DSAC Module-3(1) Machine Learning

2023년 10월 21일~ 11월 11일

권오준 (ojkwon@deu.ac.kr)

내용

- 1. 머신러닝
- 2. kNN
- 3. 결정트리
- 4. 랜덤 포레스트
- 5. 서포트 벡터머신
- 6. 분류 성능
- 7. 특성공학
- 8. 모델 최적화
- 9. 이미지 분석
- 10. 텍스트 분석

"인간은 인공지능과 경쟁하지 않는다. 인공지능을 활용하는 다른 인간들과 경쟁할 뿐이다."

> 판을 남들보다 먼저 읽고 잘 활용하는 쪽이 살아남는다.

출처: 인공지능시대의 비지니스전략

메신 러닝

Top 10 jobs involving AI skills

Top jobs seeking machine learning or artificial intelligence skills

Rank	Job title	% of postings containing AI or machine learning	Rank	Job title	% of postings containing AI or machine learning
1.	Machine learning engineer	75.0%	6.	Algorithm developer	46.9%
2.	Deep learning engineer	60.9%	7.	Junior data scientist	45.7%
3.	Senior data scientist	58.1%	8.	Developer consultant	44.5%
4.	Computer vision engineer	55.2%	9.	Director of data science	41.5%
5.	Data scientist	52.1%	10.	Lead data scientist	32.7%

Source: Indeed

데이터 분석 모델

Data Analysis Model (Jeff Hammerbacher)

머신 러닝

인공지능과 머신러닝

- 인공지능을 구현하는 방법은 다양
- · 머신 러닝 기반의 AI가 2000년대 이후 급속히 발전
- · 딥러닝: 신경망을 기반으로 하는 머신 러닝 기술
 - 마치 사람이 많은 정보에 접하면서 학습하듯이 컴퓨터도 데이터를 보고 학습하는 방법
 - 음성인식, 자동차 번호판 인식, 언어 번역, 채팅 대화, 글쓰기, 작곡 등 여러 분야에서 좋은 성과를 낸다

머신 러닝

머신 러닝 vs 딥 러닝

< 머신러닝 (Machine Learning >

- 특징추출을 위한 알고리
 컴퓨터 '학습'의 영역 증을 인간이 직접 제공
- 해당분야에 대한 지식 및 직관, 알고리즘 구축을 위한 상당한 노력 필요

< 딥러닝 (Deep Learning >

■ 컴퓨터 '학습'의 영역

머신러닝 특징

- 예전에는 컴퓨터는 프로그래머가 코딩한 대로만 동작
 - 계산을 빨리 하든지,
 - 이미지를 처리하든지,
 - 정해진 알고리즘대로 빠르고 정확하게 동작하는 일
- 머신러닝
 - 컴퓨터가 데이터를 보고, 스스로 기능을 향상시키는 방법을 찾아내어서 점
 차 성능을 향상시킨다.

머신 러닝?

- 머신 러닝
 - 머신(컴퓨터)이 데이터를 보고 학습을 하여 점차 지능적인 동작 수행
 - 목적 : 학습을 하여 어떤 "모델(model)" 을 만드는 것
 - 모델: 예측 작업(회귀, 분류)을 수행하는 알고리즘
- 머신 러닝 모델
 - 스팸 메일을 찾아내는 모델
 - 누가 게임에서 이길지 예측하는 모델
 - 내일 날씨를 예측하는 모델

모델

- 수학, 과학에서는 어떤 현상을 설명하는 모델로 수식을 주로 사용
 - 모든 질량을 가진 모든 물체는 서로 끌어당긴다 : 만유인력 법칙

- 활용
 - 자유낙하 물체의 속도를 정확하게 예측
 - 많은 관련 기구를 설계

모델의 가치

와인 품질 = 12.145 + (0.00117x겨울철 강수량)
 + (0.064x 재배철 평균기온) - (0.00386x 수확기 강수량)

머신러닝 모델

- 머신 러닝, AI 모델은 데이터 기반의 모델을 사용(학습)
- 현실 세계의 많은 현상
 - 수식으로 간단히 모델링하기 어렵고, 과학적으로 증명할 수도 없다.
 - 하지만 거의 정확히 예측할 수 있는 모델은 만들 수 있다.
 (단, 충분한 데이터 필요)
 - 머신 러닝 모델 예
 - 어느 고객이 불만이 많을 것인지
 - 어떤 영화가 관객을 많이 동원할지
 - 어떤 물건이 많이 팔릴지
 - 어떤 메일이 스팸일지
- 머신 러닝은 성능이 꽤 유용

