T P C 3+1 0 3

ENGLISH –II (Common to All Branches)

<u>DETAILED TEXT-II:</u> Sure Outcomes: English for Engineers and Technologists **<u>Recommended Topics:</u>**

1. TECHNOLOGY WITH A HUMAN FACE

<u>OBJECTIVE</u>: To make the learner understand how modern life has been shaped by technology.

<u>**OUTCOME**</u>: The proposed technology is people's technology. It serves the human person instead of making him the servant of machines.

2. CLIMATE CHANGE AND HUMAN STRATEGY

<u>OBJECTIVE</u>: To make the learner understand how the unequal heating of earth's surface by the Sun, an atmospheric circulation pattern is developed and maintained.

OUTCOME: The learner's understand that climate must be preserved.

3. EMERGING TECHNOLOGIES

OBJECTIVE: To introduce the technologies of the 20th century and 21st centuries to the learners.

<u>**OUTCOME**</u>: The learner will adopt the applications of modern technologies such as nanotechnology.

4. WATER- THE ELIXIR OF LIFE

<u>OBJECTIVE</u>: To inform the learner of the various advantages and characteristics of water.

OUTCOME: The learners will understand that water is the elixir of life.

5. THE SECRET OF WORK

OBJECTIVE:: In this lesson, Swami Vivekananda highlights the importance of work for any development.

OUTCOME: The students will learn to work hard with devotion and dedication.

6. WORK BRINGS SOLACE

OBJECTIVE: In this lesson Abdul Kalam highlights the advantage of work.

<u>OUTCOME</u>: The students will understand the advantages of work. They will overcome their personal problems and address themselves to national and other problems.

Text Book: 'Sure Outcomes' by Orient Black Swan Pvt. Ltd. Publishers

NON-DETAILED TEXT:

(From Modern Trailblazers of Orient Blackswan) (Common single Text book for two semesters) (Semester I (1 to 4 lessons) / Semester II (5 to 8 lessons)

5. J.C. Bose

OBJECTIVE: To apprise of J.C.Bose's original contributions.

OUTCOME: The learner will be inspired by Bose's achievements so that he may start his own original work.

6. Homi Jehangir Bhaba

OBJECTIVE: To show Bhabha as the originator of nuclear experiments in India.

OUTCOME: The learner will be inspired by Bhabha's achievements so as to make his own experiments.

7. Vikram Sarabhai

OBJECTIVE: To inform the learner of the pioneering experiments conducted by Sarabhai in nuclear energy and relevance of space programmes.

OUTCOME: The learner will realize that development is impossible without scientific research.

8. A Shadow- R.K.Narayan

OBJECTIVE: To expose the reader to the pleasure of the humorous story

OUTCOME: The learner will be in a position to appreciate the art of writing a short story and try his hand at it.

Text Book: 'Trail Blazers' by Orient Black Swan Pvt. Ltd. Publishers

T P C 3+1 0 3

MATHEMATICS – III (LINEAR ALGEBRA & VECTOR CALCULUS) (Common to All Branches)

UNIT I Linear systems of equations:

Rank-Echelon form, Normal form – Solution of Linear Systems – Direct Methods- Gauss Elimination - Gauss Jordon and Gauss Seidal Methods.

Application: Finding the current in a electrical circuit.

Subject Category

ABET Learning Objectives a e k

ABET internal assessments 1 2 6 4

JNTUK External Evaluation ABE

UNIT II Eigen values - Eigen vectors and Quadratic forms:

Eigen values - Eigen vectors- Properties - Cayley-Hamilton Theorem - Inverse and powers of a matrix by using Cayley-Hamilton theorem-Quadratic forms- Reduction of quadratic form to canonical form - Rank - Positive, negative definite - semi definite - index - signature.

Application: Free vibration of a two-mass system.

Subject Category

ABET Learning Objectives a d e k

ABET internal assessments 1 2 4 6

JNTUK External Evaluation ABE

UNIT III Multiple integrals:

Review concepts of Curve tracing (Cartesian - Polar and Parametric curves).

