Федеральное агентство связи (Россвязь)

Сибирский государственный университет телекоммуникаций и информатики

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

ДИСЦИПЛИНА **АРХИТЕКТУРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ**

Расчетно-графические задания

Составитель –	
К.Т.Н	А.В. Ефимов

- 1. Проанализировать мультиархитектуру суперВС Summit (№ 1 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции r(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 2^{-1/q}$.
 - среднего времени безотказной работы $9 = 5*10^4$ ч.

Задание 2

- 1. Проанализировать мультиархитектуру суперВС Sunway TaihuLight (№ 3 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции r(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0,2^{-1/4}$,
 - среднего времени безотказной работы $9 = 2*10^2$ ч.

Задание 3

- 1. Проанализировать мультиархитектуру суперВС Frontera (№ 5 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции r(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.02 \ 1/v$,
 - среднего времени безотказной работы $9 = 5*10^3$ ч.

Задание 4

- 1. Проанализировать мультиархитектуру суперВС Trinity (№ 7 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.005^{-1/4}$,
 - среднего времени безотказной работы $\mathcal{G} = 10^4$ ч,
 - среднего времени восстановления ЭВМ 24 ч.

Задание 5

- 1. Проанализировать мультиархитектуру суперВС AI Bridging Cloud Infrastructure (№ 8 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 1^{-1/4}$,
 - интенсивности восстановления $\,\mu = 0,1\,$ 1/ $\,u$.
 - среднего времени безотказной работы $\vartheta = 10^3$ ч.

- 1. Проанализировать мультиархитектуру суперВС Nurion (№ 15 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции u(t) восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.3^{-1/4}$,
 - среднего времени безотказной работы $9 = 10^2$ ч,
 - среднего времени восстановления ЭВМ 4 ч.

- 1. Проанализировать мультиархитектуру суперВС НРС4 (№ 17 в списке Тор500).
- 2. Произвести численный расчет и построить графики для функций надежности r(t) ЭВМ и осуществимости f(t) решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.07 \ 1/4$,
 - среднего времени безотказной работы $9 = 10^3$ ч.

Залание 8

- 1. Осуществить анализ иерархии структур коммуникационных сетей суперВС Sierra (№ 2 в списке Тор500).
- 2. Выполнить численный расчет и построить графики для функции r(t) надежности и коэффициента s готовности ЭВМ для следующих количественных характеристик:
 - интенсивности отказов $\lambda = 10^{-3} 1/4$,
 - интенсивности восстановления $\mu = 1 \ 1/v$.

Задание 9

- 1. Осуществить анализ иерархии структур коммуникационных сетей суперВС Tianhe-2A (№ 4 в списке Тор500).
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $\mathcal{G} = 10^4 \, \text{ч.},$
 - интенсивности восстановления $\mu = 3^{-1/4}$.

Задание 10

- 1. Осуществить анализ иерархии структур коммуникационных сетей суперВС Piz Daint (№ 6 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции r(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.02 \ 1/4$.
 - среднего времени безотказной работы $g = 10^2$ ч.

Задание 11

- 1. Осуществить анализ иерархии структур коммуникационных сетей суперВС SuperMUC-NG (№ 9 в списке Тор500).
- 2. Выполнить численный расчет и построить графики для функции s(i,t) готовности и u(t) восстановимости ЭВМ, интенсивности отказов и восстановления которой соответственно равны $\lambda = 10^{-2} \ 1/q$, $\mu = 1 \ 1/q$.

- 1. Осуществить анализ иерархии структур коммуникационных сетей суперВС Titan (№ 12 в списке Top500).
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $g = 10^3 \, \text{ч.}$
 - интенсивности восстановления $\mu = 1 1/u$.

- 1. Произвести анализ возможностей процессоров с микроархитектурой ARM. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $g = 10^5$ ч,
 - интенсивностью восстановления $\mu = 10 \ 1/q$.

Задание 14

- 1. Осуществить анализ иерархии структур коммуникационных сетей суперВС Sequoia (№ 13 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции r(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0,005$ 1/ч
 - среднего времени безотказной работы $g = 10^3$ ч.

Задание 15

- 1. Осуществить анализ иерархии структур коммуникационных сетей суперВС К computer (№ 20 в списке Тор500).
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.05 \ 1/u$
 - среднего времени безотказной работы $\theta = 10^2$ ч.,
 - среднего времени восстановления ЭВМ 12 ч.

Задание 16

- 1. Выполнить анализ (качественный и количественный) древовидных макроструктур вычислительных систем. Привести примеры промышленных (современных) ВС, в которых используются древовидные макроструктуры.
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $\,^{\mathcal{G}\,=\,10^3}\,_{\mathrm{H.,}}$
 - интенсивности восстановления $\mu = 1 \ 1/q$.

- 1. Произвести анализ возможностей процессоров с микроархитектурой Intel Core. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.07 \ 1/u$
 - среднего времени безотказной работы $9=10^5$ ч.
 - интенсивностью восстановления $\mu = 10^{-1} \, 1/q$.

- 1. Произвести анализ возможностей процессоров с микроархитектурой Эльбрус. Привести пример функциональной структуры современного процессора.
- 2. Выполнить численный расчет и построить графики для функции r(t) надежности и функции S(i,t) готовности ЭВМ для следующих количественных характеристик:
 - интенсивности отказов $\lambda = 10^{-2} \text{ } 1/u$,
 - интенсивности восстановления $\mu = 1 \ 1/u$.

Задание 19

- 1. Выполнить анализ (качественный и количественный) простейших макроструктур вычислительных систем. Привести примеры промышленных (современных) ВС, в которых используются простейшие макроструктуры.
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $g = 10^5$ ч,
 - интенсивностью восстановления $\mu = 10^{-1/4}$.

Задание 20

- 1. Выполнить анализ (качественный и количественный) тороидальных макроструктур вычислительных систем. Привести примеры промышленных (современных) ВС, в которых используются тороидальные макроструктуры.
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.07 \ 1/v$,
 - среднего времени безотказной работы $9 = 10^2$ ч.,
 - среднего времени восстановления ЭВМ 48 ч.

Задание 21

- 1. Произвести анализ возможностей процессоров с микроархитектурой POWER. Привести пример функциональной структуры современного процессора.
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $\mathcal{G} = 5*10^4 \,\mathrm{y.}$,
 - интенсивности восстановления $\mu = 24^{-1/4}$.

- 1. Произвести анализ возможностей процессоров с микроархитектурой MIPS. Привести пример функциональной структуры современного процессора.
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $\mathcal{9} = 5*10^3$ ч.,
 - интенсивности восстановления $\mu = 12^{-1/q}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хорошевский В.Г. Архитектура вычислительных систем. М.: МГТУ им. Н.Э. Баумана, 2008. 520 с.
- 2. Конспект лекций по курсу "Архитектура вычислительных систем"
- 3. Сергей Алексеевич Лебедев. К 100-летию со дня рождения основоположника отечественной электронной вычислительной техники. М.: Физматлит, 2002. 440 с.
- 4. Евреинов Э.В., Хорошевский В.Г. Однородные вычислительные системы. Новосибирск: Наука, 1978. 320 с.
- 5. Хорошевский В.Г. Инженерный анализ функционирования вычислительных машин и систем. М.: Радио и связь, 1987. 255 с.
- 6. Головкин Б.А. Параллельные вычислительные системы. М.: Наука, 1980. 520 с.
- 7. Поиск...