

MC3305 Algoritmos e Estruturas de Dados II

Aula 02 – Hashing

Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br

2Q-2015

Sobre a busca de dados/chaves

Para se resolver os problemas de busca, inserção e remoção em uma tabela com **n** elementos, há várias maneiras:

 Busca sequencial: acesso em O(n)

Para se resolver os problemas de busca, inserção e remoção em uma tabela com **n** elementos, há várias maneiras:

- Busca sequencial:
 acesso em O(n)
- Busca Binária:

```
acesso em O(log2(n))
ainda lento se n é grande (log2 (1000000) = 20)
```

Para se resolver os problemas de busca, inserção e remoção em uma tabela com **n** elementos, há várias maneiras:

- Busca sequencial:
 acesso em O(n)
- Busca Binária:
 acesso em O(log2(n))
 ainda lento se n é grande (log2 (1000000) = 20)
- Uso de árvores balanceadas (estudaremos ainda nesse quadrimestre): acesso em O(log(n)) acesso bem melhor do que na busca sequencial!

Em uma árvore B, o acesso é O(logk(n)), onde k é o tamanho da folha (veremos no final do curso)

Não é possível achar um método mais rápido?

- O(n) não é ruim em memória, mas mesmo um método com complexidade logaritmica é custoso.
- Acesso a disco é 1.000.000 vezes mais lento do que em memória.

Sim!

Tabelas de dispersão (Hash tables)

Busca com acesso médio igual a O(1).

Tabelas de _ Tabelas de _ Hash espalhamento tables

- Busca com acesso médio igual a O(1).
- Isso significa "constante" na média.
 No pior caso é O(n).
 Na medida do possível uma constante pequena.

 São estruturas de dados eficientes para implementar um dicionário.

HASHING (tabelas de dispersão)

Considere que os valores das chaves sejam: 0, 1, ..., m-1:
 Pode-se usar diretamente o valor de cada chave em seu índice de tabela (cada chave x armazenada no compartilhamento x)

 O endereçamento direto se baseia no fato de que podemos examinar uma posição qualquer em O(1).

Isto é aplicável quando podemos alocar uma tabela com uma posição para cada chave possível.

Técnica simples que funciona quando o universo de chaves **U** é razoavelmente pequeno.

Haveriam |U|-|k| compartimentos vazios ou espaços.

Implementação

Search

 $Direct_address_search(T, k)$ return T[k]

Insert

 $Direct_address_insert(T, x)$ $T[key[x]] \leftarrow x$

Delete

 $Direct_address_delete(T, x)$ $T[key[x]] \leftarrow NIL$

Considerações

- A dificuldade de usar endereçamento direto é obvia:
 A alocação de uma tabela T de tamanho |U| pode ser inviável para um universo muito grande.
- Endereçamento direto pode implicar em desperdício de memória.
- O conjunto de chaves K armazenadas na tabela pode ser muito menor do que o universo de chaves U:
 - Espaço utilizado: O(|U|)
 - Tempo de busca: O(1)

 Através da aplicação de uma função conveniente (função hash), a chave é transformada em um endereço de tabela (endereço base).

hash(chave)
$$\rightarrow$$
 {0, 1, ..., m-1}

• h(k) é uma função h que mapeia o universo U de chaves para entradas da tabela de espalhamento T[0,...,m-1].

$$h: U \to \{0, 1, \ldots, m-1\}$$

Considerações

- Uma dificuldade dessa técnica é a possibilidade de duas chaves k1 e k3 serem mapeadas para a mesma posição na Tabela de Espalhamento.
- Uma colisão entre 2 chaves ocorre quando h(k1)=h(k3).

Duas formas de tratar colisões:

- Endereçamento aberto.
- Resolução de colisões através de encadeamento.

Duas formas de tratar colisões:

- Endereçamento aberto.
- Resolução de colisões através de encadeamento.

Duas formas de tratar colisões:

- Endereçamento aberto.
- Resolução de colisões através de encadeamento.

Para evitar colisões usa-se uma função Hash que apresente "comportamento randômico"

Tratamento de colisões por encadeamento

Implementação

```
Inserção

Hash\_insert(T,x)

Insira x na cabeça da lista T[h(key[x])]
```

Busca

```
Hash\_search(T, k)
Procure por um elemento de chave k
na lista T[h(k)]
```

Tratamento de colisões por encadeamento

Implementação

Remoção

```
Hash\_delete(T,x)
Delete x da lista T[h(key[x])]
```

Tabelas de espalhamento

Análise das operações

- Inserção é executada em tempo O(1).
- Remoção de um elemento x é executada em tempo O(1).
- Busca leva tempo proporcional ao comprimento da lista.

Tabelas de espalhamento (TEs)

Considerações

- Seja m o número de entradas na TE.
- Seja **n** o número de elementos armazenados na TE.
- Fator de carga α é definido por $\alpha = \frac{n}{m}$

Tabelas de espalhamento (TEs)

Considerações

- Seja m o número de entradas na TE.
- Seja n o número de elementos armazenados na TE.
- Fator de carga α é definido por $\alpha = \frac{n}{m}$

Análise de espalhamento por encadeamento

- No pior caso, o tempo de busca de uma chave k pode levar tempo ⊕ (n) em uma TE.
- O tempo de busca em uma TE depende de quão bem a função de espalhamento h distribui as chaves entre as entradas de T.

