

UNFOLDING THE JET MASS IN Z + JETS EVENTS

Christine McLean, Ashley Parker and Salvatore Rappoccio

ash.marie.parker@gmail.com

CMS-18-240

➤ A Measurement of normalized double differential jet production cross section in Z + Jet events :

$$\frac{1}{\frac{d\sigma}{dp_T}} \frac{d^2\sigma}{dp_T dm} (\frac{1}{GeV})$$

We perform 2D unfolding:

$$(p_T, [m_u||m_g])$$

- We compare the ungroomed and groomed jet masses (9 combinations of the soft-drop parameters)
- ► Today we show a preview of our preliminary results for 2017 data
- ► Plan to publish this summer with 2016/2017/2018 or some subset of that data

Motivation

Jet Mass: A simple observable for testing QCD

- Understand evolution of the "jet" function in perturbative QCD
- Improve modeling of jets in Monte Carlo generators

Event Selection

Summary

- At least 1 Anti-Kt R=0.8 Jet, $P_T>200\, GeV$, $|\eta|<2.5$, dR(Jet, Lepton)>0.8
- 2 opposite sign, same flavor leptons, $|\eta| < 2.4$
- ▶ Sum of the 2 leptons gives the Z candidate, $P_T > 90 \, GeV$, $d\phi(Z, Jet) > 1.57$

Event Selection

Muons

- ▶ ISO : PF relative Isolation 0.4 < 0.25
- ▶ ID : Medium cut based ID
- ▶ Trigger : IsoMu27 ($P_T > 29 GeV$)

Electrons

- ▶ ISO : None
- ▶ ID : Medium cut based ID
- ▶ Trigger : $Ele35_WPTight_GsfORPhoton200$ ($P_T > 37GeV$)

Response Matrix

Normalized by Reconstructed (Y axis) P_T bin

Tables and Figures

- ▶ Use tabular for basic tables see Table 1, for example.
- ➤ You can upload a figure (JPEG, PNG or PDF) using the files menu.
- ➤ To include it in your document, use the includegraphics command (see the comment below in the source code).

Item	Quantity
Widgets	42
Gadgets	13

Table: An example table.

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

The End

Extra Stuff

Something I wanted to keep in backup because I thought it was cool.