

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 43 28 198 A 1

(5) Int. Ci.⁶: B 60 K 15/077

DEUTSCHES PATENTAMT

(1) Aktenzeichen:(2) Anmeldetag:

P 43 28 198.2 21. 8. 93

Offenlegungstag:

23. 2.95

(71) Anmelder:

NTAMT

VDO Adolf Schindling AG, 60326 Frankfurt, DE

② Erfinder:

Mally, Joachim, 36214 Nentershausen, DE

(4) In einem Kraftstoffbehälter einzusetzende Kraftstoff-Entnahmeeinrichtung

Eine Kraftstoff-Entnahmeeinrichtung hat innerhalb eines Kraftstoffbehälters (2) einen Schwallraum (4), in dem eine Kraftstoffpumpe (6) angeordnet ist. Der Schwallraum (4) ist als geschlossene Kammer ausgebildet, in die von unten ein Steigrohr (9) mit einer Saugstrahlpumpe (10) führt. Befindet sich im Schwallraum (4) kein Kraftstoff, kann die Kraftstoffpumpe (6) in ihm Unterdruck erzeugen, so daß über das Steigrohr (9) Kraftstoff angesaugt wird.

Beschreibung

Die Erfindung betrifft eine in einen Kraftstoffbehälter einzusetzende Kraftstoff-Entnahmeeinrichtung, welche eine Kraftstoffpumpe hat, die in einem an seiner Unterseite geschlossenen und deshalb nicht leerlaufenden Schwallraum angeordnet ist, der zum Zuführen von Kraftstoff aus dem ihn umgebenden Kraftstoffbehälter eine Saugstrahlpumpe aufweist und der mit einer von einer Kraftstoffeinspritzanlage kommenden Rückfluß- 10 leitung Verbindung hat.

Kraftstoff-Entnahmeeinrichtungen der vorstehenden Art sind in heutigen Kraftfahrzeugen mit Kraftstoffeinspritzung vorhanden und deshalb allgemein bekannt. Der Schwallraum besteht bei den bekannten Einrich- 15 tungen aus einem nach oben hin offenen Topf, in den von oben her die Rückflußleitung und zusätzlich eine Saugstrahlpumpe aus dem die Kraftstoff-Entnahmeeinrichtung umgebenden Kraftstoffbehälter Kraftstoff fördert. Schwierigkeiten bereitet bei solchen Kraftstoff- 20 Entnahmeeinrichtungen das erstmalige Befüllen mit Kraftstoff. Da im Automobilwerk nur eine geringe Kraftstoffmenge in den Kraftstoffbehälter eingefüllt wird, reicht diese meist nicht aus, um über den oberen Rand des Schwallraumes in den Schwallraum zu fließen. 25 Auch die laufende Kraftstoffpumpe im Schwallraum vermag dann zu keiner Füllung des Schwallraumes zu führen, weil sie keinen Kraftstoff anzusaugen vermag und deshalb die Saugstrahlpumpe keinen Kraftstoff als Treibstrahl hat, so daß sie keinen Kraftstoff aus dem 30 Kraftstoffbehälter in den Schwallraum fördern kann.

Der Erfindung liegt das Problem zugrunde, eine Kraftstoff-Entnahmeeinrichtung der eingangs genannten Art so auszubilden, daß auch bei einer geringen, erstmaligen Befüllung eines Kraftstoffbehälters von ih- 35 rer Kraftstoffpumpe Kraftstoff in den Schwallraum gefördert werden kann.

Dieses Problem wird erfindungsgemäß dadurch gelöst, daß der Schwallraum durch eine obere Abschlußwand einen geschlossenen Behälter bildet, in dem die 40 Saugstrahlpumpe in einem von unten her in den Schwallraum führendes Steigrohr angeordnet ist, und daß die Kraftstoffpumpe zum Erzeugen von ein Ansaugen von Kraftstoff über das Steigrohr ermöglichenden Unterdruck bei noch nicht befülltem Schwallraum aus- 45 gebildet ist.

