КОНСПЕКТ ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

СПбГУ, МКН, СП, 1 курс ЛЕКТОР: ХРАБРОВ АЛЕКСАНДР ИГОРЕВИЧ

СОСТАВИТЕЛИ:

АНДРЕЙ K-dizzled KO3ЫPEB, НИКИТА muldrik МИТЦЕВ MAKCUM maxmartynov08 MAPTЫHOB, CEMEH SmnTin ПАНЕНКОВ

ОСЕНЬ 2020

Оглавление

1	Пер	овый семестр. Первая четверть
	1	Множества
	2	Отношения
	3	Аксиомы вещественных чисел
	4	Принцип математической индукции
	5	Супремум и инфимум
	6	Теорема о вложенных отрезках
	7	Метрические пространства и подпространства
	8	Открытые множества
	9	Внутренние точки. Внутренность множества
	10	Замкнутые множества. Замыкание множества
	11	Предельные точки. Связь с замыканием множества
	12	Открытые и замкнутые множества в пространстве и подпространстве
	13	Предел числовой последовательности и предел последовательности в метрическом
		пространтстве
	14	Связь между пределами и предельными точками
	15	Предльный переход в неравенствах
	16	Теорема о двух милиционерах
	17	Монотонные последовательности
	18	Топологическое пространство
	19	Векторное пространство. Пространство R^d . Скалярное произведение. Неравенство
		Коши-Буняковского
	20	Норма
	21	Арифметические свойства пределов последовательности
	22	Покоординатная сходимость в \mathbb{R}^d
	23	Бесконечные пределы
	24	Бесконечно большие и малые последовательности
	25	Арифметические действия в $\overline{\mathbb{R}}$
	26	Неравенство Бернулли
	27	Определение экспоненты
	28	Свойства экспоненты
	29	Формула для экспоненты суммы
	30	Сравнение скорости возрастания последовательностей
	31	Теорема Штольца (для неопределённости $\frac{\infty}{\infty}$)
	32	Теорема Штольца (для неопределённости $\frac{0}{0}$)
	33	Подпоследовательности. Теорема о стягивающихся отрезках
	34	Теорема Больцано-Вейерштрасса в \mathbb{R}

35	Аналог теоремы Больцано-Вейерштрасса для неограниченной последовательно-	
	сти. Частичные пределы. Теорема о характеристике частичных пределов	41
36	Фундаментальные последовательности. Критерий Коши.	42
37	Теорема Больцано—Вейерштрасса в \mathbb{R}^d . Полнота \mathbb{R}^d	43
38	Верхний и нижний пределы. Связь между частичными пределами и верхним и	
	нижним пределами	44
39	Характеристика верхних и нижних пределов с помощью N и ε . Сохранение нера-	
	венств	45
40	Сходимость рядов. Необходимое условие сходимости рядов. Примеры	46
41	Простейшие свойства сходящихся рядов	47

Глава 1

Первый семестр. Первая четверть

Множества 1

Определение. Множество - набор уникальных элементов

Множества - большие буквы A, B, \dots

Элементы множеств - маленькие буквы a, b, \dots

 $x \in A - x$ пренадлежит A

 $x \notin A - x$ не пренадлежит A

 $\mathbb{N} = \{1, 2, 3, \dots\}$

 $\mathbb{Z}, \mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \}$

 \mathbb{R} - вещественные числа

 \mathbb{C} - комплексные числа

Теорема. Правила Де Моргана

$$A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$A \setminus (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.
$$x \in A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) \Longleftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \Longleftrightarrow \begin{cases} x \in A \\ x \notin B_{\alpha} \end{cases} \text{ при всех } \alpha \iff x \in A \setminus B_{\alpha} \text{ при всех } \alpha \end{cases}$$

Теорема. Операции над множествами

- $A \cup B = \{x : x \in A \text{ или } x \in B\}$
- $\bullet \ A \cap B = \{x : x \in A, x \in B\}$
- $A \setminus B = \{x : x \in A, x \notin B\}$
- $A \triangle B = (A \setminus B) \cup (B \setminus A)$

3амечание - \triangle , \cup , \cap - комммутативны, ассоциативны

Определение. Декартово произведение множеств $A \times B = \{ \langle a, b \rangle : a \in A; b \in B \}$

Теорема.

$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

$$A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} (A \cup B_{\alpha})$$

Доказательство.
$$x \in A \cap \bigcup_{\alpha \in I} B_{\alpha} \Longleftrightarrow \begin{cases} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \iff \begin{cases} x \in A \\ x \in B_{\alpha} \text{ для некоторых } \alpha \in I \end{cases} \Longleftrightarrow$$

$$x \in A \cap B_{\alpha}$$
 для некоторых $\alpha \in I \Longleftrightarrow x \in \bigcup_{\alpha \in I} (A \cap B_{\alpha})$

Определение. Упорядоченная пара $\langle a,b \rangle$ - пара "пронумерованных" элементов

$$\langle a, b \rangle = \langle c, d \rangle$$

2 Отношения

Определение. Область определения: $\delta_R = \{x \in A : \exists y \in B, \text{ т.ч.} \langle x, y \rangle \in \mathbb{Z}\}$

Определение. Область значений: $\rho_R = \{y \in B: \exists x \in A, \text{ т.ч.} \langle x,y \rangle \in \mathbb{Z}\}$

$$\delta_{R^{-1}} = \rho_R$$
$$\rho_{R^{-1}} = \delta_R$$

Определение. Композиция отношений

$$R_1 \subset A \times B$$
, $R_2 \subset B \times C$, $R_1 \circ R_2 \subset A \times C$

Пример

- $\langle x, y \rangle \in R$, если х отец у
- $\langle x,y\rangle \in R \circ R$, если х дед у
- $\langle x,y\rangle\in R^{-1}\circ R$, если х брат у

• δR — все, у кого есть сыновья

Определение. Бинарным отношением R называется подмножество элементов декартова произведения двух множеств $R \subset A \times B$

Элементы $x \in A, y \in B$ находятся в отношении, если $\langle x, y \rangle \in R$ (то же, что xRy)

Обратное отношение $R^{-1} \subset B \times A$

Определение. Отношение называется:

- Рефлексивным, если $xRx \ \forall x$
- Симметричным, если $xRy \Longrightarrow yRx$
- Транзитивным, если $xRy, yRz \Longrightarrow xRz$
- Иррефлексивным, если $\neg xRx \forall x$
- Антисимметричным, если $xRy, yRx \Longrightarrow x = y$

Определение. R является отношением

- 1. Эквивалентности, если оно рефлексивно, симметрично и транзитивно
- 2. Нестрогого частичного порядка, если оно рефлексивно, антисимметрично и транзитивно
- 3. Нестрогого полного порядка, если выполняется п. $2 + \forall x, y$ либо xRy, либо yRx
- 4. Строгого частичного порядка, если оно иррефлексивно и транзитивно
- 5. Строгого полного порядка, если выполняется п. $4 + \forall x, y$ либо xRy, либо yRx

Пример

- $x \equiv y \pmod{m}$ отношение эквивалентности
- X множество, 2^X множество всех его подмножеств
- $\forall x,y \in 2^x : \langle x,y \rangle \in R$, если $x \subsetneq y$ отношение строгого частичного порядка
- Лексикографический порядок на множестве пар натуральных чисел отношение нестрогого полного порядка

Определение. Отображение $f: A \longrightarrow B$

- инъективно, если $f(x_1) = f(x_2) \Longleftrightarrow x_1 = x_2$
- ullet сюръективно, если $ho_f=B$
- \bullet биективно, если f инъективно и сюръективно

3 Аксиомы вещественных чисел

Определение. Вещественные числа - алгебраическая структура, над которой определены операции сложения "+" и умножения " \cdot " ($\mathbb{R} * \mathbb{R} \Longrightarrow \mathbb{R}$)

Определение. Аксиомы вещественных чисел:

 A_1 Ассоциативность сложения

$$x + (y+z) = (x+y) + z$$

- A_2 Коммутативность сложения x+y=y+x
- A_3 Существование нуля $\exists 0 \in \mathbb{R} : \forall x \in \mathbb{R} \ x + 0 = x$
- A_4 Существование обратного элемента по сложению $\forall x \in \mathbb{R} \ \exists (-x) \in \mathbb{R} : x + (-x) = 0$
- M_1 Ассоциативность умножения $x(y \cdot z) = (x \cdot y)z$
- M_2 Коммутативность умножения xy = yx
- M_3 Существование единицы $\exists 1 \in \mathbb{R} : \forall x \in \mathbb{R} \ x \cdot 1 = x$
- M_4 Существование обратного элемента по умножению $\forall x \in \mathbb{R} \ \exists x^{-1} \in \mathbb{R} : x \cdot x^{-1} = 1$
- M_A Дистрибутивность $(x+y) \cdot z = x \cdot z + y \cdot z$

Вышеперечисленные аксиомы бразуют поле

Бинарное отношение " "

Аксиомы порядка, задающие отношение порядка на множестве вещественных чисел:

$$O_1 \ x \leqslant x \quad \forall x$$

$$O_2 \ x \leqslant y$$
 и $y \leqslant x \Longrightarrow x = y$

$$O_3 \ x \leqslant y$$
 и $y \leqslant z \Longrightarrow x \leqslant z$

$$O_4 \ \forall x,y \in \mathbb{R}: x \leqslant y$$
 или $y \leqslant x$

$$O_4 \ x \leqslant y \Longrightarrow x + z \leqslant y + z \quad \forall z$$

$$O_4 \ 0 \leqslant x$$
 и $0 \leqslant y \Longrightarrow 0 \leqslant xy$

Теорема. Аксиома полноты

$$A,B\subset\mathbb{R}:A
eq\varnothing,B
eq\varnothing,\forall a\in A\ \forall b\in B\ a\leqslant b$$
 Тогда $\exists c\in\mathbb{R}:a\leqslant c\leqslant b\ \forall a\in A\ \forall b\in B$

Теорема. Принцип Архимеда

Согласно принципу Архимеда: $\forall x \in \mathbb{R}$ и $\forall y_{>0} \in \mathbb{R} \ \exists n \in \mathbb{N} : x < ny$

Доказательство.

$$A = \{a \in \mathbb{R}: \exists n \in \mathbb{N}: a < ny\}, A \neq \varnothing$$
 т.к. $0 \in A$ $B = \mathbb{R} \ \setminus \ A$

Пусть $A \neq \mathbb{R}$, тогда $B \neq \emptyset$ Покажем, что $a \leqslant b$, если $a \in A, b \in B$

Пойдем от противного. Если $b < a < ny \Longrightarrow b < ny \Longrightarrow b \in A$ - противоречие

Таким образом, по аксиоме полноты $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \quad \forall a \in A, \forall b \in B$

Предположим, что $c \in A$. Тогда c < ny для некоторого $n \in \mathbb{N} \Longrightarrow c + y < (n+1)y \Longrightarrow$

 $c+y\in A\Longrightarrow c+y\leqslant c\Longrightarrow y\leqslant 0.$ Это противоречит условию.

Пусть $c \in B$. Так как y > 0, c - y < c. Так как B - дополненние A и $c - y \neq c, c - y \in A \Longrightarrow c - y < ny \Longrightarrow c < (n+1)y \Longrightarrow c \in A$. Снова пришли к противоречию.

Значит
$$c \notin A, c \notin B \Longrightarrow c$$
 не существует $\Longrightarrow B = \varnothing \Longrightarrow A = \mathbb{R}$

Следствие:

$$\forall \varepsilon_{>0} \; \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$$

Доказательство.

$$x = 1, y = \varepsilon \Longrightarrow \exists n \in N : 1 < n\varepsilon$$

4 Принцип математической индукции

Определение. Принцип математической индукции

 P_n -последовательность утверждений

- 1. P_1 верно
- 2. $\forall n \in \mathbb{N}$ из P_n следует P_{n+1}

Тогда P_n верно при всех $n \in \mathbb{N}$

Теорема. B конечном множестве вещественных чисел есть наибольший и наименбший элемент

Доказательство.

Докажем для максимума. Для минимума рассуждения аналогичны

Будем доказывать утверждение по индукции

Для n=1 - очевидно

Переход $X_n \longrightarrow x_{n+1}$

Рассмотрим произвольное множество из n элементов $X_n = \{x_1, x_2, x_3, \dots x_n\}$, где максимальным элементом является x_i . Пусть в наше множество был добавлен элемент X_{n+1} . В таком случае, если $X_{n+1} > X_i$, то новый максимум равен X_{n+1} , иначе - максимумом по-прежнему является X_i . Таким образом, в любом конечном множестве вещественных чисел существует максимальный элемент.

Следствия:

1. Во всяком непустом множестве натуральных чисел есть наименьший элемент

Доказательство.

Пусть A - множество натуральных чисел, не содержащее наименьшего элемента. Докажем по индукции, что для любого $n \in \mathbb{N}$ мы имеем $\mathbb{N}_n \cap A = \emptyset$

$$\mathbb{N}_n = \{ k \in \mathbb{N} | k \leqslant \mathbb{N} \}$$

Для n = 1 утверждение очевидно.

Переход $n \longrightarrow n+1$

Предположим для $\mathbb{N}_n \cap A = \emptyset$

Тогда если для $\mathbb{N}_{n+1}\cap A\neq\varnothing$, то наименьший элемент множества A - это n+1

Значит
$$\mathbb{N}_{n+1} \cap A = \emptyset$$

2. Во всяком конечном непустом множестве натуральных чисел есть наибольший элемент

Доказательство.

Из натуральных чисел строим целые. Множество чисел $A\subseteq\mathbb{Z}$ называется огианиченным сверху и имеет наибольший элемент если $\exists c>a, \forall a\in A, c\in\mathbb{Z}$

Рациональные и иррациональные числа в интервале

1. Если $x, y \in \mathbb{R}, x < y$, то $\exists r \in \mathbb{Q} : x < r < y$

Доказательство.

