

Lecture Overview

- FIRST, FOLLOWS, FIRST+
- Parsing Tables
- ∘ LL(1) Parsing
- Recursive Descent

Analyzing a Grammar

- Suppose we have a grammar G with productions P. We wish to tell if there is an automatic way to parse G.
- We will use the following example grammar:

$$E \rightarrow T E'$$
 $E' \rightarrow + T E' \mid -T E' \mid \epsilon$
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid / F T' \mid \epsilon$
 $F \rightarrow i \mid c \mid (E)$

FIRST

- For any grammar symbol B(terminal, nonterminal, ε, or <eof>) we define FIRST(B) to be the set of terminals that can appear as the first word in a string derived from B.
- \circ If B is a terminal, ϵ , or <eof>, then FIRST(B) = B.

FIRST(E) = { i, c, (}
FIRST(E') = {+, -,
$$\varepsilon$$
}
FIRST(T) = {i, c, (}
FIRST(T') = {*, /, ε }
FIRST(F) = { i, c, (}

FIRST OVER STRINGS

For any grammar symbol string $s = B_1B_2B_3...B_k$ we define FIRST(s) to be the set of terminals that can appear as the first word in a string derived from s. It is the union of FIRST sets for $B_1B_2...B_n$, where B_n is the first symbol whose FIRST set does not contain ϵ . ϵ is in FIRST(s) iff it is in FIRST(B_i) for all i = 1 to k.

FIRST(EE') = { i, c, (}
FIRST(E'ET) = {+, -, i, c, (}
FIRST(T'E') = {*, /, +, -,
$$\epsilon$$
}

FOLLOW

 For any nonterminal N we define FOLLOW(N) to be the set of terminals that can appear to the immediate right of a string derived from N.

```
FOLLOW(E) = {<eof>, ) }

FOLLOW(E') = {<eof>, ) }

FOLLOW(T) = {<eof>, +, -, ) }

FOLLOW(T') = {<eof>, +, -, ) }

FOLLOW(F) = {<eof>, +, -, *, /, ) }
```

FIRST+

∘ For any production A → β, where β is a string of terminals and nonterminals, we define FIRST+(A→β) to be $\begin{cases} \mathsf{FIRST}(\beta) \cup \mathsf{FOLLOW}(A) & \text{if } \epsilon \in \mathsf{FIRST}(\beta) \\ \mathsf{FIRST}(\beta) & \text{otherwise} \end{cases}$

FIRST⁺(E'
$$\rightarrow$$
 + T E') = {+}
FIRST⁺(E' \rightarrow - T E') = {-}
FIRST⁺(E' \rightarrow ϵ) = {,)}

FIRST+

In a predictive grammar, if there are two productions $A \rightarrow \beta_1$ and $A \rightarrow \beta_2$, then it must be that FIRST+($A\rightarrow\beta_1$) and FIRST+($A\rightarrow\beta_2$) are disjoint.

In this case, the FIRST+ sets completely encode the decisions needed for parsing. We can express them in a table called a LL(1) parsing table.

First we must number our (BNF) productions.

LL(1) Parsing Table

- 1. $E \rightarrow T E'$
- 2. $E' \rightarrow + T E'$
- 3. $E' \rightarrow -T E'$
- 4. $E' \rightarrow \epsilon$
- 5. $T \rightarrow F T'$
- 6. $T' \rightarrow * F T'$
- 7. $T' \rightarrow / F T'$
- 8. $T' \rightarrow \epsilon$
- 9. $F \rightarrow i$
- 10. $F \rightarrow c$
- 11. $F \rightarrow (E)$

	+	_	*	/	i	С	()	eof
Е	_	_	_	_	1	1	1	_	_
E'	2	3	_	_	_	_	_	4	4
T	_	_	_	_	5	5	5	_	_
T'	8	8	6	7	_	_	_	8	8
F	_	_	_	_	9	10	11	_	_

	+	-	*	/	i	С	()	eof
E	_	-	-	_	1	1	1	-	_
E'	2	3	_	_	-	_	_	4	4
Ţ	-	-	_	_	5	5	5	_	-
T'	8	8	6	7	-	-	_	8	8
F	-	-	_	_	9	10	11	-	-

- 1. $E \rightarrow T E'$
- 2. $E' \rightarrow + T E'$
- 3. $E' \rightarrow -T E'$
- 4. $E' \rightarrow \epsilon$
- 5. $T \rightarrow F T'$
- 6. $T' \rightarrow * F T'$
- 7. $T' \rightarrow / F T'$
- 8. $T' \rightarrow \epsilon$
- 9. $F \rightarrow i$
- 10. $F \rightarrow c$
- 11. $F \rightarrow (E)$

Parsing Example

stack					
eof E					
eof E' T					
eof E' T' F					
eof E' T' c					
eof E' T'					
eof E'					
eof E' T +					
eof E' T					
eof E' T' F					
eof E' T' c					
eof E' T'					
eof E' T' F *					
eof E' T' F					
eof E' T' i					
eof E' T'					
eof E'					
eof					

input	prod.
c + c * i eof	1
c + c * i eof	5
c + c * i eof	10
c + c * i eof	match
+c*ieof	8
+c*ieof	2
+c*ieof	match
c*ieof	5
c*ieof	10
c*ieof	match
* i eof	6
*ieof	match
i eof	9
i eof	match
eof	8
eof	4
eof	match

Leftmost Derivation

If we write the matched terminals followed by the stack contents (from top to bottom), we get an interesting sequence of strings

```
matched + stack
```

```
TF'
F T' F'
C T' F'
c T'F'
                   C + C T' E'
c F'
                    C + C * F T' E'
C + TF'
                    C + C * F T' E'
C + TE'
                    C + C * i T' E'
C + FT'E'
                    C + C * i T' E'
C + C T' E'
                   C + C * i E'
                    C + C * i
C + C T' E'
```

This is a leftmost derivation in the grammar. In each step, the leftmost nonterminal is replaced by one of its productions' right-hand sides.

LL(1) Parsing Algorithm

```
token = NextToken()
create stack T
T.push(eof)
T.push(S)
                     // start symbol
loop forever:
  focus = T.top() // not T.pop()
  if focus = token = eof
    report success; exit loop;
  else if focus is a terminal or eof
    if focus matches token
       T.pop()
       token = nextToken()
    else
       report error looking for token
          at top of the stack
  else
```

```
if Table(focus, token) is A \rightarrow B_1B_2...B_k T.pop() for i = k to 1 step -1 if B_i is not \epsilon T.push(B_i) else report an error expanding focus
```

LL(1) Table Creation

```
build FIRST, FOLLOW, FIRST<sup>+</sup> sets.
```

```
\label{eq:formula} \begin{tabular}{ll} \textbf{for} each nonterminal A} \\ \textbf{for} each terminal w & // including eof Table[A, w] = error; \\ \end{tabular} \begin{tabular}{ll} \textbf{for} each production p of the form $A \to \beta$ \\ \textbf{for} each terminal w in FIRST^+(A \to \beta) & // including eof Table[A, w] = p \\ \end{tabular}
```

Top-Down Parsing

Recursive Descent

LL(1) Table Parsing

Recursion stack contains path from root to current node

Stack contains right children of path from root to current node

Bottom-up Parsing

future nodes

Stack contains roots of discovered subtrees