

Chương 5: Ánh xạ tuyến tính

ĐẠI SỐ

Bộ môn Toán, Khoa Cơ bản 1

Hà Nội - 2023

Chương 5: Ánh xạ tuyến tính

- 1 5.1 Khái niệm ánh xạ tuyến tính
- 2 5.2 Nhân, ảnh và hạng của ánh xạ tuyến tính
- 3 5.3 Đơn cấu, toàn cấu và đẳng cấu
- lacktrian 5.4 Ánh xạ tuyến tính và ma trận
- 5.5 Chéo hóa ma trận

Chương 5: Ánh xạ tuyến tính

- 1 5.1 Khái niệm ánh xạ tuyến tính
- 2 5.2 Nhân, ảnh và hạng của ánh xạ tuyến tính
- 3 5.3 Đơn cấu, toàn cấu và đẳng cấu
- 4 5.4 Ánh xạ tuyến tính và ma trận
- 5.5 Chéo hóa ma trận

5.1.1 Định nghĩa

Định nghĩa

Cho V, W là hai không gian véc tơ. Ánh xạ $f: V \to W$ được gọi là ánh xạ tuyến tính hay đồng cấu nếu nó thỏa mãn hai điều kiện sau:

- 1) f(u+v) = f(u) + f(v) với mọi $u, v \in V$.
- 2) $f(\alpha u) = \alpha f(u)$ với mọi $\alpha \in \mathbb{R}$ và mọi $u \in V$.

Ánh xạ tuyến tính $f:V\to V$ được gọi là tự đồng cấu của V.

Ví dụ 1.

• Ánh xạ không:

$$\begin{aligned} \theta: V \to W \\ u \mapsto \theta(u) = \mathbf{0} \end{aligned}$$

• Ánh xạ đồng nhất:

$$\operatorname{Id}_V: V \to V$$

 $u \mapsto \operatorname{Id}_V(u) = u$

5.1.2 Các tính chất

Định lý 5.1

Ánh xạ $f:V\to W$ là ánh xạ tuyến tính khi và chỉ khi với mọi $u,v\in V$ và mọi $\alpha,\beta\in\mathbb{R},$

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v).$$

Ví dụ 2. Ánh xạ $f: \mathbb{R}^n \to \mathbb{R}^m$ xác định bởi

$$f(x_1, x_2, \dots, x_n) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \dots, a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n)$$

là một ánh xạ tuyến tính.

Nếu $f: V \to W$ là ánh xạ tuyến tính thì

- 1) f(0) = 0.
- 2) $f\left(\alpha_1v_1+\alpha_2v_2+\ldots+\alpha_nv_n\right)=\alpha_1f(v_1)+\alpha_2f(v_2)+\ldots+\alpha_nf(v_n)$ với mọi $\alpha_1,\alpha_2,\ldots,\alpha_n\in\mathbb{R}$ và mọi $v_1,v_2,\ldots,v_n\in V.$

Ví dụ 3. Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^3$ thỏa mãn

$$f(1,0)=(1,0,2),\ f(0,1)=(-3,1,1).$$

Viết công thức xác định ảnh của f.

Cho V và W là các không gian véc tơ và $\{v_1,v_2,\ldots,v_n\}$ là một cơ sở của V. Khi đó với mỗi hệ véc tơ $\{u_1,u_2,\ldots,u_n\}$ của W, tồn tại duy nhất ánh xạ tuyến tính $f:V\to W$ sao cho

$$f(v_i) = u_i, \forall i = 1, \dots, n.$$

Hệ quả. Nếu $f,g:V\to W$ là các ánh xạ tuyến tính và $\{v_1,...,v_n\}$ là một cơ sở của V thì

$$f = g \Leftrightarrow f(v_i) = g(v_i), \ \forall i = 1, ..., n.$$

5.1.3 Các phép toán của ánh xạ tuyến tính

- Cho V và W là các không gian véc tơ. Ký hiệu $\operatorname{Hom}(V,W)$ là tập hợp các ánh xạ tuyến tính từ V vào W.
- Nếu $f,g \in \text{Hom}(V,W)$, tổng f+g được xác định bởi

$$(f+g)(v) = f(v) + g(v)$$
 với mọi $v \in V$.

