UNCLASSIFIED

AD 407 333

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63-4-1

AD No. 407333 DDC FILE COPY

United States Atomic Energy Commission Division of Technical Information

009

(5) 626

7 (C) OTI-131(May 1962)

WAVAL POSTGRADUATE SCHOOL

THESIS

Divinitiation of reposit, material of the specimens of th

TANGER I., BLACOROTER, IR.

LEMENTAL, INSTER STATES SAVE

LIBRARY USZNAVAL POSTGRAĐUGTE YCHOOF MONTEREY, CALIFORNIA

INVESTIGATION OF THERMAL NEUTRON FLUX PERTURBATION IN A POLYETHYLENE MEDIUM BY USE OF GOLD FOIL DETECTORS

Edward C. Copeland

and Roger L. Reasonover, Jr. U.S. HAVAL POSTGRAĐUATE SCHOOL MONTEREY, CALIFORNIA

> FLUX PERTURBATION IN A POLYETHYLENE MEDIUM BY USE OF GOLD FOIL DETECTORS, INVESTIGATION OF THERMAL NEUTRON

-Lieutenanty-United-States-Mavy Edward C. Copeland and

.Lieurenant, United States Nay y Roger L. Reasonover, Jr.

Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

United States Naval Postgraduate School Monterey, California 1961

and the same of th And the second s

MEDIUM BY USE OF GOLD FOIL DETECTORS FLUX PERTURBATION IN A POLYETHYLENE

Edward C. Copeland

INVESTIGATION OF THERMAL NEUTRON

363333

the thesis requirements for the degree of

MASTER OF SCIENCE

This work is accepted as fulfilling

Roger L. Reasonover, Jr.

United States Naval Postgraduate School

from the PHYSICS

Character Market

20

Chairman Dept. of Physics

compared with the theoretical predictions of Bothe and Skyrme, and with activated gold foils of varying thicknesses. The experimental data are polyethylene moderated, was investigated experimentally through use of ABSIENA.

The neutron flux perturbation in a homogeneous thermal reactor, the modifications introduced by Tittle and by Ritchie and Eldridge.

Experimental determination of the thermal neutron flux at the center Skyrme's theory as modified by Ritchie and Eldridge give the best results cyer a range of foil thickness from two to ten mils. The greatest deviation of theoretical calculations from experimental data is less than 3%. of the core of the AGN-201 reactor indicates that Skyrme's theory and/or

moderated reactors experimental determinations here-been compared with the Determinations of other investigators for gold detectors in graphite agree to within 3% with the predictions of the Skyrme theory. In water-

-The_wilters.wish.to.express their appreciation to Professor William. W. Names of the U.S. Naval, Rostgraduate School for his patient assistance and encouragement during this investigation. ı)

TABLE OF CONTENTS

4
Introduction Definitions of Parameters
Theoretical
Experimental
Results
Analysis of Results
Conclusions
Bibliography
Appendix I: Summery of Data
Appendix II: Analysis of Peak-to-Total Ratio

##

LIST OF ILLUSTRATIONS

Fígure		Page
1.	Skyrme Function	ø
7	Variational ratio for Ritchie's Equation	7
ë.	Flux Perturbation Correction Factors	6
÷	Spectrometer Calibration Curve	11
۶.	Experimental Results	15
•	Comparison of Flux Depression Effects	17
7.	Thermal Moutron Flux Determination	19
4	Germa Spectrum: 2.69d Au-198	31

1. INTRODUCTION

When determining thermal neutron flux by the activation of a pure foil target, it is necessary to apply a correction for flux perturbation due to the presence of the target foil. This perturbation manifests itself in two effects:

- (a) the outside layers of the foll will absorb neutrons, thus partially shielding the inner layers, and
- (b) absorption of neutrons by the foil depletes the number of neutrons in the diffusion medium around the foil.

The net result is a depression in the flux. That is, the flux level as seen by the foil is decreased below its normal value.

