# Проектирование компьютерных средств обучения

Разработка информационно-логической структуры КСО

Лекция 9

#### Цели занятия

- Определить количество и состав связей между учебными элементами
- Рассмотреть методы оценки качества логической структуры учебного материала
- Привести способы вычисления квазиминоров
- Определить значимость учебных элементов в структуре курса
- Рассмотреть методы вычисления рангов

# Связи между учебными элементами

- Определение числа и состава связей между элементами системы является одной из составных задач системного анализа.
- При описании логической структуры учебного курса в виде графа решение этой задачи сводится к определению числа и состава элементарных путей в графе, что, в свою очередь, предполагает умение находить все элементарные пути, идущие из любой вершины исследуемого графа в любую другую его вершину.

### Алгебра квазиминоров

- **Квазиминором элемента**  $a_{kl}$ ,  $k \neq l$  матрицы  $A_{[n]} = ||a_{ij}||_n^n$  называют определитель особого рода (беззнаковый определитель) матрицы, получаемой из матрицы  $A_{[n]}$  путем вычеркивания k-го столбца и l-й строки.
- Квазиминор элемента $a_{kl}$  обозначают символом $\left|a_{ij-lk}\right|_{kl}$  .
- При этом знак  $| \cdot |_{kl}$  является символом квазиминора.
- Знак  $a_{ij-lk}$  обозначает матрицу, полученную из матрицы  $\|a_{ij}\|_n^n$  путем вычеркивания  $\emph{l}$ -й строки и  $\emph{k}$ -го столбца.

## Квазиминоры

• Квазиминор  $\left|a_{ij-lk}\right|_{kl}$  при  $k \neq l$  может быть вычислен с помощью выражения

$$\left| a_{ij-lk} \right|_{kl} = \sum_{q} a_{pq} A_{pq}^{(l)}$$

где  $a_{pq}, q=1(1)n, q \neq k$  - элементы p-й строки матрицы $\|a_{ij}\|_n^n$  за исключением элемента  $a_{pq}, p[1(1)n], q \neq l$ 

$$A_{pq}^{(l)} = \begin{cases} 1, & npu \quad q = l; \\ \left| a_{ij-lk-pq} \right|_{ql}, & npu \quad q \neq l. \end{cases}$$

 Формула сводится вычисление исходного квазиминора к вычислению квазиминоров меньшего порядка с помощью разложения его на указанные квазиминоры.

## Алгебра квазиминоров

- Процесс вычисления во многом сходен с процессом вычисления обычных определителей и после приобретения практических навыков оказывается достаточно простым.
- Сущность рассматриваемого способа определения всех элементарных путей в графе состоит в том, что на основе матрицы смежности вершин графа строится матрица непосредственных путей, а по ней с помощью алгебры квазиминоров находится полная матрица путей.

#### Порядок вычисления

- Порядок вычисления элементов полной матрицы путей  $A_{[n]}$  :
  - Пусть граф задан матрицей  $R_{[n]}$  смежности вершин графа.
  - По матрице  $R_{[n]}$  путем замены всех элементов, не равных нулю, на символы  $u_{ij}$ , i=1(1)n, j=1(1)n, получают матрицу непосредственных путей  $U_{[n]}$ .
  - Применяя алгебру квазиминоров, вычисляют с помощью последовательного разложения исходного квазиминора на квазиминоры меньшего порядка до тех пор, пока не получится обыкновенное алгебраическое выражение, значение которого вычисляется стандартным способом.

#### Пути изучения материала

- Данный метод, с помощью которого находят возможные пути изучения материала, позволяет программе на основании определенных критериев автоматически выбирать дальнейший маршрут обучения.
- Зная номер фрагмента, на котором остановился обучаемый, и историю его обучения, можно предлагать ему ту или иную стратегию обучения, оптимизируя ее по объему материала, времени обучения.

• Дан граф структуры учебного материала некоторого КСО:



• Построим матрицу смежности:



• Подсчитаем количество путей из вершины 1 в вершину 6, т.е. количество возможных траекторий изучения учебного материала.

