Main course

Course name	Class hours	Examination	Textbook	syllabus
		type		
Principles of	64 class	closed book	<inorganic chemistry="">, fourth edition, Dalian</inorganic>	The course is base on the content of chemistry in secondary school, and
General	hours ,one	examination	University of Technology series, Higher	focuses on chemical fundamental problems and chemical methods. It
Chemistry	semester		Education Press	includes the fundamental knowledge of aggregation substance, atomic
				structure, molecule structure, chemical bonding, complex structure,
				preliminary chemical thermodynamics, rate theory of the chemical reaction,
				chemical equilibrium, electrochemistry, and redox reaction.
Physical	112 class	closed book	<physical chemistry=""> Zhu Wentao, Tsinghua</physical>	Including thermodynamics, fundamentals of chemical kinetics,
Chemistry	hours, two	examination	University Press,	electrochemistry. The main content of thermodynamics is equilibrium
	semesters	(English)	<physical chemistry=""> Fourth Edition</physical>	thermodynamics, with a brief introduction of the non equilibrium
			volumes, Fu Xiancai, Higher Education Press,	thermodynamics. It also includes the principles of thermodynamics,
			<physical chemistry=""> Han Degang, Higher</physical>	chemical equilibrium, phase equilibrium, etc Chemical kinetics introduces
			Education Press	the rate theory, the typical mechanism of complex reaction, reaction order
			"Physical Chemistry" (6th edition) Atkins	and so on; electrochemistry focuses on reversible electrode potential,
				electromotive force calculation and their applications. There are also some
				introduction to the phenomenon of interface and molecular self-assembly.
Organic	112 class	closed book	<fundamentals chemistry="" of="" organic="">, Xing</fundamentals>	Introduction of the nomenclature of organic compounds, structure, physical
Chemistry	hours, two	examination	Qiyi	properties, reaction and application. Introducing the electronic effect and
	semesters		<organic chemistry="">, 7 edition (2001),</organic>	steric effect on the organic compounds and studying the relationship
			Graham Solomons, et al , John Wiley & Sons,	between the structure and chemical properties. And also outlining the
			Inc	stereochemistry, the spectrum of the organic structure,, the mechanisms of
				organic reactions, and natural products and so on.
Inorganic	112 class	closed book	<inorganic chemistry=""> (Third Edition), Wuhan</inorganic>	Including the general principles of chemical reaction, physical structure and
Chemistry	hours, two	examination	University and other schools series, Higher	knowledge of chemical elements, the basic content of chemical analysis.
	semesters		Education Press	Training students to understand and resolve some problems of the inorganic
				chemistry and chemical analysis for professional and real life.
Analytical	32 class	closed book	<analytical chemistry=""> (Second Edition), Xue</analytical>	This course is mainly to quantitative analysis, focusing on acid-base and

Chemistry	hours, one	examination	Hua, Tsinghua University Press, 1994	complexometric titration. Explain the basic theory of analytical chemistry
	semester			reaction and cope with the problems of complex equilibrium system using
	5011105001			the side reaction coefficient. Introducing errors and data processing,
				acid-base titration, complexometric titration, redox titration, precipitation
				titration, potentiometric titration, spectrophotometer, the separation and
				concentration methods.
T., -4	40 -1	-11 11-	Madam Instrumental Analysis Empirement	
Instrumental	48 class	closed book	<modern analysis="" experiment<="" instrumental="" p=""></modern>	This course is mainly to introduce the electrochemical analysis, atomic
Analysis	hours, one	examination	and Technology>, Tsinghua University Press,	spectroscopy, molecular spectroscopy, nuclear magnetic resonance
Chemistry	semester		2006	spectroscopy, chromatography, mass spectrometry, surface and interface
				analysis, and other modern instrumental analysis methods.
Structural	64 class	Closed book	<fundamentals chemistry="" of="" structural="">, Zhou</fundamentals>	Including the quantum mechanics, molecular symmetry, group theory,
Chemistry	hours, one	examination	gongdu, Duan Lianyun, Peking University	atomic structure, structure of diatomic molecule, and multi-atom molecular
	semester		Press	structure, the valence bond Theory, the molecular orbital theory, the ligand
				field theory, the variational method, the Hückel molecular orbital method.
General	64 class	Closed book	<general biology=""> Chen Zengyue, Higher</general>	This course focuses on the universal law of life sciences, basic knowledge,
Biology	hours, one	examination	Education Press, 1997	basic principles and development trends. It includes preliminary knowledge
	semester			of Cytology, molecular genetics and biological evolution, phytobiology,
				animal biology, biological groups, and environ biology.
Fundamentals	64 class	Closed book	<fundamentals chemical="" engineering="" of="">, Lin</fundamentals>	This course is all about the fundamental knowledge of the chemical
of Chemical	hours, one	examination	Aiguang series, Tsinghua University Press, 1st	engineering, including flow and transport of fluid, two-phase flow,
Engineering	semester	and	Edition	heat-transfer process, absorption process, distillation and gas-liquid mass
		experiment	<principle chemical="" engineering="" of="">, Jiang</principle>	transfer equipment. There are wide ranges of knowledge, both theoretical
			Weijun, Cambridge University Press, 2003	and practical.
Organic	32 class	Thesis and	< Electronic processes in organic crystals>,	Organic electronics is a cross-chemical, electronics, materials,
Electronics	hours, one	seminar	Martin Pope, Charles, E. Swenberg. Clarendon	cross-disciplinary subjects. The course of organic electronics in the set of
	semester		Press, Oxford, Oxford Univ. Press. New YorK,	basic concepts, principles, while introducing organic conductive materials,
			1982.	organic semiconductor materials,
				Organic superconducting materials in organic light-emitting diodes, organic
				thin film transistors, organic solar cells and other applications
Green	32 class	Thesis,	Chang-Wei Hu, Xian-Jun, <the and<="" principles="" td=""><td>The course gives students the concept of green chemistry, theories,</td></the>	The course gives students the concept of green chemistry, theories,