선형 회귀 모델

• 선형 회귀(regression) y = wX + b

선형 분류 모델

선형 분류(classification) ay + bx > c

모델 구조와 파라미터

• 모델

- 모델 구조 : 모델의 동작을 규정
- 모델 파라미터 : 모델이 잘 동작하도록 정한 가중치 등 계수
- 예) 사람의 뒷모습을 멀리서 보고 남녀를 구분하는 문제
 - 모델: 머리카락 길이가 20cm 이상이면 여성으로 판단
 - 모델 구조 : 머리카락 길이를 보고 남녀를 구분
 - 모델 파라미터 : 머리카락 길이
- 하나의 특정 모델은 데이터(지역 등)에 따라 예측 정확도가 달라 질 수 있다
 - 적절한 모델 구조 : 프로그래머가 선택
 - 적절한 모델 파라미터 : 머신러닝 프로그램이 데이터 기반하여 학습

모델 요약

- 모델 구조
 - 모델의 동작을 규정하는 방법
 - Programmer가 선택: hyper parameter
- 모델 파라미터
 - 모델이 잘 동작하도록 학습하는 매개 변수(parameter)
 - 모델 계수 (신경망의 경우, 가중치)
- 모델 학습
 - 주어진 데이터에 가장 적절한 parameter를 찾는 작업
 - 머신 러닝 : 학습을 통하여 찾는다

IBM 왓슨의 문제점 - 전이학습 필요

- IBM Watson & WfO(Watson for Oncolgy)
 - 인지 컴퓨팅(Cognitive computing) 플랫폼
 - 메모리얼 슬로언 캐터링 암센터(MSKCC)의 암 치료 데이터에 학습, 최적화
- 마니팔 병원(인도)
 - 1,000명의 암환자에 대한 의사와 왓슨의 권고안과의 일치율 비교
 - 전체적으로는 약 80%의 일치율
 - 전이성 유방암 : 46%, HER-2 음성 유방암 : 35%, 특히 폐암 : 17.8%
- 기센 대학 & 필립-마르부르크대학 부속병원(독일)
 - > 왓슨 성능이 기대에 못 미치는 정도가 아닌 신뢰할 수 없는 수준이라고 발표
- 국내 경우
 - 길병원 대장암 환자 656명에 대한 의사와 일치율: 49%
 - 특히, 서양보다 동양에서 발생 빈도가 높은 암에서는 진단 정확도가 떨어짐
- 대책
 - 지역의 실정에 맞게 데이터를 재 구축하여 현지화 필요

머신 러닝의 기본 동작

• 머신러닝 목표

- 주어진 학습 데이터를 보고 원하는 동작을 잘 수행하는 모델을 만드는 것
- 즉, 회귀 또는 분류 작업을 정확하게 수행
- 좋은 모델을 만들기 위해서는 → 좋은 데이터가 필요

훈련과 검증

- 모델 훈련(Training)
 - 모델이 데이터를 이용하여 모델 파라미터를 학습하는 과정
 - 모델 파라미터 값 : 보통 랜덤한 값으로 초기화
 - 학습
 - 훈련 데이터에 기반하여 최적화 알고리즘에 의해서 모델 파라미터 값을 계속 갱신하여 모델의 예측 값이 실제 값에 수렴하도록 하는 훈련 과정
- 모델 검증 (Validation)
 - 모델을 학습시킨 후, 모델이 잘 동작하는지를 확인하는 과정
 - 보통 검증 데이터를 따로 제공하지 않으므로 훈련에 사용할 데이터의 일부
 를 검증용으로 미리 확보해야

훈련, 검증, 테스트 데이터

- 훈련(Training) 데이터
 - 모델 parameter를 학습시키는데 사용
- 검증(Validation) 데이터
 - 모델의 학습 중에 과소적합, 과대적합을 검사하고, 최적 모델 구조(hyper parameter 등)를 찾는데 사용
 - 훈련 데이터 중의 일부를 학습에 참여시키지 않고 남겨 둔 데이터
- 테스트(Test) 데이터
 - 모델의 성능을 최종적으로 시험하는데 사용

■

훈련, 검증, 테스트 데이터

♥ k-fold 교차 검증

k-fold 교차 검증

- fold : 검증 데이터
- 주어진 데이터 전체를 골고루 검증용으로 사용
 - 모델의 동작을 보다 정교하게 확인하기 위함
 - K 값은 보통 5~10 주로 사용
 - cross_val_score() : 교차 검증 자동 수행 & 성능 평가
- 교차 검증의 목적은 성능 검증
- K개의 점수가 골고루 나와야 안정적인 모델

과대 적합, 과소 적합

과소 적합

Good fit

과대 적합

과대 적합(Overfitting)

- 모델이 훈련 데이터에 대해서만 잘 동작하도록 훈련되어, 새로운 데이 터에 대해서는 오히려 잘 동작하지 못하는 것
 - 주어진 훈련 데이터를 너무 세밀하게 학습에 반영하여 발생하는 현상
- 과대 적합된 모델은 훈련 데이터에 대해서는 매우 우수한 성능을 보이 지만 일반성이 떨어진다

일반화(Generalization)

- 모델의 일반화(Generalization)
 - 머신러닝에서는 과대 적합을 피해서 일반적으로 잘 동작하게 모델을 만드
 는 것이 매우 중요
- 과대 적합의 원인 & 대책
 - 원인 : 훈련 데이터가 너무 적어서 학습을 충분히 할 수 없는 경우
 - 대책 : 다양한 경우를 고려한 훈련 데이터를 많이 확보
 - 원인: 모델이 너무 복잡한 경우
 - 대책 : 모델을 좀 단순하게

규제화(Regularization)

- 규제화
 - 모델이 일반화 능력을 갖도록 모델의 기능을 제한하는 것
 - 예) 만일 학습할 데이터가 부족하다면,
 - 모델 구조를 좀 단순하게 만들어서 주어진 데이터에 대한 과대 적합을 피해야 한다
- 머신러닝에서는 일반화 능력을 가진 모델을 만드는 것이 중요
 - 이를 위하여 모델에 적절한 제한을 가하는 기법을 사용

과소 적합(Underfitting)

- 문제의 복잡도에 비해 모델이 너무 간단하여 주어진 훈련 데이터에서
 조차도 잘 동작하지 못하는 것
- 대책
 - 모델의 보다 복잡(상세)하게 구성
 - 제약을 줄여준다

데이터의 대표성

- 훈련 데이터 구성
 - 미래에 나타날 가능성이 있는 모든 데이터의 특징을 골고루 반영
 - 예) 투표 결과 예측
 - · 실제 인구 구성에 비례하여 성별, 지역, 인종, 나이별, 소득별 등 균형성 유지
- 계층적 샘플링(stratified sampling)
 - 데이터의 대표성을 고려하여 데이터를 수집하는 방법
 - 예) 어느 학교의 남녀 학생 비율이 8:2 → 의견수렴 샘플도 8:2 유지
- 훈련, 검증, 테스트 샘플 데이터가 전체 데이터의 특징을 계속 유지할 수 있어야 함

모델 구축 과정

- 머신러닝 모델 선택
 - 해결할 문제에 최적의 모델 선택
 - 훈련 데이터, 원하는 목적(기능) 등 고려
 - 선형모델, 결정트리, 신경망, SVM, 랜덤포레스트 등
- 모델 학습 : 훈련 데이터 사용
 - fit(), train() 함수
- 모델이 과대 적합 또는 과소 적합인지를 검증
 - 과대 적합 → 모델을 더 일반화(모델 단순화 또는 규제화)
 - 과소적합 → 모델을 더 복잡(상세)하게 설계
- ・ 성능 평가 : 실제 테스트 데이터를 적용
 - predict(), score() 함수

머신 러닝의 유형별 대표적 알고리즘

	머신러닝 유형	알고리즘		
지도학습	분류	kNN, 베이즈, 결정 트리, 랜덤 포레스트, 로지스틱 회귀, 그라디언트부스팅, 신경망		
	회귀	선형 회귀, SVM, 신경망		
	군집화	k-means, DBASCAN		
비지도학습	데이터 변환	스케일링, 정규화, 로그변환		
	차원축소	PCA, 시각화		

• 분류/회귀 알고리즘 : 교차 사용 가능

- 선형 회귀: 선형 분류, 결정 트리(분류): 회귀 사용 가능 등

모델의 동작 성능

- 모델의 동작 속도
 - 학습 시간 : 모델을 만드는데 걸리는 시간
 - 동작 속도 : 모델을 적용하는데 걸리는 시간
- 일반적으로 모델이 정교하고 복잡할수록 성능은 좋아지지만 모델을 만 들거나 적용하는데 시간이 오래 걸린다.

모델의 동작

Machine learning (기계학습) Model

모델의 학습

손실 함수

- 손실함수(loss function)
 - 모델의 예측값과 실제 값과의 차이, 즉 오차(error)를 계산
- 이 오차를 줄이는 방향으로 모델을 최적화(학습) 한다
- 회귀분석에서 많이 사용하는 손실함수
 - 오차 자승의 합의 평균치(MSE: mean square error)

$$MSE = \sum_{k=1}^{N} (y - \hat{y})^2$$

- N: 배치 크기
- 배치 크기 같은 설정 환경 변수를 hyper parameter라고 한다.
 - hyper parameter : 사람이 선택하는 변수
 - parameter : 기계 학습으로 자동으로 갱신되는 변수

₽_

분류의 손실 함수

- 분류에서는 손실함수로 MSE를 사용할 수 없다
- 대신, 분류에서 <mark>정확도</mark>(accuracy)를 손실함수로 사용할 수 있다
 - 예) 100명에 대해 남녀 분류 문제
 - 96명을 맞추고 4명을 오 분류: 정확도 0.96
 - 그러나 정확도를 손실함수로 사용하는 데에는 다음과 같은 문제가 있다
- Category 분포 불균형시 문제
 - 예)
 - · Group : 남자 95명, 여자 5명
 - 오 분류 케이스 남자 1명, 여자 3명
 - · 정확도는 여전히 0.96 :
 - 문제: 여자의 경우, 5명 중 3명을 오 분류 → 결과 심각
 - 데이터 분포가 비대칭인 상황 : 질병 진단의 경우 자주 발생
 - 손실을 제대로 측정하지 못함
 - 이를 보완하기 위해서 크로스 엔트로피(cross entropy)를 사용
 - Category가 둘 이상인 경우에도 동일한 개념으로 적용 가능

크로스 엔트로피(Cross Entropy)

$$CE = \sum_{i} p_i \log(\frac{1}{p_i})$$

- p_i : 어떤 사건이 일어날 실제 확률, p_i ': 예측한 확률
- 남녀가 50명씩 같은 경우

$$CE = -0.5 \times \log(\frac{49}{50}) - 0.5 \times \log(\frac{47}{50}) = 0.02687$$

• 남자가 95명 여자가 5명인 경우

$$CE = -0.95 \times \log(\frac{94}{95}) - 0.05 \times \log(\frac{2}{5}) = 0.17609$$

배치와 이포크

- 배치(Batch) 크기 : 한번 학습에 사용하는 샘플 수
- 예를 들어, 총 1,000개의 데이터로 예측 모델을 만들 때, 한번에 1,000개의 의 데이터를 모두 입력하여 손실함수를 구하고 학습을 시키는 것은 비효율적
 - 배치 크기가 클수록 학습이 정교하고, 기울기를 정확히 구할 수 있으나 계산량이 많아진다.
 - 한번에 필요한 메모리 사용량이 많아 메모리 오류가 날 가능성이 높다
 - 일반적으로 훈련 데이터를 일정 크기의 배치 단위로 나누어 학습을 시키는 것
 이 효과적
- 배치 크기가 작을 때에는 기울기가 상대적으로 정확하게 계산되지 못하므로 학습률도 작게 잡는 것이 좋다

배치와 이포크

- 이포크(Epoch): 주어진 훈련 데이터 전체를 한번 학습에 사용하는 것
- 학습에 주어진 1,000개의 훈련 데이터를 모두 학습에 사용하였어도 아직 최적의 모델 파라미터를 찾지 못했으면 주어진 데이터를 다시 반복하여 사용할 필요 있다
 - 머신러닝에서는 일반적으로 여러 이포크를 수행

훈련 방법: 최적화 - 경사 하강법

- 경사 하강법(Gradient Descent)
 - 가장 일반적인 최적화 알고리즘
 - 손실함수를 계수에 관한 그래프로 그렸을 때 최소값으로 빨리 도달하기 위해서는 현재 위치에서의 기울기(미분값)에 비례하여 반대방향으로 이동

경사 하강법의 원리

d(k): desired response

h(k): impulse response of adaptive filter The cost function may be $E\{e^{2}(k)\}$ or $\sum_{k=0}^{N-1}e^{2}(k)$

경사 하강법의 원리

$$\underline{W}(n+1) = \underline{W}(n) - \mu \frac{\partial e^{2}(n)}{\partial \underline{W}(n)}$$

$$= \underline{W}(n) - \mu \frac{\partial e^{2}(n)}{\partial e(n)} \cdot \frac{\partial e(n)}{\partial \underline{W}(n)}$$

$$= \underline{W}(n) - 2\mu e(n) \cdot \frac{\partial \left[d(n) - \underline{W}^{T}(n) \cdot \underline{X}(n)\right]}{\partial \underline{W}(n)}, \qquad \frac{\partial \underline{A}^{T} \cdot \underline{B}}{\partial \underline{A}} = \underline{B}$$

$$= \underline{W}(n) + 2\mu e(n)\underline{X}(n)$$

학습률 (Learning Rate)

- 학습률: 학습 속도를 조정하는 변수
 - 학습률이 너무 작게 잡으면
 - 수렴하는데 시간이 오래 걸리지만 최저점에 도달했을 때 흔들림 없이 안정적인
 값을 얻을 수 있다
 - 학습률을 너무 크게 정하면
 - 학습하는 속도는 빠르나 자칫하면 최저점으로 수렴하지 못하고 발산하거나 수 렴하더라도 흔들리는 오차가 남아있을 수 있다.
- 학습 스케줄(learning schedule) 기법
 - 초기에는 학습률을 크게 정하고(학습을 빠르게 하고), 오차가 줄어들면 학습률을 줄여서 안정 상태(steady state)의 오차를 줄이는 방법

학습률 (Learning Rate)

학습률(Learning rate): 학습 속도를 조정하는 변수

경사 하강법 특징

- 경사하강법을 적용하려면 특성 변수들을 모두 동일한 방식으로 스케일 링해야 한다.
- 특성 값마다 크기의 편차가 크면
 - 특정 변수에 너무 종속되어 동작할 수 있고 이로 인해 수렴속도가 직선이되지 않고 오래 걸릴 수가 있다.

경사 하강법의 종류

- 배치(Batch) GD
 - 일반적으로 배치 GD방식을 많이 사용하는데, 적절한 크기의 배치 단위로 입력 신호를 나누어 경사 하강법을 적용하는 방식
- SGD (확률적 경사 하강법)
 - 한 번에 한 샘플씩 랜덤하게 골라서 훈련에 사용하는 방법
 - 즉 샘플을 하나만 보고 계수를 조정
 - 계산량이 적어 동작속도가 빠르고, 랜덤한 방향으로 학습을 하므로 전역 최
 소치를 가능성이 높아진다
 - 매 샘플이 너무 랜덤하여 방향성을 잃고 수렴하는데 시간이 오래 걸릴 가능
 성도 있다

모델의 성능 지표

- · 모델의 성능을 평가하는 척도 필요
- 분류에서는 성능 척도로 정확도(accuracy)를 주로 사용
 - (참고) 분류에서 손실함수로 크로스 엔트로피를 주로 사용
- 손실함수와 성능 지표의 차이점
 - 손실함수:
 - 모델을 훈련시킬 때의 기준
 - 모델은 손실함수를 최소화 하는 방향으로 학습
 - 성능 지표
 - · 이렇게 만든 모델이 궁극적으로 <mark>얼마나 잘 동작하는</mark>지를 평가하는 척도
 - 예) 과속단속을 통한 교통사고율을 줄이는 작업
 - 손실함수에 해당 : 과속 단속
 - ・ 성능 평가 지표(궁극적 목표) : 교통 사고를 줄이는 것 → 교통 사고율 측정

