Project Samples - pre 2020

Examples - (Pre 2020)

moodle.wit

Higher Diploma in Computer Science 2018-2019

My Home / Modules / Higher Diploma in Computer Science 2018-2019

Project

Example Projects

- report-4
- report-1
- report-3
- report-5
- report-2

Sample Project 1:

ANAEROBIC DIGESTION CALCULATOR

The problem the application is attempting to solve is to develop an app that calculates the energy output from biogas generated through Anaerobic Digestion (AD).

AD is a process where bacteria break down organic materials in the absence of oxygen into biogas and digestate. The biogas can be used to produce electricity and heat in a Combined Heat and Power Plant, or purified and used as a vehicle fuel or in the gas grid. AD is a carbon neutral process.

Calculations include biogas output, methane output, heat output, electricity output, purified biogas volume, number of vehicles that could be fuelled, potential income and carbon dioxide savings from the various biogas end uses. The algorithms to calculate energy output form AD are not easily accessible to the general public.

Table of Contents Declaration of Authenticity......ii Word Count.....ii Statement of Copyright.....ii Abstract iii Keywordsiii Acknowledgements......iv Table of Contentsiv List of Figuresvi Introduction......1 Chapter 1 Goals......1 Method1 Report Overview2 Review......3 Problem Statement4 Chapter 3 Project Structure......5 User Stories5 User Case Diagrams8 Project Management......8 Chapter 4 Login and Signup......10 4.2.3 Software Design......22 Chapter 5 5.1

ANAEROBIC DIGESTION CALCULATOR

5.2	High Level Design23				
5.3	Detailed Design24				
5.3	Design Features				
5.4	Data Storage28				
5.5	Verification				
5.6	Validation30				
Chapter	6 Discussion and Conclusion				
6.1	Project Review31				
6.2	Key Skills				
6.3	Future Work31				
6.4	Conclusion32				
Bibliography					
Appendices35					
Appe	ndix A35				
A1	Static Website35				
Appendix B					
B1	Java Models and JUnit Tests36				

Sample Project 2:

HOME AUTOMATION OF A BUILDING ENVIRONMENT

The goals of home automation are to make a dwelling into a smart building. Our focus is on key features like security, comfort, ease of access and automation that will be provided by the integrated networked system for the inhabitant of the dwelling.

One of its primaries is to create a building environment automation system that fits the criteria of:

- 1. Cheap to purchase
- 2. Easy to install
- 3. Reliable
- 4. Accessible
- 5. Performance

To create a website application hosted on a Raspberry PI or cloud based web server. This Server will read the live data and time lined feeds of the environment within each room. So we can remotely control electrical output points to stop electrical use and inform us of electricity usage. Along with electricity (watts) other data the app can also read temperature (degrees Celsius).

This service will have its own database. To access this service remotely the user can dial into the internal server by web domain so as to maintain and monitor the dwelling environment. It is to provide users in the dwelling ease of access whilst in the dwelling or thousands of miles away with internet access.

With the user interacting with the user interface it should save money and do their part for a greener environment. The user can investigate history loads of electricity usage in the dwelling, so as to identify off peak loads.

Abbreviations and Acronyms 2				
1. Intro	duction			
1.1 1.2 1.3 1.4	Motivation	4		
2. Back	ground			
2.1 2.2		7		
3. Proje	ect Management			
3.1 3.2 3.3 3.4	Iteration Plan	11 12		
4. Analy	ysis			
4.1 4.2 4.3	Features	17		
5. Desig	gn & Implementation			
5.1 5.2				
6. Cond				
6.1 6.2 6.3 6.4	Key Skills	55 55		
7.Refer	ences	57		
8.Appendix				

Home Automation of a Building Environment

Sample Project 3:

"MYITJOBS"

RECRUITMENT AGENCY WEBSITE & MOBILE APPLICATION SUITE

There has never been a better time for the Irish recruitment industry to implement more powerful Information and Communication Technology (ICT) tools to improve competitive advantage by reducing time and effort to find the most suitable Jobseekers and contacting them promptly using various online tools such as Instant Messaging (IM) and employing Activity Analytics techniques.

While there are companies in Ireland like Social Talent who provide online and social media training to Recruiters, there are very few agencies employing such tools into their websites.

Moreover, there are even fewer agencies with **mobile applications**. It is of particular interest, therefore, to explore the creation of an Application Suite (AS) – that is, the creation of a Web and Mobile Application bridged together with a REST Application Programming Interface (API).

TABLE OF CONTENTS **DECLARATION** ii **GLOSSARY OF TERMS** iii **TABLE OF CONTENTS** iv LIST OF FIGURES vi **Chapter 1 INTRODUCTION** Introduction 1.1 Scope & Objectives 1.2 Approach 1.3 1.4 Access to Live System Project Overview 1.5 **Chapter 2 PROJECT ANALYSIS & SPECIFICATION** 2.1 Introduction Feasibility Study 2.2 User Requirements 2.3 System Requirements 2.4 **Functional Requirements** 2.4.1 Non-Functional Requirements 2.4.2 **Chapter 3 TOOLS & TECHNOLOGIES** Introduction 3.1 3.2 Hardware Tools & Suite Development Development Software 3.3 **APIs** 3.4 10 3.5 Web Frameworks 10 **Testing Tools** 3.6 **Chapter 4 METHODOLOGY 12** 4.1 Introduction Chosen Methodology 12 Server Side Approach 4.3 12 4.4 Client-Side Approach 12 4.5 Notice for Consideration 13 4.6 Risk Management 13 4.7 Process Management 13

MyITJobs

Chapter	5 TESTING AND DEBUGGING	16
5.1	Introduction	16
5.2	Front-End Testing and Debugging	16
5.3	Back-End Testing and Debugging	16
Chapter	26	
5.1	Introduction	26
5.2	Pre-Authentication Pages	26
5.3	Jobseeker Home Page	28
5.4	Job Profile Page	29
5.5	Messages Page	30
5.6	Recruiter Home Page	31
5.7	New Job & Edit Job Pages	32
5.8	Recruiter Analytics Page	34
5.9	Recruiter Messaging Page	35
5.10	Instant Messaging Page	37
Chapter 7 PROJECT EVALUATION		38
7.1	Introduction	38
7.2	APIs Used	38
7.3	Limitations	39
7.4	Alternative Approaches	40
Chapter	· 8 CONCLUSION	41
BIBLIO	GRAPHY	42

Sample Project 4:

SKELETON TRACKING

The project I am currently working on within Mobile Services at Telecommunications Software and Systems Group (TSSG) requires a non-marker tracking system that automatically assesses an individual person performing a range of movements and prescribes a suitable corrective exercise intervention program. A Microsoft Kinect is being used by the client to assess these individuals. When the individual is doing a range of exercises in front of the Kinect for Windows sensor, the individual is displayed in a simplistic skeleton format in the application. This is better known as Skeleton Tracking.

Vitruvius is a framework that simplifies many aspects of the Kinect for Windows application development. This framework needs to be investigated to understand how this framework uses skeleton tracking. Once an understanding is in place, a new framework needs to be devised that can be used in an application to track participant's skeletal movements. Once this is complete, methods need to be investigated into calculating a participant's height, heart rate and blood pressure.

