(1) Publication number:

0 046 328

12

EUROPEAN PATENT APPLICATION

Application number: 81302654.9

6) Int. Cl.3: C 07 C 2/36, B 01 J 31/18 // C08F110/02, C08F4/80

Date of filing: 15.06.81

③ Priority: 18.08.80 US 179005

Applicant: GULF RESEARCH & DEVELOPMENT COMPANY, P.O. Box 2038, Pittsburgh Pennsylvania 15230 (US)

Date of publication of application: 24.02.82 **Bulletin 82/8**

Inventor: Beach, David L., 1529 Mountain View Drive, Gibsonia Pennsylvania (US) Inventor: Harrison, James J., 211 North Rose Drive, Glenshaw Pennsylvania 15116 (US)

Designated Contracting States: DE FR GB IT

Representative: Huskisson, Frank Mackie et al Fitzpatricks 48 St. Vincent Street, Glasgow, G2 5TT Scotland (GB)

Process for the oligomerization of ethylene in methanol.

(5) Ethylene is oligomerized by reacting ethylene in methanol under oligomerization conditions in contact with a nickel ylide defined by the following Formula I:

$$\begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3 \\ \end{array} = \begin{array}{c} R_1 \\ N \\ \end{array} \begin{array}{c} P_2 \\ M \\ \end{array} \begin{array}{c} C \\ C \\ \end{array} \begin{array}{c} R_2 \\ C \\ \end{array} \begin{array}{c} R_3 \\ C \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ \end{array}$$

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇ and R₈ are either alike or different members selected from the group consisting of hydrogen, alkyl radicals having from about one to about 24 carbon atoms, preferably from about one to N about 10 carbon atoms; aryl radicals having from about six to about 20 carbon atoms, preferably from about six to about 10 carbon atoms; alkenyl radicals having from about two to about 30 carbons atoms, preferably from about two to about 20 carbon atoms; cycloalkyl radicals having from about three to about 40 carbon atoms, preferably from about three to about 30 carbon atoms; aralkyl and alkaryl radicals having from about six to about 40 carbon atoms, preferably from about six to about 30 carbon atoms; a halogen radical selected from the group consisting of fluorine, chlorine, bromine and Ш iodine, preferably chlorine; a hydroxyl group; an alkoxy

or aryloxy group; and a hydrocarbyl group, such as defined above, carrying halogen, hydroxyl or alkoxy or aryloxy; provided that at least one, preferably from about one to about four, of each of R1 to Rs is a sulfonato group (-SO₃-) or an alkyl, aryl, alkenyl, cycloalkyl, aralkyl or alkaryl group carrying a sulfonato group; M is sulfur or oxygen, preferably oxygen; E is phosphorus, arsenic, antimony or nitrogen, preferably phosphorus; and F. is phosphorus, arsenic or antimony, preferably phosphorus. There is thus obtained a reaction product containing (A) a methanol phase having dissolved therein the nickel ylide catalyst and (B) an alpha olefin phase. These two phases are then separated from each other to recover the alpha olefin phase. The use of methanol as the solvent medium causes the reaction product to resolve itself into two phases, an upper phase containing most of the oligomer product and a lower methanol phase carrying the catalyst dissolved therein. This permits easy separation of the product from the reaction mixture and also permits effective recycle of methanol with dissolved catalyst. The product obtained contains normal alpha olefins having from about four to about 100 carbon atoms, generally from about four to about 50 carbon atoms.

PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE IN METHANOL

Cross-References to Related Applications

Reference is made to applicants' following U.S. applications:

U.S. Patent application Serial No. 179079, filed 18 August 1980, entitled "Nickel Ylides".

U.S. Patent application Serial No. <u>179075</u>, filed <u>18 August 1980</u>, entitled "Process for the Preparation of Nickel Ylides Containing Sulfonated Group V Ligands".

U.S. Patent application Serial No. <u>179080</u>, filed <u>18 August 1980</u>, entitled "Process for the Preparation of Nickel Ylides Containing Ylide Ligands With a Sulfonated Group V Component".

U.S. Patent application Serial No. <u>179078</u>, filed <u>IS Angust 1960</u>, entitled "Process for the Preparation of Nickel Ylides Containing Directly Sulfonated Ylide Ligands".

U.S. Patent application Serial No. 179076 filed 18 August 1980, entitled "Process for the Oligomerization of Ethylene".

The disclosures of the foregoing applications are hereby incorporated by reference.

Field Of The Invention

20

The present invention relates to the use of nickel ylides to oligomerize ethylene in methanol as the solvent medium.

Description Of The Prior Art

It is well known in the art to use a variety of catalysts to oligomerize ethylene to higher molecular weight olefins. The term "oligomerize" has been employed, and is employed herein to describe the conversion of lower olefins such as ethylene to olefinic products of higher molecular weight, e.g., to dimer, trimer, tetramer and the like. The reaction rate and product distribution obtained are highly dependent on the exact catalyst composition and the reaction conditions employed. Two such general classes of catalysts are the "Ziegler" types consisting of aluminum trialkyls and the "Ziegler-Natta" types consisting of aluminum alkyls or alkyl halides and titanium halides. Major disadvantages of aluminum alkyl catalysts are their highly reactive and pyrophoric nature and the fact that they must be used at relatively high temperatures, e.g., 200-275°C. and pressures, e.g., 2000-4000 psig Although much milder reaction (13,790 to 27,580 kPa). conditions are used when the aluminum alkyls are used in conjunction with titanium halides, product quality and ease of catalyst separation from products of both of these prior art types of catalysts are not as high as desired.

An article by W. Keim, F.H. Kowaldt, R. Goddard and C. Kruger entitled "Novel Coordination of (Benzoyl-methylene)triphenylphosphorane in a Nickel Oligomerization Catalyst", in Angew. Chem. Int. Ed. Engl. (1978) No. 6, page 466, discloses that a nickel ylide having the structure:

converts ethylene into alpha olefins or polyethylene.
Summary Of The Invention

It has now been found that ethylene can be oligomerized at relatively low operating temperatures and pressures by reacting ethylene in methanol under oligomerization conditions in contact with a nickel ylide defined by the following Formula I:

$$\begin{array}{c}
R_{1} \\
R_{2} \\
R_{5} \\
R_{6}
\end{array}$$

$$\begin{array}{c}
R_{1} \\
R_{1} \\
R_{2} \\
R_{2} \\
R_{3} \\
R_{5}
\end{array}$$

$$\begin{array}{c}
R_{2} \\
R_{2} \\
R_{5} \\
R_{6}
\end{array}$$

$$\begin{array}{c}
R_{2} \\
R_{3} \\
R_{5} \\
R_{6}
\end{array}$$

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇ and R₈ are either alike or different members selected from the group consisting of hydrogen, alkyl radicals having from about one to about 24 carbon atoms, preferably from about one to about 10 carbon atoms; aryl radicals having from about six to about 20 carbon atoms, preferably from about six to about 10 carbon atoms; alkenyl radicals having from about two to about 30 carbons atoms, preferably from about two to about 20 carbon atoms; cycloalkyl radicals having from about three to about 40 carbon atoms, preferably from about three to about 30 carbon atoms; aralkyl and alkaryl radicals having from about six to about 40 carbon atoms, preferably from about six to about 40 carbon atoms, preferably from about six to about 30 carbon atoms; a halogen radical selected from the group consisting of fluorine, chlorine,

