```
In [3]:
          # Import libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          %matplotlib inline
          import seaborn as sns
In [4]:
          # Import data
          df= pd.read_csv("F:\\datasets folder\\godigt_cc_data.csv")
In [3]:
          # See the heads of dataset
          df.head(5)
Out[3]:
            userid card_no card_bin_no Issuer card_type card_source_date high_networth active_30 active
                     4384
                     39XX
                                                                                            0
         0
                                                                                   В
                               438439
                                        Visa
                                                 edge
                                                             29-09-2019
                     XXXX
                     XXXX
                     4377
                     48XX
         1
                2
                               437748
                                        Visa prosperity
                                                             30-10-2002
                                                                                  Α
                                                                                             1
                     XXXX
                     XXXX
                     4377
                     48XX
                               437748
                                                             05-10-2013
                                                                                  C
                                                                                            0
         2
                3
                                        Visa
                                               rewards
                     XXXX
                     XXXX
                     4258
                     06XX
                               425806
                                                             01-06-1999
                                                                                   Ε
                                                                                            0
         3
                                        Visa
                                              indianoil
                     XXXX
                     XXXX
                     4377
                     48XX
                               437748
                                        Visa
                                                 edge
                                                             13-06-2006
                                                                                   В
                     XXXX
                     XXXX
        5 rows × 29 columns
In [4]:
          # see th tail or bottom of dataset
          df.tail(5)
Out[4]:
               userid card_no card_bin_no Issuer card_type card_source_date high_networth active_30 ac
                         4262
                        41XX
         8443
                8444
                                                                10-01-2010
                                                                                                1
                                  426241
                                           Visa
                                                 chartered
                        XXXX
                        XXXX
```

file://F:/ASSIGNS/ASS2 GODIG.html

centurion

19-07-2006

376916 Amex

0

8444

8445

37691

6XXXX

	userid	card_no	card_bin_no	o Issu	er card_ty	/pe car	d_source_da	ate high_ne	tworth	active_3	30 a
8445	8446	4375 51XX XXXX XXXX	43755	1 Vi:	sa rewa	rds	15-02-20	006	D		0
8446	8447	4477 47XX XXXX XXXX	44774	7 Vi:	sa indiar	noil	06-11-20	003	С		0
8447	8448	4262 41XX XXXX XXXX	42624 ⁻	1 Vi:	sa rewa	rds	13-01-20	013	D		0
5 rows	× 29 c	columns									
	the shape	shape o	f data								
(8448	, 29)										
# no	of c	olumns s	we have								
Index	'act 'hot 'an 'T+1 'T+6	ive_90', list_fla nual_inc _month_a _month_a	<pre>'cc_activ g', 'widge ome_at_sou ctivity', ctivity', _13m ', '0</pre>	e30', t_prod rce ', 'T+2_n 'T+12_	'cc_acti ducts', ' , 'other_ nonth_act _month_ac	ve60', engagem bank_cc ivity', tivity'	cc_activent_produ ent_produs_ holding: T+3_mor_ Transa,		intage' [y', [ver',		
# ne	eed to	change	the colu	umn no	ame here	with	'new_co	Lumn' nam	е		$\overline{}$
	rename nead(2	•	s = { 'Unr	named	: 28':'r	new_col	Lumn'},	inplace =	True)	
use	erid ca	rd_no ca	rd_bin_no l	ssuer	card_type	card_so	ource_date	high_netwo	orth ac	tive_30	activ
0	1	4384 39XX XXXX XXXX	438439	Visa	edge	;	29-09-2019		В	0	
1	2	4377 48XX XXXX XXXX	437748	Visa	prosperity	:	30-10-2002		Α	1	
2 rows	× 29 c	columns									

