Tutorial 10: Graph algorithms

CSC12520 - DATA STRUCTURES AND APPLICATIONS

TUTOR: ZHENG CHENGUANG

Outlines

- Shortest-Path Algorithm
- Topological Sort

Shortest-Path Algorithm

- Single Source Shortest Paths Algorithm (SSSP)
 - Dijkstra's algorithm
 - Bellman–Ford algorithm

Dijkstra's algorithm

- Initialize the cost/distance table.
- Pick the unvisited vertex with the min cost and mark it as visited.
- Update the best cost of the adjacent vertices if needed.
- Q: What will happen if there are some negative weight edge? How to solve it?

- Initialize the cost/distance table.
- Relax edges repeatedly
 - Update the distance table by iterating the edges.
- Check for negative-weight cycles

```
BELLMAN-FORD(G, w, s)
INITIALIZE-SINGLE-SOURCE(G, s)
for i 1 to |V[G]| - 1
    do for each edge (u, v) E[G]
    if d[u] + w(u, v) < d[v]
        do RELAX(u, v, w)
for each edge (u, v) E[G]
    do if d[v] > d[u] + w(u, v)
        then return FALSE
return TRUE
```

• Why it can handle this problem and O(?)

Consider the directed graph shown in the figure below.
 Which one will be reported by Dijkstra's shortest path algorithm?

• A: SDT

• B: SBDT

C: SACDT

• D: SACET

- To implement Dijkstra's shortest path algorithm on unweighted graphs so that it runs in linear time, the data structure to be used is:
- A:Queue
- B:Stack
- C:Heap

• In a weighted graph, assume that the shortest path from a source 's' to a destination 't' is correctly calculated using a shortest path algorithm. Is the following statement true? If we increase weight of every edge by 1, the shortest path always remains same.

• A: YES

• B: NO

Topological Sort

Given a directed acyclic graph(DAG) G = (V, E), find an ordering of V, such that, for each edge (u, v) ∈ E, u precedes v in the ordering. The ordering is called a topological order.

Topological Sort

 Any ordering in which all the arrows go to the right is a valid solution (may not unique).

Both are valid!

Toposort Examples

- Taking courses
 - In order to take a course, you must take all of its prerequisites first
- In computer science,
 - Instruction scheduling
 - Determining the order of compilation tasks

Why DAG?

A directed graph with a cycle cannot be topologically sorted.

- Question: why?
- Any ordering of B, C and D causes at least an arrow going to the left.

- Choose vertices in the same order as the eventual topological sort
- Recursively find vertices without incoming edges

 $\left(\mathbf{E}\right)$

Kahn's Algorithm Details

 How to obtain in-degree information? Go through all edges in each round?

• In what situation it still can have some vertex left?

Kahn's Algorithm Details

 Which graph representation fits this algorithm better, adjacency matrix or adjacency list?

Kahn's Algorithm Details

 Which graph representation fits this algorithm better, adjacency matrix or adjacency list? Adjacency list!

	Adjacency matrix	Adjacency list
,	M[i][j] == 1?	Traverse L[i]
to v _j ?	O(1)	O(<i>d</i>)
Find all vertices adjacent	Traverse row	Traverse L[i]
to v _i .	O(<i>n</i>)	O(<i>d</i>)
How many edges are	Traverse M	Traverse L
there in a graph?	$O(n^2)$	O(n + e)

- Which of the following algorithm can be used to efficiently calculate single source shortest paths in a Directed Acyclic Graph?
- A: Dijkstra
- B: Bellman-Ford
- C: Topological Sort

Q&A