The University of Queensland School of Earth and Environmental Sciences

Application of Finite Elements in Geophysical Modelling

Lutz Gross

E-mail: l.gross@uq.edu.au

Outline

- I) Derive a generic PDE form → `PDE Template`
- II)How does this work apply in some geophysical application?
- III)Solution using the Finite Element Method (FEM)

PDE Template

- Generic from of a PDE with coefficient as parameters
 - framework to derive FEM
 - useful for development of software
- Problem: overhead & efficience vs. flexibility
- See also esys-escript for a more general form: https://github.com/esys-escript/esys-escript.github.io/blob/master/user.pdf

PDE Template

- Potential u
- Gravity force

$$\mathbf{g} = -\nabla u$$

Gauss' Law

$$\nabla^T \mathbf{g} = -4\pi G \rho$$

- Unknown u
- Pseudo flux F:

$$\mathbf{F} = -\mathbf{A}\nabla u + \mathbf{X}$$

'Conservation' Law

$$\nabla^t \mathbf{F} + D u = Y$$

3D Case

Assume A as a diagonal matrix:

$$\mathbf{A} = \begin{bmatrix} a_{00} & 0 & 0 \\ 0 & a_{11} & 0 \\ 0 & 0 & a_{22} \end{bmatrix} \qquad \mathbf{X} = [X_0, X_1, X_2]^T$$

$$\mathbf{X} = [X_0, X_1, X_2]^T$$

$$\mathbf{F} = -\mathbf{A}\nabla u + \mathbf{X}$$

$$\mathbf{F} = \begin{bmatrix} F_0 \\ F_1 \\ F_2 \end{bmatrix} = \begin{bmatrix} -a_{00} \frac{\partial u}{\partial x_0} + X_0 \\ -a_{11} \frac{\partial u}{\partial x_1} + X_1 \\ -a_{22} \frac{\partial u}{\partial x_2} + X_2 \end{bmatrix}$$

3D Case (cont.)

Conservation condition:

$$\nabla^t \mathbf{F} + D \ u = Y$$
 $\frac{\partial F_0}{\partial x_0} + \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + D u = Y$

PDE Template for Gravity

For the gravity case:

$$\mathbf{g} = -\nabla u$$

$$\nabla^T \mathbf{g} = -4\pi G \rho$$

$$\mathbf{F} = -\mathbf{A}\nabla u + \mathbf{X}$$

$$\mathbf{A} = \mathbf{I} \qquad \mathbf{X} = \mathbf{0}$$

$$\nabla^t \mathbf{F} + D u = Y$$

$$D = 0 \qquad Y = -4 \pi G \rho$$

$$a_{00} = a_{11} = a_{22} = 1$$
 and $X_0 = X_1 = X_2 = 0$ $D = 0$ and $Y = -4\pi G\rho$

Formulation of PDE:

Insert Flux into Conservation condition:

$$-\nabla^t \mathbf{A} \nabla u + D \ u = -\nabla^t \mathbf{X} + Y$$

• In 2D:

$$-\frac{\partial}{\partial x_0}a_{00}\frac{\partial u}{\partial x_0} - \frac{\partial}{\partial x_1}a_{11}\frac{\partial u}{\partial x_1} + Du = -\frac{\partial X_0}{\partial x_0} - \frac{\partial X_1}{\partial x_1} + Y$$

Boundary conditions

• Dirichlet-type boundary conditions on $\Gamma_{\scriptscriptstyle D}$

$$u=r$$

- Γ_D = top of the domain Ω
- Neumann-type houndary conditions on $\Gamma_{\scriptscriptstyle N}$

$$\mathbf{n}^T \mathbf{F} = 0 \quad \longrightarrow \quad \mathbf{n}^T \mathbf{A} \nabla u = \mathbf{n}^T \mathbf{X}$$

- With outer normal field n
- Γ_N = all other faces of the domain Ω

Magnetic Anomalies

• Magnetic Flux B_f

$$\mathbf{B_f} = \mathbf{B}_t + \mathbf{M}$$

- Total magnetic field B_t
 - Background magnetic field B_b
 - Magnetic field anomaly B_a

$$\mathbf{B}_t = \mathbf{B}_a + \mathbf{B}_b$$

- Magnetization $\mathbf{M} = k \mathbf{B}_b$ with susceptibility k
 - Here: linearized model, also possible $\mathbf{M} = k \mathbf{B}_{t}$

Magnetic Anomalies (cont.)

• Observed is total magnetic field anomaly b_a is the difference of the intensity of the total magnetic field \mathbf{B}_t and of the background field \mathbf{B}_b :

$$b_a = |\mathbf{B}_t| - |\mathbf{B}_b|$$

With Linearization

$$b_a = \frac{\mathbf{B}_b^T}{|\mathbf{B}_b|} \mathbf{B}_a .$$

• Task: calculate magnetic field anomaly \boldsymbol{B}_a from subsurface susceptibility k

Towards a PDE

• magnetic flux \mathbf{B}_f is divergence free:

$$\nabla^t \mathbf{B}_f = 0$$

• With definition of B_f :

$$\mathbf{B_f} = \mathbf{B}_t + \mathbf{M} \quad \nabla^t \mathbf{B}_b = 0 \quad \longrightarrow \quad \nabla^t (\mathbf{B}_a + k \mathbf{B}_b) = 0$$

• Analogously to gravity: scalar potential *u* with

$$\mathbf{B}_a = -\nabla u$$

Leading to PDE

$$-\nabla^t \nabla u = -\nabla^t k \mathbf{B}_b$$

Using the PDE template

• pseudo flux $F = B_f - B_h$

$$\mathbf{F} = -\nabla u + k\mathbf{B}_b$$

$$A = \mathbf{I} \qquad \qquad \mathbf{X} = kB_b$$

$$\mathbf{F} = -\mathbf{A}\nabla u + \mathbf{X}$$

$$\nabla^t (\mathbf{B}_a + k \mathbf{B}_b) = 0 \quad \longrightarrow \nabla^t \mathbf{F} + D \ u = Y$$

- Also: D=0, Y=0:
- Neumann Roundary conditions: $\mathbf{n}^T \mathbf{F} = 0 \longrightarrow \mathbf{n}^T \mathbf{B}_f = \mathbf{n}^T \mathbf{B}_b$

$$\mathbf{n}^T \mathbf{F} = 0$$
 \longrightarrow $\mathbf{n}^T \mathbf{B}_f = \mathbf{n}^T \mathbf{B}_b$

Magnetotellurics

- Maxwell's equations for
 - magnetic field H
 - electric field E
 - Conductivity σ , resistivity ρ ($\sigma\rho=1$)
 - Conductivity in air layer σ =0
 - Angular frequency ω
 - magnetic permeability μ_0

$$\nabla \times \rho \times \nabla \mathbf{H} + \mathbf{j}\mu_0 \omega \mathbf{H} = 0$$

$$\nabla \times \nabla \times \mathbf{E} + \mathbf{j}\mu_0 \sigma \omega \mathbf{E} = 0$$

2D Model

- no variation along the strike = x-direction
- incoming wave fronts:
 - transverse electric (TE) along Ex

$$-E_{y}=E_{z}=0,H_{x}=0$$

transverse magnetic (TM) along Hx

$$-H_{x}=H_{z}=0, E_{x}=0$$

TE mode

Maxwell equation simplifies to

$$-\nabla^T \nabla E_x + \mathbf{j} \omega \sigma \mu_0 E_x = 0$$

Recover magnetic field component:

$$H_z = -\frac{\mathbf{j}}{\omega\mu_0} \frac{\partial E_x}{\partial x_0}$$
 $H_y = \frac{\mathbf{j}}{\omega\mu_0} \frac{\partial E_x}{\partial x_1}$

- Dirichlet boundary conditions
 - Set as E_x from 'air plus homogeneous subsurface'

PDE Template: TE mode

$$u = E_{x} - \nabla^{T} \nabla E_{x} + \mathbf{j} \omega \sigma \mu_{0} E_{x} = 0$$

$$a_{00} = a_{11} = 1 \text{ and } D = \mathbf{j} \omega \sigma \mu_{0}$$

$$-\frac{\partial}{\partial x_{0}} a_{00} \frac{\partial u}{\partial x_{0}} - \frac{\partial}{\partial x_{1}} a_{11} \frac{\partial u}{\partial x_{1}} + Du = -\frac{\partial X_{0}}{\partial x_{0}} - \frac{\partial X_{1}}{\partial x_{1}} + Y$$

TM mode

Maxwell equation simplifies to

$$-\nabla^T \rho \nabla H_x + \mathbf{j}\omega \mu H_x = 0$$

- No air-layer required as $\rho = \infty \rightarrow H_x = const$
- Recover magnetic field component:

$$E_z = \rho \frac{\partial H_x}{\partial x_0}$$
 $E_y = \rho \frac{\partial H_x}{\partial x_1}$

- Dirichlet boundary conditions
 - Set as H_x from 'homogeneous subsurface'

