An introduction to Bayesian modeling using R and JAGS

Instructors Kent Holsinger Xiaojing Wang

University of Connecticut

22 July 2015

Overview of the Workshop

- Focus on using R and JAGS for Bayesian analysis
- Linear regression including mixed modeling Kent Holsinger
 - Simple linear regression
 - Multiple regression (including random effects)
- Multicollinearity Xiaojing Wang
 - Hierarchical independent prior distributions
 - Variable selection

Linear Regression

One of the most common statistical procedures in ecology and evolution. For example,

- ▶ Data on LMA from 535 individuals in the genus *Protea* (42 species, 48 sites, 142 unique site/species combinations)
- ▶ Data on mean annual temperature for each of those sites

Linear Regression

In R

```
> summarv(lm(lma ~ mat, data=tmp))
Call:
lm(formula = lma ~ mat, data = tmp)
Residuals:
      Min
                10
                      Median
                                    30
                                             Max
-0.025126 -0.005781 -0.000785 0.004647 0.044444
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0521895 0.0027116 19.246 < 2e-16 ***
           -0.0013587 0.0001785 -7.611 1.24e-13 ***
mat
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.009815 on 533 degrees of freedom
Multiple R-squared: 0.09803, Adjusted R-squared: 0.09634
F-statistic: 57.93 on 1 and 533 DF, p-value: 1.241e-13
```

Linear Regression

Remember basic assumptions of simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma^2)$

Here's another way to write that

$$y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \beta_0 + \beta_1 x_i$

The second way of writing the model will be more convenient for us, so that's the approach we'll use.

Statistical Analysis

Statistical inference is the process of learning about the general characteristics of a population from a sample.

- ▶ Characteristics often expressed in terms of parameters θ .
- ▶ Measurements on the subset of members given by numerical values *Y*.
- ▶ Before the data are observed, both Y and θ are unknown.
- ▶ A probability model is assumed for observed data if we knew θ is the truth.
- ▶ What if we have prior information about θ ?

Bayesian Inference

Bayesian inference allows us to update prior beliefs with the observed data to quantify uncertainty about θ .

- ▶ Prior Distribution: $p(\theta)$
- ▶ Sampling Model (likelihood): $p(y \mid \theta)$
- Posterior Distribution

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$

► Calculating p(y) is typically very challenging. Use MCMC (implemented in JAGS) to estimate $p(\theta \mid y)$.

Metropolis-Hastings Algorithm

For θ_j

- lacktriangle propose a new $heta_j^* \sim q(heta^{(t)}| heta_j^t)$
- Calculate Metropolis-Hastings ratio

$$\alpha = \frac{p(\mathbf{Y}|\theta^*)p(\theta^*)/q(\theta^*|\theta^{(t)})}{p(\mathbf{Y}|\theta^{(t)})p(\theta^{(t)})/q(\theta^{(t)}|\theta^*)}$$

• if $\alpha < 1$ set

$$\theta^{(t+1)} = \left\{ \begin{array}{ll} \theta^* & \text{with probability } \alpha \\ \theta^{(t)} & \text{with probability } 1 - \alpha \end{array} \right.$$

If
$$\alpha > 1$$
 set $\theta^{(t+1)} = \theta^*$

Linear Regression - as a Bayesian

We start with the sampling model $p(y \mid \theta)^1$

$$y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \beta_0 + \beta_1 x_i$,

where x_i is the value of the covariate in individual i. Then we add prior distributions $p(\theta)$

$$\begin{array}{rcl} \beta_0 & \sim & \mathsf{N}(0,\tau) \\ \beta_1 & \sim & \mathsf{N}(0,\tau) \\ \sigma^2 & = & \frac{1}{\tau_{\mathit{resid}}} \\ \tau_{\mathit{resid}} & \sim & \mathsf{Exponential}(\phi) \end{array}$$