Tabelas de espalhamento (TEs)

Espalhamento uniforme

 Se a probabilidade de um elemento qualquer ser direcionado para uma entrada qualquer de T é uniforme, independentemente dos demais elementos, dizemos que a função de espalhamento h satisfaz a condição de espalhamento uniforme.

Sobre o espalhamento uniforme

Em um grupo de 23 pessoas ou mais pessoas, juntas ao acaso, existe uma chance maior do que 50% de que duas pessoas comemorem aniversário no mesmo dia.

Se for utilizar uma função Hash que enderece 23 chaves (randômicas) em uma tabela de 365 elementos, a **probabilidade de que haja colisão** é maior do que 50%

• Função de Espalhamento Perfieto:

Quando a função é capaz de evitar qualquer colisão (supondo-se determinados n e m).

Função de Espalhamento Perfieto:

Quando a função é capaz de evitar qualquer colisão (supondo-se determinados **n** e **m**).

 Entretanto, é muito difícil se obter uma função de dispersão perfeita.

Suponha que você quisesse guardar:

- n = 4000 registros, em
- m = 5000 compartimentos.

Foi mostrado que de todas as funções de espalhamento possíveis, somente 1 em 10¹²⁰⁰⁰⁰ é capaz de evitar todas as colisões.

Suponha que você quisesse guardar:

- n = 4000 registros, em
- m = 5000 compartimentos.

Foi mostrado que de todas as funções de espalhamento possíveis, somente 1 em 10¹²⁰⁰⁰⁰ é capaz de evitar todas as colisões.

Para um número pequeno de chaves que mudam com pouca frequência é possível achar com mais facilidade uma função de espalhamento perfeita.

Suponha que você quisesse guardar:

- n = 4000 registros, em
- m = 5000 compartimentos.

Foi mostrado que de todas as funções de espalhamento possíveis, somente 1 em 10¹²⁰⁰⁰⁰ é capaz de evitar todas as colisões.

Para um número pequeno de chaves que mudam com pouca frequência é possível achar com mais facilidade uma função de espalhamento perfeita.

Foco: Minimizar o número de colisões a um valor aceitável

Funções Hash (de espalhamento):

→ O método da divisão

- Fácil, eficiente e largamente empregado.
- A chave k é dividida pela dimensão da tabela m: o resto da divisão é o endereço base:

$$h(k) = k \mod m$$

Resulta em endereços no intervalo: [0, m-1].

• Por exemplo, para **m=**12, e **k=**100:

$$h(k) = k \mod m$$

$$h(100) = 100 \mod 12 = 4$$

Bons valores para **m** são <u>números primos</u> não muito próximos de potências de **2.**

Bons valores para **m** são <u>números primos</u>

- O motivo não é óbvio!
- Ver os seguintes links para uma discussão a respeito:
 - http://stackoverflow.com/questions/1145217/why-should-hash-functionsuse-a-prime-number-modulus
 - https://computinglife.wordpress.com/2008/11/20/why-do-hash-functionsuse-prime-numbers

Suponha que desejamos alocar n=2000 cadeias de 8 bits, e que não nos importamos em procurar em listas de tamanho médio 3.

Qual seria o tamanho apropriado para a tabela T?

Suponha que desejamos alocar n=2000 cadeias de 8 bits, e que não nos importamos em procurar em listas de tamanho médio 3.

Qual seria o tamanho apropriado para a tabela T?

Então, podemos fazer **m=701**, pois este é um número primo próximo de 2000/**3**, então

$$\alpha = \frac{n}{m} = \frac{2000}{701} \approx 3$$

n=2000, m=701

$h(k) = k \mod 701$

2	3	5	7	11	13	17	19	23	29
31	37	41	43	47	53	59	61	67	71
73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229
233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349
353	359	367	373	379	383	389	397	401	409
419	421	431	433	439	443	449	457	461	463
467	479	487	491	499	503	509	521	523	541
547	557	563	569	571	577	587	593	599	601
607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733
739	743	751	757	761	769	773	787	797	809
811	821	823	827	829	839	853	857	859	863
877	881	883	887	907	911	919	929	937	941
947	953	967	971	977	983	991	997		

n= 17

	h(k)
1100	12
1101	13
1102	14
1103	15
1104	16
1105	0
1106	1
1107	2
1108	1 2 3 4 5 6 7
1109	4
1110	5
1111	6
1112	7
1113	8
1114	9
1115	10
1116	11
1117	12
1118	13
1119	14
1120	15
1121	16
1122	0
1123	1
1124	2
1125	1 2 3 4
1126	4

m= 701

k	h(k)
1100	399
1101	400
1102	401
1103	402
1104	403
1105	404
1106	405
1107	406
1108	407
1109	408
1110	409
1111	410
1112	411
1113	412
1114	413
1115	414
1116	415
1117	416
1118	417
1119	418
1120	419
1121	420
1122	421
1123	422
1124	423
1125	424
1126	425

