

Hope Care



# **Project Overview**

A full-stack predictive analytics platform that helps healthcare providers and insurers.

#### **Uses a two-stage ML pipeline:**

- <u>Stage 1:</u> Risk stratification model predicts probability of chronic conditions.
- Stage 2: ROI model estimates proactive vs. reactive treatment costs.

#### **Technology stack:**

React (frontend), FastAPI (backend), Scikit-learn/XGBoost (ML models).

Provides an interactive interface for patient data upload, analysis, and visualization.

Designed as a proof-of-concept for real-world adoption by healthcare providers and insurers.





# **Objectives**

# Predictive Risk Assessment

 Develop a machine learning model that stratifies patients' risk for multiple chronic conditions using demographic and clinical data.

#### **ROI** Calculation

 Implement a costprediction model that translates patient risk into financial terms, comparing proactive (preventive) care with reactive (emergency) treatment.

#### **Data Visualization**

 Design an intuitive web interface that clearly presents patient risks, costs, and potential savings using tables, summary cards, and charts.

#### **Dashboard**

 Deliver a functional prototype that healthcare providers and insurers can use to understand the value of preventive care.



# Scope

#### **Risk Stratification**

Risk stratification for conditions like heart failure, COPD, kidney disease.

### **ROI** Analysis

ROI analysis showing cost savings from preventive treatment.

### **Data Upload**

Data upload via CSV and real-time predictions.

### **Result Visualization**

Visualization of risk scores, cost comparisons, and savings in a user-friendly interface.





# Stakeholders

### **Primary Users**

**Healthcare providers -** for patient management and cost control.

### **Secondary Users**

**Policy makers** → for population health management.

### **Development Team**

Team Lead & Backend Developer

- Pradeep Kumar A

Frontend Developers - Kishore R,Jeyvanti S

**Backend Developer** - Suriya SK

**Cloud Engineer** - Bala Mohanan M

### **Hackathon Stakeholders**

**Mentors** - Rakesh

- SrinivasaRao Pinnaka

- Deepa R



# HopeCare: Key Deliverables

Core Backend (FastAPI)

- /predict\_risk: ML model for patient risk tiers (1-5).
- /estimate\_roi: ML model for intervention cost savings.
- Risk Stratification: XGBoost model for multi-condition risk prediction.
- ROI Estimation: Regression model to project financial outcomes.

Machine Learning
Models

User Interface (React SPA)

- Dashboard: High-level overview of patient risk and ROI.
- Patient Profiles: Detailed view with risk factors and intervention history.

# **Timeline**

Friday, August 29 – Project Kickoff

Saturday, August 30 – Initial Design

**Sunday, August 31 – Version 1 Development** 



• Finalized the technology stack for the project.

- Designed the initial project architecture.
- Collected and cleaned datasets.
- Front-end team began conceptualizing the web application's design.
- Started building and training the risk stratification model.
- Front-end team implemented Version 1 of the web application.

Wednesday, September 3 – Version 2 & Backend Connection

Tuesday, September 2 – First Mentor Meeting & Backend Integration

Monday, September 1 – Refinement

- Front-end team completed Version 2 web design with improved domain relevance.
- ROI model completed and integrated with the backend.
- Successfully connected and tested the backend with Version 1 of the web design.

First Mentor Meeting: Presented use case and architecture, received approval, implemented ROI model, integrated FastAPI, and refined front-end design.

- Refined the risk stratification model for improved accuracy.
- Front-end team reviewed and updated the application's design.

**Thursday, September 4 – Second Mentor Meeting** 

Friday, September 5 – Final Demo & Deployment

- Conducted the second mentor meeting:
- Demonstrated Version 1 web application with stratification data processing demo.
- Received corrections and suggestions for additional features.
- Successfully connected stratification and ROI models into Version 2 web design.
- Conducted the final mentor meeting:
- Showcased corrected implementations.
- Delivered a full demo using Version 2 web design.
- Received final approval for project deployment.
- Initiated deployment process on AWS.



# **Functional Requirements**

#### **User Interaction**

- Users must be able to upload CSV files through the front-end.
- System should validate uploaded files (schema, missing values, duplicates).
- Users must be able to generate reports with one click.

#### **Risk & Condition Stratification**

- Assign patients to a Risk Tier (1–5) using ML models.
- Predict future medical conditions using a multi-label classifier.
- Output must include:

Name

Age

**Present Medical Condition** 

**Future Predicted Medical Condition** 

Risk Tier (1–5)

### **Reporting & Visualization**

- Generate reports showing:
- Patient details
- Risk tier
- Cost predictions
- Display interactive dashboards (charts/graphs) for trends and outcomes.
- Export reports in CSV/PDF formats.

### **Model Management**

- Store trained models in AWS S3.
- Support versioning of models (.pkl files).
- Ensure retraining pipelines are available for model updates.

### **System Deployment**

- Backend must expose APIs to serve predictions.
- Frontend must consume backend APIs to display insights.
- System must support scalable deployment on cloud infrastructure (AWS EC2).



# **Technical Specification**

#### **Frontend**

React.js → User interface for file uploads, dashboards, reports.

#### Backend

- FastAPI → API layer for ML models and data processing.
- Python (Pandas, Scikit-learn, XGBoost) → Data cleaning, feature engineering, ML models.

#### **Models**

- Risk Stratification Model: XGBoost for tiering.
- Condition Classifier: Multi-label classification.
- Cost Regression Model: Predicts intervention vs. non-intervention costs.
- Explainability: SHAP for interpretability.

## **Deployment**

AWS EC2 with Uvicorn → Model serving.

AWS S3 → Model artifacts, CSV files.

**Cloud Infrastructure** 

AWS EC2 → Scalable compute.

AWS S3 → Object storage.



# **Constraints and Assumptions**

#### **Constraints:**

- Limited hackathon time → no deep hyperparameter tuning or advanced optimizations.
- AWS credits and computing resource limits may restrict execution.
- Limited hardware availability for training ML models.

## **Assumptions:**

- The care manager will provide patient records for analysis.
- The patient records will contain the required attributes (e.g., AgeSP\_CHF,SP\_CHRNKIDN, and other clinical features).
- The care manager will use the dashboard to view results (risk scores, ROI analysis, and savings).



# Risk Assesment

#### **Data Availability Risk**

- **Description**: Access to large, high-quality patient and cost datasets was limited.
- **Mitigation**: For the hackathon, we designed the models to work with smaller, structured datasets and ensured the pipeline can easily scale when richer data becomes available.

### **Scalability Risk**

- **Description:** The prototype was initially designed for limited patient records.
- **Mitigation**: We built the system with modular components (frontend–backend separation, API-based communication) so it can be extended to handle batch processing in future iterations.

#### **Performance Risk**

- Description: Limited hackathon time, hardware, and cloud credits restricted heavy training and tuning.
- Mitigation: We used lightweight but effective model like XGBoost to balance accuracy and efficiency, ensuring predictions run smoothly on available resources.

#### **Deployment Risk**

- **Description**: Cloud deployment posed challenges due to time and credit limitations.
- **Mitigation:** We focused on ensuring smooth local deployment first and structured the backend for easy containerization (Docker) so it can be moved to the cloud with minimal effort later.

### **User Adoption Risk**

- Description: Non-technical care managers may find machine learning outputs difficult to interpret.
- **Mitigation:** We implemented clear tables, summary cards, and highlighted key factors behind predictions to make the dashboard intuitive and actionable.



# **Success Criteria**

#### **Functional Success**

- The platform allows care managers to input patient records and view risk stratification and ROI results seamlessly through the dashboard.
- The system correctly generates risk scores, cost comparisons, and potential savings for patient cases.

#### **Technical Success**

- Backend (FastAPI) and frontend (React) integrate smoothly, with secure and reliable API communication.
- Machine learning models run within acceptable time limits, even on limited hardware.
- The dashboard presents results in an intuitive, clear, and visually appealing format.

#### **Usability Success**

- Non-technical stakeholders (e.g., care managers) can easily navigate the dashboard without needing technical expertise.
- Visualizations (tables, summary cards, graphs) are easy to interpret and actionable.

#### **Scalability & Maintainability Success**

- The system design (frontend–backend separation, modular ML pipeline) supports future scaling and integration with real-world datasets.
- Documentation for setup, usage, and future improvements is complete and accessible.

#### **Impact Success**

- The platform demonstrates clear cost savings by comparing proactive vs. reactive healthcare scenarios.
- The project builds confidence among healthcare providers/insurers to explore predictive analytics for preventative care.

# Appendix - References



#### **Datasets**

CMS Synthetic Beneficiary Data – CMS Public Use Files

#### **Frameworks & Libraries**

FastAPI Documentation – <u>Fastapi</u>
React Documentation – <u>React</u>
Scikit-learn Documentation – <u>Scikit-learn</u>

### Research / Background Reading

Wagner J. et al., "Implementing Risk Stratification in Primary Care: Challenges and Strategies," Journal of the American Board of Family Medicine 32(4): 585–595 (2019).

Link: Risk Stratification

"Projected return on investment of a corporate global health programme," BMC Public Health (2019).

Link: Roi