${\bf Methods}$

Table 1: Simulation mis-specification design matrix. Outer dimensions describe the unique correct models (6) while inner dimensions (18) describe the unique mis-specifications run for each simulation.

Covariance Matrix	Autocorrelation	Matern Correlation	Phylogenetic Correlation
Type	Mis-specification		
	Data Model	Data Model	Data Model
$\mathbf{L}\mathbf{M}\mathbf{M}$	Missing RE	Missing RE	Missing RE
	Mis-specified RE	Mis-specified RE	Mis-specified RE
	Data Model	Data Model	Data Model
\mathbf{GLMM}	Missing RE	Missing RE	Missing RE
	Mis-specified RE	Mis-specified RE	Mis-specified RE

Table 2: Linear Model Simulation: data generating models, parameter values, and mis-specifications.

	Data Generating Model	Parameters	Data Fitting Model
Correct	$X_i \sim N(0, 1)$ $\mu_{i,j} = X_i \beta$ $y_{i,j} \sim N(\mu_{i,j}, \sigma_y)$	$\beta = (4, -5)$ $\sigma_y = 1$	$X_i \sim N(0, 1)$ $\mu_{i,j} = X_i \beta$ $y_{i,j} \sim N(\mu_{i,j}, \sigma_y)$
Mis-specified	$X_{i} \sim N(0, 1)$ $\mu_{i,j} = X_{i}\beta$ $y'_{i,j} \sim N(\mu_{i,j}, exp(\sigma_{y}))$		$X_{i} \sim N(0, 1)$ $\mu_{i,j} = X_{i}\beta$ $y'_{i,j} \sim N(\mu_{i,j}, \sigma_{y})$

Table 3: Temporal Model Simulation: data generating models, parameter values, and mis-specifications.

	Table 3: Ten	nporal Model S	simulation: data genera	ating models, parameter values, an	d mis-specifica	ations.
	Linear Mixed Model			Generalized Linear Mixed M	odel	
	Data Generating Model	Parameters	Data Fitting Model	Data Generating Model	Parameters	Data Fitting Model
Correct	$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$	$a = 2$ $u[1] = 0$ $\sigma_u = 1$ $\sigma_y = 1$	$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y_{i} \sim Gamma(\frac{1}{CV}^{2}, e^{u_{i}}CV^{2})$	$a = .02$ $u[1] = 0$ $\sigma_u = 0.1$ $CV = 0.3$	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y_{i} \sim Gamma(\frac{1}{CV}^{2}, e^{u_{i}}CV^{2})$
cified	Missing Random Effects $\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$ Mis-specified Data Model		$y_i \sim N(a(1:n), \sigma_y)$	Missing Random Effects $\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim Gamma(\frac{1}{CV}^2, e^{u_i}CV^2)$ Misp-specified Data Model		$y_i \sim Gamma(\frac{1}{CV}^2, e^a CV^2)$
Mis-specified	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $\sigma_{y}^{2} = c(rep(35, n/4), rep(0.5, n/4),$ $rep(35, n/4), rep(0.5, n/4)$ $y_{i}^{'} \sim N(u_{i}, \sigma_{y})$		$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y'_{i} \sim N(u_{i}, \sigma_{y})$	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y_{i} \sim Gamma(\frac{1}{CV}^{2}, e^{u_{i}}CV^{2})$		$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$
	Mis-specifed Random Effects $\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$		$\mu_i = u_{i-1}$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$	Mis-specified Random Effects $u_{i}^{'}=u_{i-1}+Gamma(0.5,20)$ $y_{i}^{'}\sim Gamma(\frac{1}{CV}^{2},e^{u_{i}^{'}}CV^{2})$		$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y'_i \sim Gamma(\frac{1}{CV}^2, e^{u_i}CV^2)$

Table 4: Spatial Model Simulation: data generating models, parameter values, and mis-specifications.

	Ta	able 4: Spatial	Model Simulation: data	generating models, parameter	values, and m	nis-specifications.
	Linear Mixed Model	D 4	D / E''' M 11	Generalized Linear Mixe		D . F M 11
Correct	Data Generating Model Parameters $\beta_0 = 2$ $\omega \sim GMRF(Q[\kappa, \sigma_\omega^2]) \qquad \sigma_y^2 = 1$ $\eta_i = \beta_0 + \omega_i \qquad \phi = 50$ $y \sim N(\eta, \sigma_y) \qquad \kappa = \sqrt{8}/\phi$ $\sigma_\omega^2 = 2$				$\beta = 2$	Data Fitting Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y \sim Pois(\eta, \sigma_{y})$
	Missing Random Effects $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y \sim N(\eta, \sigma_{y})$	- ω	$ \eta_i = \beta_0 \\ y \sim N(\eta, \sigma_y) $	Missing Random Effects $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y \sim Pois(\eta)$		$ \eta_i = \exp(\beta_0) \\ y \sim Pois(\eta) $
Mis-specified	Mis-specified Data Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y \sim N(\eta, \sigma_{y})$		$\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $\sigma_{y} = exp(N(0, 1))$ $y \sim N(\eta, \sigma_{y})$	Mis-specified Data Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y^{'} \sim B(1, 0.7) * Pois(\eta)$		$\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y \sim Pois(\eta)$
	Mis-specified Random Effec $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + exp(\omega_{i})$ $y' \sim N(\eta, \sigma_{y})$	ts Model	$\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y' \sim N(\eta, \sigma_{y})$	Mis-specified Random Effec	ts Model	

CD 11 F TO 1 1 1 1 1 1 1 1 1 1 1	O: 1	1 /	. 1 1	, 1	1 ' 'C '
Table 5: Phylogenetic Model	Similation	data	generating models	narameter values	and mis-specifications
Table 9. I hylogenede Model	Diminition.	aaaaa	gonoraumg models,	parameter varues,	and mis specifications.

