Introduction to Modern Algebra I, Spring 2017, Columbia University

Mustaf Ahmed

July 29, 2023

Problem Theorem 1.25. Given an equivalence relation \sim on a set X, the equivalence classes of X form a partition of X. Conversely, if $\mathcal{P} = \{X_i\}$ is a partition of a set X, then there is an equivalence relation on X with equivalence classes X_i .

Proof. For the forward direction, assume that \sim is an equivalence relation on X. Let $x \in X$. The equivalence class [x] is non empty because $x \sim x$. It follows that $\bigcup_{x \in X} [x] = X$. To finish this direction, we need to show that $[x] \cap [y] = \emptyset$ or [x] = [y] for any $x, y \in X$. Assume $[x] \cap [y] \neq \emptyset$. Choose $z \in [x] \cap [y]$. By symmetry and transitivity $x \sim y$, so by transitivity $[y] \subseteq [x]$; a similar argument can be made to show that $[x] \subseteq [y]$. Thus, [x] = [y]. Now, assume $[x] \cap [y] = \emptyset$. We are done because trivially follows.

For the backward direction, assume $\mathcal{P} = \{X_i\}$ is a partition of a set X. We'll define the relation $R = \{(x, y) \mid X_i \in \mathcal{P} \text{ and } x, y \in X_i\}$.

Reflexivity. Let $x \in X$. Since \mathcal{P} is a partition, x must be in some X_i . It is clear that x and itself are in the same partition, so R has the reflexive property.

Symmetry. Assume $(x, y) \in R$. Then $x, y \in X_i$ for some i. By the definition of R, $(y, x) \in R$ as well.

Transitivity. Assume $(x,y) \in R$ and $(y,z) \in R$. Then, $x,y \in X_i$ for some i, and $y,z \in X_j$ for some j. We want that i=j. Since the partition is formed from mutually disjoint sets, i=j. Thus, $x,z \in X_i$, so $x \sim z$ as desired.

Problem Corollary 1.26. Two equivalence classes of an equivalence relation are either disjoint or equal.

Proof. Shown in the forward direction of Theorem 1.25.

Problem 1. List all subsets of the 3-element set $A = \{1, 2, 3\}$. How many subsets does a set with n elements have? How many of these subsets have at most two elements?

Part (a). The sets are \emptyset , $\{1\}\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$

Part (b). Find how many subsets exist for a set with n elements amounts to summing all possible sizes for combinations of elements in the set:

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}.$$

Part (c). We need to exclude the combinations where $i \le 2$:

$$\sum_{i=2}^{n} \binom{n}{i} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2}$$
$$= 1 + n + \frac{n(n-1)}{2}$$

.

Problem 3. Prove that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof. We want that $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$ and $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.

$$x \in A \setminus (B \cup C) \iff x \in A \text{ and } x \notin B \cup C$$
 $\iff x \in A \text{ and } x \notin B \text{ and } x \notin C$
 $\iff x \in A \text{ and } x \notin B \text{ and } x \in A \text{ and } x \notin C$
 $\iff x \in A \setminus B \text{ and } x \in A \setminus C$
 $\iff x \in (A \setminus B) \cap (A \setminus C)$

Problem 4. Part (a). Consider sets $A = \{a, b\}$ and $B = \{1, 2, 3\}$. How many injective maps are there from A to B? Give an example of such a map. How many injective maps are there from B to A.

Part (b). Suppose $f: A \to A$ is injective and A is a finite set. Prove that A is bijective. Give an example of an infinite set B and an injective map $f: B \to B$ which is not surjective.

Proof. Part (a). We have 3 choices for where to send a in B. We have 2 choices (to avoid hitting the same element from our first choice) left for where to send b in B. Thus, there are 3*2=6 possible such functions. An example of an injective map from A to B is $f = \{(a,1),(b,2)\}.$

Part (b). We want to show that A = Im(f). Since $f : A \to A$ is injective, every element in Im(f) is unique. Thus, |Im(f)| = |A|. Assume for a contradiction that $A \setminus Im(f)$ is non-empty. We have

$$|A| = |Im(f) \cup (A \setminus Im(f))|$$
$$= |im(f)| + k$$
$$= |A| + k$$

for some non-zero $k \in \mathbb{N}$. This is a contradiction. Thus, Im(f) = A, so f is surjective. The map $f : \mathbb{N} \to \mathbb{N}$ such that f(n) = 2 * n is injective, but it is not surjective because the outputs are always even.

Problem 5. Show that for any set A, there is exactly one map f from the empty set \emptyset to A. When f is injective? When f is surjective?

Proof. Let A be a set. Assume that $g:\emptyset\to A$ and $f:\emptyset\to A$. We want that f=g. By the definition of a function, $f\subseteq\emptyset\times A$ such that the following holds: for all $x\in\emptyset$, there is unique ordered pair (x,y) with $y\in A$. The set $f\subseteq\emptyset\times A$ is empty because \emptyset contains no elements. Thus, $f=\emptyset$, and the condition for functions holds vacuously. By an identical argument, $g=\emptyset$, and the condition for functions also holds vacuously. We have $f=\emptyset=g$, as desired

The condition that f is injective is the following: for all $x, y \in \emptyset$ if f(x) = f(y) then x = y. This holds vacuously for any such f.

The condition that f is surjective is the following: for all $y \in A$ there exists $x \in \emptyset$ such that f(x) = y. The statement is true when $A = \emptyset$.

Problem 6. Prove that for sets A, B, C

$$|A \cup B \cup C| = |A| + |B| + |B| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Proof. Using a analogous result for 2 sets, we have:

$$|A \cup (B \cup C)| = |A| + |B \cup C| - |A \cap (B \cup C)|$$

= $|A| + |B \cup C| - |(A \cap B) \cup (A \cap C)|$

Repeated use of this result yields

$$\begin{aligned} &= \mid A \mid + \mid B \cup C \mid - \mid (A \cap B) \cup (A \cap C) \mid \\ &= \mid A \mid + \mid B \mid + \mid C \mid - \mid B \cap C \mid - \mid (A \cap B) \cup (A \cap C) \mid \\ &= \mid A \mid + \mid B \mid + \mid C \mid - \mid B \cap C \mid - \mid A \cap C \mid - \mid A \cap B \mid - \mid A \cap C \cap B \mid \end{aligned}$$

Problem 7. Given maps $f: A \to B$ and $g: B \to C$ such that gf is surjective, prove that g is surjective. Give an example with surjective gf but not surjective f.

Proof. Assume that $c \in C$. We want to find $b \in B$ such that g(b) = c. Since gf is surjective, we can choose a $a \in A$ such that g(f(a)) = c. All we need is for $f(a) \in B$. Since f is a function from A to B, $f(a) \in B$.

Define $f: \mathbb{N} \to \mathbb{Z}$ by f(n) = n. Define $g: \mathbb{Z} \to \mathbb{N}$ by g(z) = |z|. The function gf is the identity between the natural number domain and natural number comdomain, so it is surjective. the function f will never hit a negative number in \mathbb{Z} , so it is not surjective.