数字电路与系统

Digital Circuits and Systems

大连理工大学 电子信息与电气工程学部

电子科学与技术学院 王开宇

王开宇 副教授

微波与电磁场研究所长 电工电子实验中心常务副主任 电子科学与技术学院

QQ: 1944765955

课程性质

"数字电路与系统"是工科电类专业的专业基础课。

数字电路与系统

- •第1章 数字逻辑基础
- •第2章 逻辑门电路
- •第3章 逻辑代数基础
- •第4章 组合逻辑电路
- •第5章 触发器
- •第6章 时序逻辑电路
- •第7章 脉冲波形的产生与变换
- •第8章 数字系统设计基础
- •第9章 模数与数模转换
- •第10章 半导体存储器及可编程逻辑器件
- •第 11 章 硬件描述语言 Verilog HDL

第1章 数字逻辑基础 **Fundamentals of Digital Logic**

§ 1.1 数字电路 Digital Logic Circuits

自然界的物理量,按其变化规律可分为两类:

模拟量 Analog:数值和时间都可以连续取值 数字量 Digital:时间上离散,值域内只能取某些 特定值

Analog 模拟量

速度 气味 温度 电压值 流量

Digital 数字量

人数 模拟量的数字形式 语言和文字 编码

(1) 稳定性高,可靠性好

给定相同的输入信号(值和时间序列),一个 设计完好的数字电路的输出总是相同的。

模拟电路的输出随外界温度、电源电压、器件的老化等因素而发生变化。

数字信号对噪声不敏感,抗干扰能力强,保密性 好,信息的保存与传输更加简便可靠。

(2) 易于设计

数字电路又称为数字逻辑电路,它主要是对用 0和1表示的数字信号进行逻辑运算和处理,广泛使 用的数学工具是逻辑代数。

不需要复杂的数学知识,不像对电容器、晶体 管或其他模拟器件那样,要求对模型进行计算才能 理解和认识它们的内部特性和工作过程。

数字电路能够可靠地区分0和1两种状态就可以正常工作,电路的精度要求不高。因此,数字电路的分析与设计相对较容易。

(3) 表征数学量精度高、范围大

Analog system

模拟系统的范围和精 度受其线性区域的范围 及噪声抑制能力的限制。

Digital system

数字系统可以通过增加信息表示的位数来改善范围和精度。

(4) 可编程性

现代数字系统的设计,大多采用可编程逻辑器件。采用硬件描述语言(VHDL)在计算机上完成电路设计的编译、仿真及综合,并写入芯片,给用户研发产品带来了极大的方便和灵活性。

(5) 快速,低功耗

集成电路中单管的开关速度可以做到小于 10⁻¹¹ s。整体器件中,信号从检测输入到输出的 传输时间小于2×10⁻⁹ s。意味着器件每秒产生 5 亿个结果。

百万门以上超大规模集成芯片的功耗,可 以达到毫瓦级。

(6) 批量生产,低成本

数字电路:

信构简单 容易制造 通用性强

适合于电路集成成本低廉

台式计算机常备有"扩展插槽",以便将来使用更快的处理器或更大容量的存储器。

§ 1.2 数制 Number Systems

在计算机和数字系统中经常会遇到数制与编码。 在数字系统中经常使用二进制、八进制和十六进制, 而生活中我们多使用十进制。因此有必要了解数制 之间的转换关系。

基数: 一个数字系统中数的个数称为基数。

(radix or base)

数制系统

十进制 decimal (r =10)

二进制 binary (r =2)

八进制 octal (r =8)

十六进制 hexadecimal (r =16)

1. 十进制 Decimal

十进制包含10个数字: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 基数为10, 逢十进一。

一个十进制的数可以写成多项式的形式:

$$(194.32)_{10} = 1 \times 10^2 + 9 \times 10^1 + 4 \times 10^0 + 3 \times 10^{-1} + 2 \times 10^{-2}$$

注意:位于不同位置的数大小不同。

权:表示该位置的大小 weight

每个位置的权为基数10的幂。

$$(194.32)_{10} = 1 \times 10^{2} + 9 \times 10^{1} + 4 \times 10^{0} + 3 \times 10^{-1} + 2 \times 10^{-2}$$

一般说,任何一个基数为r的数N都可以按权展开成多项式的形式:

2. 二进制 Binary

二进制系统有2个数: 0,1。

基数为 2, 逢二进一。

0~17 列在表 1:

表 1.

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
. •	10000
17 1	10001

M

(11010.11)2 可以写成:

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$

=16 +8

+2

+0.5 +0.25

=26.75

转化成十进制数

从表 1 寻找规律:

表1.