 $[\]theta \in (\beta_0, \beta_1, \sigma^2)$

Linear Regression - in R+JAGS

Rescale all variables to mean of 0, standard deviation of 1

```
Inference for Bugs model at "simple-linear-regression.jags", fit using jags.
5 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 5000 iterations saved
           mu.vect sd.vect
                             2.5%
                                      25%
                                              50%
                                                      75% 97.5% Rhat n.eff
             0.000 0.041 -0.082
                                  -0.028
                                          0.000
                                                  0.028 0.080 1.001 5000
beta 0
beta.mat
           -0.313 0.041 -0.393 -0.341 -0.314 -0.285 -0.231 1.002 1900
           0.953 0.029 0.897
                                  0.933 0.952 0.972 1.012 1.001 3700
sigma.resid
```

Compare with Im() results from R

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.614e-17 4.110e-02 0.000 1
mat -3.131e-01 4.114e-02 -7.611 1.24e-13 ***
```

Residual standard error: 0.9506 on 533 degrees of freedom

Multiple linear regression

Simple generalization of what we've already seen

$$y_i \sim N(\mu_i, \sigma^2)$$

$$\mu_i = \beta_0 + \sum_{k=1}^K \beta_k x_{ik} ,$$

where x_{ik} is the value of the kth covariate in individual i. The priors are

$$eta_i \sim \mathsf{N}(0, au), \quad i=0,\ldots,K$$
 $\sigma^2 = rac{1}{ au_{resid}}$ $au_{resid} \sim \mathsf{Exponential}(\phi)$

Multiple Linear Regression

From JAGS

Inference for Bugs model at "multiple-linear-regression.jags", fit using jags, 5 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5 n.sims = 5000 iterations saved

	mu.vect	sd.vect	2.5%	25%	50%	75%	97.5% Rhat	n.eff
beta.0	0.000	0.040	-0.078	-0.027	0.000	0.028	0.078 1.001	4800
beta.cdd	0.106	0.073	-0.036	0.058	0.105	0.154	0.251 1.001	5000
beta.elev	-0.319	0.094	-0.500	-0.384	-0.319	-0.256	-0.136 1.001	5000
beta.inso	0.054	0.053	-0.048	0.018	0.054	0.091	0.157 1.001	5000
beta.map	-0.022	0.078	-0.178	-0.074	-0.020	0.031	0.129 1.001	5000
beta.mat	-0.463	0.114	-0.688	-0.541	-0.461	-0.385	-0.243 1.001	5000
beta.ratio	-0.016	0.079	-0.172	-0.069	-0.013	0.039	0.134 1.001	5000
sigma.resid	0.939	0.029	0.884	0.919	0.939	0.958	1.000 1.001	5000

Compare to Im() from R

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.520e-17 4.052e-02 0.000 1.000000
cdd 1.051e-01 7.315e-02 1.437 0.151291
elev -3.184e-01 9.534e-02 -3.339 0.000899 ***
inso 5.288e-02 5.287e-02 1.000 0.317702
map -2.309e-02 7.749e-02 -0.298 0.765836
mat -4.629e-01 1.147e-01 -4.037 6.2e-05 ***
ratio -1.481e-02 7.944e-02 -0.186 0.852218
```

Residual standard error: 0.9373 on 528 degrees of freedom

 $\gamma_i^{(s)}$ denotes the mean for species s to which inidividual i belongs

$$y_{i} \sim \mathsf{N}(\mu_{i}, \sigma_{resid}^{2})$$

$$\mu_{i} = \beta_{0} + \sum_{k=1}^{K} \beta_{k} x_{ik} + \gamma_{i}^{(s)}$$

$$\beta_{i} \sim \mathsf{N}(0, \tau), \quad i = 0, \dots, K$$

$$\sigma_{resid}^{2} = \frac{1}{\tau_{resid}}$$

$$\tau_{resid} \sim \mathsf{Exponential}(\phi)$$

$$\gamma_{i}^{(s)} \sim \mathsf{N}(0, \sigma_{species}^{2})$$

$$\sigma_{species}^{2} = \frac{1}{\tau_{species}}$$

$$\tau_{species} \sim \mathsf{Exponential}(\phi)$$

Alternatively

$$y_i \sim N(\mu_i, \sigma_{resid}^2)$$
 $\mu_i = \beta_{0i}^{(s)} + \sum_{k=1}^K \beta_k x_{ik}$
 $\sigma_{resid}^2 = \frac{1}{\tau_{resid}}$
 $\tau_{resid} \sim \text{Exponential}(\phi)$
 $\beta_{0i}^{(s)} \sim N(\beta_0, \sigma_{species}^2)$
 $\sigma_{species}^2 = \frac{1}{\tau_{species}}$
 $\tau_{species} \sim \text{Exponential}(\phi)$
 $\beta_i \sim N(0, \tau), \quad i = 0, \dots, K$

