Parse Trees

• If $w \in L(G)$, for some CFG, then w has a parse tree representing the syntactical structure of w.

- Like derivations, a parse tree is an alternative representation for verifying if a string is in the language defined by a CFG.
- The process used for constructing a parse tree for a given string is similar to a derivation of the string.

Constructing a parse tree

We are particularly interested in parse trees where: the yield (string of leafs, from left to right) is a terminal string, and the root is the start symbol.

$$E \to I \mid E + E \mid E * E \mid (E)$$
$$I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

The yield of the tree is a * (a + b00).

Inference, Derivations, and Parse Trees

- Let $G = (V, \Sigma, R, S)$ be a CFG, and $A \in V$.
- The following methods to determine if w is in the language of A are equivalent:
 - Derivations: $A \stackrel{*}{\Rightarrow} w$, $A \stackrel{*}{\underset{lm}{\Rightarrow}} w$, or $A \stackrel{*}{\underset{rm}{\Rightarrow}} w$
 - Construction of the parse tree with root A and yield w.

Exercise

- Provide a grammar for the language $0*1^n0^n1^*$, n > 1.
- Provide a parse tree for the following string:

0110011

Ambiguity in Grammars and Languages

- A grammar captures the structure of a string through the parse tree.
- But is this structure always unique?
- Depending on the application, uniqueness of the structure is highly desirable, e.g., compilers and translators.
- A grammar is ambiguous if a string in the language has two different leftmost (or rightmost) derivations or parse trees.

Let's see an example.

Ambiguity in Grammars

- A grammar $G = (V, \Sigma, R, S)$ is ambiguous if there is a string in Σ^* that has more than one parse tree.
- Example: In the grammar: $E \rightarrow I \mid E + E \mid E * E \mid (E) \cdots$ The sentential form E + E * E has two different parse trees:

$$E \Rightarrow E + E \Rightarrow E + E * E$$

 $E \Rightarrow E * E \Rightarrow E + E * E$

Removing ambiguity from grammars

- Good news: there are ad hoc methods to reduce and remove ambiguity
- Bad news: there is no general algorithm to remove umbiguity. Worse yet: some grammars are inherently ambiguous.

Let's study some techniques for spotting and reducing ambiguity in grammars.

Techniques for reducing ambiguity

We'll consider three grammar structures that often lead to ambiguity:

- ϵ rules like $S \to \epsilon$
- ullet Symmetric recursive rules like $S \to SS$
- Rules that lead to ambiguous attachment of optional postfixes, e.g., $S \rightarrow aS|aSb$

Why ϵ rules are problematic? Consider $S \to SS|a|\epsilon$.

• There are many possible derivations/parse trees for the string a as we can use $S \to SS$ repeatedly, and then get rid of the unnecessary Ss by using $S \to \epsilon$. E.g.:

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow aSS \Rightarrow aS \Rightarrow a$$

 $S \Rightarrow SS \Rightarrow S \Rightarrow a$

Eliminating ϵ -rules

■ Basic idea: Suppose A is nullable (i.e., $A \stackrel{*}{\Rightarrow} \epsilon$). We'll then replace a rule like like $C \to BAD$ with $C \to BAD$, $C \to BD$ and delete any rules with body ϵ .

Algorithm RemoveEps(G), where G = (V, T, R, S):

- 1. Obtain the set of all nullable symbols, n(G), in G:
 - **Pasis:** For all rules $A \to \epsilon \in R$, include A in n(G).
 - Induction: For all rules $A \to C_1C_2 \cdots C_k \in R$. If $\{C_1, C_2, \cdots, C_k\} \subseteq n(G)$, then include A in n(G).
- 2. Obtain the new grammar G_1 : for each rule $A \to X_1 X_2 \cdots X_k$ of R, suppose m of the k X_i 's s are nullable. Then G_1 will contain 2^m versions of this rule, where the nullable X_i 's in all combinations are present or absent.

Eliminating ϵ -rules: example

- Let G be $S \to AB, A \to aAA \mid \epsilon, B \to bBB \mid \epsilon$
- Now $n(G) = \{A, B, S\}$. The first rule will become: $S \to AB \mid A \mid B$, the second $A \to aAA \mid aA \mid aA \mid a$, and the third $B \to bBB \mid bB \mid bB \mid b$
- We then delete the redundant rules, and end up with grammar G_1 :

$$S \rightarrow AB \mid A \mid B, A \rightarrow aAA \mid aA \mid a, B \rightarrow bBB \mid bB \mid b$$

Ok, I got it. But what if L(G) contains ϵ and it is important to retain it? E.g.:

$$S \to (S)$$
$$S \to SS$$
$$S \to \epsilon$$

A highly ambiguous grammar

$$S \to (S)$$
$$S \to SS$$
$$S \to \epsilon$$

Parse tree for the string (())()

When $\epsilon \in L(G)$

We use the following algorithm to rewrite the grammar.

atMostOneEps(G):

- 1. G'' = RemoveEps(G).
- 2. If start symbol S of G is nullable then
 - (a) Create in G'' a new start symbol S'.
 - (b) Add to R the two rules:

$$S' \to \epsilon$$

$$S' \to S$$

(c) Return G''.

