Bayesian Belief Networks

- Provides graphical representation of probabilistic relationships among a set of random variables
- Consists of:
 - A directed acyclic graph (dag)
 - Node corresponds to a variable
 - Arc corresponds to dependence relationship between a pair of variables

A probability table associating each node to its immediate parent

Conditional Independence

D is parent of C

A is child of C

B is descendant of D

D is ancestor of A

A node in a Bayesian network is conditionally independent of all of its nondescendants, if its parents are known

Conditional Independence

Naïve Bayes assumption:

Probability Tables

 If X does not have any parents, table contains prior probability P(X)

If X has multiple parents (Y₁, Y₂,..., Y_k), table contains conditional probability P(X|Y₁, Y₂,..., Y_k)

Example of Bayesian Belief Network

Example of Inferencing using BBN

- Given: X = (E=No, D=Yes, CP=Yes, BP=High)
 - Compute P(HD|E,D,CP,BP)?
- P(HD=Yes| E=No,D=Yes) = 0.55
 P(CP=Yes| HD=Yes) = 0.8
 P(BP=High| HD=Yes) = 0.85
 - P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) $\propto 0.55 \times 0.8 \times 0.85 = 0.374$
- P(HD=No| E=No,D=Yes) = 0.45
 P(CP=Yes| HD=No) = 0.01
 P(BP=High| HD=No) = 0.2
 - P(HD=No|E=No,D=Yes,CP=Yes,BP=High) $\propto 0.45 \times 0.01 \times 0.2 = 0.0009$

Classify X as Yes