The germinationmetrics Package: A Brief Introduction

Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan 2025-08-19

ICAR-National Bureau of Plant Genetic Resources, New Delhi.

Contents

rview	1
allation	1
sion History	2
mination count data	2
gle-value germination indices	3
-linear regression analysis	29
Four-parameter hill function	29
pper functions	40
ng germinationmetrics	52
ion Info	52
erences	53

Overview

The package germinationmetrics is a collection of functions which implements various methods for describing the time-course of germination in terms of single-value germination indices as well as fitted curves.

The goal of this vignette is to introduce the users to these functions and get started in describing sequentially recorded germination count data. This document assumes a basic knowledge of R programming language.

Installation

The package can be installed using the following functions:

```
# Install from CRAN
install.packages('germinationmetrics', dependencies=TRUE)
# Install development version from Github
devtools::install_github("aravind-j/germinationmetrics")
```

Then the package can be loaded using the function

library(germinationmetrics)

Version History

The current version of the package is 0.1.8. The previous versions are as follows.

Table 1. Version history of germinationmetrics R package.

Version Date	
0.1.0 2018-0	4-17
0.1.1 2018-0	7-26
0.1.1.1 2018-1	0-16
0.1.2 2018-1	0-31
0.1.3 2019-0	1-19
0.1.4 2020-0	6-16
0.1.5 2021-0	2-17
0.1.6 2022-0	6-15
0.1.7 2022-0	8-28

To know detailed history of changes use news(package='germinationmetrics').

Germination count data

Typically in a germination test, the germination count data of a fixed number of seeds is recorded at regular intervals for a definite period of time or until all the seeds have germinated. These germination count data can be either partial or cumulative (Table 2).

Table 2: A typical germination count data.

intervals	counts	cumulative.counts
1	0	0
2	0	0
3	0	0
4	0	0
5	4	4
6	17	21
7	10	31
8	7	38
9	1	39
10	0	39
11	1	40
12	0	40
13	0	40
14	0	40

The time-course of germination can be plotted as follows.

Single-value germination indices

The details about the single-value germination indices implemented in **germinationmetrics** are described in Table 3.

 ${\bf Table~3:} {\bf Single-value~germination~indices~implemented~in~germinationmetrics.}$

Germination index	Function	Details	Unit	Measures	Reference
Germination percentage or Final germination percentage or Germinability (GP)	GermPercent	It is computed as follows. $GP=\frac{N_g}{N_t}\times 100$ Where, N_g is the number of germinated seeds and N_t is the total number of seeds.	Percentage (%)	Germination capacity	ISTA (2015)
Peak germination percentage (PGP)	PeakGermPercent	It is computed as follows. $PGP = \frac{N_{max}}{N_t} \times 100$ Where, N_{max} is the maximum number of seeds germinated per interval.	Percentage (%)	Germination capacity	Vallance (1950); Roh et al. (2004)
Time for the first germination or Germination time lag (t_0)	FirstGermTime	It is the time for first germination to occur (e.g. First day of germination). $t_0 = \min \left\{ T_i : N_i \neq 0 \right\}$ Where, T_i is the time from the start of the experiment to the i th interval and N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval)	time	Germination time	Edwards (1932); Czabator (1962); Goloff and Bazzaz (1975); Labouriau (1983a); Ranal (1999); Quintanilla et al. (2000)
Time for the last germination (t_g)	LastGermTime	It is the time for last germination to occur (e.g. Last day of germination) $t_g = \max \{T_i : N_i \neq 0\}$ Where, T_i is the time from the start of the experiment to the i th interval and N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval)	time	Germination time	Edwards (1932)
Time spread of germination or Germination distribution	TimeSpreadGerm	It is the difference between time for last germination (t_g) and time for first germination (t_0) . Time spread of germination = $t_g - t_0$	time	Germination time	Al-Mudaris (1998); Schrader and Graves (2000); Kader (2005)
Peak period of germination or Modal time of germination (t_{peak})	PeakGermTime	It is the time in which highest frequency of germinated seeds are observed and need not be unique. $t_{peak} = \{T_i: N_i = N_{max}\}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval) and N_{max} is the maximum number of seeds germinated per interval.	time	Germination time	Ranal and Santana (2006)

Germination index	Function	Details	Unit	Measures	Reference
Median germination time (t_{50}) (Coolbear)	t50	It is the time to reach 50% of final/maximum germination. With argument method specified as "coolbear", it is computed as follows.	time	Germination time	Coolbear et al. (1984)
		$t_{50} = T_i + \frac{(\frac{N+1}{2} - N_i)(T_j - T_i)}{N_j - N_i}$ Where, t_{50} is the median germination time, N is the final number of germinated seeds, and N_i and N_j are the total number of seeds germinated in adjacent counts at time T_i and T_j respectively, when $N_i < \frac{N+1}{2} < N_j$.			
Median germination time (t_{50}) (Farooq)	t50	With argument method specified as "farooq", it is computed as follows. $t_{50}=T_i+\frac{(\frac{N}{2}-N_i)(T_j-T_i)}{N_j-N_i}$	time	Germination time	Farooq et al. (2005)
		Where, t_{50} is the median germination time, N is the final number of germinated seeds, and N_i and N_j are the total number of seeds germinated in adjacent counts at time T_i and T_j respectively, when $N_i < \frac{N}{2} < N_j$.			
Mean germination time or Mean length of incubation time (\overline{T}) or Germination resistance (GR) or Sprouting index (SI) or Emergence index (EI)	MeanGermTime	It is the average length of time required for maximum germination of a seed lot and is estimated according to the following formula. $\overline{T} = \frac{\sum_{i=1}^k N_i T_i}{\sum_{i=1}^k N_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. It is the inverse of mean germination rate (\overline{V}) .	time	Germination time	Edmond and Drapala (1958); Czabator (1962); Smith and Millet (1964); Gordon (1969); Gordon (1971); Mock and Eberhart (1972); Ellis and Roberts (1980) Labouriau (1983a); Ranal and Santana (2006)
		$\overline{T}=rac{1}{\overline{V}}$			

Germination index	Function	Details	Unit	Measures	Reference
Variance of germination time (s_T^2)	VarGermTime	It is computed according to the following formula. $s_T^2 = \frac{\sum_{i=1}^k N_i (T_i - \overline{T})^2}{\sum_{i=1}^k N_i - 1}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	time ⁻¹	Germination time	Labouriau (1983a); Ranal and Santana (2006)
Standard error of germination time $(s_{\overline{T}})$	SEGermTime	It signifies the accuracy of the calculation of the mean germination time. It is estimated according to the following formula: $s_{\overline{T}} = \sqrt{\frac{s_T^2}{\sum_{i=1}^k N_i}}$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval) and k is the total number of time intervals.	time	Germination time	Labouriau (1983a); Ranal and Santana (2006)
Mean germination rate (\overline{V})	MeanGermRate	It is computed according to the following formula: $\overline{V} = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k N_i T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. It is the inverse of mean germination time (\overline{T}) .	${ m time^{-1}}$	Germination rate	Labouriau and Valadares (1976); Labouriau (1983b); Ranal and Santana (2006)

 $\overline{V} = \frac{1}{\overline{T}}$

6

Germination index	Function	Details	Unit	Measures	Reference
Coefficient of velocity of germination (CVG) or Coefficient of rate of germination (CRG) or Kotowski's coefficient of velocity	CVG	It is estimated according to the following formula. $CVG = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k N_i T_i} \times 100$ $CVG = \overline{V} \times 100$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	$\% \ \mathrm{time^{-1}}$	Germination rate	Kotowski (1926), Nichols and Heydecker (1968); Bewley and Black (1994); Labouriau (1983b); Scott et al. (1984)
Variance of germination rate (s_V^2)	VarGermRate	It is calculated according to the following formula. $s_V^2=\overline{V}^4\times s_T^2$ Where, s_T^2 is the variance of germination time.	${\rm time^{-2}}$	Germination rate	Labouriau (1983b); Ranal and Santana (2006)
Standard error of germination rate $(s_{\overline{V}})$	SEGermRate	It is estimated according to the following formula. $s_{\overline{V}} = \sqrt{\frac{s_V^2}{\sum_{i=1}^k N_i}}$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	${ m time}^{-1}$	Germination rate	Labouriau (1983b); Ranal and Santana (2006)
Germination rate as the reciprocal of the median time (v_{50})	GermRateRecip	It is the reciprocal of the median germination time $(t_{50}).$ $v_{50} = \frac{1}{t_{50}}$	${ m time^{-1}}$	Germination rate	Went (1957); Labouriau (1983b); Ranal and Santana (2006)
Speed of germination (S) or Germination rate Index or index of velocity of germination or Emergence rate index (Allan, Vogel and Peterson; Erbach; Hsu and Nelson) or Germination index (AOSA)	GermSpeed	It is the rate of germination in terms of the total number of seeds that germinate in a time interval. It is estimated as follows. $S = \sum_{i=1}^k \frac{N_i}{T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. Instead of germination counts, germination percentages may also be used for computation of speed of germination.	% time ⁻¹ or count time ⁻¹	Mixed	Throneberry and Smith (1955); Maguire (1962); Allan et al. (1962); Kendrick and Frankland (1969); Bouton et al. (1976); Erbach (1982); AOSA (1983); Khandakar and Bradbeer (1983); Hsu and Nelson (1986); Bradbeer (1988); Wardle et al. (1991)

7

Germination index Function

Details

Speed of accumulated germination $(S_{accumulated})$	GermSpeedAccumulate	It is the rate of germination in terms of the accumulated/cumulative total number of seeds that germinate in a time interval. It is estimated as follows. $S_{accumulated} = \sum_{i=1}^k \frac{\sum_{j=1}^i N_j}{T_i}$	% time ⁻¹ or count time ⁻¹	Mixed	Bradbeer (1988); Wardle et al. (1991); Haugland and Brandsaeter (1996); Santana and Ranal (2004)
		Where, T_i is the time from the start of the experiment to the i th interval, $\sum_{j=1}^i N_j$ is the cumuative/accumulated number of seeds germinated in the i th interval, and k is the total number of time intervals. Instead of germination counts, germination percentages may also be used for computation of speed of germination.			
Corrected speed of germination or Corrected germination rate index (\hat{S})	GermSpeedCorrected	It is computed as follows. $S_{corrected} = \frac{S}{FGP}$ Where, S is the germination speed computed with germination percentage instead of counts and FGP is the final germination percentage or germinability. It can also be computed from speed of accumulated germination (computed with germination percentage). $\hat{S}_{accumulated} = \frac{S_{accumulated}}{FGP}$ Where, $S_{accumulated}$ is the speed of accumulated germination computed with germination percentage instead of counts and FGP is the final germination percentage or germinability.	time ⁻¹	Mixed	Evetts and Burnside (1972)
Weighted germination percentage (WGP)	WeightGermPercent	It is estimated as follows. $WGP = \frac{\sum_{i=1}^k (k-i+1)N_i}{k\times N}\times 100$ Where, N_i is the number of seeds that germinated in the time interval i (not cumulative, but partial count), N is the total number of seeds tested, and k is the total number of time intervals.	Percentage (%)	Mixed	Reddy et al. (1985); Reddy (1978)
Mean germination percentage per unit time (\overline{GP})	MeanGermPercent	It is estimated as follows. $\overline{GP} = \frac{GP}{T_k}$ Where, GP is the final germination percentage, T_k is the time at the k th time interval, and k is the total number of time intervals required for final germination.	$\%~{ m time^{-1}}$	Mixed	Czabator (1962)

