Алгебра Линденбаума

Теорема

Пусть $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$. Тогда (\approx) — отношение эквивалентности.

Доказательство.

Надо доказать, что для любых α , β , γ :

- 1. $\alpha \approx \alpha$ (очевидно, $\alpha \vdash \alpha$);
- 2. $\alpha \approx \beta$ влечёт $\beta \approx \alpha$ (очевидно из определения);
- 3. $\alpha \approx \beta$ и $\beta \approx \gamma$ влечёт $\alpha \approx \gamma$: из посылок следует $\alpha \vdash \beta$ и $\beta \vdash \gamma$, соединив доказательства, получим $\alpha \vdash \gamma$.

 $L/_{\approx}$ — частично-упорядоченное множество. Элементы будем обозначать [lpha].

Теорема

 $\alpha \vdash \beta$ тогда и только тогда, когда $[\alpha] \leq [\beta]$.

$$\mathcal{L}$$
 — решётка.

Покажем $[\alpha] \cdot [\beta] = [\alpha \& \beta]$. То есть, $[\alpha \& \beta]$ — наибольшая нижняя грань α и β .

- ▶ (... нижняя грань) $[\alpha \& \beta] \le [\alpha]$: заметим, что $\alpha \& \beta \vdash \alpha$.
- ▶ (наибольшая ...) Если $[\sigma] \le [\alpha]$ и $[\sigma] \le [\beta]$, то $[\sigma] \le [\alpha \& \beta]$: Рассмотрим вывод в контексте σ :

$$\begin{array}{llll} \text{(1...a)} & \alpha & \text{из } [\sigma] \leq [\alpha] \\ \text{($a+1$...b)} & \beta & \text{из } [\sigma] \leq [\beta] \\ \text{($b+1$)} & \alpha \to \beta \to \alpha \& \beta & \text{Сх. акс} \\ \text{($b+2$)} & \beta \to \alpha \& \beta & \text{M.P. a, $b+1$} \\ \text{($b+3$)} & \alpha \& \beta & \text{M.P. b, $b+2$} \\ \text{Отсюда } \sigma \vdash \alpha \& \beta. & \end{array}$$

Утверждение $[\alpha] + [\beta] = [\alpha \vee \beta]$ показывается аналогично.

\mathscr{L} — импликативная решётка с 0, согласованная с ИИВ

- (импликативная ...) Покажем $[\alpha] \to [\beta] = [\alpha \to \beta]$: в самом деле, $[\alpha] \to [\beta] =$ наиб $\{[\sigma] \mid [\alpha \& \sigma] \le [\beta]\}$. Покажем требуемое двумя включениями:
 - 1. $\alpha \& (\alpha \to \beta) \vdash \beta$ (карринг + транзитивность импликации)
 - 2. Если α & $\sigma \vdash \beta$, то $\sigma \vdash \alpha \to \beta$ (карринг + теорема о дедукции)
- ► (... с нулём ...) Покажем, что $0 = [A \& \neg A]$: в самом деле, $A \& \neg A \vdash \sigma$ при любом σ .
- (... согласованная с ИИВ)
 - 1. Из доказательства видно, что $[\alpha \& \beta] = [\alpha] \cdot [\beta]$, $[\alpha \lor \beta] = [\alpha] + [\beta]$, $[\alpha \to \beta] = [\alpha] \to [\beta]$, $[A \& \neg A] = 0$.
 - 2. [A
 ightarrow A] = [A]
 ightarrow [A] = 1 по свойствам алгебры Гейтинга
 - 3. $[\neg \alpha] = [\alpha \rightarrow A \& \neg A] = [\alpha] \rightarrow 0 = \sim [\alpha]$

$\Gamma(\mathcal{L})$ — алгебра Гейтинга, согласованная с ИИВ.