Durch diese geschlossene Ausführung des Schwallraumes sind einfach gestaltete und im Handel erhältliche Kraftstoffpumpen in der Lage, bei einem noch nicht mit Kraftstoff gefüllten Schwallraum aus diesem Luft 50 der in Offenstellung vorgespanntes, bei Kraftstoffördeherauszufördern und dadurch in ihm einen Unterdruck zu erzeugen, der so stark ist, daß Kraftstoff über das Steigrohr in den Schwallraum fließt. Ist das geschehen, dann wird Kraftstoff gefördert, wodurch die Saugstrahlpumpe funktionstüchtig wird und Kraftstoff aus dem 55 Kraftstoffbehälter in den Schwallraum zu fördern vermag, so daß dieser trotz des Förderns der Kraftstoffpumpe gefüllt bleibt. Dank der Erfindung wird es möglich, mit der Kraftstoff-Entnahmeeinrichtung auch dann aus einem Kraftstoffbehälter Kraftstoff zu fördern, 60 rungsform führen Undichtigkeiten des Deckels nicht dawenn bei seiner erstmaligen Befüllung in diesen nur so wenig Kraftstoff eingefüllt wurde, daß der Füllstand nicht bis über den oberen Rand des Schwallraumes reicht. Zugleich wird durch die geschlossene Bauweise des Schwallraumes gegenüber einem nach oben hin offenen Schwallraum sichergestellt, daß auch bei starken Schüttelbewegungen des Kraftfahrzeugs bei weitgehend leerem Kraftstoffbehälter während des Fahrens

kein Kraftstoff aus dem Schwallraum herausgelangen und es zu einem Ansaugen von Luft kommen kann.

Gemäß einer besonders einfachen Ausgestaltung der Erfindung führt die Rückflußleitung unmittelbar in den 5 geschlossenen Schwallraum hinein.

Nachteilig bei einer solchen, einfachen Ausführungsform ist allerdings, daß die von der Rückflußleitung und der Saugstrahlpumpe in den Schwallraum geförderte und nicht von der Kraftstoffpumpe abgepumpte Kraftstoffmenge nur über das die Saugstrahlpumpe aufweisende Steigrohr aus dem Schwallraum abfließen kann. Ein solcher Kraftstoffstrom macht die Saugstrahlpumpe wirkungslos, so daß der Anteil frisch zugeführten Kraftstoffs zum von der Rückflußleitung zugeführten Kraftstoff geringer wird. Da der vom Motor zurückfließende Kraftstoff relativ heiß ist, kann es zu einer Überhitzung der Kraftstoffpumpe kommen. Das kann ausgeschlossen werden, wenn gemäß einer anderen Weiterbildung der Erfindung die Rückflußleitung in einem oberhalb des Schwallraumes angeordneten, eine Überlauföffnung zum Kraftstoffbehälter aufweisenden Einlaufbehälter vorgesehen ist und wenn der Einlaufbehälter in einem zum Schwallraum führenden Durchlaß ein in Richtung des Einlaufbehälters öffnendes Schwimmerventil hat. Ein solcher Einlaufbehälter hat zusätzlich die Funktion eines Beruhigungsraumes und fördert die Abscheidung von Gaseinschlüssen aus dem zurückfließenden Kraft-

Besonders gut werden vom Kraftstoff mitgeführte Gaseinschlüsse abgeschieden, wenn der Einlaufbehälter als nach oben hin offener Topf ausgebildet ist.

Eine andere Möglichkeit, überschüssigen Kraftstoff aus dem Schwallraum herausfließen zu lassen, besteht darin, daß im Schwallraum von seinem Boden her ein zweites Steigrohr bis nahe seiner Oberseite hineinführt und dieses Steigrohr eine Drossel aufweist. Eine solche Drossel sorgt für einen geringfügigen Überdruck im Schwallraum, was der Entstehung von Ausgasungen entgegenwirkt.

Die Saugstrahlpumpe könnte mit dem von der Einspritzanlage zurücklaufenden Kraftstoff betrieben werden. Besonders einfach ist die Gesamtanordnung jedoch gestaltet, wenn die Saugstrahlpumpe zur Erzeugung des Treibstrahls mit einem Teilstrom des von der Kraftstoffpumpe geförderten Kraftstoffes verbunden ist.

Das Absaugen der Luft aus dem gemäß der Erfindung geschlossen ausgebildeten Schwallraum kann mit einer üblichen, einstufigen Kraftstoffpumpe erfolgen, wenn der Druckraum der Kraftstoffpumpe ein durch eine Ferung zunächst durch die Strömung und dann den Druck des Kraftstoffes schließendes Entlüftungsventil hat.

Das Verschließen des Schwallraumes braucht nicht absolut dicht erfolgen, wenn gemäß einer anderen Weiterbildung der Erfindung der Schwallraum durch einen Überkopf angeordneten Topf gebildet ist, dessen Boden die obere Abschlußwand bildet und der an seiner dem Boden des Kraftstoffbehälters zugewandten Seite durch einen Deckel verschlossen ist. Bei einer solchen Ausfühzu, daß Luft angesaugt wird, weil die Verbindung zwischen Deckel und der Mantelfläche des Schwallraumes nach dem ersten, geringfügigen Befüllen des Kraftstoffbehälters im Kraftstoff eingetaucht ist.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips sind vier davon in der Zeichnung schematisch dargestellt und werden nachfolgend beschrieben. Diese zeigen in den Fig. 1 bis 4 jeweils einen senkrechten Schnitt durch eine Ausführungsform der in einen Kraftstoffbehälter einge-

bauten Kraftstoff-Entnahmeeinrichtung.

