Probability Theory I Assignment 3

Claire He

27 septembre 2022

Exercise 1

We are proving (i) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i) and (ii) \Rightarrow (i).

(i) \Rightarrow (ii) Suppose events $\{A_{\alpha}\}_{\alpha\in I}$ are independent. Note that $\sigma(A_{\alpha}) := \{A_{\alpha}, A_{\alpha}^{c}, \varnothing, \Omega\}$. Also, for any set $A, A \cap \varnothing = \varnothing$ and $A \cap \Omega = A$ so the property of independence works on these types of sets. Moreover, for $\alpha_{1}, \ldots, \alpha_{n} \in I$ $P(\bigcap_{i=1}^{n} A_{\alpha_{i}}) = \prod_{i=1}^{n} P(A_{\alpha_{i}})$ by hypothesis. Therefore, to show that our $\{\sigma(A_{\alpha})\}_{\alpha\in I}$ are independent, it suffices to show that for A_{1}, A_{2} in our events collection, $P(A_{1} \cap A_{2}^{c}) = P(A_{1})P(A_{2}^{c})$. Will follow that for any $\alpha_{0}, \ldots, \alpha_{n} \in I$, $P(\bigcap_{j=1}^{n} A_{\alpha_{j}} \cap A_{\alpha_{0}}^{c}) = \prod_{j=1}^{n} P(A_{\alpha_{j}})P(A_{\alpha_{0}}^{c})$.

$$P(A_1 \cap A_2^c) = P(A_1 \setminus (A_2 \cap A_1))$$

= $P(A_1) - P(A_2 \cap A_1)$ by independence of events
= $P(A_1) - P(A_2)P(A_1)$
= $P(A_1)(1 - P(A_2)) = P(A_1)P(A_2^c)$ as required.

- (ii) \Rightarrow (i) Is straightforward using that $\sigma(A_{\alpha}) := \{A_{\alpha}, A_{\alpha}^{c}, \emptyset, \Omega\}.$
- (ii) \Rightarrow (iii) Suppose $\sigma(\{A_{\alpha}\})_{\alpha \in I}$ is independent. Let $\alpha_1, \ldots, \alpha_n \in I$, note the following, for $u_i \in \mathbb{R}$

$$\{\mathbf{1}_{A_{\alpha_i}} = u_i\} = \begin{cases} A_{\alpha_i} & \text{if } u_i = 1\\ A_{\alpha_i}^c & \text{if } u_i = 0\\ \varnothing & \text{otherwise} \end{cases}$$

So for any $u_i \in \mathbb{R}$, $\mathbf{1}_{A_{\alpha_i}}^{-1}(u_i) \in \sigma(A_{\alpha_i})$. By assumption, since $\sigma(\{A_{\alpha}\})_{\alpha \in I}$ is independent, the random variables $(\mathbf{1}_{A_{\alpha_i}})_{i \in I}$ are independent.

(iii) \Rightarrow (i) Assume events $\{\mathbf{1}_{A_{\alpha}}\}_{\alpha\in I}$ are independent. Note that $\mathbf{1}_{A_{\alpha}}$ is in L^1 since $1\in L^1$ and $0\leq \mathbf{1}_{A_{\alpha}}\leq 1$, for $\alpha_1,\ldots,\alpha_n\in I$

$$\begin{split} P(\bigcap_{i=1}^n A_{\alpha_i}) &= E(\mathbf{1}_{\bigcap_{i=1}^n A_{\alpha_i}}) = E(\mathbf{1}_{A\alpha_1} \cdots \mathbf{1}_{A_{\alpha_n}}) \\ &= E(\mathbf{1}_{A_{\alpha_1}}) \cdots E(\mathbf{1}_{A_{\alpha_n}}) \text{ using independence of } \mathbf{1}_{A_{\alpha_i}} \\ &= P(A_{\alpha_1}) \cdots P(A_{\alpha_n}) \\ &= \prod_{i=1}^n P(A_{\alpha_i}) \text{ as required} \end{split}$$

Exercise 2

 (\Rightarrow) Suppose $\sigma(Y) \subset \sigma(X)$.

