PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
 C12N 15/82, 15/10, 9/12, 5/10, C12Q 1/68, A01H 5/00

A2

(11) International Publication Number:

WO 00/08187

(43) International Publication Date:

17 February 2000 (17.02.00)

(21) International Application Number:

PCT/EP99/05652

(22) International Filing Date:

4 August 1999 (04.08.99)

(30) Priority Data:

98202634.6

4 August 1998 (04.08.98)

EP

(71) Applicant (for all designated States except US): VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECH-NOLOGIE [BE/BE]; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): LEE, Jeong, Hee [KR/BE]; Spinmolenplein 274 (22K), B-9000 Gent (BE). VERBRUGGEN, Nathalie [BE/BE]; Avenue des Saisons, 53, B-1050 Ixelles (BE).
- (74) Agent: DE CLERCQ, Ann; Ann De Clercq & Co. B.V.B.A., Brandstraat 100, B-9830 Sint-Martens-Latem (BE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENES INVOLVED IN TOLERANCE TO ENVIRONMENTAL STRESS

(57) Abstract

The present invention relates to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress resistance in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells. The present invention further relates to an isolated polynucleic acid obtainable by such a method as listed in Table 1 as well as recombinant polynucleic acid comprising the same. The present invention further relates to an isolated polypeptide encoded by a polynucleic acid of the invention. The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into a plant cell a recombinant DNA comprising a polynucleic acid as defined which when expressed in a plant cell enhances the tolerances or induces resistance to environmental stress conditions of said plant. The present invention particularly relates to plant cells, plants or harvestable parts or propagation material thereof transformed with a recombinant polynucleic acid as defined above.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

LS Lesotho	SI	01
LT Lithuanja	SK	Slovenia
LU Luxembourg		Slovakia
LV Latvia	SN	Senegal
MC Monaco	SZ	Swaziland
	TD	Chad
	TG	Togo
	TJ	Tajikistan
Tagooid,	TM	Turkmenistan
Republic of Macedonia		Turkey
ML Mali	TT	Trinidad and Tobago
MN Mongolia	UA	Ukraine
MR Mauritania	UG	Uganda
MW Malawi	US	United States of America
MX Mexico	UZ	Uzbekistan
NE Niger	VN	Viet Nam
NL Netherlands	. YU	Yugoslavia
NO Norway	zw	Zimbabwe
's NZ New Zealand		
PL Poland		
PT Portugal		
RO Romania		
RU Russian Federation		
SD Sudan		
SG Singapore		

10

15

20

25

30

35

Genes involved in tolerance to environmental stress

The present invention relates to molecular biology, in particular plant molecular biology. In particular, the invention relates to improvements of crop productivity of useful plants. One of the major limitations of crop productivity is the effect of environmental stress conditions on plant growth and development. An important goal of molecular biology is the identification and isolation of genes that can provide resistance or tolerance to such stresses. For agriculture, the creation of transgenic plants containing such genes provides the potential for improving the stress resistance or tolerance of plants.

Drought, salt loading, and freezing are stresses that cause adverse effects on the growth of plants and the productivity of crops. The physiological response to these stresses arises out of changes in cellular gene expression. Expression of a number of genes has been demonstrated to be induced by these stresses (Zhu et al., 1997; Shinozaki et al., 1996; Thomashow, 1994). The products of these genes can be classified into two groups: those that directly protect against environmental stresses and those that regulate gene expression and signal transduction in the stress response. The first group includes proteins that likely function by protecting cells from dehydration, such as the enzymes required for biosynthesis of various osmoprotectants, late-embryogenesis-abundant (LEA) proteins, antifreeze proteins, chaperones, and detoxification enzymes (Shinozaki et al., 1997, Ingram et al., 1996, Bray et al., 1997). The second group of gene products includes transcription factors, protein kinases, and enzymes involved in phosphoinositide metabolism (Shinozaki et al., 1997). An overview of the methods known to improve stress tolerance in plants is also given in Holmberg & Bülow, (1998).

Further studies are definitely needed to give an insight into the mechanisms involved in the plant response to environmental stress conditions.

The study of plants naturally adapted to extreme desiccation has led to the hypothesis that the genetic information for tolerance to environmental stress conditions exists in all higher plants. In glycophytes, this information would only be expressed in seeds and pollen grains which undergo a desiccation process.

The induction of osmotolerance in plants is very important to crop productivity: 30 to 50 % of the land under irrigation is presently affected by salinity. Several lines of evidence also demonstrate that even mild environmental stress conditions throughout the growth season have a negative impact on plant growth and crop productivity. It is

CONFIRMATION COPY

10

15

20

25

30

35

for instance known that even minor limitations in water availability cause a reduced photosynthetic rate. Unpredictable rainfall, increase in soil salinity at the beginning and the end of the growing season often result in decreased plant growth and crop productivity. These environmental factors share at least one element of stress and that is water deficit or dehydration. Drought is a significant problem in agriculture today. Over the last 40 years, for example, drought accounted for 74% of the total US crop losses of corn. To sustain productivity under adverse environmental conditions, it is important to provide crops with a genetic basis for coping with water deficit, for example by breeding water retention and tolerance mechanisms into crops so that they can grow and yield under these adverse conditions.

It is an aim of the present invention to provide a new method for screening for plant genes involved in tolerance or resistance to environmental stress.

It is an aim of the present invention to provide new plant genes, more particularly plant genes providing the potential of improving the tolerance to environmental stress conditions in plants.

It is also an aim of the present invention to provide polypeptides encoded by said new plant genes.

It is further an aim of the present invention to provide methods for producing plants with enhanced tolerance or resistance to environmental stress conditions based on said new genes.

It is also an aim of the present invention to provide recombinant polynucleic acids comprising said new genes.

It is further an aim of the present invention to provide plant cells and plants transformed with said new genes.

It is further an aim of the present invention to provide plant cells and plants with enhanced tolerance or resistance to environmental stress conditions.

The present invention relates more particularly to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.

It has been found that the transfer of genes from plants which are often difficult to assay for certain characteristics, to lower eukaryotes, such as yeasts and fungi, but

10

15

20

25

30

35

in particular yeast, especially Saccharomyces, is relatively-easy to achieve, whereby it has now been shown that the results of testing for tolerance or resistance to environmental conditions in the resulting yeast cells gives a relatively reliable measure of the capability of the inserted coding sequence or gene to induce tolerance or resistance to environmental stress in plants. Thus the expression of polynucleic acid sequences comprising the gene or coding sequence which are responsible for inducing tolerance or resistance to environmental stress conditions can be enhanced in the plant species from which it originates or in any other plant species.

In the present context the term "enhancing" must be understood to mean that the levels of molecules correlated with stress protection in a transformed plant cell, plant tissue or plant part will be "substantially increased" or "elevated" meaning that this level will be greater than the levels in an untransformed plant.

This may be achieved by inducing overexpression of suitable genetic information which is already present, or by any other suitable means of introducing into the plant cell heterologous information resulting in a capability to tolerate or resist environmental stress.

The term "environmental stress" has been defined in different ways in the prior art and largely overlaps with the term "osmotic stress". Holmberg et al., 1998 for instance define different environmental stress factors which result in abiotic stress. Salinity, drought, heat, chilling and freezing are all described as examples of conditions which induce osmotic stress. The term "environmental stress" as used in the present invention refers to any adverse effect on metabolism, growth or viability of the cell, tissue, seed, organ or whole plant which is produced by an non-living or non-biological environmental stressor. More particularly, it also encompasses environmental factors such as water stress (flooding, drought, dehydration), anaerobic (low level of oxygen, CO₂ etc.), aerobic stress, osmotic stress, salt stress, temperature stress (hot/heat, cold, freezing, frost) or nutrients/pollutants stress.

The term "anaerobic stress" means any reduction in oxygen levels sufficient to produce a stress as hereinbefore defined, including hypoxia and anoxia.

The term "flooding stress" refers to any stress which is associated with or induced by prolonged or transient immersion of a plant, plant part, tissue or isolated cell in a liquid medium such as occurs during monsoon, wet season, flash flooding or excessive irrigation of plants, etc.

"Cold stress" and "heat stress" are stresses induced by temperatures which are respectively, below or above, the optimum range of growth temperatures for a

10

15

20

25

30

35

particular plant species. Such optimum growth temperature ranges are readily determined or known to those skilled in the art.

"Dehydration stress" is any stress which is associated with or induced by the loss of water, reduced turgor or reduced water content of a cell, tissue, organ or whole plant.

"Drought stress" refers to any stress which is induced by or associated with the deprivation of water or reduced supply of water to a cell, tissue, organ or organism.

"Oxidative stress" refers to any stress which increases the intracellular level of reactive oxygen species.

The terms "salinity-induced stress", "salt-stress" or similar term refer to any stress which is associated with or induced by elevated concentrations of salt and which result in a perturbation in the osmotic potential of the intracellular or extracellular environment of a cell.

Said salt can be for example, water soluble inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, sodium chloride, magnesium chloride, calcium chloride, potassium chloride etc., salts of agricultural fertilizers and salts associated with alkaline or acid soil conditions.

The transgenic plants obtained in accordance with the method of the present invention, upon the presence of the polynucleic acid and/or regulatory sequence introduced into said plant, attain resistance, tolerance or improved tolerance or resistance against environmental stress which the corresponding wild-type plant was susceptible to.

The terms "tolerance" and "resistance" cover the range of protection from a delay to complete inhibition of alteration in cellular metabolism, reduced cell growth and/or cell death caused by the environmental stress conditions defined herein before. Preferably, the transgenic plant obtained in accordance with the method of the present invention is tolerant or resistant to environmental stress conditions in the sense that said plant is capable of growing substantially normal under environmental conditions where the corresponding wild-type plant shows reduced growth, metabolism, viability, productivity and/or male or female stenlity. Methodologies to determine plant growth or response to stress include, but are not limited to height measurements, leaf area, plant water relations, ability to flower, ability to generate progeny and yield or any other methodology known to those skilled in the art.

The terms "tolerance" and "resistance" may be used interchangeably in the present invention.

10

15

20

25

30

35

The methods according to the invention as set out below can be applied to any, higher plant, preferably important crops, preferably to all cells of a plant leading to an enhanced osmotic or any other form of environmental stress tolerance. By means of the embodiments as set out below, it now becomes possible to grow crops with improved yield, growth, development and productivity under environmental stress conditions, it may even become possible for instance to grow crops in areas where they cannot grow without the induced osmotolerance according to the invention.

In order to do a thorough screening for relevant plant genes and/or coding sequences, it is preferred to apply a method according to the invention whereby said cDNA library comprises copies of essentially all mRNA of said plant cell. Probably only coding sequences are sufficient. For the screening of genes involved in environmental stress, it is preferred to use a cDNA library from siliques (fruits, containing the maturing seeds), such as the siliques from *Arabidopsis*, because genes involved in for instance osmotolerance are preferentially expressed in these organs.

Although the genetic information may be introduced into yeast for screening by any suitable method, as long as it is in a functional format long enough tor testing of tolerance or resistance to environmental stress conditions, it is preferred for ease of operation to use a well known vector such as a 2µ plasmid. It is to be preferred to have the coding sequence or the gene under control of a strong constitutive yeast promoter, to enhance good expression of the gene or coding sequence of interest. Strong constitutive yeast promoters are well known in the art and include, but are not limited to the yeast TPI promoter.

The term "gene" as used herein refers to any DNA sequence comprising several operably linked DNA fragments such as a promoter and a 5' untranslated region (the 5'UTR), a coding region (which may or may not code for a protein), and an untranslated 3' region (3'UTR) comprising a polyadenylation site. Typically in plant cells, the 5'UTR, the coding region and the 3'UTR (together referred to as the transcribed DNA region) are transcribed into an RNA which, in the case of a protein encoding gene, is translated into a protein. A gene may include additional DNA fragments such as, for example, introns. As used herein, a genetic locus is the position of a given gene in the genome of a plant.

The present invention more particularly relates to an isolated polynucleic acid obtainable by a method comprising the preparation of a cDNA as set out above comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an

enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.

The term "polynucleic acid" refers to DNA or RNA, or amplified versions thereof, or the complement thereof.

The present invention more particularly provides an isolated polynucleic acid obtainable by a method as defined above which encodes a polypeptide as listed in Table 1.

The capacity of an isolated polynucleic acid to confer tolerance or resistance to environmental stress conditions can be tested according to methods well-known in the art, see for example, Grillo et al. (1996), Peassarakli et al. (Editor), Nilsen et al. (1996), Shinozaki et al. (1999), Jones et al. (1989), Fowden et al. (1993) or as described in the appended examples.

The present invention more particularly relates to an isolated polynucleic acid which encodes a homolog of any of the polypeptides as listed in Table 1, which is chosen from:

- (a) any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, or 121, or the complementary strands thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b), or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

Said fragment as defined above are preferably unique fragments of said sequences.

The term "hybridizing" refers to hybridization conditions as described in Sambrook (1989), preferably specific or stringent hybridization conditions are aimed at.

20

15

5

10

25

15

20

25

30

35

Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 60°C.

In the present invention, genomic DNA or cDNA comprising the polynucleic acids of the invention can be identified in standard Southern blots under stringent conditions using the cDNA sequence shown. The preparation of both genomic and cDNA libraries is within the skill of the art. Examples of hybridization conditions are also given in the Examples section.

The present invention also relates to the isolated polynucleic acids which encode polypeptides which are a homolog of the polypeptides as set out in Table 1 useful for the production of plants which are resistant or tolerant to environmental stress conditions.

The present invention also relates to a polynucleic acid comprising at least part of any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121. Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76 or 78. Said part of said gene is preferably a unique part.

The present invention preferably relates to the use of a polynucleic acid comprising at least part of any of SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of

SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121 for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Said part of said gene is preferably a unique part.

The present invention particularly relates to an isolated polynucleic acid as defined above, which encodes a plant homolog of yeast DBF2 kinase, more particularly a DBF2 kinase homolog from Arabidopsis thaliana termed At-DBF2, which can at least be used to confer enhanced environmental stress tolerance or resistance in plants and yeast.

More preferably, the present invention relates to an isolated polynucleic acid encoding a plant DFB2 kinase, which is chosen from:

(a) SEQ ID NO 1, or the complementary strand thereof;

(b) polynucleic acid sequences which hybridize to

sequences defined in (a) or fragments thereof;

(e) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b), or,

(c) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

Alternatively, the present invention relates to a polynucleic acid derived from a plant comprising at least part of SEQ ID NO 1, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 1. Preferably said gene encodes a protein

20

5

10

15

25

having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2.

The present invention also relates to the use of an isolated polynucleic acid as defined above which encodes a plant HSP 17.6A protein for the production of transgenic plants, more particularly a homolog from Arabidopsis thaliana, which at least can be used to confer enhanced environmental stress tolerance in plants and yeast.

More preferably, the present invention relates to the use of an isolated polynucleic acid as defined above which is chosen from:

(a) SEQ ID NO 3, or the complementary strand thereof;

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

The present invention also relates to the use of a polynucleic acid comprising at least part of SEQ ID NO 3, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 3. Preferably said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 4, for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

More preferably, the present invention relates to the use of an isolated polynucleic acid as defined above which is chosen from:

(a) any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or the complementary strand thereof;

10

5

15

20

25

30

10

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

The present invention preferably relates to the use of a polynucleic acid comprising at least part of any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Said part of said gene is preferably a unique part.

According to another preferred embodiment, the present invention relates to an isolated polynucleic acid as defined above, which encodes a protein termed c74, more particularly a plant homolog of c74, even more preferably a c74 from Arabidopsis thaliana, which at least can be used to confer enhanced environmental stress tolerance in plants and yeast.

More particularly, the present invention relates to an isolated polynucleic acid as defined above, which is chosen from:

- (a) SEQ ID NO 5, or the complementary strand thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

20

10

15

20

25

30

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

The present invention also relates to a polynucleic acid comprising at least part of SEQ ID NO 5, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 5. Preferably said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 6.

Two nucleic acid sequences or polypeptides are said to be "identical" according to the present invention if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The term "complementary to" is used herein to mean that the complementary sequence hybridizes to all or a portion of a given polynucleotide sequence.

Sequence comparisons between two (or more) polynucleic acid or polypeptide sequences are typically performed by comparing sequences of the two sequences over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window", as used herein, refers to a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman (1981), by the homology alignment algorithm of Needleman and Wunsch (1970), by the search for similarity method of Pearson and Lipman (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by visual inspection.

10

15

20

25

30

"Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleic acid or polypeptide sequences in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

The term "substantial identity" of polynucleic acid or polypeptide sequences means that a polynucleotide sequence comprises a sequence that has at least 60%, 65%, 70% or 75% sequence identity, preferably at least 80% or 85%, more preferably at least 90% and most preferably at least 95 %, compared to a reference sequence using the programs described above (preferably BLAST) using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 40%, 45%, 50% or 55% preferably at least 60%, 65%, 70%, 75%, 80% or 85% more preferably at least 90%, and most preferably at least 95%. Polypeptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups are: valineleucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, asparagine-glutamine.

10

15

20

25

30

35

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other, or a third nucleic acid, under stringent conditions.

More particularly, the polynucleic acids as used herein will comprise at least part of a DNA sequence which is essentially similar, or, preferentially, essentially identical or identical to one or both of the nucleotide or amino acid sequences corresponding to SEQ ID NO 1 to 121 disclosed herein, more specifically in the nucleotide sequence encoding, or the amino-acid sequence corresponding to the "active domain" of the respective protein or polypeptide.

The polynucleic acid sequences according to the present invention can be produced by means of any nucleic acid amplification technique known in the art such as PCR or conventional chemical synthesis.

For a general overview of PCR see PCR Protocols (Innis et al. (1990)).

Polynucleotides may also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al. (1982) and Adams et al. (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

The present invention more particularly relates to an isolated polypeptide encoded by a polynucleic acid according to any of the polynucleic acids as defined above, or a functional fragment thereof.

The present invention preferably relates to an isolated polypeptide as listed in Table 1 or to an isolated polypeptide encoded by a polynucleic acid isolated as defined above. Preferably, the present invention relates to polypeptides or peptides having at least part of the sequence of any of SEQ ID NO NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Preferably, said part is a unique part and preferably includes the active domain of said polypeptide. Preferably said polypeptide is a recombinant polypeptide.

The term "isolated" distinguishes the protein or polynucleic acid according to the invention from the naturally occurring one.

The present invention also relates to a polypeptide comprising at least part of a polypeptide which is at least 50%, 55%, 60%, 65% identical, preferentially at least 70%, 75% identical, more preferably at least 80% or 85% identical, and most

10

15

20

25

30

preferably at least 90% or 95% identical to any of SEQ ID NO NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120.

The terms "polypeptide" and "protein" are used interchangeably throughout the present description.

Said polypeptide preferably has the ability to confer tolerance or resistance to environmental stress conditions in at least plants, plant parts, plant tissues, plant cells, plant calli or yeast.

The term "functional fragment" refers to a fragment having substantially the biological activity of the protein from which it is derived.

The polypeptides of the present invention may be produced by recombinant expression in prokaryotic and eukaryotic engineered cells such as bacteria, yeast or fungi. It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression in these systems.

The present invention more particularly relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising transiently introducing into a plant cell a recombinant DNA comprising any of the polynucleic acids as defined above which when (over)expressed in a plant cell enhances tolerance or resistance to environmental stress of said plant.

The term "plant cell" as defined above also comprises plant tissue or a plant as a whole. The present invention more particularly relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising transiently introducing into a plant cell a recombinant DNA comprising any of the polynucleic acids encoding a protein as listed in Table 1 which when (over)expressed in a plant cell enhances tolerance or resistance to environmental stress in said plant.

The term "(over)expression" refers to the fact that the polypeptides of the invention encoded by said polynucleic acid are preferably expressed in an amount effective to confer tolerance or resistance to the transformed plant, to an amount of salt, heat, cold, (or other stress factors) that inhibits the growth of the corresponding untransformed plant.

Several methods to obtain transient introduction and expression of a recombinant DNA in a plant are known to the art. For example, plant virus vectors can

10

15

20

25

be used to obtain such purpose. Examples conferring to the use of plant viral vectors are described in Porta and Lomonossoff (1996), WO9320217 and US 5,589,367.

The present invention also relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising stably introducing into the genome of a plant cell a recombinant DNA comprising any of the polynucleic acids as defined above which when (over)expressed in a plant cell enhances the environmental stress tolerance or resistance of a plant.

The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress conditions, said method comprising introducing into the genome of a plant cell a recombinant DNA comprising any of the polynucleic acids encoding a protein as listed Table 1 which when (over)expressed in a plant cell enhances the environmental stress resistance of said plant.

According to a preferred embodiment, the present invention relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding a DBF2 kinase, preferably a plant DBF2 kinase, most preferably an Arabidopsis DBF2 kinase.

According to another preferred embodiment, the present invention relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding an HSP 17.6A protein, preferably a plant HSP 17.6A protein, most preferably an Arabidopsis HSP 17.6A.

According to a preferred embodiment, the present invention relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding a c74 protein, preferably a plant c74 protein, most preferably a Arabidopsis c74 protein.

Preferably, the present invention relates to a method as defined above, comprising:

- (a) introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a polynucleic acid as defined above, and,
 - a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit

35

and under the control of said plant-expressible promoter, and,

(b) regenerating said plant from said plant cell.

The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising indirectly increasing of inducing the expression of an endogenous gene in said plant comprised within a polynucleic acid as defined above or indirectly increasing of inducing te activity of a protein as defined above.

The present invention also relates to a method as defined above, comprising:

- (a) introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a DNA encoding a protein which when expressed in said plant cell at an effective amount indirectly increases or induces the expression of an endogenous polynucleic acid or indirectly increases or induces the protein activity of a protein encoded by said polynucleic acid of the present invention, and,
 - a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter, and,

(b) regenerating said plant from said plant cell.

A "recombinant" DNA molecule will comprise a "heterologous sequence" meaning that said recombinant DNA molecule will comprise a sequence originating from a foreign species, or, if from the same species, may be substantially modified from its original form. For example, a promoter operably linked to a structural gene which is from a species different from which the structural gene was derived, or, if from the same species, may be substantially modified from its original form.

The present invention also relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress conditions, said method comprising indirectly increasing or inducing the expression of an endogenous gene in said plant comprised within a polynucleic acid as defined above or indirectly increasing or inducing the activity of a protein of the invention as defined above. According to this embodiment, other polynucleic acids modulating the expression or the activity of a protein according to the present invention may be introduced

15

10

5

20

25

10

15

20

25

30

35

transiently or stably into the genome of said plants. The term "modulating" means enhancing, inducing, increasing, decreasing or inhibiting.

Increase or induction of expression or induction or increase of protein activity is required when said regulator protein is a positive regulator of the expression or the activity of at least one of the polynucleic acids or protein of the present invention.

Decrease or inhibition of expression or decrease or inhibition of protein activity is required when said regulator protein is a negative regulator of the expression or activity of at least one of the polynucleic acids or proteins of the present invention.

Increase of the activity of said polypeptide according to the present invention is obtained, according to one embodiment of the invention, by influencing endogenous gene expression in the plant. This is preferably achieved by the introduction of one or more polynucleic acid sequences according to the invention into the plant genome, in a suitable conformation for gene expression (e.g. under control of a plant-expressible promoter). This will result in increased or induced expression (overexpression) or increased or induced activity of the protein in the plant cells, and, in the presence of an adequate substrate, in an increase of tolerance or resistance to environmental stress conditions in a transgenic plant or plant cell as compared to a non-transgenic plant or plant cell. This increase in tolerance can be measured by measuring mRNA levels, or where appropriate, the level or activity of the respective protein (e.g. by means of ELISA, activity of the enzyme as measured by any technique known in the art). Endogenous gene expression refers to the expression of a protein which is naturally found in the plant, plant part or plant cell concerned.

Alternatively, said enhanced tolerance or resistance to environmental stress conditions may be achieved by introducing into the genome of the plant, one or more transgenes which interact with the expression of endogenous genes (polynucleic acids) according to the present invention, by anti-sense RNA, co-suppression or ribozyme suppression of genes which normally inhibit the expression of the polynucleic acids of the present invention or by suppression of genes which normally inhibit the activity of the polypeptides of the invention as defined above.

For inhibition of expression, the nucleic acid segment to be introduced generally will be substantially identical to at least a portion of the endogenous gene or genes to be repressed. The sequence, however, need not be perfectly identical to inhibit expression. The vectors of the present invention can be designed such that the inhibitory effect applies to other genes within a family of genes exhibiting homology or substantial homology to the target gene.

10

20

25

30

35

For antisense suppression, the introduced sequence also need not be full length relative to either the primary transcription product or fully processed mRNA.

Generally, higher homology can be used to compensate for the use of a shorter sequence.

Furthermore, the introduced sequence need not have the same intron or exon pattern, and homology of non-coding segments may be equally effective. Normally, a sequence of between about 30 or 40 nucleotides up to the full length sequence should be used, though a sequence of at least about 100 nucleotides is preferred, a sequence of at least about 200 nucleotides is more preferred, and a sequence of about 500 to about 1700 nucleotides is especially preferred.

Catalytic RNA molecules or ribozymes can also be used to inhibit expression of genes as explained above. It is possible to design ribozymes that specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules, making it a true enzyme. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs.

A number of classes of ribozymes have been identified. One class of ribozymes is derived from a number of small circular RNAs which are capable of selfcleavage and replication in plants. The RNAs replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes is described in Haseloff et al. (1988).

Another method of suppression of gene expression is sense suppression. Introduction of nucleic acid configured in the sense orientation has been shown to be an effective means by which to block the transcription of target genes. For an example of the use of this method to modulate expression of endogenous genes see, Napoli et al. (1990), and U.S. Patents Nos. 5,034,323, 5,231,020, and 5,283,184.

The suppressive effect may occur where the introduced sequence contains no coding sequence per se, but only intron or untranslated sequences homologous to sequences present in the primary transcript of the endogenous sequence. The introduced sequence generally will be substantially identical to the endogenous

15

20

25

30

sequence intended to be repressed. This minimal identity will typically be greater than about 65%, but a higher identity might exert a more effective repression of expression of the endogenous sequences. Substantially greater identity of more than about 80% is preferred, though about 95% to absolute identity would be most preferred. As with antisense regulation, the effect should apply to any other proteins within a similar family of genes exhibiting homology or substantial homology.

For sense suppression, the introduced sequence, needing less than absolute identity, also need not be full length, relative to either the primary transcription product or fully processed mRNA. This may be preferred to avoid concurrent production of some plants which are overexpressers. A higher identity in a shorter than full length sequence compensates for a longer, less identical sequence. Furthermore, the introduced sequence need not have the same intron or exon pattern, and identity of non-coding segments will be equally effective. Normally, a sequence of the size ranges noted above for antisense regulation is used.

Other methods for altering or replacing genes known in the art can also be used to inhibit expression of a gene. For instance, insertional mutants using T-DNA or transposons can be generated. See, e.g., Haring et al. (1991) and Walbot (1992). Another strategy in genetic engineering of plants and animals is targeted gene replacement. Homologous recombination has typically been used for this purpose (see, Capecchi (1989)).

Alternatively, the present invention also relates to a method as defined above wherein said DNA encodes a sense or antisense RNA or a ribozyme capable of indirectly increasing or inducing the expression of an endogenous polynucleic acid sequence according to the invention as defined above or increasing or inducing the activity of a protein of the invention as defined above. Preferably said endogenous polynucleic acid encodes a protein as listed in Table 1.

The present invention also relates to a recombinant polynucleic acid comprising: a polynucleic acid as defined above, and, a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.

The present invention also relates to a recombinant polynucleic acid comprising:

(a) a DNA encoding a protein which when expressed in said plant at an effective amount indirectly increases or induces the expression of an endogenous

10

15

20

25

30

35

polynucleic acid as defined above or indirectly increases or induces the protein activity of a polypeptide as defined above, and,

(b) a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.

An "endogenous" polynucleic acid refers to a polynucleic acid that is already present in the plant species before transformation.

Said recombinant polynucleic acid as described here above is generally also referred to as a "recombinant vector" or an "expression cassette". An expression cassette of the invention can be cloned into an expression vector by standard methods. The expression vector can then be introduced into host cells by currently available DNA transfer methods.

The present invention also relates to the recombinant polynucleic acid as defined above, comprising a DNA which encodes an anti-sense RNA, a ribozyme or a sense RNA which increases or induces the activity of a protein as defined above in said cell. Preferably said protein is listed in Table 1.

More particularly, the present invention relates to a recombinant polynucleic acid comprising at least part of the nucleotide sequence of any of SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121.

Preferably, the present invention relates to a recombinant polynucleic acid comprising at least part of the coding sequence of a gene encoding a protein as listed in Table 1. Preferably, said "part" is a unique part of any of said nucleotide sequences. (26-28) As used herein, the term a "plant-expressible promoter" refers to a promoter that is capable of driving transcription in a plant cell. This includes any promoter of plant origin, including the natural promoter of the transcribed DNA sequence, but also any promoter of non-plant origin which is capable of directing transcription in a plant cell. The promoter may also be an artificial or synthetic promoter. The term "plant-expressible promoter" includes, but is not restricted to, constitutive, inducible, organ, tissue-specific or developmentally regulated promoters.

According to the invention, production and/or activity of a polypeptide according to the present invention in a plant or in plant parts is increased by introducing one or more polynucleic acids according to the invention into the genome of the plant. More specifically, the constitutive promoter can be, but is not restricted to, one of the following: a 35S promoter (Odell et al. (1985)), a 35S'3 promoter (Hull and Howell

10

15

20

25

30

(1987)), the promoter of the nopaline synthase gene ("PNOS") of the Ti-plasmid (Herrera -Estrella, (1983)) or the promoter of the octopine synthase gene ("POCS", De Greve et al. (1982)). It is clear that other constitutive promoters can be used to obtain similar effects. A list of plant-expressible promoters that can be used according to the present invention is given in Table 2.

For specific embodiments of this invention, the use of inducible promoters can provide certain advantages. Modulation of protein levels or protein activity may be required in certain parts of the plant, making it possible to limit modulation to a certain period of culture or developmental stage of the plant.

For specific embodiments of this invention, the use of organ- or tissue-specific or chemical inducible promoters can provide certain advantages. Thus, in specific embodiments of the invention, the gene(s) or part thereof is (are) placed under the control of a promoter directing expression in specific plant tissues or organs, such as for instance roots, leaves, harvestable parts, etc.

It is also possible to use a promoter that can be induced upon the environmental stress conditions. Such promoters can be taken for example from stress-related genes which are regulated directly by an environmental, i.e. preferable abiotic, stress in a plant cell, including genes for which expression is increased, reduced or otherwise altered. These stress related genes comprise genes the expression of which is either induced or repressed by anaerobic stress, flooding stress, cold stress, dehydration stress, drought stress, heat stress or salinity. An exemplary list of such promoters is given in Table 3.

The recombinant polynucleic acids according to the present invention may include further regulatory or other sequences from other genes, such as leader sequences (e.g. the cab22 leader from Petunia), 3' transcription termination and polyadenylation signals (e.g. from the octopine synthase gene or the nopaline synthase gene), plant translation initiation consensus sequences, introns, transcription enhancers and other regulatory elements such as adh intron 1, etc, which is or are operably linked to the gene or a fragment thereof. Additionally, the recombinant polynucleic acid can be constructed and employed to target the gene product of the polynucleic acid of the invention to a specific intracellular compartment within a plant cell on to direct a protein to the extracellular environment. This can generally be obtained by operably joining a DNA sequence encoding a transit or signal peptide to the recombinant polynucleic acid.

10

15

20

25

30

35

The recombinant DNA comprising one or more polynucleic acids according to the present invention may be accompanied by a chimeric marker gene (Hansen et al., 1999 and references therein). The chimeric marker gene can comprise a marker DNA that is operably linked at its 5' end to a plant-expressible promoter, preferably a constitutive promoter, such as the CaMV 35S promoter, or a light inducible promoter such as the promoter of the gene encoding the small subunit of Rubisco; and operably linked at its 3' end to suitable plant transcription 3' end formation and polyadenylation signals. It is expected that the choice of the marker DNA is not critical, and any suitable marker DNA can be used. For example, a marker DNA can encode a protein that provides a distinguishable color to the transformed plant cell, such as the A1 gene (Meyer et al., (1987)), can provide herbicide resistance to the transformed plant cell, such as the *bar* gene, encoding resistance to phosphinothricin (EP 0 242 246), or can provide antibiotic resistance to the transformed cells, such as the *aac*(6') gene, encoding resistance to gentamycin (WO94/01560).

According to another embodiment, the present invention invention relates to the use of the polynucleic acids above as selectable marker gene. More preferably, the present invention also relates to the use of the plant DBF2 gene as defined above as selectable marker gene, selection taking place with treatment with a stress condition.

The recombinant DNA vectors according to the present invention comprising the sequences from genes of the invention will typically also comprise a marker gene which confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosulforon or Basta.

The present invention also relates to a recombinant host cell transformed with an isolated polynucleic acid as defined above. Said host can be any host known in the art. Preferably said recombinant host cell is a plant cell, yeast, fungi, insect cell, etc. In order to be efficiently expressed in said host, said polynucleic acids can be combined with any promoter known to function in said host system. Methods for transforming said host cells are also well known in the art.

The present invention particularly also relates to a plant cell transformed with at least one recombinant polynucleic acid as defined above.

The present invention also relates to a plant consisting essentially of plant cells transformed with at least one recombinant polynucleic acid as defined above.

15

20

25

30

35

A "transgenic plant" refers to a plant comprising a transgene in the genome of essentially all of its cells.

DNA constructs of the invention may be introduced into the genome of the desired plant host by a variety of conventional techniques (see for example Hansen et al., 1999 for review and WO 99/05902). For example, DNA constructs of the invention may be introduced into the genome of the desired plant host by using techniques such as protoplast transformation, biolistics or microprojectile bombardment or Agrobacterium mediated transformation.

Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. (1984).

Electroporation techniques are described in Fromm et al. (1985). Biolistic transformation techniques are described in Klein et al. (1987).

Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium host vector. The virulence functions of the Agrobacterium host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria. Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example Horsch et al. (1984), and Fraley et al. (1983).

Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired phenotype. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium. Plant regeneration from cultured protoplasts is described in Evans et al. (1983); and Binding (1985). Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. (1987).

The polynucleic acids and polypeptides of the invention can be used to confer desired traits on a broad range of plants, including monocotyledonous or dicotyledonous plants, preferably they belong to a plant species of interest in agriculture, wood culture or horticulture, such as a crop plant, root plant, oil producing plant, wood producing plant, fruit producing plant, fodder or forage legume, companion or ornamental or horticultured plant. The plants can include species from the genera Actinidia, Apium, Allium, Ananas, Arachis, Arisaema, Asparagus, Atropa, Avena, Beta,

10

15

20

25

30

35

Brassica, Carica, Cichorium, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Cydonia, Daucus, Diospyros, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Ipomoea, Lactuca, Linum, Lolium, Lycopersicon, Malus, Mangifera, Manihot, Majorana, Medicago, Musa, Nicotiana, Oryza, Panicum, Pannesetum, Persea, Petroselinum, Phaseolus, Pisum, Pyrus, Prunus, Raphanus, Rheum, Ribes, Rubus, Saccharum, Secale, Senecio, Sinapis, Solanum, Sorghum, Spinacia, Trigonella, Triticum, Vaccinium, Vitis, Vigna, Zea, and Zingiber. Additional species are not excluded. Crops grown on cultivated lands in arid and semi-arid areas in which irrigation with ground water is needed may advantageously benefit from the invention.

One of skill will recognize that after the recombinant polynucleic acid is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. As described before, the plant cells, plant tissue, in particular, transgenic plants of the invention display a certain higher or enhanced degree of tolerance (or even resistance) to environmental stress conditions compared to the corresponding wild-type plants. For the meaning of "environmental stress", see supra. In a preferred embodiment of the present invention, the transgenic plant displays increased tolerance to osmotic stress, salt stress, cold and/or heat stress. An increase in tolerance to such environmental stress is understood to refer to a tolerance to a level of such stress which inhibits the growth and productivity of the corresponding untransformed plant, as determined by methodologies known to the art. Such increased tolerance in transgenic plants is related to an increased expression level in the transgenic plant or parts thereof of one ore more of the polynucleic acids of the present invention and/or to an increased level of activity of the polypeptide(s) encoded by said polynucleic acid, as determined by methodologies known to the art. In comparison with their untransformed counterparts, and determined according to methodologies known in the art, a transgenic plant according to the present invention shows an increased growth, viability, metabolism, fertility and/or productivity under mild environmental stress conditions. In the alternative, a transgenic plant according to the invention can grow under environmental stress conditions wherein the untransformed counterparts can not grow. An increase in tolerance to salt stress is understood to refer to the capability of the transgenic plant to grow under stress conditions which inhibit the growth of at least 95% of the parent, non-stress tolerant plants from which the stress tolerant transgenic

15

20

25

30

35

plants are derived. Typically, the growth rate of stress tolerant plants of the invention will be inhibited by less than 50%, preferably less than 30%, and most preferably will have a growth rate which is not significantly inhibited by growth conditions which inhibit the growth of at least 95% of the parental, non-stress tolerant plants. In an alternative example, under mild environmental stress conditions, the growth and/or productivity of the transgenic plants is statistically at least 1 % higher than for their untransformed counterparts, preferably more than 5 % higher and most preferably more than 10 % higher.

Any transformed plant obtained according to the invention can be used in a conventional breeding scheme or in *in vitro* plant propagation to produce more transformed plants with the same characteristics and/or can be used to introduce the same characteristic in other varieties of the same or related species.

Furthermore, the characteristic of the transgenic plants of the present invention to maintain normal/rapid/high growth rates under environmental stress conditions can be combined with various approaches to confer environmental stress tolerance with the use of other stress tolerance genes. Some examples of such stress tolerant genes are provided in Holmberg and Bülow (1998). Most prior art approaches which include the introduction of various stress tolerance genes have the drawback that they result in reduced or abnormal growth (compared to non-transgenic controls) under normal, non-stressed conditions, namely stress tolerance comes at the expense of growth and productivity (Kasuga et al., 1999). This correlation between constitutive expression of stress-responsive genes and reduced growth rates under normal growth conditions indicates the presence of cross talk mechanisms between stress response control and growth control.

Furthermore, the characteristic of the transgenic plants of the present invention to display tolerance to environmental stress conditions can be combined with various approaches to confer to plants other stress tolerance genes, e.g., osmotic protectants such as mannitol, proline; glycine-betaine, water-channeling proteins, etc. Thus, the approach of the present invention to confer tolerance to environmental stress conditions to plants can be combined with prior art approaches which include introduction of various stress tolerance genes. Combination of these approaches may have additive and/or synergistic effects in enhancing tolerance or resistance to environmental stress.

Thus, it is immediately evident to the person skilled in the art that the method of the present invention can be employed to produce transgenic stress tolerant plant with

10

15

20

25

30

any further desired trait (see for review TIPTEC Plant Product & Crop Biotechnology 13 (1995), 312-397) comprising:

- (i) herbicide tolerance (DE-A 3701623; Stalker (1988)),
- (ii) insect resistance (Vaek (1987)),
- (iii) virus resistance (Powell (1986), Pappu (1995), Lawson (1996)),
- (iv) ozone resistance (Van Camp (1994)),
- (v) improving the preserving of fruits (Oeller (1991)),
- (vi) improvement of starch composition and/or production (Stark (1992), Visser (1991)),
- (vii) altering lipid composition (Voelker (1992)),
- (viii) production of (bio)polymers (Poirer (1992)),
- (ix) alteration of the flower color, e.g., bu manipulating the anthocyanin and flavonoid biosynthetic pathway (Meyer (1987), WO90/12084),
- (x) resistance to bacteria, insects and fungi (Duering (1996), Strittmatter (1995), Estruch (1997)),
- (xi) alteration of alkaloid and/or cardia glycoside composition,
- (xii) inducing maintaining male and/or female sterility (EP-A1 0 412 006; EP-A1 0 223 399; WO93/25695);
- (xiii) higher longevity of the inflorescences/flowers, and
- (xvi) stress resistance.

Thus, the present invention relates to any plant cell, plant tissue, or plant which due to genetic engineering displays an enhanced tolerance or resistance to environmental stress obtainable in accordance with the method of the present invention and comprising a further nucleic acid molecule conferring a novel phenotype to the plant such as one of those described above.

The present invention also relates to a callus or calli consisting essentially of plant cells as defined here above. Such transgenic calli can be preferably used for the production of secondary metabolites in plant cell suspension cultures.

The present invention also relates to any other harvestable part, organ or tissue or propagation material of the plant as defined here above.

The present invention also relates to the seed of a transgenic plant as defined here above, comprising said recombinant DNA.

The present invention also relates to the use of any isolated polynucleic acid as defined above to produce transgenic plants.

10

15

20

25

30

35

The present invention also relates to the use of a recombinant polynucleic acid as defined above, to produce transgenic plants, preferably transgenic plants having an enhanced tolerance or resistance to environmental stress conditions. Preferably said polynucleic acid encodes a polypeptide as listed in Table 1.

The present invention also relates to the use of an isolated polynucleic acid as defined above, to produce transgenic callus having an enhanced tolerance or resistance to environmental stress conditions. Preferably said polynucleic acid encodes a polypeptide as listed in Table 1.

The present invention also relates to probes and primers derived from the genes of the invention that are useful for instance for the isolation of additional genes having sequences which are similar to but differ from any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, but which encode a protein having substantially the same biological activity as a protein having the amino acids sequence of any of SEQ ID NO 2 to 120 (even numbers) by techniques known in the art, such as PCR. The presence of a homologous gene in another plant species can for instance be verified by means of Northern of Southern blotting experiments.

The present invention also relates to the cloning of the genomic counterpart of any of the cDNA sequences as represented in SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121. These genomic counterparts can be selected from a genomic library using these cDNA sequences as a probe. The present invention also relates to the coding region as well as the promoter region of any of said genomic clones.

The term "probe" according to the present invention refers to a single-stranded oligonucleotide *sequence* which is designed to specifically hybridize to any of the polynucleic acids of the invention.

The term "primer" refers to a single stranded oligonucleotide sequence capable of acting as a point of initiation for synthesis of a primer extension product which is complementary to the nucleic acid strand to be copied. Preferably the primer is about 5-50 nucleotides long. The term "target region" of a probe or a primer according to the present invention is a sequence within the polynucleic acid(s) to which the probe or the primer is completely complementary or partially complementary (i.e. with some degree

10

15

20

25

30

35

of mismatch). It is to be understood that the complement of said target sequence is also a suitable target sequence in some cases.

"Specific hybridization" of a probe to a target region of the polynucleic acid(s) means that the probe forms a duplex with part of this region or with the entire region under the experimental conditions used, and that under those conditions this probe does substantially not form a duplex with other regions of the polynucleic acids present in the sample to be analysed.

"Specific hybridization" of a primer to a target region of the polynucleic acid(s) means that, during the amplification step, said primer forms a duplex with part of this region or with the entire region under the experimental conditions used, and that under those conditions the primer does not form a duplex with other regions of the polynucleic acids present in the sample to be analysed. It is to be understood that "duplex" as used hereby, means a duplex that will lead to specific amplification.

Preferably, the probes of the invention are about 5 nucleotides to about 1 Kb long, more preferably from about 10 to 25 nucleotides. The nucleotides as used in the present invention may be ribonucleotides, deoxyribonucleotides and modified nucleotides such as inosine or nucleotides containing modified groups which do not essentially alter their hybridization characteristics. The probes according to the present invention preferably include parts of the cDNA sequences of any of the polynucleic acids as defined above.

The present invention also relates to a composition comprising a polynucleic acid sequence as defined above, a polypeptide as defined above, a probe as defined above or a primer as defined above.

The present invention also relates to a pharmaceutical or agrochemical composition comprising said polynucleic acid, a polypeptide of the invention as defined above.

The present invention also relates to antibodies specifically reacting with a protein or polypeptide according to the present invention.

The following Examples describe by way of example the tolerance and/or resistance to several environmental stress conditions observed for transgenic plants and yeast overexpressing some of the polynucleic acids according to the present invention. Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) and in volumes 1 and 2 of Ausubel et al. (1994). Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R.D.D.

Croy, jointly published by BIOS Scientific Publications Ltd. (UK) and Blackwell Scientific Publications, UK.

These examples and figures are not to be construed as limiting to any of the embodiments of the present invention as set out above. All of the references mentioned herein are incorporated by reference.

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE FIGURES AND TABLES

Figure 1. At-DBF2 encodes a functional homolog of the yeast Dbf2 (A) Comparison of the deduced amino acid sequence of At-DBF2 with that of yeast DBF2. Gaps were introduced to optimize the alignment. Roman numerals above the At-DBF2 sequence indicate the protein kinase catalytic subdomains defined by Hanks et al. (1988). (B) Complementation of dbf2. The dbf2 mutant S7-4A [MATa dbf2\Delta::URA3 ura3 leu2 ade5 trp1 his7] (Toyn and Johnston, 1994) (B1) forms swollen pairs of daughter cells (dumbbells) at restrictive temperature (37° C). The defective morphology of the dbf2 mutant can be complemented by transformation with the pYX112 centromeric plasmid (Ingenius, R&D system) containing the At-DBF2 cDNA (B2) or DBF2 (B3); wild type (CG378 strain, MATa ade5 leu2 trp1 ura3) (B4). Log phase cultures were shifted from 28°C to 37°C and photographed after 16 hours. After 16 hours, 98% of the S7-4A cells arrested with a dumbbell morphology (B1) whereas 6,1 and 0% of dumbbells were observed in B1, B3 and B4. Strains were kindly provided by (Dr Lindl, Max Planck Institut fur Zuchtungsforschung, Koln, Germany).

Figure 2. Overexpression of *DBF2* or *At-DBF2* enhances tolerance to osmotic, salt, heat and cold stress. Yeast cells were grown in YPD and cell density was adjusted to OD600 at 2. (1) DY, (2) DY transformed with pYX212 containing *DBF2*, pYX-YDBF2, (3) DY transformed with vector alone or (4) with vector containing *At-DBF2*, pYX-AtDBF2. Serial dilutions were made in step1:10. Ten μl of each dilution was spotted on solid YPD medium (control) supplemented with 2M sorbitol (osmotic stress) or 1.2 M NaCl (salt stress) or 4μl H₂O₂ (oxidative stress) and incubated at 28°C or at 42°C (heat stress) or at 4°C (cold stress) for 3 days.

Figure 3. *DBF2* and *At-DBF2* are induced by stress. (a) Northern analysis showing the kinetics of *At-DBF2* induction in plants treated with PEG 6000 20 % and the one of *DBF2* in yeast treated with sorbltol 2M for the time indicated. (b) Northern analysis of *At-DBF2* in 10 day-old-plants grown for 5 hours in control conditions (as described in Verbruggen et al. 1993) (1), at 37° C (2), with PEG 6000 20 % (3), NaCl 1% (4), at 4° C (5) or with 0.4 mM H_2O_2 (6); and of *DBF2* in yeast cells grown for 11/2 hour in YPD (1), at 37° C (2), with sorbitol 2M (3), with NaCl 1.2 M (4), at 4° C (5) or with 0.4 mM H_2O_2 (6). Control of loading has been done with EtBr staining and is shown under each Northern analysis.

10

15

20

25

30

(c) Western analysis of At-DBF2 in Arabidopsis. Samples are similar to those analysed in (b). Antibodies used were raised against yeast Dbf2 and kindly provided by Dr L. Leindl (Max Planck Institut fur Zuchtungsforschung, Koln, Germany).

Figure 4. *DBF2* overexpression can suppress *hog1* osmosensitivity. The *hog1* mutant (4) [W303-1A, *MATa*, *hog1*Δ:: *TRP1*] and wild type (W303) (1) were kindly provided by Dr Thevelein (Katholieke Universiteit Leuven, Belgium). The *hog1* mutant was transformed with pYX-YDBF2 (2) or pYX-AtDBF2 (3). Each of the 4 strains was grown for 16 hours in YPD (rich medium), and cell density was adjusted to OD600 at 2. Serial dilutions, 1:10 were made at five consecutive steps. Ten microliter of each dilution was spotted on solid YPD medium (control) or solid YPD medium supplemented with 0,9 M NaCl and incubated at 28°C for 3 days.

Figure 5. *T-DBF2* (*Nicotiana tabacum* DBF2) is periodically expressed during plant cell cycle. Tobacco *DBF2* expression has been followed in BY2 cells synchronised with aphidicolin (a & b) or with propyzamide (c & d) with *At-DBF2* as probe. The measure of relative rate of DNA synthesis and of the mitotic index, the use of the cell cycle markers *CYCB1.2* and *H4* markers have been previously described (Reicheld et al., 1995). *T-DB*F2 transcript levels were quantified from the blots shown in b and d using a PhosphorImager (Molecular Dynamics).

Figure 6. shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying a salt stress of 200 mM NaCl overnight.

Figure 7 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying an osmotic stress induced by 20% PEG overnight.

Figure 8 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left

10

15

20

25

30

35

section) upon applying a cold stress by gradually decreasing the temperature untill - 7°C.

Figure 9 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying a heat stress of 2 hours at 48°C.

Figure 10 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section). It can be concluded that the P35S-At-DBF2 transformed plants do not show morphological abnormalities compared to the control transgenic plants.

Figure 11 shows the results of a salt stress tolerance test with transgenic *A. thaliana* plants overexpressing HSP 17.6A (A) or c74 (B). The control plants (bottom left in A en B) is a transgenic line tranformed with pBIN-35S-CaMVter. The other sections in A are 5 independently obtained transgenic lines overexpressing HSP17.6A. The other sections in B are 5 independently obtained transgenic lines overexpressing c74.

Figure 12 shows the influence of *At-DBF2* expression in sense and antisense orientations on stress tolerance. BY2 cells were transformed by *A. tumefaciens* with recombinant T-DNA vectors containing At-DBF2 driven by CaMV 35S RNA promoter, pBIN-35S-At-DBF2 (upper left and right sections in A or diamonds in B), the CaMV 35S promoter and terminator pBIN-35S-CaMVter (bottom left sections in A or triangles in B), or antisense *At-DBF2* under the control of the CaMV 35S promoter pBIN-35S-ASAt-DBF2 (bottom right sections in A or circles in B). (A) Picture of the same amounts of transgenic cells after 3 weeks of growth on solid medium supplemented with 300 mM NaCl, 25% PEG, 2mM H₂O₂, or at 47°C (heat). (B) Growth of suspension cells in liquid medium. Upon stress, growth was measured as fresh weigth and expressed as a percentage of unstressed growth (control) (a). Stresses were applied after subculturing (= day 0) at indicated temperatures (e) and concentrations of NaCl (b) PEG (c), and H₂O₂ (f). For the cold shock (d), cells were maintained at 0°C for 2 days before the 2-week culture at 22°C. For each construction data of three

independent transgenic lines were pooled. To not overload the figure, SDs are not shown (maximum 15% of measured values). (C) Northern analysis of At-DBF2+TDBF2, kin1, and HSP17.6. Total RNAs were extracted from independent lines transformed with pBIN-35S-At-DBF2 (1) and (2), pBIN-35S-CaMter (3), and pBIN-35S-ASAt-DBF2 (4). Osmotic stress was induced with 10% PEG treatment for 5 hr (stressed).

Figure 13 shows the results of the growth of *A. thaliana* plants transformed with p35S-AtHSP17.6A and P35S control (upper right section) upon applying an osmotic stress induced by 20% PEG overnight. The results of two independent experiments are shown, each performed with 3 independently obtained transgenic lines overexpressing At-HSP17.6A (upper left and bottom left and right).

Figure 14 shows the results of the germination of *A. thaliana* plants transformed with p35S-Atc74 and P35S control (bottom section) on mineral medium supplemented with 125 mM NaCl. The results of two independent experiments are shown, each performed with 2 independently obtained transgenic lines overexpressing Atc74 (2 upper sections).

20

25

30

5

10

15

Table 1. Classification of the *Arabidopsis thaliana* clones isolated in Example 2. Clones isolated according to the description in example 2 have been analyzed on their potential to confer tolerance. According to the method described in example 2, the tolerance of different yeast transformants expressing an Arabidopsis cDNA to osmotic stress and salt stress was compared with the tolerance of DY wild type cells.

+ : similar growth to the DY wild type cells;

growth of the transformant is visible at a 10-fold higher dilution (1:10) than control (1:1);

growth of the transformant is visible at a 100-fold higher dilution

(1:100) than control (1:1);

growth of the transformant is visible at a 1000-fold higher dilution (1:1000) than control (1:1).

Table 2. Exemplary plant-expressible promoters for use in the performance of the present invention.

Table 3. Exemplary stress-inducible promoters for use in the performance of the present invention.

10

15

20

25

30

35

EXAMPLES

Example 1. Construction of the cDNA library.

Total RNA has been isolated from green siliques from *Arabidopsis thaliana* by grinding 1 g of siliques in 4 ml extraction buffer (100 mM tris-Hcl, pH 8, 10 mM EDTA, 100 mM LiCl) at 4° C, followed by phenolisation and chloroform: isoamylalcohol (24:1) extraction. To the aqueous phase, LiCl was added up to a final concentration of 2M, and the total RNA was allowed to precipitate overnight at 4°C. After centrifugation, the pellet was redissolved in 400 μ l H₂O and reprecipitated with ethanol. Poly(A) messenger RNA was isolated from the total RNA by binding it to an oligo-dT cellulose spun column (Pharmacia), washing the column three times with 10 mM Tris-HCl, pH 7.5, 1 mM EDTA , 0.5 M NaCl and eluting the mRNA with 10 mM Tris-HCl, pH 7.5, 1 mM EDTA at 65° C.

The eluate was precipitated with ethanol, and cDNA was synthesized using MMLV- reverse transcriptase (Pharmacia) and a d(T)₁₄-Xhol primer for the first strand and *E. coli* DNA polymerase I (Pharmacia) for the second strand.

Example 2. Yeast transformation and selection for osmotolerance.

The cDNA was cloned into pYX vectors (Ingenius, R&D systems; 2 μ based pYX 212 for bank 1, ARS/CEN based pYX112 for bank 2) as EcoRI - Xhol fragments, using an Eco RI/Not I adaptor.

In these constructs, the cDNA is under the control of the strong constitutive TPI promoter. The yeast strain DY (MATa, his3, can1-100, ade2, leu2, trp1, ura3::3xSV40AP1-lacZ; kindly provided by N. Jones, Imperial Cancer Research Fund, London, UK) has been transformed with these cDNA libraries, using the Lithium Acetate transformation procedure (Gietz and Schietsl, 1995). After transformation with the Arabidopsis cDNA bank, transformants have been selected for the ability to grow in the presence of 100mM LiCl in a stepwise selection (Lee et al., 1999). LiCl is commonly used for salt tolerance screening in yeast (Haro et al. 1991). Several A. thaliana genes, conferring osmotolerance to the yeast, have been isolated (Table 1). To further analyse the potential of the selected Arabidopsis cDNA's to confer tolerance to environmental stress in yeast, each yeast transformant expressing such selected Arabidopsis cDNA's has been exposed to osmotic stress and salt stress. Each of the transformants was therefore grown for 16 hours in YPD (rich medium), and cell density was adjusted to OD600 at 2. Serial dilutions, 1:10, were made at three consecutive

steps. Ten microliters of each dilution was spotted on solid YPD medium (control) supplemented with 2 M sorbitol (osmotis stress) or 1.2 M NaCl (salt stress) and incubated at 28°C for 3 days. The results of this drop growth test (see also Lee et al., 1999) are shown in Table 1.

5

10

15

20

Example 3. Characterization of At-DBF2.

At-DBF2, a 1.8 kb cDNA (SEQ ID NO 1) has been identified in this screening that encodes a predicted 60.2 kDa protein showing 81 % similarity with the yeast Dbf2 transcriptional regulator. Homology (less than 40% similarity) has also be found with the putative Dbf2 homologues in human, C. elegans and Drosophila (named Ndr for nulear Dbf2 related, Millward et al. 1995). The At-DBF2 deduced protein sequence (SEQ ID NO 2) contains the 11 domains of protein kinases (Figure 1A). Amino acids lying between the invariant residues D and N of domain VI do not match the features of serine/threonine specificity (LKPE) defined by Hanks et al. (1988) but the GSPDYIALE peptide in domain VIII does well indicate serine/threonine specificity and At-DBF2 can complement the yeast dbf2 mutant (Figure 1B).

In mature Arabidopsis plants, *At-DBF2* is expressed in all tested organs. The highest abundance of transcripts has been found in siliques. A Southern analysis in Arabidopsis, tobacco and tomato has revealed that *DBF2* seems to be conserved in plants (see Example 13 below). As *At-DBF2* has been identified in a screening for LiCl tolerance, its effect in other stress situations has been tested in yeast (Figure 2).

Example 4. Overexpression of *Arabidopsis* and *Saccharomyces* cerevisiae DBF2 enhances cold, heat, salt and drought tolerance in yeast.

25

30

35

In order to test whether the effect was specific to the plant gene, the yeast DBF2 gene has been overexpressed in the same vector. Upon a drop growth test (Figure 2 and Lee et al., 1999). A remarkable enhancement of stress tolerance can be seen at 42°C, during osmotic stress (sorbitol), and after salt and cold treatments in yeast. There is no difference between stress tolerance afforded by the plant or the yeast gene. The enhancement of stress tolerance due to the overexpression of At-DBF2 or DBF2 reflects a role for these genes in stress situations. Therefore yeast and Arabidopsis plants have been exposed to sorbitol- and PEG-induced osmotic stress. At-DBF2 as well as DBF2 is induced rapidly (1 to 2 hours) and transiently upon osmotic stress (Figure 3A). The expression of At-DBF2 and DBF2 has been analyzed during other environmental stresses in Arabidopsis plants or in yeast cells after the

time corresponding to the highest induction seen in Fig. 3A (Figure 3B). In plant as in yeast, there is a clear induction after heat, salt, osmotic and to a lesser extent after cold, which perfectly correlates with stresses to which the overexpression enhances tolerance. However, many genes are induced upon stress without relevant adaptive role, amongst others because post-transcriptional mechanisms inhibit subsequent translation. Here *At-DBF2* protein amount, as detected by anti-Dbf2 antibodies, clearly increased upon stress (Figure 3C).

Example 5. Both *At-DBF2* and *DBF2* can functionally complement the hog1 mutation.

To investigate a possible interaction between stress signaling pathways and *DBF2*, the salt sensitive hog1 mutant was transformed with *At-BDF2* and *DBF2*. The *HOG1* MAP kinase pathway regulates osmotic induction of transcription in yeast (Schuller *et al.* 1994). The osmosensitivity of the mutant could be recovered by the overexpression of both *DBF2* and *At-DBF2* (Figure 4).

Example 6. At-DBF2 is cell cycle regulated.

DBF2 expression is cell cycle regulated where it plays a role in DNA synthesis initiation but also in nuclear division through its association with the CCR4 complex (Komarnitsky et al. 1998, Johnston et al. 1990). This regulation was investigated in plants. A tobacco BY-2 cell line in which the highest level of culture synchronization, compared with other plant cell lines has been achieved so far (Shaul et al. 1996, Reicheld et al. 1995) was used. Stationary phase cells were diluted into fresh medium and treated with aphidicolin (blocking cells in the beginning of the S phase) for 24 hours, then washed. The percentage of synchronous mitosis after release from the aphidicolin block was about 65 % (Figure 5A-B). A 1.6-Kb tobacco DBF2 homologue (T-DBF2) could be detected on Northern blot with the At-DBF2 as a probe. T-DBF2 steady-state transcript level clearly oscillates during the cell cycle and is mainly present during S, decreases during G2 until late M from where it increases until a peak in S phase. T-DBF2 expression occurs clearly before CYCB1.2 (a marker of G2-M phases), but parallels the one of H4 (a S phase marker) except at the S/G2 transition, where T-DBF2 transcripts decline earlier, and at the M/G1 transition, where T-DBF2 expression increases earlier. The use of the cell cycle markers CYCB1.2 and H4 is described in Reicheld et al.

15

20

25

10

15

20

25

To follow unperturbed G1 and S phases, BY2 cell suspension was synchronized using a double blocking procedure (Nagata *et al.*,1992). After the release from the aphidicoline block, cells are treated for 4 hours with propyzamide in the beginning of the preprophase. The percentage of synchronous mitosis after the release from the propyzamide block was higher than 75%. *T-DBF2* was periodically expressed with an undetectable expression until late M, a sharp increase in G1 and a peak in mid S (Figure 5C-D) which confirms results of Figures 5A-B. However a function for the plant *DBF2* in cell cycle can only be assigned with measurement of the kinase activity. In yeast, *DBF2* transcript levels do not correlate with kinase activation which occurs by dephosphorylation (Toyn and Johnson, 1994). The precise function of Dbf2 in regulation of the cell cycle is not known. An essential role has been proposed during anaphase or telophase. No activity has been measured in G1 despite evidence for a role for Dbf2 in initiation of DNA synthesis.

As other proteins recently identified, Dbf2 controls the M/G1 transition which is a major cell cycle transition in yeast (Aerne et al. 1998). The existence of a M/G1 control checkpoint has been suggested in plant cells (Hemmerlin and Bach 1998) but its importance compared to G1/S and G2/M has not been investigated.

Overexpression of *DBF2* in yeast results in kinase activity throughout the cell cycle, which may be due to the saturation of a post-translational deactivating mechanism (Toyn and Johnston, 1994). Overexpression of the functionnally conserved *At-DBF2* has most probably the same effect. However, the presence of Dbf2 kinase activity at the wrong time in the cell cycle does apparently not affect its progression. In marked contrast constitutive activity has a marked effect on stress tolerance. The role played by *At-DBF2* or *DBF2* in stress is most probably independent from the cell division cycle. *At-DBF2* expression is present in all plant organs (abundant expression is observed in stems where only 1-2 % cells have a mitotic activity) and can be rapidly induced upon stress. However, a link with the cell cycle is not excluded. Higher stress tolerance in yeast overexpressing *DBF2* or *At-DBF2* may be correlated to the overproduction of the kinase in G1 where yeast cells are particularly sensitive to stress. Most plant cells are also thought to be blocked in G1 but the relationship with stress response is poorly known.

Example 7. Tobacco cell transformation and recombinant T-DNA Vector construction

BY2 cells were stably transformed as described (Shaul et al., 1996) by Agrobacterium tumefaciens C58C1Rif^R (pGV2260) strain (Deblaere et al., 1985) carrying pBIN-35S-At-DBF2 or pBIN-35S-ASAt-DBF2 recombinant binary vectors. PBIN-35S-At-DBF2 is the plant binary vector pBIN m-gfp4 in which the BamHI-Sacl fragment containing the gfp reporter gene was replaced with a BamHI-Sacl fragment containing the At-DBF2 cDNA from pYX-At-DBF2. p-Bin-35S-CaMVter is the plant binary vector pBIN19 in the HindIII-Sacl restriction sites of which the hindIII-Sacl fragment of pDH51 containing the cauliflower mosaic virus (CaMV) 35S RNA promoter and terminator was cloned. pBIN-35S-ASAt-DBF2 is the pBIN-35S-CaMVter vector in which the At-DBF2 cDNA was cloned in the antisense orientation from pYXAt-DBF2 in the BamHI-Smal restriction sites, between the CaMV 35S RNA promoter and terminator. More details are described in Lee et al. (1999).

15

20

25

30

35

10

5

Example 8. Overexpression of At-DBF2 sense and antisense RNA in plant cells

Transgenic plant cells overexpressing At-DBF2 were generated to test the role of this protein in stress tolerance in planta. Tobacco BY2 cells were stably transformed by A. tumefaciens carrying the At-DBF2 cDNA driven by the strong constitutive CaMV 35S RNA promoter. The antisense At-DBF2 RNA also was overexpressed under the control of the same promoter. Control lines were obtained by transforming tobacco BY2 cells with pBIN-35S-CaMVter. Three independently obtained At-DBF2overexpressing tobacco transgenic cell lines have been selected with a high and similar At-DBF2 expression and analysed further. Three tobacco transgenic cell lines overexpressing antisense At-DBF2 were chosen that showed an undetectable tobacco DBF2 transcript level. Both the overexpression of At-DBF2 and the down-regulation of the endogenous gene by the antisense strategy did not result in significant differences in growth after 2 weeks (Fig. 12A and 12B). On the contrary, marked differences in growth were observed after a 2-week treatment with NaCl, PEG-induced drought, cold, or high temperatures. Transgenic lines that overexpressed At-DBF2 were clearly more tolerant than control lines. Inhibition of the endogenous DBF2 expression was correlated with a higher sensitivity to those stresses. To understand the basis of stress

10

15

20

25

30

35

tolerance in *At-DBF2*-overexpressing plant cells, expression of stress-induced genes was followed in control and stress conditions (Fig. 12C). Tobacco kin1 and HSP17.6A homologues already were induced in *At-DBF2*-overexpressing tobacco cells in control conditions to a level similar to that observed during stress conditions (PEG-induced drought), suggesting that *At-DBF2* overexpression may mimic a stress signal.

Example 9. Arabidopsis transformation and recombinant T-DNA vector construction with genes conferring tolerance to environmental stress

Arabidopsis were stably transformed as described in Clarke, Wei and Lindsey (1992) by Agrobacterium tumefaciens C58C1RifR (pGV2260) strains carrying pBIN-35S-At-DBF2, pBIN-35S-At-HSP17.6A, pBIN-35S-At-c74 recombinant binary vectors. pBIN-35S-At-DBF2 is described in Lee et al. 1999. pBIN-35S-At-HSP17.6A recombinant binary vector was constructed as following: the EcoRI-Xhol fragment containing At-HSP17.6A cDNA in pYX-HSP17.6A (recombinant pYX212) was first cloned in pYES2 (Invitrogen) resulting in pYES-HSP17.6A. Than the BamHI-SphI fragment of pYES-HSP17.6A containing the At-HSP17.6A cDNA was cloned in the plant binary vector pBIN m-gfp4 in which the BamHI-SacI fragment containing the gfp receptor gene was deleted and replaced by the At-HSP17.6A cDNA. The 3' protruding ends generated by Sacl and Sphl were blunt ended by T4 DNA polymerase. pBIN-35S-c74 was constructed with a similar strategy as pBIN-35S-AtHSP17.6A with an intermediary pYES-Atc74 vector. The At-c74 cDNA was first amplified with PCR using the primers 5' AAA AAA CAC ATA CAG GAA TTC 3' (SEQ ID NO 122) and 5' AGT TAG CTA GCT GAG CTC GAG 3' (SEQ ID NO 123), then cloned "blunt ended" in the vector pYES2 cut with Notl and BstXI and blunt ended with T4 DNA polymerase. Subsequently, the BamHI-SphI fragment of pYES-c74 was cloned in pBINm-gfp4 as explained supra.

Example 10. Tolerance to environmental stress in plant cells

Transgenic calli were isolated from each of the transgenic Arabidopsis lines transformed with At-DBF2, At-HSP17.6A and At-c74. The growth of these transgenic calli during salt stress was measured and compared with control calli derived from transgenic Arabidopsis lines transformed with pBIN-35S-CaMVter. Callus pieces (25 for each transgenic line) of similar fresh weight (50 to 100 mg) were therefor grown on callus inducing medium (Clarke et al., 1992) supplemented with 200mM NaCl. After two weeks, from visual inspection, it was clear that transgenic calli transformed with

10

15

20

25

30

35

At-DBF2 or At-HSP17.6A or At-c74 looked much better than control transgenic calli transformed with pBIN-35S-CaMVter. The latter calli turned yellow and started dying. To confirm the observation, the fresh weight of the calli was measured. In comparison with the control transgenic calli, the fresh weight of the transgenic calli was for each of the three lines at least five times higher than the fresh weight of the control trangenic calli.

Example 11. Tolerance to environmental stress in plants.

Seeds from transgenic Arabidopsis plants tranformed with pBIN-35S-At-DBF2, p-BIN-35S-At-c74, or pBIN-35S-At-HSP17.6A, were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-AS+At-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark, 70 microeinsteins. After 9 days growth, filters were transferred to liquid K1 medium supplemented with 200 mM NaCl for overnight incubation. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium. Under these conditions, the control transgenic plants turned yellow, their growth was inhibited and eventually they died. On the contrary, the transgenic lines transformed with At-DBF2 or At-HSP17.6A or At-c74 survived very well (Figure 6 and Figure 11).

To further evaluate the scope of protection to environmental stress, transgenic plants were exposed to osmotic stress. Therefor seeds from transgenic Arabidopsis plants transformed with pBIN-35S-At-DBF2, pBIN-35S-At-c74 or pBIN-35S-At-HSP17.6A were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-ASAt-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark,

10

15

20

25

30

70 microeinsteins. After 9 days growth, filters were transferred to liquid K1 medium supplemented with 20 % polyethylene glycol for overnight incubation. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium. Under these conditions, the control transgenic plants turned yellow, their growth was inhibited and eventually they died. On the contrary, the transgenic lines transformed with At-DBF2, At-HSP17.6A or At-c74 survived very well (see Figure 7 and 13). Their growth was comparable to growth on control medium without polyethylene glycol.

To further analyse the scope of protection to environmental stress, transgenic plants were exposed to high and low temperatures. Therefor seeds from transgenic plants transformed with pBIN-35S-At-DBF2 or pBIN-35S-At-c74 were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-ASAt-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark, 70 microeinsteins. After 9 days growth, for the experiments with high temperature stress, plants were exposed to 48°C for two hours. For the experiments with low temperature stress, plants were exposed to gradually decreasing temperatures, down to -7°C. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium.

Under both low temperature and high temperature stress, the growth of control transgenic plants was inhibited and eventually they died. The transgenic lines transformed with At-DBF2 or At-c74 survived very well. Their growth was comparable to growth under control conditions with normal temperature (see Figure 8 and 9).

To further analyse the scope of protection to environmental stress, transgenic plants were exposed to salt stress during germination. Sterilized mature seeds from transgenic plants transformed with pBIN-35S-At-DBF2 or pBIN-35S-At-c74 were placed on top of petri dishes containing MS (Murashige and Skoog) medium with 0,8 % agar and 30 g l⁻¹ sucrose. Control plants were the ones transformed with pBIN-35S-CaMVter. Prior to germination and pH 5.7 adjustment, NaCl was added to a final concentration of 125 mM. Three petri dishes with a mean of 40-50 seeds per dish were used per treatment in every experiment. The complete experiment was repeated

10

15

20

25

. 30

twice. Seed germination at 22°C was followed. Seeds were considered to germinate after radical and green cotyledon emergency occurred.

On control medium (without 125 mM NaCl), germination of all transgenic lines was very similar to each other and to wild type plants. On medium supplemented with 125 mM NaCl, seeds from transgenic lines overexpressing At-DBF2 or At-c74 germinate significantly better than control transgenic lines. Less than 10 % of the seeds from transgenic lines transformed with pBIN-35S-CaMVter germinate under these conditions. In contrast, more than 70 % of the seeds from transgenic lines overexpressing At-DBF2 or At-c74 germinate on medium containing 125 mM NaCl (Figure 14).

Example 12. Southern hybridisation of At-DBF2 genes in other plants

To investigate whether *DBF2* homologues exist in other plant species, a Southern hybridisation analysis was performed using the full length *At-DBF2* as a probe. Genomic DNA was extracted from tobacco, tomato and rice according to Dellaporta et al. (1983) and further purified by phenol :chloroform extractions.

DNA (10 μ g) was digested with restriction enzymes and separated on 1% (w/v) agarose gels using Lambda DNA digested with Hind III as molecular size standards. The DNA was transformed on to nylon membranes (Hybond N; Amersham, little Chalfont, UK) in 0.4 N NaOH. Filters were UV-cross-linked for 30 seconds, prehybridized for 3 hours at 56°C in hybridization solution (2x SSPE, 0.1%(w/v) SDS, 5x Denhardt solution) using 200

gm⁻³ denatured salmon sperm DNA, and hybridized overnight with radiolabelled probes. 1X SSPE was 0.15 M NaCl/ 0.01 M sodium dihydrogen phosphate/ 1 mM EDTA

Filters were washed at 56°C in 2x SSPE, 0.1% (w/v) SDS for 20 min, then 1x SSPE, 0.1% (w/v) SDS for 20 min, and finally in 0.1x SSPE, 0.1% (w/v) SDS for 20 min. Filters were exposed to X-ray film (Kodak X-AR; Kodak, NY, USA) in the presence of intensifying screens for 24 hours.

The results of the hybridisation experiments show that tobacco, tomato and rice have at least one hornologue to At-DBF2.

Tabel 1

putative function in	Features of encoded protein	SEQ ID NO.	Growth on medium with1,2 M NaCl	growth on medium with 2,0 M sorbitol
signalling	Similar to a yeast DBF2 cell cycle protein	1	++++	++++
metabolism	HSP17.6A	3	++++	++++
unknown	C74	5	+++	+++
metabolism	Similar to ADH2	7	+	++++
metabolism	Similar to D. melanogaster catalase/catalase 3	9	++++	+
metabolism	Similar to the HSP90 heat shock protein family	11	++++	++++
metabolism	similar to phosphoenolpyruvate carboxylase	13	+	+++
metabolism	pathogen related proteins, class 10	15	+	++++
metabolism	Arabidopsis ascorbate peroxidase	17	++++	++++
metabolism	similar to phosphatase binding protein	19	++++	++++
metabolism	similar to phosphatase binding protein	21	++++	++++
metabolism	similar to retinol dehydrogenase	23	+++	++++
metabolism	similar to retinol dehydrogenase	25	++++	++++
metabolism	ribosomal protein	27	++++	++++
metabolism	ribosomal protein	29	++++	++++
metabolism	similar to a protein transporter (kinase homolog)	31	++++	++++
metabolism	similar to a peptide transporter	33	++++	+
metabolism	similar to a wheat low affinity cation transporter LCT1	35	++++	++++
metabolism	similar to yeast iso-1-cytochrome c (CYC-1)	37	++++	++++
metabolism	similar to yeast OSM1	39	++++	++++
metabolism	similar to yeast copper uptake gene (CUP1)	41	++++	+++
metabolism	similar to yeast UV-induced damage repair protein (RAD7)	43	++++	++++
metabolism	electron transporter, apocytochrome b	45	++++	+++
metabolism	similar to membrane lipoprotein LPPL1	47	++++	++++
metabolism	similar to tobacco auxin binding protein	49	+	++++
metabolism	similar to tobacco cytokinin binding protein CBP 57	51	+++	++++
signalling	similar to calcium binding protein yeast calcineurin B	53	+++	++++

signalling	similar to calcium binding protein glycine max calnexin	55	++++	+++
signalling	similar to calcium binding protein Dictyostelium discoideum calreticulin	57	++++	++++
signalling	similar to calcium binding protein calmodulin 1	59	++++	+
signalling	similar to calcium binding protein calmodulin 2	61	+	++++
signalling	MAP kinase kinase, homologous to Dyctyostelium mekA (DdMek1)	63	++++	+++
signalling	similar to human adenosine kinase	65	+	++++
signalling	similar to human tyrosine kinase	67	++++	++++
signalling	similar to common ice plant tyrosine kinase	69	++++	++++
signalling	similar to the yeast protein kinase C receptor	71	++++	++++
signalling	similar to tobacco and Arabidopsis HAT7 homeotic protein	73	++	++++
signalling	similar to E. coli sigma factor regulator (RSEB)	75	+	++++
signalling	slmilar to human protein phosphatase 2C	77	++++	++++
metabolism	late embryogenesis abundant proteins, Arabidopsis LEA protein 10 & 14	79	++	++++
metabolism	late embryogenesis abundant proteins, Arabidopsis LEA protein 10 & 14	81	++	++++
metabolism	pathogen related proteins, class 10	83	++++	++++
metabolism	cell wall peroxidase	85	++++	+++
metabolism	ribosomal protein	87	+++	+++
metabolism	salt stress induced protein, SAS 1	89	++++	1+++
metabolism	PR gene (AIG2)	91	++++	++++
metabolism	MT1c	93	++++	++++
metabolism	IPP2 (Isopentenyl diphosphate)	95	+++	++++
metabolism	chlorophyll a/b binding protein	97	+++	+++
metabolism	glutathione transferase	99	++	++++
signalling	cold- and ABA inducible, calcium dependent – kinase, Kin1	101	++++	++++
signalling	MAP kinase, Atmpk1	103	++	++++
signalling	Arabidopsis cell cycle protein histone H2A	105	++++	+++
unknown	chromosome 4 – sequence	107	+++	++++
unknown	chromosome 4 – sequence	109	+	++++
unknown	chromosome 5 – sequence	111	++++	+++
unknown	chromosome 5 – sequence	113	++++	++
unknown	chromosome 5 – sequence			
		כוו	- 	1 - 4 - 4 - 4 - 4
unknown	chromosome 5 – sequence	115 117	+	++++

signalling	similar to calcium binding protein	121	++++	++++
	centrin (caltractin)			

TABLE 2
EXEMPLARY PLANT-EXPRESSIBLE PROMOTERS FOR USE IN THE PERFORMANCE OF
THE PRESENT INVENTION

GENE SOURCE	EXPRESSION PATTERN	REFERENCE
α-amylase (<i>Amy32b</i>)	Aleurone	Lanahan <i>et al</i> (1992); Skriver <i>et al.</i> (1991)
cathepsin β-like gene	Aleurone	Cejudo <i>et al.</i> (1992)
Agrobacterium rhizogenes rolB	Cambium	Nilsson <i>et al.</i> (1997)
PRP genes	cell wall	http://salus.medium.edu/mmg/tierney/html
barley Itr1 promoter	Endosperm	
synthetic promoter	Endosperm	Vicente-Carbajosa et al.(1998)
AtPRP4	Flowers	http://salus.medium.edu/mmg/tierney/html
chalene synthase (chsA)	Flowers	van der Meer et al. (1990)
apetala-3	Flowers	
Chitinase	fruit (berries, grapes, etc)	Thomas et al. CSIRO Plant Industry, Urrbrae, South Australia, Australia; http://winetitles.com.au /gwrdc/csh95-1.html
rbcs-3A	green tissue (eg leaf)	Lam et al. (1990); Tucker et al. (1992)
leaf-specific genes	Leaf	Baszczynski <i>et al.</i> (1988)
AtPRP4	Leaf	http://salus.medium.edu/ mmg/tierney/html
Pinus cab-6	Leaf	Yamamoto et al. (1994)
SAM22	Senescent leaf	Crowell et al. (1992)
R. japonicum nif gene	Nodule	United States Patent No. 4, 803, 165
B. japonicum nifH gene	Nodule	United States Patent No. 5, 008, 194

<u></u>		
GmENOD40	Nodule	Yang <i>et al.</i> (1993)
PEP carboxylase (PEPC)	Nodule	Pathirana et al. (1992)
Leghaemoglobin (Lb)	Nodule	Gordon <i>et al.</i> (1993)
Tungro bacilliform virus gene	Phloem	Bhattacharyya-Pakrasi et al. (1992)
sucrose-binding protein gene	plasma membrane	Grimes <i>et al.</i> (1992)
pollen-specific genes	pollen; microspore	Albani et al. (1990); Albani et al. (1991)
maize pollen-specific gene	Pollen	Hamilton et al. (1992)
sunflower pollen-expressed gene	Pollen	Baltz <i>et al.</i> (1992)
B. napus pollen-specific gene	pollen;anther; tapetum	Arnoldo et al. (1992)
root-expressible genes	Roots	Tingey et al. (1987); An et al. (1988);
tobacco auxin-inducible gene	root tip	Van der Zaal et al. (1991)
β-tubulin	Root	Oppenheimer et al. (1988)
Tobacco root-specific genes	Root	Conkling et al. (1990)
B. napus G1-3b gene	Root	United States Patent No. 5, 401, 836
SbPRP1	Roots	Suzuki <i>et al.</i> (1993)
AtPRP1; AtPRP3	roots; root hairs	http://salus.medium.edu/ mmg/tierney/html
RD2 gene	root cortex	http://www2.cnsu.edu/ncsu/research
TobRB7 gene	root vasculature	http://www2.cnsu.edu/ncsu/research
AtPRP4	leaves; flowers; lateral root primordia	http://salus.medium.edu/ mmg/tierney/html
Seed-specific genes	Seed	Simon <i>et al.</i> (1985); Scofield <i>et al.</i> (1987); Baszczynski <i>et al.</i> (1990)
Brazil Nut albumin	seed	Pearson <i>et al.</i> (1992)
Legumin	Seed	Ellis <i>et al.</i> (1988)
Glutelin (rice)	Seed	Takaiwa <i>et al.</i> (1986);Takaiwa <i>et al.</i>

		(1987)
Zein	Seed	Matzke et al. (1990)
NapA	Seed	Stalberg et al. (1996)
Sunflower oleosin	seed(embryo and dry seed)	Cummins <i>et al.</i> (1992)
LEAFY	shoot meristem	Weigel <i>et al.</i> (1992)
Arabidopsis thaliana knat1	shoot meristem	Accession number AJ131822
Malus domestica kn1	shoot meristem	Accession number Z71981
CLAVATA1	shoot meristem	Accession number AF049870
Stigma-specific genes	Stigma	Nasrallah <i>et al.</i> (1988); Trick <i>et al.</i> (1990)
Class I patatin gene	Tuber	Liu et al. (1991)
Blz2	Endosperm	EP99106056.7
PCNA rice	Meristem	Kosugi <i>et al</i> (1991); Kosugi and Ohashi (1997)

Table 3. Stress inducible promoters

Name	Stress	Reference
P5CS (delta(1)-pyrroline-5- carboxylate syntase)	salt, water	Zhang et al; Plant Science. Oct 28 1997; 129(1): 81-89
cor15a	Cold	Hajela et al., Plant Physiol. 93: 1246-1252 (1990)
cor15b	Cold	Wlihelm et al., Plant Mol Biol. 1993 Dec; 23(5):1073-7
cor15a (-305 to +78 nt)	cold, drought	Baker et al., Plant Mol Biol. 1994 Mar; 24(5): 701-13
rd29	salt, drought, cold	Kasuga et al., Nature Biotechnology, vol 18, 287- 291, 1999
heat shock proteins, including artificial promoters containing the heat shock element (HSE)	Heat	Barros et al., Plant Mol Biol, 19(4): 665-75, 1992. Marrs et al., Dev Genet.,14(1): 27- 41, 1993. Schoffl et al., Mol Gen Gent, 217(2-3): 246-53, 1989.
smHSP (small heat shock proteins)	heat	Waters et al, J Experimental Botany, vol 47, 296, 325- 338, 1996
wcs120	Cold	Ouellet et al., FEBS Lett. 423, 324-328 (1998)
ci7	Cold	Kirch et al., Plant Mol Biol, 33(5): 897-909, 1997 Mar
Adh	cold, drought, hypoxia	Dolferus et al., Plant Physiol, 105(4): 1075-87, 1994 Aug
pwsi18	water: salt and drought	Joshee et al., Plant Cell Physiol, 39(1): 64-72, 1998, Jan
ci21A	Cold	Schneider et al., Plant Physiol, 113(2): 335-45, 1997
Trg-31	Drought	Chaudhary et al., Plant Mol Biol, 30(6): 1247-57, 1996
Osmotin	Osmotic	Raghothama et al., Plant Mol Biol, 23(6): 1117-28, 1993

REFERENCES

Adams et al. (1983), J. Am. Chem. Soc. 105:661

Aerne et al. (1998). Molecular Biology of the Cell,vol 9, 945-956.

Bray et al. (1997), Plant responses to water deficit. Trends Plant Sci 2, 48-54

5 Carruthers et al. (1982), Cold Spring Harbor Symp. Quant. Biol. 47:411-418 Capecchi (1989), Science 244:1288-1292

Deblaere et al. (1985), Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants, Nucl. Acids Res. 13, 4777-4788.

De Greve et al. (1982), J. Mol. Appl. Genet. 1(6):499-511

Dellaporta et al. (1983), A plant DNA minipreparation, version II. Plant Mol. Biol. Rep. 1, 19-22

Evans et al. (1983), Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176

Fowden et al. (1993), Plant Adaptation to Environmental Stress; ISBN: 0412490005

15 Fraley et al. (1983), Proc. Natl. Acad. Sci USA 80:4803

Fromm et al. (1985), Proc. Natl. Acad. Sci. USA 82:5824

Gietz and Schietsl, (1995) Methods in Molecular and Cellular Biology, 5, 255-269.

Grillo et al (1996), Physical Stresses in Plants: Genes and Their Products for Tolerance. Springer Verlag; ISBN: 3540613471

20 Hanks et al. (1988). Science, 241, 42-52.

Hansen et al. (1999), Trends in plant science reviews, Vol 4, No 6, 226-231

Haring et al. (1991), Plant Mol. Biol. 16:449-469

Haro et al. (1991). FEBS Lett, 291, 189-191.

Haseloff et al. (1988), Nature 334;585-591

Hemmerlin and Bach (1998). Plant Journal 14 (1) 65-74 Johnston et al. (1990). Moland Cell Biol 10, no 4,1358-1366

Herrera - Estrella (1983), Nature 303:209-213

Holmberg & Bülow (1998), Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 3, 61-66

30 Horsch et al., 1984), Science 233:496-498

Hull and Howell (1987), Virology 86:482-493

Ingram et al. (1996), The molecular basis of dehydration tolerance in plants. Ann. Rev.

Plant Physiol. Plant Mol. Biol. 47, 377-403

Innis et al. (1990), A guide to methods and applications, Academic Press, San Diego

Jones et al (1989), Plants Under Stress: Biochemistry, Physiology and Ecology and Their Application to Plant Improvement (Society for Experimental Biology Seminar Serie), Cambridge Univ. Pr. (Short); ISBN: 0521344239
Johnston et al. (1995)

Kasuga et al. (1999), Nature Biotechnology 17, 287-291
Klee et al. (1987), Ann. Rev. of Plant Phys. 38:467-486
Klein et al. (1987), Nature 327:70-73
Komamitsky et al. (1998). Mol and Cell Biol. 1 8, no.4, 2100-2107
Lee et al (1999). Proc. Nat. Acad. Sci. USA 1996, 5873-5877

10 Meyer et al. (1987), Nature 330:677

Millward et al. (1995). Proc. Nat. Acad. Sci. USA, 92, 5022-5026.

Nagata et al. (1992). Int. Rev. Cytol., 132, 1-30

Napoli et al. (1990), The Plant Cell 2:279-289

Needleman and Wunsch (1970), Mol. Biol. 48:443

Nilsen et al (1996), The Physiology of Plants Under Stress; Abiotic Factors. ISBN: 047131526

Odell et al. (1985), Nature 313:482-493

Paszkowski et al. (1984), EMBO j. 3:2717-2722

Pearson and Lipman (1988), Proc. Natl. Acad. Sci. (USA) 85:2444

Peassarakli et al, Handbook of Plant and Crop Stress. ISBN: 0824789873
Raton (1985), Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC
Press

Reicheld et al. (1995). Plant Journal 7 (2) 245-252

Sambrook (1989), Molecular cloning, a laboratory manual, Cold Spring Harbor Press,

25 **7.52**.

Shaul et al. (1996). PNAS 93,4868-4872

Shinozaki et al. (1996), Molecular responses to drought and cold stress, Curr. Opin. Biotechnol. 7, 161-167

Shinozaki et al. (1997), Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327-334

Shinozaki et al. (1999), Drought, Salt, Cold and Heat Stress: Molecular Responses in Higher Plants (Biotechnology Intelligence Unit); ISBN: 1570595631

Schuller et al. (1994). Embo Journal, 13, 4382-4389.

Smith and Waterman (1981), Adv. Appl. Math. 2:482

Tomashow (1994), Arabidopsis (eds Meyrowitz, E & Somerville, C, 807-834 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994)

Toyn and Johnston, (1994). Embo Journal, 13, 1103-1113.

Verbruggen et al. (1993). Plant Phys. 103, 771-781

5 Walbot (1992), Ann. Rev. Plant Mol. Biol. 43:49-82

Weising et al; (1988), Ann; Rev. Genet. 22;421-477

Stalker, Science 242 (1988), 419

Vaek, Plant Cell 5 (1987), 159-169

Powell, Science 232 (1986), 738-743

Pappu, World Journal of Microbiology & Biotechnology 11 (1995), 426-437

Lawson, Phytopathology 86 (1996) 56 suppl.

Van Camp, Biotech. 12 (1994), 165-168

Oeller, Science 254 (1991), 437-439

Stark, Science 242 (1992), 419

15 Visser, Mol. Gen. Genet. 225 (1991), 289-296

Voelker, Science 257 (1992), 72-74

Poirer, Science 256 (1992), 520-523

Meyer, Nature 330 (1987), 667-678

Duering, Molecular Breeding 2 (1996), 297-305

20 Strittmatter, Bio/Technology 13 (1995), 1085-1089

Estruch, Nature Biotechnology 15 (1997), 137-141

An, et al., Plant Physiol. 88: 547, 1998.

Albani, et al., Plant Mol. Biol. 15: 605, 1990.

Albani, et al., Plant Mol. Biol. 16: 501, 1991.

25 Arnoldo, et al., J. Cell. Biochem., Abstract No. Y101, 204, 1992.

Baltz, et al., The Plant J. 2: 713-721, 1992.

Baszczynski, et al., Nucl. Acid Res. 16: 4732, 1988.

Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990.

Bhattacharyya-Pakrasi, et al, The Plant J. 4: 71-79, 1992.

30 Cejudo, F.J., et al. Plant Molecular Biology 20:849-856, 1992.

Conkling, et al., Plant Physiol. 93: 1203, 1990.

Crowell, et al., Plant Mol. Biol. 18: 459-466, 1992.

Cummins, et al., Plant Mol. Biol. 19: 873-876, 1992

Ellis, et al., Plant Mol. Biol. 10: 203-214, 1988.

35 Gordon, et al., J. Exp. Bot. 44: 1453-1465, 1993.

Grimes, et al., The Plant Cell 4:1561-1574, 1992.

Hamilton, et al., Plant Mol. Biol. 18: 211-218, 1992.

Kosugi *et al*, Upstream sequences of rice proliferating cell nuclear antigen (PCNA) gene mediate expression of PCNA-GUS chimeric gene in meristems of transgenic tobacco plants, *Nucleic Acids Research* 19:1571-1576, 1991.

Kosugi S. and Ohashi Y, PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene, *Plant Cell 9*:1607-1619, 1997.

Lam, E. et al., The Plant Cell 2: 857-866, 1990.

Lanahan, M.B., et al., Plant Cell 4:203-211, 1992.

10 Liu et al., Plant Mol. Biol. 153:386-395, 1991.

Matzke et al Plant Mol Biol, 14(3):323-32 1990

Nasrallah, et al., Proc. Natl. Acad. Sci. USA 85: 5551, 1988.

Nilsson et al., Physiol. Plant. 100:456-462, 1997

Oppenheimer, et al., Gene 63: 87, 1988.

15 Pathirana, et al., Plant Mol. Biol. 20: 437-450, 1992.

Pearson, et al., Plant Mol. Biol. 18: 235-245, 1992.

Scofield, et al., J. Biol. Chem. 262: 12202, 1987.

Simon, et al., Plant Mol. Biol. 5: 191, 1985.

Stalberg, et al, Planta 199: 515-519, 1996.

20 Suzuki et al., Plant Mol. Biol. 21: 109-119, 1993.

Skriver, K., et al. Proc. Natl. Acad. Sci. (USA) 88: 7266-7270, 1991.

Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986.

Takaiwa, et al., FEBS Letts. 221: 43-47, 1987.

Tingey, et al., EMBO J. 6: 1, 1987.

25 Trick, et al., Plant Mol. Biol. 15: 203, 1990.

Tucker et al., Plant Physiol. 113: 1303-1308, 1992.

Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990.

Van der Zaal, et al., Plant Mol. Biol. 16, 983, 1991.

Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998.

30 Weigel et al., Cell 69:843-859, 1992.

Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994.

Yang, et al., The Plant J. 3: 573-585.

Clarke et al. (1992), Plant Molecular Biology Reporter Volume 10(2), 178-189 Ausubel et al. (1994),

35 Zhu et al. (1997),

Zhang et al; Plant Science. Oct 28 1997; 129(1): 81-89
Hajela et al., Plant Physiol. 93: 1246-1252 (1990)

Wlihelm et al., Plant Mol Biol. 1993 Dec; 23(5):1073-7

Baker et al., Plant Mol Biol. 1994 Mar; 24(5): 701-13

Kasuga et al., Nature Biotechnology, vol 18, 287-291, 1999

Barros et al., Plant Mol Biol, 19(4): 665-75, 1992.

Marrs et al., Dev Genet.,14(1): 27-41, 1993.

Schoffl et al., Mol Gen Gent, 217(2-3): 246-53, 1989.

Waters et al, J Experimental Botany, vol 47, 296, 325-338, 1996

Ouellet et al., FEBS Lett. 423, 324-328 (1998)

Kirch et al., Plant Mol Biol, 33(5): 897-909, 1997

Dolferus et al., Plant Physiol, 105(4): 1075-87, 1994

Joshee et al., Plant Cell Physiol, 39(1): 64-72, 1998

Schneider et al., Plant Physiol, 113(2): 335-45, 1997

Chaudhary et al., Plant Mol Biol, 30(6): 1247-57, 1996

Raghothama et al., Plant Mol Biol, 23(6): 1117-28, 1993

Valvekens et al. (1988)

Porta et al. (1996), Mol Biol, 5(3):209-21

Claims

- A method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.
- 10 2. An isolated polynucleic acid obtainable by a method according to claim 1.
 - 3. The isolated polynucleic acid of claim 2 which encodes a polypeptide as listed in Table 1.
- 15 4. The isolated polynucleic acid of claim 3, which is chosen from:
 - (a) any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121, or the complementary strands thereof;

20

5

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,

- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- 5. The isolated polynucleic acid of any of claim 2 to 4, which encodes a plant homolog of yeast DBF2 kinase.
 - 6. The isolated polynucleic acid of claim 5, which is chosen from:
 - (a) SEQ ID NO 1, or the complementary strands thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

- 7. Use of an isolated polynucleic acid of claims 2 to 3 which encodes an HSP 17.6A protein for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.
- 8. Use of an isolated polynucleic acid of claim 7 for expression of the protein encoded thereby in a plant cell, with said polynucleic acid being chosen from:
 - (a) SEQ ID NO 3, or the complementary strand thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

15

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

20

9. Use of an isolated polynucleic acid as defined above which is chosen from:

(a) any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or the complementary strand thereof;

25

(b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

30

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

10

20

- 10. The isolated polynucleic acid of any of claims 2 to 4, which encodes a c74 protein which is chosen from:
 - (a) SEQ ID NO 5, or the complementary strand thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
 - (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
 - (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- 11. An isolated polypeptide encoded by a polynucleic acid according to or as defined in any of claims 2 to 10, or a functional fragment thereof.
 - 12. The isolated polypeptide of claim 11 having at least part of the sequence of any of SEQ ID NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120.
 - 13. A method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising transiently introducing into a plant cell a recombinant DNA comprising a polynucleic acid of or as defined in any of claims 2 to 10 which is expressed in an amount effective to confer enhanced tolerance or resistance to environmental stress.
- 14. A method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising stably introducing into a plant cell a recombinant DNA comprising a polynucleic acid of or as defined in any of claims 2 to 10 which is expressed in an amount effective to confer enhanced tolerance or resistance to environmental stress.

