洲沙沙

AETG算法设计与测试

题	目:	AETG算法设计与测试
授课	教师:	—————————————————————————————————————
姓	名:	王伟杰
学	号:	3210106034
Н	期:	2023-12-16

1 任务介绍

要求实现AETG算法,并应用于两个网站的组合测试(CIT)建模。具体要求如下:

1. 输入:两个网站的CIT建模。

• 京东官网(Web): 京东官网链接

• 携程定机票 (Web): 携程机票链接

2. 输出: 生成一个覆盖Pair-Wise的Covering Array。

3. 额外要求:

- 生成的Covering Array必须是通用的,证明3-wise也有效。
- 提交材料需包括Readme文件、代码和报告。

2 算法设计

AETG算法是一个基于组合设计的测试方法。它使用组合设计生成测试集,以覆盖系统测试参数的成对、三元或n元组合。这些参数决定了系统的测试场景,例如系统配置参数、用户输入和其他外部事件。AETG算法的特点是,其生成的测试集大小与测试参数数量的增长呈对数关系,这使得测试者能够定义具有数十个参数的测试模型。

AETG系统利用新的组合算法生成测试集,覆盖所有有效的n元参数组合。在多种应用中,例如单元测试、系统测试和互操作性测试中,AETG系统已被用来生成高级测试计划和详细的测试案例。在一些应用中,它大大降低了测试计划开发的成本。

这种方法的动机是,许多系统中的问题故障通常是由少数测试参数的相互作用引起的。理想情况下,测试计划应该覆盖这些相互作用。第二个动机是,为固定的n值覆盖所有n元参数组合所需的测试数量与参数数量的增长呈对数关系。这使测试者能够定义具有数十个参数的测试模型,同时只需要很少的测试案例。

- 1. 算法概述
- **参数定义**: 系统有 K 个参数,每个参数 k_i 有 l_i 个可能的值。
- **覆盖数组** (CA) : 由 N 个测试用例组成,每个测试用例是 K 参数的一个特定组合。CA 应满足,任意 N*T 的子数组包含所有 T 参数的所有组合。

- 贪心策略:通过贪心选择生成测试用例,以尽快覆盖所有参数组合。
- 2. 算法步骤
- 初始化:设置参数数 K,每个参数的值的数量 l_i ,以及测试的强度 T(通常是 2,意味着要覆盖所有参数对的组合)。
- **生成候选测试用例**: 随机选择参数和其值,循环直至为所有参数分配值,形成一个测试用例。重复此过程 C 次生成 C 个候选测试用例。
- 选择最优测试用例: 从这些候选中选择一个覆盖最多未覆盖参数对的测试用例,将其加入 CA。
- 重复过程: 重复上述过程直到所有参数对都被覆盖。
- 优化 CA: 重复整个算法 R 次, 从中选择具有最小测试用例数的 CA。
- 3. 具体实现

在这段代码中, AETG 函数实现了上述算法。主要包括以下部分:

- 参数准备: 定义了参数数、覆盖对、未覆盖对等。
- 候选测试用例生成:通过随机选择和贪心算法生成候选测试用例。
- 最优测试用例选择:基于覆盖最多未覆盖对的原则选择测试用例。
- 覆盖对更新:每次选择测试用例后,更新已覆盖和未覆盖的对的集合。
- 重复和优化: 重复整个过程 R 次, 从中选择最优的 CA。

3 伪代码

- 1. 定义 test_case_jd() 函数来生成京东网站的测试用例:
 - 设置测试用例的参数,如品牌、屏幕比例等。
 - 调用 AETG 函数生成覆盖数组 (CA)。
 - 将结果写入 Excel 文件。
- 2. 定义 test_case_xc() 函数来生成携程网站的测试用例:
 - 设置测试用例的参数,如出发地、目的地等。
 - 同样调用 AETG 函数生成覆盖数组。
 - 将结果写入另一个 Excel 文件。
- 3. 实现 AETG 函数,它是 AETG 算法的核心:
 - 定义参数、覆盖对、未覆盖对、候选数组等。
 - 循环生成测试用例,直到所有的组合都被覆盖。
 - 返回最优的覆盖数组和每个测试用例覆盖的对数。

4. 实现一些辅助函数:

- calc_covered_pairs_num: 计算覆盖对的数量。
- get_optimal_CA: 从候选中选出最优的覆盖数组。
- get_uncovered_pairs_in_subset: 获取子集中的未覆盖对。
- is_part_of_uncovered_pair: 检查一个组合是否是未覆盖对的一部分。
- calc_covered_ucp_num_for_next_value: 计算下一个值覆盖的未覆盖对数。
- calc_new_case_generated: 计算新生成的测试用例覆盖了多少新的对。
- update_covered_pairs: 更新已覆盖和未覆盖的对。
- 5. 在主函数中,调用 test_case_jd() 和 test_case_xc() 来生成测试用例。

4 结果

覆盖集的强度设置为2,问题描述为CA(N;7,2,(15,5,4,13,5,17,9)),一共有255个用例需要覆盖,京东生成的数据如下:

	品牌	屏幕比例	能效等级	固态硬盘	材质	内存容量	屏幕刷新	_
case_1	all	all	all	all	all	all		21
case_2	thinkpad	16:10	1	3TB	all	4GB		21
case_3	dell	16:10	2	128GB	金属	6GB		21
case_4	del1	16:9	3	all	金属+复合	4GB		21
case_5	huawei	4:3	1	128GB	金属+复合	all		21
case_6	all	3:2	2	3TB	复合材质	48GB	165Hz	21
case_7	dell	all	1	256GB+1TI	含碳纤维	48GB	60Hz-120H	21
case_8	hp	3:2	1	all	金属	18GB	90Hz	21
case_9	thinkpad	all	3	128GB	复合材质	18GB	120Hz	21
case_10	thinkpad	4:3	2	all	含碳纤维	192GB	144Hz	21
case_11	lenvo	16:10	all	256GB+1TI	金属+复合	18GB	240Hz	21
case_12	huawei	16:9	all	3TB	金属	192GB	60Hz-120H	21
case_13	apple	4:3	all	512GB+2TI	复合材质	4GB	90Hz	21
case_14	hp	16:9	2	3TB2	all	8GB		21
case_15	asus	3:2	all	64GB	含碳纤维	6GB		21
case_16	all	4:3	3	240GB	金属	8GB	60Hz	21
case_17	lenvo	16:9	1	4TB*2	复合材质	12GB	all	21
case_18	huawei	3:2	3	256GB	all	12GB		21
case_19	apple	all	2	4TB*3	金属+复合	12GB	60Hz	21
case_20	hp	16:10	3	512GB	含碳纤维	16GB	all	20
case_21	mi	all	all	512GB*2	金属	16GB	165Hz	19
case_22	honor	4:3	1	64GB	all	20GB	165Hz	19
case_23	dere	16:10	2	64GB	复合材质	all	60Hz-120H	19
case_24	acer	all	3	3TB	金属+复合	6GB	90Hz	18
case_25	mechrevo	16:9	3 1	512GB+2TI	含碳纤维	all	240Hz	19
case_26	microsof	16:9	1	240GB	all	6GB	120Hz	18
case_27	haier	4:3	3	4TB*2	all	24GB	60Hz-120H	18
case_28	thinkpad	3:2	all	3TB2	金属+复合	32GB		18
case_29	hp	all	all	240GB	金属+复合	36GB		18
case_30	honor	all	all	4TB*2	金属	40GB		18
case_31	acer	16:10	all	256GB	金属	64GB	120Hz	18
case_32	asus	16:9	2	256GB+1TI	all	96GB	90Hz	18
case_33	dere	all	1	512GB	all	128GB	240Hz	18

共有255个测试数据,实现全覆盖

携程问题描述为CA(N; 7, 2, (8, 8, 6, 6, 14, 2, 4)),一共有112个用例需要覆盖,测试数据如下:

	出发地	目的地	出发日期	返回日期	乘客数量	直飞	舱型	覆盖数量
case_1	beijing	beijing	2021-05-	(2021-05-	(1	true	经济/超绍	21
case_2	shanghai	shanghai	2021-05-	(2021-05-	(2	false	公务/头等	21
case_3	shanghai	guangzho	2021-05-	(2021-05-	(3	true	公务舱	21
case_4	guangzho	shenzhen	2021-05-	(2021-05-	4	true	头等舱	21
case_5	guangzho	beijing	2021-05-	(2021-05-	5	false	公务舱	21
case_6	shenzhen	chengdu	2021-05-	(2021-05-	(5	true	公务/头等	21
case_7	shenzhen	guangzho	2021-05-	(2021-05-	(1	false	头等舱	21
case_8	chengdu	shanghai	2021-05-	(2021-05-	6	true	经济/超约	20
case_9	chongqin	chengdu	2021-05-	(2021-05-	(3	false	经济/超约	20
case_10	hangzhou	chongqing	2021-05-	(2021-05-	(7	true	公务舱	19
case_11	nanjing	hangzhou	2021-05-	(2021-05-	5	true	经济/超绍	19
case_12	beijing	nanjing	2021-05-	(2021-05-	(4	false	公务/头等	20
case_13	hangzhou	hangzhou	2021-05-	(2021-05-	6	false	头等舱	20
case_14	chengdu	chongqing	2021-05-	(2021-05-	5	false	头等舱	18
case_15	chongqin	nanjing	2021-05-	(2021-05-	(8	true	公务舱	18
case_16	nanjing	shenzhen	2021-05-	(2021-05-	(7	false	公务/头等	18
case_17	chengdu	beijing	2021-05-	(2021-05-	9	true	公务/头等	16
case_18	shanghai	shenzhen	2021-05-	(2021-05-	(10	true	经济/超绍	16
case_19	shenzhen	chongqing	2021-05-	(2021-05-	(11	true	经济/超绍	15
case_20	nanjing	nanjing	2021-05-	(2021-05-	(12	true	头等舱	16
case_21	beijing	shanghai	2021-05-	(2021-05-	13	true	公务舱	15
case_22	chongqin	beijing	2021-05-	(2021-05-	(2	true	头等舱	15
case_23	guangzho	guangzho	2021-05-	(2021-05-	(2	true	经济/超约	13
case_24	hangzhou	nanjing	2021-05-	(2021-05-	9	false	经济/超绍	14
case_25	beijing	chengdu	2021-05-	(2021-05-	9	true	头等舱	14
case_26	guangzho	hangzhou	2021-05-	(2021-05-	(8	true	公务/头等	14
case_27	chongqin	chongqin	2021-05-	(2021-05-	(10	false	公务/头等	14
case_28	guangzho	chengdu	2021-05-	(2021-05-	(11	false	公务舱	14
case_29	shenzhen	hangzhou	2021-05-	(2021-05-	(12	false		14
case_30	shenzhen	beijing	2021-05-	(2021-05-	(13	false	经济/超绍	13
case_31	shanghai	chongqing	2021-05-	(2021-05-	(5	true	头等舱	12
case_32	chengdu	shenzhen	2021-05-	(2021-05-	(1	true		12
case_33	hangzhou	guangzho	2021-05-	(2021-05-	(11	true	公务/头等	12
case 34	nanjing	shanghai	2021-05-	(2021-05-	(4	true	公务舱	12

共112个测试数据,实现全覆盖