bromine and iodine, preferably chlorine; a hyroxyl group; an alkoxy or aryloxy group; and a hydrocarbyl group, such as defined above, carrying halogen, hydroxyl or alkoxy or aryloxy; provided that at least one, preferably from about one to about four, of each of R₁ to R₈ is a sulfonato group (-so₃⁻) or an alkyl, aryl, alkenyl, cycloalkyl, aralkyl or alkaryl group carrying a sulfonato group; M is sulfur or oxygen, preferably oxygen; E is phosphorus, arsenic, antimony or nitrogen, preferably phosphorus; and F is phosphorus, arsenic or antimony, preferably phosphorus. There is thus obtained a reaction product containing (A) a methanol phase having dissolved therein the nickel ylide catalyst and (B) an alpha olefin phase. These two phases are then separated from each other to recover the alpha olefin phase.

10

Specific examples of such nickel ylides are set forth in Table I. In this table and as used elsewhere herein, "Ph" represents phenyl and "Et" represents ethyl.

•													
X	C	0	0	0	. 0	0	0	CO	0	• •	0	· c	0
<u>P</u>	Δ.	, ρ,	Д	P4	P4	<u>е</u>	Д	A	. 84	ρ	, д	. م	, A
料	ρ	P	P4	₽ 4	24	24	As	ρ	A	ρ,	بم ر	ρ	- Α
• •		-				-	•						
~	, 됩	Ph	Ph	ų.	- La	Чđ	Ph	Ph	Ph	.	8	r da-qa	ua.
R,	. os	າ 🖂		Ç.₹ ` 24	æ	so3	so.	ຮວີ	ະວິ	so,	ຮວີ	. so.	n pr
. 19	ца	Ph	A.	ų.	ųď	(O)	r u	Ph Ph	CH2Ph.	ph	Ph	Ph	. bh
a S	Ph	. ya	୍ ଅ	a.		r L	ua	Ph	CH ₂ Ph	ha .	Ph.	Ph Ph	ua
, K	ųď		r U	. ya	ψ	an .	ьµ	발	CH ₂ Ph	Ph	Ph	Ph Ph	
#	Ph	ų.		, Mg	чa	ча	bh.	Ph	Na	Ph	ųa	Ph	Va
27	ųď	h Ph	ųa	ь	Ph Ph	a.	Ъh	ьh	ħ	Ph	Ph	Ph	B t
a ^r	ųđ .	, ua	ų	-cos		Ph Ph	ъh	. Ph	L	ų.	Ph	Ph.	Bt
punod	-	7	m	4	en.	v	7	∞	o.	2	=		,

×	0	0		0		0	P. As S	0	•	0	w	0	0
p.			ρ,			Ä	ž	A	Pi	Ģ	ρι	. ₹	24
M	Z	Sb	24	ρι	A	Pi	P 4	ρ,	24	Ž,	ρı,	.	A
æ	ьh	h.	ųa .	io ₃ Ph	Ъh	ча	CH ₃	OCH ₃	OCH ₃	ORt	ос ₄ н ₉	OCH ₃	-{0}-03-0
⁸	. SO3	. so	. so3	2)3 ^{CH} 2-6	803.T	so ₃	. ua	m	m .	. 803	Ħ	. so	Ħ
#	既	ųď	(c)	Ph (CE	Чđ	Ph	(O)	ųа	ਪੂ ਰ .	ца	. Ha	ър	a L
ജ	Bt	Ph	(O)-61	ha	ų d	(O)	Ph (O) so.	. ua	Ph	. ųa	dd.	- (©)	ha.
R 4	Bt	Ph		Ph	ya	чa	ų.	ųď	Ph	Ph	Ph	ų.	Ph
æ	Na	ųa	ьh	Ph	Ħ	Ph.	ь	Ph		Ha	- So.	· CH3	h.
₂ 2	Ph	Ph	և	ųđ.	Ħ	ųa.	. Bh	ъh		ha	CH ₃	CH ₃	чa
							ųa						
							20						

TABLE I (continued)

	e e	O A A	As P S	P As 0	As P 0	0 4 4	O & &	As As S	о е	As P S	0 d	as as s	O & &	As P 0	P As 0
	ထိ	. 0 - (O) - 803 _	0C3B7	CH ₃	CH ₃	OC4H9	⁶ н ⁸	CH3	-(O)-0CH3	-{O}-0CH ₃	 25	Сн3	æ	OCR3	чa
	. A	803	Ħ	Ħ	803.1	. SO3	Ħ	. SO3	=	. so3	so ₃	go .	SO ₃		. 803
nica)	9	ų.	h	ħ.	cyclo- hexyl	Bt	路	CH ₃ ·	. Ph	44	ųa	da •	×	Na	butyl
E (continued)	er Kn	ч	ag.	Чđ	cyclo- hexyl	园 九	M T	CH ₃	ųa	ųď.	The same		#	· Ph	butyl
TABLE	ж Т	Ph	() () ()	h	cyclo- hexyl	표 (- (0)	CH ₃	Ph	(a)	ъh	Ph	Ħ	ųа	butyl
	æ	ų d	44	Ъh		CH3		CH ₃	da da	Ph	A L	B T	=		Ph
	8		4a .	(a)	r H	CH ₃	CH ₃	CH ₃		CH ₃ Bt	ьh	a a	E		ųa
	«	a q	ųa	ųď	ų	CH ₃	CB ₃	Th.	ųa .	CH3	m	ųa	ha		Ph
			28									37			

The use of methanol as the solvent medium causes the reaction product to resolve itself into two phases, an upper phase containing most of the oligomer product and a lower methanol phase carrying the catalyst dissolved therein. This permits easy separation of the product from the reaction mixture and also permits effective recycle of methanol with dissolved catalyst. The product obtained contains normal alpha olefins having from about four to about 100 carbon atoms, generally from about four to about 50 carbon atoms.

Description Of The Preferred Embodiments

10

20

30

The only components required in the reaction zone are ethylene, the nickel ylide catalyst and methanol If desired methanol need not be as carrier or solvent. used alone as solvent but can be used with up to about 50 weight percent, preferably from about five to about 30 weight percent, of the oligomer product dissolved therein. The order of addition of these components (ethylene, catalyst and methanol) to the reaction zone is not critical, although it is preferred that catalyst and methanol first be heated to reaction temperature and then to add rapidly The reaction can be ethylene to the desired pressure. carried out in any manner that assures contact between ethylene and catalyst, for example, in a batch reactor or in a continuous stirred tank reactor.

