11-442 / 11-642 / 11-742: Search Engines

Document Structure

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

1

Introduction

Until now, the discussion of indexes and retrieval models treated a document as a single bag of words

Today we consider more complex documents

- Documents with fields ("flat structure")
- Hierarchical documents (e.g., XML)

We also consider two sources of document structure

- Explicit markup
- Multiple text representations

- 2

© 2021, Jamie Callan

Sources of Document Structure #1: Explicit Markup

```
<DOC>
<PUBLICATION> Carcinogenesis 

<PUBLICATION>
<DATE> December 7, 2017 
/DATE>
<TITLE> Aspartame, a bittersweet pill 
/TITLE>
<AU> M Paolini, F Vivarelli, A Sapone, D Canistro 
<ABSTRACT> For the first time, the aspartame case shows how a corporation decided to ban an artificial ... 
</ABSTRACT>
<MeSH> Animals, Aspartame/toxicity*, ... 
<SUBSTANCES> Sweetening Agents, Aspartame 
<SUBSTANCES>
: : :
```

3

Sources of Document Structure #1: Explicit Markup

-BOC - COLOR DE CONTROL DE COLOR DE COL

Usually explicit markup is created by the author

Explicit markup may be simple or complex

- "Flat" structure
 - E.g., PubMed search engine:
 - » Fields: title, author, journal, abstract, attribute/value metadata, ...
 - Usually 5-50 fields per document
- Hierarchical structure
 - E.g., XML documents: Title, abstract, chapters, sections, subsections, tables, footnotes, citations, references, ...
 - Often many types of elements in each document

© 2021, Jamie Callan

Sources of Document Structure #2: Multiple Representations

<DOC>

<TITLE> See New Viral Videos: Bull in Crowd </TITLE>

<BODY>

A Spanish sporting exhibition went horribly awry when a disgruntled bull leapt into the stands and began forcefully interacting with spectators. 40 onlookers were injured ...

</BODY>

<URL> spike, channel, viralvideo, bull in crowd </URL>

<INLINK>

bull in crowd video, bull jumps into crowd, 40 people hurt, crazy video, Spanish bull fights back, bullfighting tragedy, ...

</INLINK>

</DOC>

© 2021, Jamie Callan

5

Sources of Document Structure #2: Multiple Representations

Usually multiple representations are created by the search engine

- Perhaps using explicit markup provided by the author
 - E.g., Metadata keywords, title, body
- Perhaps using information from other documents
 - E.g., citation text, inlink text

Usually each representation is a simple bag-of-words

- A small'ish number of representations (e.g., 5-10)
- Not hierarchical

Outline

Document structure

- Index support for structure
- Fields
- Multiple representations of meaning
- Hierarchical structure ("XML documents")

© 2021, Jamie Calla

7

Indexing Structured Documents: Two Typical Approaches

1. Treat each region as independent of other regions

- This makes sense for flat <u>fields</u>
- E.g., don't mix TITLE, DATE, AUTHOR terms
- E.g., Medical records
- Advantage: Simple architecture
- 2. Treat regions as part of a hierarchy of related content
- This makes sense for XML documents & elements
- E.g., DOCUMENT ⊇ SECTION ⊇ SUBSECTION
- E.g., Scientific papers, government regulations
- Advantage: Flexible, may better match user needs

© 2021, Jamie Callan

Storing Fields and Structure Implicitly: Separate Vocabularies

When regions are <u>independent</u>, a simple approach is to use separate vocabularies for each field

- Treat terms as a combination of FIELD and TERM information
 - E.g., AUTHOR::bush, BODY::bush
 - E.g., bush.AUTHOR, bush.BODY
 - E.g., "aspartame" [MeSH Terms]
- Lucene does this

Simple, efficient, effective for shallow structure

© 2021, Jamie Calla

9

Storing Fields and Structure Explicitly

Complex structure requires a more sophisticated approach

- Users want to specify which parts of the document are matched
 - #AND[document] (breast cancer) Retrieve documents
 - -#AND[chapter] (breast cancer) Retrieve chapters
 - -#AND[sentence] (breast cancer) Retrieve sentences
- If each element is indexed by a separate vocabulary, how many inverted lists index cancer?

document
| chapter
| sentence "... help lower breast cancer risk, ..."

