

New linear independence measures for values of q -hypergeometric series

I. Rochev*

1 Introduction

Let $q = q_1/q_2 \in \mathbb{Q}$, where $q_1, q_2 \in \mathbb{Z} \setminus \{0\}$, $\gcd(q_1, q_2) = 1$, $|q_1| > |q_2|$. Put

$$\gamma = \frac{\log |q_2|}{\log |q_1|}. \quad (1.1)$$

Let $P(z) \in \mathbb{Q}[z]$ with $d := \deg P \geq 1$. Assume that $P(q^n) \neq 0$ for all $n \in \mathbb{Z}_{>0}$. Consider the function

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{\prod_{k=1}^n P(q^k)}.$$

In this note we prove the following theorem.

Theorem 1. *Let $\alpha_1, \dots, \alpha_m \in \mathbb{Q}^*$ be such that the following conditions hold:*

1. $\alpha_j \alpha_k^{-1} \notin q^{\mathbb{Z}}$ for all $j \neq k$,
2. $\alpha_j \notin P(0)q^{\mathbb{Z}_{>0}}$ for all j .

Let $s_1, \dots, s_m \in \mathbb{Z}_{>0}$. Put

$$S = s_1 + \dots + s_m, \quad (1.2)$$

$$M = \begin{cases} dS + 1/2 + \sqrt{d^2 S^2 + 1/4}, & P(z) = p_d z^d, p_d \in \mathbb{Q}^*, \\ dS + 1 + \sqrt{dS(dS + 1)} & \text{otherwise.} \end{cases} \quad (1.3)$$

Suppose that

$$\gamma < \frac{1}{M},$$

where γ is given by (1.1); then the numbers

$$1, f^{(\sigma)}(\alpha_j q^k) \quad (1 \leq j \leq m, 0 \leq k < d, 0 \leq \sigma < s_j)$$

are linearly independent over \mathbb{Q} . Moreover, there exists a positive constant $C_0 = C_0(q, P, m, \alpha_j, s_j)$ such that for any vector $\vec{A} = (A_0, A_{j,k,\sigma}) \in \mathbb{Z}^{1+dS} \setminus \{\vec{0}\}$ we have

$$\left| A_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} A_{j,k,\sigma} f^{(\sigma)}(\alpha_j q^k) \right| \geq H^{-\mu - C_0 / \sqrt{\log H}},$$

where $H = \max \{ \max_{j,k,\sigma} |A_{j,k,\sigma}|, 2 \}$,

$$\mu = \frac{M-1}{1-M\gamma}. \quad (1.4)$$

*Research is supported by RFBR (grant No. 09-01-00371a).

The case when all roots of P are rational and $P(0) = 0$ was proved in [2] with a larger value for the quantity (1.3) if $P(z) \neq p_d z^d$ (see also [4]). The qualitative part of the general case for $q \in \mathbb{Z}$ was essentially proved in [1], where it was assumed that $\alpha_j \notin P(0)q^{\mathbb{Z}}$ for all j .

Recently the author [3] proved quantitative results in the general case under a milder condition posed on q but with the estimate of the form $\exp(-C(\log H)^{3/2})$, $C = \text{const}$. We modify the method of [3] to prove Theorem 1.

2 Construction of auxiliary linear forms

Fix $\alpha_1, \dots, \alpha_m \in \mathbb{C}^*$, $s_1, \dots, s_m \in \mathbb{Z}_{>0}$. By \vec{x} denote the vector of variables $\vec{x} = (x_0, x_{j,k,\sigma})$, where $1 \leq j \leq m$, $0 \leq k < d$, $0 \leq \sigma < s_j$.

Consider the sequences of linear forms

$$u_n = u_n(\vec{x}) = \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} \sigma! \binom{n}{\sigma} (\alpha_j q^k)^{n-\sigma} x_{j,k,\sigma} \in \mathbb{C}[\vec{x}] \quad (n \in \mathbb{Z}), \quad (2.1)$$

$$\begin{aligned} v_n = v_n(\vec{x}) &= \prod_{k=1}^n P(q^k) \cdot \left(x_0 + \sum_{l=0}^n \frac{u_l(\vec{x})}{\prod_{k=1}^l P(q^k)} \right) = \\ &= x_0 \prod_{k=1}^n P(q^k) + \sum_{l=0}^n u_l(\vec{x}) \prod_{k=l+1}^n P(q^k) \in \mathbb{C}[\vec{x}] \quad (n \in \mathbb{Z}_{\geq 0}). \end{aligned} \quad (2.2)$$

It's readily seen that

$$v_n = P(q^n)v_{n-1} + u_n \quad (n \geq 1) \quad (2.3)$$

with $v_0 = x_0 + u_0 = x_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} x_{j,k,\sigma}$.