Unit

Reference

Measures

Germination index	Function	Details	Unit	Measures	Reference
Number of seeds germinated per unit time \overline{N}	MeanGermNumber	It is estimated as follows. $\overline{N} = \frac{N_g}{T_k}$ Where, N_g is the number of germinated seeds at the end of the germination test, T_k is the time at the k th time interval, and k is the total number of time intervals required for final germination.	count time ⁻¹	Mixed	Khamassi et al. (2013)
Timson's index $[\sum 10 \text{ (Ten summation)}, \sum 5 \text{ or } \sum 20] \text{ or Germination energy index } (GEI)$	TimsonsIndex	It is the progressive total of cumulative germination percentage recorded at specific intervals for a set period of time and is estimated in terms of cumulative germination percentage (G_i) as follows. $\Sigma k = \sum_{i=1}^k G_i$ Where, G_i is the cumulative germination percentage in time interval i , and k is the total number of time intervals. It also estimated in terms of partial germination percentage as follows. $\Sigma k = \sum_{i=1}^k g_i(k-j)$ Where, g_i is the germination (not cumulative, but partial germination) in time interval i (i varying from 0 to k), k is the total number of time intervals, and $j=i-1$.	Percentage (%)	Mixed	Grose and Zimmer (1958); Timson (1965); Lyon and Coffelt (1966); Chaudhary and Ghildyal (1970); Negm and Smith (1978); Brown and Mayer (1988); Baskin and Baskin (1998); Goodchild and Walker (1971)
Modified Timson's index (Σk_{mod}) (Labouriau)	TimsonsIndex	It is estimated as Timson's index Σk divided by the sum of partial germination percentages. $\Sigma k_{mod} = \frac{\Sigma k}{\sum_{i=1}^k g_i}$	no unit	Mixed	Ranal and Santana (2006)
Modified Timson's index (Σk_{mod}) (Khan and Unger)	TimsonsIndex	It is estimated as Timson's index (Σk) divided by the total time period of germination (T_k) . $\Sigma k_{mod} = \frac{\Sigma k}{T_k}$	% time ⁻¹	Mixed	Khan and Ungar (1984)

Germination index	Function	Details	Unit	Measures	Reference
Modified Emergence Rate Index (ERI_{mod}) or Modified Germination Rate Index (Shmueli and Goldberg; Santana and Ranal)	EmergenceRateIndex	It is estimated by dividing Emergence rate index (ERI) by total number of emerged seedlings (or germinated seeds). $ERI_{mod} = \frac{\sum_{i=i_0}^{k-1} N_i(k-i)}{N_g} = \frac{ERI}{N_g}$ Where, N_g is the total number of germinated seeds at the end of the test, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), i_0 is the time interval when emergence/germination started, and k is the total number of time intervals.	no unit	Mixed	Shmueli and Goldberg (1971); Santana and Ranal (2004); Ranal and Santana (2006)
Emergence Rate Index (ERI) or Germination Rate Index (Bilbro & Wanjura)	EmergenceRateIndex	It is the estimated as follows. $ERI = \frac{\sum_{i=1}^k N_i}{\overline{T}} = \frac{N_g}{\overline{T}}$ Where, N_g is the total number of germinated seeds at the end of the test, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and \overline{T} is the mean germination time or mean emergence time.	$\begin{array}{c} \text{count} \\ \text{time}^{-1} \end{array}$	Mixed	Bilbro and Wanjura (1982)
Emergence Rate Index (ERI) or Germination Rate Index (Fakorede)	EmergenceRateIndex	It is estimated as follows. $ERI=\frac{\overline{T}}{FGP/100}$ Where, \overline{T} is the Mean germination time and FGP is the final germination time.	time count ⁻¹	Mixed	Fakorede and Ayoola (1980); Fakorede and Ojo (1981); Fakorede and Agbana (1983)
Peak value (PV) (Czabator) or Emergence Energy (EE)	PeakValue	It is the accumulated number of seeds germinated at the point on the germination curve at which the rate of germination starts to decrease. It is computed as the maximum quotient obtained by dividing successive cumulative germination values by the relevant incubation time. $PV = \max\left(\frac{G_1}{T_1}, \frac{G_2}{T_2}, \cdots \frac{G_k}{T_k}\right)$ Where, T_i is the time from the start of the experiment to the i th interval, G_i is the cumulative germination percentage in the i th time interval, and k is the total number of time intervals.	% time ⁻¹	Mixed	Czabator (1962); Bonner (1967)

Germination index	Function	Details	Unit	Measures	Reference
Germination value (GV) (Czabator)	GermValue	It is computed as follows.	$\%^2 \text{ time}^{-2}$	Mixed	Czabator (1962); Brown and Mayer (1988)
(av) (czasator)		$GV = PV \times MDG$			Mayer (1000)
		Where, PV is the peak value and MDG is the mean daily germination percentage from the onset of germination. It can also be computed for other time intervals of successive germination counts, by replacing MDG with the mean germination percentage per unit time (\overline{GP}) . GV value can be modified (GV_{mod}) , to consider the entire duration from the beginning of the test instead of just from the onset of germination.			
Germination value (GV) (Diavanshir	GermValue	It is computed as follows.	$\%^2$ time ⁻¹	Mixed	Djavanshir and Pourbeik (1976); Brown and Mayer (1988)
and Pourbiek)		$GV = \frac{\sum DGS}{N} \times GP \times c$			Brown and Mayer (1988)
		Where, DGS is the daily germination speed computed by dividing cumulative germination percentage by the number of days since the since the onset of germination, N is the frequency or number of DGS calculated during the test, GP is the germination percentage expressed over 100, and c is a constant. The value of c is decided on the basis of average daily speed of			
		germination $(\sum \frac{DGS}{N})$. If it is less than 10, then c value of 10 can be used and if it is more than 10, then value of 7 or 8 can be used for c . GV value can be modified (GV_{mod}) , to consider the entire duration from the beginning of the test instead of just from the onset of germination.			
Coefficient of uniformity of germination (CUG)	CUGerm	It is computed as follows. $CUG = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k (\overline{T} - T_i)^2 N_i}$	time ⁻²	Germination unifromity	Heydecker (1972); Bewley and Black (1994)
		Where, \overline{T} is the the mean germination time, T_i is the time from the start of the experiment to the <i>i</i> th interval (day for the example), N_i is the number of seeds germinated in the <i>i</i> th time interval (not the accumulated number, but the number corresponding to the <i>i</i> th interval), and k is the total number of time intervals.			
Coefficient of variation of the germination time (CV_T)	CVGermTime	It is estimated as follows. $CV_T = \sqrt{\frac{s_T^2}{\overline{T}}} \label{eq:cvt}$	no unit	Germination unifromity	Gomes (1960); Ranal and Santana (2006)
		Where, s_T^2 is the variance of germination time and \overline{T} is the mean germination time.			

Germination index	Function	Details	Unit	Measures	Reference
Synchronization index (\overline{E}) or Uncertainty of the germination process (U) or informational entropy (H)	GermUncertainty	It is estimated as follows. $\overline{E} = -\sum_{i=1}^k f_i \log_2 f_i$ Where, f_i is the relative frequency of germination $(f_i = \frac{N_i}{\sum_{i=1}^k N_i}), N_i \text{ is the number of seeds germinated on the}$ i th time interval, and k is the total number of time intervals.	bit	Germination synchrony	Shannon (1948); Labouriau and Valadares (1976); Labouriau (1983b)
Synchrony of germination (Z index)	GermSynchrony	It is computed as follows. $Z = \frac{\sum_{i=1}^k C_{N_i,2}}{C_{\Sigma N_i,2}}$ Where, $C_{N_i,2}$ is the partial combination of the two germinated seeds from among N_i , the number of seeds germinated on the i th time interval (estimated as $C_{N_i,2} = \frac{N_i(N_i-1)}{2}$), and $C_{\Sigma N_i,2}$ is the partial combination of the two germinated seeds from among the total number of seeds germinated at the final count, assuming that all seeds that germinated did so simultaneously.	no unit	Germination synchrony	Primack (1985); Ranal and Santana (2006)

