CODE: 18BST102 **SET-2**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October-2021

DIFFERENTIAL EQUATIONS AND TRANSFORM THEORY

(Common to EEE, ECE Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a)
$$\frac{dy}{dx} + (y-1)\cos x = e^{-\sin x}\cos^2 x$$
 6M

b)
$$(D^3 - 3D - 2)y = x^2$$
 6M

(OR)

2.
$$(D^2 + 9)y = (x^2 + 1)e^{3x}$$
 12M

UNIT-II

3. Obtain Fourier cosine series expansion of $f(x) = x \sin x$, $(0, \pi)$ and show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$

(OR)

4. a) Find the Fourier series expansion of

$$f(x) = \begin{cases} -\frac{1}{2}(\pi + x), for - \pi \le x \le 0\\ \frac{1}{2}(\pi - x), for 0 \le x \le \pi \end{cases}$$
 6M

b) Find the Half range Fourier sine series expansion of $e^x \text{ in } 0 \le x \le 1$ 6M

UNIT-III

5. Using Fourier integral Show that

$$e^{-x}\cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^{2} + 2}{\lambda^{4} + 4} \cos \lambda x \, d\lambda$$
 12M

(OR)

- 6. a) Find the Fourier Cosine transform of $e^{-\alpha x}$, $\alpha > 0$ 6M
 - b) Find the Finite Fourier sine transform of

$$f(x) = x, 0 < x < 4$$

UNIT-IV

7. Using Laplace transform solve the following Initial value problem $y'' + 7y' + 10y = 4e^{-3t}$; y(0) = 0, y'(0) = -1

8. a)
$$L\left\{\int_{0}^{t} te^{-t} \sin 4t \, dt\right\}$$
 6M

b) Find
$$L^{-1}\left\{tan^{-1}\left(\frac{a}{s}\right) + cot^{-1}\left(\frac{s}{b}\right)\right\}$$
 6M

UNIT-V

9. If
$$Z[u_n] = \frac{z}{z-1} + \frac{z}{z^2+1}$$
 then find $Z[u_{n+2}]$ 12M

10. Find
$$Z^{-1} \left[\frac{z^3}{(Z+1)(Z-1)^2} \right]$$
 12M

CODE: 18BST103 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October-2021

DIFFERENTIAL EQUATIONS (Common to CE, ME, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

- 1. a) Solve the differential equation $\frac{dy}{dx} + yx = y^2 e^{\frac{x^2}{2}} Sin x.$
 - b) Bacteria in a culture grows exponentially so that the initial count has doubled in three hours. How many times the initial count will be present after nine hours?

(OR)

- 2. a) Solve the differential equation y(1+xy)dx + x(1-xy)dy = 0.
 - b) Find the Orthogonal trajectories of the family of circles $x^2 + y^2 + 2gx + c = 0$, where g is the parameter.

UNIT-II

- 3. a) Solve the differential equation $(D^2 5D + 6)y = e^x \sin x$. 6M
 - b) Solve the differential equation $(\mathbf{D}^3 + 2\mathbf{D}^2 \mathbf{D} 2)\mathbf{y} = \mathbf{1} 4x^3$ 6M (OR)
- 4. Solve the differential equation $(\mathbf{D}^2 4\mathbf{D} + 4)\mathbf{y} = 8x^2 + e^{2x}$ 12M

UNIT-III

- 5 Show that $\int_{-1}^{1} \mathbf{x} \mathbf{P}_{n}(\mathbf{x}) \mathbf{P}_{n-1}(\mathbf{x}) d\mathbf{x} = \frac{2n}{4n^{2}-1}$ (OR)
- 6. a) With an usual notation, Show that $J_{-n}(x) = (-1)^n J_n(x)$ 6M
 - b) With an usual notation express $J_5(x)$ in terms of $J_0(x)$ 6M and $J_1(x)$

UNIT-IV

7. a) Solve
$$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$$
, where
$$p = \frac{\partial z}{\partial x} \text{ and } q = \frac{\partial z}{\partial y}$$

b) Solve
$$z^2 = 1 + p^2 + q^2$$
, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$

- 8. a) Form the Partial differential equation by eliminating the arbitrary function from $f(x^2 + y^2, z xy) = 0$.
 - b) Solve $\mathbf{x}^2 \mathbf{p}^2 + \mathbf{y}^2 \mathbf{q}^2 = \mathbf{z}^2$, where $\mathbf{p} = \frac{\partial z}{\partial x}$ and $\mathbf{q} = \frac{\partial z}{\partial y}$

UNIT-V

9. a) Solve
$$\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 2 \sin(3x + 2y)$$

b) Solve
$$\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x+2y}$$
.

