Gruppentheorie: kurze Wiederholung

Themen

Gruppen, Untergruppen

Gruppenordnung

Äquivalenzrelationen

Satz von Lagrange

Homomorphismen

Faktorgruppen

Isomorphiesätze

Chinesischer Restsatz

Zyklische Gruppen

Direkte und semidirekte Produkte

Symmetrische Gruppe

Sylowsätze

Einige wichtige Konzepte

Gruppenaxiome

Sei G eine Menge und $\cdot: G \times G \to G$; $(x,y) \mapsto x \cdot y = xy$ eine Abbildung. Wir betrachten folgende Axiome:

- (a) Assoziativität: $\forall x, y, z \in G$: (xy)z = x(yz).
- (b) Neutrales Element: $\exists ! e \in G \forall x \in M : ex = x = xe$.
- (c) Inverses Element: $\forall x \in G \exists ! x' \in G : xx' = e = x'x$. Wir setzen $x^{-1} := x'$.
- (d) Kommutativität: $\forall x, y \in G$: xy = yx.

 (G, \cdot) heißt Gruppe, falls (a), (b), (c) gelten, abelsche Gruppe, falls zusätzlich (d) gilt.

Untergruppen

Eine Teilmenge H einer Gruppe (G, \cdot) heißt Untergruppe, falls sie selbst wieder eine Gruppe ist. Dies ist der Fall, wenn zusätzlich gilt

- (a) $e \in H$
- (b) $\forall x, y \in H \text{ ist } xy \in H$
- (c) $\forall x \in H : x^{-1} \in H$.

Sie $X \subset G$.

$$\langle X \rangle = \{ y \in G \mid \exists n \in \mathbb{N}_0, x_1, \dots, x_n \in X \cup X^{-1} : y = x_1 \cdots x_n \}$$

ist die von X erzeugte Untergruppe von G.

Ist
$$X = \{x\}$$
, so ist

$$\langle x \rangle = \langle \{x\} \rangle = \{x^a \mid a \in \mathbb{Z}\}\$$

abelsche Untergruppe (zyklische Gruppe).

Ordnung

Die Zahl $|G| \in \mathbb{N}_0 \cup \{\infty\}$ heißt Ordnung der Gruppe G.

Für $x \in G$ gilt $\operatorname{ord}(x) = |\langle x \rangle| \in \mathbb{N}_0 \cup \infty$.

Sei p eine Primzahl. Eine endliche Gruppe heißt p-Gruppe, falls es $n \in \mathbb{N}$ gibt mit $|G| = p^n$.

Hat $x \in G$ endliche Ordnung, so sind äquivalent:

- (a) $n = \operatorname{ord}(x) = |\langle x \rangle|$,
- (b) $\langle x \rangle = \{e, x, \dots, x^{n-1}\}$ und $x_i \neq x_j$ für $i \neq j$,
- (c) $\forall z \in \mathbb{Z} : x^z = e \Leftrightarrow n|z$,
- (d) $n = \min\{k \in \mathbb{N} \mid x^k = e\}.$

Äquivalenzrelationen

Sei X eine Menge. Eine Relation \sim auf X heißt Äquivalenzrelation falls

- (a) $\forall x \in X : x \sim x$ (Reflexivität)
- (b) $\forall x, y \in X : x \sim y \Leftrightarrow y \sim x$ (Symmetrie)
- (c) $\forall x, y, z \in X : x \sim y, y \sim z \Rightarrow x \sim z$ (Transitivität)

Für $x \in X$ heißt $\overline{x} = \{y \in X \mid x \sim y\}$ die Äquivalenzklasse von x.

Satz von Lagrange

Sei G eine Gruppe, $H \subset G$ eine Untergruppe. Betrachte die Äquivalenzrelation auf G:

$$x \sim y \Leftrightarrow \exists h \in H : xh = y \Leftrightarrow x^{-1}y \in H \Leftrightarrow y^{-1}x \in H.$$

 $\overline{x} = xH$ ist die Linksnebenklasse von H in G repräsentiert durch x. Die Menge aller Linksnebenklassen von H in G ist G/H. (Genauso für rechts statt links.)

Die Zahl $[G:H]=|G/H|=|H\backslash G|\in\mathbb{N}\cup\{\infty\}$ heißt Index von H in G.

Satz. Sei G endliche Gruppe, $H \subset G$ Untergruppe. Dann gilt

$$|G| = [G:H] \cdot |H|.$$

Insbesondere sind [G:H] und |H| Teiler von |G|.

Gruppenoperationen

Sei X eine Menge $\neq \emptyset$, G eine Gruppe. Eine Abbildung

$$G \times X \to X, (q, x) \mapsto q \cdot x = qx$$

heißt (Links)Operation von G auf X, falls

- (a) für alle $x \in X$ gilt ex = x;
- (b) für alle $x \in X$ und $g_1, g_2 \in G$ gilt $g_2(g_1x) = (g_1g_2)x$.

Die Operation heißt transitiv, falls es für alle $x, y \in X$ ein $g \in G$ gibt mit y = gx.