Further, let \mathcal{B} be the backward shift operator given by

$$\mathcal{B}(\xi(n)) = \xi(n-1).$$

For $a \in \mathbb{C}$ introduce the difference operator

$$\mathcal{D}_a = \mathcal{I} - a\mathcal{B}, \quad (2.4)$$

where \mathcal{I} is the identity operator, $\mathcal{I}(\xi(n)) = \xi(n)$. Note that these operators commute with each other. For example, we have

$$\mathcal{B}(\mathcal{D}_a(\xi(n))) = \mathcal{D}_a(\xi(n-1)).$$

It's well known that for $a \in \mathbb{C}^*$ and $p(z) \in \mathbb{C}[z]$ with $\deg p \leq t \in \mathbb{Z}_{\geq 0}$ we have

$$\mathcal{D}_a^{t+1}(p(n)a^n) = 0 \quad (n \in \mathbb{Z}). \quad (2.5)$$

Also, it is readily seen that for $a, b \in \mathbb{C}$ with $b \neq 0$ we have

$$\mathcal{D}_a(b^n \xi(n)) = b^n \mathcal{D}_{ab^{-1}}(\xi(n)). \quad (2.6)$$

Further, for $l, n \in \mathbb{Z}_{\geq 0}$ with $n \geq Sl$, where S is given by (1.2), put

$$v_{l,n} = v_{l,n}(\vec{x}) = \prod_{k=1}^l \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{-k}}^{s_j} (v_n(\vec{x})) := \left(\prod_{k=1}^l \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{-k}}^{s_j} \right) (v_n(\vec{x})) \in \mathbb{C}[\vec{x}]. \quad (2.7)$$

Finally, let

$$\varepsilon_0 = \begin{cases} 1, & P(z) = p_d z^d, p_d \in \mathbb{Q}^*, \\ 0 & \text{otherwise.} \end{cases} \quad (2.8)$$

Lemma 1. Let $l \geq d$, $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma}) \in \mathbb{C}^{1+dS}$. Assume that for $0 \leq \nu < l$ and $n \geq S\nu$ we have

$$|v_{\nu,n}(\vec{\omega})| \leq |q|^{-\nu n + (S - \varepsilon_0/d)\nu^2/2 + an + b},$$

where $a > 0$ and b don't depend on ν and n . Then for $n \geq Sl$ we have

$$|v_{l,n}(\vec{\omega})| \leq |q|^{-ln + (S - \varepsilon_0/d)l^2/2 + an + b + a + c'},$$

where c' is a positive constant depending only on q, P, m, α_j, s_j .

Proof. Since $l \geq d$, it follows from (2.1) and (2.5) that

$$\prod_{k=1}^l \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{d-k}}^{s_j}(u_n(\vec{\omega})) = 0 \quad (n \in \mathbb{Z}).$$

Therefore, from (2.3) we have

$$\prod_{k=1}^l \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{d-k}}^{s_j}(v_{n+1}(\vec{\omega}) - P(q^{n+1})v_n(\vec{\omega})) = 0 \quad (n \geq Sl). \quad (2.9)$$

Let

$$P(z) = \sum_{\nu=0}^d p_\nu z^\nu.$$

Then in view of (2.6) the relation (2.9) can be rewritten in the form

$$p_d v_{l,n}(\vec{\omega}) = q^{-d(n+1)} \prod_{k=1}^l \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{d-k}}^{s_j}(v_{n+1}(\vec{\omega})) - \sum_{\nu=1}^d p_{d-\nu} q^{-\nu(n+1)} \prod_{k=1}^l \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{\nu-k}}^{s_j}(v_n(\vec{\omega})). \quad (2.10)$$

