Programação Linear - definição matricial Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

18 de setembro de 2017

Programação Linear - definição matricial

antes

 O algoritmo Simplex determina como seleccionar o elemento pivô para passar de uma base para uma base adjacente melhor.

Guião

- Vamos definir a operação matricial que permite passar de um quadro (base) inicial para qualquer outro quadro (base) final,
- o que é equivalente a efectuar o conjunto dos pivôs que conduzem ao quadro final,
- correspondente a dada escolha prévia de variáveis básicas (base).

depois

 Em análise de sensibilidade, usaremos a definição matricial para analisar os efeitos que a variação de dados no quadro inicial têm sobre o quadro óptimo.

Conteúdo

- Sistema de equações e soluções básicas (revisão)
- Definição matricial do problema de programação linear
- Resolução matricial
- Apêndice
 - Significado dos vectores $B^{-1}b$ e $B^{-1}A_j$
 - Implementação computacional do método simplex
 - Operações com matrizes: exemplos

Sistema de equações e soluções básicas (revisão)

• O problema $\max z = cx$, suj. a $Ax = b, x \ge 0$, para uma qualquer escolha de um conjunto de variáveis básicas, é equivalente a:

$$\max z = c_B x_B + c_N x_N$$

suj. a
$$Bx_B + Nx_N = b$$
$$x_B, x_N \ge 0$$

• em que o conjunto de variáveis x é partido em dois subconjuntos:

 $x_B \in \mathbb{R}_+^{m \times 1}$: variáveis básicas, $x_N \in \mathbb{R}_+^{(n-m) \times 1}$: variáveis não-básicas,

• o vector de custos *c* é partido em dois subvectores:

 $c_B \in \mathbb{R}^{1 \times m}$: subvector de c com os custos das variáveis básicas, $c_N \in \mathbb{R}^{1 \times (n-m)}$: subvector de c com os custos das variáveis não-básicas, e

• a matriz A é partida em duas submatrizes:

 $B \in \mathbb{R}^{m \times m}$: submatriz de A das variáveis básicas (não-singular), $N \in \mathbb{R}^{m \times (n-m)}$: submatriz de A das variáveis não-básicas.

Resolve-se o sistema de equações em ordem a x_B

• pré-multiplicando o sistema de equações por B^{-1} :

$$B^{-1}(Bx_B + Nx_N) = B^{-1}b$$

 $x_B + B^{-1}Nx_N = B^{-1}b$
 $x_B = B^{-1}b - B^{-1}Nx_N$

 Substituindo o valor de x_B na função objectivo, o valor da função objectivo da solução x_B é:

$$z = c_B x_B + c_N x_N = = c_B (B^{-1}b - B^{-1}Nx_N) + c_N x_N = = c_B B^{-1}b + (c_N - c_B B^{-1}N)x_N$$

Quando $\widetilde{x}_N=0$, a solução do sistema de equações \widetilde{x} é uma solução básica:

$$\bullet \quad \widetilde{x} \quad = \quad \left(\begin{array}{c} \widetilde{x}_B \\ \widetilde{x}_N \end{array} \right) = \left(\begin{array}{c} B^{-1}b \\ 0 \end{array} \right)$$

• e tem um valor de função objectivo $\tilde{z} = c_B B^{-1} b$

Se $\widetilde{x}_B \ge 0$ então \widetilde{x} é uma solução básica admissível.

Problema de PL e representação matricial

Geral	Exemplo					
$max cx$ $Ax + Is = b$ $x \ge 0$	max $30x_1 + 20x_2 + 10x_3$ suj. $1x_1 + 1x_2 + 2x_3 + s_1 = 40$ $2x_1 + 2x_2 + 1x_3 + s_2 = 150$ $2x_1 + 1x_2 + s_3 = 20$ $x_1, x_2, x_3 \ge 0$					
$ \begin{array}{c cccc} A & I & b \\ \hline -c & \widetilde{0} & 0 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

A resolução mostrada no diapositivo anterior pode ser representada em quadros, como se segue.

Resolução do sist. de equações: representação matricial - i

- Para resolver o sistema de equações $[A \mid I] * [x \mid s]^t = b$, do quadro simplex, em ordem às variáveis básicas do conjunto x_B , a que correspondem:
 - a matriz B, que é a submatriz de [A | I] com as colunas das variáveis básicas: e
 - o vector c_B , com os coeficientes do vector c das mesmas variáveis,
- é necessário obter:
 - a matriz identidade / nas posições da matriz B,
 - o vector nulo na linha da função objectivo.
- Pré-multiplicar pela matriz da esquerda ($\in \mathbb{R}^{(m+1)\times (m+1)}$) faz isso.

B^{-1}	õ	*	В	=	1
$c_B B^{-1}$	1		-c _B		Õ

 A regra de multiplicação de matrizes partidas (em submatrizes) é semelhante à da multiplicação de matrizes.

Resolução do sist. de equações: representação matricial - ii

• Pré-multiplicando o Quadro Inicial, obtém-se o Quadro Final.

B^{-1}	õ	*	А	1	Ь	=
$c_B B^{-1}$	1		-с	õ	0	
		=	$B^{-1}A$	B^{-1}	$B^{-1}b$	
			$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$	

 Nota: tal como vimos no diapositivo anterior, nas posições que a matriz B ocupa no Quadro Inicial, aparecem as colunas da matriz identidade no Quadro Final.

