QuickTick - AI-Based Attendance System

An AI system utilizing machine learning and image processing to identify students and teachers through facial recognition as they enter a room, automatically marking their attendance.

Table of Contents

- 1. Introduction
- 2. Non-Functional Requirements
 - Performance Requirements
 - Security Requirements
- 3. Software Test Plans
 - Test Strategies
 - Test Automation Tools
 - Detailed Test Plan
- 4. Appendices
 - Glossary
 - References

Introduction

QuickTick is an innovative attendance management system that leverages machine learning and AI image processing technologies to identify students and teachers via facial recognition upon entering a room. It automates the attendance marking process, enhancing efficiency and accuracy in educational institutions.

Non-Functional Requirements

Non-functional requirements define system attributes such as performance, security, reliability, and usability.

Performance Requirements

To ensure a seamless user experience, QuickTick must meet the following performance benchmarks:

Requirement	Description	Metric	Target Value
Recognition Speed	Time taken to identify a face and mark attendance.	Average Processing Time	1 second

Requirement	Description	Metric	Target Value
Accuracy Correctly identifying individuals among the		Recognition Accuracy	99%
	population.		
Throughput	Number of individuals processed per minute.	People Per Minute	60
Concurrent	Ability to recognize multiple	Number of	5 at
Processing faces simultaneously.		Faces Detected	once
Availability System uptime over a given		Uptime	99.9%
	period.	Percentage	
Scalability	Ability to maintain	Scaling	Linear
	performance with increased	Efficiency	Scalabil-
	users/data.		ity
Resource	Efficient use of CPU, GPU,	CPU/GPU/Memor 80% Uti-	
Utilization memory, and storage resource		Usage	lization
Latency	Delay from face detection to	End-to-End	2
	attendance confirmation.	Latency	seconds
Error Rate	Rate of false positives or negatives in recognition.	Error Rate	1%

Security Requirements

Security measures are critical to protect personal data and ensure compliance with privacy laws.

Requirement	Description	Implementation Strategy
Data Privacy	Adhere to data protection	Implement consent
Compliance	regulations (e.g., GDPR,	mechanisms; anonymize
	CCPA).	data when possible.
Authentication	Secure access to	Use multi-factor
	administrative functions and	authentication (MFA) for
	data.	administrators.
Authorization	Control access levels based	Enforce Role-Based Access
	on roles (e.g., admin, staff).	Control (RBAC).
Data	Protect data during network	Use HTTPS with TLS 1.2 or
Encryption	transmission.	higher for all
In Transit		communications.
Data	Secure stored data (images,	Encrypt data using AES-256
Encryption	attendance records).	encryption.
At Rest		
Input	Prevent injection attacks	Implement rigorous
Validation	and handle unexpected inputs.	server-side input validation.

Requirement	Description	Implementation Strategy
Secure	Protect sensitive biometric	Store biometric data
Storage of	information.	securely with encryption
Biometric		and access controls.
Data		
Audit	Record system activities for	Implement detailed logging
Logging	security auditing.	of access and actions.
Incident	Procedures for handling	Develop and maintain an
Response	security breaches.	incident response plan.
Plan		
Regular	Identify and fix	Conduct periodic security
Security	vulnerabilities proactively.	testing and code reviews.
Assessments		
Session	Secure handling of user	Implement session timeouts
Management	sessions.	and protect session tokens.
Compliance	Adhere to laws regulating	Obtain necessary
with Facial	use of facial recognition	permissions and consents;
Recognition	technology.	provide opt-out options.
Laws		

Software Test Plans

A comprehensive testing strategy ensures QuickTick operates reliably, securely, and effectively.

Test Strategies

Testing Levels

- 1. **Unit Testing**: Test individual modules (e.g., face detection, database access).
- 2. **Integration Testing**: Verify interactions between integrated components (e.g., camera input with recognition module).
- 3. **System Testing**: Evaluate the complete system's compliance with requirements.
- 4. **Acceptance Testing**: Validate the system meets stakeholder needs and operates in the intended environment.

Testing Types

- Functional Testing: Ensure all features perform as specified.
- Performance Testing: Assess system speed, responsiveness, and stability under workload.
- Security Testing: Identify vulnerabilities and ensure data protection.

- Usability Testing: Evaluate the user interface and user experience.
- Compatibility Testing: Verify system operation across various hardware and software environments.
- Regression Testing: Ensure new changes do not introduce new bugs.

Automation Strategy

- Automate repetitive and critical test cases to improve efficiency.
- \bullet Use Continuous Integration/Continuous Deployment (CI/CD) pipelines to integrate testing into the development workflow.
- Implement test automation frameworks for maintainability.

