e resto
$$|R_6(1)| \le \frac{1}{15 \cdot 7!} = \frac{1}{75600}$$
.

2. O mesmo para $\int_0^{\pi} \frac{\sin(t)}{t} dt$.

$$\int_0^x \frac{\sin(t)}{t} dt = x - \frac{x^3}{3 \cdot 3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)(2n+1)!} + \dots$$

e para n=5 temos a precisão desejada

$$|R_5(\pi)| \le \frac{\pi^{13}}{13 \cdot 13!} \approx 0.000035869...$$

3 Séries de Fourier

Nesta secção vamos estudar um segundo tipo de expansão em série, baseado em funções elementares periódicas (co-sinos, sinos ou exponenciais complexas), ditas, séries de Fourier¹. Porque estas têm a interpretação física de sinal que evolui ao longo do tempo, representaremos estas funções por f = f(t).

Definição 3.1. Uma função $f : \mathbb{R} \to \mathbb{R}$ (ou \mathbb{C}), diz-se periódica, de período T > 0 (ou T-periódica), se satisfizer

$$f(t+T) = f(t), (3.1)$$

para todo $t \in \mathbb{R}$.

Note-se que a mudança de variável $\tau = t + T$ conduz a $f(t) = f(\tau - T)$, para todo $\tau \in \mathbb{R}$. Aplicando recursivamente a condição de periodicidade, obtém-se f(t) = f(t + kT) para todo o $t \in \mathbb{R}$ e todo o inteiro $k \in \mathbb{Z}$. Diremos então que f tem por domínio $\mathbb{R}/T\mathbb{Z}$.

As funções co-sino e sino são 2π -periódicas, donde $A\cos(\omega t)$, [resp. $A\sin(\omega t)$], para $A>0,\ t\in \left[0,\frac{2\pi}{\omega}\right[$, têm período $\frac{2\pi}{\omega}$, com A a amplitude da onda e ω a sua frequência, (medida, em geral, em Hz, número de oscilações por segundo).

Figura 4: Gráfico de sino / co-sino; gráficos de diferentes modulações destas. Note-se o desfasamento entre sino e co-sino, ou seja, a translação $\cos(t - \frac{\pi}{2}) = \sin(t)$.

 $^{^1\}mathrm{Jean\text{-}Baptiste}$ Fourier (1768-1839) introduziu o conceito em 1807, para efeitos de resolução da equação do calor.

3.1 Definição e representação de séries de Fourier

Relembre-se que, se as séries numéricas $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são absolutamente convergentes, então o critério de Weierstrass assegura a convergência uniforme da série de funções

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

para uma função contínua S=S(t) em todo o subintervalo fechado e limitado de \mathbb{R} . Adicionalmente, S é também T-periódica, com $T=\frac{2\pi}{\omega}$.

No que se segue, vamos considerar o espaço vectorial das funções reais de variável real, contínuas e T-periódicas em \mathbb{R} . Designaremos este espaço por $C(\mathbb{R}/T\mathbb{Z})$.

Lema 3.1 (Propriedades). Para todo $f \in C(\mathbb{R}/T\mathbb{Z})$ tem-se

- i) $f \in limitada \ em \ \mathbb{R};$
- $$\begin{split} ii) \ \int_a^{a+T} f(t)dt &= \int_0^T f(t)dt, \quad para \ todo \ a \in \mathbb{R}; \\ em \ particular, \ \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)dt &= \int_0^T f(t)dt \quad (a = -\frac{T}{2}). \end{split}$$

A demonstração é trivial e deixada como exercício.

Lema 3.2 (Fecho relativamente à convergência uniforme). Se $(f_n)_{n\in\mathbb{N}}$ é uma sucessão de funções em $C(\mathbb{R}/T\mathbb{Z})$ que converge uniformemente para $f:\mathbb{R}\to\mathbb{R}$, então $f\in C(\mathbb{R}/T\mathbb{Z})$.

Imediato, por aplicação do Teorema 1.2.

Definição 3.2. Para $f, g \in C(\mathbb{R}/T\mathbb{Z})$, define-se o produto interno real

$$\langle f, g \rangle := \int_0^T f(t)g(t)dt.$$
 (3.2)

Este produto interno induz, no espaço vectorial $C(\mathbb{R}/T\mathbb{Z})$, a norma (dita, norma em média quadrática, ou norma- L_2) dada por

$$||f||_2^2 = \int_0^T |f(t)|^2 dt. \tag{3.3}$$

Diremos que

- 1) f é ortogonal a g, e escrevemos $f \perp g$, se $\langle f,g \rangle = \int_0^T f(t)g(t)dt$;
- 2) a sucessão $(f_n)_{n\in\mathbb{N}}$ converge em norma $-L_2$ para f sse

$$\lim_{n} ||f_n - f||_2 = \lim_{n} \left(\int_0^T |f_n(t) - f(t)|^2 dt \right)^{\frac{1}{2}} = 0.$$

A norma em média quadrática mede a energia da função, vista como um sinal em tempo; por isso, é também chamada norma de energia na Física.

Exemplo 3.1. O sistema de funções reais de variável real

$$\{1, \cos(n\omega t), \sin(n\omega t), n \in \mathbb{N}\}\tag{3.4}$$

em $C(\mathbb{R}/T\mathbb{Z})$, com $T=\frac{2\pi}{\omega}$, é um sistema ortogonal, mas não ortonormado.

A normalização do sistema (3.4) conduz a

$$\left\{\frac{1}{\sqrt{T}}, \sqrt{\frac{2}{T}}\cos(n\omega t), \sqrt{\frac{2}{T}}\sin(n\omega t), n \in \mathbb{N}\right\},\,$$

agora um sistema ortonormado de $C(\mathbb{R}/T\mathbb{Z})$.²

Teorema 3.1. Se a série

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$
(3.5)

converge uniformemente para a função $S: \mathbb{R} \to \mathbb{R}$, então $S \in C(\mathbb{R}/T\mathbb{Z})$, com $T = \frac{2\pi}{\omega}$, e os seus coeficientes são dados por

$$a_n = \frac{2}{T} \int_0^T S(t) \cos(n\omega t) dt, \quad n = 0, 1, 2, \cdots,$$
 (3.6)

$$b_n = \frac{2}{T} \int_0^T S(t) \sin(n\omega t) dt, \quad n = 1, 2, \cdots.$$
(3.7)

Corolário 3.1.1. Para todos $T, \omega > 0$ tais que $T\omega = 2\pi$, temos

$$C(\mathbb{R}/T\mathbb{Z}) \subset \operatorname{Span} \{1, \cos(n\omega t), \sin(n\omega t), n \in \mathbb{N}\}.$$

Note-se que esta inclusão é estrita: há funções T-periódicas, mas não contínuas, para as quais ainda é possível calcular os coeficientes (3.6) e (3.7) e cuja série de Fourier associada (3.5) ainda converge. Um exemplo disso é a função onda quadrada,

$$f(t) = \begin{cases} -1, & t \in [2n-1, 2n[\\ 1, & t \in [2n, 2n+1[\end{cases}$$
 (3.8)

cujos coeficientes são $a_n=0, n=0,1,2,\cdots$, e $b_{2n-1}=\frac{4}{(2n-1)\pi}, b_{2n}=0$, para $n=1,2,3,\cdots$

 $[\]frac{1}{2\cos(A)\cos(B) = \frac{1}{2}[\cos(A+B) + \cos(A-B)];} \\ \sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) - \cos(A+B)]; \\ \sin(A)\cos(B) = \frac{1}{2}[\sin(A+B) - \sin(A-B)]$

Figura 5: Onda quadrada, $-3 < t < 3; \quad T = 2, \omega = \pi$

A definição seguinte estabelece as condições em que é possvel estabelecer a série de Fourier para uma função real (resp. complexa) periódica.

Definição 3.3. Seja $f : \mathbb{R} \to \mathbb{R}$, uma função T-periódica. Se a função tem energia finita e os integrais (3.6) e (3.7) existem e são finitos para todo $n \in \mathbb{N}_0$ então a série

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t), \quad \omega = \frac{2\pi}{T},$$

diz-se a série de Fourier de f, e os coeficientes a_n, b_n dizem-se os coeficientes de Fourier de f.

Nota:

i) Da periocidade de f vem as expressões alternativas para cálculo dos coeficientes

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt, \quad b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt, \quad n = 0, 1, 2, \dots$$

- ii) Em consequência, se f é uma função par, então $b_n=0, \forall n.$ Da mesma forma, se f é uma função ímpar, então $a_n=0, \forall n.$
- iii) Toda a função periódica se pode decompor na soma de uma função par com uma função ímpar, via

$$f(t) = \underbrace{\frac{f(t) - f(-t)}{2}}_{\text{1mpar}} + \underbrace{\frac{f(t) + f(-t)}{2}}_{\text{1mpar}}$$

$$= f_{\text{1mpar}}(t) + f_{\text{par}}(t)$$

3.2 Convergência em média quadrática

No que se segue, trataremos apenas o caso do espaço de funções $C(\mathbb{R}/T\mathbb{Z})$. A validade dos próximos resultados no caso de funções nas condições da definição (3.3) é imediata.

Também, e por comodidade de escrita, usaremos a base ortonormada

$$\psi_0(t) = \frac{1}{\sqrt{T}}, \quad \psi_n(t) = \sqrt{\frac{2}{T}}\cos(n\omega t) \quad e \quad \psi_{-n}(t) = \sqrt{\frac{2}{T}}\sin(n\omega t),$$

donde tiramos

$$\int_0^T \psi_j(t)\psi_l(t)dt = \delta_{j,l} := \begin{cases} 1, & j \neq l \\ 0, & j = l \end{cases}$$
 (delta de Kronecker)

e para cada coeficiente $d_n = \int_0^T f(t) \psi_n(t) dt$ resulta

$$a_0 = \frac{2}{\sqrt{T}}d_0, \ a_n = \sqrt{\frac{2}{T}} \ d_n, \ b_n = \sqrt{\frac{2}{T}} \ d_{-n}, \quad n = 1, 2, \cdots$$

O problema da convergência em média quadrática consiste em, dada uma função f, com energia finita num intervalo [0,T], T>0, (isto é, $\|f\|_2^2=\int_0^T|f(t)|^2dt<+\infty$), encontrar o polinómio trigonométrico

$$Q_k(t) = \sum_{n=-k}^{k} \gamma_n \psi_n(t), k = 0, 1, 2, \dots$$
(3.9)

que minimiza a norma quadrática

$$||f - Q_k||_2^2 = \int_0^T [f(t) - Q_k(t)]^2 dt.$$

Temos,

$$0 \leq \int_{0}^{T} [f(t) - Q_{k}(t)]^{2} dt$$

$$= \int_{0}^{T} [f(t) - \sum_{n=-k}^{k} \gamma_{n} \psi_{n}(t)]^{2} dt$$

$$= \int_{0}^{T} [f(t)]^{2} dt - \sum_{n=-k}^{k} 2\gamma_{n} \underbrace{\int_{0}^{T} f(t) \psi_{n}(t) dt}_{=\langle f, \psi_{n} \rangle} + \sum_{n,j=-k}^{k} \gamma_{n} \gamma_{j} \underbrace{\int_{0}^{T} \psi_{n}(t) \psi_{j}(t) dt}_{=\langle \psi_{n}, \psi_{j} \rangle}$$

$$= \int_{0}^{T} [f(t)]^{2} dt - \sum_{n=-k}^{k} 2\gamma_{n} d_{n} + \sum_{n=-k}^{k} \gamma_{n}^{2}$$

$$= \int_{0}^{T} [f(t)]^{2} dt + \sum_{n=-k}^{k} (\gamma_{n}^{2} - 2\gamma_{n} d_{n} + d_{n}^{2} - d_{n}^{2})$$

$$= \int_{0}^{T} [f(t)]^{2} dt + \sum_{n=-k}^{k} (\gamma_{n} - d_{n})^{2} - \sum_{n=-k}^{k} d_{n}^{2}$$

pelo que $\left(\min \int_0^T [f(t)-Q_k(t)]^2 dt\right)$ é alcançado quando $\gamma_n=d_n,\ n=-k,-k+1,\cdots,k-1,k$.

O polinómio trigonométrico $\tilde{Q}_k(t) := \sum_{n=-k}^k d_n \psi_n(t), (n \in \mathbb{N}_0)$, associado à função f satisfaz a seguinte desigualdade entre as respectivas energias.

Lema 3.3 (Desigualdade de Bessel). Sejam $f \in C(\mathbb{R}/T\mathbb{Z})$ e $d = (d_n)_{n \in \mathbb{Z}}$ a sequência dos coeficientes de Fourier de f na base $\{\psi_n, n \in \mathbb{Z}\}$. Então

$$\sum_{n=-k}^{k} d_n^2 \le \int_0^T [f(t)]^2 dt, \qquad k = 0, 1, 2, 3, \dots$$

Lema 3.4. Nas mesmas condições do lema anterior, tem-se que a série $\sum_{n=-\infty}^{\infty} d_n^2$

- i) é absolutamente convergente;
- ii) satisfaz, no limite, a desigualdade anterior, isto é,

$$\sum_{n=-\infty}^{\infty} d_n^2 \le \int_0^T [f(t)]^2 dt.$$

Isto significa que o polinómio trigonométrico (resp. a série) (3.9) tem a sua energia majorada pela energia do sinal original f.

Definição 3.4 (Convergência em média quadrática). Uma sequência $(s_k)_{k\in\mathbb{N}}$ de funções em $C(\mathbb{R}/T\mathbb{Z})$ converge em média quadrática para $S\in C(\mathbb{R}/T\mathbb{Z})$, sse

$$\lim_{k} ||S - s_k||_2^2 = \lim_{k} \left(\int_0^T [S(t) - s_k(t)]^2 dt \right) = 0.$$

Teorema 3.2 (Identidade de Parseval). Seja $f \in C(\mathbb{R}/T\mathbb{Z})$ e $d = (d_n)_{n \in \mathbb{Z}}$. A série de Fourier associada a f converge em média quadrática see os seus coeficientes satisfizerem a identidade de Parseval

$$\sum_{n=-\infty}^{\infty} d_n^2 = \int_0^T [f(t)]^2 dt.$$

Demonstração. Basta atender a que, para a sequência dos polinómios trigonométricos $(\tilde{Q}_k)_{k\in\mathbb{N}_0}$ associados a f, se tem

$$||f - \tilde{Q}_k||_2^2 = \int_0^T [f(t) - \tilde{Q}_k(t)]^2 dt = \left(\int_0^T [f(t)]^2 dt - \sum_{n=-k}^k d_n^2\right) \to 0$$

quando $k \to +\infty$.

Note-se, todavia, que a convergência em média quadrática não implica a convergência pontual.

Exemplo 3.2. Tome-se a sequência de funções de energia finita no intervalo [0,1], $\{f_n^j, j=1,2,\cdots,n\}_{n\in\mathbb{N}}$, dada por

$$f_n^j(t) = \begin{cases} 1, & se \ t \in \left[\frac{j-1}{n}, \frac{j}{n}\right] \\ 0, & caso \ contrário \end{cases},$$

para $j = 1, 2, \dots, n$.

Figura 6: Gráficos de f_2^1 e f_2^2

Gráficos de f_3^1, f_3^2 e f_3^3

A sequência converge em média quadrática para a função nula mas não converge pontualmente em nenhum valor de $t \in [0, 1]$.

3.3 Convergência pontual

No que se segue, vamos considerar, sem perca de generalidade, funções 2π -periódicas e integráveis à Riemann em $[0,2\pi]$. Estas funções satisfazem as condições da definição (3.3), dado que o produto de uma função integrável à Riemann num intervalo fechado de \mathbb{R} , por uma função monótona é ainda integrável à Riemann nesse intervalo

As somas parciais da série de Fourier associada a uma tal função f são, respectivamente, $s_0 = \frac{a_0}{2}$ e

$$s_n(t) = \frac{1}{2}a_0 + \sum_{k=1}^n \left[a_k \cos(kt) + b_k \sin(kt) \right]$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) d\tau + \frac{1}{\pi} \int_{-\pi}^{\pi} f(\tau) \sum_{k=1}^n [\cos(k\tau) \cos(kt) + \sin(k\tau) \sin(kt)] d\tau$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) \left\{ 1 + 2 \sum_{k=1}^n \cos[k(\tau - t)] \right\} d\tau.$$

Para determinação de (I_1) , use-se o facto de que

$$2\cos(k\theta)\sin(\theta/2) = \sin\frac{(2k+1)\theta}{2} - \sin\frac{(2k-1)\theta}{2},$$

donde

$$(I_{1}) = 1 + \sum_{k=1}^{n} \frac{2 \cos[k(\tau - t))] \sin[\left(\frac{\tau - t}{2}\right)]}{\sin\left(\frac{\tau - t}{2}\right)}$$

$$= 1 + \sum_{k=1}^{n} \frac{\sin[(2k+1)\left(\frac{\tau - t}{2}\right)] - \sin[(2k-1)\left(\frac{\tau - t}{2}\right)]}{\sin\left(\frac{\tau - t}{2}\right)}$$

$$= 1 + \left[-1 + \frac{\sin[(2n+1)\left(\frac{\tau - t}{2}\right)]}{\sin\left(\frac{\tau - t}{2}\right)}\right]$$

$$= \frac{\sin[(2n+1)\left(\frac{\tau - t}{2}\right)]}{\sin\left(\frac{\tau - t}{2}\right)},$$

e temos

$$s_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) \left\{ \frac{\sin\left[\left(2n+1\right)\left(\frac{\tau-t}{2}\right)\right]}{\sin\left(\frac{\tau-t}{2}\right)} \right\} d\tau.$$

Assim,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) \left\{ \frac{\sin\left[(2n+1)\left(\frac{\tau-t}{2}\right)\right]}{\sin\left(\frac{\tau-t}{2}\right)} \right\} dt$$

$$= \frac{1}{2\pi} \int_{-\pi-t}^{\pi-t} f(s+t) \frac{\sin\frac{(2n+1)s}{2}}{\sin\frac{s}{2}} ds \quad (s=\tau-t, ds=d\tau)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t+s) \frac{\sin\frac{(2n+1)s}{2}}{\sin\frac{s}{2}} ds$$

$$= \frac{1}{2\pi} \int_{-\pi}^{0} f(t+u) \frac{\sin\frac{(2n+1)u}{2}}{\sin\frac{u}{2}} du + \frac{1}{2\pi} \int_{0}^{\pi} f(t+s) \frac{\sin\frac{(2n+1)s}{2}}{\sin\frac{s}{2}} ds$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} [f(t-s) + f(t+s)] \frac{\sin\frac{(2n+1)s}{2}}{\sin\frac{s}{2}} ds \quad (u=-s, du=-ds)$$

$$= \frac{1}{\pi} \int_{0}^{\pi/2} [f(t-2\tau) + f(t+2\tau)] \frac{\sin[(2n+1)\tau]}{\sin\tau} d\tau, \quad (s=2\tau, ds=2d\tau)$$

Isto significa que para todo o $t_0 \in [-\pi, \pi]$ temos que a sucessão numérica $(s_n(t_0))_{n=1}^{\infty}$ é convergente se e só se a sequência numérica dos integrais definidos³

$$\left(\frac{1}{\pi} \int_0^{\pi/2} [f(t_0 - 2\tau) + f(t_0 + 2\tau)] \frac{\sin((2n+1)\tau)}{\sin \tau} d\tau\right)_{n=1}^{\infty}$$
(3.10)

converge para um valor finito. Desta forma, o estudo da convergência pontual da série de Fourier associada a f está agora reduzida ao estudo da convergência da sucessão (3.10), que vamos estudar de seguida.

³Cada termo desta sucessão diz-se um integral de Dirichlet.

- I) No caso da função constante f=1 obtemos $s_n(t_0)=\frac{2}{\pi}\int_0^{\pi/2}\frac{\sin[(2n+1)\tau]}{\sin\tau}d\tau=1$, independentemente do valor de t_0 , pelo que a sucessão converge para $s(t_0)=1$ qualquer que seja $t_0\in[-\pi,\pi]$.
- II) No caso geral, designe-se por $s = s(t_0)$ o limite da sucessão de termo geral (3.10). Vamos mostrar, por construção, que este limite *efectivamente* existe. Tome-se a diferença

$$s_n(t_0) - s(t_0) = \left(\frac{1}{\pi} \int_0^{\pi/2} [f(t_0 - 2\tau) + f(t_0 + 2\tau)] \frac{\sin([(2n+1)\tau])}{\sin \tau} d\tau\right)$$
$$-s(t_0) \left(\frac{2}{\pi} \int_0^{\pi/2} \frac{\sin[(2n+1)\tau]}{\sin \tau} d\tau\right)$$
$$= \frac{2}{\pi} \int_0^{\pi/2} \left[\frac{f(t_0 - 2\tau) + f(t_0 + 2\tau)}{2} - s(t_0)\right] \frac{\sin[(2n+1)\tau]}{\sin \tau} d\tau.$$

Assim, teremos $\lim_n s_n(t_0) = s(t_0)$ sse

$$\lim_{n} \frac{2}{\pi} \int_{0}^{\pi/2} \left[\frac{f(t_0 - 2\tau) + f(t_0 + 2\tau)}{2} - s(t_0) \right] \frac{\sin((2n+1)\tau)}{\sin \tau} d\tau = 0.$$
 (3.11)

Denote-se $\frac{f(t_0-2\tau)+f(t_0+2\tau)}{2}-s(t_0):=\varphi_{t_0}(\tau)$. Para $0<\delta<\pi/2$, fixo, divida-se o integral (3.11) em duas partes:

$$\int_0^{\pi/2} \varphi_{t_0}(t) \frac{\sin[(2n+1)t)]}{\sin t} dt = \int_0^{\delta} \varphi_{t_0}(t) \frac{\sin[(2n+1)t]}{\sin t} dt + \underbrace{\int_{\delta}^{\pi/2} \varphi_{t_0}(t) \frac{\sin[(2n+1)t]}{\sin t} dt}_{(I_3)}.$$

Vamos agora provar que (I_3) tende para zero quando $n \to \infty$. Considere-se o seguinte lema.

Lema 3.5 (Lema de Riemann). Seja $g:[a,b] \subset \mathbb{R} \to \mathbb{R}$, com(a < b) uma função integrável à Riemann no seu domínio. Então

$$\lim_{k} \left(\int_{a}^{b} g(t) \sin(kt) dt \right) = 0.$$

Demonstração. Para todo o k natural, temos que

$$\left| \int_{a}^{b} \sin(kt)dt \right| \le \left| \frac{\cos(kb) - \cos(ka)}{k} \right| \le \frac{2}{k}.$$

Use-se uma partição $a = t_0 < t_1 < t_2 < \cdots < t_n = b$ do intervalo dado. Vem

$$\int_{a}^{b} g(t) \sin(kt) dt = \sum_{i=0}^{n-1} \int_{t_{i}}^{t_{i+1}} g(t) \sin(kt) dt$$

$$= \sum_{i=0}^{n-1} \int_{t_{i}}^{t_{i+1}} [g(t) - m_{i}] \sin(kt) dt + \sum_{i=0}^{n-1} m_{i} \int_{t_{i}}^{t_{i+1}} \sin(kt) dt$$

onde m_i denota o ínfimo de g no sub-intervalo $[t_i, t_{i+1}]$. Então, para $\Delta_i = |t_{i+1} - t_i|$ e $\omega_i = \sup_{t \in [t_i, t_{i+1}]} |g(t) - m_i|$, vem

$$\left| \int_a^b g(t) \sin(kt) dt \right| \leq \sum_{i=0}^{n-1} \omega_i \Delta_i + \frac{2}{k} \sum_{i=0}^{n-1} |m_i|.$$

Porque g é integrável à Riemann, o termo $\sum_{i=0}^{n-1} \omega_i \Delta_i$ tenderá para zero quando o diâmetro da partição, $\mathcal{P} := \max_i |\Delta_i|$, fôr para zero. O segundo termo, $\frac{2}{k} \sum_{i=0}^{n-1} |m_i|$, tende para zero quando k tende para infinito.

Porque a função φ_{t_0} é integrável à Riemann em $[\delta, \frac{\pi}{2}]$ e o inverso da função sino é monótona nesse intervalo, então a função auxiliar

$$g(t) = \frac{\varphi_{t_0}(t)}{\sin t}$$

é também integrável à Riemann em $[\delta, \frac{\pi}{2}]$ (onde $0 < \delta < \pi/2$). O resultado pretendido ($\lim_n(I_3) = 0$) vem como consequência directa do Lema de Riemann aplicado a g no intervalo $[\delta, \frac{\pi}{2}]$.

Isto implica também que (3.10) é agora equivalente a

$$0 = \lim_{n} \frac{2}{\pi} \int_{0}^{\delta} \varphi_{t_{0}}(\tau) \frac{\sin[(2n+1)\tau]}{\sin \tau} d\tau$$
$$= \lim_{n} \frac{2}{\pi} \int_{0}^{\delta} \left[\frac{f(t_{0}-2\tau) + f(t_{0}+2\tau)}{2} - s(t_{0}) \right] \frac{\sin[(2n+1)\tau]}{\sin \tau} d\tau,$$

ou seja, a convergência pontual da soma da série de Fourier associada a f depende do comportamento da função numa vizinhança, tão pequena quanto se queira, do ponto x. Este resultado constitui o teorema enunciado de seguida.

Teorema 3.3. (Teorema de localização de Riemann) Seja $f : \mathbb{R} \to \mathbb{R}$ uma função 2π -periódica e integrável à Riemann em $[0, 2\pi]$.

A sucessão $(s_n)_{n\in\mathbb{N}_0}$, das somas parciais da série de Fourier associada a f, converge pontualmente para a função $s: \mathbb{R} \to \mathbb{R}$ sse

$$\lim_{n} \frac{2}{\pi} \int_{0}^{\delta} \left[\frac{f(t_0 - 2\tau) + f(t_0 + 2\tau)}{2} - s(t_0) \right] \frac{\sin[(2n+1)\tau]}{\sin \tau} d\tau. \tag{3.12}$$

Vamos agora terminar o processo de construção da função soma da série s = s(t).

Teorema 3.4. Seja f uma função 2π -periódica e contínua por partes. Então para qualquer t_0 temos

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_n \cos(nt_0) + b_n \sin(nt_0)] = \frac{f(t_0^+) + f(t_0^-)}{2},$$

onde $f(t_0^{\pm})$ denotam os limites laterais de f no ponto t_0 da recta real.

Demonstração. Como f é contínua por partes existem os limites laterais $f(t_0^+)$, $f(t_0^-)$ para qualquer t_0 da recta real. Construam-se as funções auxiliares

$$\psi_{t_0}^-(t) = \frac{f(t_0 - 2t) - f(t_0^-)}{2}, \quad \psi_{t_0}^+(t) = \frac{f(t_0 + 2t) - f(t_0^+)}{2}.$$

Estas funções são também contínuas por partes, pelo que para todo $\epsilon>0$ existe pelo menos um $\delta'>0$ tal que

$$t < \delta' \implies \left| f(t_0 - 2t) - f(t_0^-) \right| < \epsilon,$$

$$e \quad \left| f(t_0 + 2t) - f(t_0^+) \right| < \epsilon$$

$$\Rightarrow \quad \left| \psi_{t_0}^-(t) \right| = \left| \frac{f(t_0 - 2t) - f(t_0^-)}{2} \right| < \frac{\epsilon}{2},$$

$$e \quad \left| \psi_{t_0}^+(t) \right| = \left| \frac{f(t_0 + 2t) - f(t_0^+)}{2} \right| < \frac{\epsilon}{2}.$$
(3.13)

Vamos agora aplicar o Teorema 3.3 (Teorema de localização de Riemann) à função

$$\varphi_{t_0}(t) = \frac{f(t_0 - 2t) + f(t_0 + 2t)}{2} - \frac{f(t_0^+) + f(t_0^-)}{2} = \psi_{t_0}^-(t) + \psi_{t_0}^+(t).$$

Note-se que tal corresponde a fixar $s(t_0) = \frac{f(t_0^+) + f(t_0^-)}{2}$.

Observe-se que, para $\delta > 0$ fixo, o integral (3.12) se divide em

$$\int_{0}^{\delta} \varphi_{t_0}(t) \frac{\sin[(2n+1)t]}{\sin t} dt = \underbrace{\int_{0}^{\delta'} \varphi_{t_0}(t) \frac{\sin[(2n+1)t]}{\sin t} dt}_{(I_1)} + \underbrace{\int_{\delta'}^{\delta} \varphi_{t_0}(t) \frac{\sin[(2n+1)t]}{\sin t} dt}_{(I_2)},$$

com δ' fixado de acordo com (3.13). De novo, o integral (I_2) tende para zero quando n tende para infinito (Lema de Riemann).

Para (I_1) temos, usando o teorema de valor médio para integrais, que existe um $\xi \in [0, \delta']$ tal que

$$\left| \int_0^{\delta'} \varphi_{t_0}(t) \frac{\sin[(2n+1)t]}{\sin t} dt \right| = \left| \varphi_{t_0}(\xi) \int_0^{\delta'} \frac{\sin[(2n+1)t]}{\sin t} dt \right| \le |\varphi_{t_0}(\xi)| K < \epsilon K,$$

onde $K = \left| \int_0^{\delta'} \frac{\sin[(2n+1)t]}{\sin t} dt \right|$. Assim, temos também $\lim_n (I_1) = 0$.

3.4 Aproximação

Do teorema anterior resulta que, dada uma função f periódica e contínua por partes, a correspondente série de Fourier converge para f nos pontos em que esta contínua, e para a média do salto, quando descontínua. Em consequência, se nesses pontos aproximamos uma descontinuidade de salto finito por somas parciais finitas s_n de funções contínuas, tal gera um efeito de oscilação das referidas somas s_n na vizinhança desses pontos: e.g. considerem-se a função $f: \mathbb{R} \to \mathbb{R}, 2\pi$ -periódica, dada por

$$f(t) = \begin{cases} -\pi, \ t \in]-\pi, 0] \\ \pi, \ t \in]0, \pi[$$

e a série de Fourier associada a esta.

Figura 7: Gráficos de f e da soma parcial dos primeiros 7 termos da correspondente série de Fourier.

Este fenómeno é conhecido por fenómeno de Gibbs.

3.4.1 Estimativa para aproximação por polinómios trigonométricos

Teorema 3.5. Seja $f \in C(\mathbb{R}/T\mathbb{Z})$ uma função com derivada contínua por partes.

Então, a correspondente série de Fourier associada a f

- i) converge absolutamente em cada ponto $t_0 \in \mathbb{R}$;
- ii) uniformemente em cada sub-intervalo fechado de \mathbb{R} .

Demonstração. A demonstração deste teorema assenta em aplicarmos o Teorema 1.1 (critério de Weirstrass) à série de Fourier da função f. Assim, vamos primeiro mostrar que esta existe e, em seguida, que as séries numéricas, cujos termos gerais são os coeficientes a_n e b_n , convergem absolutamente.

Sendo f uma função contínua, então f tem energia finita no intervalo [0,T] e os coeficientes (3.6) e (3.7) existem e são finitos.

Para mostrar que as séries numéricas $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ convergem absolutamente, vamos estudar a série de Fourier da função derivada f' (note-se que, pelas condições impostas, f' é limitada e integrável em [0,T]). Designem-se por α_n e β_n os coeficientes desta série. Estes verificam:

$$\alpha_0 = \frac{2}{T} \int_0^T f'(t)dt = \frac{2}{T} (f(T) - f(0)) = 0$$

$$\alpha_n = \frac{2}{T} \int_0^T f'(t) \cos(n\omega t) dt$$

$$= \frac{2}{T} [f(t) \cos(n\omega t)]_0^T + \frac{2}{T} \int_0^T n\omega f(t) \sin(n\omega t) dt$$

$$= n\omega b_n,$$

e, analogamente, tem-se $\beta_n = -n\omega b_n$. Da Identidade de Parseval e do facto de que f' é limitada, ou seja, existe um M>0 para o qual

$$|f'(t)| \le M, \quad \forall t \in \mathbb{R},$$

resulta

$$\frac{\alpha_0}{2} + \sum_{j=1}^{\infty} (\alpha_j^2 + \beta_j^2) \le \frac{2}{T} \int_0^T |f'(t)|^2 dt \le 2M^2 < +\infty.$$

Assim, para as somas parciais vem

$$\sum_{k=1}^{n} |a_k| = \sum_{k=1}^{n} \frac{1}{k\omega} |\beta_k| \le \frac{1}{\omega} \sqrt{\sum_{k=1}^{n} \beta_k^2} \sqrt{\sum_{k=1}^{n} \frac{1}{k^2}} \le \frac{\sqrt{2}M}{\omega} \sqrt{\sum_{k=1}^{n} \frac{1}{k^2}}$$

e a série $\sum_{k=1}^{\infty} a_k$ é absolutamente convergente. Analogamente, a série numérica $\sum_{k=1}^{\infty} b_k$ é também absolutamente convergente e o Critério de Weirstrass é aplicável.

Vamos terminar esta secção com o teorema que garante que toda a função contínua num intervalo fechado pode ser arbitráriamente aproximada por um polinómio - e indicando, de passagem, como o obter!

Teorema 3.6 (Teorema de aproximação de Weierstrass). Sejam $f \in C([a,b])$ $e \in S$ 0. Nestas condições, existe sempre um polinómio $\tilde{P}_N(t) = \sum_{n=0}^N c_n t^n$ para o qual se tem

$$|f(t) - \tilde{P}_N(t)| < \epsilon.$$

qualquer que seja $t \in [a, b]$.

Demonstração. Considere-se a transformação afim $\tau \mapsto t = a + \frac{b-a}{\pi}\tau$ que aplica o intervalo $[0, \pi]$ em [a, b].

A função auxiliar $g:[0,\pi]\to\mathbb{R}$ dada por $\tau\mapsto g(\tau)=f(a+\frac{b-a}{\pi}\tau)$ é assim contínua em $[0,\pi]$. Defina-se agora a função $h:\mathbb{R}\to\mathbb{R}$, que é 2π -periódica e par, como sendo

$$h(\tau) = \begin{cases} g(-\tau), & \tau \in [-\pi, 0] \\ g(\tau), & \tau \in]0, \pi] \end{cases}.$$

A nova função é contínua em \mathbb{R} , ou seja, $h \in C(\mathbb{R}/2\pi\mathbb{Z})$. A série de Fourier de h é uma série de co-sinos e existe um $m \in \mathbb{N}$ tal que a soma parcial desta,

$$F_m(\tau) = \frac{a_0}{2} + \sum_{k=1}^{m} a_k \cos(k\tau),$$

verifica

$$|F_m(\tau) - h(\tau)| < \frac{\epsilon}{2}.$$

Dado que cada termo $a_k \cos(k\tau)$ desta soma é uma função analítica, cada F_m pode escrever-se na forma de série de potências $F_m(\tau) = \sum_{n=0}^{\infty} c_n \tau^n$, com raio de convergência $R = \infty$. Porque a série de Fourier converge uniformemente no intervalo fechado $[0, \pi]$, existe uma ordem N > 0 para a qual o polinómio $P_N(\tau) = \sum_{n=0}^{N} c_n \tau^n$ satisfaz

$$|F_m(\tau) - P_N(\tau)| < \frac{\epsilon}{2}, \quad \forall x \in [0, \pi].$$

Assim, para todo $t \in [a,b]$ temos $t = a + \frac{b-a}{\pi} \tau \iff \pi \frac{t-a}{b-a} = \tau$ e

$$\left| f(t) - P_N\left(\pi \frac{t-a}{b-a}\right) \right| \le |h(\tau) - F_m(\tau)| + |F_m(\tau) - P_N(\tau)| < \epsilon.$$

Assim, $\tilde{P}_N(t) := P_N\left(\pi \frac{t-a}{b-a}\right)$ é o polinómio procurado.

4 Transformadas de Laplace

4.1 Definição

O conceito de transformada de Laplace resulta da comparação entre um sinal temporal e uma adequada função exponencial. Dado que a função exponencial é invariante sob derivação e o seu comportamento no infinito é conhecido, tal permite extrapolar sob o comportamento do sinal original.⁴

Definição 4.1 (Tipo exponencial). A função $f:[0,\infty[\to\mathbb{R}\ diz\text{-se de tipo exponencial}\ \alpha\in\mathbb{R}\ se\ existing M>0\ tal\ que$

$$|f(t)| \le Me^{\alpha t},$$

⁴Esta ideia vai abrir caminho futuro para o conceito de transformada de Fourier, onde os sinais são comparados com ondas $t \mapsto \phi_{\xi}(t) = e^{-i\xi t}$, de frequência específica $\xi \in \mathbb{R}$.