CPSC 121 Midterm 1 Friday October 14th, 2016

[12] 1. [1] a. For what truth values of a and b is $a \to b$ false?

Solution: $a \rightarrow b$ is false only when a is true and b is false.

[3] b. Is $(a \oplus b) \leftrightarrow (a \land \sim b) \lor (\sim a \land b)$ a tautology, a contradiction, or a contingency? Justify your answer.

Solution : It is a tautology because $a \oplus b$ is logically equivalent to $(a \land \sim b) \lor (\sim a \land b)$.

[8] c. Using a sequence of logical equivalence, prove that

$$(p \oplus q) \lor \sim (\sim p \to q) \equiv \sim p \lor \sim q$$

Please write the name of the law(s) you applied at each step. Hint: What you showed in part b above may be helpful.

Solution:

[6] 2. [3] a. Consider the following digital circuit. Write a propositional logic expression which is the direct translation of this circuit to propositional logic. Do not simplify your expression.

Solution:
$$\sim (((\sim a \land b) \lor c) \lor (b \oplus \sim d))$$

[3] b. Draw the circuit corresponding to the following propositional logic expression.

$$(a \oplus (\sim b \land c)) \lor \sim (a \land d)$$

- [10] 3. Assume that we use **6 bits** to represented binary integers. If the binary integer is interpreted as a signed integer, then we will represent it using two's complement.
 - [3] a. Consider the 6-bit binary integer **110101**. If we interpret it as a **signed** binary integer, what is the corresponding decimal value? If we interpret it as an **unsigned** binary integer, what is the corresponding decimal value?

Solution: Signed: -11, Unsigned: 53

[3] b. Consider the hexadecimal value **1F**. What is the corresponding binary value? What is the corresponding decimal value?

Solution: Binary: 011111, Decimal: 31

[1] c. Write down the two binary integers from parts (a) and (b). Then add them together in binary. What is the resulting binary integer (assuming that we only have 6 bits to represent it)? Please write down your answer in this form A + B = C where A, B, and C are binary numbers. For example, this can be a possible answer: 001000 + 101010 = 111100.

Solution: 110101 + 0111111 = 010100

[1] d. Consider your answer A + B = C from part (c). Suppose that we interpret all three binary integers A, B, and C as unsigned binary integers. Convert all three binary integers into decimal values and write down the same addition in decimal. For example, this can be a possible answer: 30 + 60 = 120.

Solution: 53 + 31 = 20

[2] e. Does your answer from part (d) make sense? Why or why not?

Solution: It does (or not, depending on how you define "making sense"), because 53 + 31 = 84, and 84 is larger than the maximum value we can represent using unsigned 6 bit binary integers (which is 63).

[8] 4. Determine the validity of the following argument *using rules of inference and/or logical equivalences*. You must state what inference rule or logical equivalence you use at each step. Do not rewrite the premises; start your proof at step 6.

- 1. $p \oplus q$
- $2. \quad (s \to r) \to t$
- 3. $(t \to m) \lor u$
- 4. $r \lor \sim q$
- 5. $\sim u \wedge \sim m$
- $p \wedge s$

Solution:

6.	$\sim u$	Specialization from (5).		
7.	$\sim m$	Specialization from (5).		
8.	$t \to m$	Elimination from (3) and (6).		
9.	$\sim t$	Modus tollens from (7) and (8).		
10.	$\sim (s \to r)$	Modus tollens from (2) and (9).		
11.	\sim ($\sim s \vee r$)	Definition of \rightarrow from (10).		
12.	$\sim \sim s \wedge \sim r$	De Morgan's law from (11).		
13.	$s \wedge \sim r$	Double negative law from (12).		
14.	s	Specialization from (13).		
15.	$\sim r$	Specialization from (13).		
16.	$\sim q$	Elimination from (4) and (15).		
17.	$(p \lor q) \land \sim (p \land q)$	Definition of \oplus from (1).		
18.	$p \lor q$	Specialization from (17).		
19.	p	Elimination from (16) and (18).		
20.	$p \wedge s$	Conjunction from (14) and (19).		

So the argument is valid.

