## ЧАСТОТНЫЙ МЕТОД ИССЛЕДОВАНИЯ ЦЕПЕЙ

Одним из методов исследования цепей (RLC-фильтров) является расчёт, построение и анализ их частотных характеристик. Частотные характеристики линейной цепи отражают её реакцию на гармоническое воздействие и, в общем виде, определяются её комплексной передаточной функцией (комплексным коэффициентом передачи), получаемой из выражения (1) после замены оператора  $p = j\omega$  и несложных преобразований, т. е.

$$H(j\omega) = H(p)_{p=j\omega} = H(\omega)e^{j\Psi(\omega)}, \tag{4}$$

где  $H(\omega) = |H(j\omega)|$  - модуль комплексного коэффициента передачи цепи, а его график - **амплитудно-частотная характеристика** (АЧХ) цепи;  $\Psi(\omega) = \arg H(j\omega)$  - аргумент комплексного коэффициента передачи цепи, а его график - **фазо-частотная характеристика** (ФЧХ) цепи.

Характеристики  $H(\omega)$  и  $\Psi(\omega)$  позволяют определить реакцию цепи при подаче на её вход гармонического сигнала с постоянной амплитудой  $U_{1m}$  и изменяющейся угловой частотой  $\omega$ .

Иногда строят на комплексной плоскости Jm-Re годограф  $H(j\omega)$  - ам-плитудно-фазо-частотную характеристику (АФЧХ) цепи, который представляет собой геометрическое место точек конца вектора  $H(\omega)$ , получаемых при изменении угловой частоты  $\omega$  входного сигнала от 0 до  $\infty$ .

Наряду с фазо-частотной характеристикой  $\Psi(\omega)$  рассчитывают и строят характеристику **"времени задержки"**, определяемую как производную ФЧХ по угловой частоте  $\omega$ , т. е.  $\tau(\omega) = -d\Psi(\omega)/d\omega$ .

Нахождение частотных характеристик цепей, составленных из малого числа элементов, как правило, не вызывает затруднений. Для цепей, образованных большим числом элементов, целесообразно пользоваться приёмами общей теории четырёхполюсников и теории сигнальных графов.

В данной работе рассматриваются задачи по нахождению и построению частотных характеристик пассивных фильтров, составленных из малого числа элементов (от 2 до 12) и представляющих собой цепи с сосредоточенными постоянными параметрами.

**Пример 1.** Рассчитать и построить АФЧХ, АЧХ и ФЧХ RC-звена первого порядка (рис. 2, a).



$$=\frac{1}{Cp}\frac{I(p)}{(R+1/Cp)I(p)}=\frac{1}{\tau p+1},$$
 где  $au=RC.$ 

**Решение**. Передаточную функцию по напряжению  $H_u(p)$  удобно записать, используя операторную схему замещения звена (рис. 2,  $\delta$ ):

$$H_u(p) = U_2(p)/U_1(p) =$$

Заменив  $p = j\omega$ , получим комплексный коэффициент передачи звена

$$H_u(j\omega) = \frac{1}{1 + j\omega\tau} = \frac{1}{\sqrt{1 + \omega^2\tau^2}} e^{-j\arctan\omega\tau} = H_u(\omega) \cdot e^{-j\Psi(\omega)},$$



где  $H_u(\omega) = 1/\sqrt{1+\omega^2\tau^2}$  - АЧХ (рис. 3, a) и  $\Psi(\omega) = -\arctan \omega \tau$  - ФЧХ апериодического звена (рис. 3,  $\delta$ ).

Построенная на рис. 3,  $\varepsilon$  АФЧХ звена  $H(j\omega)$  представляет собой полуокружность с радиусом 0,5.

