Specifying A Learning Problem

- Learning = Improving with Experience at Some Task
 - Improve over task *T*,
 - with respect to performance measure P,
 - based on experience E.

- Refining the Problem Specification: Issues
 - What experience?
 - What exactly should be learned?
 - How shall it be represented?
 - What specific algorithm to learn it?

Example (Revisited): Learning to Play Board Games

- Type of Training Experience
 - Direct or indirect?
 - Teacher or not?
 - How well distributed are the Training Examples?

Performance Element: What to Learn?

- Classification Functions
 - Hidden functions: estimating ("fitting") parameters
 - Concepts (e.g., chair, face, game)
 - Diagnosis, prognosis: medical, risk assessment, fraud, mechanical systems
- Models
 - Map (for navigation)
 - Distribution (query answering, aka QA)
 - Language model (e.g., automaton/grammar)
- Skills
 - Playing games
 - Planning
 - Reasoning (acquiring representation to use in reasoning)
- Cluster Definitions for Pattern Recognition
 - Shapes of objects
 - Functional or taxonomic definition
- Many Learning Problems Can Be Reduced to Classification

(Supervised) Concept Learning

- Given: Training Examples <x, f(x)> of Some Unknown Function f
- Find: A Good Approximation to f
- Examples (besides Concept Learning)
 - Disease diagnosis
 - x = properties of patient (medical history, symptoms, lab tests)
 - f = disease (or recommended therapy)
 - Risk assessment
 - x = properties of consumer, policyholder (demographics, accident history)
 - f = risk level (expected cost)
 - Automatic steering
 - x = bitmap picture of road surface in front of vehicle
 - *f* = degrees to turn the steering wheel
 - Part-of-speech tagging
 - Fraud/intrusion detection
 - Web log analysis
 - Multisensor integration and prediction

Example: Learning A Concept (*EnjoySport*) from Data

- Specification for Training Examples
 - Similar to a data type definition
 - 6 variables (aka <u>attributes</u>, <u>features</u>):
 Sky, Temp, Humidity, Wind, Water, Forecast
 - Nominal-valued (symbolic) attributes enumerative data type
- Binary (Boolean-Valued or H -Valued) Concept
- Supervised Learning Problem: Describe the General Concept

Example	Sky	Air	Humidity	Wind	Water	Forecast	Enjoy
		Temp					Sport
0	Sunny	Warm	Normal	Strong	Warm	Same	Yes
1	Sunny	Warm	High	Strong	Warm	Same	Yes
2	Rainy	Cold	High	Strong	Warm	Change	No
3	Sunny	Warm	High	Strong	Cool	Change	Yes

Representing Hypotheses

- Many Possible Representations
- Hypothesis *h*: Conjunction of Constraints on Attributes
- Constraint Values
 - Specific value (e.g., Water = Warm)
 - Don't care (e.g., "Water = ?")
 - No value allowed (e.g., "Water = Ø")
- Example Hypothesis for EnjoySport
 - Sky AirTemp Humidity Wind Water Forecast <Sunny? ? Strong ? Same>
 - Is this consistent with the training examples?
 - What are some hypotheses that are consistent with the examples?

Typical Concept Learning Tasks

Given

- Instances X: possible days, each described by attributes Sky, AirTemp,
 Humidity, Wind, Water, Forecast
- Target function $c = \text{EnjoySport}: X \to H = \{\{\text{Rainy, Sunny}\} \times \{\text{Warm, Cold}\} \times \{\text{Normal, High}\} \times \{\text{None, Mild, Strong}\} \times \{\text{Cool, Warm}\} \times \{\text{Same, Change}\}\} \to \{0, 1\}$
- Hypotheses H: conjunctions of literals (e.g., <?, Cold, High, ?, ?, ?>)
- Training examples D: positive and negative examples of the target function

$$\langle x_{1}, c(x_{1}) \rangle, \ldots, \langle x_{m}, c(x_{m}) \rangle$$

Determine

- Hypothesis $h \in H$ such that h(x) = c(x) for all $x \in D$
- Such h are consistent with the training data

Training Examples

- Assumption: no missing X values
- Noise in values of c (contradictory labels)?

Inductive Learning Hypothesis

- Fundamental Assumption of Inductive Learning
- Informal Statement
 - Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples
 - Definitions deferred: sufficiently large, approximate well, unobserved
- Next: How to Find This Hypothesis?

