Algoritmos em Grafos

Grafos

- Grafo G = (V, E)
 - V = conjunto de vértices
 - \blacksquare E = conjunto de arestas = subconjunto de V × V
 - Então $|E| = O(|V|^2)$

Que pode ser modelado com grafos?

Grafo	Vértices	Arestas	
transporte	interseção de ruas	ruas	
comunicação	computadores	cabos	
World Wide Web	páginas web	hyperlinks	
social	pessoas	relações	
rede alimentar	espécies	predador-presa	
software	funções chamadas a funções		
escalonamento	tarefas restrições de precedênc		
circuitos	portas	cabos	
sistemas	estados	transições	

World Wide Web

- •GrafoWeb.
 - Vértice: página web.
 - Aresta: hyperlink de uma página a outra.

Rede alimentar

- Grafo de rede alimentar.
 - Vértices = espécies.
 - Arestas = de presa a predador.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Tipos de grafos

- Tipos de grafos:
 - Um grafo conexo tem um caminho de qualquer vértice a qualquer outro.
 - Num grafo não dirigido (não orientado):
 - \circ aresta (u,v) = aresta (v,u)
 - Num grafo dirigido:
 - o arco (u,v) vai do vértice u ao vértice v.

Tipos de grafos

- Mais tipos de grafos:
 - Um grafo ponderado associa pesos a suas arestas e/ou vértices
 - Ex, mapa: uma distância associada as arestas
 - Um multigrafo permite multiples arestas entre o mesmo par de vértices.
 - Ex, o grafo de um programa (uma função pode ser chamada várias vezes a partir de uma mesma função)

Grafos

- Tipicamente expressamos a complexidade algorítmica em termos de |E| e |V|
 - Se $|E| \approx |V|^2$ o grafo é denso
 - Se |E| ≈ |V| o grafo é esparso
 - Se o grafo é conexo |E| >= |V|-1
- Algoritmos e estrutura de dados interessantes podem variar dependendo da densidade de grafos

Grafos

- Tipicamente expressamos a complexidade algorítmica em termos de |E| e |V|
 - Se |E| ≈ $|V|^2$ o grafo é denso
 - Se |E| ≈ |V| o grafo é esparso
 - Se o grafo é conexo |E| >= |V|-1
- Algoritmos e estrutura de dados interessantes podem variar dependendo da densidade de grafos

Comparando complexidades

Compare:

- $O(EV) vs O(V^3)$
- O(Vlg(V)) vs O(E)
- O(Elg(V)) vs O(Elg(E))
- $O(EV^2) vs O(V^3)$
- O(E+V) vs O(V)
- O(E+V) vs O(E)

Representação de grafos

- Assumimos $V = \{1, 2, ..., n\}$
- Uma matriz de adjacência representa o grafo como uma matriz de n x n A:
 - A[i, j] = 1 se a aresta (i, j) \in E (ou peso) = 0 se a aresta (i, j) \notin E

• Exemplo:

Α	1	2	3	4
1				
2				
3			??	
4				

• Examplo:

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

- Quanto espaço precisa uma matriz de adjacência?
- A: $O(V^2)$

- Ocupa o mesmo espaço para grafos densos ou esparços.
 - Usalmente demasiado espaço para grafos esparços
 - Mas pode ser eficiênte para grafos densos.
- A maioria dos grafos grandes são esparços
 - Por isto a lista de djacência é frequentemente uma representação mais apropriada

Grafos: Lista de Adjacência

- Lista de adjacência: para cada vértice v ∈ V, armazena a lista de vértices adjacentes a v
- Exemplo:

$$\blacksquare$$
 Adj[1] = {2,3}

- \blacksquare Adj[2] = {3}
- \blacksquare Adj[3] = {}
- \blacksquare Adj[4] = {3}

• Alternativa: pode armazenar a lista de vértices que chegam a um vértice

Grafos: Lista de Adjacência

- Quanto espaço precisa?
 - O grau de um vértice v = # arestas incidentes
 - O Grafos orientados tem grau de entrada e grau de saida
 - Para grafos orientados, # de items na listas de adjacência é

$$\Sigma$$
 grau de saida(v) = |E|
 $\Theta(V + E)$ espaço (Porque?)