В исходной матрице смежности вычеркнем
1-й столбец (начало пути) и 6-ю строку (конец пути):



• В новой матрице остальные элементы останутся без изменений:

$$\left\| q_{12} \quad q_{13} \right\| = \left\| q_{23} \quad q_{34} \quad q_{36} \right\| = \left\| q_{42} \quad q_{45} \quad q_{56} \right\|$$

- При вычислении квазиминора необходимо помнить:
- Начать разложение с вершины, откуда начинается путь, и переходить к той вершине, которая соединена ребрами с исходной вершиной.
- Величина  $q_{ij} = 1$  при i=j.

$$\omega_{16} = q_{12} \begin{vmatrix} q_{23} \\ 1 & q_{34} & q_{36} \\ 1 & q_{45} & q_{45} \\ q_{53} & 1 & q_{56} \end{vmatrix} + q_{13} \begin{vmatrix} 1 \\ q_{34} & q_{36} \\ q_{42} & 1 & q_{45} \\ 1 & q_{56} \end{vmatrix} =$$

$$=q_{12}\cdot q_{23}\begin{vmatrix}q_{34}&q_{36}\\1&q_{45}\\1&q_{56}\end{vmatrix}+q_{13}\cdot 1\begin{vmatrix}q_{34}&q_{36}\\1&q_{45}\\1&q_{56}\end{vmatrix}=$$

$$= q_{12} \cdot q_{23} \begin{bmatrix} q_{34} & q_{45} & q_{56} \\ 1 & q_{56} \end{bmatrix} + q_{36} \begin{bmatrix} 1 & q_{45} \\ 1 & 1 \end{bmatrix} + q_{45} \begin{bmatrix} 1 & q_{45} \\ 1 & 1 \end{bmatrix}$$

$$+ q_{13} \begin{bmatrix} q_{34} & q_{45} & q_{56} \\ 1 & q_{56} \end{bmatrix} + q_{36} \begin{bmatrix} 1 & q_{45} \\ 1 & 1 \end{bmatrix} =$$

$$=q_{12}\cdot q_{23}\cdot q_{34}\cdot q_{45}\cdot q_{56}+q_{12}\cdot q_{23}\cdot q_{36}+q_{13}\cdot q_{34}\cdot q_{45}\cdot q_{56}+q_{13}\cdot q_{36}$$

$$=q_{12}\cdot q_{23}\cdot q_{34}\cdot q_{45}\cdot q_{56}+q_{12}\cdot q_{23}\cdot q_{36}+q_{13}\cdot q_{34}\cdot q_{45}\cdot q_{56}+q_{13}\cdot q_{36}$$

- Полученное выражение показывает, что из вершины 1 в вершину 6 существует 4 пути:
  - 1-2-3-4-5-6
  - 1-2-3-6
  - 1-3-6
  - 1-3-4-5-6
- Аналогично определяются остальные квазиминоры, которые образуют полную матрицу путей.

Ведите количество строк  $I = \begin{bmatrix} 10 & u & konuvector control for the control f$ 

| IJ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----|---|---|---|---|---|---|---|---|---|----|
| 1  |   | 1 |   | 1 |   |   |   |   |   |    |
| 2  | 1 |   | 1 |   |   |   |   |   |   |    |
| 3  | 1 | 1 |   |   | 1 | 1 |   |   |   | 1  |
| 4  |   | 1 | 1 |   |   |   |   |   |   |    |
| 5  |   | 1 |   | 1 |   |   |   | 1 |   |    |
| 6  | 1 |   | 1 | 1 | 1 |   |   |   |   |    |
| 7  | 1 |   | 1 |   | 1 |   |   |   |   |    |
| 8  |   | 1 | 1 |   |   | 1 | 1 |   |   | 1  |
| 9  | 1 |   |   | 1 |   | 1 |   | 1 |   |    |
| 10 | 1 |   | 1 |   | 1 | 1 |   | 1 | 1 |    |