Bothe (1) considered the problem of neutron flux perturbation using first-order diffusion theory. His results were later modified by Tittle (2,3). Subsequently, the problem was attacked by Skyrme (4) utilizing the the one-speed transport theory. Most recently, Ritchie and Ridridge (5) have discussed both approaches and proposed a refinement to the Skyrme theory as being most appropriate.*

The present investigation presents experimental data for flux variation in a polyethylene-moderated medium. In order to extrapolate these measurements to the unperturbed flux it is necessary to examine the several theories. Comparisons with experiment have not been particularly successful in deciding between theories. However, it might appear that the most reliable value for the unperturbed flux would be given by that showing the best agreement.

* Since the inception of this investigation, Dalton and Daborn (16) have proposed a theory which converts the transport equation to an iterative integral equation which is then solved by computer methods. Comparison of the experimental results with their approach is not included in this investigation.

DEFINITIONS

(Numerical values indicated below apply to this investigation.)

- foil thickness in cms.

- macroscopic cross-section for absorption of thermal neutrons in

the foil (5.19 cms.⁻¹)

- foil radius (0.635 cms)

 $E_3(x)$ - the exponential integral of the third order = $\int_{-2}^{\infty} \frac{e^{-yx}}{3} dy$

. the scattering mean free path of the diffusion medium (0.625 cm)

- the transport mean free path of the diffusion medium

$$\lambda_{\rm tr} = \frac{\lambda_{\rm s}}{1 - \cos 0} \qquad (0.731 \text{ cm})$$

cos 0 - the average value of the cosine of the scattering angle (0.143)

- total mean free path of the diffusion medium (0.616 cm)

- diffusion length of the diffusion medium (2.315 cm)

- the absolute disintegration rate of the foil after irradiation 8°(x)

- gamma mass absorption coefficient for gold $(0.19~{
m cm}^2/{
m gm})$

- mass of the foil in grams

- atomic weight of the foil (198) - Avogadro's Number - thermal absorption cross-section for gold at 0.0253 ev (98.8 barns)

- the average thermal absorption cross-section for the foil

- total time of irradiation of the foil in minutes

· elapsed time between irradiation and counting, in minutes

- the decay constant for Au-198 (1.78 \times 10^{-4} min. $^{-1}$)

macroscopic absurption cross-section of the diffusion medium

the ratio of the scattering cross-section to the total crosssection of the diffusion medium (0.986)

- the average observed thermal neutron flux

the total thermal neutron flux in the undisturbed medium

Subscripts: B signifying Bothe, T - Tittle,

S - Skyrme, and R - Ritchie

- measured number of events per second occurring under the

detector efficiency (0.118 at a sample-to-detector distance photopeak

- gamma self-absorption correction

of three cms)

- factor for internal conversion (0.96)

- the peak-to-total ratio (0.725)

2. THEORETICAL

Bothe's theory for perturbation of thermal flux by a target foil, based on first-order diffusion theory, assumes the following:

- (1) a medium of infinite extent containing a uniformly distributed source.
- (2) one-speed isotropic laboratory scattering, and
 - (3) a foil which is a pure absorber.

His expression is:

$$\mathbf{r_B} = \frac{\left[\frac{1}{2} - \frac{8}{3}(\mathbf{x})\right] 1/x}{1 + \left[\frac{1}{2} - \mathbf{r_3}(\mathbf{x})\right] \cdot \mathbf{s_B}}$$
 (1)

where $g_{
m B}$ is given by one of the following equations:

$$\mathbf{s_B} = \left[\left(\frac{r}{\lambda_{\mathrm{S}}} \right) \left(\frac{3L}{2r + 3L} \right) - 1 \right] \text{ for } r >> \lambda_{\mathrm{S}}$$

$$\mathbf{s_B} = 0.46 \frac{r}{\lambda_{\mathrm{S}}}$$

$$\text{for } r << \lambda_{\mathrm{S}}$$

Iftile concluded that the above Equation (I) was basically correct; however, he felt that the accuracy of the expression was increased by use of the transport mean free path rather than the scattering mean free path. We gives, replacing B in Equation (I):

$$\mathbf{x_T} = \left[\left(\frac{3r}{2\lambda_{LT}} \right) \left(\frac{L}{r+L} \right)^{-1} \right]$$
 for $r >> \lambda_{LT}$
 $\mathbf{x_T} = 0.68 \quad \frac{r}{\lambda_{LT}}$ for $r << \lambda_{LT}$

