Left neighbour	Your Name	Your Entry No.	Right neighbour

COL215 Digital Logic and System Design Quiz 1 (Set A) 11.08.2017

Q 1. (a) Write a Boolean expression in SoP form equivalent to P XOR Q. (b) From this, derive an equivalent PoS expression using Boolean algebraic transformations. (c) Give a NOR-NOR implementation of P XOR Q.

Solution: Q R (a) SoP form: $R = P \bullet Q' + P' \bullet Q$ $[\frac{1}{2}+1+\frac{1}{2} \text{ marks}]$ 0 0 (b) Using distributive property, $R = (P \bullet Q' + P') \bullet (P \bullet Q' + Q)$ 1 1 Using distributive property again, 1 0 $R = (P+P') \bullet (Q'+P') \bullet (P+Q) \bullet (Q'+Q) = 1 \bullet (Q'+P') \bullet (P+Q) \bullet 1$ R = P XOR Q0 1 $= (P'+Q') \bullet (P+Q)$ => This is PoS form

(c) NOR-NOR implementation follows straight from the PoS form and is shown below.

Q 2. Design a synchronous counter that counts down from 13 to 0 in a cyclic fashion. Show the waveforms for all the bits.

Solution:

For a down counter,
$$T_0 = 1$$
; $T_1 = Q_0$ '; $T_2 = Q_0$ ' $\bullet Q_1$ '; $T_3 = Q_0$ ' $\bullet Q_1$ ' $\bullet Q_2$ '
But when the count reaches 0, then Q_0 , Q_2 and Q_3 should toggle, Q_1 should not.
=> $T_0 = 1$; $T_1 = Q_0$ ' $\bullet E$ '; $T_2 = Q_0$ ' $\bullet Q_1$ ' + E; $T_3 = Q_0$ ' $\bullet Q_1$ ' $\bullet Q_2$ ' + E, where $E = Q_0$ ' $\bullet Q_1$ ' $\bullet Q_2$ ' This simplifies to $T_0 = 1$; $T_1 = Q_0$ ' $\bullet E$ '; $T_2 = Q_0$ ' $\bullet Q_1$ '; $T_3 = Q_0$ ' $\bullet Q_1$ ' $\bullet Q_2$ ' [2+1 marks]

Left neighbour	Your Name	Your Entry No.	Right neighbour

COL215 Digital Logic and System Design Quiz 1 (Set B) 11.08.2017

Q 1. (a) Write a Boolean expression in SoP form equivalent to P XNOR Q. (b) From this, derive an equivalent PoS expression using Boolean algebraic transformations. (c) Give a NOR-NOR implementation of P XNOR Q. [Note: XNOR is complement of XOR]

Solution:

- Q (a) SoP form: $R = P' \bullet Q' + P \bullet Q$ $[\frac{1}{2}+1+\frac{1}{2} \text{ marks}]$ (b) Using distributive property, $R = (P' \bullet Q' + P) \bullet (P' \bullet Q' + Q)$ 1 Using distributive property again, 0 0 R = P XNOR Q $R = (P'+P) \bullet (Q'+P) \bullet (P'+Q) \bullet (Q'+Q) = 1 \bullet (Q'+P) \bullet (P'+Q) \bullet 1$ 1 1 $= (P+Q') \bullet (P'+Q)$ => This is PoS form
- (c) NOR-NOR implementation follows straight from the PoS form and is shown below.

Q 2. Design a synchronous counter that counts down from 11 to 0 in a cyclic fashion. Show the waveforms for all the bits.

Solution:

For a down counter, $T_0 = 1$; $T_1 = Q_0$; $T_2 = Q_0 \cdot \bullet Q_1$; $T_3 = Q_0 \cdot \bullet Q_1 \cdot \bullet Q_2$ But when the count reaches 0, then Q₀, Q₁ and Q₃ should toggle, Q₂ should not. $=> T_0 = 1; T_1 = Q_0' + E; T_2 = Q_0' \bullet Q_1' \bullet E'; T_3 = Q_0' \bullet Q_1' \bullet Q_2' + E, \text{ where } E = Q_0' \bullet Q_1' \bullet Q_2' \bullet Q_3'$ This simplifies to $T_0 = 1$; $T_1 = Q_0$ '; $T_2 = Q_0 \cdot \bullet Q_1 \cdot \bullet E$ '; $T_3 = Q_0 \cdot \bullet Q_1 \cdot \bullet Q_2$ ' [2+1 marks]

