R Notebook

Author: OA Lab, NWFSC

Title: Aquarium Temperature Investigation: Temperature SubSelectScript.R

Date: April-May 2020

Aquarium Temperature Investigation

```
R script below will subselect and plot temperature data for MOATs Overall goal is to determine if MOATs (per treatment) are true replicates
 ##Libraries
 #*********
 library(shiny)
 ## Warning: package 'shiny' was built under R version 3.6.2
 library(tidyverse)
 ## — Attaching packages —
                                                                              — tidyverse 1.3.0 —
 ## / ggplot2 3.3.0 / purrr 0.3.4
## / tibble 3.0.1 / dplyr 0.8.5
## / tidyr 1.1.0 / stringr 1.4.0
## / readr 1.3.1 / forcats 0.5.0
 ## Warning: package 'tibble' was built under R version 3.6.2
 ## Warning: package 'tidyr' was built under R version 3.6.2
 ## Warning: package 'purrr' was built under R version 3.6.2
 ## - Conflicts -
                                                                         - tidyverse_conflicts() --
 ## x dplyr::filter() masks stats::filter()
 ## x dplyr::lag() masks stats::lag()
 library(stringr)
 library(readxl)
 library(readr)
 library(tidyr)
 library(data.table)
 ## Attaching package: 'data.table'
 ## The following objects are masked from 'package:dplyr':
 ##
 ##
        between, first, last
 ## The following object is masked from 'package:purrr':
 ##
        transpose
 library(lubridate)
 ## Warning: package 'lubridate' was built under R version 3.6.2
 ## Attaching package: 'lubridate'
 ## The following objects are masked from 'package:data.table':
 ##
 ##
         hour, isoweek, mday, minute, month, quarter, second, wday, week,
```

```
## The following objects are masked from 'package:dplyr':
##
##
       intersect, setdiff, union
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
library(violinmplot)
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.6.2
library(vioplot)
## Warning: package 'vioplot' was built under R version 3.6.2
## Loading required package: sm
## Package 'sm', version 2.2-5.6: type help(sm) for summary information
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.2
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
      as.Date, as.Date.numeric
library(yarrr)
## Loading required package: jpeg
## Loading required package: BayesFactor
## Loading required package: coda
## Loading required package: Matrix
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.co
m).
## Type BFManual() to open the manual.
## Loading required package: circlize
## Warning: package 'circlize' was built under R version 3.6.2
```

```
## circlize version 0.4.9
## CRAN page: https://cran.r-project.org/package=circlize
## Github page: https://github.com/jokergoo/circlize
## Documentation: https://jokergoo.github.io/circlize_book/book/
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization
    in R. Bioinformatics 2014.
##
## This message can be suppressed by:
    suppressPackageStartupMessages(library(circlize))
## yarrr v0.1.5. Citation info at citation('yarrr'). Package guide at yarrr.guide()
## Email me at Nathaniel.D.Phillips.is@gmail.com
## Attaching package: 'yarrr'
## The following object is masked from 'package:ggplot2':
##
       diamonds
library(datapasta)
library(reprex)
library(miniUI)
library(gridExtra)
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
```

Outline

(Current as of 2020.06.25)

- 1.) Working Directory
- · 2.) Spolling Data into one CSV
- 3.) Creating the Dataframe "dml"
- 4.) Setting a new working directory
- 4.) Creating dateTime objects
- 5.) Creating Treatment Variables
- · 6.) Creating Night and Day Periods
- 7.) Insitu data
- 8.) Cleaning up dml "Cdml"
- 9.) Framing filters for Cdml
- 10.) Temperature "Jumps"
- 11.) Calculating averages by treatment & day/night
- 12.) Summary & Group by Cdml
- 13.) Plots Boxplots & timeseries
- 14.) Duration between conditions- Histogram & Cummulative Distribtuion Plot section
- 15.) aTemp bands investig.

#1.) Working Directory

Inside the working directory (folder) are CSV files generated after using the moats graph app Link to moats. Graph.app (http://github.com/pmcelhany/moatsGraphs.git) Moving average window (nObs) set to 4. This results in the observations being averaged into a 24second timeframe. CSVs were created for each moats: M01, M02, M03, M04, M05, M06, M07, M08, M09, M10, M11, M12, M13. Files are also available on the OA Google drive. OA Drive for MOATS data (https://drive.google.com/open?id=13a2hk1a9l9gRlgf2Xyl1dSYDf5vnyYvs)

2.) Spooling Data into one CSV

Combining multiple CSV files into 1 document. Original input files from individual LVM (logical volumne management) files off each MOATs. 2.1 Create a list of files

```
## 2.1 Create a list of files
# All files to be joined have ext. "csv" can use that pattern to join
files <- list.files(path= "/Users/katherinerovinski/GIT/NWFSC.MUK_MOATS_SMR2019/LabViewLogs(CSV)Rbind", pattern =
".*\\.csv")
print(files)</pre>
```

```
## [1] "M1_df_MoatsData.csv" "M10_df_MoatsData.csv" "M11_df_MoatsData.csv"
## [4] "M12_df_MoatsData.csv" "M13_df_MoatsData.csv" "M2_df_MoatsData.csv"
## [7] "M3_df_MoatsData.csv" "M4_df_MoatsData.csv" "M5_df_MoatsData.csv"
## [10] "M6_df_MoatsData.csv" "M7_df_MoatsData.csv" "M8_df_MoatsData.csv"
## [13] "M9_df_MoatsData.csv"
```

