

Redes Neurais Artificiais

EPC-1

A partir da análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza $\{C1 \ e \ C2\}$, mediante a medição de três grandezas $\{x_1, x_2 \ e \ x_3\}$ que representam algumas das propriedades físico-químicas do óleo. A equipe de engenheiros e cientistas pretende utilizar um perceptron para executar a classificação automática destas duas classes.

Assim, baseadas nas informações coletadas do processo, formou-se o conjunto de treinamento em anexo, tomando por convenção o valor -1 para óleo pertencente à classe C1 e o valor +1 para óleo pertencente à classe C2.

Portanto, o neurônio constituinte do perceptron terá três entradas e uma saída, conforme ilustrado na figura abaixo:

Utilizando o algoritmo supervisionado de Hebb (regra de Hebb) para classificação de padrões, e assumindo-se a taxa de aprendizagem igual a 0.01, faça as seguintes atividades:

- 1. Execute 5 treinamentos para a rede perceptron, inicializando-se o vetor de pesos em cada treinamento com valores aleatórios entre zero e um. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos.
- 2. Registre os resultados dos 5 treinamentos na tabela seguinte:

Treinamento	Vetor de Pesos Inicial				Vetor de Pesos Final				Número de
Tremamento	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3	Épocas
1° (T1)									
2° (T2)									
3° (T3)									
4° (T4)									
5° (T5)									

3. Após o treinamento do perceptron, aplique então o mesmo na classificação automática de novas amostras de óleo, indicando-se na tabela seguinte os resultados das saídas (Classes) referentes aos cinco processos de treinamento realizados no item 1.

Amostra	X ₁	X ₂	X 3	y (T1)	y (T2)	y (T3)	y (T4)	y (T5)
1	-0.3565	0.0620	5.9891					
2	-0.7842	1.1267	5.5912					
3	0.3012	0.5611	5.8234					
4	0.7757	1.0648	8.0677					
5	0.1570	0.8028	6.3040					
6	-0.7014	1.0316	3.6005					
7	0.3748	0.1536	6.1537					
8	-0.6920	0.9404	4.4058					
9	-1.3970	0.7141	4.9263					
10	-1.8842	-0.2805	1.2548					

- 4. Explique por que o número de épocas de treinamento varia a cada vez que se executa o treinamento do perceptron.
- 5. Qual a principal limitação do perceptron quando aplicado em problemas de classificação de padrões.

OBSERVAÇÕES:

- 1. O EPC pode ser realizado em grupo de três pessoas. Se for o caso, entregar somente um EPC com o nome de todos integrantes.
- 2. As folhas contendo os resultados do EPC devem ser entregue em seqüência e grampeadas (não use clips).
- 3. Em se tratando de EPC que tenha implementação computacional, anexe (de forma impressa) o programa fonte referente ao mesmo.

ANEXO - Conjunto de Treinamento.

Amostra	X ₁	X ₂	X ₃	d
01	-0.6508	0.1097	4.0009	-1.0000
02	-1.4492	0.8896	4.4005	-1.0000
03	2.0850	0.6876	12.0710	-1.0000
04	0.2626	1.1476	7.7985	1.0000
05	0.6418	1.0234	7.0427	1.0000
06	0.2569	0.6730	8.3265	-1.0000
07	1.1155	0.6043	7.4446	1.0000
08	0.0914	0.3399	7.0677	-1.0000
09	0.0121	0.5256	4.6316	1.0000
10	-0.0429	0.4660	5.4323	1.0000
11	0.4340	0.6870	8.2287	-1.0000
12	0.2735	1.0287	7.1934	1.0000
13	0.4839	0.4851	7.4850	-1.0000
14	0.4089	-0.1267	5.5019	-1.0000
15	1.4391	0.1614	8.5843	-1.0000
16	-0.9115	-0.1973	2.1962	-1.0000
17	0.3654	1.0475	7.4858	1.0000
18	0.2144	0.7515	7.1699	1.0000
19	0.2013	1.0014	6.5489	1.0000
20	0.6483	0.2183	5.8991	1.0000
21	-0.1147	0.2242	7.2435	-1.0000
22	-0.7970	0.8795	3.8762	1.0000
23	-1.0625	0.6366	2.4707	1.0000
24	0.5307	0.1285	5.6883	1.0000
25	-1.2200	0.7777	1.7252	1.0000
26	0.3957	0.1076	5.6623	-1.0000
27	-0.1013	0.5989	7.1812	-1.0000
28	2.4482	0.9455	11.2095	1.0000
29	2.0149	0.6192	10.9263	-1.0000
30	0.2012	0.2611	5.4631	1.0000