

Chapter - Frequency-Domain Analysis of Captured IQ Data

What We're Going to Do

When we capture I/Q samples from the RTL-SDR, we're essentially freezing the **raw RF baseband signal** (complex-valued time series). Time-domain plots are useful to check if data is valid, but most of the real insights come from transforming into the **frequency domain** using the **Fourier Transform (FFT)**.

Our goals in this step:

- 1. Convert IQ samples → Spectrum
 - Use FFT to transform from time domain → frequency domain.
 - This tells us which frequencies are present and their relative power.
- 2. Plot the Power Spectrum (FFT magnitude)
 - x-axis: frequency bins (Hz)
 - y-axis: power (dB)
- 3. Plot the Spectrogram (Waterfall)
 - Spectrum over time (sliding FFTs).
 - Useful for seeing bursts, frequency hopping, or temporal activity.

4. Extract Key Insights

- Where is the signal centered?
- What's the occupied bandwidth?
- Are there bursts or hopping activity?

☆ The Method

1. Read IQ Data

- We'll start from your .bin capture (e.g., Prac_1.bin)
- Reshape into I/Q pairs (complex signal).

2. Compute FFT

• Choose FFT size (NFFT), typically power of 2 like 1024, 2048, 4096.

- · Apply a window (Hann) to reduce spectral leakage.
- Use fftshift so that 0 Hz is in the center of the plot.

3. Convert FFT Magnitude to dB

- 20 * log10(|FFT|)
- · This gives us the familiar spectrum view.

4. Spectrogram

- Split samples into overlapping windows.
- Compute FFT per window.
- Stack results → gives time vs frequency power view.

First the Idea:

Imagine your IQ samples are like a song recorded in a tape.

You hear the sound in time — but you don't know which notes (frequencies) are being played strongly or softly.

③ ### That's where the FFT comes in.

The FFT is like a magic prism: it takes your time-domain IQ samples (the messy wave) and splits them into frequency pieces.

Time domain \rightarrow tells you what the wave looks like over time.

Frequency domain \rightarrow tells you which frequencies are present and how strong they are.

That's the whole point:

Convert IQ samples \rightarrow FFT \rightarrow see the spectrum.

Capture samples (IQ = I + jQ, complex).

Run FFT (Fast Fourier Transform).

FFT is your spectrum analyzer in Python.

So, as Step 1: What are we trying to do?

We have IQ samples captured from the RTL-SDR.

In time-domain, IQ samples just look like noisy squiggles.

To know what frequencies are present, we need to look in the frequency domain.

That's where the FFT (Fast Fourier Transform) comes in → it's like turning a messy sound waveform into a "spectrum analyzer."

3 ### So the job is simple:

IQ samples (time-domain) → FFT → Spectrum (frequency vs power).

Note:-

IQ data is stored as complex numbers:

I (In-phase) → real part

Q (Quadrature) → imaginary part

Together they form a complex number: I + jQ.

That's why we don't use float here → floats can't carry both I & Q at once.

complex64 = 32-bit real + 32-bit imaginary → compact and standard for SDR data.

Plot the magnitude → boom, you see the spectrum.

np.fft.fft(raw)

Takes the IQ samples (time series) and transforms them to frequency domain.

The output array shows how much of each frequency is present.

Think of it as:

(3) "If I play all possible pure tones, how much does each tone match my captured signal?"

np.fft.fftshift(spectrum)

By default, FFT puts 0 Hz (DC) at the left edge of the plot.

That looks odd, because we usually expect negative frequencies on the left and positive frequencies on the right.

fftshift just re-centers the spectrum:

Middle = 0 Hz

Left = -Fs/2

Right = +Fs/2

This makes the spectrum look like what a spectrum analyzer shows.

np.abs(spectrum shifted) ** 2

FFT gives complex numbers (amplitude + phase).

But what we usually want is power (energy at each frequency).

np.abs(x) gives magnitude.

**2 squares it to get power.

© So this is basically: "How strong is each frequency component?"