2.2 Create a temporary place for files

```
## 2.2 Create a temporary place for files
setwd("/Users/katherinerovinski/GIT/NWFSC.MUK_MOATS_SMR2019/LabViewLogs(CSV)Rbind")
temp <- lapply(files, fread, sep= ",")
print(temp)</pre>
```

```
## [[1]]
          moats
##
                           dateTime aTemperature sTemperature
                                                                                  DO
       1: M01 2019-09-05 17:04:00 12.16840 11.324116 0.02244800 9.269025
##
            M01 2019-09-05 17:04:22
                                         12.17155
                                                      11.346000 0.03559150 9.268738
       2:
                                         12.17656 11.367861 0.02263175 9.268492
##
       3:
           M01 2019-09-05 17:04:46
           M01 2019-09-05 17:05:10 12.17969 11.396164 0.04348125 9.267310 M01 2019-09-05 17:05:34 12.18132 11.439413 0.02432750 9.266493
##
       5:
##
## 96693:
           M01 2019-09-17 16:50:23 11.19017 9.521056 0.03718850 9.259634
           M01 2019-09-17 16:50:48
M01 2019-09-19 16:52:00
## 96694:
                                         11.18994
                                                       9.509823 0.05128550 9.261294
                                         11.91160 13.162302 7.66178975 8.847867
## 96695:
## 96696: M01 2019-09-19 16:52:21 11.91988 13.164492 7.66264175 8.847612
## 96697: M01 2019-09-19 16:52:45 11.92752 13.168515 7.66253800 8.846189
##
        salinity
##
              29.5
##
       2:
              29.5
##
       3:
              29.5
##
       4:
              29.5
      5:
##
## 96693:
              29.5
## 96694:
## 96695:
              28.8
## 96696:
              28.8
## 96697:
##
## [[2]]
##
                            dateTime aTemperature sTemperature
         moats
                                                                       рН
##
       1: M10 2019-09-24 16:05:00 12.08942 10.90406 7.727869 8.892254

    2:
    M10
    2019-09-24
    16:05:23
    12.09632
    10.88388
    7.728531
    8.903144

    3:
    M10
    2019-09-24
    16:05:47
    12.10228
    10.86738
    7.729645
    8.913513

    4:
    M10
    2019-09-24
    16:06:12
    12.10285
    10.85012
    7.730739
    8.923338

##
##
##
##
      5: M10 2019-09-24 16:06:35 12.10142 10.84065 7.731811 8.933912
##
## 80639:
           M10 2019-10-30 10:50:59 11.44499 11.70883 7.681737 6.159690
## 80640:
           M10 2019-10-30 10:53:00 11.50010 11.69634 7.674728 6.176614
            M10 2019-10-30 10:55:00
                                         11.52432
                                                       11.73733 7.673905 6.208007
                                         11.54326
           M10 2019-10-30 10:57:00
                                                       11.78689 7.679314 6.267933
## 80642:
                                       11.52632 11.78225 7.683825 6.351308
## 80643: M10 2019-10-30 10:58:59
##
         salinity
##
             28.8
##
      2:
              28.8
##
       3:
              28.8
##
       4:
              28.8
##
      5:
              28.8
##
## 80639:
              28.8
## 80640:
              28.8
## 80641:
              28.8
## 80642:
              28.8
## 80643:
              28.8
##
## [[3]]
                                                                       рН
##
          moats
                             dateTime aTemperature sTemperature
##
        1: M11 2019-10-28 11:27:00 13.24384 13.27378 7.655841 2.3327030
       2: M11 2019-10-28 11:27:24
                                        13.24669
                                                        13.28229 7.652207 2.4434278
##
       3: M11 2019-10-28 11:27:47 13.23905
                                                        13.27764 7.654789 2.4257235
##
             M11 2019-10-28 11:28:12
                                          13.23424
                                                        13.26904 7.654091 2.5788760
        4:
       5: M11 2019-10-28 11:28:36
                                       13.22975
                                                     13.26124 7.651458 2.6075580
##
## 110339: M11 2019-10-30 11:24:59
                                        13.10857
                                                        13.14075 7.666257 -0.8970227
## 110340: M11 2019-10-30 11:25:24
                                        13.10800
                                                        13.12946 7.669591 -0.8970350
## 110341:
            M11 2019-10-30 11:25:48
                                          13,10633
                                                        13.13023 7.667792 -0.8970733
## 110342:
             M11 2019-10-30 11:26:12
                                           13.11069
                                                        13.13927 7.662918 -0.8969603
## 110343: M11 2019-10-30 11:26:36
                                          13.11461
                                                        13.15588 7.659757 -0.8968665
##
          salinity
               28.8
##
        1:
##
               28.8
        3:
##
        4:
               28.8
        5:
##
       ---
## 110339:
               28.8
## 110340:
## 110341:
               28.8
## 110342:
               28.8
## 110343:
##
## [[4]]
                            dateTime aTemperature sTemperature
##
           M12 2019-09-24 10:48:00 11.54457 12.05596 7.635548 6.666244
       1:
##
       2:
           M12 2019-09-24 10:48:23
                                         11.55216
                                                       12.04850 7.636722 6.681026
           M12 2019-09-24 10:48:47
                                       11.56142
                                                       12.05127 7.638049 6.697410
```

```
11.56440
                                                   12.06437 7.639172 6.715560
##
      4:
          M12 2019-09-24 10:49:11
##
      5:
          M12 2019-09-24 10:49:35
                                      11.57110
                                                   12.08176 7.640389 6.734496
##
## 54784:
           M12 2019-11-01 12:43:59
                                      11.16364
                                                   11.52935 7.750611 9.125633
           M12 2019-11-01 12:45:59
                                                   11.54860 7.751082 9.121086
## 54785:
                                      11.16199
           M12 2019-11-01 12:47:59
                                    11.16497
                                                 11.57361 7.751337 9.126159
## 54786:
## 54787:
           M12 2019-11-01 12:49:59
                                      11.17101
                                                   11.58790 7.751266 9.143706
## 54788:
          M12 2019-11-01 12:51:59
                                      11.17299
                                                   11.59811 7.750636 9.164638
         salinity
##
      1:
             28.8
##
      2:
             28.8
             28.8
##
      3:
##
      4:
##
      5:
             28.8
##
## 54784:
             28.8
## 54785:
             28.8
## 54786:
             28.8
## 54787:
             28.8
## 54788:
             28.8
##
## [[5]]
##
          moats
                           dateTime aTemperature sTemperature
                                                                  pН
##
       1: M13 2019-10-05 09:42:00 12.88292 12.90622 7.525024 4.209248
##
            M13 2019-10-05 09:42:24
                                       12.87668
                                                    12.91175 7.526525 4.201476
           M13 2019-10-05 09:42:47
                                       12.87611
                                                    12.91363 7.528626 4.196523
##
       3:
       4:
##
            M13 2019-10-05 09:43:12
                                      12.88322
                                                  12.91140 7.529908 4.195774
       5:
            M13 2019-10-05 09:43:36
                                       12.88943
                                                    12.90763 7.530890 4.198372
##
## 107420: M13 2019-10-31 08:38:00
                                       13.86670
                                                    12.98007 7.719215 8.378414
## 107421:
            M13 2019-10-31 08:39:59
                                       13.85943
                                                    12.97847 7.718890 8.376869
## 107422: M13 2019-10-31 08:42:00
                                                    12.98079 7.719110 8.380475
                                       13.85518
## 107423: M13 2019-10-31 08:43:59
## 107424: M13 2019-10-31 08:46:00
                                       13.85470
                                                    12.97842 7.720154 8.386980
                                       13.85757
                                                    12.97633 7.721720 8.395183
##
         salinity
##
       1 •
              28.8
##
       2:
              28.8
              28.8
##
       3:
##
       4:
              28.8
##
       5:
              28.8
##
## 107420:
              28.8
## 107421:
              28.8
## 107422:
              28.8
## 107423:
              28.8
## 107424:
              28.8
## [[6]]
##
                          dateTime aTemperature sTemperature
      1: M02 2019-09-24 16:56:00 14.00188 11.88287 7.544728 8.688206
##
##
      2:
           M02 2019-09-24 16:56:24
                                      13.99150
                                                   11.91185 7.544594 8.700327
##
           M02 2019-09-24 16:56:48
                                      14.00338
                                                   11.93261 7.544907 8.711961
      3:
      4: M02 2019-09-24 16:57:12
                                      13.99937 11.95824 7.545630 8.722980
##
           M02 2019-09-24 16:57:36
                                    13.99001
                                                   11.98529 7.546176 8.733106
      5:
##
## 96770:
           M02 2019-10-25 13:23:00 13.67577
                                                14.50265 7.553553 7.499465
                                    13.67210
## 96771:
           M02 2019-10-25 13:25:00
                                                   14.50724 7.557383 7.427122
## 96772:
           M02 2019-10-25 13:27:00
                                      13.67808
                                                   14.51468 7.561196 7.381927
## 96773:
           M02 2019-10-25 13:29:00
                                     13.68171
                                                   14.53864 7.565191 7.383728
                                                   14.58706 7.569311 7.437285
## 96774:
          M02 2019-10-25 13:30:59
                                    13.69302
##
        salinitv
##
             28.8
      2:
##
      3:
             28.8
      4:
##
      5:
             28.8
##
## 96770:
             28.8
## 96771:
             28.8
## 96772:
             28.8
## 96773:
             28.8
## 96774:
             28.8
##
## [[7]]
##
                          dateTime aTemperature sTemperature
                                                                   Ηα
          moats
##
       1: M03 2019-09-24 16:23:00 12.20874
                                                    11.12296 7.716566 8.857545
            M03 2019-09-24 16:23:23
                                       12.21485
                                                    11.09998 7.717669 8.858215
##
            M03 2019-09-24 16:23:47
                                       12.21552
                                                    11.07615 7.718555 8.859583
       3:
       4:
                                                    11.05154 7.719685 8.861280
##
           M03 2019-09-24 16:24:11
