# Schema Refinement & Normalization Theory

Assignment Project Exam Help

hypordulder.clm

Add WeChat powcoder

Prof. Alex Brodsky

Database Systems

#### What's the Problem

Consider relation obtained (call it SNLRHW)
Hourly\_Emps(ssn, name, lot, rating, hrly\_wages, hrs\_worked)

\* What if we know the Project Exam Halp

https://powcoder.com S  ${
m W}$ H R <u>198</u>0 123-22-3666 40 231-31-5368 Smiley 8 30 22 10 131-24-3650 Smethurst 35 30 434-26-3751 Guldu 35 32 612-67-4134 Madayan 35 40 10

## Redundancy

- When part of data can be derived from other parts, we say redundancy exists.
  - Example: the hrly\_wage of Smiley can be derived from the hrly\_wage of Attishon because they have the same rating and we know rating determines hrly\_wage.dd WeChat powcoder
- \* Redundancy exists because of the existence of *integrity constraints* (*e.g.*,  $FD: R \rightarrow W$ ).

# What's the problem, again

- \* <u>Update anomaly</u>: Can we change W in just the 1st tuple of SNI RWH?
- \* Insertion anomaly: What if we want to https://powcoder.com insert an employee and don't know the hourly wage for his rating?
- \* <u>Deletion anomaly</u>: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

#### What do we do? Decomposition

| S            | N                     | L            | R    | W   | Н            |
|--------------|-----------------------|--------------|------|-----|--------------|
| 123-22-3666  | Attishoo              | 48           | 8    | 10  | 40           |
| 231-31-5368  | Smiley                | 22           | 8    | 10  | 30           |
| 131-24-3650A | Signtherst P          | rojec        | ¢E   | xam | <b>Be</b> lp |
| 434-26-3751  | Guldu                 | 35           | 5    | 7   | 32           |
| 612-67-4134  | https://po<br>Madayan | <b>WCO</b> ( | ger. | com | 40           |

| S Add           | <b>WeChat</b> | DOV | WC( | oder |
|-----------------|---------------|-----|-----|------|
| 3               | 11            |     | K   | П    |
| 123-22-3666     | Attishoo      | 48  | 8   | 40   |
| <br>231-31-5368 | Smiley        | 22  | 8   | 30   |
| <br>131-24-3650 | Smethurst     | 35  | 5   | 30   |
| 434-26-3751     | Guldu         | 35  | 5   | 32   |
| 612-67-4134     | Madayan       | 35  | 8   | 40   |

|               | Λ | VV |
|---------------|---|----|
| <b>&gt;</b> < | 8 | 10 |
|               | 5 | 7  |

 $\mathbf{D}$   $\mathbf{W}$ 

## Functional Dependencies (FDs)

- ❖ A <u>functional dependency</u> (FD) has the form:  $X \rightarrow Y$ , where X and y are two sets of attribuAssignment Project Exam Help
- Examples: R→W

   https://powcoder.com

   The FD X→Y is satisfied by a relation instance r itdd WeChat powcoder
  - for each pair of tuples t1 and t2 in r: t1[X] = t2[X] implies t1[Y] = t2[Y]
  - i.e., given any two tuples in *r*, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)

## Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
  - ssn didssignment Properie Exam Help
- $A \rightarrow BC$  implies  $A \rightarrow B$ https://powcoder.com **\*** An FD f is logically implied by a set of FDs F, denoted by Add Weithorpowerydational instance r that satisfies all fd's in F, f is also satisfied.
  - $F^+$  = *closure of F* is the set of all FDs that are implied by F.

## Reasoning about FDs

- How do we get all the FDs that are logically implied by a given set of FDs? Assignment Project Exam Help
- Armstrong's Axioms (X, Y, Z are sets of attributes): <a href="https://powcoder.com">https://powcoder.com</a>
  - Reflexivity: Kadd We Champow coller
  - <u>Augmentation</u>: If  $X \rightarrow Y$ , then  $XZ \rightarrow YZ$  for any Z
  - <u>Transitivity</u>: If  $X \to Y$  and  $Y \to Z$ , then  $X \to Z$

## Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- \* Typically, X esjiget Y ent Project Y is in the closure of a set of FDs F. An efficient check:
  - Compute attribute pside of the own wrt F:

    - Set of all attributes A such that X → A is in F<sup>+</sup>
       There is a linear time algorithm to compute this.
  - Check if Y is in X<sup>+</sup>
- \* Does  $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\} \text{ imply } A \rightarrow E$ ?
  - i.e, is  $A \rightarrow E$  in the closure  $F^+$ ? Equivalently, is E in  $A^+$ ?

