Part IV. Variants of Finite Automata

Theory vs. Practice

a) Configuration: pax

Next Configuration:

 q_1x or q_2x or q_3ax ?

Theory: **②** × Practice: **⊗**

b) Configuration: *pax*

Next Configuration: only q_1x

Theory: ⊗ × Practice: ☺

Use of FA in General

Simulation of all possible moves from every configuration.

Example:

FA *M* is defined as:

Question: $ab \in L(M)$?

No next configuration **Answer: YES**, $ab \in L(M)$

Answer: YES, $ab \in L(M)$ because $f \in F$.

From FA to DFA in Essence 1/2

Preference in practice: *Determinictic FA* (DFA) that makes no more than one move from every configuration.

1) Gist: Removal of ε-moves

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. M is an ε -free finite automaton if for all rules $pa \to q \in R$, where $p, q \in Q$, holds $a \in \Sigma \ (a \neq \varepsilon)$

From FA to DFA in Essence 2/2

2) Gist: Removal of nodeterminism

Definition: Let $M = (Q, \Sigma, R, s, F)$ be an **\varepsilon-free FA**. M is a *deterministic finite automaton* (DFA) if for each rule $pa \rightarrow q \in R$ it holds that $R - \{pa \rightarrow q\}$ contains no rule with the lefthand side equal to pa.

Theorem

• For every FA M, there is an equivalent DFA M_d .

Proof is based on these conversions:

ε-closure

Gist: q is in ε-closure(p) if FA can reach q from p without reading.

Definition: For every states $p \in Q$, we define a set ε -closure(p) as ε -closure $(p) = \{q: q \in Q, p \mid -^* q\}$

Algorithm: ε-closure

- **Input:** $M = (Q, \Sigma, R, s, F); p \in Q$
- Output: ε -closure(p)
- Method:
- $i := 0; Q_0 := \{p\};$
- repeat

$$i := i + 1;$$
 $Q_i := Q_{i-1} \cup \{ p' : p' \in Q, q \rightarrow p' \in R, q \in Q_{i-1} \};$

until
$$Q_i = Q_{i-1}$$
;

• ε -closure $(p) := Q_i$.

ε-closure: Example

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, p, q, f\}, \Sigma = \{a\},
R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}, F = \{f\}
Task: \varepsilon-closure(s)
Q_0 = \{ \mathbf{s} \}
1) s \rightarrow p'; p' \in Q: s \rightarrow p
Q_1 = \{s\} \cup \{p\} = \{s, p\}
2) s \rightarrow p'; p' \in Q: s \rightarrow p
          p \rightarrow p'; p' \in \mathcal{D}: p \rightarrow q
Q_2 = \{s, p\} \cup \{p, q\} = \{s, p, q\}
3) s \rightarrow p'; p' \in Q: s \rightarrow p

p \rightarrow p'; p' \in Q: p \rightarrow q
           q \rightarrow p'; p' \in \mathcal{D}: none
Q_3 = \{s, p, q\} \cup \{p, q\} = \{s, p, q\} = Q_2 = \epsilon \text{-closure}(s)
```

Algorithm: FA to ε-free FA

Gist: Skip all ε-moves

- Input: FA $M = (Q, \Sigma, R, s, F)$
- Output: ε -free FA $M' = (Q, \Sigma, R', s, F')$
- Method:
- $\bullet R' := \emptyset;$
- for all $p \in Q$ do

$$R' := R' \cup \{ pa \rightarrow q : p'a \rightarrow q \in R, a \in \Sigma, p' \in \text{ϵ-closure}(p), q \in Q \};$$

• $F' := \{ p : p \in Q, \epsilon \text{-closure}(p) \cap F \neq \emptyset \}.$

FA to ε -free FA: Example 1/3

$$M = (Q, \Sigma, R, s, F), \text{ where:}$$

$$Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\};$$

$$R = \{sa \rightarrow s, s \rightarrow q_1, q_1b \rightarrow q_1, q_1b \rightarrow f, s \rightarrow q_2, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\}; F = \{f\}$$
1) for $p = s$: ε -closure(s) = $\{s, q_1, q_2\}$

A. $sd \rightarrow q', d \in \Sigma, q' \in Q$: $sa \rightarrow s$

B. $q_1d \rightarrow q', d \in \Sigma, q' \in Q$: $q_1b \rightarrow q_1, q_1b \rightarrow f$

C. $q_2d \rightarrow q', d \in \Sigma, q' \in Q$: $q_2c \rightarrow q_2, q_2c \rightarrow f$

$$R' = \emptyset \cup \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f\}$$

FA to ε -free FA: Example 2/3

- 2) for $p = q_1$: ε -closure $(q_1) = \{q_1\}$ A. $q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$ $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$
- 3) for $p = q_2$: ϵ -closure $(q_2) = \{q_2\}$
- A. $q_2d \rightarrow q'; d \in \Sigma; q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$ $R' = R' \cup \{q_2c \rightarrow q_2, q_2c \rightarrow f\}$
- 4) for p = f: ε -closure(f) = {f}
- A. $fd \rightarrow q'; d \in \Sigma; q' \in Q: fa \rightarrow f$ $R' = R' \cup \{fa \rightarrow f\}$
- $R' = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f, q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\}$

FA to ε -free FA: Example 3/3

Algorithm: ε-free FA to DFA 1/2

Gist: In DFA, make states from all subsets of states in ε-free FA and move between them so that all possible states of ε-free FA are simultaneously simulated.

Illustration:


```
Q_{DFA} = \{\{s\}, \{q_1\}, \{q_2\}, \{f\}, \{s,q_1\}, \{s,q_2\}, \{s,f\}, \{q_1,q_2\}, \{q_1,f\}, \{q_2,f\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_2,f\}, \{q_1,q_2,f\}, \{s,q_1,q_2,f\}\}
```

For state $\{s\}$: ... qFor state $\{s, f\}$: $\{s, f\}$: $\{g_1, f\}$ For state $\{s, q_1, q_2, f\}$: ...

Algorithm: ε-free FA to DFA 2/2

- Input: ε -free FA: $M = (Q, \Sigma, R, s, F)$
- Output: DFA: $M_d = (Q_d, \Sigma, R_d, s_d, F_d)$
- Method:
- $Q_d := \{Q': Q' \subseteq Q, Q' \neq \emptyset\}; R_d := \emptyset;$
- for each $Q' \in Q_d$, and $a \in \Sigma$ do begin $Q'' := \{q: p \in Q', pa \rightarrow q \in R\};$

if
$$Q'' \neq \emptyset$$
 then $R_d := R_d \cup \{Q'a \rightarrow Q''\}$;

end

- $\bullet s_d := \{s\};$
- $F_d := \{F': F' \in Q_d, F' \cap F \neq \emptyset\}.$

ε-free FA to DFA: Example 1/5

```
M = (Q, \Sigma, R, s, F), where:

Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}

R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f,

q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};
```

$$Q_d = \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\}, \{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\}\}$$

$$R_d = \varnothing \cup \{\{s\}a \rightarrow \{s\}, \{s\}b \rightarrow \{q_1, f\}, \{s\}c \rightarrow \{q_2, f\}\}\}$$

ε-free FA to DFA: Example 2/5

for $Q' = \{s, q_1\}$:

$$R_d = R_d \cup \{\{s,q_1\}a \rightarrow \{s\}, \{s,q_1\}b \rightarrow \{q_1,f\}, \{s,q_1\}c \rightarrow \{q_2,f\}\}\}$$

ε-free FA to DFA: Example 3/5

ε-free FA to DFA: Example 4/5

```
Final states: F_d := \{F': F' \in Q_d, F' \cap F \neq \emptyset\}
for F = \{f\}:
\{s\} \cap \{f\} = \emptyset
                                                                  \{s\} \notin F_d
\{s,q_1\} \cap \{f\} = \emptyset
                                                             \{s,q_1\} \notin F_d
\{s,q_1,q_2\} \cap \{f\} = \emptyset
                                                 \Rightarrow \{s,q_1,q_2\} \notin F_d
\{s,q_1,f\} \cap \{f\} = \{f\} \neq \emptyset
                                                 \Rightarrow \{s, q_1, f\} \in F_d
\{s,q_1,q_2,f\} \cap \{f\} = \{f\} \neq \emptyset \implies \{s,q_1,q_2,f\} \in F_d
```

$$F_d = \{ \{ s, q_1, f \}, \{ s, q_1, q_2, f \}, \{ s, q_2, f \}, \{ s, f \}, \{ q_1, f \}, \{ q_1, q_2, f \}, \{ q_2, f \}, \{ f \} \}$$

ε-free FA to DFA: Example 5/5

Question: Can we make DFA smaller?

Answer: YES

Accessible States

Gist: State q is accessible if a string takes DFA from s (the start state) to q.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be an FA.

A state $q \in Q$ is accessible if there exists $w \in \Sigma^*$ such that $sw \mid -^*q$; otherwise, q is *inaccessible*.

Note: Each inaccesible state can be removed from FA

State s - accesible: $w = \varepsilon$: $s \mid -0 \ s$ State q_1 - accesible: w = a: $sa \mid -q_1$

State f - accesible: w = ab: $sab \mid -q_1b \mid -f$

State q_2 - inaccessible (there is no $w \in \Sigma^*$

such that $sw \mid -^* q_2$

Previous Example

Many inaccessible states

Algorithm II: ε-free FA to DFA 1/2

Gist: Analogy to the previous algorithm except that only sets of accessible states are introduced.

Illustration:

$$Q_{DFA} = \{\{s\}\}\$$
For state $\{s\}$: $\{s\}$: $\{q_1, f\}$...

Add new states $\{q_1, f\}$, $\{q_2, f\}$ to Q_{DFA}

For state $\{q_1, f\}$: ...

For state $\{q_2, f\}$: ...

Add new states ...

Algorithm II: ε-free FA to DFA 2/2

- Input: ε -free FA: $M = (Q, \Sigma, R, s, F)$
- Output: DFA: $M_d = (Q_d, \Sigma, R_d, s_d, F_d)$

without any inaccessible states

