Einführung in die Fusionsforschung Wichtige Grundlagen der Plasmaphysik (Zusammenfassung der Vorlesung Einführung in die Plasmaphysik)

Wolfgang Suttrop

Max-Planck-Institut für Plasmaphysik
D-85740 Garching

Was ist ein Plasma?

Plasma = Ionisiertes Gas (Elektronen und Ionen)

Wechelwirkung durch elektrische und magnetische Felder

Neutralität.

Skalen:

Ladungsabschirmung → Characteristische Länge
 Debye-Länge:

$$\lambda_D = \left(\frac{\varepsilon_0 k_B T_e}{e^2 n_e}\right)^{1/2}$$

Elektrostatische Plasmaschwingungen → Characteristische Frequenz
 Plasmafrequenz:

$$\omega_p^2 = \frac{e^2 n_e}{m_e \varepsilon_0}$$

Parameter verschiedener Plasmen

	L	n_e	T_e	N	λ_D	N_D	$\omega_p/2\pi$
	(m)	(m^{-3})	(eV)		(m)		(Hz)
Gasentladungen	10^{-2}	10^{18}	2	1×10^{12}	11×10^{-6}	4.4×10^{13}	8.9×10^9
Prozessplasmen	10^{-1}	10^{18}	10^{2}	1×10^{15}	74×10^{-6}	3.1×10^{14}	8.9×10^9
Fusionsexperiment	1	10 ¹⁹	10 ⁴	1×10^{19}	0.23×10^{-3}	9.8×10^{15}	28×10^9
Fusionsreaktor	2	10^{20}	10^{4}	8×10^{20}	74×10^{-6}	3.1×10^{16}	89×10^9
Ionosphäre	10 ⁵	10 ¹¹	10^{-1}	1×10^{26}	7×10^{-3}	3.1×10^{9}	2.8×10^{6}
Van Allen-Gürtel	10^{6}	10 ⁹	10^{2}	1×10^{27}	2.4	9.8×10^9	280×10^3
Sonnenkorona	108	10^{13}	10^{2}	1×10^{37}	0.02	9.8×10^{11}	28×10^6
Sonnenwind	10^{10}	10^{7}	10	1×10^{37}	7.4	3.1×10^8	28×10^3
Interstellares Gas	10 ¹⁶	10 ⁶	1	1×10^{54}	7.4	31×10^6	8.9×10^3

Beschreibung von Plasmen

• Einzelteilchenbeschreibung

Bewegung geladener Teilchen in vorgegebenen \vec{E} - und \vec{B} -Feldern

• Kinetische Beschreibung

Dichte im Phasenraum: $f(\vec{r}, \vec{v})$, Zeitentwicklung

• Flüssigkeitsbeschreibung (Magnetohydrodynamik)

Mittelung über $\vec{v} \rightarrow n(\vec{r}), T(\vec{r}), p(\vec{r}), \dots$

- Mehrflüssigkeits-Modell
- Einflüssigkeits-Modell $(\vec{j} = e(\vec{v}_i \vec{v}_e))$

Wechselwirkung Teilchen - Felder

Kräfte auf Teilchen

Coulomb-Kraft:

$$\vec{F}_c = q\vec{E}$$

Lorentz-Kraft:

$$q\vec{v} imes \vec{B}$$

Teilchen erzeugen Felder

Poisson-Gleichung:

$$abla \cdot \vec{E} = \sigma/\epsilon_0$$

Ampère'sches Gesetz:

$$\nabla \times \vec{B} = \mu_0 \vec{j} + (1/c^2) \partial \vec{E} / \partial t$$

Weitere Maxwell-Gl.:

Faraday-Gesetz (Wellenausbreitung):

$$\nabla imes \vec{E} = -\partial \vec{B}/\partial t$$

Verbot magnetischer Monopole:

$$\nabla \cdot \vec{B} = 0$$

Gyrationsbewegung im Magnetfeld

Zyklotronfrequenz:

$$\omega_c = \frac{qB}{m}$$

Gyroradius

("Larmor"-Radius):

$$r_L \equiv rac{v_\perp}{|\omega_c|} = rac{m v_\perp}{|q|B}$$

Konservatives Kraftfeld o Teilchendrift $\perp \vec{F}, \perp \vec{B}$

Durch Bewegung im konservativen Kraftfeld (z.B. elektrostatisch $\vec{F}=q\vec{E}$) ändert sich der Gyroradius.

"Gravitations"-Driften

Beliebiges konservatives Kraftfeld:

$$\vec{v}_F = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2}$$

Gravitationsdrift $(\vec{F} = m\vec{g})$

$$\vec{v}_g = \frac{m}{q} \frac{\vec{g} \times \vec{B}}{B^2}$$

 $E \times B$ -Drift (Coulomb-Kraft $\vec{F} = q\vec{E}$)

$$v_{\rm ExB} = rac{\vec{E} imes \vec{B}}{B^2}$$

Krümmungsdrift (Fliehkraft: $\vec{F}_R = mv_{\parallel}^2 \vec{R}_c / R_c^2$)

$$\vec{v}_R = \frac{mv_\parallel^2}{q} \frac{\vec{R}_c \times \vec{B}}{R_c^2 B^2} = \underbrace{\frac{mv_\parallel^2}{q} \frac{\vec{B} \times \nabla B}{B^3}}_{\text{Zylindersymmetrie}, \vec{j}=0}$$

∇B - (Grad B-) Drift

Ursache: Variation von B in der Gyrationsperiode.

 ∇B -Drift:

$$\vec{v}_{\nabla B} = \frac{mv_{\perp}^2}{2qB^3} \left(\vec{B} \times \nabla B \right)$$

Vgl. Krümmungsdrift für zylindersymmetrisches \vec{B} -Feld im Vakuum (j = 0):

$$\vec{v}_R = \frac{mv_{\parallel}^2}{qB^3} \left(\vec{B} \times \nabla B \right)$$

Driftstrom, da Richtung der ∇B - und Krümmungsdriften vom Vorzeichen der Ladung q abhängt!

Magnetisches Moment, magnetischer Spiegel

Magnetisches Moment:

$$\mu = \frac{mv_{\perp}}{2B} = \frac{W_{\perp}}{B}$$

Erhaltungsgrösse (adiabatische Invariante) für statische Magnetfelder.

Magnetischer Spiegel:

Mit steigendem *B*-Feld steigt W_{\perp} .

Bei $W_{\parallel}=0$ kehrt Parallelbewegung um

→ "Gefangene" Teilchen

$$v_{\parallel,0}^2 = \frac{2\mu(B_m - B_0)}{m} = v_{\perp,0}^2 \frac{B_m - B_0}{B_0}$$

Atomare Wechselwirkungsprozesse

Wesentliche Beispiele, nach Edukten (Pfeile: Hauptwirkrichtung)

Coulomb-Stösse

 $\geq 90^{\circ}$ -Stöße:

Aufeinanderfolgende Kleinwinkelstösse dominieren die effektive $\geq 90^{\circ}$ -Stößrate. Mit $v^2 = k_B T_e/m_e$:

$$u_{ei} = \frac{ne^4\pi m^{1/2}}{(4\pi\epsilon_0)^2 (k_B T_e)^{3/2}} \ln \Lambda$$

$$(\Lambda = \lambda_D/r_0)$$

(Lyman Spitzer, Physics of Fully Ionized Gases, Wiley, 1962)

Kinetische Beschreibung

Klassische Teilchen: "Punkte" im Phasenraum mit definiertem Ort \vec{x} und Geschwindigkeit \vec{v} .

$$g(\vec{x}, \vec{v}, t) = \sum_{i} \delta(\vec{x} - \vec{x}_i(t)) \delta(\vec{v} - \vec{v}_i(t))$$
 "Exakte" Phasenraumdichte

Mittelung über (kleine) Volumina

 \rightarrow kontinuierliche Phasenraumdichte $f(\vec{x}, \vec{v}, t)$

Momente der Verteilungsfunktion

Makroskopische Grössen durch Mittelwertbildung:

$$\langle g(\vec{x}, \vec{v}) \rangle = \int g(\vec{x}, \vec{v}) f(\vec{x}, \vec{v}, t) d^3x d^3v$$

Ortsabhängige Grössen:

Teilchendichte
$$n(\vec{x},t) = \int_{v} f(\vec{x},\vec{v},t) d^{3}v$$

mittlere Geschwindigkeit $u(\vec{x},t) = \frac{1}{n} \int_{v} \vec{v} f(\vec{x},\vec{v},t) d^{3}v$
Temperatur $k_{B}T = \frac{m}{3n} \int_{v} m(\vec{v}-\vec{u}) \cdot (\vec{v}-\vec{u}) f(\vec{x},\vec{v},t) d^{3}v$
kinetische Energiedichte $w(\vec{x},t) = \int_{v} \frac{1}{2} m v^{2} f(\vec{x},\vec{v},t) d^{3}v$
Drucktensor $\overline{P}(\vec{x},t) = \int_{v} m(\vec{v}-\vec{u}) (\vec{v}-\vec{u}) f(\vec{x},\vec{v},t) d^{3}v$

Bewegungsgleichung

Bewegungsgleichung (1. Ordnung d*t*):

$$\frac{\partial f}{\partial t} + \nabla_x \cdot (\vec{v}f) + \nabla_v \cdot \left(\frac{\vec{F}}{m}f\right) dt = 0$$

Formal: Kontinuitätsgleichung für f (im 6-D Phasenraum)!

Vlasov-Gleichung (A. Vlasov, 1945):

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_{x} f + \frac{q}{m} \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \nabla_{v} f = 0$$

Boltzmann-Gl., mit elektromagnetischer Kraft

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_x f + \frac{q}{m} \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \nabla_v f = \left(\frac{\delta f}{\delta t} \right)_c$$

Z.B. *Krook*'scher Stossoperator:

$$\left(\frac{\delta f}{\delta t}\right)_{c} = \mathsf{v}_{n}\left(f_{n} - f\right)$$

(f_n : Verteilungsfunktion der Spezies, an der gestreut wird)

Momentengleichungen

Entwicklung der Boltzmann-Gleichung nach Momenten der Geschwindigkeit.

k-tes Moment:

$$\int_{\mathcal{V}} \vec{v}^k \frac{\partial f}{\partial t} d^3 v + \int_{\mathcal{V}} \vec{v}^{k+1} \cdot \nabla_x f d^3 v + \int_{\mathcal{V}} \vec{v}^k \frac{\vec{F}}{m} \cdot \nabla_v f d^3 v = \int_{\mathcal{V}} \vec{v}^k \left(\frac{\delta f}{\delta t}\right)_{\mathcal{C}} d^3 v$$

verknüpft k-te und k + 1-te Potenz von \vec{v} !

(Schliessungsproblem!)

Momentengleichungen = Flüssigkeitsgleichungen

Null-tes Moment: Kontinuitätsgleichung (je Spezies s)

$$\frac{\partial n_s}{\partial t} + \nabla \cdot (n_s \ u_s) = 0$$

Erstes Moment: Kraftgleichung

$$\frac{\partial}{\partial t} \left(m_{s} n_{s} \vec{u}_{s} \right) + \nabla \cdot \left(m_{s} n_{s} \vec{u}_{s} \vec{u}_{s} \right) = m_{s} n_{s} \underbrace{\left[\frac{\partial \vec{u}_{s}}{\partial t} + \left(\vec{u}_{s} \cdot \nabla \right) \vec{u}_{s} \right]}_{\text{d}\vec{u}_{s} / \text{d}t} = \underbrace{n_{s} q_{s} \left[\vec{E} + \vec{u}_{s} \times \vec{B} \right]}_{\text{Lorentz-Kraft}} \underbrace{-\nabla \cdot \overline{P}_{s}}_{\text{Druckgradient}} + \underbrace{\frac{\delta_{c} p_{s}}{\delta t}}_{\text{Reibungskraft}}$$

Zweites Moment; Energiegleichung:

$$\frac{\partial W_s}{\partial t} + \nabla \cdot \vec{Q}_s - \vec{E} \cdot \vec{j}_s = \int_{V} \frac{1}{2} m_s v^2 \frac{\delta_c f_s}{\delta t} d^3 v$$

