Machine Learning (CS 181): 19. Inference in Graphical Models

David C. Parkes and Sasha Rush

Spring 2017

1/42

Contents

- 1 Introduction
- 2 Reasoning Patterns, d-Separation
- 3 Exact Inference
- 4 Approximate Inference
- **5** Conclusion

- 1 Introduction
- Reasoning Patterns, d-Separation
- 3 Exact Inference
- 4 Approximate Inference
- 5 Conclusion

3 / 42

Overview

- We have seen how to construct (and learn) Bayesian Networks.
- What about <u>reasoning patterns</u>: which variables are conditionally independent?
- What about inference about latent variables:
 - Exact, via variable elimination and generalizations
 - Approximate, via MCMC (Gibbs sampling) and variational methods

- 1 Introduction
- 2 Reasoning Patterns, d-Separation
- 3 Exact Inference
- 4 Approximate Inference
- 5 Conclusion

5 / 42

Reasoning Patterns

(Note: assume in running example that a change in a parent has a positive effect; e.g., if GTT true then EG likely to improve).

1. Causal. Observe Diligent is true. Does p(U=true) go up, down, or neither?

Up. Not independent.

2. Chained causal. Observe Diligent is true. Does p(HG=A) go up, down, or neither?

Up. Not independent.

7 / 42

Reasoning Patterns

3. Chained causal. Know Understand is true. Now observe Diligent is true. Does p(HG=A) go up, down, or neither?

Neither. $I(HWG, D \mid U)$.

4. Evidential. Observe HG=A. Does p(U=true) go up, down, or neither?

Up. Not independent.

9 / 42

Reasoning Patterns

5. Chained evidential. Observe HG=A. Does p(D=true) go up, down, or neither?

Up. Not independent.

6. Chained evidential. Know that U = true. Observe HG = A. Does p(D = true) go up, down, or neither?

Neither. I(D, HWG | U).

11 / 42

Reasoning Patterns

7. Mixed causal-evidential. Observe HG=A. Does p(EG=A) go up, down, or neither?

Up. Not independent.

8. Mixed causal-evidential. We know U=true. Observe HG=A. Does p(EG=A) go up, down, or neither?

Neither. I(EG, HWG | U).

13 / 42

Reasoning Patterns

9. Inter-causal reasoning. We observe S=true. Does p(D=true) go up, down, or neither?

Neither. Independent.

10. Inter-causal reasoning. We know that U=true. We observe S=true. Does p(D=true) go up, down, or neither?

Down. not independent, conditioned on Understands! (this is known as explaining away!)

15 / 42

Reasoning Patterns

11. Conflicting pattern. We know EG = A. We observe GTT = true. Does p(U = true) go up, down, or neither?

We don't know.

A Sufficient Test for Conditional Independence

One set of variables is conditionally independent of another set given evidence if every undirected path between the two sets is $\underline{\text{blocked}}$. Example, illustrating $I(X,Y\mid E)$:

P. Domingos

Paths (1) and (2) are blocked because Z has 'non-converging arrows' and Z is in the evidence. Path (3) is blocked because Z has 'converging arrows' and neither Z nor its descendants are in the evidence.

17 / 42

d-Separation

Definition (Directed separation)

 X_A and X_B are <u>d-separated</u> by evidence X_E if every undirected path from a node in X_A to a node in X_B is blocked by X_E .

Definition (Blocked)

A path is blocked by evidence X_E if either:

- lacktriangleright there is a node Z with 'non-converging arrows' on the path, and $Z\in X_E$, or
- there is a node Z with 'converging arrows' on the path, and neither Z nor its descendants are in X_E .

Theorem

If X_A and X_B are d-separated by X_E , then $I(X_A, X_B \mid X_E)$.

Example: Starting a Car

Are Gas and Radio independent? Given Battery? Ignition? Starts? Moves?

19 / 42

Checking d-separation on the Reasoning Patterns

- 1 Introduction
- Reasoning Patterns, d-Separation
- 3 Exact Inference
- 4 Approximate Inference
- 5 Conclusion

21 / 42

Exact Inference (1 of 9)

Suppose we want to calculate the marginal probability:

$$p(x_4) = \sum_{x_1, x_2, x_3} p(x_1)p(x_2)p(x_3 \mid x_1, x_2)p(x_4 \mid x_3)$$

Let $k=\max$ domain size. This requires k^4 steps (k^3 steps for each x_4 .) Generally, with m=# variables, we have k^m steps.

