

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Sprawozdanie

Sterowanie Układów Liniowych

Laboratorium 3

Identyfikacja parametrów modelu matematycznego obiektów regulacji.

Borsuk Piotr

Drobny Jan

Technologie Przemysłu 4.0

Rok 2, Semestr 4, Grupa nr. 1

Rok akademicki 2023/2024

- 1. Element inercyjny pierwszego rzędu.
- 1.1 Schemat pomiarowy.

Rys. 1. Schemat elektryczny elementu inercyjnego

1.2 Transmitancja operatorowa i stała czasowa T.

$$G(s) = \frac{y(s)}{u(s)} = \frac{\frac{1}{Cs}}{R + \frac{1}{Cs}} = \frac{1}{RCs + 1} = \frac{1}{Ts + 1}$$
(1.1)

$$T = RC = 100^3 * 10^{-6} = 1 (1.2)$$

1.3 Przebieg odpowiedzi skokowej.

Dla danego układu elektrycznego dla wymuszenia 3V ($u_0 = 3*1(t)$) Otrzymaliśmy następującą odpowiedź skokową.

Rys. 2. Odpowiedz skokowa elementu inercyjnego

Rys. 3. Odpowiedz z naniesionymi prostymi

Możemy zauważyć wartość stanu ustalonego obiektu regulacji. Występuje ona dla 0,632y0. Dane te mogą nam posłużyć to obliczenia czasu wystąpienia, który stanowi stałą czasową obiektu.

$$3 * 0.632 = 1.896$$
 (2.3)

Wynika z tego, że stała T dla wartości 1,896 jest równa 1.

Współczynnik wzmocnienia (K) obliczono za pomocą ilorazu wartości stanu ustalonego i wartości skoku jednostkowego sygnału.

$$K = \frac{y_{ust}}{u_0} = \frac{3}{3} = 1$$

Drugą metodą określenia stałej czasowej było ustalenie wartości stanu ustalonego na wykresie, a następnie wyznaczenie czasu, w którym ta wartość została osiągnięta poprzez dodanie linii stycznej przechodzącej przez punkt wymuszenia.

2. Element inercyjny drugiego rzędu.

2.1 Schemat pomiarowy

Rys. 5. Schemat elektryczny dla elementu inercyjnego drugiego rzędu

2.2 Transmitancja operatorowa

$$G(s) = \frac{y(s)}{u(s)} = \frac{1}{T_1 T_2 s^2 + (T_1 + T_2)s + 1} = \frac{K}{(1 + sT_1)(1 + sT_2)}$$

2.3 Przebieg odpowiedzi skokowej

Rys 6. Odpowiedz skokowa dla układu drugiego razem z jej pochodną

Rys. 7 Odpowiedz skokowa z naniesioną styczną

Z wykresu odczytaliśmy wartości czasów T_b , T_p .

$$T_b = 0.343$$

$$T_p = 2$$

2.4.1 Obliczanie T_1 i T_2 sposobem pierwszym.

$$T_2 = 2T_b = 2 * 0.343 = 0.686$$

$$T_1 = T_p - T_2 = 2 - 0,686 = 1,314$$

2.4.2 Obliczanie T_1 i T_2 sposobem drugim.

Użyte wzory:

$$T_1 = \frac{1}{a} \tag{2.1}$$

$$T_2 = \frac{1}{b} \tag{2.2}$$

$$a = \frac{x_1}{t^*} \tag{2.3}$$

$$b = \frac{x_2}{t^*} \tag{2.4}$$

Rys. 8. Porównanie wykresów

Z wykresów odczytano wartości V_{max} oraz odpowiadający jej czas t^* .

$$V_{max}=1,068$$

$$t^* = 1,004$$

$$\beta = \frac{V_{max}}{y_{ust}} = \frac{1,068}{3} = 0,356$$

$$y = \beta * t^* = 0,356 * 1,004 = 0,357$$

Z położonych prostych odczytujemy wartości x_1 , x_2 .

$$x_1 = 0,668$$

 $x_2 = 1.189$

Dzięki tym wartościom obliczamy wartości a i b.

$$a = \frac{0,668}{1,004} = 0,665$$
$$b = \frac{1,189}{1,004} = 1,184$$

Mając wszystkie dane obliczono T_1 oraz T_2 .

$$T_1 = \frac{1}{a} = \frac{1}{0,665} = 1,50$$

$$T_2 = \frac{1}{b} = \frac{1}{1,189} = 0,841$$

- 3. Element oscylacyjny tłumiony.
- 3.1 Schemat pomiarowy

Rys 9. Schemat pomiarowy elementu oscylacyjnego tłumionego

3.2 Transmitancja operatorowa.

$$G(s) = \frac{y(s)}{u(s)} = \frac{\frac{1}{sC}}{R + sL + \frac{1}{sC}} = \frac{1}{LCs^2 + RCs + 1} = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$
$$= \frac{K\omega_0^2}{s^2 + 2\varepsilon\omega_0 s + \omega_0^2}$$

3.3 Odpowiedz układu

Rys. 10. Odpowiedź układu elementu oscylacyjnego tlumionego

3.4 Zmierzenie parametrów.

3.4.1 Amplituda drgań

Odczytujemy wartość największej amplitudy od sygnału wyjściowego.

 $A_1 = 1,467$

Odczytujemy wartość trzeciej amplitudy od sygnału wyjściowego.

3.4.2 Okres oscylacji tłumionych

Wskazujemy wartość, który jest różnicą czasu między największymi oscylacjami - t_p

$$t_p = 0.285s$$

3.4.3 Wartość stanu ustalonego

$$\varepsilon = \frac{\ln\left(\frac{A1}{A3}\right)}{\sqrt{4\pi^2(\ln\left(\frac{A1}{A3}\right))^2}} = \frac{\ln\left(\frac{1,467}{0,341}\right)}{\sqrt{4\pi^2(\ln\left(\frac{1,467}{0,341}\right))^2}} = 0,159$$

$$\omega_0 = \frac{2\pi}{Tp\sqrt{1-\epsilon^2}} = \frac{2\pi}{0,285\sqrt{1-(0,159)^2}} = 22,33$$