Test Automation Tools

Tool	Purpose	
TensorFlow Testing	Unit testing for machine learning models.	
pytest	Unit and integration testing for Python code.	
Selenium	Automate UI testing of web interfaces.	
${f WebDriver}$		
OpenCV Test Suite	est Suite Validate image processing functions.	
JMeter	Performance and load testing.	
OWASP ZAP	Automated security testing for web applications.	
$\mathbf{SonarQube}$	Static code analysis for security vulnerabilities and	
	code quality.	
Docker	Consistent test environments through	
	containerization.	
Jenkins/GitLab CI	CI/CD pipelines for automated testing and	
·	deployment.	
Katalon Studio	Integrated testing solution for API and web testing.	

Detailed Test Plan

Test Case Management Test cases are detailed with specific steps, expected outcomes, and mapped to requirements for traceability.

Sample Functional Test Cases

Test			
Case			
ID	Title	Description	Expected Result
TC_{-}	FUN <u>ce</u> 001	Verify system correctly	Correct identification
	Recognition	identifies registered	and attendance marked.
	Accuracy	individuals.	

Test Case		
ID Title	Description	Expected Result
TC_FUNire@i92ered Face Handling	Ensure system does not recognize unregistered faces.	No attendance marked; alert generated if configured.
TC_FUN <u>llt</u> 003 Faces Detection	Test system's ability to detect and process multiple faces simultaneously.	All faces identified and attendance recorded accordingly.

Sample Performance Test Cases

Test		
Case		
ID Title	Description	Expected Result
TC_PER®_001	Process high volume of	System maintains
Throughput	entries (e.g., during class	recognition speed and
Test	changeover).	accuracy.
$\mathbf{TC}_{\mathbf{PERFou}002}$	Monitor system	CPU, GPU, and memory
Utilization	resources under load.	usage remain within
		acceptable limits.
TC_P E%R #F <u>ab</u> d03	Test system performance	System scales without
Test	with increased user base.	performance
		degradation.

Sample Security Test Cases

Test Case			
ID	Title	Description	Expected Result
	11010	Description	Expected Result
\mathbf{TC}_{-}	SEIO <u>ata</u> 001	Verify data is encrypted	Data cannot be read if
	Encryption	in transit and at rest.	intercepted or accessed
	Verification		directly from storage.
\mathbf{TC}_{-}	SECha 0002 orized	Attempt access using	Access is denied; attempt
	Access	invalid credentials.	is logged for auditing.
	Attempt		
\mathbf{TC}_{-}	SEK G <u>on</u> 003 ic	Test for unauthorized	Access is denied; data
	Data	access to biometric data.	remains secure; attempt
	Protection		is logged.

Test Environment

- Hardware: Devices with cameras (e.g., CCTV systems), servers with GPU capabilities for processing.
- **Software**: Latest build of QuickTick, machine learning frameworks (e.g., TensorFlow, OpenCV), testing tools.
- Network Configurations: Various network conditions to simulate real-world use cases.

Schedule

Phase	Start Date	End Date	Activities
Planning	01-Feb- 2024	07-Feb- 2024	Define test scope, objectives, and resources.
Design	08-Feb- 2024	21-Feb- 2024	Develop test cases, prepare test data and environments.
Environment	22-Feb-	28-Feb-	Configure hardware and software
Setup	2024	2024	testing environments.
Execution	01-Mar- 2024	31-Mar- 2024	Execute tests, record results, and report defects.
Closure	01-Apr- 2024	07-Apr- 2024	Compile test reports, review outcomes, lessons learned.

Risk Management

Risk	Mitigation Strategy
Privacy Concerns	Ensure compliance with privacy laws; obtain necessary consents.
False Positives/Negatives	Enhance model training; implement fallback mechanisms.
Hardware Limitations	Optimize performance; recommend minimum hardware specifications.
Data Security Breaches	Implement robust security measures; prepare an incident response plan.
Regulatory Changes	Stay updated on laws; adapt policies and procedures accordingly.

Entry and Exit Criteria

- Entry Criteria:
 - Test environment is fully set up and configured.
 - Test data, including sample facial images, is prepared.
 - Test cases are reviewed and approved.

• Exit Criteria:

- All planned tests are executed.
- Critical defects are identified, reported, and addressed.
- Test summary report is completed and reviewed.

Appendices

Glossary

- AI: Artificial Intelligence.
- ML: Machine Learning.
- GPU: Graphics Processing Unit.
- **RBAC**: Role-Based Access Control.
- MFA: Multi-Factor Authentication.
- GDPR: General Data Protection Regulation.
- CCPA: California Consumer Privacy Act.
- CI/CD: Continuous Integration and Continuous Deployment.
- API: Application Programming Interface.

References

- Facial Recognition Regulations: Facial Recognition Laws
- OWASP Security Guidelines: OWASP IoT Security Guidance
- Privacy Laws Compliance: GDPR Information, CCPA Information
- Machine Learning Testing: Best Practices for ML Testing
- IEEE Standards for Biometric Data: IEEE Biometric Open Protocol Standard