Aug 24 int. 1b, atc = at(b+c) Suppose al. (b+c) TO JOICH ST. alb => Jdz EN s.t. b= a.d2 = ad, - ad2 = a(d-d2) La alc Contradiction!

Bug- 24 2(k+1) < 22(2+1) = 2k

Greedy sol. A: a, az ap Opt. sol. O: 0, 0z, om	farkfeze
Opt. sol. 0: 01,02, om	mik
assume for < for	• • •
• *	
Greedy stays a head: clain: For all f(ar) < f(indices rsk
\$(ar) < \$(or)
A a a a a a a a a a a a a a a a a a a a	1 oc
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	not !!
Proof by induction	posible
corlied finish time)	4 Choice
(earliest finish time)	
ind hope holds for (-1: f(a.r.i) < f(or-i) ind step (
ind step	

flor-1) SS (or) Sflor) Toril T
"feasibility of opt. sol."
$f(\alpha r_{-1}) \leq f(\alpha r_{-1})$ by ind. hyp. $f(\alpha r_{-1}) \leq s(\alpha r)$
((or. 1) ≤ S (or)
-> or is compatible with aar.
-> it was an option for greedy
s job ar was chosen by greedy
=> f(ar) \in f(or)
4

th Greedy is optimal (k=m)
$A: a, \dots ak$
$A: a, \dots a_k$ $0: o_1 \dots - o_m $ (by opt. of 0)
Assume that k <m< td=""></m<>
k: ow claim says that flak) & flok)
opt. must have of (ken)
opt. O is feaible
→ \$ (01) € 5 (01)
after iter. R
-> contradicts with greedy
stopping at iter. te!
=) k=m

Dijkstra's Algo correctness: (2->4)
Greedy stays ahead.
Invariant: For each uES d(u) is
Invariant: For each uES d(u) is the length of the shortest sind u path
Proof by induction (size of 5).
base: 151=1 5=153 d(s)=0
ind. hyp. when ISI= R > 1, the inv. holds
Yues d(u) is shorter part length.
ind step. Consider next mode added
To 5 by Dijkstra.
We call : L V.
SE SULVY
size k+1

31 (3)
* * *
$\frac{f(p) \Rightarrow f(p') + e_{xy}}{\Rightarrow d(x) + e_{xy}} $ (becomise xes) \(\frac{\pi}{\pi} \T(y) \text{(by def).} \(\frac{\pi}{\pi} \T(y) \text{(by greedy (boice)}
For any path, Y(P) >, T(v)=d(v) =>d(v) is shorter!
=>d(v) is shortest!

-