Introduction

Lesson Objectives

- After completing this lesson, you should be able to do the following:
 - List the features of Oracle10g
 - Discuss the theoretical and physical aspects of a relational database
 - Describe the Oracle implementation of the RDBMS and ORDBMS
 - Understand the goals of the course

Goals of the Course

- After completing this course, you should be able to do the following:
 - Identify the major structural components of Oracle Database 10g
 - Retrieve row and column data from tables with the SELECT statement
 - Create reports of sorted and restricted data
 - Employ SQL functions to generate and retrieve customized data
 - Run data manipulation language (DML) statements to update data in Oracle Database 10g
 - Obtain metadata by querying the dictionary views

Oracle10g

One vendor

Unified management

Single development model

Common skill sets

Oracle10g

Oracle Database 10g

Oracle Application Server 10g

Application development framework

Application server

Oracle Enterprise Manager 10*g* Grid Control

- Software provisioning
- Application service level monitoring

Relational and Object Relational Database Management Systems

- Relational model and object relational model
- User-defined data types and objects
- Fully compatible with relational database
- Support of multimedia and large objects
- High-quality database server features

Oracle Internet Platform

System Development Life Cycle

Data Storage on Different Media

Relational Database Concept

- Dr. E. F. Codd proposed the relational model for database systems in 1970.
- It is the basis for the relational database management system (RDBMS).
- The relational model consists of the following:
 - Collection of objects or relations
 - Set of operators to act on the relations
 - Data integrity for accuracy and consistency

Definition of a Relational Database

 A relational database is a collection of relations or twodimensional tables.

Table name: EMPLOYEES

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	EMAIL	P
100	Steven	King	SKING	51
101	Neena	Kochhar	NKOCHHAR	51
102	Lex	De Haan	LDEHAAN	51

Table name: DEPARTMENTS

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID
10	Administration	200
20	Marketing	201
50	Shipping	124

...

Data Models

Tables on disk

Entity Relationship Model

 Create an entity relationship diagram from business specifications or narratives:

- "... Assign one or more employees to a department ..."
- "... Some departments do not yet have assigned employees ..."

Entity Relationship Modeling Conventions

Relating Multiple Tables

- Each row of data in a table is uniquely identified by a primary key (PK).
- You can logically relate data from multiple tables using foreign keys (FK).

Table name: EMPLOYEES

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
174	Ellen	Abel	80
142	Curtis	Davies	50
102	Lex	De Haan	90
104	Bruce	Ernst	60
202	Pat	Fay	20
206	William	Gietz	110

Table name: DEPARTMENTS

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	IT	103	1400
80	Sales	149	2500
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting		1700

Primary key

Foreign key Primary key

by ABHISHEK SHARMA

Relational Database Terminology

EMPLOYEE_ID	LAST_NAME	FIRST_NAME	SALARY	COMMISSION_PCT	DEPARTMENT_ID
100	King	Steven	24000		90
101	Kochhar	Neena	17000		90
102	De Haan	Lex	17000		90
103	Hunold	Alexander	9000		60
104	Ernst	Bruce	6000		60
107	Lorentz	Diana	4200	(6)	60
124	Mourgos	Kevin	5800		50
141	Rajs	Trenna	3500		50
142	Davies	Curtis	3100		50
143	Matos	Randall	2600		50
144	Vargas	Peter	2500		50
149	Zlotkey	Eleni	10500	.2	80
174	Abel	Ellen	11000	.3	80
176	Taylor	Jonathon	8600	.2	80
178	Grant	Kimberely	7000	.15	
200	Whalen	Jennifer	4400		10
201	Hartstein	Michael	13000		20
202	Fay	Pat	6000		20
205	Higgins	Shelley	12000		110
206	Gietz	William	8300		110

Relational Database Properties

- A relational database:
 - Can be accessed and modified by executing structured query language (SQL) statements
 - Contains a collection of tables with no physical pointers
 - Uses a set of operators

Communicating with an **RDBMS** Using SQL SQL statement is entered.

Statement is sent to Oracle server

			acic sci vci	•
SELECT FROM	<pre>department_name departments;</pre>			
				O
	DEPARTMENT_NAME			se
Administration				
Marketing				
Shipping				
IT				
Sales				
Executive				
Accounting				
Contracting				

Oracle's Relational Database Management System

SQL Statements

• SELECT

INSERT

UPDATE

DELETE

• MERGE

• CREATE

- ALTER
- DROP
- RENAME
- TRUNCATE
- COMMENT
- GRANT
- REVOKE
- COMMIT
- ROLLBACK
- SAVEPOIN

Data manipulation language (DML)

Data definition language (DDL)

Data control language (DCL)

Transaction control

Tables Used in the Course

EMPLOYEES

EMPLOY	EE_ID	FIRST_NAME	LAST_NAME	EMAIL	PHON	E_	NUMBER	HIRE_DATE	JOB ₂	_ID	SALA	
	100	Steven	King	SKING	515.123.4567		17-JUN-87	AD_PRES		240		
	101	Neena	Kochhar	NKOCHHAR	515.12	3.4	4568	21-SEP-89	AD_VP		170	
	102	Lex	De Haan	LDEHAAN	515.12	3.4	4569	13-JAN-93	AD_VP		170	
	103	Alexander	Hunold	AHUNOLD	590.42	3.4	4567	03-JAN-90	IT_PRO	G	90	
	104	Bruce	Ernst	BERNST	590.42	3.4	4568	21-MAY-91	IT_PRO	G	60	
	107	Diana	Lorentz	DLORENTZ	590.42	3.9	5567	07-FEB-99	IT_PRO	G	42	
	124	Kevin	Mourgos	KMOURGOS	650.12	3.5	5234	16-NOV-99	ST_MAI	V	58	
	141	Trenna	Rajs	TRAJS	650.12	1.8	8009	17-OCT-95	ST_CLE	RK	35	
	142	Curtis	Davies	CDAVIES	650.121.2994		2994	29-JAN-97	ST_CLERK		31	
DTMENT ID	DED	ADTRICAL MAI	UE MANAGER	ID LOCATIO	NI ID	1.3	2874	15-MAR-98	ST_CLE	RK	26	
RTMENT_ID		ARTMENT_NAI				1.:	2004	09-JUL-98	ST_CLE	RK	25	
10	Adm	inistration		200	1700	.16	244 420044		O	k I	405	
20	Mark	eting		201	1800	=	GRA	LOWEST_S	SAL	HIC	SHEST_S	AL
50	Ship	ping		124	1500		Α [1000			2999
60	IT			103	1400		В		3000			5999
80	Sale	S		149	2500		C		6000			9999
90	Exec	cutive		100	1700		D	10000			14999	
110	Acco	ounting		205	1700		E		15000			24999
190	Cont	racting			1700		F		25000			40000

Summary

- Oracle Database 10g is the database for grid computing.
- The database is based on the object relational database management system.
- Relational databases are composed of relations, managed by relational operations, and governed by data integrity constraints.
- With the Oracle server, you can store and manage information by using the SQL language and PL/SQL engine.