H1: Elementary algebraic structures 1.1 sets, maps and relations	
def: set	= a gathering together into a whole of definite, distinct objects of our perception or our thought > contains elements
	notation: capital letters vb: A = {0,1,2,3}
def: element/members	= objects in a set not: small letters a,b,c, vb: $B = \{a (a \in A) \land (\exists b \in A, a = 2b)\} = \{a \in A \exists b \in A, a = 2b\}$
logical operators	not: ¬ and: ∧ or: ∨
logical quantifiers	for all: ∀ there exists: ∃
def: cardinality of A	= the number of elements of a set A > can be finite or infinite
	not: A or #A
> def: countability of infinite sets	countable set = infinite set where there is a way to count/enumerate all element vb: natural, integer and rational numbers uncountable set
	= infinite set that isn't countable vb: real and complex number
important sets	 ∅ = {}: the empty set with no elements N: the set of all natural numbers (which we take to include zero, thus following to the ISO 80000-2 standard)²; we use N₀ = N \ {0} if zero is not included³ ℤ: the set of all integer numbers ℚ: the set of all real numbers ℝ: the set of all real numbers ℂ: the set of all complex numbers
def: positive real numbers	= $\mathbb{R}_{>0} = \{x \in \mathbb{R} x > 0\}$ > doesn't include 0
def: non-negative real numbers	$= \mathbb{R}_{\geq 0} = \{x \in \mathbb{R} x \geq 0\} \text{$>$ includes 0$}$
def: extended real line	$= \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$
def: subset	= B is a subset of A if $\forall b \in B : b \in A$ not: $B \subseteq A$
def: superset	= the set A which contains B
def: non-trivial subset	= all subsets B that are not A nor Ø
set operations	• For two sets A and B , the union $A \cup B = \{x (x \in A) \lor (x \in B)\}.$
	• For two sets <i>A</i> and <i>B</i> , the intersection $A \cap B = \{x (x \in A) \land (x \in B)\}.$
	• for $B \subseteq A$, the complement of B in A , denoted as $B^c = A \setminus B = \{x \in A \neg (x \in B)\} = \{x \in A x \notin B\}$. In the set difference notation, it is not always required that B is actually a subset of A .
operations on a set of sets	The union and intersection are trivially generalised to a family of sets, which we would represent as a set $S = \{A, B,\}$ of sets ⁴ , with finite or infinite cardinality:
	$\bigcup \mathcal{S} = \{a \exists A \in \mathcal{S} : a \in A\} \qquad \qquad \bigcap \mathcal{S} = \{a \forall A \in \mathcal{S} : a \in A\}. \tag{1.1}$

logical operations	• Commutativity: $A \cup B = B \cup A$ and $A \cap B = B \cap A$
	• Associativity: $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
	• Distributivity: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ and $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
	• de Morgan relations: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$
def: Cartesian product	the cartesian product of two set A and B =
, , , , , , , , , , , , , , , , , , ,	$A \times B : \{ (a,b) a \in A, b \in B \}$
	> set whose elements are tuples
1.1.2 maps	
def: map	= a rule that assigns to each element a∈A an element b∈B
	not: $\varphi:A\to B$
def: domain	= the set A in the previous definition > dom(φ)
def: codomain	= the set B in the previous definition $ > \text{codom}(\phi) $
def: composition	= given two maps:
	$\varphi:A o B$ and $\psi:B o C$ the composition is:
	$\psi \circ \varphi : A o C$ using the assignment: $a \mapsto \psi(\varphi(a))$
	>> this is associative:
	$\chi \circ (\psi \circ \varphi) = (\chi \circ \psi) \circ \varphi$
def: identity map	= map that maps each element to itself:
	$id_A:A\to A:a\mapsto a$
	= neutral element for maps:
	$arphi=\mathrm{id}_B\circarphi=arphi\circ\mathrm{id}_A.$
