Modelli Matematici per la Biologia – Esercitazione 1 a.a. 2006-2007

Dott. Simone Zuccher

13 Aprile 2007

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

1 Simulazione al calcolatore di vari modelli discreti del tipo $x_{n+1} = f(x_n)$ e $x_{n+1} = f(x_n, x_{n-1})$

1.1 Esercizio

Sia $x_0 \in (0, \pi)$ e si consideri la successione definita da

$$x_{k+1} = x_k + \sin x_k.$$

- 1. provare che $x_k \in (0, \pi)$ per ogni $k \in \mathbb{N}$;
- 2. provare che (x_k) cresce;
- 3. calcolare il limite di (x_k) per $k \to \infty$.

1.1.1 Risoluzione

- 1. Si noti che $x_{k+1} = f(x_k)$ con $f(x) = x + \sin x$. f(x) è strettamente crescente su $(0,\pi)$ in quanto $f'(x) = 1 + \cos x$ e $0 < 1 + \cos x < 2 \ \forall x \in (0,\pi)$, ovvero $f'(x) > 0 \ \forall x \in (0,\pi)$. Essendo f(0) = 0, $f(\pi) = \pi$, e la funzione strettamente crescente, allora $x_{k+1} = f(x_k) \in (0,\pi)$.
- 2. Essendo $x_{k+1} x_k = \sin x_k > 0 \ \forall x_k \in (0, \pi)$, la successione è crescente.
- 3. Per $k \to \infty$ si ha l'equazione $x = x + \sin x$, che è soddisfatta per x = 0, $x = \pi$ e $x = +\infty$. Di questi, l'unico limite possibile è $x = \pi$ in quanto la successione è crescente e si parte da $x_0 \in (0, \pi)$. Un altro modo è di osservare che f'(0) = 2 > 0 e pertanto l'origine è un punto unito instabile, mentre $f'(\pi) = 0$ e quindi è stabile.

Tutte le caratteristiche di (x_k) sopra menzionare sono verificabili graficamente utilizzando il file esempio1.m per GNU Octave di seguito riportato. Esso richiede come input N (numero di iterazioni – quindi nel caso $k \to +\infty$ si deve scegliere N opportunamente elevato) e il valore iniziale x_0 (chiamato s(1) in esempio1.m).

In figura 1 è riportata la storia temporale e il cobwebbing (procedura a "zigo-zago" ottenuta partendo da x_0 , calcolando $x_1 = f(x_0)$ tramite la f, riportando il valore x_1 sulla bisettrice del primo e terzo quadrante, quindi calcolando $x_2 = f(x_1)$ tramite la f, e così via) ottenuti per N = 15 e $x_0 = 0.1$. Si noti il raggiungimento veloce del valore asintotico $x_n = \pi$.

```
% Name:
            esempio1.m
% Author:
           Simone Zuccher
% Created: 03 Apr 2007
% Purpose: Compute x(k+1) = x(k) + \sin(x(k))
% Input:
           Number of total iterations and x(1)
           Plot of x(k) versus k and x(k+1) versus x(k)
% Output:
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value. If negative, it will be a random number
s(1)=input('Input 0<s(1)<pi (if <0 or >pi then random): ');
% Set s(1) random if out of range
if((s(1)>pi) || (s(1)<0))
  s(1)=pi*rand(1);
endif
% Display value of s(1)
disp(s(1));
% Assign x and y needed for 2nd plot
x(1)=s(1);
y(1)=0.0;
% Loop on all points
for n=1:1:m-1
 s(n+1)
         = s(n) + sin(s(n));
 disp(s(n+1));
 x(2*n)
           = s(n);
            = s(n+1);
 y(2*n)
```

```
x(2*n+1) = s(n+1);
y(2*n+1) = s(n+1);
end

% Plots s(n) versus n
gset auto
plot(s,'+-g;s(n);');

% Wait for keypressed
disp('Please press a key to continue...');
pause();

% Plot f(x), x and path
t=linspace(0,pi,500);
plot(t,t+sin(t),'-g;x+sin(x);',t,t,'-b;x;',x,y,'+-');
```


Figura 1: Storia temporale x_n e studio dei punti uniti, $N=15,\,x_0=0.1.$

1.2 Esercizio

Data la successione (x_k) definita da

$$x_0 = a,$$
 $x_{k+1} = \max\left\{\frac{1}{4}, x_k^2\right\}$

dire se esiste, al variare di $a \in \mathbb{R}$, il limite di (x_k) per $k \to \infty$.

