Опты, дз 3

Максим Пасько 776

General optimization problems

1.

$$c^T x \to \min$$

s.t. $Ax = b$

$$L(x,\lambda) = c^T x + \lambda^T (Ax - b) = (c^T + \lambda^T A) x - \lambda^T b.$$
 $\nabla_x L = c + A^T \lambda^* = 0 \Rightarrow \lambda^{*T} = -c^T A^T (AA^T)^{-1}.$ Подставляя это λ^* в лагранжиан, получим ответ задачи:

 $p^* = -\lambda^{*T}b = -c^TA^T(AA^T)^{-1}b$ - достигается на всех x : Ax = b

2.

$$c^T x \to \min$$

s.t. $1^T x = 1$
 $x \succeq 0$

Без ограничения общности можно считать, что вектор c отсортирован в порядке по возрастанию, т.е. $c_1 \leq c_2 \leq ... \leq c_n$. Тогда: $c^Tx = c_1x_1 + c_2x_2 + ... + c_nx_n \geq c_1(x_1 + x_2 + ... + x_n) = c_1(1^Tx) = c_1$. Эта оценка достигается при $x: x_1 = 1, x_i = 0, i = \overline{2}, n$. Переходя к общему случаю неотсортированного вектора c, получим, что итоговый ответ будет $p^* = \min(c_1, c_2, ..., c_n) = c_{k_{min}}$, который будет достигаться при $x_{k_{min}} = 1$, $x_i = 0$ $\forall i \neq k_{min}$

3.

$$c^T x \to \min$$

s.t. $1^T x = \alpha$
 $0 \le x \le 1$

Такая же оценка, как в предыдущем номере, уже не пройдёт (потому что мы не сможем подобрать такой вектор x, на котором она достигается), но сработает другая: Опять считаем, что вектор c отсортирован по возрастанию, причём

$$c_1 \le \dots \le c_{i-1} < c_i = \dots = c_{\alpha} = \dots < c_i \le \dots \le c_n$$

Тогда $c^Tx=c_1x_1+\ldots+c_{i-1}x_{i-1}+c_ix_i+\ldots+c_{\alpha}x_{\alpha}+\ldots+c_jx_j+\ldots+c_nx_n\geq c_1+\ldots+c_{\alpha}$. Тогда, если $x_1=\ldots x_{i-1}=1, \sum_{k=i}^{j-1}x_k=\alpha-i+1,$ а $x_j=\ldots=x_n=0,$ то $p^*=c_1+\ldots+c_{\alpha}$. Переходя к случаю неотсортированного вектора c, p^* будет суммой α наименьших координат вектора c. В случае же неравенства $1^Tx\leq\alpha,$ это будет суммой всех неположительных координат вектора c, если таковых меньше, чем α , и суммой α наименьших координат, если их больше или хотя бы равно α

4.

$$c^T x \to min$$

s.t. $x^T A x \le 1$, $A \in \mathbb{S}^n_{++}$

$$L(x,\mu) = c^T x + \mu (x^T A x - 1)$$

$$\nabla_x L = c + 2\mu A x = 0 \quad \Rightarrow \quad x = -\frac{A^{-1} c}{\mu}$$

Тогда $x^TAx=(\frac{A^{-1}c}{\prime\prime})^TA\frac{A^{-1}c}{\prime\prime}=\frac{1}{\mu^2}(A^{-1}c)^TA(A^{-1}c)=\frac{1}{\mu^2}c^TA^{-1}AA^{-1}c=\frac{1}{\mu^2}c^TA^{-1}c.$ При

этом, $\mu(x^TAx - 1) = 0$. Подставляя сюда x^TAx , получаем: $\frac{1}{\mu}c^TA^{-1}c - \mu = 0 \implies \mu = \sqrt{c^TA^{-1}c}$.

$$\frac{1}{\mu}c^T A^{-1}c - \mu = 0 \quad \Rightarrow \quad \mu = \sqrt{c^T A^{-1}c}.$$

Тогда
$$x^* = \frac{-A^{-1}c}{\sqrt{c^TA^{-1}c}}$$
 и решение задачи $p^* = c^Tx^* = -\sqrt{c^TA^{-1}c}$

