Describing sequences

- Generating a sequence from a position-to-term rule
- Describing a sequence using a position-to-term rule
- Writing a position-to-term rule using algebra
- Using the relationship between a term-to-term rule and a rule for the nth term

Keywords

You should know

explanation 1a

explanation 1b

1 Copy and complete the table below for each position-to-term rule.

Position	1	2	3	4	5
Term					

- a Position \rightarrow +2 \rightarrow Term
- b Position → × 2 → Term
- c Position \rightarrow $\times 4$ \rightarrow -3 \rightarrow Term
- d Position \rightarrow $\times 1.5$ \rightarrow -2 \rightarrow Term
- e Position \rightarrow \times -2 \rightarrow +2 \rightarrow Term
- f Position \rightarrow -1 \rightarrow \times -2 \rightarrow Term
- **2** What do you notice about your answers to questions **1e** and **1f**? Why is this?

b

- **3** Find the position-to-term rules for these arithmetic sequences. Write your position-to-term rules as function machines.
 - Position
 1
 2
 3
 4
 5

 Term
 6
 7
 8
 9
 10

Position	1	2	3	4	5
Term	3	6	9	12	15

 Position
 1
 2
 3
 4
 5

 Term
 -4
 -8
 -12
 -16
 -20

4 Find the position-to-term rules for these arithmetic sequences.

- a 5 **Position** 2 3 14 2 5 8 11 **Term**
- Write your position-to-term rules as function machines.
- b 5 **Position** 2 3 1 4 **Term** 3 5 7 9 11
- Position \rightarrow $\times d$ → Term
- c **Position** 1 2 3 4 5 5 **Term** -3-11 3
- d **Position** 2 5 1 3 4 -3Term -7-11-15-19
- e **Position** 1 2 3 4 5 2.5 3 3.5 4 4.5 Term

explanation 2

- **5** a Convert each position-to-term rule below into an expression for the *n*th term.
 - **b** Calculate the 10th term of each sequence in part **a**.
 - i Position → +3 → Term
 - ii Position \rightarrow $\times 2$ \rightarrow -3 \rightarrow Term
 - iii Position \rightarrow $\times 4$ \rightarrow -1 \rightarrow Term
 - iv Position \rightarrow $\times \frac{1}{2}$ \rightarrow + 3 \rightarrow Term
 - v Position → ÷ 2
- **6** These are the rules for the *n*th terms of some arithmetic sequences. Write the first five terms of each sequence.
 - **a** 2*n*

- **b** 2n-1 **c** 3n+4 **d** 4n-4

- e $\frac{1}{2}n+1$ f -2n g -3n+6 h -n+4i $-\frac{1}{4}n+2$ j 1-3n k 2(n-3) l $\frac{n+1}{2}$ $-\frac{1}{4}n + 2$

- **7** Each table shows an arithmetic sequence.
 - i Write the term-to-term rule or difference, d, for each sequence.
 - ii Write the rule for the *n*th term of each sequence.
 - iii Write the 100th term of each sequence.

a	Position	1	2	3	4	5
	Term	5	9	13	17	21

Position	1	2	3	4	5
Term	1	4	7	10	13

c	Position	1	2	3	4	5
	Term	7	9	11	13	15

d	Position	1	2	3	4	5
	Term	-3	-1	1	3	5

e	Position	1	2	3	4	5
	Term	-2	-4	-6	-8	-10

f	Position	1	2	3	4	5
	Term	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$1\frac{1}{2}$

g	Position	1	2	3	4	5
	Term	$3\frac{1}{2}$	4	$4\frac{1}{2}$	5	$5\frac{1}{2}$

- 8 What do you notice about the common differences, d, and the rules for the nth terms for the arithmetic sequences in question 7?
- **9** Copy and complete these sentences.
 - a The expression for the *n*th term is 3n + 1. The term-to-term rule is ...
 - **b** The expression for the *n*th term is -3n + 1. The term-to-term rule is ...
 - e The expression for the *n*th term is -5n 2. The term-to-term rule is ...
 - **d** The difference is + 2. A possible expression for the *n*th term is ...
 - e The difference is -7. A possible expression for the *n*th term is ...
 - f The difference is $-\frac{1}{4}$. A possible expression for the *n*th term is ...

