# Corso di Laboratorio di Fisica Medica Prof. Maria Giuseppina Bisogni

### Gamma spectroscopy with scintillator detectors

## **Experimental set-up**

#### Detector

- -NaI(TI) scintillator ORTEC 905-3
- -PMT + preamplifier, ORTEC
- -NIM HV power supply
- linear amplifier ORTEC 450
- -Multichannel Analizer ORTEC Easy-MCS
- -PC with software MAESTRO

Table I: Radioactive sources

| Isotopo | Emivita(y) | Energia g (keV) | BR     |
|---------|------------|-----------------|--------|
| Am241   | 432.2      | 60              | 0.359  |
| Na22    | 2.60       | 511             | 1.78   |
| Na22    | 2.60       | 1274            | 0.9998 |
| Cs137   | 30.17      | 662             | 0.851  |
| Co60    | 5.27       | 1174            | 0.9986 |
| Co60    | 5.27       | 1332            | 0.9986 |
| Ba133   | 10.52      | 31              | 0.99   |
| Ba133   | 10.52      | 356             | 0.62   |
| Ba133   | 10.52      | 81              | 0.34   |
| Ba133   | 10.52      | 303             | 0.18   |

More info <a href="https://www-nds.iaea.org/">https://www-nds.iaea.org/</a> http://nucleardata.nuclear.lu.se/toi/

#### **Technical documents at**

https://elearning.df.unipi.it/mod/folder/view.php?id=4177

#### **Tasks**

### 1. Linearity, calibration and energy resolution

- After the HV has been set and the detector signal connected to the MCA, acquire spectra with a number of different sources in turn, with the same settings! Ensure that sufficient statistics are obtained.
- What about the linearity? Make a plot of peak position against incident gamma ray energy. Use the gamma-ray energy values from Table I.
- Calibrate the MCA scale—find E(Chn.)
- Make a table detailing the energy of each peak you observe and the corresponding energy resolution (calculated after subtracting the

continuum under the peak).

## 2. Spectra characterization

- Find Compton Edge
- Backscatter peaks
- Other peaks
- Compare with theory

## 3. Estimation of source activity

- Put the Cs 137 source at 20 cm from the detector
- Take a spectrum for a known time
- Take the number of counts in the spectrum (*N*<sub>net</sub>), once subtracted the background and the continuum under the peak.
- Consider the live time for each acquisition *T*
- Calculate the geometrical acceptance  $^{4\pi}/_{\Omega}$
- Consider the detector intrinsic peak efficiency  $\varepsilon_{ip}$  (using the plot in figure 1)
- Consider the branching ratio (BR) for the detected gammas (Table 1)
- The source activity (decays/second) can be then calculated and compared with the expected (74 kBq at 2/2005 for all sources):

$$A = \frac{N_{net}}{T} \frac{4\pi}{\Omega \varepsilon_{ip} BR}$$

- □/□ of Lead
- Acquire spectra of Cs137 with different thicknesses of lead and aluminum between the detector and source for a fixed time.
- The number of counts in the spectra can be used with equation:

$$I = I_0 e^{-\mu t}$$

to solve for  $\square$ .

 Compare fit results with http://www.nist.gov/pml/data/xray\_gammaray.cfm

# 4. Background acquisition

- Start an overnight acquisition without any source
- Analyze the resulting spectrum, classify the observed peaks and find the corresponding unknown radionuclides



Figure 1