WO 2005/091104

15

1

CONTRÔLEUR PAR MANIPULATION D'OBJETS VIRTUELS SUR UN ÉCRAN TACTILE MULTI-CONTACT

La présente invention se rapporte au domaine des 5 contrôleurs musicaux.

La présente invention se rapporte plus particulièrement à une interface homme-machine permettant par exemple le contrôle de logiciels de musique ou d'un 10 automate par un écran tactile multi-contact avec manipulation d'objets virtuels.

L'art antérieur connaît déjà les contrôleurs logiciels de type manuel. Ce sont par exemple potentiomètres manipulables par l'utilisateur sous forme de contrôlant et les différentes fonctions logiciels de musique. Une telle console fait par exemple l'objet de la demande PCT WO 01/69399.

Le désavantage de ce type de contrôleur est qu'ils sont très peu ergonomiques pour une manipulation efficace des logiciels.

La solution proposée par la présente invention est de 25 mettre en œuvre un écran tactile pour la manipulation et l'accès aux fonctions logicielles.

Dans le domaine des contrôleurs tactiles, l'art antérieur connaît déjà par la demande PCT WO 03/041006, ou le brevet US 6 570 078 des contrôleurs musicaux avec contrôle tactile sur un capteur matriciel. Les technologies décrites dans ces documents permettent un contrôle tactile de type multi-contact, où tous les doigts peuvent intervenir pour le contrôle des logiciels.

BEST AVAILABLE COPY

Cependant ces documents ne proposent pas de retour visuel des manipulations, puisque les différents capteurs matriciels sont de type opaque.

5

10

15

20

25

30

L'art antérieur connaît, par la demande de brevet américain US 2002/005108 (Lester Franck Ludwig) "Tactile, visual and array controllers for real-time control of music signal processing, mixing, video and lighting", un système et un procédé pour contrôler en temps réel des processeurs de signaux, des synthétiseurs, des instruments de musiques, des processeurs MIDI, des lumières, de la vidéo, et des effets spéciaux lors de représentations, d'enregistrements ou dans des environnements de composition en utilisant des images dérivées de capteurs tactile, de matrices de capteurs de pression, de matrices de transducteurs optiques, matrices de capteurs chimiques, de matrices de capteurs corporels et de traitements numériques. L'invention de cette demande de brevet américain fournit des touch-pads, matrices de capteurs de pression et des matrices de capteurs corporels comme interfaces de contrôle tactile, des caméras lumière comme matrices de capteurs de vidéo et des transducteurs optiques, des matrices de capteurs chimiques et d'autres dispositifs de génération d'images numériques à partir de traitements sur ordinateurs ou de simulations numériques. Les transducteurs tactiles peuvent être disposés sur les clés d'instruments conventionnels, être attachés à des instruments existant ou bien être utilisés pour créer de de nouveaux contrôleurs. instruments ou matrices de capteurs chimiques et les autres dispositifs de génération d'images numériques à partir de traitements par simulations numériques peuvent ou de ordinateur utilisés pour observer ou simuler des phénomènes physiques naturels tels que des conditions environnementales ou des

00

5

10

15

20

25

30

comportements de processus s'auto-organisant. Des matrices de scalaires ou de vecteurs sont traitées pour extraire des limites de motifs, des propriétés géométriques de pixels à l'intérieur des limites (centre géométrique, moments pondérés, etc.) et des informations dérivées de plus haut niveau (sens de rotation, régions segmentées, classification de motifs, syntaxe, grammaires, séquences etc.) qui sont utilisées pour créer des signaux de contrôle vers des équipements externes vidéo, visuels et de contrôle ou bien des algorithmes. Cette invention permet également de fournir des signaux de contrôle MIDI et non-MIDI.

Cette demande de brevet américain ne propose pas de retour visuel des manipulations. Cette demande de brevet américain ne fait pas non plus mention de loi de commande. Enfin cette demande de brevet ne propose pas de solutions techniques aux phénomènes de masquage qui interviennent lorsque plusieurs doigts sont alignés ou placés de manière orthogonale sur le capteur. La résolution de ces problèmes est indispensable à la mise en œuvre d'un capteur tactile multi-contact.

L'art antérieur connaît également, par le brevet américain US 5 027 689 (Yamaha) "Musical tone generating apparatus", un appareil générateur de sons musicaux. Cet appareil comporte un dispositif de génération d'informations position pour générer des informations de position d'instrument de musique (PS) en tant que valeurs coordonnées planes. Ces informations (PS) sont stockées dans un dispositif mémoire ou déterminées de façon sélective par opération manuelle. L'appareil comprend dispositif de conversion d'informations pour convertir les informations (PS) en informations de contrôle de paramètres de sons musicaux (PD). Ces informations de contrôle PD contrôlent les signaux de source de sons musicaux (S11, S12

et S13) pour générer un champ de son correspondant à la position d'instruments de musiques disposés sur une scène. Ceci permet à un opérateur de vérifier les positions d'instruments de musique sur une scène, fournissant ainsi la sensation d'être dans une vraie représentation « en live ».