                                       12.21425
            M03 2019-09-24 16:24:35
                                     12.21551
                                                    11.02739 7.720459 8.862019
##
## 103962:
            M03 2019-10-27 12:35:59
                                       11.18896
                                                    11.20713 7.723452 9.457098
           M03 2019-10-27 12:37:59
                                       11.18676
                                                    11.22743 7.723114 9.461530
## 103963:
```

```
M03 2019-10-27 12:39:59
                                                   11.23277 7.722659 9.466332
## 103964:
                                      11.19001
## 103965: M03 2019-10-27 12:42:00
                                      11.19109
                                                   11.25243 7.721918 9.470595
## 103966: M03 2019-10-27 12:43:59
                                      11.19839
                                                   11.26209 7.723172 9.473182
##
         salinity
##
       1:
              28.8
      2:
              28.8
##
       3:
              28.8
##
       4:
              28.8
##
       5:
              28.8
##
## 103962:
              28.8
## 103963:
              28.8
## 103964:
## 103965:
              28.8
## 103966:
              28.8
##
## [[8]]
          moats
##
                          dateTime aTemperature sTemperature
##
       1: M04 2019-10-05 14:03:00 11.91434 12.44716
                                                              8.825669
                                                            8.826660
           M04 2019-10-05 14:03:23
##
       2:
                                      11.91526
                                                  12.44246
                                    11.91462
       3: M04 2019-10-05 14:03:47
                                                12.44424
##
                                                             8.830653
##
           M04 2019-10-05 14:04:12
                                      11.91659
                                                  12.44531
                                                              8.830290
                                    11.91764
       5: M04 2019-10-05 14:04:35
                                                12.44556
##
                                                             8.835112
##
## 100737:
           M04 2019-10-18 15:07:00 -273.04429 -273.22433 8123.273242
## 100738: M04 2019-10-18 15:08:59 -273.04429 -273.22433 8123.273242
## 100739:
           M04 2019-10-18 15:11:00 -273.04429 -273.22433 8123.273242
## 100740:
           M04 2019-10-18 15:13:00 -273.04429
                                                -273.22433 8123.273242
## 100741: M04 2019-10-18 15:15:00 -273.04429 -273.22433 8123.273242
##
                DO salinity
##
       1: 9.024436
      2: 9.024051
##
                       28.8
                      28.8
##
       3: 9.023525
##
       4: 9.023639
                       28.8
##
       5: 9.023378
                       28.8
##
      ___
## 100737: -2.070290
                       28.8
## 100738: -2.070290
                       28.8
## 100739: -2.070290
                       28.8
## 100740: -2.070290
                       28.8
## 100741: -2.070290
                       28.8
##
## [[9]]
##
        moats
                         dateTime aTemperature sTemperature
                                                               рН
      1: M05 2019-09-24 10:04:00 13.45163 13.38484 7.604477 4.430357
##
##
           M05 2019-09-24 10:04:23
                                     13.45253
                                                  13.38669 7.604743 4.428692
      2:
      3: M05 2019-09-24 10:04:47 13.46313 13.38174 7.604795 4.424452
      4: M05 2019-09-24 10:05:12 13.46482
##
                                                 13.38264 7.605025 4.418166
##
          M05 2019-09-24 10:05:35
                                     13.47658
                                                  13.38145 7.604209 4.411646
      5:
##
          M05 2019-10-19 09:54:00 -12.13223 13.69912 8.720219 7.927978 M05 2019-10-19 09:56:00 -12.13115 13.67656 8.721747 7.929497
## 69881:
## 69882:
          M05 2019-10-19 09:58:00 -12.12418 13.65593 8.724045 7.927378
## 69883:
## 69884:
           M05 2019-10-19 10:00:00
                                    -12.19022
                                                 13.65425 8.726931 7.933592
## 69885:
          M05 2019-10-19 10:01:59
                                    -12.19581
                                                  13.63223 8.726680 7.937080
       salinity
##
      1:
            28.8
##
      2:
             28.8
     3:
##
             28.8
      4:
##
      5:
             28.8
## 69881:
             28.8
## 69882:
             28.8
## 69883:
## 69884:
             28.8
## 69885:
             28.8
## [[10]]
##
                         dateTime aTemperature sTemperature
                                                                pН
      1: M06 2019-09-24 16:42:00 13.97340 13.59691 7.733539 8.457947
##
          M06 2019-09-24 16:42:23
                                     13.97440
                                                 13.59848 7.732976 8.467310
      2:
                                     13.97289
          M06 2019-09-24 16:42:47
                                                 13.59922 7.732138 8.476004
##
      3:
      4: M06 2019-09-24 16:43:11 13.97367 13.59896 7.731699 8.485997
##
     5: M06 2019-09-24 16:43:35 13.97104
                                                 13.59855 7.731255 8.495649
##
## 82681: M06 2019-10-23 16:32:59 14.09326 14.18709 7.713069 8.819638
## 82682:
           M06 2019-10-23 16:35:00
                                     14.06091
                                                  14.20211 7.712702 8.793442
          M06 2019-10-23 16:37:00
                                                 14.27481 7.711946 8.767664
## 82683:
                                     14.06299
## 82684: M06 2019-10-23 16:39:00
                                  14.07089
                                                14.31402 7.711172 8.739593
## 82685: M06 2019-10-23 16:40:59
                                     14.07484
                                                  14.32679 7.710819 8.709578
##
       salinity
```

```
##
      2:
             28.8
##
      3:
             28.8
##
             28.8
      4:
##
      5:
             28.8
##
## 82681:
             28.8
## 82682:
             28.8
## 82683:
             28.8
## 82684:
             28.8
## 82685:
##
## [[11]]
##
        moats
                        dateTime aTemperature sTemperature
                                                               pН
      1: M07 2019-09-24 16:07:00 12.13279 10.80555 7.714717 8.967500
##
          M07 2019-09-24 16:07:24
                                     12.14024
                                                 10.77122 7.714582 8.973155
##
           M07 2019-09-24 16:07:48
                                     12.12668
                                                 10.74974 7.713819 8.978636
      3:
                                    12.12292
          M07 2019-09-24 16:08:12
                                                 10.73651 7.714620 8.983874
##
      4:
##
      5:
          ## 51418:
          M07 2019-10-23 11:18:22 11.92310
                                               12.44842 7.700380 7.728110
## 51419:
          M07 2019-10-23 11:20:22 11.93719 12.52979 7.698907 7.824580
## 51420:
           M07 2019-10-23 11:22:22
                                     11.94029
                                                 12.61646 7.694582 7.900057
          M07 2019-10-23 11:24:22
## 51421:
                                     11.95217
                                                 12.68966 7.697589 7.958912
## 51422: M07 2019-10-23 11:26:22 12.02391
                                               12.75254 7.696608 8.004696
        salinity
##
           28.8
##
     2:
             28.8
##
      3:
##
            28.8
      4:
##
      5:
            28.8
##
## 51418:
            28.8
## 51419:
            28.8
## 51420:
## 51421:
            28.8
## 51422:
            28.8
##
## [[12]]
##
         moats
                        dateTime aTemperature sTemperature
                                                               рΗ
##
      1: M08 2019-09-24 16:19:00 13.97487
                                                 13.65684 7.532832 8.589048
##
          M08 2019-09-24 16:19:24
                                     13.97642
                                                 13.65925 7.534100 8.589045
      2:
          M08 2019-09-24 16:19:47 13.98313 13.65838 7.534952 8.589651
##
      3:
##
           M08 2019-09-24 16:20:12
                                     13.98327
                                                 13.66222 7.536382 8.590224
      5: M08 2019-09-24 16:20:36 13.97546
                                                 13.67105 7.538302 8.590668
##
## 82819:
           M08 2019-10-20 16:10:00
                                   13.78250
                                                 13.90584 7.566084 8.552211
          M08 2019-10-20 16:12:00 13.78034
## 82820:
                                                 13.97506 7.572273 8.547564
## 82821:
          M08 2019-10-20 16:14:00 13.78263
                                                 14.07372 7.577503 8.541789
## 82822:
          M08 2019-10-20 16:16:00
                                     13.77039
                                                 14.19781 7.579950 8.534088
                                  13.77569
## 82823: M08 2019-10-20 16:17:59
                                                 14.30966 7.577583 8.526458
##
        salinitv
##
      1:
            28.8
             28.8
      2:
##
      3:
            28.8
##
      4:
             28.8
      5:
            28.8
##
     ---
## 82819:
             28.8
## 82820:
## 82821:
            28.8
## 82822:
             28.8
## 82823:
##
## [[13]]
        moats
                        dateTime aTemperature sTemperature
          M09 2019-09-26 14:51:00 11.08368 10.68647 1.011406 8.890546
##
      1:
##
      2:
          M09 2019-09-26 14:51:24
                                     11.07862
                                                 10.67480 1.011406 8.889532
      3: M09 2019-09-26 14:51:47 11.07612 10.66337 1.011406 8.890120
          M09 2019-09-26 14:52:12
M09 2019-09-26 14:52:35
                                    11.07909
11.08047
##
                                                 10.63342 1.011406 8.891280
      4:
##
      5:
                                                 10.60913 1.011406 8.893174
## 99685:
          M09 2019-09-28 14:48:59
                                     10.99281
                                                 10.91662 1.011406 8.747725
## 99686:
          M09 2019-09-28 14:49:24
                                     10.97035
                                                 10.88477 1.011406 8.743497
           M09 2019-09-28 14:49:47 10.95868
                                              10.85422 1.011406 8.740896
## 99687:
## 99688:
           M09 2019-09-28 14:50:12
                                    10.95436
                                                 10.81981 1.011406 8.739749
## 99689:
          M09 2019-09-28 14:50:36
                                     10.98239
                                                 10.78134 1.011406 8.741034
         salinity
##
##
            29.5
      1:
##
      2:
             29.5
             29.5
##
             29.5
      4:
##
      5:
             29.5
```

```
## 99685: 29.5

## 99686: 29.5

## 99687: 29.5

## 99688: 29.5

## 99689: 29.5
```