Examples

```
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
z \leftarrow c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
int <- 1:length(x)</pre>
# From partial germination counts
GermPercent(germ.counts = x, total.seeds = 50)
GermPercent()
[1] 80
PeakGermPercent(germ.counts = x, intervals = int, total.seeds = 50)
[1] 34
# For multiple peak germination times
PeakGermPercent(germ.counts = z, intervals = int, total.seeds = 50)
Warning in PeakGermPercent(germ.counts = z, intervals = int, total.seeds = 50): Multiple peak germinati
[1] 22
# From cumulative germination counts
GermPercent(germ.counts = y, total.seeds = 50, partial = FALSE)
[1] 80
PeakGermPercent(germ.counts = y, intervals = int, total.seeds = 50,
                partial = FALSE)
[1] 34
# For multiple peak germination times
PeakGermPercent(germ.counts = cumsum(z), intervals = int, total.seeds = 50,
                partial = FALSE)
Warning in PeakGermPercent(germ.counts = cumsum(z), intervals = int, total.seeds = 50, : Multiple peak
[1] 22
# From number of germinated seeds
GermPercent(germinated.seeds = 40, total.seeds = 50)
[1] 80
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
z \leftarrow c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
int <- 1:length(x)</pre>
# From partial germination counts
```

```
FirstGermTime(germ.counts = x, intervals = int)
FirstGermTime(), LastGermTime(), PeakGermTime(), TimeSpreadGerm()
[1] 5
LastGermTime(germ.counts = x, intervals = int)
[1] 11
TimeSpreadGerm(germ.counts = x, intervals = int)
[1] 6
PeakGermTime(germ.counts = x, intervals = int)
[1] 6
# For multiple peak germination times
PeakGermTime(germ.counts = z, intervals = int)
Warning in PeakGermTime(germ.counts = z, intervals = int): Multiple peak germination times exist.
[1] 5 6
# From cumulative germination counts
FirstGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 5
LastGermTime(germ.counts = y, intervals = int, partial = FALSE)
TimeSpreadGerm(germ.counts = y, intervals = int, partial = FALSE)
PeakGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
# For multiple peak germination time
PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE)
Warning in PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE): Multiple peak germi
[1] 5 6
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
t50(germ.counts = x, intervals = int, method = "coolbear")
t50()
[1] 5.970588
```

```
t50(germ.counts = x, intervals = int, method = "farooq")
[1] 5.941176
# From cumulative germination counts
t50(germ.counts = y, intervals = int, partial = FALSE, method = "coolbear")
[1] 5.970588
t50(germ.counts = y, intervals = int, partial = FALSE, method = "farooq")
[1] 5.941176
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
MeanGermTime(germ.counts = x, intervals = int)
MeanGermTime(), VarGermTime(), SEGermTime(), CVGermTime()
[1] 6.7
VarGermTime(germ.counts = x, intervals = int)
[1] 1.446154
SEGermTime(germ.counts = x, intervals = int)
[1] 0.1901416
CVGermTime(germ.counts = x, intervals = int)
[1] 0.1794868
# From cumulative germination counts
MeanGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.7
VarGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 1.446154
SEGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1901416
CVGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1794868
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
```

```
# From partial germination counts
MeanGermRate(germ.counts = x, intervals = int)
MeanGermRate(), CVG(), VarGermRate(), SEGermRate(), GermRateRecip()
[1] 0.1492537
CVG(germ.counts = x, intervals = int)
[1] 14.92537
VarGermRate(germ.counts = x, intervals = int)
[1] 0.0007176543
SEGermRate(germ.counts = x, intervals = int)
[1] 0.004235724
GermRateRecip(germ.counts = x, intervals = int, method = "coolbear")
[1] 0.1674877
GermRateRecip(germ.counts = x, intervals = int, method = "farooq")
[1] 0.1683168
# From cumulative germination counts
MeanGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1492537
CVG(germ.counts = y, intervals = int, partial = FALSE)
[1] 14.92537
VarGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.0007176543
SEGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.004235724
GermRateRecip(germ.counts = y, intervals = int,
              method = "coolbear", partial = FALSE)
[1] 0.1674877
GermRateRecip(germ.counts = y, intervals = int,
              method = "farooq", partial = FALSE)
[1] 0.1683168
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
```

```
GermSpeed(germ.counts = x, intervals = int)
GermSpeed(), GermSpeedAccumulated(), GermSpeedCorrected()
[1] 6.138925
GermSpeedAccumulated(germ.counts = x, intervals = int)
[1] 34.61567
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                  method = "normal")
[1] 0.1534731
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                  method = "accumulated")
[1] 0.8653917
# From partial germination counts (with percentages instead of counts)
GermSpeed(germ.counts = x, intervals = int,
percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = x, intervals = int,
                    percent = TRUE, total.seeds = 50)
[1] 69.23134
# From cumulative germination counts
GermSpeed(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.138925
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
[1] 34.61567
GermSpeedCorrected(germ.counts = y, intervals = int,
                  partial = FALSE, total.seeds = 50, method = "normal")
[1] 0.1534731
GermSpeedCorrected(germ.counts = y, intervals = int,
                  partial = FALSE, total.seeds = 50, method = "accumulated")
[1] 0.8653917
# From cumulative germination counts (with percentages instead of counts)
#______
GermSpeed(germ.counts = y, intervals = int, partial = FALSE,
         percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
                    percent = TRUE, total.seeds = 50)
```

[1] 47.42857

MeanGermPercent(), MeanGermNumber()

[1] 5.714286

```
MeanGermNumber(germ.counts = x, intervals = int)
```

[1] 2.857143

```
# From cumulative germination counts
#-----
MeanGermPercent(germ.counts = y, total.seeds = 50, intervals = int, partial = FALSE)
```

[1] 5.714286

```
MeanGermNumber(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 2.857143

```
# From number of germinated seeds
#------
MeanGermPercent(germinated.seeds = 40, total.seeds = 50, intervals = int)
```

[1] 5.714286

```
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)
```

```
# From partial germination counts
# Without max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50)
TimsonsIndex(), GermRateGeorge()
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
            modification = "none")
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
            modification = "labouriau")
[1] 8.3
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "khanungar")
[1] 47.42857
GermRateGeorge(germ.counts = x, intervals = int)
[1] 332
# With max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50, max = 10)
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "none")
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "labouriau")
[1] 4.410256
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "khanungar")
[1] 24.57143
GermRateGeorge(germ.counts = x, intervals = int, max = 10)
GermRateGeorge(germ.counts = x, intervals = int, max = 14)
[1] 332
# From cumulative germination counts
# Without max specified
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
         total.seeds = 50)
```

```
[1] 664
```

[1] 664

[1] 8.3

[1] 47.42857

```
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 332

[1] 344

[1] 344

[1] 4.410256

[1] 24.57143

[1] 172

[1] 332

```
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)
```

```
# From partial germination counts
GermIndex(germ.counts = x, intervals = int, total.seeds = 50)
GermIndex()
[1] 5.84
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
          modification = "none")
[1] 5.84
GermIndex(germ.counts = x, intervals = int, total.seeds = 50,
          modification = "santanaranal")
[1] 7.3
# From cumulative germination counts
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
  total.seeds = 50)
[1] 5.84
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
          total.seeds = 50,
          modification = "none")
[1] 5.84
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
          total.seeds = 50,
          modification = "santanaranal")
[1] 7.3
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
EmergenceRateIndex(germ.counts = x, intervals = int, total.seeds = 50)
EmergenceRateIndex()
[1] 292
EmergenceRateIndex(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "shmueligoldberg")
[1] 292
EmergenceRateIndex(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "sgsantanaranal")
```

[1] 7.3

```
EmergenceRateIndex(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "bilbrowanjura")
[1] 5.970149
EmergenceRateIndex(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "fakorede")
[1] 8.375
# From cumulative germination counts
EmergenceRateIndex(germ.counts = y, intervals = int, total.seeds = 50,
                   partial = FALSE)
[1] 292
EmergenceRateIndex(germ.counts = y, intervals = int, total.seeds = 50,
                   partial = FALSE,
                   method = "shmueligoldberg")
[1] 292
EmergenceRateIndex(germ.counts = y, intervals = int, total.seeds = 50,
                   partial = FALSE,
                   method = "sgsantanaranal")
[1] 7.3
EmergenceRateIndex(germ.counts = y, intervals = int, total.seeds = 50,
                   partial = FALSE,
                   method = "bilbrowanjura")
[1] 5.970149
EmergenceRateIndex(germ.counts = y, intervals = int, total.seeds = 50,
                   partial = FALSE,
                   method = "fakorede")
[1] 8.375
x \leftarrow c(0, 0, 34, 40, 21, 10, 4, 5, 3, 5, 8, 7, 7, 6, 6, 4, 0, 2, 0, 2)
y \leftarrow c(0, 0, 34, 74, 95, 105, 109, 114, 117, 122, 130, 137, 144, 150,
      156, 160, 160, 162, 162, 164)
int <- 1:length(x)</pre>
total.seeds = 200
# From partial germination counts
PeakValue(germ.counts = x, intervals = int, total.seeds = 200)
PeakValue(), GermValue()
[1] 9.5
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "czabator")
```

\$`Germination Value`

[1] 38.95

Γ	[2]	П	
L	ᆫᅩ」	_	

	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS
3	34	3	34	17.0	5.666667
4	40	4	74	37.0	9.250000
5	21	5	95	47.5	9.500000
6	10	6	105	52.5	8.750000
7	4	7	109	54.5	7.785714
8	5	8	114	57.0	7.125000
9	3	9	117	58.5	6.500000
10	5	10	122	61.0	6.100000
11	8	11	130	65.0	5.909091
12	7	12	137	68.5	5.708333
13	7	13	144	72.0	5.538462
14	6	14	150	75.0	5.357143
15	6	15	156	78.0	5.200000
16	4	16	160	80.0	5.000000
17	0	17	160	80.0	4.705882
18	2	18	162	81.0	4.500000
19	0	19	162	81.0	4.263158
20	2	20	164	82.0	4.100000
_	(

GermValue(germ.counts = x, intervals = int, total.seeds = 200,
 method = "dp", k = 10)

\$`Germination Value`

[1] 53.36595

[[2]]

	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS	SumDGSbyN	GV
3	34	3	34	17.0	5.666667	5.666667	9.633333
4	40	4	74	37.0	9.250000	7.458333	27.595833
5	21	5	95	47.5	9.500000	8.138889	38.659722
6	10	6	105	52.5	8.750000	8.291667	43.531250
7	4	7	109	54.5	7.785714	8.190476	44.638095
8	5	8	114	57.0	7.125000	8.012897	45.673512
9	3	9	117	58.5	6.500000	7.796769	45.611097
10	5	10	122	61.0	6.100000	7.584673	46.266503
11	8	11	130	65.0	5.909091	7.398497	48.090230
12	7	12	137	68.5	5.708333	7.229481	49.521942
13	7	13	144	72.0	5.538462	7.075752	50.945411
14	6	14	150	75.0	5.357143	6.932534	51.994006
15	6	15	156	78.0	5.200000	6.799262	53.034246
16	4	16	160	80.0	5.000000	6.670744	53.365948
17	0	17	160	80.0	4.705882	6.539753	52.318022
18	2	18	162	81.0	4.500000	6.412268	51.939373
19	0	19	162	81.0	4.263158	6.285850	50.915385
20	2	20	164	82.0	4.100000	6.164414	50.548194

\$testend

[1] 16

```
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
    method = "czabator", from.onset = FALSE)
```

\$`Germination Value` [1] 38.95

[[2]]

germ.counts	${\tt intervals}$	${\tt Cumulative.germ.counts}$	Cumulative.germ.percent	DGS
0	1	0	0.0	0.000000
0	2	0	0.0	0.000000
34	3	34	17.0	5.666667
40	4	74	37.0	9.250000
21	5	95	47.5	9.500000
10	6	105	52.5	8.750000
4	7	109	54.5	7.785714
5	8	114	57.0	7.125000
3	9	117	58.5	6.500000
5	10	122	61.0	6.100000
8	11	130	65.0	5.909091
7	12	137	68.5	5.708333
7	13	144	72.0	5.538462
6	14	150	75.0	5.357143
6	15	156	78.0	5.200000
4	16	160	80.0	5.000000
0	17	160	80.0	4.705882
2	18	162	81.0	4.500000
0	19	162	81.0	4.263158
2	20	164	82.0	4.100000
	0 0 34 40 21 10 4 5 3 5 8 7 7 7 6 6 6 4 0 2	0 1 0 2 34 3 40 4 21 5 10 6 4 7 5 8 3 9 5 10 8 11 7 12 7 13 6 14 6 15 4 16 0 17 2 18 0 19	0 1 0 0 2 0 34 3 34 40 4 74 21 5 95 10 6 105 4 7 109 5 8 114 3 9 117 5 10 122 8 11 130 7 12 137 7 13 144 6 14 150 6 15 156 4 16 160 0 17 160 2 18 162 0 19 162	0 2 0 0.0 34 3 34 17.0 40 4 74 37.0 21 5 95 47.5 10 6 105 52.5 4 7 109 54.5 5 8 114 57.0 3 9 117 58.5 5 10 122 61.0 8 11 130 65.0 7 12 137 68.5 7 13 144 72.0 6 14 150 75.0 6 15 156 78.0 4 16 160 80.0 0 17 160 80.0 2 18 162 81.0 0 19 162 81.0