PDE Template: TM mode

$$u = H_{x} - \nabla^{T} \rho \nabla H_{x} + \mathbf{j} \omega \mu H_{x} = 0$$

$$a_{00} = a_{11} = \rho \text{ and } D = \mathbf{j} \omega \mu_{0}$$

$$-\frac{\partial}{\partial x_{0}} a_{00} \frac{\partial u}{\partial x_{0}} - \frac{\partial}{\partial x_{1}} a_{11} \frac{\partial u}{\partial x_{1}} + Du = -\frac{\partial X_{0}}{\partial x_{0}} - \frac{\partial X_{1}}{\partial x_{1}} + Y$$

Impedance

Defined as

$$Z_{xy}(\omega) = \frac{E_x}{H_y}$$
 $Z_{yx}(\omega) = \frac{E_y}{H_x}$

 Expressed on term of apparent resistivity and phase:

$$\rho_a(\omega) = \frac{1}{\omega \mu_0} |Z_{xy}(\omega)|^2 \qquad \phi(\omega) = \arctan(\frac{Z_{xy}(\omega).imag}{Z_{xy}(\omega).real})$$

FEM solution

• Test case: See https://doi.org/10.1088/1742-2132/13/2/S59

Result TE mode

- FEM with 60000 nodes
 - solved with esys-escript in python
- Weaver reference solution

Seismic

• acoustic wave equation for pressure p=p(t,x)

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^T \nabla p = f(t) \cdot \delta_{\mathbf{x}_s}$$
 Propagation speed c Source amplitude speed $f(t)$

In Frequency Domain

- Apply Fourier Transformation
 - For any angular frequency ω :

$$-\nabla^T \nabla u - k^2 u = f_\omega \delta_{\mathbf{x}_s} \qquad k = \frac{\omega}{c}$$

Source amplitude speed f(t)

Where Are We?

- Boundary conditions?
 - For instance: u=0 on boundary
- Wave equation in frequency fits PDE template: A = I, $D = -k^2$
- But: reflection from boundary
 - As domain is bounded
- Introduce absorption near boundary → eg. PML

PML

- PML = <u>Perfect Matching Layer</u>
- Apply a coordinate transformation:

$$x_i \rightarrow \gamma_i x_i$$

With

$$\gamma_i = 1 - \mathbf{j} \frac{c \,\alpha}{\omega} Q_i$$

- absorption strength parameter α
- absorbing functions Q_i : switches on/off absorption

Absorbing Function

Red: $Q_i = 1$, blue: $Q_i = 0$

Horizontally: Q_0

Vertically: Q_1

Wave Equation With PML

Does not fit PDE Template!!!!

A Little Trick

• Multiply by $\gamma_0 \gamma_1$:

$$-\gamma_1 \frac{\partial}{\partial x_0} \frac{1}{\gamma_0} \frac{\partial u}{\partial x_0} - \gamma_0 \frac{\partial}{\partial x_1} \frac{1}{\gamma_1} \frac{\partial u}{\partial x_1} - \gamma_0 \gamma_1 k^2 u = f_\omega \delta_{\mathbf{x}_s}$$

• Notice: $\gamma_1 = \gamma_1(x_1)$ and $\gamma_0 = \gamma_0(x_0)$

$$-\frac{\partial}{\partial x_0} \frac{\gamma_1}{\gamma_0} \frac{\partial u}{\partial x_0} - \frac{\partial}{\partial x_1} \frac{\gamma_0}{\gamma_1} \frac{\partial u}{\partial x_1} - \gamma_0 \gamma_1 k^2 u = f_\omega \delta_{\mathbf{x}_s}$$

Works also in 3D

PDE Template

$$-\frac{\partial}{\partial x_0} \frac{\gamma_1}{\gamma_0} \frac{\partial u}{\partial x_0} - \frac{\partial}{\partial x_1} \frac{\gamma_0}{\gamma_1} \frac{\partial u}{\partial x_1} - \gamma_0 \gamma_1 k^2 u = f_\omega \delta_{\mathbf{x}_s}$$

with Neumann boundary conditions

Example

- Single reflector 2000m/s vs 3000m/s @ 300m
- 2000x1000 elements with edge length h=1
- PML: α =0.5, layer thickness = 150m

Wave field *u* for 20Hz

Example (cont.)

