第一章 多项式

1.1 集合

定义 1.1.1. 集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体,这些对象称为该集合的**元素**.

- 设S为集合,则记 $x \in S$ 表示x为集合S的元素;记 $y \notin S$ 表示y不是集合S的元素.
- 设 A, B 为集合, 记 $A \subseteq B$ 表示集合 A 中的任意元素都是集合 B 的元素. 如果 $A \subseteq B$ 且 $B \subseteq A$, 那么我们称集合 A 与 B 相等, 记为 A = B.
- 记 $A \cap B := \{x \mid x \in A \perp x \in B\}$ 表示集合 A 与集合 B 的**交**. 记 $A \cup B := \{x \mid x \in A \text{ od } x \in B\}$ 表示集合 A 与集合 B 的**并**. 类似地, 我们可以定义任意多个集合的交与并.
- 记 Ø 表示空集, 此集合不包含任意元素.

例 1.1.1. 在数学上, 我们总是用 \mathbb{N} 表示自然数集合 (包括 \mathbb{O}); \mathbb{Z} 表示整数集合; \mathbb{Q} 表示有理数集合; \mathbb{R} 表示实数集合; \mathbb{C} 表示复数集合. 显然, 我们有

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

定义 1.1.2 (笛卡尔积). 设M, N 为集合, 定义集合

$$M \times N := \{ (m, n) \mid \forall m \in M, n \in N \}.$$

称集合 $M \times N$ 为集合 M 与集合 N 的**笛卡尔积**. 特别地, 集合 $M \times N$ 的元素为二元 有序元素对, 其中第一个分量元素来自集合 M, 第二个分量元素来自集合 N.

注记 1.1.1. 一般地, $M \times N \neq N \times M$.

定义 1.1.3 (映射). 集合 M 到集合 N 的 **映射** 或 **函数** $f: M \longrightarrow N$ 是指笛卡尔积 $M \times N$ 的一个子集 G, 满足对任意的 $m \in M$, 存在唯一的 $n \in N$ 使得 $(m,n) \in G$. 此时我们一般记 n = f(m) 并记映射 f 为

$$f: M \longrightarrow N$$
 $m \mapsto f(m).$

称集合G为映射f的图像.

设 $f: M \longrightarrow N$ 和 $g: M \longrightarrow N$ 为映射.

- 称映射 f 与 g 相等, 如果对任意的 $m \in M$, f(m) = g(m). 此时记为 f = g.
- 称映射 f 为**单射**, 如果对任意的 $m_1, m_2 \in M$ 满足 $f(m_1) = f(m_2)$, 那么有 $m_1 = m_2$ 成立.
- 称映射 f 为满射, 如果对任意的 $n \in N$, 存在 $m \in M$ 使得 f(m) = n.
- 称映射 f 为**双射**, 如果 f 即是单射又是满射.

例 1.1.2. 设 M 为非空集合. 记

$$id_M: \quad M \longrightarrow M \\
m \mapsto m$$

表示集合 M 上的**恒等映射**. 显然, 恒等映射为双射.

例 1.1.3. 记 \mathbb{Z} 表示整数集合. 利用笛卡尔集及映射我们将 \mathbb{Z} 上的加法 + 与乘法 \times 表示为映射的形式如下:

$$+:$$
 $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ $\times:$ $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$
$$(m,n) \longmapsto m+n \qquad (m,n) \longmapsto mn$$

一般地, 设 M 为非空集合, 我们称任意的映射 $f: M \times M \longrightarrow M$ 为集合 M 上的一个**运算**.

练习 1.1.1. 设集合 M 只有有限多个元素. 设 $f: M \longrightarrow M$ 为映射. 证明: f 是双射当且仅当 f 是单射当且仅当 f 是满射.

定义 1.1.4 (映射的复合). 设 $f: L \longrightarrow M$ 和 $q: M \longrightarrow N$ 为映射, 称映射

$$\begin{split} g \circ f : & L & \longrightarrow N \\ & l & \mapsto g(f(l)) \end{split}$$

为映射 f 与 q 的 **复合** 或 **合成**.

命题 1.1.1 (映射复合的结合律). 设 $f: X \longrightarrow Y, g: Y \longrightarrow Z, h: Z \longrightarrow W$ 为映射, 则

$$h\circ (g\circ f)=(h\circ g)\circ f.$$

练习 1.1.2. 设 $f: L \longrightarrow M, g: M \longrightarrow N$ 为映射. 证明:

- 1. 若 $g \circ f$ 为单射, 则 f 为单射;
- 2. 若 $g \circ f$ 为满射,则g 为满射;
- 3. $f: L \longrightarrow M$ 为双射当且仅当存在映射 $h: M \longrightarrow L$ 使得

$$f \circ h = \mathrm{id}_M \perp h \circ f = \mathrm{id}_L$$
.

进一步地, h 是唯一的且也是双射, 称为映射 f 的**逆映射**, 记为 $h = f^{-1}$.

练习 1.1.3. 设 $f: M \longrightarrow N, q: N \longrightarrow M$ 为映射. 举例说明

- (1) 映射 $g \circ f$ 是单射, 但映射 g 不是单射;
- (2) 映射 $g \circ f$ 是满射, 但映射 f 不是满射;
- (3) 映射 $q \circ f = id_M$, 但 f 不是双射.

1.2 整数

我们将从整数的加法与乘法运算的基本性质 (交换律、结合律、分配律、消去律等) 以及整数上存在全序 (任意两个整数可比较大小) 出发,证明算术基本定理. 我们还需要用到

数学归纳原理. 设 P(n) 是与自然数 n 有关的一个性质. 假设 P(0) 成立, 并假设只要 P(n) 成立, 则 P(n+1) 也成立. 那么对于每个自然数 $m \in \mathbb{N}$, P(m) 都成立.

第二数学归纳法. 设 Q(n) 是与自然数 n 有关的一个性质, m_0 是一个自然数. 假设 $Q(m_0)$ 成立, 并假设只要对每个 $m_0 \leq m < n$ 都有 Q(m) 成立, 则 Q(n) 也成立. 那么 Q(m) 对于一切自然数 $m \geq m_0$ 都成立.

1.2.1 整除

定义 1.2.1. 设 $a,b \in \mathbb{Z}$, 如果存在 $q \in \mathbb{Z}$ 使得 a = bq, 那么称 b 整除 a, 或者 b 为 a 的 **因** 子. 记为 b|a, 此时我们也称 a 为 b 的倍数. 反之则称 b 不整除 a, 记为 $a \nmid b$.

注记 1.2.1. 在经典数论中, 我们一般要求除数 $b \neq 0$.

例 1.2.1. (1) 对任意的 $a \in \mathbb{Z}$, a|0;

- (2) 对任意的 $a \in \mathbb{Z}$, $\pm 1|a$, $\pm a|a$, 称 ± 1 及 $\pm a$ 为整数 a 的**平凡因子**;
- (3) \emptyset *a*, *b* ∈ \mathbb{Z} 且 *a* ≠ 0, Ξ *b*|*a*, \mathbb{M} |*b*| ≤ |*a*|;
- (4) 设 $a,b,c \in \mathbb{Z}$ 且 $a \mid b,a \mid c$,则对任意的整数 $k,l,a \mid kb+lc$;

(5) 已知 a, b 为正整数,则 a = b 当且仅当 $a \mid b$ 且 $b \mid a$.

定义 1.2.2. 设 $a,b,c \in \mathbb{Z}$. 如果 $c|a \perp b|$, 那么称 c 为 a 与 b 的公因子.

设 $a,b \in \mathbb{Z}$ 不全为零,如果存在 $1 \le d \in \mathbb{Z}$ 使得 d|a 及 d|b 且满足对任意的 $a \ne b$ 的 公因子 c,都有 c|d,那么称 d 为 a 与 b 的最大公因子,此时记为 $d = \gcd(a,b) = (a,b)$. 我们约定 (0,0) = 0.

注记 1.2.2. 上述定义并未保证对任意的 $a,b \in \mathbb{Z}$, a = b 的最大公因子 (a,b) 一定存在. 但容易证明: 如果 (a,b) 存在则唯一且为 a = b 的公因子中的最大数. 另一方面, 对于某些特殊的 a,b, 由上述定义可以直接判断出其最大公因子存在, 如 (b,0) = |b|.

定理 1.2.1 (带余除法). 对任意的 $a,b\in\mathbb{Z}$ 且 $b\neq0$, 存在唯一的 $q,r\in\mathbb{Z}$ 且 $0\leq r<|b|$ 使得

$$a = bq + r$$
,

其中q称为a除以b的商,r称为a除以b的最小非负剩余项.

引理 1.2.2. 设 $S \subset \mathbb{Z}$ 且存在 $0 < a \in S$, 则存在 $x \in S$ 使得 0 < x 且对任意的 $0 < b \in S$, 有 $x \le b$. 特别地, x 为集合 S 中最小的正整数.

定理 1.2.3 (最大公因子的存在性). 设 $a,b \in \mathbb{Z}$ 不全为零, 则 a,b 的最大公因子存在.

推论 1.2.4. 设 $a,b \in \mathbb{Z}$ 不全为零,则 a = b 的最大功因子为集合 $S = \{ma + nb \mid m, n \in \mathbb{Z}\}$ 中最小的正整数.

推论 1.2.5. 设 $a,b \in \mathbb{Z}$ 不全为零, $d \in \mathbb{Z}$, 则

$$d = (a,b) \Longleftrightarrow \begin{cases} d > 0; \\ d|a,d|b; \\$$
 存在 $u,v \in \mathbb{Z}$ 使得 $d = ua + vb$.

引理 1.2.6 (最大公因子的求解: 辗转相除法). 设 $a,b \in \mathbb{Z}$ 且 $b \neq 0$. 若 a = bq + r, 则 (a,b) = (b,r).

例 1.2.2. 求 (2018, 118) 及整数 u, v 使得 (2018, 118) = 2018u + 118v.

例 1.2.3. 设 $a, k \in \mathbb{Z}$. 证明: $(a, a + k) \mid k$.

注记 1.2.3. 设 d = (a, b), 则存在无穷多组 $u, v \in \mathbb{Z}$ 使得 d = ua + vb.

练习 1.2.1. 设 $a_1, \dots, a_t \in \mathbb{Z}$ 且不全为零. 若整数 $c \in \mathbb{Z}$ 满足 $c \mid a_i, \forall 1 \leq i \leq t$, 则称 c 为 a_1, \dots, a_t 的公因子. 如果存在正整数 d 为 a_1, \dots, a_t 的公因子且对任意的公因子 c 都有 $c \mid d$, 那么称 d 为 a_1, \dots, a_t 的最大公因子. 记为 $d = (a_1, \dots, a_t)$. 证明: (1) 整数 $(\dots((a_1, a_2), a_3), \dots, a_t)$ 为 a_1, \dots, a_t 的最大公因子;

(2)
$$d$$
 为 a_1, \cdots, a_t 的最大公因子当且仅当
$$\begin{cases} d \geq 1; \\ d \mid a_i, \forall 1 \leq i \leq t; \\ \exists \ u_i \in \mathbb{Z}, \ \text{使得} \ d = \sum_{i=1}^t u_i a_i. \end{cases}$$

定义 1.2.3. 设 $a, b \in \mathbb{Z}$. 若 (a, b) = 1, 则称 a 与 b 互素.

命题 1.2.7. 设 $a, b \in \mathbb{Z}$, 则 (a, b) = 1 当且仅当存在 $u, v \in \mathbb{Z}$ 使得 1 = ua + vb.

推论 1.2.8. 设 $a, b, c \in \mathbb{Z}$ 满足 $a \mid bc$ 且 (a, b) = 1, 则 $a \mid c$.

练习 1.2.2. 设 $a,b \in \mathbb{Z}$ 不全为零, $u_0, v_0 \in \mathbb{Z}$ 使得 $(a,b) = u_0 a + v_0 b$. 试求所有的 $u,v \in \mathbb{Z}$ 使得 (a,b) = ua + vb.

练习 1.2.3. 是否存在整数 x 使得 x 除以 5 的余数为 2, x 除以 7 的余数为 3? 若存在,试求满足上述条件最小的正整数 x.

1.2.2 素数与算术基本定理

定义 1.2.4. 设 $p \in \mathbb{N}$ 且p > 1. 如果p没有非平凡因子,那么称p为素数.

引理 1.2.9. 设 $p \in \mathbb{N}$ 为素数.

- (1) 对任意的 $a \in \mathbb{Z}$, p|a 或者 (p,a) = 1;
- (2) 对任意的 $a,b \in \mathbb{Z}$, 若 p|ab, 则 p|a 或者 p|b;
- (3) 对任意的 $a_1, \dots, a_t \in \mathbb{Z}$, 若 $p|a_1a_2 \dots a_t$, 则存在 1 < i < t 使得 $p|a_i$.

注记 1.2.4. 事实上可以证明上述引理中的 (1) 与 (2) 与 p 是素数等价.

定理 1.2.10 (算术基本定理). 对任意的 $a \in \mathbb{N}$ 且 a > 1, 存在素数 p_1, \dots, p_t 使得

$$a = p_1 p_2 \cdots p_t;$$

若还存在素数 q_1,q_2,\cdots,q_s 也满足 $a=q_1q_2\cdots q_s$, 则 t=s 且经过适当的重新编号后有 $p_i=q_i,i=1,\cdots,t$.

推论 1.2.11. 素数有无穷多个.

注记 1.2.5. 由算术基本定理知,任意大于1的整数n存在两两不等的素数 p_1, \dots, p_t 及一组大于或等于1的整数 r_1, \dots, r_t 使得

$$n = \prod_{i=1}^{t} p_i^{r_i} := p_1^{r_1} p_2^{r_2} \cdots p_t^{r_t}.$$

上述表达式称为整数 n 的标准分解式.

1.3 数域

1.3.1 复数

作为集合我们有 $\mathbb{C} = \{a+ib \mid a,b \in \mathbb{R}\}$, 其中 i 满足 $i^2 = -1$, 称为**虚数单位**. 对任意的复数 $\alpha = a+ib$, 记 $\overline{\alpha} := a-ib$, 称 $\overline{\alpha}$ 为复数 α 的共轭; 称非负实数 $|\alpha| := \sqrt{a^2 + b^2}$ 为复数 α 的模长.

引理 1.3.1. 设 $\alpha, \beta \in \mathbb{C}$.

- $I. \alpha = 0$ 当且仅当 $|\alpha| = 0$;
- 2. $|\alpha| = |\overline{\alpha}|$;
- 3. $|\alpha\beta| = |\alpha||\beta|$;
- 4. $|\alpha|^2 = \alpha \overline{\alpha}$.

设 $\alpha = a + ib \in \mathbb{C}$, 存在唯一的 $\theta \in [0, 2\pi)$ 使得 $\cos \theta = \frac{a}{|\alpha|}, \sin \theta = \frac{b}{|\alpha|}$, 称 θ 为复数 α 的**辐角**. 利用乘法可将 α 表示为

$$\alpha = |\alpha|(\cos\theta + i\sin\theta) := |\alpha|e^{i\theta},$$

称上述表达式为复数 α 的**指数形式**.

命题 1.3.2 (De Moivre). 设 $\alpha=r_1e^{i\theta_1},\beta=r_2e^{i\theta_2}\in\mathbb{C}$, 其中 r_1,r_2 为非负实数.

- (a) $\alpha \beta = r_1 r_2 e^{i(\theta_1 + \theta_2)}$;
- (b) 对任意的正整数 n, $\alpha^n = r_1^n e^{in\theta_1}$.

1.3.2 数域

定义 1.3.1. 设 ℙ 为复数 ℂ 的非空子集, 称 ℙ 为数域, 如果 ℙ 满足下列条件

- (a) $1 \in \mathbb{F}$;
- (b) $\forall a, b \in \mathbb{F}, a \pm b \in \mathbb{F}, ab \in \mathbb{F};$
- (c) $\forall a, b \in \mathbb{F} \perp b \neq 0, \frac{a}{b} \in \mathbb{F}$.

例 1.3.1. (1) ℚ, ℝ, ℂ 为数域;

(2) \mathbb{O} 为最小数域、特别地、若 \mathbb{F} 为数域、则 \mathbb{O} ⊂ \mathbb{F} ;

练习 1.3.1. 设 \mathbb{F} 为 复数 \mathbb{C} 的非空子集. 记 (a1): \mathbb{F} 中至少有两个不同的元素; (c1): $\forall 0 \neq b \in \mathbb{F}$, 有 $b^{-1} \in \mathbb{F}$. 证明: \mathbb{F} 为数域当且仅当 \mathbb{F} 满足条件 (a1) + (b) + (c) 当且仅当 \mathbb{F} 满足条件 (a) + (b) + (c1).

