

Trabalho de Probabilidade e Estatística Aplicada II CO.N1.14/SI.N1.14

Regras para Entrega:

- 1. A data da entrega é através do moodle, até 27/11/2019;
- 2. A nota do trabalho considera:
 - 1. **Legibilidade do código**: código indentado, com nomes de variáveis simples e significativos e devidamente comentado. Nos comentários iniciais deve constar o nome dos autores.
 - 2. Correção do código: o código deve ser em C e admitir compilação através do CodeBlocks na plataforma Windows, sem alterações e sem erros. No caso de necessitar de bibliotecas específicas, as informações necessárias sobre onde conseguir e como instalar/desinstalar devem estar devidamente documentadas, conforme o item anterior.
 - 3. **Originalidade do código**: cópia de código implica em nota zero para todas as cópias. A nota máxima para trabalhos corretos, dentro do esperado é 9.0. Nota 10.0 apenas para trabalhos que apresentem soluções diferenciadas, pela criatividade, elegância e eficiência acima do esperado.
 - 4. **Pontualidade da entrega**: atrasos na entrega acarretam descontos cumulativos na nota, assim, entrega em 27/11/2019, após o horário estipulado acarreta desconto de 1 ponto na nota do trabalho, nos dias seguintes, mais 3 pontos de desconto por dia de atraso.
- 3. Os grupos para execução do trabalho devem ter no máximo 03 (três) alunos.

Cenário:

A distribuição normal, definida pela função geradora $f(x) = \frac{e^{-\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)^2}}{\sqrt{2\pi}\sigma}$, estima a probabilidade

 $p(x \le \alpha)$ para uma variável contínua x através do cálculo da integral $p(x \le \alpha) = \int_{-\infty}^{\alpha} \frac{e^{-\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)^2}}{\sqrt{2\pi}\sigma} dx$ que não possui solução trivial.

Para contornar este problema, faz-se a padronização da variável x através da transformação $z=\frac{x-\mu}{\sigma}$ a qual produz uma distribuição em que $\mu_z=0$ e $\sigma_z=1$ permitindo que se construam tabelas com o cálculo de $p(z \le z_0)$ através de métodos interativos de integração como a regra dos trapézios ou as regras de simpson $\frac{1}{3}$ e simpson $\frac{3}{8}$, as quais produzem soluções com diversos níveis de precisão.

As tabelas normais padronizadas possuem a seguinte forma:

Z	0	1	2	3	4	5	6	7	8	9
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Nelas, a leitura do valor de z se faz através da linha, a qual fornece os valores com a primeira casa decimal e da coluna, que fornece a segunda casa decimal, por exemplo: suponha z = 0.56, então

Trabalho de Probabilidade e Estatística Aplicada II CO.N1.14/SI.N1.14

 $p(z \le 0.56)$ é dado pela célula resultante do cruzamento da linha 0,5 com a coluna 6, ou seja, $p(z \le 0.56) = 0.7123$, conforme mostra a próxima figura.

Z	0	1	2	3	4	5	6	7	8	9
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Problema:

A tabela apresentada nas figuras anteriores possui precisão limitada, já que a incerteza fica na 4^a casa decimal, significando que as proporções estimadas tem precisão apenas ao nível de milhar, de modo que pouco antes de 4σ já não se identificam mais as variações no cálculo de $p(z \le z_0)$, enquanto que há campos do conhecimento, como controle estatístico do processo ou física de partículas, em que se requer precisões muito maiores, como 0,0000001 ou 0,0000000001.

Deste modo, deseja-se um programa de computador que produza tabelas normais padronizadas para precisões de até 0,0000000001 no mesmo formato que as tabelas apresentadas, como a tabela para 60 mostrada a seguir.

Z	0	1	2	3	4	5	6	7	8	9
0,0	0,0000000000	0,0039893563	0,0079783136	0,0119664733	0,0159534366	0,0199388056	0,0239221823	0,0279031698	0,0318813716	0,0358563921
0,1	0,0398278367	0,0437953120	0,0477584254	0,0517167860	0,0556700041	0,0596176916	0,0635594621	0,0674949308	0,0714237150	0,0753454337
0,2	0,0792597084	0,0831661624	0,0870644215	0,0909541140	0,0948348705	0,0987063244	0,1025681119	0,1064198718	0,1102612461	0,1140918797
0,3	0,1179114207	0,1217195203	0,1255158331	0,1293000173	0,1330717343	0,1368306494	0,1405764314	0,1443087530	0,1480272905	0,1517317246
0,4	0,1554217396	0,1590970242	0,1627572711	0,1664021773	0,1700314442	0,1736447775	0,1772418875	0,1808224890	0,1843863012	0,1879330483
0,5	0,1914624589	0,1949742667	0,1984682100	0,2019440322	0,2054014813	0,2088403107	0,2122602786	0,2156611484	0,2190426885	0,2224046726
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••