• Nếu $\lambda \in \mathbb{R}$ và $f \in \text{Hom}(V, W)$, tích λf được xác định bởi

$$(\lambda f)(v) = \lambda f(v)$$
 với mọi $v \in V$.

- 1) $\operatorname{Hom}(V,W)$ là không gian véc tơ với phép cộng hai ánh xạ tuyến tính và phép nhân một số với ánh xạ tuyến tính được định nghĩa như trên.
- 2) Nếu V và W có số chiều hữu hạn thì

$$\dim \operatorname{Hom}(V, W) = (\dim V)(\dim W)$$

- Cho U,V và W là các không gian véc tơ. Nếu $f:U\to V,$ $g:V\to W$ là các ánh xạ tuyến tính thì $g\circ f$ cũng là một ánh xạ tuyến tính.
- ullet Ký hiệu $\operatorname{End}(V)$ là tập hợp các tự đồng cấu của V.
- Với mỗi $f \in \text{End}(V)$, ta định nghĩa

$$f^{0} = \mathrm{Id}_{V}, \ f^{1} = f, \ f^{2} = f \circ f, \ f^{n} = f^{n-1} \circ f = \underbrace{f \circ \dots \circ f}_{n \ \mathrm{lan}}.$$

• Cho $f \in \text{End}(V)$ và đa thức $p(t) = a_0 + a_1 t + ... + a_n t^n$. Ký hiệu p(f) là đồng cấu được xác định bởi

$$p(f) = a_0 \mathrm{Id}_V + a_1 f + \dots + a_n f^n$$

Ví dụ 4. Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x,y) = (3x - 5y, 4x + y)$$

- a) Tim $f^2(x,y)$.
- b) Xét đa thức $p(t) = 50 9t + 2t^2$. Tìm p(f)(x, y).

Chương 5: Ánh xạ tuyến tính

- 1 5.1 Khái niệm ánh xạ tuyến tính
- 2 5.2 Nhân, ảnh và hạng của ánh xạ tuyến tính
- 3 5.3 Đơn cấu, toàn cấu và đẳng cấu
- 4 5.4 Ánh xạ tuyến tính và ma trận
- 5.5 Chéo hóa ma trận

Giả sử $f:V\to W$ là một ánh xạ tuyến tính. Khi đó

- 1) Nếu V_1 là không gian véc tơ con của V thì $f(V_1)$ là không gian véc tơ con của W.
- 2) Nếu W_1 là không gian véc tơ con của W thì $f^{-1}(W_1)$ là không gian véc tơ con của V.

Định nghĩa

Cho ánh xạ tuyến tính $f:V\to W$. Nhân của f, ký hiệu Kerf, và ảnh của f, ký hiệu Imf, được định nghĩa như sau:

$$Ker f = f^{-1}\{\mathbf{0}\} = \{v \in V | f(v) = \mathbf{0}\}$$
$$Im f = f(V) = \{f(v) | v \in V\}$$

Nhận xét: Kerf là không gian véc tơ con của V và $\mathrm{Im} f$ là không gian véc tơ con của W.

Hạng của một ánh xạ tuyến tính

Cho ánh xạ tuyến tính $f:V\to W.$ Hạng của f, ký hiệu r(f), là số chiều của ${\rm Im}\, f.$

$$r(f) = \dim \operatorname{Im} f$$

Cho ánh xạ tuyến tính $f:V\to W$. Nếu $\operatorname{Ker} f$ và $\operatorname{Im} f$ có số chiều hữu hạn thì V cũng có số chiều hữu hạn và

$$\dim V = \dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim \operatorname{Ker} f + r(f)$$

Ví dụ 5. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x, y, z) = (x + y - 5z, 3x - y - 3z, 2x - 2y + 2z).$$

- a) Tìm một cơ sở của $\operatorname{Ker} f, \operatorname{Im} f$.
- b) Tìm hạng của f.

