fiber of $\pi_*, \pi_!, \pi^{-1}, \pi^* \xrightarrow{\pi_: Y \hookrightarrow X}$ $\pi_{*}: \mathcal{U} \xrightarrow{\bullet} \chi \qquad \pi_{*} Z \xrightarrow{close} \chi$ $\int_{0}^{G_{X}} x \in \mathcal{U} \qquad \int_{0}^{G_{X}} G_{X} \qquad x \in \mathbb{Z}$ $\lim_{x \in V} G(U \cap V) \times \in \widehat{U} = U$ TIFGX XEU SGX XEZ X&Z $\pi^* \ \mathcal{F}_y \otimes_{\pi^{-1}O_{x,y}} \mathcal{O}_{Y,y} \qquad \mathcal{F}_y \otimes_{\pi^{-1}O_{x,y}} \mathcal{O}_{Y,y}$ $\bar{x} \xrightarrow{u_{\bar{x}}} x \xrightarrow{f} x$ For étale: $f: X \longrightarrow Y$ $\bar{x} \mapsto \bar{y}$ $(f^*\mathcal{T})_{\bar{x}} = u_{\bar{x}}^* f^* \mathcal{F}(Y) = \mathcal{F}_Y$ (sheaf) If f = G, f = G,

Lemma 6.21.3. Let f:X o Y be a continuous map. There exists a functor $f_p:PSh(Y) o PSh(X)$ which is left adjoint to f_* . For a presheaf ${\mathcal G}$ it is determined by the rule

$$f_p \mathcal{G}(U) = \operatorname{colim}_{f(U) \subset V} \mathcal{G}(V)$$

where the colimit is over the collection of open neighbourhoods V of f(U) in Y. The colimits are over directed partially ordered sets. (The restriction mappings of $f_n\mathcal{G}$ are explained in the proof.)

Lemma 6.31.4. Let X be a topological space. Let $j:U\to X$ be the inclusion of an open subset.

- (1) The functor $j_{p!}$ is a left adjoint to the restriction functor j_p (see Lemma 6.31.1).
- (2) The functor $j_!$ is a left adjoint to restriction, in a formula $Mor_{Sh(X)}(j_!\mathcal{F},\mathcal{G}) = Mor_{Sh(U)}(\mathcal{F},j^{-1}\mathcal{G}) = Mor_{Sh(U)}(\mathcal{F},\mathcal{G}|_U)$ bifunctorially in \mathcal{F} and \mathcal{G} .
- (3) Let ${\mathcal F}$ be a sheaf of sets on U. The stalks of the sheaf $j_!{\mathcal F}$ are described as follows

$$j_! \mathcal{F}_x = \left\{egin{array}{ll} \emptyset & ext{if} & x
otin U \ \mathcal{F}_x & ext{if} & x \in U \end{array}
ight.$$

- (4) On the category of presheaves of U we have $j_p j_{p!} = \mathrm{id}$.
- (5) On the category of sheaves of U we have $j^{-1}j_!=\mathrm{id}$.

situation	category A	category B	left adjoint $F: \mathscr{A} \to \mathscr{B}$	right adjoint $G: \mathcal{B} \to \mathcal{A}$
A-modules (Ex. 1.5.D)	Mod_A	Mod_A	$(\cdot) \otimes_A N$	$\operatorname{Hom}_A(N,\cdot)$
ring maps			$(\cdot)\otimes_{\mathrm{B}}A$	$M \mapsto M_B$
\parallel B \rightarrow A (Ex. 1.5.E)	Mod_{B}	Mod_A	(extension	(restriction
			of scalars)	of scalars)
(pre)sheaves on a	presheaves	sheaves		
topological space	on X	on X	sheafification	forgetful
X (Ex. 2.4.L)				
semi)groups (§1.5.3)	semigroups	groups	groupification	forgetful
sheaves,	sheaves	sheaves	π^{-1}	π_*
$\pi: X \to Y \text{ (Ex. 2.7.B)}$	on Y	on X		
sheaves of abelian				
groups or <i>∅</i> -modules,	sheaves	sheaves	$\pi_!$	π^{-1}
open embeddings	on U	on Y		
$\pi: U \hookrightarrow Y (Ex. 2.7.G)$				
quasicoherent sheaves,	$QCoh_Y$	$QCoh_X$	π^*	π_*
$\pi: X \to Y \text{ (Prop. 16.3.6)}$				
ring maps			$M \mapsto M_B$	$N \mapsto$
\parallel B \rightarrow A (Ex. 30.3.A)	Mod_A	$Mod_{\rm B}$	(restriction	$ \operatorname{Hom}_{\mathrm{B}}(A, \mathbb{N}) $
			of scalars)	
quasicoherent sheaves,	$QCoh_X$	$QCoh_Y$		
affine $\pi: X \to Y$			π_*	$\pi_{ m sh}^!$
(Ex. 30.3.B(b))				

Other examples will also come up, such as the adjoint pair (\sim, Γ_{\bullet}) between graded modules over a graded ring, and quasicoherent sheaves on the corresponding projective scheme (§15.4).

E. g.
$$Spec C$$
 \longrightarrow $Spec R$ ray speck but not reheave

 $(f^{-1}, R^{-} - mod)$ \longrightarrow $C^{-} - mod$ \longrightarrow $C^{-} - mod$
 $f^{-} : C^{-} - mod$ \longrightarrow $C^{-} - mod$ \longrightarrow $C^{-} - mod$
 $f^{-} : C^{-} - mod$ \longrightarrow $C^{-} - mod$ \longrightarrow $C^{-} - mod$
 $f^{-} : C^{-} - mod$ \longrightarrow $C^{-} - mod$ \longrightarrow $C^{-} - mod$
 $f^{-} : R^{-} - mod$ \longrightarrow $R^{-} - mod$ \longrightarrow $C^{-} - mod$
 $f^{-} : R^{-} - mod$ \longrightarrow $R^{-} - mod$ \longrightarrow $R^{-} - mod$
 $f^{-} : R^{-} : R^{-} - mod$ \longrightarrow $R^{-} - mod$
 $f^{-} : R^{-} : R^{-} - mod$ \longrightarrow $R^{-} - mod$
 $f^{-} : R^{-} : R^{-} : R^{-} - mod$
 $f^{-} : R^{-} : R^{-} : R^{-} - mod$
 $f^{-} : R^{-} : R^{-} : R^{-} - mod$
 $f^{-} : R^{-} : R^{-} : R^{-} - mod$
 $f^{-} : R^{-} : R^{-} : R^{-} : R^{-} - mod$
 $f^{-} : R^{-} : R^{-} : R^{-} : R^{-} - mod$
 $f^{-} : R^{-} : R^{-$

Various interesting kinds of morphisms (locally Noetherian source, affine, separated, see Exercises 7.3.B(b), 7.3.D, and 10.1.H resp.) are quasiseparated,

https://rankeya.people.uic.edu/formallyunramifiedetale.pdf

https://mathoverflow.net/questions/288466/idea-behind-grothendiecks-proof-that-formally-smooth-implies-flational properties of the prope

$$\mathbb{F}_{p}[T] \longrightarrow (\mathbb{F}_{p}[T])^{sep}$$

is formally unramified, not formally étale but flat.

: properties which satisfy the fiflat descent