Лабораторная работа 3.2.5

Свободные и вынужденные колебания в электрическом контуре

Татаурова Юлия Романовна

17 октября 2024 г.

Цель работы: исследование свободных и вынужденных колебаний в колебательном контуре. **Оборудование:** осциллограф, генератор сигналов, магазин сопротивления, магазин емкости, магазин индуктивности, соединительная коробка с шунтирующей емкостью, соединительные одножильные и коаксиальные провода.

Экспериментальные данные

Рис. 1: Схема установки вынужденных колебаний

Генератор подает на вход периодические короткие импульсы, которые заряжают конденсатор C. За время между импульсами конденсатор разряжается через резистор и катушку.

Измерение периодов свободных колебаний

L , м Γ н	Т, мкс	$C_0 = \frac{T^2}{2\pi^2 L}$, нФ
100	69.0 ± 0.1	1.206 ± 0.005

Таблица 1: Начальные данные

C , н Φ		1	3	5	6	8	9
T, MKC	69	94	132	158	168	188	200

Таблица 2: Зависимость периода колебаний от емкости T(C)

(a) График зависимости T(C)

(b) График зависимости $Y=1/\Theta^2$ от $X=1/(R+R_L)^2$

График T(C) был построен с учетом C_0 и него видно, что $T \propto \sqrt{C}$.

Критическое сопротивление и декремент затухания

$$u_0=6.5\ \mathrm{k}\Gamma$$
ц; $C^*=\left(\frac{1}{2\pi\nu_0}\right)^2\cdot\frac{1}{L}=6.00\pm0.01\ \mathrm{H}\Phi\ R_{\mathrm{cr}}=2\sqrt{\frac{L}{C^*}}=8168\pm23\ \mathrm{Om}.$

Меняя сопротивлени́е R, мы определили при каком значении колебательный режим переходит в апериодический: $R \approx 6$ кОм.

Логарифмический декремент затухания Θ можно найти по формуле:

$$\Theta = \frac{1}{n} \ln \left(\frac{U_{\rm m}}{U_{\rm m+n}} \right) \tag{1}$$

$$\frac{\pi}{\Theta} = \frac{\pi}{\gamma T_1} = \frac{1}{2} \sqrt{\frac{R_{\rm cr}^2}{R^2} - 1} \Rightarrow \tag{2}$$

$$\frac{1}{\Theta^2} = \frac{1}{4\pi^2} \left(\frac{R_{\rm cr}^2}{R^2} - 1 \right) \Rightarrow k = \frac{R_{\rm cr}^2}{4\pi^2} \tag{3}$$

R, OM	408	653	980	1225	1470	1796	2041
$\Theta(\pi.2.3) \ (\varepsilon \approx 6\%)$	0.39	0.59	0.78	0.92	1.17	1.37	1.76
$\Theta(\pi.2.4) \ (\varepsilon \approx 25\%)$	0.26	0.31	0.39	0.55	0.66	0.85	0.97
Q (п.2.3)	8.1	5.4	4.0	3.4	2.7	2.3	1.8
$Q(\pi.2.4)$	12.3	10.1	8.0	5.7	4.8	3.7	3.2

Таблица 3: Зависимость декремента затухания от сопротивления

$$R_{\rm cr}=2\pi\sqrt{\frac{\Delta Y}{\Delta X}}=7040\pm440~{
m Om}~(arepsilonpprox6\%)$$

Свободные колебания на фазовой плоскости

Теперь подадим на второй канал осциллографа падение напряжения с резистра. Все данные представлены в таблице 3.

(a) Наблюдение затухающих колебаний на фазовой плоскости

(b) График зависимости $Y=1/\Theta^2$ от $X=1/(R+R_L)^2$

 R_1

 R_2

-0.5

Исследование резонансных кривых

$$C=C^*=6$$
 н $\Phi;\,R_1=408$ Ом; $R_2=2042$ Ом

-1.0 Ted (-1.5) -2.0 -2.5 25000 30000 35000 40000 45000 50000 55000

(а) АЧХ при $R_1 = 408~{
m Om}$ и $R_2 = 2042~{
m Om}$

(b) ФЧХ при $R_1=408$ Ом и $R_2=2042$ Ом

Определим добротность контура по АЧХ по формуле $Q=\frac{\omega_0}{\Delta\Omega}\Rightarrow Q_1=7.6\pm1.0 (\approx 12\%)$ и $Q_2=\frac{\omega_0}{\Delta\Omega}=2.4\pm0.3 (\approx 12\%)$.

Рис. 5: Определение добротности по Φ ЧХ (R_1)

Теперь определим добротность контура по ФЧХ по формуле $Q=\frac{\omega_0}{\Delta\omega},$ где $\Delta\omega$ - расзность частот на уровнях $-\pi/2$ и $-\pi/4.$

 $Q_1 = 10.5 \pm 0.7 (\approx 7\%).$

 Q_2 таким способом не получается определить, т.к количества точек недостаточно.

Θ/R	R_1	R_2
По нарастанию	$0.38 \pm 0.03(8\%)$	$1.45 \pm 0.06(4\%)$
По затуханию	$0.26 \pm 0.04 (15\%)$	1.69

Рис. 6: Определение декремента затухания по нарастанию и затуханию

Процессы установления и затухания

 $R=R_1=408~{
m Om};~
u=6~{
m K}\Gamma$ ц; $au=20~{
m Mc};~N=15$

Декремент затухания по скорости нарастаниявычисляется по формуле:

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}} \tag{4}$$

Декремент затухания колебательной системы по скорости затухания вычисляется по формуле (1).

Результаты и выводы

	Свободные колебания			Вынужденные колебания				
R	f(L,C,R)	$f(\Theta)$	Спираль	АЧХ	ФЧХ	Нарастание	Затухание	
$R_1 = 408 \text{ Om}$	8.47(0.6%)	8.1 ± 0.5	12.3 ± 3.0	7.6 ± 1.0	10.5 ± 0.7	8.3 ± 0.7	12.0 ± 1.8	
$R_2 = 2042 \text{ Om}$	1.72(0.6%)	1.8 ± 0.1	3.2 ± 0.8	2.4 ± 0.3	-	2.7 ± 0.1	1.9	

Таблица 4: Сравнение результатов вычисления добротности разными способами

- 1) Определили зависимость периода свободных колебаний от емкости конденсатора: $T \propto \sqrt{C}$
- 2) Определили зависимость логарифмического декремента затухания от сопротивления: $\Theta \propto R$. И из этого нашли критическое сопротивление $R_{\rm cr}=7040\pm440$ Ом. Вычисленное формульное значение $R_{\rm cr}=8168\pm23$ Ом. Однако апериодический режим наблюдался уже при 6 кОм.
- 3) Рассмотрели свободные колебания на фазовой плоскости. На экране осциллографа наблюдалась спираль, что как раз и соответствует теории для затухающий колебаний.
- 4)Исследовали резонансные кривые, строили для них АЧХ и ФЧХ. По ним определили добротность контура.
 - 5)Исследовали процессы установления и затухания. По ним так же определили добротность контура.