Chương 5: Ánh xạ tuyến tính

- 1 5.1 Khái niệm ánh xạ tuyến tính
- 2 5.2 Nhân, ảnh và hạng của ánh xạ tuyến tính
- 3 5.3 Đơn cấu, toàn cấu và đẳng cấu
- 4 5.4 Ánh xạ tuyến tính và ma trận
- 5.5 Chéo hóa ma trận

5.3.1 Đơn cấu

Định nghĩa

Một ánh xạ tuyến tính được gọi là đơn cấu nếu nó là đơn ánh.

Định lý 5.7

Cho ánh xạ tuyến tính $f:V\to W.$ Các mệnh đề sau là tương đương:

- 1) f là đơn cấu.
- 2) $Ker f = \{0\}.$
- 3) Ảnh của một hệ véc tơ độc lập tuyến tính của V là hệ véc tơ độc lập tuyến tính của W.
- 4) $r(f) = \dim V$.

5.3.2 Toàn cấu

Định nghĩa

Một ánh xạ tuyến tính được gọi là toàn cấu nếu nó là toàn ánh.

Định lý 5.8

Cho ánh xạ tuyến tính $f:V \to W.$ Các mệnh đề sau là tương đương:

- 1) f là toàn cấu
- 2) Ảnh của một hệ sinh của V là hệ sinh của W.
- 3) $r(f) = \dim W$.

5.3.3 Đẳng cấu

Định nghĩa

- Một ánh xạ tuyến tính được gọi là đẳng cấu nếu nó là song ánh.
- Hai không gian véc tơ V và W được gọi là đẳng cấu nếu tồn tại đẳng cấu $f:V\to W$.

Định lý 5.9

Hai không gian véc tơ V và W đẳng cấu khi và chỉ khi

$$\dim V = \dim W$$

Giả sử $f:V\to W$ là một ánh xạ tuyến tính và dim $V=\dim W.$ Khi đó các mệnh đề sau là tương đương:

- 1) f là đẳng cấu.
- 2) f là đơn cấu.
- 3) f là toàn cấu.

Ví dụ 6. Chứng minh rằng ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbf{P}_2$ xác định bởi

$$f(x,y,z) = (x+2y+3z) + (2x+5y+6z)t + (x+8z)t^{2}.$$

là một đẳng cấu.

Chương 5: Ánh xạ tuyến tính

- 1 5.1 Khái niệm ánh xạ tuyến tính
- 2 5.2 Nhân, ảnh và hạng của ánh xạ tuyến tính
- 3 5.3 Đơn cấu, toàn cấu và đẳng cấu
- lacktrian 5.4 Ánh xạ tuyến tính và ma trận
- 5.5 Chéo hóa ma trận

5.4.1 Ma trận của ánh xạ tuyến tính

Giả sử $f: V \to W$ là một ánh xạ tuyến tính, $B = \{e_1, e_2, \dots, e_n\}$ là một cơ sở của V và $B' = \{\omega_1, \omega_2, \dots, \omega_m\}$ là một cơ sở của W. Ta biểu diễn các véc tơ $f(e_j)$ thành tổ hợp tuyến tính của B'.

$$f(e_1) = a_{11}\omega_1 + a_{21}\omega_2 + \dots + a_{m1}\omega_m$$

$$f(e_2) = a_{12}\omega_1 + a_{22}\omega_2 + \dots + a_{m2}\omega_m$$

.....

$$f(e_n) = a_{1n}\omega_1 + a_{2n}\omega_2 + \dots + a_{mn}\omega_m$$

Định nghĩa

- Ma trận $A = [a_{ij}]$, trong đó cột thứ j của A là tọa độ của $f(e_j)$ trong cơ sở B', được gọi là ma trận của ánh xạ tuyến tính f trong các cơ sở B và B', ký hiệu $[f]_B^{B'}$.
- Ma trận của f trong các cơ sở chính tắc của V và W được gọi là ma trận chính tắc của f.
- Nếu f là một tự đồng cấu của V thì ma trận của f trong cơ sở B được ký hiệu là $[f]_B$.

