Zusammenfassung Informatik III

© M Tim Baumann, http://timbaumann.info/uni-spicker

Abkürzung. WC/BC/AC steht für Worst/Average/Best Case.

Algorithmus (Insertion Sort). BC: O(n): AC. WC: $O(n^2)$

Notation. $\mathcal{F} := \{f : \mathbb{N} \to \mathbb{R}_{>0}\}$. Für $f \in \mathcal{F}$ ist

$$O(f) \coloneqq \{g \in \mathcal{F} \mid \exists \, c > 0 \, : \, \exists \, n_0 \in \mathbb{N} \, : \, \forall \, n \geq n_0 \, : \, g(n) \leq c \cdot f(n)\}$$

$$\Omega(f) := \{ g \in \mathcal{F} \mid \exists c > 0 : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : g(n) \ge c \cdot f(n) \}$$

$$o(f) := \{ g \in \mathcal{F} \mid \forall c > 0 : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : g(n) \le c \cdot f(n) \}$$

$$\omega(f) \coloneqq \{ g \in \mathcal{F} \mid \forall c > 0 : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : g(n) \ge c \cdot f(n) \}$$

$$\Theta(f) := \{ g \in \mathcal{F} \mid \exists c_1, c_2 > 0 : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 :$$

$$c_1 \cdot f(n) \le g(n) \le c_2 \cdot f(n) = O(f) \cap \Omega(f)$$

Satz. Seien $0 < \alpha < \beta$, 0 < a < b und 1 < A < B. Betrachte

- $f_1(n) := \log \log n$ $f_5(n) := n^a (\log n)^\alpha \bullet f_9(n) := A^n \cdot n^a$
- $f_2(n) := (\log n)^{\alpha}$ $f_6(n) := n^b (\log n)^{\alpha}$ $f_{10}(n) := A^n \cdot n^b$
- $f_3(n) := (\log n)^{\beta}$ $f_7(n) := n^{b}$
- $f_4(n) \coloneqq n^a$ $f_8(n) \coloneqq A^n$ • $f_{11}(n) := B^n$

Es gilt: $f_i \in o(f_{i+1})$ für i = 1, ..., 10.

Def (RAM). Die Random Access Access Machine besitzt eine unendlich lange Liste von aufsteigend nummerierten Speicherzellen R[0], R[1], ..., die jeweils eine ganze Zahl beinhalten und einen Programmzähler. Sie kann mittels der folgenden Sprache programmiert werden:

 $\langle Zieladresse \rangle ::= \langle Adresse \rangle \mid R[\langle Adresse \rangle]$

 $\langle Operand \rangle ::= \langle Literal \rangle \mid R[\langle Adresse \rangle]$

 $\langle Befehl \rangle ::= \langle Zieladresse \rangle `:=` \langle Operand \rangle \odot \langle Operand \rangle$ | 'if' $\langle Operand \rangle \bowtie \langle Operand \rangle$ 'goto' $\langle Label \rangle$

 $\langle Programm \rangle ::= \langle Befehl \rangle$ ';' $\langle Programm \rangle \mid$ 'End'

wobei $\odot \in \{+, -, *, \div\}$ und $\bowtie \in \{<, \leq, =, \geq, >, \neq\}$. Diese einfache Grammatik lässt sich auch für unbedingte Sprünge nutzen (mittels Bedingung 0 = 0). Ein Sprung über das Ende des Programms hinaus lässt das Programm anhalten. Per Konvention steht die Größe der Eingabe in der Speicherzelle R[1], während die tatsächliche Eingabe in R[2], ..., R[R[1] + 1] abgelegt wird.

Def. Ein Graph ist ein Tupel (V, E), wobei V eine endliche Mengen von Knoten und $E \subset V \times V$ die Menge der Kanten ist.

Def. Eine Zufallsvariable auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, \mathbb{P})$ ist eine Borel-messbare Funktion $X : \Omega \to \mathbb{R}$.

Def. Der Erwartungswert einer Zufallsvariable X auf einem (diskreten) Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, \mathbb{P})$ ist

$$\mathbb{E} := \int_{\Omega} X \, \mathrm{d}\mathbb{P} = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) \cdot X(\omega).$$

Bemerkung. Es gilt für |x| < 1: $\sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$.

Algorithmus. Zwei sortierte Folgen der Gesamtlänge n können in O(n) Zeit gemischt werden.