Skyrme approached the perturbation problem using one-speed transport theory, involving a transport theory calculation of the neutron flux in the medium evaluated at the position of the foil and averaged over its

surface. The basic assumptions concerning the isotropic field are the same as Bothe's. Skyrme's original equation has been transformed by Ritchie and Eldridge to give a relation of the same form as Equation (1):

$$F_S = \frac{\left[\frac{1}{2} - E_3(x)\right] 1/x}{1 + \left(\frac{1}{2} - E_3(x)\right)} \cdot g_S$$
 (1)

where
$$g_S = \frac{3L}{2\lambda_L}$$
 · S $\left(\frac{2r}{L}\right)$ and S $\left(\frac{2r}{L}\right)$ = $1 - \frac{4r}{\pi}$ $\int_{1}^{1} \left(1 - \frac{r}{L}\right)^2 = \frac{2r}{L} \frac{r}{4} d\frac{r}{4}$

defined as the Skyrme Function. (Figure 1)

Ritchie and Eldridge proposed further that the flux depression is represented better in the general case of a foil of finite dimensions if $s_{\rm S}$ is multiplied by the ratio $\left[s_{\rm V}/g_{\rm S}^{\rm co}\right]$ which is presented graphically in figure 2. Therefore,

Essentially, the numerator of Equation (II) gives the correction for the foil "self-protection" effect while the denominator corrects for the neutron depression in the diffusion medium due to absorption. The foil radius, the size of which is dictated by the physical dimensions of the reactor access, is comparable with $\lambda_{\rm s}$ and $\lambda_{\rm tr}$ in this investigation, necessitating a choice of formula for the computation of $g_{\rm s}$ and $g_{\rm T}$. Freilminary computations and comparisons with experimental data indicated that the formula for r << λ are most nearly valid. This difficulty does not arise in $g_{\rm s}$ or $g_{\rm p}$.

The computed values of the g-factors are listed in Table I^{*} together with total flux depression ratios as given by the several theories. The

flux depression ratios are also presented graphically in Figure 3.

THE STATE OF STATE OF

Circular gold folls of 0.50 inch diameter were compounded in increments of two mils to provide a range of thicknesses from two to ten mils. These folls were mounted at the center axially and longitudinally of a ten-inch cylicatrical polyethylene rod of 0.80 inch diameter which, in ture, filled the glory hole of the AGN-201 reactor. Thus each foll was irradiated at the center of the reactor core. The power level was the same for each irradiation to within 1%. Time of irradiation was accurate to within one minute. Radiation times were adjusted so that the activity of each foll was approximately the same. Placement of the foll was accurate to within one millimeter, and the mass of the foll was determined to ± 0.1 mg.

The absolute disintegration rate of the foils was determined by use of a Tracerlab LLP-6 Step-Scanning Spectrometer equipped with a 3" diameter by 3" thick Rershaw type 12A12 Thallium-activated Sodium Iodide crystal mounted on a Damont type 6363 photomultiplier tube. The scanner was calibrated to provide fifty equal increments from 0 to 0.75 Mev (6). The calibration data are given in Table II and plotted in Figure 4. The curve is to within 1.0% standard deviation from the mean. The calibration was checked daily for drift which was found to be less than 1%, but since the determination involved only the use of the photopeak, any drift in the spectrometer would not appear in the final results.

The foils were mounted for counting on a 0.054 inch thick plexiglass tray at a sample-to-crystal distance of three cms. The tray was of adequate thickness to reduce beta radiation to an insignificant amount. The sample tray was mounted in a plastic holder which, together with the Mal crystal and photomultiplier tube, was mounted inside a lead shield as described by Cloments and Kelly (6). By this arrangement the backscatter was less than 4% of the total measured activity. Figure 8 (Appendix II).