		5: Phylogenet	ic Model Simulation: data g	generating models, parameter values, and	mis-specificati	ions.
	Linear Mixed Model Data Generating Model	Parameters	Data Fitting Model	Generalized Linear Mixed Model Data Generating Model	Parameters	Data Fitting Model
Correct	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$	$a = 0$ $r = 0$ $\sigma_u^2 = 2$ $\beta = (0, 1)$ $\sigma_y = 1$	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim NegBinom(\mu = \eta, size = \theta)$	$a = 0$ $r = 0$ $\sigma_u^2 = 1$ $\beta_0 = 3$ $\theta = 0.5$	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim NegBinom(\mu = \eta, size = \theta)$
	Missing Random Effects $tree \sim random Tree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$		$X_{i} \sim Unif(-0.5, 0.5)$ $\eta = X\beta$ $y \sim Normal(\eta, \sigma_{y})$	Missing Random Effects $tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim NegBinom(\mu = \eta, size = \theta)$		$ \eta = exp(\beta_0) $ $ y \sim NegBinom(\mu = \eta, size = \theta) $
Mis-specified	Mis-specified Data Model $tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = exp(X\beta + u)$ $y \sim Normal(\eta, \sigma_y)$	$\begin{aligned} & \text{Misp-specified Data Model} \\ & tree \sim randomTree(n) \\ & \Sigma = BM(tree, a, r, \sigma_u^2) \\ & u \sim MVNORM(\Sigma) \\ & \eta = exp(\beta_0 + u) \\ & y \sim NegBinom(\mu = \eta, size = \theta) \end{aligned}$		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim Poisson(\mu = \eta)$
	Mis-specifed Random Effects $tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + exp(u)$ $y' \sim Normal(\eta, \sigma_y)$		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y' \sim Normal(\eta, \sigma_y)$	Mis-specified Random Effects		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a = 0, r = 0, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y' \sim NegBinom(\mu = \eta, size = \theta)$

Results

LM

Table 6: Linear Model. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	Uncondition	alConditional
	type		Generic	Gaussian	Gaussian		ecdf, Not	ecdf, Not
							Rotated	Rotated
	NA	0.047	0.047	0.047	0.047	0.047	0.226	0.223
	NA	0.048	0.048	0.048	0.048	0.048	0.041	0.044
NA	NA	0.023	0.027	0.038	0.028	0.023	0.206	0.201
	NA	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	NA	0.052	0.052	0.052	0.052	0.052	0.148	0.145

Table 7: Linear Model. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	Uncondition ecdf, Not Rotated	ecdf, Not Rotated
NA	NA NA NA NA NA	1 0.134 1 0.963 0.999	1 0.01 1 0.963 0.998	1 0.136 1 0.963 0.999	1 0.127 1 0.963 0.999	1 0.092 1 0.963 0.995	1 0.998 1 0.962	1 0.995 1 0.961

Compound Symmetry - LMM

Table 8: Compound Symmetry - LMM. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	type		Generic	Gaussian	Gaussian			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
									Rotated		Rotated
	NA	0.047	0.042	0.042	0.042	0.045	0.046	0.357	0.954	0.357	0.216
	NA	0.048	0.039	0.039	0.039	0.041	0.046	0.063	0.920	0.051	0.038
	NA	0.054	0.066	0.066	0.066	0.066	0.046	0.061	1.000	0.056	0.053
	NA	0.032	0.035	0.035	0.035	0.035	0.032	0.043	0.060	0.032	0.035
NA	NA	0.015	0.050	0.039	0.046	0.041	0.049	0.315	0.088	0.269	0.153
	NA	0.000	0.022	0.022	0.022	0.022	0.043	0.037	0.476	0.002	0.000
	NA	0.053	0.058	0.058	0.058	0.057	0.067	0.165	0.843	0.180	0.135
	NA	0.000	0.068	0.068	0.068	0.070	0.041	0.068	1.000	0.000	0.000
	NA	0.033	0.038	0.038	0.038	0.037	0.033	0.040	0.045	0.036	0.033

Table 9: Compound Symmetry - LMM. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	MCMC	Unconditional ecdf, Rotated	Uncondition ecdf, Not Rotated	nalConditional ecdf, Rotated	Conditional ecdf, Not Rotated
	NA								Hotated		Hotated
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.073	0.079	0.071	0.089	0.056	0.068	0.107	0.074	0.116	0.068
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.464	0.464	0.464	0.464	0.464	0.464	0.393	0.465	0.393	0.461
	NA	0.836	0.836	0.836	0.836	0.836	0.836	0.754	0.84	0.777	0.842
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.032	0.872	0.032	0.032	0.176	0.236	0.803	0.837	0.812	0.827
	NA	0.033	0.033	0.033	0.033	0.033	0.033	0.215	0.031	0.214	0.026
	NA										
	NA	1	1	1	1	1	1	1	0.925	1	1
	NA	0.056	0.089	0.084	0.082	0.094	0.064	0.153	0.047	0.087	0.059
	NA	1	1	1	1	1	1	1	0.812	1	1
NT A	NA	0.165	0.322	0.321	0.321	0.322	0.197	0.306	0.004	0.117	0.163
NA	NA	0.751	0.624	0.624	0.624	0.624	0.634	0.488	0.099	0.59	0.731
	NA	0	0	0	0	0	0	0	0.969	0	0
	NA	0	0	0	0	0	0.04	0	0.973	0	0
	NA	0	0	0	0	0	0	0	0.132	0	0
	NA	0	0	0	0	0	0	0	0	0	0
	NA										
	NA	0.997	0.05	0.05	0.05	0.055	0.055	0.309	1	0.999	0.999
	NA	0.021	0.04	0.036	0.042	0.043	0.044	0.305	0.117	0.248	0.163
	NA	0.993	0.055	0.055	0.055	0.057	0.051	0.058	1	0.995	0.993
	NA	0	0.013	0.013	0.013	0.013	0.043	0.015	0.199	0.001	0
	NA	0.047	0.055	0.055	0.055	0.054	0.062	0.161	0.479	0.174	0.133
	NA	1	0.049	0.049	0.049	0.048	0.05	0.044	0.993	1	0.999
	NA	0	0.059	0.059	0.059	0.059	0.047	0.054	0.989	0	0
	NA	0.032	0.035	0.035	0.035	0.036	0.032	0.041	0.056	0.808	0.819
	NA	0.033	0.036	0.036	0.036	0.037	0.033	0.042	0.035	0.036	0.035

