TRACE: Text-Region Alignment with Conceptual Explainability

Duy A. Nguyen, Huyen Nguyen Instructor: Prof. Minh Do

University of Illinois Urbana-Champaign

May 6, 2025

Text Grounding Task

Text Grounding: Identify image regions that correspond to a given text token or keyword.

Applications:

- Search and retrieval: Highlight relevant areas based on natural language queries.
- Robotics and AR: Enable spatial understanding from verbal commands.
- Medical imaging: Localize findings from text-based reports.

Text Grounding Paradigms

Setting	Close-vocab	Open-vocab
Image–Caption Grounding		_
Patch–Token Grounding	\checkmark	_

Transparent and Controllable Text Grounding

The Challenge: Most deep learning models (e.g., CLIP) perform grounding as an *emergent behavior* of large-scale training — yet offer little insight into **why** a word is grounded to a region.

- Deep models like CLIP can align words and regions but they are black-box.
- They reveal where attention goes, but not what it means or how it's structured.

We ask: Can grounding be made transparent and controllable — not just accurate?

- Interpretability: Understandable rationale behind predictions.
- Auditability: Clear trace from token to region.
- Controllability: Ability to steer model behavior.

HOW?

CRATE: A White-Box Vision Transformer [4]

- Goal: Build a fully interpretable architecture from first principle for representation learning.
- **Key Idea:** CRATE optimizes a **sparse rate reduction** objective, compressing tokens into a sparse combination of K low-dimensional subspaces defined by orthonormal bases $\mathbf{U}_{[K]} = \{\mathbf{U}_1, \dots, \mathbf{U}_K\}$:

$$\max_{f} O_1(\mathbf{X}) = \mathbb{E}_{\mathbf{Z} = f(\mathbf{X})} \left[R(\mathbf{Z}) - R^c(\mathbf{Z} \mid \mathbf{U}_{[K]}) - \lambda \|\mathbf{Z}\|_0 \right]$$
(1)

- $R(\mathbf{Z})$: coding rate of uncompressed representation.
- $R^c(\mathbf{Z} \mid \mathbf{U}_{[K]})$: rate after projecting onto learned subspaces.
- $\|\mathbf{Z}\|_0$: sparsity penalty to encourage minimal activation.

Conceptual illustration of CRATE

CRATE Alternated Optimization Procedure

CRATE rollout illustration

- Forward pass: $X \xrightarrow{f^0} Z^0 \to \cdots \to Z^\ell \xrightarrow{f^\ell} Z^{\ell+1} \to \cdots \to Z^L = Z$
 - Each layer performs an approximation for a single gradient backpropagation step to optimize Objective 1:

$$oldsymbol{Z}^{\ell+1} = f^\ell(Z^\ell) pprox oldsymbol{Z}^\ell - \kappa
abla_{oldsymbol{Z}} O_1\left(oldsymbol{Z}^\ell
ight)$$

• Last output \boldsymbol{Z} is most structured and disentangled features: $\boldsymbol{Z} = \sum_{k}^{K} \alpha_{k} \boldsymbol{\mathsf{U}}_{k} \boldsymbol{\mathsf{U}}_{k}^{T} \boldsymbol{Z}^{L-1}$, where $\alpha = [\alpha_{1}, \ldots, \alpha_{K}]^{T} \approx [0, \ldots, 1, \ldots, 0]^{T}$

• Backward pass: Learn $\mathbf{U}_{[K]}$ via ordinary data-driven gradient-based approach. e.g. CE loss for classification task: $L_{\text{CE}}\left(f,f^{\text{head}}\right) \doteq \mathbb{E}_{\boldsymbol{X},\boldsymbol{y}}\left[H\left(\boldsymbol{y},\text{softmax}\left\{\left(f^{\text{head}}\circ f\right)\left(\boldsymbol{X}\right)\right\}\right)\right].$

Motivating Question

- CRATE offers the structural transparency we need it shows how patches are encoded via low-dimensional subspaces.
- However, it does not explain what those subspaces represent they remain abstract and data-driven.
- It lacks **semantic interpretability**: no clear mapping between subspaces and human concepts.
- Can we bring semantic meaning into CRATE's structure for grounding task — while preserving its mathematical transparency?

Language as Semantic Bridge

- Language naturally encodes human-consumable
 semantics—structured, interpretable, and compositional.
- Can we use language as a semantic bridge to bring interpretable meaning to CRATE's visual subspaces?

Note: Linguistic concepts are inherently hierarchical (e.g., $vehicle \rightarrow car$, bus)—a structure that mirrors CRATE's subspace decomposition.

Our Contribution: Multi-Resolution Semantic Alignment

Core Idea:

- **Cluster-level alignment:** Assign CRATE's visual subspaces to coarse-grained concepts (e.g., vehicle, animal).
- **Token-level alignment:** Align individual patch embeddings to *fine-grained* child concepts (e.g., car, dog) within their superclass.

Scope and Assumptions:

- Operate under weak supervision: only image-caption pairs are required.
- Leverage **frozen text embeddings** (e.g., GloVe or Word2Vec) to serve as stable semantic anchors during training.

The resulting framework is named TRACE (Text-Region Alignment with Conceptual Explainability).

Preliminary Result: Quantitative Evaluation

Quantitative result: w/ Threshold = 0.5 (binary mask)

Method	Precision	Recall	mloU
CLIP	10.50	55.84	9.39
TRACE	14.59	61.15	12.94

Observations:

- TRACE improves both precision (more selective) and recall (more complete).
- High recall but low precision/mloU in both methods suggests over-prediction:
 - Large/multiple regions are assigned per token.
 - Many false positives inflate recall, but hurt precision.

Conclusion

- Introduced semantically-grounded CRATE extension, named TRACE.
- Preserves structure and adds interpretability.
- TRACE show potential in fine-grain Text-Grounding task, with weakly supervised signal.
- Future work:
 - Further loss enhancement, making cluster more separated.
 - Tackling multi-resolution alignment implicitly.
 - Extend to open-vocab text-grounding.

References I

- [1] Ioana Bica et al. "Improving fine-grained understanding in image-text pre-training". In: Forty-first International Conference on Machine Learning.
- [2] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. "Coco-stuff: Thing and stuff classes in context". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018, pp. 1209–1218.
- [3] Alec Radford et al. "Learning transferable visual models from natural language supervision". In: *International conference on machine learning*. PmLR. 2021, pp. 8748–8763.
- [4] Yaodong Yu et al. "White-box transformers via sparse rate reduction". In: *Advances in Neural Information Processing Systems* 36 (2023), pp. 9422–9457.