A TOPOLOGICAL SPACE WITH $\binom{\Omega}{T} \neq \binom{\Omega}{\Gamma}$

DOMINIC VAN DER ZYPEN

ABSTRACT. We show that the selection principles $\binom{\Omega}{T}$ and $\binom{\Omega}{\Gamma}$ are not equal by providing a space (X,τ) in which $\binom{\Omega}{T}$ holds, but not $\binom{\Omega}{\Gamma}$. This answers a question from the year 2003 in [2].

1. Introduction and definitions

Throughout this note, let (X, τ) be a topological space.

Definition 1.1. We say that $U \subseteq \tau$ is an open cover, or cover for short, if

- (1) $X \notin \mathcal{U}$,
- (2) $\bigcup \mathcal{U} = X$.

For $x \in \mathcal{U}$ we set $\mathcal{U}_x = \{U \in \mathcal{U} : x \in U\}$ and call \mathcal{U}_x the *star* of x (with respect to \mathcal{U}).

1.1. Thick covers. We call a cover $\mathcal{U} \subseteq \tau$

- (1) large if \mathcal{U}_x is infinite for every $x \in X$,
- (2) an ω -cover if every finite subset of X is contained in some member of \mathcal{U} ,
- (3) a t-cover if \mathcal{U} is large, and for all $x, y \in V$ at least one of the sets $\mathcal{U}_x \setminus \mathcal{U}_y$ and $\mathcal{U}_y \setminus \mathcal{U}_x$ is finite, and
- (4) a γ -cover if \mathcal{U} is infinite, and for every $x \in V$ the set $\mathcal{U} \setminus \mathcal{U}_x$ is finite.

Let $\Lambda, \Omega, T, \Gamma$ denote the collections of (open) large covers, ω -covers, t-covers, and γ -covers, respectively. An easy argument shows that every γ -cover is large and therefore a t-cover, so $\Gamma \subseteq T$.

- 1.2. The selection principle. If $\mathfrak{U}, \mathfrak{V}$ are families of covers of X, then we define the property $\binom{\mathfrak{U}}{\mathfrak{V}}$, read " \mathfrak{U} choose \mathfrak{V} ", as follows:
 - $\begin{pmatrix} \mathfrak{U} \\ \mathfrak{V} \end{pmatrix} \ : \mathrm{For \ each} \ \mathcal{U} \in \mathfrak{U} \ \mathrm{there \ is} \ \mathcal{V} \subseteq \mathcal{U} \ \mathrm{such \ that} \ \mathcal{V} \in \mathfrak{V}.$

2. Construction of the example

We consider the space (\aleph_1, τ) where \aleph_1 is the smallest uncountable cardinal and τ is the collection of down-sets in the cardinal \aleph_1 , that is $\tau = \aleph_1 \cup {\aleph_1}$.

Proposition 2.1. *If* $\mathcal{U} \subseteq (\tau \setminus \{\aleph_1\})$ *is a cover, then:*

- (1) *U* is a large cover,
- (2) \mathcal{U} is an ω -cover,
- (3) \mathcal{U} is a t-cover, but
- (4) \mathcal{U} is never a γ -cover.

Proof.

(1) Let $\alpha \in \aleph_1$. Suppose α is only covered by finitely many members $U_1, \ldots U_n \in \mathcal{U}$. But then, $\beta := \bigcup \mathcal{U} \in \aleph_1$ is not covered by any member of $\{U_1, \ldots, U_n\}$. We have $\beta > \alpha$, and since \mathcal{U} is a covering of \aleph_1 , there is $U^* \in \mathcal{U}$ covering β and therefore α . Clearly

$$U^* \notin \{U_1, \dots, U_n\},$$

contradicting the assumption that the only members of \mathcal{U} covering α are U_1, \ldots, U_n .

(2) Let $S \subseteq \aleph_1$ be finite, and consider

$$\beta = \bigcup S \in \aleph_1.$$

Then β is contained in some $U \in \mathcal{U}$, so $S \subseteq U$.

- (3) Let $\alpha, \beta \in \aleph_1$. We may assume that $\alpha < \beta$. Then $\mathcal{U}_{\alpha} \setminus \mathcal{U}_{\beta} = \emptyset$, which is finite, so \mathcal{U} is a t-cover.
- (4) Suppose that $\mathcal{U} \subseteq \tau \setminus \{\aleph_1\}$ is a γ -cover. So every $\alpha \in \aleph_1$ is contained in all but finitely many members of \mathcal{U} . Note that due to the special nature of cardinals, we have $\mathcal{U} \subseteq \aleph_1$. So \mathcal{U} is a well-ordered set such that all members only finitely many predecessors. This implies that \mathcal{U} is either a finite or countable collection of members of \aleph_1 such that $\bigcup \mathcal{U} = \aleph_1$. This contradicts the fact that \aleph_1 is a regular cardinal. \square

By proposition 2.1 (2) and (3), every ω -cover in the space (\aleph_1, τ) with $\tau = \aleph_1 \cup {\aleph_1}$ is a t-cover, so the property $\binom{\Omega}{T}$ is trivially true. On the other hand, by proposition 2.1(4), no cover is a γ -cover, therefore property $\binom{\Omega}{\Gamma}$ is false.

So for the space $(\aleph_1, \aleph_1 \cup {\{\aleph_1\}})$ we have $\binom{\Omega}{T} \neq \binom{\Omega}{\Gamma}$.

As a final remark, the property $\binom{\Omega}{\Gamma}$ is the celebrated Gerlits-Nagy γ -property [1]. Since we have seen that $\Gamma \subseteq T$, property $\binom{\Omega}{\Gamma}$ always implies $\binom{\Omega}{T}$. But the converse is not true, as Proposition 2.1 shows that there is a space where $\binom{\Omega}{T}$ is true but $\binom{\Omega}{\Gamma}$ is false.

Acknowledgement. I am grateful to Boaz Tsaban for a fruitful discussion via e-mail on the subject of this note.

REFERENCES

- [1] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology and its Applications 14 (1982), 151161.
- [2] Boaz Tsaban, SPM (Selection Principles in Mathematics) bulletin No. 1, 2003, https://arxiv.org/pdf/math/0301011

Federal Office of Borders and Customs Security, Taubenstrasse 16, CH-3003 Bern, Switzerland

E-mail address: dominic.zypen@gmail.com