Homework 3: A Posteriori Error Estimation and Flux Approximation

November 15, 2024

1 Problem Statement

Let Ω be a bounded regular open set in \mathbb{R}^d (d = 1, 2, 3), with $f \in L^2(\Omega)$, and constants $k, \alpha > 0$. We consider the partial differential equation

$$\begin{cases} -\operatorname{div}(k\nabla u) + \alpha u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

The associated variational formulation is to find $u \in V := H_0^1(\Omega)$ such that for all $v \in V$,

$$\int_{\Omega} k \nabla u \cdot \nabla v + \alpha u v \, dx = \int_{\Omega} f v \, dx.$$

To determine a numerical approximation of u, we use a Galerkin-type method. In other words, we consider a finite-dimensional subspace V_h of V and denote by u_h the element of V_h such that for all $v_h \in V_h$,

$$\int_{\Omega} k \nabla u_h \cdot \nabla v_h + \alpha u_h v_h \, dx = \int_{\Omega} f v_h \, dx.$$

We then introduce the approximation error $e_h = u_h - u$ and use certain a priori estimates. Specifically, if we use the Lagrange P1 finite element method, there exists a constant C independent of f such that if the potential u is regular and h is the mesh size (assumed regular) of Ω , we have

$$||e_h||_V \leq Ch||u||_{H^2(\Omega)},$$

where $\|\cdot\|_V$ denotes the energy norm, defined as

$$||v||_V = \left(\int_{\Omega} k \nabla v \cdot \nabla v + \alpha |v|^2 dx\right)^{1/2}.$$

Unfortunately, we do not know the solution u a priori. Hence, the previous estimate only provides an order of magnitude of the error. We aim to bound the error by a quantity that only involves known or explicitly computable data.

Question 1: A Posteriori Estimation

The approximation error e_h itself satisfies a variational problem. Indeed, $e_h \in V$ is such that for all $v \in V$,

$$\int_{\Omega} k \nabla e_h \cdot \nabla v + \alpha e_h v \, dx = \int_{\Omega} k \nabla u_h \cdot \nabla v + \alpha u_h v \, dx - \int_{\Omega} f v \, dx.$$

Show that for all $\sigma \in H(\text{div}) := \{ \tau \in L^2(\Omega)^n \mid \nabla \cdot \tau \in L^2(\Omega) \}$, we have

$$\frac{1}{2}||e_h||_V^2 \le -G_h(\sigma),$$

where

$$G_h(\sigma) = -\frac{1}{2} \int_{\Omega} k^{-1} |\sigma - k\nabla u_h|^2 dx - \frac{1}{2} \int_{\Omega} \alpha^{-1} |f - \alpha u_h + \nabla \cdot \sigma|^2 dx.$$

Question 2: Flux Approximation

We aim to optimize the second term of inequality (2) over a space W_h . Specifically, we introduce $\sigma_h \in W_h \subset H(\text{div})$ such that

$$G_h(\sigma_h) = \max_{\tau \in W_h} G_h(\tau).$$

Show that $\sigma_h \in W_h$ is such that for all $\tau \in W_h$,

$$\int_{\Omega} k^{-1} \sigma_h \cdot \tau \, dx + \int_{\Omega} \alpha^{-1} (f + \nabla \cdot \sigma_h) \nabla \cdot \tau \, dx = 0.$$

Deduce that σ_h is an approximation of the flux $\sigma = k\nabla u$.

2 One-Dimensional Case

We consider the case $\Omega = (0, 1)$ and use a finite element discretization to determine an approximation u_h of the potential u and an approximation σ_h of the flux σ . Specifically, we partition Ω into N+1 intervals (x_i, x_{i+1}) for $i = 0, \ldots, N$, where $x_i = ih$ and h = 1/(N+1). We introduce the finite element space V_h of P1 elements on (0, 1) that vanish on the boundary.

Question 3: Optimality Conditions for the Potential

Show that U_h is the solution of the linear system

$$A_h U_h = b_h,$$

where A_h is the matrix $A_h = kh^{-1}K + \alpha hM$, with K, M being two matrices and b a vector to be determined.

Question 4: Potential Calculation

Numerically calculate the solution of (3) for a constant function f. Plot the graph of u. Numerical application: N = 100, f = 1, k = 1, and $\alpha = 1$.

