Introducción a LATEX

Guillermo F. Rubilar

(Basado en el Tutorial de LATEX, por Juan Antonio Navarro Pérez, Universidad de las Américas - Puebla)

10 de abril de 2018

Contenidos

Introducción

2 Edición Básica

¿TEX y LATEX?

- TEX es un sistema profesional de *composición tipográfica* desarrollado por Donald E. Knuth (1977, Stanford).
- TEX fue diseñado para producir documentos (especialmente con expresiones matemáticas) con la más alta calidad de imprenta.
- Leslie Lamport (1980's), para facilitar su uso por parte de los autores.

¿TEX y LATEX?

- Michael Spivak desarrolla ams-TeX, ahora incorporado en LATEX como amsmath (1980's).
- LATEX 2.09 se transforma en LATEX2e (1990's).
- El proyecto LATEX 3.

Word/Writer vs LATEX

Word/Writer

- WYSIWYG
- Muy fácil de usar
- Facilidades para insertar objetos
- Lento y malo para tratar fórmulas
- Énfasis en Diseño

<u></u>ΔΤ_FΧ

- Preprocesado
- No siempre fácil
- Limitaciones por formatos de archivo
- Muy bueno para fórmulas
- En Contenido

¿Por qué usar LATEX?

- Produce documentos con calidad de imprenta.
- Es utilizado por editoriales (Springer, Elsevier, ...), revistas y congresos especializados.
- Es una herramienta indispensable para físic@s, geofísic@s, astrónom@s, matemátic@s, etc. y especialmente para investigador@s.
- Es la mejor opción para escribir su tesis!.

Filosofía de LATEX

La persona que escribe debe de preocuparse del *contenido* de sus documentos, y no (directamente) de la *apariencia* que éstos tendrán en el resultado final.

Mi primer documento

```
\documentclass{article}
\author{Nombre de Autor(a)}
\title{Mi Primer Documento}

\begin{document}
\maketitle

Hola. Este es mi primer documento.
\end{document}
```

Proceso de compilación

Forma tradicional

- Compilar:
 - > latex archivo.tex
- Convertir archivo .dvi a Pdf:
 - > dvipdf archivo.dvi

Forma rápida (Recomendada)

- Compilar directamente a pdf:
 - > pdflatex archivo.tex

Clases de documentos

Clases estándares

- article Artículo.
- report Reporte.
- book Libro.
- letter Cartas.

Clases extras

- beamer Presentaciones.
- prosper Presentaciones.
- poster Poster.

Unidades estructurales

Para libros y reportes:

- \part{...}
- \chapter{...}

Para libros, artículos y reportes:

- \section{...}
- \subsection{...}
- \subsubsection{...}

Índice: \tableofcontents.

Listas con Viñetas

```
\begin{itemize}
  \item Un elemento de la lista.
  \item Otro elemento de la lista.
  \end{itemize}
```

- Un elemento de la lista.
- Otro elemento de la lista.

Listas Enumeradas

```
\begin{enumerate}
  \item El primer elemento de la lista.
  \item El segundo elemento de la lista.
\end{enumerate}
```

- 1 El primer elemento de la lista.
- 2 El segundo elemento de la lista.

Listas Anidadas

- El primer elemento de la lista.
 - Un sub elemento.
 - ② El segundo sub elemento.
- 2 El segundo elemento de la lista.
 - Con algunos puntos . . .
 - ... importantes.
- Y el último elemento.

Listas Anidadas

```
\begin{enumerate}
 \item El primer elemento de la lista.
 \begin{enumerate}
   \item Un sub elemento.
   \item El segundo sub elemento.
  \end{enumerate}
  \item El segundo elemento de la lista.
  \begin{itemize}
   \item Con algunos puntos \dots
   \item \dots importantes.
  \end{itemize}
  \item Y el \'ultimo elemento.
\end{enumerate}
```

Citas Textuales

... como la princesa dijo:

"Gracias por rescatarme. Pero la verdadera princesa está en otro castillo."

Y tenías que avanzar a otro castillo.

```
\dots como la princesa dijo:
\begin{quote}
''Gracias por rescatarme. Pero la verdadera princesa
est\'a en otro castillo.''
\end{quote}
Y ten\'ias que avanzar a otro castillo.
```

Texto Enfatizado

Decimos que un número es racional si existen dos enteros . . .

