Oppgaver for kapittel 0

??

a) Vi har at

$$AF = AD = c - r$$

$$FC = CE = a - r$$

Da AF + FC = c, er

$$c - r + a - r = b$$
$$c + a - b = 2r$$

b) Med c som grunnlinje har $\triangle ABC$ høgde b. Av den klassiske arealformelen for en trekant (se MB) og formelen fra Oppgave ?? har vi da at

$$(a+b+c)r = ac$$

$$r = \frac{ac}{a+b+c}$$

c) Av oppgave (a) og (b) er

c + a - b =
$$\frac{2ac}{a+b+c}$$
$$(c+a-b)(a+b+c) = 2ac$$
$$(a+c)^2 - b^2 = 2ac$$
$$a^2 + c^2 = b^2$$

Formelen kjenner vi igjen som Pytagoras' setning.

??

Vi setter $v=\angle BAC$. Da $\angle BAC$ er en periferivinkel, er $\angle BOC=2v$. $\triangle BCO$ er likebeint, og derfor er $\angle CBO=90^{\circ}-u$ (forklar for deg selv hvorfor). Nå har vi at

$$\angle EBC = 90^{\circ} - \angle CBO = u$$

Gruble 3

I figuren over merker vi oss at

$$EB = \sin v$$
 $AC = \sin u$ $OE = \cos v$ $OC = \cos u$

Da $\triangle OCA \sim \triangle BEF$, har vi at

$$FE = \frac{BE}{OC}AC = \frac{\sin v}{\cos u}\sin u$$

Videre har vi at $EA = OA - OE = 1 - \cos v$. Tilsvarende er $CH = 1 - \cos u$. I tillegg er

$$DC = FG = (FE + EA)\cos u = \left(\frac{\sin v}{\cos u}\sin u + 1 - \cos v\right)\cos u$$

Nå har vi at

$$OD = OH - CH - DC$$

$$\cos(u+v) = 1 - (1 - \cos u) - \left(\frac{\sin v}{\cos u}\sin u + 1 - \cos v\right)\cos u$$

$$= \cos u \cos v - \sin u \sin v$$