This file has been cleaned of potential threats.

If you confirm that the file is coming from a trusted source, you can send the following SHA-256 hash value to your admin for the original file.

85b49730a2bba9027720f4ec0a12aabd2249b62cc4f3244c6aeb4afbcebd3bf5

To view the reconstructed contents, please SCROLL DOWN to next page.

# CS30002: Operating Systems

Arobinda Gupta Spring 2017



#### **General Information**



- Textbook:
  - Operating System Concepts, 8<sup>th</sup> or 9<sup>th</sup> Ed, by Silberschatz, Galvin, and Gagne
  - I will use materials from other books as and when needed
    - Operating Systems: Principles and Practice by Anderson and Dahlin
    - Modern Operating Systems by Andrew Tanenbaum
- Programming assignments will be covered in the associated OS Lab course
- Course Webpage
  - http://cse.iitkgp.ac.in/~agupta/OS

### Introduction



#### What is an Operating System?



- User-centric definition
  - A program that acts as an intermediary between a user of a computer and the computer hardware
  - Defines an interface for the user to use services provided by the system
  - Provides a "view" of the system to the user
    - Converts what the hardware gives to what the user wants
    - The view can hide many details of the hardware that the user does not need to know
    - Can even give a very different view of the operating environment to the user than what is actually there



- System-centric definition
  - Efficiently manages and allocates resources to users
  - Controls the execution of user programs and operations of I/O devices
  - Provides isolation/protection between different user programs

#### **Computer System Components**



- Hardware provides basic computing resources (CPU, memory, I/O devices)
- Operating system controls and coordinates the use of the hardware among the various application programs for the various users
- 3. Applications programs define the ways in which the system resources are used to solve the computing problems of the users (compilers, databases, games, ...).
- 4. Users (people, machines, other computers).

## **Abstract View of System Components**





#### **Types of Systems**



- Batch Systems
  - Multiple jobs, but only one job in memory at one time and executed (till completion) before the next one starts
- Multiprogrammed Batch Systems
  - Multiple jobs in memory, CPU is multiplexed between them
  - CPU-bound vs I/O bound jobs
- Time-sharing Systems
  - Multiple jobs in memory and on disk, CPU is multiplexed among jobs in memory, jobs swapped between disk and memory
  - Allows interaction with users



- Personal Computers
  - Dedicated to a single user at one time
- Multiprocessing Systems
  - More than one CPU in a single machine to allocate jobs to
  - Symmetric Multiprocessing, NUMA machines ...
  - Multicore
- Other Parallel Systems, Distributed Systems, Clusters...
  - Different types of systems with multiple CPUs/Machines
- Real Time Systems
  - Systems to run jobs with time guarantees
- Many other types
  - Embedded systems, mobiles/smartphones, ....



- OS design depends on the type of system it is designed for
- Challenges today
  - Very wide variety of systems
  - From small embedded systems with low memory and storage to very large systems with hundreds of thousands of machines with large distributed storage (clouds, clusters)
  - Increasing number of cores per processor and processors per machine
  - Virtualization



- Our primary focus in this course:
  - Uniprocessor, time-sharing systems running general purpose jobs from users
    - Addresses most of the core OS design issues
  - Effect of multicore/multiprocessors
    - Most processors are multicore, many machines have more than one processor, so will see what additional issues this brings
- This is not a course to teach Linux or Windows
  - But will use Linux as a case study at end to illustrate how the issues we studied are handled in a real world OS
- Will discuss some other topics at end

#### Resources Managed by OS



- Physical
  - CPU, Memory, Disk, I/O Devices like keyboard, monitor, printer
- Logical
  - Process, File, ...

#### Main Components of an OS

- Resource-Centric View
  - Process Management
  - Main Memory Management
  - File Management
  - I/O System Management
  - Secondary Storage Management
  - Security and Protection System
  - Networking (this is now integrated with most OS, but will be covered in the Networks course)
- User-centric view
  - System Calls
  - Command Interpreter (not strictly a part of an OS)

#### **Process Management**

- A process is a program in execution
- Needs certain resources to accomplish its task
  - CPU time, memory, files, I/O devices...
- OS responsibilities
  - Process creation and deletion.
  - Process suspension and resumption
  - Provide mechanisms for:
    - process synchronization
    - interprocess communication

#### **Main-Memory Management**



- OS responsibilities
  - Keep track of which parts of memory are currently being used and by whom
  - Decide which processes to load when memory space becomes available
  - Allocate and deallocate memory space as needed
  - Protect memory of one process from another

#### File Management



- OS responsibilities
  - File creation, deletion, modification
  - Directory creation, deletion, modification
  - Support of primitives for manipulating files and directories
  - Mapping files onto secondary storage.
  - File backup on stable (nonvolatile) storage media

#### I/O System Management

- The I/O system consists of:
  - A buffer-caching system
  - Device driver interface
  - Drivers for specific hardware devices

#### Secondary-Storage Management



- Most modern computer systems use disks as the principle on-line storage medium, for both programs and data.
- OS responsibilities
  - Free space management
  - Storage allocation
  - Disk scheduling





- Protection refers to a mechanism for controlling access by programs, processes, or users to both system and user resources.
- The protection mechanism must:
  - distinguish between authorized and unauthorized usage
  - specify the controls to be imposed
  - provide a means of enforcement

#### **System Calls**

- System calls provide the interface between a running program and the OS
  - Think of it as a set of functions available to the program to call (but somewhat different from normal functions, we will see why)
  - Generally available as assembly-language instructions.
  - Most common languages (e.g., C, C++) have APIs that call system calls underneath
- Passing parameters to system calls
  - Pass parameters in registers
  - Store the parameters in a table in memory, and the table address is passed as a parameter in a register
  - Push (store) the parameters onto the stack by the program, and pop off the stack by operating system

#### Command-Interpreter System



- Strictly not a part of OS, but always there
  - the shell
- Allows user to give commands to OS, interpretes the commands and executes them
  - Calls appropriate functions/system calls
  - You will write one in your lab