2.3 Create a new vector for Moats data logs

```
## 2.3 Create a new vector for Moats data logs
# "M01thruM13Moatslog_data" via rbind
M01thruM13moatslog_data <- rbindlist(temp)
print(M01thruM13moatslog_data)</pre>
```

```
dateTime aTemperature sTemperature
           moats
         1: M01 2019-09-05 17:04:00 12.16840 11.32412 0.02244800
##
##
              M01 2019-09-05 17:04:22
                                            12.17155
                                                           11.34600 0.03559150
         3: M01 2019-09-05 17:04:46 12.17656 11.36786 0.02263175

    4:
    M01 2019-09-05 17:05:10
    12.17969
    11.39616 0.04348125

    5:
    M01 2019-09-05 17:05:34
    12.18132
    11.43941 0.02432750

##
##
                                          10.99281 10.91662 1.01140600
## 1137876: M09 2019-09-28 14:48:59
## 1137877:
              M09 2019-09-28 14:49:24
                                            10.97035
                                                           10.88477 1.01140600
## 1137878: M09 2019-09-28 14:49:47 10.95868 10.85422 1.01140600
## 1137879: M09 2019-09-28 14:50:12 10.95436
## 1137880: M09 2019-09-28 14:50:36 10.98239
                                                           10.81981 1.01140600
                                                           10.78134 1.01140600
                  DO salinity
##
         1: 9.269025
                          29.5
##
         2: 9.268738
                          29.5
        3: 9.268492
##
         4: 9.267310
                          29.5
##
         5: 9.266493
                          29.5
## 1137876: 8.747725
                          29.5
## 1137877: 8.743497
                          29.5
## 1137878: 8.740896
                         29.5
## 1137879: 8.739749
                          29.5
## 1137880: 8.741034
                          29.5
```

2.4 Write the new csv document

```
## 2.5 Write the new csv document |
# "M01thruM13moatslog" can uncomment this command line as needed
#write.csv(M01thruM13moatslog_data, file = "M01thruM13moatslog.csv", row.names = FALSE)
```

Saved on the OA Google Drive M01thruM13moatslog.csv (https://drive.google.com/open?id=15iBXct9b4EjKDq75vKnm5NobowBwK3G-)

3.) Creating the Dataframe "dml"

3.1 Reading the CSV

```
## 3.1 Reading the CSV |
## ensuring column names and types
## Data Moats Log = dml
dml <- read.csv( file = "M01thruM13moatslog.csv", stringsAsFactors = FALSE)
dim(dml)</pre>
```

```
## [1] 1137880 7
```

3.1a Duplication Check

```
## 3.1a Duplication Check
## duplicates observed in "dml" on 2020.05.07
dup2 <- dml[duplicated(dml),]
#if no dups, Cdml2 has same number of rows as Cdml
dml2 <- dml %>% distinct()
```

3.1b Sub sampling dataframe "dml"

```
## 3.1b Sub sampling dataframe "dml"
## creating a sub sample of the data moats log dml dataframe to allow for quick graphs

#subsample every 17th row (because prime numbers are indeed cool)
dml <- dml %>% arrange(moats, dateTime) %>% filter(row_number() %% 17 == 0)

#write.csv(dml, file = "MOlthruM13moatslog_n17.csv", row.names = FALSE)
```

3.2 Checking variables

```
## 3.2 Checking variables
 ## Looking to ensure the different variables are treated as the correct variable type
 ## Checking the names in the dataframe
 names(dml)
 ## [1] "moats"
                       "dateTime"
                                       "aTemperature" "sTemperature" "pH"
 ## [6] "DO"
                       "salinity"
 ## Checking variable type/class
 class(dml$moats)
 ## [1] "character"
 dml$moats <- as.factor(dml$moats)</pre>
3.3 Changing variables
 ## 3.3 Changing variables |
 ## Changing MOATs to Factors for the 13 different MOATs- these will be the discrete units for follow analysis
 dml$moats <- factor(dml$moats)</pre>
 # Checking the names of the different levels
 levels(dml$moats)
 ## [1] "M01" "M02" "M03" "M04" "M05" "M06" "M07" "M08" "M09" "M10" "M11" "M12"
 ## [13] "M13"
 ##checking the dataset, dimensions
 dim(dml)
 ## [1] 66934
#4.) Creating dateTime objects
```

4.0 Establish the dateTime objects

```
# 4.0 establish the date time object of the CSV |
dml$dateTime <- as.POSIXct(dml$dateTime, format="%Y-%m-%d %H:%M:%OS")</pre>
ReferenceTime <- as.POSIXct("2019-09-20 23:59:00")</pre>
class(ReferenceTime)
## [1] "POSIXct" "POSIXt"
# QA check
dim(dml)
## [1] 66934
```