GermValue(germ.counts = x, intervals = int, total.seeds = 200,
 method = "dp", k = 10, from.onset = FALSE)

\$`Germination Value`

[1] 46.6952

[[2]]

L L-							
	germ.counts	${\tt intervals}$	${\tt Cumulative.germ.counts}$	${\tt Cumulative.germ.percent}$	DGS	${\tt SumDGSbyN}$	GV
1	0	1	0	0.0	0.000000	0.000000	0.000000
2	0	2	0	0.0	0.000000	0.000000	0.000000
3	34	3	34	17.0	5.666667	1.888889	3.211111
4	40	4	74	37.0	9.250000	3.729167	13.797917
5	21	5	95	47.5	9.500000	4.883333	23.195833
6	10	6	105	52.5	8.750000	5.527778	29.020833
7	4	7	109	54.5	7.785714	5.850340	31.884354
8	5	8	114	57.0	7.125000	6.009673	34.255134
9	3	9	117	58.5	6.500000	6.064153	35.475298
10	5	10	122	61.0	6.100000	6.067738	37.013202
11	8	11	130	65.0	5.909091	6.053316	39.346552
12	7	12	137	68.5	5.708333	6.024567	41.268285
13	7	13	144	72.0	5.538462	5.987174	43.107655
14	6	14	150	75.0	5.357143	5.942172	44.566291
15	6	15	156	78.0	5.200000	5.892694	45.963013
16	4	16	160	80.0	5.000000	5.836901	46.695205
17	0	17	160	80.0	4.705882	5.770370	46.162961
18	2	18	162	81.0	4.500000	5.699794	46.168331
19	0	19	162	81.0	4.263158	5.624182	45.555871
20	2	20	164	82.0	4.100000	5.547972	45.493374

\$testend

```
[1] 16
```

[1] 9.5

\$`Germination Value`

[1] 38.95

[[2]]

	germ.counts	intervals	${\tt Cumulative.germ.counts}$	Cumulative.germ.percent	DGS
3	34	3	34	17.0	5.666667
4	40	4	74	37.0	9.250000
5	21	5	95	47.5	9.500000
6	10	6	105	52.5	8.750000
7	4	7	109	54.5	7.785714
8	5	8	114	57.0	7.125000
9	3	9	117	58.5	6.500000
10	5	10	122	61.0	6.100000
11	8	11	130	65.0	5.909091
12	7	12	137	68.5	5.708333
13	7	13	144	72.0	5.538462
14	6	14	150	75.0	5.357143
15	6	15	156	78.0	5.200000
16	4	16	160	80.0	5.000000
17	0	17	160	80.0	4.705882
18	2	18	162	81.0	4.500000
19	0	19	162	81.0	4.263158
20	2	20	164	82.0	4.100000

\$`Germination Value`

[1] 53.36595

[[2]]

	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS	SumDGSbyN	GV
3	34	3	34	.	5.666667	5.666667	9.633333
4	40	4	74	37.0	9.250000	7.458333	27.595833
5	21	5	95	47.5	9.500000	8.138889	38.659722
6	10	6	105	52.5	8.750000	8.291667	43.531250
7	4	7	109	54.5	7.785714	8.190476	44.638095
8	5	8	114	57.0	7.125000	8.012897	45.673512
9	3	9	117	58.5	6.500000	7.796769	45.611097
10	5	10	122	61.0	6.100000	7.584673	46.266503
11	8	11	130	65.0	5.909091	7.398497	48.090230
12	7	12	137	68.5	5.708333	7.229481	49.521942
13	7	13	144	72.0	5.538462	7.075752	50.945411

14	6	14	150	75.0 5.357143	6.932534 51.994006
15	6	15	156	78.0 5.200000	6.799262 53.034246
16	4	16	160	80.0 5.000000	6.670744 53.365948
17	0	17	160	80.0 4.705882	6.539753 52.318022
18	2	18	162	81.0 4.500000	6.412268 51.939373
19	0	19	162	81.0 4.263158	6.285850 50.915385
20	2	20	164	82.0 4.100000	6.164414 50.548194

\$testend

[1] 16

\$`Germination Value`

[1] 38.95

[[2]]

	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS
1	0	1	0	0.0	0.000000
2	0	2	0	0.0	0.000000
3	34	3	34	17.0	5.666667
4	40	4	74	37.0	9.250000
5	21	5	95	47.5	9.500000
6	10	6	105	52.5	8.750000
7	4	7	109	54.5	7.785714
8	5	8	114	57.0	7.125000
9	3	9	117	58.5	6.500000
10	5	10	122	61.0	6.100000
11	8	11	130	65.0	5.909091
12	7	12	137	68.5	5.708333
13	7	13	144	72.0	5.538462
14	6	14	150	75.0	5.357143
15	6	15	156	78.0	5.200000
16	4	16	160	80.0	5.000000
17	0	17	160	80.0	4.705882
18	2	18	162	81.0	4.500000
19	0	19	162	81.0	4.263158
20	2	20	164	82.0	4.100000

\$`Germination Value`

[1] 46.6952

[[2]]

	-11						
	germ.counts	${\tt intervals}$	Cumulative.germ.counts	Cumulative.germ.percent	DGS	${\tt SumDGSbyN}$	GV
1	0	1	0	0.0	0.000000	0.000000	0.000000
2	0	2	0	0.0	0.000000	0.000000	0.000000
3	34	3	34	17.0	5.666667	1.888889	3.211111
4	40	4	74	37.0	9.250000	3.729167	13.797917
5	21	5	95	47.5	9.500000	4.883333	23.195833
6	10	6	105	52.5	8.750000	5.527778	29.020833
7	4	7	109	54.5	7.785714	5.850340	31.884354

8	5	8	114	57.0 7.125000	6.009673 34.255134
9	3	9	117	58.5 6.500000	6.064153 35.475298
10	5	10	122	61.0 6.100000	6.067738 37.013202
11	8	11	130	65.0 5.909091	6.053316 39.346552
12	7	12	137	68.5 5.708333	6.024567 41.268285
13	7	13	144	72.0 5.538462	5.987174 43.107655
14	6	14	150	75.0 5.357143	5.942172 44.566291
15	6	15	156	78.0 5.200000	5.892694 45.963013
16	4	16	160	80.0 5.000000	5.836901 46.695205
17	0	17	160	80.0 4.705882	5.770370 46.162961
18	2	18	162	81.0 4.500000	5.699794 46.168331
19	0	19	162	81.0 4.263158	5.624182 45.555871
20	2	20	164	82.0 4.100000	5.547972 45.493374

\$testend

[1] 16

CUGerm()

[1] 0.7092199

```
# From cumulative germination counts
#-----
CUGerm(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 0.7092199

GermSynchrony(), GermUncertainty()

[1] 0.2666667

```
GermUncertainty(germ.counts = x, intervals = int)
```

[1] 2.062987

```
# From cumulative germination counts
#------
GermSynchrony(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 0.2666667

GermUncertainty(germ.counts = y, intervals = int, partial = FALSE)

[1] 2.062987

Non-linear regression analysis

Several mathematical functions have been used to fit the cumulative germination count data and describe the germination process by non-linear regression analysis. They include functions such as Richard's, Weibull, logistic, log-logistic, gaussian, four-parameter hill function etc. Currently germinationmetrics implements the four-parameter hill function to fit the count data and computed various associated metrics.

Four-parameter hill function

The four-parameter hill function defined as follows (El-Kassaby et al., 2008).

$$f(x) = y = y_0 + \frac{ax^b}{x^b + c^b}$$

Where, y is the cumulative germination percentage at time x, y_0 is the intercept on the y axis, a is the asymptote, b is a mathematical parameter controlling the shape and steepness of the germination curve and c is the "half-maximal activation level".

this function can also be be reparameterized by substituting b with e^{β} to constraint b to positive values only.

$$y = y_0 + \frac{ax^{e^{\beta}}}{c^{e^{\beta}} + x^{e^{\beta}}}$$

Where, $b = e^{\beta}$ and $\beta = \log_e(b)$.

The details of various parameters that are computed from this function are given in Table 4.

Table 4 Germination parameters estimated from the four-parameter hill function.

Germination parameters	Details	Unit	Measures
y intercept (y_0)	The intercept on the y axis.		
Asymptote (a)	It is the maximum cumulative germination percentage, which is equivalent to germination capacity.	%	Germination capacity
Shape and steepness (b)	Mathematical parameter controlling the shape and steepness of the germination curve. The larger the b , the steeper the rise toward the asymptote a , and the shorter the time between germination onset and maximum germination.		Germination rate
Half-maximal activation level (c)	Time required for 50% of viable seeds to germinate.	time	Germination time
lag	It is the time at germination onset and is computed by solving four-parameter hill function after setting y to 0 as follows. $lag=b\sqrt{\frac{-y_0c^b}{a+y_0}}$	time	Germination time

Germination parameters	Details	Unit	Measures
$\overline{D_{lag-50}}$	The duration between the time at germination onset (lag) and that at 50% germination (c) .	time	Germination time
$t_{50_{total}}$	Time required for 50% of total seeds to germinate.	time	Germination time
$t_{50_{germinated}}$	Time required for 50% of viable/germinated seeds to germinate	time	Germination time
$t_{x_{total}}$	Time required for $x\%$ of total seeds to germinate.	time	Germination time
$t_{x_{germinated}}$	Time required for $x\%$ of viable/germinated seeds to germinate	time	Germination time
Uniformity $(U_{t_{max}-t_{min}})$	It is the time interval between the percentages of viable seeds specified in the arguments umin and umin to germinate.	time	Germination time
Time at maximum germination rate $(TMGR)$	The partial derivative of the four-parameter hill function gives the instantaneous rate of germination (s) as follows.	time	Germination time
	$s = \frac{\partial y}{\partial x} = \frac{abc^b x^{b-1}}{(c^b + x^b)^2}$		
	From this function for instantaneous rate of germination, $TMGR$ can be estimated as follows.		
	$TMGR = b\sqrt{\frac{c^b(b-1)}{b+1}}$		
	It represents the point in time when the instantaneous rate of germination starts to decline.		
Area under the curve (AUC)	It is obtained by integration of the fitted curve between time 0 and time specified in the argument tmax.		Mixed
MGT	Calculated by integration of the fitted curve and proper normalisation.	time	Germination time
Skewness	It is computed as follows.		
	$\frac{MGT}{t_{50_{germinated}}}$		