Dans ce brevet américain, il est fait mention de multicontact, mais il s'agit seulement de deux contacts sur un axe et non pas en coordonnées cartésiennes. L'appareil de ce brevet américain ne fonctionne qu'en linéaire pour l'option multipoint et ne permet pas le tracking (suivi de trajectoire). De plus, l'appareil de ce brevet américain nécessite une pluralité de capteurs, spécifique à chacun des instruments, alors que la présente invention vise un capteur générique.

15

20

25

30

10

L'art antérieur connaît également une solution de type contrôleur musical sous la forme d'un écran tactile avec retour visuel des objets manipulés par brevet US le 5,559,301. Cependant, ce brevet décrit des objets prédéfinis potentiomètre et sliders type de (essentiellement circulaire). Ces types d'objets sont assez limitatifs et peuvent s'avérer peu ergonomiques pour des manipulations spéciales. Par ailleurs, le mode d'acquisition décrit dans ce brevet n'est pas en temps réel. En effet, un icône doit d'abord être activé par un premier contact du doigt, puis l'objet manipulé, et les valeurs ne sont mises à jour qu'après que l'icône soit relâché. Cette solution ne permet pas une gestion en temps réel des paramètres associés à l'objet. Enfin, le capteur tactile utilisé dans ce brevet est un capteur « mono-contact » ne permettant l'acquisition par exemple que pour un seul doigt, et donc le contrôle d'un seul objet à la fois. Cette caractéristique est très limitative pour une manipulation efficace des objets.

10

Dans toute la suite, le terme « multi-contact » définit un capteur tactile permettant l'acquisition des zones de contact de plusieurs doigts à la fois, par opposition aux capteurs « mono-contact » ne permettant l'acquisition que pour un seul doigt ou pour un stylet, comme par exemple pour le brevet précédent US 5,559,301.

La présente invention entend remédier aux inconvénients de l'art antérieur en proposant un écran de contrôle musical tactile multi-contact avec retour visuel des différentes actions de l'utilisateur sur des objets paramétrables.

Pour ce faire, la présente invention est du type décrit ci-dessus et elle est remarquable, dans son acception 15 la plus large, en ce que elle concerne un procédé pour le contrôle d'un équipement informatisé par un dispositif comportant un capteur bidimensionnel multi-contact pour l'acquisition d'informations tactiles, ainsi que des moyens de calculs générant des signaux de commande en fonction 20 desdites informations tactiles caractérisé en ce comporte une étape de génération d'objets graphiques sur un écran placé sous un capteur tactile multi-contact transparent, chacun des objets graphiques étant associé à au moins une loi de traitement spécifique, le capteur délivrant 25 de chaque phase d'acquisition une pluralité d'informations tactiles, chacune desdites informations tactiles faisant l'objet d'un traitement spécifique déterminé par sa localisation par rapport à la position d'un desdits objets graphiques. 30

De préférence, les traitements comportent une détection de zone englobante de la zone de contact d'un objet avec le capteur tactile.

Avantageusement, les traitements comportent une détection de barycentre.

de étapes des comporte préférence, il De 5 en fonction des rafraîchissement des objets graphiques d'acquisition d'une étape lors traitements effectués précédente au moins.

Selon un mode de mise en œuvre, il comporte une étape d'édition d'objets graphiques consistant à générer une représentation graphique à partir d'une bibliothèque de composants et de fonctions graphiques, et à déterminer une loi de traitement associée.

15

De préférence, la fréquence d'acquisition des informations tactiles est supérieure à 50 hertz.

La présente invention concerne également un dispositif pour le contrôle d'un équipement informatisé comportant un 20 l'acquisition bidimensionnel multi-contact pour d'informations tactiles caractérisé en ce qu'il comporte en outre un écran de visualisation disposé sous le capteur mémoire qu'une ainsi bidimensionnel, tactile l'enregistrement d'objets graphiques associés chacun à au 25 moins une loi de traitement, et un calculateur local pour l'analyse de la position des informations tactiles acquises et l'application d'une loi de traitement en fonction de ladite position par rapport à la position des graphiques. 30

De préférence, il se connecte en outre à un hub (multi-prise réseau) pour former un réseau de contrôleurs.

Avantageusement, ledit capteur tactile bidimensionnel multi-contact est une dalle résistive.

De préférence, ledit dispositif comprend en outre une sortie réseau apte à recevoir un câble réseau.

