Задача

Условие

Пусть $A \in \alpha$ и прямая AB перпендикулярна двум прямым AC и AD плоскости α . Проведите прямую AK в плоскости α и возьмите на ней любую точку $X \neq A$. Через точку X проведите отрезок, который заключен между прямыми AC и AD и точкой X делится пополам. Соедините точку B с концами этого отрезка и токой X. Исходя из этого построения докажите, что $AB \perp \alpha$

Решение

Так как $AB \perp AC$ и $AB \perp AD$, $AB \perp \alpha$. Из формулы медианы

$$|AX|^2 = \frac{2|AC|^2|AD|^2 - |CD|}{4}. (1)$$

$$|BX|^2 = \frac{2|BC|^2|BD|^2 - |CD|}{4}. (2)$$

А значит, что

$$|BX|^2 - |AX|^2 = |AB|^2. (3)$$

Из обратной теоремы Пифагора получаем, что $AB \perp \alpha$.