Die Bahn von $x \in X$ ist $\overline{x} = Gx = \{gx \mid g \in G\} \subset X$.

Der Stabilisator von $x \in X$ ist $G_x = \operatorname{Stab}_G(x) = \{g \in G \mid gx = x\} \subset G$, eine Untergruppe von G.

Die Fixpunkte von G sind $X^G = \{x \in X \mid gx = x \forall g \in G\} \subset X$.

Bahnengleichung

Sei X endliche Menge, G endliche Gruppe, $G \times X \to X$, $(g,x) \mapsto gx$ eine Operation.

- (a) Für alle $x \in X$ gilt $|Gx| = [G: G_x]$.
- (b) Ist $T \subset X$ eine Transversale der Bahnen dann ist die Vereinigung $X = \bigcup_{x \in T} Gx$ disjunkt.
- (c) Es gilt

$$|X| = \sum_{x \in T} [G : G_x].$$

Ist X_0 die Menge der Fixpunkte, dann gilt

$$|X| = |X_0| + \sum_{x \in T \setminus X_0} [G : G_x].$$

Konjugation

Sei G eine Gruppe. $x,y\in G$ sind zueinander konjugiert $\Leftrightarrow \exists u\in G: uxu^{-1}=y$. Die Konjugationsklasse (Äquivalenzklasse) von $x\in G$ ist

$$C_x = \{uxu^{-1} : u \in G\} \subseteq G.$$

Der Zentralisator (Stabilisatoruntergruppe) von $x \in G$ ist

$$C_G(x) = \{u \in G : uxu^{-1} = x\} = \{u \in G : ux = xu\} \subseteq G.$$

Das Zentum einer Gruppe ist

$$Z(G) = \{ x \in G : ux = xu \forall u \in G \}.$$

Ist C_x die Konjugationsklasse von x, dann gilt

$$|C_x| = [G : C_G(x)].$$

Klassengleichung: Sei S eine Transversale der Konjugationsklassen in $G \setminus Z(G)$, dann gilt

$$|G| = |Z(G)| + \sum_{s \in S} [G : C_G(s)].$$

Homomorphismus

Seien G und G' Gruppen. Eine Abbildung $f:G\to G'$ heißt Homomorphismus, falls für alle $x,y\in G$: f(xy)=f(x)f(y). Dann gilt f(e)=e' und $f(x^{-1})=f(x)^{-1}$.

- Isomorphismus: f ist bijektiv $\Leftrightarrow f$ hat ein inverses $f' = f^{-1}: G' \to G$
- Endomorphismus : $\Leftrightarrow G = G'$
- Automorphismus : $\Leftrightarrow f$ ist bijektiv und G = G'
- f ist injektiv $\Leftrightarrow \ker(f) = e$
- f ist surjektive $\Leftrightarrow \operatorname{im}(f) = G'$
- Sind $H \subset G$ und $H' \subset G'$ Untergruppen, dann sind $f(H) \subset G'$ und $f^{-1}(H') \subset G$ Untergruppen. Insbesondere sind $\ker(f) \subset G$ und $\operatorname{im}(f) \subset G'$ Untergruppen.

Normalteiler

Sei G Gruppe. Eine Untergruppe $N \subset G$ heißt Normalteiler, wenn für alle $x \in G$ $xNx^{-1} = N$, geschrieben $N \triangleleft G$

- Ist $f: G \to G'$ Homomorphismus, dann ist $\ker(f) \triangleleft G$.
- Ist $N' \triangleleft G'$, dann ist $f^{-1}(N') \triangleleft G$.
- Ist f surjektiv und $N \triangleleft G$, dann ist $f(N) \triangleleft G'$.
- Ist $N \triangleleft G$, so ist G/N eine Gruppe (Faktorgruppe von G modulo N. Kanonische Abbildung $\pi: G \to G/N$ mit $\ker(\pi) = N$.

Isomorphiesätze

Sei $f: G \to G'$ Gruppenhomomorphismus.

Homomorphiesatz: Es gibt genau einen injektiven Homomorphismus $f': G/Ker(f) \to G'$ mit $f = f' \circ \pi$ wobei π der kanonische Homomorphismus ist, das heißt, das Diagramm

kommutiert. Insbesondere ist

$$f': G/\ker(f) \to \operatorname{im}(f), x \ker(f) \mapsto f(x)$$

Isomorphismus.

1. Isomorphiesatz: Sei $H \subset G$ Untergruppe und $N \triangleleft G$ Normalteiler. Dann ist HN = NH Untergruppe von $G, N \triangleleft HN$. $H \cap N \triangleleft H$, und die Abbildung

$$H/H \cap N \to HN/N, hH \cap N \mapsto hN$$

ist Isomorphismus.

2. Isomorphiesatz: Seien $M \triangleleft G$, $N \triangleleft G$ Normalteiler mit $M \subset N$. Dann sind $M \triangleleft N$, $N/M \triangleleft G/M$ Normalteiler, und die Abbildung

$$G/N \to (G/M)/(N/M), xN \mapsto (xM)(N/M)$$

ist Isomorphismus.