Algorithmus (Mergesort). BC, AC, WC: $O(n \log n)$

Satz (Master-Theorem). Seien a, b, c, k, N reelle Zahlen mit $a, c > 0, k > 0, b, N \in \mathbb{N}$ und b > 2 und sei $T : \mathbb{N} \to \mathbb{R}_{>0}$ eine Funktion, die folgende Rekursionsungleichung erfüllt:

$$T(n) \le \begin{cases} c, & \text{für } n \le N \\ cn^k + aT(\lceil n/b \rceil), & \text{für } n > N \end{cases}$$

Sei ferner $\lambda := \log_b a$. Dann gilt

$$T(n) = \begin{cases} O(n^k), & \text{falls } \lambda < k \\ O(n^k \log n), & \text{falls } \lambda = k \\ O(n^{\lambda}), & \text{falls } \lambda > k. \end{cases}$$

Satz. Seien a, b, c, k, N reelle Zahlen mit $a, c > 0, k \ge 0, b, N \in \mathbb{N}$ und $b \geq 2$ und sei $T : \mathbb{N} \to \mathbb{R}_{>0}$ eine Funktion, die folgende Rekursionsungleichung erfüllt:

$$T(n) \ge \begin{cases} c, & \text{für } n \le N \\ cn^k + aT(\lceil n/b \rceil), & \text{für } n > N \end{cases}$$

Sei ferner $\lambda := \log_b a$. Dann gilt

$$T(n) = \begin{cases} \Omega(n^k), & \text{falls } \lambda < k \\ \Omega(n^k \log n), & \text{falls } \lambda = k \\ \Omega(n^{\lambda}), & \text{falls } \lambda > k. \end{cases}$$

Satz (Karatsuba und Ofman). Zwei n-stellige Zahlen können in $O(n^{\log_2 3})$ Zeit multipliziert werden.

Def. Für $\beta \in \left[\frac{1}{2}, 1\right)$ ist ein β -Splitter eine Funktion, die aus einer List von n Schlüsseln einen Schlüssel auswählt, sodass höchstens je βn Schlüssel der Liste größer bzw. kleiner sind.

Satz (Selektion). Gegeben seien eine Menge X von n Elementen aus einem total geordneten Universum und eine ganze Zahl k mit $1 \le k \le n$. Dann können wir (deterministisch) in O(n) Zeit das k-kleinste Element aus X bestimmen.

Algorithmus (Quicksort). BC, AC: $O(n \log n)$, WC: $O(n^2)$

Algorithmus (Heapsort). Inplace, BC/AC/WC: $O(n \log n)$

Satz. Jeder deterministische vergleichsbasierte Sortieralgorithmus hat im RAM-Modell eine Worst-Case-Laufzeit von $O(n \log n)$. Wenn alle Permutation mit gleicher Wkt. auftreten, gilt dies auch für die mittlere Laufzeit.

Satz. Jeder randomisierte vergleichsbasierte Sortieralgorithmus hat im RAM-Modell eine erwartete Laufzeit von $\Omega(n \log n)$ auf WC-Eingaben der Länge n.

Satz (Sortieren durch Zählen). n ganze Zahlen im Bereich $\{0,...,m-1\}$ können in Zeit O(n+m) sortiert werden.

Satz (Radix-Sort). n ganze Zahlen im Bereich $\{0, ..., 10^k - 1\}$ können in Zeit O(nk) sortiert werden.

Satz. n Strings mit insgesamt N Zeichen aus dem Alphabet $\{0, ..., m-1\}$ können in O(n+m+N) Zeit sortiert werden.

 \mathbf{Satz} (0-1-Prinzip). Sortiert ein Vergleichsnetzwerk für n Schlüssel alle 0-1-Tupel der Länge n korrekt, dann sortiert es alle Tupel der Länge n korrekt, ist also ein Sortiernetzwerk.

Satz. Für jede Zweierpotenz n gibt es ein Sortiernetzwerk für nSchlüssel mit Tiefe $\log_2 n(1 + \log_2 n)/2$.

	BinHeap	FibHeap
insert	$O(\log n)$	O(1)
delete	$O(\log n)$	$O(\log n)$
find _min	O(1)	O(1)
$decrease_key$	$O(\log n)$	O(1)

Satz. Der Grad jedes Knoten in einem Fibonacci-Heap mit n Knoten ist $O(\log n)$

 \mathbf{Satz} (amortisierte Kosten des Fibonacci-Heaps). Eine Folge von rinsert-, find min- und decrease key- und n < r delete-Operationen auf einem am Anfang leeren Fibonacci-Heap können in $O(r + n \log r)$ Zeit ausgeführt werden.

Satz. AVL-Bäume unterstützen alle Operationen einer Prioritätswarteschlange und eines Wörterbuchs in Zeit $O(\log n)$, wobei n die Anzahl der gespeicherten Tupel ist.