Decimos que un n\'umero es \emph{racional} si existen dos enteros \dots

- \emph{...} enfatiza parte del texto.
- ¡Piensa en contenido, no en formato!

Notas al pie de página

Uno de los grandes personajes de la F\'isica sin duda es Sir Isaac Newton\footnote{Isaac Newton: 25 de diciembre de 1642 (jul.) / 4 de enero de 1643 (greg) -- 20 de marzo (jul.) / 31 de marzo de 1727 (greg.) fue un f\'isico, fil\'osofo, te\'ologo, inventor, alquimista y matem\'atico ingl\'es.} quien, entre otras cosas, desarroll\'o los fundamentos de la \emph{Mec\'anica}.

Uno de los grandes personajes de la Física sin duda es Sir Isaac Newton¹ quien, entre otras cosas, desarrolló los fundamentos de la *Mecánica*

¹Isaac Newton: 25 de diciembre de 1642 (jul.) / 4 de enero de 1643 (greg) – 20 de marzo (jul.) / 31 de marzo de 1727 (greg.) fue un físico, filósofo, teólogo, inventor, alquimista y matemático inglés.

Comandos de Formato

(OCK OIM ()	TOIIIAIIO
	Serif
	Typewriter
	Negritas
	Itálicas
	Slanted
	SMALL CAPS
	Subrayado

Romano

\textrm{}

Hay versiones \mathbf{X} equivalentes para modo matemático. Y \mathbf{A} .

Tamaño de Letra

```
{ \in { \setminus iny } }
                   Pequeñita
{\scriptsize}
                   scriptsize
{\footnotesize}
                   tamaño de nota al pie
{\small }
                   Pequeña
{\normalsize }
                   Normal
                   Grande
{\large }
                   Grandota
{\Large }
                   Grandototota
{\LARGE }
                   Enorme
{\huge }
                   Mega Enorme
{\Huge }
```

Comandos de Alineación

- \begin{center}\end{center}
- \begin{flushleft} \end{flushleft}
- \begin{flushright} \end{flushright}
- \begin{sloppypar} \end{sloppypar}

Español y LATEX

Forma tradicional

Input	Resultado
\'0	ó
\'u	ú
\'a	á
\'i	í
\~n	ñ
\~N	Ñ
?'	Ĺ
į '	i

Español y LATEX

\usepackage[spanish, activeacute]{babel}

Input	Resultado
, 0	ó
'u	ú
'a	á
'i	í
~n	ñ
'N	Ñ
?'	į
۱,	:

Español y LATEX

- El preámbulo \usepackage[spanish,activeacute]{babel} también se encarga de los cortes de palabras al final de las líneas (recomendado!).
- \usepackage[latin1]{inputenc} permite ingresar los tildes directamente en el texto. (no lo recomiendo, si otros usuarios usan Windows!, problemas de codificación).

De ahora en adelante, supondremos que estamos usando \usepackage[spanish,activeacute]{babel}

Reglas generales de edición

- Usar espacios para separar palabras.
- Un espacio vale igual que mil.
- Los fines de línea sencillos no valen.
- Usar líneas vacías para separar párrafos.
- Una línea vacía vale igual que mil.
- El espaciado y las sangrías son trabajo de LATEX, y lo sabe hacer muy bien.
- No forzar espacios ni cortes de línea.

Fórmulas en línea

Las fórmulas en línea ocurren dentro de la secuencia natural de un párrafo.

Sea x un n'umero real en el intervalo (0, 1). Observe tambi'en que $x^2 < x^2 < 1$.

Sea x un número real en el intervalo (0,1). Observe también que $0 < x^2 < 1$.

Fórmulas en línea

- Los signos \$ \$ indican el contenido matemático.
- Todo el contenido matemático (y sólo el contenido matemático) debe ser marcado.
- No usar el contenido matemático para poner itálicas.
- Y no usar comandos de formato para marcar contenido matemático.
- Pensar en el contenido, ¡no en el formato!.

