We had obtained that for an anisotropic linear elastic material there are 21 elastic constants

ANISOTROPIC -> At a point in the body, the material properties are different in different directions

ISOTROPIC -> Material properties are same in all directions

dets consider a body made of isotropic material in a coordinate system defined by principal directions $(n_1 - n_2 - n_3)$

when a small cuboidal element is subjected to principal stresses on its faces, the element will remain cuboidal after deformation (no distortion / shape change).

Thus, the normals to these faces must coincide with the principal strain directions.

Hence, for an isotropic material, one can relate the principal stresses σ_{p_1} , σ_{p_2} , σ_{p_3} with three principal strains ε_{p_1} , ε_{p_2} , ε_{p_3} through suitable elastic constants.

For principal direction n:

$$O_{Pl} = C_{11} \in_{P1} + C_{12} \in_{P2} + C_{13} \in_{P3}$$

We note that C_{12} and C_{13} must be equal since the effect of σ_{P1} in the directions of E_{P2} and E_{P3} (i.e. \underline{n}_2 and \underline{n}_3), which are perpendicular to \underline{n}_1 , must be the same for an isotropic material. Hence, for σ_{P1} , the equation is

$$\nabla_{P1} = C_{11} \in_{P1} + C_{12} (\in_{P2} + \in_{P3})$$

$$= (C_{11} - C_{12}) \in_{P1} + C_{12} (\in_{P1} + \in_{P2} + \in_{P3})$$

$$2\mu \qquad \qquad \lambda \qquad \text{1st invariant}$$
of strain J_1

$$\text{(also yolumetric)}$$
strain \in_{V}

$$\nabla_{P^1} = \lambda h(\underline{\epsilon}) + 2M \epsilon_{P^1}$$

By similar arguments, we can show that

$$\nabla_{P^2} = \lambda \operatorname{tr}(\underline{e}) + \partial_{\mu} e_{P^2}$$

$$\lambda_{\mu} \to \operatorname{Lame's}$$

$$\nabla_{P^3} = \lambda \operatorname{tr}(\underline{e}) + \partial_{\mu} e_{P^3}$$
Constants

For a general coordinate system, it can be shown that the six stress components σ_{11} , σ_{22} , σ_{33} , τ_{12} , τ_{13} , τ_{23} are related to six strain components ϵ_{11} , ϵ_{22} , ϵ_{33} , ϵ_{12} , ϵ_{13} , ϵ_{23}

 2 elastic constants for Isotropic Linear Elastic material

Alternatively, we can use another form where strain is expressed in terms of stress. It is also called three-dimensional Hooke's law of Elasticity, and can be written as follows:

$$\mathcal{E}_{11} = \frac{1}{E} \left(\sigma_{11} - \mathcal{V} \left(\sigma_{22} + \sigma_{33} \right) \right)$$

$$\mathcal{E}_{22} = \frac{1}{E} \left(\sigma_{22} - \mathcal{V} \left(\sigma_{11} + \sigma_{33} \right) \right)$$

$$\mathcal{E}_{33} = \frac{1}{E} \left(\sigma_{33} - \mathcal{V} \left(\sigma_{11} + \sigma_{22} \right) \right)$$

$$\mathcal{Y}_{12} = 2 \mathcal{E}_{12} = \frac{\mathcal{T}_{12}}{G_1}$$

$$\mathcal{Y}_{13} = 2 \mathcal{E}_{13} = \frac{\mathcal{T}_{13}}{G_1}$$

$$\mathcal{T}_{13} = \mathcal{T}_{13} = \mathcal{T}_{13}$$

 $\Upsilon_{23} = 2 \in {}_{23} = \frac{7}{23}$

In this representation,
we have three constants:

E - Young's Modulus

V - Poisson's Ratio

G - Shear Modulus

However, there are only two indep. constants. Therefore, we have

$$G_1 = \frac{E}{2(1+\nu)}$$

$$\mathcal{E}_{11} = \frac{1}{E} \left(\sigma_{11} - \mathcal{V} \left(\sigma_{22} + \sigma_{33} \right) \right)$$

$$\mathcal{E}_{22} = \frac{1}{E} \left(\sigma_{22} - \mathcal{V} \left(\sigma_{11} + \sigma_{33} \right) \right)$$

$$\mathcal{E}_{33} = \frac{1}{E} \left(\sigma_{33} - \mathcal{V} \left(\sigma_{11} + \sigma_{22} \right) \right)$$

We can see that the normal strain in one direction not only depends on the normal stress in that direction but also on the normal stresses in other two directions.

To understand the physical relevance, we can think of a tensile testing. Suppose that we have a rectangular beam of length L, breadth B and height H.

