

P2P-based Virtual Environment Research - an overview -

Tonio Triebel
University of Mannheim

Outline

- Introduction / Motivation
- Networked Virtual Environments (NVE)
 - Types of NVEs
 - Client-/Server-Implementation
 - Requirements
 - Distributed Virtual Environments
 - P2P-Overlays: pSense, VON, Donnybrook
 - Benchmarking
- Conclusion / Discussion

Motivation

- Why are online games interesting for computer science?
 - Fast growing market for online games
 - High demanding requirements for network infrastructure
 - Online games are distributed systems
 - Many problems are not solved yet
- Why P2P-technologies?

Networked Virtual Environments

History:

- Textadventure: ADVENT W. Crowther 1970
 - MUD1 /2 1983/84 R.Trubshaw
- Doom ID Software 1993
- Ultima Online Origin Systems 1997
- Second Life Linden Labs 2003
- EVE online CCP Games 2003
- World of Warcraft Blizzard Entertainment 2004

Types of Networked Virtual Environments

- First Person Shooter (FPS)
- Sports Simulation
- Role Play Games (RPG/ORPG)
- Real Time Strategy (RTS)
- Virtual Worlds

Types of Architectures:

- Dedicated Server
- C/S without dedicated server
- P2P

Main difference: Level of real time requirements

Main problem for C/S architecture: Scalability

Scalability Problem

- All game updates have to be processed at a single point
- Every update is requires an database operation

World of Warcraft

Sharding:

Every server maintains a copy of the virtual world.

There is no possibility to communicate or interact

with player from another realm.

Eve Online

"EVE ONLINE™ LAUNCHES LARGEST SUPERCOMPUTER IN THE GAMING INDUSTRY"

- EVE's 7000+ star systems are loaded as a separate process onto any one of hundreds of IBM blade servers
- Record of concurrent users: 60,453 (Jun 7th 2010)
- Gamestate consists of more than 1,1 TB Data

Second Life

Second Life is a virtual world built and created by its users Server:

- Each full region (an area of 256x256 meters) runs on a single dedicated core of a multi-core server
- Estimated to consume 100 terabytes of server capacity (2008)
- In Q1 2009:
- 124 Million user hours
- Peak concurrent users of 88,200
- Monthly unique users: 732,526 (march 09)
- Residents spent more than USD\$120 million on virtual goods and services in Second Life

Cloud Computing

Cloud computing is Internet-based computing, whereby shared servers provide resources, software, and data to computers and other devices on demand, as with the electricity grid. (Wikipedia)

- Infiniband Network (up to 60GBit/s and latency optimized
- Login proxies
- "Unlimited resources"

Requirements of Online Games

- 1. Communication infrastructure (Responsiveness, Robustness)
- 2. Consistent world state (Consistency)
- Persistent game data (Persistency)
- 4. Security / fairness
- 5. User generated content / data distribution
- 6. Costs

Pro P2P:

- Scalability
- A server is single point of failure (robustness)
- Data distribution
- Costs

Requirements (responsiveness)

	Delay	Bandwidth (up)	Bandwidth (down)
World of Warcraft	300 ms	2,1 kbit/s	6,9 kbit/s

- Ping Mannheim-Hamburg ~ 25 ms RTT
- DSL 16000:
 - 16.000 kbit/s downstream
 - 1.024 kbit/s upstream

Problems of Standard P2P-Technologies

Why not use Chord?

Chord:

- Mapping between 2D / 3D Virtual World and 1D Chord ring necessary
- Frequently changing "communication structure"
 - -> chord ring must be changed as well

Problems of Standard P2P-Technologies

Why not use CAN?

CAN:

- Density Problem: high populated areas result in small CAN cells.
 - -> game messages must be routed over many nodes
- Frequently changing "communicatio structure"
 - -> CAN structure must be changed as well

	6	2		
	3	1	7	5
		4		

1's coordinate neighbor set = {2,3,4,7} 7's coordinate neighbor set = {1,2,4,5}

Information Dissemination

Observations:

- Update messages have only to be transmitted to other peers in the vision and interaction range
- Peers in the vision range are highly dynamic
- Updates occure with a high frequency

Idea:

- Use unstructured P2P-overlays called Information Dissemination Overlays (IDO)
- Reduce communication with the Area of Interrest (AOI) concept

Neighbor Discovery

- Server introduction: the server maintains all nodes, notifies a peer of its AOI neighbors
- Peer notification: peers mutually notify each other of new AOI neighbors.
- List exchange: peers exchange the neighbor list they maintain to discover new AOI neighbors
- DHT query: peers form a DHT overlay, and search for relevant neighbors or supernodes for new AOI neighbors
- Overlay multicast: peers multicast their positions regularly to allow other nodes to learn of their positions.

pSense

- Create a dynamic localized peer-to-peer overlay network
- Players are mainly connected to peers that are close in the virtual world.