Zyklische und einfache Gruppen

Sei G Gruppe. G ist genau dann zyklisch, wenn es $n \in \mathbb{N}_0$ gibt, mit $G \cong \mathbb{Z} / \mathbb{Z} n$. Ist G zyklisch, dann sind auchdie Unter- und Faktorgruppen von G zyklisch.

G heißt einfach, wenn $G \neq \{e\}$ und G außer G und $\{e\}$ keine Normalteiler enthält.

Direktes Produkt

Seien G_1, \ldots, G_r Gruppen. Das kartesische Produkt $G := \prod_{i=1}^r G_i$ mit komponentenweiser Multiplikation heißt auch direktes Produkt der G_i .

Sei G eine Gruppe und H_1, \ldots, H_r Untergruppen. G ist direktes Produkt der H_i , wenn

$$f: \prod_{i=1}^r H_i \to G, (x_1, \dots, x_r) \mapsto x_1 \cdots x_r$$

ein Isomorphismus ist.

Dann sind H_1, \ldots, H_r sind Normalteiler mit

$$G = H_1 \cdots H_r$$
 und $H_i \cap (H_{i+1} \dots H_r) = \{e\}$

für $1 \leqslant i \leqslant r$.

Man schreibt

$$G = H_1 \times \cdots \times H_r = \times_{i=1}^r H_i$$
.

oder falls G abelsch ist

$$G = H_1 \oplus \cdots \oplus H_r = \bigoplus_{i=1}^r H_i.$$

Hauptsatz für endliche abelsche Gruppen

Sei A endliche abelsche Gruppe, $|A| = n = p_1^{\nu_1} \cdots p_r^{\nu_r}, r \in \mathbb{N}_0$, Primzahlen $p_1 < \cdots < p_r$, und $\nu_i \in \mathbb{N}$. Dann gibt es $b_{ij} \in A$, $1 \le i \le r$, $1 \le j \le s_i$, und natürliche Zahlen $k_{i1} \ge \ldots \ge k_{is_i} \ge 1$ mit

$$A = \bigoplus_{i=1}^r \bigoplus_{j=1}^{s_i} \mathbb{Z} \, b_{ij} \quad \text{und } \operatorname{ord}(b_{ij}) = p_i^{k_{ij}} \text{ für } 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s_i.$$

Diese Zerlegung ist eindeutig.

Semidirektes Produkt

Seien G_1, G_2 Gruppen und $\tau: G_2 \to \operatorname{Aut}(G_1)$ ein Homomorphismus. Die Menge $G_1 \times G_2$ ist Grupper

- Multiplikation: $(x,y)(x',y') = (x\tau(y)(x'),yy')$
- Neutrales Element: (e, e)
- Inverses: $(x,y)^{-1} = (\tau(y^{-1})(x^{-1}), y^{-1})$

Sie heißt äußeres Semidirektes Produkt $G_1 \times_{\tau} G_2$.

Sei G eine Gruppe, $N \triangleleft G$, $H \subseteq G$ Untergruppe mit G = NH = HN und $N \cap H = \{e\}$, sei $H \to \operatorname{Aut}(N)$ definiert durch $\kappa(y)(x) = yxy^{-1}$ für $x \in N$, $y \in H$. Dann ist

$$f: N \times_{\kappa} H \to G, (x, y) \mapsto xy$$

ein Isomorphismus.

G heißt inneres semidirektes Produkt von N und H.

Symmetrische Gruppen

Zykel: $\sigma = (a_1 \dots a_k) \in \mathfrak{S}_n =$ Zykel der Länge $k: a_1, \dots, a_k \in \{1, \dots, n\}$ paarweise verschieden mit

$$\sigma(a_i) = a_{i+1} \quad \text{für } 1 \leqslant i < k,$$

$$\sigma(a_k) = a_1,$$

$$\sigma(x) = x \quad \text{für } x \in \{1, \dots, n\} \setminus \{a_1, \dots, a_k\}$$

Zweizykel heißen Transpositionen.

Jedes Element $\sigma \in \mathfrak{S}_n$ ist Produkt von endlich vielen disjunkten Zykeln $\sigma = \sigma_1 \cdots \sigma_r$.

Es gilt $\operatorname{ord}(\sigma) = \operatorname{kgV}(\operatorname{ord}(\sigma_i))$.

Typ einer Permutation: Sei $\sigma = \sigma_1 \cdots \sigma_r$ Zerlegung in paarweise disjunkte Zyklen, $k_i = \operatorname{ord}(\sigma_i)$, $k_1 \ge \cdots \ge k_r$. Dann heißt (k_1, \ldots, k_r) Typ von σ .

Zwei Permutationen sind genau dann konjugiert, wenn sie denselben Typ haben.

Signum einer Permutation:

$$\varepsilon: \mathfrak{S}_n \to \{-1,1\}, \varepsilon(\sigma) = \prod_{1 \leq i < j \leq n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Ist $\sigma = \tau_1 \cdots \tau_n$ Produkt von Transpositionen, dann gilt

$$\varepsilon(\sigma) = (-1)^n$$
.

