Пояснительная записка.

Промежуточная аттестация.

Тема: «Предсказание возможности поломки фрезерного станка»

Цель работы: Разработка и тестирование приложения для оценки рисков нарушения работы фрезерного станка и выявления возможности его поломки.

Автор: Билалов Радмир Рамисович

Датасет:

«AI4I 2020 Predictive Maintenance Dataset - UCI Machine Learning Repository» (DOI: 10.24432/C5HS5C)

• https://archive.ics.uci.edu/dataset/601/ai4i+2020+predictive+maintenance+dataset

GitHub:

• https://github.com/Rad2white/innopolis-predicting_machine_failure

Содержание

1. Анализ предметной области и обзор существующих решений	3
1.1. Исследование предметной области	5
1.2. Анализ результатов измерений	7
2. Проектирование системы	12
2.1. Анализ требований	12
2.2. Выбор инструментов для разработки	13
2.3. Технология основного приложения	14
2.4. Интерфейс основного приложения	15
2.5. Набор классических алгоритмов для обработки данных	18
2.6. Инструмент для построения отчетности	21
3. Заключение	22

1. Анализ предметной области и обзор существующих решений.

Оборудование является ключевым элементом в любом производственном или бизнес-процессе, и его неполадки могут иметь серьезные последствия, такие как финансовые убытки, задержки в производстве и ухудшение качества продукции или услуг. Прогнозирование отказов оборудования становится критически важным, поскольку это позволяет заранее выявлять возможные проблемы и принимать меры для их предотвращения или минимизации негативных воздействий на бизнес.

Существует несколько подходов к решению этой задачи:

- Сбор данных в реальном времени: Использование IoT-сенсоров и других устройств для непрерывного мониторинга работы оборудования. Это помогает выявить предвестия проблем и принять меры еще до того, как они достигнут критической стадии.
- <u>Применение машинного обучения</u>: Использование алгоритмов и моделей для анализа данных о работе оборудования и предсказания вероятности отказа. Это позволяет более точно оценивать риски и предпринимать меры для их снижения.
- <u>Регулярное техническое обслуживание</u>: Предотвращение отказов, связанных с неправильным обслуживанием и износом, через систематическое техническое обслуживание.
- <u>Автоматизированный мониторинг состояния оборудования</u>: Использование систем мониторинга для обнаружения отклонений в работе оборудования и предупреждения операторов о возможных проблемах.
- <u>Облачные сервисы для хранения и анализа данных</u>: Использование облачных решений для централизованного хранения и анализа данных, что обеспечивает доступность данных из различных источников и применение сложных алгоритмов анализа.
- Виртуализация: Эмуляция работы оборудования и симуляция сценариев отказа для тестирования и оптимизации систем до их внедрения в производственной среде.
- <u>Разработка протоколов восстановления</u>: Создание процедур для быстрого восстановления работы после отказа с целью минимизации времени простоя и уменьшения убытков.
- <u>Обучение персонала</u>: Подготовка персонала по эксплуатации и обслуживанию оборудования с целью снижения вероятности человеческих ошибок.
- <u>Программные решения для управления активами</u>: Использование специализированных программных продуктов для автоматизации управления активами и пассивными компонентами производственного процесса.

Интеграция существующих систем:

Интеграция систем мониторинга и прогнозирования с уже существующими ERP (Enterprise Resource Planning) и CRM (Customer Relationship Management) системами представляет собой стратегически важный шаг для обеспечения комплексного обзора бизнес-процессов и операционной деятельности предприятия.

Этот процесс предоставляет следующие преимущества:

- <u>Целостный обзор бизнес-процессов</u>: Интеграция данных о состоянии оборудования с системами ERP позволяет создать единое информационное пространство, в котором бизнес-лидеры могут анализировать и оценивать не только состояние технических средств, но и влияние их работы на ключевые бизнес-процессы.
- Оптимизация управленческих решений: Объединение данных о прогнозах отказов с информацией из CRM системы позволяет принимать управленческие решения на основе всестороннего анализа. Например, можно эффективнее планировать ресурсы, управлять запасами и оптимизировать производственные процессы.
- Улучшение клиентского опыта: Интеграция с CRM системой дает возможность отслеживать влияние состояния оборудования на обслуживание клиентов. Это позволяет предсказывать и предотвращать возможные сбои в обслуживании, что, в свою очередь, улучшает общий клиентский опыт.
- <u>Автоматизация отчетности</u>: Интеграция данных мониторинга и прогнозирования с ERP системой обеспечивает автоматическую генерацию отчетов о состоянии оборудования и его влиянии на производственные показатели. Это сокращает ручной труд по формированию отчетов и повышает точность предоставляемой информации.
- <u>Повышение эффективности и экономии</u>: Совместное использование данных из различных систем позволяет выявлять скрытые корреляции и оптимизировать процессы более эффективным образом. Это приводит к сокращению времени простоя оборудования, увеличению общей производительности и снижению затрат на техническое обслуживание.

В общем, эта интеграция обеспечивает не только лучший контроль над состоянием оборудования, но и позволяет предприятию более адаптивно реагировать на изменения внутри и вне компании, создавая более устойчивое и эффективное производственное окружение.

1.1. Исследование предметной области

Поскольку реальные наборы данных по прогнозированию технического обслуживания обычно трудно получить и особенно трудно опубликовать, нам был предоставлен синтетический набор данных, который отражает реальное прогнозирование технического обслуживания, встречающееся в промышленности.

Данный датасет содержит данные о состоянии оборудования и его техническом обслуживании, собранные в течение нескольких месяцев. Он предназначен для задачи классификации на основе машинного обучения. В нем содержатся 10000 записей, хранящихся в виде строк с 14 признаками в столбцах.

Каждая точка данных содержит следующие параметры:

- <u>UID</u> (уникальный идентификатор): Нумерация от 1 до 10000.
- <u>ID продукта</u>: Составлен из букв L, M или H, представляя низкое (50%), среднее (30%) и высокое (20%) качество продукта соответственно, а также серийный номер.
 - Тип продукта: L, М или Н.
- <u>Температура воздуха [K]</u>: Генерируется с использованием стохастических алгоритмов и нормируется на стандартное отклонение 2 K в районе 300 K.
- <u>Температура процесса [K]</u>: Генерируется с использованием стохастических алгоритмов, нормированными на стандартное отклонение 1 K, и добавляется к температуре воздуха, увеличенной на 10 K.
- <u>Скорость вращения [об/мин]</u>: Рассчитывается на основе мощности 2860 Вт с добавлением нормально распределенного шума.
- <u>Крутящий момент [Нм]</u>: Значения нормально распределены вокруг 40 Нм с стандартным отклонением 10 Нм и не имеют отрицательных значений.
- <u>Износ инструмента [мин]</u>: Значения износа для разных вариантов качества продукта (H/M/L) добавляются к времени использования инструмента в процессе работы.
- <u>Метка "Отказ станка</u>": Указывает, произошел ли отказ станка в данной точке данных и какой режим отказа активирован.

Отказ станка включает следующие режимы:

- <u>Отказ по износу инструмента (TWF</u>): Замена инструмента в случайный момент времени между 200 и 240 минутами (120 раз в наборе данных).
- Отказ теплоотвода (HDF): Сбой процесса при разнице температур ниже 8,6 K и скорости вращения ниже 1380 об/мин (115 случаев).
- Отказ по мощности (PWF): Сбой процесса, если мощность ниже 3500 Вт или выше 9000 Вт (95 случаев).

- <u>Отказ из-за перегрузки (OSF)</u>: Сбой процесса при превышении произведения износа инструмента и крутящего момента порогового значения (98 случаев).
- <u>Случайные отказы (RNF):</u> Вероятность отказа 0,1% для каждого процесса (5 случаев).

Если хотя бы один из режимов отказа активен, процесс считается неудачным, и устанавливается метка "Машинный отказ" в 1. Этот синтетический набор данных моделируется на основе существующего фрезерного станка и предоставляет информацию для прогнозирования технического обслуживания в промышленных процессах.

В нашем датасете для прогнозирования мы использовали данные без учета режимов отказа станков (9 признаков), принимая во внимание исключительно метку «Отказ станка». Однако, в исходном датасете представлена колонка «Failure Type», в которой указана категория отказа станка.

Исходный датасет представлен на рисунке 1.

	UDI	Product ID	Type	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Target	Failure Type
0	1	M14860	М	298.1	308.6	1551	42.8	0	0	No Failure
1	2	L47181	L	298.2	308.7	1408	46.3	3	0	No Failure
2	3	L47182	L	298.1	308.5	1498	49.4	5	0	No Failure
3	4	L47183	L	298.2	308.6	1433	39.5	7	0	No Failure
4	5	L47184	L	298.2	308.7	1408	40.0	9	0	No Failure

Рис.1 – Исходный датасет

1.2. Анализ результатов измерений

В процессе проведения исследования был осуществлен анализ данных с использованием различных визуализаций и статистических методов. Результаты EDA представлены в следующих таблицах и графиках:

• Описательная статистика:

Таблица, созданная с использованием функции df.describe(), предоставляет обзор основных статистических характеристик каждого признака в наборе данных. Это включает в себя среднее значение, стандартное отклонение, минимальное и максимальное значения, медиану и квартили.

	udi	type	airtemperature	process temperature	rotation alspeed rpm	torquenm	toolwearmin	target	failuretype
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.500000	1.800600	27.854930	37.855560	1538.776100	39.986910	107.951000	0.033900	1.105100
std	2886.895680	0.600230	2.000259	1.483734	179.284096	9.968934	63.654147	0.180981	0.628883
min	1.000000	1.000000	23.150000	33.550000	1168.000000	3.800000	0.000000	0.000000	1.000000
25%	2500.750000	1.000000	26.150000	36.650000	1423.000000	33.200000	53.000000	0.000000	1.000000
50%	5000.500000	2.000000	27.950000	37.950000	1503.000000	40.100000	108.000000	0.000000	1.000000
75%	7500.250000	2.000000	29.350000	38.950000	1612.000000	46.800000	162.000000	0.000000	1.000000
max	10000.000000	3.000000	32.350000	41.650000	2886.000000	76.600000	253.000000	1.000000	6.000000

Рис. 2 – Описание числовых параметров

• Диаграммы рассеяния:

Функция sns.pairplot(df) создает набор диаграмм рассеяния для всех пар признаков. Это позволяет визуально оценить зависимости между переменными и выявить возможные паттерны в данных.

Рис. 3 – Диаграмма рассеяния (парная диаграмма)

• Тепловая карта корреляции:

Тепловая карта, построенная с использованием sns.heatmap(df), визуализирует корреляцию между признаками. Это позволяет выявить потенциальные взаимосвязи между переменными и оценить степень их влияния друг на друга.

Рис. 4 – Матрица корреляции (тепловая карта)

• Матрица пропущенных значений:

Результаты функции msno.matrix(df) представлены в матрице, отображающей распределение пропущенных значений в данных. Это важный инструмент для выявления пропусков и понимания их распределения в различных признаках.

Рис. 5 – • Матрица пропущенных значений

• Распределение типов станков:

Представлены результаты анализа распределения типов станков в наборе данных. Это включает в себя график распределения и круговую диаграмму, которые позволяют легко воспринимать соотношение между различными типами станков.

Таблица 1 – Мапинг типа станка.

Тип станка	Числовой код
M	1
L	2
H	3

Рис. 6 – Распределение типов станков

• Распределение целевого параметра:

Представлены результаты анализа распределения целевого параметра, связанного с вероятностью поломки станка. Визуализации включают график распределения и круговую диаграмму, что облегчает понимание структуры целевой переменной в контексте всего датасета.

