$12a_{0150} \ (K12a_{0150})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{35} + 13u^{34} + \dots + 16b - 7, \ -17u^{35} - 37u^{34} + \dots + 64a + 19, \ u^{36} + 19u^{34} + \dots - 5u^2 - 1 \rangle \\ I_2^u &= \langle 6.38800 \times 10^{30}u^{55} - 1.52613 \times 10^{31}u^{54} + \dots + 5.64156 \times 10^{30}b - 1.61757 \times 10^{32}, \\ &- 2.85017 \times 10^{32}u^{55} + 2.45748 \times 10^{32}u^{54} + \dots + 9.59066 \times 10^{31}a + 2.82390 \times 10^{33}, \\ u^{56} - 2u^{55} + \dots - 56u + 17 \rangle \\ I_3^u &= \langle b, \ -u^2 + 2a - u - 3, \ u^3 + 2u - 1 \rangle \\ I_4^u &= \langle a^2 + 2au + 2b + 2a + 2u, \ a^3 + 2a^2u + 2a^2 + 2au + 2u - 2, \ u^2 + 1 \rangle \\ I_5^u &= \langle b, \ u^3 + a + u + 1, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 105 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{35} + 13u^{34} + \dots + 16b - 7, -17u^{35} - 37u^{34} + \dots + 64a + 19, u^{36} + 19u^{34} + \dots - 5u^2 - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.265625u^{35} + 0.578125u^{34} + \cdots - 5.60938u - 0.296875 \\ 0.0625000u^{35} - 0.812500u^{34} + \cdots - 0.937500u + 0.437500 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ -\frac{1}{8}u^{34} - \frac{9}{4}u^{32} + \cdots + u + \frac{1}{8} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.453125u^{35} - 0.109375u^{34} + \cdots - 5.67188u + 0.0156250 \\ 0.187500u^{35} + 0.812500u^{34} + \cdots - 0.812500u - 0.687500 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.234375u^{35} - 0.328125u^{34} + \cdots - 4.64063u - 0.453125 \\ \frac{1}{4}u^{35} + \frac{3}{8}u^{34} + \cdots - \frac{5}{4}u - \frac{1}{8} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{8}u^{34} - \frac{9}{4}u^{32} + \cdots + u + \frac{1}{8} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{8}u^{35} + \frac{9}{4}u^{33} + \cdots - 3u^{2} - \frac{1}{8}u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{187}{128}u^{35} + \frac{159}{128}u^{34} + \dots + \frac{2051}{128}u + \frac{391}{128}u$

Crossings	u-Polynomials at each crossing
c_1	$u^{36} + 16u^{35} + \dots + 1009u + 16$
c_{2}, c_{4}	$u^{36} - 4u^{35} + \dots + 41u - 4$
c_3, c_9	$u^{36} - 3u^{35} + \dots - 200u + 32$
<i>C</i> 5	$u^{36} + 6u^{35} + \dots - 1024u - 256$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{36} + 19u^{34} + \dots - 5u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{36} + 12y^{35} + \dots - 838433y + 256$
c_{2}, c_{4}	$y^{36} - 16y^{35} + \dots - 1009y + 16$
c_3, c_9	$y^{36} - 21y^{35} + \dots - 13632y + 1024$
<i>C</i> ₅	$y^{36} - 10y^{35} + \dots + 1277952y + 65536$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^{36} + 38y^{35} + \dots + 10y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.799527 + 0.176704I		
a = -2.18880 - 0.45142I	4.74793 - 7.85320I	10.04645 + 6.82462I
b = 1.268070 - 0.575288I		
u = -0.799527 - 0.176704I		
a = -2.18880 + 0.45142I	4.74793 + 7.85320I	10.04645 - 6.82462I
b = 1.268070 + 0.575288I		
u = -0.800607 + 0.101659I		
a = 2.31721 + 0.28975I	6.52211 - 2.11667I	12.90027 + 1.65144I
b = -1.291650 + 0.333161I		
u = -0.800607 - 0.101659I		
a = 2.31721 - 0.28975I	6.52211 + 2.11667I	12.90027 - 1.65144I
b = -1.291650 - 0.333161I		
u = 0.185932 + 1.257960I		
a = -1.049650 + 0.171429I	-1.32995 - 0.96493I	1.34412 - 1.32210I
b = 1.49538 - 0.38047I		
u = 0.185932 - 1.257960I		