Надо учитывать существование нового элемента $\omega.$

Например, импликация/псевдодополнение:

$$[\alpha] \to [\beta] = \mathsf{Hauf} \ \{s \mid [\alpha] \cdot s \leq [\beta]\}.$$

- lacktriangle (... нижняя грань) $[lpha]\cdot [lpha oeta]\leq [eta]$ аналогично случаю для $\mathcal L$
- lacktriangle (наибольшая ...) Если $[lpha]\cdot s \leq [eta]$, то
 - lacktriangle $s=[\sigma]$, то есть $s
 eq \omega$ аналогично случаю для \mathcal{L} ;
 - > $s = \omega$, тогда $[\alpha] \cdot \omega \leq [\beta]$. Но $[\alpha] \neq \omega$ либо $[\alpha] < \omega$, либо $[\alpha] = 1$. В обоих случаях $[\alpha] \cdot 1 \leq [\beta]$. Отсюда s не наибольший.

Исчисление предикатов

Ограничения языка исчисления высказываний

$$\frac{\mathsf{Kаждый} \ \mathsf{человек} \ \mathsf{смертен} \qquad \mathsf{Сократ} \ \mathsf{eсть} \ \mathsf{человек}}{\mathsf{Cократ} \ \mathsf{смертен}}$$

Цель: увеличить формализованную часть метаязыка.

Мы неформально знакомы с предикатами $(P:D \to V)$ и кванторами $(\forall x. H(x) \to S(x)).$

$$\frac{\forall x. H(x) \to S(x) \qquad H(\mathsf{Cokpat})}{S(\mathsf{Cokpat})}$$

Начнём с примера

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).
- 2. Логические выражения
 - 2.1 Предикатные символы «равно» и «больше»

Язык исчисления предикатов

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: *a*, *b*, *c*, ..., метапеременные *x*, *y*.
 - ightharpoonup Функциональные выражения: $f(\theta_1, \dots, \theta_n)$, метапеременные f, g, \dots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные α , β , γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A, B, C, ...
 - ightharpoonup Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.
 - ► Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

Сокращения записи, метаязык

- 1. Метапеременные:
 - $ightharpoonup \psi, \phi, \pi, \ldots$ формулы
 - ightharpoonup P, Q, ... предикатные символы
 - ightharpoonup heta, ... термы
 - $ightharpoonup f, g, \ldots$ функциональные символы
 - \triangleright x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. \ A \lor B \lor C \rightarrow \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

- 3. Дополнительные обозначения при необходимости:
 - \blacktriangleright $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$
 - \blacktriangleright $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$
 - ▶ 0 вместо z
 - **.**..

Теория моделей: два типа значений

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

Без синтаксического сахара:

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.
- 2. Предметные значения:
 - 2.1 предметные переменные;
 - 2.2 функциональные символы (в том числе константы =

.....

Оценка исчисления предикатов

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V$$
 $V = \{ \mathcal{U}, \mathcal{I} \}$

4. Е — оценка для предметных переменных.

$$E(x) \in D$$

Оценка формулы

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=M} = M$$

- 1. Правила для связок \lor , &, \neg , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $\llbracket P_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = P_{T_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 4.

$$\llbracket \forall x. \phi \rrbracket = \left\{ \begin{array}{l} \mathsf{И}, \quad \text{если } \llbracket \phi \rrbracket^{\mathsf{x}:=t} = \mathsf{I} \mathsf{I} \text{ при всех } t \in D \\ \mathsf{Л}, \quad \text{если найдётся } t \in D, \text{ что } \llbracket \phi \rrbracket^{\mathsf{x}:=t} = \mathsf{Л} \end{array} \right.$$

5.

$$\llbracket\exists x.\phi
rbracket = \left\{egin{array}{ll} \mathsf{M}, & \text{если найдётся } t\in D, \ \mathsf{что}\ \llbracket\phi
rbracket ^{x:=t} = \mathsf{M} \ \mathsf{D}, \ \ \mathsf{если}\ \llbracket\phi
rbracket ^{x:=t} = \mathsf{J} \ \mathsf{при всеx}\ t\in D \end{array}\right.$$

Пример (очевидная интерпретация)

Оценим:

$$[\![\forall a. \exists b. \neg a + 1 = b]\!]$$

Зададим оценку:

- \triangleright $D := \mathbb{N};$
- ▶ $F_1 := 1$, $F_{(+)}$ сложение в \mathbb{N} ;
- $\triangleright P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $a \in \mathbb{N}$. Тогда:

$$[a+1=b]^{b:=a}=J$$

поэтому при любом $a \in \mathbb{N}$:

$$\llbracket \exists b. \neg a + 1 = b \rrbracket = \mathsf{M}$$

Итого:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket = \mathsf{V}$$

Пример (странная интерпретация)

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

$$ightharpoonup D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := M.$$

Тогда:

$$[a+1=b]^{a\in D, b\in D}=V$$

Итого:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket = \mathsf{\Pi}$$

Общезначимость

Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \phi$$

То есть истинна при любых D, F, P и E.