The amount of nickel ylide catalyst used, which is soluble in the methanol solvent, will be such that its concentration therein will be in the range of about 0.0001 to about 1.0 moles per liter of solvent, preferably in the range of about 0.0005 to about 0.1 moles per liter of solvent. Ethylene is added to the reaction zone as needed, but throughout the reaction the ethylene pressure is maintained in the range of about 10 to about 700 pounds per square inch gauge (68.9 to 4826 kPa), preferably about 300

to about 600 pounds per square inch gauge (2069 to 4137 kPa), most preferably about 350 to about 550 pounds per square inch gauge (2413 to 3792 kPa). The reaction temperature can be in the range of about -20° to about 200°C., preferably in the range of about 20° to about The contact time (the length of time between the exposure of catalyst to ethylene and the separation of unreacted ethylene and/or reaction product from the catalyst) can be in the range of about one minute to about 72 10 hours, preferably in the range of about 10 minutes to about 24 hours. Throughout the reaction period the reaction mixture is agitated. Ethylene conversion under optimum reaction conditions can be in excess of about 90 percent and can reach up to about 99 percent.

At the end of the reaction period, the gaseous components that may be present in the reaction product, for example, unreacted ethylene, C_A olefins, etc., are flashed therefrom and ethylene recycled to the reaction The remainder of the reaction product zone if desired. 20 will consist of two liquid phases, an upper phase containing the bulk of the desired ethylene oligomerization product and, possibly, traces of methanol, while the lower phase will contain methanol, catalyst and, possibly, up to about 50 weight percent, based on the total lower phase, of ethylene oligomer product, but generally from about five to about 30 weight percent of ethylene oligomer pro-These two phases can be separated from each other by any conventional means, for example, by decantation, by centrifuging, etc. In a preferred embodiment the lower 30 methanol phase is recycled to the reaction zone for use The components of the upper liquid phase can be separated into any suitable fraction by any suitable means, for example, by fractional distillation.

The nickel ylide catalyst used in the process of this invention can be prepared using several different procedures. The following procedure, Procedure I, relates

to the preparation of nickel ylides wherein the sulfonato group is located in R_4 , R_5 and/or R_6 and at least one of R_4 , R_5 and R_6 is aryl.

The first step in Procedure I involves sulfonating a ligand defined by the formula:

10

. 20

wherein R₄ to R₆ and E are as defined above, provided that at least one of R_4 , R_5 and R_6 is an aryl group as defined above using SO3 in the presence of a strong inorganic mineral acid, such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. Specific examples of such ligands that can be used include: allyldiphenylphosphine; benzyldiphenylphosphine; bis(3-aminopropyl)phenylphosphine; bis(2-cyanoethyl)phenylphosphine; bis(m-fluorophenyl)phosphinous chloride; 4-bromophenyldiphenylphosphine; n-butyldiphenylphosphine; t-butyldiphenylphosphine; 2-cyanoethyldiphenylphosphine; cyclohexyldiphenylphosphine; n-decylphenylphosphine; diallylphenylphosphine; di-n-amylphenylphosphine; di-sec-butylphenylphosphine; dicyclohexylphenylphosphine; di-ethylphenylphosphine; di-n-heptylphenylphosphine; di-n-hexylphenylphosphine; dimethylphenylphosphine; dimethyl-p-tolylphosphine; diphenyl-n-butoxyphosphine; diphenylchlorophosphine; didiphenylethoxyphosphine; phenylenephenylphosphine; phenylmethoxyphosphine; diphenylphosphine; beta-diphenylphosphinoethyltriethoxysilane; di-iso-propylphenylphosphine; di-o-tolylphenylphosphine; divinylphenylphosphine; ethyldiphenylphosphine; n-hexyldiphenylphosphine; methoxyphenyldiphenylphosphine; (2-methylbutyl)diphenylphosphine; methyldiphenylphosphine; methylethylphenylphosphine; methylphenylphosphine; neomenthyldiphenylphosphine;

pentafluorophenyldiphenylphosphine; (2-phenylbutyl)diphenylphosphine; phenyldi-n-butoxyphosphine; phenyldichlorophosphine; phenyldiethoxyphosphine; phenyldimethoxyisopropyldiphenylphosphine; phenylphosphine; n-propyldiphenylphosphine; o-tolyldiphenylphosphine; tolyldiphenylphosphine; tribenzylphosphine; tris(m-chlorophenyl)phosphine; tris(p-chlorophenyl)phosphine; naphthyl)phosphine; triphenylphosphine; tris(4-dimethylaminophenyl)phosphine; tris(p-fluorophenyl)phosphine; tris(o-methoxyphenyl)phosphine; tris(p-methoxyphenyl)phosphine; tri-o-tolylphosphine; tri-m-tolylphosphine; tri-ptolylphosphine; vinyldiphenylphosphine; sodium diphenylphosphinebenzene-3-sulfonate; disodium phenylphosphinebis(benzene-3-sulfonate); dimethylphenylarsine; methyldiphenylarsine; triphenylarsine; tri-p-tolylarsine; diphenylchloroarsine; triphenylantimony; triphenylamine; tribenzylamine; methyldiphenylamine; and dimethylphenylamine.

10

20

30

It is preferred to use fuming sulfuric acid $(H_2SO_4. \times SO_3, \text{ where x can be, for example, from about}$ 0.1 to about 0.6, preferably from about 0.2 to about 0.4). The amount of SO₃ is not critical and can vary over a wide range, for example, at least about one mole per mole of ligand, preferably from about two to about 20 moles per mole of ligand. The two reactants are stirred and heated at a temperature of about 0° to about 200°C., preferably about 40° to about 100°C., for about one minute to about 48 hours, preferably for about 30 minutes to about four hours. Any suitable pressure can be used, although atmos-At the end of this period pheric pressure is preferred. the reactor contents are cooled to a temperature of about -30° to about 50°C., preferably about room temperature (about 26°C.), after which sufficient water and a suitable base, such as an alkaline metal hydroxide, an alkali metal alkoxide, ammonium hydroxide, & hydrocarbyl-substituted ammonium hydroxide, ಆಟರ. ೬೯೬ ತಿರೆಡಿಂದೆ thereto to crystallize

the sulfonated ligand out of solution. For example, the amount of water used can range from about 10 milliliters to about 10 liters per mole of sulfonated ligand. The crystals can be recovered in any suitable manner, for example, by filtration, decantation or by centrifuging.

In the second step of Procedure I, the sulfonated ligand obtained in the first step is reacted with any zero valent nickel compound, or any nickel compound convertible to a zero valent nickel compound in situ, and a ylide defined by the following Formula II:

wherein R_1 , R_2 , R_3 , R_7 , R_8 , M and F are as defined above. Specific examples of such nickel compounds which can be used include: tris(triphenylphosphine)nickel; bis(cyclooctadiene) nickel; tetrakis (triphenylphosphine) nickel; bis-(cycloocta-1,5-diene)duroquinone (norbornadiene) nickel; nickel; (dicyclopentadiene)duroquinone nickel; bis(tetracyclone) nickel; tetrakis (triethylphosphine) nickel; tris-(triethylphosphine)nickel; bis(triphenylphosphine)nickel dicarbonyl; nickel carbonyl; nickel(II)acetylacetonate; nickelocene; bis(triethylphosphine)nickel(II)chloride; tetrakis(trifluorophosphine)nickel; nickel acetate; nickel bromide; nickel carbonate; nickel chloride; nickel fluoride; nickel iodide; nickel nitrate; nickel sulfate; nickel 2,4-pentanedionate; bis π -allyl nickel; and nickel di-Specific examples of ylides coming chloride hexaamine. within the definition of Formula II are set forth in Table II.

