1. Faktör analizi; bir dizi gözlemlenen değişkenin arkasındaki, olası gizli yapıları keşfetmek ve ilişkileri ortaya çıkarmak için kullanılan istatistiksel bir tekniktir.

Verinin boyutunu azaltmak, verideki gizli desenleri ortaya çıkarmak, değişken seçimi yapmak, verinin altta yatan yapısı hakkındaki varsayımları test etmek, veri kümesinden çoklu doğrusallığı ve gürültüyü kaldırmak amacıyla yapılabilir. Bunlar; veri kümesini basitleştirmye, verinin yorumlanmasını kolaylaştırmaya, analiz veya modelleme görevlerinin basitleştirilmesine, tahmin modellerinin performansını artırmaya yardımcı olur.

Varsayımları; verilerin oran ya da aralık ölçeğinde olması, verinin çok değişkenli normal dağılım gösteren bir evrenden çekilmiş olması, her değişken çiftinin doğrusal ilişki içinde olması ve iki değişkenli normal dağılım göstermesidir.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	,698	
Bartlett's Test of Sphericity Approx. Chi-Square		522,793
_df		66
Sig.		,000

Değişkenlerdeki, altta yatan faktörlerin neden olabileceği varyans oranını gösteren KMO değeri 0,50'den büyüktür. Faktör analizi faydalı olabilir.

 H_0 : |R| = 1, H_1 : $|R| \neq 1$, Korelasyon matrisi birim matris değildir. Değişkenler ilgilidir. Yapı tespitine uygundur.

Communalities

	Initial	Extraction	
RATIO14	1,000	,900	
RATIO16	1,000	,683	В
RATIO17	1,000	,679	(
RATIO11	1,000	,836	
RATIO6	1,000	,349	F
RATIO8	1,000	,784	F
RATIO2	1,000	,895	D
RATIO10	1,000	,954	В
RATIO12	1,000	,892	F
RATIO4	1,000	,923	_
RATIO13	1,000	,492	Ç
RATIO9	1,000	,957	

Bileşenler tarafından hesaplanan, her değişkendeki varyans tahminlerine (Extraction) bakıldığında:

RATIO6 ve RATIO13 için değerlerin düşük olduğu görülüyor. RATIO16, RATIO17 ve RATIO8 için de değerlerin yüksek olmadığı söyleyenebilir.

Bu da çıkarılan bileşenlerin değişkenleri orta derecede temsil ettiğini gösterir. RATIO6 değişkeninin ortak varyansı oldukça düşüktür, başka bir bileşen

çıkarmamız gerekebilir.

Extraction Method: Principal

Component Analysis.

Total Variance Explained

	Initial Eigenvalues			
Component	Total	% of Variance	Cumulative %	
1	5,764	48,033	48,033	
2	2,347	19,556	67,589	
3	1,235	10,293	77,882	
4	,867	7,228	85,109	
5	,708	5,901	91,010	
6	,384	3,196	94,206	
7	,349	2,909	97,115	
8	,145	1,206	98,321	
9	,121	1,011	99,332	
10	,042	,348	99,681	
11	,024	,197	99,878	
12	,015	,122	100,000	

İlk bileşen, tüm değişkenlerdeki toplam varyansın %48'ini açıklar.

İlk üç bileşen, tüm değişkenlerdeki toplam varyansın yaklaşık %78'ini açıklar. Özellikle 9. bileşenden sonra toplam varyansın açıklanabilirliğinde çok az değişim olduğu görülüyor.

Ozdeğeri 1'den büyük olan ilk üç ana bileşen, çıkarılan çözümü oluşturur.

Veri kümesinin karmaşıklığı, ilk 3 bileşeni kullanarak % 22'lik bir bilgi kaybıyla azaltılabilir.

Extraction Method: Principal Component Analysis.

Total Variance Explained

Rotation Sums of Squared Loadings

Component	Total	% of Variance	Cumulative %
1	5,383	44,859	44,859
2	2,340	19,502	64,361
3	1,622	13,520	77,882

Döndürme sonucunda kümülatif varyasyon yüzdesinin bileşenlere daha eşit bir şekilde yayıldığı görülüyor.