5.) Creating Treatment Variables

5.1 Identifying Treatments by MOATS

QA check dim(dml)

```
## 5.1 Identifying treatments by moats
 ## establishing treatments
dml$treatment <- ""
{\tt dml\$treatment[dml\$moats == "M07" \mid dml\$moats == "M10" \mid dml\$moats == "M12"] <- "current"}
\label{local_model} $$ dml\t = "M01" | dml\m oats == "M06"] <- "hightemperature" $$
dml$treatment[dml$moats == "M02" | dml$moats== "M08" | dml$moats== "M13"] <- "allchange"</pre>
 \texttt{dml}\$treatment[dml}\$moats == "M03" | dml}\$moats == "M04" | dml}\$moats == "M05" | dml}\$moats == "M11"] <- "broken_and_amb = "M11" | dml}\$moats == "M11" | dml}$moats == "M11
#verify that this new column has been created
names(dml)
## [1] "moats" "dateTime"
                                                                                                                                     "aTemperature" "sTemperature" "pH"
 ## [6] "DO"
                                                                         "salinity" "treatment"
 #results should include:
                                                                                                                              "aTemperature" "sTemperature" "pH"
#[1] "moats"
                                                              "dateTime"
 #[6] "DO"
                                                                       "salinity"
                                                                                                                            "treatment"
```

```
## [1] 66934 8
```

5.2 Simple ggplot to show the different MOATs without polish

```
plot5.2 <- ggplot(dml, aes(x=dateTime, y=aTemperature)) +
   geom_point(aes(colour=moats, point=)) +
   ggtitle("All MOATs, All Treatment aTemperature Time Series")
plot5.2</pre>
```

All MOATs, All Treatment aTemperature Time Series

All MOATs, All Treatment aTemperature Time Series, No Filters

Plot 5.2 Figure1

6.) Creating Night and Day Periods

6.1 Narrative (Overall) Creating a day and night variables Day and night periods exclude the acclimation period by their definition. Day and night changed at about ~ 1230 on 05OCT19 Treatment start date considered to begin Monday 23SEP19 at 1200pm

Krill Night Started 1200 (~1230) and ends 2100 Krill Days Started 2101 and ends 1159 (~1229)

Interval 1 start 1200 23SEP19, end 1229 05OCT19 Interval 2 start 1230 05OCT19, end 2100 30OCT19

Concept Diagram graphic

Day/Night Definitions Concept Diagram Figure2

6.2 New Column, New Variable

```
## 6.2 New Column, New Variable in dml
#creating a new column, new variable "period"
dml$period <- ""</pre>
```

6.3 Disassembling dateTime to create 2 new variables

```
## 6.3 Disassembling dateTime to create 2 new variables
# Create new split date and time columns
dml$ObservationDate <- as.Date(dml$dateTime)
dml$ObservationTime <- format(as.POSIXct(dml$dateTime) ,format = "%H:%M:%S")</pre>
```

6.4 Narrative about Intervals

Interval 1

- Interval Date Start "2019-09-23"
- Interval Date End "2019-10-05"
- Day Start Time "21:01:00"
- Day End Time "12:01:00"
- Night Start Time "12:00:00"
- Night End Time "21:00:00"
- Other Time

Interval 2

- Interval Date Start "2019-10-05"
- Interval Date End "2019-10-30"
- Day Start Time "21:01:00"
- Day End Time "12:29:00"
- Night Start Time "12:30:00"
- Night End Time "21:00:00"
- Other Time

6.5 Day / Night Assignments

```
## 6.5 Day / Night Assignments
# Using the "case_when" function in the tidyverse in the place of a loop
dml <- dml %>% mutate(period=case when(
                          (ObservationDate >= "2019-09-23")
                          & (ObservationDate <="2019-10-05")
                          & (ObservationTime >= "12:00:00")
                          & (ObservationTime <="21:00:00") \sim"night",
                          (ObservationDate >= "2019-10-05")
                          & (ObservationDate <= "2019-10-30")
                          & (ObservationTime >= "12:30:00")
                          & (ObservationTime <="21:00:00") ~"night",
                          (ObservationDate >= "2019-09-23")
                          & (ObservationDate <= "2019-10-05")
                          & ((ObservationTime >= "21:01:00")
                          | (ObservationTime <="11:59:00")) ~"day",
                          (ObservationDate >= "2019-10-05")
                          & (ObservationDate <= "2019-10-30")
                          & ((ObservationTime >= "21:01:00")
                          | (ObservationTime <= "12:29:00")) ~"day",
                          TRUE ~"other"
                    )
```

7.) Insitu data

7.0 In-situ data files Two files represent manual checks of aquarium salinity. Extracted from this are point measurements of aquarim temperature

```
# ## 7.1 Read in files
# carefule about navigating to the second working directory
#
#
# knitr::opts_chunk$set(echo = TRUE)
# knitr::opts_knit$set(root.dir = "/Users/katherinerovinski/GIT/NWFSC.MUK_KRL_SMR2019/06. MOATS replication verif ication/01. Raw Data/InSituSampling")
#
#
# d.insitu <- read.csv(file = "KRL19_insitu_sample_Day.csv", stringsAsFactors = FALSE)
# n.insitu <- read.csv(file = "KRL19_insitu_sample_Night.csv", stringsAsFactors = FALSE)</pre>
```

8.) Cleaning up dml

Creating a new dataframe cleaned with the various filters below checking on the variables inside dml Cleaned-Up dml = Cdml

8.2 Narrative on desired changes to create Cdml

 $8.2\ \text{Narrative}$ on Cdml Temperatures below 5C and above 30C are thought to be less than probable

```
# Changes to be made the dataframe by variable
#[1] "moats" "M03", "M04", "M05", "M09", "M11" to be filtered out- all these
                                           MOATs were dropped from the study
#[2] "dateTime" - no changes
#[3] "aTemperature" - no changes
#[4] "sTemperature" - no changes
#[5] "pH" - no changes
#[6] "DO"- no changes
#[7] "salinity" - no changes
\#[8] "treatment" - dropping the listed MOATs will eliminate the
                            "broken_and_ambientbroken" treatment
#[9] "period" - filtering out "other"
#[10] "ObservationDate" - no changes
\#[11] "ObservationTime" - no changes, note that each observation could be
Cdml <- dml %>% filter(!moats %in% c("M03", "M04", "M05", "M11")) %>% ^{*}
  filter(aTemperature>= 5 & aTemperature<=30) %>%
  filter(treatment %in% c("current", "allchange", "hightemperature")) %>%
  filter(period != "other")
```