20

											0			
54	A.	ρι	ρι	ρı	A	д	Α,	×	Δı	P4	β 4	P4	Ã	ρι
æ	Ph	чa	Ph	ча	. v	ца	оснз	CHOO	OCH ₃	OCH ₃	осн3	CH ₃	E _H 20	CH ₃
R	Ħ	·	SO3	.so3_		. so		.so3_	: m	EI .	so ₃	EC.	.so3	#
æm	Чď	. ha	ųď	Ьh	Ph	ųa .	ųď	Na	Ъh	Ph	чa	h4	Ph	ųď
N _N	ya .	Ph .	Ph	Ph	ha	(O)	ųa .	ьh	h	. Ph	- €%	. , , dq	Ъh	h H
g ^{ri}	Ph	Ph	Ph	Ph		44	ъħ	ųď	ųď	-[03]	- 44	ųď .	. ha	
Com-	-	7	က	· 4	ស	9	7	∞	6	10	.11	12	13	14

•	×	•	6	0	0	o	Ø	Ø	0	•	w		0	w	0
	β i	ρι	A	A	<u>α</u>	ρι	C I	<u>α</u>	P4	Pr	Ω 4	Д	<u>Α</u>	Ω ₁	P4
٠	8 #	CH ₃	CH ₃	CH ₃	h	ે પ ઢ	Чđ	Ph	h	чa	4a	оснз	CH ₃	OCH3	CH ₃
(continued)	R	. so ₃	so₃-	Ħ	Ħ	. 803	Ħ	so ₃	503	ш;	. so ₃	m	so ₃	m .	m
빏	. æ	ьh	Ph	Ъþ	CH ₃	CH ₃	CB3	CH ₃	四十	ßt	чa	CH ₃	편	m t	CH ₃
	# N		Чď	Ph	CH ₃ .	CH ₃	CH ₃	CH ₃	# (- (o)	Cyclo- hexyl	CH3 .	Ph	ųa.	CH ₃
	R L	ų.	. u	ųa	CH ₃	CH ₃	CH ₃	CH ₃	n T	CH ₃	CH ₃	CH ₃	GH3	- So-	. CH3
	. তু	15									24	25	5 6	27	28

Rance II

Rance CH3

CH3

CH3

Ph

Ph

Ph

CH3

CH3

CH3 ল্য ল্য

		o qs	O qg									ପ୍ତ ପ୍ତ କ କ	ପ୍ତ ପ୍ତ କ କ	8 8 P P P	8 8 P P P P
			-						•	•	•	•			Ph Ph OC ₃ H ₇ OC ₃ H ₇ OC ₃ H ₉ OC ₃ H ₉
rable II (continued)	R	Ħ	803 <u> </u>	Ħ	so ₃	m	so ₃		M	ж 80 ³	ж в - со	ж ж ж ж	ж ж ж ж	ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж	ж ж ж год
TABLE II	e K	. ya	ца	ча	qa	ца	Ph		CH3	CH ₃	CH ₃	CH3 Ph Ph	CH3 Ph Ph Ph	CH3 CH3 Ph Ph Ph	CH3 CH3 Ph Ph Ph Ph
	8	ųď	ųď		So.	hđ	Ph		CH ₃	CH.3. Ph	CH ₃ . Ph	CH. Sh Ph A	GH AR AR OO - coo	Ph P	CH ₃ Ph P
	æ	ı La	ьh	ьр	Ph	ph	Na	•	CH3	CH ₃	CH3 CH3	CH3 CH3 Ab	CH3 Ph Ph Ph	CH3 Sh Ph Ph Ph	CH3 Ph Ph P
	Com- pound	43	44	45	46	47	48		49	49 50	50 51	50 51 52	51 53 53	52 51 50 54 54 54 54 54 54 54 54 54 54 54 54 54	50 51 53 53 53 53

In this second step approximately equal molar amounts of each of the three reactants defined above are dissolved in any suitable unreactive solvent, such as toluene, tetrahydrofuran, dioxane, or other unreactive hydrocarbon solvents, and stirred while maintaining a temperature of about 0° to about 100°C., preferably room temperature, for about one-half hour to about 48 hours, preferably about three to about 20 hours, sufficient to ensure complete reaction. Any suitable pressure can be used, although atmospheric pressure is preferred. solvent can be removed from the reaction mixture in any suitable manner, for example, by distillation, including vacuum distillation, if necessary, leaving behind the compound defined above. On the other hand, a second solvent in which the desired product is insoluble, such as heptane, can be added to the reaction product to precipitate the compound therein. The compound can be recovered, for example, by filtration, decantation or by centrifug-

The following procedure, Procedure II, relates to the preparation of nickel ylides wherein the sulfonato group is located in R_1 , R_2 , and/or R_3 . In this procedure, the first step involves reacting a ligand, defined by the formula:

$$F \stackrel{R_1}{\underset{R_2}{<}}$$

wherein R₁, R₂, R₃ and F are as defined above, provided that at least one of R₁, R₂ and R₃ is a sulfonato group or an alkyl, aryl, alkenyl, cycloalkyl, aralkyl or alkaryl, as defined above, carrying a sulfonato group, with an alpha substituted ketone or aldehyde or an alpha substituted thicketone or thicaldehyde defined by the following formula:

wherein R_7 , R_8 and M are as defined above and X is a halogen radical selected from the group consisting of fluorine, chlorine, bromine and iodine, preferably chlorine and bromine, a tosyl group (a toluene sulfonate group), or an acetate group. The sulfonated ligand can be obtained in any conventional manner by sulfonating the appropriate trihydrocarbyl phosphine, arsine or stibine or by sulfonating using the procedure employed in Procedure I. examples of ligands that can be used include: allyldiphenylphosphine; benzyldiphenylphosphine; bis(3-aminopropyl)phenylphosphine; bis(2-cyanoethyl)phenylphosphine; bis(mfluorophenyl)phosphinous chloride; 4-bromophenyldiphenylphosphine; n-butyldiphenylphosphine; t-butyldiphenylphosphine; 2-cyanoethyldiphenylphosphine; cyclohexyldiphenylphosphine; n-decylphenylphosphine; diallylphenylphosphine; di-n-amylphenylphosphine; di-sec-butylphenylphosphine; dicyclohexylphenylphosphine; di-ethylphenylphosphine; di-nheptylphenylphosphine; di-n-hexylphenylphosphine; dimethylphenylphosphine; dimethyl-p-tolylphosphine; diphenyl-n-butoxyphosphine; diphenylchlorophosphine; diphenylenephenylphosphine; diphenylethoxyphosphine; phenylmethoxyphosphine; diphenylphosphine; beta-diphenylphosphinoethyltriethoxysilane; di-iso-propylphenylphosphine; di-o-tolylphenylphosphine; divinylphenylphosphine; ethyldiphenylphosphine; n-hexyldiphenylphosphine; methoxyphenyldiphenylphosphine; (2-methylbutyl)diphenylphosphine; methyldiphenylphosphine; methylethylphenylphosphine; methylphenylphosphine; neomenthyldiphenylphosphine; pentafluorophenyldiphenylphosphine; (2-phenylbutyl)diphenylphosphine; phenyldi-n-butoxyphosphine; chlorophosphine; phenyldiethoxyphosphine; phenyldimethoxy-

