Reg.No.:.....Marks:

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA SURATHKAL, SRINIVASNAGAR-PIN:575 025 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ACADEMIC SESSION January-May 2020

End Semester Examination

Course Code : EE871 Course Title : **Machine Learning** Credits : 3-1-2 : 5 Instructor : Dr. Jora M. Gonda

Weight : 20% Marks : $5 \times 7 = 35$

NOTE: Answer all questions, each carry 5 marks.

1. Suppose we have a drawer full of dice, each of which has either 4, 6, 8, 12, or 20 sides. We do not know how many of each type are in the drawer. A die is picked at random from the drawer and rolled 5 times. The results in order are (4, 2, 4, 7, and 5). Given the priors: $H_4 = 0.20$, $H_6 = 0.25$, $H_8 = 0.20$, $H_{12} = 0.20$, and $H_{20} = 0.15$, estimate the possible die that was pulled from the drawer, and its probability.

2. Given the table:

(i)	1	2	3	4	5 = I	y(n)
$\underline{x}(n)$	shape	crust-size	crust-shade	fill-size	fill-shade	Liking
(n)						
1	square	thick	grey	thin	white	like
2	triang	medi	green	medi	red	dislike
3	square	an	red	thick	white	like
4	rect	thick	grey	medi	red	dislike
5	triang	an	grey	an	red	like
6	square	an	grey	an	dark	dislike
7	triang	medi	green	medi	white	like
8	square	an	grey	thick	red	like
9	round	thick	grey	medi	dark	like
10	round	thick	red	thin	blue	like
11	triang	thick	yellow	thin	white	like
12	round	thin	blue	medi	dark	dislike

and the test input $\underline{x} = [\text{round, thick, grey, medi, dark}], determine the posteriors, <math>\Pr(\text{like}|\underline{x})$.

3. Given the results of a validation test on a model

	Predicted						
Actual	0	1	Total				
0	217		263				
1	26		252				
Total	243	272	515				

Fill up the empty cells and then compute the following Performance matrics:

- i) Sensitivity ii) F1-Score.
- 4. List the indices used for deciding optimal threshold in classification.

5. Consider the following:

Given the data for two classes 'RED' and 'BLUE' as shown in the adjascent figure, determine the confusion matrix for $p \geq 0.7$ and enter in the matrix as follows.

$p \ge 0.7$	Predicted						
Actual	RED	BLUE	Total				
RED							
BLUE							
Total							

Data Counts	, O	40	00	60	- 17 40	40, 23	43,13	44, 10	70	0+	
d	0	.1 0	.2 0	.3 0	.4 0	5 0	6 0	7 0	.8 0	9 1.0	Í
	Probability – Threshold										

6. Given a set of data as follows, for learning the concept, PlayTennis using Decision-Trees.

Day	Outlook	Temperature	Humidity	Wind	Play
Dl	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Rain	Mild	Normal	Weak	Yes
Dl0	Sunny	Cool	Normal	Strong	Yes
Dl1	Sunny	Mild	Normal	Strong	Yes
Dl2	Rain	Hot	High	Strong	Yes
Dl3	Overcast	Mild	Normal	Weak	Yes
Dl4	Overcast	Mild	High	Strong	No

Calculate the Entropies to decide the root node and find out the best Attribute to split on at the root.

7. Aircrew escape systems are powered by a solid propellant. The burning rate of this propellant is an important product characteristic. Specifications require that the mean burning rate must be 50 centimeters per second. We know that the standard deviation of burning rate is $\sigma=2$ centimeters per second. The experimenter decides to specify a Type-I error probability or significance level of $\alpha=0.05$ and selects a random sample of N=25 and obtains a sample average burning rate of $\bar{x}=51.3$ centimeters per second. What conclusion can be drawn and why?