Sporadic Server Algorithm

Elena Ramon

Nicola Serlonghi

Introduction

- Tries to serve aperiodic requests as soon as they arrive
- ► Enhance the average response time of aperiodic tasks
- Preserve the schedulability of periodic tasks

How does it work?

P_s	Server priority	
P _{exe}	Running task priority	

- ▶ It creates a high-priority task for servicing aperiodic requests
- The server preserves its capacity until an aperiodic request occurs
- ► The server replenishes its capacity only when it has been used
- ► The server is active when $P_{exe} \ge P_s$
- The server is idle when P_{exe}< P_s

Replenishment rule

RT Time at which the server capacity will be replenished

Let t_A be the time at which the server becomes active and $C_s > 0$:

$$RT = t_A + T_s$$

RA Amount that will be added to the server capacity

Let t_1 be the time at which the server becomes idle or $C_s = 0$:

RA = C_s consumed in the interval $[t_A, t_I]$

Example

	C i	T i
τ 1	1	5
τ_2	4	15

Server		
C	_s =	5
Τ.	, =	10

	C _i	A _i
ape1	2	4
ape2	2	8

$t_\mathtt{A}$	0	4	8
tı	1	7	11
RT	10	14	18
RA	0	2	2

Schedulability analysis

Let $U_S = \frac{C_S}{T_S}$, the processor utilization factor of the server, a set of n periodic tasks with utilization factor U_P is schedulable if

$$U_P + U_S \le U_S + n \left[\left(\frac{2}{U_S + 1} \right)^{1/n} - 1 \right]$$

Apply to the previous example: $0.46 + 0.50 \le 0.50 + 0.30$