The absolute disintegration rate was calculated from the measured activity by the relation:

$$R^{O}(x) = \frac{N}{f \cdot f \cdot f \cdot f \cdot f \cdot (1 - exp \left[-\lambda T \right]) \cdot exp(-\lambda t)}$$
(II)

The total number of events per second under the photopeak, N_p, was computed following the method of Clements and Kelly (6). The values for crystal detection efficiency and peak-to-total mation are 0.118 and 0.725, respectively, as determined by Heath (7,8). The value of the internal conversion factor is given by Raffle (9) as 0.96. Sola (10) gives the following equation for self-absorption in the foil:

$$f_{\rm g} = \frac{1 - \exp(-A \cdot d)}{A \cdot d}$$

Cooke (11) calculated the spectral-hardening effect in the AGN-201 reactor which results in an effective thermal energy of 0.0296 ev vace the accepted 0.0253 ev. Employing the technique of Meadows (12) and Weatcott (13), an average effective thermal cross-section for this value of thermal energy was calculated and found to be 88.3 barns. Clements and Kelly (6) found a Cadmium ratio for this reactor to be 5.36, which gives a ratio of thermal activations in the foil to total activations squal to 0.815. This ratio will not be constant over the entire range of foil thicknasses, but the error say be neglected as it is less than 1%

at its maximum value (13). The average flux in the foil may then be calculated in the conventional manner using the expression:

$$\theta_{\rm c} = \frac{0.815 \, {\rm R}^{\rm o}({\rm x}) \, {\rm W}}{{\rm N}_{\rm o} \, \sigma_{\rm d}^{\rm a} \, {\rm m}} \tag{III}$$

For each foil thickness, three separate determinations were made; in each determination the foil was counted three times giving nine values of $R^{\rm o}(x)$ for each increment of thickness between two and ten mils. Counting procedures insured statistical precision to within 1%. The experimental data obtained are given in Table III with the maximum deviation for each thickness.

	5 ,	(mex deviation)	-0.15 x 10 ⁶	+0.11 × 10 ⁶	±0.12 × 10 ⁶	+0.08 × 10 ⁶	-0.27 × 10 ⁶
	ъ.	(neut/cm ² sec)	3.43 × 10 ⁶	3.19 × 10 ⁶	2.94 × 10 ⁶	2.59 × 10 ⁶	2.46 × 10 ⁶
Table III	R°(x)	(counts/sec)	1.41 x 10 ⁵	2.61×10^{5}	3.62×10^{5}	4.25 × 10 ⁵	5.04 × 10 ⁵
	zª	(connts/sec)	2.87×10^4	2.36×10^4	2.27×10^4	2.20 x 10 ⁴	2.47 × 10 ⁴
	ъ	(mils)	7	4	9	œ	10

The thermal neutron flux in the undisturbed medium, g_o , is given by:

$$\varphi_0 = \frac{\theta_1}{F}$$
 (IV)

where F is the appropriate theoretical correction factor as listed in Table I.

i

4. RESULTS

of g were calculated from the various theories using the factors listed in Table I; these are shown in the last four columns of Table IV. It is The nine experimental determinations of \$\int_{\text{t}}\$ for each full thickness mean values and their standard deviations are given in Table IV. Values were averaged in accordance with standard statistical procedures. The evident that a constant value for $oldsymbol{eta}_0$ is not obtained in any case.

	72	(mils) (ne	7	ধ	v 5	æ	10
	# × 10 ⁶	(neut/cm ² sec)	3.43	3.19	2.94	2.59	2.46
Table IV	Standard	error for Ø	0.03	0.03	0.03	0.02	0.07
t		Bothe	3.70	3.63	3.53	3.25	3.22
9 / 106	7 OT X	Tittle	3.71	3,65	3,55	3.28	3.26
2		Skyrme	3.76	3.74	3.68	3.42	3,43
	secj	Skyrme Ritchie	3.75	3.74	3.66	3.41	3.41

through gold foil exposure. His results show that, for the range from one ance, which justifies the straight line interpretation of the experimental the "least squares" procedure. The straight-line fit is consistent with determined that the binding effects on the neutron spectra will be quite rather precise and exhaustive investigation into water-moderated systems straight line within the limits of experimental accuracy. Bach (15) has -iSK. Therefore, the perturbation curves should be similar in appear-Figure 5 shows the experimental data fitted to a straight line by the experimental results of other investigators. Zobel (14) has made a to ten mils, the plot of thermal flux versus foil thickness is indeed a similar for polyethylene and water molecules, differing by a maximum of curve in Figure 5.