Table of Contents

Introduction10		
The Task		
Methodology11		
Iteration One		
Iteration Two		
Iteration Three		
Iteration Four		
Iteration Five		
Project Timetable		
Resources		
Kinect for Windows Sensor14		
Features		
Body Tracking		
Depth Sensing15		
Colour Camera		
Infrared Capabilities		
Expanded View15		
Limitations		
Kinect Adapter16		
Kinect SDK V2		
Kinect Studio v2.0		
Visual Gesture Builder		
Windows Presentation Foundation18		
Skeleton Tracking19		
What is Vitruvius20		
Iteration One		
MainWindow.xaml		
Skeleton.cs23		
MainWindow.xaml.cs27		
Result		

Skeleton Tracking

Iteration Two30
What is a Dictionary?30
Joint.cs
Limb.cs
MainWindow.xaml.cs
Iteration Three
Testing41
Iteration Four42
Goins Approach43
Iteration Five45
Bonus Material46
Conclusion
Reflection49
References50
Appendix One - Learning Log52
Understanding Windows 10 Development
Understanding Development to Date
Understanding Kinect SDK 52
Kinect for Windows Data Types53
Machine Learning53
Continuous Gesture
Discrete Gesture
Convert Raw Data to Processed Data54
Machine Learning – Deep Squat55
Machine Learning – Hurdle Step55
Understand New Scoring System55
Custom Gesture56
Fault Database56
Machine Learning56
Trial Information56
Json Files – Deep Squat56
Machine Learning – Inline Lunge57
Json Files – Hurdle Step

Sample Project 5:

CARLOW/ KILKENNY ELECTION APP

ELECTION 2016

Background

The project is a hybrid mobile app using Ionic, Angular JS, Cordova, ngCordova, HTML, CSS and JavaScript based on the Irish General Election, 2016 but limited to the Carlow-Kilkenny electoral area. It is intended to fulfil the requirements of the H.Dip. in Computer Science curriculum of a final project.

Objectives

To be a subset and therefore demonstration version of an app providing full Irish coverage of a General Election, namely General Election 2016. To this end, the Carlow-Kilkenny election area, a five seat constituency, was covered.

- To provide information on parties and link to their websites, also highlighting the party that the User has pledged support to.
- To provide information on party candidates with links to their Twitter and Facebook accounts and the ability to email them.
- To enable the User to pledge support to a certain party and store this information locally.
- To enable the User to have Create Read Update Delete (CRUD) functionality for their Comments.
- To provide charting of party popularity using the D3 JavaScript library (D3.js).
- To provide authentication via email for logon, logout, signup and password reset purposes.
 The Firebase cloud backend server was used for this purpose.
- To use the Google Maps API to introduce maps to the app.

Contents Carlow-Kilkenny election app Abstract......2 Background2 Objectives2 Acronyms and Terms Used5 Table of Figures.......10 Technology/Choice Analysis17 Cordova development framework......19 Single Page Applications21 Messaging/API24 The Parties Screen......32 The Candidates Screen......34 Functionality34 The Candidate Detail Screen35

Carlow-Kilkenny Election App – Election 2016

5.5.1			Functionality	
5.	.6	The	Comments Screen39	
5.6.1			Functionality39	
5.	.7	The	Login/Signup Screen46	
	5.7.1		Functionality46	
5.	.8	The	Logout Screen51	
	5.8.1		Functionality51	
5.	.9	The	Password Reset Screen52	
	5.9.1		Functionality52	
5.	.10	The	Pledge Screen53	
	5.10.	1	Functionality53	
5.	.11	The	Map Screen58	
	5.11.	1	Functionality58	
6	Testir	ng/\	/alidation59	
7	Concl	lusio	on60	
7.	.1 5	Sum	mary/Reflection60	
7.	.2	Futu	ıre Work60	
	7.2.1		MongoDB Backend60	
	7.2.2		Develop a website60	
	7.2.3		Vision impaired User features61	
	7.2.4		Usage of Angular2 and Ionic261	
	7.2.5		Expansion of scope to all Irish Constituencies61	
	7.2.6		Increased usage of Firebase features61	
	7.2.7		Move from local server hosting61	
	7.2.8		Introduce an Admin function61	
	7.2.9		Placing on the Google App Store61	
8	Gene	ral I	References	
9 Citations				
10 Appendix A - Modelling		A - Modelling65		