Kontext-freie Grammatik

Definition: Eine kontext-freie Grammatik G ist ein 4-Tupel der Form

$$G = \langle T, N, R, S \rangle$$

wobei die Bedeutung der Komponenten wie folgt ist:

- 1. T ist die Menge der Terminale
- 2. N ist die Menge der Nicht-Terminale

Die Vereinigung von T und N wird mit V bezeichnet:

$$V := T \cup N$$

Die Menge V heißt auch das Vokabular.

3. $R \subseteq N \times V^*$

ist die Menge der Regeln:

- (a) Die erste Komponente ist ein Nicht-Terminal.
- (b) Die zweite Komponente ist ein Wort aus Nicht-Terminalen und Terminalen.

Statt
$$\langle X, \alpha \rangle \in R$$
 schreiben wir $X \to \alpha$.

4. $S \in N$ ist das Start-Symbol.

Bedeutung: Grammatiken werden zur Beschreibung von Programmier-Sprachen benutzt.

Beispiel: Arithmetische Ausdrücke

Beschreibung arithmetischer Ausdrücke möglich durch

$$G_{\text{arith}} := \langle T, N, R, \textit{Expr} \rangle$$

- 1. $T = \{\text{number}, \text{variable}, "+", "-", "*", "/", "(", ")"\}$
- 2. $N = \{Expr\}$
- 3. Die Menge R enthält folgende Regeln

Es gibt zwei Arten von Terminalen

1. Wörtliche Terminale stehen für sich selbst.

Werden in Regeln durch "und" abgegrenzt.

2. Token-Terminale beschreiben Klassen von Strings und werden durch reguläre Ausdrücke implementiert

Beispiel: number, variable

werden in Beispielen fett gesetzt, klein geschrieben

Nicht-Terminale werden schräg gesetzt, groß geschrieben

Beispiel: Expr

Sprache einer Grammatik

Gegeben: Grammatik $G = \langle T, N, R, S \rangle$ mit $V = T \cup N$.

Definition: Falls

- 1. $X \in N$,
- 2. $\alpha, \beta, \gamma \in V^*$,
- 3. $(X \rightarrow \beta) \in R$

ist, so sagen wir, dass

$$\alpha X \gamma \to \alpha \beta \gamma$$

ein Ableitungs-Schritt ist.

Die *transitive Hülle* von \rightarrow bezeichen wir mit \rightarrow^* : Für $\alpha, \beta, \gamma \in V^*$ gilt also:

- 1. $\alpha \rightarrow^* \alpha$
- 2. Falls $\alpha \to \beta$ und $\beta \to^* \gamma$, so folgt $\alpha \to^* \gamma$

Sprechweise: Falls $\alpha \to^* \gamma$ ist, sagen wir

 α wird zu γ reduziert

Beispiel:

Definition: Die Sprache $\mathcal{L}(G)$ ist

$$\mathcal{L}(G) := \{ \alpha \in T^* \mid S \to^* \alpha \}$$

Parse-Bäume

Ein Wort aus $\mathcal{L}(G_{\text{arith}})$ kann auf mehrere Weisen abgeleitet werden:

1. "Richtige" Ableitung

Zugehöriger Parse-Baum:

Entspricht dem Abarbeiten eines arithmetischen Ausdrucks der Form

$$x + y * z$$

Parse-Bäume (Fortsetzung)

1. "Falsche" Ableitung

$$Expr \rightarrow Expr$$
 "*" $Expr$
 $\rightarrow Expr$ "+" $Expr$ "*" $Expr$
 $\rightarrow number$ "+" $Expr$ "*" $Expr$
 $\rightarrow number$ "+" $number$ "*" $Expr$
 $\rightarrow number$ "+" $number$ "*" $expr$

Zugehöriger Parse-Baum:

Abgeleitet wurde x + y * zParse-Baum entspricht aber

$$(x+y)*z$$

Problem: Grammatik G_{arith} ist mehrdeutig!

Grammatik für reguläre Ausdrücke

Beschreibung regulärer Ausdrücke möglich durch

$$G_{\text{RegExp}} = \langle T, N, R, Expr \rangle$$

- 1. $T = \{ \text{letter}, \text{escape}, "+", "*", "(", ")" \}$
- 2. $N = \{Expr, Term, Factor\}$
- 3. Die Menge R enthält folgende Regeln

Grammatik eindeutig! Wurde erreicht durch Prioritäten:

entspricht Priorität der Operations-Symbole

- 1. Abschluß "*"
- 2. Konkatenation
- 3. Alternative "+"

Beispiele für $\mathcal{L}(G_{\text{RegExp}})$

Interpretation der Terminale

Sei Σ Menge aller Ascii-Zeichen.

