Лабораторная работа №10

Задача об обедающих мудрецах

Гэинэ Андрей НФИбд-02-22

Содержание

Введение	4
Выполнение лабораторной работы	
Упражнение	8
Выводы	13

Список иллюстраций

1	Граф сети задачи об обедающих мудрецах	6
2	Задание деклараций задачи об обедающих мудрецах	7
3	Модель задачи об обедающих мудрецах	7
4	Запуск модели задачи об обедающих мудрецах	8
5	Граф пространства состояний	5

Введение

Цель работы

Реализовать модель задачи об обедающих мудрецах в CPN Tools.

Задание

- Реализовать модель задачи об обедающих мудрецах в CPN Tools;
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

Выполнение лабораторной работы

Постановка задачи

Пять мудрецов сидят за круглым столом и могут пребывать в двух состояниях – думать и есть. Между соседями лежит одна палочка для еды. Для приёма пищи необходимы две палочки. Палочки – пересекающийся ресурс. Необходимо синхронизировать процесс еды так, чтобы мудрецы не умерли с голода.

Рисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переходы и дуги (рис. [-@fig:001]).

Начальные данные:

- позиции: мудрец размышляет (philosopher thinks), мудрец ест (philosopher eats), палочки находятся на столе (sticks on the table)
- переходы: взять палочки (take sticks), положить палочки (put sticks)

Рис. 1: Граф сети задачи об обедающих мудрецах

В меню задаём новые декларации модели (рис. [-@fig:002]): типы фишек, начальные значения позиций, выражения для дуг:

- n число мудрецов и палочек (n = 5);
- p фишки, обозначающие мудрецов, имеют перечисляемый тип PH от 1 до n;
- s фишки, обозначающие палочки, имеют перечисляемый тип ST от 1 до n;
- функция ChangeS(p) ставит в соответствие мудрецам палочки (возвращает номера палочек, используемых мудрецами); по условию задачи мудрецы сидят по кругу и мудрец p(i) может взять i и i+1 палочки, поэтому функция ChangeS(p) определяется следующим образом:

```
fun ChangeS (ph(i))=
1`st(i)++st(if = n then 1 else i+1)
```

```
▼Declarations

▼val n =5;

▼colset PH = index ph with 1..n;

▼colset ST = index st with 1..n;

▼var p:PH;

▼fun ChangeS(ph(i))=1`st(i)++1`st(if i = n then 1 else i+1)
```

Рис. 2: Задание деклараций задачи об обедающих мудрецах

В результате получаем работающую модель (рис. [-@fig:003]).

Рис. 3: Модель задачи об обедающих мудрецах

После запуска модели наблюдаем, что одновременно палочками могут воспользоваться только два из пяти мудрецов (рис. [-@fig:004]).

Рис. 4: Запуск модели задачи об обедающих мудрецах

Упражнение

Вычислим пространство состояний. Прежде, чем пространство состояний может быть вычислено и проанализировано, необходимо сформировать код пространства состояний. Этот код создается, когда используется инструмент Войти в пространство состояний. Вход в пространство состояний занимает некоторое время. Затем, если ожидается, что пространство состояний будет небольшим, можно просто применить инструмент Вычислить пространство состояний к листу, содержащему страницу сети. Сформируем отчёт о пространстве состояний и проанализируем его. Чтобы сохранить отчет, необходимо применить инструмент Сохранить отчет о пространстве состояний к листу, содержащему страницу сети и ввести имя файла отчета.

Из отчета можем узнать, что:

• есть 11 состояний и 30 переходов между ними;

- указаны границы значений для каждого элемента: думающие мудрецы (максимум 5, минимум 3), мудрецы едят (максимум 2, минимум 0), палочки на столе (максимум 5, минимум 1, минимальное значение 2, так как в конце симуляции остаются пирожки);
- указаны границы в виде мультимножеств;
- маркировка home для всех состояний;
- маркировка dead равна None;
- указано, что бесконечно часто происходят события положить и взять палочку.

CPN Tools state space report for:

/home/openmodelica/philosopher.cpn

Report generated: Sat May 25 00:45:34 2024

Statistics

State Space

Nodes: 11

Arcs: 30

Secs: 0

Status: Full

Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

```
Boundedness Properties
```

```
Best Integer Bounds
```

Best Upper Multi-set Bounds

philosopher'philosopher_eats 1

1 ph(2)++

1 ph(3)++

1 ph(4)++

1`ph(5)

philosopher'philosopher_thinks 1

1 ph(2)++

1 ph(3)++

1 ph(4)++

1`ph(5)

philosopher'sticks_on_the_table 1

1`st(1)++

1`st(2)++

```
1 \text{`st}(3) ++
1 \text{`st}(4) ++
1`st(5)
  Best Lower Multi-set Bounds
     philosopher'philosopher_eats 1
                           empty
     philosopher'philosopher_thinks 1
                           empty
     philosopher'sticks_on_the_table 1
                           empty
 Home Properties
  Home Markings
     All
 Liveness Properties
  Dead Markings
     None
  Dead Transition Instances
```

None

Live Transition Instances
All

```
Fairness Properties
```

Построим граф пространства состояний (рис. [-@fig:005]).

Рис. 5: Граф пространства состояний

Выводы

В процессе выполнения данной лабораторной работы я реализовал модель задачи об обедающих мудрецах в CPN Tools.