. .

FIG. ,

FIG. 3A

												¥														
Human (aa 290)			L	A	Y	L	D	Y	Y	L	D	D	I	1	D	L	F	N	C	L	T	N	V	Τ.	Γ.	
Mouse (aa 289)			L	T	Y	T	N	D	F	S	Đ	D	1	V	K	-	F	Н	C	L	Α	N	V	1.	T.	\Box
Rat (aa 289)			L	T	Y	1	N	Н	F	S	D	D	I	Y	N	-	L	N	C	L	A	N	T	Ι.	1.	
Hamster (aa 289)		Γ.	F	T	Y	Α	N	Ε	F	S	Ш	D	1	T	D	-	F	D	C	L	A	N	V	Ι.	<u> </u>	П

FIG. 4

FIG. 5

1

FIG. 6B

FIG. 6C

Amino Acid	Codon
Phe	UUU, UUC
Ser	UCU, UCC, UCA, UCG, AGU, AGC
Tyr	UAU, UAC
Cys	UGU, UGC
Leu	UUA, UUG, CUU, CUC, CUA, CUG
Trp	UGG
Pro	CCU, CCC, CCA, CCG
His	CAU, CAC
Arg	CGU, CGC, CGA, CGG, AGA, AGG
Gln	CAA, CAG
Ile	AUU, AUC, AUA
Thr	ACU, ACC, ACA, ACG
Asn	AAU, AAC
Lys	AAA, AAG
Met	AUG
Val	GUU, GUC, GUA, GUG
Ala	GCU, GCC, GCA, GCG
Asp	GAU, GAC
Gly	GGU, GGC, GGA, GGG
Glu	GAA, GAG

FIG. 7

Original	Exemplary	Preferred
Residue	Substitutions	Substitutions
Ala (A)	val; leu; ile	val
Arg (R)	lys; gln; asn	lys
Asn (N)	gln; his; lys; arg	gln
Asp (D)	glu	glu
Cys (C)	ser	ser
Gln (Q)	asn	asn
Glu (E)	asp	asp
Gly (G)	pro	pro
His (H)	asn; gln; lys; arg	arg
Ile (I)	leu; val; met; ala; phe norleucine	leu
Leu (L)	norleucine; ile; val; met; ala; phe	ile
Lys (K)	arg; gln; asn	arg
Met (M)	leu; phe; ile	leu
Phe (F)	leu; val; ile; ala	leu
Pro (P)	gly	gly。
Ser (S)	thr	thr
Thr (T)	ser	ser
Trp (W)	tyr	tyr
Tyr (Y)	trp; phe; thr; ser	phe
Val (V)	ile; leu; met; phe; ala; norleucine	leu

