

COMSATS University Islamabad Department of Computer Science Course Description Form (CDF)

Course Information

Course Code: AIC354 Course Title: Machine Learning Fundamentals

Credit Hours: **3(2,1)**Lab Hours/Week: **2**Lab Hours/Week: **3**Pre-Requisites: **None**

Course Objectives

• To present the basic machine learning concepts;

• To present a range of machine learning algorithms along with their strengths and weaknesses;

• To apply machine learning algorithms to solve problems of moderate complexity.

Course Content

Overview; Concept Learning; Classification & Regression, Unsupervised Learning; Representing Data & Engineering Features; Model Evaluation & Improvement; Algorithm Chains & Pipelines; Semi-Supervised Learning; Reinforcement Learning; Ensemble Learning; Optimization; and Dimensionality Reduction.

Unit wise Major Topics

Unit	Торіс	No. of Teaching Hours
1.	Machine Learning: Overview, Lifecycle, Learning Paradigms, Tasks and Applications.	3
3.	Data Preprocessing; and Feature Engineering; Supervised Learning: Decision Trees, Naive Bayes, KNN, Linear & Logistic Regression, Artificial Neural Networks, Support Vector Machines; Overfitting, Model Evaluation & Improvement; and Algorithm Chains & Pipelines.	10
4.	Unsupervised Learning: K-means, Agglomerative Clustering, Self-Organizing Maps (SOM), and Expectation Maximization.	5
5.	Reinforcement Learning: Hidden Markov Model, Monte Carlo, and Q-Learning.	4
6.	Ensemble Learning: Bagging, Boosting, & Stacking;	3
7.	Optimization Techniques; and Dimensionality Reduction;	5
Total Co	30	

Mapping of CLOs and GAs

Sr.#	Unit #	Course Learning Outcomes	Blooms Taxonomy Learning Level	GA	
	CLO's for Theory				
CLO-1	1	Explain learning paradigms along with task and applications.	Understanding	2	
CLO-2	2	Apply supervised learning techniques to solve classification problems.	Applying	3,5	
CLO-3	3	Apply unsupervised learning techniques to solve clustering problems.	Applying	3,5	

CLO-4	4-5	Apply reinforcement and ensemble algorithms to environments with complex dynamics.	Applying	3,5	
CLO-5	6	Apply optimization and dimensionality reduction techniques to improve model performance	Applying	3,5	
CLO's for Lab					
CLO-6	1-6	Develop a reasonable size project using appropriate machine learning technique.	Creating	3-5	

CLO Assessment Mechanism

Assessment Tools	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5	CLO-6
Quizzes	Quiz 1	Quiz 2	Quiz 3	Quiz 4	-	-
Assignments		Assignment 1	Assignment 2	Assignment 3	Assignment 4	Lab Assignments
Mid Term Exam	Mid Term Exam	Mid Term Exam	-	-	-	Lab Mid Term
Final Term Exam Final Term Exam				Project/Lab Final Exam		

Text and Reference Books

Textbooks:

- 1. Machine Learning, Alpaydin., E., The MIT Press, 2021.
- 2. Machine Learning: An Applied Mathematics Introduction, Wilmott, P., Panda Ohana Publishing, 2019.

Reference Books:

- 1. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Géron, A., O'Reilly Media, 2019.
- 2. Pattern Recognition and Machine Learning, Bishop, C., Springer-Verlag, 2011.
- 3. Machine Learning, Tom, M., McGraw Hill, 1997.