15. The method of claims 13 or 14 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claims 5 or 6 encoding a plant DBF2 kinase.

5

16. The method of claim 16 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claims 7 or 8 encoding an HSP 17.6A protein.

17. The method of claim 13 to 14 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claim 10 encoding a c74 protein.

- 18. The method of any of claims 13 to 17, comprising introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a polynucleic acid according to or as defined in any of claims 2 to 10, and,

20

15

a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.

a DNA encoding a protein which when expressed in

increases or induces the activity of a polypeptide of

19. A method for producing a plant with enhanced tolerance or resistance to environmental stress, comprising introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:

said plant cell at an effective amount indirectly increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or indirectly

claims 11 or 12, and,

30

- a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.
- 20. A method of claim 19 wherein said DNA encodes a sense or antisense RNA molecule or a ribozyme capable of increasing or inducing the expression of said endogenous polynucleic acid sequence according to or as defined in any of claims 2 to 10.
- 10 21. A recombinant polynucleic acid comprising:
 - a polynucleic acid according to or as defined in any of claims 2 to 10, and,
 - a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.
- 15 22. A recombinant polynucleic acid comprising:
 - (a) a DNA encoding a protein which when expressed in said plant cell at an effective amount increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or increases or induces the activity of a polypeptide of claims 11 or 12, and,
- 20 (b) a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.
- 23. The recombinant polynucleic acid of claim 22, wherein said DNA encodes an antisense RNA, a ribozyme or a sense RNA which when expressed in a cell of a plant increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or which induces or increases the activity of a protein of claim 11 or 12.
- 24. The recombinant polynucleic acid of claim 21 comprising at least part of the nucleotide sequence of any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, or part thereof.

15

20

- 25. The recombinant polynucleic acid of claim 21 to 24 comprising at least part of the coding sequence of a gene encoding a protein as listed in Table 1.
- 26. The recombinant polynucleic acid of any of claims 21 to 25 wherein said plantexpressible promoter is a constitutive promoter.
- 27. The recombinant polynucleic acid of any of claims 21 to 25 wherein said plantexpressible promoter is a stress-inducible or organ- or tissue-specific promoter.
- 28. The recombinant polynucleic acid of any of claims 21 to 26 wherein said plantexpressible promoter is the 35S promoter of CaMV.
 - 29. A recombinant host cell transformed with at least one isolated polynucleic acid of or as defined in any of claims 2 to 10.
 - 30. A plant cell transformed with a recombinant polynucleic acid of any one of claims 21 to 28.
 - 31. A plant consisting essentially of plant cells of claim 30.
 - 32. A callus consisting essentially of plant cells of claim 30.
 - 33. A harvestable part, organ, tissue or propagation material of a plant of claim 31, comprising said recombinant DNA.
 - 34. The use of a recombinant polynucleic acid of claim 21 to 28 to produce transgenic plants.
- 35. A probe which is part of the polynucleic acid sequence of or as defined in any of claims 2 to 10 and which hybridizes specifically with said polynucleic acid or the complement thereof.
- 36. A primer which is part of the polynucleic acid sequence of or as defined in any of claims 2 to 10 and which specifically amplifies said polynucleic acid or the complement thereof.

37. A composition comprising a polynucleic acid sequence of or as defined in any of claims 2 to 10, a polypeptide of claim 11 or 12, a probe of claim 35 or a primer of claim 36.

MLSKSEKNVDLLAGNMSNLSFDGHGTPGGTGLFPNQNITKRRTRPAGINDSPSPVKPSFFPYEDTSNMDIDEVSQPDMDVSNSPKKLPPKFYERATSNKT 1 * * * * * * * * * * * * * * * * * *
GRAVSGRAMITLETICOMPDIVISRRGRIKGVLEYLGGGSGLPNSDGIKLNEEWSSY
SKKUKIKUVLETLUUDSALPNSDAIKLNEEMSSY 111 *
EVCALKILNKKLGFKLNGTCHVLTEROSLTTTRSETHVKLLSGTTPVGSRGMAIESELGGDFRTESIGRRCLKSGHARFYISEMFCAVNEKHLLSKT
RDÍLTTTRSEWLVKLLYAFADLASLYLÁMEFVF
VIII VIII 1X * * * * * * * * * * * * * * * * * *
SNERIESMKIRLEKIKDLEFPAFTEKSIEDRR
* IX
SRSWKGTLNRARHEDGRAAFYNRTWDLITRHR
LGCMLFESLVGYTPFSGSSTNETYDNLRRWKGTLRRPRGSDGRAAFSDRTWDLITRLIADPINRLRSFEHVKRMSYFADINFSTLRSMIPPFTPGLOSET
DAGYFDDFWNEADIAKYADVFNSQCCRTALVDDSAVSSKLVGFTFRHRNGKQGSSGMLFNGLEHSDPFSTFY 528

FIGURE 1B

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

6/15

FIGURE 6

7/15

FIGURE 7

8/15

FIGURE 8

FIGURE 9

10/15

FIGURE 10

FIGURE 12A

Control growth (g) ω

FIGURE 13

15/15

FIGURE 14

SEQUENCE LISTING

<11	· 0> 1	/LAA1	1S II	NTER	UNIV	ERSI	TAI R	INS	TITU	UT V	OOR	віот	ECHN	OLOG	IE	
<12	20> 0	Senes	in	volve	ed in	ı to	lera	nce	to e	nvir	onme	ntal	str	ess		
<13	7 <0	/IB-1	L4-N	//OS1	10											
<14 <14																
		8202 .998-														
<16	0> 1	.26														
<17	0.> E	aten	tIn	Ver.	2.1				•							
_	0> 1															
	1> 1 2> D															
<21	3> A	rabi	dops	is t	hali	ana										
<22	-	•														
	1> C 2> (DS 40).	.(16	26)	7											
<40	0> 1															
cgg	tagc	ctg	actg	ctgg	at t	ggcc	tgct	g ct	gaca	att	atg	gcg	ggt	aac	atg	54
											Met 1	Ala	Gly	Asn	Met 5	
tcg Ser	ťgt Cys	tta Leu	agc Ser	acg Thr	gac Asp	gga Gly	cac His	ggg	acc Thr	cct	ggc Glv	ggt	tca	ggg	cat	102
				TO					15					20		
ttc Phe	ccc Pro	aat Asn	cag Gln	aac Asn	cta Leu	acg Thr	aaa Lys	aga Arg	aga Arg	acg Thr	cgt	cca	gcg	ggt	atc Ile	150
			2,5					30					35			
aac Asn	gac Asp	tcg Ser	cct Pro	tcg Ser	ccg	gtg Val	aaa	tgc	ttt	ttt	ttc	ccc	tat	gaa Glu	gac	198
		40			-10	V 41	45	Cys	rne	Pne	Pne	50	Tyr	Glu	Asp	
acc Thr	tcc Ser	aac Asn	acg Thr	tca	tta	aag	gaa	gtg	tcc	cag	CCC	acg	aaa	tac	agt	246
	55	11511		Der	Leu	60	GIA	Val	Ser	Gln	Pro 65	Thr	Lys	Tyr	Ser	
tcc																
Car	aat	tcc	cct	cca	gtc	agc	ccg	gca	att	ttt	tat	gag	agg	gcg	acq	294
Ser 70	Asn	Ser	cct Pro	cca Pro	gtc Val 75	agc Ser	Pro	gca Ala	att Ile	ttt Phe 80	tat Tyr	gag Glu	agg Arg	gcg Ala	acg Thr 85	294
70 tcg	tgg	tgc	acg	caa	75 agg	ata	ara	Ala	Ile	Phe 80	Tyr	Glu	Arg	Ala	Thr 85	294 342
70 tcg	tgg Trp	tgc Cys	acg Thr	caa Gln 90	75 agg Arg	gtg Val	gtg Val	agt Ser	ggg Gly 95	Phe 80 agg Arg	Tyr gca Ala	Glu atg Met	Arg tac Tyr	ttt Phe 100	Thr 85 cta Leu	

			10.	,				11(}				11	5	n Arg	
ac; Th:	g aaa r Lys	a cag 5 Glr 120	r val	cta Lei	a gaq ı Glı	g tat ı Tyr	Leu 125	1 Glr	g cag n Glu	g caa n Gli	a ago n Sei	caa Glr 130	ı Lei	t cci u Pro	g aat o Asn	438
tc: Se:	t gad r Asp 135	, GTI	y ato	aag Lys	g Cto S Leu	aac Asr 140	GIU	gaç Glu	ı tgo	g tco Sei	tco r Sei 145	туг:	tta Le	a caq ı Glr	g aga n Arg	486
gaç Gli 150		cag Gln	gtt Val	. neu	tcg Ser 155	rys	aga Arg	agg Arg	r tto r Lev	g aag 1 Lys 160	s Pro	a aaa D Lys	aac Asr	aga Arç	gac g Asp 165	534
t t t Phe	gaa Glu	atg Met	att : Ile	aca Thr 170	GTI	gta Val	ggt Gly	Caa Gln	ggt Gly 175	r Gly	tat Tyr	: Gly	cat His	gtt Val 180	tat Tyr	582
tta Leu	gcc Ala	aga Arg	aag Lys 185	цуs	gac Asp	aca Thr	aaa Lys	gag Glu 190	Val	tgc Cys	gcc Ala	tta Leu	aaa Lys 195	Ile	ttg Leu	630
. aat Asn	aag Lys	aag Lys 200	Lieu	ggt Gly	ttc Phe	a a a Lys	ctt Leu 205	aat Asn	ggt Gly	aca Thr	tgc Cys	cat His 210	gtt Val	ttg Leu	acc Thr	678
gag Glu	agg Arg 215	GIII	agt Ser	ctg Leu	act Thr	aca Thr 220	acg Thr	aga Arg	tcc Ser	gag Glu	acg Thr 225	atg Met	gtg Val	aag Lys	ctc Leu	726
cta Leu 230	UCI	Gly aaa	acg Thr	acc Thr	ccc Pro 235	gta Val	ggc Gly	agt Ser	agg Arg	ggg Gly 2 4 0	atg Met	gcg Ala	ata Ile	gaa Glu	agt Ser 245	774
gag Glu	cta Leu	ggc Gly	ggt Gly	gac Asp 250	ttc Phe	cgt Arg	aca Thr	gaa Glu	agt Ser 255	ata Ile	gga Gly	cgt Arg	aga Arg	tgc Cys 260	ttg Leu	822
aaa Lys	agt Ser	ggc Gly	cat His 265	gcg Ala	aga Arg	ttc Phe	tat Tyr	att Ile 270	agc Ser	gaa Glu	atg Met	ttc Phe	tgt Cys 275	gcc Ala	gtc Val	870
aac Asn	gag Glu	aaa Lys 280	cat His	ctt Leu	tta Leu	agt Ser	aaa Lys 285	acg Thr	gac Asp	agc Ser	aca Thr	atc Ile 290	tcc Ser	aac Asn	gaa Glu	918
gaa Glu	gat Asp 295	agt Ser	agc Ser	atc Ile	aac Asn	ata Ile 300	agg Arg	tta Leu	gaa Glu	aaa Lys	ttc Phe 305	aaa Lys	gac Asp	ctt Leu	G1y ggg	966
tac Tyr 310	cca Pro	gcg Ala	ttg Leu	agc Ser	gag Glu 315	aaa Lys	tct Ser	atc Ile	gag Glu	gac Asp 320	agg Arg	agg Arg	aag Lys	ttg Leu	tac Tyr 325	1014
acc Thr	tgt Cys	ccg Pro	aac Asn	tcc Ser	atg Met	gtt Val	GJA .	tct Ser	ccg Pro	gac Asp	tac Tyr	ata Ile	gcc Ala	tta Leu	gaa Glu	1062

	330	335	340
gtc ttg aga gga Val Leu Arg Gly 345	aag agg tac gag tat Lys Arg Tyr Glu Tyr 350	Thr Val Asp Tyr	tgg tcg ttg 1110 Trp Ser Leu 355
ggt tgt atg ctg Gly Cys Met Leu 360	ttt gag agc ttg gtc Phe Glu Ser Leu Val 365	ggc tac acc ccc Gly Tyr Thr Pro 370	ttc agt ggc 1158 Phe Ser Gly
375	gaa acg tat gcg atc Glu Thr Tyr Ala Ile 380	Ser Arg Ser Trp 385	Lys Gln Thr
ttg aat aga gcg Leu Asn Arg Ala 390	aga cac gag gat ggg Arg His Glu Asp Gly 395	agg gcg gcg ttt Arg Ala Ala Phe 400	tac aat agg 1254 Tyr Asn Arg 405
int ith wab red	att acc aga cac agg Ile Thr Arg His Arg 410	Ala Asp Leu Ser 415	Thr Arg Thr 420
425	cac gag gta aag atg His Glu Val Lys Met 430	Ser Tyr Phe Ala	Asp Ile Leu 435
ttt aag gcc tta Phe Lys Ala Leu 440	aga tcg ata att cca Arg Ser Ile Ile Pro 445	Pro Phe Thr Pro 450	caa cta gac 1398 Gln Leu Asp
agc gag acc gat Ser Glu Thr Asp 455	gcc ggt tat ttc gat Ala Gly Tyr Phe Asp 460	gac ttt tgg aat Asp Phe Trp Asn 465	gag gct gac 1446 Glu Ala Asp
ata gcc aaa tac Ile Ala Lys Tyr 470	gct gac gtc ttt aat Ala Asp Val Phe Asn 475	agt cag tgc tgc (Ser Gln Cys Cys 480	cgt acg gct 1494 Arg Thr Ala 485
tta gtc gac gat Leu Val Asp Asp	tct gct gtt tct tct Ser Ala Val Ser Ser 490	aaa ctt gtt ggg (Lys Leu Val Gly (495	Phe Thr Phe 500
cga cac aga aat Arg His Arg Asn 505	ggt aaa cag ggt tcc Gly Lys Gln Gly Ser 510	Ser Gly Met Leu	ttc aac ggg 1590 Phe Asn Gly 515
cta gaa cac tca Leu Glu His Ser 520	gac ccc ttc tca acc Asp Pro Phe Ser Thr 525	ttt tac tag taato Phe Tyr	eggeag 1636
cctgcagcct gccca	agetge cageetgeee te	geetgaeg eetgeeee	ag gatgcctctc 1696
ctttggataa catgo	cctgc tcccccatgc ct	gctgcct cgcagccto	ga acgcctgcca 1756
gagetegeea geete	geceag cetttegece cag	geetgeea geettttt	t aaacgctgaa 1816
aaacgcctaa aaaaa	atcgaa ctttaaacgc tt	taaaacg gctgcccat	a aaaaaaaagg 1876

ttttttaata aaaaatcgta aaaaaaaaa cgt

1909

<210> 2 <211> 528 <212> PRT <213> Arabidopsis thaliana <400> 2 Met Ala Gly Asn Met Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr . 25 Arg Pro Ala Gly Ile Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Phe Pro Tyr Glu Asp Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser Ser Asn Ser Pro Pro Val Ser Pro Ala Ile Phe Tyr Glu Arg Ala Thr Ser Trp Cys Thr Gln Arg Val Val Ser Gly Arg Ala Met Tyr Phe Leu Glu Tyr Tyr Cys Asp Met Phe Asp Tyr Val Ile Ser Arg Arg Gln Arg Thr Lys Gln Val Leu Glu Tyr Leu Gln Gln 115 120 Ser Gln Leu Pro Asn Ser Asp Gln Ile Lys Leu Asn Glu Glu Trp Ser Ser Tyr Leu Gln Arg Glu His Gln Val Leu Ser Lys Arg Arg Leu Lys 145 Pro Lys Asn Arg Asp Phe Glu Met Ile Thr Gln Val Gly Gln Gly Gly 165 Tyr Gly His Val Tyr Leu Ala Arg Lys Lys Asp Thr Lys Glu Val Cys 185 Ala Leu Lys Ile Leu Asn Lys Lys Leu Gly Phe Lys Leu Asn Gly Thr

Cys His Val Leu Thr Glu Arg Gln Ser Leu Thr Thr Arg Ser Glu

Thr Met Val Lys Leu Leu Ser Gly Thr Thr Pro Val Gly Ser Arg Gly

Met Ala Ile Glu Ser Glu Leu Gly Gly Asp Phe Arg Thr Glu Ser Ile 250

235

210

245

Gly Arg Arg Cys Leu Lys Ser Gly His Ala Arg Phe Tyr Ile Ser Glu 260 Met Phe Cys Ala Val Asn Glu Lys His Leu Leu Ser Lys Thr Asp Ser 280 Thr Ile Ser Asn Glu Glu Asp Ser Ser Ile Asn Ile Arg Leu Glu Lys Phe Lys Asp Leu Gly Tyr Pro Ala Leu Ser Glu Lys Ser Ile Glu Asp 310 Arg Arg Lys Leu Tyr Thr Cys Pro Asn Ser Met Val Gly Ser Pro Asp 325 330 Tyr Ile Ala Leu Glu Val Leu Arg Gly Lys Arg Tyr Glu Tyr Thr Val Asp Tyr Trp Ser Leu Gly Cys Met Leu Phe Glu Ser Leu Val Gly Tyr 360 Thr Pro Phe Ser Gly Ser Ser Thr Asn Glu Thr Tyr Ala Ile Ser Arg Ser Trp Lys Gln Thr Leu Asn Arg Ala Arg His Glu Asp Gly Arg Ala 395 Ala Phe Tyr Asn Arg Thr Trp Asp Leu Ile Thr Arg His Arg Ala Asp 405 410 Leu Ser Thr Arg Thr Arg Ser Phe Glu His Glu Val Lys Met Ser Tyr 420 Phe Ala Asp Ile Leu Phe Lys Ala Leu Arg Ser Ile Ile Pro Pro Phe 440 Thr Pro Gln Leu Asp Ser Glu Thr Asp Ala Gly Tyr Phe Asp Asp Phe 450 455 460 Trp Asn Glu Ala Asp Ile Ala Lys Tyr Ala Asp Val Phe Asn Ser Gln 470 Cys Cys Arg Thr Ala Leu Val Asp Asp Ser Ala Val Ser Ser Lys Leu 485 490 Val Gly Phe Thr Phe Arg His Arg Asn Gly Lys Gln Gly Ser Ser Gly 505 Met Leu Phe Asn Gly Leu Glu His Ser Asp Pro Phe Ser Thr Phe Tyr 515 520

<210> 3 <211> 695 <212> DNA

5

<21	.3> <i>F</i>	Arabi	dops	sis t	hali	ana										
<22	0>															
<22	1> 0															
<22	2> ((94).	. (56	(4)			٠.									
<40	0> 3	l														
			ggta	ccga	ac t	cgga	teca	c ta	ot a n						gaattc	
gca	cgag	rcaa	gaaa	gtta	ac a	caac	agct	a ag	a at	g ga	t tt	g ga	g tt	t gg	ga agg	114
									Me	t As	p Le	eu Gl	u Ph	ie Gl	y Arg	
										1				5		
ttt	cca	ata	ttt	tca	atc	ctc	gaa	gac	atg	ctt	gaa	gco	cct	gaa	gaa	162
FIIE	FIG	10		ser	Tre	Leu	Glu 15	Asp	Met	Leu	Glu	Ala	Pro	Glu	gaa Glu	
												20				
caa	acc	gag	aag	act	cgt	aac	aac	cct	tca	aga	gct	tac	ato	cga	gac	210
GIN	25		rys	Thr	Arg	Asn 30	Asn	Pro	Ser	Arg	Ala	Tyr	Met	Arg	gac Asp	~10
											35					
gca	aag	gca	atg	gct	gct	aca	cca	gct	gac	gtt	atc	σaσ	cac	cca	cat	258
40	Lys	Ala	Met	Ala	Ala 45	Thr	Pro	Ala	Asp	Val	Ile	Glu	His	Pro	gat Asp	250
										50					55	
gcg	tac	gtt	ttc	gcc	gtg	gac	atg	cct	gga	atc	aaa	qqa	gat	gag	att	306
Ala	туг	Vai	Phe	Ala 60	Val	Asp	Met	Pro	GIA	Ile	Lys	Gly	Asp	Glu	Ile	300
				•					65					70		
cag	gtc	cag	ata	gag Glu	aac	gag	aac	gtg	ctt	gta	ata	agt	aac	222	acra	354
GIn	Val	Gln	Ile 75	Glu	Asn	Glu	Asn	vai	Leu	Val	Val	Ser	Gly	Lys	Arg	224
								80					85			
cag	agg	gac	aac	aag Twe	gag	aat	gaa	ggt	gtg	aag	ttt	ata	agg	ato	asa.	402
GIN	Arg	Asp 90	Asn	Lys	Glu	Asn	GIU	Gly	Val	Lys	Phe	Val	Arg	Met	Glu	402
		70					95					100				
agg	agg	atg	ggg	aag	ttt	atg	agg	aag	ttt	caq	tta	cct	cat	22+		450
Arg	Arg	Met	Gly	Lys	Phe	Mec	Arg	Lys	Phe	Gln	Leu	Pro	Asp	Asn	gca Ala	450
	103					110					115					
gat	ttg	gag	aag	atc	tct	gcg	gct	tat	aat	aac	aat	ata	+ + ~			400
Asp 120	Leu	Glu	Lys	Ile	DCT	Ala	Ala	Cys	Asn	Asp	Gly	Val	Leu	Lvs	gtg Val	498
120					125					130				-	135	
act	att	ccg	aaa	ctt	cct	cct	cct	gag	сса	aad		665				
Thr	Ile	Pro	Lys		Pro	Pro	Pro	Glu	Pro	Lys	Lys	Pro	Lvs	Thr	ata Tle	546
				140					145		-		-	150		
caa	gtt	caa	gtc	gct	tga	attt	attt	at a	atco	at a t						
Gln	Val	Gln	Val	Ala	J	J	5-44	ge g	acce	grgr	נ ננ	tgtg	ctt		•	594
			155													
aatg	aatg	rta a	itcga	taaq	ic aa	ctan	ctct	tac	+~+	~~-					aaata	
												aaat	ga a	ataa	aaata	654
gttt	tctc	tg t	tcat	aaaa	a aa	aaaa	aaaa	aaa	actc	gag	C					695

```
<210> 4
<211> 156
<212> PRT
<213> Arabidopsis thaliana
Met Asp Leu Glu Phe Gly Arg Phe Pro Ile Phe Ser Ile Leu Glu Asp
Met Leu Glu Ala Pro Glu Glu Gln Thr Glu Lys Thr Arg Asn Asn Pro
                                 25
Ser Arg Ala Tyr Met Arg Asp Ala Lys Ala Met Ala Ala Thr Pro Ala
Asp Val Ile Glu His Pro Asp Ala Tyr Val Phe Ala Val Asp Met Pro
Gly Ile Lys Gly Asp Glu Ile Gln Val Gln Ile Glu Asn Glu Asn Val
                   70
Leu Val Val Ser Gly Lys Arg Gln Arg Asp Asn Lys Glu Asn Glu Gly
                                     90
Val Lys Phe Val Arg Met Glu Arg Arg Met Gly Lys Phe Met Arg Lys
                                105
Phe Gln Leu Pro Asp Asn Ala Asp Leu Glu Lys Ile Ser Ala Ala Cys
                            120
Asn Asp Gly Val Leu Lys Val Thr Ile Pro Lys Leu Pro Pro Pro Glu
Pro Lys Lys Pro Lys Thr Ile Gln Val Gln Val Ala
                    150
```

	ctt Leu	gta Val	cgg	cac	ggt	gaa Glu	tcg Ser	gaa Glu	ggg	aat	ctc	gac	acg	gcg	gcg	tat Tyr	219
		13					20					25					
	30	THE	inr	Pro	Asp	35	Lys	Ile	Gln	Leu	Thr 40	Asp	Ser	Gly	Leu	ctt Leu 45	267
	cag Gln	gcg Ala	cag Gln	gaa Glu	gcc Ala 50	GIA	gct Ala	cgt Arg	ctc Leu	cac His 55	Ala	ttg Leu	atc Ile	tct Ser	tct Ser 60	aat Asn	315
	cct Pro	tct Ser	tca Ser	Pro 65	GLU	tgg Trp	cgt Arg	gtg Val	tac Tyr 70	ttc Phe	tac Tyr	gtt Val	tcg Ser	ccg Pro 75	Tyr	gat Asp	363
	cgg Arg	act Thr	cga Arg 80	tct Ser	acg Thr	ctc Leu	cgg Arg	gag Glu 85	atc Ile	gga Gly	cgg Arg	tcg Ser	ttc Phe 90	tcg Ser	cgt Arg	cgc Arg	411
	cgt Arg	gtg Val 95	att Ile	ggt Gly	gtt Val	cgc Arg	gaa Glu 100	gaa Glu	tgt Cys	Cgg Arg	att Ile	agg Arg 105	gaa Glu	cag Gln	gat Asp	ttt Phe	459
•	ggg Gly 110	aat Asn	ttt Phe	cag Gln	gtt Val	aaa Lys 115	gag Glu	cga Arg	atg Met	aga Arg	gca Ala 120	acg Thr	aaa Lys	aag Lys	gtc Val	aga Arg 125	507
	gag Glu	aga Arg	ttt Phe	ggc Gly	cgc Arg 130	ttt Phe	ttt Phe	tac Tyr	cgg Arg	ttc Phe 135	Pro	gag Glu	gga Gly	gaa Glu	tcc Ser 140	gcc Ala	555
	gcc Ala	gat Asp	gtc Val	ttc Phe 145	gat Asp	cgc Arg	gtc Val	tcc Ser	agt Ser 150	ttt Phe	ctc Leu	gag Glu	tct Ser	cta Leu 155	tgg Trp	aga Arg	603
	gac Asp	тте	gac Asp 160	met	aac Asn	aga Arg	ctg Leu	cac His 165	atc Ile	aac Asn	ccg Pro	tct Ser	cat His 170	gag Glu	cta Leu	aac Asn	651
	ttt Phe	gtg Val 175	att Ile	gtc Val	tca Ser	cat His	ggc Gly 180	tta Leu	aca Thr	tcg Ser	cgt Arg	gtg Val 185	ttt Phe	ctg Leu	atg Met	aaa Lys	699
	tgg Trp 190	ttt Phe	aag Lys	tgg Trp	tca Ser	gtg Val 195	gaa Glu	cag Gln	ttc Phe	gag Glu	gga Gly 200	cta Leu	aac Asn	aat Asn	cca Pro	ggg Gly 205	747
	aac Asn	agt Ser	gag Glu	atc Ile	aga Arg 210	gtg Val	atg Met	gaa Glu	Leu	gga Gly 215	caa Gln	ggc Gly	ggt Gly	gat Asp	tac Tyr 220	agc Ser	795
	ttg Leu	gcg Ala	att Ile	cat His 225	cac His	aca Thr	gag Glu	Glu	gag Glu 230	tta Leu	gcc Ala	aca Thr	Trp	gga Gly 235	ctg Leu	tca Ser	843
	cca	gag	atg	att	gca	gat	caa	aag	tgg	cgg	gct	aac	gcg	cat	aaa	ggc	891

	Pro	Glu	Met 240	Ile	Ala	ĄsĄ	Gln	Lys 245	Trp	Arg	Ala	Asn	Ala 250	His	Lys	Gly	
	gaa Glu	tgg Trp 255	aaa Lys	gaa Glu	gat Asp	tgt Cys	aag Lys 260	tgg Trp	tat Tyr	ttt Phe	ggt Gly	gat Asp 265	ttc Phe	ttc Phe	gac Asp	cat His	939
	270		шър	ner	vah	275	GIU	cys	GIu	Thr	Glu 280	gcc Ala	Thr	Glu	Asp	Arg 285	987
	01 u	oru	OIG	GIU	290	GIU	GIU	GTĀ.	Lys	Arg 295	Val	aat Asn	Leu	Leu	Thr 300	Ser	1035
	tca Ser	gaa Glu	tat Tyr	agc Ser 305	aat Asn	gag Glu	cca Pro	gag Glu	tta Leu 310	tac Tyr	aat Asn	gga Gly	caa Gln	tgc Cys 315	tgc Cys	tga	1083
	tact	attt	ta c	agaa	caaa	a go	atac	atga	a gaa	gaaa	acgt	ttaa	ctaa	ag a	aatto	agaag	1143
i	attt	gatt	tt g	jataa	aaac	t to	tacc	aatt	tac	tgat	taa	gctt	tctg	gt g	tctt	agttt	1203
•	gtag	cttt	tg g	ıtttg	rtgga	a aa	ıgtgt	tgta	a cac	atco	jtta	taac	acca	gg a	aaca	ttaca	1263
•	ggaa	attt	ga a	agat	tcat	t tt	attg	rtgac	aaa	aaaa	aaa	aaaa	.aaaa				1311
•	<212	> 31 > PR		lopsi	s th	alia	na										
	<400 Met 1		Pro	Asp	Asn 5	Lys	Leu	Leu	Pro	Lys 10	Arg	Ile	Ile	Leu	Val 15	Arg	
F	His	Gly	Glu	Ser 20	Glu	Gly	Asn	Leu	Asp 25	Thr	Ala	Ala	Tyr	Thr 30	Thr	Thr	
Į	Pro	Asp	His	Lys	Ile	Gln	Leu	Thr	Asp	Ser	Gly	Leu :	Leu (Gln	Ala (Gln	

45 Glu Ala Gly Ala Arg Leu His Ala Leu Ile Ser Ser Asn Pro Ser Ser

35

Pro Glu Trp Arg Val Tyr Phe Tyr Val Ser Pro Tyr Asp Arg Thr Arg 70

Ser Thr Leu Arg Glu Ile Gly Arg Ser Phe Ser Arg Arg Arg Val Ile 90

Gly Val Arg Glu Glu Cys Arg Ile Arg Glu Gln Asp Phe Gly Asn Phe 105

Gln Val Lys Glu Arg Met Arg Ala Thr Lys Lys Val Arg Glu Arg Phe 115

Gly Arg Phe Phe Tyr Arg Phe Pro Glu Gly Glu Ser Ala Ala Asp Val 135 Phe Asp Arg Val Ser Ser Phe Leu Glu Ser Leu Trp Arg Asp Ile Asp 150 Met Asn Arg Leu His Ile Asn Pro Ser His Glu Leu Asn Phe Val Ile 165 170 Val Ser His Gly Leu Thr Ser Arg Val Phe Leu Met Lys Trp Phe Lys Trp Ser Val Glu Gln Phe Glu Gly Leu Asn Asn Pro Gly Asn Ser Glu 200 Ile Arg Val Met Glu Leu Gly Gln Gly Gly Asp Tyr Ser Leu Ala Ile His His Thr Glu Glu Glu Leu Ala Thr Trp Gly Leu Ser Pro Glu Met 225 230 235 Ile Ala Asp Gln Lys Trp Arg Ala Asn Ala His Lys Gly Glu Trp Lys Glu Asp Cys Lys Trp Tyr Phe Gly Asp Phe Phe Asp His Met Ala Asp 265 Ser Asp Lys Glu Cys Glu Thr Glu Ala Thr Glu Asp Arg Glu Glu Glu 280 Glu Glu Glu Gly Lys Arg Val Asn Leu Leu Thr Ser Ser Glu Tyr 290 300 Ser Asn Glu Pro Glu Leu Tyr Asn Gly Gln Cys Cys 310

<210> 7

<211> 863

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (19)..(837)

<400> 7

agagacagta aacctaaa atg gcg aac tca gac aaa aga tta ttc gag aag 51

Met Ala Asn Ser Asp Lys Arg Leu Phe Glu Lys

1 5

gta gct ata ata acc gga gga gca aga ggg ata gga gcg gcc acg gcg 99
Val Ala Ile Ile Thr Gly Gly Ala Arg Gly Ile Gly Ala Ala Thr Ala
15 20 25

aga Arg	ttg Leu	ttc Phe 30	aca Thr	gag Glu	aat Asn	ggc Gly	gcg Ala 35	Tyr	gtg Val	ata Ile	gtc Val	gcg Ala 40	Asp	ato Ile	ctt Leu	147
gat Asp	aat Asn 45	GIU	ggc	atc Ile	ctt	gtg Val 50	Ala	gaa Glu	tcg Ser	atc Ile	ggt Gly 55	Gly	tgt Cys	tac Tyr	gtt Val	195
cat His 60	C 3 2	gac Asp	gta Val	tcg Ser	aag Lys 65	gag Glu	gct Ala	gat Asp	gtt Val	gag Glu 70	Ala	gca Ala	gtg Val	gag Glu	cta Leu 75	243
gca Ala	atg Met	aga Arg	cgt Arg	aaa Lys 80	ggt Gly	aga Arg	cta Leu	gat Asp	gtg Val 85	Met	ttc Phe	aac Asn	aat Asn	gcc Ala	ggg	291
atg Met	tcg Ser	ctt Leu	aac Asn 95	gaa Glu	ggt Gly	agt Ser	atc Ile	atg Met 100	Gly aga	atg Met	gac Asp	gtg Val	gac Asp 105	atg Met	gtt Val	339
aac Asn	aaa Lys	ctt Leu 110	gtc Val	tcg Ser	gtt Val	aat Asn	gtc Val 115	aat Asn	ggt Gly	gtt Val	ttg Leu	cat His 120	ggt Gly	atc	aaa Lys	387
cat His	gcc Ala 125	gct Ala	aag Lys	gcc Ala	atg Met	atc Ile 130	aaa Lys	GJA aaa	gga Gly	cga Arg	gga Gly 135	ggc	tcg Ser	ata Ile	ata Ile	435
tgc Cys 140	aca Thr	tcg Ser	agc Ser	tca Ser	tca Ser 145	Gly	cta Leu	atg Met	gga Gly	gga Gly 150	ctt Leu	gga Gly	gga Gly	cat His	gcg Ala 155	483
tat Tyr	acg Thr	ctc Leu	tcc Ser	aaa Lys 160	gga Gly	ggc Gly	atc Ile	aac Asn	ggg Gly 165	gtg Val	gtg Val	agg Arg	aca Thr	acg Thr 170	gag Glu	531
tgc Cys	gag Glu	ctt Leu	ggg Gly 175	tct Ser	cac His	ggc	atc Ile	cgt Arg 180	gtg Val	aat Asn	agc Ser	atc Ile	tct Ser 185	cct Pro	cat His	579
gga Gly	gtt Val	ccc Pro 190	act Thr	gac Asp	atc Ile	ttg Leu	gtt Val 195	aat Asn	gcg Ala	tac Tyr	cgt Arg	aag Lys 200	ttc Phe	ctt Leu	aac Asn	627
aat Asn	gac Asp 205	aaa Lys	ctc Leu	aac Asn	gtc Val	gct Ala 210	gag Glu	gtc Val	acc Thr	gac Asp	att Ile 215	att Ile	gct Ala	gag Glu	aaa Lys	675
320 339 399	agt Ser	ttg Leu	ctg Leu	acc Thr	gga Gly 225	aga Arg	gcc Ala	ggt Gly	act Thr	gtg Val 230	gag Glu	gac Asp	gta Val	gct Ala	caa Gln 235	723
gca Ala	gct Ala	ttg Leu	ttt Phe	ctt Leu 240	gca Ala	agc Ser	caa Gln	Glu	tcg Ser 245	tcg Ser	Gly aga	ttc Phe	Ile	acc Thr 250	gga Gly	771
cat	á a c	ttg	gtt	gtt	gat	ggt	ggt	tac	aca	tct	gcc	act	agt	act	atg	819

His Asn Leu Val Val Asp Gly Gly Tyr Thr Ser Ala Thr Ser Thr Met 255 260 265

aga ttt atc tac aac tag ttttcgtttg gtggtgtttc cttttc Arg Phe Ile Tyr Asn 270

863

<210> 8

<211> 272

<212> PRT

<213> Arabidopsis thaliana

<400> 8

Met Ala Asn Ser Asp Lys Arg Leu Phe Glu Lys Val Ala Ile Ile Thr 1 5 10 15

Gly Gly Ala Arg Gly Ile Gly Ala Ala Thr Ala Arg Leu Phe Thr Glu 20 25 30

Asn Gly Ala Tyr Val Ile Val Ala Asp Ile Leu Asp Asn Glu Gly Ile 35 40 45

Leu Val Ala Glu Ser Ile Gly Gly Cys Tyr Val His Cys Asp Val Ser 50 55 60

Lys Glu Ala Asp Val Glu Ala Ala Val Glu Leu Ala Met Arg Arg Lys 65 70 75 80

Gly Arg Leu Asp Val Met Phe Asn Asn Ala Gly Met Ser Leu Asn Glu.
85 90 95

Gly Ser Ile Met Gly Met Asp Val Asp Met Val Asn Lys Leu Val Ser 100 105 110

Val Asn Val Asn Gly Val Leu His Gly Ile Lys His Ala Ala Lys Ala 115 120 125

Met Ile Lys Gly Gly Arg Gly Gly Ser Ile Ile Cys Thr Ser Ser Ser 130 135 140

Ser Gly Leu Met Gly Gly Leu Gly Gly His Ala Tyr Thr Leu Ser Lys 150 155 160

Gly Gly Ile Asn Gly Val Val Arg Thr Thr Glu Cys Glu Leu Gly Ser 165 170 175

His Gly Ile Arg Val Asn Ser Ile Ser Pro His Gly Val Pro Thr Asp

Ile Leu Val Asn Ala Tyr Arg Lys Phe Leu Asn Asn Asp Lys Leu Asn 195 200 205

Val Ala Glu Val Thr Asp Ile Ile Ala Glu Lys Gly Ser Leu Leu Thr 210 225 220

Gly Arg Ala Gly Thr Val Glu Asp Val Ala Gln Ala Ala Leu Phe Leu

```
225
                   230
                                      235
                                                         240
Ala Ser Gln Glu Ser Ser Gly Phe Ile Thr Gly His Asn Leu Val Val
                245
                                  250
Asp Gly Gly Tyr Thr Ser Ala Thr Ser Thr Met Arg Phe Ile Tyr Asn
            260
                                                  270
<210> 9
<211> 3107
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (20)..(34)
<220>
<221> CDS
<222> (958)..(1054)
<220>
<221> CDS
<222> (1209)..(1486)
<220>
<221> CDS
<222> (1578)..(2354)
<220>
<221> CDS
<222> (2440)..(2529)
<220>
<221> CDS
<222> (2629)..(2790)
<220>
<221> CDS
<222> (2884)..(2943)
<400> 9
traacettet atcateace atg gat eet tac aag gtatettega tratattett
                   Met Asp Pro Tyr Lys
cttacttttt ctttgttttt gtgtggtgta tgtgtatctt aattagaatt aggttcaact 114
atatatgctc gttttctaaa ctatttttta attggattga tgttcttaaa tcttaagggt 174
caaaatactt tttatgctca aaaacttact taaattctgt gatcgcttga acctaagtgg 234
atgatgtgga tttcctgttt tggctgccta tctttaagta aaacgtttaa cccactgcgt 294
```

ttg	ttgt	ttt	tttt	ttta	ata g	tato	gacàc	a ca	tgt	gttct	aaa	aaato	egga	cgt	caaatg	414
ata	taat	cga	ttgt	ttag	gac ç	jtccç	jacco	ıt at	atta	attt	agt	gata	atca	gcca	aatcag	474
att	aagt	aat	cato	aaca	aaa a	tgat	tgat	c ag	jatci	atca	a ata	caaç	gtgt	att	ttttt	534
cac	atac	aaa	aaaa	ttat	ct c	accg	Jacga	a aa	aaaa	ataa	aaa	atta	atta	tgta	agatcca	594
tcg	aaca	aaa	ggct	tgaa	ata t	cgga	agto	a ct	taaa	agtg	, taa	taat	cga	ataa	atatta	654
gtg	gata	laaa	tgaa	attt	at c	taca	acco	t ac	tcto	cgac	atg	rttac	tgt	ttgc	gtcatc	714
aaa	tcta	aag	cctt	tttg	gc a	aata	atgg	t cg	gaag	acta	ctc	gtgt	cgg	gatg	rgaccac	774
ccg	gato	cga	tcag	gaaa	ıcg g	gttt	tgat	a tg	tttc	gggt	tac	gaca	aaa	aatt	agggct	834
t t t	tato	aaa	tcaa	tcag	rtt g	gtag	taaa	a tt	ttgt	ggat	tgt	tctt	gtc	gatt	ccgttt	894
gat	tgtt	gac	caaa	tttc	tt c	ctag	gatt	t t g	ttga	taat	cga	tcgt	ata	atgg	tgattg	954
cag	tat Tyr	cgt Arg	cct Pro	tca Ser	agc Ser 10	ALA	tac Tyr	aac Asn	gcc Ala	cca Pro 15	Phe	tac Tyr	acc Thr	aca Thr	aac Asn 20	1002
ggt Gly	ggt Gly	gct Ala	cca Pro	gtc Val 25	Ser	aac Asn	aac Asn	atc Ile	tct Ser 30	Ser	ctc Leu	acc Thr	ato	gga Gly 35	gaa Glu	1050
~~~																
Arg	g g	tatc	gtaa	c cc	tgaa	tttc	aaga	agtċ	tat	caat	aaga	at c	ggaa	cttg	t	1104
tgg	attt	atg .	aaag	agat	aa a	actg	agata	a ta	gagt	ctaa	gct	gaga	tct	gtte	gtgaag	
tgg	attt	atg	aaag,	agat tttt	aa a	actg.	agata	a ta	gagt cgta	ctaa atgg	gcti	gaga g gt ly	tct ccg Pro	gttc gtt Val 40	gtgaag ctt Leu	
tgg.	attt gatg gag	atg de la company de la compan	aaaga ttat	agat tttt cat	aa a aa c	actg atgt:	agata gttad	a ta	gagt	ctaa	gca	gaga g gt ly	ccg Pro	gttc gtt Val 40	gtgaag ctt Leu	1164
tgg. cgt.	gatg gag Glu atc	atg tga gat Asp	tat tat Tyr 45	agat tttt cat His	aa a aa c ttg Leu	actga atgta atc Ile	agata gttad gag Glu	a tag aag Lys 50	gagt cgta gtt Val	ctaa atgg	gct; gca; aat Asn	gaga g gt ly ttc Phe	ccg Pro acc Thr 55	gttc gtt Val 40 aga Arg	gtgaag ctt Leu gag Glu	1164 1219
tgg. cgt. ctt Leu agg	gatg gag Glu atc Ile	gat Asp cct Pro 60	tat tat Tyr 45 gag Glu	agat tttt cat His aga Arg	aa a aa c ttg Leu gtg Val	actgo atgto atc Ile gtt Val	gag gag Glu cat His 65	a tac c ttc aag Lys 50 gct Ala	gagt cgta gtt Val aga Arg	ctaa atgg gct Ala	gcte gcae aat Asn atc	gaga g gt ly ttc Phe agt Ser 70	ccg Pro acc Thr 55 gct Ala	gttc gtt Val 40 aga Arg aag	gtgaag ctt Leu gag Glu ggt Gly	1164 1219 1267
cgt ctt Leu agg Arg	gatg gag Glu atc Ile ttt Phe 75	gat Asp Cct Pro 60 gaa Glu	tat tat Tyr 45 gag Glu gtc Val	agat tttt cat His aga Arg acc Thr	aa a aa c ttg Leu gtg Val cat His	atgt	gag gag Glu cat His 65 att Ile	a tac c ttc aag Lys 50 gct Ala tca Ser	gagt cgta gtt Val aga Arg aac Asn	gct Ala gga Gly	gcte gcae aat Asn atc Ile act Thr 85	gaga g gt ly ttc Phe agt Ser 70 tgt Cys	ccg Pro acc Thr 55 gct Ala	gttc gtt Val 40 aga Arg aag Lys	gtgaag ctt Leu gag Glu ggt Gly ttt	1164 1219 1267 1315

ttt gct gtc aag ttt tac acc aga gag gtataagaaa gattcaaagt Phe Ala Val Lys Phe Tyr Thr Arg Glu 125 130	1506
ttccattttt aatcgtcttt tagcttcttt agaatcagga ctgatttttg tcttgttact	1566
gttatgatca g gga aac ttt gat ctt gtt ggg aac aac act ccg gtg ttc Gly Asn Phe Asp Leu Val Gly Asn Asn Thr Pro Val Phe 135	1616
ttc atc cgt gat ggg att cag ttc ccg gat gtt gtc cac gcg ttg aaa Phe Ile Arg Asp Gly Ile Gln Phe Pro Asp Val Val His Ala Leu Lys 145 150 155	1664
cct aac cga aaa aca aac atc caa gag tac tgg agg att ctg gac tac Pro Asn Arg Lys Thr Asn Ile Gln Glu Tyr Trp Arg Ile Leu Asp Tyr 160 165 170 175	1712
atg tcc cac ttg cct gag agt ttg ctc aca tgg tgc tgg atg ttt gat Met Ser His Leu Pro Glu Ser Leu Leu Thr Trp Cys Trp Met Phe Asp 180 185 190	1760
gat gtt ggt att cca caa gat tac agg cat atg gag ggt ttc ggt gtc Asp Val Gly Ile Pro Gln Asp Tyr Arg His Met Glu Gly Phe Gly Val 195 200 205	1808
cac acc tac act ctt att gcc aaa tct gga aaa gtt ctc ttt gtg aag His Thr Tyr Thr Leu Ile Ala Lys Ser Gly Lys Val Leu Phe Val Lys 210 215 220	1856
ttc cac tgg aaa cca act tgt ggg atc aag aat ctg act gat gaa gag Phe His Trp Lys Pro Thr Cys Gly Ile Lys Asn Leu Thr Asp Glu Glu 225 230 235	1904
gcc aag gtt gtt gga gga gcc aat cac agc cac gcc act aag gat ctc Ala Lys Val Val Gly Gly Ala Asn His Ser His Ala Thr Lys Asp Leu 240 245 250 255	1952
cac gat gcc att gca tct ggc aac tac ccc gag tgg aaa ctt ttc atc His Asp Ala Ile Ala Ser Gly Asn Tyr Pro Glu Trp Lys Leu Phe Ile 260 265 270	2000
cag acc atg gat cct gca gat gag gat aag ttt gac ttt gac cca ctt Gln Thr Met Asp Pro Ala Asp Glu Asp Lys Phe Asp Phe Asp Pro Leu 275 280 285	2048
gat gtg acc aag atc tgg cct gag gat att ttg cct ctg caa ccg gtt Asp Val Thr Lys Ile Trp Pro Glu Asp Ile Leu Pro Leu Gln Pro Val 290 295 300	2096
ggt cgc ttg gtt ctg aac agg acc att gac aac ttc ttc aat gaa act Gly Arg Leu Val Leu Asn Arg Thr Ile Asp Asn Phe Phe Asn Glu Thr 305 310 315	2144
gag cag ctt gcg ttc aac ccg ggt ctt gtg gtt cct gga atc tac tac Glu Gln Leu Ala Phe Asn Pro Gly Leu Val Val Pro Gly Ile Tyr Tyr	2192

320	325	330	335
tca gac gac aag ctg Ser Asp Asp Lys Leu 340	ctc cag tgt agg Leu Gln Cys Arg	atc ttt gct tat ggt Ile Phe Ala Tyr Gly 345	gac act 2240 Asp Thr 350
cag aga cat cgc ctt Gln Arg His Arg Leu 355	360	Leu Gln Leu Pro Val 365	. Asn Ala ;
ccc aaa tgt gct cac Pro Lys Cys Ala His 370	cac aac aat cac His Asn Asn His 375	cat gaa ggt ttt atg His Glu Gly Phe Met 380	aac ttc 2336 Asn Phe
atg cac aga gat gag Met His Arg Asp Glu 385	gag gtacgtctta ( Glu	ytacaccact tgagctacc	a 2384
ttgttagtct ttttactto			Ile 390
aat tac tac ccc tca Asn Tyr Tyr Pro Ser 395	Lys Pne Asp Pro	Val Arg Cys Ala Glu 400	Lys Val 405
ccc acc cct aca aac Pro Thr Pro Thr Asn 410	tcc tac act gga Ser Tyr Thr Gly 415	att cga aca aag gtc Ile Arg Thr Lys	cgattcc 2539
tgccatgcct tctctaaat		·	
agaaaacctt ttaattgct	Cys 420	Val Ile Lys Lys Glu 425	Asn Asn
ttc aaa cag gct gga Phe Lys Gln Ala Gly 430	gac agg tac aga Asp Arg Tyr Arg 435	tca tgg gca cca gac Ser Trp Ala Pro Asp 440	agg caa 2700 Arg Gln
gac agg ttt gtt aag Asp Arg Phe Val Lys 445	aga tgg gtg gag Arg Trp Val Glu 450	att cta tcg gag cca Ile Leu Ser Glu Pro 455	cgt ctc 2748 Arg Leu
acc cac gag atc cgc Thr His Glu Ile Arg 460	ggc atc tgg acc Gly Ile Trp Thr 465	tct tac tgg ctc aag Ser Tyr Trp Leu Lys 470	2790
gtcagaacca aaaaaacac	t cggtcaaatt tct	acgtect ttttaccaag t	ttcagcaaa 2850
ctaaaacatt atttatctc		Ala Asp Arg Ser Leu 475	Gly Gln 480
aaa ctc gca agc cgt Lys Leu Ala Ser Arg 485	Leu Asn Val Arg	cca agc atc tag aggc Pro Ser Ile 190	caatct 2953

ccatataagc tcagtctatg tgaggtacaa tcaatctcat cgatctatca tcgcttggtc 3013 gttaaatccg tcaaaaagat aatcacatgt gttgttgttt cttgtctata taataataat 3073 gcttgtaatc ccaaaaactc atgtttcctt cctt : 3107

<210> 10

<211> 492

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met Asp Pro Tyr Lys Tyr Arg Pro Ser Ser Ala Tyr Asn Ala Pro
1 5 10 15

Phe Tyr Thr Thr Asn Gly Gly Ala Pro Val Ser Asn Asn Ile Ser Ser 20 25 30

Leu Thr Ile Gly Glu Arg Gly Pro Val Leu Leu Glu Asp Tyr His Leu 35 40 45

Ile Glu Lys Val Ala Asn Phe Thr Arg Glu Arg Ile Pro Glu Arg Val

Val His Ala Arg Gly Ile Ser Ala Lys Gly Phe Phe Glu Val Thr His 65 70 75 8

Asp Ile Ser Asn Leu Thr Cys Ala Asp Phe Leu Arg Ala Pro Gly Val 85 90 95

Gln Thr Pro Val Ile Val Arg Phe Ser Thr Val Val His Gly Arg Ala
100 105 110

Ser Pro Glu Thr Met Arg Asp Ile Arg Gly Phe Ala Val Lys Phe Tyr 115 120 125

Thr Arg Glu Gly Asn Phe Asp Leu Val Gly Asn Asn Thr Pro Val Phe 130 135 140

Phe Ile Arg Asp Gly Ile Gln Phe Pro Asp Val Val His Ala Leu Lys
145 150 155 16

Pro Asn Arg Lys Thr Asn Ile Gln Glu Tyr Trp Arg Ile Leu Asp Tyr
165 170 175

Met Ser His Leu Pro Glu Ser Leu Leu Thr Trp Cys Trp Met Phe Asp

Asp Val Gly Ile Pro Gln Asp Tyr Arg His Met Glu Gly Phe Gly Val 195 200 205

His Thr Tyr Thr Leu Ile Ala Lys Ser Gly Lys Val Leu Phe Val Lys 210 215 220

Phe His Trp Lys Pro Thr Cys Gly Ile Lys Asn Leu Thr Asp Glu Glu

225 230 235 24

Ala Lys Val Val Gly Gly Ala Asn His Ser His Ala Thr Lys Asp Leu 245 250 255

His Asp Ala Ile Ala Ser Gly Asn Tyr Pro Glu Trp Lys Leu Phe Ile 260 265 270

Gln Thr Met Asp Pro Ala Asp Glu Asp Lys Phe Asp Phe Asp Pro Leu 275 280 285

Asp Val Thr Lys Ile Trp Pro Glu Asp Ile Leu Pro Leu Gln Pro Val 290 295 300

Gly Arg Leu Val Leu Asn Arg Thr Ile Asp Asn Phe Phe Asn Glu Thr 305 310 315 32

Glu Gln Leu Ala Phe Asn Pro Gly Leu Val Val Pro Gly Ile Tyr Tyr 325 330 335

Ser Asp Asp Lys Leu Leu Gln Cys Arg Ile Phe Ala Tyr Gly Asp Thr 340 345 350

Gln Arg His Arg Leu Gly Pro Asn Tyr Leu Gln Leu Pro Val Asn Ala 355 360 365

Pro Lys Cys Ala His His Asn Asn His His Glu Gly Phe Met Asn Phe 370 375 380

Met His Arg Asp Glu Glu Ile Asn Tyr Tyr Pro Ser Lys Phe Asp Pro 385 390 395 40

Val Arg Cys Ala Glu Lys Val Pro Thr Pro Thr Asn Ser Tyr Thr Gly
405 410 415

Ile Arg Thr Lys Cys Val Ile Lys Lys Glu Asn Asn Phe Lys Gln Ala
420 425 430

Gly Asp Arg Tyr Arg Ser Trp Ala Pro Asp Arg Gln Asp Arg Phe Val 435 440 445

Lys Arg Trp Val Glu Ile Leu Ser Glu Pro Arg Leu Thr His Glu Ile 450 455 460

Arg Gly Ile Trp Thr Ser Tyr Trp Leu Lys Ala Asp Arg Ser Leu Gly 465 470 475 48

Gln Lys Leu Ala Ser Arg Leu Asn Val Arg Pro Ser Ile 485 490

<210> 11

<211> 2687

<212> DNA

<213> Arabidopsis thaliana

<220>	
<221> CDS	
<222> (67)(204)	
<220>	
<221> CDS	
<222> (521):.(661)	
<220>	
<221> CDS	
<222> (745)(1026)	
<220>	
<221>. CDS	
<222> (1114)(2667)	
<400> 11	
aagttccaaa ttttctctta gcattctctt tcgtttctcg ttttcgttga atcaaagttc	60
gttgcg atg gcg gat gtt cag atg gct gat gca gaa act ttt gct ttc	100
Met Ala Asp Val Gln Met Ala Asp Ala Glu Thr Phe Ala Phe 1 5 10	108
Caa gct gag att aac cag att att	
caa gct gag att aac cag ctt ctt agc ttg atc atc aac acg ttc tac Gln Ala Glu Ile Asn Gln Leu Leu Ser Leu Ile Ile Asn Thr Phe Tyr 15 20 25 30	156
age age age age ate the che cat mag ate ate are	
Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn Ser Ser Asp	204
35 40 45	
qtaaqtttcc cttcaaatct ctctaaa	
gtaagtttee etteaatet etetetgaet eggtgtgaet egteegette etatttett	
gactgttgtt tgttctttaa ttcctggatt cgttgatagc gttggattcg taggtttagc	
gttgtgattg cttattcaaa taaatcgtga tttggcttgt gcatcacgtt aagtttagaa	
ttcttagctt gtgctcgatc ttcatgtgtt gtagttacat atatagaacg gttcttgctt	444
cgatgtagtt tttgatttac cctagaggat tgagtaaagc ttctgattat ctttgtttat	504
atgaacggtt ttgtag gct ctt gac aag att cga ttt gag agc tta acg gat	
Ala Leu Asp Lys Ile Arg Phe Glu Ser Leu Thr Asp 50 55	556
aag age aag ete gat gga eag eet gaa ete tte att aga ttg gtt eet	C 0.4
Lys Ser Lys Leu Asp Gly Gln Pro Glu Leu Phe Ile Arg Leu Val Pro 60 65 70	604
gac aag cot aat aag acg cho toa att att	
gac aag cct aat aag acg ctc tca att att gac agt ggt att ggc atg Asp Lys Pro Asn Lys Thr Leu Ser Ile Ile Asp Ser Gly Ile Gly Met	652
75 80 85 Ser Gly He Gly Met 90	
acc aaa gca ggtaacgaat caatgcctaa taatctctcg ttggtgagat	701
Thr Lys Ala	701
gtttagtgta tgtgctgtgg ttatgactct ctattatttt tca gat ttg gtg aac	756

												Ası	9 Let		l Asn	
aac Asr	tto Lei	gga Gly 100	TITE	att Ile	gcg Ala	agg Arg	tct Ser 105	Gly	a aca	a aaa C Lys	a gaç s Glu	y tti 1 Phe 110	e Met	g gaq C Glu	g gcg ı Ala	804
ctt Lev	caa Gln 115	WIG	gga Gly	gct Ala	gat Asp	gta Val 120	Ser	atg Met	r ata : Ile	gga Gly	caa Glr 125	1 Phe	ggt Gly	gti Val	ggt l Gly	852
130	)	961	AIG	TĂT	135	val	Ala	. GIU	Lys	140	. Val	. Va]	Thr	Thi	a aag Lys 145	900
cac His	aat Asn	gat Asp	gat Asp	gaa Glu 150	GIII	tac Tyr	gtt Val	tgg Trp	gag Glu 155	Ser	caa Gln	gct Ala	ggt Gly	ggt Gly 160	tcc Ser	948
ttc Phe	act Thr	gtc Val	act Thr 165	agg Arg	gat Asp	gtg Val	gat Asp	ggg Gly 170	gaa Glu	cca Pro	ctt Leu	ggt Gly	aga Arg 175	gga Gly	act Thr	996
aag Lys	atc Ile	agc Ser 180	ctc Leu	ttc Phe	ctt Leu	aag Lys	gac Asp 185	gat Asp	cag Gln	gta	agga	atc	gtag	cttt	ga	1046
															tttatt	1106
cat	gcag	ctt Leu	gaa Glu	tac Tyr 190	ttg Leu	gag Glu	gag Glu	agg Arg	aga Arg 195	ctc Leu	aaa Lys	gac Asp	ttg Leu	gtg Val 200	aag Lys	1155
aag Lys	cac His	tct Ser	gag Glu 205	ttc Phe	atc Ile	agt Ser	tac Tyr	cct Pro 210	atc Ile	tac Tyr	ctt Leu	tgg Trp	acc Thr 215	gag Glu	aaa Lys	1203
acc	acc Thr	gag Glu 220	aag Lys	gag Glu	atc Ile	agt Ser	gac Asp 225	gat Asp	gag Glu	gat Asp	gaa Glu	gat Asp 230	gaa Glu	cca Pro	aag Lys	1251
aaa Lys	gaa Glu 235	aac Asn	gaa Glu	ggt Gly	gag Glu	gtt Val 240	gaa Glu	gaa Glu	gtt Val	gat Asp	gag Glu 245	aag Lys	aag Lys	gag Glu	aaa Lys	1299
gat Asp 250	ggt Gly	aaa Lys	aag Lys	aag Lys	aag Lys 255	aaa Lys	atc Ile	aag Lys	gaa Glu	gtc Val 260	tct Ser	cac His	gag Glu	tgg Trp	gaa Glu 265	1347
ctc Leu	atc Ile	aac Asn	aag Lys	cag Gln 270	aaa Lys	ccg Pro	atc Ile	Trp	ttg Leu 275	agg Arg	aag Lys	cca Pro	gaa Glu	gag Glu 280	atc Ile	1395
act Thr	aag Lys	gaa Glu	gag Glu 285	tat Tyr	gct Ala	gct Ala	Pne	tac Tyr 290	aag Lys	agc Ser	ttg Leu	acc Thr	aat Asn 295	gac Asp	tgg Trp	1443

014	ng _p	300	Deu	MIG	vaı	ьys	305	Phe	Ser	' Val	. Glu	310	Gln	Leu	gaa Glu	1491
1116	315	nta	.116	Leu	rne	320	Pro	Lys	Arg	' Ala	325	Phe	Asp	Leu	ttt Phe	1539
330	1111	ALY	гÀг	ъуѕ	335	Asn	Asn	Ile	Lys	Leu 340	Tyr	Val	Arg	Arg	gtg Val 345	1587
- 110	116	Met	ASP	350	Cys	GIU	Glu	Leu	11e 355	Pro	Glu	Tyr	Leu	Ser 360		1635
vui	בינם	GIY	365	Val	ASP	ser	Asp	370	Leu	Pro	Leu	Asn	Ile 375	Ser	cgt Arg	1683
olu	1112	380	GIII	GIII	ASI	гÀ2	385	Leu	Lys	Val	Ile	agg Arg 390	Lys	Asn	Leu	1731
741	<b>39</b> 5	2,3	cys	116	GIU	400	Pne	Asn	Glu	Ile	Ala 405	gag Glu	Asn	Lys	Glu	1779
410	171	1111	ъys	rne	415	GIU	Ala	Phe	Ser	Lys 420	Asn	ctc Leu	Lys	Leu	Gly 425	1827
*10	*****	GIU	wsp	430	GIN	Asn	Arg	Gly	Lys 435	Ile	Ala	gat Asp	Leu	Leu 440	Arg	1875
171	1113	261	445	ьўs	ser	СТĀ	Asp	Glu 450	Met	Thr	Ser	ttc Phe	Lys 455	Asp	Tyr	1923
VUI	1111	<b>460</b>	Met	гус	GII	GIĀ	465	Lys	qzA	Ile	Phe	tac Tyr 470	Ile	Thr	Gly	1971
	475	בענם	пуs	ALG	vai	480	ASN	Ser	Phe	Leu	Glu 485	agg Arg	Leu	Lys	Lys	2019
490	GIJ	TYT	Giu.	val	<b>495</b>	Tyr	met	Val	Asp	Ala 500	Ile	gac Asp	Glu	Tyr	Ala 505	2067
	GIŞ	GIII	pen	510	GIU	ıyr	Asp	Gly	Lys 515	Lys	Leu	gtt Val	Ser	Ala 520	Thr	2115
aaa	gaa	ggc	ctc	aaa	ctt	gaa	gat	gag	acc	gaa	gaa	gag	aag	aaa	aag	2163

Lys	Glu	Gly	Leu 525	Lys	Leu	Glu	Asp	Glu 530	Thr	Glu	Glu	Glu	Lys 535		Lys	
agg Arg	gaa Glu	gag Glu 540	aag Lys	aag Lys	aag Lys	tcc Ser	ttc Phe 545	gag Glu	aat Asn	ctc Leu	tgc Cys	aag Lys 550	acg Thr	att Ile	aag Lys	2211
gaa Glu	att Ile 555	ctc Leu	ggg	gac Asp	aag Lys	gtt Val 560	gag Glu	aag Lys	gtt Val	gtg Val	gtc Val 565	tca Ser	gac Asp	agg Arg	att Ile	2259
gtg Val 570	gac Asp	tct Ser	ccc Pro	tgc Cys	tgt Cys 575	cta Leu	gta Val	act Thr	ggt Gly	gaa Glu 580	tat Tyr	gga Gly	tgg Trp	act Thr	gca Ala 585	2307
aat Asn	atg Met	gag Glu	agg Arg	att Ile 590	atg Met	aag Lys	gca Ala	cag Gln	gcc Ala 595	ttg Leu	aga Arg	gat Asp	agc Ser	agc Ser 600	atg Met	2355
agt Ser	ggt Gly	tac Tyr	atg Met 605	tcg Ser	agc Ser	aag Lys	aaa Lys	aca Thr 610	atg Met	gag Glu	atç Ile	aac Asn	ccc Pro 615	gac Asp	aac Asn	2403
ggt Gly	ata Ile	atg Met 620	gag Glu	gac Asp	ctc Leu	agg Arg	aag Lys 625	aga Arg	gct Ala	gaa Glu	gca Ala	gac Asp 630	aag Lys	aat Asn	gac Asp	2451
aag Lys	tet Ser 635	gtt Val	aaa Lys	gat Asp	ctt Leu	gtc Val 640	atg Met	ttg Leu	ctg Leu	tat Tyr	gag Glu 645	aca Thr	gct Ala	ttg Leu	ttg Leu	2499
650	Set	gga Gly	Pne	ser	655	Asp	GIu	Pro	Asn	Thr 660	Phe	Ala	Ala	Arg	Ile 665	2547
1113	ALG	atg Met	Leu	670	Leu	СΤΆ	ren	Ser	11e 675	Asp	Glu	Asp	Glu	Asn 680	Val	2595
gag Glu	gaa Glu	gat Asp	ggt Gly 685	gat Asp	atg Met	cct Pro	GIU	ttg Leu 690	gag Glu	gag Glu	gac Asp	Ala	gct Ala 695	gaa Glu	gag Glu	2643
agc Ser	aag Lys	atg Met 700	gag Glu	gaa Glu	gtc Val	Asp	taa 705	gaga	tgaa	iga a	attg	ctct	t			2687
-210	. 10															

<210> 12

<211> 704

<212> PRT

<213> Arabidopsis thaliana

<400> 12

Met Ala Asp Val Gln Met Ala Asp Ala Glu Thr Phe Ala Phe Gln Ala

1 5 10 15

Glu Ile Asn Gln Leu Leu Ser Leu Ile Ile Asn Thr Phe Tyr Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn Ser Ser Asp Ala Leu Asp Lys Ile Arg Phe Glu Ser Leu Thr Asp Lys Ser Lys Leu Asp Gly Gln Pro Glu Leu Phe Ile Arg Leu Val Pro Asp Lys Pro Asn Lys Thr Leu Ser Ile Ile Asp Ser Gly Ile Gly Met Thr Lys Ala Asp Leu Val 90 Asn Asn Leu Gly Thr Ile Ala Arg Ser Gly Thr Lys Glu Phe Met Glu 100 Ala Leu Gln Ala Gly Ala Asp Val Ser Met Ile Gly Gln Phe Gly Val Gly Phe Tyr Ser Ala Tyr Leu Val Ala Glu Lys Val Val Thr Thr 135 Lys His Asn Asp Asp Glu Gln Tyr Val Trp Glu Ser Gln Ala Gly Gly 150 155 Ser Phe Thr Val Thr Arg Asp Val Asp Gly Glu Pro Leu Gly Arg Gly 170 Thr Lys Ile Ser Leu Phe Leu Lys Asp Asp Gln Leu Glu Tyr Leu Glu 185 Glu Arg Arg Leu Lys Asp Leu Val Lys Lys His Ser Glu Phe Ile Ser 200 Tyr Pro Ile Tyr Leu Trp Thr Glu Lys Thr Thr Glu Lys Glu Ile Ser 215 220 Asp Asp Glu Asp Glu Pro Lys Lys Glu Asn Glu Gly Glu Val 230 Glu Glu Val Asp Glu Lys Lys Glu Lys Asp Gly Lys Lys Lys Lys Ile Lys Glu Val Ser His Glu Trp Glu Leu Ile Asn Lys Gln Lys Pro Ile Trp Leu Arg Lys Pro Glu Glu Ile Thr Lys Glu Glu Tyr Ala Ala 280 Phe Tyr Lys Ser Leu Thr Asn Asp Trp Glu Asp His Leu Ala Val Lys 295 His Phe Ser Val Glu Gly Gln Leu Glu Phe Lys Ala Ile Leu Phe Val 310 315

Pro Lys Arg Ala Pro Phe Asp Leu Phe Asp Thr Arg Lys Leu Asn Asn Ile Lys Leu Tyr Val Arg Arg Val Phe Ile Met Asp Asn Cys Glu 340 345 Glu Leu Ile Pro Glu Tyr Leu Ser Phe Val Lys Gly Val Val Asp Ser Asp Asp Leu Pro Leu Asn Ile Ser Arg Glu Thr Leu Gln Gln Asn Lys 375 Ile Leu Lys Val Ile Arg Lys Asn Leu Val Lys Lys Cys Ile Glu Met 390 395 Phe Asn Glu Ile Ala Glu Asn Lys Glu Asp Tyr Thr Lys Phe Tyr Glu 405 Ala Phe Ser Lys Asn Leu Lys Leu Gly Ile His Glu Asp Ser Gln Asn Arg Gly Lys Ile Ala Asp Leu Leu Arg Tyr His Ser Thr Lys Ser Gly 440 Asp Glu Met Thr Ser Phe Lys Asp Tyr Val Thr Arg Met Lys Glu Gly 455 Gln Lys Asp Ile Phe Tyr Ile Thr Gly Glu Ser Lys Lys Ala Val Glu Asn Ser Phe Leu Glu Arg Leu Lys Lys Arg Gly Tyr Glu Val Leu Tyr 490 Met Val Asp Ala Ile Asp Glu Tyr Ala Val Gly Gln Leu Lys Glu Tyr Asp Gly Lys Lys Leu Val Ser Ala Thr Lys Glu Gly Leu Lys Leu Glu Asp Glu Thr Glu Glu Glu Lys Lys Lys Arg Glu Glu Lys Lys Ser Phe Glu Asn Leu Cys Lys Thr Ile Lys Glu Ile Leu Gly Asp Lys Val 545 Glu Lys Val Val Val Ser Asp Arg Ile Val Asp Ser Pro Cys Cys Leu Val Thr Gly Glu Tyr Gly Trp Thr Ala Asn Met Glu Arg Ile Met Lys 580 585 Ala Gln Ala Leu Arg Asp Ser Ser Met Ser Gly Tyr Met Ser Ser Lys Lys Thr Met Glu Ile Asn Pro Asp Asn Gly Ile Met Glu Asp Leu Arg 615 620

005					050					635					val 640	
				047					650					655		
			000					665					670	)	ı Gly	
		0,5					980					685	•		Pro	
Glu	Leu 690	Glu	Glu	Asp	Ala	A1a 695	Glu	Glu	Ser	Lys	Met 700	Glu	Glu	Val	. Asp	
Glu Leu Glu Glu Asp Ala Ala Glu Glu Ser Lys Met Glu Glu Val Asp 690 695 700  <210> 13 <211> 2932 <212> DNA <213> Arabidopsis thaliana  <220> <221> CDS <222> (18)(2924)  <400> 13 ttgattgatc ggcgata atg gcg ggt cgg aac ata gag aag atg gca tct 50																
ttga	attga	atc g		,	1	ara (	31y <i>f</i>	arg A	Asn :	Ile (	3lu 1	Lys I	Met 1	Ala 10	Ser	50
			15	Deu	Arg	GIN	Leu	20	Pro	Ala	Lys	Val	Ser 25	Glu	Asp	98
	2,0	ctt Leu 30	gtt Val	gag Glu	tac Tyr	gat Asp	ATS	ctt Leu	ctc				ttt	ctc	gac	
att							35		Leu	Leu	Asp	Arg 40	Phe	Leu		146
Ile	Leu 45	cag Gln	gat Asp	tta Leu	cac His	ggc Gly 50	αaα	σa t	Leu	Leu	Asp	Arg 40	Phe	Leu		146
tta	45 tac	cag Gln gag Glu	ctt	tet	act	50 gag	gag Glu	gat Asp	ctc Leu	cgt Arg	gaa Glu 55	Arg 40 acg Thr	Phe gtt Val	Leu caa Gln	gag Glu	
tta Leu 60	45 tac Tyr	gaq	ctt Leu cta	tct Ser	gct Ala 65	50 gag Glu	gag Glu tat Tyr	gat Asp gaa Glu	ctc Leu ggg Gly	cgt Arg aag Lys 70	gaa Glu 55 cgt Arg	Arg 40 acg Thr gag Glu	Phe gtt Val cct Pro	caa Gln agc Ser	gag Glu aag Lys 75	194
tta Leu 60 ctt Leu	45 tac Tyr gag Glu	gag Glu gag	ctt Leu cta Leu	tct Ser ggg Gly 80	gct Ala 65 agt Ser	gag Glu gtc Val	gag Glu tat Tyr cta Leu tct Ser	gat Asp gaa Glu acg Thr	ctc Leu ggg Gly agt Ser 85	cgt Arg aag Lys 70 ttg Leu	gaa Glu 55 cgt Arg gat Asp	Arg 40 acg Thr gag Glu cct Pro	gtt Val cct Pro ggt Gly	caa Gln agc Ser gac Asp	gag Glu aag Lys 75 tca Ser	194 242

		110	)				115	5				120	)			
aaa Lys	ggt Gly 125	war	tto Phe	gtt Val	gat Asp	gag Glu 130	ı sei	tct Ser	gca Ala	a act	t act	r Gli	a tce	c gar	t att D Ile	434
140	1		PILE	: Lys	145	Leu	ı vaı	. Ser	Asg	Let 15(	ı Gly	/ Lys	Se	Pro	gaa Glu 155	482
0.10	****	riie	nsp	160	Leu	. гуѕ	Asn	GIR	165	Val	Asp	) Leu	Va]	Let 170		530
	1143	FIQ	175	GIII	ser	vaı	Arg	180	Ser	Leu	l Leu	Gln	Lys 185	His	ggg Gly	578
9	-10	190	nap	Cys	Deu	Ата	195	Leu	Tyr	· Ala	Lys	200	Ile	Thr	cct	626
1.05	205	Dy S	GIII	GIU	neu	210	GIU	Ser	Leu	Gln	Arg 215	Glu	Ile	Gln	gct Ala	674
220		arg	1111	ASP	225	TIE	Arg	Arg	Thr	Pro 230	Pro	acc Thr	Pro	Gln	Asp 235	722
<b>01</b> 4		AI g	VIG	240	Mec	ser	ıyr	Pne	H1S 245	Glu	Thr	atc Ile	Trp	Lys 250	Gly	770
<b>1</b> 42	110	цу	255	neu	Arg	Arg	Val	260	Thr	Ala	Leu	aaa Lys	Asn 265	Ile	Gly	818
	, rop	270	nrg	vai	PIO	ıyr	275	Ala	Pro	Leu	Ile	caa Gln 280	Phe	Ser	Ser	866
116	285	GIY	GIA	ASD	Arg.	290	GIA	Asn	Pro	Arg	Val 295	aca Thr	Pro	Glu	Val	914
300	rit g	wah	AGT	Cys	305	rea	Ala	Arg	Met	Met 310	Ala	gcc Ala	Asn	Leu	Tyr 315	962
-3-	non	GIII	116	320	ASN	ren	Met	Phe	Glu 325	Leu	Ser	atg Met	Trp	Arg 330	Сув	1010
act Thr	gat Asp	GIU.	ttc Phe 335	Cgt Arg	gtg Val	cgg Arg	Ala	gat Asp 340	gaa Glu	ctg Leu	cac His	agg Arg	aac Asn 345	tca Ser	agg Arg	1058

aaa Ly:	a gat s Asp	gct Ala 350	gca Ala	aaa Lys	cat His	tac Tyr	ata Ile 355	gaa Glu	ttc Phe	tgg Trp	aag Lys	aca Thr 360	att Ile	cct Pro	cca Pro	1106
act Th	gag Glu 365	cca Pro	tac Tyr	cgt Arg	gtg Val	att Ile 370	ctt Leu	ggt Gly	gat Asp	gtg Val	agg Arg 375	gat Asp	aag Lys	ctg Leu	tat Tyr	1154
са Ні: 380	aca Thr	cgt Arg	gag Glu	cgt Arg	Ser 385	cgc Arg	caa Gln	ttg Leu	ctg Leu	agt Ser 390	aat Asn	gga Gly	atc Ile	tcg Ser	gat Asp 395	1202
at:	cct Pro	gaa Glu	gaa Glu	gct Ala 400	acc Thr	ttc Phe	act Thr	aat Asn	gtg Val 405	gaa Glu	cag Gln	ttc Phe	ttg Leu	gag Glu 410	cct Pro	1250
ct! Le:	gag Glu	ctc Leu	tgt Cys 415	tac Tyr	cga Arg	tca Ser	cta Leu	tgt Cys 420	tca Ser	tgt Cys	ggt Gly	gac Asp	agc Ser 425	ccg Pro	ata Ile	1298
gc1 Ala	gat Asp	gga Gly 430	agc Ser	ctt Leu	ctt Leu	gat Asp	ttc Phe 435	ttg Leu	agg Arg	caa Gln	gtc Val	tct Ser 440	acc Thr	ttt Phe	gga Gly	1346
cto Lei	Ser 445	ctt Leu	gtg Val	aga Arg	ctt Leu	gac Asp 450	atc Ile	agg Arg	caa Gln	gag Glu	tct Ser 455	gaa Glu	cgc Arg	cac His	aca Thr	1394
gai Asi 460	gtc Val	ttg Leu	gat Asp	gct Ala	atc Ile 465	acc Thr	aag Lys	cac His	Leu	gac Asp 470	atc Ile	ggt Gly	tcc Ser	tcc Ser	tat Tyr 475	1442
aga Arg	gac Asp	tgg Trp	tct Ser	gaa Glu 480	gaa Glu	Gly	cga Arg	cag Gln	gaa Glu <b>48</b> 5	tgg Trp	ctt Leu	ctt Leu	gct Ala	gaa Glu <b>49</b> 0	cta Leu	1490
ago Sei	ggc Gly	Lys	cgt Arg 495	Pro	ctt Leu	ttc Phe	gga Gly	cct Pro 500	gat Asp	ctt Leu	ccc Pro	aaa Lys	acc Thr 505	gaa Glu	gaa Glu	1538
att Ile	tct Ser	gat Asp 510	gtc Val	ctg Leu	gac Asp	aca Thr	ttc Phe 515	aaa Lys	gtc Val	ata Ile	tct Ser	gag Glu 520	ctg Leu	cct Pro	tca Ser	1586
gat Asp	tgt Cys 525	ttt Phe	gga Gly	gct Ala	tat Tyr	att Ile 530	atc Ile	tct Ser	atg Met	gca Ala	act Thr 535	tca Ser	cct Pro	agt Ser	gat Asp	1634
gtg Val 540	ctt Leu	gcg Ala	gtt Val	gag Glu	ctt Leu 545	tta Leu	cag Gln	cgc Arg	gaa Glu	tgc Cys 550	cat His	gtg Val	aaa Lys	aat Asn	cca Pro 555	1682
ct t Lev	aga Arg	gtt Val	gtt Val	cca Pro 560	ctc Leu	ttt Phe	gag Glu	aag Lys	cta Leu 565	gct Ala	gat Asp	ctt Leu	gaa Glu	gca Ala 570	gct Ala	1730

cct Pro	gcc Ala	gct Ala	gtt Val 575	Ala	aga Arg	ctc Leu	ttt Phe	Ser 580	Ile	gad Asp	tgg Tr	y tao	2 aaa 2 Lys 589	s Ası	c cgt n Arg	1778
att Ile	aac Asn	ggt Gly 590	гÃг	caa Gln	gag Glu	gtt Val	atg Met 595	Ile	ggt Gly	tac Tyr	tca Ser	a gat Asp 600	Sei	a ggg	g aaa / Lys	1826
gat Asp	gca Ala 605	GIY	cgt Arg	ctc Leu	tca Ser	gct Ala 610	Ala	tgg Trp	gag Glu	cta Leu	tac Tyr 615	: Lys	gct Ala	caa Glr	a gaa n Glu	1874
gag Glu 620	Deu	gtg Val	aag Lys	gtt Val	gct Ala 625	гàг	aaa Lys	tat Tyr	gga Gly	gtg Val 630	Lys	g cta Leu	act Thr	ato Met	ttc Phe 635	1922
IILS	Gly	ALG	GIĀ	640	Tnr	Val	GIY	Arg	Gly 645	Gly	Gly	Pro	Thr	His 650		1970
ALG	***	neu	655	GIN	PIO	Pro	Asp	Thr 660	Val	Asn	Gly	Ser	Leu 665	Arg	gtc Val	2018
	Val	670	GIY	GIU	vai	116	675	GIn	Ser	Phe	Gly	680	Ala	His	tta Leu	2066
CJS	685	Arg	IIIL	Leu	GIN	<b>Arg 690</b>	Phe	Thr	Ala	Ala	Thr 695	Leu	Glu	His	gga Gly	2114
700	VSII	PIO	PIO	TIE	705	Pro	Lys	Pro	Glu	Trp 710	Arg	gct Ala	Leu	Leu	Asp 715	2162
gaa Glu	atg Met	gcg Ala	val	gtt Val 720	gca Ala	act Thr	gag Glu	gaa Glu	tac Tyr 725	cga Arg	tct Ser	gtc Val	gtt Val	ttc Phe 730	caa Gln	2210
gaa Glu	Pro	cga Arg	Phe	gtc Val	gag Glu	tat Tyr	ttc Phe	cgc Arg 740	ctc Leu	gct Ala	act Thr	ccg Pro	gag Glu 745	ctg Leu	gag Glu	2258
tat Tyr	gga Gly	cgt Arg 750	atg Met	aat Asn	att Ile	gga Gly	agt Ser 755	aga Arg	cct Pro	tca Ser	aag Lys	cga Arg 760	aaa Lys	cca Pro	agc Ser	2306
ggt Gly	ggg Gly 765	atc Ile	gaa Glu	tct Ser	ren	cgt Arg 770	gca Ala	atc Ile	cca Pro	tgg Trp	atc Ile 775	ttt Phe	gct Ala	tgg Trp	acg Thr	2354
caa Gln 780	aca Thr	aga Arg	ttc Phe	cat His	ctt Leu 785	cct Pro	gta Val	tgg Trp	Leu	ggt Gly 790	ttc Phe	gga Gly	gca Ala	gca Ala	ttt Phe 795	2402
agg	tat	gcg	atc	aag	aag	gat	gtg	aga	aac	ctt	cac	atg	ctg	caa	gat	2450

				800					805					Gln B10		
мес	Tyr	гуѕ	815	Trp	Pro	Phe	Phe	Arg 820	Val	Thr	Ile	Asp	Leu 825	att Ile	Glu	2498
Mec	vai	830	Ala	гÀг	GIÀ	Asp	Pro 835	Gly	Ile	Ala	Ala	Leu 840	Tyr	gac Asp	Lys	2546
Leu	8 <b>4</b> 5	Val	ser	GIU	Asp	850	Trp	Ala	Phe	Gly	Glu 855	Lys	Leu	aga Arg	Ala	2594
aac Asn 860	ttt Phe	gat Asp	gaa Glu	acc Thr	aag Lys 865	aac Asn	ctc Leu	gtc Val	ctc Leu	cag Gln 870	act Thr	gct Ala	gga Gly	cat His	aaa Lys 875	2642
жыр	Leu	reu	GIU	880 GIA	Asp	Pro	Tyr	Leu	Lys 885	Gln	Arg	Leu	Arg	cta Leu 890	Arg	2690
usp	Ser	TYL	895	Thr	Tnr	Leu	Asn	Val 900	Cys	Gln	Ala	Tyr	Thr 905	ttg Leu	Lys	2738
wid	116	910	Asp	ATA	Asn	Tyr	Asn 915	Val	Thr	Leu	Arg	Pro 920	His	att Ile	Ser	2786
цуз	925	116	riet	GIN	ser	930	Lys	Ser	Ala	Gln	Glu 935	Leu	Val	aag Lys	Leu	2834
aac Asn 940	ccc Pro	acg Thr	agt Ser	gaa Glu	tac Tyr. 945	gcg Ala	cct Pro	gga Gly	ctt Leu	gag Glu 950	gac Asp	aca Thr	ctt Leu	atc Ile	tta Leu 955	2882
acc Thr	atg Met	aag Lys	ggt Gly	att Ile 960	gct Ala	gca Ala	gga Gly	ttg Leu	caa Gln 965	aac Asn	acc Thr	ggt Gly	taa	gtga	gtca	2932

<210> 14

<211> 968

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Met Ala Gly Arg Asn Ile Glu Lys Met Ala Ser Ile Asp Ala Gln Leu

1 5 10 15

Arg Gln Leu Val Pro Ala Lys Val Ser Glu Asp Asp Lys Leu Val Glu
20 25 30

Tyr Asp Ala Leu Leu Leu Asp Arg Phe Leu Asp Ile Leu Gln Asp Leu

35 40 45

His Gly Glu Asp Leu Arg Glu Thr Val Gln Glu Leu Tyr Glu Leu Ser 50 55 60

Ala Glu Tyr Glu Gly Lys Arg Glu Pro Ser Lys Leu Glu Glu Leu Gly 65 70 75 80

Ser Val Leu Thr Ser Leu Asp Pro Gly Asp Ser Ile Val Ile Ser Lys 85 90 95

Ala Phe Ser His Met Leu Asn Leu Ala Asn Leu Ala Glu Glu Val Gln 100 105 110

Ile Ala His Arg Arg Ile Lys Lys Leu Lys Lys Gly Asp Phe Val

Asp Glu Ser Ser Ala Thr Thr Glu Ser Asp Ile Glu Glu Thr Phe Lys 130 135 140

Arg Leu Val Ser Asp Leu Gly Lys Ser Pro Glu Glu Ile Phe Asp Ala 145 150 155 160

Leu Lys Asn Gln Thr Val Asp Leu Val Leu Thr Ala His Pro Thr Gln 165 170 175

Ser Val Arg Arg Ser Leu Leu Gln Lys His Gly Arg Ile Arg Asp Cys 180 185 190

Leu Ala Gln Leu Tyr Ala Lys Asp Ile Thr Pro Asp Asp Lys Gln Glu 195 200 205

Leu Asp Glu Ser Leu Gln Arg Glu Ile Gln Ala Ala Phe Arg Thr Asp 210 215 220

Glu Ile Arg Arg Thr Pro Pro Thr Pro Gln Asp Glu Met Arg Ala Gly 225 230 235 240

Met Ser Tyr Phe His Glu Thr Ile Trp Lys Gly Val Pro Lys Phe Leu 245 250 255

Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly Ile Asp Glu Arg Val 260 265 270

Pro Tyr Asn Ala Pro Leu Ile Gln Phe Ser Ser Trp Met Gly Gly Asp 275 280 285

Arg Asp Gly Asn Pro Arg Val Thr Pro Glu Val Thr Arg Asp Val Cys 290 295 300

Leu Lieu Ala Arg Met Met Ala Ala Asn Leu Tyr Tyr Asn Gln Ile Glu 305 310 315 320

Asn Leu Met Phe Glu Leu Ser Met Trp Arg Cys Thr Asp Glu Phe Arg 325

Val Arg Ala Asp Glu Leu His Arg Asn Ser Arg Lys Asp Ala Ala Lys

340 345 350 His Tyr Ile Glu Phe Trp Lys Thr Ile Pro Pro Thr Glu Pro Tyr Arg 360 Val Ile Leu Gly Asp Val Arg Asp Lys Leu Tyr His Thr Arg Glu Arg Ser Arg Gln Leu Leu Ser Asn Gly Ile Ser Asp Ile Pro Glu Glu Ala Thr Phe Thr Asn Val Glu Gln Phe Leu Glu Pro Leu Glu Leu Cys Tyr Arg Ser Leu Cys Ser Cys Gly Asp Ser Pro Ile Ala Asp Gly Ser Leu Leu Asp Phe Leu Arg Gln Val Ser Thr Phe Gly Leu Ser Leu Val Arg 440 Leu Asp Ile Arg Gln Glu Ser Glu Arg His Thr Asp Val Leu Asp Ala 455 Ile Thr Lys His Leu Asp Ile Gly Ser Ser Tyr Arg Asp Trp Ser Glu 470 475 Glu Gly Arg Gln Glu Trp Leu Leu Ala Glu Leu Ser Gly Lys Arg Pro 485 Leu Phe Gly Pro Asp Leu Pro Lys Thr Glu Glu Ile Ser Asp Val Leu 510 Asp Thr Phe Lys Val Ile Ser Glu Leu Pro Ser Asp Cys Phe Gly Ala 520 Tyr Ile Ile Ser Met Ala Thr Ser Pro Ser Asp Val Leu Ala Val Glu 535 Leu Leu Gln Arg Glu Cys His Val Lys Asn Pro Leu Arg Val Val Pro 555 Leu Phe Glu Lys Leu Ala Asp Leu Glu Ala Ala Pro Ala Ala Val Ala 565 Arg Leu Phe Ser Ile Asp Trp Tyr Lys Asn Arg Ile Asn Gly Lys Gln 585 Glu Val Met Ile Gly Tyr Ser Asp Ser Gly Lys Asp Ala Gly Arg Leu 600 Ser Ala Ala Trp Glu Leu Tyr Lys Ala Gln Glu Glu Leu Val Lys Val 615 Ala Lys Lys Tyr Gly Val Lys Leu Thr Met Phe His Gly Arg Gly Gly 630 635 Thr Val Gly Arg Gly Gly Gly Pro Thr His Leu Ala Ile Leu Ser Gln

645 650 Pro Pro Asp Thr Val Asn Gly Ser Leu Arg Val Thr Val Gln Gly Glu 665 Val Ile Glu Gln Ser Phe Gly Glu Ala His Leu Cys Phe Arg Thr Leu 675 Gln Arg Phe Thr Ala Ala Thr Leu Glu His Gly Met Asn Pro Pro Ile Ser Pro Lys Pro Glu Trp Arg Ala Leu Leu Asp Glu Met Ala Val Val Ala Thr Glu Glu Tyr Arg Ser Val Val Phe Gln Glu Pro Arg Phe Val 730 Glu Tyr Phe Arg Leu Ala Thr Pro Glu Leu Glu Tyr Gly Arg Met Asn 745 Ile Gly Ser Arg Pro Ser Lys Arg Lys Pro Ser Gly Gly Ile Glu Ser 760 Leu Arg Ala Ile Pro Trp Ile Phe Ala Trp Thr Gln Thr Arg Phe His Leu Pro Val Trp Leu Gly Phe Gly Ala Ala Phe Arg Tyr Ala Ile Lys 790 795 Lys Asp Val Arg Asn Leu His Met Leu Gln Asp Met Tyr Lys Gln Trp 810 Pro Phe Phe Arg Val Thr Ile Asp Leu Ile Glu Met Val Phe Ala Lys 825 Gly Asp Pro Gly Ile Ala Ala Leu Tyr Asp Lys Leu Leu Val Ser Glu Asp Leu Trp Ala Phe Gly Glu Lys Leu Arg Ala Asn Phe Asp Glu Thr 855 Lys Asn Leu Val Leu Gln Thr Ala Gly His Lys Asp Leu Leu Glu Gly 870 875 Asp Pro Tyr Leu Lys Gln Arg Leu Arg Leu Arg Asp Ser Tyr Ile Thr 890 Thr Leu Asn Val Cys Gln Ala Tyr Thr Leu Lys Arg Ile Arg Asp Ala Asn Tyr Asn Val Thr Leu Arg Pro His Ile Ser Lys Glu Ile Met Gln 920 925 Ser Ser Lys Ser Ala Gln Glu Leu Val Lys Leu Asn Pro Thr Ser Glu 930 935

Tyr Ala Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys Gly Ile

945 950 955 960 Ala Ala Gly Leu Gln Asn Thr Gly <210> 15 <211> 271 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (17)..(259) <400> 15 tegatteagg ttaagg atg teg aga get aca tac att ate ggt gee ett geg 52 Met Ser Arg Ala Thr Tyr Ile Ile Gly Ala Leu Ala gga tot gcg gta gta gct tac gtg tgt gac aaa gtt att tct gat gat Gly Ser Ala Val Val Ala Tyr Val Cys Asp Lys Val Ile Ser Asp Asp 100 20 aag ctt ttt gga ggt act aca cca gga act att act aac aag gaa tgg 148 Lys Leu Phe Gly Gly Thr Thr Pro Gly Thr Ile Thr Asn Lys Glu Trp 30 35 40 ggt gct gcg act gaa gag aga tta caa gca tgg cca aga gtt gct ggt 196 Gly Ala Ala Thr Glu Glu Arg Leu Gln Ala Trp Pro Arg Val Ala Gly 45 50 55 cct ccc gtc gtc atg aac cct atc agt cgc cag aat ttc atc gtc aag Pro Pro Val Val Met Asn Pro Ile Ser Arg Gln Asn Phe Ile Val Lys 244 65 tca cgt cct gaa taa cttttgatgc ct 271 Ser Arg Pro Glu <210> 16 <211> 80 <212> PRT <213> Arabidopsis thaliana <400> 16 Met Ser Arg Ala Thr Tyr Ile Ile Gly Ala Leu Ala Gly Ser Ala Val 1 Val Ala Tyr Val Cys Asp Lys Val Ile Ser Asp Asp Lys Leu Phe Gly Gly Thr Thr Pro Gly Thr Ile Thr Asn Lys Glu Trp Gly Ala Ala Thr

