

The BRAM is the Limit: Shattering Myths, Shaping Standards, and Building Scalable PIM Accelerators

MD Arafat Kabir, Tendayi Kamucheka, Nathaniel Fredricks, Joel Mandebi, Jason Bakos, Miaoqing Huang, and David Andrews

Introduction

- Existing PIM Architectures promise impressive parallelism but lack desired performance and scalability.
- The community has accepted these limitations without empirical study.
- This study establishes a true theoretical upper limit of FPGA-PIM accelerators, we call a Gold Standard.
- IMAGine, a GEMV PIM accelerator, is developed that achieves the proposed standard.

Gold Standard

- PIM accelerators must run at the maximum BRAM frequency.
- PIM array peak-performance must scale linearly with the on-chip BRAM.
- Reduction latency must fit aN log(P) + bP + cwith parameters a, b, and c within the ideal range to balance logic utilization and latency.

Results

- IMAGine achieves the Gold Standard.
- No other existing FPGA PIMs achieve Gold Standard.
- IMAGine clocks faster than TPU v1-v2 and Alibaba Hanguang 800.
- IMAGine is fast and scalable due to targeting the Gold Standard.

Download This Poster

A Gold Standard for FPGA-PIM Designs The Fastest GEMV PIM Accelerator Beating ASIC with FPGA Overlay

- How Fast: BRAM F_{max}, 737 MHz on US+
- How Big : BRAM 100%, 64K MAC on U55
- Why Care: Clocks Faster than TPU v1-v2

Linear Scaling of Peak-Performance (RIMA)

Pipelined Reduction Tree to Achieve BRAM Fmax

GEMV Execution latency on PIM Array Accelerators

Existing PIM Designs

PIM Design	Type	Device	F _{BRAM}	F_{PIM}	Rel.	$\overline{F_{Sys}}$	Rel.
CCB	Custom	Stratix 10	1000	624	62%	455	46%
CoMeFa-A	Custom	Arria 10	730	294	40%	288	39%
CoMeFa-D	Custom	Arria 10	730	588	81%	292	40%
BRAMAC-2SA	Custom	Arria 10	730	586	80%	-	-
BRAMAC-1DA	Custom	Arria 10	730	500	68%	-	-
M4BRAM	Custom	Arria 10	730	553	76%	-	-
		UltraScale+		445	60%	200	27%
PiMulator		UltraScale+		-	_	333	45%
PiCaSO	Overlay	UltraScale+	737	737	100%	-	_

Path Delay Breakdown

	FF-C2Q ¹	LUT ²	FF-Setup	Total ³	BRAM ⁴	Net Budget	Min ⁵
V7	0.290	0.34	0.255	0.885	1.839	0.954	0.272
US+	0.087	0.15	0.098	0.335	1.356	1.021	0.102

⁴ BRAM pulse-width requirement, clock period for Fmax ⁵ Minimum net delay through a switchbox

Reduction Parameters

Parameter	Ideal Range	Related to
a	$1/N \le a \le 2$	Latency of reduction steps (addition)
b	$0 \le b \le 1$	Latency of data movement
c	$0 \le c$	Cycles spent outside reduction network

12x2 GEMV Tile

	Controller	Rel.	Fanout	Rel.	PIM Array	Rel.	Tile
LUT	167	5.8%	0	0.0%	2736	94.2%	2903
FF	155	4.0%	615	15.9%	3096	80.1%	3866
DSP	0	-	0	-	0	-	0
BRAM	0	0.0%	0	0.0%	12.0	100.0%	12
Freq. (MHz)	890	1.2×	890	1.2×	737	1×	737

GEMV Engine Compare

	LUT	FF	DSP	BRAM	F_{Sys}^{1}	Rel. Freq
RIMA-Fast	60	0/0	50%	55%	455	45.5%
RIMA-Large	89	0/0	50%	93%	278	27.8%
CCB GEMV	27.	9%	90.1%	91.8%	231	31.6%
CoMeFa-A GEMV	27.	9%	90.1%	91.8%	242	33.2%
CoMeFa-D GEMM	25.:	5%	92.4%	86.7%	267	36.6%
SPAR-2 (US+)	11.3%	2.4%	0.0%	14.5%	200	27.1%
SPAR-2 (V7)	28.5%	7.0%	0.0%	30.4%	130	23.9%
IMAGine	35.6%	24.8%	0.0%	100.0%	737	100.0%
IMAGine-CB ²	10.1%	7.2%	0.0%	100.0%	737	100.0%

System frequency in MHz ² IMAGine with custom-BRAM PiCaSO-F (PiCaSO-CB)

