1. Considere a linha *L*, fronteira do conjunto

$$D = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + (y - 1)^2 \le 1 \land x^2 + y^2 \ge 1 \right\},$$

percorrida no sentido directo.

a) Parametrize o arco da linha L pertencente a circunferência de equação

$$x^2 + (y - 1)^2 = 1.$$

Resposta: Tendo em conta que se trata do arco da linha L pertencente a circunferência de raio 1, centrada em (0,1), uma parametrização do arco da linha, considerado, é

$$\begin{cases} x = \cos t \\ y = 1 + \sin t \end{cases}, t_0 \le t \le t_1.$$

As duas circunferências intersectam-se nos pontos $A=(\frac{\sqrt{3}}{2},\frac{1}{2})$ e $B=(-\frac{\sqrt{3}}{2},\frac{1}{2})$, sendo que o arco de circunferência considerado e percorrido no sentido indicado tem início em A e termina em B. O valor do parâmetro t em A obtém-se fazendo $x=\frac{\sqrt{3}}{2}$ e $y=\frac{1}{2}$ na

parametrização, conduzindo ao valor $t_0 = -\frac{\pi}{6}$; procedendo de forma análoga obtém-se que o valor do parâmetro t em B é $t_1 = \frac{7\pi}{6}$. Portanto uma parametrização do arco da linha é

$$\begin{cases} x = \cos t \\ y = 1 + \sin t \end{cases}, \quad -\frac{\pi}{6} \le t \le \frac{7\pi}{6}.$$

b) O integral de linha

$$\int_{L^+} (xe^x)dx + \left(\frac{1}{3}x^3 + xy^2\right)dy$$

pode ser calculado a partir de um integral duplo. Utilizando coordenadas polares indique o integral repetido que teria de calcular para determinar o valor do integral de linha considerado (não calcule o integral que indicou).

Resposta:

Sejam $\varphi(x,y)=xe^x$, $\psi(x,y)=\frac{1}{3}x^3+xy^2$ e A o domínio limitado pela linha L. A função φ é contínua e continuamente derivável em ordem a y, a função ψ é contínua e continuamente derivável em ordem a x, o domínio A é fechado, limitado e simplesmente conexo e a linha L é seccionalmente regular. Utilizando a fórmula de Riemann-Green tem-se

$$\int_{L^+} (xe^x) dx + \Big(\frac{1}{3}x^3 + xy^2\Big) dy = \int\!\int_A \Big(\frac{\partial (\frac{1}{3}x^3 + xy^2)}{\partial x} - \frac{\partial (xe^x)}{\partial y}\Big) dx dy = \int\!\int_A (x^2 + y^2) \, dx dy.$$

Considere-se as coordenadas polares $\begin{cases} x=\rho\cos\theta \\ y=\rho\sin\theta \end{cases}$. No domínio considerado a variável ρ varia desde a equação da circunferência $x^2+y^2=1$ à equação da circunferência $x^2+(y-1)^2=1$. Substituindo nessas equações x por $\rho\cos\theta$, y por $\rho\sin\theta$ e resolvendo em ordem a ρ obtém-se, respectivamente, $\rho=1$ e $\rho=2$ $\sin\theta$. Relativamente à variável θ : os pontos onde θ é mínimo e máximo são os pontos A e B, sendo que para ambos se tem $\rho=1$. Para obter θ resolvem-se as equações

$$\frac{\sqrt{3}}{2} = \rho \cos \theta = \cos \theta \wedge \frac{1}{2} = \rho \sin \theta = \sin \theta, \text{ que conduz a } \theta = \frac{\pi}{6},$$
$$-\frac{\sqrt{3}}{2} = \rho \cos \theta = \cos \theta \wedge \frac{1}{2} = \rho \sin \theta = \sin \theta, \text{ que conduz a } \theta = \frac{5\pi}{6}.$$

Então

$$A \to \begin{cases} x = \rho \cos \theta, & \frac{\pi}{6} \le \theta \le \frac{5\pi}{6} \\ y = \rho \sin \theta, & 1 \le \rho \le 2 \sin \theta. \end{cases}$$

Tendo ainda em conta que $x^2+y^2=\rho^2$ e que o jacobiano é ρ , o integral pretendido é

$$\int_{\frac{\pi}{6}}^{5\frac{\pi}{6}} \left(\int_{1}^{2\sin\theta} \rho^{3} d\rho \right) d\theta.$$