Рис. 7 – Распределение целевого параметра

Комплексный анализ результатов измерений (EDA) на основе этих инструментов обеспечивает более глубокое понимание структуры данных, идентификацию потенциальных проблемных областей и формулирование дальнейших шагов для улучшения качества и использования данных в дальнейших этапах проекта.

Визуализации распределений добавляют контекст к основному анализу и позволяют быстро выявить особенности в данных, связанные с типами станков и целевым параметром. Полученные результаты помогут принять во внимание дополнительные аспекты при разработке модели прогнозирования поломок станков. К примеру, так как целевой параметр – это выявление возможности поломки, то из распределения целевого параметра четко видно, что количество вышедших из строя станков низкое. Ввиду этого факта, для оценки модели была выбрана метрика *recall* (полнота):

$$ext{Recall} = rac{TP}{TP + FN}$$

Интуитивно метрика показывает долю найденных нарушений работы станка из всех релевантных. Чем меньше ложно отрицательных срабатываний, тем выше *recall* модели.

2. Проектирование системы

2.1. Анализ требований

1. Выбор библиотеки для веб-приложения:

Проект будет реализован с использованием Flask, легковесного и гибкого фреймворка для создания веб-приложений на языке программирования Python.

В качестве альтернативного варианта были рассмотрены библиотеки: Django, известный своей полнотой и комплексностью, и Streamlit, специализированный для создания интерактивных веб-приложений для анализа данных. Однако, данные библиотеки неактуальны для текущей задачи и датасета.

2. Стабильная работа приложения:

Важное требование - приложение должно обеспечивать стабильную работу без вызова исключений и ошибок в процессе использования.

3. Основные страницы приложения:

Необходимо реализовать, как минимум, «Главную страницу» приложения, которая предоставит пользователю доступ к основным функциям и прогнозу модели.

4. Выбор базы данных:

Использование базы данных SQLite обусловлено легкостью интеграции и минимальной настройкой.

В качестве альтернативного варианта было рассмотрено использование PostgreSQL для проектов с более сложными потребностями в хранении данных. Однако, данный вариант стал неактуален исходя из задачи и датасета.

5. Управление версиями и репозиторий:

Исходный код проекта будет размещен в репозитории на github.com, обеспечивая централизованное управление версиями и совместную работу.

6. requirements.txt и ReadMe.md:

Файл requirements.txt будет содержать перечень всех библиотек проекта и их версий, упрощая процесс установки необходимых зависимостей.

Файл ReadMe.md в корневой папке проекта предоставит пользователям подробное описание приложения, его возможностей и инструкции по использованию.

2.2. Выбор инструментов для разработки

• Язык программирования:

Для разработки веб-интерфейса и обработки данных будет использоваться язык программирования Python, который отлично подходит для работы с фреймворком Flask.

• Система контроля версий:

Git будет использоваться для отслеживания изменений в коде и обеспечения коллективной работы. Репозиторий будет размещен на платформе github.com для удобства совместной разработки.

• Среда разработки:

Visual Studio Code (VSCode) выбран в качестве среды разработки для комфортной и эффективной работы разработчиков, которая обеспечивает хороший опыт разработки и отладки.

• Текстовый редактор для файлов разметки:

Для создания и редактирования файлов разметки, таких как ReadMe.md, будет использоваться удобный текстовый редактор, например, VSCode.

2.3. Технология основного приложения

Основное приложение разрабатывается с использованием фреймворка Flask и языка программирования Python 3.11. Принято решение использовать следующие технологии и компоненты для построения и функционирования веб-интерфейса:

• Фреймворк для веб-приложения:

Flask выбран в качестве основного веб-фреймворка из-за своей простоты, гибкости и легковесности. Он предоставляет минимальный набор инструментов, позволяя разработчикам эффективно создавать веб-приложения.

• Библиотеки для машинного обучения:

XGBoost будет использован в качестве модели для прогнозирования вероятности поломки станка. Эта библиотека хорошо зарекомендовала себя в задачах классификации. Однако, в процессе разработки были рассмотрены и другие модели в качестве альтернативы. Данные модели реализованы в Jupyter Notebook.

