



# **CLIENT SOFTWARE USER MANUAL**

## 16/03/2010

|                | Name (Company)          | Signature | Date       |
|----------------|-------------------------|-----------|------------|
| Edited by      | A. Rubio (GMV-SGI)      |           | 16/03/2010 |
| Approved by:   | J.A. Abánades (GMV-SGI) | Squel     | 16/03/2010 |
| authorized by: | A. Gavin (GMV AD)       | July      | 16/03/2010 |

## Document identification

| Project | Company | WP   | Nature | Chrono or deliverable number | Classification | Version<br>Issue |
|---------|---------|------|--------|------------------------------|----------------|------------------|
| EDAS    | SGI     | 6160 | 0*     | 6162                         | U **           | 3.A              |

Partner's reference (optional)

SGI-EDAS-CSUM-01 SGISA 20731/06 V9/10

© SGI S.A., 2010 Property of SGI S.A. All Rights Reserved.

<sup>\*</sup> C Contractual / D Deliverable / O Others
\*\* U Unclassified / CUI Galileo Participants Use Only / CI Commercial in Confidence





## **Table of Contents**

| 1 | INTR | ODUCTIO  | N                                    | 8  |
|---|------|----------|--------------------------------------|----|
|   | 1.1  | Purpos   | se                                   | 8  |
|   | 1.2  | Refere   | ences                                | 8  |
|   |      | 1.2.1    | Reference Documents                  | 8  |
| 2 | INST | ALLATIO  | N                                    | 9  |
|   | 2.1  | Installa | ation Prerequisites                  | 9  |
|   | 2.2  | Installa | ation procedure                      | g  |
| 3 | CLIE | NT SOFT  | TWARE EXECUTION                      | 11 |
|   | 3.1  | Config   | uring and Starting the CS            | 11 |
|   | 3.2  | Param    | neters                               | 11 |
|   | 3.3  | Logs     |                                      | 14 |
|   | 3.4  | Runnir   | ng CS for first time                 | 15 |
| 4 | INTE | RFACE F  | ROM CL. SOFTWARE TO SRV. PROVIDER    | 17 |
|   | 4.1  | Service  | e Level and Format Definitions       | 17 |
|   | 4.2  | Conne    | ection protocols                     | 19 |
|   |      | 4.2.1    | EDAS Control Header                  |    |
|   |      | 4.2.2    | RTCM Frame                           |    |
|   |      | 4.2.3    | ASN.1 Frame                          |    |
|   |      | 4.2.4    | EDAS Level 0 messages                |    |
|   |      | 4.2.5    | EDAS Level 1 messages                |    |
|   |      | 4.2.6    | Data Fields                          |    |
|   |      | 4.2.7    | Data Types                           |    |
|   | 4.3  |          | Studies                              |    |
|   |      | 4.3.1    | Case Study 1: Normal Operation       |    |
|   |      | 4.3.2    | Case Study 2: Data Flow Interruption |    |
|   |      | 4.3.3    | Case Study 3: Data CRC error         |    |
| 5 | Ann  | EX A: A  | SN.1 SCHEMAS SPECIFICATION           | 46 |
|   | 5.1  | Module   | e EDAS-common                        | 46 |
|   | 5.2  | Module   | e EDAS-EGNOSReceiverMeasurements     | 47 |
|   | 5.3  | Module   | e EDAS-EGNOSNavigationCorrection     | 50 |
| 6 | ANN  | IEX B:A  | SN.1 MESSAGE FIELDS                  | 51 |
|   | 6.1  | RIMS     | RAW Measurements Message             | 51 |





|   | 6.2 | NLES Cyclic Feedback message          | 52 |
|---|-----|---------------------------------------|----|
| 7 | Ann | NEX C: CRC-32 COMPUTATION METHOD      | 54 |
|   | 7.1 | Description                           | 54 |
|   | 7.2 | Computation Method (RFC 1662)         | 54 |
| 8 | Ann | NEX D: ARCHITECTURE OF EDAS CLIENT SW | 57 |





## **Document Contributors**

| Name              | Company | Section |
|-------------------|---------|---------|
| J. Ignacio Ormeño | GMV-SGI |         |
| Ángel J. Gavín    | GMV-AD  |         |
| Alberto Rubio     | GMV-SGI |         |

## **Change Records**

| Version | Issue | Date       | Description                                                                                                                                                                                                                                       | Author (Company)               |
|---------|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1       | Α     | 01/09/2006 | First Version of this document                                                                                                                                                                                                                    | M. Alcón (GMV-SGI)             |
| 1       | В     | 02/10/2006 | <ul> <li>Version for DSR-CO and ADR, including:</li> <li>Final CS version installation and operation instructions</li> <li>Application-layer description of the Client Software interface</li> </ul>                                              | J. Ignacio Ormeño<br>(GMV-SGI) |
| 1       | С     | 01/08/2007 | Version for ADR-CO and DDD, including:  * Installation instructions for Windows                                                                                                                                                                   | J. Ignacio Ormeño<br>(GMV-SGI) |
| 1       | С     | 01/08/2007 | <ul> <li>Version for ADR-CO and DDD, including:</li> <li>Clarification on EDAS RTCM encoding schema in section 5.1. (implements RID-ADR-003 and RID-ADR-005)</li> <li>Clarification on messages 1006 and 1007 (implements RID-ADR-004)</li> </ul> | J. Pereira<br>(GMV-AD)         |
| 1       | D     | 01/08/2007 | Version for AR/SAR including:  Clarification on APC messages  Clarification on how to connect a Service Provider, HW prerequisites and comments.                                                                                                  | J. Ignacio Ormeño<br>(GMV-SGI) |
| 2       | Α     | 24/11/2008 | Document updated for EDAS v1.4 release.  Changes originated by DRS in GMV-EDAS-NC-10:                                                                                                                                                             | J. Ignacio Ormeño<br>(GMV-SGI) |





| Version | Issue | Date | Description                                                                                                                                                   | Author (Company) |
|---------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|         |       |      | Section 2.1 updated as per item 1 & 2 in<br>DRS (clarifications in EDAS connection<br>requirements).                                                          |                  |
|         |       |      | <ul> <li>Section 2.1 updated as per item 3 in DRS<br/>(clarifications in Operating Systems and<br/>COTS required for EDAS CS installation)</li> </ul>         |                  |
|         |       |      | <ul><li>Section 2.2 updated as per item 4 in DRS<br/>(typo fixed)</li></ul>                                                                                   |                  |
|         |       |      | <ul> <li>Section 2.2 updated as per item 5 &amp; 6 in<br/>DRS (folder structure updated)</li> </ul>                                                           |                  |
|         |       |      | Section 3.2 updated as per item 7 in DRS<br>(separation of cs.properties and<br>log4j.properties files).                                                      |                  |
|         |       |      | <ul> <li>Section 3.2 updated as per item 8 in DRS<br/>(possibility of modification of log4j.properties<br/>file)</li> </ul>                                   |                  |
|         |       |      | <ul> <li>Section 3.3 updated as per item 9 in DRS<br/>(log file location configurability).</li> </ul>                                                         |                  |
|         |       |      | Section 4 removed as per item 10 in DRS. A basic test to check correct installation of the CS (and the connection) provided in a new section (3.4) instead.   |                  |
|         |       |      | ■ Former section 5.1 (now 4.1) updated as per item 11 in DRS.                                                                                                 |                  |
|         |       |      | Former Table 5-1 and section 5.1 (now Table<br>4-1 and section 4.1, respectively) updated<br>with remarks on ATC data availability, as per<br>item 12 in DRS. |                  |
|         |       |      | Former section 5.1 (now section 4.1) updated<br>as per item 13 in DRS (possibility of having<br>more than one RTCM message in single<br>EDAS message).        |                  |
|         |       |      | <ul> <li>Section 4.2.4.1 updated to warn about EDAS<br/>ATC availability (item 14 in DRS).</li> </ul>                                                         |                  |





| Version | Issue | Date       | Description                                                                                                                                                                                                                                                                                                                                 | Author (Company)           |
|---------|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|         |       |            | Former section 5.2.1 moved to section 4.2.<br>Subsections re-organised to meet with item<br>15 (in DRS) expectations (readability of the<br>section).                                                                                                                                                                                       |                            |
|         |       |            | EDAS message type 4 (APC) added to<br>message list (item 16 in DRS).                                                                                                                                                                                                                                                                        |                            |
|         |       |            | On top of the changes above, the following modifications have been included:                                                                                                                                                                                                                                                                |                            |
|         |       |            | Section 4.2.4.2 on RIMS APC data updated to reflect the changes in APC message format derived from GMV-EDAS-NC-10 ("Impossible to dispatch APC data in a single RTCM message") and GMV-EDAS-NC-11 ("APC messages sent without RTCM header") implementation. Section 4.2.6 (Data Fields) and 4.2.7 (Data Types) updated with new data types. |                            |
|         |       |            | Footnote added to section 4.2.3 to clarify that<br>ASN.1 "Navigation Correction Message" are<br>in fact NLES Feedback messages.                                                                                                                                                                                                             |                            |
|         |       |            | ASN.1 message specification included in<br>new section 5 (Annex A). A pointer to this<br>section has been added to section 4.2.3.                                                                                                                                                                                                           |                            |
|         |       |            | Wording "Final Version" deleted from cover<br>page of this document.                                                                                                                                                                                                                                                                        |                            |
| 2       | В     | 16/09/2009 | Document updated for EDAS v1.5 release.  Changes originated by reported bugs:                                                                                                                                                                                                                                                               | Alberto Rubio<br>(GMV-SGI) |
|         |       |            | <ul> <li>Section 3.2 updated as per new configuration<br/>parameter (max_queue_size) in file<br/>cs.properties</li> </ul>                                                                                                                                                                                                                   |                            |
|         |       |            | <ul> <li>Disclaimer added to Section 3.2 related to<br/>data unavailability</li> </ul>                                                                                                                                                                                                                                                      |                            |
|         |       |            | <ul> <li>Added Section 6 (Annex 2), related to</li> <li>CRC32 Computation Method</li> </ul>                                                                                                                                                                                                                                                 |                            |





| Version | Issue | Date       | Description                                                                                      | Author (Company) |
|---------|-------|------------|--------------------------------------------------------------------------------------------------|------------------|
| 2       | С     | 22/09/2009 | Typo errors corrected.                                                                           | J. Yarza         |
|         |       |            | ■ 4.2.1: CRC sentence added.                                                                     | (GMV-ADS)        |
| 2       | D     | 06/10/2009 | ■ 3.2: New sentence added before disclaimer                                                      | J. Yarza         |
|         |       |            | <ul> <li>3.4: Explanation added for low message<br/>consumption case in this section.</li> </ul> | (GMV-ADS)        |
|         |       |            | ■ 4.2.1: CRC sentence added.                                                                     |                  |
|         |       |            | Annex D: Architecture of EDAS Client SW added.                                                   |                  |
| 3       | Α     | 16/03/2010 | ■ 4.2.3ASN.1 Frame modified                                                                      | J. Yarza         |
|         |       |            | ANNEX B:ASN.1 MESSAGE FIELDS added                                                               | (GMV-ADS)        |





## 1 Introduction

## 1.1 PURPOSE

This document will present the procedures for installing, configuring and using the Client Software.

## 1.2 REFERENCES

## 1.2.1 Reference Documents

| Ref.   | Document title                                                                                                    | Document reference                | Issue | Date       |
|--------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|------------|
| [RD.1] | Client Software User Manual                                                                                       | GARMIS-SGI-6160-D-6161-<br>CUI-V2 | 1.A   | 16/03/2010 |
| [RD.2] | EDAS Client Software Interface Control Document (EDAS CSW-ICD)                                                    | 200194729P                        | 1.A   | 11/08/2006 |
| [RD.3] | EGNOS Interfaces Control Document for ATC Interface (ATC ICD)                                                     | EGN-ASPI-SYST-DRD<br>0112/0029    | 2.A   | 16/11/01   |
| [RD.4] | RTCM recommended standards for differential GNSS Service Version 3.0. Developed by RTCM Special Committee NO. 104 | RTCM Paper 30-<br>2004/SC104-STD  | 3.0   | 10/02/04   |

Table 1-1: Reference Documents





## 2 INSTALLATION

## 2.1 Installation Prerequisites

The hardware requirements for Client Software are the following:

- 1 GHz 32-bit (x86) or 64-bit (x64) processor
- 1 GB of system memory
- 40 GB hard drive with at least 15 GB of available space
- A dedicated line from CS machine to EDAS, this line will have a minimum throughput or CIR equals to 600 Kbits/sec (SL0 messages) or 300 Kbits/sec (SL1 messages). A xDSL line could be used but it is not recommended for real time purposes.
- EDAS IP will have to be provided by EDAS Operator.

