(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

. 1 COLORD A STANDON A CARANTA STANDA STANDA A STANDA STANDA STANDA STANDA STANDA STANDA STANDA STANDA STANDA STANDA

(43) Date de la publication internationale 18 juillet 2002 (18.07.2002)

PCT

(10) Numéro de publication internationale WO 02/055510 A1

- (51) Classification internationale des brevets⁷:

 C07D 277/42, 417/06, 417/14, A61K
 31/425 // (C07D 417/06, 277:00, 241:00)
- (21) Numéro de la demande internationale : PCT/FR02/00093
- (22) Date de dépôt international :
 11 janvier 2002 (11.01.2002)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 01/00396 12 janvier 2001 (12.01.2001) FR
- (71) Déposant (pour tous les États désignés sauf US): SO-CIETE DE CONSEILS DE RECHERCHES ET D'AP-PLICATIONS SCIENTIFIQUES (S.C.R.A.S.) [FR/FR]; Société par Actions Simplifiée, 42, rue du Docteur Blanche, F-75016 Paris (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): MOINET, Christophe [CA/FR]; Shire Biochem, 275, blvd. Armand Frappier, Montreal, Quebec H7V 4A7 (FR). SACKUR, Carole [FR/FR]; 16, rue Michel le Comte, F-75003 Paris (FR). THURIEAU, Christophe [FR/FR]; 10, blvd. Emile Augier, F-75116 Paris (FR).

- (74) Mandataire: BOURGOUIN, André; Beaufour Ipsen -S.C.R.A.S., Direction de la Propriété Industrielle, 42, rue Erlanger, F-75781 Paris Cedex 16 (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont recues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: 2-ARYLIMINO-2,3-DIHYDROTHIAZOLE DERIVATIVES, METHODS FOR PREPARING THEM AND THERA-PEUTIC USE THEREOF

(57) Abstract: The invention concerns nowel 2-arylimino-2,3-dihydrothiazole derivatives, the methods for preparing them and their use as medicines, in particular for treating pathological conditions or diseases wherein one (or several) somatostatin receptors are involved. Said conditions include in particular acromegaly, hypophisial adenoma or endocrinal gastroentero-pancreatic tumours including the carcinoid syndrome, and gastrointestinal bleeding.

(57) Abrégé: L'invention a pour objet de nouveaux dérivés de 2-arylimino-2,3-dihydrothiazoles, leurs procédés de préparation et leur utilisation en tant que médicaments, en particulier dans le traitement des états pathologiques ou des maladies dans lesquels un(ou plusieurs) des récepteurs de la somatostatine est(sont) impliqué(s). Ces états incluent en particulier l'acromégalie, les adénomes hypophysaires ou les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, et les saignements gastro-intestinaux.

WO 02/055510 PCT/FR02/00093

<u>Dérivés de 2-arylimino-2,3-dihydrothiazoles, leurs procédés de préparation et leur utilisation thérapeutique</u>

La présente demande a pour objet de nouveaux dérivés de 2-arylimino-2,3-dihydrothiazoles et leurs procédés de préparation. Ces produits ont une bonne affinité avec certains sous-types de récepteurs de la somatostatine et présentent donc d'intéressantes propriétés pharmacologiques. L'invention concerne également ces mêmes produits en tant que médicaments, des compositions pharmaceutiques les contenant et leur utilisation pour la préparation d'un médicament destiné à traiter les états pathologiques ou les maladies dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s).

5

10

15

20

25

La somatostatine (SST) est un tétradécapeptide cyclique qui a été isolé pour la première fois de l'hypothalamus en tant que substance inhibitrice de l'hormone de croissance (Brazeau P. et al., Science 1973, 179, 77-79). Elle intervient également en tant que neurotransmetteur dans le cerveau (Reisine T. et al., Neuroscience 1995, 67, 777-790; Reisine et al., Endocrinology 1995, 16, 427-442). Le clonage moléculaire a permis de montrer que la bioactivité de la somatostatine dépend directement d'une famille de cinq récepteurs liés à la membrane.

L'hétérogénéité des fonctions biologiques de la somatostatine a conduit à des études pour essayer d'identifier les relations structure-activité des analogues peptidiques sur les récepteurs de la somatostatine, ce qui a amené la découverte de 5 sous-types de récepteurs (Yamada et al., Proc. Natl. Acad. Sci. U.S.A, 89, 251-255, 1992; Raynor, K. et al, Mol. Pharmacol., 44, 385-392, 1993). Les rôles fonctionnels de ces récepteurs sont actuellement activement étudiés. Les affinités avec les différents sous-types de récepteurs de la somatostatine ont été associés au traitement des désordres / maladies suivants. L'activation des sous-types 2 et 5 a été associée à la suppression de l'hormone de croissance (GH) et plas particulièrement à celle des adénomes sécrétant GH (acromégalie) et de ceux sécrétant l'hormone TSH. L'activation du sous-type 2 mais pas du sous-type 5 a été associée au traitement des adénomes sécrétant la prolactine. D'autres indications associées avec l'activation des sous-types de récepteurs de la somatostatine sont la resténose, l'inhibition de la sécrétion d'insuline et/ou de glucagon

15

20

25

30

35

et en particulier le diabète mellitus, l'hyperlipidémie, l'insensiblité à l'insuline, le Syndrome X, l'angiopathie, la rétinopathie proliférative, le phénomène de Dawn et la néphropathie; l'inhibition de la sécrétion d'acide gastrique et en particulier les ulcères peptiques, les fistules entérocutanées et pancréaticocutanées, le syndrome du colon irritable, le syndrome de Dumping, le syndrome des diarrhées aqueuses, les diarrhées reliées au SIDA, les diarrhées induites par la chimiothérapie, la pancréatite aiguë ou chronique et les tumeurs gastrointestinales sécrétrices; le traitement du cancer comme les hépatomes; l'inhibition de l'angiogénèse, le traitement des désordres inflammatoires comme l'arthrite; le rejet chronique des allogreffes; l'angioplastie; la prévention des saignements des vaisseaux greffés et des saignements gastrointestinaux. Les agonistes de la somatostatine peuvent aussi être utilisés pour diminuer le poids d'un patient.

Parmi les désordres pathologiques associés à la somatostatine (Moreau J.P. et al., Life Sciences, 1987, 40, 419; Harris A.G. et al., The European Journal of Medicine, 1993, 2, 97-105), on peut donc citer par exemple: l'acromégalie, les adénomes hypophysaires, la maladie de Cushing, les gonadotrophinomes et les prolactinomes, les effets secondaires cataboliques des glucocorticoïdes, le diabète insulinodépendant, la rétinopathie diabétique, la néphropathie diabétique, l'hyperthyroïdie, le gigantisme, les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, le VIPome, l'insulinome, la nésidioblastose, l'hyperinsulinémie, le glucagonome, le gastrinome et le syndrome de Zollinger-Ellison, le GRFome ainsi que le saignement aigu des varices œsophagiennes, le reflux gastroœsophagien, le reflux gastroduodénal, la pancréatite, les fistules entérocutanées et pancréatiques mais aussi les diarrhées, les diarrhées réfractaires du syndrome d'immunodépression acquise, la diarrhée chronique sécrétoire, la diarrhée associée avec le syndrome de l'intestin irrité, les troubles liés au peptide libérateur de gastrine, les pathologies secondaires aux greffes intestinales, l'hypertension portale ainsi que les hémorragies des varices chez des malades avec cirrhose, l'hémorragie gastro-intestinale, l'hémorragie de l'ulcère gastroduodénale, la maladie de Crohn, les scléroses systémiques, le dumping syndrome, le syndrome du petit intestin, l'hypotension, la sclérodermie et le carcinome thyroïdien médullaire, les maladies liées à l'hyperprolifération cellulaire comme les cancers et plus particulièrement le cancer du sein, le cancer de la prostate, le cancer thyroïdien ainsi que le cancer pancréatique et le cancer colorectal, les fibroses et plus particulièrement la fibrose du rein, la fibrose du foie, la fibrose du poumon, la fibrose de la peau, également la fibrose du système nervéux central ainsi que celle du nez et la fibrose induite par la chimiothérapie, et d'autres domaines thérapeutiques comme, par exemple, les céphalées y compris les céphalées associées aux tumeurs hypophysaires, les douleurs, les accès de panique, la chimiothérapie, la cicatrisation des plaies, l'insuffisance rénale résultant

20

25

d'un retard de croissance, l'obésité et retard de croissance lié à l'obésité, le retard de croissance utérin, la dysplasie du squelette, le syndrome de Noonan, le syndrome d'apnée du sommeil, la maladie de Graves, la maladie polykystique des ovaires, les pseudokystes pancréatiques et ascites, la leucémie, le méningiome, la cachexie cancéreuse, l'inhibition des H pylori, le psoriasis ainsi que la maladie d'Alzheimer. On peut également citer l'ostéoporose.

