LaPIS Diagnostic Test Workbook - Mathematics

Name : Taruni C A

Class: 7

Section : A

School : AKV Public School

Login ID : AKV129

Taruni C A's Performance Report

Score: 14/40 Percentage: 35.0%

Taruni C A's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S		——————————————————————————————————————	pal Signature	

Basic arithmetic

Topics to be Improved		
LCM	Finding LCM	

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

......

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

Find the LCM of 50, 100.

Question: 2

Answer:

Complete the division using least common multiple.

50	, 100	

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of 2 =

Multiple of 13 =

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Data handling

Topics to be Improved		
Chance of probability	Sample space in probability, Basis of probability	
Arithmetic mean, mode and median	Mean, Median and Mode	

Hi, here in this video you will learn Basics of probability

Question: 4

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 5

Write the possible outcomes while spinning the given wheel.

<u>Answer:</u>
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\mathbf{\xi}0$, $\mathbf{\xi}10$,
$\underline{\textit{Question: } 6}$
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Mean, Median, Mode
Question: 7
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.
Answer:
Mode is the number that occurs (frequently / rarely) in a given list of observations Arranging the data in ascending order: occurs most number of times. Then, mode of the given data is
Question: 8
Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1
$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$
Answer:
Median is the(first/central/last) value of a data when the data is arranged in ascending or descending order. Arrange the given data in ascending order: Central value of the given data is and it is the of a data.
$\underline{Question: \ 9}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

$Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.
Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation $=$, number of observation $=$
Therefore, mean =
Arrange the data in ascending order:
Here, median =, mode =
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events.
Events that cannot occur are called (sure/ impossible) events.
Here, The sun rises in the west is event. Water is colourless is
event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).
Probability of impossible event $=$ (0/ 1/ any number). Therefore, Probability of sure event Probability of impossible event.
$\underline{Question: \ 12}$

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have Does Raju have pen in his box, (Yes/ No).
Then probability of getting pen from his box is $(0/1)$

Geometry

Topics to be Improved		
Angle sum property of triangle	Angle sum property of triangle	
Related angles	Complementary angles, Basic of angles	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Transversal angle made by transversal	Basics of Transversal angle	

Hi, here in this video you will learn Angle sum property

Question: 13

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 14

Which of the following triangle satisfy the angle sum property.

.....

.....

Answer:

Angle sum property of triangle: sum of the angles of a triangle is $_$		
In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$	$_{-} = .$	
In $\triangle PQR$, Sum of the angles = =	_ = _	
In $\triangle KLM$, Sum of the angles = =	_ =	
In $\triangle XYZ$, Sum of the angles = =	_ = .	
Therefore, the triangles that satisfy the angle sum property are = .		

Question: 15

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is
Let's consider the angles of triangle be $8x$, and
We know sum of the angles of a triangle is
Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$
The angles of the triangle are

Hi, here in this video you will learn Related Angles

Question: 16

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.

......

2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 17

Shade the complementary angles.

......

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

$$85^{\circ} + 95^{\circ} =$$
 and this is ______ (a / not a) complementary angles. $45^{\circ} + 45^{\circ} =$ and this is ______ angles. $6^{\circ} + 84^{\circ} =$ and this is ______ angles. $73^{\circ} + 107^{\circ} =$ and this is ______ angles. $36^{\circ} + 64^{\circ} =$ and this is ______ angles. $90^{\circ} + 90^{\circ} =$ ______ and this is ______ angles.

......

Question: 18

Find the complement and supplement of 15° and 90°

Answer:

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 90°.

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180°.

Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 19

Find the greatest distance to reach C from A in the given diagram.

.....

1				_
\boldsymbol{A}	ns	w	er	:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

Side
$$AC = \underline{}$$

Side $AB + BC = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ Therefore, the greatest distance to reach C from A in the given diagram is $\underline{\hspace{1cm}}$.

Question: 20

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 21

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Basics of 3D model

Question: 22	
A point at which two or more lines segments meet is called	(Vertex/ edges/ faces).
$\underline{Answer:}$	

_____ has two end point (line/line segment/ray).

A _____ is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 23

Mark and find the number of vertices, edges and faces in a cube.

Answer:

Mark the vertex, edges and faces in a cube.

Cube have	vertices,	edges and	faces.	
	·			
		ces does dices have		
ů		_		
		()	•	
		010		
		45		
•				
Answer:	oo ia			
•	ce is vertices,	$_{}^{}$ edges and $_{}^{}$	faces.	
Hi, here in t	his video you	will learn Crite	ria of congruence	
Question: 25				
Circle the group	s that contain co	ongruent images.		
			\wedge	
		/ { //		$\langle \rangle \langle \rangle$
	V			
Answer:				
	l shapes are said	to be congruent if	they are	
	dentical) in shape		_ (congruent/not congrue	ont)
Example: Squar				
Question: 26				
	_	_	responding sides of the d/ASA/SAS) criteria .	other triangle, then two
Answer:				
			ngruent) if they are iden	
Criteria for cong	si delice of criding		0.22.02	

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria $\underline{\hspace{1cm}}$ (2/ 3/ 5) angles and $\underline{\hspace{1cm}}$ (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

......