It follows from the conditions of the lemma and (2.6) that for $1 \leq \nu \leq d$ we have

$$\begin{aligned} \left| q^{-\nu n} \prod_{k=1}^l \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{\nu-k}}^{s_j}(v_{n+\varepsilon_0}(\vec{\omega})) \right| &= \left| q^{-\nu n} \prod_{k=0}^{\nu-1} \prod_{j=1}^m \mathcal{D}_{\alpha_j q^k}^{s_j}(v_{l-\nu, n+\varepsilon_0}(\vec{\omega})) \right| \leq \\ &\leq |q|^{-\nu n} \prod_{k=0}^{\nu-1} \prod_{j=1}^m \mathcal{D}_{-|\alpha_j q^k|}^{s_j} \left(|q|^{-(l-\nu)(n+\varepsilon_0) + (S - \varepsilon_0/d)(l-\nu)^2/2 + a(n+\varepsilon_0) + b} \right) = \\ &= |q|^{-\nu n - (l-\nu)(n+\varepsilon_0) + (S - \varepsilon_0/d)(l-\nu)^2/2 + a(n+\varepsilon_0) + b} \prod_{k=0}^{\nu-1} \prod_{j=1}^m (1 + |\alpha_j q^{k+l-\nu-a}|)^{s_j} \leq \\ &\leq |q|^{-ln + (S - \varepsilon_0/d)l^2/2 - (1-\nu/d)\varepsilon_0 l + a(n+\varepsilon_0) + b + c_1} \leq |q|^{-ln + (S - \varepsilon_0/d)l^2/2 + a(n+\varepsilon_0) + b + c_1}, \end{aligned} \quad (2.11)$$

where c_1 is a constant depending only on q, P, m, α_j, s_j .

The lemma follows from (2.10) and (2.11). \square

Lemma 2. Let $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma}) \in \mathbb{C}^{1+dS}$ be such that

$$\omega_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} \omega_{j,k,\sigma} f^{(\sigma)}(\alpha_j q^k) = 0.$$

Then for $l \geq 0$ and $n \geq Sl$ we have

$$|v_{l,n}(\vec{\omega})| \leq \max_{j,k,\sigma} |\omega_{j,k,\sigma}| \cdot |q|^{-ln + (S - \varepsilon_0/d)l^2/2 + c(n+1)},$$

where c is a positive constant depending only on q, P, m, α_j, s_j .

Proof. In the proof we denote by c_1, c_2, c_3 positive constants depending only on q, P, m, α_j, s_j .

It follows from (2.1) that

$$\omega_0 + \sum_{n=0}^{\infty} \frac{u_n(\vec{\omega})}{\prod_{k=1}^n P(q^k)} = \omega_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} \omega_{j,k,\sigma} f^{(\sigma)}(\alpha_j q^k) = 0.$$

Hence (2.2) gives

$$v_n(\vec{\omega}) = - \sum_{l=n+1}^{\infty} \frac{u_l(\vec{\omega})}{\prod_{k=n+1}^l P(q^k)}. \quad (2.12)$$

It follows from (2.1) that for $n \geq 1$ we have

$$|u_n(\vec{\omega})| \leq c_1^n \max_{j,k,\sigma} |\omega_{j,k,\sigma}|.$$

Hence (2.12) gives

$$|v_n(\vec{\omega})| \leq \max_{j,k,\sigma} |\omega_{j,k,\sigma}| \cdot \sum_{l=n+1}^{\infty} \frac{c_2 c_1^l}{(2c_1)^{l-n}} = c_2 c_1^n \max_{j,k,\sigma} |\omega_{j,k,\sigma}|.$$

Consequently for $0 \leq \nu < d$ and $n \geq S\nu$ we have

$$|v_{\nu,n}(\vec{\omega})| \leq \max_{j,k,\sigma} |\omega_{j,k,\sigma}| \cdot |q|^{c_3(n+1)} \leq \max_{j,k,\sigma} |\omega_{j,k,\sigma}| \cdot |q|^{-\nu n + (S-\varepsilon_0/d)\nu^2/2 + (c_3+d)n + c_3}.$$

It follows from Lemma 1 that for $l \geq 0$ and $n \geq Sl$ we have

$$|v_{l,n}(\vec{\omega})| \leq \max_{j,k,\sigma} |\omega_{j,k,\sigma}| \cdot |q|^{-ln + (S-\varepsilon_0/d)l^2/2 + (c_3+d)n + c_3 + (c_3+d+c')l},$$

where c' is the constant of Lemma 1. Using $l \leq n/S$, we obtain the lemma. \square

