МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Информационных систем

ОТЧЕТ

по практической работе №1 по дисциплине «Объектно-ориентированное программирование»

Студент гр. 8374	 Пихтовников К.С.
Студент гр. 8374	 Подсекин Г.С.
Преподаватель	Егоров С.С.

Санкт-Петербург 2021

Задание на практическую работу

Рис.1. Диаграмма классов работы №1

Создать консольное приложение согласно представленной на рис.1 диаграмме классов, предназначенное для вычисления корней полинома 2-ой степени $p(x) = a^*x^2 + b^*x + c$ ($a \ne 0$) и его значения для заданного аргумента x на **множестве целых чисел**.

Приложение должно включать основной модуль (функция main), модуль «application» и модуль «polinom».

В **основном модуле** консольного приложения (для языка C++ — это модуль с функцией таin) должен создаваться объект класса "Консольное приложение" и вызываться его метод, который предоставляет пользователю **меню команд** приложения.

Модуль **«application»** должен содержать спецификацию класса "Консольное приложение" и реализацию его методов. Один из методов должен реализовывать меню команд приложения, включающее:

- команду, инициирующую ввод коэффициентов a, b, c (до ввода должны быть заданы значения по умолчанию);
- команду, инициирующую расчета корней полинома и вывод результатов расчета;
- команду, инициирующую ввод значения аргумента x (по умолчанию равен 0), расчет значения и его вывод;
- команду, инициирующую вывод текстового представления полинома в yказанной форме p(x);
- команду, инициирующую вывод текстового представления полинома в канонической форме;

- команду выхода из приложения.

Модуль **«polinom»** должен содержать спецификацию класса "Полином 2ой степени" и реализацию его методов, необходимых для реализации цели разрабатываемого приложения. Описание класса должно использовать вместо типа double (вещественное число, заданное в условии) абстрактный тип *number*, описание которого должно задаваться в отдельном заголовочном файле number.h с помощью оператора **typedef int number** (для C++).

Требуется реализовать и отладить программу, удовлетворяющую сформулированным требованиям и заявленным целям. Разработать контрольные примеры и оттестировать на них программу. Оформить отчет, сделать выводы по работе.

Спецификация классов

Класс Tapplication

Предназначен для выполнения функций ввода коэффициентов полинома, значения аргумента, инициализации процесса вычисления корней, инициализации процесса вычисления и вывода полинома в классической и канонической формах.

Метод/атрибут	Описание
Метод ехес()	Формальных параметров нет, тип void, область видимости-public. В этом методе идет вызов функции menu(), задается конкретное действие, которое пожелал сделать пользователь и результат выводится на экран.
Метод menu()	Формальных параметров нет, тип возвращаемого значения-int, область видимости-private. Вывод на экран необходимого меню, с помощью которого пользователь взаимодействует с программой.
Meтод Bool RootsInteger (number*roots, int quantityRoots, number a, number b, number c)	Тип возвращаемого значения - bool, область видимости private. Типы формальных параметров: указатель на массив с корнями (number*), int количество корней, number коэффициенты a, b, c. Метод позволяет определить, являются ли корни уравнения целыми числами.

Таблица 1. Класс Tapplication

Класс Tpolinom

Методы и атрибуты данного класса необходимы для выполнения цели разрабатываемой программы (например, получение значений коэффициентов полинома, вычисление дискриминанта, вывод уравнения на экран).

Метод/атрибут	Описание
Атрибут number a, b, c	область видимости — private, хранит
	значение коэффициентов. По умолчанию
	коэффициенты равны: a=1, b=2, c=1.
Атрибут EPrintMode printMode	область видимости – private, содержит вид
	уравнения для печати, который выбрал
	пользователь
Метод TPolinom(number,number,number)	Конструктор класса
Метод Void setPrintMethod(EPrintMode	Тип формального параметра - EPrintMode,