La déposante a trouvé que les composés de formule générale (I) décrits ci-après présentaient une affinité et une sélectivité pour les récepteurs de la somatostatine. Comme la somatostatine et ses analogues peptidiques ont souvent une mauvaise biodisponibilité par voie orale et une faible sélectivité (Robinson, C., Drugs of the Future, 1994, 19, 992; Reubi, J.C. et al., TIPS, 1995, 16, 110), lesdits composés, agonistes ou antagonistes non-peptidiques de la somatostatine, peuvent être avantageusement utilisés pour traiter les états pathologiques ou les maladies tels que présentés ci-dessus et dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s). De manière préférentielle, lesdits composés peuvent être utilisés pour le traitement de l'acromégalie, des adénomes hypophysaires ou des tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde.

Les composés de la présente invention répondent à la formule générale (I)

(I)

sous forme racémique, d'énantiomère ou toutes combinaisons de ces formes, dans laquelle:

aminoalkylarylalkyle, $amino(C_2-C_7)alkyle$, R1 représente un radical (C3-C7)cycloalkyle, (C1-C15)alkyle, aminoalkylcycloalkylalkyle, cyclohexénylalkyle, (C_1-C_6) alkyl (C_3-C_6) cýcloalkyle, (C_3-C_6) cycloalkylalkyle, alkényle, alkynyle, aryle çarbocyclique comptant au moins deux cycles dont l'un au moins n'est pas aromatique, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle, bis-arylalkyle, alkoxyalkyle, furannylalkyle, tétrahydrofurannylalkyle, N-acétamidoalkyle, cyanoalkyle, dialkylaminoalkyle, aralkoxyalkyle, morpholinoalkyle, alkylthioalkyle, arylhydroxyalkyle,

pyrrolidinoalkyle, pipéridinoalkyle, N-alkylpyrrolidinoalkyle, N-alkylpipérazinylalkyle ou oxopyrrolidinoalkyle,

ou R1 représente l'un des radicaux représentés ci-dessous :

ou encore R1 représente un radical -C(R11)(R12)-CO-R10;

R2 représente un radical aryle carbocyclique ou hétérocyclique éventuellement substitué,

ou bien R2 représente l'un des radicaux représentés ci-dessous :

R3 représente un radical alkyle, adamantyle, aryle carbocyclique ou hétérocyclique 10 éventuellement substitué, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle,

ou R3 représente l'un des radicaux représentés ci-dessous :

ou encore R3 représente un radical -CO-R5;

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement situé sur le radical aryle;

ou alors le radical

représente un radical de formule générale

dans laquelle i représente un entier de 1 à 3;

R5 représente le radical N(R6)(R7);

- 5 R6 représente un radical (C₁-C₁₆)alkyle, cycloalkylalkyle, hydroxyalkyle, aryloxyalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle, aralkoxyalkylke, arylhydroxyalkyle, alkoxyalkyle, alkylthioalkyle, alkényle, alkynyle, cyclohexényle, cyclohexénylalkyle, alkylthiohydroxyalkyle, cyanoalkyle,
- N-acétamidoalkyle, bis-arylalkyle éventuellement substitué sur les groupes aryle, di-arylalkyle éventuellement substitué sur les groupes aryle, morpholinoalkyle, pyrrolidinoalkyle, pipéridinoalkyle, N-alkylpyrrolidinoalkyle, oxopyrrolidinoalkyle, tétrahydrofurannylalkyle, N-benzylpyrrolidinoalkyle, N-alkylpipérazinylalkyle, N-benzylpipérazinylalkyle, N-benzylpipéridinylalkyle ou N-alkoxycarbonylpipéridinyle, ou R6 représente un radical (C3-C8)cycloalkyle éventuellement substitué par un radical choisi parmi le groupe composé du radical hydroxy et d'un radical alkyle,

ou bien R6 représente l'un des radicaux représentés ci-dessous :

R7 représente H ou un radical alkyle, hydroxyalkyle, mono- ou di-aminoalkyle ou aralkyle;

ou encore le radical -N(R6)(R7) représente le radical de formule générale suivante :

dans laquelle:

R8 représente H, alkyle, hydroxyalkyle, aryle carbocyclique ou hétérocyclique éventuellement substitué, aralkyle éventuellement substitué sur le groupe aryle, alkényle, alkoxyalkyle, cycloalkyle, cycloalkylalkyle, bis-arylalkyle, pipéridinyle, pyrrolidinyle, hydroxy, arylalkényle,

ou R8 représente -X-(CH₂)_b-R9;

10 R9 représente H ou un radical alkyle, alkoxy, aryloxy, aryle carbocyclique ou hétérocyclique éventuellement substitué, morpholinyle, pyrrolidinyle, alkylamino ou N,N'-(alkyl)(aryl)amino;

X représente CO, CO-NH ou SO₂;

Y représente CH ou N;

15 a représente 1 ou 2;

b représente un entier de 0 à 6;

ou le radical N(R6)(R7) représente un radical de formule générale

dans laquelle:

Z représente CH, O ou S;

20 c représente un entier de 0 à 4;

ou encore le radical N(R6)(R7) représente l'un des radicaux représentés ci-dessous :

R10 représente un radical amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, pipérazinyle, homopipérazinyle,

ou R10 représente le radical représenté ci-dessous :

R11 représente H;

20

30

R12 représente H ou un radical alkyle, (C₃-C₇)cycloalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué, propargyle, allyle, hydroxyalkyle, alkylthioalkyle, arylalkylalkoxyalkyle, arylalkylthioalkoxyalkyle;

ou les composés de l'invention seront des sels des composés de formule générale (I).

- Lorsque les composés de formule générale (I) comprendront des radicaux R1, R2, R3, R4, R6, R8, R9 ou R12 incluant un radical aryle substitué ou aralkyle substitué sur le groupe aryle, lesdits radicaux aryle ou aralkyle seront de préférence tels que :
 - Pour R1, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, haloalkoxy, aryle, aralkoxy ou SO₂NH₂. Le cas échéant, deux substituants peuvent être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical méthylènedioxy ou propylène.
 - Pour R2, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Le radical aryle peut être substitué par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, alkényle, haloalkoxy, nitro, cyano, azido, SO₂N, mono- ou di-alkylamino, aminoalkyle, aralkoxy ou aryle. Le cas échéant, deux substituants peuvent être reliès entre eux et former un cycle, par exemple en représentant ensemble un radical méthylènedioxy, éthylènedioxy ou propylène.
 - Pour R3, lorsque le(s) groupe(s) aryle(s) (provenant d'un radical aryle ou aralkyle) est (sont) substitué(s), il(s) peu(ven)t l'être, selon le cas, de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule). Les radicaux aryle ou aralkyle carbocycliques peuvent être substitués de 1 à 5 fois sur le noyau aryle par des radicaux choisis indépendamment parmii le groupe composé d'un atome halogène et d'un radical alkyle, hydroxy, alkoxy, haloalkyle, haloalkoxy, nitro, cyano, azido, mono- ou di-alkylamino, pyrrolidinyle, morpholinyle, aralkoxy ou aryle. Le cas échéant, deux substituants peuvent être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical alkylènedioxy comptant de 1 à 3 atomes de carbone. Les radicaux aryle ou aralkyle hétérocycliques de R3 peuvent être substitués de 1 à 2 fois sur le noyau par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle.
 - Pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Le radical aryle peut être substitué par des

10

15

20

25

30

35

radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy.

