BCC204 - Teoria dos Grafos

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

- O Problema do Carteiro Chinês
 - Complexidade
 - Solução

Algoritmo de Fleury

Teoria dos grafos

Fonte

Este material é baseado no livro

Goldbarg, M., & Goldbarg, E. (2012). Grafos: conceitos, algoritmos e aplicações. Elsevier.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Introdução

Considere serviços como coleta de lixo ou correios. Os cruzamentos das ruas são vértices do grafo e as arestas são as ruas. Cada rua tem um custo de percurso associado que representa a distância, tempo ou outro fator.

É necessário percorrer todas as ruas e retornar ao ponto inicial com custo mínimo.

Aplicações

- Coleta de lixo:
- Vendas em domicílio;
- Entrega do correio;
- Recenseamento;
- Nebulização contra dengue; etc...

Definição

O Problema do Carteiro Chinês – PCC, consiste em determinar um passeio fechado de custo mínimo que passe por cada aresta de um grafo G conectado pelo menos uma vez.

Grafo de exemplo e dificuldade em resolver o problema em grafos não eulerianos.

Complexidade

PCC em Grafos Não Orientados

Para o caso de grafos não orientados, a solução exata deste problema pode ser obtida em $O(n^3)^a$, portanto, em tempo polinomial.

^aPapadimitriou & Steiglitz (1982)

PCC em Grafos Orientados

Para o caso de grafos orientados, a solução exata deste problema pode ser obtida utilizando um algoritmo de fluxo em redes, portanto, em tempo polinomial.

PCC em Grafos Mistos

Para o caso de grafos que possuem ambos os tipos de arestas, orientadas e não orientadas, o problema é NP-Difícil.

Complexidade

PCC em Grafos - Caso Simétrico

Para o caso de grafos nos quais as distâncias são iguais independente do sentido de travessia, o problema possui solução em tempo polinomial.

PCC em Grafos - Caso Íngreme

Para o caso de grafos nos quais as distâncias dependem do sentido de travessia, o problema é NP-Difícil.

Solução

Em grafos eulerianos e não orientados, a solução consiste em determinar o ciclo euleriano.

A solução deverá consistir em um *itinerário único*, de modo que caso o grafo não seja euleriano, algumas arestas serão percorridas *mais de uma vez*.

O processo de solução, no caso de trabalharmos com um grafo não euleriano, adiciona arestas até que se obtenha um grafo euleriano. Desta forma, indicamos quais arestas serão percorridas duas vezes.

Abordagem para Grafos Não Orientados e Conexos

- Verifique se G é euleriano;
- Caso positivo vá para 5;
- O Caso negativo, o grafo possui vértices de grau ímpar;
- Adicione arestas ao grafo, duplicando as arestas que formam o caminho mais curto entre os vértices de grau ímpar, de modo que se tornem vértices de grau par;
- 3 Aplique um algoritmo de determinação de ciclos eulerianos.

Algoritmos

Fleury

A determinação da composição de ciclos eulerianos pode ser realizada em tempo determinístico polinomial.

Estudaremos o algoritmo de Fleury, que parte do princípio que o grafo é euleriano, ou seja, obedece ao Teorema de Euler.

Algoritmo de Fleury

Princípio

O algoritmo de Fleury, proposto em 1883, também utiliza um grafo reduzido induzido pelas arestas ainda não marcadas pelo algoritmo.

Inicialmente todas as arestas estão não marcadas, e, a partir de um vértice aleatório, uma aresta que obedeça a regra da ponte é escolhida para ser percorrida e inserida no ciclo.

Regra da Ponte

Se uma aresta $\{v, w\}$ é uma ponte no grafo reduzido, então $\{v, w\}$ só deve ser escolhida pelo algoritmo de Fleury caso não haja outra opção.

Terminologia

C: conjunto das arestas que definem um ciclo euleriano no grafo.

Algoritmo de Fleury

```
Entrada: Grafo G = (V, A)
1 Escolha qualquer vértice v \in V:
_{2} C \leftarrow \{v\};
3 repita
       Escolha uma aresta \{v, w\} não marcada usando a regra da ponte;
       Atravessar \{v, w\};
     C \leftarrow C \cup \{w\}:
     Marcar \{v, w\};
 7
       v \leftarrow w:
  até que todas as arestas estejam marcadas;
10 C \leftarrow C \cup \{v\};
```

Algoritmo de Fleury

Complexidade

- O(m) remoções de arestas;
- \triangleright O(m) para detecção de pontes (usando um algoritmo ingênuo);
- Resultando em complexidade $O(m^2)$.

Grafo G.

$$(v, w) = (d, g).$$

$$(v, w) = (g, c).$$

Grafo reduzido na terceira iteração.

$$(v, w) = (c, g).$$

Grafo reduzido na quarta iteração.

$$(v, w) = (g, f).$$

$$(v, w) = (f, c).$$

Grafo reduzido na sexta iteração.

$$(v, w) = (c, b).$$

 $C = \{d, g, c, g, f, c, b, a, d, e, b, d\}.$

Dúvidas?

