解析関数のノート

箱 (@o_ccah)

2019年2月24日

記号と用語

- $\lceil n \otimes m \rceil$, $\lceil \mathbb{K}^n \rceil$ などと書いたら、特に断らない限り、 $n \in \mathbb{N}$ であるものとする.
- \mathbb{K}^n , \mathbb{N}^n などの元 x に対して、特に断らなくても、x の i-成分($i \in \{0, ..., n-1\}$)を x_i と書く.
- $x \in \mathbb{K}^n$ と $k \in \mathbb{N}^n$ に対して, $x^k = x_0^{k_0} \cdots x_{n-1}^{k_{n-1}}$ と書く.
- $k \in \mathbb{N}^n$ に対して、 $|k| = k_0 + \cdots + k_{n-1}$ 、 $k! = k_0! \cdots k_{n-1}!$ と定める.
- $r,s \in \mathbb{R}^n_{\geq 0}$ に対して, $r \leq s$ とは i = 0, ..., n-1 に対して $r_i \leq s_i$ であることをいい, r < s とは i = 0, ..., n-1 に対して $r_i < s_i$ であることをいう.
- $x \in \mathbb{K}^n$, $r \in \mathbb{R}^n_{>0}$ に対して、 \mathbb{K}^n における中心 x, 半径 r の多重球・閉多重球をそれぞれ

$$B(x;r) = B_{\mathbb{K}^n}(x;r) = \{ y \in \mathbb{K}^n \mid (|y_0 - x_0|, \dots, |y_{n-1} - x_{n-1}|) < r \}$$

$$\overline{B}(x;r) = \overline{B}_{\mathbb{K}^n}(x;r) = \{ y \in \mathbb{K}^n \mid (|y_0 - x_0|, \dots, |y_{n-1} - x_{n-1}|) \le r \}$$

と定める.

1 形式的冪級数

定義 1.1(形式的冪級数) E を \mathbb{K} -線型空間とする。 E を係数とする n 変数の(あるいは、 \mathbb{K}^n から E への)形式的冪級数とは、 \mathbb{N}^n から E への写像のことをいう。 $k=(k_0,\ldots,k_{n-1})\in\mathbb{N}^n$ に $a_k\in E$ が対応するような形式的冪級数 A を、しばしば

$$A = \sum_{k \in \mathbb{N}^n} a_k X^k = \sum_{k_0, \dots, k_{n-1} \in \mathbb{N}} a_{k_0, \dots, k_{n-1}} X_0^{k_0} \cdots X_{n-1}^{k_{n-1}}$$

のように表す。E を係数とする n 変数の形式的冪級数全体は,成分ごとの加法とスカラー倍によって \mathbb{K} -線型空間をなす。

形式的冪級数 $A = \sum_{k \in \mathbb{N}^n} a_k X^k$ に対して、 a_0 を A の定数項という.

定義 1.2(形式的冪級数の積) E_0,\ldots,E_{n-1},F を \mathbb{K} -線型空間, $u\colon E_0\times\cdots\times E_{n-1}\to F$ を多重線型写像, A_i を \mathbb{K}^m から E_i への形式的冪級数とし,

$$A_i = \sum_{k \in \mathbb{N}^m} a_{i,k} X^k \quad (a_{i,k} \in E_i)$$

と表されているとする $(i=0,\ldots,n-1)$. A_0,\ldots,A_{n-1} の u による積 $u(A_0,\ldots,A_{n-1})$ を、次のように定める. $u(A_0,\ldots,A_{n-1})$ は \mathbb{K}^m から F への形式的冪級数であり、

$$u(A_0,\ldots,A_{n-1})=\sum_{k\in\mathbb{N}^m}\left(\sum_{k^{(0)}+\cdots+k^{(n-1)}=k}u(a_{0,k^{(0)}},\ldots,a_{n-1,k^{(n-1)}})\right)X^k.$$

定義 1.3(形式的冪級数の合成) E を完備 \mathbb{K} -ノルム空間, A を \mathbb{K}^m から \mathbb{K}^n への形式的冪級数, B を \mathbb{K}^n から E への形式的冪級数とし、

$$A = \sum_{k \in \mathbb{N}^m} a_k X^k \quad (a_k \in \mathbb{K}^n),$$

$$B = \sum_{l \in \mathbb{N}^n} b_l Y^l \quad (b_l \in E)$$

と表されているとする. 各 $k \in \mathbb{N}^m$ に対してE の元の族

$$\left\{b_{l} \sum_{k^{(0,0)}+\dots+k^{(n-1,l_{n-1}-1)}=k} \prod_{\substack{0 \leq i < n, \\ 0 \leq j < l_{i}}} (a_{k^{(i,j)}})_{i}\right\}_{l \in \mathbb{N}^{n}}$$

が絶対総和可能である場合に限り、 $A \ge B$ の合成 $B \circ A$ を次のように定める。 $B \circ A$ は \mathbb{K}^m から E への形式的 冪級数であり、

$$B \circ A = \sum_{k \in \mathbb{N}^m} \left(\sum_{l \in \mathbb{N}^n} b_l \sum_{\substack{k^{(0,0)} + \dots + k^{(n-1,l_{n-1}-1)} = k \ 0 \le i < n, \\ 0 < i < l_i}} \prod_{\substack{0 \le i < n, \\ 0 < i < l_i}} (a_{k^{(i,j)}})_i \right) X^k.$$

ただし、 $(a_{k^{(i,j)}})_i$ は $a_{k^{(i,j)}}$ の i-成分を表す.

 $B\circ A$ は、B の不定元に形式的に A を代入・展開し、それを A の不定元について整理したものである。A が定数項をもたない場合には、 $B\circ A$ の係数には有限和しか現れないため、 $B\circ A$ は必ず定義される。

定義 1.4(形式偏微分) E を \mathbb{K} -線型空間,A を \mathbb{K}^n から E への形式的冪級数とする。 $i=0,\ldots,n-1$ に対して,A の i-成分に関する形式偏微分を,

$$\partial_i A = \sum_{k \in \mathbb{N}^n, \ k_i \ge 1} a_k k_i X_0^{k_0} \cdots X_i^{k_i - 1} \cdots X_{n-1}^{k_{n-1}}$$

と定める. また, $k \in \mathbb{N}^n$ に対して,

$$\partial^k A = \partial_0^{k_0} \cdots \partial_{n-1}^{k_{n-1}} A$$

と書く.

容易にわかるように、形式偏微分どうしは交換可能である.