1.2.1 Risoluzione

In questo caso $x_{k+1} = f(x_k)$ con $f(x) = \max\left\{\frac{1}{4}, x_k^2\right\}$. Questa funzione è decrescente per x < -1/2, costante e pari a 1/4 per $-1/2 \le x \le 1/2$ e crescente per x > 1/2. I punti uniti si trovano risolvendo l'equazione $x = \max\left\{\frac{1}{4}, x^2\right\}$ che ha come soluzioni x = 1/4 e x = 1. Anche $x = +\infty$ è un possibile limite della successione (x_k) per $k \to +\infty$ in quanto soddisfa l'equazione dei punti uniti. La funzione data ha derivata nulla in x = 1/4, che pertanto è stabile, e derivata pari a 2 > 0 in x = 1, che è pertanto instabile. Si verifica facilmente che il limite della successione è x = 1 se $x_0 = \pm 1$; il limite è x = 1/4 per $|x_0| < 1$, mentre il limite è $+\infty$ per $|x_0| > 1$.

esempio2.m può essere utilizzato per la soluzione grafica di questo esercizio. Esso richiede come input N (numero di iterazioni – quindi nel caso $k \to +\infty$ si deve scegliere N opportunamente elevato) e il valore iniziale x_0 (chiamato s(1) in esempio2.m).

In figura 2 sono riportati la storia temporale e il *cobwebbing*, ottenuti per N=7 e $x_0=-1$, dove si nota che la soluzione è attratta da x=1. In figura 3 sono riportati la storia temporale e il *cobwebbing*, ottenuti per N=7 e $x_0=-0.7$, dove si nota che la soluzione è attratta da x=1/2; infine, in figura 4 sono riportati la storia temporale e il *cobwebbing* ottenuti per N=7 e $x_0=-1.01$, dove si nota l'esplosione della soluzione.

```
% Name:
            esempio2.m
% Author:
            Simone Zuccher
% Created:
            03 Apr 2007
% Purpose:
            Compute x(k+1) = max(1/4,x(k)^2)
% Input:
            Number of total iterations and x(1)
% Output:
            Plot of x(k) versus k and x(k+1) versus x(k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value.
s(1)=input('Input s(1): ');
```

```
% Display value of s(1)
disp(s(1));
\% Assign x and y needed for 2nd plot
x(1)=s(1);
y(1)=0.0;
% Loop on all points
for n=1:1:m-1
 s(n+1) = max(1/4,s(n)^2);
 disp(s(n+1));
 x(2*n) = s(n);
 y(2*n)
           = s(n+1);
 x(2*n+1) = s(n+1);
 y(2*n+1) = s(n+1);
end
% Plots s(n) versus n
gset auto
plot(s,'+-g;s(n);');
% Wait for keypressed
disp('Please press a key to continue...');
pause();
% Display value of s(m)
disp(s(m));
% Plot f(x), x and path
t=linspace(-1.5,1.5,500);
plot(t,max(1/4,t.^2),'-g;max(1/4,t^2);',t,t,'-b;x;',x,y,'+-');
```


Figura 2: Storia temporale x_n e studio dei punti uniti, $N=7,\,x_0=-1.$

Figura 3: Storia temporale x_n e studio dei punti uniti, $N=7,\,x_0=-0.7.$

Figura 4: Storia temporale x_n e studio dei punti uniti, $N=7,\,x_0=-1.01.$

1.3 Esercizio

Calcolare il limite della successione definita da

$$x_0 = 1,$$
 $x_{k+1} = \int_0^{x_k} e^{-t^2} dt.$

1.3.1 Risoluzione

Si noti che $x_{k+1} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x_k)$, ovvero $f(x) = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x)$. Essendo $f'(x) = e^{-x^2} > 0 \ \forall x \in \mathbb{R}$, la funzione è sempre crescente ed essendo $x_2 < x_1$ la successione è decrescente. L'unico punto unito che soddisfa l'equazione $x = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x)$ è x = 0, che risulta il limite della successione in quanto essa è decrescente e $x_0 = 1$.

