930590352

CSCI 243 Spring 2011 HW2

- 1. w = Randy works hard, d = is a dull boy, j = get a job
 - (a) w Hypothesis
 - (b) $w \to d$ Hypothesis
 - (c) d Modus Ponens
 - (d) $d \rightarrow \neg j$ Hypothesis
 - (e) $\neg j$ Modus Ponens
- 2. (a) c(x) = is in this class, j(x) = can program in java, p(x) = can get a high-paying job
 - i. $\forall x(j(x) \to h(x))$ Hypothesis
 - ii. $j(doug) \rightarrow h(doug)$ Universal Instantiation
 - iii. j(doug) Hypothesis
 - iv. p(doug) Modus Ponens
 - v. c(doug) Hypothesis
 - vi. $c(doug) \wedge p(x)$ Conjunction
 - vii. $\exists x(c(x) \land p(x))$ Existential Generalization
 - (b) c(x) = is in this class, w(x) = enjoys whale watching, o(x) = cares about ocean pollution
 - i. $\exists x(c(x) \land w(x))$ Hypothesis
 - ii. $c(y) \wedge w(y)$ Existential Instantiation
 - iii. w(y) Simplification
 - iv. c(y) Simplification
 - v. $\forall x(w(x) \to o(x))$ Hypothesis
 - vi. $w(x) \rightarrow o(x)$ Universal Instantiation
 - vii. o(y) Modus Ponens
 - viii. $c(y) \wedge o(y)$ Conjunction
 - ix. $\exists x (c(x) \land o(x))$ Existential Generalization
 - (c) c(x) = is in this class, p(x) = owns a PC, w(x) = can use a word program
 - i. $\forall x(c(x) \rightarrow p(x))$ Hypothesis
 - ii. $c(Zeke) \rightarrow p(Zeke)$ Universal Instantiation
 - iii. c(Zeke) Hypothesis
 - iv. p(Zeke) Modus Ponens
 - v. $\forall x(p(x) \to w(x))$ Hypothesis
 - vi. $p(Zeke) \rightarrow w(Zeke)$ Universal Instantiation
 - vii. w(Zeke) Modus Ponens
 - (d) j(x) = is in NJ, o(x) = within 50 miles of the ocean, <math>s(x) = has seen the ocean
 - i. $\exists x(j(x) \land \neg s(x))$ Hypothesis
 - ii. $j(y) \land \neg s(y)$ Existential Instantiation
 - iii. j(y) Simplification
 - iv. $\neg s(y)$ Simplification
 - v. $\forall x(j(x) \to f(x))$ Hypothesis
 - vi. $j(y) \rightarrow f(y)$) Universal Instantiation
 - vii. f(y) Modus Ponens

viii. $f(y) \wedge \neg s(y)$) Conjunction ix. $\exists x (f(x) \to \neg s(x))$ Existential Generalization

- 3. (a) False, because they imply that the conclusionmakes the beginning true.
 - (b) True, modus tollens is used.
 - (c) False, because they have $\neg p$ implying $\neg q$ which cannot be done.
- 4. (a) if n is odd $n = 2k + 1 \implies n^3 + 5$ $= (2k + 1)^3 + 5$ $= 8k^3 + 12k^2 + 6k + 6$ $= 2(4k^3 + 6k^2 + 3k + 3)$ thus $n^3 + 5$ is even
 - (b) if n is odd n^3 will be odd, but adding 5 will make the equation so that odd + odd = even.
- 5. Prove Using Contrapossitve

if
$$n$$
 is even $\implies n = 2k$

$$5n + 6 = 10k + 6$$

$$5n + 6 = 2(5k + 3)$$

Thus, 5n + 6 is even

6. Prove by Exhaustion

$$n > 4 \implies n^3 > 100$$

when n = 1,2,3,4 because only these are $n^3 > 100$, $n^2 + n^3 = 100$ is never true.

- 8. (a) Yes
 - (b) No, first has 1 element, while the second set has 2 elements.
 - (c) No, first set has no elements, second set has 1 element.

10. One set is a 3-tuple, the other set is a 2-tuple and a 1-tuple. Therefore they are not the equivalent.

11. (a)

(b)

(c)

12. (a)
$$\bigcup_{i=1}^{\infty} A_i = Z$$

 $\bigcap_{i=1}^{\infty} A_i = \{-1, 0, 1\}$

(b)
$$\bigcup_{i=1}^{\infty} A_i = Z - \{0\}$$

 $\bigcap_{i=1}^{\infty} A_i = \emptyset$

(c)
$$\bigcup_{i=1}^{\infty} A_i = R$$

 $\bigcap_{i=1}^{\infty} A_i = [-1, 1]$

(d)
$$\bigcup_{i=1}^{\infty} A_i = [1, \infty)$$

 $\bigcap_{i=1}^{\infty} A_i = \emptyset$

13. (a) f(x) = x + 3

*I got this wrong because I didn't know that I could split up to create a system of equations. I should have set anything less than 0 to one equation and anything greater than 0 to another.

(b) f(x) = |x| + 1

(c)

$$f(x) = \left\{ \begin{array}{ll} \mathbf{x}{+}\mathbf{1} & \quad if x \geq 0 \\ -\mathbf{x}{-} & \quad if x < 0 \end{array} \right.$$

(d) f(x) = 1

14. (a) Since f is one-to-one and onto, whatever g sends into f, the resulting output will have to be one-to-one or onto. It does not matter what g sends f, f will output something that follows its properties.

(b) Since as before, whatever g sends f, the output will still be onto; no matter what the initial input is.

15. (a) $a_0 = 2, a_1 = 3, a_2 = 5, a_3 = 9$

(b) $a_0 = 1, a_1 = 4, a_2 = 27, a_3 = 256$

- (c) $a_0 = 0, a_1 = 0, a_2 = 1, a_3 = 1$
- (d) $a_0 = 0, a_1 = 1, a_2 = 2, a_3 = 3$
- 16. (a) each set adds one more 1 and one more 0 with each reiteration of the pattern: 1,1,1...
 - (c) every even index has 2^n where n increases $2^{(\frac{n-1}{2})}$ only every other index: 32, 0, 64...
 - (e) subtract 7 each time, 22-7n: -34, -41, -48...
 - (g) the equation is $2n^3$: 1024, 1458, 2000...
- 17. (a) 2+3+4+5+6=20
 - (b) 1 2 + 4 8 + 16 = 11
- 18. (a) $\frac{3(2^9-1)}{2-1} = 1533$ (b) $\frac{(2^9-1)}{2-1} 1 = 510$
- 19. (c) (1+1+1) + (2+2+2) + (3+3+3) = 18
 - (d) (0+0+0) + (1+2+3) + (2+4+6) = 18
- 20. (a) Countable: f(x) = |x|
 - (b) Countable: f(x) = xwhenevenf(x) = 1 - xwhenodd
 - (c) Not Countable
 - (d) Countable: ???

*I really did not know the correspondance, but now I understand the equation is a lot like (b) but with different constants. I definitely over-thought this one.

21. If A is not countable within B, then a part of B is not countable, thus all are uncountable.