```
Met Asn Pro Ile Ser Arg Gln Asn Phe Ile Val Lys Ser Arg Pro Glu
                      70
                                       , 75
 <210> 17
 <211> 2580
 <212> DNA
 <213> Arabidopsis thaliana
<220>
 <221> CDS
 <222> (30)..(143)
<220>
<221> CDS
<222> (295)..(417)
<220>
<221> CDS
<222> (582)..(632)
<220>
<221> CDS
<222> (1179)..(1245)
<220>
<221> CDS
<222> (1334)..(1383)
<220>
<221> CDS
<222> (1497)..(1577)
<220>
<221> CDS
<222> (1661)..(1740)
<220>
<221> CDS
<222> (1882)..(1984)
<220>
<221> CDS
<222> (2370)..(2564)
<400> 17
tcttcacaaa tcctaaacga gtaggagct atg gct gca ccg att gtt gat gcg
                                 Met Ala Ala Pro Ile Val Asp Ala
                                   1
gag tac ttg aaa gag atc act aag gct cgc cgt gag ctc cgt tct ctc
Glu Tyr Leu Lys Glu Ile Thr Lys Ala Arg Arg Glu Leu Arg Ser Leu
     10
                         15
```

Glu Glu Arg Leu Gln Ala Trp Pro Arg Val Ala Gly Pro Pro Val Val

55

atc gcg aac aag aac tgt gct cct atc atg ctc cga ttg gcg Ile Ala Asn Lys Asn Cys Ala Pro Ile Met Leu Arg Leu Ala 25 30 35	143
taagttttcg atttccttgg tttttcgtcg agttgactgt tacagatttc gtttattcat	203
gtggagatcg ttcgattgta gttaggctgt agaatcgatt ttgtttgttt ttgaatgttg	263
aaatgtttgt atcatctggt ttttatgaag a tgg cac gat gct gga acc tat Trp His Asp Ala Gly Thr Tyr 40 45	315
gat gct caa tcg aag acc ggt gga cct aat ggc tct atc agg aac gaa Asp Ala Gln Ser Lys Thr Gly Gly Pro Asn Gly Ser Ile Arg Asn Glu 50 55 60	363
gaa gag cac act cat ggt gcc aac agt ggt ttg aag atc gct ctc gat Glu Glu His Thr His Gly Ala Asn Ser Gly Leu Lys Ile Ala Leu Asp 65 70 75	411
ctc tgt ggtaggattt tgatttagtt tttgtagatt cactttctgg ataatttcat Leu Cys	467
gcgatgtatc cgttttatgt tgtggtttaa gaacactgtt caaaataatt acattatgct	527
tttggaaatg gactttgtat cgcttaatta tgagatccta tctttgatgt ttca gag Glu 80	584
ggc gtg aaa gct aag cat ccc aaa atc aca tac gca gac ctg tat cag Gly Val Lys Ala Lys His Pro Lys Ile Thr Tyr Ala Asp Leu Tyr Gln 85 90 95	632
gtgagttaag gctgtgagag aaatcttttt gatgtccttg ttgctttttc tgcacatttg	692
tttttcaaag ttcgctggaa ctgtattcgg cttgtgtcat tacctcgtcc caggtttgag	752
cttgttgttt aggagactta gttgatagtt gagcagctgt gtaaatatgg tttcagttgt	812
aatttgtttc aggagatgtt actgattgtg atttggttta caaaaatcat agattgacta	872
tgttgttcaa ctagaacttt tatctcttgc agtaatagct aaattcaagt aaaatataca	932
ctgaatgaat tcaaacgacc aagaaggaaa ctgtaatgta atgtcaatct gtttccatcc	992
taagtcacat gtctgtcgtc tgtacctata acctgtctct acgactgttt gtattgccgt	1052
ttctccattt tatatttggt cttacaaggt cgaggcttta tttatgaatt cccaatagaa	
gtgtaccagt ttaatggcaa ttaagttttg ggtatgaatt atttactttt aagtgttttg	
tttcag ctt gct ggt gtg gtg gca gtt gag gtt	1220
atc gtg ttc gtt ccc ggg aga aag g tatactttct catctcttga	1265

Ile Val Phe Val Pro Gly Arg Lys A 115	
gacattataa cagcttatca gtttaacact aaagcaaaca taattactgt atgtttcttc	1325
ttgatagg at tca aat gtc tgc ccc aag gaa gga aga ctt cct gat gcc sp Ser Asn Val Cys Pro Lys Glu Gly Arg Leu Pro Asp Ala 120 125 130	1374
aaa caa ggt acactaaatt cttgtatcaa ttataacaaa cttttcatgt Lys Gln Gly 135	1423
tttctactga taatcttgtt ttggaattgg aagatttttt ctatgaattc acattgttta	1483
tatctctgta ggt ttc caa cat ctc aga gat gtc ttc tac cgc atg gga Phe Gln His Leu Arg Asp Val Phe Tyr Arg Met Gly 145	1532
cta tct gat aag gat att gtg gca ctc tca ggg ggt cat act ctg Leu Ser Asp Lys Asp Ile Val Ala Leu Ser Gly Gly His Thr Leu 150 155 160	1577
gtaaattcat tggtcactta cttaacttcc gttgtttttg aacaaatatg cttgttgtgc	1637
ttatgaccac attgggtgtt tag gga agg gct cac ccg gag agg tca ggc ttt Gly Arg Ala His Pro Glu Arg Ser Gly Phe 165 170	1690
gat gga cca tgg acc caa gag ccg ctg aat ttt gac aac tcc tac ttc Asp Gly Pro Trp Thr Gln Glu Pro Leu Asn Phe Asp Asn Ser Tyr Phe 175 180 185	1738
gt gtaattttca tttctttatc ctcagagatt ttctttgtgc atttttttaa Va	1790
tettttetgt ttgtgtetee aagaaataaa ageageaaae agataetttt ttacatgate	1850
ggttatccat gattatttac tgttttggta c c agg gaa ctg ctg aaa gga gaa l Arg Glu Leu Leu Lys Gly Glu 190 195	1903
tca gag ggc ttg ttg aaa ctt cca act gac aag acc tta ttg gaa gac Ser Glu Gly Leu Leu Lys Leu Pro Thr Asp Lys Thr Leu Leu Glu Asp 200 205 210	1951
ccg gag ttc cgt cgt ctt gtt gag ctt tat gca aaggtataat atactggaga Pro Glu Phe Arg Arg Leu Val Glu Leu Tyr Ala 215 220	2004
cettetetge etetttgeea titgtitett gegttgetat aataaceatt ggaacataac	2064
togatttoot ttattggttt cacattttoa otgaatooac aagcacacac actgaatcac	2124
aaaccaaatt atctagggtt ttgttctaga gaaccccacg gatccttatc gcctttatag	2184
ttgctgatgt tgcaaaatga taaaatgaac actcttacta ctatcagtga gaactgtaat	2244

attagetttt tgttagaacc gtaaacagaa atteetatgg ttetttatga ttteettget 2304 taattaagtt tcaataagat aagaaagtgt tgttatgtgt tgacaagttc agtttgtggt 2364 ggcag gat gaa gat gca ttc ttc aga gac tac gcg gaa tcg cac aag aaa 2414 Asp Glu Asp Ala Phe Phe Arg Asp Tyr Ala Glu Ser His Lys Lys 230 ctc tct gag ctt ggt ttc aac cca aac tcc tca gca ggc aaa gca gtt 2462 Leu Ser Glu Leu Gly Phe Asn Pro Asn Ser Ser Ala Gly Lys Ala Val 245 gca gac age acg att ctg gca cag agt gcg ttc ggg gtt gca gtt gct 2510 Ala Asp Ser Thr Ile Leu Ala Gln Ser Ala Phe Gly Val Ala Val Ala 260 265 get geg gtt gtg gea ttt ggt tac ttt tac gag atc egg aag agg atg 2558 Ala Ala Val Val Ala Phe Gly Tyr Phe Tyr Glu Ile Arg Lys Arg Met 275 280 aag taa acgaaatagg aagtaa 2580 Lys <210> 18 <211> 287 <212> PRT <213> Arabidopsis thaliana <400> 18 Met Ala Ala Pro Ile Val Asp Ala Glu Tyr Leu Lys Glu Ile Thr Lys 1 0 Ala Arg Arg Glu Leu Arg Ser Leu Ile Ala Asn Lys Asn Cys Ala Pro Ile Met Leu Arg Leu Ala Trp His Asp Ala Gly Thr Tyr Asp Ala Gln 40

Ser Lys Thr Gly Gly Pro Asn Gly Ser Ile Arg Asn Glu Glu Glu His 50 55 60

Thr His Gly Ala Asn Ser Gly Leu Lys Ile Ala Leu Asp Leu Cys Glu 65 70 75 80

Gly Val Lys Ala Lys His Pro Lys Ile Thr Tyr Ala Asp Leu Tyr Gln
85 90 95

Leu Ala Gly Val Val Ala Val Glu Val Thr Gly Gly Pro Asp Ile Val 100 105 110

Phe Val Pro Gly Arg Lys Asp Ser Asn Val Cys Pro Lys Glu Gly Arg

Leu Pro Asp Ala Lys Gln Gly Phe Gln His Leu Arg Asp Val Phe Tyr 130 135 140

100

```
Arg Met Gly Leu Ser Asp Lys Asp Ile Val Ala Leu Ser Gly Gly His
                     150
                                         155
Thr Leu Gly Arg Ala His Pro Glu Arg Ser Gly Phe Asp Gly Pro Trp
                165
Thr Gln Glu Pro Leu Asn Phe Asp Asn Ser Tyr Phe Val Arg Glu Leu
            180
                                                      190
Leu Lys Gly Glu Ser Glu Gly Leu Leu Lys Leu Pro Thr Asp Lys Thr
                             200
Leu Leu Glu Asp Pro Glu Phe Arg Arg Leu Val Glu Leu Tyr Ala Asp
    210
                        215
                                             220
Glu Asp Ala Phe Phe Arg Asp Tyr Ala Glu Ser His Lys Lys Leu Ser
                    230
                                         235
Glu Leu Gly Phe Asn Pro Asn Ser Ser Ala Gly Lys Ala Val Ala Asp
                245
                                     250
Ser Thr Ile Leu Ala Gln Ser Ala Phe Gly Val Ala Val Ala Ala Ala
                                 265
Val Val Ala Phe Gly Tyr Phe Tyr Glu Ile Arg Lys Arg Met Lys
        275
                             280
<210> 19
<211> 1861
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (26)..(284)
<220>
<221> CDS
<222> (541)..(917)
<220>
<221> CDS
<222> (1257)..(1493)
<220>
<221> CDS
<222> (1584)..(1853)
<400> 19
```

atagaaaaac cctaagtagg ttgtg atg ttg cga gct tta gca cgg cct ctc

gaa cgg tgt ttg gga agc aga gct agt ggt gat ggt tta ctc tgg caa

1

Met Leu Arg Ala Leu Ala Arg Pro Leu

•	10	Arg	Cys	Leu	Gly	Ser 15	Arg	Ala	Ser	Gly	Asp 20	Gly	Leu	Leu	Trp	G1n 25	
Se	er	gaa Glu	ttg Leu	aga Arg	cct Pro 30	cac His	gct Ala	ggc Gly	ggt Gly	gat Asp 35	tat Tyr	tcg Ser	atc Ile	gcg Ala	gtg Val 40	gtt Val	148
G:	aa ln	gcc Ala	aat Asn	tcc Ser 45	agg Arg	ctt Leu	gaa Glu	gat Asp	cag Gln 50	agt Ser	cag Gln	gtt Val	ttc Phe	aca Thr 55	tct Ser	tct Ser	196
to Se	et er	gct Ala	act Thr 60	tac Tyr	gtc Val	ggt Gly	gta Val	tac Tyr 65	gat Asp	ggt	cat His	ggt Gly	gga Gly 70	cct Pro	gaa Glu	gct Ala	244
to Se	et ≥r	aga Arg 75	ttc Phe	gtt Val	aac Asn	aga Arg	cat His 80	ctc Leu	ttt Phe	cct Pro	tat Tyr	atg Met 85	cac His	a g L	taag	ttata	294
at	cc	cact	ct 1	tccti	tece	ta aa	actto	gtttl	t ag	gatto	cttt	ctt	cttt	tga (	ctct	ttgact	354
ac	gt	ttt	iga 1	tggto	caaa	ac ti	atga	agato	tc:	tatta	accc	tga	tcat	ttc i	aata	ttaaaa	414
ga	tt	.cga	att 1	ttgci	tatga	aa gt	tttç	ggtc	tte	gtgaa	acat	gtt	cagg	ttt (	gtaa	attgcc	474
to	tt	:gaat	tg a	attt	tgtag	gt ca	atgt	ctt	y tta	agtga	aaat	tta	cagga	att (	ggtt	ttatga	534
tt	.gc	ag a	aa ti 7s Pl	tt go ne Al	ca aq la A	ga ga rg Gl	aa ca lu Hi	at go	ly Gi	ga ti Ly Le	a to	et gr	ta ga	at gi	tt a	tc aaa le Lys	584
					!	90					95			•		00	
aa Ly	ig /s	gca Ala	ttc	aaa	gaa	aca	gaa	gaa	gag	+++	95 tat	aat	ato	arr		00	632
to	c:c	ctt	ttc Phe	aaa Lys 105	gaa Glu aaa	aca Thr	gaa Glu caa	gaa Glu	gag Glu 110	ttt Phe	tgt Cys	ggt Gly	atg Met	gtt Val 115	10	cga Arg	632 680
to Se	c er	ctt Leu	ttc Phe ccc Pro 120	aaa Lys 105 atg Met	gaa Glu aaa Lys	aca Thr ccg Pro	gaa Glu caa Gln	gaa Glu atg Met 125	gag Glu 110 gct Ala	ttt Phe act Thr	tgt Cys gta Val	ggt Gly gga Gly	atg Met tct Ser 130	gtt Val 115 tgc Cys	aaa Lys	cga Arg ctt Leu	
to Se gt Va	ccer tal	ctt Leu ggt Gly 135	ttc Phe ccc Pro 120 gca Ala	aaa Lys 105 atg Met atc Ile	gaa Glu aaa Lys tct Ser	aca Thr ccg Pro aat Asn	gaa Glu caa Gln gac Asp 140	gaa Glu atg Met 125 aca Thr	gag Glu 110 gct Ala ctg Leu	ttt Phe act Thr tat Tyr	tgt Cys gta Val gtt Val	ggt Gly gga Gly gct Ala 145	atg Met tct Ser 130 aat Asn	gtt Val 115 tgc Cys ctt Leu	aaa Lys tgt Cys	cga Arg ctt Leu gac Asp	680
to See See See See See See See See See Se	tal grade	ctt Leu ggt Gly 135 aga Arg	ttc Phe ccc Pro 120 gca Ala gcc Ala	aaa Lys 105 atg Met atc Ile gtt Val	gaa Glu aaa Lys tct Ser ctt Leu	aca Thr ccg Pro aat Asn gga Gly 155	gaa Glu caa Gln gac Asp 140 agc Ser	gaa Glu atg Met 125 aca Thr gtt Val	gag Glu 110 gct Ala ctg Leu gtt Val	ttt Phe act Thr tat Tyr tca Ser	tgt Cys gta Val gtt Val	ggt Gly gga Gly gct Ala 145 gtt Val	atg Met tct Ser 130 aat Asn gat	gtt Val 115 tgc Cys ctt Leu agt Ser	aaa Lys tgt Cys ggg Gly	cga Arg ctt Leu gac Asp aaa Lys 165	680 728
to See gt to See 15 gg GJ	tal sgraduty	ctt Leu ggt Gly 135 aga Arg gcc Ala	ttc Phe ccc Pro 120 gca Ala gcc Ala gta Val	aaa Lys 105 atg Met atc Ile gtt Val gct Ala	gaa Glu aaa Lys tct Ser ctt Leu gaa Glu 170	aca Thr ccg Pro aat Asn gga Gly 155 cgg Arg	gaa Glu caa Gln gac Asp 140 agc Ser tta Leu	gaa Glu atg Met 125 aca Thr gtt Val tct Ser	gag Glu 110 gct Ala ctg Leu gtt Val	ttt Phe act Thr tat Tyr tca Ser gat Asp	tgt Cys gta Val gtt Val ggg Gly 160 cat	ggt Gly gga Gly gct Ala 145 gtt Val aat Asn	atg Met tct Ser 130 aat Asn gat Asp	gtt Val 115 tgc Cys ctt Leu agt Ser	aaa Lys tgt Cys ggg Gly aat Asn	cga Arg ctt Leu gac Asp aaa Lys 165 gaa Glu	680 728 776

200	200	
200	205	210

gta	taac	tta	gttt	tgct	tg c	ctgc	ttgt	t aa	attg	gcgtg	r tga	tta	cata	gcat	ctgtga	977
tga	agtt	ata	atat	ttaa	aa g	gtgt	aatc	t ga	tgtt	gttt	ttt	ctt	ttct	cttt	tcattt	1037
ata	taaa	tgg	gggc	ttgc	aa t	gttc	cagg	a at	ccgt	caca	cgg	gct	cctg	caac	gtttct	1097
tcc	ccag	tgg	attt	tgtg	ct t	ttct	aaga	a tt	cccg	gtag	tca	gago	ctat	acat	aataat	1157
gaa	gata	cat	gctt	ttta	gt t	gctt	gtga	c ct	ttcc	gtga	atg	ttt	gagc	tcgt	tgtata	1217
tta	gtta	gct	aaat	cgtt	tt c	atat	acgc	t tc	ttta	tag	gta Val	tcg Ser	aga Arg 215	tca Ser	att Ile	1271
GLY	ASP	220	Tyr	ren	ьуs	ьys	225	Glu	Tyr	Tyr	Arg	Asp 230	Pro	att Ile	Phe	1319
GIII	235	nis	GIA	ASN	Pro	11e 240	Pro	Leu	Arg	Arg	Pro 245	Ala	Met	aca Thr	Ala	1367
250	PLU	Ser	116	116	255	Arg	Lys	Leu	Lys	Pro 260	Gln	Asp	Leu	ttt Phe	Leu 265	1415
ata Ile	ttt Phe	gca Ala	tca Ser	gat Asp 270	ggt Gly	ctc Leu	tgg Trp	gaa Glu	cat His 275	ctt Leu	agt Ser	gat Asp	gaa Glu	aca Thr 280	gcc Ala	1463
gta Val	gaa Gl·u	atc Ile	gtc Val 285	ctc Leu	aaa Lys	cac His	cca Pro	aga Arg 290	act Thr	gta	agtti	ttc	ccta	aact	ca	1513
agt	ttgc	ttt (	gtate	cttc	ac at	ttat	gtta	gct	tact	tagt	ttat	tta	ttt	attaa	actctg	1573
tgt	tcta	cag (	ggt a Gly :	att d Ile i	Ala A	ga a Arg 1 195	aga d Arg I	eu (	gta a /al i	Arg A	gct g Ala <i>P</i> 300	gct Ala	ctg Leu	gaa q Glu (	gaa 31u	1622
305	NIG	rys	гуѕ	Arg	310	Met	Arg	Tyr	Gly	Asp 315	Ile	Lys	Lys	ata Ile	Ala 320	1670
aaa Lys	gga Gly	att Ile	cga Arg	cga Arg 325	cat His	ttc Phe	cat His	gac Asp	gac Asp 330	ata Ile	agc Ser	gtt Val	att Ile	gta Val 335	gtt Val	1718
TYL	Dea	ASD	340	ASN	гÀг	Thr	Ser	Ser 345	Ser	Asn	Ser	Lys	Leu 350	gtg Val	Lys	1766
caa Gln	gga Gly	ggt Gly 355	atc Ile	acc Thr	gct Ala	cca Pro	ccg Pro 360	gat Asp	atc Ile	ťac Tyr	Ser	tta Leu 365	cac His	tct Ser	gat Asp	1814

1861

gaa gca gag caa cga cgg tta ctc aat gtg tta tac tga ctgtttga Glu Ala Glu Gln Arg Arg Leu Leu Asn Val Leu Tyr 375 <210> 20 <211> 380 <212> PRT <213> Arabidopsis thaliana <400> 20 Met Leu Arg Ala Leu Ala Arg Pro Leu Glu Arg Cys Leu Gly Ser Arg Ala Ser Gly Asp Gly Leu Leu Trp Gln Ser Glu Leu Arg Pro His Ala 25 Gly Gly Asp Tyr Ser Ile Ala Val Val Gln Ala Asn Ser Arg Leu Glu 40 Asp Gln Ser Gln Val Phe Thr Ser Ser Ser Ala Thr Tyr Val Gly Val Tyr Asp Gly His Gly Gly Pro Glu Ala Ser Arg Phe Val Asn Arg His 70 Leu Phe Pro Tyr Met His Lys Phe Ala Arg Glu His Gly Gly Leu Ser 85 Val Asp Val Ile Lys Lys Ala Phe Lys Glu Thr Glu Glu Phe Cys 105 Gly Met Val Lys Arg Ser Leu Pro Met Lys Pro Gln Met Ala Thr Val 120 Gly Ser Cys Cys Leu Val Gly Ala Ile Ser Asn Asp Thr Leu Tyr Val 135 140 Ala Asn Leu Gly Asp Ser Arg Ala Val Leu Gly Ser Val Val Ser Gly 155 Val Asp Ser Asn Lys Gly Ala Val Ala Glu Arg Leu Ser Thr Asp His 170 Asn Val Ala Val Glu Glu Val Arg Lys Glu Val Lys Ala Leu Asn Pro Asp Asp Ser Gln Ile Val Leu Tyr Thr Arg Gly Val Trp Arg Ile Lys 200 Gly Ile Ile Gln Val Ser Arg Ser Ile Gly Asp Val Tyr Leu Lys Lys 220 Pro Glu Tyr Tyr Arg Asp Pro Ile Phe Gln Arg His Gly Asn Pro Ile 230 235

```
Pro Leu Arg Arg Pro Ala Met Thr Ala Glu Pro Ser Ile Ile Val Arg
                245
                                    250
Lys Leu Lys Pro Gln Asp Leu Phe Leu Ile Phe Ala Ser Asp Gly Leu
            260
                                265
                                                    270
Trp Glu His Leu Ser Asp Glu Thr Ala Val Glu Ile Val Leu Lys His
                            280
Pro Arg Thr Gly Ile Ala Arg Arg Leu Val Arg Ala Ala Leu Glu Glu
Ala Ala Lys Lys Arg Glu Met Arg Tyr Gly Asp Ile Lys Lys Ile Ala
Lys Gly Ile Arg Arg His Phe His Asp Asp Ile Ser Val Ile Val Val
                325
                                    330
Tyr Leu Asp Gln Asn Lys Thr Ser Ser Ser Asn Ser Lys Leu Val Lys
            340
                                345
Gln Gly Gly Ile Thr Ala Pro Pro Asp Ile Tyr Ser Leu His Ser Asp
                            360
Glu Ala Glu Gln Arg Arg Leu Leu Asn Val Leu Tyr
                        375
```

```
<210> 21
<211> 3633
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (41) . . (356)
<220>
<221> CDS
<222> (811) .. (956)
<220>
<221> CDS
<222> (1076)..(1389)
<220>
<221> CDS
<222> (1544)..(1592)
<220>
<221> CDS
<222> (1925)..(2010)
<220>
<221> CDS
<222> (2037)..(2120)
```

```
<220>
<221> CDS
<222> (2399)..(2501)
<220>
<221> CDS
<222> (2621)..(2718)
<220>
<221> CDS
<222> (2802)..(2924)
<220>
<221> CDS
<222> (3071)..(3185)
<220>
<221> CDS
<222> (3324)..(3431)
<220>
<221> CDS
<222> (3518)..(3619)
<400> 21
ggcgattgag cgaagaagaa accttcgttc tctctcggaa atg acg aag agg aag
                                             Met Thr Lys Arg Lys
aag gaa gta ata gat gtc gat tgc tcc gag aag aaa gat ttt gtg att
                                                                   103
Lys Glu Val Ile Asp Val Asp Cys Ser Glu Lys Lys Asp Phe Val Ile
                 10
gat tgg tct tcc gct atg gat aag gaa gac gaa gtt ccc gag ctc gag
                                                                   151
Asp Trp Ser Ser Ala Met Asp Lys Glu Asp Glu Val Pro Glu Leu Glu
             25
att gtt aat acc acc aaa cct act cct ccg cca ccg cca acg ttt ttc
Ile Val Asn Thr Thr Lys Pro Thr Pro Pro Pro Pro Pro Thr Phe Phe
         40
                             45
tcc gac gat caa acc gat tct ccg aaa ctc cta acc gat cgt gac ctc 247
Ser Asp Asp Gln Thr Asp Ser Pro Lys Leu Leu Thr Asp Arg Asp Leu
                         60
gac gag cag cta gag cgt aaa aaa gcg atc ctg aca tta ggt ccg ggc
                                                                   295 ·
Asp Glu Gln Leu Glu Arg Lys Lys Ala Ile Leu Thr Leu Gly Pro Gly
 70
                     75
tta ccc gac aag ggt gag aaa att cga ctc aaa atc gct gat ctc gaa
Leu Pro Asp Lys Gly Glu Lys Ile Arg Leu Lys Ile Ala Asp Leu Glu
                 90
                                     95
gag gag aag cag c gtagagtttt agaaggctcg aaaatggttc gcattctgat
                                                                   396
Glu Glu Lys Gln A
            105
```

tca	attg	cat	gctt	agtt	.cg t	ttga	tttt	c tt	agat	atgt	tac	tgtt	tta	gặtt	ggggtt	456
ttc	aagt	tta	tgct	aaag	tt t	ggct	tttt	t to	gagta	acatt	: tat	gtgt	atc	ttta	actggto	: 516
tta	cctc	ata	gtcc	aagc	ta g	ratto	gago	t ca	ittta	atgto	tat	gato	ctat	agto	acagaa	576
cat	ctat	gtg	ttcg	agct	ca t	ttat	gtgt	t tg	gaata	atgaa	tat	gatg	rcta	caaa	agactt	636
ttt	tggc	agg	aggt	ggac	ag a	agtt	ctaa	g gt	cgto	tett	cga	ctag	rctc	aggt	attett	696
ggt	ggat	aat	gtta	aagt	tg t	ttgc	ttct	a ac	ataç	ıtggt	tca	ttt	tct	gtat	ggtttt	756
							ttaa	•							rg	812
		<b>V</b> u2	110	110	GIII	СІУ	ASN	115	Val	. Ser	Lys	Asp	Thr 120	Ser	aga Arg	860
<b>U.</b> ,		125	nap	Set	п <b>у</b> в	Asp	130	Ser	Arg	Gln	Gly	Asn 135	Ala	Asp	tca Ser	908
aaa Lys	gaa Glu 140	gtc Val	tca Ser	cgg Arg	tca Ser	aca Thr 145	ttt Phe	tct Ser	gcg Ala	gtt Val	ttc Phe 150	agt Ser	aaa Lys	cca Pro	aaa Lys	956
gta	tgga	gca	tcgt	tttt	tt t	tttt	tgtt	c aa	cgta	tgga	gcc	tcta	tat	tttg	caattt	1016
															aacag	1075
acg Thr 155	gat Asp	tct Ser	cag Gln	tca Ser	aag Lys 160	aaa Lys	gcc Ala	ttt Phe	ggt Gly	aaa Lys 165	gaa Glu	cta Leu	gaa Glu	gat Asp	ctg Leu 170	1123
gga Gly	tgt Cys	gaa Glu	agg Arg	agg Arg 175	aaa Lys	cac His	aag Lys	gct Ala	ggt Gly 180	aga Arg	aag Lys	cct Pro	gta Val	aca Thr 185	agg Arg	1171
ctg Leu	agc Ser	aac Asn	ggg Gly 190	tgg Trp	cgg Arg	ttg Leu	ttg Leu	cca Pro 195	gat Asp	gta Val	ggg Gly	aaa Lys	gct Ala 200	gag Glu	cac His	1219
agt Ser	gca Ala	aag Lys 205	cag Gln	ttt Phe	gat Asp	tct Ser	gga Gly 210	ctt Leu	aaa Lys	gaa Glu	tca Ser	aaa Lys 215	Gja aaa	aat Asn	aag Lys	1267
aaa Lys	tcc Ser 220	aag Lys	gaa Glu	cct Pro	tat Tyr	gga Gly 225	aag Lys	aaa Lys	agg Arg	ccc Pro	atg Met 230	gaa Glu	tct Ser	tcg Ser	act Thr	1315
tat Tyr 235	tct Ser	ctg Leu	att Ile	gat Asp	gat Asp 240	gat Asp	gat Asp	gat Asp	gat Asp	gat Asp 245	gat Asp	gat Asp	gat Asp	gac Asp	aac Asn 250	1363
gac	acc	agt	ggc	cat	gaa	act	cct	ag g	itted	ittto	c aa	ctat	ttet			1409

Asp Thr Ser Gly His Glu Thr Pro Ar 255	
gctactagtt tgttgttttc tctaagggtt ctcaagttta ccactgctgg ttactgcaat	1469
tttgttgtga catgacaatc tggtacataa tagaatgaga tgtattgtaa ttgctcaact	1529
tctttctctc atag g gag tgg tct tgg gaa aaa tct cca tca caa agt tca g Glu Trp Ser Trp Glu Lys Ser Pro Ser Gln Ser Ser 260 265 270	1580
agg cgc cgt aag gtattcttgc ttactcccgc tactgtatat cttgcaattg Arg Arg Arg Lys 275	1632
cagtttttac gtagtcatta tagtccttaa gaaatttaca ccagcagaag catgactcat	1692
tttctaaacc ttcttgttat ctcccaacag aaaattttat gaattcctta aaaagacttc	1752
agttttcgaa cgtttgattc ctctctagat gaactgcagg atttatactt gccaggaaaa	1812
cttcctactt gactatatca tttatttggc ttctttaata ttgtctttac tccaactcat	1872
ttgttatgtt gtttttctta cttattgatg atattcccta aaaaaactat ag aaa tca .  Lys Ser	1930
gag gac aca gtg ata aat gtg gat gaa gaa gaa gct cag cct tca aca Glu Asp Thr Val Ile Asn Val Asp Glu Glu Glu Ala Gln Pro Ser Thr 280 285 290	1978
gtg gcg gag caa gcg gct gaa ctg cct gaa gg gtaaatgtga cctatttct 2 Val Ala Glu Gln Ala Ala Glu Leu Pro Glu Gl 295 300	2030
ctttag c ctc att aag tta caa ctg gct ata tat aaa cta ata gtt gat 2 y Leu Ile Lys Leu Gln Leu Ala Ile Tyr Lys Leu Ile Val Asp 305 310 315	2079
aaa aca tgc agc tta cag gaa gat ata tgc tac cca aca ag gtaaatctat 2 Lys Thr Cys Ser Leu Gln Glu Asp Ile Cys Tyr Pro Thr ArSe 320 325 330 e	2130
ctcaagactg atctaggcta acttcctgta aatttgtaac cctcaaaaga tttaatgctt 2	2190
ggtgattcag ggatgatcct cactttgttc aagtttgtct taaagatctt gaatgccttg 2	2250
cacctcgaga atatctgaca tcgccggtta tgaatttcta catgaggtat tttttggagt 2	2310
gatagacttg ccatatatgt catcttatat tatgctagcg ctatttgcat gttatttata 2	2370
taactattgt cetgttttet tttggtag g tte ttg cag cag cag ata tea tea 2 g Phe Leu Gln Gln Gln Ile Ser S h 335	2423
tog aat caa ato tot got gat tot cac tto ttt aat acc tat tto tag .	2471
r Ser Asn Gln Ile Ser Ala Asp Cys His Phe Phe Asn Thr Tyr Phe T 345 350 355	·311

aag aag ctc agt gac gct gtt acg tac aag gtgattagaa aaatgtgatc r Lys Lys Leu Ser Asp Ala Val Thr Tyr Lys 360 365	2521
ctttaaaaat aattatctgt tggcattctt gcgattcaaa tttttatcat tgttatttat	2581
gttaactggt ctatttatct tgtcctttca atgaaatag ggg aat gac aag gat Gly Asn Asp Lys A 370	2635
gcc ttc ttt gtg agg ttc agg cgg tgg tgg aag ggt att gat cta ttt p Ala Phe Phe Val Arg Phe Arg Arg Trp Trp Lys Gly Ile Asp Leu P 375 380 385	2683
cgt aag gct tat att ttc ata cca ata cat gaa ga gtaagtatct e Arg Lys Ala Tyr Ile Phe Ile Pro Ile His Glu 390 395	2728
ttccttttag cactctactt tcgatttttt cgcaagagtt ctcaagaatt cagattcttg	2788
r Leu His Trp Ser Leu Val Ile Val Cys Ile Pro Asp e 400s 405	2838
aag aaa gat gaa tcg ggg ttg act ata ctt cac ctt gat tct cta gga Lys Lys Asp Glu Ser Gly Leu Thr Ile Leu His Leu Asp Ser Leu Gly 415 420 425	2886
ctt cac tcg aga aaa tca att gtt gaa aat gta aaa ag gtgagatgct Leu His Ser Arg Lys Ser Ile Val Glu Asn Val Lys Ar 430 435	2934
aggggcttta cccgtgactt tatgttctca catgcttgac gttgtatgca tatggtttca	2994
gttcataaaa ggaaaaatta ttacactggc ttgaaaatgt acgacattta ctagtttcta	3054
g Phe Leu Lys Asp Glu Trp Asn Tyr Leu Asn Gln 440 445 450	3104
Asp Asp Tyr Ser Leu Asp Leu Pro Ile Ser Glu Lys Val Trp Lys Asn 455 460 465	3152
ctc cct cgt agg atc agc gaa gct gtt gtt cag gtcagtcttt taccttctta 3 Leu Pro Arg Arg Ile Ser Glu Ala Val Val Gln 470 475	3205
atcccatgat tcaaggaact ttgtttatac ggtttcttcg gaaatatgat tatattcaga 3	1265
cactagaacc acaggaagtt caattcgtct tatgatatta ttctctttgt gcaaccag 3	323
gtt ccg cag cag aaa aac gat ttt gat tgt ggt ccg ttt gtg ctc ttc 3 Val Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe Val Leu Phe 480	371

ttc Phe	att Ile 495	aaa Lys	cgg Arg	ttc Phe	att Ile	gaa Glu 500	gag Glu	gcg Ala	cct Pro	caa Gln	agg Arg 505	ctg Leu	aaa Lys	agg Arg	aaa Lys	3419
gac Asp 510	ctg Leu	gga Gly	atg Met	gtga	agta	atc (	caa	actcı	tt ti	tcct	gata	c cg	aatc	acat		3471
atcı	ttett	ict (	tacto	ettgi	tc ta	aaacı	ttgt	g tc	ctca	atgt	atc		Phe	gac Asp 515		3526
aag Lys	tgg Trp	ttt Phe	aga Arg 520	ccc Pro	gat Asp	gaa Glu	gcc Ala	tct Ser 525	gct Ala	ctg Leu	aga Arg	atc Ile	aaa Lys 530	atc Ile	cga Arg	3574
aac Asn	acg Thr	ctc Leu 535	atc Ile	gag Glu	cta Leu	ttc Phe	cgt Arg 540	gtc Val	agt Ser	gac Asp	cag Gln	aca Thr 545	Glu	taa		3619
acca	agtad	cag a	atta													3633
<213	0> 22 L> 54 2> PF 3> Ar	16 RT	lopsi	is tl	nalia	ana										
<400	)> 22	•														
			Arg	Lys 5	Lys	Glu	Val	Ile	Asp 10	Val	qaA	Cys	Ser	Glu 15	Lys	
Lys	Asp	Phe	Val 20	Ile	Asp	Trp	Ser	Ser 25	Ala	Met	Asp	Lys	Glu 30	Ąsp	Glu	
Val	Pro	Glu 35	Leu	Glu	Ile	Val	Asn 40	Thr	Thr	Lys	Pro	Thr 45	Pro	Pro	Pro	
Pro	Pro 50	Thr	Phe	Phe	Ser	Asp 55	Asp	Gln	Thr	Asp	Ser 60	Pro	Lys	Leu	Leu	
Thr 65	Asp	Arg	Asp	Leu	Asp 70	Glu	Gln	Leu	Glu	Arg 75	Lys	Lys	Ala	Ile	Leu 80	
Thr	Leu	Gly	Pro	Gly 85	Leu	Pro	Asp	Lys	Gly 90	Glu	Lys	Ile	Arg	Leu 95	Lys	
Ile	Ala	qaA	Leu 100	Glu	Glu	Glu	Lys	Gln 105	Arg	Ser	Asp	Val	Leu 110	Pro	Gln	
Gly	Asn	Ala 115	Val	Ser	Lys	Asp	Thr 120	Ser	Arg	Gly	Asn	Ala 125	Asp	Ser	Lys	
Asp	Thr 130	Ser	Arg	Gln	Gly	Asn 135	Ala	Asp	Ser	Lys	Glu 140	Val	Ser	Arg	Ser	
Thr	Phe	Ser	Ala	Val	Phe	Ser	Lys	Pro	Lvs	Thr	Agn	Ser	Gln	Sar	Laze	

145 150 155 160 Lys Ala Phe Gly Lys Glu Leu Glu Asp Leu Gly Cys Glu Arg Arg Lys 170 His Lys Ala Gly Arg Lys Pro Val Thr Arg Leu Ser Asn Gly Trp Arg 185 Leu Leu Pro Asp Val Gly Lys Ala Glu His Ser Ala Lys Gln Phe Asp 200 Ser Gly Leu Lys Glu Ser Lys Gly Asn Lys Lys Ser Lys Glu Pro Tyr Gly Lys Lys Arg Pro Met Glu Ser Ser Thr Tyr Ser Leu Ile Asp Asp 230 Asp Asp Asp Asp Asp Asp Asp Asp Asp Thr Ser Gly His Glu 245 250 Thr Pro Arg Glu Trp Ser Trp Glu Lys Ser Pro Ser Gln Ser Ser Arg Arg Arg Lys Lys Ser Glu Asp Thr Val Ile Asn Val Asp Glu Glu Glu 280 Ala Gln Pro Ser Thr Val Ala Glu Gln Ala Ala Glu Leu Pro Glu Gly Leu Ile Lys Leu Gln Leu Ala Ile Tyr Lys Leu Ile Val Asp Lys Thr 310 315 Cys Ser Leu Gln Glu Asp Ile Cys Tyr Pro Thr ArSeg Phe Leu Gln 325 330 Gln Gln Ile Ser Sr Ser Asn Gln Ile Ser Ala Asp Cys His Phe Phe 340e Asn Thr Tyr Phe Tr Lys Lys Leu Ser Asp Ala Val Thr Tyr Lys Gly 355y Asn Asp Lys Ap Ala Phe Phe Val Arg Phe Arg Arg Trp Trp Lys Gly 370 Ile Asp Leu Pe Arg Lys Ala Tyr Ile Phe Ile Pro Ile His Glu r Leu His Trp Ser Leu Val Ile Val Cys Ile Pro Asp Lys Lys Asp Glu Ser Gly Leu Thr Ile Leu His Leu Asp Ser Leu Gly Leu His Ser Arg 420 Lys Ser Ile Val Glu Asn Val Lys Arg Phe Leu Lys Asp Glu Trp Asn 435 Tyr Leu Asn Gln Asp Asp Tyr Ser Leu Asp Leu Pro Ile Ser Glu Lys

445 450 455 460 Val Trp Lys Asn Leu Pro Arg Arg Ile Ser Glu Ala Val Val Gln Val 470 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe Val Leu Phe Phe Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln Arg Leu Lys Arg Lys Asp 500 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg Pro Asp Glu Ala Ser Ala 515 520 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile Glu Leu Phe Arg Val Ser 530 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (22)..(1107) <400> 23 aggagttaga gcatcatcaa g atg aag gca ctc att ett gtt gga gge tte Met Lys Ala Leu Ile Leu Val Gly Gly Phe gge act cgc ttg aga cca ttg act ctc agt ttc cca aag ccc ctt gtt 99 Gly Thr Arg Leu Arg Pro Leu Thr Leu Ser Phe Pro Lys Pro Leu Val 15 20 gat ttt gct aat aaa ccc atg atc ctt cat cag ata gag gct ctt aag 147 Asp Phe Ala Asn Lys Pro Met Ile Leu His Gln Ile Glu Ala Leu Lys 30 35 gca gtt gga gtt gat gaa gtg gtt ttg gcc atc aat tat cag cca gag 195 Ala Val Gly Val Asp Glu Val Val Leu Ala Ile Asn Tyr Gln Pro Glu 45 gtg atg ctg aac ttc ttg aag gac ttt gag acc aag ctg gaa atc aaa Val Met Leu Asn Phe Leu Lys Asp Phe Glu Thr Lys Leu Glu Ile Lys 65 ate act tgc tca caa gag acc gag cca cta ggt acc gct ggt cct ctg 291 Ile Thr Cys Ser Gln Glu Thr Glu Pro Leu Gly Thr Ala Gly Pro Leu 80 85 gct cta gcg aga gac aaa ttg ctt gat gga tct gga gag ccc ttc ttt Ala Leu Ala Arg Asp Lys Leu Leu Asp Gly Ser Gly Glu Pro Phe Phe

				95					100	)				105	i	
gtt Val	ctt Leu	aac Asn	agt Ser 110	ASD	gtg Val	att Ile	agt Ser	gag Glu 115	Tyr	cct Pro	ctt Leu	aaa Lys	gaa Glu 120	Met	ctt Leu	387
gag Glu	ttt Phe	cac His 125	nys	tct Ser	cac His	ggt Gly	ggg Gly 130	GLu	gcc Ala	tcc Ser	ata Ile	atg Met 135	Val	aca Thr	aag Lys	435
gtg Val	gat Asp 140	Gru	ccg Pro	tcg Ser	aaa Lys	tat Tyr 145	gga Gly	gtg Val	gtt Val	gtt Val	atg Met 150	Glu	gaa Glu	ago Ser	act	483
1 <b>5</b> 5	ALG	var	GIU	Lys	160	val	GIu	Lys	Pro	Lys 165	Leu	Tyr	Val	Gly	aac Asn 170	531
<b></b> ,	110	ASII	NIG	175	TTG	ıyr	ren	Leu	Asn 180	Pro	Ser	Val	Leu	Asp 185	aag Lys	579
***	Gra	nen	190	PIO	Tnr	ser	Ile	Glu 195	Lys	Glu	Thr	Phe	Pro 200	Lys	att Ile	627
	NIG	205	GIN	GIÀ	rea	ıyr	210	Met	Val	Leu	Pro	Gly 215	Phe	tgg Trp	Met	675
ш	220	GŤĀ	GIII	PLO	Arg	225	туr	ile	Thr	Gly	Leu 230	Arg	Leu	Tyr		723
235	Ser	neu	ALG	ьуs	240	ser	Pro	Ala	Lys	Leu 245	Thr	Ser	Gly	cca Pro	His 250	771
	Val	GTÅ	ASII	255	ren	vaı	Asp	GIu	Thr 260	Ala	Thr	Ile	Gly	gaa Glu 265	Gly	819
Cys	neu	116	270	Pro	Asp	vai	Ala	11e 275	Gly	Pro	Gly	Cys	Ile 280	gtt Val	Glu	867
tca Ser	gga Gly	gtc Val 285	aga Arg	ctc Leu	tcc Ser	cga Arg	tgc Cys 290	acg Thr	gtc Val	atg Met	cgt Arg	gga Gly 295	gtc Val	cgc Arg	atc Ile	915
aag Lys	aag Lys 300	cat His	gcg Ala	tgt Cys	atc Ile	tcg Ser 305	agc Ser	agt Ser	atc Ile	Ile	ggg Gly 310	tgg Trp	cac Kis	tca Ser	acg Thr	963
gtt Val 315	ggt Gly	caa Gln	tgg Trp	gcc Ala	agg Arg 320	atc Ile	gag Glu	aac Asn	atg Met	acg Thr 325	atc Ile	ctc Leu	ggt Gly	gag Glu	gat Asp 330	1011

1059

1107

1109

gtt cat gtg agc gat gag atc tat agc aat gga gga gtt gtt ttg cca Val His Val Ser Asp Glu Ile Tyr Ser Asn Gly Gly Val Val Leu Pro cac aag gag atc aaa tca aac atc ttg aag cca gag ata gtg atg tga His Lys Glu Ile Lys Ser Asn Ile Leu Lys Pro Glu Ile Val Met 355 aa <210> 24 <211> 361 <212> PRT <213> Arabidopsis thaliana <400> 24 Met Lys Ala Leu Ile Leu Val Gly Gly Phe Gly Thr Arg Leu Arg Pro Leu Thr Leu Ser Phe Pro Lys Pro Leu Val Asp Phe Ala Asn Lys Pro 25 Met Ile Leu His Gln Ile Glu Ala Leu Lys Ala Val Gly Val Asp Glu Val Val Leu Ala Ile Asn Tyr Gln Pro Glu Val Met Leu Asn Phe Leu 55 Lys Asp Phe Glu Thr Lys Leu Glu Ile Lys Ile Thr Cys Ser Gln Glu Thr Glu Pro Leu Gly Thr Ala Gly Pro Leu Ala Leu Ala Arg Asp Lys Leu Leu Asp Gly Ser Gly Glu Pro Phe Phe Val Leu Asn Ser Asp Val 105 Ile Ser Glu Tyr Pro Leu Lys Glu Met Leu Glu Phe His Lys Ser His 120 Gly Gly Glu Ala Ser Ile Met Val Thr Lys Val Asp Glu Pro Ser Lys 135 140 Tyr Gly Val Val Wet Glu Glu Ser Thr Gly Arg Val Glu Lys Phe 150 Val Glu Lys Pro Lys Leu Tyr Val Gly Asn Lys Ile Asn Ala Gly Ile 170 Tyr Leu Leu Asn Pro Ser Val Leu Asp Lys Ile Glu Leu Arg Pro Thr Ser Ile Glu Lys Glu Thr Phe Pro Lys Ile Ala Ala Ala Gln Gly Leu

200

205

Tyr Ala Met Val Leu Pro Gly Phe Trp Met Asp Ile Gly Gln Pro Arg Asp Tyr Ile Thr Gly Leu Arg Leu Tyr Leu Asp Ser Leu Arg Lys 230 235 Ser Pro Ala Lys Leu Thr Ser Gly Pro His Ile Val Gly Asn Val Leu 250 Val Asp Glu Thr Ala Thr Ile Gly Glu Gly Cys Leu Ile Gly Pro Asp 265 Val Ala Ile Gly Pro Gly Cys Ile Val Glu Ser Gly Val Arg Leu Ser Arg Cys Thr Val Met Arg Gly Val Arg Ile Lys Lys His Ala Cys Ile 300 Ser Ser Ser Ile Ile Gly Trp His Ser Thr Val Gly Gln Trp Ala Arg 310 Ile Glu Asn Met Thr Ile Leu Gly Glu Asp Val His Val Ser Asp Glu 325 Ile Tyr Ser Asn Gly Gly Val Val Leu Pro His Lys Glu Ile Lys Ser 345 Asn Ile Leu Lys Pro Glu Ile Val Met 355

<210> 25

<211> 1071

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (9)..(1055)

<400> 25

tccaataa atg aaa gca act cta gca gca ccc tct tct ctc aca agc ctc 50 Met Lys Ala Thr Leu Ala Ala Pro Ser Ser Leu Thr Ser Leu 1 5 10

cct tat cga acc aac tct tct ttc ggc tca aag tca tcg ctt ctc ttt
Pro Tyr Arg Thr Asn Ser Ser Phe Gly Ser Lys Ser Ser Leu Leu Phe
15 20 25 30

cgg tct cca tcc tcc tcc tca gtc tct atg acg aca acg cgt gga 146 Arg Ser Pro Ser Ser Ser Ser Val Ser Met Thr Thr Arg Gly 35 40 45

aac gtg gct gtg gcg gct gct gct aca tcc act gag gcg cta aga aaa 194 Asn Val Ala Val Ala Ala Ala Ala Thr Ser Thr Glu Ala Leu Arg Lys 50 55 60

GLy	*16	65	GIU	Pne	Tyr	Asn	70	Thr	Ser	· Gly	Leu	75	Glu	ı Ġlı	att Ile	· 242
iip	80	Asp	HIS	Met	His	His 85	Gly	Phe	Tyr	Asp	Pro 90	Asp	Sex	Ser	gtt Val	290
95	nea	pei	Asp	ser	100	His	Lys	Glu	Ala	105	Ile	Arg	Met	Ile	gaa Glu 110	338
014	Ser	Deu	ALG	115	Ala	GIA	Val	Thr	Asp 120	Glu	Glu	Glu	Glu	Lys 125		386
	נעם	Буз	130	val	Asp	vaı	GIA	Cys 135	Gly	Ile	Gly	Gly	Ser 140	Ser	aga Arg	434
-7-	Deu	145	261	цуѕ	Pne	GTA	150	Glu	Cys	Ile	Gly	Ile 155	Thr	Leu	agc Ser	482
110	160	GIII	AIG	ьуs	Arg	165	Asn	Asp	Leu	Ala	Ala 170	Ala	Gln	Ser		530
175		ava	nia	Ser	180	GIU	vaı	Ala	Asp	Ala 185	ttg Leu	Asp	Gln	Pro	Phe 190	578
	p	GLY	цуъ	195	Asp	rea	vaı	Trp	Ser 200	Met	gag Glu	Ser	Gly	G1u 205	His	626
1100	110	veh	210	vrg	ьуs	Pne	Val	Lys 215	Glu	Leu	gta Val	Arg	Val 220	Ala	Ala	674
110	GIY	225	Arg	rre	TTE	TIE	Val 230	Thr	Trp	Cys	cat His	Arg 235	Asn	Leu	Ser	722
gcg Ala	999 Gly 240	gag Glu	gaa Glu	gct Ala	ttg Leu	cag Gln 245	ccg Pro	tgg Trp	gag Glu	caa Gln	aac Asn 250	atc Ile	ttg Leu	gac Asp	aaa Lys	770
atc Ile 255	tgt Cys	aag Lys	acg Thr	ttc Phe	tat Tyr 260	ctc Leu	ccg Pro	gct Ala	tgg Trp	tgc Cys 265	tcc Ser	acc Thr	gat Asp	gat Asp	tat Tyr 270	818
gtc Val	aac Asn	ttg Leu	ctt Leu	caa Gln 275	tcc Ser	cat His	tct Ser	Leu	cag Gln 280	gat Asp	att Ile	aag Lys	tgt Cys	gcg Ala 285	gat Asp	866

tgg tca gag aac gta gct cct ttc tgg cct gcg gtt ata cgg act gca 914 Trp Ser Glu Asn Val Ala Pro Phe Trp Pro Ala Val Ile Arg Thr Ala 290 tta aca tgg aag ggc ctt gtg tct ctg ctt cgt agt ggt atg aaa agt 962 Leu Thr Trp Lys Gly Leu Val Ser Leu Leu Arg Ser Gly Met Lys Ser 305 att aaa gga gca ttg aca atg cca ttg atg att gaa ggt tac aag aaa 1010 Ile Lys Gly Ala Leu Thr Met Pro Leu Met Ile Glu Gly Tyr Lys Lys 320 ggt gtc att aag ttt ggt atc atc act tgc cag aag cca ctc taa 1055 Gly Val Ile Lys Phe Gly Ile Ile Thr Cys Gln Lys Pro Leu 340 gtctaaagct atacta 1071 <210> 26 <211> 348 <212> PRT <213> Arabidopsis thaliana <400> 26 Met Lys Ala Thr Leu Ala Ala Pro Ser Ser Leu Thr Ser Leu Pro Tyr 15 Arg Thr Asn Ser Ser Phe Gly Ser Lys Ser Ser Leu Leu Phe Arg Ser 20 25 Pro Ser Ser Ser Ser Val Ser Met Thr Thr Arg Gly Asn Val 35 Ala Val Ala Ala Ala Thr Ser Thr Glu Ala Leu Arg Lys Gly Ile 55 Ala Glu Phe Tyr Asn Glu Thr Ser Gly Leu Trp Glu Glu Ile Trp Gly 70 Asp His Met His His Gly Phe Tyr Asp Pro Asp Ser Ser Val Gln Leu Ser Asp Ser Gly His Lys Glu Ala Gln Ile Arg Met Ile Glu Glu Ser 100 105 Leu Arg Phe Ala Gly Val Thr Asp Glu Glu Glu Lys Lys Ile Lys 120 Lys Val Val Asp Val Gly Cys Gly Ile Gly Gly Ser Ser Arg Tyr Leu 130 135 Ala Ser Lys Phe Gly Ala Glu Cys Ile Gly Ile Thr Leu Ser Pro Val 150 155 Gln Ala Lys Arg Ala Asn Asp Leu Ala Ala Ala Gln Ser Leu Ser His

165

Lys Ala Ser Phe Gln Val Ala Asp Ala Leu Asp Gln Pro Phe Glu Asp 180 185 Gly Lys Phe Asp Leu Val Trp Ser Met Glu Ser Gly Glu His Met Pro 200 Asp Lys Ala Lys Phe Val Lys Glu Leu Val Arg Val Ala Ala Pro Gly 215 Gly Arg Ile Ile Ile Val Thr Trp Cys His Arg Asn Leu Ser Ala Gly 230 Glu Glu Ala Leu Gln Pro Trp Glu Gln Asn Ile Leu Asp Lys Ile Cys 245 Lys Thr Phe Tyr Leu Pro Ala Trp Cys Ser Thr Asp Asp Tyr Val Asn 265 Leu Leu Gln Ser His Ser Leu Gln Asp Ile Lys Cys Ala Asp Trp Ser 280 Glu Asn Val Ala Pro Phe Trp Pro Ala Val Ile Arg Thr Ala Leu Thr Trp Lys Gly Leu Val Ser Leu Leu Arg Ser Gly Met Lys Ser Ile Lys 305 310 315 Gly Ala Leu Thr Met Pro Leu Met Ile Glu Gly Tyr Lys Lys Gly Val 325 Ile Lys Phe Gly Ile Ile Thr Cys Gln Lys Pro Leu 340

<210> 27 <211> 768

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (3)..(752)

<400> 27

ag atg aag ttc aac gtt gcg aat cca act act gga tgc cag aag aag

Met Lys Phe Asn Val Ala Asn Pro Thr Thr Gly Cys Gln Lys Lys

1 5 10 15

ctc gag atc gac gat gac cag aaa cta cgt gcg ttt tac gac aag aga 95 Leu Glu Ile Asp Asp Gln Lys Leu Arg Ala Phe Tyr Asp Lys Arg

atc tct caa gaa gtc agt gga gat gct ttg ggc gag gag ttc aaa gga 143 Ile Ser Gln Glu Val Ser Gly Asp Ala Leu Gly Glu Glu Phe Lys Gly 35 40 45

171	vai	50	· bys	116	. rAz	GIA	55	Cys	Asp	Lys	Gln	Gly 60	Phe	Pro		191
Dys	65	. GIY	vai	ren	Tnr	70	Gly	Arg	Val	. Arg	Leu 75	Leu	Leu	His		239
80	1111	PIO	Суs	Pne	85	GIÀ	His	Gly	Arg	Arg 90	Thr	Gly	G1u	Arg	95	287
мy	пуъ	Ser	Val	100	GIĀ	cys	116	Val	Ser 105	Pro	gat Asp	Leu	Ser	Val 110	Leu	335
ASII	neu	val	11e 115	vaı	гÀ2	ьуs	GIY	Glu 120	Asn	Asp	ctt Leu	Pro	Gly 125	Leu	Thr	383
yan	птэ	130	ser	гÀг	Met	Arg	135	Pro	Lys	Arg	gcc Ala	Ser 140	Lys	Ile	Arg	431
2,5	145	rne	PSII	neu	гур	150	GIU	Asp	Asp	Val	agg Arg 155	Thr	Tyr	Va1	Asn	479
160	TYT	Arg	ALG	гуѕ	165	THY	Asn	Lys	Lys	Gly 170	aag Lys	Glu	Val	Ser	Lys 175	527
Ala	FIO	nys	TIE	180	Arg	Leu	Val	Thr	Pro 185	Leu	act Thr	Leu	Gln	Arg 190	Lys	575
ALG	nia	Arg	195	Ala	Asp	гуѕ	Lys	Lys 200	Lys	Ile	gct Ala	Lys	Ala 205	Asn	Ser	623
nap	nia	210	Asp	туг	GIN	гÀ2	Leu 215	Leu	Ala	Ser	agg Arg	Leu 220	Lys	Glu	Gln	671
cgt Arg	gac Asp 225	agg Arg	agg Arg	agt Ser	GIU	agt Ser 230	ttg Leu	gca Ala	aaa Lys	gag Glu	agg Arg 235	tcg Ser	aga Arg	ctc Leu	tct Ser	719
tct Ser 240	gct Ala	gct Ala	gcc Ala	гàг	ccc Pro 245	tct Ser	gtc Val	aca Thr	Ala	taa 250	aaaa	gctt	ga g	attc	a	768

<210> 28

<211> 249

<212> PRT

<213> Arabidopsis thaliana

<400> 28

Met Lys Phe Asn Val Ala Asn Pro Thr Thr Gly Cys Gln Lys Lys Leu 1 5 10 15

Glu Ile Asp Asp Gln Lys Leu Arg Ala Phe Tyr Asp Lys Arg Ile 20 25 30

Ser Gln Glu Val Ser Gly Asp Ala Leu Gly Glu Glu Phe Lys Gly Tyr 35 40 45

Val Phe Lys Ile Lys Gly Gly Cys Asp Lys Gln Gly Phe Pro Met Lys 50 55 60

Gln Gly Val Leu Thr Pro Gly Arg Val Arg Leu Leu His Arg Gly 65 70 75 80

Thr Pro Cys Phe Arg Gly His Gly Arg Arg Thr Gly Glu Arg Arg Arg 85 90 95

Lys Ser Val Arg Gly Cys Ile Val Ser Pro Asp Leu Ser Val Leu Asn 100 105 110

Leu Val Ile Val Lys Lys Gly Glu Asn Asp Leu Pro Gly Leu Thr Asp 115 120 125

His Glu Ser Lys Met Arg Gly Pro Lys Arg Ala Ser Lys Ile Arg Lys 130 135 140

Leu Phe Asn Leu Lys Lys Glu Asp Asp Val Arg Thr Tyr Val Asn Thr 145 150 155 160

Tyr Arg Arg Lys Phe Thr Asn Lys Lys Gly Lys Glu Val Ser Lys Ala 165 170 175

Pro Lys Ile Gln Arg Leu Val Thr Pro Leu Thr Leu Gln Arg Lys Arg 180 185 190

Ala Arg Ile Ala Asp Lys Lys Lys Ile Ala Lys Ala Asn Ser Asp 195 200 205

Ala Ala Asp Tyr Gln Lys Leu Leu Ala Ser Arg Leu Lys Glu Gln Arg 210 215 220

Asp Arg Arg Ser Glu Ser Leu Ala Lys Glu Arg Ser Arg Leu Ser Ser 225 230 235 240

Ala Ala Ala Lys Pro Ser Val Thr Ala 245

<210> 29

<211> 1201

<212> DNA

<213> Arabidopsis thaliana

```
<220>
 <221> CDS
 <222> (24)..(35)
 <220>
 <221> CDS
 <222> (147)..(187)
 <220>
 <221> CDS
 <222> (283)..(383)
<220>
 <221> CDS
<222> (689)..(833)
<220>
<221> CDS
<222> (916) .. (1005)
<220>
<221> CDS
<222> (1103)..(1196)
<400> 29
cacgegggag ctcaacatca gcc atg gcg gaa cag gttactcgat ctgttctctc
                                                                    55
                           Met Ala Glu Gln
                             1
ctctaagctt atcctcgttt tatgatctat tgatccttat tcactcaaat gattctaata 115
ctcttctctt ttctctgtca ctaattttca g act gag aaa gct ttt ctt aag
                                                                    167
                                    Thr Glu Lys Ala Phe Leu Lys
                                      5
                                                         10
cag cct aag gtc ttc ctt ag gtaattttgc gattcgattt ctctctgttc
                                                                    217
Gln Pro Lys Val Phe Leu Se
             15
tctattgttt cattgtattt aagttccaag ttgtttatat tgttcattgt ttctgattta 277
tcaag c tcg aag aaa tct gga aag gga aag aga cct gga aaa ggt gga
      r Ser Lys Lys Ser Gly Lys Gly Lys Arg Pro Gly Lys Gly Gly
             20 .
                                  25
                                                      30
aac cgt ttc tgg aag aac att ggt ttg ggc ttc aag act cct cgt gaa
Asn Arg Phe Trp Lys Asn Ile Gly Leu Gly Phe Lys Thr Pro Arg Glu
         35
gcc att gat g gtatgtttaa gcttttaact cgttataata gataaggaac
                                                                   423
Ala Ile Asp G
     50
tcttggattg tgttgttcat atagtcgata gatttcaaat gctattttgt cttgtagaat 483
cttaagcttt ggtttagtga gttctgattc ttcagcttta tctggatcta cattactgtt 543
```

gtgatcaagc ttcatagaaa cctgcatcat tctctatata cctttaagtc agattctcag 663 gttattgtgt atttgtgtgg aacag ga gct tac gtt gac aag aaa tgc ccc 714
gttattgtgt atttgtgtgg aacag ga gct tac gtt gac aag aaa tgc coc 214
ly Ala Tyr Val Asp Lys Lys Cys Pro 55 60
ttc act gga act gtt tcc att aga ggt cgt atc tta gct ggt act tgc 762 Phe Thr Gly Thr Val Ser Ile Arg Gly Arg Ile Leu Ala Gly Thr Cys 65 70 75
cac agt gcg aaa atg cag agg acc att atc gtg cga agg gat tac ctt 810 His Ser Ala Lys Met Gln Arg Thr Ile Ile Val Arg Arg Asp Tyr Leu 80 85 90
cac ttt gtg aag aag tat cag ag gtaaattcat acattctcat acttctttcc 863 His Phe Val Lys Lys Tyr Gln Ar 95
atagagtett acacattgat gtttaagaaa gtaatateet ttttgttett ag g tat 919 g Tyr 100
gag aag agg cat tca aac att ccg gct cat gtc tca cca tgc ttc cgt Glu Lys Arg His Ser Asn Ile Pro Ala His Val Ser Pro Cys Phe Arg 105 110 115
gtt aag gaa gga gac cat atc att ggc caa tgc ag gttatgatct 1015 Val Lys Glu Gly Asp His Ile Ile Gly Gln Cys Ar 120 125
gattcaaacc tacaaattgt ctccattgat tctgattatc gtgaatttgt tttgatcttt 1075
ttgtttgtta atgattgata atttcag g cca ttg tcg aag aca gtg agg ttc 1127 g Pro Leu Ser Lys Thr Val Arg Phe 130 135
aat gtg ttg aag gtg ata cca gct ggg tct tct tct tca ttt gga aag 1175 Asn Val Leu Lys Val Ile Pro Ala Gly Ser Ser Ser Ser Phe Gly Lys 140 145 150
aag gca ttc act gga atg taa gctgc Lys Ala Phe Thr Gly Met 155 160
<210> 30 <211> 160 <212> PRT <213> Arabidopsis thaliana
<400> 30
Met Ala Glu Gln Thr Glu Lys Ala Phe Leu Lys Gln Pro Lys Val

10

Phe Leu	Ser	Ser	Lys	Lys	Ser	Gly	Lys	Gly	Lvs	Ara	Pro	Glv	Lve	Glv		
	u Ser Ser Lys Lys Ser 20						25	5	•	3	30					

- Gly Asn Arg Phe Trp Lys Asn Ile Gly Leu Gly Phe Lys Thr Pro Arg
- Glu Ala Ile Asp Gly Ala Tyr Val Asp Lys Lys Cys Pro Phe Thr Gly 50 55 60
- Thr Val Ser Ile Arg Gly Arg Ile Leu Ala Gly Thr Cys His Ser Ala 65 70 75 8
- Lys Met Gln Arg Thr Ile Ile Val Arg Arg Asp Tyr Leu His Phe Val
  85 90 95
- Lys Lys Tyr Gln Arg Tyr Glu Lys Arg His Ser Asn Ile Pro Ala His
  100 105 110
- Val Ser Pro Cys Phe Arg Val Lys Glu Gly Asp His Ile Ile Gly 115 120 125
- Gln Cys Arg Pro Leu Ser Lys Thr Val Arg Phe Asn Val Leu Lys Val 130 135 140
- Ile Pro Ala Gly Ser Ser Ser Phe Gly Lys Lys Ala Phe Thr Gly
  145 150 155 16

Met

<210> 31

<211> 1790

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (23)..(1780)

<400> 31

- tgtgagtaat ttagcgaaaa cg atg ggt tcc atc gaa gaa gaa gca aga cct 52

  Met Gly Ser Ile Glu Glu Glu Ala Arg Pro

  1 5 10
- ctc atc gaa gaa ggt tta att tta cag gaa gtg aaa ttg tat gct gaa 100 Leu Ile Glu Glu Gly Leu Ile Leu Gln Glu Val Lys Leu Tyr Ala Glu 15 20 25
- gat ggt tca gtg gac ttt aat gga aac cca cca ttg aag gag aaa aca 148
  Asp Gly Ser Val Asp Phe Asn Gly Asn Pro Pro Leu Lys Glu Lys Thr
  30 35 40
- gga aac tgg aaa gct tgt cct ttt att ctt ggt aat gaa tgt tgt gag 196 Gly Asn Trp Lys Ala Cys Pro Phe Ile Leu Gly Asn Glu Cys Cys Glu 45 50 55

nrg	60	·	1yt	Tyt	GIA	65 65	Aia	GIA	Asn	Lev	70	Thr	Туг	Lei	acc Thr	244
75	Буз	neu	nis	GIII	80 81y	Asn	Val	Ser	Ala	Ala 85	Thr	Asn	Val	. Thr	aca Thr 90	292
1-6	GIII	GIŞ	1111	95	ıyr	ren	Thr	Pro	Leu 100	Ile	: Gly	' Ala	Val	Leu 105		340
den	nia	Tyl	110	GTÀ	Arg	туr	Trp	Thr 115	Ile	Ala	Cys	Phe	Ser 120	Gly	att	388
171	FIIC	125	GIŞ	мес	ser	Ala	130	Thr	Leu	Ser	Ala	Ser 135	Val	Pro	gca Ala	436
Deu	140	PIO	· ATA	GIU	cys	11e 145	GIÀ	Asp	Phe	Cys	Pro 150	Ser	Ala	Thr		484
155	G##1	TYL	nia	Met	160	Pne	GIY	GIÀ	Leu	Tyr 165	ctg Leu	Ile	Ala	Leu	Gly 170	532
	ary	GTÀ	116	175	PIO	Cys	vaı	Ser	Ser 180	Phe	ggt Gly	Ala	Asp	Gln 185	Phe	580
p	nsp	1111	190	ser	Arg	GIU	Arg	Val 195	Arg	Lys	gct Ala	Ser	Phe 200	Phe	Asn	628
&		205	FIIE	ser	ıre	ASN	210	GIA	Ala	Leu	gtg Val	Ser 215	Ser	Ser	Leu	676
	220	11.0	*1 <u>C</u>	GIII	GIU	225	Arg	GIÀ	Trp	Gly	tta Leu 230	Gly	Phe	Gly	Ile	724
235	1111	Vai	FIIE	Met	240	ren	Ala	Ile	Ala	Ser 245	ttc Phe	Phe	Phe	Gly	Thr 250	772
	<b>204</b>	131	мg	255	GIII	rys	Pro	СТĀ	Gly 260	Ser	cct Pro	Ile	Thr	Arg 265	Ile	820
001	GIN	Vai	270	vai	AIA	ser	Pne	Arg 275	Lys	Ser	tct Ser	Val	Lys 280	Val	Pro	868
gaa	gac .	gcc	aca	ctt.	ctg	tat	gaa	act	caa	gac	aag	aac	tct	gct	att	916

		200					290	,				29	5		a Île	
gct Ala	gga Gly 300	~~~	aga Arg	aaa J Lys	a ato	gag Glu 305	HIS	aco Thi	gat Asp	gai Ası	t tgo P Cy: 31(	3 Glı	y tan	t ct r Le	t gac ı Asp	964
aaa Lys 315		gct Ala	gtt Val	ato Ile	Ser 320	. GIL	gaa Glu	gaa Glu	tco Ser	Jaaa Lys 325	s Sei	gga Gly	a gai / Asp	tai	tcc Ser 330	1012
aac Asn	tcg Ser	tgg Trp	aga Arg	Leu 335	· Cys	acg Thr	gtt Val	acg Thr	caa Gln 340	\Val	gaa L Glu	gaa Glu	cto Lei	aag Lys 345	att Ile	1060
ctg Leu	atc Ile	cga Arg	atg Met 350	. LIIC	cca Pro	atc Ile	tgg Trp	gct Ala 355	Ser	ggt Gly	ato Ile	att : Ile	tto Phe	Ser	gct Ala	1108
gta Val	tac Tyr	gca Ala 365	caa Gln	atg Met	tcc Ser	aca Thr	atg Met 370	Pue	gtt Val	Caa Gln	caa Gln	ggc Gly 375	Arg	gcc Ala	atg Met	· 1156
aac Asn	tgc Cys 380	aaa Lys	att Ile	gga Gly	tca Ser	ttc Phe 385	cag Gln	ctt Leu	cct Pro	cct Pro	gca Ala 390	gca Ala	ctc Leu	Gly	aca Thr	1204
ttc Phe 3 <b>9</b> 5	gac Asp	aca Thr	gca Ala	agc Ser	gtc Val 400	atc Ile	atc Ile	tgg Trp	gtg Val	ccg Pro 405	ctc	tac Tyr	gac Asp	cgg Arg	ttc Phe 410	1252
atc Ile	gtt Val	ccc Pro	tta Leu	gca Ala 415	aga <b>Ar</b> g	aag Lys	ttc Phe	aca Thr	gga Gly 420	gta Val	gac Asp	aaa Lys	gga Gly	ttc Phe 425	act Thr	1300
gag Glu	ata Ile	caa Gln	aga Arg 430	atg Met	gga Gly	att Ile	ggt Gly	ctg Leu 435	ttt Phe	gtc Val	tct Ser	gtt Val	ctc Leu 440	Cys	atg Met	1348
gca Ala	gct Ala	gca Ala 445	gct Ala	atc	gtc Val	gaa Glu	atc Ile 450	atc Ile	cgt Arg	ctc Leu	cat His	atg Met 455	gcc Ala	aac Asn	gat Asp	1396
ctt. Leu	gga Gly 460	tta Leu	gtc Val	gag Glu	tca Ser	gga Gly 465	gcc Ala	cca Pro	gtt Val	ccc Pro	ata Ile 470	tcc Ser	gtc Val	ttg Leu	tgg Trp	1444
cag Gln 475	att Ile	cca Pro	cag Gln	tac Tyr	ttc Phe 480	att Ile	ctc Leu	ggt Gly	gca Ala	gcc Ala 485	gaa Glu	gta Val	ttc Phe	tac Tyr	ttc Phe 490	1492
atc Ile	ggt Gly	cag Gln	ctc Leu	gag Glu 495	ttc Phe	ttc Phe	tac Tyr	gac Asp	caa Gln 500	tct Ser	cca Pro	gat Asp	gca Ala	atg Met 505	aga Arg	1540
agc Ser	ttg Leu	tgc Cys	agt Ser	gcc Ala	tta Leu	gct Ala	ctt Leu	ttg Leu	acc Thr	aat Asn	gca Ala	ctt Leu	ggt Gly	aac Asn	tac Tyr	1588

510 515 520 ttg age teg ttg ate etc acg etc gtg act tat ttt aca aca aga aat 1636 Leu Ser Ser Leu Ile Leu Thr Leu Val Thr Tyr Phe Thr Thr Arg Asn 525 530 ggg caa gaa ggt tgg att tcg gat aat ctc aat tca ggt cat ctc gat 1684 Gly Gln Glu Gly Trp Ile Ser Asp Asn Leu Asn Ser Gly His Leu Asp 540 545 tac ttc ttc tgg ctc ttg gct ggt ctt agc ctt gtg aac atg gcg gtt 1732 Tyr Phe Phe Trp Leu Leu Ala Gly Leu Ser Leu Val Asn Met Ala Val 555 560 tac ttc tct gct gct agg tat aag caa aag aaa gct tcg tcg tag 1780 Tyr Phe Phe Ser Ala Ala Arg Tyr Lys Gln Lys Lys Ala Ser Ser 575 580 taatgctgtt a 1791 <210> 32 <211> 585 <212> PRT <213> Arabidopsis thaliana <400> 32 Met Gly Ser Ile Glu Glu Glu Ala Arg Pro Leu Ile Glu Glu Gly Leu 15 Ile Leu Gln Glu Val Lys Leu Tyr Ala Glu Asp Gly Ser Val Asp Phe 25 Asn Gly Asn Pro Pro Leu Lys Glu Lys Thr Gly Asn Trp Lys Ala Cys Pro Phe Ile Leu Gly Asn Glu Cys Cys Glu Arg Leu Ala Tyr Tyr Gly 55 Ile Ala Gly Asn Leu Ile Thr Tyr Leu Thr Thr Lys Leu His Gln Gly 70 75 Asn Val Ser Ala Ala Thr Asn Val Thr Trp Gln Gly Thr Cys Tyr Leu Thr Pro Leu Ile Gly Ala Val Leu Ala Asp Ala Tyr Trp Gly Arg 100 105 110 Tyr Trp Thr Ile Ala Cys Phe Ser Gly Ile Tyr Phe Ile Gly Met Ser 120 Ala Leu Thr Leu Ser Ala Ser Val Pro Ala Leu Lys Pro Ala Glu Cys 130 135 Ile Gly Asp Phe Cys Pro Ser Ala Thr Pro Ala Gln Tyr Ala Met Phe 150 . 155

Phe Gly Gly Leu Tyr Leu Ile Ala Leu Gly Thr Gly Gly Ile Lys Pro 165 170 Cys Val Ser Ser Phe Gly Ala Asp Gln Phe Asp Asp Thr Asp Ser Arg 180 Glu Arg Val Arg Lys Ala Ser Phe Phe Asn Trp Phe Tyr Phe Ser Ile Asn Ile Gly Ala Leu Val Ser Ser Ser Leu Leu Val Trp Ile Gln Glu 215 Asn Arg Gly Trp Gly Leu Gly Phe Gly Ile Pro Thr Val Phe Met Gly 230 Leu Ala Ile Ala Ser Phe Phe Phe Gly Thr Pro Leu Tyr Arg Phe Gln 245 250 Lys Pro Gly Gly Ser Pro Ile Thr Arg Ile Ser Gln Val Val Ala Ser Phe Arg Lys Ser Ser Val Lys Val Pro Glu Asp Ala Thr Leu Leu 280 . Tyr Glu Thr Gln Asp Lys Asn Ser Ala Ile Ala Gly Ser Arg Lys Ile Glu His Thr Asp Asp Cys Gln Tyr Leu Asp Lys Ala Ala Val Ile Ser 305 315 Glu Glu Glu Ser Lys Ser Gly Asp Tyr Ser Asn Ser Trp Arg Leu Cys 330 Thr Val Thr Gln Val Glu Glu Leu Lys Ile Leu Ile Arg Met Phe Pro 350 Ile Trp Ala Ser Gly Ile Ile Phe Ser Ala Val Tyr Ala Gln Met Ser 360 Thr Met Phe Val Gln Gln Gly Arg Ala Met Asn Cys Lys Ile Gly Ser 370 Phe Gln Leu Pro Pro Ala Ala Leu Gly Thr Phe Asp Thr Ala Ser Val 390 Ile Ile Trp Val Pro Leu Tyr Asp Arg Phe Ile Val. Pro Leu Ala Arg 410 Lys Phe Thr Gly Val Asp Lys Gly Phe Thr Glu Ile Gln Arg Met Gly 425 Ile Gly Leu Phe Val Ser Val Leu Cys Met Ala Ala Ala Ile Val 435 440 Glu Ile Ile Arg Leu His Met Ala Asn Asp Leu Gly Leu Val Glu Ser 450 455 460

Gly Ala Pro Val Pro Ile Ser Val Leu Trp Gln Ile Pro Gln Tyr Phe 470 475 480 Ile Leu Gly Ala Ala Glu Val Phe Tyr Phe Ile Gly Gln Leu Glu Phe 485 490 Phe Tyr Asp Gln Ser Pro Asp Ala Met Arg Ser Leu Cys Ser Ala Leu 505 Ala Leu Leu Thr Asn Ala Leu Gly Asn Tyr Leu Ser Ser Leu Ile Leu 515 520 Thr Leu Val Thr Tyr Phe Thr Thr Arg Asn Gly Gln Glu Gly Trp Ile Ser Asp Asn Leu Asn Ser Gly His Leu Asp Tyr Phe Phe Trp Leu Leu 545 550 555 Ala Gly Leu Ser Leu Val Asn Met Ala Val Tyr Phe Phe Ser Ala Ala Arg Tyr Lys Gln Lys Lys Ala Ser Ser 580

<210> 33 <211> 1984 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (20)..(1975)

<400> 33

ttcaccgtcg gcttctcaa atg cag gat att ctc gga tcg gtt cgc cga tcc 52

Met Gln Asp Ile Leu Gly Ser Val Arg Arg Ser

1 5 10

ttg gtt ttc cgg tcg tct ttg gcc gga gac gat ggt act agc ggc gga 100 Leu Val Phe Arg Ser Ser Leu Ala Gly Asp Asp Gly Thr Ser Gly Gly 15 20 25

ggt ctt agc gga ttc gtc ggg aag att aac tct agt atc cgt agc tct 148 Gly Leu Ser Gly Phe Val Gly Lys Ile Asn Ser Ser Ile Arg Ser Ser 30 35 40

cga att ggg ctc ttt tct aag ccg cct cca ggg ctt cct gct cct aga 196
Arg Ile Gly Leu Phe Ser Lys Pro Pro Pro Gly Leu Pro Ala Pro Arg
45 50 55

aaa gaa gaa gcg ccg tcg att cgg tgg agg aaa ggg gaa tta atc ggt
Lys Glu Glu Ala Pro Ser Ile Arg Trp Arg Lys Gly Glu Leu Ile Gly
60 65 70 75

tgc ggt gct ttt gga aga gtt tac atg gga atg aac ctc gat tcc ggc 292

C	ys	Gly	Ala	Phe	e Glv	Aro	Val	. Tv:	Met	Glv	r Mat	- <u>λ</u> σ-	ı I.o.	, A	. C	Gly	
				•	80	•				85	5				. 90	)	
g G	ag lu	ctt Leu	Leu	gca Ala 95	, TTE	aaa Lys	Gln	gtt Val	tta Leu 100	lle	gct Ala	cca Pro	a ago Ser	agt Ser 105	Ala	tca Ser	340
a L	ag ys	gag Glu	aag Lys 110	Tur	cag Gln	ggt Gly	cac His	ato	: Arg	gag Glu	ctt Lev	gag Glu	g gaa 1 Glu 120	gaa Glu	a at-	caa Gln	388
C L	tt eu	ctt Leu 125	Lys	aat Asn	ctt Leu	tca Ser	cat His 130	Pro	aac Asn	ato Ile	gtt Val	aga Arg	, Туг	ttg Lei	g ggt 1 Gly	act Thr	436
V	ta al 40	aga Arg	gag Glu	agt Ser	gat Asp	tcg Ser 145	t <b>t</b> g Leu	aat Asn	att	ttg Leu	atg Met 150	Glu	ttt Phe	gtt Val	cct Pro	ggt Gly 155	484
G.	ĽΥ	ser	ire	ser	160	Leu	Leu	GLu	Lys	Phe 165	Gly	Ser	Phe	Pro	Glu 170		532
Ve	<b>41</b>	116	TIE	175	ıyr	Thr	Lys	Gin	Leu 180	Leu	Leu	Gly	Leu	Glu 185		Leu	580
11,	La	ASII	190	GIY	iie	Met	HIS	Arg 195	Asp	Ile	Lys	Gly	Ala 200	Asn	att Ile	Leu	628
g t Va	11	gat Asp 205	aac Asn	aaa Lys	ggt Gly	tgc Cys	atc Ile 210	aga Arg	ctc Leu	gca Ala	gat Asp	ttt Phe 215	ggt Gly	gct Ala	tcc Ser	aag Lys	676
aa Ly 22	75	gtt Val	gta Val	gag Glu	cta Leu	gct Ala 225	act Thr	gta Val	aat Asn	ggt Gly	gcc Ala 230	aaa Lys	tct Ser	atg Met	aag Lys	ggg Gly 235	724
ac Th	eg ir	cct Pro	tat Tyr	tgg Trp	atg Met 240	gct Ala	cct Pro	gaa Glu	gtc Val	att Ile 245	ctc Leu	cag Gln	act Thr	ggt Gly	cat His 250	agc Ser	772
Ph	ec ie	tct Ser	gct Ala	gat Asp 255	ata Ile	t <b>g</b> g Trp	agt Ser	gtt Val	ggg Gly 260	tgc Cys	act Thr	gtg Val	att Ile	gag Glu 265	atg Met	gct Ala	820
ac Th	g ir	GIA	aag Lys 270	cct Pro	ccc Pro	tgg Trp	agc Ser	gag Glu 275	cag Gln	tat Tyr	cag Gln	cag Gln	ttt Phe 280	gct Ala	gct Ala	gtc Val	868
ct Le	·u	cat His 285	att Ile	ggt Gly	aga Arg	aca Thr	aaa Lys 290	gct Ala	cat His	cct Pro	cca Pro	att Ile 295	cca Pro	gaa Glu	gac Asp	ctc Leu	916
tc Se	a e	cca Pro	gag Glu	gct Ala	aaa Lys	gac Asp	ttt Phe	cta Leu	atg Met	aaa Lys	tgc Cys	tta Leu	cac His	aaa Lys	gaa Glu	cca Pro	964

300					305					310					315	
agc Ser	ttg Leu	aga Arg	ctc Leu	tct Ser 320	gca Ala	acc Thr	gaa Glu	ttg Leu	ctt Leu 325	cag Gln	cac His	ccg Pro	ttt Phe	gtc Val 330	act Thr	1012
gga Gly	aag Lys	cgc Arg	Gln 335	gaa Glu	cct Pro	tat Tyr	cca Pro	gct Ala 340	tac Tyr	cgt Arg	aat Asn	tct Ser	ctt Leu 345	acg Thr	gaa Glu	1060
tgt Cys	gga Gly	aac Asn 350	cca Pro	ata Ile	act Thr	act Thr	caa Gln 355	gga Gly	atg Met	aat Asn	gtt Val	cgg Arg 360	agt Ser	tca Ser	ata Ile	1108
aat Asn	tcg Ser 365	ttg Leu	atc Ile	agg Arg	agg Arg	tcg Ser 370	aca Thr	tgt Cys	tca Ser	ggc Gly	ttg Leu 375	aag Lys	gat Asp	gtc Val	tgt Cys	1156
gaa Glu 380	ctg Leu	gga Gly	agc Ser	ttg Leu	agg Arg 385	agt Ser	tcc Ser	att Ile	ata Ile	tac Tyr 390	cca Pro	cag Gln	aag Lys	tca Ser	aat Asn 395	1204
Asn	Ser	Gly	Phe	Gly 400	Trp	Arg	gat Asp	Gly	Asp 405	Ser	Asp	Asp	Leu	Суs 410	Gln	1252
rnr	Asp	Met	415	Asp	Leu	Cys	aac Asn	11e 420	Glu	Ser	Val	Arg	Asn 425	Asn	Val	1300
ttg Leu	tca Ser	cag Gln 430	tcc Ser	acc	gat Asp	tta Leu	aac Asn 435	aag Lys	agt Ser	ttt Phe	aat Asn	ccc Pro 440	atg Met	tgt Cys	gat Asp	1348
tcc Ser	acg Thr 445	gat Asp	aac Asn	tgg Trp	tct Ser	tgc Cys 450	aag Lys	ttt Phe	gat Asp	gaa Glu	agc Ser 455	cca Pro	aaa Lys	gtg Val	atg Met	1396
aaa Lys 460	agc Ser	aaa Lys	tct Ser	aac Asn	ctg Leu 465	ctt Leu	tct Ser	tac Tyr	caa Gln	gct Ala 470	tct Ser	caa Gln	ctc Leu	caa Gln	act Thr 475	1444
gga Gly	gtt Val	cca Pro	tgt Cys	gat Asp 480	gag Glu	gaa Glu	acc Thr	agc Ser	tta Leu 485	aca Thr	ttt Phe	gct Ala	ggt Gly	ggc Gly 490	tct Ser	1492
tcc Ser	gtt Val	gca Ala	gag Glu 495	gat Asp	gat Asp	tat Tyr	aaa Lys	ggc Gly 500	aca Thr	gag Glu	ttg Leu	aaa Lys	ata Ile 505	aaa Lys	tca Ser	1540
ttt Phe	ttg Leu	gat Asp 510	gag Glu	aag Lys	gct Ala	cag Gln	gat Asp 515	ttg Leu	aaa Lys	agg Arg	ttg Leu	cag Gln 520	acc Thr	cct Pro	ctg Leu	1588
ctt Leu	gaa Glu 525	gaa Glu	ttc Phe	cac His	aat Asn	gct Ala 530	atg Met	aat Asn	cca Pro	gga Gly	ata Ile 535	ccc Pro	caa Gln	ggt Gly	gca Ala	1636

ctt Leu 540	gga Gly	gac Asp	acc Thr	aat Asn	atc Ile 545	tac Tyr	aat Asn	tta Leu	cca Pro	aac Asn 550	tta Leu	cca Pro	agt Ser	ata Ile	agc Ser 555	1684
aag Lys	aca Thr	cct Pro	aaa Lys	cga Arg 560	ctt Leu	ccg Pro	agt Ser	aga Arg	cga Arg 565	ctc Leu	tca Ser	gca Ala	atc Ile	agt Ser 570	gat Asp	1732
gct Ala	atg Met	ecc Pro	agc Ser 575	cca Pro	ctc Leu	aaa Lys	agc Ser	tcc Ser 580	aaa Lys	cgt Arg	aca Thr	ctg Leu	aac Asn 585	aca Thr	agc Ser	1780
aga Arg	gtg Val	atg Met 590	cag Gln	tca Ser	gga Gly	act Thr	gaa Glu 595	cca Pro	act Thr	caa Gln	gtc Val	aac Asn 600	gag Glu	tcg Ser	acc Thr	1828
aag Lys	aag Lys 605	gga Gly	gta Val	aat Asn	aat Asn	agc Ser 610	cgt Arg	tgt Cys	ttc Phe	tca Ser	gag Glu 615	ata Ile	cgt Arg	cgg Arg	aag Lys	1876
tgg Trp 620	gaa Glu	gaa Glu	gaa Glu	ctc Leu	tat Tyr 625	gaa Glu	gag Glu	ctt Leu	gag Glu	agg Arg 630	cat His	cga Arg	gag Glu	aat Asn	ctg Leu 635	1924
cga Arg	cac His	gct Ala	ggt Gly	gca Ala 640	gga Gly	Gly aga	aag Lys	act Thr	cca Pro 645	tta Leu	tca Ser	ggc Gly	cac His	aaa Lys 650	Gly	1972
tag	tgaa	cggc	t													1984

<210> 34

<211> 651

<212> PRT

<213> Arabidopsis thaliana

<400> 34

Met Gln Asp Ile Leu Gly Ser Val Arg Arg Ser Leu Val Phe Arg Ser 1 5 10 15

Ser Leu Ala Gly Asp Asp Gly Thr Ser Gly Gly Gly Leu Ser Gly Phe 20 25 30

Val Gly Lys Ile Asn Ser Ser Ile Arg Ser Ser Arg Ile Gly Leu Phe 35 40 45

Ser Lys Pro Pro Pro Gly Leu Pro Ala Pro Arg Lys Glu Glu Ala Pro 50 55 60

Ser Ile Arg Trp Arg Lys Gly Glu Leu Ile Gly Cys Gly Ala Phe Gly 65 70 75 80

Arg Val Tyr Met Gly Met Asn Leu Asp Ser Gly Glu Leu Leu Ala Ile 85 90 95

Lys Gln Val Leu Ile Ala Pro Ser Ser Ala Ser Lys Glu Lys Thr Gln 105 Gly His Ile Arg Glu Leu Glu Glu Val Gln Leu Leu Lys Asn Leu 120 Ser His Pro Asn Ile Val Arg Tyr Leu Gly Thr Val Arg Glu Ser Asp 135 Ser Leu Asn Ile Leu Met Glu Phe Val Pro Gly Gly Ser Ile Ser Ser 150 Leu Leu Glu Lys Phe Gly Ser Phe Pro Glu Pro Val Ile Ile Met Tyr 170 Thr Lys Gln Leu Leu Gly Leu Glu Tyr Leu His Asn Asn Gly Ile 180 Met His Arg Asp Ile Lys Gly Ala Asn Ile Leu Val Asp Asn Lys Gly 200 Cys Ile Arg Leu Ala Asp Phe Gly Ala Ser Lys Lys Val Val Glu Leu 215 Ala Thr Val Asn Gly Ala Lys Ser Met Lys Gly Thr Pro Tyr Trp Met 230 235 Ala Pro Glu Val Ile Leu Gln Thr Gly His Ser Phe Ser Ala Asp Ile 245 Trp Ser Val Gly Cys Thr Val Ile Glu Met Ala Thr Gly Lys Pro Pro 265 Trp Ser Glu Gln Tyr Gln Gln Phe Ala Ala Val Leu His Ile Gly Arg 280 Thr Lys Ala His Pro Pro Ile Pro Glu Asp Leu Ser Pro Glu Ala Lys 295 300 Asp Phe Leu Met Lys Cys Leu His Lys Glu Pro Ser Leu Arg Leu Ser 315 Ala Thr Glu Leu Leu Gln His Pro Phe Val Thr Gly Lys Arg Gln Glu 325 330 Pro Tyr Pro Ala Tyr Arg Asn Ser Leu Thr Glu Cys Gly Asn Pro Ile Thr Thr Gln Gly Met Asn Val Arg Ser Ser Ile Asn Ser Leu Ile Arg 360 Arg Ser Thr Cys Ser Gly Leu Lys Asp Val Cys Glu Leu Gly Ser Leu Arg Ser Ser Ile Ile Tyr Pro Gln Lys Ser Asn Asn Ser Gly Phe Gly 390 395

Trp Arg Asp Gly Asp Ser Asp Asp Leu Cys Gln Thr Asp Met Asp Asp Leu Cys Asn Ile Glu Ser Val Arg Asn Asn Val Leu Ser Gln Ser Thr Asp Leu Asn Lys Ser Phe Asn Pro Met Cys Asp Ser Thr Asp Asn Trp Ser Cys Lys Phe Asp Glu Ser Pro Lys Val Met Lys Ser Lys Ser Asn 455 Leu Leu Ser Tyr Gln Ala Ser Gln Leu Gln Thr Gly Val Pro Cys Asp 470 475 Glu Glu Thr Ser Leu Thr Phe Ala Gly Gly Ser Ser Val Ala Glu Asp Asp Tyr Lys Gly Thr Glu Leu Lys Ile Lys Ser Phe Leu Asp Glu Lys 505 Ala Gln Asp Leu Lys Arg Leu Gln Thr Pro Leu Leu Glu Glu Phe His 515 520 Asn Ala Met Asn Pro Gly Ile Pro Gln Gly Ala Leu Gly Asp Thr Asn Ile Tyr Asn Leu Pro Asn Leu Pro Ser Ile Ser Lys Thr Pro Lys Arg 550 555 Leu Pro Ser Arg Arg Leu Ser Ala Ile Ser Asp Ala Met Pro Ser Pro 570 Leu Lys Ser Ser Lys Arg Thr Leu Asn Thr Ser Arg Val Met Gln Ser 580 585 590 Gly Thr Glu Pro Thr Gln Val Asn Glu Ser Thr Lys Lys Gly Val Asn 600 Asn Ser Arg Cys Phe Ser Glu Ile Arg Arg Lys Trp Glu Glu Glu Leu Tyr Glu Glu Leu Glu Arg His Arg Glu Asn Leu Arg His Ala Gly Ala Gly Gly Lys Thr Pro Leu Ser Gly His Lys Gly 645

<210> 35

<211> 1736

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1605)

	0> 3!													•		
atg Met 1	Pro	cct Pro	Pro	aag Lys 5	atg Met	ctt Leu	cca Pro	cca Pro	acg Thr 10	gca Ala	agg Arg	gat Asp	tca Ser	gta Val 15	gca Ala	48
Gly	aca Thr	GJA aaa	ggt Gly 20	agt Ser	cca Pro	cca Pro	cct Pro	cca Pro 25	cct Pro	cca Pro	cca Pro	cca Pro	gct Ala 30	Arg	tgg Trp	96
agg Arg	gta Val	gcg Ala 35	Gly	gag Glu	gga Gly	gga Gly	ttg Leu 40	gat Asp	aca Thr	aca Thr	cca Pro	ccg Pro 45	ccg Pro	Pro	cct Pro	144
cca Pro	acg Thr 50	ALA	gat Asp	aca Thr	gtc Val	gtg Val 55	gcg Ala	gga Gly	agg Arg	acg Thr	agt Ser 60	tta Leu	ggt Gly	gag Glu	gcg Ala	192
Pro 65	cct Pro	cct Pro	cgt Arg	cag Gln	cct Pro 70	cca Pro	cgt Arg	cct Pro	cca Pro	aca Thr 75	gca Ala	cgg Arg	tgg Trp	tca Ser	gcg Ala 80	240
atg Met	ggc Gly	aga Arg	gtg Val	atg Met 85	tgc Cys	agt Ser	ccg Pro	ccg Pro	ata Ile 90	cca Pro	cta Leu	tcg Ser	cgg Arg	agt Ser 95	aga Arg	288
cta Leu	gcg Ala	ctt Leu	gac Asp 100	gac Asp	caa Gln	cgt Arg	tgg Trp	ccg Pro 105	gat Asp	tgg Trp	aca Thr	acg Thr	aac Asn 110	ggt Gly	tgg Trp	336
cta Leu	agc Ser	atg Met 115	aga Arg	ccg Pro	acg Thr	tcc Ser	tcg Ser 120	cca Pro	aca Thr	agg Arg	cga Arg	att Ile 125	gac Asp	cca Pro	caa Gln	384
G1A aaa	gcc Ala 130	cga Arg	cga Arg	tcc Ser	tca Ser	gtg Val 135	tca Ser	cca Pro	gcg Ala	ccg Pro	gtg Val 140	aca Thr	acg Thr	ggg Gly	atg Met	432
gcc Ala 145	acc Thr	tct Ser	cgc Arg	act Thr	gac Asp 150	gat Asp	acg Thr	cta Leu	ata Ile	gag Glu 155	gca Ala	gag Glu	acc Thr	ggt Gly	cgc Arg 160	480
gac Asp	tgg Trp	acg Thr	agg Arg	aaa Lys 165	cga Arg	atg Met	gtc Val	agg Arg	aaa Lys 170	ttg Leu	ctt Leu	aaa Lys	gca Ala	agg Arg 175	gcg Ala	528
aaa Lys	gac Asp	tac Tyr	aag Lys 180	gag Glu	GJA aaa	gga Gly	att Ile	gcg Ala 185	gca Ala	tac Tyr	ttt Phe	ggt Gly	tta Leu 190	cga Arg	gtg Val	576
ctg Leu	cga Arg	tgc Cys 195	tac Tyr	tcg Ser	agg Arg	atc Ile	gta Val 200	cga Arg	tcg Ser	atg Met	aaa Lys	cgc Arg 205	cca Pro	ggc Gly	aac Asn	624
ttg Leu	aaa Lys	ttc Phe	acg Thr	tgc Cys	cgg Arg	agg Arg	gat Asp	gtg Val	gca Ala	ata Ile	gcc Ala	acg Thr	ttc Phe	agc Ser	ggc Gly	672

	210					215					220	)				
aca Thr 225	ggc	aga Arg	atg Met	cag Gln	ctg Leu 230	agt Ser	atg Met	aac Asn	ago Ser	cgt Arg 235	Leu	g cga L Arg	gtc Val	gag	agc Ser 240	720
Deu	Val	ser	ATA	245	GIN	ser	val	Ala	Ser 250	Phe	Cys	Leu	Phe	Leu 255		768
tgc Cys	acg Thr	gcg Ala	Pro 260	tcg Ser	gcg Ala	atg Met	cgg Arg	ctg Leu 265	Val	agc Ser	ctt Leu	ctt Leu	aca Thr 270	Leu	acc	816
cca Pro	agc Ser	atg Met 275	acc Thr	tac Tyr	cta Leu	aca Thr	tge Cys 280	Gly	ctg Leu	gga Gly	tgg Trp	atg Met 285	acc Thr	gtc Val	gtc Val	864
gta Val	ctg Leu 290	ccg Pro	gcg Ala	ata Ile	gtg Val	gtc Val 295	cac His	tgt Cys	tat Tyr	atg Met	cgc Arg 300	Arg	cat His	acg Thr	gaa Glu	912
ggg Gly 305	gga Gly	tgg Trp	cgg Arg	tat Tyr	gcg Ala 310	gca Ala	ctc Leu	gag Glu	gag Glu	cat His <b>31</b> 5	aag Lys	acg Thr	gag Glu	ccg Pro	gga Gly 320	960
cga Arg	aat Asn	gaa Glu	aag Lys	atc Ile 325	acc Thr	cgg Arg	agt Ser	aga Arg	cgc Arg 330	aac Asn	tcg Ser	gcg Ala	tțc Phe	ggc Gly 335	GJA aaa	1008
ctg Leu	gtc Val	ggt Gly	cga Arg 340	aat Asn	aaa Lys	aga Arg	cga Arg	aag Lys 3 <b>4</b> 5	aag Lys	tcc Ser	aag Lys	gtc Val	tcc Ser 350	Gly ggg	gca Ala	1056
ccg Pro	aca Thr	gcg Ala 355	gtt Val	tac Tyr	aca Thr	gcg Ala	atg Met 360	ttt Phe	ttc Phe	atg Met	ttc Phe	tcc Ser 365	acg Thr	gca Ala	atc Ile	<b>1104</b>
aag Lys	ggg Gly 370	atg Met	gtg Val	gtg Val	tgc Cys	aca Thr 375	atg Met	aaa Lys	aaa Lys	aaa Lys	gtc Val 380	aaa Lys	aaa Lys	agt Ser	gcg Ala	1152
aat Asn 385	cgc Arg	aga Arg	ctc Leu	cgc Arg	cag Gln 390	ttg Leu	ctc Leu	cga Arg	tgg Trp	gcg Ala 395	cga Arg	tac Tyr	cac His	gcg Ala	aac Asn 400	1200
gcg Ala	ttc Phe	ttg Leu	ctc Leu	tgt Cys 405	tct Ser	ctt Leu	gca Ala	tgc Cys	gca Ala 410	cga Arg	ttc Phe	gcg Ala	gca Ala	tcg Ser 415	cga <b>Ar</b> g	1248
acg Thr	gtc Val	atc Ile	cat His 420	tgc Cys	agt Ser	att Ile	tac Tyr	cca Pro 425	cgt Arg	ttc Phe	ggc Gly	ccc Pro	tta Leu 430	gcc Ala	acg Thr	1296
gtg Val	acg Thr	gcc Ala 435	ata Ile	tgt Cys	ttg Leu	TTE	cta Leu 440	cac His	acg Thr	tgt Cys	acg Thr	tac Tyr 445	cga Arg	cgt A <b>rg</b>	acg Thr	1344

Glu	Ala 450	ASP	Thr	Thr	cga Arg	Cac His 455	gaa Glu	aat Asn	gac Asp	gac Asp	gcc Ala 460	Arg	aag Lys	gtg Val	atg Met	1392
465	ကသမှ	Mer	MIG	пĀ2	470	Met	Asp	Asp	Ser	Ser 475	Ser	Gly	Ser	Thr	ttg Leu 480	1440
JCI	1111	nea	1111	485	Asp	GIU	Thr	Tyr	His 490	Thr	Thr	Thr	Glu	Val 495		1488
,,op	rne	veh	500	ser	Pro	ser	Trp	Gly 505	Arg	Cys	Ser	Ser	Arg 510	Arg	ccg Pro	1536
110	270	515	neu	GIU	ser	Tnr	520	Arg	Arg	Ser	Pro	Arg 525	Gly	Ser	acg Thr	1584
gga Gly	cga Arg 530	cga Arg	tgg Trp	cga Arg	gag Glu	tag 535	att	cggaç	gtc a	agga	acgt	tg g	accg	acag	g	1635
tgg	accgo	gtt t	cagg	gcag	tt ga	acggt	agg	ggtt	geet	gac	cago	cctt	gac (	gctc	gacagc	1695
taa	aaaaa	ac (	caaca	aaaa	aa aa	aaaaa	aaaa	: aaa	aaaa				•			1736
										auda	<b>a</b> .					1/20
<21: <21: <21:	0> 36 1> 53 2> PF	5 3 <b>4</b>								Juda	a					1/36
<21: <21: <21: <21: <40:	0> 36 1> 53 2> PF 3> A1	5 34 RT cabic	lopsi	is tl	nalia	ina										1/36
<210 <211 <211 <211 <400 Met	0> 36 1> 53 2> PF 3> An 0> 36 Pro	S 34 RT cabic S Pro	Pro	is tl Lys 5	nalia Met	ina Leu	Pro	Pro	Thr	Ala	Arg			15	•	1/36
<210 <211 <211 <211 <400 Met	0> 36 1> 53 2> PF 3> An 0> 36 Pro	5 34 RT cabic	Pro	is tl Lys 5	nalia Met	ina Leu	Pro	Pro	Thr	Ala	Arg			15	•	1/36
<21: <21: <21: <21: <400 Met 1	0> 36 1> 53 2> PP 3> A1 0> 36 Pro	S 34 RT cabic S Pro	Pro Gly 20	Lys 5 Ser	nalia Met Pro	nna Leu Pro	Pro Pro	Pro Pro 25	Thr 10 Pro	Ala Pro	Arg Pro	Pro	Ala 30	15 Arg	Trp	1/36
<210 <211 <211 <400 Met 1 Gly	0> 36 1> 53 2> PF 3> An 0> 36 Pro Thr	S 34 RT cabic Pro Gly	Pro Gly 20 Gly	Lys 5 Ser Glu	Met Pro Gly	nna Leu Pro Gly	Pro Pro Leu 40	Pro Pro 25 Asp	Thr 10 Pro	Ala Pro Thr	Arg Pro	Pro Pro 45	Ala 30 Pro	15 Arg Pro	Trp Pro	1/30
<210<211<211<211<2400 Met 1 Gly Arg Pro 65	0> 36 1> 53 2> PF 3> An 0> 36 Pro Thr Val Thr 50	S4 RT cabic Pro Gly Ala 35 Ala	Pro Gly 20 Gly Asp	Lys 5 Ser Glu Thr	Met Pro Gly Val Pro 70	nna Leu Pro Gly Val 55	Pro Pro Leu 40 Ala Arg	Pro 25 Asp Gly	Thr 10 Pro Thr Arg	Ala Pro Thr Thr Thr	Arg Pro Pro Ser 60	Pro Pro 45 Leu Arg	Ala 30 Pro Gly Trp	15 Arg Pro Glu Ser	Trp Pro Ala Ala 80	1/30
<210 210</210</1 <400	0> 36 1> 53 2> PF 3> An 0> 36 Pro Thr Val Thr 50 Pro Gly	S4 RT rabio Pro Gly Ala 35	Pro Gly 20 Gly Asp Arg	Lys 5 Ser Glu Thr Gln Met 85	Met Pro Gly Val Pro 70 Cys	Leu Pro Gly Val 55 Pro	Pro Pro Leu 40 Ala Arg	Pro Pro Gly Pro	Thr 10 Pro Thr Arg Pro	Ala Pro Thr Thr 75 Pro	Arg Pro Pro Ser 60 Ala Leu	Pro Pro 45 Leu Arg	Ala 30 Pro Gly Trp	Arg Pro Glu Ser Ser 95	Trp Pro Ala Ala 80 Arg	1/30

Leu Ser Met Arg Pro Thr Ser Ser Pro Thr Arg Arg Ile Asp Pro Gln 120 Gly Ala Arg Arg Ser Ser Val Ser Pro Ala Pro Val Thr Thr Gly Met 135 Ala Thr Ser Arg Thr Asp Asp Thr Leu Ile Glu Ala Glu Thr Gly Arg Asp Trp Thr Arg Lys Arg Met Val Arg Lys Leu Leu Lys Ala Arg Ala 165 170 Lys Asp Tyr Lys Glu Gly Gly Ile Ala Ala Tyr Phe Gly Leu Arg Val 185 Leu Arg Cys Tyr Ser Arg Ile Val Arg Ser Met Lys Arg Pro Gly Asn 200 Leu Lys Phe Thr Cys Arg Arg Asp Val Ala Ile Ala Thr Phe Ser Gly Thr Gly Arg Met Gln Leu Ser Met Asn Ser Arg Leu Arg Val Glu Ser 225 235 Leu Val Ser Ala Gly Gln Ser Val Ala Ser Phe Cys Leu Phe Leu Ile 245 250 Cys Thr Ala Pro Ser Ala Met Arg Leu Val Ser Leu Leu Thr Leu Thr Pro Ser Met Thr Tyr Leu Thr Cys Gly Leu Gly Trp Met Thr Val Val 280 Val Leu Pro Ala Ile Val Val His Cys Tyr Met Arg Arg His Thr Glu 295 Gly Gly Trp Arg Tyr Ala Ala Leu Glu Glu His Lys Thr Glu Pro Gly 315 Arg Asn Glu Lys Ile Thr Arg Ser Arg Arg Asn Ser Ala Phe Gly Gly 325 330 Leu Val Gly Arg Asn Lys Arg Lys Lys Ser Lys Val Ser Gly Ala 345 Pro Thr Ala Val Tyr Thr Ala Met Phe Phe Met Phe Ser Thr Ala Ile 355 Lys Gly Met Val Val Cys Thr Met Lys Lys Lys Val Lys Lys Ser Ala 375 380 Asn Arg Arg Leu Arg Gln Leu Leu Arg Trp Ala Arg Tyr His Ala Asn 385 390 395 Ala Phe Leu Cys Ser Leu Ala Cys Ala Arg Phe Ala Ala Ser Arg 405 410

Thr	Val	Ile	His 420	Cys	Ser	Ile	Tyr	Pro 425	Arg	Phe	Gly	Pro	Leu 430	Ala	Thr	
Val	Thr	Ala 435	Ile	Cys	Leu	Ile	Leu 440	His	Thr	Cys	Thr	Tyr 445	Arg	Arg	Thr	
	450	Asp				455					460					
405		Met			4/0					475					480	
		Leu		485					490					495		
		Asp	500					505					510			
Pro	Ala	Leu 515	Leu	Glu	Ser	Thr	Phe 520	Arg	Arg	Ser	Pro	Arg 525	Gly	Ser	Thr	
Gly	Arg 530	Arg	Trp	Arg	Glu											
<211 <212	)> 37 l> 50 l> DN l> Ar	8	lopsi	.s th	nalia	ına										
			- 4,													
<220	)> L> CI	ne.														
		.8)	( <b>7</b> 7)													
<220																
	> CI !> (1	)S .56) .	. (31	.4)												
<220	<b> </b> >															
	> CD															
<222	!> (3	74).	. (49	3)												
<400	> 37	•														
gaag	aaaa	itc t	atca	tc a	tg c let G 1	aa g ln V	tg g al A	ct g la A	ac a sp I 5	ta t le S	cc t er L	ta c eu G	ln G	gc g ly A 10	at sp	50
gct Ala	aag Lys	aag Lys	ggt Gly 15	gcc Ala	aac Asn	ctc Leu	ttc Phe	aag Lys 20	gtac	gaac	ag a	gcaa	agat	g		97
ccgc	tgaa	aa t	tctc	acgg	c gc	attc	tatc	ccg	caga	act	tttc	tgac	ca c	tttg	tag	155
acc Thr	cgc Arg	tgc Cys	gct Ala	cag Gln 25	tgc Cys	cac His	acc Thr	ctg . Leu :	aag ( Lys 1	gcc ( Ala (	ggc Gly	gag ( Glu (	ggc a	aac a Asn 1	aag Lys	203

att Ile	ggc	cct Pro	gag Glu 40	ctc Leu	cac His	ggt Gly	ctc Leu	ttc Phe 45	Gly	cgc Arg	aag Lys	act Thr	ggt Gly 50	/ Ser	gtc Val	251
gct Ala	Gly	tac Tyr 55	tca Ser	tac Tyr	acc Thr	gac Asp	gcc Ala 60	Asn	aag Lys	cag Gln	aag Lys	ggt Gly 65	' Ile	gag Glu	tgg Trp	299
aag Lys	gac Asp 70	ASD	act Thr	ctc Leu	gta	cgtc	acg	ccac	cgga	ag a	ttga	aatg	rt co	ccga	gacc	354
ctc	cgct	aac	acga	caca	g tt Ph	c ga e Gl 7	u Tý	c ct	c ga u Gl	g aa u As	c cc n Pr 8	o Ly	g aa s Ly	g ta s Ty	c att	406
ccc Pro 85	ggt	acc Thr	aag Lys	atg Met	gcc Ala 90	ttc Phe	ggt Gly	ggt Gly	ctc Leu	aag Lys 95	aag Lys	ccc	aag Lys	gac Asp	cgc Arg 100	454
aac Asn	gac Asp	ctc Leu	atc Ile	acc Thr 105	ttc Phe	ctt Leu	gag Glu	gag Glu	gag Glu 110	acc Thr	aaa Lys	taa	gcg	tctt	gct	503
acc	cc															508
<21:	0> 38 1> 1: 2> Pi 3> Ai	L2 RT	dopsi	is tl	halia	ana										
	0> 38			_												
1	GIR	vaı	Ата	Asp 5	Ile	Ser	Leu	Gln	Gly 10	Asp	Ala	Lys	Lys	Gly 15	Ala	
			20		Arg	Cys	Ala	Gln 25	Cys	His	Thr	Leu	Lys 30	Ala	Gly	
Glu	Glv	_														
	GLY	Asn 35	Lys	Ile	Gly	Pro	Glu 40	Leu	His	Gly	Leu	Phe 45		Arg	Lys	
Thr		33					40	Leu Tyr				45	Gly			
Gly 65	Gly 50 Ile	Ser	Val Trp	Ala Lys	Gly Asp 70	Tyr 55 Asp	Ser Thr	Tyr Leu	Thr Phe	Asp Glu 75	Ala 60 Tyr	45 Asn Leu	Gly Lys Glu	Gln Asn	Lys Pro 80	
Gly 65	Gly 50 Ile	Ser	Val Trp	Ala Lys	Gly Asp 70	Tyr 55 Asp	Ser Thr	Tyr	Thr Phe	Asp Glu 75	Ala 60 Tyr	45 Asn Leu	Gly Lys Glu	Gln Asn	Lys Pro 80	