İlk çözümdeki her bileşenin, özdeğerine karşılık çizilen grafiğe bakıldığında, son büyük düşüşün üçüncü ve dördüncü bileşenler arasında meydana geldiği görülüyor. Bu nedenle ilk üç bileşeni kullanmak kolay bir seçimdir.

Rotated Component Matrix^a

	Component			
	1	2	3	
RATIO14	,939	,108	,088	
RATIO16	,783	,109	-,241	
RATIO17	,517	-,015	,641	
RATIO11	,328	,764	,381	
RATIO6	-,570	,107	-,113	
RATIO8	,613	-,027	,638	
RATIO2	,929	,108	,143	
RATIO10	,247	,929	-,176	
RATIO12	,923	,179	,093	
RATIO4	,948	,095	,125	
RATIO13	-,201	-,103	,664	
RATIO9	-,314	,891	-,254	

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

a. Rotation converged in 4 iterations.

Component Plot in Rotated Space

Döndürülen bileşen matrisine bakıldığında:

- **1. bileşen**in; RATIO4, RATIO14, RATIO2 ve RATIO12 değişkenleri ile en yüksek düzeyde ilişkili olduğu, **RATIO14**'ün diğer iki bileşenle daha az ilişkili olduğu görülüyor.
- **2. bileşen**in; RATIO10 ve RATIO9 değişkenleri ile en yüksek düzeyde ilişkili olduğu, **RATIO10**'un diğer iki bileşenle daha az ilişkili olduğu görülüyor.
- 3. bileşenin; RATIO13 ve RATIO17 değişkenleri ile en yüksek düzeyde ilişkili olduğu, RATIO17'nin 1. bileşenle yüksek ilişkili olduğu görülüyor. RATIO13 diğer iki bileşenle daha az ilişkilidir. 3. bileşenin RATIO13'le ilişkisi, diğer bileşenlerin en yüksek düzeydeki ilişkilerinden daha düşüktür.

Temel yapı için bakıldığında, 1. faktör dışında gruplar çok açık değildir. Örenğin RATIO9, RATIO10 ve RATIO11, 2. faktörle yüksek ilişkili ve 1. ve 3. faktörle aynı seviyelerde ilişkili olan bir grup oluşturur. Gözlemin standartlaştırılmış değişken değerleri ile bileşenin faktör yükü katsayıları çarpılarak hesaplanan bileşen skorlarına ve bu skorların garfiklerine bakarak aykırı değerleri ve doğrusal olmayan ilişkileri kontrol edebiliriz. Grafiklere bakarak aykırı değer olduğunu ve 3. bileşen ile diğer bileşenler arasında doğrusal ilişki olduğunu söylemek mümkündür.

Component Score Coefficient Matrix						
Component						
	1	2	3			
RATIO14	,190	-,014	-,069			
RATIO16	,205	-,034	-,284			
RATIO17	,019	,018	,385			
RATIO11	-,044	,362	,303			
RATIO6	-,119	,082	,017			
RATIO8	,042	,004	,366			
RATIO2	,179	-,008	-,028			
RATIO10	,011	,388	-,073			
RATIO12	,180	,020	-,057			
RATIO4	,187	-,017	-,045			
RATIO13	-,140	,035	,503			
RATIO9	- 100	406	- 047			

Scatterplot matrix of factor scores

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

Component Scores.

2. Aşağıdaki grafik ve tabloya bakarak verinin, normale yakın bir dağılım gösterdiği, aşırı değerlere sahip olduğu ve çoklu bağlantı sorunu olduğu söylenebilir.

Değişkenlerin ortalamaları ve varyansları birbirlerinden oldukça farklıdır. Değişkenler dönüştürülür.

Aşırı değerler çıkarılarak daha iyi sonuçlar elde edilmiştir. Aşırı değerler olmadan uygulanan **en uzak komşuluk yöntemi** sonucunda oluşan dendograma bakıldığında, bankaların iki ana küme oluşturduğu görülüyor.

