TFAWS Paper Session

Thermostructural Analysis of the SOFIA Fine Field & Wide Field Imagers Subjected to Convective Thermal Shock

Presented By Chris Kostyk

Thermal & Fluids Analysis Workshop TFAWS 2011 August 15-19, 2011 NASA Langley Research Center Newport News, VA

Overview

- SOFIA Overview
- The Thermostructural Concern
- Determination of Governing Parameters
- FEM Model Development
- Results
- Conclusions

Stratospheric Observatory For Infrared Astronomy

SOFIA infrared image (5.4, 24, and 37 µm)

Visible light image

- Highly Modified Boeing 747-SP
- 17-ton Infrared Telescope:
 - Primary Mirror: 2.5m diameter
 - Optimized for infrared wavelengths that cannot be accessed by any ground telescope or current space telescope
- Max Opening (shown): 58°
- Mobile observatory platform (anywhere, anytime)
- Envelope expansion complete. science flights begun

The Thermostructural Concern

- Primary: Original SOFIA design included telescope cavity ground pre-cool, and for various reasons needed to consider flight testing without
 - Would door opening at altitude result in a thermal-shock strong enough to damage imager optics?
- Secondary: Some parties concerned that flight test with original design would still have unsafe thermostructural loading due to air temperature change along flight path (will not fly isothermal flight path)
- Tertiary: CTE mismatch, already mitigated by ground testing of imagers
- 4 different optical components identified
 - FFI (Fine Field Imager)
 - Schmidt Plate (higher concern)
 - Achromat
 - WFI (Wide Field Imager)
 - Achromat 1 (higher concern)
 - Achromat 2
- FFI Schmidt Plate analyzed, none others due to results of analyses and different fixture comparison (clamps vs. fixing rings)

Telescope Assembly

FFI Front Group

- Determination of physics to be modeled
 - — ★ Convection-induced thermal gradient (thermal stress)
 - − ★ Bolt pre-load induced stress (and CTE mismatch +/-)
 - — ★ Circumferential clamping (CTE mismatch)
 - Vibratory stress
 - Acoustic pressure
 - Max flight load
- Determination of domain
 - Relatively thermally isolated front group containing Schmidt
 Plate was clear choice for geometry

- Determination of model key result(s) & acceptance criteria
 - Glass is much stronger in compression than tension
 - Tensile strength strongly dependent upon surface finish
 - Glass manufacturer (Schott) TIE-33 "Design strength of optical glass and ZERODUR"
 - Low stress level allowable for infinite part life (8 MPa and 10 MPa allowable for optical & ZERODUR, respectively)
 - When application requires higher stresses, statistical approach provided, characteristic strength values for zero failure probability all > 20 MPa even for the worst surface finishes – this part is optically finished
 - So σ_{p1} < 8-10 MPa adopted as target value rather than requirement based upon strength data available, but 20 MPa would be seen as conservative benchmark value for margin determination
 - These are low values: model aggressively conservative and if no positive margin then refine conservativism
 - Due to clamping mechanism & ground test, in addition to determining stress level it was important to determine stress composition
 - Because of uncertainty in some inputs, a parameter sensitivity study would have to be performed to make this analysis complete

Determination of material properties

 Materials known, no batch properties, combination of manufacturer supplied and database, if "pencil sharpening" required then examine more closely (along with other layers of conservativism)

Determination of structural loading

- Loading due to bolt pre-load in clamping mechanism
- Agreed upon value of bolt pre-load range 2-3 kN (3 kN value seems strongly conservative)

Determination of thermal loading

- Instead of working up cooling rate range, assume limiting scenario of convective thermal shock
- 3 Governing parameters for convective thermal shock: initial temperature (T_i), fluid temperature (T_R), convection coefficients (h)

- Determination of thermal loading (cont'd)
 - Initial temperature: 20°C reasonable assumption given onboard aircraft systems
 - Fluid temperature:
 - Airflow ingested into telescope cavity, into FFI Baffle, impinging/over external surface of Schmidt Plate
 - Not freestream temperature, but recovery temperature of fluid
 - Determined using the isentropic, subsonic compressible flow equation, but modified to assume non-zero flow at Schmidt Plate surface

$$T_{R} = \left[1 + R \frac{\gamma - 1}{2} \left(M_{\infty} - M_{res}\right)^{2}\right] T_{\infty}$$

Where T_R is the recovery temperature, R is a factor (0.9) to compensate for the process not being perfectly adiabatic, M_{∞} and T_{∞} are freestream values, and M_{res} is the residual flow velocity (a max value for the whole cavity being ≈ 0.1)

- This leads to a conservative value of $T_R = -40$ °C for max door-opening altitude
- The resulting shock value (T_i T_R) = 60°C
- This is conservatively the worst possible scenario, there can only be less severe than this (finite air temperature cooling rate, smaller ΔT , etc.)

