Análisis Matemático I. Curso 2014-15. PRIMERA PARTE. Doble Grado Matemáticas-Informática. 6 de febrero de 2015

- 1. Sea $A \subset \mathbb{R}^N$.
 - (a) (0.5 pto) Probad que \mathbb{R}^N puede escribirse como la siguiente unión disjunta:

$$\mathbb{R}^N = \operatorname{int}(A) \cup \partial A \cup \operatorname{int}(\mathbb{R}^N \setminus A).$$

(b) (1 pto) Sean $x \in A$ e $y \in \mathbb{R}^N \setminus \overline{A}$. Probad que todo camino uniendo x con y corta la frontera ∂A de A.

- (c) (0.5 pto) Probad que una consecuencia del apartado anterior es el teorema de Bolzano: "Toda función continua en un intervalo $[a,b] \subset \mathbb{R}$ con f(a)f(b) < 0 posee un cero".
- 2. (1 pto) Sea

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \mapsto f(x,y) = (f_1(x,y), f_2(x,y))$$

una función de clase C^1 . Supongamos que f verifica (las ecuaciones de Cauchy-Riemann)

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}, \quad \frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x}.$$

Sea $(x_0, y_0) \in \mathbb{R}^2$. Probad que existe un entorno de (x_0, y_0) en el que f es invertible si y sólo si la derivada $Df(x_0, y_0) \neq 0$.

3. Sea c>0 y supongamos que $u:\mathbb{R}^2\longrightarrow\mathbb{R}$ es de clase C^1 y satisface la ecuación

$$\frac{\partial u}{\partial y}(x,y) + c\frac{\partial u}{\partial x}(x,y) = 0, \quad x,y \in \mathbb{R}.$$

Se define la función v mediante $v(s,t)=u\left(\frac{s+t}{2},\frac{s-t}{2c}\right)$.

- (a) (0.75 pto) Calculad la ecuación verificada por v.
- (b) (0.25 pto) Determined u.
- 4. (a) (0.5 pto) Estudiad la derivabilidad direccional en el punto (0,0) de la función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \left[\frac{x^2 y}{x^4 + y^2} \right]^2, & \text{si } y \neq 0, \\ 0, & \text{si } y = 0, \end{cases}$$

(b) (0.5 pto) ¿Es la función f derivable en (0,0)?

Análisis Matemático I. Curso 2014-15. SEGUNDA PARTE. Doble Grado Matemáticas-Informática. 6 de febrero de 2015

1. Sean $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 10\}$ y $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la función dada por

$$f(x,y) = x^2 + 2y^2 - 2x + 3, \ \forall (x,y) \in \mathbb{R}^2.$$

- (a) (0.75 pto) Estudiad los extremos relativos de f en el interior int Ω de Ω .
- (b) (0.75 pto) Hallad los valores extremos de la función en el círculo Ω .
- 2. Sean Ω un subconjunto abierto y acotado de \mathbb{R}^2 y $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ una función verificando

$$\frac{\partial^2 u}{\partial x^2}(x,y) + 3\frac{\partial^2 u}{\partial y^2}(x,y) - \frac{\partial u}{\partial x}(x,y) + \operatorname{sen}\left(\frac{\partial u}{\partial y}(x,y)\right) - u^3(x,y) = 0, \quad \forall (x,y) \in \Omega. \tag{1}$$

- (a) (0.5 pto) Probad que u alcanza su máximo absoluto y su mínimo absoluto en $\overline{\Omega}$.
- (b) (0.75 pto) Probad que si u alcanza su máximo (absoluto) en un punto $(x_0, y_0) \in \Omega$, entonces $u \leq 0$.
- (c) (0.25 pto) Probad que si además de (1), u(x,y) = 0 para todo $(x,y) \in \partial \Omega$, entonces
- 3. Sean $\Omega \subset \mathbb{R}^N$, $\Sigma \subset \mathbb{R}^M$. Supongamos que Σ es conexo y que $f:\Omega \longrightarrow \Sigma$ es una función continua, propia¹ y localmente invertible²
 - (a) (1 pto) Si $y \in \Sigma$, probad que el cardinal [y] del conjunto $f^{-1}(\{y\})$ es finito.
 - (b) (1 pto) Probad que la aplicación

$$\Sigma \longrightarrow \mathbb{R}$$
 $y \mapsto [y]$

es constante.