Теперь рассмотрим случай, когда $A \notin \mathbb{S}^n_{++}$:

$$A = QD(\lambda)Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$$
. Тогда

 $x^{T}Ax = x^{T}QD(\lambda)Q^{T}x = x^{T}\sum_{i=1}^{n}\lambda_{i}q_{i}q_{i}^{T}x = \sum_{i=1}^{n}\lambda_{i}(q_{i}x)(q_{i}x)^{T} = \sum_{i=1}^{n}\lambda_{i}(q_{i}x)^{2}$. Пусть $q_{i}x = y_{i}$, т.е. y=Qx. Тогда $c^Txc^T(Q^{-1}y)\stackrel{\iota^{-1}}{=} c^TQ^Ty=\stackrel{\iota^{-1}}{(Qc)^Ty}$. Пусть $b=\stackrel{\iota^{-1}}{Qc}$. Тогда мы получили такую задачу:

$$b^T y \to min$$

s.t. $y^T D y < 1$

Рассмотрим разные случаи:

 $1)\lambda_i>0 \quad \forall i$ - этот случай это просто наша исходная задача (когда $A\in\mathbb{S}^n_{++}$) и её решение мы уже знаем.

 $\lambda_i < 0$ - в этом случае мы можем взять сколь угодно большой положительный или отрицательный y_i и $p^* = -\infty$

$$3)\exists i: \lambda_i=0:$$

$$(3.1)b_i \neq 0$$
 - опять же $p^* = -\infty$

 $(3.2)b_i = 0$ - в этой задаче мы можем просто выкинуть i-ые элементы из y и b, и λ_i , таким образом мы сведём задачу к задаче размера на один меньше. Рекурсивно так спускаясь, мы придём к задаче вида $\lambda_i > 0 \quad \forall j$, решение которой мы уже знаем.

5.

$$c^Tx \to \min$$
 s.t. $(x-x_c)^TA(x-x_c) \le 1, \quad A \in \mathbb{S}^n_{++}$ $L(x,\mu) = c^Tx + \mu((x-x_c)^TA(x-x_c) - 1)$ $\nabla_x L = c + 2\mu A(x-x_c) = 0 \quad \Rightarrow \quad x - x_c = -\frac{A^{-1}c}{2\mu}$ При этом, $\mu((x-x_c)^TA(x-x_c) - 1) = 0$. Подставляя сюда найденный $x - x_c$, получаем: $\mu(\frac{(A^{-1}c)^T}{2\mu}A\frac{A^{-1}c}{2\mu} - 1) = \mu(\frac{c^TA^{-1}AA^{-1}c}{4\mu^2} - 1) = \frac{c^TA^{-1}c}{4\mu} - \mu = 0 \quad \Rightarrow \quad \mu = \frac{\sqrt{c^TA^{-1}c}}{2}$ Тогда $p^* = c^Tx^* = c^Tx_c - \frac{c^TA^{-1}c}{\sqrt{c^TA^{-1}c}} = c^Tx_c - \sqrt{c^TA^{-1}c}$

6.

$$x^T B x \to \min$$

s.t. $x^T A x \le 1$, $A \in \mathbb{S}^n_+$, $B \in \mathbb{S}^n_+$

Так как $B \in \mathbb{S}^n_+$, верно, что $x^TBx \geq 0 \quad \forall x \in \mathbb{R}^n$. Тогда на нулевом векторе $x^* = 0$ будет достигаться эта оценка, и условие $x^TAx \leq 1$ тоже будет выполнено, то есть ответом будет $p^* = 0$. Это значение будет достигаться на всех таких x, что $x^TBx = 0$ и $x^TAx \leq 1$

7.

$$||Ax - b||_2^2 \to \min$$

s.t. $Cx = d$

$$L(x,\lambda) = \|Ax - b\|_2^2 + \lambda^T (Cx - d)$$

$$\nabla_x L = 2A^T (Ax - b) + C^T \lambda = 0$$

$$2A^T Ax - 2A^T b + C^T \lambda = 0 = 2Gx - 2A^T b + C^T \lambda \quad \Rightarrow \quad \lambda^T C = 2b^T A - 2x^T G \quad \Rightarrow$$

$$\Rightarrow \lambda = 2(CC^*)^{-1} (C^*)^T A^T b - 2(CC^*)^{-1} (C^*)^T Gx$$
При этом, $Cx = d \quad \Rightarrow \quad C^* Cx = C^* d \quad \Rightarrow \quad x = (*C)^{-1} C^* d$. Подставим его в выражение для λ :

 $\lambda=2(CC^*)Y-1\overline{C}A^Tb-2(CC^*)^{-1}\overline{C}G(C^*C)^{-1}C^*d$, где \overline{C} - сопряженная к C матрица (но не транспонированная!)

