

PROBABILIDADES

Definição Clássica

Se existem N possibilidades iguais, das quais uma deve ocorrer e n são consideradas como favoráveis, ou como um "sucesso", então a probabilidade de um "sucesso" é dada por n/N.

$$P(A) = \frac{n}{N}$$

Exemplo

Qual a probabilidade de tirar um ás de um baralho de cartas?

$$n=4, N=52$$

4/52

Espaços Amostrais

Experiência

qualquer processo de observação ou medida

Resultados

contagens, respostas sim ou não, valores

Espaço amostral S

conjunto de todos os resultados possíveis de uma experiência

Elemento ou ponto amostral

cada resultado do espaço amostral

Probabilidade

Existem muitas situações onde as diferentes possibilidades não são igualmente prováveis.

A probabilidade de um evento (acontecimento ou resultado) é a proporção de vezes que eventos da mesma espécie ocorrerão no longo prazo.

Definição axiomática: Probabilidades definidas como "objectos matemáticos" que se comportam segundo regras bem definidas.

Espaços Amostrais

Estatística

Exemplos

Liste os elementos do espaço amostral definido pelo lançamento de um dado.

$$S_1 = \{1, 2, 3, 4, 5, 6\}$$

 $S_2 = \{par, impar\}$

Liste os acontecimentos do espaço amostral constituído pelo lançamento de dois dados de cores diferentes.

$$S_1 = \{(x,y) \mid x = 1, 2,..., 6; y = 1, 2,..., 6\}$$

 $S_2 = \{2, 3,..., 11, 12\}$

Espaços Amostrais

Discreto

 contém um número finito de elementos, ou um número infinito de elementos aos quais é possível fazer corresponder números inteiros

Contínuo

 contém um número infinito de pontos amostrais, constituindo um espaço contínuo

Acontecimento ou Evento

subconjunto do espaço amostral

Definições

União

- A união de dois eventos A e B, $A \cup B$, é o evento em S que contém todos os elementos que estão em A, em B ou em ambos

Intersecção

– A intersecção dos eventos A e B, $A \cap B$, é o evento em S que contém todos os elementos que estão em A e B

Complemento

- O complemento do evento A, A, é o evento em S que contém todos os elementos de S que não estão em A

Diagramas de Venn

Estatística

União

Estatística

$$A \cup B$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = 0$$
 : $P(A \cup B) = P(A) + P(B)$

(eventos mutuamente exclusivos)

Intersecção

Estatística

 $A \cap B$

$$P(A \cap B) = P(A).P(B/A)$$
$$= P(B).P(A/B)$$

$$P(A/B) = P(A)$$
 e $P(B/A) = P(B)$ \therefore $P(A \cap B) = P(A).P(B)$

(eventos independentes)

Complemento

Estatística

$$P(\overline{A}) = 1 - P(A)$$

Postulados de Boole

Estatística

1. Para cada par de eventos A e B no espaço amostral S, há um único evento $A \cup B$ e um único evento $A \cap B$ em S

2.
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

3.
$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

4.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- 5. $A \cap S = A$, para cada evento A no espaço amostral S; existe um único evento \varnothing tal que $A \cup \varnothing = A$ para cada evento A em S
- 6. Para cada evento A em S existe um único evento A' em S tal que $A \cap A' = \emptyset$ e $A \cup A' = S$

Probabilidade de um Acontecimento

1. A probabilidade de um evento é um número real não negativo, i.e., $P(A) \ge 0$ para qualquer subconjunto A de S

2.
$$P(S) = 1$$

3. Se A_1 , A_2 , A_3 , ..., é uma sequência finita ou infinita de eventos mutuamente exclusivos de S, então

$$P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + ...$$

Probabilidade

Estatística

Exemplos

Se uma moeda equilibrada é lançada duas vezes, qual a probabilidade de obter pelo menos uma coroa?

$$S=\{HH, HT, TH, TT\}$$
 $A=\{HH, HT, HT\}$
 $P(A) = P(HH)+P(HT)+P(TH) = 3/4$

Um dado está viciado por forma que os números impares sejam duplamente mais prováveis que os números pares. Se o evento E é definido como um número maior que 3 ocorre num simples lançamento, calcule P(E).