In order to install and use the Client Software, the following configuration items must be available:

## a) For Unix/Linux systems:

- Any operating system compatible with Sun Java Development Kit 1.5.
- Java SDK 1.5.0\_08-b03 or better.
- GNU Tar and Gzip utilities.

## b) For Windows systems:

- Windows (XP, 2000, 2003) as operating system
- Java SDK 1.5.0\_08-b03 or better
- Winzip, 7zip or similar tool

## 2.2 Installation procedure

To install the CS, copy the software package to desired installation directory. Once the installation package has been copied, access this directory and unzip the copied file





a) For Unix/Linux system this is achieved using the following commands:

```
$ cd INSTALLATION DIRECTORY
$ gunzip client-software.tar.gz
$ tar xvf client-software.tar
```

- b) For Windows system this is achieved using the following steps:
- 1.- Open client-software.zip with winzip or similar archive utility  $\ \ \,$
- 2.- Extract all contents into Installation-Directory

Once installed, the CS has the following file structure (in both systems Windows or Unix/Linux):







## 3 CLIENT SOFTWARE EXECUTION

#### 3.1 CONFIGURING AND STARTING THE CS

After the installation, the user must be edit the configuration file in order to satisfy his needs (all parameters of this file will be explained below), once this file has been customised, the user must launch the Client Software through the following command:

a) Unix/Linux system:

```
$cd INSTALLATION DIRECTORY
$cd scripts
$./cs.sh start
```

## b) Windows system:

```
c:\>cd INSTALLATION DIRECTORY
c:\INSTALLATION DIRECTORY>cd scripts
c:\INSTALLATION DIRECTORY\scripts>cs.bat
```

#### 3.2 PARAMETERS

Client Software has two configuration files:

- cs.properties: this file includes Client Software operational configuration parameters, such as:
  - EGNOS Data Server IP
  - EDS Client Control Module port
  - CS port to listen for SP connections
  - CS credentials to authenticate to EDS
  - Various message timing properties





```
#EDS-CCM address/listen port
eds ip=127.0.0.1
port tcp=8888
#CS-SP port
#The TCP Port to listen from Service Provider connections
sp port=3000
#CS UDP port
#The UDP Port to listen from the EDS
edas port=4000
#SSL over TCP,
#Valid values are true or false
SSL enabled=true
#Credentials to login into EDS
user=user
password=pass
#Max. queue size in Mbytes
#(in order to prevent Out of Memory Errors set this value between 5
and 10 Mb)
max queue size=3
[ALRM1]
#A connection is considered IDLE when the timeout is exceeded
```





```
timeout=10000
#String messages exchanged between EDS-CCM and CS
validation ok=validation ok
validation error=validation error
keep alive message=keepMeAlive
keep alive response=youAreAlive
#####All the following parameters are in seconds #####
#A connection is considered IDLE when the idle time is exceeded
idle time=10
#CS sends a keep alive message every keep alive time seconds
keep alive time=2
#CS monitors the connection to the EDS every monitoring time seconds
monitoring time=5
#When the CS loses connection with EDS, a login attempt is made
every retry time seconds
retry_time=1
```

Table 3-1: cs.properties file content

For a detailed description of CS architecture go to Error! Reference source not found..





#### **DISCLAIMER:**

Once reached the threshold value for the "max\_queue\_size" parameter, the Client Software does not guarantee data availability.

This situation will arise if the transfer rate from the Client Software to the Service Provider is lower than the one from EDAS to the Client Software, whether due to the Service Provider is not able to process the packages or due to a connection with lower transfer rate.

To check if the transfer of data is fast enough to the Service provider read 3.4.

 log4j.properties: basic logging parameters. The values in this file should be modified according to specs described in http://wiki.apache.org/logging-log4j/

```
#log4j.rootCategory=INFO, stdout
#log4j.appender.stdout=org.apache.log4j.ConsoleAppender
#log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
#log4j.appender.stdout.layout.ConversionPattern=[%d{HH:mm:ss}] %p
[%c] - %m%n
log4j.rootLogger=INFO, out
log4j.appender.out=org.apache.log4j.DailyRollingFileAppender
log4j.appender.out.File=../log/cs out.log
log4j.appender.out.DatePattern='.'dd-MM-yyyy
log4j.appender.out.layout=org.apache.log4j.PatternLayout
log4j.appender.out.layout=org.apache.log4j.PatternLayout
```

Table 3-2: log4j.properties file content

#### **3.3** Logs

The CS outputs all status information to the cs\_out.log file, that is located in \$INSTALLATION\_DIRECTORY/log. This log file location is configurable modifying log4j.appender.out.File property included in log4j.properties file.





#### 3.4 RUNNING CS FOR FIRST TIME

When running a CS for first time, operation can be checked analyzing log information.

If communication with EDAS is off, following lines will be written in log file:

```
2008-10-23 12:43:04,262 [ClientSoftware]: INFO: Client Software Instance Started

2008-10-23 12:43:04,278 [ Client]: INFO: SSL Activated

2008-10-23 12:43:04,356 [ClientSoftware]: INFO: Listening at port 3000 for SP Connection

2008-10-23 12:43:04,356 [ClientSoftware]: INFO: Listening at port 30000 for EDS Messages

2008-10-23 12:43:10,122 [ Client]: ERROR: Conection not ready yet. Retrying...

2008-10-23 12:43:17,541 [ Client]: ERROR: Conection not ready yet. Retrying...

2008-10-23 12:43:24,976 [ Client]: ERROR: Conection not ready yet. Retrying...
```

Otherwise, in case communication with EDAS will be correct, following lines will be written in log files:

```
2008-01-29
              00:00:27,890
                               [ClientSoftwareToCCMConnectorHandler]:
                                                                               INFO:
[/192.168.26.100:8887] WRITE: DirectBuffer[pos=0 lim=12 cap=16: 6B 65 65 70 4D 65
41 6C 69 76 65 0A]
                               [ClientSoftwareToCCMConnectorHandler]:
2008-01-29
              00:00:27,890
                                                                               INFO:
[/192.168.26.100:8887] SENT: DirectBuffer[pos=0 lim=12 cap=16: 6B 65 65 70 4D 65 41
6C 69 76 65 0A]
2008-01-29 00:00:27,910 [Client]: INFO: # messages from EDAS: 1518148, # messages
to SP: 1518148
2008-01-29
              00:00:28,062
                               [ClientSoftwareToCCMConnectorHandler]:
[/192.168.26.100:8887] RECEIVED: DirectBuffer[pos=0 lim=12 cap=16: 79 6F 75 41 72
65 41 6C 69 76 65 0A]
```





2008-01-29 00:00:28,062 [ClientSoftwareToCCMConnectorHandler]: INFO: Keeping connection alive.

In this case the connection to EDAS is correct. There is a message (in green) that shows the messages that are received in EDSToCS handler and the messages that are dispatched to the SP (CSToSP handler). For a more detailed description of CS architecture go to Error! Reference source not found.. In case that the value of packages received increases faster than the packages that are dispatched to the Service provider there is a problem of consumption of messages. The Service Provider is not fast enough to process the data. Once the threshold value is reached, the Client Software does not guarantee data availability. See DISCLAIMER on section 3.2





## 4 INTERFACE FROM CL. SOFTWARE TO SRV. PROVIDER

This section is aimed to provide the interface information that may be needed in order to help Service Providers to develop software able to receive the EDAS products delivered through the Client Software. The section will include a description of the Service Provider interface of the Client Software and also a description of different case studies, together with an analysis of the Client Software behaviour in any of those cases.

## 4.1 Service Level and Format Definitions

The following Service Levels and Formats are provided:

| Service Level   | Data                    | Format                    | Remarks                                                                                       |
|-----------------|-------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| Service Level 0 | INSPIRE/ATC             | Raw format.               | Please check availability of ATC data. Provision of ATC data in EDAS may be disabled.         |
|                 | INSPIRE/DATA (a subset) | Encoded in ASN.1.         |                                                                                               |
| Service Level 1 | INSPIRE/ATC             | Raw format.               | Please check availability of<br>ATC data. Provision of ATC<br>data in EDAS may be<br>disabled |
|                 | INSPIRE/DATA            | Encoded as RTCM messages. |                                                                                               |

Table 4-1. Service Levels and Formats Proposed.

The rationale for the selection is:

- Service Level 0: it is needed to either transmit data in raw format, or transmit them in a format that allows a lossless reconstruction after translation.
- Service Level 1: it is used to transmit data in an open standard. In addition, the Service Provider can split the incoming data stream into further groups (e. g., GPS, GLONASS, Augmentation, ...).

Figure 5.1 below shows EDAS output format at a very high level. Each EDAS message is embedded in a frame which starts with the EDAS Control Header, which will be explained in section 5.2.3, followed by the platform message whose format depends on the Service Level and the kind of contained data.





As advanced in Table 5-1, INSPIRE/ATC Data are enclosed in the EDAS output frame with no format modification whatsoever, i.e., in the same format as they are received from INSPIRE/ATC. This is to say, INSPIRE/ATC can be provided in raw format for both Service Levels (check availability of ATC data with EDAS operator, provision of ATC data in EDAS may be disabled).

However, INSPIRE/DATA go inside the EDAS frame encoded as ASN.1 for Service Level 0, while they go encoded as RTCM for Level 1.



Figure 4-1. EDAS Output format.

In some cases, one EDAS message can encapsulate more than one RTCM message in Level 1, otherwise, EDAS only encapsulate one ASN.1 message into an EDAS message.

For some Level 1 messages a Message Number and a Message Structure have been defined since they are EDAS proprietary messages, and therefore they are not defined in RTCM v3. [RD.4]. For each of these cases the Message Number has been selected in the range of Proprietary Messages (4088 to 4095) specified by RTCM v3.0 [RD.4], in order to avoid overlapping with updates of the standard.





#### 4.2 CONNECTION PROTOCOLS

In the Client Software to Service Provider connection, the Client Software will operate as server in the initial connection, and the Service Provider as client. However, after the initial connection, the data flow will be delivered from Client Software to Service Provider. The connection between CS and SP will be performed over a TCP connection.

The connection handling process can be summarised in the following steps:

- 1. When the Client Software is initiated, it starts listening for TCP connections on a configurable port.
- 2. The Service Provider software connects to the Client Software open port using a standard TCP *syn* message.
- 3. The Client Software replies with a TCP ack message.
- 4. The Client Software starts delivering the messages over the opened TCP channel.

In some situations, depending on the OS context and the installed java virtual machine version, a TCP frame may encapsulate several EDAS frames.

#### 4.2.1 EDAS Control Header

The EGNOS Data Server embeds all platform messages in a new message containing an EDAS Control Header that allows the system to manage added value information, such as quota management or data integrity, without affecting the inserted EGNOS data.

This header contains the following information:

Computed message body CRC: When the Client Service receives the message, it
computes the message CRC and checks that the generated CRC and the CRC
information in the EDAS Control Header are equal. The CRC is a 32-bits little-endian
field.

This CRC checks the integrity of the EDAS message. There is a possibility that the EGNOS broadcast GEO message (that contains a particular CRC) is wrong but EDAS message has been sent correctly. When this happens it could be observed that the CRC of EGNOS broadcast GEO message is not the expected one (because the message itself is corrupted and so, it should be discarded) but the global CRC of the





EDAS message is correct because it is included to enable the integrity check of the whole EDAS message

**Message type:** The type of message that the body contains. It may have the following values:

- o **0:** System Information Message
- 1: ATC format message
- o 2: ASN.1 format message
- o 3: RTCM format message
- o **4:** APC format message
- Quota information: Information relative to message quota status.
- **CRC CS:** When CS instances receive a message from the EDS they recalculate the CRC and compare it with the generated by the EDS. If CRCs are not equal, this bit is set to 1, otherwise it contains a 0.
- CS Not Receiving Data (CSNRD): When the CS instance does not receive any EDAS message from the EDS, it sends a System Information Message to the SP notifying this event.