Пусть x < 0, y > 0. Тогда $\exists r = 0 \in \mathbb{Q} : x < r < y$

Пусть
$$x \ge 0, y > 0, \varepsilon = x - y$$
. Тогда $\exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$

По принципу Архимеда найдется такое число m, что $\frac{m-1}{n} \leqslant x < \frac{m}{n}$

Предположим, что $\frac{m-1}{n} \leqslant x < y \leqslant \frac{m}{n}$. Тогда мы получим, что $\frac{1}{n} \geqslant y - x = \varepsilon$. Пришли к противоречию

Следовательно, $\exists m \in \mathbb{N} : x < \frac{m}{n} < y$

Случай $y\leqslant 0$ аналогичен предыдущему

2. Если $x,y \in \mathbb{R}, x < y,$ то существует иррациональное число r: x < r < y

Доказательство.

$$x-\sqrt{2} < y-\sqrt{2} \Longrightarrow \exists R_{\in \mathbb{Q}} \in (x-\sqrt{2},y-\sqrt{2}) \Longrightarrow x < R+\sqrt{2} < y \; ($$
Предыдущий пункт $) \Longrightarrow r$ - иррациональное

3. Если $x \geqslant 1$, то $\exists n \in \mathbb{N} : x - 1 < n \leqslant x$

5 Супремум и инфимум

Определение.

x - верхняя граница множества A, если $\forall a \in A : a \leqslant x$

y - нижняя граница множества A, если $\forall a \in A : y \leqslant a$

Множество ограничено снизу, если существует какая-нибудь нижняя граница

Множество ограничено сверху, если существует какая-нибудь верхняя граница

Определение.

Пусть A - ограниченное сверху множество, тогда supA - наименьшая из его верхних границ

Определение.

Пусть A - ограниченное снизу множество, тогда infA - наибольшая из его нижних границ **Теорема.**

- 1. Если $A \subset \mathbb{R}, A \neq \emptyset$ и A ограничено снизу, то существует единственный $\inf A$
- 2. Если $A \subset \mathbb{R}, A \neq \emptyset$ и A ограничено сверху, то существует единственный sup A

Доказательство.

Докажем (2)

Пусть B - множество всех верхних границ множества A, т.е. $\forall a \in A, b \in B : a \leqslant b$

Тогда по аксиоме полноты всегда найдется такой $c:a\leqslant c\leqslant b$

c-supA по определению

Докажем, что c - единсвтенный

Пусть $\exists c_1, c_2 - sup A$

Тогда если $c_1 < c_2$, то $c_2 \neq sup A$

Если $c_1 > c_2$, то $c_1 \neq sup A$

Следовательно, $c_1=c_2=supA\Longrightarrow supA$ - единсвтенный

Следствие:

- 1. $B \subset A, B \neq \emptyset$ и A ограничено снизу. Тогда $infB \geqslant infA$
- 2. $B\subset A, B\neq\varnothing$ и Aограничено сверху. Тогда $supB\leqslant supA$

Доказательство.

Докажем (1)

Пусть a=infA. Тогда a - нижняя граница $A\Longrightarrow \forall x\in A: a\leqslant x\Longrightarrow \forall x\in B: a\leqslant x\Longrightarrow a$ - нижняя граница $B\Longrightarrow a\leqslant infB$

Замечание - Теорема неверна без аксиомы полноты

 $A = \{x \in \mathbb{Q} : x^2 < 2\} \Longrightarrow$ в множестве рациональных чисел у Aнет супремума

Теорема.

1.
$$a = infA \iff \begin{cases} a \leqslant x & \forall x \in A \\ \forall \varepsilon > 0 & \exists x \in A : x < a + \varepsilon \end{cases}$$

2.
$$b = supA \iff \begin{cases} b \geqslant x & \forall x \in A \\ \forall \varepsilon > 0 & \exists x \in A : x > b - \varepsilon \end{cases}$$

Замечание

- Если A неограничено сверху, то $sup A = +\infty$
- Если A неограничено снизу, то $inf A = -\infty$

6 Теорема о вложенных отрезках

Теорема.

$$Ecnu [a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \dots$$

 $To \exists c \in \mathbb{R} : c \in [a_n, b_n] \forall n \in \mathbb{N}$

Доказательство.

$$A = \{a_1, a_2, a_3, \dots\}$$

$$B = \{b_1, b_2, b_3, \dots\}$$

$$a_i \leqslant b_j, \forall i, j \in \mathbb{N}$$

$$\forall i \leqslant j : a_i \leqslant a_j \leqslant b_j \leqslant b_i, \forall i \geqslant j : a_i \geqslant a_j \geqslant b_j \geqslant b_i$$

По аксиоме полноты $\forall i,j\in\mathbb{N}\ \exists c\in\mathbb{R}: a_i\leqslant c\leqslant b_j\Longrightarrow \forall i\in\mathbb{N}: a_i\leqslant c\leqslant b_i$

<u>Замечание</u>

1. Теорема неверна для полуинтервалов

Пример:
$$\bigcap_{n=1}^{\infty} (0; \frac{1}{n}] = \emptyset$$

2. Теорема неверна для лучей

Пример:
$$\bigcap_{n=1}^{\infty} (n; +\infty) = \emptyset$$

3. Теорема неверна без аксиомы полноты

Пример: число π

$$[3, 4] \supset [3, 1; 3, 2] \supset [3, 14; 3, 15] \supset \dots$$

Пересечение не содержит рациональных чисел

7 Метрические пространства и подпространства

Определение. X - множество $\rho: X \times X \longrightarrow [0; +\infty)$ - метрика(расстояние) если:

1.
$$\rho(x,x) = 0 \quad \forall x \in X$$

2. если
$$\rho(x,y) = 0$$
, то $x = y$

3.
$$\rho(x,y) = \rho(y,x) \quad \forall x,y \in X$$

4.
$$\rho(x,y) + \rho(y,z) \geqslant \rho(x,z) \quad \forall x,y,z \in X$$

Примеры

1. Дискретная метрика

$$\rho(x,x) = 0$$

$$\rho(x,y) = 1, \text{ если } x \neq y$$

$$2. \ \mathbb{R} \quad \rho(x,y) = |x-y|$$

- $3. \mathbb{R}^2$ обычное расстрояние
- 4. Манхэттенская метрика

$$(x', y') = A'$$

 $(x, y) = A$
 $\rho(A, A') = |x - x'| + |y - y'|$

5. Французская железнодорожная метрика

Если P,A и B на луче, то $\rho(AB)=AB$ Если нет, то $\rho(A,B)=\rho(AP)+\rho(B,P)$

6. Расстояние на сфере

Определение. Метрическое пространство $(X, \rho), X$ - множество, ρ - метрика на нем

Определение. Подпространство метрического пространства.

 (X,ρ) - метрическое пространство, $Y\subset X$

 $(Y, \rho|_{Y\times Y})$ - подпространство метрического пространства (X, ρ) , где Y - подмножество X, а $\rho|_{Y\times Y}$ - сужение ρ на $Y\times Y$

Определение. Открытый шар

иентр шара
$$B(r)(a) := x \in X : \rho(x,a) < r; \quad r > 0$$
 радиус

Определение. Замкнутый шар

$$\overline{B_r}(a) := \underline{x} \in X : \rho(x, a) \leqslant r; \quad r \geqslant 0$$

$$B_r(a) \subset \overline{B_r}(a)$$

• Окрестность точки a - открытый шар $B_r(a)$

Примеры

1. Дискретная метрика на X

$$B_{1/2}(a) = a$$

$$B_2(a) = X$$

2.
$$\rho(x,y) = |x-y|$$
 $B_r(a) = (a-r, a+r)$

3. Манхэттенская метрика

$$B_r(a)$$

Свойства

- 1. $B_r(a) \cap B_R(a) = B_{min\{r,R\}}(a)$
- 2. Если $x \neq y$, то найдется r > 0, такой, что $\overline{B_r}(x) \cap \overline{B_r}(y) = \varnothing$

Доказательство.

 $r:=rac{
ho(x,y)}{3}$. Пойдем от противного

Пусть
$$c \in \overline{B_r}(x) \cap \overline{B_r}(y) \Longrightarrow \begin{cases} \rho(x,c) \leqslant r \\ \rho(y,c) \leqslant r \end{cases} \Longrightarrow \rho(x,y) \leqslant \rho(x,c) + \rho(y,c) \leqslant 2r = \frac{2}{3}\rho(x,y)$$
 противоречие

8 Открытые множества

Определение. Множество A называется открытым, если $A \subset$ метрическому пространству X и $\forall a \in A \ \exists r_{>0} : B_r(a) \subset A$

Теорема. Свойства открытых множеств:

- 1. \varnothing, X открытые множества
- 2. Объединение любого количества открытых множеств открытое множество
- 3. Пересечение конечного числа открытых множеств открытое множество
- 4. Открытый шарик открытое множество

Доказательство.

1. $B_r(a) \subset X$; Для пустого множества нечего проверять, так как там даже точек то нет

2.
$$A_{\alpha} \alpha \in I$$
 - открытые множества. $A = \bigcup_{\alpha \in I} A_{\alpha}$

Возьмем
$$a \in A$$
. Тогда $a \in A_{\beta}$ для какого-то $\beta \in I \Longrightarrow A_{\beta}$ - открытое множество $\Longrightarrow B_r(a) \subset A_{\beta}$ для некоторого $r_{>0} \Longrightarrow B_r(a) \subset A_{\beta} \subset \bigcup_{\alpha \in I} A_{\alpha} = A$

3.
$$A_1, A_2, \ldots, A_n$$
 - открытые множества. $A = \bigcap_{k=1}^n A_k$ Возьмем $a \in A$. Тогда $a \in A_k$ при $k = \{1, 2, \ldots, n\} \Longrightarrow B_{r_k}(a) \subset A_k$ для некоторого $r_k > 0$ $r := min\{r_1, r_2, \ldots, r_k\} \Longrightarrow B_r(a) \subset B_{r_k}(a) \subset A_k \Longrightarrow B_r(a) \subset \bigcap_{k=1}^n A_k = A$

4. Рассмотрим
$$B_R(a)$$
. Возьмем $b \in B_R(a)$ $r := R - \rho(a,b) > 0$. Докажем, что $x \in B_r(b)$: $\rho(x,b) < r \Longrightarrow \rho(x,a) \leqslant \rho(x,b) + \rho(b,a) < r + \rho(b,a) = R$

Замечание

В пункте №3 конечность существенна
$$\bigcap_{n=1}^{\infty} B_{1/n}(0) = \bigcap_{n=1}^{\infty} (-\frac{1}{n}; \frac{1}{n}) = \{0\}$$
 Интервал $(-r; r)$

Пример

$$\mathbb{R}$$
 $\rho(x,y) = |x-y|$
 $Y = [0; 2)$
Шары в (Y,ρ) :
 0
 2
 $B_1^Y(0) = \{x \in [0; 2) : |x-0| < 1\} = [0; 1)$

9 Внутренние точки. Внутренность множества

Определение. (X,β) - метрическое пространство $A\subset X$

 $a \in A, \ a$ - внутренняя точка множества, если $B_r(a) \subset A$ для некоторого r > 0 (Открытое множество - такое множество, у которого все точки внутренние)

Внутренность множества - множество всех его внутренних точек. Обозначается как IntA

Теорема. Свойства внутренности:

1.
$$IntA \subset A$$

2.
$$IntA = \bigcup \{G : G \subset A \ u \ G - omкpыmoe\} =: B$$

Доказательство.

• $IntA \supset B$

Возьмем $b \in B$. Тогда найдется открытое $G_{\circ} \subset A$, такое, что $b \in G_{\circ} \Longrightarrow$

 $\exists r_{>0}$, такой, что $B_r(b) \subset G_{\circ} \subset A \Longrightarrow b$ - внутренняя точка A

• $IntA \subset B$

Возьмем $a\in IntA\Longrightarrow a$ - внутренняя точка \Longrightarrow открытое множество $B_r(a)\subset A$ для некоторого $r_{>0}\Longrightarrow a\in B_r(a)\subset A$ $a\in B_r(a)\subset B\Longrightarrow a\in B$

- 3. IntA самое большое (по включению) открытое множество, содержащееся в A
- 4. IntA открытое множество
- 5. $IntA = A \iff A$ открытое
- 6. $A \subset B \Longrightarrow IntA \subset IntB$

Доказательство. Пусть $a\in IntA\Longrightarrow B_r(a)\subset A$ для некоторого $r_{>0}\Longrightarrow a$ - внутренняя точка B

7. $Int(A \cap B) = IntA \cap IntB$

Доказательство.

" \subset " : $A\cap B\subset A\Longrightarrow Int(A\cap B)\subset IntA.$ Это следует из предыдущего пункта. Аналогично для B

"
$$\supset$$
" : Пусть $c \in IntA \cap IntB \Longrightarrow \begin{cases} c$ - внутренняя точка $A \\ c$ - внутренняя точка $B \end{cases} \Longrightarrow \begin{cases} B_{r_1}(c) \subset A \\ B_{r_2}(c) \subset B \end{cases}$

для некоторых $r_1,r_2>0\Longrightarrow B_r(c)\subset A\cap B$, где $r=min\{r_1,\ r_2\}\Longrightarrow c$ - внутренняя точка $A\cap B$

8. Int(IntA) = IntA

Доказательство. Int A - открытое множество, а внутренность открытого множества совпадает с ним

10 Замкнутые множества. Замыкание множества

Определение. (X,β) - метрическое пространство $A\subset X$ $A\subset X$ A - замкнутое, если $X\setminus A$ - открытое

Теорема. Свойства замкнутых множеств:

- 1. \emptyset, X замкнутое множества
- 2. Пересечение любого количества замкнутых множеств замкнутое множество
- 3. Объединение конечного числа замкнутых множеств замкнутое множество
- 4. Замкнутый шарик замкнутое множество

Доказательство.

