EJEMPLO 5.1.3 Conjunto que no es un espacio vectorial

Nota

Verificar los diez axiomas puede ser laborioso. En adelante se verificarán únicamente aquellos axiomas que no son obvios.

Sea $V = \{1\}$. Es decir, V consiste únicamente del número 1. Éste no es un espacio vectorial ya que viola el axioma i) —el axioma de cerradura—. Para verlo con más claridad, basta con observar que $1 + 1 = 2 \notin V$. También viola otros axiomas; sin embargo, con sólo demostrar que viola al menos uno de los diez axiomas queda probado que V no es un espacio vectorial.

El conjunto de puntos en \mathbb{R}^2 que se encuentran en una recta que pasa por el origen constituye un espacio vectorial

Sea $V = \{(x, y): y = mx, \text{ donde } m \text{ es un número real fijo y } x \text{ es un número real arbitrario}\}.$

Es decir, V consiste en todos los puntos que están sobre la recta y = mx que pasa por el origen y tiene pendiente m. Para demostrar que V es un espacio vectorial se puede verificar que se cumple cada uno de los axiomas. Observe que los vectores en \mathbb{R}^2 se han escrito como renglones en lugar de columnas, lo que en esencia es lo mismo.

i) Suponga que $\mathbf{x} = (x_1, y_1)$ y $\mathbf{y} = (x_2, y_2)$ están en V. Entonces $y_1 = mx_1, y_2 = mx_2, y_3$

$$\mathbf{x} + \mathbf{y} = (x_1, y_1) + (x_2, y_2) = (x_1, mx_1) + (x_2, mx_2) = (x_1 + x_2, mx_1 + mx_2)$$
$$= (x_1 + x_2, m(x_1 + x_2)) \in V$$

Por lo tanto se cumple el axioma i).

ii) Suponga que $(x, y) \in V$. Entonces y = mx y -(x, y) = -(x, mx) = (-x, m(-x)), de manera que -(x, y) también pertenece a V y (x, mx) + (-x, m(-x)) = (x - x, m(x - x)) = (0, 0).

Todo vector en Ves un vector en \mathbb{R}^2 , y \mathbb{R}^2 es un espacio vectorial, como se muestra en el ejemplo 5.1.1. Como $(0, 0) = \mathbf{0}$ está en V (explique por qué), todas las demás propiedades se deducen del ejemplo 5.1.1. Entonces V es un espacio vectorial.

El conjunto de puntos en \mathbb{R}^2 que se encuentran sobre una recta que no pasa por el origen no constituye un espacio vectorial

Sea $V = \{(x, y): y = 2x + 1, x \in \mathbb{R}\}$. Es decir, V es el conjunto de puntos que están sobre la recta y = 2x + 1. V no es un espacio vectorial porque no se cumple la cerradura bajo la suma, como sucede en el ejemplo 5.1.3. Para ver esto, suponga que (x_1, y_1) y (x_2, y_2) están en V. Entonces,

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

Si el vector del lado derecho estuviera en V, se tendría

$$y_1 + y_2 = 2(x_1 + x_2) + 1 = 2x_1 + 2x_2 + 1$$

Pero $y_1 = 2x_1 + 1$ y $y_2 = 2x_2 + 1$, de manera que

$$y_1 + y_2 = (2x_1 + 1) + (2x_2 + 1) = 2x_1 + 2x_2 + 2$$

Por lo tanto, se concluye que

$$(x_1 + x_2, y_1 + y_2) \notin V \text{ si } (x_1, y_1) \in V \text{ y } (x_2, y_2) \in V$$

Por ejemplo, (0, 1) y (3, 7) están en V, pero (0, 1) + (3, 7) = (3, 8) no está en V porque $8 \neq 2 \cdot 3 + 1$. Una forma más sencilla de comprobar que V no es un espacio vectorial es observar que $\mathbf{0} = (0, 0)$ no