练习 1.3.2. 设 $\mathbb{F} = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$. 证明: \mathbb{F} 为数域.

练习 1.3.3. 设 $R_1 = \{a+b\sqrt{2}|a,b\in\mathbb{Q}\}, R_2 = \{a+b\sqrt{3}|a,b\in\mathbb{Q}\}.$ 求 \mathbb{C} 中包含 $R_1\cup R_2$ 的最小的数域.

练习 1.3.4. 设 \mathbb{F} 为数域且 $\mathbb{R} \subset \mathbb{F} \subset \mathbb{C}$. 证明: $\mathbb{F} = \mathbb{R}$ 或者 $\mathbb{F} = \mathbb{C}$.

1.4 一元多项式

1.4.1 一元多项式的基本概念

定义 1.4.1. 设 \mathbb{F} 为数域, $n \in \mathbb{N}$, x 为不定元或形式变量. 称形式表达式

$$f(x) := a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i, \not \perp \psi \ a_i \in \mathbb{F},$$

为数域 [上的一元多项式.

 $a_i x^i$ 为多项式 f(x) 的第 i 次项, a_i 为多项式 f(x) 的第 i 次项系数.

 $称 a_0$ 为多项式 f(x) 的零次项或常数项.

若 $a_n \neq 0$, 则称 $a_n x^n$ 为多项式 f(x) 的**首项**, a_n 为多项式 f(x) 的**首项系数**. 此时称 f(x) 为 n 次多项式, 记为 $\deg f(x) = \partial f(x) = n$. 若 $a_n = 1$, 则称多项式 f(x) 为**首**一的.

若 $f(x) = c \in \mathbb{F}$, 则称 f(x) 为常数多项式. 当 $c \neq 0$ 时, $\deg f(x) = 0$.

若多项式 f(x) 的所有次项的系数都为零, 则称 f(x) 为零多项式, 记为 $\mathbf{0}$. 约定 $\deg 0 = -\infty$.

设 f(x), g(x) 都是 \mathbb{F} 上的多项式, 称 f(x) 与 g(x) 相等 (记为 f(x) = g(x)), 如果除系数为零的次项外, f(x) 与 g(x) 的同次项的系数两两相等.

例 1.4.1. 设 f(x) = x + 1, $g(x) = 0x^3 + 0x^2 + x + 1$, 根据相等的定义有 f(x) = g(x).

注记 1.4.1. 我们约定 $-\infty + (-\infty) = -\infty; -\infty + n = -\infty,$ 对任意的 $n \in \mathbb{Z}$.

1.4.2 多项式的运算

设 \mathbb{F} 为数域, 记 $\mathbb{F}[x]$ 表示数域 \mathbb{F} 的所有以x 为形式变量的一元多项式构成的集合. 我们定义 $\mathbb{F}[x]$ 上的**加法**运算如下:

$$+: \quad \mathbb{F}[x] \times \mathbb{F}[x] \longrightarrow \mathbb{F}[x]$$

 $(f(x), g(x)) \mapsto f(x) + g(x)$

若
$$f(x) = \sum_{i=0}^{n} a_i x^i, \ g(x) = \sum_{j=0}^{m} b_j x^j \in \mathbb{F}[x],$$
 则

$$f(x)+g(x) := \sum_{k=0}^{m} (a_k + b_k)x^k,$$

其中如果 m < n, 那么我们令 $b_n = b_{n-1} = \cdots = b_{n+1} = 0$.

事实. 设 f(x), g(x), h(x) 为数域 \mathbb{F} 上的多项式.

- (1) f(x) + g(x) = g(x) + f(x);
- (2) (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x));
- (3) $f(x) + \mathbf{0} = f(x)$;

注记 1.4.2. 上述定义的多项式的加法赋予了多项式定义中的形式符号 + 真正的加法意义. 如 $f(x) = 2x^3 + 3x + 1$, $g(x) = 2x^3$, h(x) = 3x, k(x) = 1, 则 f(x) = g(x) + h(x) + k(x).

我们定义 $\mathbb{F}[x]$ 上的**乘法**运算如下:

$$\times: \quad \mathbb{F}[x] \times \mathbb{F}[x] \longrightarrow \mathbb{F}[x]$$

$$(f(x), g(x)) \mapsto f(x) \times g(x)$$

若
$$f(x) = \sum_{i=0}^{n} a_i x^i, \ g(x) = \sum_{j=0}^{m} b_j x^j \in \mathbb{F}[x],$$
则

$$f(x) \times g(x) := \sum_{k=0}^{m+n} c_k x^k,$$

其中 $c_k = \sum_{i+j=k} a_i b_j$ 且 $1 \le i \le n, 1 \le j \le m$.

事实.设 f(x), g(x), h(x) 为数域 \mathbb{F} 上的多项式.

- (1) f(x)g(x) = g(x)f(x);
- $(2) 1 \times f(x) = f(x);$
- (3) $f(x) \times \mathbf{0} = \mathbf{0}$;
- (4) f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x);
- (5) (f(x)g(x))h(x) = f(x)(g(x)h(x)).

证明. 我们利用 (4) 来证明 (5). 首先证明,

断言 I: 对任意的 $0 \le i, j \in \mathbb{N}$ 及 $a, b \in \mathbb{F}$, 有 $(ax^i \times bx^j) \times h(x) = ax^i \times (bx^j \times h(x))$. 设 $h(x) = \sum_{k=1}^{l} c_k x^k$. 直接计算可知

$$LHS = abx^{i+j} \times h(x) = abc_{l}x^{l+i+j} + abc_{l-1}x^{l+i+j-1} + \dots + abc_{1}x^{i+j+1} + abc_{0}x^{i+j}$$

$$= ax^{i}(bc_{l}x^{l+j} + bc_{l-1}x^{l+j-1} + \dots + bc_{1}x^{j+1} + bc_{0}x^{j})$$

$$= RHS.$$

利用断言 I及(4)可以证明:

断言
$$II$$
: 对任意的 $0 \le j \in \mathbb{N}, b \in \mathbb{F},$ 有 $(f(x) \times bx^j) \times h(x) = f(x) \times (bx^j \times h(x)).$ 设 $f(x) = \sum_{i=0}^{n} a_i x^i$. 由 (4) 知

$$f(x) \times bx^{j} = (a_{n}x^{n} + \dots + a_{1}x + a_{0}) \times bx^{j} = a_{n}x^{n} \times bx^{j} + \dots + a_{1}x \times bx^{j} + a_{0} \times bx^{j}.$$

代入 $(f(x) \times bx^j) \times h(x)$ 并利用 (4) 可得

$$(f(x) \times bx^{j}) \times h(x) = (a_{n}x^{n} \times bx^{j} + \cdots + a_{1}x \times bx^{j} + a_{0} \times bx^{j}) \times h(x)$$

$$= (a_{n}x^{n} \times bx^{j}) \times h(x) + \cdots + (a_{0} \times bx^{j}) \times h(x)$$

$$= a_{n}x^{n} \times (bx^{j} \times h(x)) + \cdots + a_{0} \times (bx^{j} \times h(x))$$

$$= (a_{n}x^{n} + \cdots + a_{1}x + a_{0}) \times (bx^{j} \times h(x))$$

$$= f(x) \times (bx^{j} \times h(x)),$$

其中第1,2,4等式因为分配律(4)成立,第3等式因为断言 I成立.

下面我们证明多项式的乘法具有结合性, i.e. 等式 (5) 成立. 设 $g(x) = \sum_{j=0}^{m} b_j x^i$. 运用分配律 (4) 及断言 II, 我们有

$$(f(x) \times g(x)) \times h(x)$$

$$= (f(x) \times (b_m x^m + \dots + b_1 x + b_0)) \times h(x)$$

$$= (f(x) \times b_m x^m + \dots + f(x) \times b_1 x + f(x) \times b_0)) \times h(x)$$

$$= (f(x) \times b_m x^m) \times h(x) + \dots + (f(x) \times b_1 x) \times h(x) + (f(x) \times b_0) \times h(x)$$

$$= f(x) \times (b_m x^m \times h(x)) + \dots + f(x) \times (b_1 x \times h(x)) + f(x) \times (b_0 \times h(x))$$

$$= f(x) \times (b_m x^m \times h(x) + \dots + b_1 x \times h(x) + b_0 \times h(x))$$

$$= f(x) \times ((b_m x^m + \dots + b_1 x + b_0) \times h(x))$$

$$= f(x) \times (g(x) \times h(x)),$$

其中第 2,3,5,6 等式因为分配律 (4) 成立, 第 (3) 等式因为断言 II 成立.