2.
$$A_{\alpha} \alpha \in I$$
 - замкнутые множества. $A \stackrel{?}{\Longrightarrow} \bigcap_{\alpha \in I} A_{\alpha}$ - замкнутое

$$X \setminus A$$
 - открытое $\Longrightarrow \bigcup_{\alpha \in I} (X \setminus A_{\alpha}) = X \setminus \bigcap_{\alpha \in I} A_{\alpha}$ - открытое множество

3. A_1,A_2,\ldots,A_n - замкнутые множества. $\Longrightarrow X\setminus A_1,X\setminus A_2,\ldots,X\setminus A_n$ - открытые множества

$$\Longrightarrow \bigcap_{k=1}^n (X \setminus A_k) \text{ - открытое множество}$$

$$\bigcap_{k=1}^n (X \setminus A_k) = X \setminus \bigcup_{k=1}^n A_k \Longrightarrow \bigcup_{k=1}^n A_k \text{ - замкнутое}$$

4. $\overline{B_R}(a)$ - замкнутый шар Докажем, что $X \setminus \overline{B_R}(a)$ - открыто

Доказательство.

$$\overline{B_R}(a) = \{x \in X : \rho(x, a) > R\}$$

$$\overline{B_R}(a) = \{x \in X : \rho(x,a) > R\}$$

Возьмем $b \in X \setminus \overline{B_R}(a) \Longrightarrow \rho(b,a) > R$

$$r := \rho(b, a) - R$$

Докажем, что
$$B_r \subset X \setminus B_R(a) \Longleftrightarrow B_r(b) \cap \overline{B_R}(a) = \varnothing$$

От противного. Пусть есть общая точка
$$c \in B_r(b) \cap \overline{B_R}(a) \Longrightarrow \begin{cases} \rho(c,b) < r \\ \rho(c,a) \leqslant R \end{cases} \Longrightarrow$$

$$\rho(c,b) \leqslant \rho(a,c) \leqslant \rho(c,b) < R+r = \rho(a,b) \qquad \text{(Так как } \rho(a,c) \leqslant R \text{ и } \rho(c,b) < r)$$
 Противоречие.

Замечание

$$B$$
 пункте $N 3$ конечность существенна $\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}; 1 - \frac{1}{n} \right] = (-1; 1)$

Интервал
$$(-\infty; -1] \cup [1; +\infty)$$

Определение. Замыкание множества A - пересечение всех замкнутых множеств, содержащих A. Обозначаетя как ClA

$$ClA = \bigcap \{F : F$$
 - замкнутое и $F \supset A\}$

Теорема.

$$X \setminus ClA = Int(X \setminus A)$$

$$X \setminus IntA = Cl(X \setminus A)$$

Доказательство.

$$x \in X \setminus ClA \iff x \notin ClA \iff x \notin F_\circ$$
, где $F_\circ \supset A$

$$\iff \begin{cases} x \in X \setminus F_{\circ} =: G_{\circ} \text{ - открытое} \\ G_{\circ} \subset X \setminus A \end{cases} \iff x \in Int(X \setminus A)$$

Следствие:

$$ClA = X \setminus Int(X \setminus A)$$

$$IntA = X \setminus Cl(X \setminus A)$$

Теорема. Свойства замыкания

- 1. ClA замкнутое множество
- 2. $ClA \supset A$
- 3. A замкнуто $\iff A = ClA$

Доказательство.
$$A$$
 - замкнуто \iff $X \setminus A \iff$ $X \setminus A = Int(X \setminus A) \iff$ $A = \underbrace{X \setminus Int(X \setminus A)}_{ClA}$

4. Если $A \subset B$, то $ClA \subset ClB$

Доказательство.
$$A \subset B \Longleftrightarrow X \setminus A \supset X \setminus B \Longrightarrow Int(X \setminus A) \supset Int(X \setminus B) \Longrightarrow \underbrace{X \setminus Int(X \setminus A)}_{ClA} \subset \underbrace{X \setminus Int(X \setminus B)}_{ClB}$$

5. $Cl(A \cup B) = ClA \cup ClB$

Доказательство.
$$Cl(A \cup B) = X \setminus Int(\underbrace{X \setminus (A \cup B)}_{(X \setminus A) \cap (X \setminus B)}) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A) \cap (X \setminus B)) = X \setminus Int((X \setminus A)$$

$$X \setminus (Int(X \setminus A) \cap Int(X \setminus B)) = (X \setminus Int(X \setminus A) \cup (X \setminus Int(X \setminus B)) = ClA \cup ClB$$

6. ClClA = ClA

Доказательство. ClA - замкнуто + замыкание замкнутого множества - само множество

Теорема. $x \in ClA \iff \partial_{\Lambda} A$ любого $r > 0 : B_r(x) \cap A \neq \emptyset$

Доказательство. $x \in ClA \iff x \in X \setminus Int(X \setminus A) \iff x \notin Int(X \setminus A) \iff$ для любого $r > 0 : B_r(x)$ не целиком содержится в $X \setminus A \iff$ для любого $r > 0 : B_r(x) \cap A \neq \varnothing$

Следствие: Если \mathcal{U} - открытое и $\mathcal{U} \cap A = \emptyset$, то $\mathcal{U} \cap ClA = \emptyset$

Доказательство. Пусть
$$x \in \mathcal{U} \cap ClA \Longrightarrow x \in \mathcal{U}$$
 - открытое $\exists r > 0 \quad B_r(x) \subset \mathcal{U}$ $x \in \mathcal{U} \cap ClA \Longrightarrow x \in ClA \Longrightarrow B_r(x) \cap A \neq \varnothing \Longrightarrow \mathcal{U} \cap A \neq \varnothing$ - противоречие

11 Предельные точки. Связь с замыканием множества

Определение. Проколотая окрестность точки $a-B_r(a)\setminus a$ Обозначается как $\overset{\circ}{\mathcal{U}}_a$

Определение. Предельная точка множества

a - предельная точка множества A, если любая $\overset{\circ}{\mathcal{U}_a}\cap A\neq\varnothing$ A' - множество предельных точек A

Теорема. Свойства:

1.
$$Cl(A) = A \cup A'$$

Доказательство.
$$x \in Cl(A) \iff B_r(x) \cap A \neq \emptyset \forall r > 0 \ (*)$$

Пусть $x \notin A$. Тогда (*) равносильно $B_r(x) \setminus \{x\} \cap A \neq \emptyset \iff x \in A'$

2.
$$A \subset B \Longrightarrow A' \subset B'$$

Доказательство.
$$x \in A' \Longrightarrow B_r(x) \setminus \{x\} \cap A \neq \varnothing \Longrightarrow B_r(x) \setminus \{x\} \cap B \neq \varnothing \Longrightarrow x \in B'$$

3.
$$(A \cup B)' = A' \cup B'$$

Доказательство.
$$A \cup B \supset A \Longrightarrow (A \cup B)' \supset A' \Longrightarrow (A \cup B) \supset A' \cup B'$$

Обратное включение. Пусть $x \in (A \cup B)'$ и $x \notin B' \Longrightarrow (B_r(x) \setminus \{x\}) \cap (A \cup B) \neq \varnothing \Longrightarrow$
 $(B_r(x) \setminus \{x\}) \cap A \neq \varnothing$ ИЛИ $(B_r(x) \setminus \{x\}) \cap B \neq \varnothing$.
Второе неверно из $x \notin B'$, следовательно $x \in A'$

4. A замкнутно $\Longrightarrow A \supset A'$

Доказательство.
$$A$$
 - замкнуто $\Longrightarrow A = Cl(A) = A \cup A' \Longleftrightarrow A \supset A'$

12 Открытые и замкнутые множества в пространстве и подпространстве

Теорема. (X, d) -метр пространство $Y \subset X$. Тогда:

1. $A \subset Y$ открыто в $Y \Longleftrightarrow$ найдется открытое множество $G \subset X$, т.ч. $A = G \cap Y$

Доказательство. $a \in A \Longrightarrow \exists r_a > 0 : B^Y_{r_a}(a)$ (т.е. шары в $Y) \subset A$. Далее

$$G := \underset{a \in A}{\cup} B_{r_a}^X(a) = \underset{a \in A}{\cup} \{x \in X : d(x, a) < r_a\} \Longrightarrow$$

G - открытое (объединение любого числа открытых - открытое) Доказать: $G \cap Y = A$ $G \supset A, Y \supset A \Longrightarrow G \cap Y \supset A$. Докажем обратное включение.

$$B_{r_a}^X(a) \cap Y = B_{r_a}^Y \subset A$$
$$G \cap Y = \bigcup_{a \in A} (B_{r_a}^X(a) \cap Y) \subset A \Longrightarrow G \cap Y \subset A$$

Доказали "⇒". Теперь докажем "←"

G - открыто в Y. Доказать, что $A:=G\cap Y$ - открыто в Y $a\in A\Longrightarrow a\in G, G$ - открыто $\Longrightarrow \exists r>0: B^X_r(a)\subset G\Longrightarrow B^X_r(a)\cap Y=B^Y_r(a)\subset G\cap Y,$ то есть A открыто в Y.

2. $A \subset Y$ замкнутое в $Y \iff$ найдется замкнутое множество $F \in X$, т. ч $A = F \cap Y$

Доказательство. A - замкнуто в $Y \Longleftrightarrow Y \setminus A$ - открыто в $Y \Longleftrightarrow$ \exists открытое $G \in X : Y \setminus A = G \cap Y \Longleftrightarrow$ $F := X \setminus G$ - замкнутое в X, при этом $A = Y \setminus (G \cap Y) = Y \cap (X \setminus G)$

С первого взгляда неочевидный переход, но следует из вложенности Y и G в $X = Y \cap F$.

13 Предел числовой последовательности и предел последовательности в метрическом пространтстве

Определение. Предел числовой последовательности

 $x_1, x_2, x_3... \in R. \ a = \lim x_n$ если вне любого интервала, содержащего a, содержится лишь конечное число членов последовательности.

<u>Замечание</u> - Можно рассматривать симметричные интервалы (если есть несимметричный, для удобства его можно расширить или сузить до симметричного)

Определение. Предел последовательности в метрическом пространстве (X, d) - метрическое пространство, $x_1, x_2... \in X$. $a = \lim x_n$ если вне любого шара $B_{\varepsilon}(a)$ содержится лишь конечное число членов последовательности.

Замечание - Верно также для любого открытого множества, содержащего а

<u>Замечание</u> - Существование предела зависит от пространства (в $R_+x_n=1/n$ не имеет предела)

Теорема. Свойства:

- 1. Если $a = \lim x_n$ и из x_n выкинули какое-то число членок так, чтобы осталось бесконечное число членов, то у оставшейся последовательности тот же предел
- 2. Если $a = \lim x_n$ и к последовательности добавить конечное число членов, то a все еще предел
- 3. Добавление, замена или выкидывание конечного количества членом не меняет предел и его наличие (то же самое другими словами)
- 4. Перестановка членов не влияет на предел последовательности
- 5. Если $a = \lim x_n$ и $a = \lim y_n$, то если их перемешать, то у новой последовательности тоже предел a
- 6. Если $a = \lim x_n$, тогда у последовательности, в которой x_n встречается с конечной кратностью, тот же предел (написать один и тот же элемент много раз подряд)

Определение. $a = \lim x_n$, если

$$\forall \varepsilon > 0 \exists N : \forall n \ge N d(x_n, a) < \varepsilon$$

Определение. $A \subset X, (X, d)$ - метрическое пространство A - ограничено, если A целиком содержится в каком-нибудь шаре

Теорема.

1. Предел единственный

Доказательство.

Пусть $a \neq b \Longrightarrow \exists B_{r_1}(a), B_{r_2}(b) : B_{r_1} \cap B_{r,2} = \emptyset.$

Вне $B_{r_1}(a)$ конечное число членов

Вне $B_{r_2}(b)$ конечное число членов

Тогда в последовательности конечное число членов. Противоречие.

2. Если последовательность имеет предел, то она ограничена

Доказательство.

Возьмем
$$\varepsilon = 1$$
. Тогда $\exists N : \forall n \geq N \ x_n \in B_1(a)$. Тогда $r := \max\{d(a, x_1), d(a, x_2), ..., d(a, x_N)\} + 1$

3. $a = \lim x_n \iff \lim d(x_n, a) = 0$

Доказательство.

$$\lim d(x_n, a) = 0 \iff \forall \varepsilon > 0 \exists N : \forall n \ge N d(x_n, a) < \varepsilon \iff \lim x_n = a$$

4. Ecnu $a = \lim x_n \ u \ b = \lim y_n$, mo $\lim d(x_n, y_n) = d(a, b)$

Доказательство.

$$d(a,b) \le d(a,x_n) + d(x_n,y_n) + d(y_n,b) \ d(x_n,y_n) \le d(a,x_n) + d(a,b) + d(b,y_n) \Longrightarrow |d(x_n,y_n) - d(a,b)| \le d(x_n,a) + d(y_n,b)$$

Справа каждая меньше $\varepsilon/2$, тогда слева стремится к нулю

14 Связь между пределами и предельными точками

Теорема. a - предельная точка $A \iff$ найдется последовательность точек $x \neq a \in A$: $\lim x_n = a$. Супер очевидно из соответствующих определений, но распишу

Доказательство.

" \leftarrow ": Пусть $x_n \in A$ и $\lim x_n = a$.