2 収束形式的冪級数

定義 2.1(収束形式的冪級数) E を \mathbb{K} -ノルム空間, $A=\sum_{k\in\mathbb{N}^n}a_kX^k$ を \mathbb{K}^n から E への形式的冪級数とする。 $r\in\mathbb{R}^n_{\geq 0}$ に対して, $\{a_kr^k\}_{k\in\mathbb{N}^n}$ が E において絶対総和可能であるとき,A は半径 r において絶対総和可能で

あるという.

$$J(A) = \{r \in \mathbb{R}^n_{\geq 0} \mid A \text{ は半径 } r \text{ において絶対総和可能}\},$$

 $I(A) = \{r \in \mathbb{R}^n_{\geq 0} \mid \text{ある } r' > r \text{ が存在して, } r' \in J(A)\}$

と置き, I(A) を A の収束指標という. また,

$$C(A) = \{x \in \mathbb{K}^n \mid (|x_0|, \dots, |x_{n-1}|) \in I(A)\}$$

と置き、C(A) を A の収束域という. 収束域が空でないような形式的冪級数を、収束形式的冪級数という.

n=1 のときは、 $\rho \in [0,\infty]$ を用いて $I(A)=[0,\rho)$ 、 $C(A)=\{x\in\mathbb{K}\mid |x|<\rho\}$ と書ける。この ρ を、A の収束半径という。

命題 2.2 E を \mathbb{K} -ノルム空間, $A = \sum_{k \in \mathbb{N}^n} a_k X^k$ を \mathbb{K}^n から E への形式的冪級数とする.

- (1) $r \in \mathbb{R}^n_{>0}$ について、 $\{a_k r^k\}_{k \in \mathbb{N}^n}$ が E において有界ならば、任意の r' < r に対して $r' \in I(A)$ である.
- (2) A の収束指標 I(A) は、 $\mathbb{R}_{>0}^n$ の開集合である.
- (3) J(A) と I(A) は、対数凸である。すなわち、 $r,s \in J(A)$ (あるいは $\in I(A)$)ならば、 $t \in [0,1]$ に対して $(r_0^{1-t}s_0^t,\ldots,r_{n-1}^{1-t}s_{n-1}^t) \in J(A)$ (あるいは $\in I(A)$)である。

証明 (1) 任意の $k \in \mathbb{N}^n$ に対して $\|a_k\|r^k \leq M$ であるとして、r' < r を任意にとる。r' < r'' < r を満たす $r'' \in \mathbb{R}^n_{\geq 0}$ がとれる。各 $i = 0, \ldots, n-1$ に対して $r_i''/r_i < 1$ だから $\{(r_i''/r_i)^k\}_{k \in \mathbb{N}}$ は総和可能であり、よってその積 $\{(r_0''/r_0)^{k_0} \cdots (r_{n-1}''/r_{n-1})^{k_{n-1}}\}_{k \in \mathbb{N}^n}$ も総和可能である。さて、任意の $k \in \mathbb{N}^n$ に対して

$$||a_k||r''^k = ||a_k||r^k \left(\frac{r''_0}{r_0}\right)^{k_0} \cdots \left(\frac{r''_{n-1}}{r_{n-1}}\right)^{n-1} \le M \left(\frac{r''_0}{r_0}\right)^{k_0} \cdots \left(\frac{r''_{n-1}}{r_{n-1}}\right)^{n-1}$$

が成り立つから、 $\{a_kr''^k\}_{k\in\mathbb{N}^n}$ は絶対総和可能である。すなわち、 $r''\in J(A)$ であり、よって $r'\in I(A)$ である。

- (2) $I(A) = \bigcup_{r \in J(A)} \{r' \in \mathbb{R}^n_{>0} \mid r' < r\}$ だから、I(A) は $\mathbb{R}^n_{>0}$ の開集合である.
- (3) $\{\|a_k\|r^k\}_{k\in\mathbb{N}^n}$, $\{\|a_k\|s^k\}_{k\in\mathbb{N}^n}$ が絶対総和可能であるとする。重み付き相加相乗平均の不等式より, $k\in\mathbb{N}^n$ に対して

$$||a_k|| (r_0^t s_0^{1-t})^{k_0} \cdots (r_{n-1}^t s_{n-1}^t)^{k_{n-1}} = ||a_k|| (r^k)^{1-t} (s^k)^t$$

$$\leq ||a_k|| ((1-t)r^k + ts^k)$$

$$= (1-t)||a_k|| r^k + t ||a_k|| s^k$$

が成り立つから、このとき $\{\|a_k\|(r_0^ts_0^{1-t})^{k_0}\cdots(r_{n-1}^ts_{n-1}^t)^{k_{n-1}}\}_{k\in\mathbb{N}^n}$ も絶対総和可能である。 すなわち、J(A) は対数凸である。 I(A) が対数凸であることは,J(A) が対数凸であることから容易にわかる。

命題 2.3 E を完備 \mathbb{K} -ノルム空間, $A = \sum_{k \in \mathbb{N}^n} a_k X^k$ を \mathbb{K}^n から E への形式的冪級数とする.

- (1) A の収束域 C(A) は、 \mathbb{K}^n の開集合である.
- (2) 任意の $r \in J(A)$ に対して,関数族 $\{a_k x^k\}_{k \in \mathbb{N}^n}$ は,閉多重球 $\overline{B}(x;r)$ 上の一様ノルムに関して絶対総和可能である.したがって特に,任意の $x \in C(A)$ に対して $\{a_k x^k\}_{k \in \mathbb{N}^n}$ は絶対総和可能であり,その和として得られる C(A) 上の関数は連続である.

証明 (1) I(A) は $\mathbb{R}^n_{\geq 0}$ の開集合であり(命題 2.2 (2)),C(A) は連続写像 $\mathbb{K}^n \to \mathbb{R}^n_{\geq 0}$; $x \mapsto (|x_0|, \dots, |x_{n-1}|)$ による I(A) の逆像だから,C(A) は \mathbb{K}^n の開集合である.