FIG. 8

HUMAN TLR4 GENOMIC SEQUENCE

AAAATACTCC CTTGCCTCAA AAACTGCTCG GTCAAACGGT GATAGCAAAC CACGCATTCA CAGGGCCACT GCTGCTCACA AAACCAGTGA GGATGATGCC AGGATGATGT CTGCCTCGCG CCTGGCTGGG ACTCTGATCC CAGCCATGGC CTTCCTCTCC TGCGTGAGAC CAGAAAGCTG GGAGCCCTGC GTGGAGGTAT GTGGCTGGAG TCAGCTCCTC TGAACTTTCC CTCACTTCTG CCCAGAACTT CTCACTGTGT GCCCTGGTTT GTTTATTTTT GCAAAAAAA AAAGAGTTAA ATTACCTTAA AGACTCAAGA AGCCACAGAG ATCAAATAAT TCATTGTTAC AGGGCACTAG AGGCAGCCAT TGGGGGTTTG TTCCATTTGG AAATTTTGAG TGCTAACAGG GGCATGAGAT AACATAGATC TGCTTAAGGT CCCTGCTCTG CTACCTTGTG GCTCTGTGAA GAAATTATCA AACCTGTCTG AGACTAGTTT TCGCATCTGT AAGAGAATTA TAATACCTTC TTCACTAGAG AGTAAGCAGA CTGCTTCAGT GTCATTTCTT CCCACTGGTG GTCTTTACAC TCAGCTTCAA GCAGTCACCC TGCTCCTTTC AATCTCAGGA AAAAGATGGC TTTGTGTGTG TGTCTCT:A: G:AGAAAGAA CTTTCTAAGT TGGTGCAGA CTTCTGTATG CAGTAATATA GTTTAGTCCA GAGGATGAAA AAAATAAGAG A:ATGAAAAA GGAAAAGAGA GAGAGAGA: G AAGAAAAAG CAAGAGGGAA AT: ATGTATA ATGTCAGCTA ATGCAAC:AG TTTCTTTCTT AGTGAAATAC CAATCAGCTG :GTTG:GTAA TCTT:ATTCA TGATGGATCT CTTTTGTTTT TCCCCTGCGC AGACTTC:AC AGTTGCTTTA GAAACCCATA GTAGAGCCGA A: CAGCTAAG AAAATGATTT ACAGTGAGGC AGGGTCAGAA ACTCAAGAGA GAAAAAGCCA GCTGCAGTC: CTGAAGT:TG AGGATATAGG : AGAAAATCA AGTAATATTT AGCAAAGACT AATTCATTAT CTTGAAGCCA TCCCTTCCCT CAATTCCCTG CCCATAGTCC TCCTCCTTGT CCTCTTCTCT GNA:TCCCTC TGCTGTTAGG TTA:ATGG:A GATAGATTTT CTAATTANGC TCACTGCGAG ATAAAACCCA GCCCATGTTT CTATTAGNCA ATATTGTCTT TGAGGCTCCA TGGCTTGCAN CATTTAAGCA GACATACGAA TGAAGATCTG CATGTTTGAA CTCTGACTTT GCGCATATTA CTTCATTTCT TTGAATTTCC ATTTTCCTCA TCTTTAAATG CTTATTTGAA GATTAAGTGA AAGTATATAA CAAACAAGAA CTATGCAGGC TGACATCTAT TGATCACTTA TACTGTAGCG GGCTTTTAAA TAAACTCTTT AAACACCTTA TCTCATTTAA TCCTTCAAAC ATTCTATTGG TTTCAAACAA CAGAAAACTA CAATTAGCTG GCTTCTGCAA GGAATTTTGT TGGAGGAAAT GAGAGCATTC AGAAATTAGA TGGGAGCGTT AGAGAATTAG GCTTACAAAG AATGTGGGAA AGTAGGCTAG AAAGCAGTGT AAAAACAAAG ACAGCATAAA GCACTTGACC TTATTTACTA GGTTCCACCA TGGGAATCCA TGCACTCTAA AGATTTCCCC CTATTTCTAC ATCACTTTGC TCAAGGGTCA ATGAGCCAAG GAAAAGAATG