file:///F:/ASSIGNS/ASS2 GODIG.html

2/24

Out[8]:		userid	card_no	card_bin_no	Issuer	card_type	card_source_date	high_networth	active_30 ac
	0	1	4384 39XX XXXX XXXX	438439	Visa	edge	29-09-2019	В	0
	1	2	4377 48XX XXXX XXXX	437748	Visa	prosperity	30-10-2002	А	1
	2	3	4377 48XX XXXX XXXX	437748	Visa	rewards	05-10-2013	С	0
	3	4	4258 06XX XXXX XXXX	425806	Visa	indianoil	01-06-1999	E	0
	4	5	4377 48XX XXXX XXXX	437748	Visa	edge	13-06-2006	В	1
	•••								
	8443	8444	4262 41XX XXXX XXXX	426241	Visa	chartered	10-01-2010	А	1
	8444	8445	37691 6XXXX XXXXX	376916	Amex	centurion	19-07-2006	А	0
	8445	8446	4375 51XX XXXX XXXX	437551	Visa	rewards	15-02-2006	D	0
	8446	8447	4477 47XX XXXX XXXX	447747	Visa	indianoil	06-11-2003	С	0
	8447	8448	4262 41XX XXXX XXXX	426241	Visa	rewards	13-01-2013	D	0

8448 rows × 29 columns

```
In [9]: # unique values
df.nunique()
```

```
8448
Out[9]: userid
         card no
                                         11
         card bin no
                                         11
         Issuer
                                          3
                                         15
         card type
                                       5186
         card source date
         high networth
                                          5
                                          2
         active 30
                                          2
         active 60
         active_90
                                          2
                                          2
         cc_active30
                                          2
         cc_active60
                                          2
         cc_active90
                                          2
         hotlist_flag
                                          8
        widget_products
                                          9
         engagement_products
                                       8435
          annual_income_at_source
                                          2
         other_bank_cc_holding
                                         55
         bank_vintage
                                          2
         T+1_month_activity
                                          2
         T+2_month_activity
                                          2
         T+3_month_activity
                                          2
         T+6_month_activity
                                          2
         T+12_month_activity
                                          2
         Transactor_revolver
                                       8095
          avg_spends_13m
         Occupation_at_source
                                          6
         cc_limit
                                         99
         new_column
                                          0
         dtype: int64
```

In [10]:

get an information of data..
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8448 entries, 0 to 8447
Data columns (total 29 columns):

	Column (LOCAL 29 COLUMNS):		Dtyma
#	Column	Non-Null Count	Dtype
0	userid	8448 non-null	int64
1	card no	8448 non-null	object
2	card_bin_no	8448 non-null	int64
3	Issuer	8448 non-null	object
4		8448 non-null	_
	card_type	8448 non-null	object
5	card_source_date		object
6	high_networth	8448 non-null	object
7	active_30	8448 non-null	int64
8	active_60	8448 non-null	int64
9	active_90	8448 non-null	int64
10	cc_active30	8448 non-null	int64
11	cc_active60	8448 non-null	int64
12	cc_active90	8448 non-null	int64
13	hotlist_flag	8448 non-null	object
14	widget_products	8448 non-null	int64
15	engagement_products	8448 non-null	int64
16	annual_income_at_source	8448 non-null	object
17	other_bank_cc_holding	8448 non-null	object
18	bank_vintage	8448 non-null	int64
19	T+1_month_activity	8448 non-null	int64
20	T+2_month_activity	8448 non-null	int64
21	T+3_month_activity	8448 non-null	int64
22	T+6_month_activity	8448 non-null	int64
23	T+12_month_activity	8448 non-null	int64
24	Transactor_revolver	8410 non-null	object
25	avg_spends_13m	8448 non-null	object
26	Occupation_at_source	8448 non-null	object
27	cc_limit	8448 non-null	int64

28 new_column 0 non-null float64

dtypes: float64(1), int64(17), object(11)

memory usage: 1.9+ MB

In [11]:

see the statistical summary of data..
df.describe()

