Algorithmen und Datenstrukturen

Aufgabe 1 Asymptotische Notation I

Vergegenwärtigen Sie sich zunächst die Definitionen von O(n) und $\Theta(n)$, wie sie in der Vorlesung vorgestellt wurden. Zeigen Sie dann folgende Behauptungen mit einem formalen Beweis wie in der Vorlesung (Grenzwertabschätzung oder Mengendarstellung):

- a) $7n^4 \in O(n^5)$
- b) $n^2/2 2n \in \Theta(n^2)$
- c) $\log n \in o(n)$
- d) $2^{2n} \notin O(2^n)$

Aufgabe 2 Asymptotische Notation II

Treffen die folgenden Behauptungen zu? Beweisen sie deren Richtigkeit, oder widerlegen Sie sie, entweder mittels Beweis oder durch Angabe eines Gegenbeispiels!

- a) Sei die Komplexität einer Funktion f bestimmt als O(n). Dann ist die n-malige Ausführung $O(n^2)$.
- b) Falls $f(n) = \Theta(g(n))$, dann folgt $2^{f(n)} \in \Theta(2^{g(n)})$.
- c) $n^n = O(2^n)$
- d) Falls g = O(f) und h = O(f), dann gilt auch g = O(h)

Aufgabe 3 (P) Addition

Gegeben sind eine Basis b und zwei vector<int> x, y, die zwei positive base-b Integer repräsentieren. Ziffer i ist dabei an Stelle i mit Wertigkeit b^i , geordnet von der höchst- zur niedrigstwertigen Ziffer von Anfang bis Ende der Liste, die höchstwertige Ziffer steht also am Anfang der Liste. Es gibt keine führenden Nullen.

Bsp.: [42, 53, 28], [37],
$$55 \rightarrow [42, 54, 10]$$

a) Implementieren Sie eine C++ Funktion, um die repräsentierten Zahlen zu addieren und die Summe als vector<int> zurückzugeben. Beachten Sie, dass die Listen der Zahlen unterschiedlich lang sein können. Nutzen Sie gerne auch das Testing Framework¹.

¹ Weitere Informationen in Setup Programmieraufgaben in Moodle

Als optionale Hilfestellung finden Sie in der Datei blatt2hint.cpp ein grobes Gerüst einer Lösung, welches Sie verwenden können, wenn Sie nicht weiter kommen.

Hinweis: Vielleicht hilft es Ihnen, die Zahlen zu Begin so zu tauschen, dass z.B. y die Zahl mit mehr Ziffern ist.

b) Seien n_x, n_y jeweils die Anzahl der Ziffern der Zahlen x, y geschrieben zur Basis b. Geben Sie abhängig von n_x, n_y eine Abschätzung an die worst-case Laufzeit Ihrer Implementierung in asymptotischer Notation an.