FIG. 9

CAGTTGTCAA AATCTGGGCC ATGACTAAGG AAGGTCTGGA CATCTTGACT GCCAGACAGT CTCCCCAATG ATATGGAGTA TTTAGAATGA TACTGGATAT TTTATTTATT TTTTGTATTT TCAACTTTTA AGTTCAGAGG CACATGTGCA GAGCATGCAG GTTTATTACA TAAGTAAATG TGTGCCATGG TGATTTGCTG CATAGATCAT GAAAATATGG AACGCATCAT GGATTTGTGT GTCATCCTTG TGCAGGGGCC ATGCTCATCT TCTCTGTATC CTTCCAATTT TAGTATATGT GCTACTGCAG CAAGCACGAT ATTGGATATT TTATTACCTA CATTTTACAT ATGATAAAAT GAGGCTCACT GAGGTTTTTC TTTTGTTCGT TTTATTTTGT TTTGTTTTTA AAGACTTGGC CCTAAACCAC ACAGAAGAGC TGGCATGAAA CCCAGAGCTT TCAGACTCCG GAGCCTCAGC CCTTCACCCC GATTCCATTG CTTCTTGCTA AATGCTGCCG TTTTATCNCG GAGGTTAGAA TGCTGAGCAC GTAGTAGGTG CTCTTTACTT TCTAATCTAG AGTAAGACAA TTTATAAGCA TGAATTGAGT GAATGGATGG ATGGATATAT GGATGGAAGG ATGGACAGAT GGATGAAAGG TTGACTGAAT TTTGTGCTTG CACAAAAAGA GGCCCCTCTC CACCATCTCT GGTCTAGGAG AGGGGAGTTG GGAGACCATG CAGTAAAGAT ACTTCATGTC ATGTGTAATC ATTGCAGGTG GTTCCTAATA TTACTTATCA ATGCATGGAG CTGAATTTCT ACAAAATCCC CGACAACCTC CCCTTCTCAA CCAAGAACCT GGACCTGAGC TTTAATCCCC TGAGGCATTT AGGCAGCTAT AGCTTCTTCA GTTTCCCAGA ACTGCAGGTG CTGGATTTAT CCAGGTAATG AATCCACTTT TACATACTGC ACAAGGTGAG GTGTTCATTG TCCTATCATT TCATTATTGG ACTGGAAAGC TTGGTTTGTG GAGTCTCATC TTCATTCACT TATTCATTCA TACAACAGAT GTCTTATTAA CTATATAACC TTGAGCAAGC TACCTCTATT CTCCAGGTCT CAGTTTTCTA ATCTGTGAAG TAGGCAGTTG GCTGAGACAG CTTCTAAGGG CAATTCTAAT TTTAGGTTTT CTTTTAAGAC AGGAGAGAA ATTAGCTTAA ATTCTTTCAT AAGCAGCTAT TTATTGACTA CTTGCTATAT GTTGTACACT CTGCAAGAAG ACAGGCATAT ATTGATATAT AACACACAGC CCCTGTTGTT AAGGAGGCAT ATCTTCTTGA AAGAGTTAAT ACCTTAAAGT CCTGGGTATG GTCCTGGGTA CATAGTATAT AGTCAACACA TTTTAATTAT GATTTTTTGG ATCTGGAAAC TGATATAAAG ATAGCGACAT ATAACAGTAG GTGATAAATT ATGTTTAAAC TAAAGGTAAC TAATTGTATT TTTCAGAAGA GGGGCCTTCT CTGTGGTGGG TAGTCAAGAA AGATTCATGA ACTGCATAAG ATTCAAACAA TGTCTAGAAT ATTAAAACTA GTGGTGGCAG GTGAAATGTC ATCTTGATAT TTTAGGGGAA CCAAATTCTA AAAGGGTTTT CATCATCGGG GCCTTATTTG CAAATCGAAC TAGATAATGG ATCATGTTCT CTGCAATGGT TTGTAAAACA TTTCAAAACA TTTTACATAT TTTTTATTAT AGAAATTATT GATAAAGACT AAGGTCACAG TATAAAAATC CTTTTTAGAG CAGACATTTC TGTAGAAGAG TGAACATATG ACCTATTATA CTCTAATTTG GATATAGATA GGATGTAACA AAGGAGTAAT

FIG. 9 (Continued)

