MA 5124 Financial Time Series Analysis & Forecasting

Dr. Priyanga D. Talagala

2020-11-23

Contents

C	Course Syllabus 1										
	Pre-requiites	1									
	Learning Objectives	1									
	Learning Outcomes	1									
	Outline Syllabus	1									
	Method of Assessment	2									
	Lecturer	2									
	Schedule	2									
	Copyright Notice	2									
1	Intordution to Time Series Forecasting	5									
2	Time Series Graphics 7										
3	Time Series Decomposition	9									
4	Exponential Smoothing	11									
5	ARIMA models	13									
6	Multiple Regression and Forecasting	15									
7	Dynamic Regression Models	17									
8	Multivariate Time Series Models	19									

9 Cointegration	21
10 Volatality Models	23
11 Time series with R	25
11.1 Lesson 1: Introduction to R	25
11.2 Lesson 2: Time series graphic	31

Course Syllabus

Module Code: MA 5124

Title: Financial Time Series Analysis & Forecasting

Credits: 4

Pre-requiites

None

Learning Objectives

- The purpose of this course is to provide students with introductory tools for the time series analysis of financial time series.
- Analyze of data series based on stochastic and non stochastic models

Learning Outcomes

- On successful completion of this course, students will be able to provide more than an introductory treatment of the topics.
- Students are encouraged to pursue further study in this area if they find that the topics covered in this course.

Outline Syllabus

- Definition and examples of time series
- back-shift and differencing-operators, strong and weak stationarity, definition of ACF, PACF.

2 CONTENTS

• Definitions and properties of the $MA(q), MA(\infty), AR(p), AR(\infty)$ and ARMA(p,q), in particular their acf's

- causal stationarity of AR
- invertibility of MA models and causal stationarity and invertibility of ARMA; concept of spectral density function and its applications
- definition and properties of integrated ARIMA(p, d, q) processes
- definition and properties of random walks with or without drift.
- Model selection following the AIC and BIC
- brief introduction to linear prediction and calculation of forecasting intervals for normal ARMA models
- point and interval forecasts for normal random walks with or without drift.
- Definition and properties of the VAR (vector autoregressive) model, arrange a univariate time series as a multivariate Markov model.
- Nonlinear properties of financial time series
- definition and properties of the well known ARCH, GARCH etc.
- Cointegration in Single Equations, Modeling and Forecasting Financial Time Series.

Method of Assessment

- Assignment 30%
- End-semester examination 70%

Lecturer

Dr. Priyanga D. Talagala

Schedule

Lectures:

• Sunday [9.00am -12.00 noon]

Copyright Notice

My lectures and course materials, including presentations, tests, exams, outlines, and similar materials, are protected by copyright. I am the exclusive owner of copyright in those materials I create. I encourage you to take notes and make copies of course materials for your own educational use. However, you may not,

CONTENTS 3

nor may you knowingly allow others to reproduce or distribute lecture notes and course materials publicly without my express written consent.

4 CONTENTS

Intordution to Time Series Forecasting

Time Series Graphics

Time Series Decomposition

Exponential Smoothing

ARIMA models

Multiple Regression and Forecasting

Dynamic Regression Models

Multivariate Time Series Models

- Unit root tets
- multivariate time series)
- (VAR)

Cointegration

Volatality Models

• (ARCH, GARCH)

Time series with R

11.1 Lesson 1: Introduction to R

##

```
?fpp2
gghistogram(rnorm(200)) #rnorm generates random numbers from a standard normal
```



```
# Equivalent to typing in the help menu
?mean

# Example in the help menu for the mean
x <- c(0:10, 50)
length(x)

## [1] 12</pre>
```

```
xm <- mean(x)
austa # what happens here?</pre>
```

```
## Time Series:
## Start = 1980
## End = 2015
```

```
## Frequency = 1
## [1] 0.8298943 0.8595109 0.8766892 0.8667072 0.9320520 1.0482636 1.3111932
## [8] 1.6375623 2.0641074 1.9126828 2.0354457 2.1772113 2.3896834 2.7505921
## [15] 3.0906664 3.4266403 3.8306491 3.9719086 3.8316004 4.1431010 4.5665510
## [22] 4.4754100 4.4627960 4.3848290 4.7968610 5.0150490 5.0634350 5.1454890
## [29] 5.0994360 5.0881660 5.3537020 5.3433270 5.5891620 5.9048840 6.3571830
## [36] 6.8589530
```

```
# Ignore the error message and keep going

# Lets look at some data sets from fpp
austa #International vistors to Australia
```

```
## Time Series:
## Start = 1980
## End = 2015
## Frequency = 1
## [1] 0.8298943 0.8595109 0.8766892 0.8667072 0.9320520 1.0482636 1.3111932
## [8] 1.6375623 2.0641074 1.9126828 2.0354457 2.1772113 2.3896834 2.7505921
## [15] 3.0906664 3.4266403 3.8306491 3.9719086 3.8316004 4.1431010 4.5665510
## [22] 4.4754100 4.4627960 4.3848290 4.7968610 5.0150490 5.0634350 5.1454890
## [29] 5.0994360 5.0881660 5.3537020 5.3433270 5.5891620 5.9048840 6.3571830
## [36] 6.8589530
```