Ist $\sigma = \sigma_1 \cdots \sigma_r$ Produkt von disjunkten Zyklen, $\operatorname{ord}(\sigma_i) = k_i$, dann gilt

$$\varepsilon(\sigma) = (-1)^{\sum (k_i - 1)}.$$

 σ heißt gerade (bzw. ungerade) falls $\varepsilon(\sigma) = 1$ (bzw. $\varepsilon(\sigma) = -1$).

Alternierende Gruppe: Man setzt

$$A_n = \ker \varepsilon$$
.

Dies ist die Menge der geraden Permutationen und der einzige Normalteiler vom Index 2 von \mathfrak{S}_n . Es gilt

$$\mathfrak{S}_n/A_n \cong \{-1,1\}$$
$$|A_n| = \frac{n!}{2}.$$

 \mathfrak{S}_n ist semidirektes Produkt von A_n und jeder von einer Transposition erzeugten Untergruppe. Wir wissen $A_2 = \{id\}, A_3 = \langle (123)\rangle, A_4$ ist nicht einfach, A_3 schon. Für $n \ge 5$ ist A_n einfach.

Sylow-Sätze

Normalisator: Sei $H \subset G$ Untergruppe einer endlichen Gruppe:

$$N_G(H) = \{ x \in G \mid xHx^{-1} = H \}$$

heißt Normalisator von H in G. $N_G(H)$ ist die größte Untergruppe von G, in der H als Normalteiler enthalten ist.

p-Sylowuntergruppe: Seien G eine endliche Gruppe, p eine Primzahl, $|G| = p^a m$ mit $a \in \mathbb{N}_0$, $m \in \mathbb{N}$ und $p \nmid m$. Eine Untergruppe der Ordnung p^a von G heißt p-Sylowuntergruppe.

Satz 0.1 (Sylow). Sei G eine endliche Gruppe, p Primzahl, $|G| = p^a m = n$ mit $p \nmid m$.

- (a) G enthält mindestens eine p-Sylowuntergruppe, und jede p-Untergruppe ist in einer solchen enthalten.
- (b) Je zwei p-Sylowuntergruppen sind zueinander konjugiert.
- $(c) \ \ Sei \ s_p \ \ die \ Anzahl \ der \ p\text{-Sylowgruppen}, \ sei \ P \ \ eine \ p\text{-Sylowgruppe}. \ Dann \ gilt$

$$s_p = [G: N_G(P)]$$
 , $s_p | m$ and $s_p \equiv 1 \mod p$.

Sei G eine endliche Gruppe, p Primzahl; dann sind folgende Aussagen äquivalent:

- (a) G ist p-Gruppe.
- (b) Für alle $x \in G$ ist ord(x) p-Potenz.

Die Sylowsätze haben viele wichtige Anwendungen!

Nilpotente Gruppen

Kommutator: Für $x, y \in G$ heißt $[x, y] = xyx^{-1}y^{-1}$ Kommutator von x und y. Es gilt

$$[x,y] = e \Leftrightarrow xy = yx.$$

Für Untergruppen $H,K\subset G$ ist [H,K] die Kommutatoruntergruppe. [G,G] ist die Kommutatoruntergruppe von G.

Absteigende Zentralreihe:

$$C^{1}(G) = G$$

 $C^{i+1}(G) = [C^{i}(G), G]$

- $-C^i(G) \triangleleft G, i \geqslant 1,$
- $G = C^1(G) \supset C^2(G) \supset \dots$
- Da $C^i(G)/C^{i+1}(G) \subset Z(G/C^{i+1}(G))$ ist, ist $C^i(G)/C^{i+1}(G)$ abelsch.
- Die Folge $(C^i(G))_{i>1}$ heißt absteigende Zentralreihe von G.

Nilpotente Gruppen: Éine endliche Gruppe heißt nilpotent, falls folgende äquivalente Bedingungen erfüllt sind:

- (a) Es gibt $n \in \mathbb{N}$ mit $C^n(G) = \{e\}$.
- (b) Es gibt eine Folge von Untergruppen $G = H_1 \supset H_2 \supset \ldots \supset H_m = \{e\}$ mit $[H_i, G] \subset H_{i+1}$, $1 \le i \le m-1$. (Dann gilt $H_i \triangleleft G$.)
- p-Gruppen sind nilpotent.
- Untergruppen, Faktorgruppen und endliche direkte Produkte endlicher nilpotenter Gruppen sind nilpotent.
- Ist G endlich, $H \subset Z(G)$ eine Untergruppe und ist G/H nilpotent, dann ist G nilpotent.