Тогда в $B_r(a)\setminus\{a\}$ содержится бесконечное количество точек из x_n , так как $\exists N: \forall n\geq Nx_n\in B_r(a)$

"
$$\Longrightarrow$$
": $r_1 = 1 \Longrightarrow \exists x_1 \in B_1(a), r_2 = \min\{1/2, d(a, x_1)\}, r_3 = \min\{1/3, d(a, x_2)\}...$
 $\forall \varepsilon > 0 \ \exists N : 1/N < \varepsilon \Longrightarrow \forall n \ge N \ d(x_n, a) < 1/n \le 1/N < \varepsilon$

Теорема. Если $x_n \in A$ и $a = \lim x_n$, то $a \in Cl(A)$

Доказательство. Либо $a \in A$, тогда $a \in Cl(A)$, иначе $x_n \neq a$, тогда по теореме 1. $a \in A' \Longrightarrow a \in Cl(A)$

15 Предльный переход в неравенствах

Теорема. Предельный переход в неравенстве. $x_n, y_n \in \mathbb{R}$ $x_n \leq y_n \ \forall n, a = \lim x_n, b = \lim y_n \Longrightarrow a \leq b$

Доказательство. Пусть a>b $\varepsilon=\frac{a+b}{2}$ $\exists N_1: \forall n\geq N_1 \ x_n\in (a-\varepsilon,a+\varepsilon)$ $\exists N_2: \forall n\geq N_2 \ y_n\in (b-\varepsilon,b+\varepsilon)$ $n:=\max\{N_1,N_2\}$ $y_n\leq x_n$. Противоречие

3амечание - неверно для строгого знака (-1/n, 1/n)

Cnedcmeue: Если $x_n \leq b \forall n, \lim x_n = a \Longrightarrow a \leq b$

Доказательство. $y_n := b$, далее из теоремы 1

Cледствие: Если $x_n \ge a \forall n, \lim x_n = b \Longrightarrow a \le b$

Доказательство. $y_n := a$, далее из теоремы 1

Следствие: $x_n \in [a,b], \lim x_n = c \Longrightarrow c \in [a,b].$ Следует из предыдущих

16 Теорема о двух милиционерах

Теорема. Теорема о сжатой последовательности (о двух милиционерах) $x_n \leq y_n \leq z_n \ \forall n \in N, \lim x_n = \lim z_n = a \Longrightarrow \lim y_n = a$

Доказательство.

$$\lim x_n = a \Longrightarrow \forall \varepsilon > 0 \ \exists N_1 : x_n \in (a - \varepsilon, a + \varepsilon)$$

$$\lim z_n = a \Longrightarrow \forall \varepsilon > 0 \ \exists N_2 : z_n \in (a - \varepsilon, a + \varepsilon)$$

$$\Longrightarrow x_n > a - \varepsilon, z_n < a + \varepsilon$$

При $n \ge \max\{N_1, N_2\}$ $a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon \Longrightarrow a - \varepsilon < y_n < a + \varepsilon$

Cnedcmeue: $|y_n| \le z_n \ \forall n, \lim z_n = 0 \Longrightarrow \lim y_n = 0$

Доказательство. $x_n:=-z_n\Longrightarrow x_n\leq |y_n|\leq z_n,\ x_n\to 0,\ z_n\to 0\Longrightarrow y_n\to 0$

17 Монотонные последовательности

Определение.

 x_n монотонно возрастает(убывает), если $\forall n \ x_n \leq (\geq) x_{n+1}$

 x_n монотонна, если она монотонно возрастает или монотонно убывает

Теорема. Если последовательность монотонно возрастает(убывает) и ограничена сверху(снизу), то она имеет предел.

Доказательство. x_n такова, что $x_1 \le x_2 \le x_3...$ и ограничена сверху. Тогда у нее есть sup := S. Докажем, что $\lim x_n = S$.

$$\forall \varepsilon > 0 \ S - \varepsilon$$
 не является верхней границей $\Longrightarrow \exists x_N > s - \varepsilon \Longrightarrow \forall n \geq N \ S - \varepsilon < x_n < S + \varepsilon \Longrightarrow$ S - предел

Cnedcmeue: Если последовательность монотонна, то она имеет предел тогда и только тогда, когда она ограничена.

"⇐" По доказанной теореме

"⇒" Из свойств предела

18 Топологическое пространство

Определение. X - множество. Топология, это набор подмножеств $\Omega \subset X$, называющихся открытыми, таких что:

- 1. \varnothing, X открытые
- 2. Объединение любого количество открытых открыто
- 3. Пересечение конечного числа открытых открыто

Примеры

$$\{\varnothing, X\}$$

$$X = [0, +\infty), \Omega = (a, +\infty), a \ge 0\}$$

Определение. Замкнутое множество - дополнение открытого

Определение. a - внутренняя точка множетсва A, если существует открытое множество U, т. ч. $a \in U, U \subset A$

Определение. Внутренность $Int\ A$ - объединение всех открытых множеств, содержащихся в A. Равносильно - множество всех внутренних точек

Определение. Замыкание $Cl\ A$ - пересечение всех замкнутых множеств, содержищих A

Определение. $a=\lim x_n$, если вне любого открытого множества, содержащего точку a находится лишь конечное число членов последовательности $\forall U\ni a\ \exists N\ \forall n\geq N\ x_n\in U$

Определение. Хаусдорфовость

 $\forall a, b \in X \; \exists U, V$ - открытые множества, такие что $a \in U, b \in V, U \cap V = \emptyset$.

Определение. Если хаусдорфовость выполняется, то предел единственный.

Доказательство. Если a, b - пределы, то $\exists U, V : a \in U, b \in V, U \cap V = \emptyset \Longrightarrow$ Вне U лежит конечное количество членов, вне V тоже, тогда и в X конечное число членов. Противоречие

19 Векторное пространство. Пространство R^d . Скалярное произведение. Неравенство Коши-Буняковского

Определение. X - векторное пространство (над полем \mathbb{R}), если: Определена операции "+": $X \times X \to X$ "*": $\mathbb{R} \times X \to X$

- 1. Сложение коммутативно и ассоциативно
- 2. Cyllectbyet $\overrightarrow{0}$
- 3. Существует обратный элемент $x+(-x)=\overrightarrow{0}$

4.
$$(\alpha\beta)x = \alpha(\beta x) \ \forall \alpha, \beta \in \mathbb{R} \ \forall x \in X$$

5.
$$(\alpha + \beta)x = \alpha x + \beta x$$

6.
$$\alpha(x+y) = \alpha x + \alpha y$$

Определение.

$$R^d = \{\langle x_1, x_2, ..., x_d \rangle\} : x_i \in \mathbb{R}$$

$$\langle x_1, ..., x_d \rangle + \langle y_1, ..., y_d \rangle = \langle x_1 + y_1, ..., x_d + y_d \rangle$$

$$\alpha \langle x_1, ..., x_d \rangle = \langle \alpha x_1, ..., \alpha x_d \rangle$$

Определение. Скалярное произведение $\langle \bullet, \bullet \rangle X \times X \to \mathbb{R}$

1.
$$\langle x, x \rangle \ge 0$$
, $\langle x, x \rangle = 0 \iff x = \overrightarrow{0}$

2.
$$\langle x, y \rangle = \langle y, x \rangle$$

3.
$$\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$$

4.
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

Определение. Неравенство Коши-Буняковского: $(x,y)^2 \le (x,x)(y,y)$

Доказательство. $f(t) := \langle x + ty, x + ty \rangle = \langle x, x + ty \rangle + \langle ty, x + ty \rangle = \langle x, x \rangle + t \langle x, y \rangle + t \langle y, x \rangle + t^2 \langle y, y \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle \geq 0$. Это всегда неотрицательно, тогда дискриминант неположителен.

$$4t^2\langle x,y\rangle^2 - 4t^2\langle x,x\rangle\langle y,y\rangle < 0 \Longrightarrow \langle x,x\rangle^2 < \langle x,x\rangle\langle y,y\rangle$$

20 Норма

Определение. Норма $|| \bullet || : X \to \mathbb{R}$

1.
$$||x|| \ge 0$$
, $||x|| = 0 \iff x = \overleftarrow{0}$

2.
$$||\alpha x|| = |\alpha| * ||x||$$

3.
$$||x+y|| \le ||x|| + ||y||$$

Примеры

$$X = \mathbb{R}, ||x|| := |x|$$

$$X = \mathbb{R}^d$$
, $||x|| := |x_1| + |x_2| + \dots + |x_d|$

Теорема. Если $\langle \bullet, \bullet \rangle$ - скалярное произведение в X, то $||x|| := \sqrt{\langle x, x \rangle}$ - норма. $||\alpha x|| = \sqrt{\langle \alpha x, \alpha x \rangle} = \sqrt{\alpha^2 \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle}$

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \Longrightarrow ||x||^2 + 2\langle x, y \rangle + ||y||^2 \stackrel{?}{\leq} ||x||^2 + 2||x|| * ||y|| + ||y||^2$$

 $2\langle x,y\rangle \leq 2||x||*||y||=\sqrt{\langle x,x\rangle}\sqrt{\langle y,y\rangle}$ - верно по неравенству Коши Буняковского

Теорема. Свойства норм:

1.
$$||x-y|| = ||(x-z) + (z-y)|| \le ||x-z|| + ||z-y||$$

2.
$$d(x,y) := ||x-y||$$
 - метрика

3.
$$| ||x|| - ||y|| | \le ||x - y||$$

 $|x|| = ||(x - y) + y|| \le ||x - y|| + ||y||$
 $||y|| = ||(y - x) + x|| \le ||y - x|| + ||x|| = ||x - y|| + ||x||$
 $||x - y|| \ge ||x|| - ||y||$
 $||x - y|| \ge -(||x|| - ||y||)$

Теорема. X - нормированное пространство. Тогда норма порождена некоторым скалярным произведением тогда и только тогда, когда

$$2(||x||^2+||y||^2)=||x+y||^2+||x-y||^2$$
 - тождество параллелограмма.

Доказательства не будет. Автор принял Линал

21 Арифметические свойства пределов последовательности

X - нормированное пространство

$$x_n, y_n \in X \quad \lambda_n \in \mathbb{R}$$

 $\lim x_n = x_0 \quad \lim y_n = y_0 \quad \lim \lambda_n = \lambda_0$

Теорема. Арифметические свойства пределов в нормированном пространстве

1.
$$lim(x_n + y_n) = x_0 + y_0$$

Доказательство.

$$||x_n + y_n - (x_0 + y_0)|| = ||(x_n - x_0) + (y_n - y_0)|| \le ||x_n - x_0|| + ||y_n - y_0||$$

$$\lim x_n = x_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_1 : \forall n \geqslant N_1 \quad ||x_n - x_0|| < \frac{\varepsilon}{2}$$

$$\lim y_n = y_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_2 : \forall n \geqslant N_2 \quad ||y_n - y_0|| < \frac{\varepsilon}{2}$$

Тогда при
$$n \geqslant \max\{N_1, N_2\} \quad ||x_n + y_n - (x_0 + y_0)|| \leqslant ||x_n - x_0|| + ||y_n - y_0|| < \varepsilon$$

2. $\lim (x_n - y_n) = x_0 - y_0$

Доказательство. Аналогично первому пункту.

3. $\lim \lambda_n x_n = \lambda_0 x_0$

Доказательство.

$$||\lambda_n x_n - \lambda_0 x_0|| = ||(\lambda_n x_n - \lambda_n x_0) + (\lambda_n x_0 - \lambda_0 x_0)|| \le$$

$$\le ||\lambda_n x_n - \lambda_n x_0|| + ||\lambda_n x_0 - \lambda_0 x_0|| = |\lambda_n| * ||x_n - x_0|| + |\lambda_n - \lambda_0| * ||x_0||$$

Так как у λ_n есть предел, она ограничена, то есть $|\lambda_n| \leqslant M$. Итого получаем:

$$||\lambda_n x_n - \lambda_0 x_0|| \le M * ||x_n - x_0|| + ||x_0|| * |\lambda_n - \lambda_0||$$

$$\lim x_n = x_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_1 : \forall n \geqslant N_1 \quad ||x_n - x_0|| < \frac{\varepsilon}{2M}$$
$$\lim \lambda_n = \lambda_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_2 : \forall n \geqslant N_2 \quad |\lambda_n - \lambda_0| < \frac{\varepsilon}{2||x_0|| + 1}$$

При $n \geqslant max\{N_1, N_2\}$

$$||\lambda_n x_n - \lambda_0 x_0|| \le M * ||x_n - x_0|| + ||x_0|| * |\lambda_n - \lambda_0|| < M * \frac{\varepsilon}{2M} + ||x_0|| * \frac{\varepsilon}{2||x_0|| + 1} < \varepsilon$$

4. $\lim ||x_n|| = ||x_0||$

Доказательство.

$$||x_n|| - ||x_0|| = ||(x_n - x_0) + x_0|| - ||x_0|| \le ||x_n - x_0|| + ||x_0|| - ||x_0|| = ||x_n - x_0|| \to 0$$

5. Если в X есть скалярное произведение, то $\lim \langle x_n, y_n \rangle = \langle x_0, y_0 \rangle$

Доказательство.

$$\langle x_n, y_n \rangle - \langle x_0, y_0 \rangle = \langle x_n, y_n \rangle - \langle x_n, y_0 \rangle + \langle x_n, y_0 \rangle - \langle x_0, y_0 \rangle =$$

$$= \langle x_n, y_n - y_0 \rangle + \langle x_n - x_0, y_0 \rangle$$

$$|\langle x_n, y_n \rangle - \langle x_0, y_0 \rangle| \leqslant |\langle x_n, y_n - y_0 \rangle| + |\langle x_n - x_0, y_0 \rangle| \leqslant$$

$$\leqslant ||x_n|| * ||y_n - y_0|| + ||x_n - x_0|| * ||y_0||$$

Так как у x_n есть предел, она ограничена, то есть $||x_n|| \leq M$. Итого получаем:

$$|\langle x_n, y_n \rangle - \langle x_0, y_0 \rangle| \le M * \underbrace{||y_n - y_0||}_{\to 0} + ||y_0|| * \underbrace{||x_n - x_0||}_{\to 0}$$

Теорема. Арифметические свойства пределов числовых последовательностей $x_n, y_n \in \mathbb{R}$ $\lim x_n = x_0$ $\lim y_n = y_0$

- 1. $\lim(x_n \pm y_n) = x_0 \pm y_0$
- 2. $\lim(x_n y_n) = x_0 y_0$
- 3. $\lim |x_n| = |x_0|$
- 4. Если $y_0 \neq 0$ и $y_n \neq 0 \ \forall n$, то $\lim \frac{x_n}{y_n} = \frac{x_0}{y_0}$

