

NTNU

REPORT

Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics and Electrical Engineering Department of Engineering Cybernetics

Report	number	

Classification

ISBN

Address: NTNU

Department of Engineering Cybernetics

O.S. Bragstads plass 2D

NO-7491 TRONDHEIM, NORWAY

Switchboard: +47 73 59 40 00 Telephone: +47 73 59 43 76

Fax: +47 73 59 43 99

Report title	Date
Functional Requirements Specification for the NTNU Revolute Wrist Device (NRWD)	Number of pages
v0.4	Project supervisor Øyvind Stavdahl
Author (s) Øyvind Stavdahl	Project no. TBC; Spør Tove
Sponsoring Organization NTNU	Client's reference

Abstract

This document specifies the functional requirements for the initial version of the NTNU Revolute Wrist Device (NRWD).

The specification is intended to provide the necessary basis for developing a technical requirements specifications with respect to mechanical, electrical and algorithmic properties.

TBC

Keywords

TBC	

Contents

1.	BA	CKGROUND	. 3
		VISION HISTORY	
3.	CO	NVENTIONS	. 3
	3.1 3.2	ABBREVIATIONS ETC	
		STEM DESCRIPTION	
	4.1 4.2	CONTEXT AND PURPOSE	
5.	FU	NCTIONAL REQUIREMENTS	5
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	GENERAL REQUIREMENTS WRIST JOINT FUNCTION, WJF WRIST MOTOR FUNCTION, WMF WRIST SERVO FUNCTION, WSF WRIST COMMUNICATION FUNCTION, WCF WRIST POWER FUNCTION, WPF PROXIMAL ATTACHMENT FUNCTION, PAF DISTAL ATTACHMENT FUNCTION, DAF WRIST GEOMETRY FUNCTION, WGF	.7 .8 .8 .9
6.	BIB	BLIOGRAPHY1	1

List of figures

Figure 1 System context	. 4
Figure 2 The four different equipment configurations	5
Figure 3 Functional block diagram	

1. Background

The functionally optimal 1-DOF wrist prosthesis kinematics was theoretically derived in [1]. Now one aims at implementing a physical device based on these principles.

The current document constitutes a functional specification for this device, which covers not only the kinematics but even mechanical, electrical, electronic and algorithmic aspects. Several of the numerical data are found in/derived from

2. Revision History

When	Who	What	
2005.02.08	Ø. Stavdahl	Brief revisions for FPGA-based version.	
		Several requirements and comments clarified and typos fixed. This relates to GEN-08, WJF-01, WJF-02, WJF-03, WSF-01-03, WSF-03, WCF-02, WCF-03, WCF-04, WCF-04-01, WCF-05, WCF-09, WCF-10, WPF-02, WPF-03, Circuit board geometry included.	
Spring 2010	Inge Bratbakken	Revised specifica ons regarding communica on. This relates to WCF-02 and WCF-03. Also removed requirements no longer relevant. Those beeing: WCF-04, WCF-04-01, WCF-04-02, WCF-06, WCF-08 and WCF-09.	
Autumn 2013	Geir Turtum		

3. Conventions

3.1 Abbreviations etc

The following conventions apply to this document:

NA Not Applicable; irrelevant

HW Hardware SW Software

TBC To Be Completed; an aspect that has to be filled in.

TBD To Be Defined; an aspect that is still not completely defined.

Use of the word *shall* denotes requirements that must be met by the system, while the word *should* denotes requirements that are desirable and must be met unless justification is provided for an alternative.

3.2 Document Structure

TBC.

4. System Description

4.1 Context and Purpose

The "system" referred to here is the entire wrist prosthesis, including both mechanical, electrical/electronic and software components. The primary purpose of the system is to rotate/orient the terminal device with respect to the forearm according to user input. Figure 1 gives an overview of the system and its context.

Figure 1 System context

The proximal electronics includes a battery pack or another electric power source, as well as digital and/or analog circuits with sensors for reading the user's motor intent (typically EMG electrodes, switches, "pressure pads" or the like) and communication of this intent to the joint controllers in the prosthesis.

While the figure suggests that the proximal electronics is situated in the forearm, this needs not be the case; in the case of a total arm replacement the prosthesis may comprise motorized shoulder, elbow, wrist and/or finger functions, and the arm electronics may correspondingly be distributed in the different parts of the arm. The "Proximal electronics" box in Figure 1 thus represents all the electronics proximal to the wrist, while the "Distal electronics" represents any or all electronic components distal to the wrist, such as a motor controller responsible for opening and closing of the hand.

4.2 Configurations

The system is applicable to several different equipment configurations, as indicated in Figure 2. These configurations include the following, listed in the order of relevance and only the first two being absolutely necessary to implement:

- 1. A completely analog mode where all intercomponent communication is based on dedicated analog lines. This mode complies with standard Otto Bock and comparable components.
- 2. A completely digital mode where all intercomponent communication is based on a data bus. This mode is for use with other novel systems that support the same communication protocol.
- 3. A hybrid mode where the proximal communication (i.e. between the wrist and proximal electronics) is digital while the distal communication is analog, intended for use with a Bock-like hand and novel proximal controllers.

4. A second hybrid mode where the proximal communication (i.e. between the wrist and proximal electronics) is analog while the distal communication is digital. This is for using a novel hand in systems based on analog electrodes and the like.

Proximal electronics Distal electronics

Figure 2 The four different equipment configurations

5. Functional Requirements

5.1 General requirements

The NRWD system shall implement the following functions and satisfy the following requirements.

Req. no.	Description	Comments
GEN-01	A joint which implements the optimal	
	kinematics described in [1]	
	– Wrist Joint Function, WJF.	
GEN-02	An electric motor which drives the movement	
	of the joint via a gear train	
	- Wrist Motor Function, WMF	
GEN-03	A motor control interface and regulation	
	process to control the movements of the WJF	
	– Wrist Servo Function, WSF.	
GEN-04	A communication function that interfaces with	"Other connected systems" typically include
	WSF and other connected systems	proximal and distal joint controllers, as well as
	– Wrist Communication Function, WCF.	units for system diagnosis and configuration.

GEN-05	A power adaptation function that enables the system to run from a variety of voltage levels	Compliance with commercial and research systems.
	- Wrist Power Function, WPF.	-,
GEN-06	A mechanism for attachment of the wrist to	
	the forearm socket –	
	Proximal Attachment Function, PAF.	
GEN-06-01	The PAF shall be disconnectable and, when	For maintenance and replacement of forearm
	disconnected, allow entry to the space	electronics.
	proximal to the wrist.	
GEN-07	A mechanism for attachment of the wrist to	
	the terminal device –	
	Distal Attachment Function, DAF.	
GEN-08	An outer geometry that crudely resembles that	No component shall extend beyond the envelope
	of an adult wrist – Wrist Geometry Function,	of a normal wrist, which has an elliptic cross-
	WGF.	sectional area of approx. 5 cm x 4 cm.
		All parts and connectors must be kept small.
GEN-08-01	The longitudinal dimension (along the	Allows longer residual limbs to use it, i.e.
	forearm) of the entire NRWD should be as	"larger market".
	short as possible, and shall not exceed 65 mm.	65 mm is Bock spec.
GEN-09	The system should consume a minimum of	When motor is active, its output dictates a lower
	energy, and the current conspumtion shall be	bound for the power consumption. This
	kept below 2 A at all times.	requirement just implies that unnecessary
		circuits should be turned off, and active use
		should be made of the controller's various sleep
		modes.
GEN-10	The system shall be modular with respect to	
	both HW and SW.	
GEN-11	The weight of the entire NRWD should not	Industrial components: Otto Bock: 96 g, VASI:
	exceed 100 g.	100 g.

Figure 3 depicts the functions and their dependencies.

Figure 3 Functional block diagram

5.2 Wrist Joint Function, WJF

The following requirements are derived from GEN-01.

Req. no.	Description	Comments
WJF-01	The NRWD joint shall be a single, simple	Derived from (specific version of) GEN-01.
	revolute joint which axis of rotation can be	
	placed at an attitude with respect to the	Note a typographical error in Eqn. (7.5); last
	forearm and terminal device as spedcified in	element of vector should read "-0.23" instead of
	[1], Equations (7.4) and (7.5).	"0.23".
WJF-02	The joint axis should be manually adjustable	In order to test other axis alignments. Note that
	to other attitudes than that specified in WJF-	adjustability wrt. Forearm AND hand requires
	01.	TWO adjustable functions!
WJF-03	The joint shall enable an angular excursion of	180 deg is crudely that of a healthy limb.
	at least 180 degrees. The excursion should be	
	unlimited.	

5.3 Wrist Motor Function, WMF

The following requirements are derived from GEN-02.

