

| Team Sustainobots!

Gabriel Montague

Ananya Agarwal

Ria Sonalker

Christina Kayastha

Michael Pocress

SustainoBot

(Honorary Member)

Sustainable Agriculture is key

29%
GREENHOUSE GAS EMISSIONS

COMES FROM AGRICULTURE

37%

OF EARTH'S TERRESTRIAL SURFACE IS OCCUPIED BY AGRICULTURE 70%

FRESHWATER WITHDRAWAL IS FOR AGRICULTURAL USE

33%

OF THE WORLD'S SOIL IS DEGRADED DUE TO INTENSIVE AGRICULTURE

■ The Market (2030)

Problem Statement

How can we identify the best crop options for GALY?

GALY is a climate tech company dedicated to developing novel cellular agriculture products. Recognizing the potential of its platform through its work with cotton, GALY has expanded its foundational technology to other crops in industries such as food and beverages, among many other possibilities.

Solution

Introducing GROW

GALY Resource Optimization Wizard

GROW leverages AI to identify crops for cellular agriculture and makes it easy for GALY researchers to find the optimal crop options

- Identified key metric categories and divided them up into sub categories
- ML Models built for each subcategory
- Category level score aggregated based on the data predictions
- Served through our Django Backend API
- Displayed to the researcher by our frontend

- Identified key metric categories and divided them up into sub categories
- ML Models built for each subcategory
- Category level score aggregated based on the data predictions
- Served through our Django Backend API
- Displayed to the researcher by our frontend

Backend - Score estimation for Regulatory attribute

We employed a combination of randomization and GPT-based ranking to analyze a list of crops based on regulatory complexity.

We created randomized batches of crops, ranking them through GPT-4 based API calls, and further refining the rankings using a PageRank algorithm with added random noise to ensure unbiased final scores.

- Identified key metric categories and divided them up into sub categories
- ML Models built for each subcategory
- Category level score aggregated based on the data predictions
- Served through our Django Backend API
- Displayed to the researcher by our frontend

Backend - Django

We used Django to create a backend interface to store our researched short list of crops, desired metrics, submetrics and categories, and outputs of web scraping across a list of publications.

We use keywords pertinent to the crop, metrics and submetrics to extract research papers from these publications.

- Identified key metric categories and divided them up into sub categories
- ML Models built for each subcategory
- Category level score aggregated based on the data predictions
- Served through our Django Backend API
- Displayed to the researcher by our frontend

Frontend - Mock Prototype

We made a quick mockup of our tool using an Al tool Claude to iterate on what the interface could look like for the analysis tool.

We then built out the tool as a webapp using React.

Frontend - GALY Crop Options Analyzer

Features of the Front End

User Friendly

The user can adjust the importance of each metric in determining the overall score

Research Backed

Analysis based on research availability on the distinguished science journals online

Use of Keywords

Web scraping depends on keywords that best describe the metrics and sub-metrics

Ranking

The user can see the top five ranked crops based on our analysis and their assigned weightage to each metric

Next Steps

Q3 - Feasibility •Build more ML models Deploy ML and build complete API in backend Attach data to Frontend

The future looks bright for GROW

Q1 - Desirability •Run usability tests with Galy •Interview Researcher

Q2 - Viability

 Cost Assessment of scaling up the platform Market Research

I Team: Sustainobots

Thank You

for doing good for the planet.