Question: 27

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Basics of Transversal angle

Question:	28
-----------	----

.......

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 29

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 30

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn **Related Angles**

Question: 31

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 32

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 33

Find the complementary angles in the given diagram.

......

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ ______, and its complement angle is ______.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Number system

	Topics to be Improved
Introduction to rational numbers	Basics of rational numbers
Operations on rational numbers	Division of rational numbers
Fractions	Multiplication of fractions, Division of fraction
Positive and negative rational numbers	Identification of positive rational numbers
Exponents	Solving exponents

Hi, here in this video you will learn Basics of rational numbers

Question: 34

The numbers in the diagram represents_

4				
\boldsymbol{A}	ns	w	er	:

$0, 4,5,2,3,1 \text{ are } \bot$	num	bers.
-1,-2, -3, -4 are	num	bers

The combination of these circles are called ______.

 $\frac{1}{49},\,\frac{1}{2},\,\frac{8}{27},\,\frac{11}{5},\,\frac{13}{75}$ are ______. Combination of all three circles are called as ______ numbers.

Question: 35

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 36

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$

$$\frac{12}{-6}$$

$$\frac{0}{-9}$$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 37

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \boxed{\square}$$

.....

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

 $\underline{Question:~38}$

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$,

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 39

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

......

$$\frac{\square}{16} = 2 \times \square$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

.....

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Multiplication on fractions

Question: 40

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $____$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 41

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 42

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction.

Here, 2 is ______, 7 is ______ and 4 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Hi, here in this video you will learn Division on fractions

Question: 43

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction.

Here, 5 is ______ and 7 is _____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 44

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

......

.....

Question: 45

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 46

Segregate positive and negative rational number.

A	n.s	3713	er	
71	100	w	\mathbf{c}_{i}	•

• If both the numerator and the denominator of a rational number are
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers ar
Question:~47
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 48
The product of a positive rational number and a negative rational number is rational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers:
Examples for negative rational numbers: Positive rational number \times Negative rational number \times and this is
rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Exponents and power
Question: 49
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel
to get the desired result.
Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ ×
10 is raised to the power of $\underline{} = (10)^{\underline{}}$
Question:~50

Find the value of $(-2)^3$.

Answer:

(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ___. $(-2)^3 = _$ ___ $\times _$ __ $\times _$ __ = ___.

Question: 51

(i) Tenth power of 100 is ____ $((10)^{100} \text{ or } (100)^{10})$.

(ii) k is raised to the power of 5 is ____ $((k)^5 \text{ or } (5)^k)$.

Answer:

Exponential form = (Base)—

(i) Tenth power of 100 : Base = ____, Power/Exponents = ____, exponential form = ____.

(ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____,

exponential form = ____.

Comparing Quantities

	Topics to be Improved
Simple interest	Calculation of simple interest
Equivalent ratios	Basic of proportion
Percentage	Basic of percentage

Hi, here in this video you will learn **Simple Interest**

Question: 52

Match the following.

	Column A
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

Column B					
a	Interest calculated based on this				
b	Total sum you borrow				
С	Number of years				
d	Total sum with interest				

Answer:
Formula for calculating simple interest = Interest calculated based on Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 53
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given: Amount =, Principle =, Time period = If Amount and principle is given, then formula for calculating interest is Interest = =
Question: 54
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
Answer:
$\label{eq:continuous_principal} Interest = \underline{\hspace{1cm}} \; , \; Time \; period = \underline{\hspace{1cm}} \; , \; Principal = \underline{\hspace{1cm}} \; .$

D	$= \frac{\text{x } 100}{\text{Dringinal re}}$				
Rate of interest	= Principal x				
Substituting value	s in the formula,				
_	x 100				
Rate of interest	= x 100 Principal x				
Rate of interest $=$ Γ herefore, the rate		%			
Hi, here in thi	s video you will lear	rn Basics of	proportio	on	
Question: 55					
If a:b and c:d are	equivalent ratio, then it	can be expresse	d as	_	
Answer:					
(rtion / ratio) is used to express proportion is	-	(one/two)	equivalent ra	atios.
Question:~56					
Find the ratio of s	haded part to unshaded	d part of A and I	B. Are the t	wo ratios equ	iivalent?
		-			٦
_					+
	A				J
			В		
4					
Answer:	TT 1 1 1				
_	=, Unshaded pounshaded parts of A is $=$,			=	
	unshaded parts of B is	3			
Fractional form = Fraction form of A	$\Delta $ (equal/ not ϵ	equal) to Fraction	n form of B.		
Question: 57					
	proportion, shade the co				
	r - r				

$\boxed{ a = \frac{bc}{d} } \boxed{ c = \frac{ad}{b} } \boxed{ ad=cd }$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or = (in fraction) . First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product of middle terms. Therefore, a \times d =, then a = and c =
Hi, here in this video you will learn Basics of percentage
Question: 58
2% can be written as
Answer:
Percentages are numerators of fractions with denominator $2\% = { }$
Question: 59
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?
Answer:
Arun attended LaPIS test for marks. He got marks.
75 % can be written in fraction form
Then the mark scored by Arun = Total mark \times 75% = \times =
Quartient 60

apples.