The following table shows in detail the EDAS Control Header format:











Table 4-2. EDAS Control Header definition.

For the quota field, four values can be contained:

| Value  | Meaning                              |
|--------|--------------------------------------|
| 0 (00) | No quota exceeded                    |
| 1 (01) | More than 75 % of the quota consumed |
| 2 (10) | More than 90 % of the quota consumed |
| 3 (11) | Quota exceeded. (No message body is  |
|        | sent)                                |

Table 4-3. EDAS Control Header Quota Field.

Note that a message with a value of 3 in the quota field (Quota exceeded) does not contain any message body inside (System Information Message). Furthermore, when the client software receives a quota exceeded message, it closes his connection with the Service Provider.

When CS detects an integrity failure in the communication between it and EDS, it delivers the message but activates a bit of integrity fail warning:

| Value | Meaning                               |
|-------|---------------------------------------|
| 0     | No CRC problem between EDS and CS     |
| 1     | The CRC calculated in EDS and the one |





| Value | Meaning                                 |  |  |
|-------|-----------------------------------------|--|--|
|       | calculated in CS are not equal.         |  |  |
|       | Data integrity failure in communication |  |  |
|       | between EDS an CS                       |  |  |

Table 4-4. EDAS Message Header CRC CS Field.

When CS detects a lack of data from EDS, it sends a System Information Message with the CSNRD field activated:

| Value | Meaning                                          |  |  |
|-------|--------------------------------------------------|--|--|
| 0     | CS is receiving data from EDS                    |  |  |
| 1     | Since 1 second CS is not receiving data from EDS |  |  |

Table 4-5. EDAS Message Header CSNRD Field.

## 4.2.2 RTCM Frame

The basic frame consists of a RTCM v3.0 frame. The structure of the Frame Format is shown in [RD.4].

| Preamble | Reserved | Message Length | Variable Length<br>Data Message | CRC     |
|----------|----------|----------------|---------------------------------|---------|
| 1 byte   | 6 bits   | 10 bits        | 0 – 1023 bytes                  | 24 bits |





#### Table 4-6. Frame Structure.

- □ The *Preamble* byte, is a fixed 8-bit sequence 11010011.
- □ The Reserved field must be set to zero.
- □ The Message Length. This value specifies the number of bytes in the field Variable Length Data Message which immediately follow the bytes for the Message Length, excluding the CRC field.
- □ The Variable Length Data Message. Immediately following the Message Length field is the Record Message. The format of each Record Message depends on which type of record it is (identified, by the Record ID), and it is described in the Presentation Layer chapter.
- □ The CRC. 24 bits. Each message contains a checksum that is generated from all of the bits in the Preamble, Reserved field, Message Length, and Variable Length Data Message. The design for this sum is:
  - O QualComm CRC algorithm CRC-24Q: Using generating polynomial =  $x^{24} + x^{23} + x^{18} + x^{17} + x^{14} + x^{11} + x^{10} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{1} + x^{0}$ .

#### 4.2.3 **ASN.1 Frame**

With the aim to avoid the use of tools with any kind of royalties to be a requirement for EDAS, the use an open source library for ASN.1 encoding has been decided. It is located in http://lionet.info/asn1c/. This is a free, open source compiler of ASN.1 specifications into C source code. It supports a range of ASN.1 syntaxes, uPer encoding was selected.

ASN.1 message length and ASN.1 message type (Receiver Measurements or Navigation Correction) become then necessary information in order to decode the message. Therefore it was decided to enclosed EDAS ASN.1 uPer encoded messages in to a frame containing a header with following specifications:

#### Location

| EDAS Control Header      | ASN.1 Frame               |
|--------------------------|---------------------------|
| LD/ (O Oolitioi i icaaci | / (CIN. I I I I I I I I I |

#### Internal design (ASN.1 frame)

| DF: ASN.1 Message Type | DF: ASN.1 Message Length | ASN.1 encoded message |
|------------------------|--------------------------|-----------------------|
|                        | ,                        |                       |

## Data fields:

| DF Name            | DF Range | Data Type | Data Field Notes                            |
|--------------------|----------|-----------|---------------------------------------------|
| ASN.1 Message Type | {0,1}    | Bit(1)    | Defines the type of ASN.1 message. When the |





|                      |           |        | Bit is "0" the message is "Navigation Correction Message" when the Bit is "1" the message is "Receiver Measurements". |
|----------------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------|
| ASN.1 Message Length | 0 - 32767 | Uint15 | Defines the size of the ASN.1 message in                                                                              |
|                      |           |        | bytes. The size defined here discards the                                                                             |
|                      |           |        | ASN.1 header size.                                                                                                    |

## · Data ordering:

- Header data ordering is big-endian bitwise and bytewise.
- ASN.1 message data ordering is the one define by the ASN.1 standards.

ASN.1 message specifications can be found in Annex A and Annex B (page 46) of this document.

## 4.2.4 EDAS Level 0 messages

A detailed definition of the level 0 messages delivered through the Client Software can be found in [RD.2]. Apart from the messages defined in [RD.2], Level 0 include ATC messages and Station Description data.

#### 4.2.4.1 Message 4091. ATC.

ATC information is also included in Service Level 0. The Message Type 4091 provides the ATC Data, as described in [RD.3] §3.2.3 and [RD.2] §4.3. *Please check availability of ATC data in EDAS may be disabled*.

Note this is a EDAS-defined message, since [RD.4] does not define any means to send this information.

Note that 8 different ATC messages are defined in [RD.2] §4.3.

| Data Field (DF)                                        | DF Number | Data Type | Number of Bits |
|--------------------------------------------------------|-----------|-----------|----------------|
| Message Number 4091                                    | DF002     | Uint12    | 12             |
| ATC Message Identifier                                 | DF90      | int8      | 8              |
| ATC Message (one full message defined in [RD.2] §4.3). |           |           |                |

<sup>&</sup>lt;sup>1</sup> NLES Feedback message

\_





Table 4-7: Message 4091. ATC.

## 4.2.4.2 Message 4092. RIMS APC Data

The EDAS-specific Message Type 4092 provides a data record with position information on Antenna Phase Center for L1 and L2 for each RIMS channel currently described in a given configuration file. The configuration file is supposed to contain the required information for each RIMS channel currently used in EGNOS. Updates of the configuration file will be the responsibility of the operator.

The message heading is 20 bits long.

The Data Block length depends on the number of available RIMS channels described in the configuration file, i.e. on the number of included RIMS APC records (maximal 250).

IMPORTANT Note: the message is presented as a placeholder to convey information, that as of today it is not provided by INSPIRE.

| Data Field (DF)                                                                             | DF Number | Data Type               | Number of Bits         |
|---------------------------------------------------------------------------------------------|-----------|-------------------------|------------------------|
| Message Number 4092                                                                         | DF002     | Uint12                  | 12                     |
| Number of total RTCM messages needed for the APC message                                    | DF119     | Uint4                   | 4                      |
| Number of RTCM message in the APC RTCM messages sequence                                    | DF120     | Uint4                   | 4                      |
| Number of included RIMS APC records                                                         | DF021     | Unit8                   | 8                      |
| RIMS Channel-Specific Portion, repeated for each RIMS Channel currently available in EGNOS. | _         | See Table 5-<br>3 below | 218 bits for each RIMS |

Table 4-8: Message 4092. RIMS APC Data. Heading and Data Block.

Table 5-3 describes the RIMS Channel-Specific Portion, repeated for each RIMS channel currently available in EGNOS





| Data Field (DF)     | DF Number | Data Type | Number of Bits |
|---------------------|-----------|-----------|----------------|
| RIMS ID             | DF022     | Uint8     | 8              |
| Position L1 X       | DF023     | Int38     | 38             |
| Position L1 Y       | DF024     | Int38     | 38             |
| Position L1 Z       | DF025     | Int38     | 38             |
| Delta Position L2 X | DF026     | Int32     | 32             |
| Delta Position L2 Y | DF027     | Int32     | 32             |
| Delta Position L2 Z | DF028     | Int32     | 32             |

Table 4-9: Message 4092. RIMS APC Data. Data Block.

**Note**: All integer fields are represented as **two's complement notation**. In two's complement notation, a positive number is represented by its ordinary binary representation, using enough bits that the high bit, the sign bit, is 0. The two's complement operation is the negation operation, so negative numbers are represented by the two's complement of the representation of the absolute value.

In finding the two's complement of a binary number, the bits are inverted, or "flipped", by using the bitwise NOT operation; the value of 1 is then added to the resulting value. Bit overflow is ignored, which is the normal case with zero.

For example, beginning with the signed 38-bit binary representation of the decimal value 5, using subscripts to indicate the base of a representation needed to interpret its value:

The most significant bit is 0, so the pattern represents a non-negative (positive) value. To convert to -5 in two's-complement notation, the bits are inverted; 0 becomes 1, and 1 becomes 0:

At this point, the numeral is the **one's complement** of the decimal value 5. To obtain the **two's complement**, 1 is added to the result, giving:

The result is a signed binary number representing the decimal value −5 in two's-complement form. The most significant bit is 1, so the value represented is negative.





## 4.2.5 EDAS Level 1 messages

This section describes the *Messages* for Level 1 Subscription Level. Each *Message* contains a specific set of *Data Fields* (described in next chapter 4.2.6), that can be repeated as needed (e. g., in order to provide information of several satellites).

The Data Fields are broadcast in the order listed.

Multi-byte values are expressed with the most significant byte transmitted first and the least significant byte transmitted last.

## 4.2.5.1 Message 1004. GPS Observations.

The Message Type 1004 supports dual-frequency GPS data, and includes several indicators measured by the reference station.

The message heading is 64 bits long.

| Data Field (DF)                                                           | DF Number | Data Type               | Number of Bits                 |
|---------------------------------------------------------------------------|-----------|-------------------------|--------------------------------|
| Message Number 1004                                                       | DF002     | Uint12                  | 12                             |
| Reference Station ID                                                      | DF003     | Uint12                  | 12                             |
| GPS Epoch Time (TOW)                                                      | DF004     | Uint30                  | 30                             |
| Synchronous GNSS Message Flag.                                            | DF005     | Bit(1)                  | 1                              |
| Number of GPS Satellite Signals Processed                                 | DF006     | Uint5                   | 5                              |
| GPS Divergence-free Smoothing Indicator. It is always set to '0'.         | DF007     | Bit(1)                  | 1                              |
| GPS Smoothing Interval. It is always set to '0'.                          | DF008     | Bit(3)                  | 3                              |
| GPS Satellite-Specific Portion, repeated for each GPS Satellite Processed | -         | See Table<br>4-11 below | 125 bits for each<br>Satellite |

Table 4-10: Message 1004. GPS Observations. Heading and Data Block.

Table 4-11 describes the GPS Satellite-Specific Portion, repeated for each GPS Satellite Processed.





| Data Field (DF)                                 | DF Number | Data Type | Number of Bits |
|-------------------------------------------------|-----------|-----------|----------------|
| GPS Satellite ID                                | DF009     | Uint6     | 6              |
| GPS L1 Code Indicator                           | DF010     | Bit(1)    | 1              |
| GPS L1 Pseudorange                              | DF011     | Uint24    | 24             |
| GPS L1 PhaseRange - L1<br>Pseudorange           | DF012     | Uint20    | 20             |
| GPS L1 Lock Time Indicator                      | DF013     | Uint7     | 7              |
| GPS Integer L1 Pseudorange<br>Modulus Ambiguity | DF014     | Uint8     | 8              |
| GPS L1 CNR                                      | DF015     | Uint8     | 8              |
| GPS L2 Code Indicator                           | DF016     | Bit(2)    | 2              |
| GPS L2-L1 Pseudorange Difference                | DF017     | Uint14    | 14             |
| GPS L2 PhaseRange – L1<br>Pseudorange           | DF018     | Uint20    | 20             |
| GPS L2 Lock Time Indicator                      | DF019     | Uint7     | 7              |
| GPS L2 CNR                                      | DF020     | Uint8     | 8              |

Table 4-11: Message 1004. GPS Observations. Data Block.