Exact Inference (2 of 9)

Use variable elimination procedure, build intermediate g terms:

$$p(x_4) = \sum_{x_1, x_2, x_3} p(x_1)p(x_2)p(x_3 \mid x_1, x_2)p(x_4 \mid x_3)$$

$$= \sum_{x_2, x_3} p(x_2)p(x_4 \mid x_3) \sum_{x_1} p(x_1)p(x_3 \mid x_1, x_2)$$

$$= \sum_{x_3} p(x_4 \mid x_3) \sum_{x_2} p(x_2)g_1(x_2, x_3)$$

$$= \sum_{x_3} p(x_4 \mid x_3) \sum_{x_2} p(x_2)g_1(x_2, x_3)$$

$$= \sum_{x_3} p(x_4 \mid x_3)g_2(x_3) = g_3(x_4)$$

Now: $k^2(k) + k(k) + k(k)$ steps vs k^4 steps. Order here is x_1, x_2, x_3 : leaves first, working towards query.

23 / 42

Exact Inference (3 of 9)

order of elimination matters

If eliminate x_1 first, get

$$p(x_m) = \sum_{x_2, \dots, x_{m-1} x_1} \sum_{x_1, \dots, x_{m-1} x_1} p(x_1) p(x_2 \mid x_1) \dots p(x_m \mid x_1) = \sum_{x_2, \dots, x_{m-1} x_1} g_1(x_2, \dots, x_m)$$

With 'leaves-first' order x_2,\ldots,x_{m-1},x_1 , get

$$p(x_m) = \sum_{x_3, \dots, x_{m-1}, x_1} p(x_1) p(x_3 \mid x_1) \dots p(x_m \mid x_1) \sum_{x_2} p(x_2 \mid x_1)$$

$$= \sum_{x_4, \dots, x_{m-1}, x_1} p(x_1) \dots p(x_m \mid x_1) \sum_{x_3} p(x_3 \mid x_1) g_1(x_1) = \dots$$

This requires mk^2 steps vs k^m steps (!).

24 / 42

Exact Inference (4 of 9)

- Cost of <u>variable elimination</u> is exponential in the number of variables mentioned by the intermediate factors $g(\cdot)$.
- **Example** $(g_1 \text{ mentions two variables})$:

$$p(x_4) = \sum_{x_1, x_2, x_3} p(x_1)p(x_2)p(x_3 \mid x_1, x_2)p(x_4 \mid x_3)$$

$$= \sum_{x_2, x_3} p(x_2)p(x_4 \mid x_3) \underbrace{\sum_{x_1} p(x_1)p(x_3 \mid x_1, x_2)}_{g_1(x_2, x_3)}$$

■ The <u>tree width</u> of a BN is the minimum over all elimination orders of the largest number of mentions in intermediate factors.

25 / 42

Exact Inference (5 of 9)

Inference is easy for polytrees.

Let $d = \max \# \text{ parents}$

Theorem

For Bayesian Networks that are <u>polytrees</u> (\equiv no undirected cycles) then 'leaves first ordering' is optimal and gives $O(mk^{d+1})$ steps.

Linear in the size of the representation!

Exact Inference (6 of 9)

Additional observations:

(a) We can prune vars that are not ancestors to Q or E:

$$p(x_3) = \sum_{x_1, x_2, x_4} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3)$$

$$= \sum_{x_1, x_2} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) \underbrace{\sum_{x_4} p(x_4 \mid x_3)}_{=1}$$

(b) For $p(x_Q \mid \mathbf{x}_E)$, we can instantiate the evidence \mathbf{x}_E in the BN and then reduce the network.

27 / 42

Exact Inference (7 of 9)

General polytree inference procedure:

- Prune any non-ancestors of query or evidence variables
- Instantiate evidence variables
- Find leaves, and do variable elimination in order of leaves, working back towards the query

Exact Inference (8 of 9)

- Exact inference is #P-hard in general BNs.
 - #P problems are counting problems, e.g., number of subsets of lists of integers that add to zero.
 - Solving in poly time would imply P = NP.
- NP-hard to determine whether there exists an elimination order where no intermediate function mentions more than ℓ variables.
 - NP problems are decision problems for which 'yes'-instances are easy to verify, e.g., "is there a solution to a traveling salesperson problem with cost < c?" NP-hard are the hardest problems in NP.
 - Conjectured that $P \neq NP$.
- Typical to use a greedy heuristic, select as next var to eliminate the one that generates a g function with as few vars as possible.

29 / 42

Exact Inference (9 of 9)

- Variable elimination is for computing the marginal probability of <u>one</u> variable, e.g. $p(x_4 \mid \mathbf{x}_E)$.
- What if we want to perform multiple inference tasks with the same evidence?
- Use the sum-product message passing algorithm on polytrees. This is a generalization of the 'forward-backward' algorithm. (Generalizes, via junction-tree algorithm to general networks.)

