Strategies for Acceleration of Deep Learning in Algorithm & CMOS-based Hardware

- V. Sze et. al., "Efficient Processing of Deep Neural Networks: A Tutorial and Survey". Proc. IEEE Vol. 105, No. 12, Dec. 2017
- W. Dally, "High-Performance Hardware for Machine Learning", NIPS 2015
- S. Han & W. Dally, "Deep Learning Tutorial and Recent Trends", FPGA 2017
- A. Krizhevsky, "One weird trick for parallelizing convolutional neural networks", arXiv, 2014
- J. Dean, "Machine Learning for Systems and Systems for Machine Learning", NIPS 2017
- Etc..

Jan. 10. 2019 Jong Hoon Shin

Why Deep Learning Did Not Work in the Past?

Geoffrey Hinton summarized the findings up to today in these four points:

1. Our labeled datasets were thousands of times too small.

Youtube comments, reCAPTCHA, Facebook privacy, Amazon reviews...

2.Our computers were millions of times too slow.

GPU, FPGA, ASIC, Neuromorphic (Spiking, NVM)...

3. We initialized the weights in a stupid way.

RBM, Xavier/Glorot/He initialization ..

4. We used the wrong type of non-linearity.

Rel u series...

Advances in Deep Learning Algorithms

Non-Linearities

Relu

Sigmoid

Tanh

GRU

LSTM

Linear

• • •

Optimizer

SGD

Momentum

RMSProp

Adagrad

Adam

Second Order (KFac)

•••

Connectivity Pattern

Fully connected

Convolutional (Conv, MaxPooling)

Dilated

Recurrent

Recursive

Skip / Residual

Random

Loss

Cross Entropy

Adversarial

Variational

Max. Likelihood

Sparse

L2 Reg

REINFORCE

•••

Hyper Parameters

Learning Rate

Decay

Layer Size

Batch Size

Dropout Rate

Weight init

Data augmentation

Gradient Clipping

Beta

Momentum

Advances in Tools for Deep Learning

Platforms

Frameworks

theano

Datasets

WMT Workshop 2014

Famous DL Algorithms for MNSIT & ImageNet

MNIST

ImageNet Competition

- \sim MNIST \rightarrow 1998'
- ImageNet → 2018'
- Sequential data & Video(30fps)?
 - Throughput matters
 - # of width & layers
 - IOT/Edge → Energy matters

AlexNet's Parameters and MACs

Layer	Filter Size (RxS)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

Layer 1

34k Params 105M MACs Layer 2

307k Params 224M MACs Layer 3

885k Params 150M MACs **Input Image**: (224x224x3)

1st Output:

 $(224-11)/4+1 \rightarrow 55X55$

1st Params:

 $(11x11x3)x96 \rightarrow 34K$

1st MACs:

 $(34K \times 55 \times 55) \rightarrow 105M$

Summary of Parameters and MACs

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5,11	3	1, 3 , 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G

- Multiply 1.2M training image for a single training epoch!
- Most of Parameters → FC & Most of MACs→ Filter

Considering Energy Consumption..

- Reduce Memory Access
- Reduce Data Type: $F \rightarrow I$, $32 \rightarrow 16 \rightarrow 8$
- Reduce Mult & Add

	Inference	Training
Algorithm	Pruning: P-Threshold, +Training Weight Sharing: • w-KNN→Quant, Huffman coding Quantization: Floating P.→ Fixed P. Low Rank Approximation Binary/Ternary Net Computational Transform • Winograd, FFT, Strassen	 Parallelization: Data/Parameter/Hyp.Par Mixed Precision MAC: FP16 + FP32 Model Distillation: Teachers(GGN,VGG,Res)&Student DSD(Dense-Sparse-Dense) Training Mixed Precision Net: BinaryConnect, QNN
Hardware	Architecture: • Temporal(SIMD,SIMT with Global Buffer): General purpose GPUs • Spatial(Local Memory in Dist. Processing Element) Data Flow Taxonomy: • Weight Stationary, Output Stationary • No local reuse (M-Bottleneck: Roofline) • Row stationary Data type: Int8/16 for inference(TPU1), Mix FP16/32 for training(TPU2) Data Reuse: Conv, Feature map, Filter Kernel Computation(Toeplitz Matrix, TensorCore, Matrix-Multiply Unit) Sparse, Compressed Model(EIE, NVIDIA)	