Req. no.	Description	Comments
WMF-01	The wrist joint (output of the gear train) shall	Otto Bock spec.
	have a maximum angular velocity of at least	No-load speed
	1.4 rad/s (81 deg/s).	
	The maximum velocity should be as high as	
	possible.	
WMF-02	The wrist joint should have a maximum	VASI spec.

	torque of at least 34,3 mNm.	Stall torque.
WMF-03	The motor shall have a maximum mechanical	
	output power of at least TBC W.	
WMF-04	The motor shall be protected from	
	overheating. The protection should	
	be implemented by hardware.	

5.4 Wrist Servo Function, WSF

The following requirements are derived from GEN-03.

Req. no.	Description	Comments
WSF-01	The movements of the wrist joint shall be	
	controllable according to the follwing modes:	
	1. On/Off-mode	
	2. Position mode.	
	3. Velocity mode	
WSF-01-01	In On/Off-mode the motor shall be at rest or	Requires only transistor bridge.
	run at maximum speed (open-loop) in one	
	direction according to a given setpoint.	
WSF-01-02	In position mode the joint angle shall be	
	proportional to a given angular setpoint.	
WSF-01-02-01	The WSF shall include an absolute position	
	sensor. This sensor shall provide no less than	
	10 bits resolution per revolution.	
WSF-01-03	In <u>velocity mode</u> the joint angular velocity	"Crudely proportional" implies that there is no
	shall be crudely proportional to a given	explicit need for velocity feedback, the speed
	velocity setpoint.	may be controlled in open-loop.
WSF-01-03-01	The WSF shall include a velocity sensor or	If brushless motor: use Hall elements for speed
	estimator.	estimates.
WSF-02	The movements of the wrist joint should be	
	controllable according to the follwing modes:	
	4. Torque mode	
	5. Impedance mode	
WSF-02-04	In torque mode the motor torque shall be	Torque crudely proportional with motor current,
	proportional to a given torque setpoint.	so current can be used for feedback.
WSF-02-04-01	The WSF should include means for	Also follows from GEN-09.
	monitoring motor current.	
WSF-02-05	In <u>impedance mode</u> the mechanical impedance	Mech. Impedance = torque/velocity.
	of the joint shall be determined by a given	May require strain gauge measurements etc. to
	impedance setpoint	"bypass" friction.
WSF-03	WSF shall provide an interface to WCF	Typically: Setpoints in, process values out. The
	through which the modes (described in WFS-	precise content of this communication will be
	01 to WSF-02) can be selected and relevant	defined by a protocol sepcification (SCIP) TBD.
	parameters can be set, and through which	
	WSF can report relevant state variables TBD.	

5.5 Wrist Communication Function, WCF

The following requirements are derived from GEN-04.

Req. no.	Description	Comments
WCF-01	The NRWD shall have a two-wire Proximal	
	Communication Interface (PCI) and a two-	
	wire Distal Communication Interface (DCI).	
WCF-02	The PCI shall be configurable so that	The 7.2V spec is approximate. For protocol, see

	it implements two (0V, 7,2V) analog input lines or a bidirec onal twowire CAN interface with the PDCP protocol(Losier,2009).	comment re. WSF-03.
WCF-02-01	The analog input lines shall be able to sample both lines at a rate of 1 kHz. The sampling rate should be as high as 2 kHz.	EMG signals have a bandwidth of approx. 500 Hz.
WCF-03	The DCI shall be configurable so that it implements two (0 V, 7.2 V) analog output lines or a bidirec onal two-wire CAN interface with the PDCP-protocol.	The 7.2V spec is approximate; it may be acceptable to reduce this to 5.0V.
WCF-04	The WCF shall be configurable to an all-Analog mode, with the PCI as an analog input interface and the DCI as an analog output interface.	
WCF-05	The WCF shall be configurable to an all-digital mode, with the PCI and the DCI acting as bidirectional CAN bus interfaces.	Only a single CAN interface is necessary, as both PCI and DCI can be internally connected to this single interface.
WCF-07	The WCF should be configurable to a hybrid mode in which the PCI acts as two analog input lines while DCI acts as a bidirectional CAN interface (cf. WCF-01)	Not strictly necessary, but improves interoperability with older systems.
WCF-10	The WCF shall include a serial interface for downloading software and for debugging/diagnostic purposes.	Same fashion as AVR Butterfly serial programming. This requires a bootloader. Might include RS-232 and/or other proper interfaces.
WCF-11	WCF shall implement an interface to WSF according to WSF-03.	