a = -1.049650 - 0.171429I	-1.32995 + 0.96493I	1.34412 + 1.32210I
b = 1.49538 + 0.38047I		
u = 0.707581 + 0.074386I		
a = -0.078771 + 0.776564I	1.47492 + 2.13531I	9.68335 - 3.80042I
b = 0.233551 - 0.999375I		
u = 0.707581 - 0.074386I		
a = -0.078771 - 0.776564I	1.47492 - 2.13531I	9.68335 + 3.80042I
b = 0.233551 + 0.999375I		
u = 0.256428 + 1.268940I		
a = 1.158250 - 0.431595I	-0.50515 + 5.47281I	3.56359 - 6.08643I
b = -1.50604 + 0.08197I		
u = 0.256428 - 1.268940I		
a = 1.158250 + 0.431595I	-0.50515 - 5.47281I	3.56359 + 6.08643I
b = -1.50604 - 0.08197I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.655018		
a = -3.09255	0.0745611	12.4420
b = 0.837842		
u = -0.270723 + 1.357970I		
a = -0.434177 - 0.095111I	-6.77626 - 4.69556I	0
b = -0.105956 - 1.152130I		
u = -0.270723 - 1.357970I		
a = -0.434177 + 0.095111I	-6.77626 + 4.69556I	0
b = -0.105956 + 1.152130I		
u = 0.432384 + 0.427628I		
a = -0.414829 + 0.874160I	1.50887 - 1.02448I	9.47604 - 1.44360I
b = 1.078680 - 0.178305I		
u = 0.432384 - 0.427628I		
a = -0.414829 - 0.874160I	1.50887 + 1.02448I	9.47604 + 1.44360I
b = 1.078680 + 0.178305I		
u = 0.257005 + 0.526031I		
a = 0.362281 - 0.956728I	1.25861 + 3.83246I	8.43096 - 7.69033I
b = -1.160170 - 0.273905I		
u = 0.257005 - 0.526031I		
a = 0.362281 + 0.956728I	1.25861 - 3.83246I	8.43096 + 7.69033I
b = -1.160170 + 0.273905I		
u = 0.29960 + 1.38694I		
a = -1.67352 + 0.92125I	-9.07301 + 7.01583I	0
b = 1.085350 + 0.310979I		
u = 0.29960 - 1.38694I		
a = -1.67352 - 0.92125I	-9.07301 - 7.01583I	0
b = 1.085350 - 0.310979I		
u = -0.07865 + 1.42029I		
a = -0.398304 - 0.466774I	-9.22257 - 2.95016I	0
b = 0.718949 - 0.847255I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.07865 - 1.42029I		
a = -0.398304 + 0.466774I	-9.22257 + 2.95016I	0
b = 0.718949 + 0.847255I		
u = -0.32955 + 1.39003I		
a = 0.471381 - 0.002675I	-7.96782 - 9.82231I	0
b = 0.450280 + 1.163260I		
u = -0.32955 - 1.39003I		
a = 0.471381 + 0.002675I	-7.96782 + 9.82231I	0
b = 0.450280 - 1.163260I		
u = 0.36777 + 1.38101I		
a = 1.29940 - 1.07583I	-2.87873 + 10.65860I	0
b = -1.31910 - 0.56226I		
u = 0.36777 - 1.38101I		
a = 1.29940 + 1.07583I	-2.87873 - 10.65860I	0
b = -1.31910 + 0.56226I		
u = 0.02175 + 1.45011I		
a = 0.585925 + 0.756135I	-12.81680 + 1.42112I	0
b = -0.821813 + 0.809606I		
u = 0.02175 - 1.45011I		
a = 0.585925 - 0.756135I	-12.81680 - 1.42112I	0
b = -0.821813 - 0.809606I		
u = 0.38371 + 1.41444I		
a = -1.25562 + 1.21879I	-5.3479 + 16.6018I	0
b = 1.26488 + 0.73094I		
u = 0.38371 - 1.41444I		
a = -1.25562 - 1.21879I	-5.3479 - 16.6018I	0
b = 1.26488 - 0.73094I		
u = -0.25014 + 1.49745I		
a = 0.196746 - 0.200364I	-10.76370 - 4.55503I	0
b = 0.623960 + 0.219536I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.25014 - 1.49745I		
a = 0.196746 + 0.200364I	-10.76370 + 4.55503I	0
b = 0.623960 - 0.219536I		
u = -0.11074 + 1.53043I		
a = 0.086477 + 0.589795I	-12.5319 - 6.8373I	0
b = -0.884099 + 0.624341I		
u = -0.11074 - 1.53043I		
a = 0.086477 - 0.589795I	-12.5319 + 6.8373I	0
b = -0.884099 - 0.624341I		
u = 0.361676		
a = -0.636362	0.595912	16.6720
b = 0.360388		
u = -0.125553 + 0.232110I		
a = 0.13047 - 2.31300I	-1.60873 - 0.57225I	-2.19533 + 2.55248I
b = -0.229374 - 0.520047I		
u = -0.125553 - 0.232110I		
a = 0.13047 + 2.31300I	-1.60873 + 0.57225I	-2.19533 - 2.55248I
b = -0.229374 + 0.520047I		

II.