Пример: общезначимая формула

Теорема

$$[\![\forall x. Q(f(x)) \lor \neg Q(f(x))]\!]$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t. Ясно, что $t \in V$. Разберём случаи.

- lacktriangle Если $t=m{\mathsf{M}}$, то $[\![Q(f(x))]\!]^{Q(f(x)):=t}=m{\mathsf{M}}$, потому $[\![Q(f(x))\lor
 eg Q(f(x))]\!]^{Q(f(x)):=t}=m{\mathsf{M}}$
- lacktriangle Если $t=\Pi$, то $[\![\neg Q(f(x))]\!]^{Q(f(x)):=t}=$ И, потому всё равно $[\![Q(f(x))\lor \neg Q(f(x))]\!]^{Q(f(x)):=t}=$ И

Свободные вхождения

Определение

Вхождение подформулы в формулу — это позиция первого символа этой подформулы в формуле.

Вхождения x в формулу: $(\forall x. A(x) \lor \exists x. B(x)) \lor C(x)$

Определение

Рассмотрим формулу $\forall x. \psi$ (или $\exists x. \psi$). Здесь переменная x связана в ψ . Все вхождения переменной x в ψ — связанные.

Определение

Вхождение x в ψ свободное, если не находится в области действия никакого квантора по x. Переменная входит свободно в ψ , если имеет хотя бы одно свободное вхождение. $FV(\psi)$, $FV(\Gamma)$ — множества свободных переменных в ψ , в Γ

Пример

$$\exists y.(\forall x.P(x)) \lor P(x) \lor Q(y)$$

Подстановка, свобода для подстановки

$$\psi[x := \theta] := \left\{ \begin{array}{ll} \psi, & \psi \equiv y, y \not\equiv x \\ \psi, & \psi \equiv \forall x.\pi \text{ или } \psi \equiv \exists x.\pi \\ \pi[x := \theta] \star \rho[x := \theta], & \psi \equiv \pi \star \rho \\ \theta, & \psi \equiv x \\ \forall y.\pi[x := \theta], & \psi \equiv \forall y.\pi \text{ и } y \not\equiv x \\ \exists y.\pi[x := \theta], & \psi \equiv \exists y.\pi \text{ и } y \not\equiv x \end{array} \right.$$

Определение

Терм θ свободен для подстановки вместо x в ψ ($\psi[x:=\theta]$), если ни одно свободное вхождение переменных в θ не станет связанным после подстановки.

Свобода есть	Свободы нет
$(\forall x. P(y))[y := z]$	$(\forall x. P(y))[y := x]$
$(\forall y. \forall x. P(x))[x := y]$	$(\forall y. \forall x. P(t))[t := y]$

Теория доказательств

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

- 11. $(\forall x.\varphi) \to \varphi[x := \theta]$
- 12. $\varphi[x := \theta] \to \exists x. \varphi$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

$$\frac{\varphi \to \psi}{\varphi \to \forall x. \psi} \text{ Правило для } \forall$$

$$\frac{\psi \to \varphi}{(\exists x. \psi) \to \varphi} \text{ Правило для } \exists$$

Определение

Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

Важность ограничений на схемы аксиом и правила вывода

- ▶ Рассмотрим формулу $(\forall x.\exists y. \neg x = y) \to ((\exists y. \neg x = y)[x := y])$
- ▶ Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

▶ Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть $D=\mathbb{N}$ и (=) есть равенство на \mathbb{N} . Тогда

$$[\exists y. \neg x = y] = \mathsf{N}$$
 $[(\exists y. \neg x = y)[x := y]] = \mathsf{J}$

$$\blacktriangleright \not\models (\forall x. \exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$$

Теорема о дедукции для исчисления предикатов

Теорема

Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \rightarrow \beta$.