Summary command: prints an appropriate summary of what you asked from summary(austa)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8299 2.0048 3.9018 3.5414 5.0696 6.8590
```

Some monthly data
a10 # Monthly anti-diabetic drug sales in Australia from 1992 to 2008

## ##	1991	Jan	Feb	Mar	Apr	May	Jun	Jul 3.526591
##	1992	5.088335	2.814520	2.985811	3.204780	3.127578	3.270523	3.737851
	1993	6.192068	3.450857	3.772307	3.734303	3.905399	4.049687	4.315566
##	1994	6.731473	3.841278	4.394076	4.075341	4.540645	4.645615	4.752607
##	1995	6.749484	4.216067	4.949349	4.823045	5.194754	5.170787	5.256742
##	1996	8.329452	5.069796	5.262557	5.597126	6.110296	5.689161	6.486849
##	1997	8.524471	5.277918	5.714303	6.214529	6.411929	6.667716	7.050831
##	1998	8.798513	5.918261	6.534493	6.675736	7.064201	7.383381	7.813496
##	1999	10.391416	6.421535	8.062619	7.297739	7.936916	8.165323	8.717420
##	2000	12.511462	7.457199	8.591191	8.474000	9.386803	9.560399	10.834295
##	2001	14.497581	8.049275	10.312891	9.753358	10.850382	9.961719	11.443601
##	2002	16.300269	9.053485	10.002449	10.788750	12.106705	10.954101	12.844566
##	2003	16.828350	9.800215	10.816994	10.654223	12.512323	12.161210	12.998046

```
## 2004 18.003768 11.938030 12.997900 12.882645 13.943447 13.989472 15.339097
## 2005 20.778723 12.154552 13.402392 14.459239 14.795102 15.705248 15.829550
## 2006 23.486694 12.536987 15.467018 14.233539 17.783058 16.291602 16.980282
## 2007 28.038383 16.763869 19.792754 16.427305 21.000742 20.681002 21.834890
## 2008 29.665356 21.654285 18.264945 23.107677 22.912510 19.431740
##
             Aug
                       Sep
                                 Oct
                                           Nov
                                                    Dec
## 1991 3.180891 3.252221 3.611003 3.565869
                                               4.306371
## 1992 3.558776 3.777202 3.924490 4.386531 5.810549
## 1993 4.562185 4.608662 4.667851 5.093841 7.179962
## 1994 5.350605 5.204455 5.301651 5.773742 6.204593
## 1995 5.855277 5.490729 6.115293 6.088473 7.416598
## 1996 6.300569 6.467476 6.828629 6.649078 8.606937
## 1997 6.704919 7.250988 7.819733 7.398101 10.096233
## 1998 7.431892 8.275117 8.260441 8.596156 10.558939
## 1999 9.070964 9.177113 9.251887 9.933136 11.532974
## 2000 10.643751 9.908162 11.710041 11.340151 12.079132
## 2001 11.659239 10.647060 12.652134 13.674466 12.965735
## 2002 12.196500 12.854748 13.542004 13.287640 15.134918
## 2003 12.517276 13.268658 14.733622 13.669382 16.503966
## 2004 15.370764 16.142005 16.685754 17.636728 18.869325
## 2005 17.554701 18.100864 17.496668 19.347265 20.031291
## 2006 18.612189 16.623343 21.430241 23.575517 23.334206
## 2007 23.930204 22.930357 23.263340 25.250030 25.806090
## 2008
```



```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.815 5.844 9.319 10.694 14.290 29.665

# You will practice reading in your own data in the tutorials this week
# and next week. This will set you up well for the assignment
# This creates a vector y of observations
y=c(1,2,3,4,5,6)
mean(y)
```

[1] 3.5

summary(a10)

```
# Write your own function
average<-function(x)
{
   return(sum(x)/length(x))
}
ybar<-average(y)</pre>
```

11.2 Lesson 2: Time series graphic

```
library(fpp2)
# ts objects
x <- c(123,39,78,52,110) # This is now just a column of numbers
x
## [1] 123 39 78 52 110
plot(x)</pre>
```



```
y <- ts(c(123,39,78,52,110), start=2012)
y
```

```
## Time Series:
## Start = 2012
## End = 2016
## Frequency = 1
## [1] 123 39 78 52 110
```

```
plot(y)
```



```
z <- ts(x, frequency=12, start=c(2003,1))
z</pre>
```

```
## Jan Feb Mar Apr May
## 2003 123 39 78 52 110
```


autoplot(ausgdp) # part of forecast and interaction with ggplot2


```
# better plots only for ts objects
z=rnorm(120)
#autoplot(z)
plot(z)
```



```
y <- ts(z, start=2003, frequency=12)
attributes(y)
```

```
## $tsp
## [1] 2003.000 2012.917 12.000
##
## $class
## [1] "ts"
```

```
autoplot(y)
```

```
2-
1-
0-
-1-
-2-
-3-
2004 2006 2008 2010 2012
Time
```

Some ready ts elecsales

[1] 2354.34 2379.71 2318.52 2468.99 2386.09 2569.47 2575.72 2762.72 2844.50

