

PARTIAL DERIVATIVES

3.3 Partial Derivatives

In this section, we will learn about: Various aspects of partial derivatives.

PARTIAL DERIVATIVES

In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant.

Then, we are really considering a function of a single variable x:

$$g(x) = f(x, b)$$

PARTIAL DERIVATIVE

If g has a derivative at a, we call it the partial derivative of f with respect to x at (a, b).

We denote it by:

$$f_{x}(a, b)$$

Thus,

$$f_{\chi}(a, b) = g'(a)$$

where g(x) = f(a, b)

PARTIAL DERIVATIVE

By the definition of a derivative, we have:

$$g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}$$

So, Equation 1 becomes:

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

PARTIAL DERIVATIVE

Similarly, the partial derivative of f with respect to y at (a, b), denoted by $f_y(a, b)$, is obtained by:

- Keeping x fixed (x = a)
- Finding the ordinary derivative at b of the function G(y) = f(a, y)

Thus,

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

PARTIAL DERIVATIVES

If we now let the point (a, b) vary in Equations 2 and 3, f_x and f_y become functions of two variables.

If f is a function of two variables, its partial derivatives are the functions f_x and f_y defined by:

$$f_{x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$f_{y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

NOTATIONS

There are many alternative notations for partial derivatives.

- For instance, instead of f_x , we can write f_1 or $D_1 f$ (to indicate differentiation with respect to the first variable) or $\partial f/\partial x$.
- However, here, $\partial f/\partial x$ can't be interpreted as a ratio of differentials.

NOTATIONS FOR PARTIAL DERIVATIVES

If z = f(x, y), we write:

$$f_{x}(x,y) = f_{x} = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x}$$
$$= f_{1} = D_{1} f = D_{x} f$$

$$f_{y}(x,y) = f_{y} = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y}$$
$$= f_{2} = D_{2}f = D_{y}f$$

PARTIAL DERIVATIVES

To compute partial derivatives, all we have to do is:

Remember from Equation 1 that the partial derivative with respect to x is just the ordinary derivative of the function g of a single variable that we get by keeping y fixed. RULE TO FIND PARTIAL DERIVATIVES OF z = f(x, y)Thus, we have this rule.

1. To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.

2. To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.

lf

$$f(x, y) = x^3 + x^2y^3 - 2y^2$$

find

$$f_x(2, 1)$$
 and $f_y(2, 1)$

Holding *y* constant and differentiating with respect to *x*, we get:

$$f_{x}(x, y) = 3x^2 + 2xy^3$$

Thus, $f_x(2, 1) = 3 \cdot 2^2 + 2 \cdot 2 \cdot 1^3$ = 16 Holding *x* constant and differentiating with respect to *y*, we get:

$$f_y(x, y) = 3x^2y^2 - 4y$$

Thus,

$$f_y(2, 1) = 3 \cdot 2^2 \cdot 1^2 - 4 \cdot 1$$

= 8

lf

$$f(x, y) = 4 - x^2 - 2y^2$$

find $f_x(1, 1)$ and $f_y(1, 1)$ and interpret these numbers as slopes.

We have:

$$f_{x}(x, y) = -2x$$
 $f_{y}(x, y) = -4y$

$$f_x(1, 1) = -2$$
 $f_y(1, 1) = -4$

lf

$$f(x,y) = \sin\left(\frac{x}{1+y}\right)$$

calculate

$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$

Using the Chain Rule for functions of one variable, we have:

$$\frac{\partial f}{\partial x} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial x} \left(\frac{x}{1+y}\right) = \cos\left(\frac{x}{1+y}\right) \cdot \frac{1}{1+y}$$

$$\frac{\partial f}{\partial y} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial y} \left(\frac{x}{1+y}\right) = -\cos\left(\frac{x}{1+y}\right) \cdot \frac{x}{\left(1+y\right)^2}$$

Find $\partial z/\partial x$ and $\partial z/\partial y$ if z is defined implicitly as a function of x and y by the equation

$$x^3 + y^3 + z^3 + 6xyz = 1$$

To find $\partial z/\partial x$, we differentiate implicitly with respect to x, being careful to treat y as a constant:

$$3x^{2} + 3z^{2} \frac{\partial z}{\partial x} + 6yz + 6xy \frac{\partial z}{\partial x} = 0$$

■ Solving for $\partial z/\partial x$, we obtain:

$$\frac{\partial z}{\partial x} = -\frac{x^2 + 2yz}{z^2 + 2xy}$$

Similarly, implicit differentiation with respect to *y* gives:

$$\frac{\partial z}{\partial y} = -\frac{y^2 + 2xz}{z^2 + 2xy}$$

FUNCTIONS OF MORE THAN TWO VARIABLES

Partial derivatives can also be defined for functions of three or more variables.

For example, if f is a function of three variables x, y, and z, then its partial derivative with respect to x is defined as:

$$f_x(x, y, z) = \lim_{h \to 0} \frac{f(x+h, y, z) - f(x, y, z)}{h}$$

It is found by:

- Regarding y and z as constants.
- Differentiating f(x, y, z) with respect to x.

FUNCTIONS OF MORE THAN TWO VARIABLES

If w = f(x, y, z), then $f_x = \partial w / \partial x$ can be interpreted as the rate of change of w with respect to x when y and z are held fixed.

■ However, we can't interpret it geometrically since the graph of *f* lies in four-dimensional space.

FUNCTIONS OF MORE THAN TWO VARIABLES

In general, if u is a function of n variables, $u = f(x_1, x_2, ..., x_n)$, its partial derivative with respect to the i th variable x_i is:

$$\frac{\partial u}{\partial x_{i}} = \lim_{h \to 0} \frac{f(x_{1}, ..., x_{i-1}, x_{i} + h, x_{i+1}, ..., x_{n}) - f(x_{1}, ..., x_{i}, ..., x_{n})}{h}$$

Then, we also write:

$$\frac{\partial u}{\partial x_i} = \frac{\partial f}{\partial x_i} = f_{x_i} = f_i = D_i f$$

MULTIPLE VARIABLE FUNCTIONS Example 5 Find f_x , f_y , and f_z if $f(x, y, z) = e^{xy} \ln z$

Holding y and z constant and differentiating with respect to x, we have:

$$f_x = y e^{xy} \ln z$$

Similarly,

$$f_y = x e^{xy} \ln z$$
 $f_z = e^{xy}/z$

HIGHER DERIVATIVES

If f is a function of two variables, then its partial derivatives f_x and f_y are also functions of two variables.

SECOND PARTIAL DERIVATIVES

So, we can consider their partial derivatives

$$(f_X)_X, (f_X)_Y, (f_Y)_X, (f_Y)_Y$$

These are called the second partial derivatives of *f*.

NOTATION

If z = f(x, y), we use the following notation:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 z}{\partial y \, \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 z}{\partial x \, \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

SECOND PARTIAL DERIVATIVES

Thus, the notation f_{xy} (or $\partial^2 f | \partial y \partial x$) means that we first differentiate with respect to x and then with respect to y.

In computing f_{yx} , the order is reversed.

Find the second partial derivatives of

$$f(x, y) = x^3 + x^2y^3 - 2y^2$$

In Example 1, we found that:

$$f_x(x, y) = 3x^2 + 2xy^3$$
 $f_y(x, y) = 3x^2y^2 - 4y$

SECOND PARTIAL DERIVATIVES Example 6

Hence,

$$f_{xx} = \frac{\partial}{\partial x} (3x^2 + 2xy^3) = 6x + 2y^3$$

$$f_{xy} = \frac{\partial}{\partial y} (3x^2 + 2xy^3) = 6xy^2$$

$$f_{yx} = \frac{\partial}{\partial x} (3x^2y^2 - 4y) = 6xy^2$$

$$f_{yy} = \frac{\partial}{\partial y} (3x^2y^2 - 4y) = 6x^2y - 4$$

SECOND PARTIAL DERIVATIVES

Notice that
$$f_{xy} = f_{yx}$$
 in Example 6.

- This is not just a coincidence.
- It turns out that the mixed partial derivatives f_{xy} and f_{yx} are equal for most functions that one meets in practice.

SECOND PARTIAL DERIVATIVES

The following theorem, discovered by the French mathematician Alexis Clairaut (1713–1765), gives conditions under which we can assert that $f_{xy} = f_{yx}$.

CLAIRAUT'S THEOREM

Suppose f is defined on a disk D that contains the point (a, b).

If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a, b) = f_{yx}(a, b)$$

HIGHER DERIVATIVES

Partial derivatives of order 3 or higher can also be defined.

For instance,
$$f_{xyy} = (f_{xy})_y = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y \partial x} \right) = \frac{\partial^3 f}{\partial y^2 \partial x}$$

Using Clairaut's Theorem, it can be shown that

$$f_{xyy} = f_{yxy} = f_{yyx}$$

if these functions are continuous.

Calculate f_{xxyz} if $f(x, y, z) = \sin(3x + yz)$

$$f_x = 3\cos(3x + yz)$$

$$f_{xx} = -9 \sin(3x + yz)$$

$$f_{xxy} = -9z \cos(3x + yz)$$

$$f_{xxyz} = -9\cos(3x + yz) + 9yz\sin(3x + yz)$$

PARTIAL DIFFERENTIAL EQUATIONS

Partial derivatives occur in partial differential equations that express certain physical laws.

LAPLACE'S EQUATION

For instance, the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

is called Laplace's equation after Pierre Laplace (1749–1827).

HARMONIC FUNCTIONS

Solutions of this equation are called harmonic functions.

They play a role in problems of heat conduction, fluid flow, and electric potential. Show that the function $u(x, y) = e^x \sin y$ is a solution of Laplace's equation.

$$u_x = e^x \sin y$$

$$u_y = e^x \cos y$$

$$u_{xx} = e^x \sin y$$

$$u_{yy} = -e^x \sin y$$

$$u_{xx} + u_{yy} = e^x \sin y - e^x \sin y = 0$$

■ Thus, *u* satisfies Laplace's equation.

WAVE EQUATION

The wave equation

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

describes the motion of a waveform.

 This could be an ocean wave, a sound wave, a light wave, or a wave traveling along a vibrating string. Verify that the function $u(x, t) = \sin(x - at)$ satisfies the wave equation.

$$u_x = \cos(x - at)$$

$$u_{xx} = -\sin(x - at)$$

$$u_t = -a \cos(x - at)$$

$$u_{tt} = -a^2 \sin(x - at) = a^2 u_{xx}$$

So, u satisfies the wave equation.