Se o elemento for uma string?

```
função de espalhamento exemplo
 devolve um inteiro entre 0 e 50
***********
int f(char *s) {
 int k = strlen(s);
 int i, j = 0;
 for(i=0; i<k; i++) j+=s[i];
 return j % 51;
```


Funções Hash (de espalhamento):

→ Método da multiplicação

O método utiliza uma constante **A** (0<A<1), sendo **h(k)** calculado como:

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$

O método utiliza uma constante **A** (0<A<1), sendo **h(k)** calculado como:

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$

$$(kA \mod 1) = kA - \lfloor kA \rfloor$$

O método utiliza uma constante **A** (0<A<1), sendo **h(k)** calculado como:

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$

 $(kA \mod 1) = kA - \lfloor kA \rfloor$

A vantagem deste método é que o valor de **m** não é crítico como no método de divisão.

Mas a escolha de uma constante A adequada é crítica

$$m = 1000$$

A = 0,5

$$h(k) = \lfloor m(kA \bmod 1) \rfloor$$

Determine os resultados de h(k) para: $k = \{1100, 1101, 1102, 1103, 1104, 1105\}$

$$m = 1000$$

A = 0,5

```
h(1100) = 0
h(1101) = 500
h(1102) = 0
h(1103) = 500
h(1104) = 0
h(1105) = 500
h(1106) = 0
h(1107) = 500
```

$$m = 1000$$

A = 0.5

AAAAAAAAAARRRRRRRRRRRRRGGGGGGGHHHHHHH!!!!!!!!!

Alguns valores de **A** são melhores do que outros, em particular a razão áurea

•

-

•

•

-

 $A \approx (\sqrt{5} - 1)/2 = 0,6180339887$

Funções Hash:

→ Método da dobra

Método da dobra

Quebre a chave em partes e combine-as de algum modo

Exemplo:

Se as chaves são números de 8 dígitos, e a tabela hash tem 1000 entradas, quebre a chave em 3 números:

- Número 1: 3 dígitos
- Número 2: 3 dígitos
- Número 3: 2 dígitos

Some-os, considerando os 3 últimos dígitos da soma para compor a chave.

$$73419883 \rightarrow 734 + 198 + 83 = 1015 \rightarrow 015 \rightarrow h(k) = 15$$

Método da dobra

n= 1000

k	d1	d2	d3	soma	h(k)
34567890	345	678	90	1113	113
34567891	345	678	91	1114	114
34567892	345	678	92	1115	115
34567893	345	678	93	1116	116
34567894	345	678	94	1117	117
34567895	345	678	95	1118	118
34567896	345	678	96	1119	119
34567897	345	678	97	1120	120
34567898	345	678	98	1121	121
34567899	345	678	99	1122	122
34567900	345	679	00	1024	24
34567901	345	679	01	1025	25
34567902	345	679	02	1026	26
34567903	345	679	03	1027	27
34567904	345	679	04	1028	28
34567905	345	679	05	1029	29
34567906	345	679	06	1030	30
34567907	345	679	07	1031	31
34567908	345	679	08	1032	32
34567909	345	679	09	1033	33
34567910	345	679	10	1034	34
34567911	345	679	11	1035	35
34567912	345	679	12	1036	36
34567913	345	679	13	1037	37
34567914	345	679	14	1038	38
34567915	345	679	15	1039	39
34567916	345	679	16	1040	40

Chaves como números naturais

 Até aqui consideramos o caso da chave ser um número natural.

$$k = 'gato'$$

$$h(k) = ?$$

Chaves como números naturais

Se não for este o caso, ela deve ser convertida primeiro para um número natural.

Por exemplo, se a chave é uma cadeia de caracteres podemos interpreta-la como um natural em uma base conveniente (26 se levarmos em consideração apenas letras minúsculas):

$$gato = 7 \cdot 26^3 + 1 \cdot 26^2 + 20 \cdot 26^1 + 15 = 124243.$$

Chaves como números naturais

Se não for este o caso, ela deve ser convertida primeiro para um número natural.

Por exemplo, se a chave é uma cadeia de caracteres podemos interpreta-la como um natural em uma base conveniente (26 se levarmos em consideração apenas letras maiúsculas):

$$gato = 7 \cdot 26^3 + 1 \cdot 26^2 + 20 \cdot 26^1 + 15 = 124243.$$

Palavras mais longas representam um desafio maior, pois o valor calculado pode ser muito grande (e o cálculo pode levar muito tempo).

Neste caso, podemos escolher algumas letras para representar a palavra, como a primeira, a do meio e a penúltima

Para finalizar...

Para finalizar

Vantagens:

 Algoritmo simples e eficiente para inserção, remoção e busca.

Desvantagens:

- Nenhuma garantia de balanceamento.
- Espaço sub-utilizado nas tabelas.
- O grau de espalhamento é sensível à função de hashing utilizada e ao tipo de informação usada como chave.

Desafio:

Pense na criação de uma função hash "universal"