BAB 3 TINJAUAN PUSTAKA

Berbagai penelitian sudah dilakukan untuk membangun model menggunakan komputer untuk mendiagnosis DR secara otomatis [2]. Metode tradisional machine learning akan mengekstrak fitur dari citra fundus retina. Fitur yang sudah diekstrak tersebut menjadi input bagi classifier tertentu seperti random forest, support vector machine, atau AdaBoost classifier [30]. Salah satu prasyarat teknik hand engineered feature adalah memahami gejala klinis DR secara mendalam untuk memilih fitur yang tepat. Berbeda dengan deep learning seperti CNN yang akan mengekstrak fitur secara otomatis dari citra [16]. dibandingkan dengan hand engineered feature, teknik deep learning secara umum memberikan hasil yang lebih unggul [2]. Berbagai teknik dan algoritma deep learning sudah diterapkan untuk mengklasifikasikan citra fundus retina. Pada bagian berikutnya mengulas beberapa penelitian yang sudah dilakukan terkait klasifikasi DR dengan teknik deep learning CNN. Hal-hal yang ditinjau adalah dataset yang digunakan, tugas klasifikasi yang dilakukan, teknik preprocessing citra yang dipakai, arsitektur yang digunakan, teknik training yang dilakukan, hyperparameter untuk training model, dan hasil penelitian yang bersangkutan.

3.1 Penelitian Klasifikasi DR dengan Deep Learning CNN

Harry Pratt dan kawan-kawan [31] menggunakan dataset EyePACS untuk mengklasifikasikan DR ke dalam lima kelas. *Preprocessing* yang dilakukan adalah mengubah ukuran citra menjadi 512 × 512 pixel dan normalisasi warna. Arsitektur CNN yang digunakan terdiri dari 10 set lapisan convolutional, aktivasi leacky ReLU, batch normalization, dan max pooling. Pada bagian akhir dari arsitektur CNN diikuti dengan 3 lapisan fully connected seperti yang ditunjukkan oleh Gambar 3.1. Harry Pratt menggunakan regularisasi dropout mengimplementasikan class weight yang merupakan perbandingan jumlah citra dari masing-masing kelas untuk mengurangi *overfitting*. Bobot model diinisialisasi dengan inisialisasi Gaussian dan model di-training dengan pendekatan end to end learning. Parameter yang dipakai untuk training model adalah: optimasi Stochastic Gradient Descent Momentum (SGDM) dengan Nestrov, learning rate 0.0001 untuk

5 epoch pertama, lalu learning rate dinaikan menjadi 0.0003 untuk 120 epoch berikutnya. Setiap kali model saturasi (nilai loss dan akurasi tidak berubah) learning rate diturunkan dengan faktor 10. Teknik augmentasi citra juga dilakukan selama proses training yaitu rotasi citra secara acak antara $0^{\circ} - 90^{\circ}$, pembalikan citra horizontal dan vertikal secara acak, dan penggeseran horizontal maupun vertikal secara acak. Hasil yang didapat adalah 75% accuracy, 95% specificity, 30% sensitivity.

Darshit Doshi dan kawan-kawan [32] menggunakan dataset dari EyePACS untuk mengklasifikasikan DR ke dalam lima kelas. Mereka melakukan preprocessing dengan mengambil channel hijau dari citra RGB, mengubah ukuran citra menjadi 512 × 512 pixel, meningkatkan kontras citra agar merata pada setiap pixel dengan histogram equalization, dan normalisasi citra dengan min-max. Arsitektur CNN yang digunakan terdiri dari lima set kombinasi lapisan *convolution*, max pooling, dan dropout. Pada bagian akhir dari arsitektur CNN diikuti dengan dua set lapisan fully connected dan pooling. Arsitektur ini bisa dilihat pada Tabel 3.1. Fungsi aktivasi yang mereka gunakan adalah leacky ReLU. Model di-training dengan pendekatan end to end learning dan bobot model diinisialisasi dengan menggunakan inisialisasi Glorot yang disample dari distribusi seragam. Model ditraining sebanyak 250 epoch menggunakan optimasi SGDM (momentum = 0.9) dengan Nestrov. Learning rate untuk 200 epoch pertama adalah 0.003 sedangkan 50 epoch sisanya menggunakan learning rate 0.0003. Selama training dilakukan augmentasi citra dengan transformasi seperti shear, flop, transverse, dan transpose. Hasil percobaan Darshit Doshi bisa dilihat pada Tabel 3.2.

