Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

CLASA a XII-a — Soluţii şi barem orientativ

Problema 1. Fie $a,\ b,\ c$ trei numere reale strict pozitive, distincte două câte două. Să se calculeze

$$\lim_{t \to \infty} \int_0^t \frac{1}{(x^2 + a^2)(x^2 + b^2)(x^2 + c^2)} \, \mathrm{d}x.$$

Solutie. Din

$$\int_{0}^{t} \frac{1}{(x^{2} + a^{2})(x^{2} + b^{2})} dx = \frac{1}{b^{2} - a^{2}} \int_{0}^{t} \left(\frac{1}{x^{2} + a^{2}} - \frac{1}{x^{2} + b^{2}} \right) dx$$
$$= \frac{1}{b^{2} - a^{2}} \left(\frac{1}{a} \arctan \frac{t}{a} - \frac{1}{b} \arctan \frac{t}{b} \right)$$
$$\xrightarrow{t \to \infty} \frac{1}{ab(a + b)} \frac{\pi}{2},$$

...... 4 puncte

rezultă că

$$\int_0^t \frac{1}{(x^2 + a^2)(x^2 + b^2)(x^2 + c^2)} dx = \frac{1}{c^2 - a^2} \left(\int_0^t \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx - \int_0^t \frac{1}{(x^2 + b^2)(x^2 + c^2)} dx \right) \xrightarrow{t \to \infty} \frac{1}{c^2 - a^2} \left(\frac{1}{ab(a+b)} - \frac{1}{bc(b+c)} \right) \frac{\pi}{2} = \frac{a+b+c}{abc(a+b)(b+c)(c+a)} \frac{\pi}{2}.$$

...... 3 puncte

Problema 2. Fie $(A, +, \cdot)$ un inel cu 9 elemente. Să se arate că următoarele două afirmații sunt echivalente:

- (a) Pentru orice $x \in A \setminus \{0\}$ există $a \in \{-1,0,1\}$ și $b \in \{-1,1\}$, astfel încât $x^2 + ax + b = 0$.
- (b) $(A, +, \cdot)$ este corp.

Soluție. Arătăm că prima afirmație o implică pe a doua. Fie $x \in A \setminus \{0\}$ și a, b cu proprietatea din enunț. Întrucât ax = xa, rezultă că $x(x + a) = (x + a)x = -b \in \{-1, 1\}$, deci x este inversabil și prin urmare A este corp.

Arătăm că a doua afirmație o implică pe prima. Întrucât A nu are divizori ai lui zero și (1+1+1)(1+1+1)=0, rezultă că 1+1+1=0.

Fie $x \in A \setminus \{0\}$. Dacă $x^2 = \pm 1$, atunci $x^2 - 1 = 0$ sau $x^2 + 1 = 0$, deci x are proprietatea din enunț.
Dacă $x^2 \neq \pm 1$, ţinând cont de faptul că (A^*, \cdot) este grup cu opt elemente, rezultă că $(x^2-1)(x^2+1)(x^4+1)=x^8-1=0$, deci $x^4+1=0$. Întrucât $x^4+1=x^4+4=(x^2+2)^2-(2x)^2=(x^2-2x+2)(x^2+2x+2)=(x^2+x-1)(x^2-x-1)$, rezultă că $x^2+x-1=0$ sau $x^2-x-1=0$.
Problema 3. Fie G un grup finit cu n elemente şi e elementul său neutru. Să se determine toate funcțiile $f:G\to\mathbb{N}^*$ care îndeplinesc simultan următoarele două condiții:
(a) $f(x) = 1$ dacă și numai dacă $x = e$; și
(b) $f(x^k) = f(x)/(f(x), k)$, pentru orice divizor natural k al lui n , unde (r, s) este cel mai mare divizor comun al numerelor naturale r şi s .
Soluţie. Fie x un element al lui G şi ord x ordinul său. Întrucât ord x divide pe n , rezultă că $1 = f(e) = f(x^{\text{ord } x}) = f(x)/(f(x), \text{ ord } x)$, deci $f(x)$ este un divizor al lui ord x .
2 puncte
Deci $f(x)$ divide pe n , de unde $f(x^{f(x)}) = f(x)/(f(x), f(x)) = 1$ şi prin urmare $x^{f(x)} = e$. Rezultă că ord x este un divizor al lui $f(x)$, deci $f(x) = $ ord x .
2 puncte
Reciproc, arătăm că funcția $f: G \to \mathbb{N}^*$, $f(x) = \operatorname{ord} x$, îndeplinește condițiile din enunț. Fie x un element al lui G , $m = \operatorname{ord} x$, $k \in \mathbb{N}^*$, $p = \operatorname{ord} x^k$ și $d = (m, k)$. Întrucât $(x^k)^{m/d} = (x^m)^{k/d} = e$, rezultă că p divide pe m/d .
1 punct
Pe de altă parte, $x^{kp} = (x^k)^p = e$, deci m divide pe kp şi prin urmare m/d divide pe $(k/d)p$. Numerele m/d şi k/d fiind coprime, rezultă că m/d este un divizor al lui p , deci $p = m/d$.

 $\left| \int_0^1 f(t) \, \mathrm{d}t \, \right| < 1/4.$

Problema 4. Fie $f:[0,1] \to \mathbb{R}$ o funcție derivabilă, astfel încât f(0)=

f(1)=0 și $|f'(x)|\leq 1,$ oricare ar fi $x\in [0,1].$ Să se arate că

Soluție. Fie $t\in(0,1)$. Aplicând teorema lui Lagrange funcției f pe intervalele [0,t] și [t,1], rezultă că $|f(t)/t|\leq 1$ și $|f(t)/(1-t)|\leq 1$, deci $|f(t)|\leq \min(t,1-t)$, oricare ar fi $t\in[0,1]$.

...... 3 puncte

Prin urmare,

$$\left| \int_0^1 f(t) \, dt \right| \le \int_0^1 |f(t)| \, dt = \int_0^{1/2} |f(t)| \, dt + \int_{1/2}^1 |f(t)| \, dt$$
$$\le \int_0^{1/2} t \, dt + \int_{1/2}^1 (1 - t) \, dt = 1/4.$$
 (*)