Auflösbare Gruppen

Abgeleitete Reihe:

$$\begin{array}{rcl} D^0(G) & = & G \\ D^1(G) & = & [G,G] \\ D^{n+1}(G) & = & D^1(D^n(G)) = [D^n(G),D^n(G)] & \text{für } n\geqslant 1 \end{array}$$

- $-D^n(G) \triangleleft G, n \geqslant 0$
- $-G = D^0(G) \supset D^1(G) \supset D^2(G) \supset \dots$
- Die Faktorgruppe $D^n(G)/D^{n+1}(G)$ ist abelsch aber im Allgemeinen nicht zentrale Untergruppe von $G/D^{n+1}(G)$, $n \ge 0$.
- Die Folge $\left(D^i(G)\right)_{i\geqslant 1}$ heißt abgeleitete Reihe von G.

Auflösbare Gruppen: Eine Gruppe G heißt auflösbar, wenn folgende äquivalente Bedingungen erfüllt sind:

- (a) Es gibt $n \in \mathbb{N}_0$ mit $D^n(G) = \{e\}$.
- (b) Es gibt eine Folge von Normalteilern $G = H_0 \supset H_1 \supset \ldots \supset H_m = \{e\}, m \geqslant 0$, so daß H_i/H_{i+1} abelsch ist für $0 \leqslant i < m$.
- (c) Es gibt eine Folge von Untergruppen $G = H_0 \supset H_1 \supset \ldots \supset H_m = \{e\}, m \geqslant 0$, so daß $H_{i+1} \triangleleft H_i$ und H_i/H_{i+1} abelsch ist für $0 \leqslant i < m$. (Normalreihe mit abelschen Faktoren)
- Ist G auflösbar, so auch jede Untergruppe und jedes epimorphe Bild von G.
- Ist $N \triangleleft G$, so daß N und G/N auflösbar sind, dann ist G auflösbar.
- Endliche direkte Produkte auflösbarer Gruppen sind auflösbar.

Beispiele

Beispiele für Gruppen:

(a) Sei K ein Körper, dann ist (K, +) abelsche Gruppe, (K, \cdot) abelsches Monoid und $(K \setminus \{0\}, \cdot)$ abelsche Gruppe.

- (b) $(\mathbb{Z},+)$ abelsche Gruppe, (\mathbb{Z},\cdot) abelsches Monoid, $(\mathbb{Z}\setminus\{0\},\cdot)$ abelsches Monoid, $(\{1,-1\},\cdot)$ abelsche Gruppe.
- (c) Sei $\mathcal{X} \neq \emptyset$ eine Menge. Die Menge $\mathfrak{S}_{\mathcal{X}}$ aller Bijektionen von \mathcal{X} nach \mathcal{X} ist bezüglich der Komposition eine Gruppe, die symmetrische Gruppe von \mathcal{X} . Ist $\mathcal{X} = \{1, \dots, n\}$, dann setzt man $\mathfrak{S}_n := \mathfrak{S}_{\mathcal{X}}$. Es gilt $|\mathfrak{S}_n| = n!$. \mathfrak{S}_n ist nur für n = 1, 2 abelsch. Die Elemnte der \mathfrak{S}_n werden in der Gestalt $\sigma = \begin{pmatrix} 1 \dots n \\ \sigma(1) \dots \sigma(n) \end{pmatrix}$ geschrieben.
- (d) Ist (M,\cdot) Monoid, dann ist $M^{\times} = \{x \in M \mid \exists x' \in M : xx' = e = x'\}$ eine Gruppe; sie heißt Einheitengruppe von (M,\cdot) . Speziell $(\mathbb{Z},\cdot)^{\times} = \{1,-1\}$.
- (e) Sind G_1, \ldots, G_n Gruppen (Monoide), dann ist das kartesische Produkt $G_1 \times \cdots \times G_n$ mit komponentenweiser Multiplikation eine Gruppe (ein Monoid) $(x_1, \ldots, x_n) \cdot (y_1, \ldots, y_n) = (x_1 y_1, \ldots, x_n y_n)$.
- (f) Weitere Beispiele: $GL_n(K)$, $SL_n(K)$, O_n , SO_n , U_n , SU_n ,...
- (g) Abelsche Gruppen bis auf Isomorphie:

$$\begin{array}{llll} n=4 & & \mathbb{Z}/\mathbb{Z}\,2\times\mathbb{Z}/\mathbb{Z}\,2 &, & \mathbb{Z}/\mathbb{Z}\,4 \\ n=6 & & \mathbb{Z}/\mathbb{Z}\,2\times\mathbb{Z}/\mathbb{Z}\,3\cong\mathbb{Z}/\mathbb{Z}\,6 \\ n=8 & & \mathbb{Z}/\mathbb{Z}\,2\times\mathbb{Z}/\mathbb{Z}\,2\times\mathbb{Z}/\mathbb{Z}\,2 &, & \mathbb{Z}/\mathbb{Z}\,4\times\mathbb{Z}/\mathbb{Z}\,2 &, & \mathbb{Z}/\mathbb{Z}\,8 \\ n=12 & & \mathbb{Z}/\mathbb{Z}\,2\times\mathbb{Z}/\mathbb{Z}\,2\times\mathbb{Z}/\mathbb{Z}\,3\cong\mathbb{Z}/\mathbb{Z}\,2\times\mathbb{Z}/\mathbb{Z}\,6 &, & \mathbb{Z}/\mathbb{Z}\,4\times\mathbb{Z}/\mathbb{Z}\,3\cong\mathbb{Z}/\mathbb{Z}\,12 \\ \end{array}$$