- Pour R6, lorsque le(s) groupe(s) aryle(s) est (sont) substitué(s), il(s) peu(ven)t l'être de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule). Les substituants éventuels sur les groupes aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, haloalkoxy, aryle, aryloxy ou SO₂NH₂.
- Pour R8, lorsque le(s) groupe(s) aryle(s) est (sont) substitué(s), il(s) peu(ven)t l'être de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule). Les substituants éventuels sur les groupes aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, haloalkyle, alkoxy, hydroxy, cyano, nitro ou alkylthio.
- Pour R9, lorsque le radical aryle carbocyclique ou hétérocyclique est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Les substituants éventuels sur le groupe aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, haloalkyle, alkoxy, haloalkoxy, alkylthio, aryle carbocyclique, hydroxy, cyano ou nitro.
- Pour R12, lorsque le radical aryle carbocyclique ou hétérocyclique est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Les substituants éventuels sur le groupe aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, aryle carbocyclique, aralkoxy, hydroxy, cyano ou nitro.

Par alkyle, lorsqu'il n'est pas donné plus de précision, on entend un radical alkyle linéaire ou ramifié comptant de 1 à 6 atomes de carbone. Par cycloalkyle, lorsqu'il n'est pas donné plus de précision, on entend un système monocyclique carboné comptant de 3 à 7 atomes de carbone. Par alkényle, lorsqu'il n'est pas donné plus de précision, on entend un radical alkyle linéaire ou ramifié comptant de 1 à 6 atomes de carbone et présentant au moins une insaturation (double liaison). Par alkynyle, lorsqu'il n'est pas donné plus de précision, on entend un radical alkyle linéaire ou ramifié comptant de 1 à 6 atomes de carbone et présentant au moins une double insaturation (triple liaison). Par aryle carbocyclique ou hétérocyclique, on entend un système carbocyclique ou hétérocyclique comprenant au moins un cycle aromatique, un système étant dit hétérocyclique lorsque l'un au moins des cycles qui le composent comporte un hétéroatome (O, N ou S). Par haloalkyle, on entend un radical alkyle dont au moins l'un des atomes d'hydrogène (et éventuellement tous) est remplacé par un atome halogène.

Par radicaux alkylthio, alkoxy, haloalkyle, haloalkoxy, aminoalkyle, alkényle, alkynyle et aralkyle, on entend respectivement les radicaux alkylthio, alkoxy, haloalkyle, haloalkoxy, aminoalkyle, alkényle, alkynyle et aralkyle dont le radical alkyle a la signification indiquée précédemment.

Par alkyle linéaire ou ramifié ayant de 1 à 6 atomes de carbone, on entend en particulier les radicaux méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle et tert-butyle, pentyle, néopentyle, isôpentyle, hexyle, isohexyle. Par cycloalkyle, on entend en particulier les radicaux cyclopropanyle, cyclobutanyle, cyclopentanyle, cyclohexyle et cycloheptanyle. Par aryle carbocyclique ou hétérocyclique, on entend notamment les radicaux phényle, naphtyle, pyridinyle, furannyle, thiophènyle, indanyle, 10 indolyle, imidazolyle, benzofurannyle, benzothiophènyle, phtalimidyle. Par aralkyle carbocyclique ou hétérocyclique, on entend notamment les radicaux benzyle, phénylbutyle, indolylalkyle, phtalimidoalkyle, phényléthyle, phénylpropyle, naphtylalkyle, furannylalkyle, thiophénylalkyle, benzothiophénylalkyle, pyridinylalkyle et imidazolylalkyle. 15

Lorsqu'il émane une flèche d'une structure chimique, ladite flèche indique le point d'attache. Par exemple :

De préférence, les composés de formule générale (I) seront tels que :

20 R1 représente -C(R11)(R12)-CO-R10 ou l'un des radicaux suivants :

$$n = 1-6$$
 $n = 1-6$
 $p = 0-15$
 $q = 0-4$

ÓМе

R2 représente l'un des radicaux suivants :

R3 représente CO-R5 ou l'un des radicaux suivants :

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le radical aryle ;

ou alors le radical R4 représente un radical de formule générale

- dans laquelle i représente un entier de 1 à 3;
 - R5 représente l'un des radicaux suivants :

$$N_n$$
 N_n
 N_n

,

R10

représente l'un des radicaux suivants :

R11

représente H;

R12

représente l'un des radicaux suivants:

étant entendu que pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy.

Les composés de l'invention seront de préférence tels que R4 représente H.

Plus préférentiellement, les composés selon l'invention répondront à la formule générale (II)

dans laquelle:

10 • soit R1 représente l'un des radicaux ci-après

R2 représente l'un des radicaux ci-après

_ R3 représente l'un des radicaux ci-après

et R4 représente H;

• soit encore R1 représente l'un des radicaux ci-après

5 R2 représente l'un des radicaux ci-après

R3 représente COR5,

R4 représente H,

et R5 représente l'un des radicaux ci-après

soit enfin R1 représente le radical -C(R11)(R12)-CO-R10 dans lequel
R10 représente le radical

R11 représente H

5 et R12 représente le radical

R2 représente le radical

R3 représente le radical

et R4 représente H.

L'invention concerne également un composé caractérisé en ce qu'il correspond :

à la formule

dans laquelle:

- R2 représente le radical

- R2 représente le radical

et R5 représente le radical

- R2 représente le radical

- R2 représente le radiçal

et R5 représente le radical

- R2 représente le radical

- R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical 0,1 - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical et R5 représente le radical - R2 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical

et R5 représente le radical - R2 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical et R5 représente le radical - R2 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical et R5 représente le radical - R2 représente le radical

et R5 représente le radical

<u>.</u>

- R2 représente le radical et R5 représente le radical

- R2 représente le radical enfin et R5 représente le radical

- R2 représente le radical et R5 représente le radical

• à la formule

et R3 représente

- R10 représente

et R3 représente

$$H_2N$$

- R10 représente

et R3 représente

- R10 représente

et R3 représente

$$H_2N$$
 \downarrow

- R10 représente

, R2 représente

, R2 représente

et R3 représente

et R3 représente

- R10 représente 5

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

5

- R10 représente

, R2 représente

- R10 représente

, R2 représente

et R3 représente

- R10 représente

- R10 représente

, R2 représente et R3 représente

- R10 représente

, R2 représente

10

- R10 représente , R2 représente et R3 représente - R10 représente et R3 représente , R2 représente - R10 représente , R2 représente et R3 représente - R10 représente , R2 représente et R3 représente - R10 représente , R2 représente et R3 représente et R3 représente - R10 représente , R2 représente

• à la formule

dans laquelle:

5 - R10 représente , R2 représente et R3 représente

10 ,

et R3 représente

à la formule

dans laquelle:

- R10 représente

et R3 représente

- R10 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

, R2 représente

et R3 représente

, R2 représente

et R3 représente

7

- R10 représente

- R10 représente

, R2 représente

et R3 représente

- R10 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

et R3 représente

et R3 représente

$$H_2N$$

et R3 représente

- R10 représente

, R2 représente

et R3 représente

, R2 représente

et R3 représente

H₂N N

- R10 représente

, R2 représente et R3 représente

cı, ou enfin

H₂N N

5 - R10 représente

, R2 représente

et R3 représente

• à la formule

, ou enfin

et R3 représente , R2 représente

à la formule

dans laquelle:

et R3 représente , R2 représente

$$H_2N$$

- R10 représente

, R2 représente

et R3 représente

H₂N

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

$$H_2N$$

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

- R10 représente , R2 représente et R3 représente

, nou enfin

à la formule

S
O
R10
R2
N
R3
(vii)

10

5 • à la formule

dans laquelle R10 représente

représente ;

• à la formule

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

10

• à la formule

10

a The ship again.

- R10 représente

, R2 représente

et R3 représente

• à la formule

• à la formule

à la formule

dans laquelle:

• à la formule

dans laquelle:

• ou enfin à la formule

dans laquelle:

5

- R1 représente

, R2 représente

et R5 représente

- R1 représente

, R2 représente

et R5 représente

- R1 représente

, R2 représente

et R5 représente

- R1 représente

, R2 représente

et R5 représente

, óu enfin

ou un sel d'un de ces composés.

De façon encore plus préférentielle, l'invention concerne un composé caractérisé en ce qu'il répond à la formule

dans laquelle:

10

ou un sel d'un de ces composés.

En d'autres termes, seront préférés les composés décrits dans les exemples 1642 à 1654, 1656 à 1680, 2468 à 2502, 2525 à 2550, 2556 à 2582, 2605 à 2611, 2614, 2623 à 2630,

2632 à 2646, 2670 à 2678, 2680 à 2694, 2702 à 2710, 2712 à 2726 et 2827 à 2836 ou d'un sel d'un de ces composés. Seront encore plus particulièrement préférés les composés des exemples 2827 à 2836 ou leurs sels.

L'invention concerne de plus des procédés de préparation sur support solide des composés de formule générale (I) décrits précédemment (applicables également aux composés correspondants de formule générale (II)).

Selon l'invention, les composés de formule générale (I)a

dans laquelle:

R1 représente un radical -CH₂-A1-NH₂, dans lequel A1 représente un radical -(CH₂)_n-,

-(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de

1 à 6;

R2 et R4 représentent les mêmes radicaux que dans la formule générale (I);

et R3 représente les mêmes radicaux que dans la formule générale (I) excepté les radicaux -CO-R5;

- peuvent être préparés par exemple par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :
 - 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique R1-NH₂;
- 20 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate aromatique de formule générale R2-N=C=S dans laquelle le radical R2 a la même signification que dans la formule générale (I)a;
- 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec le composé de formule générale (III)

dans laquelle les radicaux R3 et R4 ont la même signification que dans la formule générale (I)a;

- 4) clivage de la résine dans des conditions acides ;
- 5) traitement dans des conditions basiques du produit obtenu après l'étape 4).
- La préparation de la résine p-nitrophénylcarbonate de Wang est décrite plus loin dans la partie intitulée "PREPARATION DES COMPOSES DE L'INVENTION".

De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine R1-NH₂. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents de composé de formule générale (III). Dans l'étape 4), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 5), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon une variante de l'invention, les composés de formule générale (I)b

dans laquelle:

R1 représente les mêmes radicaux que dans la formule générale (I), excepté les radicaux 20 du type -CH₂-A1-NH₂, dans lequel A1 représente un radical -(CH₂)_n-,

25

- $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux –C(R11)(R12)-CO-R10;

R2 représente un radical aminoalkylphényle;

R3 représente les mêmes radicaux que dans la formule générale (I) excepté les radicaux 5 -CO-R5;

et R4 représente les mêmes radicaux que dans la formule générale (I);

peuvent être préparés par exemple par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

- traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un excès d'aminoalkylaniline de formule générale R2-NH2 dans laquelle le radical R2 a la même signification que dans la formule générale (I)b;
 - 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate de formule générale R1-N=C=S dans laquelle le radical R1 a la même signification que dans la formule générale (I)b;
 - 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec le composé de formule générale (III)

dans laquelle les radicaux R3 et R4 ont la même signification que dans la formule générale (I)b;

- 4) clivage de la résine dans des conditions acides ;
- 5) traitement dans des conditions basiques du produit obtenu après l'étape 4).

De préférence, pour le procédé ci-dessus, on utilisera pour avoir l'excès de l'étape 1) de l'ordre de 5 à 10 équivalents d'aminoalkylaniline. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la

température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents de composé de formule générale (III). Dans l'étape 4), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 5), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon une autre variante de l'invention, les composés de formule générale (I)c

dans laquelle:

20

25

R1 représente un radical -CH₂-A1-NH₂, dans lequel A1 représente un radical -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6;

R2 représente les mêmes radicaux que dans la formule générale (I);

R3 représente un radical -CO-R5:

et R4 et R5 représentent les mêmes radicaux que dans la formule générale (I);

peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R1-NH₂ dans laquelle le radical R1 a la même signification que dans la formule générale (I)c;
- 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate aromatique de formule générale R2-N=C=S dans laquelle le radical R2 a la même signification que dans la formule générale (I)c;

15

20

25

3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec l'acide de formule générale (IV)

dans laquelle le radical R4 a la même signification que dans la formule générale (I)c;

- 4) couplage peptidique;
- 5) clivage de la résine dans des conditions acides ;
 - 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).

De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine symétrique. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents d'acide de formule générale (IV). Le couplage peptidique de l'étape 4) est effectué par exemple dans le DMF avec des agents de couplage comme par exemple le dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés. De préférence, les agents de couplage seront utilisés dans des proportions de 4 à 5 équivalents, tout comme les composés aminés, et la réaction aura lieu à une température de l'ordre de la température ambiante pendant une durée de l'ordre de 1 à 24 heures. Dans l'étape 5), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon encore une autre variante, les composés de formule générale (I)d

$$R2$$
 N
 $R1$
 $R3$
 $R4$
(I)d

dans laquelle:

15

R1 représente les mêmes radicaux que dans la formule générale (I), excepté les radicaux du type -CH₂-A1-NH₂, dans lequel A1 représente un radical -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente un radical aminoalkylphényle;

R3 représente un radical -CO-R5;

et R4 et R5 représentent les mêmes radicaux que dans la formule générale (I);

- peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :
 - 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un excès d'aminoalkylaniline de formule générale R2-NH₂ dans laquelle le radical R2 a la même signification que dans la formule générale (I)d;
 - 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate de formule générale R1-N=C=S dans laquelle le radical R1 a la même signification que dans la formule générale (I)d;
- 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec l'acide de formule générale (IV)

10

15

20

dans laquelle le radical R4 a la même signification que dans la formule générale (I)d;

- 4) couplage peptidique;
- 5) clivage de la résine dans des conditions acides ;
- 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).
- De préférence, pour le procédé ci-dessus, on utilisera pour avoir l'excès de l'étape 1) de l'ordre de 5 à 10 équivalents d'aminoalkylaniline. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents d'acide de formule générale (IV). Le couplage peptidique de l'étape 4) est effectué par exemple dans le DMF avec des agents de comme par exemple le dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés. De préférence, les agents de couplage seront utilisés dans des proportions de 4 à 5 équivalents, tout comme les composés aminés, et la réaction aura lieu à une température de l'ordre de la température ambiante pendant une durée de l'ordre de 1 à 24 heures. Dans l'étape 5), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon une autre variante, les composés de formule générale (I)e

dans laquelle:

R1 représente les mêmes radicaux que dans la formule générale (I), excepté les radicaux du type -CH₂-A1-NH₂, dans lequel A1 représente un radical -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente les mêmes radicaux que dans la formule générale (I);

R3 représente un radical -CO-R5;

R4 représente H;

R5 représente un radical -NH-CH₂-A1-NH₂, dans lequel A1 représente un radical alkylène linéaire ou ramifié comptant de 1 à 6 atomes de carbone, -(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, ou encore R5 représente le radical N(R6)(R7) répondant à la formule générale suivante :

dans laquelle:

15 R8 représente H;

Y représente N;

a représente 1 ou 2;

peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

20

25

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R5-H;
- 2) couplage peptidique avec l'acide de formule générale (IV) sur la résine obtenue à 1'étape 1)

dans laquelle le radical R4 a la même signification que dans la formule générale (I)e;

- 3) réaction de l'amine primaire de formule générale R1-NH₂ avec l'isothiocyanate de formule générale R2-NCS dans un solvant tel que le diméthylformamide ou le dioxane, R1 et R2 ayant les mêmes significations que dans la formule générale (I)e;
- 4) addition de la thiourée obtenue à l'étape 3) à la résine obtenue à l'étape 2) et chauffage du mélange;
 - 5) clivage de la résine dans des conditions acides ;
 - 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).

