华东理工大学 2019-2020 学年第一学期 《数学分析(上)》课程期末考试试卷 <u>B</u> 2020.1

开课学院	专业			考试形式 闭卷		差 考试	考试时间 120分钟			
姓名		学号			班级 _		任课	任课教师 张启迪		
题序		1 1	111	四	五.	六	七	八	总分	
得分										
评卷人										

注意: 本试卷共八大题, 满分100分。

一、(本题 12 分) 讨论极限 $\lim_{x\to 0} \left| \frac{2-e^{\frac{1}{x}}}{1+e^{\frac{2}{x}}} + \frac{x}{|x|} \right|$ 的存在性。

二、(本题 8 分) 利用 Cauchy 收敛原理证明闭区间套定理。

三、(本题 18 分) 求下列不定积分:

(1)
$$\int \frac{dx}{x^4 + x^2 + 1}$$
; (2) $\int (x - 1)\sqrt{x^2 + 2x - 5}dx$; (3) $\int \ln(1 + x^2)dx$.

四、(本题 14 分) 设 $y = (\arcsin x)^2$ 。

- (1) 求证: $(1-x^2)y'' xy' = 2$;
- (2) 求 $y^{(n)}(0)$, 其中 $y^{(n)}(0)$ 表示函数 y 关于 x 求 n 阶导数后在 x=0 处的取值。

五、(本题 18 分) 求下列极限:

(1)
$$\lim_{n\to\infty} \frac{n^4 + 2n^2 - 3n + 1}{2n^3 - n + 3}$$
; (2) $\lim_{n\to\infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right)$;

(3)
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$
.

六、(本题 10 分) 若函数 f(x) 在有限开区间 (a,b) 上一致连续 (即对于任意给定的 $\varepsilon > 0$,存在 $\delta > 0$,只要 $x',x'' \in (a,b)$ 满足 $|x'-x''| < \delta$,就成立 $|f(x') - f(x'')| < \varepsilon$),则 f(x) 在 (a,b) 上有界。

七、(本题 10 分) 证明 $\lim_{x\to+\infty} f(x) = -\infty$ 存在而且有限的充分必要条件是: 对于任意正无穷大量 $\{x_n\}$,成立

$$\lim_{n\to\infty}f(x_n)=-\infty.$$

八、(本题 10 分) 设函数 f 在区间 [0,1] 上二阶可导,且有 $f(0) = f(1) = 0, \qquad \min_{x \in [0,1]} f(x) = -1.$

证明: 存在 $\xi \in (0,1)$, 使得 $f''(\xi) \ge 8$ 。