07.AWS EKS를 활용해 서버 배포하기

1.EC2에서 쿠버네티스를 활용했을 때 발생하는 AWS 예상 비용

VEC2

- EC2 인스턴스 (t4g.small): 시간당 USD 0.0208 (24시간당 약 700원) (비용이 걱정되시는 분들은 학습이 끝나자마자 인스턴스를 종료하시길 권장드립니다.)
- 데이터 전송 비용 : 1 GB당 0.1368 USD (1GB당 약 200원)
 (실습 과정 동안 1GB 이하의 데이터만 전송합니다.)
- Public IPv4 비용 : 시간당 0.005 USD (24시간당 약 200원)

RDS

- RDS 인스턴스 (t4g.micro) : 시간당 USD 0.025 (24시간당 약 800원) (프리티어일 경우 월 750시간까지 무료)
- 스토리지 비용 : GB-월당 0.131 USD (20GB-24시간당 약 200원) (프리티어일 경우 20GB까지 무료)
- Public IPv4 비용 : 시간당 0.005 USD (24시간당 약 200원)

ECR

- 스토리지 비용 : GB-월당 USD 0.10 (1GB-24시간당 약 10원) (실습 과정 동안 1GB 이하의 데이터만 저장합니다.)
- 데이터 전송 비용 : GB-월당 USD 0.126 (1GB-24시간당 약 6원) (실습 과정 동안 1GB 이하의 데이터만 전송합니다.)

ELB (Classic Load Balancer)

- 사용 비용 : 시간당 0.025 USD (24시간당 약 800원)
- 처리한 데이터 비용 : GB당 0.008 USD (1GB-약 10원) (실습 과정 동안 1GB 이하의 데이터만 처리합니다.)

EKS

• EKS 클러스터 사용 비용 : 시간당 USD 0.10 (24시간당 약 3,500원) (비용이 걱정되시는 분들은 학습이 끝나자마자 EKS 클러스터를 종료하시길 권장드립니다.)

2. AWS EKS를 남들보다 빠르게 익히려면?!

✓ AWS EKS를 남들보다 빠르게 익히려면?!

지금까지의 쿠버네티스 핵심 개념은 다 배웠다. AWS EKS라고 크게 다를 건 없다. 겁먹을 필요 없다. AWS EKS는 단순히 셋팅법만 익히면 나머지는 다 똑같다. EKS를 셋팅하면서 모든 옵션을 다 알 필요가 없다. 딱 필요하고 중요한 부분에 대해서만 알고 있으면 된다. 파레토의 법칙을 잊지 말자.

완벽하게 모든 기능을 익히려는 순간 학습의 효율은 엄청 떨어진다. 우린 내신 시험을 보는 게 아니다. 현업에서 잘 안 쓰는 지엽적인 내용은 뛰어넘을 수도 있어야 한다. 쿠버네티스를 실제 다루는 것에 집중하자.

3. EKS란?

✓ EKS(Elastic Kubernetes Service)

EKS란 <u>AWS에서 쿠버네티스를 편하게 관리하고 사용할 수 있게 만든 AWS용</u> <u>쿠버네티스</u>이다.

이와 비슷한 예로 MySQL과 같은 DB를 편하게 관리하고 사용할 수 있게 만든 서비스가 RDS이고,

Redis와 같은 캐싱을 편하게 관리하고 사용할 수 있게 만든 서비스가 **ElastiCache**다.

✓ 현업에서도 EKS를 많이 사용할까?

쿠버네티스를 직접 설치해서 관리하는 게 생각보다 손이 많이 간다. 따라서 현업에서는 쿠버네티스를 EC2와 같은 서버에 직접 설치해서 쓰지 않고, AWS에서 제공하는 EKS를 활용하는 경우가 많다.

4. 쿠버네티스와 EKS의 아키텍처 구조

▼ 쿠버네티스의 복잡한 아키텍처 구조

쿠버네티스를 입문하는 입장에서 위와 같은 복잡한 아키텍처 구조를 전부 이해할 필요는 없다. 그런데 대부분의 책과 강의의 초반부를 보면 일일이 다 설명하고 있다. etcd가 뭔지, Control Plane은 뭔지, kube-scheduler가 뭔지 하나하나 다 설명한다. 이렇게 고보하니까 크버네티스가 어려게 느껴지고 재미드 언고 지드드 아니가고 이해도 안 되는

공부하니까 쿠버네티스가 어렵게 느껴지고, 재미도 없고, 진도도 안 나가고, 이해도 안 되는 것이다. 이런 이유 때문에 이 강의의 초반에 쿠버네티스 아키텍처를 굳이 언급하지 않았다. 지금까지 쿠버네티스의 핵심 개념을 이해하는 데 크게 문제가 없었음을 느꼈을 것이다.

