Открытая олимпиада по программированию Весенний тур 2017 31 мая 2017

A. Azats rounding

Автор: Баев А.Ж.

Достаточно, заметить, что в двоичной системе счисления рациональными будут только числа вида $\frac{1}{2^k}$. Ответ: k, если $n=2^k$, в противном случае ответ равен (-1).

Асимптотика: $O(\log n)$.

B. Billiards

Автор: Баев А.Ж.

Отразим исходный прямоугольник $w \times h$ симметрично относительно каждой из сторон. Полученные прямоугольники снова отразим зеркально относительной каждой из сторон. Таким образом замостим всю плоскость. Все точки, в которые попадают образы левого нижнего угла исходного прямоугольника, образуют сетку с шагом (2w, 2h). Первое попадание в одну из данных точек прямой $(x, y) \cdot t$ при t > 0 и соответствует возврату шара в исходный угол:

$$\begin{cases} 2wn = xt \\ 2hm = yt \end{cases}$$

Чтобы найти минимальные подходящие n и m, поделим данные уравнения:

$$\frac{m}{n} = \frac{xh}{yw}$$

Пусть d=(xh,yw) — наибольший общий делитель (можно найти алгоритмом Евклида). Тогда $n=\frac{xh}{d}$, $m=\frac{yw}{d}$. А ответ равен 2n-1 и 2m-1.

Асимптотика: $O(\log(\max(xh, yw)))$.

C. Circles

Автор: Баев А.Ж.

Для каждого x можно легко определить максимальное значение $y_1(x)$ такое, что точка $(x,y_1(x))$ попадает во внутренность (или на границу) первого круга (в случае, если $|x-x_1|>r_1$, то таких точек нет вообще и будем считать $y_1(x)=-1$). Это можно сделать не прибегая к вещественной арифметике, с помощью бинарного поиска $y_1(x)$ по ответу от 0 до r_1+1 с условием, что $y_1(x)^2+(x-x_1)^2\leqslant r^2$. Аналогично находим $y_2(x)$ и находим $y(x)=\min(y_1(x),y_2(x))$. В случае, если y(x)<0, то подходящих точек с абсциссой x нет. Иначе их в точности 2y(x)+1. Таким образом, перебирая все x от $\max(x_1-r_1,x_2-r_2)$ до $\min(x_1+r_1,x_2+r_2)$ мы найдем ответ.

Асимптотика: $O(r \log r)$.

Замечание: перебор за $O(r^2)$ превышает ограничения по времени.

D. Diners

Автор: Баев А.Ж.

Запустим обход в глубину из вершины 1, расставляя у каждой вершины расстояние от корня. Дополнительно найдем d — максимальную глубину. Далее запустим еще один обход в глубину, при котором для каждой вершины v проверяем, можно ли от нее дойти вглубь до максимальной глубины d или нет. Если дойти можно, а сама вершина находится на глубине [d/2], то эта вершина попадает в ответ.

Асимптотика: O(n).

E. Examination aura

Автор: Абдикалыков А.К.

Отсортируем все числа по возрастанию: $b_1 \leqslant b_2 \leqslant ... \leqslant b_n$.

Решение 1. Для каждой пары последовательных вершин b_i и b_{i+1} проверяем, хватает ли времени k_i , чтобы увеличить все элементы с b_1 по b_i до уровня b_{i+1} . То есть суммарно увеличить на $(b_{i+1}-b_i)i\leqslant k_i$, где k_i — количество часов, оставшихся перед просмотром i-го элемента. Если i=n или остается время, чтобы дополнить все элементы до уровня a_{i+1} , то уменьшаем оставшееся время: $k_{i+1}=k_i-(a_{i+1}-a_i)i$. В противном случае выводим ответ $a_i+[k_i/i]$.

Асимптотика: $O(n \ log n)$.

Решение 2. Фиксируем a — минимальный уровень, до которого увеличиваем все элементы $b_i < a$. Проверяем, хватит ли времени k для соответствующих элементов: $\sum_{i=0}^{n} \max(a-b_i,0) \leqslant k$. Для нахождения максимального подходящего уровня используем бинарный поиск по ответу от 0 до $\max b_i$,

Асимптотика: $O(n(\log n + \log a))$.

