I. Basic probability formulas

• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

•
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \mid B) = \frac{P(B \mid A) . P(A)}{P(B)}$$

• If A, B independent: $P(A \cap B) = P(A) \cdot P(B)$

II. Discrete random variables

•
$$\mathcal{M} = E(x) = \sum_i x_i \cdot P(x=x_i)$$

•
$$\sigma^2 = V(x) = \sum_i (x_i - \mathcal{M})^2 \cdot P(x=x_i)$$

= $\sum_i x_i^2 \cdot P(x=x_i) - \mathcal{M}^2$

•
$$E(ax + by) = a.E(x) + b.E(y)$$

•
$$V(ax + by) = a^2 \cdot V(x) + b^2 \cdot V(y)$$

• Probability mass function:
$$f(x_i) = P(x=x_i)$$

• Cumulative distribution function:
$$F(x_i) = P(x \le x_i)$$

1. Discrete uniform distribution

$$P(x=X_i) = \frac{1}{n}$$

$$\mathcal{M} = \frac{a+b}{2}$$

$$\sigma^2 = \frac{(b-a+1)^2 - 1}{12}$$

2. Binomial distribution

$$\circ$$
 P(x=k) = nCk . p^k . (1-p)^{n-k}

$$\circ \quad \mathcal{M} = \mathsf{n.p}$$

$$\circ \quad \sigma^2 = \text{n.p.} (1-p)$$

3. Poisson distribution

$$P(x=k) = \frac{e^{-\lambda . }}{k!} (\lambda .)^{k}$$

$$\circ$$
 $\mathcal{M} = \lambda.$

$$\circ$$
 $\sigma^2 = \lambda.$

4. Hypergeometric distribution

$$\circ$$
 $\mathcal{M} = \text{n.p}$

$$\sigma^2 = \text{n.p.}(1-p). \frac{N-n}{N-1}$$

5. Geometric distribution

$$\circ$$
 P(x=k) = (1-p)^{k-1}. p

$$\circ \mathcal{M} = \frac{1}{n}$$

$$\circ \quad \sigma^2 = \frac{1-p}{n^2}$$

6. Negative binomial distribution

$$\circ$$
 P(x=k) = (k-1)C(r-1) . p^r . (1-p)^{k-r}

$$\circ \quad \mathcal{M} = \frac{r}{p}$$

$$\circ \quad \sigma^2 = \frac{r \cdot (1-p)}{p^2}$$

III. Continuous random variable

- Probability density function f(x): $P(a < x < b) = \int_a^b \mathbf{m} f(x) d_x$
- Cumulative distribution function F(x):

$$\circ \quad \mathsf{F}(\mathsf{x}_\mathsf{i}) = \ \mathsf{P}(\mathsf{x} {\leq} \mathsf{x}_\mathsf{i})$$

$$\circ \quad \mathsf{F}(\mathsf{x}_\mathsf{i})' = \mathsf{f}(\mathsf{x}_\mathsf{i})$$

•
$$\mathcal{M} = E(x) = \int_{-\infty}^{+\infty} x. f(x) d_x$$

•
$$E(x^n) = \int_{-\infty}^{+\infty} x^n \cdot f(x) d_x$$

•
$$\sigma^2 = V(x) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) d_x - \mathcal{M}^2$$

- Some special distribution:
 - 1. Continuous uniform distribution

$$\circ f(x) = \frac{1}{b-a}, \ a \le x \le b$$

$$\circ \quad \mathcal{M} = \frac{a+b}{2}$$

$$\circ \quad \sigma^2 = \frac{(b-a)^2}{12}$$

2. Normal distribution $N(\mathcal{M}, \sigma^2)$

$$\circ z = \frac{x - \mathcal{M}}{\sigma}$$

$$o$$
 $f(z) = \frac{1}{\sqrt{2\Pi}} \cdot e^{\frac{z^2}{2}}$

$$\circ \quad \phi(x) = p(z < x_i)$$

- 3. Normal distribution approximate binomial and poisson distribution

$$z = \frac{x - n.p}{\sqrt{n.p.(1-p)}}$$

a. Binomial (np > 5 and n(1-p) > 5) $z = \frac{x - n \cdot p}{\sqrt{n \cdot p \cdot (1-p)}}$ 52 = N.p. (1. p)