Tabel 3.1 Arsitektur CNN Darshit Doshi [32]

Layers	Model 1	Model 2	Model 3
input	1x512x512	1x512x512	1x512x512
conv 1	16x256x256	16x256x256	16x256x256
conv 2	16x256x256	16x256x256	16x256x256
pool 1	16x128x128	16x128x128	16x128x128
dropout 1	16x128x128	16x128x128	16x128x128
conv 3	32x64x64	32x64x64	32x64x64
conv 4	32x64x64	32x64x64	32x64x64
pool 2	32x32x32	32x32x32	32x32x32
dropout 2	32x32x32	32x32x32	32x32x32
conv 5	48x32x32	64x32x32	64x32x32
conv 6	48x32x32	64x32x32	64x32x32
conv 7	48x32x32	64x32x32	64x32x32
pool 3	48x16x16	64x16x16	64x16x16
dropout 3	48x16x16	64x16x16	64x16x16
conv 8	64x16x16	128x16x16	96x16x16
conv 9	64x16x16	128x16x16	96x16x16
conv 10	64x16x16	128x16x16	96x16x16
pool 4	64x8x8	128x8x8	96x8x8
dropout 4	64x8x8	128x8x8	96x8x8
conv 11	128x8x8	256x8x8	128x8x8
conv 12	128x8x8	256x8x8	128x8x8
pool 5	128x4x4	256x4x4	128x4x4
dropout 5	128x4x4	256x4x4	128x4x4
hidden 1	400	256	256
maxout 1	200	128	128
dropout 6	200	128	128
hidden 2	400	256	256
maxout 2	200	128	128
output	5	5	5

Tabel 3.2 Hasil Percobaan Darshit Doshi [32]

Model	Quadratic kappa score
Model 1	0.3066
Model 2	0.35
Model 3	0.386

Maria A. Bravo dan Pablo A. Arbelaez [8] menggunakan dataset dari EyePacs untuk mengklasifikasikan DR ke dalam beberapa kategori klasifikasi, mulai dari biner, tiga kelas, dan lima kelas. Bagian yang disoroti pada tinjauan kali ini adalah klasifikasi lima kelas dengan mengesampingkan klasifikasi biner maupun tiga kelas. *Preprocessing* yang dilakukan adalah:

- 1. Circle RGB: citra *fundus* retina RGB yang dipotong melingkar dengan ukuran 224 × 224 *pixel*.
- 2. Square: citra *fundus* retina yang dipotong bujur sangka dengan ukuran 224 × 224 *pixel*.
- 3. Color centered: citra pada nomor 1 dikurangi dengan warna rata-rata lokal menggunakan filter Gaussian.
- 4. Gray scale: citra nomor 1 dikonversi menjadi citra gray scale.

Arsitektur CNN yang digunakan adalah VGG-16 dan Inception V4. Kedua arsitektur ini di-*training* dengan pendekatan *transfer learning*. Model VGG-16 di-*training* kira-kira sebanyak 14 *epoch*, *learning rate* 0.001 yang diubah setiap 5 *epoch* dengan faktor 10, *batch size* 115, optimasi SGDM (momentum = 0.9), dan regularisasi *dropout* untuk mengurangi *overfitting*. Sedangkan model Inception v4 di-*training* sebanyak 20 *epoch*, *batch size* 32, *learning rate* 0.001, dan regularisasi *weight decay* 0.00004. Selama *training* model, baik arsitektur VGG-16 maupun arsitektur Inception v4, dilakukan augmentasi citra dengan rotasi antara 0° – 360°, perbesar dan perkecil gambar antara 0 – 20 *pixel*, pembalik vertikal dan horizontal yang dilakukan secara acak. Hasil percobaan ini bisa dilihat pada Tabel 3.3

