SSL - Examen Final	20/02/2017
Apellido y Nombre	Legajo

- El examen debe resolverse en tinta y en esta hoja; no se aceptan hojas adicionales.

- Durante el examen no se responde consultas; de ser necesario, escriba hipótesis de trabajo, las cuales también se evalúan.

Parte 1 - Ejercicios

1 Dadas las ER E y F, y siendo L(E) el LF representado por E y L(F) el LF representado por F, enumere la secuencia de algoritmos y operaciones que aplicaría para llegar a la ER que representa el $L(E) \cap L(F)$:

2 Sea double d=1; analice el fragmento ++d++

?	¿Es léxicamente correcto?
?	¿Cuántos tokens tiene?
?	¿Es sintácticamente correcto?
?	¿Cuál es la categoría sintáctica?
?	¿Cuántas operadores tiene?
?	¿Cuántos operandos tiene?
?	¿Es semánticamente correcto?
?	¿Por qué?

3 Dadas las siguientes funciones:

int g(void) {putchar('g');return 'g'-'f';}
int f(void) {putchar('f');return '\0';}

Indique el **valor** de cada expresión y, <u>si es que está determinada</u>, la **salida** por stdout, si no la frase **"Indeterminada"**.

0= 110 =0 ==000		
Expresión	Valor	Salida por stdout ó "Indeterminada"
g()+f()		
g()&&f()		
g()*f()		
g() f()		

Parte 2 - Afirmaciones

1	El Σ de las Constantes es un subconjunto del Σ de los Identificadores	.V	F
2	El Parser necesita conocer el lexema que origina el token	.V	F
3	Las Expresiones son un sublenguaje de las Sentencias	.V	F
4	Dos identificadores iguales pueden denotar diferentes entidades	.V	F
5	La expresión a=a+b es semánticamente equivalente a a+=b	.V	F
6	Es posible definir un AFN-ε para el LF Direcciones de e-mail	.V	F
7	La fase de síntesis necesita conocer las reglas léxicas	.V	F

Para el evaluador

Condiciones: □ 5 bien. □ Un ejercicio bien.

Bien(B) Mal(M) Sin hacer Total

Ejercicios(E)

Afirmaciones(A)

Nota: EB+AB-AM

Resolución

Una posible resolución del ejercicio 1

- 1. Dos veces Thompson: dos AFN- ϵ .
- 2. Dos veces de Clausuras-ε o Construcción de Subconjuntos: dos AFD.
- 3. Intersección: un AFD.
- 4. (opcional) Minimización: un AFD.
- 5. Ecuaciones: un ER.

Una posible resolución del ejercicio 2

¿Es léxicamente correcto?	Sí.
¿Cuántos tokens tiene?	Tres.
¿Es sintácticamente correcto?	Sí.
¿Cuál es la categoría sintáctica?	Expresión.
¿Cuántas operadores tiene?	Dos.
¿Cuántos operandos tiene?	Dos.
¿Es semánticamente correcto?	No.
¿Por qué?	La expresión d++ no es un valor-L.

Resolución del ejercicio 3

Expresión	Valor	Salida por stdout ó "Indeterminada"
g()+f()	1	Indeterminada
g()&&f()	0	gf
g()*f()	0	Indeterminada
g() f()	1	g

<u>Afirmaciones</u>

- 1 F
- 2 F
- 3 F
- 4 V
- 5 F
- 6 V 7 F