推论 1.4.1. 设 f(x), g(x) 为数域 \mathbb{F} 上的多项式.

- (1) $\deg(f(x) \pm g(x)) \le \max\{\deg f(x), \deg g(x)\};$
- (2) $\deg f(x)g(x) = \deg f(x) + \deg g(x).$

定义 1.4.2. 称 ($\mathbb{F}[x], +, \times$) 为数域 \mathbb{F} 上的一元多项式环.

- **命题 1.4.2** (乘法消去律). (1) 设 $f(x), g(x) \in \mathbb{F}[x]$. 证明: f(x)g(x) = 0 当且仅 当 f(x) = 0 或者 g(x) = 0;
 - (2) 设 $f(x), g(x), h(x) \in \mathbb{F}[x]$ 且 $f(x) \neq 0$. 若 f(x)g(x) = f(x)h(x), 则 g(x) = h(x).
- **练习 1.4.1.** 设 f(x) 为实数 \mathbb{R} 上的非零多项式且存在正整数 $k \in \mathbb{N}$ 使得 $f(f(x)) = f^k(x)$. 试求 f(x) = ?

1.4.3 多项式的整除

定义 1.4.3. 设 $f(x), g(x) \in \mathbb{F}[x]$, 若存在 $h(x) \in \mathbb{F}[x]$ 使得 f(x) = g(x)h(x), 则称 g(x) 整除 f(x), 记为 g(x)|f(x). 反之则称 g(x) 不整除 f(x), 记为 $g(x) \nmid f(x)$.

若 $g(x) \mid f(x)$, 则称 g(x) 为 f(x) 的一个因式, f(x) 为 g(x) 的一个倍式.

例 1.4.2. 设 $f(x) \in \mathbb{F}[x]$, 则 $f(x) \mid 0$. 对任意的非零常数 $a \in \mathbb{F}$, $a \mid f(x), af(x) \mid f(x)$, 统称为多项式 f(x) 的平凡因式.

引理 1.4.3. 设 $f(x), g(x), h(x) \in \mathbb{F}[x]$.

- (a) $f(x) \mid g(x), g(x) \mid h(x) \Rightarrow f(x) \mid h(x)$;
- (b) $f(x) \mid g(x), f(x) \mid h(x) \Rightarrow \forall u(x), v(x) \in \mathbb{F}[x], f(x) \mid u(x)g(x) + v(x)h(x);$
- (c) $f(x) \mid g(x), g(x) \mid f(x) \Leftrightarrow \exists 0 \neq c \in \mathbb{F} \notin \mathcal{F}(x) = cg(x);$
- (d) 若 $f(x) \mid q(x)$ 且 deg f(x) > deg q(x), 则 q(x) = 0.

定理 1.4.4 (带余除法). 设 $f(x), g(x) \in \mathbb{F}[x]$ 且 $g(x) \neq 0$, 则存在唯一的一对多项式 $q(x), r(x) \in \mathbb{F}[x]$, 其中 $\deg r(x) < \deg g(x)$, 使得

$$f(x) = g(x)q(x) + r(x).$$

称 q(x) 为 g(x) 除 f(x) 的**南**, r(x) 为 g(x) 除 f(x) 的**余**式.

推论 1.4.5. 设 $f(x), g(x) \in \mathbb{F}[x]$ 且 $g(x) \neq 0$, 则 $g(x) \mid f(x)$ 当且仅当 f(x) 除以 g(x) 的 余式为零.

练习 1.4.2. 设 $f(x) = x^4 + 3x^2 - 4x - 3$, $g(x) = x^3 + 3x^2 + 2x - 3$. 利用长除法求 f(x) 除以 g(x) 的商及余式.

练习 1.4.3. 设 $d, n \in \mathbb{N}$. 证明: $x^d - 1 \mid x^n - 1$ 当且仅当 $d \mid n$.

问题 1.4.1 (整除与数域扩大的关系). 设 $\mathbb{F} \subseteq \mathbb{K}$ 为数域, $f(x), g(x) \in \mathbb{F}[x]$. 问作为 \mathbb{F} 上的多项式 $f(x) \mid g(x)$ 与作为 \mathbb{K} 上的多项式 $f(x) \mid g(x)$ 是否等价?

1.4.4 最大公因式

定义 1.4.4. 设 $f(x), g(x) \in \mathbb{F}[x]$ 且不全为零,若 $h(x) \in \mathbb{F}[x]$ 使得 $h(x) \mid f(x)$ 且 $h(x) \mid g(x)$,则称 h(x) 为 f(x) 与 g(x) 的公因式. 如果首一多项式 d(x) 为多项式 f(x), g(x) 的公因式且满足对任意的 f(x) 与 g(x) 的公因式 h(x),有 $h(x) \mid d(x)$,那么称 d(x) 为多项式 f(x) 与 g(x) 的最大公因式. 此时记为 $d(x) = \gcd(f(x), g(x)) = (f(x), g(x))$. 我们约定 (0,0) = 0.

注记 1.4.3. 设 $f(x), g(x) \in \mathbb{F}[x]$ 不全为零. 由最大公因式的定义知, 如果 f(x) 与 g(x) 的最大公因式存在, 那么其一定是唯一的且是 f(x) 与 g(x) 的公因式中次数最大的首一的公因式.

引理 1.4.6. 设 $X \subset \mathbb{F}[x]$ 为非空集合且存在非零多项式 $f(x) \in X$, 则集合 X 中存在次数最小的非零多项式.

定理 1.4.7 (最大公因式的存在性). 任意两个不全为零的多项式的最大公因式存在且唯一. 进一步地, 存在多项式 $u(x), v(x) \in \mathbb{F}[x]$ 使得

$$(f(x), g(x)) = u(x)f(x) + v(x)g(x).$$

注记 1.4.4. 上述定理中的多项式 u(x), v(x) 不唯一.

推论 1.4.8. 设 $f(x), q(x) \in \mathbb{F}[x]$ 且不全为零,则

$$d(x) = (f(x), g(x))$$
 当且仅当
$$\begin{cases} d(x) \text{ 首一} \\ d(x) \mid f(x), d(x) \mid g(x) \\ \exists u(x), v(x) \in \mathbb{F}[x], s.t. \ d(x) = u(x)f(x) + v(x)g(x). \end{cases}$$

例 1.4.3. 设 $f(x)=x^4-x^2+5x+1, g(x)=x^2+12x+5$, 利用辗转相除法求 (f(x),g(x)) 及多项式 u(x),v(x) 使得 (f(x),g(x))=u(x)f(x)+v(x)g(x).

练习 1.4.4. 设 $f_i(x) \in \mathbb{F}[x], i = 1, \cdots, t$ 且不全为零. 若 $h(x) \in \mathbb{F}[x]$ 满足对任意的 $1 \leq i \leq t, h(x) \mid f_i(x),$ 则称 h(x) 为 $f_1(x), \cdots, f_t(x)$ 的一个公因式. 若存在首一多项式 d(x) 为 $f_1(x), \cdots, f_t(x)$ 的公因式且对任意的公因式 h(x) 有 $h(x) \mid d(x),$ 则称 d(x) 为多项式 $f_1(x), \cdots, f_t(x)$ 的最大公因式. 此时记为 $d(x) = (f_1(x), \cdots, f_t(x))$. 证明:(1) $(\cdots((f_1(x), f_2(x)), f_3(x)), \cdots, f_t(x))$ 是 $f_1(x), \cdots, f_t(x)$ 的最大公因式;

$$(2) d(x) = (f_1(x), \dots, f_t(x))$$
 当且仅当
$$\begin{cases} d(x) \text{ 首一} \\ d(x) \mid f_i(x), \forall 1 \leq i \leq t \\ \exists u_i(x) \in \mathbb{F}[x], \ s.t. \ d(x) = \sum_{i=1}^t u_i(x) f_i(x). \end{cases}$$

定义 1.4.5. 设 $f(x), g(x) \in \mathbb{F}[x]$, 称 f(x) 与 g(x) 互素, 如果 (f(x), g(x)) = 1.

命题 1.4.9. 设 $f(x),g(x)\in\mathbb{F}[x]$, 则 (f(x),g(x))=1 当且仅当存在 $u(x),v(x)\in\mathbb{F}[x]$ 使得

$$1 = u(x)f(x) + v(x)g(x).$$

命题 1.4.10. 设 $f(x), g(x), h(x) \in \mathbb{F}[x]$.

