P1.- Considerem $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ l'aplicació definida per

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a-d & -b-c \\ b+c & d-a \end{pmatrix}$$

- a) Desmostrau que f és un endomorfisme. (0.25 pt.)
- b) Cercau la matriu associada a f en la base canònica de \mathcal{M}_2 . (0.25 pt.)
- c) Cercau una base de Im f. (0.5 pt.)
- d) Cercau una base de Ker f. (0.5 pt.)
- e) Cercau una base de $Im \ f \cap Ker \ f$. (0.5 pt.)

P2.- Amb la matriu $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 0 \\ 0 & 3 & 1 \end{pmatrix}$:

- a) Trobau els valors propis de A i la seva matriu diagonal. (0.25 pt.)
- b) Trobau la matriu de canvi de base de A a la matriu diagonal. (1 pt.)
- c) Calculau A^n per a tot $n \in \mathbb{N}$. (0.25 pt.)

P3.- Donat el següent sistema d'equacions:

$$b\cos\gamma + c\cos\beta = a c\cos\alpha + a\cos\gamma = b a\cos\beta + b\cos\alpha = c$$

- a) Carcau l'expressió matricial del sistema d'equacions anterior, considerant que les incògnites són $\cos \alpha$, $\cos \beta$, $\cos \gamma$. (0.5 pt.)
- b) Utilitzau la regla de Cramer per demostra que $\cos \alpha = \frac{b^2 + c^2 a^2}{2bc}$. (1 pt.)

P4.- Siguin tres successos A, B i C tales que C està contingut en la intersecció $\bar{A} \cap B$. Sabem que P(A) = 0.6, P(C) = 0.1, $P(A \cap B) = 0.3$ i que $P(\bar{A} \cap \bar{B}) = 0.1$.

a) Calculau
$$P(B)$$
. (0.5 pt.)

b) Calculau la probabilitat de que succeeixi exactament un dels tres successos. (1 pt.)

P5.- Una variable aleatòria X es diu que té distribució Laplaciana si té per funció de densitat $f_X(x) = \frac{\alpha}{2}e^{-\alpha|x|}$ per a tot $x \in \mathbb{R}$, on α és un nombre real positiu.

- a) Comprovar que per a tot $\alpha > 0$, f_X és una funció de densitat. (0.25 pt.)
- b) Calcular la funció de distribució de X. (0.25 pt.)
- c) Calcular Var(X). (1 pt.)

P6.- Un servei d'atenció al client d'un proveïdor d'accés a internet pretén solucionar telefònicament els problemes de connexió. Per experiència se sap que el temps d'atenció d'una incidència segueix aproximadament una llei normal amb mitjana de 6 minuts i desviació típica 1.

- a) Quina és la probabilitat de que es dediqui més de 6,5 minuts a una incidència? (0.25 pt.)
- b) 0,25 és la probabilitat de que es dediqui a un servei més de quants minuts? (0.25 pt.)
- c) Cercau un interval centrat en la mitjana com cobreixi el 50% dels temps d'atenció de les incidències. (0.75 pt.)
- d) Es pren una mostra aleatòria de quatre serveis. Quina és la probabilitat de que exactament a dos d'ells se'ls hagi de dedicar més de 6,5 minuts? (0.75 pt.)

Examen final: totes les preguntes. Duració 4 hores.

Examen parcial: (només aquells alumnes amb nota superior o igual a 7 a l'examen de febrer): preguntes 4, 5 i 6 (puntuació doble de la indicada). Duració 2 hores.

Per aprovar l'assignatura s'ha de puntuar com a mínim un 30% de cada part i la mitjana ha de ser superior o igual a 5.