EIGSI ESCO. ÉCOLE D'INGÉNIEURS PLANCES SENSE

PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3 ème étage

Tél.: 696 16 46 86

E-mail.: <u>prepas.internationales@yahoo.com</u>
Site: <u>www.prepas-internationales.org</u>

MECANIQUE DU POINT MATERIEL DEVOIR SURVEILLE DU 22-01-2021, Durée 3H Année académique 2020-2021

EXERCICE I (08 POINTS)

Soient O l'origine d'un repère cartésien $R(O, \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$ et $\vec{\mathbf{r}} = \mathbf{OM}$ le vecteur position d'un point M pouvant être caractérisé par différents triplets de nombres : cartésien (x, y, z) ou cylindrique (r, θ, z) .

- 1. Exprimer les coordonnées cylindriques r, θ et z en fonction des coordonnées cartésiennes x, y et z0.75pt
- **2.** Trouver les coordonnées cylindriques d'un point matériel M sachant que ses coordonnées cartésiennes sont données par : x = 2cm, $y = 2\sqrt{3}cm$, z = 3cm et $x = -2\sqrt{3}cm$, y = -2cm, z = -3cm 1pt
- 3. Exprimer les coordonnées sphériques r, θ et φ en fonction des coordonnées cartésiennes x, y et z0.75pt
- **4.** Trouver les coordonnées sphériques d'un point matériel M sachant que ses coordonnées cartésiennes sont données par : x = 2cm, $y = 2\sqrt{3}cm$, z = 3cm et $x = -2\sqrt{3}cm$, y = -2cm, z = -3cm 1.5pt
- 5. Exprimer les coordonnées cartésiennes x, y et z en fonction des coordonnées cylindriques r, θ et z ...0.75pt
- **6.** Trouver les coordonnées cartésiennes d'un point matériel M sachant que ses coordonnées cylindriques sont données par : r = 2 cm, $\theta = \pi/6 rad$, z = 4 cm et r = 2 cm, $\theta = 11\pi/6 rad$, z = 4 cm 0.75pt
- 7. Exprimer les coordonnées cartésiennes x, y et z en fonction des coordonnées sphériques r, θ et φ ...0.75pt
- **8.** Trouver les coordonnées cartésiennes d'un point matériel M sachant que ses coordonnées sphériques sont données par : r = 4 cm, $\varphi = \pi/3$ rad, $\theta = \pi/6$ rad et r = 4 cm, $\varphi = 2\pi/3$ rad, $\theta = 5\pi/6$ rad0.75pt

EXERCICE II (06 POINTS)

On veut étudier la réponse de l'oscillateur mécanique (masseressort), soumis à une excitation sinusoïdale (voir figure cicontre). L'équation différentielle régissant la dynamique de ce système est donnée par $\ddot{x}+2\lambda\dot{x}+\omega_0^2x=F_0\cos\omega t$ (E) où λ , μ , ω_0 , ω et F_0 sont des grandeurs positives et $\lambda=\mu\omega_0$ représente le coefficient d'amortissement, ω_0 la pulsation propre du système.

- 2. Donner la forme générale de la solution particulière de l'équation complète et exprimer les constantes de cette solution particulière en fonction de ω_0 , ω , μ et F_0 2pts
- 3. Mettre la solution particulière sous la forme $Y_0 \cos(\omega t \varphi)$, déterminer $\tan \varphi$ en fonction de ω_0 , ω , μ 1pt
- **4.** Calculer l'incertitude relative sur μ en fonction de φ et $\Delta \varphi$ sachant que $\Delta \omega_0$ et $\Delta \omega$ sont négligeables.......2pts

EXERCICE III (06 POINTS)

Soient $\vec{\mathbf{V}} = x(z^2 - y^2)\vec{\mathbf{i}} + y(x^2 - z^2)\vec{\mathbf{j}} + z(x^2 - y^2)\vec{\mathbf{k}}$ et $\vec{\mathbf{U}} = y(x^2z - z^3/3)\vec{\mathbf{i}} + x(y^2z - z^3/3)\vec{\mathbf{j}}$ deux champs de vecteurs définis dans le repère cartésien $(O, \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$.

- 1. Ces vecteurs sont-ils à flux conservatif? Ces vecteurs dérivent-ils d'un potentiel?
- 2. Déduire s'il existe, l'expression du potentiel dont dérive chaque vecteur 0.5pt
- 3. Calculer la circulation des vecteurs $\vec{\mathbf{V}}$ et $\vec{\mathbf{U}}$ le long de la courbe fermée contenue dans le plan x=1, d'équations : $y^2 + z^2 = 1$, z + y = 0 et z y = 0 4pts

Quelques relations utiles: $\sin 2\theta = 2\sin \theta \cos \theta$, $2\sin^2 \theta = 1 - \cos 2\theta$, $\sin^4 \theta = \sin^2 \theta - \sin^2 \theta \cos^2 \theta$. Dans x = 1 les coordonnées polaires sont liées à celles cartésiennes par : $y = r\cos \theta$ et $z = r\sin \theta$.