[3] 5. You were asked to prove that an argument such as the following is valid:

premise 1
premise 2
premise 3

 $\therefore p \wedge s$

but instead of proving $p \wedge s$ you succeeded in proving $\sim (p \wedge s)$. A teaching assistant verified your proof and confirmed (correctly!) that you did not make a mistake. What are the two possible reasons for the perplexing conclusion you reached?

Solution: One possible reason is that the argument is invalid. Thus $p \wedge s$ must indeed be false whenever all three premises hold. The other possibility is that the premises contradict one another, in which case you can prove both $p \wedge s$ and $\sim (p \wedge s)$.

[6] 6. Consider the following definitions:

- P: the set of all people living around 200 BC.
- T: the set of tools/weapons available at that time.
- G(x): person x is Greek
- R(x): person x is Roman
- W(x, y): person x wielded weapon y

- Talked(x, y): person x talked to person y
- Fought(x, y): person x fought person y

Translate each of the following English statements into predicate logic. For instance, "Alex wielded some weapon" would be translated as $\exists x \in T, W(\text{Alex}, x)$.

[3] a. A Greek wielding a bronze sword (an element of T) fought a Roman wielding an iron shield (another element of T).

Solution: $\exists x \in P \ \exists y \in P, G(x) \land R(y) \land W(x, "bronze sword") \land W(y, "iron shield") \land Fought(x, y).$

[3] b. People who used cudgels (an element of T) fought every Greek they talked to.

Solution:
$$\forall x \in P \ \forall y \in P, (W(x, \text{``cudgel''}) \land G(y) \land Talked(x, y)) \rightarrow Fought(x, y).$$

[3] 7. Using the same definitions in the previous question, translate the following predicate logic statements into English:

$$\forall x \in P, (G(x) \land \exists y \in P, R(y) \land Talked(x, y)) \rightarrow (\exists z \in P, G(z) \land x \neq z \land Talked(x, z))$$

Solution: Every Greek who talked to a Roman also talked to another Greek.

[3] 8. Why do we almost never translate an English sentence into a predicate logic statement of the form $\exists x \in D, P(x) \to Q(x)$?

Solution: It is because such a predicate logic statement would be true every time there is an element x of the domain for which P(x) is false, which means it's not saying very much.

- [9] 9. In this question, you will design a circuit that takes as input a 4-bit unsigned binary integer $x_3x_2x_1x_0$, and outputs its integer square root as a 2-bit unsigned binary integer y_1y_0 . By "integer square root", we mean that any fractional part is discarded. For instance, the integer square root of 11 is 3 because $\sqrt{11} = 3.3166...$
 - a. Write a proposition for the value of y_1 . Any correct proposition will be worth at least 1.5/2. In order to get 2/2, you need to write one that is not too ugly. Hint: our solution is very short.

Solution: The bit y_1 will be 1 whenever the answer is 2 or 3. This happens when the input value is ≥ 4 , which is when either x_3 or x_2 is 1. The proposition is therefore $x_3 \vee x_2$.

b. Write a proposition for the value of y_0 . Any correct proposition will be worth at least 2.5/4. In order to get 4/4, you need to write one that is not too ugly.

Solution: Let us start by writing a truth table for y_0 . As we are interpreting the four inputs as a single unsigned binary integer, we will use 0 and 1 instead of F and T in the table.

x_3	x_2	x_1	x_0	y_0
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Our first observation is that there is only case where x_3 is 1 and the output y_0 is 0: the case where x_2 , x_1 and x_0 are all 0. Thus one condition we want to detect is $x_3 \wedge (x_2 \vee x_1 \vee x_0)$. The other cases are when $x_3 = x_2 = 0$, and at least one of x_1 , x_2 is 1. This gives us the proposition $\sim x_3 \wedge \sim x_2 \wedge (x_1 \vee x_0)$. One answer is thus the proposition

$$(x_3 \wedge (x_2 \vee x_1 \vee x_0)) \vee (\sim x_3 \wedge \sim x_2 \wedge (x_1 \vee x_0))$$

Here is another, shorter, answer: the cases where y_0 is 1 are those were x_3x_2 is not the pair 01, except for when $x_2x_1x_0$ is 000. So we get

$$(x_3 \lor \sim x_2) \land (x_2 \lor x_1 \lor x_0)$$

c. Finally draw your circuit below.

Solution:

