

Swin Transformer

Ze Liu Yutong Lin Yue Cao Han Hu Yixuan Wei Zheng Zhang Stephen Lin Baining Guo

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021

https://arxiv.org/abs/2103.14030

Swin Transformer

- State of the Art Object Detection on COCO test-dev (using additional training data)
- [IIII] State of the Art Instance Segmentation on COCO test-dev
- State of the Art Semantic Segmentation on ADE20K (using additional training data)
- [IIII] Ranked #3 Action Classification on Kinetics-400 (using additional training data)

- Image Classification: Included in this repo. See get_started.md for a quick start.
- Object Detection and Instance Segmentation: See Swin Transformer for Object Detection.
- Semantic Segmentation: See Swin Transformer for Semantic Segmentation.
- Video Action Recognition: See Video Swin Transformer.
- Semi-Supervised Object Detection: See Soft Teacher.
- SSL: Contrasitive Learning: See Transformer-SSL.
- SSL: Masked Image Modeling: See SimMIM.

Problems of ViT

- · Does not consider the difference between textual and visual signals
- . Mainly for image classification

good priors for visual signals (hierarchy / locality / translation invariance)

Swin Transformer

Key tech innovation: locality by Shifted windows

- Non-overlapped windows (faster real speed than sliding windows)
- Windows are shifted in the next layer

- Hierarchical feature maps
- Windows Multi-Head Self-Attention (W-MSA)
 Shifted Windows Multi-Head Self-Attention (SW-MSA)

Key tech innovation: locality by Shifted windows

- 1) 自注意的计算在局部的非重叠窗口内进行。不同query会共享同样的key集合,从而对硬件友好
- 2)在前后两层的Transformer模块中,非重叠窗口的配置相比前一层做了半个窗口的移位,使得上一层中不同窗口的信息进行了交换。

Self-attention in non-overlapped windows

For efficient modeling, we propose to compute self attention within local windows.

The windows are arranged to evenly partition the image in a non-overlapping manner.

Supposing each window contains $M \times M$ patches, the computational complexity of a global MSA module and a window based one on an image of $h \times w$ patches are :

$$\Omega(MSA) = 4hwC^2 + 2(hw)^2C, \tag{1}$$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

where the former is quadratic to patch number hw, and the latter is linear when M is fixed (set to 7 by default). Global self-attention computation is generally unaffordable for a large hw, while the window based self-attention is scalable.

The architecture of a Swin Transformer (Swin-T)

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Patch Merging

经过Patch Merging后,feature map的高和宽会减半,深度会加倍

Swin Transformer block

Swin Transformer is built by replacing the standard **multi-head self attention (MSA)** module in a Transformer block by a module based on shifted windows, with other layers kept the same.

A Swin Transformer block consists of a shifted window based MSA module, followed by a 2-layer MLP with GELU nonlinearity in between.

A LayerNorm (LN) layer is applied **before** each MSA module and each MLP, and a residual connection is applied after each module.

Shifted window partitioning in successive blocks

With the shifted window partitioning approach, consec-

utive Swin Transformer blocks are computed as

$$\begin{split} \hat{\mathbf{z}}^l &= \text{W-MSA}\left(\text{LN}\left(\mathbf{z}^{l-1}\right)\right) + \mathbf{z}^{l-1}, \\ \mathbf{z}^l &= \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^l\right)\right) + \hat{\mathbf{z}}^l, \\ \hat{\mathbf{z}}^{l+1} &= \text{SW-MSA}\left(\text{LN}\left(\mathbf{z}^l\right)\right) + \mathbf{z}^l, \\ \mathbf{z}^{l+1} &= \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l+1}\right)\right) + \hat{\mathbf{z}}^{l+1}, \end{split}$$

where $\hat{\mathbf{z}}^l$ and \mathbf{z}^l denote the output features of the (S)W-MSA module and the MLP module for block l, respectively;

Swin T(Tiny), S(Small), B(Base), L(Large)

	downsp. rate (output size)	Swin-T	Swin-S	Swin-B	Swin-L
452		concat 4×4, 96-d, LN	concat 4×4, 96-d, LN	concat 4×4, 128-d, LN	concat 4×4, 192-d, LN
stage 1	4× (56×56)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 96, head 3 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 96, head 3 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 128, \text{ head } 4 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 192, \text{ head } 6 \end{bmatrix} \times 2$
	8×	concat 2×2, 192-d, LN	concat 2×2, 192-d , LN	concat 2×2, 256-d , LN	concat 2×2, 384-d, LN
stage 2	(28×28)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 192, \text{ head } 6 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim 256, head 8} \end{bmatrix} \times 2$	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 384, \text{ head } 12 \end{bmatrix} \times 2$
	16×	concat 2×2, 384-d, LN	concat 2×2, 384-d, LN	concat 2×2, 512-d , LN	concat 2×2, 768-d, LN
stage 3	(14×14)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 6$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 512, head 16 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 18$
stage 4	32×	concat 2×2, 768-d, LN	concat 2×2, 768-d, LN	concat 2×2, 1024-d, LN	concat 2×2, 1536-d, LN
	(7×7)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 1024, \text{ head } 32 \end{bmatrix} \times 2$	$ \begin{bmatrix} win. sz. 7 \times 7, \\ dim 1536, head 48 \end{bmatrix} \times 2 $

Table 7. Detailed architecture specifications.