- (1) 若 (f(x), g(x)) = 1 且 $f(x) \mid g(x)h(x)$, 则 $f(x) \mid h(x)$;
- (2) 若 (f(x), g(x)) = 1 且 $f(x) \mid h(x), g(x) \mid h(x)$, 则 $f(x)g(x) \mid h(x)$;

(3) 若 (f(x), g(x)) = 1, (f(x), h(x)) = 1, 则 (f(x), g(x)h(x)) = 1.

练习 1.4.5. 设 $f(x), g(x) \in \mathbb{F}[x]$ 不全为零, d(x) = (f(x), g(x)) 且 $f(x) = d(x)f_1(x), g(x) = d(x)g_1(x)$. 设 $u_0(x), v_0(x) \in \mathbb{F}[x]$ 使得 $d(x) = u_0(x)f(x) + v_0(x)g(x)$. 证明: 若 $u(x), v(x) \in \mathbb{F}[x]$ 也満足 d(x) = u(x)f(x) + v(x)g(x), 则存在 $t(x) \in \mathbb{F}[x]$ 使得

$$u(x) = u_0(x) + g_1(x)t(x) \not \otimes v(x) = v_0(x) - f_1(x)t(x).$$

练习 1.4.6. 求次数最低的首一多项式 $f(x) \in \mathbb{Q}[x]$ 使得 f(x) 被 $(x-1)^2$ 除时的余式为 2x, 被 $(x-2)^3$ 除时的余式为 3x.

练习 1.4.7. 求所有的 $u(x), v(x) \in \mathbb{F}[x]$ 使得

$$x^{m}u(x) + (x-2)^{n}v(x) = 1.$$

1.5 多项式环的因式分解定理

定义 1.5.1. 设 $p(x) \in \mathbb{F}[x]$ 且 $\deg p(x) \geq 1$. 若 p(x) 只有平凡因式,则称 p(x) 在数域 \mathbb{F} 上不可约. 反之则称 p(x) 在数域 \mathbb{F} 上可约.

- **例 1.5.1.** (1) 对任意的 $a \in \mathbb{F}$, 多项式 x a 为数域 \mathbb{F} 上的不可约多项式. 更一般地, 任意的一次多项式都是不可约的.
 - (2) 设 $f(x) = x^2 + 1$. 易知 f(x) 在 \mathbb{R} 上不可约, 但在 \mathbb{C} 上可约.
 - (3) $p(x) \in \mathbb{F}[x]$ 为不可约多项式当且仅当对任意的非零常数 $a \in \mathbb{F}$, ap(x) 为不可约多项式.

引理 1.5.1. 设 $p(x) \in \mathbb{F}[x]$ 为不可约多项式.

(1) 对任意的多项式 $f(x) \in \mathbb{F}[x]$

$$p(x) | f(x) \le f(x), f(x) = 1.$$

(2) 若多项式 f(x), $g(x) \in \mathbb{F}[x]$ 使得 $p(x) \mid f(x)g(x)$, 则 $p(x) \mid f(x)$ 或者 $p(x) \mid g(x)$.

定理 1.5.2 (因式分解定理). 对数域 \mathbb{F} 上的任意的次数大于或等于 1 的多项式 f(x), 存在唯一的 (不计顺序) 两两不同的首一不可约多项式 $p_1(x), \cdots, p_t(x)$ 及正整数 r_1, \cdots, r_t 使得

$$f(x) = ap_1^{r_1}(x)p_2^{r_2}(x)\cdots p_t^{r_t}(x)$$
, 其中 a 为多项式 $f(x)$ 的首项系数.

注记 1.5.1. 称上述分解为多项式 f(x) 的**标准分解式**. 需要指出的是对于任意给定的多项式 $f(x) \in \mathbb{F}[x]$, 我们没有方法求其在数域 \mathbb{F} 上的具体的标准分解式. 为了了解多项式 f(x) 的标准分解式的信息, 我们进而考虑如下问题:

- 1. 能否判断 f(x) 在数域 \mathbb{F} 上是否可约? (不可能!)
- 2. 在 f(x) 的标准分解式中是否存在 $r_i \ge 2$?
- 3. 在 f(x) 的标准分解式中是否存在形如 $x a(a \in \mathbb{F})$ 的不可约因式?

1.6 重因式

定义 1.6.1. 设 $1 \le k \in \mathbb{Z}$. 设 $f(x) \in \mathbb{F}[x]$, 称 \mathbb{F} 上的不可约多项式 p(x) 为 f(x) 的k-重 因式, 如果 $p^k(x) \mid f(x)$ 但是 $p^{k+1}(x) \nmid f(x)$. 若 k = 1, 则称 p(x) 为 f(x) 的单因式; 当 k > 1 时, 称 p(x) 为 f(x) 的重因式.

定义 1.6.2. 设 $f(x) = \sum_{i=0}^n a_i x^i \in \mathbb{F}[x]$. 定义映射

$$\mathbb{D}: \quad \mathbb{F}[x] \quad \longrightarrow \mathbb{F}[x]$$

$$f(x) \quad \mapsto f'(x) = \sum_{i=1}^{n} i a_i x^{i-1}.$$

称 $\mathbb{D}f(x) := f'(x)$ 为多项式 f(x) 的 (形式) 导数或微商. 对任意的 $k \geq 2$, 称 $f^{(k)}(x) := \mathbb{D}^k(f(x)) := \mathbb{D}(\mathbb{D}^{k-1}(f(x)))$ 为多项式 f(x) 的k-阶微商.

注记 1.6.1. (1) 设 $f(x) \in \mathbb{F}[x]$, 则 $\mathbb{D}(f(x)) = 0$ 当且仅当 $f(x) = c \in \mathbb{F}$. (2) 设 $f(x) \in \mathbb{F}[x]$ 且 deg f(x) = n > 1, 则 deg $\mathbb{D}(f(x)) = n - 1$, $\mathbb{D}^{n+1}(f(x)) = 0$.

练习 1.6.1. 设 f(x), $g(x) \in \mathbb{F}[x]$, $a \in \mathbb{F}$, n > 2, 则

- (1) $\mathbb{D}(f(x) + g(x)) = \mathbb{D}(f(x)) + \mathbb{D}(g(x));$
- (2) $\mathbb{D}(af(x)) = a\mathbb{D}(f(x));$
- (3) $\mathbb{D}(f(x)g(x)) = \mathbb{D}(f(x))g(x) + f(x)\mathbb{D}(g(x));$
- (4) $\mathbb{D}(f^n(x)) = nf^{n-1}(x)\mathbb{D}(f(x)).$

命题 1.6.1. 设不可约多项式 $p(x) \in \mathbb{F}[x]$ 为多项式 $f(x) \in \mathbb{F}[x]$ 的 k-重因式,则 p(x) 为多项式 $\mathbb{D}(f(x))$ 的 (k-1)-重因式.

推论 1.6.2. 设 $f(x) \in \mathbb{F}[x]$, 则 f(x) 有重因式当且仅当 $(f(x), \mathbb{D}(f(x))) \neq 1$.

练习 1.6.2. 设 $f(x), p(x) \in \mathbb{F}[x]$ 且 p(x) 为不可约多项式. 证明: p(x) 为 f(x) 的 k-重 因式当且仅当 p(x) 为 $f(x), \mathbb{D}(f(x)) \cdots, \mathbb{D}^{k-1}(f(x))$ 的公因式但 $p(x) \nmid \mathbb{D}^k(f(x))$.

1.7 多项式函数与根

定义 1.7.1. 设 $f(x)=\sum\limits_{i=0}^{n}a_{i}x^{i}\in\mathbb{F}[x]$. 对任意的 $\alpha\in\mathbb{F}$,记 $f(\alpha)=\sum\limits_{i=0}^{n}a_{i}\alpha^{i}\in\mathbb{F}$. 称 $f(\alpha)$ 为多项式 f(x) 在 $x=\alpha$ 处的**值**,称

$$f(x): \mathbb{F} \longrightarrow \mathbb{F}$$

 $\alpha \mapsto f(\alpha)$

为数域 \mathbb{F} 上的由多项式 f(x) 定义的**多项式函数**.

若 $f(\alpha) = 0$, 则称 $\alpha \in \mathbb{F}$ 为多项式 f(x) 的一个根或者零点.

