		T	1 1	1 1		
Reg. No.	1 - 15			2 3	1 20968	
Trog. 1101		15-5		1		\perp

M.Sc. DEGREE EXAMINATION, MAY 2022

Third Semester

18PPH301 - QUANTUM MECHANICS - II

(For the candidates admitted during the academic year 2018-2019 onwards)

Time: Three hours

PART – A $(5 \times 5 = 25 \text{ Marks})$ Answer ANY FIVE Questions

- 1. What is meant by degeneracy? Explain the degeneracy in hydrogen atom.
- 2. Show that $\left[\overrightarrow{L}.\overrightarrow{S}, J_z\right] = 0$.
- 3. Write the rate equations for absorption, spontaneous emission and stimulated emission.
- 4. Explain WKB approximation in brief.
- 5. What is meant by exchange force?
- 6. Derive the relation between differential cross section and scattering amplitude.
- 7. Write a short note on Rutherford scattering.
- 8. Explain the difficulty with Klein-Gordon equation in relativistic quantum mechanics.

Max. Marks: 100

$PART - B (5 \times 15 = 75 Marks)$

9. a. Derive the first-order energy correction formula wind degenerate time-independent perturbation theory.

(OR)

- b. Explain fine structure in detail.
- 10. a. Derive Fermi's golden rule for perturbation.

(OR)

- b. Drive the selection rules for *m* and *l*.
- 11. a. Discuss occupation number representation for fermions.

(OR)

- b. Write down the slater determinant for a system of three fermions trapped in a 1D box. What is the ground state energy?
- 12. a. Discuss Born approximation in detail.

(OR)

- b. Prove optical theorem.
- 13. a. Explain the Dirac theory of free election.

(OR)

b. Apply Dirac's theory to a charged particle in electromagnetic field and obtain the Paulis equation.

* * * *