Evaluation of OCT Summary Measures for Detection of Glaucoma Progression

Emmanouil (Manos) Tsamis

1/26/2021

Purpose

To evaluate the performance of conventional and novel OCT summary measures on detecting progression of glaucomatous damage

Methods

HE Database

The total number of 3.5mm circle scans is 1803. There were also 1818 Posterior pole scans and 1859 BMO scans (i.e. sets of 24 radial scans).

There are 385 eyes from 198 patients with an average of $4.68311688311688~(\pm 3.9670978384381~\text{SD})~3.5\text{mm}$ circle scans (min: 1; max: 21)

For the posterior pole scans: 353 eyes from 198 patients with an average of 5.15014164305949 (± 4.31535396108195 SD) volume scans (min: 1; max: 28)

For the BMO scans: 403 eyes from 206 patients with an average of $4.61290322580645~(\pm 3.93593373751818~SD)$ sets of radial scans (min: 1; max: 21)

Circumpapillary RNFL

The following summary measures were calculated from every circle scan:

- Summary Measures
 - Global (G)
 - Temporal (T)
 - Temporal-Inferior (TI)
 - Temporal-Superior (TS)
 - Nasal-Inferior (NI)
 - Nasal-Superior (NS)
 - Nasal (N)

Note that the sectoral measures are based on Garway-Heath sectors.

Variability (short-term) Group

For a variability group, we collected all circle scans acquired within 4 months (+2 weeks); i.e. the short-term scans. The total number of repeat scans was 378. There were 161 eyes with short-term scans from 135 patients. Note the misalignment between number of eyes and number of patients. Since presence or absence of disease is not a factor for this group, MAPS non-study eyes were also included.

Mean age 55.3807407 (± 19.6227309); Median age 61.1 (IQR: 37.5). Mean number of tests: 3.3478261 (± 0.8892474); Median 4 (IQR: 2).

Progression (long-term) Study Group

For a progression study group, eyes with the most recent scan at least 11 months apart from the baseline test were included.

Eyes with at least 2 scans (1 baseline, 1 follow-up) were eligible for an event-based analysis.

Table 1: Characteristics of the Study Group, eligible for Event Analysis

					Average			
Number of	Mean	St.Dev.	Median	IQR	Number of	St. Dev.	Median Number	IQR
Study Eyes	Age	Age	Age	Age	Tests	Tests	of Tests	Tests
122	61.96066	6 17.14475	66.4	16.90833	6.639344	2.641267	7	4

Eyes with 4 or more scans were eligible for a trend-based analysis.

Table 2: Characteristics of the Study Group, eligible for Trend Analysis

					Average			
Number of	Mean	St.Dev.	Median	IQR	Number of	St. Dev.	Median Number	IQR
Study Eyes	Age	Age	Age	Age	Tests	Tests	of Tests	Tests
105	60.33524	4 17.73091	65.5	17.73333	7.304762	2.206301	7	3

Variability (Short-Term) Measures

Quantile Regression was used to derive thresholds of significant progression. Unlike regular linear regression (Least Squares), which calculates the conditional mean of the target across different values of the features, quantile regression estimates the conditional median (and other percentiles) of the target. This means that instead of being constants, the beta coefficients are now functions with a dependency on the quantile.

The table below provides those beta coefficients for the extreme 5 and 2.5 percentiles on both sides of the distribution (i.e. significant progression and significant improvement).