¹f se dice propia si $f^{-1}(K)$ es compacto para todo compacto $K \subset \Sigma$ 2f es localmente invertible si para cada $x \in \Omega$ existe un entorno U_x de x en Ω y un entorno V_y de y = f(x) en Σ tal que $f|_{U_x}: U_x \longrightarrow V_y$ es un homeomorfismo.

Soluciones 1^a Parte

Problema 1

Sea $A \subset \mathbb{R}^N$.

1. (0.5 pto) Probad que \mathbb{R}^N puede escribirse como la siguiente unión disjunta:

$$\mathbb{R}^N = \operatorname{int}(A) \cup \partial A \cup \operatorname{int}(\mathbb{R}^N \setminus A).$$

2. (1 pto) Sean $x \in A$ e $y \in \mathbb{R}^N \setminus \overline{A}$. Probad que todo camino uniendo x con y corta la frontera ∂A de A.

3. (0.5 pto) Probad que una consecuencia del apartado anterior es el teorema de Bolzano: "Toda función continua en un intervalo $[a,b] \subset \mathbb{R}$ con f(a)f(b) < 0 posee un cero".

Solución. 1. A todo $x \in \mathbb{R}^N$ le pueden pasar tres cosas excluyentes entre si:

- o existe $\varepsilon_0 > 0$ tal que $B(x, \varepsilon_0) \subset A$ (es decir, $x \in \text{int } A$).
- o existe $\varepsilon_0 > 0$ tal que $B(x, \varepsilon_0) \subset \mathbb{R}^N \setminus A$ (es decir, $x \in \text{int}(\mathbb{R}^N \setminus A)$).
- o para todo $\varepsilon > 0$ se verifica que $B(x,\varepsilon) \cap A \neq \emptyset$ y $B(x,\varepsilon) \cap (\mathbb{R}^N \setminus A) \neq \emptyset$ (es decir, $x \in \partial A$).
- 2. Este apartado está hecho en clase. Una posible solución sería: Sea $\gamma:[0,1] \longrightarrow \mathbb{R}^N$ un camino uniendo x e y, es decir, una función continua tal que $\gamma(0) = x$ y $\gamma(1) = y$. Puesto que γ es continuo y [0,1] es conexo, la imagen $\gamma([0,1])$ es conexo.

Demostramos que $\gamma([0,1]) \cap \partial A \neq \emptyset$ por reducción al absurdo: si fuera ésta intersección vacía, por el apartado anterior,

$$\gamma([0,1])\subset \operatorname{int}\left(A\right)\cup\operatorname{int}\left(\mathbb{R}^{N}\setminus A\right)$$

lo cual significa que $\gamma([0,1])$ no sería conexo, un absurdo.

3. Aplicad el apartado 2. a:

$$\gamma: [a, b] \longrightarrow \mathbb{R}^2, \quad \gamma(x) = (x, f(x)), \ \forall x \in [a, b]$$

$$A = \{(x, y) / y > 0\}.$$

(1 pto) Sea

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \mapsto f(x,y) = (f_1(x,y), f_2(x,y))$$

una función de clase C^1 . Supongamos que f verifica (las ecuaciones de Cauchy-Riemann)

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}, \quad \frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x}.$$

Sea $(x_0, y_0) \in \mathbb{R}^2$. Probad que existe un entorno de (x_0, y_0) en el que f es invertible si y sólo si la derivada $Df(x_0, y_0) \neq 0$.

Solución. Por las ecuaciones de Cauchy-Riemann:

$$Df(x_0, y_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x}(x_0, y_0) & \frac{\partial f_1}{\partial y}(x_0, y_0) \\ -\frac{\partial f_1}{\partial y}(x_0, y_0) & \frac{\partial f_1}{\partial x}(x_0, y_0) \end{pmatrix}$$

 \mathbf{y}

$$\det Df(x_0, y_0) = \left(\frac{\partial f_1}{\partial x}(x_0, y_0)\right)^2 + \left(\frac{\partial f_1}{\partial y}(x_0, y_0)\right)^2 \neq 0 \Longleftrightarrow \nabla f_1(x_0, y_0) \neq (0, 0) \Longleftrightarrow \nabla f_2(x_0, y_0) \neq (0, 0).$$

Así, si $Df(x_0, y_0) \neq 0$, tenemos det $Df(x_0, y_0) \neq 0$ y, por el teorema de la función inversa, existen entornos U de (x_0, y_0) en \mathbb{R}^2 y V de $f(x_0, y_0)$ en \mathbb{R}^2 tales que f es un difeomorfismo de U en V.