Die Fig. 1 zeigt einen Boden 1 eines Kraftstoffbehälters 2, der bis zu einem niedrigen Kraftstoffspiegel 3 mit Kraftstoff gefüllt ist. Mit geringem Abstand zum Boden 1 ist auf ihm ein Schwallraum 4 angeordnet, der allseitig und nach oben hin von einer Abschlußwand 5 verschlossen ist. Im Inneren des Schwallraumes 4 ist eine Kraftstoffpumpe 6 angeordnet, welche beim Laufen Kraftstoff über ein im unteren Bereich des Schwallraumes 4 angeordnetes Filter 7 ansaugt und aus einem Auslaßstutzen 8 heraus zu einer nicht gezeigten Einspritzanlage eines Kraftahrzeugmotors fördert.

Von unten her führt ein Steigrohr 9 in den Schwallraum 4 und reicht bis fast zu seiner oberen Abschlußwand 5. In diesem Steigrohr 9 ist eine Saugstrahlpumpe
10 angeordnet, welche als Treibstrahl mit einem Teilstrom der Kraftstoffpumpe 6 beaufschlagt wird. Die von
der Kraftstoffpumpe 6 zur Einspritzanlage geförderte,
dort jedoch nicht benötigte Kraftstoffmenge fließt über
eine Rückflußleitung 11 unmittelbar zurück in den
Schwallraum 4. Zur Entlüftung des nicht gezeigten
Druckraumes der Kraftstoffpumpe 6 dient ein Entlüftungsventil 12, dessen Ventilkugel 13 von einer Feder 14
mit geringer Kraft in Offenstellung vorgespannt ist.
Kommt es nach einem Absaugen von Luft aus dem
Schwallraum 4 zu einer Kraftstofförderung, dann
schließt dieses Entlüftungsventil 12.

Bei der Ausführungsform nach Fig. 2 ist auf dem 30 Schwallraum 4 ein nach oben hin offener Einlaufbehälter 15 angeordnet, dessen oberer Rand über seine gesamte umlaufende Länge einen Überlauf 16 bildet. Die Rückflußleitung 11 führt bei dieser Ausführungsform nicht in den Schwallraum 4, sondern nur in den Einlaufbehälter 15. Von dort kann der zurückfließende Kraftstoff über einen von einem Schwimmerventil 17 gesteuerten Durchlaß in der oberen Abschlußwand 5 des Schwallraumes 4 in diesen hineinfließen, solange dort noch Raum frei ist. Im übrigen fließt der Kraftstoff über 40 den Überlauf 16 in den Kraftstoffbehälter 2.

Gemäß Fig. 3 führt von unten her ein zweites Steigrohr 19 in den Schwallraum 4 hinein, welches an seinem oberen Ende mit einer Drossel 20 versehen ist. Die Rückflußleitung 11 führt genau wie gemäß Fig. 1 unmittelbar in den Schwallraum 4 hinein. Das zweite Steigrohr 19 ermöglicht es, daß die überschüssige Kraftstoffmenge, welche von der Rückflußleitung 11 und von der Saugstrahlpumpe 10 durch das Steigrohr 9 in den

Schwallraum 4 gelangt, abströmen kann.

Die Ausführungsform nach Fig. 4 entspricht von der Funktion her identisch der nach Fig. 1. Der Schwallraum 4 ist jedoch als Überkopf angeordneter Topf ausgeführt, dessen Boden die Abschlußwand 5 bildet. Zur Seite des Bodens 1 des Kraftstoffbehälters 2 hin ist der Schwallraum 4 bei dieser Ausführungsform durch einen Deckel 21 verschlossen, der lediglich eine Öffnung 22 für das Steigrohr 9 hat. Eventuelle Undichtigkeiten der Verbindung zwischen dem Deckel 21 und der Wand des Schwallraumes 4 führen bei dieser Ausführungsform nicht dazu, daß bei nur geringfügig gefülltem Kraftstoffbehälter 2 in den Schwallraum 4 statt Kraftstoff Luft gesaugt werden kann.

Ist wie in den Fig. 1, 2 und 3 die Abschlußwand 5 als in den zylindrischen Teil des Schwallraumes 4 eingesetztes 65 Deckelteil ausgebildet, so muß dieses dicht mit dem zylindrischen Teil verbunden werden, um ein Aufbauen eines Unterdruckes sicherzustellen.