```
<210> 39
 <211> 5156
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
 <222> (1)..(609)
<220>
<221> CDS
<222> (686)..(841)
<220>
<221> CDS
<222> (933)..(1040)
<220>
<221> CDS
<222> (1130)..(1240)
<220>
<221> CDS
<222> (1341)..(2729)
<220>
<221> CDS
<222> (2772)..(2984)
<220>
<221> CDS
<222> (4112)..(4200)
<220>
<221> CDS
<222> (4241)..(4332)
<220>
<221> CDS
<222> (4478) .. (4521)
<220>
<221> CDS
<222> (5088)..(5156)
<400> 39
atg gca ccg aca cca tct tct tca aga tca aat caa act caa tac acc
Met Ala Pro Thr Pro Ser Ser Ser Arg Ser Asn Gln Thr Gln Tyr Thr
                                      10
tta atc aga act cca caa aca aaa caa cgt ctc aat ttc cac tca aaa
Leu Ile Arg Thr Pro Gln Thr Lys Gln Arg Leu Asn Phe His Ser Lys
acc cca aac cca gac gga tct aaa gat cca tct cca ccg gag cat cca
Thr Pro Asn Pro Asp Gly Ser Lys Asp Pro Ser Pro Pro Glu His Pro
         35
                             40
```

Val	Glu 50	val	Ile	Gly	arg	Ile 55	Arg	ı gat , Asp	tac Tyr	e cct	gac Asp 60	Arc	jaa. jLy:	a gaq s Gl	g aaa u Lys	192
65	110	001	116	шец	70	val	Asn	Thr	Asp	Asr 75	ı Glm	Thr	Va.	l Arg	a gtc g Val 80	240
3			VUI	85	IYI	Arg	Asp	Pne	Thr 90	Leu	ı Asp	Gly	Va:	l Ser 95		288
	020	<b>J</b> 2	100	GIY	nea	GIU	GIU	105	Tyr	Lys	. Lys	Phe	11e	e Glu	ı gag ı Glu	336
9		115	GIY	Vai	цуs	vai	120	Asn	Lys	Cys	Thr	Ile 125	Met	. Met	tat Tyr	384
3	130	****	GIJ	AIG	GIY	135	ser	HIS	Thr	Met	Phe 140	Gly	Cys	Gly	aaa Lys	432
145		O1,	att Ile	Vai	150	Arg	ser	Leu	Arg	155	Ile	Leu	Gly	Asp	Ser 160	480
	<b>U</b>	p	ggt Gly	165	1111	rne	vai	GIn	170	Thr	Val	Leu	G1u	Val 175	Tyr	528
	014	Giu	att Ile 180	TYL	Asp	Leu	ren	185	Thr	Asn	Ser	Ser	Asn 190	Asn	Leu	576
ggt Gly	att Ile	ggt Gly 195	tgg Trp	cct Pro	aaa Lys	gga Gly	gca Ala 200	agc Ser	act Thr	aag Lys	gtaa	aagtt	tc	ttga	ttgata	629
actt	tagt	at a	acatt	gaat	t gg	gettt	aaag	gtg	jtgta	actt	tgtt	gttt	tg 1	ttaca	ag gtg Val	688
205		Jiu	gta Val	Met	210	Lys	r\2	Ala	Lys	Asn 215	Ala	Ser	Phe	Ile	Ser 220	736
,		<b>01</b> 4		225	шуs	rre	ser	rys	G1u 230	Ile	Val	Lys	Val	Glu 235	Lys	784
cgg . Arg .	aga Arg	110	gtg Val 240	aag Lys	agt Ser	aca Thr	Leu	tgt Cys 245	aac Asn	gaa Glu	aga Arg	Ser	tct Ser 250	cgg Arg	agt Ser	832
cac	tgc	att	gtaa	gaac	ga t	cttc	ttga	t tg	atgt	gtat	gca	tage	ttt			881

His Cys Ile 255

atg	cago	tta	tctc	tgtt	tt a	actt	acta	g tg	jtggt	tgtt	tct	ttt	gta	g at	tc ata le Ile	938
Ctt	gat Asp	gtg Val 260	PIC	act Thr	gtt Val	. ggg	gga Gly 265	' Arg	tto Lei	g ato u Met	ctt Lev	gtt Val 270	l Ası	c ato	g gct Ala	986
ggt Gly	Ser 275	GIU	aat Asn	ata Ile	gac Asp	caa Gln 280	Ala	ggg Gly	cag Glr	g act n Thr	gga Gly 285	Phe	gaa Glu	a gct ı Ala	aag Lys	1034
atg Met 290	GTII	gta	atgt	ttc	ctct	Ctca	at t	tgtt	tgat	t ct	acta	aagt	. tat	tgta	agtt	1090
atg	gata	tca	actg	actt	at a	tctc	tcat	t at	tcaa	ıcag	act Thr	gct Ala	aag Lys	atc Ile 295	aac Asn	1144
cag Gln	gga Gly	aat Asn	att Ile 300	gca Ala	ctg Leu	aag Lys	cga Arg	gtt Val 305	gtg Val	gaa Glu	tct Ser	ata Ile	gca Ala 310	Asn	gga Gly	1192
gat Asp	tct Ser	cat His 315	gta Val	ccc Pro	ttt Phe	aga Arg	gac Asp 320	agc Ser	aag Lys	ctg Leu	acc Thr	atg Met 325	Leu	ctc Leu	cag Gln	1240
gtg	aaati	t <b>ct</b>	tgtt	ccat	tg t	tttai	tctt	c tg	gaaa	atgt	ttt	acgt	gtt	gctt	ggttt	1300
Ctt	gaaga	ata 1	ttta	gtgt	tg t	ttcta	atto	t ct	gaat	gcag	gac Asp	tct Ser 330	ttt Phe	gaa Glu	gat Asp	1355
gac Asp	aag Lys 335	tca Ser	aag Lys	att Ile	cta Leu	atg Met 340	atc Ile	ctg Leu	tgt Cys	gcg Ala	agc Ser 345	ccg Pro	gat Asp	cca Pro	aag Lys	1403
gaa Glu 350	atg Met	cac His	aag Lys	act Thr	ctc Leu 355	tgt Cys	act Thr	cta Leu	gag Glu	tat Tyr 360	G17 aaa	gca Ala	aaa Lys	gca Ala	aag Lys 365	1451
cya Cya	ata Ile	gtt Val	cgt Arg	ggg Gly 370	tct Ser	cat His	act Thr	.cca Pro	aac Asn 375	aaa Lys	gat Asp	aag Lys	tat Tyr	ggg Gly 380	ggt Gly	1499
gat Asp	gag Glu	tct Ser	gct Ala 385	tct Ser	gct Ala	gtg Val	att Ile	ttg Leu 390	gga Gly	tca Ser	aga Arg	ata Ile	gct Ala 395	gcc Ala	atg Met	1547
gat Asp	gag Glu	ttc Phe 400	att Ile	atc Ile	aaa Lys	ctc Leu	cag Gln 405	tct Ser	gag Glu	aag Lys	aag Lys	caa Gln 410	aaa Lys	gaa Glu	aaa Lys	1595
gaa	agg	aat	gag	gca	caa	aag	cag	ctg	aag	aag	aag	gaa	gag	gaa	gtt	1643

						420	,				42	5			u Val	
430				,	435	i		- GII	ı Arç	44(	ı Ala	а Су:	s Ala	a Th	c aat r Asn 445	1691
gaa Glu	gag Glu	gag Glu	ata Ile	aaa Lys 450		aaa Lys	gta Val	a aac Asr	gaç 1 Glu 455	1 Arc	a aco	c caq	g cti 1 Lei	t tt: 1 Le: 46	g aag u Lys O	1739
tcg Ser	gaa Glu	cta Leu	gat Asp 465	-2-	aaa Lys	ctt Leu	gaa Glu	gaa Glu 470	т СА	: Cga : Arg	aga g Arg	ato Met	g gct 2 Ala 475	a Glu	g gaa 1 Glu	1787
		480		O.L.	· III.g	arg	485	met	GIU	Glu	Arg	11e 490	≥ Val	. Glr	g cag n Gln	1835
	495				. 1100	500	Arg	Arg	Arg	Leu	505	Glu	lle	Glu	gtt Val	1883
510					515	. GIY	GTA	ser	val	520	Glu	Thr	Ser	Gly	ttt Phe 525	1931
		J		530		Deu	TYL	ser	535	Asp	Asp	Pro	Gly	Met 540		1979
			545		- LOD	nec	GIY	550	Pro	Glu	Pro	Val	Lys 555	Gln		2027
_	gga Gly	560			*****	GIII	565	ser	Asn	Thr	Ile	Ser 570	Ser	Asn	Phe	2075
act Thr	aac Asn 575	ctt Leu	ttg Leu	caa Gln	ccg Pro	aag Lys 580	cct Pro	tca Ser	gag Glu	aat Asn	atg Met 585	ctt Leu	aca Thr	cag Gln	atg Met	2123
tat Tyr 590	cct Pro	gac Asp	cgg Arg	gta Val	tgc Cys 595	ttg Leu	agc Ser	act Thr	gtc Val	ttt Phe 600	gaa Glu	gaa Glu	gaa Glu	gaa Glu	gtt Val 605	2171
gaa Glu	gaa Glu	gag Glu	gaa Glu	gaa Glu 610	aaa Lys	gtg Val	ata Ile	gtc Val	gag Glu 615	gat Asp	aaa Lys	agc Ser	atc Ile	tgc Cys 620	ttg Leu	2219
ata Ile	aca Thr		cca Pro 625	atg Met	cct Pro	agt Ser	ttg Leu	aac Asn 630	tct Ser	gaa Glu	ggt Gly	ttg Leu	ggt Gly 635	aaa Lys	gag Glu	2267
aac Asn	tgc Cys	ttc Phe	aac Asn	ggt Gly	gca Ala	gat Asp	gac Asp	aag Lys	gaa Glu	tca Ser	gcc Ala	tcg Ser	tct Ser	aga Arg	agg Arg	2315

640	. 6	45	650	
ttg aga att ca Leu Arg Ile Gl 655	a aac att ttc a n Asn Ile Phe T 660	hr Leu Cys Gly A	at cag aga gag ctg sn Gln Arg Glu Leu 65	2363
tct caa cac ag Ser Gln His Se 670	t gga cag gag g r Gly Gln Glu G 675	ag gat caa gcc aa lu Asp Gln Ala A: 680	at att gca tca cct sn Ile Ala Ser Pro 685	2411
gat aag aaa ga Asp Lys Lys As	c aat cag ttc t p Asn Gln Phe P 690	tt tct att acg as he Ser Ile Thr As 695	at aag gcc gaa gca sn Lys Ala Glu Ala 700	2459
cta gca gta ga Leu Ala Val Gl 70	u Glu Ala Lys G	aa aac aat atc to lu Asn Asn Ile Se 710	ca gtc gat caa agg er Val Asp Gln Arg 715	2507
720	n Leu Asp lle T	yr Val Lys Trp G] 25	aa aca gct gct gat lu Thr Ala Ala Asp 730	2555
aac cct cga aa Asn Pro Arg Ly 735	g ctc ata aca ac s Leu Ile Thr Tl 740	ca ctg aga gtt ac hr Leu Arg Val Th 74	ca aag gat gca aca nr Lys Asp Ala Thr 15	2603
cta gct gac tte Leu Ala Asp Lei 750	g agg aag ctt at u Arg Lys Leu II 755	tt gag atc tac ct le Glu Ile Tyr Le 760	t gga tct gat aat eu Gly Ser Asp Asn 765	2651
cag gct ttt acc Gln Ala Phe Th	c ttt ctc aag ct r Phe Leu Lys Le 770	tc ggg gta ata aa eu Gly Val Ile As 775	ac ttg aac caa caa sn Leu Asn Gln Gln 780	2699
gca caa aaa gc Ala Gln Lys Ala 789	a bue Hrs bue 17	at ctg ttt gttatg yr Leu Phe 790	getet gateetaaat	2749
gcagttattt caa	tgtatga ag gaa c Glu I	cca tgt gga gct c Pro Cys Gly Ala G 795	aa gtg gca aag gag In Val Ala Lys Glu 800	2801
805	o vai Gin Ala Tr	r Ser Leu Pro Le 810	c tgc aac gga cac eu Cys Asn Gly His 815	2849
gca tac ctc gco Ala Tyr Leu Ala 820	c act ttg aga co a Thr Leu Arg Pr 82	co Gly Lys Ser Se	a caa cat aaa agt er Gln His Lys Ser 830	2897
ctt caa cct gca Leu Gln Pro Ala 835	a agc cca ctt cc a Ser Pro Leu Pr 840	ca ctt aat ccc at co Leu Asn Pro Il 84	a gaa aac atg atg e Glu Asn Met Met 5	2945
gaa gtt acc ccc Glu Val Thr Pro 850	e atc tca aaa gt D Ile Ser Lys Va 855	g aca ccg aac ca il Thr Pro Asn Hi 860	t caa gttgatgaat s Gln	2994

tttcatcac	c caatctcgta	gctcatctca	gctccactcc	attcatcact	ctcagaagac	3054
attagtcgc	t atgtcttgtt	ttctctattc	ttcttttgtc	tgtccaaagg	tagcttttga	3114
aagatgtag	agcctttgtc	tatttctctg	tgttgagaaa	aaaaaaactc	ttatgtacga	3174
ccacttttg	t agctatatat	atgttctacg	atgtttcagc	agagtggtgt	ttatcagaac	3234
gtataactg	g tgtttcccaa	aggatgctta	gttctactta	taacatatac	ataagtagag	3294
agaatgctgo	c agccacatag	agctacttct	tacctctctc	tgtcattgta	acatatggac	3354
aaattccaaa	a agccctattc	aattccaacc	ccaatatctt	tatgatcatc	atcataacgt	3414
gaacaccaaa	a aacaagggca	aaaatttcaa	aggctcttaa	aaataacaat	atcccggaag	3474
caaagattac	ctgcaactgc	aagggaaagc	caagccctat	tatagaaaag	caacttcatt	3534
agttaagcco	tatctctcaa	tatgctcaca	tgcatgcatt	gaccaaatgt	cttcttttat	3594
ctacaggtac	tcagtcactt	tcttagttac	acactagatt	aactcaattc	ttctgcaacc	3654
tcattatctc	caaagtaaaa	gaccactgtt	attgatgttt	ttatggataa	tatatgatga	3714°
ttcatcttta	ttacattagc	tgaatacaga	acaacaacca	attaactcaa	ttattttgaa	3774
agatgtatgt	agcctgtcta	tttctcggtg	ttgagaaaaa	aaacgctatg	tacgaccact	3834
ttcagcagto	aaagtgagtg	actagagcca	tcagcatgga	gtgtttttca	agttgtacaa	3894
caagatttgt	: caacaaagtc	taaaactttc	ttttattcga	ccataatatg	actgactagg	3954
cacgttggtt	ttcgatatac	agtttaaaag	gttggagaag	atgactagat	gagataggtt	4014
ttcatatttt	acttccacat	cgaagtttta	gagaacagaa	agaggagaaa	attgaagtac	4074
acatgagaca	agttacactt	taaagcttta	ttaacag att Ile	ctt tta aa Leu Leu Ly 865	a aca gag s Thr Glu	4129
act gag ag Thr Glu Ar 870	a ttg gga ga g Leu Gly Gl	ag gca gat t Lu Ala Asp T 875	yr Ile Asn	tct ctt tct Ser Leu Ser 880	ctc tct Leu Ser	4177
cac ttt ct His Phe Le 885	c atc ttg tt u Ile Leu Ph 89	le Pro Ar	taaaaaac aa	ttcgagga ca	tgtctttc	4230
	8	er His Gln : 195	His Arg Met 900	Leu Ser Ph	e His Ser 905	4280
cat caa ac His Gln Th	t tot cot to r Ser Pro Se 910	c cta tct ter r Leu Ser Se	ca ttt cct ( er Phe Pro 1 915	ctt ctt tcc Leu Leu Ser	aga gcc Arg Ala 920	4328

gat g gtaaggaget egaagtitet aatggeatee teatgeecag geettgetge Asp A	4382
agctgcagat tcatagctct gtggaacccg ttgggttgtg gcatgacgtg aaccacttga	4442
aaatagtcgg cttgagtggt tctcgcttgg ttcag ct gat gag cca ggt ctg gtg la Asp Glu Pro Gly Leu Val 925	4497
ctt gat atc aca cct ctc ttt gag gtacttccat ttcgagactc gtgctgcaaa Leu Asp Ile Thr Pro Leu Phe Glu 930 935	4551
tgaagccagc aaatcaaaac acacaaactt tctcatgttc tgattcccta cttattctga	4611
gaattacttt ggatcattac aacaagagaa ataacaacac aaactaacca cttccttggc	4671
agaagagggt atatcatcag aagatctgtg tctagagcga tcaccaagag cgccttggct	4731
tgaaacattt cgtctggtga atgcctcaat tgcacctgta aatcttcctc gcaggtcctg	4791
tccgactaaa cagaataggg aaagaagttc tcagtttgag atcttccact attcaacaat	4851
ttaattaaat ctctggacac aaattcaaaa tcttctaagg gaaacaacat atgaatgtta	4911
atatctgaag ggtcaagtga gatagtgcac gtttttcagc acccaaaatt gtcaacactg	4971
teteataaat ttacaaetta aaataaaett tttgatatat etetttgtat tegteeetee 5	5031
aatataagag acagagaaca tcaatgtacc tgtaggcttt tcagctcttt ctgcag gtg 9	5090
gtc ctg gag ggt cca acg ctg gtc ttg gag ttg gct gtt gta aat gat Val Leu Glu Glu Glu Val Leu Ala Val Val Asn Asp 940 945 950	5138
aga cac ata gca gga taa Arg His Ile Ala Gly 955 960	5156
<210> 40	

<211> 959

<212> PRT

<213> Arabidopsis thaliana

<400> 40

Met Ala Pro Thr Pro Ser Ser Ser Arg Ser Asn Gln Thr Gln Tyr Thr

Leu Ile Arg Thr Pro Gln Thr Lys Gln Arg Leu Asn Phe His Ser Lys

Thr Pro Asn Pro Asp Gly Ser Lys Asp Pro Ser Pro Pro Glu His Pro

Val Glu Val Ile Gly Arg Ile Arg Asp Tyr Pro Asp Arg Lys Glu Lys

60

**55** 

Ser Pro Ser Ile Leu Gln Val Asn Thr Asp Asn Gln Thr Val Arg Val 65

Arg Ala Asp Val Gly Tyr Arg Asp Phe Thr Leu Asp Gly Val Ser Phe 85

Ser Glu Gln Glu Gly Leu Glu Glu Phe Tyr Lys Lys Phe Ile Glu Glu 100 105 110

Arg Ile Lys Gly Val Lys Val Gly Asn Lys Cys Thr Ile Met Met Tyr 115 120 125

Gly Pro Thr Gly Ala Gly Lys Ser His Thr Met Phe Gly Cys Gly Lys 130 135 140

Glu Pro Gly Ile Val Tyr Arg Ser Leu Arg Asp Ile Leu Gly Asp Ser 145 150 155 160

Asp Gln Asp Gly Val Thr Phe Val Gln Val Thr Val Leu Glu Val Tyr
165 170 175

Asn Glu Glu Ile Tyr Asp Leu Leu Ser Thr Asn Ser Ser Asn Asn Leu 180 185 190

Gly Ile Gly Trp Pro Lys Gly Ala Ser Thr Lys Val Arg Leu Glu Val

Met Gly Lys Lys Ala Lys Asn Ala Ser Phe Ile Ser Gly Thr Glu Ala 210 215 220

Gly Lys Ile Ser Lys Glu Ile Val Lys Val Glu Lys Arg Arg Ile Val 225 230 235 240

Lys Ser Thr Leu Cys Asn Glu Arg Ser Ser Arg Ser His Cys Ile Ile 245 250 255

Ile Leu Asp Val Pro Thr Val Gly Gly Arg Leu Met Leu Val Asp Met 260 265 270

Ala Gly Ser Glu Asn Ile Asp Gln Ala Gly Gln Thr Gly Phe Glu Ala 275 280 285

Lys Met Gln Thr Ala Lys Ile Asn Gln Gly Asn Ile Ala Leu Lys Arg 290 295 300

Val Val Glu Ser Ile Ala Asn Gly Asp Ser His Val Pro Phe Arg Asp 305 310 315 320

Ser Lys Leu Thr Met Leu Leu Gln Asp Ser Phe Glu Asp Asp Lys Ser 325 330 335

Lys Ile Leu Met Ile Leu Cys Ala Ser Pro Asp Pro Lys Glu Met His 340 345 350

Lys Thr Leu Cys Thr Leu Glu Tyr Gly Ala Lys Ala Lys Cys Ile Val

365 Arg Gly Ser His Thr Pro Asn Lys Asp Lys Tyr Gly Gly Asp Glu Ser 375 Ala Ser Ala Val Ile Leu Gly Ser Arg Ile Ala Ala Met Asp Glu Phe 390 Ile Ile Lys Leu Gln Ser Glu Lys Gln Lys Glu Lys Glu Arg Asn Glu Ala Gln Lys Gln Leu Lys Lys Glu Glu Glu Val Ala Ala Leu Arg Ser Leu Leu Thr Gln Arg Glu Ala Cys Ala Thr Asn Glu Glu Glu

360

355

Ile Lys Glu Lys Val Asn Glu Arg Thr Gln Leu Leu Lys Ser Glu Leu

Asp Lys Lys Leu Glu Glu Cys Arg Arg Met Ala Glu Glu Phe Val Glu 470

Met Glu Arg Arg Met Glu Glu Arg Ile Val Gln Gln Glu Glu 490

Leu Glu Met Met Arg Arg Leu Glu Glu Ile Glu Val Glu Phe Arg 505

Arg Ser Asn Gly Gly Ser Val Asp Glu Thr Ser Gly Phe Ala Lys Arg

Leu Arg Ser Leu Tyr Ser Asp Asp Pro Gly Met Val Lys Ser Met 535

Asp Leu Asp Met Gly Asp Pro Glu Pro Val Lys Gln Val Trp Gly Ala 550 555

Val Ser His Gln Ser Ser Asn Thr Ile Ser Ser Asn Phe Thr Asn Leu 565 570

Leu Gln Pro Lys Pro Ser Glu Asn Met Leu Thr Gln Met Tyr Pro Asp 585

Arg Val Cys Leu Ser Thr Val Phe Glu Glu Glu Glu Val Glu Glu Glu 600

Glu Glu Lys Val Ile Val Glu Asp Lys Ser Ile Cys Leu Ile Thr Thr 615

Pro Met Pro Ser Leu Asn Ser Glu Gly Leu Gly Lys Glu Asn Cys Phe 630 635

Asn Gly Ala Asp Asp Lys Glu Ser Ala Ser Ser Arg Arg Leu Arg Ile

Gln Asn Ile Phe Thr Leu Cys Gly Asn Gln Arg Glu Leu Ser Gln His

660 665 670

Ser Gly Gln Glu Glu Asp Gln Ala Asn Ile Ala Ser Pro Asp Lys Lys 675 680 685

Asp Asn Gln Phe Phe Ser Ile Thr Asn Lys Ala Glu Ala Leu Ala Val

Glu Glu Ala Lys Glu Asn Asn Ile Ser Val Asp Gln Arg Glu Asn Gly
705 710 715 720

Gln Leu Asp Ile Tyr Val Lys Trp Glu Thr Ala Ala Asp Asn Pro Arg
725 730 735

Lys Leu Ile Thr Thr Leu Arg Val Thr Lys Asp Ala Thr Leu Ala Asp 740 745 750

Leu Arg Lys Leu Ile Glu Ile Tyr Leu Gly Ser Asp Asn Gln Ala Phe 755 760 765

Thr Phe Leu Lys Leu Gly Val Ile Asn Leu Asn Gln Gln Ala Gln Lys 770 775 780

Ala Phe His Phe Tyr Leu Phe Glu Pro Cys Gly Ala Gln Val Ala Lys
785 790 795 800

Glu Lys Glu Ser Thr Val Gln Ala Thr Ser Leu Pro Leu Cys Asn Gly 805 810 815

His Ala Tyr Leu Ala Thr Leu Arg Pro Gly Lys Ser Ser Gln His Lys 820 825 830

Ser Leu Gln Pro Ala Ser Pro Leu Pro Leu Asn Pro Ile Glu Asn Met 835 840 845

Met Glu Val Thr Pro Ile Ser Lys Val Thr Pro Asn His Gln Ile Leu 850 855 860

Leu Lys Thr Glu Thr Glu Arg Leu Gly Glu Ala Asp Tyr Ile Asn Ser 870 875 880

Leu Ser Leu Ser His Phe Leu Ile Leu Phe Pro Arg Gly Glu Ser His 885 890 895

Gln His Arg Met Leu Ser Phe His Ser His Gln Thr Ser Pro Ser Leu 900 905 910

Ser Ser Phe Pro Leu Leu Ser Arg Ala Asp Ala Asp Glu Pro Gly Leu 915 920 925

Val Leu Asp Ile Thr Pro Leu Phe Glu Val Val Leu Glu Gly Pro Thr 930 935 940

Leu Val Leu Glu Leu Ala Val Val Asn Asp Arg His Ile Ala Gly 945 950 955

```
<210> 41
<211> 6960
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (147)..(327)
<220>
<221> CDS
<222> (405)..(796)
<220>
<221> CDS
<222> (1426)..(1500)
<220>
<221> CDS
<222> (3486)..(3638)
<220>
<221> CDS
<222> (3754)..(3864)
<220>
<221> CDS
.<222> (4030)..(4096)
<220>
<221> CDS
<222> (4252)..(4523)
<220>
<221> CDS
<222> (4732)..(4834)
<220>
<221> CDS
<222> (6735)..(6907)
<400> 41
cccaaaaagc ttgacctaac ggctatgttt tctttacttt caccataaat aagcacctct 60
tgaggttgca aacacacaca cacacacaca ctcacttcaa aagagttagt aagaagttgg 120
ggtttgatta acgttttgca tcggag atg ggt ttg gtc atg agg ttt gat ctt
                             Met Gly Leu Val Met Arg Phe Asp Leu
tac ctt atg ttt gtg atg ttg atg ggt tta ggg ttt acg ata tca aat
Tyr Leu Met Phe Val Met Leu Met Gly Leu Gly Phe Thr Ile Ser Asn
10
                     15
gga tac aag ttc tat gtt ggt ggg aaa gat ggt tgg gtc ccg act cct
Gly Tyr Lys Phe Tyr Val Gly Gly Lys Asp Gly Trp Val Pro Thr Pro
```

			30				35					40		
tcc Ser	gaa Glu	gat Asp	tat tct Tyr Ser 45	cat t His T	gg tct Trp Ser	cac His 50	cga Arg	aac Asn	cgg Arg	ttt Phe	caa Gln 55	gtc Val	aac Asn	317
gac Asp	act Thr	ctt Leu 60	с gtaagt Н	ctat	ttcctct	tct	ctac	tata	ıta t	acad	aato	jt		367

gtcaatatta atgcatagta attttgattt ttacaag at ttt aag tac gcc aag 421 is Phe Lys Tyr Ala Lys 65

gga aaa gat tca gtg ttg gag gtg act gaa caa gag tac aac aca tgc Gly Lys Asp Ser Val Leu Glu Val Thr Glu Gln Glu Tyr Asn Thr Cys
70 75 80

aac acg aca cac ccc ctg act tcc ctc tca gac gga gac tct ctc ttc 517
Asn Thr Thr His Pro Leu Thr Ser Leu Ser Asp Gly Asp Ser Leu Phe
85 90 95

cta ctt agc cac tca ggt tcc tac ttt ttc att agt ggc aac tct caa 565 Leu Leu Ser His Ser Gly Ser Tyr Phe Phe Ile Ser Gly Asn Ser Gln 100 105 110

aac tgt ctt aaa ggt cag aag cta gcc gtc aag gtc ttg tcc acc gtc
Asn Cys Leu Lys Gly Gln Lys Leu Ala Val Lys Val Leu Ser Thr Val
120
130

cac cac agc cac tct cct cgt cat acc tct ccc tcc ccg tct ccg gtc
His His Ser His Ser Pro Arg His Thr Ser Pro Ser Pro Ser Pro Val

cat cag gag ttg tct tcg ccg ggg cct tct cca gga gtg gaa cca tca 709
His Gln Glu Leu Ser Ser Pro Gly Pro Ser Pro Gly Val Glu Pro Ser
150 155 160

tct gat tca aac tct cgt gtt cca gct cca gga ccg gct aca gct ccc 757

Ser Asp Ser Asn Ser Arg Val Pro Ala Pro Gly Pro Ala Thr Ala Pro

165 170 175

aat tcg gcc ggt ttg gtt ggt ccg ggg atg gtg gtt ctt gtgattatga 806 Asn Ser Ala Gly Leu Val Gly Pro Gly Met Val Val Leu 180 185 190

taagttetet gtttgaggg gtttatatat tgtegetagt eattaaatt gtgagggtat 866 taattactet accattgagt tteatatta tgtgeetttt tatttgtatg tttgaaggeat 926 ettgtaacce attttaatg ttteegetgt etegttttg tteettaetaa agaaaatatt 986 taagatgttt ttttgtattg attagatgeg aatgtttta ttttgtgttt taattatgat 1046 eacactaata tgaatatat egacgaatat gtagagttea eatageteat geaataaaac 1106 tteeteeacac aaactaaaat ettgttgaaa eatataaaat gatettatae aetttttgta 1166

catataagaa tggtttgaac aatttaactt taatcaatat attaaaccgg tacaccgaaa 1226 tccaatagag agaatatgtc aaggagttaa caaaaaaaat atactaccgc cgtctgtggg 1286 gatcgaaccc acggcctcgt gggtaaaagc cacgcgctct accactgagc taagacggct 1346 atatgacaaa aaatttaaat tatgttaatt attgtatgtt tttgcagatc aaattaccaa 1406 tgaaatagtt ggtatttag gtt gtt aac tca atc ata aag ccg att gac tct 1458 Val Val Asn Ser Ile Ile Lys Pro Ile Asp Ser 195 ttt ttg ttg aag agc ttg cct ctt gtt gtg gat gtg gct gtt Phe Leu Leu Lys Ser Leu Pro Leu Val Val Asp Val Ala Val 1500 gtaagactaa taccagccct tgggtcgaaa gttgaaagtt tgattctgga tctctaatgt 1560 ctctagtatg gacgctcctg tttggaagtc ttttgtttgg aatatgatat agattcataa 1620 aaatgcgggt atctactacc atttgctatt gaccatcaaa aaaacaacaa agtctcttaa 1680 ctatcttaaa attttattag gagattttca tgcgactaga acaagatttt caagcagtgg 1740 atgataagac aaaactgata ggccaacaac ttgatgaaat gggcaatatt atgaaataat 1800 acacaagtat agettecace tecaaceace taaggacete taataaattt acceaceaaa 1860 ggtggtggga ctccgtcaca gagccgtgcc tcaaggcaaa agaaagaaac attcgcctac 1920 gtcctcaaat ttttgaaaaa aacttaggag catatatttt tacaagataa ctttagtttc 1980 ataggtttaa tattgacaaa tcacttacat ttacctaaat aataaaaata tagaattaaa 2040 aatagaaaaa tattcacaga ataaataaat aaaacagaac aaagcattat aaatttaggt 2100 taaagcattc gatatagaat tggttaaaaa aattaacttt gaatcttttg tcatatgaca 2160 atttattttt gtaaacactt ttacttctat tattataagc atctttgctt gtgaattggg 2220 gcaaatttca tttggccgcc tccggcaacc attgaccttg gcacggctct gctccgtcac 2280 ctcttatatt tgctgcaatg gcacagagaa gagaaattag ttgctggtgt tgatccctaa 2340 tatgtgctag ttcatcatct acatgtccaa atctaaatct catcccttct cctatcgcac 2400 ggacctgcaa gtgtagaaag caaaaacatc aacatatttt aataataatt acaaaacaca 2460 ttaggttctt aaacttatca aaactaatta cttcaaaaaa tatctttcta aaagttaata 2520 taccggaatt taatgcattt aaactagaat titttttcta taaattaaat gtataataaa 2580 atccataaaa taaattttaa taagctctta ctaattaaac ataagataaa acaatattat 2640 taatttctca acaatcaaat gtggatagaa accaaaaaga taaaataaac tcggatgtca 2700

taggeceata atceageett tteteaaage ttaaaegtaa egggetegge eeaaatttg	g 2760
tgtgttcatc atcttcccca caaaacctaa ttttgtttct tcagtagtac tgtagcttc	a 2820
gatgcaactc ctcgaaaacc cgtagaaccg gcattgagcc aatcgtttac attctctga	2880
tcatatcctt agcgttttca gaaacaaaat ggtgggttgg aagaggaatt tgcagactg	2940
tattcgtcaa gttggtagaa gagtgaagaa cagtcacatt tctacagcaa attactcttc	3000
ttctactcgg aatttagaat cccctttctc acaaggttga ctttttgatc atttccgaaa	3060
tctagtgtgt ttcttagtgg gtctttcaaa gggcatgtgt tatctggtct tcgtgtttg	3120
gaattgtgtg tttgagttga gtttttttgc tggtgattat aggttacttg cagagtctco	: 3180
tgagaccatc ctactcctcc agaccactgt atcatcatct acaacaactg gtaatgcatt	3240
tgaatcgaca tttcttttgt gttttactga gattggagtt tcttgtttcc tgatatagca	3300
aatttgttgc tgcattgaaa aatcgaattt caaaatttgg gaagtgagaa tgttgctagt	3360
gggagactat atctgttatc catgtgaatt aggcgaagag actcatcttt tggaactatg	3420
cgtctctagt caacttaggg acctgtactt tagggtatga aatttcaatt tgggtatgtt	
Gly Ile Ser Thr Ser Arg Gln Leu Gln Ala Ser Glu Glu Pro Val	3530
tca tca cct ttg tca tct cca gct ctg ttg ggt agt gga aaa gaa gaa Ser Ser Pro Leu Ser Ser Pro Ala Leu Leu Gly Ser Gly Lys Glu Glu 235 240 245	3578
gag cag aag att atc cca aag cgt cag aaa gtt cag gct gtc ctc aag Glu Gln Lys Ile Ile Pro Lys Arg Gln Lys Val Gln Ala Val Leu Lys 250 255 260	3626
tct ata aag cag gtgtcttctt taactcctag aacagtttta cttttcagat Ser Ile Lys Gln 265	3678
gatctgctcc atttcgttta atatttttcc atctcaatct agttatataa tgtgcccaac	3738
cttgcttgtt ttcag agt cct aag aag gtc aac ctg gtt gca gca cta gtc Ser Pro Lys Lys Val Asn Leu Val Ala Ala Leu Val 270 275	3789
cgt ggc atg cgt gtt gaa gat gct ttg atc caa ttg cag gtc aca gtc Arg Gly Met Arg Val Glu Asp Ala Leu Ile Gln Leu Gln Val Thr Val 280 285 290 295	3837
aaa cga gct gca caa act gtg tac cgg gtaatctctg agatccgagt Lys Arg Ala Ala Gln Thr Val Tyr Arg 300	3884

ata	actt	tcc	tcat	ctaa	tg a	tact	tago	a ta	caac	ttgt	ttt	gtta	ata	caat	gcttaa	4004
agg	agtt	aaa	taca	ttat	ac t	gcag	gtt Val 305	Ile	cac His	gct Ala	gcc Ala	cgg Arg 310	gca Ala	aat Asn	gct Ala	405
act Thr	cat His 315	aac Asn	cat His	gga Gly	cta Leu	gat Asp 320	Pro	gac Asp	cgt	ctc Leu	ctt Leu 325	Val	g g	ıtatg	taaaa	4106
ctg	attc	tgg	atcc	ctga	tt t	cctt	gttt	t ac	attt	aaaa	aga	gaac	gtg	atat	tttaga	4166
gag	ttcg	ccg	attg	gtac	tt t	aagg	aagc	a aa	catg	atat	gcc	ag <b>a</b> a	cga	tgta	tttcat	4226
cta	agct	tgt	gata	tgtg	at t	gcag	cg la	gaa ( Glu /	Ala	ttt ( Phe '	gtt ( Val (	Gly i	ŗλa gád	gga ( Gly )	ctg Leu 335	4277
ttt Phe	ggg	aag Lys	aag Lys	gta Val 340	ALA	tac Tyr	cat His	gca Ala	aaa Lys 345	Gly	aga Arg	agc Ser	Gly	att Ile 350	ata Ile	4325
tca Ser	ata Ile	ccc Pro	cgg Arg 355	tgt Cys	cgc Arg	cta Leu	aca Thr	gtc Val 360	ata Ile	gtt Val	aga Arg	gag Glu	acg Thr 365	act Thr	cca Pro	4373
gag Glu	gaa Glu	gaa Glu 370	gct Ala	gag Glu	att Ile	gca Ala	agg Arg 375	ctc Leu	aaa Lys	gtt Val	cac His	aat Asn 380	ttt Phe	aag Lys	aag Lys	4421
aaa Lys	agc Ser 385	aaa Lys	cgg Arg	gag Glu	aga Arg	cag Gln 390	ctt Leu	gta Val	cca Pro	cac His	aag Lys 3 <b>9</b> 5	ctc Leu	atc Ile	gag Glu	aca Thr	4469
agt Ser 400	cca Pro	ata Ile	tgg Trp	aac Asn	cgc Arg 405	aga Arg	ggt Gly	acc Thr	aaa Lys	gcc Ala 410	aat Asn	cat His	cgg Arg	tcc Ser	tca Ser 415	4517
gag Glu	ttg Leu	gtad	ggto	gt (	ctcac	tagt	a to	ettte	ttc	cgc	aatt	gca	acaa	agago	tt	4573
ctct	gtta	ıtg g	ytaaa	attgo	et bt	ttt	tttg	gtt	ttg	gttt	gata	ttgt	at 1	tggaa	ctcta	4633
															cttaa	
										ag gt	g tt	a ac	a at	c at	t ttg e Leu	
W2D	gta Val 425	act Thr	tgt Cys	gtt Val	gga Gly	aac Asn 430	atg Met	gaa Glu	aaa Lys	Asn	cgt Arg 435	ctg Leu	gat Asp	aat Asn	ttg Leu _.	4797
acg Thr 440	aat Asn	caa Gln	aac Asn	aac Asn	att Ile 445	tat Tyr	cat His	cat His	Asn	CCC Pro	gaa Glu	g gt G	ccat	aatt		4844

tttatcagtt tgttccactt cttaatgcaa tttttggata ttaaaagaat aaatgaatga 4904 atatacatat gcattttgtt tgttgagaat atttatttag tcatttattt aagaaattta 4964 tattttaatt ttttattatt aatatgatat ttgttttgtc actatgttac aacataattc 5024 aattttaata tcattataat tgatagtaat aataataaat aacagtcaca ggcccctacc 5084 atcatcccaa aatgattcat gcaatttagt catcaaatac atacaatctt atatacaaaa 5144 gaatcacaca gcatgtataa actaatagta tagaaattcg attaaaaaat actcccaggc 5204 tagttttttc accttccatg aagaatagaa tcataagttt ggaaggaatt agaataagaa 5264 gacgaattcc atacatcttg gaacgtggga tgttgttgtc tgcttccctc accagtttcc 5324 aacaagtaag agctcttcac tctctccaac aagcttattt ccctttcacc accatcctcc 5384 actaatctcc cttgttccaa tatctgcacc acttgtctca tcttcggacg cactctcgga 5444 tcaggatgca cacacaacag tcctattctc agagccatct ccacttcctc gaccacgaac 5504 actecatteg cetttattet etegtetaaa eeateaacea etttgtettt etecattagt 5564 ccccatatcc attccactat cccttctctt ccttcctcta ttggcctcct tccacacact 5624 acctccaaca caaacactcc aaagctatac acatcggttt gcgctgatgc tctccctgtc 5684 ttaaccaact caggcgccat ataacccgct gttccaacaa catgtgtcgt gctaaccatc 5744 tctttactag tgttctgcaa cttagccaac ccaaaatcac ctaccctcgc gttcatatcc 5804 ttgtcaagca acacattgct tgactttata tctctatgta acacctttgt ctcccaccct 5864 tcgtgtagat acaacatccc tgaggctagg tctcttatca ctctcattct ttcctcccaa 5924 ttcaacatct cgttacaatc aaatatccgc ttatcgacac ttccattctc catatactcg 5984 taaatcaata tcagactctc tcctcctttc ttagaccaac cttttagtcc aactatattc 6044 ttgtgtctca acctccctaa gctcgagacc tcagctaaga actcactcgt cgcgccaacg 6104 ctctctcgag gactcatcat tattctctta accgcaactt ctttaccttc caacactccc 6164 ctgtacactt tagaattccc tccgtatccg atcatgttct catcggaaaa cccttttgtt 6224 gcttccaaaa catctttgta ttgcactctg tgaggccaat actctgtttc ccaatcttcc 6284 acgtctcctt ctagtctctg ccttcgacgc cttacaacgt agaaacagag gagcccaata 6344 acagagacta acaacacaac accactagag accccagcaa tgaagccttt agacttcaaa 6404 acagagtcac ctgacaattt aaacgaaggt agattcctag tgatcaaagc atcaccaatg 6464 gagaaattgg agttactaaa actccatgag agaatcctat ggctctgcac tagttgtcct 6524

gtggaggcag tgaatccaac gaacatatca tcaagtaaga ctccagtgag atttaatgga 6584 atgettatga gtggtettat gggettteta gagetagete tagecategt gaeattgate 6644 gctgacccat taaactcgat ccacgcctga taattctcgc cactgttaag cttcagctcc 6704 gtgaatctct ggccgtctct gcctccatag aa acc tgc agt ttc aga tgc aac 6757 lu Thr Cys Ser Phe Arg Cys Asn gga agt gag aga att gac gtc gac gcc gac gtg gtt gtc gtt gat gtc 6805 Gly Ser Glu Arg Ile Asp Val Asp Ala Asp Val Val Val Asp Val 460 465 gtt gaa ctc ttg gtt agc gaa aac atc gaa ttc aac ggc gaa gat tcg 6853 Val Glu Leu Leu Val Ser Glu Asn Ile Glu Phe Asn Gly Glu Asp Ser 480 gct att ggg gtc acc gtt att ggt gaa gtt gaa gag gcc gag atg ctg 6901 Ala Ile Gly Val Thr Val Ile Gly Glu Val Glu Glu Ala Glu Met Leu 495 500 aga tga gcttgcggcg gaggtttcgg agaaaggaag gaagacgaag gcgaagccgt 6957 ggc 6960 <210> 42 <211> 508 <212> PRT <213> Arabidopsis thaliana <400> 42 Met Gly Leu Val Met Arg Phe Asp Leu Tyr Leu Met Phe Val Met Leu Met Gly Leu Gly Phe Thr Ile Ser Asn Gly Tyr Lys Phe Tyr Val Gly 30 Gly Lys Asp Gly Trp Val Pro Thr Pro Ser Glu Asp Tyr Ser His Trp 40 Ser His Arg Asn Arg Phe Gln Val Asn Asp Thr Leu His Phe Lys Tyr Ala Lys Gly Lys Asp Ser Val Leu Glu Val Thr Glu Gln Glu Tyr Asn 70

Thr Cys Asn Thr Thr His Pro Leu Thr Ser Leu Ser Asp Gly Asp Ser

Leu Phe Leu Leu Ser His Ser Gly Ser Tyr Phe Phe Ile Ser Gly Asn 105

Ser Gln Asn Cys Leu Lys Gly Gln Lys Leu Ala Val Lys Val Leu Ser

85

115

Thr Val His His Ser His Ser Pro Arg His Thr Ser Pro Ser Pro Ser 130 135 Pro Val His Gln Glu Leu Ser Ser Pro Gly Pro Ser Pro Gly Val Glu Pro Ser Ser Asp Ser Asn Ser Arg Val Pro Ala Pro Gly Pro Ala Thr 170 Ala Pro Asn Ser Ala Gly Leu Val Gly Pro Gly Met Val Val Leu Val Val Asn Ser Ile Ile Lys Pro Ile Asp Ser Phe Leu Leu Lys Ser Leu 195 200 Pro Leu Val Val Asp Val Ala Val Gly Ile Ser Thr Ser Arg Gln Leu Gln Ala Ser Glu Glu Pro Val Ser Ser Pro Leu Ser Ser Pro Ala Leu 230 235 Leu Gly Ser Gly Lys Glu Glu Glu Gln Lys Ile Ile Pro Lys Arg Gln 250 Lys Val Gln Ala Val Leu Lys Ser Ile Lys Gln Ser Pro Lys Lys Val 265 Asn Leu Val Ala Ala Leu Val Arg Gly Met Arg Val Glu Asp Ala Leu 280 Ile Gln Leu Gln Val Thr Val Lys Arg Ala Ala Gln Thr Val Tyr Arg 300 Val Ile His Ala Ala Arg Ala Asn Ala Thr His Asn His Gly Leu Asp 315 Pro Asp Arg Leu Leu Val Ala Glu Ala Phe Val Gly Lys Gly Leu Phe 325 330 Gly Lys Lys Val Ala Tyr His Ala Lys Gly Arg Ser Gly Ile Ile Ser Ile Pro Arg Cys Arg Leu Thr Val Ile Val Arg Glu Thr Thr Pro Glu 360 Glu Glu Ala Glu Ile Ala Arg Leu Lys Val His Asn Phe Lys Lys 375 Ser Lys Arg Glu Arg Gln Leu Val Pro His Lys Leu Ile Glu Thr Ser-390 395 Pro Ile Trp Asn Arg Arg Gly Thr Lys Ala Asn His Arg Ser Ser Glu 410 Leu Val Leu Thr Ile Ile Leu Asp Val Thr Cys Val Gly Asn Met Glu 420 425

Lys Asn Arg Leu Asp Asn Leu Thr 440 Asn Gln Asn Asn Ile Tyr His His Asn Pro 450 Glu Glu Thr Cys Ser 455 Phe Arg Cys Asn Gly 460 Ser Glu Arg Ile Asp 465 Val Asp Ala Asp Val 470 Val Val Val Asp Val 475 Val Glu Leu Val 480 Ser Glu Asn Ile Glu Phe Asn Gly Glu Asp Ser Ala Ile Gly Val Thr

Val Ile Gly Glu Val Glu Glu Ala Glu Met Leu Arg

<210> 43 <211> 729 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS

<400> 43

.<222> (26)..(718)

ctgcggcacc ggcgtcggag ttgcg atg ttc gcc aac aag ttc ccg ggc gtc 52 Met Phe Ala Asn Lys Phe Pro Gly Val 1 5

ata agc aat tgc aat gtc ctc gca ttc tcc ggc atc aaa aca tcc ccg

Ile Ser Asn Cys Asn Val Leu Ala Phe Ser Gly Ile Lys Thr Ser Pro

30

35

40

gaa acc gcc ttg gaa atc ttc gac gct tgg atc aaa act cct ttc aaa 196 Glu Thr Ala Leu Glu Ile Phe Asp Ala Trp Ile Lys Thr Pro Phe Lys 45 50 55

Ser Pro Cys Pro Ala Ser Gly Ser Glu Pro Trp Ser Ser Val Ile Ser

tcc ttc ctc gac aat tct ctc tcc gag atg tct cag att gga aag tca
Ser Phe Leu Asp Asn Ser Leu Ser Glu Met Ser Gln Ile Gly Lys Ser
75 80 85

acc gcc ggc gat tca aca acc aag aag atc gat gaa aca acc gcg tct
Thr Ala Gly Asp Ser Thr Thr Lys Lys Ile Asp Glu Thr Thr Ala Ser
90 95 100 105

tgc gta att tgc tgc ttg gcg aag aac aga gag ttc act cca gtg gac 388

Cys	Val	Ile	Cys	Cys 110	Leu	Ala	Lys	Asn	Arg 115	Glu	Phe	Thr	Pro	Val 120	Asp	
atc Ile	atg Met	ccg Pro	gga Gly 125	Gly	tcg Ser	atg Met	aag Lys	atc Ile 130	Val	aga Arg	gag Glu	acg Thr	ccg Pro 135	Thr	tcg Ser	436
gcg Ala	att Ile	gta Val 140	aga Arg	ttc Phe	aaa Lys	gcg Ala	gga Gly 145	Ser	gtg Val	gaa Glu	ccg Pro	gcg Ala 150	His	cac His	cac His	484
aca Thr	ttc Phe 155	ggc	cat His	gac Asp	ctt Leu	gta Val 160	gtc Val	ata Ile	aag Lys	gga Gly	aag Lys 165	aaa Lys	agt Ser	gtg Val	tgg Trp	532
aat Asn 170	ctg Leu	agc Ser	aag Lys	aag Lys	gag Glu 175	aga Arg	gct Ala	gat Asp	ctc Leu	gtt Val 180	gac Asp	ggc	gat Asp	tac Tyr	cta Leu 185	580
	****	110	AIG	190	Asp	vai	HIS	Arg	Val 195	aaa Lys	Tyr	His	Glu	Asp 200	Thr	628
gag Glu	ttc Phe	ttc Phe	atc Ile 205	act Thr	tgg Trp	gat Asp	ggc Gly	cat His 210	tgg Trp	gac Asp	ata Ile	ttc Phe	ctt Leu 215	gac Asp	gaa Glu	676
gac Asp	ctc Leu	gaa Glu 220	act Thr	gca Ala	aag Lys	aaa Lys	gcc Ala 225	atc Ile	gaa Glu	gaa Glu	gaa Glu	gct Ala 230	tga			718
aggt	tgtaa	ac t														729
<213	0> 44 l> 23 2> PF 3> Ar	0 T	lopsi	s th	nalia	ına										
	)> 44 Phe		Asn	Lvs	Phe	Pro	Gly	V-1	m	Ala						
_				J					10					15		
Val	Glu	Asp	Ala 20	Val	Asn	Ala	Arg	Ser 25	Ile	Ser	Asn	Cys	Asn 30	Val	Leu	
Ala	Phe	Ser 35	Gly	Ile	Lys	Thr	Ser 40	Pro	Glu	Thr	Ala	Leu 45	Glu	Ile	Phe	
	30					23				Pro	60					
					70					Phe 75					80	
Ser	Glu	Met	Ser	Gln 85	Ile	Gly	Lys	Ser	Thr 90	Ala	Gly	qzA	Ser	Thr 95	Thr	

Lys Lys Ile Asp Glu Thr Thr Ala Ser Cys Val Ile Cys Cys Leu Ala 100 Lys Asn Arg Glu Phe Thr Pro Val Asp Ile Met Pro Gly Gly Ser Met Lys Ile Val Arg Glu Thr Pro Thr Ser Ala Ile Val Arg Phe Lys Ala Gly Ser Val Glu Pro Ala His His His Thr Phe Gly His Asp Leu Val 150 Val Ile Lys Gly Lys Lys Ser Val Trp Asn Leu Ser Lys Lys Glu Arg 165 170 Ala Asp Leu Val Asp Gly Asp Tyr Leu Phe Thr Pro Ala Gly Asp Val His Arg Val Lys Tyr His Glu Asp Thr Glu Phe Phe Ile Thr Trp Asp 200 Gly His Trp Asp Ile Phe Leu Asp Glu Asp Leu Glu Thr Ala Lys Lys 215 Ala Ile Glu Glu Glu Ala <210> 45 <211> 1203 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (12)..(1193) <400> 45 aggaaagaga a atg act ata agg aac caa cga ttc tct ctt aaa caa 50 Met Thr Ile Arg Asn Gln Arg Phe Ser Leu Leu Lys Gln 1 cct ata tcc tcc aca ctt aat cag cat tta gta gat tat cca acc ccg 98 Pro Ile Ser Ser Thr Leu Asn Gln His Leu Val Asp Tyr Pro Thr Pro 15 age aat ett agt tat tgg tgg ggg tte ggt eeg tta get ggt att tgt Ser Asn Leu Ser Tyr Trp Trp Gly Phe Gly Pro Leu Ala Gly Ile Cys 146 30 35 tta gtc att cag ata gtg act ggc gtt ttt tta gct atg cat tac aca 194 Leu Val Ile Gln Ile Val Thr Gly Val Phe Leu Ala Met His Tyr Thr 50 60 cct cat gtg gat tta gct ttc aac agc gta gaa cac att atg aga gat

Pro	His	Val	Asp 65	Leu	Ala	Phe	Asn	Ser 70		. Glu	His	: Ile	Met 75		, Asp	
gtt Val	gaa Glu	80 Gl ^A aaa	Gly	tgg Trp	ttg Leu	ctc Leu	cgt Arg 85	Tyr	atg Met	cat His	gct Ala	aat Asn 90	Gly	gca Ala	agt Ser	290
atg Met	ttt Phe 95	ctt Leu	att Ile	gtg Val	gtt Val	tac Tyr 100	ctt Leu	cat His	att Ile	ttt Phe	cgt Arg 105	, Gly	cta Leu	tat Tyr	cat His	338
gcg Ala 110	agt Ser	tat Tyr	agc Ser	agt Ser	pro	agg Arg	gaa Glu	ttt Phe	gtt Val	tgg Trp 120	Суз	ctt Leu	gga Gly	gtt Val	gta Val 125	386
atc Ile	ttc Phe	cta Leu	tta Leu	atg Met 130	att Ile	gtg Val	aca Thr	gct Ala	ttt Phe 135	Ile	gga Gly	tat Tyr	gta Val	cta Leu 140	cct Pro	434
tgg Trp	ggt Gly	cag Gln	atg Met 145	agc Ser	ttt Phe	tgg Trp	gga Gly	gct Ala 150	aca Thr	gta Val	att Ile	aca Thr	agc Ser 155	tta Leu	gct Ala	482
agc Ser	gcc Ala	ata Ile 160	cct Pro	gta Val	gta Val	gga Gly	gat Asp 165	acc Thr	ata Ile	gtg Val	act Thr	tgg Trp 170	ctt Leu	tgg Trp	ggt Gly	530
ggt Gly	ttc Phe 175	tcc Ser	gtg Val	gac Asp	aat Asn	gcc Ala 180	acc Thr	tta Leu	aat Asn	cgt Arg	ttt Phe 185	ttt Phe	agt Ser	ctt Leu	cat His	578
cat His 190	tta Leu	ctc Leu	ccc Pro	ttt Phe	att Ile 195	tta Leu	gta Val	ggc Gly	gcc Ala	agt Ser 200	ctt Leu	ctt Leu	cat His	ctg Leu	gcc Ala 205	626
gca Ala	ttg Leu	cat His	caa Gln	tat Tyr 210	gga Gly	tca Ser	aat Asn	aat Asn	cca Pro 215	ttg Leu	ggt Gly	gta Val	cat His	tct Ser 220	gag Glu	674
atg Met	gat Asp	aaa Lys	ata Ile 225	gct Ala	ttt Phe	tac Tyr	cct Pro	tat Tyr 230	ttt Phe	tat Tyr	gtc Val	aag Lys	gat Asp 235	cta Leu	gtt Val	722
ggt Gly	tgg Trp	gta Val 240	gct Ala	ttt Phe	gct Ala	atc Ile	ttt Phe 245	ttt Phe	tct Ser	att Ile	tgg Trp	att Ile 250	ttt Phe	tat Tyr	gct Ala	770
PIO	aat Asn 255	gtt [.] Val	ttg Leu	gga Gly	cat His	ccc Pro 260	gac Asp	aat Asn	tat Tyr	ata Ile	cct Pro 265	gct Ala	aat Asn	ccg Pro	atg Met	818
tcc Ser 270	acc Thr	ccg Pro	cct Pro	cat His	att Ile 275	gtg Val	ccg Pro	gaa Glu	tgg Trp	tat Tyr 280	ttc Phe	cta Leu	ccg Pro	atc Ile	cat His 285	866
gcc Ala	att Ile	ctt Leu	cgt Arg	agt Ser	ata Ile	cct Pro	gac Asp	aaa Lys	gcg Ala	gga Gly	ggt Gly	gta Val	gcc Ala	gca Ala	ata Ile	914

				290					295					300		
gca Ala	cca Pro	gtt Val	ttt Phe 305	ata Ile	tgt Cys	ctc Leu	ttg Leu	gct Ala 310	tta Leu	cct Pro	ttt Phe	ttt Phe	aaa Lys 315	agt Ser	atg Met	962
tat Tyr	gtg Val	cgt Arg 320	agt Ser	tca Ser	agt Ser	ttt Phe	cga Arg 325	ccg Pro	att Ile	cac His	caa Gln	gga Gly 330	atg Met	ttt Phe	tgg Trp	1010
reu	335	ren	Ala	gat Asp	Сув	Leu 340	Leu	Leu	Gly	Trp	Ile 345	Gly	Суѕ	Gln	Pro	1058
gtg Val 350	gag Glu	gct Ala	cca Pro	ttt Phe	gtt Val 355	act Thr	att Ile	gga Gly	caa Gln	att Ile 360	tct Ser	cct Pro	ttg Leu	gtt Val	ttc Phe 365	1106
ttc Phe	ttg Leu	ttc Phe	ttt Phe	gcc Ala 370	ata Ile	acg Thr	ccc Pro	att Ile	ctg Leu 375	gga Gly	cga Arg	gtt Val	gga Gly	aga Arg 380	gga Gly	1154
att Ile	cct Pro	aat Asn	tct Ser 385	tac Tyr	acg Thr	gat Asp	gag Glu	act Thr 390	gat Asp	cac His	acc Thr	tga	tca	gtga	aaa	1203
<211 <212	2> PI	93 RT	lopsi	is tl	nalia	ına										
<400	)> 4(	5			•											
Met 1	Thr	Ile		Asn 5					10					15		
Ser	Thr	Leu	Asn 20	Gln	His	Leu	Val	Asp 25	Tyr	Pro	Thr	Pro	Ser 30	Asn	Leu	
Ser	Tyr	Trp 35	Trp	Gly	Phe	Gly	Pro 40	Leu	Ala	Gly	Ile	Cys 45	Leu	Val	Ile	
Gln	Ile 50	Val	Thr	Gly	Val	Phe 55	Leu	Ala	Met	His	<b>Tyr</b> 60	Thr	Pro	His	Val	•
Asp 65	Leu	Ala	Phe	Asn	Ser 70	Val	Glu	His	Ile	Met 75	Arg	Asp	Val	Glu	80 80	
Gly	Trp	Leu	Leu	Arg 85	Tyr	Met	His	Ala	Asn 90	Gly	Ala	Ser	Met	Phe 95	Leu	
Ile	Val	Val	Tyr 100	Leu	His	Ile	Phe	Arg 105	Gly	Leu	Tyr	His	Ala 110	Ser	Tyr	
Ser	Ser	Pro 115	Arg	Glu	Phe	Val	Trp 120	Cys	Leu	Gly	Val	Val 125	Ile	Phe	Leu	

Leu Met Ile Val Thr Ala Phe Ile Gly Tyr Val Leu Pro Trp Gly Gln Met Ser Phe Trp Gly Ala Thr Val Ile Thr Ser Leu Ala Ser Ala Ile 150 155 Pro Val Val Gly Asp Thr Ile Val Thr Trp Leu Trp Gly Gly Phe Ser 170 Val Asp Asn Ala Thr Leu Asn Arg Phe Phe Ser Leu His His Leu Leu 180 185 Pro Phe Ile Leu Val Gly Ala Ser Leu Leu His Leu Ala Ala Leu His 200 Gln Tyr Gly Ser Asn Asn Pro Leu Gly Val His Ser Glu Met Asp Lys Ile Ala Phe Tyr Pro Tyr Phe Tyr Val Lys Asp Leu Val Gly Trp Val Ala Phe Ala Ile Phe Phe Ser Ile Trp Ile Phe Tyr Ala Pro Asn Val 250 Leu Gly His Pro Asp Asn Tyr Ile Pro Ala Asn Pro Met Ser Thr Pro Pro His Ile Val Pro Glu Trp Tyr Phe Leu Pro Ile His Ala Ile Leu 280 285 Arg Ser Ile Pro Asp Lys Ala Gly Gly Val Ala Ala Ile Ala Pro Val 295 Phe Ile Cys Leu Leu Ala Leu Pro Phe Phe Lys Ser Met Tyr Val Arg Ser Ser Ser Phe Arg Pro Ile His Gln Gly Met Phe Trp Leu Leu 325 330 Ala Asp Cys Leu Leu Gly Trp Ile Gly Cys Gln Pro Val Glu Ala 340 Pro Phe Val Thr Ile Gly Gln Ile Ser Pro Leu Val Phe Phe Leu Phe Phe Ala Ile Thr Pro Ile Leu Gly Arg Val Gly Arg Gly Ile Pro Asn 370 375 380

Ser Tyr Thr Asp Glu Thr Asp His Thr

390

<210> 47

<211> 1194

<212> DNA

<213> Arabidopsis thaliana

	1> C	DS 1)	(119	4)												
atg	Arg	aaa	gtt Val	tct Ser 5	tcc Ser	gta Val	att Ile	tct Ser	gtc Val 10	Val	gat Asp	ccc Pro	gtt Val	att Ile	ttc Phe	48
cga Arg	gga Gly	aat Asn	tac Tyr 20	gca Ala	gct Ala	aca Thr	ctc Leu	gat Asp 25	gtg Val	tcg Ser	tat Tyr	ccg Pro	gta Val	Phe	ccg	96
caa Gln	aat Asn	aaa Lys 35	gat Asp	Gly	cgt Arg	gca Ala	ctt Leu 40	cag Gln	aaa Lys	gtt Val	ctc Leu	gga Gly 45	Thr	att Ile	cgt Arg	144
ASII	50		Leu	MIG	vaı	Ser 55	Ala	Pro	Lys	Thr	Ser 60	Leu	Arg	Ala	Gly	192
65	FIIE	GIĀ	GIU	GIĀ	70	ser	Leu	Val	Asp	G1n 75	Met	Pro	Суз	Lys	80	240
TYL	vai	gcg Ala	rite	85	rys	GIU	Ser	Tyr	Cys 90	Ser	Leu	Thr	Gly	Leu 95	Ser	288
цуз	ary	gga Gly	100	AId	тте	ASN	GIU	Ala 105	Ser	Leu	Ser	Leu	Val 110	Gly	Ile	336
****	nys	gtt Val 115	ALG	Ala	PIO	vai	120	Asn	Thr	Val	Gly	Ala 125	Glu	Ala	Thr	384
Vai	130	ata Ile	GIY	261	PIO	135	Pro	Tyr	Thr	Glu	Cys 140	Ser	Thr	Pro	Asn	432
145	Mec	tat Tyr	Ara	vaı	150	Ala	GIÀ	Phe	Lys	Val 1 <b>5</b> 5	Ala	Ser	Phe	Ala	Ala 160	480
261	1111	tgc Cys	Val	165	Pro	Pro	Ala	Arg	Ala 170	Arg	Arg	Thr	Leu	Thr 175	Val	528
****	per	acc Thr	180	THE	Leu	ser	Met	A1a 185	Thr	Gly	Гуs	Cys	Val 190	Asn	Thr	576
gga Gly	aac Asn	gaa Glu 195	cca Pro	gta Val	tct Ser	aaa Lys	cct Pro 200	aca Thr	gga Gly	gta Val	cgt Arg	atg Met 205	atg Met	tta Leu	att Ile	624

	210	)			. ner	215	i	s val	ı Tr	Thi	22 G	y Glu D	ı Val	L Ly:	a aaa s Lys	672
225	,		-	· mig	230	ALG	r rys	: 116	Phe	235	ı Sei	r Val	. Gl <u>y</u>	/ Ası	tta Leu 240	720
	3		501	245	. ser	nis	ser	Cys	250	Gln	ı Gly	, Leu	Asp	255		768
		-4-	260	uys	GIY	Arg	Leu	265	Pro	lle	· Val	. Lys	Ala 270	Glu	aga Arg	816
	-	275		Vai	цуs	ASD	280	HIS	GLu	Glu	. Val	Lys 285	Glu	Leu	ctt Leu	864
	290		-,-	Old	Gra	295	vai	GIY	GLu	Ser	300	Ser	Phe	Asn		912
305				, 4±p	310	Lys	АТА	Glu	Arg	Arg 315	Ala	aaa Lys	Gly	Gln	Ser 320	960
	•			325	nys	MIG	ASN	Leu	330	Thr	Tyr	tat Tyr	Phe	Ser 335	Thr	1008
_	•		340	273	SEI	TIE	гÀЗ	345	Tyr	Glu	Glu	cct Pro	Met 350	Gly	Leu	1056
_		355	- 1.0 2	273		TYL	360	Arg	GIU	Arg	Arg	aaa Lys 365	Arg	Val	Glu	1104
	370			9		375	rne	vai	vaı	GIn	180	acc Thr	Val	cgt Arg	agt Ser	1152
cgt Arg 385	Thr	acg Thr	acg Met	TIE	gcc Ala 390	gtt Val	ggt Gly	gaa Glu	agc Ser	aac Asn 395	gca Ala	aac Asn	tga			1194

<210> 48

<211> 397

<212> PRT

<213> Arabidopsis thaliana

<400> 48

Met Arg Lys Val Ser Ser Val Ile Ser Val Val Asp Pro Val Ile Phe

10 15 Arg Gly Asn Tyr Ala Ala Thr Leu Asp Val Ser Tyr Pro Val Phe Pro 25 Gln Asn Lys Asp Gly Arg Ala Leu Gln Lys Val Leu Gly Thr Ile Arg Asn Gly Asp Leu Ala Val Ser Ala Pro Lys Thr Ser Leu Arg Ala Gly 55 Ile Phe Gly Glu Gly Ser Ser Leu Val Asp Gln Met Pro Cys Lys Val Tyr Val Ala Phe His Lys Glu Ser Tyr Cys Ser Leu Thr Gly Leu Ser Lys Arg Gly Val Ala Ile Asn Glu Ala Ser Leu Ser Leu Val Gly Ile 100 105 Thr Lys Val Arg Ala Pro Val Gly Asn Thr Val Gly Ala Glu Ala Thr Val Tyr Ile Gly Ser Pro Lys Pro Tyr Thr Glu Cys Ser Thr Pro Asn Lys Met Tyr Ala Val Ala Ala Gly Phe Lys Val Ala Ser Phe Ala Ala 150 Ser Thr Cys Val Arg Pro Pro Ala Arg Ala Arg Arg Thr Leu Thr Val 170 Thr Ser Thr Val Thr Leu Ser Met Ala Thr Gly Lys Cys Val Asn Thr 185 Gly Asn Glu Pro Val Ser Lys Pro Thr Gly Val Arg Met Met Leu Ile Pro Leu Asp Ala Thr Leu Ile Lys Val Trp Thr Gly Glu Val Lys Lys 215 220 Ala Ile Val Ser Arg Pro Ala Lys Ile Phe Asn Ser Val Gly Asn Leu 230 235 Glu Arg Pro Ser Ile Ser His Ser Cys Gly Gln Gly Leu Asp Glu Ala Ala Ala Tyr Ile Lys Gly Arg Leu Ser Pro Ile Val Lys Ala Glu Arg Ile Lys Val Leu Val Lys Asp Glu His Glu Glu Val Lys Glu Leu Leu 280 Gln Glu Gly Tyr Glu Glu Ile Val Gly Glu Ser Pro Ser Phe Asn Leu Ala Gln Glu Ala Trp Glu Lys Ala Glu Arg Arg Ala Lys Gly Gln Ser

Pro	i				310	)				31	5				320	
	Суз	Ser	Ala	325	a Lys	s Ala	a Ası	ı Lei	Ala 330	a Thi	r Ty:	г ту	r Ph	e Se 33	r Thr	
Gly	Asp	Phe	340	Lys	S Ser	: Ile	Lys	34!	ı Туі 5	Glu	u Gl	u Pr	o Me 35	t Gl O	y Leu	
Lys	Asp	Thr 355	Asp	Lys	Ser	туг	Leu 360	ı Arg	g Glu	ı Arç	g Ar	g Ly:	s Ar	g Va	l Glu	
Ala	Thr 370	Thr	Leu	Arg	Ala	375	Phe	e Val	Val	Glr	1 Let 38(	1 Th:	r Va	l Ar	g Ser	
Arg 385	Thr	Thr	Met	Ile	Ala 390	Val	. Glý	Glu	Ser	Asr 395		a Ası	n.			
<213 <213 <213 <220 <221	)> l> Ci	11 NA rabio			hali	ana										
		5)	(601	)												
<400 gaaa	ate	ato	c gta	a cti l Le		t gt: r Vai	t gg l Gl	t tc y Se	c gc	t tc a Se	r Se	a tc r Se	t cc r Pr	g at	c gtc e Val	49
gtc	atc									-						
Val	Val	Phe	tcc Ser	gtc Val 20	gcg Ala	ctt Leu	ctt Leu	ctg Leu	ttc Phe 25		ttc Phe	tct Ser	gaa Glu	act Thr 30	tct	97
cta	gga	gct	cct	20	ccc	atc	neu	Leu	25	tac Tyr	Phe	Ser	Glu	Thr 30	Ser	97 145
cta Leu agt	gga Gly gac	gct Ala	cct Pro 35	20 tgt Cys	ccc Pro	atc Ile	aat Asn	ggc Gly 40	25 ttg Leu	tac Tyr cca Pro	atc Ile	Ser gtg Val	agg Arg 45	Thr 30 aat Asn	att Ile	
cta Leu agt Ser	gga Gly gac Asp	gct Ala ctt Leu 50	cct Pro 35 cct Pro	tgt Cys cag Gln	ccc Pro gat Asp	atc Ile aac Asn	aat Asn tat Tyr 55	ggc Gly 40 gga Gly	25 ttg Leu	tac Tyr cca Pro	atc Ile ggt Gly	gtg Val ctt Leu 60	agg Arg 45 tcc Ser	Thr 30 aat Asn cac	att Ile atg Met	145
cta Leu agt Ser act	gga Gly gac Asp gtt Val 65	gct Ala ctt Leu 50 gct Ala	cct Pro 35 cct Pro ggc Gly	tgt Cys cag Gln tcc Ser	ccc Pro gat Asp gta Val	atc Ile aac Asn ttg Leu 70	aat Asn tat Tyr 55 cat	ggc Gly 40 gga Gly	ttg Leu aga Arg	tac Tyr cca Pro cca Pro	atc Ile ggt Gly gag Glu 75	gtg Val ctt Leu 60 gtt Val	agg Arg 45 tcc Ser gaa Glu	Thr 30 aat Asn cac His ata Ile	att Ile atg Met tgg	145 193

	. 014	- 4112	115	GIY	ASII	Pne	Pro	120	Lys	Pro	Ile	: Glu	Phe 125	Pro	atc Ile	385
		130	Der	1111	116	nıs	11e 135	Pro	Ile	Asn	. Asp	140	His	Gln		433
aaa Lys	aac Asn 145	****	ggt Gly	cat His	gag Glu	gac Asp 150	ctg Leu	cag Gln	gtg Val	ttg Leu	gtt Val <b>1</b> 55	Ile	ata Ile	tct Ser	cgg Arg	481
ccg Pro 160		att Ile	aaa Lys	atc Ile	ttc Phe 165	atc Ile	tac Tyr	gaa Glu	gac Asp	tgg Trp 170	ttt Phe	atg Met	cca Pro	cac His	act Thr 175	529
gct Ala	gca Ala	agg Arg	ctg Leu	aag Lys 180	ttc Phe	cct Pro	tac Tyr	tat Tyr	tgg Trp 185	Asp	gag Glu	caa Gln	tgc Cys	att Ile 190	caa Gln	577
gaa Glu	tca Ser	caa Gln	aaa Lys 195	gac Asp	gag Glu	ctt Leu	taa	agca	aaag	tcc						611
<21:	0> 50 1> 19 2> PI 3> As	98 RT	dopsi	is t!	nalia	ana										
	0> 50															
				3					10					Val 15		
		Ser	Val 20	Ala	Leu	Leu	Leu	Phe	T		_		ጥከተ	Cox	Leu	
Gly								25					30			
	Ala	Pro 35		Pro	Ile	Asn		25					30	Ile		
		0.5	Cys				Gly 40	Leu	Pro	Ile	Val	Arg 45	30 Asn		Ser	
Asp	Leu 50	Pro	Cys	Asp	Asn	Tyr 55	Gly 40 Gly	Leu Arg	Pro Pro	Ile Gly	Val Leu 60	Arg 45 Ser	30 Asn His	Ile	Ser Thr	
Asp Val 65	Leu 50 Ala	Pro Gly	Cys Gln Ser	Asp Val	Asn Leu 70	Tyr 55 His	Gly 40 Gly	Leu Arg Met	Pro Pro Lys	Ile Gly Glu 75	Val Leu 60 Val	Arg 45 Ser Glu	30 Asn His	Ile Met	Ser Thr Leu 80	
Val 65 Gln	Leu 50 Ala Thr	Pro Gly Phe Val	Cys Gln Ser Ala Phe	Asp Val Pro 85 Val	Asn Leu 70 Gly Val	Tyr 55 His Ser Leu	Gly 40 Gly Glu Lys	Leu Arg Met Thr Gly 105	Pro Pro Lys Pro 90 Ser	Ile Gly Glu 75 Ile Gly	Val Leu 60 Val His	Arg 45 Ser Glu Arg	30 Asn His Ile His Tyr	Ile Met Trp Ser 95 Leu	Ser Thr Leu 80 Cys	
Asp Val 65 Gln Glu	Leu 50 Ala Thr Glu	Pro Gly Phe Val His	Cys Gln Ser Ala Phe 100 Gly	Asp Val Pro 85 Val	Asn Leu 70 Gly Val	Tyr 55 His Ser Leu	Gly 40 Gly Glu Lys Gly 120	Leu Arg Met Thr Gly 105 Lys	Pro Pro Lys Pro 90 Ser	Ile Gly Glu 75 Ile Gly	Val Leu 60 Val His Thr	Arg 45 Ser Glu Arg Leu Phe 125	30 Asn His Ile His Tyr 110 Pro	Ile Met Trp Ser 95	Ser Thr Leu 80 Cys Ala	

Asn Thr Gly His Glu Asp Leu Gln Val Leu Val Ile Ile Ser Arg Pro 145 155 Pro Ile Lys Ile Phe Ile Tyr Glu Asp Trp Phe Met Pro His Thr Ala 170 Ala Arg Leu Lys Phe Pro Tyr Tyr Trp Asp Glu Gln Cys Ile Gln Glu 185 Ser Gln Lys Asp Glu Leu 195 <210> 51 <211> 1398 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1398) <400> 51 atg cct cgt cgt acg tgc tgt cgg cgt gaa ttc ggt ccg aca cag Met Pro Arg Arg Arg Thr Cys Cys Arg Arg Glu Phe Gly Pro Thr Gln eca tgt aga ggc geg tea ate aet gga tet eta egt gae egt ega eeg 96 Pro Cys Arg Gly Ala Ser Ile Thr Gly Ser Leu Arg Asp Arg Pro acc gct atc ctt atc gga acc ctc acc gct tta ggc ggt gga gtt aga Thr Ala Ile Leu Ile Gly Thr Leu Thr Ala Leu Gly Gly Val Arg 144 40 tgt ggc tct tgc ccc agt gtc gac cgt tgc gga cac gca agt gcc gcc 192 Cys Gly Ser Cys Pro Ser Val Asp Arg Cys Gly His Ala Ser Ala Ala 55 ata gcg cgt gat agc tgt gcc gtg ttc gca tgg aag cga ggt acg cga Ile Ala Arg Asp Ser Cys Ala Val Phe Ala Trp Lys Arg Gly Thr Arg 240 caa gag tac tgg tgc tcg act gaa ccg acc ctt gac tgg ggc ccc ggt 288 Gln Glu Tyr Trp Cys Ser Thr Glu Pro Thr Leu Asp Trp Gly Pro Gly 90 ggt gga ccc gac ttc gat tgt gat ggt ggt gac gat ccg ctt ttg Gly Gly Pro Asp Phe Asp Cys Asp Asp Gly Gly Asp Asp Pro Leu Leu 105 att caa gat ggc gta aaa gct gcg gag gaa tat gct aaa tct gga aaa Ile Gln Asp Gly Val Lys Ala Ala Glu Glu Tyr Ala Lys Ser Gly Lys 115 120 125

gtt Val	cca Pro 130	Asp	cca Pro	agc Ser	tgt Cys	act Thr 135	Asp	aat Asn	gct Ala	gag Glu	ttt Phe 140	Gln	gtt Val	gtg Val	ctt Leu	432
att Ile 145	TTe	att Ile	agg Arg	gag Glu	ggg Gly 150	ttg Leu	aaa Lys	act Thr	gat Asp	cct Pro 155	Leu	aaa Lys	tac Tyr	act Thr	aag Lys 160	480
Arg	PIO	ser	Cys	165	Val	Gly	Val	Ser	Glu 170	Glu	Thr	Thr	Thr	Gly 175		528
гуѕ	Arg	ser	19r 180	GIn	Met	Gln	Pro	Lys 185	Cys	Thr	ttg Leu	Leu	Leu 190	His	Ala	576
THE	Asp	195	Cys	Asp	Thr	Val	11e 200	Lys	Ser	Lys	att Ile	Asp 205	Asn	Leu	Tyr	624
Gly	210	Arg	nis	ser	ren	215	qaA	Gly	Leu	Met	agg Arg 220	Ala	Thr	Asp	Val	672
225	ALG	PIO	cys	Lys	230	АІА	Leu	Val	Gly	Gly 235	tac Tyr	Gly	Asp	Val	Phe 240	720
цуѕ	GIY	пр	Val	245	Ala	Leu	ГÀЗ	Gln	Ala 250	Gly	gca Ala	Arg	Va1	Ile 255	Val	768
*****	GIU	11e	260	GIN	116	Cys	Ala	Val 265	Gln	Ala	acc Thr	Met	Glu 270	Gly	Ser	816
ser	vaı	275	Thr	Leu	Glu	Asp	Val 280	Val	Ser	Asp	gtt Val	Asp 285	Arg	Phe	Val	864
1111	290	Thr	GTA	Asn	Lys	295	Leu	Ile	Met	Val	gac Asp 300	His	Met	Arg	Arg	912
305	rys	ASN	GIn	Ala	310	Val	Суѕ	Asn	Ile	Arg 315	cgt Arg	Phe	Asp	Asn	Glu 320	960
116	ASP	Mec	Arg	325	Leu	GIu	Thr	Phe	Pro 330	Gly	gtg Val	Lys	Arg	11e 335	Thr	1008
atc Ile	aag Lys	Ala	cag Gln 340	act Thr	gac Asp	aga Arg	Trp	gtc Val 345	ttt Phe	cgc Arg	gac Asp	Thr	aac Asn 350	aga Arg	ggt Gly	1056
atc	att	gtc	cca	gcc	gag	<b>gg</b> g	cgt	ctc	atg	acg	atg	gga	tgc	gcc	act	1104

								360					365			Thr	
	•	370		502	1110	Arg	375	ser	Cys	ser	Phe	380	Asn	Gln	Val	agt Ser	1152
	385			0_0	Deu	390	Arg	GIU	rys	ser	395	Gly	Lys	Tyr	Glu	aag Lys 400	1200
	_		-1-	,	405	110	БуБ	nis.	rea	410	Lys	Lys	Val	Ala	Ala 415	ctt Leu	1248
				420	200	Gry	VTG	ALG	425	Thr	гЛS	Leu	Ser	Arg 430	Cys		1296
	ttg Leu	ttg Leu	tgc Cys 435	acg Thr	gac Asp	gac Asp	cca Pro	gtt Val 440	gaa Glu	ggt Gly	cgt Arg	aaa Lys	gag Glu 445	cct Pro	cct Pro	cac His	1344
	cgt Arg	gct Ala 450	ggc Gly	agc Ser	cct Pro	gaa Glu	ccg Pro 455	tgc Cys	cag Gln	ctg Leu	cag Gln	ctg Leu 460	acc Thr	gtg Val	ttc Phe	agg Arg	1392
	tag 465	taa															1398
	<211 <212	> 52 > 46 > PR > Ar	<b>4</b> T	opsi	s th	alia	na										
I	Met 1	> 52 Pro	Arg		•					10					15		
1	Pro (	Cys .	Arg	Gly .	Ala	Ser	Ile	Thr	Gly	Ser	Leu	Arg	Asp	Arg	Arg	Pro	

Pro Cys Arg Gly Ala Ser Ile Thr Gly Ser Leu Arg Asp Arg Pro 25 30

Thr Ala Ile Leu Ile Gly Thr Leu Thr Ala Leu Gly Gly Gly Val Arg
35 40 45

Cys Gly Ser Cys Pro Ser Val Asp Arg Cys Gly His Ala Ser Ala Ala 50 55 60

Ile Ala Arg Asp Ser Cys Ala Val Phe Ala Trp Lys Arg Gly Thr Arg
65 70 75 80

Gln Glu Tyr Trp Cys Ser Thr Glu Pro Thr Leu Asp Trp Gly Pro Gly 85 90 95

Gly Gly Pro Asp Phe Asp Cys Asp Asp Gly Gly Asp Asp Pro Leu Leu

100 105 110

Ile Gln Asp Gly Val Lys Ala Ala Glu Glu Tyr Ala Lys Ser Gly Lys
115 120 125

Val Pro Asp Pro Ser Cys Thr Asp Asn Ala Glu Phe Gln Val Val Leu 130 135 140

Ile Ile Ile Arg Glu Gly Leu Lys Thr Asp Pro Leu Lys Tyr Thr Lys 145 150 155 160

Arg Pro Ser Cys Leu Val Gly Val Ser Glu Glu Thr Thr Gly Val

Lys Arg Ser Tyr Gln Met Gln Pro Lys Cys Thr Leu Leu His Ala 180 185 190

Thr Asp Val Cys Asp Thr Val Ile Lys Ser Lys Ile Asp Asn Leu Tyr 195 200 205

Gly Cys Arg His Ser Leu Ser Asp Gly Leu Met Arg Ala Thr Asp Val 210 215 220

Arg Arg Pro Cys Lys Val Ala Leu Val Gly Gly Tyr Gly Asp Val Phe 225 230 235 240

Lys Gly Trp Val Ala Ala Leu Lys Gln Ala Gly Ala Arg Val Ile Val 245 250 255

Thr Glu Ile Pro Gln Ile Cys Ala Val Gln Ala Thr Met Glu Gly Ser 260 265 270

Ser Val Leu Thr Leu Glu Asp Val Val Ser Asp Val Asp Arg Phe Val 275 280 285

Thr Thr Gly Asn Lys Asp Leu Ile Met Val Asp His Met Arg Arg 290 295 300

Met Lys Asn Gln Ala Ile Val Cys Asn Ile Arg Arg Phe Asp Asn Glu 305 310 315 320

Ile Asp Met Arg Ser Leu Glu Thr Phe Pro Gly Val Lys Arg Ile Thr 325 330 335

Ile Lys Ala Gln Thr Asp Arg Trp Val Phe Arg Asp Thr Asn Arg Gly 340 345 350

Ile Ile Val Pro Ala Glu Gly Arg Leu Met Thr Met Gly Cys Ala Thr 355 360 365

Gly His Pro Ser Phe Arg Thr Ser Cys Ser Phe Thr Asn Gln Val Ser 370 380

Ser Gln Leu Glu Leu Trp Arg Glu Lys Ser Thr Gly Lys Tyr Glu Lys 385 390 395 400

Lys Val Tyr Val Phe Pro Lys His Leu Glu Lys Lys Val Ala Ala Leu

			400					410					415	
His Leu	Val	Lys 420	Leu	Gly	Ala	Arg	Leu 425	Thr	Lys	Leu	Ser	Arg 430	Суз	Thr
Leu Leu	Суs 435	Thr	Asp	Asp	Pro	Val 440	Glu	Gly	Arg	Lys	Glu 445	Pro	Pro	His
Arg Ala 450	Gly	Ser	Pro	Glu	Pro 455	Суз	Gln	Leu	Gln	Leu 460	Thr	Val	Phe	Arg
<210> 53 <211> 77 <212> DN	1													

<213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(537)

10C

atg ccg cgt aac gtt gct ggt atg tgc gtt gcg tta gaa cga gtc ttc Met Pro Arg Asn Val Ala Gly Met Cys Val Ala Leu Glu Arg Val Phe gac gtc gat gaa att gtc agg tta agg aag agg ttt ttc aag ttg gac Asp Val Asp Glu Ile Val Arg Leu Arg Lys Arg Phe Phe Lys Leu Asp 96 20 aga gat tgt tca gga tca gaa ctt gga agt gag ttc atg agt ttg cct 144 Arg Asp Cys Ser Gly Ser Glu Leu Gly Ser Glu Phe Met Ser Leu Pro 40 caa gtt agt tcg aac cct ctt cgg atg cgt gag atg cgt aat ttc gat 192 Gln Val Ser Ser Asn Pro Leu Arg Met Arg Glu Met Arg Asn Phe Asp 55 aat gat tgc gta ggg agt gtg gat ttt atc gag ttc atc aat gga cgt Asn Asp Cys Val Gly Ser Val Asp Phe Ile Glu Phe Ile Asn Gly Arg 240 tcc agt ttc agt act gtc ggg cag aag aat gct aaa ttg aga ttt gca Ser Ser Phe Ser Thr Val Gly Gln Lys Asn Ala Lys Leu Arg Phe Ala . 90 ccg att atc tat gat tgc gat aaa gat gga cct ata tca aac ggt gag 336 Pro Ile Ile Tyr Asp Cys Asp Lys Asp Gly Pro Ile Ser Asn Gly Glu 100 105 tta ttt agg gtg ttg cgt att atg gtt cat gac aat ctg agt gat aat 384 115 120

Leu Phe Arg Val Leu Arg Ile Met Val His Asp Asn Leu Ser Asp Asn cag ctg cag cgt tgc gat tgc acg cgt agt ggc gga gat aat gac Gln Leu Gln Gln Arg Cys Asp Cys Thr Arg Ser Gly Gly Asp Asn Asp 432

	130					135					140	)				
ggg Gly 145	Asp	ggt Gly	cga Arg	ggt Gly	gcg Ala 150	Lys	aac Asn	ago Ser	ttt Phe	gag Glu 155	Glu	ttt Phe	tac Tyr	ggt Gly	cgt Arg 160	480
ttg Leu	cca Pro	gct Ala	acc Thr	gta Val 165	Arg	cgg Arg	cgt Arg	ccg	tac Tyr 170	Arg	acg Thr	tto Leu	gta ıVal	a ago L Ser 175	ggt Gly	528
gat Asp	gtg Val	taa	agt	tcag	tgc	accg	tgac	cg t	gago	ctgg	a ag	ccto	<b>Jaac</b> c	J		577
ctg	acaa	gcc	ctta	agcc	aa a	aaat	tggc	t ga	ggcc	tgat	gcc	ctga	gat	gcca	.aaggct	637
ttt	tagg	ctt	ttag	agaa	aa a	ggct	aaaa	a aa	aggc	taga	aaa	aaag	gct	ctta	ggcctg	697
ctt	gagc	ctg .	agcc	tgag	cc t	gatc	gatc	a aa	aaaa	aagg	agc	ctti	ttt	tttt	agctaa	757
aaa	aaaa	aag	ctaa													771
<21:	0> 5- 1> 1' 2> PI 3> A:	78 RT	dops	is t	hali	ana .										
	0> 5 Pro		Asn	Val 5	Ala	Gly	Met	Суз	Val 10	Ala	Leu	Glu	Arg	Val 15	Phe	
Asp	Val	Asp	Glu 20	Ile	Val	Arg	Leu	Arg 25	Lys	Arg	Phe	Phe	Lys 30	Leu	Asp	
Arg	Asp	Cys 35	Ser	Gly	Ser	Glu	Leu 40	Gly	Ser	Glu	Phe	Met 45	Ser	Leu	Pro	
Gln	Val 50	Ser	Ser	Asn	Pro	Leu 55	Arg	Met	Arg	Glu	Met 60	Arg	Asn	Phe	Asp	
Asn 65	Asp	Cys	Val	Gly	Ser 70	Val	Asp	Phe	Ile	Glu 75	Phe	Ile	Asn	Gly	Arg 80	
Ser	Ser	Phe	Ser	Thr 85	Val	Gly	Gln	Lys	Asn 90	Ala	Lys	Leu	Arg	Phe 95	Ala	
Pro	Ile	Ile	Tyr 100	Asp	Cys	Asp	Lys	Asp 105	Gly	Pro	Iļe	Ser	Asn 110	Gly	Glu	
Leu	Phe	Arg 115	Val	Leu	Arg	Ile	Met 120	Val	His	Asp	Asn	Leu 125	Ser	Asp	Asn	
Gln	Leu 130	Gln	Gln	Arg	Cys	Asp 135	Cys	Thr	Arg	Ser	Gly 140	Gly	Asp	Asn	Asp	
Gly 145	qzA	Gly	Arg	Gly	Ala 150	Lys	Asn	Ser	Phe	Glu 155	Glu	Phe	Tyr	Gly	Arg 160	

Asp Val <210> 55 <211> 1617 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (10)..(1557) <400> 55 cgctacggt atg cgt acg tca aga aca gga ttt cgg atg cca ttg ggg ccc 51 Met Arg Thr Ser Arg Thr Gly Phe Arg Met Pro Leu Gly Pro tgg gcg gtg aac ccc tgc ttc att gct tcc tgt tcc tgt ctc ctc gtt Trp Ala Val Asn Pro Cys Phe Ile Ala Ser Cys Ser Cys Leu Leu Val 99 ggc ttc ggc gac gca atc ttc tac gag tcg ttc gcc ggg gat ttt gat Gly Phe Gly Asp Ala Ile Phe Tyr Glu Ser Phe Ala Gly Asp Phe Asp 35 gca cgc tgg att tta tcc ggc tca aag tgt ctc tcg gat tcg gcc aag Ala Arg Trp Ile Leu Ser Gly Ser Lys Cys Leu Ser Asp Ser Ala Lys aat gct ggg ttt gat gat tat gga ctt ctt gtg ggt gaa caa gcc agg Asn Ala Gly Phe Asp Asp Tyr Gly Leu Leu Val Gly Glu Gln Ala Arg 70 aag cct cct ata gtc aag gaa ctt gcc gag tct ctc agt cta aag gac Lys Pro Pro Ile Val Lys Glu Leu Ala Glu Ser Leu Ser Leu Lys Asp 291 85 gga aga gtt gtt ctt gag tgt gag act cgc ctt gac cat ggc atc gac Gly Arg Val Val Leu Glu Cys Glu Thr Arg Leu Asp His Gly Ile Asp 339 100 tgt gga ggt ccc tgt att aga tat ctt cga acc cag gag agc gga tgg Cys Gly Gly Pro Cys Ile Arg Tyr Leu Arg Thr Gln Glu Ser Gly Trp 387 115 aaa ttt gac agc tcc acc atg ttt ggt gct gct aag tat ggc gcg agg Lys Phe Asp Ser Ser Thr Met Phe Gly Ala Ala Lys Tyr Gly Ala Arg 435 130 135 agg acc cag ttc ttc ggg ggc cac ccc cag aac cca aac agt ggt gag Arg Thr Gln Phe Phe Gly Gly His Pro Gln Asn Pro Asn Ser Gly Glu 483 145

Leu Pro Ala Thr Val Arg Arg Pro Tyr Arg Thr Leu Val Ser Gly

170

tgt Cys	gtt Val 160	gac Asp	cat His	gat Asp	cac His	aac Asn 165	cag Gln	cgg Arg	gct Ala	tcc Ser	ctc Leu 170	Thr	tcg Ser	gac Asp	aaa Lys	<b>531</b>
175	110	ALG	nea	ıyı	180	GIĀ	TTE	Leu	Ser	Pro 185	Glu	Asn	Glu	Phe	cag Gln 190	579
110	Deu	ata Ile	wap	195	GIY	Leu	GIU	Thr	Lys 200	Ala	Lys	Ile	Phe	Pro 205	Cys	627
OI u	wsb	ttt Phe	210	LI O	Pro	vaı	TIE	Pro 215	Ser	Lys	Arg	Ser	Pro 220	Asp	Asn	675
-10	DCI	aag Lys 225	nrg	1111	Giu	Asp	230	Asp	Glu	Lys	Ala	Lys 235	Ile	Pro	Gly	723
-20	240	gcc Ala	Deu	пуъ	ALG.	245	GIU	ser	Asp	Glu	Asp 250	Pro	Asn	Arg	G1u	771
255	БСЙ	cat	GIU	GLU	260	GIY	Arg	Arg	Ser	Ser 2 <b>6</b> 5	qaA	Val	Gly	Ala	His 270	819
	275	gac Asp	GIII	275	nis	GIU	Pro	GIu	280	Lys	His	Trp	Gly	Ala 285	Glu	867
-3~		ggt Gly	290	Cys	Ara	Pro	Pro	Lys 295	Ile	Glu	Asn	Ala	Lys 300	Arg	Gly	915
	HIG	Pro 305	SET	cys	GIA	vai	310	Glu	Arg	Gln	Thr	Lys 315	Ile	Ser	Pro	963
	320	aag Lys	GIY	пуъ	PIO	325	vai	GIA	Pro	Asn	Val 330	Tyr	Gln	Gly	Ile	1011
335	2,5	ccc Pro	мg	GIU	340	Leu	Asn	Pro	Gly	Ser 345	Phe	Gln	Ile	Ala	Lys 350	1059
		tgt Cys	GIU	355	TIE	AIG	GTA	TIE	360	Met	Glu	Ile	Arg	Lys 365	Gln	1107
ggc	atc Ile	cta Leu	tta Leu 370	gac Asp	act Thr	gtg Val	vaı	ggg Gly 375	gtt Val	agg Arg	GJA aaa	Asp	aca Thr 380	ggt Gly	gaa Glu	1155

gaa Glu	tat Tyr	385 385	gaa Glu	acc Thr	ccg Pro	ttg Leu	aag Lys 390	acc Thr	acg Thr	tgt Cys	acc Thr	gtc Val 395	Glu	aag Lys	cac	1203
agt Ser	ttg Leu 400	cag Gln	gct Ala	caa Gln	gag Glu	gcg Ala 405	aga Arg	acc Thr	cgg Arg	tca Ser	gac Asp 410	gct Ala	ggt Gly	tca Ser	ccc	1251
tac Tyr 415		agg Arg	tac Tyr	gta Val	tct Ser 420	aaa Lys	atc Ile	ccc Pro	GJ y aga	aaa Lys 425	gcc Ala	gat Asp	aat Asn	ccc Pro	ttc Phe 430	1299
tcg Ser	agc Ser	gag Glu	cac His	aaa Lys 435	tgt Cys	aag Lys	aat Asn	ttc Phe	gat Asp 440	ctg Leu	att Ile	gag Glu	gct Ala	gag Glu 445	aaa Lys	1347
cag Gln	tgt Cys	gcc Ala	aat Asn 450	gca Ala	gta Val	atc Ile	ctg Leu	ggt Gly 455	gtt Val	gtg Val	gtt Val	aac Asn	tcc Ser 460	ggt Gly	tca Ser	1 <b>39</b> 5
att Ile	aac Asn	tcc Ser 465	gtt Val	gtg Val	tct Ser	tgg Trp	ggc Gly 470	tac Tyr	aaa Lys	cct Pro	ggc Gly	acg Thr 475	gtg Val	aac Asn	aag Lys	1443
aac Asn	caa Gln 480	gaa Glu	cgc Arg	aga Arg	gca Ala	ccc Pro 485	tcc Ser	cag Gln	cga Arg	cgt Arg	agt Ser 490	agc Ser	gag Glu	att Ile	gaa Glu	1491
gga Gly 495	acc Thr	caa Gln	gac Asp	cga Arg	cga Arg 500	aaa Lys	cag Gln	gat Asp	gtt Val	ggc Gly 505	cga Arg	cgc Arg	caa Gln	gct Ala	gcc Ala 510	1539
agc Ser	tcg Ser	ccc Pro	Arg	cgc Arg 515	tga	taat	taaa	tc c	gato	cgtc	c tt	taac	cccc	!		1587
gttg	rttca	at a	ccgt	tttt	t tt	ttat	ttaa									1617
<211 <212	> 56 > 51 > PR > Ar	5	opsi	s th	alia	na										
<400	> 56															
		Thr	Ser .	Arg 5	Thr (	Gly 1	Phe 1	Arg 1	Met 10	Pro 1	Leu (	Gly :	Pro '	Trp .	Ala	
Val	Asn	Pro (	Cys 20	Phe	Ile A	Ala s	Ser (	Cys : 25	Ser (	Cys 1	Leu 1	Leu '	Val (	Gly :	Phe	

Gly Asp Ala Ile Phe Tyr Glu Ser Phe Ala Gly Asp Phe Asp Ala Arg

Trp Ile Leu Ser Gly Ser Lys Cys Leu Ser Asp Ser Ala Lys Asn Ala

55

114

60

Gly Phe Asp Asp Tyr Gly Leu Leu Val Gly Glu Gln Ala Arg Lys Pro Pro Ile Val Lys Glu Leu Ala Glu Ser Leu Ser Leu Lys Asp Gly Arg 85 Val Val Leu Glu Cys Glu Thr Arg Leu Asp His Gly Ile Asp Cys Gly Gly Pro Cys Ile Arg Tyr Leu Arg Thr Gln Glu Ser Gly Trp Lys Phe 120 Asp Ser Ser Thr Met Phe Gly Ala Ala Lys Tyr Gly Ala Arg Arg Thr Gln Phe Phe Gly Gly His Pro Gln Asn Pro Asn Ser Gly Glu Cys Val 150 155 Asp His Asp His Asn Gln Arg Ala Ser Leu Thr Ser Asp Lys Val Pro Arg Leu Tyr Thr Gly Ile Leu Ser Pro Glu Asn Glu Phe Gln Ile Leu 185 Ile Asp Arg Gly Leu Glu Thr Lys Ala Lys Ile Phe Pro Cys Glu Asp 200 Phe Glu Pro Pro Val Ile Pro Ser Lys Arg Ser Pro Asp Asn Pro Ser 215 220 Lys Arg Thr Glu Asp Ser Asp Glu Lys Ala Lys Ile Pro Gly Pro Ser 230 Ala Leu Lys Arg Gln Glu Ser Asp Glu Asp Pro Asn Arg Glu Ile Leu His Glu Glu Ala Gly Arg Arg Ser Ser Asp Val Gly Ala His Ala Lys 265 Asp Gln Ala His Glu Pro Glu Pro Lys His Trp Gly Ala Glu Lys Asp 280 Gly Glu Cys Ala Pro Pro Lys Ile Glu Asn Ala Lys Arg Gly Ala Ala Pro Ser Cys Gly Val Ser Glu Arg Gln Thr Lys Ile Ser Pro Asn Tyr 310 Lys Gly Lys Pro Ser Val Gly Pro Asn Val Tyr Gln Gly Ile Trp Lys 325 330 Pro Arg Glu Met Leu Asn Pro Gly Ser Phe Gln Ile Ala Lys Pro Ala 340 Cys Glu Pro Ile Ala Gly Ile Gly Met Glu Ile Arg Lys Gln Gly Ile 360 365

Leu Leu Asp Thr Val Val Gly Val Arg Gly Asp Thr Gly Glu Glu Tyr Gly Glu Thr Pro Leu Lys Thr Thr Cys Thr Val Glu Lys His Ser Leu 390 395 Gln Ala Gln Glu Ala Arg Thr Arg Ser Asp Ala Gly Ser Pro Tyr Thr Arg Tyr Val Ser Lys Ile Pro Gly Lys Ala Asp Asn Pro Phe Ser Ser 420 425 Glu His Lys Cys Lys Asn Phe Asp Leu Ile Glu Ala Glu Lys Gln Cys 440 Ala Asn Ala Val Ile Leu Gly Val Val Val Asn Ser Gly Ser Ile Asn 455 Ser Val Val Ser Trp Gly Tyr Lys Pro Gly Thr Val Asn Lys Asn Gln 470 475 480 Glu Arg Arg Ala Pro Ser Gln Arg Arg Ser Ser Glu Ile Glu Gly Thr 485 490 Gln Asp Arg Arg Lys Gln Asp Val Gly Arg Arg Gln Ala Ala Ser Ser Pro Arg Arg 515 <210> 57 <211> 1281 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (13)..(1266) <400> 57 gctccgctcg ct atg agt tgg cga ccc cgg aag aac gtg ccg atg aaa aca 51 Met Ser Trp Arg Pro Arg Lys Asn Val Pro Met Lys Thr cgg gtg acc agg gac ggt tcg ggg ccc gga aaa acc ggt gtc aca cgc Arg Val Thr Arg Asp Gly Ser Gly Pro Gly Lys Thr Gly Val Thr Arg 99 15 ggg tcg tca ccc atg cga tgg gca tgg aag cgg tgg caa gcc gtc ggg Gly Ser Ser Pro Met Arg Trp Ala Trp Lys Arg Trp Gln Ala Val Gly 147 30 35 40

55

195

gca tcg acg gcc cgc acg tgg ttc ggg aca gag aac cag aaa gga ata

Ala Ser Thr Ala Arg Thr Trp Phe Gly Thr Glu Asn Gln Lys Gly Ile

rnr	Thr	ser	fnr 65	Arg	Ala	Arg	Arg	Tyr 70	Ala	. Val	Ser	Ala	Lys 75	Phe	ccg	243
Arg	ren	ser 80	Asn	Lys	Gly	Lys	Asp 85	Tyr	Met	Arg	Cys	Val 90	Leu	Gln	tac Tyr	291
acc Thr	gtc Val 95	aaa Lys	aat Asn	gaa Glu	caa Gln	aaa Lys 100	gtt Val	gat Asp	tgt Cys	ggt Gly	ggc Gly 105	tca Ser	tat Tyr	atc Ile	aag Lys	339
tta Leu 110	tta Leu	cct Pro	tcg Ser	aaa Lys	ttg Leu 115	cgc Arg	acg Thr	ggt Gly	gat Asp	ggt Gly 120	gat Asp	ggc Gly	gtg Val	tca Ser	gaa Glu 125	387
tat Tyr	tca Ser	att Ile	atg Met	ttt Phe 130	ggt Gly	cca Pro	gat Asp	tcg Ser	aca Thr 135	ggt Gly	gca Ala	tca Ser	cgt Arg	act Thr 140	gtt Val	435
cgt Arg	cga Arg	gct Ala	cgc Arg 145	aat Asn	tat Tyr	aag Lys	ggt Gly	aaa Lys 150	cgg	cat His	ttg Leu	cgg Arg	aaa Lys 155	aaa Lys	gaa Glu	483
GIU	ASN	160	Val	Glu	Thr	Asp	Gln 165	Leu	Thr	cat His	Gln	туr 170	Thr	Thr	Ser	531
tgg Trp	tca Ser 175	cca Pro	gat Asp	tgg Trp	acc Thr	tac Tyr 180	aac Asn	gtt Val	cta Leu	gta Val	gat Asp 185	aat Asn	aag Lys	gaa Glu	tcg Ser	579
caa Gln 190	gca Ala	Gly	aac Asn	ctt Leu	gcc Ala 195	gac Asp	gac Asp	tgc Cys	gag Glu	tta Leu 200	ctt Leu	cca Pro	cag Gln	aag Lys	cga Arg 205	627
atc Ile	ttc Phe	cga Arg	ece Pro	agc Ser 210	Cys	cga Arg	aaa Lys	caa Gln	tcc Ser 215	aaa Lys	cca Pro	gtc Val	acc Thr	tgc Cys 220	gta Val	675
gac Asp	gtc Val	aag Lys	cac His 225	cac His	gcc Ala	ccc Pro	cga Arg	cga Arg 230	aat Asn	gtg Val	aaa Lys	Pro	gcc Ala 235	GJA aaa	cac His	<b>723</b>
gat Asp	gac Asp	att Ile 240	cca Pro	gcg Ala	cga Arg	cgg Arg	acg Thr 245	acg Thr	ccg Pro	gaa Glu	gcg Ala	gtc Val 250	cgg Arg	aaa Lys	ggc Gly	771
cgc Arg	acg Thr 255	aac Asn	gag Glu	cga Arg	ccg Pro	gac Asp 260	cgg Arg	acg Thr	tgg Trp	gcg Ala	acc Thr 265	G1y ggg	acg Thr	acc Thr	cca Pro	819
cgg Arg 270	.cca Pro	cgg Arg	cgt Arg	tac Tyr	aag Lys 275	gga Gly	gag Glu	acg Thr	aag Lys	gcc Ala 280	aaa Lys	aag Lys	cac His	Pro	cgg Arg 285	867

ccg gaa ta Pro Glu Ty	290	)	vai inr	Pro Leu 295	Gln As	P Asn Pr	ro Thr DO	5
cca gcc cc Pro Ala Pr	c ccg aac o Pro Asn 305	gac cta Asp Leu	tat cta Tyr Leu 310	ttc ttg Phe Leu	gac ct Asp Le	g ggt go u Gly A: 315	ca gca 96 la Ala	3
ggg aca cg Gly Thr Ar 32	)	, THE ASI	325	Gly Ser	Ile Th	r Asn As )	n Met	11
ata gtg aca Ile Val Th 335	501	·340	ini Ala	Thr Asp	Phe Ser	Glu Ly	s Thr	59
aag gtg gca Lys Val Ala 350	1111	355	GIU Den	Asn Asp 360	Gly Arg	, Asp Al	a Gly 365	<b>)7</b>
acg ggg ato Thr Gly Ile	370	oru Arg	urs cas	375	Glu Arg	Trp Ly 38	s Glu O	55
aca acg gta Thr Thr Val	385	wah cla	390	Ser Ala	Ala Asn	Ala Se 395	r Arg	13
ege ace ggg Arg Thr Gly 400	ozu beu	Ara IIII	405	Thr Met	ctg cct Leu Pro 410	Asp Pr	g ttg 125 o Leu	1
tac gga ccg Tyr Gly Pro 415	gaa taa Glu	aatcgcc	tga tgcct	:	·		128	1
<210> 58 <211> 417 <212> PRT <213> Arabi	dopsis th	naliana			•			
<400> 58								
Met Ser Trp	•			TO		19		
Arg Asp Gly	Ser Gly 20	Pro Gly	Lys Thr 25	Gly Val	Thr Arg	Gly Ser	Ser	

Pro Met Arg Trp Ala Trp Lys Arg Trp Gln Ala Val Gly Ala Ser Thr

Ala Arg Thr Trp Phe Gly Thr Glu Asn Gln Lys Gly Ile Thr Thr Ser

Thr Arg Ala Arg Arg Tyr Ala Val Ser Ala Lys Phe Pro Arg Leu Ser

70

118

Asn Lys Gly Lys Asp Tyr Met Arg Cys Val Leu Gln Tyr Thr Val Lys Asn Glu Gln Lys Val Asp Cys Gly Gly Ser Tyr Ile Lys Leu Leu Pro Ser Lys Leu Arg Thr Gly Asp Gly Asp Gly Val Ser Glu Tyr Ser Ile Met Phe Gly Pro Asp Ser Thr Gly Ala Ser Arg Thr Val Arg Arg Ala 135 Arg Asn Tyr Lys Gly Lys Arg His Leu Arg Lys Lys Glu Gln Asn Lys 150 Val Glu Thr Asp Gln Leu Thr His Gln Tyr Thr Thr Ser Trp Ser Pro 170 Asp Trp Thr Tyr Asn Val Leu Val Asp Asn Lys Glu Ser Gln Ala Gly 185 Asn Leu Ala Asp Asp Cys Glu Leu Leu Pro Gln Lys Arg Ile Phe Arg 200 Pro Ser Cys Arg Lys Gln Ser Lys Pro Val Thr Cys Val Asp Val Lys His His Ala Pro Arg Arg Asn Val Lys Pro Ala Gly His Asp Asp Ile 230 Pro Ala Arg Arg Thr Thr Pro Glu Ala Val Arg Lys Gly Arg Thr Asn 250 Glu Arg Pro Asp Arg Thr Trp Ala Thr Gly Thr Thr Pro Arg Pro Arg 265 Arg Tyr Lys Gly Glu Thr Lys Ala Lys Lys His Pro Arg Pro Glu Tyr Lys Gly Thr Trp Val Thr Pro Leu Gln Asp Asn Pro Thr Pro Ala Pro 300 Pro Asn Asp Leu Tyr Leu Phe Leu Asp Leu Gly Ala Ala Gly Thr Arg Thr Trp Thr Val Lys Ser Gly Ser Ile Thr Asn Asn Met Ile Val Thr 325 330 Thr Ser Val Glu Thr Ala Thr Asp Phe Ser Glu Lys Thr Lys Val Ala Asn Thr Thr Glu Leu Asn Asp Gly Arg Asp Ala Gly Thr Gly Ile 360 Gly Ala Glu Arg His Cys Ala Asp Glu Arg Trp Lys Glu Thr Thr Val 375

Ala 385	Pro	Asp	Суз	Ala	Val 390	. Ser	Ala	Ala	Asr	n Ala 395	a Ser	Arg	g Arg	Thi	Gly 400	
Glu	Leu	Ala	Thr	Pro 405	Val	Thr	Met	Leu	Pro 410	) Asp	Pro	Leu	ı Tyr	Gl ₃	Pro	
Glu																
<21	0> 5 1> 4	16														
	2> D 3> A		dops	is t	hali	ana										
	1> C		(411	}											•	
	0> 5		,	•												
aag Lys 1	gaa Glu	gct Ala	ttt Phe	agc Ser 5	ctc Leu	ttc Phe	gac Asp	aaa Lys	gat Asp 10	Gly	gat Asp	ggt Gly	tgc Cys	atc Ile 15	aca Thr	48
aca Thr	aaa Lys	gag Glu	ctg Leu 20	gga Gly	aca Thr	gtt Val	atg Met	cgt Arg 25	tca Ser	cta Leu	gga Gly	caa Gln	aac Asn 30	cca Pro	aca Thr	96
gag Glu	gct Ala	gag Glu 35	ctc Leu	caa Gln	gac Asp	atg Met	atc Ile 40	aac Asn	gag Glu	gtt Val	gat Asp	gca Ala 45	gat Asp	gga Gly	aac Asn	144
ggc Gly	act Thr 50	atc Ile	gac Asp	ttc Phe	ccc Pro	gag Glu 55	ttc Phe	ctg Leu	aac Asn	ctg Leu	atg Met 60	gct Ala	aag Lys	aag Lys	atg Met	192
aaa Lys 65	gac Asp	act Thr	gac Asp	tcc Ser	gag Glu 70	gaa Glu	gag Glu	cta Leu	aaa Lys	gaa Glu 75	gcc Ala	ttc Phe	agg Arg	gtt Val	ttc Phe 80	240
gac Asp	aaa Lys	gac Asp	cag Gln	aac Asn 85	ggt Gly	ttc Phe	atc Ile	tcc Ser	gct Ala 90	gct Ala	gag Glu	cta Leu	cgc Arg	cat His 95	gtg Val	288
atg Met	acc Thr	aat Asn	ctt Leu 100	ggt Gly	gag Glu	aag Lys	cta Leu	act Thr 105	gat Asp	gaa Glu	gaa Glu	gtg Val	gaa Glu 110	gag Glu	atg Met	336
atc Ile	cgt Arg	gag Glu 115	gct Ala	gat Asp	gtt Val	gat Asp	gga Gly 120	gat Asp	ggt Gly	cag Gln	att Ile	aac Asn 125	tat Tyr	gaa Glu	gag Glu	384
ttt Phe	gtc Val 130	aag Lys	att Ile	atg Met	Met	gct Ala 135	aag Lys	tga	tttg	at						417