8.3 Option to write a CSV of Cdml parameters

droping the levels of the moats

```
levels(Cdml$moats)

## [1] "M01" "M02" "M03" "M04" "M05" "M06" "M07" "M08" "M09" "M10" "M11" "M12"

## [13] "M13"

Cdml$moats <- droplevels(Cdml$moats)
```

9.) Framing filters for Cdml

9.0 cleaning names of levels, factors

Without dropping levels and factors not named label may still crowd plots #### 9.1 Dropping names and factors

```
## 9.1 Dropping levels and factors
filteredFrame$moats <- droplevels(filteredFrame$moats)
filteredFrame$treatment <- factor(filteredFrame$treatment)</pre>
```

9.2 Broad-gague test of plots by treatment

9.2.1 All Change Day Period Boxplot

9.2.2 All Change Night Period Boxplot

All Change Treatment, Aquarium Temperature, Night Period Boxplot

9.2.3 All Change Timeseries

9.2.4 Current Day Period Boxplot

9.2.5 Current Night Period Boxplot

Current Conditions Treatment, Aquarium Temperature, Night Period Boxplot

9.2.6 Current Conditions Timeseries

Current Conditions Treatment, Aquarium Temperature, Timeseries

9.2.7 High Temperature Day Period Boxplot

High Temperature, Aquarium Temperature, Conditions Day Period Boxplot

9.2.8 High Temperature Night Period Boxplot

High Temperature Conditions, Aquarium Temperature, Night Period Boxplot

9.2.9 High Temperature Timeseries

Current Conditions Aquarium Temperature Treatment Timeseries

10.) Temperature Jumps

10.0 Creating new column

```
## 10.0 Creating new column - showing the different between 2 adjacent times # first sort the data so you are comparing adjacent times # then add new column # the diff() function computes x[i+lag] - x[i], the default value is lag = 1
```

10.1 diff()function & deltaTempLag1 Narrative

```
## 10.1 diff()function & deltaTempLag1 Narrative
#the result of the diff() function has a length that is the length of
# the original vector - lag

#therefore need to fill the new variable, deltaTempLag1,
# with c(0,abs(diff(aTemperature))) it is right length and first value
# (with no valid diff) is zero

# creating a new object to be a validation flag under name deltaTempLag1

# will create a numerical value that will represent those observations
# to be filtered out
```

10.2 Creating deltaTempLag1

```
##
                       dateTime aTemperature sTemperature
     moats
                                                                   Нα
                                                                            DO
## 1 M01 2019-10-19 21:59:00 11.71136 11.67883 7.722845 5.179468
      M07 2019-09-26 21:43:00 11.39582 10.83490 7.689979 5.656842
       M08 2019-09-30 21:43:59 13.23410 12.25973 7.548849 5.518189
M08 2019-10-19 21:19:59 12.95044 12.85344 7.556915 5.804039
## 3
## 4
       M08 2019-10-24 21:27:59 13.19683 13.42282 7.559878 6.215845
       M08 2019-10-25 21:15:59 12.43890 11.90826 7.586635 6.300650 M08 2019-10-28 21:47:59 13.33322 13.46518 7.534707 4.086717
## 6
## 7
## 8
      M10 2019-09-26 21:44:59 11.41436 10.86563 7.691018 7.202747
## 9 M12 2019-09-29 21:41:59 11.38074 10.89259 7.690470 5.511001 ## 10 M12 2019-10-28 21:33:59 11.28371 11.55635 7.713491 7.449388
## 11 M13 2019-10-09 21:32:59 12.70052 12.62047 7.558021 5.813056
## salinity
                    treatment period ObservationDate ObservationTime
## 1
         28.8 hightemperature day 2019-10-20
                                                              21:59:00
## 2
         28.8
                                            2019-09-27
                      current day
                    allchange day allchange day
## 3
          28.8
                                            2019-10-01
                                                               21:43:59
         28.8 allchange day 2019-10-20
28.8 allchange day 2019-10-25
                                                              21:19:59
## 4
## 5
                                                              21:27:59
                   allchange day
          28.8
                                            2019-10-26
                                                               21:15:59
                                         2019-10-29
## 7
         28.8
                                                               21:47:59
## 8
         28.8
                     current day 2019-09-27
                                                              21:44:59
                      current day 2019-09-30 current day 2019-10-29
          28.8
                                                               21:41:59
                current day 2019-10-10 allchange day 2019-10-10
## 10
        28.8
                                                              21:33:59
## 11
         28.8
                                                              21:32:59
## deltaTempLag1
## 1
         1.386639
## 2
           1.083771
           1.063837
## 4
           1.090132
## 5
          1.046439
## 7
           1.206709
## 8
           1.020578
           1.029939
## 10
           1.081021
## 11
           1.122322
```

10.3 Creating tDeltaThreshold

"`{r10.3 Creating tDeltaThreshold}

10.3 Creating tDeltaThreshold

#Creating another column of variables to be able to graph the temperature jumps Cdml <- Cdml %>% mutate(tDeltaThreshold = if_else(deltaTempLag1 > 0.5, TRUE, FALSE)) ```

11.) Calculating Averages by Treatment & Day/Night

```
## 11.0 Intercept Narrative
# These averages will be the yintercepts in plots
# example of what to put into with ggplot "
# geom_hline(yintercept = dtemperatur$`mean(aTemperature)`)
```

11.1 All Treatments (Day & Night)

11.2 Current Treatment Day/Night Averages

```
## [1] 11.95039
```

```
## [1] 11.09783
```

```
# [1] 11.09983
```

11.3 All Change Treatment Day/Night Averages

```
## [1] 13.89858
```

```
## [1] 12.97331
```

```
# [1] 12.97466
```

11.4 High Temperature Treatment

```
## [1] 13.80435
```

```
## [1] 12.92259
```

```
#[1] 12.92148
```

11.5 Review of all Treatments

```
## 11.5 Review of all Treatments
# Review of 6 new variables
avg_allchgDayaTemp
```

```
## [1] 12.97331
```

```
avg_allchgNightaTemp
```

```
## [1] 13.89858
```

```
avg_curDayaTemp

## [1] 11.09783

avg_curNightaTemp

## [1] 11.95039

avg_hitempDayaTemp

## [1] 12.92259

avg_hitempNightaTemp

## [1] 13.80435
```