From JAGS

```
0.081
                       0.055 -0.024
                                       0.045
                                               0.082
                                                       0.118
                                                               0.188 1.001
                                                                             3100
heta cdd
              -0.201
                              -0.408
                                      -0.274
                                              -0.201
                                                       -0.128
                                                               0.010 1.002
beta.elev
                       0.108
                                                                            2400
beta.inso
              -0.073
                       0.058
                              -0.187
                                      -0.112
                                              -0.073
                                                       -0.034
                                                               0.040 1.001
                                                                            3400
beta.map
              -0.418
                       0.083
                              -0.581 -0.474 -0.419
                                                       -0.362
                                                               -0.257 1.001
                                                                            5000
               0.093
                              -0.117
                                       0.020
                                               0.092
                                                       0.169
                                                               0.307 1.001
                                                                            5000
beta.mat
                       0.110
              0.427
                       0.078
                              0.278
                                       0.374
                                               0.427
                                                       0.478
                                                               0.578 1.001
                                                                            4800
beta.ratio
beta.zero
              -0.064
                       0.154
                              -0.369
                                      -0.167 -0.062
                                                       0.037
                                                               0.241 1.001
                                                                            5000
               0.545
                       0.023
                               0.511
                                       0.532
                                               0.544
                                                       0.556
                                                               0.581 1.001
                                                                            3100
sigma.resid
sigma.species
                               0.767
                                       0.884
                                                       1.036
                0.966
                       0.117
                                               0.960
                                                               1.218 1.001
                                                                            5000
```

Compare to Imer() From R

Random effects:

Groups Name Variance Std.Dev. species (Intercept) 0.8951 0.9461 Residual 0.2924 0.5408 Number of obs: 535, groups: species, 42

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	-0.06289	0.14898	-0.422
cdd	0.07941	0.05576	1.424
elev	-0.19835	0.10946	-1.812
inso	-0.07259	0.05791	-1.254
map	-0.42009	0.08176	-5.138
mat	0.09811	0.10893	0.901
ratio	0.43022	0.07776	5.533

Problems with Multicollinearity

- Variables may appear to be unimportant (when they are).
- Coefficient estimates are unstable and hard to interpret (can estimate combinations of coefficients but not individual coefficients).

Alternative Bayesian solutions:

- Independent Prior Distributions
- Variable Selection

Hierarichal Model with Independent Priors

Hierarchical Model:

$$eta_j | \lambda_j, \sigma^2 \sim \mathsf{N}(0, \sigma^2/\lambda_j)$$
 $\lambda_j | \sigma^2 \sim \mathsf{Gamma}(1/2, 1/2)$ $1/\sigma^2 \sim \mathsf{Gamma}(
u_0/2,
u_0 \sigma_0^2/2)$

- Xiaojing: Add brief statement of why this might reduce problem of collinearity relative to independent Normal priors
- Easy to code in JAGS
- Allows each parameter to have own precision with mean 1

Cauchy Prior

First two equations imply that $\beta_j | \sigma^2 \sim \mathsf{Cauchy}(0, \sigma^2)$

$$p(\beta) = \frac{1}{\pi\sigma} \left(1 + \frac{\beta^2}{\sigma^2} \right)^{-1}$$

leading to a collapsed model

$$\mathbf{Y}|eta,\sigma^2 \sim \mathsf{N}(\mathbf{X}eta,\sigma^2\mathbf{I_n}) \ eta_j|\sigma^2 \sim \mathsf{Cauchy}(0,\sigma^2) \ 1/\sigma^2 \sim \mathsf{Gamma}(
u_0/2,
u_0\sigma_0^2/2)$$

No nice full conditional for β_j .