Examples

```
FourPHFfit(germ.counts = x, intervals = int, total.seeds = 50, tmax = 20)
FourPHFfit()
$data
   gp csgp intervals
       0
   0
2
   0
        0
                  2
3
        0
                  3
   0
4
   0
        0
                  4
5
   8
        8
                  5
6 34
       42
                  6
7
                  7
  20
       62
8
  14
       76
                  8
9
   2
       78
                 9
10 0
       78
                 10
11 2
       80
                 11
12 0
       80
                 12
13 0
       80
                 13
                 14
14 0
       80
$Parameters
 term estimate std.error statistic
                                      p.value
1 bta 2.290709 0.05602634 40.88628 2.965932e-14
    c 6.034954 0.03872162 155.85488 3.270089e-21
$Fit
    sigma isConv
                      finTol
                               logLik
                                           AIC
                                                   BIC deviance df.residual nobs
1 1.61522 TRUE 7.105427e-14 -25.49868 56.99736 58.91453 31.30723
                                                                  12 14
$a
[1] 80
$b
[1] 9.881937
$с
[1] 6.034954
$y0
[1] 0
$lag
[1] 0
$Dlag50
[1] 6.034954
$t50.total
[1] 6.355121
$txp.total
     10
```

4.956264 6.744598

0

0

```
$t50.Germinated
[1] 6.034954
$txp.Germinated
     10
4.831807 6.287724
$Uniformity
       90
                 10 uniformity
 7.537690
          4.831807
                      2.705882
$TMGR
[1] 5.912194
$AUC
[1] 1108.976
$MGT
[1] 6.632252
$Skewness
[1] 1.098973
$msg
[1] "#1. success "
$isConv
[1] TRUE
$model
Nonlinear regression model
 model: csgp ~ FourPHF_fixa_fixy0(x = intervals, a = max(csgp), bta,
  data: data
 bta
2.291 6.035
residual sum-of-squares: 31.31
Algorithm: multifit/levenberg-marquardt, (scaling: levenberg, solver: qr)
Number of iterations to convergence: 9
Achieved convergence tolerance: 7.105e-14
attr(,"class")
[1] "FourPHFfit" "list"
# From cumulative germination counts
#-----
FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, tmax = 20,
          partial = FALSE)
$data
  gp csgp intervals
  0 0
```

```
0
        0
                  3
3
4
   0
        0
                  4
5
                  5
   8
        8
6 34
       42
                  6
7
                  7
  20
       62
8
  14
       76
                  8
9
   2
       78
                 9
       78
10 0
                 10
11 2
       80
                 11
12 0
       80
                 12
13 0
       80
                 13
14 0
       80
                 14
```

\$Parameters

term estimate std.error statistic p.value 1 bta 2.290709 0.05602634 40.88628 2.965932e-14 2 c 6.034954 0.03872162 155.85488 3.270089e-21

\$Fit

sigma isConv finTol logLik AIC BIC deviance df.residual nobs 1 1.61522 TRUE 7.105427e-14 -25.49868 56.99736 58.91453 31.30723 12 14

\$a

[1] 80

\$b

[1] 9.881937

\$с

[1] 6.034954

\$y0

[1] 0

\$lag

[1] 0

\$Dlag50

[1] 6.034954

\$t50.total

[1] 6.355121

\$txp.total

10 60 4.956264 6.744598

\$t50.Germinated

[1] 6.034954

\$txp.Germinated

10 60

4.831807 6.287724

```
$Uniformity
       90
               10 uniformity
 7.537690 4.831807 2.705882
$TMGR
[1] 5.912194
$AUC
[1] 1108.976
$MGT
[1] 6.632252
$Skewness
[1] 1.098973
$msg
[1] "#1. success "
$isConv
[1] TRUE
$model
Nonlinear regression model
 model: csgp ~ FourPHF_fixa_fixy0(x = intervals, a = max(csgp), bta, c)
  data: data
 bta
2.291 6.035
residual sum-of-squares: 31.31
Algorithm: multifit/levenberg-marquardt, (scaling: levenberg, solver: qr)
Number of iterations to convergence: 9
Achieved convergence tolerance: 7.105e-14
attr(,"class")
[1] "FourPHFfit" "list"
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
total.seeds = 50
# From partial germination counts
#-----
fit1 <- FourPHFfit(germ.counts = x, intervals = int,</pre>
                total.seeds = 50, tmax = 20)
# From cumulative germination counts
#-----
fit2 <- FourPHFfit(germ.counts = y, intervals = int,</pre>
                 total.seeds = 50, tmax = 20, partial = FALSE)
# Default plots
```

plot(fit1)

Warning in $geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : All aesthetics have$ i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning in geom_segment(aes(x = UfmMax, xend = UfmMin, y = ypos2, yend = ypos2), : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row. All aesthetics have length 1, but the data has 14 rows.

i Please consider using `annotate()` or provide this layer with data containing a single row.


```
# No labels
plot(fit1, plotlabels = FALSE)
```

Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row. All aesthetics have length 1, but the data has 14 rows.

i Please consider using `annotate()` or provide this layer with data containing a single row.


```
plot(fit2, plotlabels = FALSE)
```

Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row. All aesthetics have length 1, but the data has 14 rows.

i Please consider using `annotate()` or provide this layer with data containing a single row.


```
# Only the FPHF curve
plot(fit1, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
     tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
```



```
plot(fit2, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
    tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
```



```
# Without y axis limits adjustment
plot(fit1, limits = FALSE)
```

Warning in $geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : All aesthetics have$

- i Please consider using `annotate()` or provide this layer with data containing a single row. All aesthetics have length 1, but the data has 14 rows.
- i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning in geom_segment(aes(x = UfmMin, xend = UfmMax, y = ypos2, yend = ypos2), : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row. All aesthetics have length 1, but the data has 14 rows.

i Please consider using `annotate()` or provide this layer with data containing a single row.

Wrapper functions

Wrapper functions germination.indices() and FourPHFfit.bulk() are available in the package for computing results for multiple samples in batch from a data frame of germination counts recorded at specific time intervals.

germination.indices() This wrapper function can be used to compute several germination indices simultaneously for multiple samples in batch.

Genotype Rep Day01 Day02 Day03 Day04 Day05 Day06 Day07 Day08 Day09 Day10 Day11 Day12 Day13 Day14 Tot G1 G2 GЗ G4 G5 G1 G2 G3 G4 G5 G1

4 5.840000

7.300000

G2

GЗ

8.000000

13	G3 3	0 0	0	0	4	19	12		8 1	1	0	1	1	0
14		0 0	0	0	3	21	11		6 1	0	1	1	0	0
15	G5 3	0 0		0	4	17	10		8 1	1			0	0
	FirstGermTime				Tim	neSpreadG		_			-			
1	5		11	6			6		5.970588		941176		.700000	1.446
2	4		12	6			8		6.192308		153846		.857143	2.0278
3	4		12	6			8		6.333333		972222		.866667	2.572
4	5		12	6			7		6.041667		225806		.891304	2.1879
5	5		13	6			8		5.975000		950000		.812500	2.3683
6	5 5		12	6			7		5.976190		952381		.869565	2.071
7 8	4		11 12	6 6			6 8		5.972222 6.208333		944444 166667		. 690476 . 875000	1.3890 2.112
9	4		12	6			8				973684		.866667	2.112
10	5		12	6			7		6.310345 6.076923		038462		.822222	1.831;
11	5		13	6			8		5.928571		904762		791667	2.381
12	5		12	6			7		5.926371		950000		.886364	2.149
13	5		13	6			8		6.083333		041667		.936170	2.149
14			12	6			7		5.928571		904762		772727	1.900
15			11	6			6		6.050000		259259		.809524	1.670
10	VarGermRate			_	t_eR	Recin Coo								nt GermSp
1	0.0007176543			GCIMIC	10010	_	74877		ı mıta ocito	_	83168	четшьр	6.13892	-
2	0.0009172090						14907				25000		6.36269	
3	0.0011572039						78947				74419		6.88217	
4	0.0009701218						55172				06218		6.9274	
5	0.0010995627						73640				80672		7.31898	
6	0.0009301809						73307				80000		6.93178	
7	0.0006935558						74419				82243		6.44844	
8	0.0009454531						10738				21622		6.05317	
9	0.0010345321						84699				74009		6.83059	
10	0.0008453940						45570				56051		6.81269	
11	0.0011191581	0.004828643	14.72393			0.16	86747	7		0.16	93548		7.34279	96
12	0.0009558577	0.004660905	14.52145			0.16	73640	0		0.16	80672		6.62225	58
13	0.0010970785	0.004831366	14.41718			0.16	43836	6		0.16	55172		7.05232	20
14	0.0009033254	0.004531018	14.76510			0.16	86747	7		0.16	93548		6.70678	32
15	0.0007767634	0.004300508	14.68531			0.16	52893	3		0.15	97633		6.36392	25
	GermSpeedAccu	mulated_Per	cent Germ	SpeedCo	rre	ected_Nor	mal (Germ	SpeedCor	recte	d_Accu	mulated	d Weight	GermPerc
1		69.2	3134			0.1534	731				0.	8653917	7	47.428
2		69.6	8741			0.1514	928				0.	8462043	3	47.899
3			8594			0.1529	373				0.	8510501	L	54.46
4		75.8	5202			0.1505	960				0.	8409680)	52.240
5		82.0	1571			0.1524	789					8543303		56.14
6			.3509			0.1506						8429608		54.518
7			0304			0.1535						8663205		51.93
8			5275			0.1513						8442698		49.39
9			9829			0.1517						8470024		50.27
10			9054			0.1513						8487837		52.57
11			3436			0.1529						8578026		55.18
12			6158			0.1505						8410547		50.000
13			9182			0.1500						8360424		55.24
14			3103			0.1524						8567022		53.869
15			6868			0.1515			a 5 :	a		8499278		51.19
4	TimsonsIndex	ıımsonsınde	x_Labouria 1 1		ons	_	anUng. 571 <i>11</i>	_	GermKate	Georg		Index (ex_mod Eme