Letras griegas minúsculas

```
lpha \alpha eta \theta eta \vartheta eta \vartheta ... \lambda \lambda \sqrt{\lambda} \text{varsigma}
```

Legras griegas mayúsculas

Operaciones binarias

Acentos matemáticos

```
\hat a \hat{a} \check a \check{a} \tilde a \tilde{a} \acute a \acute{a} \grave a \grave{a} \dot a \dot{a} \bar a \bar{a} \vec a \vec{a}
```

Símbolos diversos

```
X
                       \prime
    \aleph
A
    \forall
                       \hbar
    \emptyset
                      \exists
    \imath
                       \nabla
   \neg
                      \jmath
    \surd
                       \flat
    \ell
                       \top
```

Ц	\natural	Ø	\wp
\perp	\bot	#	\sharp
R	\Re		\I
.	\clubsuit	3	\Im
\Diamond	\diamondsuit	∂	∂
\triangle	\triangle	\Diamond	\heartsuit
∞	\infty	\	\backslash
^	\spadesuit	Ω	$\mbox{\ensuremath{nho}}$
	\Box	\Diamond	\Diamond
_	\angle		

- Nombres de funciones de uso común: \sin, \cos, \log, \lim, ...
- Algunos comandos típicos:

$$\begin{array}{ll} \texttt{\sc y} & \sqrt{2} \\ \texttt{x \leq 4} & x \leq 4 \\ \texttt{\sc 1} \texttt{\sc 3+i} & \frac{1}{3+i} \end{array}$$

Exponentes y subíndices

- Exponentes: x^2 : x^2
- Subíndices: x_i : x_i
- Para usar exponentes y subíndices de más de un caracter, usar {}. Ejemplos

$$\begin{array}{lll} & \mathbf{x}^{2}\mathbf{x} & x^{2\pi} \\ & \mathbf{x}_{-}\{\mathbf{i}+1\} & x_{i+1} \\ & \mathbf{x}_{-}\{\mathbf{i}+1\}^{2}\} & x_{i+1}^{2} \\ & \mathbf{x}_{-}\{(\mathbf{i}+1)^{2}\}\} & x_{(i+1)^{2}} \end{array}$$

Límites y sumatorias

- Comandos: \lim, \sum, \int
- Ejemplos:

$$\begin{split} &\lim_{x\to 0} \sin(x)/x & \lim_{x\to 0} \sin(x)/x \\ &\lim_{i=0}^n i^2 \end{split}$$

$$F(x) = \int_0^1 f(x), dx \qquad F(x) = \int_0^1 f(x) dx$$

Entorno "equation"

```
La suma de cuadrados

begin{equation}
  \sum_{i=0}^n i^2

\end{equation}

tiene una f\'ormula muy sencilla.
```

La suma de cuadrados

$$\sum_{i=0}^{n} i^2 \tag{1}$$

tiene una fórmula muy sencilla.

Entorno "equation"

```
\dots y despu\'es de muchos c\'alculos llegamos a la
inevitable conclusi\'on que
\begin{equation}
  \lim_{x \to 0} \frac{\sin(x)}{x} = 1.
\end{equation}

Pasando a otros temas \dots
```

...y después de muchos cálculos llegamos a la inevitable conclusión que

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1. \tag{2}$$

Pasando a otros temas . . .

Notas de Redacción

- Las fórmulas deben ocurrir de manera natural dentro de la lectura de un párrafo (las ecuaciones se leen como parte del texto!).
- No dejar líneas en blanco entre los comandos \begin{equation}, \end{equation} y el resto de las líneas del párrafo. Recuerda que la fórmula forma parte del párrafo.
- LATEX numera automáticamente las ecuaciones!.
- En ocasiones es conveniente agregar pequeños espacios:
 - \, espacio delgado: $\int f(x) dx$ (\$\int f(x)\,dx\$).
 - \; espacio ancho: $\int f(x) \ dx$ (\$\int f(x)\; dx\$).
 - \ espacio normal: $\int f(x) dx$ (\$\int f(x)\ dx\$).
 - \quad espacio grande: $\int f(x) dx$ (\$\int f(x)\quad dx\$).
 - \qquad espacio más grande: $\int f(x) dx$ (\$\int f(x)\qquad dx\$)

Arreglos y matrices

```
\begin{equation}
\left(\begin{array}{ccc}
    \cos\theta & \sin\theta & 0 \\
    -\sin\theta & \cos\theta & 0 \\
    T_x & T_y & 1
\end{array}\right)
\end{equation}
```

$$\begin{pmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
T_x & T_y & 1
\end{pmatrix}$$
(3)

Arreglos y matrices

- Los comandos \left y \right ponen paréntesis grandes. Se pueden usar combinaciones de: (,), [,], \{, \}, |, ...
- El ambiente array recibe una lista de las columnas del arreglo, una letra: 1 (left), c (center), r (right) para indicar la alíneación de cada columna.
- Las columnas se separan con & y los renglones con \\.

