Qiulin Fan

Assignment webHW7 due 03/18/2024 at 11:59pm EDT

ma217-w24

Problem 1. (1 point)

Consider the transformation $T: U^{2\times 2} \to U^{2\times 2}$, where $U^{2\times 2}$ is the space of upper-triangular matrices. T is given by $T(M) = \begin{bmatrix} -3 & -3 \\ 0 & 1 \end{bmatrix} M$.

Find the matrix for this transformation relative to the standard basis $\mathfrak{U} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

$$B = \left[\begin{array}{ccc} - & - & - \\ - & - & - \\ - & - & - \end{array} \right]$$

Determine whether T is an isomorphism or not, and determine bases for $\ker(T)$ and $\operatorname{im}(T)$ select the correct answers below. Select all of the following that are correct statements about T.

- A. T is an isomorphism.
- B. $\dim(\operatorname{im}(T)) = 3$ and $\dim(\ker(T)) = 0$
- C. $\dim(\operatorname{im}(T)) = 2$ and $\dim(\ker(T)) = 1$
- D. $\dim(\operatorname{im}(T)) = 0$ and $\dim(\ker(T)) = 3$
- E. T is not an isomorphism.

Answer(s) submitted:

$$\bullet \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\bullet AB$$

submitted: (correct) recorded: (correct)

Problem 2. (1 point)

Consider the transformation $T : \mathbb{P}_2 \to \mathbb{P}_2$, where \mathbb{P}_2 is the space of second-degree polynomials, given by T(f) = f'' + 2f.

Find the matrix for this transformation relative to the standard basis $\mathfrak{U} = (1, t, t^2)$.

$$B = \left[\begin{array}{ccc} - & - & - \\ - & - & - \\ - & - & - \end{array} \right]$$

Determine whether T is an isomorphism or not, and determine bases for $\ker(T)$ and $\operatorname{im}(T)$. Use these to answer the following. Select all of the following that are correct statements about T.

- A. T is an isomorphism.
- B. rank(B) = 1
- C. T is not an isomorphism.
- D. dim(im(T)) = 3 and dim(ker(T)) = 0
- E. $\dim(\operatorname{im}(T)) = 1$ and $\dim(\ker(T)) = 2$

Answer(s) submitted:

$$\bullet \begin{bmatrix}
2 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{bmatrix}$$
• AD

submitted: (correct)
recorded: (correct)

1

Problem 3. (1 point)

Let \mathcal{P}_2 be the space of polynomials of degree at most 2 in the variable t, and consider the transformation $T: \mathcal{P}_2 \to \mathcal{P}_2$ given by T(f) = f(3) + f'(3)(t-3).

Find the matrix for this transformation relative to the standard basis $\mathfrak{U} = (1, t, t^2)$.

$$B = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix}$$

Determine whether T is an isomorphism or not, and determine bases for $\ker(T)$ and $\operatorname{im}(T)$ select the correct answers below. Select all of the following that are correct statements about T.

- A. dim(im(T)) = 2 and dim(ker(T)) = 1
- B. T is not an isomorphism.
- C. $\dim(\operatorname{im}(T)) = 0$ and $\dim(\ker(T)) = 3$
- D. T is an isomorphism.
- E. dim(im(T)) = 3 and dim(ker(T)) = 0

The basis for $\operatorname{im}(T)$ suggested by the matrix B is $\{$ _______ $\}$ (Enter the elements of the basis as a comma-separated list, and note that your basis should consist of vectors in \mathcal{P}_2 .)

A basis for ker(T) is _____

(Note that your basis should consist of vectors in \mathcal{P}_2 .) Answer(s) submitted:

$$\bullet \ \left[\begin{array}{ccc} 1 & 0 & -9 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \end{array} \right]$$

- ĀB
- 1.*t*
 - $9 6t + t^2$

submitted: (correct) recorded: (correct)

Problem 4. (1 point)

Consider the vector space $U^{2\times 2}$ of upper triangular 2×2 matrices, with two different bases: first the standard basis

$$\mathfrak{E} = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right),$$

and also the non-standard basis

$$\mathfrak{B} = \left(\left[\begin{array}{cc} 1 & 3 \\ 0 & -1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & -2 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right] \right).$$