Анализ графиков показывает, что с увеличением частоты  $\omega$  амплитуда  $U_{2m}$  выходного напряжения уменьшается; при частоте  $\omega$ , равной **частоте среза**  $\omega_c = 1/\tau$ , коэффициент  $H_u(\omega) = 1/\sqrt{2} \approx 0,707$ . С увеличением частоты  $\omega$  отставание по фазе выходного сигнала от входного увеличивается от 0 до -  $\pi/2$ ; при частоте  $\omega = \omega_c$  фазовый угол  $\Psi(\omega_c) = -\pi/4$ .

Построение частотных характеристик упрощается, если **пролога- рифмировать** функцию  $H(j\omega) = H(\omega)e^{j\Psi(\omega)}$ :

$$\ln(H(j\omega)) = \ln H(\omega) + j\Psi(\omega). \tag{5}$$

Зависимость  $\ln H(\omega)$  от  $\lg(\omega)$ , т. е.  $\ln H(\lg \omega)$ , называют логарифмической амплитудно-частотной характеристикой (ЛАЧХ), а зависимость  $\Psi(\omega)$  от  $\lg(\omega)$ , т. е.  $\Psi(\lg \omega)$ , называют логарифмической фазо-частотной характеристикой (ЛФЧХ) звена. Практически вместо  $\ln H(\omega)$  в неперах [Hn] принимают  $L(\omega) = 20 \lg H(\omega)$ , где коэффициент 20 введен для получения результата в децибелах [дБ]. Зависимость между коэффициентами  $H(\omega)$  и  $L(\omega)$  приведена в таблице 1.

Таблица 1 1000 10000 0.01 0,1 $1/\sqrt{2}$ 1 10 100  $H(\omega)$  $L(\omega) =$ -40 -20 -3 0 20 40 60 80  $=20 \lg H(\omega)$ , дБ

Из таблицы 1 следует, что ЛАЧХ  $L(\omega)$  имеет знак "минус" при  $H(\omega) < 1$  (т. е. при ослаблении входного сигнала) и  $L(\omega) > 0$  при усилении сигнала.

При построении графика ЛАЧХ  $L(\omega)$  по горизонтальной оси (рис. 4) откладывают равномерные отрезки  $\lg \omega$ , но на самой оси записывают значения частоты  $\omega = 10^n$ , где  $n = \dots -1, 0, 1, 2, 3, 4, 5, \dots$  Интервал частот,

на концах которого частоты отличаются в 10 раз, называют декадой, а интервал частот, на концах которого частоты отличаются в 2 раза, называют октавой. Таким образом, единицей частоты является декада, реже октава.

**Примечание.** Обратите внимание, что частоте  $\omega = 1$  соответствует ноль (0) на логарифмической оси абсцисс ( $\lg \omega$ ), а частоте  $\omega = 0$  соответству-



ет бесконечность (-  $\infty$ ). В области малых значений  $\omega$  и  $L(\omega)$  их изображения по осям растягиваются, а в области больших значений - сжимаются.

Место проведения вертикальной оси  $L(\omega)$  выбирается **произвольно** (см. рис. 4), т. е. её можно перемещать по горизонтали.

Рассчитаем и построим ЛАЧХ  $L(\omega)$  RC-звена (см. рис. 2) на двойной логарифмической сетке (рис. 4):

$$L(\omega) = 20\lg(1/\sqrt{1+\omega^2\tau^2}) = -20\lg\sqrt{1+\omega^2\tau^2}$$
.

При  $\omega << \tau$ , ЛАЧХ  $L(\omega) \approx 0$ ; при  $\omega_c = 1/\tau$ ,  $L(\omega_c) = -20 \lg \sqrt{2} = -3$  дБ; при  $\omega >> \omega_c$ ,  $L(\omega) \approx -20 \lg (\tau \omega) = -20 \lg \tau - 20 \lg \omega \approx -20 \lg \omega$ , т. е. при больших частотах  $(\omega >> \omega_c)$  ЛАЧХ  $L(\omega)$  убывает практически по прямой с наклоном -20 дБ/дек.

