Linear Models in Regression

Prof. Rafal Kustra

Dalla Lana SPH

September 28, 2016

Outline

1 Dimensionality of Model and Data

2 Extending LS

3 Bias-Variance Tradeoff

Degrees of Freedom in LS

- Typically count columns of design matrix X (including intercept and any dummy variable codings and interactions)
- Gives expected drop in RSS (in units of σ^2) under null hypothesis
- The DoF can also be calculated using the trace of the Hat matrix (for n > p and rank of X = p):

$$\operatorname{Tr}\left[X(X'X)^{-1}X'\right] = \operatorname{Tr}\left[X'X(X'X)^{-1}\right] = p$$

• This will be useful for penalized regression models

Curse of Dimensionality

Rellman 1961

- All supervised learning methods (including regression) rely on local data similarities: when the inputs are similar we expect similar outputs
- The locality of data breaks down in higher dimensions
 - At least for numerical covariate spaces, local means distance (usually Euclidean) to nearest neighbours
 - Even for categorical (nominal) spaces, if there are many of them, most of them will be separated by large "distances"
- Consider k-Nearest Neighbour method in p-dimensional space using Euclidean distance. Assume p covariates are uniformly distributed within a p-dim (hyper)cube. How much along each dimension do we have to move to capture 10% of data? On average: 10^{1/p}. For 10-D space to capture just 10% NN, we need to cover 80% of each side of the cube! Hardly local

Figure 2.6: The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in

- Another manifestation of the curse is that most of the data lies close to the edge of the space
- Consider N points uniformly distributed within p-dim unit ball.
 From the center, what is the median distance to nearest point?

$$d(p,N) = \left(1 - \frac{1}{2}^{1/N}\right)^{1/p}$$

• For N = 5000, p = 10 this is 0.52 so half the time the neareast point lies closer to edge of the ball than to the center. Prediction close to edges is problematic

Outline

1 Dimensionality of Model and Data

2 Extending LS

3 Bias-Variance Tradeoff

Categorical Inputs

- Almost always some predictors will be categorical (nominal, qualitative)
- These are typically converted using contrasts where K levels are converted into K-1 largely binary columns
- Few problems:
 - Potentially catastrophic expansion of input dimensionality
 - Limits predictive ability
 - Un(der)-used levels high variance
 - Problems with basis expansion, shrinkage

Two problems with OLS

Need more flexibility

Linear surface is just not enough to model our data

Need to reduce flexibility

On the other hand, with very large number of predictors we cannot build a (reliable) linear estimator of f(x)

More realistically both problems can occur at once (too many predictors but need non-linear effects nonetheless)

Basis expansions

- Linear Regression fits a linear model in x's
- To provide non-linearity, can include non-linear functions of some x's into the x matrix (e.g., polynomial regression)

$$x_j \longrightarrow [\varphi_1(x_j), \ldots, \varphi_k(x_j)]$$

- This changes the space of regression fit
- The data is represented in enhanced space

Using my notation: y = Xβ
and t = y in figure

Basis Expansion procedure

- Choose which x will be expanded in basis
- Choose a basis set for each x to be expanded
 - May expand some x's in polynomial basis and others in Fourier (cosine) basis
- **3** Form an evaluated basis matrix, $\Phi(X)$
 - Replace a column for x_j to be expanded with k_j columns, one for each basis function
 - **2** Evaluate each basis function, φ_k at each of n values of x_i
- **4** Fit a LR model $Y \sim \Phi(X)\beta_{\Phi}$
- **5** To visualize the effect of an expanded predictor, x_i , plot:

$$\widehat{f}_{j}(x) = \sum_{\kappa} \beta_{\phi;\kappa} \varphi_{\kappa}(x)$$

where κ indexes these basis functions that were used to expand x_i

Common basis sets

- Polynomials
- Polynomial splines
 - Divide the range of predictor x into M + 1 regions using M knots
 - Fit a seperate polynomial for each region
 - But make sure that at knot, where 2 polynomials meet, they meet "nicely": have the same value and same d – 1 derivatives for d-degree polynomial
- Radial Basis Sets (kernel basis). For example a Gaussian kernel:

$$arphi_{\kappa}(\mathbf{x}) = \exp\left\{-rac{||\mathbf{x} - oldsymbol{\mu}_{\kappa}||}{2s^2}
ight\}$$

