Introducing an AR Model

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Mathematical Description of AR(1) Model

$$R_t = \mu + \phi R_{t-1} + \epsilon_t$$

- Since only one lagged value on right hand side, this is called:
 - AR model of order 1, or
 - AR(1) model
- AR parameter is ϕ
- ullet For stationarity, $-1 < \phi < 1$

Interpretation of AR(1) Parameter

 $R_t = \mu + \phi R_{t-1} + \epsilon_t$

- Negative ϕ : Mean Reversion
- Positive ϕ : Momentum

Comparison of AR(1) Time Series

•
$$\phi = 0.9$$

•
$$\phi = -0.9$$

•
$$\phi = -0.5$$

Comparison of AR(1) Autocorrelation Functions

•
$$\phi = 0.9$$

$$oldsymbol{\phi} \phi = 0.5$$

•
$$\phi = -0.9$$

$$oldsymbol{\phi} \phi = -0.5$$

Higher Order AR Models

• AR(1)

$$R_t = \mu + \phi_1 R_{t-1} + \epsilon_t$$

• AR(2)

$$R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \epsilon_t$$

• AR(3)

$$R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \phi_3 R_{t-3} + \epsilon_t$$

• ...

Simulating an AR Process

```
from statsmodels.tsa.arima_process import ArmaProcess
ar = np.array([1, -0.9])
ma = np.array([1])
AR_object = ArmaProcess(ar, ma)
simulated_data = AR_object.generate_sample(nsample=1000)
plt.plot(simulated_data)
```


Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Estimating and Forecasting an AR Model

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Estimating an AR Model

• To estimate parameters from data (simulated)

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
result = mod.fit()
```

Estimating an AR Model

• Full output (true $\mu=0$ and $\phi=0.9$)

print(result.summary())

ARMA Model Results										
Dep. Variable: Model: Method: Date: Time: Sample:		ARMA(1, css- ri, 01 Dec 20 15:34	0) Log mle S.D 017 AIC		1436 1438	5000 78.386 1.017 52.772 32.324 59.625				
	coef	std err	z	P> z	[95.0% Conf.	Int.]				
const ar.L1.y	-0.0361 0.9054	0.152 0.006	-0.238 151.020 Roots		-0.333 0.894	0.261 0.917				
==========	Real	Imaginary		Modulus	Frequ	iency				
AR.1	1.1045	+0.0000		1.1045	0.	.0000				

Estimating an AR Model

• Only the estimates of μ and ϕ (true $\mu=0$ and $\phi=0.9$)

```
print(result.params)
```

```
array([-0.03605989, 0.90535667])
```

Forecasting an AR Model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
res = mod.fit()
res.plot_predict(start='2016-07-01', end='2017-06-01')
plt.show()
```


Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Choosing the Right Model

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Identifying the Order of an AR Model

- The order of an AR(p) model will usually be unknown
- Two techniques to determine order
 - Partial Autocorrelation Function
 - Information criteria

Partial Autocorrelation Function (PACF)

$$R_{t} = \phi_{0,1} + \phi_{1,1} R_{t-1} + \epsilon_{1t}$$

$$R_{t} = \phi_{0,2} + \phi_{1,2} R_{t-1} + \phi_{2,2} R_{t-2} + \epsilon_{2t}$$

$$R_{t} = \phi_{0,3} + \phi_{1,3} R_{t-1} + \phi_{2,3} R_{t-2} + \phi_{3,3} R_{t-3} + \epsilon_{3t}$$

$$R_{t} = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t}$$

$$\vdots$$

Plot PACF in Python

- Same as ACF, but use plot_pacf instead of plt_acf
- Import module

```
from statsmodels.graphics.tsaplots import plot_pacf
```

Plot the PACF

```
plot_pacf(x, lags= 20, alpha=0.05)
```

Comparison of PACF for Different AR Models

• AR(1)

• AR(2)

• AR(3)

• White Noise

Information Criteria

- Information criteria: adjusts goodness-of-fit for number of parameters
- Two popular adjusted goodness-of-fit measures
 - AIC (Akaike Information Criterion)
 - BIC (Bayesian Information Criterion)

Information Criteria

• Estimation output

ARMA Model Results									
Dep. Variable: Model: Method: Date: Time: Sample:			0) Log mle S.D. 017 AIC	Observations: Likelihood of innovations	2500 -3536.481 0.996 7080.963 7104.259 7089.420				
=========	coef	std err	z	P> z	[95.0% Conf. Int.]				
ar.L1.y	-0.6130	0.019	-32.243	0.000	-0.015 0.026 -0.650 -0.576 -0.348 -0.274				
========	Real	Im	aginary	Modulus	Frequency				
AR.1 AR.2	-0.9859 -0.9859		1.4982j 1.4982j	1.7935 1.7935	-0.3426 0.3426				

Getting Information Criteria From 'statsmodels'

You learned earlier how to fit an AR model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
result = mod.fit()
```

And to get full output

```
result.summary()
```

• Or just the parameters

```
result.params
```

To get the AIC and BIC

```
result.aic
result.bic
```

Information Criteria

- Fit a simulated AR(3) to different AR(p) models
- Choose p with the lowest BIC

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