GGGAACAATT CAAAGGCAGT GGTATAGTGC ATANAGTCCT GTTGGGGTCA GAAGACCTGA GCCCAAGTTT ACCCCCAACA TTTATAACCC ATGTAACCTT AGCATATTAC TTCATCTCCC TTAATCCTTA GTTTCATATC TGATCAATGG AAATGATGAA ACTTATTCTG CTGGATTAAA TGTGATAATA AATATTAATA TGCTGTATAT ATTTAAATTT TTATAAAATA TATTTTATAA GCATAAAGTA TTCTTACAGA ATTTCATTAG GTTTTTAAAA TAATTTCAAC TTTTATTTTT GATTCAGGGA TTTACATGGT TATATTGCGT AATGCTGAGG TGTAGGGTAC AATCGATACC ATCACTCAGG TAGTGAGCAT AGTACCCAAT AGTTAGTTTT TCAACCCTTG CTGCTTTCTC TCTATCCCCT CTCTAGTAAT CCCCAGGGTC TATTTTTGTC ATCTTTATGT CCATGTGTAC TCCATGTTTG GATCCTACTT ATAAAGTGAG AACTCATGGT ATTTGGCTTT CTGTNCCTTT GTTNGCTAAT TTGCTTAGGA TAATGGCTAC TAGCTGCATC TATGCCATTA TGTTCTAAAT TTCANTTNCC TGCATGAAAA TTTTGTCAAG TACTCTATTA AGGTAGACCA CCTCTCCCTT TTTTTTTCAA ACAAGAAGTA GNTTTTCCCA AACAATGCCC TTATGGAATT NATCTTCAAT CCNNGGATAC CCAATAACTT GCCCCAAANC CTTAATCTGN CTTACAGAGA GGCCACCTTC CTTCTGTAAC CCATAGGAGA TTTGGATTGG TAAGAATGCT TTGTGATAGC CCAGCAGCCT TCTTTCCCCT ATAGAAATAT ATATATANTC TTTTTATAGG TGAGGAACTG AAGCTTGAAT AATTTAAATG ACTTATATAC ATNATCATTG CTTGTTAGCC ACAGACCAGA GATTTAAGTT CNCATCTCCA GAATCCAACT TAAATGTTTT CTTTGTCTTA ATACTCTACT TCTCTAAAGT GATTATCACC AATGTAATGA TATAGAGNCA CAGCAAGACC CTTTCCTTCT CACCTAATGT ATAGAGCAAT GCAGAGATAG AATGATGGGC TATAACAATC ATATAATTGA AAGAAAGAAC TTCAAAAATA ATCAAGTTCA GCTGTTTGAT TTATAAATGT GATAACTAAA ACCTAGAGAG GAAAAGAGGT ACTCAAGATC ACACAGTAGG AGAGGACTGC AGAAACACCA AACCCAAGCT CTTTTGTCCA CTCTTCCAGC GTTCTTTCTA CTATACTGCC TATCCTTTAT CTAGTTACCA ATAAATAACA AAAGCTTGGA CCACAATGCT TTTATTGTCT AGGAAACTCC TGAAGAAGCT AAATAAAATG GGTGGGGAAT ATTGTAAATG TAATTCAGGC TGGATTAAGA AAGAACTTAT TTGACATTGT AACTGACAAG CACCTGCAAT GCTGAAAGGA ATTTTCATT GGCNTGCTGT TTGCTGGGCT GCATCAAAGC CCTGTCTCTA GGACATGTCT CTGAACATTG TGTGTAGCAT GGCTTTCATT TCTTTTAGGA TAAAATTCAA AACCCTTTAT CTGGTTGGTA AACCTCTGCC TAATTGGGAA CCTTCTTTCT CCACAACTCC ATATTGTACA CTCCAATTTC ATCTCTGTTC TCCAACCATG GAAGCTATTT GTCATGATTC CTCCTTGTGT CATTTTTTT CTGTCAACCT TGGGGCTTTT GTGTTTGCTG TTCACTTCAC CTCCTTTTAT TGTTAACTTC TACTCATCTT TCAATTTTCA ACTTAAGTGT TCTCAGAGAA ACCTACTTTG ATTTTCTTGG TCCANAACGG TTCTCTGGAT GTGAACTCTT

FIG. 9 (Continued)