■
$$P(X_{BINORM} \le a) = P(X_{NORMAL} \le a+0.5)$$

■
$$P(X_{BINORM} \ge a) = P(X_{NORMAL} \ge a-0.5)$$

b. Poisson

$$z = \frac{x - \lambda}{\sqrt{\lambda}}$$

■
$$P(X_{POISSON} \le a) = P(X_{NORMAL} \le a+0.5)$$

■
$$P(X_{POISSON} \ge a) = P(X_{NORMAL} \ge a-0.5)$$

4. Exponential distribution

$$\circ \quad f(x) = \lambda \cdot e^{-\lambda \cdot x}, x > 0$$

$$\circ$$
 = 0, elsewhere

$$\circ \quad \mathcal{M} = \frac{1}{\lambda}$$

$$\circ \quad \sigma^2 = \frac{1}{\lambda^2}$$

IV. Descriptive statistic (Take a sample of size n from population N)

• Sample mean:
$$\underline{x} = \frac{\sum x_i}{n}$$

• Sample median:
$$L = \frac{n+1}{2}$$
 so Median $= \frac{x_{ceil(L)} + x_{floor(L)}}{2}$

• Sample variance:
$$s^2 = \frac{\sum (\underline{x} - x_i)^2}{n-1}$$

Quatiles:

$$O L_1 = \frac{n+1}{4} \text{ so } Q_1 = \frac{x_{ceil}(L_1) + x_{floor}(L_1)}{2}$$

$$O L_2 = \frac{n+1}{2} \text{ so } Q_2 = \frac{x_{ceil}(L_2) + x_{floor}(L_2)}{2}$$

$$O L_3 = \frac{3.(n+1)}{4} \text{ so } Q_3 = \frac{x_{ceil}(L_3) + x_{floor}(L_3)}{2}$$

V. Sampling distribution

- Population mean \mathcal{M} , variance σ^2 . Sample size n. (Normal distribution or n > 30):
 - \circ Phân phối của \underline{X} có dạng: $N(\mathcal{M}, \frac{\sigma^2}{n})$
 - Phân phối của $\underline{X_1}$ $\underline{X_2}$ có dạng: $N(\mathcal{M}_1 \mathcal{M}_2, \frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2})$
- For proportion of population p, sample size n. $(np \ge 5 \text{ or } n.(1-p) \ge 5)$:
 - o Phân phối của \hat{P} có dạng: $N(P, \frac{P.(1-P)}{n})$
 - o Phân phối của $\widehat{P_1}$ $\widehat{P_2}$ có dạng: $N(P_1 P_2)$, $\frac{P_1 \cdot (1 P_1)}{n_1} + \frac{P_2 \cdot (1 P_2)}{n_2}$

VI. Statistical intervals - Test claims for one sample

•
$$(I, u) = (\underline{X} - E, \underline{X} + E)$$

- width = 2E
- P-value = 2 . $P(Z > |Z_0|)$
- 1. Population variance known

$$\circ \quad \mathsf{E} = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\circ \quad z_0 = \frac{\underline{X} - \mathcal{M}}{\sigma / \sqrt{n}}$$

- 2. Population variance unknown
 - o n > 30:

$$\blacksquare \quad \mathsf{E} = z_{\alpha/2} \cdot \frac{S}{\sqrt{n}}$$

$$z_0 = \frac{\underline{X} - \mathcal{M}}{S / \sqrt{n}}$$

$$\blacksquare \quad \mathsf{E} = t_{\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}}$$

• For propotion:

$$\circ \quad (I, u) = (\hat{P} - E, \hat{P} + E)$$

$$\circ \quad \mathsf{E} = z_{\alpha/2} \cdot \sqrt{\frac{P.(1-P)}{n}}$$

$$\circ \quad z_0 = \frac{\widehat{p} - P}{\sqrt{\frac{P \cdot (1 - P)}{n}}}$$

- \circ Nếu đề không cho \hat{P} , mặc định \hat{P} = 0.5
- Nếu là one-side thì tương tự nhưng thay $\alpha/2$ thành α

VII. Test claims for 2 samples (2 population independent, normal distribution or both n_1 , $n_2 > 30$)

• (I, u) =
$$(\underline{X_1} - \underline{X_2} - \mathsf{E}, \underline{X_1} - \underline{X_2} + \mathsf{E})$$

1. Population variance known

$$\circ \quad \mathsf{E} = z_{\alpha/2} \, . \, \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$$

$$\circ \quad z_0 = \frac{x_1 - \underline{x_2} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

2. Population variance unknown

• Assume
$$\sigma_1^2 = \sigma_2^2$$

■ Degree of freedom:
$$df = n_1 + n_1 + 2$$

$$S_p^2 = \frac{(n_1 - 1) \cdot S_1^2 + (n_2 - 1) \cdot S_2^2}{n_1 + n_2 - 2}$$

$$= E = t_{\alpha/2,df} \cdot \sqrt{\frac{{S_p}^2}{n_1} + \frac{{S_p}^2}{n_2}}$$

$$\circ \quad \text{Not assume } \sigma_1^2 = \sigma_2^2$$

■ Degree of freedom: df =
$$\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{S_1^4}{n_1^2 \cdot (n_1 - 1)} + \frac{S_2^4}{n_2^2 \cdot (n_2 - 1)}}$$

$$\blacksquare \quad \mathsf{E} = t_{\alpha/2, df} \cdot \sqrt{\frac{{S_1}^2}{n_1} + \frac{{S_2}^2}{n_2}}$$