Cauchy Prior

Independent N(0,1)

```
0.188 1.001
beta.cdd
                0.081
                         0.055
                                -0.024
                                         0.045
                                                  0.082
                                                          0.118
                                                                                3100
                                -0.408
                                        -0.274
beta.elev
               -0.201
                         0.108
                                                 -0.201
                                                         -0.128
                                                                   0.010 1.002
                                                                                2400
beta.inso
               -0.073
                         0.058
                                -0.187
                                        -0.112
                                                 -0.073
                                                         -0.034
                                                                   0.040 1.001
                                                                                3400
                                -0.581
                                        -0.474
                                                         -0.362
                                                                  -0.257 1.001
                                                                                5000
beta.map
               -0.418
                         0.083
                                                 -0.419
heta mat
                0.093
                         0.110
                                -0.117
                                         0.020
                                                  0.092
                                                          0.169
                                                                   0.307 1.001
                                                                                5000
beta.ratio
                0.427
                         0.078
                                 0.278
                                         0.374
                                                  0.427
                                                          0.478
                                                                   0.578 1.001
                                                                                 4800
beta.zero
               -0.064
                         0.154
                                -0.369
                                         -0.167
                                                 -0.062
                                                          0.037
                                                                   0.241 1.001
                                                                                5000
sigma.resid
                0.545
                         0.023
                                 0.511
                                         0.532
                                                  0.544
                                                          0.556
                                                                   0.581 1.001
                                                                                3100
sigma.species
                0.966
                         0.117
                                 0.767
                                         0.884
                                                  0.960
                                                           1.036
                                                                   1.218 1.001
                                                                                 5000
```

Independent hierarchical

```
beta.cdd
                0.084
                         0.055
                                -0.026
                                         0.048
                                                  0.085
                                                          0.122
                                                                   0.188 1.003
                                                                                 1300
                                -0.394
                                                         -0.120
                                                                   0.009 1.004
                                                                                 800
beta.elev
               -0.191
                         0.104
                                         -0.262
                                                 -0.190
beta.inso
               -0.077
                         0.059
                                -0.192
                                        -0.117
                                                 -0.077
                                                         -0.038
                                                                   0.039 1.001
                                                                                 5000
                                -0.562
                                                         -0.344
                                                                  -0.240 1.004
                                                                                 870
beta.map
               -0.400
                         0.082
                                        -0.455
                                                 -0.401
                0.084
                                -0.129
                                                  0.084
                                                          0.157
                                                                   0.288 1.009
                                                                                 370
beta.mat
                         0.107
                                         0.013
beta.ratio
                0.416
                         0.079
                                 0.262
                                         0.363
                                                  0.417
                                                          0.469
                                                                   0.570 1.007
                                                                                  510
               -0.060
                         0.142
                                -0.338
                                        -0.154
                                                 -0.061
                                                          0.035
                                                                   0.224 1.002
                                                                                2700
beta.zero
sigma.resid
                0.545
                         0.018
                                 0.512
                                         0.533
                                                  0.544
                                                          0.556
                                                                   0.580 1.001
                                                                                 5000
sigma.species
                0.958
                         0.114
                                 0.767
                                         0.876
                                                  0.947
                                                          1.028
                                                                   1.211 1.001
                                                                                5000
```

Stochastic Search Variable Selection

The Spike-and-Slab prior:

$$eta_j \mid \gamma_j, c, au_j^2 \sim (1 - \gamma_j) \mathcal{N}(0, au_j^2) + \gamma_j \mathcal{N}(0, au_j^2 c^2)$$

 $\gamma_j \mid \pi_j \sim Bernoulli(\pi_j)$

SPIKE&SLAB

- $\gamma_j = 0$: Variable not in the model;
- $\gamma_j = 1$: Variable in the model;
- Calibration of hyper-parameters c, τ²_j needed.

Inference for Variable Selection

- Highest posterior model (HPM): Select a model that has been visited most often.
- Median probability model (MPM): Select variables that appear at least in 50% of visited models.