10

20

30

phosphine; phenylphosphine; isopropyldiphenylphosphine; npropyldiphenylphosphine; o-tolyldiphenylphosphine; ptolyldiphenylphosphine; tribenzylphosphine; tris(m-chlorophenyl)phosphine; tris(p-chlorophenyl)phosphine; naphthyl)phosphine; triphenylphosphine; tris(4-dimethylaminophenyl)phosphine; tris(p-fluorophenyl)phosphine; tris(o-methoxyphenyl)phosphine; tris(p-methoxyphenyl)phosphine; tri-o-tolylphosphine; tri-m-tolylphosphine; tri-ptolylphosphine; vinyldiphenylphosphine; sodium diphenylphosphinebenzene-3-sulfonate; disodium phenylphosphinebis(benzene-3-sulfonate); dimethylphenylarsine; methyldiphenylarsine; triphenylarsine; tri-p-tolylarsine; diphenylchloroarsine; and triphenylantimony. Specific examples of such alpha substituted ketones or aldehydes and of alpha substituted thicketones or thicaldehydes that can be used herein include: phenacylchloride; phenacylbromide; alphaacetoxyacetophenone; alpha-bromo-2'-acetonaphthone; alphabromoacetone; 3-bromocamphor; alpha-bromo-p-chloroacetophenone; alpha-bromo-2',4'-dimethoxyacetophenone; bromoiosbutyrophenone; alpha-bromo-o-methoxyacetophenone; alpha-bromo-m-methoxyacetophenone; alpha-bromo-p-methoxyacetophenone; alpha-bromo-4'-methylacetophenone; p-bromophenacrylbromide; alpha-bromopropiophenone; chloroacetone; alpha-chloro-p-fluoroacetophenone; alpha-chlorobutyrophenone; p-chlorophenacylchloride; alpha-chloropropiophenone; alpha-chlorothioacetophenone; alpha-bromothioacetophenone; alpha-chloroethylnaphthylketone; alphachloromethylacetate; alpha-bromomethylacetate; alphachloroethylacetate; alphabromoethylacetate; alpha-chloropropylacetate; alpha-30 chlorobutylacetate; alpha-chlorophenylacetate; alphachloro-p-sulfonatophenylacetate; alpha-bromopropylacetate; alpha-bromobutylacetate; alphabromophenylacetate; and alpha-bromo-p-sulfonatophenylacetate.

20

The reaction between the sulfonated ligand and the ketone or aldehyde is carried out using about equal molar amounts of each reactant while they are dissolved in an appropriate hydrocarbon solvent, such as toluene or tetrahydrofuran, and the reaction is carried out at a temperature of about 20° to about 200°C., preferably about 50° to about 150°C., and any suitable pressure, preferably atmospheric, for about one to about 24 hours, preferably for about two to about eight hours. The reaction mixture is then cooled, preferably to room temperature. If a solid results from such cooling it is recovered in any suitable manner, for example, by filtration, decantation or by centrifuging. If solids do not form, the reaction mixture can be subjected to distillation to remove solvents therefrom, leaving behind solid material, which is a salt defined by the following Formula III:

10

20

30

wherein R_1 , R_2 , R_3 , R_7 , R_8 , F, M and X are as defined in the previous paragraph.

To convert the above salt to the corresponding ylide, the salt is reacted with a stoichiometric amount of a base, such as an alkali metal hydroxide (sodium or potassium hydroxide), an alkyl or aryl lithium (n-butyl lithium, methyl lithium or phenyl lithium), an alkoxide (sodium methoxide or potassium t-butoxide), a hydrocarbylsubstituted ammonium hydroxide (benzyltrimethylammonium hydroxide), ammonium hydroxide, ammonia, etc. This can be done, for example, by suspending or dissolving the salt in a suitable liquid, such as water, an alcohol (ethanol or isopropanol), an aromatic (benzene or toluene), a hydrocarbon (hexane or heptane), etc. The reaction temperature can range from about room temperature to about 200°C., preferably from about room temperature to about 50°C., and the reaction time from about one minute to about four hours, or even longer, but preferably from about one to about two hours. Elevated pressures can be used, although If the ylide obtained atmospheric pressure will suffice. is a solid, recovery can be effected by filtration, decantation or by centrifuging. If the ylide is dissolved in the solvent, simple distillation is sufficient to remove the solvent, leaving behind the solid ylide. cases in association with the ylide so recovered will be the salt corresponding to the base that was used. ample, use of sodium hydroxide produces the corresponding The salt and the desired ylide can be sepsodium salt. arated from each other in any convenient manner, for example, by extraction with a solvent that will dissolve one and not the other. For example, aromatics, such as toluene, can be used to dissolve the ylide, while water can be used to dissolve the salt. The ylide obtained can be defined by the following Formula IV:

10

3.

wherein R_1 , R_2 , R_3 , R_7 , R_8 , F and M are as defined in Formula III.

The above identified ylide (Formula IV) is then reacted with (1) a ligand defined by the formula:

$$E \stackrel{R_4}{\underset{R_6}{\longleftarrow}}$$

where R₄, R₅, and R₆ can be a hydrocarbyl, as defined above, a sulfonated hydrocarbyl or a sulfonate group, and E is as defined above; and (2) a zero valent nickel compound, following the procedure of Procedure I. Specific examples of ligands that can be used include: allyldiphenylphosphine; benzyldiphenylphosphine; bis(3-aminopropyl)-

