$$T(\text{all calls to Find}) = \#(i \rightarrow j) = \#(i \rightarrow i) \text{ is a root}$$

 $\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j]) +$

 $\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) = \log^*(\operatorname{rank}[i])$

$$\#(i \rightarrow j) =$$
 $\#(i \rightarrow i \cdot i)$

$$\#(i \rightarrow i: i$$

$$\#(i \rightarrow j: j \text{ is a root})+$$

$$\#(i \rightarrow j: j$$

$$T(\text{all calls to Find}) = \#(i \rightarrow j) =$$

$$\#(i \rightarrow i \cdot i)$$

$$\#(i \rightarrow j: j \text{ is a root})+$$

$$\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j])) + \\ \#(i \rightarrow j: \log^*(\operatorname{rank}[i]) = \log^*(\operatorname{rank}[j]))$$

$$T(\text{all calls to Find}) =$$

 $\#(i \rightarrow j) =$
 $\#(i \rightarrow i; i \text{ is a root}) +$

$$\#(i \rightarrow j: j \text{ is a root}) + \\ \#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j])) + \\ \#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j])) + \\ \#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[i]) + \\ \#(i \rightarrow j: \log^*(\operatorname$$

 $\#(i \rightarrow j: j \text{ is a root}) \leq O(m)$

$$\#(i \rightarrow j: j \text{ is a root}) \leq O(m)$$

Proof

There are at most m calls to Find.

$$\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j]))$$

 $\leq O(m \log^* n)$

$$\#(i \to j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j]))$$

$$\leq O(m \log^* n)$$

Proof

There are at most $\log^* n$ different values for $\log^*(\text{rank})$.

$$\#(i \rightarrow j \colon \log^*(\operatorname{rank}[i]) = \log^*(\operatorname{rank}[j])) \le$$

 $O(n \log^* n)$

• assume rank $[i] \in \{k+1,\ldots,2^k\}$

- assume rank[i] $\in \{k+1,\ldots,2^k\}$
- the number of nodes with rank lying in this interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \dots \leq \frac{n}{2^k}$$

- assume rank[i] $\in \{k+1,\ldots,2^k\}$
- the number of nodes with rank lying in this interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \dots \leq \frac{n}{2^k}$$

after a call to Find(i), the node i is adopted by a new parent of strictly larger rank

- assume rank $[i] \in \{k+1,\ldots,2^k\}$
- the number of nodes with rank lying in this interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \dots \leq \frac{n}{2^k}$$

- after a call to Find(i), the node i is adopted by a new parent of strictly larger rank
- after at most 2^k calls to Find(i), the parent of i will have rank from a different interval

■ there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- \blacksquare each of them contributes at most 2^k

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- each of them contributes at most 2^k
- the contribution of all the nodes with rank from this interval is at most O(n)

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- \blacksquare each of them contributes at most 2^k
- the contribution of all the nodes with rank from this interval is at most O(n)
- \blacksquare the number of different intervals is $\log^* n$

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- \blacksquare each of them contributes at most 2^k
- the contribution of all the nodes with rank from this interval is at most O(n)
- the number of different intervals is log* n
- thus, the contribution of all nodes is $O(n \log^* n)$