CALCULO DIFERENCIAL

$$D_x(u)^n = n(u)^{n-1} du$$

$$D_x[u*v] = uD_xv + vD_xu$$

$$D_x \left[\frac{u}{v} \right] = \frac{v D_x u - u D_x v}{v^2}$$

$$D_x[lnu] = \frac{1}{u}D_xu$$

$$D_x \left[Log_a u \right] = \frac{1}{u lna} D_x u$$

$$D_x[e^u] = e^u D_x u$$

$$D_x[a^u] = a^u \ln a D_x u$$

 $D_{r}[Senu] = CosuD_{r}u$

$$D_{x}[Senhu] = Co$$

$$D_x[Cosu] = -SenuD_xu$$

$$D_r[Tanu] = Sec^2 u D_r u$$

$$D_{r}[Cotu] = -Csc^{2}uD_{r}u$$

$$D_x[Secu] = SecuTanuD_xu$$

$$D_x[Cscu] = -CscuCotuD_xu$$

$$D_{x}[Cosh^{-1}u] = \frac{D_{x}u}{\sqrt{u^{2}-1}}$$

 $D_x[Senh^{-1}u] = \frac{D_xu}{\sqrt{u^2+1}}$

$$D_x[Tanh^{-1}u] = \frac{D_x u}{1 - u^2}$$

$$D_x[Coth^{-1}u] = \frac{D_xu}{1-u^2}$$

$$D_{x}[Sech^{-1}u] = \frac{-D_{x}u}{u\sqrt{1-u^{2}}}$$

$$D_x[\ Csch^{-1}u] = \frac{-D_x u}{|u|\sqrt{1-u^2}}$$

$$D_x[ArcSenu] = \frac{D_x u}{\sqrt{1-u^2}}$$

$$D_{x}[ArcCosu] = \frac{-D_{x}u}{\sqrt{1-u^{2}}}$$

$$D_{x}[ArcTanu] = \frac{D_{x}u}{1+u^{2}}$$

$$D_{x}[ArcCotu] = \frac{-D_{x}u}{1+u^{2}}$$

$$D_{x}[ArcSecu] = \frac{D_{x}u}{|u|\sqrt{u^{2}-1}}$$

$$D_{x}[ArcCscu] = \frac{-D_{x}u}{|u|\sqrt{u^{2}-1}}$$

$$D_{x}[Senhu] = Cosh(u)Du$$

$$D_x[Coshu] = Senh(u)Du$$

$$D_x[Tanhu] = Sech^2(u)Du$$

$$D_x[Cothu] = -Csch^2(u)Du$$

$$D_x[Sechu] = -Sech(u)Tanh(u)Du$$

$$D_x[Cschu] = -Csch(u)Coth(u)Du$$

REGLAS BASICAS DE LA INTEGRACION

$$\int dx = x + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int Kf(x)dx = K \int f(x)dx \qquad \mathbf{K} = \mathbf{cte}$$

$$\int [f(x) \pm g(x)] dx = \int f(x) \pm \int g(x) dx$$

CAMBIO DE VARIABLE

$$\int u^n du = \frac{u^{n+1}}{n+1} + C \qquad \mathbf{n} \neq -\mathbf{1}$$

En donde u es una función polinomial o trascendental

FUNCIONES EXPONENCIALES

$$\int e^u du = e^u + C$$

$$e = Cte. de Euler = 2.718$$

$$\int a^u du = \frac{a^u}{\ln a} + C$$

FUNCION LOGARITMICA

$$\int \frac{du}{u} = \ln|u| + C$$

Propiedades:

$$Ln(pq) = Lnp + Lnq$$

$$Ln\left(\frac{p}{q}\right) = Ln(p) - Ln(q)$$

$$Ln \ 1 = 0$$

$$e^{Ln\,(u)}=u$$

$$Ln p^r = r Ln p$$

FUNCIONES TRIGONOMÉTRICAS

$$\int Sen(u)du = -Cos(u) + C$$

$$\int Cos(u)du = Sen(u) + C$$

$$\int Tan(u)du = \ln|Sec(u)| + C$$

$$= -\ln|Cos(u)| + C$$

$$\int Cot(u)du = -\ln|Csc(u)| + C$$

$$= \ln |Sen(u)| + C$$

$$\int Sec(u)du = \ln |Sec(u) + Tan(u)| + C$$

$$\int Csc(u)du = \ln|Csc(u) - Cot(u)| + C$$

$$\int Sec^2(u)du = Tan(u) + C$$

$$\int Csc^2(u)du = -Cot(u) + C$$

$$\int Sec(u)Tan(u)du = Sec(u) + C$$

$$\int Csc(u)Cot(u)du = -Csc(u) + C$$

RV7

FUNCIONES HIPERBÓLICAS

$$\int Senh(u)du = Cosh(u) + C$$

$$\int Cosh(u)du = Senh(u) + C$$

$$\int Tanh(u)du = \ln|Cosh u| + C$$

$$\int Coth(u)du = \ln|Senh u| + C$$

$$\int Sech^2(u)du = Tanh(u) + C$$

$$\int Csch^2(u)du = -Coth(u) + C$$

$$\int Sech(u)Tanh(u)du = -Sech(u) + C$$

$$\int Csch(u)Coth(u)du = -Csch(u) + C$$

FUNCIONES TRIGONOMÉTRICAS INVERSAS

$$\int \frac{du}{\sqrt{a^2 - u^2}} = Sen^{-1} \left(\frac{u}{a} \right) + C$$

$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} Tan^{-1} \left(\frac{u}{a} \right) + C$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} Sec^{-1} \left(\frac{u}{a}\right) + C$$

FUNCIONES HIPERBOLICAS INVERSAS

$$\int \frac{du}{\sqrt{a^2 + u^2}} = Senh^{-1} \left(\frac{u}{a}\right) + C$$

$$\int \frac{du}{\sqrt{u^2 - a^2}} = Cosh^{-1} \left(\frac{u}{a}\right) + C$$

$$\int \frac{du}{u\sqrt{a^2+u^2}} = \frac{-1}{a} Csch^{-1} \left(\frac{u}{a}\right) + C$$

$$\int \frac{du}{u\sqrt{a^2 - u^2}} = \frac{-1}{a} Sech^{-1} \left(\frac{u}{a}\right) + C$$

$$\int \frac{du}{a^2 - u^2} = \frac{1}{a} Tanh^{-1} \left(\frac{u}{a}\right) + C$$

Forma equivalente de las integrales que dan como resultado
HIPERBÓLICAS INVERSAS

$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln\left(u + \sqrt{u^2 \pm a^2}\right) + C$$

$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| + C$$

$$\int \frac{du}{u\sqrt{a^2 \pm u^2}} = -\frac{1}{a} ln \left(\frac{a + \sqrt{a^2 \pm u^2}}{|u|} \right) + C$$

SUSTITUCIÓN TRIGONOMÉTRICA

Forma \rightarrow Sustitución \rightarrow la raíz se sustituye por:

$$\sqrt{a^2 - u^2} \rightarrow u = aSen\theta \rightarrow aCos\theta$$

$$\sqrt{a^2 + u^2} \rightarrow u = aTan\theta \rightarrow aSec\theta$$

$$\sqrt{u^2 - a^2} \rightarrow u = aSec\theta \rightarrow aTan\theta$$

INTEGRAL POR PARTES

$$\int udv = uv - \int vdu$$

FRACCIONES PARCIALES

CASO I: Factores lineales distintos.

A cada factor lineal (ax + b) le corresponde una fracción de la forma:

$$\frac{A}{ax+b}$$

CASO II: Factores lineales repetidos.

A cada factor lineal repetido $(ax + b)^k$. Le corresponde la suma de k fracciones parciales de la forma:

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$$

CASO III. Factores cuadráticos distintos.

A cada factor cuadrático $(ax^2 + bx + c)$ le corresponde una fracción de la forma

$$\frac{Ax + B}{ax^2 + bx + c}$$

CASO IV. Factores cuadráticos repetidos.

A cada factor cuadrático repetido $(ax^2 + bx + c)^k$ le corresponde la suma de k fracciones parciales de la forma:

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$

TEOREMAS DE SUMATORIAS

Sean m y n enteros positivos, c= constante

1.
$$\sum_{i=1}^{n} c f(i) = c \sum_{i=1}^{n} f(i)$$

2.
$$\sum_{i=1}^{n} [f(i) \pm g(i)] = \sum_{i=1}^{n} f(i) \pm \sum_{i=1}^{n} g(i)$$

3.
$$\sum_{i=1}^{n} f(i) = \sum_{i=1}^{m} f(i) + \sum_{i=m+1}^{n} f(i)$$
 $m < n$

4.
$$\sum_{i=1}^{n} c = nc$$

5.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

6.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

7.
$$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

SUMA DE RIEMANN

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x$$

$$\Delta x = \frac{b-a}{n}$$
 , $c_i = a + i * \Delta x$

RV7

C/	ASOS TRIGONOMETRICOS			APLICAC
	Tipo de Integral	Condición	ldentidad útil	ÁREA:
1	∫ Sen ⁿ u du, ∫ Cos ⁿ u du,	donde n es un entero impar positivo	$Sen^2u + Cos^2u = 1$	$A = \int_{a}^{b} [(Funci\'{o}n)]^{b}$
2	$\int Sen^n u \ Cos^m u \ du,$	donde n o m es un entero impar positivo	$Sen^2u + Cos^2u = 1$	$A = \int_{a}^{b} [(Funci\'{o}n)]^{b}$
3	$\int Sen^n u \ du,$ $\int Cos^n u \ du,$ $\int Sen^n u \ Cos^m u \ du,$	donde n y m son enteros pares positivos	$Sen^2u = \frac{1-Cos\ 2u}{2}$ $Cos^2u = \frac{1+Cos\ 2u}{2}$ $Sen\ u\ Cos\ u = \frac{1}{2}Sen\ 2u$	VOLUMEN / M Cuando el eje d
4	$\int Sen (mu) Cos(nu) du$ $\int Sen (mu) Sen(nu) du$ $\int Cos (mu) Cos(nu) du$	donde n y m son cualquier número	$Sen A Cos B = \frac{1}{2} [Sen (A - B) + Sen (A + B)]$ $Sen A Sen B = \frac{1}{2} [Cos (A - B) - Cos (A + B)]$ $Cos A Cos B = \frac{1}{2} [Cos (A - B) + Cos (A + B)]$	Cuando el eje d
5	$\int Tan^n u \ du,$ $\int Cot^n u \ du$	donde n es cualquier número entero	$1 + Tan^2u = Sec^2u$	VOLUMEN / M $V = \pi \int_{a}^{b} [(R^{2}(x))^{2}] dx$
6	$\int Sec^n u \ du,$ $\int Csc^n u \ du$	donde n es un entero par positivo	$1 + Tan^2u = Sec^2u$ $1 + Cot^2u = Csc^2u$	$V = \pi \int_{a}^{b} [(R^{2}($ LONGITUD DE
7	$\int Tan^m u \ Sec^n u \ du$ $\int Cot^m u \ Csc^n u \ du$	donde n es un entero par positivo	$1 + Tan^2u = Sec^2u$ $1 + Cot^2u = Csc^2u$	$S = \int_a^b \sqrt{1 + [}$
8	$\int Tan^m u \ Sec^n u \ du$ $\int Cot^m u \ Csc^n u \ du$	donde m es un entero impar positivo	$1 + Tan^2u = Sec^2u$ $1 + Cot^2u = Csc^2u$	$S = \int_{c}^{d} \sqrt{1 + [}$ TRABAJO
CALCULO DE INTEGRALES DOBLES				$W = \int_a^b F(x) dx$
\iint_{S}	$\iint_{R} f(x,y)dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y)dydx \qquad \iint_{R} f(x,y)dA = \int_{a}^{b} \int_{g_{1}(y)}^{g_{2}(y)} f(x,y)dxdy$			

ACIONES DE LA INTEGRAL DEFINIDA

ón de arriba) – (función de abajo)]dx

ón derecha) – (función izquierda)]dy

METODO DE CAPAS O CORTEZA

de revolución es horizontal

$$V = 2\pi \int_{a}^{b} r(y)h(y)dy$$

de revolución es vertical

$$V = 2\pi \int_{a}^{b} r(x)h(x)dx$$

METODO DEL DISCO O ARANDELA

$$V = \pi \int_{a}^{b} [(R^{2}(x) - r^{2}(x)] dx$$

$$V = \pi \int_{a}^{b} [(R^{2}(y) - r^{2}(y))] dy$$

E ARCO

$$S = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$

$$S = \int_{c}^{d} \sqrt{1 + [g'(y)]^2} \, dy$$

$$W = \int_a^b F(x) dx$$

RV7

IDENTIDADES TRIGONOMÉTRICAS	IDENTIDADES HIPERBÓLICAS	VALORES IMPORTANTES DEL SENO Y COSENO	
INVERSAS	$\cosh^2(u) - senh^2(u) = 1$	sen(0) = 0	cos(0) = 1
$Sen(u) = \frac{1}{Csc(u)}$ $Csc(u) = \frac{1}{Sen(u)}$	$sech^2(u) + tanh^2(u) = 1$	$sen\left(\frac{\pi}{2}\right) = 1$	$\cos\left(\frac{\pi}{2}\right)=0$
$Cos(u) = \frac{1}{Sec(u)}$ $Sec(u) = \frac{1}{Cos(u)}$	$coth^2(u) - csch^2(u) = 1$	$sen(\pi) = 0$	$cos(\pi) = -1$
	senh(2u) = 2senh(u)cosh(u)	$sen\left(\frac{3}{2}\pi\right) = -1$	$\cos\left(\frac{3}{2}\pi\right) = 0$
$Tan(u) = \frac{1}{Cot(u)}$ $Cot(u) = \frac{1}{Tan(u)}$		$sen(2\pi) = 0$	$cos(2\pi) = 1$
Sen(-A) = -sen(A)	$ cosh (2u) = cosh^{2}(u) + senh^{2}(u) $	$sen(n\pi) = 0$	$cos(2n\pi) = 1$
Cos(-B) = cos(B)		$sen\left[(2n-1)\frac{\pi}{2}\right] = -(-1)^n = (-1)^{n+1}$	$cos\left[(2n-1)\frac{\pi}{2}\right] = cos\left[(1-2n)\frac{\pi}{2}\right] = 0$
COS(-B) = COS(B) FORMA DE COCIENTE	$tanh(2u) = \frac{2\tanh(u)}{1 + \tanh^2(u)}$	$sen\left(\frac{\pi}{6}\right) = \frac{1}{2}$	$cos(n\pi) = (-1)^n$
	$senh^2(u) = \frac{cosh(2u) - 1}{2}$	$sen\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$	$cos[(1\pm 2n)\pi] = -1$
$Tan(u) = \frac{Sen(u)}{Cos(u)}$ $Cot(u) = \frac{Cos(u)}{Sen(u)}$		_	$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
PITAGÓRICAS	$cosh^2(u) = \frac{cosh(2u)+1}{2}$	$sen\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$	$COS\left(\frac{\pi}{3}\right) = \frac{1}{2}$
$Sen^2(u) = 1 - Cos^2(u)$	$senh x = \frac{e^x - e^{-x}}{2}$	$sen\left[\left(1+4n\right)\frac{\pi}{2}\right]=1$	$COS\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$
$Cos^2(u) = 1 - Sen^2(u)$	$Cosh x = \frac{e^x + e^{-x}}{2}$	$\cos\left[(1\pm4n)\frac{\pi}{2}\right]=0$	$cos[(1\pm n)\pi] = -(-1)^n$
$Sec^2(u) = 1 + Tan^2(u)$	$Tanh x = \frac{senhx}{coshx}$	$Cos(t) = \frac{1}{2}(e^{jt} + e^{-jt})$	$e^{\pm jt} = Cos(t) \pm jSen(t)$
$Tan^2(u) = Sec^2(u) - 1$		Sen $(t) = \frac{1}{2j} (e^{jt} - e^{-jt})$	
$Csc^2(u) = 1 + Cot^2(u)$	$Coth x = \frac{coshx}{senhx}$		
$Cot^2(u) = Csc^2(u) - 1$	Senh xCschx = 1	LEYES DE EXPONENTES $a^{m}a^{n} = a^{m+n} \qquad \qquad \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$	
	Cosh x Sech x = 1	$(a^m)^n = a^{mn} \qquad \qquad a^{-n} = \frac{1}{a^n}$	
ANGULO DOBLE			
Sen2u= 2Sen(u)Cos(u)	FUNCIONES TRIGONOMÉTRICAS $Sen\theta = \frac{c.o.}{Hip} \qquad Cot\theta = \frac{c.A.}{c.o.}$	$(ab)^m = a^m b^m a^{\frac{p}{q}} = \sqrt[q]{q}$	$\overline{a^p}$
$\cos 2u = \cos^2(u) - \operatorname{Sen}^2(u)$		$\frac{a^m}{a^n} = a^{m-n} m > n \qquad a^0 = 1$	1
$Sen^2(u) = \frac{1 - \cos{(2u)}}{2}$	$Cos\theta = \frac{C.A.}{Hip}$ $Sec\theta = \frac{Hip.}{C.A.}$	$\frac{a^m}{a^n} = \frac{1}{a^{n-m}} m < n$	
$Cos^2(u) = \frac{1 + \cos(2u)}{2}$	$Tan\theta = \frac{c.o.}{c.A.}$ $Csc\theta = \frac{Hip.}{c.o.}$		RV7

TAB	TABLA DE TRANSFORMADAS ELEMENTALES			
	f(t)	F(s)		
1	С	$\frac{c}{s}$, $s > 0$		
2	t	$\frac{1}{s^2}, s > 0$		
3	t^n	$\frac{n!}{s^{n+1}}, s > 0$		
4	e ^{at}	$\frac{1}{s-a}$, $s>a$		
5	Sen at	$\frac{a}{s^2 + a^2}, s > 0$		
6	Cos at	$\frac{s}{s^2+a^2}, s>0$		
7	Senh at	$\frac{a}{s^2-a^2}, s> a $		
8	Cosh at	$\frac{s}{s^2 - a^2}, s > a $		
9	t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}}$		
10	e ^{bt} Sen at	$\frac{a}{(s-b)^2+a^2}$		
11	e ^{bt} Cos at	$\frac{s-b}{(s-b)^2+a^2}$		
12	e ^{bt} Senh at	$\frac{a}{(s-b)^2-a^2}$		
13	e ^{bt} Cosh at	$\frac{s-b}{(s-b)^2-a^2}$		

TRANSFORMADAS DE LAPLACE

Transformada de la derivada

$$\mathcal{L}\lbrace f^{(n)}(t)\rbrace = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$

Transformada de la Integral

$$\mathcal{L}\left\{\int_0^t f(t)dt\right\} = \frac{F(s)}{s}$$

Multiplicación por tⁿ

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n F^{(n)}(s)$$

Primera Propiedad de Traslación

$$\mathcal{L}^{-1}{F(s-a)} = e^{at}f(t)$$

Transformada Inversa de la Derivada

$$\mathcal{L}^{-1}\{F^{(n)}(s)\} = (-1)^n t^n f(t)$$

División por s

$$\mathcal{L}^{-1}\left\{\frac{F(s)}{s^n}\right\} = \int_0^t \dots \int_0^t f(t)(dt)^n$$