8.

$$trX - \ln \det X \to \min$$

s.t. $Xs = y$, $y^T s = 1$

$$\begin{array}{l} L(X,\lambda)=trX-\ln\det X=\lambda^T(Xs-y)\\ \nabla_x L=E-X^{-1}+\lambda s^T=0 \quad \Rightarrow \quad X^{-1}=E+\lambda s^T. \ \Pi \text{ ри этом, } (X^{-1})^T=X^{-1}, \quad E^T=E \quad \Rightarrow \\ (\lambda s^T)^T=s\lambda^T=\lambda s^T. \ \text{ Тогда } X^{-1}=E+\frac{1}{2}(\lambda s^T+s\lambda^T)\\ Xs=y \quad \Rightarrow \quad s=X^{-1}y=(E+\frac{1}{2}\lambda s^T+\frac{1}{2}s\lambda^T)y=y+\frac{1}{2}\lambda+\frac{1}{2}s-\frac{1}{2}y^Ty \quad \Rightarrow \quad \lambda=-2y+(1+y^Ty)s. \ \Pi \text{ одставим это в выражение для } X^{-1} \colon \\ X^{-1}=E+(-2y+(1+y^Ty)s)s^T=E-2ys^T+ss^T+y^Tyss^T=E+(1+y^Ty)ss^T-2ys^T. \ \Pi \text{ ри этом, аналогичным образом можно показать, что } ys^T=sy^T, \text{ и тогда } X^{-1}=E+(1+y^Ty)ss^T-ys^T-sy^T. \ \text{ Теперь покажем, что } (X^*)^{-1}=X^{-1} \colon \\ X^{-1}X^*=E+yy^T-\frac{1}{s^Ts}ss^T+(1+y^Ty)(ss^T+yy^Tss^T-ss^T)-ys^T-ys^Tyy^T+\frac{1}{s^Ts}ys^Tss^T-sy^T-y^Tysy^T+\frac{1}{s^Ts}sy^Tss^T=E+ss^T+ys^T-ss^T+y^Tyss^T+y^Tyss^T-y^Tyss^T-ys^T+ys^T-sy^T-y^Tysy^T=E \end{array}$$

9.

$$f_0(x) \to \min$$

s.t. $f_i(x) \le 0$, $f_i - \text{convex}$

Предполагаем, что выполняются условия ККТ.

Так как f_i выпуклые, $f_i(x) - f_i(x^*) \ge \nabla f_i(x^*)^T (x - x^*)$, откуда

$$f_i(x) > f_i(x^*) + \nabla f_i(x^*)^T (x - x^*)$$

При этом, $\mu_i^* \geq 0$. Значит, $\sum_{i=1}^n \mu_i^* f_i(x) \geq \sum_{i=1}^n \mu_i^* (f_i(x^*) + \nabla f_i(x^*)^T)(x - x^*) = \sum_{i=1}^n \mu_i^* f_i(x^*) + \mu_i^* \nabla f_i(x^*)^T (x - x^*) = -\nabla f_0(x^*)^T (x - x^*) \leq 0 \quad \Rightarrow \quad \nabla f_0(x^*)^T (x - x^*) \geq 0$

Duality

1.

$$c^Tx \to \min$$
 s.t. $f(x) \le 0$
$$g(\lambda) = \inf_{x \in \mathbb{R}^n} c^Tx + \lambda^T f = \inf_{x \in \mathbb{R}^n} \lambda^T ((\frac{c}{\lambda})^T x + f) = -\sup_{x \in \mathbb{R}^n} \lambda^T ((-\frac{c}{\lambda})^T x - f) = -\lambda^T \sup_{x \in \mathbb{R}^n} ((-\frac{c}{\lambda})^T x - f) = \lambda^T f^*(-\frac{c}{\lambda})$$

При этом понятно, что если $\lambda_i < 0$, то функция не будет ограниченной снизу, поэтому можно сразу рассматривать $\lambda \succeq 0$. Тогда получаем такую двойственную задачу:

$$-\lambda^T f^*(-\frac{c}{\lambda}) \to \min_{\lambda \succ 0}$$

Она является выпуклой, т.к. сопряжённая функция всегда выпуклая и функция ограничения $\lambda \succeq 0$ является аффинной.