$$I_2^u = \langle 6.39 \times 10^{30} u^{55} - 1.53 \times 10^{31} u^{54} + \dots + 5.64 \times 10^{30} b - 1.62 \times 10^{32}, \ -2.85 \times 10^{32} u^{55} + 2.46 \times 10^{32} u^{54} + \dots + 9.59 \times 10^{31} a + 2.82 \times 10^{33}, \ u^{56} - 2u^{55} + \dots - 56u + 17 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2.97182u^{55} - 2.56237u^{54} + \dots + 38.6228u - 29.4443 \\ -1.13231u^{55} + 2.70516u^{54} + \dots - 67.9361u + 28.6724 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.37378u^{55} - 2.05523u^{54} + \dots + 22.6847u - 10.9962 \\ 0.0862068u^{55} + 0.310131u^{54} + \dots + 3.93944u - 6.65451 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.196643u^{55} + 1.09359u^{54} + \dots - 62.9416u + 28.7866 \\ -1.02772u^{55} + 2.29208u^{54} + \dots - 38.3434u + 7.61269 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.813487u^{55} + 2.59847u^{54} + \dots - 136.206u + 65.7422 \\ -0.104046u^{55} + 1.60090u^{54} + \dots - 20.3881u - 5.41843 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.275698u^{55} + 0.0983321u^{54} + \dots - 35.0403u + 22.8321 \\ 1.64947u^{55} - 2.15356u^{54} + \dots + 59.7250u - 33.8282 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.53683u^{55} - 2.73915u^{54} + \dots + 92.2768u - 48.0224 \\ -0.453063u^{55} - 0.408827u^{54} + \dots + 7.39298u + 6.68686 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4.98882u^{55} 5.95966u^{54} + \cdots + 21.5498u + 4.33068$

Crossings	u-Polynomials at each crossing
c_1	$ (u^{28} + 13u^{27} + \dots - 7u + 1)^2 $
c_{2}, c_{4}	$(u^{28} - 3u^{27} + \dots - u + 1)^2$
c_3, c_9	$(u^{28} + u^{27} + \dots + 8u + 4)^2$
<i>C</i> ₅	$(u^{28} - 2u^{27} + \dots - 22u + 17)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{56} - 2u^{55} + \dots - 56u + 17$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{28} + 7y^{27} + \dots - 61y + 1)^2$
c_2, c_4	$(y^{28} - 13y^{27} + \dots + 7y + 1)^2$
c_3, c_9	$(y^{28} - 15y^{27} + \dots - 88y + 16)^2$
<i>C</i> 5	$(y^{28} - 10y^{27} + \dots - 246y + 289)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^{56} + 42y^{55} + \dots - 824y + 289$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.699981 + 0.709842I		
a = -0.932475 - 0.375700I	-4.85759 - 4.24816I	2.11355 + 6.97904I
b = 0.910131 - 0.395689I		
u = -0.699981 - 0.709842I		
a = -0.932475 + 0.375700I	-4.85759 + 4.24816I	2.11355 - 6.97904I
b = 0.910131 + 0.395689I		
u = -0.405666 + 0.949027I		
a = -1.45587 - 0.57456I	-5.14204 + 1.40144I	0 1.74630I
b = 0.387411 - 0.832689I		
u = -0.405666 - 0.949027I		
a = -1.45587 + 0.57456I	-5.14204 - 1.40144I	0. + 1.74630I
b = 0.387411 + 0.832689I		
u = 0.910837 + 0.220913I		
a = 2.06125 - 0.14881I	-0.16281 + 11.95450I	5.04116 - 8.32221I
b = -1.241130 - 0.661367I		
u = 0.910837 - 0.220913I		
a = 2.06125 + 0.14881I	-0.16281 - 11.95450I	5.04116 + 8.32221I
b = -1.241130 + 0.661367I		