```
<210> 60
  <211> 136
  <212> PRT
  <213> Arabidopsis thaliana
  <400> 60
  Lys Glu Ala Phe Ser Leu Phe Asp Lys Asp Gly Asp Gly Cys Ile Thr
                                       10
  Thr Lys Glu Leu Gly Thr Val Met Arg Ser Leu Gly Gln Asn Pro Thr
  Glu Ala Glu Leu Gln Asp Met Ile Asn Glu Val Asp Ala Asp Gly Asn
  Gly Thr Ile Asp Phe Pro Glu Phe Leu Asn Leu Met Ala Lys Lys Met
  Lys Asp Thr Asp Ser Glu Glu Glu Leu Lys Glu Ala Phe Arg Val Phe
                       70
                                           75
  Asp Lys Asp Gln Asn Gly Phe Ile Ser Ala Ala Glu Leu Arg His Val
  Met Thr Asn Leu Gly Glu Lys Leu Thr Asp Glu Glu Val Glu Met
              100
  Ile Arg Glu Ala Asp Val Asp Gly Asp Gly Gln Ile Asn Tyr Glu Glu
                              120
  Phe Val Lys Ile Met Met Ala Lys
      130
  <210> 61
  <211> 6069
  <212> DNA
  <213> Arabidopsis thaliana
  <220>
  <221> CDS
<222> (34)..(173)
  <220>
  <221> CDS
  <222> (282)..(492)
```

<220> <221> CDS

<220> <221> CDS

<222> (539)..(1135)

<222> (1224)..(1320)

```
<220>
 <221> CDS
 <222> (1404)..(1585)
 <220>
 <221> CDS
 <222> (1663)..(1778)
 <220>
 <221> CDS
 <222> (1891)..(1993)
<220>
<221> CDS
<222> (2114)..(2266)
<220>
<221> CDS
<222> (2376)..(2522)
<220>
<221> CDS
<222> (2608)..(2808)
<220>
<221> CDS
<222> (3071)..(3235)
. <220>
<221> CDS
<222> (3315)..(3419)
<220>
<221> CDS
<222> (3519)..(3656)
<220>
<221> CDS
<222> (3742)..(3936)
<220>
<221> CDS
<222> (4061)..(4187)
<220>
<221> CDS
<222> (4268)..(4470)
<220>
<221> CDS
<222> (4556)..(4738)
<220>
<221> CDS
<222> (4809)..(4904)
<220>
```

	1> C 2> (		.) (	5188	1)											
<22														•		
	1> C			- <del></del>			•									
~42	<b>2</b> > (	5509	) (	5780	)											
<22																
	1> C		١ ,	6059												
- 2.2	~ (	3073	, (	0039	)							,				
	0> 6															
cag	accc	act	acaa	tete	tc t	tttt	cttc	g gg	t at Me	g ga t Gl 1	g gg u Gl	y Gl	n Ar	a gg g Gl 5	c agt y Ser	54
aat	tct	tca	++~	200	<b>+</b> - <b>+</b>									_		
Asn	Ser	Ser 10	200	Ser	Ser	ggc	Asn 15	GIY	acc Thr	gaa Glu	gtc Val	gcc Ala 20	Thr	gac Asp	gtt Val	102
tct	tct	tgc	ttc	tat	gtt	CCC	aat	ccc	tat	<b>44</b> 2	200				gcc	
Ser	Ser 25	Суѕ	Phe	Tyr	Val	Pro 30	Asn	Pro	Ser	Gly	Thr 35	Asp	Phe	gat Asp	gcc Ala	150
gag	tcg	tct	tct	ctt	cct	cct	ct .	gtaa	gtct	to t	ttaa	attt	t ta	aaaa	<b>+</b>	202
Glu 40	Ser	Ser	Ser	Leu	Pro 45	Pro	Le				cugu	u	c ca		Catt	203
															tcttag	
tct	ctcg	ete 1	tgtc	acag	c to u Se	er Pi	LU A	ct co la Pi 50	ct caro G	aa g ln V	tg g	la L	tg t eu S 55	ca a er I	tt cct le Pro	315
gcg	gag	ctt	gcc	gcc	gcc	att	ccc	ctc	atc	gat	cac	ttc	CBG	gtt	<b>~</b> ~ ~ ~	262
Ala	G1u 60	Leu	Ala	Ala	Ala	Ile 65	Pro	Leu	Ile	Asp	Arg 70	Phe	Gln	gtt Val	Glu	363
gct	ttt	ctg	cgg	cta	atg	cag	aaa	caa	atc	caσ	tct	act	aaa	aag	cat	411
75	Phe	Leu	Arg	Leu	Met 80	Gln	Lys	Gln	Ile	Gln 85	Ser	Ala	Gly	aag Lys	Arg 90	411
ggc	ttc	ttc	tat	tcc	aaa	aag	tcc	tct	ggc	tcc	aat	atc	cac	gag	cac	459
GIĀ	Pne	Phe	Tyr	Ser 95	Lys	Lys	Ser	Ser	Gly 100	Ser	Asn	Val	Arg	gag Glu 105	Arg	433
ttc	aca	ttt	gag	gat	atg	ctt	tgc	ttt	caa	aaq	attı	tte	tt d	יכפפר	ccttt	512
Phe	Thr	Phe	Glu 110	Asp	Met	Leu	Суз	Phe 1 <b>1</b> 5	Gln	Lys	9000					312
ctto	ccca	tt g	jacaa	tcc	it to	ractg	aat	ato	r tet	ctc	tee				ctt	- <b>-</b> -
							ASI	ı met	120	Leu	Ser	Pro	) Ser	Phe 125	Leu	565
cag	gat	CCa D==	atc	CCC	aca	tct	ctc	ctc	aag	att	aac	agc	gat	ctc	atc	613
GIU	ASP	PLO	11e 130	Pro	Thr	Ser	Leu	Leu 135	Lys	Ile	Asn	Ser	Asp 140	ctc Leu	Val	747

ago Ser	cgt Arg	gct Ala 145	TITE	aag Lys	ttg Leu	ttt Phe	cat His 150	ctc Leu	atc Ile	tta Leu	aaa Lys	tat Tyr 155	atg Met	ggt Gly	gtt Val	661
gat Asp	tca Ser 160	Ser	gat Asp	cga Arg	tct Ser	acg Thr 165	cct Pro	ccc Pro	agt Ser	tta Leu	gat Asp 170	gaa Glu	cgc Arg	att Ile	gac Asp	709
ctc Leu 175	gtt Val	gga Gly	aag Lys	ctc Leu	ttc Phe 180	aaa Lys	aaa . Lys	act Thr	ttg Leu	aag Lys 185	cgt Arg	gtt Val	gaa Glu	ctc Leu	agg Arg 190	757
gac Asp	gaa Glu	ctt Leu	ttt Phe	gcc Ala 195	caa Gln	atc Ile	tcc Ser	aaa Lys	cag Gln 200	act Thr	aga Arg	cat His	aat Asn	Cct Pro 205	gac Asp	805
agg Arg	caa Gln	tac Tyr	ttg Leu 210	atc Ile	aaa Lys	gct Ala	tgg Trp	gaa Glu 215	Leu	atg Met	tac Tyr	tta Leu	tgt Cys 220	gcc Ala	tcc Ser	853
tct Ser	atg Met	cct Pro 225	cct Pro	agc Ser	aaa Lys	gat Asp	atc Ile 230	ggt Gly	gga Gly	tat Tyr	cta Leu	tct Ser 235	gag Glu	tat Tyr	att Ile	901
cat His	aat Asn 240	gtc Val	gca Ala	cac His	gat Asp	gca Ala 245	act Thr	att Ile	gaa Glu	ccg Pro	gat Asp 250	gct Ala	cag Gln	gtt Val	ctt Leu	949
gct Ala 255	gtt Val	aac Asn	act Thr	ttg Leu	aaa Lys 260	gct Ala	tta Leu	aag Lys	cgc Arg	tct Ser 265	atc Ile	aaa Lys	gct Ala	ggt Gly	cct Pro 270	997
agg Arg	cac His	acc Thr	aca Thr	cct Pro 275	ggt Gly	cgt Arg	gaa Glu	gaa Glu	att Ile 280	gaa Glu	gcc Ala	ctt Leu	ttg Leu	acc Thr 285	ggt Gly	1045
aga Arg	aag Lys	ctc Leu	aca Thr 290	acc Thr	att Ile	gtc Val	Pne	ttt Phe 295	ctc Leu	gat Asp	gaa Glu	act Thr	ttt Phe 300	gaa Glu	gaa Glu	1093
att Ile	tca Ser	tat Tyr 305	gac Asp	atg Met	gct Ala	acc Thr	aca Thr 310	gtg Val	tct Ser	gat Asp	gct Ala	gtt Val 315	gag Glu			1135
gtat	cttc	tt g	cttt	cttt	t tt	cata	attt	acc	gctg	atc	atat	tctt	gt c	cctt	tttct	1195
ctca	ctgc	at t	gaca	tctg	t tt	cagg	ag c L	ta g eu A	ct g la G	ly T	ca a hr I 20	tt a le L	aa c ys L	ta t eu S	ca er	1247
gct Ala 325	ttc Phe	tct Ser	agc Ser	File	agt Ser 330	ttg Leu	ttt ( Phe (	gaa Glu (	Cys	cgt Arg 335	aaa Lys	gtt ( Val	gtt Val	Ser	agt Ser 340	1295
tct Ser	aaa Lys	tca Ser	tct Ser	gat Asp	ccc (	gga ( Gly (	aat ( Asn (	g gta G	atgc	tttc	ata	tgac	tgg			1340

cttc	gtca	ata	tatt	gtga	ag t	aata	caac	a tt	atc	gatca	ttt	ttcı	atc	tgtg	cacttg	1400
cag	In (	gaa Slu 850	tat Tyr	ata Ile	gga Gly	Leu	gat Asp 355	gat Asp	aac Asn	aag Lys	tat Tyr	att Ile 360	gga Gly	gat ( Asp )	ctc Leu	1447
neu .	gca Ala 365	gaa Glu	ttt Phe	aaa Lys	gct Ala	att 11e 370	Lys	gac Asp	cga Arg	a aat J Asn	aaa Lys 375	: G1	a gag 7 Glu	ata Ile	cta Leu	1495
cac His 380	tgc Cys	aaa Lys	ctg Leu	gta Val	ttt Phe 385	Lys	aaa Lys	aaa Lys	tta Lev	ttc Phe 390	Arc	gag Glu	tct Ser	gat Asp	gaa Glu 395	1543
gct Ala	gta Val	aca Thr	gat Asp	ctg Leu 400	atg Met	t <b>t</b> t Phe	gtg Val	caa Gln	Leu 405	Ser	tat Tyr	gtt Val	caa Gln			1585
gtga	gcat	tt	tctt	catt	gg t	gaca	ttta	t tt	ccac	acaa	aag	gctt	gcc	tttcg	g <b>tt</b> gct	1645
gaca	caca	ıta	tatgo		ctg Leu 410	caa Gln	cat His	gac Asp	tat Tyr	ttg Leu 415	cta Leu	gga Gly	aac Asn	tat c Tyr E	ect Pro 120	1695
gtt ( Val (	GJA aaa	agg Arg	gac Asp	gat Asp 425	gct Ala	gca Ala	cag G1n	ctt Leu	tgt Cys 430	Ala	t t g Leu	caa Gln	att Ile	ctt Leu 435	gtt Val	1743
ggg a	att Ile	GJA aaa	ttt Phe 440	gtc Val	aat Asn	agt Ser	cca Pro	gag Glu 445	tca Ser	tgc Cys	at Il	gtta	gttt	tc		1788
ttaag	gctc	cg (	catt	gacı	tt ta	attt	tagt	t gt	ccga	tact	tta	tttt	tcc	aattt	tcctc	1848
cctt	aaca	at a	atcat	ttc	et ti	ctc	aatg	t at	caca	<b>t</b> atc	ag	t ga e As	t tg: p Tr; 45:	o Thr	tca Ser	1903
ctt ( Leu I	Leu	gag Glu 455	cgg Arg	ttt Phe	ttg Leu	cca Pro	aga Arg 460	caa Gln	ata Ile	gca Ala	ata Ile	acc Thr 465	cga Arg	gca Ala	aag Lys	1951
egt g Arg (	gaa Glu 470	tgg Trp	gaa Glu	ttg Leu	gat Asp	atc Ile 475	ctt Leu	gct Ala	cgc Arg	tac Tyr	cgt Arg 480	tca Ser	atg Met		·	1993
gtago	gaat	ag t	tcta	tgca	ıt gt	ggat	tgto	c tto	cccc	tttc	taga	ataco	ett t	ggca	aataa	2053
aaaco	ccat	tg a	agtg	atgg	jc at	ggta	aaat	gat	att	tcgt	atgi	gtat	igt g	ggca	tgtag	2113
gag a Glu A	ASII	gtg Val 485	acc Thr	aaa Lys	gat Asp	gat Asp	gca A1a 490	aga Arg	caa G1n	caa Gln	ttt Phe	cta Leu 495	cgg Arg	ata d Ile I	c <b>tg</b> Leu	2161
aag g	gca	ctg	cca	tac	ggg	aat	tca	qtt	ttt	titit	age	αta	cac	224	a <del>t</del> a	2200

Lys	Ala 500	Leu	Pro	Tyr	Gly	Asn 505	Ser	Val	Phe	Phe	Ser 510	Val	Arg	Lys	Ile	
gat Asp 515	gat Asp	ccg Pro	atc	ggt Gly	ctt Leu 520	tta Leu	cct Pro	ggg Gly	cga Arg	atc Ile 525	att Ile	ttg Leu	ggt Gly	atc Ile	aac Asn 530	2257
aaa Lys	cgt Arg	ggg Gly	gtt	gtct	Caa 1	tata	aatg	tt a	taca	ttato	g act	tta	aaaa			2306
aac	tgtta	att (	gttg	tttg	ga a	ttcaa	aatc	t ato	gttgi	ttgg	attt	gaa	ttt (	gttgt	ttgct	2366
ttc	ttgta	ag gt Va	31 A.	ac t is P 35	tt ti he Pl	tt co ne Ai	ga co rg Pi	ro Va	tt co al Pi 40	ct aa co Ly	aa ga /s G]	aa ta lu Ty	yr Le	cg ca eu Hi 15	c tct s Ser	2417
gct Ala	gaa Glu	cta Leu 550	cgt Arg	gac Asp	atc Ile	atg Met	caa Gln 555	ttt Phe	ggc Gly	agc Ser	agt Ser	aac Asn 560	act Thr	gct Ala	gtc Val	2465
ttt Phe	ttc Phe 565	aaa Lys	atg Met	aga Arg	gtc Val	gct Ala 570	ggt Gly	gtt Val	ctt Leu	cac His	ata Ile 575	ttt Phe	cag Gln	ttc Phe	gag Glu	2513
aca Thr 580	aaa Lys	cag Gln	gttt	aaad	cat c	acta	tttg	jt gg	jatca	ttat	att	atga	agc			2562
aatt	cctt	at g	gagat	atto	ca at	ttgg	gtaa	ctt	gtat	gtt	tgta	GJ a ac	ja ga .y Gl	a ga u Gl 58	a att u Ile 5	2619
Cys	vai	VIG	5 <b>9</b> 0	GIN	Thr	HIS	lle.	Asn 595	Asp	Val	Met	Leu	Arg 600	cgt Arg	Tyr	2667
tcc Ser	aaa Lys	gct Ala 605	cga Arg	Ser	gct Ala	ATA	Asn	Cys	ttg Leu	gtt Val	Asn	gga Gly 615	gat Asp	att Ile	tct Ser	2715
tgt Cys	tgt Cys 620	tct Ser	aag Lys	ccg <b>Pro</b>	GIN	aat Asn 625	ttt Phe	gaa Glu	gtg Val	Tyr	gaa Glu : 630	aaa Lys	cgt Arg	ttg ( Leu (	caa Gln	2763
gat Asp 635	ttg Leu	tct Ser	aag Lys	gct Ala	tat Tyr 640	gaa Glu	gag Glu	tcc Ser	Gln	aag Lys : 645	aag a Lys :	att Ile	gag Glu	aag Lys		2808
gtac	acat	tc t	aaca	aatt	t ct	tatt	tatt	ctt	caat	gta a	aaati	tgaa	ta t	aataq	g <b>ag</b> gg	2868
															gttt	
															attgt	
															ttcg	3048
tatg	tttt	at g	ttgt	tgta	t ag	ttg	atg	gat	gaa	caa	caa	gag	aaa	aat	cag	3100

Leu Met Asp Glu Gln Glu Lys Asn Gln 650 655																
caa Gln 660	gaa Glu	gtt Val	act Thr	ctg Leu	cgt Arg 665	gaa Glu	gag Glu	tta Leu	gaa Glu	gct Ala 670	ata Ile	cac His	aat Asn	ggt Gly	ttg Leu 675	3148
gag Glu	ctt Leu	gaa Glu	agg Arg	aga Arg 680	aaa Lys	ttg Leu	ttg Leu	gag Glu	gtt Val 685	act Thr	tta Leu	gac Asp	cga Arg	gat Asp 690	aaa Lys	3196
ctt Leu	agg Arg	tca Ser	ttg Leu 695	tgt Cys	gac Asp	gag Glu	aag Lys	gga Gly 700	acc Thr	cct Pro	att Ile	caa Gln	gtt	agtt.	ata	3245
acci	taact	ctt t	gtct	ttc	tt ti	gat	gctt	ggt	tgaa	gtta	ttta	aatg	att	tatt	ctatat	3305
		70	er Le 05	eu Me	et Se	er G	lu Le 71	eu A: LO	rg G	ly M	et G	lu A 7:	la A 15	rg L	tg gca eu Ala	3356
aag Lys	tcg Ser 720	ggc Gly	aac Asn	acc Thr	aaa Lys	tca Ser 725	agt Ser	aaa Lys	gag Glu	acc Thr	aaa Lys 730	tca Ser	gaa Glu	tta Leu	gcc Ala	3404
gaa Glu 735	atg Met	aat Asn	aat Asn	cag Gln	gtga	aatat	ta t	gtg	tttaa	aa to	ctaat	tcai	t tg	taatı	catt	3459
gagı	tgtt	gt t	tttt	gtto	C Ca	atto	ctgct	tto	cctt	tgac	aatg	gaati	tt.	aagto	cacag	3518
ata Ile 740	tta Leu	tac Tyr	aag Lys	atc Ile	caa Gln 745	aag Lys	gag Glu	tta Leu	gaa Glu	gtt Val 750	cga Arg	aat Asn	aag Lys	gaa Glu	ttg Leu 755	3566
cat His	gtc Val	gca Ala	gtt Val	gat Asp 760	aat Asn	tca Ser	aag Lys	agg Arg	ttg Leu 765	ttg Leu	agt Ser	gaa Glu	aac Asn	aag Lys 770	ata Ile	3614
ttg Leu	gag Glu	caa Gln	aat Asn 775	ctc Leu	aat Asn	att Ile	gaa Glu	aag Lys 780	aag Lys	aaa Lys	aaa Lys	gag Glu	gag Glu 785			3656
															ttgcg	3716
tatt	gttg	ac a	itctc	atta	it tt	cag	gtt Val	gaa Glu	att Ile	cat His	caa Gln 790	aag Lys	aga Arg	tat Tyr	gaa Glu	3768
caa Gln 795	gaa Glu	aaa Lys	aag Lys	gtg Val	tta Leu 800	aag Lys	ctt Leu	cga Arg	gtt Val	tct Ser 805	gaa Glu	ctt Leu	gaa Glu	aat Asn	aag Lys 810	3816
ctt Leu	gaa Glu	gta Val	ctt Leu	gct Ala 815	caa Gln	gac Asp	ttg Leu	gat Asp	agt Ser 820	gct Ala	gag Glu	tct Ser	acg Thr	att Ile 825	gaa Glu	3864

agt aag aat tot gac atg otg otg ttg caa aat aac ttg aaa gaa ott Ser Lys Asn Ser Asp Met Leu Leu Gln Asn Asn Leu Lys Glu Leu 830 835 840	3912
gag gag tta aga gaa atg aaa gag gtaatggtac tettttgtet tetteattat Glu Glu Leu Arg Glu Met Lys Glu 845 850	3966
ttaattttgt ttctgtttga atgatgataa tgtattttcg cgattccaaa ttgaagtag	
gggatgtgtt tacattccaa tttcattttc ttag gac att gac aga aaa aat gac Asp Ile Asp Arg Lys Asn Glo 855	g 4081 u
caa aca gct gcc att ttg aaa atg caa gga gcc caa ctt gct gag cta Gln Thr Ala Ala Ile Leu Lys Met Gln Gly Ala Gln Leu Ala Glu Leu 860 865 870	4129
gaa ata ctt tat aag gaa gaa caa gtt tta agg aaa aga tac tat aat Glu Ile Leu Tyr Lys Glu Glu Gln Val Leu Arg Lys Arg Tyr Tyr Asn 875 880 885	4177
acc ata gaa g gtaacataat gctcaagtat gtacaatgat gttcattgct Thr Ile Glu A 890	4227
tttaaaaaag aattttacta acatttttat ttgattgtag at atg aaa ggg aag sp Met Lys Gly Lys . 895	4281
att aga gtt tat tgt cga ata aga cct cta aat gaa aaa gag agt tca Ile Arg Val Tyr Cys Arg Ile Arg Pro Leu Asn Glu Lys Glu Ser Ser 900 905 910	4329
gag agg gaa aaa caa atg ctg aca act gtg gat gag ttt act gtt gaa Glu Arg Glu Lys Gln Met Leu Thr Thr Val Asp Glu Phe Thr Val Glu 915 920 925	4377
cat gca tgg aaa gac gac aaa aga aag caa cac ata tat gat cgc gta His Ala Trp Lys Asp Asp Lys Arg Lys Gln His Ile Tyr Asp Arg Val 930 935 940 945	4425
Phe Asp Met Arg Ala Ser Gln Asp Asp Ile Phe Glu Asp Thr Lys 950 955 960	4470
gtattattga tatgtaactg tgttcattta cctttcatcc tttgttattt tcttgtggtt	4530
actaacatcg ttttcctttt aacag tat ttg gta cag tcg gct gta gat ggg Tyr Leu Val Gln Ser Ala Val Asp Gly 965	4582
tat aac gtt tgc atc ttt gca tat ggt caa act ggt tct gga aaa act Tyr Asn Val Cys Ile Phe Ala Tyr Gly Gln Thr Gly Ser Gly Lys Thr 970 975 980 985	4630
ttc act ata tat ggg cat gag agc aat cct gga ctc aca cct cga gct	4678

Phe Thr Ile Tyr Gly His Glu Ser Asn Pro Gly Leu Thr Pro Arg Ala 990 995 1000	
aca aag gaa ctg ttc aac ata tta aag cga gat agc aag aga ttt tca Thr Lys Glu Leu Phe Asn Ile Leu Lys Arg Asp Ser Lys Arg Phe Ser 1005 1010 1015	4726
ttt tct cta aag gtaatttgtt atcctaatag atgatgtgat aaaagattat Phe Ser Leu Lys 1020	4778
gacatcaact gactacaaaa agttatgcag gca tat atg gtg gaa ctt tat caa Ala Tyr Met Val Glu Leu Tyr Gln 1025	4832
gac aca ctt gta gac ctt ttg tta cca aaa agt gca aga cgc ttg aaa Asp Thr Leu Val Asp Leu Leu Pro Lys Ser Ala Arg Arg Leu Lys 1030 1035 1040 1045	4880
cta gag att aaa aaa gat tca aag gtattgtgag atatatctat tttaactagg Leu Glu Ile Lys Lys Asp Ser Lys 1050	4934
ttataactag attgtagaca cgtaagtttg atcttatgca taaaatattt tctcag gga Gly	
atg gtc ttt gta gag aat gtg aca act att cct ata tca act ttg gag Met Val Phe Val Glu Asn Val Thr Thr Ile Pro Ile Ser Thr Leu Glu 1055 1060 1065 1070	5041
gaa ctg cga atg att ctt gaa cgg gga tcg gaa cga cga cat gtt tct Glu Leu Arg Met Ile Leu Glu Arg Gly Ser Glu Arg Arg His Val Ser 1075 1080 1085	5089
gga aca aat atg aat gaa gaa agc tca aga tct cac ctc ata tta tca Gly Thr Asn Met Asn Glu Glu Ser Ser Arg Ser His Leu Ile Leu Ser 1090 1095 1100	5137
gtt gtt att gaa agt att gat ctt caa acc cag tct gct gcg agg ggc Val Val Ile Glu Ser Ile Asp Leu Gln Thr Gln Ser Ala Ala Arg Gly 1105 1110 1115	5185
aag gtgacaaaat tcactatgtt tttctttatt gactcattat catttttcac Lys	5238
aggatttagt agcatttagg gattttaagg aaataggagt ttctttagat tttcatgctt	
agtctaccga agaaaaatat agtaacatta atcttgttta agagagatat tattttacag	
ctcaaatctt tggtctggta caaaatgtta aacctttatg tacacaatcc atattattag	
tcaatgatat gccctccatt gttaaaccca tatcacctga tcatggtggt atcttctaca	5478
atattctgaa tttttgtttg ttatttgcag ctg agt ttt gtg gat ctt gct ggt Leu Ser Phe Val Asp Leu Ala Gly 1120 1125	5532

Ser Glu Arg Val Lys Lys Ser Gly Ser Ala Gly Cys Gln Leu Lys 1130 1135 1140	a gaa 5580 s Glu
gct caa agt atc aac aaa tca ctt tct gca tta ggt gat gtt atc Ala Gln Ser Ile Asn Lys Ser Leu Ser Ala Leu Gly Asp Val Ile 1145 1150 1155	t ggt 5628 e Gly
gct tta tct tct ggc aac cag cat att cct tat agg aat cac aag Ala Leu Ser Ser Gly Asn Gln His Ile Pro Tyr Arg Asn His Lys 1160 1165 1170	g cta 5676 s Leu 1175
acg atg ttg atg agc gat tca ttg ggc ggc aat gcc aag acg tta Thr Met Leu Met Ser Asp Ser Leu Gly Gly Asn Ala Lys Thr Leu 1180 1185 1190	u Met
Phe Val Asn Val Ser Pro Ala Glu Ser Asn Leu Asp Glu Thr Tyr 1195 1200 1205	c aat 5772 r Asn
tct ctt ct gtaagtcatg agttcccata tatatataac ataaatcaaa tatg Ser Leu Le	gcttagt 5830
gtaaaaatgg ataatccata ttgttttttt ttcctccttt gattccag a tat u Tyr 1210	
tcg aga gtg aga acg atc gtg aat gat ccc agc aaa cat ata tca Ser Arg Val Arg Thr Ile Val Asn Asp Pro Ser Lys His Ile Ser 1215 1220 1225	s Ser
aaa gag atg gtg cga ttg aag aag ttg gta gca tac tgg aaa gag Lys Glu Met Val Arg Leu Lys Lys Leu Val Ala Tyr Trp Lys Glu 1230 1235 1240	Gln
gcc ggt aaa aaa ggt gag gaa gaa gac ttg gtg gat att gag gaa Ala Gly Lys Lys Gly Glu Glu Glu Asp Leu Val Asp Ile Glu Glu 1245 1250 1255	gat 6029 Asp 1260
cgt aca cga aaa gat gag gca gat agt tga agaaagctga c Arg Thr Arg Lys Asp Glu Ala Asp Ser 1265 1270	6070
-21 n. Ca	

<210> 62

<211> 1269

<212> PRT

<213> Arabidopsis thaliana

<400> 62

Met Glu Gly Gln Arg Gly Ser Asn Ser Ser Leu Ser Ser Gly Asn Gly

1 10 15

Thr Glu Val Ala Thr Asp Val Ser Ser Cys Phe Tyr Val Pro Asn Pro 20 25 30

Ser Gly Thr Asp Phe Asp Ala Glu Ser Ser Ser Leu Pro Pro Leu Ser

35

40

45

Pro Ala Pro Gln Val Ala Leu Ser Ile Pro Ala Glu Leu Ala Ala Ala 55 Ile Pro Leu Ile Asp Arg Phe Gln Val Glu Ala Phe Leu Arg Leu Met Gln Lys Gln Ile Gln Ser Ala Gly Lys Arg Gly Phe Phe Tyr Ser Lys Lys Ser Ser Gly Ser Asn Val Arg Glu Arg Phe Thr Phe Glu Asp Met 105 Leu Cys Phe Gln Lys Asn Met Ser Leu Ser Pro Ser Phe Leu Gln Asp Pro Ile Pro Thr Ser Leu Leu Lys Ile Asn Ser Asp Leu Val Ser Arg Ala Thr Lys Leu Phe His Leu Ile Leu Lys Tyr Met Gly Val Asp Ser 150 Ser Asp Arg Ser Thr Pro Pro Ser Leu Asp Glu Arg Ile Asp Leu Val 165 170 Gly Lys Leu Phe Lys Lys Thr Leu Lys Arg Val Glu Leu Arg Asp Glu 185 Leu Phe Ala Gln Ile Ser Lys Gln Thr Arg His Asn Pro Asp Arg Gln Tyr Leu Ile Lys Ala Trp Glu Leu Met Tyr Leu Cys Ala Ser Ser Met Pro Pro Ser Lys Asp Ile Gly Gly Tyr Leu Ser Glu Tyr Ile His Asn 230 Val Ala His Asp Ala Thr Ile Glu Pro Asp Ala Gln Val Leu Ala Val 250 Asn Thr Leu Lys Ala Leu Lys Arg Ser Ile Lys Ala Gly Pro Arg His Thr Thr Pro Gly Arg Glu Glu Ile Glu Ala Leu Leu Thr Gly Arg Lys 280 Leu Thr Thr Ile Val Phe Phe Leu Asp Glu Thr Phe Glu Glu Ile Ser 295 Tyr Asp Met Ala Thr Thr Val Ser Asp Ala Val Glu Leu Ala Gly Thr 315 Ile Lys Leu Ser Ala Phe Ser Ser Phe Ser Leu Phe Glu Cys Arg Lys 325 330 Val Val Ser Ser Ser Lys Ser Ser Asp Pro Gly Asn Glu Glu Tyr Ile

340 345 350

Gly Leu Asp Asp Asn Lys Tyr Ile Gly Asp Leu Leu Ala Glu Phe Lys 355 360 365

Ala Ile Lys Asp Arg Asn Lys Gly Glu Ile Leu His Cys Lys Leu Val 370 380

Phe Lys Lys Lys Leu Phe Arg Glu Ser Asp Glu Ala Val Thr Asp Leu 385 390 395 400

Met Phe Val Gln Leu Ser Tyr Val Gln Leu Gln His Asp Tyr Leu Leu 405 410 415

Gly Asn Tyr Pro Val Gly Arg Asp Asp Ala Ala Gln Leu Cys Ala Leu 420 425 430

Gln Ile Leu Val Gly Ile Gly Phe Val Asn Ser Pro Glu Ser Cys Ile 435 440 445

Asp Trp Thr Ser Leu Leu Glu Arg Phe Leu Pro Arg Gln Ile Ala Ile 450 455 460

Thr Arg Ala Lys Arg Glu Trp Glu Leu Asp Ile Leu Ala Arg Tyr Arg 465 470 475 480

Ser Met Glu Asn Val Thr Lys Asp Asp Ala Arg Gln Gln Phe Leu Arg 485 490 495

Ile Leu Lys Ala Leu Pro Tyr Gly Asn Ser Val Phe Phe Ser Val Arg 500 505 510

Lys Ile Asp Asp Pro Ile Gly Leu Leu Pro Gly Arg Ile Ile Leu Gly 515 520 525

Ile Asn Lys Arg Gly Val His Phe Phe Arg Pro Val Pro Lys Glu Tyr 530 540

Leu His Ser Ala Glu Leu Arg Asp Ile Met Gln Phe Gly Ser Ser Asn 545 550 550 560

Thr Ala Val Phe Phe Lys Met Arg Val Ala Gly Val Leu His Ile Phe 565 570 575

Gln Phe Glu Thr Lys Gln Gly Glu Glu Ile Cys Val Ala Leu Gln Thr 580 585 590

His Ile Asn Asp Val Met Leu Arg Arg Tyr Ser Lys Ala Arg Ser Ala 595 600 605

Ala Asn Cys Leu Val Asn Gly Asp Ile Ser Cys Cys Ser Lys Pro Gln 610 615 620

Asn Phe Glu Val Tyr Glu Lys Arg Leu Gln Asp Leu Ser Lys Ala Tyr 625 630 635 640

Glu Glu Ser Gln Lys Lys Ile Glu Lys Leu Met Asp Glu Gln Glu

645 650 655

Lys Asn Gln Glu Val Thr Leu Arg Glu Glu Leu Glu Ala Ile His 660 665 670

Asn Gly Leu Glu Leu Glu Arg Lys Leu Leu Glu Val Thr Leu Asp 675 680 685

Arg Asp Lys Leu Arg Ser Leu Cys Asp Glu Lys Gly Thr Pro Ile Gln 690 695 700

Ser Leu Met Ser Glu Leu Arg Gly Met Glu Ala Arg Leu Ala Lys Ser 705 710 715 720

Gly Asn Thr Lys Ser Ser Lys Glu Thr Lys Ser Glu Leu Ala Glu Met 725 730 735

Asn Asn Gln Ile Leu Tyr Lys Ile Gln Lys Glu Leu Glu Val Arg Asn 740 745 750

Lys Glu Leu His Val Ala Val Asp Asn Ser Lys Arg Leu Leu Ser Glu 755 760 765

Asn Lys Ile Leu Glu Gln Asn Leu Asn Ile Glu Lys Lys Lys Glu 770 780

Glu Val Glu Ile His Gln Lys Arg Tyr Glu Gln Glu Lys Lys Val Leu 785 790 795 800

Lys Leu Arg Val Ser Glu Leu Glu Asn Lys Leu Glu Val Leu Ala Gln 805 810 815

Asp Leu Asp Ser Ala Glu Ser Thr Ile Glu Ser Lys Asn Ser Asp Met 820 825 830

Leu Leu Gln Asn Asn Leu Lys Glu Leu Glu Glu Leu Arg Glu Met 835 840 845

Lys Glu Asp Ile Asp Arg Lys Asn Glu Gln Thr Ala Ala Ile Leu Lys 850 855 860

Met Gln Gly Ala Gln Leu Ala Glu Leu Glu Ile Leu Tyr Lys Glu Glu 865 870 875 880

Gln Val Leu Arg Lys Arg Tyr Tyr Asn Thr Ile Glu Asp Met Lys Gly 885 890 895

Lys Ile Arg Val Tyr Cys Arg Ile Arg Pro Leu Asn Glu Lys Glu Ser 900 905 910

Ser Glu Arg Glu Lys Gln Met Leu Thr Thr Val Asp Glu Phe Thr Val 915 920 925

Glu His Ala Trp Lys Asp Asp Lys Arg Lys Gln His Ile Tyr Asp Arg 930 935 940

Val Phe Asp Met Arg Ala Ser Gln Asp Asp Ile Phe Glu Asp Thr Lys

945					950					955	•			•	960
Tyr	Leu	Va1	Gln	Ser 965	Ala	Val	Asp	Gly	Tyr 970	Asn	Val	Cys	Ile	Phe 975	Ala
Tyr	Gly	Gln	980	Gly	Ser	Gly	Lys	Thr 985	Phe	Thr	lle	Tyr	990 Gly		Glu
Ser	Asn	Pro 995	Gly	Leu	Thr	Pro	Arg 1000	Ala	Thr	Lys	Glu	Leu 1005		Asn	Ile
Leu :	Lys 1010	Arg	Asp	Ser	Lys	Arg 1015	Phe	Ser	Phe	Ser	Leu 1020	Lys	Ala	Tyr	Met
023					1030					1035					Ser 1040
				1045					1050					Met 1055	
			1000					1065					1070		Leu
	•	1075					1080					1085			Thr
Asn 1	Met 1090	Asn	Glu	G1u	Ser	Ser 1095	Arg	Ser	His	Leu	Ile 1100	Leu	Ser	Va1	Va1
103				•	LIIO					1115					120
			•	1125					1130				]	Gly 135	
Ala	G1y	Cys	G1n 1140	Leu	Lys	Glu	Ala J	Gln L145	Ser	Ile	Asn		Ser L150	Leu	Ser
Ala	Leu J	Gly L155	Asp	Va1	Ile	Gly	Ala 160	Leu	Ser	Ser	Gly	Asn 1165	G1n	His	Ile
Pro 1	Tyr 170	Arg	Asn	His	Lys ]	Leu 175	Thr	Met	Leu	Met 1	Ser 180	Asp	Ser	Leu	Gly
Gly 185	Asn	Ala	Lys	Thr 1	Leu 190	Met	Phe	Val	Asn 1	Val .195	Ser	Pro	Ala		Ser 200
Asn	Leu	Asp	Glu I	Thr 1205	Туг	Asn	Ser	Leu 1	Leu .210	Tyr	Ala	Ser		Val 215	Arg
Thr	Ile	Val 1	Asn 220	Asp	Pro	Ser	Lys 1	His 225	Ile	Ser	Ser		Glu 230	Met	Val
Arg	Leu 1	Lys .235	Lys	Leu	Va1	Ala 1	Tyr 240	Trp	Lys	Glu		A1a 245	Gly	Lys	Lys
Gly	Glu	Glu	Glu	Asp	Leu	Val	Asp	Ile	Glu	Glu	Asp	Arg	Thr .	Arg :	Lys

1250 1255 1260

Asp Glu Ala Asp Ser 265

<210> 63 <211> 2105 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1947) atg aat aca gat aaa atg acc aag atg gat cta acg ggg tcc aat aac Met Asn Thr Asp Lys Met Thr Lys Met Asp Leu Thr Gly Ser Asn Asn gtg ccc att aat cca ccg acc act aag cgt gat ctt aga cag aat gat Val Pro Ile Asn Pro Pro Thr Thr Lys Arg Asp Leu Arg Gln Asn Asp 25 aat aat aac cct aag agt cat aat agt cat aat agc aat ggg atg act Asn Asn Asn Pro Lys Ser His Asn Ser His Asn Ser Asn Gly Met Thr 40 ggt aac agg aac aat aat aaa aat gcc ggc gga gtt gaa act agt 192 Gly Asn Arg Asn Asn Asn Lys Asn Ala Gly Gly Val Glu Thr Ser aaa aaa gcg cgc tca cga ctg gaa aca cat ccc cga gat aat gag aat 240 Lys Lys Ala Arg Ser Arg Leu Glu Thr His Pro Arg Asp Asn Glu Asn aat tac aga cta gct aca agt gcc ggt acg aaa gga ggt gcg cga acc 288 Asn Tyr Arg Leu Ala Thr Ser Ala Gly Thr Lys Gly Gly Ala Arg Thr 90 gtt gac gta cca gtc ata tta agt acc cgg gaa tca caa ggc aca cgt Val Asp Val Pro Val Ile Leu Ser Thr Arg Glu Ser Gln Gly Thr Arg tca gta aat gca aca agt aaa att aga tgc ccg gat tcc act gca att 384 Ser Val Asn Ala Thr Ser Lys Ile Arg Cys Pro Asp Ser Thr Ala Ile 120 tgc gag tgg ttc gcc acg ccc acg gat cct caa aga cca gga gtt tat Cys Glu Trp Phe Ala Thr Pro Thr Asp Pro Gln Arg Pro Gly Val Tyr 130 135 aac cac aag aac ggc gac aaa aac aac aga gat acc ggg aac att aat Asn His Lys Asn Gly Asp Lys Asn Asn Arg Asp Thr Gly Asn Ile Asn

acc Thr	gtt Val	agc Ser	agt Ser	cta Leu 165	met	gat Asp	aat Asn	gct Ala	agg Arg 170	rGly	ccg Pro	aac Asn	cco Pro	cga Arg 175	tct Ser	528
Gly ggg	att Ile	tca Ser	ata Ile 180	ccg Pro	aca Thr	Pro	acc Thr	tct Ser 185	aga Arg	Caa G1n	tcc Ser	cca Pro	agt Ser 190	Glu	aca Thr	576
cct Pro	cca Pro	gat Asp 195	cca Pro	ctg Leu	cag Gln	aat Asn	cct Pro 200	Asn	aat Asn	tat Tyr	act Thr	agg Arg 205	Tyr	cat His	aat Asn	624
gat Asp	aaa Lys 210	aac Asn	agc Ser	aag Lys	aat Asn	agt Ser 215	aac Asn	aga Arg	aac Asn	tac Tyr	aat Asn 220	Lys	aga Arg	aat Asn	aag Lys	672
aac Asn 225	tcg Ser	acg Thr	acc Thr	ttt Phe	aat Asn 230	aac Asn	tcg Ser	gac Asp	ctt Leu	cct Pro 235	Gly	cat His	aat Asn	aga Arg	agc Ser 240	720
tcc Ser	cct Pro	gcg Ala	att Ile	aat Asn 245	gca Ala	gta Val	aaa Lys	tca Ser	gca Ala 250	tca Ser	aat Asn	cga Arg	tca Ser	tct Ser 255	gct Ala	768
ata Ile	ggt Gly	agt Ser	cga Arg 260	aac Asn	agt Ser	gat Asp	tta Leu	aac Asn 265	aat Asn	gct Ala	gct Ala	aat Asn	gat Asp 270	gaa Glu	cgc Arg	816
cat His	tac Tyr	gct Ala 275	aga Arg	tcg Ser	gga Gly	aca Thr	tat Tyr 280	cag Gln	ata Ile	aac Asn	gct Ala	gta Val 285	aca Thr	gta Val	ctt Leu	864
aga Arg	gta Val 290	tta Leu	gga Gly	aga Arg	gga Gly	gca Ala 295	cgg Arg	<b>c</b> gt <b>A</b> rg	gat Asp	gta Val	aag Lys 300	tca Ser	gca Ala	tat Tyr	cat	912
ggc Gly 305		tgt Cys	ggt Gly	aca Thr	ggt Gly 310	ccc Pro	cgg Arg	atg Met	aaa Lys	gtg Val 315	ata Ile	aca Thr	ttg Leu	gct Ala	gtt Val 320	960
caa G1n	gag Glu	aat Asn	att Ile	aga Arg 325	aac Asn	cga Arg	att Ile	ata Ile	ttg Leu 330	gag Glu	cta Leu	cgg Arg	aca Thr	tta Leu 335	cac His	1008
aag Lys	acc Thr	tct Ser	tat Tyr 340	caa Gln	tat Tyr	atc Ile	gtt Val	ccg Pro 345	tat Tyr	tat Tyr	gat Asp	Gly ggg	atc Ile 350	tat Tyr	aca Thr	1056
gag Glu	ggc	tca Ser 355	att Ile	ttc Phe	att Ile	cgg Arg	atg Met 360	gtg Val	gaa Glu	ctt Leu	gga Gly	tgg Trp 365	gta Va1	acg Thr	aat Asn	1104
atc Ile	atg Met 370	aac Asn	aaa Lys	acg Thr	gcg Ala	acc Thr 375	ata I1e	cgt Arg	gcg Ala	ccg Pro	gtt Val 380	ttg Leu	ggt Gly	acg Thr	atg Met	1152
gca	ttt	cta	gtg	tta	caa	ggt	cgg	att	tac	gtt	cac	aga	aag	ttc	gat	1200

363					390					395					Asp 400	
ьуs	Суѕ	ccg Pro	Ser	Lys 405	Arg	Asp	Tle	Lys	Pro 410	Ser	Asp	Ile	Leu	Val 415	Asn	1248
Asn	GIU	GIĀ	Arg 420	Ala	Lys	Ile	Ala	Gly 425	Phe	Gly	Val	Ser	Gly 430	Gln	tta Leu	1296
GIN	HIS	act Thr 435	ren	Ser	Lys	Asp	Val 440	Thr	Ser	Val	Glu	Ser 445	Pro	Glu	Arg	1344
Arg	450	ggt Gly	Arg	Ser	Tyr	Gly 455	Phe	Asp	Arg	qaA	Ile 460	Trp	Ser	Asp	Gly	1392
465	Thr	cgt Arg	Val	Ser	Cys 470	Ala	Ile	Gly	Arg	Phe 475	Pro	Tyr	Ala	Суѕ	Asn 480	1440
TYL	PIO	caa Gln	GIN	485	Pro	GIn	Ala	Ser	Gln 490	His	Gln	Leu	Gln	Gln 495	Gln	1488
GIN	GIN	aaa Lys	500	Pro	Ala	Leu	Gln	Pro 505	Lys	Gln	Glu	Gln	Pro 510	Glu	Val	1536
GIU	гуs	cac His 515	Arg	Leu	Gln	Ile	Pro 520	Arg	Gln	Asn	Leu	A1a 525	Val	Tyr	Asn	1584
agt Ser	aat Asn 530	cac His	gat Asp	ata Ile	tgg Trp	aat Asn 535	aat Asn	cgc Arg	aat Asn	aga Arg	gat Asp 540	aaa Lys	tat Tyr	att Ile	att Ile	1632
agt Ser 545	aac Asn	aat Asn	cct Pro	aat Asn	aat Asn 550	agg Arg	aat Asn	gat Asp	aat Asn	aat Asn 555	aac Asn	act Thr	gta Val	tgc Cys	gat Asp 560	1680
cta Leu	agc Ser	agt Ser	ggc Gly	gag Glu 565	tta Leu	ggt Gly	gaa Glu	agt Ser	cgt Arg 570	gag Glu	gtt Val	gtg Val	cca Pro	gac Asp 575	ggt Gly	1728
atc Ile	ggg Gly	ttg Leu	gag Glu 580	gta Val	ctt Leu	cta Leu	gat Asp	tct Ser 585	atc Ile	gta Val	aaa Lys	gaa Glu	gag Glu 590	gta Val	cga Arg	1776
atg Met	gaa Glu	cca Pro 595	tca Ser	aca Thr	gtt Val	tcg Ser	aag Lys 600	gaa Glu	ttt Phe	agg Arg	tcg Ser	atc Ile 605	att Ile	tct Ser	gaa Glu	1824
tgt Cys	tta Leu	cga Arg	aac Asn	gat Asp	gca Ala	act Thr	gaa Glu	aga Arg	caa Gln	aca Thr	gct Ala	tca Ser	aac Asn	tta Leu	gta Val	1872

610 615 620

aat cac gaa ttt gta aag aaa tat caa aag tac aat cgt gaa aaa tgg 1920 Asn His Glu Phe Val Lys Lys Tyr Gln Lys Tyr Asn Arg Glu Lys Trp 625 630 640

acc gca gat tta caa agg tgg caa taa aaatcgcett cacgcetgat 1967
Thr Ala Asp Leu Gln Arg Trp Gln
645

cgctgacgct cgacgcctgc cccagcctg cagctcgccc agctcgccca ggctcgccca 2027

gcctgcccac cagcctgccc caccgctcca cgcctaaata ataaaaaattt ttaaaaaaaa 2087

aaaaaaaaa aaaccgct 2105

<210> 64

<211> 648

<212> PRT

<213> Arabidopsis thaliana

<400> 64

Met Asn Thr Asp Lys Met Thr Lys Met Asp Leu Thr Gly Ser Asn Asn 1 5 10 15

Val Pro Ile Asn Pro Pro Thr Thr Lys Arg Asp Leu Arg Gln Asn Asp 20 25 30

Asn Asn Asn Pro Lys Ser His Asn Ser His Asn Ser Asn Gly Met Thr 35 40 45

Gly Asn Arg Asn Asn Asn Lys Asn Ala Gly Gly Val Glu Thr Ser
50 55 60

Lys Lys Ala Arg Ser Arg Leu Glu Thr His Pro Arg Asp Asn Glu Asn 65 70 75 80

Asn Tyr Arg Leu Ala Thr Ser Ala Gly Thr Lys Gly Gly Ala Arg Thr 85 90 95

Val Asp Val Pro Val Ile Leu Ser Thr Arg Glu Ser Gln Gly Thr Arg 100 105 110

Ser Val Asn Ala Thr Ser Lys Ile Arg Cys Pro Asp Ser Thr Ala Ile 115 120 125

Cys Glu Trp Phe Ala Thr Pro Thr Asp Pro Gln Arg Pro Gly Val Tyr 130 135 140

Asn His Lys Asn Gly Asp Lys Asn Asn Arg Asp Thr Gly Asn Ile Asn 145 150 155 160

Thr Val Ser Ser Leu Met Asp Asn Ala Arg Gly Pro Asn Pro Arg Ser 165 170 175

Gly Ile Ser Ile Pro Thr Pro Thr Ser Arg Gln Ser Pro Ser Glu Thr

180 185 190 Pro Pro Asp Pro Leu Gln Asn Pro Asn Asn Tyr Thr Arg Tyr His Asn 200 Asp Lys Asn Ser Lys Asn Ser Asn Arg Asn Tyr Asn Lys Arg Asn Lys 215 220 Asn Ser Thr Thr Phe Asn Asn Ser Asp Leu Pro Gly His Asn Arg Ser Ser Pro Ala Ile Asn Ala Val Lys Ser Ala Ser Asn Arg Ser Ser Ala 245 Ile Gly Ser Arg Asn Ser Asp Leu Asn Asn Ala Ala Asn Asp Glu Arg 265 His Tyr Ala Arg Ser Gly Thr Tyr Gln Ile Asn Ala Val Thr Val Leu 275 Arg Val Leu Gly Arg Gly Ala Arg Arg Asp Val Lys Ser Ala Tyr His Gly Thr Cys Gly Thr Gly Pro Arg Met Lys Val Ile Thr Leu Ala Val 310 Gln Glu Asn Ile Arg Asn Arg Ile Ile Leu Glu Leu Arg Thr Leu His Lys Thr Ser Tyr Gln Tyr Ile Val Pro Tyr Tyr Asp Gly Ile Tyr Thr 345 Glu Gly Ser Ile Phe Ile Arg Met Val Glu Leu Gly Trp Val Thr Asn 360 Ile Met Asn Lys Thr Ala Thr Ile Arg Ala Pro Val Leu Gly Thr Met 380 Ala Phe Leu Val Leu Gln Gly Arg Ile Tyr Val His Arg Lys Phe Asp 385 395 Lys Cys Pro Ser Lys Arg Asp Ile Lys Pro Ser Asp Ile Leu Val Asn 410 Asn Glu Gly Arg Ala Lys Ile Ala Gly Phe Gly Val Ser Gly Gln Leu Gln His Thr Leu Ser Lys Asp Val Thr Ser Val Glu Ser Pro Glu Arg 440 Arg Ser Gly Arg Ser Tyr Gly Phe Asp Arg Asp Ile Trp Ser Asp Gly 455 460 Ile Thr Arg Val Ser Cys Ala Ile Gly Arg Phe Pro Tyr Ala Cys Asn 475 Tyr Pro Gln Gln Leu Pro Gln Ala Ser Gln His Gln Leu Gln Gln

				485					49	0				49	5	
Gln	Gln	Lys	Arg 500	Pro	Ala	Leu	Glr	Pro 505	Ly:	s Glr	n Glu	u Gli	n Pr 51		u Val	
Glu	Lys	His 5 <b>1</b> 5	Arg	Leu	Gln	Ile	Pro 520	Arç	g Gli	n Asr	ı Leı	ı Ala 525	a Va	1 <b>Ty</b> :	r Asn	
Ser	Asn 530	His	Asp	Ile	Trp	Asn 535	Asn	Arg	g Ası	n Arg	y Asp 540	p Lys	3 Ty:	r Il	e Ile	
Ser 545	Asn	Asn	Pro	Asn	<b>Asn</b> 550	Arg	Asn	. Asp	) Ası	n Asr 555	Asr	Thr	Va:	l Cy:	8 Asp 560	
Leu	Ser	Ser	Gly	Glu 565	Leu	Gly	Glu	Ser	570	្ស Glu )	ı Val	. Val	Pro	Asp 575	Gly	
Ile	Gly	Leu	Glu 580	Val	Leu	Leu	Asp	Ser 585	Ile	val	Lys	Glu	Gli 590		Arg	
Met	Glu	Pro 595	Ser	Thr	Val	Ser	Lys 600	Glu	Phe	Arg	Ser	11e 605	Ile	e Ser	Glu	
						012	_				620				Val	
Asn 625	His	Glu	Phe	Val	Lys 630	Lys	Tyr	Gln	Lys	Tyr 635	Asn	Arg	Glu	Lys	Trp 640	
Thr	Ala	Asp	Leu	Gl'n 645	Arg	Trp	Gln									
<213 <213 <213 <220 <221	0> 65 1> 92 2> DN 3> Ar 1> CD 2> (2	0 IA Cabid			nalia	ına				·						
	)> 65		(307	,												
			ggcc	gtcg	g at	tca	atg Met 1	gaa Glu	gga Gly	tta Leu	gct Ala 5	atc Ile	aga Arg	gca Ala	tct Ser	· 52
cga Arg 10	ccg Pro	tcg Ser	gtt Val	ttc Phe	tgt Cys 15	tct ( Ser )	att Ile	cca Pro	ggt Gly	ctc Leu 20	ggc Gly	ggc Gly	gat Asp	tcc Ser	cac His 25	100
cga Arg	aaa Lys	cct ( Pro	cca Pro	agt Ser 30	gac Asp	ggt   Gly	ttc Phe	ctc Leu	aag Lys 35	ctg Leu	cct Pro	gcg Ala	tcg Ser	tct Ser 40	att Ile	148
ccg	gcg	gac a	agc :	cga .	aaa	tta ç	gta (	aca	aat	tet	act	tee	+++	cat	665	100

Pro	Ala	Asp	Ser 45	Arg	Lys	Leu	Val	Ala 50	Asn	Ser	Thr	Ser	Phe 55		Pro	
atc Ile	tca Ser	gcc Ala 60	gtt Val	aac Asn	gtc Val	tct Ser	gct Ala 65	caa Gln	gct Ala	tcc Ser	ctc	acc Thr 70	gct Ala	gat Asp	ttt Phe	244
ccc Pro	gcc Ala 75	ctt Leu	tca Ser	gaa Glu	act Thr	ata Ile 80	ctg Leu	aaa Lys	gag Glu	gga Gly	aga Arg 85	Asn	aac Asn	gga Gly	aaa Lys	292
gag Glu 90	aaa Lys	gca Ala	gag Glu	aac Asn	atc Ile 95	gtg Val	tgg Trp	cac His	gag Glu	agt Ser 100	tcg Ser	ata Ile	tgc Cys	aga Arg	tgc Cys 105	340
gac Asp	aga Arg	caa Gln	caa Gln	ctt Leu 110	ctt Leu	caa Gln	caa Gln	aag Lys	ggt Gly 115	tgt Cys	gtc Val	gtt Val	tgg Trp	atc Ile 120	act Thr	388
ggt Gly	ctc Leu	agt Ser	ggt Gly 125	tca Ser	G1A aaa	aaa Lys	agc Ser	act Thr 130	gtt Val	gct Ala	tgt Cys	gca Ala	cta Leu 135	agt Ser	aaa Lys	436
gca Ala	ttg Leu	ttt Phe 140	gaa Glu	aga Arg	ggc Gly	aaa Lys	ctt Leu 145	act Thr	tac Tyr	aca Thr	ctc Leu	gac Asp 150	ggc Gly	gac Asp	aat Asn	484
gtc Val	cgt Arg 155	cac His	ggc Gly	ctt Leu	aac Asn	cgt Arg 160	gac Asp	ctc Leu	act Thr	ttc Phe	aaa Lys 165	Ala	gag Glu	cac His	cgc Arg	532
acc Thr 170	gaa Glu	aac Asn	att Ile	aga Arg	aga Arg 175	att Ile	ggt Gly	gág Glu	gtg Val	gct Ala 180	aag Lys	ttg Leu	ttt Phe	gct Ala	gac Asp 185	580
gtc Val	gga Gly	gtc Val	att Ile	tgt Cys 190	ata Ile	gca Ala	agt Ser	ttg Leu	att Ile 195	tct Ser	ccg Pro	tac Tyr	cgg Arg	aga Arg 200	gac Asp	628
aga Arg	gac Asp	gcg Ala	tgc Cys 205	cgg Arg	tcc Ser	ttg Leu	tta Leu	cct Pro 210	gac Asp	ggc Gly	gat Asp	ttc Phe	gtc Val 215	gag Glu	gtc Val	676
ttc Phe	atg Met	gac Asp 220	gtt Val	cct Pro	ctt Leu	cat His	gtg Val 225	tgc Cys	gag Glu	tcg Ser	aga Arg	gat Asp 230	cca Pro	aag Lys	GJA aaá	724
ttg Leu	tac Tyr 235	aag Lys	ctt Leu	gca Ala	cgt Arg	gca Ala 240	Gly ggc	aaa Lys	atc Ile	aaa Lys	ggc Gly 245	ttc Phe	act Thr	gga Gly	atc Ile	772
gac Asp 250	gac Asp	cct Pro	tac Tyr	gag Glu	gca Ala 255	cca Pro	gtg Val	aat Asn	tgc Cys	gag Glu 260	gta Val	gtg Val	ctg Leu	aaa Lys	cac His 265	820
aca Thr	gga Gly	gac Asp	gac Asp	gag Glu	tcg Ser	tgt Cys	tcg Ser	cca Pro	cgt Arg	cag Gln	atg Met	gct Ala	gag Glu	aac Asn	atc Ile	868

270 275 280

atc tct tac ctg caa aac aaa ggt tat ctt gag ggc taa gtcaaagtcg 917 Ile Ser Tyr Leu Gln Asn Lys Gly Tyr Leu Glu Gly 285 290

gaa 920

<210> 66

<211> 293

<212> PRT

<213> Arabidopsis thaliana

<400> 66

Met Glu Gly Leu Ala Ile Arg Ala Ser Arg Pro Ser Val Phe Cys Ser 1 5 10 15

Ile Pro Gly Leu Gly Gly Asp Ser His Arg Lys Pro Pro Ser Asp Gly 20 25 30

Phe Leu Lys Leu Pro Ala Ser Ser Ile Pro Ala Asp Ser Arg Lys Leu 35 40 45

Val Ala Asn Ser Thr Ser Phe His Pro Ile Ser Ala Val Asn Val Ser 50 55 60

Ala Gln Ala Ser Leu Thr Ala Asp Phe Pro Ala Leu Ser Glu Thr Ile
65 70 75 80

Leu Lys Glu Gly Arg Asn Asn Gly Lys Glu Lys Ala Glu Asn Ile Val 85 90 95

Trp His Glu Ser Ser Ile Cys Arg Cys Asp Arg Gln Gln Leu Leu Gln
100 105 110

Gln Lys Gly Cys Val Val Trp Ile Thr Gly Leu Ser Gly Ser Gly Lys
115 120 125

Ser Thr Val Ala Cys Ala Leu Ser Lys Ala Leu Phe Glu Arg Gly Lys

Leu Thr Tyr Thr Leu Asp Gly Asp Asn Val Arg His Gly Leu Asn Arg 145 150 155 160

Asp Leu Thr Phe Lys Ala Glu His Arg Thr Glu Asn Ile Arg Arg Ile 165 170 175

Gly Glu Val Ala Lys Leu Phe Ala Asp Val Gly Val Ile Cys Ile Ala 180 185 190

Ser Leu Ile Ser Pro Tyr Arg Arg Asp Arg Asp Ala Cys Arg Ser Leu 195 200 205

Leu Pro Asp Gly Asp Phe Val Glu Val Phe Met Asp Val Pro Leu His 210 215 220

Val Cys Glu Ser Arg Asp Pro Lys Gly Leu Tyr Lys Leu Ala Arg Ala 235 Gly Lys Ile Lys Gly Phe Thr Gly Ile Asp Asp Pro Tyr Glu Ala Pro 245 250 Val Asn Cys Glu Val Val Leu Lys His Thr Gly Asp Asp Glu Ser Cys 265 Ser Pro Arg Gln Met Ala Glu Asn Ile Ile Ser Tyr Leu Gln Asn Lys 275 Gly Tyr Leu Glu Gly 290 <210> 67 <211> 1257 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (13)..(1245) <400> 67 aattactcaa to atg ggg att tgc ttg agt gct cag gtc aaa gct gag agc 51 Met Gly Ile Cys Leu Ser Ala Gln Val Lys Ala Glu Ser tca gga gcg agt acg aag tat gac gcc aaa gat ata gga agt ctt ggg Ser Gly Ala Ser Thr Lys Tyr Asp Ala Lys Asp Ile Gly Ser Leu Gly 20 age aag get teg tet gtg tet gta aga eea age eet ega aet gag ggt 147 Ser Lys Ala Ser Ser Val Ser Val Arg Pro Ser Pro Arg Thr Glu Gly 40 gag atc tta cag tct cca aat ctc aag agt ttt agc ttt gct gag ctt 195 Glu Ile Leu Gln Ser Pro Asn Leu Lys Ser Phe Ser Phe Ala Glu Leu 55 aaa tca gca acc agg aat ttt aga cca gac agt gtg ctt ggt gaa ggt 243 Lys Ser Ala Thr Arg Asn Phe Arg Pro Asp Ser Val Leu Gly Glu Gly 70 gga ttc ggt tgt gtt ttc aaa gga tgg att gat gag aag tct ctc act 291 Gly Phe Gly Cys Val Phe Lys Gly Trp Ile Asp Glu Lys Ser Leu Thr 80 gcc tca aga cca ggc acg ggt ttg gtt att gcc gtc aaa aag ctt aac 339 Ala Ser Arg Pro Gly Thr Gly Leu Val Ile Ala Val Lys Lys Leu Asn 105 caa gat ggt tgg caa ggt cac cag gag tgg ctg gct gaa gtg aat tac 387 Gln Asp Gly Trp Gln Gly His Gln Glu Trp Leu Ala Glu Val Asn Tyr

110					115					120	1				125	
ctt Leu	ggt Gly	cag Gln	ttt Phe	tct Ser 130	HIS	cgt Arg	cac	ctt Leu	gtg Val 135	Lys	ctg Leu	att Ile	ggt Gly	tat Tyr 140	tgc Cys	435
cta Leu	gag Glu	gat Asp	gag Glu 145	urs	cgt Arg	ctt Leu	ctt Leu	gtt Val 150	Tyr	gag Glu	ttc Phe	atg Met	Pro 155	Arg	ggt	483
Ser	nea	160	ASII	nıs	ren	Pne	Arg 165	Arg	Gly	Leu	Tyr	Phe 170	Gln	Pro	tta Leu	5 <b>31</b>
561	175	шуs	neu	Ary	ren	Lys 180	Val	Ala	Leu	Gly	Ala 185		Lys	Gly	Leu	579
190	1.1.0	Deu	1113	ser	195	GIU	Thr	Arg	Val	11e 200	Туг	cga Arg	Asp	Phe	Lys 205	627
	JCI	ASII	116	210	Leu	Asp	ser	GIu	Tyr 215	Asn	Ala	aag Lys	Leu	Ser 220	Asp	675
	GIJ	neu	225	Lys	Asp	GTÅ	Pro	11e 230	Gly	Asp	Lys	agt Ser	His 235	Val	Ser	723
	<b></b> 9	240	Mec	GIY	THE	nıs	245	Туг	Ala	Ala	Pro	gaa Glu 250	Tyr	Leu	Ala	771
	255	1115	нец	IIII	THE	260	Ser	Asp	Val	Tyr	Ser 265	ttc Phe	Gly	Val	Val	819
270	202	U1U	Leu	neu	275	GIÀ	Arg	Arg	Ala	Val 280	Asp	aag Lys	Asn	Arg	Pro 285	867
tct Ser	gga Gly	gag Glu	agg Arg	aac Asn 290	ctt Leu	gtg Val	gag Glu	tgg Trp	gct Ala 295	aaa Lys	cca Pro	tac Tyr	ctc Leu	gta Val 300	aac Asn	915
aaa Lys	aga Arg	aag Lys	ata Ile 305	ttc Phe	cga Arg	gtc Val	att Ile	gat Asp 310	aat Asn	cgt Arg	ctt Leu	cag Gln	gac Asp 315	cag Gln	tac Tyr	963
tct Ser	atg Met	gaa Glu 320	gaa Glu	gca Ala	tgt C <b>y</b> s	aaa Lys	gtg Val 325	gct Ala	act Thr	ctg Leu	tct Ser	ctg Leu 330	aga Arg	tgt Cys	ctc Leu	1011
acc Thr	aca Thr 335	gag Glu	att Ile	aag Lys	ctg Leu	aga Arg 340	cca Pro	aac Asn	atg Met	agc Ser	gag Glu 345	gtt Val	gtt Val	tcg Ser	cac His	1059

ctc gaa cac att cag tct tta aat gct gct ata gga gga aat atg gat Leu Glu His Ile Gln Ser Leu Asn Ala Ala Ile Gly Gly Asn Met Asp 350 355 360 365	1107
aaa aca gat aga aga atg cgt agg aga agt gac agt gtt gtc agc aaa Lys Thr Asp Arg Arg Met Arg Arg Arg Ser Asp Ser Val Val Ser Lys 370 375 380	1155
aaa gtg aat gca ggt ttt gct cga cag act gct gtt ggc agt aca gtt Lys Val Asn Ala Gly Phe Ala Arg Gln Thr Ala Val Gly Ser Thr Val 385 390 395	1203
gtt gct tat cct cgc cca tca gcc tcg cca ctg tat gtt tga Val Ala Tyr Pro Arg Pro Ser Ala Ser Pro Leu Tyr Val 400 405 410	1245
atagggttaa ac	1257
<210> 68 <211> 410 <212> PRT <213> Arabidopsis thaliana	
<400> 68	
Met Gly Ile Cys Leu Ser Ala Gln Val Lys Ala Glu Ser Ser Gly Ala 1 5 10 15	
Met Gly Ile Cys Leu Ser Ala Gln Val Lys Ala Glu Ser Ser Gly Ala	
Met Gly Ile Cys Leu Ser Ala Gln Val Lys Ala Glu Ser Ser Gly Ala 1 5 10 15  Ser Thr Lys Tyr Asp Ala Lys Asp Ile Gly Ser Leu Gly Ser Lys Ala	
Met Gly Ile Cys Leu Ser Ala Gln Val Lys Ala Glu Ser Ser Gly Ala 1 5 15  Ser Thr Lys Tyr Asp Ala Lys Asp Ile Gly Ser Leu Gly Ser Lys Ala 20 25 Thr Glu Gly Glu Ile Leu	
Met Gly Ile Cys Leu Ser Ala Gln Val Lys Ala Glu Ser Ser Gly Ala 1 Ser Thr Lys Tyr Asp Ala Lys Asp Ile Gly Ser Leu Gly Ser Lys Ala 20 Ser Ser Val Arg Pro Ser Pro Arg Thr Glu Gly Glu Ile Leu 45 Gln Ser Pro Asn Leu Lys Ser Phe Ser Phe Ala Glu Leu Lys Ser Ala	

Glu His Arg Leu Leu Val Tyr Glu Phe Met Pro Arg Gly Ser Leu Glu 145 150 155

Pro Gly Thr Gly Leu Val Ile Ala Val Lys Lys Leu Asn Gln Asp Gly

Trp Gln Gly His Gln Glu Trp Leu Ala Glu Val Asn Tyr Leu Gly Gln

Phe Ser His Arg His Leu Val Lys Leu Ile Gly Tyr Cys Leu Glu Asp

120

135

100

115

Asn His Leu Phe Arg Arg Gly Leu Tyr Phe Gln Pro Leu Ser Trp Lys

165 170 175

Leu Arg Leu Lys Val Ala Leu Gly Ala Ala Lys Gly Leu Ala Phe Leu 180 185 190

His Ser Ser Glu Thr Arg Val Ile Tyr Arg Asp Phe Lys Thr Ser Asn 195 200 205

Ile Leu Leu Asp Ser Glu Tyr Asn Ala Lys Leu Ser Asp Phe Gly Leu 210 215 220

Ala Lys Asp Gly Pro Ile Gly Asp Lys Ser His Val Ser Thr Arg Val 225 230 235 240

Met Gly Thr His Gly Tyr Ala Ala Pro Glu Tyr Leu Ala Thr Gly His 245 250 255

Leu Thr Thr Lys Ser Asp Val Tyr Ser Phe Gly Val Val Leu Leu Glu 260 265 270

Leu Leu Ser Gly Arg Arg Ala Val Asp Lys Asn Arg Pro Ser Gly Glu 275 280 285

Arg Asn Leu Val Glu Trp Ala Lys Pro Tyr Leu Val Asn Lys Arg Lys 290 295 300

Ile Phe Arg Val Ile Asp Asn Arg Leu Gln Asp Gln Tyr Ser Met Glu 305 310 315 320

Glu Ala Cys Lys Val Ala Thr Leu Ser Leu Arg Cys Leu Thr Thr Glu 325 330 335

Ile Lys Leu Arg Pro Asn Met Ser Glu Val Val Ser His Leu Glu His 340 345 350

Ile Gln Ser Leu Asn Ala Ala Ile Gly Gly Asn Met Asp Lys Thr Asp 355 360 365

Arg Arg Met Arg Arg Arg Ser Asp Ser Val Val Ser Lys Lys Val Asn 370 375 380

Ala Gly Phe Ala Arg Gln Thr Ala Val Gly Ser Thr Val Val Ala Tyr
385 390 395 400

Pro Arg Pro Ser Ala Ser Pro Leu Tyr Val 405 410

<210> 69

<211> 3240

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (69)..(236)