Progression based on Event Analysis

Table 3: Results of Event-Based Analysis for cRNFL metrics

Summary Metric	Study Group	Total Number	Significant Progression at 2.5%	Significant Progression at 5%
	Group	Tullibei	Significant 1 regression at 2.970	Biginneant i Togression at 970
${ m G}$	$^{\mathrm{HC}}$	28	2	3
G	P	85	24	30
N	$^{\mathrm{HC}}$	28	2	3
N	P	85	10	29
NI	$^{\mathrm{HC}}$	28	0	2
NI	P	85	12	24
NS	$^{\mathrm{HC}}$	28	2	5
NS	P	85	14	21
${ m T}$	$^{\mathrm{HC}}$	28	1	4
${ m T}$	P	85	15	21
TI	$^{\mathrm{HC}}$	28	1	2
${ m TI}$	P	85	14	26
TS	$^{\mathrm{HC}}$	28	1	3
TS	P	85	17	27

Progression based on Trend Analysis

Table 4: Results of Trend-Based Analysis for cRNFL metrics

Summary Metric	Study Group	Total Number	Significant Progression at 2.5%	Significant Progression at 5%
G	HC	27	5	6
G	P	72	24	27
$\mathbf N$	$^{\mathrm{HC}}$	27	6	7
N	P	72	12	19
NI	$^{\mathrm{HC}}$	27	4	5
NI	P	72	21	26
NS	$^{\mathrm{HC}}$	27	4	6
NS	P	72	21	25
${ m T}$	$^{\mathrm{HC}}$	27	4	4
${ m T}$	P	72	13	15
${ m TI}$	$^{\mathrm{HC}}$	27	4	5
${ m TI}$	P	72	17	23
TS	$^{\mathrm{HC}}$	27	1	3
TS	P	72	13	20

Table 5: Mean Slope per Group per Metric

Study Group	Summary Metric	Mean Slope
G	НС	-0.4527311
G	P	-0.7348051
N	$^{ m HC}$	-0.5764478
N	P	-0.2704823
NI	$^{ m HC}$	-0.4078135
NI	P	-1.3384401
NS	$^{\mathrm{HC}}$	-0.8448791

Study Group	Summary Metric	Mean Slope
NS	Р	-1.3928098
${ m T}$	$^{ m HC}$	-0.3141352
${ m T}$	P	-0.3244114
TI	$^{ m HC}$	-0.0114213
${ m TI}$	P	-1.3767285
TS	$^{ m HC}$	-0.5236468
TS	P	-1.0255303

Table 6: Results of Trend-Based Analysis for cRNFL metrics, accounting for age-effect $\,$

Summary Metric	Study Group	Total Number	Significant Progression at 2.5%	Significant Progression at 5%
G	нС	29	5	6
G	P	75	23	27
N	$^{\mathrm{HC}}$	29	6	7
N	P	75	12	19
NI	$_{ m HC}$	29	4	5
NI	P	75	22	27
NS	$_{ m HC}$	29	4	6
NS	P	75	21	24
${ m T}$	$_{ m HC}$	29	4	4
${ m T}$	P	75	13	15
${ m TI}$	$_{ m HC}$	29	4	5
${ m TI}$	P	75	19	25
TS	$_{ m HC}$	29	1	3
TS	P	75	14	20

Variability (short-term) Group - Macular Metrics

For a variability group, we collected all posterior pole scans acquired within 4 months (+2 weeks); i.e. the short-term scans. The total number of repeat scans was 388. There were 171 eyes with short-term scans from 138 patients. Note the misalignment between number of eyes and number of patients. Since presence or absence of disease is not a factor for this group, MAPS non-study eyes were also included.

Mean age 55.85 (± 19.6711699); Median age 61.35 (IQR: 36.625). Mean number of tests: 3.2690058 (± 0.912739); Median 4 (IQR: 2).

