$\mathcal{S} == \iiint\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\left[\frac{1}{6}\left(6\ \mathcal{A}^{\alpha\beta\chi}\ \sigma_{\alpha\beta\chi} + 6\ f^{\alpha\beta}\ \tau\left(\Delta + \mathcal{K}\right)_{\alpha\beta} + 8\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{\alpha\,i\,\theta}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{\alpha\,\theta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} + 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{i\,\theta\alpha}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{\alpha\,\theta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} + 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{i\,\theta\alpha}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{i\,\alpha}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i}$ $2\,r_{2}\,\partial_{i}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}\,+\,2\,r_{2}\,\partial_{\theta}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}\,-\,4\,r_{2}\,\partial_{\theta}\mathcal{R}_{\alpha\,i\,\beta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}\,+\,6\,r_{5}\,\partial_{i}\mathcal{R}_{\theta\kappa}^{\kappa}\,\partial^{\theta}\mathcal{R}^{\alpha\,i}_{\alpha}\,-\,6\,r_{5}\,\partial_{\theta}\mathcal{R}_{i\kappa}^{\kappa}$

PSALTer results panel

 $t_{2}^{*} \partial_{\theta} f_{\alpha}^{\alpha} \partial^{\theta} f^{\alpha} - 4 t_{2}^{*} \mathcal{A}_{\alpha\theta}, \left(\mathcal{A}^{\alpha + \theta} + \partial^{\theta} f^{\alpha}\right) + 2 t_{2}^{*} \mathcal{A}_{\alpha + \theta} \left(\mathcal{A}^{\alpha + \theta} + 2 \partial^{\theta} f^{\alpha}\right) - 6 r_{5}^{*} \partial_{\alpha} \mathcal{A}^{\alpha + \theta} \partial_{\kappa} \mathcal{A}_{\alpha + \theta}^{\kappa} + 2 \partial^{\theta} f^{\alpha} + 2 \partial^{\theta}$ $12\,r.\,\partial^{\theta}\mathcal{A}^{\alpha_{1}}_{\phantom{\alpha_{1}}\phantom{\alpha_{1}}\partial_{\kappa}\mathcal{A}_{\phantom{\alpha_{1}}\phantom{\alpha_{1}}}^{\phantom{\alpha_{1}}\phantom{\alpha_{1}}\theta}+6\,r.\,\partial_{\alpha}\mathcal{A}^{\alpha_{1}\,\theta}_{\phantom{\alpha_{1}}\phantom{\alpha_{1}}\partial_{\kappa}\mathcal{A}_{\phantom{\alpha_{1}}\phantom{\alpha_{1}}}^{\phantom{\alpha_{1}}\phantom{\alpha_{1}}}-12\,r.\,\partial^{\theta}\mathcal{A}^{\alpha_{1}}_{\phantom{\alpha_{1}}\phantom{\alpha_{1}}\partial_{\kappa}\mathcal{A}_{\phantom{\alpha_{1}}\phantom{\alpha_{1}}}^{\phantom{\alpha_{1}}\phantom{\alpha_{1}}}\partial_{\kappa}\mathcal{A}_{\phantom{\alpha_{1}}\phantom{\alpha_{1}}}^{\phantom{\alpha_{1}}\phantom{\alpha_{1}}}))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$ <u>Wave</u> <u>operator</u> ${\stackrel{0^+}{\cdot}}\mathcal{H}^{\parallel} {\stackrel{0^+}{\cdot}}{f}^{\parallel} {\stackrel{0^+}{\cdot}}{f}^{\perp}$ $^{0^{\scriptscriptstyle +}}\mathcal{R}^{\parallel}$ †

${\stackrel{0^+}{\cdot}}f^{\parallel}$ † 0 0 ${\stackrel{0^+}{\cdot}} f^{\perp} \dagger$ 0 0

0

^{0⁻}Æ[∥]†

 ${\stackrel{0^+}{\cdot}} \tau^{\perp} +$

 ${\stackrel{\scriptscriptstyle{0^{-}}}{\cdot}}\sigma^{\parallel}$ †

 $\left. \begin{smallmatrix} \mathbf{1}^+ \\ \bullet \end{smallmatrix} _{\tau} \right\|_{lpha eta}$

0

0

0

 $i\left(3 k^2 r_{5} + 2 t_{2}\right) \quad 3 k^2 r_{5} + 2 t_{2}$ $-\frac{1}{k(1+k^2)^2} \frac{1}{r \cdot t \cdot (1+k^2)^2} \frac{1}{r \cdot t$

0

 $\begin{bmatrix} \mathbf{1}^{-} \boldsymbol{\sigma}^{\parallel} & \mathbf{1}^{-} \boldsymbol{\sigma}^{\perp} & \mathbf{1}^{-} \boldsymbol{\tau}^{\parallel} \\ \mathbf{1}^{-} \boldsymbol{\sigma}^{\parallel} & \mathbf{1}^{-} \boldsymbol{\tau}^{\parallel} \end{bmatrix}_{\alpha}$

