PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 21. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 22. do 31. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 21. wybierz i zaznacz na karcie odpowiedzi jedna poprawna odpowiedź.

Zadanie 1. (*1 pkt*)

Wartość wyrażenia $W = 2\sqrt{50} - \sqrt{72} + \sqrt{8}$ jest równa:

A.
$$-3\sqrt{2}$$

B.
$$\sqrt{2}$$

C.
$$4\sqrt{6}$$

D.
$$6\sqrt{2}$$

Zadanie 2. (*1 pkt*)

Układem sprzecznym jest układ:

A.
$$\begin{cases} x - 2y = 3 \\ 2x - 4y = 6 \end{cases}$$
 B.
$$\begin{cases} -x + 2y = 2 \\ 2x - 4y = 6 \end{cases}$$
 C.
$$\begin{cases} x - y = 3 \\ 2x - 4y = 6 \end{cases}$$
 D.
$$\begin{cases} x - 2y = 3 \\ 2x - 4y = 6 \end{cases}$$

$$\mathbf{B.} \begin{cases} -x + 2y = 2 \\ 2x - 4y = 6 \end{cases}$$

C.
$$\begin{cases} x - y = 3 \\ 2x - 4y = 6 \end{cases}$$

D.
$$\begin{cases} x - 2y = 3 \\ 2x - 4y = 6 \end{cases}$$

Zadanie 3. (*1 pkt*)

Wyrażenie $W = \sqrt{(2-x)^2} - \sqrt{(1-x)^2}$ dla $x \in (1,2)$ przyjmuje postać:

A.
$$3 - 2x$$

D.
$$2x - 3$$

Zadanie 4. (1 *pkt*)

Sześcian wyrażenia $3a^4b^5$ jest równy:

A.
$$27a^7b^8$$

B.
$$27a^{12}b^{15}$$

$$\mathbf{C.} 9a^{7}b^{8}$$

$$\mathbf{D}, 9a^{12}b^{15}$$

Zadanie 5. (*1 pkt*)

Liczb całkowitych spełniających nierówność (x+4)(x-5) < 0 jest:

Zadanie 6. (*1 pkt*)

Jeśli liczba naturalna x przy dzieleniu przez 13 daje resztę 9, to można ją zapisać w postaci:

A.
$$13n + 9$$

B.
$$9n + 13$$

C.
$$9(n+13)$$

D.
$$13(n+9)$$

Zadanie 7. (*1 pkt*)

Dziewczęta stanowią 30% uczniów w pewnej klasie. Wynika stąd, że chłopcy stanowią:

A.
$$42\frac{6}{7}\%$$
 liczby dziewcząt

B. 233
$$\frac{1}{3}$$
 % liczby dziewcząt

Zadanie 8. (*1 pkt*)

Promień okręgu wpisanego w trójkat równoboczny o boku a jest równy $2\sqrt{5}$. Wynika stąd, że:

A.
$$a = 4\sqrt{15}$$

B.
$$a = 2\sqrt{15}$$

C.
$$a = 6\sqrt{15}$$

D.
$$a = 12\sqrt{15}$$

Zadanie 9. (*1 pkt*)

Funkcją malejącą jest funkcja:

A.
$$y = x - 10$$

B.
$$y = 10 - x$$

$$\mathbf{C}_{\bullet} \mathbf{v} = -10$$

D.
$$y = 0, 1x$$

Zadanie 10. (1 pkt)

Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 5 oraz (-1), a wierzchołek paraboli będącej jej wykresem ma współrzędne (2, – 18), to wzór tej funkcji można zapisać w postaci:

A.
$$f(x) = 2(x+1)(x-5)$$

B.
$$f(x) = -18(x+1)(x-5)$$

C.
$$f(x) = 2(x+2)(x-18)$$

D.
$$f(x) = 5(x+2)(x-18)$$

Zadanie 11. (*1 pkt*)

Dany jest trójkąt o wierzchołkach A = (-2, -2), B = (0, 4), C = (6, -4). Długość środkowej poprowadzonej z wierzchołka A jest równa:

$$\mathbf{C}.\sqrt{5}$$

D.
$$\sqrt{29}$$

Zadanie 12. (*1 pkt*)

Trzy liczby tworzą ciąg geometryczny. Iloczyn tych liczb jest równy 125. Drugi wyraz tego ciągu jest równy:

A.
$$\frac{125}{3}$$

Zadanie 13. (*1 pkt*)

Trzy liczby tworzą ciąg arytmetyczny. Suma tych liczb jest równa 12. Drugi wyraz tego ciągu jest równy:

Zadanie 14. (*1 pkt*)

Po skróceniu wyrażenia $W = \frac{ab + b^2}{ab}$ otrzymamy:

A.
$$W = \frac{ab+b}{a}$$

A.
$$W = \frac{ab+b}{a}$$
 B. $W = \frac{b+b^2}{b}$ **C.** $W = \frac{a+b}{a}$ **D.** $W = 1 + b^2$

$$\mathbf{C.}W = \frac{a+b}{a}$$

D.
$$W = 1 + b^2$$

Zadanie 15. (*1 pkt*)

Ze zbioru cyfr {1,2,3,...9} losujemy dwa razy po jednej bez zwracania. Prawdopodobieństwo, że wyjęte w kolejności losowania cyfry utworzą liczbę parzystą, jest równe:

A.
$$\frac{1}{2}$$

B.
$$\frac{5}{18}$$

$$C.\frac{4}{9}$$

D.
$$\frac{3}{4}$$

Zadanie 16. (*1 pkt*)

Środkiem okręgu jest punkt S = (3, 4). Do okręgu należy punkt O = (0, 0). Równanie tego okręgu to:

A.
$$x^2 + y^2 = 25$$

B.
$$(x-3)^2 + (y-4)^2 = 5$$

$$\mathbf{C} \cdot (x+3)^2 + (y+4)^2 = 25$$

D.
$$(x-3)^2 + (y-4)^2 = 25$$

Zadanie 17. (*1 pkt*)

Dany jest trójkąt prostokątny o kącie prostym przy wierzchołku C. Środkowa CD tworzy z przyprostokątną AC kat 20°. Wynika stąd, że kat między ta środkową a wysokością CE trójkąta ma miarę:

Zadanie 18. (1 pkt)

Prosta k równoległa do prostej l o równaniu 6x + 3y - 5 = 0 może mieć wzór:

A.
$$y = -5x$$

B.
$$y = 6x$$

C.
$$y = 3x$$

D.
$$y = -2x$$

Zadanie 19. (1 pkt)

W równoległoboku o bokach a = 12, b = 16 dłuższa wysokość ma długość 9. Wynika z tego, że krótsza wysokość ma długość:

B.
$$\frac{27}{4}$$

D.
$$\frac{27}{8}$$

Zadanie 20. (1 pkt)

Liczba $a = 2 \log_5 10 - \log_5 20$ jest równa:

B.1

$$\mathbf{C.}\log_5 80$$

D.
$$\log_{5} \frac{1}{4}$$

Zadanie 21. (1 pkt)

Jeśli ostrosłup ma 30 krawędzi, to liczba jego ścian jest równa:

A. 30

B. 16

C.15

D.12

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 22. do 31. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. (2 pkt)

Rozwiąż nierówność $9x^2 + 6x + 1 > 0$.

Zadanie 23. (2 *pkt*)

Pierwiastkami trójmianu kwadratowego f o współczynniku (- 3) przy najwyższej potędze są liczby $x_1 = -6, x_2 = 4$. Oblicz f(-10).

Zadanie 24. (2 *pkt*)

Pierwiastkiem wielomianu $W(x) = 2x^3 + mx - 5$ jest liczba (-2). Wyznacz parametr m.

Zadanie 25. (2 *pkt*)

Wykaż, że czworokąt o wierzchołkach A = (-2, 0), B = (4, 3), C = (6, 7), D = (0, 4) jest trapezem.

Zadanie 26. (2 *pkt*)

Obwód rombu wynosi 18 cm, a jego pole 18 cm². Oblicz wysokość tego rombu.

Zadanie 27. (2 *pkt*) Oblicz liczbę $a = 10^{12} 8^{-3} 25^{-6}$.

Zadanie 28. (2 *pkt*)

Dla zdarzeń $A, B \subset \Omega$ spełnione są warunki $P(A') = \frac{2}{3}, P(B') = \frac{2}{9}, P(A \cup B) = \frac{4}{5}$. Oblicz $P(A \cap B)$.

Zadanie 29. (*4 pkt*)

Magda przed egzaminem rozwiązywała zadania testowe z matematyki. Pierwszego dnia rozwiązała 10 zadań, a każdego następnego o 5 zadań więcej. W sumie rozwiązała 220 zadań. Oblicz, przez ile dni Magda rozwiązywała te zadania i ile zadań rozwiązała ostatniego dnia.

Zadanie 30. (5 *pkt*)

Dany jest prostokąt *ABCD*. Z wierzchołków *B* i *D* poprowadzono prostopadłe do przekątnej *AC* dzielące ją na trzy odcinki *AE*, *EF*, *FC*, każdy długości 4. Oblicz długości boków prostokąta.

Zadanie 31. (6 pkt)

Dany jest ostrosłup prawidłowy czworokątny o podstawie ABCD i wierzchołku S. Pole trójkąta ACS jest równe $20\sqrt{2}$, krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem, którego tangens jest równy $\frac{5\sqrt{2}}{4}$. Oblicz objętość ostrosłupa.

