1. DETR and YOLOv6

The architecture of DETR:

Fig. 2: DETR uses a conventional CNN backbone to learn a 2D representation of an input image. The model flattens it and supplements it with a positional encoding before passing it into a transformer encoder. A transformer decoder then takes as input a small fixed number of learned positional embeddings, which we call *object queries*, and additionally attends to the encoder output. We pass each output embedding of the decoder to a shared feed forward network (FFN) that predicts either a detection (class and bounding box) or a "no object" class.

The architecture of YOLOv6:

Figure 2: The YOLOv6 framework (N and S are shown). Note for M/L, RepBlocks is replaced with CSPStackRep.

2. Compare the performance

	mAP@50	mAP@75	mAP@[50:5:95]
YOLOv6	0.828	0.573	0.536
DETR	0.722	0.338	0.38

The details of YOLOv6

Average Precision		IoU=0.50:0.95	ļ	area= all maxDets=100	
Average Precision				area= all maxDets=100]	•
Average Precision	(AP) @[IoU=0.75	1	area= all maxDets=100]] = 0.573
Average Precision	(AP) @[IoU=0.50:0.95	1	area = small maxDets=100]] = 0.192
Average Precision	(AP) @[IoU=0.50:0.95		area=medium maxDets=100]] = 0.411
Average Precision	(AP) @[IoU=0.50:0.95	1	area= large maxDets=100]] = 0.674
Average Recall	(AR) @[IoU=0.50:0.95	1	area= all maxDets= 1] = 0.252
Average Recall	(AR) @[IoU=0.50:0.95	1	area= all maxDets= 10] = 0.546
Average Recall	(AR) @[IoU=0.50:0.95	1	area= all maxDets=100]] = 0.639
Average Recall	(AR) @[IoU=0.50:0.95	1	area= small maxDets=100] = 0.345
Average Recall	(AR) @[IoU=0.50:0.95		area=medium maxDets=100] = 0.546
Average Recall	(AR) @[IoU=0.50:0.95		area= large maxDets=100] = 0.740

The details of DETR

IoU metric: bbox Average Precision Average Precision Average Precision Average Precision Average Precision Average Precision Average Recall Average Recall	(AP) @[(AP) @[(AP) @[(AP) @[(AP) @[(AR) @[IoU=0.50 IoU=0.75 IoU=0.50:0.95 IoU=0.50:0.95 IoU=0.50:0.95 IoU=0.50:0.95 IoU=0.50:0.95	area= all area= small area=medium area= large area= all	maxDets=100 maxDets=100 maxDets=100 maxDets=100 maxDets= 1] = 0.722] = 0.338] = 0.091] = 0.257] = 0.519] = 0.195
Average Precision Average Recall Average Recall Average Recall	(AP) @[(AR) @[(AR) @[(AR) @[IoU=0.50:0.95 IoU=0.50:0.95 IoU=0.50:0.95 IoU=0.50:0.95	area= large area= all area= all area= all	maxDets=100 maxDets= 1 maxDets=100] = 0.519] = 0.195] = 0.433] = 0.531
Average Recall Average Recall Average Recall	(AR) @[area= small area=medium area= large	maxDets=100	j = 0.414

3. The implementation

YOLOv6:

YOLOv6 有寫入 tensorboard,因此將訓練時有記錄下的數據畫圖呈現。

Train details

Valid details

Optim: SGD

lr_scheduler : cosine

loss: iou_loss(Ciou_loss or Siou_loss) + L1 loss

Augementation: Mosaic

DETR

Loss: Cross entropy + L1 loss + generalized IoU loss Augementation: Ramdom select + resize + Flip

4. Visualization

YOLOv6:

DETR:

Reference

- Draw box
 https://github.com/waittim/draw-YOLO-box
- 2. CoCo to yolo https://github.com/Weifeng-Chen/dl_scripts/blob/main/detection/coco2yolo.py
- 3. Numpy float errors in the version of 1.24 https://stackoverflow.com/questions/74844262/how-can-i-solve-error-module-numpy-has-no-attribute-float-in-python
- 4. DETR paper https://arxiv.org/abs/2005.12872
- 5. YOLOv6 paper https://arxiv.org/abs/2209.02976

YOLOv7 我有嘗試使用 yolov7 過,official github 有使用 wandb,因此一併附上 Train details

Valid details

Performance 都比 yolov6 差很多,