Chaine linéaire fermée de N atomes, x_q : écart par rapport à la position d'équilibre

Équation différentielle:
$$\ddot{x}_q = -\omega_0^2(2x_q - x_{q+1} - x_{q-1}) \qquad \omega_0^2 = \frac{K}{m}$$

$$\omega_0^2 = \frac{K}{m}$$

Linéarité de l'équation différentielle + invariance par translation $\Rightarrow x_q = A \exp(\omega_r t - q k_r a)$

Relation de dispersion :

$$\omega(k) = 2\omega_0 |\sin\left(\frac{kl}{2}\right)|$$

Conditions aux limites périodiques : $x_1(t) = x_N(t)$

$$ightharpoonup k_r = r \frac{2\pi}{Na}$$

 $\Rightarrow k_r = r \frac{2\pi}{Na}$ N modes propres régulièrement espacés entre $-\frac{\pi}{a}$ et $\frac{\pi}{a}$.

Dégénérescence : $g(k)dk = \frac{L}{2\pi}dk$

Cristal à 1D

N modes propres

Généralisation pour un cristal à 3D

3N modes propres