딥러닝 다중 네트워크를 이용한 졸음 운전감지 및 안전벨트 착용 여부 확인

류세열⁰, 유재천*

⁰성균관대학교 전자전기컴퓨터공학과,

*성균관대학교 전자전기컴퓨터공학과

e-mail: fbtpduf94@g.skku.ac.kr^o, yoojc@skku.ac.kr^{*}

Drowsy driving and seat belt detection using multiple deep learning networks

SeYeol Rhyou^o, JaeChern Yoo*

^oCollege of Information & Communication Engineering, SungKyunKwan University,

*College of Information & Communication Engineering, SungKyunKwan University

● 요 약 ●

다양한 원인으로 매년 수많은 시람이 교통사고로 목숨을 잃거나 크게 다치곤 한다. 최근 교통사고 통계자료에 따르면 졸음운전으로 인한 교통사고가 음주운전이나, 과속보다도 높은 비중을 차지하고 있었다. 또한, 사고가 났을 때 안전벨트를 매지 않은 운전자나 동승객은 부상 정도가 훨씬 심각한 것으로 알려져 전 좌석에 안전벨트를 꼭 착용해야 하는 법도 제정되었다. 그런데도 많은 운전자 및 동승자가 안전벨트를 착용하지 않아 크게 부상을 당하는 사고는 줄지 않고 있다. 이러한 사고와 부상을 줄이기 위하여 본 논문에서는 다중 네트워크를 이용하여 운전자의 졸음 감지 및 운전자, 동승자의 안전벨트 착용 여부까지 실시간으로 판별하는 시스템을 설계하고 구현한다.

키워드: 졸음운전(drowsy driving), 안전벨트(seat belt), 딥러닝(deep learning)

I Introduction

매년 수많은 사람이 교통시고로 사망하거나 중상을 입는다. 교통사고가 발생하게 되면 신체적인 외상은 물론 정신적으로도 큰 트라우마가 남게 된다. 도로교통공단의 통계자료에 따르면 최근 3년간 발생한교통사고 건수는 2017년에 216,335건, 2018년에 217,148건, 2019년에는 229,600건으로 매해 증가하고 있다. 최근 교통시고 통계자료에 따르면 졸음운전이 상당 부분을 차지하고 있었고[1] 사망률이가장 높은 사고 유형이 졸음운전임을 알 수 있었다[2-3].

또한, 교통사고 시 안전벨트 착용 여부에 따라 사망률과 부상 정도에서도 큰 차이를 보였다. 최근 법적으로 승용차, 택시, 버스 등 모든 차량의 좌석에서 안전벨트를 착용하는 것을 의무화하였다. 하지만 TV 방송 프로그램에서조차도 제대로 지켜지지 않는 장면들이 종종 방송되어 논란이 되곤 하였다.

본 논문에서는 차량 내부에 카메라를 부착하여 졸음운전을 판별하고 모든 좌석의 승객들의 안전벨트 착용 여부를 확인하여 경고음을 울린다.

II. Preliminaries

2.1 졸음운전 감지 시스템

졸음운전을 방지하기 위해서 많은 기술이 연구되고 있다.

kim et al.[4]은 얼굴을 인식하고 CNN 모델을 사용하여 졸음 감지 시스템을 구현하였다. 결괏값은 Non-sleepy, Sleepy, Yawning 으로 세 가지의 classes로 나누어졌다. 하지만 얼굴만 인식하여 CNN 에 넣어주는 경우, 선천적으로 눈이 작은 사람의 경우 제대로 인식하지 못하는 결과가 생기고 눈 이외의 것들이 방해 요소로 작용하게 된다.

Lee et al.[5]는 딥러닝 알고리즘을 이용하여 뇌파 분석으로 졸음 운전 감지 시스템을 구현하였다. 결괏값으로는 wake, blink, close 세 가지의 classes로 나누어 감지하다. 이러한 경우 정확한 결과를 기대할 순 있겠지만 운전을 할 때마다 머리에 뇌파 전극을 부착하고 있어야 하는 번거로움이 동반되었다.

한국컴퓨터정보학회 동계학술대회 논문집 제29권 제1호 (2021, 1)

III. The Proposed Scheme

3.1 졸음운전

본 논문에서는 총 두 가지의 상황을 고려하였다. 운전자가 졸음이 오면 눈이 풀려 깜빡이거나, 고개를 꾸벅거란다[6]. 졸음운전을 판별하기 위해 dlib에서 제공해주는 68 landmark 라이브러리를 이용하여 눈의 위치를 추출하였다.

Fig. 1. 눈 부위 추출

그림 1과 같이 왼쪽 눈의 경우 36~41, 오른쪽 눈은 42~47로 표시되고 bounding box의 x 좌표는 36과 45를 기반으로, y 좌표는 37, 38, 43, 44중 40, 41, 46, 47중 가장 큰 값을 기반으로 생성하였다.

3.1.1 눈이 풀려 깜빡이는 상황

68 landmark 라이브러리로 추출된 눈을 training data로 사용하여 졸음이 와 눈꺼풀이 풀린 눈과 그렇지 않은 졸리지 않은 눈 두 가지 class로 나누어 학습을 진행하였다. 학습에는 convolution neural network (CNN)[7]을 사용하였고, pre-trained network인 inception v3[8]로 transfer learning 하였다.