1

Table 10: Compound Symmetry - LMM. Type I error rates at the 0.10 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	MCMC	Unconditional	Unconditiona	Conditional	Conditional
	$_{\mathrm{type}}$		Generic	Gaussian	Gaussian			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
									Rotated		Rotated
	NA	0.083	0.091	0.091	0.091	0.093	0.098	0.395	0.980	0.388	0.250
	NA	0.077	0.084	0.084	0.084	0.086	0.098	0.109	0.949	0.093	0.076
	NA	0.104	0.117	0.117	0.117	0.114	0.109	0.111	1.000	0.106	0.109
	NA	0.060	0.075	0.075	0.075	0.073	0.060	0.083	0.099	0.076	0.062
NA	NA	0.046	0.095	0.087	0.097	0.103	0.093	0.341	0.169	0.296	0.180
	NA	0.002	0.062	0.062	0.062	0.062	0.089	0.066	0.577	0.002	0.002
	NA	0.114	0.109	0.109	0.109	0.114	0.132	0.265	0.888	0.257	0.200
	NA	0.000	0.132	0.132	0.132	0.133	0.089	0.120	1.000	0.000	0.000
	NA	0.065	0.069	0.069	0.069	0.069	0.065	0.085	0.088	0.071	0.070

Table 11: Compound Symmetry - LMM. Power at the 0.90 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	MCMC	Unconditional ecdf, Rotated	Uncondition ecdf, Not	alConditional ecdf, Rotated	Conditional ecdf, Not
	V -							,	Rotated	,	Rotated
	NA NA	1	1	1	1	1	1	1	1	1	1
	NA NA	0.14	0.15	0.148	0.157	0.143	0.128	0.172	0.156	0.201	0.142
	NA NA	0.14 1	0.15 1	0.148 1	0.13 <i>t</i> 1	0.145 1	0.128		0.156 1	0.201	0.142 1
	NA NA	0.569	0.569	0.569	0.569	0.569	0.569	$\frac{1}{0.504}$	0.568	0.509	0.566
	NA	0.887	0.887	0.887	0.887	0.887	0.887	0.828	0.893	0.845	0.879
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.06	0.895	0.06	0.06	0.241	0.278	0.851	0.878	0.86	0.884
	NA NA	0.065	0.065	0.065	0.065	0.065	0.065	0.318	0.071	0.32	0.063
	NA	1	1	1	1	1	1	1	0.953	1	1
	NA	0.106	0.184	0.169	0.154	0.167	0.125	0.238	0.096	0.146	0.115
	NA	1	1	1	1	1	1	1	0.875	1	1
NT 4	NA	0.291	0.446	0.446	0.446	0.447	0.326	0.442	0.012	0.242	0.279
NA	NA	0.824	0.727	0.727	0.727	0.726	0.737	0.615	0.172	0.7	0.821
	NA	0	0	0	0	0	0	0	0.982	0	0
	NA	0	0	0	0	0	0.092	0.001	0.981	0	0
	NA	0	0	0	0	0	0	0.001	0.173	0	0
	NA	0	0	0	0	0	0	0	0	0	0
	NA										
	NA	0.998	0.108	0.108	0.108	0.11	0.113	0.354	1	0.999	0.999
	NA	0.048	0.078	0.08	0.085	0.071	0.099	0.34	0.161	0.28	0.186
	NA	0.997	0.102	0.102	0.102	0.106	0.093	0.115	1	0.996	0.997
	NA	0.003	0.035	0.035	0.035	0.035	0.075	0.041	0.266	0.003	0.003
	NA	0.108	0.114	0.115	0.115	0.114	0.111	0.249	0.558	0.242	0.21
	NA	1	0.088	0.088	0.088	0.082	0.094	0.083	0.994	1	0.999
	NA	0	0.114	0.114	0.114	0.114	0.103	0.12	0.995	0	0
	NA	0.06	0.073	0.073	0.073	0.072	0.06	0.08	0.104	0.853	0.852
	NA	0.065	0.07	0.07	0.07	0.07	0.065	0.08	0.073	0.085	0.07

Compound Symmetry - GLMM

Table 12: Compound Symmetry - GLMM. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	$_{ m type}$		Generic			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
							Rotated		Rotated
	NA	1.000	0.039	0.038	0.052	0.444	0.492	0.376	0.121
	NA	1.000	0.038	0.039	0.044	0.294	0.424	0.086	0.035
	NA	0.101	0.039	0.040	0.049	0.025	0.909	0.039	0.045
	NA	0.911	0.052	0.052	0.032	0.890	0.088	0.040	0.020
NA	NA	0.985	0.037	0.025	0.055	0.174	0.050	0.216	0.056
	NA	1.000	0.002	0.001	0.017	0.063	0.000	0.006	0.000
	NA	1.000	0.024	0.023	0.030	0.136	0.050	0.120	0.054
	NA	0.000	0.026	0.028	0.039	0.019	0.924	0.000	0.000
	NA	0.911	0.048	0.048	0.029	0.899	0.075	0.019	0.010

