Real Analysis Qual Prep Week 1: Preliminaries

D. Zack Garza

Table of Contents

Contents

Table of Contents			2	
1	Wee	Week 1: Preliminaries		
	1.1	Topics	3	
	1.2	Background / Warmup / Review	3	
		1.2.1 Metric Spaces / Topology		
		1.2.2 Sequences	4	
		1.2.3 Series	5	
		1.2.4 Continuity and Discontinuity	5	
	1.3	Exercises	5	
	1.4	Qual Questions	6	

Table of Contents

Week 1: Preliminaries

1.1 Topics

- Concepts from Calculus
 - Mean value theorem
 - Taylor expansion
 - Taylor's remainder theorem
 - Intermediate value theorem
 - Extreme value theorem
 - Rolle's theorem
 - Riemann integrability
- Continuity and uniform continuity
 - Pathological functions and sequences of functions
- Convergence
 - The Cauchy criterion
 - Uniform convergence
 - The M-Test
- F_{σ} and G_{δ} sets,
- Nowhere density,
- Baire category theorem,
- Heine-Borel
- Normed spaces
- Series and sequences,
 - Convergence
 - Small tails,
 - limsup and liminf,
 - Cauchy criteria for sums and integrals
- Basic inequalities (triangle, Cauchy-Schwarz)
- Weierstrass approximation
- Variation and bounded variation

1.2 Background / Warmup / Review

- Derive the reverse triangle inequality from the triangle inequality.
- Let $E \subseteq \mathbb{R}$. Define $\sup E$ and $\inf E$.
- What is the **Archimedean** property?

Week 1: Preliminaries 3

1.2.1 Metric Spaces / Topology

- What does it mean for a metric space to be **complete**?
- Give two or more equivalently definitions for **compactness** in a complete metric space.
- What is an interior point? An isolated point? A limit point?
- What does it mean for a set to be open? Closed?
- What is the **closure** of a subspace $E \subseteq X$?
- What does it mean for $E \subseteq X$ to be a **dense** subspace?
- What does it mean for a family of sets to form a basis for a topology?
 - What is a basis for the standard topology on \mathbb{R}^d ?
- Let X be a subset of \mathbb{R}^d . Prove the Heine-Borel theorem:
 - Show that X compact $\implies X$ is closed
 - Show that X compact $\implies X$ is bounded
 - Show that a closed subset of a compact set must be bounded.
 - Show that if X closed and bounded \implies X is compact.
- Find an example of a metric space with a closed and bounded subspace that is not compact.
 - How can this be modified to obtain a necessary and sufficient condition?
- Determine if the following subsets of \mathbb{R} are opened, closed, both, or neither:

$$-\mathbb{Q}$$

$$-\mathbb{Z}$$

$$-\{1\}$$

$$-\left\{p \in \mathbb{Z}^{\geq 0} \mid p \text{ is prime}\right\}$$

$$-\left\{\frac{1}{n} \mid n \in \mathbb{Z}^{\geq 0}\right\}$$

$$-\left\{\frac{1}{n} \mid n \in \mathbb{Z}^{\geq 0}\right\} \cup \{0\}$$

1.2.2 Sequences

- Can a convergent sequence of real numbers have a subsequence converging to a different limit?
- What does it mean for a sequence of functions to converge **pointwise** and to converge **uniformly**?
 - Give an example of a sequence that converges pointwise but not uniformly.
- Prove that every sequence admits a monotone subsequence.
- Prove the monotone convergence theorem for sequences.
- Prove the Bolzano-Weierstrass Theorem.

1.2.3 Series

– What does it mean for a series to converge? How can you check this? - What does it mean for a series to converge uniformly? What do you have to show to prove it does not converge uniformly? - Show that if $\sum_{n\in\mathbb{N}} a_n < \infty$ converges, then

$$a_n \stackrel{n \to \infty}{\longrightarrow} 0$$

. - Show that convergent sequences have small tails in the following sense:

$$\sum_{n>N} a_n \stackrel{N\to\infty}{\longrightarrow} 0$$

. - Is this a necessary and sufficient condition for convergence? - State the ratio, root, integral, and alternating series tests. - Prove that the harmonic series diverges - Derive a formula for the sum of a geometric series. - State and prove the p-test. - What does it mean for a series to converge absolutely? - Find a sequence that converges but not absolutely.

1.2.4 Continuity and Discontinuity

- What does it mean for a function to be **uniformly continuous** on a set?
- Is it possible for a function $f: \mathbb{R} \to \mathbb{R}$ to be discontinuous precisely on the rationals \mathbb{Q} ? If so, produce such a function, if not, why?
 - Can the set of discontinuities be precisely the irrationals $\mathbb{R} \setminus \mathbb{Q}$?
- Find a sequence of continuous functions that does *not* converge uniformly, but still has a pointwise limit that is continuous.