	Inference	Training
Algorithm	Pruning: P-Threshold, +Training Weight Sharing: • w-KNN→Quant, Huffman coding Quantization: Floating P.→ Fixed P. Low Rank Approximation Binary/Ternary Net Computational Transform • Winograd, FFT, Strassen	 Parallelization: Data/Parameter/Hyp.Par Mixed Precision MAC: FP16 + FP32 Model Distillation: Teachers(GGN,VGG,Res)&Student DSD(Dense-Sparse-Dense) Training Mixed Precision Net: BinaryConnect, QNN
Hardware	Architecture: Temporal(SIMD,SIMT with Global Buffer): General purpose GPUs Spatial(Local Memory in Dist. Processing Element) Data Flow Taxonomy: Weight Stationary, Output Stationary No local reuse (M-Bottleneck: Roofline) Row stationary Data type: Int8/16 for inference(TPU1), Mix FP16/32 for training(TPU2) Data Reuse: Conv, Feature map, Filter Kernel Computation(Toeplitz Matrix, TensorCore, Matrix-Multiply Unit) Sparse, Compressed Model(EIE, NVIDIA)	

Qiu et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, FPGA'16

A. Lavin et. al., "Fast Algorithms for Convolutional Neural Networks", arXiv 2015 Liu et al. Figure "Efficien Sparse-Winograd Winograd Convolutional convolution with Neural sparse Networks", ICLR 2017

	Inference	Training
Algorithm	Pruning: P-Threshold, +Training Weight Sharing: • w-KNN→Quant, Huffman coding Quantization: Floating P.→ Fixed P. Low Rank Approximation Binary/Ternary Net Computational Transform • Winograd, FFT, Strassen	 Parallelization: Data/Parameter/Hyp.Par Mixed Precision MAC: FP16 + FP32 Model Distillation: Teachers(GGN,VGG,Res)&Student DSD(Dense-Sparse-Dense) Training Mixed Precision Net: BinaryConnect, QNN
Hardware	 Architecture: Temporal(SIMD,SIMT with Global Buffer): General purpose GPUs Spatial(Local Memory in Dist. Processing Element) Data Flow Taxonomy: Weight Stationary, Output Stationary No local reuse (M-Bottleneck: Roofline) Row stationary Data type: Int8/16 for inference(TPU1), Mix FP16/32 for training(TPU2) Data Reuse: Conv, Feature map, Filter Kernel Computation(Toeplitz Matrix, TensorCore, Matrix-Multiply Unit) Sparse, Compressed Model(EIE, NVIDIA) 	

Training Acceleration Algorithms

Training Acceleration Algorithms

- Most of Parameters → FC
- Most of MACs→ Filter

Training Acceleration Algorithms

	Inference	Training
Algorithm	Pruning: P-Threshold, +Training Weight Sharing: • w-KNN→Quant, Huffman coding Quantization: Floating P.→ Fixed P. Low Rank Approximation Binary/Ternary Net Computational Transform • Winograd, FFT, Strassen	 Parallelization: Data/Parameter/Hyp.Par Mixed Precision MAC: FP16 + FP32 Model Distillation: Teachers(GGN,VGG,Res)&Student DSD(Dense-Sparse-Dense) Training Mixed Precision Net: BinaryConnect, QNN
Hardware	Architecture: • Temporal(SIMD,SIMT with Global Buffer): General purpose GPUs • Spatial(Local Memory in Dist. Processing Element) Data Flow Taxonomy: • Weight Stationary, Output Stationary • No local reuse (M-Bottleneck: Roofline) • Row stationary Data type: Int8/16 for inference(TPU1), Mix FP16/32 for training(TPU2) Data Reuse: Conv, Feature map, Filter Kernel Computation(Toeplitz Matrix, TensorCore, Matrix-Multiply Unit) Sparse, Compressed Model(EIE, NVIDIA)	

TPU, Google & V. Sze et. al., 2017

	Inference	Training
Algorithm	Pruning: P-Threshold, +Training Weight Sharing: • w-KNN→Quant, Huffman coding Quantization: Floating P.→ Fixed P. Low Rank Approximation Binary/Ternary Net Computational Transform • Winograd, FFT, Strassen	 Parallelization: Data/Parameter/Hyp.Par Mixed Precision MAC: FP16 + FP32 Model Distillation: Teachers(GGN,VGG,Res)&Student DSD(Dense-Sparse-Dense) Training Mixed Precision Net: BinaryConnect, QNN
Hardware	Architecture: • Temporal(SIMD,SIMT with Global Buffer): General purpose GPUs • Spatial(Local Memory in Dist. Processing Element) Data Flow Taxonomy: • Weight Stationary, Output Stationary • No local reuse (M-Bottleneck: Roofline) • Row stationary Data type: Int8/16 for inference(TPU1), Mix FP16/32 for training(TPU2) Data Reuse: Conv, Feature map, Filter Kernel Computation(Toeplitz Matrix, TensorCore, Matrix-Multiply Unit) Sparse, Compressed Model(EIE, NVIDIA)	