Che GK 11 Dr. Nave

Elektrophile Addition

Name: Datum:

Elektrophile Addition (am Beispiel von Brom an Ethen)

Die Reaktion verschiedener organischer Substanzen mit Halogenen ist in der technischen und organischen Chemie eine wichtige Grundlage zur Synthese verschiedener Stoffe.

Das folgende Video demonstriert die Reaktion von Brom mit Ethen:

Aufgaben

- 1. Gucken Sie sich das Video an. Gucken Sie sich danach das Video erneut an und machen Sie sich Notizen zum Reaktionsablauf zur **elektrophilen Addition von Brom an Ethen**.
- 2. Stellen Sie den Reaktionsmechanismus der elektrophilen Addition von Brom an Ethen in einer Filmleiste dar.

Tipp: Kleben Sie hierzu die einzelnen Reaktionschritte in die Filmleiste und erläutern Sie diese. **Tippkarten liegen bereit**

3. Ergänzen Sie alle fehlenden Ladungen in den einzelnen Schritten des Reaktionsmechanismus.

Che	GK	11
Dr.	Nav	e

Elektrophile Addition

Name:		
Datum:		

Filmleiste zur elektrophilen Addition von Brom an Ethen

_		
\Box		
	<u> </u>	
]_	<u> </u>	
_	<u></u>	
	<u>i</u>	
	<u> </u>	
-	<u> </u>	
	i	
-		
-		
-	<u>'-</u>	
-		
	<u> </u>	
$\overline{}$	<u>. </u>	
	<u> </u>	
	<u>'</u>	
-	ļ	
	<u> </u>	
-	ـــا	
	<u> </u>	
-	,	
! -	<u> </u>	
	<u> </u>	
-	ļ	
_	,	
	<u> </u>	
-		
	H	
	F	
	<u> </u>	
-	<u>'</u>	
	ļ	
4	<u> </u>	
	<u> </u>	
-	<u> </u>	
	—	
-	<u> </u>	
	ļ.—	
	<u>-</u>	
Ļ		
	<u></u>	
-	<u> </u>	
-		
	<u> </u>	
-	,	
-	<u> </u>	
-		
\Box	H	
_	<u> </u>	
\Box	<u> </u>	
\prod	!	
	<u>1</u>	

Che GK 11 Dr. Nave

Elektrophile Addition

Name: Datum:

Tippkarten zum Reaktionsmechanismus

); {
Schritt 1 (GK) hohe Elektronendichte der C=C-Bindung Polarisierung des Br ₂	Schritt 1 (LK) Durch die hohe Elektronendichte der C=C-Doppelbindung wird das Brom-Molekül temporär polarisiert. Es richtet sich mit der partiell-positiv geladenen Seite in Richtung der C=C-Doppelbindung aus.
Schritt 2 (GK)	Schritt 2 (LK)
□ elektrophiler Angriff □ π-Komplex	Die Doppelbindung wird elektrophil vom positivierten Brom-Atom angegriffen. Es bildet sich ein π -Komplex.
Schritt 3 (GK)	Schritt 3 (LK)
 □ C-Br-Bindung □ heterolytische Bindungsspaltung □ Bromonium-lon (Br+) □ Bromid-lon (Br-) 	Durch eine Verschiebung der Bindungselektronen wird eine Bindung zwischen einem Kohlenstoff-Atom und dem positivierten Brom-Atom ausgebildet. Das Brom-Molekül wird heterolytisch gespalten. Es liegt nun ein Bromid-Ion (Br -) und ein Bromonium-Ion (Br +) als Zwischenstufe vor.
Schritt 4 (Level GK)	Schritt 4 (LK)
□ Angriff Bromid-Ion	Das negativ geladene Bromid-lon greift nun das positiv geladene Bromonium-lon rückseitig an.
Schritt 5 (GK)	Schritt 5 (LK)
□ weitere C-Br-Bindung □ 1,2-Dibromethan	Durch die Bildung einer weiteren Bindung zwischen Kohlenstoff- und Brom-Atomen liegt als Endprodukt das 1,2-Dibromethan vor.

Che	GK 11
Dr	Nava

Elektrophile Addition

Name:		
Datum:		

Information: Die **elektrophile Addition an die Doppelbindung** ist eine wichtige Reaktion im Bereich der organischen Chemie. Synthetisch hergestellter Alkohol wird z. B. durch die Addition von Wasser an Ethen in großen Mengen produziert. Im folgenden Lückentext finden Sie die wichtigsten Informationen zu dieser Reaktion.