Обычно ЛАЧХ  $L(\omega)$  простых звеньев (при  $H_0=1$ ) представляют двумя **прямыми асимптотическими линиями**: горизонтальной линией  $L_1(\omega)$ , проведенной по оси абсцисс от частоты  $\omega \approx 10^{-2}...10^{-1}$  рад/с до частоты среза  $\omega_c=1/\tau$ , и линией  $L_2(\omega)$ , проведенной из точки  $\omega_c$  под углом +20 (или -20) дБ/дек (см. рис. 4). Линии  $L_1(\omega)$  и  $L_2(\omega)$  "сопрягаются" (пересекаются) в точке  $\omega_c$ , называемой **сопрягающей** частотой (в данном примере сопрягающая частота  $\omega_c$  совпадает с частотой среза). Максимальное отклонение ЛАЧХ  $L(\omega)$  от асимптотической ЛАЧХ (от линий  $L_1(\omega)$  и  $L_2(\omega)$ ) имеет место при частоте среза  $\omega_c$  и равно  $L(\omega_c)=-20\lg\sqrt{2}\approx-3$  дБ.

При  $H_0 \neq 1$  горизонтальную асимптоту  $L_1(\omega)$  проводят на уровне  $20 \lg H_0$  (параллельно оси абсцисс) до вертикали, проведённой через точку

 $\omega_c$ , а линию  $L_2(\omega)$  - из точки пересечения асимптоты  $L_1(\omega)$  с вертикалью под углом +20 (или -20) дБ/дек.

Приближенное представление функции  $L(\omega)$  прямолинейными отрезками называется диаграммой Боде (по имени автора).

Обычно фильтры реализуют в виде звеньев первого и второго порядков, соединённых по каскадной (последовательной) схеме. В этом случае передаточную функцию фильтра представляют произведением передаточных функций отдельных звеньев, т. е.

$$H(\omega) = H_1(\omega)H_2(\omega)...H_n(\omega).$$
Тогда ЛАЧХ фильтра
$$L(\omega) = 20 \lg H(\omega) = 20 \lg H_1(\omega) + 20 \lg H_2(\omega) + ... + 20 \lg H_n(\omega) =$$

$$= L_1(\omega) + L_2(\omega) + ... + L_n(\omega). \tag{6}$$

При этом сразу обнаруживается преимущество перехода к логарифмам: операции умножения заменяются операциями сложения; каждый множитель нуля (корня полинома числителя M(p) выражения (2)) и множитель полюса (корня полинома знаменателя N(p)) входит в формулу (6) в виде отдельного слагаемого. Преимущества применения ЛАЧХ в задачах аппроксимации следуют из того, что значения АЧХ чисто реактивных элементов (звеньев) L и C либо прямо, либо обратно пропорциональны частоте  $\omega$ , иначе говоря, имеют вид функций  $H(\omega) = H_0 \omega$  и  $H(\omega) = H_0 / \omega$  ( $H_0$  - коэффициент усиления звена).

В соответствии с этим ЛАЧХ этих звеньев, равные

$$L(\omega) = 20 \lg H_0 + 20 \lg \omega$$
 и  $L(\omega) = 20 \lg H_0$  -  $20 \lg \omega$ , представляются на двойной логарифмической сетке прямыми наклонными линиями, проведенными под углом +20 дБ/дек и -20 дБ/дек через точку с координатами:  $\omega = 1$  и  $L(1) = 20 \lg H_0$ .

Аналогичные характеристики звеньев, содержащих не только реактивные, но и активные элементы, будут, конечно, отличаться от прямых; однако аппроксимация таких характеристик отрезками прямых даёт лучшие результаты, чем аппроксимация отрезками прямых исходных амплитудных характеристик  $H(\omega)$ .

Форма записи передаточной функции H(p) и особенности построения ЛАЧХ на двойной логарифмической сетке зависят от вида корней полиномов M(p) и N(p) (числителя и знаменателя функции H(p)): только действительные отрицательные или среди корней есть комплексно-сопряженные.