ДОМАШНЕЕ ЗАДАНИЕ

по курсу

«Управление роботами», ч. 1 (Кинематика)

Для данной кинематической схемы манипулятора (рис. 1) требуется:

1. Построить системы координат звеньев манипулятора в соответствии с алгоритмом Денавита — Хартенберга. Составить таблицу кинематических параметров манипулятора. На схеме указать положение начала систем координат всех звеньев О_i, направление осей x_i, y_i, z_i, а также обозначить на схеме ненулевые кинематические параметры и направление их измерения.

Рисунок 1 – Варианты кинематических схем манипулятора

Выбор кинематической схемы осуществляется по формуле:

$$k = ((2+n)\%3) + 1,$$

где p%q – остаток от деления (например, 11%2 = 1), n – порядковый номер студента в списке группы где (n = 1, 2, 3, ...).

- 2. В общем виде решить:
 - прямую задачу о положении;
 - обратную задачу о положении.

Получить соответствующие аналитические выражения с учетом конкретных значений параметров манипулятора. Длины звеньев заданы в таблица 1 − 3. Положение схвата определено его декартовыми координатами, указанными в таблицах 4 − 6. Ориентация схвата не учитывается. Если в п. 1 выбрана кинематическая схема №1, то следует использовать данные из таблиц 1 и 4. Если выбрана кинематическая схема №2, то следует использовать данные из таблиц 2 и 5. Для кинематической схемы №3 данные приведены в таблицах 3 и 6. Номер варианта в соответствующих таблицах вычисляется следующим образом:

$$m = \left\lceil \frac{n-1}{3} \right\rceil + 1,$$

где [p/q] — целая часть от деления (например, [2/3] = 0, [5/3] = 1), n — порядковый номер студента в списке группы (n = 1, 2, 3, ...).

Таблица 1. Длины звеньев манипулятора (кинематическая схема №1)

№ варианта/	1	2	3	4	5	6
длина (м)						
l ₁	1.0	0.8	1.0	0.5	1.0	1.2
l ₂	1.0	1.0	0.8	0.8	1.0	0.7
l ₃	0.6	0.5	1.5	1.5	1.0	0.8

Таблица 2. Длины звеньев манипулятора (кинематическая схема №2)

№ варианта/	1	2	3	4	5	6
длина (м)						
l ₁	1.0	0.8	1.0	0.5	1.0	1.0
l ₂	1.2	1.0	0.8	1.5	0.5	0.8
l ₃	0.5	0.7	1.5	1.0	0.7	0.5

Таблица 3. Длины звеньев манипулятора (кинематическая схема №3)

№ варианта/	1	2	3	4	5	6
длина (м)						
11	0.7	1.0	1.0	0.5	1.0	0.7
12	0.5	0.7	0.8	0.4	0.3	0.3
13	0.7	0.5	0.6	0.3	0.2	0.3

Таблица 4. Координаты схвата (кинематическая схема №1)

№ варианта/	1	2	3	4	5	6
координаты(м)						
X	0.3	-0.4	0.3	-0.3	0.4	0.4
Y	0.4	0.3	-0.4	-0.4	0.3	-0.3
Z	0.7	0.4	-0.2	-0.8	0.5	0.7

Таблица 5. Координаты схвата (кинематическая схема №2)

№ варианта/	1	2	3	4	5	6
координаты(м)						
X	0.8	0.6	0.4	-0.8	-0.6	0.4
Y	0.6	0.8	0.3	-0.6	0.8	0.3
Z	0.5	0.8	-0.5	-0.5	1.0	1.5

Таблица 6. Координаты схвата (кинематическая схема №3)

1 '		`				
№ варианта/	1	2	3	4	5	6
координаты(м)						
X	0.6	0.0	0.8	0.4	0.0	-0.3
Y	0.8	0.0	-0.6	0.3	0.0	-0.4
Z	0.7	2.0	1.0	0.5	1.5	0.7

3. В общем виде решить:

- прямую задачу о скорости;
- прямую задачу о положении.

При решении прямой задачи о скорости требуется составить матрицу Якоби для данного манипулятора, а также выписать выражения для компонентов скорости схвата.

Получить соответствующие аналитические выражения с учетом конкретных значений параметров манипулятора.

Обратную задачу о скорости решить для конфигурации манипулятора, полученной в результате решения обратной задачи о положении (одной из конфигураций, если решение неоднозначно).

Линейная скорость схвата указана в таблице 7. Угловую скорость схвата не учитывать. Номер варианта в таблице 7 вычисляется по формуле:

$$r = (n\%3) + 1$$
,

где p%q – остаток от деления (например, 11%2 = 1), n – порядковый номер студента в списке группы где (n = 1, 2, 3, ...).

Таблица 7. Линейная скорость схвата

№ варианта/V(м/c)	1	2	3
Vx	0.0	-0.1	0.4
Vy	0.5	0.5	0.3
Vz	0.1	0.0	0.1