11.6 Table of Averages

12.) Summary & Group by Cdml

12.1 Tribble of Day/Night Summary

```
## # A tibble: 6 x 9
   treatment
                   period
                            sd mean median
                                            IOR
                                                                   ci
                   <chr> <dbl> <dbl> <dbl> <dbl> <int>
                                                         <dh1>
##
    <chr>
                                                                <dh1>
## 1 allchange
                          0.373 13.0
                                      12.9 0.248 4956 0.00529 0.0104
                   day
                   night 0.248 13.9
                                      13.9 0.194 2843 0.00464 0.00910
## 2 allchange
## 3 current
                   day
                         0.348 11.1
                                      11.1 0.208 3974 0.00552 0.0108
## 4 current
                   night 0.303 12.0
                                       12.1 0.122 2290 0.00632 0.0124
## 5 hightemperature day 0.363 12.9
                                      12.9 0.288 2687 0.00700 0.0137
## 6 hightemperature night 0.313 13.8 13.9 0.189 1504 0.00808 0.0158
```

13.) Plots

All Treatments, Day/Night Period Aquarium Temperature Comparison

All Treatments, ay/Night Period Aquarium Temperature Comparison, Temperatur

13.1.1 Aquarium Temperature, All Change Conditions, Day & Night

All Change Conditions, Aquarium Temperature, Day/Night Period Boxplots

All Change Conditions, Aquarium Temperature, Day/Night Period Violin Plots

13.1.3 Aquarium Temperature, Current Conditions, Day & Night

Current Conditions, Aquarium Temperature, Day/Night Period Boxplots

Current Conditions, Aquarium Temperature, Day/Night Period Violin Plots

13.1.4 Aquarium Temperature, High Temperature Conditions, Day & Night Boxplots

High Temperature Conditions, Aquarium Temperature, Day/Night Period Boxplot

13.1.5 Aquarium Temperature, High Temperature Conditions, Day & Night Violin plots

High Temperature Conditions, Aquarium Temperature, Day/Night Period Violin P

14. Cumulative Frequency Distribution

A Cumulative Frequency Distribution plot was used to illustration the time spent around the mean per period per treatment.

14.1a CFD plot 1

14.2 Empirical Cumulative Distribution Function Generated Plots

Using a ECDF to better visualize distribution Compute empirical cumulative distribution: The empirical cumulative distribution function (ECDF) provides an alternative visualisation of distribution. Compared to other visualisations that rely on density (like geom_histogram()), the ECDF doesn't require any tuning parameters and handles both continuous and categorical variables.

14.3 Creating a function to incorporate our statisitics

```
## 14.3 Creating a function to incorporate our statisitics- show our averages

coolECDF <- function(d, dsum, treat, per){
   dsum <- dsum %>% filter(treatment == treat & period == per )
   p <- d %>% filter(treatment == treat & period == per ) %>% ggplot(aes(aTemperature)) +
        stat_ecdf(aes(colour = moats)) +
        geom_vline(xintercept = dsum%mean, colour = "red") +
        ggtitle(paste(treat, per)) +
        theme_bw()
   return(p)
}
```

14.4 Levels ECDF

```
levels(Cdml$treatment)

## [1] "allchange" "current" "hightemperature"

levels(factor(Cdml$period))

## [1] "day" "night"
```

14.5 Creating the different averages from the Summary Table (ECDF)

```
cfd.a.d <- coolECDF(Cdml, Cdml.daynight.summary, "allchange", "day")
cfd.a.n <- coolECDF(Cdml, Cdml.daynight.summary, "allchange", "night")
cfd.c.d <- coolECDF(Cdml, Cdml.daynight.summary, "current", "day")
cfd.c.n <- coolECDF(Cdml, Cdml.daynight.summary, "current", "night")
cfd.h.d <- coolECDF(Cdml, Cdml.daynight.summary, "hightemperature", "day")
cfd.h.n <- coolECDF(Cdml, Cdml.daynight.summary, "hightemperature", "night")</pre>
```

14.6 Incorporating Grid Arrange to display the ECDF plots

```
## Incorporating Grid Arrange to display the ECDF plots
# Basic Grid Arrange
grid.arrange(cfd.a.d, cfd.c.d, cfd.h.d, nrow = 1)
```


grid.arrange(cfd.a.n, cfd.c.n, cfd.h.n, nrow = 1)

#make a list of all the plots then pass the list to grid.arrange()
ecdfList <- list(cfd.a.d, cfd.c.d, cfd.h.d, cfd.a.n, cfd.c.n, cfd.h.n)
grid.arrange(grobs = ecdfList, ncol=3)</pre>

15.0 Temperature Investigation

15.1 Temperature Investigation High Temperature

15.1a High Temperature Banding Investigation, All Change Treatment

```
## <ScaleContinuousPosition>
## Range:
## Limits: 10 -- 20
```

hitemp_plot1

15.1b High Temperature Banding Investigation, Current Conditions Treatment

```
## <ScaleContinuousPosition>
## Range:
## Limits: 10 -- 20
```

hitemp_plot2

High Temperature Banding Investigation, Current Conditions Treatment

15.1c High Temperature Banding Investigation, High Temperature Treatment Conditions Treatment

""{r15.1b High Temperature Banding Investigation, High Temperature Treatment Treatment}

hitemp_plot3 <- ggplot(subset(investig.HighaTemp[investig.HighaTemp\$treatment == "hightemperature",])) + aes(x=dateTime, y=aTemperature) + geom_point(aes(colour=moats, point=)) + ggtitle("High Temperature Banding Investigation, High Temperature Treatment") ylim (10, 20)

hitemp_plot3 ```

High Temperature Banding Investigation, All Change Treatment

current to line 879

#_____\$

\$\$	\$ #	
	\$_\$ #	
\$	\$ #	
\$		
\$	\$ # 	
\$\$	\$ #	
\$#	\$	
\$	\$\$ #	
\$	<u>. </u>	
	\$ #	
\$	\$ #	
\$\$	\$ #	
\$\$	<u>#</u>	
	\$ # _	
	\$ #	
\$\$		

\$\$ \$ \$ \$ \$ # _\$\$ # _\$\$ \$#_ \$\$

\$\$