(2) $r \in J(A)$ を任意にとる。 $\overline{B}(0;r)$ 上の一様ノルム $\|-\|_{\overline{B}(0;r)}$ に関して

$$\sum_{k\in\mathbb{N}^n}\|a_kx^k\|_{\overline{B}(0;r)}=\sum_{k\in\mathbb{N}^n}\|a_k\|r^k<\infty,$$

すなわち、 $\{a_kx^k\}_{k\in\mathbb{N}^n}$ は $\overline{B}(0;r)$ 上の一様ノルムに関して絶対総和可能である。したがって特に、 $\{a_kx^k\}_{k\in\mathbb{N}^n}$ は B(0;r) 上の一様ノルムに関しても絶対総和可能である。連続関数の一様収束極限は連続であり,B(x;r) $(r\in J(A))$ の全体は C(A) の開被覆をなすから、 $\{a_kx^k\}_{k\in\mathbb{N}^n}$ の和として得られる C(A) 上の関数は連続である。

3 冪級数関数

本節では、無限和の一般論を用いる、無限和の一般論については、「無限和のノート」を参照のこと、

定義 3.1(収束形式的冪級数が定める冪級数関数) E を完備 \mathbb{K} -ノルム空間, $A=\sum_{k\in\mathbb{N}^n}a_kX^k$ を \mathbb{K}^n から E への収束形式的冪級数とする。C(A) 上の関数族 $\{x\mapsto a_kx^k\}_{k\in\mathbb{N}^n}$ の和を,A が定める冪級数関数といい, $f_A\colon C(A)\to E$ と書く.

命題 3.2 E を完備 K-ノルム空間とする.

- (1) A,B を \mathbb{K}^n から E への収束形式的冪級数とする。すると、 $C(A) \cap C(B) \subseteq C(A+B)$ (特に A+B も収束形式的冪級数) であり、 $C(A) \cap C(B)$ において $f_{A+B} = f_A + f_B$ が成り立つ。
- (2) $\lambda \in \mathbb{K}$, $A \in \mathbb{K}^n$ から E への形式的冪級数とする。すると、 $C(A) \subseteq C(\lambda A)$ (特に λA も収束形式的冪級数) であり、C(A) において $f_{\lambda A} = \lambda f_A$ が成り立つ。

証明 $A = \sum_{k \in \mathbb{N}^n} a_k X^k$, $B = \sum_{k \in \mathbb{N}^n} b_k X^k$ と置く.

(1) $x \in \mathbb{K}^n$ とする. $\{a_k x^k\}_{k \in \mathbb{N}^n}$ と $\{b_k x^k\}_{k \in \mathbb{N}^n}$ がともに絶対総和可能ならば,その和 $\{(a_k + b_k) x^k\}_{k \in \mathbb{N}^n}$ も絶対総和可能であり,

$$\sum_{k \in \mathbb{N}^n} (a_k + b_k) x^k = \sum_{k \in \mathbb{N}^n} a_k x^k + \sum_{k \in \mathbb{N}^n} b_k x^k$$

が成り立つ。ここまでの議論より、絶対総和可能性については $J(A) \cap J(B) \subseteq J(A+B)$ であり、ここから $I(A) \cap I(B) \subseteq I(A+B)$, $C(A) \cap C(B) \subseteq C(A+B)$ がわかる。また、上式より、 $C(A) \cap C(B)$ において $f_{A+B} = f_A + f_B$ が成り立つ。

(2) $x \in \mathbb{K}^n$ とする。 $\{\lambda a_k x^k\}_{k \in \mathbb{N}^n}$ が絶対総和可能ならば,そのスカラー倍 $\{\lambda a_k x^k\}_{k \in \mathbb{N}^n}$ も絶対総和可能であり,

$$\sum_{k \in \mathbb{N}^n} \lambda a_k x^k = \lambda \sum_{k \in \mathbb{N}^n} a_k x^k$$

が成り立つ。ここまでの議論より、絶対総和可能性については $J(A) \subseteq J(\lambda A)$ であり、ここから $I(A) \subseteq I(\lambda A)$ 、 $C(A) \subseteq C(\lambda A)$ がわかる。また、上式より、C(A) において $f_{\lambda A} = \lambda f_A$ が成り立つ。

命題 3.3 E_0, \ldots, E_{n-1}, F を完備 \mathbb{K} -ノルム空間, $u: E_0 \times \cdots \times E_{n-1} \to F$ を連続多重線型写像とする。 $i = 0, \ldots, n-1$ に対して A_i が \mathbb{K}^m から E_i への収束形式的冪級数ならば, $C(A_0) \cap \cdots \cap C(A_{n-1}) \subseteq C(u(A_0, \ldots, A_{n-1}))$ であり, $C(A_0) \cap \cdots \cap C(A_{n-1})$ において $f_{u(A_0, \ldots, A_{n-1})} = u(f_{A_0}, \ldots, f_{A_{n-1}})$ が成り立つ。

証明 $A_i = \sum_{k \in \mathbb{N}^m} a_{i,k} X^k$ と置く. $x \in \mathbb{K}^n$ とする. u は連続多重線型写像だから, $i = 0, \ldots, n-1$ に対して $\{a_{i,k} x^k\}_{k \in \mathbb{N}^n}$ が E において絶対総和可能ならば, $\{u(a_{0,k}{}^{(0)}, \ldots, a_{n-1,k}{}^{(n-1)})x^{k}{}^{(0)}, \ldots, k^{(n-1)}\}_{k}{}^{(0)}, \ldots, k^{(n-1)} \in \mathbb{N}^m}$ も絶対 総和可能であり,

$$\sum_{k^{(0)},\dots,k^{(n-1)}\in\mathbb{N}^m}u(a_{0,k^{(0)}},\dots,a_{n-1,k^{(n-1)}})x^{k^{(0)}+\dots+k^{(n-1)}}=\left(\sum_{k^{(0)}\in\mathbb{N}^m}a_{0,k^{(0)}}x^{k^{(0)}}\right)\cdots\left(\sum_{k^{(n-1)}\in\mathbb{N}^m}a_{n-1,k^{(n-1)}}x^{k^{(n-1)}}\right)$$

が成り立つ. よって、 $\{(\sum_{k^{(0)}+\cdots+k^{(n-1)}=k}u(a_{0,k^{(0)}},\ldots,a_{n-1,k^{(n-1)}}))x^k\}_{k\in\mathbb{N}^m}$ も絶対総和可能であり、

$$\sum_{k \in \mathbb{N}^m} \left(\sum_{k^{(0)} + \dots + k^{(n-1)} = k} u(a_{0,k^{(0)}}, \dots, a_{n-1,k^{(n-1)}}) \right) x^k = \left(\sum_{k^{(0)} \in \mathbb{N}^m} a_{0,k^{(0)}} x^{k^{(0)}} \right) \dots \left(\sum_{k^{(n-1)} \in \mathbb{N}^m} a_{n-1,k^{(n-1)}} x^{k^{(n-1)}} \right)$$

が成り立つ(無限和の結合性).ここまでの議論より、絶対総和可能性については $J(A_0)\cap\cdots\cap J(A_{n-1})\subseteq J(u(A_0,\ldots,A_{n-1}))$ であり、ここから $I(A_0)\cap\cdots\cap I(A_{n-1})\subseteq I(u(A_0,\ldots,A_{n-1}))$, $C(A_0)\cap\cdots\cap C(A_{n-1})\subseteq C(u(A_0,\ldots,A_{n-1}))$ がわかる.また、上式より、 $C(A_0)\cap\cdots\cap C(A_{n-1})$ において $f_{u(A_0,\ldots,A_{n-1})}=u(f_{A_0},\ldots,f_{A_{n-1}})$ が成り立つ.

