Exercice 0

Construire les figures demandées à l'aide d'un compas et d'une règle non-graduée. Justifier les résultats des deux dernières opérations proposées.

Médiatrice (et milieu)

ABC est un triangle équilatéral.

Bissectrice

Orthogonalité

Addition (et parallélisme)

o'

OASB est un parallélogramme.

Multiplication de longueurs

Racine carrée

Révisions:

Théorème de Thalès

Soit (AB) et (CD) deux droites sécantes en E. (AC) et (BD) sont parallèles si et seulement si

$$\frac{BD}{AC} = \frac{BE}{AE} = \frac{DE}{CE}$$

— Théorème de Pythagore

Un triangle ABC est rectangle en B si et seulement si

$$AC^2 = AB^2 + BC^2$$

— Identités remarquables

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2 (a+b)(a-b) = a^2 - b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

Exercice 1 Mettre les nombres suivants sous forme algébrique.

- a) $(1+2i)^2$
- **b**) $\frac{1}{1+3i}$
- $\mathbf{c)} \quad \frac{1+i}{2+i}$
- **d**) i^{-11}
- **e)** $4e^{2i\pi/3}$

Exercice 2 Mettre les nombres suivants sous forme exponentielle.

- a) 1 i
- **b**) $\sqrt{3} + 3i$
- c) $(1+i)^{-14}$

Exercice 3 Soit $z \in \mathbb{C}$.

- a) Vérifier que $z + \overline{z} = 2 \operatorname{Re}(z)$.
- b) À quelle condition a-t-on |z| = z?
- c) À quelle condition a-t-on |z| = -z?

On pose z = 2 + i.

d) Représenter graphiquement les points d'affixe $z, -z, \overline{z}, z - \overline{z}, |z|, z + 1$ et z + i.

Exercice 4 Soit A, B et C trois points du plan d'affixes respectives a = 2 + 3i, b = 4 - i et c = 10 + 2i.

- a) Représenter le triangle ABC.
- **b)** Calculer b-a, c-b et a-c puis leur module
- c) En déduire que le triangle ABC est rectangle en B.

On appelle f et g les deux transformations du plan qui à tout point M d'affixe z associent les points d'affixes respectives f(z) = iz et g(z) = (1+i)z.

- d) Construire l'image A'B'C' du triangle ABC par la transformation f.
- e) Déterminer le module et l'argument de f(z) en fonction de ceux de z. De quelle similitude s'agit-il?

- f) Construire l'image A''B''C'' du triangle ABC par la transformation g.
- g) Déterminer le module et l'argument de g(z) en fonction de ceux de z. Décrire géométriquement cette similitude.

Exercice 5 Soit A, B et C trois points du plan d'affixes respectives $a=0, b=\frac{7}{2}+\frac{1}{2}i$ et c=3+4i.

- a) Représenter le triangle ABC.
- b) Déterminer les différences b-a, c-b, a-c puis leur module.
- c) En déduire que le triangle ABC est isocèle et rectangle en B.
- d) Placer le point I d'affixe $z = \frac{1}{2}(1+i) \times b$.
- e) Déterminer le réel λ tel que $c = \lambda z$ et nommer précisément cette transformation.
- f) Déterminer l'affixe d de l'image D du point A par la translation de vecteur \overrightarrow{BC} .
- g) Déterminer l'affixe e de l'image E du point B par la rotation de centre A et d'angle $\pi/2$. Commenter.

Exercice 6 Pour quelles valeurs de $n \in \mathbb{N}$ le nombre $(1+i)^n$ est-il un réel positif? Négatif? Un imaginaire pur?

Exercice 7 Résoudre l'équation $z^3 = 1$. On notera j la seule racine cubique de 1 dont la partie imaginaire est strictement positive. Montrer que $\bar{j} = j^2$ et |1 + j| = 1.

Exercice 8 L'impédance complexe d'un circuit RLC (résistance, condensateur, bobine) est, pour un circuit

- a) en série : $\underline{Z} = R + i\omega L + \frac{1}{i\omega C}$
- **b)** en parallèle : $\underline{Z} = \left(\frac{1}{R} + \frac{1}{i\omega L} + i\omega C\right)^{-1}$

Calculer l'impédance équivalente $|\underline{Z}|$ (en ohms) et le déphasage entre la tension et l'intensité $\arg(\underline{Z})$ dans les deux cas.

Exercice 9 À partir de la fonction $t \mapsto e^{it}$, justifier que $\cos^2(x) + \sin^2(x) = 1$ puis montrer les identités suivantes :

- a) $\cos(2x) = 2\cos^2(x) 1$
- **b)** $\cos(2x) = 1 2\sin^2(x)$
- c) $\sin(2x) = 2\sin(x)\cos(x)$

En déduire $\cos(\pi/12)$ et $\sin(\pi/8)$.

Exercice 10 À l'aide du cercle trigonométrique, exprimer en fonction de cos(x) et sin(x)

- a) $\cos(x-\pi)$ et $\sin(\pi+x)$
- **b)** $\cos(x + \pi/2)$ et $\sin(x \pi/2)$

Calculer $\sin(-7\pi/3)$, $\cos(5\pi)$.

Exercice 11 Linéariser $\cos^2(x) \sin^3(2x)$. On commencera par exprimer $\sin(3x)$ en fonction de $\sin(x)$ et $\cos(2x)$.

