Esercizio 6.1)

Determinare la costante di tempo dei circuiti in figura. a)

$$[\tau = C R_1 R_2 / (R_1 + R_2)]$$

b)

$$[\tau = C R_2]$$

c)

$$[\tau = 2L/R]$$

d)

$$[\tau = L/R]$$

Esercizio 6.2)

Determinare $v_o(t)$.

$$[v_o(t) = 5 (1 - e^{-2t})]$$

Esercizio 6.3)

Determinare $v_o(t)$.

$$[v_o(t) = (10/3) + (8/3) e^{-3 t/8}]$$

Esercizio 6.4)

Il circuito in figura è a regime prima della chiusura dell'interruttore. Determinare l'espressione di $v_o(t)$ per t > 0.

$$[v_o(t) = 2 + e^{-2.5 t}]$$

Esercizio 6.5)

Determinare $v_o(t)$.

$$[v_0(t) = (2/3) e^{-2t/3} + 2]$$

Esercizio 6.6)

Determinare $i_{\text{o}}(t)$, considerando condizioni iniziali nulle per il condensatore.

$$[i_0(t) = (1/3)(1 - e^{-3t})]$$

Esercizio 6.7)

Il circuito in figura è a regime prima della chiusura dell'interruttore. Determinare $i_o(t)$ per t > 0.

$$[i_o(t) = 0.25 + (1/12) e^{-1.33 t}]$$

Esercizio 6.8)

Il circuito in figura è a regime prima della chiusura dell'interruttore. Determinare $i_o(t)$ per t > 0.

$$[i_o(t) = 0.3 - 0.2 e^{-2t}]$$