De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine R5-H. L'étape 1) s'effectuera de préférence à température ambiante. Le couplage peptidique de l'étape 2) est effectué dans le DMF avec un agent de couplage comme par exemple le mélange DIC/N-hydroxybenzotriazole (HOBt). La réaction de l'étape 3) s'effectue de préférence dans un solvant comme le diméthylformamide ou le dioxane. Lors de l'addition de l'étape 4), on utilisera de préférence de 2 à 5 équivalents de thiourée par équivalent de résine; de préférence encore, on chauffera à une température supérieure à la température ambiante, par exemple à une température de 40 à 100 °C (notamment à une température d'environ 80 °C) et pendant une durée de 2 à 24 heures. Dans l'étape 5), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon encore une autre variante, les composés de formule générale (I)f

dans laquelle:

R1 représente un radical -C(R11)(R12)-CO-R10;

R2, R3 et R4 représentent les mêmes radicaux que dans la formule générale (I);

5 R10 représente un radical amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, pipérazinyle, homopipérazinyle,

ou R10 représente le radical représenté ci-dessous :

R11 représente H;

10

20

R12 représente H ou un radical alkyle, (C₃-C₇)cycloalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué, propargyle, allyle, hydroxyalkyle, alkylthioalkyle, arylalkylalkoxyalkyle, arylalkylthioalkoxyalkyle;

peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R10-H dans laquelle R10 a la même signification que dans la formule générale (I)f;
 - 2) couplage peptidique de la résine obtenue à l'étape 1) avec un acide aminé de formule générale HOOC-C(R11)(R12)-NH-Fmoc dans laquelle R11 et R12 ont la même signification que dans la formule générale (I)f;
 - 3) clivage du groupe Fmoc de la résine obtenue à l'étape 2);

- 94 -
- 4) réaction de la résine obtenue à l'étape 3) avec un isothiocyanate de formule générale R2-NCS dans laquelle R2 a la même signification que dans la formule générale (I)f;
- 5) clivage de la résine dans des conditions acides :
- 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).
- De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine R10-H. L'étape 1) s'effectuera de préférence à température ambiante. Le couplage peptidique de l'étape 2) est effectué par exemple dans le DMF avec des agents de couplage comme par exemple le dicyclohexylcarbodiimide (DCC), le diisopropylcarbodiimide (DIC), DIC/N-hydroxybenzotriazole (HOBt), mélange 10 l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU). La réaction de l'étape 2) s'effectue de préférence à température ambiante et pendant une durée de 1 à 24 heures. La déprotection de l'étape 3) peut être effectuée, par exemple, par un mélange 15 de DMF contenant 20% de pipéridine. L'étape 4) sera de préférence effectuée dans un solvant tel que le diméthylformamide ou le dichlorométhane, l'isothiocyanate étant de préférence ajouté en une proportion de 5 à 10 équivalents par équivalent de résine obtenue à l'étape 3). Dans l'étape 5), les conditions acides peuvent par exemple être 20 créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.
- L'invention a également pour objet, à titre de médicaments, les composés de formules générales (I) et (II) décrits précédemment ou leurs sels pharmaceutiquement acceptables. Elle concerne aussi des compositions pharmaceutiques comprenant les dits composés ou leurs sels pharmaceutiquement acceptables, et leur utilisation pour la préparation d'un médicament destiné à traiter les états pathologiques ou les maladies dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s).
 - En particulier, les composés de formules générales (I) et (II) décrits précédemment ou leurs sels pharmaceutiquement acceptables pourront être utilisés pour la préparation d'un médicament destiné à traiter les états pathologiques ou les maladies choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires, la maladie de Cushing, les gonadotrophinomes et les

10

15

20

25

30

35

prolactinomes, les effets secondaires cataboliques des glucocorticoïdes, le diabète insulinodépendant, la rétinopathie diabétique, la néphropathie diabétique, le syndrome X, le phénomène de Dawn, l'angiopathie, l'angioplastie, l'hyperthyroïdie, le gigantisme, les turneurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, le VIPome, l'insulinome, la nésidioblastose, l'hyperinsulinémie, le glucagonome, le gastrinome et le syndrome de Zollinger-Ellison, le GRFome ainsi que le saignement aigu des varices œsophagiennes, les ulcères, le reflux gastroœsophagien, le reflux gastroduodénal, la pancréatite, les fistules entérocutanées et pancréatiques mais aussi les diarrhées, les diarrhées réfractaires du syndrome d'immunodépression acquise, la diarrhée chronique sécrétoire, la diarrhée associée avec le syndrome de l'intestin irrité, les diarrhées induites par la chimiothérapie, les troubles liés au peptide libérateur de gastrine, les pathologies secondaires aux greffes intestinales, l'hypertension portale ainsi que les hémorragies des varices chez des malades avec cirrhose, l'hémorragie gastro-intestinale, l'hémorragie de l'ulcère gastroduodénale, le saignement des vaisseaux greffés, la maladie de Crohn, les scléroses systémiques, le dumping syndrome, le syndrome du petit intestin, l'hypotension, la sclérodermie et le carcinome thyroïdien médullaire, les maladies liées à l'hyperprolifération cellulaire comme les cancers et plus particulièrement le cancer du sein, le cancer de la prostate, le cancer thyroïdien ainsi que le cancer pancréatique et le cancer colorectal, les fibroses et plus particulièrement la fibrose du rein, la fibrose du foie, la fibrose du poumon, la fibrose de la peau, également la fibrose du système nerveux central ainsi que celle du nez et la fibrose induite par la chimiothérapie, et, dans d'autres domaines thérapeutiques, les céphalées y compris les céphalées associées aux tumeurs hypophysaires, les douleurs, les désordres inflammatoires comme l'arthrite, les accès de panique, la chimiothérapie, la cicatrisation des plaies, l'insuffisance rénale résultant d'un retard de croissance, l'hyperlipidémie, l'obésité et le retard de croissance lié à l'obésité, le retard de croissance utérin, la dysplasie du squelette, le syndrome de Noonan, le syndrome d'apnée du sommeil, la maladie de Graves, la maladie polykystique des ovaires, les pseudokystes pancréatiques et ascites, la leucémie, le méningiome, la cachexie cancéreuse, l'inhibition des H pylori, le psoriasis, le rejet chronique des allogreffes ainsi que la maladie d'Alzheimer et enfin l'ostéoporose.

De préférence, les composés de formules générales (I) et (II) décrits précédemment ou leurs sels pharmaceutiquement acceptables pourront être utilisés pour la préparation d'un médicament destinés à traiter les états pathologiques ou les maladies choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires ou les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, et les saignements gastro-intestinaux.

15

Par sel pharmaceutiquement acceptable, on entend notamment des sels d'addition d'acides inorganiques tels que chlorhydrate, sulfate, phosphate, diphosphate, bromhydrate et nitrate ou d'acides organiques tels que acétate, maléate, fumarate, tartrate, succinate, citrate, lactate, méthane sulfonate, p-toluènesulfonate, pamoate, oxalate et stéarate. Entrent également dans le champ de la présente invention, lorsqu'ils sont utilisables, les sels formés à partir de bases telles que l'hydroxyde de sodium ou de potassium. Pour d'autres exemples de sels pharmaceutiquement acceptables, on peut se référer à "Pharmaceutical salts", J. Pharm. Sci. 66:1 (1977).

La composition pharmaceutique peut être sous forme d'un solide, par exemple des poudres, des granules, des comprimés, des gélules, des liposomes ou des suppositoires. Les supports solides appropriés peuvent être, par exemple, le phosphate de calcium, le stéarate de magnésium, le talc, les sucres, le lactose, la dextrine, l'amidon, la gélatine, la cellulose, la cellulose de méthyle, la cellulose carboxyméthyle de sodium, la polyvinylpyrrolidine et la cire. Les suspensions comprendront en particulier les suspensions de microparticules à libération prolongée chargées en principe actif (notamment des microparticules en polylactide-co-glycolide ou PLGA - cf. par exemple les brevets US 3,773,919, EP 52 510 ou EP 58 481 ou la demande de brevet PCT WO 98/47489), lesquelles permettent l'administration d'une dose journalière déterminée sur une période de plusieurs jours à plusieurs semaines.