Aufgaben

1. Tragen Sie die fehlenden Begriffe in den Lückentext ein. Vergleichen Sie Ihr Ergebnis mit der Lösung.

abgespalten – Addition – Addition – Alkane – Angriff – Annäherung – Bromid-Ion – Carbenium-Ion – Carbenium-Ion – C=C-Doppelbindung – Methyl-Gruppe – Dibromalkan – elektrophil – freie – Halogene – Katalysator – Katalysator – Ladungsverschiebung - letzten Schritt – Markownikow-Regel – partiell – partiell negativ – positiv – positiv – positiv – Protons – Reaktionsart – Rückseite – Sauerstoff-Atom – Säure – spontan – spontan – stabiler – sterischen Hinderung – Summenformel – Übergangszustand – unsymmetrischen – unsymmetrischen – Wasser – Wasserstoff-Atome – Weise – zweiten

2. Lesen Sie den ausgefüllten Lückentext und erstellen Sie eine Mindmap mit den wichtigsten Informationen zur elektrophilen Addition an die Doppelbindung. Vergleichen Sie Ihr Ergebnis mit der Lösung.

Alkene gehören zu den			S	ie besitzer	n eine
.	Sie	enthalte	n dah	er v	veniger
	als d	ie		mit der g	leichen
Anzahl an Kohlenstoff-Atomen. Die	allgemeine				lautet
daher C _n H _{2n} . Die wichtigste		(der Alkene is	st die elekt	rophile
Addition an die Doppelbindung. Da	a die Dopp	elbindung			
geladen ist, muss das ang	reifende 7	eilchen			
(elektronenliebend), also positiv gela	aden sein. I	Nach dem			eines
Elektrophils entsteht ein			geladenes	Carbeniu	ım-lon.
Carbenium-Ionen sind umso		, je	mehr Substit	uenten vorl	nanden
sind. Bei der Addition eines	S			an	einem
	Alken	, wie z.B.	Propen, ents	steht das st	tabilere
	In dieser	n Fall ist	die positive	Ladung a	n dem
Kohlenstoff-Atom, welches die			_ trägt. Vor	über 100	Jahren
formulierte der Chemiker Markov	wnikow hie	rzu die	nach ihm	bekannte	Regel
(): "Ein <i>(</i>	elektrophile	s Reagenz	reagiert n	nit der

Che GK 11 Dr. Nave

Elektrophile Addition

Name: Datum:

Doppelbindung	eines					Alke	ens	in	der
	, dass das stab	oilere Carb	enium-l	on ents	teht."				
	reagie	eren			mi	it der [Doppe	lbind	lung;
das Proton ist		gela	aden un	d kann	daher n	nit der	Doppe	elbino	dung
reagieren. Wenn	das angreifende	Teilchen	nicht	positiv	geladen	ı ist, v	vie z.	В. І	beim
	, wird e	ein				ber	nötigt.	Bei	der
	von	Wasser	an	Ethen	reag	iert z	zunäcl	nst	der
		eine	Säure,	mit	der	Doppe	lbindu	ıng.	lm
	Schritt	kann	das	Wa	sser-Mo	lekül	übe	r	das
			an	das	p	oositiv		gelad	dene
		an	greifen.	lm					
wird der	Katalysator, in	diese	em l	Falle	das	Prot	on,	wi	eder
		·							
Auch		reagi	eren _					mit	der
Doppelbindung. D	Das ist zunächst ü	berrasche	nd, da	Haloge	ne unge	eladen	sind	und	viele
	Elektronen besitzer	n. Bei der _					_ des	Halo	gen-
Moleküls komr	mt es jedocl	h inne	rhalb	dieses	s Mo	leküls	zu	(einer
		die Elekt	ronen "	fliehen"	vor de	r Dopp	elbind	ung	zum
hinteren Halogen-	Atom, welches dad	urch			neg	ativ gel	aden	wird.	Das
Halogen-Atom,	welches nah	an de	er Do	ppelbin	dung	ist,	wird	pa	artiell
	geladen.	Eine			ist	t somit	mögli	ich. E	3eim
ersten Schritt	addiert das pos	sitiv gela	dene	Bromor	nium-lon	; es	ents	teht	ein
		Im z	weiten	Schritt	wird d	las neç	gativ	gelad	dene
	an das Car	rbenium-lo	n ange	lagert. I	Dieses I	on grei	ft aufo	grund	l der
	von c								
	die Doppelbindung								
entstanden.									