Following the same approach, we compute the approximation of the flux $\Sigma_h \in \mathbb{R}^{N+1}$. We choose the approximation space for the flux σ_h as the set of P1 finite elements,

$$W_h = \{ \sigma_h \in H^1(\Omega) \mid v_h|_{(x_i, x_{i+1})} \in P1 \text{ for all } i = 0, \dots, N \}.$$

Let Σ_h denote the coordinates of σ_h , the Galerkin approximation of σ_h on W_h .

Question 5: Optimality Conditions for the Flux

Show that Σ_h is the solution of the system

$$B_h \Sigma_h = (k^{-1}hM' + \alpha^{-1}h^{-1}K')\Sigma_h = c_h,$$

with K', M' being two matrices and c_h a vector to be determined.

Question 6: Flux Calculation

Numerically compute the solution of (4). Plot the graph of σ_h using the same numerical values as in the previous question.

Question 7: Discretization of the Injection Operator V_h into W_h

7.a) Show that the matrix I_V , which associates the coordinates U_h of u_h in the basis of V_h to its coordinates in W_h , is the $(N+2) \times N$ matrix of the form:

$$I_V = \begin{pmatrix} 0 \\ \mathrm{Id} \\ 0 \end{pmatrix}$$

7.b) Write a freefem++ code that implements the matrix I_V .

Question 8: Discretization of the Injection Operator W_h into X_h

8.a) Show that the matrix I_W , which associates the coordinates Σ_h of σ_h in W_h to its coordinates in X_h , is the $2(N+1)\times(N+2)$ matrix of the form:

$$I_W = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & c & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & c & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}, \quad \text{with } c = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

8.b) Write a freefem++ code that implements the matrix I_W .

Question 9: Discretization of the Gradient Operator on X_h

Let v_h be an element of X_h and $\tau_h \in X_h$ defined for all $i = 0, \dots, N$ by:

$$\tau_h|_{(x_i,x_{i+1})} = \nabla v_h|_{(x_i,x_{i+1})}.$$

Denoting by V and T the respective coordinates of v_h and τ_h in X_h ,

9.a) Show that:

$$T = D_h V$$

where D_h is the $2(N+1) \times 2(N+1)$ matrix:

$$D_h = h^{-1} \begin{pmatrix} D & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D \end{pmatrix}, \text{ with } D = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}.$$

9.b) Write a freefem++ code that implements the matrix D_h .

Question 10: Discretization of the Mass Operator on X_h

Let τ_h be an element of X_h with coordinates T.

10.a) Show that:

$$\int_{\Omega} |\tau_h|^2 \, dx = N_h T \cdot T,$$

where:

$$N_h = \frac{h}{6} \begin{pmatrix} N & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & N \end{pmatrix}, \quad \text{with } N = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

3

10.b) Write a freefem++ code using varf that implements the matrix N_h .

Question 11: Error Estimation

To slightly simplify the analysis, assume $f \in X_h$. Let F_h be the coordinates of f in X_h . Deduce from the estimation (2) that:

$$2\|e_h\|_{V} \leq k^{-1} N_h \left(I_W \Sigma_h - k D_h I_W I_V U_h \right) \cdot \left(I_W \Sigma_h - k D_h I_W I_V U_h \right) + \alpha^{-1} N_h \left(F_h - \alpha I_W I_V U_h + D_h I_W \Sigma_h \right) \cdot \left(F_h - \alpha I_W I_V U_h + D_h I_W \Sigma_h \right).$$

Using this estimation, calculate an upper bound for the error $||e_h||_V$ in the calculation of u. Use the same data as in the previous questions, with N = 100 and N = 1000.

3 Two-Dimensional Case

Consider now the two-dimensional case with the unit disk as the domain Ω .

Question 12: Potential Calculation

Using FreeFem++, find an approximation of the potential using the P1 finite element method. Use a mesh with a density δ_n of elements per unit length with $\delta_n = 10$. Also, choose f = 1, $\alpha = 1$, and k = 1. Plot the isovalues of the potential and provide the average of u_h on Ω .

Question 13: Flux Calculation

Using FreeFem++, find an approximation of the flux with Raviart-Thomas elements of degree zero (RT0 in FreeFem++). Use the same mesh and data as in the previous question. Plot the resulting field σ_h on a graph.

Question 14: Error Estimation

Determine an upper bound on the error $||e_h||_V$. Use the same mesh and data as in the previous two questions.

Question 15: Convergence Rate

Plot the graph, in logarithmic coordinates, of the error $||e_h||_V$ as a function of the density δ_n of points on the boundary per unit length (choose δ_n from 10 to 100). What is the observed convergence rate? Compare the obtained rate to the theoretical convergence rate of the error.