

Automated Negotiation League 2024

Tamara Florijn (CWI & Utrecht University)

Yasser Mohammad (NEC-AIST, Japan)

Tim Baarslag (CWI & Utrecht University)

ANAC board members

Plan B

- Salary negotiation with a possible new employer
- You still have your current job
- How does that influence your negotiation strategy?

This year's challenge

• Bilateral negotiation

- With private reservation values
 - If the negotiation fails, each agent gets a private reservation value

This year's challenge

- Shared utility function
 - Only the shape of the pareto frontier defines a scenario

This year's challenge

- NegMAS
 - Advantage: A joint platform for SCML and ANL league
 - Python-based
 - Separate module for ANL and upcoming ANL-agents

Evaluation

• Individual advantage

$$\frac{u_A - rv}{1 - rv}$$

Nash point

$$(u_A-rv_A)\cdot(u_B-rv_B)$$

Evaluation

- Qualifications tournament
- Final tournament with top 10 of individual advantage.

• Winners:

Top 3 category individual advantage Winner category Nash point

Special thanks to Yasser Mohammad for his time and effort.

Our participants

ChaosAgent

The Dealmaker

BidBot

22 participants

6 countries

CARCAgent

NayesianNice

UOAgent

Anti-Agent

AgentRenting

Goldie

Analysis

Bidding curve

- Many exploited the last turn
- Play "Hard to get"

Analysis

Reservation value modelling

- Using Bayesian Learning (e.g. NayesianNice)
- Using Neural Networks (e.g. AgentRenting2024)
- Using curve fitting/linear regression (e.g. CARCAgent)

"[...] We believe that the prediction of the adversary's reservation price is impossible.

However, we believe that the adversary's **final concession price** can be predicted by some adversary agents. ""
~Shochan

Reveal of the winners

1. ?	
2. ?	
3. ?	
4. AntiAgent	0.3849
5. HardChaosNegotiator	0.3483
6. KosAgent	0.3371
7. NayesianNice	0.3328
8. CARCAgent	0.3130
9. BidBot	0.2691
10. AgentNyan	0.2541

KosAgent for ANAC2024 Auto Negotiation League (ANL)

Kosuke Nakata

Tokyo University of Agriculture and Technology

Tokyo University of Agriculture and Jechnolog

Nosuke Nakata

ANL ANAC2024

Nayesian

- Shengbo Chang
- Katsuhide Fujita Lab
- changshengbo1997@gmail.com
- changshengbo1997@qmail.con
- Katsuhide Fujita Lal

AAMAS2024 competition
15th Automated Negotiating Age
Automated Negotiation League

CARCAgent:

Advancing Automated Negotiation Through Reservation Value Fitting and Strategic Adaptation

Tianzi Ma, Hongji Xiong, Xuan Wang, and Yulin Wu

Harbin Institute of Technology, Shenzhen

April 30, 2024

April 30, 2024

THIRD PLACE OF THE AUTOMATED NEGOTIATING AGENTS COMPETITION 2023

~AUTOMATED NEGOTIATION LEAGUE~

(INDIVIDUAL ADVANTAGE)

TAMARA FLORIJN YASSER MOHAMMAD

REYHAN AYDOGAN

KATSUHIDE FUJITA

TIM BAARSLAG

CATHOLIJN JONKER

THIRD PLACE OF THE AUTOMATED NEGOTIATING AGENTS COMPETITION 2023

~AUTOMATED NEGOTIATION LEAGUE~

(INDIVIDUAL ADVANTAGE)

THIS CERTIFICATE IS AWARDED TO

MICK ELSHOUT
UTRECHT UNIVERSITY, NETHERLANDS

TO HONOR THEIR EXCELLENT NEGOTIATION STRATEGY

AGENT RENTING 2024

TAMARA FLORIJN

YASSER MOHAMMAD

REYHAN AYDOGAN

KATSUHIDE FUJITA

TIM BAARSLAG

CATHOLIJN JONKER

SECOND PLACE OF THE AUTOMATED NEGOTIATING AGENTS COMPETITION 2024

~AUTOMATED NEGOTIATION LEAGUE~

(INDIVIDUAL ADVANTAGE)

TAMARA FLORIJN
REYHAN AYDOGAN

KATSUHIDE FUJITA

TIM BAARSLAG

CATHOLIJN JONKER

SECOND PLACE OF THE AUTOMATED NEGOTIATING AGENTS COMPETITION 2024

~AUTOMATED NEGOTIATION LEAGUE~

(INDIVIDUAL ADVANTAGE)

THIS CERTIFICATE IS AWARDED TO

HIROTADA MATSUMOTO
TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY, JAPAN

TO HONOR THEIR EXCELLENT NEGOTIATION STRATEGY

UO AGENT

TAMARA FLORIJN

YASSER MOHAMMAD

REYHAN AYDOGAN

KATSUHIDE FUJITA

TIM BAARSLAG

CATHOLIJN JONKER

WINNER OF THE AUTOMATED NEGOTIATING AGENTS COMPETITION 2024

~AUTOMATED NEGOTIATION LEAGUE~

(INDIVIDUAL ADVANTAGE) (NASH OPTIMALITY)

TAMARA FLORIJN YASSER MOHMMAD

REYHAN AYDOGAN

KATSUHIDE FUJITA

TIM BAARSLAG

CATHOLIJN JONKER

WINNER OF THE AUTOMATED NEGOTIATING AGENTS COMPETITION 2024

~AUTOMATED NEGOTIATION LEAGUE~

(INDIVIDUAL ADVANTAGE) (NASH OPTIMALITY)

THIS CERTIFICATE IS AWARDED TO

SHOTA TAKAYAMA
TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY, JAPAN

TO HONOR THEIR EXCELLENT NEGOTIATION STRATEGY

SHOCHAN

TAMARA FLORIJN YASSER MOHMMAD

REYHAN AYDOGAN

KATSUHIDE FUJITA

TIM BAARSLAG

CATHOLIJN JONKER

Winners come forward for a photo!