Applications of Integration to Lengths, Volumes and Surface areas of revolution in Cartesian and Polar Coordinates.

Multiple integrals - double and triple integrals - change of variables -

Change of order of Integration

Application: Moments of inertia

Subject Category

ABET Learning Objectives a e d

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT IV Special functions:

Beta and Gamma functions- Properties - Relation between Beta and Gamma functions- Evaluation of improper integrals.

Application: Evaluation of integrals

Subject Category

ABET Learning Objectives a e

ABET internal assessments 1 2 6

JNTUK External Evaluation ABE

UNIT V Vector Differentiation:

Gradient- Divergence- Curl - Laplacian and second order operators -Vector identities.

Application: Equation of continuity, potential surfaces

Subject Category

ABET Learning Objectives a e

ABET internal assessments 1 2 6

JNTUK External Evaluation ABE

UNIT VI Vector Integration:

Line integral – work done – Potential function – area- surface and volume integrals Vector integral theorems: Greens, Stokes and Gauss Divergence Theorems (Without proof) and related problems.

application: work done, Force

Subject Category

ABET Learning Objectives a e

ABET internal assessments 126

JNTUK External Evaluation ABE

BOOKS:

- 1. **GREENBERG,** Advanced Engineering Mathematics, 9th Edition, Wiley-India.
- B.V. RAMANA, Higher Engineering Mathematics, Tata Mc Grawhill.
- 3. **ERWIN KREYSZIG,** Advanced Engineering Mathematics, 9th Edition, Wiley-India.
- 4. **PETER O'NEIL,** Advanced Engineering Mathematics, Cengage Learning.
- 5. **D.W. JORDAN AND T. SMITH,** Mathematical Techniques, Oxford University Press.

Subject	ABET Learning	ABET Internal	JNTUK External	Remarks
Category	Objectives	Assessments	Evaluation	
Theory Design Analysis Algorithms Drawing Others	a) Apply knowledge of math, science, & engineering b) Design & conduct experiments, analyze & interpret data c) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturabil ity, & sustainability constraints d) Function on multidisciplina ry teams e) Identify, formulate, & solve engineering problems f) Understand professional & ethical responsibilities g) Communicate effectively h) Understand impact of engineering solutions in global,	 Objective tests Essay questions tests Peer tutoring based Simulation based Design oriented Problem based Experiential (project based) based Lab work or field work based Presentation based Case Studies based Role-play based Portfolio based 	A. Questions should have: B. Definitions, Principle of operation or philosophy of concept. C. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference. D. Design oriented problems E. Trouble shooting type of questions F. Applications related questions G. Brain storming questions	

economic, environmental, & societal context		
i) Recognize need for & be able to engage in lifelong learning		
j) Know contemporary issues		
k) Use techniques, skills, modern tools for engineering		
practices		

T P C 3+1 0 3

ENGINEERING CHEMISTRY

UNIT-I: WATER TECHNOLOGY

Hard Water – Estimation of hardness by EDTA method – Potable water–Sterilization and Disinfection – Boiler feed water – Boiler troubles – Priming and foaming , scale formation, corrosion, caustic embrittlement, turbine deposits – Softening of water – Lime soda, Zeolite processes – Reverse osmosis – Electro Dialysis, Ion exchange process.

Objectives: For prospective engineers knowledge about water used in industries (boilers etc.) and for drinking purposes is useful; hence chemistry of hard water, boiler troubles and modern methods of softening hard water is introduced.

UNIT-II: ELECTROCHEMISTRY

Concept of Ionic conductance – Ionic Mobilities – Applications of Kohlrausch law – Conductometric titrations – Galvanic cells – Electrode potentials – Nernst equation – Electrochemical series – Potentiometric titrations – Concentration cells – Ion selective electrode –Glass electrodes – Fluoride electrode; Batteries and Fuel cells.

Objectives: Knowledge of galvanic cells, electrode potentials, concentration cells is necessary for engineers to understand corrosion problem and its control; also this knowledge helps in understanding modern bio-sensors, fuel cells and improve them.