Tabel 3.3 Hasil Percobaan Maria A. Bravo [8]

Tabel 3.3 Hasii Percobaan Maria A. Bravo [8]								
Preprocessing	VGG-16	Inception V4						
Circle RGB	46.3%	44.62%						
Square	45.3%	4						
Color centered	48.3%	45.00%						
Gray scale	48.1%	-						

Saboora Mohammadian dan kawan-kawan [10] menggunakan dataset EyePACS untuk mengklasfikasikan DR ke dalam dua kelas. *Preprocessing* yang dilakukan adalah mengubah ukuran citra agar memiliki ukuran yang sama, warna setiap *pixel* dikurangi dengan nilai rata-rata lokal, lalu citra dipetakan terhadap 50% abu-abu sehingga ketajaman dari citra lebih merata. Pinggiran dari citra retina dipotong untuk menghilangkan efek garis batas. Arsitektur yang dipilih adalah Inception v3 dan Xception yang di-*training* dengan pendekatan *transfer learning*. Model di-*training* sebanyak 200 iterasi dengan nilai *learning rate* 0.0001. Augmentasi yang digunakan adalah pergeseran citra, rotasi citra, pembalikan citra vertikal dan horizontal selama *training*. Saboora membandingkan beberapa

parameter *training* untuk melihat pengaruhnya terhadap performa model yang dihasilkan. Parameter yang dibandingkan adalah optimasi *Adaptive Moment Estimation* (ADAM) dengan SGDM (momentum = 0.9), aktivasi *Exponential Linear Unit* (ELU) dengan ReLU, dan dua blok dengan empat blok yang di-*fine tuning*. Hasil dari percobaan Saboora dapat dilihat pada Tabel 3.4. Hasil terbaik dengan nilai akurasi 87.12% diperoleh dari model Inception v3, optimasi ADAM, dan *fine tuning* sebanyak dua blok.

Tabel 3.4 Hasil Percobaan Saboora Mohammadian [10]

CNN Fine-Tuning	Inception v3	Xception
Unfrozen blocks: 2		_
Activation function: RELU	0.6048	0.6979
Optimizer: SGD	0.0040	0.0777
With NO data augmentation	SN	
Unfrozen blocks: 2	1	
Activation function: RELU	0.8074	0.786
Optimizer: SGD	0.0071	0.700
With data augmentation	1	
Unfrozen blocks: 2		
Activation function: ELU	0.5341	0.5031
Optimizer: SGD	0.00	
With data augmentation		
Unfrozen blocks: 2		
Activation function: RELU	0.8712	0.7449
Optimizer: ADAM	E. W.	
With data augmentation		
Unfrozen blocks: 4 Activation function: RELU		
Optimizer: ADAM	0.857	0.5742
With data augmentation	-1	_ /
Unfrozen blocks: 0 (only fully connected	1 10 1	, /
layer)		. /
Activation function: RELU	0.7314	0.6025
Optimizer: ADAM	3.731	0.0025
With data augmentation	1 2	

Yuping Jiang dan kawan-kawan [33] menggunakan dataset EyePACS untuk mengklasifikasikan DR ke dalam dua kelas. *Preprocessing* yang dilakukan adalah memotong citra citra dengan *bounding box* bujur sangkar lalu diubah ukurannya menjadi 512 × 512 *pixel* sambil menjaga aspek rasio dengan menambahkan latar hitam. Intensitas warna diproses dengan normalisasi histogram sehingga fungsi distribusi kumulatif tampak selinear mungkin. Dilakukan juga augmentasi citra dengan rotasi secara acak. Setelah *preprocessing* tersebut, citra diskalakan menjadi 224 × 224 untuk di-*training*. Yuping Jiang mengembangkan arsitektur CNN yang

dapat dilihat pada Tabel 3.5. Model di-*training* dengan pendekatan *end to end learning* sebanyak 600 iterasi, *learning rate* 0.01, dan aktivasi ReLU. Regularisasi *dropout* dengan probabilitas 0.5 digunakan untuk mengurangi *overfitting*. Hasil akurasi yang didapatkan adalah 75.7%.

