	Carátula para entrega de prácticas
Facultad de Ingeniería	Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	Alejandro Pimentel	
Asignatura:	Fundamentos de programación	
Grupo:	3	
No de Práctica(s):	4	
Integrante(s):	Arteaga Munguía Erick Alejandro	
No. de Equipo de cómputo empleado:	Nepal	
No. de Lista o Brigada:	6295	
Semestre:	2020-1	
Fecha de entrega:	8/09/19	
Observaciones:		
CALIFICACIÓN:		

Introducción:

¿Que es un algoritmo?

Como algoritmo denominamos un **conjunto ordenado y finito de operaciones simples a través del cual podemos hallar la solución a un problema**. ¿Que es un diagrama de flujo?

El diagrama de flujo o también *diagrama de actividades* es **una manera de representar gráficamente un algoritmo o un proceso** de alguna naturaleza, a través de una serie de pasos estructurados y vinculados que permiten su revisión como un todo.

La representación gráfica de estos procesos emplea, en los diagramas de flujo, **una serie determinada de figuras geométricas que representan cada paso** puntual del proceso que está siendo evaluado. Estas formas definidas de antemano se conectan entre sí a través de flechas y líneas que marcan la dirección del flujo y establecen el recorrido del proceso, como si de un mapa se tratara.

Símbolo	Nombre	Función
	Inicio / Final	Representa el inicio y el final de un proceso
→	Linea de Flujo	Indica el orden de la ejecución de las operaciones. La flecha indica la siguiente instrucción.
	Entrada / Salida	Representa la lectura de datos en la entrada y la impresión de datos en la salida
	Proceso	Representa cualquier tipo de operación
	Decisión	Nos permite analizar una situación, con base en los valores verdadero y falso

Objetivo:

Elaborar diagramas de flujo que representen soluciones algorítmicas vistas como una serie de acciones que comprendan un proceso.

En este diagrama se indicó el diagrama de flujo para saber en que dia de la semana nos encontrábamos

En este diagrama de flujo se creó un programa para saber si se podía formar un triángulo y como todo sabemos es necesario que las suma de los ángulos de 180 grados.

En este diagrama de flujo lo que se busco es crear un diagrama en el cual identifiquemos qué tipo de triángulo es el que tenemos.

Aquí se tiene un diagrama de flujo en el que se indica los tamaños en los que puede existir un triángulo y como saber si si existe.

Programa	Entrada	Salida
Dia de la semana	3	Es miércoles
Dia de la semana	7	Es domingo
Dia de la semana	-2	No es un número que corresponda a un dia de la semana
Dia de la semana	0	No es un número que corresponda a un dia de la semana
Dia de la semana	9	No es un número que corresponda a un dia de la semana
Ángulos de un triángulo	30,30,120	Si corresponden a un triángulo
Ángulos de un triángulo	-90,90,180	No cumple las precondiciones para formar un triángulo
Ángulos de un triángulo	0,30,150	No cumple las precondiciones para formar un triángulo
Ángulos de un triángulo	270,60,30	Sus ángulos no corresponden para formar un triángulo
Tipos de triangulo	45,50,80	Es un triangulo escaleno
Tipos de triangulo	20,20,20	Es un triángulo equilátero
Tipos de triangulo	10,100,10	No corresponde a ningun triangulo
Tipos de triangulo	0,4,20	No corresponde a un triángulo
Triángulo aceptable	20,40,20	No corresponde a un triángulo
Triángulo aceptable	60,100,200	No corresponde a un triángulo
Triángulo aceptable	-3,6,12	No cumple precondiciones
Triángulo aceptable	4,5,9	No corresponde a un triángulo

Conclusion

Para seguir el procedimiento es mucho más fácil con un diagrama de flujo, además se nota más rápido lo que se necesita como las precondiciones y se logra más fácil construir el código que nosotros queremos, aprender el diagrama es difícil, porque hay que plantear un problema, saber colocar las ideas principales e identificar cuáles son los puntos específicos para determinado tema, además necesitamos saber cuáles son las precondiciones y las salidas que nosotros buscamos, como comenté no es nada fácil pero con la práctica se va facilitando un poco.