Microelectronics Circuit Analysis and Design Homework(11st)

Yuejin Xie U202210333

Oct 23rd, 2023

10.44 Consider the MOSFET current-source circuit in Figure P10.44 with $V^+=+2.5\mathrm{V}$ and $R=15~\mathrm{k}\Omega$. The transistor parameters are $V_{TN}=0.5\mathrm{V}$, $k_n'=80\mu\mathrm{A/V}^2$, $W/L=80\mu\mathrm{A/V}^2$, W/L=6, and $\lambda=0$. Determine I_{REF} , I_O , and V_{DS2} (sat).

Figure 1: Problem 10.44

10.54 The transistor circuit shown in Figure P10.54 is biased at $V^+ = +5V$ and $V^- = -5$ V.The transistor parameters are $V_{TP} = -1.2V$, $k_p' = 80\mu A/N^2$, $\lambda = 0$, $(W/L)_1 = (W/L)_2 = 25$, and $(W/L)_3 = (W/L)_4 = 4$. Determine I_{REF} , I_O , and V_{SD2} (sat).

Figure 2: Problem 10.54

10.60 The transistors in the circuit shown in Figure P10.60 have parameters $V_{TN}=0.4\mathrm{V}, V_TP=-0.4\mathrm{V}, k_n'=100\mu\mathrm{A}/N^2, k_p'=60\mu\mathrm{A}/\mathrm{V}^2, \text{and } \lambda_n=\lambda_p=0$. The transistor width-to-length ratios are $(W/L)_1=\mathrm{e}\ I_O, I_{\mathrm{REF}}, \mathrm{and}\ (W/L)_2=20,\ (W/L)_3=5,\ \mathrm{and}\ (W/L)_4=10$. Determine $V_{DS2}(\mathrm{sat})$. What are the values of V_GS1, V_{GS3} , and V_{SG4} ?

Figure 3: Problem 10.60

10.84 In the circuit in Figure P10.84, the active load circuit is replaced by Wilson current source. Assume that $\beta=80$ for all transistors, and that =0.2mA. Determine the open-circuit small-signal voltage gain.

Figure 4: Problem 10.84