Recíprocamente, si existen entornos U de (x_0, y_0) en \mathbb{R}^2 y V de $f(x_0, y_0)$ en \mathbb{R}^2 tales que f es un difeomorfismo de U en V, entonces por la regla de la cadena aplicada a $f^{-1} \circ f$ = Identidad, nos queda que

lo que implica que $Df(x_0, y_0) \neq 0$.

Sea c>0 y supongamos que $u:\mathbb{R}^2\longrightarrow\mathbb{R}$ es de clase C^1 y satisface la ecuación

$$\frac{\partial u}{\partial y}(x,y) + c\frac{\partial u}{\partial x}(x,y) = 0, \quad x,y \in \mathbb{R}.$$

Se define la función v mediante $v(s,t)=u\left(\frac{s+t}{2},\frac{s-t}{2c}\right)$.

- (a) (0.75 pto) Calculad la ecuación verificada por v.
- (b) (0.25 pto) Determined u.

Solución (a) Empezamos calculando la inversa del cambio:

$$(s,t) \stackrel{H}{\mapsto} \left(rac{s+t}{2}, rac{s-t}{2c}
ight)$$

Ésta es:

$$(x,y) \stackrel{H^{-1}}{\mapsto} (x+cy,x-cy)$$
.

Entonces $u(x,y)=v\left(x+cy,x-cy\right)$ para todo $x,y\in\mathbb{R}.$ Por la regla de la cadena:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial s}(x+cy,x-cy) + \frac{\partial v}{\partial t}(x+cy,x-cy)$$

 \mathbf{y}

$$\frac{\partial u}{\partial y}(x,y) = \frac{\partial v}{\partial s}\left(x+cy,x-cy\right)c + \frac{\partial v}{\partial t}\left(x+cy,x-cy\right)(-c).$$

En consecuencia,

$$\frac{\partial u}{\partial y}(x,y) + c\frac{\partial u}{\partial x}(x,y) = 2c\frac{\partial v}{\partial s}\left(x + cy, x - cy\right)$$

 \mathbf{y}

$$\frac{\partial u}{\partial y}(x,y) + c\frac{\partial u}{\partial x}(x,y) = 0, \quad (x,y) \in \mathbb{R}^2 \iff \frac{\partial v}{\partial s}(x+cy,x-cy) = 0, \quad (x,y) \in \mathbb{R}^2$$
$$\iff \frac{\partial v}{\partial s}(s,t) = 0, \quad (s,t) \in \mathbb{R}^2.$$

(b) Por el apartado anterior $\frac{\partial v}{\partial s}=0$, lo que significa que v es independiente de s: $\exists f\in C^1(\mathbb{R})$ tal que v(s,t)=f(t), para todo $t\in\mathbb{R}$. Por el cambio H,

$$u(x,y) = f(x+cy), \quad \forall (x,y \in \mathbb{R}^2)$$

(a) (0.5 pto) Estudiad la derivabilidad direccional en el punto (0,0) de la función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \left[\frac{x^2y}{x^4 + y^2}\right]^2, & \text{si } y \neq 0, \\ 0, & \text{si } y = 0, \end{cases}$$

(b) (0.5 pto) ¿Es la función f derivable en (0,0)?

Solución. (a) Sea $v=(x,y)\in\mathbb{R}^2$ una dirección cualquiera. Calculamos los cocientes incrementales:

$$\frac{f(tx,ty) - f(0,0)}{t} = \begin{cases} t^2 \left[\frac{x^2 y}{t^2 x^4 + y^2} \right]^2, & \text{si } y \neq 0, \\ 0, & \text{si } y = 0. \end{cases}$$

