Zadanie 1

Wiktoria

Treść zadania

Wykazać, że dla rozkładu Cauchy'ego wartość oczekiwana nie istnieje. $f(x) = \frac{1}{\pi(1+x^2)}, \quad x \in \mathbb{R}$

Definicja całki niewłaściwej i jej zbieżności

Niech $f: \mathbb{R} \to \mathbb{R}$ jest całkowalna (w sensie Riemanna) na każdym przedziale $[\alpha, \beta] \subset \mathbb{R}$. Granicę:

$$\int_{a}^{\infty} f(x) dx = \lim_{A \to \infty} \int_{a}^{A} f(x) dx$$

nazywamy całką niewłaściwą funkcji f w granicach a do ∞ . Jeśli granica istnieje i jest skończona nazywamy całkę zbieżną (wpp. rozbieżną).

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

Ponadto, aby całka $\int_{-\infty}^{\infty} f(x) dx$ istniała, chociaż jedna z dwóch całek (dla $a \in \mathbb{R}$) musi być skończona lub obie całki muszą być tego samego znaku.

Rozwiązanie

Aby pokazać, że rozkład Cauchy'ego nie posiada wartości oczekiwanej, musimy pokazać, że całka $\int_{-\infty}^{\infty} x f(x) \, dx$ jest rozbieżna.

Prze
analizujmy całki $\int_{-\infty}^a x f(x) \, dx$ oraz $\int_a^\infty x f(x) \, dx$

$$\int_{-\infty}^a x f(x) dx = \lim_{A \to -\infty} \int_A^a \frac{x}{\pi (1+x^2)} dx = \lim_{A \to -\infty} \left[\frac{\ln(1+x^2)}{2\pi} \right]_{x=A}^a = -\infty$$

$$\int_a^\infty x f(x) \, dx = \lim_{B \to \infty} \int_a^B \frac{x}{\pi (1+x^2)} \, dx = \lim_{B \to \infty} \left[\frac{\ln(1+x^2)}{2\pi} \right]_{x=a}^B = \infty$$

Widzimy zatem, że żadna z rozpatrywanych całek nie jest skończona oraz obie są różnych znaków. Zatem całka $\int_{-\infty}^{\infty} x f(x) dx$, a tym samym wartość oczekiwana rozkładu Cauchy'ego, nie istnieje.