def: image	= the set of all function values $\ arphi(A) = \{ arphi(a) a \in A \} \subseteq B$
def: inverse image of b∈B	$=the\;set\;\{a\in A \varphi(a)=b\}$
map characteristics	 surjective: the image of the domain covers the whole codomain injective: each b∈B is the image of at most one a∈A bijective: the map is sur- and injective
	A B A B
def: inverse map	$= \varphi^{-1}: B \to A \text{ such that } \varphi^{-1}(\varphi(a)) = a, \forall a \in A$ or $\varphi^{-1} \circ \varphi: A \to A = \mathrm{id}_A \text{ and } \varphi \circ \varphi^{-1}: B \to B = \mathrm{id}_B.$
1.1.3 set cardinality revisited	Or $\varphi^{-1} \circ \varphi : A \to A = \mathrm{id}_A \text{ and } \varphi \circ \varphi^{-1} : B \to B = \mathrm{id}_B.$
ordering of candinality	- A ≤ B if there exists an injective map between A and B
oracing or candinality	- A = B if there exists a bijective map between A and B
countability and maps	an infinite set is countable if there exists an injective map to $\mathbb N$ > denote as $\mathfrak N_0$ known as aleph
	an infinite set is uncountable if their cardinality is higher than \mathfrak{N}_0 > label the possible cardinalities as: $\aleph_0<\aleph_1<\aleph_2<\dots$
def: cardinality \mathfrak{N}_{i}	sets with cardinality \mathfrak{N}_i would allow for injective mappings into sets with cardinality \mathfrak{N}_j with i $\leq j$ but not with \mathfrak{N}_n with i $>n$

1.1.4 relations	
def: relation	= list of couples which satisfy a certain chosen 'relation'
	> relations are a kind of cartesian product, i.e. a subset of AxB maps are a kind of relation known as the $graph$ of ϕ : $\{(a, \phi(a)) a \in A\} \subseteq A \times B,$
def: equivalence relation ~	= a relation of the set A with itself, so a subset of AxA > a couple (a,b) is denoted as a~b if it satisfies:
	• $a \sim a$: any element is related to itself, i.e. the relation is reflexive .
	• $a \sim b \implies b \sim a$: the relation is symmetric .
	• $a \sim b \land b \sim c \implies a \sim c$: the relation is transitive .
def: equivalence class [a]	= set all elements related to a by a certain ~
def: partition	= collection of subsets A _i such that:
	$\bigcup_i A_i = A \text{ with } A_i \cap A_j = \emptyset \text{ for all } i \neq j$
	> if this partition is the equivalence relation, the set of equivalence classes $\{A_1, A_2,\}$ is known as the <i>quotient set</i> A/ $^\sim$
def: partial order relation ≼	= relation between a set A and itself which satisfies:
	• $a \leq a$: the relation is reflexive .
	• $a \le b \land b \le a \implies a = b$: referred to as the relation being antisymmetric .
	• $a \le b \land b \le c \implies a \le c$: the relation is transitive .
	> A set <i>A</i> with a partial order relation \leq is called a partially ordered set or simply a poset and denoted as (A, \leq) .
def: total order relation	= partial order relation where all elements are ordered ie: for any a,b∈A there exist either a≤b or b≤a
def: greatest/largest element	= an element a∈A such that b≼a for all b∈A for a poset (A,≼)
def: bounded above	a subset $B\subseteq A$ of a poset (A, \leq) is bounded above > if there exists an $a\in A$ so that $b\leq a$ for all $b\in B$, with a the <i>upper bound</i>
def: maximal element	a poset (A,≼) has a maximal element a∈A > if no b≠a∈A satisfies a≼b
	1.2 groups, rings and fields
1.2.1 groups	
def: binary operation .	A binary operation ¹² · on a set A is a map $A \times A \rightarrow A : (a,b) \mapsto a \cdot b$.
properties of binary operations	a binary operation can have the following properties: 1. Associativity : $\forall a, b, c \in A$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$, so that parenthesis are not needed.