3 Non-vanishing lemma

Lemma 3. *Let $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma}) \in \mathbb{C}^{1+ds}$ be such that for some $l_0, n_0 \in \mathbb{Z}_{\geq 0}$ with $n_0 \geq Sl_0$ we have*

$$v_{l_0, n_0}(\vec{\omega}) = v_{l_0, n_0+1}(\vec{\omega}) = \dots = v_{l_0, n_0+ds}(\vec{\omega}) = 0. \quad (3.1)$$

Then the generating function $F(z)$ of the sequence $v_n(\vec{\omega})$,

$$F(z) = \sum_{n=0}^{\infty} v_n(\vec{\omega}) z^n \in \mathbb{C}[[z]],$$

is rational.

Proof. Consider the sequence $\{w_n\}_{n \geq 0}$ given by

$$\begin{aligned} w_n &= v_{n_0-Sl_0+n}(\vec{\omega}) \quad (0 \leq n < Sl_0), \\ \prod_{k=1}^{l_0} \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{-k}}^{s_j}(w_n) &= 0 \quad (n \geq Sl_0), \end{aligned}$$

where \mathcal{D}_a is given by (2.4). From (2.7) and (3.1) it follows that

$$w_n = v_{n_0-Sl_0+n}(\vec{\omega}) \quad (0 \leq n \leq S(l_0 + d)). \quad (3.2)$$

It follows from (2.6) that for $\nu \in \mathbb{Z}$ we have

$$\prod_{k=1}^{l_0} \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{\nu-k}}^{s_j} (q^{\nu n} w_n) = q^{\nu n} \prod_{k=1}^{l_0} \prod_{j=1}^m \mathcal{D}_{\alpha_j q^{-k}}^{s_j} (w_n) = 0 \quad (n \geq S l_0).$$

Hence the sequence

$$z_n = w_{n+1} - P(q^{n_0-Sl_0+n+1})w_n - u_{n_0-Sl_0+n+1}(\vec{\omega}) \quad (n \geq 0)$$

satisfies the linear recurrence relation

$$\prod_{k=-l_0}^{d-1} \prod_{j=1}^m \mathcal{D}_{\alpha_j q^k}^{s_j} (z_n) = 0 \quad (n \geq S(l_0 + d))$$

of order $S(l_0 + d)$.

On the other hand, it follows from (2.3) and (3.2) that $z_n = 0$ for $0 \leq n < S(l_0 + d)$. Hence $w_n = v_{n_0-Sl_0+n}(\vec{\omega})$ for all $n \geq 0$, i.e., $v_n(\vec{\omega})$ is linear recurrent and

$$F(z) = \sum_{n \geq 0} v_n(\vec{\omega}) z^n \in \mathbb{C}(z).$$

This completes the proof. \square

Lemma 4. *Let $\alpha_1, \dots, \alpha_m$ satisfy the conditions 1–2 of Theorem 1, $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma}) \in \mathbb{C}^{1+dS} \setminus \{\vec{0}\}$. Then the generating function $F(z)$ of the sequence $v_n(\vec{\omega})$,*

$$F(z) = \sum_{n=0}^{\infty} v_n(\vec{\omega}) z^n \in \mathbb{C}[[z]],$$

is not rational.

Proof. Assume the converse. Then for some constant $C > 1$ we have $|v_n(\vec{\omega})| = O(C^n)$. It follows from (2.1) and (2.2) that

$$\omega_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} \omega_{j,k,\sigma} f^{(\sigma)}(\alpha_j q^k) = \omega_0 + \sum_{n=0}^{\infty} \frac{u_n(\vec{\omega})}{\prod_{k=1}^n P(q^k)} = 0.$$

In particular, not all $\omega_{j,k,\sigma}$ vanish.

From (2.3) it follows that $F(z)$ satisfies the functional equation

$$(1 - p_0 z) F(z) = \sum_{\nu=1}^d p_{\nu} q^{\nu} z F(q^{\nu} z) + R(z), \quad (3.3)$$

where

$$P(z) = \sum_{\nu=0}^d p_{\nu} z^{\nu},$$

$$R(z) = \omega_0 + \sum_{n=0}^{\infty} u_n(\vec{\omega}) z^n = \omega_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} \frac{\omega_{j,k,\sigma} \sigma! z^{\sigma}}{(1 - \alpha_j q^k z)^{\sigma+1}} \in \mathbb{C}(z).$$

The condition 1 of Theorem 1 implies that all $\alpha_j q^k$ are different. Since not all $\omega_{j,k,\sigma}$ vanish, the function $R(z)$ has at least one pole. It follows from (3.3) that $F(z)$ also has a pole in \mathbb{C}^* .