Tabel 3.5 Arsitektur CNN Yuping Jiang [33]

	Tabel 5.5 Arshektur CNN Yuping Jiang [55]								
Layer	Name	Type	Output size	kernel/stride					
0	Input	Input	96×224×224	_					
1	Con1	Convolution	96×224×224	3×3/1/1					
2	Con2	Convolution	96×224×224	3×3/1/1					
3	Pool1	Pooling	96×112×112	3×3/2					
4	Con3	Convolution	128×112×112	3×3/1/1					
5	Con4	Convolution	128×112×112	3×3/1/1					
6	Pool2	Pooling	128×56×56	3×3/2					
7	Con5	Convolution	256×56×56	3×3/1/1					
8	Con6	Convolution	256×56×56	3×3/1/1					
9	Pool3	Pooling	256×28×28	3×3/2					
10	Con7	Convolution	384×28×28	3×3/1/1					
11	Pool4	Pooling	384×14×14	3×3/2					
12	Con8	Convolution	384×14×14	3×3/1/1					
13	Pool5	Pooling	384×7×7	3×3/2					
14	Con9	Convolution	256×7×7	3×3/1/1					
15	fc1	InnerProduct	256	_					
16	fc2	InnerProduct	2						

Gabriel Garcia dan kawan-kawan [34] menggunakan dataset EyePACS untuk mengklasifikasikan DR ke dalam dua kelas. *Preprocessing* yang dilakukan adalah mengubah ukuran citra sehingga memiliki ukuran yang sama, citra dikurangi dengan nilai rata-rata lokal, lalu dipetakan ke abu-abu. Setelah *preprocessing* tersebut, citra diubah ukurannya menjadi 256 × 256 *pixel*. Augmentasi yang dilakukan adalah *flipping* citra dan *cropping* 80% citra. Terdapat lima arsitektur CNN yang dicoba oleh Gabriel seperti pada Tabel 3.6. Model₁ dan Model₂ terinspirasi dari AlexNet yang terdiri dari lapisan *convolution*, *max pooling*, dan *fully connected*. Kedua model ini di-*training* dengan pendekatan *end to end learning*, optimasi SGDM (momentum = 0.9) dan menerapkan regularisasi *dropout* dengan nilai probabilitas 0.65. Sedangkan untuk model yang didasari oleh arsitektur VGG-16 di-*training* dengan pendekatan *transfer learning*. Model yang di-*training* dengan distribusi 50/50 artinya dataset dibuat seimbang, sedangkan model yang di-

training dengan distribusi *original* artinya model di-training dengan dataset yang tidak seimbang. Model distribusi *original* menggunakan *class weight* dengan perbandingan antara sakit dan sehat sebesar 2.74:1. Varian model VGG di-training dengan regularisasi *weight decay* sebesar 0.00005. Hasil dari penelitian Gabriel Garcia bisa dilihat pada Tabel 3.7

Tabel 3.6 Arsitektur yang digunakan oleh Gabriel Garcia [34]

Network	Distribution	Layers	Training mode	Learning rate
Model1	50/50	6	End to end learning	0.01
Model2	50/50	9	End to end learning	0.01
VGG16	50/50	16	Transfer learning	0.0001
VGG16noFC1	50/50	15	Transfer learning	0.0001
VGG16noFC2	Original	15	Transfer learning	0.0001

Tabel 3.7 Hasil training model Gabriel Garcia [34]

Network	Epochs	Accuracy	Sensitivity	Specificity
Model1	45	63.60%	-	-
Model2	91	66.40%	-	-
VGG16	80	74.30%	62%	86%
VGG16noFC1	75	72.70%	68%	77.60%
VGG16noFC2	80	83.68%	54.47%	93.65%