	2. Neutral element: $\exists e \in A, \forall a \in A, a \cdot e = e \cdot a = a$.
	3. Inverse elements: $\forall a \in A, \exists b \in A, a \cdot b = b \cdot a = e$, where b is then denoted as a^{-1} .
	4. Commutativity: $\forall a, b \in A, a \cdot b = b \cdot a$.
def: group (G,.)	= a set G with a binary operation . that is: - associative - has a neutral element - every element has an inverse
def: abelian group	= a group that also is commutative
def: trivial group	= group with neutral element as single element: {e}
def: semigroup	= set with a binary operation that is associative
def: monoid group	= semigroup whose binary operation also has a neutral element

1.2.2 homomorphisms, isomorphisms and automorphisms	
def: homomorphism	consider a set with additional structure > a map that preserves this structure is called a homomorphism
def: endomorphism	= a homomorphism where the domain and codomain coincide
def: isomorphism	= bijective homomorphism
def: automorphism	= bijective endomorphism > not: A≅B
def: automorphism group	= the set aut(A) of automorphisms for a set A with composition as binary operator
def: involution	= a non trivial automophism $\phi:A o A$ for which $\phi\circ\phi=\mathrm{id}_A$
def: group homomorphism	a group homomorphism between groups (G, .) and (H,*) = a map: $\varphi: G \to H \text{ that satisfies } \varphi(g_1 \cdot g_2) = \varphi(g_1) \circ \varphi(g_2), \ \forall g_1, g_2 \in G.$ > φ maps the neutral element e_G of G to the neutral element $\varphi(e_G) = e_H$ of H , and an inverse
	element g^{-1} to the corresponding inverse element $\varphi(g^{-1}) = \varphi(g)^{-1}$.
def: anti-homomorphisms	= maps that preserve structure up to the fact that they reverse the order of group multiplication: $\varphi(g_1\cdot g_2)=\varphi(g_2)\circ\varphi(g_1)$
1.2.3 group actions	
def: group action	a group action $ \lambda : G \to \operatorname{Aut}(A) $ = a group homomorphism from a group G to the automorphism group of a set A
	not: If we denote λ_g as the image of λ for $g \in G$, then it needs to satisfy $\lambda_e = \mathrm{id}_A$ and $\lambda_{g_1} \circ \lambda_{g_2} = \lambda_{g_1 \cdot g_2}$. Even more explicitly, $\forall a \in A$, $\lambda_e(a) = a$ and $\lambda_{g_1}(\lambda_{g_2}(a)) = \lambda_{g_1 \cdot g_2}(a)$.
	extra notation: We sometimes denote $\lambda_g(a) = g \triangleright a$, and can thus interpret a group action as a map $\triangleright: G \times A \to A: (g,a) \mapsto g \triangleright a$, with $e \triangleright a = a$ and $h \triangleright (g \triangleright a) = (h \cdot g) \triangleright a$, $\forall a \in A$.
properties of group actions	A group action α (left or right) can (but must not) have a number of properties:
	• faithful : if $g \neq h$ implies $\alpha_g \neq \alpha_h$, which requires that there exists at least one $a \in A$ for which $\alpha_g(a) \neq \alpha_h(a)$.
	• free : $\forall g \neq e, \alpha_g(a) \neq a$ for all $a \in A$, or in its contrapositive: if there is an $a \in A$ such that $\alpha_g(a) = \alpha_h(a)$, this implies $g = h$ (free implies faithful and is stronger).
	• transitive : if for any $a, b \in A$, there exists a $g \in G$ such that $\alpha_g(a) = b$.
def: representation	= a map from group elements g∈G to invertible matrices in a general linear group
1.2.4 kernels, normal subgroups,	quotient groups
def: kernel	= the subset of G that is mapped to e_H for a group homomorphism $ \varphi : G ightarrow H_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
	not: denoted as $\ker \varphi = \varphi^{-1}(e_H) \subseteq G$.
prop: kernel and subgroup	For two groups G and H
	> The kernel of a group homomorphism $\phi\colon G\text{->H}$ is a subgroup of G
def: normal subgroup N ⊆ G	= a subgroup such that $\forall g \in G, \forall n \in N, gng^{-1} \in N$.