ATAGCACATA	ATTTTCACTT	TTTTCCACAA	AACTCGCTCC
TATCACCTGT	TACAAGCATT	TACCTCTGAT	AACAAGAACT
TTCAAATATC	TAGCTGTCAT	GTAAGCACTT	TTCATAAACA
TTAAGAGTAT	CTGTGACACT	TATGTGTAAT	GTTTCGTATC
TCTGAAATTG	ATATTTACCA	GTCATTTATC	TTGGCTACCA
ACTAACAACT	ATCCATATTA	TCTGTACCAA	TCAGATGTAT
AATCACAATT	TTGTGTGACA	GAAAATGGCT	AAACTTGATC
CAAGGCTATT	ACATGCTTT:	ATCAACTGCA	CAATCTTTAT
ATATGTCAAT	TATTGATCTT	TAACTGATTT	CCTTCTTATG
: GATTTTCTC	CTCTGCTTAT	CATGTATGCC	TAACAT: GAC
AAAAAAG:AG	CCTA: TCATT	GCAGCCAGTA	TGATAATACT
CA: GTCTGTG	GGGCTTCTTA	TTTGCTTAT:	TCCATCATCA
TCTGTCCTGC	TTGATGTCTT	TGCCTATGCA	CAATCATATG
: ACCCATCAC	ATCTGTATGA	AGAGC: TGGA	TGACTAGGAT
TAATATTCT:	AT:::TTTAG	GTTCTTATT:	CAGCAGAAAT
ATTAGATAA:	TCAATGTCTT	TTTATTCCTG	TAGGTGTGAA
	TTGAAGATGG	GGCATATCAG	AGCCT: AAGC
ATCCAGACAA	CCTTAATATT	GACAGGAAAC	CCCATCCAGA
CACCTCTCTA			CAAGTTTACA
GTTTAGCCCT	GGGAGCCTTT	TCTGGACTAT	ATCTCTAGAG
GAAGCTGGTG	GCTGTGGAGA	CAAATCTAGC	AAAGAACTTA
AACTTCCCCA	TTGGACATCT	CAAAACTTTG	
ATGTGGCTCA	CAATCTTATC	CAATCTTTCA	AATTACCTGA
GTATTTTCT	AATCTGACCA	ATCTAGAGCA	CTTGGACCTT
TCCAGCAACA	AGATTCAAAG	TATTTATTGC	ACAGACTTGC
GGGTTCTACA	TCAAATGCCC	CTACTCAATC	TCTCTTTAGA
CCTGTCCCTG	AACCCTATGA	ACTTTATCCA	ACCAGGTGCA
TTTAAAGAAA	TTAGGCTTCA	TAAGCTGACT	TTAAGAAATA
ATTTTGATAG	TTTAAATGTA	ATGAAAACTT	GTATTCAAGG
TCTGGCTGGT	TTAGAAGTCC	ATCGTTTGGT	TCTGGGAGAA
TTTAGAAATG	AAGGAAACTT	GGAAAAGTTT	GACAAATCTG
CTCTAGAGGG	CCTGTGCAAT	TTGACCATTG	AAGAATTCCC
GATTAGCATA	CTTAGACTAC	TACCTCGATG	ATATTATTGA
CTTATTTAAT	TGGTTGACAA	ATGGTTCTTC	ATTTTCCCTG
GTGAGTGTGA	CTATTGAAAG	GGTAAAAGAC	TTTTCTTATA
ATTTCGGATG	GCAACATTTA	GAATTAGTTA	ACTGTAAATT
TGGACAGTTT	CCCACATTGA	AACTCAAATC	TCTCAAAAGG
	CTTCCAACAA	AGGTGGGAAT	GCTTTTTCAG
	ACCAAGCCTT		ATCTCAGTAG
	AGTTTCAAAG	GTTGCTGTTC	TCAAAGTGAT
TTTGGGACAA	CCA:GCCT:A	AAGTATTTAG	
CAATGGTGTT	A:TTACCATG	AGTTCAAACT	TCTTGGGCTT
AGAACA:ACT	AGAACATCTG	GATTTCCAGC	ATTCCAATTT
GAAACA:AAT	GAGTGAGTTT	TCAGTATTCC	TA:TCACTCA
GAAA:CCT:C	ATTTACCTTG	ACATTTCTCA	TACTCACACC
AGAGTTGCTT	TCAATGGCAT	CTTCAATGGC	TTGTCCAGTC
TCGAAGTCTT		GGCAATTCTT	TCCAGGAAAA
CTTCCTTCCA	GATATCTTCA	CAGAGCTGAG	AAACTTGACC

FIG. 9 (Continued)