```
## [10] 3000.70 3108.10 3357.50 3075.70 3180.60 3221.60 3176.20 3430.60 3527.48
## [19] 3637.89 3655.00

?elecsales
# Everyone to plot
# Also ask them to use the help command - you will need to do
# this a lot

# ? is shorthand for help()

# Ask everyone to type melsyd to see what they get
melsyd # let's have a look
```

```
## Time Series:
## Start = c(1987, 26)
```

Time Series:
Start = 1989
End = 2008
Frequency = 1

##	End = c(1)	1992, 48)		
##	Frequency	7 = 52		
##		First.Class	Business.Class	Economy.Class
##	1987.481	1.912	NA	20.167
##	1987.500	1.848	NA	20.161
##	1987.519	1.856	NA	19.993
##	1987.538	2.142	NA	20.986
##	1987.558	2.118	NA	20.497
##	1987.577	2.048	NA	20.770
##	1987.596	2.111	NA	21.111
##	1987.615	2.199	NA	20.675
##	1987.635	2.231	NA	22.092
##	1987.654	2.081	NA	20.772
##	1987.673	2.213	NA	21.642
##	1987.692	2.131	NA	21.911
##	1987.712	NA	NA	NA
##	1987.731	2.131	NA	23.777
##	1987.750	2.034	NA	22.658
##	1987.769	2.190	NA	23.515
##	1987.788	2.262	NA	21.384
##	1987.808	2.579	NA	24.344
##		2.367	NA	21.137
##		2.432	NA	23.069
	1987.865	2.640	NA	23.664
	1987.885	2.614	NA	23.219
	1987.904	2.569	NA	23.192
	1987.923	2.523	NA	23.475
##	1987.942 1987.962	2.260 1.117	NA NA	22.377 16.606
##	1987.982	0.590	NA NA	13.987
##	1988.000	0.966	NA NA	16.251
##	1988.019	1.235	NA NA	18.439
##	1988.038	2.001	NA NA	20.262
##	1988.058	1.696	NA	19.535
##	1988.077	2.089	NA	22.467
##	1988.096	2.716	NA	24.559
##	1988.115	2.483	NA	24.591
##		2.461	NA	24.511
##	1988.154	2.533	NA	24.524
##	1988.173	2.273	NA	23.119
##		2.273	NA	23.106
##	1988.212	2.370	NA	23.292
##	1988.231	1.782	NA	21.566
##	1988.250	1.385	NA	18.565
##	1988.269	2.322	NA	24.361
##	1988.288	2.340	NA	22.983

## 1988.308	2.203	NA	21.062
## 1988.327	2.300	NA	21.766
## 1988.346	2.125	NA	22.285
## 1988.365	2.345	NA	22.867
## 1988.385	2.224	NA	23.276
## 1988.404	1.952	NA	20.924
## 1988.423	2.212	NA	21.716
## 1988.442	2.028	NA	20.908
## 1988.462	1.906	NA	21.410
## 1988.481	1.834	NA	21.361
## 1988.500	1.797	NA	22.412
## 1988.519	1.869	NA	21.290
## 1988.538	1.886	NA	22.247
## 1988.558	2.131	NA	22.445
## 1988.577	2.021	NA NA	21.260
## 1988.596	2.199	NA NA	22.771
	2.140		
## 1988.615		NA	23.723
## 1988.635	2.190	NA	23.757
## 1988.654	1.917	NA	23.482
## 1988.673	2.096	NA	23.653
## 1988.692	2.254	NA	26.054
## 1988.712	2.251	NA	25.695
## 1988.731	2.072	NA	26.720
## 1988.750	0.993	NA	15.033
## 1988.769	1.675	NA	22.340
## 1988.788	1.463	NA	19.297
## 1988.808	2.256	NA	23.761
## 1988.827	2.216	NA	22.150
## 1988.846	2.218	NA	22.236
## 1988.865	2.568	NA	23.157
## 1988.885	2.483	NA	24.387
## 1988.904	2.545	NA	23.844
## 1988.923	2.599	NA	23.681
## 1988.942	2.483	NA	24.456
## 1988.962	1.793	NA	19.899
## 1988.981	0.516	NA	13.662
## 1989.000	0.873	NA	15.698
## 1989.019	1.195	NA	18.189
## 1989.038	1.525	NA	19.448
## 1989.058	1.906	NA	20.891
## 1989.077	2.246	NA	22.284
## 1989.096	2.247	NA	23.247
## 1989.115	2.316	NA	24.440
## 1989.135	2.276	NA	22.519
## 1989.154	2.403	NA	22.818
## 1989.173	2.432	NA	23.472
1000.110	2.102	1411	20.112

##	1989.192	2.490	NA	24.117
##	1989.212	2.013	NA	24.435
##	1989.231	1.508	NA	20.589
##	1989.250	2.251	NA	23.427
##	1989.269	2.079	NA	20.923
##	1989.288	2.210	NA	22.959
##	1989.308	1.960	NA	19.152
##	1989.327	2.251	NA	22.011
##	1989.346	2.013	NA	20.228
##	1989.365	2.252	NA	21.332
##	1989.385	2.067	NA	20.500
##	1989.404	1.831	NA	19.090
##	1989.423	2.069	NA	21.692
##	1989.442	1.953	NA	20.157
##	1989.462	2.199	NA	22.231
##	1989.481	1.771	NA	20.914
##	1989.500	1.696	NA	21.454
##	1989.519	1.788	NA	21.345
##	1989.538	1.636	1.524	19.260
##	1989.558	1.741	2.212	18.781
##	1989.577	1.597	1.777	17.445
##	1989.596	1.943	2.552	19.628
##	1989.615	1.660	1.889	17.692
##	1989.635	0.616	0.851	7.046
##	1989.654	0.000	0.000	0.000
##	1989.673	0.000	0.000	0.000
##	1989.692	0.000	0.000	0.000
##	1989.712	0.000	0.000	0.000
##	1989.731	0.000	0.000	0.000
##	1989.750	0.000	0.000	0.000
##	1989.769	0.000	0.000	0.000
##	1989.788	0.053	0.618	11.569
##	1989.808	0.040	0.565	11.973
##	1989.827	0.354	0.414	11.123
##	1989.846	0.505	0.543	11.479
##	1989.865	0.711	0.712	16.969
##	1989.885	0.723	0.652	15.997
##	1989.904	0.796	0.709	16.555
##	1989.923	0.856	0.793	17.959
##	1989.942	0.845	0.838	18.868
##	1989.962	0.807	0.763	15.400
##	1989.981	0.276	0.266	10.544
##	1990.000	0.339	0.362	12.755
##	1990.019	0.581	0.665	19.020
##	1990.038	