Table 13: Compound Symmetry - GLMM. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not Rotated	Conditional ecdf, Rotated	Conditional ecdf, Not Rotated
	NA								
	NA	1	0.711	0.715	0.716	0.938	0.859	0.944	0.856
	NA	0.997	0.027	0.028	0.027	0.43	0.178	0.425	0.198
	NA	1	0.575	0.575	0.563	0.684	0.56	0.699	0.565
	NA	1	0.009	0.009	0.008	0.054	0.007	0.053	0.011
	NA	1	0.094	0.096	0.124	0.354	0.199	0.358	0.212
	NA	0.947	0.939	0.939	0.925	0.891	0.931	0.872	0.932
	NA	0.947	0.935	0.935	0.924	0.896	0.924	0.9	0.922
	NA	0.911	0.479	0.524	0.513	0.366	0.553	0.392	0.567
	NA	0.911	0.184	0.185	0.146	0.234	0.132	0.221	0.121
	NA								
	NA	1	0.99	0.991	0.976	0.946	0.84	1	0.998
	NA	0.912	0.762	0.803	0.799	0.994	0.515	0.998	0.981
	NA	1	0.917	0.908	0.881	0.804	0.74	0.953	0.901
NT A	NA	1	0.866	0.863	0.865	0.871	0.796	0.948	0.891
NA	NA	1	0.46	0.631	0.626	0.843	0.49	0.955	0.908
	NA	0.065	0.032	0.041	0	0.085	0.93	0.089	0.11
	NA	0	0.03	0.033	0	0.073	0.935	0.001	0.005
	NA	0.442	0.598	0.59	0.547	0.858	0.328	0.441	0.561
	NA	0.382	0.625	0.611	0.555	0.919	0.342	0.438	0.527
	NA								
	NA	1	0.274	0.278	0.074	0.857	0.953	0.995	0.979
	NA	1	0.035	0.038	0.041	0.279	0.076	0.237	0.071
	NA	1	0.209	0.218	0.055	0.787	0.941	0.953	0.932
	NA	1	0.005	0.002	0.016	0.099	0.021	0.004	0
	NA	1	0.043	0.041	0.04	0.226	0.156	0.131	0.067
	NA	0.852	0.029	0.038	0.047	0.043	0.822	0.817	0.884
	NA	0	0.03	0.039	0.044	0.024	0.844	0.002	0
	NA	0.837	0.051	0.048	0.045	0.767	0.205	0.485	0.549
	NA	0.837	0.057	0.051	0.051	0.79	0.093	0.031	0.027

Table 14: Compound Symmetry - GLMM. Type I error rates at the 0.10 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	$_{\mathrm{type}}$		Generic			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
							Rotated		Rotated
	NA	1.000	0.095	0.095	0.102	0.529	0.584	0.432	0.160
	NA	1.000	0.089	0.089	0.092	0.398	0.509	0.157	0.095
	NA	0.152	0.086	0.090	0.090	0.042	0.937	0.089	0.079
	NA	0.948	0.098	0.097	0.075	0.935	0.152	0.083	0.058
NA	NA	0.988	0.070	0.063	0.092	0.225	0.088	0.263	0.092
	NA	1.000	0.005	0.005	0.051	0.106	0.002	0.016	0.001
	NA	1.000	0.053	0.054	0.075	0.233	0.100	0.185	0.095
	NA	0.000	0.084	0.091	0.085	0.046	0.945	0.004	0.000
	NA	0.948	0.094	0.092	0.070	0.926	0.147	0.061	0.022

Table 15: Compound Symmetry - GLMM. Power at the 0.90 significance level evaluated for each method for theoretical and estimated residuals.

NA NA NA	1				ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
NA NA	1					Rotated		Rotated
NA		0.700	0.700	0.701	0.059	0.004	0.050	0.001
		0.792	0.792	0.791	0.953	0.884	0.959	0.881
TA T A	0.999	0.054	0.064	0.063	0.463	0.204	0.455	0.238
NA	1	0.655	0.655	0.661	0.775	0.654	0.766	0.653
NA	1	0.015	0.015	0.019	0.094	0.018	0.094	0.02
NA	1	0.157	0.159	0.183	0.456	0.261	0.467	0.269
NA	0.962	0.963	0.963	0.949	0.923	0.948	0.925	0.95
								0.948
	0.948	0.586	0.631	0.622	0.462	0.648	0.493	0.662
NA	0.948	0.287	0.286	0.25	0.357	0.232	0.325	0.233
NA								
NA	1	0.996	0.995	0.987	0.967	0.893	1	0.999
NA	0.958	0.847	0.882	0.879	0.997	0.602	1	0.986
NA	1	0.963	0.96	0.931	0.871	0.814	0.975	0.94
NA	1	0.916	0.911	0.922	0.924	0.879	0.971	0.93
NA	1	0.587	0.74	0.733	0.908	0.628	0.972	0.938
NA	0.114	0.061					0.138	0.163
NA	0	0.056	0.058	0.003	0.112	0.96	0.002	0.011
	0.536							0.658
								0.636
	01200	011 = 0	0., 00	0.00-	0.0	0.20	0.000	0.000
	1	0.403	0.42	0.133	0.899	0.97	0.998	0.985
								0.103
								0.954
								0.001
								0.117
								0.903
								0.505
	-							0.631
								0.047
	NA NA NA NA NA NA NA	NA 0.962 NA 0.948 NA 0.948 NA NA 1 NA 0.958 NA 1 NA 1 NA 1 NA 0.114 NA 0.114 NA 0.493 NA NA 1 NA 1 NA 1 NA 1 NA 1 NA 1 NA 0.493 NA NA 1 N	NA 0.962 0.957 NA 0.948 0.586 NA 0.948 0.287 NA 0.948 0.287 NA 1 0.996 NA 1 0.996 NA 1 0.963 NA 1 0.916 NA 1 0.587 NA 0.114 0.061 NA 0 0.056 NA 0.493 0.719 NA 0.493 0.719 NA 1 0.403 NA 1 0.08 NA 1 0.08 NA 1 0.011 NA 1 0.011 NA 0.884 0.066 NA 0 0.076 NA 0.882 0.095	NA 0.962 0.957 0.957 NA 0.948 0.586 0.631 NA 0.948 0.287 0.286 NA 0.948 0.287 0.286 NA 1 0.996 0.995 NA 1 0.963 0.96 NA 1 0.963 0.96 NA 1 0.916 0.911 NA 1 0.587 0.74 NA 0.114 0.061 0.071 NA 0 0.056 0.058 NA 0.536 0.7 0.681 NA 0.493 0.719 0.703 NA 1 0.403 0.42 NA 1 0.08 0.067 NA 1 0.08 0.067 NA 1 0.011 0.005 NA 1 0.026 0.088 NA 1 0.026 0.088 NA 0	NA 0.962 0.957 0.957 0.954 NA 0.948 0.586 0.631 0.622 NA 0.948 0.287 0.286 0.25 NA 0.948 0.287 0.286 0.25 NA 1 0.996 0.995 0.987 NA 1 0.963 0.96 0.879 NA 1 0.963 0.96 0.931 NA 1 0.587 0.74 0.733 NA 0.114 0.061 0.071 0.004 NA 0.493 0.719 0.703 0.652 NA 1 0.403 0.42 0.133 NA 1 0.08 0.067 0.09 NA <	NA 0.962 0.957 0.957 0.954 0.932 NA 0.948 0.586 0.631 0.622 0.462 NA 0.948 0.287 0.286 0.25 0.357 NA 0.948 0.287 0.286 0.25 0.357 NA 1 0.996 0.995 0.987 0.967 NA 1 0.963 0.96 0.879 0.997 NA 1 0.963 0.96 0.931 0.871 NA 1 0.916 0.911 0.922 0.924 NA 1 0.587 0.74 0.733 0.908 NA 0.114 0.061 0.071 0.004 0.135 NA 0 0.056 0.058 0.003 0.112 NA 0.493 0.719 0.703 0.652 0.947 NA 1 0.403 0.42 0.133 0.899 NA 1 0.08	NA 0.962 0.957 0.957 0.954 0.932 0.944 NA 0.948 0.586 0.631 0.622 0.462 0.648 NA 0.948 0.287 0.286 0.25 0.357 0.232 NA NA 1 0.996 0.995 0.987 0.967 0.893 NA 0.958 0.847 0.882 0.879 0.997 0.602 NA 1 0.963 0.96 0.931 0.871 0.814 NA 1 0.916 0.911 0.922 0.924 0.879 NA 1 0.587 0.74 0.733 0.908 0.628 NA 0.114 0.061 0.071 0.004 0.135 0.951 NA 0 0.056 0.058 0.003 0.112 0.96 NA 0.493 0.719 0.703 0.652 0.947 0.49 NA NA 1 0.403 0.42 0.133 0.899 0.97 NA 1 0.326 0.332 0.114 0.846 0.967 NA 1 0.082 0.088 0.087 0.31 0.208 NA 0.884 0.066 0.079 0.092 0.072 0.856 NA 0.884 0.066 0.079 0.092 0.072 0.856 NA 0.884 0.066 0.079 0.092 0.072 0.856 NA 0.882 0.095 0.091 0.088 0.822 0.26	NA 0.962 0.957 0.957 0.954 0.932 0.944 0.931 NA 0.948 0.586 0.631 0.622 0.462 0.648 0.493 NA 0.948 0.287 0.286 0.25 0.357 0.232 0.325 NA 0.948 0.287 0.286 0.25 0.357 0.232 0.325 NA 0.948 0.287 0.286 0.25 0.357 0.232 0.325 NA 1 0.996 0.995 0.967 0.893 1 NA 0.958 0.847 0.882 0.879 0.997 0.602 1 NA 1 0.963 0.96 0.931 0.871 0.814 0.975 NA 1 0.916 0.911 0.922 0.924 0.879 0.971 NA 1 0.916 0.911 0.922 0.924 0.879 0.971 NA 0.114 0.061 0.071

Temporal Correlation - LMM

Table 16: Temporal Correlation - LMM. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	type		$\operatorname{Generic}$	Gaussian	Gaussian			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
									Rotated		Rotated
	NA	0.061	0.046	0.046	0.046	0.046	0.049	0.341	0.993	0.342	0.234
	NA	0.056	0.042	0.042	0.042	0.041	0.046	0.051	0.988	0.067	0.065
	NA	0.047	0.052	0.052	0.052	0.051	0.051	0.047	1.000	0.057	0.048
NA	NA	0.003	0.024	0.019	0.030	0.032	0.046	0.317	0.314	0.020	0.009
	NA	0.129	0.000	0.000	0.000	0.000	0.034	0.000	0.995	0.079	0.127
	NA	0.051	0.052	0.053	0.052	0.048	0.053	0.163	0.539	0.065	0.055
	NA	0.001	0.003	0.003	0.003	0.003	0.031	0.004	1.000	0.000	0.001

Table 17: Temporal Correlation - LMM. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	MCMC	Unconditional	Uncondition	nalConditional	Conditional
	type		Generic	Gaussian	Gaussian			ecdf, Rotated	ecdf, Not Rotated	ecdf, Rotated	ecdf, Not Rotated
	NA								1000000		10000000
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.13	0.13	0.13	0.13	0.13	0.13	0.207	0.279	0.208	0.286
	NA	1	1	1	1	1	1	0.983	0.982	0.981	0.983
	NA	1	1	1	1	1	1	1	1	1	1
	NA										
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.013	0.003	0.012	0.013	0.019	1	0.978	0.953	0.967	0.955
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.009	0.27	0.27	0.27	0.27	1	0.835	0.889	0.019	0.007
	NA	1	1	1	1	1	1	1	1	0.999	1
	NA	0	0	0	0	0.007	0	0	0.002	0.006	0
7. T. A.	NA	0	0	0	0	0	0.226	0	0	0	0
NA	NA										
	NA	1	1	1	1	1	0.054	1	1	1	1
	NA	0	0.995	0.997	0.998	1	0.057	0.999	1	0	0
	NA	1	1	1	1	1	0.043	1	1	1	1
	NA	1	1	1	1	1	0.04	1	1	1	1
	NA	0.022	0.036	0.036	0.034	1	0.054	0.135	1	0.078	0.081
	NA	1	0.104	0.1	0.1	0.1	0.09	0.141	0.998	0.985	0.986
	NA	0	0	0	0	0.001	0.057	0	1	0.05	0.051
	NA										
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0	0.034	0.116	0.115	0.821	0.058	0.986	0.315	0	0
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	0.974	0.974	0.977	0.998	0.049	0.886	0.998	1	1
	NA	0.905	1	1	0.997	0.999	0.052	1	0.693	0.078	0.068
	NA	1	0.754	0.967	0.967	0.448	0.075	0.259	0.95	0.983	0.982
	NA	0	0.024	0.029	0.034	0.025	0.056	0.016	1	0.049	0.042