The beam is oriented such that its length is along \leq_1 , its height is along \leq_2 and its breadth is along \leq_3 .

Let's apply force on the left and right faces to stretch the beam. So σ_{11} will be non-zero while the shear components σ_{12} and σ_{13} will be zero. Also, we are not applying any force on the lateral surface (σ_{13} and σ_{13} planes), so there is no shess on them. Infact, any internal section with normal along σ_{13} will not have any traction component.

The state of stress in this case will then be

This stress will lead to some strain in the body. We know that \mathcal{E}_{11} is generated because the length of the beam changes. However, \mathcal{E}_{22} and \mathcal{E}_{33} are also generated: due to stretching in one direction, there will be contraction in other two directions. But there will be no shear strain generated if we are careful in stretching the body uniformly. Thus, the state of strain for the rectangular beam will be

$$\begin{bmatrix} E_{11} & 0 & 0 \\ 0 & E_{22} & 0 \\ 0 & 0 & E_{33} \end{bmatrix}$$

(1) Young's Modulus (E)

If the elongation is uniform along the length of the bar, the local strain will be equal to the average normal strain. Thus,

$$\epsilon_{11} = \frac{\Delta L}{L}, \quad \epsilon_{22} = \frac{\Delta H}{H}, \quad \epsilon_{33} = \frac{\Delta B}{B}$$

If we now draw the stress-strain curve of $\sigma_{11} - \varepsilon_{11}$ from a tensile test experiment by measuring the change in length, we may get a curve

The initial slope of this graph gives us the Young's modulus

$$E = \frac{9e^{11}}{9e^{11}} \Big|^{e^{11} = 0}$$

While computing this derivative from the graph, we should not have σ_{22} or σ_{33} present. Essentially, the rectangular beam should be stretched in such a way that it can freely shrink in the lateral directions.

For a uniaxial tensile test experiment, we can say that

The Poisson's ratio of a material is defined as

$$V = -$$
 Lateral normal strain

Longitudinal normal strain

In a uniaxial tensile test, we directly impose longitudinal normal strain in the e_i -direction and this, in turn, induces strain along e_2 and e_3 directions. For an isotropic body, the lateral strains in these directions will be equal. Thus, the Poisson's ratio from a uniaxial tensile experiment would be

$$V = -\frac{\epsilon_{22}}{\epsilon_{11}} = -\frac{\epsilon_{33}}{\epsilon_{11}}$$

We can also derive the Poisson's ratio from the stress-strain relation

$$\bullet \quad \epsilon_{11} = \frac{1}{E} \left(\sigma_{11} - v \left(\sigma_{22} + \sigma_{33} \right) \right)$$

$$\Rightarrow$$
 $\epsilon_{ii} = \sigma_{ii}$

•
$$\epsilon_{22} = \frac{1}{E} \left(\frac{\sigma_{22} - \nu}{\sigma_{11} + \sigma_{33}} \right)$$

$$\Rightarrow \quad \epsilon_{22} = -\frac{\nu}{E} \sigma_{11} = -\nu \epsilon_{11}$$

•
$$\epsilon_{33} = \frac{1}{E} \left(\sigma_{33}^{3} - V \left(\sigma_{11} + \sigma_{22}^{2} \right) \right)$$

$$\Rightarrow \quad \in_{33} = -\frac{\vee}{E} \, \sigma_{11} = -\sqrt{e_{11}}$$

In the tensile test, $\sigma_{22} = \sigma_{33} = 0$

We get the same formula

(3) Shear Modulus (G)

$$Y_{12} = 2 \in_{12} = \frac{7_{12}}{G_1}$$

$$Y_{13} = 2 \in_{13} = \frac{7_{13}}{G_1}$$

$$Y_{23} = 2 \in_{23} = \frac{7_{23}}{G_1}$$

We can see that shear modulus is given by

$$G_1 = \frac{\zeta_{12}}{\gamma_{12}} = \frac{\zeta_{13}}{\gamma_{13}} = \frac{\zeta_{23}}{\gamma_{23}}$$

So if we induce shear in a body and measure the corresponding shear stress, the ratio of stress to strain will give us the shear modulus.

