Improving the performance of a Lattice Boltzmann fluid solver using TensorFlow

Vikram Singh

The Perse School, Cambridge Project conducted at University of Cambridge Research Computing Services

August 23, 2019

The Lattice Boltzmann Method

- Collision $f_{\text{out}} = f_{\text{in}} \omega(f_{\text{in}} E)$
- Streaming
- Boundary Conditions
- Macroscopic variables $\rho = \sum f_{\text{in}}$ $E(i, \rho, u) = \rho t_i (1 + u + \frac{u^2}{2} \frac{3|u|^2}{2})$

Tensorflow

- Used primarily in machine learning
- Efficient large array operations
- Parallelisable

Implementation and Testing

- Implemented two D2Q9 Lattice Boltzmann solvers:
 - Using only Numpy
 - Using TensorFlow for all lattice calculations
- Performed the following simulations with both solvers:
 - Flow around a cylinder with low viscosity (420 \times 180 lattice points)
 - 2 Flow around a cylinder with high viscosity (420×180 lattice points)
 - **3** Flow around an airfoil $(420 \times 180 \text{ lattice points})$
 - Flow through a narrowing pipe $(420 \times 180 \text{ lattice points})$
 - **5** Flow through a bending pipe $(1000 \times 452 \text{ lattice points})$
 - **o** Flow in a lid driven cavity $(180 \times 180 \text{ lattice points})$

• github.com/vikram8128/PythonLatticeBoltzmann

Simulations

Animations

Table: Wallclock times in seconds taken by each simulation

Simulation	1	2	3	4	5	6
Numpy	316	311	319	1565	4043	615
TensorFlow	198	198	198	199	708	122

Table: Cell updates per second (MHz) for each of the simulations

Simulation	1	2	3	4	5	6
Numpy	4.78	4.86	4.74	0.966	2.24	1.05
TensorFlow	7.64	7.64	7.64	7.60	12.8	5.31

Conclusions

- Tensorflow outperforms Numpy in all simulations
- Improvement scales well with size and obstacle complexity

Further Work

- Expanding to 3D
- Using GPU Tensorflow

Thank you

- Thank you very much to Jeffrey for suggesting this project and supervising my work.
- Thank you for listening.

References

Chen, Shiyi, Doolen, Gary D. (1998). LATTICE BOLTZMANN METHOD FOR FLUID FLOWS Annual Review of Fluid Mechanics 30 (1): 329364 doi:10.1146/annurev.fluid.30.1.329

Alexander J. Wagner (2008) A Practical Introduction to the Lattice Boltzmann Method, North Dakota State University

TensorFlow Documentation (www.tensorflow.org/api_docs/python/)