Satz. Seien a und b ganzzahlige Konstanten mit $a \geq 2$ und $b \ge 2a - 1$. Dann unterstützen (a, b)-Bäume alle Operationen einer Prioritätswarteschlange und eines Wörterbuchs in Zeit $O(\log n)$. wobei n die Anzahl der gespeicherten Tupel ist.

Def. Der Belegungsfaktor einer Hashtabelle ist $\alpha := n/s$, wobei n die Anzahl der Schlüssel und s die Größe der Hashtabelle ist.

Satz. Eine Wörterbuchoperation auf einer Hashtabelle mit Belegungsfaktor α kann unter den Annahmen (A) und (B) in mittlerer Zeit $O(t + \alpha)$ ausgeführt werden, wobei t die Auswertungszeit der Hashfunktion ist.

Def. Sei $s \in \mathbb{N}$, U eine Menge und \mathcal{H} eine endliche Klasse von Funktionen von U nach $\{0, ..., s-1\}$. Die Klasse \mathcal{H} heißt c-universell, wobei c > 0, falls

$$|\{h \in \mathcal{H} \mid h(x) = h(y)\}|$$
 für alle $x, y \in U$ mit $x \neq y$.

Satz. Eine Wörterbuchoperation auf einer Hashtabelle mit Belegungsfaktor α kann in erwarteter Zeit $O(t+\alpha)$ ausgeführt werden, wobei t die Auswertungszeit der Hashfunktion ist, wenn die Hashfunktion zufällig aus einer universellen Klasse $\mathcal H$ von Hashfunktionen gewählt wird.

Lemma. Sei $s \in \mathbb{N}$ und p eine Primzahl. Für $a \in \{1, ..., p-1\}$ sei

$$h_a: \{0, ..., p-1\} \to \{0, ..., s-1\}, \quad x \mapsto (ax \bmod p) \bmod s.$$

Dann ist $\mathcal{H} = \{h_a \mid 1 \le a \le p-1\}$ eine 2-universelle Klasse von Hashfunktionen von $\{0, ..., p-1\}$ nach $\{0, ..., s-1\}$.

Lemma. Sei $r \in \mathbb{N}$, s eine Primzahl und $\Sigma = \{0,...,s-1\}$. Für jedes r-Tupel $a = (a_1,...,a_r) \in \Sigma^r$ sei

$$h_a: \Sigma^r \to \Sigma, \quad (x_1, ..., x_r) \mapsto \left(\sum_{i=1}^r a_i x_i\right) \bmod s.$$

Dann ist $\mathcal{H} = \{h_a \mid a \in \Sigma^r\}$ eine 1-universelle Klasse von Funktionen von Σ^r nach Σ .

Satz. Eine Operationsfolge bestehend aus initialize(n) und m union- und find-Operationen kann in $O(m+n\log n)$ Zeit ausgeführt werden.

Satz. Eine Operationsfolge bestehend aus initialize(n) gefolgt von m union- und find-Operationen kann in $O(n+m\alpha(n,\frac{m}{n}))$ Zeit ausgeführt werden, wobei α die inverse Ackermann-Funktion bezeichnet.

Lemma. Sei T=(V,E) ein ungerichteter Graph. Dann ist T genau dann ein Baum, wenn beliebige zwei der folgenden Bedingungen erfüllt sind. Dann gilt auch die dritte Bedingung.

• T ist zusammenhängend. • T ist azyklisch. • |E| = |V| - 1

Satz. Eine topologische Sortierung eines gerichteten azyklischen Graphen kann in O(n+m) Zeit berechnet werden.

Satz. Sei W ein DFS-Wald eines ungerichteten Graphen G=(V,E) und seien $u,v\in V$. Dann gehören u und v genau dann zur selben Zusammenhangskomponente von G, wenn sie Knoten im selben Baum von W sind.

Def. Eine starke Zusammenhangskomponente in einem gerichteten Graphen ist eine maximale Gruppe von Knoten, sodass zwischen je zwei Knoten der Gruppe ein Pfad existiert.

Satz. Die starken Zusammenhangskomponenten eines gerichteten Graphen mit n Knoten und m Kanten können in O(n+m) Zeit berechnet werden.

Lemma (\triangle -Ungleichung). Für jede Kante $(u, v) \in E$ ist $\delta(v) < \delta(u) + c(u, v)$

Algorithmus (Bellman-Ford). Relaxiere n mal je alle Kanten im Graphen.

Satz. Das Single-Source-Shortest-Paths-Problem mit n Knoten und m Kanten kann in Zeit O(nm) gelöst werden.

