Esercizio 1 Esercizio 2	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti Calcolare il det di una 2 x 2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlaria, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A) = 2$, tutte le altre $rk(A) = 3$;
Bsercizio 3	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora det A = 0 Se A è una matrice simmetrica, allora A² è simmetrica ⇒ M simmetrica se M = M^T ⇒ M^T · M^T = (M · M)^T ⇒ M = M^T , sositiulsci M con A² Sia A ∈ M_{3,2}(®) di rango 2, allora il sistema lineare AX = B ammetre soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c rk(AB) = 3 allora il sistema è impossibile (non ammette soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c rk(AB) = 3 allora il sistema è impossibile (non ammette soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c rk(AB) = 1 allora il sistema è impossibile (non ammette soluzioni per Rouché-Capelli (∞2-3) A³ - A = I₂ → A(A² - I) = I ⇒ (A² - I) = A⁻¹ quindi AA⁻¹ = I (A è invertibile se A² = I altrimenti se A = 0 non è invertibile A³ - A = (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bsercizio 4	 I vettori v₁,, v_n sono base di R^N se rk(M) = N con M = (v₁ v_n) (M matrice composta dai vettori) Base ortogonale di v,w:
	 Gauss: R_i = R_i + (-a_{ij}/a_{jj}) · R_j Rouché-Capelli: ∞#incognite-rk(A) A invertibile se det A ≠ 0, det(A⁻¹) = 1/46tA A non invertibile se A^N = 0 Il prodotto di due matrici diagonali è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica Teorema di Binét: det(AB) = det A · det B Calcolo matrice inversa: scriviamo (M D), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss dal basso verso l'alto), otteniamo (I/M⁻¹)

	ii.
•	fat
:	già
	rcizi
	ese
;	g.
	nnno
,	Qui ci andranno gli esercizi già fatti
	:5 :5
	Qui

l	l			Į
$\sqrt{1} = 1$	$\sqrt{4}=2$	$\sqrt{9} = 3$	$\sqrt{16} = 4$	$\sqrt{25} = 5$
$\sqrt{36} = 6$		$\sqrt{64} = 8$	$\sqrt{81} = 9$	$\sqrt{100} = 10$
$\sqrt{121} = 11$	$\sqrt{144} = 12$	$\sqrt{169} = 13$	$\sqrt{196} = 14$	$\sqrt{225} = 15$
$\sqrt{256} = 16$		$\sqrt{324} = 18$	$\sqrt{361} = 19$	$\sqrt{400} = 20$
$\sqrt{441} = 21$		$\sqrt{529} = 23$	$\sqrt{576} = 24$	$\sqrt{625} = 25$
$\sqrt{676} = 26$		$\sqrt{784} = 28$	$\sqrt{841} = 29$	$\sqrt{900} = 30$