1.3 Exercises

- Find a function that is differentiable but not continuously differentiable.
- Prove the **uniform limit theorem**: a uniform limit of continuous function is continuous.
- Show that the uniform limit of bounded functions is uniformly bounded.
- Construct sequences of functions $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ which converge uniformly on some set E, and yet their product sequence $\{h_n\}_{n\in\mathbb{N}}$ with $h_n \coloneqq f_n g_n$ does not converge uniformly.
 - Show that if f_n, g_n are additionally bounded, then h_n does converge uniformly.

1.3 Exercises 5

• Find a sequence of functions such that

$$\frac{d}{dx}\lim_{n\to\infty}f_n(x)\neq\lim_{n\to\infty}\frac{d}{dx}f_n(x)$$

- Find a uniform limit of differentiable functions that is not differentiable.
- Prove that the Cantor set is a Borel set.
- Show the Cantor ternary set is totally disconnected; that is show it contains no nonempty open interval.
 - II.5 (a) Show the set of irrational numbers is a G_{δ} set but is not an F_{σ} set. **Hint:** Show \mathbb{Q} is not a G_{δ} , for otherwise you could obtain a decreasing sequence G_n of dense open sets that have empty intersection. Then use the decomposition of each G_n into a disjoint countable union of open intervals.
 - (b) Using the fact that the set of rational numbers in any closed interval $a \leq x \leq b$ where a < b is not a G_{δ} set, give an example of a Borel subset of \mathbb{R} which is neither an F_{σ} or a G_{δ} set.
 - (c) Let f be any function from \mathbb{R} to \mathbb{R} . Prove that the set of points of discontinuity of f is of type F_{σ} .
 - (d) Can a function from \mathbb{R} to \mathbb{R} be continuous on the rationals and discontinuous on the irrationals? What if the roles of the rationals and irrationals are interchanged?
 - I.7 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Prove that the following are equivalent.
 - (a) $\lim_{n\to\infty} x_n = a$.
 - (b) Every subsequence of $(x_n)_{n\in\mathbb{N}}$ contains a subsequence that converges to a.

1.4 Qual Questions

I.8 Prove: If $f \in C[0,1]$ and $\int_0^1 f(x)e^{-nx} dx = 0$ for all $n \in \mathbb{N}_0$, then f = 0.

1.4 Qual Questions 6

is contained as (iii i, g o) and j(i, o) or implain caronary

- I.14 Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function.
 - (a) Use Taylor's formula with remainder to show that, given x and h, $f'(x) = (f(x+2h) f(x))/2h hf''(\xi)$ for some ξ .
 - (b) Assume $f(x) \to 0$ as $x \to \infty$, and that f'' is bounded. Show that $f'(x) \to 0$ as $x \to \infty$.

2.4 Spring 2017 # 4 😽

Let f(x,y) on $[-1,1]^2$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Determine if f is integrable.

2.5 Spring 2015 # 1 🦙

Let (X, d) and (Y, ρ) be metric spaces, $f: X \to Y$, and $x_0 \in X$.

Prove that the following statements are equivalent:

- 1. For every $\varepsilon > 0$ $\exists \delta > 0$ such that $\rho(f(x), f(x_0)) < \varepsilon$ whenever $d(x, x_0) < \delta$.
- 2. The sequence $\{f(x_n)\}_{n=1}^{\infty} \to f(x_0)$ for every sequence $\{x_n\} \to x_0$ in X.

2.1 Fall 2018 # 1 🦙

Let $f(x) = \frac{1}{x}$. Show that f is uniformly continuous on $(1, \infty)$ but not on $(0, \infty)$.

Let

$$f_n(x) = \left\{egin{array}{ll} rac{1}{n} & x \in (rac{1}{2^{n+1}},rac{1}{2^n}] \ 0 & ext{otherwise}. \end{array}
ight.$$

Show that $\sum_{n=1}^{\infty} f_n$ does not satisfy the Weierstrass M-test but that it nevertheless converges uniformly on \mathbb{R} .

4. Let $f_n:[0,1)\to\mathbb{R}$ be the function defined by

$$f_n(x):=\sum_{k=1}^nrac{x^k}{1+x^k}.$$

- **1.** Prove that f_n converges to a function $f:[0,1)\to\mathbb{R}$.
- **2.** Prove that for every 0 < a < 1 the convergence is uniform on [0, a].
- **3.** Prove that f is differentiable on (0, 1).

