SOLID STATE PHYSICS FYSC13: Powder X-ray Diffraction Lab

Mehran Sedrpooshan Andrea Grespi

Division of Synchrotron Radiation Research, Fysicum e-mail: mehran.sedrpooshan@sljus.lu.se

OUTLINE

- Short introduction to X-ray Diffraction
- Crystal structure
- Diffraction patterns analysis
- Experiments

THE ELECTROMAGNETIC SPECTRUM

DISCOVERY OF X-RAY DIFFRACTION

1895 Wilhelm Conrad Röntgen discovers X-rays

Total Control

1912 Max Theodor Felix von Laue invents X-ray diffraction

1912 Sir William Henry Bragg William Lawrence Bragg determine the crystal structure of NaCl, ZnS, and diamond; Bragg's law is derived

NOBEL PRIZES

Year	Prize	Awardee	Торіс
1901	Physics	W. C. Röntgen	Discovery of X-rays
1914	Physics	M. Von Laue	Discovery of XRD
1915	Physics	W. H. Bragg W. L. Bragg	Analysis of crystal structure using XRD
1962	Chemistry	J. C. Kendrew M. F. Perutz	Structural determination of globular proteins (myoglobin and hemoglobin)
1964	Chemistry	D. C. Hodgkin	Structure determinations of important biochemical molecules
1962	Medicine	F. H. Crick J. D. Watson M. H. Wilkins	Structure of DNA
1988	Chemistry	J. Deisenhofer R. Huber H. Michel	Structure of photosynthetic reaction center

BASIC INTERACTION PROCESSES

Transmission

INTERFERENCE PATTERN

Constructive interference (increase of amplitude)

Destructive interference (decrease of amplitude)

LASER THROUGH DOUBLE SLIT

Figure 4.13: Interference pattern with green light

Figure 4.14: Computer modelling (green light)

λ (visible light) ≈ a (slits gap)

hutterstock.com · 208234840

λ (X-ray) ≈ a (lattice parameter)

BRAGG'S LAW

$$n\lambda = PD = 2s = 2d \sin \Theta$$

$$-- \circ --- \circ$$

Constructive interference (increase of amplitude)

CRYSTAL LATTICE

Auguste Bravais

A *crystal lattice* is an array of lattice points.

The *unit cell* is unit of the translationally repeating pattern.

NOTATION OF PLANES

Miller indices describe the orientation of a plane or set of planes within a lattice in relation to the unit cell.

Miller indices are the reciprocals of intersection distances.

SEPARATION OF PLANES

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

For cubic cell:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} \quad \text{or} \quad d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

TYPES OF X-RAY DIFFRACTION PATTERNS

In powder sample we will have all possible orientations of crystallites and some of them will be orientated in a proper way to give rise to diffracted intensity at the glancing angle θ .

The crystallites with this glancing angle will lie at all possible angles around the incoming beam (azimuthal angles), so the diffracted beams lie on a cone around the incident beam of half-angle 2θ .

http://ap.polyu.edu.hk/apakhwon/

Θ - 2Θ SCAN

For structural characterization of crystalline compounds.

A diffraction peak is observed in a certain direction from a sample if there are crystal planes which can reflect X-rays in that direction, and if the reflected X-rays interfere constructively.

When X-ray beam hits a sample and is diffracted we can measure the distances between the planes of the atoms that constitute the sample

$$n\lambda = 2d\sin\theta$$

POWDER X-RAY DIFFRACTOMETER

DATA ANALYSIS

 Calculation of d and/or a for particular planes

$$n\lambda = 2dsin\theta$$

2. <u>Calculation of relative concentration of components in case of multicomponent sample</u>

Measuring relative intensity of strong non-overlapping maxima belonging to different species.

3. Calculation of size of crystallites

$$t = \frac{k\lambda}{\beta \cos \theta}$$
 - Scherrer's formula

t -mean size of ordered domains(crystallites), k - shape factor(=0.94 for our case), β-FWHM(full width at the half of maximum) in radians.

DATA ANALYSIS

4. <u>Calculation of allowed *hkl* values, that will</u> give Bragg points on the diffraction pattern

Structure factor (mathematical description of how a material scatters incident radiation)

$$F(hkl) = \sum_{m} f_{m} \exp(2\pi i (a_{1}h + a_{2}k + a_{3}l))$$
$$I_{peak} \sim F^{2}$$

 a_i - real space coordinates of unit cell atoms

taken in terms of unit cell basis f_m - atomic scattering factor

Example:

BCC unit cell contains

atoms with

coordinates (0, 0, 0) and (0.5, 0.5, 0.5)

Then if we do the calculation for "I",

For BCC, for all (hkl) planes, x-ray intensity
is non-zero except when h+k+l is odd

Different lattice types

Body centered

$$\begin{split} \sum_n e^{i\mathbf{Q}\cdot\mathbf{r}_n} &= e^{i\mathbf{Q}\cdot\mathbf{0}} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3)} = 1 + e^{i(h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3)\cdot(\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3)} \\ &= 1 + e^{i2\pi\frac{1}{2}(h+k+l)} = \left\{ \begin{array}{c} \text{Solve this yourself!} \end{array} \right. \end{split}$$

Face centered

$$\begin{split} \sum_{n} e^{i\mathbf{Q}\cdot\mathbf{r}_{n}} &= e^{i\mathbf{Q}\cdot\mathbf{0}} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_{1} + \frac{1}{2}\mathbf{a}_{2})} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_{1} + \frac{1}{2}\mathbf{a}_{3})} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_{2} + \frac{1}{2}\mathbf{a}_{3})} \\ &= 1 + e^{i2\pi\frac{1}{2}(h+k)} + e^{i2\pi\frac{1}{2}(h+l)} + e^{i2\pi\frac{1}{2}(k+l)} \\ &= \left\{ \begin{array}{c} \text{Solve this yourself!} \end{array} \right. \end{split}$$

The order of peaks is by values obtained by: $\sqrt{(h)^2 + (k)^2 + (l)^2}$

The order of peaks is by values obtained by: $\sqrt{(h)^2 + (k)^2 + (l)^2}$

INTEGRATION AND CALIBRATION