Beispiele für endlich erzeugte Gruppen:

(a) Die symmetrische Gruppe

$$G = \mathfrak{S}_3 = \left\{ e, a = \begin{pmatrix} 123 \\ 231 \end{pmatrix}, a^2 = \begin{pmatrix} 123 \\ 312 \end{pmatrix}, b = \begin{pmatrix} 123 \\ 132 \end{pmatrix}, c = \begin{pmatrix} 123 \\ 321 \end{pmatrix}, d = \begin{pmatrix} 123 \\ 213 \end{pmatrix} \right\}$$

mit den Relationen $a^3 = e$, $a^{-1} = a^2$, $b^2 = c^2 = d^2 = e$, $b^{-1} = b$, $c^{-1} = c$, $d^{-1} = d$, ab = d, $a^2b = c$.

$$\langle a \rangle = \langle a^2 \rangle = \{e, a, a^2\}$$
$$\langle b \rangle = \{e, b\}$$
$$\langle c \rangle = \{e, c\}$$
$$\langle d \rangle = \{e, d\}$$

ergibt

Also: $G = \{e, a, a^2, b, ab, a^2b\}$. Kommutatorrelation: $ba = c = a^2b$.

(b) Sei
$$n \ge 2$$
, $a = \begin{pmatrix} \cos \frac{2\pi}{n} & -\sin \frac{2\pi}{n} \\ \sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{pmatrix}$, $b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in \mathbf{O}_2 . Es gilt
$$a^n = e$$
$$a^i = a^j \quad \text{für } 0 \le i < jn$$
$$b^2 = e$$

Relation: $ba = a^{n-1}b$ Untergruppen:

$$\langle a \rangle = \{e, a, \dots a^{n-1}\}$$
 also $\operatorname{ord}(a) = n$
 $\langle b \rangle = \{e, b\}$ also $\operatorname{ord}(b) = 2$
 $D_n = \{e, a, a^2, \dots, a^{n-1}, b, a^2b, \dots, a^{n-1}b\}$ ist Gruppe der Ordnung $2n$

Jede zu D_n isomorphe Gruppe heißt Diedergruppe der Ordnung 2n. Für n=2

$$D_2 = \{e, a, b, ab\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \cos \pi & -\sin \pi \\ \sin \pi & \cos \pi \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} \cos \pi & \sin \pi \\ \sin \pi & -\cos \pi \end{pmatrix} \right\}$$

ist abelsche Gruppe der Ordnung 4. Jede dazu isomorphe Gruppe heißt Kleinsche Vierergruppe. Für n=3:

$$D_3 \cong S_3$$
.

(c) Sei
$$a = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
, $b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ in \mathbf{U}_2 . Dann
$$a^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$a^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e$$
$$a^3 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = a^{-1}$$
$$b^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = a^2$$
$$b^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e$$
$$b^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = b^{-1}$$

Relationen: $b^2 = a^2$, $ba = a^3b$

$$Q = \langle a, b \rangle = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$

hat Ordnung 8 und heißt Quaternionengruppe.

(d) Jede Untergruppe von $(\mathbb{Z}, +)$ ist von der Gestalt $\mathbb{Z} n$ mit eindeutigem $n \in \mathbb{N}_0$.

Beispiele für Gruppenoperationen

(a) Sei $X \neq \emptyset$ eine Menge, $G \subset \mathfrak{S}_X$ eine Untergruppe. Dann ist

$$G \times X \to X, (\sigma, x) \mapsto \sigma(x)$$

eine Operation.

Speziell $X = \{1, 2, 3\}$, $G = S_3$. Dann ist G.1 = G.2 = G.3 = X, also ist die Operation transitiv. Sie ist fixpunktfrei.

$$G_{1} = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

$$G_{2} = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

$$G_{3} = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$$

(b)
$$X = \mathbb{R}^2$$
, $G = \mathbf{SO}_2 = \left\{ \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \mid 0 \leqslant \varphi < 2\pi \right\}$. Dann ist $\mathbf{SO}_2 \times \mathbb{R}^2 \to \mathbb{R}^2$, $(A, x) \mapsto Ax$

eine Operation mit $G_0 = G$, $G_x = e$ für $x \neq 0$.