1 2 3 4 5 6
2w w 2w w 2w w

$$P(E) = \frac{1}{9} + \frac{2}{9} + \frac{1}{9} = \frac{4}{9}$$

Algumas Regras de Probabilidade

Se A e A' são eventos complementares num espaço amostral S, então

$$P(A') = 1 - P(A)$$

$$P(\emptyset) = 0$$

Se A e B são eventos num espaço amostral S e $A \subset B$, então

$$P(A) \le P(B)$$

Para qualquer evento A,

$$0 \le P(A) \le 1$$

Se A e B são dois quaisquer eventos num espaço amostral S, então

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Se A, B e C são três quaisquer eventos num espaço amostral S, então

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Probabilidade Condicional

- Podem surgir dificuldades quando as probabilidades são referidas sem especificação do espaço amostral
- A probabilidade condicional do evento A em relação ao espaço amostral S, a probabilidade de A dado S, é referida por

 $P(A \mid S)$

 Se A e B são dois quaisquer eventos no espaço amostral S e P(A) ≠ 0, a probabilidade condicional de B dado A é

$$P(B \mid A) = P(B \cap A) / P(A)$$

Probabilidade Condicional

Estatística

Exemplo

Considere um dado viciado por forma que os números impares sejam duplamente mais prováveis que os números pares. Qual é a probabilidade de que o número de pontos do dado viciado seja um quadrado perfeito? E qual a probabilidade que seja um quadrado perfeito dado que é maior que 3?

$$A={4, 5, 6}$$
 $B={1, 4}$
 $P(A) = 4/9$
 $P(B|A) = 1/9 / 4/9 = 1/4$

Probabilidade Condicional

Estatística

• Se A e B são dois quaisquer eventos no espaço amostral S e $P(A) \neq 0$, então

$$P(A \cap B) = P(A) P(B \mid A)$$

• Se A, B e C são três quaisquer eventos no espaço amostral S, tal que $P(A) \neq 0$ e $P(A \cap B) \neq 0$, então

$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid A \cap B)$$

Exemplo

Uma caixa contém 20 fusíveis dos quais 5 são defeituosos. Se 3 fusíveis são seleccionados e removidos sucessivamente sem reposição, qual a probabilidade de que os 3 fusíveis sejam defeituosos?

$$P(A) = 5/20$$
 $P(B|A) = 4/19$ $P(C|A \cap B) = 3/18$ $P(A \cap B \cap C) = 1/114$

Eventos Independentes

 Dois eventos são independente se a ocorrência ou não ocorrência de qualquer um deles não afecta a probabilidade de ocorrência do outro

$$P(B \mid A) = P(B)$$

$$P(A \mid B) = P(A)$$

• Dois eventos são independentes se e só se

$$P(B \cap A) = P(A) P(B)$$

Estatística

$$A \cup B$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

eventos mutuamente exclusivos

$$A \cap B$$

$$P(A \cap B) = P(A).P(B/A) = P(B).P(A/B)$$

$$P(A \cap B) = P(A).P(B)$$

eventos independentes

$$P(\overline{A}) = 1 - P(A)$$

Eventos Independentes

Estatística

 Se dois eventos A e B são independentes, então os dois eventos A e B' são também independentes

$$A = A \cap (B \cup B')$$

 $A = (A \cap B) \cup (A \cap B')$
 $(A \cap B)$ e $(A \cap B')$ mutuamente exclusivos
 $P(A) = P[(A \cap B) \cup (A \cap B')] = P(A \cap B) + P(A \cap B')$

$$P(A \cap B') = P(A) [1 - P(B)] = P(A) P(B')$$

 Os eventos A₁, A₂, ... e A_k, são independentes se e só se a probabilidade da intersecção de quaisquer 2, 3 ou k destes eventos igualar o produto das respectivas probabilidades, por exemplo,

$$P(A_1 \cap A_2) = P(A_1) P(A_2) \dots$$

 $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1) P(A_2) \dots P(A_k)$

Eventos Independentes

Exemplo

Uma moeda é lançada 3 vezes, com qualquer dos 8 resultados possíveis igualmente prováveis. Considere os seguintes eventos:

A – uma cara (H) ocorre em cada um dos dois primeiros lançamentos

B – uma coroa (T) ocorre no terceiro lançamento

C – exactamente duas coroas ocorrem nos 3 lançamentos

 $A = \{HHH, HHT\}$

P(A) = 1/4

 $B = \{HHT, HTT, THT, TTT\}$

P(B) = 1/2

 $C = \{HTT, THT, TTH\}$

P(C) = 3/8

 $A \cap B = \{HHT\}$

 $P(A \cap B) = 1/8$

 $B \cap C = \{HTT, THT\}$

 $P(B \cap C) = 1/4$

 $P(A \cap B) = P(A)P(B)$

independentes

 $P(B \cap C) \neq P(B)P(C)$

dependentes

Partição

Estatística

$$B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5 = S$$
 $B_i \cap B_j = \emptyset$ $\forall i, j \ i \neq j$

eventos mutuamente exclusivos

$$P(B_1) + P(B_2) + P(B_3) + P(B_4) + P(B_5) = 1$$

$$\bigcup_{i=1}^{k} B_i = S \qquad \sum_{i=1}^{k} P(B_i) = 1$$

Probabilidade Total

Estatística

$$A = (B_1 \cap A) \cup (B_2 \cap A) \cup \cdots \cup (B_5 \cap A)$$

$$P(A) = \sum_{i=1}^{5} P(B_i \cap A) = \sum_{i=1}^{5} P(B_i).P(A/B_i)$$

Teorema de Bayes

$$P(B_i \cap A) = P(B_i).P(A/B_i) = P(A).P(B_i/A)$$

$$P(B_i/A) = \frac{P(B_i).P(A/B_i)}{P(A)} = \frac{P(B_i).P(A/B_i)}{\sum_{j=1}^{5} P(B_j).P(A/B_j)}$$

Partição do Espaço

• Se os eventos B_1 , B_2 , ... e B_k constituem uma partição do espaço amostral S e $P(B_i) \neq 0$ para i=1, 2, ..., k, então para qualquer evento A em S

$$P(A) = \sum [P(B_i) P(A \mid B_i)]$$

$$B = B_1 \cup B_2 \cup ... \cup B_k$$
 $B_i \cap B_j = 0 \text{ para } i \neq j$
 $B_1 \cup B_2 \cup ... \cup B_k = S$ $A \cap S = A$
 $P(A) = P(B_1) P(A \mid B_1) + P(B_2) P(A \mid B_2) + ... + P(B_k) P(A \mid B_k)$

Teorema de Bayes

• Se os eventos constituem uma partição do espaço amostral S e $P(B_i) \neq 0$, para i=1, 2, ...,k, então para qualquer evento A em S, tal que $P(A) \neq 0$

$$P(B_r | A) = [P(B_r)P(A | B_r)] / [\sum P(B_i)P(A | B_i)]$$
 para $r=1, 2, ..., k$

Estatística

Teorema de Bayes

Exemplo

Considere 3 fábricas *A*, *B* e *C*, que produzem um determinado produto em lotes de 100, 200 e 300 peças, respectivamente. Um lote de cada fábrica é selecionado e as peças são misturadas. Suponha que a probabilidade de se encontrar peças defeituosas em cada uma das fábricas seja respectivamente de 10%; 5% e 1%. Selecionandose uma peça ao acaso, calcule as seguintes probabilidades:

- a) ser defeituosa;
- b) ser da fábrica A, sabendo que a peça é defeituosa.

$$D = (A \cap D) \cup (B \cap D) \cup (C \cap D)$$

$$P(D) = P(A \cap D) + P(B \cap D) + P(C \cap D)$$

$$P(D) = P(A) \cdot P(D/A) + P(B) \cdot P(D/B) + P(C) \cdot P(D/C)$$

$$P(D) = \frac{1}{6} \cdot \frac{10}{100} + \frac{2}{6} \cdot \frac{5}{100} + \frac{3}{6} \cdot \frac{1}{100} = \frac{10 + 10 + 3}{600} = \frac{23}{600}$$

Teorema de Bayes

Estatística

Exemplo

b) ser da fábrica A, sabendo que a peça é defeituosa.

Teorema de Bayes

$$P(A/D) = \frac{P(A).P(D/A)}{P(A).P(D/A) + P(B).P(D/B) + P(C).P(D/C)}$$

$$P(A/D) = \frac{\frac{1}{6} \frac{1}{10}}{\frac{1}{6} \frac{10}{100} + \frac{2}{6} \frac{5}{100} + \frac{3}{6} \frac{1}{100}} = \frac{\frac{1}{60}}{\frac{23}{600}} = \frac{10}{600} \frac{600}{23} = \frac{10}{23}$$

Estatística

Partição do Espaço

Exemplo

A urna I contém 3 fichas vermelhas e 2 fichas azuis, e a urna II contém 2 fichas vermelhas e 8 fichas azuis. Joga-se uma moeda. Se sair cara (H), extrai-se uma ficha da urna I; se sair coroa (T), extrai-se uma ficha da urna II. Determine a probabilidade de escolha de uma ficha vermelha.

