

Radionuclide Therapy Targeted Radionuclide therapy with Alpha Particles

Shankar Vallabhajosula, Ph.D.

74% H and 26% He

Figure 1. A pie chart of the prevalence of cancer treatments.

131I sodium iodide
89Sr chloride
153Sm-EDTMP
90Y Microspheres
223Ra chloride

90Y-Zevalin
131I-Bexaar
177Lu-DOTATATE
131I-MIBG

¹⁷⁷Lu-DOTA-huJ591 mAb ²²⁵Ac-DOTA-huJ591 mAb

¹³¹I-Actimab ²²⁵Ac-Lintuzumab

¹⁷⁷Lu-PSMA-617

Targeted Radionuclide therapy

Figure 1: Diverse chemistry of radiopharmaceuticals used in TRT. These drugs may be structurally simple ions (¹³¹I sodium iodide), small molecules (¹³¹I-MIBG and ¹⁵³Sm-EDTMP), biomolecules (¹³¹I, ⁹⁰Y or ¹⁷⁷Lu labeled mAbs or peptides) or even particles (⁹⁰Y labeled microspheres).

Radionuclides For Therapy

	T _{1/2}	Decay	E (MeV)		Range (mm)		γ photon	
	(Days)	Mode	Max.	Average	Max	Mean	(KeV)	
90 Y	2.67	β-	2.28	0.935	12.0	2.76	None	
⁸⁹ Sr	50.5	β-	1.49	0.58	8.0	-	None	
¹⁵³ Sm	1.95	β-	0.81	0.225	3.0	0.53	103	
131	8.04	β-	0.61	0.20	2.4	0.4	364	
¹⁷⁷ Lu	6.7	β-	0.497	0.133	-	-	208	
²¹³ Bi	45.6 m	α	8.0 (989	%)	<0.1			
²¹¹ At	0.30	α	6.0 - 7.	.5 (42, and 58%)	65.0 μm			
²²³ Ra	11.4	α	5.0 – 7.	.5 (95%)	<0.1			
²²⁵ Ac	10.0	α	6.0 (4 a	alphas)	65.0 μn	n	218, 440	
²²⁷ Th	18.0							
125	60.3 D	EC	0.0004	(Auger e ⁻) 10.0 nr	m		25-35 KeV	

Radionuclide therapy

Radionuclide selection

LET for α-particles: -80 keV/μ
 β- particles: 0.2–2.0 keV/μ
 Auger electrons: 4-16 KeV/μ

- Choice of Carrier Molecule
- Selection of a Target Antigen (or receptor) of Tumor Cells
- Determination of the Dose Load in TRNT
- Leukemias Vs. solid tumors
- Radionuclide half-life, Effective half-life

Alpha emitting radionuclides for therapy

- Short penetration depth; about 6 cell diameters (50-100 μm)
- High LET gives an α particle increased RBE compared to other radiation (electrons)
- Cell death due to alpha particles is largely independent of oxygenation or active cell proliferation
- Very effective in destroying metastasis, especially micrometastasis
- Bi-213 (45.6 m) and At-211 (7.2 h) short half-life is good for easily accessible tumors
- Ra-224, Ra-223, and Ac-225 long lived nuclides

Range of Beta and alpha particles in tissue

		E (MeV)		Range (mm)	
		Max	Mean	Max	Mean
I-131	β–	0.61	0.20	2.4	0.4
Lu-177	β–	0.497	0.133	1.5	-
Y-90	β–	2.28	0.935	12.0	2.76
²¹³ Bi	α	8.0		< 0.1	-
²¹¹ At	α	5.87		0.065	_
²²⁵ Ac	α	5.83		0.065	

Alpha Particle Range in Water

LET and Tissue Range of ²²⁵Ac and Daughter Nuclides

Supplemental Fig. 2: Linear Energy Transfer and respective tissue range of the 4 alpha particles emitted from ²²⁵Ac and its daughter nuclides (courtesy of George Sgouros, Director of Radiopharmaceutical Dosimetry at Johns Hopkins School of Medicine).

Radium-223 dichloride, XOFIGO®

Each mL contains 1100 kBq (29.7 μ Ci); 0.58 ng; SA = 1.9 MBq (51.4 μ Ci) / ng

The vial contains 6.0 mL

Ra-223 is present as a divalent cation; Ra++

α partiles (95.3%), 5.0 – 7.5 MeV β– particles(3.6%), 0445 and 0.492 MeV average γ Photons (1.1%), 0.01 – 1.27 MeV

Indications: Therapy of bone mets in mCRPC.

Dose: 55 kBq (1.49 μ Ci)/kg; 6 doses; every 4 wks.

U-238

Production of Alpha emitting Radionuclides

Ra-223 is formed by the decay of U-235.

It is made <u>artificially</u> in large quantities by ²²⁷Ac generator

²²⁶Ra (n,
$$\gamma$$
) ²²⁷Ra (β T_{1/2}=43 m) \rightarrow ²²⁷Ac \rightarrow ²²⁷Th α , 18.7 days

²²³Ra

Ac-225 and Bi-213 are extracted from Th-229, which is obtained from U-233

²³²Th $(n,\gamma)^{233}$ Th $\rightarrow \beta$ ²³³Pa $\rightarrow \beta$ ²³³U $\rightarrow \alpha$ ²²⁹Th

Cyclotron production of ²²⁵Ac

²²⁶Ra (p, 2n) ²²⁵Ac using 16 MeV protons

Typically, 1 mg Ra-226; should generate 35 mCi

The Ac-225/Bi-213 system

Theranostics: Targeted Radiopharmaceuticals For Diagnosis and Therapy

Shankar Vallabhajosula, Ph.D.

Nuclear Medicine/Molecular Imaging
New York Presbyterian Hospital
Weill Cornell Medical College of
Cornell University
New York, NY

Theranostics: The right drug and dose to the right patient at the right time

- Merge Diagnostics & Therapeutics
- Molecular-targeted drug with a companion diagnostic test for Personalized medicine
- Drug and diagnostic go to market simultaneously

Theranostics: The Principle

- A theranostic system integrates some form of diagnostic testing to determine the presence of a molecular target for which a specific drug is intended.
- Molecular imaging serves this diagnostic function and provides powerful means for noninvasively detecting disease.

Paradigms in Nuclear Medicine:

- Thyroid imaging: Thyroid therapy
- SSTR Imaging: Rdiolabeled Octreotide therapy
- PSMA Imaging: J591 anti-PSMA mAb therapy

Biomarker: definition

- Biomarker: a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention
- Biomarkers are biologic indicators of disease or therapeutic effects, which can be measured through dynamic imaging tests (such as PET, SPECT, MRI) as well as tests on blood, tissue and other biologic samples.
 - (Oncology Biomarker Qualification Initiative (OBQI), a joint enterprise of US FDA, NCI and CMS)

Theranostics: Diagnostics and Therapy

Target

Target Specific agent

Dx or Rx

Target

- Antigen
- Receptor
- Enzyme

Ligand (or vector)

- Antibody (mAb)
- Peptide
- Enzyme inhibitor
- Small molecule

Theranostics

Thyroid cancer

¹²³I, ¹²⁴I, ¹³¹I sodium iodide

Neuroendocrine tumors (NETs)

¹¹¹In-Octreotide; ⁶⁸Ga-DOTATOC ⁹⁰Y-DOTATOC, ¹⁷⁷Lu-DOATATE

¹²³I-MIBG or ¹³¹I-MIBG

Prostate Cancer

¹¹¹In or ⁸⁹Zr-J591 mAb ⁹⁰Y, ¹⁷⁷Lu, ²²⁵Ac-J591 mAb

¹²³I, ^{99m}Tc, ¹²⁴I, ¹⁸F, ⁶⁸Ga – PSMA ligands ¹³¹I, ¹⁷⁷Lu, ²²⁵Ac –PSMA ligands

Neuroendocrine Tumors (NETs) Diagnosis and Therapy

- NETs are a heterogeneous group of slow-growing rare neoplasms characterized by their endocrine metabolism and histology pattern.
- NET cells belong to the amine precursor uptake and decarboxilation (APUD) system and can take up, accumulate, and decarboxylate amine precursors, such as 3,4-dihydroxylphenylalanine (DOPA) and 5-hydroxytryptophan (HTP). Tumors deriving from these cells consequently were called APUDomas.
- Express several different peptide receptors (for somatostatin, VIP, Gastrin, CCK) in high quantities.

Somatostatin and Octreotide Analogs

Somatostatin

DTPA-Octreotide (OctreoScan®)

DOTA-Tyr³-Octreotide (DOTATOC)

DOTA- D-Phe – Cys –
$$Tyr$$
 – D - Trp – Lys – Thr – Cys – Thr (ol)

DOTA-Tyr3-Octreotate (DOTATATE)

DOTA- D-Phe – Cys –
$$Tyr$$
 – D - Trp – Lys – Thr – Cys – Thr (OH)

DOTA-Tyr³-Octreotide (DOTANOC)

DOTA- D-Phe – Cys –
$$Nal$$
 – D - Trp – Lys – Thr – Cys – Thr (ol)

Nal = 3- (1-naphtalenyl)-*L*-alanyl

Affinity profiles (IC_{50}) of Octreotide analogs for human Somatostatin receptors (SSTR)

Peptide	SSTR ₂	SSTR ₃	SSTR ₅
Somatostatin	2.7	7.7	4.0
[In-DTPA]Octreotide	22	182	237
[DOTA-Tyr ³]Octreotide (DOTATOC)	14	883	393
[DOTA-Tyr ³]Octreotate (DOTATATE)	1.5	>1000	187
[Ga-DOTA-1-Nal ³]Octreotide (DOTANOC)	1.9	40	7.2
[Y-DOTA-1-Nal ³]Octreotide (DOTANOC)	3.3	26	10
[Y-DOTA-Tyr ³]Lanreotide (DOTALAN)	23	290	16

Jong M. Eur J Nucl Med (2003) 30:463-469

Which tumors to be treated?

tumors with high SSTR₂ receptor expression:

- GEP NET
- paragangliomas
- pheochromocytomas
- medullary thyroid carcinomas
- breast carcinomas
- lymphomas...

* Patients with liver mets are candidates

⁶⁸Ga-DOTATOC vs OctreoScan

¹¹¹In-OctreoScan, 24 p.i.

⁶⁸Ga-DOTATOC, 90 min p.i.

Hofmann M et al. Eur J Nucl Med 2002

NETSPOT (kit for the preparation of gallium Ga 68 dotatate injection)

SomaKit TOC edotreotide for Ga-68 labeling

 Received orphan drug designation from both the EMA and the FDA (06/01/2016)

LUTATHERA, a Lutetium Lu 177 dotatate

approved by the FDA in January 2018 for GEP-NET

Advanced Accelerator Applications USA, Inc.

Tumor Imaging and Therapy Using Radiolabeled Somatostatin Analogues

MARION DE JONG,* WOUT A. P. BREEMAN, DIK J. KWEKKEBOOM, ROELF VALKEMA, AND ERIC P. KRENNING

Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands

¹⁷⁷Lu-DOTATATE IEO S189/104: phase I-II study

Pt with liver mets from unknown primary neuroendocrine carcinoma

- **→** Complete response on liver
- → Primary located at the head of the pancreas
- Lisa Bodei, European Institute of Oncology, Milano

Prostate Cancer

FDA Approved Radiopharmaceuticals

Planar and SPECT Bone Scan: 99mTc-MDP

ProstaScint® Scan: 111In-Capromab pendetide (anti-PSMA mAb)

PET/CT Bone Scan: [18F]NaF

Choline-PET: [11C]Choline

Glucose Metabolism: [18F]FDG

Molecular Imaging RPs To Image Prostate Cancer

Acetate
[11C]Acetate
[18F]Fluoroacetate

Prostate Specific Membrane Antigen (PSMA)

- PSMA is a surface antigen expressed virtually on all prostate cancer cells
- PSMA expression increases progressively in:
 - Higher grade tumors
 - Metastastic disease
 - Hormone-refractory
 Prostate cancer
- PSMA is internalized
- PSMA is expressed also on the neo-vasculature of solid tumors but not on normal tissue