Beispiel Konjugation

$$\mathfrak{S}_3 = \{e, a, a^2, b, ab, a^2b\} \text{ mit } a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \text{ und } b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, ba = a^2b.$$

Konjugationsklassen:

$$C_e = \{e\}$$

$$C_a = \{a, a^2\}$$
 denn $bab = a^2$; das sind die Elemente der Ordnung 3

$$C_b = \{b, ab, a^2b\}$$
 denn $a^{-1}ba = ab, a^{-2}ba^2 = ba = a^2n$, dies sind die Elemente der Ordnung 2

Zentralisatoren: Diese sind Untergruppen von \mathfrak{S}_3 , haben also Ordnung 1, 2, 3 oder 6.

$$C_{\mathfrak{S}_3}(e) = \mathfrak{S}_3$$

$$C_{\mathfrak{S}_3}(a) = \{e, a, a^2\}$$
 nicht-triviale echte Untergruppe, denn a vertauscht mit sich selbst, aber nicht mit $b = C_{\mathfrak{S}_3}(a^2)$

 $C_{\mathfrak{S}_2}(b) = \{e, b\}$ nicht-triviale echte Untergruppe, denn b vertauscht mit sich selbst, aber nicht mit a

 $C_{\mathfrak{S}_3}(ab) = \{e, ab\}$ nicht-triviale echte Untergruppe, denn ab vertauscht mit sich selbst, aber nicht mit a

 $C_{\mathfrak{S}_3}(a^b) = \{e, a, a^2\}$ nicht-triviale echte Untergruppe, denn a^2b vertauscht mit sich selbst, aber nicht mit a

Zentrum: $Z(G) = \{e\}$.

Beispiele für Normalteilter

- (a) Ist G abelsch, dann sind alle Untergruppen von G Normalteiler.
- (b) Die Normalteiler von \mathfrak{S}_3 sind $\{e\}$, S_3 , $\left\langle \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \right\rangle$.
- (c) Ist $H \subset G$ Untergruppe vom Index 2, dann ist $H \triangleleft G$: Für $x \in G \backslash H$ gilt $G = H \cup xH = H \cup Hx$ disjunkt, also xH = Hx, für $x \in H$ gilt xH = H = Hx.
- (d) Die einfachen abelschen Gruppen sind bis auf Isomorphie genau die $\mathbb{Z}/\mathbb{Z}p$, p prim.

Konstruktion äußerer semidirekter Produkte

Sei $m, n \in \mathbb{N} \setminus \{1\}, r \in \mathbb{Z} \text{ mit } r^m \equiv 1 \mod n, \text{ dh. } \operatorname{ord}_n(r) \mid m. \text{ Dann ist}$

$$\rho: \mathbb{Z} / \mathbb{Z} n \to \mathbb{Z} / \mathbb{Z} n, \overline{z} \mapsto \overline{rz}$$

Homomorphismus mit $\rho^m = \mathrm{id}_{\mathbb{Z}/\mathbb{Z}n}$. Also ist $\rho \in \mathrm{Aut}(\mathbb{Z}/\mathbb{Z}n)$ und $\mathrm{ord}(\rho)|m$. Die Abbildung

$$\tau: \mathbb{Z} / \mathbb{Z} m \to \operatorname{Aut}(\mathbb{Z} / \mathbb{Z} n), \overline{y} \mapsto \rho^y$$

ist Gruppenhomomorphismus, explizit

$$\tau(\overline{y})(\overline{x}) = \rho^y(\overline{x}) = \overline{r}^y \overline{x}$$

für $\overline{y} \in \mathbb{Z} / \mathbb{Z} m$, $\overline{x} \in \mathbb{Z} / \mathbb{Z} n$. Sei

$$G = \mathbb{Z} / \mathbb{Z} n \times_{\tau} \mathbb{Z} / \mathbb{Z} m.$$

In G gilt

$$(\overline{x}, \overline{y})(\overline{x}', \overline{y}') = (\overline{x} + \overline{r}^y \overline{x}', \overline{y} + \overline{y}'),$$

neutrales Element ist (0,0), Inverses ist $(\overline{x},\overline{y})^{-1}=(-\overline{r}^{-y}\overline{x},-\overline{y})$. Seien $a=(\overline{1},\overline{0}),\ b=(\overline{0},\overline{1}),\ dann$ ist $\operatorname{ord}(a)=n$ und $\operatorname{ord}(b)=m$, ferner $bab^{-1}=a^r$ (äquivalent dazu: $ba=a^rb$). Es folgt $G=\{a^ib^j\mid 0\leqslant i\leqslant n-1,0\leqslant j\leqslant m-1\}$. Außerdem $\langle a\rangle \triangleleft G,\ G=\langle a\rangle \langle b\rangle =\langle b\rangle \langle a\rangle,\ \langle a\rangle \cap \langle b\rangle =\{e\}.\ G$ ist genau dann abelsch, wenn $r\equiv 1\mod n$, dh. wenn τ trivial ist. Spezialfall: $1\neq n\in \mathbb{N},\ m=2$ und r=-1. Dann ist

$$\mathbb{Z}/\mathbb{Z} \, n \times_{\tau} \mathbb{Z}/\mathbb{Z} \, 2 = \{e, a, \dots, a^{n-1}, b, ab, \dots, a^{n-1}b\} \, \operatorname{mit} \, \operatorname{ord}(a) = n, \operatorname{ord}(b) = 2, ba = a^{n-1}b$$

die bereits bekannte Diedergruppe der Ordnung 2n.

