Exoplanet Hunting

Kepler Labelled Time Series Data Analysis

Reported by: Zixuan Huang, Zhilin Wang & Renee Adonteng (Group 8)

Outline

Introduction

- Problem statement
- Data source
- Code Review

Data preprocessing

- Scaling; normalization
- outliers removing; data balancing.....

Models and Evaluation

- o MLP
- o CNN
- o RNN

Summary

Comparison; Contribution; Limitation

Introduction -- Problem statement

Background: Search for the New earths

Goal: Develop neural networks to successfully model data for the detection of exoplanets (binary target; time series features)

Framework: Keras

Introduction -- Data source

Data source: Kaggle; NASA Kepler Space Telescope

Brief description of dataset:

- Trainset:
 - 5087 observations
 - 3198 features
 - Column 1 Label 0: exoplanet star
 - Label 1: non-exoplanet star
 - Column 2 Flux values over time
- Testset:
 - 570 observations
 - 3198 features (Same as Trainset)
 - 5 confirmed exoplanet-stars
 - 565 non-exoplanet-stars

	LABEL	FLUX.1	FLUX.2	FLUX.3	FLUX.4	FLUX.5	FLUX.6	FLUX.7	FLUX.8	FLUX.9	 FLUX.3188	F
0	2	93.85	83.81	20.10	-26.98	-39.56	-124.71	-135.18	-96.27	-79.89	 -78.07	
1	2	-38.88	-33.83	-58.54	-40.09	-79.31	-72.81	-86.55	-85.33	-83.97	 -3.28	
2	2	532.64	535.92	513.73	496.92	456.45	466.00	464.50	486.39	436.56	 -71.69	
3	2	326.52	347.39	302.35	298.13	317.74	312.70	322.33	311.31	312.42	 5.71	
4	2	-1107.21	-1112.59	-1118.95	-1095.10	-1057.55	-1034.48	-998.34	-1022.71	-989.57	 -594.37	
5	2	211.10	163.57	179.16	187.82	188.46	168.13	203.46	178.65	166.49	 -98.45	

	LABEL	FLUX.1	FLUX.2	FLUX.3	FLUX.4	FLUX.5	FLUX.6	FLUX.7	FLUX.8	FLUX.9	 FLUX.3188
0	2	119.88	100.21	86.46	48.68	46.12	39.39	18.57	6.98	6.63	 14.52
1	2	5736.59	5699.98	5717.16	5692.73	5663.83	5631.16	5626.39	5569.47	5550.44	 -581.91
2	2	844.48	817.49	770.07	675.01	605.52	499.45	440.77	362.95	207.27	 17.82
3	2	-826.00	-827.31	-846.12	-836.03	-745.50	-784.69	-791.22	-746.50	-709.53	 122.34
4	2	-39.57	-15.88	-9.16	-6.37	-16.13	-24.05	-0.90	-45.20	-5.04	 -37.87
5	1	14.28	10.63	14.56	12.42	12.07	12.92	12.27	3.19	8.47	 3.86

Introduction -- Code review

What can we do?

- Try different preprocessing methods
- Address overfitting problem
- Improve model performance
- Evaluate model from several perspectives

Plot features before preprocessing:

Outliers Removing

Since we were looking for dips in flux when exoplanets pass between the telescope and star, we removed any upper outliers

Data balancing

Oversampling, Undersampling

The original data is extremely imbalanced. It has thousands of negative samples but only 29 positive for training.

Fortunately, the light levels received over time by earth follow to a periodic pattern due to the orbiting feature of the planet.

By rotating the flux of an existed exoplanet, we get a dummy exoplanet.