## 4.2.5.2 Message 1010. GLONASS Observations.

The Message Type 1010 supports single-frequency GLONASS data, and includes several indicators measured by the reference station.

The message heading is 61 bits long.

| Data Field (DF)                                   | DF Number | Data Type | Number of Bits |
|---------------------------------------------------|-----------|-----------|----------------|
| Message Number 1010                               | DF002     | Uint12    | 12             |
| Reference Station ID                              | DF003     | Uint12    | 12             |
| GLONASS Epoch Time (t <sub>k</sub> )              | DF034     | Uint27    | 27             |
| Synchronous GNSS Message Flag.                    | DF005     | Bit(1)    | 1              |
| Number of GLONASS Satellite<br>Signals Processed. | DF035     | Uint5     | 5              |





| Data Field (DF)                                                                         | DF Number | Data Type               | Number of Bits                |
|-----------------------------------------------------------------------------------------|-----------|-------------------------|-------------------------------|
| GLONASS Divergence-free<br>Smoothing Indicator.<br>It is always set to '0'.             | DF036     | Bit(1)                  | 1                             |
| GLONASS Smoothing Interval. It is always set to '0'.                                    | DF037     | Bit(3)                  | 3                             |
| GLONASS Satellite-Specific Portion,<br>repeated for each GLONASS<br>Satellite Processed | -         | See Table<br>4-13 below | 79 bits for each<br>Satellite |

Table 4-12: Message 1010. GLONASS Observations. Heading and Data Block.

Table 4-13 describes the GLONASS Satellite-Specific Portion, repeated for each GLONASS Satellite Processed.

| Data Field (DF)                                     | DF Number | Data Type | Number of Bits |
|-----------------------------------------------------|-----------|-----------|----------------|
| GLONASS Satellite ID (Satellite Slot<br>Number)     | DF038     | Uint6     | 6              |
| GLONASS L1 Code Indicator                           | DF039     | Bit(1)    | 1              |
| GLONASS Satellite Frequency Channel Number          | DF040     | Uint5     | 5              |
| GLONASS L1 Pseudorange                              | DF041     | Uint25    | 25             |
| GLONASS L1 PhaseRange - L1<br>Pseudorange           | DF042     | Uint20    | 20             |
| GLONASS L1 Lock Time Indicator                      | DF043     | Uint7     | 7              |
| GLONASS Integer L1 Pseudorange<br>Modulus Ambiguity | DF044     | Uint7     | 7              |
| GLONASS L1 CNR                                      | DF045     | Uint8     | 8              |

Table 4-13: Message 1010. GLONASS Observations. Data Block.

## 4.2.5.3 Message 4089. GEO Observations.

The EDAS-specific Message Type 4089 supports single-frequency GEO data, and includes several indicators measured by the reference station.

The message heading is 64 bits long.





| Data Field (DF)                                                           | DF Number | Data Type               | Number of Bits                |
|---------------------------------------------------------------------------|-----------|-------------------------|-------------------------------|
| Message Number 4089                                                       | DF002     | Uint12                  | 12                            |
| Reference Station ID                                                      | DF003     | Uint12                  | 12                            |
| GPS Epoch Time (TOW)                                                      | DF004     | Uint30                  | 30                            |
| Synchronous GNSS Message Flag.                                            | DF005     | Bit(1)                  | 1                             |
| Number of GEO Satellite Signals Processed                                 | DF006     | Uint5                   | 5                             |
| GEO Divergence-free Smoothing Indicator. It is always set to '0'.         | DF007     | Bit(1)                  | 1                             |
| GEO Smoothing Interval. It is always set to '0'.                          | DF008     | Bit(3)                  | 3                             |
| GEO Satellite-Specific Portion, repeated for each GEO Satellite Processed | -         | See Table<br>4-15 below | 64 bits for each<br>Satellite |

Table 4-14: Message 4089. GEO Observations. Heading and Data Block.

Table 4-13 describes the GEO Satellite-Specific Portion, repeated for each GEO Satellite Processed.

| Data Field (DF)                                 | DF Number | Data Type | Number of Bits |
|-------------------------------------------------|-----------|-----------|----------------|
| GEO Satellite ID                                | DF009     | Uint6     | 6              |
| GEO L1 Code Indicator                           | DF010     | Bit(1)    | 1              |
| GEO L1 Pseudorange                              | DF011     | Uint24    | 24             |
| GEO L1 PhaseRange - L1<br>Pseudorange           | DF012     | Uint20    | 20             |
| GEO L1 Lock Time Indicator                      | DF013     | Uint7     | 7              |
| GEO Integer L1 Pseudorange<br>Modulus Ambiguity | DF014     | Uint8     | 8              |
| GEO L1 CNR                                      | DF015     | Uint8     | 8              |

Table 4-15: Message 4089. GEO Observations. Data Block.

## 4.2.5.4 Message 4088. GPS/GLONASS/GEO Ephemeris.

The Message Type 4088 provides the Ephemeris of GPS, GLONASS and GEO satellites, as sent by each receiver.





Note this is a EDAS-defined message, since [RD.4] does not define ay means to send this information.

With the aim of preserving as possible the incoming INSPIRE information, the same data structure is used. The data structure is based on the GPS/GLONASS/GEO Signal In Space.

The Message contains the information provided by a receiver:

- □ The 50 bits Navigation information broadcast by each GPS satellite.
- □ The 50 bits Navigation information broadcast by each GLONASS satellite.
- □ The 250 bits Navigation/Corrections information broadcast by each GEO satellite.

| Data Field (DF)                                                                   | DF Number | Data Type               | Number of Bits                 |
|-----------------------------------------------------------------------------------|-----------|-------------------------|--------------------------------|
| Message Number 4088                                                               | DF002     | Uint12                  | 12                             |
| Reference Station ID                                                              | DF003     | Uint12                  | 12                             |
| GPS Epoch Time (TOW)                                                              | DF004     | Uint30                  | 30                             |
| Number of GPS Satellite Signals Processed                                         | DF006     | Uint5                   | 5                              |
| GPS Satellite-Specific Portion, repeated for each GPS Satellite Processed         | -         | See Table<br>4-17 below | 50 bits for each<br>Satellite  |
| Number of GLONASS Satellite Signals Processed                                     | DF035     | Uint5                   | 5                              |
| GLONASS Satellite-Specific Portion, repeated for each GLONASS Satellite Processed | -         | See below               | 50 bits for each<br>Satellite  |
| Number of GEO Satellite Signals Processed                                         | DF006     | Uint5                   | 5                              |
| GEO Satellite-Specific Portion, repeated for each GEO Satellite Processed         | -         | See below               | 250 bits for each<br>Satellite |

Table 4-16: Message 4088. Ephemeris.

Table 4-17 describes the GPS Satellite-Specific Portion, repeated for each GPS Satellite Processed.

| Data Field (DF)  | DF Number | Data Type | Number of Bits |
|------------------|-----------|-----------|----------------|
| GPS Satellite ID | DF009     | Uint6     | 6              |





| Data Field (DF)        | DF Number | Data Type | Number of Bits |
|------------------------|-----------|-----------|----------------|
| GPS Navigation message | DF900     | Bit(50)   | 50             |

Table 4-17: Message 4088. GPS Ephemeris. Data Block.

Table 4-18 describes the GLONASS Satellite-Specific Portion, repeated for each GLONASS Satellite Processed.

| Data Field (DF)                                                             | DF Number | Data Type | Number of Bits |
|-----------------------------------------------------------------------------|-----------|-----------|----------------|
| GLONASS Satellite ID (Satellite Slot Number)                                | DF038     | Uint6     | 6              |
| GLONASS Navigation message received each second from one GLONASS satellite. | DF901     | Bit(50)   | 50             |

Table 4-18: Message 4088. GLONASS Ephemeris. Data Block.

Table 4-19 describes the GEO Satellite-Specific Portion, repeated for each GEO Satellite Processed.

| Data Field (DF)                                                     | DF Number | Data Type | Number of Bits |
|---------------------------------------------------------------------|-----------|-----------|----------------|
| GEO Satellite ID                                                    | DF009     | Uint6     | 6              |
| GEO Navigation message received each second from one GEO satellite. | DF902     | Bit(250)  | 250            |

Table 4-19: Message 4088. GEO Ephemeris. Data Block.

## 4.2.5.5 Message 4090. NLES Cyclic Feedback.

The Message Type 4090 provides the NLES Cyclic Feedback.

Note this is a EDAS-defined message, [RD.4] does not define ay means to send this information.

| Data Field (DF)                                    | DF Number | Data Type | Number of Bits |
|----------------------------------------------------|-----------|-----------|----------------|
| Message Number 4090                                | DF002     | Uint12    | 12             |
| EGNOS Address (address of the Originating Element) | DF903     | uint16    | 16             |
| GPS Epoch Time (TOW)                               | DF004     | Uint30    | 30             |





| Data Field (DF)                       | DF Number | Data Type | Number of Bits |
|---------------------------------------|-----------|-----------|----------------|
| NLES Feed-back validity bits          | DF904     | bit(8)    | 8              |
| GEO message selected for Uplink       | DF902     | Bit(250)  | 250            |
| GEO Clock Drift                       | DF905     | int32     | 32             |
| Selected CPF (EGNOS Address)          | DF903     | uint16    | 16             |
| GEO Uplinked previous cycle (N-1)     | DF902     | Bit(250)  | 250            |
| Selected (N-1) CPF (EGNOS<br>Address) | DF903     | uint16    | 16             |
| GEO Uplinked previous cycle (N-2)     | DF902     | Bit(250)  | 250            |
| Selected (N-2) CPF (EGNOS<br>Address) | DF903     | uint16    | 16             |
| GEO Uplinked previous cycle (N-3)     | DF902     | Bit(250)  | 250            |
| Selected (N-3) CPF (EGNOS<br>Address) | DF903     | uint16    | 16             |

Table 4-20: Message 4090. NLES Cyclic Feedback.

## 4.2.5.6 Message 4091. ATC.

A description of Message 4091 can be found in §4.2.4.1

## 4.2.5.7 Message 4092. RIMS APC Data

INSPIRE.C Data. Heading and Data Block.el currently available in EGNOSA description of Message 4092 can be found in §4.2.4.2

## 4.2.6 Data Fields

This section describes the *Data Fields* used in the definition of the *Messages* in §4.2.4 and §4.2.5.

| DF#.  | DF Name                                                           | DF Range | DF Resolution | Data Type | Data Field Notes |
|-------|-------------------------------------------------------------------|----------|---------------|-----------|------------------|
| DF002 | Message Number                                                    | 0 - 4095 |               | Uint12    |                  |
| DF119 | Number of total<br>RTCM messages<br>needed for the<br>APC message | 0 - 15   |               | Uint4     |                  |
| DF120 | Number of RTCM                                                    | 0 - 15   |               | Uint4     |                  |





| DF#.  | DF Name                                            | DF Range                | DF Resolution | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|----------------------------------------------------|-------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | message in the<br>APC RTCM<br>messages<br>sequence |                         |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DF003 | Reference Station ID                               | 0 - 4095                |               | Uint12    | Unique identifier.  DF003 is generated from EGNOS Standard Header: Origin Address (which is 0 – 65535).                                                                                                                                                                                                                                                                                                                                                                                                            |
| DF004 | GPS Epoch Time<br>(TOW)                            | 0 –<br>60479999<br>9 ms | 1 ms          | Uint30    | GPS Epoch Time is provided in milliseconds from the beginning of the GPS week, which begins at midnight GMT on Saturday night/Sunday morning, measured in GPS time (as opposed to UTC).                                                                                                                                                                                                                                                                                                                            |
|       |                                                    |                         |               |           | DF004 is computed from EGNOS Standard Header: Time Stamp (after time shifting).                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DF005 | Synchronous<br>GNSS Message<br>Flag                | _                       |               | Bit(1)    | If the Synchronous GNSS Message Flag is set to '0', it means that no further GNSS observables referenced to the same Epoch Time will be transmitted. This enables the receiver to begin processing the data immediately after decoding the message. If it is set to '1', it means that the next message will contain observables of another GNSS source referenced to the same Epoch Time. In EDAS, DF005 is always set to '0', because the Service Provider is in charge of processing the different data groups. |
| DF006 | Number of GPS<br>Satellite Signals<br>Processed    | 0 – 31                  |               | Uint5     | The Number of GPS Satellites processed in the message.  DF006 is computed from                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DF007 | GPS Divergence-<br>free Smoothing<br>Indicator     | _                       |               | Bit(1)    | EGNOS message.  0= Divergence-free smoothing not used  1= Divergence-free smoothing                                                                                                                                                                                                                                                                                                                                                                                                                                |