5. ANALYSIS OF RESULTS

Ritchie and Bldridge (5) proposed a method of analysis which, in essence, consist of comparing the various factors for flux depression effect only.

Equation III may be written:

$$\mathbf{f}_{\mathbf{z}} = \frac{0.815 \, \mathbb{R}^{O}(\mathbf{x})}{\sqrt{z^2 \, \mathbf{y}^2}} \tag{V}$$

end:

$$\mathbf{F} = \frac{\theta_{\rm c}}{\theta_{\rm o}} = \frac{\left[1/2 - E_3(\mathbf{x})\right] \ 1/\mathbf{x}}{1 + \left[1/2 - E_3(\mathbf{x})\right] \ \mathbf{g}} \tag{VI}$$

Substituting Equation (V) for \$\beta_{\text{L}}\$ in Equation (VI) and rearranging:

$$1 + \left[1/2 - E_3(x) \right] g = \frac{c \left[1/2 - E_3(x) \right]}{R^0(x)} \tag{VII}$$

where c is a constant of proportionality.

From Equation (VII), it is easily shown that the zero thickness intercept, multiplied by c, must equal one. Before the data can be plotted, for comparison, it is necessary that they be normalized consistent with the intercept value. To do this, c was evaluated for the two thinnest foils by each of the theoretical treatments. The values so obtained varied from 5.64 x 10⁶ to 5.82 x 10⁶ with a mean of 5.76 ± .08 x 10⁶.

* From the equations involved, c is also seen to be equal to $g_{\alpha r} z^2/0.815$; however, this relation cannot be employed for a reliable evaluation of g_0 . For comparison with final results, this relationship yields a value of $g_0 = 3.70 \times 10^6$ neut/cm² sec.

Figure 6 is a plot of c $\left[1/2 - E_3(x)\right]$ / $R^0(x)$ versus foll thickness along with the theoretical values of $1+\left[1/2-E_3(x)\right]$ g. The values for the various thicknesses are given in Table V.

			Ta	Table V		[(x) a = (/)]
		7.7	3	•	E ^O (x)	-3/2]
×	Pothe	Tittle	Skyrne	Bothe Tittle Skyrme Ritchie	1e (x 10 ⁵ c/sec)	R (X) C) (Expr'l Data)
0.0264	1.012	1.015	1.028	1.027	1.406	1.016
0.0528	1.022	1.022 1.028 1.053	1,053	1.051	2.612	1.042
0.0792	1.032	1.032 1.040 1.076	1.076	1.073	3.618	1.083
0.1056		1,041 1,052	1.098	1.093	4.249	1.187
0.1320		1.049 1.063	1.119	1.112	5.036	1.210

first two might be used to extrapolate to zero thickness. In view of the error, in agreement with Tittle or Bothe. It appears that either of the approximate character of Ritchie and Eldridge's second correction, the approximate these predictions, particularly at small foil thicknesses. Figure 6 shows that there is actually little difference between Indeed, only the single determination at 2 mils is, within estimated the results of Skyrme and Ritchie and that our results more closely syls multiplier to g, the data have been extrapolated using g.

sinth point should give the best possible determination of $\theta_{\rm o}$. In Figure 7 the data are plotted in this manner with the straight line being fitted by a straight line, whose slope is θ_o , and whose end-points are at the origin mentally determined values of thermal flux plus the origin as a necessary Equation (IV), rearranged, gives: $\theta_L = \theta_C F$ which is the equation of and at F = 1 where B = \$0. A plot of \$ versus P s for the five experithe procedure of "least squares". This yields from the value of $\theta_{\rm E}$ at

2

6 × 3.64 × 10 neutrons/cm2 - sec.

and from the slope:

\$ = 3.68 × 10⁵ noutrons/cm - sec.

Their mean value is 3.66 x 10⁶ which is also the value to which θ_L extrapolates linearly to x = 0 (Figure 5). From a consideration of all factors (including counting statistics, geometry of counting, errors in irradiation power level, etc.) it is estimated that the statistical precision is within \pm 5%.

6. COMCLUSIONS

- (1) $J_0 = 3.66 \pm 0.18 \times 10^6$ nautrons/cm² sec.
- (2) From this investigation, it is not possible to give preference to either Skyrme's or Ritchie's method of flux perturbation calculation in a polyethylene diffusion medium; however, sither is more nearly correct than Bothe's and Tittle's calculations.
 - (3) A very good value of β₀ may be obtained by determining a number of values of β_L between two and ten mils, and using a straight line extrapolation to zero thickness.

BIBLIOGRAPHY

- W. Bothe, Zur Methodik der Neutronensonden, Z. Physik 120, 437 (1943).
- C.W. Tittle, Slow Neutron Detection by Foils, Part I, Nucleonics 8, No. 6, 5 (1951).
- . C.W. Tittle, Slow Neutron Detection by Foils, Part II, Nucleonics 9, No. 1, 60 (1951).
- T.H.R. Skyrme, Reduction in Neutron Density Caused by an Absorbing Disc, MS-91 plus Appendix, (1943) (Manuscript, available at ORNL)
- R.H. Ritchie and H.B. Eldridge, Thermal Neutron Flux Depression by Absorbing Foils, Nuclear Science and Engineering 8, No. 4, 300-311 (October, 1960). (Also by private communication)

Š.

- John J. Kelly, Jr. and Neal W. Clements, Determination of Thermal Neutron Flux by Activation of a Pure Target with Known Cross Section, Thesis, US Naval Postgraduate School, June 1960.
- R.L. Heath and F. Schroeder, The qualitative Techniques of Scintillation Spectroscopy as Applied to the Calibration of Standard Sources, AEC Report IDO-16149 (1st rev) 1955.
- 8. R.L. Heath, Scintillation Spectrometry Gamma-Ray Spectrum Catalogue, AEC Report IDO-16408 (July, 1957).
- J.F. Raffle, Determination of Absolute Neutron Flux by Gold Activation,
 J. Nuclear Energy, Part A: Reactor Science, Vol. 10, 1959.
- A. Sola, Flux Perturbation by Detector Foils, Nucleonics 18, No. 3,
 78 (1960).
- W.H.B. Gooke (private communication in connection with an unpublished thesis, US Naval Postgraduate School, 1961.)
- J.W. Meadows and J.P. Whalen, Thernal Neutron Absorption Cross Sections by the Pulsed Source Method, Nuclear Science and Engineering 9, No. 2, 132-136 (February, 1961).
- C.H. Westcott, Effective Cross Section Values for Well-Moderated Thermal Reactor Spectra (3rd Edition), AECL-1101, Chaik River, Ontario (Wovember 1, 1960).
- 14. W. Zobel, Experimental Determination of Flux Depression and Other Corrections for Gold Foils Exposed in Water, Trans. American Nuclear Society 3, No. 1, 168-169 (June, 1960). (Also private communication of revised results as yet unpublished).

- 15. D.R. Bach, et al, Low Energy Neutron Spectra Measurements in Polyethylene Moderated Media, (paper presented at the American Nuclear Society Meeting on December 14, 1960 at San Francisco, Calif.), Knolls Atomic Power Laboratory, Schemectady, N.T.
- 16. G.R. Dalton and R.K. Osborn, Flux Perturbations by Thermal Neutron Detectors, Nuclear Science and Engineering 9, No. 2, 198-210 (February, 1961).

