Exploration of peptide structures and generation of therapeutic peptide candidates using Protein Language Model

Mateusz Chojnacki, Paweł Park, Łukasz Milewski, Hubert Wąsiewicz

Under the Supervision of: Wanda Niemyska PhD, prof. Joanna Sułkowska

Peptide therapeutics

Wang et al. 2022

Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase

Joseph A Newman ¹, Alice Douangamath ², Setayesh Yadzani ³, Yuliana Yosaatmadja ⁴, Antony Aimon ², José Brandão-Neto ², Louise Dunnett ², Tyler Gorrie-Stone ², Rachael Skyner ², Daren Fearon ², Matthieu Schapira ³, Frank von Delft ⁴, ², ⁶, Opher Gileadi ⁴

Affiliations + expand

PMID: 34381037 PMCID: PMC8358061 DOI: 10.1038/s41467-021-25166-6

Our Goal

Explore the space of possible peptide structures using a protein language model and attempt to generate plausible therapeutic peptide candidates against the nsp13 helicase

SARS-CoV-2 Nsp13 helicase

huggingface.co

HPepDock

Zhou et al. 2018

AlphaFold

Further Verification of the

Best Peptides with

Molecular Dynamics

AlphaFold2 Jumper et al. 2022

1) Peptides from the Literature Review

Almost no research on antiviral peptides against SARS CoV-2's nsp13

The only publication includes 45 peptides potentially binding to nsp13 helicase.

Protein J. 2021; 40(3): 310-327.

Published online 2021 Apr 11. doi: 10.1007/s10930-021-09983-8

PMCID: PMC8036162 PMID: 33840006

Milk Peptides as Novel Multi-Targeted Therapeutic Candidates for SARS-CoV2

► Author information ► Article notes ► Copyright and License information PMC Disclaimer

Sequence	Dockscore	E-model
SVFSGYRK	-12.95	-191.21
CLANGMIMY	-12.50	-172.26
RQQPGKGPRY	-12.26	-139.90
ALEATCKSL	-11.73	-153.84
LDAQSAPLRV	-11.59	-165.69
FLRQNEVL	-11.28	-156.53
IDALNENK	-11.03	-159.33
DIEQLRSQL	-10.91	-161.25
IQKVAGTW	-10.74	-124.27

2) Construction of Peptide Database

The structure homology search yielded 27 more peptides.

Docking with Hpepdock and CABS-dock showed, that they bind to at least one of described binding sites with high scores.

3) Generating Peptides

ProtGPT2 speaks the 'language of the proteins'

Problems with fine-tuning - not enough data to generate completely novel peptides without overfitting

The literature peptides are fed into the pre-trained model, treated as 'context' and new amino acids are appended to the known peptide

4) Preliminary Filtering

Isoelectric point - 6-8 to mimic physiological conditions

Instability index – anything below 40 can be considered stable (Guruprasad et al 1990)

GRAVY – balance between hydrophilic and lipophilic (-1, 1)

Perplexity - predictive performance of a language model (the lower the better)

Histogram of the preliminary metrics used to filter out undesirable peptides

 $\begin{tabular}{l} Table 2: Sequences generated with ProtGPT2 with selected preliminary metrics (pI-isoelectric point, II-instability index, gravy-grand average of hydropathicity index, ppl-perplexity), sorted by ppl in the protection of the p$

Alias	\mathbf{pI}	II	gravy	ppl	Sequence
G1	6.46	21.70	-0.48	844.69	SLPYPFIWGNQMWMLTWPDHR
G2	6.74	32.63	-0.56	868.12	HMWPGDIKPAAVSRDLSQ
G3	6.92	27.30	0.21	904.70	IIVTQTMKSGDVSVILHQIHYKAD
G4	6.06	19.66	-0.38	1007.95	WNPADYGGIKPLLTETNIVGKY
G5	7.84	25.80	-0.41	1020.43	GCCSDPLCAWRCHAGRCGRD
G6	7.94	35.50	0.74	1063.46	CKFFWATYTSCCLSGGNLGIFVPS
G7	6.22	18.45	-0.37	1089.33	LSITENGEFKPLGFQFSQKSIEKV
G8	6.77	29.40	0.18	1100.54	LVGPTIWRAALLESAPRHAAE
G9	7.82	11.31	-0.03	1200.32	GCCSDPRCAWRCYGCLS
G10	6.80	35.61	0.29	1287.75	ALKIPISKIYIDSHSVLSPE
G11	6.75	35.87	0.02	1371.14	LHTPLPLTRRDKALLDDALSLFG
G12	6.21	39.74	-0.47	1400.99	GWLEPLLARPWLIVGRDQRGVMTRPYDEG
G13	6.91	14.87	-0.71	1567.13	HEGFTSDFRNPQHAFGSLMCRFNT
G14	7.02	27.67	-0.31	1689.99	LTFQHNFQTHRGHEVGSAQGFTAILW
G15	6.05	34.96	0.60	1731.80	YCKFEWATFAKSCAFPVDGLSFPFFGI
G16	6.00	33.07	-0.33	1800.79	QIPTVNNLKVSEPFTP
G17	6.12	6.10	-0.03	1831.41	GLDIQKVKDMEQLLTQVRLSI
G18	6.74	27.94	-0.04	1927.21	VLEKYKDVIMNSSSLLEHIATGIKKFE
G19	6.40	3.73	-0.26	1964.08	TLPFHSVIYVDSATGQTWTGNR
G20	6.21	37.61	-0.89	2220.56	GYDPETGTWGRRMTLFTPDSRAEVAAR

5) Docking Results

Number of G peptide models that docked to specific binding pockets (o - ATP binding pocket, 1 - RNA binding pocket, 2 - unnamed potential pocket between Zinc/stalk domains) from docking runs performed using HPepDock and CABS-dock to helicase 6zsl with 10 results with the best binding score.

Alias	HpepDock			CABS-dock		
Allas	0	1	2	0	1	2
G1		1	6	3	5	1
G2	1	3	3	4	2	1
G3	1	1	8	7	1	
G4	1	1	4	1	3	4
G5	2	3	4	1	6	1
G6	2	1	7	2	3	5
G7		2	6	5	3	
G8		1	7	4	4	
G9	2	1	7	6	1	
G10		3	3	4	4	1
G11		1	8	4	4	1
G12		3	5	6	4	
G13	1	3	6	8		
G14	2	3	3	3	2	1
G15		2	6	3	5	1
G16	2	1	7	4	2	
G17	1	1	7	3	2	2
G18	1		4	4	3	1
G19		1	8	5	5	
G20	1	2	7	8	2	

Our Goal

Explore the space of possible peptide structures using a protein language model and attempt to generate plausible therapeutic peptide candidates against the nsp13 helicase

SARS-CoV-2 Nsp13 helicase

SARS-CoV-2 nsp13 helicase

Pocket o ATP binding

Pocket 1 nt binding

> Nat Commun. 2021 Aug 11;12(1):4848. doi: 10.1038/s41467-021-25166-6.

Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase

Joseph A Newman ¹, Alice Douangamath ², Setayesh Yadzani ³, Yuliana Yosaatmadja ⁴, Antony Aimon ², José Brandão-Neto ², Louise Dunnett ², Tyler Gorrie-Stone ², Rachael Skyner ², Daren Fearon ², Matthieu Schapira ³ ⁵, Frank von Delft ⁴ ² ⁶, Opher Gileadi ⁴

Pocket 2 Potential allosteric binding sites