Instances, Hypotheses, and the Partial Ordering Less-Specific-Than

Instances X

Hypotheses H

Specific

General

 x_1 = <Sunny, Warm, High, Strong, Cool, Same> x_2 = <Sunny, Warm, High, Light, Warm, Same>

$$h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$$

 $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$
 $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$

$$\leq_P \equiv$$
 Less-Specific-Than \equiv More-General-Than

$$h_2 \leq_P h_1$$

 $h_2 \leq_P h_3$

Find-S Algorithm

1. Initialize *h* to the most specific hypothesis in *H*

H: the hypothesis space (partially ordered set under relation Less-Specific-Than)

2. For each positive training instance x

For each attribute constraint a_i in h

IF the constraint a_i in h is satisfied by x

THEN do nothing

ELSE replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis *h*

Hypothesis Space Search by Find-S

 x_1 = <Sunny, Warm, Normal, Strong, Warm, Same>, + x_2 = <Sunny, Warm, High, Strong, Warm, Same>, + x_3 = <Rainy, Cold, High, Strong, Warm, Change>, - x_4 = <Sunny, Warm, High, Strong, Cool, Change>, +

 $h_1 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$ $h_2 = \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle$ $h_3 = \langle Sunny, Warm, ?, Strong, Warm, Same \rangle$ $h_4 = \langle Sunny, Warm, ?, Strong, Warm, Same \rangle$ $h_5 = \langle Sunny, Warm, ?, Strong, ?, ? \rangle$

Shortcomings of Find-S

- Can't tell whether it has learned concept
- Can't tell when training data inconsistent
- Picks a maximally specific h (why?)
- Depending on H, there might be several!

Version Spaces

- Definition: Consistent Hypotheses
 - A hypothesis h is consistent with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.
 - Consistent (h, D) ≡ \forall <x, c(x)> \in D . h(x) = c(x)
- Definition: Version Space
 - The <u>version space</u> $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.
 - $VS_{H,D}$ = { $h \in H \mid Consistent(h, D)$ }

Candidate Elimination Algorithm [1]

1. Initialization

- $G \leftarrow$ (singleton) set containing most general hypothesis in H, denoted $\{<?, \dots, ?>\}$
- $S \leftarrow$ set of most specific hypotheses in H, denoted $\{\langle \emptyset, \dots, \emptyset \rangle\}$

2. For each training example d

If d is a positive example (*Update-S*)

Remove from G any hypotheses inconsistent with d

For each hypothesis s in S that is not consistent with d

Remove s from S

Add to S all minimal generalizations h of s such that

- 1. h is consistent with d
- 2. Some member of *G* is more general than *h*

(These are the greatest lower bounds, or *meets*, $s \lor d$, in $VS_{H,D}$)

Remove from S any hypothesis that is more general than another hypothesis in S (remove any dominated elements)

Candidate Elimination Algorithm [2]

(continued)

If *d* is a negative example (*Update-G*)

Remove from S any hypotheses inconsistent with d

For each hypothesis g in G that is not consistent with d

Remove g from G

Add to *G* all minimal specializations *h* of *g* such that

- 1. h is consistent with d
- 2. Some member of *S* is more specific than *h*

(These are the least upper bounds, or *joins*, $g \wedge d$, in $VS_{H,D}$)

Remove from *G* any hypothesis that is less general than another hypothesis in *G* (remove any dominating elements)

Example Trace

Candidate-Elimination Algorithm

- The choice of training examples
 - The least query times: Log₂ | VS |
- How can partially learned concepts be used?
 - Possible to classify certain examples
 - Positive: satisfying every member of S
 - Negative: satisfying none member of G
 - Uncertain: see the proportion of hypotheses voting positive

- Fundamental assumption of inductive learning:
- The inductive learning hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

• Fundamental questions:

- What if the target concept is not contained in hypothesis space?
- The relationship between the size of hypothesis space, the ability of algorithm to generalize to unobserved instances, the number of training examples that must be observed

It can't be represented in H we defined

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Rainy	Warm	Normal	Strong	Warm	Same	No
3	Cloudy	Warm	Normal	Strong	Warm	Same	Yes

Fundamental property of inductive inference

A learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances

Inductive bias

The inductive bias of L is any minimal set of assertion B such that for any target concept c and corresponding training examples D_c

$$(V x_i \in X)[B \wedge D_c \wedge x_i \mid L(x_i, D_c)]$$

Terminology

Supervised Learning

- Concept function from observations to categories (so far, boolean-valued: +/-)
- Target (function) true function f
- Hypothesis proposed function h believed to be similar to f
- Hypothesis space space of all hypotheses that can be generated by the learning system
- Example tuples of the form $\langle x, f(x) \rangle$
- Instance space (aka example space) space of all possible examples
- Classifier discrete-valued function whose range is a set of class labels

The Version Space Algorithm

- Algorithms: Find-S, List-Then-Eliminate, candidate elimination
- Consistent hypothesis one that correctly predicts observed examples
- Version space space of all currently consistent (or satisfiable) hypotheses

Inductive Learning

- Inductive generalization process of generating hypotheses that describe cases not yet observed
- The inductive learning hypothesis