Submarine Cable Analysis for Marine Renewable Energy Development

Contents

1	Bac	kgroun	$_{ m d}$)
2		hods	2	
	2.1		Area and Submarine Cables	
	2.2	-		
	2.3		able Energy	
	2.4		nce Zones for Siting New Facilities	
	2.5	_	tion Zones for Routing New Cables	
	2.6	Depth-	Varying Cable Buffer)
3	Res	${ m ults}$	6	j
	3.1		Buffer	;
	3.2	Overla	p of Cable Buffer with Renewable Energy	;
		3.2.1	Tidal \ldots	;
		3.2.2	Wave)
		3.2.3	Wind)
	3.3	Detaile	ed Maps by US Territory of Cable Buffer and Renewable Energy	ı
		3.3.1	Alaska	l
			3.3.1.1 Tidal	ı
			3.3.1.2 Wave	
		3.3.2	East	
		0.0.2	3.3.2.1 Tidal	
			3.3.2.2 Wave	
			3.3.2.3 Wind	
		3.3.3	Guam	
		3.3.4	Gulf of Mexico	
		0.0.1	3.3.4.1 Tidal	
			3.3.4.2 Wave	
			3.3.4.3 Wind	
		3.3.5	Hawaii	
		5.5.5	3.3.5.1 Wave	
			3.3.5.2 Wind	
		226		
		3.3.6		
		3.3.7		
		3.3.8	Palmyra Atoll	
		3.3.9	Puerto Rico	
			3.3.9.1 Tidal	
		0.0.10	3.3.9.2 Wave	
		3.3.10	US Virgin Islands	
			3.3.10.1 Tidal	
			3.3.10.2 Wave	
			Wake Island	
		3.3.12	West	
			3.3.12.1 Tidal	
			3.3.12.2 Wave	
			3.3.12.3 Wind	3

4	Con	nclusions	46
	4.1	Next Steps	46
	4.2	Communication with Stakeholders	46
\mathbf{R}	efere	ences	46

1 Background

Demand for abundant and diverse resources in the oceans is growing, necessitating marine spatial planning. To inform development of Marine Hydrokinetic (MHK) and Offshore Wind (OSW) resources, DOE has asked NREL to identify — and mitigate where possible — the competing uses between MHK/OSW technologies and subsea power/telecoms cables. The first step in this work is to identify and quantify the overlap between the MHK/OSW resource availability and existing cable routes. Several publicly available data layers are available that identify cable routes (e.g. MarineCadastre.gov currently hosts an offshore cables geographical information system (GIS) data layer) and MHK/OSW resource density (MHK Atlas, Wind Prospector). The cable route linear features, however, do not indicate the setback distance necessary to accommodate subsea cable maintenance requirements. Preliminary work was done within NREL to evaluate the influence of subsea cable setback distance on the overlap with MHK/OSW for the west coast of the U.S (Amante, Kilcher, Roberts, & Draxl, 2016). Industry reports (Communications Security, Reliability and Interoperability Council IV, 2014, 2016) from the International Cable Protection Committee (ICPC) of the North American Submarine Cable Association (NASCA; n-a-s-c-a.org) advise on setback distances that inform this analysis.

2 Methods

2.1 Study Area and Submarine Cables

The study area included the 200 nm extent of US waters downloaded from MarineRegions.org¹ and overlapping the offshore cable data layer available through MarineCadastre.gov.² See Figure ??.

TODO: add citations to bibliography:

- MarineRegions.org > Exclusive Economic Zones Boundaries (EEZ), version: World EEZ v9 (2016-10-21, 123 MB). Suggested citation:
 - Flanders Marine Institute (2016). Maritime Boundaries Geodatabase, version 1. Available online at http://www.marineregions.org/. Consulted on 2017-04-25.
- MarineCadastre.gov cable metadata

See Table 1 and Figure ??.

¹MarineRegions.org US exclusive economic zone (EEZ) data, version World_EEZ_v9_20161021

 $^{^2} Marine Cadastre.gov\ cable\ metadata:\ https://coast.noaa.gov/dataservices/Metadata/TransformMetadata?u=https://coast.noaa.gov/data/Documents/Metadata/harvest/Marine Cadastre/NOAA Charted Submarine Cables.xml&f=html$

Table 1: Territories within the United States exclusive economic zone (EEZ) and having submarine cables.

Id	Territory	Area (km2)
1	Alaska	3,682,912
2	East	932,351
3	Guam	208,234
4	Gulf of Mexico	1,553,288
5	Hawaii	2,474,715
6	Johnston Atoll	442,443
7	N Mariana Islands	763,626
8	Palmyra Atoll	353,670
9	Puerto Rico	172,958
10	US Virgin Islands	38,275
11	Wake Island	406,970
12	West	824,679

2.2 Depth

The bathymetric depth comes from the GEBCO 30 arc-second grid. Here's there requested attribution:

GEBCO_2014 Grid, version 20150318, www.gebco.net

2.3 Renewable Energy

NREL.

2.4 Avoidance Zones for Siting New Facilities

"ICPC Recommendation 13 No. 2, which establishes a methodology for determining site-specific proximity limits between submarine cables and offshore wind facilities and a default separation distance in shallower waters of 500 meters on either side of an in-service submarine cable — a separation standard the principles of which also apply to other offshore renewable energy projects."

"Subsea Cables UK Guideline No. 6 (endorsed by NASCA), which establishes principles for determining safe proximity distances and negotiating proximity agreements between offshore wind farms and submarine cables and reflects extensive experience in the United Kingdom with managing spatial conflicts between offshore wind farms and submarine cables."

"endorse a default separation distance of 500 meters in water depths of less than 75 meters and the greater of 500 meters or two times the depth of water in greater water depths."

1. **Default separation distance** by depth:

- <= 250 m: 500 m • > 250 m: 2 x depth
- Psudocode:

```
# buffer based on depth
cables_buffers = list()
for (x in unique(cable_cells$depth)){
```


Figure 1: Map of NOAA Charted Submarine cables as of December 2012 within the exclusive economic zone (EEZ; 200 nm) of United States territories.

```
cables_buffers[str(x)] = cable_cells %>%
    subset(depth == x) %>%
    buffer(x)

}
cable_buf = merge(cables_buffers)

# smooth out jagged edges between cells
cable_buf = simplify(cable_buf)
```

2.5 Separation Zones for Routing New Cables

"ICPC Recommendation 2 No. 10: parallel submarine cables maintain a separation distance of the lesser of 3 times depth of water or (where not achievable) 2 times the depth of water following consultation and agreement between affected parties — a separation standard the principles of which also apply to spacing of submarine cables and other marine infrastructure"

At least 2 separation zones based on depth:

1. Minimum: 2 times the depth of water

2. Recommended: 3 times depth of water

Psudocode:

```
# convert depth (GEBCO 30 sec resolution) to polygons of cells
depth_cells = as.polygon(depth_raster)

# intersect cables with depth cells
cable_cells = intersect(cables_lines, depth_cells)

# buffer based on depth
cables_buffers = list()
for (x in unique(cable_cells$depth)){

   cables_buffers[str(x)] = cable_cells %>%
        subset(depth == x) %>%
        buffer(x)

} cable_buf = merge(cables_buffers)

# smooth out jagged edges between cells
cable_buf = simplify(cable_buf)
```

2.6 Depth-Varying Cable Buffer

A depth-varying buffer to the offshore cables, 2 * depth for "minimum" and 3 * depth for "recommended" separation zones for routing new cables, by first intersecting depth with cables, then iterating over each depth to apply the appropriate buffers before finally dissolving all buffers. In order to apply the buffer, I needed to project from geographic coordinates to a projection that minimizes area distortion, so chose Albers Equal Area and applied the "one-sixth rule" based on the extent of the cable features to minimize distortion.

3 Results

3.1 Cable Buffer

Generated by:

 $\bullet \ \ create_cable-buffer.R$

 \bullet extract_cable-energy.R

Google Earth files (*.kml):

- $buf_2xdepth-incr100m.kml$
- $\bullet \ \ buf_3xdepth\text{-}incr100m.kml$
- $lns_d1x.kml$

3.2 Overlap of Cable Buffer with Renewable Energy

Extract average and area of overlap between zones and renewable energy potential areas, possibly at various depth bins.

Table 2: Area overlap with cables by form of energy broken into size classes across all territories.

Energy		Area (km2) —	Min. Cable (2	z)	Rec. Cable (3z)
Form	Amount	Area (km2) —	Area (km2)	(%)	Area (km2)	(%)
Wind Speed (m/s)	<=7	103,422	8,018	7.8%	10,547	10.2%
	7-8	243,393	24,933	10.2%	31,023	12.7%
	8-9	288,111	24,134	8.4%	32,020	11.1%
	9-10	132,712	9,925	7.5%	13,987	10.5%
	10-11	17,415	2,776	15.9%	3,524	20.2%
	11-12	546	217	39.8%	304	55.7%
Wave Energy (kW/m)	0- 10	997,570	42,714	4.3%	59,316	5.9%
	10- 20	292,692	26,684	9.1%	33,337	11.4%
	20-30	367,372	19,196	5.2%	24,800	6.8%
	>30	532,533	26,702	5.0%	35,669	6.7%
Tidal Power (W/m2)	0- 500	403,781	8,916	0.0%	12,407	0.0%
	500- 1000	1,245	42	0.0%	60	0.0%
	1000-1500	325	6	0.0%	9	0.0%
	>1500	224	2	0.0%	3	0.0%

3.2.1 Tidal

units: mean power (W/m²)

Figure 2: Map of submarine cable buffers within the exclusive economic zone (EEZ; 200 nm) of United States territories. In order to see the area covered by the buffers, please visit the Detailed Maps section.

Figure 3: Energy by area and power class per US territory with cable overlay (minimum - recommended %).

Figure 4: Tidal power (W/m2) and area per US territory with cable overlay (minimum - recommended %).

Table 5: Area overlap with cables for tidal power (W/m2) by territory.

Territory	Tidal power (W/m2)	Area (km2)	Min. Cable (2z)		Rec. Cable (3z)	
Territory			Area (km2)	(%)	Area (km2)	(%)
Alaska	0-500	165,671	1,459	0.9%	2,111	1.3%
	500-1000	737	26	3.5%	37	5.1%
	1000-1500	173	5	2.7%	7	4.1%
	>1500	114	2	1.9%	3	2.7%
East	0-500	83,474	1,797	2.2%	2,490	3.0%
	500-1000	412	4	1.0%	7	1.6%
	1000-1500	130	1	0.9%	2	1.2%
	>1500	90	0	0.0%	O	0.0%
Gulf of Mexico	0-500	67,752	236	0.3%	345	0.5%
	500-1000	38	0	0.0%	O	0.0%
	1000-1500	8	0	0.0%	O	0.0%
	>1500	3	0	0.0%	O	0.0%
Puerto Rico	0-500	12,532	1,667	13.3%	2,418	19.3%
US Virgin Islands	0-500	4,289	1,424	33.2%	1,876	43.7%
West	0-500	70,063	2,334	3.3%	3,167	4.5%
	500-1000	59	12	20.1%	16	26.5%
	1000-1500	15	0	0.0%	0	0.0%
	>1500	17	0	0.0%	0	0.0%

3.2.2 Wave

units: wave energy flux (kW/m)

Figure 5: Wave energy (kW/m) and area per US territory with cable overlay (minimum - recommended %).

Table 4: Area overlap with cables for wave energy (kW/m) by territory.

Territory	Wave Energy (kW/m)	Area (km2) —	Min. Cable (2z)		Rec. Cable (3z)		
Territory	wave Energy (kw/m)	Ai ca (kiii2) —	Area (km2)	(%)	Area (km2)	(%)	
Alaska	0-10	283,698	767	0.3%	1,106	0.4%	
	10-20	173,017	814	0.5%	1,194	0.7%	
	20-30	258,071	614	0.2%	868	0.3%	
	>30	344,236	1,652	0.5%	2,533	0.7%	
East	0-10	300,822	13,810	4.6%	19,624	6.5%	
	10-20	33,099	363	1.1%	541	1.6%	
Gulf of Mexico	0-10	265,084	1,621	0.6%	2,436	0.9%	
Hawaii	0-10	35,095	7,213	20.6%	9,639	27.5%	
	10-20	54,495	18,872	34.6%	23,010	42.2%	
	20-30	84,179	17,849	21.2%	22,949	27.3%	
	>30	6,929	2,683	38.7%	3,264	47.1%	
Puerto Rico	0-10	57,391	13,145	22.9%	17,787	31.0%	
	10-20	17,136	5,844	34.1%	7,507	43.8%	
US Virgin Islands	0-10	25,477	4,820	18.9%	6,919	27.2%	
	10-20	2,123	441	20.8%	613	28.9%	
West	0-10	30,004	1,339	4.5%	1,805	6.0%	
	10-20	12,821	351	2.7%	472	3.7%	
	20-30	25,122	733	2.9%	984	3.9%	
	>30	181,368	22,367	12.3%	29,872	16.5%	

3.2.3 Wind

units: wind speed (m/s) at 90m hub height

Figure 6: Wind speed (m/s) and area per US territory with cable overlay (minimum - recommended %).

Table 3: Area overlap with cables for wind speed (m/s) at 90m hub height by territory.

Touritouv	Wind Speed (m/s)	A (1 2)	Min. Cable (2z)		Rec. Cable (3z)	
Territory		Area (km2) —	Area (km2)	(%)	Area (km2)	(%)
East	<=7	8,006	50	0.6%	70	0.9%
	7-8	48,890	240	0.5%	352	0.7%
	8-9	124,946	2,991	2.4%	4,213	3.4%
	9-10	75,695	3,235	4.3%	4,735	6.3%
	10-11	41	0	0.0%	0	0.0%
Gulf of Mexico	<=7	6,083	12	0.2%	18	0.3%
	7-8	90,254	1,079	1.2%	1,620	1.8%
	8-9	28,855	0	0.0%	0	0.0%
Hawaii	<=7	38,998	5,871	15.1%	7,664	19.7%
	7-8	59,131	20,335	34.4%	24,876	42.1%
	8-9	45,787	13,400	29.3%	17,091	37.3%
	9-10	14,099	488	3.5%	866	6.1%
	10-11	4,184	772	18.4%	1,004	24.0%
	11-12	546	217	39.8%	304	55.7%
West	<=7	50,335	2,085	4.1%	2,795	5.6%
	7-8	45,119	3,278	7.3%	4,175	9.3%
	8-9	88,522	7,744	8.7%	10,716	12.1%
	9-10	42,918	6,201	14.4%	8,386	19.5%
	10-11	13,190	2,005	15.2%	2,520	19.1%

3.3 Detailed Maps by US Territory of Cable Buffer and Renewable Energy

3.3.1 Alaska

See Figure 7.

3.3.1.1 Tidal

See Figure 8.

3.3.1.2 Wave

See Figure 9.

3.3.2 East

See Figure 10.

3.3.2.1 Tidal

See Figure 11.

Figure 7: Cable buffers for Alaska.

Figure 8: Tidal energy for Alaska.

Figure 9: Wave energy for Alaska.

Figure 10: Cable buffers for East.

Figure 11: Tidal energy for East.

3.3.2.2 Wave See Figure 12.

3.3.2.3 Wind

See Figure 13.

3.3.3 Guam

See Figure 14.

3.3.4 Gulf of Mexico

See Figure 15. $\,$

3.3.4.1 Tidal

See Figure 16.

3.3.4.2 Wave

See Figure 17.

3.3.4.3 Wind

See Figure 18.

3.3.5 Hawaii

See Figure 19.

3.3.5.1 Wave

See Figure 20.

3.3.5.2 Wind

See Figure 21.

3.3.6 Johnston Atoll

See Figure 22.

3.3.7 N Mariana Islands

See Figure 23.

Figure 12: Wave energy for East. $\,$

Figure 13: Wind energy for East.

Figure 14: Cable buffers for Guam.

Figure 15: Cable buffers for Gulf of Mexico.

Figure 16: Tidal energy for Gulf of Mexico.

Figure 17: Wave energy for Gulf of Mexico.

Figure 18: Wind energy for Gulf of Mexico.

Figure 19: Cable buffers for Hawaii.

Figure 20: Wave energy for Hawaii.

Figure 21: Wind energy for Hawaii.

Figure 22: Cable buffers for Johnston Atoll.

Figure 23: Cable buffers for N Mariana Islands.

3.3.8 Palmyra Atoll

See Figure 24.

3.3.9 Puerto Rico

See Figure 25.

3.3.9.1 Tidal

See Figure 26.

3.3.9.2 Wave

See Figure 27.

3.3.10 US Virgin Islands

See Figure 28.

3.3.10.1 Tidal

See Figure 29.

3.3.10.2 Wave

See Figure 30.

3.3.11 Wake Island

See Figure 31.

3.3.12 West

See Figure 32.

3.3.12.1 Tidal

See Figure 33.

3.3.12.2 Wave

See Figure 34.

3.3.12.3 Wind

See Figure 35.

Figure 24: Cable buffers for Palmyra Atoll.

Figure 25: Cable buffers for Puerto Rico.

Figure 26: Tidal energy for Puerto Rico.

Figure 27: Wave energy for Puerto Rico.

Figure 28: Cable buffers for US Virgin Islands.

Figure 29: Tidal energy for US Virgin Islands.

Figure 30: Wave energy for US Virgin Islands.

Figure 31: Cable buffers for Wake Island.

Figure 32: Cable buffers for West.

Figure 33: Tidal energy for West.

Figure 34: Wave energy for West.

Figure 35: Wind energy for West.

4 Conclusions

4.1 Next Steps

- stacked histogram by cbl2/(cbl3-cbl2)/other; hist(wind\$Speed_90)
- simplify as native geojson

Musial et al (2016):

- wind speed (m/s) Table A-3 (p. 48): <7, 7-8, 8-9, 9-10, 10-11, total
- depth classes (m) Table B-1 (p. 49): <30, 30-60, 60-700, 700-1000, >1000, total
- distance to shore (nm) Table B-2 (p. 50): <3, 3-12, 12-50, 50-200, total
- by states

4.2 Communication with Stakeholders

Products will be online and readily digestable by stakeholders.

References

Amante, C., Kilcher, L., Roberts, B., & Draxl, C. (2016). Offshore Cable Analysis: Pilot Study.

Communications Security, Reliability and Interoperability Council IV. (2014). Protection of Submarine Cables Through Spatial Separation.

Communications Security, Reliability and Interoperability Council IV. (2016). Clustering of Cables and Cable Landings.