Ví dụ 7. Tìm ma trận chính tắc của ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x, y, z) = (2x + y - 4z, 3x + 5z)$$

Chú ý: Ma trận chính tắc của ánh xạ tuyến tính $f: \mathbb{R}^n \to \mathbb{R}^m$ được xác định bởi

$$f(x_1, x_2, \dots, x_n) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \dots, a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n)$$

là

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Giả sử B là một cơ sở của không gian véc tơ n chiều $V,\,B'$ là một cơ sở của không gian véc tơ m chiều W. Khi đó ánh xạ

$$\operatorname{Hom}(V, W) \to M_{m \times n}$$

 $f \mapsto [f]_B^{B'}$

là một song ánh thỏa mãn các tính chất:

- 1) $[f+g]_B^{B'} = [f]_B^{B'} + [g]_B^{B'}$
- 2) $\forall \lambda \in \mathbb{R}, \ [\lambda f]_B^{B'} = \lambda [f]_B^{B'}$
- 3) $r(f) = r([f]_B^{B'})$

Ví dụ 8. Cho hai ánh xạ tuyến tính $f,g:\mathbb{R}^3\to\mathbb{R}^2$ có ma trận chính tắc lần lượt là

$$A = \begin{bmatrix} 1 & -2 & 5 \\ 3 & 0 & 4 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}.$$

Tìm công thức xác định ảnh của h=2f-3g.

Cho B,B',B'' lần lượt là cơ sở của các không gian véc tơ U,V,W. Nếu $f:U\to V,\ g:V\to W$ là các ánh xạ tuyến tính thì ma trận của $g\circ f$ trong các cơ sở B và B'' là

$$[g \circ f]_B^{B''} = [g]_{B'}^{B''}[f]_B^{B'}$$

Ví dụ 9. Cho hai ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^3, g: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x,y) = (x - 2y, x, -3x + 4y),$$

$$g(x, y, z) = (x - 2y - 5z, 3x + 4y)$$

Tìm ma trận chính tắc của $g \circ f$. Từ đó suy ra công thức xác định ảnh của $g \circ f$.

Cho B là một cơ sở của không gian véc tơ n chiều V. Khi đó ánh xạ

$$\operatorname{End}(V) \to M_n$$

$$f \mapsto [f]_B$$

là một song ánh thỏa mãn các tính chất:

- 1) $[f+g]_B = [f]_B + [g]_B$
- 2) $\forall \lambda \in \mathbb{R}, \ [\lambda f]_B = \lambda [f]_B$
- 3) $[f \circ g]_B = [f]_B[g]_B$
- 4) $r(f) = r([f]_B)$

Hệ quả 1.

Cho $f \in \text{End}(V)$ và $A = [f]_B$. Khi đó f là một tự đẳng cấu khi và chỉ khi A khả nghịch và ma trận của f^{-1} trong cơ sở B là

$$[f^{-1}]_B = A^{-1}$$

Hê quả 2.

Cho $f \in \text{End}(V)$. Nếu $p(t) = a_0 + a_1 t + \ldots + a_n t^n$ là một đa thức bậc n thì ma trận của p(f) trong cơ sở B là

$$p(A) = a_0 I + a_1 A + \ldots + a_n A^n$$
.

Ví dụ 10. Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x,y) = (x+2y, x-y).$$

f có phải là một đẳng cấu không? Nếu có tìm công thức xác định ảnh của ánh xa ngược $f^{-1}.$

$5.4.2~\mathrm{Ma}$ trận của ánh xạ tuyến tính trong các cơ sở khác nhau

Định lý 5.14

Giả sử T là ma trận chuyển từ cơ sở B_1 sang cơ sở B_1' của không gian véc tơ V, và P là ma trận chuyển từ cơ sở B_2 sang cơ sở B_2' của không gian véc tơ W. Khi đó với mọi ánh xạ tuyến tính $f:V\to W$,

$$[f]_{B_1'}^{B_2'} = P^{-1}[f]_{B_1}^{B_2}T$$

Hệ quả. Giả sử T là ma trận chuyển từ cơ sở B sang cơ sở B' của không gian véc tơ V. Khi đó với mọi tự đồng cấu f của V,

$$[f]_{B'} = T^{-1}[f]_B T.$$

Ví dụ 11. Cho $f: \mathbb{R}^3 \to \mathbb{R}^2$ là ánh xạ tuyến tính được xác định bởi

$$f(x, y, z) = (x + y + z, x + y - z).$$

Tìm ma trận của f trong các cơ sở $B_1 = \{(0,1,1), (1,0,1), (1,1,0)\}$ và $B_2 = \{(1,1), (0,1)\}.$

