FACULTAD DE CIENCIAS GRUPO ESTUDIANTIL DE MATEMÁTICA

Problemas de Teoría de Números

Jimmy Espinoza

16 de Febrero del 2018

- 1. Sea S un conjunto de n enteros (no necesariamente distintos). Probar que algún subconjunto no vacío de S posee suma de elementos divisible por n.
- 2. Hallar todos los $x \in \mathbb{Z}$ que satisfacen simultáneamente las congruencias: $x \equiv 1 \pmod 3$, $x \equiv 2 \pmod 5$.
- 3. Sea n un entero con $n \ge 2$. Probar que $\varphi(2^n 1)$ es divisible por n.
- 4. Hallar todos los enteros positivos n tales que:
 - $n^{13} \equiv n \pmod{1365}$
 - $n^{17} \equiv n \pmod{4080}$
- 5. Sea p un primo impar y sea $q = \frac{p-1}{2}$. Probar que $(q!)^2 + (-1)^q \equiv 0 \pmod{p}$.
- 6. Si p es un primo impar, probar que: $1^2 3^2 5^2 \dots (p-2)^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}$ y $2^2 4^2 6^2 \dots (p-1)^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}$.
- 7. Sean n, r, a enteros positivos. Probar que la congruencia $n^2 \equiv n \pmod{10^a}$ implica $n^r \equiv n \pmod{10^a}$, y hallar todos los valores de r tal que $n^r \equiv n \pmod{10^a}$ implica $n^2 \equiv n \pmod{10^a}$.
- 8. Determine los tres últimos dígitos de $2003^{2002^{2001}}$
- 9. Sea p > 3 un primo. Probar que si:

$$\sum_{i=1}^{p-1} \frac{1}{i^p} = \frac{n}{m}$$

con (n, m) = 1, entonces p^3 divide a n.

10. Probar que existe un número compuesto n tal que $a^n \equiv a \pmod{n}$ para todo $a \in \mathbb{Z}$.