Analog Transmissionof Digital Data:

ASK, FSK, PSK, QAM

Required reading: Garcia 3.7

CSE 3213, Fall 2010 Instructor: N. Vlajic

Why Do We Need Digital-to-Analog Conversion?!

- 1) The medium/channel is band pass, and/or
- 2) Multiple users need to share the medium.

Modulation of Digital Data

Modulation – process of converting digital data or a low-pass analog to band-pass (higher-frequency) analog signal

- Carrier Signal aka carrier freq. or modulated signal high freq. signal that acts as a basis for the information signal
 - information signal is called modulating signal

Digital-to-Analog – Modulation

- process of changing one of the characteristic of an analog signal (typically a sinewave) based on the information in a digital signal
 - sinewave is defined by 3 characteristics (<u>amplitude</u>, <u>frequency</u>, and <u>phase</u>) ⇒ digital data (binary 0 & 1) can be represented by varying any of the three
 - application: transmission of digital data over telephone wire (modem)

Modulation of Digital Data: ASK

- **ASK** strength of carrier signal is varied to represent binary 1 or 0
 - both frequency & phase remain constant while amplitude changes
 - commonly, one of the amplitudes is zero

Is this picture, from the textbook, entirely correct?!

- demodulation: only the presence or absence of a sinusoid in a given time interval needs to be determined
- advantage: simplicity
- disadvantage: ASK is very susceptible to noise interference noise usually (only) affects the amplitude, therefore ASK is the modulation technique most affected by noise
- application: ASK is used to transmit digital data over optical fiber

Modulation of Digital Data: ASK (cont.)

Example [ASK]

How does the frequency spectrum of $v_{ASK}(t)$ look like!?

Modulation of Digital Data: ASK (cont.)

ASK-Modulated Signal: Frequency Spectrum

$$\cos A \cdot \cos B = \frac{1}{2} (\cos(A - B) + \cos(A + B))$$

Carrier signal:
$$v_c(t) = cos(2\pi f_c t) = cos(\omega_c t)$$
, where $2\pi f_c = \omega_c$

Digital signal:
$$v_d(t) = A \cdot \left[\frac{1}{2} + \frac{2}{\pi} \cos \omega_0 t - \frac{2}{3\pi} \cos 3\omega_0 t + \frac{2}{5\pi} \cos 5\omega_0 t - \dots \right]$$
 (unipolar!!!)

$$\begin{aligned} &\text{Modulated signal:} & v_{\text{ASK}}(t) = v_{\text{c}}(t) \cdot v_{\text{d}}(t) = \\ & = cos\omega_{\text{c}}t \cdot \left[\frac{1}{2} + \frac{2}{\pi}cos\omega_{\text{o}}t - \frac{2}{3\pi}cos3\omega_{\text{o}}t + \frac{2}{5\pi}cos5\omega_{\text{o}}t - ...\right] = \\ & = \frac{1}{2}cos\omega_{\text{c}}t + \frac{2}{\pi}cos\omega_{\text{c}}t \cdot cos\omega_{\text{o}}t - \frac{2}{3\pi}cos\omega_{\text{c}}t \cdot cos3\omega_{\text{o}}t + ... = \\ & = \frac{1}{2}cos\omega_{\text{c}}t + \frac{1}{\pi}\left[cos(\omega_{\text{c}} - \omega_{\text{o}})t + cos(\omega_{\text{c}} + \omega_{\text{o}})t\right] - \\ & - \frac{1}{3\pi}\left[cos(\omega_{\text{c}} - 3\omega_{\text{o}})t + cos(\omega_{\text{c}} + 3\omega_{\text{o}})t\right] + ... \end{aligned}$$

Modulation of Digital Data: FSK

- **FSK** frequency of carrier signal is varied to represent binary 1 or 0
 - peak amplitude & phase remain constant during each bit interval

- demodulation: demodulator must be able to determine which of two possible frequencies is present at a given time
- advantage: FSK is less susceptible to errors than ASK receiver looks for specific frequency changes over a number of intervals, so voltage (noise) spikes can be ignored
- disadvantage: FSK spectrum is 2 x ASK spectrum
- application: over voice lines, in high-freq. radio transmission, etc.