Exoplanet

Non-Exoplanet

Models and Evaluation - MLP

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	64)	204672
dropout_1 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	32)	2080
dropout_2 (Dropout)	(None,	32)	0
dense_3 (Dense)	(None,	8)	264
dropout_3 (Dropout)		8)	0
dense_4 (Dense)	(None,	1) =======	9 ======
Total params: 207,025 Trainable params: 207,025 Non-trainable params: 0			

Loss Plot

Dense 64, 32, 8, 1 Dropout 0.25 between each layer

Models and Evaluation - MLP

Optimizer = SGD, Batch Size = 32, Epochs = 50

Early Stopping

Model Checkpoint

Evaluation:

	precision	recall	f1-score	support	
9	0.99	0.98	0.99	565	
1	0.13	0.40	0.20	5	
accuracy			0.97	570	
macro avg	0.56	8.69	8.59	570	
weighted avg	0.99	0.97	0.98	570	

Models and Evaluation -- CNN

Model structure

Layer (type)	Output	Snape	Param #
conv1d_1 (Conv1D)	(None,	3187, 8)	96
max_pooling1d_1 (MaxPooling1	(None,	1593, 8)	0
batch_normalization_1 (Batch	(None,	1593, 8)	32
conv1d_2 (Conv1D)	(None,	1583, 16)	1424
max_pooling1d_2 (MaxPooling1	(None,	791, 16)	0
batch_normalization_2 (Batch	(None,	791, 16)	64
conv1d_3 (Conv1D)	(None,	781, 32)	5664
max_pooling1d_3 (MaxPooling1	(None,	390, 32)	0
batch_normalization_3 (Batch	(None,	390, 32)	128
conv1d_4 (Conv1D)	(None,	380, 64)	22592
max_pooling1d_4 (MaxPooling1	(None,	190, 64)	0
batch_normalization_4 (Batch	(None,	190, 64)	256
conv1d_5 (Conv1D)	(None,	180, 128)	90240
max_pooling1d_5 (MaxPooling1	(None,	90, 128)	0
flatten_1 (Flatten)	(None,	11520)	0
dropout_1 (Dropout)	(None,	11520)	0
dense_1 (Dense)	(None,	64)	737344
dropout_2 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	64)	4160
dense_3 (Dense)	(None,	1)	65
Total params: 862,065 Trainable params: 861,825			

Output Shane

Param #

Non-trainable params: 240

Laver (type)

3197x8 1583x16 781x32 380x64 180x128 64 64 conv1d conv1d conv1d conv1d conv1d dense dense dense

Models and Evaluation -- CNN

Loss Plot

Models and Evaluation -- CNN

Optimizer: SGD Batch Size: 512 Epochs: 50

Early stopping;

Model Checkpoint

Evaluation:		precision	recall	f1-score	support
Exoplanet	0	1.00	1.00	1.00	565
Non-exoplanet	1	0.83	1.00	0.91	5
accura		0.00	1.00	1.00	570
macro a	vg	0.92	1.00	0.95	570
weighted a	vg	1.00	1.00	1.00	570

Models and Evaluation -- RNN

Model Structure (pseudocode):

INPUT

X = GRU (4 layers)

Y = CNN (4 Conv1d + MaxPool + BN) + Dropout + Relu

ADD = concatenate([x, y])

OUTPUT = ADD + Relu + Sigmoid

Model (INPUT, OUTPUT)

Models and Evaluation -- RNN

Original model:

High F1 score; test loss is fluctuated; might overfitting

Loss:

Models and Evaluation -- RNN

Batch generator(batch=32, equal number of class 0 and class 1) Hyperparameter (GRU, SGD, Ir= 0.01); Early stopping;

Evaluation:		precision	recall	f1-score	support
Exoplanet	0.0	1.00	1.00	1.00	565
Non-exoplanet	1.0	0.67	0.80	0.73	5
accur	acy			0.99	570
macro	avg	0.83	0.90	0.86	570
weighted	avg	1.00	0.99	0.99	570

Summary

- Compare three models:
 - o F1 score: CNN performs the best
- Compare with previous works:
 - Contribution:
 - Compared different ways of balancing data;
 - Found smoothing is not suitable;
 - Paid more attention to the loss value and addressed overfitting problem;
 - Limitation/ Need to improve:
 - Which indicator is the best to evaluate this dataset? (F1 → test loss → both?)
 - Use K-fold validation to assess performance of model
 - Classify the features, stratify train set and test set