Shochan-Strategy@ANAC2024

TAT

Shota Takayama
Fujita Lab,
Tokyo University of Agriculture and
Technology

Introduction

- Origin of the name "Shochan"
 - Part of my name, "Sho"
 - "Chan" is used in Japan to call people by their names in a friendly manner.
- My goal is to make "Shochan" a beloved agent in ANL in the future.

Contents

- 1. Concepts
- 2. Bidding Strategy
 - For opponents
 - For Scenarios
- 3. Acceptance Strategy
- 4. Evaluation

Concepts

- 1. Choose the best strategy depending on the scenarios and the opponents.
 - There is no optimal strategy for every situation.
 - It is very important to switch strategies.
 - Opponent agent
 - Nash seeker or Time-dependent agent
 - scenarios
 - Cooperative or No cooperative
 - Number of Negotiation steps (deadline) are large or small
- 2. Aim for the last few chances.
 - Expect any agent to be basically a time-dependent strategy.
 - Mutual concessions are more likely to be made at the end of negotiations.

Bidding Strategy

- Aim for the last one or two chances.
 - Calculate average time per step from current time
 - one step = relative time / number of steps
 - Determine when is the last one or two step with certainty
 - Proposal that the opponent is likely to accept.

Bidding Strategy for opponents

- For Time-dependent opponents
 - Predictions are effective
 - Opponent will be more concessionary at the next proposed step.
- Shochan Linearly predicts and proposes maximum concession price
 - Linearly connect the opponent's maximum and minimum (yellow circle)

Bidding Strategy for

Time-dependent opponents

- Why not do a more accurate regression?
 - Stability of the bid that the enemy accepts
 - If forecasts are too accurate, the slightest deviation from the forecast makes it harder
 - I also used scipy curve fitting, but it didn't always work
 - For example, when the opponent was too strong.

Bidding Strategy for opponents

- For Nash-seeker opponents
 - Nash-seeker makes some concession early on.
 - Possibility of already proposing the maximum concession price
- Suggest the best of opponent's proposal (yellow star).
 - No prediction of the opponent's maximum concessionary price

Bidding Strategy For Scenarios

- For Scenarios with fewer negotiation steps
 - Compromise is not well continuous due to too wide a time range
- Use time-dependent strategies to make concessions except for the last few times
- Suggest The Nash solution
 - because the opponent's utility value is hard to predict.

Bidding Strategy For Scenarios

- For Scenario where concessions are desired
 - Judged by the difference between the opponent's maximum bid and my maximum bid.
 - Opponent can gain an advantage without reducing my utility value too much.

concession-friendly scenario

Equality scenario

Bidding Strategy For Scenarios

- For concession-friendly scenario
 - Use a time-dependent strategy
 - If diffx diffy is greater than 0.2
 - diffx : difference in enemy utility values
 - diffy: difference in my utility value

Acceptance Strategy

- 1. Accept by time-dependent concessionary price
 - After 0.95, Be strong for my last few proposals to be successful.
 - Whenever I use a time-dependent strategy, I use it for this curve
 - mx = my maximum utility, rv = reservation value

Acceptance Strategy

- 2. Accept Last chance with no time to make my proposal next time.
 - Reject If not 0.1 greater than my reservation value.
 - The last opponent's proposal is likely to be a concession.

Evaluation

- Shochan's evaluation with basic anl agents
 - 100 scenarios
 - utility space of size 2000

Table 1: Evaluation of Shochan

	advantage		nash_optimality	
strategy	mean	std	mean	std
Shochan	0.443542	0.33072	0.830802	0.140649
StochasticBoulware	0.394607	0.283079	0.857884	0.124012
Boulware	0.390621	0.280535	0.857427	0.122168
StochasticLinear	0.328998	0.239777	0.875009	0.113681
Linear	0.315592	0.240342	0.87121	0.115393
NashSeeker	0.309114	0.24016	0.899923	0.110483
StochasticConceder	0.245843	0.203001	0.86554	0.120462
NaiveTitForTat	0.235999	0.27621	0.819927	0.141721
Conceder	0.224678	0.202051	0.856586	0.123002
MiCRO	0.194509	0.311425	0.762553	0.153555

Conclusion

- Strategies for agents and scenarios are important.
 - Many other measures exist for each of these situations.
 - ANL2024 rules allow us to understand each other's utility space
- Future work
 - the scenarios could be parameterized to change the strategy
 - Winwin_level
 - Conflict_level
 - Oppsistion_level
 - How to detect opponents strategy

Thank you for listening

Next year's challenge

Proposal:

- Each agent plays both sides
- Multi-deal: utility function for A is the maximum of all its deals
- Utility for group B is A's chosen deal,
 else reservation value

Still open:

- Asynchronous of synchronous bidding?
- Same or different outcome space?
- Bidding cost or time discount?

Automated Negotiation League 2024