Out[11]:

	userid	card_bin_no	active_30	active_60	active_90	cc_active30	cc_active60	cc_ac
count	8448.00000	8448.000000	8448.000000	8448.000000	8448.000000	8448.000000	8448.000000	8448
mean	4224.50000	436747.044508	0.292377	0.494792	0.642045	0.284091	0.484493	0
std	2438.87187	30489.752417	0.454881	0.500002	0.479427	0.451007	0.499789	0
min	1.00000	376916.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
25%	2112.75000	426241.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
50%	4224.50000	437551.000000	0.000000	0.000000	1.000000	0.000000	0.000000	1
75%	6336.25000	438439.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1
max	8448.00000	524178.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1

```
In [12]:
```

groupby of columns or variables for comparison..
df[['card_no','card_type']]

Out[12]:

card_no card_type

- **0** 4384 39XX XXXX XXXX edge
- 1 4377 48XX XXXX XXXX prosperity
- 2 4377 48XX XXXX XXXX rewards
- 3 4258 06XX XXXX XXXX indianoil
- **4** 4377 48XX XXXX XXXX edge

•••

8443 4262 41XX XXXX XXXX chartered

8444 37691 6XXXX XXXXX centurion

8445 4375 51XX XXXX XXXX rewards

8446 4477 47XX XXXX XXXX indianoil

8447 4262 41XX XXXX XXXX rewards

8448 rows × 2 columns

In [13]:

groupby for further analysis with some of the columns of data..
df[['card_no','card_type','userid','Issuer','hotlist_flag']]

Out[13]:

3]:		card_no	card_type	userid	Issuer	hotlist_flag
	0	4384 39XX XXXX XXXX	edge	1	Visa	N
	1	4377 48XX XXXX XXXX	prosperity	2	Visa	N
	2	4377 48XX XXXX XXXX	rewards	3	Visa	N

	card_no	card_type	userid	Issuer	hotlist_flag
3	4258 06XX XXXX XXXX	indianoil	4	Visa	N
4	4377 48XX XXXX XXXX	edge	5	Visa	N
•••					
8443	4262 41XX XXXX XXXX	chartered	8444	Visa	N
8444	37691 6XXXX XXXXX	centurion	8445	Amex	N
8445	4375 51XX XXXX XXXX	rewards	8446	Visa	N
8446	4477 47XX XXXX XXXX	indianoil	8447	Visa	N
8447	4262 41XX XXXX XXXX	rewards	8448	Visa	N

8448 rows × 5 columns

Make a countplot of card no of data, one of the important variable of data...

sns.countplot(x='card_no',data=df, color='red', saturation=0.1)

Out[14]: <AxesSubplot:xlabel='card_no', ylabel='count'>

Make a count plot of card type of data... it tells us which card type is using more by the customers,
sns.countplot(x='card_type',data=df, color='red', saturation=0.1)

Out[15]: <AxesSubplot:xlabel='card_type', ylabel='count'>

Make a countplot of issuer which tells us which issuer is using more by the customers of bank..

sns.countplot(x='Issuer',data=df, color='red', saturation=0.1)

Out[16]: <AxesSubplot:xlabel='Issuer', ylabel='count'>

In [17]: # Make a countplot of other_bank_cc_holding , it shows how many customers
holding other banks cards ..
sns.countplot(x='other_bank_cc_holding',data=df, color='red',
saturation=0.1)

Out[17]: <AxesSubplot:xlabel='other_bank_cc_holding', ylabel='count'>

Make a countplot of hotlist_flag, it tells us about how many customer's card blocked by the bank.

sns.countplot(x='hotlist_flag',data=df, color='red', saturation=0.1)

Out[18]: <AxesSubplot:xlabel='hotlist_flag', ylabel='count'>

Make a countplot of Occupation_at_source, it tells us about which
category of occupation is higher,
salaried and sel employed are using cards more than the other
categories...
sns.countplot(x='Occupation_at_source',data=df, color='red',
saturation=0.1)

Out[19]: <AxesSubplot:xlabel='Occupation_at_source', ylabel='count'>

Make a countplot of Transactor_revolver, it tells us about how many people are transactor revolver

means how many people lend money from the bank by the card and return back as a averagly low or

minimum amount

sns.countplot(x='Transactor_revolver',data=df, color='red', saturation=0.1)

