

- In 2016, the UK generated 223 million tonnes of waste equivalent to 482 kg / person
- Landfill space is limited and the pace of build out of alternative waste treatment infrastructure lags behind the YoY growth in waste
- Depressed prices for recycling material have also increased margin pressure in the industry

Source: Verisk Maplecroft, 2019

"Many wealthy countries send their recyclable waste overseas because it is cheap, helps meet recycling targets and reduces domestic landfill" - BBC

Manual Labor vs Machinery

Cost savings from of automation outweighs cost of manual labor in the long run

How Can Data Science Help?

Image Classification using Deep Learning

Image classification is the process of taking an input (like a picture) and outputting a class (like "recyclable") or a probability that the input is a particular class ("there's a 90% probability that this input is recyclable")

Model Deployment using Computer Vision

Utilizing installed webcam to collect information from digital images or videos and process them to define the attributes

Model Creation

Example Images

Model 1 [Binary Classification]: Recyclable vs Organic

Model 2 [Multi-Classification]: Cardboard, Glass, Metal, Paper, Plastic

Deployment on Still Images - Single Object

Deployment on Still Images - Multi Object

Deployment on Live Video Stream - Single Object

Deployment on Live Video Stream - Multi Object

Model Performance using Confusion Matrix

Model 1 [Binary Classification]: Recyclable / Organic

Accuracy: 83%

Model 2 [Multi-Classification]: Cardboard / Glass / Metal / Paper / Plastic

Model however tends to confuse between:

- Glass vs metal vs plastic
- Paper vs Cardboard

Model 1: ROC Curves & Threshold Selection

Receiver Operating Characteristics Curve

Threshold Selection

True Positive Rate: Out of all actual positives [Recyclable], how many were *correctly* classified False Positive Rate: Out of all actual negatives [Organic], how many were *incorrectly* classified Threshold %: Anything above this threshold probability will be classified as Recyclable.

Model Limitations

- 01 | Limited training data in second model (only 2.5k images vs 25k for first model)
- 02 | Deployed model is only baseline model with only limited additional tuning
- 03 | Real life deployment not as straightforward given noise in webcam frames
- 04 | Model Performance drops in low light conditions
- 05 | Training and Validation error do not converge, a potential sign of overfitting
- O6 | Some training images not correctly labelled and not good representative of classes

Lessons

Building your own model from scratch can be a tedious and cumbersome process especially with large datasets, higher number of hidden layers and if there are multiple hyperparameters to tune. Progress can also be sluggish without external computing resources. Below is an example of the time taken to tune several hyperparameters using rented computing power on Google Cloud Platform.

			CV 3 Acc		
Tuning 1		300	400	500	
Epochs	10	0.66	0.73	0.55	
	20	0.73	0.72	0.73	
	30	0.82	0.75	0.67	
		Total Time Taken Batch Size			
		300	400	500	
	10	6.90	6.90	6.90	
		13.80	13.50	13.50	
Epochs	20	13.00			

Tuning 2	Score	Tuning 2	Time
SGD	0.63	SGD	20.3
RMSProp	0.50	RMSProp	19.8
Adagrad	0.68	Adagrad	19.8
Adadelta	0.70	Adadelta	19.9
Adam	0.64	Adam	19.9
Adamax	0.64	Adamax	19.8
Nadam	0.55	Nadam	13.4

Tuning 3	Score	Tuning 2	Time
oftmax	0.67	Softmax	27.2
oftplus	0.73	Softplus	20.2
Softsign	0.78	Softsign	16.8
Relu	0.61	Relu	19.8
Tanh	0.74	Tanh	19.8
Sigmoid	0.74	Sigmoid	19.8
Hard Sigmoid	0.69	Hard Sigmoid	23.1
Linear	0.62	Linear	19.2

^{*} Total time in minutes

Future Work

Transfer Learning - ResNet50

Transfer learning by using weights obtained from pretrained network. Benefit of ResNet50 is that even if we train deeper networks, the training error does not increase

Image Pre-processing & Augmentation

Utilizing Keras' built in function, ImageDataGenerator to create image augmentations including mirroring, rotating, shearing and color shifting

Solving for Global Interpreter Lock

Using multithreading to speed up Frame Processing Rate in light of the bottleneck caused by Python's Global Interpreter Lock

