ADVANCED BAYESIAN MODELING

Shakespeare Plays: Data and Model

For William Shakespeare's 37 undisputed plays, let

$$y_i$$
 = number of speeches in play i

where a "speech" is either a unit of dialogue spoken by a character, or a stage direction.

We will model number of speeches conditionally using

- Traditional genre classification (comedy, history, tragedy)
- Total number of words

> ss <- read.csv("shakespeare.csv", comment.char="#")</pre>

> head(ss)

	Composed	Genre	Words	Speeches	Scenes	Characters
All's Well That Ends Well	1602	Comedy	23009	1034	23	26
Antony and Cleopatra	1606	Tragedy	24905	1361	42	57
As You Like It	1599	Comedy	21690	872	22	27
Comedy of Errors	1589	Comedy	14701	664	11	19
Coriolanus	1607	Tragedy	27589	1240	28	60
Cymbeline	1609	Tragedy	27565	979	27	40

Data compiled from Open Source Shakespeare (http://www.opensourceshakespeare.org).

Tragedies have the greatest mean number of speeches:

But this does not account for overall length of the plays (e.g., tragedies tend to be longer than comedies).

.

Linear Regression

$$y_i \mid \theta, X \sim \text{indep. N}(\beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4}, \sigma^2)$$
 $i = 1, \dots, 37$ i.e.,

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \varepsilon_i$$

where

 $x_{i1} = ext{indicator that play } i ext{ is a comedy}$ $x_{i2} = ext{indicator that play } i ext{ is a history}$ $x_{i3} = ext{indicator that play } i ext{ is a tragedy}$

 $x_{i4} = standardized$ total number of words in play i

Notice: No explicit intercept variable, but intercept is present implicitly -

$$x_{i1} + x_{i2} + x_{i3} = 1$$
 for all i

Indicator variables that implicitly define the intercept should not be standardized.

The total words variable x_{i4} is standardized – reasonable because it does not involve the intercept, and its values are large in magnitude.

 β_1 , β_2 , and β_3 represent expected number of speeches in each genre, after adjustment for total number of words. For example,

 $\beta_1 = \text{expected } \# \text{ speeches for a comedy having overall average words}$ (average number of words for all plays, because x_{i4} is standardized)

To compare, e.g., comedies to tragedies, after adjusting for total number of words, use $\beta_1 - \beta_3$.

 β_4 represents expected increase in speeches (irrespective of genre) when total words increases by one standard deviation (over all plays).

۶

Prior

We choose semi-conjugate priors

$$\beta \mid X \sim \text{N}(0, \sigma_{\beta}^{2} I)$$

$$\sigma^{2} \mid X \sim \text{Inv-}\chi^{2}(\nu_{0}, \sigma_{0}^{2})$$

Choice of $\sigma_{\beta}^2 I$ is arbitrary, but should not matter if σ_{β}^2 is large enough.

Follows that

$$\beta_1, \beta_2, \beta_3, \beta_4 \mid X \sim \text{iid N}(0, \sigma_{\beta}^2)$$

Let σ_{β}^2 be large and ν_0 small to make prior nearly noninformative (no prior info).

C