phenylphosphine; bis(2-cyanoethyl)phenylphosphine; bis(mfluorophenyl)phosphinous chloride; 4-bromophenyldiphenylphosphine; n-butyldiphenylphosphine; t-butyldiphenylphosphine; 2-cyanoethyldiphenylphosphine; cyclohexyldiphenylphosphine; n-decylphenylphosphine; diallylphenylphosphine; di-n-amylphenylphosphine; di-sec-butylphenylphosphine; dicyclohexylphenylphosphine; diethylphenylphosphine; heptylphenylphosphine; di-n-hexylphenylphosphine; dimethylphenylphosphine; dimethyl-p-tolylphosphine; diphenyl-n-butoxyphosphine; diphenylchlorophosphine; di-10 diphenylethoxyphosphine; diphenylenephenylphosphine; phenylmethoxyphosphine; diphenylphosphine; beta-diphenylphosphinoethyltriethoxysilane; di-iso-propylphenylphosphine; di-o-tolylphenylphosphine; divinylphenylphosphine; ethyldiphenylphosphine; n-hexyldiphenylphosphine; omethoxyphenyldiphenylphosphine; (2-methylbutyl)diphenylphosphine; methyldiphenylphosphine; methylethylphenylphosphine; methylphenylphosphine; neomenthyldiphenylphosphine; pentafluorophenyldiphenylphosphine; (2-phenylbutyl)diphenyldi-n-butoxyphosphine; phenyldiphenylphosphine; 20 chlorophosphine; phenyldiethoxyphosphine; phenyldimethoxyphosphine; phenylphosphine; isopropyldiphenylphosphine; npropyldiphenylphosphine; o-tolyldiphenylphosphine; ptolyldiphenylphosphine; tribenzylphosphine; tris(m-chlorotris(p-chlorophenyl)phosphine; phenyl)phosphine; naphthyl)phosphine; triphenylphosphine; tris(4-dimethylaminophenyl)phosphine; tris(p-fluorophenyl)phosphine; tris(o-methoxyphenyl)phosphine; tris(p-methoxyphenyl)phosphine; tri-o-tolylphosphine; tri-m-tolylphosphine; tri-ptolylphosphine; vinyldiphenylphosphine; sodium diphenyl-30 phosphinebenzene-3-sulfonate; disodium phenylphosphinebis(benzene-3-sulfonate); dimethylphenylarsine; methyldiphenylarsine; triphenylarsine; tri-p-tolylarsine; diphenylchloroarsine; triphenylantimony; triphenylamine; tribenzylamine; methyldiphenylamine; dimethylphenylamine;

bis(2-cyanoethy1)phosphine; bis(dimethylamino)methylphosphine; t-butyldichlorophosphine; 2-cyanoethylphosphine; cyclohexylphosphine; di-t-butylchlorophosphine; dicyclohexylphosphine; diethylethoxyphosphine; diethyl-iso-propoxyphosphine; diethylphosphine; triallylphosphine; triiso-butylphosphine; tri-n-butylphosphine; tri-sec-butylphosphine; tri-t-butylphosphine; triethylphosphine; trin-hexylphosphine; trimethylphosphine; trifluorophosphine; tri-iso-propylphosphine; tri-n-propylphosphine; cyanoethyl)phosphine; tris(dimethylamino)phosphine; tris-(trimethylsilyl)phosphine; tri-n-butylantimony; triethylarsine; trimethylarsine; methyldiiodoarsine; trimethylamine; triethylamine; tributylamine; tripropylamine; dimethylamine; di-n-hexylamine; dicyclohexylamine; diethylamine; tricyclohexylamine; ammonia; and phosphine.

The following procedure, Procedure III, relates to the preparation of nickel ylides wherein the sulfonato group is in R₇. In the first step, the ylide defined by the following Formula V:

wherein each of R₁, R₂, R₃, and R₈ are hydrocarbyl radicals as defined above, and each of F and M is an element as defined above, is sulfonated to obtain the following sulfonated ylide defined by the following Formula VI:

wherein each of R_1 , R_2 , R_3 , R_8 , M and F is as defined in Formula V. In some cases, for example, where R_1 , R_2 , R_3 and R_8 are phenyl, M is oxygen and F is phosphorus the

following Formula VII may more accurately describe the structure:

$$R_1$$
 R_2
 P^+
 C
 C
 C
 C
 R_8

This first step can be done, for example, by dissolving the ylide of Formula V in a suitable solvent, for example, a halogenated hydrocarbon, such as chloroform, dichloroethane, methylene chloride or methyl chloroform, or a hydrocarbon solvent, such as heptane or hexane and then adding SO₃ to the resulting solution. The ylide and sulfonating agent are generally employed in equal molar amounts, although excess sulfonating agent can be present, if desired. Temperatures can be in the range of about 0° to about 200°C., preferably from about 20° to about 100°C., pressures can be elevated, although atmospheric pressure is preferred, and reaction times can vary from about five minutes to about 24 hours, preferably from about ten minutes to about four hours.

At the end of the reaction time the compounds defined by Formula VI or VII are recovered by any suitable means. If the sulfonated desired product is solid, recovery can be effected by filtration, decantation or by centrifuging. If the desired product is dissolved in the reaction medium, recovery can be effected by distillation to remove the solvent therefrom.

The sulfonated product is converted to the corresponding ylide by reacting the same with a base, such as an alkali metal hydroxide (sodium or potassium hydroxide), an alkyl or aryl lithium (n-butyl lithium, methyl lithium or phenyl lithium), an alkoxide (sodium methoxide or potassium t-butoxide), a hydrocarbyl-substituted ammonium hydroxide (benzyltrimethylammonium hydroxide), ammonium hydroxide, ammonia, etc., to produce the following ylide defined by Formula VIII:

$$R_1 \rightarrow F = C - C - C - R_8$$

wherein R_1 , R_2 , R_3 , R_8 , F and M are as defined in Formula VI and A is the cationic portion of the base used. can be done, for example, by suspending or dissolving the sulfonated ylide in a suitable liquid, such as water, an alcohol (ethanol or isopropanol), an aromatic (benzene or tcluene), a hydrocarbon (hexane or heptane), etc. reaction temperature can range from about room temperature to about 200°C., preferably from about room temperature to about 50°C., and the reaction time from about one minute to about four hours, or even longer, but preferably from about one to about two hours. Elevated pressures can be used, although atmospheric pressure will suffice. ylide obtained is a solid, recovery can be effected by filtration, decantation or by centrifuging. If the ylide is dissolved in the solvent, simple distillation is sufficient to remove the solvent, leaving behind the solid ylide.

10

The sulfonated ylide defined by Formula VIII is then reacted with (1) a ligand defined by the formula:

$$\mathbf{E} \overset{\mathbf{R_4}}{\overset{\mathbf{R_5}}{\overset{\mathbf{R_5}}{\overset{\mathbf{R_6}}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}}}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}_6}{\overset{\mathbf{R}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}{\overset{\mathbf{R}}{\overset{\mathbf{R}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}{\overset{\mathbf{R}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}{\overset{\mathbf{R}}}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}}}{\overset{\mathbf{R}}}}}}$$

wherein R₄, R₅, and R₆ can be hydrocarbyl, as defined above, a sulfonated hydrocarbyl or a sulfonato group, and E is as defined above; and (2) a zero valent nickel compound, following the procedure of Procedure I. Specific examples of ligands that can be used include those previously set forth in Procedure II as examples of the ligand:

$$E \stackrel{R_4}{\underset{R_6}{<}}$$

The following examples illustrate the invention, and are not intended to limit the invention, but rather, are presented for purposes of illustration. Examples I through III illustrate the preparation of nickel ylides useful in the process of this invention; and Example IV illustrates the use of nickel ylides to oligomerize ethylene in accordance with the process of this invention.

