Linear Algebra Recitation Week 13

Jun Chang

New York University

Dec 2, 2021

If $A \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1, \ldots \lambda_n$, what are the eigenvalues of cA^n ! where $c \in \mathbb{R}$?

where
$$c \in \mathbb{R}$$
?

$$A \times = \lambda \times$$

$$A^{2} \times = \lambda A \times = \lambda^{2} \times$$

$$(C\lambda^{M}, \times) \approx e. \text{ Path}$$

$$A \times = \lambda A \times = \lambda \times$$

$$A^{m} \times = \lambda^{m} \times$$

$$A^{m$$

$$A^{m}x = \lambda^{m}x$$

$$C A^{m}x = C\lambda^{m}x$$
Generalization
$$P(A) = C_{m}A^{m} + C_{m}A^{m+1} + \cdots + C_{1}A + C_{0}I$$

$$P(A) = C_{m}A^{m}x + C_{m}A^{m+1}x + \cdots + C_{0}x$$

$$= C_{m}\lambda^{m}x + C_{m}\lambda^{m+1}x + \cdots + C_{0}x = (C_{m}\lambda^{m}+\cdots+C_{1}\lambda+C_{0})x$$

If A is invertible, and has eigenpairs $(\lambda_i, x_i)_{i=1,\dots,n}$, what are the

eigenpairs of
$$A^{-1}$$
?

$$A \times = \lambda \times$$

$$A^{\dagger} A \times = \lambda A^{\dagger} \times$$

$$X = \lambda A^{\dagger} \times$$

$$\frac{1}{\lambda} \times = A^{\dagger} \times$$

$$\frac{1}{\lambda} \times = A^{\dagger} \times$$

Spectral identities $\overline{z} = a + bi$, $\overline{z} = a - bi$, $\overline{z_1 z_2} = \overline{z_1}$, $\overline{z_2}$ (Complex conjugates) Let $A \in \mathbb{R}^{n \times n}$ be a real matrix.

• if $\lambda \in \mathbb{C} \setminus \mathbb{R}$ (i.e., complex-valued with nonzero imaginary part) is

an e.val of
$$A$$
, can a corresponding e.vec x be a real vector?

$$Ax = \lambda \times \qquad \qquad X \in \mathbb{R}^n$$

$$\mathbb{R}^n \quad \mathbb{C}^n \mathbb{R}^n \Rightarrow \{\xi\}$$

$$ullet$$
 In the same case as above, explain why $(ar{\lambda},ar{x})$ is also an eigenpair of

A. $Ax = \lambda x \Rightarrow \overline{Ax} = \overline{\lambda x}$ FXECIR

$$\overline{A}\overline{x} = \overline{\lambda}\overline{x}$$
 $\overline{\lambda}$ is also one. Val
 $A\overline{x} = \overline{\lambda}\overline{x}$

Let $A \in \mathbb{R}^{n \times n}$ where n is odd. Can all of the eigenvalues of A be in $\mathbb{C} \setminus \mathbb{R}$?

Spectral identities HM+2: Let (B) = Let (BT)

= det(A-AI) = PA(A)

If $A \in \mathbb{R}^{n \times n}$ has eigenvalues $(\lambda_i)_{i=1,\dots,n}$, what are the eigenvalues of A^T ? Hint: find the poly $P_{AT}(\lambda)$ and compare with $P_{A}(\lambda)$ $P_{AT}(\lambda) = \det(A^T - \lambda I)$ Hints: $(C+D)^T = C^T + D^T$ $= \det(A - \lambda I^T)^T$ $= \det(A - \lambda I^T)$ $= \det(A - \lambda I^T)$ Source e, vals.

In general,
$$A$$
 and A^T do not have the same eigenvectors! Compare with the relationship between A and A^{-1} .

How are the eigenvalues of A^TA and AA^T related? $A^{T}Ax = \lambda x$

AERMXn ATAERMXM

 $AA^{T}Ax = \lambda Ax$

AATE IR MXM

 $AA'y = \lambda y \rightarrow (\lambda, y)$ is

on e. pair of AAT o: s. value = of of ATA or AAT es A = R2×4 => Compute e. Vals of AAT

Spectral theory for symmetric matrices

• Can the eigenvalues of a symmetric matrix be in
$$\mathbb{C}\setminus\mathbb{R}$$
?
Let A he sym, and (λ, x) is e. Pair of A

then
$$\lambda = \lambda \|x\|^2 = \lambda (x \cdot x) = (\lambda x \cdot x)$$

$$= (Ax) \cdot x$$

$$= (A \times) \cdot \times$$
$$= \times \cdot (A^{\mathsf{T}} \times)$$

$$= \times \cdot (\mathbb{A}^{\mathsf{T}} \times)$$

$$\lambda = \overline{\lambda}$$

$$= \times \cdot (A \times)$$

$$= \times \cdot (\lambda \times)$$

$$= \times \cdot (\lambda \times)$$

$$\lambda = \overline{\lambda}$$

$$= \times \cdot (\lambda \times)$$

$$= \overline{\lambda} (\times \cdot \times) = \overline{\lambda} \|x\|^{2}$$

$$= \overline{\lambda}$$

Spectral theory for symmetric matrices

• If A is symmetric, what can be said about two e.vecs x_1, x_2 corresponding to distict e.vals λ_1, λ_2 ?

$$\lambda_{1}(X_{1} \cdot X_{2}) = (AX_{1} \cdot X_{2})$$

$$= X_{1} \cdot A^{T} \times_{2}$$

$$= X_{1} \cdot A \times_{2}$$

$$= X_{1} \cdot A \times_{2}$$

$$= X_{2}(X_{1} \cdot X_{2})$$

$$= X_{2}(X_{1} \cdot X_{2})$$

$$(A_{1} - A_{2})(X_{1} \cdot X_{2}) = 0$$

$$(A_{1} - A_{2})(X_{1} \cdot X_{2}) = 0$$

• All symmetric matrices are **orthogonally** diagonalizable.

(Important)
$$A = XDX^{-1} \implies we can find Orthogonal X$$

$$S + A = XDX^{-1} = XDX^{-1}$$