Aditya Vamsikrishna Mandalika

adityavk.com adityavk@cs.uw.edu

Education

PhD, Computer Science and Engineering, University of Washington

Advisor: Dr. Siddhartha S. Srinivasa

MS, Robotics, Carnegie Mellon University [Transferred to UW]

Advisor: Dr. Siddhartha S. Srinivasa

B.Tech, Mechanical Engineering, Indian Institute of Technology Madras

Advisor: Dr. Arun D. Mahindrakar

Experience

Personal Robotics Laboratory

Graduate Research Assistant

University of Washington

2017 - Present

With a research interest that lies at the intersection of planning and learning, I work on search-based geometric motion planning and decision-making under uncertainty in application to robotics.

Personal Robotics Laboratory

Graduate Research Assistant

Carnegie Mellon University

2016 - 2017

Studied the application of double quaternions for solving the inverse kinematics of high DoF robot manipulators, specifically the Kinova Jaco.

Dynamics and Control Laboratory

Undergraduate Research Assistant

Indian Institute of Technology, Madras

2015 - 2016

My Bachelor's Thesis investigated the application of the Leapfrog algorithm and Pontryagin's Maximum Principle to generate time, distance, and fuel optimal trajectories for mobile robots.

Systemantics India Pvt. Ltd.

Summer Research Intern

Bangalore

2014 - 2015

Modelled the dynamics of a hybrid manipulator Modelled the dynamics of a hybrid manipulator for trajectory tracking and control in performing industry-precision manipulation tasks.

Raftar Formula Racing

Vehicle Dynamics Engineer

Indian Institute of Technology Madras

2013 - 2014

Designed and manufactured the suspension system of a Formula-style racecar for Formula Student Combustion (FSC) Germany, 2014.

Publications

- P1 Sample-Efficient Learning of Nonprehensile Manipulation Policies via Physics-Based Informed State Distributions, L. Pinto, A. Mandalika, B. Hou and S.S. Srinivasa. arXiv preprint, arXiv:1810.10654, 2018.
- P2 Bayesian Policy Optimization for Model Uncertainty, G. Lee, B. Hou, A. Mandalika, J. Lee and S.S. Srinivasa. arXiv preprint, arXiv:1810.01014, 2018. [in review for ICLR 2019]
- C1 Lazy Receding Horizon A* for Efficient Path Planning in Graphs with Expensive-to-Evaluate Edges, A. Mandalika, O. Salzman and S.S. Srinivasa. In *International Conference on Automated Planning and Scheduling (ICAPS)*, 2018.
- C2 Numerical and Experimental Implementation of Leapfrog Algorithm for Optimal Control of a Mobile Robot, A. Vamsikrishna, Arun D. Mahindrakar and Shaligram Tiwary. In *International Control Conference (ICC)*, 2017.

Teaching and Invited Talks

Graduate Teaching Assistant, University of Washington

Advanced Robotics: Manipulation Algorithms

Guest Lectures, Lakeside High School, Seattle

Introduction to Robotics

Fall 2017

Fall 2017

Mentoring

Rahul Kumar Vernwal

Summer 2018

Learning Efficient Roadmaps for Robust Motion Planning

Open Source Software Development Experience

Contributor to AIKIDO

2017 - Present

C++ library for solving robotic motion planning and decision making problems.

Repository: https://github.com/personalrobotics/aikido

Technical Skills

 $\textbf{Languages:} \ C, \ C++, \ Python, \ MATLAB, \ \LaTeX$

Libaries and Tools: ROS, OMPL, OpenCV