# Computing X<sup>+</sup>

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result=X+ (under F)
   Method: Assignment Project Exam Help
  - Step 1: Restattps X/powcoder.com
  - Step 2: Take Y Z in F, and Y is in Result, do: Result := Result *union* Z
  - Repeat step 2 until Result cannot be changed and then output Result.

# Example of computing $X^+$

- $\star$  F={A $\rightarrow$ B, AC $\rightarrow$ D, AB $\rightarrow$ C}
- \* X=A Assignment Project Exam Help
- Result should be X<sup>+</sup>=ABCD https://powcoder.com

Add WeChat powcoder

#### Normal Forms

- The first question: Is any refinement needed!
- \* Normal forms:
  - If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whetherddwempasingwheedelation will help.
- \* Role of FDs in detecting redundancy:
  - Consider a relation R with 3 attributes, ABC.
    - No FDs hold: There is no redundancy here.
    - ♦ Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

## Boyce-Codd Normal Form (BCNF)

\* Reln R with FDs *F* is in BCNF if, for each non-trivial fd  $X \to A$  in  $F^+$ , X is a (super) key for R (i.e.,  $X \to R$  in  $F^+$ ).

- \* In other words, R is in BCNF if the only non-trivial FDs that hold over Rparty keypowet dinte om
- \* If BCNF:
  - No "data" in R cards Weschat pay Foderone. Why:
  - Because X is a key, we can't have two different tuples that agree on the X value

| X | Y  | A |
|---|----|---|
| X | y1 | a |
| X | y2 | ? |

## Decomposition of a Relation Scheme

- When a relation schema is not in BCNF: decompose.
- \* Suppose that relation R contains attributes A1 ... An. A decomposition of the Priste of Explanity by two or more relations such that:
  - Each new relationsche Provider and School of R (and no attributes that do not appear in R), and Every attribute of R appears as provider of at least one of
  - Every attribute of R appears as an attribute of at least one of the new relations.
- ❖ Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

#### Decomposition example

| S                    | N           | L           | R                 | W    | Н            |   |
|----------------------|-------------|-------------|-------------------|------|--------------|---|
| 123-22-3666          | Attishoo    | 48          | 8                 | 10   | 40           |   |
| 231-31-5368          | Smiley      | 22          | 8                 | 10   | 30           |   |
| 131-24-3650 <b>A</b> | Ssighmen    | <b>BP</b> 1 | <b>óje</b>        | đt E | <b>30</b> ar | n |
| 434-26-3751          | Guldu       | 35          | 5                 | 7    | 32           |   |
| 612-67-4134          | Madayan: // | bor         | V <sub>S</sub> CC | der  | <u>.ÇO1</u>  | n |
| A 1 1 XX C1 4        |             |             |                   |      |              |   |

Original relation (not stored in DB!)

Help Decomposition (in the DB)

| S Ac        | d WeCha   | ut po | ₩. | Gpd |
|-------------|-----------|-------|----|-----|
| 123-22-3666 | Attishoo  | 48    | 8  | 40  |
| 231-31-5368 | Smiley    | 22    | 8  | 30  |
| 131-24-3650 | Smethurst | 35    | 5  | 30  |
| 434-26-3751 | Guldu     | 35    | 5  | 32  |
| 612-67-4134 | Madayan   | 35    | 8  | 40  |



## Problems with Decompositions

- There are three potential problems to consider:
  - Some queries become more expensive.
    - e.g., Hassigurmeints Projectis Examinite (prn = W\*H)
  - 2 Given instances of the decomposed relations, we may not be able to the single for the decomposed relations, we may of the original relation!

    Fortunately, not in the SNLRWH example.
  - **3** Checking some dependencies may require joining the instances of the decomposed relations.
    - Fortunately, not in the SNLRWH example.
- \* *Tradeoff*: Must consider these issues vs. redundancy.