TTCCTGGACC	TCTCTCAGTG	TCAACTGGAG	CAGTTGTCTC
CAACAGCATT	TAACTCACTC	TCCAGTCTTC	AGGTACTAAA
TATGAGCCAC	AACAACTTCT	TTTCATTGGA	TACGTTTCCT
TATAAGTGTC	TGAACTCCCT	CCAGGTTCTT	GATTACAGTC
TCAATCACAT	AATGACTTCC	AAAAAACAGG	AACTACAGCA
TTTTCCAAGT	AGTCTAGCTT	TCTTAAATCT	TACTCAGAAT
GACTTTGCTT	GTACTTGTGA	ACACCAGAGT	TTCCTGCAAT
GGATCAAGGA	CCAGAGGCAG	CTCTTGGTGG	AAGTTGAACG
AATGGAATGT	GCAACACCTT	CAGATAAGCA	GGGCATGCCT
GTGCTGAGTT	TGAATATCAC	CTGTCAGATG	AATAAGACCA
TCATTGGTGT	GTCGGTCCTC	AGTGTGCTTG	TAGTATCTGT
TGTAGCAGTT	CTGGTCTATA	AGTTCTATTT	TCACCTGATG
CTTCTTGCTG	GCTGCATAAA	GTATGGTAGA	GGTGAAAACA
TCTATGATGC	CTTTGTTATC	TACTCAAGCC	AGGATGAGGA
CTGGGTAAGG	AATGAGCTAG	TAAAGAATTT	AGAAGAAGGG
GTGCCTCCAT	TTCAGCTCTG	CCTTCACTAC	AGAGACTTTA
TTCCCGGTGT	GGCCATTGCT	GCCAACATCA	TCCATGAAGG
TTTCCATAAA	AGCCGAAAGG	TGATTGTTGT	GGTGTCCCAG
CACTTCATCC		GTGTATCTTT	GAATATGAGA
	AGAGCCGCTG		GTGCTGGTAT
TTGCTCAGAC	CTGGCAGTTT	CTGAGCAGTC	GACCCTGCTC
CATCTTCATT	GTCCTGCAGA	AGGTGGAGAA	AGCAGGAACA
AGGCAGCAGG	TGGAGCTGTA	CCGCCTTCTC	
CTTACCTGGA	GTGGGAGGAC	AGTGTCCTGG	GGCGGCACAT
CTTCTGGAGA	CGACTCAGAA	AAGCCCTGCT	GGATGGTAAA
TCATGGAATC	CAGAAGGAAC	AGTGGGTACA	GGATGCAATT
GGCAGGAAGC	AACATCTATC	TGAAGAGGAA	AAATAAAAAC
CTCCTGAGGC	ATTTCTTGCC	CAGCTGGGTC	CAACACTTGT
TCAGTTAATA	AGTATTAAAT	GCTGCCACAT	GTCAGGCCTT
ATGCTAAGGG	TGAGTAATTC	CATGGTGCAC	TAGATATGCA
GGGCTGCTAA	TCTCAAGGAG	CTTCCAGTGC	AGAGGGAATA
AATGCTAGAC	TAAAATACAG	AGTCTTCCAG	GTGGGCATTT
CAACCAACTC	AGTCAAGGAA	CCCATGACAA	AGAAAGTCAT
TTCAACTCTT	ACCTCATCAA	GTTGAATAAA	GACAGAGAAA
ACAGAAAGAG	ACATTGTTCT	TTTCCTGAGT	CTTTTGAATG
GAAATTGTAT	TATGTTATAG	CCATCATAAA	ACCATTTTGG
TAGTTTTGAC	TGAACTGGGT	GTTCACTTTT	TCCTTTTTGA
TTGAATACAA	TTTAAATTCT	ACTTGATGAC	TGCAGTCGTC
AAGGGGCTCC	TGATGCAAGA	TGCCCCTTCC	ATTTTAAGTC
TGTCTCCTTA	CAGAGGTTAA	AGTCTAGTGG	CTAATTCCTA
AGGAAACCTG	ATTAACACAT	GCTCACAACC	ATCCTGGTCA
TTCTCGAGCA	TGTTCTATTT	TTTAACTAAT	CACCCCTGAT
ATATTTTTAT	TTTTATATAT	CCAGTTTTCA	TTTTTTTACG
TCTTGCCTAT	AAGCTAATAT	CATAAATAAG	GTTGTTTAAG
ACGTGCTTCA	AATATCCATA	TTAACCACTA	TTTTTCAAGG
AAGTATGGAA	AAGTACACTC	TGTCACTTTG	TCACTCGATG
TCATTCCAAA	GTTATTGCCT	ACTAAGTAAT	GACTGTCATG
AAAGCAGCAT		TGTTTAAAGG	GGGCACTCTT