Teorema de Convolución o Transformada Inversa del Producto

Si
$$\mathcal{L}^{-1}{F(s)} = f(t)$$
 y $\mathcal{L}^{-1}{G(s)} = g(t)$, entonces:

$$\mathcal{L}^{-1}{F(s)G(s)} = \int_0^t f(u)g(t-u)du$$
$$= \int_0^t f(t-u)g(u)du$$

TABLA DE TRANSFORMADAS INVERSAS ELEMENTALES			
	F(s)	f(t)	
1	$\frac{C}{s}$	С	
2	$\frac{1}{s^2}$	t	
3	$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	
4	$\frac{1}{s-a}$	e ^{at}	
5	$\frac{1}{s^2+a^2}$	$\frac{Sen\ at}{a}$	
6	$\frac{s}{s^2 + a^2}$	Cos at	
7	$\frac{1}{s^2-a^2}$	Senh at a	
8	$\frac{s}{s^2-a^2}$	Cosh at	
9	$\frac{1}{(s-a)^{n+1}}$	$\frac{t^n e^{at}}{n!}$	
10	$\frac{1}{(s-b)^2+a^2}$	e ^{bt} Sen at a	
11	$\frac{s-b}{(s-b)^2+a^2}$	e ^{bt} Cos at	

 $\overline{(s-b)^2-a^2}$

e^{bt}Senh at

 $e^{bt}Cosh$ at

12

13

SERIES DE FOURIER

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$$

Fórmula General $f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$	$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$	$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_0 t) dt$	$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$
Simetría Par $f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t)]$	$a_0 = \frac{4}{T} \int_0^{T/2} f(t) dt$	$a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt$	$b_n = 0$
Simetría Impar $f(t) = \sum_{n=1}^{\infty} [b_n \operatorname{sen}(n\omega_0 t)]$	$a_0 = 0$	$a_n = 0$	$b_n = \frac{4}{T} \int_0^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$
Simetría de Media Onda $f(t) = \sum_{n=1}^{\infty} [a_{2n-1}\cos((2n-1)\omega_0 t) + b_{2n-1}\sin((2n-1)\omega_0 t)]$	$a_0 = 0$ $a_{2n} = 0$ $b_{2n} = 0$	$a_{2n-1} = \frac{4}{T} \int_0^{T/2} f(t) \cos[(2n-1)(\omega_0 t)] dt$	$b_{2n-1} = \frac{4}{T} \int_0^{T/2} f(t) \operatorname{sen}[(2n-1)(\omega_0 t)] dt$
Simetría de un cuarto de onda Par $f(t) = \sum_{n=1}^{\infty} [a_{2n-1} \cos((2n-1)\omega_0 t)]$	$a_0 = 0$ $a_{2n} = 0$	$a_{2n-1} = \frac{8}{T} \int_0^{T/4} f(t) \cos[(2n-1)(\omega_0 t)] dt$	$b_n = 0$
Simetría de un cuarto de onda Impar $f(t) = \sum_{n=1}^{\infty} [b_{2n-1} \operatorname{sen}((2n-1)\omega_0 t)]$	$a_0 = 0$ $b_{2n} = 0$	$a_n = 0$	$b_{2n-1} = \frac{8}{T} \int_0^{T/4} f(t) \operatorname{sen}[(2n-1)(\omega_0 t)] dt$

Serie De Fourier (FORMA COMPLEJA)	Si se conoce a_n , a_0 y b_n	Si se conoce C_n , C_0 se obtiene:	
$C_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jnWot} dt$	se obtiene: $C_n = \frac{1}{2}(a_n - jb_n)$	$a_n = 2Re[C_n]$ $b_n = -2Im[C_n]$	$\omega o = \frac{2\pi}{T}$
$f(t) = \sum_{n=-\infty}^{\infty} C_n e^{jnWot}$ n= 0±1±2±3	$C_0 = \frac{1}{2}a_0$	$a_0 = 2C_0$	RV7