- win. sz. 7x7表示使用的窗口(Windows)的大小
- dim表示feature map的channel深度)
- head表示多头注意力模块中head的个数

Architecture Variants

- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

where C is the channel number of the hidden layers in the first stage.

The window size is set to M = 7 by default. The query dimension of each head is d = 32, and the expansion layer of each MLP is $\alpha = 4$.

Efficient batch computation for shifted configuration

An issue with shifted window partitioning is that it will result in more windows, from $\lceil \frac{h}{M} \rceil \times \lceil \frac{w}{M} \rceil$ to $(\lceil \frac{h}{M} \rceil + 1) \times (\lceil \frac{w}{M} \rceil + 1)$ in the shifted configuration, and some of the windows will be smaller than $M \times M^4$. A naive solution is to

⁴To make the window size (M, M) divisible by the feature map size of (h, w), bottom-right padding is employed on the feature map if needed.

Illustration of an efficient batch computation approach for self-attention in shifted window partitioning

Relative position bias In computing self-attention, we follow [49, 1, 32, 33] by including a relative position bias $B \in \mathbb{R}^{M^2 \times M^2}$ to each head in computing similarity:

Attention
$$(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$$
, (4)

where $Q, K, V \in \mathbb{R}^{M^2 \times d}$ are the *query*, *key* and *value* matrices; d is the *query/key* dimension, and M^2 is the number of patches in a window. Since the relative position along each axis lies in the range [-M+1, M-1], we parameterize a smaller-sized bias matrix $\hat{B} \in \mathbb{R}^{(2M-1) \times (2M-1)}$, and values in B are taken from \hat{B} .

Gaussian Error Linear Unit (GELU)

Figure 1: The GELU ($\mu=0,\sigma=1$), ReLU, and ELU ($\alpha=1$).

Experimental Designs

3 datasets to cover various recognition tasks of different granularities

- Image-level ImageNet-1K classification (1.28M images; 1000 classes).
- Region-level coco object detection (115K images; 80 classes).
- **Pixel-level** ADE20K semantic segmentation (20K images; 150 classes)

	ImageNet		CC	OCO	ADE20k
	top-1	top-5	AP ^{box}	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

(a) Regular ImageNet-1K trained models									
method	image size	#param.	FLOPs	throughput (image / s)					
RegNetY-4G [48]	224 ²	21M	4.0G	1156.7	80.0				
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7				
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9				
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6				
EffNet-B4 [58]	380^{2}	19 M	4.2G	349.4	82.9				
EffNet-B5 [58]	456^{2}	30M	9.9G	169.1	83.6				
EffNet-B6 [58]	528^{2}	43M	19.0G	96.9	84.0				
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3				
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9				
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5				
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8				
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8				
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1				
Swin-T	224^{2}	29M	4.5G	755.2	81.3				
Swin-S	224^{2}	50M	8.7G	436.9	83.0				
Swin-B	224^{2}	88M	15.4G	278.1	83.5				
Swin-B	384 ²	88M	47.0G	84.7	84.5				

Results on COCO object detection and instance segmentation

(a) Various frameworks											
Method	Backbone	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	#param.	FLOPs FPS					
Cascade	R-50	46.3	64.3	50.5	82M	739G 18.0					
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G 15.3					
ATSS	R-50	43.5	61.9	47.0	32M	205G 28.3					
AISS	Swin-T	47.2	66.5	51.3	36M	215G 22.3					
PanDainta V/2	R-50	46.5	64.6	50.3	42M	274G 13.6					
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G 12.0					
Sparse	R-50	44.5	63.4	48.2	106M	166G 21.0					
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G 18.4					

(b) Various backbones w. Cascade Mask R-CNN

	AP ^{box}	AP_{50}^{box}	AP ₇₅	AP ^{masl}	$^{c}AP_{50}^{mask}$	AP ₇₅ ^{mask}	param	FLOPs	FPS
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889G	10.4
				ı	61.7		ı		
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819G	12.8
Swin-S	51.8	70.4	56.3	44.7	67.9	48.5	107M	838G	12.0
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

Results of semantic segmentation on the ADE20K val and test set

ADE	val	test	#param.	EI ODs	EDC	
Method	Backbone	mIoU	score	#paraiii.	FLOFS	FFS
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841 G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2