Les compositions pharmaceutiques contenant un composé de l'invention peuvent aussi se présenter sous forme liquide, par exemple, des solutions, des émulsions, des suspensions ou des sirops. Les supports liquides appropriés peuvent être, par exemple, l'eau, les solvants organiques tels que le glycérol ou les glycols, de même que leurs mélanges, dans des proportions variées, dans l'eau.

L'administration d'un médicament selon l'invention pourra se faire par voie topique, orale, parentérale, par injection intramusculaire, etc.

La dose d'administration envisagée pour médicament selon l'invention est comprise entre 0,1 mg à 10 g suivant le type de composé actif utilisé.

Ces composés peuvent être préparés selon les méthodes décrites ci-après.

10

15

PREPARATION DES COMPOSES DE L'INVENTION

I) Préparation d'α-bromocétones

PREMIERE METHODE

Cette méthode s'inspire des protocoles décrits dans les publications suivantes: Macholan, L.; Skursky, L. Chem. Listy 1955, 49, 1385-1388; Bestman, H.J.; Seng, F. Chem. Ber. 1963, 96, 465-469; Jones, R.G.; Kornfeld, E.C.; McLaughlin, K.C. J. Am. Chem. Soc. 1950, 72, 4526-4529; Nimgirawath, S.; Ritchie, E.; Taylor, W.C. Aust. J. Chem. 1973, 26, 183-193).

Un acide carboxylique est tout d'abord converti en un chlorure d'acide en utilisant du chlorure d'oxalyle ou de thionyle, ou en l'activant sous forme d'un anhydride à l'aide d'un chloroformiate d'alkyle (par exemple un chloroformiate d'isobutyle, cf. Krantz, A.; Copp, L.J. Biochemistry 1991, 30, 4678-4687; ou un chloroformiate d'éthyle, cf. Podlech, J.; Seebach, D. Liebigs Ann. 1995, 1217-1228) en présence d'une base (triéthylamine ou N-méthylmorpholine).

Le groupe carboxyle activé est ensuite transformé en diazocétone à l'aide de diazométhane en solution éthérée ou d'une solution commerciale de triméthylsilyldiazométhane (Aoyama, T.; Shiori, T. Chem. Pharm. Bull. 1981, 29, 3249-3255) dans un solvant aprotique comme le diéthyléther, le tétrahydrofuranne (THF) ou l'acétonitrile.

La bromation est ensuite effectuée en utilisant un agent bromant comme l'acide hydrobromique dans l'acide acétique, l'acide hydrobromique aqueux dans le diéthyléther ou le dichlorométhane.

10

15

Préparation 1

2-(4-bromo-3-oxobutyl)-1H-isoindole-1,3(2H)-dione $(C_{12}H_{10}BrNO_3, MM = 296,12)$:

Du chlorure d'oxalyle (5,8 ml; 66,7 mmol) est ajouté à Pht-β-Ala-OH (9,96g; 44,5 mmol) dissous dans du dichlorométhane (120ml) et 3 gouttes de diméthylformamide (DMF). Le mélange est agité pendant 3 heures à température ambiante. Après élimination du solvant, le solide blanc est repris dans un mélange 1:1 de tétrahydrofuranne anhydre et d'acétonitrile (200 ml) puis 49 ml de solution de (triméthylsilyl)diazométhane 2M dans l'hexane (97,9 mmol) sont ajoutés goutte à goutte à 0 °C. Les solvants sont éliminés après une nuit sous agitation à 0 °C. Le solide jaune pâle est alors dissous dans du dichlorométhane (60 ml) et 12 ml d'acide hydrobromique acqueux (48%) sont ajoutés goutte à goutte à 0 °C. Le mélange est agité jusqu'à ce que la température remonte à 15 °C et 50 ml de solution saturée en bicarbonate de sodium sont ajoutés. La phase organique est lavée avec de la saumure puis séchée sur du sulfate de sodium. La cristallisation dans du diéthyléther permet d'obtenir un solide blanc (11,39 g; rendement = 86%).

RMN ¹H (DMSO D6, 100 MHz, δ): 7,83 (s, 4H); 4,36 (s, 2H, CH₂Br); 3,8 (t, 2H, J = 7,1 Hz, NCH₂); 2,98 (t, 2H, J = 6,9 Hz, CH₂CO).

Préparations 2-11

Les composés suivants ont été préparés de façon analogue à la procédure décrite dans la Préparation 1 :

Prép.	R3	Rendt. (%)	Prép.	R3	Rendt. (%)
2*		78	7		67
3*		60	8	CF ₃	51
4*	<u>`</u>	10	9		38
5*	~	69	10		22
6*		41	11		67

^{*} Composés déjà décrits dans la littérature.

DEUXIEME METHODE

Le produit de départ est une arylméthylcétone ou une hétéroarylméthylcétone.

į.

10

L'arylméthylcétone ou l'hétéroarylméthylcétone de départ est convertie en l'abromocétone correspondante en utilisant différents agents bromants :

- CuBr₂ (King, L.C.; Ostrum, G.K. J. Org. Chem. 1964, 29, 3459-3461) chauffé dans de l'acétate d'éthyle ou du dioxane;
- du N-bromosuccinimide dans CCl₄, ou de l'acétonitrile aqueux (Morton, H.E.; Leanna, M.R. Tetrahedron Lett. 1993, 34, 4481-4484);
 - du brome dans de l'acide acétique glacial ou de l'acide sulfurique ;
 - du tribromure de phényltriméthylammonium (Sanchez, J. P.; Parcell, R. P. J. Heterocyclic Chem, 1988, 25, 469-474) à 20-80 °C dans un solvant aprotique comme le THF ou du tribromure de tétrabutylammonium (Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 1159-1160) dans un mélange dichlorométhane/méthanol à température ambiante;
 - agent bromant sur un support polymère comme du perbromure sur une résine Amberlyst A-26, poly(perbromure d'hydrobromure de vinylpyridinium) (Frechet, J. M.
- J.; Farrall, M. J. J. Macromol. Sci. Chem. 1977, 507-514) dans un solvant protique comme le méthanol à environ 20-35 °C pendant environ 2-10 h.

Préparation 12

 $1-(1-benzofuran-2-yl)-2-bromo-1-\acute{e}thanone$ (C₁₀H₇BrO₂, MM = 239,06) :

- A une solution de (benzofuran-2-yl)méthylcétone (2 g; 12,5 mmol) dans du méthanol (40 ml) est ajouté un polymère de perbromure d'hydrobromure de pyridine (8,75 g; 17,5 mmol; 1,4 équivalent). Le mélange résultant est agité à température ambiante pendant 7 heures et la réaction est arrêtée par filtration. Le méthanol est éliminé sous pression réduite et une addition supplémentaire de diéthyléther permet la cristallisation du produit attendu (3,6 g; rendement = 60%).
 - RMN ¹H (DMSO D6, 100 MHz, δ): 8,09 (s, 1H); 7,98 (d, 1H, J = 6,6 Hz); 7,75 (d, 1H, J = 8,4 Hz); 7,58 (t, 1H, J = 8,4 Hz); 7,4 (t, 1H, J = 7 Hz); 4,83 (s, 2H, CH₂Br).

Préparations 8-12

Les composés suivants ont été préparés de façon analogue à la procédure décrite dans la Préparation 12 :

Prép.	R3 `	Durée de réaction (h)	Rendt. (%)
13*		8	78
14*	V)	2	62
15*	Br s	10	56
16*	MeO OMe	2	53
17*	P.O.	3	95
18	F	8	27

^{*} Composé déjà décrit dans la littérature.