注记 1.7.1. (a) 设 $f(x), g(x), h(x) \in \mathbb{F}[x]$.

- (1) 如果 f(x) + g(x) = h(x), 那么对任意的 $\alpha \in \mathbb{F}$, $f(\alpha) + g(\alpha) = h(\alpha)$;
- (2) 如果 f(x)g(x) = h(x), 那么对任意的 $\alpha \in \mathbb{F}$, $f(\alpha)g(\alpha) = h(\alpha)$.
- (b) 由定义知相同的多项式定义的多项式函数相等.

定理 1.7.1 (余数定理). 设 $f(x) \in \mathbb{F}[x], \alpha \in \mathbb{F}$, 则存在唯一的多项式 $g(x) \in \mathbb{F}[x]$ 使得

$$f(x) = (x - \alpha)q(x) + f(\alpha).$$

推论 1.7.2.

$$x - \alpha | f(x) \iff f(\alpha) = 0.$$

练习 1.7.1. 设 $a \neq b \in \mathbb{F}$. 求多项式 $f(x) \in \mathbb{F}[x]$ 除以 (x-a)(x-b) 的余式.

定义 1.7.2. $\alpha \in \mathbb{F}$ 称为多项式 $f(x) \in \mathbb{F}[x]$ 的 k-重根, 如果 $x - \alpha$ 为 f(x) 的 k-重因式.

当 k=1 时, 称 α 为 f(x) 的单根; 当 k>1 时, 称 α 为 f(x) 的重根.

推论 1.7.3. $\alpha \in \mathbb{F}$ 为多项式 $f(x) \in \mathbb{F}[x]$ 的重根当且仅当 $f(\alpha) = f'(\alpha) = 0$.

练习 1.7.2. 设 $p(x) \in \mathbb{F}[x]$ 为 \mathbb{F} 上的不可约多项式. 证明: p(x) 在 \mathbb{C} 上没有重根.

练习 1.7.3. 设 $p(x) \in \mathbb{F}[x]$ 为 \mathbb{F} 上的不可约多项式, $\alpha \in \mathbb{C}$ 为 p(x) 在 \mathbb{C} 上的根. 令 $\mathbb{K} := \{f(\alpha) | f(x) \in \mathbb{F}[x]\} \subseteq \mathbb{C}$. 证明: \mathbb{K} 为数域.

定理 1.7.4. 设 $f(x) \in \mathbb{F}[x]$ 且 $\deg f(x) = n \ge 1$, 则 f(x) 在 \mathbb{F} 上至多有 n 个根 (根按重数计算).

注记 1.7.2. f(x) 可能在 \mathbb{F} 上没有根. 如 $f(x) = x^2 + 1 \in \mathbb{Q}[x]$, f(x) 在 \mathbb{Q} 上无根, 但在 \mathbb{C} 上有根.

推论 1.7.5. 设 $f(x), g(x) \in \mathbb{F}[x]$ 不全为零且 $\deg f(x) \leq n, \deg g(x) \leq n$. 若存在 n+1 个不同的数 $\alpha_1, \dots, \alpha_{n+1} \in \mathbb{F}$ 使得 $f(\alpha_i) = g(\alpha_i), i = 1, \dots, n+1, \, \text{则 } f(x) = g(x).$

推论 1.7.6. 设 $f(x), g(x) \in \mathbb{F}[x]$, 则 f(x) = g(x) (作为多项式相等) 当且仅当 f(x) 与 g(x) 定义的多项式函数相等.

练习 1.7.4. 设 $f(x) \in \mathbb{C}[x]$. 对任意的 $a \in \mathbb{R}$, $f(a) \in \mathbb{R}$. 证明: $f(x) \in \mathbb{R}[x]$.

1.8 复/实系数多项式

定理 1.8.1 (代数学基本定理). 每个次数大于或等于1的复系数多项式在 ℂ中有根.

定理 1.8.2 (代数学基本定理). 设 $f(x) \in \mathbb{C}[x]$ 且 $\deg f(x) = n \geq 1$, 则 f(x) 在 \mathbb{C} 中恰有 n 个根 (计重数).

推论 1.8.3. (1) $\mathbb{C}[x]$ 中的首一不可约多项式恰为 $\{x-c \mid c \in \mathbb{C}\}$;

(2) 设 $f(x) \in \mathbb{C}[x]$ 且 $\deg f(x) = n \geq 1$,则存在两两不相等的 $\alpha_1, \dots, \alpha_s \in \mathbb{C}$ 及正整数 r_1, \dots, r_s 使得

$$f(x) = a(x - \alpha_1)^{r_1}(x - \alpha_2)^{r_2} \cdots (x - \alpha_s)^{r_s},$$

其中 a 为 f(x) 的首项系数, $\sum_{i=1}^{s} r_i = n$.

练习 1.8.1. 设 $f(x), p(x) \in \mathbb{F}[x]$ 且 p(x) 为 \mathbb{F} 上的不可约多项式. 若 p(x) 与 f(x) 在 \mathbb{C} 上 有公共根 α ,则 p(x)|f(x).

练习 1.8.2. 设 $f(x) = x^2 + x + 1$, $g(x) = x^{3n} + x^{3m+1} + x^{3p+2}$, 其中 m, n, p 为自然数.证明: f(x)|g(x).

定理 1.8.4. ℝ上的首一不可约多项式恰为

$${x-a \mid a \in \mathbb{R}} \cup {x^2 + bx + c \mid b, c \in \mathbb{R}, b^2 - 4c < 0}.$$

推论 1.8.5. 设 $f(x) \in \mathbb{R}[x]$ 且 deg $f(x) = n \ge 1$,则存在两两互素的一次多项式 $x - c_i \in \mathbb{R}[x]$, $i = 1, \ldots, s$ 与两两互素的不可约二次多项式 $x^2 + p_j x + q_j \in \mathbb{R}[x]$, $j = 1, \ldots, t$ 使得

$$f(x) = a(x - c_1)^{k_1} (x - c_2)^{k_2} \cdots (x - c_s)^{k_s} (x^2 + p_1 x + q_1)^{l_1} \cdots (x^2 + p_t x + q_t)^{l_t},$$

其中 a 为 f(x) 的首项系数, $k_1, \dots, k_s, l_1, \dots, l_t$ 为正整数且满足 $\sum_{i=1}^s k_i + \sum_{j=1}^t 2l_j = n$.

例 1.8.1. 求多项式 x^n-1 在复数 \mathbb{C} 及实数 \mathbb{R} 上的标准分解.

练习 1.8.3. 设 $f(x), g(x) \in \mathbb{C}[x]$ 满足 $f^{-1}(0) = g^{-1}(0)$ 且 $f^{-1}(1) = g^{-1}(1)$. 证明: f(x) = g(x).

练习 1.8.4. 设 $f(x) \in \mathbb{F}[x]$. 证明: f(x) 在数域 \mathbb{F} 上无重因式当且仅当 f(x) 在 \mathbb{C} 上无重根.

练习 1.8.5. 设 $f(x) \in \mathbb{F}[x]$ 在 \mathbb{F} 上不可约, $\alpha, \frac{1}{\alpha} \in \mathbb{C}$ 为 f(x) 的复根. 证明: 若 $b \in \mathbb{C}$ 是 f(x) 在 \mathbb{C} 上的根,则 $\frac{1}{b}$ 也是 f(x) 的复根.

1.9 有理多项式

定义 1.9.1. 设 $f(x) \in \mathbb{Q}[x]$, 若 $\alpha \in \mathbb{Q}$ 使得 $f(\alpha) = 0$, 则称 α 为 f(x) 的有理根.

引理 1.9.1. 设 $f(x) \in \mathbb{Q}[x]$ 且 $\deg f(x) \geq 2$. 若 f(x) 有有理根, 则 f(x) 在 \mathbb{Q} 上可约.

注记 1.9.1. 若 $f(x) \in \mathbb{Q}[x]$ 无有理根, f(x) 在 \mathbb{Q} 上也可能可约. 如 $f(x) = (x^2 + 1)^2$.

注记 1.9.2. 设 $f(x) \in \mathbb{Q}[x]$, 则总存在非零整数 c 使得 $cf(x) \in \mathbb{Z}[x]$. 显然 f(x) 与 cf(x) 具有相同的有理根, 并且 f(x) 在 \mathbb{Q} 上不可约当且仅当 cf(x) 在 \mathbb{Q} 上不可约. 因此研究有理数域上的多项式是否可约, 我们只需要研究系数都是整数的多项式即可.

定义 1.9.2. 设 $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$. 若 $a_i \in \mathbb{Z}, i = 0, \cdots, n$, 则称 f(x) 为整系数多项式. 记 $\mathbb{Z}[x]$ 表示整系数多项式环 (对多项式的加法及乘法封闭).

定理 1.9.2 (有理根存在必要条件). 设 $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$, $\alpha = \frac{c}{d}$ 为 f(x) 的有理根, 其中 $d, c \in \mathbb{Z}, (d, c) = 1$, 则 $d|a_n, c|a_0$.

练习 1.9.1. 判断 $f(x) = 2x^5 + 3x^2 + 4x + 9$ 是否有有理根?

定义 1.9.3. 设 $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$. 若 a_0, a_1, \dots, a_n 的最大公因子为 1, 则称 f(x) 为本原多项式.

注记 1.9.3. • 设 f(x), g(x) 为本原多项式, $a \in \mathbb{Q}$ 使得 f(x) = ag(x), 则 $a = \pm 1$.

• 设 $f(x) \in \mathbb{Q}[x]$, 则存在本原多项式 g(x) 及有理数 $c \in \mathbb{Q}$ 使得 f(x) = cg(x).

引理 1.9.3 (Gauss 引理). 两个本原多项式的乘积为本原多项式.

定理 1.9.4. 设 $f(x) \in \mathbb{Z}[x]$, 则 f(x) 在有理数域 \mathbb{Q} 上可约当且仅当存在 g(x), $h(x) \in \mathbb{Z}[x]$ 满足 $\deg g(x) < \deg f(x)$, $\deg h(x) < \deg f(x)$ 使得 f(x) = g(x)h(x).

练习 1.9.2. 设 a_1, \dots, a_n 为 n 个互不相同的整数. 证明:

(1) $f(x) = (x - a_1) \cdots (x - a_n) - 1$ 在 \mathbb{Q} 上不可约;

(2) $g(x) = (x - a_1)^2 \cdots (x - a_n)^2 + 1$ $\mathbb{Z} \mathbb{Q}$ 上不可约.

定理 1.9.5 (Eisenstein 判别法). 设 $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$. 若存在素数 p 使得 $p|a_i, i = 0, \dots, n-1, p \nmid a_n$ 且 $p^2 \nmid a_0$, 则 f(x) 在 \mathbb{Q} 上不可约.

推论 1.9.6. 对任意的 $n \ge 1$, 存在 $f(x) \in \mathbb{Q}[x]$ 在 \mathbb{Q} 上不可约且 $\deg f(x) = n$.

引理 1.9.7. 设 $f(x) \in \mathbb{Q}[x], 0 \neq a \in \mathbb{Q}, b \in \mathbb{Q}$, 令 $g(x) = f(ax + b) \in \mathbb{Q}[x]$, 则 f(x) 不可约当且仅当 g(x) 不可约.

例 1.9.1. 判断 $f(x) = x^6 - x^3 + 1$ 在 \mathbb{Q} 上是否可约.

练习 1.9.3. 设 p 为素数. 证明: $f(x) = \sum_{i=0}^{p-1} x^i$ 在 \mathbb{Q} 上不可约.

练习 1.9.4. 设 $f(x) = \sum_{i=0}^{n-1} x^i$. 证明: f(x) 在 \mathbb{Q} 上不可约当且仅当 n 为素数.

练习 1.9.5. 设 f(x) 是次数大于零的首一整系数多项式. 证明: 若 f(0), f(1) 都是奇数,则 f(x) 没有整数根.

1.10 多元多项式与对称多项式

1.10.1 多元多项式的基本概念

设 \mathbb{F} 为数域, x_1, \dots, x_n 为n 个不定元 (或形式变量). 记

$$\mathbb{N}^n := \{ (m_1, \cdots, m_n) | m_i \in \mathbb{N}, i = 1, 2, \cdots, n \}.$$

定义 1.10.1. 称形式表达式

$$ax_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$$
,其中 $a\in \mathbb{F}, k_1, \cdots, k_n\in \mathbb{N}$

为数域 \mathbb{F} 上一个n **元单项式** (monomial).

称 a 为该单项式的系数.

若 $a \neq 0$, 则称 $k_1 + k_2 + \cdots + k_n \in \mathbb{N}$ 为该单项式的**次数**.

称两个单项式 $ax_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$ 与 $bx_1^{l_1}x_2^{l_2}\cdots x_n^{l_n}$ 为**同类项** (similar term), 如果 $k_1=l_1,\cdots,k_n=l_n$.

定义 1.10.2. 设 M 为 \mathbb{N}^n 的任意的非空有限子集. 称形式表达式

$$f(x_1, \dots, x_n) := \sum_{(k_1, \dots, k_n) \in M} a_{k_1 k_2 \dots k_n} x_1^{k_1} x_2^{k_2} \dots x_n^{k_n}, \ \sharp \ \forall \ a_{k_1 k_2 \dots k_n} \in \mathbb{F},$$

为数域 \mathbb{F} 上的一个 n 元多项式. 特别地, n 元多项式为有限多个 n 元单项式的形式和.

定义 1.10.3. 设 $f(x_1,\dots,x_n)$ 与 $g(x_1,\dots,x_n)$ 为数域 \mathbb{F} 上的 n 元多项式.

称 $f(x_1, \dots, x_n)$ 与 $g(x_1, \dots, x_n)$ 相等, 如果他们含有完全相同的系数非零的单项式.

如果数域 \mathbb{F} 上的一个n元多项式的所有的单项式的系数都为0,那么称它为**零多项式**,记为0.

设 $f(x_1,\dots,x_n)$ 为数域 \mathbb{F} 上的 n 元多项式, 它的所有的系数非零的单项式的次数的最大值称为 $f(x_1,\dots,x_n)$ 的次数, 记为 $\deg f(x_1,\dots,x_n)$ 或者 $\partial f(x_1,\dots,x_n)$. 约定零多项式的次数为 $-\infty$.

注记 1.10.1. 具有次数最大的单项式可能不唯一.

定义 1.10.4 (字典排序法). 设 (i_1, i_2, \dots, i_n) 及 $(j_1, j_2, \dots, j_n) \in \mathbb{N}^n$. 称 (i_1, \dots, i_n) 先 于 (j_1, \dots, j_n) ,如果存在 $1 \leq s \leq n$ 使得 $i_1 = j_1, \dots, i_{s-1} = j_{s-1}, i_s > j_s$. 此时记 为 $(i_1, \dots, i_n) > (j_1, \dots, j_n)$.

称单项式 $ax_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$ 先于 $bx_1^{l_1}x_2^{l_2}\cdots x_n^{l_n}$ 如果 $(k_1,\cdots,k_n)>(l_1,\cdots,l_n)$.

定义 1.10.5. 设 $f(x_1, \dots, x_n)$ 为 \mathbb{F} 上的 n 元多项式. 将 $f(x_1, \dots, x_n)$ 的单项式按字典 排序法写出来的第一个非零单项式 (最大的) 称为 $f(x_1, \dots, x_n)$ 的**首项**.

注记 1.10.2. 多元多项式的首项不一定具有最大的次数.

1.10.2 多元多项式的运算

记 $\mathbb{F}[x_1,\cdots,x_n]$ 表示数域 \mathbb{F} 上的n元多项式全体. 设 $f(x_1,\cdots,x_n),g(x_1,\cdots,x_n)\in \mathbb{F}[x_1,\cdots,x_n]$, 则存在 \mathbb{N}^n 的非空有限子集 M_1,M_2 使得

$$f(x_1, \dots, x_n) = \sum_{(k_1, \dots, k_n) \in M_1} a_{k_1 k_2 \dots k_n} x_1^{k_1} x_2^{k_2} \dots x_n^{k_n},$$

$$g(x_1, \cdots, x_n) = \sum_{(l_1, \cdots, l_n) \in M_2} b_{l_1 l_2 \cdots l_n} x_1^{l_1} x_2^{l_2} \cdots x_n^{l_n}.$$

定义多元多项式的加法 +:

$$f(x_1, \dots, x_n) + g(x_1, \dots, x_n) := \sum_{\substack{(t_1, \dots, t_n) \in M_1 \cup M_2}} (a_{t_1 t_2 \dots t_n} + b_{t_1 t_2 \dots t_n}) x_1^{t_1} x_2^{t_2} \dots x_n^{t_n},$$

其中约定当 $(t_1, \dots, t_n) \in M_1 \setminus M_2$ 时记 $b_{t_1 \dots t_n} = 0$, 当 $(t_1, \dots, t_n) \in M_2 \setminus M_1$ 时记 $a_{t_1 \dots t_n} = 0$.