次の命題,およびその証明では, \mathbb{K}^m から \mathbb{K}^n への射影 $x\mapsto (x_0,\ldots,x_{n-1})$ を π と書く.また, $\mathbb{R}^m_{\geq 0}$ から $\mathbb{R}^n_{\geq 0}$ への射影も同じ記号で表す.

命題 3.4 E を完備 \mathbb{K} -ノルム空間, $A = \sum_{k \in \mathbb{N}^m} a_k X^k$ を \mathbb{K}^m から E への収束形式的冪級数, $n \leq m$ とする. $k'' \in \mathbb{N}^{m-n}$ に対して, \mathbb{K}^n から E への冪級数 $B_{k''}$ を

$$B_{k''} = \sum_{k' \in \mathbb{N}^n} a_{(k',k'')} X^{\prime k'}$$

と定めると、 $\pi(C(A))\subseteq C(B_{k''})$ (特に $B_{k''}$ も収束形式的冪級数)である。さらに、 $x=(x',x'')\in C(A)$ $(x'=(x_0,\ldots,x_{n-1}),\ x''=(x_n,\ldots,x_{m-1}))$ に対して、 $\{f_{B_{k''}}(x')x''^{k''}\}_{k''\in\mathbb{K}^{m-n}}$ は絶対総和可能であり、

$$\sum_{k''\in\mathbb{N}^{m-n}} f_{B_{k''}}(x')x''^{k''} = f_A(x)$$

が成り立つ.

証明 $x=(x',x'')\in\mathbb{K}^m$ $(x'=(x_0,\ldots,x_{n-1}),\ x''=(x_n,\ldots,x_{m-1}))$ とする。 $\{a_kx^k\}_{k\in\mathbb{N}^m}$ が絶対総和可能ならば,各 $k''\in\mathbb{N}^{m-n}$ に対して $\{a_{(k',k'')}x'^{k'}\}_{k'\in\mathbb{N}^n}$ は絶対総和可能であり,したがって $x''^{k''}\neq 0$ ならば $\{a_{(k',k'')}x'^{k'}\}_{k'\in\mathbb{N}^n}$ も絶対総和可能である。さらに, $(x''^{k''}\neq 0$ ならば,各 $k''\in\mathbb{N}^n$ に対して $\sum_{k'\in\mathbb{N}^n}a_{(k',k'')}x'^{k'}$ が定義され), $\{(\sum_{k'\in\mathbb{N}^n}a_{(k',k'')}x'^{k'}\}_{k''\in\mathbb{N}^{m-n}}$ は絶対総和可能であり,

$$\sum_{k'' \in \mathbb{N}^{m-n}} \left(\sum_{k' \in \mathbb{N}^n} a_{(k',k'')} x'^{k'} \right) x''^{k''} = \sum_{k \in \mathbb{N}^m} a_k x^k$$

が成り立つ(無限和の結合性)。ここまでの議論より、絶対総和可能性については、任意の $k'' \in \mathbb{N}^n$ に対して $\pi(J(A)) \cap \mathbb{R}^n_{>0} \subseteq J(B_{k''})$ であり、ここから $\pi(I(A)) \subseteq I(B_{k''})$ 、 $\pi(C(A)) \subseteq C(B_{k''})$ がわかる。また、上式より、 $x = (x', x'') \in C(A)$ に対して

$$\sum_{k''\in\mathbb{N}^{m-n}}f_{B_{k''}}(x')x''^{k''}=f_A(x)$$

が成り立つ。

定理 3.5 E を完備 \mathbb{K} -ノルム空間,A を \mathbb{K}^m から \mathbb{K}^n への収束形式的冪級数,B を \mathbb{K}^n から E への収束形式的冪級数とする。A の定数項 $a_0 \in \mathbb{K}^n$ が C(B) に属するならば, $B \circ A$ が定義され,これは \mathbb{K}^m から E への収束形式的冪級数であり,0 のある近傍において $f_{B \circ A} = f_B \circ f_A$ が成り立つ.

証明 $A = \sum_{k \in \mathbb{N}^m} a_k X^k$, $B = \sum_{l \in \mathbb{N}^n} b_l Y_l$ と置く。また, $a_k \in \mathbb{K}^n$ の i-成分を $(a_k)_i$ と表す。 $a_0 \in C(B)$ とすると,ある $s \in J(B)$ が存在して $(|(a_0)_0|, \dots, |(a_0)_{n-1}|) < s$ となる。また,A は収束形式的冪級数だから $0 \in I(A)$ であり, $i = 0, \dots, n-1$ に対して関数 $r \mapsto \sum_{k \in \mathbb{N}^m} |(a_k)_i| r^k$ は I(A) 上で連続だから(命題 2.3(2)の証明と同様にしてわかる),十分 0 に近い任意の $r \in I(A)$ に対して $\sum_{k \in \mathbb{N}^m} |(a_k)_i| r^k \leq s_i$ $(i = 0, \dots, n-1)$ が成り立つ。

さて、 $r\in\mathbb{R}^m_{>0}$ を 0 の十分近くにとり、 $r\in I(A)$ かつ $i=0,\ldots,n-1$ に対して $\sum_{k\in\mathbb{N}^m}|(a_k)_i|r^k\leq s_i$ を満たすようにする。B の不定元に形式的に A を代入・展開して生じる項の族

$$\left\{b_{l} \prod_{\substack{0 \leq i < n, \\ 0 \leq j < l_{i}}} (a_{k^{(i,j)}})_{i} r^{k^{(i,j)}}\right\}_{k^{(0,0)}, \dots, k^{(n-1,l_{n-1}-1)} \in \mathbb{N}^{m}, \ l \in \mathbb{N}^{n}}$$
(*)

