정오표

(2023년 6월 9일 현재)

이석종, 이승온, 위상수학의 기초, 제6판, 교우사, 2022

33쪽, 정리 2.6 증명 1행: 만일 $I=\emptyset$ 일 경우는 $\bigcup_{i\in\emptyset}G_i=\emptyset$ 이 되어 \longrightarrow 만일 $\bigcup_{i\in I}G_i=\emptyset$ 이면

33쪽, 정리 2.6 증명 2행: $I \neq \emptyset$ \rightarrow $\bigcup_{i \in I} G_i \neq \emptyset$

55쪽, 문제 3 (c), (d): "구간" \rightarrow "구간"

60쪽, 정의 3.6의 5행: srtonger → stronger

64쪽, 예제 3.19: 비이산공간이다 → 무한집합의 비이산공간이다

89쪽, 5행: \mathcal{T} 의 정의에 의해 \rightarrow \mathcal{B} 가 \mathcal{T} 의 기저이므로

89쪽, 5,6,7행: $k \in J \rightarrow k \in K$

108쪽, 하단에서 7행: $f|_{(-\infty,0)}:\mathbb{R}$ ightarrow $f|_{(-\infty,0)}:(-\infty,0)$

108쪽, 하단에서 6행: $f|_{[0,\infty)}:\mathbb{R}$ ightarrow $f|_{[0,\infty)}:[0,\infty)$

122쪽, 하단에서 2행: 상함수가 \rightarrow 함수 $f: X \rightarrow Y$ 가 상함수가

167쪽, 예제 6.19에서 5행: 따라서 X의 \rightarrow 따라서 X의 거리위상에서는

338쪽, 연습문제 5-18, 4행: X의 열린 근방 $\to x$ 의 열린 근방

348쪽, 연습문제 8-16, 3행: T_3 공간 \rightarrow 정칙 공간