Доказательство. Докажем, что $\lim_{y_n} \frac{1}{y_n} = \frac{1}{y_0}$:

$$\left|\frac{1}{y_n} - \frac{1}{y_0}\right| = \frac{|y_n - y_0|}{|y_n||y_0|}$$

Так кая $y_0 = \lim y_n$, найдется такое N_1 , что $\forall n \geqslant N_1 \quad |y_n| \in (\frac{|y_0|}{2}, \frac{3|y_0|}{2}) \Rightarrow |y_n| > \frac{|y_0|}{2}$ При $n >= N_1$ получаем, что

$$\frac{|y_n - y_0|}{|y_n||y_0|} < \frac{|y_n - y_0|}{\frac{|y_0|}{2}|y_0|}$$

$$\lim y_n = y_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_2 : \forall n \geqslant N_2 \quad |y_n - y_0| < \frac{\varepsilon * y_0^2}{2}$$

Тогда если $n\geqslant \max\{N_1,N_2\}$, то $|\frac{1}{y_n}-\frac{1}{y_0}|<\varepsilon$. Теперь, когда мы знаем, что $\lim\frac{1}{y_n}=\frac{1}{y_0}$, доказать исходное равенство легко:

$$\lim \frac{x_n}{y_n} = \lim (x_n * \frac{1}{y_n}) = \lim x_n * \lim \frac{1}{y_n} = \frac{x_0}{y_0}$$

22 Покоординатная сходимость в \mathbb{R}^d

$$x_n = \langle x_n^{(1)}, \dots, x_n^{(d)} \rangle$$

 x_n покоординатно сходится к x_0 , если

$$\begin{cases} \lim x_n^{(1)} = x_0^{(1)} \\ \dots \\ \lim x_n^{(d)} = x_0^{(d)} \end{cases}$$

Теорема.

 x_n покоординатно сходится к $x_0 \Longleftrightarrow x_n$ сходится к x_0 по норме в \mathbb{R}^d $||a||=\sqrt{a_1^2+\cdots+a_d^2}$ - норма

Доказательство.

$$||x_n - x_0|| = \sqrt{(x_n^{(1)} - x_0^{(1)})^2 + \dots + (x_n^{(d)} - x_0^{(d)})^2}$$

Заметим следующее:

$$\sqrt{(x_n^{(1)} - x_0^{(1)})^2 + \dots + (x_n^{(d)} - x_0^{(d)})^2} \geqslant \sqrt{(x_n^{(k)} - x_0^{(k)})^2} = |x_n^{(k)} - x_0^{(k)}|$$

$$\sqrt{(x_n^{(1)} - x_0^{(1)})^2 + \dots + (x_n^{(d)} - x_0^{(d)})^2} \leqslant |x_n^{(1)} - x_0^{(1)}| + \dots + |x_n^{(d)} - x_0^{(d)}|$$

Итого получаем

$$|x_n^{(k)} - x_0^{(k)}| \le ||x_n - x_0|| \le |x_n^{(1)} - x_0^{(1)}| + \dots + |x_n^{(d)} - x_0^{(d)}|$$

Докажем " ⇒ ":

$$\lim x_n = x_0 \Rightarrow ||x_n - x_0|| \to 0 \Rightarrow |x_n^{(k)} - x_0^{(k)}| \to 0 \Rightarrow \lim x_n^{(k)} = x_0^{(k)}$$

Докажем " ⇐ ":

$$\lim x_n^{(k)} = x_0^{(k)} \Rightarrow |x_n^{(k)} - x_0^{(k)}| \to 0 \Rightarrow \sum_{k=1}^d |x_n^{(k)} - x_0^{(k)}| \to 0 \Rightarrow ||x_n - x_0|| \to 0 \Rightarrow \lim x_n = x_0$$

23 Бесконечные пределы

• $x_n \in \mathbb{R}$ $\lim x_n = +\infty$

Вне любого луча $(u, +\infty)$ находится лишь конечное число членов.

 $\forall u \quad \exists N : \forall n \geqslant N \quad x_n > u$

• $x_n \in \mathbb{R}$ $\lim x_n = -\infty$

Вне любого луча $(-\infty, u)$ находится лишь конечное число членов.

 $\forall u \quad \exists N : \forall n \geqslant N \quad x_n < u$

• $x_n \in \mathbb{R}$ $\lim x_n = \infty$

В любом интервале (u, v) находится лишь конечное число членов.

 $\forall u \quad \exists N : \forall n \geqslant N \quad |x_n| > u$

<u>Замечание 1</u>: Если $\lim x_n = +\infty$ или $\lim x_n = -\infty$, то $\lim x_n = \infty$. Обратное неверно (контрпример - $x_n = (-1)^n n$).

<u>Замечание 2</u>: Если $\lim x_n = \infty$, то x_n не ограничена. Обратное неверно (контрпример - $x_n = n$ (если n четно) и $x_n = 0$ иначе).

Теорема. $E \partial u h c m b e h h o c m b n p e \partial e h a b <math>\overline{\mathbb{R}}$

Если $\lim x_n = a \in \overline{\mathbb{R}}$ и $\lim x_n = b \in \overline{\mathbb{R}}$, то a = b.

Доказательство. Пусть a < b.

Если $a, b \in \mathbb{R}$, то a = b (должно быть доказано где-то раньше).

Если $a \in \mathbb{R}$ и $b = +\infty$, то в (a - 1, a + 1) и $(a + 1, +\infty)$ должно содержаться бесконечное число членов последовательности, но это невозможно.

Аналогично для случая $a=-\infty$ и $b\in\mathbb{R}$.

Если
$$a=\infty$$
 и $b=\infty$, то либо $a=b=+\infty$, либо $a=b=-\infty$.

Теорема. O стабилизации знака в $\overline{\mathbb{R}}$

Если $\lim x_n = a \in \overline{\mathbb{R}}$ и $a \neq 0$, то, начиная с некоторого номера, x_n и a одного знака.

Доказательство. Не, ну это очевидно.

Теорема. О предельном переходе в неравенстве в $\overline{\mathbb{R}}$

1. Если $\lim x_n = +\infty$ и $x_n \leqslant y_n \ \forall n$, то $\lim y_n = +\infty$.

Доказательство. Мы знаем что,

$$\forall u \quad \exists N : \forall n \geqslant N \quad x_n > u$$

Так как $x_n \leqslant y_n \ \forall n$, то нам подойдет тоже N:

$$\forall n \geqslant N \quad y_n \geqslant x_n > u$$

2. Если $\lim y_n = -\infty$ и $x_n \leqslant y_n \ \forall n$, то $\lim x_n = -\infty$.

Доказательство. Аналогично первому пункту.

3. Если $x_n \leqslant y_n \ \forall n \ \text{и} \ \lim x_n = a \in \overline{\mathbb{R}}, \ \lim y_n = b \in \overline{\mathbb{R}}, \ \text{то} \ a \leqslant b$

Доказательство.

- $a, b \in R$, доказано ранее
- $a = -\infty$, то $a \leq b$ всегда
- $a = +\infty$, то по первому пункту $b = +\infty$
- $b = +\infty$, то $a \leqslant b$ всегда
- $b=-\infty$, то по второму пункту $a=-\infty$

24 Бесконечно большие и малые последовательности

- x_n называется бесконечно большой, если $\lim x_n = \infty$
- x_n называется бесконечно малой, если $\lim x_n = 0$
- \bullet x_n называется сходящайся, если она имеет конечный предел

Теорема. Связь между бесконечно большими и бесконечно малыми

$$x_n \neq 0 \ \forall n$$

 x_n - 6.6. $\Leftrightarrow \frac{1}{x_n}$ - 6.M.

Доказательство. x_n - б.б. $\Leftrightarrow \forall u > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| > u \Leftrightarrow \Leftrightarrow \forall \varepsilon > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| > \frac{1}{\varepsilon} \Leftrightarrow \frac{1}{|x_n|} < \varepsilon \Leftrightarrow \frac{1}{x_n}$ - б.м.

Теорема. О действиях с бесконечно малыми

- 1. Сумма / разность б.м. это б.м.
 - Доказательство. Предел суммы / разности это сумма / разность пределов.
- 2. Произведение б.м. и ограниченной это б.м.

Доказательство. y_n - ограниченная $\Rightarrow |y_n| \leqslant M$ x_n - б.м. $\Rightarrow \forall \varepsilon > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| < \frac{\varepsilon}{M}$ $|x_n y_n| \leqslant M|x_n| < \varepsilon$

25 Арифметические действия в $\overline{\mathbb{R}}$

Теорема. Об арифметических операциях $c \propto$

1. $x_n \to +\infty, \ y_n$ - ограниченная снизу $\Rightarrow x_n + y_n \to +\infty$

Доказательство. y_n - ограниченная снизу $\Rightarrow y_n \geqslant a$ $x_n \to +\infty \Rightarrow \forall u \quad \exists N: \forall n \geqslant N \quad x_n > u-a$ $\Rightarrow x_n + y_n > u-a+a=u$

2. $x_n \to -\infty$, y_n - ограниченная сверху $\Rightarrow x_n + y_n \to -\infty$

Доказательство. Аналогично предыдущему пункту.

3. $x_n \to \infty, \ y_n$ - ограниченная $\Rightarrow x_n \pm y_n \to \infty$

Доказательство. Аналогично первому пункту.

4. $x_n \to \pm \infty, \ y_n \geqslant c > 0 \Rightarrow x_n y_n \to \pm \infty$

Доказательство. $x_n \to +\infty \Rightarrow \forall u \quad \exists N : \forall n \geqslant N \quad x_n > \frac{u}{c}$

$$y_n \geqslant c > 0 \Rightarrow x_n y_n \geqslant c x_n > u$$

Случай $x_n \to -\infty$ рассматривается аналогично.

5.
$$x_n \to \pm \infty$$
, $y_n \leqslant c < 0 \Rightarrow x_n y_n \to \mp \infty$

Доказательство. Аналогично предыдущему пункту.

6.
$$x_n \to \infty$$
, $|y_n| \ge c > 0 \Rightarrow x_n y_n \to \infty$

Доказательство. Аналогично четвертому пункту.

7.
$$x_n \to a \neq 0, \ y_n \neq 0 \to 0 \Rightarrow \frac{x_n}{y_n} \to \infty$$

Доказательство.
$$\lim \frac{y_n}{x_n}=0 \Rightarrow \frac{y_n}{x_n}$$
 - б.м. $\Rightarrow \frac{x_n}{y_n}$ - б.б. $\Rightarrow \lim \frac{x_n}{y_n}=\infty$

8.
$$x_n$$
 - ограниченная, $y_n \to \infty \Rightarrow \frac{x_n}{y_n} \to 0$

Доказательство.
$$y_n \to \infty \Rightarrow \frac{1}{y_n}$$
 - б.м. $\Rightarrow x_n * \frac{1}{y_n}$ - б.м.

9.
$$x_n o \infty, \ y_n
eq 0$$
 - ограниченная $\Rightarrow rac{x_n}{y_n} o \infty$

Доказательство. y_n - ограниченная $\Rightarrow |y_n| \leqslant M$

$$x_n \to \infty \Rightarrow \forall u > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| > uM \Rightarrow \left|\frac{x_n}{u_n}\right| \geqslant \left|\frac{x_n}{M}\right| > u$$

Запрещенные операции:

$$\bullet \ +\infty \pm (\mp \infty)$$

•
$$-\infty \pm (\pm \infty)$$

•
$$\pm \infty * 0$$

- \bullet $\frac{0}{0}$
- \bullet $\frac{\pm \infty}{\pm \infty}$

Почему эти операции запрещенные? Разберем на примере:

$$\lim x_n = \lim y_n = +\infty$$

 x_n-y_n может иметь любой предел в $\overline{\mathbb{R}},$ а может его вообще не иметь:

•
$$x_n = n + a$$
, $y_n = n \Rightarrow x_n - y_n = a \rightarrow a$

•
$$x_n = 2n, y_n = n \Rightarrow x_n - y_n = n \to +\infty$$

•
$$x_n = n + (-1)^n$$
, $y_n = n \Rightarrow x_n - y_n = (-1)^n$ - предела не имеет

26 Неравенство Бернулли

$$(1+x)^n \geqslant 1 + nx \quad x > -1, \ n \in \mathbb{N}$$

Доказательство. Индукция по n.

База n = 1 : (1 + x) = 1 + x

Переход
$$n \to n+1$$
: $(1+x)^{n+1} = \underbrace{(1+x)}_{>0} \underbrace{(1+x)^n}_{assumption} \geqslant (1+x)(1+nx) = 1+(n+1)x+nx^2 \geqslant 1+(n+1)x$

Замечание 1: В неравенсте Бернулли почти всегда строгий знак, равенство достигается только в случаях, когда n=1 или x=0.

<u>Замечание 2:</u> $(1+x)^p \geqslant 1+px$ x>-1 верно при всех $p\geqslant 1$ и $p\leqslant 0$. Какая-то жесткая тема. Дали без доказателства.

Следствие.

1. Если a > 1, то $\lim a^n = +\infty$.

Доказательство. $a > 1 \Rightarrow a = 1 + x \quad x > -1$

$$a^n = (1+x)^n \geqslant 1 + xn \to +\infty$$

2. Если |a| < 1, то $\lim a^n = 0$.

Доказательство. Считаем, что $a \neq 0$.

$$\left|\frac{1}{a}\right| > 1 \Rightarrow \lim \left|\frac{1}{a}\right|^n = +\infty \Rightarrow \left|\frac{1}{a}\right|^n$$
 - б.б. $\Rightarrow |a^n|$ - б.м. $\Rightarrow a^n$ - б.м.

27 Определение экспоненты

Рассмотрим последовательность $x_n = (1 + \frac{a}{n})^n$, где $a \in \mathbb{R}$

Теорема. x_n монотонно возрастает, начиная $c \ n > -a \ u$ ограничена сверху

Доказательство.