0.894	0.957	20.077
##	1990.058	0.936	1.145	22.124

##	1990.077	1.111	1.312	19.920
##	1990.096	1.446	1.689	17.215
##	1990.115	1.517	1.762	17.662
##	1990.135	1.513	2.160	19.828
##	1990.154	1.508	1.877	18.754
##	1990.173	1.636	2.048	20.390
##	1990.192	1.380	1.824	18.383
##	1990.212	1.453	1.986	19.377
##	1990.231	1.459	2.032	20.133
##	1990.250	1.538	1.956	19.210
##	1990.269	1.327	1.503	20.736
##	1990.288	1.027	1.256	18.821
##	1990.308	1.365	1.752	20.952
##	1990.327	1.475	1.878	20.565
##	1990.346	1.365	1.945	20.311
##	1990.365	1.351	1.735	17.859
##	1990.385	1.231	1.825	19.385
##	1990.404	1.447	1.715	17.962
##	1990.423	1.408	1.594	19.569
##	1990.442	1.089	1.377	17.894
##	1990.462	1.357	1.686	18.114
##	1990.481	1.287	1.560	19.170
##	1990.500	1.087	1.692	18.713
##	1990.519	1.017	1.597	20.520
##	1990.538	1.090	1.729	20.345
##	1990.558	1.343	1.733	20.015
##	1990.577	1.164	1.813	18.027
##	1990.596	1.169	1.725	19.697
##	1990.615	1.465	1.909	19.897
##	1990.635	1.242	1.765	19.213
##	1990.654	1.220	1.781	19.773
##	1990.673	1.231	1.717	20.128
##	1990.692	1.266	1.884	21.181
##	1990.712	1.337	1.881	21.933
##	1990.731	1.079	1.433	20.049
##	1990.750	1.223	1.534	23.358
##	1990.769	1.351	1.926	21.120
##	1990.788	1.269	1.870	21.970
##	1990.808	1.382	1.942	21.411
##	1990.827	1.435	2.222	22.569
##	1990.846	1.371	1.909	20.849
##	1990.865	1.341	2.089	20.658
##	1990.885	1.399	2.026	21.192
##	1990.904	1.440	2.009	21.502
##	1990.923	1.236	2.034	22.152
##	1990.942	1.441	2.085	21.904

##	1990.962	0.988	1.330	20.634
##	1990.981	0.300	0.318	15.535
##	1991.000	0.401	0.522	16.690
##	1991.019	0.529	0.824	19.150
##	1991.038	0.786	1.113	21.128
##	1991.058	1.086	1.285	21.136
##	1991.077	0.725	1.107	19.693
##	1991.096	1.127	1.591	21.576
##	1991.115	1.146	1.726	21.449
##	1991.135	1.086	1.758	22.298
##	1991.154	1.134	1.883	21.056
##	1991.173	1.020	2.089	19.014
##	1991.192	1.022	2.198	19.511
##	1991.212	1.224	2.449	20.162
##	1991.231	0.895	1.739	21.158
##	1991.250	0.658	1.480	19.059
##	1991.269	0.977	2.152	21.972
##	1991.288	0.916	2.258	22.877
##	1991.308	0.830	1.776	22.190
##	1991.327	0.990	2.355	22.533
##	1991.346	0.770	2.140	20.682
##	1991.365	0.801	1.988	21.788
##	1991.385	0.839	2.083	21.299
##	1991.404	0.835	2.115	20.663
##	1991.423	0.802	1.884	21.948
##	1991.442	0.763	1.797	21.009
##	1991.462	0.770	1.944	20.443
##	1991.481	0.838	2.001	21.418
##	1991.500	0.742	1.668	23.273
##	1991.519	0.793	1.527	25.763
##	1991.538	0.900	1.477	26.045
##	1991.558	0.960	1.949	23.831
##	1991.577	0.800	1.914	22.742
##	1991.596	0.807	1.632	22.962
##	1991.615	0.841	1.796	25.253
##	1991.635	0.880	1.696	25.239
##	1991.654	0.818	1.718	27.387
##	1991.673	0.817	1.442	26.824
##	1991.692	0.819	1.713	27.294
##	1991.712	0.998	1.796	28.935
##	1991.731	1.220	1.860	31.642
##	1991.750	0.966	1.554	32.468
##	1991.769	0.895	1.623	27.673
##	1991.788	0.978	1.641	28.890
##	1991.808	0.913	1.818	26.465
##	1991.827	0.947	1.969	28.296

##	1991.846	1.002	1.886	29.274
##	1991.865	1.081	2.030	30.686
##	1991.885	0.977	1.883	29.786
##	1991.904	1.027	1.871	31.155
##	1991.923	0.895	1.910	28.459
##	1991.942	0.900	1.921	27.195
##	1991.962	0.762	1.672	26.274
##	1991.981	0.329	0.386	25.204
##	1992.000	0.351	0.446	24.434
##	1992.019	0.419	0.819	27.323
##	1992.038	0.618	1.238	27.303
##	1992.058	0.845	1.761	30.334
##	1992.077	0.727	1.650	26.833
##	1992.096	1.200	2.031	25.811
##	1992.115	1.801	2.064	27.238
##	1992.135	1.727	2.418	28.788
##	1992.154	1.992	2.171	27.263
##	1992.173	1.865	2.362	27.217
##	1992.192	1.801	2.328	26.410
##	1992.212	1.661	2.336	26.118
##	1992.231	2.366	10.301	18.642
##	1992.250	2.003	9.964	16.518
##	1992.269	2.092	10.433	17.276
##	1992.288	1.703	8.281	21.662
##	1992.308	1.337	6.128	20.473
##	1992.327	1.985	9.709	18.336
##	1992.346	1.808	8.828	17.018
##	1992.365	1.839	8.078	18.111
##	1992.385	1.714	7.527	18.410
##	1992.404	1.730	7.486	20.541
##	1992.423	1.725	6.711	21.408
##	1992.442	1.456	5.930	21.545
##	1992.462	1.447	5.462	21.732
##	1992.481	1.357	3.710	26.173
##	1992.500	1.280	2.894	27.432
##	1992.519	1.363	3.008	28.362
	1992.538	1.228	2.829	29.827 29.870
##	1992.558	1.411	3.252	
##	1992.577	1.130	3.021	26.534
##	1992.596	1.153	2.667	26.434
##	1992.615	1.257	2.740	26.137
##	1992.635	1.259	2.807	27.365
##	1992.654	1.153	2.961	27.910
##	1992.673	1.202	2.570	26.311
##	1992.692	1.185	2.671	27.538
##	1992.712	1.247	2.809	29.445

