Classification-based reinforcement learning

Vincent Antaki

McGill University

Classification-based reinforcement learning

Approach based on :

- ► Lagoudakis & Parr, Reinforcement Learning as Classification : Leverating Modern Classifiers
- ► Riedmiller, Neural Fitted Q Iteration First Experiences with a Data Efficient Neural Reinforcement Learning Method
- ► Farahmand, Precup, Barreto, Ghavamzadeh Classification-based Approximate Policy Iteration : Experiments and Extended Discussions
- ▶ Lagoudakis & Parr, Least-Squares Policy Iteration

Classification-based reinforcement learning

Why classification-based reinforcement learning?

- Attempt to leverage advantages of supervised learning for reinforcement learning problems (ex. data efficiency, handling of non-linearity)
- ► Find structure directly in the action space

Policy iteration

```
>>> While not satisfied with the policy :
... policy_eval()
... policy_update()
```

Figure: The underlying principles behind policy iteration

CAPI

```
Algorithm CAPI(\Pi, \nu, K)
Input: Policy space \Pi, State distribution \nu, Number of iterations K
Initialize: Let \pi_{(0)} \in \Pi be an arbitrary policy for k = 0, 1, \dots, K - 1 do

Construct a dataset \mathcal{D}_n^{(k)} = \{X_i\}_{i=1}^n, \ X_i \overset{\text{i.i.d.}}{\sim} \bigvee_{k} \hat{Q}^{\pi_k} \leftarrow \text{PolicyEval}(\pi_k)
\pi_{k+1} \leftarrow \operatorname{argmin}_{\pi \in \Pi} \hat{L}_n^{\pi_k}(\pi) (action-gap-weighted classification) end for
```

Figure: The CAPI framework

^{*} Image from Farahmand, Precup, Barreto, Ghavamzadeh Classification-based Approximate Policy Iteration : Experiments and Extended Discussions

CAPI

Action gap :

- ▶ Given state X_i and an action a, we consider the absolute difference between $\hat{Q}^{\pi_*}(X_i, a)$ and $\hat{Q}^{\pi_*}(X_i, a^*)$
- When action gap is low, regret for choosing the non-optimal action is low and confusion is more likely to happen.

Very important :

$$\hat{L}_n^{\pi_k}(\pi) = \sum_{X_i \in \mathcal{D}_n^{(k)}} \mathbf{g}_{\hat{Q}^{\pi_k}}(X_i) \mathbb{I}\{\pi(X_i) \neq \operatorname*{argmax}_{a \in \mathcal{A}} \hat{Q}^{\pi_k}(X_i, a)\}$$

Policy evalution

We want to approximate π^* by learning Q-values from our samples. Our options include :

- Rollout
- Least-square Temporal Difference Q-learning
- ▶ Neural Fitted Q iteration

Rollout

```
Rollout (\mathcal{M}, s, a, \gamma, \pi, K, T)
                          M : Generative model
                    (s,a): State-action pair whose value is sought
            \begin{array}{lll} /\!\!/ & \gamma & : {\rm Discount \, factor} \\ /\!\!/ & \pi & : {\rm Policy} \\ /\!\!/ & K & : {\rm Number \, of \, trajectories} \end{array}
                                         : Length of each trajectory
             for k = 1 to K
                           \begin{aligned} &(s',r) \leftarrow \mathtt{SIMULATE}(\mathcal{M},s,a) \\ &\widetilde{Q}_k \leftarrow r \end{aligned} 
                           for t = 1 to T - 1
                                      \begin{array}{l} (s',r) \leftarrow \text{SIMULATE}(\mathcal{M},s,\pi(s)) \\ \widetilde{Q}_k \leftarrow \widetilde{Q}_k + \gamma^t r \\ s \leftarrow s' \end{array} 
            \widetilde{Q} \leftarrow \frac{1}{K} \sum_{k=1}^{K} \widetilde{Q}_{k}
              return \widetilde{Q}
```

Figure: The rollout algorithm

Simulation-based approximation.

^{*} Image from Lagoudakis & Parr, Reinforcement Learning as Classification: Leverating Modern Classifiers

LSTDQ

```
 \begin{aligned} \mathbf{LSTDQ} \left(D,\ k,\ \phi,\ \gamma,\ \pi\right) & // \operatorname{Learns} \widehat{Q}^{\pi} \text{ from samples} \\ //\ D & : \operatorname{Source of samples} \left(s,a,r,s'\right) \\ //\ k & : \operatorname{Number of basis functions} \\ //\ \phi & : \operatorname{Basis functions} \\ //\ \gamma & : \operatorname{Discount factor} \\ //\ \pi & : \operatorname{Policy whose value function is sought} \\ \widetilde{\mathbf{A}} & = \mathbf{0} & //\ (k \times k) \operatorname{matrix} \\ \widetilde{b} & = \mathbf{0} & //\ (k \times 1) \operatorname{vector} \\ \end{aligned}  for each (s,a,r,s') \in D b  \widetilde{\mathbf{A}} & = \widetilde{\mathbf{A}} + \phi(s,a) \left(\phi(s,a) - \gamma\phi(s',\pi(s'))\right)^{\mathsf{T}} \\ \widetilde{b} & = \widetilde{b} + \phi(s,a)r \end{aligned}   \widetilde{w}^{\pi} & = \widetilde{\mathbf{A}}^{-1}\widetilde{b} \\ \mathbf{return} \ \widetilde{w}^{\pi} \end{aligned}
```

Figure: The LSTDQ algorithm

- Linear function approximation.
- Need to use basis functions.
- ► Requires pseudo-matrix inversions.

^{*} Image from Lagoudakis & Parr. Least-Squares Policy Iteration

NFQ

```
\label{eq:NFQ_main()} \begin{split} & \text{NFQ\_main()} \; \{ \\ & \text{input: a set of transition samples } D; \; \text{output: Q-value function } Q_N \\ & \text{k=0} \\ & \text{init\_MLP()} \to Q_0; \\ & \text{Do} \; \{ \\ & \text{generate\_pattern\_set } P = \{(input^l, target^l), l = 1, \dots, \#D\} \; \text{where:} \\ & input^l = s^l, u^l, \\ & target^l = c(s^l, u^l, s^n) + \gamma \min_b Q_k(s^n, b) \\ & \text{Rprop\_training}(P) \to Q_{k+1} \\ & \text{k:= k+1} \\ \} \; \text{While} \; (k < N) \end{split}
```

- Use a neural net for regression
- Trained with SGD or an RProp variant.

^{*} Image from Riedmiller, Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method

Policy update

Using our approximation of π^* and our samples, we generate multiple examples from each seen state.

- We give label 0 to for pairs (s, a^*)
- ▶ We give label 1 to for pairs $(s, a) \forall a \neq a^*$

Then, we train a classifier on the dataset, set a tie-breaker policy and we have a new policy.

Technical consideration

We should technically end our algorithm when the policy converges or when the preset maximum number of iterations is reached.

► Threshold on empirical similarity between policies as stopping criterion.

Advantages

What are the possibles advantages to use a classifier for the policy update?

- Data-efficient methods.
- Lots of option to handle non-linearity.
- ▶ Can detect structure inherent to the action space.

Advantages

What are the possibles advantages to use a classifier for the policy update?

- Data-efficient methods.
- Lots of option to handle non-linearity.
- Can detect structure inherent to the action space.
- We can make our implementation Scikit compatible.

Load balancing problem 1

- ▶ The agent has 4 'servers' at its disposition and needs to dispatch them tasks it receives. Tasks arrive randomly following a Poisson distribution with $\lambda = 2$.
- ▶ Tasks requires a certain amount of work to be completed. This amount of work required to complete a task is equal to 1+T where T is a random poisson variable with $\lambda=4$. The agent never knows the associated workload with a task.
- ► All server queues have a maximum length of 10. If the agent tries to add a task to an already full queue, the task is discarded and the agents receive a −50 points reward.
- ▶ At every timestep, all servers accomplish one unit of work on the first task in their queue.
- ▶ Upon the completion a task by a server, the agent receives a reward equal to $\frac{5}{\# \text{ of iteration to complete task}}$.

Load balancing problem 2

- ► The amount of work generated by the servers is now different for every server and stochastic.
- ► Distributions : $\mathcal{N}(0.9, 0.1), \mathcal{N}(1, 0.1), \mathcal{N}(1.1, 0.1), \mathcal{N}(1, 0.25)$

Load balancing problem 3

- Every server has a "heat index" which is between 0 and a certain upper bound.
- ► The heat index increases with a fixed rate for every timestep the server is working.
- The heat index decreases with a (higher) fixed rate for every timestep the server is not working.
- The amount of work generated by the servers is reduced proportionnaly to the heat index down to a minimum of 80% of its original capacity.
- ▶ The agent must learn to give short break to servers if possible.

Considerations

For simplicity, we consider the state to be defined as follows :

- Current timestep
- Queue length of all servers
- ► Time since the current task has been added to the queue for all servers
- Number of timesteps spent on current task for all servers.

Considerations

Difficulties inherent to that problem :

- ► Delayed reward
- A bit of stochasticity
- Partially observable state
- Average reward problem?

Considerations

The optimal policy is however very simple.

Give the task to the server which is expected to complete it the soonest.

For the first variant, this means:

- Give the task to the server with the shortest queue.
- ▶ If multiples servers have the shortest length of queue, give the task to the one which been running his task for the longest amount of time

Methodology and other technical considerations

- ▶ We terminate simulation after a maximum of 500 decisions.
- ▶ We generate batches of 50 episodes for iteration of the main loop (with $\epsilon = 0.2$).
- Examples are discarded after each policy update.
- ▶ We monitor the reward for each episode and the number of time the agent tries to add a task to an already filled queue.
- We use a onehot encoding of the action when learning the classifier

Baselines

In term of baselines, we have :

- The random agent
- ▶ The optimal agent for rpoblem variant 1
- LSPI
- NFQ

Approaches

Previous approach used:

- Hand-designed features
- ► LSPI

Current approach uses:

- ▶ NFQ with 2 layers MLP with relu activation, no activation on the output neuron, L1 and L2 regularisation.
- Another MLP for policy update.

Approaches

Possibles add-on to our approach :

- Shared structure between both MLP
- Experience replay

The End

Thank you!