Disciplina: Modelagem de processos em engenharia de reservatórios e poços

Professor: Paulo Couto

Nome : Vivian de Carvalho Rodrigues DRE: 121010011

Enunciado

Utilizando os dados da Tabela 1, obtenha e plote os perfis radiais de pressão (dimensional) no meio poroso entre r_w e r_e para t=1 minuto, t=1 hora, t=1 dia, t=30 dias, t=1 ano e t=10 anos.

$$\begin{split} &\frac{1}{\eta}\frac{\partial P}{\partial t} = \frac{\partial}{\partial r} \left(r \frac{\partial P}{\partial r} \right) \\ &P(r,t=0) = P_{tot} \\ &\lim_{r\to 0} \left(r \frac{\partial P}{\partial r} \right) = -\frac{q_{sot}B_a\mu}{2\pi k\hbar} \\ &\lim_{r\to 0} (P(r,t)) = P_{tot} \end{split}$$

Regima transiente: reservatório semi-infinito

Tabela 1. Dados para os problemas 1 e 2.

Parâmetr	Sistema	de unidades
0	API	SI
φ	20 %	20%
C,	1,5 × 10⁻⁵ psi⁻¹	2,18 × 10 ⁻⁹ Pa ⁻¹
k	150 mD	148 × 10 ⁻¹⁵ m ²
h	10 ft	3,048 m
$q_{o,std}$	3000 STB/dia	518 × 10⁻5 m³/seg.
B _o	1,5 bbl/STB	1,5 m³/ m³std
μ_{\circ}	0,33 cp	3,3 × 10 ⁻⁴ Pa.s
P,	2.200 psi	15,17 × 106 Pa
r _w	3,5 pol.= 0,2916 ft	0,0889 m
r _e	2.000 ft	609,6 m

Resolução

<u>Dados dos reservatórios:</u> Geometria:

	[ft]	[m]	[cm]
re =	2000	609,6	60960,0
rw =	0,2916	0,0889	8,9
h =	10	3,048	304,8

Propriedades das rochas:	
([Darcy]=	0,15
) =	0.2

	[1/psi]	[1/atm]	
ct =	0,0000150	0,0002204	
	[m³ std/s]	[cm³ std/s]	_
q0=	0,00518	5180	
	[psi]	[Pa]	[atm]
pi =	2200	15170000,00	149,7

Propriedades dos fluidos

	[cp]	[Pa.s]
μ [cp] =	0,33	0,00033

[bbl/STB]

[m3/m3 std]

Figura 3.15 – Comportamento da pressão durante fluxo transiente em um sistema radial.

$$p(r,t) = p_i \left| \frac{q_w \mu}{4\pi k h} E_i \left[-\frac{\phi \mu c_i r^2}{4kt} \right] = p_i + \frac{q_w \mu}{2\pi k h} \left[\frac{1}{2} E_i \left(-\frac{\phi \mu c_i r^2}{4kt} \right) \right]. \quad (3.225)$$

Como $-E_i(-X) = E_i(X)$, a solução pode ainda ser escrita como:

$$p(r,t) = p_t - \frac{q_w \mu}{2\pi k h} \left[\frac{1}{2} E_t(X) \right] = p_t - \frac{q_w \mu}{2\pi k h} \left[\frac{1}{2} E_t \left(\frac{\phi \mu c_t r^2}{4kt} \right) \right].$$
(3.226)

Para pequenos valores do argumento, a função integral exponencial pode ser aproximada por (Abramowitz & Stegun, 1964):

$$E_i(-X) \cong \ln(\gamma X)$$
, (3.228)

onde $\gamma=e^{0.57722}=1,78108$ e o número 0,57722 é conhecido como constante de Euler. Essa aproximação apresenta erro menor do que 1% para X<0.025. Nesse caso, a equação da pressão pode ser escrita do seguinte modo:

te modo:
$$p(r,t) = p_i + \frac{q_w \mu}{4\pi k h} \ln \left(\frac{\gamma \phi \mu c_t r^2}{4kt} \right) = p_i \left[\frac{c}{q_w \mu} \ln \left(\frac{4kt}{\gamma \phi \mu c_t r^2} \right) \right]$$
(3.229)