Aşırı değerler çıkarılarak uygulanan bu yöntem, Türk Ticaret bankası ve Etibank dışındaki tüm bankaları başarı durumlarına uygun bir şekilde kümelemiştir.

Aşırı değerleri çıkarılmış verinin, **iki aşamalı kümeleme** yöntemi sonuçlarına bakıldığında iki küme oluştuğu görülüyor. (En etkili değişken RATIO12 ve etkisi en az olan değişken RATIO11 olarak belirlenmiştir.)
Aşırı değerler çıkarılarak uygulanan bu yöntem, Türk Ticaret bankası ve Etibank dışındaki tüm bankaları başarı durumlarına uygun bir şekilde kümelemiştir.

İlk iki temel bileşen yardımıyla, gözlemler için elde edilen temel bileşen skorlarının saçılım grafiğine bakıldığında:

Aşırı değerler olan Yurt Tic. ve K.(41), Bank Kapital(6) ve İktisat(17) değerlerinin kümelere dahil olmadığını; başarılı bankaların, Türk Ticaret dışında ve Etibank dahil olmak üzere ortada kümelendiğini; başarısız bankaların ise sağda kümelendiğini görüyoruz.

3 Diskriminant analizi; önceden bilinen farklı kitlelerden birine, üzerinde ölçüm yapılan yeni bir birim atanmak istendiğinde kullanılan yöntemdir. Amaç, atama işlemini minumum hatayla yapmak, birimlerin gelmiş oldukları anakütleleri belirlemektir. Aynı zamanda gruplar arası ayırıma en fazla etki eden ayırıcı değişkenleri belirlemek, verilerin gruplara ayrılmasına yardımcı olmak ve bağımlı değişkenin varyansının ne kadarının bağımsız değişkenler tarafından açıklanabildiğini belirlemek için de kullanılır.

- Varsayımlar kümeleme analizi için de test edilmiştir. Gruplardaki gözlem sayıları bağımsız değişken sayısının en az 4-5 katı değildir. Grup içi korelasyon matrisinde %75'in üstünde olan bir çok değişken vardır. Değişkenler azaltılabilir.

Tests of	Equality	of Group	Means
----------	----------	----------	-------

-	Wilks' Lambda	F	df1	df2	Sig.
RATIO14	,846	7,110	1	39	,011
RATIO16	,741	13,605	1	39	,001
RATIO17	,652	20,772	1	39	,000
RATIO11	,944	2,321	1	39	,136
RATIO6	,845	7,150	1	39	,011
RATIO8	,846	7,074	1	39	,011
RATIO2	,796	9,973	1	39	,003
RATIO10	,998	,077	1	39	,783
RATIO12	,854	6,659	1	39	,014
RATIO4	,795	10,049	1	39	,003
RATIO13	,987	,522	1	39	,474
RATIO9	,860	6,331	1	39	,016

 H_0 : Ortalamalar arasındaki fark anlamlı değildir.

 H_1 : Ortalamalar arasındaki fark anlamlıdır.

RATIO10, RATIO13 ve RATIO11 için anlamlılık değerleri 0.10'dan oldukça büyüktür, bu değişkenler muhtemelen modele katkı sağlamayacaklardır.

Test Results

Box's	M	27,916
F	Approx.	3,874
	df1	6
	df2	922,033
	Sig.	,001

 H_0 : Varyans-Kovaryans Matrisi eşittir.

 H_1 : Varyans-Kovaryans Matrisi eşit değildir.

17.679

3

37.000

,000

Hipotez reddedilir. Karesel ayırma analizi uygulanması uygundur.

Tests null hypothesis of equal population covariance matrices

Variables Entered/Removeda,b,c,d Wilks' Lambda Exact F df2 Statistic ,000 RATIO17 .652 39.000 20.772 1 39,000 2 38,000 ,000 RATIO16 .497 2 39.000 19.243

39.000

At each step, the variable that minimizes the overall Wilks' Lambda is entered

a. Maximum number of steps is 24

RATIO12

- b. Minimum partial F to enter is 3.84.
- c. Maximum partial F to remove is 2.71.
- d. F level, tolerance, or VIN insufficient for further computation

,411

F istatistiği 3,84'den büyük olan RATIO17, RATIO18 ve RATIO12 değişkenleri modele alınacaklardır. RATIO2 muhtemelen yüksek korelasyona sahip olduğu için alınmamıştır.