We claim that any pole of $F(z)$ is of the form $\alpha_j^{-1} q^n$ with $n \in \mathbb{Z}_{>0}$. Assume the contrary. Let β be a pole that cannot be represented in this form with the least $|\beta|$. Then $R(z)$ doesn't have a pole at the point βq^{-d} . It follows from (3.3) that one of the functions $F(q^\nu z)$ with $0 \leq \nu < d$ has a pole at βq^{-d} . Hence we have $\beta = \beta' q^{d-\nu}$ for some pole β' of $F(z)$. But then $|\beta'| < |\beta|$. Consequently β' can be represented in the required form as well as β . This contradiction proves our claim about poles of $F(z)$. In particular, it follows from the condition 1 of Theorem 1 that $F(z)$ and $R(z)$ do not have common poles.

Now suppose β is a pole of $F(z)$ with maximal $|\beta|$. It follows from (3.3) and the above that the function $(1 - p_0 z)F(z)$ does not have a singularity at the point β . Hence $p_0 \beta = 1$. Since $\beta = \alpha_j^{-1} q^n$ with $n \in \mathbb{Z}_{>0}$, this contradicts the condition 2 of Theorem 1. This contradiction proves the lemma. \square

From Lemmas 3 and 4, we get the following non-vanishing lemma.

Lemma 5. *Let $\alpha_1, \dots, \alpha_m$ satisfy the conditions 1–2 of Theorem 1, $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma}) \in \mathbb{C}^{1+dS} \setminus \{\vec{0}\}$. Then for any $l_0, n_0 \in \mathbb{Z}_{\geq 0}$ with $n_0 \geq Sl_0$ there exists an integer n with $n_0 \leq n \leq n_0 + dS$ such that $v_{l_0,n}(\vec{\omega}) \neq 0$.* \square

4 Main proposition

Suppose $\alpha_j \in \mathbb{Q}^*$ ($1 \leq j \leq m$). Denote by D any positive integer such that $DP(z) \in \mathbb{Z}[z]$ and $D\alpha_j q^k \in \mathbb{Z}$ for $1 \leq j \leq m$, $0 \leq k < d$. For $l, n \in \mathbb{Z}_{\geq 0}$ with $n \geq Sl$ consider

$$w_{l,n} = w_{l,n}(\vec{x}) = D^n q_1^{Sl(l+1)/2} q_2^{dn(n+1)/2} v_{l,n}(\vec{x}).$$

It follows from (2.1) and (2.2) that

$$D^n q_2^{dn(n+1)/2} v_n \in \mathbb{Z}[\vec{x}] \quad (n \geq 0).$$

Combining this with (2.7), we get $w_{l,n} \in \mathbb{Z}[\vec{x}]$.

For a linear form L denote by $\mathcal{H}(L)$ the maximum of absolute values of its coefficients. From (2.1) and (2.2) it follows that

$$\mathcal{H}(v_n) \leq |q|^{dn^2/2+O(n+1)}.$$

In view of (2.7) the same estimate is valid for $\mathcal{H}(v_{l,n})$ ($n \geq Sl \geq 0$). Finally, for $w_{l,n}$ we have

$$\mathcal{H}(w_{l,n}) \leq |q_1|^{dn^2/2+Sl^2/2+O(n+1)} \quad (n \geq Sl \geq 0).$$

The above can be summarized as follows.