Funciones por partes

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ 1 - x & 1 \le x \le 2\\ 0 & \text{en cualquier otro caso} \end{cases}$$
 (4)

Funciones por partes

```
\usepackage{amsmath}
\begin{equation}
  f(x) = \left\{ \right\}
    \begin{array}{11}
      x & 0 \leq x \leq 1 \\
      1 - x & 1 \leg x \leg 2 \\
             & \text{en cualquier otro caso}
    \end{array}\right.
\end{equation}
```

- \right. coloca un delimitador invisible (para usar \text).
- No olvidar incluir el paquete amsmath.

Múltiples ecuaciones alineadas

$$I = I_{cm} + MD^2 (5)$$

$$= \frac{1}{12}ML^2 + M\left(\frac{L}{2} - \frac{L}{5}\right)^2 \tag{6}$$

$$= \frac{13}{75}L^2M (7)$$

$$\approx 9,7067 \times 10^{-2} [kg \, m^2].$$
 (8)

Múltiples ecuaciones alineadas

```
\usepackage{amsmath}
\begin{eqnarray}
    I &=&I_{cm}+MD^{2} \\
        &=&\frac{1}{12} ML^2 + M\left( \frac{L}{2} -\frac{L}{5} \right)^2 \\
        &=&\frac{13}{75} L^{2} M \\
        &\approx & 9,7067 \times 10^{-2} [kg\,m^2].
\end{eqnarray}
```

Múltiples ecuaciones alineadas: align de amsmath

El paquete amsmath suministra el entorno align, con una sintaxis casi igual a eqnarray, pero con algunas mejoras en detalles de alineación:

$$I = I_{cm} + MD^2 (9)$$

$$= \frac{1}{12}ML^2 + M\left(\frac{L}{2} - \frac{L}{5}\right)^2 \tag{10}$$

$$=\frac{13}{75}L^2M\tag{11}$$

$$\approx 9,7067 \times 10^{-2} [kg \, m^2]. \tag{12}$$

Múltiples ecuaciones alineadas: align de amsmath

Referencias Cruzadas

El torque resultante es la suma del torque aplicado sobre 1 más el torque aplicado sobre 2. Es decir:

$$\tau_{total} = \tau_1 + \tau_2,\tag{13}$$

donde

$$\tau_1 = r_1 F_1 \sin \theta_1, \tag{14}$$

es positivo ya que la rotación va en sentido anti-horario, mientras que

$$\tau_2 = -r_2 F_2 \sin \theta_2,\tag{15}$$

es negativo ya que la rotación va en sentido horario. Luego, reemplazando (14) y (15) en (13), tendremos que ...

```
El torque resultante es la suma del torque aplicado
sobre 1 m\'as el torque aplicado sobre 2. Es decir:
\begin{equation}
\tau_{total}=\tau_1+\tau_2, \label{Ttotal}
\end{equation}
donde
\begin{equation}
\tau_1 = r_1 F_1  \sinh \theta_1,  \lambda = T_1 
\end{equation}
es positivo ya que la rotaci\'on va en sentido
anti-horario, mientras que
\begin{equation}
tau_2 = -r_2 F_2 \sin\theta_2, label{T22}
\end{equation}
es negativo ya que la rotaci\'on va en sentido
horario. Luego, reemplazando (\ref{T11}) y (\ref{T22})
en (\ref{Ttotal}), tendremos que \dots
```

Referencias Cruzadas

- Se puede poner \label{..} después de:
 - \begin{equation}, \begin{eqnarray}, ...
 - \begin{table}, \begin{figure}, ...
 - \chapter{..}, \section{..}, ...
 - Casi cualquier cosa que numere.
- Se puede poner \ref{..}:
 - ¡Donde quieras en el documento!
- Recuerda recompilar para actualizar referencias.
- amsmath también suministra \eqref{..} para citar ecuaciones, que permite reemplazar (\ref{..}) por \eqref{..}.

Consejos de Redacción

- Usa nombres descriptivos para las etiquetas:
 - newton, maxwellhom, solucion2
- Evita usar nombres que no te dicen nada:
 - tdmapmu, ec2, p

Citas Bibliográficas

```
\begin{document}
Si Ud. quiere ser sec@ en Relatividad General,
1\'ease este librito \cite{MTW73}.
\begin{thebibliography}{99}
\bibitem{MTW73} C.W. Misner, K.S. Thorne and J.A.
Wheleer, {\em Gravitation}, W.H. Freeman and Company,
San Francisco (1973).
\end{thebibliography}
\end{document}
```

Tablas Simples

Año	Ventas	Inversión
1999	\$ 3.900	1.4 %
2000	\$ 2.700	3.6 %
2001	\$ 3.200	2.3 %
2002	\$ 3.700	4.9 %
2003	\$ 4.100	3.4 %

Tablas Simples

```
\begin{center}
 \begin{tabular}{c|cc}
   A\~no & Ventas & Inversi\, on \\ \hline
   1999 & \$ 3.900 & 1.4\% \\
   2000 & \$ 2.700 & 3.6\% \\
   2001 & \$ 3.200 & 2.3\% \\
   2002 & \$ 3.700 & 4.9\% \\
   2003 & \$ 4.100 & 3.4\% \\
 \end{tabular}
\end{center}
```

Tablas Simples

- El ambiente tabular se parece mucho a array, pero funciona en modo texto.
- Usa barras | en la descripción de la columna para indicar lineas verticales, y el comando \hline para líneas horizontales.
- Sugerencia: No agreges demasiadas líneas a una tabla, usa sólo las necesarias para separar o distinguir los valores importantes.

Multicolumnas

Originales		Transformados	
\boldsymbol{x}	y	x	y
0.0	0.0	0.5	0.5
4.0	7.0	2.0	3.5
5.0	3.0	2.5	1.5
3.0	5.0	1.5	2.5

Multicolumnas

```
\begin{center}
 \begin{tabular}{cc|cc}
    \multicolumn{2}{c|}{Originales} &
         \multicolumn{2}{c}{Transformados} \\
      $x$ & $y$ & $x$ & $y$ \\ \hline
      0.0 & 0.0 & 0.5 & 0.5 \\
     4.0 & 7.0 & 2.0 & 3.5 \\
     5.0 & 3.0 & 2.5 & 1.5 \\
     3.0 & 5.0 & 1.5 & 2.5 \\
 \end{tabular}
\end{center}
```

Elementos Flotantes

En LaTeXexisten diversos tipos de **elemento flotantes**, cuya posición en el documento final es decidida al momento de compilar: tablas y figuras

Año	Ventas	Inversión
1999	\$ 3.900	1.4 %
2000	\$ 2.700	3.6 %
2001	\$ 3.200	2.3 %
2002	\$ 3.700	4.9 %
2003	\$ 4.100	3.4 %

Cuadro: Ventas Empresa Pato Feliz

Elementos Flotantes

```
\begin{table}
 \begin{center}
   \begin{tabular}{c|cc}
    \end{tabular}
  \end{center}
 \caption{Ventas Empresa Pato Feliz}
 \label{tab:ventaspatofeliz}
\end{table}
```

Elementos Flotantes

- LATEX tratará de acomodar los elementos flotantes lo mejor que pueda en las páginas cercanas al código de la tabla.
- No tratar de forzar la posición de la tabla en el documento.
 Dejar que LATEX haga su trabajo.
- Utilizar \ref{..} y \label{..} para hacer referencia a la tabla. Evitar redacciones del tipo: "...en el cuadro siguiente:"

Figura: Un bloque sostenido por tres cuerdas.

```
\usepackage{graphicx}
\begin{figure}
 \begin{center}
   \includegraphics[width=5cm]{3cuerdas.pdf}
 \end{center}
 \caption{Un bloque sostenido por tres cuerdas.}
 \label{fig:3cuerdas}
\end{figure}
```

- (Cuando se generan archivos .ps (compilando con latex) se pueden insertar imágenes en formato .eps, .ps.)
- Cuando se generan archivos .pdf (compilando con pdflatex)
 se pueden insertar imágenes en formato .jpg, .png, .pdf.
- Recomiendo Inkscape, Python, LibreOffice para crear gráficos vectoriales (.svg, .ps, .eps, .pdf); Gimp para fotos (.png, .jpg).

- La opción [width=6cm] se puede usar para modificar el ancho tamaño de una imagen. También existe la opción height, p.ej. [height=5cm].
- También puede usarse la opción [scale=0.6] para re-escalar la figura.

\includegraphics[scale=0.6]{transistor.pdf}

Índices

- Los comandos \listoffigures y \listoftables generan los índices de figuras y tablas respectivamente.
- En los índices se agregan sólo las figuras y tablas que hayas agregado como elementos flotantes.