- 10 Write an expression for the *n*th term of these arithmetic sequences.
 - **a** 4, 5, 6, 7, 8
- **b** -2, 1, 4, 7, 10 **c** 12, 22, 32, 42, 52

- **d** -3, 2, 7, 12, 17 **e** 7, 13, 19, 25, 31 **f** 0, -1, -2, -3, -4

- **g** 6, 4, 2, 0, -2 **h** 23, 18, 13, 8, 3 **i** -5.5, -5, -4.5, -4, -3.5
- **11** Angus has spilt ink over his homework.

The ink covers parts of four arithmetic sequences.

Make a copy for him, completing all the boxes correctly.

Position	1	2	3	4	5	6	n
а	*	5	7	g		13	
Ь	14	*		5		-1	*
С		-2	*	*		0	<u>n</u> -
d	5.7	*		*	6.5	6	

- 12 The oval contains sequences. The rectangle contains expressions for *n*th terms. Four of the sequences match four of the expressions.
 - **a** Which sequence matches which *n*th term?
 - **b** Write the first five terms of the sequence that matches the remaining *n*th term.
 - **c** Write a possible expression for the *n*th term of the remaining sequence.
 - **d** Which of the *n*th terms give sequences that are *not* arithmetic?

i ..., 71, 78, 85, 92, 99, ...
ii ...,
$$3\frac{1}{2}$$
, $5\frac{1}{2}$, $7\frac{1}{2}$, $9\frac{1}{2}$, ...
iii ..., 34.5, 34.8, 35.1, 35.4, ...
iv ..., -68, -75, -82, -89, ...
v ..., $\frac{1}{23}$, $\frac{1}{27}$, $\frac{1}{31}$, $\frac{1}{35}$, ...

A
$$\frac{3n}{10} + 30$$
B $\frac{1}{4n+3}$
C $2-7n$
D $7n-13$
E $\frac{2}{n+3}$

13 Jules is making staircase patterns using square tiles.

The first step is 1 tile high.

After that, each step is 2 tiles higher than the one before. The second step is 3 tiles high, the third is 5 tiles high, and so on. The diagram shows the pattern with 4 steps.

- a i Jules continues the pattern, and writes down the heights of the first six steps. Copy and complete his list. 1, 3, 5, , , , ,
 - ii Write an expression for the height of the *n*th step.
 - iii Write down the height of the 20th step.
- **b** Jules makes two copies of his 4-step pattern and fits them together to form a rectangle, as shown.
 - i How many tiles are there in the rectangle?
 - ii Use your answer to write down the value of 1 + 3 + 5 + 7. Explain how you know.

- c Jules makes two identical 20-step patterns. He fits them together to make a rectangle as described in part b.
 - i What is the width of the rectangle? What is its length?
 - ii Use your answers to work out the sum of the first 20 odd numbers.
 - iii Describe an easy way to add the first 20 terms of any arithmetic sequence.
- 14 The school theatre has rows with different numbers of seats. Row A has 13 seats, row B has 15 seats, row C has 17 seats and so on. All the rows are lettered in alphabetical order up to and including T.
 - **a** How many seats are there in row H?
 - **b** How many seats in row Q?
 - **c** How many seats are there in total in the theatre?
- **15** One of the machines in a screw factory has developed a fault.

Each screw *should* be 25.4 mm long. In fact, the first screw was 25.39 mm long, the second was 25.38 mm, the third was 25.37 mm and so on.

- **a** What was the length of the 50th screw?
- b The machine was stopped after a screw of length 16.07 mm was produced. How many incorrect screws were made?