

Plant Leaf Image Classification through SAM-based Segmentation in Vision LLM

Making AI an Expert of Recognizing Plants Disease

Main Project Idea

Leaf Disease Detection through the development and evaluation of a Vision-Language model integrated with segmentation techniques.

- ViT (Vision Transformer) for image classification
- SAM (Segment Anything Model) for precise segmentation

Dataset Overview: 20,000

Model Training for VIT Model

Zero-Shot Classification Accuracy on 300 images: 0.00%

Setup

- Train: Test = 80:20
- Optimizer: AdamW.
- Loss Function: Cross-Entropy Loss.
- Scheduler: Linear learning rate scheduler.

Initial Performance:

- Fine-tuning:
 - After 5 epochs, Training Accuracy: 99.99%, Testing Accuracy: 99.73%.

Key Observation:

Model learns dataset-specific patterns and lacks robustness on unseen cases

Enhancing Dataset Diversity with **SAM**-Based Segmentation

Segmented main regions of the image. Flipping, Rotating and Gaussian blur, combined SAM-segmented images with augmented images to create a new dataset.

Model Performance after SAM

- Fine-tuned ViT on SAM-Segmented Data:
 - Testing Dataset size: 5,000.
 - Accuracy: Dropped to 78.9%.

Model is focusing on more generalizable, meaningful features.

Future Plan

Next Steps:

- Train with total Augmented and Segmented Datasets (~40,000)
- Investigate additional strategies to improve robustness.

Future Applications:

- Generalizable models for real-world plant disease detection.

CSCI 566: Deep Learning and its Applications

Segment Everything:
Xiao Bai
Rongyi Shen
Wenjing Huang