Alternative spike and slab models

- Popular approach in genomic research;
- Variants:
 - Conjugate version:

$$eta_j \mid \gamma_j, c, au_j^2 \sim (1 - \gamma_j) \mathcal{N}(0, \sigma^2 au_j^2) + \gamma_j \mathcal{N}(0, \sigma^2 au_j^2 c^2).$$

▶ Replace the spike normal in Spike-and-Slab prior by Dirac, i.e.,

$$\beta_j \mid \gamma_j, \tau_j^2 \sim (1 - \gamma_j) \delta_0 + \gamma_j \mathcal{N}(0, \tau_j^2).$$

Variable selection – Dirac + Normal

Independent N(0,1)

```
0.081
                        0.055
                                         0.045
                                                          0.118
                                                                   0.188 1.001
                                                                                3100
beta.cdd
                                -0.024
                                                  0.082
               -0.201
                                -0.408
                                        -0.274
                                                 -0.201
                                                         -0.128
                                                                   0.010 1.002
                                                                                2400
beta.elev
                        0.108
beta inso
               -0.073
                        0.058
                                -0.187
                                        -0.112
                                                 -0.073
                                                         -0.034
                                                                   0.040 1.001
                                                                                3400
beta.map
               -0.418
                        0.083
                                -0.581
                                        -0.474
                                                 -0.419
                                                         -0.362
                                                                  -0.257 1.001
                                                                                5000
                0.093
                        0.110
                                -0.117
                                         0.020
                                                  0.092
                                                          0.169
                                                                   0.307 1.001
                                                                                5000
beta.mat
beta ratio
                0.427
                        0.078
                                 0.278
                                         0.374
                                                  0.427
                                                          0.478
                                                                   0.578 1.001
                                                                                4800
beta.zero
               -0.064
                        0.154
                                -0.369
                                        -0.167
                                                 -0.062
                                                          0.037
                                                                   0.241 1.001
                                                                                5000
                0.545
                                 0.511
                                         0.532
                                                  0.544
                                                          0.556
                                                                   0.581 1.001
                                                                                3100
sigma.resid
                        0.023
                0.966
                                 0.767
sigma.species
                        0.117
                                         0.884
                                                  0.960
                                                          1.036
                                                                   1.218 1.001
                                                                                5000
```

$\mathsf{Dirac} + \mathsf{N}(0,1)$

```
beta.cdd
                0.008
                         0.037
                                 0.000
                                          0.000
                                                  0.000
                                                           0.000
                                                                   0.161 1.128
                                                                                  120
beta.elev
               -0.240
                         0.138
                                -0.450
                                         -0.339
                                                 -0.274
                                                          -0.178
                                                                   0.000 1.072
                                                                                   56
                                                           0.000
beta.inso
               -0.005
                         0.023
                                -0.087
                                          0.000
                                                  0.000
                                                                   0.000 1.036
                                                                                  490
beta.map
               -0.443
                         0.120
                                -0.603
                                         -0.515
                                                 -0.466
                                                          -0.406
                                                                   0.000 1.074
                                                                                   86
                0.018
                         0.085
                                 0.000
                                          0.000
                                                  0.000
                                                           0.000
                                                                   0.290 1.053
                                                                                   93
heta mat
                0.373
                         0.079
                                 0.238
                                          0.338
                                                  0.373
                                                           0.409
                                                                   0.539 1.026
                                                                                  290
beta.ratio
               -0.058
                                -0.346
                                         -0.159
                                                 -0.057
                                                           0.037
                                                                                 5000
beta.zero
                         0.149
                                                                   0.234 1.001
sigma.resid
                0.548
                         0.024
                                 0.514
                                          0.535
                                                  0.547
                                                           0.559
                                                                   0.586 1.004
                                                                                  940
sigma.species
                0.941
                         0.117
                                 0.739
                                          0.861
                                                  0.935
                                                           1.012
                                                                   1.188 1.005
                                                                                  700
```