UNIT-III: CORROSION

Causes and effects of corrosion – theories of corrosion (dry, chemical and electrochemical corrosion) – Factors affecting corrosion – Corrosion control methods – Cathodic protection –Sacrificial Anodic, Impressed current methods – Surface coatings – Methods of application on metals (Hot dipping, Galvanizing, tinning, Cladding, Electroplating, Electroless plating) – Organic surface coatings – Paints – Their constituents and their functions.

Objectives: the problems associated with corrosion are well known and the engineers must be aware of these problems and also how to counter them

UNIT-IV: HIGH POLYMERS

Types of Polymerization – Stereo regular Polymers – Physical and Mechanical properties of polymers – Plastics – Thermoplastics and thermo setting plastics – Compounding and Fabrication of plastics – Preparation and

properties of Polyethylene, PVC and Bakelite – Elastomers – Rubber and Vulcanization – Synthetic rubbers – Styrene butadiene rubber – Thiokol – applications.

Objectives: Plastics are materials used very widely as engineering materials. An understanding of properties particularly physical and mechanical properties of polymers / plastics / elastomers helps in selecting suitable materials for different purposes.

UNIT-V: FUELS

Coal – Proximate and ultimate analysis – Numerical problems based on analysis – Calorific vaule – HCV and LCV – Problems based on calorific values; petroleum – Refining – Cracking – Petrol – Diesel knocking; Gaseous fuels – Natural gas – LPG, CNG – Combustion – Problems on air requirements.

Objectives: A board understanding of the more important fuels employed on a large scale is necessary for all engineer to understand energy – related problems and solve them.

UNIT-VI: CHEMISTRY OF ADVANCED MATERIALS

Nanometerials (Preparation of carbon nanotubes and fullerenes – Properties of nanomaterials – Engineering applications) – Liquid crystals (Types – Application in LCD and Engineering Applications) – Fiber reinforced plastics – Biodegradable polymers – Conducting polymers – Solar cells (Solar heaters – Photo voltaic cells – Solar reflectors – Green house concepts – Green chemistry (Methods for green synthesis and Applications) – Cement – Hardening and setting – Deterioration of cement concrete.

Objectives: With the knowledge available now, future engineers should know at least some of the advanced materials that are becoming available. Hence some of them are introduced here.

TEXT BOOKSS

- 1. Jain and Jain (Latest Edition), Engineering Chemistry, Dhanpat Rai Publishing company Ltd.
- 2. N.Y.S.Murthy, V.Anuradha, KRamaRao "A Text Book of Engineering Chemistry", Maruthi Publications.
- 3. C.Parameswara Murthy, C.V.Agarwal, Adhra Naidu (2006) Text Book of Engineering Chemistry, B.S. Publications.
- 4. B.Sivasankar (2010), Engineering Chemistry, Mc Graw-Hill companies.
- 5. Ch.Venkata Ramana Reddy and Ramadevi (2013), Engineering Chemistry, Cengage Learning.

REFERENCES

- 1. S.S. Dara (2013) Text Book of Engineering Chemistry, S.Chand Technical Series.
- 2. K.Sesha Maheswaramma and Mridula Chugh (2013), Engineering Chemistry, Pearson Publications.
- 3. R.Gopalan, D.Venkatappayya, Sulochana Nagarajan (2011), Text Book of Engineering Chemistry, Vikas Publications.
- 4. B.Viswanathan and M.Aulice Scibioh (2009), Fuel Cells, Principals and applications, University Press.

T P C 3+1 0 3

ENGINEERING MECHANICS

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes ,resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work - energy method.

UNIT - I

Objectives: The students are to be exposed to the concepts of force and friction, direction and its application.

Introduction to Engg. Mechanics – Basic Concepts.

Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems. Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction.

UNIT II

Objectives: The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.

Equilibrium of Systems of Forces: Free Body Diagrams, Equations of Equilibrium of Coplanar Systems, Spatial Systems for concurrent forces. Lamis Theorm, Graphical method for the equilibrium of coplanar forces, Converse of the law of Triangle of forces, converse of the law of polygon of forces condition of equilibrium.

