Logarithmic Functions and Derivatives

Madiba Hudson-Quansah

April 2023

Contents

Chapter 1		Page 2
1.1	Derivatives of Logarithmic Functions	2
	Derivate of $\ln(x) - 2$	

Chapter 1

1.1 Derivatives of Logarithmic Functions

Definition 1.1.1: Logarithmic Functions

Functions in the form:

$$y = \log_a[f(x)]$$
 or $y = \ln[f(x)]$

1.1.1 Derivate of ln(x)

$$y' = \frac{f'(x)}{f(x)}$$
 or $\frac{x'}{x}$

Proof:

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Where $f(x) = \ln(x)$ and $f(x+h) = \ln(x+h)$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\ln(\frac{x+h}{x})}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\ln(1 + \frac{h}{x})}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{1}{h} (\ln(1 + \frac{h}{x}))$$

Let
$$v = \frac{h}{x}$$
 : $h = vx$ \Longrightarrow As $h \to 0$ $v \to 0$

$$\frac{dy}{dx} = \lim_{v \to 0} \frac{1}{vx} (\ln(1+v))$$

$$\frac{dy}{dx} = \lim_{v \to 0} \frac{1}{v} \times \frac{1}{x} \ln(1+v)$$

$$\frac{dy}{dx} = \frac{1}{x} \lim_{v \to 0} \frac{1}{v} \ln(1+v)$$

$$\frac{dy}{dx} = \frac{1}{x} \lim_{v \to 0} \ln(1+v)^{\frac{1}{v}}$$

$$\frac{dy}{dx} = \frac{1}{x} \ln\left[\lim_{v \to 0} (1+v)^{\frac{1}{v}}\right]$$
$$\frac{dy}{dx} = \frac{1}{x} \ln[e]$$
$$\frac{dy}{dx} = \frac{1}{x}$$

⊜