A – ficha vermelha escolhida

$$B_1 - Urna I P(B_1) = 1/2$$

$$P(B_1) = 1/2$$

$$P(A|B_1) = 3/5$$

$$B_2 - Urna II P(B_2) = 1/2$$

$$P(B_2) = 1/2$$

$$P(A|B_2) = 2/10$$

$$A = (A \cap B_1) \cup (A \cap B_2)$$

$$P(A) = P[(A \cap B_1) \cup (A \cap B_2)] = P(A \cap B_1) + P(A \cap B_2)$$

$$P(A) = P(B_1)P(A|B_1)+P(B_2)P(A|B_2)$$

$$P(A) = 2/5$$

Teorema de Bayes

Exemplo

A urna I contém 3 fichas vermelhas e 2 fichas azuis, e a urna II contém 2 fichas vermelhas e 8 fichas azuis. Joga-se uma moeda. Se sair cara (H), extrai-se uma ficha da urna I; se sair coroa (T), extrai-se uma ficha da urna II. Suponha que não se sabe o resultado da jogada da moeda, mas que a ficha extraída é vermelha. Qual a probabilidade de ter sido extraída da urna I?

A – ficha vermelha escolhida

$$P(B_1) = 1/2$$

$$P(A|B_1) = 3/5$$

$$B_2$$
 – Urna II

$$P(B_2) = 1/2$$

$$P(A|B_2) = 2/10$$

$$P(B_1|A) = [P(B_1)P(A|B_1)]/[P(B_1)P(A|B_1)+P(B_2)P(A|B_2)]$$

$$P(B_1|A) = 3/4$$

Exemplo

Questão a)

Estatística

Pretende-se planear uma família de 3 crianças.

 a) Liste os elementos do espaço amostral e calcule as respectivas probabilidades.

Rapaz – R e Menina – M

- e₁ RRR
- $e_2 RRM$
- $e_3 RMR$
- $e_4 RMM$
- $e_5 MRR$
- $e_6 MRM$
- $e_7 MMR$
- $e_8 MMM$

Assumindo P(R) = P(M), $P(e_1) = P(e_2) = ... = P(e_8) = 1/8$

Questão b)

- b) Calcule as probabilidades dos seguintes eventos:
 - E pelo menos 2 meninas
 - F segunda criança uma menina, seguida de um rapaz
 - G menos de 2 meninas
 - H todas as crianças do mesmo sexo
 - I nenhuma menina
 - I₁ exactamente 1 menina
 - I_2 exactamente 2 meninas
 - I₃ exactamente 3 meninas
 - J menos de 2 rapazes

Questão b)

Estatística

Evento	Listagem	Probabilidade
E	e_4, e_6, e_7, e_8	4/8
F	e_3, e_7	2/8
G	e_1, e_2, e_3, e_5	4/8
Н	e ₁ , e ₈	2/8
	e ₁	1/8
I ₁	e_2, e_3, e_5	3/8
I_2	e_4, e_6, e_7	3/8
I_3	e ₈	1/8
J	e_4, e_6, e_7, e_8	4/8

Questão c) e d)

c) O casal ficaria desiludido se em 3 crianças, nascessem menos de duas meninas ou todas do mesmo sexo. Qual a probabilidade de tal acontecer?

$$P(G \cup H) = ?$$

 $G \cup H = \{e_1, e_2, e_3, e_5, e_6\}$ $P(G \cup H) = 5/8$

d) O casal ficaria duplamente desiludido se em 3 crianças, nascessem menos de duas meninas e todas do mesmo sexo. Qual a probabilidade de tal acontecer?

$$P(G \cap H) = ?$$

$$G \cap H = \{e_1\}$$

$$P(G \cap H) = 1/8$$

Questão e)

Estatística

e) Determine os eventos e as respectivas probabilidades:

$$F \cup G$$
, $F \cap G$, $I \cup J$, $I \cap J$

Questão f)

Estatística

f) Numa família de 3 crianças, suponha que se sabe que G (menos de duas meninas) ocorreu. Qual é a probabilidade que H (todas do mesmo sexo) tenha ocorrido?

$$P(H|G)=?$$

- i) se se considerar P(R)=0.5P(H|G)=0.25
- ii) se se considerar P(R)=0.6P(H|G)=0.34