Suites arithmétiques

TSTMG1

1 Termes d'une suite arithmétique

Définition 1 (Rappel). Une suite arithmétique est une suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par son **premier terme** u_0 et un nombre r appelé la **raison**, tel que chaque terme u_n pour n>0 est obtenu en ajoutant r au terme précédent :

$$u_n = u_{n-1} + r$$

Exemple. — La suite

$$0; 2; 4; 6; 8; 10; \dots$$

est la suite de premier terme 0 et de raison 2.

$$0 \xrightarrow{+2} 2 \xrightarrow{+2} 4 \xrightarrow{+2} 6 \xrightarrow{+2} 8 \xrightarrow{+2} 10$$

— La suite

$$10; 9; 8; 7; 6; 5; \dots$$

est la suite de premier terme 10 et de raison -1.

— La suite 1; 2; 4; 7; 11; ... n'est pas une suite arithmétique. En effet,

Remarque. Une suite arithmétique est constante (tous ses termes sont égaux) si et seulement si sa raison est égale à 0.

Proposition 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r. Alors, son n^e terme est donné par la formule

$$u_0 + n \times r$$

Exemple.

- a) Donner le 5^e terme de la suite arithmétique de premier terme 3,5 et de raison $3:\ldots$

En résumé, il y a deux types d'écriture pour le $n^{\rm e}$ terme d'une suite arithmétique :

- La formule de récurrence $u_n = u_{n-1} + r$. Pour vérifier qu'une suite est arithmétique, on vérifie qu'on obtient chaque terme en ajoutant r au terme précédent.
- La formule explicite $u_n = u_0 + n \times r$. On l'utilise une fois qu'on sait qu'une suite est arithmétique, pour calculer directement le n^e terme.

2 Étude d'une suite arithmétique

2.1 Variation d'une suite arithmétique

Proposition 2.

- Une suite arithmétique de raison r est croissante si et seulement si r est positive.
- Une suite arithmétique de raison r est **décroissante** si et seulement si r est négative.

Exemple. La suite arithmétique

$$2; 5; 8; 11; \dots \\ est \dots car \ sa \ raison \ vaut \dots \\ La \ suite \ arithm\'etique \\ 4; -2; -8; \dots \\ est \dots car \ sa \ raison \ vaut \dots$$

2.2 Représentation graphique

Proposition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison n. Alors les points $(0, u_0)$, $(1, u_1)$, $(2, u_2)$, ...sont alignés.

Exemple.

On a représenté ici les premiers termes d'une suite arithmétique $(u_n)_{n\in\mathbb{N}}$.

2 ÉTUDE D'UNE SUITE ARITHMÉTIQUE

a) Guel est le prentier terme $u()$ de cette suite i	a)	Quel est le	e premier terme u_0	de cette suite?	
--	----	-------------	-------------------------	-----------------	--

4

- b) Quelle est la raison r de cette suite ?
- $c) \ \textit{Placer les points correspondants aux termes suivants de cette suite}.$
- d) À partir de quel terme (quel n?) la suite devient positive?

Remarque. Un phénoméne représenté par une suite arithmétique suit une évolution dite linéaire.

3 Moyenne arithmétique

Définition 2. La moyenne arithmétique entre deux nombres a et b est donnée par

$$\frac{a+b}{2}$$

Exemple. Calculer la moyenne arithmétique des couples de nombres suivants :

- a) 10 et 12:....
- b) -4 et 8:

Proposition 4. Soit une suite arithmétique $(u_n)_{n\in\mathbb{N}}$. Alors chaque terme u_n est la moyenne arithmétique du terme précédent et du terme suivant.

$$u_n = \frac{u_{n-1} + u_{n+1}}{2}$$

4 Somme des premiers termes d'une suite arithmétique

Définition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Pour parler de la somme $u_0 + u_1 + u_2 + \cdots + u_N$, on utilise la notation suivante :

$$\sum_{n=0}^{N} u_n$$

Proposition 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique, et N un nombre entier. Alors, $\sum_{n=0}^{N} u_n = (N+1)\frac{u_0 + u_N}{2}$.

Remarque. En français, cette formule donnerait

$$(\textit{Nombre de termes à ajouter}) \times \frac{\textit{Premier terme} + \textit{Dernier terme}}{2}$$

Exemple. Calculer les sommes suivantes :

- a) $u_0 + u_1 + \cdots + u_5$ pour $(u_n)_{n \in \mathbb{N}}$ de premier terme 6 et de raison 5.
- b) $\sum_{n=0}^{10} v_n$ pour $(v_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme 27 et de raison -3.
- c) $\sum_{n=0}^{42} w_n$ pour $(v_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme 15 et de raison 10.