Usando que

$$\lim_{t \to 0} \frac{x^2 y}{t^2 x^4 + y^2} = \frac{x^2 y}{y^2}, \quad \forall y \neq 0$$

nos queda que

$$\lim_{t \to 0} \frac{f(tx, ty) - f(0, 0)}{t} = 0,$$

es decir,

$$D_v(0,0) = 0.$$

(b) La función f no es continua en (0,0) porque no existe el límite doble:

$$\lim_{(x,y)\to(0,0)} \left[\frac{x^2y}{x^4+y^2}\right]^2.$$

En efecto, si me aproximo a (0,0) por rectas $y = \lambda x$, $\lambda \neq 0$,

$$\lim_{x \to 0} \left[\frac{x^3 \lambda}{x^4 + \lambda^2 x^2} \right]^2 = \lim_{x \to 0} \left[\frac{x \lambda}{x^2 + \lambda^2} \right]^2 = 0,$$

mientras que si lo hago por parábolas $y = \lambda x^2$, $\lambda \neq 0$, me queda

$$\lim_{x\to 0} \left[\frac{x^4\lambda^2}{x^4+\lambda^2x^4}\right]^2 = \left[\frac{\lambda^2}{1+\lambda^2}\right]^2 \neq 0.$$

Por tanto, la función no puede ser continua (y así tampoco derivable) en (0,0).

Soluciones 2^a Parte

Problema 1

Sean $\Omega=\{(x,y)\in\mathbb{R}^2\,:\,x^2+y^2\leq 10\}$ y $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ la función dada por

$$f(x,y) = x^2 + 2y^2 - 2x + 3, \ \forall (x,y) \in \mathbb{R}^2.$$

- (a) (0.75 pto) Estudiad los extremos relativos de f en el interior int Ω de Ω .
- (b) (0.75 pto) Hallad los valores extremos de la función en el círculo Ω .

Solución. La función f es clase C^{∞} en todo \mathbb{R}^2 por ser polinómica. En particular, será continua en todo Ω y de clase C^2 en int Ω .

(a) Los posibles extremos relativos de f en int Ω se encuentran entre los puntos críticos de f en int Ω . Calculo éstos:

$$\nabla f(x,y) = (0,0) \Longleftrightarrow \left\{ \begin{array}{l} 2x - 2 = 0 \\ 4y = 0 \end{array} \right\} \Longleftrightarrow (x,y) = (1,0) \in \operatorname{int} \Omega.$$

Calculo la matriz hessiana Hf(1,0) de f en (1,0) para saber si es máximo o mínimo relativo. Como

$$Hf(1,0) = \left(\begin{array}{cc} 2 & 0\\ 0 & 4 \end{array}\right)$$

es definida positiva, nos queda que (1,0) es un mínimo relativo de f en int Ω .

(b) Puesto que Ω es cerrado (al ser imagen inversa por la función continua $g(x,y) := x^2 + y^2$ del intervalo cerrado [0,10]) y acotado (Ω es una bola), resulta que Ω es compacto. Al ser f continua en Ω , por el teorema de Weierstrass, f alcanza su valor máximo y su valor mínimo en Ω , es decir, existen $(x_1,y_1),(x_2,y_2) \in \Omega$ tales

$$f(x_1, y_1) \le f(x, y) \le f(x_2, y_2), \quad \forall (x, y) \in \Omega.$$

Al punto (x_1, y_1) le pueden pasar dos cosas:

- 1. $(x_1,y_1)\in \operatorname{int}\Omega$, en cuyo caso (x_1,y_1) es un mínimo relativo y por tanto $(x_1,y_1)=(1,0)$
- 2. o $(x_1, y_1) \in \partial \Omega$, en cuyo caso es un extremo condicionado de f por la condición $g(x, y) := x^2 + y^2 10 = 0$.

En cambio, al punto (x_2,y_2) sólo le cabe la posibilidad de estar en $\partial\Omega$ (ya que f no posee másimos relativos en int Ω . Así (x_2,y_2) debe ser un extremo condicionado de f por la condición $g(x,y)=x^2+y^2-10=0$.

