Module-2 CSEN 3104 Lecture 14

Dr. Debranjan Sarkar

SIMD Architecture

Use of indexing to address the local memories in parallel at different local addresses

Consider an array of n X n data elements:

$$A = \{A(i,j), 0 \le i, j \le (n-1)\}$$

- Elements of jth column of A are stored in n consecutive locations of PEM_j [say from location 200 to location (200+n-1)] (assume n ≤ N)
- We want to access the principal diagonal elements A(j,j) for j=0, 1, ..., (n-1) of the array A
- The CU must generate and broadcast an effective memory address 200
- The local index registers must be set to be $I_j = j$ for j = 0, 1, ..., (n-1) in order to convert the global address 200 to local address 200 + $I_j = 200 + j$ for each PEM_i
- Within each PE, there is a separate memory address register for holding these local addresses

- Execution of the following vector instruction in an array of N processing elements (PEs)
- The sum S(k) of the first k components in a vector $A = (A_0, A_{1, \dots, A_{n-1}})$ is desired for each k from 0 to (n-1)
- We need to compute the following n summations:

$$S(k) = \sum_{i=0}^{k} A_i$$
 for $k = 0, 1,, (n-1)$

 These n vector summations can be computed recursively by going through the following (n-1) iterations:

$$S(0) = A_0$$

 $S(k) = S(k-1) + A_k$ for $k = 1, 2, ..., (n-1)$

- For n = 8, the above recursive summation is implemented in an array processor with N = 8 processing elements (PEs)
- Log₂n = 3 steps are required
- Both data routing and PE masking are used
- Show diagram
- Initially each A_i, residing in PEM_i is moved to the R_i register in PE_i for i = 0,1,2,...,7

- In the first step, A_i is routed from R_i to R_{i+1} and added to A_{i+1} with the resulting sum $A_i + A_{i+1}$ in R_{i+1} for i = 0,1,2,...,6
- In step 2, the intermediate sums in R_i are routed to R_{i+2} for i = 0 to 5
- In step 3, the intermediate sums in R_i are routed to R_{i+4} for i = 0 to 3
- Thus, the final value of PE_k will be S(k) for k = 0,1,2,...,7

- In step 1, PE₇ is not involved in data routing (receiving but not transmitting)
- In step 2, PE₇ and PE₆ are not involved in data routing
- In step 3, PE₇, PE₆, PE₅ and PE₄ are not involved in data routing
- These unwanted PEs are masked off during the corresponding steps
- During the addition operations
 - PE₀ is disabled in step 1
 - PE₀ and PE₁ are made inactive in step 2
 - PE₀, PE₁, PE₂ and PE₃ are masked off in step 3
- The PEs that are masked off in each step depend on the operation (datarouting or addition)
- Thus the masking pattern keep changing in different operation cycles
- Masking and routing operation are much more complicated when the vector length n > N

Thank you