UNIT - III

Objectives: The students are to be exposed to concepts of centre of gravity.

Centroid : Centroids of simple figures (from basic principles) – Centroids of Composite Figures.

Centre of Gravity : Centre of gravity of simple body (from basis principles), centre of gravity of composite bodies, pappus theorem.

UNIT IV

Objective: The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.

Area moments of Inertia : Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. **Mass Moment of Inertia :** Moment

of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

UNIT - V

Objectives: The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.

Kinematics: Rectilinear and Curvelinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion. **Kinetics:** Analysis as a Particle and Analysis as a Rigid Body in Translation – Central Force Motion – Equations of Plane Motion – Fixed Axis Rotation – Rolling Bodies.

UNIT - VI

Objectives: The students are to be exposed to concepts of work, energy and particle motion

Work – **Energy Method**: Equations for Translation, Work-Energy Applications to Particle Motion, Connected System-Fixed Axis Rotation and Plane Motion. Impulse momentum method.

TEXT BOOKS:

- 1. Engg. Mechanics S.Timoshenko & D.H.Young., 4th Edn , Mc Graw Hill publications.
- 2. Engineering Mechanics: Statics and Dynamics 3rd edition, Andrew Pytel and Jaan Kiusalaas; Cengage Learning publishers.

REFERENCES:

- 1. Engineering Mechanics statics and dynamics R.C.Hibbeler, 11th Edn Pearson Publ.
- 2. Engineering Mechanics, statics–J.L.Meriam, 6th Edn–Wiley India Pvt Ltd.
- 3. Engineering Mechanics , dynamics J.L.Meriam, 6th Edn Wiley India Pvt. Ltd.
- 4. Engineering Mechanics, statics and dynamics I.H.Shames, Pearson Publ.
- 5. Mechanics For Engineers , statics $\,$ F.P.Beer & E.R.Johnston 5^{th} Edn Mc Graw Hill Publ.
- 6. Mechanics For Engineers, dynamics F.P. Beer & E.R. Johnston 5th Edn Mc Graw Hill Publ.
- 7. Theory & Problems of engineering mechanics, statics & dynamics E.W.Nelson, C.L.Best & W.G. McLean, 5th Edn Schaum's outline series Mc Graw Hill Publ.
- 8. Engineering Mechanics, Fedinand. L. Singer, Harper Collins.
- 9. Engineering Mechanics statics and dynamics , A Nelson, Mc Graw Hill publications.
- 10. Engineering Mechanics, Tayal. Umesh Publ.

T P C 3+1 0 3

COMPUTER PROGRAMMING

Objectives: Formulating algorithmic solutions to problems and implementing algorithms in C.

UNIT I:

Unit objective: Notion of Operation of a CPU, Notion of an algorithm and computational procedure, editing and executing programs in Linux Introduction: Computer systems, Hardware and Software Concepts.

Problem Solving: Algorithm / Pseudo code, flowchart, program development steps, computer languages: machine, symbolic and highlevel languages, Creating and Running Programs: Writing, Editing (vi/emacs editor), Compiling (gcc), Linking and Executing in under Linux.

BASICS OF C: Structure of a C program, identifiers, basic data types and sizes. Constants, Variables, Arthmetic, relational and logical operators, increment and decrement operators, conditional operator, assignment operator, expressions, type conversions, Conditional Expressions, precedence and order of evaluation, Sample Programs.

UNIT II:

Unit objective: understanding branching, iteration and data representation using arrays

SELECTION – **MAKING DECISION: TWO WAY SELECTION**: if-else, null else, nested if, examples, Multi-way selection: switch, else-if, examples.

ITERATIVE: loops- while, do-while and for statements, break, continue, initialization and updating, event and counter controlled loops, Looping applications: Summation, powers, smallest and largest.