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten

There are $___$ apples in a bas	ket.	
Number of rotten apples are		
Fraction form of rotten apples in	ı a basket =_	
Convert it into a percent—	v	% _

Algebra

Topics to be Improved					
Monomials, binomials, trinomials and polynomials	Types of algebraic expression				
Basics of simple equation	Solving of simple equation, Formating of simple equation				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms				
subtraction of algebraic expressions	subtraction of algebraic expressions				
Terms of an expression	Identification of terms in an expression				

Hi,	here	in	this	video	you	will	learn	Types	of	expression
-----	------	----	------	-------	-----	------	-------	-------	----	------------

Question: 61

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

......

The terms in the expression are $____$, $____$, and $____$.

Therefore, there are ______ terms in the expression.

Question: 62

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.

3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a
Question: 63
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
Answer:
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
Hi, here in this video you will learn Solving an equation
Question: 64
If $\odot = 5$, then $5 \odot +5 = \underline{\hspace{1cm}}$
Answer:
The value of the given smiley \odot is Substituting the value in the expression = $5(__) + 5 = __ + __ = __$.
Question: 65
Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1 2) $7 \square + 3 = -4$
Answer:
The given equation is 7 $+3$ =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle, $7 \times$ $+3$ = Therefore, is the number that can be placed in a box to make the equation correct.
Question: 66
Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$
Answer:
The given expression are The value of x is substituting value of x

$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$
$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$	2 2
Arranging in descending order:,,, Their respective algebraic terms are,,,	
Hi, here in this video you will learn Solving an equapplication	uation using
Question: 67	
Box A Box B	\$
Box B contains times the number of chocolates in Box	A
Answer:	
Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in I	Зох A)
Question: 68	
Write the equation for the following statement. Subtracting four times of m from 4 is n	
Answer:	
Four times of m = Subtracting four times of m from 4 =	
The equation is	
Question: 69	
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2	
Answer:	

 $2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

 $2x - 4 = 2 \times$ _____ - 4 =_____

Sum of $2a$ and $9 = $
Product of a and $2 = $ Add 9 to the product of a and $2 = $
Therefore, sum of $2a$ and 9 Add 9 to the product of a and 2
Hi, here in this video you will learn Addition on expression
Question: 70
Shade the like terms.
$\begin{array}{c c} \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
Answer:
Given terms are Two or more term have (same/ different) variables is called like terms.
Here, like terms are
Question: 71
Complete the expression $7r^2 + r \square - 2 \square = r^2$
Answer:
(Like / Unlike) terms can be added or subtracted.
$_{7r^2+ \ r} \square_{-2} \square = (_{7} + - 2)_{r^2} = $
Question: 72
Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram and Sam have:
(ii) How many icecreams Sam have more than Ram :
Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)		Ram and Sam have: s chocolate + Sam's cl	hocolates =	+=	:
(ii)	*	ams Sam have more t icecream		=	:
——————————————————————————————————————	here in this vi	deo you will learn	Subtraction	on expression	on 2.50
Find Ans		xpressions a + b + c a	and $b + c + d$		
The The	given two expressi two terms will get	ons are $\underline{\hspace{1cm}}$ and $\underline{\hspace{1cm}}$ added only if they are sions $=\underline{\hspace{1cm}}$ $+\underline{\hspace{1cm}}$	e(Like/	Unlike) terms.	
\overline{Que}	stion: 74				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B i	s		
(iii)	How many more	teachers are there in s	school B than sch	hool A?	
\underline{Ans}	wer:				
(i)	Number of boys	in school A = in school B = boys in school A and	-•	+=	
(ii)	Number of girls i	in school B = n school B = students in school B i		=	
(iii)	iii) Number of teachers more in school B than school A = Teachers in school B $-$ Teachers in school A = $___$.				

Question: 75

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

.....

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn **Terms of an expression**

Question: 76

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

......

Question: 77

Mark the expression that contains two terms. $\,$

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The	terms	in	the	expression	4xy	is/are
The	terms	in	the	expression	12a	+ b + 1 is/are
The	terms	in	the	evnression	7m	+ 0 is/are

Question: 78

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

$\underline{Answer:}$

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

Here, _____, are the terms of the given expression.