u = -0.779705 + 0.500231I		
a = 0.591475 + 0.474962I	-4.25756 - 0.90628I	4.59768 - 1.67094I
b = -0.802767 - 0.244916I		
u = -0.779705 - 0.500231I		
a = 0.591475 - 0.474962I	-4.25756 + 0.90628I	4.59768 + 1.67094I
b = -0.802767 + 0.244916I		
u = -0.352136 + 1.047700I		
a = 0.764728 + 0.330487I	2.10501 + 3.62399I	0
b = -1.280370 - 0.446560I		
u = -0.352136 - 1.047700I		
a = 0.764728 - 0.330487I	2.10501 - 3.62399I	0
b = -1.280370 + 0.446560I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.864130 + 0.172111I		
a = -2.23241 + 0.01733I	2.03115 + 6.23266I	8.14975 - 4.30079I
b = 1.262900 + 0.460239I		
u = 0.864130 - 0.172111I		
a = -2.23241 - 0.01733I	2.03115 - 6.23266I	8.14975 + 4.30079I
b = 1.262900 - 0.460239I		
u = 0.384208 + 0.766757I		
a = -1.93610 - 0.04267I	-5.69220 + 0.64414I	-0.353981 + 1.306831I
b = 0.611767 - 0.458091I		
u = 0.384208 - 0.766757I		
a = -1.93610 + 0.04267I	-5.69220 - 0.64414I	-0.353981 - 1.306831I
b = 0.611767 + 0.458091I		
u = -0.797014 + 0.216598I		
a = 0.436400 + 0.813553I	-2.87718 - 5.75423I	3.89302 + 5.96655I
b = -0.387502 - 1.047530I		
u = -0.797014 - 0.216598I		
a = 0.436400 - 0.813553I	-2.87718 + 5.75423I	3.89302 - 5.96655I
b = -0.387502 + 1.047530I		
u = 0.468961 + 1.091940I		
a = 0.904715 - 0.796492I	-0.76674 - 1.47542I	0
b = -1.147340 + 0.340892I		
u = 0.468961 - 1.091940I		
a = 0.904715 + 0.796492I	-0.76674 + 1.47542I	0
b = -1.147340 - 0.340892I		
u = 0.564404 + 1.054850I		
a = -0.731475 + 0.538685I	-2.69009 - 6.77427I	0
b = 1.175470 - 0.589984I		
u = 0.564404 - 1.054850I		
a = -0.731475 - 0.538685I	-2.69009 + 6.77427I	0
b = 1.175470 + 0.589984I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.358032 + 1.151180I $a = -0.994941 - 0.598679I$	3.32245 - 2.08114I	0
b = 1.312590 + 0.177484I $u = -0.358032 - 1.151180I$		
a = -0.994941 + 0.598679I	3.32245 + 2.08114I	0
$\frac{b = 1.312590 - 0.177484I}{u = 0.054476 + 1.226080I}$		
a = 0.070708 - 0.771010I $b = -0.376924 - 0.508425I$	-3.06671 + 1.43304I	0
u = 0.054476 - 1.226080I		
a = 0.070708 + 0.771010I $b = -0.376924 + 0.508425I$	-3.06671 - 1.43304I	0
u = 0.727104 + 0.234303I	0.04170 + 0.001471	F 20266 4 20201
a = 2.86700 - 0.21576I b = -0.907099 - 0.252760I	-3.94179 + 3.28147I	5.23266 - 4.99392I
u = 0.727104 - 0.234303I $a = 2.86700 + 0.21576I$	-3.94179 - 3.28147I	5.23266 + 4.99392I
b = -0.907099 + 0.252760I $u = 0.251940 + 1.214590I$		
a = 0.623338 - 0.426042I b = -0.017123 - 0.961380I	-1.96777 + 1.34593I	0
u = 0.251940 - 1.214590I		
a = 0.623338 + 0.426042I $b = -0.017123 + 0.961380I$	$\begin{bmatrix} -1.96777 - 1.34593I \end{bmatrix}$	0
u = 0.065420 + 1.241340I		
a = -1.01865 + 2.07478I $b = 0.611767 + 0.458091I$	$\begin{bmatrix} -5.69220 - 0.64414I \end{bmatrix}$	0
u = 0.065420 - 1.241340I $a = -1.01865 - 2.07478I$	-5.69220 + 0.64414I	0
b = 0.611767 - 0.458091I	5.00220 0.014141	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.173270 + 1.242230I		