Example I

This example is illustrative of Procedure I. To
20 milliliters of 30 percent fuming sulfuric acid there
were added slowly with cooling 10 grams of triphenylphosphine. The solution was then heated to 80°C. and every
five minutes the solution was tested by adding one drop of
the solution to water until a clear solution was obtained.
The reaction mixture was cooled to room temperature,
poured into 200 cc of water and neutralized with 10 percent aqueous sodium hydroxide. After setting the solution
overnight at room temperature, the desired product separated by crystallization and was recovered by filtration.

20 The recovered product, sodium diphenylphosphinobenzene-3sulfonate has the following structure:

(Compound 1)

To 1.40 grams of bis(cyclooctadiene)nickel (5.1 millimoles) in 30 milliliters of toluene under an argon atmosphere there was added a solution of 1.86 grams of

Compound 1 (5.1 millimoles) and 1.94 grams (5.1 millimoles) of benzoylmethylenetriphenylphosphorane:

(Compound 2)

in 20 milliliters of toluene. After stirring for 18 hours at room temperature, the reaction mixture was heated to 50°C. to remove the solvent under a reduced pressure of 10 to 100 millimeters of mercury. The reaction mixture was transferred to an argon filled dry box and dissolved in toluene. Hexane was added to precipitate the product identified below as Compound 3. A total of 3.13 grams in 75 percent yield of the compound was recovered.

10

(Compound 3)

Example II

This example is illustrative of Procedure II. To 4.65 grams of alpha-chloroacetophenone (0.03 mole) in 150 milliliters of toluene there were added 10.92 grams of Compound I (0.03 mole). This was heated to reflux under argon for five hours and then cooled and filtered. A total of 14.52 grams of the phosphonium salt:

(Compound 4)

was obtained which was suspended in ethanol/water and titrated with 10 percent sodium hydroxide to a phenol-phthalein end point. The ethanol was removed in vacuo and the product was washed with toluene to remove a small amount of unsubstituted benzoylmethylene triphenylphosphorane (1.2 grams). A total of 12.89 grams of the following phosphonium compound:

$$Ph - C - C = PPh_2 \left(So_3^-Na^+ \right)$$

(Compound 5)

was obtained in 89 percent yield.

(five millimoles) in 70 milliliters of tetrahydrofuran there was added a mixture of 1.31 grams of triphenylphosphine (five millimoles) and 2.41 grams of Compound 5 (five millimoles) dissolved in 70 milliliters of tetrahydrofuran. This was stirred at room temperature for 18 hours, after which the solvent was removed in vacuo. The resulting product was dissolved in toluene and filtered. Heptane was then added to precipitate the following nickel ylide:

(Compound 6)

Example III

This example is illustrative of Procedure III. To 4.01 grams of pyridine (0.05 mole) in 250 milliliters of dichloroethane there was added 6.97 grams of sulfur trioxide (0.087 mole) at 0°C. under nitrogen. After stirring for 0.5 hour, a solution of 19.05 grams of unsubstituted benzoylmethylenetriphenylphosphorane (0.05 mole) in 200 milliliters of dichloroethane was added. This was then heated to reflux for one hour. The reaction mixture was cooled to room temperature and the solvent removed in yacuo. The resulting product was then suspended in ethyl alcohol and filtered to give 19.7 grams of a white solid of the following phosphonium salt in 86 percent yield:

(Compound 7)

Compound 7 was also prepared as follows. To 29 grams of benzoylmethylenetriphenylphosphorane (0.076 mole) in 500 milliliters of dichloroethane at 25°C. under nitrogen there was added 5.47 milliliters of sulfur trioxide

(0.132 mole). After stirring for 18 hours the solvent was removed in vacuo. Then 450 milliliters of ethanol and 50 milliliters of water were added and the mixture stirred for one-half hour. The product was filtered and washed with ether to give 31.8 grams, 87 percent yield, of Compound 7.

Compound 7 was then suspended in water and titrated with 10 percent aqueous sodium hydroxide to a phenolphthalein end point. The water was then removed in vacuo and final traces removed via ethanol azeotrope to give 20.7 grams of the following ylide in 86 percent yield:

10

20

(Compound 8)

The nickel ylide, defined below as Compound 9, was prepared as follows. To 1.38 grams of bis(cyclooctadiene)nickel (five millimoles) in 30 milliliters of tetrahydrofuran there was added a mixture of 1.31 grams of triphenylphosphine (five millimoles) and 2.41 grams of Compound 8 (five millimoles) dissolved in 70 milliliters of tetrahydrofuran. The reaction mixture was stirred for 18 hours at room temperature, after which solvent was removed in vacuo. The resulting solid was dissolved in toluene and filtered. A yellow solid, which precipitated upon addition of heptane, was recovered by filtration. A total yield of 3.65 grams of Compound 9 was recovered in 91 percent yield.

(Compound 9)

When Example III above was repeated except that Compound 7 was titrated with potassium hydroxide, ammonium hydroxide and trimethylphenylammonium hydroxide in place of 10 percent aqueous sodium hydroxide the following nickel ylides, respectively, were obtained:

(Compound 10)

(Compound 11)

and

(Compound 12)

In producing Compounds 10, 11 and 12 identified above, it is apparent that the following ylides corresponding to Compound 8, respectively, will also be obtained:

(Compound 13)

(Compound 14)

and

Example IV

Into a reactor there was charged 0.2 gram (0.25 millimole) of the specific nickel ylide compound identified as Compound 9 in Example III hereof dissolved in 100 milliliters of methanol. During the reaction precautions were taken to exclude air contamination by performing the reactions in an argon atmosphere. The reaction mixture was then heated to 50°C. and pressured with ethylene to obtain a partial pressure therein of 500 pounds per square 10 inch gauge (3447 kPa). The reaction mixture was stirred during the reaction period of 18 hours, during which period the pressure and temperature were maintained at the indicated level. At the end of the 18-hour reaction period the reaction mixture was cooled to room temperature Two separate and unreacted ethylene removed therefrom. and distinct phases were obtained, an upper liquid phase containing the desired ethylene oligomer and a lower methanol phase containing dissolved catalyst. The two phases were separated from each other by decantation. additional runs were carried out in which reaction temperature was varied and several wherein the reaction pressure was varied. The data obtained are tabulated below in Tables III and IV. In Run No. 4, 0.437 gram (0.52 millimole) of catalyst was used.

TABLE III

Run No.	Reaction Temperature, °C.	Activity (Moles of Ethylene Reacted Per Mole of Catalyst
•	50	22,040
1	40	44,989
2		10,732
3	60	<u>-</u> - • • • •

TABLE IV

Run No.	Reaction Pressure, Pounds Per Square Inch Gauge (kPa)	Activity (Moles of Ethylene Reacted Per Mole of Catalyst
4	200 (1379)	8,728
5	400 (2758)	16,748
1	500 (3475)	22,040
6	600 (4137)	5,879
7	800 (5516)	8
8	900 (6206)	Trace

The data in Table IV are unusual in that, contrary to expectations, the catalyst activity decreased, above a certain level, as pressure increased.