Định nghĩa

Hai ma trận A, B được gọi là đồng dạng nếu tồn tại ma trận khả nghịch T sao cho $B = T^{-1}AT$.

Nhận xét:

- Hai ma trận của một tự đồng cấu trong các cơ sở khác nhau là đồng dạng.
- Nếu A, B là các ma trận đồng dạng thì $\det A = \det B$.

Định nghĩa

Cho B là cơ sở của không gian véc tơ V và $f\in \mathrm{End}(V)$. Định thức của f, ký hiệu det f, là định thức của ma trận $[f]_B$.

$$\det f = \det ([f]_B)$$

5.4.3 Biểu thức tọa độ của ánh xạ tuyến tính

Giả sử

- $\bullet \ f:V\to W$ là một ánh xạ tuyến tính,
- $B = \{e_1, ..., e_n\}$ là một cơ sở của V,
- $B' = \{\omega_1, ..., \omega_m\}$ là một cơ sở của W.

Nếu
$$(v)_B = (x_1, x_2, \dots, x_n), (f(v))_{B'} = (y_1, y_2, \dots, y_m)$$
 và $[f]_B^{B'} = [a_{ij}]_{m \times n}, \text{ thì}$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Công thức này được gọi là biểu thức tọa độ của ánh xạ f trong các cơ sở B, B'.

Biểu thức tọa độ của f có thể viết dưới dạng hệ phương trình tuyến tính

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{cases}$$

Định lý 5.15

Cho B là một cơ sở của không gian véc tơ $V,\,B'$ là một cơ sở của không gian véc tơ W. Nếu $f:V\to W$ là một ánh xạ tuyến tính thì với mọi $v\in V,$

$$[f(v)]_{B'} = [f]_B^{B'}[v]_B$$

Ví dụ 12. Cho ánh xạ tuyến tính $f: \mathbf{P}_3 \to \mathbf{P}_2$ có công thức xác định ảnh

$$f(a_0 + a_1t + a_2t^2 + a_3t^3) = (5a_0 + 2a_1 - 3a_2 + a_3) + (4a_0 + a_1 - 2a_2 + 3a_3)t + (a_0 + a_1 - a_2 - 2a_3)t^2.$$

- a) Viết biểu thức tọa độ của f trong các cơ sở chính tắc của \mathbf{P}_3 và \mathbf{P}_2 .
- b) Tìm một cơ sở của $\operatorname{Ker} f$ và $\operatorname{Im} f$.

Chương 5: Ánh xạ tuyến tính

- 1 5.1 Khái niệm ánh xạ tuyến tính
- 2 5.2 Nhân, ảnh và hạng của ánh xạ tuyến tính
- 3 5.3 Đơn cấu, toàn cấu và đẳng cấu
- 4 5.4 Ánh xạ tuyến tính và ma trận
- 5.5 Chéo hóa ma trận

5.5.1 Giá trị riêng, véc tơ riêng

Định nghĩa

Cho A là một ma trận vuông cấp n.

• Số λ được gọi là giá trị riêng của A nếu tồn tại x_1,\dots,x_n không đồng thời bằng 0 sao cho

$$A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \text{hay} \quad (A - \lambda I) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
 (1)

• Khi đó $v = (x_1, ..., x_n) \in \mathbb{R}^n, v \neq \mathbf{0}$ được gọi là véc tơ riêng ứng với giá trị riêng λ .

