LASER

LASERS 9

Interaction of Radiation with Matter-Spontaneous and stimulated emissions—Einstein's A and B coefficients—Conditions for Laser action—Population inversion—Active medium—pumping schemes—Optical resonant cavity- Light Amplification-Types of lasers—Nd: YAG, CO₂ and Semiconductor lasers—homo junction & hetero junction laser.

Definition & Properties of Laser Light

Acronym For:

LIGHT

AMPLIFICATION BY

STIMULATED

EMISSION OF

RADIATION

Lasers

Noncoherent light

Coherent light

Einstein's Quantum theory of Radiation -Determination of Einstein's coefficient

Rate of stimulated absorption $R_{12} = N_1 \rho(v) B_{12}$

$$R_{12} = N_1 \rho(v) B_{12}$$

Rate of spontaneous Emission

$$R_{21} = N_2 A_{12}$$

Rate of stimulated Emission

$$R_{21} = N_2 \rho(v) B_{21}$$

Under equilibrium condition

Rate of absorption = rate of emission

$$B_{12}\rho(v)N_1 = A_{21}N_2 + N_2\rho(v)B_{21}$$

$$\rho(v) = \frac{A_{21}N_2}{B_{12}N_1 - B_{21}N_2}$$

$$\rho(v) = \frac{\frac{A_{21}}{B_{21}}}{\frac{B_{12}}{B_{21}} \frac{N_1}{N_2} - 1} / \frac{NADAR}{VERSITY}$$

From Boltzmann distribution law $N_i = g_i N_0 \exp$

$$N_i = g_i N_0 \exp\left(\frac{-E_i}{kT}\right)$$

$$\frac{N_1}{N_2} = \frac{g_1}{g_2} \exp\left(\frac{E_2 - E_1}{kT}\right)$$

$$E_2 - E_1 = h \nu$$

$$\frac{N_1}{N_2} = \frac{g_1}{g_2} \exp\left(\frac{h\nu}{kT}\right)$$

$$\rho(v) = \frac{\frac{A_{21}}{B_{21}}}{\frac{g_1 B_{12}}{g_2 B_{21}} \exp\left(\frac{hv}{kT}\right) - 1}$$

Plank's law of black body radiation

$$\rho(v) = \frac{8\pi h v^3}{c^3} \left(\frac{1}{\exp\left(\frac{hv}{kT}\right) - 1} \right)$$

$$g_1 B_{12} = g_2 B_{21}$$

$$\frac{A_{21}}{B_{21}} = \frac{8\pi h v^3}{c^3}$$

- Laser light is monochromatic, directional and coherent
- These three properties make it more of a hazard than ordinary light.
- Laser light can deposit a great deal of energy within a very small area

Monochromatic

The light emitted from a laser is *monochromatic*, it is of one wavelength (color).

In contrast, ordinary white light is a combination of many different wavelengths (colors).

Directional

Lasers emit light that is highly directional.

It is emitted as a narrow beam in a specific direction.

Ordinary light (sun, light bulb, a candle), is emitted in many directions away from the source

Coherent

The light from a laser is *coherent*

The wavelengths of the laser light are in phase in space and time

Laser—basics

Nd:YAG Laser

Type: four level solid state laser

Active medium: Yttrium aluminium

Garnet

Active centre: neodymium

Pumping method: Optical pumping

Pumping source: xenon flash lamp

Optical resonator: ends of rods

polished with silver

Power output: 100s mW

Nature of output: pulsed/Continuous

Wavelength: 1.064micrometer

Energy level diagram-Nd:YAG

Vibration modes of CO₂ molecule

Symmetric mode (100)

Bending mode(010)

Asymmetric mode(001)

CO₂ Laser

Type: molecular laser

Active medium: Mixture of CO₂,

 N_2 , He or water vapour

Active centre: CO₂

Pumping method: Electric

discharge

Optical resonator: concave mirror (metallic mirror of gold/silicon with aluminium)

Power output: 10KW Watts

Nature of output: pulsed/Continuous

Wavelength: 9.6/10.6micrometer

Energy level diagram-CO₂

Semiconductor laser

Type: Solid state semiconductor

Active medium: p-n junction diode

made from single crystal

Pumping method: Direct

conversion method

Power output: 1mW Watts

Nature of output: pulsed/Continuous

Wavelength: 8.3/8.6micrometer

Laser spectrum

Applications of Laser

Material Processing

Welding

Cutting

Drilling

Surface hardening

Medical applications

Ophthalmology

Cancer treatment

Urology

Dermatology

Defence

Ranging (LIDAR)

Guide the missiles

Disable and destroy the enemy targets

Nuclear energy

Nuclear fusion

Isotope separation

Optical communications

Electronic industry

Scribing

Soldering

Trimming

Consumer electronic industry

Optical data storage

Holography