Найти все пути из пункта 1



🔻 в пункт



Решение

# Матрица путей

|                     | 2             | 3             | 4         | 5         | 6             | 7         | 8                | 9 | 10                |   |
|---------------------|---------------|---------------|-----------|-----------|---------------|-----------|------------------|---|-------------------|---|
|                     | $q_{i,2}^{-}$ | 0             | $q_{i,4}$ | 0         | 0             | 0         | 0                | 0 | 0                 | 1 |
|                     | 0             | $q_{2,3}$     | 0         | 0         | 0             | 0         | 0                | 0 | 0                 | 2 |
|                     | $q_{3,2}^{-}$ | 0             | 0         | $q_{3,5}$ | $q_{3,6}$     | 0         | 0                | 0 | q <sub>3,10</sub> | 3 |
|                     | $q_{4,2}^{-}$ | $q_{4,3}$     | 0         | 0         | 0             | 0         | 0                | 0 | 0                 | 4 |
| A <sub>1,10</sub> = | $q_{5,2}^{-}$ | 0             | $q_{5,4}$ | 0         | 0             | 0         | $q_{5,8}$        | 0 | 0                 | 5 |
|                     | 0             | $q_{6,3}^{-}$ | $q_{6,4}$ | $q_{6,5}$ | 0             | 0         | 0                | 0 | 0                 | 6 |
|                     | 0             | $q_{7,3}^{-}$ | 0         | $q_{7,5}$ | 0             | 0         | 0                | 0 | 0                 | 7 |
|                     | $q_{8,2}^{-}$ | $q_{8,3}$     | 0         | 0         | $q_{8,6}$     | $q_{8,7}$ | 0                | 0 | q <sub>8,10</sub> | 8 |
|                     | 0             | 0             | $q_{9,4}$ | 0         | $q_{9,6}^{-}$ | 0         | q <sub>9,8</sub> | 0 | 0                 | 9 |
|                     |               |               |           |           |               |           |                  |   |                   |   |

# Разложение квазиминоров

# Пути прохождения учебного материала











- Представление в виде графов дает возможность оценить качество самих логических структур.
- Методы структурного анализа эффективно используются при исследовании операций для определения надежности технических систем, но не менее успешно могут быть применены и к задачам оценки качества логической структуры учебного материала.
- Основные параметры, характеризующие качество структурного представления логики системы, связанность структуры и ранг ее элемента.

- При составлении и анализе структуры курса полезно и даже необходимо определять те вершины или ребра графа, удаление которых нарушает его связность.
- Не всегда удается достаточно легко определить эти элементы, особенно в случаях, когда структура сложна.

- Связность структуры курса при описании ее в виде графа характеризуется связностью графа.
- Ориентированный граф будет связным (слабо связным), если между двумя любыми его вершинами существует хотя бы один путь, и сильно связным (бисвязным), если из любой вершины графа существует путь в любую вершину графа.
- Таким образом, связность графа определяет возможность связи между его вершинами.

- Анализ связности графа позволяет выявить наличие обрывов или отсутствие необходимых связей в системе учебного курса, а также наиболее уязвимые связи и элементы, удаление которых может привести к распаду системы на отдельные, не связанные между собой, подсистемы.
- При подготовке КСО на эти разделы следует обращать особое внимание, тщательно продумав как содержание информационных кадров, так и контроль качества изучения учебного материала.

# Значимость учебных элементов в структуре КСО

- Методы теории графов позволяют определять и такую структурную характеристику системы учебного курса, как значимость учебного элемента в ее структуре.
- Чем больше связей имеет элемент с другими компонентами, тем большую роль при прочих равных условиях он может играть в системе.

# Значимость учебных элементов в структуре КСО

- Чем большим числом связей обладает какой-либо раздел, или чем выше его значения, тем значительнее влияние такого раздела на остальные.
- Это естественно, т.к. плохое усвоение обучаемым этого раздела существенно затрудняет изучение материала других, связанных с ним разделов.
- Такое влияние иногда называют доминированием, а величины доминирования выражают через ранги.

# Значимость учебных элементов в структуре КСО

- Ранг это число, характеризующее действующие связи.
- При составлении КСО разделы, обладающие высоким рангом, требуют тщательного дидактического оформления.
- Существуют разные методы вычисления рангов.

1. Ранг i-го элемента можно определить как сумму элементов i-й строки матрицы  $\|r_{ij}\|$  , где

$$||r_{ij}|| = ||a_{ij}|| + ||a_{ij}||^2$$

- Этот способ дает возможность достаточно несложным образом получить количественные значения величин доминирования разделов учебного материала.
- Однако, здесь учитываются только одно- и двузвенные дуги, связывающие определенный элемент структуры с другим.

2. В. И. Нечипоренко предлагает определить ранг функцией вида

$$R(i) = \lim_{k \to \infty} R_k^i = \lim \frac{\alpha^{(i)}(k)}{\alpha^{(i)}(k) + \alpha^{(2)}(k) + \dots + \alpha^{(n)}(k)}$$

- где  $\alpha^{(i)}(k)$  количество путей длины k, идущих от элемента i.
- Вычисление ранга с помощью этого выражения позволяет устранить недостатки, отмеченные у предыдущего способа.