1. Монотонное возрастание (если a < 0, то с номера n = -a + 1)

$$\begin{split} \frac{x_n}{x_{n-1}} &= \frac{(1+\frac{a}{n})^n}{(1+\frac{a}{n-1})^{n-1}} \\ &= \frac{\frac{(n+a)^n}{n^n}}{\frac{(n-1+a)^{n-1}}{(n-1)^{n-1}}} \\ &= \frac{(n-1)^{n-1}}{n^n} * \frac{(n+a)^n}{(n-1+a)^{n-1}} \\ &= \frac{(n-1)^n * (n+a)^n}{n^n * (n-1+a)^n} * \frac{n-1+a}{n-1} \\ &= (\frac{n^2-n+an-a}{n^2-n+an})^n * \frac{n-1+a}{n-1} \\ &= \underbrace{(1-\frac{a}{n(n-1+a)})^n}_{\geqslant 1-\frac{na}{n(n-1+a)}} \text{ by Bernoulli's inequality} \\ \geqslant \frac{n-1}{n-1+a} * \frac{n-1+a}{a} = 1 \end{split}$$

2. Ограниченность сверху

 $y_n = (1 - \frac{a}{n})^n$ монотонно возрастает при n > a

$$x_n y_n = (1 + \frac{a}{n})^n * (1 - \frac{a}{n})^n = (1 - (\frac{a}{n})^2)^n \le 1$$

 $y_n\geqslant c>0$, начиная с некоторого номера $\Rightarrow 1\geqslant x_ny_n\geqslant cx_n\Rightarrow x_n\leqslant \frac{1}{c}$, начиная с некоторого номера $\Rightarrow x_n$ - ограниченная

Следствие. Существует конечный $\lim_{n \to \infty} (1 + \frac{a}{n})^n$

Определение.

1. $exp a := \lim_{n \to \infty} (1 + \frac{a}{n})^n$

2.
$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2{,}71828$$

<u>Замечание</u>: Последовательность $x_n = (1 + \frac{a}{n})^n$ при $a \neq 0$ <u>строго</u> монотонно возрастает с n > -a. В доказательстве пользовались неравенством Бернулли, при $a \neq 0$ в нем строгий знак.

Следствие. Последовательность $z_n = (1 + \frac{1}{n})^{n+1}$ строго убывает и стремиться к e

Доказательство. $z_n = \underbrace{(1+\frac{1}{n})}_{-1} * \underbrace{(1+\frac{1}{n})^n}_{-e} \to e$

$$z_n = \frac{n+1}{n}^{n+1} = \frac{1}{(\frac{n}{n+1})^{n+1}} = \frac{1}{(1-\frac{1}{n+1})^{n+1}}$$

Последовательность $(1-\frac{1}{n+1})^{n+1}$ строго возрастает, следовательно, обратная к ней строго убывает.

28 Свойства экспоненты

- 1. Для любого $a \in \mathbb{R}$ exp a > 0
- 2. exp 0 = 1, exp 1 = e
- 3. Если $a \leq b$, то $exp \, a \leq exp \, b$

Доказательство.
$$0 < 1 + \frac{a}{n} \leqslant 1 + \frac{b}{n}$$
 при $n > -a \Rightarrow \underbrace{(1 + \frac{a}{n})^n}_{\to exp \, a} \leqslant \underbrace{(1 + \frac{b}{n})^n}_{\to exp \, b}$ при $n > -a$

4. $exp a \ge 1 + a$

Доказательство. По неравенству Бернулли:

$$\underbrace{(1+\frac{a}{n})^n}_{\to exp\,a}\geqslant 1+n*\tfrac{a}{n}=1+a\ \text{при}\ n>-a$$

5. $exp a * exp (-a) \leq 1$

Доказательство.
$$\underbrace{(1+\frac{a}{n})^n}_{\to exp\, a} * \underbrace{(1-\frac{a}{n})^n}_{\to exp\, (-a)} = (1-(\frac{a}{n})^2)^n \leqslant 1$$

6. $exp \, a \leqslant \frac{1}{1-a}$ при a < 1

Доказательство. С помощью двух предыдущих пунктов

$$exp \ a \leqslant \frac{1}{exp(-a)} \leqslant \frac{1}{1-a}$$

7. $(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}$ при всех n

Доказательство.
$$(1+\frac{1}{n})^n < (1+\frac{1}{n+1})^{n+1} \leqslant \underbrace{(1+\frac{1}{m})^m}_{\rightarrow e}$$
 при $m \geqslant n+1 \Rightarrow (1+\frac{1}{n})^n < e$

$$(1+\frac{1}{n})^{n+1} > (1+\frac{1}{n+1})^{n+2} \geqslant \underbrace{(1+\frac{1}{m})^{m+1}}_{\to e}$$
 при $m \geqslant n+1 \Rightarrow (1+\frac{1}{n})^{n+1} > e$

В частности, подставив n=1 и n=5 получаем, что 2 < e < 3

29 Формула для экспоненты суммы

Лемма. Если $\lim a_n = a \in \mathbb{R}$, то $\lim (1 + \frac{a_n}{n})^n = \exp a$

Доказательство. Последовательность a_n ограничена $\Rightarrow a_n \leqslant M, \ a \leqslant M$ и M>0

$$A:=1+\tfrac{a}{n}\leqslant 1+\tfrac{M}{n}\quad B:=1+\tfrac{a_n}{n}\leqslant 1+\tfrac{M}{n}$$

Надо доказать, что $\lim (A^n - B^n) = 0$

$$|A^{n} - B^{n}| = |A - B|(A^{n-1} + A^{n-2}B + \dots + B^{n-1})$$

$$\leq |A - B|n(1 + \frac{M}{n})^{n-1}$$

$$\leq |A - B|n(1 + \frac{M}{n})^{n}$$

$$= \frac{|a - a_{n}|}{n}n(1 + \frac{M}{n})^{n}$$

$$= |a - a_{n}|(1 + \frac{M}{n})^{n} \leq \underbrace{|a - a_{n}|}_{\to 0} *exp M$$

Теорема. exp(a + b) = exp a * exp b

Доказательство.

$$\underbrace{(1+\frac{a}{n})^n}_{\rightarrow \exp a} * \underbrace{(1+\frac{b}{n})^n}_{\rightarrow \exp b} = (1+\frac{a+b}{n}+\frac{ab}{n^2})^n = \underbrace{(1+\frac{a+b+\frac{ab}{n}}{n})^n}_{a+b+\frac{ab}{n}:=a_n\rightarrow a+b} = \underbrace{(1+\frac{a_n}{n})^n}_{\rightarrow \exp (a+b)}$$

30 Сравнение скорости возрастания последовательностей

Теорема. Пусть $x_n > 0$ $u \lim \frac{x_{n+1}}{x_n} < 1$. Тогда $x_n \to 0$

Доказательство.

 $l:=\lim rac{x_{n+1}}{x_n}$. Начиная с некоторого номера m $\frac{x_{n+1}}{x_n}<rac{1+l}{2}=:q<1$

При $n \geqslant m$

$$0 < x_n < \frac{x_n}{x_{n-1}} * \frac{x_{n-1}}{x_{n-2}} * \frac{x_{n-2}}{x_{n-3}} * \dots * \frac{x_{m+1}}{x_m} * x_m < q^{n-m} x_m = q^n * \frac{x_m}{q^m}$$
$$0 < x_n < q^n * \frac{x_m}{q^m} \to 0 \Rightarrow x_n \to 0$$

Следствие.

1. $\lim \frac{n^k}{a^n} = 0$ при a > 1 (показательная функция растет быстрее полиномиальной)

Доказательство. $x_n = \frac{n^k}{a^n}$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^k a^n}{a^{n+1} n^k} = \left(\frac{n+1}{n}\right)^k * \frac{a^n}{a^{n+1}} = \frac{1}{a} * \left(1 + \frac{1}{n}\right)^k \to \frac{1}{a} < 1 \Rightarrow x_n \to 0$$

2. $\lim \frac{a^n}{n!} = 0$ (факториал растет быстрее показательной)

Доказательство. $x_n = \frac{a^n}{n!}$

$$\frac{x_{n+1}}{x_n} = \frac{a^{n+1}n!}{(n+1)!a^n} = a\frac{n!}{(n+1)!} = \frac{a}{n+1} \to 0 < 1 \Rightarrow x_n \to 0$$

 $3. \lim_{n \to \infty} \frac{n!}{n^n} = 0$

Доказательство. $x_n = \frac{n!}{n^n}$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)!n^n}{(n+1)^{n+1}n!} = \frac{(n+1)n^n}{(n+1)^{n+1}} = (\frac{n}{n+1})^n = \frac{1}{(\frac{n+1}{n})^n} = \frac{1}{(1+\frac{1}{n})^n} \to \frac{1}{e} < 1 \Rightarrow x_n \to 0$$

31 Теорема Штольца (для неопределённости $\frac{\infty}{\infty}$)

Теорема. Штольца № 1

Пусть (y_n) строго возрастает и $\lim y_n = +\infty$. Тогда если $\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \overline{\mathbb{R}}$, то $\lim \frac{x_n}{y_n} = l$.

Доказательство. Ключевой случай l=0:

Пусть

$$\varepsilon_n := \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to 0$$

Зафиксируем $\varepsilon>0$ и найдём m, т.ч. $|\varepsilon_n|<\varepsilon$ при $n\geq m$.

$$x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \dots + (x_{m+1} - x_m) = \sum_{k=m+1}^n \varepsilon_k \cdot (y_k - y_{k-1})$$

$$|x_n - x_m| \le \sum_{k=m+1}^n |\varepsilon_k| \cdot (y_k - y_{k-1}) < \sum_{k=m+1}^n \varepsilon \cdot (y_k - y_{k-1}) = \varepsilon \cdot \sum_{k=m+1}^n (y_k - y_{k-1}) = \varepsilon \cdot (y_n - y_m) < \varepsilon y_n$$

Можно считать, что $y_m > 0$ (по теореме о стабилизации знака).

Заметим, что $|x_m|$ фиксировано, а $y_n \to +\infty \Rightarrow \lim \frac{|x_m|}{y_n} = 0$ и $\frac{|x_m|}{y_n} < \varepsilon$, начиная с некоторого номера.

$$|x_n| \le |x_m| + |x_n - x_m| < |x_m| + \varepsilon y_n \Rightarrow \left| \frac{x_n}{y_n} \right| < \frac{|x_m|}{y_n} + \varepsilon < 2\varepsilon$$

начиная с некоторого номера $\Rightarrow \lim \left| \frac{x_n}{y_n} \right| = 0 = l.$

Случай $l \in \mathbb{R}$:

$$\widetilde{x_n} := x_n - l \cdot y_n, \widetilde{x_n} - \widetilde{x_{n-1}} = x_n - x_{n-1} - l \cdot (y_n - y_{n-1})$$

$$\widetilde{x_n} - \widetilde{x_{n-1}} = \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - l \to 0 \xrightarrow{l=0} \widetilde{\frac{x_n}{y_n}} \to 0 \Rightarrow \frac{\widetilde{x_n}}{y_n} = \frac{x_n - l \cdot y_n}{y_n} = \frac{x_n}{y_n} - l \to 0 \Rightarrow \frac{x_n}{y_n} \to l$$

Случай $l = +\infty$:

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to +\infty \Rightarrow \frac{x_n - x_{n-1}}{y_n - y_{n-1}} > 1$$

начиная с некоторого номера

$$\Rightarrow x_n - x_{n-1} > y_n - y_{n-1} > 0 \Rightarrow x_n$$
 строго возрастает с нек. номера $m \Rightarrow x_n - x_m > y_n - y_m \Rightarrow x_n > y_n + (x_m - y_m) \to +\infty \Rightarrow x_n \to +\infty$

Рассмотрим

$$\frac{y_n - y_{n-1}}{x_n - x_{n-1}} \to 0 \xrightarrow{l=0} \frac{y_n}{x_n} \to 0 \Rightarrow \frac{x_n}{y_n} \to +\infty$$

(а не ∞ , т.к. $x_n > 0, y_n > 0$ с нек. номера)

 \mathbf{C} лучай $l=-\infty$

Пусть $\widetilde{x_n} := -x_n$.

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to -\infty \Rightarrow \frac{\widetilde{x_n} - \widetilde{x_{n-1}}}{y_n - y_{n-1}} = -\frac{x_n - x_{n-1}}{y_n - y_n - 1} \to +\infty \Rightarrow -\frac{x_n}{y_n} = \frac{\widetilde{x_n}}{y_n} \to +\infty \Rightarrow \frac{x_n}{y_n} \to -\infty$$

Следствие.

