Model Documentation of the 'Inverted pendulum'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^6 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^2 z$ $\in \mathbb{R}^2 y \in \mathbb{R}^4$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value					
A	Γ 0	1.0	0	0	0	0
	48.9844	0	-48.9844	0	0	0
	0	0	0	0.18494	0	0
	0	0	0	-50.0	0	0
	0	0	-0.5	0	0	0
	0	0	0	0	0	0
B B_1	0 0	7				
	0 0					
	0 50.0					
	0 0					
	0 0					
	1.0 0					
	0 0	1				
	0 0					
	0 50.0					
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
	1.0 0					
C_1 C	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	7 00	36988 0	[0		
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	0.00	0 1.0	0		
		0		.0]		
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	1.0		0		
	I	-1.0		$\overset{\circ}{0}$		
	$\begin{bmatrix} 1.0 & 0 \\ 0 & 0 \end{bmatrix}$	0		$\overset{\circ}{0}$		
D_{11}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	O	0 1.0	~ J		
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
D_{12}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$					
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
D_{21}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$					
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$					
	r _{o o} l					

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

ROC10 Inverted pendulum P. Apkarian and H. D. Tuan, "Robust Conrol via Concave Minimization, Local and Global Algorithms", TOAC, Vol. 45, Nr. 2, pp. 299-305, 2000 Ex. 1

4 Simulation

Figure 1: Simulation of the Inverted pendulum.

References

[1] . Apkarian and H. D. Tuan, "Robust Conrol via Concave Minimization, Local and Global Algorithms", TOAC, Vol. 45, Nr. 2, pp. 299-305, 2000 Ex. 1