

1 / 8

FIG. 1A

2/8

FIG. 1B

FIG. 1C

3/8

FIG. 2A

FIG. 2B

4 / 8

COMPLIANCE RANGE: $\{C(DBP)\} \text{ to } \{C(SBP)\}$
COMPLIANCE RANGE
AT NORMALIZED PRESSURE: $\{C(80)\} \text{ to } \{C(120)\}$
MAXIMUM C: $\{C_{MAX}\}$

FIG. 3

5/8

FIG. 4B
(AXIAL SECTION)

$$\text{NET SHEAR FORCE: } F_{sh}(x) = F(x + \delta x) - F(x)$$

FIG. 4A
(LONGITUDINAL SECTION)

6/8

FIG. 4D

FIG. 4C

7/8

500 3

FIG. 5

8/8

Figure 6

6005

- (a) identifying the physiological parameter to be quantitatively monitored and estimated;
- ↓
- (b) measuring an oscillometric signal and a tonometric physiological signal, which signals are quantitatively dependent on a particular value for the physiological parameter;
- ↓
- (c) obtaining a sequence of values that are based on the oscillometric signal and the tonometric signal;
- ↓
- (d) receiving the sequence of values as input signals to a computer system; and
- ↓
- (e) processing the input signals within the computer system to convert the sequence of values to an output signal corresponding to the particular value of the physiological parameter.
- ↓
- (f) using an oscillometric signal to calibrate tonometric pressure signals in a contralateral arterial site.

In some embodiments, a calibrated radial pressure waveform $P_r(t)$ is derived from the tonometric signal $S_r(t)$ as follows:

$$P_r(t) = (1/a_r)(S_r(t) - b_r) + p$$

where $a_r = (S_r(t_D) - S_r(t_M)) / (\text{DBP-MBP})$,

$b_r = S_r(t_M) - a_r \text{ MBP}$, and

$p = gh$ are calibration factors, and where

= density of blood,

g = acceleration to gravity,

h = height difference between the oscillometric and the tonometric measurement sites, and is zero if the patient is supine,

MBP is oscillometric mean arterial blood pressure measured at time t_M , and

DBP is oscillometric diastolic blood pressure measured at time t_D .

- (g) calculating a first compliance value based on the calibrated radial pressure waveform;
- ↓
- (h) estimating end-effects of the oscillometric signal; and
- ↓
- (i) correcting the first compliance value using the estimated end effects.