- Recover signal at 500m off source
 - Sampled at 1ms

By Ao Chang using esys-escript

FEM solver for the PDE template

- Follow what we did for gravity
 - Define node and elements
 - Element = connect vertices with nodes
 - Define the local basis function N_i
 - ightarrow linked to FEM basis $\phi_p^{\ h}$
 - Get Local Element matrices
 - Evaluate PDE with local basis functions N_i

- Here comes in the PDE template
- Assemble local element matrices to linear system
- Insert Dirichlet conditions
- Solve the linear system of equations
- → Done

PDE To Linear System

`strong` form of PDE:

$$-\nabla^T \nabla u = -4\pi G \rho .$$

For PDE template?

'Weak' form of PDE:

$$\int_{\Omega} \nabla^T v^h \, \nabla u^h \, d\mathbf{x} = \int_{\Omega} (-4\pi G) \rho \, v^h \, d\mathbf{x}$$

Local element matrices:
$$S_{ij}^E = \int_E \nabla^T N_i \nabla N_j \ d\mathbf{x} \text{ for } i,j=0,\dots 3$$
 $b_i^E = \int_E (-4\pi G)\rho \ N_i \ d\mathbf{x} \text{ for } i=0,\dots 3$

$$b_i^E = \int_E (-4\pi G)\rho \ N_i \ d\mathbf{x} \text{ for } i = 0, \dots 3$$

Global system of linear equations:

Weak Form PDE Template

Conservation law

$$\nabla^t \mathbf{F} + D \ u = Y$$

Multiply by v and integrate:

$$\int_{\Omega} v \left(\nabla^t \mathbf{F} + D u - Y \right) d\mathbf{x} = 0$$

• Again: apply generalized Green's first identity to pseudo-flux:

$$\int_{\Omega} v \nabla^{T} \mathbf{F} d\mathbf{x} = -\int_{\Omega} \nabla^{T} v \mathbf{F} d\mathbf{x} + \int_{\partial \Omega} v \mathbf{n}^{T} \mathbf{F} ds$$

- Boundary integral is zero as
 - Neumann condition: $\mathbf{n}^T \mathbf{F} = 0$
 - Dirichlet boundary condition: where u=r → v=0

Weak Form PDE Template (cont.)

So we get:

$$\int_{\Omega} \left(v \left(D u - Y \right) - \nabla^T v \mathbf{F} \right) \mathbf{x} = 0$$

- Recall: pseudo-flux $\mathbf{F} = -\mathbf{A}\nabla u + \mathbf{X}$
- Finally: the 'weak' form of the PDE template

$$\int_{\Omega} (\nabla^T v \mathbf{A} \nabla u + D v u) d\mathbf{x} = \int_{\Omega} (\mathbf{X}^T \nabla v + Y v) d\mathbf{x}$$

Weak Form PDE Template (cont.)

This is how it looks in the 2D case:

$$\int_{\Omega} \left(a_{00} \frac{\partial v}{\partial x_0} \frac{\partial u}{\partial x_0} + a_{11} \frac{\partial v}{\partial x_1} \frac{\partial u}{\partial x_0} + D v u \right) d\mathbf{x} = \int_{\Omega} \left(X_0 \frac{\partial v}{\partial x_0} + X_1 \frac{\partial v}{\partial x_1} + Y v \right) d\mathbf{x}$$

Next: break integration down to elements

A More General Grid

- Allow for rectangular shaped elements
- Nodes are not are not equally spaced anymore

Modified local basis functions

Modifications relative to square case

$$N_0(x_0, x_1) = \frac{1}{A_E} (c_0 + h_0 - x_0) \cdot (c_1 + h_1 - x_1)$$

$$N_2(x_0, x_1) = -\frac{1}{A_E} (c_0 + h_0 - x_0) \cdot (c_1 - x_1)$$

$$N_1(x_0, x_1) = -\frac{1}{A_E} (c_0 - x_0) \cdot (c_1 + h_1 - x_1)$$

$$N_3(x_0, x_1) = \frac{1}{A_E} (c_0 - x_0) \cdot (c_1 - x_1)$$

Local Element Matrices

This gives the local element matrices:

$$\int_{\Omega} \left(\nabla^{T} v \mathbf{A} \nabla u + D v u \right) d\mathbf{x} = \int_{\Omega} \left(\mathbf{X}^{T} \nabla v + Y v \right) d\mathbf{x}$$

$$S_{ij}^{E} = \int_{\Omega} \left(\nabla^{T} N_{i} \mathbf{A} \nabla N_{j} + D N_{i} N_{j} \right) d\mathbf{x}$$

$$b_{i}^{E} = \int_{\Omega} \left(\mathbf{X}^{T} \nabla N_{i} + Y N_{i} \right) d\mathbf{x}$$