Applying atMostOneEps(G)

Original Grammar:

$$S \to (S)$$

$$S \to SS$$

$$S \to \epsilon$$

Result of atMostOneEps:

$$S' \to \epsilon$$

$$S' \to S$$

$$S \to (S)$$

$$S \to ()$$

$$S \to SS$$

removeEps:

$$S \to (S)$$
$$S \to ()$$
$$S \to SS$$

But there is still ambiguity

$$S' \to \epsilon$$

$$S' \to S$$

$$S \to (S)$$

$$S \to ()$$

$$S \to SS$$

What about ()()()?

Eliminating symmetric recursive rules

$S' \to \epsilon$ $S' \to S$ $S \to (S)$ $S \to ()$ $S \to SS$

• Replace $S \to SS$ with one of:

$$S \to SS_1$$
 force branching to the left $S \to S_1S$ force branching to the right

- ullet add $S \to S_1$ to the grammar, and
- change $S \to (S), S \to ()$ to $S_1 \to (S), S_1 \to ()$

So we get

$$S' \to \epsilon$$
 $S \to SS_1$
 $S' \to S$ $S \to S_1$
 $S_1 \to (S)$
 $S_1 \to ()$

Ambiguous attachment

A third source for ambiguity arises when constructs with optional fragments are nested. E.g.

$$S \rightarrow aS \mid aSb$$

Two different parse trees for the string aab

Exercise: provide a unambiguous grammar that recognizes the same language.

Ambiguous attachment (cont.)

The dangling else problem:

```
<stmt> ::= if <cond> then <stmt>
<stmt> ::= if <cond> then <stmt> else <stmt>
```

Consider:

```
if cond_1 then if cond_2 then st_1 else st_2
```

Should the else go with with the innermost if or with the outermost if?

The dangling else problem

```
<stmt> ::= if <cond> then <stmt>
<stmt> ::= if <cond> then <stmt> else <stmt>
if cond_1 then if cond_2 then st_1 else st_2
                             <stmt>
                           cond1 then
                       if
                                       <stmt>
       <stmt>
                               if cond2
                                         then
                                              st1
                                                  else
                                                        st2
                        else
  if cond1
          then
                <stmt>
                              st2
           if
               cond2
                        then
                                  st1
```

The Java Fix

The grammar guarantees that, if a top-level if has an else, then the embedded if must also have one.

```
<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |
            <IfThenElseStatementNoShortIf>
<StatementNoShortIf> ::= <block> |
    <IfThenElseStatementNoShortIf> | ...
<IfThenStatement> ::= if ( <Expression> ) <Statement>
<IfThenElseStatement> ::= if ( <Expression> )
               <StatementNoShortIf> else <Statement>
<IfThenElseStatementNoShortIf> ::=
    if ( <Expression> ) <StatementNoShortIf>
       else <StatementNoShortIf>
                          <Statement>
                     IfThenElseStatement>
```

<StatementNoShortIf>

else

<Statement>

(cond)

Arithmetic Expressions: a better way

Let's study this grammar:

$$E \to I \mid E + E \mid E * E \mid (E)$$
$$I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

- Problems: no precedence between * and +, and no left (or right) associativity.
- How to solve that? Redesign the grammar so that parse trees would reflect such structure.

Solution

Introducing variables that represent "binding strength".

- 1. A factor is an expression that cannot be broken apart by an adjacent * or +. E.g.: Identifiers and a parenthesized expression. $F \rightarrow I \mid (E)$
- 2. A term is an expression that cannot be broken by +. E.g.: a*b, or a factor. $T \to F \mid T*F$
- 3. The rest are expressions, i.e., they can be broken apart with * or +. $E \rightarrow T \mid E + T$

The redesigned grammar:

The original grammar:

$$E \rightarrow I \mid E + E \mid E * E \mid (E)$$
$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

The redesigned grammar

$$E \to T \mid E + T$$

$$T \to F \mid T * F$$

$$F \to I \mid (E)$$

$$I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Now the only parse tree for a + a * a will be

Exercise

Suppose you are designing a programming language and want to specify the syntax for valid type declarations, e.g.:

```
int x, z=3;
real y;
complex s;
```

Provide a grammar that defines the syntax for such type declarations.

Assumptions:

• variable identifiers: x, y, z, s

• numbers: $0, 1, 2, \dots, 9$

types: int, real, complex