について考える。まず、 $l\in\mathbb{N}^n$ を固定すると、 $r\in I(A)$ より $i=0,\dots,n-1$ に対して $\{(a_k)_ir^k\}_{k\in\mathbb{N}^m}$ は絶対総和可能だから、それらの積 $\{\prod_{0\leq i< n,\ 0\leq j< l_i}(a_{k^{(i,j)}})_ir^{k^{(i,j)}}\}_{k^{(0,0)},\dots,k^{(n-1,l_{n-1}-1)}\in\mathbb{N}^m}$ も絶対総和可能であり、

$$\sum_{\substack{k^{(0,0)},\dots,k^{(n-1,l_{n-1}-1)} \in \mathbb{N}^m \\ 0 \le j < l_i}} \prod_{\substack{0 \le i < n, \\ 0 \le j < l_i}} |(a_k)_i| r^k = \prod_{\substack{0 \le i < n, \\ 0 \le j < l_i}} \sum_{\substack{k \in \mathbb{N}^m \\ 0 \le j < l_i}} |(a_k)_i| r^k$$

$$\leq \prod_{\substack{0 \le i < n, \\ 0 \le j < l_i}} s_i$$

$$= s^l.$$

したがって

$$\sum_{\substack{k^{(0,0)},\dots,k^{(n-1,l_{n-1}-1)}\in\mathbb{N}^m\\0\leq i< n,\\0\leq j< l_i}}\|b_l\|\prod_{\substack{0\leq i< n,\\0\leq j< l_i}}|(a_{k^{(i,j)}})_i|r^{k^{(i,j)}}\leq \|b_l\|s^l, \tag{**}$$

が成り立つ. 次に、 $l \in \mathbb{N}^n$ を動かすことを考える. l が \mathbb{N}^n の中を動くとき、 $s \in J(B)$ より、(**) の右辺は総和可能だから、(**) の左辺も総和可能である. よって、E の元の族 (*) は絶対総和可能である. $k \in \mathbb{N}^m$ を固定すると、無限和の結合性より

$$\left\{b_{l} \sum_{\substack{k^{(0,0)}+\cdots+k^{(n-1,l_{n-1}-1)}=k}} \prod_{\substack{0 \leq i < n, \\ 0 \leq j < l_{i}}} (a_{k^{(i,j)}})_{i} r^{k^{(i,j)}}\right\}_{l \in \mathbb{N}^{n}}$$

も絶対総和可能だから、r>0 に注意して

$$\left\{b_{l} \sum_{k^{(0,0)} + \dots + k^{(n-1,l_{n-1}-1)} = k} \prod_{\substack{0 \le i < n, \\ 0 \le j < l_{i}}} (a_{k^{(i,j)}})_{i}\right\}_{l \in \mathbb{N}^{n}}$$

も絶対総和可能であることがわかる. すなわち、BoAが定義される.

 $x \in \mathbb{K}^m$ を 0 の十分近くにとる.具体的には, $r \in \mathbb{R}^m_{>0}$ を前段でとったものとして, $(|x_0|, \ldots, |x_{m-1}|) \le r$ が成り立つようにとる.すると,

$$\left\{b_{l} \prod_{\substack{0 \leq i < n, \\ 0 \leq j < l_{i}}} (a_{k^{(i,j)}})_{i} x^{k^{(i,j)}}\right\}_{k^{(0,0)}, \dots, k^{(n-1,l_{n-1}-1)} \in \mathbb{N}^{m}, \ l \in \mathbb{N}^{n}}$$

は絶対総和可能であり,

$$\sum_{k^{(0,0)},\dots,k^{(n-1,l_{n-1}-1)}\in\mathbb{N}^m} b_l \prod_{\substack{0\leq i< n,\\0\leq j< l_i}} (a_{k^{(i,j)}})_i x^{k^{(i,j)}} = \sum_{l\in\mathbb{N}^n} \sum_{k^{(0,0)},\dots,k^{(n-1,l_{n-1}-1)}\in\mathbb{N}^m} b_l \prod_{\substack{0\leq i< n,\\0\leq j< l_i}} (a_{k^{(i,j)}})_i x^{k^{(i,j)}}$$

$$= \sum_{l\in\mathbb{N}^n} b_l \sum_{k^{(0,0)},\dots,k^{(n-1,l_{n-1}-1)}\in\mathbb{N}^m} \prod_{\substack{0\leq i< n,\\0\leq j< l_i}} (a_{k^{(i,j)}})_i x^{k^{(i,j)}}$$

$$= \sum_{l\in\mathbb{N}^n} b_l \prod_{\substack{0\leq i< n,\\0\leq j< l_i}} \sum_{k\in\mathbb{N}^m} (a_k)_i x^k$$

$$= \sum_{l\in\mathbb{N}^n} b_l \left(\sum_{k\in\mathbb{N}^m} a_k x^k\right)^l \tag{****}$$

が成り立つ. (ここで,

- 第一の式変形では、無限和の結合性を、
- 第二の式変形では,「 $\{\prod_{0 \leq i < n, \ 0 \leq j < l_i} (a_{k^{(i,j)}})_i x^{k^{(i,j)}} \}_{k^{(0,0)},\dots,k^{(n-1,l_{n-1}-1)} \in \mathbb{N}^m}$ は絶対総和可能だから, b_l を外に出せる」ことを,
- 第三の式変形では、 $\lceil i=0,\ldots,n-1$ に対して $\{(a_k)_ix^k\}_{k\in\mathbb{N}^m}$ は絶対総和可能だから、無限和と積が交換できる」ことを

用いた」)また、無限和の結合性より、

$$\left\{ \left(\sum_{l \in \mathbb{N}^n} b_l \sum_{k^{(0,0)} + \dots + k^{(n-1,l_{n-1}-1)} = k} \prod_{\substack{0 \le i < n, \\ 0 \le j < l_i}} (a_{k^{(i,j)}})_i \right) x^k \right\}_{k \in \mathbb{N}^m}$$

は絶対総和可能であり,

$$\sum_{k \in \mathbb{N}^m} \left(\sum_{l \in \mathbb{N}^n} b_l \sum_{\substack{k^{(0,0)} + \dots + k^{(n-1,l_{n-1}-1)} = k \\ 0 \le j < l_i}} \prod_{\substack{0 \le i < n, \\ 0 \le j < l_i}} (a_{k^{(i,j)}})_i \right) x^k = \sum_{\substack{k^{(0,0)}, \dots, k^{(n-1,l_{n-1}-1)} \in \mathbb{N}^m, \\ l \in \mathbb{N}^n}} b_l \prod_{\substack{0 \le i < n, \\ 0 \le j < l_i}} (a_{k^{(i,j)}})_i x^{k^{(i,j)}}$$
 (****)