■ Para grafos não orientados

$$\Sigma$$
 degree(v) = 2 |E|

$$\Theta(V + E)$$
 espaço

Então: listas de adjacências ocupam O(V+E)

04/06/16

Busca em grafos

- Dado: um grafo G = (V, E), orientado ou não.
- Objetivo: percorrer sistematicamente cada vértice e cada aresta.
- Construir uma árvore de busca
 - Escolher um vértice como raiz.
 - Escolher algumas arestas para formar a árvore.
 - Pode construir uma floresta se o grafo não for conectado.

Breadth-First Search

- "Percorre" um grafo, transformando-lo em uma árvore
 - Um vértice de cada vez
 - Expande a fronteira de vértices percorridos segundo a distância ao vértice de início.

Breadth-First Search

- Associa cores aos vértices para guiar o algoritmo
 - Vértices brancos não foram descobertos
 - Todos os vértices começam em branco
 - Vértices cinza foram descobertos mas não processados
 - Podem ter vértices brancos como adjacentes
 - Vértices pretos foram descobertos e processados
 - São adjacentes a vértices cinza e pretos
- Percorre os vértices segundo as listas de adjacências dos vértices cinzas

Breadth-First Search

```
BFS(G, s) {
    initialize vertices;
    Q = {s}; // Q is a queue; initialize to s
    while (Q not empty) {
        u = RemoveFirst(Q);
        for each v \in u->adj {
            if (v->color == WHITE)
                v->color = GREY;
                                     O que v->d representa?
                v->d = u->d + 1:
                                     O que v->p representa?
                v->p = u;
                Enqueue(Q, v);
        u->color = BLACK;
```


Q: s

 \mathbf{Q} : $\mathbf{\emptyset}$

BFS: O Código

```
BFS(G, s) {
        initialize vertices; — Percorre todos os vértices: O(V)
        Q = \{s\};
        while (Q not empty) {
            u = RemoveFirst(Q); \leftarrow u = todos os vértices apenas
            for each v \in u->adj {
                                                           (Porque?)
                                           uma vez.
                if (v->color == WHITE)
Então v
                    v->color = GREY;
=qualquer vétice
                    v->d = u->d + 1;
que apareça na
                    v->p = u;
lista de adjacência
                    Enqueue(Q, v);
de outro vértice
                                   Qual será o tempo de execução?
            u->color = BLACK;
                                   Tempo de execução: O(V+E)
```

David Luebke

Breadth-First Search: Propriedades

- BFS computa os caminhos mínimos da fonte a todos os outros vértices do grafo.
 - Distância do caminho mínimo $\delta(s,v) = mínimo$ número de arestas de s a v, ou ∞ se v não e alcançável desde s
- BFS constói uma árvere de busca em largura, na qual os caminhos à raiz representam caminhos mínimos em G
 - Então BFS pode ser usado para computar caminhos mínimos em grafos não ponderados

Depth-First Search

- Depth-first search is another strategy for exploring a graph
 - Explore "deeper" in the graph whenever possible
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

Depth-First Search

- Vertices initially colored white
- Then colored gray when discovered
- Then black when finished

Depth-First Search: The Code

```
DFS(G)
   for each vertex u \in G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v \in u-\lambda dj[]
       if (v->color == WHITE)
          DFS Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

```
DFS(G)
   for each vertex u \in G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v \in u-\lambda dj[]
       if (v->color == WHITE)
          DFS Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

What does u->d represent?

```
DFS(G)
   for each vertex u \in G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v \in u-\lambda dj[]
       if (v->color == WHITE)
          DFS Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

What does u->f represent?

```
DFS(G)
   for each vertex u \in G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v \in u-\lambda dj[]
       if (v->color == WHITE)
          DFS Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

Will all vertices eventually be colored black?

```
DFS(G)
   for each vertex u \in G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v \in u-\lambda dj[]
       if (v->color == WHITE)
          DFS Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

What will be the running time?

