Planes, Polygons and Objects

©Anthony Steed 1999-2005, 2014

© Jan Kautz 2006-2011

© Tobias Ritschel 2016

Overview

- Polygons
- Planes
- Creating an object from polygons

No more spheres

- Most things in computer graphics are not described with spheres!
- Polygonal meshes are the most common representation
- Look at how polygons can be described and how they can used in ray-casting

Polygons

A polygon (face) P is defined by a series of points

$$P = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_{n-1}, \mathbf{p}_n\}$$
$$p_i = (x_i, y_i, z_i)$$

- The points must be co-planar
- 3 points define a plane
- Further point need not lie on that plane

Convex vs. Concave

Convex

Concave

Convex, Concave

- CG people dislike concave polygons
- CG people would prefer triangles!!
 - Easy to break convex object into triangles, hard for concave

Equation of a plane

$$ax + by + cz = d$$

- a, b, c, d are constants that define a unique plane
- x, y, z form a vector p

Deriving a, b, c, d (1)

The cross product

$$\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)$$
defines a **normal** to the plane

- There are two normals (they are opposite)
- Vectors in the plane are all orthogonal to the plane normal vector

Deriving a, b, c, d (2)

• Every \mathbf{p} - \mathbf{p}_0 is normal to \mathbf{n} , therefore

$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$$

$$\mathbf{n} \cdot \mathbf{p} = \mathbf{n} \cdot \mathbf{p}_0$$

• If $\mathbf{n} = (a, b, c)$ and $\mathbf{p} = (x, y, z)$ and $d = \mathbf{n} \cdot \mathbf{p}_0 = n_1 x_0 + n_2 y_0 + n_3 z_0$

$$ax + by + cz = d$$

Half-space

- A plane cuts space into 2 half-spaces
- Define I(x, y, z) =

$$l(x, y, z) = ax + by + cz - d$$

- If l(p) = 0
- point on plane
- If l(p) > 0

point in positive half-space

• If l(p) < 0

point in negative half-space

Polyhedra

Polyhedra

- Polygons are often grouped to form polyhedra
 - Each edge connects 2 vertices
 - Each vertex joins 3 (or more) edges
 - No faces intersect
 - Ideally: should be manifold
 - One vertex has one loop of polygons/edges
 - Each edge has one or two polygons

Polyhedra

- |V| |E| + |F| = 2
 - For cubes, tetrahedra, cows, etc...

Topology / Geometry

Same geometry, different mesh topology

Same topology, different geometry

Example polyhedron

$$F_0 = \{V_0, V_1, V_4\}$$

$$F_1 = \{V_5, V_3, V_2\}$$

$$F_2 = \{V_1, V_2, V_3, V_4\}$$

$$F_3 = \{V_0, V_4, V_3, V_5\}$$

$$F_4 = \{V_0, V_5, V_2, V_1\}$$

$$|V|=6$$
, $|F|=5$, $|E|=9$
 $|V|-|E|+|F|=2$

Representing polyhedra

- 1. Separate polgyons
 - Replicate all coordinates

- 2. Index face set
 - Share vertices

- 3. Winged-edge data structure
 - General and space-efficient

Separate polygons

Separate polygons

Exhaustive (array of vertex lists)

```
faces[0] = (x0,y0,z0), (x1,y1,z1), (x3,y3,z3);
faces[1] = (x2,y2,z2), (x0,y0,z0), (x3,y3,z3);
```

Problems

- Very wasteful
 - same vertex appears at 3 (or more) points in the list
- Cracks due to rounding errors
- Difficult to find neighboring polgyons

Indexed face set

Indexed face set

- Store each vertex once
- Each polygon points to its vertices
 - Vertex array

```
vertices[0] = (x0, y0, z0);
vertices[1] = (x1, y1, z1);
...
```


Face array (list of indices into vertex array)

```
faces[0] = {0, 2, 1};
faces[1] = {2, 3, 1};
```


Vertex order matters

- Polygon V_0 , V_1 , V_4 is NOT equal to V_0 , V_4 , V_1
- Normal points in different directions
- Usually a polygon is only visible from points in its positive half-space
- Known as: back-face culling

Indexed face set issues

- Even indexed face set wastes space!
 - Each face edge is represented twice
- Finding neighbors is expensive (search)

Vertex normals

Vertex normals

- Compute/store a normal at each vertex
- Improves shading
- Computed by averaging

Exercises

- Make some objects using index face set structure
- Verify that V E + F = 2 for some polyhedra
- Think about testing for intersection between a ray and a polygon (or triangle)

Vertex normals

```
for all vertices i
normals[i] = 0;
for all faces
 for all vertices in face[i]
 normals[faces[i][j]] += faces[i].normal;
for all vertices
normals[i] = normalize(normals[i]);
```


Recap

- We have seen definition of planes and polygons and their use in approximating general shapes
- We have looked at data structures for shapes
 - Indexed face sets
- The former is easy to implement and fast for rendering
- It is possible, though we haven't shown how, to convert between the two