```
<220>
<221> CDS
<222> (420)..(506)
<220>
<221> CDS
<222> (581)..(822)
<220>
<221> CDS
<222> (907)..(1126)
<220>
<221> CDS
<222> (1276)..(1355)
<220>
<221> CDS
<222> (1442)..(1526)
<220>
<221> CDS
<222> (1684)..(1815)
<220>
<221> CDS
<222> (1911)..(2024)
<220>
<221> CDS
<222> (2196)..(2243)
<220>
<221> CDS
<222> (2734)..(2818)
<220>
<221> CDS
<222> (2928)..(2984)
<220>
<221> CDS
<222> (3079)..(3191)
<400> 69
ctttcgtgtg aacttccgtc catatcctta gctctttgtt tggtatttac atttcataca 60
gacgcaaa atg cta gag aaa aaa tta gct gct gca gaa gtc tct gag gaa 110
         Met Leu Glu Lys Lys Leu Ala Ala Glu Val Ser Glu Glu
gag caa aat aac ttg cta aag gat ttg gag atg aag gaa act gaa tat
Glu Gln Asn Asn Leu Leu Lys Asp Leu Glu Met Lys Glu Thr Glu Tyr
 15
                     20
atg cgc cgt cag agg cat aaa atg gga gct gat gac ttt gag cca ttg
                                                                   206
```

Met	Arg	) Arg	g Glr	3 Arg	y His	E Ly:	s Met	Gl _y	/ Ala 40	a Asp	Asp	Phe	€ Gl	Pro 45	Leu	
aca Thr	atg Met	att : Ile	ggg G1 ₃ 50	ny:	g ggt s Gly	gca / Ala	a tto a Phe	gga Gly 55	/ Gli	g gta	acat	ctc	ttt	tataç	<b>jat</b>	256
																t _: 316
ctg	tgat	gca	tcct	tctt	ga a	aggt	cttc	t ta	ggcc	attt	ttt	ttac	cac	agct	aattt	t 376
												Va1	Arg	g ato g Ile	Cys 60	431
3		2,0	, Grå	65	Gly	ASI	ı vaı	. Tyr	70	Met	Lys	Lys	Leu	aag Lys 75	aaa Lys	479
tct Ser	gag Glu	atg Met	Leu 80	- ALY	aga Arg	ggc Gly	cag Gln	gta Val 85	ttt	aaat	tcc	ttca	agtg	gc		526
				•										tcag	Val	583
			90	VIG	Gru	ALY	ASN	95	Leu	Ala	Glu	Va1	Asp 100	agc Ser	Asn	631
tgc Cys	att Ile	gtc Val 105	aaa Lys	ctg Leu	tat Tyr	tgt Cys	tct Ser 110	ttc Phe	caa Gln	gat Asp	gaa Glu	gag Glu 115	tac Tyr	ttg Leu	tat Tyr	679
ctc Leu	ata Ile 120	atg Met	gag Glu	tat Tyr	tta Leu	cct Pro 125	ggt Gly	ggg Gly	gat Asp	atg Met	atg Met 130	act Thr	tta Leu	ctt Leu	atg Met	727
agg Arg 135	aaa Lys	gac Asp	acc Thr	ctc Leu	act Thr 140	gaa Glu	gac Asp	gag Glu	gcc Ala	agg Arg 145	ttt Phe	tat Tyr	att Ile	GJA aaa	gaa Glu 150	775
act Thr	gtc Val	ctg Leu	gct Ala	att Ile 155	gag Glu	tcc Ser	att Ile	cat His	aag Lys 160	cac His	aac Asn	tac Tyr	att Ile	cac His 1 <b>65</b>	ag Ar	822
gtca	gtga	ag c	agaa	tata	ıt ga	ttta	gtto	: tag	ctcc	cat	tgtt	attt	tg t	tcta	aacgt	882
						ag a	gat	atc	aag	cct	gat	aat	cta	cta Leu	ctt	934
-	•		<b>-</b> -,	180	nec	กใช	red	ser .	Asp 185	Phe (	Gly 1	Leu (	Cys	aaa d Lys 1 190	Pro	982
tta (	gac	tgt	agt	aat	ctt	caa	gag .	aaa q	gac	ttt a	aca q	gtt d	gca a	aga a	aac	1030

			193	•				200				Va1	205			
:		210	niu	. Deu	GIII	ser	215	GIĀ	Arg	Pro	) Val	Ala 220	Thr	Arg		1078
,·	225	01	010	GIII	ueu	230	Asn	Trp	GIn	Arg	Asn 235	Arg	Arg	Met		1126
gta	agtt	tca (	ctta	ttcc	tc a	tctt	ttcti	t cca	agag	atgt	gga	gtag	tcc i	acag	tatcca	1186
																1246
								240	Tyr	Ser	Thr	gtt Val	Gly 245	Thr	Pro	1299
gac Asp	tat Tyr	att Ile 250	gcc Ala	cca Pro	gaa Glu	gtt Val	ctg Leu 255	ttg Leu	aaa Lys	aaa Lys	gga Gly	tat Tyr 260	gga Gly	atg Met	gaa Glu	1347
tgt Cys	gat Asp 265	tg q Tr	gtag	gtga	ag co	aaco	tatt	cct	att	tgtg	gtc	tttga	att t	cttt	ggtgt	1405
										рт	rp Se	∍r Le	eu G] 27	y A1	c att a Ile	1460
	•	275			vai	GIĄ	280	PIO	Pro	Pne	Tyr	tca Ser 285	Ąsp	qaA	cca Pro	1508
	aca Thr 290	act Thr	tgt Cys	agg Arg	aag Lys	gtaa	ttaa	tc c	atto	ctt	tt tç	jaatc	tttc	!		1556
															ttttg	
															cccct	1676
		295			LLD.	nary ,	300	ryr .	Leu	Lys	Phe	cca Pro 2 305	Asp (	Glu v	Val	1725
-	310					315	waħ 1	ueu .	rie	Cys	Arg 320	ctt ( Leu 1	Leu (	tgc a Cys A	aat Asn	1773
ytt ( Val ( 325	gaa Glu	caa Gln	agg Arg	<del>Leu</del>	gga a Gly 1 330	aca a Thr 1	aaa d Lys (	gga q Sly <i>l</i>	lla	gat Asp 335	gaa ( Glu )	att a Ile I	ag ys			1815
gtgti	gta	tg c	gttg	ttca	a ctt	tgaç	gatt	caaa	gtt	ccc	ttato	Thaan	ra to		rtata	1075

caattottaa aaacgatttg actggtttot ttoag ggt oac oot tgg ttt aga Gly His Pro Trp Phe Arg 340	1928
ggc aca gaa tgg gga aaa ttg tat caa atg aaa gct gcc ttt att ccc Gly Thr Glu Trp Gly Lys Leu Tyr Gln Met Lys Ala Ala Phe Ile Pro 345 350 355 360	1976
caa gtt aat gat gag ttg gac acc caa aat ttt gag aaa ttt gaa gag Gln Val Asn Asp Glu Leu Asp Thr Gln Asn Phe Glu Lys Phe Glu Glu 365 370 375	2024
gtaacacact gatactatca gctaatgatg tctatagtga aatattggtg caatatatgc	2084
caccaaatga tgtggcatga tgtatatact gaaatattgg tatcacagat gatttttatg	2144
Thr Asp	2201
aag caa gtt cca aag tca gcc aag tca ggt cca tgg aga aag Lys Gln Val Pro Lys Ser Ala Lys Ser Gly Pro Trp Arg Lys 380 385 390	2243
gtacagcata agcactgact ttttggcatt atgtaccatc aagctttttt tttttatcta	2303
atagaagagt gatcatactt caaaatttat ctataagtgg gttccttgag atatgttgtt	2363
ctttgatgat actacagacg tagcttaaaa tattacatgc aacaaagagc tcagaatgat	2423
gaaattggct cagtttctgt cacaggcgtt tctatctttg tactatattc acaaaacgt	2483
gattcactct tttaggttca aattttctta tggtaattta gaatttggag ctgattggga	2543
tgctactaac agaattatgt tgttaatctg ccagttctgc atgttgacgt gtgttagatg	2603
aatcacttat ctttttggac caacatgata taacttagaa cctgttctgt caatagaatt 2	2663
tatgtcatga accaaaagga ttcttgtgaa tttcataaca tgacgctggc tttcttttt 2	2723
tcttctccag atg ctc tca tcc aaa gac att aac ttt gtt ggt tat act Met Leu Ser Ser Lys Asp Ile Asn Phe Val Gly Tyr Thr 395 400 405	2772
tac aag aac gta gaa atc gta aat gat gac caa ata cca ggg ata g Tyr Lys Asn Val Glu Ile Val Asn Asp Asp Gln Ile Pro Gly Ile A 410 415 420	2818
gtaattcact taaccccct tccgttgctg aggaagaagc aacaatacta gattaccttg 2	878
la Glu Leu G	935
aag aag aag agc aat aag cca aaa agg ccg tct att aaa tct ctc ttt g 2 Lys Lys Ser Asn Lys Pro Lys Arg Pro Ser Ile Lys Ser Leu Phe G 425 430 435	

gtaaatcatc tgtttgtatg ctatttgtaa aatcaagatg attacgatcc atgtttgatt 3044 ctctctaacc aaactgtgga aactaaatta acag aa gac gaa aca tct ggt ggg lu Asp Glu Thr Ser Gly Gly aca aca acc cac caa gga agc ttt ttg aat cta cta ccg acg cag att 3146 Thr Thr His Gln Gly Ser Phe Leu Asn Leu Leu Pro Thr Gln Ile 450 gaa gat cca gag aaa gaa ggt agt aag tcg agc tca tcc ggg tga 3191 Glu Asp Pro Glu Lys Glu Gly Ser Lys Ser Ser Ser Gly 465 470 atttcatttg acacattgca cagcctgaac cagaagactc ttgttatat 3240 <210> 70 <211> 476 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Leu Glu Lys Lys Leu Ala Ala Glu Val Ser Glu Glu Glu Gln Asn Asn Leu Leu Lys Asp Leu Glu Met Lys Glu Thr Glu Tyr Met Arg Arg Gln Arg His Lys Met Gly Ala Asp Asp Phe Glu Pro Leu Thr Met 40 45 Ile Gly Lys Gly Ala Phe Gly Glu Val Arg Ile Cys Arg Glu Lys Gly Thr Gly Asn Val Tyr Ala Met Lys Lys Leu Lys Lys Ser Glu Met Leu Arg Arg Gly Gln Val Val Glu His Val Lys Ala Glu Arg Asn Leu Leu Ala Glu Val Asp Ser Asn Cys Ile Val Lys Leu Tyr Cys Ser Phe Gln 100 Asp Glu Glu Tyr Leu Tyr Leu Ile Met Glu Tyr Leu Pro Gly Gly Asp 120 Met Met Thr Leu Leu Met Arg Lys Asp Thr Leu Thr Glu Asp Glu Ala 135 Arg Phe Tyr Ile Gly Glu Thr Val Leu Ala Ile Glu Ser Ile His Lys 150 155 His Asn Tyr Ile His Arg Asp Ile Lys Pro Asp Asn Leu Leu Leu Asp 165 170 Lys Asp Gly His Met Lys Leu Ser Asp Phe Gly Leu Cys Lys Pro Leu

185 190

180

Asp Cys Ser Asn Leu Gln Glu Lys Asp Phe Thr Val Ala Arg Asn Val 200

Ser Gly Ala Leu Gln Ser Asp Gly Arg Pro Val Ala Thr Arg Arg Thr 215

Gln Gln Glu Gln Leu Leu Asn Trp Gln Arg Asn Arg Arg Met Leu Ala

Tyr Ser Thr Val Gly Thr Pro Asp Tyr Ile Ala Pro Glu Val Leu Leu 245

Lys Lys Gly Tyr Gly Met Glu Cys Asp Trp Trp Ser Leu Gly Ala Ile

Met Tyr Glu Met Leu Val Gly Phe Pro Pro Phe Tyr Ser Asp Asp Pro 275 280

Met Thr Thr Cys Arg Lys Ile Val Asn Trp Arg Asn Tyr Leu Lys Phe

Pro Asp Glu Val Arg Leu Ser Pro Glu Ala Lys Asp Leu Ile Cys Arg 315

Leu Leu Cys Asn Val Glu Gln Arg Leu Gly Thr Lys Gly Ala Asp Glu

Ile Lys Gly His Pro Trp Phe Arg Gly Thr Glu Trp Gly Lys Leu Tyr

Gln Met Lys Ala Ala Phe Ile Pro Gln Val Asn Asp Glu Leu Asp Thr 360

Gln Asn Phe Glu Lys Phe Glu Glu Thr Asp Lys Gln Val Pro Lys Ser 370

Ala Lys Ser Gly Pro Trp Arg Lys Met Leu Ser Ser Lys Asp Ile Asn 390

Phe Val Gly Tyr Thr Tyr Lys Asn Val Glu Ile Val Asn Asp Asp Gln 405 410

Ile Pro Gly Ile Ala Glu Leu Lys Lys Lys Ser Asn Lys Pro Lys Arg 425

Pro Ser Ile Lys Ser Leu Phe Glu Asp Glu Thr Ser Gly Gly Thr Thr

Thr His Gln Gly Ser Phe Leu Asn Leu Leu Pro Thr Gln Ile Glu Asp 455

Pro Glu Lys Glu Gly Ser Lys Ser Ser Ser Gly 470

```
<210> 71
<211> 979
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (28)..(843)
<400> 71
acgaaaacca ccgttagcta taggctg atg ata tgt agg atc cga ctc ggg tcg 54
                               Met Ile Cys Arg Ile Arg Leu Gly Ser
atg aac ggt gac gaa tgc gcg aac gtt gcg acg tgc tgg gtt act tct
                                                                    102
Met Asn Gly Asp Glu Cys Ala Asn Val Ala Thr Cys Trp Val Thr Ser
cta gct tgt gta gtt gac gcc gga cga tat acg aaa aag gta tcc cac
                                                                    150
Leu Ala Cys Val Val Asp Ala Gly Arg Tyr Thr Lys Lys Val Ser His
                  30
gac cgg cga acg agg tgg ccc gcc tgg aaa gca cga cgg gat cgt cat
                                                                   198 -
Asp Arg Arg Thr Arg Trp Pro Ala Trp Lys Ala Arg Arg Asp Arg His
                                  50
agt gtc cga agt gat agc ggc cta gac agt cat gca ctt gaa ggt gga
Ser Val Arg Ser Asp Ser Gly Leu Asp Ser His Ala Leu Glu Gly Gly
                             65
aaa cga cgt gag tca tgc gta tca cta gct cac gaa cga gat tat gca
Lys Arg Arg Glu Ser Cys Val Ser Leu Ala His Glu Arg Asp Tyr Ala
                         80
cta acg gca cgg tgg gat cgt agc att gca atg acg gat gac acg aac
                                                                   342
Leu Thr Ala Arg Trp Asp Arg Ser Ile Ala Met Thr Asp Asp Thr Asn
                     95
                                        100
cca caa acc caa cgt aaa ttt gag aaa cat act cgg gat gta gaa gct
                                                                   390
Pro Gln Thr Gln Arg Lys Phe Glu Lys His Thr Arg Asp Val Glu Ala
                110
                                    115
gtt cga ttt tct cca cga gat cgt cta att gta tct gcg ggt gca gat
                                                                   438
Val Arg Phe Ser Pro Arg Asp Arg Leu Ile Val Ser Ala Gly Ala Asp
            125
                                130
ggg gta att gca gta tgt ccg gtt gct ggt gaa tgt gat gat gac gat
                                                                   486
Gly Val Ile Ala Val Cys Pro Val Ala Gly Glu Cys Asp Asp Asp Asp
                            145
gcc cgt gat ggt cat gaa gat tgt gtt agt agt att tgc ttt tca cca
                                                                   534
Ala Arg Asp Gly His Glu Asp Cys Val Ser Ser Ile Cys Phe Ser Pro
                        160
tca cta gaa cac ccg atc ctc ttt tct ggt agt tgt atc tac ttt att
                                                                   582
Ser Leu Glu His Pro Ile Leu Phe Ser Gly Ser Cys Ile Tyr Phe Ile
```

170	)				175	5				18	0				185	
aaa Lys	gtg Val	tgg Trp	aat Asn	gto Val 190	r wai	gga Gly	aaq Lys	g aaa S Lys	tgt Cys	s Arg	g ac	g cc r Pr	g ct o <b>L</b> e	u Ly	a aag s Lys	630
cat	agt Ser	aat Asn	ccc Pro		tct Ser	aca Thr	cgg Arg	g aca g Thr 210	caç Glr		a gaa c Glu	a ga u Gl	g gg u Gl; 21	y Ar	g cta g Leu	678
tgt Cys	gca Ala	aaa Lys 220	3	ggt	aaa Lys	agc Ser	ggt Gl _y 225	gca Ala		g cta g Lei	a cta ı Le	a cco 1 Pro 230	c ga		a agt u Ser	726
act Thr	cag Gln 235	gaa Glu	caa Gln	cta Leu	ccc Pro	aaa Lys 240	11E	aat Asn	caa Gln	gaa Glu	a aad a Asr 245	c cci		t aai e Asi	caa Gln	774
att Ile 250	gct Ala	ttt Phe	tca Ser	cct Pro	agt Ser 255	PIU	ttc Phe	gtc Val	gtc Val	acg Thr	tgo Cys		acç ı Thi	g gaa C Glu	a aga 1 Arg 265	822
tcc Ser	cta Leu	tct Ser	caa Gln	acg Thr 270	TTD	tga	ccg	tgca	ccg	gcac	ggtg	raa a	ıaagt	cgad		873
gga	tcga	ccg (	accg	aaag	cc t	gata	gctg	g ac	aaaa	aaag	ago	ttt	tag	gcct	ttcgct	933
								a aa								979
<21:	0> 7: L> 2' 2> Pi 3> A:	71 RT	dops	is ti	hali	ana										
	)> 7:															
Met 1	Ile	Cys	Arg	Ile 5	Arg	Leu	Gly	Ser	Met 10	Asn	Gly	Asp	Gļu	Cys 15	Ala	
			_,					Ser 25					30			
Gly	Arg	Tyr 35	Thr	Lys	Lys	Val	Ser 40	His	Asp	Arg	Arg	Thr 45	Arg	Trp	Pro	
Ala	Trp	Lys	Ala	Arg	Arg	Asp	Arg	His	Ser	Va 1	Ara	Ser	Asp	Ser	Glv	
	50					55					60		•		<b>01</b>	
	Asp	Ser	His	Ala	Leu 70	Glu	Gly	Gly	Lys	Arg 75	60 Arg	Glu	Ser	Cys	Val 80	
Ser	Asp Leu	Ser Ala	His His	Ala Glu 85	Leu 70 Arg	Glu Asp	Gly Tyr		Lys Leu 90	Arg 75 Thr	Arg Ala	Glu Arg	Ser Trp	Cys Asp 95	Val 80 Arg	

```
Glu Lys His Thr Arg Asp Val Glu Ala Val Arg Phe Ser Pro Arg Asp
        115
Arg Leu Ile Val Ser Ala Gly Ala Asp Gly Val Ile Ala Val Cys Pro
Val Ala Gly Glu Cys Asp Asp Asp Asp Ala Arg Asp Gly His Glu Asp
                     150
                                         155
Cys Val Ser Ser Ile Cys Phe Ser Pro Ser Leu Glu His Pro Ile Leu
Phe Ser Gly Ser Cys Ile Tyr Phe Ile Lys Val Trp Asn Val Asn Gly
            180
                                185
Lys Lys Cys Arg Thr Pro Leu Lys Lys His Ser Asn Pro Val Ser Thr
Arg Thr Gln Ser Glu Glu Gly Arg Leu Cys Ala Lys Gly Gly Lys Ser
                        215
Gly Ala Arg Leu Leu Pro Asp Leu Ser Thr Gln Glu Gln Leu Pro Lys
Ile Asn Gln Glu Asn Pro Ile Asn Gln Ile Ala Phe Ser Pro Ser Pro
                                    250
Phe Val Val Thr Cys Gln Thr Glu Arg Ser Leu Ser Gln Thr Trp
            260
                                265
```

```
<210> 73
<211> 1260
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (101)..(155)
<220>
<221> CDS
<222> (254)..(660)
<220>
<221> CDS
<222> (750)..(1193)
gctcaattat gtttacaaca ttgttgtaat ttcaaaactt cataagaatt tctctgataa 60
taaagaaaaa gctggagtag aactatttta aagtgtcatc atg aag aga cta agc
                                                                    115
                                             Met Lys Arg Leu Ser
```

Se	c tca r Sei	a ga r As _l	t tc. p Se:	a at r Me	c cy	t gg: s Gly	cta Lev	a ato	c tc e Se 1	r Th	t to	et ac er Th	a g ir A	gtto	cttatt	a 165
CCa	atctt	tgt	tct	ttcta	act	ttttç	gctaa	at g	tcag	acaa	a ac	ccat	gtga	tco	Stttct	tc 225
								at 1	tca	ttt	ggt	tac	aca	aca		aa 770
		30	)	, 01,	, 1 <b>y</b> 1	r Gly	35	ASI	ı Ty:	r Gl	n Se	r Me	t Le O	u Gl	a ggt u Gly	327
tac Tyr	gat Asp 45		a gat 1 Asp	gct Ala	aca Thi	a cta Leu 50	TTE	gag Glu	g gaa 1 Gl	a ta u Ty:	t to r Se 5	r Gl	c aa y As	c ca n Hi	c cac s His	375
60					65	, Llys	пХг	Arg	Arc	7 Lei	) TPA	s Va	l As _i	p <b>G1</b> :	a gtc n Val 75	423
				80	2101	irne	GIU	ьeu	85	l Asr	ı Ly:	s Lei	ı Glı	ı Pro	-	471
	-		95		nia	GIN	GIU	100	GIY	Leu	ı Glı	n Pro	105	g Gli	a gta n Val	519
		110			11511	ALG	115	мта	Arg	Trp	Lys	120	Lys	Glr	g ctt 1 Leu	567
gaa Glu	aaa Lys 125	gat Asp	tac Tyr	ggt Gly	gtt Val	ctt Leu 130	aag Lys	ggt Gly	caa Gln	tac Tyr	gat Asp 135	Ser	cto Leu	cgc Arg	cac His	615
aat Asn 140	ttc Phe	gat Asp	tct Ser	ctc Leu	cgc Arg 145	cgt Arg	gac Asp	aat Asn	gat Asp	tcc Ser 150	ctt Leu	ctc Leu	caa Gln	gag Glu		660
gtac	aata	tt a	agaga	actt	a aa	accat	aaaa	att	gaa	actt	cag	agac	gaa .	aatg	caaaaa	a 720
								155	ser	Lys	Ile	Lys	Ala 160	Lys		773
		165		ПОР	11011		170	ASN	гÀг	Ala	Ile	Thr 175	Glu	Gly	Val	821
aag Lys	gaa Glu 180	gag Glu	gaa Glu	gtt Val		aag a Lys ' 185	acg (	gat Asp	tcg Ser	att Ile	cct Pro 190	tcg Ser	tct Ser	cct Pro	ctg Leu	869
cag	ttt	cta	gaa	cat	tcc	tct q	ggt 1	ttt a	aac	tac	cgg	cga	agc	ttc	act	917

Gln Phe Leu Glu His Ser Ser Gly Phe Asn Tyr Arg Arg Ser Phe Thr 195 200 205 210	
gac ctc cgt gac ctt cta ccg aat tcc acc gtt gtc gag gct gga tct Asp Leu Arg Asp Leu Leu Pro Asn Ser Thr Val Val Glu Ala Gly Ser 215 220 225	965
tcc gat agt tgc gat tca agc gcc gtt ctt aac gac gaa aca agt tct Ser Asp Ser Cys Asp Ser Ser Ala Val Leu Asn Asp Glu Thr Ser Ser 230 235 240	1013
gat aac gga aga ttg acg ccg cct gtg acg gtt act ggc ggg agt ttc Asp Asn Gly Arg Leu Thr Pro Pro Val Thr Val Thr Gly Gly Ser Phe 245 250 255	1061
tta cag ttt gtg aaa aca gag caa aca gag gat cac gag gat ttt cta Leu Gln Phe Val Lys Thr Glu Gln Thr Glu Asp His Glu Asp Phe Leu 260 265 270	1109
agc ggt gaa gaa gct tgt ggt ttc ttc tcc gat gaa cag ccg ccg tca Ser Gly Glu Glu Ala Cys Gly Phe Phe Ser Asp Glu Gln Pro Pro Ser 275 280 285 290	1157
ctt cat tgg tac tct gct tca gat cat tgg act tga gaattgttta Leu His Trp Tyr Ser Ala Ser Asp His Trp Thr 295 300	1203
tcaaattggt gctctgttta gtctcaatgg gaaaacagag aagagggcaa aggtgga	1260
<210> 74 <211> 301 <212> PRT	
<210> 74 <211> 301 <212> PRT <213> Arabidopsis thaliana	
<210> 74 <211> 301 <212> PRT <213> Arabidopsis thaliana <400> 74 Met Lys Arg Leu Ser Ser Ser Asp Ser Met Cys Gly Leu Ile Ser Thr 1 5 10 15	
<210> 74 <211> 301 <212> PRT <213> Arabidopsis thaliana <400> 74 Met Lys Arg Leu Ser Ser Ser Asp Ser Met Cys Gly Leu Ile Ser Thr	
<pre>&lt;210&gt; 74 &lt;211&gt; 301 &lt;212&gt; PRT &lt;213&gt; Arabidopsis thaliana &lt;400&gt; 74 Met Lys Arg Leu Ser Ser Ser Asp Ser Met Cys Gly Leu Ile Ser Thr</pre>	
<pre>&lt;210&gt; 74 &lt;211&gt; 301 &lt;212&gt; PRT &lt;213&gt; Arabidopsis thaliana &lt;400&gt; 74 Met Lys Arg Leu Ser Ser Ser Asp Ser Met Cys Gly Leu Ile Ser Thr</pre>	
<pre> &lt;210&gt; 74 &lt;211&gt; 301 &lt;212&gt; PRT &lt;213&gt; Arabidopsis thaliana  &lt;400&gt; 74 Met Lys Arg Leu Ser Ser Ser Asp Ser Met 10</pre>	
<pre> &lt;210&gt; 74 &lt;211&gt; 301 &lt;212&gt; PRT &lt;213&gt; Arabidopsis thaliana  &lt;400&gt; 74 Met Lys Arg Leu Ser Ser Ser Asp Ser Met Cys Gly Leu Ile Ser Thr</pre>	

Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Lys Asp Tyr Gly 120 Val Leu Lys Gly Gln Tyr Asp Ser Leu Arg His Asn Phe Asp Ser Leu 135 Arg Arg Asp Asn Asp Ser Leu Leu Gln Glu Ile Ser Lys Ile Lys Ala 150 Lys Val Asn Gly Glu Glu Asp Asn Asn Asn Lys Ala Ile Thr Glu 170 Gly Val Lys Glu Glu Val His Lys Thr Asp Ser Ile Pro Ser Ser 185 Pro Leu Gln Phe Leu Glu His Ser Ser Gly Phe Asn Tyr Arg Arg Ser 200 Phe Thr Asp Leu Arg Asp Leu Leu Pro Asn Ser Thr Val Val Glu Ala 215 Gly Ser Ser Asp Ser Cys Asp Ser Ser Ala Val Leu Asn Asp Glu Thr 230 Ser Ser Asp Asn Gly Arg Leu Thr Pro Pro Val Thr Val Thr Gly Gly Ser Phe Leu Gln Phe Val Lys Thr Glu Gln Thr Glu Asp His Glu Asp 260 265 Phe Leu Ser Gly Glu Glu Ala Cys Gly Phe Phe Ser Asp Glu Gln Pro 280 Pro Ser Leu His Trp Tyr Ser Ala Ser Asp His Trp Thr 290 295 300

<210> 75

<211> 1122

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (22)..(1122)

<400> 75

acgtagctaa agtccgtttg a atg aac caa cgt gct gac cgt gac cgt gct 51

Met Asn Gln Arg Ala Asp Arg Asp Arg Ala

1 5 10

agc tcg atc cgt tgg ttt gcc aac cga tta gtg agt ggt agc ctg tta 99 Ser Ser Ile Arg Trp Phe Ala Asn Arg Leu Val Ser Gly Ser Leu Leu 15 20

ttg tgt gct aac gcc tac agt cgt cgt act ccc gcg tcc ggg gcc gca 147

								35					40		Ala	
tta Leu	cag Gln	cag Gln 45	atg Met	aac Asn	cgt Arg	gcc	agt Ser 50	GIn	tca Ser	gtg Val	, aat . Asn	tac Tyr 55	Arc	a cga J Arg	cgt Arg	195
gag Glu	ctg Leu 60	tca Ser	tta Leu	atc Ile	agc Ser	ggc Gly .65	Arg	aaa Lys	cag Gln	ggt	gtc Val	Gln	s tet Ser	ctg Lev	ggt Gly	243
tat Tyr 75	aga Arg	ctt Leu	gca Ala	cgc Arg	ctc Leu 80	gat Asp	aac Asn	cgc Arg	gct Ala	ctt Leu 85	Ala	caa Gln	ttg Leu	ttg Leu	cac His	291
agg Arg	gat Asp	ggc Gly	cag Gln	ccc Pro 95	gag Glu	gaa Glu	gtg Val	gta Val	cag Gln 100	Arg	ggc	aat Asn	gaa Glu	atc Ile 105	agc Ser	339
tat Tyr	ttc Phe	gaa Glu	acg Thr 110	gga Gly	ctt Leu	gaa Glu	ccg Pro	acc Thr 115	acg Thr	ctt Leu	aga Arg	cgt Arg	gtg Val 120	Arg	gat Asp	387
tgt Cys	gtt Val	gtt Val 125	gcc Ala	gct Ala	ctg Leu	cca Pro	acc Thr 130	gtt Val	atc Ile	tat Tyr	acc Thr	gga Gly 135	ttc Phe	aaa Lys	cgt Arg	435
gtt Val	tct Ser 140	cct Pro	tac Tyr	tac Tyr	gaa Glu	ttt Phe 145	atc Ile	tcc Ser	gtc Val	Gly aaa	cgc Arg 150	acg Thr	agg Arg	gtt Val	gct Ala	483
gat Asp 155	cgt Arg	ctt Leu	agc Ser	gaa Glu	gtc Val 160	acg Thr	caa Gln	gtg Val	gtt Val	ccc Pro 165	cga Arg	gat Asp	gat Asp	aca Thr	cgc Arg 170	<b>531</b>
tac Tyr	gtc Val	tac Tyr	atc Ile	gtg Val 175	tgg Trp	cgg Arg	gaa Glu	tcc Ser	gaa Glu 180	cga Arg	tcg Ser	aaa Lys	tta Leu	gag Glu 185	gcg Ala	579
cgg Arg	GJA aaa	gat Asp	ctc Leu 190	cgt Arg	gat Asp	cgc Arg	gat Asp	ggt Gly 195	gaa Glu	acg Thr	ctg Leu	gaa Glu	aag Lys 200	ttt Phe	cgc Arg	627
gtg Val	att Ile	gct Ala 205	ttt Phe	aac Asn	gțc Val	acg Thr	ctg Leu 210	gat Asp	atc Ile	agc Ser	agc Ser	agt Ser 215	atg Met	gag Glu	ccg Pro	675
ctg Leu	gcg Ala 220	aag Lys	gga Gly	gat Asp	ttg Leu	ccg Pro 225	ccg Pro	ttg Leu	ctt Leu	gct Ala	gtt Val 230	cct Pro	gta Val	ggt Gly	gaa Glu	723
caa Gln 235	gct Ala	aga Arg	ttc Phe	agc Ser	ttg Leu 240	acg Thr	cca Pro	acc Thr	tgg Trp	ttg Leu 245	cca Pro	cag Gln	ggt Gly	cgt Arg	agc Ser 250	771
gat Asp	gtt Val	tcc Ser	agt Ser	agt Ser	cga Arg	cgt Arg	GJÅ āāā	cta Leu	ccg Pro	cgg Arg	atg Met	gac Asp	aaa Lys	gtg Val	cct Pro	819

	255	;	260	265
atc gaa tcc cg Ile Glu Ser Ar 27	g Leu Ser Thr	gac gga g Asp Gly v 275	gta ttc agc ttc Val Phe Ser Phe	tcg gta aac 867 Ser Val Asn 280
gtt aac ggc gc Val Asn Gly Al 285	t acg cca tcg a Thr Pro Ser	agg tgg ( Arg Trp / 290	gat cag atg ttg Asp Gln Met Leu 295	cgc acc gga 915 Arg Thr Gly
cgc agg ccc gt Arg Arg Pro Va 300	c agt aga agc l Ser Arg Ser 305	gta cgt ( Val Arg )	gat gtc gcc gaa Asp Val Ala Glu 310	aac acc att 963 Asn Thr Ile
ggc ggt gaa ct Gly Gly Glu Le 315	g ccg ccg cgt 1 Pro Pro Arg 320	agc tgc t Ser Cys S	ccg cga ccc gat Ser Arg Pro Asp 325	ccg ttg acc 1011 · Pro Leu Thr 330
get gae ege ega Ala Asp Arg Arg	a cgc tgc gct g Arg Cys Ala 335	Ser Leu S	agc ctg ccc agc Ser Leu Pro Ser 340	ctg cca gct 1059 Leu Pro Ala 345
cga cag ccc tcc Arg Gln Pro Sei 350	Gin Thr Giu	aaa cgc a Lys Arg 1 355	att gtc gag aat Ile Val Glu Asn	att aag tac 1107 Ile Lys Tyr 360
ggg gca gcg cca Gly Ala Ala Pro 365				1122
<210> 76 <211> 366 <212> PRT <213> Arabidops	sis thaliana			
<400> 76				
Met Asn Gln Arg	Ala Asp Arg 5	Asp Arg A	la Ser Ser Ile 10	Arg Trp Phe 15
Ala Asn Arg Leu 20	Val Ser Gly	Ser Leu L 25	eu Leu Cys Ala	Asn Ala Tyr 30
Ser Arg Arg Thr 35	Pro Ala Ser (	Gly Ala A 40	la Leu Gln Gln 45	Met Asn Arg
Ala Ser Gln Ser 50	Val Asn Tyr 1 55	Arg Arg A	rg Glu Leu Ser 60	Leu Ile Ser
Gly Arg Lys Gln 65	Gly Val Gln 9	Ser Leu G	ly Tyr Arg Leu 75	Ala Arg Leu 80

Asp Asn Arg Ala Leu Ala Gln Leu Leu His Arg Asp Gly Gln Pro Glu

Glu Val Val Gln Arg Gly Asn Glu Ile Ser Tyr Phe Glu Thr Gly Leu 100 105 110

Glu Pro Thr Thr Leu Arg Arg Val Arg Asp Cys Val Val Ala Ala Leu 120 Pro Thr Val Ile Tyr Thr Gly Phe Lys Arg Val Ser Pro Tyr Tyr Glu 135 Phe Ile Ser Val Gly Arg Thr Arg Val Ala Asp Arg Leu Ser Glu Val 150 Thr Gln Val Val Pro Arg Asp Asp Thr Arg Tyr Val Tyr Ile Val Trp Arg Glu Ser Glu Arg Ser Lys Leu Glu Ala Arg Gly Asp Leu Arg Asp 185 Arg Asp Gly Glu Thr Leu Glu Lys Phe Arg Val Ile Ala Phe Asn Val Thr Leu Asp Ile Ser Ser Ser Met Glu Pro Leu Ala Lys Gly Asp Leu 215 Pro Pro Leu Leu Ala Val Pro Val Gly Glu Gln Ala Arg Phe Ser Leu Thr Pro Thr Trp Leu Pro Gln Gly Arg Ser Asp Val Ser Ser Ser Arg 245 250 Arg Gly Leu Pro Arg Met Asp Lys Val Pro Ile Glu Ser Arg Leu Ser Thr Asp Gly Val Phe Ser Phe Ser Val Asn Val Asn Gly Ala Thr Pro 275 280 285 Ser Arg Trp Asp Gln Met Leu Arg Thr Gly Arg Arg Pro Val Ser Arg 295 Ser Val Arg Asp Val Ala Glu Asn Thr Ile Gly Gly Glu Leu Pro Pro Arg Ser Cys Ser Arg Pro Asp Pro Leu Thr Ala Asp Arg Arg Cys 325 330 Ala Ser Leu Ser Leu Pro Ser Leu Pro Ala Arg Gln Pro Ser Gln Thr 340 345

Glu Lys Arg Ile Val Glu Asn Ile Lys Tyr Gly Ala Ala Pro 355 360 365

<210> 77 <211> 1650 <212> DNA <213> Arabidopsis thaliana <220>

<221> CDS <222> (21)(203)
<220> <221> CDS <222> (291)(482)
<220> <221> CDS <222> (633)(838)
<220> <221> CDS <222> (1044)(1605)
<400> 77 attcagagaa gaactcaccg atg agt atg gat ttt tca cct ttg tta acg gtt 53
1 5 10
ctt gag gga gat ttc aac aag gat aat act tct tct gca aca gaa att 101 Leu Glu Gly Asp Phe Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile 15 20 25
gat act tta gag aac tta gat gac act agg cag ata agt aaa gga aaa 149 Asp Thr Leu Glu Asn Leu Asp Asp Thr Arg Gln Ile Ser Lys Gly Lys 30 35 40
cct ccg agg cac ctc aca agc agt gct act agg ctg cag ctt gca gcc 197 Pro Pro Arg His Leu Thr Ser Ser Ala Thr Arg Leu Gln Leu Ala Ala 50 55
aat gcg gtaatatact tgaccctgct ttttcttttt ccttttcttt gttacaatgg 253 Asn Ala 60
gattcgaatg atgtaactgg tttctgtttg tgcgcag gat gtg gat gtt tgt aac 308 Asp Val Asp Val Cys Asn 65
ttg gtt atg aag tca ctt gat gac aaa tca gag ttt cta cct gta tac 356 Leu Val Met Lys Ser Leu Asp Asp Lys Ser Glu Phe Leu Pro Val Tyr 70 75 80
Arg Ser Gly Ser Cys Ala Glu Gln Gly Ala Lys Gln Phe Met Glu Asp  85  90  95
gaa cac att tgc atc gat gat ctt gtt aat cat ctt ggt gca gct att Glu His Ile Cys Ile Asp Asp Leu Val Asn His Leu Gly Ala Ala Ile 105 110 115
Caa tgc tct tct ctt gga gcc ttc tat ggg gtgagtttat cttccaatct 502 Gln Cys Ser Ser Leu Gly Ala Phe Tyr Gly 120 125
tacccaaaga agcataaaag caattcacta gcctgattct tctttcttct cctcttttgt 562

acı	-aat:	2002	tat:													
															tgtgtg	622
				rne	Asp	GIA	H1S 130	Gly	Gly	Thr	Asp	Ala 135	Ala	cac His	Phe	671
gtt Val	aga Arg 140	, Lys	g aac s Asr	att 1 Ile	ctg E Lei	aga Arg 149	j Pne	ati	gta Val	a gaq l Glu	g gad 1 Asp 15(	Se	c tc	c tto	c cca e Pro	719
cta Leu 155	Cyc	gta Val	aag Lys	g aaa Lys	gca Ala 160	TTE	aag Lys	g agt s Ser	gct Ala	tto Phe 169	e Let	a aaa a Lys	a get s Ala	z gat a Asp	tat Tyr 170	767
gaa Glu	ttt. Phe	gca Ala	gat Asp	gat Asp 175	Ser	tet Ser	ctt Leu	gac Asp	ato Ile	Ser	tct Ser	. GJ?	g acc	act Thr	gcg Ala	<b>815</b>
ctt Leu	aca Thr	gct Ala	ttt Phe 190	TIE	ttt Phe	gga Gly	cg Ar	gtaa	ıgagc	at t	taaa	ttcg	rt at	ttat	gaac	868
ttg	ggaa	gct	atat	atgt	ta t	cacc	tgta	t aa	tcat	caat	act	tato	agg	ttgc	ctgtgt	928
gta	taag	ata	gaga	ataa	gg c	ttag	tgta	a ag	actt	atgt	aac	gggc	tgt	ttta	ccatgt	988
														taca	g	1044
agg Arg 195	ttg Leu	ata Ile	att Ile	gca Ala	aat Asn 200	gct Ala	ggt Gly	gat Asp	tgc Cys	cga Arg 205	gca Ala	gta Val	ctg Leu	Gly	aga Arg 210	1092
aga Arg	ggt Gly	aġg Arg	gca Ala	att Ile 215	gag Glu	ttg Leu	tcc Ser	aaa Lys	gat Asp 220	cac His	aaa Lys	cca Pro	aac Asn	tgc Cys 225	aca Thr	1140
gcc Ala	gag Glu	aaa Lys	gta Val 230	aga Arg	ata Ile	gaa Glu	aag Lys	tta Leu 235	ggt Gly	gga Gly	gtt Val	gtg Val	tat Tyr 240	gac Asp	ggt Gly	1188
tac Tyr	ctc Leu	aac Asn 245	Gly	caa Gln	cta Leu	tca Ser	gtt Val 250	gca Ala	cgt Arg	gcc Ala	att Ile	gga Gly 255	gac Asp	tgg Trp	cac His	1236
atg Met	aaa Lys 260	ggt Gly	ccc Pro	aaa Lys	ggc Gly	tct Ser 265	gct Ala	tgt Cys	ccg Pro	cta Leu	agc Ser 270	cca Pro	gag Glu	cca Pro	gag Glu	1284
ttg Leu 275	caa Gln	gag Glu	aca Thr	gac Asp	ctg Leu 280	agt Ser	gaa Glu	gac Asp	gac Asp	gag Glu 285	ttc Phe	ttg Leu	ata Ile	atg Met	gga Gly 290	1332
tgt Cys	gat Asp	ggt Gly	ctg Leu	tgg Trp 295	gat Asp	gtg Val	atg Met	agc Ser	agc Ser 300	cag Gln	tgc Cys	gct Ala	gtg Val	aca Thr 305	ata Ile	1380

	••••	2,3	310	neu	Met	TTE	HIS	315	Asp	Pro	Glu	Arg	320	Sei	aga Arg	1428
010	. 200	325	wrd	GIU	Ата	ren	330 Lys	Arg	Asn	Thr	Суз	Asp 335	Asn	Lei	g aca 1 Thr	1476
gtg Val	att Ile 340	V LL T	gtg Val	tgc Cys	ttc Phe	tct Ser 345	ccg Pro	gat Asp	cct Pro	cca Pro	cag Gln 350	Arg	ata Ile	gag Glu	atc Ile	1524
355	-100	011.	Ser	ALG	360	Arg	Arg	Ser	Ile	Ser 365	Ala	Glu	Gly	Leu	aac Asn 370	1572
cta Leu	ctc Leu	aaa Lys	ggc Gly	gtg Val 375	ctc Leu	gat Asp	ggc Gly	tat Tyr	ccg Pro 380	tga	gca	tgtt	atg	ttgt	acgtta	1625
ctt	tgtg	aga (	ctati	:gcc	aa gt	tag										1650
<21 <21	0> 7 1> 3 2> P 3> A	80	lopsi	is t)	nalia	ana										
		_														
<40																
Met 1	Ser	Met		5					10					15		
Met 1	Ser			5					10					15		
Met 1 Asn Leu	Ser Lys Asp	Met Asp Asp 35	Asn 20 Thr	Thr Arg	Ser Gln	Ser Ile	Ala Ser 40	Thr 25 Lys	Glu Gly	Ile Lys	Asp Pro	Thr Pro 45	Leu 30 Arg	15 Glu His	Asn	
Met 1 Asn Leu	Ser Lys Asp	Met Asp Asp	Asn 20 Thr	Thr Arg	Ser Gln	Ser Ile	Ala Ser 40	Thr 25 Lys	Glu Gly	Ile Lys	Asp Pro	Thr Pro 45	Leu 30 Arg	15 Glu His	Asn	
Met 1 Asn Leu Thr Val 65	Lys Asp Ser 50 Cys	Met Asp Asp 35 Ser Asn	Asn 20 Thr Ala Leu	Thr Arg Thr	Ser Gln Arg Met 70	Ser Ile Leu 55 Lys	Ala Ser 40 Gln Ser	Thr 25 Lys Leu Leu	Glu Gly Ala Asp	Ile Lys Ala Asp 75	Asp Pro Asn 60 Lys	Thr Pro 45 Ala	Leu 30 Arg Asp	15 Glu His Val	Asn Leu Asp Leu 80	
Met 1 Asn Leu Thr Val 65	Lys Asp Ser 50 Cys	Met Asp Asp 35 Ser	Asn 20 Thr Ala Leu	Thr Arg Thr	Ser Gln Arg Met 70	Ser Ile Leu 55 Lys	Ala Ser 40 Gln Ser	Thr 25 Lys Leu Leu	Glu Gly Ala Asp	Ile Lys Ala Asp 75	Asp Pro Asn 60 Lys	Thr Pro 45 Ala	Leu 30 Arg Asp	15 Glu His Val	Asn Leu Asp Leu 80	
Met 1 Asn Leu Thr Val 65 Pro	Lys Asp Ser 50 Cys	Met Asp Asp 35 Ser Asn	Asn 20 Thr Ala Leu	Thr Arg Thr Val Ser 85	Ser Gln Arg Met 70 Gly	Ser Ile Leu 55 Lys Ser	Ala Ser 40 Gln Ser Cys	Thr 25 Lys Leu Leu	Glu Gly Ala Asp Glu 90	Ile Lys Ala Asp 75 Gln	Asp Pro Asn 60 Lys Gly	Thr Pro 45 Ala Ser	Leu 30 Arg Asp Glu	Glu His Val Phe Gln 95	Asn Leu Asp Leu 80 Phe	
Met 1 Asn Leu Thr Val 65 Pro	Lys Asp Ser 50 Cys Val	Met Asp Asp 35 Ser Asn	Asn 20 Thr Ala Leu Arg Glu 100	Thr Arg Thr Val Ser 85	Ser Gln Arg Met 70 Gly Ile	Ser Ile Leu 55 Lys Ser Cys	Ala Ser 40 Gln Ser Cys	Thr 25 Lys Leu Leu Ala Asp 105	Glu Gly Ala Asp Glu 90 Asp	Ile Lys Ala Asp 75 Gln Leu	Asp Pro Asn 60 Lys Gly Val	Thr Pro 45 Ala Ser Ala Asn	Leu 30 Arg Asp Glu Lys His	Glu His Val Phe Gln 95 Leu	Asn Leu Asp Leu 80 Phe	

```
Arg Phe Ile Val Glu Asp Ser Ser Phe Pro Leu Cys Val Lys Lys Ala
                     150
Ile Lys Ser Ala Phe Leu Lys Ala Asp Tyr Glu Phe Ala Asp Asp Ser
                165
                                     170
Ser Leu Asp Ile Ser Ser Gly Thr Thr Ala Leu Thr Ala Phe Ile Phe
                                 185
Gly Arg Arg Leu Ile Ile Ala Asn Ala Gly Asp Cys Arg Ala Val Leu
Gly Arg Arg Gly Arg Ala Ile Glu Leu Ser Lys Asp His Lys Pro Asn
                        215
Cys Thr Ala Glu Lys Val Arg Ile Glu Lys Leu Gly Gly Val Val Tyr
                    230
Asp Gly Tyr Leu Asn Gly Gln Leu Ser Val Ala Arg Ala Ile Gly Asp
Trp His Met Lys Gly Pro Lys Gly Ser Ala Cys Pro Leu Ser Pro Glu
Pro Glu Leu Gln Glu Thr Asp Leu Ser Glu Asp Asp Glu Phe Leu Ile
                            280
Met Gly Cys Asp Gly Leu Trp Asp Val Met Ser Ser Gln Cys Ala Val
Thr Ile Ala Arg Lys Glu Leu Met Ile His Asn Asp Pro Glu Arg Cys
                    310
Ser Arg Glu Leu Val Arg Glu Ala Leu Lys Arg Asn Thr Cys Asp Asn
                                    330
Leu Thr Val Ile Val Val Cys Phe Ser Pro Asp Pro Pro Gln Arg Ile
                                345
Glu Ile Arg Met Gln Ser Arg Val Arg Arg Ser Ile Ser Ala Glu Gly
        355
                            360
Leu Asn Leu Leu Lys Gly Val Leu Asp Gly Tyr Pro
                        375
```

```
<210> 79
<211> 589
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (18)..(575)
```

<400> 79

gag gtg         cca aag gta gca aca ag gag gaa tca tcg gca gag gtt laca gat look         cglu Val Pro Lys Val Ala Thr Glu Glu Ser 20         Ser Ala Glu Val Thr Asp 25         cglu Val Thr Asp 25           cgt gga ttg tc gga ttc gt gga ttc gga laca laca laca laca laca laca laca	tctt	ttcc	gata	act	atg Met 1	gct Ala	gag Glu	gaa Glu	atc Ile 5	aag Lys	aat Asn	gtt Val	cct Pro	gaa Glu 10	cag Gln	50
30 31	gag gt Slu Va	g cca l Pro	, Lya	val	gca Ala	aca Thr	gag Glu	GIU	Ser	tco Ser	gca Ala	a gaç a Glı	ı Va]	l Thi	a gat : Asp	98
gag ccg gag cca gag gtt aaa cac gaa agt ctt ctt gaa aag ctt cac 2 Glu Pro Glu Pro Glu Val Lys His Glu Ser Leu Leu Glu Lys Leu His 75  cga agc gac agt tct tct agc tcc tca agt gag gag gaa gaa ggt tca gat 2 Arg Ser Asp Ser Ser Ser Ser Ser Ser Ser Ser Glu Glu Glu Glu Gly Ser Asp 85  ggt gag aag aag aag aag aag aag aag aag	gt gg rg Gl	,		gat Asp	ttc Phe	ttg Leu	GIA	гуy	aag Lys	aaa Lys	gac Asp	) Glu	ı Thr	aaa Lys	cca Pro	146
Cga agc gac agt tct tct agc ser S			ccg Pro	atc Ile	gct Ala	ser	gag Glu	ttt Phe	gag Glu	cag Gln	Lys	Val	cat His	att Ile	tca Ser	194
ggt gag aag agg aag aag aag aag aag gag g	60	010		GIU	65	ьуs	ніѕ	Glu	Ser	70	Leu	Glu	Lys	Leu	His 75	242
get gag gag aag gag gaa gag aaa ggg ttt atg gag aag ttg aaa 30	- 5 - 5 -		JCI	80	Set	ser	ser	ser	Ser 85	Glu	Glu	Glu	Gly	Ser 90	Asp	290
gag aag ctt cct gga cac aag aaa cct gaa gac ggt tca gcc gtc gct 43   Glu Lys Leu Pro Gly His Lys Lys Pro Glu Asp Gly Ser Ala Val Ala 125    ggg gca ccg gtg gtt gtt cct cct gtg gaa gaa gcg cat cca gtg Ala Ala Pro Val Val Pro Pro Pro Val Glu Glu Ala His Pro Val 145    gag aag aaa ggg att ctt gag aag att aag gag aag ctt cca gga tac Glu Lys Lys Gly Ile Leu Glu Lys Ile Lys Glu Lys Leu Pro Gly Tyr 165    cac cct aag acc acc gta gag gag gag aag aaa gat aaa gaa taa    Kis Pro Lys Thr Thr Val Glu Glu Glu Lys Lys Asp Lys Glu 185    gaagattatc attaa			95	цуб	пуs	гу	rys	100	ГÀЗ	Lys	Lys	Pro	Thr 105	Thr	Glu	338
gcg gca ccg gtg gtt gtt cct cct cct gtg gaa gaa gcg cat cca gtg Ala Ala Pro Val Val Pro Pro Pro Val Glu Glu Ala His Pro Val 145  gag aag aaa ggg att ctt gag aag att aag gag aag ctt cca gga tac Glu Lys Lys Gly Ile Leu Glu Lys Ile Lys Glu Lys Leu Pro Gly Tyr 160  cac cct aag acc acc gta gag gag gag aag aaa gat aaa gaa taa His Pro Lys Thr Thr Val Glu Glu Glu Lys Lys Asp Lys Glu 175  gaagattatc attaa	tt gag al Gli		aag Lys	gag Glu	gaa Glu	gag Glu	гÀ2	aaa Lys	ggg Gly	ttt Phe	atg Met	Glu	aag Lys	ttg Leu	aaa Lys	386
140  145  150  155  gag aag aaa ggg att ctt gag aag att aag gag aag ctt cca gga tac Glu Lys Lys Gly Ile Leu Glu Lys Ile Lys Glu Lys Leu Pro Gly Tyr 160  160  160  170  180  185  185  186  187  188	<b>-</b> ,.		cct Pro	gga Gly	cac His	rys	aaa Lys	cct Pro	gaa Glu	gac Asp	Gly	tca Ser	gcc Ala	gtc Val	gct Ala	434
cac cct aag acc acc gta gag gag gag aag aaa gat aaa gaa taa 57  His Pro Lys Thr Thr Val Glu Glu Lys Lys Asp Lys Glu  175  180  185  185  186  177		ccg Pro	gtg Val	Val	val	FIO	cct Pro	cct Pro	gtg Val	GIU	gaa Glu	gcg Ala	cat His	cca Pro	Val	482
175 180 185 gaagattatc attaa	ag aag lu Lys	aaa Lys	GJA aaa	T T C	ctt Leu	gag Glu	aag Lys	TIE	rys	gag Glu	aag Lys	ctt Leu	cca Pro	Gly	tac Tyr	530
gaagattatc attaa 59	c cct s Pro	aag Lys	+111	acc Thr	gta Val	gag Glu	GIU	Glu	aag Lys	aaa Lys	gat Asp	Lys	Glu	taa	-	575
	agatt	atc a	ıttaa	•												590

<210> 80 <211> 185 <212> PRT <213> Arabidopsis thaliana

<400> 80

Met 1	Ala	Glu	Glu	Ile 5	Lys	Asn	Val	Pro	Glu 10	Gln	Glu	Val	Pro	Lys 15	Va1
Ala	Thr	Glu	Glu 20	Ser	Ser	Ala	Glu	Val 25	Thr	Asp	Arg	Gly	Leu 30	Phe	Asp
Phe	Leu	Gly 35	Lys	Lys	Lys	Asp	Glu 40	Thr	Lys	Pro	Glu	Glu 45	Thr	Pro	Ile
Ala	Ser 50	Glu	Phe	Glu	Gln	Lys 55	Val	His	Ile	Ser	Glu 60	Pro	Glu	Pro	Glu
Val 65	Lys	His	Glu	Ser	Leu 70	Leu	Glu	Lys	Leu	His 75	Arg	Ser	Asp	Ser	Ser 80
Ser	Ser	Ser	Ser	Ser 85	Glu	Glu	Glu	Gly	Ser 90	Asp	Gly	Glu	Lys	Arg 95	Lys
Lys	Lys	Lys	Glu 100	Lys	Lys	Lys	Pro	Thr 105	Thr	Glu	Val	Glu	Val 110	Lys	Glu
Glu	Glu	Lys 115	Lys	Gly	Phe	Met	Glu 120	Lys	Leu	Lys	Glu	Lys 125	Leu	Pro	Gly
His	Lys 130	Lys	Pro	Glu	Asp	Gly 135	Ser	Ala	Val	Ala	Ala 140	Ala	Pro	Val	Val
Val 145	Pro	Pro	Pro	Val	Glu 150	Glu	Ala	His	Pro	Val 155	Glu	Lys	Lys	Gly	Ile 160
Leu	Glu	Lys	Ile	Lys 165	Glu	Lys	Leu	Pro	Gly 170	Tyr	His	Pro	Lys	Thr 175	Thr
Val	<b>Gl</b> u	Glu	Glu 180	Lys	Lys	Asp	Lys	Glu 185							

<210> 81

<211> 1376

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (20)..(1366)

<400> 81

agcaatcgag aaaaaagca atg gcg tca gac aaa caa aag gcg gag aga gcc 52

Met Ala Ser Asp Lys Gln Lys Ala Glu Arg Ala

1 5 10

gag gtt gcg gcg agg cta gcg gct gag gac ttg cat gac att aac aaa 100 Glu Val Ala Ala Arg Leu Ala Ala Glu Asp Leu His Asp Ile Asn Lys

20 25

tcc ggt ggt gct gat gtc aca atg tat aag gtg acg gag aga aca act 148

Ser	Gly	Gly	/ Ala	ı Asp	Va]	Thr	Met	Туг	Lys	Va.	l Thi	r Glu		y Thi	r Thr	
gaa Glu	cat His 45	110	ccg Pro	gag Glu	caa Glr	gat Asp 50	Arg	Pro	ggt Gly	gtg Val	g ata 1 Ile 59	e Gl	tca / Sei	a gte	g ttc l Phe	196
agg Arg 60	****	gto Val	Gln	gga Gly	acg Thr 65	Tyr	gag Glu	cat His	gcg Ala	aga Arg 70	, Asp	gct Ala	gta Val	a gti L Val	gga l Gly 75	244
aaa Lys	acc Thr	cac	gaa Glu	gcg Ala 80	WT9	gag Glu	tct Ser	acc Thr	aaa Lys 85	Glu	gga Gly	a gct / Ala	caç Glr	g ata 1 Ila 90	gct Ala	292
tca Ser	gag Glu	aaa Lys	gcg Ala 95	vaı	gga Gly	gca Ala	aag Lys	gac Asp 100	Ala	acc Thr	gtc Val	gag Glu	aaa Lys 105	Ala	aag Lys	340
gaa Glu	acc Thr	gct Ala 110	gat Asp	tat Tyr	act Thr	gcg Ala	gag Glu 115	aag Lys	gtg Val	ggt Gly	gag Glu	tat Tyr 120	Lys	gac Asp	tat Tyr	388
acg Thr	gtt Val 125	gat Asp	aaa Lys	gct Ala	aaa Lys	gag Glu 130	gct Ala	aag Lys	gac Asp	aca Thr	act Thr 135	Ala	gag Glu	aag Lys	gcg Ala	436
aag Lys 140	gag Glu	act Thr	gct Ala	aat Asn	tat Tyr 145	act Thr	gcg Ala	gat Asp	aag Lys	gcg Ala 150	Val	gaa Glu	gca Ala	aag Lys	gat Asp 155	484
aag Lys	acg Thr	gcg Ala	gag Glu	aag Lys 160	att Ile	ggt Gly	gag Glu	tac Tyr	aaa Lys 165	gac Asp	tat Tyr	gcg Ala	gtg Val	gat Asp 170	aag Lys	532
gca Ala	gta Val	gaa Glu	gct Ala 175	aaa Lys	gat Asp	aag Lys	aca Thr	gcg Ala 180	gag Glu	aag Lys	gcg Ala	aag Lys	gag Glu 185	Thr	tcg Ser	580
aat Asn	tat Tyr	acg Thr 190	gcg Ala	gat Asp	aag Lys	gct Ala	aaa Lys 195	GIU	gct Ala	aag Lys	gac Asp	aag Lys 200	acg Thr	gct Ala	gag Glu	628
aag Lys	gtt Val 205	ggt Gly	gag Glu	tat Tyr	aag Lys	gat Asp 210	tac Tyr	acg Thr	gtg Val	gac Asp	aag Lys 215	gcc Ala	gtg Val	gaa Glu	gct Ala	676
agg Arg 220	gat Asp	tac Tyr	aca Thr	gcg Ala	gag Glu 225	aag Lys	gct Ala	att Ile	gaa Glu	gca Ala 230	aag Lys	gat Asp	aag Lys	aca Thr	gct Ala 235	724
gag Glu	aag Lys	act Thr	gga Gly	gag Glu 240	tat Tyr	aag L <b>y</b> s	gac Asp	tat Tyr	acg Thr 245	gtg Val	gag Glu	aag Lys	gcg Ala	acg Thr 250	gag Glu	772
GJA aaa	aaa Lys	gat Asp	gtt Val	acg Thr	gtg Val	agt Ser	aag Lys	cta Leu	gga Gly	gag Glu	ctg Leu	aag Lys	gat Asp	agt Ser	gcc Ala	820

	255		260		265		
gtt gag aca Val Glu Thi 270	. wra rhs	aga gct ato Arg Ala Met 279	: Gly Phe	ttg tcg Leu Ser	ggg aag Gly Lys 280	aca gag Thr Glu	868
gag gcc aaa Glu Ala Lys 285	gga aaa Gly Lys	gct gtg gag Ala Val Glu 290	g acc aaa I Thr Lys	gat act Asp Thr 295	gcc aag Ala Lys	gaa aac Glu Asn	916
atg gag aaa Met Glu Lys 300	Ala Giy	305	Arg Gln	Lys Met 310	Glu Glu	Met Arg 315	964
ttg gaa ggt Leu Glu Gly	320	red TA2 GIA	Glu Ala 325	Gly Ala	Lys Ala	Gln Glu 330	1012
gca tct caa Ala Ser Gln	335	Arg Glu Ser	Thr Glu 340	Ser Gly	Ala Gln 1 345	Lys Ala	1060
gaa gag acc Glu Glu Thr 350	nys Asp ;	ser Pro Ala 355	Val Arg	Gly Asn	Glu Ala 1 360	Lys Gly	1108
act att ttt Thr Ile Phe 365	GIY AIA I	370	Val Thr	Glu Ala 375	Ile Lys S	Ser Lys	1156
ctg aca atg Leu Thr Met 380	FIO SEL Y	gac att gtg Asp Ile Val 385	gag gaa Glu Glu	aca cgc Thr Arg 390	gcg gca d Ala Ala A	egt gag : Arg Glu 395	1204
cat gga ggg His Gly Gly	acg ggt a Thr Gly A 400	agg act gtg Arg Thr Val	gtt gaa Val Glu 405	gtc aag ( Val Lys	Val Glu A	gat tca 1 Asp Ser 110	1252
aag ccg ggt Lys Pro Gly	aag gtg g Lys Val A 415	geg act tca Ala Thr Ser	ctg aag Leu Lys 420	gcg tcg ( Ala Ser	gat caa a Asp Gln M 425	itg acc 1 Met Thr	1300
ggt caa aca Gly Gln Thr 430	ttc aac g Phe Asn A	gac gtt gga Asp Val Gly 435	cgg atg Arg Met	Asp Asp A	gat gct c Asp Ala A 440	gg aaa 1 rg Lys	.348
gat aag gga Asp Lys Gly 445	aag ctg t Lys Leu	ga gaatacta	aga			1	.376
<210> 82							

<210> 82 <211> 448 <212> PRT

<213> Arabidopsis thaliana

<400> 82

Met Ala Ser Asp Lys Gln Lys Ala Glu Arg Ala Glu Val Ala Ala Arg Leu Ala Ala Glu Asp Leu His Asp Ile Asn Lys Ser Gly Gly Ala Asp 25 Val Thr Met Tyr Lys Val Thr Glu Arg Thr Thr Glu His Pro Pro Glu Gln Asp Arg Pro Gly Val Ile Gly Ser Val Phe Arg Ala Val Gln Gly Thr Tyr Glu His Ala Arg Asp Ala Val Val Gly Lys Thr His Glu Ala Ala Glu Ser Thr Lys Glu Gly Ala Gln Ile Ala Ser Glu Lys Ala Val Gly Ala Lys Asp Ala Thr Val Glu Lys Ala Lys Glu Thr Ala Asp Tyr Thr Ala Glu Lys Val Gly Glu Tyr Lys Asp Tyr Thr Val Asp Lys Ala Lys Glu Ala Lys Asp Thr Thr Ala Glu Lys Ala Lys Glu Thr Ala Asn Tyr Thr Ala Asp Lys Ala Val Glu Ala Lys Asp Lys Thr Ala Glu Lys 150 Ile Gly Glu Tyr Lys Asp Tyr Ala Val Asp Lys Ala Val Glu Ala Lys 170 Asp Lys Thr Ala Glu Lys Ala Lys Glu Thr Ser Asn Tyr Thr Ala Asp Lys Ala Lys Glu Ala Lys Asp Lys Thr Ala Glu Lys Val Gly Glu Tyr 200 Lys Asp Tyr Thr Val Asp Lys Ala Val Glu Ala Arg Asp Tyr Thr Ala Glu Lys Ala Ile Glu Ala Lys Asp Lys Thr Ala Glu Lys Thr Gly Glu 230 235 Tyr Lys Asp Tyr Thr Val Glu Lys Ala Thr Glu Gly Lys Asp Val Thr 250 Val Ser Lys Leu Gly Glu Leu Lys Asp Ser Ala Val Glu Thr Ala Lys 265 Arg Ala Met Gly Phe Leu Ser Gly Lys Thr Glu Glu Ala Lys Gly Lys 280

Ala Val Glu Thr Lys Asp Thr Ala Lys Glu Asn Met Glu Lys Ala Gly

295

Glu 305	Val	Thr	Arg	Gln	Lys 310	Met	Glu	Glu	Met	Arg 315	Leu	Glu	Gly	Lys	Glu 320	
Leu	Lys	Glu	Glu	Ala 325	Gly	Ala	Lys	Ala	Gln 330	Glu	Ala	Ser	Gln	Lys 335	Thr	
Arg	Glu	Ser	Thr 340	Glu	Ser	Gly	Ala	Gln 345	Lys	Ala	Glu	Glu	Thr 350	Lys	Asp	
Ser	Pro	Ala 355	Val	Arg	Gly	Asn	Glu 360	Ala	Lys	Gly	Thr	Ile 365	Phe	Gly	Ala	
Leu	Gly 370	Asn	Val	Thr	Glu	Ala 375	Ile	Lys	Ser	Lys	Leu 380	Thr	Met	Pro	Ser	
Asp 385	Ile	Val	Glu	Glu	Thr 390	Arg	Ala	Ala	Arg	Glu 395	His	Gly	Gly	Thr	Gly 400	
Arg	Thr	Val	Val	Glu 405	Val	Lys	Val	Glu	Asp 410	Ser	Lys	Pro	Gly	Lys 415	Val	
Ala	Thr	Ser	Leu 420	Lys	Ala	Ser	qzA	Gln 425	Met	Thr	Gly	Gln	Thr 430	Phe	Asn	
Asp	Val	Gly 435	Arg	Met	Asp	Asp	Asp 440	Ala	Arg	Lys	Asp	Lys 445	Gly	Lys	Leu	
<211 <212 <213 <220 <221 <222 <400	> CD > (1 > 83	1 A abid S 8)	(548	)			<b>a</b> a a	ta t	0.7. 1							
	acac			M	et A 1	sn G	lu M	et S	er P	he P	he G	ly T	yr S	er P	he	50
atc Ile	gta Val	gta Val	gca Ala 15	tta Leu	ttc Phe	ttc Phe	gat Asp	tta : Leu ' 20	act ( Thr (	caa Gln	gcc i	tat ( Tyr )	egt ( Arg 1	cac a	act Thr	98

ccc gct caa ccg cca aaa gca aac gca aac ggt gat gtc aaa ccg caa Pro Ala Gln Pro Pro Lys Ala Asn Ala Asn Gly Asp Val Lys Pro Gln 35

gaa acg ctc gtg gtt cac aac aag gcc cga gcc atg gtc gga gtc gga

Glu Thr Leu Val Val His Asn Lys Ala Arg Ala Met Val Gly Val Gly

cca atg gtg tgg aac gaa act ctt gcg acc tat gca cag agc tac gca

Pro Met Val Trp Asn Glu Thr Leu Ala Thr Tyr Ala Gln Ser Tyr Ala

50

194

60		65		70		75
cat gaa co His Glu An	ga gcc aga g Ala Arq 80	J Asp Cys	gcc atg Ala Met	aag cat Lys His 85	tcc ttg gga Ser Leu Gly	cca ttc 290 Pro Phe 90
ggc gag aa Gly Glu As	it cta gco In Leu Ala 95	gcg ggt Ala Gly	tgg gga Trp Gly	Thr Met	agc ggt ccg Ser Gly Pro 105	gta gca 338 Val Ala
act gag ta Thr Glu Ty 13	r irb we	g acg gag : Thr Glu	aag gaa Lys Glu 115	aat tac Asn Tyr	gat tat gat Asp Tyr Asp 120	agt aac 386 Ser Asn
acg tgt gg Thr Cys Gl 125	it ggt gat y Gly Asp	ggt gtg Gly Val 130	. Cys Gly	His Tyr	act cag atc Thr Gln Ile 135	gtg tgg 434 Val Trp
cgt gac to Arg Asp Se 140	g gtt cga r Val Arg	ctt ggt Leu Gly 145	tgt gcc Cys Ala	tcc gtg Ser Val	aga tgt aag Arg Cys Lys	aat gat 482 Asn Asp 155
gag tat at Glu Tyr I]	t tgg gtg e Trp Val 160	TIE CAR	agc tat Ser Tyr	gat cct Asp Pro	ccg ggg aat Pro Gly Asn	tac atc 530 Tyr Ile 170
ggt caa co Gly Gln Ar	t cca tat g Pro Tyr 175	tag tga	ttggatt	tta		561
<210> 84 <211> 176 <212> PRT <213> Arab	idopsis t	haliana				
<400> 84						
	u Met Ser 5	Phe Phe	Gly Tyr	Ser Phe 1	Ile Val Val	Ala Leu 15
	20		25		Pro Ala Gln 30	
,	<i>-</i>		40		Glu Thr Leu 45	
30		25			Pro Met Val	
33		70		75	lis Glu Arg	80
	63			90	Gly Glu Asn	95
Ala Gly Tr	o Gly Thr 100	Met Ser	Gly Pro 105	Val Ala 1	hr Glu Tyr 110	Trp Met

Thr Glu Lys Glu Asn Tyr Asp Tyr Asp Ser Asn Thr Cys Gly Gly Asp 120 Gly Val Cys Gly His Tyr Thr Gln Ile Val Trp Arg Asp Ser Val Arg 135 Leu Gly Cys Ala Ser Val Arg Cys Lys Asn Asp Glu Tyr Ile Trp Val 145 150 155 Ile Cys Ser Tyr Asp Pro Pro Gly Asn Tyr Ile Gly Gln Arg Pro Tyr <210> 85 <211> 988 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (12)..(977) tttttaagaa a atg gca gct tct aag cga cta gtt gtc tct tgc ttg ttc 50 Met Ala Ala Ser Lys Arg Leu Val Val Ser Cys Leu Phe tta gtt ttg ttt gct caa gcc aat tcg caa ggt ttg aaa gta ggt Leu Val Leu Leu Phe Ala Gln Ala Asn Ser Gln Gly Leu Lys Val Gly 98 15 20 ttc tac agc aaa aca tgc cca caa ctc gag ggt ata gtt aaa aag gtc Phe Tyr Ser Lys Thr Cys Pro Gln Leu Glu Gly Ile Val Lys Lys Val 35 40 gtg ttc gat gcg atg aac aaa gca cca aca ctt ggt gct cct ttg ctt Val Phe Asp Ala Met Asn Lys Ala Pro Thr Leu Gly Ala Pro Leu Leu 50 55 aga atg ttc ttc cac gac tgc ttc gtt cgg gga tgt gac gga tca gtt Arg Met Phe Phe His Asp Cys Phe Val Arg Gly Cys Asp Gly Ser Val

ttg tta gat aaa cca aac aat caa ggt gag aag agt gca gtt cct aac Leu Leu Asp Lys Pro Asn Asn Gln Gly Glu Lys Ser Ala Val Pro Asn

cta agt ctt cga ggg ttt ggc atc ata gac gat tcc aag gcg gct cta

Leu Ser Leu Arg Gly Phe Gly Ile Ile Asp Asp Ser Lys Ala Ala Leu

gaa aaa gtg tgt ccg gga att gtt tct tgc tct gat atc ttg gca ctt Glu Lys Val Cys Pro Gly Ile Val Ser Cys Ser Asp Ile Leu Ala Leu

85

100

115

120

290

338

		· riig	nap	130	Mec	vaı	Ala	Leu	135	Gly	Pro	Ser	Trp	G1u 140		434
010	1114	GIY	145	ALG	Asp	СТĀ	Arg	150	Ser	` Asn	Ile	Asn	155	Val	aac Asn	482
200	110	160	FIO	rne	ASP	ASN	11e 165	Thr	Lys	Leu	Ile	Ser 170	Asp	Phe	cgc Arg	530
	175	U.J	БСЦ	ASII	GIU	180	Asp	Leu	Val	Ile	Leu 185	Ser	Gly	Gly	cac	578
190		gga Gly	MCC	Gly	195	Cys	Pro	Leu	Leu	Thr 200	Asn	Arg	Leu	Tyr	Asn 205	626
	1111	gga Gly	пуз	210	Asp	ser	Asp	Pro	Ser 215	Leu	Asp	Ser	Glu	Tyr 220	Ala	674
	-7.5	ctc Leu	225	цуз	цуѕ	Cys	гÀг	230	Thr	Asp	Thr	Thr	Thr 235	Ala	Leu	722
	-1.00	gat Asp 240	110	GIY	Set	rne	Lys 245	Thr	Phe	Asp	Leu	Ser 250	Tyr	Phe	Thr	770
	255	gct Ala	цуз	ALG	Arg	260	ren	Phe	Gln	Ser	Asp 265	Ala	Ala	Leu	Leu	818
270		tcc Ser	Lly S	-111	275	мта	ıyr	vaı	Leu	Gln 280	Gln	Ile	Arg	Thr	His <b>28</b> 5	866
2	502	atg Met	- 116	290	ASII	Asp	Pne	GIA	Val 295	Ser	Met	Val	Lys	Met 300	Gly	914
cgg Arg	act Thr	gga Gly	gtt Val 305	ctt Leu	acg Thr	ggt Gly	гĀЗ	gcc Ala 310	Gly ggg	gag Glu	atc Ile	Arg	aag Lys 315	acg Thr	tgt Cys	962
Arg	tct Ser	gct Ala 320	aat Asn	taa	gaga	tata	ga a	a				•				989

<210> 86

<211> 321 <212> PRT

<213> Arabidopsis thaliana

<400> 86 Met Ala Ala Ser Lys Arg Leu Val Val Ser Cys Leu Phe Leu Val Leu Leu Phe Ala Gln Ala Asn Ser Gln Gly Leu Lys Val Gly Phe Tyr Ser Lys Thr Cys Pro Gln Leu Glu Gly Ile Val Lys Lys Val Val Phe Asp Ala Met Asn Lys Ala Pro Thr Leu Gly Ala Pro Leu Leu Arg Met Phe Phe His Asp Cys Phe Val Arg Gly Cys Asp Gly Ser Val Leu Leu Asp Lys Pro Asn Asn Gln Gly Glu Lys Ser Ala Val Pro Asn Leu Ser Leu Arg Gly Phe Gly Ile Ile Asp Asp Ser Lys Ala Ala Leu Glu Lys Val Cys Pro Gly Ile Val Ser Cys Ser Asp Ile Leu Ala Leu Val Ala Arg 120 Asp Ala Met Val Ala Leu Glu Gly Pro Ser Trp Glu Val Glu Thr Gly Arg Arg Asp Gly Arg Val Ser Asn Ile Asn Glu Val Asn Leu Pro Ser 150 155 Pro Phe Asp Asn Ile Thr Lys Leu Ile Ser Asp Phe Arg Ser Lys Gly 170 Leu Asn Glu Lys Asp Leu Val Ile Leu Ser Gly Gly His Thr Ile Gly Met Gly His Cys Pro Leu Leu Thr Asn Arg Leu Tyr Asn Phe Thr Gly 200 Lys Gly Asp Ser Asp Pro Ser Leu Asp Ser Glu Tyr Ala Ala Lys Leu 215 Arg Lys Lys Cys Lys Pro Thr Asp Thr Thr Thr Ala Leu Glu Met Asp Pro Gly Ser Phe Lys Thr Phe Asp Leu Ser Tyr Phe Thr Leu Val Ala 245 250 Lys Arg Arg Gly Leu Phe Gln Ser Asp Ala Ala Leu Leu Asp Asn Ser 265 Lys Thr Arg Ala Tyr Val Leu Gln Gln Ile Arg Thr His Gly Ser Met 275 Phe Phe Asn Asp Phe Gly Val Ser Met Val Lys Met Gly Arg Thr Gly

300

Val Leu Thr Gly Lys Ala Gly Glu Ile Arg Lys Thr Cys Arg Ser Ala 310 315 320

295

Asn

<400> 87

290

<210> 87
<211> 650
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (8)..(634)

agcgaca atg gcg tcg att acg aac ctc gcc tct tct ctc tct tca ctc 49

Met Ala Ser Ile Thr Asn Leu Ala Ser Ser Leu Ser Ser Leu

1 5 10

tcg ttc tcc tcc caa gtt tct caa aga cct aac acc att tcc ttc ccc 97
Ser Phe Ser Ser Gln Val Ser Gln Arg Pro Asn Thr Ile Ser Phe Pro
15 20 25 30

cgc gcg aat tca gta ttc gca tta ccg gcg aaa tcc gca cgc cgc gct Arg Ala Asn Ser Val Phe Ala Leu Pro Ala Lys Ser Ala Arg Arg Ala 35 40 45

Ser Leu Ser Ile Thr Ala Thr Val Ser Ala Pro Pro Glu Glu Glu Glu 50 55 60

ata gtt gaa ctg aag aaa tac gtc aaa tcg agg ctt ccc gga gga ttt
Ile Val Glu Leu Lys Lys Tyr Val Lys Ser Arg Leu Pro Gly Gly Phe
65 70 75

gct gct cag aag att att ggc act gga cga cgt aag tgc gca atc gct 289
Ala Ala Gln Lys Ile Ile Gly Thr Gly Arg Arg Lys Cys Ala Ile Ala
80 85 90

aga gtt gtt ctt cag gaa ggt act ggg aag gtt atc atc aac tat cgt Arg Val Val Leu Gln Glu Gly Thr Gly Lys Val Ile Ile Asn Tyr Arg

gat gcc aag gag tac ctt cag gga aat cca ttg tgg ctt cag tat gtt 385 Asp Ala Lys Glu Tyr Leu Gln Gly Asn Pro Leu Trp Leu Gln Tyr Val 115 120 125

aaa gta cca ttg gtg act tta gga tat gag aat agc tac gac ata ttt 433 Lys Val Pro Leu Val Thr Leu Gly Tyr Glu Asn Ser Tyr Asp Ile Phe 130 135 140

gtg aaa gcc cat gga ggc ggt ctc tca ggt caa gct caa gca att acc 481 Val Lys Ala His Gly Gly Gly Leu Ser Gly Gln Ala Gln Ala Ile Thr

		145	5				150	)				155	5			
ttg Leu	gga Gly 160	V 44 1	gca Ala	cgt Arg	gca Ala	cto Leu 165	r rer	g aag 1 Lys	g gta S Val	a agt L Ser	gca Ala 170	ı Asr	cac His	aga S Arg	a tcg g Ser	529
ect Pro 175		aag Lys	aag Lys	gaa Glu	ggt Gly 180	Leu	cto Lev	act Thr	aga Arg	gat J Asr 185	) Ala	aga Arg	gtg Val	g gtt L Val	gaa Glu 190	5 <b>7</b> 7
aga Arg	aag Lys	aag Lys	gcc Ala	999 Gly 195	neu	aag Lys	aag Lys	gcg Ala	cgt Arg 200	, Lys	gco Ala	e cca	caa Glr	tto Phe 205	tcc Ser	625
aag Lys	cgt Arg	taa	gag	tttt	ata	tatc	at									650
<21 <21 <21	0 > 8 1 > 2 2 > P 3 > A	08 RT rabi	dops	is t	hali	ana										
Met 1	A1a	Ser	Ile	Thr 5	Asn	Leu	Ala	Ser	Ser 10	Leu	Ser	Ser	Leu	Ser 15		*
Ser	Ser	Gln	Val 20	Ser	Gln	Arg	Pro	Asn 25	Thr	Ile	Ser	Phe	Pro 30		Ala	-
Asn	Ser	Val 35	Phe	A1a	Leu	Pro	Ala 40	Lys	Ser	Ala	Arg	Arg 45	Ala	Ser	Leu	
Ser	Ile 50	Thr	Ala	Thr	Val	Ser 55	Ala	Pro	Pro	Glu	Glu 60	Glu	Glu	Ile	Val	
Glu 65	Leu	Lys	Lys	Tyr	Val 70	Lys	Ser	Arg	Leu	Pro 75	Gly	Gly	Phe	Ala	Ala 80	
Gln	Lys	Ile	Ile	Gly 85	Thr	Gly	Arg	Arg	Lys 90	Cys	Ala	Ile	Ala	Arg 95	Val	
Val	Leu	Gln	Glu 100	Glý	Thr	Gly	Lys	Val 105	Ile	Ile	Asn	Tyr	Arg 110	Asp	Ala	
Lys	Glu	Tyr 115	Leu	Gln	Gly	Asn	Pro 120	Leu	Trp	Leu	Gln	Tyr 125	Val	Lys	Val	
Pro	Leu 130	Val	Thr	Leu	Gly	Tyr 135	Glu	Asn	Ser	Tyr	Asp 140	Ile	Phe	Val	Lys	
					130					Gln 155					160	
Val	Ala	Arg	Ala	Leu 165	Leu	Lys	Val	Ser	Ala 170	Asp	His	Arg	Ser	Pro 175	Leu	

Lys Lys Glu Gly Leu Leu Thr Arg Asp Ala Arg Val Val Glu Arg Lys 180 185 190

Lys Ala Gly Leu Lys Lys Ala Arg Lys Ala Pro Gln Phe Ser Lys Arg 195 200 205

<210> 89
<211> 1223
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (16)..(1215)

<400> 89

aacaagtgaa gcaca atg ggg atc atc gaa agg att aaa gaa atc gag gcc 51

Met Gly Ile Ile Glu Arg Ile Lys Glu Ile Glu Ala

1 5 10

gag atg gct cgg act cag aag aat aaa gct aca gag tat cat ctt ggt 99 Glu Met Ala Arg Thr Gln Lys Asn Lys Ala Thr Glu Tyr His Leu Gly 15 20 25

Cag ctc aag gca aag att gca aaa ctc agg aca caa ctg ttg gag cct
Gln Leu Lys Ala Lys Ile Ala Lys Leu Arg Thr Gln Leu Leu Glu Pro
30 35 40

cca aaa ggt gct agt gga ggc ggg gaa ggt ttt gaa gtt acc aag tat
Pro Lys Gly Ala Ser Gly Gly Gly Glu Gly Phe Glu Val Thr Lys Tyr
45 50 55 60

ggt cat gga cgt gtt gca ctt ata gga ttt cct agt gtc gga aag tcc 243 Gly His Gly Arg Val Ala Leu Ile Gly Phe Pro Ser Val Gly Lys Ser 65 70 75

acg ctt ttg act atg tta act gga aca cat tct gaa gca gcc tca tat 291
Thr Leu Leu Thr Met Leu Thr Gly Thr His Ser Glu Ala Ala Ser Tyr
80 85 90

gaa ttt aca aca ctt aca tgc atc cct ggt gta att cac tac aac gac 339
Glu Phe Thr Thr Leu Thr Cys Ile Pro Gly Val Ile His Tyr Asn Asp
95 100 105

aca aag att cag ctt ctc gat ctt cct ggg att att gaa ggt gct tcg
Thr Lys Ile Gln Leu Leu Asp Leu Pro Gly Ile Ile Glu Gly Ala Ser
110 120

gaa gga aag ggg cga gga agg cag gtt att gct gtt gca aag tct tcc 435 Glu Gly Lys Gly Arg Gly Arg Gln Val Ile Ala Val Ala Lys Ser Ser 125 130 140

gac ctt gta ttg atg gtt ctt gat gcc tca aaa agc gaa ggc cac agg 483 Asp Leu Val Leu Met Val Leu Asp Ala Ser Lys Ser Glu Gly His Arg 145 150 155

GIN	TTE	Leu	160	гÀЗ	Glu	Leu	Glu	Ala 165	Val	Gly	Leu	Arg	Leu 170	Asn	aaa Lys	531
inr	Pro	175	GIn	Ile	Tyr	Phe	Lys 180	Lys	Lys	Lys	Thr	Gly 185	Gly	Ile	tct Ser	5.79
ttc Phe	aac Asn 190	act Thr	aca Thr	gca Ala	ccc Pro	ttg Leu 195	act Thr	cac His	att Ile	gat Asp	gag Glu 200	aag Lys	ctc Leu	tgt Cys	tat Tyr	627
caa Gln 205	atc Ile	ctg Leu	cat His	gaa Glu	tac Tyr 210	aag Lys	att Ile	cac His	aat Asn	gct Ala 215	gag Glu	gtg Val	cta Leu	ttt Phe	cgt Arg 220	675
gag Glu	aat Asn	gcc Ala	aca Thr	gtg Val 225	gat Asp	gac Asp	ttt Phe	att Ile	gat Asp 230	gtc Val	att Ile	gaa Glu	ggc Gly	aac Asn 235	cgc Arg	723
Lys	туг	TIE	Lys 240	Cys	Val	Tyr	Val	Tyr 245	Ile	Lys	Ile	Asp	Val 250	Val	gga Gly	771
IIe	Asp	255	Val	Asp	Arg	Leu	Ser 260	Arg	Gln	Pro	Asn	Ser 265	Ile	gtt Val	Ile	819
agc Ser	tgc Cys 270	aat Asn	ctt Leu	aag Lys	ctt Leu	aac Asn 275	tta Leu	.gac Asp	aga Arg	cta Leu	ctt Leu 280	gct Ala	agg Arg	atg Met	tgg Trp	867
285	GIU	Met	Gly	Leu	Val 290	Arg	Val	Tyr	Ser	Lys 295	Pro	Gln	Gly	cag Gln	Gln 300	915
Pro	Asp	Pne	Asp	305	Pro	Phe	Val	Leu	Ser 310	Ser	Asp	Arg	Gly	ggc Gly 315	Cys	963
aca Thr	gtg Val	gaa Glu	gac Asp 320	ttc Phe	tgt Cys	aac Asn	cac His	gtc Val 325	cac His	agg Arg	act Thr	ctg Leu	gtg Val 330	aag Lys	gat Asp	1011
atg Met	aag Lys	tat Tyr 335	gca Ala	ctc Leu	gtt Val	tgg Trp	ggc Gly 340	aca Thr	agc Ser	aca Thr	agg Arg	cac His 345	aat Asn	cca Pro	cag Gln	1059
aat Asn	tgt Cys 350	ggt [.] Gly	ctt Leu	tct Ser	caa Gln	cat His 355	ctt Leu	gaa Glu	gac Asp	gaa Glu	gat Asp 360	gtt Val	gtt Val	cag Gln	atc Ile	1107
gtc Val 365	aag Lys	aaa Lys	aag Lys	gag Glu	aga Arg 370	gac Asp	gaa Glu	gga Gly	gga Gly	aga Arg 375	ggc Gly	cgg Arg	ttc Phe	aag Lys	tca Ser 380	1155

cac tca aac gcc cct gct aga att gca gac aga gag aaa aaa gct cct 1203 His Ser Asn Ala Pro Ala Arg Ile Ala Asp Arg Glu Lys Lys Ala Pro 385 390 395

ctt aag caa taa gcttttag
Leu Lys Gln 1223

400

<210> 90 <211> 399 <212> PRT

<213> Arabidopsis thaliana

<400> 90

Met Gly Ile Ile Glu Arg Ile Lys Glu Ile Glu Ala Glu Met Ala Arg

1 10 15

Thr Gln Lys Asn Lys Ala Thr Glu Tyr His Leu Gly Gln Leu Lys Ala
20 25 30

Lys Ile Ala Lys Leu Arg Thr Gln Leu Leu Glu Pro Pro Lys Gly Ala
35 40 45

Ser Gly Gly Glu Gly Phe Glu Val Thr Lys Tyr Gly His Gly Arg
50 55 60

Val Ala Leu Ile Gly Phe Pro Ser Val Gly Lys Ser Thr Leu Leu Thr
65 70 75 80

Met Leu Thr Gly Thr His Ser Glu Ala Ala Ser Tyr Glu Phe Thr Thr 85 90 95

Leu Thr Cys Ile Pro Gly Val Ile His Tyr Asn Asp Thr Lys Ile Gln
100 105 110

Leu Leu Asp Leu Pro Gly Ile Ile Glu Gly Ala Ser Glu Gly Lys Gly
115 120 125

Arg Gly Arg Gln Val Ile Ala Val Ala Lys Ser Ser Asp Leu Val Leu 130 135 140

Met Val Leu Asp Ala Ser Lys Ser Glu Gly His Arg Gln Ile Leu Thr 145 150 155 160

Lys Glu Leu Glu Ala Val Gly Leu Arg Leu Asn Lys Thr Pro Pro Gln
165 170 175

Ile Tyr Phe Lys Lys Lys Thr Gly Gly Ile Ser Phe Asn Thr Thr

Ala Pro Leu Thr His Ile Asp Glu Lys Leu Cys Tyr Gln Ile Leu His
195 200 205

Glu Tyr Lys Ile His Asn Ala Glu Val Leu Phe Arg Glu Asn Ala Thr 210 215 220

Val Asp Asp Phe Ile Asp Val Ile Glu Gly Asn Arg Lys Tyr Ile Lys 230 235 Cys Val Tyr Val Tyr Ile Lys Ile Asp Val Val Gly Ile Asp Asp Val 245 250 Asp Arg Leu Ser Arg Gln Pro Asn Ser Ile Val Ile Ser Cys Asn Leu 265 Lys Leu Asn Leu Asp Arg Leu Leu Ala Arg Met Trp Asp Glu Met Gly 280 Leu Val Arg Val Tyr Ser Lys Pro Gln Gly Gln Gln Pro Asp Phe Asp 295 Glu Pro Phe Val Leu Ser Ser Asp Arg Gly Gly Cys Thr Val Glu Asp 305 310 315 Phe Cys Asn His Val His Arg Thr Leu Val Lys Asp Met Lys Tyr Ala 325 330 Leu Val Trp Gly Thr Ser Thr Arg His Asn Pro Gln Asn Cys Gly Leu 340 345 Ser Gln His Leu Glu Asp Glu Asp Val Val Gln Ile Val Lys Lys 360 Glu Arg Asp Glu Gly Gly Arg Gly Arg Phe Lys Ser His Ser Asn Ala 370 375 380 Pro Ala Arg Ile Ala Asp Arg Glu Lys Lys Ala Pro Leu Lys Gln 390 395 <210> 91 <211> 536 <212> DNA <213> Arabidopsis thaliana

<220>

<221> CDS

<222> (12)..(524)

<400> 91

aaataaaaac a atg aca agc tcc gat caa tct cca tcg cac gac gtc ttc 50

Met Thr Ser Ser Asp Gln Ser Pro Ser His Asp Val Phe

1 5 10

gtc tac ggc agt ttc caa gaa cca gcc gtt gtt aat tta att ctc gaa 98
Val Tyr Gly Ser Phe Gln Glu Pro Ala Val Val Asn Leu Ile Leu Glu
15 20 25

tgt gct ccg gtc atg gtt tcc gct caa ctc cac ggc tat cac ttg tat
Cys Ala Pro Val Met Val Ser Ala Gln Leu His Gly Tyr His Leu Tyr
30 35 40 45

Arg	Leu	Lys	Gly	Arg 50	Leu	cat His	cca Pro	tgt Cys	Ile 55	tct Ser	cct Pro	tcc Ser	gac Asp	aat Asn 60	gga Gly	194
tta Leu	atc Ile	aat Asn	ggc Gly 65	aag Lys	ata Ile	cta Leu	act Thr	gga Gly 70	tta Leu	aca Thr	gat Asp	tct Ser	cag Gln 75	tta Leu	gag Glu	242
agt Ser	tta Leu	gat Asp 80	atg Met	att Ile	gaa Glu	gga Gly	act Thr 85	gaa Glu	tat Tyr	gtg Val	agg Arg	aag Lys 90	act Thr	gtt Val	gaa Glu	290
gtt Val	gtt Val 95	ttg Leu	act Thr	gat Asp	act Thr	ttg Leu 100	gag G1u	aag Lys	aag Lys	caa Gln	gtt Val 105	gaa Glu	aca Thr	att Ile	gta Va1	338
tgg Trp 110	gca Ala	aac Asn	aag Lys	gat Asp	gat Asp 115	cct Pro	aat Asn	atg Met	tat Tyr	gga Gly 120	gaa Glu	tgg Trp	gat Asp	ttc Phe	gag Glu 125	386
gaa Glu	tgg Trp	aag Lys	agg Arg	ctt Leu 130	cat His	atg Met	gag Glu	aaa Lys	ttt Phe 135	ata Ile	gag Glu	gcg Ala	gcg Ala	acg Thr 140	aaa Lys	434
ttc Phe	atg Met	gag Glu	tgg Trp 145	aag Lys	aag Lys	aat Asn	ccg Pro	aat Asn 150	Gly ggg	aga Arg	agt Ser	agg Arg	gaa Glu 155	gag Glu	ttt Phe	482
gag Glu	aag Lys	ttt Phe 160	gta Val	caa Gln	gat Asp	gat Asp	tct Ser 165	tct Ser	ccg Pro	gct Ala	tcg Ser	gct Ala 170	tga			524
agaa	ıgttg	tt t	a													536

<210> 92

<211> 170

<212> PRT

<213> Arabidopsis thaliana

<400> 92

Met Thr Ser Ser Asp Gln Ser Pro Ser His Asp Val Phe Val Tyr Gly
1 5 10 15

Ser Phe Gln Glu Pro Ala Val Val Asn Leu Ile Leu Glu Cys Ala Pro 20 25 30

Val Met Val Ser Ala Gln Leu His Gly Tyr His Leu Tyr Arg Leu Lys
35 40 45

Gly Arg Leu His Pro Cys Ile Ser Pro Ser Asp Asn Gly Leu Ile Asn 50 55 60

Gly Lys Ile Leu Thr Gly Leu Thr Asp Ser Gln Leu Glu Ser Leu Asp
65 70 75 80

Met Ile Glu Gly Thr Glu Tyr Val Arg Lys Thr Val Glu Val Val Leu

Thr Asp Thr Leu Glu Lys Lys Gln Val Glu Thr Ile Val Trp Ala Asn 1100  Lys Asp Asp Pro Asn Met Tyr Gly Glu Trp Asp Phe Glu Glu Trp Lys 115 120  Arg Leu His Met Glu Lys Phe Ile Glu Ala Ala Thr Lys Phe Met Glu 130 135 150					85					90					95		
Lys Asp Asp Pro Asn Met Tyr Gly Glu Trp Asp Phe Glu Glu Trp Lys 115    Arg Leu His Met Glu Lys Phe 116 Glu Ala Ala Thr Lys Phe Met Glu 130    Trp Lys Lys Asn Pro Asn Gly Arg Ser Arg Glu Glu Phe Glu Lys Phe 145    Trp Lys Lys Asn Pro Asn Gly Arg Ser Arg Glu Glu Phe Glu Lys Phe 160    Val Gln Asp Asp Ser Ser Pro Ala Ser Ala 170     **C210> 93    **C211> 293    **C211> 293    **C212> DNA    **C212> CDS    **C22> (16) (71)    **C220>    **C221> CDS    **C22> (197) (278)     **Asn Cys Gly Cys Gly Ser Ser Cys Io Ser Cys Gly Ser Ser Cys Io Ser Cys Gly Asp Ser Cys Ser Cys Gly Cys Gly Lys Asn Tyr Asn 20    **Asn Cys Glu Lys Asn Cys Ser Cys Gly Ser Cys Gly Ser Asn Cys Cys Cys Gly Ser Cys Gly Ser Cys Gly Ser Cys Gly Ser	Th~	y an	mh	۳	<b>01</b>	_	_										
Arg Leu His Met Glu Lys Phe Ile Glu Ala Ala Thr Lys Phe Met Glu 130  Trp Lys Lys Asn Pro Asn Gly Arg Ser Arg Glu Glu Phe Glu Lys Phe 145  150  Val Gln Asp Asp Ser Ser Pro Ala Ser Ala 170 <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	1111	Asp	rnr	100	GIU	Lys	Lys	Gln	Val 105	Glu	Thr	Ile	Va1		Àla	Asn	
Trp Lys Lys Asn Pro Asn Gly Arg Ser Arg Glu Glu Phe Glu Lys Phe 145  Val Gln Asp Asp Ser Ser Pro Ala Ser Ala 165  Val Gln Asp Asp Ser Ser Pro Ala Ser Ala 170   C210> 93  C211> 293  C212> DNA  C213> Arabidopsis thaliana  C220> C221> CDS  C222> (161)(71)  C220> C221> CDS  C222> (197)(278)  C400> 93  agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc for Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys 10  aaa tgt ggt gat tcg tgc ag gtaaaacccta gattctctct tcattaactt 101  Lys Cys Gly Asp Ser Cys Se 15  atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aatttgaaa 161  tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac 215  cys Glu Lys Asn Tyr Asn 20  aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca 263  Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30  agc tgt aac tgt tga agaaattatc aggat	Lys	Asp	Asp 115	Pro	Asn	Met	Tyr	Gly 120	Glu	Trp	Asp	Phe	Glu 125	Glu	Trp	Lys	
Val Gln Asp Asp Ser Ser Pro Ala Ser Ala 165 170   **C210> 93 **C211> 293 **C211> 293 **C212> DNA **C213> Arabidopsis thaliana  **C220> **C221> CDS **C222> (16)(71)  **C220> **C221> CDS **C222> (197)(278)  **Augagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc Sec Sec Sec Sec Sec Sec Sec Sec Sec Se	Arg	Leu 130	His	Met	Glu	Lys	Phe 135	Ile	Glu	Ala	Ala	Thr 140	Lys	Phe	Met	Glu	
<pre> 210&gt; 93 211&gt; 293 211&gt; DNA 211&gt; DNA 213&gt; Arabidopsis thaliana  220&gt; 221&gt; CDS 222&gt; (16)(71)  220&gt; 221&gt; CDS 222&gt; (197)(278)  400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys 1 5 10  aaa tgt ggt gat tcg tgc ag gtaaacccta gattctctct tcattaactt 101 Lys Cys Gly Asp Ser Cys Se 15 atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161 tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac r Cys Glu Lys Asn Tyr Asn 20  aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30  agc tgt aac tgt tga agaaattatc agcat  200  31  32  33  34  36  36  37  38  38  39  30  30  30  30  30  30  30  30  30</pre>	Trp 145	Lys	Lys	Asn	Pro	Asn 150	Gly	Arg	Ser	Arg	Glu 155	Glu	Phe	Glu	Lys		
<pre>&lt;211&gt; 293 &lt;212&gt; DNA &lt;2213&gt; Arabidopsis thaliana </pre> <pre>&lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (16)(71) </pre> <pre>&lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (197)(278) </pre> <pre>&lt;400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys 1 5 10  aaa tgt ggt gat tcg tgc ag gtaaacccta gattctctct tcattaactt 101 Lys Cys Gly Asp Ser Cys Se 15 atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161 tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac r Cys Glu Lys Asn Tyr Asn 20 25 aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40 </pre>	Val	Gln	Asp	Asp	Ser 165	Ser	Pro	Ala	Ser								
<pre>&lt;211&gt; 293 &lt;212&gt; DNA &lt;2213&gt; Arabidopsis thaliana </pre> <pre>&lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (16)(71) </pre> <pre>&lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (197)(278) </pre> <pre>&lt;400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys 1 5 10  aaa tgt ggt gat tcg tgc ag gtaaacccta gattctctct tcattaactt 101 Lys Cys Gly Asp Ser Cys Se 15 atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161 tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac r Cys Glu Lys Asn Tyr Asn 20 25 aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40 </pre>																	
<pre>&lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (16)(71)  &lt;220&gt; &lt;221&gt; CDS &lt;221&gt; CDS &lt;222&gt; (197)(278)  &lt;400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc 51</pre>	<211 <212	L> 29 2> DN	)3 JA	lops i	.s tì	nalia	ına										
<pre>&lt;221&gt; CDS &lt;222&gt; (16)(71)  &lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (197)(278)  &lt;400&gt; 93</pre>				<b>L</b>													
<pre>&lt;222&gt; (16)(71)  &lt;220&gt; &lt;221&gt; CDS &lt;222&gt; (197)(278)  &lt;400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc 51</pre>			Ne														
<pre>&lt;221&gt; CDS &lt;222&gt; (197)(278)  &lt;400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc 51</pre>				(71)													
<pre>&lt;221&gt; CDS &lt;222&gt; (197)(278)  &lt;400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc 51</pre>	<220	)>									-						
<pre>&lt;222&gt; (197)(278)  &lt;400&gt; 93 agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc 51</pre>			S														
agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc 51  Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys 10  aaa tgt ggt gat tcg tgc ag gtaaacccta gattctctct tcattaactt 101  Lys Cys Gly Asp Ser Cys Se 15  atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161  tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac 215  r Cys Glu Lys Asn Tyr Asn 20 25  aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca 263  Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40  agc tgt aac tgt tga agaaattatc aggat				. (27	8)												
aaa tgt ggt gat tcg tgc ag gtaaacccta gattctctct tcattaactt  Lys Cys Gly Asp Ser Cys Se  15  atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161  tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac 215  r Cys Glu Lys Asn Tyr Asn 20 25  aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30  35  40  agc tgt aac tgt tga agaaattatc agcat																	
aaa tgt ggt gat tcg tgc ag gtaaacccta gattctctct tcattaactt  Lys Cys Gly Asp Ser Cys Se  15  atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161  tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac 215  r Cys Glu Lys Asn Tyr Asn 20 25  aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30  35  40  agc tgt aac tgt tga agaaattatc agcat	agag	raagt	aa g	agaa	atg	gca	ggt	tct	aac	tgt	σσα	tαt	aac	tee	tee	tac	51
atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161 tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac 215 r Cys Glu Lys Asn Tyr Asn 20 25 aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40 agc tgt aac tgt tga agaaattatc aggat					1166	· ATO	Gly	Ser	Asn	Cys	Gly	Суѕ	Gly	Ser	Ser	Cys	31
atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161 tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac 215 r Cys Glu Lys Asn Tyr Asn 20 25 aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40 agc tgt aac tgt tga agaaattatc aggat	aaa Lys	tgt Cys	<b>-</b>	gat Asp	tcg Ser	tgc C <b>y</b> s	ag g Se	taaa	ccct	a ga	ttct	ctct	tca	ttaa	ctt		101
tcttatactt ctgttgtttt tttggtatga caaag t tgc gag aag aac tac aac 215 r Cys Glu Lys Asn Tyr Asn 20 25 aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40 agc tgt aac tgt tga agaaattatc agcat																	
aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca 263 Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40 agc tgt aac tgt tga agaaattatc agcat	atca	tgca	ta t	atat	ccta	a ta	taca	tgtg	gtt	acat	att	cctt	aaga	ta a	attt	tgaaa	161
aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca 263 Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40 agc tgt aac tgt tga agaaattatc agcat	tctt	atac	tt c	tgtt	gttt	t tt	tggt	atga	caa	ag t	tac	gag	aaa	aac	tac	aac	215
ago tgt aac tgt tga agaaattato agoat										r	Cys 20	Glu	Lys	Asn	Tyr	Asn 25	213
agc tgt aac tgt tga agaaattatc agcat	aag Lys	gag Glu	tgt Cys	gat Asp	4911	tgt Cys	agc Ser	tgt Cys	gga Gly	Ser ,	aac Asn (	tgc a Cys :	agc Ser (	tgc ( Cys (	31y 8	ca Ser	263
Ser Cys Asn Cys 45	agc Ser	tgt Cys	aac Asn	Cys	tga	agaa	atta	tc a	gcat								293

<210> 94

<211> 45

<212> PRT <213> Arabidopsis thaliana Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys Lys Cys Gly Asp 5 Ser Cys Ser Cys Glu Lys Asn Tyr Asn Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser Ser Cys Asn Cys 40 <210> 95 <211> 880 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (14)..(868) <400> 95 cacaccaaca cca atg tct gct tct tct tta ttt aat ctc cca ttg att 49 Met Ser Ala Ser Ser Leu Phe Asn Leu Pro Leu Ile 5 Arg Leu Arg Ser Leu Ala Leu Ser Ser Ser Phe Ser Ser Phe Arg Phe 97 15 20 gcc cat cgt cct ctg tca tcg att tca ccg aga aag tta ccg aat ttt Ala His Arg Pro Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe 145 cgt gct ttc tct ggt acc gct atg aca gat act aaa gat gct ggt atg Arg Ala Phe Ser Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met 193 50 gat gct gtt cag aga cgt ctc atg ttt gag gat gaa tgc att ctt gtt Asp Ala Val Gln Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val 241 gat gaa act gat cgt gtt gtg ggg cat gac agc aag tat aat tgt cat Asp Glu Thr Asp Arg Val Val Gly His Asp Ser Lys Tyr Asn Cys His 289 ctg atg gaa aat att gaa gcc aag aat ttg ctg cac agg gct ttt agt-Leu Met Glu Asn Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser 95 gta ttt tta ttc aac tcg aag tat gag ttg ctt ctc cag caa agg tca Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser 110

125	1111	aag Lys	Val	Int	130	Pro	ren	Val	Trp	Thr 135	Asn	Thr	Суѕ	Cys	Ser 140	433
cat His	cct Pro	ctt Leu	tac Tyr	cgt Arg 145	gaa Glu	tca Ser	gag Glu	ctt Leu	atc Ile 150	cag Gln	gac Asp	aat Asn	gca Ala	cta Leu 155	ggt Gly	481
gtg Val	agg Arg	aat Asn	gct Ala 160	gca Ala	caa Gln	aga Arg	aag Lys	ctt Leu 165	ctc Leu	gat Asp	gag Glu	ctt Leu	ggt Gly 170	att Ile	gta Val	529
gct Ala	gaa Glu	gat Asp 175	gta Val	cca Pro	gtc Val	gat Asp	gag Glu 180	ttc Phe	act Thr	ccc Pro	ttg Leu	gga Gly 185	cgt Arg	atg Met	ctg Leu	577
tac Tyr	aag Lys 190	gct Ala	cct Pro	tct Ser	gat Asp	ggc Gly 195	aaa Lys	tgg Trp	gga Gly	gag Glu	cat His 200	gaa Glu	ctt Leu	gat Asp	tac Tyr	625
ttg Leu 205	ctc Leu	ttc Phe	atc Ile	gtg Val	cga Arg 210	gac Asp	gtg Val	aag Lys	gtt Val	caa Gln 215	cca Pro	aac Asn	cca Pro	gat Asp	gaa Glu 220	673
gta Val	gct Ala	gag Glu	atc Ile	aag Lys 225	tat Tyr	gtg Val	agc Ser	cgg Arg	gaa Glu 230	gag Glu	ctg Leu	aag Lys	gag Glu	ctg Leu 235	gtg Val	721
aag Lys	aaa Lys	gca Ala	gat Asp 240	gca Ala	ggt Gly	gag Glu	gaa Glu	ggt Gly 245	ttg Leu	aaa Lys	ctg Leu	tca Ser	cca Pro 250	tgg Trp	ttc Phe	769
aga Arg	ttg Leu	gtg Val 2 <b>5</b> 5	gtg Val	gac Asp	aat Asn	ttc Phe	ttg Leu 260	atg Met	aag Lys	tgg Trp	tgg Trp	gat Asp 265	cat His	gta Val	gag Glu	817
aaa Lys	gga Gly 270	act Thr	ttg Leu	gtt Val	gaa Glu	gct Ala 275	ata Ile	gac Asp	atg Met	aaa Lys	acc Thr 280	atc Ile	cac His	aaa Lys	ctc Leu	865
tga	acat	cttt	tt t	t												880
285																500

<210> 96 <211> 284

<212> PRT

<213> Arabidopsis thaliana

<400> 96

Met Ser Ala Ser Ser Leu Phe Asn Leu Pro Leu Ile Arg Leu Arg Ser 1 5 10 15

Leu Ala Leu Ser Ser Ser Phe Ser Ser Phe Arg Phe Ala His Arg Pro 20 25 30

Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe Arg Ala Phe Ser 35 40 45

Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met Asp Ala Val Gln 50 55 60

Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Thr Asp 65 70 75 80

Arg Val Val Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Asn 85 90 95

Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe 100 105 110

Asn Ser Lys Tyr Glu Leu Leu Leu Gln Gln Arg Ser Asn Thr Lys Val

Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr 130 135 140

Arg Glu Ser Glu Leu Ile Gln Asp Asn Ala Leu Gly Val Arg Asn Ala 150 155 160

Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Val Ala Glu Asp Val 165 170 175

Pro Val Asp Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro 180 185 190

Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile 195 200 205

Val Arg Asp Val Lys Val Gln Pro Asn Pro Asp Glu Val Ala Glu Ile 210 215 220

Lys Tyr Val Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp 225 230 235 240

Ala Gly Glu Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val 245 250 255

Asp Asn Phe Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Leu 260 265 270

Val Glu Ala Ile Asp Met Lys Thr Ile His Lys Leu 275 280

<210> 97

<211> 831

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS <222> (18) .. (821) <400> 97 tgcactactc aacctca atg gcc gcc tca aca atg gct ctc tcc tcc cct Met Ala Ala Ser Thr Met Ala Leu Ser Ser Pro gcc ttc gcc ggt aag gcc gtc aag ctt tcc ccc gcg gca tca gaa gtc Ala Phe Ala Gly Lys Ala Val Lys Leu Ser Pro Ala Ala Ser Glu Val 20 ctt gga agc ggc cgt gtg aca atg agg aag act gtt gcc aag cca aag 146 Leu Gly Ser Gly Arg Val Thr Met Arg Lys Thr Val Ala Lys Pro Lys 30 ggc cca tca ggc agc cca tgg tac gga tct gac cgt gtc aag tac ttg 194 Gly Pro Ser Gly Ser Pro Trp Tyr Gly Ser Asp Arg Val Lys Tyr Leu 50 ggt cca ttc tct ggc gaa tca ccg agc tac ctt acc gga gag ttc ccc Gly Pro Phe Ser Gly Glu Ser Pro Ser Tyr Leu Thr Gly Glu Phe Pro 65 gga gac tac gga tgg gac acc gcc gga ctt tca gct gac ccc gag aca Gly Asp Tyr Gly Trp Asp Thr Ala Gly Leu Ser Ala Asp Pro Glu Thr ttc gca agg aac cgt gaa cta gaa gtt atc cac agc agg tgg gct atg Phe Ala Arg Asn Arg Glu Leu Glu Val Ile His Ser Arg Trp Ala Met 95 100 ctc gga gcc cta ggc tgc gtc ttc cct gag ctt ttg gct aga aac gga Leu Gly Ala Leu Gly Cys Val Phe Pro Glu Leu Leu Ala Arg Asn Gly 110 gtc aag ttc gga gag gcg gtt tgg ttc aag gcc ggt tca cag atc ttc Val Lys Phe Gly Glu Ala Val Trp Phe Lys Ala Gly Ser Gln Ile Phe 125 130 age gat gga ggg etc gat tac ttg gga aac eet age ttg gtt eac get Ser Asp Gly Gly Leu Asp Tyr Leu Gly Asn Pro Ser Leu Val His Ala 140 145 cag age att ttg gcc att tgg gcc aca caa gtt att ttg atg gga gcc 530 Gln Ser Ile Leu Ala Ile Trp Ala Thr Gln Val Ile Leu Met Gly Ala 160 170 gtt gaa ggc tac aga gtc gca gga aat ggg cca ttg gga gag gcc gag Val Glu Gly Tyr Arg Val Ala Gly Asn Gly Pro Leu Gly Glu Ala Glu 180 gac ttg ctt tac ccc ggt ggc agc ttc gac cca ttg ggt ttg gct acc 626 Asp Leu Leu Tyr Pro Gly Gly Ser Phe Asp Pro Leu Gly Leu Ala Thr 190 195 gac cca gag gca ttc gct gag ttg aag gtg aag gag ctc aag aac gga 674

nsp	205	GIU	Ala	Pne	Ala	G1u 210	Leu	Lys	Val	Lys	Glu 215	Leu	Lys	Asn	Gly	
aga Arg 220	ttg Leu	gct Ala	atg Met	ttc Phe	tct Ser 225	atg Met	ttt Phe	gga Gly	ttc Phe	ttc Phe 230	gtt Val	caa Gln	gcc Ala	atc Ile	gtc Val 235	722
act Thr	ggt Gly	aag Lys	gga Gly	ccg Pro 240	ata Ile	gag Glu	aac Asn	ctt Leu	gct Ala 245	gac Asp	cat His	ttg Leu	gcc Ala	gat Asp 250	cca Pro	770
gtt Val	aac Asn	aac Asn	aac Asn 255	ATA	tgg Trp	gcc Ala	ttc Phe	gcc Ala 260	acc Thr	aac Asn	ttt Phe	gtt Val	ccc Pro <b>26</b> 5	gga Gly	aag Lys	818
tga	gcca	agtt	tt													831

<210> 98

<211> 267

<212> PRT

<213> Arabidopsis thaliana

<400> 98

Met Ala Ala Ser Thr Met Ala Leu Ser Ser Pro Ala Phe Ala Gly Lys

1 5 10 15

Ala Val Lys Leu Ser Pro Ala Ala Ser Glu Val Leu Gly Ser Gly Arg
20 25 30

Val Thr Met Arg Lys Thr Val Ala Lys Pro Lys Gly Pro Ser Gly Ser 35 40 45

Pro Trp Tyr Gly Ser Asp Arg Val Lys Tyr Leu Gly Pro Phe Ser Gly 50 55 60

Glu Ser Pro Ser Tyr Leu Thr Gly Glu Phe Pro Gly Asp Tyr Gly Trp
65 70 75 80

Asp Thr Ala Gly Leu Ser Ala Asp Pro Glu Thr Phe Ala Arg Asn Arg 85 90 95

Glu Leu Glu Val Ile His Ser Arg Trp Ala Met Leu Gly Ala Leu Gly 100 105 110

Cys Val Phe Pro Glu Leu Leu Ala Arg Asn Gly Val Lys Phe Gly Glu 115 120 125

Ala Val Trp Phe Lys Ala Gly Ser Gln Ile Phe Ser Asp Gly Gly Leu 130 135 140

Asp Tyr Leu Gly Asn Pro Ser Leu Val His Ala Gln Ser Ile Leu Ala 145 150 155 160

Ile Trp Ala Thr Gln Val Ile Leu Met Gly Ala Val Glu Gly Tyr Arg 165 170 175

Val Ala Gly Asn Gly Pro Leu Gly Glu Ala Glu Asp Leu Leu Tyr Pro 185 190 Gly Gly Ser Phe Asp Pro Leu Gly Leu Ala Thr Asp Pro Glu Ala Phe 200 Ala Glu Leu Lys Val Lys Glu Leu Lys Asn Gly Arg Leu Ala Met Phe 215 Ser Met Phe Gly Phe Phe Val Gln Ala Ile Val Thr Gly Lys Gly Pro 230 Ile Glu Asn Leu Ala Asp His Leu Ala Asp Pro Val Asn Asn Asn Ala 245 250 Trp Ala Phe Ala Thr Asn Phe Val Pro Gly Lys 260 <210> 99 <211> 855 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (15)..(164) <220> <221> CDS <222> (257)..(305) <220> <221> CDS <222> (416)..(843) <400> 99 cacagtatta acaa atg gca gga atc aaa gtt ttc ggt cac cca gct tcc Met Ala Gly Ile Lys Val Phe Gly His Pro Ala Ser aca gcc act aga aga gtt ctc atc gct ctt cac gag aag aat gtc gac . 98 Thr Ala Thr Arg Arg Val Leu Ile Ala Leu His Glu Lys Asn Val Asp 25 ttt gaa ttc gtt cat gtc gag ctc aaa gat ggt gaa cac aag aaa gag 146 Phe Glu Phe Val His Val Glu Leu Lys Asp Gly Glu His Lys Lys Glu 30 35 cct ttc atc ctt cgc aac gtgagtacat ataacatctg tcaagccaaa 194 Pro Phe Ile Leu Arg Asn 45 atattgtatt tcatctagat actgaatctt ggtcttaaca atcttgaata atgtttttgc 254

ag	Pro	Phe	ggt Gly	aaa Lys	gtt Val 55	cca Pro	gcc Ala	ttt Phe	gaa Glu	gat Asp 60	gga Gly	gac Asp	ttc Phe	aag Lys	att Ile 65	301
tt Ph	e G	gtaaa	ataca	a at	atat	atca	a tta	tagt	cat	gttt	acaa	aat t	tttg	ggttt	t	355
at	gatca	attg	caat	aata	ıga a	agca	ıgaaa	ıc ac	ctcaa	aaaat	gtt	tttt	ttt	tggt	gggcag	415
aa lu	tca Ser	aga Arg	gca Ala	att Ile 70	act Thr	caa Gln	tac Tyr	ata Ile	gct Ala 75	cat His	gaa Glu	ttc Phe	tca Ser	gac Asp 80	aaa Lys	462
gg Gl	a aac y Asr	aac Asn	ctt Leu 85	reu	tca Ser	act Thr	ggc Glý	aag Lys 90	Asp	atg Met	gcg Ala	ato Ile	ata : Ile 95	: Ala	atg Met	510
gg Gl	c att y Ile	gaa Glu 100	TTE	gag Glu	tcg Ser	Cat His	gag Glu 105	Phe	gac Asp	cca Pro	gtt Val	ggt Gly 110	Ser	aag Lys	ctt Leu	558
gti Va:	t tgg L Trp 115	014	caa Gln	gtc Val	tta Leu	aag Lys 120	Pro	ttg Leu	tat Tyr	ggt Gly	atg Met 125	Thr	aca Thr	gac Asp	aaa Lys	606
act Thi	gtt Val	gtt Val	gaa Glu	gaa Glu	gaa Glu 135	gag Glu	gct Ala	aag Lys	cta Leu	gcc Ala 140	aaa Lys	gtc Val	ctc Leu	gat Asp	gtt Val 145	654
tac Tyı	gaa Glu	cac His	agg Arg	ctt Leu 150	ggt Gly	gag Glu	tcc Ser	aag Lys	tat Tyr 155	ttg Leu	gct Ala	tct Ser	gac Asp	cac His 160	ttc Phe	702
act Thr	ttg Leu	gtc Val	gat Asp 165	ctt Leu	cac His	act Thr	atc Ile	cct Pro 170	gtg Val	att Ile	caa Gln	tac Tyr	tta Leu 175	ctt Leu	gga Gly	750
act Thr	cca Pro	act Thr 180	aag Lys	aaa Lys	ctc Leu	ttc Phe	gac Asp 185	gag Glu	cgt Arg	cca Pro	cat His	gtg Val 190	agt Ser	gct Ala	tgg Trp	798
gtt Val	gct Ala 195	gac Asp	atc Ile	act Thr	tca Ser	agg Arg 200	cct Pro	tct Ser	gct Ala	cag Gln	aag Lys 205	gtt Val	ctt Leu	taa		843
gtg	aatc	tca a	aa												·	855
	-							•								

<210> 100

<211> 208

<212> PRT

<213> Arabidopsis thaliana

<400> 100

Met Ala Gly Ile Lys Val Phe Gly His Pro Ala Ser Thr Ala Thr Arg

1 10 15