Example [FSK]

Modulation of Digital Data: FSK (cont.)

FSK-Modulated Signal: Frequency Spectrum

Digital signal: $v_d(t)$ - modulated with ω_1 , and

 $v_d'(t) = 1 - v_d(t)$ - modulated with ω_2

Modulated signal: $V_{ESK}(t) = \cos\omega_1 t \cdot V_d(t) + \cos\omega_2 t \cdot (1 - V_d(t)) =$ $= cos\omega_1 t \cdot \left[\frac{1}{2} + \frac{2}{\pi} cos\omega_0 t - \frac{2}{3\pi} cos3\omega_0 t + \frac{2}{5\pi} cos5\omega_0 t - \dots \right] +$ $+\cos\omega_2 t \cdot \left| \frac{1}{2} - \frac{2}{\pi} \cos\omega_0 t + \frac{2}{3\pi} \cos3\omega_0 t - \frac{2}{5\pi} \cos5\omega_0 t - \dots \right| =$ $= \dots$ $=\frac{1}{2}\cos\omega_1t+\frac{1}{\pi}[\cos(\omega_1-\omega_0)t+\cos(\omega_1+\omega_0)t] -\frac{1}{3\pi}\left[\cos(\omega_1-3\omega_0)t+\cos(\omega_1+3\omega_0)t\right]+...+$ $\frac{1}{2}\cos\omega_2 t - \frac{1}{2}\left[\cos(\omega_2 - \omega_0)t + \cos(\omega_2 + \omega_0)t\right] +\frac{1}{2\pi}\left[\cos(\omega_2-3\omega_0)t+\cos(\omega_2+3\omega_0)t\right]+...+$

Modulation of Digital Data: PSK

PSK – phase of carrier signal is varied to represent binary 1 or 0

- peak amplitude & freq. remain constant during each bit interval
- example: binary 1 = 0° phase, binary 0 = 180° (πrad) phase
 PSK is equivalent to multiplying carrier signal by +1 when the information is 1, and by -1 when the information is 0

2-PSK, or
Binary PSK,
since only 2
different phases
are used.

$$s(t) = \begin{cases} A\cos(2\pi f_c t), & \text{binary 1} \\ A\cos(2\pi f_c t + \pi), & \text{binary 0} \end{cases}$$

$$s(t) = \begin{cases} A\cos(2\pi f_c t), & \text{binary 1} \\ -A\cos(2\pi f_c t), & \text{binary 0} \end{cases}$$

- demodulation: demodulator must determine the phase of received sinusoid with respect to some reference phase
- advantage: PSK is less susceptible to errors than ASK, while it requires/occupies the same bandwidth as ASK
 - more efficient use of bandwidth (higher data-rate) are possible, compared to FSK !!!
- disadvantage: more complex signal detection / recovery process, than in ASK and FSK

Modulation of Digital Data: PSK (cont.)

Example [PSK]

PSK Detection

$$\cos^2 A = \frac{1}{2} (1 + \cos 2A)$$

- multiply the received / modulated signal $\pm A\cos(2\pi f_c t)$ by $2*\cos(2\pi f_c t)$
 - resulting signal

$$2A\cos^{2}(2\pi f_{c}t) = A[1+\cos(4\pi f_{c}t)], \text{ binary 1}$$

-2Acos²(2\pi f_{c}t) = -A[1+\cos(4\pi f_{c}t)], binary 0

 by removing the oscillatory part with a low-pass filter, the original baseband signal (i.e. the original binary sequence) can be easily determined

Modulation of Digital Data: PSK (cont.)

Facts from Modulation Theory

- If bandpass channel has bandwidth W_c [Hz],
 - then baseband channel has W_c/2 [Hz] available, so
 - modulation system supports 2*(W_c/2) = W_c [pulses/second]
 - recall Nyqyist Law: baseband transmission system of bandwidth W_c [Hz] can theoretically support 2 W_c pulses/sec

How can we recover the factor 2 in supported data-rate!?