Fig. 2. dataset (a) 졸린 눈, (b) 졸리지 않은 눈

영상에서 추출된 bounding box의 이미지를 초 단위로 CNN에 넣어주어 운전자가 졸고 있는지 확인한다.

3.1.2 고개를 꾸벅거리는 상황

고개를 꾸벅거리고 있음을 감지하기 위해서는 여러 가지 방법이 있겠지만 본 논문에서는 눈 부위 추출을 위한 bounding box를 이용하였다. 졸고 있지 않다면 눈의 위치가 일정하게 유지되겠지만 졸고 있다면 bounding box의 위치가 계속해서 흔들리게 됨을 감지하였다.

3.2 안전벨트 착용 여부

안전벨트 착용 여부를 판단하기 위해서는 semantic segmentation 과 CNN, 두 가지 네트워크를 사용하여 판별하였다. Semantic segmentation에는 pre-trained network인 resnet 기반의 deeplab v3+[9]를 transfer learning 하였고, CNN에는 inception v3로

transfer learning 하였다.

Seatbelt

Fig. 3. 라벨 된 이미지

그림 3과 같이 안전벨트 부분을 labeling 하여 semantic segmentation에 학습용 이미지로 사용할 데이터를 만들었다.

Fig. 4. (a) 훈련 이미지, (b) semantic segmentation 결과, (c) 변환된 이미지

그 후, 그림 4(c)와 같이 이미지를 안전벨트 부분은 빨간색으로, 그 외의 부분은 모두 검은색으로 변환하였다. 이 과정으로 얻어진 이미지를 학습용 데이터로 사용하였다. 데이터는 총 400장의 사진으로 구성되어있으며 안전벨트 착용 사진이 200장, 미착용 사진이 200장이다. 또한, 데이터의 60%는 training set, 20%는 validation set, 20%는 test set으로 사용되었으며 정확도는 97.50%를 보였다.

Fig. 5. (a) 원본 영상, (b) 졸음 감지 결과, (c) 안전벨트 착용 여부 확인 결과

한국컴퓨터정보학회 동계학술대회 논문집 제29권 제1호 (2021, 1)

그림 5와 같이 검은 옷을 입고 있어도 이주 높은 정확도를 얻을 수 있었다.

IV. Conclusions

매해 많은 운전자가 졸음운전으로 큰 사고를 겪고, 큰 사고 중에서도 안전벨트 미착용으로 인한 2차 피해가 따르고 있다. 현재 연구 중인 졸음운전 감지 시스템은 많지만, 개개인의 외적인 부분에 따라 정확도 가 다를 수 있고, 운전하며 뇌파측정을 하는 것은 번거로운 일이 아닐 수 없듯 다양한 문제점이 발견되고 있다.

본 논문에서는 눈 부위만 추출하여 답라닝 기법인 CNN을 활용하여 졸음운전 여부를 판단하며, 사고 시 큰 피해를 막이주는 안전벨트의 착용 여부까지 semantic segmentation과 CNN을 활용하여 확인한다. 또한, 웹캠 하나만 부착하면 모든 기능을 사용할 수 있어 경제적인 측면에서도 우수하다.

REFERENCES

- [1] Joo, Young-Hoon, Kim, Jin-Kyu and Ra In-Ho, "Intelligent Drowsiness Drive Warning System", Journal of the Korean Institute of Intelligent Systems, Vol. 18, No. 11, pp. 223-229, Nov. 2008.
- [2] Choi, Jin-Mo, Song Hyok, Park Sang-Hyun and Lee Chul-Dong, "Implementation of Driver Fatigue Monitoring System", The Journal of Korean Institute of Communications and Information Sciences, Vol. 37, No. 8, pp. 711-720, Aug. 2012.
- [3] Sunghee Kim, Junseok Kim and Seokyoon Hong, "Drowsy driving prevention system using deep learning with camera sensor", The Korean Institute of Information Scientists and Engineers, July. 2018.
- [4] Sung-Min Kim, Woo-Jin Kim, Su-Hyun Park, Shin Kim and Kyoung-Ro Yoon, "Real-time Drowsy Driver Detection(DDD) Systembased on Deep Learning", Korean Institute of Information Technology, Vol., No., pp. 429-431, Dec. 2012
- [5] SeungGi Lee, YongSu Kwon, Jisoo Park, Seongjin Yun and Won-Tae Kim, "A Sleep-driving Accident Prevention System based on EEG analysis using Deep-learning Algorithm", Journal of The Institute of Electronics and Information Engineers, Vol. 55, No. 3, Mar. 2018.
- [6] Meeyeon Oh, Yoosoo Jeong and Kil-Houm Park, "Driver Drowsiness Detection Algorithm based on Facial Features", Journal of Korea Multimedia Society, Vol. 19, No. 11, pp.1852-1861, Nov. 2016.

- [7] Saad Albawi, Tareq Abed Mohammed and Saad Al-Zawi, "Understanding of a convolutional neural network", International Conference on Engineering and Technology, Mar. 2018.
- [8] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff and Hartwig Adam, "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation", arXiv:1802.02611, Aug. 2018.
- [9] Liang-Chieh Chen, George Papandreou, Florian Schroff and Hartwig Adam, "Rethinking Atrous Convolution for Semantic Image Segmentation", arXiv:1706.05587, Dec. 2017.