ECE 464/564: Digital Signal Processing - Winter 2018 Homework 1

Due: Jan 23, 2018 (Tuesday)

1. The continuous-time signal

$$x_c(t) = \sin(20\pi t) + \cos(40\pi t)$$

is sampled with a sampling period T to obtain the discrete-time signal

$$x[n] = \sin\left(\frac{n\pi}{5}\right) + \cos\left(\frac{2\pi n}{5}\right)$$

- (a) Determine a choice for T consistent with this information.
- (b) Is your choice for T in part (a) unique? If so, explain why. If not, specify another choice of T consistent with the information given.
- 2. The continuous-time signal

$$x_c(t) = \frac{\sin(10\pi t)}{10\pi t}$$

is sampled with a sampling period T to obtain the discrete-time signal

$$x[n] = \frac{\sin(n\pi/2)}{(n\pi/2)}$$

- (a) Determine a choice for T consistent with this information.
- (b) Is your choice for T in part (a) unique? If so, explain why. If not, specify another choice of T consistent with the information given.
- 3. Use the system shown in Fig. 1. below to implement a differentiator:

$$y_c(t) = \frac{d}{dt}x_c(t)$$

(C/D: An ideal continuous-to-discrete time converter, D/C: An ideal discrete-to-continuous time converter)

Fig. 1. For Problem 3

- a. Write $H_c(j\Omega)$ for the derivative
- b. Find $H_c(e^{iw})$
- c. Find and plot h[n]

4. Each of the following parts lists an input signal x[n] and the Up-sampling and Down-sampling rates L and M for the system in Fig. 2. Determine the corresponding output $\tilde{x}_d[n]$

Fig. 2. For Problems 4 and 5

a.
$$x[n] = \sin(2\pi n/3)/\pi n$$
, L = 4, M = 3

b.
$$x[n] = \sin(3\pi n/4)$$
, L = 6, M = 7

5. For the system shown in Fig. 2, $X(e^{iw})$, the Fourier transform of the input signal x[n], is shown in Fig. 3.

Fig. 3. For Problem 5

For each of the following choices of L and M, specify the maximum possible value of ω_0 such that $\tilde{X}_d(e^{j\omega}) = aX(e^{jM\omega/L})$ for some constant a.

(a)
$$M = 3$$
, $L = 2$

(b)
$$M = 2$$
, $L = 3$

6. Fig. 4. shows a continuous-time filter that is implemented using an LTI discrete-time filter ideal lowpass filter with frequency response over $-\pi \le \omega \le \pi$ as

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & \omega_c < |\omega| \le \pi. \end{cases}$$

Fig. 4. Continuous-Time filter using a discrete-time LPF

Fig. 5. Continuous-Time Fourier Transform of $x_c(t)$

- (a) If the continuous-time Fourier transform of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in Fig. 5. and $\omega_c = \pi/5$, sketch and label $X(e^{j\omega})$, $Y(e^{j\omega})$ and $Y_c(j\Omega)$ for $1/T = 2 \times 10^4$
- (b) For $1/T = 6 \times 10^3$ and for input signals $x_c(t)$ whose spectra are bandlimited to $|\Omega| < 2\pi \times 5 \times 10^3$ (but otherwise unconstrained), what is the maximum choice of the cutoff frequency ω_c of the filter $H(e^{j\omega})$ for which no aliasing occurs. For this maximum choice of ω_c , specify $H_c(j\Omega)$.