On comprendra mieux l'invention à l'aide de la description, faite ci-après à titre purement explicatif, d'un mode de réalisation de l'invention, en référence aux figures annexées où :

- la figure 1A est un diagramme fonctionnel du contrôleur selon l'invention,
- la figure 1B représente la structure du contrôleur associé au diagramme fonctionnel selon l'invention,
- la figure 1C représente le diagramme fonctionnel des différentes étapes des processus d'acquisition des données provenant du capteur, de la création des curseurs associés aux différents doigts, de l'interaction avec les objets graphiques et de la génération des messages de contrôle,
- 20 la figure 2A est une description du capteur tactile matriciel,
 - la figure 2B décrit la première étape du fonctionnement du balayage du capteur en vue d'obtenir l'information multi-contact,
- 25 les figures 2C, 2E et 2F expliquent la résolution des problèmes d'orthogonalité,
 - la figure 2D est un diagramme fonctionnel de l'interface de capture,
- la série de figure 3A à 3F explique les étapes de 30 création de curseurs, de filtrage, de calcul de barycentre, de mapping et de contrôle des objets graphiques,
 - les figures 4 et 5 représentent différents exemples d'objets graphiques,

- les figures 6 à 10 représentent différents exemples de combinaisons d'objets graphiques sur le contrôleur,
- la figure 11 illustre l'utilisation en réseau du contrôleur associé à l'ordinateur de l'utilisateur.

5

Dans toute la suite, le contrôle s'effectue sur un équipement informatisé pouvant être par exemple un logiciel de musique, un automate, un équipement audiovisuel, ou un équipement multimédia.

10

15

Illustré figures 1A, 1B et plus précisément 2A, le premier élément fondamental de la présente invention est le capteur matriciel (101), nécessaire à l'acquisition (manipulations multi-contact) à l'aide d'une interface de capture (102). Le capteur peut être éventuellement divisé en plusieurs parties afin d'accélérer la captation, chaque partie étant balayée simultanément.

Le principe général est de créer autant de curseurs 20 (comme un curseur de souris) qu'il y a de zones détectées sur le capteur et de suivre leurs évolutions dans le temps.

Lorsque l'utilisateur retire ses doigts du capteur, les curseurs associés sont détruits.

25

De cette manière, on capte la position et l'évolution de plusieurs doigts sur le capteur simultanément. C'est une captation multi-contact tout à fait innovante pour ce type de contrôleur.

30

Le capteur utilisé pour l'exemple d'implémentation de l'invention est une dalle tactile résistive matricielle de type connue.

Les dalles tactiles résistives matricielles composées de 2 faces superposées sur lesquelles sont organisées des pistes d'ITO (oxyde indium étain), qui est un matériau conducteur translucide. Les pistes forment disposées en lignes sur la couche supérieure et en colonnes sur la couche inférieure, formant une matrice. (cf. figure 2A).

Les deux couches conductrices sont isolées l'une de l'autre par des entretoises d'espacement. L'intersection d'une ligne avec une colonne forme un point de contact. Quand on pose un doigt sur la dalle, on met en contact une ou des colonnes situées sur la couche supérieure avec une ou des lignes situées sur la couche inférieure créant ainsi un ou plusieurs points de contact. (cf. figure 2B).

15

20

10

5

Avantageusement, une variante de l'invention consiste à remplacer les entretoises par un matériau résistif transparent (par exemple un polymère conducteur), dont la résistance varierait en fonction de l'écrasement, celle-ci si l'on exerce une force d'appui suffisante. De chutant cette manière, on pourrait également extraire la pression exercée sur la surface effectuant en une mesure résistance à chaque intersection ligne-colonne.

En vue de l'utilisation musicale ou audiovisuelle de ces dalles, l'impératif est de mesurer l'activité d'un doigt avec une latence maximum de 20 ms.

On mesure au moins 100 fois par seconde l'état de la 30 dalle, celle-ci pouvant être divisée en plusieurs zones afin d'effectuer un traitement parallèle sur les lesdites zones.

Ainsi, selon l'invention, la fréquence d'échantillonnage de la dalle est d'au moins 100 Hz.

15

25

30

Un autre élément fondamental est le dispositif électronique de balayage de la dalle tactile permettant la détection simultanée de plusieurs points de contact sur le capteur matriciel. En effet, les méthodes d'acquisitions connues pour ce type de capteurs ne permettent pas la détection de plusieurs points de contact simultanés.

Les méthodes connues à ce jour ne permettent pas de 10 résoudre les problèmes illustrés par la figure 2C.

Si on effectue une mesure simultanée de toutes les lignes en alimentant une colonne, des problèmes d'orthogonalité surviennent. Le point de contact n°1 va masquer le point de contact n°2. De même, si on mesure une ligne lorsque toutes les colonnes sont alimentées, le point de contact n°2 est masqué par le point de contact n°1. La solution proposée pour résoudre ce problème consiste à effectuer un balayage séquentiel du capteur.