Programa de Engenharia Civil

(i) Valores de Xi de acordo com eq.3.225

Condições de espaço e tempo em que a função integral exponencial pode ser aproximada pela eq.3.228:
Condições de espaço e tempo em que a o raio tende ao infinito (a pressão no reservatório é Pi). Limite máximo da tabela K.2:

0,025

9,9 (Tabela K.2 apêndica K de Rosa et al (2006).)

t1 = 1 min
t2 = 1 hora
t3 = 30 dias
t4 = 1 ano
t5 = 10 anos

	rw [m]	r1.1 [m]	r1.2 [m]	r1.3 [m]	r1.4 [m]	r1.6 [m]	r1 [m]	r2 [m]	r3 [m]	r4 [m]	r5 [m]	r6[m]	r7[m]	r8[m]	r9[m]	r10[m]	r11[m]	re[m]
t [s]	0,089	0,5	1	1,5	2	2,5	3,0	7,0	13,0	21,0	31,0	43,0	143,0	243,0	343,0	443,0	543,0	609,6
60	1,45E-01	4,58E+00	1,83E+01	4,13E+01	7,33E+01	1,15E+02	1,65E+02	8,98E+02	3,10E+03	8,09E+03	1,76E+04	3,39E+04	3,75E+05	1,08E+06	2,16E+06	3,60E+06	5,41E+06	6,81E+06
3600	2,41E-03	7,64E-02	3,06E-01	6,88E-01	1,22E+00	1,91E+00	2,75E+00	1,50E+01	5,16E+01	1,35E+02	2,94E+02	5,65E+02	6,25E+03	1,80E+04	3,59E+04	6,00E+04	9,01E+04	1,14E+05
2592000	3,35E-06	1,06E-04	4,24E-04	9,55E-04	1,70E-03	2,65E-03	3,82E-03	2,08E-02	7,17E-02	1,87E-01	4,08E-01	7,85E-01	8,68E+00	2,51E+01	4,99E+01	8,33E+01	1,25E+02	1,58E+02
31104000	2,79E-07	8,84E-06	3,54E-05	7,96E-05	1,41E-04	2,21E-04	3,18E-04	1,73E-03	5,98E-03	1,56E-02	3,40E-02	6,54E-02	7,23E-01	2,09E+00	4,16E+00	6,94E+00	1,04E+01	1,31E+01
311040000	2,79E-08	8,84E-07	3,54E-06	7,96E-06	1,41E-05	2,21E-05	3,18E-05	1,73E-04	5,98E-04	1,56E-03	3,40E-03	6,54E-03	7,23E-02	2,09E-01	4,16E-01	6,94E-01	1,04E+00	1,31E+00

- Área em vermelho significa que a pressão no reservatório é Pi
- Área em verde significa que a P (r, t) pode ser aproximado pela eq. 3.229.
- -Área em branco significa que P (r,t) é calculado pela eq.3.225.

(ii) Constantes auxiliares

Vazão do poço qw:	
q0 x B0 [m ³ /s] =	0,00777
q0 x B0 [cm3/s] =	7770

C=	4,462917646
γ =	1,78108

		rw [m]	r1.1 [m]	r1.2 [m]	r1.3 [m]	r1.4 [m]	r1.6 [m]	r1 [m]	r2 [m]	r3 [m]	r4 [m]	r5 [m]	r6[m]	r7[m]	r8[m]	r9[m]	r10[m]	r11[m]	re[m]
	t [s]	0,089	0,5	1	1,5	2	2,5	3,0	7,0	13,0	21,0	31,0	43,0	143,0	243,0	343,0	443,0	543,0	609,6
t1 = 1 min	60	Ei(-X)	Ei(-X)	Raio infinito															
t2 = 1 hora	3600	5,448890017	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Raio infinito										
t3 = 30 dias	2592000	12,02814123	8,573949317	7,187654956	6,37672474	5,801360595	5,355073492	4,990430378	3,295834658	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Raio infinito				
t4 = 1 ano	31104000	14,51304788	11,05885597	9,672561606	8,861631389	8,286267244	7,839980142	7,475337028	5,780741307	4,542662891	3,58351673	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Raio infinito	Raio infinito
t5 = 10 anos	311040000	16,81563297	13,36144106	11,9751467	11,16421648	10,58885234	10,14256523	9,777922121	8,0833264	6,845247984	5,886101823	5,10717229	4,452746467	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)	Ei(-X)