0.5714286

1.00

```
2
       9.803922
                                    1.25
                                                       0.7002801
                                                                                  5.882353
                                                                                                 7.142857
                                                                                  6.687500
3
      14.583333
                                    1.40
                                                       1.0416667
                                                                               7
                                                                                                 7.133333
       7.843137
                                                       0.5602241
                                                                                  6.411765
4
                                    1.00
                                                                               4
                                                                                                 7.108696
5
      10.000000
                                    1.00
                                                       0.7142857
                                                                                  6.900000
                                                                                                 7.187500
                                                                               5
6
       6.122449
                                    1.00
                                                       0.4373178
                                                                               3
                                                                                  6.693878
                                                                                                 7.130435
7
                                    1.00
                                                                               4
                                                                                  6.395833
       8.333333
                                                       0.5952381
                                                                                                 7.309524
8
                                                                                  6.063830
      10.638298
                                    1.25
                                                       0.7598784
                                                                               5
                                                                                                 7.125000
9
       9.615385
                                    1.25
                                                       0.6868132
                                                                               5
                                                                                  6.173077
                                                                                                 7.133333
10
       8.000000
                                    1.00
                                                       0.5714286
                                                                               4
                                                                                  6.460000
                                                                                                 7.177778
                                                                               5
11
       9.803922
                                    1.00
                                                       0.7002801
                                                                                  6.784314
                                                                                                 7.208333
12
       5.882353
                                    1.00
                                                       0.4201681
                                                                               3
                                                                                  6.137255
                                                                                                 7.113636
13
                                    1.00
                                                                               4
       8.163265
                                                       0.5830904
                                                                                  6.775510
                                                                                                 7.063830
14
       6.250000
                                    1.00
                                                       0.4464286
                                                                               3
                                                                                  6.625000
                                                                                                 7.227273
15
                                    1.00
                                                                                  6.291667
       8.333333
                                                       0.5952381
                                                                               4
                                                                                                 7.190476
   EmergenceRateIndex_SG_mod EmergenceRateIndex_BilbroWanjura EmergenceRateIndex_Fakorede PeakValue Ger
1
                     7.300000
                                                        5.970149
                                                                                      8.375000
                                                                                               9.500000
2
                     7.142857
                                                        6.125000
                                                                                      8.326531
                                                                                               9.313725
3
                     7.133333
                                                        6.553398
                                                                                     7.324444 10.416667
4
                     7.108696
                                                        6.675079
                                                                                     7.640359 10.049020
5
                     7.187500
                                                        7.045872
                                                                                     7.096354 11.250000
6
                     7.130435
                                                        6.696203
                                                                                     7.317580 10.714286
7
                     7.309524
                                                        6.277580
                                                                                     7.646259 10.416667
                                                                                               9.574468
8
                     7.125000
                                                        5.818182
                                                                                     8.078125
9
                     7.133333
                                                        6.553398
                                                                                     7.934815 9.855769
10
                     7.177778
                                                        6.596091
                                                                                     7.580247 10.250000
11
                     7.208333
                                                        7.067485
                                                                                     7.216146 11.029412
12
                     7.113636
                                                        6.389439
                                                                                     7.981921 9.803922
13
                     7.063830
                                                        6.776074
                                                                                     7.231326 10.969388
14
                     7.227273
                                                        6.496644
                                                                                     7.388430 10.677083
15
                     7.190476
                                                        6.167832
                                                                                      7.782313 10.156250
   GermValue_Czabator_mod GermValue_DP_mod
                                                CUGerm GermSynchrony GermUncertainty
1
                  54.28571
                                    39.56076 0.7092199
                                                            0.2666667
                                                                              2.062987
2
                  54.78662
                                    40.99260 0.5051546
                                                            0.2346109
                                                                              2.321514
3
                  69.75446
                                    53.42809 0.3975265
                                                            0.2242424
                                                                              2.462012
4
                  64.74158
                                    48.86825 0.4672113
                                                            0.2502415
                                                                              2.279215
5
                 77.14286
                                    56.23935 0.4312184
                                                            0.2606383
                                                                              2.146051
6
                 71.84506
                                    53.06435 0.4934701
                                                            0.2792271
                                                                              2.160545
7
                  65.10417
                                    47.37690 0.7371500
                                                            0.2729384
                                                                              2.040796
8
                 58.20345
                                    43.67948 0.4855842
                                                            0.2256410
                                                                              2.357249
9
                                    45.30801 0.4446640
                  60.92165
                                                            0.2494949
                                                                              2.321080
10
                  65.89286
                                    49.10820 0.5584666
                                                            0.255556
                                                                              2.187983
11
                 74.14731
                                    54.27520 0.4288905
                                                            0.2686170
                                                                              2.128670
12
                  60.41632
                                    44.71582 0.4760266
                                                            0.2737844
                                                                              2.185245
13
                  75.15470
                                    54.94192 0.4023679
                                                            0.2506938
                                                                              2.241181
14
                  69.90947
                                    51.41913 0.5383760
                                                            0.2991543
                                                                              2.037680
15
                  63.47656
                                    46.48043 0.6133519
                                                            0.2497096
                                                                              2.185028
```

FourPHFfit.bulk() This wrapper function can be used to fit the four-parameter hill function for multiple samples in batch.

```
"Day11", "Day12", "Day13", "Day14")
FourPHFfit.bulk(gcdata, total.seeds.col = "Total Seeds",
                     counts.intervals.cols = counts.per.intervals,
                     intervals = 1:14, partial = TRUE,
                     fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60),
                     tmax = 20, tries = 3, umax = 90, umin = 10)
   Genotype Rep Day01 Day02 Day03 Day04 Day05 Day06 Day07 Day08 Day09 Day10 Day11 Day12 Day13 Day14 Tot
         G1
                     0
                            0
                                  0
                                         0
                                               4
                                                     17
                                                           10
                                                                   7
                                                                         1
                                                                                0
                                                                                      1
                                                                                             0
                                                                                                   0
                                                                                                          0
1
               1
                                                                         2
2
         G2
               1
                     0
                            0
                                  0
                                         1
                                               3
                                                     15
                                                           13
                                                                   6
                                                                                1
                                                                                      0
                                                                                             1
                                                                                                   0
                                                                                                          0
3
         GЗ
                            0
                                                                         2
                                                                                                   0
                                                                                                          0
                     0
                                  0
                                         2
                                               3
                                                     18
                                                            9
                                                                   8
               1
                                                                                1
                                                                                      1
                                                                                             1
4
         G4
               1
                     0
                            0
                                  0
                                         0
                                               4
                                                     19
                                                           12
                                                                   6
                                                                         2
                                                                                                   0
                                                                                                          0
                                                                                1
                                                                                      1
                                                                                             1
5
         G5
               1
                     0
                            0
                                  0
                                         0
                                               5
                                                     20
                                                           12
                                                                   8
                                                                         1
                                                                                0
                                                                                      0
                                                                                             1
                                                                                                   1
                                                                                                          0
6
         G1
               2
                            0
                                                                   7
                                                                                                   0
                     0
                                  0
                                               3
                                                     21
                                                           11
                                                                         1
                                                                                1
                                                                                      1
                                                                                             1
7
                                                                   7
                                                                                                   0
         G2
               2
                     0
                            0
                                  0
                                         0
                                               4
                                                     18
                                                                                0
                                                                                             0
                                                                                                          0
                                                           11
                                                                         1
                                                                                      1
8
         G3
               2
                     0
                            0
                                  0
                                               3
                                                                   6
                                                                         2
                                                                                      0
                                                                                                   0
                                                                                                          0
                                         1
                                                     14
                                                           12
                                                                                1
                                                                                             1
9
         G4
               2
                            0
                                  0
                                                                                                   0
                                                                                                          0
                     0
                                         1
                                               3
                                                     19
                                                           10
                                                                   8
                                                                         1
                                                                                      1
                                                                                             1
                                                                                1
10
         G5
               2
                     0
                            0
                                  0
                                         0
                                               4
                                                     18
                                                           13
                                                                   6
                                                                         2
                                                                                1
                                                                                      0
                                                                                             1
                                                                                                   0
                                                                                                          0
         G1
               3
                     0
                            0
                                  0
                                               5
                                                     21
                                                                                                          0
11
                                         0
                                                           11
                                                                   8
                                                                         1
                                                                                0
                                                                                      0
                                                                                             1
                                                                                                   1
12
         G2
               3
                     0
                            0
                                  0
                                         0
                                               3
                                                     20
                                                           10
                                                                   7
                                                                         1
                                                                                1
                                                                                      1
                                                                                             1
                                                                                                   0
                                                                                                          0
         G3
               3
                     0
                            0
                                                                                                          0
13
                                  0
                                         0
                                               4
                                                     19
                                                           12
                                                                   8
                                                                         1
                                                                                1
                                                                                      0
                                                                                             1
                                                                                                   1
14
         G4
               3
                     0
                            0
                                  0
                                         0
                                               3
                                                     21
                                                                   6
                                                                                0
                                                                                                   0
                                                                                                          0
                                                           11
                                                                         1
                                                                                      1
                                                                                             1
15
         G5
               3
                     0
                            0
                                  0
                                         0
                                               4
                                                     17
                                                           10
                                                                   8
                                                                         1
                                                                                1
                                                                                      1
                                                                                             0
                                                                                                   0
                                                                                                          0
         Dlag50 t50.total t10.total t60.total t50.Germinated t10.Germinated t60.Germinated Uniformity_9
   lag
1
     0 6.034954
                  6.355121
                             4.956264
                                        6.744598
                                                        6.034954
                                                                        4.831807
                                                                                        6.287724
                                                                                                        7.53769
                                                                                                        7.83540
2
     0 6.175193
                  6.473490
                             4.983236
                                        6.872603
                                                        6.175193
                                                                        4.866755
                                                                                        6.452582
3
     0 6.138110
                  6.244191
                             4.673022
                                        6.608438
                                                        6.138110
                                                                        4.630062
                                                                                        6.465924
                                                                                                        8.13734
4
     0 6.125173
                  6.276794
                             4.850875
                                                                                                        7.83481
                                        6.614968
                                                        6.125173
                                                                        4.788597
                                                                                        6.409838
5
     0 6.049642
                  6.103433
                             4.814125
                                        6.386789
                                                        6.049642
                                                                        4.790946
                                                                                        6.315746
                                                                                                        7.63902
6
     0 6.097415
                  6.182279
                             4.868632
                                                                                                        7.69346
                                        6.477599
                                                        6.097415
                                                                        4.832471
                                                                                        6.364722
7
     0 6.029851
                  6.202812
                             4.930422
                                                                                        6.275050
                                                                                                        7.48364
                                        6.510495
                                                        6.029851
                                                                        4.858476
8
     0 6.189774
                  6.439510
                             4.940057
                                        6.823299
                                                        6.189774
                                                                                        6.476945
                                                                                                        7.91416
                                                                        4.841105
9
     0 6.125122
                  6.352172
                             4.836658
                                        6.733276
                                                                                        6.420208
                                                                                                        7.90404
                                                        6.125122
                                                                        4.746573
                             4.920629
10
     0 6.109504
                  6.253043
                                        6.566506
                                                        6.109504
                                                                        4.860681
                                                                                        6.372823
                                                                                                        7.67917
11
     0 6.018760
                  6.099435
                             4.798627
                                        6.391291
                                                        6.018760
                                                                        4.764246
                                                                                        6.284051
                                                                                                        7.60361
12
     0 6.108452
                  6.326184
                             4.893596
                                                                                        6.384836
                                                                                                        7.76385
                                        6.684526
                                                        6.108452
                                                                        4.806013
13
     0 6.149012
                  6.207501
                             4.841308
                                        6.509954
                                                        6.149012
                                                                        4.816393
                                                                                        6.432524
                                                                                                        7.85034
14
     0 6.015910
                  6.122389
                             4.915140
                                        6.397491
                                                        6.015910
                                                                        4.869398
                                                                                        6.255276
                                                                                                        7.43237
15
     0 6.121579
                  6.317392
                            4.892502
                                        6.667247
                                                        6.121579
                                                                        4.813083
                                                                                        6.399357
                                                                                                        7.78580
                  MGT Skewness
                                                              finTol
                                                                         logLik
                                                                                      AIC
                                                                                                     deviance
                                                 sigma
   1108.976 6.632252 1.098973 #1. success
                                              1.615220 7.105427e-14 -25.49868 56.99736 58.91453
                                                                                                      31.30723
                                              1.115372 2.309264e-14 -20.31471 46.62943 48.54660
2
   1128.559 6.784407 1.098655 #1. success
                                                                                                      14.92865
3
   1283.693 6.772742 1.103392 #1. success
                                              2.432704 9.947598e-14 -31.23213 68.46426 70.38143
                                                                                                     71.01658
4
  1239.887 6.739666 1.100323 #1. success
                                              2.396582 5.684342e-14 -31.02269 68.04538 69.96256
                                                                                                      68.92324
  1328.328 6.654981 1.100062 #1. success
                                              2.399662 1.094236e-12 -31.04067 68.08135 69.99852
5
                                                                                                     69.10052
6
   1294.463 6.702473 1.099232 #1. success
                                              3.034962 1.563194e-13 -34.32887 74.65774 76.57491 110.53195
7
  1213.908 6.622417 1.098272 #1. success
                                              1.663019 1.421085e-13 -25.90697 57.81395 59.73112
                                                                                                     33.18760
   1164.346 6.804000 1.099232 #1. success
                                              1.120704 4.327205e-12 -20.38149 46.76298 48.68015
                                                                                                      15.07174
                                              2.429960 7.958079e-13 -31.21633 68.43266 70.34984
   1188.793 6.745241 1.101242 #1. success
                                                                                                     70.85647
10 1240.227 6.711900 1.098600 #1. success
                                              1.686656 8.142820e-12 -26.10456 58.20911 60.12629
                                                                                                      34.13771
11 1305.200 6.624248 1.100600 #1. success
                                              2.628113 1.989520e-13 -32.31381 70.62762 72.54479
                                                                                                     82.88372
```