```
Arg Val Leu Ile Ala Leu His Glu Lys Asn Val Asp Phe Glu Phe Val
His Val Glu Leu Lys Asp Gly Glu His Lys Lys Glu Pro Phe Ile Leu
                             40
Arg Asn Pro Phe Gly Lys Val Pro Ala Phe Glu Asp Gly Asp Phe Lys
Ile Phe Glu Ser Arg Ala Ile Thr Gln Tyr Ile Ala His Glu Phe Ser
Asp Lys Gly Asn Asn Leu Leu Ser Thr Gly Lys Asp Met Ala Ile Ile
Ala Met Gly Ile Glu Ile Glu Ser His Glu Phe Asp Pro Val Gly Ser
                                105
Lys Leu Val Trp Glu Gln Val Leu Lys Pro Leu Tyr Gly Met Thr Thr
Asp Lys Thr Val Val Glu Glu Glu Ala Lys Leu Ala Lys Val Leu
                       135
Asp Val Tyr Glu His Arg Leu Gly Glu Ser Lys Tyr Leu Ala Ser Asp
                    150
                                        155
His Phe Thr Leu Val Asp Leu His Thr Ile Pro Val Ile Gln Tyr Leu
                165
                                   170
Leu Gly Thr Pro Thr Lys Lys Leu Phe Asp Glu Arg Pro His Val Ser
                                185
Ala Trp Val Ala Asp Ile Thr Ser Arg Pro Ser Ala Gln Lys Val Leu
       195
                           200
```

```
<210> 101
<211> 512
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (12)..(67)

<220>
<221> CDS
<222> (241)..(309)

<220>
<222> (241)..(309)

<220>
<221> CDS
<222> (241)..(492)

<400> 101
tatctgaaaa a atg tca gag acc aac aag aat gcc ttc caa gcc ggt cag 50
```

191

			Me	et Se 1	er Gl	lu Th	ır As	sn Ly 5	/s As	sn Al	la Pi		ln A 10	la G	ly Gln	
Thr	gct Ala 15	, ст	aaa Lys	gct Ala	ga Gl	ggta	ctac	etc t	ttet	ctct	t to	gacag	gaac	t		97
ctt	aaac	tgg	aaaa	attg	rtt g	gaago	tata	a ct	cttt	gaaa	a aca	gtto	yaaa	ctt	gatcatt	157
act	agaa	att	tcag	rttac	tt g	rttta	attt	a gt	ttgt	cgta	att	atgt	aat	tgat	gatttt	217
atg	gtta	.caa	tggt	tgtc	at g	rta g u	gag Glu 20	ı Lys	ago Ser	aat Asn	gtt Val	cto Lev 25	ı Lev	g gad ı Asp	aag Lys	268
gcc Ala	aag Lys 30		gct Ala	gca Ala	gct Ala	ggt Gly 35	WTG	gga Gly	gct Ala	gga Gly	gca Ala 40	Gln	ca Gl	ggta	ıaacaat	319
cca	taca	cag	acac	ataa	ca t	ataa	tatg	t aa	cgaa	ataa	acg	tctt	tgt	aago	ttacat	379
gta	cgca	gat	ttct	gata	tg g	ttat	gtat	a tg	ttat	a g n	gcg Ala	gga Gly	aag Lys 45	agt Ser	gta Val	432
tcg Ser	gat Asp	gcg Ala 50	wra	gcg Ala	gga Gly	ggt Gly	gtt Val 55	Asn	ttc Phe	gtg Val	aag Lys	gac Asp 60	Lys	acc Thr	ggc Gly	480
ctg Leu	aac Asn 65	aag Lys	tag	aga	ttcg	ggt (	caaa	tttg	gg							512
<21:	0> 10 l> 60 2> PI 3> Ai	5 RT	:aqob	is tl	nalia	ana										
	)> 10															
Met 1	Ser	Glu	Thr	Asn 5	Lys	Asn	Ala	Phe	Gln 10	Ala	Gly	Gln	Thr	Ala 15	Gly	
Σys	Ala	Glu	Glu 20	Lys	Ser	Asn	Val	Leu 25	Leu	Asp	Lys	Ala	Lys 30	Asp	Ala	
Ala	Ala	Gly 35	Ala	Gly	Ala	Gly	Ala 40	Gln	Gln	Ala	Gly	Lys 45	Ser	Val	Ser	
4sp	Ala 50	Ala	Ala	Gly	Gly	Val 55	Asn	Phe	Val	Lys	Asp 60	Lys	Thr	Gly	Leu	
lsn 65	Lys															

<210> 103 <211> 1138 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (11)(1123)	
<pre>&lt;400&gt; 103 aaaacaaaaa atg gcg act ttg gtt gat cct cct aat ggg ata agg aat</pre>	49
gaa ggg aag cat tac ttc tca atg tgg caa act ctg ttc gag atc gac Glu Gly Lys His Tyr Phe Ser Met Trp Gln Thr Leu Phe Glu Ile Asp 15 20 25	97
act aag tac atg cct atc aag cct att ggt cgt gga gct tac ggt gtt Thr Lys Tyr Met Pro Ile Lys Pro Ile Gly Arg Gly Ala Tyr Gly Val 30 35 40 45	145
gtc tgc tcc tct gtt aac agt gac acc aac gag aaa gtt gct atc aag Val Cys Ser Ser Val Asn Ser Asp Thr Asn Glu Lys Val Ala Ile Lys 50 55 60	193
aag att cac aat gtt tat gag aat agg atc gat gcg ttg agg act ctt Lys Ile His Asn Val Tyr Glu Asn Arg Ile Asp Ala Leu Arg Thr Leu 65 70 75	241
cgg gag ctc aag ctt cta cgc cat ctt cga cat gag aat gtc att gct Arg Glu Leu Lys Leu Leu Arg His Leu Arg His Glu Asn Val Ile Ala 80 85 90	289
ttg aaa gat gtc atg atg cca att cat aag atg agc ttc aag gat gtt Leu Lys Asp Val Met Met Pro Ile His Lys Met Ser Phe Lys Asp Val 95 100 105	337
tat ctt gtt tat gag ctc atg gac act gat ctc cac cag att atc aag Tyr Leu Val Tyr Glu Leu Met Asp Thr Asp Leu His Gln Ile Ile Lys 110 115 120 125	385
tet tet cag egt ett agt aac gat eat tge caa tae tte ttg tte cag Ser Ser Gln Arg Leu Ser Asn Asp His Cys Gln Tyr Phe Leu Phe Gln 130 135 140	433
ttg ctt cga ggg ctc aag tat att cat tca gcc aat atc ctg cac cga Leu Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Ile Leu His Arg 145 150 155	481
gat ttg aaa cct ggt aac ctt ctt gtc aac gca aac tgc gat tta aag Asp Leu Lys Pro Gly Asn Leu Leu Val Asn Ala Asn Cys Asp Leu Lys 160 165 170	529
ata tgc gat ttt gga cta gcg cgt gcg agc aac acc aag ggt cag ttc Ile Cys Asp Phe Gly Leu Ala Arg Ala Ser Asn Thr Lys Gly Gln Phe 175 180 185	577

190	)		_		195	5	. Ale	ITL	, 1 <b>y</b> 1	200	g Ala )	a Pro	Glu	ı Le	t ctc u Leu 205	625
	_	_		210	)	. Gly	1111	ser	215	AST	Va]	Trp	) Ser	220		673
	•		225			. <u> </u>	Gly	230	гÀЗ	Pro	) Ile	Phe	Gln 235	Gl3	a acg	721
		240		_	- 204	Lys	245	TTE	vaı	Asn	Ile	250	Gly	Ser	caa Gln	769
	255				014	260	116	vai	Asn	Pro	Lys 265	Ala	Lys	Arg	tac Tyr	817
270					275	001	710	GIY	Met	280	Leu	Ser	Arg	Leu	285	865
				290			116	ASD	295	ren	GIn	aaa Lys	Met	Leu 300	Val	913
			305	•	<u>-</u>		Jei	310	ser	GIU	Ala	ctc Leu	Gln 315	His	Pro	961
		320			-7-	vaħ	325	ASN	Ala	Asn	Pro	cct Pro 330	Ala	Gln	Val	1009
	335					340	GIU.	ush	rea	Arg	345	gag Glu	Met	Ile	Arg	1057
350			_		355		Deu .	nrs	ıyr	360	cca Pro	caa ( Gln	gct Ala	Ser	acc Thr 365	1105
Leu	aac Asn	act Thr	GLu .	ctc Leu 370	tga (	gctc	aagt	et t	gttt							1138

<210> 104

<211> 370

<212> PRT

<213> Arabidopsis thaliana

<400> 104

Met Ala Thr Leu Val Asp Pro Pro Asn Gly Ile Arg Asn Glu Gly Lys

1 10 15 His Tyr Phe Ser Met Trp Gln Thr Leu Phe Glu Ile Asp Thr Lys Tyr Met Pro Ile Lys Pro Ile Gly Arg Gly Ala Tyr Gly Val Val Cys Ser Ser Val Asn Ser Asp Thr Asn Glu Lys Val Ala Ile Lys Lys Ile His Asn Val Tyr Glu Asn Arg Ile Asp Ala Leu Arg Thr Leu Arg Glu Leu Lys Leu Leu Arg His Leu Arg His Glu Asn Val Ile Ala Leu Lys Asp Val Met Met Pro Ile His Lys Met Ser Phe Lys Asp Val Tyr Leu Val 100 Tyr Glu Leu Met Asp Thr Asp Leu His Gln Ile Ile Lys Ser Ser Gln 120 Arg Leu Ser Asn Asp His Cys Gln Tyr Phe Leu Phe Gln Leu Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Ile Leu His Arg Asp Leu Lys 150 155 Pro Gly Asn Leu Leu Val Asn Ala Asn Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Ala Ser Asn Thr Lys Gly Gln Phe Met Thr Glu 185 Tyr Val Val Thr Arg Trp Tyr Arg Ala Pro Glu Leu Leu Cys Cys 195 Asp Asn Tyr Gly Thr Ser Ile Asp Val Trp Ser Val Gly Cys Ile Phe Ala Glu Leu Leu Gly Arg Lys Pro Ile Phe Gln Gly Thr Glu Cys Leu 230 235 Asn Gln Leu Lys Leu Ile Val Asn Ile Ile Gly Ser Gln Arg Glu Glu 245 250 Asp Leu Glu Phe Ile Val Asn Pro Lys Ala Lys Arg Tyr Ile Arg Ser 260 Leu Pro Tyr Ser Pro Gly Met Ser Leu Ser Arg Leu Tyr Pro Cys Ala 280 His Val Leu Ala Ile Asp Leu Leu Gln Lys Met Leu Val Phe Asp Pro 295 Ser Lys Arg Ile Ser Ala Ser Glu Ala Leu Gln His Pro Tyr Met Ala

305	;				310	כ				31	5				320	
Pro	Leu	туг	: Ası	Pro	Ası	n Ala	a Ası	n Pro	o Pro	o Ala	a Gl	n Va	l Pro	o Il	e Asp	
				52.					330	ט				33	5	
			, , , , ,					34:	•				350	0	t Ile	
			Met	Leu	1 His	туг	His 360	Pro	Glr	ı Ala	a Se	Th:	r Let	ı Ası	n Thr	
Glu	1 Eu															
	0> 1 1> 4															
<21	2> D	NA														
<21	3> A	rabi	dops	is t	hali	ana										
<22	0> 1> C	DC														
			. (43	0)												
	0> 1															
aac	aaca	att	tcaa	gaga	c at	g gc	a gg	c aa	a gg	t gg	a aa	a gg	a ct	c gt	a gct	52
					***	1	a GI	у гу	s GI	y G1 5	у Lу	s Gl	y Le	u Va	l Ala	
gcg	aag	acg	atg	gct	gct	aac	aag	gac	aaa	gac	aad	dac	. Aad	220	aaa	100
			15			11311	bys	20	гÀ2	Asp	Lys	Asp	Lys 25	Lys	Lys	100
ccc Pro	atc Ile	tct Ser	cgc Ara	tct Ser	gct	cgt	gct	ggt	att	cag	ttt	cca	gtt	gga	cga	148
		30	<b>3</b>		*****	Arg	35	GIÀ	тте	Gin	Phe	Pro 40	Val	Gly	Arg	
att Ile	cac His	agg Arg	caa Gln	ctg Leu	aag	acc Thr	cga	gtc	tcg	gca	cat	ggc	aga Arg	gtt	ggt	196
	45				2,5	50	ALG	val	ser	Aia	55 55	Gly	Arg	Val	Gly	
gcc Ala	act	gca	gcc	gtc	tac	aca	gct	tca	atc	ctg	gag	tat	ctg	aca	qca	244
60				141	65	1111	АТА	ser	TTE	Teu 70	Glu	Tyr	Leu	Thr	Ala 75	~
gag Glu	gtt Val	ctt Leu	gag Glu	ttg Leu	gct	ggg	aat	gcg	agc	aag	gat	ctc	aaa Lys	gtg	aag	292
				80		Gry	USII	AIG	85	гЛs	Asp	Leu	Lys	Val 90	Lys	
agg Arg	ata Ile	acg Thr	cca Pro	agg Arg	cat His	ctg Leu	cag Gln	ttg Len	gcg Ala	att	aga	gga	gat Asp	gag	gag	340
								100					105			
ctg Leu	gac Asp	aca Th-	ctc	atc	aag	gga	acg	att	gct	gga	ggt	ggt	gtg	atc	cct	388
		110	Deu	тте	nys	ΥУ	Thr 115	Ile	Ala	Gly	Gly	Gly 120	gtg Val	Ile	Pro	

cac atc cac aag tet etc atc aac aaa acc acc aag gag tga 430 His Ile His Lys Ser Leu Ile Asn Lys Thr Thr Lys Glu 130 tgtgtagctt tttat 445 <210> 106 <211> 136 <212> PRT <213> Arabidopsis thaliana <400> 106 Met Ala Gly Lys Gly Lys Gly Leu Val Ala Ala Lys Thr Met Ala Ala Asn Lys Asp Lys Asp Lys Lys Lys Pro Ile Ser Arg Ser Ala Arg Ala Gly Ile Gln Phe Pro Val Gly Arg Ile His Arg Gln Leu Lys Thr Arg Val Ser Ala His Gly Arg Val Gly Ala Thr Ala Ala Val Tyr Thr Ala Ser Ile Leu Glu Tyr Leu Thr Ala Glu Val Leu Glu Leu 75 Ala Gly Asn Ala Ser Lys Asp Leu Lys Val Lys Arg Ile Thr Pro Arg His Leu Gln Leu Ala Ile Arg Gly Asp Glu Glu Leu Asp Thr Leu Ile 105 Lys Gly Thr Ile Ala Gly Gly Gly Val Ile Pro His Ile His Lys Ser 120 Leu Ile Asn Lys Thr Thr Lys Glu <210> 107 <211> 930 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (14)..(916) <400> 107 gcctccttgg ctt atg tac tta cca aaa cgt ggc aat ttg ttc gaa ctc 49 Met Tyr Leu Pro Lys Arg Gly Asn Leu Phe Glu Leu

	tat Tyr	gat Asp	Pro 15	, mec	cat His	cag Gln	aag Lys	atg Met 20	Туг	aca Thr	ttg Lei	g aat 1 Asr	cta Lev 25	ı Pr	t ga 5 Gl	g ctt u Leu	97
	gcc Ala	aaa Lys 30		acg Thr	gtt Val	tgt Cys	tac Tyr 35	Ser	aga Arg	gat Asp	Gly	tgg Trp 40	Lei	a cta ı Le	a ato	g cgt t Arg	145
	aaa Lys 45	acc Thr	att	tca Ser	aga Arg	gaa Glu 50	Met	ttc Phe	t to Phe	tto Phe	aac Asr 55	Pro	ttt Phe	act Thi	cg Arg	t gag g Glu 60	193
	ctc Leu	ata Ile	aac Asn	gta Val	cca Pro 65	aaa Lys	tgt Cys	act Thr	tta Leu	tca Ser 70	Tyr	gat Asp	gcg Ala	ato Ile	gct Ala 75	ttc a Phe	241
		0,0		80	1111	ser	GIY	THE	Cys 85	Val	Leu	Leu	Ala	Phe 90	Lys	cat His	289
	gtt Val	tcg Ser	tat Tyr 95	cgt Arg	atc Ile	acc Thr	act Thr	acg Thr 100	agc Ser	act Thr	tgc Cys	cat His	ccc Pro 105	aaa Lys	gca Ala	acc Thr	337
	gag Glu	tgg Trp 110	gtt Val	act Thr	gag Glu	gat Asp	cta Leu 115	caa Gln	ttc Phe	cat His	cgt Arg	cgc Arg 120	ttc Phe	cgc Arg	agt Ser	gaa Glu	385
	aca Thr 125	ctt Leu	aac Asn	cac His	agc Ser	aat Asn 130	gtt Val	gtc Val	tat Tyr	gcc Ala	aaa Lys 135	cgt Arg	cgc Arg	ttc Phe	tat Tyr	tgc Cys 140	433
	ctt Leu	gac Asp	ggt Gly	caa Gln	gga Gly 145	agc Ser	tta Leu	tat Tyr	tac Tyr	ttt Phe 150	gat Asp	ccg Pro	tct Ser	tct Ser	cga Arg 155	aga Arg	481
	tgg Trp	gat Asp	ttt Phe	agt Ser 160	tac Tyr	acc Thr	tat Tyr	tta Leu	ctg Leu 165	cca Pro	tgt Cys	cct Pro	tat Tyr	atc Ile 170	tcg Ser	gat Asp	529
	aga Arg	ttt Phe	agt Ser 175	tac Tyr	cag Gln	tat Tyr	gag Glu	cgg Arg 180	aag Lys	aag Lys	aag Lys	aga Arg	att Ile 185	ttc Phe	ttg Leu	gct Ala	577
	_	cgg Arg 190	aaa Lys	gga Gly	gtg Val	FIIE	ttt Phe 195	aag Lys	ata Ile	ttt Phe	aca Thr	tgt Cys 200	gat Asp	ggt Gly	gag Glu	aag Lys	625
	ccg Pro 205	ata Ile	gtg Val	cat His	<b>-</b> 7 -	tta Leu 210	gaa Glu	gat Asp	atc Ile	Asn	tgg Trp 215	gag Glu	gag Glu	atc Ile	aat Asn	agt Ser 220	673
•	act Thr	acg Thr	att Ile	HOD.	gga Gly <b>22</b> 5	ttg Leu	aca Thr	atc Ile	Pne	acg Thr 230	ggt Gly	ctt Leu	tat Tyr	tcc Ser	tct Ser 235	gag Glu	721
!	gtg	aga	ctt	aat	cta	cca	tgg	atg .	agg	aat	agt	gtt	tac	ttt	cct	aga	769

Val	Arg	Leu	Asn 240	Leu	Pro	Trp	Met	Arg 245	Asn	Ser	Val	Tyr	Phe 250	Pro	Arg	
ctt Leu	cgt Arg	ttt Phe 255	aat Asn	gtc Val	aag Lys	cgt Arg	tgt Cys 260	gta Val	tca Ser	tat Tyr	tcg Ser	ctt Leu 265	gat Asp	gaa Glu	gag Glu	817
agg Arg	tat Tyr 270	tat Tyr	ccg Pro	cgg Arg	aag Lys	cag Gln 275	tgg Trp	caa Gln	gaa Glu	cag Gln	gag Glu 280	gat Asp	tta Leu	tgt Cys	cct Pro	865
att Ile 285	gag Glu	aat Asn	ctt Leu	tgg Trp	att Ile 290	agg Arg	cca Pro	ccg Pro	aag Lys	aaa Lys 295	gct Ala	gta Val	gat Asp	ttc Phe	atg Met 300	913
tga	agat	aaaa	igt a	atg												930

<210> 108

<211> 300

<212> PRT

<213> Arabidopsis thaliana

<400> 108

Met Tyr Leu Pro Lys Arg Gly Asn Leu Phe Glu Leu Tyr Asp Pro Leu 1 5 10 15

His Gln Lys Met Tyr Thr Leu Asn Leu Pro Glu Leu Ala Lys Ser Thr 20 25 30

Val Cys Tyr Ser Arg Asp Gly Trp Leu Leu Met Arg Lys Thr Ile Ser 35 40 45

Arg Glu Met Phe Phe Phe Asn Pro Phe Thr Arg Glu Leu Ile Asn Val 50 55 60

Pro Lys Cys Thr Leu Ser Tyr Asp Ala Ile Ala Phe Ser Cys Ala Pro 65 70 75 80

Thr Ser Gly Thr Cys Val Leu Leu Ala Phe Lys His Val Ser Tyr Arg 85 90 95

Ile Thr Thr Ser Thr Cys His Pro Lys Ala Thr Glu Trp Val Thr 100 105 110

Glu Asp Leu Gln Phe His Arg Arg Phe Arg Ser Glu Thr Leu Asn His 115 120 125

Ser Asn Val Val Tyr Ala Lys Arg Arg Phe Tyr Cys Leu Asp Gly Gln 130 135 140

Gly Ser Leu Tyr Tyr Phe Asp Pro Ser Ser Arg Arg Trp Asp Phe Ser 145 150 155 160

Tyr Thr Tyr Leu Leu Pro Cys Pro Tyr Ile Ser Asp Arg Phe Ser Tyr 165 170 175

```
Gln Tyr Glu Arg Lys Lys Lys Arg Ile Phe Leu Ala Val Arg Lys Gly
             180
                                 185
Val Phe Phe Lys Ile Phe Thr Cys Asp Gly Glu Lys Pro Ile Val His
Lys Leu Glu Asp Ile Asn Trp Glu Glu Ile Asn Ser Thr Thr Ile Asp
    210
                        215
Gly Leu Thr Ile Phe Thr Gly Leu Tyr Ser Ser Glu Val Arg Leu Asn
                    230
                                         235
Leu Pro Trp Met Arg Asn Ser Val Tyr Phe Pro Arg Leu Arg Phe Asn
                245
                                    250
Val Lys Arg Cys Val Ser Tyr Ser Leu Asp Glu Glu Arg Tyr Tyr Pro
                                265
Arg Lys Gln Trp Gln Glu Gln Glu Asp Leu Cys Pro Ile Glu Asn Leu
Trp Ile Arg Pro Pro Lys Lys Ala Val Asp Phe Met
    290
                        295
<210> 109
<211> 2640
<212> DNA
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (145)..(981)

<220>
<221> CDS
<222> (1439)..(1727)

<220>
<221> CDS
<221> CDS
<221> CDS
<222> (1817)..(2126)

<220>
<221> CDS
<222> (2204)..(2330)

<220>
<221> CDS
<222> (2204)..(2518)

<400> 109

tccacggcta caaaagaaca ttctcgacat acacaaaaa attcgaaatt tcgagaactc 60 tcttgtgcct tcttcttcat cttcctctgt ttttaaaaat gcaatcaagc agattctcac 120

gat	acct	aaa	ccaa	atcc	aa t	tca	atg Met 1	gcg Ala	gaa Glu	gaa Glu	gca Ala 5	aaa Lys	tcc Ser	aaa Lys	gga Gly	171
aac Asn 10	gca Ala	gct Ala	ttc Phe	tct Ser	tcc Ser 15	Gly	gat Asp	tac Tyr	gcc	acc Thr 20	Ala	ata Ile	acc Thr	cat His	ttc Phe 25	219
aca Thr	gaa Glu	gca Ala	atc Ile	aac Asn 30	ctt Leu	tca Ser	ccá Pro	acc Thr	aat Asn 35	His	ato Ile	cto Lev	tac Tyr	tca Ser 40	aac Asn	267
Arg	ser	Ala	Ser 45	Tyr	Ala	Ser	Leu	His 50	Arg	Tyr	Glu	Glu	Ala 55	Leu	tca Ser	315
Asp	Ala	60 TÀS	Lys	Thr	Ile	Glu	Leu 65	Lys	Pro	Asp	Trp	Ser 70	Lys	Gly	tat Tyr	363
ser	Arg 75	Leu	GIY	Ala	Ala	Phe 80	Ile	Gly	Leu	Ser	Lys 85	Phe	Asp	Glu	gcg Ala	411
90	Asp	Ser	Tyr	Lys	Lys 95	Gly	Leu	Glu	Ile	Asp 100	Pro	Ser	Asn	Glu	Met 105	459
Leu	ьуs	Ser	GIÀ	Leu 110	Ala	Asp	gct Ala	Ser	Arg 115	Ser	Arg	Val	Ser	Ser 120	Lys	507
ser	ASI	rro	125	Val	Asp	Ala	ttt Phe	Gln 130	Gly	Lys	Glu	Met	Trp 135	Glu	Lys	555
Leu	Thr	140	Asp	Pro	Gly	Thr	agg Arg 145	Val	Tyr	Leu	Glu	Gln 150	Asp	Asp	Phe	603
vai	155	Thr	Met	Lys	Glu	11e 160	Cag Gln	Arg	Asn	Pro	Asn 165	Asn	Leu	Asn	Leu	651
tat Tyr 170	atg Met	aag Lys	gat Asp	aag Lys	aga Arg 175	gtt Val	atg Met	aag Lys	gct Ala	tta Leu 180	Gly	gtt Val	ttg Leu	ttg Leu	aat Asn 185	699
gtg Val	aag Lys	ttt Phe	ggt Gly	gga Gly 190	tct Ser	agt Ser	ggt Gly	gaa Glu	gat Asp 195	act Thr	gag Glu	atg Met	aag Lys	gag Glu 200	gct Ala	747
gat Asp	gag Glu	agg Arg	aaa Lys 205	gag Glu	cct Pro	gaa Glu	ccg Pro	gag Glu 210	atg Met	gaa Glu	cct Pro	atg Met	gag Glu 215	ttg Leu	acg Thr	795
gag	gag	gag	agg	саσ	ааσ	aaσ	σaσ	апа	аап	gag	220	act	++~			0.43

Glı	ı Glu	1 Glu 220	ı Arg	, Gl	ı Lys	Lys	Glu 225	Arg	, Lys	₃ Glu	Lys	Ala 230	Leu	Lys	s Glu	
aaa Lys	a ggg s Gly 235		ı gga ı Gly	aat Asr	gtt Val	gct Ala 240	TYI	aag Lys	ı aaç : Lys	j aag Lys	gat Asp 245	Phe	G1 y	aga Arg	gct Ala	891
250	)		,.	* ***	255	ATG	wet	GIU	ı Lev	260	) Asp	Glu	Asp	Ile	tcg Ser 265	939
tat Tyr	ttg Leu	acg Thr	aat Asn	cgt Arg 270	WTG	gct Ala	gtt Val	tat Tyr	Leu 275	gag Glu	atg Met	Gly	aag Lys	• :		981
															aggagg	
															gtacat	
															taagag	
															aaattt	
															ctttat	
tat	tact	gga .	atca	atta	at c	ttcaa	igtai	t cci	tgag	tggt	tcaa	attco	at	tggt	ctatgt	1341
gtt	cttg	cat	tagt	cttg	tt t	aatta	acag	j tto	ggtt	catc	tgga	tctt	ac t	tgta	tcttgt	1401
•										Ty: 280	r Glu	ı Glu	су:	s Ile	t gaa e Glu 285	1456
-	-		aag Lys	gct Ala 290	gtt Val	gaa Glu	aga Arg	ggc Gly	aga	gaa	ctt	cgt	tct	gac	ttc	1504
aag Lys	ata								295					300		
			305	.u.g	ATG	Deu	THE	aga Arg 310	aaa Lys	gga Gly	tct Ser	gct Ala	cta Leu 315	300 gtg Val	aaa Lys	1552
atg	gcg	aga	305 tgc	tca	ааа	gac Asp	ttt	aga Arg 310	aaa Lys		tct Ser att Ile	gct Ala	cta Leu 315	300 gtg Val	aaa Lys	1552 1600
atg Met	gcg Ala gct	aga Arg 320	305 tgc Cys	tcg Ser	aaa Lys	gac Asp	ttt Phe 325	aga Arg 310 gag Glu	aaa Lys cct Pro	gga Gly gcg Ala aca Thr	tct Ser att Ile	gct Ala gag Glu 330	cta Leu 315 act Thr	300 gtg Val ttc Phe	aaa Lys cag Gln	
atg Met aaa Lys	gcg Ala gct Ala 335	aga Arg 320 ctt Leu	305 tgc Cys aca Thr	tcg Ser gag Glu	aaa Lys cat His	gac Asp cgt Arg	ttt Phe 325 aat Asn	aga Arg 310 gag Glu cca Pro	aaa Lys cct Pro gat Asp	gga Gly gcg Ala aca Thr	tct Ser att Ile ttg Leu	gct Ala gag Glu 330 aag	cta Leu 315 act Thr	300 gtg Val ttc Phe ctg Leu	aaa Lys cag Gln aac Asn	1600

ttacacttac tatcttgaaa cgtgatttga ttttaggatt aagcatttga cacttcttc	a 1807
ttgatgcag gt aat gga ttc ttt aaa gaa caa aag tat cca gag gca gtg ly Asn Gly Phe Phe Lys Glu Gln Lys Tyr Pro Glu Ala Val 380 385	1857
aag cat tat toa gaa goa ato aaa aga aac oog aac gac gtg agg goa Lys His Tyr Ser Glu Ala Ile Lys Arg Asn Pro Asn Asp Val Arg Ala 390 395 400 405	1905
tat agc aac aga gct gct tgt tac aca aag tta gga gca tta cca gag Tyr Ser Asn Arg Ala Ala Cys Tyr Thr Lys Leu Gly Ala Leu Pro Glu 410 415 420	1953
gga ttg aaa gat gct gaa aaa tgc att gag ctg gac cca agt ttc acg Gly Leu Lys Asp Ala Glu Lys Cys Ile Glu Leu Asp Pro Ser Phe Thr 425 430 435	2001
aaa gga tac agt aga aaa gga gct att caa ttt ttc atg aag gaa tac Lys Gly Tyr Ser Arg Lys Gly Ala Ile Gln Phe Phe Met Lys Glu Tyr 440 445 450	2049
gat aaa gct atg gaa acg tat caa gaa ggg cta aaa cat gat cct aag Asp Lys Ala Met Glu Thr Tyr Gln Glu Gly Leu Lys His Asp Pro Lys 455 460 465	2097
aac cag gag ttc ctt gat ggt gtt aga ag gtttgcaaat tttggcattc Asn Gln Glu Phe Leu Asp Gly Val Arg Ar 470 475	2146
tetetttgtt gtttaacett geaaagateg gtetagtgaa agtgttgttg tttteag a g	2204
tgt gtg gaa cag ata aac aaa gcg agc cgt ggt gat ctg act cca gaa Cys Val Glu Gln Ile Asn Lys Ala Ser Arg Gly Asp Leu Thr Pro Glu 480 485 490 495	2252
gaa ttg aag gag aga caa gca aag gca atg caa gat cct gaa gtt cag Glu Leu Lys Glu Arg Gln Ala Lys Ala Met Gln Asp Pro Glu Val Gln 500 505 510	2300
aac ata tta tcg gat cca gtg atg aga cag gtaaaagcag tggcaagcat Asn Ile Leu Ser Asp Pro Val Met Arg Gln 515 520	2350
tgtgttctaa ctcgtaagct gtctgtgaga cttgtgtgat gatgtctatt gtag gta Val	2407
cta gtg gac ttt caa gag aat ccg aaa gct gca caa gag cat atg aag Leu Val Asp Phe Gln Glu Asn Pro Lys Ala Ala Gln Glu His Met Lys 525 530 535	2455
aac cca atg gta atg aac aag att cag aag ctg gtt agt gcc gga att Asn Pro Met Val Met Asn Lys Ile Gln Lys Leu Val Ser Ala Gly Ile 540 545 550	2503
gtt cag gtc cgg taa attggttatg ctaaaccgga gtggtatatt gaatcaaacc	2558

Val Gln Val Arg 555

gaagatgttt ccaaattttc actgcgttct tttgggcttt tgttaaactg atgaaactct 2618 gatttggttt gggtcatgtt tg 2640

<210> 110

<211> 558

<212> PRT

<213> Arabidopsis thaliana

<400> 110

Met Ala Glu Glu Ala Lys Ser Lys Gly Asn Ala Ala Phe Ser Ser Gly

1 5 10 15

Asp Tyr Ala Thr Ala Ile Thr His Phe Thr Glu Ala Ile Asn Leu Ser 20 25 30

Pro Thr Asn His Ile Leu Tyr Ser Asn Arg Ser Ala Ser Tyr Ala Ser 35

Leu His Arg Tyr Glu Glu Ala Leu Ser Asp Ala Lys Lys Thr Ile Glu 50 55 60

Leu Lys Pro Asp Trp Ser Lys Gly Tyr Ser Arg Leu Gly Ala Ala Phe
65 70 75 80

Ile Gly Leu Ser Lys Phe Asp Glu Ala Val Asp Ser Tyr Lys Lys Gly
85 90 95

Leu Glu Ile Asp Pro Ser Asn Glu Met Leu Lys Ser Gly Leu Ala Asp 100 105 110

Ala Ser Arg Ser Arg Val Ser Ser Lys Ser Asn Pro Phe Val Asp Ala 115 120 125

Phe Gln Gly Lys Glu Met Trp Glu Lys Leu Thr Ala Asp Pro Gly Thr

Arg Val Tyr Leu Glu Gln Asp Asp Phe Val Lys Thr Met Lys Glu Ile 150 155 160

Gln Arg Asn Pro Asn Asn Leu Asn Leu Tyr Met Lys Asp Lys Arg Val

Met Lys Ala Leu Gly Val Leu Leu Asn Val Lys Phe Gly Gly Ser Ser 180 185 190

Gly Glu Asp Thr Glu Met Lys Glu Ala Asp Glu Arg Lys Glu Pro Glu 195 200 205

Pro Glu Met Glu Pro Met Glu Leu Thr Glu Glu Glu Arg Gln Lys Lys 210 220

Glu Arg Lys Glu Lys Ala Leu Lys Glu Lys Gly Glu Gly Asn Val Ala

225 230 235 240 Tyr Lys Lys Asp Phe Gly Arg Ala Val Glu His Tyr Thr Lys Ala 245 250 Met Glu Leu Asp Asp Glu Asp Ile Ser Tyr Leu Thr Asn Arg Ala Ala 265 Val Tyr Leu Glu Met Gly Lys Tyr Glu Glu Cys Ile Glu Asp Cys Asp Lys Ala Val Glu Arg Gly Arg Glu Leu Arg Ser Asp Phe Lys Met Ile Ala Arg Ala Leu Thr Arg Lys Gly Ser Ala Leu Val Lys Met Ala Arg Cys Ser Lys Asp Phe Glu Pro Ala Ile Glu Thr Phe Gln Lys Ala Leu Thr Glu His Arg Asn Pro Asp Thr Leu Lys Lys Leu Asn Asp Ala Glu Lys Val Lys Lys Glu Leu Glu Gln Gln Glu Tyr Phe Asp Pro Thr Ile 355 Ala Glu Glu Arg Glu Lys Gly Asn Gly Phe Phe Lys Glu Gln Lys Tyr Pro Glu Ala Val Lys His Tyr Ser Glu Ala Ile Lys Arg Asn Pro 390 395 Asn Asp Val Arg Ala Tyr Ser Asn Arg Ala Ala Cys Tyr Thr Lys Leu Gly Ala Leu Pro Glu Gly Leu Lys Asp Ala Glu Lys Cys Ile Glu Leu Asp Pro Ser Phe Thr Lys Gly Tyr Ser Arg Lys Gly Ala Ile Gln Phe Phe Met Lys Glu Tyr Asp Lys Ala Met Glu Thr Tyr Gln Glu Gly Leu 455 460 Lys His Asp Pro Lys Asn Gln Glu Phe Leu Asp Gly Val Arg Arg Cys 470 475 Val Glu Gln Ile Asn Lys Ala Ser Arg Gly Asp Leu Thr Pro Glu Glu 485 490 Leu Lys Glu Arg Gln Ala Lys Ala Met Gln Asp Pro Glu Val Gln Asn Ile Leu Ser Asp Pro Val Met Arg Gln Val Leu Val Asp Phe Gln Glu 515 Asn Pro Lys Ala Ala Gln Glu His Met Lys Asn Pro Met Val Met Asn

530

540 Lys Ile Gln Lys Leu Val Ser Ala Gly Ile Val Gln Val Arg 545 550 <210> 111 <211> 1560 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (130)..(265) <220> <221> CDS <222> (386)..(515) <220> <221> CDS <222> (622)..(1480) <400> 111 tatataaacc tcacacacgc attatcatac accatcctcc tcattctctt catcatcaac 60 ataagagaga gagaagaaaa aaagaattac aattaataag aacaagatca agaatcaaga 120 atcaagaaa atg gga aga gca ccg tgt tgt gat aag gcc aac gtg aag aaa 171 Met Gly Arg Ala Pro Cys Cys Asp Lys Ala Asn Val Lys Lys ggg cct tgg tct cct gag gaa gac gcc aaa ctc aaa gat tac atc gag Gly Pro Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu aat agt ggc aca gga ggc aac tgg att gct ttg cct cag aaa att g Asn Ser Gly Thr Gly Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile G 265 gtatgtatta cttaaaactc acttttgatt taaaattggc actgagagtt tccaaatagt 325 actttgagac cgtggtcgtg ttaaatttgt gtgttgatga tatttattta catggtatag 385 gt tta agg aga tgt ggg aag agt tgc agg cta agg tgg ctc aac tat ly Leu Arg Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr 432 ttg aga cca aac atc aaa cat ggt ggc ttc tcc gag gaa gaa gac aac Leu Arg Pro Asn Ile Lys His Gly Gly Phe Ser Glu Glu Glu Asp Asn atc att tgt aac ctc tat gtt act att ggt agc ag gtactatata. Ile Ile Cys Asn Leu Tyr Val Thr Ile Gly Ser Ar 525 80 85

535

cttacatata tatcatcata tgcatggatg aatattatta attgacacac ttattcttga 585 cttagagact cactatgtat ctttgtttaa ttctag g tgg tct ata att gct gca 640 g Trp Ser Ile Ile Ala Ala 90 caa ttg ccg gga aga acc gac aac gat atc aaa aac tat tgg aac acg 688 Gln Leu Pro Gly Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr 100 105 agg ctg aag aag ctt ctg aac aaa caa agg aaa gag ttc caa gaa Arg Leu Lys Lys Leu Leu Asn Lys Gln Arg Lys Glu Phe Gln Glu 115 gcg cga atg aag caa gag atg gtg atg atg aaa agg caa caa gga 784 Ala Arg Met Lys Gln Glu Met Val Met Lys Arg Gln Gln Gln Gly 130 caa gga caa ggt caa agt aat ggt agt acg gat ctt tat ctt aac aac 832 Gln Gly Gln Gly Ser Asn Gly Ser Thr Asp Leu Tyr Leu Asn Asn 145 atg ttt gga tca tca cca tgg cca tta cta cca caa ctt cct cca 880 Met Phe Gly Ser Ser Pro Trp Pro Leu Leu Pro Gln Leu Pro Pro 160 165 cat cat caa ata cct ctt gga atg atg gaa cca aca agc tgt aac tac His His Gln Ile Pro Leu Gly Met Met Glu Pro Thr Ser Cys Asn Tyr 180 tac caa acg aca ccg tct tgt aac cta gaa caa aag cca ttg atc aca 976 Tyr Gln Thr Thr Pro Ser Cys Asn Leu Glu Gln Lys Pro Leu Ile Thr 195 ctc aag aac atg gtc aag att gaa gaa gaa cag gaa agg aca aac cct 1024 Leu Lys Asn Met Val Lys Ile Glu Glu Glu Glu Glu Arg Thr Asn Pro 210 gat cat cat cat gat tct gtc aca aac cct ttt gat ttc tct ttc 1072 Asp His His Gln Asp Ser Val Thr Asn Pro Phe Asp Phe Ser Phe 225 tct cag ctt ttg tta gat ccc aat tac tat ctg gga tca gga ggg gga 1120 Ser Gln Leu Leu Asp Pro Asn Tyr Tyr Leu Gly Ser Gly Gly Gly 240 245 gga gaa gga gat ttt gct atc atg agc agc agc aca aac tca cca tta 1168 Gly Glu Gly Asp Phe Ala Ile Met Ser Ser Ser Thr Asn Ser Pro Leu 260 cca aac aca agt agt gat caa cat cca agt caa cag caa gag att ctt 1216 Pro Asn Thr Ser Ser Asp Gln His Pro Ser Gln Gln Glu Ile Leu 275 caa tgg ttt ggg agc agt aac ttt cag aca gaa gca atc aac gat atg Gln Trp Phe Gly Ser Ser Asn Phe Gln Thr Glu Ala Ile Asn Asp Met 290

Phe Ile Asn Asn Asn Asn Ile Val Asn Leu Glu Thr Ile Glu 305 310 315	
aca aaa gtc tat gga gac gcc tca gta gcc gga gcc gct gtc cga Thr Lys Val Tyr Gly Asp Ala Ser Val Ala Gly Ala Ala Val Arg 320 325 330	335
gct ttg ggc gga ggg aca acg agt aca tcg gcg gat caa agt aca Ala Leu Gly Gly Gly Thr Thr Ser Thr Ser Ala Asp Gln Ser Thr 340 345 350	: Ile )
agt tgg gag gat ata act tct cta gtt aat tcc gaa gat gca agt Ser Trp Glu Asp Ile Thr Ser Leu Val Asn Ser Glu Asp Ala Ser 355 360 365	Tyr
ttc aat gcg cca aat cat gtg taa cattttgttt aaaactttat ttgta Phe Asn Ala Pro Asn His Val 370 375	cttaa 1510
atacataaag aggggttttc tattttgtat aaatctgtgt ctttagggag	1560
<210> 112 <211> 374 <212> PRT <213> Arabidopsis thaliana	
<400> 112	
Met Gly Arg Ala Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly	
10 15	
10	
Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu Asp Asn 25   Gly Thr Gly Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu 45	Ser Arg
Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu Asn 20 25 30  Gly Thr Gly Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu 35	Ser Arg
Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu Asn 30 Cys Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg	Ser Arg Pro
Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu Asp Asn Gly Thr Gly 35 Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg 65 Tyr Val Thr Gly Gly Ser Arg Trp Ser Ile Glu Asp Ile Ala Ala Ash Leu Tyr Val Thr Bs Ile Gly Ser Arg Trp Ser Ile Ile Ala Ala 95	Ser Arg Pro Cys 80 Gln
Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu Asp Asn Gly Thr Gly Gly Asn Trp Ile Ala Lys Pro Gln Lys Ile Gly Leu Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg 65  Asn Ile Lys His Gly Gly Gly Phe Ser Glu Glu Glu Asp Asn Ile Ile Ala Ala Ser Leu Pro Gly Arg Thr Asp Asn Asp Ile Lys Arg Trp Asn Thr Ilo	Ser Arg Pro Cys 80 Gln Arg
Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu Asp Asn 30 Gly Thr Gly Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu Arg 50 Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg 60 Asn Ile Lys His Gly Gly Phe Ser Glu Glu Glu Asp Asp Asn Ile Ile Asn Leu Tyr Val Thr Ile Gly Ser Arg Trp Ser Ile Ile Ala Ala 95 Leu Pro Gly Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr	Ser Arg Pro Cys 80 Gln Arg

Gly Gln Gly Gln Ser Asn Gly Ser Thr Asp Leu Tyr Leu Asn Asn Met 155 Phe Gly Ser Ser Pro Trp Pro Leu Leu Pro Gln Leu Pro Pro Pro His 165 170 His Gln Ile Pro Leu Gly Met Met Glu Pro Thr Ser Cys Asn Tyr Tyr 185 Gln Thr Thr Pro Ser Cys Asn Leu Glu Gln Lys Pro Leu Ile Thr Leu Lys Asn Met Val Lys Ile Glu Glu Glu Glu Glu Arg Thr Asn Pro Asp His His Gln Asp Ser Val Thr Asn Pro Phe Asp Phe Ser Phe Ser 230 235 Gln Leu Leu Asp Pro Asn Tyr Tyr Leu Gly Ser Gly Gly Gly Glu Gly Asp Phe Ala Ile Met Ser Ser Ser Thr Asn Ser Pro Leu Pro 265 Asn Thr Ser Ser Asp Gln His Pro Ser Gln Gln Glu Ile Leu Gln 280 Trp Phe Gly Ser Ser Asn Phe Gln Thr Glu Ala Ile Asn Asp Met Phe 300 Ile Asn Asn Asn Asn Ile Val Asn Leu Glu Thr Ile Glu Asn Thr 310 315 Lys Val Tyr Gly Asp Ala Ser Val Ala Gly Ala Ala Val Arg Ala Ala 325 Leu Gly Gly Gly Thr Thr Ser Thr Ser Ala Asp Gln Ser Thr Ile Ser 345 Trp Glu Asp Ile Thr Ser Leu Val Asn Ser Glu Asp Ala Ser Tyr Phe 355 360 Asn Ala Pro Asn His Val 370

370

<210> 113
<211> 3790
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (38)..(1597)
<220>

```
<221> CDS
 <222> (1717)..(1943)
 <220>
 <221> CDS
 <222> (2052)..(2384)
 <220>
 <221> CDS
 <222> (2468)..(2714)
 <220>
 <221> CDS
 <222> (2800)..(2928)
 <220>
 <221> CDS
 <222> (3020)..(3203)
 <220>
 <221> CDS
 <222> (3532)..(3773)
<400> 113
ttgtatggtt cgttgttact gatagattac ttaagct atg gtt tgg ttt aga atc
                                          Met Val Trp Phe Arg Ile
ggt tet tet gtg gca aag ett gee ata aga agg aca etg tet eag tet
Gly Ser Ser Val Ala Lys Leu Ala Ile Arg Arg Thr Leu Ser Gln Ser
                                                                    103
             10
cgt tgt ggt tca tat gcc act aga aca agg gtt ttg cct tgt caa acc
Arg Cys Gly Ser Tyr Ala Thr Arg Thr Arg Val Leu Pro Cys Gln Thr
                                                                    151
                              30
aga tgt ttt cac tct aca ata ctc aaa tca aag gca gag tct gct gca
Arg Cys Phe His Ser Thr Ile Leu Lys Ser Lys Ala Glu Ser Ala Ala
                                                                    199
cct gtt cca cgt cct gtc cca ctt tct aag cta act gat agc ttc tta
Pro Val Pro Arg Pro Val Pro Leu Ser Lys Leu Thr Asp Ser Phe Leu
                                                                   247
gat gga aca agc agt gtg tat cta gag gag tta caa aga gct tgg gag
Asp Gly Thr Ser Ser Val Tyr Leu Glu Glu Leu Gln Arg Ala Trp Glu
                                                                   295
                 75
gct gat ccc aac agt gtt gat gag tcg tgg gat aac ttt ttt agg aat
Ala Asp Pro Asn Ser Val Asp Glu Ser Trp Asp Asn Phe Phe Arg Asn
                                                                   343
             90
ttt gtg ggt cag gct tct aca tcg cct ggt atc tcg ggg caa acc att
Phe Val Gly Gln Ala Ser Thr Ser Pro Gly Ile Ser Gly Gln Thr Ile
                                                                   391
        105
caa gaa agc atg cgt ttg ttg cta gtt aga gct tac cag gtt aat
                                                                   439
```

Gln	Glu 120	Ser	Met	Arg	Leu	Leu 125	Leu	Leu	Val	Arg	Ala 130		Gln	Val	Asn	
ggc Gly 135	Cac His	atg Met	aag Lys	gcc	aag Lys 140	ctt Leu	gat Àsp	cct Pro	tta Leu	ggt Gly 145	cta Leu	gag Glu	aag Lys	aga Arg	gag Glu 150	487
att Ile	cca Pro	gag Glu	gat Asp	ctc Leu 155	acg Thr	cca Pro	ggt Gly	ctt Leu	tat Tyr 160	Gly	ttt Phe	act Thr	gag Glu	gct Ala 165	gat Asp	535
ctt Leu	gat Asp	cgg Arg	gaa Glu 170	ttc Phe	ttt Phe	ctg Leu	ggt Gly	gta Val 175	tgg Trp	agg Arg	atg Met	tcg Ser	ggt Gly 180	ttt Phe	ctc Leu	583
tct Ser	gag Glu	aac Asn 185	cgc Arg	ccg Pro	gtt Val	caa Gln	aca Thr 190	ctg Leu	agg Arg	tcg Ser	ata Ile	ctg Leu 195	tcg Ser	agg Arg	ctt Leu	631
gag Glu	caa Gln 200	gct Ala	tac Tyr	tgt Cys	Gly	act Thr 205	ata Ile	ggg Gly	tat Tyr	gag Glu	tac Tyr 210	atg Met	cac His	att Ile	gct Ala	679
gat Asp 215	agg Arg	gat Asp	aaa Lys	tgt Cys	aac Asn 220	tgg Trp	ttg Leu	aga Arg	gac Asp	aag Lys 225	atc Ile	gag Glu	acc Thr	cca Pro	act Thr 230	727
cct Pro	cga Arg	cag Gln	tac Tyr	aat Asn 235	agt Ser	gag Glu	cgt Arg	cgg Arg	atg Met 240	gtt Val	att Ile	tat Tyr	gat Asp	agg Arg 245	ctt Leu	775
acc Thr	tgg Trp	agc Ser	aca Thr 250	cag Gln	ttt Phe	gag Glu	aat Asn	ttc Phe 255	ttg Leu	gct Ala	act Thr	aag Lys	tgg Trp 260	acc Thr	acg Thr	823
gct Ala	aaa Lys	agg Arg 265	ttt Phe	gga Gly	ctg Leu	gaa Glu	ggt Gly 270	gct Ala	gaa Glu	tct Ser	ttg Leu	att Ile 275	cct Pro	ggc Gly	atg Met	871
aag Lys	gag Glu 280	atg Met	ttc Phe	gat Asp	agg Arg	tct Ser 285	gca Ala	gat Asp	ctc Leu	G1A aaa	gta Val 290	gag Glu	aac Asn	ata Ile	gtt Val	919
atc Ile 295	ggt Gly	atg Met	ccc Pro	cat His	agg Arg 300	ggt Gly	cga Arg	ctt Leu	aat Asn	gtt Val 305	ttg Leu	ggt Gly	aat Asn	gtt Val	gtt Val 310	967
aga Arg	aaa Lys	cct Pro	cta Leu	cgc Arg 315	caa Gln	ata Ile	ttc Phe	agc Ser	gag Glu 320	ttt Phe	agc Ser	ggt Gly	ggt Gly	act Thr 325	agg Arg	1015
cca Pro	gta Val	gat Asp	gaa Glu 330	gtt Val	Gly ggg	ctt Leu	Tyr	acc Thr 335	gga Gly	aca Thr	ggt Gly	gat Asp	gtg Val 340	aaa Lys	tac Tyr	1063
cac His	ttg Leu	ggt Gly	aca Thr	tct Ser	tat Tyr	gat Asp	cgt Arg	cca Pro	act Thr	aga Arg	gga Gly	ggc Gly	aaa Lys	cat His	ctc Leu	1111

345	. 3	350	355	
cac ttg tct ttg His Leu Ser Leu 360	gta gca aat c Val Ala Asn F 365	ecc agt cac ( Pro Ser His )	ttg gaa gca gta Leu Glu Ala Val 370	gat cct 1159 Asp Pro
gtt gtg ata ggt Val Val Ile Gly 375	aaa acc aga g Lys Thr Arg A 380	tia Lys Gln	tat tac acg aaa Tyr Tyr Thr Lys 385	gac gag 1207 Asp Glu 390
aac aga aca aag Asn Arg Thr Lys	aac atg ggt a Asn Met Gly I 395	att ttg atc of the Leu Ile F	cat ggg gat ggt His Gly Asp Gly	agc ttt 1255 Ser Phe 405
gcc gga caa gga Ala Gly Gln Gly 410	gtg gtg tat g Val Val Tyr G	gaa act ctc c Glu Thr Leu F 415	cat ctt agt gca His Leu Ser Ala 420	ctt cct 1303 Leu Pro
aac tac tgt acc Asn Tyr Cys Thr 425	dry Gry Inc V	rtg cac att o /al His Ile V .30	gtg gtg aat aat Val Val Asn Asn 435	caa gtg 1351 Gln Val
gct ttc aca acc Ala Phe Thr Thr 440	gat ccc agg g Asp Pro Arg G 445	aa gga agg t lu Gly Arg S	Ser Ser Gln Tyr 450	tgc act 1399 Cys Thr
gat gtt gca aag ( Asp Val Ala Lys / 455	gct ttg agc g Ala Leu Ser A 460	Ta bro He b	tc cat gtc aat o he His Val Asn . 165	gca gat 1447 Ala Asp 470
gac att gaa gca g Asp Ile Glu Ala 1	gta gtg cat go Val Val His A 1475	ct tgt gag c la Cys Glu L 480	eu Ala Ala Glu '	tgg cgc 1495 Trp Arg 485
cag acg ttc cat ( Gln Thr Phe His 9 490	tct gat gtt go Ser Asp Val Va	tt gtt gat t al Val Asp L 495	ta gta tgc tac deu Val Cys Tyr 1 500	egt ege 1543 Arg Arg
ttt ggg cat aac q Phe Gly His Asn ( 505	ard fre Asp G	aa ccg tca t lu Pro Ser P 10	tc aca caa cca a he Thr Gln Pro I 515	aaa atg 1591 Lys Met
tac aag gtctggcta Tyr Lys 520	at tatatcatcc	atctctgtga	aataatctaa taaco	eaattc 1647
aagtttccat ttcata	acttt tcttgtac	ctt ttttttg	tt taaaaacgga tg	ttacttgt 1707
	525	PIO Ser Ser	Leu Gln Ile Tyr 530	Gln Glu
aag ctc ttg caa t Lys Leu Leu Gln S 535	ct gga cag gt Ser Gly Gln Va 540	at Thr Gin G	aa gat att gat a lu Asp Ile Asp L 45	ag att 1806 ys Ile 550
caa aag aaa gta a	gc tct atc ct	c aat gaa ga	aa tat gag gca a	gt aaa 1854

Gln	Lys	Lys	Val	Ser 555	Ser	Ile	Leu	Asn	Glu 560	Glu	Tyr	Glu	Ala	Ser 565	Lys	
gat Asp	tat Tyr	att Ile	cca Pro 570	caa Gln	aaa Lys	cgt Arg	gac Asp	tgg Trp 575	ctg Leu	gca Ala	agt Ser	cac His	tgg Trp 580	act Thr	gga Gly	1902
ttc Phe	aag Lys	tct Ser 585	ccg Pro	gag Glu	cag Gln	att Ile	tct Ser 590	agg Arg	att Ile	cga Arg	aac Asn	acc Thr 595	gg (	gtaaa	aaaca	1953
ttt	ttati	ctc a	attta	agtti	tg to	caat	gccti	t tt	ggcc	tttt	ttc	tttt	ctt	tttca	aatgta	2013
, acat	Ettt	gct (	ggaaa	acta	at to	eccti	gtț	e tt	ttgca	aga Y	gtg Val	aag Lys	cca Pro	gag Glu 600	att Ile	2067
ttg Leu	aag Lys	aat Asn	gtg Val 605	gga Gly	aag Lys	gca Ala	atc Ile	tca Ser 610	acc Thr	ttc Phe	cct Pro	gag Glu	aac Asn 615	ttt Phe	aag Lys	2115
cca Pro	cac His	aga Arg 620	gga Gly	gtt Val	aaa Lys	aga Arg	gtt Val 625	tat Tyr	gaa Glu	caa Gln	cgt Arg	gct Ala 630	caa Gln	atg Met	att Ile	2163
gaa Glu	tcg Ser 635	gga Gly	gaa Glu	ggc Gly	att Ile	gac Asp 640	tgg Trp	gga Gly	ctt Leu	gga Gly	gaa Glu 645	gca Ala	ctt Leu	gct Ala	ttt Phe	2211
gct Ala 650	aca Thr	ctg Leu	gtt Val	gtg Val	gaa Glu 655	ggg Gly	aac Asn	cat His	gtt Val	cgg Arg 660	cta Leu	agt Ser	ggt Gly	caa Gln	gat Asp 665	2259
gtt Val	gaa Glu	aga Arg	gga Gly	act Thr 670	ttc Phe	agt Ser	cat His	aga Arg	cac His 675	tca Ser	gtġ Val	ctt Leu	cat His	gat Asp 680	caa Gln	2307
gaa Glu	acc Thr	Gly ggg	gag Glu 685	gaa Glu	tat Tyr	tgt Cys	ccc Pro	ctc Leu 690	gat Asp	cac His	cta Leu	atc Ile	aaa Lys 695	aac Asn	caa Gln	2355
gac Asp	PIO	gaa Glu 700	atg Met	ttc Phe	act Thr	gtc Val	agc Ser 705	aac Asn	ag g Se	rtatg	rcatt	t tt	ttt	aatc		2404
tcta	gaga	tg a	taac	cact	c tt	caat	tgtt	ttt	acat	gat	cttt	acgt	tg t	ttgt	gtatg	2464
cag	c to	c ct Ser	t to Leu 71	ser	a tt Glu	t gg Phe	t gt Gly	t ct Val 71	Leu	t tt Gly	c ga Phe	a ct Glu	g gg Leu 72	Gly	t tcg Tyr Se	2513
I Me	ic GI	72	5	o as	n Se	r Le	u Va _ 73	0	e Tr	p Gl	u Al	a G1 73	n Ph 5	gga e Gl	y As	2561
ttt p Ph	gct e Al	aat a As	ggc n Gl	gca y Al	caa a Gl	gtt n Va	atg 1 Me	ttt t Ph	gat e As	cag p Gl	ttc n Ph	ata e Il	agc e Se	agt (	ggg r Gl	2609

740	745	750		
gaa gcc aaa tgg ct y Glu Ala Lys Trp : 755	c cgt caa act ggt Leu Arg Gln Thr G 760	cta gta gtt tta Sly Leu Val Val L 765	ctt cct cat eu Leu Pro Hi 77	2657 0
gga tat gat ggt ca s Gly Tyr Asp Gly	g ggt cct gaa cat Gln Gly Pro Glu H 775	tcc agt gga aga is Ser Ser Gly A 780	ttg gaa cgt rg Leu Glu Ar 785	2705
ttc ctt cag gtatat g Phe Leu Gln	tata tgaccgatac t	taccgttaa gattct	ctcc	2754
actttttgta tttgttt	ecc tetcatttga aa	attttaac tgcag a	tg agt gat gac Met Ser Asp As 790	2811 s
aat cct tac gtt ato p Asn Pro Tyr Val 1 795	c cct gag atg gac [le Pro Glu Met A 800	cca act ctt cga sp Pro Thr Leu Ai 805	aag cag att rg Lys Gln Il	2859
caa gaa tgt aat tgg e Gln Glu Cys Asn 1 810	g caa gtt gtt aat Trp Gln Val Val A 815	gtt act aca cct sn Val Thr Thr Pi 820	gcc aac tat co Ala Asn Ty 825	2907
ttc cat gtt ctg cgt r Phe His Val Leu A 8	cgg cag gtaaaat arg Arg Gln 330	atc tatttatccc aa	agttcgtaa	2958
aatgttgtta cttaattt	tc gtattcttca cae	ctcacatg cttgatat	ca tccatttgca	3018
g ata cac agg gac t		rt ata oto ato		
ttg ctt cgt cac aaa n Leu Leu Arg His L 850	cag tgt gta tct ys Gln Cys Val Se 855	aat ctc tcg gaa er Asn Leu Ser Gl 860	ttc gat gat u Phe Asp As	3115
gtt aaa gga cat cct p Val Lys Gly His p	gga ttt gac aag	caa gga act cga	ttt aaa cgg	3163

ttg atc aaa gat caa agt ggc cac tct gat ctt gaa gaa g gtatcagacg 3213 g Leu Ile Lys Asp Gln Ser Gly His Ser Asp Leu Glu Glu 885 890

