МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

Курсовая работа

по дисциплине

«Дискретная математика»

Вариант № 116

Выполнил:

Студент группы Р3116

Билошицкий Михаил Владимирович

Преподаватель:

Поляков Владимир Иванович

Задание

Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $-2 \le (x_4x_5 - x_1x_2x_3) < 1$

и неопределённое значение при

$$(x_4x_5 - x_1x_2x_3) = -5$$

Таблица истинности

Nº	$x_1 x_2 x_3 x_4 x_5$	x_4x_5	$(x_4x_5)_{10}$	$x_1 x_2 x_3$	$(x_1x_2x_3)_{10}$	(-)	f
0	0 0 0 0 0	0 0	0	0 0 0	0	0	1
1	00001	0 1	1	0 0 0	0	1	0
2	0 0 0 1 0	1 0	2	0 0 0	0	2	0
3	0 0 0 1 1	1 1	3	0 0 0	0	3	0
4	0 0 1 0 0	0 0	0	0 0 1	1	-1	1
5	0 0 1 0 1	0 1	1	0 0 1	1	0	1
6	0 0 1 1 0	1 0	2	0 0 1	1	1	0
7	0 0 1 1 1	1 1	3	0 0 1	1	2	0
8	0 1 0 0 0	0 0	0	0 1 0	2	-2	1
9	0 1 0 0 1	0 1	1	0 1 0	2	-1	1
10	0 1 0 1 0	1 0	2	0 1 0	2	0	1
11	0 1 0 1 1	1 1	3	0 1 0	2	1	0
12	0 1 1 0 0	0 0	0	0 1 1	3	-3	0
13	0 1 1 0 1	0 1	1	0 1 1	3	-2	1
14	0 1 1 1 0	1 0	2	0 1 1	3	-1	1
15	0 1 1 1 1	1 1	3	0 1 1	3	0	1
16	1 0 0 0 0	0 0	0	1 0 0	4	-4	0
17	1 0 0 0 1	0 1	1	1 0 0	4	-3	0
18	1 0 0 1 0	1 0	2	1 0 0	4	-2	1
19	1 0 0 1 1	1 1	3	1 0 0	4	-1	1
20	1 0 1 0 0	0 0	0	1 0 1	5	-5	d
21	1 0 1 0 1	0 1	1	1 0 1	5	-4	0
22	1 0 1 1 0	1 0	2	1 0 1	5	-3	0
23	1 0 1 1 1	1 1	3	1 0 1	5	-2	1
24	1 1 0 0 0	0 0	0	1 1 0	6	-6	0
25	1 1 0 0 1	0 1	1	1 1 0	6	-5	d
26	1 1 0 1 0	1 0	2	1 1 0	6	-4	0
27	1 1 0 1 1	1 1	3	1 1 0	6	-3	0
28	1 1 1 0 0	0 0	0	1 1 1	7	-7	0
29	1 1 1 0 1	0 1	1	1 1 1	7	-6	0
30	1 1 1 1 0	1 0	2	1 1 1	7	-5	d
31	1 1 1 1 1	1 1	3	1 1 1	7	-4	0

Аналитический вид

КДНФ: $f(x_1, x_2, x_3, x_4, x_5) = \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 \vee \overline{x}_1 \overline{x}_2 x_3 \overline{x}_4 \overline{x}_5 \vee \overline{x}_1 \overline{x}_2 x_3 \overline{x}_4 x_5 \vee \overline{x}_1 \overline{x}_2 x_3 \overline{x}_4 x_5 \vee \overline{x}_1 x_2 \overline{x}_3 \overline{x}_4 x_5 \vee \overline{x}_1 x_2 \overline{x}_3 \overline{x}_4 x_5 \vee \overline{x}_1 x_2 \overline{x}_3 x_4 \overline{x}_5 \vee \overline{x}_1 x_2 x_3 \overline{x}_4 x_5 \vee \overline{x}_1 \overline{x}_2 x_3 x_4 \overline{x}_5 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 x_4 \overline{x}_5 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 x_4 x_5 \vee \overline{x}_1 \overline{x}_1 \overline{x}_2 \overline{x}_3 x_4 x_5 \vee \overline{x}_1 \overline{x}_$

 $KKH\Phi: f(x_1, x_2, x_3, x_4, x_5) = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x}_5)(x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x}_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \cdot (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \cdot (x_1 \lor$