Proposition 1. *Under the hypotheses of Theorem 1, for any $l, n \in \mathbb{Z}_{\geq 0}$ with $n \geq Sl$ there exists a linear form $w_{l,n} = w_{l,n}(\vec{x}) \in \mathbb{Z}[\vec{x}]$ such that the following conditions hold:*

1. $\mathcal{H}(w_{l,n}) \leq |q_1|^{dn^2/2+Sl^2/2+O(n+1)}$,
2. for any $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma}) \in \mathbb{C}^{1+dS}$ such that

$$\omega_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} \omega_{j,k,\sigma} f^{(\sigma)}(\alpha_j q^k) = 0$$

we have

$$|w_{l,n}(\vec{\omega})| \leq \max_{j,k,\sigma} |\omega_{j,k,\sigma}| \cdot |q_1|^{\gamma dn^2/2 - (1-\gamma)ln + ((1-\gamma/2)S - (1-\gamma)\varepsilon_0/(2d))l^2 + O(n+1)},$$

where γ and ε_0 are given by (1.1) and (2.8),

3. for any $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma}) \in \mathbb{C}^{1+dS} \setminus \{\vec{0}\}$ and $l_0, n_0 \in \mathbb{Z}_{\geq 0}$ with $n_0 \geq Sl_0$ there exists an integer n with $n_0 \leq n \leq n_0 + dS$ such that $w_{l_0,n}(\vec{\omega}) \neq 0$.

The constants in the Landau symbols $O(\cdot)$ depend only on q, P, m, α_j, s_j . \square

5 Proof of Theorem 1

Take

$$n_0 = \left\lceil \frac{dS - \varepsilon_0/2 + \sqrt{(dS)^2 + (1 - \varepsilon_0)dS + \varepsilon_0^2/4}}{d} l \right\rceil = \left\lceil \frac{(M-1)l}{d} \right\rceil \geq Sl,$$

where M is given by (1.3) and $l \in \mathbb{Z}_{\geq 0}$ will be chosen later. It follows from Proposition 1 that there exists an integer $n = n_0 + O(1)$ such that $w_{l,n}(\vec{A}) \neq 0$. Since $w_{l,n} \in \mathbb{Z}[\vec{x}]$, we get

$$|w_{l,n}(\vec{A})| \geq 1.$$

Let $\vec{\omega} = (\omega_0, \omega_{j,k,\sigma})$ be given by

$$\begin{aligned} \omega_{j,k,\sigma} &= A_{j,k,\sigma}, \\ \omega_0 &= - \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} \omega_{j,k,\sigma} f^{(\sigma)}(\alpha_j q^k). \end{aligned}$$

Using Proposition 1, we get

$$|w_{l,n}(\vec{\omega})| \leq H |q_1|^{-al^2 + O(l+1)},$$

where

$$a = \frac{1 - M\gamma}{d} \sqrt{(dS)^2 + (1 - \varepsilon_0)dS + \varepsilon_0^2/4}.$$

Take $l = (L/a)^{1/2} + O(1)$, where $L = \frac{\log H}{\log |q_1|}$, such that

$$|w_{l,n}(\vec{\omega})| \leq 1/2.$$

Then we have

$$|w_{l,n}(\vec{A}) - w_{l,n}(\vec{\omega})| \geq 1/2.$$

On the other hand, using Proposition 1, we get

$$|w_{l,n}(\vec{A}) - w_{l,n}(\vec{\omega})| \leq \mathcal{H}(w_{l,n}) |A_0 - \omega_0| \leq |A_0 - \omega_0| \cdot |q_1|^{\mu L + O(L^{1/2})},$$

where μ is given by (1.4). Since

$$|A_0 - \omega_0| = \left| A_0 + \sum_{j=1}^m \sum_{k=0}^{d-1} \sum_{\sigma=0}^{s_j-1} A_{j,k,\sigma} f^{(\sigma)}(\alpha_j q^k) \right|,$$

we obtain Theorem 1.

References

- [1] M. AMOU, K. VÄÄNÄNEN, “Linear independence of the values of q -hypergeometric series and related functions”, *Ramanujan J.* **9**:3 (2005), 317–339; doi 10.1007/s11139-005-1871-8, MR 2173492, Zbl 1095.11038.
- [2] M. KATSURADA, “Linear independence measures for values of Heine series”, *Math. Ann.* **284**:3 (1989), 449–460; doi 10.1007/BF01442496, MR 1001713, Zbl 0653.10031.
- [3] I. ROCHEV, “Linear independence of values of certain q -series” (in Russian), accepted for publication in Izv. RAN. Ser. Mat.
- [4] O. SANKILAMPI, K. VÄÄNÄNEN, “On the values of Heine series at algebraic points”, *Results Math.* **50**:1–2 (2007), 141–153; doi 10.1007/s00025-006-0240-2, MR 2313136.