Patentansprüche

1. In einen Kraftstoffbehälter einzusetzende Kraftstoff-Entnahmeeinrichtung, welche eine Kraftstoffpumpe hat, die in einem an seiner Unterseite geschlossenen und deshalb nicht leerlaufenden Schwallraum angeordnet ist, der zum Zuführen von Kraftstoff aus dem ihn umgebenden Kraftstoffbehälter eine Saugstrahlpumpe aufweist und der mit einer von einer Kraftstoffeinspritzanlage kommenden Rückflußleitung Verbindung hat, dadurch gekennzeichnet,

daß der Schwallraum (4) durch eine obere Abschlußwand (5) einen geschlossenen Behälter bildet, in dem die Saugstrahlpumpe (10) in einem von unten her in den Schwallraum (4) führendes Steigrohr (9) angeordnet ist, und

daß die Kraftstoffpumpe (6) zum Erzeugen von ein Ansaugen von Kraftstoff über das Steigrohr (9) ermöglichenden Unterdruck bei noch nicht befülltem Schwallraum (4) ausgebildet ist.

Kraftstoff-Entnahmeeinrichtung nach Anspruch
 dadurch gekennzeichnet, daß die Rückflußleitung
 unmittelbar in den geschlossenen Schwallraum
 hineinführt.

3. Kraftstoff-Entnahmeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Rückflußleitung (11) in einen oberhalb des Schwallraumes (4) angeordneten, einen Überlauf (16) zum Kraftstoffbehälter (2) aufweisenden Einlaufbehälter (15) vorgesehen ist und daß der Einlaufbehälter (15) in einem zum Schwallraum (4) führenden Durchlaß (18) ein in Richtung des Einlaufbehälters (15) öffnendes Schwimmerventil (17) hat.

Kraftstoff-Entnahmeeinrichtung nach Anspruch
 dadurch gekennzeichnet, daß der Einlaufbehälter
 als nach oben hin offener Topf ausgebildet ist.

5. Kraftstoff-Entnahmeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im Schwallraum (4) von seinem Boden her ein zweites Steigrohr (19) bis nahe seiner Oberseite hineinführt und dieses Steigrohr (19) eine Drossel (20) aufweist.

6. Kraftstoff-Entnahmeeinrichtung nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Saugstrahlpumpe (10) zur Erzeugung des Treibstrahls mit einem Teilstrom des von der Kraftstoffpumpe (6) geförderten Kraftstoffes verbunden ist.

7. Kraftstoff-Entnahmeeinrichtung nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Druckraum der Kraftstoffpumpe (6) ein durch eine Feder (14) in Offenstellung vorgespanntes, bei Kraftstoffförderung zunächst durch die Strömung und dann den Druck des Kraftstoffes schließendes Entlüftungsventil (12)

8. Kraftstoff-Entnahmeeinrichtung nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Schwallraum (4) durch einen Überkopf angeordneten Topf gebildet ist, dessen Boden die obere Abschlußwand (5) bildet und der an seiner dem Boden (1) des Kraftstoffbehälters (2) zugewandte Seite durch einen Deckel (21) verschlossen ist.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 43 28 198 A1 B 60 K 15/077 23. Februar 1995

408 068/347

Nummer: Int. Cl.⁶: DE 43 28 198 A1 B 60 K 15/077 23. Februar 1995

Int. Cl.º:
Offenlegungstag:

408 068/347

UP 2001 (

2001-09-12

TI

Fuel withdrawal system for insertion in fuel tank in vehicle has closed container incorporating riser tube with suction jet pump

PN

DE4328198-A1

POWERED BY Dialog

Fuel withdrawal system for insertion in fuel tank in vehicle - has closed container incorporating riser tube with suction jet pump

Patent Assignee: VDO SCHINDLING AG ADOLF; MANNESMANN VDO AG

Inventors: MALLY J

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
DE 4328198	Al	19950223	DE 4328198	A	19930821	199513	В
DE 4328198	C2	20010906	DE 4328198	A	19930821	200151	

Priority Applications (Number Kind Date): DE 4328198 A (19930821)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
DE 4328198	Al		5	B60K-015/077	
DE 4328198	C2			B60K-015/077	

Abstract:

DE 4328198 A

The fuel withdrawal system is fitted in the fuel tank of a motor vehicle. It has a flood chamber (4) inside a fuel container (2), in which a fuel pump (6) is arranged. The flood chamber is formed as a closed space into which a riser tube (9) with a suction jet pump (10) is introduced from below.

Should there be no fuel in the flood chamber the fuel pump (6) can induce a negative pressure allowing fuel to be drawn via the riser tube. The return flow pipe (11) is led directly into the closed flood chamber.

USE/ADVANTAGE - Fuel feed system is suitable for vehicles having fuel injection. It allows the withdrawal of fuel from the fuel tank even when only a small amount of fuel is present.

Dwg.3/4

THIS PAGE BLANK (USPTO)

Derwent World Patents Index © 2005 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 10190551

THIS PAGE BLANK (USPTO)