2.878146 1.151079e-12 -33.58613 73.17227 75.08944

2.604588 2.984279e-13 -32.18793 70.37586 72.29303

99.40469

81.40654

12 1188.021 6.718639 1.099892 #1. success

13 1316.407 6.762274 1.099733 #1. success

```
14 1273.385 6.604967 1.097916 #1. success 2.764756 9.805490e-13 -33.02342 72.04684 73.96401 91.72652 15 1203.664 6.732266 1.099760 #1. success 1.954008 8.739676e-13 -28.16444 62.32888 64.24606 45.81777
```

Multiple fitted curves generated in batch can also be plotted.


```
# Plot ROG curves
plot(fits, rog = TRUE, group.col = "Genotype")
```


Plot FPHF curves with points
plot(fits, group.col = "Genotype", show.points = TRUE)

Plot FPHF curves with annotations
plot(fits, group.col = "Genotype", annotate = "t50.total")

Plot ROG curves with annotations
plot(fits, rog = TRUE, group.col = "Genotype", annotate = "t50.total")

plot(fits, rog = TRUE, group.col = "Genotype", annotate = "t50.germ")


```
# Change colour of curves using ggplot2 options
library(ggplot2)
curvesplot <- plot(fits, group.col = "Genotype")
# 'Dark2' palette from RColorBrewer</pre>
```


Citing germinationmetrics

```
To cite the R package 'germinationmetrics' in publications use:
```

Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (). germinationmet Indices and Curve Fitting. R package version 0.1.8.9000, https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics.

A BibTeX entry for LaTeX users is

```
@Manual{,
    title = {germinationmetrics: Seed Germination Indices and Curve Fitting},
    author = {I Arayind and S {Vimala Dovi} and I Padhamani and Shorry Pac
```

author = {J. Aravind and S. {Vimala Devi} and J. Radhamani and Sherry Rachel Jacob and {Kalyani Srinote = {R package version 0.1.8.9000 https://aravind-j.github.io/germinationmetrics/ https://CRAN.R}

This free and open-source software implements academic research by the authors and co-workers. If you u project by citing the package.

Session Info

sessionInfo()

R Under development (unstable) (2025-07-21 r88439 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 11 x64 (build 26100)

Matrix products: default LAPACK version 3.12.1

locale:

[1] LC_COLLATE=English_India.utf8 LC_CTYPE=English_India.utf8 LC_MONETARY=English_India.utf8 LC_NUM

[5] LC_TIME=English_India.utf8

time zone: Asia/Calcutta tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] germinationmetrics_0.1.8.9000 ggplot2_3.5.2.9002 readxl_1.4.5

loaded via a namespace (and not attached):

Toua.	ou viu a namospaco	(and not accading).				
[1]	Rdpack_2.6.4	bitops_1.0-9	remotes_2.5.0.9000	rlang_1.1.6	magrittr_2.0.3	com
[8]	callr_3.7.6	vctrs_0.6.5	reshape2_1.4.4	stringr_1.5.1	profvis_0.4.0	pkg
[15]	backports_1.5.0	ellipsis_0.3.2	labeling_0.4.3	pander_0.6.6	promises_1.3.3	rma
[22]	ps_1.9.1	tinytex_0.57	purrr_1.1.0	xfun_0.52	gslnls_1.4.1	cacl
[29]	broom_1.0.9	parallel_4.6.0	R6_2.6.1	stringi_1.8.7	RColorBrewer_1.1-3	pkg:
[36]	cellranger_1.1.0	Rcpp_1.1.0	knitr_1.50	usethis_3.1.0	httpuv_1.6.16	Mat:
[43]	rstudioapi_0.17.1	dichromat_2.0-0.1	yaml_2.3.10	miniUI_0.1.2	curl_6.4.0	pro
[50]	lattice_0.22-7	tibble_3.3.0	plyr_1.8.9	shiny_1.11.1	withr_3.0.2	S7_0
[57]	desc_1.4.3	rJava_1.0-11	urlchecker_1.0.1	xml2_1.3.8	pillar_1.11.0	rsc
[64]	rprojroot_2.1.0	mathjaxr_1.8-0	RCurl_1.98-1.17	scales_1.4.0	xtable_1.8-4	glu

testthat_

rbi htm

[71] data.table_1.17.8	fs_1.6.6	XML_3.99-0.18	grid_4.6.0	tidyr_1.3.1
[78] cli_3.6.5	dplyr_1.1.4	gtable_0.3.6	digest_0.6.37	ggrepel_0.9.6
[85] memoise_2.0.1	htmltools_0.5.8.1	pkgdown_2.1.3.9000	lifecycle_1.0.4	httr_1.4.7

References

- Allan, R. E., Vogel, O. A., and Peterson, C. J. (1962). Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. *Agronomy Journal* 54, 347. doi:10.2134/agronj1962.00021962005400040022x.
- Al-Mudaris, M. A. (1998). Notes on various parameters recording the speed of seed germination. *Der Tropenlandwirt Journal of Agriculture in the Tropics and Subtropics* 99, 147–154. Available at: https://www.jarts.info/index.php/tropenlandwirt/article/download/1495/671.
- AOSA (1983). Seed Vigor Testing Handbook. Ithaca, NY, USA: Association of Official Seed Analysts.
- Baskin, C. C., and Baskin, J. M. (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego: Academic Press.
- Bewley, J. D., and Black, M. (1994). *Physiology of Development and Germination*. New York, USA: Plenum Publishing Corporation Available at: https://www.cabdirect.org/cabdirect/abstract/19950315483.
- Bilbro, J. D., and Wanjura, D. F. (1982). Soil crusts and cotton emergence relationships. *Transactions of the ASAE* 25, 1484–1487. doi:10.13031/2013.33750.
- Bonner, F. T. (1967). Ideal sowing depth for sweetgum seed. *Tree Planters' Notes* 18, 1–1. Available at: https://www.fs.usda.gov/treesearch/pubs/download/42583.pdf.
- Bouton, J. H., Dudeck, A. E., and Smith, R. L. (1976). Germination in freshly harvested seed of centipedegrass. *Agronomy Journal* 68, 991. doi:10.2134/agronj1976.00021962006800060040x.
- Bradbeer, J. W. (1988). Seed Dormancy and Germination. Glasgow; London: Blackie Available at: www.springer.com/in/book/9780216916364 [Accessed January 15, 2018].
- Brown, R. F., and Mayer, D. G. (1988). Representing cumulative germination. 1. A critical analysis of single-value germination indices. *Annals of Botany* 61, 117–125. doi:10.1093/oxfordjournals.aob.a087534.
- Chaudhary, T. N., and Ghildyal, B. P. (1970). Effect of temperature associated with levels of bulk density on rice seedling emergence. *Plant and Soil* 33, 87–90. doi:10.1007/bf01378199.
- Chopra, U. K., and Chaudhary, T. N. (1980). Effect of soil temperature alteration by soil covers on seedling emergence of wheat (*Triticum aestivum* L.) sown on two dates. *Plant and Soil* 57, 125–129. doi:10.1007/bf02139648.
- Coolbear, P., Francis, A., and Grierson, D. (1984). The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. *Journal of Experimental Botany* 35, 1609–1617. doi:10.1093/jxb/35.11.1609.
- Czabator, F. J. (1962). Germination value: An index combining speed and completeness of pine seed germination. Forest Science 8, 386–396. doi:10.1093/forestscience/8.4.386.
- Djavanshir, K., and Pourbeik, H. (1976). Germination value-A new formula. Silvae Genetica 25, 79–83. Available at: https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1976/Vol._25_Heft_2/25_2_79.pdf.