```
Method:
```

```
• s_d := \{s\}; Q_{new} := \{s_d\}; R_d := \emptyset; Q_d := \emptyset; F_d := \emptyset;
```

repeat

```
let Q' \in Q_{new}; Q_{new} := Q_{new} - \{Q'\}; Q_d := Q_d \cup \{Q'\}; for each a \in \Sigma do begin Q'' := \{q: p \in Q', pa \rightarrow q \in R\}; if Q'' \neq \emptyset then R_d := R_d \cup \{Q'a \rightarrow Q''\}; if Q'' \notin Q_d \cup \{\emptyset\} then Q_{new} := Q_{new} \cup \{Q''\} end;
```

if $Q' \cap F \neq \emptyset$ then $F_d := F_d \cup \{Q'\}$ until $Q_{new} = \emptyset$.

ε-free FA to DFA: Example 1/3

$$M = (Q, \Sigma, R, s, F)$$
, where:
 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}$
 $R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$R_d := \emptyset \cup \{\{s\}_a \to \{s\}, \{s\}_b \to \{q_1, f\}, \{s\}_c \to \{q_2, f\}\}\}$$

$$Q_{new} = \{\{q_1, f\}, \{q_2, f\}\}\}, Q_d = \emptyset \cup \{\{s\}\}\}, F_d = \emptyset$$

ε-free FA to DFA: Example 2/3

ε-free FA to DFA: Example 3/3

Terminating States

Gist: State q is terminating if a string takes DFA from q to a final state.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a DFA. A state $q \in Q$ is *terminating* if there exists $w \in \Sigma^*$ such that $qw \mid -^* f$ with $f \in F$; otherwise, q is *nonterminating*.

Note: Each nonterminating state can be removed from DFA

Example:
$$a$$
 a b a b a

State s - terminating: w = ab: $sab \mid -q_1b \mid -f$

State q_1 - terminating: w = b: $q_1b - \bar{f}$

State f - terminating: $w = \varepsilon$: f = [-0]f

State q_2 - nonterminating (there is no $w \in \Sigma^*$

such that $q_2w \mid -^*q, q \in F$

Algorithm: Removal of nont. states

- Input: DFA: $M = (Q, \Sigma, R, s, F)$
- Output: DFA: $M_t = (Q_t, \Sigma, R_t, s, F)$
- Method:
- $Q_0 := F$; i := 0;
- repeat

$$i := i + 1;$$

$$Q_i := Q_{i-1} \cup \{q: qa \to p \in R, a \in \Sigma, p \in Q_{i-1}\};$$

- until $Q_i = Q_{i-1}$;
- $Q_t := Q_i$;
- $R_t := \{qa \rightarrow p : qa \rightarrow p \in R, p, q \in Q_t, a \in \Sigma\}.$

Nonterminating States: Example

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},
R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}
Q_0 = \{f\}
1) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                         q_1b \rightarrow f
Q_1 = \{ f \} \cup \{ q_1 \} = \{ f, q_1 \}
2) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                         q_1b \rightarrow f
    qd \rightarrow q_1; q \in \mathcal{O}; d \in \Sigma:
                                                          sa \rightarrow q_1
Q_2 = \{f, q_1\} \cup \{q_1, s\} = \{f, q_1, s\}
                                                          q_1b \rightarrow f
3) qd \rightarrow f; q \in Q; d \in \Sigma:
    qd \rightarrow q_1; q \in \mathcal{D}; d \in \Sigma:
                                                          sa \rightarrow q_1
    qd \rightarrow \tilde{s}; \quad \hat{q} \in \mathcal{D}; d \in \Sigma:
                                                          none
Q_3 = \{f, q_1, s\} \cup \{q_1, s\} = \{f, q_1, s\} = Q_2 = Q_t
```

 $R_t = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}$

Summary: States to Remove

1) Inaccessible state (q_2) :

2) Nonterminating state (q_2) :

There exists no computation from this nonterminating state to a final state.