| DF#.  | DF Name                   | DF Range                            | DF Resolution | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|---------------------------|-------------------------------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                           |                                     |               |           | used.  DF007 is always set to '0'; i. e., Divergence-free smoothing not used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DF008 | GPS Smoothing<br>Interval | Refer to<br>Table 4-22              |               | Bit(3)    | The GPS Smoothing Interval is the integration period over which reference station pseudorange code phase measurements are averaged using carrier phase information.  Divergence-free smoothing may be continuous over the entire period the satellite is visible.  DF008 will be always set to '0' in                                                                                                                                                                                                                                                                                                                                   |
| DF009 | GPS/GEO Satellite ID      | 1 – 37<br>(GPS)<br>40 – 58<br>(GEO) |               | Uint6     | EDAS, i. e., No smoothing.  A GPS Satellite ID number from 1 to 32 refers to PRN code of the GPS satellite. Satellite ID's higher than 32 are reserved for satellite signals from SBAS.  Note that EGNOS allocates GPS PRN 1 to 37, although PRN 32 – 37 are not used by NAVSTAR GPS due to Gold code characteristics (e.g. C/A codes 34 and 37 are common).  SBAS PRN codes cover the range 120 – 138. The satellite ID's reserved for SBAS satellites are 40-58, so that SBAS PRN codes are derived from the Satellite ID codes by adding 80.  DF009 is taken from EGNOS "GPS PRN" field, filtering out GPS satellites with PRN > 32. |
| DF010 | GPS L1 Code<br>Indicator  | _                                   |               | Bit(1)    | The GPS L1 Code Indicator identifies the code being tracked. "0" = C/A Code; "1" = P(Y) Code Direct DF010 is always set to '0' in EDAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DF011 | GPS L1<br>Pseudorange     | 0-<br>299792.46<br>m                | 0.02 m        | Uint24    | The GPS L1 Pseudorange field provides the raw L1 pseudorange measurement in meters, modulo one light-millisecond (299,792.458 meters). The measurement can be reconstructed by: (GPS L1 pseudorange measurement) = (GPS L1 pseudorange field) modulo                                                                                                                                                                                                                                                                                                                                                                                    |





| DF#.  | DF Name                                            | DF Range                     | DF Resolution   | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|----------------------------------------------------|------------------------------|-----------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                    |                              |                 |           | (299,792.458 m) + integer GPS Integer L1 Pseudorange Modulus Ambiguity. If DF012 is set to 80000h, this field does not represent a valid L1 pseudorange, and is used only in the calculation of L2 measurements. DF011 is computed from EGNOS "GPS Primary Pseudorange".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DF012 | GPS L1<br>PhaseRange - L1<br>Pseudorange           | ±<br>262.1435<br>m           | 0.0005 m        | int20     | The DF012 provides the information necessary to determine the L1 Phase Measurement.  Note that the PhaseRange defined here has the same sign as Pseudorange.  At start-up and after each cycle slip, the initial ambiguity is reset and chosen so that PhaseRange matches the L1 Pseudorange (i.e., within 1/2 L1 cycle).  The Full GPS L1 PhaseRange is: (Full L1 PhaseRange) = (L1 pseudorange + DF012.  Note: in case Pseudorange and PhaseRange diverge, the DF012 is adjusted (rolled over) by the equivalent of 1500 cycles. If DF012 is set to 80000h, indicates the L1 phase is invalid, and that DF011 field is used only in the calculation of L2 measurements.  DF012 is computed from EGNOS "GPS L1 Accumulated Doppler" and "GPS Primary Pseudorange". |
| DF013 | GPS L1 Lock Time<br>Indicator                      | Refer to<br>Table 4-23       |                 | Uint7     | The DF013 provides a measure of the time that has elapsed during which the receiver has maintained continuous lock on that the satellite signal. If a cycle slip occurs during the previous measurement DF013 will be reset to zero. DF013 is computed from EGNOS "L1 Signal Quality", bits 4-5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DF014 | GPS Integer L1<br>Pseudorange<br>Modulus Ambiguity | 0 -<br>76447076.<br>790<br>m | 299792.458<br>m | Uint8     | DF014 represents integer number of full pseudorange modulus divisions (299792.458 m) of the raw L1 pseudorange DF014 is computed from EGNOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





| DF#.  | DF Name                                  | DF Range           | DF Resolution | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|------------------------------------------|--------------------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                          |                    |               |           | "GPS Primary Pseudorange" field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DF015 | GPS L1 CNR                               | 0-63.75<br>dB-Hz   | 0.25 dB-Hz    | Uint8     | DF015 provides the receiver estimate of the carrier-to-noise ratio of the satellite signal in dB-Hz. The value "0" means that the CNR is not computed. DF015 is computed from EGNOS "GPS L1 C/N0" field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DF016 | GPS L2 Code<br>Indicator                 | _                  |               | Bit(2)    | DF016 identifies which L2 code is being processed.  "0" = C/A or L2C Code;  "1" = P(Y) Code Direct;  "2" = P(Y) code cross-correlated  "3" = Correlated P/Y  DF016 is always set to '0' in  EDAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DF017 | GPS L2-L1<br>Pseudorange<br>Difference   | ± 163.82<br>m      | 0.02m         | int14     | DF017 provides the information necessary to determine the L2 pseudorange.  The GPS L2 Pseudorange is: (GPS L2 Pseudorange) = (L1 pseudorange + DF017.  If DF017 is set to 2000h (-163.84m),means that there is no valid L2 code available, or that the value exceeds the allowed range. DF017 is taken from EGNOS "GPS L2-L1 Pseudorange".                                                                                                                                                                                                                                                                                                                                                                        |
| DF018 | GPS L2<br>PhaseRange – L1<br>Pseudorange | ±<br>262.1435<br>m | 0.0005 m      | int20     | DF018 provides the information necessary to determine the L2 phase measurement.  Note that the PhaseRange defined here has the same sign as Pseudorange.  At start-up and after each cycle slip, the initial ambiguity is reset and chosen so that L2 PhaseRange matches the L1 Pseudorange (i.e., within 1/2 L2 cycle).  The Full GPS L2 PhaseRange is: (Full L2 PhaseRange) = (L1 pseudorange + DF018.  Note: in case Pseudorange and PhaseRange diverge, the DF018 is adjusted (rolled over) by the equivalent of 1500 cycles. If DF018 is set to 80000h, indicates the L2 phase is invalid. DF018 is computed from EGNOS "GPS L2 Accumulated Doppler", "GPS L2-L1 Pseudorange" and "GPS Primary Pseudorange". |





| DF#.  | DF Name                              | DF Range               | DF Resolution | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                          |
|-------|--------------------------------------|------------------------|---------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DF019 | GPS L2 Lock Time<br>Indicator        | Refer to<br>Table 4-23 |               | Uint7     | The DF019 provides a measure of the time that has elapsed during which the receiver has maintained continuous lock on that the satellite signal. If a cycle slip occurs during the previous measurement DF019 will be reset to zero. DF019 is computed from EGNOS "L2 Signal Quality", bits 4-5.                                                                          |
| DF020 | GPS L2 CNR                           | 0-63.75<br>dB-Hz       | 0.25 dB-Hz    | Uint8     | DF020 provides the receiver estimate of the carrier-to-noise ratio of the satellite signal in dB-Hz. The value "0" means that the CNR is not computed. DF020 is computed from EGNOS "GPS L2 C/N0" field.                                                                                                                                                                  |
| DF021 | Number of included RIMS APC records. | 1-<br>250              | 1             | Uint8     | For each RIMS channel currently used in EGNOS a record with APC position information is included.                                                                                                                                                                                                                                                                         |
| DF022 | RIMS ID                              | 1- 250                 | 1             | Uint8     | EGNOS Address identifying the RIMS. This value shall match to the value contained in the "Origin address" field of the EGNOS Standard Data Header for RIMS messages transmitted by INSPIRE as described in the INSPIRE ICD ([AD.1]). IDs 1 to 80 are used for RIMS A, IDs 81 to 160 are used for RIMS B, IDs 161 to 240 are used for RIMS C, IDs 241 to 250 are reserved. |
| DF023 | Position L1 X                        | ±<br>64000.00<br>m     | 0.001 m       | Int38     | X Coordinate for the position of the L1 center of phase of the RIMS channel expressed in Earth Centered Cartesian coordinates in the WGS84 system.                                                                                                                                                                                                                        |
| DF024 | Position L1 Y                        | ±<br>64000.00<br>m     | 0.001 m       | Int38     | Y Coordinate for the position of the L1 center of phase of the RIMS channel expressed in Earth Centered Cartesian coordinates in the WGS84 system.                                                                                                                                                                                                                        |
| DF025 | Position L1 Z                        | ±<br>64000.00<br>m     | 0.001 m       | Int38     | Z Coordinate for the position<br>of the L1 center of phase of<br>the RIMS channel expressed<br>in Earth Centered Cartesian<br>coordinates in the WGS84                                                                                                                                                                                                                    |





| DF#.  | DF Name                                                | DF Range               | DF Resolution | Data Type | Data Field Notes                                                                                                                                                                                           |
|-------|--------------------------------------------------------|------------------------|---------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                        |                        |               |           | system.                                                                                                                                                                                                    |
| DF026 | Delta Position L2 X                                    | ±<br>1.000<br>m        | 0.001 m       | Int32     | X Coordinate for the difference vector from L1 antenna phase centre to the L2 antenna phase centre of omni-directional NLES antenna expressed in Earth Centered Cartesian coordinates in the WGS84 system. |
| DF027 | Delta Position L2 Y                                    | ±<br>1.000<br>m        | 0.001 m       | Int32     | Y Coordinate for the difference vector from L1 antenna phase centre to the L2 antenna phase centre of omnidirectional NLES antenna expressed in Earth Centered Cartesian coordinates in the WGS84 system.  |
| DF028 | Delta Position L2 Z                                    | ±<br>1.000<br>m        | 0.001 m       | Int32     | Z Coordinate for the difference vector from L1 antenna phase centre to the L2 antenna phase centre of omni-directional NLES antenna expressed in Earth Centered Cartesian coordinates in the WGS84 system. |
| DF034 | GLONASS Epoch<br>Time (t <sub>k</sub> )                | 0 –<br>86400.999<br>ms | 1 ms          | Uint27    | Rolls over at 86,400 seconds, except for the leap second second, where it rolls over at 86,401.                                                                                                            |
|       |                                                        |                        |               |           | DF034 is computed from EGNOS Standard Header: Time Stamp (after time shifting: tGLONASS = UTC + 03 hours 00 minutes).                                                                                      |
| DF035 | Number of<br>GLONASS<br>Satellite Signals<br>Processed | 0 – 31                 |               | Uint5     | The Number of GLONASS Satellites processed in the message.                                                                                                                                                 |
|       | Processed                                              |                        |               |           | DF035 is computed from EGNOS message.                                                                                                                                                                      |
| DF036 | GLONASS<br>Divergence-free<br>Smoothing<br>Indicator   | _                      |               | Bit(1)    | 0= Divergence-free smoothing not used 1= Divergence-free smoothing used. DF036 is always set to '0'; i. e., Divergence-free smoothing not used                                                             |