が成り立つ. (***) と (****) より,

$$\sum_{k \in \mathbb{N}^m} \left(\sum_{l \in \mathbb{N}^n} b_l \sum_{k^{(0,0)} + \dots + k^{(n-1,l_{n-1}-1)} = k} \prod_{\substack{0 \le i < n, \\ 0 \le j < l_i}} (a_{k^{(i,j)}})_i \right) x^k = \sum_{l \in \mathbb{N}^n} b_l \left(\sum_{k \in \mathbb{N}^m} a_k x^k \right)^l$$

が成り立つ。すなわち、 $B \circ A$ は x において絶対総和可能であり、 $f_{B \circ A}(x) = f_B(f_A(x))$ が成り立つ。x は $0 \in \mathbb{K}^m$ のある近傍から任意にとれるから、これで主張は示された。

系 3.6 E を完備 \mathbb{K} -/ルム空間,A を \mathbb{K}^m から \mathbb{K}^n への定数項をもたない収束形式的冪級数,B を \mathbb{K}^n から E への収束形式的冪級数とする。このとき, $B \circ A$ が定義され,これは \mathbb{K}^m から E への収束形式的冪級数であり,0 のある近傍において $f_{B \circ A} = f_B \circ f_A$ が成り立つ.

証明 定理 3.5 で、Aが定数項をもたないとした場合である.

系 3.7 E を完備 \mathbb{K} -ノルム空間, $A = \sum_{k \in \mathbb{N}^n} a_k X^k$ を \mathbb{K}^n から E への収束形式的冪級数, $c \in C(A)$ とする.任 意の $l \in \mathbb{N}^n$ に対して, $\{a_{l+p}c^p\}_{p \in \mathbb{N}^n}$ は E において絶対総和可能である.さらに,

$$B = \sum_{l \in \mathbb{N}^n} \left(\sum_{p \in \mathbb{N}^n} a_{l+p} c^p \right) Y^l$$

と置くと、B は収束形式的冪級数であり、c のある近傍において $f_B(x-c)=f_A(x)$ (x は固定された c の近傍の元)が成り立つ。

証明 定理 3.5 で, m = n とし, A, B にそれぞれ X + c, A を割り当てた場合である.

4 冪級数関数の係数の一意性

定理 4.1(零点孤立定理) E を完備 \mathbb{K} -ノルム空間, $A = \sum_{k \in \mathbb{N}} a_k X^k$ を \mathbb{K} から E への収束形式的冪級数とする。 $A \neq 0$ ならば(すなわち, a_k がすべて 0 でなければ), $\delta > 0$ をとって,任意の $x \in \mathbb{K}$, $0 < |x| < \delta$ に対して($x \in C(A)$ かつ) $f_A(x) \neq 0$ となるようにできる.

証明 A=0とする。 $a_k\neq 0$ なる最小の $k\in \mathbb{N}$ を $k^{(0)}$ とすると, $A=X^{k^{(0)}}\sum_{k\in \mathbb{N}}a_{k^{(0)}+k}X^k$ と書ける。容易に わかるように, $A'=\sum_{k\in \mathbb{N}}a_{k^{(0)}+k}X^k$ も収束形式的冪級数である。よって,冪級数関数 $f_{A'}$ が考えられる。 $f_{A'}$ は $f_{A'}(0)=a_{k^{(0)}}\neq 0$ なる連続関数だから(命題 2.3), $\delta>0$ をとって,任意の $|x|<\delta$ に対して $x\in C(A')$ かつ $f_{A'}(x)\neq 0$ となるようにできる。 $f_A(x)=x^{k^{(0)}}f_{A'}(x)$ $(x\in C(A))$ だから(命題 3.2 (3)),この δ について,任意の $0<|x|<\delta$ に対して $x\in C(A)$ かつ $f_A(x)\neq 0$ が成り立つ.

定理 4.2(冪級数関数の係数の一意性) E を完備 \mathbb{K} -ノルム空間, $A = \sum_{k \in \mathbb{N}^n} a_k X^k$, $B = \sum_{k \in \mathbb{N}^n} b_k X^k$ を \mathbb{K}^n から E への収束形式的冪級数とする。0 のある近傍上で $f_A = f_B$ ならば,A = B(すなわち,すべての $k \in \mathbb{N}^n$ に対して $a_k = b_k$)である.

証明 B=0 の場合に示せば十分である(命題 3.2)。 すなわち,0 のある近傍上で $f_A=0$ であると仮定して,A=0 を示す。

n についての帰納法で示す。n=0 のときは明らかである。n のときに示せたとして,n+1 のときを考える。 $A=\sum_{k\in\mathbb{N}^{n+1}}a_kX^k$ を(形式的に) X_n について整理したときに X_n^l の係数として現れる形式的冪級数を, A_l と書く($l\in\mathbb{N}$)。すると,各 $l\in\mathbb{N}$ に対して A_l は収束形式的冪級数であり,ある多重球 $B_{\mathbb{K}^{n+1}}(0;r)$ ($r\in\mathbb{R}^{n+1}_{>0}$)の上で

$$\sum_{l \in \mathbb{N}} f_{A_l}(x_0, \dots, x_{n-1}) x_n^l = f_A(x) = 0$$
 (*)

が成り立つ (命題 3.4). さて, $(x_0, \ldots, x_{n-1}) \in B_{\mathbb{K}^n}(0; r_0, \ldots, r_{n-1})$ を任意に固定すると, 任意の $x_n \in B_{\mathbb{K}}(0; r_n)$ に対して (*) が成り立つ. したがって, 零点孤立定理 (定理 4.1) より, すべての $l \in \mathbb{N}$ に対して $f_{A_l}(x_0, \ldots, x_{n-1})$ =

0 でなければならない. よって、帰納法の仮定より、すべての $l \in \mathbb{N}$ に対して $A_l = 0$ である. これは、A = 0 を意味する.

