

Ocean color atmospheric correction for operational remote sensing of Chesapeake Bay

Jeremy Werdell

NASA Goddard Space Flight Center
Science Systems & Applications, Inc.

23 February 2010

Acknowledgements:

Rick Stumpf & the Gang at the
Ocean Biology Processing Group

challenges for remote sensing of estuaries

temporal & spatial variability

- satellite sensor resolution
- satellite repeat frequency
- validity of ancillary data (SST, wind)
- resolution requirements & binning options

straylight contamination (adjacency effects)

non-maritime aerosols (dust, pollution)

- region-specific models required?
- absorbing aerosols

suspended sediments & CDOM

- complicates estimation of $R_{rs}(\text{NIR})$
- complicates BRDF (f/Q) corrections
- saturation of observed radiances

anthropogenic emissions (NO_2 absorption)

challenges for remote sensing of estuaries

temporal & spatial variability

- satellite sensor resolution
- satellite repeat frequency
- validity of ancillary data (SST, wind)
- resolution requirements & binning options

straylight contamination (adjacency effects)

non-maritime aerosols (dust, pollution)

- region-specific models required?
- absorbing aerosols

suspended sediments & CDOM

- complicates estimation of $R_{rs}(\text{NIR})$
- complicates BRDF (f/Q) corrections
- saturation of observed radiances

anthropogenic emissions (NO_2 absorption)

the experiment

collaboration with NOAA, EPA Chesapeake Bay Program, University of Maryland, & colleagues since 2006 Chesapeake Bay Remote Sensing Symposium

NOAA CoastWatch East Coast Node using results for operational processing

the experiment

collaboration with NOAA, EPA Chesapeake Bay Program, University of Maryland, & colleagues since 2006 Chesapeake Bay Remote Sensing Symposium

NOAA CoastWatch East Coast Node using results for operational processing

run multiple long-term time-series of MODIS-Aqua

Lower Chesapeake Bay, June 2002 - December 2008

processing configuration follows Reprocessing 2010

QC metrics: exclude cloudy days & high sensor zenith angles

final analyses use ~ 13 days per month

generate frequency distributions and monthly time-series

use in situ measurements as reference

consider potential for application in an operational environment

atmospheric correction & the “black pixel” assumption

$$\rho_t(\lambda) = \rho_w(\lambda) + \rho_g(\lambda) + \rho_f(\lambda) + \rho_r(\lambda) + \rho_a(\lambda)$$

TOA water glint foam air aerosols

need $\rho_a(\lambda)$ to get $\rho_w(\lambda)$ and vice-versa

atmospheric correction & the “black pixel” assumption

$$\rho_t(\lambda) = \rho_w(\lambda) + \rho_g(\lambda) + \rho_f(\lambda) + \rho_r(\lambda) + \rho_a(\lambda)$$

TOA water glint foam air aerosols

need $\rho_a(\lambda)$ to get $\rho_w(\lambda)$ and vice-versa

the “black pixel” assumption (pre-2000):

$$\rho_a(\text{NIR}) = \rho_t(\text{NIR}) - \rho_g(\text{NIR}) - \rho_f(\text{NIR}) - \rho_r(\text{NIR}) - \rho_w(\text{NIR})$$

atmospheric correction & the “black pixel” assumption

$$\rho_t(\lambda) = \rho_w(\lambda) + \rho_g(\lambda) + \rho_f(\lambda) + \rho_r(\lambda) + \rho_a(\lambda)$$

TOA water glint foam air aerosols

need $\rho_a(\lambda)$ to get $\rho_w(\lambda)$ and vice-versa

the “black pixel” assumption (pre-

$$\rho_a(\text{NIR}) = \rho_t(\text{NIR}) - \rho_g(\text{NIR})$$

calculate aerosol ratios, ε :

$$\varepsilon(748,869) \approx \frac{\rho_a(748)}{\rho_a(869)}$$

$$\varepsilon(\lambda,869) \approx \frac{\rho_a(\lambda)}{\rho_a(869)}$$

are Rrs(NIR) really black?

are Rrs(NIR) really black?

what happens when we don't account for $R_{rs}(\text{NIR}) > 0$?

use the “black pixel” assumption (e.g., SeaWiFS 1997-2000)

what to do when $R_{rs}(\text{NIR}) > 0$?

many approaches exist, here are a few examples:

assign aerosols (ϵ) and/or water contributions ($R_{rs}(\text{NIR})$)

e.g., Hu et al. 2000, Ruddick et al. 2000

use shortwave infrared bands

e.g., Wang & Shi 2007

correct/model the non-negligible $R_{rs}(\text{NIR})$

Siegel et al. 2000 used in SeaWiFS Reprocessing 3 (2000)

Stumpf et al. 2003 used in SeaWiFS Reprocessing 4 (2002)

Lavender et al. 2005 MERIS

Bailey et al. 2010 used in SeaWiFS Reprocessing 6 (2009)

use a coupled ocean-atmosphere optimization

e.g., Chomko & Gordon 2001, Stamnes et al. 2003, Kuchinke et al. 2009

fixed aerosol & water contributions (MUMM)

assign ϵ & $\rho_w(\text{NIR})$ (via **fixed values**, a climatology, nearby pixels)

advantages & disadvantages

advantages:

accurate configuration leads to accurate aerosol & R_{rs} (NIR) retrievals
several configuration options: fixed values, climatologies, nearby pixels
method available for all past, present, & future ocean color satellites

disadvantages:

no configuration is valid at all times for all water masses
requires local knowledge of changing aerosol & water properties
implementation can be complicated for operational processing

use of NIR + SWIR bands

use SWIR bands in “turbid” water, otherwise use NIR bands

use of SWIR bands only

compare NIR & SWIR retrievals when considering only “turbid pixels”

advantages & disadvantages

advantages:

"black pixel" assumption largely satisfied in SWIR region of spectrum
straightforward implementation for operational processing

disadvantages:

only available for instruments with SWIR bands
SWIR bands on MODIS have inadequate signal-to-noise (SNR) ratios
difficult to vicariously calibrate the SWIR bands on MODIS
must define conditions for switching from NIR to SWIR

correction of non-negligible R_{rs} (NIR)

estimate R_{rs} (NIR) using a bio-optical model
operational SeaWiFS & MODIS processing ~ 2000-present

advantages & disadvantages

advantages:

method available for all past, present, & future ocean color missions
straightforward implementation for operational processing

disadvantages:

bio-optical model not valid at all times for all water masses

summary of the three approaches

defaults as implemented in SeaDAS

MODIS-Aqua vs. SeaWiFS

default processing ~ OC₃ for MODIS-Aqua & OC₄ for SeaWiFS

PJW, NASA/SSAI, 23 Feb 2010, Portland, OR

SNR transect for MODIS-Aqua NIR & SWIR bands

MODIS-Aqua Level-2 Chl “match-ups” for NIR & SWIR processing

MODIS-Aqua $\rho_a(443)$

distribution of the turbidity index using in NIR-SWIR switching