QPSK = 4-PSK – PSK that uses phase shifts of $90^{\circ}=\pi/2$ rad \Rightarrow 4 different signals generated, each representing 2 bits

$$s(t) = \begin{cases} Acos(2\pi f_c t), & binary \ 00 \\ Acos(2\pi f_c t + \frac{\pi}{2}), & binary \ 01 \\ Acos(2\pi f_c t + \pi), & binary \ 10 \\ Acos(2\pi f_c t + \frac{3\pi}{2}), & binary \ 11 \end{cases}$$

Dibit	Phase	
00 01 10 11	0 90 180 270	10 •
Dibit (2 bits)		Constella

- advantage: higher data rate than in PSK (2 bits per bit interval), while bandwidth occupancy remains the same
- 4-PSK can easily be extended to 8-PSK, i.e. n-PSK
- however, higher rate PSK schemes are limited by the ability of equipment to distinguish small differences in phase

Modulation of Digital Data: QAM

Quadrature Amplitude Modulation (QAM)

Quadrature – uses "two-dimensional" signalling

• original information stream is split into two sequences that consist of odd and even symbols, e.g. B_k and A_k

1 0 1 1 0 1 ...
1 -1 1 1 -1 1 ...
$$B_1 \quad A_1 \quad B_2 \quad A_2 \quad B_3 \quad A_3 \quad ...$$

- A_k sequence (in-phase comp.) is modulated by $\cos(2\pi f_c t)$ B_k sequence (quadrature-phase comp.) is modulated by $\sin(2\pi f_c t)$
- composite signal $A_k \cos(2\pi f_c t) + B_k \sin(2\pi f_c t)$ is sent through the channel

advantage: data rate = 2 bits per bit-interval!

Modulation of Digital Data: QAM (cont.)

Example [QAM]

QAM Demodulation .

- by multiplying Y(t) by $2 \cdot \cos(2\pi f_c t)$ and then low-pass filtering the resultant signal, sequence $\mathbf{A_k}$ is obtained
- by multiplying Y(t) by $2 \cdot \sin(2\pi f_c t)$ and then low-pass filtering the resultant signal, sequence B_k is obtained

Signal Constellation

- **Constellation Diagram** used to represents possible symbols that may be selected by a given modulation scheme as points in 2-D plane
 - X-axis is related to in-phase carrier: cos(ω_ct)
 - the projection of the point on the X-axis defines the peak amplitude of the in-phase component
 - Y-axis is related to quadrature carrier: sin(ω_ct)
 - the projection of the point on the Y-axis defines the peak amplitude of the quadrature component
 - the length of line that connects the point to the origin is the peak amplitude of the signal element (combination of X & Y components)
 - the angle the line makes with the X-axis is the phase of the signal element

QAM cont. - QAM can also be seen as a combination of ASK & PSK

$$Y(t) = A_k \cos(2\pi f_c t) + B_k \sin(2\pi f_c t) = \left(A_k^2 + B_k^2\right)^{\frac{1}{2}} \cos(2\pi f_c t + \tan^{-1}\frac{B_k}{A_k})$$

- 16-level QAM the number of bits transmitted per T [sec] interval can be further increased by increasing the number of levels used
 - in case of 16-level QAM, A_k and B_k individually can assume 4 different levels: -1, -1/3, 1/3, 1
 - data rate: 4 bits/pulse ⇒ 4W bits/second

$$Y(t) = A_k \cos(2\pi f_c t) + B_k \sin(2\pi f_c t) = \left(A_k^2 + B_k^2\right)^{\frac{1}{2}} \cos(2\pi f_c t + \tan^{-1}\frac{B_k}{A_k})$$

A_k and B_k individually can take on 4 different values; the resultant signal can take on (only) 3 different values!!!

In QAM various combinations of amplitude and phase are employed to achieve higher digital data rates.

Amplitude changes are susceptible to noise \Rightarrow the number of phase shifts used by a QAM system is always greater than the number of amplitude shifts.