モノ射とエピ射 P11

Definition

- 1. モノ射または単射とは $f \circ g = f \circ h \Rightarrow g = h$ であるような f である。即ち、 f_* が単射である。
- 2. エピ射または全射とは $g \circ f = h \circ f \Rightarrow g = h$ であるような f である。即ち、 f^* が単射である。

1

注意点 P12

Remark

圏の射が何かしらの写像だった場合、集合論的全射であればモノ射であり、集合論的単射であればエピ射であるが、逆は必ずしも成り立たない。環の圏において包含環準同型 $\mathbb{Z} \hookrightarrow \mathbb{Q}$ は全単射ではないがモノ射でありエピ射である。

補題 1.2.11

Theorem

- 1. モノ射の合成はモノ射
- 2. モノ射 *gf* の *f* はモノ射
- 3. エピ射の合成はエピ射
- 4. エピ射 gf の g はエピ射

Proof.

ホワイトボードにて・・・

関手

Definition

関手 $F: C \rightarrow D$ は

- 1. C の対象 c を D の対象 Fc に移す
- 2. C の射 $f: A \rightarrow B$ を D の射 $Ff: FA \rightarrow FB$ に移す
- 3. Cの恒等射は Dの恒等射に移す
- 4. $Fg \cdot Ff = F(g \circ f)$

4

位相空間での使用例 P15

Theorem

 $f: D^2 \to D^2$ な連続関数は必ず不動点を持つ

Proof.

ホワイトボードにて・・・

5

共変と反変

Definition

先程定義したのは共変関手である。また、圏 $C^{\circ}p$ と D を対応させる場合を反変関手という。