a = 0.908391 + 1.036680I	-5.14204 - 1.40144I	0
b = 0.387411 + 0.832689I		
u = -0.173270 - 1.242230I		
a = 0.908391 - 1.036680I	-5.14204 + 1.40144I	0
b = 0.387411 - 0.832689I		
u = 0.691070 + 0.028094I		
a = -2.45000 + 0.76218I	3.32245 - 2.08114I	9.79595 + 2.78862I
b = 1.312590 + 0.177484I		
u = 0.691070 - 0.028094I		
a = -2.45000 - 0.76218I	3.32245 + 2.08114I	9.79595 - 2.78862I
b = 1.312590 - 0.177484I		
u = -0.254280 + 1.286460I		
a = 1.76847 + 1.19991I	-3.94179 - 3.28147I	0
b = -0.907099 + 0.252760I		
u = -0.254280 - 1.286460I		
a = 1.76847 - 1.19991I	-3.94179 + 3.28147I	0
b = -0.907099 - 0.252760I		
u = 0.286920 + 1.282550I		
a = 0.74733 - 1.53936I	-0.76674 + 1.47542I	0
b = -1.147340 - 0.340892I		
u = 0.286920 - 1.282550I		
a = 0.74733 + 1.53936I	-0.76674 - 1.47542I	0
b = -1.147340 + 0.340892I		
u = -0.636644 + 0.157884I		
a = -0.333609 - 1.000990I	-1.96777 - 1.34593I	5.91932 + 0.66126I
b = -0.017123 + 0.961380I		
u = -0.636644 - 0.157884I		
a = -0.333609 + 1.000990I	-1.96777 + 1.34593I	5.91932 - 0.66126I
b = -0.017123 - 0.961380I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.291088 + 1.313610I		
a = -0.713814 + 0.243496I	-2.87718 + 5.75423I	0
b = -0.387502 + 1.047530I		
u = 0.291088 - 1.313610I		
a = -0.713814 - 0.243496I	-2.87718 - 5.75423I	0
b = -0.387502 - 1.047530I		
u = -0.405124 + 0.480475I		
a = 1.058260 - 0.685910I	-3.06671 - 1.43304I	5.58225 + 4.97603I
b = -0.376924 + 0.508425I		
u = -0.405124 - 0.480475I		
a = 1.058260 + 0.685910I	-3.06671 + 1.43304I	5.58225 - 4.97603I
b = -0.376924 - 0.508425I		
u = -0.342351 + 1.329390I		
a = -1.15193 - 1.31181I	2.03115 - 6.23266I	0
b = 1.262900 - 0.460239I		
u = -0.342351 - 1.329390I		
a = -1.15193 + 1.31181I	2.03115 + 6.23266I	0
b = 1.262900 + 0.460239I		
u = 0.254428 + 1.359510I		
a = -0.57743 + 1.67051I	-2.69009 + 6.77427I	0
b = 1.175470 + 0.589984I		
u = 0.254428 - 1.359510I		
a = -0.57743 - 1.67051I	-2.69009 - 6.77427I	0
b = 1.175470 - 0.589984I		
u = 0.591934 + 0.141506I		
a = 2.29632 - 1.21300I	2.10501 + 3.62399I	8.20871 - 2.76186I
b = -1.280370 - 0.446560I		
u = 0.591934 - 0.141506I		
a = 2.29632 + 1.21300I	2.10501 - 3.62399I	8.20871 + 2.76186I
b = -1.280370 + 0.446560I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.003051 + 1.410480I		
a = 0.649306 + 0.505190I	-4.85759 + 4.24816I	0
b = 0.910131 + 0.395689I		
u = -0.003051 - 1.410480I		
a = 0.649306 - 0.505190I	-4.85759 - 4.24816I	0
b = 0.910131 - 0.395689I		
u = 0.136440 + 1.404460I		
a = -0.588564 - 0.154002I	-4.25756 + 0.90628I	0
b = -0.802767 + 0.244916I		
u = 0.136440 - 1.404460I		
a = -0.588564 + 0.154002I	-4.25756 - 0.90628I	0
b = -0.802767 - 0.244916I		
u = -0.33611 + 1.37531I		
a = 1.07544 + 1.49026I	-0.16281 - 11.95450I	0
b = -1.241130 + 0.661367I		
u = -0.33611 - 1.37531I		
a = 1.07544 - 1.49026I	-0.16281 + 11.95450I	0
b = -1.241130 - 0.661367I		

III.