```
## 1992.731
                  1.434
                                 2.712
                                              28.326
## 1992.750
                  1.450
                                 2.606
                                              30.203
## 1992.769
                 1.227
                                 2.500
                                              27.838
## 1992.788
                 1.245
                                 2.898
                                              27.760
## 1992.808
                                              27.322
                 1.417
                                 3.152
## 1992.827
                 1.458
                                 3.053
                                              28.837
## 1992.846
                 1.398
                                 2.745
                                              26.548
## 1992.865
                                              27.279
                 1.423
                                 3.156
## 1992.885
                  1.358
                                 3.069
                                              27.306
## 1992.904
                  1.488
                                 3.379
                                              28.299
```

head(melsyd)

```
## Time Series:
## Start = c(1987, 26)
## End = c(1987, 31)
## Frequency = 52
##
           First.Class Business.Class Economy.Class
## 1987.481
             1.912
                                  NA
                                             20.167
## 1987.500
                1.848
                                  NA
                                            20.161
## 1987.519
                1.856
                                 NA
                                            19.993
## 1987.538
                2.142
                                   NA
                                             20.986
## 1987.558
                 2.118
                                   NA
                                             20.497
## 1987.577
                 2.048
                                   NA
                                             20.770
```

tail(melsyd)

```
## Time Series:
## Start = c(1992, 43)
## End = c(1992, 48)
## Frequency = 52
          First.Class Business.Class Economy.Class
## 1992.808
               1.417
                           3.152
                                             27.322
                               3.053
                                             28.837
## 1992.827
                 1.458
## 1992.846
                1.398
                                2.745
                                             26.548
## 1992.865
                 1.423
                                3.156
                                             27.279
## 1992.885
                 1.358
                                3.069
                                             27.306
## 1992.904
                1.488
                                3.379
                                             28.299
```

autoplot(melsyd)

autoplot(melsyd,facets = TRUE)