5 冪級数関数の微分

定理 5.1 E を完備 \mathbb{K} -ノルム空間,A を \mathbb{K}^n から E への収束形式的冪級数とする。A が定める冪級数関数 $f_A\colon C(A)\to E$ は,任意階数の偏微分が可能である。さらに,任意の $k\in\mathbb{N}^n$ に対して, $C(\partial^k A)=C(A)$ (したがって $\partial^k A$ も収束形式的冪級数)であり,C(A) において $\partial^k f_A=f_{\partial^k A}$ が成り立つ。

証明 k = (1,0,...,0) の場合に示せば十分である.

$$A = \sum_{k \in \mathbb{N}^n} a_k X^k, \qquad \partial_0 A = \sum_{k \in \mathbb{N}^n, k_0 > 1} k_0 a_k X_0^{k_0 - 1} X_1^{k_1} \cdots X_{n-1}^{k_{n-1}}$$

と置く.

まず, $C(\partial_0 A) = C(A)$ を示す.そのためには, $I(\partial_0 A) = I(A)$ を示せばよい. $r \in J(\partial_0 A)$ とすると, $\{k_0 a_k r_0^{k_0-1} r_1^{k_1} \cdots r_{n-1}^{k_{n-1}}\}_{k \in \mathbb{N}^n, \; k_0 \geq 1}$ は絶対総和可能だから,その r_0 倍である $\{k_0 a_k r^k\}_{k \in \mathbb{N}^n, \; k_0 \geq 1}$ も絶対総和可能である. $k \in \mathbb{N}^n$, $k_0 \geq 1$ に対しては $\|a_k\| r^k \leq k_0 \|a_k\| r^k$ だから, $\{a_k r^k\}_{k \in \mathbb{N}^n}$ も絶対総和可能,すなわち $r \in J(A)$ となる.よって $J(\partial_0 A) \subseteq J(A)$ であり,ここから $I(\partial_0 A) \subseteq I(A)$ がわかる.逆に, $r \in I(A)$ とすると,ある r' > r が存在して $\{a_k r'^k\}_{k \in \mathbb{N}^n}$ は絶対総和可能となる. $r_0 < s < r'_0$ なる $s \in \mathbb{R}_{>0}$ をとると, $k \in \mathbb{N}^n$, $k_0 \geq 1$ に対して

$$|k_0||a_k||s^{k_0-1}r_1^{\prime k_1}\cdots r_{n-1}^{\prime k_{n-1}} \le \frac{k_0}{s}\left(\frac{s}{r_0^{\prime}}\right)^{k_0}||a_k||r^{\prime k}|$$

である。 $k_0 \in \mathbb{N}$ が動くとき $(k_0/s) \cdot (s/r_0')^{k_0}$ は有界なので, $\{k_0 a_k s^{k_0-1} r_1'^{k_1} \cdots r_{n-1}'^{k_{n-1}}\}_{k \in \mathbb{N}^n, k_0 \geq 1}$ も絶対総和可能,すなわち $(s, r_1', \dots, r_{n-1}') \in J(\partial_0 A)$,したがって $r \in I(\partial_0 A)$ となる。よって, $I(A) \subseteq I(\partial_0 A)$ である。これで, $I(\partial_0 A) = I(A)$ が示された。

次に、C(A) において $\partial^k f_A = f_{\partial^k A}$ が成り立つことを示す。 $x \in C(A)$ を任意に固定する。A の不定元 $X = (X_0, \ldots, X_{n-1})$ に $(x_0 + H, x_1 \ldots, x_{n-1})$ (H は新しい不定元)を形式的に代入・展開して得られる形式的冪級数を、 B_x とする。すなわち、

$$B_{x} = \sum_{l \in \mathbb{N}} \left(\sum_{k \in \mathbb{N}^{n}, k_{0} \ge l} {k_{0} \choose l} a_{k} x_{0}^{k_{0}-l} x_{1}^{k_{1}} \cdots x_{k_{n-1}}^{n-1} \right) H^{l}$$

とする。定理 3.5 より, B_x は矛盾なく定義される収束形式的冪級数であり,0 に十分近い任意の $h \in \mathbb{K}$ に対して

$$f_A(x_0 + h, x_1, \dots, x_{n-1}) = f_{B_X}(h) = \sum_{l \in \mathbb{N}} \left(\sum_{k \in \mathbb{N}^n \mid k_0 > l} \binom{k_0}{l} a_k x_0^{k_0 - l} x_1^{k_1} \cdots x_{k_{n-1}}^{n-1} \right) h^l$$

が成り立つ. よって、0 に十分近い任意の $h \in \mathbb{K} \setminus \{0\}$ に対して、

$$\frac{f_A(x_0+h,x_1,\ldots,x_{n-1})-f(x_0,\ldots,x_{n-1})}{h} = \sum_{l\geq 1} \left(\sum_{k\in\mathbb{N}^n,\ k_0\geq l} \binom{k_0}{l} a_k x_0^{k_0-l} x_1^{k_1}\cdots x_{k_{n-1}}^{n-1}\right) h^{l-1}$$

が成り立つ。容易にわかるように, $B'_x = \sum_{l\geq 1} (\sum_{k\in\mathbb{N}^n,\ k_0\geq l} a_k \binom{k_0}{l} x_0^{k_0-l} x_1^{k_1} \cdots x_{k_{n-1}}^{n-1}) H^{l-1}$ も収束形式的冪級数だから, B'_x は $0\in\mathbb{K}$ の近傍で連続関数を定める(命題 2.3 (2))。よって,上式は $h\to 0$ において極限値をもち,

$$\lim_{h \to 0} \frac{f_A(x_0 + h, x_1, \dots, x_{n-1}) - f_A(x_0, \dots, x_{n-1})}{h} = \lim_{h \to 0} \sum_{l \ge 1} \left(\sum_{k \in \mathbb{N}^n, k_0 \ge l} \binom{k_0}{l} a_k x_0^{k_0 - l} x_1^{k_1} \cdots x_{k_{n-1}}^{n-1} \right) h^{l-1}$$

$$= \sum_{k \in \mathbb{N}^n, k_0 \ge l} k_0 a_k x_0^{k_0 - l} x_1^{k_1} \cdots x_{k_{n-1}}^{n-1}$$

$$= f_{\partial_t A}(x)$$

が成り立つ。すなわち、 f_A は x において微分可能であり、 $\partial_0 f_A(x) = f_{\partial_0 A}(x)$ である。x は C(A) の中から任意 にとれたから、 f_A は 0-成分に関して偏微分可能であり、 $\partial_0 f_A = f_{\partial_0 A}$ が成り立つ。これで主張は示された. \Box

系 5.2 E を完備 \mathbb{K} -ノルム空間, $A = \sum_{n \in \mathbb{N}^n} a_k X^k$ を \mathbb{K}^n から E への収束形式的冪級数とする.

$$a_k = \frac{\partial^k f_A(0)}{k!}$$

が成り立つ.