• СУБД:

База данных SQLite выбрана для хранения данных, так как она легко интегрируется с Flask и не требует сложной конфигурации. Она подходит для небольших проектов и обеспечивает простоту использования.

Технологии были выбраны с учетом требований проекта, обеспечивая надежность, производительность и удобство разработки и использования.

Библиотеки и версии для веб-приложения:

- flask==3.0.0
- pandas==2.1.2
- joblib==1.3.2
- datetime==5.2

Используемый процессор: Intel® CoreTM i5-8250U @ 3.40GHz.

• Дополнительные библиотеки:

Дополнительные библиотеки будут использоваться для обработки данных, анализа и предобработки данных перед обучением модели. Они используются в Jupyter Notebook.

Библиотеки и версии для обучения модели:

- matplotlib==3.8.0
- seaborn==0.13.0
- category_encoders==2.6.3
- missingno==0.5.2
- sklearn==1.3.0

2.4. Интерфейс основного приложения

Веб-интерфейс реализован с помощью Flask

Рис.8 – Веб-интерфейс приложения

Интерфейс основного приложения разрабатывается с упором на интуитивную навигацию, понятность для конечного пользователя и эффективную визуализацию результатов работы модели прогнозирования поломки станка. Веб-интерфейс основного приложения включает следующие элементы:

• Главная страница:

На главной странице представлена краткая информация о приложении и его функционале. Здесь пользователь может ознакомиться с общим описанием приложения и получить краткую инструкцию по использованию.

• Поля ввода данных:

Интерфейс предоставляет функционал для ввода данных, необходимых для предсказания возможности поломки станка.

Рис.9 – Поля ввода данных

• Предсказание вероятности поломки:

Разработана страница для выполнения предсказаний модели XGBoost. После ввода данных пользователь может запросить предсказание вероятности поломки станка (нажатием на кнопку).

• Визуализация EDA:

Для наглядной демонстрации проведенного анализа данных используются графики и диаграммы. В нижней части страницы расположена визуализация ключевых признаков, а также представление общей статистики.

Рис.10 – Визуализация EDA

• Страница для просмотра результатов:

Результаты выводятся на главной странице в читаемой форме.

Краткое описание

Данное веб-приложение предназначено для прогнозирования поломки станка.

Оно предоставляет возможность для повышения надежности и эффективности промышленных установок, а также подчеркивает потенциал для дальнейших усовершенствований и применений в сфере предупреждения технических сбоев.

В левой части страницы необходимо задать параметры работы станка и нажать на кнопку "Проверить станок". В нижней части страницы расположены скриншоты диаграмм анализа данных

Результат прогноза

Станок работает в оптимальном режиме с вероятностью: 99.85%

Рис.11 – Просмотр результатов

• Простота использования:

Интерфейс приложения разрабатывается с акцентом на простоту использования, что позволяет пользователям без особых навыков в области анализа данных и машинного обучения эффективно взаимодействовать с приложением.

Интерфейс основного приложения создается с учетом принципов удобства использования, чтобы предоставить пользователям интуитивно понятный и эффективный инструмент для работы с моделью прогнозирования поломки станка.

2.5. Набор классических алгоритмов для обработки данных

В процессе анализа и выбора наилучшей модели для задачи прогнозирования поломки станка был проведен обширный анализ различных классических алгоритмов машинного обучения. Были использованы следующие модели:

• Logistic Regression:

Логистическая регрессия была использована для линейного моделирования зависимости между признаками и вероятностью поломки станка.

• Linear Discriminant Analysis (LDA):

LDA применялся для моделирования различий между классами данных и выделения наиболее значимых признаков.

• K-Nearest Neighbors (KNN):

KNN использовался для классификации данных на основе их схожести с ближайшими соседями в пространстве признаков.

• Decision Tree Classifier:

Решающее дерево было применено для построения структуры решений на основе иерархии признаков.

• Gaussian Naive Bayes (GNB):

Модель GNB использовалась для оценки вероятности поломки станка, основываясь на предположении о нормальном распределении признаков.

• Support Vector Classifier (SVC):

SVC был использован для поиска гиперплоскости, которая наилучшим образом разделяет классы данных в пространстве.

• AdaBoost Classifier:

AdaBoost применялся для адаптивного комбинирования результатов отдельных моделей с целью улучшения общей производительности.

• XGBRFClassifier и XGBClassifier:

Исследование также включало в себя две модели градиентного бустинга: XGBRFClassifier (экстремальные случайные леса) и XGBClassifier (градиентный бустинг).

Анализ проводился с использованием метода кросс-валидации (k-fold) с целью оценки производительности моделей на различных подмножествах данных.

Таблица 2. Показатели метрики recall для кросс-валидации (k-fold).

	recall (mean)	recall (std)	
LR	0.13958	-0.068483	
LDA	0.358548	-0.07898	
KNN	0.193091	-0.068317	
DTC	0.688141	-0.061996	
NB	0.204267	-0.067244	
SVC	0.005929	-0.01512	
ABC	0.428198	-0.097765	
XGBRFC	0.473423	-0.084323	
XGBC	0.693972	-0.087969	

Рис. 12 – Сравнение алгоритмов по метрике *recall*

В результате данного исследования наилучшей моделью оказался XGBClassifier, демонстрирующий наилучшую метрику recall=0.69, что подтверждает его эффективность в прогнозировании поломок станка в данном контексте. Эта модель была выбрана для интеграции в веб-интерфейс приложения для прогнозирования вероятности поломки станка. Оценка итоговой модели XGBClassifier представлена в таблице 3.

Таблица 3. Метрики итоговой модели XGBClassifier.

Accuracy	Precision	Recall	F1-Score	ROC AUC Score
0.985	0.788	0.672	0.726	0.833

Рис. 14 – Confusion-матрица для выбранной модели (XGBClassifier)

2.6. Инструмент для построения отчетности

Для информативной отчетности о состоянии станка после ввода значений признаков и нажатия кнопки "Проверить станок" был разработан эффективный механизм, направленный представление результата.

• Страница результатов:

После выполнения проверки, пользователь получает сообщение в контейнере, где представлена информация о возможности поломки станка в зависимости от введенных признаков.

• Уведомление о состоянии:

На странице результатов выводится текст, сообщающий о текущем состоянии станка. Например, "Станок подвержен поломке с вероятностью...", или "Станок работает в оптимальном режиме с вероятностью...".

• Вероятностная оценка:

Важным элементом отчетности является вероятностная оценка состояния станка. Эта информация помогает пользователям лучше понимать степень риска или безопасности текущей ситуации.

3. Заключение

Разработанный проект по прогнозированию поломки станка и созданию вебинтерфейса на его основе представляет собой важный шаг в области предупреждения технических сбоев в промышленных процессах.

• Достижения:

Успешная реализация веб-интерфейса на основе модели XGBoost позволяет оперативно оценивать вероятность поломки станка, что имеет важное значение для поддержания бесперебойной работы оборудования.

• Технологические решения:

Выбор библиотеки Flask для создания веб-интерфейса обеспечивает легкость в разработке и интеграции с моделью прогнозирования.

• Надежность и безопасность:

Приложение разработано с учетом стабильности и безопасности. Оно не вызывает исключений и ошибок при работе, что обеспечивает надежную функциональность.

• Дальнейшие перспективы:

Данный проект может служить основой для дальнейших исследований и улучшений. Возможные направления включают в себя расширение функционала, оптимизацию работы с базой данных, а также улучшение пользовательского интерфейса.

• Вклад в индустрию:

Проект вносит свой вклад в область промышленной безопасности и эффективности производственных процессов, обеспечивая оперативное предсказание возможных сбоев и снижая риски простоев оборудования.

Заключение подчеркивает важность разработанного приложения для повышения надежности и эффективности промышленных установок, а также подчеркивает потенциал для дальнейших усовершенствований и применений в сфере предупреждения технических сбоев.