| DF#.  | DF Name                                               | DF Range               | DF Resolution | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-------------------------------------------------------|------------------------|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DF037 | GLONASS<br>Smoothing Interval                         | Refer to<br>Table 4-22 |               | Bit(3)    | The GLONASS Smoothing Interval is the integration period over which reference station pseudorange code phase measurements are averaged using carrier phase information. Divergence-free smoothing may be continuous over the entire period the satellite is visible. DF037 will be always set to '0' in EDAS, i. e., No smoothing.                                                                       |
| DF038 | GLONASS<br>Satellite ID<br>(Satellite Slot<br>Number) | 1 - 24                 |               | Uint6     | A GLONASS Satellite ID number from 1 to 24 refers to the slot number of the GLONASS satellite.                                                                                                                                                                                                                                                                                                           |
| DF039 | GLONASS L1<br>Code Indicator                          | -                      |               | Bit(1)    | The GLONASS L1 Code Indicator identifies the code being tracked. "0" = C/A Code; "1" = P(Y) Code Direct DF039 is always set to '0' in EDAS.                                                                                                                                                                                                                                                              |
| DF040 | GLONASS<br>Satellite<br>Frequency<br>Channel Number   | 0 – 20                 |               | Uint5     | Information is not provided in INSPIRE, it will be always set to 0.                                                                                                                                                                                                                                                                                                                                      |
| DF041 | GLONASS L1<br>Pseudorange                             | 0-<br>599,584.9<br>2 m | 0.02 m        | Uint25    | The GLONASS L1 Pseudorange field provides the raw L1 pseudorange measurement in meters, modulo two light-millisecond (599,584.916 meters). The measurement can be reconstructed by: (GLONASS L1 pseudorange measurement) = (GLONASS L1 pseudorange field) modulo (599,584.916 m) + integer GLONASS Integer L1 Pseudorange Modulus Ambiguity. DF041 is computed from EGNOS "GLONASS Primary Pseudorange". |
| DF042 | GLONASS L1<br>PhaseRange - L1<br>Pseudorange          | ±<br>262.1435<br>m     | 0.0005 m      | int20     | The DF042 provides the information necessary to determine the L1 Phase Measurement. Note that the PhaseRange defined here has the same sign as Pseudorange. At start-up and after each cycle                                                                                                                                                                                                             |





| DF#.  | DF Name                                                | DF Range                     | DF Resolution    | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|--------------------------------------------------------|------------------------------|------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                        |                              |                  |           | slip, the initial ambiguity is reset and chosen so that PhaseRange matches the L1 Pseudorange (i.e., within 1/2 L1 cycle). The Full GLONASS L1 PhaseRange is: (Full L1 PhaseRange) = (L1 pseudorange + DF042. Note: in case Pseudorange and PhaseRange diverge, the DF042 is adjusted (rolled over) by the equivalent of 1500 cycles. If DF042 is set to 80000h, indicates the L1 phase is invalid, and that DF011 field is used only in the calculation of L2 measurements. DF042 is computed from EGNOS "GLONASS L1 Accumulated Doppler" and "GLONASS Primary Pseudorange". |
| DF043 | GLONASS L1<br>Lock Time<br>Indicator                   | Refer to<br>Table 4-23       |                  | Uint7     | The DF043 provides a measure of the time that has elapsed during which the receiver has maintained continuous lock on that the satellite signal. If a cycle slip occurs during the previous measurement DF043 will be reset to zero. DF043 is computed from EGNOS "L1 Signal Quality", bits 4-5.                                                                                                                                                                                                                                                                              |
| DF044 | GLONASS Integer<br>L1 Pseudorange<br>Modulus Ambiguity | 0 -<br>76447076.<br>790<br>m | 599,584.916<br>m | Uint7     | DF044 represents integer number of full pseudorange modulus divisions (599,584.916 m) of the raw L1 pseudorange DF044 is computed from EGNOS "GLONASS Primary Pseudorange" field.                                                                                                                                                                                                                                                                                                                                                                                             |
| DF045 | GLONASS L1<br>CNR                                      | 0-63.75<br>dB-Hz             | 0.25 dB-Hz       | Uint8     | DF045 provides the receiver estimate of the carrier-to-noise ratio of the satellite signal in dB-Hz. The value "0" means that the CNR is not computed. DF045 is computed from EGNOS "GLONASS L1 C/N0" field.                                                                                                                                                                                                                                                                                                                                                                  |
| DF900 | GPS Navigation message                                 |                              |                  | bit(50)   | EDAS-specific. GPS Navigation message received each second from one GPS satellite. DF900 is taken from EGNOS "GPS 50 bits message" field.                                                                                                                                                                                                                                                                                                                                                                                                                                     |





| DF#.  | DF Name                          | DF Range           | DF Resolution | Data Type | Data Field Notes                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|----------------------------------|--------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DF901 | GLONASS<br>Navigation<br>message |                    |               | bit(50)   | EDAS-specific. GLONASS Navigation message received each second from one GLONASS satellite. DF901 is taken from EGNOS "GLONASS 50 bits message" field.                                                                                                                                                                                                                                                                          |
| DF902 | GEO Navigation<br>message        |                    |               | bit(250)  | EDAS-specific. GEO Navigation message received each second from one GEO satellite. DF902 is taken from EGNOS "GEO 250 bits message" field.                                                                                                                                                                                                                                                                                     |
| DF903 | EGNOS Address                    | 0 - 65535          |               | uint16    | EDAS-specific. DF903 is taken from EGNOS Address field.                                                                                                                                                                                                                                                                                                                                                                        |
| DF904 | NLES Feed-back<br>validity bits  |                    |               | bit(8)    | EDAS-specific.  Validity associated with the present submessage. It indicates the presence of each of the 4 possible previous messages. bit 0: Message selected for Uplink valid. bit 1: GEO message Uplinked previous cycle (N-1) valid. bit 2: GEO message Uplinked cycle (N-2) valid. bit 3: GEO message Uplinked cycle (N-3) valid. bits 4 to 7: reserved. DF904 is taken from EGNOS "NLES Feed-back validity bits" field. |
| DF905 | GEO Clock Drift                  | -8 E-6 to<br>+8E-6 | 5E-11         | int32     | EDAS-specific. GEO Clock Drift specifies the time drift between the NLES Frequency Standard and the GEO payload clock. Note that MSB is always set to 0. DF905 is taken from EGNOS "GEO Clock Drift" field.                                                                                                                                                                                                                    |

Table 4-21: Data Fields.

| Indicator | Smoothing Interval |
|-----------|--------------------|
| 0         | No smoothing       |
| 1         | < 30 s             |
| 2         | 30-60 s            |
| 3         | 1-2 min            |





| Indicator | Smoothing Interval           |
|-----------|------------------------------|
| 4         | 2-4 min                      |
| 5         | 4-8 min                      |
| 6         | >8 min                       |
| 7         | Unlimited smoothing interval |

Table 4-22: Carrier Smoothing Interval of Code Phase, Data Fields DF008 and DF037.

| Indicator (i) | Minimum Lock Time (s) | Range of Indicated Lock Times |
|---------------|-----------------------|-------------------------------|
| 0 - 23        | i                     | 0 < lock time < 24            |
| 24 - 47       | I*2 -24               | 24 <= lock time <72           |
| 48 – 71       | I*4 – 120             | 72 <= lock time < 168         |
| 72 – 95       | I*8 – 408             | 168 <= lock time < 360        |
| 96 – 119      | I*16 – 1176           | 360 <= lock time < 744        |
| 120 – 126     | I*32 – 3096           | 744 <= lock time < 937        |
| 127           |                       | lock time >= 937              |

Table 4-23: Lock Time Indicator, Data Fields DF013, DF019, DF043, DF049.

## 4.2.7 Data Types

The data types used are shown in Table 4-24

| Data Type | Description                                         | Range              | Data Type Notes                               |
|-----------|-----------------------------------------------------|--------------------|-----------------------------------------------|
| Bit(n)    | Bit field                                           | 0 or 1, each bit   | Reserved bits are set to 0                    |
| Char8(n)  | 8 bit characters, ISO 8859-1 (not limited to ASCII) | character set      | Reserved or unused characters are set to 0x00 |
| int14     | 14 bit 2's complement integer                       | -8192 to +8191     |                                               |
| int20     | 20 bit 2's complement integer                       | -524288 to +524287 |                                               |





| Data Type | Description                   | Range                             | Data Type Notes |
|-----------|-------------------------------|-----------------------------------|-----------------|
| int32     | 32 bit 2's complement integer | -2147483648 to<br>+2147483647     |                 |
| int38     | 38 bit 2's complement integer | -137438953472 to<br>+137438953471 |                 |
| Unit4     | 4 bit unsigned integer        | 0 to 15                           |                 |
| uint5     | 5 bit unsigned integer        | 0 to 31                           |                 |
| Uint6     | 6 bit unsigned integer        | 0 to 63                           |                 |
| Uint7     | 7 bit unsigned integer        | 0 to 127                          |                 |
| Uint8     | 8 bit unsigned integer        | 0 to 255                          |                 |
| Uint12    | 12 bit unsigned integer       | 0 to 4095                         |                 |
| Uint16    | 16 bit unsigned integer       | 0 to 65535                        |                 |
| Uint20    | 20 bit unsigned integer       | 0 to 1048575                      |                 |
| Uint24    | 24 bit unsigned integer       | 0 to 16777215                     |                 |
| Uint25    | 25 bit unsigned integer       | 0 to 33554431                     |                 |
| Uint27    | 27 bit unsigned integer       | 0 to 134217727                    |                 |
| Uint30    | 30 bit unsigned integer       | 0 to 1073741823                   |                 |

Table 4-24: Data Types.

### 4.3 CASE STUDIES

The current section is aimed to provide a description of the Client Software behaviour in different situations, including normal operation.

## 4.3.1 Case Study 1: Normal Operation

In a normal operation process, the following steps could be foreseen:

1. Execution of Client Software, following the operation described in §3.1. A TCP port will be opened and listen for connections.





- 2. Execution of Service Provider software, and initial TCP connection to the Client Software.
- 3. Client software TCP response, and data delivery startup.
- 4. Upon execution of the appropriate command, the Client Software can be stopped.

## 4.3.2 Case Study 2: Data Flow Interruption

One of the cases in which the Client Software would deliver additional information to the SP interface would be in the case of an interruption of the data flow coming from EDAS. In this case the Client Software would behave as follows:

- 1. While receiving the EDAS products, an interruption of data flow takes place.
- 2. The Client Software detects the interruption, and waits for a second to the data flow to be restored.
- 3. In case the data flow is not restored in a second, the Client Software sends an empty message to the SP with the CSNRD field of the EDAS Control Header (see §4.2.1) set to 1.

### 4.3.3 Case Study 3: Data CRC error

Another case in which the Client Software would deliver additional information to the SP interface would be in the case of an a message failing the CRC check. In this case the Client Software would behave as follows:

- 1. While receiving the EDAS products, a message fails the CRC check.
- 2. The Client Software sends an empty message to the SP with the CRC CS field of the EDAS Control Header (see §4.2.1) set to 1.





### ANNEX A: ASN.1 SCHEMAS SPECIFICATION 5

#### MODULE EDAS-COMMON 5.1

```
EDAS-Common DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
EGNOSProductHeader ::= SEQUENCE {
    originAddress
                         EGNOSaddress,
    messageTimeTag
                             SecondTTag }
EGNOSaddress ::= INTEGER (0 .. 65535)
-- Min Value: 0x2^-16 = 0
-- Max Value: 2^48x2^-16 = 2^32 = 4,294967296e+9
SecondTTag ::= REAL (WITH COMPONENTS { mantissa (0..281474976710656),
                     base (2),
                     exponent (-16) })
-- It shall be keep in mind that EGNOS flag bit equal to 0 (zero) could --
-- be translate by boolean value TRUE for a given EGNOS flag and FALSE
-- for another one.
------
Valid ::=
      BOOLEAN
-- SV PRN allocation:
-- GPS PRN range : 1 -> 37
-- GLONASS PRN range : 38 -> 61
-- GEO PRN range : 120 -> 138
-- 211 is reserved for RIMS-A Signal generator for UTC-ENT computation. --
-- RIMS Channels will provide information on this satellite PRN as RIMS --
-- GEO Mesurements
SV-PRN ::= INTEGER (0 .. 211)
-------
-- GEO 250 bits navigation message as transmitted each second by GEO --
-- The bits are in the same sequence in the BIT STRING than the sequence --
-- received in the signal in space by the RIMS.
GeoNavigationMessage ::= BIT STRING (SIZE (250))
```

