Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import sead_csv("Ren.csv")
a
```

Out[3]:

•		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
	0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868
	1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24188995
	2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784
	3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922
	4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029
	•••								
1	1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	length
1	1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	concat
1	1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null values
1	1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	find
1	548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	search

1549 rows × 11 columns

To display top 10 rows

```
In [4]: c=a.head(15) c
```

Out[4]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	pr
-	0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868	89
	1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24188995	88
	2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784	42

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	pr
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922	6(
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029	57
5	6.0	pop	74.0	3623.0	70225.0	1.0	45.000702	7.68227005	79
6	7.0	lounge	51.0	731.0	11600.0	1.0	44.907242	8.611559868	107
7	8.0	lounge	51.0	1521.0	49076.0	1.0	41.903221	12.49565029	9.
8	9.0	sport	73.0	4049.0	76000.0	1.0	45.548000	11.54946995	5(
9	10.0	sport	51.0	3653.0	89000.0	1.0	45.438301	10.99170017	6(
10	11.0	pop	51.0	790.0	43286.0	1.0	40.871429	14.43896008	89
11	12.0	lounge	51.0	366.0	17500.0	1.0	45.069679	7.704919815	109
12	13.0	lounge	51.0	456.0	18450.0	1.0	45.426571	11.78812981	97
13	14.0	pop	51.0	3835.0	120000.0	1.0	40.531590	17.43615913	4{
14	15.0	lounge	51.0	1035.0	40500.0	1.0	40.911362	14.21119976	9:

To find Missing values

```
In [5]:
            c.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 15 entries, 0 to 14
            Data columns (total 11 columns):
                               Non-Null Count Dtype
                  Column
                                           15 non-null float64
15 non-null object
                                                                    float64
              0
                   ID
              1
                   model
                   engine_power 15 non-null age_in_days 15 non-null
                                                                    float64
              3
                                                                    float64
             4 km 15 non-null float64
5 previous_owners 15 non-null float64
6 lat 15 non-null float64
7 lon 15 non-null object
8 price 15 non-null object
9 Unnamed: 9 0 non-null float64
10 Unnamed: 10 0 non-null object
            dtypes: float64(7), object(4)
            memory usage: 1.4+ KB
```

To display summary of statistics

[6]:	a.describe()							
5]:		ID	engine_power	age_in_days	km	previous_owners	lat	Unnar
	count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	
	mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	
	std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	

	ID	engine_power	age_in_days	km	previous_owners	lat	Unnar
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	
75 %	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	

To display column heading

Pairplot

```
In [8]:
    s=a.dropna(axis=1)
    s
```

Out[8]:		lon	price
	0	8.611559868	8900
	1	12.24188995	8800
	2	11.41784	4200
	3	17.63460922	6000
	4	12.49565029	5700
	•••		
	1544	length	5
	1545	concat	lonprice
	1546	Null values	NO
	1547	find	1
	1548	search	1

1549 rows × 2 columns

```
In [9]: s.columns
Out[9]: Index(['lon', 'price'], dtype='object')
In [10]: sns.pairplot(a)
```

Out[10]: <seaborn.axisgrid.PairGrid at 0x26035f81d30>

Distribution Plot

```
In [12]: sns.distplot(c['price'])
```

Out[12]: <AxesSubplot:xlabel='price', ylabel='Density'>

Correlation

Train the model - Model Building

```
In [14]:
            b=a[['ID', 'model', 'engine_power', 'age_in_days', 'km', 'previous_owners',
                     'lat', 'lon', 'price', 'Unnamed: 9', 'Unnamed: 10']]
            sns.heatmap(b.corr())
Out[14]: <AxesSubplot:>
                                                                             - 1.0
                        ID -
                                                                             - 0.8
              engine_power
               age_in_days
                                                                             - 0.6
                                                                              0.4
            previous owners
                                                                              0.2
                       lat
               Unnamed: 9 -
                                                                              0.0
                                    engine power
                                                       previous owners
                             ₽
                                                             at
In [20]:
            g=c[['price']]
            h=c['price']
```

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [22]: from sklearn.linear_model import LinearRegression
In [23]: lr=LinearRegression()
lr.fit(g_train,h_train)
Out[23]: LinearRegression()
In [24]: print(lr.intercept_)
9.094947017729282e-13
```

Coeffecient

Best Fit line

To find score

```
In [27]: print(lr.score(g_test,h_test))
1.0
```

Import Lasso and ridge

```
In [28]: from sklearn.linear_model import Ridge,Lasso
```

Ridge

Lasso

```
In [32]: l=Lasso(alpha=6)
l.fit(g_train,h_train)

Out[32]: Lasso(alpha=6)

In [33]: l.score(g_test,h_test)

Out[33]: 0.999999999981501

In [34]: ri.score(g_train,h_train)
```

Out[34]: 0.9999999999966