```
# Back to slides

# Time plot
autoplot(melsyd[,"Economy.Class"])
```



```
# Adding main title and
# also add labels to the x and y axes

autoplot(a10) + ylab("$ million") + xlab("Year") +
    ggtitle("Antidiabetic drug sales")
```


?autoplot

```
## Help on topic 'autoplot' was found in the following packages:
##
## Package Library
## forecast /Library/Frameworks/R.framework/Versions/4.0/Resources/library
## ggplot2 /Library/Frameworks/R.framework/Versions/4.0/Resources/library
##
##
##
##
##
Using the first match ...
```

```
# Your turn
?dole
autoplot(dole)
```


?lynx

```
## Help on topic 'lynx' was found in the following packages:
##
## Package Library
## fma /Library/Frameworks/R.framework/Versions/4.0/Resources/librate
## datasets /Library/Frameworks/R.framework/Versions/4.0/Resources/librate
## ##
## Using the first match ...
```

autoplot(lynx)


```
?goog
autoplot(goog)+
  xlab("Year") + ylab("Price ($)") +
  ggtitle("Google closing stock price")
```


Back to slides # The elecdaily data ?elecdaily

head(elecdaily,15)

```
## Time Series:
## Start = c(1, 4)
## End = c(3, 4)
## Frequency = 7
##
              Demand WorkDay Temperature
## 1.428571 174.8963
                            0
                                     26.0
## 1.571429 188.5909
                                     23.0
                            1
## 1.714286 188.9169
                            1
                                     22.2
## 1.857143 173.8142
                            0
                                     20.3
## 2.000000 169.5152
                            0
                                     26.1
## 2.142857 195.7288
                                     19.6
                            1
## 2.285714 199.9029
                            1
                                     20.0
## 2.428571 205.3375
                            1
                                     27.4
## 2.571429 228.0782
                            1
                                     32.4
                                     34.0
## 2.714286 258.5984
                            1
## 2.857143 201.7970
                            0
                                     22.4
## 3.000000 187.6298
                            0
                                     22.5
## 3.142857 254.6636
                            1
                                     30.0
```

3.285714 322.2323 1 42.4 ## 3.428571 343.9934 1 41.5

autoplot(elecdaily)

autoplot(elecdaily[,3])

time(elecdaily)

```
## Time Series:
## Start = c(1, 4)
## End = c(53, 4)
   Frequency = 7
     [1]
          1.428571
                     1.571429
                                         1.857143
                                                                         2.285714
##
                               1.714286
                                                    2.000000
                                                              2.142857
##
     [8]
          2.428571
                     2.571429
                               2.714286
                                         2.857143
                                                    3.000000
                                                              3.142857
                                                                         3.285714
##
    [15]
                     3.571429
                               3.714286
                                         3.857143
                                                    4.000000
                                                                         4.285714
          3.428571
                                                              4.142857
##
    [22]
          4.428571
                     4.571429
                               4.714286
                                         4.857143
                                                    5.000000
                                                              5.142857
                                                                         5.285714
                               5.714286
##
    [29]
          5.428571
                     5.571429
                                         5.857143
                                                    6.000000
                                                              6.142857
                                                                         6.285714
##
    [36]
          6.428571
                     6.571429
                               6.714286
                                         6.857143
                                                    7.000000
                                                              7.142857
                                                                         7.285714
##
    [43]
          7.428571
                    7.571429
                               7.714286
                                         7.857143
                                                    8.000000
                                                              8.142857
                                                                         8.285714
##
    [50]
          8.428571
                    8.571429
                               8.714286
                                         8.857143
                                                    9.000000
                                                                         9.285714
                                                              9.142857
                               9.714286
##
    [57]
          9.428571
                    9.571429
                                         9.857143 10.000000 10.142857 10.285714
##
    [64]
        10.428571 10.571429 10.714286 10.857143 11.000000 11.142857 11.285714
    [71] 11.428571 11.571429 11.714286 11.857143 12.000000 12.142857 12.285714
##
         12.428571 12.571429 12.714286 12.857143 13.000000 13.142857 13.285714
##
    [78]
##
        13.428571 13.571429 13.714286 13.857143 14.000000 14.142857 14.285714
    [85]
##
        14.428571 14.571429 14.714286 14.857143 15.000000 15.142857 15.285714
    [92]
##
    [99] 15.428571 15.571429 15.714286 15.857143 16.000000 16.142857 16.285714
##
   [106] 16.428571 16.571429 16.714286 16.857143 17.000000 17.142857 17.285714
   [113] 17.428571 17.571429 17.714286 17.857143 18.000000 18.142857 18.285714
## [120] 18.428571 18.571429 18.714286 18.857143 19.000000 19.142857 19.285714
```