- Fourier basis $(\cos(2\pi kx), \sin(2\pi kx))$ for $(x \in (0, 1))$ and k = (0, 1, ...)
- Wavelets
- Trees

Challenges with Basis Expansions

- Must choose basis set well
- Must choose predictors to expand
- Does not work well on non-continuous data
- Significantly expands your dimensionality

Additive Models

 In general, we think of modeling each(some) predictors as smooth functions, replacing the linear term:

$$f(\boldsymbol{x}) = \sum_{j} \beta_{j} x_{j}$$

with additive predictor:

$$f$$
GAM $(\mathbf{x}) = \sum_{j} f_{j}(x_{j})$

- A common way to do it is to (implicitely) expand each x_j into a non-linear basis set (usually using polynomial *splines*)
- Important to realize that the model is still *additive*, that is the overall function of p-variables, $\eta_{\text{GAM}}(\mathbf{x})$, is composed of p individual univariate functions
 - As a consequence a surface cross-section in direction of x_j has the same shape for all combinations of other variables

Introduction to regression splines

Piecewise Cubic Polynomials

- Global polynomial fits too ... global
- Divide the data range in K + 1 regions using K internal knots, ξ_i
- Each region gets a low-order (almost always cubic) polynomial
- BUT require that at the knots two cubics are continuous, and have first and second derivatives equal

Fitting regression splines

- ullet Without boundary restrictions have K+4 DFs
- Natural cubic splines restrict the fit to be linear beyond range of data (DF=?)
- In practice one often supplies *boundary* knots at extreme data points (DF=K+2)
- You can check that the basis set:

$$\phi_1(x) = 1, \phi_2(x) = x, \phi_3(x) = x^2, \phi_j(x) = (x - \xi_j)^3_+$$

(where + subscript means take positive part only, and j runs through interior knots) satisfies properties of (no-boundary-restricted) cubic splines. Hence one could compose a matrix $\Phi(X)$ with K+4 columns and fit via LS:

$$\hat{\mathbf{y}} = \Phi(\Phi'\Phi)^{-1}\Phi'\mathbf{y}$$

 In practice either B-spline or Natural cubic spline basis sets are used (bs () and ns () functions in R)

Tensor-product basis functions

Sometimes additive restriction is not appropriate:

$$\eta(\boldsymbol{x}) = \sum_{j} f_{j}(x_{j})$$

 One easy way to compose muldidimensional basis sets is to use tensor-product basis

TPB in 2-D for (x_1, x_2)

Start with your favourite basis set in 1-D

$$[\varphi_1(x),\ldots,\varphi_K(x)]$$

2 Form all possible $\frac{K(K-1)}{2}$ products accross two dimensions

$$[\varphi_1(X_1)\varphi_1(X_2),\varphi_1(X_1)\varphi_2(X_2),\ldots,\varphi_K(X_1)\varphi_{K-1}(X_2),\varphi_K(X_1)\varphi_K(X_2)]$$

TSB with B-splines

Figure 5.10: A tensor product basis of B-splines, showing some selected pairs. Each two-dimensional function

Penalization-Shrinkage

- Now for reducing complexity we will talk about removing dimensions later
- So far each predictor (either original one, or each of evaluated basis one) gets "full attention" - 1 degree of freedom
- Hence we project our response, y, into full linear space
- This may be too much

