

Data 603 – Big Data Platforms

Lecture 1

Instructor Contact Info

- Contact info:
 - enkeboll@umbc.edu

Class Introduction

- Introduce yourself:
 - Name
 - UMBC affiliation
 - Big Data Experience
 - Goals of the class

Course Goal

- To introduce methods, technologies, and computing platforms for performing data analysis at scale
- Prepare the class for the Apache Spark developer certification from Databricks (https://academy.databricks.com/exam/databricks-certified-associate-developer)

Topics Covered

- Topics include:
 - Theory and techniques for data acquisition, cleansing, aggregation, management of large heterogeneous data collections, processing, information and knowledge extraction.
 - Practical hands-on experience using Apache Spark on Databricks (cloud) platform.

Techniques Covered

- Class will introduce:
 - MapReduce, streaming, and external memory algorithms and their implementations using the Apache Spark ecosystem.

Course Prerequisites

 Students will gain practical experience in analyzing large existing databases.

Prerequisite:

- Enrollment in the Data Science program
- Programming experience
- Other students may be admitted with instructor permission

Corequisite:

DATA 601: Introduction to Data Science

Class Logistics

- Every Wednesday during Fall 2021
- Start at 6:00 PM and end at 8:45 PM
- Every class we will try to maintain the following agenda:
 - 6:00 PM Homework Quick Review / Questions
 - 6:20 PM Lecture Presentation, labs
 - 7:45 PM Break (~15 minutes)
 - 8:00 PM Lecture Presentation, labs
 - 8:30 PM Review / Prepare for next lecture / Quiz
 - 8:45 PM Adjourn

Course Topics & Syllabus

- Introduction & Foundation of Data Sciences
- Platforms overview
- Tools in Data Science
 - Hadoop & HDFS
 - Apache Spark (RDD, DataFrame, Dataset, SQL)
 - Apache Hive
 - Distributed DB (Hbase/Accumulo, Cassandra)
 - Machine Learning
 - Cloud Computing

Course Grading

Course work	Grade distribution
Attendance/class participation/presentations	10%
Homework & Assignments	25%
Quizzes	10%
Technical Research Paper	20%
Final Project	35%

Course Grading

Letter Grade	Score (Percent Grade)
Α	90% - 100%
В	80% - 89%
С	70% - 79%
D	60%-69%
F	<60%

Quick Notes About Grading

- Graduate students are expected to participate in class discussions
 - Extra points in some cases!
- For quizzes and exams, there will be no make ups
- Post due homework will receive immediate 50% deduction
 - Usually homework are due Tuesday at 11:59 PM
 - Once class start on Wednesday, undelivered homework will get zero

Optional Text Books

- Chambers, Bill, and Matei Zaharia. Spark: The Definitive Guide: Big Data Processing Made Simple. O'Reilly Media, 2018.
- Damji, Jules S., et al. Learning Spark: Lightning-Fast Data Analytics 2nd Edition O'Reilly Media, 2020. NOTE: Free download at: https://databricks.com/p/ebook/learning-spark-from-oreilly, use your UMBC email address.

Norms

- Respect everyone
- Communication is key
- Ask lots of questions
- Mistakes are good

Why Data Science

- High demand for Data Scientists
- Growing job market
- Essential skills for IT professionals, business professionals, managements, statistician, and others

What is Data Science

- A data scientist is a popular field (somehow new too) that encompass knowledge from the following fields:
 - Data architecture
 - Data analysis
 - Data development
 - ... and others

As a Data Scientist!

To qualify as a Data Scientist, you have to have experience in these four quadrants:

- 1. Database Management, including traditional SQL and Querying
- 2. Predictive Analytics, including modeling and Machine Learning
- Big Data, for unstructured data analysis, mining, and trends
- 4. Data Visualization and presentation

UMBC

Big Data Definition

YouTube Link

Important Activities

- 14 remaining weeks of classes
- One big data project
- One technical paper

Class Schedule

Refer to the syllabus.

The Class Project

- Start thinking about your project today
- Formulate the idea then draft a problem statement, and be ready to defend it
- Sample project topics will be shared in the next lecture
- Your responsibility is to enhance on the presented project topic and implement something new
- Project Logistics:
 - Work in groups allowed (max 3 students)
 - Must use Apache Spark

Project Schedule

#	Date	Activity	Expected Outcome
1	9/01/2021	Present the project	Start thinking about big data
		assignment to students	project
5	9/29/2021	Project idea ready	Prepare a slide deck for presenting
			the project idea
10	11/03/2021	Present project progress	Every student will prepare and
		report	submit a project progress status
			report
14	12/01/2021	Project presentations	Prepare a slide deck for presenting
15	12/08/2021		your project to students
15	12/08/2021	Project report	Final slide deck and 1-page
			summary due

Project Presentation & Defense

- In your project proposal defense:
 - Clearly illustrate the idea
 - Present the expected outcome
- In your final project delivery:
 - Show your implementation
 - Present results in graph formats
 - Show your contributions

The Technical Paper

- Start working on the technical (research) paper today
- The paper should cover an innovative topic in Big Data
 - Copied or regurgitated papers will not be accepted!!
- Sample Topics:
 - Cognitive Computing & Big Data
 - Machine Learning & Big Data
 - Cybersecurity & Big Data
 - Cloud Computing & Big Data

Technical Paper Defense & Presentation

- Individual papers, no teaming up!
- In your proposal defense, you should demonstrate the following:
 - Authenticity of the paper
 - Innovation and new ideas
 - Quality of the work
- In your final delivery:
 - Ensure solid technical writing
 - Presentation is of good quality
 - Organized presentation so other students can benefit from

Technical Paper Schedule

#	Date	Activity	Expected Outcome
1		Present the technical research paper assignment to students	Start thinking about proposals for the paper
4		Technical paper proposal ready for defense	Every student will submit his paper proposal
9	• •	Present near complete paper and share progress	Every student will prepare and submit a paper progress report
13	11/24/21	Deliver Final paper	Final paper deliver (due 11:59PM)

Important: Class Benefits

- What will you get from this class?
 - Big data foundation skills
 - Expertise on Apache Spark
 - Intelligently talk about big data platforms
 - Pass a big data skills interview
 - Prepare you to build expertise and skills in your job
 - Eventually (and through job training and hands-on expertise), become an expert

- Sign up for Databricks Community Edition
 - Databricks: https://community.cloud.databricks.com/
- Download Docker
- Create a new private repository in Github and add me as a collaborator (enkeboll)

- Assignment: write a script that calculates the number of unique words in <u>Tolstoy's War and</u> <u>Peace</u>
- Requirements:
 - Can be written in any modern, open programming language (Python, Node, R, Java, Bash; no Matlab, SAS, SPSS, etc)

- Requirements
 - If running it requires anything more than executing the file, include a readme with instructions. They should not involve downloading third party libraries.
 - In a branch, add this file to your new github repo with the name
 - homework/hw01-tolstoy.[py|js|sh|etc]

- Requirements
 - Open a pull request and tag me as the reviewer.
 - Finally, you will take the link to your pull request and submit it in Blackboard to the open assignment (forthcoming).

Questions