Ví dụ 13. Cho
$$A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$$
 và $v = (5, 1)$. Ta có
$$\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 20 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 5 \\ 1 \end{bmatrix},$$

do đó $\lambda=4$ là một giá trị riêng của A và v=(5,1) là một véc tơ riêng ứng với giá trị riêng $\lambda=4.$

Nhân xét:

- Các véc tơ riêng ứng với λ là các nghiệm khác không của hệ phương trình thuần nhất (1).
- Không gian nghiệm của (1) được gọi là không gian riêng ứng với giá trị riêng λ , ký hiệu V_{λ} .

Định nghĩa

Cho f là một tự đồng cấu của không gian véc tơ V. Số λ được gọi là một giá trị riêng của f nếu tồn tại véc tơ $v \in V, v \neq \mathbf{0}$ sao cho

$$f(v) = \lambda v.$$

v được gọi là véc tơ riêng ứng với giá trị riêng λ .

Ví dụ 14. Cho tự đồng cấu $f: \mathbb{R}^2 \to \mathbb{R}^2$ được xác định bởi

$$f(x,y) = (3x - y, -2x + 4y)$$

 $f(x,x)=2(x,x)\Rightarrow \lambda=2$ là một giá trị riêng của f và mọi véc tơ $v=(x,x), x\neq 0$ là véc tơ riêng ứng với $\lambda=2$.

Định nghĩa

Cho f là một tự đồng cấu của không gian véc tơ V. Với mỗi $\lambda \in \mathbb{R},$ ký hiệu

$$V_{\lambda} = \{v \in V | f(v) = \lambda v\} = \operatorname{Ker}(f - \lambda \operatorname{Id}_V)$$

Nếu λ là một giá trị riêng của f thì V_{λ} được gọi là không gian riêng ứng với giá trị riêng λ .

Định lý 5.16

- 1) λ là giá trị riêng của f khi và chỉ khi $V_{\lambda} \neq \{0\}$.
- 2) Nếu λ là một giá trị riêng của f thì mọi véc tơ v của V_{λ} , $v \neq \mathbf{0}$ là một véc tơ riêng ứng với giá trị riêng λ .
- 3) Với mọi λ , không gian con V_{λ} bất biến đối với f, tức là $f(V_{\lambda}) \subset V_{\lambda}$.

Nhận xét: Giả sử f là một tự đồng cấu của không gian véc tơ V, B là một cơ sở của V và $A = [f]_B$. Khi đó

- $v \in V$ là véc tơ riêng của f ứng với giá trị riêng λ khi và chỉ khi $(v)_B$ là véc tơ riêng của A ứng với giá trị riêng λ .
- Nếu $V = \mathbb{R}^n$ và B là cơ sở chính tắc của \mathbb{R}^n thì v là véc tơ riêng của f ứng với giá trị riêng λ khi và chỉ khi nó là véc tơ riêng của A ứng với giá trị riêng λ .

5.5.2 Đa thức đặc trung

Định nghĩa

ullet Cho A là một ma trận vuông cấp n. Định thức

$$\mathcal{P}_A(\lambda) = \det(A - \lambda I)$$

là một đa thức bậc n của λ .

 $\mathcal{P}_A(\lambda)$ được gọi là đa thức đặc trưng của A.

• Giả sử f là một tự đồng cấu của không gian véc tơ V, B là một cơ sở của V và $A = [f]_B$. Khi đó định thức

$$\mathcal{P}_f(\lambda) = \det(f - \lambda \operatorname{Id}_V) = \det(A - \lambda I)$$

được gọi là đa thức đặc trưng của f.

Định lý 5.17

 λ_0 là giá trị riêng của A (tương ứng của f) khi và chỉ khi nó là nghiệm của đa thức đặc trung của A (tương ứng của f).

Ví dụ 15. Tìm các giá trị riêng và véc tơ riêng của tự đồng cấu $f: \mathbb{R}^2 \to \mathbb{R}^2$ được xác định bởi f(x,y) = (3x - y, -2x + 4y).

5.5.3. Tự đồng cấu chéo hóa được và ma trận chéo hóa được

Ma trân chéo

Ma trận vuông D được gọi là ma trận chéo nếu mọi phần tử nằm ngoài đường chéo chính đều bằng 0, tức là D có dạng

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Định nghĩa

- Tự đồng cấu f của không gian véc tơ V được gọi là chéo hóa được nếu tồn tại một cơ sở B của V sao cho $[f]_B$ có dạng chéo.
- Một ma trận vuông A được gọi là chéo hóa được nếu tồn tại ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận chéo.

