Rank-65561 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_1 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(4) is 1431656045

General information

Number of lines	8
Number of points	33
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	32
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{8}
Type of lines on points	$8, 1^{32}$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 8 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_{25}$$

$$\ell_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{41} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{41} = \mathbf{Pl}(0, 0, 0, 1, 1, 0)_{53}$$

$$\begin{split} \ell_2 &= \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0,1,0,1,0,0)_{13} \\ \ell_3 &= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \mathbf{Pl}(0,1,0,1,1,0)_{57} \\ \ell_4 &= \begin{bmatrix} 0 & 1 & \omega^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \mathbf{Pl}(0,3,0,1,0,0)_{15} \\ \ell_5 &= \begin{bmatrix} 1 & \omega & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{146} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{146} = \mathbf{Pl}(0,1,0,2,1,0)_{64} \\ \ell_6 &= \begin{bmatrix} 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \mathbf{Pl}(0,2,0,1,0,0)_{14} \\ \ell_7 &= \begin{bmatrix} 1 & \omega^2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{167} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{167} = \mathbf{Pl}(0,1,0,3,1,0)_{71} \end{split}$$

Rank of lines: (20, 41, 345, 125, 355, 146, 350, 167)

Rank of points on Klein quadric: (25, 53, 13, 57, 15, 64, 14, 71)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 32 single points: The single points on the surface are:

 $0: P_0 = (1,0,0,0)$ lies on line ℓ_0 17: $P_{46} = (1, 2, 1, 1)$ lies on line ℓ_5 1: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_3 18: $P_{49} = (0, 3, 1, 1)$ lies on line ℓ_6 19: $P_{50} = (1, 3, 1, 1)$ lies on line ℓ_7 2: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_1 $3: P_{11} = (0, 1, 1, 0)$ lies on line ℓ_2 20 : $P_{57} = (0, 1, 2, 1)$ lies on line ℓ_6 21 : $P_{59} = (2, 1, 2, 1)$ lies on line ℓ_7 4: $P_{12} = (1, 1, 1, 0)$ lies on line ℓ_3 5: $P_{15} = (0, 2, 1, 0)$ lies on line ℓ_4 22: $P_{61} = (0, 2, 2, 1)$ lies on line ℓ_2 6: $P_{16} = (1, 2, 1, 0)$ lies on line ℓ_5 23: $P_{63} = (2, 2, 2, 1)$ lies on line ℓ_3 7: $P_{19} = (0, 3, 1, 0)$ lies on line ℓ_6 $24: P_{65} = (0,3,2,1)$ lies on line ℓ_4 8: $P_{20} = (1, 3, 1, 0)$ lies on line ℓ_7 25: $P_{67} = (2, 3, 2, 1)$ lies on line ℓ_5 9: $P_{23} = (1, 0, 0, 1)$ lies on line ℓ_0 26: $P_{73} = (0, 1, 3, 1)$ lies on line ℓ_4 10: $P_{24} = (2,0,0,1)$ lies on line ℓ_0 27: $P_{76} = (3, 1, 3, 1)$ lies on line ℓ_5 11: $P_{25} = (3,0,0,1)$ lies on line ℓ_0 28: $P_{77} = (0, 2, 3, 1)$ lies on line ℓ_6 12: $P_{27} = (1, 1, 0, 1)$ lies on line ℓ_1 29: $P_{80} = (3, 2, 3, 1)$ lies on line ℓ_7 13: $P_{32} = (2, 2, 0, 1)$ lies on line ℓ_1 $30: P_{81} = (0,3,3,1)$ lies on line ℓ_2 14: $P_{37} = (3, 3, 0, 1)$ lies on line ℓ_1 $31: P_{84} = (3,3,3,1)$ lies on line ℓ_3 15: $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_2 16: $P_{45} = (0, 2, 1, 1)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	01234567
0	$\overline{011111111}$
1	10111111
2	11011111
3	11101111
4	11110111
5	11111011
6	11111101
7	$\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_3						

 ${\bf Line~1~intersects}$

	Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in	point	P_3						

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_3						

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_3						

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6	ℓ_7
in point	P_3						

Line 5 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7
in point	P_3						

Line 6 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_7
in point	P_3						

Line 7 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_3						

The surface has 33 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$12: P_{25} = (3, 0, 0, 1)$	$24: P_{63} = (2, 2, 2, 1)$
$1: P_3 = (0,0,0,1)$	13: $P_{27} = (1, 1, 0, 1)$	$25: P_{65} = (0, 3, 2, 1)$
$2: P_4 = (1, 1, 1, 1)$	$14: P_{32} = (2, 2, 0, 1)$	$26: P_{67} = (2, 3, 2, 1)$
$3: P_5 = (1, 1, 0, 0)$	15: $P_{37} = (3, 3, 0, 1)$	$27: P_{73} = (0, 1, 3, 1)$
$4: P_{11} = (0, 1, 1, 0)$	$16: P_{42} = (0, 1, 1, 1)$	$28: P_{76} = (3, 1, 3, 1)$
$5: P_{12} = (1, 1, 1, 0)$	17: $P_{45} = (0, 2, 1, 1)$	$29: P_{77} = (0, 2, 3, 1)$
$6: P_{15} = (0, 2, 1, 0)$	18: $P_{46} = (1, 2, 1, 1)$	$30: P_{80} = (3, 2, 3, 1)$
$7: P_{16} = (1, 2, 1, 0)$	$19: P_{49} = (0, 3, 1, 1)$	$31: P_{81} = (0, 3, 3, 1)$
$8: P_{19} = (0, 3, 1, 0)$	$20: P_{50} = (1, 3, 1, 1)$	$32: P_{84} = (3,3,3,1)$
$9: P_{20} = (1, 3, 1, 0)$	$21: P_{57} = (0, 1, 2, 1)$	
$10: P_{23} = (1, 0, 0, 1)$	$22: P_{59} = (2, 1, 2, 1)$	
11: $P_{24} = (2, 0, 0, 1)$	23: $P_{61} = (0, 2, 2, 1)$	