Atrasos em filtros de Kalman

Gustavo T. Pfeiffer

19/8/2025

Agenda

- 1. Filtro de Kalman: O que é, para que serve
- 2. Modelo matemático
- 3. Problema dos atrasos
- 4. Solução

O que é um filtro de Kalman

Sistema X(t) evolui estocasticamente no tempo

- Medidas Y(t) com erros aleatórios
- Objetivo: Estimar X(t) dadas todas as medições Y(0), ..., Y(t) em tempo real

Exemplo

Movimento browniano

Aplicações

- Tracking de objetos com câmera, LiDAR, etc.
- Posicionamento (GPS, acelerômetro, etc.)
- Sistemas complexos (ex.: reservatórios de petróleo)

Hipóteses

- Hipóteses
 - Erros de medição são independentes entre si
 - Todas as variáveis são gaussianas (normais multivariadas)
 - Relações entre as variáveis são lineares
- Modelos não-lineares são muito usados na prática, porém são aproximações

Evolução no tempo

•
$$X(t + \Delta t) = TX(t) + \mathcal{N}(0, A)$$

- Observações
 - $Y(t) = PX(t) + \mathcal{N}(0, B)$

- Evolução no tempo
 - $X(t + \Delta t) = TX(t) + \mathcal{N}(0, A)$
- Observações
 - $Y(t) = PX(t) + \mathcal{N}(0, B)$
- Exemplo:
 - Partícula com posição s e velocidade v
 - Velocidade *v* muda aleatoriamente (movimento browniano)
 - Posição s tem movimento mais suave (C_1)
 - Apenas a posição s é medida

- Evolução no tempo
 - $X(t + \Delta t) = TX(t) + \mathcal{N}(0, A)$
- Observações
 - $Y(t) = PX(t) + \mathcal{N}(0, B)$
- Exemplo:
 - Partícula com posição s e velocidade v
 - Velocidade *v* muda aleatoriamente (movimento browniano)
 - Posição s tem movimento mais suave (C_1)
 - Apenas a posição s é medida
 - Modelo resultante:

•
$$X(t) = \begin{bmatrix} v(t) \\ s(t) \end{bmatrix}, T = \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix}, P = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

• $A = \begin{bmatrix} \sigma^2 \Delta t & \sigma^2 \Delta t^2/2 \\ \sigma^2 \Delta t^2/2 & \sigma^2 \Delta t^3/3 \end{bmatrix}$

Inferência

- Estimativa da distribuição de X(t) é representada por uma média μ (vetor) e variância Σ (matriz)
- Na passagem do tempo sem observações, a atualização a priori (ou predição) é trivial
 - $E[X(t + \Delta t)] = TE[X(t)]$
 - $Var[X(t + \Delta t)] = TVar[X(t)]T^T + A$
- Ao chegar uma nova observação Y(t), a atualização *a posteriori* é feita pela lei de Bayes assumindo distribuição gaussiana
 - $Var[X(t)|Y(t)]^{-1} = Var[X(t)]^{-1} + P^T B^{-1} P$
 - $E[X(t)|Y(t)] = Var[X(t)|Y(t)] \left(Var[X(t)]^{-1} E[X(t)] + P^T B^{-1} Y(t) \right)$

Inferência

- Estimativa da distribuição de X(t) é representada por uma média μ (vetor) e variância Σ (matriz)
- Na passagem do tempo sem observações, a atualização a priori (ou predição) é trivial
 - $E[X(t + \Delta t)] = TE[X(t)]$
 - $Var[X(t + \Delta t)] = TVar[X(t)]T^T + A$
- Ao chegar uma nova observação Y(t), a atualização *a posteriori* é feita pela lei de Bayes assumindo distribuição gaussiana
 - $Var[X(t)|Y(t)]^{-1} = Var[X(t)]^{-1} + P^T B^{-1} P$
 - $E[X(t)|Y(t)] = Var[X(t)|Y(t)] \left(Var[X(t)]^{-1} E[X(t)] + P^T B^{-1} Y(t) \right)$
- Contemple a dualidade entre esses dois tipos de eventos!
 - Um (*a priori*) atualiza a variância linearmente
 - O outro (a posteriori) atualiza a inversa linearmente

Um parêntese

Um parêntese

• Situação I (adição de erro):

$$X + Y, X \perp Y$$

$$E[X + Y] = E[X] + E[Y]$$

$$Var[X + Y] = Var[X] + Var[Y]$$

Um parêntese

Situação I (adição de erro):

$$X + Y$$
, $X \perp Y$
 $E[X + Y] = E[X] + E[Y]$
 $Var[X + Y] = Var[X] + Var[Y]$

• Situação II (adição de informação):

$$X = \mathcal{N}(z, \Sigma_X), \ Y = \mathcal{N}(z, \Sigma_Y), \ X \perp \!\!\!\perp Y$$

$$\widehat{z} = \arg\max_{z} P(X, Y; z)$$

$$\operatorname{Var}[\widehat{z}]^{-1} = \Sigma_X^{-1} + \Sigma_Y^{-1}$$

$$\operatorname{Var}[\widehat{z}]^{-1}\widehat{z} = \Sigma_X^{-1}X + \Sigma_Y^{-1}Y$$

- Na prática, observações podem chegar com atraso e fora de ordem
 - Atrasos de rede, processamento, etc.

- Na prática, observações podem chegar com atraso e fora de ordem
 - Atrasos de rede, processamento, etc.
- Questionamentos
 - É possível computar eventos de observação fora de ordem?
 - Se atrasos forem frequentes e substanciais, qual é a forma mais eficiente de manter (μ, Σ) atualizada?
 - Em caso de um atraso muito longo, é possível atualizar (μ, Σ) sem ter que recalcular tudo?

- Na prática, observações podem chegar com atraso e fora de ordem
 - Atrasos de rede, processamento, etc.
- Questionamentos
 - É possível computar eventos de observação fora de ordem?
 - Se atrasos forem frequentes e substanciais, qual é a forma mais eficiente de manter (μ, Σ) atualizada?
 - Em caso de um atraso muito longo, é possível atualizar (μ, Σ) sem ter que recalcular tudo?

Meta-modelo

- Como modelar uma sequência de eventos de passagem do tempo e observação em uma única operação?
 - Passagem do tempo (a priori):

$$\Sigma_{\text{new}} = T\Sigma_{\text{old}}T^T + A$$

$$\mu_{\text{new}} = T\mu_{\text{old}}$$

• Observação (a posteriori):

$$\Sigma_{\text{new}}^{-1} = \Sigma_{\text{old}}^{-1} + P^T B^{-1} P$$

$$\mu_{\text{new}} = \Sigma_{\text{new}}(\Sigma_{\text{old}}^{-1} + P^T B^{-1} Y)$$

Meta-modelo

- Como modelar uma sequência de eventos de passagem do tempo e observação em uma única operação?
 - Passagem do tempo (a priori):

$$\Sigma_{\text{new}} = T\Sigma_{\text{old}}T^T + A$$

$$\mu_{\text{new}} = T\mu_{\text{old}}$$

• Observação (a posteriori):

$$\Sigma_{\text{new}}^{-1} = \Sigma_{\text{old}}^{-1} + P^T B^{-1} P$$

$$\mu_{\text{new}} = \Sigma_{\text{new}}(\Sigma_{\text{old}}^{-1} + P^T B^{-1} Y)$$

 Vamos pegar emprestado um truque da área de processamento de imagens

Coordenadas homogêneas

 Adicionar uma dimensão para permitir transformações projetivas (não-lineares)

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \simeq \begin{bmatrix} ax \\ ay \\ a \end{bmatrix} \quad (a \neq 0)$$

A ideia

- Decompor $\Sigma = U^{-1}V$ e só atualizar U ou V, conforme necessário
 - A redundância é intencional
- Semelhantemente, decompor $\mu = U^{-1}z$

A ideia

- Decompor $\Sigma = U^{-1}V$ e só atualizar U ou V, conforme necessário
 - A redundância é intencional
- Semelhantemente, decompor $\mu = U^{-1}z$
- Resultado: Os eventos viram multiplicações de matrizes
 - A priori:

$$\begin{bmatrix} U_{\text{new}} & V_{\text{new}} & z_{\text{new}} \end{bmatrix} = \begin{bmatrix} U_{\text{old}} & V_{\text{old}} & z_{\text{old}} \end{bmatrix} \begin{bmatrix} T^{-1} & T^{-1}A & 0 \\ 0 & T^{T} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• A posteriori:

$$\begin{bmatrix} U_{\text{new}} & V_{\text{new}} & z_{\text{new}} \end{bmatrix} = \begin{bmatrix} U_{\text{old}} & V_{\text{old}} & z_{\text{old}} \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ P^T B^{-1} P & I & P^T B^{-1} Y \\ 0 & 0 & 1 \end{bmatrix}$$

- Uma sequência de atualizações a priori e a posteriori é um produtório de matrizes
- Multiplicação de matrizes não é comutativa (a ordem importa!)
- Logo, não é possível manter essas atualizações em O(1)

- Uma sequência de atualizações a priori e a posteriori é um produtório de matrizes
- Multiplicação de matrizes não é comutativa (a ordem importa!)
- Logo, não é possível manter essas atualizações em O(1)

• No entanto, é possível atualizar em $O(\log(n))$. Como?

Usando uma árvore!

Usando uma árvore!

• Que tipo de árvore?

Considerações

Considerações

- Por que essa ideia não é usada na prática?
 - Alto custo de memória
 - Modelo precisa ser gaussiano e linear

Considerações

- Por que essa ideia não é usada na prática?
 - Alto custo de memória
 - Modelo precisa ser gaussiano e linear
- Ideia não é inédita na literatura
 - Representações das atualizações do filtro de Kalman por meio de um "operador associativo" já foram propostas
 - Aplicações incluem paralelização do filtro de Kalman em GPU (ex.: Särkkä e García-Fernández, 2020)