Longitudinal Dynamics

Today: Linear Longitudinal EOM

Stability Derivatives

$$\dot{\vec{p}}_{E} = R_{B}^{E} \dot{\vec{V}}_{B}^{E}$$

$$\dot{\vec{O}} = T \dot{\vec{\omega}}_{B}$$

$$\dot{\vec{V}}_{B} = \frac{\vec{f}_{B}}{m} - \vec{\omega}_{g} \times \dot{\vec{V}}_{B}^{E}$$

$$\dot{\vec{\omega}}_{g} = I^{1} [\vec{G}_{g} - \vec{\omega}_{x}^{x} I \vec{\omega}_{g}]$$

Symmetry about x-2 axis

$$\Gamma_{1} = \frac{I_{xz} (I_{x} - I_{y} + I_{z})}{\Gamma} \qquad \Gamma_{4} = \frac{I_{xz}}{\Gamma} \qquad \Gamma_{7} = \frac{I_{x} (I_{x} - I_{y}) + I_{xz}^{2}}{\Gamma}$$

$$\Gamma_{2} = \frac{I_{z} (I_{z} - I_{y}) + I_{xz}^{2}}{\Gamma} \qquad \Gamma_{5} = \frac{I_{z} - I_{x}}{I_{y}} \qquad \Gamma_{8} = \frac{I_{x}}{\Gamma}$$

$$\Gamma_{3} = \frac{I_{z}}{\Gamma} \qquad \Gamma_{6} = \frac{I_{xz}}{I_{y}} \qquad \Gamma = I_{x}I_{z} - I_{xz}^{2}$$

V=40

$$\dot{\mathbf{x}}_{lon} = \mathbf{A}_{lon}\mathbf{x}_{lon} + \mathbf{c}_{lon}$$

$$\mathbf{x}_{lon} = \left(egin{array}{c} \Delta u \ \Delta w \ \Delta q \ \Delta heta \end{array}
ight) \qquad \mathbf{c}_{lon} = \left(egin{array}{c} rac{\Delta X_c}{m} \ rac{\Delta Z_c}{m-Z_{\dot{w}}} \ rac{\Delta M_c}{I_y} + rac{M_{\dot{w}}}{I_y} rac{\Delta Z_c}{(m-Z_{\dot{w}})} \ 0 \end{array}
ight)$$

$$\mathbf{A}_{lon} = \left(\begin{array}{cccc} \frac{X_u}{m} & \frac{X_w}{m} & 0 & -g\cos\theta_0 \\ \frac{Z_u}{m - Z_{\dot{w}}} & \frac{Z_w}{m - Z_{\dot{w}}} & \frac{Z_q + mu_0}{m - Z_{\dot{w}}} & \frac{-mg\sin\theta_0}{m - Z_{\dot{w}}} \\ \frac{1}{I_y} \left[M_u + \frac{M_{\dot{w}}Z_u}{m - Z_{\dot{w}}} \right] & \frac{1}{I_y} \left[M_w + \frac{M_{\dot{w}}Z_w}{m - Z_{\dot{w}}} \right] & \frac{1}{I_y} \left[M_q + \frac{M_{\dot{w}}(Z_q + mu_0)}{m - Z_{\dot{w}}} \right] & \frac{-M_{\dot{w}}mg\sin\theta_0}{I_y(m - Z_{\dot{w}})} \\ 0 & 0 & 1 & 0 \end{array} \right)$$

Variable	Divisor	Non-dim Variable
X, Y, Z	$\frac{1}{2}\rho V^2 S$	C_x, C_y, C_z
W	$\frac{1}{2}\rho V^2 S$	C_W
M	$\frac{1}{2}\rho V^2S\bar{c}$	C_m
L,N	$\frac{1}{2}\rho V^2 S \bar{b}$	C_l, C_n
u, v, w		$\hat{u},\hat{v},\hat{\underline{w}}$
\dot{lpha}, q	$2V/ar{c}$	\hat{lpha},\hat{q}
\dot{eta}, p, r	2V/b	$\hat{\dot{eta}},\hat{p},\hat{r}$
m	$ ho S \overline{c}/2$	μ
I_y	$ ho S(\bar{c}/2)^3$	\hat{I}_y
I_x, I_z, I_{xz}	$ ho S(b/2)^3$	$\hat{I}_x,\hat{I}_z,\hat{I}_{xz}$

$$C_{z_u} = \frac{\partial C_z}{\partial \hat{u}}$$

Wind-Angle
Approximations $\Delta \alpha = \tan^{-1} \frac{\Delta w}{V}$ $\approx \hat{\omega}$ $\Delta \beta = \sin^{-1} \frac{\Delta v}{V}$ $\approx \hat{v}$

