CSE 305 Homework 3

Aditya Balwani, SBUID: 109353920

Question 6.18

The projection of dependencies on ADE includes $E \rightarrow A$, $A \rightarrow D$ and $D \rightarrow E$ however, $B \rightarrow E$ is not included anywhere hence this is not dependency-preserving.

Let r be a relation over ABCDE, and rAB, rBCD, rADE be its projections on the corresponding sets of attributes. We need to show that rAB JOIN rBCD JOIN rADE \subseteq r.

Every tuple can now be represented as abcde, where ab \in rAB, bcd \in rBCD and ade \in rADE.

The tuple ab must be a projection of some tuple $abc_1d_1e_1$. ade must be a projection of some a_3bcde_3

Now since, $B \to E$, $e_1 = e_3$. Since $E \to A$ and since $e_1 = e_3$, the tuples must agree on A as well, hence $a = a_3$. Since $A \to D$, $d = d_1$ and since $D \to E$, $e = e_1 = e_3$

Using all these, we have $abc_1d_1e_1 = abcde$, hence this is lossless

Question 6.23

Provided FDs:

- BG → CD
- G → F
- CD → GH
- $C \rightarrow FG$
- F → D

To convert this into a minimal cover, we first split all the right hand sides into FD with a single RHS :

- BG → C
- BG → D
- $G \rightarrow F$
- CD → H
- CD → G
- C → F
- C → G
- F → D

Next we reduce the left hand sides. $CD \to H$ reduces to $C \to H$ and $CD \to G$ reduces to $C \to G$ (Which is elimintated) and $BG \to D$ reduces to $G \to D$. After this we eliminate all redundant FDs which leaves us with

- BG → C
- $G \rightarrow F$
- C → H
- C → G
- F → D

This gives us the decomposition into 3NF : (BGC; {BG \rightarrow C, C \rightarrow G}), (GF; {G \rightarrow F}), (CGH; {C \rightarrow GH}), (FD; {F \rightarrow D})

Out of this, (BGC; {BG \rightarrow C, C \rightarrow G}) is not a BCNF. A decomposition with respect to C \rightarrow G gives us (CG; {C \rightarrow G}) and (CB; {}) which makes it BCNF but it loses the BG \rightarrow C FD