Union Find - Recitation 11

January 9, 2023

1 Union Find.

We have mentioned that for finding efficiently the minimal spanning tree using kruskal, one has to answer quickly about wheter a pair of vertices v, u share the same connactivity commponent. In this recitation we will presnt a datastructure that will allow us both quering the belonging of given item and mergging groups at efficient time cost.

The problem define as follow. Given n items $x_1...x_n$ we would like to maintain the parttion of them into disjoints sets by supporting the following operations:

- 1. Make-Set(x) create an empty set whose only member is x. We could assume that this operation can be called over x only once.
- 2. Union(x, y) merge the set which contains x with the one which contains y.
- 3. Find-Set(x) returns a pointer to the set holding x.

Notice that the navie immpleamntion using pointres array, A, defined to store at place i a pointer to the set containing x can perform the Find-Set operation at O(1). The bottle neck of that immplemntion is that the mergging will require from us to run over the whole itmes and changes their corresponding pointer at A one by one. Namly, a running time cost of $\Theta(n)$ time. Let's review a diffrent approach:

Linked Lists Immplemntation. One way to have a non-trival improvement is to associate for each set a linked list storing all the elements belonging to the set. Each node of those linked lists contains, additilly to it's value and it's sibling pointer, also a pointer for the list itself (the set). Consider again the mergging operation. it's clear that having those lists allow us to uinfind sets by iterating and updating only the elements belong to them. Still one more trick is needed for achiving a good running cost.

```
\begin{array}{ll} \textbf{Uinon}(x,y) \\ & \textbf{1} \ \ \textbf{if} \ \ size \ A[x] \geq size A[y] \ \textbf{then} \\ & \textbf{2} \quad \quad \text{size } A[x] \leftarrow \text{size } A[x] + \text{size} A[y] \\ & \textbf{3} \quad \quad \textbf{for} \quad z \in A[y] \ \textbf{do} \\ & \textbf{4} \quad \quad \big\lfloor A[z] \leftarrow A[x] \\ & \textbf{5} \quad \big\lfloor A[x] \leftarrow A[x] \cup A[y] \ // \ O \ (1) \ \text{concatenation of linked lists.} \\ & \textbf{6} \ \ \textbf{else} \\ & \textbf{7} \quad \big\lfloor \ \ \text{Union} \ (y,x) \end{array}
```

Union By Rank.