II) Synthèse de 2-arylimino-2.3-dihydrothiazoles via synthèse sur phase solide

5 Préparation de la résine p-nitrophénylcarbonate de Wang

Cette résine a été préparée à partir de résine de Wang, acquise auprès de Bachem ou Novabiochem avec une charge supérieure à 0,89 mmol/g, par une procédure générale bien décrite (cf. Bunin, B.A. The Combinatorial Index, Academic Press, 1998, p. 62-63; Dressman, B.A.; Spangle, L.A.; Kaldor, S.W. Tetrahedron Lett. 1996, 37, 937-940; Hauske, J.R.; Dorff, P. Tetrahedron Lett. 1995, 36, 1589-1592; Cao, J.; Cuny, G.D.; Hauske, J.R. Molècular Diversity 1998, 3, 173-179): de la N-méthylmorpholine ou de la pyridine comme base et du 4-nitrophénylchloroformiate sont successivement ajoutés à une résine de Wang pré-gonflée dans du dichlorométhane (DCM) ou du tétrahydrofuranne (THF) à température ambiante. Le mélange est agité pendant la nuit. La résine est alors lavée successivement avec du THF, du diéthyléther et du DCM puis séchée sous pression réduite à 50 °C pendant une nuit.

METHODE A

Préparation de diamines symétriques monoprotégées

Procédure générale: comme déjà décrit dans la littérature (Dixit, D.M.; Leznoff, C.C. J. C. S. Chem. Comm. 1977, 798-799; Dixit, D.M.; Leznoff, C.C. Israel J. Chem. 1978, 17, 248-252; Kaljuste K.; Unden, A. Tetrahedron Lett. 1995, 36, 9211-9214; Munson, M.C.; Cook, A.W.; Josey, J.A.; Rao, C. Tetrahedron Lett. 1998, 39, 7223-7226), une résine p-nitrophénylcarbonate de Wang est traitée avec un large excès de diamine symétrique (10-20 équivalents), dans un solvant aprotique comme le DCM ou le DMF, pour donner une résine diamine monoprotégée après agitation pendant la nuit.

20 Préparation de résines thiourées

Procédure générale: des isothiocyanates aromatiques et hétéroaromatiques (5-10 équivalents) sont ajoutés (Smith, J.; Liras, J.L.; Schneider, S.E.; Anslyn, E.V. J.

10

20

Org. Chem. 1996, 61, 8811-8818) à des diamines symétriques monoprotégées dans un solvant comme le DCM ou le DMF agité pendant la nuit à température ambiante. Lavée successivement avec du DMF et du DCM, la résine thiourée est isolée puis séchée sous pression réduite à 50 °C pendant une nuit.

Préparation 19

Résine de Wang carbamate de (phénylaminothioyl)éthyle

A une résine de Wang N-carbamate d'éthylène diamine (2 g; 1,72 mmol; 0,86 mmol/g) gonflée dans du DCM (50 ml) est ajouté du phénylisothiocyanate (1 ml; 8,5 mmol; 5 éq.). Après agitation une nuit à température ambiante, la résine est lavée successivement avec du DMF (5 x 20 ml) et du DCM (5 x 20 ml). La réussite du couplage est suivie à l'aide du test ninhydrine de Kaiser (Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. Anal. Biochem. 1970, 34, 595-598). Une résine jaune pâle (1,79 g) est obtenue avec une charge de 0,648 mmol/g calculée à partir de l'analyse élémentaire du soufre.

15 Synthèse de 2-arylimino-2,3-dihydrothiazoles

Procédure générale: l'étape/de cyclisation régiosélective (Korohoda, M.J.; Bojarska, A.B. Polish J. Chem. 1984, 58, 447-453; Ragab, F.A.; Hussein, M.M.; Hanna, M.M.; Hassan, G.S.; Kenawy, S.A. Egypt. J. Pharm. Sci. 1993, 34, 387-400; Hassan, H.Y.; El-Koussi, N.A.; Farghaly, Z.S. Chem. Pharm. Bull. 1998, 46, 863-866) a lieu dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C pendant

2-3 heures entre la résine thiourée et l'α-bromocétone (2-5 équivalents). La résine est alors lavée successivement avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. La résine 2-arylimino-2,3-dihydrothiazole est clivée dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rincée avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

Exemple 1

10 $N-[3-(2-amino\acute{e}thyl)-4-(4-chloroph\acute{e}nyl)-1,3-thìazol-2(3H)-ylid\grave{e}ne]aniline$ (C₁₇H₁₆ClN₃S, MM = 329,86):

A la résine thiourée préparée ci-dessus (100 mg; 64,8 µmol; charge de 0,648 mmol/g) est ajoutée de la 2-bromo-4'-chloroacétophénone (30,2 mg; 129 µmol; 2 éq.) dissoute dans du DMF (1 ml). Le mélange est agité 2 heures à 80 °C. La résine est alors successivement lavée avec du DMF (3 x 2 ml), du méthanol (3 x 2 ml) et du DCM (3 x 2 ml). L'étape de libération, effectuée dans 1 ml de mélange DCM/acide trifluoroacétique à 50%, donne après une heure et demie d'agitation une huile qui est éluée avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim). La base libre est isolée de façon quantitative (21,3 mg) sous forme d'une huile jaune ayant une pureté mesurée par spectrophotométrie UV de 98% à 220 nm.

RMN ¹H (DMSO D6, 100 MHz) δ : 7,55 (s, 5H); 7,3 (d, 2H, J = 7,1 Hz); 6,99 (d, 2H, J = 7,1 Hz); 6.21 (s, 1H, H azole); 3,74 (t, 2H, J = 6,2 Hz, NCH₂); 3,32 (s large, 2H, NH₂); 2.72 (t, 2H, J = 6,2 Hz, NCH₂). SM/CL: m/z = 330 (M+H)⁺.

Une série de 2-arylimino-2,3-dihydrothiazoles a été synthétisée selon la méthode A à l'aide de notre système robotique (ACT MOS 496) :

Groupes R1:

$$n = 1-6$$

5 Groupes R2:

Groupes R3:

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement situé sur le radical aryle;

dans laquelle i représente un entier de 1 à 3;

étant entendu que pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy.

METHODE B

10 Préparation de résines de Wang carbamates à partir d'aminoalkylanilines

10

15

20

Procédure générale: comme déjà décrit (Hulme, C.; Peng, J.; Morton, G.; Salvino, J.M.; Herpin, T.; Labaudiniere, R. *Tetrahedron Lett.* 1998, 39, 7227-7230), une résine de Wang p-nitrophénylcarbonate est traitée avec un excès d'aminoalkylaniline (5-10 éq.) dans du DCM ou du DMF et agitée à température ambiante durant une nuit. La résine est lavée successivement avec du DMF, du méthanol et du DCM puis séchée une nuit sous pression réduite à 50 °C.

Préparation 20

Résine de Wang carbamate de 4-aminophényléthyle

A une résine de Wang p-nitrophénylcarbonate (4,05 g; 3,47 mmol; charge de 0,857 mmol/g) pré-gonflée dans 50 ml de DMF anhydre est ajoutée une solution de 2-(4-aminophényl)éthylamine (2,48 g; 17,3 mmol; 5 éq.) dans 30 ml de DMF anhydre. Le mélange est agité à température ambiante durant une nuit et filtré. La résine est lavée successivement avec du DMF (10 x 30 ml), du méthanol (5 x 30 ml) et du DCM (5 x 30 ml). 3,7 g de résine jaune (charge de 0,8 mmol/g calculée à partir de l'analyse élémentaire de l'azote), donnant un test ninhydrine de Kaiser positif, sont isolés après séchage une nuit sous pression réduite à 50 °C.

Préparation de résines thiourées avec des isothiocyanates aliphatiques

Procédure générale : des isothiocyanates aliphatiques (5-10 équivalents) sont ajoutés à une résine aminoalkylaniline dans un solvant comme le DCM ou le DMF et agités à température ambiante durant une nuit. Lavée successivement avec du DMF et du DCM, la résine thiourée est isolée et séchée sous pression réduite à 50 °C pendant une nuit.

