MSE 2034 - Gift 3 **Equation Sheet**

$$\overline{M_n} = \sum x_i M_i = \frac{\sum n_i M_i}{\sum n_i}$$

$$P_{M} = P_{M_{o}} \exp \left\{ -\frac{Q_{p}}{R T} \right\}$$

$$\overline{M_w} = \sum w_i M_i = \frac{\sum n_i M_i^2}{\sum n_i M_i}$$

$$\sigma(t) = \sigma(0) \exp\left(-\frac{t}{\tau}\right)$$

$$DP_n = \frac{\overline{M_n}}{m}$$

$$E_c(u) = E_m V_m + E_p V_p$$

% crystallinity =
$$\frac{\rho_c(\rho_s-\rho_a)}{\rho_s(\rho_c-\rho_a)}X100$$

$$\rho = \frac{n\,A}{V_c\,N_A} \qquad \text{ sum of atomic weight of oil outsins}$$

$$l_c = \frac{E_mE_p}{E_pV_m+E_mV_p}$$

$$l_c = \frac{\sigma_f^*d}{2\tau_c}$$

$$E_c(l) = \frac{E_m E_p}{E_p V_m + E_m V_p}$$

$$\rho = \frac{n A}{V_c N_A}$$

$$d_c = \frac{\sigma_f^* d}{2\tau_c}$$

$$E_r(t) = \frac{\sigma(t)}{\varepsilon_o}$$
 Scalaration modulus

$$E_{cl} = E_m V_m + E_f V_f$$

$$L = Nd \sin\left(\frac{\theta}{2}\right)$$

$$\frac{F_F}{F_m} = \frac{E_f V_f}{E_m V_m}$$

$$r = d\sqrt{N}$$

$$E = \frac{F}{\delta} \cdot \frac{L^3}{4bd^3} = \frac{F}{\delta} \cdot \frac{L^3}{12\pi R^4}$$

$$E = E_o(1 - 1.9P + 0.9P^2)$$

$$\eta = \frac{L - 2\chi}{L}$$

$$\frac{1}{E_{ct}} = \frac{V_m}{E_m} + \frac{V_f}{E_f}$$

$$E_{ct} = \frac{E_m E_f}{E_m V_f + E_f V_m}$$

$$\sigma_{cl}^* = \sigma_m'(1 - V_f) + \sigma_f^* V_f$$

$$\sigma_{cd}^* = \sigma_f^* V_f \left(1 - \frac{l_c}{2l}\right) + \sigma_m' (1 - V_f)$$

$$\sigma_{cd'}^* = \frac{l\tau_c}{d}V_f + \sigma_m'(1 - V_f)$$

$$E_{cd} = E_m V_m + K E_f V_f$$

$$TS = TS_{\infty} - \frac{A}{\overline{M_n}}$$

$$\sigma_{fs} = \frac{3F_fL}{2bd^2} = \frac{F_fL}{\pi R^3}$$
 Macsimment of flexural strongth

long audinal modulus

Composite Data

Properties of Unreinforced (pure) and Reinforced Polycarbonates with Randomly Oriented E-Glass Fiber

		Fiber Reinforcement (vol%)		
Property	Unreinforced	20	30	40
Specific gravity	1.19-1.22	1.35	1.43	1.52
Tensile strength [MPa]	59–62	110	131	159
Modulus of elasticity [GPa]	2.24-2.345	5.93	8.62	11.6
Elongation (%)	90–115	4–6	3–5	3–5
Impact strength, notched Izod (lb _f /in.)	12–16	2.0	2.0	2.5

Gutical fiber length

fiber length > $\frac{O_FO}{2}$ $O_F = Fiber uts$ d = Fiber digmoter T = shear strength of Fiber mark(2)

Characteristics of Several Fiber-Reinforcement Materials

Pure PC

Material	Specific Gravity	Tensile Strength [GPa]	Specific Strength (GPa)	Modulus of Elasticity [GPa]	Specific Modulus (GPa)
Aluminum oxide	3.95	1.38	0.35	379	96
Aramid (Kevlar 49™)	1.44	3.6-4.1	2.5-2.85	131	91
Carbon	1.78-2.15	1.5–4.8	0.70–2.70	228–724	106–407
E-glass	2.58	3.45	1.34	72.5	28.1
Boron	2.57	3.6	1.40	400	156
Silicon carbide	3.0	3.9	1.30	400	133
UHMWPE (Spectra 900™)	0.97	2.6	2.68	117	121

$$\frac{1}{E_{ct}} = \frac{V_M}{E_m} + \frac{V_R}{E_F}$$

$$\epsilon_c = \epsilon_m V_m + \epsilon_{\epsilon} V_{\epsilon}$$

