Teoria da computação Problem set 2

Rodrigo Santos Universidade NOVA de Lisboa

Exercício 1

Sejam A e B conjuntos quaisquer. Determine, justificando com uma demonstração ou um contraexemplo, a veracidade das seguintes asserções

(a) Se A é contável então $A \cap B$ também é contável.

Seja B arbitrário $A \cap B \subseteq A$ para qualquer B, pela definição de interseção. Portanto $\forall_x \in A \cap B \Rightarrow x \in A$. Temos que todos os elementos de $A \cap B$ estão contidos em A, como A é contável, $A \cap B$ é contável.

(b) Se A não é contável, então $A \cap B$ também não é contável.

Seja $A=\mathbb{R}$ que é não contável, Cantor. Seja $B=\varnothing$ que é um conjunto contável. Temos então que $A\cap B=\varnothing$ que é conjunto contável. Portanto arranjámos um contra-exemplo, em que A não é contável e $A\cap B$ é contável. Logo a asserção inicial é falsa.

(c) Se A é contável, então $A \cup B$ também é contável.

Seja $A=\varnothing$ que é um conjunto contável. Seja $B=\mathbb{R}$ que é um conjunto não contável, Cantor. $A\cup B=\mathbb{R}$ que é um conjunto não contável. Portanto arranjámos um contra-exemplo, em que A é contável e $A\cup B$ não é contável. Logo a asserção inicial é falsa.

(d) Se A é contável, então $B \setminus A$ também é contável.

Seja $A=\varnothing$ que é um conjunto contável. Seja $B=\mathbb{R}$ que é um conjunto não contável, Cantor. $B\setminus A=\mathbb{R}$ que é um conjunto não contável. Portanto arranjámos um contra-exemplo, em que A é contável e $B\setminus A$ não é contável. Logo a asserção inicial é falsa.

(e) Se A é contável, então A^* também é contável.

Comecemos por denotar A^* como:

$$A^* = \bigcup_{i \in \mathbb{N}} A^i = \epsilon \cup A \cup A^2 \cup \ldots \cup A^i$$

Sabemos que $A \times A$ é contável pois é o produto cartesiano entre dois conjuntos contáveis. Logo $A^i = (A \times \cdots \times A) \times A$ é um conjunto contável. Concluimos que se trata da união indexada em $\mathbb N$ de conjuntos contáveis, que é contável. Portanto A^* é contável se A é contável. Logo a asserção inicial é verdadeira.

Exercício 2

Determine, justificando, se cada um dos seguintes conjuntos é contável ou não contável

(a) O conjunto das funções de {0, 1} para {0, 1}.

Comecemos por escrever o conjunto das funções S das funções de $\{0, 1\}$ para $\{0, 1\}$. Obtemos

$$S = \{f: \{0,1\} \mapsto \{0,1\}\} = \bigcup_{n,k \in \{0,1\}} \{\{(0,k),(1,n)\}\}$$

Portanto o conjunto S é a união indexada em \mathbb{N} de conjunto do tipo $\{(0,k),(1,n)\}$ com $k,n\in\{0,1\}$ que são trivialmente finitos, pelo que são contáveis. Logo trata-se da união indexada em \mathbb{N} de conjuntos contáveis que é contável.

(b) O conjunto das funções de $\{0, 1\}$ para \mathbb{N} .

Comecemos por escrever o conjunto das funções S das funções de $\{0,1\}$ para \mathbb{N} . Obtemos

$$S = \{f: \{0,1\} \mapsto \mathbb{N}\} = \bigcup_{n,k \in \mathbb{N}} \{\{(0,k),(1,n)\}\}$$

Portanto o conjunto S é a união indexada em \mathbb{N} de conjunto do tipo $\{(0,k),(1,n)\}$ com $k,n\in\mathbb{N}$ que são trivialmente finitos, pelo que são contáveis. Logo trata-se da união indexada em \mathbb{N} de conjuntos contáveis que é contável.

(c) O conjunto das funções de N para N.