Parleyland trading centre Functions required for graphs

Parley Yang 24.05.2019

1 Basics

- Straight lines of different directions and slopes
- Ruler for measurement
- Scaling and time-shifting

2 Set up

Let $\{x_t\}_{t=1}^T$ be the original series. In the competition if we receive one observation per second, then by the end of the first minute we will have T = 60, which is quite decent for plotting. Notice that however, if we wish to scale, e.g. group 4 seconds into one bar, then by the end of the first minute we will only have T = 15.

Let N be the desired lags for computation. Here we shall set N=20, but we should leave availability for adjustments.

3 Bollinger Bands

Three lines in total: LBL, MA, and UBL.

3.1 Computation of MA

$$\hat{\mu}_t = N^{-1} \left(\sum_{j=t-N+1}^t x_j \right) \ \forall t \ge N \tag{1}$$

MA is the line that plots series $\{\hat{\mu}_t\}_{t=N}^T$

3.2 Computation of standard deviation

$$\hat{\sigma}_t = \sqrt{N^{-1} \sum_{j=t-N+1}^t (x_j - \hat{\mu}_j)^2} \ \forall t \ge 2N - 1$$
 (2)

3.3 Computation of UBL & LBL

 $\forall t \ge 2N - 1,$

$$U_t = \hat{\mu}_t + 1.96\hat{\sigma}_t \tag{3}$$

$$L_t = \hat{\mu_t} - 1.96\hat{\sigma_t} \tag{4}$$

UBL is the line that plots series $\{U_t\}_{t=2N-1}^T$ and LBL is the line that plots series $\{L_t\}_{t=2N-1}^T$.

4 Pivots

Pivots are levels that being the same over the same day, it utilises data from the previous day. Given the $\{x_t\}_{t=1}^T$ we have, we divide them into days. Say for some day d we have time interval $\{t_1, ..., t_2\}$ thus for the next day d+1 we have time interval $\{t_2+1, ..., t_3\}$.

Pivots include three key levels: Pivot (P_d) , Supports $(S1_d, S2_d)$, and Resistances $(R1_d, R2_d)$.

4.1 Pivot point

There are three values we need to care about: yesterday's high (H_d) , low (L_d) , and close (C_d) , defined as follows:

$$H_d = \max_{t \in \{t_1, \dots, t_2\}} x_t \tag{5}$$

$$L_d = \min_{t \in \{t_1, \dots, t_2\}} x_t \tag{6}$$

$$C_d = x_{t_2} \tag{7}$$

Now, pivot point is

$$P_{d+1} = \frac{1}{3}(H_d + L_d + C_d) \tag{8}$$

Notice that, the pivot shown on the graph shall be a horizontal line that values P_{d+1} for all times in $\{t_2 + 1, ..., t_3\}$. Same applies to resistances and supports.

4.2 Supports

$$S1_{d+1} = 2 \times P_{d+1} - H_d \tag{9}$$

$$S2_{d+1} = P_{d+1} - H_d + L_d \tag{10}$$

4.3 Resistances

$$R1_{d+1} = 2 \times P_{d+1} - L_d \tag{11}$$

$$R2_{d+1} = P_{d+1} + H_d - L_d (12)$$