No exprese ningún cálculo en forma fraccionaria. El examen se aprueba con dos ejercicios correctamente resueltos en su totalidad y un ejercicio planteado. Salvo indicación contraria, use al menos 5 cifras significativas (preferible usar memorias de la calculadora)

Apellido, nombre(s):

- 1. La siguiente función tiene 2 raíces $f(x) = \frac{x^2}{4} sen(x)$ en el intervalo (-1;4). Se pide hallar la raíz positiva 1, a través del método de Punto Fijo.
 - (a) Encuentre explícitamente una g(x), justificando su propuesta.
 - (b) Estudie las propiedades de convergencia del método Punto Fijo.
 - (c) Encuentre el cero buscado con una diferencia entre dos iteraciones sucesivas de $1 \cdot 10^{-6}$.
 - (d) Represente la respuesta final respetando la convención del curso $x=\bar{x}\pm\Delta x$
- 2. De una función desconocida se obtuvieron los siguiente valores.

X	0	1	2	3	4	5
У	1.0000	1.6180	2.6180	4.2361	6.8541	11.090

- (a) Plantee el modelo que crea correspondiente (que mejor ajuste los datos).
- (b) Plantee el sistema $A^T A x = A^T b$.
- (c) Resolver utilizando la estrategia de descomposición y expresar el modelo planteado con los valores hallados.
- (d) Estime el valor de la función en ϕ .
- 3. Estime a través de un polinomio de interpolación de orden mínimo 3, los valores con su cota de error correspondiente de f(1,03) y f(1,26) a partir de la siguiente tabla:

	x	1,00	1,05	1,10	1,15	1,20	1,25	1,30
ĺ	f(x)	1,00000	1.0164	1.0323	1.0477	1.0627	1.0772	1.0914

 $^{^{1}\}mathrm{puede}$ ser tanto LU o Cholesky, sin pivoteo parcial