Une entité organique est une entité à base de carbone.

Les atomes de carbone forment le squelette de l'entité sur lequel viennent se greffer des atomes d'**hydrogène** et différents **groupes caractéristiques**. Lorsque le **squelette carboné** ne contient pas de liaisons multiples, il est dit **saturé**.

Formule semi-développée

Pour représenter une entité organique, on peut s'économiser le tracé des liaisons avec les nombreux atomes d'hydrogène. On obtient ainsi la formule **semi-développée** de la molécule (la formule développée consistant, elle, à représenter toutes les liaisons).

Modèle moléculaire	Formule brute	Formule développée	Formule semi-développée
	C ₄ H ₈ O ₂	H C H O H	$_{\mathrm{H_{3}C}}^{\mathrm{O}}$ $_{\mathrm{CH_{2}}}^{\mathrm{CH_{2}}}$ $_{\mathrm{OH}}$

1. Représenter la formule semi-développée correspondant à <u>ce modèle moléculaire</u>

Groupes caractéristiques

Famille chimique	Alcool	Aldéhyde	Cétone	Acide carboxylique	
Groupe caractéristique	Hydroxyle	Carbo n yle		Carbo x yle	
Représentation	-C-OH	O - CH		-С-ОН	
Exemple	CH ₃ CH OH H ₃ C CH ₂	H ₃ C CH CH CH CH ₃	H₃C O C C C C C C C C C C C C C C C C C C	O C CH ₃ HO CH ₂	

Une molécule est dit **polyfonctionnelle** lorsqu'elle possède plusieurs groupes caractéristiques. C'est le cas de l'acide citrique représenté ci-dessous.

2. Entourer et identifier les groupes caractéristiques de l'acide citrique.

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Nommer une entité organique

Le nom d'une molécule se compose d'un préfixe, d'un radical et d'un suffixe.

• Le **radical** indique le nombre de carbones de la **chaîne principale** (la chaîne carbonée la plus longue contenant le groupe caractéristique).

# de carbones	1	2	3	4	5	6	7	8	9
radical	méthan	éthan	propan	butan	pentan	hexan	heptan	octan	nonan

• Le **suffixe** indique la **famille chimique** à laquelle appartient l'entité et si besoin position du groupe caractéristique sur la chaîne principale.

famille chimique	Ø	alcool	aldéhyde	cétone	acide carboxylique *
suffixe	е	ol	al	one	oïque

^{*} pour les acides carboxyliques, on fait précéder le nom de la molécule par « acide ».

• Le **préfixe** indique la nature et la position d'éventuels groupes carbonés supplémentaires attachés à la chaîne principale. On appelle de telles branches des **groupements alkyles**.

# de carbones	1	2	3	4
préfixe	méthyl	éthyl	propyl	butyl

Pour indiquer où se trouvent un groupement alkyle ou un groupe caractéristique sur la chaîne principale, il faut la **numéroter**. Parmi les deux carbones aux extrémités de la chaîne principale, on choisit comme numéro 1 celui qui amène à la position de plus petit numéro pour le groupe caractéristique. Si le groupe est en bout de chaîne, on n'indique pas le « 1 » dans le nom.

Exemples:
$$\begin{array}{c} H_3C \\ CH_2 \\$$

S'exercer

Donner les noms des molécules suivantes :

$_{ m H_3C}$ $^{ m CH_2}$ $_{ m CH_2}$ $^{ m CH_3}$	
$_{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{2}}}$ $_{\mathrm{CH_{2}}}$ $_{\mathrm{CH_{2}}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}$	
$\begin{array}{c c} \operatorname{CH}_3 & \operatorname{O} \\ & \parallel \\ \operatorname{CH}_2 & \operatorname{CH} \end{array}$	
$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_2} \\ \\ \\ \operatorname{CH} \\ \operatorname{CH_3} \\ \\ \\ \operatorname{O} \end{array}$	

Représenter la formule semi-développée des molécules suivantes :

acide 2-méthylpropanoïque	
propanone	
2-méthylpentanal	