3. Для практических вычислений рангов вершин анализируемого графа можно пользоваться более простой формулой

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} \sum\limits_{i=1}^n \sum\limits_{j=1}^n b_{ij} \end{aligned} \end{aligned}$$

• где ||b<sub>ij</sub>||=||a<sub>ij</sub>||<sup>4</sup>

- Ранг это относительный показатель доминирования.
- Поэтому вычисление ранга только одного какогото элемента лишено смысла.
- Само по себе полученное число ни о чем не свидетельствует.
- Необходимо сравнить величины рангов, чтобы сделать вывод о значимости каждого раздела.
- Однако, при определении, скажем, информационной емкости разделов можно пользоваться абсолютными значениями рангов.

# Матрица весов

| Рази | мерность матри                          | щы [N * N]: N = 10              | 4            |     |     |     |     |     |     |     | Пост | гроит | ь матן | оицу |
|------|-----------------------------------------|---------------------------------|--------------|-----|-----|-----|-----|-----|-----|-----|------|-------|--------|------|
|      | Обновить                                | Random                          | Пример       | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0  | 8.0   | 9.0    | 10.0 |
| 0.0  | Наименования у                          | Наименования учебного материала |              |     |     | 2   | 3   | 4   | 5   | 6   | 7    | 8     | 9      | 10   |
| 1.0  | Выпуклые множества                      |                                 |              |     |     | 1.0 | 3.0 | 2.0 | 3.0 | 4.0 | 0.0  | 4.0   | 2.0    | 2.0  |
| 2.0  | Выпуклые функции                        |                                 |              |     | 0.0 | 0.0 | 4.0 | 3.0 | 1.0 | 3.0 | 0.0  | 3.0   | 1.0    | 4.0  |
| 3.0  | Метод дихотом                           | под дихотомии                   |              |     |     | 0.0 | 0.0 | 3.0 | 4.0 | 2.0 | 3.0  | 1.0   | 4.0    | 0.0  |
| 4.0  | Метод золотог                           | о сечения                       |              | 4   | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 2.0 | 1.0  | 1.0   | 0.0    | 1.0  |
| 5.0  | Метод Фибонна                           | чи                              |              | 5   | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0  | 2.0   | 3.0    | 1.0  |
| 6.0  | Метод сопряжё                           | нных направлений                |              | 6   | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0  | 3.0   | 3.0    | 0.0  |
| 7.0  | Адаптивный ме                           | тод случайного поис             | ка           | 7   | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 3.0   | 2.0    | 4.0  |
| 8.0  | Метод случайн                           | ийного поиска наилучшей пробы   |              |     | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0   | 1.0    | 0.0  |
| 9.0  | Метод градиен                           | тного спуска с пост             | оянным шагом | 9   | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0   | 0.0    | 2.0  |
| 10.0 | Метод наискорейшего градиентного спуска |                                 |              |     | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0   | 0.0    | 0.0  |

#### Граф структуры учебного материала



Первый метод вычисления рангов, определяющий одн между данной вершиной графа (данного учебного мате вершинами (другими учебными материалами).

Суть первого метода состоит в следующем:

Для практических вычислений рангов вершин (учебных материалов) а графа можно пользоваться формулой:

$$\mathbf{y}_i$$
 =  $\mathbf{\Sigma} \, \mathbf{b}_{ij} \, / \, \mathbf{\Sigma} \mathbf{\Sigma} \, \mathbf{b}_{ij}$  - (1-ая формула), где

$$||\mathbf{b}_{ij}|| = ||\mathbf{a}_{ij}||^4.$$

Вычисление рангов по этой формуле даёт их нормированные значен удобно сравнивать между собой, причём соотношения между рангами, определёнными в каждом из этих двух методов, отличаются весьма м:

Вычислим  $||\mathbf{b}_{ij}|| = ||\mathbf{a}_{ij}||^4$ :

|    | 1 | 2 | 3 | 4 | 5  | 6  | 7   |
|----|---|---|---|---|----|----|-----|
| 1  | 0 | 0 | 0 | 0 | 36 | 24 | 180 |
| 2  | 0 | 0 | 0 | 0 | 0  | 0  | 120 |
| 3  | 0 | 0 | 0 | 0 | 0  | 0  | 0   |
| 4  | 0 | 0 | 0 | 0 | 0  | 0  | 0   |
| 5  | 0 | 0 | 0 | 0 | 0  | 0  | 0   |
| 6  | 0 | 0 | 0 | 0 | 0  | 0  | 0   |
| 7  | 0 | 0 | 0 | 0 | 0  | 0  | 0   |
| 8  | 0 | 0 | 0 | 0 | 0  | 0  | 0   |
| 9  | 0 | 0 | 0 | 0 | o  | 0  | o   |
| 10 | 0 | 0 | 0 | 0 | 0  | 0  | 0   |