— Step 1

Let's consider as the hint suggests that we take Y to be an indicator. Then, it follows that $Y = \mathbf{1}_A$ where $A \in \sigma(X)$, hence there exists $B \in \mathcal{B}(\mathbb{R})$ such that $A = X^{-1}(B)$. Then, for any ω ,

$$Y(\omega) = \mathbf{1}_A(\omega) = \mathbf{1}_{X^{-1}(B)}(\omega) = \mathbf{1}_B(X(\omega))$$

Hence $Y = \mathbf{1}_B \circ X$ where $\mathbf{1}_B$ is Borel by construction.

— Step 2

Now let's take Y to be a simple function, we can write $Y = \sum_{k=1}^{n} a_k \mathbf{1}_{A_k}$ where (A_k) events on (Ω, \mathcal{F}) , and $(a_k) \in \mathbb{R}^n$, by the previous construction, can see that there exists for each A_k a $B_k \in \mathcal{B}(\mathbb{R})$ such that $A_k = X^{-1}(B_k)$. And we see that for $\omega \in \Omega$, setting $h = \sum_{k=1}^{n} a_k \mathbf{1}_{B_k}$ which is Borel,

$$Y(\omega) = \sum_{k=1}^{n} a_k \mathbf{1}_{A_k}(\omega) = \sum_{k=1}^{n} a_k \mathbf{1}_{X^{-1}(B_k)}(\omega) = \sum_{k=1}^{n} a_k \mathbf{1}_{B_k}(X(\omega)) = h(X(\omega))$$

So $Y = h \circ X$ for Y simple function.

— Step 3

Now we can take any Y real valued non negative random variable, by simple approximation theorem we can find a sequence of simple functions $Y_n \uparrow Y$ as taken as before and denoting each Borel function h_n for Y_n , so $Y_n = h_n \circ X$. And by taking Y_n increasing, we have h_n increasing and Borel. Take $h = \limsup_n h_n$ so h is also Borel. For any $\omega \in \Omega$,

$$Y(\omega) = \lim_{n} Y_n(\omega) = \lim_{n} h_n(X(\omega)) = h(X(\omega))$$

Hence, $Y = h \circ X$

— Step 4

Now taking any real valued Y, we can write $Y = Y^+ - Y^-$ where Y^+ and Y^- are non negative. So we can write $Y^+ = h_+ \circ X$ and $Y^- = h_- \circ X$ and setting $h = h_+ - h_-$, $Y = h \circ X$ as required.

 (\Leftarrow) Now suppose that $Y = h \circ X$ with h Borel. Let's show that $\sigma(Y) \subset \sigma(X)$. Take $A \in \sigma(Y)$, there exists $B \in \mathcal{B}(\mathbb{R})$ such that $A = Y^{-1}(B) = (h \circ X)^{-1}(B) = X^{-1}(h^{-1}(B))$ since h is Borel, $h^{-1}(B) \in \mathcal{B}(\mathbb{R})$ as well, and setting $B' = h^{-1}(B)$, $A = X^{-1}(B')$ hence $A \in \sigma(X)$ as required.

Exercise 3

Let $X: \Omega \to [0, \infty)$ be a random variable with E(X) = 1 on (Ω, \mathcal{F}, P) and the mapping $Q: \mathcal{F} \to [0, 1]$ defined by $Q(A) := \int_A X dP = E(X \mathbf{1}_A)$ for $A \in \mathcal{F}$.

Let's show it is a probability measure.

1.
$$Q(\emptyset) = E(X\mathbf{1}_{\emptyset}) = E(0) = 0$$

2. For $(A_n)_{n\in\mathbb{N}}$ pairwise disjoint sets,

$$\begin{split} Q(\bigcup_{n\in\mathbb{N}}A_n) &= E(X\mathbf{1}_{\bigcup_{n\in\mathbb{N}}A_n}) = E(X(\sum_{n\in\mathbb{N}}\mathbf{1}_{A_n})) \\ &= E(\sum_{n\geq 1}X\mathbf{1}_{A_n}) \text{ then using exercise 5} \\ &= \sum_{n\geq 1}E(X\mathbf{1}_{A_n}) \\ &= \sum_{n\geq 1}Q(A_n) \end{split}$$

3.
$$Q(\Omega) = E(X) = 1$$

Assignment2

Hence Q is a probability measure.