875

p Val Lys Gly His Pro Gly Phe Asp Lys Gln Gly Thr Arg Phe Lys Ar

870

tctagtcctc tgctctggga aggtataaaa aaaaagatcc actttttccg tcattaacta 3273 acaaagttcc cacattctga aatttaatac tttaaatgtc aatgaatcag gtctactatg 3333 agettgacga agagcgaaag aagtctgaaa caaaggatgt agecatttgc agagtagagc 3393 agetttgccc atttccatat gatctcatcc aaagagaact aaagcgatat ccaagtaggc 3453 gtcgaaaact caagtttgtg ttcaatagtt ttggttgatt atggaattct ttgaaacttt 3513

tgttcttgtg tttaacag at gca gag atc gtg tgg tgt caa gaa gag ccg 3563
sp Ala Glu Ile Val Trp Cys Gln Glu Glu Pro
895
900

- atg aac atg gga gga tac caa tac ata gcc cta agg ctt tgc acc gcg 3611 Met Asn Met Gly Gly Tyr Gln Tyr Ile Ala Leu Arg Leu Cys Thr Ala 905 910 915
- atg aaa gca ctg caa aga gga aac ttc aac gac atc aaa tac gtt ggt 3659 Met Lys Ala Leu Gln Arg Gly Asn Phe Asn Asp Ile Lys Tyr Val Gly 920 925 930 935
- cgt ctt ccc tca gct gct aca gcc aca gga ttt tac cag ctt cat gtt 3707 Arg Leu Pro Ser Ala Ala Thr Ala Thr Gly Phe Tyr Gln Leu His Val 940 945 950
- aag gag cag act gat ctt gtg aag aaa gct ctt caa cct gac ccc atc 3755 Lys Glu Gln Thr Asp Leu Val Lys Lys Ala Leu Gln Pro Asp Pro Ile 955 960 965
- acc ccc gtc atc cct taa aaaaacacag cttgaga 3790
  Thr Pro Val Ile Pro
  970

<210> 114

<211> 947

<212> PRT

<213> Arabidopsis thaliana

<400> 114

- Met Val Trp Phe Arg Ile Gly Ser Ser Val Ala Lys Leu Ala Ile Arg
  1 5 10 15
- Arg Thr Leu Ser Gln Ser Arg Cys Gly Ser Tyr Ala Thr Arg Thr Arg 20 25 30
- Val Leu Pro Cys Gln Thr Arg Cys Phe His Ser Thr Ile Leu Lys Ser 35 40 45
- Lys Ala Glu Ser Ala Ala Pro Val Pro Arg Pro Val Pro Leu Ser Lys
  50 55 60
- Leu Thr Asp Ser Phe Leu Asp Gly Thr Ser Ser Val Tyr Leu Glu Glu 65 70 75 80
- Leu Gln Arg Ala Trp Glu Ala Asp Pro Asn Ser Val Asp Glu Ser Trp 85 . 90 95
- Asp Asn Phe Phe Arg Asn Phe Val Gly Gln Ala Ser Thr Ser Pro Gly 100 105 110
- Ile Ser Gly Gln Thr Ile Gln Glu Ser Met Arg Leu Leu Leu Val 115 120 125
- Arg Ala Tyr Gln Val Asn Gly His Met Lys Ala Lys Leu Asp Pro Leu 130 135 140

Gly Leu Glu Lys Arg Glu Ile Pro Glu Asp Leu Thr Pro Gly Leu Tyr 145 150 Gly Phe Thr Glu Ala Asp Leu Asp Arg Glu Phe Phe Leu Gly Val Trp 170 Arg Met Ser Gly Phe Leu Ser Glu Asn Arg Pro Val Gln Thr Leu Arg 185 Ser Ile Leu Ser Arg Leu Glu Gln Ala Tyr Cys Gly Thr Ile Gly Tyr Glu Tyr Met His Ile Ala Asp Arg Asp Lys Cys Asn Trp Leu Arg Asp 210 215 Lys Ile Glu Thr Pro Thr Pro Arg Gln Tyr Asn Ser Glu Arg Arg Met 235 Val Ile Tyr Asp Arg Leu Thr Trp Ser Thr Gln Phe Glu Asn Phe Leu Ala Thr Lys Trp Thr Thr Ala Lys Arg Phe Gly Leu Glu Gly Ala Glu Ser Leu Ile Pro Gly Met Lys Glu Met Phe Asp Arg Ser Ala Asp Leu 285 Gly Val Glu Asn Ile Val Ile Gly Met Pro His Arg Gly Arg Leu Asn 295 Val Leu Gly Asn Val Val Arg Lys Pro Leu Arg Gln Ile Phe Ser Glu 310 315 Phe Ser Gly Gly Thr Arg Pro Val Asp Glu Val Gly Leu Tyr Thr Gly Thr Gly Asp Val Lys Tyr His Leu Gly Thr Ser Tyr Asp Arg Pro Thr 345 Arg Gly Gly Lys His Leu His Leu Ser Leu Val Ala Asn Pro Ser His 360 Leu Glu Ala Val Asp Pro Val Val Ile Gly Lys Thr Arg Ala Lys Gln 375 Tyr Tyr Thr Lys Asp Glu Asn Arg Thr Lys Asn Met Gly Ile Leu Ile His Gly Asp Gly Ser Phe Ala Gly Gln Gly Val Val Tyr Glu Thr Leu 410 His Leu Ser Ala Leu Pro Asn Tyr Cys Thr Gly Gly Thr Val His Ile 425 Val Val Asn Asn Gln Val Ala Phe Thr Thr Asp Pro Arg Glu Gly Arg 435 440

Ser	Ser 450	Gln	Tyr	Cys	Thr	Asp 455	Val	Ala	Lys	s Ala	Let 460		r Alá	a Pro	o Ile
Phe 465	His	Val	Asn	Ala	Asp 470	Asp	·Ile	: Glu	a Ala	a Val 475		His	s Ala	а Суз	5 Glu 480
Leu	Ala	Ala	Glu	Trp 485	Arg	Gln	Thr	Phe	His 490	Ser	. Asp	Va]	l Val	Va]	
Leu	Val	Суз	Tyr 500	Arg	Arg	Phe	Gly	His 505	Asn	ı Glu	ılle	. Asp	510		Ser
Phe	Thr	Gln 515	Pro	Lys	Met	туг	Lys 520	Val	Ile	e Arg	Ser	His 525		Ser	Ser
Leu	Gln 530	Ile	Tyr	Gln	Glu	Lys 535	Leu	Leu	Gln	Ser	Gly 540	Gln	val	Thr	Gln
Glu 545	Asp	Ile	qzA	Lys	Ile 550	Gln	Lys	Lys	Val	Ser 555	Ser	Ile	Leu	Asn	Glu 560
Glu	Tyr	Glu	Ala	Ser 565	Lys	Asp	Tyr	Ile	Pro 570	Gln	Lys	Arg	Asp	Trp 575	
Ala	Ser	His	Trp 580	Thr	Gly	Phe	Lys	Ser 585	Pro	Glu	Gln	Ile	Ser 590	Arg	Ile
		333					600			Lys		605			
	010					615				His	620				
<b>U</b> 23					630					Ser 635					640
				645					650	Thr				655	
Asn	His	Val	Arg 660	Leu	Ser	Gly	Gln	Asp 6 <b>6</b> 5	Val	Glu	Arg	Gly	Thr 670	Phe	Ser
His	Arg	His 6 <b>7</b> 5	Ser	Val	Leu	His	Asp 680	Gln	Glu	Thr	Gly	Glu 685	Glu	Tyr	Cys
Pro	Leu 690	Asp	His	Leu	Ile	Lys 695	Asn	Gln	Asp	Pro	Glu 700	Met	Phe	Thr	Val
Ser 705	Asn	Ser	Ser	Leu	Ser 710	Glu	Phe	Gly	Val	Leu 715		Phe	Glu	Leu	720
Gly 725	Tyr	Ser	Met	Glu	Asn 730	Pro	Asn	Ser	Leu	Val 73	Ile	Trp	Glu	Ala	Gln
Phe	Gly	Ap P	he A	la A	sn G 740	ly A	la G	ln V	al M	iet P 745	he A	sp G	ln F	he I	le 750

Ser Ser Gy Glu Ala Lys Trp Leu Arg Gln Thr Gly Leu Val Val Leu 755 760 765

- Leu Pro Hs Gly Tyr Asp Gly Gln Gly Pro Glu His Ser Ser Gly Arg
  770 775 780
- Leu Glu Ag Phe Leu Gln Met Ser Asp Asp Asp Pro Tyr Val Ile Pro
  785 790 795
- Glu Met Asp Pro Thr Leu Arg Lys Gln Ile Gln Glu Cys Asn Trp Gln 800 805 810
- Val Val Asn Val Thr Thr Pro Ala Asn Trp Phe His Val Leu Arg Arg 815 820 825
- Gln Ile His Arg Asp Phe Arg Lys Pro Leu Ile Val Met Ala Pro Lys 830 835 840
- Asn Leu Leu Arg His Lys Gln Cys Val Ser Asn Leu Ser Glu Phe Asp 845 850 855
- Asp Val Lys Gly His Pro Gly Phe Asp Lys Gln Gly Thr Arg Phe Lys 860 865 870
- Arg Leu Ile Lys Asp Gln Ser Gly His Ser Asp Leu Glu Glu 875 880 886
- Asp Ala Glu Ile Val Trp Cys Gln Glu Glu Pro Met Asn Met Gly Gly 890 895 900
- Tyr Gln Tyr Ile Ala Leu Arg Leu Cys Thr Ala Met Lys Ala Leu Gln 905 910 915
- Arg Gly Asn Phe Asn Asp Ile Lys Tyr Val Gly Arg Leu Pro Ser Ala 920 925 930
- Ala Thr Ala Thr Gly Phe Tyr Gln Leu His Val Lys Glu Gln Thr Asp
- Leu Val Lys Lys Ala Leu Gln
- Pro Asp Pro Ile Thr Pro Val Ile Pro
- <210> 115
- <211> 1200
- <212> DNA
- <213> Arabidopsis thaliana
- <220>
- <221> CDS
- <222> (25)..(151)
- <220>
- <221> CDS

<22	2> (	257)	(3	57)												
	1> C		(6	62)												
	1> C		(1	166)												
	0> 1 attt		ctct	cttg	ac g	cta	atg Met 1	ttc Phe	att Ile	cgg Arg	gtt Val 5	tcc Ser	gct Ala	cga Arg	ccc Pro	51
gcg Ala 10	aca Thr	ttc Phe	gtc Val	gag Glu	gat Asp 15	Pne	aaa Lys	gcc	gcc Alá	tgg Trp 20	Ser	gaa Glu	tct Ser	cac His	atc Ile 25	
cgt Arg	caa G1n	atg Met	gaa Glu	gac Asp 30	GIA	aaa Lys	gct Ala	atc Ile	cag Gln 35	Leu	gtc Val	Leu	gat Asp	cag Gln 40	agc Ser	14
act Thr	G g g	taca	ccaa	c gc	caca	gtta	tat	tttt	aaa	cgga	aaca	tt t	tgaa	atta	.a	20:
tggi	tgtt	ttt	atgt	aata	ta c	tctc	actg	t ac	atgt	tcat	att	tgtc	ttt	taaa	g ga ly	251
tgt Cys	gga Gly 45	ttt Phe	gct Ala	tcc Ser	aaa Lys	aga Arg 50	aaa Lys	tat Tyr	cta Léu	ttc Phe	gga Gly 55	cga Arg	gtg Val	agc Ser	atg Met	300
aag Lys 60	atc Ile	aaa Lys	ctc Leu	att Ile	ccc Pro 65	gga Gly	gac Asp	tct Ser	gcc Ala	ggt Gly 70	acg Thr	gtc Val	acc Thr	gct Ala	ttc Phe 75	354
tac Tyr	gtaa	agtci	tat d	catt	ttacı	tc ca	actaç	gttt	t gaa	aatt	ttac	aca	ttca	cac		407
							cacta									464
atg Met	aac Asn	tcc Ser	gat Asp 80	acg Thr	gcc Ala	acg Thr	gtg Val	aga Arg 85	gac Asp	gag Glu	cta Leu	gat Asp	ttt Phe 90	gag Glu	ttc Phe	512
ttg Leu	gga Gly	aac Asn 95	aga Arg	agt Ser	ggt Gly	caa Gln	cct Pro 100	tac Tyr	tca Ser	gtg Val	caa Gln	aca Thr 105	aac Asn	ata Ile	ttt Phe	560
gct Ala	cat His 110	ggc Gly	aaa Lys	gga Gly	gat Asp	aga Arg 115	gaa Glu	caa Gln	aga Arg	gtt Val	aat Asn 120	ctt Leu	tgg Trp	ttc Phe	gac Asp	608
cca Pro 125	tct Ser	atg Met	gat Asp	tac Tyr	cac His 130	act Thr	tac Tyr	act Thr	atc Ile	tta Leu 135	tgg Trp	tca Ser	cac His	aaa Lys	cac His 140	656

att Ile	gtg Val	taa	gctt	ttc	tcta	attg	rta c	tttc	aact	a ga	atca	acat	tta	etgt	ttc	712
aaa	acaa	aaa	atca	ccat	tt a	ctgt	ttaa	a aa	aacc	ttag	ttt	aacg	tgg	ggtt	gttttg	772
gtt	actc	agt	ttt Phe	IAT	gta Val 145	gac Asp	gat Asp	gtg Val	cca Pro	ata Ile 150	aga Arg	gaa Glu	tac Tyr	aaa Lys	aac Asn 155	821
aac Asn	gaa Glu	gcc Ala	aag Lys	aac Asn 160	тте	gct Ala	tac Tyr	cca Pro	aca Thr 165	Ser	caa Glm	cct Pro	atg Met	gga Gly 170	gta Val	869
tac Tyr	tca Ser	aca Thr	tta Leu 175	тър	gaa Glu	gca Ala	gat Asp	gac Asp 180	Trp	gca Ala	aca Thr	cgt Arg	ggt Gly 185	Gly	tta Leu	917
gag Glu	aaa Lys	att Ile 190	Asp	tgg Trp	agc Ser	aaa Lys	gct Ala 195	cca Pro	ttt Phe	tat Tyr	gct Ala	tat Tyr 200	tac Tyr	aaa Lys	gat Asp	965
ttc Phe	gac Asp 205	atc Ile	gaa Glu	ggt Gly	tgt Cys	Pro 210	vaı	cct Pro	gga Gly	cca Pro	acc Thr 215	ttt Phe	tgt Cys	cca Pro	tcg Ser	1013
aac Asn 220	.cct Pro	cat His	aat Asn	tgg Trp	tgg Trp 225	gaa Glu	ggt Gly	tat Tyr	gcc Ala	tat Tyr 230	cag Gln	tct Ser	ctt Leu	aac Asn	gcc Ala 235	1061
gtt Val	gaa Glu	gct Ala	cga Arg	cgt Arg 240	tac Tyr	cgg Arg	tgg Trp	gtt Val	aga Arg 245	gta Val	aac Asn	cat His	atg Met	gtt Val 250	tat Tyr	1109
gat Asp	tat Tyr	tgt Cys	act Thr 255	gac Asp	cgg Arg	tct Ser	agg Arg	ttt Phe 260	cct Pro	gtc Val	cca Pro	cca Pro	ccc Pro 265	gag Glu	tgt Cys	1157
cgt Arg	WIG	tga 270	aaat	taatt	gc a	ataco	gtaco	gt to	gcaai	gato	c at	gt				1200
<211 <212	> 11 > 26 > PR > Ar	9 .T	lopsi	ls th	nalia	ına										
<400			•													
Met 1	Phe	Ile		J					10					15		
Lys			20					25					30			
Ala	Ile	Gln 35	Leu	Val	Leu	Asp	Gln 40	Ser	Thr	Gly	Сув	Gly 45	Phe	Ala	Ser	

Lys Arg Lys Tyr Leu Phe Gly Arg Val Ser Met Lys Ile Lys Leu Ile 50 Pro Gly Asp Ser Ala Gly Thr Val Thr Ala Phe Tyr Met Asn Ser Asp Thr Ala Thr Val Arg Asp Glu Leu Asp Phe Glu Phe Leu Gly Asn Arg Ser Gly Gln Pro Tyr Ser Val Gln Thr Asn Ile Phe Ala His Gly Lys Gly Asp Arg Glu Gln Arg Val Asn Leu Trp Phe Asp Pro Ser Met Asp 115 Tyr His Thr Tyr Thr Ile Leu Trp Ser His Lys His Ile Val Phe Tyr Val Asp Asp Val Pro Ile Arg Glu Tyr Lys Asn Asn Glu Ala Lys Asn 150 Ile Ala Tyr Pro Thr Ser Gln Pro Met Gly Val Tyr Ser Thr Leu Trp 170 Glu Ala Asp Asp Trp Ala Thr Arg Gly Gly Leu Glu Lys Ile Asp Trp 185 Ser Lys Ala Pro Phe Tyr Ala Tyr Tyr Lys Asp Phe Asp Ile Glu Gly 200 Cys Pro Val Pro Gly Pro Thr Phe Cys Pro Ser Asn Pro His Asn Trp Trp Glu Gly Tyr Ala Tyr Gln Ser Leu Asn Ala Val Glu Ala Arg Arg 235 Tyr Arg Trp Val Arg Val Asn His Met Val Tyr Asp Tyr Cys Thr Asp 245 250 Arg Ser Arg Phe Pro Val Pro Pro Pro Glu Cys Arg Ala 265

```
<210> 117
```

<211> 1399

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (25)..(1386)

	0> 1															
aac	acaa	acc	gagç	<b>jtt</b> t	ag a	aac	atg Met 1	gcg Ala	tct Ser	aag Lys	gta Val 5	atc Ile	tct Ser	gcc Ala	aca Thr	51
ato Ile 10	3	aga Arg	acc Thr	cta Lev	acc Thr	гy	cca Pro	cac His	Gly	act Thr	Phe	tco Ser	c cgg	g tg:	cgc Arg 25	99
tac Tyr	tta Leu	tca Ser	acc Thr	gcc Ala 30	ura	gct Ala	gcg Ala	acg Thr	gag Glu 35	ı Val	r aat . Asn	tac Tyr	gaç Glu	gat Asp 4(	gaa Glu	147
tcg Ser	att Ile	atg Met	atg Met 45	Lys	gga Gly	gtt Val	cga Arg	att Ile 50	Ser	ggt Gly	aga Arg	cct Pro	ctt Leu 55	туг	tta Leu	195
gat Asp	atg Met	caa Gln 60		acg Thr	act Thr	ccg Pro	att Ile 65	Asp	cct	aga Arg	gta Val	ttc Phe 70	Asp	gcg Ala	atg Met	243
aat Asn	gct Ala 75	tca Ser	cag Gln	atc Ile	cat His	gag Glu 80	tat Tyr	GJA aaa	aat Asn	cct Pro	cac His	tcg Ser	cga Arg	acg Thr	cat His	291
ctc Leu 90	tac Tyr	Gly	tgg Trp	gaa Glu	gct Ala 95	gag Glu	aac Asn	gcc Ala	gtc Val	gag Glu 100	aac Asn	gca Ala	cga Arg	aac Asn	cag Gln 105	339
gtc Val	gcg Ala	aaa Lys	ctg Leu	atc Ile 110	gaa Glu	gct Ala	tca Ser	ccg Pro	aag Lys 115	gag Glu	atc Ile	gta Val	ttc Phe	gtg Val 120	tcc Ser	387
ggt Gly	gca Ala	acg Thr	gag Glu 125	gcg Ala	aac Asn	aat Asn	atg Met	gcg Ala 130	gtg Val	aaa Lys	gga Gly	gtg Val	atg Met 135	cac His	ttt Phe	435
tac Tyr	aag Lys	gac Asp 140	acg Thr	aag Lys	aaa Lys	cat His	gtg Val 145	ata Ile	act Thr	aca Thr	cag Gln	act Thr 150	gag Glu	cat His	aag Lys	483
tgt Cys	gtg Val 155	ctt Leu	gat Asp	tcg Ser	tgt Cys	agg Arg 160	cat His	ttg Leu	cag Gln	caa Gln	gaa Glu 165	gga Gly	ttt Phe	gag Glu	gta Val	531
act Thr 170	tat Tyr	tta Leu	cct Pro	gtg Val	aaa Lys 175	act Thr	gat Asp	gga Gly	ttg Leu	gtt Val 180	gat Asp	tta Leu	gag Glu	atg Met	ttg Leu 185	579
aga Arg	gaa Glu	gct Ala	att Ile	agg Arg 190	cca Pro	gac Asp	aca Thr	GJA aga	cta Leu 195	gtt Val	tct Ser	att Ile	atg Met	gct Ala 200	gtg Val	627
aac Asn	aat Asn	gag Glu	att Ile 205	ggt Gly	gtg Val	gtt Val	GIH	cct Pro 210	atg Met	gag Glu	gag Glu	Ile	ggt Gly 215	atg Met	att Ile	675

tgc Cys	aaa Lys	gag Glu 220	cat His	aat Asn	gtt Val	ccg Pro	ttt Phe 225	cat His	act Thr	gat Asp	gct Ala	gct Ala 230	Gln	gct Ala	att Ile	723
Gry	235	116	FIO	vaı	Asp	Val 240	Lys	Lys	Trp	Asn	Val 245	Ala	Leu	atg Met	Ser	771
250	ser	ALG	nis	гÀЗ	255	Tyr	GІУ	Pro	Lys	Gly 260	Val	Gly	Ala	ttg Leu	Tyr 265	819
Vai	Ary	ALU	Arg	270	Arg	11e	Arg	Leu	Glu 275	Pro	Leu	Met	Asn	ggt Gly 280	Gly	867
011	GIM	GIU	285	GIY	ren	Arg	Ser	290	Thr	Gly	Ala	Thr	Gln 295	cag Gln	Ile	915
<b>V</b> 4.1	GIY	300	GIĀ	ATG	ATA	cys	305	Leu	Ala	Met	Lys	Glu 310	Met	gag Glu	Tyr	963
	315	nys	11p		гуз	320	Leu	GIn	Glu	Arg	Leu 325	Leu	Asn	Gly ggg	Val	1011
330	GIU	Dy 3	Deu	Asp	335	vai	vai	vai	Asn	Gly 340	Ser	Met	Asp	agt Ser	Arg 345	1059
1,1	Vai	GIY	ASII	350	ASI	Leu	Ser	Phe	Ala 355	Tyr	Val	Glu	Gly	gag Glu 360	Ser	1107
Deu	nea	Mec	365	Leu.	rys	GIU	Val	A1a 370	Val	Ser	Ser	Gly	Ser 375	gct Ala	Cys	1155
	UCI	380	261	neu	GIU	PIO	385	Tyr	Val	Leu-	Arg	Ala 390	Leu	ggt Gly	Val	1203
op	395	vaħ	Mec	Ala	urs	400	ser	Ile	Arg	Phe	Gly 405	Ile	Gly	agg Arg	Phe	1251
410	****	шуз	GIU	GIU	415	Asp	rys	Ala	Val	Glu 420	Leu	Thr	Val	aaa Lys	Gln 425	1299
VU.	GIU	nys	Deu	430	GIU	Met	Ser	Pro	Leu 435	Tyr	Glu	Met	Val	aaa Lys 440	Glu	1347
ggt	atc	gat	atc	aag	aac	att	caa	tgg	tct	caa	cac	tga	ttca	acag	tt	1396

Gly Ile Asp Ile Lys Asn Ile Gln Trp Ser Gln His. 445 450

cca 1399

<210> 118

<211> 453

<212> PRT

<213> Arabidopsis thaliana

<400> 118

Met Ala Ser Lys Val Ile Ser Ala Thr Ile Arg Arg Thr Leu Thr Lys

1 10 15

Pro His Gly Thr Phe Ser Arg Cys Arg Tyr Leu Ser Thr Ala Ala Ala 20 25 30

Ala Thr Glu Val Asn Tyr Glu Asp Glu Ser Ile Met Met Lys Gly Val
35 40 45

Arg Ile Ser Gly Arg Pro Leu Tyr Leu Asp Met Gln Ala Thr Thr Pro 50 55 60

Ile Asp Pro Arg Val Phe Asp Ala Met Asn Ala Ser Gln Ile His Glu
65 70 75 80

Tyr Gly Asn Pro His Ser Arg Thr His Leu Tyr Gly Trp Glu Ala Glu 85 90 95

Asn Ala Val Glu Asn Ala Arg Asn Gln Val Ala Lys Leu Ile Glu Ala 100 105 110

Ser Pro Lys Glu Ile Val Phe Val Ser Gly Ala Thr Glu Ala Asn Asn 115 120 125

Met Ala Val Lys Gly Val Met His Phe Tyr Lys Asp Thr Lys Lys His 130 135 140

Val Ile Thr Thr Gln Thr Glu His Lys Cys Val Leu Asp Ser Cys Arg
145 150 155 160

His Leu Gln Gln Glu Gly Phe Glu Val Thr Tyr Leu Pro Val Lys Thr 165

Asp Gly Leu Val Asp Leu Glu Met Leu Arg Glu Ala Ile Arg Pro Asp 180 185 190

Thr Gly Leu Val Ser Ile Met Ala Val Asn Asn Glu Ile Gly Val Val 195 200 205

Gln Pro Met Glu Glu Ile Gly Met Ile Cys Lys Glu His Asn Val Pro 210 215 220

Phe His Thr Asp Ala Ala Gln Ala Ile Gly Lys Ile Pro Val Asp Val 225 230 235 240

Lys Lys Trp Asn Val Ala Leu Met Ser Met Ser Ala His Lys Ile Tyr 250 Gly Pro Lys Gly Val Gly Ala Leu Tyr Val Arg Arg Pro Arg Ile 265 Arg Leu Glu Pro Leu Met Asn Gly Gly Gly Gln Glu Arg Gly Leu Arg Ser Gly Thr Gly Ala Thr Gln Gln Ile Val Gly Phe Gly Ala Ala Cys 300 Glu Leu Ala Met Lys Glu Met Glu Tyr Asp Glu Lys Trp Ile Lys Gly 315 Leu Gln Glu Arg Leu Leu Asn Gly Val Arg Glu Lys Leu Asp Gly Val 330 Val Val Asn Gly Ser Met Asp Ser Arg Tyr Val Gly Asn Leu Asn Leu Ser Phe Ala Tyr Val Glu Gly Glu Ser Leu Leu Met Gly Leu Lys Glu Val Ala Val Ser Ser Gly Ser Ala Cys Thr Ser Ala Ser Leu Glu Pro Ser Tyr Val Leu Arg Ala Leu Gly Val Asp Glu Asp Met Ala His Thr 385 390 395 Ser Ile Arg Phe Gly Ile Gly Arg Phe Thr Thr Lys Glu Glu Ile Asp 410 Lys Ala Val Glu Leu Thr Val Lys Gln Val Glu Lys Leu Arg Glu Met 420 425 Ser Pro Leu Tyr Glu Met Val Lys Glu Gly Ile Asp Ile Lys Asn Ile 440 Gln Trp Ser Gln His 450

<210> 119
<211> 3180
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (8)..(1781)
<220>
<221> CDS

<222> (1833)..(2609)

	20> 21> C 22> (		·	307 <i>6</i>												
	00> 1		/ (	,3076	,											
		atg	neu	acc Thr	aat Asn	act Thr	Asn	cto Leu	tto Phe	tto Phe	ttt Phe	e Leu	tct Ser	tta Lev	ctt Leu	49
15		502	Cys	rne	20	GIII	var	ser	Ser	Asn 25	Gly	' Asp	Ala	Glu	ata Ile 30	97
	. 552	rar g	Val	35	пλя	THE	Arg	reu	Phe 40	Asp	Pro	Asp	Gly	Asn 45		145
-		115	50	ile	1111	GIY	Asp	Asn 55	Arg	Ser	Pro	Cys	Asn 60	Trp	acg Thr	193
3		65	Cys	HIS	TIE	Arg	- 70	GIA	Ser	Ser	Leu	Ala 75	Val	Thr	acc Thr	241
	gat Asp 80		JCI	GTÅ	TŸI	85	тте	ser	GIY	Gly	Phe 90	Pro	Tyr	Gly	Phe	289
95		110	my	1111	100	116	Asn	тте	Thr	Leu 105	Ser	Gln	Asn	Asn	Leu 110	337
aat Asn	ggt Gly	acg Thr	att Ile	gat Asp 115	tct Ser	gct Ala	cct Pro	ctc Leu	tcc Ser 120	ctc Leu	tgt Cys	tct Ser	aaa Lys	ctt Leu 125	cag Gln	385
aat Asn	ttg Leu	att Ile	ctc Leu 130	aat Asn	caa Gln	aac Asn	aac Asn	ttc Phe 135	tcc Ser	ggt Gly	aaa Lys	tta Leu	ccg Pro 140	gaa Glu	ttc Phe	433
tca Ser	ccg Pro	gag Glu 145	ttt Phe	cgt Arg	aaa Lys	tta Leu	cga Arg 150	gtc Val	ctc Leu	gaa Glu	ttg Leu	gaa Glu 155	tca Ser	aac Asn	ctc Leu	481
ttc Phe	acc Thr 160	ggt Gly	gag Glu	att Ile	cct Pro	caa Gln 165	agt Ser	tac Tyr	Gly aaa	aga Arg	ctc Leu 170	act Thr	gct Ala	ctg Leu	caa Gln	529
175	ctg Leu		Deu	ASII	180	ASII	PIO	ren	ser	Gly 185	Ile	Val	Pro	Ala	Phe 190	577
ttg Leu	ggt Gly	tat Tyr	ctg Leu	act Thr 195	gag Glu	tta Leu	act Thr	cgt Arg	ctt Leu 200	gat Asp	ctc Leu	gct Ala	tac Tyr	atc Ile 205	agt Ser	625

rne	Asp	Pro	210	Pro	Ile	Pro	Ser	Thr 215	Leu	Gly	Asn	Leu	Ser 220	·· Asn	ctg Leu	673
rnr	Asp	225	Arg	Leu	Thr	His	Ser 230	Asn	Leu	Val	Gly	Glu 235	Ile	Pro	gat Asp	721
Ser	240	Met	Asn	Leu	Val	Leu 245	Leu	Glu	Asn	Leu	Asp 250	Leu	Ala	Met	aat Asn	769
255	Leu	Tnr	GIA	Glu	11e 260	Pro	Glu	Ser	Ile	Gly 265	Arg	Leu	Glu	Ser	gtt Val 270	817
ıyr	GIN	TTE	Glu	Leu 275	Tyr	Asp	Asn	Arg	Leu 280	Ser	Gly	Lys	Leu	Pro 285	gag Glu	865
ser	11e	GIY	Asn 290	Leu	Thr	Glu		Arg 295	Asn	Phe	Asp	Val	Ser 300	Gln	Asn	913
ASN	ren	305	GTÄ	Glu	Leu	Pro	gaa Glu 310	Lys	Ile	Ala	Ala	Leu 315	Gln	Leu	Ile	961
ser	320	Asn	Leu	Asn	Asp	Asn 325	ttc Phe	Phe	Thr	Gly	Gly 330	Leu	Pro	qaA	Val	1009
335	Ala	Leu	Asn	Pro	4sn 340	Leu	gtt Val	Glu	Phe	Lys 345	Ile	Phe	Asn	Asn	Ser 350	1057
Pne	Tnr	GIY	Thr	155 355	Pro	Arg	aat Asn	Leu	Gly 360	Lys	Phe	Ser	Glu	Ile 365	Ser	1105
GIU	Pne	Asp	Val 370	Ser	Thr	Asn	aga Arg	Phe 375	Ser	Gly	Glu	Leu	Pro 380	Pro	Tyr	1153
Leu	Cys	1yr 385	Arg	Arg	Lys	Leu	cag Gln 390	Lys	Ile	Ile	Thr	Phe 395	Ser	Asn	Gln	1201
Leu	400	GIÀ	GIu	Ile	Pro	Glu 405	tct Ser	Туг	Gly	Asp	Cys 410	His	Ser	Leu	Asn	1249
415	TIE	Arg	Met	Ala	420	Asn	aaa Lys	Leu	Ser	Gly 425	Glu	Val	Pro	Ala	Arg 430	1297
CCC	cgg	gaa	CLL	cct	ctt	act	cgt	ctt	gag	cta	gcc	aac	aac	aat	caa	1345

Phe	Trp	Glu	. Leu	435	Leu	Thr	Arg	Leu	Glu 440	Leu )	a Ala	a Ası	n Asr	1 Asr 445	ı Gln	
tta Leu	Caa Gln	ggt Gly	Ser 450	TT-	cct Pro	cct Pro	tcg Ser	att Ile 455	Ser	aaa Lys	a gct s Ala	cgt Arg	cat His 460	Leu	tct Ser	1393
cag Gln	Ctt Leu	gaa Glu 465		tcc Ser	gct Ala	aac Asn	aac Asn 470	Phe	tcc Ser	ggt Gly	gtg Val	1 att	Pro	gtc Val	aaa Lys	1441
ctt Leu	tgt Cys 480		ctc Leu	cgt Arg	gat Asp	ctc Leu 485	Arg	gtc Val	ato	gat Asp	ctt Leu 490	. Ser	cgc Arg	aac Asn	agt Ser	1489
ttc Phe 495	tta Leu	gga Gly	tca Ser	att Ile	ccg Pro 500	tct Ser	tgc Cys	atc Ile	aac Asn	aaa Lys 505	Leu	aag Lys	aat Asn	cta Leu	gag Glu 510	1537
aga Arg	gta Val	gag Glu	atg Met	cag Gln 515	gag Glu	aac Asn	atg Met	ctc Leu	gac Asp 520	Gly	gag Glu	att Ile	ccg Pro	agt Ser 525	tca Ser	1585
gtg Val	agt Ser	tcg Ser	tgc Cys 530	* ***	gag Glu	tta Leu	acc Thr	gaa Glu 535	tta Leu	aat Asn	ctc Leu	tcc Ser	aac Asn 540	aac Asn	cgt Arg	1633
tta Leu	cga Arg	ggc Gly 545	GJA aaa	ata Ile	cca Pro	ccg Pro	gaa Glu 550	ctc Leu	ggt Gly	gat Asp	tta Leu	ccg Pro 555	gtt Val	tta Leu	aac Asn	1681
tac Tyr	ctg Leu 560	gat Asp	ctc Leu	tct Ser	aac Asn	aac Asn 565	caa Gln	ctc Leu	acc Thr	ggt Gly	gag Glu 570	att Ile	ccg Pro	gcg Ala	gag Glu	1729
ctg Leu 575	ttg Leu	agg Arg	ctc Leu	aag Lys	ctt Leu 580	aat Asn	caa Gln	ttc Phe	aac Asn	gtc Val 585	tcc Ser	gat Asp	aac Asn	aaa Lys	ctc Leu 590	1777
tat Tyr	g gt G	taaga	atte	c tto	etgga	attt	cago	caaga	ata 1	tttt	tcga	ec ca	agtti	tctta	agg 1	t 1834 Y
aac Asn	ccg Pro	aat Asn 595	ctc Leu	tgt Cys	gcc Ala	cca Pro	aat Asn 600	ttg Leu	gat Asp	ccg Pro	att Ile	aga Arg 605	cct Pro	tgc <b>C</b> ys	cga Arg	1882
tcc Ser	aaa Lys 610	cgg Arg	gaa Glu	acc Thr	cgg Arg	tac Tyr 615	att Ile	ctc Leu	cca Pro	atc Ile	tca Ser 620	atc Ile	ctc Leu	tgc Cys	atc Ile	1930
gtt Val 625	gca Ala	cta Leu	acc Thr	gga Gly	gct Ala 630	ttg Leu	gtt Val	tgg Trp	cta Leu	ttc Phe 635	atc Ile	aaa Lys	acc Thr	aaa Lys	ccg Pro 640	1978
tta Leu	ttc Phe	aag Lys	aga Arg	aaa Lys 645	c <b>c</b> g Pro	aaa Lys	cgg Arg	Thr	aac Asn 650	aaa Lys	ata Ile	acc Thr	Ile	ttc Phe 655	cag Gln	2026

cgg Arg	gtc Val	Gly ggg	ttc Phe 660	acg Thr	gag Glu	gaa Glu	gac Asp	ata Ile 665	tac Tyr	ccg Pro	caa Gln	tta Leu	aca Thr 670	gaa Glu	gat Asp	2074
aac Asn	ata Ile	att Ile 675	G1A aaa	tcg Ser	ggc Gly	ggg	tcg Ser 680	ggt Gly	ttg Leu	gtt Val	tat Tyr	aga Arg 685	gtg Val	aaa Lys	ctc Leu	2122
aaa Lys	tca Ser 690	ggt Gly	caa Gln	acg Thr	ctt Leu	gcg Ala 695	gtg Val	aag Lys	aaa Lys	ctc Leu	tgg Trp 700	gga Gly	gaa Glu	acg Thr	ggt Gly	2170
705	гÀг	acg Thr	GIU	Ser	710	Ser	Val	Phe	Arg	Ser 715	Glu	Val	Glu	Thr	Leu 720	2218
GIA	Arg	gtc Val	Arg	His 725	Gly	Asn	Ile	Val	Lys 730	Leu	Leu	Met	Суѕ	Cys 735	Asn	2266
GIY	GIU	gag Glu	740	Arg	Phe	Leu	Val	Tyr 745	Glu	Phe	Met	Glu	Asn 750	Gly	Ser	2314
Leu	GIY	gac Asp 755	Val	Leu	His	Ser	Glu 760	Lys	Glu	His	Arg	Ala 765	Val	Ser	Pro	2362
Leu	770	tgg Trp	Thr	Thr	Arg	Phe 775	Ser	Ile	Ala	Val	Gly 780	Ala	Ala	Gln	Gly	2410
785	Ser	tat Tyr	Leu	His	790	Asp	Ser	Val	Pro	Pro 795	Ile	Val	His	Arg	Asp 800	2458
vaı	rys	agc Ser	Asn	805	Ile	Leu	Leu	Asp	His 810	Glu	Met	Lys	Pro	Arg 815	Val	2506
ALA	Aşp	ttc Phe	61y 820	Leu	Ala	Lys	Pro	Leu 825	Lys	Arg	Glu	Asp	Asn 830	Asp	Gly	2554
val	Ser	gat Asp 835	Val	Ser	Met	Ser	Cys 840	Val	Ala	Gly	Ser	Tyr 845	Gly	Tyr	Ile	2602
Ala	850	G													gcaa	2659
gcg1	ittta	igt a	acat	tact	g tt	cttc	tgtg	gat	gcag	aa 1u	tat Tyr	ggt Gly	tat Tyr	acg Thr 855	tca Ser	2713

aaa gtg aat gag aag agc gat gtc tat agc ttc ggg gtg gtt tta ctc Lys Val Asn Glu Lys Ser Asp Val Tyr Ser Phe Gly Val Val Leu Leu 860 865 870	2761
gaa ctg att acg gga aaa aga ccg aac gat tcg tct ttt ggg gag aat Glu Leu Ile Thr Gly Lys Arg Pro Asn Asp Ser Ser Phe Gly Glu Asn 875 880 885	2809
aag gac att gtt aag ttt gca atg gaa gca gct ttg tgt tac cct tct Lys Asp Ile Val Lys Phe Ala Met Glu Ala Ala Leu Cys Tyr Pro Ser 890 895 900	2857
cca tca gca gaa gac gga gcc atg aat caa gat tca ctt gga aac tat Pro Ser Ala Glu Asp Gly Ala Met Asn Gln Asp Ser Leu Gly Asn Tyr 905 910 915 920	2905
cga gat ctt agc aag ctt gtt gat cca aag atg aaa ctt tcg acg aga Arg Asp Leu Ser Lys Leu Val Asp Pro Lys Met Lys Leu Ser Thr Arg 925 930 935	2953
gag tat gaa gag ata gag aaa gtt ctt gac gtt gca ttg ctc tgt acg Glu Tyr Glu Glu Ile Glu Lys Val Leu Asp Val Ala Leu Leu Cys Thr 940 945 950	3001
tcg tct ttt cct atc aac agg ccg acc atg agg aaa gta gta gag ttg Ser Ser Phe Pro Ile Asn Arg Pro Thr Met Arg Lys Val Val Glu Leu 955 960 965	3049
ctt aaa gag aag aaa tca cta gag tga tattaatcct aggcttttaa Leu Lys Glu Lys Lys Ser Leu Glu 970 975	3096
ttattagget tetataatgt acaaaateeg actaggattg ttacteatta ttatageeat	••-•
aggttggact ttgctttaaa gttt	3156
gues gues	3180
<210> 120 <211> 976 <212> PRT <213> Arabidopsis thaliana	
<400> 120	
Met Leu Thr Asn Thr Asn Leu Phe Phe Phe Leu Ser Leu Leu Leu  1 5 10 15	
Ser Cys Phe Leu Gln Val Ser Ser Asn Gly Asp Ala Glu Ile Leu Ser 20 25 30	
Arg Val Lys Lys Thr Arg Leu Phe Asp Pro Asp Gly Asn Leu Gln Asp 35 40 45	
Trp Val Ile Thr Gly Asp Asn Arg Ser Pro Cys Asn Trp Thr Gly Ile 50 55 60	

Thr Cys His Ile Arg Lys Gly Ser Ser Leu Ala Val Thr Thr Ile Asp 65 70 75 80

Leu Ser Gly Tyr Asn Ile Ser Gly Gly Phe Pro Tyr Gly Phe Cys Arg Ile Arg Thr Leu Ile Asn Ile Thr Leu Ser Gln Asn Asn Leu Asn Gly .100 Thr Ile Asp Ser Ala Pro Leu Ser Leu Cys Ser Lys Leu Gln Asn Leu 120 Ile Leu Asn Gln Asn Asn Phe Ser Gly Lys Leu Pro Glu Phe Ser Pro 135 Glu Phe Arg Lys Leu Arg Val Leu Glu Leu Glu Ser Asn Leu Phe Thr 150 155 Gly Glu Ile Pro Gln Ser Tyr Gly Arg Leu Thr Ala Leu Gln Val Leu 165 Asn Leu Asn Gly Asn Pro Leu Ser Gly Ile Val Pro Ala Phe Leu Gly 185 Tyr Leu Thr Glu Leu Thr Arg Leu Asp Leu Ala Tyr Ile Ser Phe Asp 200 Pro Ser Pro Ile Pro Ser Thr Leu Gly Asn Leu Ser Asn Leu Thr Asp 220 Leu Arg Leu Thr His Ser Asn Leu Val Gly Glu Ile Pro Asp Ser Ile Met Asn Leu Val Leu Leu Glu Asn Leu Asp Leu Ala Met Asn Ser Leu 245 250 Thr Gly Glu Ile Pro Glu Ser Ile Gly Arg Leu Glu Ser Val Tyr Gln 265 Ile Glu Leu Tyr Asp Asn Arg Leu Ser Gly Lys Leu Pro Glu Ser Ile 280 Gly Asn Leu Thr Glu Leu Arg Asn Phe Asp Val Ser Gln Asn Asn Leu Thr Gly Glu Leu Pro Glu Lys Ile Ala Ala Leu Gln Leu Ile Ser Phe 315 Asn Leu Asn Asp Asn Phe Phe Thr Gly Gly Leu Pro Asp Val Val Ala 330 Leu Asn Pro Asn Leu Val Glu Phe Lys Ile Phe Asn Asn Ser Phe Thr Gly Thr Leu Pro Arg Asn Leu Gly Lys Phe Ser Glu Ile Ser Glu Phe 360 Asp Val Ser Thr Asn Arg Phe Ser Gly Glu Leu Pro Pro Tyr Leu Cys 370 375 380

Tyr Arg Arg Lys Leu Gln Lys Ile Ile Thr Phe Ser Asn Gln Leu Ser 390 395 Gly Glu Ile Pro Glu Ser Tyr Gly Asp Cys His Ser Leu Asn Tyr Ile 405 410 Arg Met Ala Asp Asn Lys Leu Ser Gly Glu Val Pro Ala Arg Phe Trp 420 Glu Leu Pro Leu Thr Arg Leu Glu Leu Ala Asn Asn Asn Gln Leu Gln 440 Gly Ser Ile Pro Pro Ser Ile Ser Lys Ala Arg His Leu Ser Gln Leu 455 Glu Ile Ser Ala Asn Asn Phe Ser Gly Val Ile Pro Val Lys Leu Cys Asp Leu Arg Asp Leu Arg Val Ile Asp Leu Ser Arg Asn Ser Phe Leu 490 Gly Ser Ile Pro Ser Cys Ile Asn Lys Leu Lys Asn Leu Glu Arg Val 505 Glu Met Gln Glu Asn Met Leu Asp Gly Glu Ile Pro Ser Ser Val Ser 520 Ser Cys Thr Glu Leu Thr Glu Leu Asn Leu Ser Asn Asn Arg Leu Arg 530 540 Gly Gly Ile Pro Pro Glu Leu Gly Asp Leu Pro Val Leu Asn Tyr Leu Asp Leu Ser Asn Asn Gln Leu Thr Gly Glu Ile Pro Ala Glu Leu Leu 570 Arg Leu Lys Leu Asn Gln Phe Asn Val Ser Asp Asn Lys Leu Tyr Gly 585 Asn Pro Asn Leu Cys Ala Pro Asn Leu Asp Pro Ile Arg Pro Cys Arg 600 Ser Lys Arg Glu Thr Arg Tyr Ile Leu Pro Ile Ser Ile Leu Cys Ile 615 620 Val Ala Leu Thr Gly Ala Leu Val Trp Leu Phe Ile Lys Thr Lys Pro 625 630 Leu Phe Lys Arg Lys Pro Lys Arg Thr Asn Lys Ile Thr Ile Phe Gln 650 Arg Val Gly Phe Thr Glu Glu Asp Ile Tyr Pro Gln Leu Thr Glu Asp Asn Ile Ile Gly Ser Gly Gly Ser Gly Leu Val Tyr Arg Val Lys Leu 675 680 685

Lys Ser Gly Gln Thr Leu Ala Val Lys Lys Leu Trp Gly Glu Thr Gly Gln Lys Thr Glu Ser Glu Ser Val Phe Arg Ser Glu Val Glu Thr Leu 715 Gly Arg Val Arg His Gly Asn Ile Val Lys Leu Leu Met Cys Cys Asn Gly Glu Glu Phe Arg Phe Leu Val Tyr Glu Phe Met Glu Asn Gly Ser Leu Gly Asp Val Leu His Ser Glu Lys Glu His Arg Ala Val Ser Pro 760 Leu Asp Trp Thr Thr Arg Phe Ser Ile Ala Val Gly Ala Ala Gln Gly 775 Leu Ser Tyr Leu His His Asp Ser Val Pro Pro Ile Val His Arg Asp 795 Val Lys Ser Asn Asn Ile Leu Leu Asp His Glu Met Lys Pro Arg Val 810 Ala Asp Phe Gly Leu Ala Lys Pro Leu Lys Arg Glu Asp Asn Asp Gly 825 Val Ser Asp Val Ser Met Ser Cys Val Ala Gly Ser Tyr Gly Tyr Ile Ala Pro Glu Tyr Gly Tyr Thr Ser Lys Val Asn Glu Lys Ser Asp Val Tyr Ser Phe Gly Val Val Leu Leu Glu Leu Ile Thr Gly Lys Arg Pro 870 Asn Asp Ser Ser Phe Gly Glu Asn Lys Asp Ile Val Lys Phe Ala Met 890 Glu Ala Ala Leu Cys Tyr Pro Ser Pro Ser Ala Glu Asp Gly Ala Met Asn Gln Asp Ser Leu Gly Asn Tyr Arg Asp Leu Ser Lys Leu Val Asp 920 Pro Lys Met Lys Leu Ser Thr Arg Glu Tyr Glu Glu Ile Glu Lys Val 930 935 Leu Asp Val Ala Leu Leu Cys Thr Ser Ser Phe Pro Ile Asn Arg Pro 955 Thr Met Arg Lys Val Val Glu Leu Leu Lys Glu Lys Lys Ser Leu Glu 965 970

WO 00/08187

PCT/EP99/05652

```
<210> 121
<211> 731
<212> DNA
<213> Arabidopsis thaliana
<400> 121
aagtcgagta tgattgtccg tacgtgctcg acggtgcgac cgtacgtacc ctggcagtcg 60
ccctgacgca acttcgaatc tgccctgcgc cctgctcctc ctatggcagt actgcgtact 120
tcgacgagca ggagctgaag ctgactataa cgtgcctggt cgaaaagcat gccagcccat 180
gaaaaaggag atcgagaacg gtatctcgga cttcggcgag gacggctccg ggaacgtcga 240
tttcgagaag tccgtgcaaa tcggtacggc gcggaacggc gagcgccacg cacgcgacga 300
ggtcataaac gaaacccgcc tgttcggcgc acgccaaacc gggacgataa cctgcaacag 360
cctaaaacgc ccggccgagg agctaggcca gggggcggac ccggaggaga tcccgggaac 420
tagaccggac gggcgaccca tccagcctga ccgcttggac ccgtacccgt tgcctgaaat 540
gcctgaattc gcctcgcctt ggatgcctgc tctgaaatgc tcgcctgttg cctgaattcg 600
ctctgaaatc cgttcccccg cctccgcagc tcgtgaccgt ccgaaccgct cgaaccctgc 660
aaaaaaaaacagt ccaaaaaaaa 720
aaacgcctcg c
<210> 122
<211> 21
<212> DNA
<213> Artificial sequence
<400> 122
aaaaaacaca tacaggaatt c
```

230

<210> 123 <211> 21 <212> DNA

<400> 123

<213> Artificial sequence

agttagctag ctgagctcga g

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/82, 15/10, 9/12, 5/10, C12Q 1/68, A01H 5/00

**A3** 

(11) International Publication Number:

WO 00/08187

(43) International Publication Date:

17 February 2000 (17.02.00)

(21) International Application Number:

PCT/EP99/05652

(22) International Filing Date:

4 August 1999 (04.08.99)

(30) Priority Data:

98202634.6

4 August 1998 (04.08.98)

EP

(71) Applicant (for all designated States except US): VLAAMS INTERUNIVERSITÄIR INSTITUUT VOOR BIOTECH-NOLOGIE [BE/BE]; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEE, Jeong, Hee [KR/BE]; Spinmolenplein 274 (22K), B-9000 Gent (BE). VERBRUGGEN, Nathalie [BE/BE]; Avenue des Saisons, 53, B-1050 Ixelles (BE).

(74) Agent: DE CLERCQ, Ann; Ann De Clercq & Co. B.V.B.A., Brandstraat 100, B-9830 Sint-Martens-Latem (BE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

(88) Date of publication of the international search report:

29 June 2000 (29.06.00)

## (54) Title: GENES INVOLVED IN TOLERANCE TO ENVIRONMENTAL STRESS

#### (57) Abstract

The present invention relates to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress resistance in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells. The present invention further relates to an isolated polynucleic acid obtainable by such a method as listed in Table 1 as well as recombinant polynucleic acid comprising the same. The present invention further relates to an isolated polypeptide encoded by a polynucleic acid of the invention. The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into a plant cell a recombinant DNA comprising a polynucleic acid as defined which when expressed in a plant cell enhances the tolerances or induces resistance to environmental stress conditions of said plant. The present invention particularly relates to plant cells, plants or harvestable parts or propagation material thereof transformed with a recombinant polynucleic acid as defined above.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	01 1
AM	Armenia	Fſ	Finland	LT	Lithuania	_	Slovenia
AT	Austria	FR	France	LU	Luxembourg	SK	Slovakia
AU	Australia	GA	Gabon	LV	Latvia	SN	Senegal
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	SZ	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TD	Chad
BB	Barbados	GH	Ghana	MG	Madagascar	TG	Togo
BE	Belgium	GN	Guinea	MK		TJ	Tajikistan
BF	Burkina Faso	GR	Greece .	IVIE	The former Yugoslav	_ TM	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Republic of Macedonia Mali	TR	Turkey
BJ	Benin	1E	Ireland	MN		TT	Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mongolia Mauritania	UA	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi	UG	Uganda
CA	Canada	IT	Italy	MX		US	United States of America
CF	Central African Republic	JP	Japan	NE	Mexico	UZ	Uzbekistan
CG	Congo	KE	Kenya	NL	Niger	VN	Viet Nam
CH	Switzerland	KG	Kyrgyzstan		Netherlands	YU	Yugoslavia
Ci	Côte d'Ivoire	KP	Democratic People's	NO	Norway	ZW	Zimbabwe
СМ	Cameroon	***	Republic of Korea	NZ	New Zealand		
CN	China	KR	Republic of Korea	PL	Poland		
Cυ	Cuba	KZ	Kazakstan	PT	Portugal		
CZ	Czech Republic	LC	Saint Lucia	RO	Romania		
DΕ	Germany	LI		RU	Russian Federation		
DK	Denmark	LK	Liechtenstein	SD	Sudan		
EE	Estonia		Sri Lanka	SE	Sweden		
	DSCOTTA	LR	Liberia	SG	Singapore		

Int atlonal Application No PCT/EP 99/05652

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER C12N15/82 C12N15/10 C12N9/12 A01H5/00	C12N5/10 C12Q	1/68		
According to	o International Patent Classification (IPC) or to both national classifica	ation and IPC			
	SEARCHED				
Minimum do IPC 7	cumentation searched (classification system followed by classification ${\tt C12N}$	on symbols)			
Documentat	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields so	earched		
	ata base consulted during the international search (name of data ba	se and, where practicat search terms used	)		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		·		
Category *	Ciletion of document, with indication, where appropriate, of the rele	evant passages	Relevant to cleim No.		
X	PRÄNDL, R., ET AL.: "HSF3, a ne shock factor from Arabidopsis that derepresses the heat shock respondent to the shock respondent of the shock respondent of the shock respondent in transgenic plants"  MOLECULAR AND GENERAL GENETICS, vol. 258, May 1998 (1998-05), page 269-278, XP002135096 the whole document	aliana, nse and rexpressed	2,3,7,8, 11-14, 16,18, 21, 24-26, 28-37		
X Furti	her documents are listed in the continuation of box C.	X Patent family members are tisted	In annex.		
"A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other of the ocume later the consideration of the ocume of the ocume of the ocume later the consideration of the ocume of the ocume of the ocume of the ocume ocupe ocume ocume ocume ocupe ocume ocupe ocume ocume ocupe ocume ocupe ocu	ent defining the general state of the ent which is not dered to be of particular relevence document but published on or effer the international late and which may throw doubts on priority claim(s) or sis cited to establish the publication date of another in or other special reeson (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the internetional filling date but than the priority date claimed	"T" leter document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cennot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the ert.  "&" document member of the same petent tamily			
	ectuel completion of the international search  O April 2000	Date of mailing of the International sea	irch report		
Name and r	mailing address of the ISA  European Petent Office, P.B. 5818 Patentiaan 2  NL ~ 2280 HV Rijswijk  Tel. (+31~70) 340~2040, Tx. 31 651 epo nl,  Fax: (+31~70) 340~3016	Authorized officer  Holtorf, S			

Form PCT/ISA/210 (second sheet) (July 1992)

int ational Application No PCT/EP 99/05652

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/EP 99/05652
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	KUSHNIR,S., ET AL.: "characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 92, November 1995 (1995-11), pages 10580-10584, XP002127804 see also last paragraph the whole document	1,2
Y	WO 96 39020 A (UNIV CALIFORNIA) 12 December 1996 (1996-12-12) the whole document	1,2
Y	QUINTERO, F.J., ET AL.: "the SAL1 gene of Arabidopsis, encoding an enzyme with 3' (2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, Increases salt tolerance in yeast" THE PLANT CELL, vol. 8, March 1996 (1996-03), pages 529-537, XP002092755 see last paragraph the whole document	1,2
Y	BABIYCHUK, E., ET AL.: "Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts towards the thiol-oxidizing drug Diamide" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 44, 1995, pages 26224-26231, XP002127805 see last paragraph the whole document	1,2
Y	GIRAUDAT J ET AL: "ISOLATION OF THE ARABIDOPSIS AB13 GENE BY POSITIONAL CLONING" PLANT CELL,US,AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 4, 1 October 1992 (1992-10-01), pages 1251-1261, XP002063682 ISSN: 1040-4651 the whole document	1,2
Υ	WO 97 41152 A (UNIV NEW YORK) 6 November 1997 (1997-11-06) page 59, line 1 - line 5	1.,2
	-/	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Int dional Application No PCT/EP 99/05652

C (Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/EP 99/05052
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
<b>A</b> .	NAMBARA,E., ET AL.: "a mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele" THE PLANT JOURNAL, vol. 2, no. 4, 1992, pages 435-441, XP002129247 the whole document	1,2
A	HELM,K.W. AND VIERLING, E.: "an Arabidopsis thaliana cDNA clone encoding a low molecular weight heat shock protein" NUCLEIC ACID RESEARCH, vol. 17, no. 19, 1989, page 7995 XP002129295 the whole document	1,2
A .	YANG H ET AL: "Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, GB, ELSEVIER SCIENCE PUBLISHERS, BARKING, vol. 184, no. 1, 3 January 1997 (1997-01-03), pages 83-88, XP004093225 ISSN: 0378-1119 the whole document	1,2
Α	MIZOGUSHI,T., ET AL.: "characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells" THE PLANT JOURNAL, vol. 5, no. 1, 1994, pages 111-122, XP002129296 the whole document	1,2
P,X	LEE, J.H., ET AL.: "a highly conserved kinase is an essential component for stress tolerance in yeast and plant cells" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 96, May 1999 (1999-05), pages 5873-5877, XP002127807 the whole document	1,2
	•	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No. PCT/EP 99/05652

	Box i	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
	This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	з. 🔲	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
	Box ii	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
	This Int	ernational Searching Authority found multiple inventions in this international application, as follows:
	·	see additional sheet
	1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
	2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
	3. X	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
		1,2-4,7,8,10-14,16-37 ( inventions 1,3,37 )
	4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
	Remar	The additional search fees were accompanied by the applicant's protest.     X   No protest accompanied the payment of additional search fees.
-		

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claim: 1 completely; 2 partially

A method to identify cDNAs involved in environmental stress tolerance in plants by expressing a silique-specific cDNA library obtained from said plant in yeast cells and screening the yeast cells for enhanced environmental stress tolerance or resistance.

2. Claims: 5,6,15 completely, 2,3,4,11,12,13,14, 18-37 partially

An isolated cDNA as identified by SEQID 1 coding for a DBF2-related peptide characterized by SEQID 2; furthermore the use of the cDNA in methods to produce transgenic plants with enhanced environmental stress tolerance or resistance.

3. Claims: 10,17 completely, 2,3,4,11,12,13,14, 18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 5 coding for a c74-related peptide characterized by SEQID 6.

4. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 7 coding for a ADH2-related peptide characterized by SEQID 8.

5. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 9 coding for a catalase /catalase3-related peptide characterized by SEQID 10.

6. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 11 coding for a HSP90-related peptide characterized by SEQID 12.

7. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified

by SEQID 13 coding for a peptide similar to a phosphoenolpyruvate carboxylase characterized by SEQID 14.

8. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 15 coding for a PR-protein characterized by SEQID 16.

9. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 17 coding for a protein similar to an ascorbate peroxidase characterized by SEQID 18.

10. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 19,21 coding for a protein similar to a phosphatase binding protein characterized by SEQID 20,22.

11. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 23,25 coding for a protein similar to a retinol dehydrogenase characterized by SEQID 24,26.

12. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 27,29 coding for a protein similar to a ribosomal protein characterized by SEQID 28,30.

13. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 31 coding for a protein similar to a protein transporter characterized by SEQID 32.

14. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 33 coding for a protein similar to a peptide transporter characterized by SEQID 34.

15. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 35 coding for an LCT1-related protein characterized by SEQID 36.

16. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 37 coding for an CYC1-related protein characterized by SEQID 38.

17. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 39 coding for an OSM1-related protein characterized by SEQID 40.

18. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 41 coding for an CUP1-related protein characterized by SEQID 42.

19. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 43 coding for an RAD7-related protein characterized by SEQID 44.

20. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 45 coding for an apocytochrome b-related protein characterized by SEQID 46.

21. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 47 coding for an LPPL1-related protein characterized by SEQID 48.

22. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 49 coding for a protein similar to an auxin binding protein characterized by SEQID 50.

23. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 51 coding for an CBP57-related protein characterized by SEQID 52.

24. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 53 coding for a calcineurin B-related protein characterized by SEQID 54.

25. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 55 coding for a calnexin-related protein characterized by SEQID 56.

26. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 57 coding for a calreticulin-related protein characterized by SEQID 58.

27. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 59,61 coding for a calmodulin-related protein characterized by SEQID 60,62.

28. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 63 coding for a DdMek1-related protein characterized by SEQID 64.

29. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 65 coding for an adenosine kinase-related protein characterized by SEQID 66.

30. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 67 coding for a human tyrosine kinase-related protein characterized by SEQID 68.

31. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 69 coding for an ice-plant tyrosine kinase-related protein characterized by SEQID 70.

32. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 71 coding for a kinase C receptor-related protein characterized by SEQID 72.

33. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 73 coding for a HAT7-related protein characterized by SEQID 74.

34. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 75 coding for a RSEB-related protein characterized by SEQID 76.

35. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 77 coding for a phosphatase 2C-related protein characterized by SEQID 78.

36. Claims: 2,3,4,11,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 121 potentially coding for a caltractin-related protein.

37. Claims: 7,8,16 completely; 2,3,11,13,14,18-37 partially

Idem as invention 1; but limited to the cDNA as identified by SEQID 3 coding for a HSP17.6-related protein characterized by SEQID 4.

38. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 79,81 coding for a LEA-related protein characterized by SEQID 80,82.

39. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 83 coding for a protein similar to a PR-protein characterized by SEQID 84.

40. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 85 coding for a peroxidase-related protein characterized by SEQID 86.

41. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 87 coding for a ribosomal protein characterized by SEQID 88.

42. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 89 coding for a SAS1-related protein characterized by SEQID 90.

43. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 91 coding for a AIG2-related protein characterized by SEQID 92.

44. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 93 coding for a MTlc-related protein characterized by SEQID 94.

45. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 95 coding for a IPP2-related protein characterized by SEQID 96.

46. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 97 coding for a chlorophyll a/b binding protein protein characterized by SEQID 98.

47. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention; but limited to the cDNA as identified by SEQID 99 coding for glutathione transferase characterized by SEQID 100.

48. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 101 coding for kin1-related protein characterized by SEQID 102.

49. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 103 coding for Atmpkl-related protein characterized by SEQID 104.

50. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 105 coding for H2A-related protein characterized by SEQID 106.

51. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 107 coding for a protein with unknown function as characterized by SEQID 108.

52. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 109 coding for a protein with unknown function as characterized by SEQID 110.

53. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 111 coding for a protein with unknown function as characterized by SEQID 112.

54. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 113 coding for a protein with unknown function as

characterized by SEQID 114.

55. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 115 coding for a protein with unknown function as characterized by SEQID 116.

56. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 117 coding for a protein with unknown function as characterized by SEQID 118.

57. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 119 coding for a protein with unknown function as characterized by SEQID 120.

page 8 of 8

Information on patent family members

Int tional Application No
PCT/EP 99/05652

Patent document cited in search report			Publication date		atent family member(s)	Publication date	
WO 9639	9020	Α	12-12-1996	US	5859337 A	12-01-1999	
WO 974	1152	Α	06-11-1997	AU EP	3283197 A 0907660 A	19-11-1997 14-04-1999	

Form PCT/ISA/210 (patent family annex) (July 1992)

# A tormentor in the quest for plant p53-like proteins

Henrie A.A.J. Korthout*, Martien P.M. Caspers, Marijke J. Kottenhagen, Quinta Helmer, Mei Wang

Center for Phytotechnology TNO/UL, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands

Received 10 June 2002; revised 17 July 2002; accepted 17 July 2002

First published online 29 July 2002

Edited by Ulf-Ingo Flügge

Abstract Over the past few years the presence of p53-like proteins in plants was frequently reported, by using the monoclonal antibody Pab240. By means of protein purification and screening a cDNA library, a Pab240 cross-reacting protein and a cDNA clone were isolated from barley. Peptide- and DNA-sequence analysis identified one and the same protein: 2-oxoglutarate dehydrogenase. Sequence analysis of 2-oxoglutarate dehydrogenase revealed that the protein contains a perfect Pab240 epitope. In barley, the 110 kDa oxoglutarate dehydrogenase was degraded during isolation to a 53 kDa Pab240 cross-reacting polypeptide, thereby mimicking curiously p53-like properties. © 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Key words: 2-Oxoglutarate dehydrogenase; p53; Pab240; Immuno recognition; Barley

#### 1. Introduction

Since the first reports that a mechanism of programmed cell death (PCD) occurs in animal as well as in plant cells, research has been focussed on whether typical pathways leading to PCD are conserved among these two kingdoms. Although the majority of the key proteins involved in PCD pathways are highly conserved in animal cells, only a very limited number of counterparts were identified in plants thus far, based on sequence homology. One of the key regulatory proteins of the mammalian apoptotic machinery is tumour suppressor p53. In mammals it is known that p53 mediates G1 arrest following DNA damage in order to allow DNA repair or, in case of severe DNA damage, to induce apoptosis (recently reviewed by Bargonetti and Manfredi [1]). This dual role makes p53 the guardian of the genome integrity. In spite of the fact that several homologues of animal proto-oncogene and tumour suppressor gene-related proteins, like c-myc, c-fos and c-jun, as well as cell cycle regulatory proteins, like retinoblastoma. were identified in plants [2], a putative plant p53 is still not identified. However, several reports appeared in the past ten years speculating on the presence of a putative p53 in plant cells. By using the monoclonal antibody Pab240, recognising a

five amino acid stretch in the central core of the murine p53,

cross-reactivity with polypeptides in the range of 53-100 kDa

has been found in Zea mays [3,4] and Pisum sativum [5,6]. The

and 110 kDa polypeptides with the Pab240 antibody were found in barley suspension cells as well as in germinating barley seeds (unpublished data). In concert with the results reported from pea and maize [3-6] the intensity of the immunostained bands was increased dramatically during the early stage of germination but also after exposure of the suspension cells to UV-B radiation. In this study these cross-reactive polypeptides were identified from protein purification as well as from isolation of cross-reacting clones from a barley cDNA expression library. Both approaches reveal that the cross-reacting polypeptides are *not* putative plant p53 homologues but 2-oxoglutarate dehydrogenase, a complex-forming enzyme involved in the Krebs cycle but containing an ideal epitope to be recognised by the Pab240 antibody.

#### 2. Materials and methods

#### 2.1. Plant material

Embryonic cell suspensions were from barley (*Hordeum vulgare* L. cv. Igri) immature in vivo embryo-derived callus (12 days after flowering) as described by Korthout et al. [9].

### 2.2. Protein purification

About 900 g fresh-weight embryonic suspension cells were harvested by filtration over one layer Whatman paper no. 1. The cells were homogenised in a buffer (100 ml for each 100 g cells) containing 25 mM Tris-Cl pH 7.5, 0.44 M sucrose, 10 mM MgCl₂, 1 mM dithiothreitol (DTT), 0.1% (w/v) Triton X-100 and 0.1 mM phenylmethylsulfonyl fluoride (PMSF) using an Ultrathurrax (Janke and Kunkel, Staufen, Germany; three pulses at 24000 rpm of 30 s intervals). The homogenate was filtrated over two layers of cheesecloth and subsequently centrifuged for 5 min at  $600 \times g$  to obtain the cellular debris and 20 min at  $50\,000 \times g$  to obtain the cytosolic extract. Hence, Pab240 reactive protein(s) were isolated from the cytosolic extract by a three-step purification protocol. The first step consists of ammonium sulphate precipitation. All Pab240 reactive proteins precipitate 55-65% of saturated ammonium sulphate. After dialysis (o/n at 4°C against a buffer containing 25 mM Tris-Cl pH 7.5, 1 mM DTT and 0.1 mM PMSF, using Spectra/por 25 mm cellulose dialyse tubing;

0014-5793/02/\$22.00 © 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved. PII: S0014-5793(02)03113-7

presence and intensity of these cross-reactive bands were often correlated with DNA repair, especially during seed germination [3-7]. Such a correlation is quite conceivable since it has been established that aged seeds contain high levels of DNA damage, occurring during storage of seeds [8] and aged seeds do have an increased mean germination time relative to their unaged counterparts, probably due to an extension of the G1 phase to allow DNA repair [7]. So if it is a question of the presence of a plant p53 homologue, indeed one expects to find it in this stage of plant development.

In our previous experiments, cross-reactivity with 53, 73 and 110 kDa polypeptides with the Pab240 antibody were found in barley suspension cells as well as in germinating barley seeds (unpublished data). In concert with the results reported from pea and maize [3-6] the intensity of the immu-

^{*}Corresponding author. Fax: (31)-71-5274863. E-mail addresses: korthout@voeding.tno.nl (H.A.A.J. Korthout), caspers@voeding.tno.nl (M.P.M. Caspers), kottenhagen@voeding.tno.nl (M.J. Kottenhagen), helmer@rulbim.leidenuniv.nl (Q. Helmer), wang@voeding.tno.nl (M. Wang).

m.w. cut-off 12 000-14 000; Spectrum Medical Industries, Los Angeles, CA, USA) the dialysate was loaded on a 6 ml Resource-Q column connected to a FPLC-system (Amersham Biosciences, Uppsala, Sweden). Pab240 reactive proteins were eluted between 0.40 and 0.45 M NaCl in dialyse buffer. The Pab240 reactive proteins were further purified by means of preparative SDS-PAGE and fractions containing proteins with molecular masses ranging between 105 and 125 kDa were collected. These fractions were pooled, concentrated by means of ultra-filtration (Diaflow 10 YM30 ultra-filtration membranes, Amicon Corporation, Beverly, MA, USA) and dialysed against a buffer containing 25 mM Tris-Cl pH 7.5 and 5 mM EDTA (o/n 4°C). Thereafter ATP was added to a final concentration of 6 mM and the proteins were digested with trypsin (20 μg/ml, 50 min, 23°C). The digest was subjected to SDS-PAGE and the 73 and 53 kDa polypeptide Pab240 cross-reacting bands excised from gel and used for sequence analysis.

#### 2.3. Screening of barley expression library with Pab240

An expression cDNA library was constructed by using λZAP Express[®] vectors according to the manufacturer's instructions (Stratagene, La Jolla, CA, USA). Total mRNA was isolated from a mixture of heat-shocked (30 min, 42°C, 24 h recovery) and control barley embryonic suspension cells. The mRNA was converted to cDNA and packed into λZAP Express[®] vectors. The vectors were tested on the presence of multiple-sized inserts. The average size was about 0.5-2 kbp.

Immunological screening of the expression library with Pab240 was performed as described by Sambrook et al. [10], starting with twelve 150 mm plates containing approximately 50 000 plaque forming units each. About 50-100 positive clones per plate were obtained after the first screen. After purification and isolation of Pab240 immuno-reactive  $\lambda$ -clones, the pBKCMV vectors containing the inserts were excised from the  $\lambda$ -clones according to the manufacturer's instructions and subjected to sequence analysis.

#### 2.4. Electrophoretic separation and Western blot analysis

Samples for protein analysis were separated on a 10% SDS PAGE gel according to Laemmli [11]. The proteins were electro-transferred to a nitrocellulose membrane (Schleicher and Schuell). For Western analysis the monoclonal antibody Pab240 (sc-99, Santa Cruz. Biotechnology, Santa Cruz, CA, USA) was used. Visualisation was performed with goat-anti-mouse horseradish peroxidase (HRP) conjugate (Promega, Madison, WI, USA) followed by chemoluminescent detection.

Preparative electrophoresis was performed by using a Prep-Cell (model 491, Bio-Rad Laboratories, Hercules, CA, USA) on a 75 ml 6% polyacrylamide gel. During the run (at 40 mA/h) fractions of 9 ml were collected and analysed on SDS-PAGE and Western blotting.

#### 2.5. Protein sequence analysis

Polypeptides excised from gel were digested in gel with trypsin extracted from gel and separated by means of preparative high-performance liquid chromatography (HPLC). The amino acid sequence analysis of the peptides was performed by means of N-terminal protein sequence analysis by using an Applied Biosystems Model 494 Procise Protein Sequencing System, on-line connected to an RP-HPLC unit for identification of the step-wise released PTH amino acids.

Sequence analysis was performed by Eurosequence (Groningen, The Netherlands).

#### 3. Results

For studying the presence of p53-like proteins in plant cells, several antibodies were used. Among them the monoclonal Pab240, an antibody originally generated in monoclonal hybridomas from a mouse immunised with a  $\beta$ -galactosidase/murine-p53 fusion protein [12]. By epitope mapping it was



Fig. 1. Purification protocol for the isolation of the 110 kDa Pab240 cross-reactive polypeptide from barley embryonic suspension cells. After differential centrifugation, a  $600 \times g$  pellet was obtained consisting of cellular debris (D; organelles and nuclei) and a  $50\,000 \times g$  supernatant containing the cytosolic fraction (C). The cytosolic fraction was subjected to a purification protocol comprising ammonium sulphate precipitation, anion exchange (Resource Q) and Preparative PAGE as described in Section 2. Fractions were collected and analysed on Western blots. The 110 kDa polypeptide (—) was subjected to mild trypsin digestion (+) and the 73 and 53 kDa bands were excised from gel and used for sequence analysis. The antibody utilised in all blots was Pab240. Non-specific cross-reaction caused by the secondary antibody (GAM-HRP) was found mainly to be present in the cellular debris.

At-ox:	1	${\tt MVWFRIGSSVAKLAIRRTLSQSRCGSYATRTRVLPCQTRCFIISTILKSKAESAAPVPRPV$	60
At-ox:	61	PLSKLTDSFLDGTSSVYLEELQRAWEADPNSVDESWDNFFRNFVGQASTSPGISGQTIQE	120
At -ox:	121	SMRLLLLVRAYQVNGHMKAKLDPLGLEKREI PEDLTPGLYGFTEADLDREFFLGVWRMSG	180
В-р-ок:		M+G MAG	3
Att-ox:	181	FLSENRPVOTLRSILSRLEQAYCGTIGYEYMHIADRDKCNWLRDKIETPTPROYNSKRRM FLSENRPVOTLRS+L+RLEQAYCGTIGYEYMHI DR+KCNWLRD+IET PR+Y +RR	240
B-p ox:	4	FLSENRPVQTLRSVLARLEQAYCGTIGYEYMHIPDREKCNWLRDRIETVNPREYTYDRRQ	63
At-ox:	241	VIYDRLTWSTOFENFLATKWTTAKRPGLEGAESLIPGMKEMPDRSADLGVENIVIGMPHR V+ DRL WSTOPENFLA KWTTAKRFGLEGAE+LIPGMKEMPDR+ADLGVE+IVIGMPHR	300
B-p-ox:	64	VMLDRI:IWSTQFENFLAQKWTTAKRFGLEGAETLIPGMKEMFDRAADLGVESIVIGMPHR	123
At-ox:	301	GRLNVLGNVVRKPLRQIFSEFSGGTRPVDE.VGLYTGTGDVKYHLGTSYDRPTRGGKHLH GRLNVLGNVVRKPLRQIFSEFSGGT.PV.E GLYTGTGDVKYHLGTSYDRPTRGGKH.H	360
B-p-ox:	124	GRLMVLGNVVRKPLRQ1FSBFSGGTKPVNEGEGLYTGTGDVKYHLGTSYDRPTRGGKHLH $\overline{\nu}$ 1	183
At-ox:	361	LSLVANPSHI.EAVDPVVIGKTRAKQYYTKDENRTKNMGILIHGDGSFAGQGVVYETLHLS LSLVANPSHLEAVDPVV GKTRAKQYY+ D +RTKN+G+1.+HGDGSF+CQGVVYETLHLS	420
В-р-ок:	184	LSLVANPSHLEAVDPVVAGKTRAKQYYSNDLDRTKNLGVLLHGDGSFSGQGVVYETLHLS	243
At · ox:	421	ALPNYCTGGTVHIVVNNQVAFTTDPREGRSSQYCTDVAKALSAPIFHVNADDIEAVVHAC ALPNY TGGT+H+VVNNQVAFTTDP GRSSQYCTDVAKAL APIPHVN DD+EAVV+ C	480
B-p-ox:	244	ALPHYTTGGTIHLVVNNQVAFTTDPMSGRSSQYCTDVAKALAPIFHVNGDDLEAVVYTC	303
At-ox:	481	ELAAEWRQTFHSDVVVDLVCYRRFGHNEIDEPSFTQPKMYKVIRSHPSSLQIYQEKLLQS	540
B-p-ox:	304	ELAAEWRQTFHSDVVVD+VCYRRFGHNEIDEPSFTQPKMYKVIR+HPS+L++YQ +LL+S ELAAEWRQTFHSDVVVDIVCYRRFGHNEIDEPSFTQPKMYKVIRNHPSALEMYQNQLLES	363
At-ox:	541	GQVTQEDIDKIQKKVSSILNEEYEASKDYIPQKRDWLASHWTGFKSPEQISRIRNTGVKP G++++EDIDKI KKVS+ILNEE++ SKD IP KRDWL+++WTG QISRIRNTGVKP	600
B-p-ox:	364	GKTSKEDIDKIHKKVSTILNEEFKKSKDDIPNKRDWLSAYWTGLSPQXQISRIRNTGVKP	423
At-ox:	601	EILKNVGKAISTFPENFKPHRGVKRVYEQRAQMIESGEGIDWGLGEALAPATLVVEGNHV EILK VG+A++T PE FKPHR VK++++ R QMIE+GEGIDW +GEALAFATL++EGNHV	660
B-p-ox:	424	EILKRVGEAMTTLPETFKPHRAVKKIFDLRRQMIETGEGIDWAVGEALAFATLIIEGNHV	483
At-ox:	66I	RLSGODVERGTFSHRHSVLHDQETGEFYCPLDHLIKNODPEMFTVSNSSLSEFGVLGFEL RLSGODVERGTFSHRHSV+HDQETGE+YCPLD+L+ NQ+ E+FTVSNSSLSEF VLGFEL	720
B-p-ox:	484	RLSGQDVERGTFSH.:::::HDQETGEQYCPLDNLVMNQNEELFTVSNSSLSEFAVLGFBL	543
At-ox:	721	GYSMENPNSLVIWEAQFGDFANGAQVMFDQFISSGEAKWLRQTGLVVLLPHGYDGQGPBH GYSMENPNSLV+WEAQFGDF+NGAQV+FDQFISSGEAKWLRQTGLVV LPHGYDGQGPBH	780
B-p-ox:	544	GYSMENPNSLVLWEAQFGDFSNGAQV1FDQF1SSGEAKWLRQTGLVVCLPHGYDGQGPEH	603
At-ox:	781	SSGRLERFLQMSDDNPYVI PEMDPTLRKQIQECNWQVVNVTTPANYFHVLRRQIHRDFRK SS R+ERPLQMSDDNPYVI PEMDPT+RKQIQECNWQVVNVTTPANYFHVLRRQIHRDFRK	840
B-p-ox:	604	SSARMERFLOMSDDNPYVI PEMDPTMRKQIQECNWQVVNVTTPANYPHVLRRQIHRDFRK	663
At · ox :		PLIVMAPKNLLRHKQCVSNLSEFDDVKGHPGFDKQGTRFKRLIKDQSCHSDLEEGIRRLV PLIVM+PKNLLRHK C_S+LSEFDD+ GHPGFDKQGTRFKRLIKD++ H DLEEGIRRLV	900
B-p-ox:	664	PLIVMSPKNLLRHKDC <del>KSSLS</del> EFDDLAGHPGFDKQGTRFKRLIKDRNDHKDLEEGIRRLV	723
At-ox:	901	LCSGKVYYELDEERKKSETKDVAICRVEQLCPFPYDLIQRELKRYPNAEIVWCQEEPMMM LCSGKVYYELDEERKKS+ DVAICRVEQLCPFPYDLIQRELKRYPNAEIVWCQEEPMMM	960
B-p-ox:	724	LCSGKVYYELDEERKKSDCNDVAICRVEQLCPFPYDLIQRELKRYPNAEIVWCQEEPMNM	783
At-ox:	961	GGYQYIALRLCTAMKALQRGNFNDIKYVGRLPSAATATGFYQLHVKEQTDLVKKALQPDP G Y YI RL TAM+AL RG+ +DIKY+G+ PSAATATGFY +HV+EQT+LVKKALQPDP	1020
B-p-ox:		GAYTYINPRLLTAMRALGRGSIDDIKYLGKAPSAATATCFYTVHVQEQTELVKKALQPDP	843
At-ox: B-p-ox:		hidopsis thaliuna 2 oxoglutarate dehydrogenase E1 subunit; GI: 18389253 ley putative oxoglutarate dehydrogenase; GI: 18235680, 14525312, 19520324, 182	05270

Fig. 2. Amino acid alignment between the 2-oxoglutarate dehydrogenase E1 subunit (At-ox) and the barley homologue (B-p-ox). The barley 2-oxoglutarate dehydrogenase E1 subunit homologue is a composite constructed from overlapping sequences present in the database. Sequences obtained from four tryptic digests from the 110 kDa purified Pab240 cross-reactive polypeptide (P1-P4) were 100% identical with the underscored sequence. Black box: Pab240 recognition site; white box: putative Pab122 recognition site.

18206048, 9419194 and 18208234

found that this antibody recognises a five amino acid long epitope, RHSV(V/I), of human, mouse and chicken p53 [13]. In barley embryonic suspension cells, this antibody showed cross-reaction with several polypeptides ranging from 10 to 110 kDa. The cross-reaction with the small polypeptides, which were predominant in the cellular debris after centrifugation, was unspecific since cross-reaction was also observed by using only the secondary antibody GAM-HRP (Fig. 1). However, three polypeptides of 53, 73 and 110 kDa, respectively, present in the cytosolic fraction after centrifugation, specifically cross-react with the Pab240 antibody. Especially the 73 and 53 kDa polypeptides frequently appeared on blot

as doublets. The ratio between these three Pab240 cross-reactive polypeptides varied among different extracts we made. In order to find out whether these different polypeptides were related to each other and whether they represented plant p53-like proteins, a three-step purification protocol was developed as described in Section 2. The purification, as schematically depicted in Fig. 1, finally resulted in a purified 110 kDa polypeptide from the cytosolic extract which could be converted to the 73 and 53 kDa form by means of mild trypsin digestion. Both 73 and 53 kDa polypeptides were subjected to sequence analysis. First by peptide mapping it became clear that the doublets represent one and the same protein. Se-

quence analysis resulted in the identification of four peptides (PI P4 in Fig. 2) which were all homologues to the *Arabidopsis* 2-oxoglutarate dehydrogenase. By searching for the barley homologue in the NCBI database we were able to retrieve seven expressed sequence tags which almost fully covered the entire protein (Fig. 2). Amino acid positions 498-502 of the barley composite exposes the sequence RHSVI, indeed an epitope for Pab240 [13,14]. Moreover, positions 680-684 expose a putative epitope for another p53 monoclonal antibody, Pab122.

Independently of the protein purification as described above, another approach was followed to identify the Pab240 cross-reactive protein in barley. An expression library was constructed from the total mRNA pool isolated from a mixture of heat-shocked and control barley suspension cells. First we have checked whether cross-reactivity of Pab240 occurs in *Escherichia coli* cells, the host cells of the λZAP phages. No cross-reaction could be observed. After screening of the transfected library, several Pab240 cross-reactive clones were found and subsequently isolated. One strong cross-reactive clone was selected for sequence analysis. Again this sequence showed a strong similarity with the *Arabidopsis* 2-oxoglutarate dehydrogenase (Fig. 3). These data confirm the identity of the Pab240 cross-reactive protein in barley as obtained by protein purification.

Next we wanted to find out whether the 53, 73, both often appearing as a doublet, and 110 kDa polypeptides were related to each other or different proteins carrying an epitope for Pab240. It was shown that mammalian p53s exposing the pab240 epitope are able to associate with heat-shock protein hsp70 [12]. If we heat-shocked our barley cell suspensions (10 min 42°C) at several time points prior to protein extraction we could clearly demonstrate that both the 53 and 73 kDa cross-reactive bands disappear in favour of the 110 kDa band (Fig. 4). Moreover, if the heat-shocked sample containing the 110 kDa protein (or the 110 kDa protein isolated by preparative PAGE during the purification protocol) was treated with a low concentration of trypsin, the intensity of the 110 kDa band diminished and the 73 and 53 kDa bands appeared again on Western blot. The concentration of trypsin used in



Fig. 3. Nucleotide sequence alignment between a clone isolated from the barley expression library, cross-reacting with the Pab240 antibody (PRC), and the 2-oxoglutarate dehydrogenase E1 subunit from Arabidopsis thaliana (At-ox). 81% identity was obtained.



Fig. 4. A: Behaviour of the Pab240 cross-reactive polypeptides in cytosolic extracts of barley embryonic suspension cells after heat shock (10 min, 42°C). Cytosolic extracts were made prior to heat shock (0) and after 0.5, 1, 2, 4 and 8 h recovery at 28°C. B: Trypsin treatment of a cytosolic extract obtained from heat-shocked cells after 4 h recovery; (-) before trypsin treatment, (+) after 50 min incubation with 20 μg/ml trypsin at 23°C. Both Western blots were probed with the Pab240 antibody.

these experiments was extremely critical since a small increase resulted in complete disappearance from the blot. These data strongly indicate that the 53 and 73 kDa polypeptides were degradation products of the 110 kDa polypeptide due to proteolytic activity during isolation. We suggest that binding of heat-shock proteins to the 110 kDa polypeptide in reaction to heat shock (Fig. 4A) may prevent this degradation. The fact that tryptic digests of the 53/73 kDa polypeptides, obtained during sequence analysis, display a high degree of homology with the 105 kDa 2-oxoglutarate dehydrogenase strongly supports this hypothesis.

#### 4. Discussion

In this study we have demonstrated that the cross-reactivity with the p53-specific Pab240 antibody in barley was not caused by a putative plant p53 homologue but by 2-oxoglutarate dehydrogenase, a 105 kDa subunit from a multi-enzyme assembly that occupies a central role in cellular metabolism within the tricarboxylic acid cycle. The presence of this protein combined with its biochemical features during experimental conditions causes a big obstacle for identifying p53-like proteins in plants by using Western blot techniques only. It mimics the features of the mammal p53 in several ways:

First, there is a clear recognition of the plant 2-oxoglutarate dehydrogenase by one of the best studied and frequently utilised antibodies in mammalian p53 research activities, the monoclonal Pab240. Obviously, this antibody may not be specific enough, since only a small motif of five amino acid residues, RHSV(V/I), also present at positions 498-502 of the barley 2-oxoglutarate dehydrogenase composite, allows recognition by the antibody [13,14]. It was already demonstrated that proteins containing this motif, like TFIIIA from Xenopus leavis, cross-react with the Pab240 [13]. Referring to Stephen et al. [14], a second interesting motif may be present on the barley 2-oxoglutarate dehydrogenase composite, KSSLS, located at positions 681-685, which mimics an epitope for the p53 monoclonal Pab122 [14]. Interestingly, in pea root tips a 94 kDa protein was recognised by both Pab240 and Pab122 antibodies [5]. However, due to limited information on the Pab122 epitope, the lack of sequence information of the pea oxoglutarate dehydrogenase homologue and the fact that different experimental procedures were used as compared to our study, it is not possible to predict whether cross-reactivity in pea is also caused by oxoglutarate dehydrogenase.

Second, we observed a dramatic increase in intensity of the Pab240 cross-reactive bands during the early stage of germination. In this period the machinery of DNA repair, to recover DNA integrity induced during seed maturation and storage [7,8], is fully operable. In mammalian cells p53 induces G1 arrest to allow DNA repair, so indeed one expects to find an increase of the putative plant p53 during early germination. On the other hand, during early germination also the plant cellular metabolism is fully switched on, e.g. enzymatic activity in the triearboxylic acid eyele. Consequently, it remains unclear whether the observed increase of the Pab240 cross-reactive bands during the early stage of germination is a result of an increase of p53-related proteins involved in DNA repair or just an increase of the metabolic enzyme oxoglutarate dehydrogenase.

Third, the molecular weight of the Pab240 cross-reactive proteins in plant extracts under denaturing conditions is similar to that of mammalian p53. However, next to a 53 kDa band, a 73 and 110 kDa band were also recognised in barley extracts by the Pab240 antibody. Interestingly, the ratio of the intensity of those 53, 73 and 110 kDa bands varied within the several extracts we made. Cross-reactivity in the region of 70 and 100 kDa by the Pab240 antibody was already reported to occur in maize [3] and pea [5,6]. In this report we showed that in our experimental system, the cytosolic extract of barley suspension eells, the 53, 73 and 110 kDa bands are related to each other. Artificial proteolytic eleavage of the purified 110 kDa band by controlled trypsin digestion revealed that the 110 kDa band could be easily converted to the 73 and 53 kDa form. Moreover, with heat-shock treatment of the barley suspension cells we showed that the intensity of the 53/73 kDa bands isolated during extraction decreased dramatically in favour of the 110 kDa band. Furthermore, it was shown by Gannon et al. [12] that proteins exposing the Pab240 epitope RHSV(V/I) were able to bind heat-shock protein hsp70. These chaperones are highly conserved proteins among the animal and plant kingdom. Assuming that 2-oxoglutarate dehydrogenase exposes its RHSVI motif, the hsp70, probably present in a chaperone complex, may associate and consequently stabilise the protein, thereby preventing proteolytic eleavage during isolation, especially after heat shock. It may be interesting to note that during purification of the 110 kDa polypeptide the heat-shock protein hsp82, a member of the hsp90 family, was co-purified (data not shown). It is known that chaperone complexes may contain both hsp90 and hsp70 proteins and that these complexes are evolutionarily conserved between the animal and plant kingdom [15]. Taken together, there are strong indications that the 53, 73 and 110 kDa polypeptides represent one and the same protein, the 105 kDa 2-oxoglutarate dehydrogenase.

The fact that the Pab240 cross-reactive protein(s), obtained by protein purification as well as by screening of an expression library, was identified as 2-oxoglutarate dehydrogenase, does not exclude the possibility that more Pab240 cross-reacting proteins or even p53-related proteins exist in plant cells. For example, 2-oxoglutarate dehydrogenase is a metabolic protein present in a complex in the mitochondria, but in pea cross-

reactivity with the Pab240 was also observed in nuclei by means of immuno-localisation studies [5]. However, extreme caution must be taken by interpretation of data only obtained by immunological experiments. In our opinion, the putative plant p53, if it exists, will be a functional homologue rather than a structural one. Searching for sequence homology in plant nucleotide databases failed thus far and moreover, even among animals the p53 protein is not highly conserved. Only recently the p53 homologues of Drosophila melanogaster [16 18] and Caenorhabditis elegans [19] were identified. From these studies it became clear that only a set of five domains of the p53 were conserved. The p53 homologue of C. elegans eould not be retrieved from public databases using standard searches and only with additional algorithms the conserved domains and therefore the p53 homologue could be identified [19]. Still, even by using these conserved domains and the additional algorithms for scarehing in plant databases, a plant p53 homologue could not be found. Focussing on p53's interacting partners, like the highly conserved proteins involved in cell-cycle regulation or inhibitory proteins might be a fruitful strategy for identifying the plant p53 homologue.

Acknowledgements: This work was partially supported by Aventis Research and Technologies GmbH and Co KG, Germany. Thanks to P. Wagner for stimulating discussions.

#### References

- [1] Bargonetti, J. and Manfredi, J.J. (2002) Curr. Opin. Oncol. 14, 86-91.
- [2] Loidl, A. and Loidl, P. (1996) Crit. Rev. Oncogen. 7, 49-64.
- [3] Georgieva, E.I., Lopez-Rodas, G. and Loidl, P. (1994) Planta 192, 125-129.
- [4] Cruz-Garcia, F., Zúñiga-Aguilar, J. and Vázquez-Ramos, J.M. (1998) Physiol. Plantarum 102, 573-581.
- [5] Onelli, E., Citterio, S., Labra, M., Ghiani, A. and Sgorbati, S. (2000) Plant Biosyst. 134, 153-165.
- [6] Klosterman, S.J., Choi, J.J. and Hadwiger, L.A. (2000) Physiol. Mol. Plant Path. 56, 197-206.
- [7] Whittle, C-A., Beardmore, T. and Johnston, M.O. (2001) Trends Pharmacol. Sci. 6, 248-251.
- [8] Cheah, K.S.E. and Osborne, D.J. (1978) Nature 272, 593-599.
- [9] Korthout, H.A.A.J., Berecki, G., Bruin, W., van Duijn, B. and Wang, M. (2000) FEBS Lett. 475, 139-144.
- [10] Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- [11] Laemmli, U.K. (1970) Nature 227, 680-685.
- [12] Gannon, J.V., Greaves, R., Iggo, R. and Lane, D.P. (1990) EMBO J. 9, 1595-1602.
- [13] Stephen, C.W. and Lane, D.P. (1992) J. Mol. Biol. 225, 577-583.
- [14] Stephen, C.W., Helminen, P. and Lane, D.P. (1995) J. Mol. Biol. 248, 58-78.
- [15] Stancato, L.F., Hutchison, K.A., Krisha, P. and Pratt, W.B. (1996) Biochemistry 35, 554-561.
- [16] Brodsky, M.H., Nordstrom, W., Tsang, G., Kwan, E., Rubin, G.M. and Abrams, J.M. (2000) Cell 101, 103-113.
- [17] Ollmann, M., Young, L.M., Di Como, C.J., Karim, F., Belvin, M., Robertson, S., Whittaker, K., Demsky, M., Fisher, W.W., Buchman, A., Duyk, G., Friedman, L., Prives, C. and Kopczynski, C. (2000) Cell 101, 91-101.
- [18] Jin, S., Martinek, S., Joo, W.S., Wortman, J.R., Mirkovic, N., Sali, A., Yandell, M.D., Pavletich, N.P., Young, M.W. and Levine, A.J. (2000) Proc. Natl. Acad. Sci. USA 97, 7301-7306.
- [19] Derry, W.B., Putzke, A. and Rothman, J.H. (2001) Science 294, 591-595.