ABSTRACT MATHEMATICS HOMEWORK 3

Jacob Huesman, 03 Feb 2016

1 The How, When, and Why of Mathematics

- 1. Polya's method
 - a. Understanding the problem
 - b. Devising a plan
 - c. Carrying out the plan
 - d. Looking back

2 Logically Speaking

Theorem 2.7. Two statement forms P and Q are equivalent if and only if they have the same truth table.

Theorem 2.9. Let P and Q denote statement forms. The following are tautologies:

1. DeMorgan's laws

$$\neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q)$$
$$\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q)$$

2. Implication and its negation

$$(P \to Q) \leftrightarrow (\neg P \lor Q)$$
$$\neg (P \to Q) \leftrightarrow (P \lor \neg Q)$$

3. Double negation

$$\neg(\neg P) \leftrightarrow P$$

3 Introducing the Contrapositive and Converse

3.1 Definitions

Definition 3.1. An **integer** x **is odd** if there is an integer n such that x = 2n + 1.

Definition 3.2. An integer x is even if there is an integer n such that x = 2n

Definition 3.3. An integer p is **prime** if p > 1 and p cannot be written as a product of two positive integers, both different from p.

3.2 Theorems

Theorem 3.1. Let P, Q, and R denote statement forms. Then the following are tautologies:

1. Distributive property

$$(P \land (Q \lor R)) \leftrightarrow ((P \land Q) \lor (P \land R))$$
$$(P \lor (Q \land R)) \leftrightarrow ((P \lor Q) \land (P \lor R))$$

2. Associative property

$$(P \land (Q \land R)) \leftrightarrow ((P \land Q) \land R)$$
$$(P \lor (Q \lor R)) \leftrightarrow ((P \lor Q) \lor R)$$

3. Commutative property

$$\begin{array}{c} (P \wedge Q) \leftrightarrow (Q \wedge P) \\ (P \vee Q) \leftrightarrow (Q \vee P) \end{array}$$

Theorem 3.3. Let x be an integer. If x^2 is odd, then x is odd.

Theorem (Contrapositive of the statement of Theorem 3.3). Let x be an integer. If x is even, then x^2 is even.

4 Set Notation and Quantifiers

4.1 Common Sets

The natural numbers : $\mathbb{N} = \{0, 1, 2, 3, ...\}$

The integers : $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

The rational numbers : $\mathbb{Q} = \{p/q : p, q \in \mathbb{Z} \text{ and } q \neq 0\}$

The real numbers : \mathbb{R}

The complex numbers : $\mathbb{C} = \{a + bi : i^2 = -1 \text{ and } a, b \in \mathbb{R}\}$

If A is one of the sets \mathbb{Z} , \mathbb{Q} , or \mathbb{R} , then the set of the positive elements is denoted by $A^+ = \{x \in A : x > 0\}$ and the set of the negative elements is denoted by $A^- = \{x \in A : x < 0\}$. Thus we have defined \mathbb{Z}^+ , \mathbb{Z}^- , \mathbb{Q}^+ , \mathbb{Q}^- , \mathbb{R}^+ , and \mathbb{R}^-

The plane $\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$

For $n \in \mathbb{Z}^+$, Euclidean n-space $\mathbb{R}^n = \{(x_1, x_2, ..., x_n) : x_j \in \mathbb{R} \text{ for } j = 1, 2, ..., n\}.$

4.2 Symbols

For all \forall

There exists \exists

5 Proof Techniques

5.1 Definitions

Three methods discussed in this chapter:

- direct proof (just get started and keep going)
- proof by contradiction (show that the negation of the statement you wish to prove implies the impossible)
- proof in cases (which may be used when conditions dictate that different situations occur).

Definition 5.1. A nonzero integer a divides an integer b if there is an integer n such that b = an. We write this as a|b.

Definition 5.2. For a real number x, the **absolute value** of x is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

5.2 Theorems

Theorem 5.1. If a, b and c are integers such that a divides b and a divides c, then a divides b + c.

Theorem 5.2. The number $\sqrt{2}$ is not rational.

Theorem 5.3. Let x and y be real numbers. Then |xy| = |x||y|.

6 Sets

6.1 Definitions

Definition 6.1. The **empty set**, denoted \emptyset is the set with no elements.

Definition 6.2. The set A is a **subset** of the set B or, equivalently, A is **contained** in B, if every element of A is an element of B. We write $A \subseteq B$ to indicate that A is a subset of B.

Definition 6.3. The set A is a **proper subset** of B if $A \subseteq B$ and $A \neq B$, and we write $A \subset B$.

Definition 6.4. The set A is equal to B, written A = B, if $A \subseteq B$ and $B \subseteq A$.

Definition 6.5. The union of the sets A and B is the set $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

Definition 6.6. The intersection of the sets A and B is the set $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

Definition 6.7. Two sets A and B are **disjoint** if $A \cap B = \emptyset$.

Definition 6.8. The **set difference** of set B in set A is the set $A \setminus B = \{x \in A : x \notin B\}$.

Definition 6.9. If the set X is the universe and A is a subset of X, the **complement** of A is the set $A^c = X \setminus A$.

6.2 Theorem 6.11.

Let A be a set. Then $\emptyset \subseteq A$.