Les colonnes sont alimentées par exemple en 5V à tour de rôle et on mesure le niveau des lignes (niveau haut ou bas) séquentiellement.

Quand une des colonnes est mise sous tension, les autres sont en haute impédance afin d'empêcher la propagation du courant dans celles-ci.

Ainsi, On alimente d'abord la colonne 1 tandis que les autres colonnes sont en haute impédance.

Les lignes sont mesurées séquentiellement, c'est-àdire les unes après les autres. On lit dans un premier temps la valeur sur la première ligne tandis que l'on relie toutes les autres lignes à la masse. Puis on relie la ligne 1 à la masse et on lit la valeur sur la ligne 2, et ainsi de suite jusqu'à ce que l'on ait lu la valeur de toutes les lignes.

25

30

La colonne 1 passe ensuite à l'état de haute impédance et la colonne 2 est alimentée. On recommence à lire l'état de chacune des lignes.

On effectue ainsi le balayage jusqu'à la dernière 5 colonne.

Le but étant de former une dalle multi-contact, le balayage total de la matrice se fait à une fréquence élevée afin d'obtenir la valeur de chacun des points d'intersection de la dalle plusieurs fois par seconde.

Le dispositif permettant d'acquérir les données de la dalle est illustré par la figure 2D, représentant l'algorithme d'acquisition d'une dalle comprenant 100 lignes (L) et 135 colonnes (C).

15 Certains problèmes de masquage d'un point par un ou plusieurs autres points peuvent apparaître.

En effet, la résistance du matériau transparent (ITO) composant les colonnes et les lignes augmente proportionnellement à la longueur des pistes. Ainsi, le potentiel mesuré au coin inférieur gauche du capteur sera supérieur au potentiel mesuré à au coin supérieur droit.

Sur les figure 2E et 2F, le nuage de points absorbe une grande partie du potentiel électrique de la colonne alimentée. La potentiel mesuré sur le point isolé est donc trop faible pour être détecté.

La solution à ce problème consiste à utiliser un comparateur de tension piloté numériquement en sortie de la ligne afin de déterminer si la tension observée est suffisante pour être considérée comme résultant de l'action d'un doigt sur la dalle tactile. La valeur de référence du comparateur (seuil de comparaison) est décrémentée à chaque mesure de ligne. Ainsi les valeurs de comparaisons des

12

dernières lignes sont inférieures à celles des premières lignes, ce qui permet de détecter de la même manière un point de contact situé en bas à gauche ou en haut à droite.

On effectue alors par exemple l'échantillonnage complet de la dalle au moins 100 fois par seconde pour les colonnes et les lignes.

Les données issues de l'interface de capture (102)

forment ainsi une image représentative de l'ensemble du
capteur. Cette image est placée en mémoire afin qu'un
programme puisse procéder au filtrage, à la détection des
doigts et à la création des curseurs. On se référera à cet
effet à la figure 1C.

15

20

La phase de filtrage illustré par la figure 3B consiste à éliminer le bruit éventuellement généré par l'interface d'acquisition ou le capteur lui-même. On considère que seuls des nuages de plusieurs points de contact peuvent correspondre à l'appui d'un doigt. On effectue donc une détection de zone englobante afin d'éliminer des points de contact isolés.

L'étape suivante consiste à associer un curseur à chaque point d'appui (figure 3C). À cet effet, on calcule le barycentre de chaque zone englobante. Lorsqu'un doigt est relâché, le curseur correspondant est libéré.

Le programme exécuté localement par le processeur principal permet d'associer ces curseurs à des objets graphiques qui sont affichés sur l'écran (105) afin de les manipuler. Simultanément, le programme local utilise ces curseurs pour générer des messages de contrôle adressés à l'ordinateur hôte ou l'appareil contrôlé.

En outre, le programme comporte un simulateur modèles physiques permettant de modifier les lois d'interaction entre les curseurs et les objets graphiques. Différents modèles physiques peuvent être employés : système masse-ressort, vibration d'une corde, gestion des collisions, loi de la gravité, champ électromagnétique.

Le programme considère le positionnement des curseurs et sur quel objet graphique chacun se situe. En fonction de 10 l'objet considéré, un traitement spécifique est appliqué aux données provenant du capteur. Par exemple, une mesure de pression (correspondant à une évolution de la tâche faite par le doigt sur la dalle tactile dans un court intervalle de temps) peut être interprétée. En fonction de la nature de 15 l'objet, d'autres paramètres peuvent être déduits l'accélération, la vitesse, les trajectoires, etc. algorithmes de reconnaissance de forme peuvent appliqués également afin de différencier différents doigts.

20

25

30

5

Le programme principal (103) transmet également à l'interface graphique (104) les données à afficher à l'écran (105). Cette interface graphique est en outre constituée d'un processeur graphique. Ce processeur graphique est par exemple de type connu. Ce dernier peut être constitué de fonctions graphiques primitives permettant par exemple l'affichage de bitmap, de polices de caractères de polygones et de figures en 2 et 3 Dimensions, le dessin vectoriel, l'antialiasing, le texturage, la transparence et l'interpolation de couleurs.

Dans cette déclinaison de l'invention, le programme principal comprend également un analyseur d'expressions mathématiques qui permet de saisir et de calculer en temps

14

réel des fonctions mathématiques. Celles-ci permettent de modifier les valeurs de toute variable. Par exemple, les coordonnées (x, y) d'un curseur à l'intérieur d'un objet peuvent être considérées comme deux variables comprises entre 0 et 1. L'analyseur d'expression permet de créer une expression du type « x*1000+600 » afin d'obtenir une nouvelle variable, dont la valeur sera comprise entre 600 et 1600. La variable obtenue permet de contrôler par exemple la fréquence d'un oscillateur comprise entre 600 et 1600 hertz.

Les expressions mathématiques peuvent s'appliquer aussi bien à des valeurs scalaires qu'à des vecteurs.

5

10

15

20

25

30

L'analyseur d'expression est un outil permettant d'effectuer des calculs temps réel sur les variables des objets.

Le programme local (103) réalise également un formatage des données sous forme de messages pour le port réseau (106), qui les communiquera à l'ordinateur sur lequel sont exécutées les applications informatiques.

L'interface réseau est par exemple une interface Ethernet 10/100 baseT standard, qui communique par paquets grâce au protocole TCP/IP. Elle peut aussi être une interface réseau de type sans fil.

Illustré figure 11, il faut noter que la liaison Ethernet offre à l'utilisateur la possibilité, grâce à l'utilisation d'un simple hub (multiprise réseau), d'étendre indéfiniment son dispositif de contrôle en constituant un réseau de contrôleurs selon l'invention.

15

Le (ou les) contrôleur(s) présent(s) sur le réseau communiquent alors entre eux et avec l'ordinateur hôte sous la forme d'envois réciproques de messages.

L'ensemble constituant la machine est par ailleurs alimentée par une batterie non représentée de type connu ou par un adaptateur secteur.

5

10

15

25

Enfin, au niveau de l'ordinateur de l'utilisateur, un éditeur d'interface (107) permet de programmer de manière graphique l'interface, c'est-à-dire l'ensemble des objets graphiques affichés sur l'écran (105). Dans ce mode de réalisation de l'invention, les interfaces sont elles-mêmes organisées en scènes, qui sont des structures hiérarchiques supérieures. Chaque scène comprend en effet plusieurs interfaces. L'utilisateur peut permuter les interfaces à l'aide d'un clavier de bouton ou d'un pédalier de contrôle connecté au port d'entrée-sortie (109).

Une autre fonction de l'éditeur d'interface est 20 d'affecter les données de contrôle aux paramètres que l'utilisateur souhaite contrôler

L'utilisateur dispose par exemple d'une bibliothèque d'objets graphiques paramétrables permettant de composer différentes interfaces selon l'application désirée. Les figures 4 et 5 représentent différents objets graphiques mis à la disposition de l'utilisateur.

Ils peuvent être prédéfinis et dédiés tout particulièrement à la musique ou au contrôle d'équipements audiovisuels ou d'appareils informatisés. Par exemple, un potentiomètre linéaire (403, 404) est particulièrement adapté à contrôler des paramètres continus tels que le volume d'un signal sonore, la fréquence d'un filtre. Une

molette (401) peut par exemple servir à contrôler défilement d'un lecteur audio ou vidéo. Les objets peuvent kit de grâce à librement développés être kit de type connu (109).(SDK) de développement primitives fonctions aux accès donne développement graphiques du contrôleur.

5

10

15

20

25

30

ainsi à permet d'interface (107) L'éditeur interfaces des aisément créer l'utilisateur de personnalisées de contrôle. C'est un logiciel exécuté sur l'ordinateur de l'utilisateur. Il se compose d'une fenêtre principale représentant la surface tactile de la dalle sur laquelle on peut déposer des objets graphiques issus d'une La manipulation et bibliothèque d'objets proposés. placement des objets sur la surface s'effectuent à souris, par exemple. L'objet déposé sur la fenêtre s'affiche simultanément sur le contrôleur, l'objet étant enregistré une mémoire du contrôleur. Il peut par la suite déplacer ou redimensionner les objets à sa convenance.

