ЛР8: Ранжирование TF-IDF

Задание

Необходимо сделать ранжированный поиск на основании схемы ранжирования TF-IDF. Теперь, если запрос содержит в себе только термины через пробелы, то его надо трактовать как нечёткий запрос, то есть допускать неполное соответствие документа терминам запроса.

Примеры запросов:

- [роза цветок]
- [московский авиационный институт]

Если запрос содержит в себе операторы булева поиска, то запрос надо трактовать как булев, то есть соответствие должно быть строгим, но порядок выдачи должен быть определён ранжированием TF-IDF. Например:

- [роза & цветок]
- [московский & авиационный & институт]

В отчёте нужно привести несколько примеров выполнения запросов, как удачных, так и не удачных.

Метод решения

- 1. Изучение схемы ранжирования TF-IDF
- 2. Внесение изменений в индексатор документов
- 3. Преобразование поиска в ранжированный
- 4. Проведение анализа полученного решения

Структура файлов

Выходные данные это 4 бинарных файла. Которые представляют прямой и обратный индекс. Обратный индекс – словарь и файл смещения токенов. Прямой индекс содержит информацию о статьях.

Обратный индекс. Файл представляет собой набор из следующих записей <term_hash><offset><count>, где term_hash - это 32 байта, которые мы получаем применением хэш-функции md5 к термину (термины могу быть разного размера, так мы ограничиваем хранимого «слепка» термина — тем самым уменьшая размер файла, однако теряем по времени т.к появляется слой md5) offset количество байт, для отступа от начала - словаря, для того, чтобы начать считывать информацию о документах в которых встречается данный токен, count - это количество записей, которые содержат информацию о термине. Для того, чтобы найти статьи, содержащие определенный термин, необходимо найти его хэш в индексе, считать смещение и count, затем сместиться в файле-словаре на offset байт и считать соunt записей из словаря. Offset и count занимает 4-8 байта (на моей системе 8байт).

Таким образом, на один термин в обратном индексе приходится 48 байт.

Словарь - вспомогательная структура для обратного индекса. Сначала словарь состоял из 2 файлов — из файла с записями вида - <doc_id><position> и <doc_id><tf><idf> Где doc_id - это 4 байта, который определяют идентификатор документа. Так как количетсво документов влезает в представление unsigned int. Для преобразования Python пердставление int в его байтовое представление, использовалась функцию int.to_bytes. tf, df - это частота слова, и обратная частота документа соответственно, необходим для оценки релевантности результата для запроса.

Однако было принято решение сдлелать 1 файл в формате <doc_id><if><idf> tf и df занимает по 4 байта каждый. Position – это так же 4 байта, которые определяют позицию вхождения термина в документ. Таким образом на одно вхождение термина в статью приходится 16 байт. Подобное решение оправдано если у нас небольшой индекс, это охранит нам место однако лишит гибкостит т.к мы не можем использовать булев индекс как данные для tf/idf расширения. Таким образом, нам нужно расширить структуру файла.

Прямой индекс содержит информацию о документах в корпусе. Его структура следующая: <doc_id><offset><title_len><url... <title><url>... doc_id - 4 байта, хранящие идентификатор документа. Offset - сдвиг относительно начала словаря, на который нужно переместиться, чтобы считать урл и заголовок, занимает 4 байта. title_len - два байта, содержащие длину заголовка статьи. Url_len - 4 байта, содержащие длину ссылки на статью. title - заголовок статьи с длинной title_len. Url - ссылка на статью, длиной url_len.

Описание ранжирования

Mepa TF (term frequency) определяет частоту вхождения токена в документ и заключается в том, что каждому термину, встречающемуся в документе, присваивается вес, зависящий от количества его появлений в документе:

$$tf(t,d) = \frac{n_t}{m}$$
,где n_t — число вхождений термина t в документ , m —общее количество слов .

Затем для коррекции веса терма используется документная частота. Обратная документная частота имеет вид:

$$idf(t,D) = \log \frac{D}{df}$$
 , где $D-$ общее количество документов .

После этого комбинируются частота термина в документе (tf) и обратная документная частота (idf) для получения веса каждого термина в каждом документе по формуле:

```
tf idf(t,d,D) = tf(t,d) \times idf(t,D)
```

Таким образом, релевантность документа d равна сумме вхождений всех терминов запроса в этот документ:

```
Score(q,d) = \sum (tf idf(t,d,D))
```

Для реализации подсчёта данной меры был слегка изменён индексатор, в который и был добавлен расчёт tf-idf. Для записи полученных результатов добавлена генерация дополнительного файла invert_index_tf_idf (к файлам, генерация которых реализована при выполнении лабораторной работы по булеву индексу). В нём хранятся числа, значения которых мере tf-idf для соответствующего файла:

Код

```
@logging('Build index with tf-idf extension...')
def frequencyRelevance(pair, with_logger = False):
    def logger():
        print("completed by {:.2f}%...".format(idx / len(index) * 100.))
    complete = 0
    idx = 0
    if with_logger:
        timer = set_interval(logger, 10)
    (index, coef1) = pair
    for token in index:
        idx += 1
        index[token] = (compute_idf(coef1, token, index), compute_tf(index[token]))
    return (index, coef1)
```

```
def __build_vector from query(self, terms):
   count dict = Counter(terms)
   tf = list(map(lambda term: tf func(count dict[term]), terms))
   idfs = [self.index[term][0] if self.index[term] else 1. for term in terms]
    return np.array(tf) * np.array(idfs)
def build vectors from result(self, terms, result):
   def tf(i):
       res = list(map(lambda v: 1., terms))
        for idx,term in enumerate(terms):
            if self.index[term]:
                for pair in self.index[term][1]:
                    if pair[0] == i:
                       res[idx] = pair[1]
       return res
   idfs = [self.index[term][0] if self.index[term] else 1. for term in terms]
   return [(i, np.array(tf(i)) * np.array(idfs)) for i in result]
def ranging(self, query, result list):
   def cosine similarity(v1, v2):
       return dot(v1, v2)
   terms = list(self.tree.parsed terms(query, self. tkn preprocessing))
   q_vect = self.__build vector from query(terms)
    res vectors = self. build vectors from result(terms, result list)
    return sorted([(i, cosine similarity(q vect, v))
        for i, v in res_vectors], key=lambda kv: kv[1], reverse=True)
```

Оценка качества

Так как в задании ничего не сказано про выполнение оценки качества поиска, то дополнительно была выполнена оценка качества, но только по 10 запросам. (Оценки получены с помощью опроса)

Nº	Текст запроса	Оценка SERP						
145	Tekci salipoca		Elastic	Булев				
1	Very simple graph algorithm with code example		1,3,1,1, 5	3,1,1,1,4				
2	Emulate ray movement		1,5,5,1, 1	1,1,5,5,3				
3	Modern optimization methods		5,4,5,5, 5	1,0,0,0,0				
4	Old dead programming languages		1,4,2,1, 4	0,0,0,0,0				
5	Django framework		5,5,4,3, 3	1,5,5,0,0				
6	(redux flux MVVC) & architecture		1,1,1,1, 5	3,3,2,1,0				
7	Most popular framwork		3,1,5,1, 1	1,1,1,2,1				
8	Ray tracing		5,1,2,2, 1	4,4,4,4,1				

9	Popula search engine	4,5,5,5, 5	0,0,0,0,0
10	Orithm for parsing polish notation	2,5,1,1, 1	1,3,3,5,2

	Оценки ранжированного поиска														
Запро	Р			CG			DCG			NDCG			ERR		
С	@1	@	@	@	@	@	@	@3	@5	@	@	@	@1	@3	@5
		3	5	1	3	5	1			1	3	5			
1	1.0	0.	0.	4.	8.	10	4.	6.3	7.2	0.	0.	0.	0.9	0.9	0.9
		7	4	0	0		0	9	1	8	4	3	4	5	5
2	1.0	0.	0.	5.	8.	10	5.	6.7	7.5	1.	0.	0.	0.9	0.9	0.9
		3	2	0	0		0	6	8	0	5	3	6	7	7
3	0.0	0.	0.	0.	0.	0.	0.	0.0	0.0	0.	0.	0.	0.0	0.0	0.0
		0	0	0	0	0	0			0	0	0			
4	0.0	0.	0.	0.	0.	0.	0.	0.0	0.0	0.	0.	0.	0.0	0.0	0.0
		0	0	0	0	0	0			0	0	0			
5	1.0	0.	0.	5.	10	10	5.	8.1	8.1	1.	0.	0.	0.9	0.9	0.9
		7	4	0			0	5	5	0	5	3	7	8	8
6	0.0	0.	0.	0.	0.	0.	0.	0.0	0.0	0.	0.	0.	0.0	0.0	0.0
		0	0	0	0	0	0			0	0	0			
7	1.0	0.	0.	5.	9.	9.	5.	7.4	7.4	1.	0.	0.	0.9	0.9	0.9
		7	4	0	0	0	0			0	5	3	6	7	7
8	1.0	1.	0.	5.	11	15	5.	8.4	10.	1.	0.	0.	0.9	0.9	0.9
		0	8	0			0		0	0	6	4	6	7	7
9	0.0	0.	0.	0.	0.	0.	0.	0.0	0.0	0.	0.	0.	0.0	0.0	0.0
		0	0	0	0	0	0			0	0	0			
10	1.0	0.	0.	4.	9.	9.	4.	6.8	6.8	0.	0.	0.	0.9	0.9	0.9
		7	4	0	0	0	0	9	9	8	5	3	4	5	5

Средние значения по 10 запросам

Метри	Яндекс			Вин	кипед	Р		Буле	В	Ранжирован ный			
ка	@1	@3	@5	@1	@3	@5	@ 1	@3	@5	@1	@3	@5	
Р	1.0	0.7 7	0.7 6	0.9	0.6 4	0.6 2	0. 3	0.3	0.2 8	0.6	0.4	0.2 6	
CG	4.8	11. 4	18. 2	3.5	9.1	15. 3	1. 5	5.4	7.2	2.8	5.5	5.4	
DCG	5.7 5	5.4	7.1 1	2.5 6	4.4 1	5.5 6	1. 5	3.6 7	4.7	2.8	4.5 6	5.9	
NDCG	1.4 6	0.9	0.7 3	0.8	0.4 5	0.4 1	0. 3	0.2 5	0.1 9	0.5 6	0.3	0.1 9	
ERR	0.8 6	0.9 7	0.9 9	0.7 7	0.8 7	0.9	0. 5	0.5 2	0.4 7	0.5 7	0.5 8	0.5 8	

Как видно, ранжированный поиск в целом работает лучше булева, однако всё ещё хуже поиска ElasticSearch.

Выводы

В процессе выполнения данной лабораторной работы были внесены изменения в алгоритм индексации корпуса документов и алгоритм поиска, преобразовав его в ранжированный. Полученное решение было проанализировано.