FIG. 9 (Continued)

```
TTAAACGGGA AGAAAATTTC CGCTTCCTGG TCTTATCATG
GACAATTTGG GCTATAGGCA TGAAGGAAGT GGGATTACCT
CAGGAAGTCA CCTTTTCTTG ATTCCAGAAA CATATGGGCT
GATAAACCCG GGGTGACCTC ATGAAATGAG TTGCAGCAGA
TGTTTATTTT TTTCAGAACA AGTGATGTTT GATGGACCTA
TGAATCTATT TAGGGAGACA CAGATGGCTG GGATCCCTCC
CCTGTACCCT TCTCACTGCC AGGAGAACTA CGTGTGAAGG
TATTCAAGGC AGGGAGTATA CATTGCTGTT TCCTGTTGGG
CAATGCTCCT TGACCACATT TTGGGAAGAG TGGATGTTAT
CATTGAGAAA ACAATGTGTC TGGAATTAAT GGGGTTCTTA
TAAAGAAGGT TCCCAGAAAA GAATGTTCAT TCCAGCTTCT
TCAGGAAACA GGAACATTCA AGGAAAAGGA CAATCAGGAT
GTCATCAGGG AAATGAAAAT AAAAACCACA ATGAGATATC
ACCTTATACC AGGTAGATGG CTACTATAAA AAAATGAAGT
GTCATCAAGG ATATAGAGAA ATTGGAACCC TTCTTCACTG
CTGGAGGGAA TGGAAAATGG TGTAGCCGTT ATGAAAAACA
GTACGGAGGT TTCTCAAAAA TTAAAAATAG AACTGCTATA
TGATCCAGCA ATCTCACTTC TGTATATATA CCCAAAATAA
TTGAAATCAG AATTTCAAGA AAATATTTAC ACTCCCATGT
TCATTGTGGC ACTCTTCACA ATCACTGTTT CCAAAGTTAT
GGAAACAACC CAAATTTCCA TTGGAAAATA AATGGACAAA
GGAAATGTGC ATATAACGTA CAATGGGGAT ATTATTCAGC
CTAAAAAAG GGGGGATCCT GTTATTTATG ACAACATGAA
TAAACCCGGA GGCCATTATG CTATGTAAAA TGAGCAAGTA
ACAGAAAGAC AAATACTGCC TGATTTCATT TATATGAGGT
TCTAAAATAG TCAAACTCAT AGAAGCAGAG AATAGAACAG
TGGTTCCTAG GGAAAAGGAG GAAGGGAGAA ATGAGGAAAT
AGGGAGTTGT CTAATTGGTA TAAAATTATA GTATGCAAGA
TGAATTAGCT CTAAAGATCA GCTGTATAGC AGAGTTCGTA
TAATGAACAA TACTGTATTA TGCACTTAAC ATTTTGTTAA
GAGGGTACCT CTCATGTTAA GTGTTCTTAC CATATACATA
TACACAAGGA AGCTTTTGGA GGTGATGGAT ATATTTATTA
CCTTGATTGT GGTGATGGTT TGACAGGTAT GTGACTATGT
CTAAACTCAT CAAATTGTAT ACATTAAATA TATGCAGTTT
ΤΑΤΑΑΤΑΤΟΑ ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ
```

FIG. 9 (Continued)