Cáculo de los extremos condicionados Puesto que g y f son de clase C^1 en todo \mathbb{R}^2 , el teorema de los multiplicadores de Lagrange nos da que los posibles extremos condicionados de f en $\partial\Omega$ se encuentran entre las soluciones del sistema:

$$\nabla f(x,y) + \lambda \nabla g(x,y) = (0,0) \\ g(x,y) = 0 \end{cases} \iff \begin{cases} 2(1+\lambda)x - 2 = 0 \\ (2+\lambda)y = 0 \\ x^2 + y^2 - 10 = 0 \end{cases}$$

cuyas soluciones son:

$$\lambda = -2, \quad (x, y) = (-1, \pm 3)$$

y

$$\lambda = \frac{\pm\sqrt{10} - 10}{10} \quad (x, y) = (\pm\sqrt{10}, 0).$$

Evaluando

$$f(1,0) = 2$$
, $f(-1,3) = 24$, $f(-1,-3) = 24$, $f(\sqrt{10},0) = 13 - 2\sqrt{10}$, $f(-\sqrt{10},0) = 13 + 2\sqrt{10}$
y por tanto,

$$(x_1,y_1)=(1,0)$$
 $(x_2,y_2)=(-1,\pm 3).$

Sean Ω un subconjunto abierto y acotado de \mathbb{R}^2 y $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ una función verificando

$$\frac{\partial^2 u}{\partial x^2}(x,y) + 3\frac{\partial^2 u}{\partial y^2}(x,y) - \frac{\partial u}{\partial x}(x,y) + \operatorname{sen}\left(\frac{\partial u}{\partial y}(x,y)\right) - u^3(x,y) = 0, \quad \forall (x,y) \in \Omega.$$
 (2)

- (a) (0.5 pto) Probad que u alcanza su máximo absoluto y su mínimo absoluto en $\overline{\Omega}$.
- (b) (0.75 pto) Probad que si u alcanza su máximo (absoluto) en un punto $(x_0, y_0) \in \Omega$, entonces u < 0
- (c) (0.25 pto) Probad que si además de (2), u(x,y) = 0 para todo $(x,y) \in \partial \Omega$, entonces $u \equiv 0$.

Solución. (a) Como Ω es acotado, existe R>0 tal que $\Omega\subset B(0,R)$ y así $\overline{\Omega}\subset \overline{B((0,R)}$ y $\overline{\Omega}$ está acotado. Además, por definición de la clausura, $\overline{\Omega}$ es cerrado. Por tanto, $\overline{\Omega}$ es compacto. Al ser la función u continua en el compacto $\overline{\Omega}$, aplicando el teorema de Weierstrass, la función u alcanza su máximo y mínimo absolutos en $\overline{\Omega}$.

(b) Si la función u alcanzará su máximo absoluto en un punto $(x_0, y_0) \in \Omega$, entonces (x_0, y_0) sería un máximo relativo de u y por tanto

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial u}{\partial y}(x_0, y_0) = 0$$

 \mathbf{y}

$$\frac{\partial^2 u}{\partial x^2}(x_0,y_0) \leq 0 \text{ y } \frac{\partial^2 u}{\partial y^2}(x_0,y_0) \leq 0$$

lo que unido a (2) nos da

$$u^{3}(x_{0}, y_{0}) = \frac{\partial^{2} u}{\partial x^{2}}(x_{0}, y_{0}) + 3\frac{\partial^{2} u}{\partial y^{2}}(x_{0}, y_{0}) \le 0$$

y así $u(x_0, y_0) \leq 0$. Puesto que $u(x_0, y_0)$ es el máximo absoluto de u, nos queda

$$u(x,y) \leq 0$$
, $\forall (x,y) \in \mathbb{R}^2$.

- (c) Por (a), la función u alcanza su máximo absoluto en $\overline{\Omega}$. Al máximo absoluto de u le pueden pasar dos cosas:
 - o está en $\partial\Omega$, y en este caso como $u|_{\partial\Omega}\equiv 0$, el valor máximo de u es cero y en consecuencia, $u\leq 0$
 - o está en el interior de Ω , en cuyo caso, por el apartado (b), $u \leq 0$.

En ambos casos, deducimos $u \leq 0$.

Aplicando el mismo argumento a -u sale que $u \ge 0$ y por consiguiente, $u \equiv 0$.

Sean $\Omega\subset\mathbb{R}^N,\,\Sigma\subset\mathbb{R}^M.$ Supongamos que Σ es conexo y que $f:\Omega\longrightarrow\Sigma$ es una función continua, propia³ y localmente invertible⁴

- (a) (1 pto) Si $y \in \Sigma$, probad que el cardinal [y] del conjunto $f^{-1}(\{y\})$ es finito.
- (b) (1 pto) Probad que la aplicación

$$\Sigma \longrightarrow \mathbb{R}$$
$$y \mapsto [y]$$

es constante.