0

0

0

0

0

0

0

0

$-\frac{1}{k^2 r_5 + k^4 r_5}$ $1^{+}_{0}\sigma^{\perp}\uparrow^{\alpha\beta} - \frac{\sqrt{2}}{k^{2}r_{5}+k^{4}r_{5}} - \frac{3k^{2}r_{5}+2t_{2}}{(k+k^{3})^{2}r_{5}t_{2}} - \frac{i\left(3k^{2}r_{5}+2t_{2}\right)}{k\left(1+k^{2}\right)^{2}r_{5}t_{2}}$ $3k^2r_{5}+2t_{2}$ $i\left(3k^2r_{5}+2t_{2}\right)$

 $\stackrel{1^{-}}{\cdot}\sigma^{\parallel}\uparrow^{\alpha}$

 $^{1^{-}}\sigma^{\perp}$ $^{\alpha}$

 $\mathbf{1}^{-}_{\bullet} \tau^{\parallel} + ^{\alpha}$

 $k^2 r_{\bullet} + t_{\bullet}$

	1 ⁻ τ ⁺ † ^α	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$2^+_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$	
								$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0	
								$2^+_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	
								$^{2^{-}}\sigma^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	0	
Source co	onst	crair	nts									
Spin-parity form	Covai	riant form	1								Multipli	ícitie
⁰⁺ _• τ [⊥] == 0	xAct`	xAct`xTensor`Private`Reconstruct[1		
	Syr	mmetry[4,	$, -\partial^{\bullet} {}^4 \partial^{\bullet} {}^3 \tau (\Delta$	+ <i>K</i>) ^{•1•2} , {•1	→ a,	•2 →	b, •	3 → -a, •	$4 \rightarrow -b$	},		
	S	trongGen	Set[{3, 4},	GenSet[(3,4)]],							
	{1,	, {a , -a ,	b , -b}[[{1,	3,5,2}]]=	= O							
⊕ τ = Θ	$\partial_{\beta}\partial_{\alpha}\tau$ ($\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$									1	
⁰⁺ _• σ == 0	$\partial_{eta}\sigma^{lpha}_{lpha}$	$\partial_{\beta}\sigma_{\alpha}^{\alpha}{}^{\beta} = 0$								1		
1- _τ [⊥] α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta}$									3	
1- _τ α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$									3	
1- ₀ - ^{\alpha} == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta}$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} == 0$									3	
$ \hat{k} _{\alpha}^{1^{+}} \sigma^{\perp}^{\alpha\beta} + \hat{k} _{\alpha}^{1^{+}} = 0$	$0 \partial_{\nu} \partial^{\alpha} \tau$	$(\Delta + \mathcal{K})^{\beta \chi} + \partial_{\lambda}$	$\sqrt{\partial^{\beta}} \tau \left(\Delta + \mathcal{K} \right)^{\chi \alpha}$	$+ \partial_{\nu} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta}$	³ + 2 ∂ _δ	$\partial_{\nu}\partial^{\alpha}\sigma$	χβδ ₊	$2 \partial_{\delta} \partial^{\delta} \partial_{\nu} \sigma^{\chi}$	αβ ==		3	

 $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\,\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$

 $3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} +$

 $2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\delta\alpha} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\delta}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\lambda}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\delta}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\lambda}\partial^{\lambda}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\lambda}\partial^{\lambda}\sigma^{\lambda\chi} + 2\ \partial_{\epsilon}$

 $3 \ \eta^{\beta\chi} \ \partial_\phi \partial^\phi \partial_\epsilon \partial^\alpha \sigma^\delta_{\ \delta}{}^\epsilon + 3 \ \eta^{\alpha\chi} \ \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\delta\beta\epsilon} + 3 \ \eta^{\beta\chi} \ \partial_\phi \partial^\phi \partial_\epsilon \partial^\epsilon \sigma^{\delta\alpha}_{\ \delta} =$

 $3\ \partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\ \partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\quad \ \, \delta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} +$ $2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\alpha\chi} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\delta}\partial^{\delta}\sigma^{\chi\alpha} + 2\ \partial_{\epsilon}\partial$

 $3 \ \eta^{\alpha\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\ \delta}{}^{\epsilon} + 3 \ \eta^{\beta\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \ \eta^{\alpha\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\ \delta}$

 $3 \; \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} _{\tau} \; (\Delta + \mathcal{K})^{\beta \chi} + 3 \; \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} _{\tau} \; (\Delta + \mathcal{K})^{\chi \beta} + 3 \; \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} _{\tau} \; (\Delta + \mathcal{K})^{\alpha \chi} + \\$

 $3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\delta}=$

 $4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} +$

 $3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\chi\alpha} + 2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi}$

 $3 \, \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \, \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \, \eta^{\alpha \beta} \, \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} =$

 $2\;\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta}+3\left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}\right)$

Total expected gauge generators:

<u>Massive</u> <u>spectrum</u>

 $2^{-}\sigma^{\parallel}^{\alpha\beta\chi} = 0$

 $2^{+}_{\bullet \tau} \|^{\alpha \beta} = 0$

 $2^+_{\bullet \sigma} \parallel^{\alpha \beta} = 0$

	Square mass:	$-\frac{\frac{r}{2}}{r} > 0$	
	Spin:	0	
	Parity:	Odd	
<u>M</u>	assless	<u>s</u> <u>sp</u>	<u>ectrum</u>
(T	here are no m	assles	s particles)

<u>Gauge</u> <u>symmetries</u>

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

r. < 0 && t. > 0

Validity assumptions

(Not yet implemented in PSALTer)