Radiolabeled J591 mAb

Diagnostic RPs

- 111In-DOTA-huJ591
- 89Zr-DFO-huJ591
- 89Zr-DOTA-IAB2M (J591 minibody)

Therapeutic RPs

- ¹³¹I-huJ591
- 90Y-DOTA-huJ591
- ¹⁷⁷Lu-DOTA-huJ591
- ²²⁵Ac-DOTA-huJ591

¹⁷⁷Lu-J591 Rx: Excellent Targeting & PSA Response

30/32 (94%) with accurate targeting of known sites of disease

Phase I dose-escalation trial of ²²⁵Ac-J591 in patients with mCRPC Weill Cornell Medicine Protocol

Division of Hematology & Medical Oncology and Urology

Scott T. Tagawa, MD, MS

David M. Nanus, M.D.,

Ana M. Molina, M.D.,

Himisha Beltran, M.D.,

Bishoy Faltas, M.D.,

Keriann Scavone, PA,

Tessa Chamberlain, NP,

Jaspreet S. Batra, M.D.,

Division of Nuclear Medicine, Radiology

Yuliya S. Jhanwar, M.D.

Stanley J. Goldsmith, M.D.

Honglei Zhang, M.D.

Trisha Youn, M.D.

Shankar Vallabhajosula, Ph.D.

John Babich, Ph.D.

Radiation Dosimetry: 225Ac-DOTA-J591

Dose limit	Dose	Activity limit*	
Gy	mGy/MBq	MBq	mCi
2	66	6.06	0.16
23	382	12.04	0.33
40	591	13.54	0.37
20	79	50.93	1.38
	Gy 2 23 40	Gy mGy/MBq 2 66 23 382 40 591	Gy mGy/MBq MBq 2 66 6.06 23 382 12.04 40 591 13.54

^{*} Activity limits estimated with weighting factor (RBE = 5)

Dose-Escalation Treatment Plan with ²²⁵Ac-J591

Cohort	Treatment Dose		N
	<u>KBq</u> /Kg	μCi/Kg	
1	13.3	0.36	1-6
2	26.7	0.72	1-6
3	40.0	1.08	3-6
4	53.3	1.44	3-6
5	66.7	1.80	3-6
6	80.0	2.16	3-6
7	93.3	2.52	3-6

PSMA is Glutamate carboxypetidase II (GCPII)

- N-acetylated-alpha-linked acidic dipeptidase (NAALADase),
- folate hydrolase (FOLH1), a zinc-dependent peptidase
- PSMA

Human GCPII conforms to the pattern typical for type II transmembrane proteins having a short N-terminal cytoplasmic tail (amino acids 1-18), a single membrane-spanning helix (amino acids 19-43) and a large extracellular part (amino acids 44-750).

Enzymatic Site of PSMA is known (NAALADASE and PSMA are Homologous)

NAAG Binding to PSMA

- Substrate binding domain contains two basic sub-pockets.
- Catalytic domain contains a
 bi-nuclear zinc binding site coordinating a
 water molecule where hydrolysis of
 peptide bond occurs
 - The major basic patch binds glutamate via electrostatic interactions

MIP-1072 and MIP-1095

NAALADase Inhibition (Ki)

MIP-1072

6 nM

MIP-1095

0.3 nM

2-(3-(1-carboxy-5-(4-iodo-benzylamino)-pentyl)ureido)-pentanedioic acid (S)-2-(3-(R)-1-carboxy-5-(3-(4-iodophenyl) ureido)pentyl)ureido)pentanedioic acid

99mTc-MDP Bone Scan

111 In-ProstaScint 5 days

¹²³I-MIP-1072</sup> 4 Hours

99mTc-MIP-1404

99mTc-MIP-1405

MIP-1405 (31 nM) **Re-MIP-1340 (20 nM)**

Disease progression identified by anti-PSMA ^{99m}Tc agents earlier than bone scan

71 yr old male with rapidly rising PSA

11/2010 = 1.37 ng/mL 01/2011 = 2.48 ng/mL 03/2011 = 8.90 ng/mL

January 2011

99mTc-MDP

March 201199mTc-MIP-1404

June 2011
99mTc-MDP

⁶⁸Ga-PSMA ⁶⁸Ga-PSMA-HBED-CC

Glu-NH-CO-NH-Lys-(Ahx)-[68Ga(HBED CC)] trivial name: ⁶⁸Ga-PSMA

Quick transfer from "bench to bedside"

6/2012 first publication of patient data from the Haberkorn group in Heidelberg:

Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM.