Si osservi che l'analisi di stabilità del punto x=0 porta a f'(0)=1 ($f'(x)=e^{-x^2}$), per cui la determinazione della sua natura richiede l'uso delle derivate successive secondo quanto riportato in figura 5. Essendo $f''(x)=-2xe^{-x^2}$, si ha f''(0)=0 e quindi bisogna analizzare la derivata terza che è $f'''(x)=2e^{-x^2}(2x^2-1)$. Essendo f'''(0)=-2<0, x=0 è un punto di equilibrio localmente asintoticamente stabile.

esempio 3.m può essere utilizzato per la soluzione grafica di questo esercizio. Esso richiede come input solo N (numero di iterazioni) essendo il valore iniziale $x_0 = 1$ fissato.

In figura 6 sono riportati la storia temporale e il cobwebbing, ottenuti per N = 500. Si può notare la natura dell'origine, attrattiva se pur con una velocità di convergenza molto bassa.

```
% Name:
            esempio3.m
% Author:
            Simone Zuccher
% Created: 03 Apr 2007
            Compute x(k+1) = integrate(exp(-t^2),t,0,x(k))
% Purpose:
% Input:
            Number of total iterations and x(1)
% Output:
            Plot of x(k) versus k and x(k+1) versus x(k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value.
s(1)=1.0;
% Display value of s(1)
disp(s(1));
```


Tabella 3.1 Schema riassuntivo per lo studio della stabilità di un equilibrio α quando f è dotata di derivate. Legenda:

```
l.a.s. = localmente asintoticamente stabile
s.l.a.s. = superiormente localmente asintoticamente stabile
i.l.a.s. = inferiormente localmente asintoticamente stabile
r. = repulsivo
s.r. = superiormente repulsivo
i.r. = inferiormente repulsivo
```

Figura 5: Schema per la determinazione della natura dei punti di equilibrio per mappe del tipo $x_{n+1} = f(x_n)$.

```
% Assign x and y needed for 2nd plot x(1)=s(1); y(1)=0.0;
```

```
% Loop on all points
for n=1:1:m-1
          = sqrt(pi)*erf(s(n))/2.0;
  s(n+1)
 disp(s(n+1));
 x(2*n) = s(n);
y(2*n) = s(n+1);
x(2*n+1) = s(n+1);
 y(2*n+1) = s(n+1);
end
% Plots s(n) versus n
gset auto
plot(s,'+-g;s(n);');
% Wait for keypressed
disp('Please press a key to continue...');
pause();
disp(s(m))
% Plot f(x), x and path
t=linspace(0,1.5,500);
plot(t,sqrt(pi)*erf(t)/2.0,'-g;sqrt(pi)*erf(x)/2;',t,t,'-b;x;',x,y,'+-');
```


Figura 6: Storia temporale x_n e studio dei punti uniti, N=500.

1.4 Esercizio

Si consideri l'equazione

$$x^k = \cos\frac{x}{k}.$$

- 1. provare che esiste un'unica soluzione $x_k > 0$;
- 2. provare che (x_k) rimane limitata;
- 3. calcolare il limite di (x_k) per $k \to \infty$.

1.4.1 Risoluzione

- 1. Disegnando il grafico di $y = x^k$ e $y = \cos \frac{x}{k}$, come riportato in figura 7, si osserva facilmente che le due funzioni si intersecano in un solo punto $x_k \in (0,1)$ (si osservi che, per k pari, le intersezioni sono due, di cui una sola positiva).
- 2. A seguito del punto precedente, la successione stessa (x_k) rimane limitata tra 0 e 1.
- 3. Al tendere all'infinito di k la funzione $y=\cos\frac{x}{k}$ diventa sempre più "piatta" (costante) nell'intorno di x=1 dove vale 1 in quanto l'argomento del coseno tende a zero. Siccome, per $k\to +\infty$, x=1 soddisfa l'equazione $x^k=\cos\frac{x}{k}$, il limite della successione è 1.