Schliessungsbedingungen

kaltes Plasma $(k_BT \rightarrow 0)$

$$\overline{\overline{P}} = 0$$

Adiabatische Zustandsgleichung ($\gamma = \frac{z+2}{z}$, z Zahl Freieheitsgrade)

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{p}{n^{\gamma}}=0, \quad p=p_0\left(\frac{n}{n_0}\right)^{\gamma}$$

Nicht-isotroper Druck:

$$p_{\parallel}=p_{\parallel,0}\left(rac{n}{n_0}
ight)^3, \qquad p_{\perp}=p_{\perp,0}\left(rac{n}{n_0}
ight)^2$$

Chew-Goldberger-Low

Adiabatische Invarianten: $\frac{d}{dt}\mu = \frac{d}{dt}\left(\frac{mv_{\perp}^2}{2B}\right) = \frac{d}{dt}\left(\frac{p_{\perp}}{nB}\right) = 0, J = \oint v_{\parallel}ds = v_{\parallel}L = const.$

Teilchenzahlerhaltung: N = nAL = const., Flusserhaltung: $\Psi = AB = const.$

$$\frac{d}{dt} \frac{J^2 \Psi^2}{N} = \frac{d}{dt} \left(\frac{2p_{\parallel} L^2}{nm} \frac{B^2 A^2}{n^2 A^2 L^2} \right) = \frac{d}{dt} \left(\frac{p_{\parallel} B^2}{n^3} \right) = 0$$

Flüssigkeitsbild vs. Teilchenbild

Diamagnetische Drift (Strom)

$$\vec{u}_{s} = \underbrace{\frac{\vec{E} \times \vec{B}}{B^{2}}}_{\vec{E} \times \vec{B} - \text{Drift}} + \underbrace{\frac{1}{q_{s} n_{s} B^{2}} \left(\vec{B} \times \nabla p \right)}_{\text{diamagnetische Drift}}$$

Keine Entsprechung in Teilchen-Bewegungsgleichung Diamagnetischer Strom senkt \vec{B} ab

 ∇B -Drift

$$\vec{v}_{\nabla B} = \frac{mv_{\perp}^2}{2q_s B^3} \left(\vec{B} \times \nabla B \right)$$

Drift der Gyrozentren und Geschwindigkeitsvaritaion durch Magnetfeldgradient heben sich auf \rightarrow mittlere Geschwindigkeit u = 0

Ein-Flüssigkeits-Modell

Masse m, Massendichte ρ_m , Teilchendichte $n = \rho_m/m$, Flüssigkeitsgeschwindigkeit \vec{u}

$$m = \sum_{s} m_{s}, \qquad \rho_{m} = \sum_{s} \rho_{m,s}, \qquad n = \frac{1}{m} \sum_{s} m_{s} n_{s} \qquad \vec{u} = \frac{1}{\rho_{m}} \sum_{s} \rho_{m,s} \vec{u}_{s} = \frac{1}{mn} \sum_{s} m_{s} n_{s} \vec{u}_{s}$$

Kontinuitätsgleichung:
$$\frac{\partial}{\partial t}n + \nabla \cdot (n\vec{u}) = 0$$

Kraftgleichung:
$$\frac{\partial}{\partial t} (n \ m \ \vec{u}) + \nabla \cdot (m \ n \ \vec{u} \ \vec{u}) = m \ n \frac{\partial \vec{u}}{\partial t} + m n (\vec{u} \cdot \nabla) \vec{u} = \rho \vec{E} + \vec{j} \times \vec{B} - \nabla \cdot \overline{\overline{P}}_{0}$$

Ohm'sches Gesetz:
$$\vec{E} + \vec{u} \times \vec{B} - \eta_0 \vec{j} = \frac{1}{en} \vec{j} \times \vec{B} - \frac{1}{en} \nabla \cdot \overline{P}_e + \frac{m_e}{ne^2} \left| \frac{\partial \vec{j}}{\partial t} + \nabla \cdot \left(\vec{u} \vec{j} + \vec{j} \vec{u} \right) \right|$$

