Some important families of probability distributions

Discrete					
	Range	$p_X(x)$	μ	σ^2	$M_X(t)$
Binomial(n, p)	$0,1,\ldots,n$	$\binom{n}{x} p^x q^{n-x}$	np	npq	$(pe^t + q)^n$
Geometric(p)	$1, 2, \dots$	pq^{x-1}	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^t}{1 - qe^t}$
Negative Binomial (r, p)	$r, r+1, \dots$	$\binom{x-1}{r-1}p^rq^{x-r}$	$rac{r}{p}$	$\frac{qr}{p^2}$	$\left(\frac{pe^t}{1 - qe^t}\right)^r$
${\bf Hypergeometric}(N,K,n)$	$0,1,\ldots,n$	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$	$\frac{nK}{N}$	$\frac{nK(N-K)(N-n)}{N^2(N-1)}$	
$Poisson(\mu)$	$0,1,\dots$	$\frac{e^{-\mu}\mu^x}{x!}$	μ	μ	$e^{\mu(e^t-1)}$
		Continuous			
	Range	$f_X(x)$	μ	σ^2	$M_X(t)$
$\operatorname{Uniform}(a,b)$	(a,b)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Exponential(β)	$(0,\infty)$	$eta e^{-eta x}$	$\frac{1}{\beta}$	$\frac{1}{\beta^2}$	$\frac{\beta}{\beta-t}$
$\operatorname{Normal}(\mu,\sigma)$	$(-\infty,\infty)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu t + \sigma^2 t^2/2}$
$\operatorname{Gamma}(\alpha,\beta)$	$(0,\infty)$	$\frac{\beta^{\alpha}}{(\alpha-1)!}x^{\alpha-1}e^{-\beta x}$	$rac{lpha}{eta}$	$rac{lpha}{eta^2}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$

Gamma
$$(\alpha, \beta)$$
 $(0, \infty)$ $\frac{\beta^{\alpha}}{(\alpha - 1)!} x^{\alpha - 1} e^{-\beta x}$ $\frac{\alpha}{\beta}$

Student's $t(n)$ $(-\infty, \infty)$ $\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$ 0

$$0 \qquad \frac{n}{n-2}$$

n

$$\chi^{2}(n)$$
 $(0,\infty)$ $\frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-x/2}$

$$\frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-x/2}$$

 $\left(\frac{1}{1-2t}\right)^{n/2}$

$$F(n_1, n_2) \tag{0, \infty}$$

$$\frac{n_2}{n_2 - 2} \quad \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}$$