Longitudinal Dimensional Derivatives		Zu		
	X	z)	М	
u w q w	$\rho u_0 S C_{w_0} \sin \theta_0 + \frac{1}{2} \rho u_0 S C_{x_u}$ $\frac{1}{2} \rho u_0 S C_{x_\alpha}$ $\frac{1}{4} \rho u_0 \overline{c} S C_{x_q}$ $\frac{1}{4} \rho \overline{c} S C_{x_{\dot{\alpha}}}$	$ \begin{array}{c c} \hline \rho u_0 S C_{w_0} \cos \theta_0 + \frac{1}{2} \rho u_0 S C_{z_u} \\ \frac{1}{2} \rho u_0 S C_{z_\alpha} \\ \frac{1}{4} \rho u_0 \bar{c} S C_{z_q} \\ \frac{1}{4} \rho \bar{c} S C_{z_{\dot{\alpha}}} \end{array} $	$\begin{array}{c} \frac{1}{2}\rho u_0\bar{c}SC_{m_u} \\ \frac{1}{2}\rho u_0\bar{c}SC_{m_\alpha} \\ \frac{1}{4}\rho u_0\bar{c}^2SC_{m_q} \\ \frac{1}{4}\rho\bar{c}^2SC_{m_{\dot{\alpha}}} \end{array}$	

$$Z_{u} = \frac{\partial Z}{\partial u} \Big|_{o}$$

$$Z = \frac{1}{2} \rho V^{2} S C_{z}$$

$$\frac{\partial Z}{\partial u} = \frac{1}{2} \rho S \left(\frac{\partial V^{2}}{\partial u} \right) C_{z} + \frac{\partial C_{z}}{\partial u} V^{2}$$

$$= \frac{1}{2} \rho S Z u_{o} C_{z_{o}} + \frac{1}{2} \rho u_{o}^{2} S \frac{\partial C_{z}}{\partial u} \Big|_{o}$$

$$Z_{u} = -\rho u_{o} S C_{w_{o}} cos \theta_{o} + \frac{1}{2} \rho u_{o} S C_{z_{u}}$$

$$\frac{\partial f \omega_{g}(x)}{\partial x} = f(x) \frac{\partial g(x)}{\partial x} + \frac{\partial f(x)}{\partial x} g(x)$$

$$C_{z_{u}} = \frac{\partial C_{z}}{\partial u} \qquad \int_{0}^{C_{z_{u}}} C_{z_{u}} dx$$

$$\frac{\partial C_{z}}{\partial u} = \frac{\partial C_{z}}{\partial u} = \frac{1}{u_{o}} \frac{\partial C_{z}}{\partial u}$$

$$C_{z_{o}} = -C_{w_{o}} cos \Theta_{o}$$

Table 5.1 Summary—Longitudinal Derivatives

	C_{x}	C_z	C_{m}
û†	$\mathbf{M}_{0} \left(\frac{\partial C_{T}}{\partial \mathbf{M}} - \frac{\partial C_{D}}{\partial \mathbf{M}} \right) - \rho u_{0}^{2} \frac{\partial C_{D}}{\partial p_{d}} + C_{T_{u}} \left(1 - \frac{\partial C_{D}}{\partial C_{T}} \right)$	$-\mathbf{M}_0 \frac{\partial C_L}{\partial \mathbf{M}} - \rho u_0^2 \frac{\partial C_L}{\partial p_d} - C_{T_u} \frac{\partial C_L}{\partial C_T}$	$\mathbf{M}_0 \frac{\partial C_m}{\partial \mathbf{M}} + \rho u_0^2 \frac{\partial C_m}{\partial p_d} + C_{T_u} \frac{\partial C_m}{\partial C_T}$
α	$C_{l_0}-C_{D_{lpha}}$	$-(C_{L_{\alpha}}+C_{D_0})$	$-a(h_n-h)$
ά	Neg.	$*-2a_{i}V_{H}\frac{\partial \epsilon}{\partial \alpha}$	$*-2a_tV_H\frac{l_t}{c}\frac{\partial \epsilon}{\partial \alpha}$
\hat{q}	Neg.	$*-2a_tV_H$	$*-2a_{t}V_{H}\frac{l_{t}}{\overline{c}}$

Neg. means usually negligible.

$$\dagger C_{T_u} = \frac{(\partial T/\partial u)_0}{\frac{1}{2}\rho u_0 S} - 2C_{T_0}; C_{T_0} = C_{D_0} + C_{w_0} \sin \theta_0$$

^{*}means contribution of the tail only, formula for wing-body not available.