- Edmond, J. B., and Drapala, W. J. (1958). The effects of temperature, sand and soil, and acetone on germination of okra seed. *Proceedings of the American Society for Horticultural Science* 71, 428–434.
- Edwards, T. I. (1932). Temperature relations of seed germination. The Quarterly Review of Biology 7, 428–443. doi:10.1086/394417.
- El-Kassaby, Y. A., Moss, I., Kolotelo, D., and Stoehr, M. (2008). Seed germination: Mathematical representation and parameters extraction. *Forest Science* 54, 220–227. doi:10.1093/forestscience/54.2.220.
- Ellis, R. H., and Roberts, E. H. (1980). Improved equations for the prediction of seed longevity. *Annals of Botany* 45, 13–30. doi:10.1093/oxfordjournals.aob.a085797.
- Erbach, D. C. (1982). Tillage for continuous corn and corn-soybean rotation. *Transactions of the ASAE* 25, 906–0911. doi:10.13031/2013.33638.
- Evetts, L. L., and Burnside, O. C. (1972). Germination and seedling development of common milkweed and other species. Weed Science 20, 371–378. doi:10.1017/S004317450003589x.
- Fakorede, M. A. B., and Agbana, S. B. (1983). Heterotic effects and association of seedling vigour with mature characteristics and grain yield in some tropical maize cultivars. *Maydica* 28, 327–338.
- Fakorede, M. A. B., and Ayoola, A. O. (1980). Relation between seedling vigor and selection for yield improvement in maize. *Maydica* 25, 135–147.
- Fakorede, M. A. B., and Ojo, D. K. (1981). Variability for seedling vigour in maize. Experimental Agriculture 17, 195–201. doi:10.1017/s0014479700011455.
- Farooq, M., Basra, S. M. A., Ahmad, N., and Hafeez, K. (2005). Thermal hardening: A new seed vigor enhancement tool in rice. *Journal of Integrative Plant Biology* 47, 187–193. doi:10.1111/J.1744-7909.2005.00031.x.
- George, D. W. (1961). Influence of germination temperature on the expression of post-harvest dormancy in wheat. in *Crop Science Abstracts; Western Society of Crop Science Annual Meeting*, 1961 (Western Society of Crop Science), 15.
- Goloff, A. A., and Bazzaz, F. A. (1975). A germination model for natural seed populations. *Journal of Theoretical Biology* 52, 259–283. doi:10.1016/0022-5193(75)90001-6.
- Gomes, F. P. (1960). Curso De Estatística Experimental. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Available at: https://books.google.de/books?id=ZckqGwAACAAJ.
- Goodchild, N. A., and Walker, M. G. (1971). A method of measuring seed germination in physiological studies. *Annals of Botany* 35, 615–621. doi:10.1093/oxfordjournals.aob.a084504.
- Gordon, A. G. (1969). Some observations on the germination energy tests for cereals. *Proceedings of the Association of Official Seed Analysts* 59, 58–72. Available at: https://www.jstor.org/stable/23432357 [Accessed December 11, 2018].
- Gordon, A. G. (1971). The germination resistance test A new test for measuring germination quality of cereals. Canadian Journal of Plant Science 51, 181–183. doi:10.4141/cjps71-036.
- Grose, R. J., and Zimmer, W. J. (1958). Some laboratory germination responses of the seeds of river red gum, *Eucalyptus camaldulensis* Dehn. Syn. *Eucalyptus rostrata* Schlecht. *Australian Journal of Botany* 6, 129. doi:10.1071/bt9580129.

- Haugland, E., and Brandsaeter, L. O. (1996). Experiments on bioassay sensitivity in the study of allelopathy. Journal of Chemical Ecology 22, 1845–1859. doi:10.1007/BF02028508.
- Heydecker, W. (1972). Seed Ecology. Proceedings of the Nineteenth Easter School in Agricultural Science, University of Nottingham, 1972. University Park, USA: Pennsylvania State University Press.
- Hsu, F. H., and Nelson, C. J. (1986). Planting date effects on seedling development of perennial warm-season forage grasses. I. Field emergence. *Agronomy Journal* 78, 33–38. doi:10.2134/agronj1986.00021962007800010008x.
- ISTA (2015). "Chapter 5: The germination test," in *International Rules for Seed Testing. International Seed Testing Association*, Zurich, Switzerland. (International Seed Testing Association), i-5-56. Available at: https://doi.org/10.15258/istarules.2015.05.
- Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. *Journal and Proceedings of the Royal Society of New South Wales* 138, 65–75. Available at: https://royalsoc.org.au/images/pdf/journal/138_Kader.pdf.
- Kendrick, R. E., and Frankland, B. (1969). Photocontrol of germination in *Amaranthus caudatus*. *Planta* 85, 326–339. doi:10.1007/bf00381281.
- Khamassi, K., Harbaoui, K., Jaime, A. T. da S., and Jeddi, F. B. (2013). Optimal germination temperature assessed by indices and models in field bean (*Vicia faba* L. Var. *Minor*). *Agriculturae Conspectus Scientificus* 78, 131–136. Available at: https://hrcak.srce.hr/104663.
- Khan, M. A., and Ungar, I. A. (1984). The effect of salinity and temperature on the germination of polymorphic seeds and growth of *Atriplex triangularis* Willd. *American Journal of Botany* 71, 481–489. doi:10.2307/2443323.
- Khandakar, A. L., and Bradbeer, J. W. (1983). *Jute seed quality*. Bangladesh Agricultural Research Council, Dhaka.
- Kotowski, F. (1926). Temperature relations to germination of vegetable seeds. *Proceedings of the American Society for Horticultural Science* 23, 176–184.
- Labouriau, L. G. (1983a). A Germinação Das Sementes. Organização dos Estados Americanos. Programa Regional de Desenvolvimento Científico e Tecnológico. Série de Biologia. Monografia 24.
- Labouriau, L. G. (1983b). Uma nova linha de pesquisa na fisiologia da germinação das sementes. in *Anais do XXXIV Congresso Nacional de Botânica. SBB*, *Porto Alegre* (Sociedade Botânica do Brasil), 11–50.
- Labouriau, L. G., and Valadares, M. E. B. (1976). On the germination of seeds of *Calotropis procera* (Ait.) Ait. f. Anais da Academia Brasileira de Ciências 48.
- Lyon, J. L., and Coffelt, R. J. (1966). Rapid method for determining numerical indexes for time-course curves. Nature 211, 330–330. doi:10.1038/211330a0.
- Maguire, J. D. (1962). Speed of germination Aid in selection and evaluation for seedling emergence and vigor. *Crop Science* 2, 176–177. doi:10.2135/cropsci1962.0011183x000200020033x.
- Melville, A. H., Galletta, G. J., Draper, A. D., and Ng, T. J. (1980). Seed germination and early seedling vigor in progenies of inbred strawberry selections. *HortScience* 15, 749–750.
- Mock, J. J., and Eberhart, S. A. (1972). Cold tolerance in adapted maize populations. *Crop Science* 12, 466–469. doi:10.2135/cropsci1972.0011183x001200040021x.

- Negm, F. B., and Smith, O. E. (1978). Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed. *Plant Physiology* 62, 473–476. doi:10.1104/pp.62.4.473.
- Nichols, M. A., and Heydecker, W. (1968). Two approaches to the study of germination data. *Proceedings of the International Seed Testing Association* 33, 531–540.
- Primack, R. B. (1985). Longevity of individual flowers. *Annual Review of Ecology and Systematics* 16, 15–37. doi:10.1146/annurev.es.16.110185.000311.
- Quintanilla, L. G., Pajarón, S., Pangua, E., and Amigo, J. (2000). Effect of temperature on germination in northernmost populations of *Culcita macrocarpa* and *Woodwardia radicans*. *Plant Biology* 2, 612–617. doi:10.1055/s-2000-16638.
- Ranal, M. A. (1999). Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. *American Fern Journal* 89, 149. doi:10.2307/1547349.
- Ranal, M. A., and Santana, D. G. de (2006). How and why to measure the germination process? Brazilian Journal of Botany 29, 1-11. doi:10.1590/s0100-84042006000100002.
- Reddy, L. V. (1978). Effect of temperature on seed dormancy and alpha-amylase activity during kernel maturation and germination in wheat (*Triticum aestivum* L.) cultivars. Available at: https://ir.library.oregonstate.edu/concern/graduate thesis or dissertations/1j92gb854.
- Reddy, L. V., Metzger, R. J., and Ching, T. M. (1985). Effect of temperature on seed dormancy of wheat. Crop Science 25, 455. doi:10.2135/cropsci1985.0011183X002500030007x.
- Roh, M., Bentz, J.-A., Wang, P., Li, E., and Koshioka, M. (2004). Maturity and temperature stratification affect the germination of *Styrax japonicus* seeds. *The Journal of Horticultural Science and Biotechnology* 79, 645–651. doi:10.1080/14620316.2004.11511820.
- Santana, D. G. de, and Ranal, M. A. (2004). Análise Da Germinação: Um Enfoque Estatístico. Brasília: Universidade de Brasília.
- Schrader, J. A., and Graves, W. R. (2000). Seed germination and seedling growth of *Alnus maritima* from its three disjunct populations. *Journal of the American Society for Horticultural Science* 125, 128–134. doi:10.21273/JASHS.125.1.128.
- Scott, S. J., Jones, R. A., and Williams, W. A. (1984). Review of data analysis methods for seed germination. Crop Science 24, 1192–1199. doi:10.2135/cropsci1984.0011183x002400060043x.
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.
- Shmueli, M., and Goldberg, D. (1971). Emergence, early growth, and salinity of five vegetable crops germinated by sprinkle and trickle irrigation in an arid zone. *HortScience* 6, 563–565.
- Smith, P. G., and Millet, A. H. (1964). Germinating and sprouting responses of the tomato at low temperatures. *Proceedings of the American Society for Horticultural Science* 84, 480–484.
- Throneberry, G. O., and Smith, F. G. (1955). Relation of respiratory and enzymatic activity to corn seed viability. *Plant Physiology* 30, 337–343. doi:10.1104/pp.30.4.337.
- Timson, J. (1965). New method of recording germination data. Nature 207, 216. doi:10.1038/207216a0.

- Tucker, H., and Wright, L. N. (1965). Estimating rapidity of germination. Crop Science 5, 398–399. doi:10.2135/cropsci1965.0011183X000500050006x.
- Vallance, K. (1950). Studies on the germination of the seeds of *Striga hermonthica* I. The influence of moisture-treatment, stimulant-dilution, and after-ripening on germination. *Annals of Botany* 14, 347–363. doi:10.1093/oxfordjournals.aob.a083251.
- Wardle, D. A., Ahmed, M., and Nicholson, K. S. (1991). Allelopathic influence of nodding thistle (*Carduus nutans* L.) seeds on germination and radicle growth of pasture plants. *New Zealand Journal of Agricultural Research* 34, 185–191. doi:10.1080/00288233.1991.10423358.
- Went, F. W. (1957). The experimental control of plant growth. Chronica Botanica Co., Waltham, Mass., USA; The Ronald Press Co., New York, USA.