Simulare examenul de bacalaureat – aprilie 2013 Proba scrisă la FIZICĂ BAREM DE EVALUARE ŞI DE NOTARE

- Filiera teoretică profilul real
 Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

	Soluţie, rezolvare	Puncta
I . 1.	b	3р
2.	С	3р
3.	a	3р
4.	b	3p
5.		3p
11 -	Total I	15p
II.a.	reprezentarea corectă a \tilde{G}	Y
	reprezentarea corectă a N 1p	3 p
	reprezentarea corectă a \vec{F}_{t}	
b.	$F\cos\beta - F_f - mg\sin\alpha = 0$	
	$N + F\sin\beta - mg\cos\alpha = 0$	
	$F_f = \mu N = \mu (mg \cos \alpha - F \sin \beta)$	
	$ma(\sin\alpha + u\cos\alpha)$	5р
	$F = \frac{mg(\sin \alpha + \mu \cos \alpha)}{\cos \beta + \mu \sin \beta}$	
	$F \cong 51,9 \text{ N}$	
C.	$mg\sin\alpha - F\cos\beta - F_t = ma$	
U .		
	$F = \frac{mg(\sin\alpha - \mu\cos\alpha) - ma}{\cos\beta - \mu\sin\beta}$	3р
.1	F ≅ 4,8 N 1p	
d.	$N \rightarrow 0$ 1p	
	$F\sin\beta = mg\cos\alpha$ 2p	4p
	F ≅ 121,2 N 1p	
	Total II	15p
III.a.	Poziția corespunzătoare punctului B și justificare	2p
b.	$\Delta E_c = L_G + L_{F_{11}} + L_{F_{12}} = 0 1p$	
	$L_{\rm G} = mgh$	
	$L_{F_{11}} = -\mu_1 mgh \operatorname{ctg} \alpha $ 1p	5р
	$L_{F_{12}} = -\mu_2 mgd_0 $ 1p	
	$d_0 = 10 \text{ m}$	
C.	$L_{G} = -mgh $ 3p	
	$L_{G} = -40 \text{ J}$	4p
d.	$mv_0^2 - k\Delta l^2$	
1	$\frac{2}{2}$	
7	$\varepsilon = \frac{\Delta l}{l}$	4p
	$\varepsilon = \frac{\Box}{l_0}$	
	rezultat final $arepsilon=50\%$,
	Total II	15p
OTAL		45p

Simulare examenul de bacalaureat – aprilie 2013 Proba scrisă la FIZICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Filiera teoretică – profilul real

- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

Subie	ctul B. ELEMENTE DE TERMODINAMICĂ		45puncte)
	Soluţie, rezolvare		Punctaj
I . 1.	d.		3р
2.	b.		3р
3.	C.		3р
4.	C.		3p
5.	a.		3p
	Total I		15p
II.a.	$p_{1}V = \frac{N}{N_{A}}RT$ $N = \frac{p_{1}VN_{A}}{RT}$	2p 1p	4p
	RT $N = 5 \cdot 10^{21} molecule$	1p	
b.		•	3p
	$m = \frac{N\mu}{N_A}$	2р	
	$m = 23,24 \cdot 10^{-5} kg$	1p	
C.	$\rho = \frac{p_1 \cdot \mu}{R \cdot T_1} \tag{3}$	3р	4р
		1p	
d.	$m = \frac{pV\mu}{RT}$	2p	4р
	$\Delta m = m - m'$	1p	
	$\Delta m \cong 4 \cdot 10^{-5} kg$	1p	
	Total II		15p
III.a.	reprezentarea grafică în coordonate (T , V), corect realizată	3р	3p
b.	$L = L_{23} + L_{41}$	1p	•
	$L = (p_2 - p_1)(V_3 - V_1)$	2р	4
		-	4p
	$L = p_1 V_1$	1p	
C.	$\eta = L/Q_{primita}$	1p	4 p
	$Q_{primita} = Q_{12} + Q_{23}$	1p	
	$Q_{primita} = \nu C_V (T_2 - T_1) + \nu C_p (T_3 - T_2)$	1p	
	rezultat final η = 15,38%	1p	
d.	$\eta_C = 1 - rac{T_{rece}}{T_{cald}}$	2p	4р
	$\eta_C = 1 - \frac{T_1}{T_3}$	1p	
	rezultat final $\eta_{\text{C}} = 75 \%$	1p	
	Total III		15p
TOTAL			45p