모델의 성능 지표

- MSE(또는 RMSE)
 - 키를 예측 : RMSE = 5.7
 - 몸무게를 예측: RMSE = 3.8
 - 단순히 RMSE 값만으로는 각각 성능이 얼마나 우수한 지 알기 어렵다
 - 또한 서로 데이터의 성격, 범위가 다르므로 상호 객관적 비교 평가도 어렵다
- \bullet R^2
 - 회귀분석에서 어떠한 모델에서도 동일한 의미의 성능평가 척도
 - · 데이터 종류와 값의 크기 범위와 관계없이 성능 평가를 객관적
 - 실제 값을 잘 예측 (= 1)
 - 평균치 예측 정도의 수준 (= 0)
 - 평균치 예측만도 못한 수준 (= 음수)

대표적인 손실함수와 성능지표

	손실함수	성능 지표	
정 의	손실함수를 줄이는 방향으로 <mark>학습</mark>	성능을 높이는 것이 머신러닝을 사용하는 <mark>최종 목적</mark>	
회귀 모델	MSE (오차 자승의 평균)	R^2	
분류 모델	크로스 엔트로피	정확도, 정밀도, 재현률, F1점수	

Regression (회귀)

Regression (회귀) – 예측, 분류

- ❖ What to reduce? (Loss Function: 손실함수)
 - MSE (Mean Square Error)

$$MSE = \sum_{k=1}^{N} (y - \hat{y})^2$$

- ❖ How Good it is? (Performance: 성능지표)
 - R² (R-Squared)

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}$$

$$SS_{ ext{res}} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2$$

$$SS_{
m tot} = \sum_i (y_i - ar{y})^2$$

Classification (분류)

Classification (분류)

- ❖ What to reduce? (Loss Function: 손실함수)
 - **Cross Entropy (CE)**
 - Gini (지니계수)

$$CE = \sum_{i} p_i \log(\frac{1}{p_i}) \qquad Gini = 1 - \sum_{k=1}^{m} p_k^2$$

$$Gini = 1 - \sum_{k=1}^{m} p_k^2$$

- ❖ How Good it is? (Performance: 성능지표)
 - Confusion Matrix: Accuracy, Recall, Precision, F-1 Score
 - Ranking(순서): ROC (Receiver Operating Characteristic), AUC (Area Under Curve)

■ □델이 서

모델의 성능 지표

- 정확도(accuracy): 정확하게 예측한 비율을 의미
 - accuracy = (TP+TN) / 전체 경우의 수(N)

실제 / 예측	암(예측)	정상(예측)	합계
암환자(실제)	6 (TP)	4 (FN)	10
정상(실제)	2 (FP)	188 (TN)	190
합계	8	192	200

- 암진단 정확도 = (6 + 188)/200 = 194/200 = 0.97 => 97%
- 오류율 = 1-accuracy = 0.03 => 오진율은 3%
- 리콜(recall): 관심 대상을 얼마나 잘 찾아내는가
 - recall = TP / (TP+FN)
 - 실제 암 환자 발견률 = 6 / (6+4) = 0.6 => 60%
- 정밀도(precision): 예측의 정확도
 - precision = TP / (TP+FP) = 6 / (6+2) = 0.75 => 75%

모델의 성능 지표

- recall과 precision의 두 가지 지표를 동시에 높이는 것은 어려움,
- F1은 이러한 두 요소를 동시에 반영한 새로운 지표임
- F1은 recall과 precision의 조화 평균을 구한 것

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

- 두 지표의 값이 각각 0.5와 0.7일 때
 - 산술 평균 c=(a+b)/2=(0.5)+(0.7)/2=0.6
 - 조화 평균 c=2ab/(a+b)=0.7/1.2=0.58
- 두 지표의 값이 각각 0.9와 0.3일 때
 - 산술 평균 c=(a+b)/2=(0.9)+(0.3)/2=0.6
 - 조화 평균 c=2ab/(a+b)=0.54/1.2=<mark>0.45</mark>

조화 평균

- 역수의 산술평균의 역수
- 평균적인 변화율
- 낮은 값에 더 많은 penalty 적용

머신러닝 유형

- 머신러닝을 사용하는 목적 즉, 머신러닝으로 문제를 해결하는 유형
 - 설명(description)
 - 클러스터링
 - 비지도 학습
 - 예측
 - 회귀(regression)
 - 분류(classification)
 - 지도학습
 - 추천(recommendation)
 - 연관분석
 - 강화학습