$$I_3^u = \langle b, \; -u^2 + 2a - u - 3, \; u^3 + 2u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}+1 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{3}{2} \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{3}{2} \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{5}{2} \\ u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{7}{4}u^2 + \frac{21}{4}u + \frac{9}{4}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3,c_9	u^3
<i>c</i> ₄	$(u+1)^3$
<i>C</i> ₅	$u^3 + 3u^2 + 5u + 2$
c_6, c_7, c_8	$u^3 + 2u + 1$
c_{10}, c_{11}, c_{12}	$u^3 + 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_9	y^3
c_5	$y^3 + y^2 + 13y - 4$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^3 + 4y^2 + 4y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = 0.335258 + 0.401127I	-11.08570 - 5.13794I	-2.62004 + 6.54094I
b = 0		
u = -0.22670 - 1.46771I		
a = 0.335258 - 0.401127I	-11.08570 + 5.13794I	-2.62004 - 6.54094I
b = 0		
u = 0.453398		
a = 1.82948	-0.857735	4.99010
b = 0		

 $\text{IV. } I_4^u = \langle a^2 + 2au + 2b + 2a + 2u, \ a^3 + 2a^2u + 2a^2 + 2au + 2u - 2, \ u^2 + 1 \rangle$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}a^{2} - au - a - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}a^{2}u + \frac{1}{2}au - \frac{1}{2}a + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}a^{2}u + au - 1 \\ \frac{1}{2}au + \frac{1}{2}a + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}a^{2}u + \frac{1}{2}au - \frac{1}{2}a - u - 1 \\ \frac{1}{2}au + \frac{1}{2}a + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}a^{2}u + \frac{1}{2}au - \frac{1}{2}a + u + 1 \end{pmatrix}$$

$$a_{9} = \left(\frac{1}{2}a^{2}u + \frac{1}{2}au - \frac{1}{2}a + 1\right)$$

$$a_{3} = \left(\frac{\frac{1}{2}a^{2}u + au - 1}{\frac{1}{2}au + \frac{1}{2}a + u}\right)$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}a^{2}u + \frac{1}{2}au - \frac{1}{2}a - u - 1\\ \frac{1}{2}au + \frac{1}{2}a + u \end{pmatrix}$$

$$a_8 = \left(\frac{u}{\frac{1}{2}a^2u + \frac{1}{2}au - \frac{1}{2}a + u + 1}\right)$$

$$a_1 = \begin{pmatrix} -1 \\ -\frac{1}{2}a^2 - \frac{1}{2}au - \frac{1}{2}a + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -2au + 2a + 4

Crossings	u-Polynomials at each crossing
c_1	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_{3}, c_{9}	$u^6 - 3u^4 + 2u^2 + 1$
c_4	$(u^3 - u^2 + 1)^2$
c_5	u^6
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(u^2+1)^3$

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_{3}, c_{9}	$(y^3 - 3y^2 + 2y + 1)^2$
<i>C</i> ₅	y^6
c_{6}, c_{7}, c_{8} c_{10}, c_{11}, c_{12}	$(y+1)^6$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = -0.867423 + 0.622301I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = 1.307140 - 0.215080I		
u = 1.000000I		
a = 0.622301 - 0.867423I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = -1.307140 - 0.215080I		
u = 1.000000I		
a = -1.75488 - 1.75488I	-4.40332	-3.01951 + 0.I
b = -0.569840I		
u = -1.000000I		
a = -0.867423 - 0.622301I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = 1.307140 + 0.215080I		
u = -1.000000I		
a = 0.622301 + 0.867423I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = -1.307140 + 0.215080I		
u = -1.000000I		
a = -1.75488 + 1.75488I	-4.40332	-3.01951 + 0.I
b = 0.569840I		

V.