定义多元多项式的乘法 ×:

$$f(x_1, \dots, x_n) \times g(x_1, \dots, x_n) := \sum_{(t_1, \dots, t_n) \in M} c_{t_1 t_2 \dots t_n} x_1^{t_1} x_2^{t_2} \dots x_n^{t_n},$$

 $M := \{(m_1, \dots, m_n) \in \mathbb{N}^n | \exists (k_1, \dots, k_n) \in M_1, (l_1, \dots, l_n) \in M_2 \notin \mathcal{H} \mid m_i = k_i + l_i, i = 1, \dots, n\},\$

$$c_{t_1 t_2 \cdots t_n} = \sum_{\substack{(k_1, \dots, k_n) \in M_1 \\ (l_1, \dots, l_n) \in M_2 \\ k_i + l_i = t_i, i = 1, \dots, n}} a_{k_1 k_2 \cdots k_n} b_{l_1 l_2 \cdots l_n}.$$

练习 1.10.1. 验证 $\mathbb{F}[x_1,\cdots,x_n]$ 在上述加法与乘法意义下为交换环. 称 ($\mathbb{F}[x_1,\cdots,x_n],+,\times$) 为数域 \mathbb{F} 上的 n 元多项式环.

注记 1.10.3. 对任意的多项式 $f(x_1,\dots,x_n), g(x_1,\dots,x_n) \in \mathbb{F}[x_1,\dots,x_n]$, 显然有

 $\deg f(x_1,\cdots,x_n)+g(x_1,\cdots,x_n)\leq \max\{\deg f(x_1,\cdots,x_n),\deg g(x_1,\cdots,x_n)\}.$

引理 1.10.1. 设 $f(x_1, \dots, x_n)$, $g(x_1, \dots, x_n)$ 为数域 \mathbb{F} 上的非零 n 元多项式, 则 $f(x_1, \dots, x_n)$ 与 $g(x_1, \dots, x_n)$ 的乘积的首项为 $f(x_1, \dots, x_n)$ 的首项的乘积.

定理 1.10.2 (乘法消去律). 设 $f(x_1, \dots, x_n), g(x_1, \dots, x_n), h(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$.

- (2) 若 $f(x_1, \dots, x_n)g(x_1, \dots, x_n) = f(x_1, \dots, x_n)h(x_1, \dots, x_n)$ 且 $f(x_1, \dots, x_n)$ 为 非零多项式,则 $g(x_1, \dots, x_n) = h(x_1, \dots, x_n)$.

定义 1.10.6. 设 $f(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$, 称 $f(x_1, \dots, x_n)$ 为 m 次齐次多项式, 如果它的每个系数非零的单项式都是 m 次的. 约定零多项式可以看作任意次数的齐次多项式.

- **命题 1.10.3.** (1) 设 $f(x_1, \dots, x_n)$ 与 $g(x_1, \dots, x_n)$ 为非零齐次多项式,则 $f(x_1, \dots, x_n)$ 与 $g(x_1, \dots, x_n)$ 的乘积也是齐次多项式且 $\deg fg = \deg f + \deg g$;
 - (2) 对任意的多元多项式 $f(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$, 存在唯一的 i 次齐次多项式 $f_i(x_1, \dots, x_n)$, $i = 0, 1, \dots$, $\deg f(x_1, \dots, x_n)$ 使得

$$f(x_1, \cdots, x_n) = \sum_{i=0}^{\deg f} f_i(x_1, \cdots, x_n);$$

(3) 对任意的 $f(x_1, \dots, x_n), g(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$, 有 $\deg f(x_1, \dots, x_n)g(x_1, \dots, x_n) = \deg f(x_1, \dots, x_n) + \deg g(x_1, \dots, x_n).$

练习 1.10.2. 设 $f(x_1, \dots, x_n), g(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$. 若 $f(x_1, \dots, x_n)g(x_1, \dots, x_n)$ 为 齐次多项式且 $f(x_1, \dots, x_n) \neq 0 \neq g(x_1, \dots, x_n)$. 证明: $f(x_1, \dots, x_n) \neq g(x_1, \dots, x_n)$ 都是齐次多项式.

定义 1.10.7. 设 $f(x_1, \dots, x_n) = \sum_{(k_1, \dots, k_n) \in M} a_{k_1 k_2 \dots k_n} x_1^{k_1} x_2^{k_2} \dots x_n^{k_n} \in \mathbb{F}[x_1, \dots, x_n].$ 设 $c_1, \dots, c_n \in \mathbb{F}$, 称

$$f(c_1, \dots, c_n) := f(x_1, \dots, x_n)|_{x_1 = c_1, \dots, x_n = c_n} := \sum_{(k_1, \dots, k_n) \in M} a_{k_1 k_2 \dots k_n} c_1^{k_1} c_2^{k_2} \dots c_n^{k_n} \in \mathbb{F}$$

为 $f(x_1, \dots, x_n)$ 在 $x_1 = c_1, \dots, x_n = c_n$ 处的**取值**.

定理 1.10.4. 设 $f(x_1, \dots, x_n)$ 为数域 \mathbb{F} 上的非零多项式,则存在 $c_1, \dots, c_n \in \mathbb{F}$ 使 得 $f(c_1, \dots, c_n) \neq 0$.

1.10.3 对称多项式

定义 1.10.8. 设 $f(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$, 如果对任意的 $1 \le i \ne j \le n$,

$$f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_n)$$

$$= f(x_1, \dots, x_{i-1}, x_j, x_{i+1}, \dots, x_{j-1}, x_i, x_{j+1}, \dots, x_n),$$

即交换 x_i 与 x_j 的位置后 $f(x_1, \dots, x_n)$ 不变, 那么称 $f(x_1, \dots, x_n)$ 为 \mathbb{F} 上的一个 n **元 对称多项式**.

例 1.10.1.
$$\sigma_1(x_1,\dots,x_n)=x_1+x_2+\dots+x_n=\sum_{i=1}^n x_i;$$

$$\sigma_2(x_1,\cdots,x_n)=\sum_{1\leq i< j\leq n}x_ix_j;$$

• • • •

$$\sigma_k(x_1, \cdots, x_n) = \sum_{1 \le j_1 < j_2 \cdots < j_k \le n} x_{j_1} x_{j_2} \cdots x_{j_k};$$

...;

 $\sigma_n = x_1 x_2 \cdots x_n$

为n元对称多项式,称为n元初等对称多项式.

例 1.10.2 (Vieta 定理). 设 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{F}[x]$ 在 \mathbb{F} 中有 n 个 根 c_1, \dots, c_n ,则

$$\sigma_1(c_1, \dots, x_n) = \sum_{i=1}^n c_i = (-1)^1 a_{n-1};$$

$$\sigma_2(c_1, \dots, c_n) = \sum_{1 \le i < j \le n} c_i c_j = (-1)^2 a_{n-2};$$

$$\vdots$$

$$\sigma_n(c_1, \dots, x_n) = c_1 c_2 \dots c_n = (-1)^n a_0.$$

事实。 (1) 对称多项式的和与乘积仍为对称多项式:

- (2) 对称多项式的多项式为对称多项式. 特别地, 若 $f_1(x_1, \dots, x_n), \dots, f_t(x_1, \dots, x_n)$ 为 对称多项式,则对任意的 t 元多项式 $g(y_1, \dots, y_t) \in \mathbb{F}[y_1, \dots, y_t], g(f_1, f_2, \dots, f_t)$ 为 x_1, \dots, x_n 的对称多项式.
- **定理 1.10.5** (对称多项式基本定理). 设 $f(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$ 为对称多项式,则 存在唯一的多项式 $g(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$ 使得

$$f(x_1, \cdots, x_n) = g(\sigma_1(x_1, \cdots, x_n), \cdots, \sigma_n(x_1, \cdots, x_n)).$$

- **例 1.10.3.** 利用待定系数法将对称多项式 $f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3 + x_1x_2 + x_1x_3 + x_2x_3$ 表示为初等对称多项式的多项式.
- **练习 1.10.3.** 设 x_1, \dots, x_n 为多项式 $x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ 的复根. 证明: 关于 x_2, \dots, x_n 的对称多项式可以表示为 x_1, a_1, \dots, a_{n-1} 的多项式.