Classification par fusion de données à base de fonctions de croyance

Objectif du TP:

Mettre en évidence l'intérêt de modéliser l'imprécision des sources en plus de leur incertitude pour améliorer l'estimation ou la décision. Application à la classification d'images.

I- Classification 2-classes à partir d'images issues de sources bruitées

Deux capteurs fournissent deux images d'observation bruitées correspondant à une même image des labels ayant 2 classes : A et $B=\overline{A}$. Le bruit (centré) présent sur ces images d'observation (qui vous sont fournies à partir de simulations) correspond à différentes distributions gaussiennes de paramètres respectifs s_1 et s_2 . Notez que même si $s_1=s_2$, les réalisations du bruit sont différentes et décorrélées. La Figure 1 présente un exemple d'images d'observation. Les deux images sont en niveaux de gris dans l'intervalle [0,1].

Source 1

- 1. Soit, pour chacune des deux sources i, à partir de l'image d'observation I_i , en chaque pixel s, une bba telle que $m_i(A)=I_i(s)$ et $m_i(B)=1$ - $m_i(A)$ avec $B=\overline{A}$. Utilisez une 'image de bba' telle que la troisième dimension de l'image (les deux premières étant les lignes et les colonnes) représente les différentes hypothèses de 2^{Ω} (dans l'ordre A, B, $A \cup B$, \emptyset puisque les indices des tableaux en Matlab commencent à 1). Calculez et affichez l'image des valeurs de $m_i(A)$ et $m_i(B)$ pour chacune des sources.
- 2. Pour chacune des deux sources i, $i \in \{1,2\}$, calculez les érosions, notées $m'_i(A)$ et $m'_i(B)$, de $m_i(A)$ et $m_i(B)$ pour un rayon d de l'élément structurant (faire une fonction Matlab spécifique pour l'érosion). Variez d pour valider votre code.
- 3. En chaque pixel, déduisez $m'_i(\Omega)=1-(m'_i(A)+m'_i(B))$, avec $\Omega=A\cup B$. Commentez l'image des valeurs de $m_i(A)$, $m_i(B)$ et $m_i(\Omega)$ pour chacune des sources.
- 4. Effectuez la combinaison conjonctive des bbas m'_1 et m'_2 .
- 5. En chaque pixel, calculez les valeurs de BetP, décidez et affichez le résultat de classification.
- 6. Pour chacune des deux sources i, $i \in \{1,2\}$, calculez les ouvertures, notées $m''_i(A)$ et $m''_i(B)$, de $m_i(A)$ et $m_i(B)$ pour un rayon d de l'élément structurant (faire une fonction Matlab spécifique pour l'ouverture ; on rappelle que, pour un élément structurant symétrique, l'ouverture est obtenue par dilatation de l'érodé). Variez d pour valider votre code.

- 7. Refaites les étapes 3., 4., et 5. à partir de $m''_{i}(A)$ et $m''_{i}(B)$.
- 8. Faites varier *d* et commentez les résultats obtenus respectivement par les deux allocations de masse 2. et 6. A titre d'illustration, la Figure 2 donne des exemples de résultats.

II- Classification 3-classes à partir d'images issues de sources bruitées

On étend le cas précédent au cas d'une classification 3 classes, C1, C2 et C3 à partir de capteurs distinguant respectivement 1 classe parmi les 3 et confondant les deux autres entre elles comme dans l'exemple du cours. Comme précédemment, les capteurs présentent un bruit (centré) correspondant à différentes distributions gaussienne de paramètres respectifs s_1 et s_2 . La Figure 3 présente un exemple d'images d'observation (niveaux de gris dans [0,1]).

- 1. Pour chacune des deux sources *i*, à partir de l'image d'observation *I_i*, on définit en chaque pixel, une bba initiale avec deux éléments focaux que vous définirez. Pour représenter les différentes hypothèses, vous utiliserez la notation binaire: par exemple, l'hypothèse C1 est codée 001 et l'hypothèse {C1,C3} ou C1∪C3 est codée 101. Calculez et affichez l'image des valeurs de quatre éléments focaux (deux par source).
- 2. Selon la façon dont vous avez codé la règle conjonctive à la question I.4., implémentez la pour $|\Omega| \ge 2$ (cas général).
- 3. Reprenez les questions I.2. à I.6. pour faire la classification 3 classes. Pour afficher la classification associez les classes {C1,C2,C3} aux niveaux de gris {1, 0.5,0}.
- 4. Faites varier *d* et commentez les résultats obtenus respectivement par les deux allocations de masse. A titre d'illustration, la Figure 4 donne des exemples de résultats.

<u>III – Régularisation par fusion avec une bba de voisinage</u>

On souhaite à présent intégrer l'information de voisinage à la décision via la fusion avec une bba représentant l'information de voisinage comme vu en cours (slides 78 et 80).

- 1. Etudiez la fonction 'Reg_BBA.m' et expliquez en le fonctionnement. Vous pourrez commenter les lignes une à une.
- 2. Testez la fonction et comparez les résultats à ceux obtenus précédemment.