- One inverted list for every element that cancer can retrieve (i.e., 3)
- High storage costs when structure is hierarchical and deep

Storing Fields and Structure Explicitly

Complex structure requires a more sophisticated approach

Solution

- Store term locations separately from document structure
 - Additional data structures that store document structure
- At query time, use document structure to select term locations

There are two main approaches

- Store <u>each document's structure</u>
 - A new type of <u>forward index</u>
- Store each type of structure
 - A new type of inverted list

© 2021, Jamie Call:

11

Storing Fields and Structure Explicitly: Trees

Document structure can be stored in a tree

- <begin, end> positions of each element
- Hierarchical relationship among elements
- Use trees to ignore parts of inverted lists
- This is a type of forward index
 - Given docid, get back all of its structure

Slower than using separate vocabularies

- But not a lot slower
- And a lot more flexible

© 2021, Jamie Callan

Storing Fields and Structure Explicitly: **Trees** "apple::title" inverted list "apple" inverted list Finding apple::title : : • This is a QryIop operator doc: 28 doc: 28 Structure for • Get apple inverted list tf: 2 tf: 1 **doc 28** locs: 6, 27 locs: 6 • For each document in the list Document - : - Get its structure tree - Traverse the tree to find the Title Title Chapter element <<u>1</u>, 7>/ <112, 5104> » Get Title range: locations 1-7 Author ··· Paragraph - Discard inverted list locations <8, 9> <897, 1403> outside the range 1-7 Abstract Sentence ··· - Result: new inverted list with <10, 111> <992, 1104> tf=1, loc=6

Storing Fields and Structure Explicitly: Inverted Lists

Element boundaries can be stored in inverted lists

- The search engine only accesses the structured needed for this query
- Efficient for elements that aren't in every document

Slower than using separate vocabularies

- But not a lot slower
- And a lot more flexible

TITLE **CHAPTER** inv. list inv. list df df docid docid extentFreq extentFreq [begin, end] [begin, end] [begin, end] [begin, end] docid docid extentFreq extentFreq [begin, end] [begin, end]

© 2021, Jamie Callar

Storing Fields and Structure Explicitly: Inverted Lists

Finding apple::title

- This is a QryIop operator
- Get apple inverted list
- Get TITLE inverted list
- Discard inverted list locations outside of title boundaries
- Result: new inverted list with tf=1, loc=6

© 2021, Jami

15

Document Structure: Summary

Two sources of document structure

• Explicit structure: Usually created by the author

• Multiple representations: Usually created by the search engine

Three ways of storing document structure

- Store structure as part of term information (e.g., field::term)
- Store structure separately from term information
 - A tree of element locations for each document *forward index*
 - Inverted lists for each type of element inverted index

All 3 storage methods can handle both sources of structure

• But some are better choices than others

Outline

Document structure

- Index support for structure
- Fields
- Multiple representations of meaning
- Hierarchical structure ("XML documents")

© 2021, Jamie Callan

17

Fields

"Advanced search" interfaces allow people to construct complex queries

#FIELD (Author, Sieburth) AND #FIELD (Sieburth[Author]) AND cancer[MeSH Terms] (MeSH, cancer) AND ...

The user is assumed to be knowledgeable

- About query structure
- About document structure

Most effective for experts

Fields: Independent Representations

Usually "flat" document structure

- Independent fields
- No hierarchical structure
- Probably implemented as independent vocabularies
 - Author::Sieburth
 - This is what your homework systems do

The most common form of document structure

19

Outline

Document structure

- Index support for structure
- Fields
- Multiple representations of meaning
- Hierarchical structure ("XML documents")

20

© 2021, Jamie Callan

Multiple (Related) Representations

Fields can be used to provide <u>different</u> representations of <u>the same</u> information

- Varied ways of representing the document content
- More opportunities for query terms to match the document
- Often implemented as independent vocabularies
 - TITLE::apple
 - This is what your homework systems do

How do retrieval models handle multiple representations?

URL
Meta keywords
Title
Body
Inlink

A Web page

© 2021, Jamie Calla

21

Multiple (Related) Representations: The Vector Space

Use a separate vector space for each representation

• Weight each according to its reliability

$$\begin{aligned} \text{Sim } (\textbf{q}, \textbf{d}) &= w_{\text{title}} &\times \text{Sim } (\textbf{q}, \textbf{d}_{\text{title}}) + \\ w_{\text{body}} &\times \text{Sim } (\textbf{q}, \textbf{d}_{\text{body}}) + \\ w_{\text{inlink}} &\times \text{Sim } (\textbf{q}, \textbf{d}_{\text{inlink}}) + \\ w_{\text{url}} &\times \text{Sim } (\textbf{q}, \textbf{d}_{\text{url}}) + \end{aligned}$$

Easy to manage, easy to extend

• Lucene does this

Note the similarity to your HW2 systems

• A #WSUM operator combining queries for title, body, ...

