The Principals

Naren Akurati — narenakurati@ucla.edu Ung Lik Teng — unglikteng@ucla.edu Alex Tian — tianxinyuan23@gmail.com Model

Random Forest

9 features

Public test data Private test data accuracy accuracy

0.98888 0.97809 Neighborhood

Variable Name

GrLivArea

OverallQual

TotalBsmtSF

X1stFlrSF

LotArea

BsmtFinSF1

X2ndFlrSF

BsmtUnfSF

31.96126

31.47820

Mean Decrease

Accuracy

39.60349

38.67549

38.07396

36.62084

35.08231

28.62207

28.22903

Procedure

- Run full model, achieved 97.65% accuracy, but scaled down due to overfitting
- Data exploration
- Remove variables with large number of NAs:
 - Ob, Street, Alley, Utilities, RoofStyle, BsmtFinSF2, FireplaceQu, PoolQC, Fence
- Use full model to find top 9 importance features
- Omit remaining NAs in dataset (very few remain)
- Run model with top 9 features
- mtry=3 | square root of number of features used

Limitations

- Random forest against logistic, knn, and other methods
 - Random forest robust due to correlation between features
 - Non-parametric: low bias and works well with both linear and non-linear data
- Limitations of random forest
 - Tree correlation potential issue
 - High variance without regularization
 - Easily overfit
 - Need to be aware of highly skewed variables

Improvements

- Further random forest parameter tuning
 - mtry
 - ntree
 - strata
 - nodesize, maxnodes
- Omitting outliers in data
- Use of "CARET" over "randomForest" package
 - Provide grid search function to perform hyperparameter tuning
 - More robust options
- Investigate other methods such as xgboost or using a neural network