esempio4.m può essere utilizzato per la soluzione grafica di questo esercizio. Esso richiede come input N (numero di iterazioni) e il valore iniziale di tentativo per la funzione che calcola la radice $x_k > 0$. Si consiglia di fornire un valore $0 < x_{\text{guess}} < 1$.

```
% Name:
            esempio4.m
% Author:
            Simone Zuccher
% Created:
            04 Apr 2007
            Compute the solution of x^k = \cos(x/k)
% Purpose:
% Input:
            Number of total iterations and x0 for nonlinear solver
% Output:
            Plot x^k and cos(x/k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value for nonlinear solver.
x0=input('Input x0 (initial value for nonlinear solver): ');
```


Figura 7: $y = \cos \frac{x}{k}$ e $y = x^k$ al variare di k. Si noti come il punto di intersezione sia per 0 < x < 1, al limite è $x \to 1$ per $k \to \infty$.

```
% Create a vector needed for plots
t=linspace(-1.1,1.1,500);

% Loop on all functions
for n=1:1:m
    % set range for plot
    gset xrange[-1.1:1.1]

% set attributes for plots
    attr1=['-g;t^' int2str(n) ';'];
    attr2=['-b;cos(t/' int2str(n) ');'];

% plot of x^n and cos(x/n)
    plot(t,t.^n,attr1,t,cos(t/n),attr2);

% define the function
    fun= ["x^" int2str(n) "-cos(x/" int2str(n) ")"];

% compute zero closest to x0 and diplay it
    s(n)=fsolve(fun,x0);
```

```
disp(s(n))

% Wait for keypressed
disp('Please press a key to continue...');
pause();
end
```

1.5 Esercizio

Si consideri la successione definita da

$$x_0 = \lambda, \qquad x_{k+1} = \frac{x_k}{1 + x_k},$$

con $\lambda \geq 0$. Calcolare il limite di (x_k) per $k \to \infty$.

1.5.1 Risoluzione

Essendo $f(x) = \frac{x}{1+x}$ strettamente crescente per $x \ge 0$, essendo x = 0 il suo unico punto unito, ed essendo $x_2 < x_1$, la successione è strettamente decrescente ed ha come limite $x = 0 \ \forall x_0 \ge 0$. Alternativamente, si osservi che $\lim_{x\to 0^{\pm}} f'(x) = \lim_{x\to 0^{\pm}} 1/(x+1)^2 = 1^{\mp}$ e quindil'origine è stabile superiormente e instabile inferiormente. Una ulteriore alternativa era l'analisi classica secondo lo schema 5. Da $f'(x) = \frac{1}{(x+1)^2}$ si ottiene f'(0) = 1, da $f''(x) = -\frac{2}{(x+1)^3}$ segue f''(0) = -2 < 0, per cui il punto di quilibrio x = 0 è superiormente localmente asintoticamente stabile e inferiormente repulsivo. Qui interessa che sia stabile superiormente.

Si osservi che la successione data modellizza una legge di crescita di una popolazione con risorse limitate e tasso di natalità inversamente proporzionale alle dimensioni della popolazione, pertanto condannata all'estinzione.

esempio5.m può essere utilizzato per la soluzione grafica di questo esercizio. Esso richiede come input N (numero di iterazioni) e il valore iniziale $x_0 = \lambda$.

In figura 8 sono riportati la storia temporale e il *cobwebbing*, ottenuti per N=500 e $x_0=0.9$. Si può notare la natura dell'origine, attrattiva se pur con una velocità di convergenza molto bassa.

```
% Name:
            esempio5.m
% Author:
            Simone Zuccher
% Created:
           04 Apr 2007
% Purpose:
           Compute x(k+1) = x(k)/(1 + x(k))
% Input:
            Number of total iterations and x(1)
% Output:
            Plot of x(k) versus k and x(k+1) versus x(k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value.
s(1)=input('Input s(1) (initial value): ');
```


