

Course > Week 1 > Home... > Home...

Homework 1

☐ Bookmark this page

Homework 1-1

2.0/2.0 points (graded)

Choose all the prime numbers.

2 011	
2013	
2015	
€ 2017	
2019	
2021	
□ 2023	
✓	
Submit	

Homework 1-2

 $\varphi(12)$

$$\varphi(1)+\varphi(2)+\varphi(3)+\varphi(4)+\varphi(6)+\varphi(12)$$

12

12

Submit

Homework 1-3

2.0/2.0 points (graded)

In 2004, Green and Tao proved the following amazing result on prime numbers: for any given N, there exist an arithmetic progression of length N consisting of prime numbers only. Tao won a Fields Medal in 2006. For example, N and N is an arithmetic progression of length N consisting of prime numbers only.

Find the maximum length of arithmetic progressions consisting of prime numbers only whose initial term is $\bf 5$.

Homework 1-4

2.0/2.0 points (graded)

What is the number of prime numbers less than 1,000,000 with last digit 3 (such as $3,13,23,43,\ldots$)?

Choose the closest number

- 10,000 19,000 🗸 39,000
 - **47,000**

Submit

You have used 2 of 2 attempts

© All Rights Reserved

© 2012–2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