Nhận xét: Một tự đồng cấu f của không gian véc tơ V chéo hoá được khi và chỉ khi tồn tại một cơ sở của V gồm các véc tơ riêng của f.

Định lý 5.18

Nếu v_1, \ldots, v_m là các véc tơ riêng ứng với các giá trị riêng phân biệt $\lambda_1, \ldots, \lambda_m$ của tự đồng cấu f (hoặc ma trận A) thì $\{v_1, \ldots, v_m\}$ độc lập tuyến tính.

Hệ quả 1.

Giả sử f là một tự đồng cấu của không gian véc tơ n chiều V.

- Nếu đa thức đặc trưng của f có n nghiệm thực phân biệt thì f chéo hóa được.
- Nếu $\mathcal{P}_f(\lambda) = (-1)^n (\lambda \lambda_1)^{m_1} \dots (\lambda \lambda_k)^{m_k}$, trong đó $m_1 + \dots + m_k = n$ và $\lambda_1, \dots, \lambda_k$ đôi một khác nhau, thì f chéo hoá được khi và chỉ khi

$$\dim V_{\lambda_i} = m_i, \forall i = 1, \dots, k.$$

Hệ quả 2. Cho A là một ma trận vuông cấp n.

- Nếu đa thức đặc trưng của A có n nghiệm thực phân biệt thì A chéo hoá được.
- Nếu $\mathcal{P}_A(\lambda) = (-1)^n (\lambda \lambda_1)^{m_1} \dots (\lambda \lambda_k)^{m_k}$, trong đó $m_1 + \dots + m_k = n$ và $\lambda_1, \dots, \lambda_k$ đôi một khác nhau, thì A chéo hoá được khi và chỉ khi

$$\dim V_{\lambda_i} = m_i, \forall i = 1, \dots, k,.$$

5.5.4. Thuật toán chéo hóa

Bài toán chéo hóa ma trận

Cho A là một ma trận vuông cấp n. Tìm ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận chéo.

Bước 1. Tìm các giá trị riêng $\lambda_1, \ldots, \lambda_k$ của A bằng cách giải phương trình $\mathcal{P}_A(\lambda) = 0$.

Bước 2. Với mỗi giá trị riêng λ_i , tìm số chiều của không gian riêng V_{λ_i} . Các véc tơ riêng $v=(x_1,x_2,\ldots,x_n)$ là các nghiệm khác không của hệ phương trình thuần nhất

$$(A - \lambda_i I) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}.$$

$$\dim V_{\lambda_i} = d_i = n - r(A - \lambda_i I)$$

- Nếu $d_i < m_i$ với i nào đó, $i = 1, \ldots, k$, $(m_i \text{ là số bội của nghiệm } \lambda_i)$ của đa thức đặc trưng) thì A không chéo hóa được.
- Nếu $d_i = m_i$ với mọi $i = 1, \ldots, k$, tiếp tục bước 3.

Bước 3. Trong mỗi không gian riêng V_{λ_i} , $i=1,\ldots,k$, chọn một cơ sở gồm m_i véc tơ riêng. P là ma trân có các côt là các véc tơ riêng đã chon. Ma trân $P^{-1}AP = D$ là ma trân chéo, các phần tử trên đường chéo chính của D là các giá tri riêng của A.

Ví dụ 16. Cho ma trận $A = \begin{bmatrix} 2 & -1 & 0 \\ 9 & 4 & 6 \\ -8 & 0 & -3 \end{bmatrix}$. Tìm một ma trận P sao

cho $P^{-1}AP$ có dạng chéo.

Ví dụ 17. Cho tự đồng cấu $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi

$$f(x, y, z) = (8x - 2y + 2z, -2x + 5y + 4z, 2x + 4y + 5z).$$

Tìm một cơ sở của \mathbb{R}^3 để ma trận của f trong cơ sở này có dạng chéo.

