

# MatplotLib

• Matplotlib is a plotting library for the Python programming language and easy to get started for simple plots .lt support for custom labels and texts

#### In [1]:

```
import matplotlib.pyplot as plt
```

#### In [2]:

```
import numpy as np
import pandas as pd
```

#### In [3]:

```
df = pd.DataFrame(
    {'StudyHours':[10,11.5,9,16,9.25,1,11.5,9,8.5,14.5,15.5,13.75,9,8,15.5],
    'Grade': [50,50,47,97,49,3,53,42,26,74,82,62,37,119,165],
    'Gender':["M","F","M","M","F","M","F","M","F","M","F","M"],
    "no_of_assignments":[1,1,1,1,2,2,2,3,3,3,3,3,4,4,4]})
df
```

#### Out[3]:

|    | StudyHours | Grade | Gender | no_of_assignments |
|----|------------|-------|--------|-------------------|
| 0  | 10.00      | 50    | М      | 1                 |
| 1  | 11.50      | 50    | F      | 1                 |
| 2  | 9.00       | 47    | М      | 1                 |
| 3  | 16.00      | 97    | М      | 4 D1              |
| 4  | 9,25       | 49    | F      | 2                 |
| 5  | 1.00       | 3     | M      | 2                 |
| 6  | 11.50      | 53    | М      | 2                 |
| 7  | 9.00       | 42    | F      | 3                 |
| 8  | 8.50       | 26    | М      | 3                 |
| 9  | 14.50      | 74    | F      | 3                 |
| 10 | 15.50      | 82    | М      | 3                 |
| 11 | 13.75      | 62    | F      | 3                 |
| 12 | 9.00       | 37    | М      | 4                 |
| 13 | 8.00       | 119   | F      | 4                 |
| 14 | 15.50      | 165   | М      | 4                 |

#### Histogram

• In histograms, x axis contains a variable and y axis will be a frequency of that variable

#### Important Paramemeters in Histogram

data

#### In [4]:





#### In [5]:

```
df["Grade"].skew()
```

### Out[5]:

1.218038125849298

## **Box Plot**

• Use: to check, the given data has outliers or not

#### In [6]:

```
plt.boxplot(df["Grade"])
plt.show()
```





#### In [7]:

```
Q3 = df["Grade"].quantile(0.75)
Q1 = df["Grade"].quantile(0.25)
IQR = Q3- Q1
upper_limit = Q3+(1.5*IQR)
lower_limit = Q1-(1.5*IQR)

df[(df["Grade"]>upper_limit) | (df["Grade"]<lower_limit)]</pre>
```

#### Out[7]:

|    | StudyHours | Grade | Gender | no_of_assignments |
|----|------------|-------|--------|-------------------|
| 14 | 15.5       | 165   | М      | 4                 |

#### **Scatter Plot**

- · Marking the data points on the graph
- Use: to check 1. linearity, 2. Direction, 3. Strength

#### Important Paramemeters in Scatterplot

- · X-axis values
- · y-axis values
- · color (default=blue)
- marker (default = "o")

## In [8]:

plt.scatter(x=df['StudyHours'],y=df['Grade'])
plt.show()





# **Line Plot**

• Use: represents the time series data

#### In [9]:

```
plt.plot(df['StudyHours'],marker="*")
plt.show()
```



• the x-axis values, should be in the sequential order



## In [10]:

```
x = np.arange(6)
y = x
z = x**2
```

## In [11]:

```
plt.plot(x,y,label="x&y")
plt.plot(x,z,label="x&z")
plt.legend()
plt.show()
```



# **Pie Chart**



In [12]:

plt.pie(x=df["Gender"].value\_counts(), labels=df["Gender"].unique(), autopct='%0.1f%%',explode=[0.1,
plt.show()



# Bar plot



## In [13]:

```
plt.bar(df["Gender"].value_counts().index,df["Gender"].value_counts())
plt.ylabel("no_of_students")
plt.show()
```



```
plt.barh(df["Gender"].unique(),df["Gender"].value_counts())
plt.xlabel("no_of_students")
plt.show()
```



# **Stacked Bar plot**



## In [15]:

```
company = ['GOOGL','AMZN','MSFT','FB']
turnover = [90,136,89,27]
profit = [40,20,34,12]

plt.bar(company,turnover, label="Revenue")
plt.bar(company,profit,label="Profit")
plt.legend()
plt.show()
```



# **Unstacked Bar plot**



## In [16]:

```
company=['GOOGL','AMZN','MSFT','FB']
revenue=[90,136,89,27]
profit=[40,20,34,12]

plt.bar([0,1,2,3],revenue,width=0.4,label="revenue")
plt.bar([0.4,1.4,2.4,3.4],profit,width=0.4,label="profit")
plt.xlabel("company")
plt.xticks([0,1,2,3],company)
plt.legend()
plt.show()
```



### **Subplots**



#### In [17]:

```
#Program for drawing multiple bar charts on one image.
ecommerce=['Snapdeal', 'Alibaba', 'Amazon', 'Flipkart']
Q1_Profit=[45, 100, 70, 40]
Q2_Profit=[40, 105, 65, 45]
Q3_Profit=[42, 120, 72, 50]
Q4_Profit=[34, 115, 60, 69]
#Creating different bar charts on one image using subplot () function.
plt.figure(figsize=(10,10))
#Creating bar chart in first cell of figure having 3 rows, 2 columns.
plt.subplot(2,2,1)
plt.bar(ecommerce,Q1_Profit)
#Creating a bar chart in second cell.
plt.subplot(2,2,2)
plt.bar(ecommerce,Q2_Profit)
#Creating a bar chart in third cell.
plt.subplot(2,2,3)
plt.bar(ecommerce, Q3_Profit)
#Creating a bar chart in sixth cell.
plt.subplot(2,2,4)
plt.bar(ecommerce,Q4_Profit)
#Displaying the chart
plt.show ()
```