1.2.5 rings and fields	
def: ring	= an abelian group (A,+) together with a second binary operation (A, .)
	for the group (A,+): 0 is the neutral element
	for the group (A, .): - is associative
	- 1 is the unit element
	> such that . has the property of distribution over +:
	• left distributivity: $\forall a, b, c \in A$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
	• right distributivity: $\forall a, b, c \in A, (b+c) \cdot a = (b \cdot a) + (c \cdot a)$
def: commutative ring	= ring where . is also commutative
def: idempotent	= element that squares to itself: a.a=a
def: multiplicative inverse	= element a^{-1} such that $a.a^{-1} = a^{-1}.a = 1$
def: zero divisors	= two elements a,b∈A where both a,b≠0 which satisfy a.b = 0
def: nilpotent	= an element a≠0 where a.a = 0
def: nilpotent with degree n	= an element a≠0 where a ⁿ = 0
prop: rings and inverses	In a finite ring, all elements must either have multiplicative inverses, or must be zero divisors
def: field	= a commutative ring where all non-zero element have multiplicative inverses
def: characteristic of a field	= the number of times one has to add the unit element in order to obtain the neutral element
	> in a <i>finite ring</i> the characteristic is finite infinite ring not finite
def: algebraically closed field	= field F in which every non-constant polynomial $p \in \mathbb{F}[z]$ has a root $r \in \mathbb{F}$ so that $p(r) = 0$.
	1.3 vector spaces
1.3.1 definitions and examples	
def: vector space V over a field $\mathbb F$	= an abelian group (V, +v) together with a binary operation, namely scalar multiplic.
	for which: (V,+v): - +v is the vector addition
	- 0 _v is the zero vector
	v is the additive inverse
	and the scalar multiplication: $\mathbb{F} imes V o V: (a,v) \mapsto av$
	for which • Distributivity with respect to vector addition:
	$\forall a \in \mathbb{F} \text{ and } \forall v, w \in V : a(v +_V w) = av +_V aw$
	Distributivity with respect to scalar addition:
	$\forall a,b \in \mathbb{F} \text{ and } \forall v \in V : (a+b)v = av +_V bv$
	Mixed associativity of scalar multiplication:
	$\forall a,b \in \mathbb{F} \text{ and } \forall v \in V : a(bv) = (a \cdot b)v$
	 scalar unit is the neutral element for multiplying with vectors:
	$orall v \in V: 1v = v$
def: subspace	= a non-empty subset W⊆V of a vector space V where W is also a vectorspace

1.3.2 vector space homomorphisms	, endomorphisms and isomorphisms
def: linearity	A map $\varphi:V\to W$ between two vector spaces $(V,+_V,o_V)$ and $(W,+_W,o_W)$ over the same field $\mathbb F$ is a (vector space) homomorphism if it satisfies
	• $\forall u, v \in V : \varphi(u +_V v) = \varphi(u) +_W \varphi(v)$
	$\bullet \ \forall v \in V, \forall a \in \mathbb{F} \colon \varphi(av) = a \varphi(v)$
	It follows automatically that φ also satisfies $\varphi(o_V)=o_W.$
	These two properties are referred to as linearity and collectively presented as
	$\forall u, v \in V, \forall a, b \in \mathbb{F} : \varphi(au + bv) = a\varphi(u) + b\varphi(v) \tag{1.9}$
def: linear operation	= a linear map from V->V, ie vector space endomorphism
def: linear transformation	= a bijective linear map from V->W
def: general linear group GL(V)	= linear transformations from V->V
1.3.3 linear combination, span and	completeness
def: linear combination	$v = \sum_{i=1}^{m} a^i v_i \tag{1.10}$
	with scalars $a^i \in \mathbb{F}$, vectors $v_i \in S$, with $i = 1,, m$ for some finite ²¹ integer $m \leq S $.