Variable selection – Dirac + Normal

Dirac + N(0,1)

```
beta cdd
               0.008
                        0.037
                                0.000
                                        0.000
                                                        0.000
                                                                0.161 1.128
                                                0.000
                                                                              120
beta.elev
             -0.240
                        0.138
                               -0.450
                                       -0.339 -0.274
                                                       -0.178
                                                                0.000 1.072
                                                                               56
beta.inso
              -0.005
                       0.023
                              -0.087
                                        0.000
                                                0.000
                                                        0.000
                                                                0.000 1.036
                                                                              490
beta.map
              -0.443
                        0.120
                              -0.603 -0.515 -0.466
                                                       -0.406
                                                                0.000 1.074
                                                                               86
               0.018
                        0.085
                               0.000
                                        0.000
                                                0.000
                                                        0.000
                                                                0.290 1.053
                                                                               93
beta.mat
              0.373
                        0.079
                              0.238
                                        0.338
                                                0.373
                                                        0.409
                                                                0.539 1.026
                                                                              290
beta.ratio
               -0.058
                        0.149
                              -0.346
                                       -0.159
                                               -0.057
                                                        0.037
                                                                0.234 1.001
                                                                             5000
beta.zero
sigma.resid
               0.548
                        0.024
                                0.514
                                        0.535
                                                0.547
                                                        0.559
                                                                0.586 1.004
                                                                              940
sigma.species
               0.941
                        0.117
                                0.739
                                        0.861
                                                0.935
                                                        1.012
                                                                1.188 1.005
                                                                              700
```

Posterior conditioned on $\gamma_i > 0$

```
heta cdd:
            0.06
                      0.121 (-0.028, 0.279)
 beta.elev:
            0.81
                     -0.296 (-0.457, -0.126)*
 beta.inso:
            0.06
                     -0.077 (-0.183, 0.031)
 beta.map:
            0.96
                     -0.460 (-0.604, -0.259)*
                     0.135 (-0.351, 0.407)
  beta.mat:
            0.14
                      0.379 (0.264, 0.540)*
beta.ratio:
            0.99
```

Model Selection

Selection of a single model has the following problems

- ▶ When the criteria suggest that several models are equally good, what should we report? Still pick only one model?
- ▶ What do we report for our uncertainty after selecting a model?

Typical analysis ignores model uncertainty!

Bayesian Model Choice

- Models for the variable selection problem are based on a subset of the x₁, · · · , x_p variables.
- ▶ Encode models with a vector $\gamma = (\gamma_1, \dots, \gamma_p)'$ where $\gamma_j \in \{0, 1\}$ is is an indicator for whether variable \mathbf{x}_j should be included in the model M_{γ} . Notice $\gamma_j = 0 \Leftrightarrow \beta_j = 0$.
- **Each** value of γ represents one of the 2^p models.
- ▶ Under model M_{γ} :

$$\mathbf{y} \mid oldsymbol{eta}, oldsymbol{\gamma}, au \sim \mathcal{N}(\mathbf{X}_{oldsymbol{\gamma}} oldsymbol{eta}_{oldsymbol{\gamma}}, au^{-1} \mathbf{I})$$

where \mathbf{X}_{γ} is design matrix using the columns in \mathbf{X} where $\gamma_j=1$ and $\boldsymbol{\beta}_{\gamma}$ is the subset of $\boldsymbol{\beta}$ that are non-zero.

Bayesian Model Averaging

Rather than use a single model, BMA uses all (or potentially a lot) models, but weights model predictions by their posterior probabilities (measure of how much each model is supported by the data).

Posterior model probabilities

$$P(M_j \mid \mathbf{y}) = \frac{P(\mathbf{y} \mid M_j)P(M_j)}{\sum_j P(\mathbf{y} \mid M_j)P(M_j)},$$

Marginal likelihod of a model is

$$P(\mathbf{y} \mid M_{\gamma}) = \int \int P(\mathbf{y} \mid \beta_{\gamma}, \tau) P(\beta_{\gamma} \mid \gamma, \tau) P(\tau \mid \gamma) d\beta_{\gamma} d\tau.$$

▶ Probability $\beta_j \neq 0$: $\sum_{M_i:\beta_i \neq 0} P(M_j \mid \mathbf{y})$.

Bayesian Model Averaging (Continued)

Predictions

$$P(\mathbf{y}^{new} \mid \mathbf{y}) = \sum_{j} P(\mathbf{y}^{new} \mid \mathbf{y}, M_j) P(M_j \mid \mathbf{y}),$$

where

$$P(\mathbf{y}^{new} \mid \mathbf{y}, M_{\gamma}) = \int P(\mathbf{y}^{new} \mid \mathbf{y}, \boldsymbol{\beta}_{\gamma}, \tau) P(\boldsymbol{\beta}_{\gamma}, \tau \mid \mathbf{y}) d\boldsymbol{\beta}_{\gamma} d\tau.$$