```
## [127] 19.428571 19.571429 19.714286 19.857143 20.000000 20.142857 20.285714
## [134] 20.428571 20.571429 20.714286 20.857143 21.000000 21.142857 21.285714
## [141] 21.428571 21.571429 21.714286 21.857143 22.000000 22.142857 22.285714
## [148] 22.428571 22.571429 22.714286 22.857143 23.000000 23.142857 23.285714
## [155] 23.428571 23.571429 23.714286 23.857143 24.000000 24.142857 24.285714
## [162] 24.428571 24.571429 24.714286 24.857143 25.000000 25.142857 25.285714
## [169] 25.428571 25.571429 25.714286 25.857143 26.000000 26.142857 26.285714
## [176] 26.428571 26.571429 26.714286 26.857143 27.000000 27.142857 27.285714
## [183] 27.428571 27.571429 27.714286 27.857143 28.000000 28.142857 28.285714
## [190] 28.428571 28.571429 28.714286 28.857143 29.000000 29.142857 29.285714
## [197] 29.428571 29.571429 29.714286 29.857143 30.000000 30.142857 30.285714
## [204] 30.428571 30.571429 30.714286 30.857143 31.000000 31.142857 31.285714
## [211] 31.428571 31.571429 31.714286 31.857143 32.000000 32.142857 32.285714
## [218] 32.428571 32.571429 32.714286 32.857143 33.000000 33.142857 33.285714
## [225] 33.428571 33.571429 33.714286 33.857143 34.000000 34.142857 34.285714
## [232] 34.428571 34.571429 34.714286 34.857143 35.000000 35.142857 35.285714
## [239] 35.428571 35.571429 35.714286 35.857143 36.000000 36.142857 36.285714
## [246] 36.428571 36.571429 36.714286 36.857143 37.000000 37.142857 37.285714
## [253] 37.428571 37.571429 37.714286 37.857143 38.000000 38.142857 38.285714
## [260] 38.428571 38.571429 38.714286 38.857143 39.000000 39.142857 39.285714
## [267] 39.428571 39.571429 39.714286 39.857143 40.000000 40.142857 40.285714
## [274] 40.428571 40.571429 40.714286 40.857143 41.000000 41.142857 41.285714
## [281] 41.428571 41.571429 41.714286 41.857143 42.000000 42.142857 42.285714
## [288] 42.428571 42.571429 42.714286 42.857143 43.000000 43.142857 43.285714
## [295] 43.428571 43.571429 43.714286 43.857143 44.000000 44.142857 44.285714
## [302] 44.428571 44.571429 44.714286 44.857143 45.000000 45.142857 45.285714
## [309] 45.428571 45.571429 45.714286 45.857143 46.000000 46.142857 46.285714
## [316] 46.428571 46.571429 46.714286 46.857143 47.000000 47.142857 47.285714
## [323] 47.428571 47.571429 47.714286 47.857143 48.000000 48.142857 48.285714
## [330] 48.428571 48.571429 48.714286 48.857143 49.000000 49.142857 49.285714
## [337] 49.428571 49.571429 49.714286 49.857143 50.000000 50.142857 50.285714
## [344] 50.428571 50.571429 50.714286 50.857143 51.000000 51.142857 51.285714
## [351] 51.428571 51.571429 51.714286 51.857143 52.000000 52.142857 52.285714
## [358] 52.428571 52.571429 52.714286 52.857143 53.000000 53.142857 53.285714
## [365] 53.428571
```

```
# Seasonal plots
autoplot(a10)
```


ggseasonplot(a10)


```
ggseasonplot(a10, year.labels=TRUE, year.labels.left=TRUE) +
  ylab("$ million") +
  ggtitle("Seasonal plot: antidiabetic drug sales")
```

Seasonal plot: antidiabetic drug sales


```
# Seasonal subseries plots
ggsubseriesplot(a10) + ylab("$ million") +
ggtitle("Subseries plot: antidiabetic drug sales")
```


Australian quarterly beer production 1956:Q1 to 2008:Q3.
autoplot(ausbeer)


```
# Take a window of it starting in 1992
beer=window(ausbeer,start=1992)
autoplot(beer)+geom_point()
```


ggsubseriesplot(beer)+ggtitle("Subseries Plot")

Subseries Plot 500400Q1 Q2 Quarter

```
# Students to run arrivals code below
# Your turn 1
?arrivals
head(arrivals)
```

```
## Japan NZ UK US
## 1981 Q1 14.763 49.140 45.266 32.316
## 1981 Q2 9.321 87.467 19.886 23.721
## 1981 Q3 10.166 85.841 24.839 24.533
## 1981 Q4 19.509 61.882 52.264 33.438
## 1982 Q1 17.117 42.045 53.636 33.527
## 1982 Q2 10.617 63.081 34.802 28.366
```

autoplot(arrivals)

autoplot(arrivals, facets = TRUE)

ggseasonplot(arrivals[,"NZ"])

ggseasonplot(arrivals[,"UK"])


```
# Plot these together to have a closer look
p1 <- ggseasonplot(arrivals[,"NZ"])
p2 <- ggseasonplot(arrivals[,"UK"])
gridExtra::grid.arrange(p1,p2,nrow=1)</pre>
```



```
#Back to lecture slides

# Time series patterns
autoplot(window(elec, start=1980)) +
   ggtitle("Australian electricity production") +
   xlab("Year") + ylab("GWh")
```

Australian electricity production


```
autoplot(bricksq) +
  ggtitle("Australian clay brick production") +
  xlab("Year") + ylab("million units")
```

Australian clay brick production