Additional References of Interest

- 17. E.D. Klema and R.H. Ritchie, Phys. Rev. 87, No. 1, 167 (1952).
- 18. J. Bengston, Neutron self-shielding of a plane absorbing foil, CF-56-3-170 (1956).
 - W.J. Price, Nuclear Radiation Detection, McGraw-Hill, (1958), pages 53-66 and 285-289.
- 20. R.H. Ritchie, Thermal Neutron Flux Depression, Health Physics Division Annual Progress Report, ONE-2806, 133 (July 31, 1959).
- 21, D. Martin, Correction Factors for Cadmium-Covered Foil Measurements, Nucleonics 13, No. 3, 52 (1955).
- 22. K.M. Case, F. deHoffman, and G. Placzek, Introduction to the Theory of Neutron Diffusion, Volume I, pages 153-156, US Government Printing Office, Washington, D.C., June, 1953.

APPENDIX I

EXPERIMENTAL DATA

All data given below are expressed in terms of Channel Number on the 50 Channel Step-Scanning Spectrometer and in counts per minute for the gamma activity. The counting rate has been corrected for background as given on page 29. This background determination is the average of twenty separate counting rung made over a period of two weeks.

	Run No. 3	193 270 895 3541 7903 9355 4890 1258 203 93	Run No. 3	181 226 614 614 2657 9963 9428 6114 1779 61
SAMPLE *1 - Two mils February 7, 1961 Mass = 0.1273 gms.	Run No. 2	228 264 325 3456 8111 9141 5087 1346 187	SAMPLE *2 - Two mils February 8, 1961 Mass = 0.1260 gms.	191, 234 748 3250 3710 9516 5600 1357 254
	Run No. 1	249 301 301 4193 9137 9656 1179 1179 167	lun IIo. 1	178 281 281 3967 3903 8691 4223 4223 142 47
	Chamel	# # # # # # # # #	Channe 1	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

	Run No. 3		203	279	1209	3 3	8003	8888	4001	296	148			Run No. 3		217	528	6/8	7027	8911	5341	1547	250		Run No. 3	ı	374	9 ;	10/4	15048	17444	5340	2418	396 116	
SAMPLE *3 - Two mils February 9, 1961 Mass = 0.1270 gms.	Run No. 2	203	303	1917	4705	9221	1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4189	504	139	ì	SAMPLE *4 - Two mils	February 10, 1961 Mass = 0.1160 gms.	Run No. 2		237	662	2948	7083	8939	5281	1437	503	SANTLE *5 - Four Mils February 13, 1961 Mass = 0.2543 gms.	Run No. 2	200	264 204	1666	6851	15390	17113	8870	331	127	
	Run No. 1	323	944	1918	6625	10034	7651	2775	486	82				Run No. 1	107	235	789	3310	7686	8964	1230	163	5		Run No. 1	707	577	1967	7655	16250	10/82	2094	351	119	
	Channe 1	22	23	57	25	56	27	28	53	30				Channe 1	22	23	57	25	97.	4: C	29	3 8	i		Channel	22	23	54	\$2	9 :	3 82	83 83	8	31	

Four Mils	1961	gms.
184	_	~
- 9* 1	ıry 14,	0.2410
3	3	Ħ
SAMPL	Febr	Mass

	Run No. 3	230	766	2 40	7077	500	/328	3916	1014	3				٠			234	737	78%	9899	7821	4242	1160	191					•	155	249	3	966	7600	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	£ 65						
SAMPLE #9 - Six Mils February 15, 1961 Mass = 0.3814 gms.	Aun No. 2	220	728	315%	67.38	2000	36.6	0.00	85/	571		Contract of the Contract of th	February 15 1951	TOCT CT CITATION	TARES II U. 39/4 BRID.	;	127	920	7697	6724	7753	4270	1022	166			SAMPLE #11 - Eight Mils	February 16, 1961 Mass = 0.5044 mas.		907	790	766	27.55	6762	2823	290	22	•				
	Run No. 1	225	732	2940	6753	7383	3714	976	240	***						100	N 6	0 10	8467	1990	070/	1154	1	097					191	335	1183	7987	7340	6468	2594	787	76					
	Channe 1	23	54	22	56	27	78	2	3	3						23	3 %	\$ 2	Q. è	27	* 6	3 60	? ?	Š					33	· «	78	23	5 9	27	78	2	ဇ					
																					••••									•							•					
	Run No. 3		001	061	444	7314	5933	8148	5317	1494	246	58							176	205	528	2247	6316	8510	5575	.1635	279	58					•	202	711	/167	0700	1561	/007	600	143	λî
SAMPLE *6 - Four Mils February 14, 1961 Mass = 0.2410 gms.	Run No. 2	7	781	113	3260	09:7	6035	8051	7667	1409	227	52			SAMPLE *7 - Four Mils	February 14, 1961	Mass = 0.2583 gms.		187	202	546	2373	6341	8601	5631	1649	27.7	71		SAMPLE #8 - Six Mils		Mass = 0.3931 gms.		248	7131	5113	7233	3696	1394	100	126	76
	Run No. 1	188	227	ìş	3386	000	2609	8109	200	1425	240	28							187	210	556	2293	6271	8585	5521	1697	564	97					č	979	3368	4504	7045	74.16	75.	12	***	ŧ
	Channel	33	ឧ	*	; ;	? :	8 ;	2	R	2	8	31							77	ដ	ដ	22	5 6	23	58	ೱ	8	31					;	3 ;	\$ 2	2 %	3 5	; #	.	3 8	2 :	1

	Bun No. 3		302	865	3567	7942	8377	4322	1196	158					į	326	200	3803	/810	0100	930	145				COURT PAR MADE	27	52	27	a :	3 20	ដ	22	22	22	6 1	17	•			
SAMFLE #15 - Ten Mils February 23, 1961 Mass = 0.6300 gms.	Run No. 2		350	1217	4657	8546	6997	2822	607	Tik*		SAMPLE *16 - Ten Hils	February 23, 1961	Mass = 0.6442 gms.	216	2007	1960	7861	8158	2866	886	143		AVERAGE BACKGROUND	ć	S)															
	lel Run No. 1		300					777									3815		-		913				Channel		200	7 2	27	2 %	23	5 2 5	7 8	5 6 2	i ç	3 2	32				
***************************************	Channe 1	•	C7 76			7.6	3 6	29	30						23	77	25	26	77	58	52 53	₹ 		·	~~~		×	·	() () (ACKEN	·	P-123-7-			SOCKET	अवस्त	Y-Part of	> 	, 	gapa tro
	Run No. 3		182	202	900	3145	89/9	7121	71CC	786	1					507	102	75 8	3296	6916	7111	3412	112						256	2/2	3039	7020	8577	4801	050	101					
SANPLE *12 - Eight Hils February 16, 1961 Mass = 0.5234 gms.	Eun No. 2		203	255	7.00	3176	7040	2201	725	128	: 1		SAMPLE *13 - Eight Mils	February 16, 1961	Mass = 0.3203 gms.	221	250	#51	3249	6832	7118	3481	126		SAMPLE *14 - Ten Mile	February 23, 1961	Mass = 0.6421 gms.		281	704	3061	7251	1040	1213	7141	100					
	Run No. 1		60	3 6	2	5313	197	2411	16	110						1	747	2	3342	7024	7332	366	201					į	226	ž	3182	7521	8 6	1126	9	•					
	Channe 1	;	3 8	3 2	\$;	Q ;	3 5	, e	2	8						22	: 2	8	ສ	ž	នរ	4 8	3 A					1	2 5	1	2	*	3 8	3 2	8	t					

•••

Analysis of Peak-to-Total Ratio

One of the crucial correction factors in the determination of the absolute gamma emission rate is $R_{\rm pt}$, the peak-to-total ratio used in the procedure given by Meath (8).

geferring to Figure 8, which is a numerical mean of the spectrum obtained throughour this investigation, it can be seen that the combined counts from backscatter, mercury x-rays, 0.680 mev Compton scattering, and 1.09 mev Compton scattering add up to introduce a significant error in peak-to-total ratio determination for the 0.411 mev peak if not taken into account.

A rough determination of this consideration yielded a value of

pt = 10% which is in reasonable agreement with that determined by Heath (§). This compares with a value of 60% obtained from a comparison with window count in the spectrometer. Since Heath's investigation was carried out under more nearly ideal conditions, it was decided to use his value of pt which is 0.725.

33