F. Fibonaccissimo

Автор: Баев А.Ж.

Числа Фибоначчи с большим индексом можно найти в результате возведения в степень матрицы:

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$

Причем сделать это можно бинарным возведением в степень:

$$A = \begin{cases} \left(A^{n/2}\right)^2, \text{ если n} — четное положительное,} \\ A \cdot \left(A^{n/2}\right)^2, \text{ если n} — нечетное,} \\ E, n = 0 \end{cases}$$

Проблема заключается в том, что само F_n не помещается стандартный тип. Докажем, что при возведении в степень матрицы Фибоначчи по модулю 10^9+9 можно использовать аналог малой теоремы Ферма, что позволит значительно упростить нахождение ответа.

Несложно убедиться, что существует такой элемент x, что $x^2 \equiv 5 \mod (10^9 + 9)$. Значит, существуют элементы $\sqrt{5}$, $\lambda_1 = \frac{1+\sqrt{5}}{2}$ и $\lambda_2 = \frac{1-\sqrt{5}}{2}$ по модулю $10^9 + 9$. По аналогии с полем вещественных чисел матрицу можно привести к диагональному виду следующим образом:

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 1 \\ -\lambda_2 & -\lambda_1 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} \lambda_1 & 1 \\ -\lambda_2 & -1 \end{pmatrix} = G\Lambda G^{-1}$$

Тогда ясно, что возведение в степень сводится к возведению в степень диагональной матрицы:

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^k = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 1 \\ -\lambda_2 & -\lambda_1 \end{pmatrix} \begin{pmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{pmatrix} \begin{pmatrix} \lambda_1 & 1 \\ -\lambda_2 & -1 \end{pmatrix} = G\Lambda^k G^{-1}$$

А для диагональных элементов матрицы применима малая теорема Φ ерма $\lambda^{p-1} \equiv 1 \mod p$. Значит, малая теорема Φ ерма применима при возведении в степень данной матрицы по данному модулю.

Теперь можно быстро возводить в степень:

$$A^k \equiv A^{k \bmod (p-1)} \bmod p.$$

Во-первых, с помощью матричного возведения находим $k = F_n \mod (p-1)$. Во-вторых, находим $F_{F_n} = F_k \mod p$.

Асимптотика: $\log n$.

Замечание: малая теорема Ферма по модулю p для целочисленных матриц выполняется в том случае, если все собственные значения матрицы существуют по модулю p.

G. Good round numbers

A втор: A б ∂ икалыков A .K .

Ответом на задачу является значение D(b)-D(a-1), где D(m) — количество подходящих чисел среди чисел от 1 до m. Чтобы найти числа с круглостью c достаточно перебрать числа вида n(n+c) (это можно сделать за $O(\sqrt{m})$). При этом не забыть отбросить те из них, которые имеют другое разложение $n_1(n_1+c_1)$, где $c_1 < c$. Несложно убедиться, что все числа вида n^2 , n(n+1) и n(n+2) имеют круглость 0, 1 и 2 соответственно. У чисел вида n(n+3) имеется единственное исключение: $4=1\cdot(1+3)=2\cdot 2$, которое имеет круглость 0. У чисел вида n(n+4) имеется тоже единственное исключение: $12=2\cdot 6=3\cdot 4$, которое имеет круглость 1.

Асимптотика: $O(\sqrt{B})$.

Замечание: при более существенных ограничениях на C асимптотика будет равна $O(C\sqrt{B})$.

H. Hit a ball

Автор: Абдикалыков А.К.

Во всех других задачах можно было найти явные намеки на круги, сферы и шары. В самой задаче можно было посчитать количество слов между запятыми: $3\ 1\ 4\ 1\ 5\ 9$... Название задачи состояло из слов $3,\ 1$ и 4 буквами. Ответ: соответствующая цифра числа π .

Асимптотика: O(1).

I. Incalculable result

Автор: Нуразханов Ч.

Промоделируем процесс для первых $\max(a_i+2,2k)$ игр (учитывая условия можно было промоделировать 1001 шаг). Игра будет некорректной в двух случаях: либо выигрыш серии наступил до последней неожиданной игры a_n ; либо после последней неожиданной игры разница a_n , разница в счете начинает повторятся (то 0, то 1).

Асимптотика: $O(\max a_i)$.