Satz (Dijkstras Algorithmus). Das

Single-Source-Shortest-Paths-Problem kann in $O(n \log n + m)$ Zeit gelöst werden.

Satz. Das Single-Source-Shortest-Paths-Problem kann in Netzwerken mit n Knoten, m Kanten und allen Kantenkosten 1 in Zeit O(n+m) gelöst werden.

Algorithmus (Floyd-Warshall). Verwende Tabelle mit aktuell berechneter Entfernung zwischen je zwei Knoten (dynamische Programmierung). Betrachte dann alle Tripel von Knoten, wende Dreiecksungleichung an.

 ${\bf Satz.}\,$ Das All-Pairs-Shortest-Paths-Problem mit n Knoten kann in Zeit $O(n^3)$ gelöst werden.

Algorithmus (Kruskal). Für immer diejenige Kante zum Spannbaum hinzu, die die geringsten Kosten hat und durch die kein Zirkel entsteht. Laufzeit: $O(m \log n)$

Algorithmus (Prim). Wir lassen einen minimalen Baum zwischen einer Gruppe durch Knoten durch Hinzunahme der jeweils günstigsten Kante nach "draußen" wachsen.

Satz. Ein minimal aufspannender Wald eines ungerichteten Netzwerks mit n Knoten und m Kanten kann in Zeit $O(n \log n + m)$ berechnet werden.

Def. Eine (deterministische) **Turing-Maschine** (DTM) ist ein Tupel $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r, \Box)$ mit

- Einer Zustandsmenge Q (endlich)
- Einem Eingabealphabet Σ (endlich)
- Einem Bandalphabet Γ enthält Σ
- Einer Übergangsfunktion $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow, \rightarrow\}$
- Einem Startzustand $q_0 \in Q$
- Einem akzeptierenden Zustand $q_a \in Q$
- Einem verwerfenden Zustand $q_r \in Q$
- Einem Symbol $\bot \in \Gamma \backslash \Sigma$

Satz. Jede Sprache, die von einer RAM mit dem logarithmischen Kostenmaß in Zeit $T(n) \geq n$ entschieden wird, wird von einer Turing-Maschine in Zeit $O(T(n)^4)$ entschieden.

Notation. • Die Menge aller von einer DTM in Polynomialzeit entscheidbaren Sprachen ist P.

 Die Menge aller von einer NTM in Polynomialzeit entscheidbaren Sprachen ist NP.

Frage. N = NP?

Problem (Independent Set). Frage: Enthält ein gegebener Graph eine unabhängige Menge der Größe k, also k Knoten, von denen keine zwei benachbart sind.

Problem (Clique). Frage: Enthält ein gegebener Graph eine Clique der Größe k, also einen vollständigen Untergraphen mit k Knoten?

Problem (Vertex Cover). Eine Knotenüberdeckung ist eine Teilmenge aller Knoten in einem Graph, sodass jede Kante im Graph mindestens einen dieser Knoten als Randpunkt besitzt. Frage: Enthält ein gegebener Graph eine Knotenüberdeckung der Größe k?

Def. Seien L_1 und L_2 Sprachen über Σ_1 bzw. Σ_2 . Eine **Polynomialzeit-Reduktion** von L_1 auf L_2 ist eine Funktion $f: \Sigma_1^* \to \Sigma_2^*$ mit folgenden Eigenschaften:

- Es gibt eine DTM M und ein Polynom p, sodass M auf jeder Eingabe $w \in \Sigma_1^*$ den Wert f(w) in maximal p(|w|) Schritten berechnet.
- Für alle $w \in \Sigma_1^*$ gilt: $w \in L_1 \iff f(w) \in L_2$

Notation. Wenn es eine Polynomialzeit-Reduktion von L_1 auf L_2 gibt, so schreiben wir $L_1 \leq_n L_2$

Lemma. Die Relation \leq_p ist reflexiv und transitiv.

Lemma. Es gibt Polynomialzeit-Reduktion zwischen den Problemen Independent Set, Clique und Vertex Cover.

Satz. Gilt $L_1 \leq_p L_2$ und ist $L_2 \in P$, dann ist auch $L_1 \in P$.

Def. Eine Sprache L heißt **NP-hart** oder **NP-schwer**, wenn $L' \leq_p L$ für alle $L' \in \text{NP}$. Ist L NP-schwer und gilt zugleich $L \in \text{NP}$, so heißt L **NP-vollständig**.

Notation.

 $SAT := \{\langle F \rangle \mid F \text{ ist eine erfüllbare Boolesche Formel in CNF} \}$

Satz (Cook). SAT ist NP-vollständig.

Satz. Independent Set (und somit auch Clique und Vertex Cover) sind NP-vollständig.