Giải.

• Ma trận chính tắc của f là

$$A = \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix}$$

• Đa thức đặc trưng của f là

$$\mathcal{P}_{f}(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 8 - \lambda & -2 & 2 \\ -2 & 5 - \lambda & 4 \\ 2 & 4 & 5 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 8 - \lambda & -2 & 0 \\ -2 & 5 - \lambda & 9 - \lambda \\ 2 & 4 & 9 - \lambda \end{vmatrix} = \begin{vmatrix} 8 - \lambda & -2 & 0 \\ -4 & 1 - \lambda & 0 \\ 2 & 4 & 9 - \lambda \end{vmatrix}$$

$$= (9 - \lambda)(-1)^{6} \begin{vmatrix} 8 - \lambda & -2 \\ -4 & 1 - \lambda \end{vmatrix}$$

$$= (9 - \lambda)(\lambda^{2} - 9\lambda) = -\lambda(9 - \lambda)^{2}.$$

•
$$\mathcal{P}_f(\lambda) = 0 \Leftrightarrow \begin{bmatrix} \lambda = 0 \\ \lambda = 9 \end{bmatrix} \Rightarrow \text{các giá trị riêng của } f \text{ là } \lambda_1 = 0, \lambda_2 = 9.$$

• Với $\lambda_1 = 0, v = (x_1, x_2, x_3) \neq \mathbf{0}$ là véc tơ riêng ứng với giá trị riêng $\lambda_1 = 0$ khi và chỉ khi

$$(A - \lambda_1 I) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(1)

Ta biến đổi ma trận bổ sung của hệ phương trình (1)

$$\begin{bmatrix} 8 & -2 & 2 & 0 \\ -2 & 5 & 4 & 0 \\ 2 & 4 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 4 & 5 & 0 \\ -2 & 5 & 4 & 0 \\ 8 & -2 & 2 & 0 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 2 & 4 & 5 & 0 \\ 0 & 9 & 9 & 0 \\ 0 & -18 & -18 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 4 & 5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(1) \Leftrightarrow \begin{cases} 2x_1 + 4x_2 + 5x_3 = 0 \\ x_2 + x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} 2x_1 + 4x_2 = -5x_3 \\ x_2 = -x_3 \end{cases}$$
$$\Leftrightarrow \begin{cases} x_1 = -\frac{1}{2}x_3 \\ x_2 = -x_3 \end{cases}$$

Do đó

$$v = (x_1, x_2, x_3) \in V_{\lambda_1} \Leftrightarrow v = \left(-\frac{1}{2}x_3, -x_3, x_3\right)$$

 $\Leftrightarrow v = -\frac{1}{2}x_3(1, 2, -2) \Rightarrow V_{\lambda_1} = \text{span}\{(1, 2, -2)\}.$

Chọn $v_1 = (1, 2, -2)$.

• Với $\lambda_2 = 9, v = (x_1, x_2, x_3) \neq \mathbf{0}$ là véc tơ riêng ứng với giá trị riêng $\lambda_2 = 9$ khi và chỉ khi

$$(A - \lambda_2 I) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow -x_1 - 2x_2 + 2x_3 = 0 \Leftrightarrow x_1 = -2x_2 + 2x_3.$$

Do đó

$$v = (x_1, x_2, x_3) \in V_{\lambda_2} \Leftrightarrow v = (-2x_2 + 2x_3, x_2, x_3)$$

$$\Leftrightarrow v = (-2x_2, x_2, 0) + (2x_3, 0, x_3) \Leftrightarrow v = x_2(-2, 1, 0) + x_3(2, 0, 1)$$

$$\Rightarrow V_{\lambda_2} = \operatorname{span}\{(-2, 1, 0), (2, 0, 1)\}.$$

Chọn
$$v_2 = (-2, 1, 0), v_3 = (2, 0, 1).$$

Ta có $B' = \{v_1, v_2, v_3\}$ là một cơ sở của \mathbb{R}^3 và ma trận của f trong cơ sở này có dạng chéo

$$[f]_{B'} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}.$$