Find the change of basis matrix $S_{\mathfrak{E} \to \mathfrak{B}}$ from \mathfrak{E} to \mathfrak{B} . (*Read carefully!*)

Answer(s) submitted:

$$\bullet \begin{bmatrix}
1 & 0 & 0 \\
-3 & 1 & 0 \\
5 & -2 & -1
\end{bmatrix}$$

submitted: (correct)
recorded: (correct)

Problem 5. (1 point)

 $\mathfrak{B} = (-1+2t, 2-5t)$ is a basis for P_1 . Suppose that $T: P_1 \to P_1$ is a linear transformation whose \mathfrak{B} -matrix, B, is

$$B = \left[\begin{array}{cc} -2 & 1 \\ 1 & 0 \end{array} \right].$$

Find the matrix A of T relative to the standard basis (1,t) for P_1 .

$$A = \left[\begin{array}{cc} - & - \\ - & - \end{array} \right]$$

Answer(s) submitted:

$$\bullet \begin{bmatrix} -18 & -7 \\ 41 & 16 \end{bmatrix}$$

submitted: (correct)

recorded: (correct)

Problem 6. (1 point)

Find the missing coordinates such that the three vectors form an orthonormal basis for \mathbb{R}^3 :

$$\begin{bmatrix} 0.6 \\ -0.8 \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ -0.6 \\ - \end{bmatrix}.$$

Answer(s) submitted:

- 0
- 0
- 0
- −0.8

• 0

submitted: (correct)

recorded: (correct)

Problem 7. (1 point)

Compute the orthogonal projection of $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ -7 \end{bmatrix}$ onto the line

$$L$$
 through $\begin{bmatrix} 3 \\ 6 \\ -4 \end{bmatrix}$ and the origin.

$$\operatorname{proj}_L(\vec{v}) = \left[\begin{array}{c} ----- \\ ---- \end{array} \right].$$

Answer(s) submitted:

$$\bullet \begin{bmatrix}
\frac{120}{61} \\
\frac{240}{61} \\
-\frac{160}{61}
\end{bmatrix}$$

submitted: (correct) recorded: (correct)

Problem 8. (1 point)

Let
$$\vec{y} = \begin{bmatrix} -9 \\ 1 \\ 5 \end{bmatrix}$$
 and $\vec{u} = \begin{bmatrix} 7 \\ -4 \\ -1 \end{bmatrix}$. Write \vec{y} as the sum of two

orthogonal vectors, \vec{x}_1 in $Span\{u\}$ and \vec{x}_2 orthogonal to \vec{u} .

$$\vec{x}_1 = \begin{bmatrix} - & & \\ & - & \\ & - & \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} - & & \\ - & & \\ - & & \end{bmatrix}.$$

Answer(s) submitted:

$$\begin{bmatrix}
-\frac{84}{11} \\
\frac{48}{11} \\
\frac{12}{11}
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{15}{11} \\
-\frac{37}{11} \\
\frac{43}{11}
\end{bmatrix}$$

submitted: (correct) recorded: (correct)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Problem 9. (1 point)

Let W be the set of all vectors $\begin{bmatrix} x \\ y \\ x+y \end{bmatrix}$ with x and y real. Find

a basis of W^{\perp} .

$$\left\{ \left[\begin{array}{c} - \\ - \end{array} \right] \right\}$$

Answer(s) submitted:

$$\bullet \left[\begin{array}{c} -1 \\ -1 \\ 1 \end{array} \right]$$

submitted: (correct)
recorded: (correct)

Problem 10. (1 point)

Consider the two vectors $\vec{v} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ 3 \\ 3 \\ 2 \end{bmatrix}$ in \mathbb{R}^4 .

Compute the following:

$$\vec{v} \cdot \vec{w} = \underline{\qquad}.$$

$$||v|| ||w|| = \underline{\qquad}.$$

The angle θ between \vec{v} and \vec{w} , measured in radians = _____. Answer(s) submitted:

- -4• $\sqrt{345}$ • $\cos^{-1}\left(-\frac{4}{345}\right)$
- $\cos^{-1}\left(-\frac{4}{\sqrt{345}}\right)$ submitted: (correct)

recorded: (correct)