Chemistry	hours, one	examination	applications of green chemistry>, China	principles and tasks. At the same time, it introduces the green chemistry
	semester	and seminar	Petrochemical Press, 2002	method and its application, including catalytic reactions and atom economic
				reaction, green materials, green solvent, and the design and production of
				the green chemistry product.
Spectral	48 class	Examination	Ningyong Cheng, <identification of="" organic<="" td=""><td>Through classes, learning, discussion and presentations, students study the</td></identification>	Through classes, learning, discussion and presentations, students study the
Identification	hours, one	and seminar	compounds and organic spectroscopy>, Science	basic principles and latest developments of the nuclear magnetic resonance
of Organic	semester		Press	spectroscopy (NMR, carbon NMR spectrum and two-dimensional NMR),
Compounds			R. M. Silverstein, et al., <spectrometric< td=""><td>mass spectrometry and infrared spectra. And they will master the skills of</td></spectrometric<>	mass spectrometry and infrared spectra. And they will master the skills of
			Identification of Organic Compounds>, John	identify organic compounds by several ways and then solve the practical
			Wiley & Sons	problems they meet in their own researches.
Biological	48 class	Homework,	Zhao Nanming, Zhou Haimeng.	Describes the forefront of the field of biological physics research, including
Physics	hours, one	seminar and	<biophysics>, Higher Education Press</biophysics>	structural biology, membrane biophysics, molecular biophysics and
Frontier	semester	thesis		computational biology.
Theoretical and	64 class	Close book	[1] The Basics of Theoretical and	Basics of quantum chemistry, molecular orbital theory, ab initio theory,
Computational	hours, one	examination	Computational Chemistry, Bernd Michael	density functional theory, computational spectroscopy, computational
Chemistry	semester		Rode, Thomas S. Hofer, Michael D. Kugler,	material chemistry, molecular simulations.
			Wiley, 2007.	
			[2] Introduction to Computational Chemistry,	
			2nd Edition, by Frank Jensen, Wiley, 2006.	

Main experiment course

Course name	syllabus		
General Biological	This course contains the most classic experiments in plant biology and animal biology. It is base on observation and anatomical experiments,		
Experiment	combined with some physiology experiments. There are some basic experiments, such as the use of the microscope, the extraction and separation		
	of the chlorophyll from leaves. We carry out a series of experiments to study the structure and function of the plant roots, stems, leaves, and also		
	the structure of plant reproductive organs. In addition, we have performed the toad's anatomy, the anatomy of rabbit.		
Organic Chemistry	This experiment course aims to train students to master the basic skills of performing organic chemistry experiment. Students will learn many basic		
Experiments	experimental operations, such as distillation, fractionation, sublimation, extraction, drying, and recrystalization. Besides, in order to know the		
	quality, students need to determine the physical constants, like melting point, boiling point, refractive index, and etc., of the organic compounds		
	after they synthesize them. Finally, every student will design a synthetic route to finish an organic synthesis by themselves.		
Inorganic Chemistry	By finishing the inorganic chemistry experiments course, students will master the basic experiment skills and basic theory of experiments. This		
Experiments	course provides students chance to perform the preparation and purification of inorganic compounds, and also the chance to use the analytical		
	balance, pH meters. Besides, students will learn to determine the chemical reaction rate and the electrode potential. They will also carry out the		
	preparation of the ferrous ammonium sulfate as a Comprehensive Experiment. Some experiments need student to use computer processing the		
	experimental data. In addition, students who finish this course are required to have the ability to analyze the common elements and compounds, for		
	example, the P zone metal elements: chromium and manganese, iron, cobalt, nickel.		
Analytical Chemistry	Through this experimental program, students receive training in the following aspects: 1. Specification of basic operations: the use and washing		
Experiment	methods of buret, volumetric flask, pipette and other commonly used glass containers; the preparation of solution; the standard operation of		
	weighing the sample; sample dissolution, etc.). 2. Proper operation of equipment (including the analytical balance, pH meter, spectrophotometer,		
	etc.); 3. Master the ability of the acid-base titration, complexometric titration, redox titration, gravimetry, spectrophotometry, ion exchange		
	methond and other typical methods of analysis; 4. Accurately record of the original experimental data, write experiment reports, calculate the		
	experimental error and understand the importance of the precision and accuracy in analytical chemistry experiment.		
Physical Chemistry	This experiment course aims to teach students to determine the important parameters and their variation during the chemical reaction and the		
Experiment	related physical changing process. At the same time, it gives students general concepts of those principles, methods, and techniques. All the		
	experiments are related to electrochemistry, chemical kinetics, surface and colloid chemistry.		
Instrumental Analysis	Students will learn to use modern instrument to qualitative and quantitative analyze the organic and inorganic compounds, for instance, structure		
Experiment	analysis of organic compounds. All the apparatus include infrared, ultraviolet spectrophotometer, atomic absorption spectrometry, atomic emission		
	spectrometry, chromatography, mass spectrometry, nuclear magnetic resonance.		