5.6 Wrist Power Function, WPF

The following requirements are derived from GEN-05.

Req. no.	Description	Comments
WPF-01	The WPF shall accept external power in the	Implies on-board voltage regulation.
	form of an unregulated two-wire DC supply.	
WPF-02	The NRWD shall tolerate and run normally	This corresponds to Otto Bock, Motion Control
	when powered with a voltage in the range	and other systems.
	(6 V, 12 V).	Upper limit possibly to be relaxed (lowered).
	The range of usable voltages should be as	
	wide as (5 V, 18 V).	
WPF-03	The NRWD shall tolerate supply voltage in	E.g. shutting down the controller before the
	the range (0 V, 12 V) without exhibiting	voltage gets dangerously low, may otherwise
	unpredictable behaviour and without getting	damage Flash and EEPROM content etc.
	damaged.	See comments to WPF-02.
WPF-04	The NRWD should automatically limit its	Low batteries => careful motor control to avoid
	motor current to a level that does not reduce	power-down.
	the supply voltage below the interval given in	
	WPF-02.	

5.7 Proximal Attachment Function, PAF

The following requirements are derived from GEN-06 and more.

Req. no.	Description	Comments
PAF-01	The PAF shall comprise two parts, the	A commercially available "quick disconnect"
	proximal of which is adapted to be	unit may be used, but the entire mechanism
	permanently attached to the forearm socket	must be kept as short as possible.
	and the distal permanently attached to the	
	wrist unit. The parts must "mate" to form a	
	mechanically stable connection while also	
	being detachable.	
PAF-01-01	The proximal part of the PAF shall be hollow	Batteries and electrodes etc. is mounted here, so
	to allow access to the space within the socket	an opening must be present to allow
	proximally to the wrist.	maintenance and replacement of these units.
PAF-02	PAF disconnection should be possible with	
	hand or a simple tool, e.g. a screwdriver.	
PAF-03	The PAF shall include a four-wire electric	GEN-04 and GEN-05. Preferably a "quick
	coupling, preferably mechanically integrated	disconnect" type, optionally loose wires and a
	with the PAF itself.	manually detachable coupling/plug.
PAF-03-01	The PAF electrical coupling shall include at	This is the current for the wrist AND the
	least two power supply wires/contacts capable	terminal device.
	of transferring a constant current of 4 A per	
	wire.	
PAF-03-02	The PAF electrical coupling should be	Brush rings etc.
	rotatable without twisting the wires.	This requirement and DAF-02-02 are mutually
		exclusive; both are not needed!

5.8 Distal Attachment Function, DAF

The following requirements are derived from GEN-07 and more.

Req. no.	Description	Comments
DAF-01	The DAF should comprise two parts, the	The distal part may be a function of the terminal
	proximal of which is permanently attached to	device, e.g. a Bock hand.
	the wrist and the distal permanently attached	No "quick disconnect" required here!
	to the terminal device. The parts must "mate"	
	to form a mechanically stable connection	
	while also being detachable.	
DAF-02	The DAF shall include a four-wire electric	GEN-04 and GEN-05. Preferably a "quick
	coupling, preferably mechanically integrated	disconnect" type, optionally loose wires and a
	with the DAF itself.	manually detachable coupling/plug.
DAF-02-01	The DAF electrical coupling shall include at	This is the current that drives the terminal
	least two wires/contacts capable of	device. Check with Otto Bock (=1 A?); higher
	transferring a constant current of 2 A per wire,	currents needed for more
	and these wires shall be connected to the	advanced/multifunction hands.
	power supply wires from PAF.	
DAF-02-02	The DAF electrical coupling should be	Brush rings etc.
	rotatable without twisting the wires.	This requirement and PAF-03-02 are mutually
		exclusive; both are not needed!

5.9 Wrist Geometry Function, WGF

See GEN-08.

Req. no.	Description	Comments

6. Bibliography

- [1] Stavdahl, O., Optimal wrist prosthesis kinematics: Three-dimensional rotation statistics and parameter estimation. PhD Thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, 2002.
- [2] Storheil, R., Optimal Wrist Prosthesis with One Degree-of-Freedom. Term Project Report, TTK4720, Department of Engineering Cybernetics, Norwegian University of Science and Technology, 2004. (In Norwegian.)
- [3] ToMPAW document (TBC)