

CISC & RISC Architecture CISC - Complex Instruction Set Computer - 1BM 360/370 (19-60-70) VAX -11 /780, (1470-80) - Intel x86/Pentium (1985- present) Only CISC instructions set that survived over generations, _ Desktop PC's / laptops use there -> Sufficient hardware resources available today to translate from CISC to RISC Internally

The volume of chips manufactured is so high. RISC - Reduced instruction Set Computer (RISC) Aso referred to as Load-store Architecture.

> Only LOAD & STORE instructions access memory. Ly All other instructions operate on processor registers.

- CDC 6600

- CDC 6600

- MIPS family efficient implementation.

- SPARC

1 100

- SPARC

1 100

- MIPS Jamily efficient implementation. - SPARC

- SPARC

- ARM micro-conhaller family compilers, to translate into RISC instructions. -> cisc-based computers (intel x81) use hardware to franslate iNo RISC instructions.

· ase	RISC
Le original microprocesur ISA	Redesigned ISA that emerge in the early 1980s
ISA Take	Single-cycle instruction
Instructions can take Several clock cycles	
in the second second	Software-centric design - Migh-level compilers most of the
Hardware-Control George - the ISA does as much as possible wirf hardware circuitry	- High-level con fite the take on most of the take on most of the
Landware ".	take on most of the burden on coding burden on coding many software steps for the pagrammer the pagrammer
	the programmer the programmer of RAM (can) Heavy use of RAM (can)
more efficient use of RAN than RISC	Heavy are of the necks if cause bottlenecks if RAM is limited)
	RAM is similarlized
Complex & Variable length instructions	Simple, standardized instructions
length number of	small number instructions
Large-number of instructions	Limited addressing
instructions Compound addressing modes	mode
modes	

lipeline in Executing Instructions

-> Instruction execution is divided into 5 stages:

- Instruction Retch (IF)
- Instruction Decode (10)
- ALU operation (Ex)
- memony Access (MEM)
- Write Back results (WB)

There five stages can be executed in an overlapped fashion in a pipeline architecture.

		Pige	line			ige			-1
	IF	ID	Ex	m	sm	WB			
2		IF	ID	E	۲	MEM) WB		
2			IF	11	>	EX	mem	WB	1-1
3				PF		10	EX	Men	we
5					+	15	ID	Ex	mem.
Clock	1	2	3	4	-	-	6	7	8.

vill result in pipeline slowdown as both are accessing morning.

this can be done in Harvard Archi.