Additional runs were carried out following the procedure of Run No. 1 except that (1) in place of the methanol the following solvents were used: triethylene glycol dimethyl ether, 2-propanol, 2-ethoxyethanol, 2ethoxyethyl ether, n-butanol, (2-ethoxy)ethoxyethanol and propylene carbonate, and (2) 0.08 gram (0.1 millimole) of the same catalyst was dissolved in each of the solvents. Also, additional runs were carried out following the procedure of Run No. 4 except that (1) in place of the methanol the following solvents were used: tetrahydrofuran, 50/50 toluene/butanediol, toluene, acetone, anisole, ethyl acetate, acetonitrile, dioxane and ethylene glycol, and (2) 0.08 gram (0.1 millimole) of the same catalyst was dissolved in each of the solvents. The uniqueness of the present process was shown by the fact that in none of the cases wherein the above solvents were used did the reaction product resolve itself into two well-defined liquid phases as illustrated above wherein methanol was used as solvent.

10

20

Although the invention has been described in considerable detail with particular reference to certain preferred embodiments thereof, variations and modifications can be effected within the spirit and scope of the invention as described hereinbefore, and as defined in the appended claims.

Claims:

1. A process for oligomerizing ethylene to normal alpha olefins and recovering said olefins from the reaction product which comprises reacting ethylene in methanol under oligomerization conditions in contact with a nickel ylide defined by the following formula:

$$\begin{array}{c|c}
R_{3} & & \\
R_{4} & & \\
R_{5} & & \\
R_{6} & & \\
\end{array}$$

$$\begin{array}{c|c}
R_{1} & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_{2} & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
C & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_{7} & \\
\hline
\end{array}$$

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 and R_8 , alike or different, are selected from hydrogen, alkyl radicals having from one to 24 carbon atoms, aryl radicals having from six to 20 carbon atoms, alkenyl radicals having from two to 30 carbon atoms, cycloalkyl radicals having from three to 40 carbon atoms, aralkyl and alkaryl radicals having from six to 40 carbon atoms, halogen radicals, hydroxyl, alkoxy and aryloxy groups, and hydrocarbyl groups carrying halogen, hydroxyl, alkoxy or aryloxy groups, provided that at least one of each of R_1 to R_2 radicals is a sulfonato group or an alkyl, aryl, alkenyl, cycloalkyl, aralkyl or alkaryl carrying a sulfonato group, M is sulfur or oxygen, E is phosphorus, arsenic, antimony or nitrogen and F is phosphorus, arsenic or antimony, to obtain a reaction product containing (A) a methanol phase having dissolved therein said nickel ylide and (b) an alpha olefin phase and then separating said phases from each other to recover said alpha olefin phase.

- 2. A process as claimed in claim 1 wherein E and F are both phosphorus and M is oxygen.
- 3. A process as claimed in claim 1 or claim 2 wherein the sulfonato group is in R_4 , R_5 and/or R_6 and at least one of R_4 , R_5 and R_6 is aryl.

9-5.

- 4. A process as claimed in claim 3 wherein each of R_4 , R_5 and R_6 is phenyl, one of which is substituted with a sulfonato group.
- 5. A process as claimed in claim 4 wherein each of R_1 , R_2 , R_3 and R_8 is phenyl and R_7 is hydrogen.
- 6. A process as claimed in claim 1 or claim 2 wherein the sulfonato group is in R_1 , R_2 and/or R_3 .
- 7. A process as claimed in claim 6 wherein each of R_1 , R_2 and R_3 is phenyl, one of which is substituted with a sulfonato group.
- 8. A process as claimed in claim 7 wherein each of R_4 , R_5 , R_6 and R_8 is phenyl and R_7 is hydrogen.
- 9. A process as claimed in claim 1 or claim 2 wherein \mathbf{R}_{7} is a sulfonato group.
- 10. A process as claimed in claim 9 wherein each of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_8 is phenyl and R_7 is a sulfonato group.
- 11. A process as claimed in claim 10 wherein said ylide is in the form of its sodium salt.
- 12. A process as claimed in any preceding claim wherein said methanol phase contains up to 50 weight percent of the oligomer product dissolved therein.
- 13. A process as claimed in claim 12 wherein said methanol phase contains from five to 30 weight percent of the oligomer product dissolved therein.
- 14. A process as claimed in any preceding claim wherein said ethylene and said nickel ylide are contacted at a temperature of from -20° to 200°C for from one minute to 72 hours.
- 15. A process as claimed in claim 14 wherein said ethylene and said nickel ylide are contacted at a temperature of from 20° to 100°C for from 10 minutes to 24 hours.

- 16. A process as claimed in any preceding claim wherein said metal ylide is present in the range of from 0.0001 to 1.0 moles per litre of solvent.
- 17. A process as claimed in claim 16 wherein said metal ylide is present in the range of from 0.0005 to 0.1 moles per litre of solvent.
- 18. A process as claimed in any preceding claim wherein the ethylene pressure is maintained in the range of from 68.9 to 4826 kPa throughout the reaction (from 10 to 700 pounds per square inch gauge).
- 19. A process as claimed in claim 18 wherein the ethylene pressure is maintained in the range of from 2069 to 4137 kPa throughout the reaction (from 300 to 600 pounds per square inch gauge).
- 20. A process as claimed in claim 19 wherein the ethylene pressure is maintained in the range of from 2413 to 3792 kPa throughout the reaction (from 350 to 550 pounds per square inch gauge).
- 21. A process as claimed in any preceding claim wherein the methanol phase is recycled to the reaction zone for use therein.

EUROPEAN SEARCH REPORT

EP 81 30 2654

	DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int. Cl.3)
gory	Citation of document with indication, where appropriate, of relevant	Relevant to claim	
, D	ANGEWANDTE CHEMIE - INTERNATIONAL EDITION IN ENGLISH, volume 17, June 1978 WEINHEIM, NEW YORK (US) W. KEIM et al. "Novel coordination of (benzoylmethylene)triphenyl-phosphorane in a nickel oligomerization catalyst", pages 466-467		C 07 C 2/36 B 01 J 31/18 //C 08 F 110/02 C 08 F 4/80
A	<u>US - A - 3 592 870</u> (H.E. DUNN)		
A-	US - A - 3 446 871 (P.L. MAXFIELD)		TECHNICAL FIELDS SEARCHED (Int. CL.*)
			C 07 C 2/36 2/32 2/30 2/26 B 01 J 31/18 31/24 C 08 F 4/80 110/02
			CATEGORY OF CITED DOCUMENTS X: particularly relevant A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: conflicting application
X	The present search report has been drawn up for all claims	le.co.	D: document cited in the application L: citation for other reasons &: member of the same paten family, corresponding document
Place	of search The Hague Date of completion of the search 11-11-1981		VAN GEYT

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

The state of the s