Figura 8: Storia temporale x_n e studio dei punti uniti, $N=500,\,x_0=0.9.$

```
if(s(1)<0)
  disp('s(1)<0: stopping...')</pre>
 return
endif
% Display value of s(1)
disp(s(1));
% Assign x and y needed for 2nd plot
x(1)=s(1);
y(1)=0.0;
% Loop on all points
for n=1:1:m-1
  s(n+1) = s(n)/(1.+s(n));
 disp(s(n+1));
 x(2*n) = s(n);
 y(2*n)
           = s(n+1);
 x(2*n+1) = s(n+1);
 y(2*n+1) = s(n+1);
end
% Plots s(n) versus n
gset auto
plot(s,'+-g;s(n);');
% Wait for keypressed
disp('Please press a key to continue...');
pause();
disp(s(m))
% Plot f(x), x and path
t=linspace(0,1,500);
plot(t,t./(1.+t),'-g;t/(1+t);',t,t,'-b;x;',x,y,'+-');
```

1.6 Esercizio

Sia $\lambda \in \mathbb{R}$. Si studi la successione definita da

$$x_0 = \lambda,$$
 $x_{k+1} = 4 \int_0^{x_k} \frac{e^{2\tau}}{(e^{2\tau} + 1)^2} d\tau.$

1.6.1 Risoluzione

Si osservi che $x_{k+1} = 4 \int_0^{x_k} \frac{e^{2\tau}}{(e^{2\tau} + 1)^2} = 1 - \frac{2}{e^{2x_k} + 1}$, pertanto $f(x) = 1 - \frac{2}{e^{2x} + 1}$. Essa è una funzione sempre crescente che ha come unico punto unito x = 0, dove la sua derivata prima $f'(x) = \frac{4e^{2x}}{(e^{2x} + 1)^2}$ vale f'(0) = 1. Pertanto è necessario l'uso delle derivate successive. Essendo $f''(x) = -\frac{8(e^x - 1)(e^x + 1)e^{2x}}{(e^{2x} + 1)^3}$ e quindi f'''(0) = 0 e $f'''(x) = \frac{16e^{2x}(e^{4x} - 4e^{2x} + 1)}{(e^{2x} + 1)^4}$ e quindi f'''(0) = -2 < 0, l'origine è un punto localmente asintoticamente stabile.

Alternativamente, si osservi che $f'(x) > 0 \ \forall x \in \mathbb{R}$ e quindi la funzione è sempre crescente. Pertanto anche la successione è monotona. Partendo da $x_0 > 0$ si ha $x_1 < x_0$ e quindi la successione è decrescente e converge a 0. Partendo da $x_0 < 0$ si ha $x_1 > x_0$ e quindi la successione è crescente e converge a 0. Partendo da $x_0 = 0$, x_n rimane tale.

esempio6.m può essere utilizzato per la soluzione grafica di questo esercizio. Esso richiede come input N (numero di iterazioni) e il valore iniziale $x_0 = \lambda$.

In figura 9 è riportato un esempio per N = 500 e $x_0 = 1.8$.

```
% Name:
            esempio6.m
% Author:
            Simone Zuccher
% Created: 04 Apr 2007
% Purpose: Compute x(k+1) = 4*integrate(4*(exp(2*t))/(1+exp(2*t))^2,t,o,x(k))
            Number of total iterations and x(1)
% Input:
% Output:
            Plot of x(k) versus k and x(k+1) versus x(k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value.
s(1)=input('Input s(1) (initial value): ');
% Display value of s(1)
disp(s(1));
% Assign x and y needed for 2nd plot
x(1)=s(1);
```


Figura 9: Storia temporale x_n e studio dei punti uniti, N=500 e $x_0=1.8$.

```
y(1)=0.0;
% Loop on all points
for n=1:1:m-1
  s(n+1) = 1. - 2./(exp(2.*s(n))+1.);
  disp(s(n+1));
 x(2*n) = s(n);

y(2*n) = s(n+1);
           = s(n+1);
  x(2*n+1) = s(n+1);
  y(2*n+1) = s(n+1);
% Plots s(n) versus n
gset auto
plot(s,'+-g;s(n);');
% Wait for keypressed
disp('Please press a key to continue...');
pause();
disp(s(m))
% Plot f(x), x and path
t=linspace(-2,2,500);
plot(t,1. - 2./(exp(2.*t)+1.), '-g;1-2/(exp(2*t)+1); ',t,t,'-b;x; ',x,y,'+-');
```

1.7 Esercizio

Sia $\lambda > 0$. Si studi la successione definita da

$$x_0 = 0,$$
 $x_1 = \lambda,$ $x_{k+1} = x_k + x_{k-1}^2.$

1.7.1 Risoluzione

Si noti che la successione è strettamente crescente essendo $x_{k+1} - x_k = x_{k-1}^2 > 0 \ \forall x_{k-1} \neq 0$ e quindi la successione diverge a $+\infty \ \forall x_1 > 0$.

esempio7.m può essere utilizzato per la soluzione grafica di questo esercizio. Esso richiede come input N (numero di iterazioni) e il valore iniziale $x_1 = \lambda > 0$.

```
% Name:
            esempio7.m
% Author:
            Simone Zuccher
% Created: 03 Apr 2007
% Purpose: Compute x(k+1) = x(k) + [x(k-1)]^2
           Number of total iterations and x(2)
% Input:
% Output:
            Plot of x(k) versus k and x(k+1) versus x(k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value.
s(1)=0.;
s(2)=input('Input s(2) (second initial value): ');
% Display value of s(1) and s(2)
disp(s(1));
disp(s(2));
% Loop on all points
for n=2:1:m-1
             = s(n) + s(n-1)^2;
  s(n+1)
  disp(s(n+1));
% Plots s(n) versus n
gset auto
plot(s,'+-g;s(n);');
disp('');
```

disp(s(m))

1.8 Esercizio

Sia $\lambda > 0$. Si studi la successione definita da

$$x_0 = \lambda, \qquad x_{k+1} = \log(1 + x_k).$$

1.8.1 Risoluzione

Si noti che $f(x) = \log(1+x)$ è strettamente crescente pertanto anche la successione (x_k) è monotona. Essendo x=0 l'unico punto unito, e $x_1 < x_0 \ \forall x_0 > 0$, la successione è decrescente e converge a zero. Alternativamente, si osservi che f'(0) = 1/(1+x), quindi $\lim_{x\to 0^{\pm}} f'(x) = \lim_{x\to 0^{\pm}} 1/(x+1) = 1^{\mp}$ e pertanto l'origine è stabile superiormente e instabile inferiormente. Ricorrendo allo schema 5, si ha f'(0) = 1, $f''(x) = -1/(1+x)^2 \Rightarrow f''(0) = -1 < 0$, ovvero l'origine è superiormente localmente asintoticamente stabile ed inferiormente repulsiva. Essendo interessati solo al caso $\lambda > 0$, l'origine risulta stabile come riportato in figura 10 per N=500 e $x_0=1.8$.

esempio8.m può essere utilizzato per la soluzione grafica di questo esercizio. Esso richiede come input N (numero di iterazioni) e il valore iniziale $x_0 = \lambda > 0$.

```
% Name:
            esempio8.m
% Author:
            Simone Zuccher
% Created: 12 Apr 2007
% Purpose: Compute x(k+1) = log(1 + x(k))
% Input:
            Number of total iterations and x(1)
% Output:
            Plot of x(k) versus k and x(k+1) versus x(k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value.
s(1)=input('Input s(1) (initial value): ');
% Set s(1) positive if negative
if(s(1)<0)
  s(1)=abs(s(1));
endif
% Display value of s(1)
```


Figura 10: Storia temporale x_n e studio dei punti uniti, N=500 e $x_0=1.8$.

```
disp(s(1));
% Assign x and y needed for 2nd plot
x(1)=s(1);
y(1)=0.0;
% Loop on all points
for n=1:1:m-1
  s(n+1) = log(1.+s(n));
 disp(s(n+1));
 x(2*n) = s(n);

y(2*n) = s(n+1);
 x(2*n+1) = s(n+1);
 y(2*n+1) = s(n+1);
end
% Plots s(n) versus n
gset auto
plot(s,'+-g;s(n);');
% Wait for keypressed
disp('Please press a key to continue...');
pause();
disp(s(m))
% Plot f(x), x and path
t=linspace(-.5,2,500);
plot(t,log(1.+t),'-g;log(1+t);',t,t,'-b;x;',x,y,'+-');
```