1. letter: Alle Zeichen außer "+", "*", "(", ")", "\", also

$$\mathcal{L}(\mathrm{letter}) = \Sigma \setminus \{\text{``+''}, \text{``*''}, \text{``('', ")''}, \text{``\''}\}$$

2. escape: Wörter, die aus zwei Zeichen bestehen, wobei das erste Zeichen ein Backslash "\" ist:

$$\mathcal{L}(escape) = \{c_1c_2 \in \Sigma^* \mid c_1 = \text{``} \setminus \text{''}\}\$$

Semantik:

- (a) \e steht für ε

suchen zu können

Beispiele für reguläre Ausdrücke

1. $(a + \ensuremath{\ }\)b*$

Konventionelle Schreibweise: a?b*

2. /*\\

Slash "/, gefolgt von "*", gefolgt von Backslash "\"

Recursive-Descent-Parser für G_{RegExp}

```
Die Regeln für Expr
Expr \rightarrow Term "+" Expr
\mid Term
```

Vorgehen:

- 1. Parse Term, erhalte FSM f1.
- Falls dananch "+" in Eingabe, parse Expr, erhalte FSM f2.
 Gebe alternative(f1, f2) zurück.

3. Sonst: Gebe f1 zurück.

Implementierung:

```
// Globale Variable
char* charPtr;

// Vorab--Deklaration, notwendig wegen
// wechselseitiger Rekursion
FSM* parseTerm();
FSM* parseFactor();

FSM* parseExpr() {
    FSM* f1 = parseTerm();
    if (*charPtr == '+') {
        ++charPtr;
        FSM* f2 = parseExpr();
        return alternative(f1, f2);
    }
    return f1;
}
```

Parsen von Term

Die Regeln für Term:

```
Term → Factor Term
| Factor
```

Vorgehen:

- 1. Parse Factor, erhalte FSM f1
- 2. Falls Zeichen danach **erstes** Zeichen von *Term* sein kann, parse *Term*, erhalte FSM £2.

```
Gebe concat(f1, f2) zurück.
```

3. Sonst: Gebe f1 zurück

Implementierung:

Parsen von Factor

Die Regeln für Factor:

Vorgehen:

- 1. Falls erstes Zeichen "(":
 - (a) Parse Expr, erhalte FSM f
 - (b) Falls nächstes Zeichen "*":
 Gebe closure(f) zurück
 - (c) Sonst: Gebe f zurück.
- 2. Falls erstes Zeichen "\":

Erhöhe charPtr

- (a) Falls nächstes Zeichen "e": erzeuge FSM ${\bf f}$ zum Erkennen von ${\boldsymbol \varepsilon}$
- (b) Sonst: Gehe zu 3.
- 3. Sonst:
 - (a) erzeuge FSM f zum
 Erkennen des Buchstabens *charPtr
 - (b) Falls nächstes Zeichen "*":
 Gebe closure(f) zurück
 - (c) Sonst: Gebe f zurück.

Parsen von Factor: Implementierung

Implementierung des Parsens von Factor:

```
FSM* parseFactor()
{
    FSM* f;
    if (*charPtr == '(') {
        ++charPtr;
        f = parseExpr();
        ++charPtr;
    } else if (*charPtr == '\\') {
        ++charPtr;
        if (*charPtr == 'e') {
            f = createEmptyString();
            ++charPtr;
        } else {
            f = createCharacter(*charPtr);
            ++charPtr;
    } else {
        f = createCharacter(*charPtr);
        ++charPtr;
    }
    if (*charPtr == '*') {
        ++charPtr;
        return closure(f);
    return f;
}
```

Aufgaben

Aufgabe: Es sei das Alphabet $\Sigma = \{\text{"a"}, \text{"b"}\}$ gegeben. Geben Sie eine Grammatik G an, so dass gilt:

$$\mathcal{L}(G) = \{ \mathbf{a}^m \mathbf{b}^{m+n} \mathbf{a}^n \mid n, m \in \mathbb{N} \land m \ge 1 \land n \ge 1 \}$$

Lösung: $G = \langle \{\text{``a''}, \text{``b''}\}, \{S, A, B\}, R, S \rangle$ wobei R durch folgende Regeln gegeben ist

$$S \rightarrow AB$$
 $A \rightarrow \text{"a" } A \text{"b"}$
 $A \rightarrow \text{"a" "b"}$
 $B \rightarrow \text{"b" } B \text{"a"}$
 $B \rightarrow \text{"b" } "a"$

Aufgabe: Es sei die folgende Menge von Terminalen gegeben:

$$T = \{ \text{variable}, " \land ", " \lor ", " \neg ", "(", ")" \}$$

Geben Sie eine Grammatik G_{Prop} an, welche die Sprache der aussagenlogischen Formeln beschreibt.

Lösung: Die Grammatik R kann durch folgende Regeln definiert werden