Práctico 3 TEOCOMP: Complejidad Computacional.

Mauricio Velasco

- 1. Demuestre formalmente que el siguiente problema de decisión esta en la clase de complejidad P: Dado un grafo G con costos en las aristas y un entero h, existe un árbol generador de G con costo $\leq h$?
- 2. Demuestre las siguientes afirmaciones sobre lenguajes $L \subseteq \{0,1\}^*$:
 - a) Si $L_1, L_2 \in P$ entonces $L_1 \cap L_2 \in P$
 - b) Si $L_1 \in P$ entonces el complemento $\{0,1\}^* \setminus L_1 \in P$
 - c) Si $L_1, L_2 \in NP$ entonces $L_1 \cap L_2 \in NP$
- 3. Sea G un grafo no dirigido. Un conjunto $I \subseteq V(G)$ es independiente si $\forall a,b \in I$ tenemos que $(a,b) \notin E(G)$. Demuestre formalmente que el siguiente problema de decisión esta en la clase de complejidad NP: Dado un grafo G y un entero p, existe un conjunto independiente con por lo menos p vértices de G?
- 4. Demuestre que si $L \in NP$ entonces L puede decidirse mediante un algoritmo que corre en tiempo $O(2^{n^k})$ para alguna constante k (que depende de L).
- 5. Demuestre que la relación $L_1 \preceq_P L_2$ es transitiva en lenguajes. Es decir que $L_1 \preceq_P L_2$ y $L_2 \preceq_P L_3$ implica $L_1 \preceq_P L_3$.
- 6. Un VERTEX COVER de un grafo G es u subconjunto $V' \subseteq V(G)$ tal que para todo $(u,v) \in E(G)$ tenemos que $u \in V'$ ó $v \in V'$ (o ambas). Es decir V' es una colección de vértices que toca todas las aristas de G. El problema de decisión VERTEX-COVER consiste en decidir si dado un grafo G y un entero p existe un vertex cover de G de tamaño p. En este problema estudiaremos la complejidad de VERTEX COVER:
 - a) Demuestre formalmente que VERTEX COVER esta en la clase de complejidad NP (es decir, proponga un certificado y un algoritmo de verificación y demuestre que la verificación ocurre en P).

- b) Demuestre que un subconjunto $V' \subseteq V(G)$ es un CLIQUE si y sólo si $V \setminus V'$ es un vertex cover del grafo complemento \overline{G} (el grafo complemento \overline{G} se define como el grafo con los mismos vértices que G y aristas complementarias a las de G (es decir, $(u,v) \in E(\overline{G})$ si y solo si $(u,v) \notin E(G)$ y $u \neq v$).
- c) Utilice la parte anterior para construir una reducción polinomial $[CLIQUE] \preceq_P [VERTEX-COVER].$
- d) Use los puntos anteriores para concluir que VERTEX COVER es un problema NP Completo.