• For propotion:

$$\circ \quad (\mathsf{I},\,\mathsf{u}) = (\widehat{P_1} - \widehat{P_2} - \mathsf{E} \,\,,\, \widehat{P_1} - \widehat{P_2} + \mathsf{E})$$

$$\circ \quad \mathsf{E} = z_{\alpha/2} \cdot \sqrt{\frac{\widehat{P_1} \cdot (1 - \widehat{P_1})}{n_1} + \frac{\widehat{P_2} \cdot (1 - \widehat{P_2})}{n_2}}$$

$$\circ \quad \widehat{P} = \frac{x_1 + x_2}{n_1 + n_2} \text{ (trong d\'o } x_i = n . \widehat{P_i} \text{)}$$

VIII. Linear Regression

•
$$S_{XY} = \sum (x_i - \underline{x})(y_i - \underline{y}) = \sum x_i y_i - n \cdot \underline{x} \cdot \underline{y}$$

•
$$S_{XX} = \sum (x_i - \underline{x})^2 = \sum x_i^2 - n \cdot \underline{x}^2$$

•
$$S_{YY} = \sum (y_i - \underline{y})^2 = \sum y_i^2 - n \cdot \underline{y}^2$$

• Slope:
$$\widehat{\beta_1} = \frac{S_{XY}}{S_{XX}} = \frac{\sum x_i y_i - n \cdot \underline{x} \cdot \underline{y}}{\sum x_i^2 - n \cdot \underline{x}^2}$$

• Intercept:
$$\widehat{\beta_0} = \underline{y} - \widehat{\beta_1} \cdot \underline{x}$$

• Error sum of square:
$$SS_E = \sum (y_i - \hat{y}_i)^2$$

• Regression sum of square:
$$SS_R = \sum_{i} (\widehat{y}_i - \underline{y})^2$$

• Total sum of square:
$$SS_T = \sum (y_i - \underline{y})^2$$

•
$$SS_E + SS_R = SS_T$$

• Standard error:
$$\hat{\sigma} = \sqrt{\frac{SS_E}{n-2}}$$

• Coefficient of correlation:
$$R = \sqrt{\frac{SS_R}{SS_T}} = \frac{S_{XY}}{\sqrt{S_{XX} \cdot S_{YY}}}$$

• Test claims about the slope (df = n-2):

$$\circ \quad \operatorname{se}(\widehat{\beta_1}) = \sqrt{\frac{\widehat{\sigma}^2}{S_{XX}}}$$

$$\circ \quad t_0 = \frac{\widehat{\beta_1} - \beta_{1,0}}{se(\widehat{\beta_1})}$$

• Test claims about the intercept (df = n-2):

$$\circ \operatorname{se}(\widehat{\beta_0}) = \sqrt{\widehat{\sigma}^2 \cdot \left(\frac{1}{n} + \frac{\underline{x}^2}{S_{XX}}\right)}$$

$$\circ \quad t_0 = \frac{\widehat{\beta_0} - \beta_{0,0}}{se(\widehat{\beta_0})}$$

• Test claims about the coefficient of correlation (df = n-2): $t_0 = \frac{R-0}{\sqrt{\frac{1-R^2}{n-2}}}$

Thứ ngày .	
s - MAS (1)	-
- fapulation	-
fanameter: characteristic of population 1	-
- Statistics: characteristic of sample	
characteristic of elements)	1
- data value of variable	
· Phuring phap's collect data	
netro spective study: cae data có tre aun chie	200
- Observational study: data tu quansat, to dae	-
- experment study data the their raphiem	III
- simulation study: using models -> data	1
- survey: sample population (ENSUS	The Party
	The same
· Type of data	1
qualitative (dish tinh): gender, color, major,	4-10
place, size (~hung thei de de phân loai) quatitative discrete (~hung thei de phân loai)	0
- (dinh luong) continuous (lien tuc)	-
- Cann teary	-
- Sampling method - representative: lay suo che du dien de population	1
a calcagned with out is placement:	212
chon xg bo'sa (k' lay nx) / chen xg bo hi (co' the lay tiep)	
_ non landom (not refregartative)	-
- Landon sampling:	ed
+ simple vandom	5
+ simple andom + shatified: boc deit di ac nhom (class), moi dass simple random	2
N /	