Yi-Wei Chen dan kawan-kawan [3] menggunakan dua dataset yaitu, EyePACS dan Messidor untuk mengklasifikasikan DR ke dalam dua kelas. *Preprocessing* yang mereka lakukan adalah membuang warna latar belakang dengan metode Otsu's *threshold*, meningkatkan citra dengan *unsharp masking*, mengubah ukuran citra menjadi 224 × 224, 448 × 448 dan 672 × 672. Yi-Wei Chen mengembangkan arsitektur CNN yang disebut dengan istilah SI2DRNet-v1 yang bisa dilihat pada Tabel 3.8. Arsitektur ini terdiri atas 15 lapisan *convolution* dan lima lapisan *pooling* yang di-*training* dengan pendekatan *end to end learning*, model di-*training* sebanyk 80 *epoch* menggunakan optimasi SGDM (momentum = 0.9), *learning rate* mulamula 0.001 yang dikurangi dengan *step rate decay* setiap 20 *epoch*, gamma 0.5, dan *weigh decay* 0.0005. Pada pendekatan *transfer learning*, SI2DRNET-v1 di-*training* dengan dataset ImageNet terlebih dahulu, lalu di-*fine tuning* dengan dataset EyePACS. Augmentasi citra dilakukan selama *training* dengan pemotongan acak, rotasi acak (60°), pembesaran acak (0.2), dan *random shear* (0.2). Hasil akurasi

yang didapati adalah 0.808 pada dataset EyePACS dan 0.912 pada dataset Messidor.

Tabel 3.8 Arsitektur SI2DRNet-v1 [3]

Tabel 3.8 Arsitektur SI2DRNet-v1 [3]								
Type	Filters	Size/Stride	Output					
Convolution	32	5x5/2	336x336					
Convolution	32	3x3	336x336					
Max Pooling		3x3/2	168x168					
Convolution	64	5x5	168x168					
Convolution	64	3x3	168x168					
Convolution	64	3x3	168x168					
Max Pooling		3x3/2	84x84					
Convolution	128	5x5	84x84					
Convolution	128	3x3	84x84					
Convolution	128	3x3	84x84					
Max Pooling		3x3/2	42x42					
Convolution	256	5x5	42x42					
Convolution	256	3x3	42x42					
Convolution	256	3x3	42x42					
Max Pooling	705	3x3/2	21x21					
Convolution	512	5x5	21x21					
Convolution	512	3x3	21x21					
Convolution	512	-3x3	21x21					
Convolution	5	1x1	21x21					
Global Avg. Pooling		21x21	1x1					

Xiaoliang Wang dan kawan-kawan [25] menggunakan dataset dari EyePACS yang dipilih hanya 166 citra saja untuk mengklasifikasikan DR ke dalam lima kelas. *Preprocessing* yang dilakukan mengubah ukuran citra menjadi 227 × 227 untuk AlexNet, 224 × 224 untuk VGG-16 dan 299 × 299 untuk Inception v3. Ketiga arsitektur ini di-*training* dengan pendekatan *transfer learning*. *Training* dilakukan dengan metode 5-*fold cross validation*, menggunakan optimasi SGDM (momentum = 0.9), fungsi aktivasi ReLU, dan beberapa parameter lain yang berbeda untuk setiap arsitektur seperti pada Tabel 3.9. Hasil akurasi yang diperoleh adalah 37.43% untuk AlexNet, 50.03% untuk VGG-16, dan 63.23% untuk InceptionNet v3.

Tabel 3.9 Hyperparameter yang digunakan oleh Xiaoliang Wang [25]

Hyperparameter	AlexNet	VGG-16	Inception v3
Initial learning rate, α	0.0001	0.0001	0.001
Learning rate decay schedule	Stairwise	Stairwise	Exponential
Learning rate decay factor	0.1	0.1	0.16
Mini-batch size	20	20	32
Momentum, β	0.9	0.9	0.9