- $\cdot (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})(x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5)(x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \cdot$
- $\cdot (x_1 \vee \overline{x}_2 \vee x_3 \vee \overline{x}_4 \vee \overline{x}_5)(x_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4 \vee x_5)(\overline{x}_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5) \cdot$
- $\cdot (\overline{x}_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x}_5)(\overline{x}_1 \lor x_2 \lor \overline{x}_3 \lor x_4 \lor \overline{x}_5)(\overline{x}_1 \lor x_2 \lor \overline{x}_3 \lor \overline{x}_4 \lor x_5) \cdot$
- $\cdot (\overline{x}_1 \vee \overline{x}_2 \vee x_3 \vee x_4 \vee x_5)(\overline{x}_1 \vee \overline{x}_2 \vee x_3 \vee \overline{x}_4 \vee x_5)(\overline{x}_1 \vee \overline{x}_2 \vee x_3 \vee \overline{x}_4 \vee \overline{x}_5) \cdot$
- $\cdot (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4 \vee x_5)(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4 \vee \overline{x}_5)(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4 \vee \overline{x}_5)$

Минимизация булевой функции методом Квайна-Мак-Класки

No	$K^0(f)$	Поглощение
1	00000	+
2	00100	+
3	00101	+
4	01000	+
5	01001	+
6	01010	+
7	01101	+
8	01110	+
9	01111	+
10	10010	+
11	10011	+
12	10100	+
13	10111	+
14	11001	+
15	11110	+

№ склеивания	$K^1(f)$
1 - 2	00X00
1 - 4	0X000
2 - 3	0010X
2 - 12	X0100
3 - 7	0X101
4 - 5	0100X
4 - 6	010X0
5 - 7	01X01
5 - 14	X1001
6 - 8	01X10
7 - 9	011X1
8 - 9	0111X
8 - 15	X1110
10 - 11	1001X
11 - 13	10X11

$N_{\underline{0}}$	Z(f)
1	00X00
2	0X000
3	0010X
4	X0100
5	0X101
6	0100X
7	010X0
8	01X01
9	X1001
10	01X10
11	011X1
12	0111X
13	X1110
14	1001X
15	10X11

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам

		0 - кубы											
Простые импликанты		0 0 0 0	0 0 1 0	0 0 1 0 1	0 1 0 0	0 1 0 0	0 1 0 1	0 1 1 0 1	0 1 1 1 0	0 1 1 1	1 0 0 1 0	1 0 0 1 1	1 0 1 1
		1	2	3	4	5	6	7	8	9	10	11	12
1	00X00	*	*										
2	0X000	*			*								
3	0010X		*	*									
4	X0100		*										
5	0X101			*				*					
6	0100X				*	*							
7	010X0				*		*						
8	01X01					*		*					
9	X1001					*				_			
10	01X10						*		*				
11	011X1							*		*			
12	0111X								*	*			
13	X1110								*				
14	1001X										*	*	
15	10X11											*	*

Импликанты 4, 9, 13, 14, 15 — существенные, так как они покрывают вершины 12, 14, 15, 10, 13 соответственно, не покрытые другими импликанами. Вычеркиваем из таблицы строки, соответствующие этим импликантам, а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Это вершины 2, 5, 8, 10, 11, 12, 14, 15. Вершина 13 не покрывающая ни одного импликанта, также вычеркивается из таблицы. В результате получаем упрощенную импликантную таблицу.

				0 -	кубы		
	0	0	0	0	0	0	
				1	1	1	1
Про	стые импликанты	0	1	0	0	1	1
·			0	0	1	0	1
			1	0	0	1	1
				d	f	g	i
Α	00X00	*					
В	0X000	*		*			
С	0010X		*				
D	0X101		*			*	
E	0100X			*			
F	010X0			*	*		

G	01X01			*	
Н	01X10		*		
I	011X1			*	*
J	0111X				*

Множество существенных импликант образуют ядро покрытия как его обязательную часть.

Ядро покрытия
$$T = \begin{cases} X1110\\1001X\\10X11 \end{cases}$$

Если упорядочить упрощенную импликантную таблицу до таблицы с импликантами, покрывающие только 2 вершины, то получим вторую часть минимального покрытия.