Eigenvalues					
				Canonical	
Function	Eigenvalue	% of Variance	Cumulative %	Correlation	
1	1,433ª	100,0	100,0	,768	

a. First 1 canonical discriminant functions were used in the analysis.

değişkenliğin) yaklaşık %59'unu açıklayabilmektedir.

Özdeğer bir, 1,433 bulunmuştur ve varyansın %100'ünü açıklamaktadır. Ayrıca kanonik korelasyon katsayısı 0,768 olarak bulunmuştur. Model bağımlı değişkendeki varyansın (ya da diskriminant skorlarındaki

	Function
	1
RATIO17	,610
RATIO16	,493
RATIO2 ^a	,349
RATIO12	,345
RATIO14 ^a	,332
RATIO4 ^a	,272
RATIO6 ^a	-,252
RATIO13 ^a	,234
RATIO11a	,227
RATIO8 ^a	,203
RATIO10 ^a	,189
RATIO9 ^a	-,042

Structure Matrix

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions
Variables ordered by absolute size of correlation within function.

a. This variable not used in the analysis.

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1	,411	33,349	3	,000

İki grubu ayırmak için bir tane fonksiyon kullanmak bizim için yeterlidir

 H_0 : Ayırt etme gücü anlamsızdır.

 H_1 : Ayırt etme gücü anlamlıdır.

Hipotez reddedilir. Ayırım gücü anlamlıdır.

Wilks' Lambda 0,411: diskriminant skorlarındaki değişkenliğin %41.1'i açıklanmamaktadır.

Fonksiyona bakarak başarısız Standardized Fonksiyon: Functions at Group bankaların ortalamalarının Canonical Centroids Discriminant $D = 1,282 \times RATIO16 + 1,141 \times RATIO17 -$ 0,575 ve başarılı bankaların Function **Function** ortalamalarının -2,372 olduğunu 0,951 x RATIO12 Coefficients görüyoruz. Fonksiyon skorlarının Function 1.00 ortalaması 0 olduğundan Unstandardized canonical $33 \times 0,575 + 8 \times -2,372 \approx 0$ 'dır. RATIO16 1,282 RATIO17 1,141 functions evaluated RATIO12 -,951 at group means

Classification Results^a

		Predicted Group Membership			
		Factor	,00	1,00	Total
Original	Count	,00	32	1	33
		1,00	1	7	8
	%	,00	97,0	3,0	100,0
		1,00	12,5	87,5	100,0

a. 95,1% of original grouped cases correctly classified.

Varyans-Kovaryans Matrisi eşit olmadığından, her grubun kendi varyansı kullanılarak bulunan sonuçta: başarısızken, başarılı olarak belirlenen banka Ulusal(39-aşırı değer) ve başarılıyken, başarısız olarak belirlenen banka Türk Ticaret'tir.

SPSS, Cross-validated sonuçlarını sadece grup içi varyans seçtiğimde verdiği için onun üzerinden de değerlendirme yapacağım.

Classification Results^{a,c}

		Predicted Group Membership			
		Factor	,00	1,00	Total
Original	Count	,00	33	0	33
		1,00	1	7	8
	%	,00	100,0	,0	100,0
		1,00	12,5	87,5	100,0
Cross-validated ^b	Count	,00	30	3	33
		1,00	1	7	8
	%	,00	90,9	9,1	100,0
		1,00	12,5	87,5	100,0

a. 97,6% of original grouped cases correctly classified.

Hatalı olarak belirlenen sadece Tük Ticaret Bankası'dır. Başarılıyken, başarısız olarak sınıflandırılmıştır.

Cross-validated:

Alternatif, Bank Kapital(6-aşırı değer) ve Ulusal(39-aşırı değer) başarısızken, başarılı olarak sınıflandırılırken; Türk Ticaret başarılıyken, başarısız olarak sınıflandırlımıştır.

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.

c. 90,2% of cross-validated grouped cases correctly classified.