Exemplo

Dado o Quadro Inicial:

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	
s_1	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
s 3	0	2	1	2 1 0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

- para resolver o sistema de equações em ordem às variáveis básicas $x_B = \{x_3, s_2, x_2\}$, *i.e.*, obter um Quadro Final em que essas variáveis são básicas,
- a matriz B e o vector c_B são os abaixo apresentados, e permitem calcular a matriz B^{-1} e o vector $c_B B^{-1}$:

$$B = \begin{bmatrix} x_3 & s_2 & x_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix} \quad c_B B^{-1} = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix}$$

Exemplo

								Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃		
	1/2	2	0	-1/2	0	*	<i>s</i> ₁	0	1	1	2	1	0	0	40	=
	-1/2	2	1	-3/2	0		<i>s</i> ₂	0	2	2	1	0	1	0	150	
	()	0	1	0		s 3	0	2	1	0	0	0	1	20	
Ì	Ĺ	5	0	15	1		Z	1	-30	-20	-10	0	0	0	0	
								Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>5</i> 3		
						=	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10	
							<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100	
							<i>x</i> ₂	0	2	1	0	0	0	1	20	
							Z	1	5	0	0	5	0	15	500	
						*										
			В	-1	õ					Α			1		Ь	

$$B^{-1} \qquad \widetilde{0}$$

$$c_B B^{-1} \qquad 1$$

	ñ	0
-с	0	0
$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

Notas

- Quando escolhemos um conjunto qualquer de variáveis básicas, não há garantia de os elementos de $B^{-1}b$, de c_BB^{-1} e de $c_BB^{-1}A-c$ serem todos não-negativos.
- Se algum elemento do vector $B^{-1}b$ for negativo, a resolução dá um vértice não-admissível.
- Se algum elemento dos vectores $c_B B^{-1}$ ou $c_B B^{-1} A c$ for negativo, a resolução dá um vértice que não é óptimo.

No exemplo anterior, o Quadro Final é a solução óptima, porque se sabia de antemão quais eram as variáveis básicas da solução óptima.

Apêndice

O que significa o vector $B^{-1}b$?

- Qualquer vector de um espaço vectorial pode ser representado como uma combinação linear dos vectores da base.
- Os elementos de $B^{-1}b$ são as coordenadas do vector b em relação à base $B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$.
- Exemplo:

$$b = 10 \ \vec{v}_1 + 100 \ \vec{v}_2 + 20 \ \vec{v}_3$$

• ou seja, é a solução $x_B = B^{-1}b = (x_3, s_2, x_2)^t = (10, 100, 20)^t$.

O que significa $B^{-1}A_i$?

- Seja A_j uma coluna da matriz $[A \mid I] = [A_1, ..., A_j, ..., A_n \mid I]$.
- Os elementos de $B^{-1}A_j$ são as coordenadas do vector A_j em relação à base $B = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\}$.
- Exemplo:

$$A_{1} = B (B^{-1}A_{1})$$

$$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} -1/2 \\ -3/2 \\ 2 \end{bmatrix}$$

$$\begin{array}{|c|c|c|c|c|c|}
\hline
1 \\ 2 \\ 2 \\ \hline
\end{array} = -1/2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ \hline
\end{array} - 3/2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ \hline
\end{array} + 2 \begin{bmatrix} 1 \\ 2 \\ 1 \\ \hline$$

$$A_21 = -1/2 \ \vec{v}_1 - 3/2 \ \vec{v}_2 + 2 \ \vec{v}_3$$

Implementação computacional do método simplex

- Os solvers de programação linear usam a representação matricial.
- A matriz B^{-1} e as matrizes do quadro inicial (A, b, c) são suficientes para calcular todos os elementos de qualquer quadro simplex.
- A matriz B^{-1} é actualizada em cada iteração, e
- guardada na forma de uma factorização, por exemplo, LU.

Algoritmo simplex primal (maximização)

- (Calcular custos reduzidos das variáveis não-básicas) Calcular $c_B B^{-1} A_i c_i, \forall j \in N$.
- ② (Testar optimalidade) Se $c_B B^{-1} A_i - c_i \ge 0, \forall j \in N$, a solução é óptima. Senão,
- (Selectionar coluna pivot) coluna pivot $k: c_B B^{-1} A_k c_k = \min_{j \in N} \{c_B B^{-1} A_j c_j\}$
- Calcular lado direito $B^{-1}b$ e coluna pivot $B^{-1}A_k$.
- (Verificar se solução óptima é ilimitada) Se todos os elementos de $B^{-1}A_k \le 0$, a solução é ilimitada. Senão,
- (Selectionar linha pivot) linha pivot $I: (B^{-1}b)_I/(B^{-1}A_k)_I = \min_i \{(B^{-1}b)_i/(B^{-1}A_k)_i\}.$
- Actualizar a matriz B^{-1} , e voltar ao passo 1.

Justificação

Economia de espaço:

- A matriz A é tipicamente uma matriz dispersa. A percentagem de elementos não-zero de A pode ser 5% ou 10%.
- Há estruturas de dados para representar matrizes dispersas que permitem grandes economias de espaço.

Eficiência computacional:

- A multiplicação de matrizes dispersas só envolve os cálculos com os elementos diferentes de 0.
- A única coluna que é calculada numa iteração é a coluna da variável que sai da base; as outras são ignoradas.
- A coluna de uma variável pode nunca ser calculada durante a resolução; basta que a variável nunca se torne básica.

Operações com matrizes: exemplos

Soma de matrizes:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

Multiplicação de matrizes:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 5+12 \\ 15+24 \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

Multiplicação de matrizes:

$$\begin{bmatrix} 1 & 2 \end{bmatrix} * \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 3+10 & 4+12 \end{bmatrix} = \begin{bmatrix} 13 & 16 \end{bmatrix}$$

Fim