		0 - кубы								
		0	0	0	0	0	0			
		0	0	1	1	1	1			
Пр	0	1	0	0	1	1				
	·			0	1	0	1			
				0	0	1	1			
		а	С	d	f	g	i			
В	0X000	*		*						
D	0X101		*			*				
F	010X0			*	*					
I	011X1					*	*			

$$C_{min}(f) = \begin{cases} X1110 \\ 1001X \\ 10X11 \\ 0X000 \\ 0X101 \\ 010X0 \\ 011X1 \end{cases} S_a = 28, \quad S_b = 35$$

Этому покрытию соответствует МДНФ следующего вида: $f=x_3x_4\overline{x}_5 \vee x_1\overline{x}_2\overline{x}_3x_4 \vee x_1\overline{x}_2x_4x_5 \vee \overline{x}_1\overline{x}_3\overline{x}_4\overline{x}_5 \vee \overline{x}_1x_3\overline{x}_4x_5 \vee \overline{x}_1x_2\overline{x}_3\overline{x}_5 \vee \overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x_2\overline{x}_1x$

Минимизация булевой функции на картах Карно Определение МДНФ

	x4x5								
		00	01	11	10				
	00	1							
x2x3	01	1	1						
	11		1	1	1				
	10	1	1		1				

	x4x5							
		00	01	11	10			
	00			1	1			
x2x3	01	d		1				
	11				d			
	10		d					

$$x1 = 0$$

$$x1 = 1$$

Примечание – серая ячейка, пересечение двух склеек.

$$C_{min}(f) = \begin{cases} 00X00 \\ 0X101 \\ 0100X \\ 0111X \\ 01X10 \\ 1001X \\ 10X11 \end{cases} S_a = 28, S_b = 35$$

МДНФ имеет следующий вид:

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_4 \overline{x}_5 \vee \overline{x}_1 x_3 \overline{x}_4 x_5 \vee \overline{x}_1 x_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 x_2 x_3 x_4 \vee \overline{x}_1 x_2 x_4 \overline{x}_5 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 x_4 \overline{x}_5 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 x_4 \overline{x}_5 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_3 \overline{x}_4 \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_1 \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_$$

Определение МКНФ

	x4x5							
		00	01	11	10			
	00		0	0	Θ			
x2x3	01			0	0			
	11	0						
	10			0				

$$x1 = 0$$

$$x1 = 1$$

$$C_{min}(f) = \begin{cases} 01100\\00001\\00X1X\\01011\\10X0X\\11X0X\\10110\\11X1X \end{cases} S_a = 32, S_b = 40$$

МДНФ имеет следующий вид:

$$f = (x_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4 \vee x_5)(x_1 \vee x_2 \vee x_3 \vee x_4 \vee \overline{x}_5)(x_1 \vee x_2 \vee \overline{x}_4) \cdot (x_1 \vee \overline{x}_2 \vee x_3 \vee \overline{x}_4 \vee \overline{x}_5)(\overline{x}_1 \vee x_2 \vee x_4)(\overline{x}_1 \vee \overline{x}_2 \vee x_4)(\overline{x}_1 \vee x_2 \vee \overline{x}_3 \vee \overline{x}_4 \vee x_5) \cdot (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4)$$

Преобразование минимальных форм булевой функции Факторное преобразование для МДНФ

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_4 \overline{x}_5 \vee \overline{x}_1 x_3 \overline{x}_4 x_5 \vee \overline{x}_1 x_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 x_2 x_3 x_4 \vee \overline{x}_1 x_2 x_4 \overline{x}_5 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 x_4 x_5 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 x_4 x_5 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_1$$

$$f = \overline{x}_1 \overline{x}_4 (\overline{x}_2 \overline{x}_5 \vee x_3 x_5) \vee \overline{x}_1 x_2 (\overline{x}_3 \overline{x}_4 \vee x_3 x_4 \vee x_4 \overline{x}_5) \vee x_1 \overline{x}_2 (\overline{x}_3 x_4 \vee x_4 x_5)$$

$$S_a = 23 \ t = 3$$

Декомпозиция невозможна

Факторное преобразование для МКНФ

$$f = (x_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4 \vee x_5)(x_1 \vee x_2 \vee x_3 \vee x_4 \vee \overline{x}_5)(x_1 \vee x_2 \vee \overline{x}_4) \cdot \\ \cdot (x_1 \vee \overline{x}_2 \vee x_3 \vee \overline{x}_4 \vee \overline{x}_5)(\overline{x}_1 \vee x_2 \vee x_4)(\overline{x}_1 \vee \overline{x}_2 \vee x_4)(\overline{x}_1 \vee x_2 \vee \overline{x}_3 \vee \overline{x}_4 \vee x_5) \cdot \\ \cdot (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4) \qquad S_q = 40$$

$$f = (x_1 \lor x_4) \left((\overline{x}_2 \lor \overline{x}_3 \lor x_5) (x_2 \lor x_3 \lor \overline{x}_5) \right) \cdot (x_1 \lor \overline{x}_4) (x_2 (\overline{x}_2 \lor x_3 \lor \overline{x}_5)) \cdots$$

$$(\overline{x}_1 \lor x_4) \cdot (\overline{x}_1 \lor \overline{x}_4) ((x_2 \lor \overline{x}_3 \lor x_5) \overline{x}_2) \qquad S_q = 26 \quad t = 4$$