Table 18: Temporal Correlation - LMM. Type I error rates at the 0.10 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	MCMC	Unconditional	Unconditiona	l Conditional	Conditional
	$_{\mathrm{type}}$		Generic	Gaussian	Gaussian			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
									Rotated		Rotated
	NA	0.107	0.094	0.094	0.094	0.094	0.096	0.377	0.997	0.385	0.271
	NA	0.103	0.084	0.084	0.084	0.084	0.092	0.094	0.993	0.117	0.104
	NA	0.099	0.098	0.098	0.098	0.099	0.108	0.102	1.000	0.105	0.111
NA	NA	0.007	0.055	0.059	0.058	0.079	0.084	0.358	0.405	0.030	0.013
	NA	0.245	0.001	0.001	0.001	0.001	0.085	0.006	0.997	0.148	0.240
	NA	0.105	0.101	0.101	0.101	0.101	0.115	0.249	0.636	0.124	0.102
	NA	0.001	0.007	0.007	0.007	0.006	0.069	0.023	1.000	0.001	0.001

Table 19: Temporal Correlation - LMM. Power at the 0.90 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	MCMC	Unconditional	Uncondition	nalConditional	Conditional
	$_{\mathrm{type}}$		Generic	Gaussian	Gaussian			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
									Rotated		Rotated
	NA	4	4			4	4	4	4	4	
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.32	0.32	0.32	0.32	0.32	0.32	0.394	0.563	0.414	0.55
	NA	1	1	1	1	1	1	0.986	0.985	0.984	0.986
	NA	1	1	1	1	1	1	1	1	1	1
	NA										
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.031	0.022	0.034	0.031	0.033	1	0.978	0.954	0.969	0.955
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0.149	0.683	0.682	0.683	0.682	1	0.909	0.939	0.135	0.154
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0	0	0	0	0.044	0	0	0.03	0.055	0
NA	NA	0	0	0	0	0	0.257	0	0	0	0
NA	NA										
	NA	1	1	1	1	1	0.095	1	1	1	1
	NA	0	0.999	1	1	1	0.102	1	1	0	0
	NA	1	1	1	1	1	0.089	1	1	1	1
	NA	1	1	1	1	1	0.089	1	1	1	1
	NA	0.062	0.083	0.084	0.088	1	0.11	0.181	1	0.154	0.144
	NA	1	0.17	0.168	0.167	0.164	0.162	0.227	1	0.988	0.987
	NA	0	0	0	0	0.001	0.113	0	1	0.101	0.112
	NA										
	NA	1	1	1	1	1	1	1	1	1	1
	NA	0	0.102	0.217	0.243	0.835	0.114	0.986	0.38	0	0
	NA	1	1	1	1	1	1	1	1	1	1
	NA	1	0.99	0.99	0.992	1	0.103	0.952	0.998	1	1
	NA	0.945	1	1	0.997	1	0.102	1	0.767	0.137	0.145
	NA	1	0.834	0.99	0.99	0.581	0.145	0.353	0.951	0.983	0.982
	NA	0	0.048	0.055	0.059	0.042	0.101	0.037	1	0.104	0.098

Temporal Correlation - GLMM

Table 20: Temporal Correlation - GLMM. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	type		Generic			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
							Rotated		Rotated
	NA	0.951	0.041	0.040	0.044	0.614	0.980	0.359	0.229
	NA	0.857	0.041	0.039	0.049	0.520	0.968	0.055	0.044
	NA	0.140	0.033	0.036	0.037	0.068	0.900	0.054	0.041
NA	NA	0.828	0.023	0.026	0.062	0.188	0.343	0.166	0.112
	NA	0.787	0.000	0.001	0.044	0.417	0.914	0.001	0.001
	NA	0.967	0.054	0.057	0.059	0.300	0.251	0.145	0.119
	NA	0.034	0.026	0.025	0.037	0.071	0.821	0.008	0.005

Table 21: Temporal Correlation - GLMM. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not Rotated	Conditional ecdf, Rotated	Conditional ecdf, Not Rotated
	NA								
	NA	0.995	0.984	0.985	0.985	0.994	0.993	0.998	0.992
	NA	0.916	0.854	0.866	0.865	0.934	0.911	0.933	0.911
	NA	0.983	0.972	0.97	0.97	0.973	0.97	0.978	0.969
	NA	0.964	0.939	0.934	0.934	0.935	0.934	0.932	0.936
	NA	0.989	0.571	0.536	0.536	0.813	0.789	0.791	0.795
	NA	0.972	0.973	0.979	0.98	0.863	0.935	0.865	0.933
	NA	0.972	0.979	0.98	0.98	0.887	0.97	0.868	0.971
	NA								
	NA	1	0.974	0.977	0.93	0.987	0.998	1	1
	NA	0.01	0.025	0.049	0.111	0.955	0.579	0.866	0.816
	NA	1	0.901	0.893	0.865	0.851	0.996	1	1
	NA	0.678	0.622	0.616	0.54	0.505	0.982	0.605	0.685
	NA	0.96	0.932	0.94	0.849	0.966	0.902	0.966	0.976
	NA	0.765	0.066	0.214	0.037	0.113	0.81	0.168	0.225
DT A	NA	0.031	0.067	0.075	0.104	0.14	0.869	0.037	0.035
NA	NA								
	NA	1	0.221	0.214	0.037	0.77	0.985	1	1
	NA	0.822	0.065	0.064	0.039	0.582	0.719	0.149	0.084
	NA	1	0.174	0.159	0.042	0.72	0.974	1	1
	NA	0.782	0.1	0.087	0.038	0.714	0.965	0.003	0.002
	NA	0.965	0.046	0.049	0.043	0.545	0.508	0.142	0.108
	NA	0.944	0.033	0.031	0.043	0.045	0.935	0.915	0.957
	NA	0.021	0.011	0.011	0.026	0.034	0.941	0	0
	NA								
	NA	1	0.008	0.009	0.056	0.156	1	0.994	0.986
	NA	1	0.028	0.029	0.716	0.466	0.379	0.286	0.153
	NA	1	0.009	0.011	0.058	0.118	1	0.94	0.927
	NA	1	0.002	0.002	0.716	0.387	0.526	0.001	0
	NA	0.97	0.038	0.045	0.09	0.211	0.172	0.16	0.141
	NA	0.943	0.001	0.001	0.021	0.009	0.249	0.889	0.938
	NA	0.113	0.051	0.047	0.219	0.054	0.108	0.046	0.042