ePrintMethod)	область видимости public. Метод устанавливает вид полинома, в котором его необходимо вывести (классический или канонический)
Методы getA(), getB(), getC()	Формальных параметров нет, тип number, область видимости public. Предназначены для получения коэффициентов а, b, c.
Метод Int QuantityOfRoots()	Формальных параметров нет, тип возвращаемого значения - int, область видимости public. Возвращает количество корней полинома
Метод number getValue(number x)	Тип формального параметра - number, тип возвращаемого значения - number, область видимости public. Метод вычисляет и возвращает значение полинома.
Метод number Discriminant()	Формальных параметров нет, тип возвращаемого значения - number, область видимости private. Возвращает значение дискриминанта
Метод number *Roots()	Формальных параметров нет, тип возвращаемого значения - number, область видимости public. Возвращает указатель на массив с корнями.
Метод ostream& operator << (ostream& os, TPolinom& p)	Тип возвращаемого значения – ostream object, область видимости – public. Данный метод выводит на экран полином в классической или канонической форме.

Таблица 2. Класс Tpolinom

Диаграмма классов

Рис.2. Реализация диаграммы классов работы №1

Символ	Значение
+	public - открытый доступ
-	private - только из операций того же класса
#	protected - только из операций этого же класса и классов, создаваемых на его
	основе

Таблица 3. Обозначение аттрибутов и методов класса

Описание контрольного примера с исходными и ожидаемыми (расчетными) данными

Пример 1:

Исходные данные:

Коэффициенты:

a=1, b=3, c=-4

Ожидаемые данные:

x1=-4, x2=1

p(2)=2*2+3*2-4=6

Классический вид: $x^2 + 3x - 4$

Канонический вид: 1*(x-1)*(x+4)

Пример 2:

Исходные данные:

Коэффициенты:

a=1, b=6, c=9

Ожидаемые данные:

x1=x2=-3

p(3)=3*3+6*3+9=36

Классический вид: x^2+6x+9 Канонический вид: $1*(x+3)^2$

Пример 3:

Исходные данные:

Коэффициенты:

a=-1, b=4, c=0

Ожидаемые данные:

x1=4, x2=0

p(1)=-1*1*1+4*1=3

Классический вид: $-1x^2+4x$

Канонический вид: -1*x*(x-4)

Пример 4:

Исходные данные:

Коэффициенты:

a=2, b=4, c=7

Ожидаемые данные:

Корней нет

p(5)=2*5*5+4*5+7=77

Классический вид: $2x^2+4x+7$

Канонический вид: полином не имеет корней, поэтому его невозможно вывести в канонической форме.

Скриншоты программы на контрольных примерах

Пример 1:

```
Enter a,b,c:
>1 3 -4
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>3
There are two roots: x1=1 x2=-4
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>2
Enter x:
>2
P(2)=6
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>4
1x^2+3x-4
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>5
1*(x-1)*(x+4)
```

Пример 2:

```
Enter a,b,c:
>1 6 9
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>3
There is one root: x=-3
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>2
Enter x:
>3
P(3)=36
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>4
1x^2+6x+9
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>5
1*(x+3)^2
```

Пример 3:

```
Enter a,b,c:
>-1 4 0
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>3
There are two roots: x1=0 x2=4
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>2
Enter x:
>1
P(1)=3
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>5
-1*x*(x-4)
```

Пример 4:

```
Enter a,b,c:

>2 4 7

1- coefficients

2- value

3- roots

4- print (classic)

5- print (canonical)

0- exit>

>3

No roots on the field of integers
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>2
Enter x:
>5
P(5)=77
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>4
2x^2+4x+7
```

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>5
The polynomial has no roots, so it is impossible to derive in canonical form
```

Вывод

В ходе данной лабораторной работы было создано консольное приложение согласно представленной на рис.1 диаграмме Приложение включает в себя основной модуль (функция main), в котором создается объект класса "Консольное приложение" и вызывается его метод, предоставляющий пользователю меню приложения; команд модуль «application», содержащий спецификацию класса "Консольное приложение" и реализацию его методов; модуль «polinom», содержащий спецификацию класса "Полином 2ой степени" и реализацию его методов, необходимых для реализации цели разрабатываемого приложения.

Помимо этого, была создана диаграмма классов (рис.2) и произведена отладка работы программы. Разработаны контрольные примеры с исходными и ожидаемыми данными, которые затем были протестированы в созданном консольном приложении. Все результаты совпали.