The 2D case

 Assume: coefficients are constant at each element

$$S_{ij}^{E} = a_{00}^{E} \cdot \int_{E} \frac{\partial N_{i}}{\partial x_{0}} \frac{\partial N_{j}}{\partial x_{0}} d\mathbf{x} + a_{11}^{E} \cdot \int_{E} \frac{\partial N_{i}}{\partial x_{1}} \frac{\partial N_{j}}{\partial x_{1}} d\mathbf{x} + D^{E} \cdot \int_{E} N_{i} N_{j} d\mathbf{x}$$

$$b_i^E = X_0^E \cdot \int_E \frac{\partial N_i}{\partial x_0} d\mathbf{x} + X_1^E \cdot \int_E \frac{\partial N_i}{\partial x_1} d\mathbf{x} + Y^E \cdot \int_E N_i d\mathbf{x}$$

Evaluation

For instance:

$$\int_{E} \frac{\partial N_{i}}{\partial x_{0}} \frac{\partial N_{j}}{\partial x_{0}} d\mathbf{x} = \frac{A^{E}}{(h_{0}^{E})^{2}} \hat{S}_{ij}^{1,00}$$

For edge length h=1

$$\hat{\mathbf{S}}^{1,00} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & -\frac{1}{6} & \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{6} & \frac{1}{6} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$

Element Matrix Calculation

$$\mathbf{S}^{E} = \frac{a_{00}^{E} A^{E}}{(h_{0}^{E})^{2}} \,\hat{\mathbf{S}}^{1,00} + \frac{a_{11}^{E} A^{E}}{(h_{1}^{E})^{2}} \,\hat{\mathbf{S}}^{1,11} + D^{E} A^{E} \,\hat{\mathbf{S}}^{0}$$

$$\mathbf{b}^{E} = \frac{X_{0}^{E} A^{E}}{h_{0}^{E}} \,\hat{\mathbf{b}}^{1,0} + \frac{X_{1}^{E} A^{E}}{h_{1}^{E}} \,\hat{\mathbf{b}}^{1,1} + Y^{E} A^{E} \,\hat{\mathbf{b}}^{0}$$

Let's take a closer look

Dirichlet-Type Boundary condition

- When node q has a Dirichlet condition:
 - overwrite row p with equation:

$$S_{qp}^h = \delta_{qp} :$$

And in right hand side

$$b_q^h = r(\check{\mathbf{x}}_q)$$

Extension into 3D

- Now an element has 8 vertices = 8 FEM nodes
 - Define link: element vertices → FEM nodes
 - Define local basis N₀,...N₇
 - Calculate

$$\hat{\mathbf{S}}^{1,00}$$
, $\hat{\mathbf{S}}^{1,11}$, $\hat{\mathbf{S}}^{1,22}$ and $\hat{\mathbf{S}}^{0}$

Anisotropy

PDE template with full coefficient matrix A:

$$\mathbf{A} = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \text{ with } a_{01} \neq 0 \text{ or } a_{10} \neq 0$$

- for instance modelling anisotropic conductivity
- Introduces mixed derivatives of v and u in week form
- An element level requires $\int_E \frac{\partial N_i}{\partial x_0} \frac{\partial N_j}{\partial x_1} d\mathbf{x}$

Other Element Shapes

- For instance triangles or tetrahedrons
 - Allows for local refinement
- Modification analogously to 3D
 - Construct local basis N_0, N_1, N_2
 - Link Vertex → FEM node
 - Element matrix calculation
 - Not only stretching + rotation

Numerical Integration

- Assumption: PDE coefficient constant across element.
- Better resolution of PDE coefficient on element?
- Apply numerical integration on each element E:

$$\int_{E} f(\mathbf{x}) d\mathbf{x} \approx \sum_{k} \omega_{k}^{E} f(\mathbf{q}_{k}^{E})$$

- Integration nodes $q_k^{\ E}$
- Integration weights $\omega_{\scriptscriptstyle k}^{\;\scriptscriptstyle E}$

Numerical Integration (Cont.)

Evaluate element matrices using numerical integration:

 $\int_E DN_i N_j d\mathbf{x} \approx \sum_k D_k^E \omega_k^E N_i(\mathbf{q}_k^E) N_j(\mathbf{q}_k^E) = A^E \sum_k D_k^E \ \hat{S}_{kij}^0$ Element geometry factor

 Warning: This requires more memory and compute time.

$$\omega_k^E N_i(\mathbf{q}_k^E) N_j(\mathbf{q}_k^E)$$

integration points q_{ν}^{E}

For edge length 1