```
DFS (G)
   for each vertex u \in G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v \in u-\lambda dj[]
       if (v->color == WHITE)
          DFS Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

Running time: $\Theta(V + E)$ – aggregate analysis

Depth-First Sort Analysis

- This running time argument is an informal example of amortized analysis
 - "Charge" the exploration of edge to the edge:
 - Each loop in DFS_Visit can be attributed to an edge in the graph
 - o Runs once/edge if directed graph, twice if undirected
 - Thus loop will run in O(E) time, algorithm O(V+E)
 - ◆Considered linear for graph, b/c adj list requires O(V+E) storage
 - Important to be comfortable with this kind of reasoning and analysis

What is the structure of the grey vertices? What do they represent?

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new (white) vertex
 - The tree edges form a spanning forest
 - Can tree edges form cycles? Why or why not?

61

Tree edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Encounter a grey vertex (grey to grey)

Tree edges Back edges G to W G to G

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Not a tree edge, though
 - From grey node to black node

Tree edges Back edges Forward edges G to W G to G G to B

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new (white) vertex
 - Back edge: from descendent to ancestor (encounters grey)
 - Forward edge: from ancestor to descendent (encounters black)
 - Cross edge: between a tree or subtrees
 - From a grey node to a black node

Tree edges Back edges Forward edges Cross edges G to W G to G to B G to B

David Luebke 67 04/06/16

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Cross edge: between a tree or subtrees
- Note: tree & back edges are important: most algorithms don't distinguish forward & cross

DFS: Kinds Of Edges

- Thm 23.9: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
 - Assume there's a forward edge
 - OBut F? edge must actually be a back edge (why?)

DFS: Kinds Of Edges

- Thm 23.9: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
 - Assume there's a cross edge
 - OBut C? edge cannot be cross:
 - must be explored from one of the vertices it connects, becoming a tree edge, before other vertex is explored
 - So in fact the picture is wrong...both lower tree edges cannot in fact be tree edges

Exercise

• Given a direct graph G, use DFS to find its strong connected components.

• SCC of a direct graph G=<V,E> is a maximal set of vertices C in V such that each pair u and v in C, u and v are reachable from each other.

Strong Connected Components

Strong Connected Components

Strong Connected Components

Solution

- Call DFS (G) to compute finish times f of each vertex in G
- Compute G^T
- Call DFS(G^T), but main loop considers finish time f in decreasing order
- Each connected component corresponds to a tree found by DFS in G^T

Example

Example

Example

Summary

- Graph represention:
 - Adjancency matrix (dense graphs) $O(V^2)$
 - Adjancency list (sparse graphs) O(V+E)

- Algorithms for searching graphs
 - BFS + DFS
 - Both run in $\Theta(V + E)$ aggregate analysis

Directed Acyclic Graphs

• A directed acyclic graph or DAG is a directed graph with no directed cycles:

Getting Dressed

Getting Dressed

DFS and **DAGs**

- A directed graph G is acyclic iff a DFS of G yields no back edges:
 - Forward: if DFS produces a back edge (u,v), v is an ancestor of u. G contains a path from v to u, and the edge (u,v) completes de cycle
 - Backward: if G contains a cycle $\Rightarrow \exists$ a back edge
 - Let v be the vertex on the cycle first discovered, and u be the predecessor of v on the cycle
 - ◆ When v is discovered, whole cycle is white
 - Must visit everything reachable from v before returning from DFS-Visit()
 - \diamond So path from u \rightarrow v is grey \rightarrow grey, thus (u, v) is a back edge

Topological Sort

- Topological sort of a DAG:
 - Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge $(u, v) \in G$
- Real-world example: getting dressed

Topological Sort Algorithm

```
Topological-Sort()
{
   Run DFS
   When a vertex is finished, insert it onto
     the front of a linked list
   Return the linked list of vertices
}
```

- Time: O(V+E)
- Correctness: Can be proved using lemma that characterizes Direct Acyclic Graphs (DAGs)

Correctness of Topological Sort

- Topologycal sorting produces a topological sort of a DAG
- Claim: $(u,v) \in G \Rightarrow u \rightarrow f > v \rightarrow f$
 - When (u,v) is explored, u is grey
 - \circ v = grey \Rightarrow (u,v) is back edge. Contradiction to previous lemma
 - o v = white \Rightarrow v becomes descendent of u \Rightarrow v \rightarrow f < u \rightarrow f (since must finish v before backtracking and finishing u)
 - \circ v = black \Rightarrow v already finished \Rightarrow v \rightarrow f < u \rightarrow f