En plus du positionnement des objets graphiques sur la fenêtre principale, d'autres fenêtres secondaires permettent paramètres inhérents différents régler de (propriétés graphiques, comportement physique). Par exemple, un bouton (402) peut aussi bien agir comme un interrupteur ou comme une gâchette. Dans le cas du mode gâchette, une mesure de pression peut optionnellement être opérée. Un autre exemple d'objet paramétrable est l'aire 2D (503, 504), dont le principe consiste à déplacer des pions à l'intérieur d'une zone délimitée. Le nombre de pions présents sur l'aire2D est une option paramétrable. L'aire peut être configurée en mode uniplan, mode dans lequel les pions entrent en collision les uns avec les autres, ou multi-plan, mode où les pions sont placés sur des plans distincts WO 2005/091104

superposés. Des paramètres physiques peuvent également être configurés : le coefficient de frottement des pions sur le plan, le rebond et l'attraction des pions sur les bords et entre eux.

5

25

30

L'éditeur permet également de lister les objets présents sur la surface, de créer des fonctions et des variables grâce à l'analyseur d'expression.

Ainsi, les objets ont par défaut un certain nombre de 10 variables (x, y, z...) correspondant à leurs axes primitifs. Ces variables sont toujours comprises entre 0 et 1 et varient sous forme de nombres 32 bit à virgule flottante. L'utilisateur doit pouvoir « connecter » ces variables vers d'autres valeurs plus représentatives de ce qu'il souhaite 15 contrôler. Ainsi, l'analyseur d'expression possibilité de créer de nouvelles variables d'expressions mathématiques simples. Par exemple, potentiomètre rectiligne a un axe primitif qui est x. Si l'utilisateur désire contrôler une fréquence de 20 2500Hz, il doit créer une variable a=2000x+500.

Des options d'affichage de statut sont aussi souhaitées. Elles permettent de contrôler visuellement l'état d'un paramètre.

Les traitements ultérieurs qui seront appliqués aux objets au niveau de l'unité de calcul principale (103) par la manipulation sur la dalle sont spécifiques à chaque type d'objet.

En effet, un mouvement circulaire du doigt sur un potentiomètre linéaire virtuel (403, 404) ne doit pas avoir d'action sur l'état du potentiomètre, alors qu'il doit

modifier l'état dans le cas d'un potentiomètre circulaire (401). De même, certains objets ne peuvent prendre en compte qu'un seul doigt (le potentiomètre linéaire par exemple) en même temps, tandis que d'autres peuvent accepter l'interaction de plusieurs doigts (clavier, aire2D).

5

10

15

20

Par exemple, l'« aire 2D » (503, 504) est une surface rectangulaire qui contient un certain nombre de pions, chacun ayant une position propre. Les pions peuvent être déplacés par l'utilisateur.

Le principe est de mettre en place un système physique pour l'ensemble des objets, c'est-à-dire par exemple que les pions déplacés par l'utilisateur acquièrent une vitesse d'inertie qu'ils gardent lorsque l'utilisateur les relâche; les pions ainsi soumis à leur vitesse propre vont rebondir sur les bords de l' « aire 2D » et même rebondir entre eux. des soumis à seront ils d'attraction/répulsion sur les bords et sur les autres pions, ainsi qu'à un coefficient de frottement sur la surface de l'aire 2D, pour stopper les pions au bout d'un certain temps. Tous ces paramètres seront paramétrables.

Une autre variante de l'aire 2D consiste à appliquer

une loi physique de type «masse-ressort ». Un élastique
virtuel est tendu entre chaque curseur et chaque pion.

L'utilisateur peut modifier le comportement de cet objet en
configurant la friction et le facteur d'interpolation. Ces
propriétés peuvent également être modifiées en temps réel à

l'aide d'autres objets.

Un autre exemple est le « Multislider » (501), une table de curseurs dont le nombre est configurable. L'utilisation typique est le contrôle d'un égaliseur

WO 2005/091104 PCT/FR2005/000428 .

19

graphique ou d'une enveloppe spectrale. La différence entre un « multislider » et plusieurs potentiomètres linéaires simples juxtaposés est que l'on peut modifier l'ensemble des curseurs en un seul toucher, en faisant glisser le doigt. Le multislider peut également être utilisé comme une corde discrétisée. Pour cela, il suffit de lui appliquer le modèle physique d'une corde, dont la tension est paramétrable par l'utilisateur.

5

15

20

25

30

10 Une visualisation de différents exemples d'interfaces réunissant différents types d'objets est illustrée par les figures 6 à 9, où l'on peut observer plusieurs objets décrits ci-dessus.

La figure 6 représente un arrangement de 6 aire 2D (601) contenant chacune 1 pion. Cette interface pourrait contrôler, par exemple, six filtres différents affectés à une ou plusieurs sources sonores. Dans ce cas, le déplacement en abscisse de chaque pion à l'intérieur de chaque zone contrôle la fréquence du filtre, tandis que le déplacement en ordonnée contrôle le facteur qualité ou la largeur de bande du filtre.