Magnetischer Drucktensor ($\vec{j} \times \vec{B}$ -Kraftdichte)

$$\overline{\overline{T}} \equiv \begin{pmatrix} \frac{B^2}{2\mu_0} \end{pmatrix} \overline{\overline{1}} - \begin{pmatrix} \frac{\vec{B}\vec{B}}{\mu_0} \end{pmatrix}$$
 isotroper Magnetfelddruck Zugspannung in \vec{B} -Richtung

Komponenten ($\vec{B}||z$ -Richtung):

$$\overline{\overline{T}} \equiv egin{pmatrix} B^2/2\mu_0 & 0 & 0 \ 0 & B^2/2\mu_0 & 0 \ 0 & 0 & B^2/2\mu_0 \end{pmatrix} + egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & -B^2/\mu_0 \end{pmatrix}$$

Plasma-"Beta"

Betrachte stationären Fall, $m \frac{d}{dt} (n \vec{u}) = 0$, E = 0, isotroper kinetischer Druck p

Kraftgleichung:

$$0 = \vec{j} \times \vec{B} - \nabla p = -\nabla \left(\frac{B^2}{2\mu_0} + p \right) + \frac{1}{\mu_0} \nabla \cdot \left(\vec{B} \vec{B} \right)$$

Def.:

$$\beta \equiv \frac{p}{B^2/2\mu_0}$$

Grenzfälle:

- $\beta \ll 1$: Magnetfelddruck bestimmt Plasmabewegung
- $\beta \approx 1$ (und höher): kinetischer Druck bestimmt Plasmabewegung

MHD-Anwendung: "Akustische" Wellen

Plasma, $B_0 \neq 0$, $E_0 = 0$, Kraftgleichung, linearisiert:

$$mn_0 \frac{\partial}{\partial t} \vec{u}_1 = \frac{1}{\mu_0} \left(\nabla \times \vec{B}_1 \right) \times \vec{B}_0 - \nabla p_1$$

Verallgemeinertes Ohm'sches Gesetz ($\eta = 0$)

$$\vec{E} + \vec{u} \times \vec{B} = 0 \implies -\nabla \times \vec{E}_1 = \frac{\partial \vec{B}_1}{\partial t} = \nabla \times \left(\vec{u}_1 \times \vec{B}_0 \right)$$

MHD-Anwendung: Magneto-Schallwellen

Schallgeschwindigkeit:

$$c_s \equiv \frac{\omega}{k} = \left(\frac{\gamma p_0}{\rho_0}\right)^{1/2} = \left(\frac{\gamma k_B T}{M}\right)^{1/2}$$

Alfvén-Geschwindigkeit:

$$v_A = \frac{B_0}{\sqrt{\mu_0 m n_0}}$$

Transversale (Scher-) Alfvén-Welle

$$c^2 = v_A^2 \cos^2 \theta$$

Langsame Magnetoschallwelle

$$c^{2} = \frac{1}{2} \left(v_{A}^{2} + v_{s}^{2} \right) - \frac{1}{2} \left[\left(v_{A}^{2} - c_{s}^{2} \right)^{2} + 4 v_{A}^{2} c_{s}^{2} \sin^{2} \theta \right]^{1/2}$$

Schnelle Magnetoschallwelle

$$c^{2} = \frac{1}{2} \left(v_{A}^{2} + v_{s}^{2} \right) + \frac{1}{2} \left[\left(v_{A}^{2} - c_{s}^{2} \right)^{2} + 4 v_{A}^{2} c_{s}^{2} \sin^{2} \theta \right]^{1/2}$$

Themen 2. Teil Vorlesung

- 1. Magnetischer Einschluss
- 2. Toroidale Kraftgleichgewichte
- 3. Transport, Diffusion
- 4. "Neoklassischer" Transport
- 5. Plasmadiagnostik
- 6. Plasmarandschicht, Leistungsabfuhr
- 7. Fusion als Energiequelle
- 8. Exkursion zum Fusionsexperiment ASDEX Upgrade