22

Multiple (Related) Representations: BM25

Assume all fields represent the same document content

- Some fields are better evidence
 - E.g., inlink text is better evidence than body text
- Some fields are more verbose
 - E.g., body text vs. title text

Thus, evidence from each field should be weighted differently

© 2021, Jamie Cal

23

Multiple (Related) Representations: BM25

How should BM25 be adapted to handle multiple fields?

- Treat the document as |F| bags of words?
- Match the query to each field, add the scores?

This disrupts BM25's saturation assumption

 Appearing one time in |F| fields has more impact than appearing |F| times in one field

5 fields \times 1 occurrence = $5 \times 0.4 = 2.0$

1 field \times 5 occurrences = 0.77

• Is this the behavior that you want?

© 2021, Jami

Multiple (Related) Representations: BM25F

Solution: Develop a composite, weighted representation

• A combined bag of words for the entire document

$$tf_{t} = \sum_{f \in F} w_{f} tf_{t,f}$$

$$doclen = \sum_{f \in F} w_{f} doclen_{f}$$

F: The set of fields

Intution: If title text is $5 \times$ more useful than body text, then <u>replicate</u> title text $5 \times$

• Then just use standard BM25

Where is length normalization done?

- At the field level, or at the document level?
- Doing it at the field level provides greater control

25

Multiple (Related) Representations: BM25F

$$BM25F(q,d) = \sum_{t \in q} \left(\log \frac{N - df_t + 0.5}{df_t + 0.5} \right) \frac{tf_t}{k_1 + tf_t}$$

$$RSJ \text{ Weight}$$

$$tf_t = \sum_{f \in F} w_f \frac{tf_{t,f,d}}{\left(1 - b_f\right) + b_f} \frac{length_{f,d}}{avglength_f}$$

- Each field f has different parameters
 - $-\,w_f$: Importance or value of field f
 - $-b_{\rm f}$: How field length normalization is done for field f

(Robertson & Zaragoza, 2007)

Multiple (Related) Representations: BM25F

Example weights (TREC 2003 Web Track)

	Topic	Named
Parameter	Distillation	Page Finding
\mathbf{k}_1	27.50	4.90
b _{title}	0.95	0.60
b_{body}	0.70	0.50
banchor	0.60	0.60
W _{title}	38.40	13.50
W _{body}	1.00	1.00
Wanchor	35.00	11.50

Many relevant documents documents

(Robertson & Zaragoza, 2007)

weights

© 2021, Jamie Callan

27

Multiple (Related) Representations: BM25F

Distinctive characteristics of BM25F

- One vocabulary covers all fields
 - A term has a global idf, not a field-specific idf
 - This makes sense when all fields represent the same document content
 - It might not make sense when fields have distinct content
 - » E.g., PubMed, ...
- Field-specific tuning
 - But effect of constants isn't easy to understand

© 2021, Jamie Callan

29

Multiple (Related) Representations: Indri

Bayesian inference networks offer two options for combining multiple representations

- #AND or #WAND
- $p_{wand}(q | d) = \prod_{q_i \in q} p(q_i | d)^{\frac{w_i}{w}}, \quad w = \sum w_i$ $p_{wsum}(q | d) = \sum_{q_i \in q} \frac{w_i}{w} p(q_i | d), \quad w = \sum w_i$ • #SUM or #WSUM

The user query determines how information is combined

Which is best for combining evidence from multiple representations?

- Use #AND and #WAND to combine independent probabilities
- Use #SUM and #WSUM for different ways of estimating the same probability

© 2021, Jamie Callar

Multiple (Related) Representations : Indri

User query

The Time Traveler's Wife

Search

A search engine might transform it into something like this

#and (

#wsum(0.1 time.url 0.2 time.title 0.3 time.inlink 0.4 time.body)
#wsum(0.1 traveler.url 0.2 traveler.title 0.3 traveler.inlink 0.4 traveler.body)

#wsum(0.1 wife.url 0.2 wife.title 0.3 wife.inlink 0.4 wife.body))

31

© 2021, Jamie Callar

31

Multiple (Related) Representations : Summary

Three retrieval models, three different approaches

- Vector space
 - Representations express the <u>same meaning</u> in different ways
 - Weighted average of scores to get a final ranking
- Okapi BM25F
 - Representations express the <u>same meaning</u> in different ways
 - Combine representations to get a better representation
- Indri
 - Representations may be related or independent
 - Each representation provides an estimate of p(t|d)
 - Multiple ways to combine the estimates

All three approaches work well

32

Outline

Document structure

- Index support for structure
- Fields
- Multiple representations of meaning
- Hierarchical structure ("XML documents")

© 2021, Jamie Callan