☐ ### Plotting

X-axis: Frequency bins (not yet converted to Hz, but we can later with np.fft.fftfreq)

Y-axis: Power

Input: messy IQ squiggles

Output: clear spectrum of frequencies present

When you do:

```
spectrum = np.fft.fft(raw) raw has N samples (say, N = 4096). The FFT output is also length N. Each element spectrum[k] corresponds to a frequency bin, i.e., a tiny slice of the total frequency range. How bins map to actual frequencies Bin index k goes from 0 to N-1. Frequency per bin (\Delta f) = fs / N, where fs = sample rate. Bin 0 = 0 Hz (DC) Bin 1 = fs/N Hz ... Bin N-1 = (N-1)*(fs/N) Hz If you use fftshift, the bins get rearranged: Left half \rightarrow negative frequencies (-fs/2 ... 0) Right half \rightarrow positive frequencies (0 ... fs/2)
```

Quick example:

```
fs = 2.4 MHz N = 4096  
Then: \Delta f = fs / N = 2\_400\_000 / 4096 \approx 585.94 \text{ Hz per bin} Bin 0 \rightarrow 0 Hz  
Bin 1 \rightarrow 585.94 Hz  
Bin 2 \rightarrow 2 * 585.94 \approx 1171.88 Hz  
...  
Bin 2048 (middle after fftshift) \rightarrow 0 Hz  
Bin 0 after fftshift \rightarrow -fs/2 \approx -1.2 MHz  
Why we talk in bins vs frequency  
"Bin" is the index in the FFT array.  
Frequency is what the bin represents in Hz: f = k * fs / N (or after shift, f = (k-N/2)*fs/N).
```

Python Practical

import numpy as np import matplotlib.pyplot as plt

1. Load the raw IQ samples

raw = np.fromfile("Prac_1.bin", dtype=np.complex64)

2. Apply FFT to move from time → frequency domain

spectrum = np.fft.fft(raw)

3. Shift zero frequency (DC) to the center for better plotting

spectrum shifted = np.fft.fftshift(spectrum)

4. Convert to power (magnitude squared)

power = np.abs(spectrum shifted) ** 2

5. Plot the result

```
plt.plot(power)
plt.title("Frequency Spectrum")
plt.xlabel("Frequency Bin")
plt.ylabel("Power")
plt.show()
```

Read the IQ samples

```
raw = np.fromfile(filename, dtype=np.uint8)

I = raw[0::2].astype(np.float32) - 127.5

Q = raw[1::2].astype(np.float32) - 127.5

IQ = I + 1j*Q

• raw[0::2] → picks all I samples

• raw[1::2] → picks all Q samples

• astype(np.float32) → converts 8-bit integers to floats for calculations

• -127.5 → centers the data around 0 (from [0,255] → [-127.5,127.5])

• IQ = I + 1j*Q → builds a complex64 array that FFT can understand
```

② FFT: Time → Frequency domain

```
spectrum = np.fft.fft(IQ)
```

- Converts your time-domain complex signal into frequency bins.
- Each element spectrum[k] corresponds to the strength of a specific frequency component.

3 FFT Shift: Center 0 Hz

```
spectrum_shifted = np.fft.fftshift(spectrum)
```

- Moves DC (0 Hz) to the center of the array.
- Makes plotting intuitive: negative frequencies on the left, positive on the right.

4 Power Spectrum

```
power = np.abs(spectrum_shifted) ** 2
```

- FFT output is complex → has magnitude and phase.
- np.abs() → magnitude
- **2 → power (energy at each frequency bin)

5 Plotting

- First plot → raw FFT magnitude (not shifted)
- Second plot → shifted FFT for clear frequency visualization
- Third plot → power spectrum vs frequency bins

Mhat You'll See & Analyze

- FFT Plot (Spectrum)
 - Peaks → carriers or strong tones.
 - Width of main lobe → occupied bandwidth.
 - Noise floor visible at bottom.
- Spectrogram (Waterfall)
 - Horizontal bright lines → continuous signals (carriers).
 - Bursts → packet transmissions.
 - Slanted lines → frequency drift or Doppler.

Multiple bands → possible hopping or multi-signal environment.

✓ This builds directly on your basic signal properties