Complete DFA

Gist: Complete DFA cannot get stuck.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a **DFA**. M is *complete*, if for any $p \in Q$, $a \in \Sigma$ there is exactly one rule of the form $pa \rightarrow q \in R$ for some $q \in Q$; otherwise, M is *incomplete*

Conversion: Incomplete DFA

to Complete DFA

Algorithm: DFA to Complete DFA

Gist: Add a "trap" state

- Input: Incomplete DFA $M = (Q, \Sigma, R, s, F)$
- Output: Complete DFA $M_c = (Q_c, \Sigma, R_c, s, F)$
- Method:
- $Q_c := Q \cup \{q_{false}\};$
- $\begin{array}{c} \bullet \ R_c := R \cup \ \{qa \rightarrow q_{false} : a \in \Sigma, \, q \in \mathcal{Q}_c, \\ qa \rightarrow p \not\in R, \, \, p \in \mathcal{Q}\}. \end{array}$

Well-Specified FA

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a <u>complete</u>

DFA. Then, M is well-specified FA (WSFA) if:

- 1) Q has no inaccessible state
- 2) Q has no more than one nonterminating state

Note: If well-specified FA has one nonterminating state, then it is q_{false} from the previous algorithm.

Theorem: For every FA M, there is an equivalent WSFA M_{ws} .

Proof: Use the next algorithm.

Algorithm: FA to WSFA

- Input: FA M
- Output: WSFA M_{ws}
- Method:
- convert a FA M to an equivalent ε -free FA M'
- convert a M' to an equivalent DFA M_d without any inaccessible state
- convert M_d to an equivalent DFA M_t without any nonterminating state
- convert M_t to an equivalent complete FA M_c
- $\bullet M_{ws} := M_c$

Note: No more than one nonterminating state in M_{ws} — q_{false}

Distinguishable States

Gist: String w distinguishes states p and q if WSFA reaches a final state from precisely one of configurations pw and qw.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a WSFA, and let $p, q \in Q, p \neq q$. States p and q are distinguishable if there exists $w \in \Sigma^*$ such that: $pw \mid -^*p'$ and $qw \mid -^*q'$, where $p', q' \in Q$ and $((p' \in F \text{ and } q' \notin F) \text{ or } (p' \notin F \text{ and } q' \in F))$; otherwise, states p and q are indistinguishable

Distinguishable States: Example

• s and q_1 are distinguishable, because for w = a:

$$\begin{array}{c|c} sa \mid -s, s \notin F \\ q_1a \mid -q_2, q_2 \in F \end{array}$$

• q_2 and q_3 are indistinguishable, because for each $w \in \Sigma^*$:

$$q_2w \mid -^* q_2, q_2 \in F$$

 $q_3w \mid -^* q_3, q_3 \in F$

• Other pairs of states are trivially **distinguishable** for $w = \varepsilon$.

Minimum-State FA

Definition: Let *M* be a **WSFA**. Then, *M* is *minimum-state FA* if *M* contains only distinguishable states.

Theorem: For every WSFA M, there is an equivalent minimum-state FA M_m

Proof: Use the next algorithm.

Algorithm: WSFA to Min-State FA

- Input: WSFA $M = (Q, \Sigma, R, s, F)$
- Output: Minimum-State FA $M_m = (Q_m, \Sigma, R_m, s_m, F_m)$
- Method:
- $Q_m = \{\{p: p \in F\}, \{q: q \in Q F\}\};$
- repeat

if there exist $X \in Q_m$, $d \in \Sigma$, $X_1, X_2 \subset X$ such that

$$X = X_1 \cup X_2, X_1 \cap X_2 = \emptyset$$
 and

$$\{q_1: p_1 \in X_1, p_1 d \to q_1 \in R\} \subseteq Q_1, Q_1 \in Q_m,$$

$$\{q_2: p_2 \in X_2, p_2d \to q_2 \in R\} \cap Q_1 = \emptyset$$

then divide X into X_1 and X_2 in Q_m

until no division is possible;

- $R_m = \{Xa \rightarrow Y: X, Y \in Q_m, pa \rightarrow q \in R, p \in X, q \in Y, a \in \Sigma\};$
- $s_m = X$ with $s \in X$; $F_m := \{X: X \in Q_m, X \cap F \neq \emptyset\}$.