def: linear span	= the union of all possible linear combinations that can be built from a finite number of vectors from S
	not: $span_{\mathbb{F}}(S)$ or $span(S)$
def: completeness	a set S⊆V is called complete > if span(S) = V
	ie: any vector in V can be written as a lin. comb. of a finite number of vector in S
def: dimension of a set	= the smallest integer n∈N such that V can be spanned by a set S with cardinality S =n
	> finite-dimensional = dimension is a finite number infinite-dimensional = dimension is an infinite number
1.3.4 linear independence and basis	
def: linear independence	The set of vectors S is linearly independent $>$ if for any finite subset $\{v_1, \ldots, v_m\} \subseteq S$,
	$o = \sum_{i=1}^{m} a^i v_i \implies a^i = 0, \forall i = 1, \dots, m.$
prop: decomposition of a vector	for a set S ⊆ V that is linear independent
	> the decomposition of any vector v \in span(S) as a lin. comb. is unique in the form: $v = \sum_{i=1}^m a^i v_i$
def: basis	= a set B⊆V that is both complete and linearly independent
	> ie: any v∈V can be decomposed uniquely in an expansion using finite number of vectors in B
prop: span and basis	For S⊆V linearly independent For no v∈V can be added to S without making it linearly dependent
	> than span(S) = V and S is a basis of V
prop: subset and basis	For any complete set S⊆V
	> we can extract a subset from S that is a basis for V
prop: basis of a vector space	ANY vector space has a basis

prop: lin.ind. sets and basis	For any linearly independent S⊆V
	> S can be extended to be a basis for V
	ie: there exists a set $S' \subseteq V$ such that $V = \mathbb{F}(S \cup S')$
prop: subsets and dimension	For S= $\{v_1,, v_m\}$ linearly independent subset of V
	> then m ≤ dim(V) = n
	ie: an n-dimensional space does not admit more than n linearly independent vectors
> prop: basis cardinality & dimension	For any basis B of a finite-dimensional vector space V: B = dim(V)
	For any linearly independent set S with S =dim(V): S is complete and a basis for V
def: coordinates	For a finite-dimensional vector space V with basis $B = \{e_1,,e_n\}$
	> any vector can be written:
	$v = \sum_{i=1}^n v^i e_i$
	define the scalars v ⁱ as <i>coordinates of v</i> with respect to B
def: coordinate map	in the previous definition we define: $\phi_B:V o \mathbb{F}^n:v\mapsto v=(v^1,v^2,\ldots,v^n)$ as the coordinate map .
prop: dimension and isomorphism	For any two dimensional spaces V and W With dim(V) = dim(W) = n
	> there applies: V and W are isomorphic, so V≅W
1.3.5 free vector space	
def: free vector space	For a set S
	> the free vector space S = the space of all formal linear combinations of a finite number of elements from S
1.3.6 index notation and Einstein sum	mation
not: Einstein summation	For a vector v that is expended by linear combinations:
	$v = \sum_{i=1}^n v^i e_i$
	we omit the summation symbol and write: $v=v^ie_i$
	So if there is one index i in superscript and one index i in subscript in one expression > it implies the Einstein summation
def: Kronecker δ symbol	$\delta_j^i = \begin{cases} 1, & \text{for } i = j \\ 0, & \text{for } i \neq j \end{cases}$
1.3.7 combining and manipulating spa	
prop: ≼ and dimension	the relation $W \le V$ implies $dim(W) \le dim(V)$
prop: ≼ with equal dimension	For W≼V with W and V finite-dimensional
	> if dim(W) = dim(V), then W = V
prop: \leq with multiple W _i	For two subspaces $W_i \le V$, with $i = 1,2$
	> then their intersection is still a subspace: $W_1 \cap W_2 \preccurlyeq V$
def: disjoint subspaces	For two subspaces $W_1, W_2 \leq V$
	> these are <i>disjoint subspaces</i> if $W_1 \cap W_2 = \{0\}$, the trivial space
	·

def: sum of subspaces	the sum of subspaces W _i ≼V is the subspace of V defined as:
	$\sum_{i \in I} W_i = \{ v \in V v = \sum_{i \in I'} w_i \text{ with } w_i \in W_i \text{ for } i \text{ in some finite subset } I' \text{ of } I \}$
	$i \in I$ $i \in I'$
