Convex Optimization

Daniel Mao

Contents

1	Minimizers					
	1.1	Local Minimizers and Global Minimizers	1			
	1.2	Main Results	2			
2	Dua	Duality				
	2.1	Lagrangian Dual	3			
	2.2	Weak Dual and Strong Dual	5			
	2.3	Perturbation	5			

ii CONTENTS

Chapter 1

Minimizers

1.1 Local Minimizers and Global Minimizers

Proposition 1.1.1. Let f be a proper convex function. Then any local minimizer of f is a global minimizer.

```
Proof Appoach 1.
```

Let f be a convex function.

Let x_0 be a local minimizer of f, if any.

Since x_0 is a local minimizer, $\exists \delta > 0, \forall x \in \text{ball}(x_0, \delta)$, we have $f(x) \geq f(x_0)$.

Since f is proper, $dom(f) \neq \emptyset$.

Let y be an arbitrary point in dom(f).

Case 1. $y \in \text{ball}(x_0, \delta)$.

Since $y \in \text{ball}(x_0, \delta)$, and $\forall x \in \text{ball}(x_0, \delta), f(x) \geq f(x_0)$, we get $f(y) \geq f(x_0)$.

Case 2. $y \notin \text{ball}(x_0, \delta)$.

Define $\lambda := \delta/\|x - y\|$.

Since $y \notin \text{ball}(x_0, \delta)$, ||x - y|| > 0.

Since $\delta > 0$ and ||x - y|| > 0, we get $\lambda > 0$.

Since $y \notin \text{ball}(x_0, \delta)$, $||x - y|| > \delta$.

Since $\delta < ||x - y||, \lambda < 1$.

Define a point $z := \lambda y + (1 - \lambda)x$.

Since f is convex, dom(f) is convex.

Since

Proposition 1.1.2. Any locally optimal point of a convex problem is globally optimal.

Proposition 1.1.3. A point x is optimal if and only if it is feasible and for any feasible point y,

$$\nabla f_0(x) \cdot (y - x) \ge 0.$$

I forgot where this came from... and I don't know what it's talking about...

1.2 Main Results

Theorem 1. Let f be a proper function from \mathbb{E} to \mathbb{R}^* . Then

$$\operatorname{argmin}(f) = \{ x \in \mathbb{E} : 0 \in \partial f(x) \}.$$

Proof.

$$x \in \operatorname{argmin}(f)$$

$$\iff \forall y \in \mathbb{E}, f(x) \le f(y)$$

$$\iff \forall y \in \mathbb{E}, \langle 0, y - x \rangle + f(x) \le f(y)$$

$$\iff 0 \in \partial f(x).$$

Theorem 2. Let f be a proper, convex, and lower semi-continuous function from \mathbb{R}^d to \mathbb{R} . Let x be a point in \mathbb{R}^d . Then x is a global minimizer of f if and only if x is a fixed point of the proximal operator of f. i.e. $x = \operatorname{prox}_f(x)$.

Chapter 2

Duality

2.1 Lagrangian Dual

2.1.1 Basics

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,...,m \\ & h_i(x) = 0, \quad i=1,...,p \end{array}$$

where $x \in \mathcal{D} \subseteq \mathbb{R}^n$.

Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$.

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).$$

Lagrange Dual Function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$.

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

Proposition 2.1.1. The Lagrange dual function is concave.

Proof. The Lagrange dual function is an infimum of an affine function and hence concave.

Proposition 2.1.2. If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$ where p^* denotes the optimal value of the primal problem.

Proof. Let \bar{x} be an arbitrary feasible solution. Then

$$f_0(\bar{x}) \ge L(\bar{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu).$$

2.1.2 Dual of Linear Programming

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$

The Lagrangian is

$$L(x, \lambda, \nu) = c^T x - \lambda^T x + \nu^T (Ax - b).$$

The Lagrange dual function is

$$g(\lambda, \nu) = \begin{cases} -b^T \nu, & A^T \nu - \lambda + c = 0 \\ -\infty, & \text{otherwise} \end{cases}.$$

Note 1: g is linear on an affine domain: $\{(\lambda, \nu) : A^T \nu - \lambda + c = 0\}$ and hence concave.

Note 2: The Lower Bound Property says that if $\lambda = A^T \nu + c \geq 0$, then $p^* \geq -b^T \nu$.

Lagrange Dual Problem

maximize
$$g(\lambda, \nu)$$

subject to $\lambda \ge 0$

Standard form LP and its dual:

(LP) minimize
$$c^T x$$

subject to $Ax = b, x \ge 0$

(Dual of LP) maximize
$$-b^T \nu$$

subject to $A^T \nu + c \ge 0$

2.2 Weak Dual and Strong Dual

Weak Duality: $d^* \leq p^*$. String Duality: $d^* = p^*$.

Theorem 3 (Slater). Consider an optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i = 1, ..., m$
 $Ax = b$

where $f_0, f_1, ..., f_m$ are all convex functions. Then the strong duality holds if there exists a point x^* in $ri(\mathcal{D})$ where $\mathcal{D} := dom(f_0) \cap \bigcap_{i=1}^m dom(f_i)$ such that $f_i(x^*) < 0$ for i = 1, ..., m and $Ax^* = b$.

Theorem 4 (Complementary Slackness). Consider an optimization problem and its dual:

Let x be a feasible solution to the primal and (λ, ν) be a feasible solution to the dual. Then x and (λ, ν) are both optimal if and only if

$$\lambda_i f_i(x) = 0$$

for each i = 1, ..., m. i.e.,

$$\lambda_i > 0 \implies f_i(x) = 0$$
, and $f_i(x) < 0 \implies \lambda_i = 0$

for each i = 1, ..., m.

2.3 Perturbation

Primal

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$
minimize $f_0(x)$
subject to $f_i(x) \leq u_i$ $i = 1, ..., m$
 $h_i(x) = v_i$ $i = 1, ..., p$