GARMIS-GMV-6160-O-6162-U-V3.A 16/03/2010

END





#### 5.2 MODULE EDAS-EGNOSRECEIVERMEASUREMENTS

```
EDAS-EGNOSReceiverMeasurements DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
IMPORTS
     EGNOSProductHeader,
     Valid.
     SV-PRN
     GeoNavigationMessage FROM EDAS-Common;
EGNOSReceiversMeasurements ::= SEQUENCE {
                        EGNOSProductHeader,
     productHeader
     receiverMeasurements
                                      ReceiverMeasurements }
ReceiverMeasurements ::= SEQUENCE {
listOfGpsReceiverMeasurements
                                SEQUENCE (SIZE (0 .. 12)) OF
GPSReceiverMeasurements,
                                     SEQUENCE (SIZE (0 .. 12)) OF
     listOfGlonassReceiverMeasurements
GLONASSReceiverMeasurements,
     listOfGeoReceiverMeasurements
                                      SEQUENCE (SIZE (0 .. 4)) OF
GEOReceiverMeasurements,
     SVSignalQuality,
     delta1ppsMeasurementValidity
                                      ReceiverDelta1ppsMeasurementValidity,
     delta1ppsMeasurement
                                     ReceiverDelta1ppsMeasurement }
-- Validity field indicating the validity of the measurement: --
          RIMS Delta 1pps Measurement.
-- It is valid if the value of this field is set to TRUE.
ReceiverDelta1ppsMeasurementValidity ::= Valid
-- Measurement of the difference between the 1pps of RIMS-PAR receiver --
-- and 1pps of UTC(OP) clock and:
          T_1PPS_CAL - T_1PPS_UTC(OP).
-- This difference is used to compute the ENT-UTC offset within CPF.
-- Min Value: -200000x10^{-11} = -2E-6 seconds
-- Max Value: 200000x10^{-11} = 2E-6 seconds
-------
ReceiverDeltalppsMeasurement ::= SecondPPS
SecondPPS ::=REAL (WITH COMPONENTS {
                                mantissa (-200000..200000),
                                base (10),
                                exponent (-11) })
GPSReceiverMeasurements ::= SEQUENCE {
                                SV-PRN,
     apsPRN
     gpsL1SignalStatus
                                ReceiverSignalStatus,
     gpsL2SignalStatus
                               ReceiverSignalStatus,
     qpsDataValidity
                               RawMeasurementsValidity,
                               PseudorangeAlternative,
     gpsPrimaryPseudorange
     qpsL1AccumulatedDoppler
                                ReceiverAccumulatedDoppler,
     gpsL1CN0
                                ReceiverChannelCNO,
     qpsL1CCC
                                ReceiverCCC,
     gpsL2-L1Pseudorange
                               SVDeltaPseudoRange,
                               ReceiverAccumulatedDoppler,
     gpsL2AccumulatedDoppler
     qpsL2CN0
                                ReceiverChannelCNO,
```





```
qpsL2CCC
                             ReceiverCCC,
     qpsRawData
                             SVNavigationMessage }
------
-- The value "other" of the Correlator spacing shall be used for DDC and--
-- MEDLL.
-- Note that spare value is equivalent to undefined.
ReceiverSignalStatus ::= SEQUENCE {
    channelAssignmentMode
                            ENUMERATED {forced, auto},
                             ENUMERATED {acquisition, re-acquisition,
    trackingState
codeLockedLoop, codeAndPhaseLockedLoops},
     satelliteAssignment
                             ENUMERATED {forced, auto},
                             ENUMERATED {standard, narrowCorrelator,
     correlatorSpacing
other, spare }}
RawMeasurementsValidity ::= SEQUENCE {
    primaryPseudorangeValidity
                             Valid,
                             Valid,
     l1DataValidity
     12DataValidity
                             Valid,
     navigationMessageValidity
                             Valid}
PseudorangeAlternative ::= CHOICE {
     11Pseudorange
                             SVBiasedPseudoRange,
     12Pseudorange
                             SVBiasedPseudoRange }
-- Pseudo Range of a Navigation satellite (GPS, GEO or GLONASS).
-- Min Value: -549755813888x2^{-7} = -4294967296 meter
-- Max Value: 549755813887x2^-7 = 4 294 967 295,992 187 5 meter
SVBiasedPseudoRange ::= PseudorangeMeter
PseudorangeMeter ::= REAL (WITH COMPONENTS { mantissa (-
549755813888..549755813887),
                                  base (2),
                                  exponent (-7) })
-- The accumulated Doppler is set to zero at signal acquisition and
-- counts continuously as long as stable signal tracking is performed. --
-- Unstable or scrambled tracking leads to cycle-slips, i.e. jumps in
-- counter values not accounted for by changes of geometry, clock drifts--
-- or changes in signal transmission delays. It has to be ensured that --
-- no induced cycle-slips occur at counter over- or underflow.
-- This information will roll-over every hour, about.
-- Min Value: -2147483648x2^{-9} = -4 194 304 cycles
-- Max Value: 2147483647x2^{-9} = 4194303.998046875 cycles
ReceiverAccumulatedDoppler ::= Cycles
Cycles ::= REAL (WITH COMPONENTS {
                             mantissa (-2147483648..2147483647),
                             base (2),
                             exponent (-9) })
-- Min Value: 0x2^-1 = 0 dBHz
-- Max Value: 120x2^{-1} = 60 \text{ dBHz}
ReceiverChannelCNO ::= DBHZ
DBHZ ::= REAL (WITH COMPONENTS { mantissa (0..120),
                        base (2),
                        exponent (-1) })
-- Min Value: -128x2^{-1} = -64 dBHz
```





```
-- Max Value: 127x2^{-1} = 63.5 \text{ dBHz}
-------
ReceiverCCC ::= CCCMeter
CCCMeter ::= REAL (WITH COMPONENTS {
                                  mantissa (-128..127),
                                  base (2),
                                  exponent (-1) })
-- L2 pseudorange - L1 pseudorange of a navigation satellite.
-- The coding capacity is -156 Meters to +355.992 Meters.
-- Min Value: -19968x2^{-7} = -156 meter
-- Max Value: 45567x2^-7 = 355,9921875 meter
SVDeltaPseudoRange ::= DeltaPseudoRangeMeter
DeltaPseudoRangeMeter ::= REAL (WITH COMPONENTS {
                                            mantissa (-19968..45567),
                                             base (2),
                                             exponent (-7) })
SVNavigationMessage ::= BIT STRING (SIZE (50))
GLONASSReceiverMeasurements ::= SEQUENCE {
     glonassSlotNumber
                        SV-PRN,
     glonassL1SignalStatus
glonassDataValidity
                                 ReceiverSignalStatus,
                                 RawMeasurementsValidity,
     glonassPrimaryPseudorange SVBiasedPseudoRange, glonassLlAccumulatedDoppler ReceiverAccumulatedDoppler,
     glonassL1CN0
                                  ReceiverChannelCNO.
     qlonassL1CCC
                                  ReceiverCCC,
     glonassRawData
                                  SVNavigationMessage }
GEOReceiverMeasurements ::= SEQUENCE {
     geoSlotNumber
                                  SV-PRN.
     geoL1SignalStatus
                                  ReceiverSignalStatus,
     geoDataValidity
                                  RawMeasurementsValidity,
     geoPrimaryPseudorange
                                 SVBiasedPseudoRange,
     geoL1AccumulatedDoppler
                                 ReceiverAccumulatedDoppler,
     qeoL1CN0
                                  ReceiverChannelCNO,
     geoL1CCC
                                  ReceiverCCC,
     geoRawData
                                  GeoNavigationMessage }
SVSignalQuality ::= SEQUENCE {
                                  SV-PRN.
     svNumber
     11SignalQuality
                                  ReceiverSignalQuality,
     12SignalQuality
                                  ReceiverSignalQuality}
-- If the receiver detects something wrong but is not in a position to --
-- isolate the origin of the failure or if failure is due to internal
-- failure (HW, calibration process unsuccessful), the "signal validity"--
-- flag must be set to unhealthy.
-- If jammer/multipath/cycle slip is detected, the " signal validity " --
-- flag shall be set to unhealthy or invalid.
ReceiverSignalQuality ::= SEQUENCE {
                                  ENUMERATED {valid, unhealthy, unvalid,
     signalValidity
spare},
     jammer
                                  ENUMERATED {nothingDetected, detected},
                                  ENUMERATED {nothingDetected, detected},
     multipath
     cycleSlip
                                  ENUMERATED {nothingDetected, detected,
repaired, spare},
    interfrequencyBiasCompensation ENUMERATED {activated, inactivated,
unsuccessful, spare}}
```





END

#### 5.3 MODULE EDAS-EGNOSNAVIGATION CORRECTION

```
EDAS-EGNOSNavigationCorrection DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
IMPORTS
      EGNOSProductHeader,
      Valid,
      GeoNavigationMessage FROM EDAS-Common;
EGNOSNavigationCorrectionMessage ::= SEQUENCE {
      productHeader
                                        EGNOSProductHeader,
      {\tt navigation} Correction {\tt MessageData}
                                              NavigationCorrectionMessage }
NavigationCorrectionMessage ::= SEQUENCE {
      navigationCorrectionMessageValidity
                                              CorrectionMessageValidity,
      geoMessageSelectedForUplink
                                               GeoNavigationMessage,
      geoUplinkedPreviousCycleN-1
                                               GeoNavigationMessage,
      geoUplinkedCycleN-2
                                       GeoNavigationMessage,
      geoUplinkedCycleN-3
                                        GeoNavigationMessage }
CorrectionMessageValidity ::= SEQUENCE {
      geoMessageSelectedForUplink-Status
                                               Valid,
      geoUplinkedPreviousCycleN-1-Status
                                               Valid,
      geoUplinkedCycleN-2-Status Valid,
      geoUplinkedCycleN-3-Status
                                      Valid}
END
```





### ANNEX B:ASN.1 MESSAGE FIELDS 6

### 6.1 RIMS RAW MEASUREMENTS MESSAGE

|                                       | Field (eastion or           | Description                                                                                         |
|---------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------|
| 1                                     | Field (section or data)     | Description                                                                                         |
| 1 section per message                 | Origin address              | Address of the EGNOS Element.                                                                       |
| 1 section per message                 | Message Time tag            | Time tag placed by originating element                                                              |
|                                       |                             | corresponding to the time of emission of this                                                       |
|                                       |                             | message toward INSPIRE.                                                                             |
| Section repeated from                 | GPS PRN                     | PRN of the GPS satellite                                                                            |
| 0 to 12 times                         | GPS L1 Signal Status        | Status on GPS L1 channel and signal                                                                 |
| according to the                      | GPS L2 Signal Status        | Status on GPS L2 channel and signal                                                                 |
| number of GPS SV tracked by the EGNOS | GPS data validity           | Word of bits used to indicate validity of following fields in GPS raw data                          |
| Receiver                              | GPS Primary                 | Primary pseudorange measurement:                                                                    |
|                                       | Pseudorange                 | L1 if L1 is valid                                                                                   |
|                                       |                             | L2 if L1 is not valid and                                                                           |
|                                       |                             | L2 is valid                                                                                         |
|                                       | GPS L1 Accumulated Doppler  | GPS Carrier phase measurement on L1 frequency                                                       |
|                                       | GPS L1 C/N0                 | C/N0 of the L1 receiver frequency.                                                                  |
|                                       | GPS L1 CCC                  | Carrier/Code Coherency ratio corresponding to the                                                   |
|                                       | 0.02.000                    | GPS satellite reception by the Receiver on L1                                                       |
|                                       |                             | frequency.                                                                                          |
|                                       | GPS L2-L1                   | L2-L1 value if both L2 and L1 measurements are                                                      |
|                                       | Pseudorange                 | valid                                                                                               |
|                                       | GPS L2 Accumulated          | GPS carrier phase measurement on L2 frequency                                                       |
|                                       | Doppler                     |                                                                                                     |
|                                       | GPS L2 C/N0                 | C/N0 of the L2 receiver signal                                                                      |
|                                       | GPS L2 CCC                  | Carrier/Code_Coherency ratio corresponding to the                                                   |
|                                       |                             | GPS satellite reception by the Receiver on L2                                                       |
|                                       |                             | frequency.                                                                                          |
|                                       | GPS 50 bits                 | Navigation message received each second from                                                        |
|                                       | message                     | one GPS satellite.                                                                                  |
| Section repeated from 0 to 12 times   | GLONASS Slot<br>number      | Slot number of the GLONASS satellite                                                                |
| according to the number of GLONASS    | GLONASS L1 Signal<br>Status | Status on GLONASS L1 channel and signal                                                             |
| SV tracked by the                     | GLONASS data                | Word of bits used to indicate validity of following                                                 |
| EGNOS Receiver                        | validity                    | fields in GLONASS raw data                                                                          |
|                                       | GLONASS Primary             |                                                                                                     |
|                                       | Pseudorange                 | Primary pseudorange measurement:<br>L1 if L1 is valid                                               |
|                                       | 01 014001.4                 |                                                                                                     |
|                                       | GLONASS L1                  | GLONASS Carrier phase measurement on L1                                                             |
|                                       | Accumulated Doppler         | frequency                                                                                           |
|                                       | GLONASS L1 C/N0             | C/N0 of the L1 receiver frequency.                                                                  |
|                                       | GLONASS L1 CCC              | Carrier/Code_Coherency ratio corresponding to the GLONASS satellite reception by the Receiver on L1 |
|                                       |                             | frequency.                                                                                          |