하지만 EKS를 다룰 때 아키텍처에서 기본적인 부분을 알아야 할 필요가 있어서 설명하고자한다. 입문자 입장에서 알면 되는 부분만 간단화시켜서 살펴보자.

🔽 간단하게 표현한 쿠버네티스 아키텍처 구조

- <mark>쿠버네티스 클러스터:</mark> 하나의 마스터 노드와 여러 워커 노드들을 한 묶음으로 부르는 단위
- 마스터 노드: 쿠버네티스 클러스터 전체를 관리하는 서버
- 워커 노드: 쿠버네티스의 파드를 실행시키는 서버

✓ EKS를 활용해 구성할 아키텍처 구조

5. EKS 클러스터 생성하기

▼ EKS 클러스터 생성하기

1. **EKS** 서비스로 들어가기

2. 클러스터 추가하기

3. 클러스터 구성 셋팅하기

4. EKS 클러스터의 IAM Role 생성하기

5. 방금 생성한 Role을 선택해 지정하기

6. 나머지 옵션은 그대로 두고 다음 버튼 누르기

7. 다음 단계에서도 기본 옵션 그대로 두고 다음 버튼 누르기

관찰성 구성

▶ 관찰성 정보

지표

Prometheus 정보

○ Prometheus 지표를 Amazon Managed Service for Prometheus로 전송

Amazon Managed Service for Prometheus를 사용하여 애플리케이션 및 인프라 지표를 모니터링하세요. 이러한 지표에는 시스템 상태 및 성능 테이터 가 포함됩니다.

CloudWatch 정보

CloudWatch Observability 추가 기능을 통해 클러스터에서 CloudWatch Observability를 활성화할 수 있습니다. 클러스터가 생성된 후 추가 기능 탭으로 이동하여 CloudWatch Observability 추가 기능을 설치하세요. 그런 다음 CloudWatch Application Signals 및 Container Insights를 활성화하고 CloudWatch로 텔레메트리 모으기를 시작하세요.

제어 플레인 로깅 정보

Amazon EKS 제어 플레인에서 CloudWatch Logs로 감사 및 진단 로그를 전송합니다.

O API 서버

클러스터에 대한 API 요청과 관련된 로그입니다.

김시

Kubernetes API를 통한 클러스터 액세스와 관련된 로그입니다.

Authenticator

클러스터에 대한 인증 요청과 관련된 로그입니다.

○ 컨트롤러 관리자

클러스터 컨트롤러 상태와 관련된 로그입니다.

○ 스케줄러

예약 결정과 관련된 로그입니다.

취소

이전

다음

추가 기능 선택

여러 범주의 추가 기능을 검토한 다음 추가 기능을 선택하여 클러스터를 개선합니다.

Amazon EKS 추가 기능 (11) 정보

kube-proxy 정보

✓.

클러스터 내에서 포드 네트워킹을 활성화 합니다.

카테고리

networking

Amazon VPC CNI 정보

 \checkmark

클러스터 내에서 포드 네트워킹을 활성화 합니다.

카테고리

networking

CoreDNS 정보

 \checkmark

클러스터 내에서 서비스 검색을 활성화합 니다.

카테고리

networking

Amazon EKS Pod Identity 에이전트 정보

✓

EKS Pod Identity 에이전트를 설치하고 EKS Pod Identity를 사용하여 Kubernetes 서비스 계정을 통해 포드에 AWS IAM 권한을 부여합니다.

카테고리

security

Amazon GuardDuty EKS 런타임 모니터링 정

보

클러스터 내에 EKS 런타임 모니터링 추 가 기능을 설치합니다. Amazon GuardDuty 내에서 EKS 런타임 모니터 링을 활성화해야 합니다.

카테고리

security

취소

이전

다음

8. '검토 및 생성' 페이지에서 생성 버튼 누르기

- 9. 생성이 완료될 때까지 기다리기
 - 약 10분~15분 정도 걸린다.

6. EKS 워커 노드 추가하기

- ▼ EKS 워커 노드 추가하기
 - 1. 노드 그룹 추가하기

2. 노드 그룹 구성 셋팅하기

3. EKS 노드 그룹의 IAM Role 생성하기

→ 이미 권한이 체크된 상태

4. 방금 생성한 Role 선택해 지정하기

시작 템플릿 정보

노드 그룹을 생성한 후에는 이러한 속성을 변경할 수 없습니다.

