A Fog Computing Prototype

Course Project for Big Data Analytics — Winter 2019

Ali Alizadeh Mansouri Marco Sassano

April 15, 2019

Concordia University

1

Introduction

WHAT IS FOG COMPUTING?

Internet of Things (IoT)

- 50 billion devices (sensors, smart phones, smart cities, healthcare, smart vehicles, ...)[5]
- 100s of terabytes towards petabytes per day
- limited computing resources

WHAT IS FOG COMPUTING?

Internet of Things (IoT)

- 50 billion devices (sensors, smart phones, smart cities, healthcare, smart vehicles, ...)[5]
- 100s of terabytes towards petabytes per day
- limited computing resources

Cloud computing

- Flexible economy
- Scalability
- Adaptation to varieties of computational demands
- Suffers from high latency

A Fog Computing environment

PROBLEM

PROBLEM SPECIFICATION

Early detection of epilepsy seizures using EEG timeseries data Inspired by Diab Abdulgalil et. al. [4]

- · Stream processing on the edge
 - · Lower accuracy, but very high response time
- Clustering in the cloud
 - Longer latency and response time, but more accurate

DATASET

- Original dataset[2]: 500 individuals, each with 4097 data points for 23.5s
- The UCI Machine Learning Repository version [1]:
 23 × 500 = 11500 records, each record contains 178 data points (columns) for 1 second
- Restructured to (time, value) tuples to be used as a stream

 ⇒ 11500 × 178 = 2 047 000 tuples (windows of 178)
- 5 classes → 2 classes (binary)

	Total	Positive	Negative
Training	7 000	1 392	5 608
Test	4 500	908	3 592
	11 500	2 300	9 200

METHODOLOGY

STREAM FILTERING

Goal Filter the stream for out-of-range tuples/anomalies

- light-weight on resources
- fast

STREAM ANALYSIS

Different statistical measures: variance, skewness, kurtosis [3]

Selected measure

$$\Theta = \sqrt{\sum_{i=2}^{n} (X_i - X_{i-1})^2}$$

STREAM PROCESSING AT THE EDGE

Apache Edgent: Programming model and runtime (Java)

- Supply reads the dataset and supplies it as a stream
- Map maps the tuples to the selected measure
- Analysis classifies the out-of-range Θ values as seizures

RESULTS

CLOUD COMPUTING

Inspirations

- The EGADS anomaly detection library by Yahoo[6] uses clustering as basis for most of its
- Carney et. al.[3]

CLUSTERING IN THE CLOUD

We tried:

- · Euclidean distance
- Transform data entries into 178 dimensions

This failed due to different time intervals

Selected distance measure

$$s = \sum_{i=2}^{n} \left| X_i - X_{i-1} \right|$$

Apache Spark (pyspark/Python)

RESULTS

CONCLUSION

Performance Comparison

LIMITATIONS AND FUTURE WORK

- · Experiment with more than one sensor
- Introduce a publish-subscribe platform such as Apache Kafka, IBM Watson IoT Hub, etc. (e.g. using MQTT as the protocol)

References 1

Epileptic seizure recognition data set.

https://archive.ics.uci.edu/ml/datasets/ Epileptic+Seizure+Recognition.

Accessed: 2019-04-15.

R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger.

Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state.

Phys. Rev. E, 64:061907, Nov 2001.

REFERENCES II

P. R. Carney, S. Myers, and J. D. Geyer.

Seizure prediction: methods.

Epilepsy & behavior : E&B, 22 Suppl 1(Suppl 1):S94–S101, dec 2011.

H. Diab Abdulgalil.

A Multi-Tier Distributed fog-based Architecture for Early Prediction of Epileptic Seizures.

PhD thesis, University of Waterloo, 2018.

D. Evans.

The Internet of Things: How the Next Evolution of the Internet is Changing Everything.

Technical report, 2011.

REFERENCES III

N. Laptev, S. Amizadeh, and I. Flint.

Generic and scalable framework for automated time-series anomaly detection.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1939–1947. ACM, 2015.