- Determination of thermal loading (cont'd)
 - Convection coefficient
 - Dependent upon geometry and flowfield
 - Used CFD results for velocity range
 - Calculated several correlations, subsonic stagnation point @ 15 kft (lowest door-opening altitude) was the highest, used conservative velocity, h = 60 W/m²K
 - Flow around the body behind the headring (low speed/free, h = 5 W/m²K)
 - It should be noted that a physically impossible ∆T & h combination (from different altitudes) leads to a very conservative analysis

FEM Model Development

- Began with hand calc $\sigma = E \alpha \Delta T$ (35 MPa) for bounding value for model results
- 2D structural model to look at mesh density for solution convergence to this idealization
- 2D & 3D transient thermal models to investigate thermal response between components & t_{max grad}
- 3D coupled thermal-structural transient FEM with structural and thermal contact (to allow DOFs between plate and fixture)
 - Mesh refinement to allow contact calculations to run without physically impossible load concentrations
- Working model ~16,000 hex elements using 21,800 nodes, ~1 day runtime
- Model used to iterate on 4 key input parameters to investigate sensitivity to uncertainty
 - Clamp pre-load
 - Friction coefficients
 - Convection coefficients
 - Shock strength
- Epiphany: another mesh refinement (in contact region) to determine convergence

FEM Model Development

Coarse Working Mesh

FEM Model Development

- MSC.Patran pre/post processor, MSC.Marc solver
- Loading separated for stress composition determination

Results: Max Principal Variation with Pre-Load

• Very conservative (physically impossible) combination of $\Delta T = 60$ °C, and h = 60 W/m²K produced only small increase in maximum occurring σ_{p1} over clamp pre-load induced level (pre-load > 90% of max occurring)

Results: Max Principal Variation with Friction

- 3 kN pre-load, h = 60 W/m²K, ∆T = 60 °C
- Friction coefficients variation did not effect Schmidt Plate stress state
- High-µ case also run (not plotted) and produced overlapping results

Results: Max Principal Variation with Shock Strength

- 2 kN pre-load, h = 60 W/m²K, Δ T = 30/60/90 °C
- For $\Delta T = 0.90 \, ^{\circ}\text{C} \, \sigma_{\text{p1}}$ only 1.5 MPa higher
- This would be less given a more realistic convection coefficient

Results: Max Principal Variation with Convection Coefficient

- 2 kN pre-load, $\Delta T = 90$ °C shock, h = 40/60/80 W/m²K
- Higher shock value used to magnify the insensitivity
- For h = 0-80 W/m²K σ_{p1} only 1.5 MPa higher with overly conservative 90 °C shock

Results: Additional Refinement

- Until this point several mesh refinements had been performed (2D thermal, 2D thermostructural, 3D thermal)
- Additionally, there was a mesh densification required in contact regions to protect against false stress concentrations
- The preceding two steps engendered a sense of sufficiency in model development, convergence
- Upon realization that solution convergence needed to be demonstrated with "working" mesh another mesh refinement was done
- Edge length reduction of 40% lead to max σ_{p1} dropping from 10.6 MPa to 0.7 MPa, with further edge length reduction providing negligible reduction, proportional reduction in variation due to thermal effects

Conclusions

- Determined clamp bolt pre-load contributed >90% of max principal stress
- Demonstrated thermally-induced stress variation as insensitive to uncertainty
- Found positive margin for extreme scenarios, no fatigue concerns
- Cleared, by comparison, other components
- Learned valuable lesson keep careful track of steps taken (and any remaining) to demonstrate solution convergence when performing multi-disciplinary analyses, regardless of whether using home-grown or commercial code
 - Sense of conventional mesh sufficiency may no longer apply

Questions?