Chunyan Lian dan kawan-kawan [9] menggunakan dataset EyePACS untuk mengklasifikasikan DR ke dalam lima kelas. *Preprocessing* yang mereka lakukan adalah mengubah citra menjadi 256 × 256 *pixel*, meningkatkan warna citra dengan mengurangi warna lokal rata-rata dan membuang warna latar hitam. Pada dataset dilakukan *subsampling* dan augmentasi untuk mengatasi persoalan dataset yang tidak seimbang. Terdapat tiga arsitektur yang digunakan, yaitu AlexNet, ResNet-50, VGG-16. Ketiga arsitektur ini di-*training* dengan pendekatan *transfer learning*, sedangkan bobot pada bagian *classifier* diinisialisasi dengan inisialisasi Xavier. Parameter yang digunakan selama *training* adalah: *learning rate* 0.001 yang berkurang dengan faktor 10 setiap 27 *epoch*, *batch size* 25, optimasi SGDM (momentum = 0.9), dan *weight decay* 0.0005. Hasil akurasi yang diperoleh pada penelitian ini adalah 73.19% untuk AlexNet, 76.41% untuk ResNet-50, dan 79.04% untuk VGG-16 dengan *preprocessing*, 76.01% untuk model VGG-16 tanpa *preprocessing*.

Zhentao Gao dan kawan-kawan [30] menggunakan dataset yang dibangun sendiri dengan total 4.476 citra untuk mengklasifikasikan DR menurut perawatan yang disarankan. DR diklasifikasikan ke dalam empat kelas, yaitu normal, sedang, berat, dan parah. *Preprocessing* yang dilakukan adalah mentransformasi citra, sehingga setiap citra memiliki ukuran dan bentuk yang sama, dan melakukan normalisasi warna. Augmentasi citra selama *training* adalah pembalikan citra horizontal dan vertikal, rotasi citra antara [-25°, 25°] secara acak, pembesaran citra antara [0.85, 1.15], dan distorsi citra secara acak. Terdapat lima arsitektur yang digunakan oleh Zhentao Gao, yaitu ResNet-18, Resnet-101, VGG-19, dan Inception v3, dan arsitektur Inception@4 yang merupakan modifikasi dari Inception v3. Beberapa parameter yang digunakan untuk *training* model adalah: *batch size* 32, optimasi ADAM, *learning rate* 0.00001, *weight decay* 0.2, dan aktivasi ReLU.

Akurasi yang diperoleh adalah 87.61% untuk ResNet-18, 87.26% untuk ResNet-101, 85.50% untuk VGG-19, 88.35% untuk Inception-v3, dan 88.72% untuk Inception@4.

Anjana Umapathy dan kawan-kawan [35] menggunakan dataset dari Karnataka dan STARE untuk mengklasifikasikan DR ke dalam dua kelas. Arsitektur CNN yang dipilih adalah Inception v3. Model di-*training* dengan pendekatan *transfer learning*. Hasil akurasi yang diperoleh adalah 88.8%.

Misgina Tsighe Hagos dan kawan-kawan [36] menggunakan dataset EyePACS untuk mengklasifikasikan DR ke dalam dua kelas. Jumlah dataset yang digunakan terdiri dari 2.500 citra training dan 5.000 citra test. Preprocessing yang mereka lakukan adalah membuang warna latar hitam, mengubah citra menjadi 300 × 300 pixel, mengurangi warna rata-rata lokal dari setiap pixel. Arsitektur CNN yang digunakan adalah Inception v3 yang di-training dengan pendekatan transfer learning. Parameter yang dipakai selama training adalah: optimasi SGD, acending learning rate 0.0005, fungsi loss cosine, dan fungsi aktivasi ReLU. Hasil akurasi yang diperoleh adalah 90.9%.

Md Sazzad Hossen dan kawan-kawan [1] menggunakan dataset APTOS-2019 untuk mengklasifikasikan DR menjadi lima kelas. *Preprocessing* yang mereka lakukan adalah mengubah ukuran citra sehingga memiliki radius yang sama, mengurangi citra dengan warna rata-rata lokal yang dipetakan ke 50% *grayscale*, memotong citra menjadi ukuran 90%. Ukuran citra yang digunakan untuk *training* adalah 224 × 224 *pixel*. Arsitektur CNN yang dipilih adalah DenseNet-121 dan di-*training* dengan pendekatan *transfer learning*. Augmentasi yang dilakukan selama *training* adalah pembalikan citra horizontal dan vertikal secara acak dan pembesaran antara 85% - 115% secara acak. Parameter *training* yang digunakan adalah: optimasi ADAM, total *epoch* 12, regularisasi *dropout*, dan fungsi aktivasi ReLU. Hasil yang didapatkan dari dataset validasi adalah akurasi 0.9491, *precision* 0.9598, *recall* 0.9256, F score 0.9395, dan AUC 0.9852.

