Pflichtenheft FPGA-Oszilloskop

Radike, Sauer, Wolf

17. März 2021

Version	Datum	Autor	Änderungsgrund/Bemerkungen
1.0	17.3.2021	Sauer Lukas	Erstellung

Inhaltsverzeichnis

0.1 Übersicht	3
0.1.1 Projektbeschreibung	3
0.1.2 Aufteilung	3
0.2 digital signal processing	3
0.2.1 Vorwort	3
0.2.2 Quartus-Prime Projekterstellung	4
0.2.3 Interner ADC	4
0.2.4 externer ADC	4
0.2.5 externer ADC	4
0.2.6 PGA	4
0.2.7 automatische Messbereichsauswahl	5
0.2.8 kommunikation mit dem PC - user interface	5
0.2.9 digitale Signalverarbeitung	5
0.3 analog front end	5
0.4user interface	5

1 Übersicht

In diesem Dokument wird die Umsetztung der im Pflichtenheft angeführten Anforderungen beschrieben und ganau spezifiziert.

1.1 Projektbeschreibung

Im Projekt Oszi wird ein Oszilloskop mittels eines FPGAs zu realisieren. Das Oszilloskop soll ein Frequenzband von 0Hz bis 1MHz einlesen und einen Spannungsbereich von -50V bis +50V abdecken. Die Spannungskurfe soll über ein Computerprogramm graphisch ausgegeben werden. Über das Programm soll ebenfalls der Spannungs- und Zeitbereich der Ausgabe einzustellen sein. Das Oszilloskop solle triggerbar sein und Tastköpfe kalibrieren können. Das Projekt besteht aus drei Aufgabenbereichen, dem Analog-Front-End, der Datenverarbeitung mit dem FPGA und der Ausgabe am PC.

1.2 Aufteilung

Das Projekt wird in drei, parallel laufende Teilbereiche geteilt. Diese sind voneinader größtenteils unabhängig, sind nur über eine Schnittstelle miteinander verbunden und werden von jewils einem Projektmitglied hauptsächlich bearbeitet:

• analog front end (siehe: 0.3)

• digital data processing (siehe: 0.2)

• user interface (siehe: 0.4)

2 digital signal processing

Zuständig für diesen Bereich: Sauer Lukas

2.1 Vorwort

Dieser Teilbereich ist für das Einlesen, die temporiäre Speicherung, die digitale Verarbeitung und für das Weilterleiten der digitalen Messwerte zum user interface (siehe: 0.4) verantwortlich. Die technisch schwieriger zu realisierenden Anforderungen an das System sind das digitale Filtern, die Kompensierung des Amplitudengangs sowie das triggern und Zusammenfassen in Pakete, welche zum user interface geschickt werden.

In diesem Abschnitt des Projekts sind die Hardwarebeschreibungssprache VHDL und Kenntnisse in digitaler Signalverarbeitung besonders gefragt. Es wird sich hauptsächlich mit dem Entwicklungsboard "DE10-Lite"beschäftigt mit der der Software "Quartus Primeünd "ModelSim".

2.2 Quartus-Prime Projekterstellung

status	abgeschlossen						
beanspruchte Zeit	4 h	Das Quartus-Prime	Projekt	wird	an	das	DE10-
erledigt bis	/						

Lite-Board abgestimmt und erste Testversuche werden unternommen. Der Code für die Hardwarebeschreibung wird auf mehrere Files aufgeteilt, verknüpft und in einer Top-Level-Design-Unit zusammengeführt.

2.3 Interner ADC

status	abgeschlossen & fehlgeschlagen		
beanspruchte Zeit	16 h	Als erster Schritt wird der Inter-	
erledigt bis	4.03.2021		

ne ADC verwendet, um einen Datenstream herinzubekommen und erste Versuche für die weiter Datenverarbeitung auch ohne externen ADC zu ermöglichen. -> Fehlgeschlagen

2.4 externer ADC

status	abgeschlossen	
beanspruchte Zeit	4 h	Auswahl des externen ADCs. Absprache mit dem
erledigt bis	4.03.2021	

Zuständigen für das analog front end (siehe: 0.3), da der ADC die Schnittstelle der zwei Projekt-Teilbereiche darstellt.

Es wird versucht die Messwerte vom ADC einzulesen.

2.5 externer ADC

status	offen	
beanspruchte Zeit	8h	Es wird eine Design-Unit geschrieben, die einen Trig-
erledigt bis	25.03.2021	

ger realisiert, welcher später für das Zusammenfassen in Pakete essentiell sein wird. Optional kann dieser für Debugging-Zwecke verwendet werden.

2.6 PGA

status	offen	
beanspruchte Zeit	8h	Der PGA soll mit dem PGA angesteuert werden. Hier-
erledigt bis	01.04.2021	

für wird eine eigene Design-Unit geschrieben. Wichtig für die automatische Messbereichsauswahl.

2.7 automatische Messbereichsauswahl

status	offen	
beanspruchte Zeit	8h	Das FPGA-Oszi soll von alleine den geeigneten Mess-
erledigt bis	08.04.2021	

bereich ermitteln können und diesen dann über die PGA's einstellen.

2.8 kommunikation mit dem PC - user interface

status	offen	
beanspruchte Zeit	20h	Die Messdaten sollen in geeigneten Paketen mit Zu-
erledigt bis	29.04.2021	

satzinformationen, zB.: wie Messbereich, zum user interface (siehe: 0.4) gesendet werden. Die Kommunikation soll in beide Richtungen funktionieren. Extra Chip auf Piggyback vorraussichtlich nötig.

2.9 digitale Signalverarbeitung

status	offen	
beanspruchte Zeit	24h	Es wird versucht den Frequenzgang des analogen Fil-
erledigt bis	20.05.2021	

ters vor dem ADC zu kompensieren und optional zusätzlich digitale Filter einzubauen. In dieser Designunit werden zusätzlich die Daten zu Paketen zusammengefasst und für die Weiterleitung zum user interface (siehe: 0.4) bereit gestellt.

3 analog front end

4 user interface