Table 7: Results of Event-Based Analysis for Macular metrics

Summary Metric	Study	Total Number	Cimpificant Dramaggian at 2 507	Cimpificant Dramagian at 507
Metric	Group	Number	Significant Progression at 2.5%	Significant Progression at 5%
G_8 degrees	$^{\mathrm{HC}}$	28	2	2
G_8 degrees	P	85	29	35
$I_8 degrees$	$^{\mathrm{HC}}$	28	0	4
$I_8 degrees$	Р	85	26	35
$S_8degrees$	$^{\mathrm{HC}}$	28	0	1
$S_8degrees$	P	85	18	23

Table 8: Results of Trend-Based Analysis for Mac metrics

Summary Metric	Study Group	Total Number	Significant Progression at 2.5%	Significant Progression at 5%
G_8degrees	НС	27	5	7
G_8 degrees	P	72	19	24
I_8degrees	$_{ m HC}$	27	4	8
I_8degrees	P	72	19	23
S_8degrees	$^{\mathrm{HC}}$	27	5	7
S_8 degrees	Р	72	16	17

Table 9: Mean Slope per Group per Mac Metric

Study Group	Summary Metric	Mean Slope
G_8degrees	HC	-0.2182008
G_8 degrees	P	-0.4012580
$I_8 degrees$	$^{\mathrm{HC}}$	-0.2515862
$I_8 degrees$	P	-0.4438990
$S_8degrees$	$^{\mathrm{HC}}$	-0.1895429
S_8 degrees	P	-0.3644707

Table 10: Results of Trend-Based Analysis for Mac metrics, accounting for age-effect

Summary Metric	Study Group	Total Number	Significant Progression at 2.5%	Significant Progression at 5%
G_8degrees	нС	27	5	7
G_8 degrees	P	77	19	23
$I_8 degrees$	$^{\mathrm{HC}}$	27	4	8
I_8degrees	P	77	20	23
$S_8degrees$	$^{\mathrm{HC}}$	27	5	7
$S_8degrees$	P	77	16	17

Structure-Structure Comparison

Table 11: Results of Event-Based Analysis for G and Gmac

		Significant	Significant	Significant	Significant
Study	Total	Progression at 2.5%	Progression at 5% G	Progression at 2.5%	Progression at 5% G
Group	Number	G AND Gmac	AND Gmac	G OR Gmac	OR Gmac
HC	28	0	0	4	5
P	85	16	20	37	45

Table 12: Results of Trend-Based Analysis for G and Gmac

•		Significant	Significant	Significant	Significant
Study	Total	Progression at 2.5%	Progression at 5% G	Progression at 2.5%	Progression at 5% G
Group	Number	G AND Gmac	AND Gmac	G OR Gmac	OR Gmac
HC	27	1	1	9	12
P	72	12	14	31	37

Table 13: Results of Event-Based Analysis for S and I sectors (hemifields)

				Significant	Significant		
		Significant	Significant	Progression at	Progression at	Significant	Significant
		Progression at	Progression at	2.5% (TI OR	5% (TI OR	Progression at	Progression at
		$2.5\%~{\rm TI~OR}$	$5\%~\mathrm{G~TI~OR}$	TS) AND	TS) AND	2.5% (TI AND	5% (TI AND
Stud	.yTotal	TS OR Imac	TS OR Imac	(Imac OR	(Imac OR	Imac) OR (TS	Imac) OR (TS
Grou	ıpNuml	ber OR Smac	OR Smac	Smac)	Smac)	AND Smac)	AND Smac)
$\overline{\mathrm{HC}}$	28	2	10	0	0	0	0
Р	85	39	53	16	23	14	21

Table 14: Results of Trend-Based Analysis for S and I sectors (hemifields)

				Significant	Significant		_
		Significant	Significant	Progression at	Progression at	Significant	Significant
		Progression at	Progression at	2.5% (TI OR	5% (TI OR	Progression at	Progression at
		2.5% TI OR	$5\%~\mathrm{G~TI~OR}$	TS) AND	TS) AND	2.5% (TI AND	5% (TI AND
Stud	yTotal	TS OR Imac	TS OR Imac	(Imac OR	(Imac OR	Imac) OR (TS	Imac) OR (TS
GroupNumber OR Smac		ber OR Smac	OR Smac	Smac)	Smac)	AND Smac)	AND Smac)
HC	27	11	16	1	2	0	2
Р	72	37	46	10	15	9	14