ARRAYS: Arrays- concepts, declaration, definition, accessing elements, storing elements, Strings and String Manipulations, 1-D arrays, 2-D arrays and character arrays, string manipulations, Multidimensional arrays, array applications: Matrix operations, checking the symmetricity of a Matrix.

STRINGS: concepts, c strings.

UNIT III:

Objective: Modular programming and recursive solution formulation FUNCTIONS- MODULAR PROGRAMMING: functions, basics, parameter passing, storage classes extern, auto, register, static, scope rules, block structure, user defined functions, standard library functions, recursive functions, Recursive solutions for fibonacci series, towers of Hanoi, header

files, C Preprocessor, example c programs, Passing 1-D arrays, 2-D arrays to functions.

UNIT IV:

Objective: Understanding pointers and dynamic memory allocation

POINTERS: pointers- concepts, initialization of pointer variables, pointers and function arguments, passing by address- dangling memory, address arithmetic, character pointers and functions, pointers to pointers, pointers and multi-dimensional arrays, dynamic memory management functions, command line arguments.

UNIT V:

Objective: Understanding miscellaneous aspects of C

ENUMERATED, STRUCTURE AND UNION TYPES: Derived types-structures- declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit-fields, program applications

BIT-WISE OPERATORS: logical, shift, rotation, masks.

UNIT VI:

Objective: Comprehension of file operations

FILE HANDLING: Input and output- concept of a file, text files and binary files, Formatted I/O, File I/O operations, example programs

Text Books:

- 1. Problem Solving and Program Design in C, Hanly, Koffman, 7^{th} ed, PERSON
- 2. Programming in C, Second Edition Pradip Dey and Manas Ghosh, OXFORD Higher Education .
- 3. Programming in C, A practical approach Ajay Mittal PEARSON
- 4. The C programming Language by Dennis Richie and Brian Kernighan
- 5. Programming in C, B. L. Juneja, Anith Seth, Cengage Learning.

Reference Books and web links:

- 1. C Programming, A Problem Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE.
- 2. Programming with C, Bichkar, Universities Press
- 3. Programming in C, Reema Thareja, OXFORD
- 4. C by Example, Noel Kalicharan, Cambridge

T P C 3+1 0 3

NETWORK ANALYSIS

UNIT - I

Introduction to Electrical Circuits: Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination, Capacitance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also. (Text Books: 1,2,3, Reference Books: 3)

A.C Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality with examples.

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT - II

Steady State Analysis of A.C Circuits: Response to sinusoidal excitation pure resistance, pure inductance, pure capacitance, impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. (Text Books: 1,2, Reference Books: 3)

UNIT - III

Coupled Circuits: Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of parallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books: 2,3, Reference Books: 3)

UNIT - IV

Network Theorems: Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegensproblem solving using dependent sources also. (Text Books: 1,2,3, Reference Books: 2)

UNIT - V

Two-port networks: Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

UNIT - VI

Transients: First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogeneous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

TEXT BOOKS:

- Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rd Edition, 2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, Cengage Learning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:

- 1. Network lines and Fields by John. D. Ryder 2nd edition, Asia publishing house.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3. Network Analysis and Filter Design by Chadha, Umesh Publications.

T P C 0 3 2

ENGINEERING CHEMISTRY LABORATORY

List of Experiments

- Introduction to chemistry laboratory Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations, Quantitative analysis, Quantitative analysis etc.,
- Trial experiment Estimation of HCI using standard Na₂co₃ solutions
- 3. Estimation of KMnO₄ using standard Oxalic acid solution.
- 4. Estimation of Ferric iron using standard K₂Cr₂O₇ solution.
- 5. Estimation of Copper using standard K₂Cr₂O₇ solution.
- 6. Estimation of Total Hardness water using standard EDTA solution.
- 7. Estimation of Copper using standard EDTA solution.
- 8. Estimation of Copper using Colorimeter
- 9. Estimation of pH of the given sample solution using pH meter.
- 10. Conductometric Titrations between strong acid and strong base
- 11. Conductometric Titrations between strong acid and Weak base
- 12. Potentiometric Titrations between strong acid and strong base
- 13. Potentiometric Titrations between strong acid and Weak base
- 14. Estimating of Zinc using standard potassium ferrocyanide solution
- 15. Estimation of Vitamin C

TEXT BOOKSS

- 1. Dr. Jyotsna Cherukuis(2012)Laboratory Manual of Engineering Chemistry-II, VGS Techno Series
- 2. Chemistry Practical Manual, Lorven Publications
- 3. K. Mukkanti (2009) Practical Engineering Chemistry, B.S. Publication.

