Диффузионные модели

Что мы уже знаем

Приложения

Stable Diffusion (StabilityAI)

Source: https://learnopencv.com/image-generation-using-diffusion-models/

Text-to-speech generation

Source: https://github.com/heejkoo/Awesome-Diffusion-Models#text-to-speech

Molecular and material generation

Source: https://github.com/heejkoo/Awesome-Diffusion-Models#molecular-and-material-generation

Astronomical spectra generation

Figure 3: Generated spectra for the images in (a). In (b) we show the real spectra, in (c) the best match according to our contrastive model, out of 25 samples.

Source: https://ml4physicalsciences.github.io/2022/files/NeurlPS_ML4PS_2022_78.pdf

Dark matter density modelling

Figure 1: Four log cold dark matter mass density fields from the training data (top left) and from the sampled model (top right) at 128x128. Four samples of dust from the training data (bottom left) and from the trained model (bottom right).

Source: https://ml4physicalsciences.github.io/2022/files/NeurlPS_ML4PS_2022_25.pdf

Интуиция

Общая идея диффузионных моделей

Источник: https://cvpr2022-tutorial-diffusion-models.github.io/

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; m{\mu}_t = \sqrt{1-eta_t}\mathbf{x}_{t-1}, m{\Sigma}_t = eta_t \mathbf{I})$$
 Константа

Обратный процесс

Демо: диффузия

Источник: https://yang-song.net/blog/2021/score/

Демо: обратный процесс

Источник: https://yang-song.net/blog/2021/score/

Диффузионные модели

$$\epsilon_t \sim N(0, I), \quad \alpha_t = 1 - \beta_t$$

Мы сами так задали процесс

$$\epsilon_t \sim N(0, I), \quad \alpha_t = 1 - \beta_t$$

$$\epsilon \sim N(0, I), \quad \bar{\alpha}_t = \prod_{i=1}^t \alpha_t$$

$$\begin{split} x_t &= \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_t & \epsilon_t \sim N(0, I), \ \alpha_t = 1 - \beta_t \\ x_t &= \sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \epsilon & \epsilon \sim N(0, I), \ \overline{\alpha_t} = \prod_{i=1}^t \alpha_t \\ x_{t-1} &= \frac{1}{\sqrt{\overline{\alpha_t}}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha_t}}} \epsilon \right) + \widetilde{\beta_t} z & z \sim N(0, I), \ \widetilde{\beta_t} = \frac{1 - \overline{\alpha_{t-1}}}{1 - \overline{\alpha_t}} \beta_t \end{split}$$

Обратный процесс

$$\hat{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \epsilon_{\theta}(x_t,t) \right) + \sigma_t z \qquad z \sim N(0,I), \quad \sigma_t = const$$
 Предсказываем нейронной сетью

Обратный процесс

$$\hat{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right) + \sigma_t z \qquad z \sim N(0, I), \quad \sigma_t = const$$

Функция потерь для обучения:

$$L_t = \|x_{t-1} - \hat{x}_{t-1}\|_2^2 \propto \|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2 \to \min_{\theta}$$

Архитектура нейронной сети

Источник: https://www.zhihu.com/question/536012286/answer/2683123893

Алгоритм обучения

Algorithm 1 Training

```
1: repeat
2: \mathbf{x}_0 \sim q(\mathbf{x}_0)
3: t \sim \text{Uniform}(\{1, \dots, T\})
4: \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
5: Take gradient descent step on
\nabla_{\theta} \left\| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\|^2
6: until converged
```

Алгоритм генерации

Algorithm 2 Sampling

```
1: \mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
```

2: **for** t = T, ..., 1 **do**

3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

5: end for

6: return x_0

Значения гиперпараметров

- T = 1000
- $\beta_1 = 0.0001, \beta_T = 0.02$

Заключение

Generative learning trilemma

Source: https://zhuanlan.zhihu.com/p/503932823

Заключение