証明 定理 5.1 を用いて、 $\partial^k f_A(0) = f_{\partial^k A}(0) = k! a_k$ を得る.

系 5.2 は、冪級数関数の係数の一意性(定理 4.2)の別証明を与えている.

6 解析関数

定義 6.1(解析関数) U を \mathbb{K}^n の開集合,E を完備 \mathbb{K} -ノルム空間とする。関数 $f:U\to E$ が解析的である,あるいは解析関数であるとは,「任意の $c\in U$ に対して,c の近傍 $V\subseteq U$ と \mathbb{K}^n から E への形式的冪級数 A が存在し,関数 $x\mapsto f_A(x-c)$ が V で定義され(すなわち, $V\subseteq c+C(A)$ であり), $x\in V$ に対して $f(x)=f_A(x-c)$ が成り立つ」ことをいう.

 $f\colon U\to E$ を解析関数とする.冪級数関数の係数の一意性(定理 4.2)より,各 $c\in U$ に対して,上の条件を満たすような \mathbb{K}^n から E への形式的冪級数 A は一意に定まる.この A を,f の c における冪級数展開という. $\mathbb{K}=\mathbb{R}$ に対する解析関数を実解析関数, $\mathbb{K}=\mathbb{C}$ に対する解析関数を複素解析関数という. \mathbb{C}^n の開集合から完備 \mathbb{C} -ノルム空間への複素解析関数は, \mathbb{R}^{2n} の開集合から完備 \mathbb{R} -ノルム空間への関数とみなせば,実解析関数である.

命題 6.2 U を \mathbb{K}^m の開集合, E を完備 \mathbb{K} -ノルム空間とする.

- (1) $f,g:U\to E$ が解析関数ならば、f+g も解析関数である.
- (2) $\lambda \in \mathbb{K}$, $f: U \to E$ が解析関数ならば、 λf も解析関数である.

証明 命題 3.2 から従う.

命題 6.3 U を \mathbb{K}^m の開集合, E_0, \ldots, E_{n-1}, F を完備 \mathbb{K} -ノルム空間, $u: E_0 \times \cdots \times E_{n-1} \to F$ を連続多重線型 写像とする。 $i=0,\ldots,n-1$ に対して $f_i: U \to E_i$ が解析関数ならば, $u(f_0,\ldots,f_{n-1}): U \to F$ も解析関数である。

証明 命題 3.3 から従う.

命題 6.4 U を \mathbb{K}^m の開集合, V を \mathbb{K}^n の開集合, E を完備 \mathbb{K} -ノルム空間とする。 $f:U\to V$, $g:V\to E$ が解析関数ならば, $g\circ f:U\to E$ も解析関数である。

証明 系 3.6 から従う.

命題 6.5 E を完備 \mathbb{K} -ノルム空間, A を \mathbb{K}^n から E への収束形式的冪級数とする. A が定める冪級数関数 $f_A\colon C(A)\to E$ は、解析関数である.

証明 系 3.7 から従う.

定理 6.6(一致の定理) U を \mathbb{K}^m の連結開集合,E を完備 \mathbb{K} -ノルム空間, $f,g:U\to E$ を解析関数とする.

- (1) $\{x \in U \mid f(x) = g(x)\}$ が内点をもつならば、U 上で常に f = g である.
- (2) n = 1 とする. $\{x \in U \mid f(x) = g(x)\}$ が U において集積点をもつならば、U 上で常に f = g である.

証明 g=0 の場合に示せば十分である (命題 6.2).

(1) まず,U が凸である場合に示す. $\{x \in U \mid f(x) = 0\}$ が内点 $c \in U$ をもつとする. $x \in U$ を任意にとる. h(t) = f((1-t)c + tx) と置くと,h は [0,1] を含む開区間上で定義された実解析関数であり(命題 6.4),0 のある近傍において 0 に等しい. もし $f(x) = h(1) \neq 0$ であるとすると,「[0,t] において常に h = 0」であるような $t \in [0,1)$ の上限 t_0 がとれる. ところが, t_0 における h の冪級数展開を考えると,零点孤立定理(定理 4.1)より,h は t_0 のある近傍で 0 でなければならず,これは t_0 の上限性に矛盾する.よって,背理法より f(x) = 0 である. $x \in U$ は任意だったから,これで U が凸である場合には示された.

次に、一般の場合に示す。 $\{x \in U \mid f(x) = 0\}$ の内部を V とし、V が空でないとする。 $x \in \overline{V} \cap U$ を任意に とり、x を中心とする多重球 B(x;r) を U に収まるようにとる。 すると、 $B(x;r) \cap V$ は空でない開集合であり、この上で f = 0 が成り立つ。 B(x;r) は凸だから、前段の結果を $f|_{B(x;r)}$ に適用して、B(x;r) 上で f = 0 であることを得る。 したがって、 $x \in V$ である。 よって、V は U の閉集合であるから、U の連結性より V = U であり、U 上で常に f = 0 である。 これで、U が一般の場合についても示された。

(2) $\{x \in U \mid f(x) = 0\}$ が内点 $c \in U$ をもつとする. c における f の冪級数展開をそれぞれ A とすると, A が定める冪級数関数が 0 になる点の全体は 0 を集積点にもつから,零点孤立定理(定理 4.1)より, A = 0 である. したがって,c のある近傍において f = 0 である.よって,(1) より f = g である.

定理 6.7 U を \mathbb{K} の開集合,E を完備 \mathbb{K} -ノルム空間, $f:U\to E$ を解析関数とする。f は任意階数の偏微分が可能で,その任意の偏微分はまた解析関数である。特に,解析関数は C^∞ 級である。

証明 定理 5.1 から従う.

定理 6.8 U を \mathbb{K} の開集合,E を完備 \mathbb{K} -ノルム空間, $f:U\to E$ を解析関数とする。 $c\in U$ における f の冪級数展開は,

$$\sum_{k \in \mathbb{N}^n} \frac{\partial^k f(c)}{k!} X^k$$

で与えられる.

証明 系 5.2 から従う.

参考文献

- [1] N. Bourbaki(著), 齋藤 正彦(編・訳),『ブルバキ数学原論 多様体 要約』, 東京図書,1970.
- [2] J. Dieudonné(著),森毅(訳),『現代解析の基礎 2』,東京図書,1971.