$$I_5^u = \langle b, u^3 + a + u + 1, u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - u - 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u - 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u - 1 \\ -u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{3} + u^{2} + 3u + 3 \\ -u^{3} - u^{2} - u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} + 2u \\ -u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^3 + 4u + 3$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3,c_9	u^4
<i>C</i> ₄	$(u+1)^4$
<i>C</i> ₅	$(u^2 - u + 1)^2$
c_6, c_7, c_8	$u^4 - u^3 + 2u^2 - 2u + 1$
c_{10}, c_{11}, c_{12}	$u^4 + u^3 + 2u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_9	y^4
c_5	$(y^2+y+1)^2$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = -0.500000 - 0.866025I	-4.93480 - 2.02988I	1.0000 + 3.46410I
b = 0		
u = -0.621744 - 0.440597I		
a = -0.500000 + 0.866025I	-4.93480 + 2.02988I	1.0000 - 3.46410I
b = 0		
u = 0.121744 + 1.306620I		
a = -0.500000 + 0.866025I	-4.93480 + 2.02988I	1.00000 - 3.46410I
b = 0		
u = 0.121744 - 1.306620I		
a = -0.500000 - 0.866025I	-4.93480 - 2.02988I	1.00000 + 3.46410I
b = 0		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^3 - u^2 + 2u - 1)^2(u^{28} + 13u^{27} + \dots - 7u + 1)^2$ $\cdot (u^{36} + 16u^{35} + \dots + 1009u + 16)$
c_2	$((u-1)^7)(u^3 + u^2 - 1)^2(u^{28} - 3u^{27} + \dots - u + 1)^2$ $\cdot (u^{36} - 4u^{35} + \dots + 41u - 4)$
c_3, c_9	$u^{7}(u^{6} - 3u^{4} + 2u^{2} + 1)(u^{28} + u^{27} + \dots + 8u + 4)^{2}$ $\cdot (u^{36} - 3u^{35} + \dots - 200u + 32)$
c_4	$((u+1)^7)(u^3 - u^2 + 1)^2(u^{28} - 3u^{27} + \dots - u + 1)^2$ $\cdot (u^{36} - 4u^{35} + \dots + 41u - 4)$
c_5	$u^{6}(u^{2} - u + 1)^{2}(u^{3} + 3u^{2} + 5u + 2)(u^{28} - 2u^{27} + \dots - 22u + 17)^{2}$ $\cdot (u^{36} + 6u^{35} + \dots - 1024u - 256)$
c_6, c_7, c_8	$(u^{2}+1)^{3}(u^{3}+2u+1)(u^{4}-u^{3}+2u^{2}-2u+1)$ $\cdot (u^{36}+19u^{34}+\cdots-5u^{2}-1)(u^{56}-2u^{55}+\cdots-56u+17)$
c_{10}, c_{11}, c_{12}	$(u^{2}+1)^{3}(u^{3}+2u-1)(u^{4}+u^{3}+2u^{2}+2u+1)$ $\cdot (u^{36}+19u^{34}+\cdots-5u^{2}-1)(u^{56}-2u^{55}+\cdots-56u+17)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^3 + 3y^2 + 2y - 1)^2(y^{28} + 7y^{27} + \dots - 61y + 1)^2$ $\cdot (y^{36} + 12y^{35} + \dots - 838433y + 256)$
c_2,c_4	$((y-1)^7)(y^3 - y^2 + 2y - 1)^2(y^{28} - 13y^{27} + \dots + 7y + 1)^2$ $\cdot (y^{36} - 16y^{35} + \dots - 1009y + 16)$
c_3, c_9	$y^{7}(y^{3} - 3y^{2} + 2y + 1)^{2}(y^{28} - 15y^{27} + \dots - 88y + 16)^{2}$ $\cdot (y^{36} - 21y^{35} + \dots - 13632y + 1024)$
c_5	$y^{6}(y^{2} + y + 1)^{2}(y^{3} + y^{2} + 13y - 4)(y^{28} - 10y^{27} + \dots - 246y + 289)^{2}$ $\cdot (y^{36} - 10y^{35} + \dots + 1277952y + 65536)$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y+1)^{6}(y^{3}+4y^{2}+4y-1)(y^{4}+3y^{3}+2y^{2}+1)$ $\cdot (y^{36}+38y^{35}+\cdots+10y+1)(y^{56}+42y^{55}+\cdots-824y+289)$