Table 22: Temporal Correlation - GLMM. Type I error rates at the 0.10 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	$_{ m type}$		Generic			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
							Rotated		Rotated
	NA	0.972	0.084	0.081	0.089	0.696	0.987	0.403	0.264
	NA	0.900	0.073	0.068	0.090	0.605	0.979	0.114	0.089
	NA	0.187	0.079	0.078	0.086	0.118	0.928	0.091	0.090
NA	NA	0.840	0.061	0.060	0.112	0.235	0.414	0.194	0.125
	NA	0.837	0.001	0.001	0.078	0.509	0.936	0.003	0.006
	NA	0.981	0.118	0.111	0.096	0.409	0.340	0.213	0.195
	NA	0.048	0.062	0.062	0.082	0.138	0.889	0.015	0.017

Table 23: Temporal Correlation - GLMM. Power at the 0.90 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not Rotated	Conditional ecdf, Rotated	Conditional ecdf, Not Rotated
	NA								
	NA	0.996	0.989	0.989	0.989	0.997	0.995	0.999	0.996
	NA	0.931	0.886	0.901	0.899	0.951	0.929	0.948	0.935
	NA	0.989	0.981	0.979	0.979	0.982	0.976	0.985	0.977
	NA	0.976	0.948	0.942	0.942	0.946	0.944	0.946	0.944
	NA	0.997	0.663	0.622	0.622	0.858	0.835	0.839	0.839
	NA	0.984	0.987	0.989	0.99	0.914	0.957	0.905	0.959
	NA	0.984	0.988	0.989	0.989	0.925	0.986	0.906	0.986
	NA								
	NA	1	0.989	0.992	0.954	0.994	0.999	1	1
	NA	0.043	0.046	0.098	0.152	0.957	0.647	0.872	0.82
	NA	1	0.933	0.933	0.896	0.893	0.999	1	1
	NA	0.801	0.736	0.722	0.639	0.564	0.991	0.712	0.796
	NA	0.975	0.958	0.966	0.903	0.972	0.932	0.977	0.983
	NA	0.804	0.102	0.278	0.062	0.187	0.85	0.221	0.28
37.4	NA	0.048	0.131	0.141	0.153	0.23	0.901	0.063	0.059
NA	NA								
	NA	1	0.33	0.316	0.088	0.821	0.991	1	1
	NA	0.837	0.116	0.118	0.09	0.637	0.769	0.179	0.106
	NA	1	0.264	0.249	0.088	0.769	0.984	1	1
	NA	0.832	0.197	0.178	0.079	0.757	0.979	0.006	0.009
	NA	0.982	0.095	0.107	0.112	0.656	0.597	0.216	0.172
	NA	0.962	0.075	0.074	0.088	0.085	0.959	0.948	0.98
	NA	0.03	0.026	0.027	0.066	0.087	0.967	0.006	0.004
	NA								
	NA	1	0.034	0.031	0.12	0.277	1	0.997	0.989
	NA	1	0.059	0.064	0.734	0.53	0.441	0.325	0.199
	NA	1	0.036	0.031	0.112	0.192	1	0.962	0.949
	NA	1	0.006	0.006	0.725	0.455	0.6	0.003	0.002
	NA	0.986	0.093	0.103	0.166	0.298	0.24	0.244	0.206
	NA	0.96	0.011	0.012	0.065	0.029	0.359	0.922	0.956
	NA	0.176	0.106	0.106	0.284	0.122	0.184	0.089	0.095

Spatial

Table 24: Spatial Model. Type I error rates and Power evaluated for each analytical and simulation method for theoretical residuals using the KS normality test. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error	Power		
test	method	Correct	A: Missing RE	B: Lognorm error	C: Misp RE
Anderson-Darling	Pearson	0.044	0.914	1.000	1.000
Anderson-Darling	one-step Generic	0.028	0.913	1.000	0.936
Anderson-Darling	one-step Gaussian	0.028	0.914	1.000	0.952
Anderson-Darling	full Gaussian	0.028	0.914	1.000	0.952
Anderson-Darling	cdf	0.029	0.914	1.000	0.951
Anderson-Darling	MCMC	0.063	0.914	1.000	0.347
Anderson-Darling	Unconditional ecdf, Rotated	0.264	0.986	1.000	0.990
Anderson-Darling	Unconditional ecdf, Not Rotated	0.539	0.965	1.000	0.999
Anderson-Darling	Conditional ecdf, Rotated	0.338	0.989	1.000	1.000
Anderson-Darling	Conditional ecdf, Not Rotated	0.216	0.969	1.000	1.000
Kolmogorov- Smirnov	Pearson	0.046	0.733	1.000	1.000
Kolmogorov- Smirnov	one-step Generic	0.037	0.733	1.000	0.706
Kolmogorov- Smirnov	one-step Gaussian	0.037	0.733	1.000	0.706
Kolmogorov- Smirnov	full Gaussian	0.037	0.733	1.000	0.706
Kolmogorov- Smirnov	cdf	0.037	0.733	1.000	0.711
Kolmogorov- Smirnov	MCMC	0.061	0.733	1.000	0.153
Kolmogorov-Smirnov	Unconditional ecdf, Rotated	0.036	0.788	1.000	0.782
Kolmogorov- Smirnov	Unconditional ecdf, Not Rotated	0.438	0.733	1.000	0.999
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.050	0.802	1.000	1.000
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.039	0.732	1.000	1.000
Spatial Autocorrelation	Pearson	0.059	0.944	0.059	0.618
Spatial Autocorrelation	one-step Generic	0.056	0.944	0.002	0.234
Spatial Autocorrelation	one-step Gaussian	0.056	0.944	0.004	0.288
Spatial Autocorrelation	full Gaussian	0.056	0.944	0.004	0.288
Spatial Autocorrelation	cdf	0.056	0.944	NA	0.232
Spatial Autocorrelation	MCMC	0.068	0.944	0.000	0.117
Spatial Autocorrelation	Unconditional ecdf, Rotated	0.052	0.908	0.003	0.069
Spatial Autocorrelation	Unconditional ecdf, Not Rotated	0.945	0.927	0.182	0.881
Spatial Autocorrelation	Conditional ecdf, Rotated	0.062	0.913	0.062	0.177
Spatial Autocorrelation	Conditional ecdf, Not Rotated	0.054	0.928	0.055	0.203