Decimal	Binary	
0	0	
1	1	
2	10	2^{1}
3	11	2
4	100	2^2
5	101	
6	110	
7	111	~ 3
8	1000	2^3
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	2 4
16	10000	2^4
17	10001	

从表 1 得出:

$$(128)_{10} = (2^7)_{10} = (10000000)_2$$

8 位数中最小的数

$$(2^n)_{10} = (10 - 0)_2$$
 是 $(n+1)$ 位数中最小的数 $n \uparrow 0$

表1.

Decimal	Binar	y		
0	0			
1	1		2 ¹ -1	
2	10	2^{1}		
3	11		2^2-1	
4	100	2^2		
5	101			
6	110			
7	111	2	2^3-1	
8	1000	2^3		
9	1001			
10	1010			
11	1011			
12	1100			
13	1101			
14	1110			
15	1111		2 ⁴ -1	
16	10000	2^{4}		
17	10001			

$$(2^{n}-1)_{10} = \underbrace{(11...1)_{2}}_{n \text{ ones}}$$
 是 n 位数中最大的数

例:
$$(255)_{10} = (2^8 - 1)_{10} = (111111111)_{2}$$

$$(253)_{10} = (255-2)_{10} = (111111111-10)_2 = (111111101)_2$$

为什么二进制广泛应用于数字系统中?

- 二进制优点:
- 1)容易表示

在计算机和数字系统中,任何数都是由电路的某种状态来表示的。

2) 分辨性好,抗干扰能力强

м

二进制的缺点: 数字较大时,位数过多

65:

十进制表示为 2 位:65

二进制表示为7位:1000001

数字越大,这个缺点越明显。

所以有些时候经常会用到八进制或十六进制。

3. 八进制 Octal

八进制包括8个数: 0,1, 2, 3, 4, 5, 6, 7. 基数为 8.

$$(326.47)_8 = 3 \times 8^2 + 2 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1} + 7 \times 8^{-2}$$

= $192 + 16 + 6 + 0.5 + 0.12$
= $(214.62)_{10}$

转化成十进制数

表 1.

Decimal	Binary	Octal	
0	0	0	
1	1	1	
2	10	2	
3	11	3	
4	100	4	
5	101	5	
6	110	6	
7	111	7	
8	1000	10	
9	1001	11	
10	1010	12	
11	1011	13	
12	1100	14	
13	1101	15	
14	1110	16	
15	1111	17	
16	10000	20	
17	10001	21	

4.十六进制 Hexadecimal

十六进制有16个数,表示为:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 基数为 16.

$$(3CE.4B)_8 = 3 \times 16^2 + 12 \times 16^1 + 14 \times 16^0 + 4 \times 16^{-1} + 11 \times 16^{-2}$$

= $768 + 192 + 14 + 0.25 + 0.043$
= $(974.293)_{10}$

转化成十进制数

表1.

Decimal	Binary	Octal	Hexadecimal	
0	0	0	0	
1	1	1	1	
2	10	2	2	
3	11	3	3	
4	100	4	4	
5	101	5	5	
6	110	6	6	
7	111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	
11	1011	13	В	
12	1100	14	C	
13	1101	15	D	
14	1110	16	E	
_15	1111	17	F	
16	10000	20	10	
17	10001	21	11	

5. 任意进制 (γ进制)

 γ 进制包括 γ 个数: 0,1... γ -1

§ 1.3 数制间转换 Base Conversions

1.γ进制转换成十进制:

将y进制的数按权展开,就实现了y进制转换成十进制。

$$(111001.01)_2 = (1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 + 1 \times 2^{-2})_{10} = (57.25)_{10}$$

2. 十进制转换成 y 进制:

- 1) 整数部分,除以,取余,直到商为0为止,逆序;
- 2) 小数部分,乘以γ取整,顺序。

十进制转成二进制:将(39.2)10转换成二进制数

整数部分,除以 y 取余,直到商为0为止,逆序

整数:

$$(39)_{10} \rightarrow (100111)_2$$

LSB (least significant bit)

最低有效位

逆序

MSB

(maximum significant bit)

最高有效位

小数: 小数部分,乘以y取整,顺序 (39.2)₁₀

$$(0.2)_{10} \rightarrow (.0011)_2$$
 $(39.2)_{10} = (100111.0011)_2$
= $(39.1875)_{10}$

十进制转换成八进制:

将 (179.46)10 转换成 八 进制数

$$(179.46)_{10} = (263.35)_8$$

十进制转换成十六进制:

将 (178.46)10 转换成 十六进制数

$$(178.46)_{10} = (B2.7)_{16}$$

3. 二进制与八进制之间的转换

方法: 以小数点为界向两侧划分,三位一组,不够添0

$$(253.16)_8 = (010101011011 \cdot 001110)_2$$

两端的0可以略去

4. 二进制与十六进制之间的转换

16=24 一位十六进制数可以用4位二进制数表示

方法: 以小数点为界向两侧划分,四位一组,不够添0

 $(3D5E.7A8)_{16} = (11\ 1101\ 0101\ 1110.\ 0111\ 1010\ 1)_2$

§ 1.4 代码 Codes

代表信息的数码称为代码 (code)。常用在计算机和数字系统中处理、存储以及传输各种信息。

1.4.1 8421 BCD 码

BCD: binary coded decimal (二进制编码的十进制) BCD 码是有权码.