(OR)

10. a) Solve
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = Sinx Cos2y$$
 6M

b) Solve
$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} = e^{2x-3y}$$

CODE: 16BS1002 SET-I

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October-2021

ENGINEERING MATHEMATICS – II (Common to all Branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a Compute a fourth root of 32 correct to 4 decimal places by Regula Falsi method

b Estimate a real root of the equation $x^3 - 5x + 3 = 0$ by Newton 7M Raphson method

(OR)

2. Compute f(10) such that f(1) = 168, f(7) = 192, f(15) = 336 using Lagrange's interpolation formula

UNIT-II

3. a Determine f'(50) using Newton's forward difference formula, from the following data

X	50	55	60	65
f(x)	1.6990	1.7404	1.7782	1.8129

7M

b Given that 7M

х	4.0	4.2	4.4	4.6	4.8	5.0	5.2
$\log x$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6484

evaluate $\int_{4}^{5.2} \log x dx$ by using Simpson's $\frac{3}{8}$ rule

(OR)

4. Using Taylor's method, solve $\frac{dy}{dx} = 2y + 3e^x$ with y(0) = 0 at x = 0.2

UNIT-III

5. a Find the Laplace transforms of the function $f(t) = e^{-t} \cos^2 t$ 7M b Evaluate $\int_{0}^{\infty} t e^{-2t} \sin 3t \, dt$ by Laplace transforms

(OR)

6. Using convolution theorem, evaluate $L^{-1}\left[\frac{1}{s^2(s^2+1)}\right]$ 14M

UNIT-IV

7. Obtain the Fourier series for $f(x) = \begin{cases} -\pi & for -\pi < x < 0 \\ x & for 0 < x < \pi \end{cases}$ in $(-\pi, \pi)$ 14 M

8. a Obtain the half range sine series f(x) = x in (0,2) 7M

b Obtain the half range cosine series $f(x) = (x-1)^2$ in (0,1)

UNIT-V

- 9. a Solve the partial differential equation $x(y^2 z^2)p + y(z^2 x^2)q = z(x^2 y^2)$
 - b Solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ and $u = e^{-5y}$ when x = 0 for all values of y 7M

(OR)

10. Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions 14 M $u(x,0) = 3\sin \pi x, \ u(0,t) = u(1,t) = 0$ where 0 < x < 1, t > 0

2 of 2 ***

CODE: 13BS1003 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October-2021

ENGINEERING MATHEMATICS -III (Common to all Branches)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Find the value of k such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2
 - b) Write the consistency conditions
 - c) Define Eigen values and eigen vectors
 - d) Define diagonalization of a square matrix
 - e) Write Dirichilets conditions for the fourier series
 - f) Write the Sine and Cosine itegrals
 - g) Write the value of $Z(a^n)$
 - h) State the linear property of Z-transform
 - i) Write the relation between Beta and Gamma functions
 - j) If n is positive integer, then write the value of $\Gamma(n+1)$

PART-B

Answer one question from each unit

[5x12=60M]

<u>UNIT-I</u>

- 2. a) Solve the system of equations x + 2y + 3z = 1, 2x + 3y + 8z = 6M= 2, x + y + z = 3. Using gauss elimination method.
 - b) Using Normal form to find the rank of the following matrix 6M $\begin{bmatrix} 2 & -2 & 0 & 6 \end{bmatrix}$

(OR)

3. Show that the only real number $\frac{1}{4}$ for which the system $x + 2y = 12M + 3z = \lambda x$, $3x + y + 2z = \lambda y$, $2x + 3y + z = \lambda z$ has non-zero solution is 6, and solve them when $\lambda = 6$.

UNIT-II

Find the eigen values and corresponding eigen vectors of the 4. 12M matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.

5. Diagonalize the matrix
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
.

UNIT-III

6. a) Find the half-range sine series of f(x) = 1 in [0,L]6M

b) Obtain the half-range Sine series for $f(x) = e^x$ in (0,1) 6M

Using Fourier integral formula, show that , $e^{-ax}-e^{-bx}=\tfrac{2(b^2-a^2)}{\pi}\int_0^\infty \tfrac{\lambda\,\sin\lambda x\,d\lambda}{(\lambda^2+a^2)(\lambda^2+b^2)}\quad a,\,b>0$ 7. 12M

UNIT-IV

8. a) Find the Z- transform of $(1/2)^n + (1/3)^n$ 6M

b) Using Convolution theorem to evaluate $Z^{-1}\left\{\left(\frac{z}{z-a}\right)^3\right\}$ 6M

(OR)

Evaluate $z^{-1}\left\{\frac{z}{z^{z}+11z+24}\right\}$ 9. 12M

UNIT-V

10. Show that
$$\int_{0}^{\pi/2} \sin^{m}\theta \cos^{n}\theta d\theta = (1/2)B(\frac{m+1}{2}, \frac{n+1}{2})$$

(OR)

11. a) Show that $\int_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} = 2^{m+n-1} B(m,n)$ b) Show that -16M

b) Show that $\Gamma(1/2) = \sqrt{\pi}$ 6M

> 2 of 2 ***