T P C 0 3 2

ENGLISH - COMMUNICATION SKILLS LAB - II

Suggested Lab Manuals:

OBJECTIVE: To impart to the learner the skills of grammar as well as communication through listening, speaking, reading, and writing including soft, that is life skills.

ADVANCED COMMUNICATION SKILLS

UNIT 6 Body language

UNIT 7 Dialogues

UNIT 8 Interviews and Telephonic Interviews

UNIT 9 Group Discussions

UNIT 10 Presentation Skills

UNIT 11 Debates

Text Book:

'Strengthen your Communication Skills' Part-B by Maruthi Publications

Reference Books:

- 1. INFOTECH English (Maruthi Publications)
- 2. Personality Development and Soft Skills (Oxford University Press, New Delhi).

T P C 0 3 2

COMPUTER PROGRAMMING LAB

Exercise 1

- a) Write a C Program to calculate the area of triangle using the formula area = $(s (s-a) (s-b)(s-c))^{1/2}$ where s=(a+b+c)/2
- b) Write a C program to find the largest of three numbers using ternary operator.
- Write a C Program to swap two numbers without using a temporary variable.

Exercise 2

- a) 2's complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2's complement of 11100 is 00100. Write a C program to find the 2's complement of a binary number.
- b) Write a C program to find the roots of a quadratic equation.
- c) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then prints the result. (Consider the operators +,-,*,/, % and use Switch Statement)

Exercise 3

- a) Write a C program to find the sum of individual digits of a positive integer and find the reverse of the given number.
- b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Exercise 4

- a) Write a C Program to print the multiplication table of a given number n up to a given value, where n is entered by the user.
- b) Write a C Program to enter a decimal number, and calculate and display the binary equivalent of that number.
- c) Write a C Program to check whether the given number is Armstrong number or not.

Exercise 5

- a) Write a C program to interchange the largest and smallest numbers in the array.
- b) Write a C program to implement a liner search.
- c) Write a C program to implement binary search.

Exercise 6

- a) Write a C program to implement sorting of an array of elements.
- b) Write a C program to input two m x n matrices, check the compatibility and perform addition and multiplication of them.

Exercise 7

Write a C program that uses functions to perform the following operations:

- i. To insert a sub-string in to given main string from a given position.
- ii. To delete n Characters from a given position in a given string.
- iii. To replace a character of string either from beginning or ending or at a specified location.

Exercise 8

Write a C program that uses functions to perform the following operations using Structure:

- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

Exercise 9

Write C Programs for the following string operations without using the built in functions

- to concatenate two strings
- to append a string to another string
- to compare two strings

Exercise 10

Write C Programs for the following string operations without using the built in functions

- to find the length of a string
- to find whether a given string is palindrome or not

Exercise 11

- a) Write a C functions to find both the largest and smallest number of an array of integers.
- b) Write C programs illustrating call by value and call by reference encepts.

Exercise 12

Write C programs that use both recursive and non-recursive functions for the following

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To find Fibonacci sequence

Exercise 13

- a) Write C Program to reverse a string using pointers
- b) Write a C Program to compare two arrays using pointers

Exercise 14

- a) Write a C program consisting of Pointer based function to exchange value of two integers using passing by address.
- b) Write a C program to swap two numbers using pointers.

Exercise 15

Examples which explores the use of structures, union and other user defined variables.

Exercise 16

- a) Write a C program which copies one file to another.
- b) Write a C program to count the number of characters and number of lines in a file.
- c) Write a C Program to merge two files into a third file. The names of the files must be entered using command line arguments.