Условие задачи

Составить программу умножения двух чисел, где порядок имеет до 5 знаков: от – 99999 до +99999, а мантисса – до 30 знаков.

Техническое задание

Смоделировать операцию умножения действительного числа в форме +-m.n E +-K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме +-0.m1 E +-K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр. При невозможности произвести расчет выдавать ошибку.

Входные данные:

- 1. Строка, в которой записано действительное число в экспоненциальной или обычной форме
- 2. Строка в которой записанно целое число

Выходные данные:

Строка, в которой записан результат посимвольного перемножения этих двух строк.

Возможные аварийные ситуации:

Некорректный ввод данных

Структуры данных

В программе используется только одна структура данных, это запись (структура) с именем *number_t*.

```
typedef struct number
{
   char mantissa_sign;
   char mantissa[MAX_MANTISSA * 2];
   int degree;
   short int point_ind;
} number_t;
```

В данной СД есть четыре поля. У первых трёх само по себе говорящее название, но смысл четвертого поля, под именем point_ind, может показаться не совсем очевидным. Данное поле хранит индекс точки в массиве mantissa.

В данную СД записывается первое, второе входное число и сам результат вычислений.

Описание алгоритма

В программе использован классический алгоритм умножения "столбиком". Берется *вторая строка* которое посимвольно проходится от своего конца до начала (т.е. из массива достается каждый символ, в котором хранится цифры числа), при каждой итерации умножая текущий символ (цифру) на *первую строку*, при этом складывая полученый результат умножения с "*накопителем*" (третья строка), в котором после полного прохода по числу и появится результат умножения.

Тесты

Аварийные тесты.

Некорректный ввод

```
мантисса степень
1 10 20 30 1 5
±|-----|-----|E±|---|
Введите действительное число: -12.3e+12.3
Ошибка: дейтсвительное число введено в некорректной форме
```

Больше 30 цифр в мантиссе

В порядке больше 5 цифр

```
мантисса степень
1 10 20 30 1 5
±|-----|-----|-----|E±|---|
Введите действительное число: -123e+999991
Ошибка: степень должна состоять меньше, чем из 5 символов
```

В целом числе больше 30 цифр

Граничные значения.

Наибольшое значения

Наименьшое значение

Умножение на ноль

Переполнение порядка.

```
мантисса степень
1 10 20 30 1 5
±|------|-----|-----|E±|---|
Введите действительное число: +0.01e-99999
Введите ЦЕЛОЕ число: +1
Ошибка: результат степени состоит более чем из 5 символов
```

Целые числа.

	мантисса		степень	
		10	20	30 1 5
	±			E±
Введите действительное число:	+123			
Введите ЦЕЛОЕ число:	+1			
Результат:	+0.123	3e+3		

```
мантисса степень
1 10 20 30 1 5
±|-----|-----|E±|---|
Введите действительное число: +232323
Введите ЦЕЛОЕ число: +1444
Результат: +0.335474412e+9
```

```
мантисса степень
1 10 20 30 1 5
±|-----|-----|E±|---|
Введите действительное число: +39393939
Введите ЦЕЛОЕ число: +000123
Результат: +0.4845454497e+10
```

Округление.

```
мантисса степень
1 10 20 30 1 5

± |------|-----|E±|---|
Введите действительное число: +13
Введите ЦЕЛОЕ число: +9999999999999999999999
Предупреждение: результат мантиссы более, чем 30 символов, поэтому он был округлен до 30 знаков.
Результат: +0.13e+32
```

Умножение чисел, с разными и одинаковыми знаками.

	мантисса	степень
	1 10 20	30 1 5
	±	E±
Введите действительное число:	+1233e-123	
Введите ЦЕЛОЕ число:	-123	
Результат:	-0.151659e-117	

	мантисса			степень
		10	20	30 1 5
	±			E±
Введите действительное число:	-4000	.e+123		
Введите ЦЕЛОЕ число:	+4447			
Результат:	-0.17	788e+131		

	мантисса		a	степень
		10	20	30 1 5
	±			E±
Введите действительное число:	+4000e+92	1		
Введите ЦЕЛОЕ число:	+42			
Результат:	+0.168e+9	27		

Выводы по проделанной работе

Для реализации арифметических операций (умножение, деление) над числами, выходящими за разрядную сетку ПК, лучше всего подходит алгоритм "столбиком", благодаря своей наглядности простоте реализации. Для хранения и обработки таких чисел лучше всего использовать такую структуру данных как запись (структуру), с полями, содержащими данное число "по частям": знак (хранится в типе char), мантисса (хранится в массиве типа char) и порядок (хранится в стандартном типе int).

Контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Целые положительные числа: $0 < x <= 2^n - 1$

Целое отрицательные числа: $-2^{(n-1)} <= x < 0$

для п-разрядного машинного слова

Действительные числа: 3.6E–4951 <= x <= 1.1E+4932 (максимальный размер мантиссы 52 разряда,

порядок – 11 разрядов. ВАЖНО: Имеется ввиду двоичные разряды, а не десятичные)

2. Какова возможная точность представления чисел, чем она определяется?

Точность представленяи вещественного числа зависит от максимально возможной длины мантиссы, которая, опять-таки, зависит от области выделяемой памяти и наличия знака. Если длина мантиссы выходит за границы разрядной сетки, то происходит округление. Обычно, длина мантисы это 20 десятичных разрядов.

3. Какие стандартные операции возможны над числами?

Сложение, вычитание, умножение, деление, сравнение.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Можно выбрать тип данных char, и храниить каждую цифру числа в массиве char'ов. так же, можно выбрать тип данных int, и хранить каждую цифру числа в массиве int'ов, но это будет не выгодно по памяти, по сравнению с массивом символов.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Сохранить число в массив (символов или интов), и производить действия по элементно (над каждой цифрой), например, используя классический алгоритм "столбиком"