Out[20]: <AxesSubplot:xlabel='Transactor_revolver', ylabel='count'>

In [21]: #Make a countplot of bank_vintage...
sns.countplot(x='bank_vintage',data=df, color='red',saturation=0.1)

Out[21]: <AxesSubplot:xlabel='bank_vintage', ylabel='count'>

find correlation between variables of data ..including all the columns
of data
corr = df.corr()

In [23]: corr

Out[23]:		userid	card_bin_no	active_30	active_60	active_90	cc_active30	cc_active6
	userid	1.000000	-0.012930	0.004826	-0.002638	-0.014598	0.003236	0.00678
	card_bin_no	-0.012930	1.000000	-0.011735	-0.017988	-0.001044	0.002825	0.01294
	active_30	0.004826	-0.011735	1.000000	0.649523	0.479956	0.008249	0.00171
	active_60	-0.002638	-0.017988	0.649523	1.000000	0.738936	0.006037	0.00086
	active_90	-0.014598	-0.001044	0.479956	0.738936	1.000000	0.016475	0.01388
	cc_active30	0.003236	0.002825	0.008249	0.006037	0.016475	1.000000	0.64979
	cc_active60	0.006785	0.012942	0.001719	0.000861	0.013887	0.649790	1.00000
	cc_active90	0.013257	0.007836	-0.010189	0.002859	0.018534	0.480340	0.73922
	$widget_products$	-0.011369	0.027682	0.038809	0.037084	0.022866	-0.011778	0.01266
	engagement_products	-0.004239	-0.008724	0.003273	-0.012600	0.002004	0.012220	0.00795
	bank_vintage	0.000638	0.002812	-0.006061	-0.007405	-0.000413	0.016922	0.01092
	T+1_month_activity	0.013422	0.003992	0.365093	0.236327	0.171547	0.009978	0.00947
	T+2_month_activity	0.001757	0.015344	0.078675	0.050544	0.045042	0.053988	0.04077
	T+3_month_activity	-0.004524	-0.001485	0.052145	0.027028	0.030017	0.044509	0.03313
	T+6_month_activity	-0.010698	-0.011072	0.147238	0.095634	0.070668	0.150242	0.09762
	T+12_month_activity	-0.005915	-0.009868	0.152112	0.098800	0.073007	0.155215	0.10085
	cc_limit	-0.004585	0.009024	-0.007140	-0.004769	-0.014645	0.009937	0.00492
	new_column	NaN	NaN	NaN	NaN	NaN	NaN	Na

Draw the heatmap of variables which includes, brightest blocks have the higher value,

```
# however, lightest blocks have the lowest values ...

plt.figure(figsize=(7,5))
sns.heatmap(corr, annot=True, annot_kws={'size': 0.01}, cmap="Reds")
```

Out[24]: <AxesSubplot:>


```
In [25]: # plot histogram for comparisons of cc_limit with card_type as hue ...
which tells us which card is
# with maximum or minimum cc limit provided by the bank.
plt.figure(figsize=(5,5))
sns.histplot(data = df, x = "cc_limit", kde = True, hue='card_type')
```

Out[25]: <AxesSubplot:xlabel='cc_limit', ylabel='Count'>

In []:

Blank cell

In []:

Blank cell

In [28]:

Make a countplot of cc limit with hotlist_flag as hue, which tells us
how many customers are hotlist
from the bank with how much cc_limit provided by the customers...
plt.figure(figsize=(5,5))
sns.histplot(data = df, x = "cc_limit", kde = True, hue='hotlist_flag')

Out[28]: <AxesSubplot:xlabel='cc_limit', ylabel='Count'>

In [29]:

Make a countplot of cc limit with Occupation_at_source as hue, which tells us which occupation is

12/24

receving higher credit limit from the bank..

```
plt.figure(figsize=(5,5))
sns.histplot(data = df, x = "cc_limit", kde = True,
hue='Occupation_at_source')
```

Out[29]: <AxesSubplot:xlabel='cc_limit', ylabel='Count'>

In [52]: # groupby with card type and cc limit with decription ...
df.groupby(['card_type',"cc_limit"]).describe().unstack()

Out[52]: userid ...

count ...

cc_limit	0	20000	30000	40000	50000	60000	70000	80000	90000	100000	•••	900000
card_type												
aura	NaN	21.0	38.0	22.0	27.0	24.0	30.0	51.0	60.0	48.0		NaN
cashback	NaN	14.0	39.0	30.0	21.0	28.0	30.0	57.0	78.0	41.0		NaN
centurion	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
chartered	1.0	NaN		NaN								
edge	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
elite	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
gold	NaN	1.0	3.0	4.0	4.0	2.0	2.0	9.0	6.0	7.0		NaN
indianoil	NaN	26.0	27.0	25.0	27.0	32.0	31.0	68.0	51.0	48.0		NaN
platinum	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
prime	NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN	NaN	NaN		NaN
prosperity	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
pulse	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
rewards	NaN	38.0	55.0	67.0	62.0	63.0	56.0	121.0	124.0	110.0		NaN
shoprite	NaN	14.0	24.0	32.0	38.0	33.0	36.0	57.0	67.0	42.0		NaN
smartearn	NaN	19.0	34.0	39.0	37.0	40.0	35.0	64.0	72.0	52.0		NaN

15 rows × 13464 columns

Make a catplot of card type and cc limit which shows how much cc limit
getting by which card type
from the bank.
sns.catplot(data=df, x= "card_type",y="cc_limit",kind="strip")

Out[5]: <seaborn.axisgrid.FacetGrid at 0x2662a6945e0>

making pivot table with some important variables of data ...
table = pd.pivot_table(data=df,index=
['cc_limit','Occupation_at_source','Transactor_revolver','hotlist_flag'])
table

Out[32]: T+12_month_activity T+1_month_activ

cc_limit	Occupation_at_source	Transactor_revolver	hotlist_flag		
20000	Housewife	Т	N	0.000000	0.000
	Retired	R	N	0.000000	0.000
		Т	N	0.000000	0.166
	Salaried	R	N	0.062500	0.187
		т	N	0.037736	0.113
•••	•••	•••	•••		
980000	Student	т	N	0.000000	0.000
990000	Others	R	N	0.000000	0.000
		т	N	0.000000	0.000
	Salaried	Т	N	0.000000	0.000

T+12_month_activity T+1_month_activ

cc_limit Occ	upation_at_source	Transactor_revolver	hotlist_flag		
	Self Employed	т	N	0.000000	0.000

628 rows × 16 columns

```
# Change the category into integer by using astype function...

df['Transactor_revolver'] = df['Transactor_revolver'].astype('category')

df.describe(include='category')
```

```
        count
        8410

        unique
        2

        top
        T

        freq
        7115
```

```
# Draw scatter plots for deeper insights of data...it shows the credit
type with provided cc limit
# by the customers...
fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x = df['card_type'], y = df['cc_limit'])
plt.xlabel("money provided")
plt.ylabel("To cards type")
plt.show()
```

```
0.8 - 0.4 - 0.2 - edgeprosperityewardindianoiashbacishopritehartered aura goldsmartearriprime pulse platinuoænturion elite money provided
```

```
In [35]:
```

```
# make a scatter plot which tells us about the connection between
occupation and cc_limit.
fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x = df['Occupation_at_source'], y = df['cc_limit'])
plt.xlabel("occu")
plt.ylabel("cc L")

plt.show()
```



```
# Make a subplots of transactor revolver with cc limit and hotlist_flag
with cc_limit.
fig, (ax1, ax2) = plt.subplots(1, 2, sharey= True) # 1 row, 2 columns
ax1.scatter("Transactor_revolver", "cc_limit", c='blue')
ax2.scatter("hotlist_flag", "cc_limit", c='red')
ax1.set_xlabel('x')
ax2.set_xlabel('x2')
plt.show()
```



```
# pivot table with some important columns ...
table = pd.pivot_table(data=df,index=
['cc_limit','card_type','hotlist_flag'])
table
```

Out[37]:

T+12_month_activity T+1_month_activity T+2_month_activity T+3_m

cc_limit	card_type	hotlist_flag			
0	chartered	Υ	0.000000	0.000000	0.000000
20000	aura	N	0.047619	0.142857	0.142857
	cashback	N	0.000000	0.071429	0.071429
	gold	N	0.000000	1.000000	0.000000
	indianoil	N	0.038462	0.038462	0.038462
•••	•••	•••			
980000	pulse	N	0.000000	0.500000	0.000000
990000	chartered	N	0.000000	0.000000	0.250000
	edge	N	0.000000	0.000000	0.250000
	prosperity	N	0.000000	0.000000	0.200000
	pulse	N	0.000000	0.000000	0.000000

704 rows × 16 columns

```
In [38]: # draw catplot a catplot of card type and cc limit with hostlist_flag as
hue, it is showing
# which card type is using with how much limit wherein, how many cards
are hotlist or active..
sns.catplot(data=df, x= "card_type",y="cc_limit", hue=
    'hotlist_flag',kind="box")
# by this visual mostly customers are using their cards
```

Out[38]: <seaborn.axisgrid.FacetGrid at 0x28174b49a90>

Out[39]:

T+12_month_activity T+1_month_activity T+2_month_activ

cc_limit	Occupation_at_source	hotlist_flag			
0	Self Employed	Υ	0.000000	0.000000	0.0000
20000	Housewife	N	0.000000	0.000000	0.0000
	Retired	N	0.000000	0.156250	0.062!
	Salaried	N	0.043478	0.130435	0.1304
	Self Employed	N	0.000000	0.000000	0.0000
•••		•••			
980000	Self Employed	N	0.000000	0.250000	0.0000
	Student	N	0.000000	0.000000	0.0000
990000	Others	N	0.000000	0.000000	0.7500
	Salaried	N	0.000000	0.000000	0.0000
	Self Employed	N	0.000000	0.000000	0.0000

398 rows × 16 columns

In [40]:

Make a catplot of cc limit and occupation with hotlist_flag as hue,
which tells us about the

how much cc limit provided to which occupation which are blocked or

```
active..
sns.catplot(data=df, x= "cc_limit",y="Occupation_at_source", hue=
"hotlist_flag",kind="box")
# by this boxplot , cards are frequently used by student,Others,Self
Employed, are using ()cards but
# spending below average:
```

Out[40]: <seaborn.axisgrid.FacetGrid at 0x28171077f70>


```
# Make a pivot table of important columns:
table = pd.pivot_table(data=df,index=
['cc_limit','Occupation_at_source','Transactor_revolver'])
table
```

Out[41]:	T+12_month_activity	T+1_month_activity	T+2_mo
04.0[12]	,		

cc_limit	Occupation_at_source	Transactor_revolver			
20000	Housewife	Т	0.000000	0.000000	
	Retired	R	0.000000	0.000000	
		т	0.000000	0.166667	
	Salaried	R	0.062500	0.187500	
		т	0.037736	0.113208	
•••	•••	•••			
980000	Student	Т	0.000000	0.000000	
990000	Others	R	0.000000	0.000000	
		т	0.000000	0.000000	
	Salaried	т	0.000000	0.000000	
	Self Employed	т	0.000000	0.000000	

628 rows × 16 columns

```
In [42]:
         # Make a catplot with cc_limit and occupation with transactor revolver as
         hue:----
         sns.catplot(data=df, x= "cc_limit",y="Occupation_at_source", hue=
         "Transactor_revolver", kind="box")
         # card is provided to highly reccommend to self employed, Others, and
         Salaried persons because they are
         # spending averagly high and 50 percent people are transactor revolver so
         , bank should not provided the
         # upgraded card to them.
         # upgraded card only give to the categories like sel employed, salaried
         and others however, cards are
         # also using by the student , housewife and retired category but their
         usage is small
         # (avg spending is less than other categories),
         # except student n others transactor revolver are almost 50 percent.
         # therefore , upgraded card only given by the bank to those who are not
         flaglist, who are not transactor
         # revolver, they will get high cc limit by bank.
```

