Hope Artificial Intelligence

Assignment-Regression Algorithm

Dataset: Insurance_pre

1. <u>Identifying Problem statement</u>

For the given dataset and the client's requirement the following stages are followed.

Stage 1: Domain selection

Machine Learning

Stage 2 : Selecting the Learning algorithm

Supervised Learning algorithm

Stage3: The type of supervised learning

Regression Learning method

2. Information about the dataset:

The given dataset has 6 columns. In that

Input column's are: age, sex, bmi, children, smoker yes [5 columns]

Output column: charges [1 column]

3. Data preprocessing columns:

In the given dataset 2 string columns are: sex and smoker yes

These are converted into **nominal data**

- 4. Developing the model using the following algorithms:
 - Multiple Linear Regression method
 - Support Vector Machine Regression method
 - Decision Tree Regression method
 - Random Forest Regression method

Among developing these models the best final model with a better R-Score Value is using a Support Vector Machine Regression method using hyper-tuning parameter C=10000 and kernel='rbf'. R²-score =0.87799

5. Research Values:

Dataset = insurance_pre

Method 1: Multiple Linear Regression

R²-SCORE VALUE= 0.78947

Method 2: Support Vector Machine Regression

Using Hypertuning Parameter

S.no	Hypertuning	Kernel=linear	Kernel=rbf	Kernel=poly	Kernel=sigmoid
	Parameter	R-value	R-value	R- value	R-value
1	Default C=1.0	-0.0101	-0.08338	-0.07569	-0.07542
2	C=10	0.46246	-0.03227	0.038716	0.039307
3	C=100	0.62887	0.32003	0.617956	0.52761
4	C=1000	0.76493	0.8102	0.85664	0.28747
5	C=10000	0.74142	0.87799	0.85917	-34.1515
6	C=100000	0.741418	0.87249	0.85778	-3465.953

Best R2-Score Value = Kernel='rbf' , C=10000, R 2 -Value = 0.87799

Method 3: Decision Tree Regression

S.No	criterion	splitter	max_features	R_Score value
1.	squared_error	best	None	0.68415
2.		random	None	0.66479
3.		Best	Sqrt	0.69676

4.		Random	sqrt	0.624433
5.		best	Log2	0.63420
6.		Random	Log2	0.77535
7.	friedman_mse	Best	None	0.68751
8.		Random	None	0.68961
9.		Best	Sqrt	0.66582
10.		Random	sqrt	0.65176
11.		Best	Log2	0.72305
12.		Random	Log2	0.67170
13.	absolute_error	Best	None	0.69266
14.		Random	None	0.71183
15.		Best	Sqrt	0.6827
16.		Random	Sqrt	0.60791
17.		Best	Log2	0.75664
18.		Random	Log2	0.66556
19.	poisson	Best	None	0.72404
20.		Random	None	0.66327
21.		Best	Sqrt	0.72776
22.		Random	Sqrt	0.64671
23.		Best	Log2	0.57555
24.		Random	Log2	0.75316

Best Method for Decision Tree Regressor – criterion = squared_error, splitter= random, max- features = log2

 R^2 -Value = 0.77535

Method-4: Random Forest Regressor

S.No	n_estimators	criterion	max_features	R-Value
1	100	squared_error	None or 1.0	0.855493
	100	squarea_error	None of 1.0	
2	50			0.8545
3	10			0.83615
4	100		sqrt	0.8697
5	50			0.8668
6	10		_	0.8481
7	100		Log2	0.8695
8	50			0.86591
9	10			0.8583
10	100	absolute_error	None / 1.0	0.85779
11	50			0.85001
12	10			0.83403
13	100		Sqrt	0.87233
14	50			0.8666
15	10			0.8582
16	100		Log2	0.8705
17	50			0.867483
18	10			0.85544

19	100	friedman_mse	None / 1.0	0.854966
19	100		None / 1.0	
20	50			0.84954
21	10			0.84530
22	100	_	Sqrt	0.87055
23	50			0.86587
24	10			0.86005
25	100	_	Log2	0.86969
26	50			0.86985
27	10			0.85598
28	100	Poisson	None / 1.0	0.85398
29	50			0.85036
30	10			0.84006
31	100	_	Sqrt	0.870639
32	50			0.8675
33	10		-	0.84676
34	100	_	Log2	0.86933
35	50			0.86431
36	10			0.850343

Best Method for Random Forest Regressor is n_estimators=100, criterion='absolute_error', max_features=log2. R²_Value= 0.87233

- 6. Final best model for this given dataset and as per the clients requirement to find the charges for the customers is using
 - Support Vector Machine Regression method (C=10000 and kernel='rbf'). In this model we get a R²-score=0.87799

Or

 Random Forest Regressor (n_estimators=100, criterion='absolute_error', max_features=log₂). R²_Value= 0.87233