	> this is the smallest subspace containing al W _i
prop: dimension of a sum	If W ₁ and W ₂ are finite-dimensional, then:
	$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$
def: direct sum	For two disjoint subspaces W ₁ ,W ₂ ≤ V
	> their sum is the direct sum, denoted as $W_1 \oplus W_2$
def: complement	= two subspaces $W_1, W_2 \le V$ that satisfy $V = W_1 \bigoplus W_2$
def: codimension of W ₁	= the dimension of a subspace that is complementary to W ₁
	so if: $V = W_1 \oplus W_2$
	> then: $\dim(V) = \dim(W_1) + \dim(W_2)$
	> thus: $\dim(W_2) = \dim(V) - \dim(W_1)$ is fixed by W_1
	not: codim(W ₁)
prop: vector addition and multipl.	For two vector spaces W_1 and W_2 For a common field $\mathbb F$
	> the cartesian product $W_1 \times W_2 = \{(w_1, w_2), \forall w_1 \in W_1, w_2 \in W_2\}$ is a vector space over \mathbb{F} if defined:
	vector addition: $(v_1,v_2)+(w_1,w_2)=(w_1+v_1,w_2+v_2)$
	scalar multiplication: $a(w_1,w_2)=(aw_1,aw_2), orall a\in \mathbb{F}.$
def: external direct sum	= the cartesian product of two general vector spaces W_1 and W_2 over a common field $\mathbb F$
	not: $W_1 \oplus W_2$
prop: existence of complementary	For a subspace W≼V
space	> there always exists a complementary subspace U≤V such that V = U⊕W
def: quotient space V/W	= for subspace W \leq V, the quotient set V/~ under equivalence relation v_1 ~ v_2 if v_1 - v_2 \in W
	> which given the structure of a vector space by defining addition and scalar multiplication of the equivalence class as:
	$(v_1+W)+(v_2+W)=(v_1+v_2+W), \qquad a(v+W)=(av+W).$
prop: dimension of quotient space	$\dim(V/W) = \dim(V) - \dim(W)$
> prop: isomorphic partition	All complements of a given subspace W≼V are isomorphic to W/V > alle complements are isomorphic to each other
1.3.8 affine spaces	
def: affine space	= a set A of points {P,Q,} together with a vector space V
	> for this space V the abelian group (V,+) of vector addition has a transitive free action on A

1.4 Algebras	
def: algebra	= a vector space V with a binary operation ⊙: VxV -> V, called a product of elements in V
	> this must satisfy:
	• left distributivity : $\forall u, v, w \in V$, $(u + v) \odot w = u \odot w + v \odot w$
	• right distributivity : $\forall u, v, w \in V, u \odot (v + w) = u \odot v + u \odot w$
	• compatibility with scalar multiplication: $\forall a,b \in \mathbb{F}, \ \forall v,w \in V, \ (av) \odot (bw) = a(v \odot (bw)) = b((av) \odot w) = ab(v \odot w).$
	> bilinear operation
def: bilinear operation	= an operation that is linear in both arguments separately
	• $(a_1v_1 + a_2v_2) \odot w = a_1(v_1 \odot w) + a_2(v_2 \odot w)$
	• $v \odot (b_1 w_1 + b_2 w_2) = b_1(v \odot w_1) + b_2(v \odot w_2)$
	Ten opzichte van een basis $B = \{e_1, \dots, e_n\}$: $(v^i e_i) \odot (w^j e_j) = v^i w^j (e_i \odot e_j) = v^i v^j \int_{ij}^k e_k$ structuurconstanten
def: alternating map	= a bilinear map that satisfies v⊙v = 0, ∀v∈V
В	> this type of map is always anticommutative
def: lie algebra	= an algebra based on an alternating bilinear product referred to as Lie Bracket
	lie bracket: $(v,w) \mapsto [v,w]$, which satisfies the Jacobi identity:
	[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = o.
prop: commutator	For an associative algebra (V,+, .)
	> we can always construct a Lie algebra by defining the lie bracket as: $[v,w] = v \cdot w - w \cdot v$
	with <i>commutator</i> known as v.w - w.v = 0
def: division algebra	= an associative algebra in which non-zero elements have multiplicative inverses
	ie: for all $v \in V \setminus \{o\}$, a multiplicative inverse v^{-1} , so that $v \odot v^{-1} = v^{-1} \odot v = u$.
prop: dimension of an algebra	Any finite-dimensional division algebra V over an algebraically closed field $\mathbb F$ is isomorphic to $\mathbb F$ itself an thus has dim(V) = 1
prop: isomorphism of algebras	the only finite-dimensional division algebras over $\mathbb R$ are isomorphic to $\mathbb R, \mathbb C$ and $\mathbb H$