BCD码用4位二进制数表示1位十进制数。8421BCD 是应用最广泛的一种BCD码,因为其位权与二进制数位权相同。

表 1.

Decimal	Binary	Octal	Hexadecima	1 8421BCD
0	0	0	0	0000
1	1	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	A C	0001 0000
11	1011	13	В	0001 0001
12	1100	14	C	0001 0010
13	1101	15	D (0001 0011
14	1110	16	E C	0001 0100
15	1111	17	F (0001 0101
16	10000	20	10	0001 0110
17	10001	21	11 0	0001 0111

注意:

在 8421BCD 中 1010~1111 为禁用码

练习:

 $(75.68)_{10} = (0111 \quad 0101 \quad 0110 \quad 1000)_{8421BCD}$

注意: 两端的0不能省略!

 $(0111\ 0010\ 0110\ 1001.\ 1000\ 0011)_{8421BCD}$

 $=(7269.83)_{10}$

- 十进制与8421BCD 之间可以直接转换;
- ·二进制与 BCD 码不能直接转换,要先转成十进制。

м

BCD 码还包括 <u>2421BCD</u>, <u>4221BCD</u>, <u>5421BCD</u>等. 这些BCD码都是有权码。

脚标 <u>8421BCD</u> 必须写 (1001 0101 0010.0111 0110) _{8421BCD}

1.4.2 格雷码 (The Gray Code)

格雷码的最重要的特征:

任意两个相邻码之间只有一位不同

格雷码是一种无权码。

Decimal	Binary	Gray code	Decimal	Binary	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

在典型的 n 位格雷码中,0 和最大数 (2ⁿ - 1) 之间也只有一位不同,所以它是一种循环码。格雷码的这个特点使它在传输过程中引起的误差较小。

例如,二进制 7:0111

8: 1000

在7和8的边界上,二进制的四位数都发生变化,都处于模糊状态。

Gray 码 7: 0100 在二者边界上仅存在一位发

8: 1100 生变化,带来的误差不会大

于1(即7和8之差)。

§ 1.5 带符号的二进制数 Signed Binary Numbers

十进制中,用(+)表示正数,(-)表示负数。

- 二进制中,有几种方法表示正负数。
- 1. 原码,反码,补码

原码(Sign-magnitude): 二进制数

 $(13)_{10} = (1101)_2$ **1101:** 原码

反码 (1's complement):

原码全部取反(1变成0,0变成1),为该二进制数的反码。

$$1 \iff 0$$

1011 的反码为: 0100

补码 (2's complement):

反码末位加1,即为该二进制数的补码

1101 原码 0010 反码 + 1 0011 补码

由原码直接求补码:

从右侧数第一个1不动,向左依次求反。

原码 1101 反码求反为原码 补码 0011 补码求补为原码

2. 正负数表示

最左侧一位为符号位:

○ 表示正数, 1 表示负数

正数:

0 + 二进制数

符号位0+原码

正数 {原码表示法 } 都相同:符号位0+原码 补码表示法 }

+13: 0,1101

$$-13 = -(1101)_2$$

原码表示: 1,1101

反码表示: 1,0010

补码表示: 1,0011

注:原码最高位加0,补码最高位加1,不改变数值 (不包括符号位).

建立原码、补码等负数的不同表示方法,是为了计算机运算方便,快速。

用补码作减法,可以把减法变加法。这样计算机中只有二进制加法器和求补电路来进行加法和减法运算。

$$A-B \implies A+(-B)$$
 (-

(-B)是用补码形式表示的

25: 原码为 0,11001

-13: 原码为 1,01101

补码为 1,10011

3. 偏移码

偏移码的构成: 补码的符号位取反

$$-13 \Longrightarrow -(1101)_2$$

原码表示: 1,1101

反码表示: 1,0010

补码表示: 1,0011

偏移码表示: 0,0011

偏移码在数字/模拟(D/A)转换中是最容易 电路实现的一种码制。将在第9章详细介绍。

作业

1/	(1, 2, 3)	1 1
1.4	(1, 4, 3)	1.1

通知和作业答案邮箱:

dut_sd@163.com dutsd2011