Beispiele: Symmetrische Gruppe

- (a) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 2 & 1 & 6 \end{pmatrix} = (13425) \in \mathfrak{S}_6$ (b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 4 & 7 & 9 & 3 & 8 & 6 & 5 & 10 \end{pmatrix} = (12)(34786)(59)$
- (c) Sei p prim, $\sigma = (a_1 \dots a_p)$ ein p-Zykel. Dann sind auch $\sigma^2, \dots, \sigma^{p-1}$ p-Zyklen, denn diese Elemente haben alle Ordnung p. Dagegen: für $\sigma = (1234)$ ist $\sigma^2 = (13)(24)$.
- (d) Es gilt $|\mathfrak{S}_3| = 6$, $|A_3| = 3$. Man macht sich leicht klar, daß

$$\mathfrak{S}_3 = \{ id, (123), (132), (12), (13), (23) \}$$

 $A_3 = \{ id, (123), (132) \} \triangleleft \mathfrak{S}_3$

Als nächstes betrechten wir die Gruppe \mathfrak{S}_4 . Analog zu oben gilt $|\mathfrak{S}_4| = 24$, $|A_4| = 12$. Es ist nun bereits weit aufwendiger, die Gruppen auszurechenen:

$$\mathfrak{S}_4 = \{ \mathrm{id}, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432) \}$$

$$A_4 \quad = \quad \{\mathrm{id}, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)\} \\ \triangleleft \, \mathfrak{S}_4$$

 $V = \{\operatorname{id}, (12)(34), (13)(24), (14)(23)\} \triangleleft A_4 \triangleleft \mathfrak{S}_4 \quad \text{ die Klein'sche Vierergruppe}$

Also ist A_4 semidirektes Produkt aus V und den Untergruppen der Ordnung 3.

Beispiele: Sylow-Sätze

- (a) $G = \mathfrak{S}_3$. 2-Sylowuntergruppen: $\langle (12) \rangle$, $\langle (13) \rangle$, $\langle (23) \rangle$. 3-Sylowuntergruppe: $\langle (123) \rangle$.
- (b) Die Sylowuntergruppen einer endlichen abelschen Gruppe sind genau die p-Komponenten.
- (c) Eine Gruppe der Ordnung 6 ist isomorph zu $\mathbb{Z}/6\mathbb{Z}$ oder zu $D_3 \cong \mathfrak{S}_3$.
- (d) Die Sylowuntergruppen von \mathfrak{S}_4 :
 - (i) p=2: \mathfrak{S}_4 enthält eine Diedergruppe der Ordnung 8, diese ist 2-Sylowuntergruppe. Also sind die 2-Sylowuntergruppen von \mathfrak{S}_4 genau die Diedergruppen der Ordnung 8, die in \mathfrak{S}_4 enthalten sind. Für deren Anzahl s_2 gilt, $s_2|3$ und $s_2 \equiv 1 \mod 2$. Also $s_2 \in \{1,3\}$. Da \mathfrak{S}_4 mehr als 8 Elemente enthält, deren Ordnung 2-Potenz ist, folgt $s_2 = 3$.

V ist in jeder 2-Sylowuntergruppe enthalten, offenbar ist dann $V = O_s(\mathfrak{S}_4)$.

- (ii) p=3: Die 3-Sylowuntergruppen von \mathfrak{S}_4 sind genau die Untergruppen der Ordnung 3. Für deren Anzahl gilt $s_3 = 4$.
- (e) Die Sylowuntergruppen von A_4 :
 - (i) p = 2: V.
 - (ii) p = 3: Wie in \mathfrak{S}_4 .

Beispiele: nilpotente und auflösbare Gruppen

- (a) Endliche abelsche Gruppen sind nilpotent.
- (b) \mathfrak{S}_3 ist nicht nilpotent.
- (c) Allgemein gilt: D_n ist genau dann nilpotent, wenn n Potenz von 2 ist.
- (d) Abelsche Gruppen, endliche p-Gruppen und endliche nilpotente Gruppen sind auflösbar.
- (e) \mathfrak{S}_3 und \mathfrak{S}_4 sind auflösbar mit den Normalreihen mit abelschen Faktoren

$$\mathfrak{S}_3 \supset A_3 \supset \{e\}$$
 und $\mathfrak{S}_4 \supset A_4 \supset V \supset \{e\}$

aber nicht nilpotent.

- (f) D_n , $n \ge 2$, ist auflösbar, denn jede solche Gruppe hat einen zyklischen Normalteiler vom Index 2.
- (g) Endliche, einfache nicht-abelsche Gruppen sind nicht auflösbar. Insbesondere sind die Gruppen A_n für $n \geqslant 5$ nicht auflösbar. Damit sind auch die \mathfrak{S}_n für $n \geqslant 5$ nicht auflösbar.
- (h) Sind $p \neq q$ Primzahlen, $a, b \in \mathbb{N}$. Dann ist jede Gruppe der Ordnung $p^a q^b$ auflösbar (Burnside).
- (i) Jede Gruppe ungerader Ordnung ist auflösbar (Feit, Thompson).