Minimization: Example 1/4

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow fb \rightarrow q_4$

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
: From one set $d = a$: $q_1 a \to q_1$ $d = b$: $\{q_1 b \to g_1\}$ $\{q_2 b \to g_1\}$ $\{q_2 b \to g_1\}$ $\{q_3 b \to g_1\}$ $\{q_4 a \to g_4\}$ Division: $\{q_1, q_2, q_3, q_4\}$ $\{q_1, q_2\}$, $\{q_3, q_4\}$ $\{q_1, q_2\}$ $\{q_1, q_2\}$

Minimization: Example 2/4

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

2)
$$X = \{q_1, q_2\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1$ $d = b$: $q_1 b \rightarrow s$ $q_2 a \rightarrow q_2$ $q_2 b \rightarrow f$

3)
$$X = \{q_3, q_4\}$$
: From one set $d = a$: $q_3 a \rightarrow q_4$ $d = b$: $q_3 b \rightarrow q_1$ $q_4 b \rightarrow q_2$

No next divisions !!!

Minimization: Example 3/4

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

$$\begin{array}{l}
sa \rightarrow f \in R: \\
fa \rightarrow s \in R:
\end{array} \right\} \Longrightarrow \{s,f\}a \rightarrow \{s,f\} \in R_m$$

$$\begin{array}{l}
sb \rightarrow q_3 \in R: \\
fb \rightarrow q_4 \in R:
\end{array} \right\} \Longrightarrow \{s,f\}b \rightarrow \{q_3,q_4\} \in R_m$$

$$\begin{array}{l}
q_1a \rightarrow q_1 \in R: \\
q_2a \rightarrow q_2 \in R:
\end{array} \right\} \Longrightarrow \{q_1,q_2\}a \rightarrow \{q_1,q_2\} \in R_m$$

$$\begin{array}{l}
q_1b \rightarrow s \in R: \\
q_2b \rightarrow f \in R:
\end{array} \right\} \Longrightarrow \{q_1,q_2\}b \rightarrow \{s,f\} \in R_m$$

$$\begin{array}{l}
q_3a \rightarrow q_3 \in R: \\
q_4a \rightarrow q_4 \in R:
\end{array} \right\} \Longrightarrow \{q_3,q_4\}a \rightarrow \{q_3,q_4\} \in R_m$$

$$\begin{array}{l}
q_3b \rightarrow q_1 \in R: \\
q_4b \rightarrow q_2 \in R:
\end{array} \right\} \Longrightarrow \{q_3,q_4\}b \rightarrow \{q_1,q_2\} \in R_m$$

Minimization: Example 4/4

$$\mathbf{s} \in \{\mathbf{s},\mathbf{f}\} \implies s_m := \{\mathbf{s},\mathbf{f}\}$$

$$\begin{array}{c} \mathbf{s} \in F : \\ \mathbf{f} \in F : \end{array} \qquad \qquad \mathbf{s} \cdot \mathbf{f} \in F$$

$$M_{m} = (Q_{m}, \Sigma, R_{m}, s_{m}, F_{m}), \text{ where: } \Sigma = \{a, b\}, s_{m} = \{s, f\}\}$$

$$Q_{m} = \{\{s, f\}, \{q_{1}, q_{2}\}, \{q_{3}, q_{4}\}\}, F_{m} = \{\{s, f\}\}\}$$

$$R_{m} = \{\{s, f\}a \rightarrow \{s, f\}, \{s, f\}b \rightarrow \{q_{3}, q_{4}\}, \{q_{1}, q_{2}\}a \rightarrow \{q_{1}, q_{2}\}, \{q_{1}, q_{2}\}b \rightarrow \{s, f\}, \{q_{3}, q_{4}\}a \rightarrow \{q_{3}, q_{4}\}, \{q_{3}, q_{4}\}b \rightarrow \{q_{1}, q_{2}\}\}$$

Variants of FA: Summary

	FA	e-free FA	DFA	Complete FA	WSFA	Min-State FA
Number of rules of the form $p \rightarrow q$, where $p, q \in Q$	0- <i>n</i>	0	0	0	0	0
Number of rules of the form $pa \rightarrow q$, for any $p \in Q$, $a \in \Sigma$	0- <i>n</i>	0- <i>n</i>	0-1	1	1	1
Number of inaccessible states	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0	0
Number of nonterminating states	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0-1	0-1
Number of this FAs for any regular language.	∞	∞	∞	∞	∞	1