simplu și $s(G') = s'_0$.

Cazul 2. Dacă există $i \in \{2,\dots,d_1+1\}$ cu $x_1x_i \not\in E$, atunci există $j,d_1+1 \le j \le n$, cu $x_1x_j \in E$ și, deoarece $d_G(x_i) \ge d_G(x_j)$, rezultă că există $k \in \{2,\dots,n\}$, $k \ne i,j$, cu $x_ix_k \in E$ și $x_jx_k \not\in E$.

Definim

$$G_1 := G - x_1 x_j - x_i x_k + x_1 x_i + x_j x_k.$$

Figura 3.4.

 G_1 este graf simplu, $V(G_1)=V(G)$ și $d_{G_1}(x_t)=d_G(x_t)=d_t$ pentru $t\in [n]$.

Fie p numărul indicilor $i \in \{2, 3, \dots, d_1 + 1\}$ pentru care $x_1 x_i \notin E$. Prin p transformări de tipul descris anterior (pentru fiecare din acești indici), obținem o secvență

de grafuri simple G,G_1,G_2,\ldots,G_p peste mulțimea de vârfuri $v=\{x_1,\ldots,x_n\}$ cu același grad în fiecare vârf $x_t \in V$. În plus, pentru orice $i \in \{2, 3, \dots, d_1 + 1\}$ avem $x_1x_i \in E(G_p)$. Definim, ca și în cazul 1, $G' = G_p - x_1$. Evident G' este graf simplu $\operatorname{si} s(G') = s'_0.$

 \Leftarrow Să presupunem că există un graf simplu G'=(V',E') cu $s(G')=s_0'$. Notăm $V' = \{x_2, x_3, \dots, x_n\}$ astfel încât să avem

$$d_{G'}(x_2) = d_2 - 1,$$
 ..., $d_{G'}(x_{d_1+1}) = d_{d_1+1} - 1,$
 $d_{G'}(x_{d_1+2}) = d_{d_1+2},$..., $d_{G}(x_n) = d_n.$

Fie x_1 un vârf auxiliar. Definim

$$G := G' + [x_1, x_2] + [x_1, x_3] + \dots + [x_1, x_{d_1+1}].$$

Evident G este graf simplu și $s(G) = s_0$.

Observație 3.6. În cazurile 1 și 2 putem prezenta șirul transformărilor sintetic astfel:

Fie $i_1,\ldots,i_p\in\{2,3,\ldots,d_1+1\}$ acei indici din mulțimea $\{2,3,\ldots,d_1+1\}$ pentru care $x_1x_{i_1} \notin E, \ldots, x_1x_{i_p} \notin E.$ Dacă p=0 atunci definim $G':=G-x_1.$

Dacă p>0 atunci există p indici diferiți $j_1,\ldots,j_p\in\{d_1+2,\ldots,n\}-\{i_1,\ldots,i_p\}$ pentru care $x_1x_{j_1} \in E, \ldots, x_1x_{j_p} \in E$.

Deoarece G este graf simplu și pentru fiecare $t \in \{1, ..., p\}$ avem

$$x_1 x_{i_t} \notin E$$
, $x_1 x_{j_t} \in E$ şi $d(x_{i_t}) \ge d(x_{j_t})$,

rezultă că există p indici, nu neapărat distincți,

$$k_1 \neq i_1, j_1, \ldots, k_p \neq i_p, j_p, k_1, \ldots, k_p \in \{2, 3, \ldots, n\}$$

cu proprietățile $x_{i_t}x_{k_t} \in E$ și $x_{j_t}x_{k_t} \notin E$ pentru orice $t \in \{1, \dots, p\}$.

Figura 3.5.

Definim

$$G_p := G - \sum_{t=1}^p x_1 x_{j_t} - \sum_{t=1}^p x_{i_t} x_{k_t} + \sum_{t=1}^p x_1 x_{i_t} + \sum_{t=1}^p x_{j_t} x_{k_t}.$$

Graful G_p astfel construit este simplu, $V(G_p)=V(G)$ și $d_{G_p}(x_t)=d_t, t\in [n]$. Definim $G':=G_p-x_1$. Graful G' este simplu și $s(G')=s'_0$. Vezi figura 3.5, unde vârfurile $x_{k_1},x_{k_2},\ldots,x_{k_p}$ din graful G_p nu sunt neapărat diferite.

Problemă 3.7. Fie $p,n\in\mathbb{N}$ și $0\leq p\leq (n-1)/2$. Să se construiască un graf simplu G=(V,E) cu $V=\{x_1,x_2,\ldots,x_n\},\ d_G(x_1)\geq\cdots\geq d_G(x_n),\ d_G(x_1)=p,$ pentru care sunt necesare p transformări (în termenii demonstrației teoremei 3.5, cazul 2) pentru a obține un graf simplu G'=(V,E') cu proprietățile: $d_{G'}(x_i)=d_G(x_i)$ pentru $i\in[n]$ și $x_1x_i\in E'$ pentru $i\in\{2,3,\ldots,d_1+1\}$.

Exemple 3.8. 1. $G = K_p(x_2, \dots, x_{p+1}) + \mathcal{S}t(x_1; x_{p+2}, \dots, x_{2p+1}) + x_{2p+2} + \dots + x_n$.

2. Pentru $np\equiv 0\pmod 2$ se consideră G un graf p-regulat cu n vârfuri $V(G)=\{x_1,x_2,\ldots,x_n\}$ etichetate astfel încât vecinii lui x_1 să nu fie x_2,x_3,\ldots,x_{p+1} .

Figura 3.6.