Définition Soit $\theta \in \mathbb{R}$. On note M le point d'affixe $e^{i\theta}$ et A le point d'affixe 1. Le nombre $\tan \theta$ (tangente de θ) est défini par l'ordonnée du point d'intersection T de la droite (OM) et de la tangente verticale à \mathbb{U} en A.

Exercice 12 Soit H le projeté orthogonal de M sur l'axe des abscisses. À l'aide du théorème de Thalès, démontrer la relation

$$\tan \theta = \sin \theta / \cos \theta$$

Définition Soit $x \in [-1, 1]$.

- L'équation $\cos \theta = x$ admet une solution unique sur $[0, \pi]$ que l'on nomme $\theta = \arccos(x)$.
- L'équation $\sin \theta = x$ admet une solution unique sur $[-\pi/2, \pi/2]$ que l'on nomme $\theta = \arcsin(x)$.

Soit $x \in \mathbb{R}$. L'équation $\tan \theta = x$ admet une solution unique sur $]-\pi/2,\pi/2[$ que l'on nomme $\theta = \arctan(x)$.

Théorème 1 Soit $z = x + iy \in \mathbb{C}^*$. $z = re^{i\theta}$ avec $r = \sqrt{x^2 + y^2}$ et, dans $] - \pi, \pi]$:

Exercice 13 $]-\pi,\pi]$. On définit $z=re^{it}, z'=r'e^{it'}$.

a) Déterminer la forme exponentielle du pro- c) duit $\bar{z}z'$.

Soit $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormal direct. On définit les vecteurs \vec{u} $(r\cos(t), r\sin(t))$ et $\vec{v} = (r'\cos(t'), r'\sin(t'))$.

- **b)** Calculer $\vec{u} \cdot \vec{v}$ et $\det(\vec{u}, \vec{v})$.
- Montrer que $\bar{z}z' = \vec{u} \cdot \vec{v} + i \det(\vec{u}, \vec{v})$.
- Que dire de $\bar{z}z'$ lorsque \vec{u} et \vec{v} sont colinéaires? Orthogonaux?

Exercice 14

- a) À l'aide de la grille, donner les coordonnées de vecteurs \overrightarrow{MP} et \overrightarrow{MR} .
- Construire la projection de \overrightarrow{MP} et \overrightarrow{MR} le a) long du pan incliné.
- Déterminer leurs normes en fonction des angles α et β .
- d) Construire le point M' tel que

$$\overrightarrow{MM'} = \overrightarrow{MP} + \overrightarrow{MR}$$

Que peut-on dire de l'accéleration de la masse m se situant au point M et soumise à son poids et à cette force de réaction du support?

Exercice 15 Le vecteur position \overrightarrow{OM} de coordonnées cartésiennes $(x,y) \neq (0,0)$ a pour coordonnées polaires $(r\cos\theta, r\sin\theta)$.

Montrer que le vecteur unitaire porté par $OM = \cot \vec{u} = (\cos \theta, \sin \theta).$

- Soit $r, r' \in]0, +\infty[$ et $t, t' \in \mathbf{b})$ Soit $\alpha \in [-\pi, \pi]$. Montrer que le vecteur $\vec{v} = (\cos \alpha, \sin \alpha)$ est unitaire.
 - Déterminer les deux valeurs de α telles que $\vec{u} \cdot \vec{v} = 0.$
 - En déduire les coordonnées de \vec{v} pour que **d**) (\vec{u}, \vec{v}) soit une base orthonormale directe du plan.

Exercice 16 On considère deux vecteurs $\vec{A} = (3,4,0), \vec{B} = (1,2,0).$ On cherche à construire une base $(\vec{u}, \vec{v}, \vec{w})$ de l'espace.

- a) Calculer $\|\overline{A}\|$. Déterminer le vecteur unitaire \vec{u} porté par \vec{A} .
- **b)** Calculer $\vec{A} \wedge \vec{B}$. Déterminer le vecteur unitaire \vec{w} normal au plan (\vec{A}, \vec{B}) .
- En déduire les coordonnées du vecteur \vec{v} **c**) pour que $(\vec{u}, \vec{v}, \vec{w})$ soit une base orthonormée directe.

Exercice 17 Une particule de charge q se déplace à la vitesse \vec{v} . On la repère par le point M de coordonnées cylindriques $(r, \theta, 0)$. Son déplacement génère en O le champ magnétique suivant:

$$\vec{B}_M(O) = \frac{\mu_0 q}{4\pi r^2} \vec{v} \wedge \vec{u_r}$$

- On suppose que la particule est en mouvement circulaire uniforme : $\vec{v} = r\omega \vec{u}_{\theta}$. Donner l'expression de $\vec{B}_M(O)$.
- b) On suppose que la particule s'éloigne à vitesse constante : $\vec{v} = v \vec{u}_r$. Que dire de $\vec{B}_M(O)$?

Exercice 18 Définir dans les 3 systèmes de coordonnées 3D les objets suivants :

- a) le plan P infini (xOy)
- le disque D de centre O et de rayon R, inclus dans le plan (xOy)
- **c**) le tube T d'axe (Oz), de rayon R, compris entre les plans z = 0 et z = H
- la boule B de centre O et de rayon R.

Quel système est le plus adapté pour chacun de ces cas?