Если
$$\lim a_n = a \in \overline{\mathbb{R}}$$
, то $\lim \frac{a_1 + a_2 + \ldots + a_n}{n} = a$

Доказательство.

$$x_n := \sum_{k=1}^n a_k, \quad y_n := n \nearrow + \infty$$

$$\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim a_n n - (n-1) = \lim a_n = a \Rightarrow \lim \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

Пример. Найти предел:

$$m \in \mathbb{N}, \quad \frac{1}{n^{m+1}} \cdot \sum_{k=1}^{n} k^m$$

$$x_n := \sum_{k=1}^n k^m, \quad y_n := n^{m+1} \nearrow +\infty$$

$$\lim \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = \lim \frac{n^{m+1} - (n-1)^{m+1}}{n^m} = \lim \frac{n^{m+1} - (n^{m+1} + \sum_{k=1}^{m+1} (C_{m+1}^k (-1)^k n^{m+1-k})}{n^m}) = \lim \sum_{k=1}^{m+1} ((-1)^{k+1} \cdot \frac{C_{m+1}^k}{n^{k-1}}) = \lim C_{m+1}^1 + \lim \sum_{k=2}^{m+1} ((-1)^{k+1} \cdot \frac{C_{m+1}^k}{n^{k-1}}) = (m+1) + 0 = m+1$$

$$\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \frac{1}{m+1} \Rightarrow \lim \frac{x_n}{y_n} = \frac{1}{m+1}$$

32 Теорема Штольца (для неопределённости $\frac{0}{0}$)

Теорема. Штольца № 2

$$0 < y_n < y_{n-1}$$
 и $\lim x_n = \lim y_n = 0$ Тогда если $\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \overline{\mathbb{R}}$, то $\lim \frac{x_n}{y_n} = l$

Доказательство. Случай l=0:

Пусть

$$\varepsilon_n := \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to 0$$

Зафиксируем $\varepsilon > 0$ и найдём m, т.ч. $|\varepsilon_n| < \varepsilon$ при $n \ge m$.

$$x_n - x_m = \sum_{k=m+1}^n (x_k - x_{k-1}) = \sum_{k=m+1}^n \varepsilon_k (y_k - y_{k-1}) \Rightarrow |x_n - x_m| \le$$

$$\leq \sum_{k=m+1}^{n} -|\varepsilon_k|(y_k - y_{k-1}) < \varepsilon \sum_{k=m+1}^{n} (y_k - y_{k-1}) = \varepsilon (y_m - y_n)$$

$$(x_n - x_m) < \varepsilon (y_m - y_n)$$

Устремим $n \ \mathbf{k} + \infty \Rightarrow |x_n - x_m| \to |-x_m| = x_m, \quad \varepsilon(y_m - y_n) \to \varepsilon y_m \Rightarrow$

$$\Rightarrow$$
 по пред. переходу в нер., при $m \ge$ нек. $N - |x_m| < \varepsilon y_m \Rightarrow \left| \frac{x_m}{y_m} \right| < \varepsilon \Rightarrow \lim \frac{x_m}{y_m} = 0$

Случай $l \in \overline{\mathbb{R}}$: Так же, как в теореме Штольца № 1

$$\widetilde{x_n} := x_n - l \cdot y_n, \widetilde{x_n} - \widetilde{x_{n-1}} = x_n - x_{n-1} - l \cdot (y_n - y_{n-1})$$

$$\underbrace{\widetilde{x_n} - \widetilde{x_{n-1}}}_{y_n - y_{n-1}} = \underbrace{x_n - x_{n-1}}_{y_n - y_{n-1}} - l \to 0 \xrightarrow{l=0} \underbrace{\widetilde{x_n}}_{y_n} \to 0 \Rightarrow \underbrace{\widetilde{x_n}}_{y_n} = \underbrace{x_n - l \cdot y_n}_{y_n} = \underbrace{x_n - l \cdot y_n}_{y_n} = \underbrace{x_n - l \cdot y_n}_{y_n} \to l \to 0 \Rightarrow \underbrace{x_n - l \cdot y_n}_{y_n} \to l$$

Случай $l=+\infty$:

$$\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\to +\infty \Rightarrow \frac{x_{n-1}-x_n}{y_{n-1}-y_n}=\frac{x_n-x_{n-1}}{y_n-y_{n-1}}>1 \ \text{начиная c некоторого номера}\Rightarrow$$

$$\Rightarrow x_{n-1}-x_n>y_{n-1}-y_n>0 \Rightarrow x_n$$
 строго убывает $\Rightarrow \lim \frac{y_n-y_{n-1}}{x_n-x_{n-1}}=0 \xrightarrow{l=0} \lim \frac{y_n}{x_n}=0 \Rightarrow$ $\Rightarrow \frac{x_n}{y_n}=+\infty$

Случай $l=-\infty$: Так же, как в теореме Штольца № 1

Пусть $\widetilde{x_n} := -x_n$.

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to -\infty \Rightarrow \frac{\widetilde{x_n} - \widetilde{x_{n-1}}}{y_n - y_{n-1}} = -\frac{x_n - x_{n-1}}{y_n - y_n - 1} \to +\infty \Rightarrow -\frac{x_n}{y_n} = \frac{\widetilde{x_n}}{y_n} \to +\infty \Rightarrow \frac{x_n}{y_n} \to -\infty$$

33 Подпоследовательности. Теорема о стягивающихся отрезках

Определение. Последовательность (x_n) , $n_1 < n_2 < n_3 < \dots$ Тогда (x_{n_k}) - подпоследовательность.

Замечание. $n_k \ge k$ (по индукции)

Свойства:

- 1. Если последовательность имеет предел, то подпоследовательность имеет тот же предел.
- 2. Пусть две подпоследовательности в объединении дают исходную последовательность. Если подпоследовательности имеют одинаковый предел, то исходная последовательность имеет тот же предел.

Теорема. О стягивающихся отрезках.

Пусть
$$[a_1;b_1]\supset [a_2;b_2]\supset [a_3;b_3]\supset \dots$$
 и $\lim(b_n-a_n)=0$

Тогда существует единственная точка c, принадлежащая всем отрезкам и $\lim a_n = \lim b_n = c$.

T.e.
$$\bigcap_{n=1}^{+\infty} [a_n; b_n] = c$$

Доказательство. По теореме о вложенных отрезках $\bigcap_{n=1}^{+\infty} [a_n; b_n] \neq \varnothing$.

Пусть
$$c,d \in \bigcap_{n=1}^{+\infty} [a_n;b_n] \Rightarrow c,d \in [a_n;b_n] \forall n;$$
 НУО, $d \ge c$

$$0 \le d - c \le b_n - a_n \to 0 \Rightarrow c = d, \text{ иначе } \exists n:b_n - a_n < \varepsilon = d - c$$

$$0 \le c - a_n \le b_n - a_n \to 0 \xrightarrow{\text{2 MMJ.}} c - a_n \to 0 \Rightarrow \lim a_n = c$$

$$0 \le b_n - c \le b_n - a_n \to 0 \xrightarrow{\text{2 MMJ.}} b_n - c \to 0 \Rightarrow \lim b_n = c$$

34 Теорема Больцано-Вейерштрасса в ℝ

Теорема. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. x_n ограничено $\Rightarrow x_n \in [a;b]$

В каком-то из отрезков $[a; \frac{a+b}{2}]$ и $[\frac{a+b}{2}; b]$ содержится бесконечное число членов послед. Назовём этот отрезок $[a_1; b_1]$.

В каком-то из отрезков $[a_1; \frac{a_1+b_1}{2}]$ и $[\frac{a_1+b_1}{2}; b_1]$ содержится бесконечное число членов послед. Назовём этот отрезок $[a_2; b_2]$.

В каком-то из отрезков $[a_2; \frac{a_2+b_2}{2}]$ и $[\frac{a_2+b_2}{2}; b_2]$ содержится бесконечное число членов послед. Назовём этот отрезок $[a_3; b_3]$.

$$[a;b] \supset [a_1;b_1] \supset [a_2;b_2] \supset [a_3;b_3] \supset \dots$$

 $b_n - a_n = \frac{b-a}{2^n} \to 0$

Тогда по теореме о стягивающихся отрезках $\lim a_n = \lim b_n = c$

Выберем подпоследовательность. Берём $[a_1;b_1]$, в нём есть какой-то член последовательности, назовём его x_{n_1} .

В $[a_2;b_2]$ содержится бесконечное число членов последовательности \Rightarrow есть член последовательности с номером, большим n_1 . Обозначим его x_{n_2} , тогда $n_2 > n_1$.

• • •

 $x_{n_k} \in [a_k; b_k], n_1 < n_2 < n_3 < ...,$ значит построили подпоследовательность.

$$a_k \to c, \ b_k \to c \quad a_k \le x_{n_k} \le b_k \xrightarrow{2 \text{ MMJ.}} \lim x_{n_k} = c$$

35 Аналог теоремы Больцано—Вейерштрасса для неограниченной последовательности. Частичные пределы. Теорема о характеристике частичных пределов.

Теорема.

- 1. Неограниченная монотонная последовательность стремится $\kappa + \infty$ или $\kappa \infty$.
- 2. Из любой неограниченной последовательности можно выделить подпоследовательность, стремящуюся к $+\infty$ или к $-\infty$.

Доказательство. .

- 1. Пусть (x_n) возрастает. (x_n) неограничена \Rightarrow никакое u не является верхней границей \Rightarrow $\exists m: x_m x_m > u \Rightarrow u < x_m \leq x_{m+1} \leq x_{m+2} \leq \cdots \Rightarrow x_n > u$, начиная с некоторого номера $\Rightarrow \lim x_n = +\infty$
- 2. Пусть (x_n) неограничена сверху.

```
1 не является верхней границей \Rightarrow \exists x_{n_1} > 1; \max\{2, x_1, x_2, \dots, x_{n_1}\} не является верхней границей \Rightarrow \exists x_{n_2} > \max\{\dots\} \Rightarrow x_{n_2} > 2, n_2 > n_1; \max\{3, x_1, x_2, \dots, x_{n_2}\} не является верхней границей \Rightarrow \exists x_{n_3} > \max\{\dots\} \Rightarrow x_{n_3} > 3, n_3 > n_2; и т.д.
```

Итого, $x_{n_k} > k$ и $n_1 < n_2 < \cdots \Rightarrow (x_{n_k})$ – подпоследовательность (x_n) и $\lim x_{n_k} = +\infty$ по предельному переходу в неравенстве.

Определение. a — частичный предел последовательности (x_n) , если найдётся подпоследовательность $x_{n_k} \to a$.

Теорема. a — частичный предел последовательности \Leftrightarrow в любой окрестности точки a най-дётся бесконечное число членов последовательности.

Доказательство.

"⇒":

Если $a = \lim x_{n_k}$ и U_a – окрестность точки a, то все x_{n_k} кроме конечного числа лежат в $U_a \Rightarrow$ в U_a лежит бесконечное число членов последовательности (x_n) .

Будем строить подпоследовательность, имеющую предел a.

В $B_1(a)$ найдётся бесконечное число членов последовательности, возьмём какой-то и назовём его x_{n_1} .

В $B_{1/2}(a)$ найдётся бесконечное число членов последовательности, значит найдётся член (x_n) с индексом, большим n_1 , назовём его x_{n_2} .

В $B_{1/3}(a)$ найдётся бесконечное число членов последовательности, значит найдётся член (x_n) с индексом, большим n_2 , назовём его x_{n_3} .

. . .

$$n_1 < n_2 < n_3 < \dots$$

 $x_{n_k} \in B_{1/k}(a) \Rightarrow \rho(x_{n_k}, a) < \frac{1}{k} \Rightarrow \rho(x_{n_k}, a) \to 0 \Rightarrow \lim x_{n_k} = a$

36 Фундаментальные последовательности. Критерий Коши.

Определение. Фундаментальная последовательность (сходящаяся в себе, последовательность Коши)

Пусть (X, ρ) – метрическое пространство. $x_n \in X$. x_n – фундаментальная последовательность, если $\forall \varepsilon > 0 \ \exists N : \forall n, m \geq N \ \rho(x_n, x_m) < \varepsilon$

Свойства:

1. Сходящаяся последовательность фундаментальна.

Доказательство:

Пусть
$$\lim x_n := a$$
. Зафиксируем $\varepsilon > 0$. Тогда $\exists N : \forall n \geq N \ \rho(x_n, a) < \frac{1}{2}\varepsilon$ $\forall m \geq N \ \rho(x_m, a) < \frac{1}{2}\varepsilon$ $\Rightarrow \rho(x_n, x_m) \leq \rho(x_n, a) + \rho(x_m, a) < \varepsilon$

2. Фундаментальная последовательность ограничена

Доказательство:

Берём
$$\varepsilon = 1$$
. Тогда $\exists N : \forall n, m \geq N \ \rho(x_n, x_m) < 1 \Rightarrow \exists n \geq N \ \rho(x_n, x_N) < 1 \Leftrightarrow x_n \in B_1(x_N)$
 $R := \max\{\rho(x_1, x_N), \rho(x_2, x_N), \dots, \rho(x_{N-1}, x_N)\} \Rightarrow \forall n \ x_n \in B_R(x_N)$

3. Если у фундаментальной последовательности есть сходящаяся подпоследовательность, то фундаментальная последовательность имеет тот же предел.

Доказательство:

Пусть
$$\lim x_{n_k} = a$$
. Зафиксируем $\varepsilon > 0$. $\exists K : \forall k \geq K \quad \rho(x_k, a) < \frac{1}{2}\varepsilon$ $\exists N : \forall n, m \geq N \quad \rho(x_n, x_m) < \frac{1}{2}\varepsilon$ Возьмём $N \geq 0$ и подберём такое k , что $k \geq N$ и $n_k \geq N$ (например, $k \geq \max N, K$ подходит) Тогда $\rho(x_n, x_{n_k}) < \frac{1}{2}\varepsilon$ (т.к. $n_k \geq N$) И тогда $\rho(x_{n_k}, a) < \frac{1}{2}\varepsilon$ (т.к. $k \geq K$) $\Rightarrow \rho(x_n, a) \leq \rho(x_n, x_{n_k}) + \rho(x_{n_k}, a) < \varepsilon \Rightarrow \lim x_n = a$

Теорема. Критерий Коши

Числовая последовательность имеет предел \Leftrightarrow она фундаментальна.

Доказательство.

```
"\Longrightarrow":
По свойству 1.
"\Leftarrow":
фундаментальность \xrightarrow{\text{св-во 2}} ограниченность \xrightarrow{\text{Больцано-Вейерштрасса}} \Longrightarrow сущ. сходящаяся подпосл. \Longrightarrow существует конечный предел.
```

37 Теорема Больцано–Вейерштрасса в \mathbb{R}^d . Полнота \mathbb{R}^d

Определение. Полнота метрического простраства

Пусть (X, ρ) — метрическое пространство. X - полное, если любая фундаментальная последовательность в нём имеет предел.

Теорема. \mathbb{R}^d - полное пространство.

Доказательство.

Возьмём фундаментальную последовательность (x_n) . $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)})$

$$\forall \varepsilon > 0 \; \exists N : \forall n, m \geq N \; \rho(x_n, x_m) < \varepsilon \Rightarrow$$

$$\Rightarrow \left| x_n^{(k)} - x_m^{(k)} \right| \leq \sqrt{(x_n^{(1)} - x_m^{(1)})^2 + (x_n^{(2)} - x_m^{(2)})^2 + \dots + (x_n^{(d)} - x_m^{(d)})^2} < \varepsilon \Rightarrow$$
 числовая послед. $x_n^{(k)}$ фундаментальна \Rightarrow у неё есть конечный предел
$$\lim x_n^{(k)} = a_k \Rightarrow \lim x_n = a, \quad a = (a_1, a_2, \dots, a_d)$$

Т.к. в \mathbb{R}^d покоординатная и сходимость по метрике – одно и то же.