3. (a) Let $\{r_n\}_{n=1}^{\infty}$ be any enumeration of all the rationals in [0,1] and define $f:[0,1]\to\mathbb{R}$ by setting

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = r_n \\ 0 & \text{if } x \in [0, 1] \setminus \mathbb{Q} \end{cases}.$$

Prove that $\lim_{x \to a} f(x) = 0$ for every $c \in [0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.

6. Let

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{1 + n^2 x}.$$

(a) Show that the series defining g does not converge uniformly on $(0, \infty)$, but none the less still defines a continuous function on $(0, \infty)$.

Hint for the first part: Show that if $\sum_{n=0}^{\infty} g_n(x)$ converges uniformly on a set X, then the sequence of functions $\{g_n\}$ must converge uniformly to 0 on X.

(b) Is g differentiable on $(0,\infty)$? If so, is the derivative function g' continuous on $(0,\infty)$?

7. Let $h_n(x) = \frac{x}{(1+x)^{n+1}}$.

- (a) Prove that h_n converges uniformly to 0 on $[0, \infty)$.
- (b) i. Verify that

$$\sum_{n=0}^{\infty} h_n(x) = \begin{cases} 1 \text{ if } x > 0\\ 0 \text{ if } x = 0 \end{cases}$$

ii. Does $\sum_{n=0}^{\infty} h_n$ converge uniformly on $[0,\infty)$? (c) Prove that $\sum_{n=0}^{\infty} h_n$ converges uniformly on $[a,\infty)$ for any a>0.

exists.

I.19 Define a function f on \mathbb{R} by

$$f(x) = \begin{cases} e^{-1/x^2}, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$$

- (a) Check whether f is infinitely differentiable at 0, and, if so, find $f^{(n)}(0)$, $n = 1, 2, 3, \cdots$. Show details.
- (b) Does f have a power series expansion at 0?
- (c) Let g(x) = f(x)f(1-x). Show that g is a nontrivial infinitely differentiable function on \mathbb{R} which vanishes outside (0,1).
- IV.9 A real-valued function f on an interval I for which there exists a constant C such that

$$|f(x) - f(y)| \le C|x - y|$$

for all x and y in I is called a Lipschitz function.

- (a) Show that a Lipschitz function is absolutely continuous.
- (b) Show that an absolutely continuous function f on an interval is Lipschitz if and only if f' is essentially bounded.

If f is nonnegative and integrable on [0,1], then $\lim_{n o\infty}\int_0^1\sqrt[n]{f}=m\{x|f(x)>0\}$

My Colution

14. If $\{s_n\}$ is a complex sequence, define its arithmetic means σ_n by

$$\sigma_n = \frac{s_0 + s_1 + \dots + s_n}{n+1}$$
 $(n = 0, 1, 2, \dots)$

- (a) If $\lim s_n = s$, prove that $\lim \sigma_n = s$.
- (b) Construct a sequence $\{s_n\}$ which does not converges, although $\lim \sigma_n = 0$.
- (c) Can it happen that $s_n > 0$ for all n and that $\limsup s_n = \infty$, although $\liminf \sigma_n = 0$?
- (d) Put $a_n = s_n s_{n-1}$, for $n \ge 1$. Show that

$$s_n - \sigma_n = \frac{1}{n+1} \sum_{k=1}^n k a_k$$

Assume that $\lim(na_n)=0$ and that $\{\sigma_n\}$ converges. Prove that $\{s_n\}$ converges. [This gives a converse of (a), but under the additional assumption that $na_n\to 0$.]

- (e) Derive the last conclusion from a weaker hypothesis: Assume $M < \infty$, $|na_n| \le M$ for all n, and $\lim \sigma_n = \sigma$. Prove that $\lim s_n = \sigma$, by completing the following outline:
- Note: outline omitted!

3.1 Spring 2020 # 1 🦙

Prove that if $f:[0,1]\to\mathbb{R}$ is continuous then

$$\lim_{k \to \infty} \int_0^1 k x^{k-1} f(x) \, dx = f(1).$$

3.4 Fall 2017 # 4 🦙

Let

$$f_n(x) = nx(1-x)^n, \quad n \in \mathbb{N}.$$

- a. Show that $f_n \to 0$ pointwise but not uniformly on [0,1].
- b. Show that

$$\lim_{n \to \infty} \int_0^1 n(1-x)^n \sin x \, dx = 0$$

Hint for (a): Consider the maximum of f_n .

3.11 Fall 2020 # 1

Show that if x_n is a decreasing sequence of positive real numbers such that $\sum_{n=1}^{\infty} x_n$ converges, then

$$\lim_{n \to \infty} nx_n = 0.$$