```
autoplot(hsales) +
  ggtitle("Sales of new one-family houses, USA") +
  xlab("Year") + ylab("Total sales")
```

Sales of new one-family houses, USA


```
autoplot(ustreas) +
  ggtitle("US Treasury Bill Contracts") +
  xlab("Day") + ylab("price")
```

US Treasury Bill Contracts


```
autoplot(lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
```

Annual Canadian Lynx Trappings


```
#Back to lecture slides

# Scatterplots
head(motel)
```

```
Roomnights Takings
##
## Jan 1980
                 277.0
                            7.7
                 260.6
## Feb 1980
                            7.5
## Mar 1980
                 291.6
                            8.3
## Apr 1980
                 275.4
                            7.8
                 275.3
## May 1980
                            7.9
## Jun 1980
                 231.7
                            6.6
```

```
autoplot(motel[,2:1]/1000, facet=TRUE) +
xlab("Year") + ylab("") +
ggtitle("Total monthly accommodation: Victoria, Australia")
```

Total monthly accommodation: Victoria, Australia

See what happens without the facet=TRUE argument
autoplot(motel[,2:1]/1000)

doesn't make much sense because of the differences in scale

qplot(Roomnights/1000, Takings/1000, data=as.data.frame(motel)) +
 ylab("Takings (\$million)") + xlab("Room nights (thousands)")


```
head(motel)
```

```
## Jan 1980 277.0 7.7
## Feb 1980 260.6 7.5
## Mar 1980 291.6 8.3
## Apr 1980 275.4 7.8
## May 1980 275.3 7.9
## Jun 1980 231.7 6.6
```

```
head(as.data.frame(motel))
```

```
#Back to slides

# Lag plots and autocorrelation
beer <- window(ausbeer, start=1992)
gglagplot(beer, lags=9)</pre>
```


What does the 'do.lines=FALSE' do?
gglagplot(beer, lags=9, do.lines=FALSE)

ACF ggAcf(beer) #from forecast package

Series: beer


```
r<-ggAcf(beer)
attributes(r)
```

```
## $names

## [1] "data" "layers" "scales" "mapping" "theme"

## [6] "coordinates" "facet" "plot_env" "labels"

## ## $class

## [1] "gg" "ggplot"
```

r\$data

```
Var2 Var3
##
                    Freq lag
            A -0.10190904
## 2
        Α
## 3
            A -0.65661956
## 4
        Α
            A -0.06027634
            A 0.86852930
## 5
                         5
## 6
        Α
            A -0.08915021
## 7
       A A -0.63513179 6
## 8
      A A -0.05416215
```

```
## 9
              A 0.83224495
                              8
## 10
         Α
             A -0.10787557
                             9
## 11
              A -0.57419959
                           10
## 12
              A -0.05460320
        Α
                            11
## 13
             A 0.77379390
                            12
## 14
        Α
             A -0.08019609
                            13
## 15
              A -0.56805745 14
## 16
             A -0.06626388 15
        Α
## 17
             A 0.70642954
                            16
## 18
             A -0.06535949 17
## 19
              A -0.52825861 18
```

r\$data\$Freq

r\$data\$Freq[4]

[1] 0.8685293

```
# Back to slides
autoplot(goog)
```


ggAcf(goog, lag.max=100)

elec2 <- window(elec, start=1980)
autoplot(elec2)</pre>

ggAcf(elec2, lag.max=48)

Students to run
?usdeaths
autoplot(usdeaths)

gglagplot(usdeaths)

ggAcf(usdeaths)

?sunspotarea
autoplot(sunspotarea)

gglagplot(sunspotarea, do.lines=FALSE)

ggAcf(sunspotarea)

Series: sunspotarea 0.5 -0.5 -0.5 Lag

```
# bAck to slides.

# White noise

# Set the seed for the random number generator in R
# This guarantees the same random numbers every time

set.seed(0)
wn <- ts(rnorm(36)) #rnorm(n, mean = 0, sd = 1)
autoplot(wn)+ggtitle("White noise")</pre>
```



```
set.seed(34)
wn <- ts(rnorm(36)) #rnorm(n, mean = 0, sd = 1)
autoplot(wn)+ggtitle("White noise")</pre>
```


set.seed(0)
wn1=ts(rnorm(3600,mean=100,sd=100))
autoplot(wn1)

ggAcf(wn1) #lag.max


```
set.seed(34)
wn1=ts(rnorm(3600,mean=100,sd=100))
autoplot(wn1)
```


ggAcf(wn1)


```
# Back to slides
# Pigs
pigs2 <- window(pigs, start=1990)
autoplot(pigs2) +
    xlab("Year") + ylab("thousands") +
    ggtitle("Number of pigs slaughtered in Victoria")</pre>
```

Number of pigs slaughtered in Victoria

ggseasonplot(hsales)

Seasonal plot: hsales

ggsubseriesplot(hsales)

gglagplot(hsales,do.lines=FALSE)

ggAcf(hsales)

Series: hsales


```
# + Seasonality evident in all plots
# + Cyclicity seen in first two plots
# + No trend
# + ACF only shows seasonality. Cycle length too long to show up here.
```