Доказательство.

(⇒) — как в КИВ (⇐) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$. Дополним: обоснуем $\alpha \to \delta_n$, если предыдущие уже

обоснованы.

Два новых похожих случая: правила для \forall и \exists . Рассмотрим \forall . Доказываем (n) $\alpha \to \psi \to \forall x. \varphi$ (правило для \forall), значит,

Доказываем
$$(n)$$
 $\alpha \to \psi \to \forall x. \varphi$ (правило для \forall), значит,

доказано
$$(k)$$
 $\alpha \to \psi \to \varphi$. $(n-0.9)\dots(n-0.8)$ $(\alpha \to \psi \to \varphi) \to (\alpha \& \psi) \to \varphi$

$$(n-0.6)$$
 $(\alpha \& \psi) \to \varphi$ М.Р. $(n-0.4)$ $(\alpha \& \psi) \to \forall x. \varphi$ Прав

Т. о г

 $(n-0.3)\dots(n-0.2)$ $((\alpha \& \psi) \to \forall x.\varphi) \to (\alpha \to \psi \to \forall x.\varphi)$ Т. о г (n) $\alpha \to \psi \to \forall x. \varphi$ M.P.

Следование

Определение

 $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \ldots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \ldots, \gamma_n$.

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

Важность второго условия

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Легко показать, что $P(x) \vdash \forall x. P(x)$.

Корректность

Теорема

Если θ свободен для подстановки вместо x в φ , то $[\![\varphi]\!]^{x:=[\![\theta]\!]}=[\![\varphi[x:=\theta]\!]]$

Доказательство (индукция по структуре φ).

- ▶ База: φ не имеет кванторов. Очевидно.
- ▶ Переход: пусть справедливо для ψ . Покажем для $\varphi = \forall y.\psi.$
 - lack x = y либо $x \notin FV(\psi)$. Тогда: $[\![orall y.\psi]\!]^{x:=[\![heta]\!]} = [\![orall y.\psi]\!] = [\![(orall y.\psi) [\![x := heta]\!]]$
 - $\mathbf{x} \neq y$. Тогда: $[\![\forall y.\psi]\!]^{x:=[\![\theta]\!]} = [\![\psi]\!]^{y\in D; x:=[\![\theta]\!]} = \dots$ Свобода для подстановки: $y \notin \theta$.

$$\cdots = \llbracket \psi \rrbracket^{\mathsf{x} := \llbracket \theta \rrbracket; \mathsf{y} \in D} = \dots$$

Индукционное предположение.

$$\cdots = [\![\psi[x := \theta]]\!]^{y \in D} = [\![\forall y.(\psi[x := \theta])]\!] = \dots$$
 Но $\forall y.(\psi[x := \theta]) \equiv (\forall y.\psi)[x := \theta]$ (как текст). Отсюда:
$$\cdots = [\![(\forall y.\psi)[x := \theta]]\!]$$

_

Корректность

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из $FV(\Gamma)$, то $\Gamma \models \alpha$

Доказательство.

Фиксируем D, F, P. Индукция по длине доказательства α : при любом E выполнено $\Gamma \models \alpha$ при длине доказательства n, покажем для n+1.

- Схемы аксиом (1)..(10), правило М.Р.: аналогично И.В.
- lacktriangle Схемы (11) и (12), например, схема ($\forall x. \varphi$) $\to \varphi[x := \theta]$:

$$\llbracket (\forall x.\varphi) \to \varphi[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi)[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi \rrbracket^{x:= \theta}) \rrbracket$$

▶ Правила для кванторов: например, введение \forall : Пусть $\llbracket \psi \to \varphi \rrbracket = \mathsf{И}$. Причём $x \notin FV(\Gamma)$ и $x \notin FV(\psi)$. То есть, при любом x выполнено $\llbracket \psi \to \varphi \rrbracket^{x:=x} = \mathsf{И}$. Тогда $\llbracket \psi \to (\forall x.\varphi) \rrbracket = \mathsf{I}$.