По правилу сокращения получим:

$$f = (x_1 \vee x_4) ((\overline{x}_2 \vee \overline{x}_3 \vee x_5) (x_2 \vee x_3 \vee \overline{x}_5)) \cdot (x_1 \vee \overline{x}_4) (x_3 \vee \overline{x}_5) \cdot (\overline{x}_1 \vee x_4) \cdots (\overline{x}_1 \vee \overline{x}_4) (\overline{x}_3 \vee x_5) \qquad S_q = 22 \quad t = 4$$

Декомпозиция невозможна

Синтез комбинационных схем в булевом базисе

Проверочные входные данные:

$$f(0, 1, 1, 0, 0) = 0$$

 $f(0, 0, 0, 0, 0) = 1$

Схема по упрощенной МДНФ: $S_q=23 \;\; t=3$

Схема по упрощенной МКНФ:

$$S_q = 22 \ t = 4$$

Синтез комбинационных схем в универсальных базисах

Базис ИЛИ-НЕ

$$f = (x_1 \lor x_4) \left((\overline{x}_2 \lor \overline{x}_3 \lor x_5) (x_2 \lor x_3 \lor \overline{x}_5) \right) \cdot (x_1 \lor \overline{x}_4) (x_3 \lor \overline{x}_5) \cdot (\overline{x}_1 \lor x_4)$$

$$\cdot (\overline{x}_1 \lor \overline{x}_4) (\overline{x}_3 \lor x_5) = (x_1 \downarrow x_4) \downarrow \left((\overline{x}_2 \downarrow \overline{x}_3 \downarrow x_5) \downarrow (x_2 \downarrow x_3 \downarrow \overline{x}_5) \right) \downarrow$$

$$\downarrow (x_1 \downarrow \overline{x}_4) \downarrow (x_3 \downarrow \overline{x}_5) \downarrow (\overline{x}_1 \downarrow x_4) \downarrow (\overline{x}_1 \downarrow \overline{x}_4) \downarrow (\overline{x}_3 \downarrow x_5)$$

Базис И-НЕ

$$\frac{f = \overline{(\overline{x}_1|\overline{x}_4)|((x_2|x_3|\overline{x}_5)|(\overline{x}_2|\overline{x}_3|x_5))|(\overline{x}_1|x_4)|(\overline{x}_3|x_5)|(x_1|\overline{x}_4)|}{|(x_1|x_4)|(x_3|\overline{x}_5)}$$

Синтез комбинационных схем в сокращенных булевых базисах Базис ИЛИ, НЕ

$$\frac{f = (x_1 \vee x_4) \overline{(\overline{x_2} \vee \overline{x_3} \vee x_5)(x_2 \vee x_3 \vee \overline{x_5})}(x_1 \vee \overline{x_4})(x_3 \vee \overline{x_5}) \overline{(\overline{x_1} \vee x_4)}}{\overline{(\overline{x_1} \vee \overline{x_4})}(\overline{x_3} \vee x_5) = \overline{(x_1 \vee x_4)} \vee \overline{((\overline{x_2} \vee \overline{x_3} \vee x_5)(x_2 \vee x_3 \vee \overline{x_5}))} \vee \overline{(x_1 \vee \overline{x_4})} \vee \overline{(x_1 \vee \overline{x_4})} \vee \overline{(x_3 \vee \overline{x_5})}$$

Базис И, НЕ

$$f = \overline{(x_1 \vee x_4)} \overline{((\overline{x}_2 \vee \overline{x}_3 \vee x_5)(x_2 \vee x_3 \vee \overline{x}_5))} \overline{(x_1 \vee \overline{x}_4)} \overline{(x_3 \vee \overline{x}_5)} \overline{(\overline{x}_1 \vee x_4)} \overline{(\overline{x}_1 \vee \overline{x}_4)} \overline{(\overline{x}_3 \vee x_5)}$$