Solución. (a) Sea $y \in \Sigma$. Vamos a empezar probando que $f^{-1}(y)$ está formado sólo por puntos aislados. Para ello usando que f es localmente invertible, para todo $x \in f^{-1}(y)$,

$$\exists \left\{ \begin{array}{l} U_x \text{ entorno abierto de } x \text{ en } \Omega \\ V_x \text{ entorno de } y = f(x) \text{ en } \Sigma \end{array} \right\} \text{ tal que } f|_{U_x} : U_x \longrightarrow V_x \text{ es un homeomorfismo.}$$

En particular,

$$f^{-1}(y) \cap U_x = \{x\}$$

y x es aislado.

De otra parte, como f es propia y el conjunto $\{y\}$ es compacto, $f^{-1}(y)$ es un compacto (formado por puntos aislados). La familia $\{U_x: x \in f^{-1}(y)\}$ es un recubrimiento por abiertos de $f^{-1}(y)$. Por la compacidad de $f^{-1}(y)$, existirán $x_1, \ldots, x_n \in f^{-1}(y)$ tales que

$$f^{-1}(y) \subset \bigcup_{i=1}^n U_{x_i}.$$

Así,

$$f^{-1}(y) \subset \bigcup_{i=1}^n U_{x_i} \cap f^{-1}(y) = \{x_1, \dots, x_n\},$$

i.e. [y] = n.

(b) Bastará probar que la función

$$g: \Sigma \longrightarrow \mathbb{R}$$
$$y \mapsto [y]$$

es continua. En efecto, si sabemos que q es continua en un conexo Σ y usamos que sólo toma valores enteros positivos por (a), deducimos que es constante.

La continuidad se obtiene probando que q es localmente constante. Para verlo, sea $y \in \Sigma$. Por lo visto en (a), existen un número finito de entornos abiertos U_{x_i} , $i=1,\ldots,n$, de x_i en Ω y entornos V_{x_i} de y en Σ tales que

$$f|_{U_{x_i}}:U_{x_i}\longrightarrow V_{x_i}$$
 es un homeomorfismo

 \mathbf{y}

$$f^{-1}(y) = \bigcup_{i=1}^{n} U_{x_i} \cap f^{-1}(y) = \{x_1, \dots, x_n\}.$$

 $^{^3}f$ se dice propia si $f^{-1}(K)$ es compacto para todo compacto $K\subset \Sigma$ 4f es localmente invertible si para cada $x\in \Omega$ existe un entorno U_x de x en Ω y un entorno V_y de y=f(x) en Σ tal que $f|_{U_x}:U_x\longrightarrow V_y$ es un homeomorfismo.

En particular, para cada $z \in V := \bigcap_{i=1}^n V_{x_i}$, existirá un único $w_i \in U_{x_i}$ tal que $f(w_i) = z$, para todo i = 1, ..., n. Así,

$$[z] \geq n$$
.

Vamos a probar que existe $\varepsilon > 0$ tal que $B(y, \varepsilon) \subset V$ y

$$[z] = n, \quad \forall z \in B(y, \varepsilon).$$

Razonamos por contradicción suponiendo que existe una sucesión de puntos $z_m \in B(y, \frac{1}{m})$ tal que $[z_m] > n$, para todo $m \in \mathbb{N}$. Necesariamente, $\{z_m\} \longrightarrow y$ y existirá $a_m \in \Omega \setminus \bigcup_{i=1}^n U_{x_i}$ tal que $f(a_m) = z_m$. Como f es propia y $\{z_m : m \in \mathbb{N}\}$ es compacto, el conjunto $f^{-1}(\{z_m : m \in \mathbb{N}\})$ es compacto y, en consecuencia, la sucesión $\{a_m\}$ (de puntos del compacto anterior) posee una subsucesión $\{a_{m_k}\}$ convergente hacía un $w \in \Omega \setminus \{x_1, \ldots, x_n\}$ con $f(w) = \lim_{k \to \infty} f(a_{m_k}) = \lim_{k \to \infty} z_{m_k} = y$, es decir, $w \in f^{-1}(y) = \{x_1, \ldots, x_n\}$, una contradicción.