

## Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. You are an astronaut on a mission to planet Mars. Using two robotic spacecraft, the Perseverance and Curiosity rovers, your mission is to collect rock samples to bring back to Earth to determine if there is life on the red planet. As a trained astronaut, you know that each rover has a weight limit for samples.

1/1 point

You split the rocks between the two rovers. You first place 2 basalt samples (volcanic rock) and 3 meteorite rocks to Perseverance that weigh 15 grams in total.

You then put 2 basalt samples and 4 meteorites to Curiosity that weigh 16 grams in total. Your goal is to determine how much each sample weighs (b for basalt, m for meteorite). You know that the collected samples are all the same size and shape, so all basalt samples will have the same weight, just as all meteorite samples will have identical weight.



To help you calculate the weight of each rock sample, your spacecraft user interface requires you to input the system of equations that represents the weights of the samples on each one of the rovers.

Which of the following systems of equations do you input?

$$\begin{cases} 2b + 3m = 15 \\ 2b + 4m = 16 \end{cases}$$

$$\begin{cases} 3b + 2m = 15 \\ 4b + 2m = 16 \end{cases}$$

$$\begin{cases} 5b + 2m = 25 \\ 6b + 7m = 19 \end{cases}$$

$$\begin{cases} 2b + 3m = 16 \\ 2b + 4m = 15 \end{cases}$$

## ✓ Correct

Correct! This system of equations represents the weights of each rock sample noted with variables  $\boldsymbol{b}$  for basalt and m for meteorite. The first equation represents the weight of the samples on the Perseverance rover, while the second on the Curiosity rover.

2. Which of the following matrices represents the system of equations?

1/1 point























 $Correct!\ The\ system\ of\ equations\ has\ a\ unique\ solution\ at\ point\ (6,1)\ where\ b=6,\ and\ m=1.\ In\ otherwords,\ the\ basalt\ rock\ sample\ weighs\ 6\ grams,\ and\ the\ meteorite\ rock\ sample\ weighs\ 1\ gram.$