Now let $A \in \mathcal{F}$ such that P(A) = 0. Since X is non negative, there exists a sequence of simple functions X_n such that $X_n \uparrow X$ and $X_n = \sum_{i=1}^n a_i \mathbf{1}_{A_i}$

$$Q(A) = \int_{A} X dP = \int_{A} \lim_{n} X_{n} dP \underset{MCT}{=} \lim_{n} \int \sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i} \cap A} dP = \lim_{n} \sum_{i=1}^{n} a_{i} P(A_{i} \cap A) \underset{P(A)=0}{=} 0$$

Now let Y be a non negative random variable. Using our simple approximation theorem, have $Y_n \uparrow Y$ sequence of simple functions such that $Y_n = \sum_{i=1}^n b_i \mathbf{1}_{B_i}$ and $Y = \lim_n Y_n$. Now define as usual

$$\int_{\Omega} Y dQ = \lim_{n} \sum_{i=1}^{n} b_i Q(B_i)$$

Using the observation that X is non negative and the simple sequence used previously, for $i = 1, \ldots, n$

$$Q(B_i) = \int_{B_i} XdP = \lim_n \sum_{j=1}^n a_j P(A_j \cap B_i)$$

$$\int_{\Omega} YdQ = \lim_n \sum_{i=1}^n b_i \left(\lim_n \sum_{j=1}^n a_j P(A_j \cap B_i)\right)$$

$$= \lim_n \sum_{i=1}^n b_i \left(\int_{B_i} \lim_n \sum_{j=1}^n a_j \mathbf{1}_{A_j} dP\right) \text{ by MCT}$$

$$= \lim_n \sum_{i=1}^n b_i \left(\int_{B_i} \lim_n X_n dP\right) = \lim_n \sum_{i=1}^n b_i \int_{\Omega} \mathbf{1}_{B_i} XdP$$

$$= \int_{\Omega} X \lim_n \sum_{i=1}^n b_i \mathbf{1}_{B_i} dP = \int_{\Omega} X \lim_n Y_n dP \text{ using MCT}$$

$$= \int_{\Omega} XYdP \text{ as required}$$

Exercise 4

Take (Ω, \mathcal{F}) to be $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and let μ the Lebesgue measure. Let $X_n(\omega) := \frac{1}{n} \mathbf{1}_{[0,n]}(\omega)$ for any $\omega \in \Omega$. Note that $X_n(\omega) \to 0$ for all $\omega \in \Omega$ and $E(X_n) = \frac{1}{n} \mu([0,n]) = 1 < \infty$. Now, see that $E(X_n) = \int_{\mathbb{R}} X_n d\mu = 1 \to 1 \neq 0$.

Exercise 5

- (a) Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of non negative rv. Note that $(\sum_{k=1}^n X_k)_{n\in\mathbb{N}}$ is a non negative non decreasing sequence of random variables. Also see that $(\sum_{k=1}^n X_k) \uparrow X =: \sum_{n\geq 1} X_n$. Using monotone convergence, $E(\sum_{n\geq 1} X_n) = \sum_{n\geq 1} E(X_n)$.
 - (b) Now assume X takes values in N. Note that $X_n := \mathbf{1}(X \ge n)$ is a non negative sequence of random

Assignment2 3

variables and $X = \sum_{n \ge 1} \mathbf{1}(X \ge n)$. Using (a),

$$E(X) = E(\sum_{n\geq 1} \mathbf{1}(X \geq n))$$
$$= \sum_{n\geq 1} E(\mathbf{1}(X \geq n))$$
$$= \sum_{n\geq 1} P(X \geq n)$$

Assignment2 4