Теорема. Больцано-Вейерштрасса в \mathbb{R}^d .

Доказательство. Пусть векторная последовательность $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)})$ ограничена. Это равносильно тому, что все её координатные последовательности ограничены.

Выделим из первой координатной последовательности сходящуюся подпоследовательность $(x_{n_{1,k}}^{(1)})$. Тогда получим подпоследовательность $(x_{n_{1,k}})$, первая координатная последовательность которой сходится, а остальные ограничены.

Тогда в ней можно выделить такую подпоследовательность $(x_{n_{2,k}})$ так, чтобы вторая координатная последовательность сходилась.

Повторим так ещё d-2 раз и получим то, что в векторной подпоследовательности (x_{n_k}) , где $n_k=n_{d,k}$, любая координатная последовательность сходится $\Rightarrow (x_{n_k})$ тоже сходится, т.к. в \mathbb{R}^d покоординатная и сходимость по метрике – одно и то же.

38 Верхний и нижний пределы. Связь между частичными пределами и верхним и нижним пределами.

Определение. Нижний и верхний пределы

 x_n - числовая последовательность.

 $\underline{\lim} x_n := \liminf x_n := \liminf_{k \ge n} x_k$ – нижний предел.

 $\overline{\lim} x_n := \limsup x_n := \limsup_{k > n} x_k$ — верхний предел.

$$y_n := \inf_{k \ge n} x_k = \inf\{x_n, x_{n+1}, x_{n+2}, \dots\}$$
 $y_n \le y_{n+1}$
 $z_n := \sup_{k \ge n} x_k = \sup\{x_n, x_{n+1}, x_{n+2}, \dots\}$ $z_n \ge z_{n+1}$

Теорема. $\underline{\lim} \ u \ \overline{\lim} \ cyществуют \ e \ \overline{\mathbb{R}} \ u \ \underline{\lim} \le \overline{\lim}$

Доказательство.

Про $\underline{\lim}: y_n \leq y_{n+1} \Rightarrow (y_n)$ – возрастающая последовательность \Rightarrow у неё есть предел в $\overline{\mathbb{R}}$.

Про $\overline{\lim}$: $z_n \geq z_{n+1} \Rightarrow (z_n)$ – убывающая последовательность \Rightarrow у неё есть предел в $\overline{\mathbb{R}}$.

Про неравенство $\underline{\lim} \leq \overline{\lim}$: $y_n \leq z_n, y_n \to \underline{\lim}$, $z_n \to \overline{\lim} \Rightarrow$ по предельному переходу в неравенстве $\underline{\lim} \leq \overline{\lim}$.

Теорема.

- 1. $\overline{\lim}$ наибольший частичный предел
- 2.
 $\underline{\lim}$ наименьший частичный предел
- 3. $\exists \lim \in \overline{\mathbb{R}} \Leftrightarrow \overline{\lim} = \lim$ и в этом случае $\lim = \overline{\lim} = \lim$

Доказательство.

1. $a := \overline{\lim} x_n$

Рассмотрим случай $a \in \mathbb{R}$

Докажем, что a – частичный предел.

$$a = \lim z_n, z_n = \sup_{k \ge n} x_k, z_n \searrow a$$

Будем строить некоторую подпоследовательность (x_{n_k}) .

Найдётся $n_k \ge n_{k-1}$: $x_{n_k} > a - \frac{1}{k}$. Пусть не нашлось $\Rightarrow x_n \le a - \frac{1}{k} \forall n \ge n_{k-1} \Rightarrow \sup\{x_{n_{k-1}}, x_{n_{k-1}+1}, \dots\} \le a - \frac{1}{k} \Rightarrow a \le z_{n_{k-1}} \le a - \frac{1}{k}$. Противоречие

$$a - \frac{1}{k} \to a, \ z_{n_k} \to a, \ a - \frac{1}{k} < x_{n_k} \le z_{n_k} \xrightarrow{2 \text{ muj.}} x_{n_k} \to a$$

Докажем, что a – наибольший частичный предел.

Пусть b - частичный предел $\Rightarrow b = \lim x_{n_k}$. Но $x_{n_k} \to b, z_{n_k} \to a \Rightarrow$ по предельному переходу b < a.

Рассмотрим **случай** $a = -\infty$.

Тогда $z_n \to -\infty$, но $z_n = \sup\{x_n, x_{n+1}, \dots\} \ge x_n \Rightarrow x_n \to -\infty$.

Рассмотрим **случай** $a = +\infty$.

Тогда $z_n = +\infty \Rightarrow \sup x_1, x_2, \ldots = +\infty \Rightarrow x_n$ не ограничена сверху \Rightarrow в ней найдётся подпоследовательность, стремящаяся $\kappa +\infty$.

- 2. Доказывается аналогично
- 3. "⇒":

Если $a = \lim x_n$, то все подпоследовательности стремятся к $a \Rightarrow$ все частичные пределы равны $a \Rightarrow \overline{\lim} x_n = \underline{\lim} x_n = \lim x_n = a$.

$$y_n \to a, \ z_n \to a, \ y_n \le x_n \le z_n \xrightarrow{2 \text{ mull.}} x_n \to a \Rightarrow \lim x_n = \overline{\lim} \ x_n = \underline{\lim} \ x_n = a$$

Замечание. Арифметики для верхних и нижних пределов нет.

Пример.

$$x_n = (-1)^n, \quad y_n = (-1)^{n+1} \Rightarrow \underline{\lim} x_n = \underline{\lim} y_n = -1$$
$$x_n + y_n = 0 \Rightarrow \underline{\lim} (x_n + y_n) = \underline{\lim} (x_n + y_n) = 0$$
$$\underline{\lim} x_n + \underline{\lim} y_n = -2 < 0 = \underline{\lim} (x_n + y_n)$$

39 Характеристика верхних и нижних пределов с помощью N и ε . Сохранение неравенств.

Теорема.

1.
$$a = \underline{\lim} x_n \in \mathbb{R} \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ x_n > a - \varepsilon \\ \forall \varepsilon > 0 \ \forall N \ \exists n \ge N : x_n < a + \varepsilon \end{cases}$$

2.
$$b = \overline{\lim} x_n \in \mathbb{R} \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ x_n < b + \varepsilon \\ \forall \varepsilon > 0 \ \forall N \ \exists n \ge N : x_n > b - \varepsilon \end{cases}$$

Доказательство.

2. Докажем $\widehat{(1)} \Leftrightarrow \forall \varepsilon > 0 \ \exists N : z_N < b + \varepsilon$

$$\forall \varepsilon > 0 \; \exists N : \forall n \ge N \; x_n < b + \varepsilon \Rightarrow \forall \varepsilon > 0 \; \exists N : \forall n \ge N \; x_n < b + \frac{\varepsilon}{2} \Rightarrow$$
$$\Rightarrow z_N = \sup\{x_N, x_{N+1}, \dots\} \le b + \frac{\varepsilon}{2} < b + \varepsilon \Rightarrow \forall \varepsilon > 0 \; \exists N : z_N < b + \varepsilon$$

Зафиксируем $\varepsilon > 0 \Rightarrow \exists N : z_N < b + \varepsilon \Leftrightarrow \sup\{x_N, x_{N+1}, \dots\} < b + \varepsilon \Rightarrow x_n < b + \varepsilon \forall n \geq N$

Докажем $(2) \Leftrightarrow \forall \varepsilon > 0 \ \forall N \ z_N > b - \varepsilon$ " \Longrightarrow ".

 $\forall \varepsilon > 0 \ \forall N \ \exists n \geq N : x_n > b - \varepsilon \ \text{при этом} \ z_N = \sup\{x_N, x_{N+1}, x_{N+2}, \dots\} \Rightarrow \forall \varepsilon > 0 \ \forall N \ z_N > b - \varepsilon$ "\equiv ":

Зафиксируем $\varepsilon > 0$ и $N \Rightarrow z_N > b - \varepsilon \Leftrightarrow \sup\{x_N, x_{N+1}, \dots\} > b - \varepsilon \Rightarrow \exists n \geq N : x_n > b - \varepsilon,$ иначе $\forall n \geq N : x_n \leq b - \varepsilon$ и тогда $\sup\{x_N, x_{N+1}, \dots\} \leq b - \varepsilon \Leftrightarrow z_N \leq b - \varepsilon$

Это и есть определение предела $\Rightarrow b = \overline{\lim} x_n$

В обратную сторону, первая строка следует из определения предела, вторая строка следует из того, что $(z_n) \searrow$. Более того, $(z_n) \searrow$, $\lim z_n = b \Rightarrow z_n \geq b$

Теорема.

Если $x_n \leq y_n$, то $\varliminf x_n \leq \varliminf y_n$ и $\varlimsup x_n \leq \varlimsup y_n$

Доказательство.

 $x_n \leq y_n \Rightarrow \inf\{x_n, x_{n+1}, \ldots\} \leq \inf\{y_n, y_{n+1}, \ldots\} \Rightarrow$ по пред. переходу $\underline{\lim} x_n \leq \underline{\lim} y_n$ Аналогично для $\overline{\lim} x_n \leq \overline{\lim} y_n$.

40 Сходимость рядов. Необходимое условие сходимости рядов. Примеры.

Определение. Ряд

$$x_n \in \mathbb{R}, \quad \sum_{n=1}^{+\infty} x_n$$
 – ряд.

Определение. Частичная сумма ряда

$$S_n := \sum_{k=1}^n x_k$$

Определение. Сумма ряда

Сумма ряда – $\lim S_n$, если он существует.

Определение. Сходимость ряда

Ряд сходится, если $\exists \lim S_n \in \mathbb{R}$

В противном случае ряд расходится.

Теорема. Необходимое условие сходимости

Если $\sum_{n=1}^{+\infty} x_n$ сходится, то $\lim x_n = 0$.

Доказательство. Если ряд сходится, то $S:=\lim S_n \in \mathbb{R}$. Тогда $x_n=S_n-S_{n-1}\Rightarrow \lim x_n=\lim S_n-\lim S_{n-1}=S-S=0$

Примеры:

1. Геометрическая прогрессия $1 + q + q^2 + \dots \sum_{n=0}^{+\infty} q^n$

При
$$|q| < 1$$
 $S_n = 1 + q + q^2 + \dots + q^{n-1} = \frac{1-q^n}{1-q} \to \frac{1}{1-q}$

При |q| > 1 ряд расходящийся, т.к. не выполнено необходимое условие.

 $2. 1 - 1 + 1 - 1 + 1 - 1 + \dots$

 $S_{2n} = 0$, $S_{2n+1} = 1 \Rightarrow$ предела нет.

3. Гармонический ряд $1 + \frac{1}{2} + \frac{1}{3} + \dots$ $\sum_{n=1}^{+\infty} \frac{1}{n}$

 $H_n:=\sum_{k=1}nrac{1}{k}$ – гармонические числа. H_n монотонно возрастает.

$$H_{2^{n}} = 1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{>2 \cdot \frac{1}{4} = \frac{1}{2}} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{>4 \cdot \frac{1}{8} = \frac{1}{2}} + \dots + \underbrace{\left(\frac{1}{2^{n-1} + 1} + \frac{1}{2^{n-1} + 2} + \dots + \frac{1}{2^{n}}\right)}_{>2^{n-1} \cdot \frac{1}{2^{n}} = \frac{1}{2}} > 0$$

 $>1+\underbrace{rac{1}{2}+rac{1}{2}+\ldots+rac{1}{2}}_{n ext{ шт.}}=1+rac{n}{2} \Rightarrow ext{ частичные суммы сколь угодно большие } \Rightarrow \lim H_n=+\infty$

Гармонический ряд – расходящийся ряд, члены которого стремятся к 0.

4.

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots \qquad \sum_{n=1}^{+\infty} \frac{1}{n \cdot (n+1)}$$
$$\frac{1}{k \cdot (k+1)} = \frac{1}{k} - \frac{1}{k+1} \Rightarrow S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = 1 - \frac{1}{n+1} \to 1$$

41 Простейшие свойства сходящихся рядов.

1. Сумма ряда единственна

Доказательство. Утверждение про единственность предела частичных сумм

2. Расстановка скобок не меняет суммы ряда (если она была)

Доказательство.
$$x_1 + (x_2 + x_3 + x_4) + (x_5 + x_6) + (x_7 + x_8 + x_9)...$$
 S_1
 S_4
 S_6
 S_9

T.e. из последовательности частичных сумм просто выбрали другую подпоследовательность, ну таким образом, если предел был, то он такой же и остался. ■

Замечание. Он расстановки скобок сумма ряда могла появиться.

Пример. Ряд $1-1+1-1+1-1+1-1+1-1+\dots$ расходится. Но при расстановке следующим образом скобок: $(1-1)+(1-1)+(1-1)+(1-1)+\dots$ получаем, что ряд имеет сумму 0.

3. Добавление/отбрасывание конечного числа членов не влияет на сходимость, но влияет на сумму.

Доказательство. Рассмотрим отбрасывание.

Ряд $x_1+x_2+x_3+\ldots$, частичная сумма которого S_n , переделали в $x_{k+1}+x_{k+2}+x_{k+3}+\ldots$, частичная сумма которого $\widetilde{S}_n:=x_{k+1}+x_{k+2}+\cdots+x_{k+n}=S_{k+n}-S_k$. Т.к. k фиксировано отсюда видно, что если S_n (не) имеет предел, то и \widetilde{S}_n (не) имеет предел, и наоборот.

Добавление - просто обратная операция.

- 4. Если $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся, то $\sum_{n=1}^{+\infty} (a_n \pm b_n)$ сходится и $\sum_{n=1}^{+\infty} (a_n \pm b_n) = \sum_{n=1}^{+\infty} a_n \pm \sum_{n=1}^{+\infty} b_n$
- 5. Если $\sum_{n=1}^{+\infty} a_n$ сходится, то $\sum_{n=1}^{+\infty} ca_n$ сходится и $\sum_{n=1}^{+\infty} ca_n = c \cdot \sum_{n=1}^{+\infty} a_n$