Quang H. Nguyen dan kawan-kawan [37] menggunakan dataset EyePACS untuk mengklasifikasikan DR ke dalam dua kelas. *Preprocessing* yang mereka lakukan adalah mengubah ukuran citra sehingga memiliki radius yang sama, memotong warna latar belakang citra dan menstandarisasi citra karena memiliki

banyak eksposure dan variasi cahaya. *Filter* hijau diterapkan untuk mendapatkan kejelasan pada citra yang diikuti dengan konversi citra menjadi *gray scale*. Selama *training*, citra diaugmentasi dengan rotasi dan pencerminan untuk mengatasi dataset yang tidak seimbang. Mereka menggunakan pendekatan *transfer learning* dengan arsitektur CNN VGG-16, VGG-19, dan arsitektur yang dikembangkan sendiri seperti pada Gambar 3.2. Hasil yang diperoleh adalah akurasi 71% untuk VGG-16, 73% untuk VGG-19, dan 82% untuk arsitektur CNN yang dikembangkan sendiri.

Gambar 3.2 Arsitektur yang digunakan oleh Quang H. Nguyen [37]

3.2 Rangkuman Tinjauan Pustaka

Tabel 3.10 Rangkuman Tinjauan Pustaka

N	Penelit	Dataset	Tabel 3.10 Rangkuman Tinjau Citra setelah <i>Preprocessing</i>		Metod	A reite	ACC	Kapp
0.	i	Dataset	Citra setelali Freprocessing	ikasi	e	ktur	%	а%
1	Harry Pratt [31]	EyePACS			End to			
2	Darshit Doshi [32]	EyePACS		5 kelas	End to end	Custom CNN		39.96
3	Maria A. Bravo [8]	EyePACS		5 kelas		VGG – 16 Incepti on v4	48.3	
4	Saboora Moham madian [10]	EyePACS		2 kelas	learnin g	Incepti on v3 Xcepti on		
5	Yuping Jiang [33]	EyePACS	a	2 kelas	End to end	Custo m CNN	75.7	

N o.	Penelit i	Dataset	Citra setelah Preprocessing	Klasif ikasi	Metod e	Arsite ktur	ACC	Kapp a%
6	Gabriel Garcia [34]	EyePACS		2 kelas	Transfe r learnin g	VGGn oFC2	83.68	
7	Yi-Wei Chen [3]	EyePACS Messidor		5 kelas	End to end	SI2DR Net-v1	91.2	
				E.A.				
8	Xiaolian g Wang [25]	EyePACS		5 kelas	learnin g	et	37.43 50.03	
		S				16 Incepti on-v3	63.23	
9	Chunya n Lian	EyePACS		5 kelas	Transfe r learnin g	AlexN et		
	[9]	\geq				ResNet -50	76.41	
		3				VGG- 16	79.04	
10	Zhentao Gao	Custom dataset	X CM		Transfe r	ResNet -18	87.61	
	[30]		U	40	r learnin g	ResNet -101	87.26	
						VGG- 19	85.50	
						Incepti on-v3	88.35	
						Incepti on@4	88.72	
11	Anjana Umapat hy [35]	Karnataka & STARE		2 kelas	Transfe r learnin g	Incepti on-v3	88.8	

N o.	Penelit i	Dataset	Citra setelah Preprocessing	Klasif ikasi	Metod e	Arsite ktur	ACC %	Kapp a%
12	Misgina Tsighe [36]	EyePACS		2 kelas	Transfe r learnin g	Incepti on-v3	90.9	
13	Md Sazzad Hossen [1]	APTOS 2019		5 kelas	Transfe r learnin g	Net-	9491	
14	Quang H. Nguyen [37]	EyePACS		2 kelas		16	71 73 82	