Motivated by this, let's do an experiment with the rectangular bar, where the bar is fixed at the bottom and we apply shear force on the top face (with normal e)

This effectively imposes shear stress T_{12} in the body. Due to this, the bar shears: the initially perpendicular edges of the front face get inclined and shear strain Y_{12} would be equal to $\left(\frac{\pi}{2} - \text{angle between two edges}\right)$. If we draw a T_{12} vs Y_{12} curve, the initial slope of the curve gives $G = \frac{T_{12}}{Y_{12}} \Big|_{Y_{12}=0}$

Bulk Modulus of Elasticity (K)

Young's modulus of elasticity relates normal stress with normal strain. Shear modulus relates shear stress with shear strain. We will now define bulk modulus of elasticity which relates volumetric strain (EV) with volumetric stress or equivalent pressure. When we apply pressure to a fluid (liquid/gas), its volume decreases. This decrease can be quantified by volumetric strain given by

Volumetric strain,
$$\epsilon_{V} = \frac{\Delta V}{V}$$

If a pressure increase of ΔP generates volumetric strain in a fluid, bulk modulus is then given by

$$K_{\text{fluid}} = -\frac{\Delta P}{\Delta V/V}$$

For solids, the equivalent pressure is obtained from the hydrostatic part of the stress tensor, peq

$$P_{eq} = - \frac{\Gamma_1(\underline{\varsigma})}{3}$$

The negative sign comes because pressure is compressive in nature while the normal component of traction is tensile when positive.

$$K_{solids} = -\frac{P_{eq}}{\epsilon_{v}} = -\left(\frac{-I_{i}(\underline{\sigma})/3}{\epsilon_{v}}\right)$$

That is,

$$K_{\text{solids}} = -\left(\frac{-\Gamma_{\text{I}}(\underline{\underline{r}})/3}{\epsilon_{\text{V}}}\right) = \frac{\Gamma_{\text{I}}(\underline{\underline{r}})/3}{\text{tr}(\underline{\underline{\epsilon}})} = \frac{1}{3} \frac{\text{tr}(\underline{\underline{r}})}{\text{tr}(\underline{\underline{\epsilon}})}$$
Bulk modulus
of elasticity

The bulk modulus of elasticity can also be expressed in terms of elastic constants E and V, for isotropic material.

We have the following:

$$\begin{array}{lll}
\epsilon_{11} + \epsilon_{22} + \epsilon_{33} &= \frac{1}{E} \left(\sigma_{11} + \sigma_{22} + \sigma_{33} \right) - \frac{2V}{E} \left(\epsilon_{11} + \epsilon_{22} + \epsilon_{33} \right) \\
\Rightarrow & \text{If } \left(\underline{\epsilon} \right) &= \frac{1 - 2V}{E} \text{If } \left(\underline{\sigma} \right) \\
\Rightarrow & \text{K solids} &= \frac{E}{3(1 - 2V)}
\end{array}$$

This is an important relation. It tells us that bulk modulus K is not an independent constant. If you know the Young's modulus E and the Poisson's ratio v, you can get the Bulk modulus using the above relation. Furthermore, this relation also gives an upper limit for the Poisson's ratio. (discussed next)

Theoretical limits for Poisson's ratio

The Poisson's ratio is usually positive. There is however a lot of research in recent years on developing materials having negative Poisson's ratio. Such materials are called auxetic materials.

From the relation,

$$K_{\text{solids}} = \frac{E}{3(1-av)} = -\frac{P_{eq}}{E_{v}}$$

we can deduce that when ν is very close to ν_2 , the bulk modulus becomes very large. For such materials, if we apply a finite amount of change in equivalent pressure, the volumetric strain induced in the body would be very small. This signifies incompressibility. Thus, $\nu \to \nu_2$ corresponds to the incompressible limit. At other extreme, materials such as cork can have Poisson's ratio close to zero.

To obtain the lower limit for the Poisson's ratio, we can use the relation

$$G_1 = \frac{E}{(1+v)}$$

The Young's modulus E and the shear modulus G are both positive quantities. As a result, the denominator in the RHS must also be positive, i.e.

$$2(1+v) > 0 \Rightarrow v > -1$$

Thus, the theoretical limit for Poisson's ratio:

Thermal Strain

In the elastic region, the effect of temperature on strain appears in two ways:

- (a) by causing modification of the elastic constants. Usually the change for most materials is very small and hence is not considered
- (b) by directly producing strain in the absence of stress. The strain due to temperature change in the absence of stress is called thermal strain and is denoted by \mathcal{L}^t

For an isotropic material, thermal strain produces pure expansion or contraction with no shear-strain components. Also, for temp. changes of one or two hundred degrees Fahrenheit, one can closely describe the actual variation by a linear approximation. The thermal strains due to a change in temperature from To to T

$$\epsilon_{11}^{t} = \epsilon_{22}^{t} = \epsilon_{33}^{t} = \alpha (T - T_0)$$

$$\gamma_{12}^{t} = \gamma_{33}^{t} = \gamma_{13}^{t} = 0$$
coefficient of linear expansion

The total strain at a point in an elastic body is the sum of that due to stress and that due to temperature.