Patric Kabus

Position based Multicast

 pSense - Maintaining a Dynamic Localized Peer-to-Peer Structure for Position Based Multicast in Games Arne Schmieg, Michael Stieler, Sebastian Jeckel, Patric Kabus, Bettina Kemme, Alejandro Buchmann IEEE International Conference on Peer-to-Peer Computing 2008

pSense

- Near Nodes: Peers that are within the vision range of the local node.
- Fast position updates required
- Sensor Nodes: To avoid network partitioning a list of nodes outside of the vision range is maintained.
- Localized Multicast: Update messages are directly sent to near nodes and sensor nodes. Additionally forwarding is used.

pSense

Overlay structure of pSense

Voronoi-based Overlay Network (VON)

- Published originally at the 2004 ACM SIGCOMM workshop Netgames by Shun-Yun Hu
- Solving the "neighbor discovery problem" in a P2P environment

- 1. Shun-Yun Hu and Guan-Ming Liao, "Scalable Peer-to-Peer Networked Virtual Environment," in *Proc. ACM SIGCOMM 2004 workshops on NetGames '04*, Aug. 2004, pp
- 2. Shun-Yun Hu, Shao-Chen Chang, and Jehn-Ruey Jiang, "Voronoi State Management for Peer-to-Peer Massively Multiplayer Online Games," in Proc. 4th IEEE Intl. Workshop on Networking Issues in Multimedia Entertainment (NIME), Jan. 2008.
- 3. Jehn-Ruey Jiang, Yu-Li Huang, and Shun-Yun Hu, "Scalable AOI-Cast for Peer-to-Peer Networked Virtual Environments," in *Proc. 28th International Conference on Distributed Computing Systems Workshops (ICDCSW) Cooperative Distributed Systems (CDS)*, Jun. 2008.

Voronoi Diagram

- Plane partitioned into regions by sites, each region contains all the points closest to its site
- Can be used to find k-nearest neighbor easily

Design Concept

- Use Voronoi to solve Neighbor Discovery Problem
 - Identify enclosing and boundary neighbors
 - Each node constructs a Voronoi of its neighbors
 - Enclosing neighbors are maintained as the minimal set
 - Mutual collaboration in neighbor discovery

Circle Area of Interest (AOI)
White self
Yellow enclosing neighbor
L. Blue boundary neighbor
Pink enclosing & boundary
Green other neighbor
D. Blue unknown neighbor

Problems of Voronoi Approach

- Performance
- Circular round-up of nodes
- Redundant message sending
- Incomplete neighbor discovery
- Inconsistent / incorrect neighbor list
- Fast moving node

VON - Evaluation

Consistency for players in Random Waypoint mode:

VON - Evaluation

Consistency for players in Group-based Random Waypoint mode:

VON - Evaluation

Non bilateral neighborhood:

Player A is a boundary neighbor of Player B, but not vice versa

Donnybrook

Donnybrook: enabling large-scale, high-speed, peer-to-peer games

Jeffrey Pang

Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Moscibroda,
Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang: Donnybrook: enabling large-scale,
high-speed, peer-to-peer games SIGCOMM 08 Comput. Commun. Rev. New York, NY,
USA 2008

Donnybrook

Aim:

Enable a high-speed (<150ms), large scale (1000), peer hosted online game.

Naive approach:

Needs ~ 12n kbit/s for n peers (using Quake III)

Idea:

Use full mesh topologie, and reduce updates.

Donnybrook

Observation:

Humans can only focus on a constant number of objects.

Concept:

- Determine the focused objects and use a high update rate for this "interest set".
- 2. Use a very low update rate for other objects.

Interest Set

Estimation of human attention:

Attention(i) =
$$f_{proximity}(d_i) + f_{aim}(\theta_i) + f_{interaction-recency}(t_i)$$
Player 1 Player 2

Interest Set

Benchmarking

Observation:

Many research groups are developing P2P-infrastructures for online games.

Question:

How can be determined if an approach is good or not.

Answer:

Create a P2P-Gaming Benchmark.

-> Forschergruppe QuaP2P 2

QuaP2P Gaming Benchmark

Generation of Workload

- Mobility Models (Random Walk, Random Waypoint,...)
- Traces
- Bots

Random Walk

Generation of Workload with Traces

■ Example Trace from Quake 2:

Generation Workload with Bots

Conclusion

- P2P-technologies can be used to create "scalable" online games
- P2P-technologies can be used to reduce hardware and maintenace costs
- P2P-technologies can be used to create high-speed online games

But.....the task is very challenging

Questions?