Markov 过程复习资料

白永乐

2024年6月18日

目录

2 基本概念和例子

2.1 基本概念

2.1.1 随机过程的定义

Definition 1. 设 I 是非空指标集, $(\Omega, \mathcal{F}, \mathbb{P})$ 是概率空间。若 $(X_{\alpha} : \alpha \in I)$ 是一组定义在 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的随机变量(取值为 \mathbb{R}^d),则 称 $(X_{\alpha} : \alpha \in I)$ 为一个随机过程。

Definition 2. 假设 $(X_{\alpha}: \alpha \in I)$ 和 $(Y_{\alpha}: \alpha \in J)$ 是两个随机过程。若对于任何有限序列 $(s_1, \dots, s_n) \subset I, (t_1, \dots, t_m) \subset J$,都有 $(X_{s_1}, \dots, X_{s_n}) \perp (Y_{t_1}, \dots, Y_{t_m})$,则称这两个**随机过程独立**。

2.1.2 轨道和修正

Definition 3. 设 $(X_{\alpha} : \alpha \in I)$ 为随机过程。固定 $\omega \in \Omega$,称 $t \mapsto X_t(\omega)$ 为 X 的一条**轨道**。

Definition 4. 称一个随机过程是(**左连续//右连续//连续//左极右连//左连右极**)的,若它的所有轨道都是(左连续//右连续//连续// 左极右连//左连右极的)。

Definition 5. 设 $(X_t:t\in I)$ 和 $(Y_t:t\in I)$ 是两个随机过程。若 $\forall t\in I$,有 $\mathbb{P}(X_t=Y_t)=1$,则称它们互为**修正**。若 $\mathbb{P}(\forall t\in I,X_t=Y_t)=1$,则称它们是**无区别**的。

Theorem 1. 设 $(X_t:t\geq 0)$ 和 $(Y_t:t\geq 0)$ 是两个右连续的随机过程,而 D 是 $(0,\infty)$ 的可数稠密子集。若 $\forall s\in D, \mathbb{P}(X_s=Y_s)=1$,则有 $(X_t:t\geq 0)$ 和 $(Y_t:t\geq 0)$ 是无区别的。

2.1.3 有限维分布族

为了简化记号, 我们用 S(I) 表示 I 的全体有序有限子集。即:

$$S(I) := \{(t_1, \dots, t_n) : n \ge 1, t_i \in I, \forall i = 1, \dots, n\}$$

用 E 表示 \mathbb{R}^d ,用 \mathcal{E} 表示博雷尔代数。

Definition 6. 设 I 是非空指标集。若对于每个 $J \in S(I)$,都对应一个 $(E^{I}J|, \mathcal{E}^{I}J|)$ 上的概率测度 u_{J} ,则称 $(\mu_{J}: I \in S(I))$ 为 E 上的一个**有限维分布族**,其中每个 μ_{J} 称为一个**有限维分布**。设 $X = (X_{t}: t \in I)$ 是一个随机过程,用 μ_{J}^{X} 表示 $(X_{t_{1}}, \dots, X_{t_{n}})$ 的分布。称 $\mathcal{D}_{X} := \{\mu_{J}^{X}: J \in S(I)\}$ 为 X 的有限维分布族,称 μ_{J}^{X} 为其中的一个有限维分布。

Definition 7. 给定 (E, \mathcal{E}) 上的有限维分布族 \mathcal{D} ,若存在随机过程 $X = (X_t : t \in I)$ 使得 $\mathcal{D}_X = \mathcal{D}$,则称 X 为 \mathcal{D} 的一个**实现**。若两个随机过程 X, Y 满足 $\mathcal{D}_X = \mathcal{D}_Y$,则称它们为**等价**的。两个等价的过程互称实现。显然,两个互为修正的随机过程一定等价,反过来却未必。

2.1.4 左极右连实现

Definition 8. 状态空间 $E = \mathbb{R}^d$ 上的随机过程有左极右连实现 \iff 它有左极右连修正。证明见教材 p5

2.2 随机游动

Definition 9. 设 $\{\xi_n : n \geq 1\}$ 是独立同分布的 d 维随机变量列,而 X_0 是与之独立的一个 d 维随机变量。令 $X_n := X_0 + \sum_{k=1}^n \xi_k$ 。 称 $(X_n : n \geq 0)$ 为 d 维**随机游动**,并称 $\{\xi_n : n \geq 1\}$ 为其**步长列**。

Definition 10. 若 X_0 , ξ_1 均取值与 \mathbb{Z}^d ,则该随机游动状态空间可以取为 \mathbb{Z}^d 。特别地,若还有 $\mathbb{P}(|\xi_1|=1)=1$,则称其为**简单随机游动**。进一步地,若对于 \mathbb{Z}^d 中的任一单位向量 v,均有 $\mathbb{P}(\xi_1=v)=\frac{1}{2d}$,则称其为**对称简单随机游动**。

2.2.1 轨道的无界性

方便起见,考虑 \mathbb{Z} 上的简单随机游动 S_n ,设其步长列为 $\xi_n: n \geq 1$ 。设 $\mathbb{P}(\xi_n = 1) = p$, $\mathbb{P}(\xi_n = -1) = q$, 其中 $p, q \in (0,1), p+q = 1$ 。

Theorem 2. $(S_n : n \ge 1)$ 的轨道是几乎必然无界的。即:

$$\mathbb{P}(\sup_{n\geq 0}|S_n|=\infty)=1. \tag{1}$$

证明见教材 p9

2.2.2 首达时分布

Definition 11. $i \in \mathbb{P}_i(\cdot) = \mathbb{P}(\cdot \mid S_0 = i)$.

Definition 12. 定义 $(S_n : n \ge 0)$ 到达 $x \in \mathbb{Z}$ 的**首达时** $\tau_x := \inf\{n \ge 0 : S_n = x\}$ 。

Theorem 3. 当 $p = q = \frac{1}{2}$ 时,对于 $a < b, i \in [a, b], a, b, i \in \mathbb{Z}$,有

$$\mathbb{P}_i(\tau_b < \tau_a) = \frac{i-a}{b-a}, \mathbb{P}_i(\tau_a < \tau_b) = \frac{b-i}{b-a}$$
(2)

当 $p \neq q$ 时,有

$$\mathbb{P}_{i}(\tau_{b} < \tau_{a}) = \frac{1 - (\frac{q}{p})^{i-a}}{1 - (\frac{q}{p})^{b-a}}, \mathbb{P}_{i}(\tau_{a} < \tau_{b}) = \frac{(\frac{q}{p})^{i-a} - (\frac{q}{p})^{b-a}}{1 - (\frac{q}{p})^{b-a}}$$
(3)

证明见教材 p10

Theorem 4. 当 $p \ge q$, 对 $a \le i \le b \in \mathbb{Z}$, 有

$$\mathbb{P}_i(\tau_a < \infty) = (\frac{q}{p})^{i-a}, \mathbb{P}_i(\tau_b < \infty) = 1 \tag{4}$$

当 $p \leq q$,有

$$\mathbb{P}_i(\tau_a < \infty) = 1, \mathbb{P}_i(\tau_b < \infty) = \left(\frac{p}{a}\right)^{b-i} \tag{5}$$

证明见教材 p11

2.3 布朗运动