ASSIGNMENT WEEKS 1 AND 2

STUDENT NAME: HOUNKPEVI Françoise

Exercise 1

Q 1.1: Using Stata, generate per capita income (*pcinc*).

A: confer do file

Q 1.2: Using Stata, estimate the average per capita income and the total income of our population.

A: let's assume that the average per capita income is noted as (apcinc)

Variable	0bs	Mean	Std. Dev.	Min	Max
pcinc	10	111.9167	68.96954	46.66667	280

By using stata apcinc= 111.9167

*sum income

Variable	0bs	Mean	Std. Dev.	Min	Max
income	10	320	125.5211	140	560

From the above table the average income = 320 for 10 observations. It can therefore be deduced that the total income of the population would be equal to 10 times the average income which corresponds to 3200.

Q 1.3: Assume that, the poverty line is equal to 120, generate the variable per capita poverty gap (*pgap*), and then estimate its average (the per capita poverty gap should be normalized by the poverty line).

A:

gen pline = 120 gen pgap = 0 replace pgap = (pline-pcinc)/pline if (pcinc < pline) sum pgap [aw=hhsize]

Variable	Obs	Weight	Mean	Std. Dev.	Min	Max
pgap	10	33	.3005051	.2054157	0	.6111111

Q 1.4: Redo the question Q 1.3 using DASP.

A:

ifgt pcinc, pline(120) alpha(1) hsize(hhsize)

. ifgt pcinc, pline(120) alpha(1) hsize(hhsize)

Poverty index : FGT index Household size : hhsize Parameter alpha : 1.00

Variable	Estimate	STE	LB	UB	Pov. line
pcinc	0.300505	0.061199	0.162064	0.438946	120.00

Q 1.5: Assume that the purchasing power in region B is higher than that of region A by 20% and that of region C is higher than that of region A by 40%. In the case where the region A is the region of reference, generate the variable (*deflator*) as a price deflator index, and then generate the variable real per capita income (*rpcinc*).

A:

```
gen deflator = 1
replace deflator = 1.2 if region == 2
replace deflator = 1.4 if region == 3
gen rpcinc = pcinc/deflator
```

Q 1.6: Redo the question 1.3 and 1.4 using the real per capita income when the poverty line is 110.

```
A:
***Redo 1.3
sum rpcinc [aw=hhsize]
replace pline = 110
replace pgap = (pline-rpcinc)/pline if (rpcinc < pline)
sum pgap [aw=hhsize]
```

. sum rpcinc [aw=hhsize]

Variable	0bs	Weight	Mean	Std. Dev.	Min	Max
rpcinc	10	33	83.8961	44.54531	33.33334	233.3333

. sum pgap [aw=hhsize]

Variable	0bs	Weight	Mean	Std. Dev.	Min	Max
pgap	10	33	.3115571	.1825609	0	.6969697

****Redo 1.4

. ifgt rpcinc, pline(110) alpha(1) hsize(hhsize)

Poverty index : FGT index Household size : hhsize Parameter alpha : 1.00

Variable	Estimate	STE	LB	UB	Pov. line
rpcinc	0.311557	0.053215	0.191176	0.431938	110.00

Exercise 2

2.1 Using the file data_2, estimate the average per adult equivalent expenditures without using the sampling weight and by using the DASP command *imean*. What does this statistic refer to?

A:

. imean ae_exp

Index : Mean index

Variable	Estimate	STE	LB	UB
1: mean_ae_exp	40979.687500	865.346985	39282.609375	42676.761719

on average per capita expenditure per adult in the population is 40979.687500

2.2 By using the variables *strata*, *psu* and the sampling weight variable, initialise the sampling design, and then estimate the average per adult equivalent expenditure.

A:

2.3 Test whether the average per adult equivalent expenditure in region 1 is higher than the double of that of region 3.

A:

. sum ae_exp if region ==1

Variable	0bs	Mean	Std. Dev.	Min	Max
ae_exp	578	48255.71	45662.11	7840.201	452004.7

Mean of ae_exp in strata 1 = 48255.71 (A)

. sum ae_exp if region ==3

Variable	0bs	Mean	Std. Dev.	Min	Max
ae_exp	312	27784.74	28456.53	4935.043	315948.5

27784x2 = 55568 (B)

We remark that (A) < (B)

Therefore the average per adult equivalent expenditure in region 1 is less than the double of that of region 3.

2.4 Using the DASP command *dimean* test whether the average per adult equivalent expenditure for male household heads is higher than that of female households headed. Briefly discuss your results.

Exercise 3

Q 3.1 Use the data_2.dta data file, and then compute the population size of the sampled households.

A:

Q 3.2 Rank the per capita expenditures in ascending order and then generate the variable population share (ps) that includes the proportion of the population with corresponding per capita expenditures. Based on this, generate the variables percentiles (p) and quantiles (q).

A:

Q 3.3 Draw the cumulative distribution curve (X-Axis: the percentiles and Y-Axis: the corresponding per capita expenditures) (range of percentiles: min=0 and max=0.95).

A:

Q 3.4 Plot the quantile curve (X-axis percentiles (0 to 0.95) and Y-axis quantiles), and briefly discuss the results.

A:

Q 3.5 Using DASP, draw the quantile curves by the sex of the household head (percentiles (0 to 0.95)), and briefly discuss the results.

A:

Q 3.6 Using DASP, draw the density curves of the per capita expenditures for each of the rural and urban regions (range of per capita expenditures: min=0 and max=1000000), and briefly discuss the results.

A: