Матанализ, 1 курс

Красносельский

2 сентября 2020 г. -12 сентября 2020 г.

Формула оценки: $\frac{4P+6S+5K+5E}{20}$, где P,S,K,E — оценки за листки, семинары, коллоквиум и экзамен соответственно.

Вещественные числа

Определение 1. Бинарная операция на мн-ве G — функция $(a,b) \in G \times G \mapsto a \oplus b \in G$, т.е. каждую упорядоченную пару элементов G переводит в какой-то элемент G.

Определение 2. Коммутативная группа — множество G с операцией \oplus со следующими свойствами:

- $\exists e \in G \forall x \in G : e \oplus x = x \oplus e = x$.
- $\forall x \in G \exists y \in G : x \oplus y = y \oplus x = e$.
- $\forall a, b, c \in G : (a \oplus b) \oplus c = a \oplus (b \oplus c)$ (ассоциативность).
- $\forall a, b \in G : a \oplus b = b \oplus a$ (коммутативность).

Определение 3. Поле — множество $(G, \oplus, \odot, 0)$ со следующими свойствами:

- (G, \oplus) аддитивная группа;
- $(G \setminus \{0\}, \odot)$ мультипликативная группа;
- $\forall a, b, c \in G : (a \oplus b) \odot c = a \odot c \oplus b \odot c$.

Определение 4. Отношение на множестве G — подмножество $G \times G$. Например, отношение (a < b) в множестве $\{1, 2, 3\}$ — это $\{(1, 2), (1, 3), (2, 3)\}$.

Определение 5. Отношение порядка — отношение ≤ со следующими свойствами:

- $\forall a : a \leq a$.
- $\forall a, b : (a \leqslant b \cap b \leqslant a) \implies a = b.$
- $\forall a, b, c : (a \leq b \cap b \leq c) \implies a \leq c$.
- $\forall a, b : (a \leq b \cup b \leq a)$.

Определение 6. Упорядоченное поле — множество F со следующими свойствами:

- F поле.
- На F есть отношение порядка.
- $\forall a, b, c \in F : a \leq b \implies a + c \leq b + c$.
- $\forall a, b \in F : 0 \leqslant a \cap 0 \leqslant b \implies \leqslant a \cdot b$.

Примеры упорядоченных полей: $\mathbb{Q}, \mathbb{R}, \mathbb{Q}(\sqrt{3})$, алгебраические числа, кроме того, рациональные функции над \mathbb{R} со следующим отношением порядка: $f_1 \leqslant f_2$, если у $f_1 - f_2$ отношение старших членов числителя и знаменателя меньше или равен 0.

Аксиома непрерывности. Пусть F — упорядоченное поле, и $A \neq \emptyset, B \neq \emptyset \subset F$. Кроме того, $\forall a \in A, b \in B : a \leq b$. Тогда $\exists c \in F : \forall a \in A, b \in B : a \leq c \leq b$.

Определение 7. Множество вещественных чисел — упорядоченное поле с аксиомой непрерывности.

 Π ример. $\mathbb{Q} \neq \mathbb{R}$, т.к. у множеств $\{r \in \mathbb{Q}: r>0, r^2<2\}$ и $\{r \in \mathbb{Q}: r>0; r^2>2\}$ нет разделителя.

Примеры моделей действительных чисел

- 0, 123 · · · ·
- Прямая с 0 и 1.
- Классы эквивалентности фундаментальных последовательностей из Q.
- Сечения Дедекинда.

Определение 8. Индуктивное множество — подмножество $K \subset \mathbb{R}$ такое, что если $x \in K$, то $x+1 \in K$.

Определение 9. Натуральные числа \mathbb{N} — минимальное индуктивное множество, содержащее единицу.

Определение 10. Целые числа \mathbb{Z} — множество из всех натуральных чисел, нуля и чисел, противоположных натуральным.

Определение 11. Рациональные числа \mathbb{Q} — такое множество: $\mathbb{Z} \cup \{mn^{-1} | m \in \mathbb{Z}, n \in \mathbb{Z} \setminus 0\}$ Теорема 1. У любого упорядоченного поля есть подполе, изоморфное \mathbb{Q} .

Аксиома Архимеда. $\forall a, h > 0 \exists n \in \mathbb{N} : an > h$.

Теорема 2 (Принцип Архимеда). $\forall h > 0 \exists a \in \mathbb{R} : \exists n \in \mathbb{Z} : (n-1)h \leq a < nh$.

Доказательство. Рассмотрим множество $E = \{n \mid n \in \mathbb{Z}, ah^{-1} < n\}$. Если a = 0, то это \mathbb{N} , а в противном случае оно непусто по аксиоме Архимеда. Кроме того, оно ограничено снизу нулём. Тогда у него есть минимальный элемент, он подходит в качестве n.

Следствие. $\forall \varepsilon > 0 \exists n \in \mathbb{N} : n^{-1} < \varepsilon$.

Следствие 2. $a < b \in \mathbb{R} \implies \exists r \in \mathbb{Q} : a < r < b$.

Доказательство. Возьмём n так, что $n^{-1} < b - a$, и m так, что $\frac{m-1}{n} \le a < \frac{m}{n}$. Тогда $a < \frac{m}{n} < b$.

Следствие 3. $\forall x \in \mathbb{R} \exists [x]$.

Определение 12. Последовательность — функция натурального аргумента.

Определение 13. Вложенная последовательность — последовательность a_i множеств такая, что $a_i \subset a_{i-1}$ для всех i.

Определение 14. Стремящаяся к нулю последовательность — последовательность a_i вещественных чисел такая, что $\forall \varepsilon > 0 \exists n \in \mathbb{N} : \forall m > n : |a_m| < \varepsilon$.

Теорема 3. Пусть Δ_n — вложенная последовательность отрезков в \mathbb{R} , т.е. множеств вида $\{x \in \mathbb{R} \mid a \leq x \leq b, a, b \in \mathbb{R}\}$. Тогда $\bigcap_n \Delta_n \neq \emptyset$. Кроме того, если последовательность $|\Delta_n|$ стремится к 0, то $|\bigcap_n \Delta_n| = 1$.

Доказательство. Пусть $\Delta_n = [a_n, b_n]$. Рассмотрим $A = \{a_n \mid n \in \mathbb{N}\}$ и $B = \{b_n \mid n \in \mathbb{N}\}$. У нас верно, что $a_n \leq b_m$, т.к. последовательность вложена, тогда по аксиоме непрерывности $\exists \gamma : a_i < \gamma < b_j$. Тогда $\gamma \in [a_n, b_n] \forall n$. Кроме того, если таких γ хотя бы два, то длина каждого отрезка хотя бы $|\gamma_2 - \gamma_1|$, значит, последовательность длин не стремится к 0.

Определение 15. Окрестность $\mathcal{O}(x)$ — любой интервал, содержащий x.

Определение 16. ε -окрестность $\mathcal{O}_{\varepsilon}(x)$ — интервал $(x-\varepsilon,x+\varepsilon)$.

Свойства

- Если $\mathcal{O}_1(x), \mathcal{O}_2(x)$ окрестности, то $\mathcal{O}_1 \cap \mathcal{O}_2$ тоже.
- $\forall x \neq y \exists \mathcal{O}(x) : y \notin O(x)$.

Определение 17. Предельная точка множества A — такое число x, если в любой окрестности $\mathcal{O}(x)$ существует $a \neq x \in A$, такое, что $a \in \mathcal{O}(x)$ (это то же самое, как если бы в этой окрестности было бесконечно много точек из A). Множество предельных точек обозначается A'.

Теорема 4. Пусть A — бесконечное ограниченное множество. Тогда $A' \neq \emptyset$.

Доказательство. Пусть границы A — это точки a_1, b_1 . Поделим отрезок $[a_1, b_1]$ пополам, в одном из отрезков лежит бесконечное количество точек A. Пусть его границы — это a_2, b_2 . Его тоже поделим пополам и т.п. У нас получится вложенная последовательность отрезков, на каждом из которых лежит бесконечное количество A. Пусть γ — пересечение этих отрезков. Возьмём любую окрестность γ . Она целиком содержит какой-то из отрезков $[a_n, b_n]$, в котором бесконечное количество элементов A. Значит, γ — предельная точка.

Определение 18. Открытое множество — такое множество G, что $\forall x \in G \exists \mathcal{O}(x) \subset G$. Определение 19. Замкнутое множество — такое множество G, что $G' \subset G$. Определение 20. Внутренняя точка множества A — такая точка x, что $\exists \mathcal{O}(x) \subset A$. Примеры

- \emptyset , $\mathbb R$ замкнутые и открытые одновременно. Других одновременно замкнутых и открытых множеств нет (это эквивалентно аксиоме непрерывности).
- ullet $\mathbb N$ замкнутое у него нет предельных точек.
- (a, b) открытое.
- [a, b] замкнутое.
- Канторово множество замкнутое.
- [a, b) ни открытое, ни замкнутое.

Теорема 5. Пусть A открытое, а B замкнутое. Тогда $A \setminus B$ открытое, а $B \setminus A$ замкнутое.