2.

$$\ln \det X^{-1} \to \min$$

s.t. $a_i^T X a_i \le 1$

$$L(X,\mu) = \ln \det X^{-1} + \sum_{i=1}^{m} \mu_i (a_i^T X a_i - 1)$$

$$g(\mu) = \inf_{X \in \mathbb{S}_{++}^n} (\ln \det X^{-1} + \sum_{i=1}^{m} \mu_i (a_i^T X a_i - 1))$$

$$\nabla_x L = -X^{-1} + \sum_{i=1}^{m} \mu_i a_i a_i^T = 0 \quad \Rightarrow \quad X^{-1} = \sum_{i=1}^{m} \mu_i a_i a_i^T$$

Тогда двойственной задачей будет

$$g(\mu) = \ln \det(\sum_{i=1}^{m} \mu_i a_i a_i^T) + \sum_{j=1}^{m} \mu_j (a_j^T (\sum_{i=1}^{m} \mu_i a_i a_i^T)^{-1} a_j - 1) \to \min_{\mu \succeq 0}$$

Проверим наличие сильной двойственности:

Возьмём $X = \frac{E}{\max\limits_{i} \|a_i\|^2 + 1}$. Тогда для этой матрицы будет так:

$$a_i^T X a_i = a_i^T E a_i \frac{1}{\max_j \|a_j\|^2 + 1} = \frac{\|a_i\|^2}{\max_j \|a_j\|^2 + 1} < 1$$

То есть сильная двойственность есть в данной задаче.

(далее надо решить двойственную задачу, но что-то не очень ясно как её решить)

3.

Так как \tilde{x} - точка минимума, то $\nabla_x \phi(\tilde{x}) = 0$: $(*)\nabla f(\tilde{x})^T + 2\alpha A^T (A\tilde{x} - b) = 0$.

Пусть
$$\lambda = 2\alpha(A\tilde{x} - b)$$
. Тогда $(*) \to \nabla f(\tilde{x})^T + \lambda A^T = \nabla_x (f(x) + \lambda^T (Ax - b))(\tilde{x}) = 0$, то есть \tilde{x} также является точкой минимума функции $f(x) + \lambda^T (Ax - b)$. Тогда λ будет точкой минимума у двойтсвенной функции $g(\lambda) = \inf_{x \in \mathbb{R}^n} f(x) + \lambda^T (Ax - b) = f(\tilde{x}) + 2\alpha \|A\tilde{x} - b\|_2^2$,

4.

$$-\sum_{i=1}^{m}\ln(b_i-a_i^Tx)\to\min$$

Пусть $y_i = b_i - a_i^T x$, то есть y = b - Ax(A - матрица, составленная из столбцов a_i). Тогда $-\sum_{i=1}^m \ln(b_i - a_i^T x) \to -\sum_{i=1}^m \ln y_i$, то есть наша задача теперь выглядит так:

$$-\sum_{i=1}^{m} \ln y_i \to \min_{y=b-Ax}$$

$$L = -\sum_{i=1}^{m} \ln y_i + \lambda^T (y - b + Ax)$$

 $g(\lambda)=\inf_{x\in\mathbb{R}^n,y\in\mathbb{R}}(-\sum_{i=1}^m\ln y_i+\lambda^T(y-b+Ax)).$ Функция под инфимумом ограничена снизу, если $\lambda_m^TA=0$ и $\lambda\succ0$.

$$\nabla_{y_i}(-\sum_{i=1}^m \ln y_i + \lambda_i y_i) = -\frac{1}{y_i} + \lambda_i = 0 \quad \Rightarrow \quad y_i = \frac{1}{\lambda_i}$$
. Тогда, с ограничениями $\lambda^T A = 0$ и

 $\lambda\succ 0$, двойственная функция $g(\lambda)=-\sum\limits_{i=1}^{m}\ln\lambda^{-1}+\lambda^{T}y-\lambda^{T}b=\sum\limits_{i=1}^{m}\ln\lambda_{i}+m-\lambda^{T}b$. Тогда двойственная задача будет выглядит так:

$$\sum_{i=1}^{m} \ln \lambda_i + m - \lambda^T b \to \max$$
s.t. $\lambda^T a = 0$
 $\lambda \succ 0$