Degrees of Freedom

- Often misunderstood
- Officially an expected drop in sum of squares (as multiple of σ) resulting from expanding a model under null hypothesis
- In simple linear models one term gets 1DF
- It means that Least Square minimizer has full flexibility to minimize LS in the direction of the term
- This is equivalent to no restriction on the (abs) size of resulting $\widehat{\beta}$'s:

$$\widehat{\beta}_{\text{OLS}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j \phi_j(\boldsymbol{x}_i) \right)^2$$

Ridge Regression

- Any restriction on $\widehat{\beta}$ potentially reduce degrees of freedom (complexity). Minimizer has limited ability to reduce RSS.
- Consider the simplest case: restricting total norm of vector β , $\|\beta\|^2 = \sum_i \beta_i^2$:

$$\widehat{eta}_{\mathsf{ridge}}(c) = \operatorname*{argmin}_{eta} \mathsf{RSS} \qquad \mathsf{s.t.} \quad \|\widehat{eta}_{\mathsf{ridge}}\|^2 \leq c$$

Using Lagrange multipliers this can be shown to be equivalent to:

$$\underset{\beta}{\operatorname{argmin}} \operatorname{RSS} + \lambda \|\beta\|^2$$

Where there is a one-to-one mapping between c and λ

• The resulting β is based on lower-complexity model (fewer DFs) if $c < \|\beta_{\text{OLS}}\|^2$. Then the resulting RSS will be larger too.

Ridge - Solution

• Ridge minimization problem has a closed-form solution:

$$\widehat{\beta}_{\mathsf{RIDGE}} = X(X^TX + \lambda I)^{-1}X^T\mathbf{y}$$

For a given λ it is as fast as OLS: advantage.

- Another advantage: computes with p > n (but one never knows how well...)
- It is obviously not unbiased (since OLS is), but the variance is reduced:

$$Var(\widehat{\beta}_{RIDGE} = \sigma^2 (X^T X + \lambda I)^{-1}$$

DF of Ridge

The ridge hat matrix is:

$$H_r(\lambda) = X(X'X + \lambda I)X'$$

Using SVD, let:

$$X = UDV'$$

where *D* contains non-negative square roots of eigenvalues of X'X, say γ_i , j = 1, ..., P. Then

$$\operatorname{Tr}(H_r(\lambda)) = \operatorname{Tr}\left(VD_{\gamma}V'(VD_{\gamma}V^T + \lambda I)^{-1}\right)$$

$$= \operatorname{Tr}\left(VD_{\gamma}V'(VD_{\gamma^*}V')^{-1}\right)$$

$$= \sum_{i} \frac{\gamma_i}{\gamma_j^*}$$

where $\gamma_i^* = \gamma + \lambda$

• This shows that ridge penalty (with $\lambda > 0$) reduces degrees of freedom of the fit in the amount that is relative to eigenvalues of X'X.

Cha

- In similar fashion one can show that ridge reduces variance of ŷ compared to straight LS
- Ridge really only makes sense when:
 - only numerical predictors are penalized
 - predictors (columns of X) are centered
 - 3 They are either on similar scale or normalized

Figure 3.12: Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

LASSO regression

Similar in principle to ridge:

$$\underset{\beta}{\operatorname{argmin}} \operatorname{RSS} + \lambda \|\beta\|^2$$

- Two caveats:
 - No closed-form solution: quadratic programming (complex computations)
 - Often results in some $\widehat{\beta}$'s equal *exactly* zero
- Extended in LARS models

Cubic Smoothing Splines

- A very neat solution to the problem of selecting knots which also happens to be a penalized regression problem
- With single continuous predictor, x, suppose we require to fit a non-linear regression by finding a minimizing function f(x) subject to smoothness restriction:

$$\widehat{f} = \underset{f}{\operatorname{argmin}} \sum_{i} [y_i - f(x_i)]^2 + \lambda \int_{X} (f''(x))^2 dx$$

• Remarkably, it turns out that the solution to that variational problem is a *natural* cubic splines with knots at all unique values of x_i

Smoothing Splines and Penalized Regression

Nominally we have a overparameterization problem since there are ?? DFs here, but this is a *penalized* regression problem, so that effective DFs are controlled by λ. Let B be an N × N + 2 evaluated B-spline basis set matrix, (with N + 2 B-spline basis set, B_j(x)) and let:

$$\Omega_{jk} = \int B_j''(x)B_k''(x)\mathrm{d}x$$

be an $N+2 \times N+2$ penalty matrix. Then the smoothing spline regression fit (using B-spline basis set) is:

$$\widehat{\boldsymbol{y}} = B(B'B + \lambda\Omega)^{-1}B'\boldsymbol{y}$$

Outline

1 Dimensionality of Model and Data

2 Extending LS

3 Bias-Variance Tradeoff

Bias-Variance decomposition: OLS

With training sample we produce a prediction rule:

$$\widehat{y}(x_0) \equiv \widehat{f}_{\mathcal{T}}(x_0)$$

• At a *fixed* point, x_0 , how good, on average, is it?

$$\begin{aligned} \mathsf{E}_{\mathcal{T}} \left[f(x_0) - \widehat{y}_0 \right]^2 &= \mathsf{E}_{\mathcal{T}} \left[\left(f(x_0) - \mathsf{E}_{\mathcal{T}} \widehat{y}_0 \right) + \left(\mathsf{E}_{\mathcal{T}} \widehat{y}_0 - \widehat{y}_0 \right) \right]^2 \\ &= \mathsf{E}_{\mathcal{T}} \left[f(x_0) - \mathsf{E}_{\mathcal{T}} \widehat{y}_0 \right]^2 + \mathsf{E}_{\mathcal{T}} \left[\mathsf{E}_{\mathcal{T}} \widehat{y}_0 - \widehat{y}_0 \right]^2 \\ &= \mathsf{Bias}^2(\widehat{y}_0) + \mathsf{Var}_{\mathcal{T}}(\widehat{y}_0) \end{aligned}$$

Squared Prediction Error of OLS

- MSE shows us how far we are from the true (unknown) function
- SPE shows us how far we are from the observed response, y₀, at point x₀:

$$\begin{aligned} \mathsf{SPE}(x_0) = & \mathsf{E}_{y_0|x_0} \mathsf{E}_{\mathcal{T}} \left[y_o - \widehat{y}_0 \right]^2 \\ = & \mathsf{E}_{y_0|x_0} \mathsf{E}_{\mathcal{T}} \left[\epsilon_0 + (f(x_0) - \widehat{y}_0) \right]^2 \\ = & \mathsf{E}_{y_0|x_0} \mathsf{E}_{\mathcal{T}} \left[\epsilon_0 \right]^2 + \mathsf{E}_{y_0|x_0} \mathsf{E}_{\mathcal{T}} \left[f(x_0) - \widehat{y}_0 \right]^2 - 2 \cdot 0 \\ = & \mathsf{Var}(y|x_0) + \mathsf{MSE} \\ = & \sigma^2 + \mathsf{Bias}^2(\widehat{y}_0) + \mathsf{Var}_{\mathcal{T}}(\widehat{y}_0) \end{aligned}$$

Bias-Variance: Ridge

- In OLS, variance governed by term $(X'X)^{-1}$ which becomes $(X'X + \lambda I)^{-1}$ in ridge
- Variance will decrease with increasing λ (what happens with $\lambda \to \infty$?) and opposite will happen for bias (if true function linear)
- ullet Hence MSE (and PSE) will be minimized for some optimal λ
- This is even when the true regression function is linear

True Linear model: n=50, p=30

From Ryan Tibshirani's slides

Ridge regression can still outperform linear regression in terms of mean squared error:

Only works for λ less than ≈ 5 otherwise it is very hiased (Why?)

True Linear model: n=50, p=30 but 20 β 's =0

From Ryan Tihshirani's slides

Ridge regression performs well in terms of mean-squared error:

Why is the bias not as large here for large λ ?