- 1 Introduction
- 2 Reasoning Patterns, d-Separation
- 3 Exact Inference
- 4 Approximate Inference
- 5 Conclusion

31 / 42

Approximate Inference (1 of 9)

Because exact inference on general BNs is #P-hard, it is also important to have methods of approximate inference.

Two common approaches:

- Stochastic approximations via Markov Chain Monte Carlo methods.
- Variational methods.

We give a sketch of the ideas.

Approximate inference (2 of 9)

One idea: rejection sampling to estimate posterior, $p(\mathbf{x}_Q \mid \mathbf{x}_E)$:

- Sample $\mathbf x$ from the joint distribution $p(\mathbf x)$ (recall: use topological order)
- Reject any sample where evidence \mathbf{x}_E is not satisfied. Use other samples to estimate posterior.

Pro: very simple. Con: fraction of samples rejected grows exponentially as the size of E grows.

33 / 42

Approximate inference (3 of 9)

Markov chain Monte Carlo (MCMC) methods:

- An approach for generating samples from the posterior distribution
- Construct a Markov chain, where each state $(\mathbf{x}^{(t)})$ at step t corresponds to an instantiation of the variables.

Define the transition model such that the stationary distr. of the Markov chain (the distribution the state will be in at T, as $T \to \infty$) is equal to the posterior.

Approximate inference (4 of 9)

- Construct a Markov chain, where each state $(\mathbf{x}^{(t)})$ at step t corresponds to an instantiation of the variables.
- Let $P^{(t)}$ denote the distribution on states after t steps. Idea is that $P^{(t)}$ will converge, for large t, to the posterior.
- The next state is sampled $q(\mathbf{x}^{(t+1)} | \mathbf{x}^{(t)})$. Define q such that:
 - stationary distr. of chain is equal to posterior
 - convergence is fast
 - \blacksquare q is tractable to sample from

35 / 42

Approximate inference (5 of 9)

Gibbs sampling is a useful MCMC method for BNs:

- Fix evidence variables throughout. Initialize rest of variables arbitrarily.
- Sample each of the non-evidence variables at random, sampling each variable given the current values of the other variables.

Need: $p(x_3 | x_1, x_2, x_4), p(x_2 | x_1, x_3, x_4), p(x_1 | x_2, x_3, x_4).$

How can we compute these conditional distributions?

Approximate inference (6 of 9)

A: via the Markov blanket of a variable. This is the set of parents, children and childrens' parents.

Theorem: Each variable is conditionally independent of all others given its Markov blanket (via d-separation arguments.)

T. Nielsen and F. Verner Jensen

The Markov blanket of I is $\{C, E, H, K, L\}$. Leads to fast calculation of conditional distr. on any variable, given values of rest of variables.

37 / 42

Approximate inference (7 of 9)

Still, Gibbs sampling can be too slow for large BNs because the successive samples are highly correlated, and thus it can take a large number of samples to achieve an unbiased estimate of the posterior.

Approximate inference (8 of 9)

Leads to variational methods. Estimate posterior.

$$\min_{\mathbf{w}} ||p'(\mathbf{x}_Q; \mathbf{w}), p(\mathbf{x}_Q \mid \mathbf{x}_E)||$$

where p' is a simpler distribution, and for some measure of distance. Choose family p' to allow for fast optimization, but close approximation.

39 / 42

Approximate inference (8 of 9)

Variational approximations are a <u>very</u> active area at the moment, and being coupled with probabilistic programming languages such as Stan.

Automatic Variational Inference in Stan

Alp Kucukelbir Columbia University alp@cs.columbia.edu

Andrew Gelman Columbia University gelman@stat.columbia.edu Rajesh Ranganath Princeton University rajeshr@cs.princeton.edu

David M. Blei Columbia University david.blei@columbia.edu

Abstract

Variational inference is a scalable technique for approximate Bayesian inference. Deriving variational inference algorithms requires tedious model-specific calculations; this makes it difficult for non-experts to use. We propose an automatic variational inference algorithm, automatic differentiation variational inference (ADVI); we implement it in Stan (code available), a probabilistic programming system. In

- 1 Introduction
- Reasoning Patterns, d-Separation
- 3 Exact Inference
- 4 Approximate Inference
- **5** Conclusion

41 / 42

Conclusion

- Bayesian networks provide a compact representation of distributions on lots of variables.
- We can understand conditional independence via d-separation.
- For exact inference in polytrees, variable elimination is fast and effective.
- For approximate inference, both MCMC via Gibbs sampling and variational methods are in wide effect.