Сумма элементов матрицы в 4-ой степени  $\Sigma\Sigma$   $b_{ij}$  :

4606

Сумма по строкам матрицы в 4-ой степени  $\Sigma$  b<sub>ij</sub> :

|   |   | J | 7 |   |   |
|---|---|---|---|---|---|
| 7 | 2 | 3 | 4 | 5 | 6 |

Второй метод вычисления рангов, определяющий одно- и между данной вершиной графа (данного учебного материа вершинами (другими учебными материалами).

Суть второго метода состоит в следующем:

Ранг і - го элемента можно определить как сумму элементов і - й строки маі  $\|\mathbf{r}_{ij}\| = \|\mathbf{a}_{ij}\| + \|\mathbf{a}_{ij}\|^2$  - (2-ая формула).

Этот способ даёт возможность достаточно несложным образом получить количественные значения величин доминирования разделов учебного ма

Однако, здесь учитывается только одно- и двузвенные дуги, связывающ определённый элемент структуры с другим. Кроме того, здесь вычисляют значения рангов для каждого конкретного случая. Это затрудняет сравнен различных структур или их фрагментов между собой, так как в этом случая удобнее пользоваться их приведёнными (относительными) значениями. Вычислим сначала !! а... !!2

| рычисліі<br>1 | им снача.<br>2 | ла II а <sub>ij</sub> II<br>З | 4  | 5  | 6  | 7  |    |
|---------------|----------------|-------------------------------|----|----|----|----|----|
| 0             | 0              | 4                             | 12 | 19 | 13 | 25 | 2  |
| 2 0           | 0              | 0                             | 12 | 25 | 14 | 23 | 1  |
| 0             | 0              | 0                             | 0  | 9  | 6  | 15 | 2  |
| F 0           | 0              | 0                             | 0  | 0  | 0  | 10 | 1. |
| 5 0           | 0              | 0                             | 0  | 0  | 0  | 0  | 6  |
| 6 0           | 0              | 0                             | 0  | 0  | 0  | 0  | 6  |
| 7 0           | 0              | 0                             | 0  | 0  | 0  | 0  | 0  |
| 3 0           | 0              | 0                             | 0  | 0  | 0  | 0  | 0  |
| 0             | 0              | 0                             | 0  | 0  | 0  | 0  | 0  |
| 10 <b>o</b>   | 0              | 0                             | 0  | 0  | 0  | 0  | 0  |

Вычислим теперь матрицу  $\|\mathbf{r}_{ij}\| = \|\mathbf{a}_{ij}\| + \|\mathbf{a}_{ij}\|^2$ :

|   | 1 | 2 | 3 | 4  | 5  | 6  | 7  |    |
|---|---|---|---|----|----|----|----|----|
| 1 | 0 | 1 | 7 | 14 | 22 | 17 | 25 | 3( |
| 2 | 0 | 0 | 4 | 15 | 26 | 17 | 23 | 2  |
| 3 | 0 | 0 | 0 | 3  | 13 | 8  | 18 | 2  |

## Сводная таблица рангов

| 1 | <b>&gt;</b> |
|---|-------------|
| 4 |             |

Вы выбрали элемент под номером:

| Формула :ү(i) / ү(2) | γ(1)/γ(2) | γ(2)/γ(2) | γ(3)/γ(2) | γ(4)/γ(2) | γ(5)/γ(2) | γ(6)/γ(2) | γ(7)/γ(2) | γ(8)/γ(2) | γ(9)/γ(2) | γ(10)/γ(2) |
|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| Первый метод:        | 1.1528    | 1         | 0.303     | 0.0547    | 0.0065    | 0.0065    | 0         | 0         | 0         | 0          |
| D-0000               | 1 1554    | 1         | 0.0445    | 0.2010    | 0.0007    | 0.0084    | 0.1001    | 0.0000    | 0.0195    | 0          |

Значимость элементов в структуре



#### Вопросы для повторения

- Каким образом определяется количество и состав связей между учебными элементами?
- Какие методы оценки качества логической структуры учебного материала Вы знаете?
- Приведите способы вычисления квазиминоров.

• Как определить значимость учебных элементов в структуре курса?

• Приведите методы вычисления рангов.

# Спасибо за внимание!