(iii) Obtenção de Ei(-X) pela tabela K.2

		rw [m]	r1.1 [m]	r1.2 [m]	r1.3 [m]	r1.4 [m]	r1.6 [m]	r1 [m]	r2 [m]	r3 [m]	r4 [m]	r5 [m]	r6[m]	r7[m]	r8[m]	r9[m]	r10[m]	r11[m]	re[m]
	t [s]	0,089	0,5	1	1,5	2	2,5	3,0	7,0	13,0	21,0	31,0	43,0	143,0	243,0	343,0	443,0	543,0	609,6
t1 = 1 min	60	1,494	0,001844	Raio infinito															
t2 = 1 hora	3600	5,448890017	2,068	0,8815	0,381	0,1584	0,0562	0,01802	Raio infinito										
t3 = 30 dias	2592000	12,02814123	8,573949317	7,187654956	6,37672474	5,801360595	5,355073492	4,990430378	3,295834658	2,125	1,265	0,6859	0,3192	0,00001733	Raio infinito				
t4 = 1 ano	31104000	14,51304788	11,05885597	9,672561606	8,861631389	8,286267244	7,839980142	7,475337028	5,780741307	4,542662891	3,58351673	2,938	2,213	0,3599	0,04261	0,0031645	0,0001224	Raio infinito	Raio infinito
t5 = 10 anos	311040000	16,81563297	13,36144106	11,9751467	11,16421648	10,58885234	10,14256523	9,777922121	8,0833264	6,845247984	5,886101823	5,10717229	4,452746467	2,215	1,183	0,67795	0,3774	0,2027	0,1355

(iii) Cálculo de P(r,t)

	[atm]	rw [m]	r1.1 [m]	r1.2 [m]	r1.3 [m]	r1.4 [m]	r1.6 [m]	r1 [m]	r2 [m]	r3 [m]	r4 [m]	r5 [m]	r6[m]	r7[m]	r8[m]	r9[m]	r10[m]	r11[m]	re[m]
	t [s]	0,089	0,5	1	1,5	2	2,5	3,0	7,0	13,0	21,0	31,0	43,0	143,0	243,0	343,0	443,0	543,0	609,6
t1 = 1 min	60	143,03	149,69	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70
t2 = 1 hora	3600	125,38	140,47	145,77	148,00	148,99	149,45	149,62	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70
t3 = 30 dias	2592000	96,02	111,44	117,62	121,24	123,81	125,80	127,43	134,99	140,22	144,06	146,64	148,28	149,70	149,70	149,70	149,70	149,70	149,70
t4 = 1 ano	946080000	84,93	100,35	106,53	110,15	112,72	114,71	116,34	123,90	129,43	133,71	136,59	139,82	148,09	149,51	149,69	149,70	149,70	149,70
t5 = 10 anos	9460800000	74,65	90,07	96,26	99,88	102,44	104,44	106,06	113,63	119,15	123,43	126,91	129,83	139,82	144,42	146,68	148,02	148,80	149,10

Programa de Engenharia Civil

Tabela Auxiliar - P (r,t)

r [m]	t1 = 1 min	t2 = 1 hora	t3 = 30 dias	t4 = 1 ano	t5 = 10 anos
0,0889	143,03	125,38	96,02	84,93	74,65
0,5	149,69	140,47	111,44	100,35	90,07
1	149,70	145,77	117,62	106,53	96,26
1,5	149,70	148,00	121,24	110,15	99,88
2	149,70	148,99	123,81	112,72	102,44
2,5	149,70	149,45	125,80	114,71	104,44
3	149,70	149,62	127,43	116,34	106,06
7	149,70	149,70	134,99	123,90	113,63
13	149,70	149,70	140,22	129,43	119,15
21	149,70	149,70	144,06	133,71	123,43
31	149,70	149,70	146,64	136,59	126,91
43	149,70	149,70	148,28	139,82	129,83
143	149,70	149,70	149,70	148,09	139,82
243	149,70	149,70	149,70	149,51	144,42
343	149,70	149,70	149,70	149,69	146,68
443	149,70	149,70	149,70	149,70	148,02
543	149,70	149,70	149,70	149,70	148,80
609,6	149,70	149,70	149,70	149,70	149,10

Nota:

