

Theoretical Mechanics, Lab 8: DYN PART [NON]INERT

Intro to Dynamics

Particle Dynamics for inertial systems

Particle Dynamics for non-inertial systems

Forward Dynamics (2nd dynamics problem)

We know applied forces and want to find equation of motion.

direct relation

$$u(t) = \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix}$$
input for $t \in [0,T]$ $+$ $q(0), \dot{q}(0)$ resulting motion initial state at $t=0$

Inverse Dynamics (1st dynamics problem)

We know equation of motion (X, \dot{X}, \ddot{X}) and we want to find applied forces respect to time.

inverse relation

Method of solving forward dynamics

- 1. Analyze the system
 - Show the frame of reference
 - Show the particle in an common position
 - Show the initial, final position of the particle
 - Write the initial, final conditions
- 2. Analyze forces
 - Make a list of all the forces
 - Specify the formula for calculating the forces

- Show all forces on the scheme
- 3. Solve the problem
 - Write the differential equations of motion
 - Find a common solution
 - Substitute the initial conditions to find the constants of integration
 - Substitute other conditions to find the answer

In our course we will use only:

- \Rightarrow Constant force $\vec{F} = const$
- \Rightarrow Time dependent force $\vec{F} = \vec{F}(t)$
- \Rightarrow Velocity dependent force $\vec{F} = \vec{F}(\dot{r})$

$$\Rightarrow \text{ Position dependent force } \vec{F} = \vec{F}(t, \vec{r}, \dot{\vec{r}}) \Rightarrow \begin{cases} F_x = F_x(t, x, y, \dot{x}, \dot{y}) \\ F_y = F_y(t, x, y, \dot{x}, \dot{y}) \end{cases}$$

Constant force

$$F = const$$

$$F = F(r) = -G \frac{m_1 m_2}{r^3} r$$

Resistance force

$$F_1 = F_1(V_1) = -\mu V_1$$

 $F_2 = F_2(V_2) = -k V_2 V_2$

Controlled force

$$\boldsymbol{F} = \boldsymbol{F}(t)$$

$$F = F(\ddot{r})$$

$$\boldsymbol{F} = \boldsymbol{F} (t, \boldsymbol{r}, \dot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}, \dots)$$

Typical differential equations

Constant and time dependent forces

Let the particle make a rectilinear motion

Typical differential equations

Resistance force: 1D case

Let the particle make a rectilinear motion

Resistance force: 2D case

Let the particle make a curvilinear motion

 $y = -\frac{m}{\mu} e^{-\frac{\mu}{m}t + C_3} + C_4$

 $y = y(t, C_1, C_2, C_3, C_4)$

Position dependent force

Let the particle make a rectilinear motion

$$F = F(r) = -G \frac{m_1 m_2}{r^3} r$$

$$m \ddot{x} = -\frac{k}{x^2}$$

$$\ddot{x} = \frac{d \dot{x}}{dt} = \frac{d \dot{x}}{dt} \frac{d x}{dx} = \frac{d x}{dt} \frac{d \dot{x}}{dx} = \dot{x} \frac{d \dot{x}}{dx}$$

$$m \frac{\dot{x}^2}{2} = \frac{k}{x} + C_1$$

Solution depends on values of parameters. One of possible solutions for $C_4 < 0$ is

$$\frac{1}{C_1} \left(\sqrt{C_1 x^2 + k x} + \frac{k}{2} \frac{1}{\sqrt{-C_1}} \arcsin \frac{2C_1 x + k}{k} \right) = \sqrt{\frac{2}{m}} t + C_2$$

Typical differential equations

Position and velocity dependent force

$$\ddot{x} + 2n\dot{x} + k^2 x = 0$$
 $2n = \frac{\mu}{m}$ $k^2 = \frac{c}{m}$

$$k > n$$
 $k_1 = \sqrt{k^2 - n^2}$ $x = C_1 e^{-nt} \cos(k_1 t) + C_2 e^{-nt} \sin(k_1 t)$

$$k < n$$
 $k_2 = \sqrt{n^2 - k^2}$ $x = C_1 e^{-nt} e^{k_2 t} + C_2 e^{-nt} e^{-k_2 t}$

$$k = n \qquad x = (C_1 t + C_2) e^{-kt}$$

2nd Newton Law for Inertial systmes

Research object	Amount of equations (for one research object)	Equation	The best applications	Additional comments
Particle	1–3	$m\vec{a} = \sum \vec{F}$, where m — mass, \vec{a} — acceleration, \vec{F} — forces	For everything, if you can represent your system or body as a particle	

Task 1 (mine)

The boat has an initial velocity v_o and a mass m. Resistance force $F_c(v)$ also affects on the boat. You should:

- 1. Find an equation of motion of this boat.
- 2. Find the time when the boat speed will be reduced twice.

Task 1

Task 2 (yours)

The body D has a mass m. It moves up because of F force. There is no friction between D and ground.

The task is to find an equation of *D* motion.

Needed variables:

$$m = 2$$
, $F_x = 12\cos(3t)$; $\alpha = 30$, $v_0 = 4$.

$$x = 4t - 2.45t^2 - 0.67(\cos(3t) - 1)$$

Task 2

2nd Newton Law for Non Inertial systmes

Research object	Amount of equations (for one research object)	Equation	The best applications	Additional comments
Particle	1–3	$mar{a}_r = \sum ar{F} + ar{\Phi}_{cor} + ar{\Phi}_{trans},$ where $ar{\Phi}$ is inertia force	For everything, if you can represent your system or body as a particle	 Inertial force is not real force, it is needed for compensating non-inertial nature of a system. Not obligatory that the particle should be on a body, like turning bus and a man. It can be Earth and satellite on Jupiter.

Task 3 (mine)

The figure shows a pipe AB, which rotates about a vertical axis CD with a constant angular velocity ω . The angle between AB and CD is always 45° .

A small heavy ball is placed in the pipe. Determine the motion of the ball, assuming that its initial velocity is O and the initial distance between the ball and a point O equals a. Neglect friction.

Answer: OM =
$$\frac{1}{2} (a - \frac{g\sqrt{2}}{\omega^2})(e^{0.5\omega t\sqrt{2}} + e^{-0.5\omega t\sqrt{2}}) + \frac{g\sqrt{2}}{\omega^2}$$

Task 3

Task 4 (yours): M (rus) 33.10

The horizontal tube CD rotates with the constant angular velocity $\omega = const$ along AB axis. There is a body M inside the tube. The task is to find the velocity of M related to the tube in a moment, when the body leaves the tube. No friction between M and the tube.

We know that the length of the tube is equal to L, the initial velocity is equal to zero $(v_0 = 0)$ and initial position was x_0 .

Answer:
$$v = \sqrt{L^2 - x_0^2 \omega}$$

Task 4