Example of problem 2

| Student_ID  | Name                           | Dcode    | Cno     | Grade  |        |
|-------------|--------------------------------|----------|---------|--------|--------|
| 123-22-3666 | Attishoo                       | INFS     | 501     | A      |        |
| 231-31-5368 | Guldu                          | CS       | 102     | В      | $\neq$ |
| 131-24-3650 | Smethurst                      | INFS     | 614     | B      |        |
| 434-26-3751 | Smethurst<br>Assignme<br>Guldu | nt Proje | et Exai | m Heir | )      |
| 434-26-3751 | Guldhttps                      | :MFSwco  | oder.co | fi     |        |

| Name      | Dcode | Gnod W | Grade<br>Chat |
|-----------|-------|--------|---------------|
| Attishoo  | INFS  | 501    | A             |
| Guldu     | CS    | 102    | В             |
| Smethurst | INFS  | 614    | В             |
| Guldu     | INFS  | 614    | A             |
| Guldu     | INFS  | 612    | C             |

|                 | 1           |           |
|-----------------|-------------|-----------|
| OW              | Saldent_ID  | Name      |
|                 | 123-22-3666 | Attishoo  |
| $\triangleleft$ | 231-31-5368 | Guldu     |
|                 | 131-24-3650 | Smethurst |
|                 | 434-26-3751 | Guldu     |

## Lossless Join Decompositions

❖ Decomposition of R into R₁ and R₂ is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies FASSIGNMENT Project Exam Help

$$\pi_{R}(r) \supset \pi_{R}(r) = r$$

- \* It is always true that  $r \subseteq \pi_{R_1}(r) \supset \pi_{R_2}(r)$
- ❖ In general, the other direction does not hold! If it does, the decomposition is lossless-join.

# Example (lossy decomposition)



# Example (lossless join decomposition)



We have  $(AB \cap BC) \rightarrow BC$ 

#### Lossless Join Decomposition

- $\diamond$  The decomposition of R into R<sub>1</sub> and R<sub>2</sub> is lossless-join wrt F if and only if F<sup>+</sup> contains:
  - R<sub>1</sub> \cap R<sub>2</sub> Assentient Project Exam Help
- $R_1 \cap R_2 \to R_2$ https://powcoder.com \* In particular, the decomposition of R into (UV) and (R-AddsWesshesspiovincidetU → V holds on R
  - assume U and V do not share attributes.
  - WHY?

## Decomposition

- Definition extended to decomposition into 3 or more relations in a straightforward way.
- \* It is essential that all decompositions used to deal with redundancy sha loss less der (Amids Problem (2).)

Add WeChat powcoder

## Decomposition into BCNF

- \* Consider relation R with FDs F. If  $X \rightarrow A$  in F<sup>+</sup> over R, violates BCNF, i.e.,
  - XA Assignment Project Exam Help
     A is not in X

  - $X \rightarrow R$  is https://powcoder.com
- \* Then: decompose Rinto R-Aand XA.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

## BCNF Decomposition Example

- Assume relation schema CSJDPQV
  - key C, JP  $\rightarrow$  C, SD  $\rightarrow$  P, J  $\rightarrow$  S
- \* To deal with SD  $\rightarrow$  P, decompose into SDP, CSJDQV.
- \* To deal withignmenter properties and CJDQV
- \* A tree representation powhodecomposition:



## BCNF Decomposition

\* In general, several dependencies may cause violations of mentions of the project of the projec

Add WeChat powcoder

#### How do we know R is in BCNF?

- If R has only two attributes, then it is in BCNF
- If F only uses attributes in R, then:
  Assignment Project Exam Help
   R is in BCNF if and only if for each X → Y in F (not
  - R is in BCNF if and only if for each  $X \rightarrow Y$  in F (not  $F^+!$ ), X is https://powerorler.c.oxn $\rightarrow$  R is in  $F^+$  (not F!).
- \* In general (F may use attributes outside of R! See example earlier for CSJDQV),
  - Need to consider all FD  $X \rightarrow A$  in  $F^+$  (not F!).

## BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF. Assignment Project Exam Help E.g., schema CSZ with FDs:  $CS \rightarrow Z$ ,  $Z \rightarrow C$
- \* Can't decombine: whome preserving  $CS \to Z$ , but CSZ is not in BCWeChat powcoder

## Dependency Preserving Decomposition

- ❖ Consider CSJDPQV, C is key, JP → C and SD  $\rightarrow$  P.
  - BCNF decomposition: Project Exam Help P
  - Problem: The king of Coder requires a join!
- \* Dependency preserving decomposition (Intuitive):
  - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem (3).)

## What FD on a decomposition?

\* Projection of set of FDs F: If R is decomposed into X, ... the projection of F onto X (denoted  $F_X$ ) is the sign ment project transHelpsure of F) such that  $U_hW_p$  in weoder.com

Add WeChat powcoder

#### Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency preserving if  $(F_X \text{ union } F_Y)^+ = F^+$ 
  - i.e., if we consider only dependencies in the closure F + that can be checked in X without considering Y, and in Y without considering X/pthese implyall dependencies in F +.
- \* Important to consider  $F^+$ , not F, in this definition:
   ABC,  $A \rightarrow B$ ,  $B \rightarrow C$ , we Chat power derivation and BC.

  - Is this dependency preserving? Is  $C \rightarrow A$  preserved?????
- Dependency preserving does not imply lossless join:
  - ABC,  $A \rightarrow B$ , decomposed into AB and BC.
- And vice-versa! (Example?)

## Another example

Assume CSJDQV is decomposed into

SDP, JS, CJDQV Assignment Project Exam Help is not dependency preserving w.r.t. the FIDSTP://pQwspder.pomd  $J \rightarrow S$ .

- \* However, it is a weetless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
- JPC tuples stored only for checking FD!

#### Third Normal Form (3NF)

- \* Reln R with FDs F is in 3NF if, for all  $X \to A$  in  $F^+$ 
  - A in X (i.e., FD is trivial), or
  - X contains a seignment Project Exam Help
  - A is part of some (candidate) key for R.
- \* Minimality of a (candidate) key is crucial in third condition above. Add WeChat powcoder

## Third Normal Form (3NF)

- ❖ If R is in BCNF, obviously in 3NF.
- \* If R is insignment reduction by the possible. It is a compromise used when BCNF not achievable (e.g., no `good' decomposition, or performance between the possible of performance of the property of the providence of the provide
  - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

#### What Does 3NF Achieve?

- \* If 3NF is violated by  $X\rightarrow A$ , one of the following holds:
  - X is a subset of some key K
    - We store Assignment Project Exam Help

  - X is not a proper subset of any key.
     https://powcoder.com
     There is a chain of FDs K → X → A, which means that we cannot
     associate an X value with a K value unless we also associate an A value with an X value.
- \* But: even if reln is in 3NF, these problems could arise.
  - e.g., Reserves SBDC,  $S \rightarrow C$ ,  $C \rightarrow S$  is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.

## Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typisighment Pstoject Extien) Help
- \* To ensure dependency preservation, one idea:

  - If X → Y is not preserved, add relation XY.
     Problem is that XY may violate 3NF! e.g., consider the addition of CJP to 'preserve' JP  $\rightarrow$  C. What if we also have  $J \rightarrow C$ ?
- \* Refinement: Instead of the given set of FDs F, use a minimal cover for F.

## Minimal Cover for a Set of FDs

- \* Minimal cover G for a set of FDs F:
  - Closure of F = closure of G.
  - Right han Asisign french Projec GExamin Letpattribute.
  - If we modify G by deleting an FD or by deleting attributes from an FD in by the course of the cour
- \* Intuitively, every Flyin Gais needed, and `as small as possible' in order to get the same closure as F.
- ❖ e.g.,  $A \rightarrow B$ ,  $ABCD \rightarrow E$ ,  $EF \rightarrow GH$ ,  $ACDF \rightarrow EG$  has the following minimal cover:
  - $A \rightarrow B$ ,  $ACD \rightarrow E$ ,  $EF \rightarrow G$  and  $EF \rightarrow H$
- ❖ M.C. → Lossless-Join, Dep. Pres. Decomp!!! (in book)

## Summary of Schema Refinement

- \* If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relationsment BOMF Exampled theuristic.
- \* If a relation is noting. BCNF over comprese it into a collection of BCNF relations.
  - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
  - Decompositions should be carried out and/or re-examined while keeping *performance requirements* in mind.