○ 시작 템플릿 사용

EC2 시작 템플릿을 사용하여 이 노드 그룹을 구성합니다.

Kubernetes 레이블 정보

이 노드 그룹에는 레이블이 없습니다.

레이블 추가

추가할 수 있는 나머지 레이블: 50

Kubernetes 테인트 정보

이 노드 그룹에는 테인트가 없습니다.

테인트 추가

추가할 수 있는 나머지 테인트: 50

태그 정보

리소스와 연결된 태그가 없습니다.

새 태그 추가

최대 50개의 태그를 더 추가할 수 있습니다.

취소 다음

5. 컴퓨팅 및 조정 구성 설정하기

나도 그를 조되 그성			
노드 그룹 조정 구성			
원하는 크기			
그룹에서 처음에 시작할 노드 수를 설정합니다.			
2 노드			
원하는 노드 크기는 0보다 크거나 같아야 함			
최소 크기			
그룹에서 축소할 수 있는 최소 노드 수를 설정합니다.			
2 노트			
최소 노드 크기는 0보다 크거나 같아야 함			
최대 크기			
그룹에서 확장할 수 있는 최대 노드 수를 설정합니다.			
오 노트			
최대 노드 크기는 1보다 크거나 같아야 하며 최소 크기보다 작을 수 없음			
노드 그룹 업데이트 구성 정보			
최대 사용 불가			
	설정합니다.		
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을			
최대 사용 불가	설정합니다. 백분율 백분율 지정		
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수 수 숫자 압력	○ 백분 <u>율</u>		
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수 수 수자 입력	○ 백분 <u>율</u>		
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수	○ 백분 <u>율</u>		
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수 숫자 입력 값	○ 백분 <u>율</u>		
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수	○ 백분 <u>율</u>		
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수	○ 백분 <u>율</u>	취소	이전 다음
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수	○ 백분 <u>율</u>	취소	이전 다음
최대 사용 불가 노드 그룹 버전 업데이트 중에 사용할 수 없는 노드의 최대 허용 수 또는 백분율을 수	○ 백분 <u>율</u>	취소	이전 다음

6. 나머지 옵션은 그대로 두기

7. 노드 그룹이 생성될 때까지 기다리기

5분 정도 기다리면 활성화된다.

8. EC2 인스턴스 확인하기

EC2 인스턴스 페이지에 들어가면 새로운 EC2 인스턴스 2개가 생성되어 있는 걸확인할 수 있다. EKS 클러스터에서 하나의 워커 노드(Worker Node)가 하나의 EC2 인스턴스에서 실행되는 구조이기 때문이다.

7. 로컬에서 EKS 클러스터 조정할 수 있게 셋팅하기

☑ 로컬에서 **EKS** 클러스터 조정할 수 있게 셋팅하기

1. 현재 kubect1이 어떤 클러스터 환경에서 작동되고 있는 지 확인하기

\$ kubectl config get-contexts

현재는 **kubectl**이 **Docker Desktop**의 쿠버네티스 클러스터를 작동시키고 있는 걸알 수 있다.

2. kubectl에 EKS 클러스터 추가하기

aws eks --rgeion ap-northeast-2 update-kubeconfig --name <EKS 클러스터 이름>
\$ aws eks --region ap-northeast-2 update-kubeconfig --name kube-practice

3. 잘 적용 됐는지 확인하기

\$ kubectl config get-contexts

[참고]

다른 클러스터로 전환

\$ kubectl config use-context <컨텍스트 이름>

#특정 컨텍스트 삭제

\$ kubectl config unset contexts.<컨텍스트 이름>

8. EKS에 백엔드(Spring Boot) 서버 배포하기 (+ RDS, ECR)

☑ EKS에 백엔드(Spring Boot) 서버 배포하기 (+ RDS, ECR)

1. 매니페스트 파일 수정하기

spring-deployment.yaml

```
apiVersion: apps/v1
kind: Deployment
# Deployment 기본 정보
metadata:
 name: spring-deployment # Deployment 이름
# Deployment 세부 정보
spec:
 replicas: 3 # 생성할 파드의 복제본 개수
selector:
  matchLabels:
   app: backend-app # 아래에서 정의한 Pod 중 'app: backend-app'이라는 값을
가진 파드를 선택
# 배포할 Pod 정의
template:
 metadata:
   labels: # 레이블 (= 카테고리)
    app: backend-app
  spec:
   containers:
    - name: spring-container # 컨테이너 이름
     image:
002177417362.dkr.ecr.ap-northeast-2.amazonaws.com/kube-ecr:2.0 #
컨테이너를 생성할 때 사용할 이미지
     ports:
      - containerPort: 8080 # 컨테이너에서 사용하는 포트를 명시적으로 표현
      - name: DB HOST
       valueFrom:
        configMapKeyRef:
         name: spring-config
         key: db-host
      - name: DB PORT
       valueFrom:
        configMapKeyRef:
         name: spring-config
         key: db-port
      - name: DB NAME
```

valueFrom:

configMapKeyRef: name: spring-config

key: db-name

- name: DB_USERNAME

valueFrom: secretKeyRef:

name: spring-secret key: db-username

- name: DB PASSWORD

valueFrom: secretKeyRef:

> name: spring-secret key: db-password

spring-secret.yaml

apiVersion: v1 kind: Secret

type: Opaque # 임의의 사용자 정의 데이터를 저장할 때 사용하는 타입

Secret 기본 정보

metadata:

name: spring-secret # Secret 이름

Key, Value 형식으로 값 저장

stringData:

db-username: admin db-password: password

spring-config.yaml

apiVersion: v1 kind: ConfigMap

ConfigMap 기본 정보

metadata:

name: spring-config # ConfigMap 이름

Key, Value 형식으로 설정값 저장

data:

db-host: kube-database.coseefawhrzc.ap-northeast-2.rds.amazonaws.com

db-port: "3306" db-name: mydb apiVersion: v1 kind: Service

Service 기본 정보

metadata:

name: spring-service

Service 세부 정보

spec:

type: LoadBalancer # Service의 종류

selector:

app: backend-app # 실행되고 있는 파드 중 'app: backend-app'이라는 값을 가진

파드와 서비스를 연결

ports:

- protocol: TCP # 서비스에 접속하기 위한 프로토콜

port: 80 # 외부에서 사용자가 요청을 보낼 때 사용하는 포트 번호

targetPort: 8080 # 매핑하기 위한 파드의 포트 번호

nodePort: 30000 # 외부에서 사용자들이 접근하게 될 포트 번호

- NodePort: 쿠버네티스 내부에서 해당 서비스에 접속하기 위한 포트를 열고 외부에서 접속 가능하도록 한다. ⇒ <u>들어오는 요청을 여러 Worker Node로 트래픽을</u> 분산시키지 않는다.
- ClusterIP: 쿠버네티스 내부에서만 통신할 수 있는 IP 주소를 부여. 외부에서는 요청할 수 없다.
- LoadBalancer : 외부의 로드밸런서(AWS의 로드밸런서 등)를 활용해 외부에서 접속할 수 있도록 연결한다. ⇒ <u>들어오는 요청을 여러 Worker Node로 트래픽을</u> 분산시켜준다.
- 2. 매니페스트 파일을 통해 오브젝트 생성하기

\$ kubectl apply -f spring-secret.yaml

\$ kubectl apply -f spring-config.yaml

\$ kubectl apply -f spring-deployment.yaml

\$ kubectl apply -f spring-service.yaml

- 3. 잘 생성 됐는지 확인하기
 - \$ kubectl get secret
 - \$ kubectl get configmap
 - \$ kubectl get deployment

\$ kubectl get pods

\$ kubectl get service

Service의 Type을 LoadBalancer로 했더니 외부에서 접속할 수 있는 주소가 주어졌다.

4. Service의 주소로 접속해보기\

```
← → C △ 주의 요함 a0c5c177d8b954876af7b2098c21553b-842188061.ap-northeast-2.elb.amazonaws.com

Version 2.0
```

5. 정말 로드밸런서가 생성 됐는지 확인하기

☑ 아키텍처 다시 한 번 짚어보기

9. 비용 나가지 않게 EC2, RDS, ECR, EKS 종료하기

✓ 비용 나가지 않게 EKS 종료하기

1. 실행 중인 오브젝트 종료하기 실행 중인 파드가 있으면 EKS의 노드 그룹이 삭제되지 않는다.

\$ kubectl delete all --all

2. EKS 노드 그룹 삭제하기

3. EKS 클러스터 삭제하기

EKS의 노드 그룹이 삭제가 완료돼야만 EKS 클러스터를 삭제할 수 있다. EKS 노드 그룹이 삭제될 때까지 조금만 기다리자.

☑ 비용 나가지 않게 **EC2** 종료하기

☑ 비용 나가지 않게 **RDS** 종료하기

최종 스냅샷 생성과 자동 백업 보존을 체크하면 비용이 나간다. 따라서 실제 운영용 데이터베이스가 아니라면 체크를 해제하고 삭제를 하자.

✓ 비용 나가지 않게 ECR 종료하기

☑ 혹시나 비용 나가는 건 아닌지 체크하는 방법

