Diplomová práce

České vysoké učení technické v Praze

F3

Fakulta elektrotechnická Katedra telekomunikační techniky

Přehledový přijímač / monitor rádiových sítí IoT

Ondřej Šulc

Školitel: Ing. Pavel Troller, CSc. Obor: Komunikační systémy a sítě

Leden 2019

Poděkování

Prohlášení

Děkujeme . . .

Fakt sám ...

Abstrakt

Rozvíjíme ...

Klíčová slova: IoT, SDR-RTL, LoRa,

Sigfox, Přehledový přijímač

Školitel: Ing. Pavel Troller, CSc.

Pestitelský ústav, Zárivá 232,

12000 Praha 2

Abstract

We develop ...

Keywords: IoT, SDR-RTL, LoRa,

Sigfox, Scanner

Title translation: Scanner/Monitor of

IoT radio networks

Obsah

1 Úvod	1
2 LoRa	3
2.1 Modulace	3
3 Závěr	5
Literatura	7

Obrázky Tabulky

Kapitola 1 Úvod

Foo bar

Kapitola 2

LoRa

2.1 Modulace

Modulační schéma LoRa je založeno na Chirp Spread Spread Spectrum (Cvrlikající rozprostřené spektrum) modulaci (Goursaud and Gorce, 2015) a definuje jeden "cvrk" jako jeden symbol (Semtech, 2015a). Standardní nemodulovaný lineární cvrk se nazývá "základní cvrk" a může být matematicky popsán jako funkce času t takto (Mann and Haykin, 1991):

$$x(t) = e^{i(\varphi_0 + 2\pi(\frac{k}{2}t^2 + f_0 t))}$$
(2.1)

Kde φ_0 je počáteční fáze, k je rychlost změny frekvence a f_0 je počáteční frekvence. Pokud je šířka pásma kanálu BW, tak parametry f_0 a k jsou nastaveny tak, že se frekvence zvětšuje od $f_0 - \frac{BW}{2}$ po $f_0 + \frac{BW}{2}$ během periody T cvrku. Tím pádem je $f_0 = \frac{BW}{2}$ and $k = \frac{BW}{T}$. Doba trvání jednoho cvrku závisí na šířce pásma signálu a na parametru nazývaném činitel rozprostření (Spreading Factor - SF) dle vztahu $T = \frac{2^{SF}}{BW}$ (Seller and Sornin, 2014). Vzhledem k tomu, že x(t+nT) = x(t) kde $n \in \mathbb{N}$, celočíselná hodnota $i \in \{0,1\}^{SF}$ může být namodulována na základní cvrk pomocí časového posunu $\hat{t} = Gray^{-1}(i)\frac{T}{2^{SF}}$ aplikovaného na signál ve vztahu (2.1), kde $Gray^1$ je dekódování Grayova kódu (Gray, 1953). Touto cestou je symbol v podstatě kvantovaný na 2^{SF} časových intervalů rozdělujích šířku pásma, nazýváme je "chipy" a právě ony určují i. Při příjmu modulovaného cvrku s neznámým časovým posuvem $x(t+\hat{t})$, může být hodnota cvrku zrekonstruována navzorkováním signálu vzorkovací frekvencí chipů a výpočtem:

$$i = Gray(arg \max(|FFT(x(t+\hat{t}) \odot \overline{x(t)})|))$$
 (2.2)

Kapitola 3 Závěr

Lorep ipsum [1]

Literatura

 $[1]\,$ J. Doe. $Book\ on\ foobar.$ Publisher X, 2300.