|                                                                                                                                   | Field (eastion or                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   | Field (section or data)                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                   | GLONASS 50bits                              | Navigation message received each second from                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                   | message                                     | one satellite.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Section repeated from<br>0 to 4 times according<br>to the number of GEO<br>SV tracked by the<br>EGNOS Receiver                    | GEO Slot number                             | Slot number of the GEO satellite                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                   | GEO L1 Signal Status                        | Status on GEO L1 channel and signal                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                   | GEO data validity                           | Word of bits used to indicate validity of following fields in GEO raw data                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                   | GEO Primary<br>Pseudorange                  | Primary pseudorange measurement:<br>L1 if L1 is valid                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                   | GEO L1 Accumulated Doppler                  | GEO Carrier phase measurement on L1 frequency                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                   | GEO L1 C/N0                                 | C/N0 of the L1 receiver frequency.                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                   | GEO L1 CCC                                  | Carrier/Code_Coherency ratio corresponding to the GEO satellite reception by the Receiver on L1 frequency.                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                   | GEO 250bits message                         | Navigation message received each second from one satellite.                                                                                                                                                                                                                                                                                                                                                                        |
| 1 section per message                                                                                                             | delta 1pps measurement validity  delta 1pps | <ul> <li>Validity bit of the delta 1pps measurement for computing the difference between ENT and UTC.</li> <li>Only the RIMS A channel located in Paris will fill this field by the appropriate value (VALID or NOT valid) depending of the current status of delta 1pps measurement</li> <li>All the other RIMS channels will fill this field with "NOT VALID" value</li> <li>delta 1pps measurement for computing the</li> </ul> |
|                                                                                                                                   | measurement                                 | difference between ENT and UTC.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Section repeated from<br>0 to 28 times<br>according to the<br>number of GPS and<br>GLONASS SV tracked<br>by the EGNOS<br>Receiver | SV PRN                                      | PRN of the tracked satellite                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                   | L1 Signal Quality                           | Indicator bits of SV L1 Signal Quality as observed at RIMS channel level.                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                   | L2 Signal Quality                           | Indicator bits of SV L2 Signal Quality as observed at RIMS channel level.                                                                                                                                                                                                                                                                                                                                                          |

### NLES CYCLIC FEEDBACK MESSAGE **6.2**

Those are the fields that are sent in SL0 ASN.1 format. A little description of the meaning is added for each field.

| Field (section or data) | Description                                                                                                  |
|-------------------------|--------------------------------------------------------------------------------------------------------------|
| Origin address          | Address of the EGNOS Element.                                                                                |
| Message Time tag        | Time tag placed by originating element corresponding to the time of emission of this message toward INSPIRE. |





| Field (section or data)           | Description                                                                                                                                                                                                    |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NLES Feed-back validity bits      | Validity associated with the present submessage. It indicates the                                                                                                                                              |
|                                   | presence of each of the 4 possible previous messages.                                                                                                                                                          |
| GEO message selected for Uplink   | Feed back of the GEO message selected for Uplink in this cycle (N). If the associated validity bit is not set within the "NLES Feedback validity bits" field, this message is be fed-back as all binary zeros. |
| GEO Uplinked previous cycle (N-1) | Feed back of the GEO message Uplinked on the previous cycle (N-1). If the associated validity bit is not set, this message shall be fed-back as all binary zeros.                                              |
| GEO Uplinked cycle (N-2)          | Feed back of the GEO message Uplinked on cycle (N-2). If the associated validity bit is not set, this message shall be fed-back as all binary zeros.                                                           |
| GEO Uplinked cycle (N-3)          | Feed back of the GEO message Uplinked on cycle (N-3). If the associated validity bit is not set, this message shall be fed-back as all binary zeros.                                                           |





## 7 ANNEX C: CRC-32 COMPUTATION METHOD

### 7.1 DESCRIPTION

CRC-32 using the following polynom:

```
x**0+x**1+x**2+x**4+x**5+x**7+x**8+x**10+x**11+x**12+x**16+x**22+x**23
+x**26+x**32.
```

Software computation method for this polynom can be found in [RFC 1662].

The method is exposed in Section 6.2 only for informational purposes, as the CRC-32 check is done by the Client Software each time it receives a package, and consequently it must not be done by the service provider.

### 7.2 COMPUTATION METHOD (RFC 1662)

The following code provides a table lookup computation for calculating the 32-bit Frame Check Sequence as data arrives at the interface.

```
* The FCS-32 generator polynomial: x^*0 + x^*1 + x^*2 + x^*4 + x^*5
                        + x**7 + x**8 + x**10 + x**11 + x**12 + x**16
                        + x^{**}22 + x^{**}23 + x^{**}26 + x^{**}32.
* u32 represents an unsigned 32-bit number. Adjust the typedef for
* your hardware.
typedef unsigned long u32;
static u32 fcstab_32[256] =
   0x0000000, 0x77073096, 0xee0e612c, 0x990951ba,
   0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
   0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
   0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
   0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
   {\tt 0x1adad47d,\ 0x6ddde4eb,\ 0xf4d4b551,\ 0x83d385c7,}
   0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
   0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
   0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
   0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
   0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
   0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
   0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
   0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
   0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
   0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
   0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
```





```
0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
  0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
  0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
  0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
  0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
  0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
  0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
  0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
  0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
  0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
  0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
  0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
  0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
  0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
  0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
  0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
  0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
  0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
  0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
  0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
  0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
  0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
  0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
  0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
  0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
  0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
  0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
  0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
  0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
  0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
  0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
  0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
  0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
  0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
  0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
  0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
  0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
  0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
  0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
  0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
  0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
  0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
  0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
  0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
  0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
  0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
  };
/* Initial FCS value */
                                  /* Good final FCS value */
 * Calculate a new FCS given the current FCS and the new data.
* /
u32 pppfcs32(fcs, cp, len)
   register u32 fcs;
   register unsigned char *cp;
   register int len;
   ASSERT(sizeof (u32) == 4);
   ASSERT(((u32) -1) > 0);
   while (len--)
       fcs = (((fcs) >> 8) ^ fcstab_32[((fcs) ^ (*cp++)) & 0xff]);
```





```
return (fcs);
* How to use the fcs
tryfcs32(cp, len)
  register unsigned char *cp;
  register int len;
   u32 trialfcs;
   /* add on output */
   trialfcs = pppfcs32( PPPINITFCS32, cp, len );
   cp[len+1] = ((trialfcs >>= 8) & 0x00ff);
   cp[len+2] = ((trialfcs >>= 8) & 0x00ff);
   cp[len+3] = ((trialfcs >> 8) & 0x00ff);
   /* check on input */
   trialfcs = pppfcs32( PPPINITFCS32, cp, len + 4 );
   if ( trialfcs == PPPGOODFCS32 )
      printf("Good FCS\n");
```





## 8 ANNEX D: ARCHITECTURE OF EDAS CLIENT SW

The figure below explains the internal architecture of the EDAS Client SW module. One handler is in charge of receiving data from EDAS (EDSToCS, through a UDP connection), whereas another one delivers them to the Service Provider application (CSToSP, through a TCP connection).



The Client SW was designed to ensure that all EDAS messages received are delivered to the user (i.e. the service provider application). The Client SW contains an internal queue to store the messages that will be sent to the Service Provider application (SP). Although data delivery to the SP is ensured, applications connected to EDAS have to be aware of this fact. Actually, if no application is connected to the output of the Client SW then the queue will get full quickly. Applications have to retrieve EDAS messages from the Client SW at an appropriate rate so as to avoid that the queue gets full. Once the queue fills up, EDAS messages received at the Client SW side are discarded.

Notice that the size of this queue is configurable. The configuration parameter max\_queue\_size contains the size (in Mb) of the queue in question. In order to prevent data gaps, it is recommended to set this value between 5 and 10 (Mb).

SP applications performing time-consuming transformations on EDAS data could minimize the impact of the issue described above by managing themselves the data received (e.g. they can implement different threads for receiving and processing data).





# Annex 1 List of Acronyms

A-GNSS Assisted GNSS

APC Antenna Phase Center

aPER aligned PER (ASN.1 encoding)

ARP Antenna Reference Point

ASN.1 Abstract Syntax Notation One

ATC Air Traffic Control

В

A

C

CCF Central Control Facility
CCM Client Control Module

CMR Compact Measurement Record

CPF Central Processing Facility
CRC Cyclic Redundancy Check

CNR Carrier To Noise
CS Client Software

D

DAB Digital Audio Broadcasting

DF Data Field

DGNSS Differential GNSS

E

ECEF Earth-Center-Earth-Coordinates
ECS EGNOS Commercial Services
EDAS EGNOS Data Access System

EDS EGNOS Data Server

EGNOS European Geostationary Navigation Overlay Service

EMS EGNOS Message Server
ESA European Space Agency
ESTB EGNOS System Test-Bed

F

FEE Front-End Equipment

G





GEO Geostationary Earth Orbiter
GIVD Grid Ionospheric Vertical Delay
GIVE Grid Ionospheric Vertical Error

GJU Galileo Joint Undertaking

GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (Global Navigation

Satellite System)

GNSS Global Navigation Satellite System

GNU GNU is Not Unix

GPS Global Positioning System

H

HMI Hazardous Misleading Information

HTTP HyperText Transfer Protocol

HW Hardware

MMI Man Machine Interface

Ι

ICAO International Civil Aviation Organization

ICD Interface Control Document
IGS International GNSS Service

IGS-RTWG IGS Real Time Working Group (<a href="http://igscb.jpl.nasa.gov/projects/rtwg/index.html">http://igscb.jpl.nasa.gov/projects/rtwg/index.html</a>)
INSPIRE INterface System for the Provision In Real-time of the Egnos product

IONEX IONosphere map Exchange

IP Internet Protocol

IPR Intellectual Property Right

ITRF International Terrestrial Reference Frame

Ι

K

KOM Kick Off Meeting

 $\mathbf{L}$ 

LSB Least Significant Bit

 $\mathbf{M}$ 

MCC Master Control Centre
MSB Most Significant Bit
MT Message Type
MoM Minutes of Meeting

MOPS Minimum Operational Performance Standards

N





NLES Navigation Land Earth Station
NOF Navigation Overlay Frame

NTRIP Networked Transport of RTCM via Internet Protocol

O

OSI Open System Interconnection

P

PER Packed Encoding Rules (ASN.1 encoding)

PPP Precise Point Positioning

ProDDAGE Programme for Development and Demonstration of Applications for

Galileo and EGNOS

PRN Pseudo Random Noise

Q

R

RDS Radio Data System

RIMS Ranging and Integrity Monitoring Station
RINEX Receiver Independent Exchange format
RTCA Radio Technical Commission for Aeronautics

RTCM Radio Technical Commission For Maritime Services

RTK Real Time Kinematic

 $\mathbf{S}$ 

SBAS Satellite Based Augmentation System
SINEX Solution INdependent EXchange Format

SIS Signal In Space

SISNeT Signal In Space through interNET

SOW Statement Of Work

SW Software

 $\mathbf{T}$ 

TEC Total Electron Content

TCP Transmission Control Protocol

TOA Time of Applicability

ToW Time of Week

U

UDP User Datagram Protocol
UDRE User Differential Range Error

V





WP Work Package
WARTK Wide Area Real Time Kinematics
WGS84 World Geodetic System 1984

X

XPL Vertical or Horizontal Protection Level
Y