데이터 분석의 유형 – 지도 학습

- 지도 학습(Supervised learning)
 - 입력 값(x)과 정답(y, label)를 포함하는 훈련용 데이터(training data)를 이용하여 학습하고, 그 학습된 결과를 바탕으로 미지의 데이터(test data)에 대해 미래 값을 예측(predict)하는 방법
 - 회귀나 분석 등 예측 모델은 시간이 지나면 정답을 확인할 수 있고, 모델의 성능에 대한 정확한 평가가 가능
 - 정답에 해당하는 값 : 목적변수(target variable), 레이블(label)
 - 회귀: 수치 값
 - 분류: 카테고리 변수
 - 예) 스팸 메일 분류기의 학습
 - 수집한 데이터로부터 어떤 메일이 스팸이었는 지 정답 샘플도 같이 주어져야 한다.

\equiv

데이터 분석의 유형 – 지도 학습

- 회귀 분석
 - 수치를 예측하는 것
- 회귀 분석의 응용
 - 경제지표 예측
 - 사회학 연구
 - 마케팅
 - 의학에서 치료효과 분석
- 회귀 분석 알고리즘
 - 선형회귀
 - KNN
 - SVM
 - 로지스틱 회귀
 - 랜덤 포레스트
 - 신경망

데이터 분석의 유형 – 지도 학습

• 분류

- 어떤 항목(item)이 어느 그룹에 속하는지를 판별
- 이진 분류(binary classification)
 - 두 가지 카테고리를 나누는 작업
- 다중 분류(multiclass classification)
 - 세 개 이상의 클래스를 나누는 작업

• 분류의 응용

- 스팸 메일/우수 고객/충성심 높은 신입사원/투자할 좋은 회사 구분
- 매장 입장 고객의 타입 분류
 - 물건을 구매, 단순히 구경, 항의 고객인지 판단하여 적절한 대응
- 과거의 구매 이력/SNS 등을 분석하여 구매 확률이 높은 고객 구분
 - 광고 안내문, 기념품을 잠재 고객에게 보낼 때 필요

데이터 분석의 유형 – 비지도 학습

- 비지도 학습(Supervised learning)
 - 정답(label)은 없고 입력 데이터만 있는 훈련용 데이터(training data)를 이용한 학습을 통해 정답을 찾는 것이 아닌 입력 데이터의 패턴, 특성 등을 발견하는 방법
 - 데이터의 특성을 기술하는 서술형 모델

• 기법

- 군집화(clustering)
 - 유사한 항목들을 같은 그룹으로 묶는다
- 시각화
 - 데이터의 속성을 명확하게 시각화하기 위해서 고차원의 특성 값들을 2차원이나 3차원으로 차원을 축소하는 작업
- 데이터 변환
 - 데이터를 분석하기 좋게 다른 형태로 변환
- 주성분 분석(PCA)
 - 머신 러닝에 사용할 특성의 수를 줄인다.

지도 학습 VS 비지도 학습

Unsupervised Learning

데이터 분석의 유형 – 비지도 학습

• 연관 분석

- 어떤 사건이 다른 사건과 얼마나 자주 동시에 발생하는지 파악
- 자주 발생하는 패턴 찾기(상품의 연관성, 취향의 연관성 등 분석)
- 같이 구매한 상품 분석(market basket analysis, 장바구니 분석)
- 상품의 진열 배치 및 상품 프로모션(쿠폰 발행 등)에 활용

데이터 분석의 유형 – 강화 학습

- 강화 학습(Reinforcement learning)
 - 입력 샘플마다 정답이 있어 답을 알려주는 것이 아니라 일정 기간 동안의 행동(action)에 대해 보상(reward)을 해 줌으로써 어느 방향으로 학습해야하는 지 방향성만 알려주는 학습 방법

• 응용 예

- 게임의 경우 매 입력시마다 답을 주지는 못하지만, 게임을 이기고 있는 지,
 지고 있는 지를 알려 줌
 - 스스로 게임을 잘 수행하는 방법을 터득
- 로봇이 혼자 그네 타는 방법, 바둑 두는 방법을 터득
- Alphago(바둑 프로그램)

머신 러닝

Reinforcement Learning