Eur J Nucl Med Mol Imaging. 2012 Jun;39(6):1085-6

since 12/2013 clinical routine patients at the LMU München

PSMA – initial clinical experience

Biochemical recurrence

⁶⁸Ga-PSMA

¹⁸F-choline

⁶⁸Ga-PSMA

Department of Nuclear Medicine, University of Heidelberg

⁶⁸Ga-PSMA PET/CT in patients with biochemical recurrence after radical prostatectomy (RP):

In a 75-y-old patient with after RP, radiation therapy, and rising PSA value of 1.09 ng/mL

Eur J Nucl Med Mol Imaging (2016) 43:34–41 DOI 10.1007/s00259-015-3188-1

ORIGINAL ARTICLE

⁶⁸Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients

Florian Sterzing^{1,2,4} • Clemens Kratochwil³ • Hannah Fiedler³ • Sonja Katayama^{1,4} • Gregor Habl⁵ • Klaus Kopka⁶ • Ali Afshar-Oromieh³ • Jürgen Debus^{1,2,4} • Uwe Haberkorn^{3,7} • Frederik L. Giesel^{3,7}

Early side effects and first results of radioligand therapy with ¹⁷⁷Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study

¹⁷⁷Lu or ²²⁵Ac

Hojjat Ahmadzadehfar^{1*†}, Kambiz Rahbar^{2†}, Stefan Kürpig¹, Martin Bögemann³, Michael Claesener², Elisabeth Eppard¹, Florian Gärtner¹, Sebastian Rogenhofer⁴, Michael Schäfers^{2,5} and Markus Essler¹

EJNMMI Research (2015) 5:36

¹⁷⁷Lu-DKFG-617</sup> (¹⁷⁷Lu-PSMA-617)

Downloaded from jnm.snmjournals.org by Weill Cornell Medical Library on August 8, 2016. For personal use only. Journal of Nuclear Medicine, published on July 28, 2016 as doi:10.2967/jnumed.116.178673

²²⁵Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer

Clemens Kratochwil*¹, Frank Bruchertseifer*², Frederik L. Giesel¹, Mirjam Weis², Frederik A. Verburg³, Felix Mottaghy³, Klaus Kopka⁴, Christos Apostolidis², Uwe Haberkorn¹, and Alfred Morgenstern²

¹Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; ²European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany; ³Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany; and ⁴Division of Radiopharmaceutical Chemistry, German Cancer Research Center, Heidelberg, Germany

²²⁵Ac-PSMA-617</sup>

J Nucl Med 2016; 57:1-4

9 – 10 MBq (0.27 mCi); 100 kBq/kg x 3 cycles

FIGURE 1. ⁶⁸Ga-PSMA-11 PET/CT scans of patient A. Pretherapeutic tumor spread (A), restaging 2 mo after third cycle of ²²⁵Ac-PSMA-617 (B), and restaging 2 mo after one additional consolidation therapy (C).

177Lu-PSMA-617 and 225Ac-PSMA-617

FIGURE 3. ⁶⁸Ga-PSMA-11 PET/CT scans of patient B. In comparison to initial tumor spread (A), restaging after 2 cycles of β-emitting ¹⁷⁷Lu-PSMA-617 presented progression (B). In contrast, restaging after second (C) and third (D) cycles of α-emitting ²²⁵Ac-PSMA-617 presented impressive response.

Theranostics: The right drug and dose to the right patient at the right time

- Merge Diagnostics & Therapeutics
- Molecular-targeted drug with a companion diagnostic test for Personalized medicine
- Drug and diagnostic go to market simultaneously

Thank You

