

Bayes Ingenuo

Mtro. René Rosado González Director de Programa LTP

Conditional Probabilities

	Contra	Pro
Izquierda	5	35
Derecha	20	40

Conditional Probabilities

	Contra	Pro	
Izquierda	0.05	0.35	0.4
Derecha	0.20	0.40	0.6
	0.25	0.75	1

Conditional Probabilities

	Contra	Pro	
Izquierda	0.05	0.35	0.4
Derecha	0.20	0.40	0.6
	0.25	0.75	1

Conditional Probabilities

	Contra	Pro	
Izquierda	0.05	0.35	0.4
Derecha	0.20	0.40	0.6
	0.25	0.75	1

$$P(Contra) = 0.05$$

$$P(Izquierda) = 0.25$$

$$P(Pro \& Izquierda) = 0.1$$

Conditional Probabilities

	Contra	Pro	
Izquierda	0.05	0.35	0.4
Derecha	0.20	0.40	0.6
	0.25	0.75	1

$$P(Contra\&Izquierda|Izquierda) = \frac{0.05}{0.4}$$

Notación común:

$$P(Contra|Izquierda) = \frac{0.05}{0.4} = 0.125$$

Conditional Probabilities

	Contra	Pro	
Izquierda	?	?	0.4
Derecha	?	?	0.6
	0.25	0.75	1

P(Contra|Izquierda) = 0.125

P(Izquierda|Contra) = ?

Bayes Theorem

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Bayes Theorem

Verosimilitud

Distribución de probabilidad de *x* dado que *y* pertenece a una clase

Probabilidad Posterior
Probabilidad de que *y* pertenezca a una clase dado los datos

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Probabilidad *Apriori* de *x*Distribución de probabilidad de *x*

Probabilidad *Apriori* de *y*Probabilidad de que *y* pertenezca a una clase sin importar los datos

Bayes Theorem

$$P(Izquierda|Contrra) = \frac{P(Contra|Izquierda)P(Izqueirda)}{P(Contra)}$$

Bayes Theorem

$$P(Derecha|ProGn) = \frac{(0.4)(0.125)}{(0.25)} = 0.2$$

Bayes Theorem

Verosimilitud

Distribución de probabilidad de x dado que y pertenece a una clase

Probabilidad Posterior
Probabilidad de que *y* pertenezca a una clase dado los datos

Probabilidad *Apriori* de *x*Distribución de probabilidad de *x*

Probabilidad *Apriori* de *y*Probabilidad de que *y* pertenezca a una clase sin importar los datos

Bayes Theorem

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x|y)P(y)}{P(x|y)P(y) + P(x|\neg y)P(\neg y)}$$

Bayes Ingenueo

Naïve Bayes

- Es una técnica de clasificación estadística basada en el Teorema de Bayes.
- Asume que el efecto de una característica categórica particular en una clase es independiente de otras características.
- Algoritmo:
 - 1. Calcular la probabilidad inicial (apriori) de cada clase.
 - 2. Encontrar la probabilidad de verosimilitud con cada atributo para cada clase.
 - 3. Calcular la probabilidad posterior.
 - 4. Asignar la clase más probable.
- En el caso de variables continuas, podemos generar agrupaciones por particiones (bins)

Un ejemplo

Matriz de Confusión

Positivo Negativo

Positivo Verdaderos Positivos (VP)

Positivo Verdaderos Positivos (VP)

Falsos Negativos (FN)
(Error tipo II)

Verdaderos Negativos (VN)

Métricas para Clasificación

Exactitud

$$\bullet \quad \frac{VP + VN}{VP + VN + FP + FN}$$

Sensibilidad

(Tasa de Verdaderos Positivos)

$$\bullet \quad \frac{VP}{VP + FN}$$

Especificidad

(Tasa de Verdaderos Negativos)

$$\bullet \quad \frac{VN}{VN + FP}$$

Precisión

$$\bullet \quad \frac{VP}{VP + FP}$$

Tasa de Falsos Positivos

(Error Tipo I)

$$\bullet \quad \frac{FP}{VP + FP}$$

Tasa de Falsos Negativos

(Error Tipo II)

$$\bullet \quad \frac{FN}{VN + FN}$$

Puntaje F-Beta

$$F_{\beta} = (1 + \beta^2) * \frac{precisión * sensibilidad}{(\beta^2 * precisión) + sensibilidad)}$$

$$F_1 = 2 * \frac{precisión * sensibilidad}{precisión + sensibilidad}$$

$$F_2 = 5 * \frac{precisión * sensibilidad}{(4 * precisión) + sensibilidad}$$

•••

Al elegir beta en su puntaje F-beta, cuanto más nos importe la sensibilidad sobre la precisión, debemos elegir una beta más alta.

Por ejemplo, con la puntuación F1, nos preocupamos por igual por la sensibilidad y la precisión.

Con la puntuación F2, la sensibilidad es el doble de importante para nosotros.

18

Area Bajo la Curva Característica Operativa del Receptor

Tipos de Paneles

Un ejemplo

Consideraciones Bayes Ingenueo

Naïve Bayes

22

Múltiples predictores se asumen independientes

Problema con observaciones Infrecuentes

Laplace Correction

$$P_{Lap,k}(x) = \frac{n(x) + k}{N + k|X|}$$

Laplace Correction

Problema con observaciones Infrecuentes

r.rosado@tec.mx

24

Laplace Correction

Problema con observaciones Infrecuentes

 χ

$$x_1 \cap x_2$$

$$\frac{2+1}{3+(1*2)}$$

$$x_1 \cap x_3$$

$$\frac{0+1}{3+(1*2)}$$

Laplace Correction

Problema con observaciones Infrecuentes

Un ejemplo