Out[42]: <seaborn.axisgrid.FacetGrid at 0x28171077cd0>


```
# Make a pivot table of variables which we need:
table = pd.pivot_table(data=df,index=
['cc_limit','Issuer','Transactor_revolver'])
table
```

Out[43]:

T+12_month_activity T+1_month_activity T+2_month_activit

cc_limit	Issuer	Transactor_revolver			
20000	Amex	R	0.000000	0.000000	0.00000
		т	0.000000	0.333333	0.00000
	Mastercard	R	0.000000	0.000000	0.00000
		т	0.000000	0.125000	0.00000
	Visa	R	0.055556	0.222222	0.22222
•••	•••	•••			
980000	Visa	R	0.000000	0.000000	0.00000
		т	0.000000	0.200000	0.00000
990000	Mastercard	т	0.000000	0.000000	0.00000
	Visa	R	0.000000	0.000000	1.00000
		т	0.000000	0.000000	0.16666

441 rows × 16 columns

```
# Make a catplot of cc_limit with issuer and hue is transactor revolver
here
sns.catplot(data=df, x= 'cc_limit', y="Issuer",
hue='Transactor_revolver',kind="violin")
```

Out[44]: <seaborn.axisgrid.FacetGrid at 0x281749ea4f0>


```
# pivot table with variables:
table = pd.pivot_table(data=df,index=
```

```
['cc_limit','card_type','Transactor_revolver'])
table
```

Out[45]:

T+12_month_activity T+1_month_activity T+2_month_activity

cc_limit	card_type	Transactor_revolver			
20000	aura	R	0.000000	0.250000	0.250000
		т	0.058824	0.117647	0.117647
	cashback	R	0.000000	0.250000	0.000000
		т	0.000000	0.000000	0.100000
	gold	т	0.000000	1.000000	0.000000
•••	•••	•••			
990000	chartered	т	0.000000	0.000000	0.250000
	edge	т	0.000000	0.000000	0.250000
	prosperity	R	0.000000	0.000000	1.000000
		т	0.000000	0.000000	0.000000
	pulse	Т	0.000000	0.000000	0.000000

1034 rows × 16 columns

```
In [46]: # pivot table :
    table = pd.pivot_table(data=df,index=
        ['cc_limit','card_type','Transactor_revolver'])
    table
```

Out[46]:

T+12_month_activity T+1_month_activity T+2_month_activity

cc_limit o	card_type	Transactor_revolver			
20000	aura	R	0.000000	0.250000	0.250000
		Т	0.058824	0.117647	0.117647
	cashback	R	0.000000	0.250000	0.000000
		Т	0.000000	0.000000	0.100000
	gold	Т	0.000000	1.000000	0.000000
•••	•••	•••			
990000	chartered	Т	0.000000	0.000000	0.250000
	edge	Т	0.000000	0.000000	0.250000
р	prosperity	R	0.000000	0.000000	1.000000
		Т	0.000000	0.000000	0.000000
	pulse	Т	0.000000	0.000000	0.000000

1034 rows × 16 columns

blank cell

Make a catplot of cc limit, card type with transactor revolver as
hue, which shows the
cc_limit with which card type and how many are transactor revolver out
of from them...
sns.catplot(data=df, x= 'cc_limit', y="card_type",
hue='Transactor_revolver',kind="violin")

Out[6]: <seaborn.axisgrid.FacetGrid at 0x2662d4da310>

card is provided to highly reccommend to self employed, Others, and Salaried persons because they # spending averagly high and 50 percent people are transactor revolver so , bank should not provided the # upgraded card to them. # upgraded card only give to the categories like sel employed, salaried and others however , cards are # also using by the student , housewife and retired category but their usage is small # (avg spending is less than other categories), # except student n others transactor revolver are almost 50 percent. # therefore , upgraded card only given by the bank to those who are not flaglist, who are not # transactor # revolver, they will get high cc limit by bank.

In []:	
In []:	
In []:	
In []:	