Table 25: Spatial Model. Type I error rates and Power evaluated for each analytical and simulation method for estimated residuals using the KS normality test. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error	Power		
test	method	Correct	A: Missing RE	B: Lognorm error	C: Misp RE
Anderson-Darling	Pearson	0.003	0.031	0.077	0.015
Anderson-Darling	one-step Generic	0.033	0.033	NA	0.000
Anderson-Darling	one-step Gaussian	0.031	0.024	0.065	0.034
Anderson-Darling	full Gaussian	0.041	0.029	0.068	0.027
Anderson-Darling	cdf	0.049	0.031	0.068	0.092
Anderson-Darling	MCMC	0.032	0.027	0.092	0.052
Anderson-Darling	Unconditional ecdf, Rotated	0.286	0.286	0.999	0.791
Anderson-Darling	Unconditional ecdf, Not Rotated	0.133	0.171	0.998	0.759
Anderson-Darling	Conditional ecdf, Rotated	0.058	0.294	0.996	0.287
Anderson-Darling	Conditional ecdf, Not Rotated	0.031	0.152	0.993	0.268
Kolmogorov-Smirnov	Pearson	0.112	0.001	1.000	0.571
Kolmogorov-Smirnov	one-step Generic	0.005	0.001	NA	0.000
Kolmogorov- Smirnov	one-step Gaussian	0.005	0.001	1.000	0.252
Kolmogorov- Smirnov	full Gaussian	0.005	0.001	1.000	0.286
Kolmogorov- Smirnov	cdf	0.018	0.001	1.000	0.292
Kolmogorov-Smirnov	MCMC	0.034	0.001	1.000	0.156
Kolmogorov-Smirnov	Unconditional ecdf, Rotated	0.008	0.001	0.997	0.162
Kolmogorov-Smirnov	Unconditional ecdf, Not Rotated	0.061	0.001	1.000	0.428
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.092	0.002	0.997	0.495
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.107	0.001	1.000	0.575
Lilliefors	Pearson	0.071	0.066	1.000	0.389
Lilliefors	one-step Generic	0.064	0.066	NA	0.000
Lilliefors	one-step Gaussian	0.064	0.066	1.000	0.478
Lilliefors	full Gaussian	0.064	0.066	1.000	0.470
Lilliefors	cdf	0.076	0.066	1.000	0.494
Lilliefors	MCMC	0.043	0.066	1.000	0.212
Lilliefors	Unconditional ecdf, Rotated	0.175	0.175	1.000	0.705
Lilliefors	Unconditional ecdf, Not Rotated	0.122	0.146	1.000	0.848
Lilliefors	Conditional ecdf, Rotated	0.097	0.159	1.000	0.429
Lilliefors	Conditional ecdf, Not Rotated	0.079	0.135	1.000	0.429
Spatial Autocorrelation	Pearson	0.022	0.944	0.111	0.179
Spatial Autocorrelation	one-step Generic	0.048	0.944	NA	0.000
Spatial Autocorrelation	one-step Gaussian	0.048	0.944	0.105	0.254
Spatial Autocorrelation	full Gaussian	0.048	0.944	0.101	0.269
Spatial Autocorrelation	cdf	0.048	0.944	0.105	0.237
Spatial Autocorrelation	MCMC	0.061	0.944	0.111	0.208
Spatial Autocorrelation	Unconditional ecdf, Rotated	0.051	0.922	0.141	0.211
Spatial Autocorrelation	Unconditional ecdf, Not Rotated	0.950	0.938	0.156	0.938
Spatial Autocorrelation	Conditional ecdf, Rotated	0.022	0.919	0.167	0.176
Spatial Autocorrelation	Conditional ecdf, Not Rotated	0.021	0.934	0.157	0.180

Table 26: Overview of issues and recommendations for common classes of models. Correlation and distributions refer to predicted data from a fitted model, against which observed points are compared. A linear rotation refers to a multiplication of the simulated and observed data by a Cholesky decomposition of the estimated covariance matrix of the observed data, z'=Lz, as available in DHARMa.

Model class	Case studies	Issues and causes	Recommendation
Linear model	Linear model	No issues	Pearson residuals
Generalized linear model (GLM)	Skewed Gamma	Non-normality resulting from response variable. Quantile residuals are needed if not approximately normal.	Quantile residual
Linear mixed model	Random walk, Spatial	Linear correlations caused by non-	Use a method that linearly decorrela
(LMM), Multivariate model	LMM, Multinomial	independence in observations.	order to transform to a unit iid no OSA Full Gaussian, OSA one-step sian, or simulation residuals with rot
Generalized linear mixed model (GLMM)	Spatial Poisson, Repeated measures Tweedie	Non-normality and non-linear correlations caused by response variable and non-independence in observations.	Needs non-linear decorrelation and tiles. Needs non-linear decorrelation quantiles. Best approach depends or study and sample size.