La figure 7 représente un exemple de contrôle d'un synthétiseur d'un échantillonneur ou de type L'interface se compose d'un clavier tempéré (704) contrôlant la hauteur des sons, d'un groupe de quatre potentiomètres (703) verticaux permettant de contrôler par exemple son enveloppe dynamique (temps d'attaque, temps de décroissance, niveau d'entretien, temps de relâchement). Une aire 2D (701) contenant 3 pions permet de contrôler par exemple des effets appliqués au son (réverbération, écho, filtres). Une matrice boutons (702) peut par exemple déclencher différentes séquences musicales enregistrées

20

rappeler 16 configurations pré-enregistrées des contrôles décrits précédemment.

autre exemple d'application de l'invention est illustré par la figure 8 représentant le contrôle d'un 5 dispositif de diffusion de différentes sources sonores dans l'espace, sur un dispositif constitué de plusieurs hautparleurs. Dans cette configuration, une aire 2D représentant l'espace de diffusion contient 4 pions (801) correspondant à quatre sources sonores. L'aire 2D contient 10 également 5 icônes (802) représentant le positionnement de cinq haut-parleurs. En déplaçant les différents pions (802) on règle le niveau et/ou la phase de chaque source sonore par rapport à chaque enceinte, ce qui détermine groupe Un l'espace. dans emplacement 15 potentiomètres linéaires (803) permet qui plus est de régler le niveau relatif de chaque source. Un ensemble de quatre boutons (804) permet d'activer ou de désactiver chaque source sonore.

20

25

30

Un autre exemple est illustré par la figure 9 qui représente le contrôle d'un synthétiseur ou d'un générateur de son selon une configuration différente de celle représentée par la figure 7. Ici, la fréquence du générateur de son est contrôlée par quatre cordes virtuelles (903). La tension initiale (l'accord) de chaque corde peut elle-même être contrôlée, par exemple, par un potentiomètre linéaire (902). Une aire 2D peut par exemple contrôler d'autres paramètres du générateur de son, tel que le niveau de sortie, le timbre, le panoramique, etc.

La figure 10 représente le contrôle d'un équipement de montage audio et/ou vidéo de type connu. Une molette (1001) permet de contrôler la vitesse de lecture des sources audio

et/ou vidéo. Un objet d'affichage de statut (1002) permet de représenter le positionnement de la lecture selon un format (heure, minute, seconde, image) de type connu. Un ensemble de boutons (1003) permet d'accéder aux fonctions de lecture et de montage de l'appareil contrôlé.

L'invention est décrite dans ce qui précède à titre d'exemple. Il est entendu que l'homme du métier est à même de réaliser différentes variantes de l'invention sans pour 10 autant sortir du cadre du brevet.

REVENDICATIONS

- équipement d'un contrôle Procédé pour le 1. dispositif comportant un par un informatisé l'acquisition pour bidimensionnel multi-contact 5 d'informations tactiles, ainsi que des moyens de calculs fonction desdites générant des signaux de commande en informations tactiles caractérisé en ce qu'il comporte une étape de génération d'objets graphiques sur un écran placé sous un capteur tactile multi-contact transparent, chacun 10 des objets graphiques étant associé à au moins une loi de traitement spécifique, le capteur délivrant lors de chaque phase d'acquisition une pluralité d'informations tactiles, chacune desdites informations tactiles faisant l'objet d'un traitement spécifique déterminé par sa localisation par 15 rapport à la position d'un desdits objets graphiques.
- Procédé pour le contrôle d'un équipement informatisé selon la revendication 1, caractérisé en ce
 qu'il met œuvre un capteur matriciel et qu'il comporte en outre une étape de balayage séquentiel du capteur.
 - 3. Procédé pour le contrôle d'un équipement informatisé selon la revendication 1, caractérisé en en ce que les traitements comportent une détection de zone englobante de la zone de contact d'un objet avec le capteur tactile.
- 4. Procédé pour le contrôle d'un équipement 30 informatisé selon la revendication 1, caractérisé en en ce que les traitements comportent une détection de barycentre.
 - 5. Procédé pour le contrôle d'un équipement informatisé selon la revendication 1, caractérisé en en ce

23

qu'il comporte des étapes de rafraîchissement des objets graphiques en fonction des traitements effectués lors d'une étape d'acquisitions précédente au moins.

- 6. Procédé pour le contrôle d'un équipement informatisé selon la revendication l, caractérisé en en ce qu'il comporte une étape d'édition d'objets graphiques consistant à générer une représentation graphique à partir d'une bibliothèque de composants et de fonctions graphiques, et à déterminer une loi de traitement associée.
 - 7. Procédé pour le contrôle d'un équipement informatisé selon la revendication 1, caractérisé en en ce que la fréquence d'acquisition des données tactiles est supérieure à 50 hertz.
- 8. Procédé pour le contrôle d'un équipement informatisé selon la revendication 1, caractérisé en en ce que ledit dispositif communique avec ledit équipement 20 informatisé par une liaison Ethernet.