Simulare examenul de bacalaureat – aprilie 2013 Proba scrisă la FIZICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Filiera teoretică – profilul real

- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

	C. PRODUCEREA SI UTILIZAREA CURENTULUI CONTINUU Soluție, rezolvare	,	puncte) Punctaj
I . 1.	d.		
			3p
2.	C.		3p
3.	b.		3p
4.	a.		3p
5.	b		3p
	Total I	A	15p
II.a.	$\frac{1}{r_p} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$ $= \frac{E_1}{r_1} = \frac{E_2}{r_2} = \frac{E_3}{r_3}$	1p	4p
	$E_{p} = r_{p} \left(\frac{E_{1}}{r_{1}} + \frac{E_{2}}{r_{2}} + \frac{E_{3}}{r_{3}} \right)$ rezultat final $E_{p} = 8 \text{ V}$	2p 1p	
b.	rezultat final $E_p = 8 \text{ V}$ $I = \frac{E_p}{r_p + R_3 + R_1 R_2 / (R_1 + R_2)}$	3р	4р
	rezultat final I = 2 A	1p	
C.	$I_{sc} = \frac{E_3}{r_3}$	2p	3р
	rezultat final I = 5 A	1p	
d.	$U_{AB} = E_3 - I_{sc} r_3$	3p	4p
		•	
	rezultat final: $ { m U}_{ m AB} = 0 V $	1p	
	Total II		15p
III.a.	Total II $P = \frac{25RE^2}{\left(R+5r\right)^2} = \frac{RE^2}{\left(R+\frac{r}{5}\right)^2}$	Вр	4р
	D = m	p	
b.	$P_{1} = \frac{RE^{2}}{\left(R+r\right)^{2}}$	р	4p
	$P = \frac{1}{36R}$	p	
	25	p	
7	$P_{1} = 90W$	р	
C.	$n^2 E^2$		4p
	$(1+n)^{2}R$	p	אַדּ
	n=2)	
d.	36 <i>PR</i>	2p	3р
	E = 60V	1p	
	Total III	٠٢	15p
OTAL			45p

Simulare examenul de bacalaureat – aprilie 2013 Proba scrisă la FIZICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Filiera teoretică – profilul real

- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

Subiectul E	Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător OPTICĂ	(45puncte)
	Soluţie, rezolvare		Punctaj
I . 1.	d.		3р
2.	b.		3р
3.	a.		3р
4.	a.		3р
5.	C.		3p
	Total I		15p
II.a.	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$		4 p
	$\frac{=-}{r}$	2p	
		\sim	
	$x_2 = \frac{fx_1}{f + x_1}$	1p	
	$x_2 - f + x_1$	IP	
		1n	
	$x_2 = 60cm$	1p	
b.	$0 x_2 z$	0	4p
	$\beta = \frac{x_2}{x_1} = -3$	2p	
		_	
	$y_2 = \beta y_1 = -6cm$	2p	
C.	$d = -x_1 + x_2$	2p	3р
	· -		
d.	d = 80cm	1p	4 10
a.	$\frac{1}{1} - \frac{1}{1} = \frac{1}{1}$	1p	4p
	$x_2 - x_1 - f$	۱۲	
		1n	
	$d = -x_1 + x_2$	1p	
	$x_2^2 - x_2 d + f d = 0$	1p	
	$\Delta = d^2 - 4fd \Longrightarrow d > 4f$	1p	
	Total II	۱۲	45
III.a.			15p 4p
III.a.	$x = \frac{k\lambda D}{2l}$	2p	4p
	21	- P	
	2lx		
	$\lambda = \frac{2lx}{kD}$	1p	
	$\lambda = 0.5 \mu m$	1 n	
		1p	
b.	$i = \frac{\lambda D}{\lambda}$	2p	4p
	l = 2l	∠γ	
	i = 5mm	2p	
C.	$\delta = 5\lambda$	2p	3p
	$\delta = 2.5 \mu m$	1p	
d.	$\delta = 2.5 \mu m$ $x_{k} = x_{x} + (n-1)\frac{ei}{\lambda}$ $\Delta x = (n-1)\frac{ei}{\lambda}$	٠٢	4p
Ju.	$x = x + (n-1)\frac{et}{}$	2p	4P
4		-r-	
	ei ei		
	$\Delta x = (n-1)\frac{1}{2}$	1p	
	$\Delta x = 1cm$	1-	
		1p	45
TOTAL	Total III		15p
TOTAL			45p