15

9. Dispositif pour le contrôle d'un équipement informatisé comportant un capteur bidimensionnel multicontact pour l'acquisition d'informations tactiles, caractérisé en ce qu'il comporte en outre un écran de 25 visualisation disposé sous le capteur tactile bidimensionnel, ainsi qu'une mémoire pour l'enregistrement d'objets graphiques associés chacun à au moins une loi de traitement, et un calculateur local pour l'analyse de la position des informations tactiles acquises et l'application 30 d'une loi de traitement en fonction de ladite position par rapport à la position des objets graphiques.

PCT/FR2005/000428 WO 2005/091104

24

10. Dispositif pour le contrôle d'un équipement informatisé selon la revendication 9, caractérisé en ce qu'il se connecte en outre à un hub (multi-prise réseau) pour former un réseau de contrôleurs.

5

Dispositif pour le contrôle d'un équipement informatisé selon la revendication 9, caractérisé en ce que ledit capteur tactile bidimensionnel multi-contact est une dalle résistive.

10

le contrôle d'un équipement Dispositif pour 12. informatisé selon la revendication 9, caractérisé en ce que ledit dispositif comprend en outre une sortie réseau apte à recevoir un câble réseau.

Figure 2D

Figure 2F

10/21 Figure 3A Placement de l'image du capteur dans le buffer

11/21

Filtrage

12/21

Figure 3C

14/21

THIS PAGE BLANK (USTTER)

16/21

THIS PAGE BLANK (USPICE

17/21

. .

18/21

4

19/21

21/21

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No PCT/FR2005/000428

A. CLASSEMENT DE L'OBJET DE LA DEMANDE G06F3/033 G06F3/033

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) G06F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, INSPEC, IBM-TDB

C. DOCUME	NTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées	
	US 2002/005108 A1 (LUDWIG) 17 janvier 2002 (2002-01-17) cité dans la demande		
X , Y	alinéas [0222], [0232] - [0234], [0239], [0240], [0244], [0247] - [0261], [0326], [0329], [0370] - [0373];	1,2,9,11	
X , Y	revendications 1-3,7-10; figures 11,13,27 alinéas [0244], [0249] - [0255], [0258], [0260], [0261], [0326], [0329]; revendications 1-3	3–7	
X , Y	alinéas [0245], [0257], [0488] - [0509]; figure 12	8,10,12	
	-/		

X	voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

- Catégories spéciales de documents cités:
- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- O° document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- *X* document particulièrement perlinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *&* document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Fonctionnaire autorisé

Quesson, C

18/04/2006

Formulaire PCT/ISA/210 (deuxième feuille) (Janvier 2004)

4

6 avril 2006

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PCT/FR2005/000428

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendication
Y	US 5 027 689 A (FUJIMORI) 2 juillet 1991 (1991-07-02) cité dans la demande colonne 4, ligne 6-17; figures 1,3 colonne 5, ligne 60 - colonne 6, ligne 43; figures 3,11 colonne 12, ligne 64 - colonne 14, ligne 37	1,3-7,9
P,Y	US 6 762 752 B2 (PERSKI HAIM ET AL) 13 juillet 2004 (2004-07-13) colonne 1, ligne 10-13,33-61; figures 1,3,7-11 colonne 2, ligne 65 - colonne 3, ligne 11 colonne 3, ligne 25-29 - colonne 4, ligne 48-54 colonne 5, ligne 7-15,27-57 - colonne 6, ligne 1-4 colonne 7, ligne 10-13,22-35,51-62 - colonne 8, ligne 15-44 colonne 9, ligne 17-46 colonne 11, ligne 8 - colonne 13, ligne 2	1,2,7-1
Y	US 5 053 585 A (INTERLINK ELECTRONICS INC) 1 octobre 1991 (1991-10-01) 1e document en entier	1,3,4,9

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No
PCT/FR2005/000428

Document brevet cité au rapport de recherche			Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
US 2002	2005108	A1	17-01-2002	US US US	2002056358 A1 2002005111 A1 2002007723 A1	16-05-2002 17-01-2002 24-01-2002
US 5027	689	Α	02-07-1991	AUCI	JN	
US 6762	752	B2	13-07-2004	AU WO JP US	2002356407 A1 03046882 A1 2005510814 T 2003098858 A1	10-06-2003 05-06-2003 21-04-2005 29-05-2003
US 5053	585	Α	01-10-1991	AU JP JP WO	8763491 A 2787959 B2 6502507 T 9207345 A1	20-05-1992 20-08-1998 17-03-1994 30-04-1992

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