Préparation 21

Résine de Wang carbamate de 4-{[(phényléthylamino)carbothioyl]amino}-phényléthyle

15

10 ml de DMF anhydre et du phényléthylisothiocyanate (624 μl, 4 mmol, 10 éq.) sont ajoutés sous atmosphère d'argon à la résine précédemment décrite (0,5 g; 0,4 mmol; charge de 0,8 mmol/g). L'agitation durant une nuit à température ambiante donne un test ninhydrine de Kaiser négatif. La résine est alors successivement lavée avec du DMF (5 x 20 ml) et du DCM (5 x 20 ml). Un séchage sous pression réduite à 50 °C donne 488 mg de résine avec une charge de 0,629 mmol/g calculée à partir de l'analyse élémentaire du soufre.

Synthèse de 2-arylimino-2,3-dihydrothiazoles

Procédure générale : l'étape de cyclisation a lieu dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C pendant 2 heures entre la résine thiourée et l'α-bromocétone (2-5 équivalents). La résine est alors successivement lavée avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. La résine iminothiazole est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rincée avec du DCM. Le solvant est évaporé et la base libre isolée après extraction dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

Exemple 2

4-(2-aminoéthyl)-N-[4-(4-chlorophényl)-3-phénéthyl-1,3-thiazol-2(3H)-ylidène]aniline ($C_{25}H_{24}ClN_3S$, MM = 434,01):

100 mg (62,9 μmol, charge de 0,629 mmol/g) de résine thiourée et de la 2-bromo-4'-chloroacétophénone (30 mg; 125,8 μmol; 2 éq.) sont dissous dans 1 ml de DMF et chauffés à 80 °C pendant 2 heures. La résine est alors lavée successivement avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) et du DCM (5 x 1 ml). La résine est agitée dans 1 ml de mélange DCM/acide trifluoroacétique à 50% pendant une heure et demie à température ambiante. La résine est rincée avec du DCM (5 x 1 ml) et le filtrat évaporé sous pression réduite. Le résidu, dissous dans du méthanol, est élué dans une cartouche d'alumine basique (500 mg, Interchim) pour donner quantitativement (27,3 mg) le produit attendu sous forme d'un solide (pureté UV de 97% à 220 nm).

RMN ¹H (DMSO D6, 100 MHz) δ : 7,9 (s large, 2H, NH₂); 7,53 (d, 2H, J = 8.5 Hz); 7,32-7,15 (m, 7H); 7,08-6,9 (m, 4H); 6,37 (s, 1H, H azole); 4,07 (m, 2H, NCH₂); 3,03 (m, 2H, NCH₂); 2,88 (m, 4H). SM/LC: m/z = 435 (M+H)⁺.

Une série de 2-arylimino-2,3-dihydrothiazoles a été synthétisée selon la méthode B avec notre système robotique (ACT MOS 496):

- Groupes R1

10

15

$$p = 0-15$$
 $q = 0-4$

- Groupes R3 et R4 comme ceux de la méthode A

15

20

METHODE C

Synthèse de 2-arylimino-1,3-thiazole-4(3H)-carboxamides

Procédure générale: une étape de cyclisation régiosélective à l'aide d'acide α-bromopyruvique (2-5 éq.) est effectuée à partir de la résine thiourée préparée dans la méthode A dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C durant 2-3 heures. La résine est alors successivement lavée avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. Le couplage peptidique (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 1989, 30, 1927-1930) a lieu dans le DMF à température ambiante pendant 1-24 heures avec différents agents de couplage classiques (4-5 éq.) comme le dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés (4-5 éq.). La résine 2-arylimino-1,3-thiazole-4(3H)carboxamide est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rinçage avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

Exemple 3

3-(4-aminobutyl)-N-benzhydryl-2-[(4-bromophényl)imino]-1,3-thiazole-4(3H)-carboxamide (C₂₇H₂₇BrN₄OS, MM = 535,51):

50 mg (27,5 μmol, charge de 0,55 mmol/g) de résine acide carboxylique est activée pendant 15 minutes avec 14,8 mg (0,11 mmol, 4 éq.) de N-hydroxybenzotriazole et 35,3 mg (0,11 mmol, 4 éq.) de TBTU dans 800 μl de DMF anhydre. 20,7 mg (0,11 mmol, 4 éq.) d'aminodiphénylméthane dissous dans 200 μl de DMF anhydre sont alors ajoutés et la résine est filtrée après agitation durant une nuit à température ambiante. Un lavage séquentiel avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) et du DCM (5 x 1 ml) donne une résine qui est traitée pendant une heure et demie dans des conditions acides (DCM/acide trifluoroacétique à 50 %). La résine est rincée avec du DCM (5 x 1 ml) et le filtrat évaporé sous pression réduite. Le résidu, repris dans du méthanol, est élué dans une cartouche d'alumine basique (500 mg, Interchim) pour donner un solide jaune pâle (8,2 mg; rendement de 55,7 %; pureté UV de 94 % à 220 nm).

RMN ¹H (DMSO D6, 100 MHz, δ): 9,6 (d; 1H; J = 8,6Hz; NH); 7,49 (d; 2H; J = 8,6 Hz); 7,35 (s; 10H); 6,92 (s; 1H; H azole); 6,91 (d; 2H; J = 8,5 Hz); 6,27 (d; 1H; J = 8,5 Hz; NHCH); 4,02 (m; 2H; NCH₂); 3,45 (m large; 2H+2H; NH₂ et NCH₂); 1,55–1,24 (m large; 4H). SM/CL: m/z = 535 (M+H).

Une série de 2-arylimino-1,3-thiazole-4(3H)-carboxamides a été synthétisée selon la méthode C à l'aide de notre système robotique (ACT MOS 496):

- Groupes R1 et R2 déjà décrits dans la méthode A;
- -R3 = -CO-R5;
- -R4 = H;

20

- Groupes R5

METHODE D

Synthèse de 2-arylimino-1,3-thiazole-4(3H)-carboxamides

Procédure générale: une étape de cyclisation régiosélective à l'aide d'acide α-bromopyruvique (2-5 éq.) est effectuée à partir de la résine thiourée préparée dans la méthode B dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C durant

10

15

2-3 heures. La résine est alors successivement lavée avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. Le couplage peptidique (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 1989, 30, 1927-1930) a lieu dans le DMF à température ambiante pendant 1-24 heures avec différents agents de couplage (4-5)éq.) comme le dicyclohexylcarbodiimide (DCC), classiques diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium l'hexafluorophosphate de (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés (4-5 éq.). La résine 2-arylimino-1,3-thiazole-4(3H)carboxamide est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rinçage avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium) suivi d'une extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

15

Exemple 4

(2Z)-2-{[4-(2-aminoéthyl)phényl]imino}-N-(4-chlorobenzyl)-3-(2-phényléthyl)-2,3-dihydro-1,3-thiazole-4-carboxamide ($C_{27}H_{27}CIN_4OS$, MM = 491,05):

A 200 mg (190 μmol, charge de 0,946 mmol/g) de résine aminée (voir préparation 20) est ajouté du phényléthylisothiocyanate (310 mg; 1,9 mmol; 10 éq.) dans 3 ml de diméthylformamide. L'agitation durant une nuit à température ambiante donne un test ninhydrine de Kaiser négatif. La résine est alors successivement lavée avec du DMF (5 x 3 ml) et du DCM (5 x 3 ml) puis séchée sous vide pendant une heure avant d'ajouter l'acide bromopyruvique (63,4 mg; 380 µmol; 2 éq.) préalablement dilué dans 3 ml de diméthylformamide. Le mélange est agitée pendant 2,5 heures à 80°C. Filtrer et laver la résine au DMF (5 x 3 ml), méthanol (3 x 3 ml) puis DCM (5 x 3 ml). La résine acide carboxylique est préactivée pendant 1 heure avec 244 mg (0,76 mmol; 4 éq.) de TBTU dilué dans 2 ml de DMF anhydre. 110 mg (0,76 mmol; 4 éq.) de 4chlorobenzylamine dissous dans 1 ml de DMF anhydre sont alors ajoutés et la résine est filtrée après une nuit d'agitation à température ambiante. Un lavage séquentiel avec du DMF (5 x 3 ml), du méthanol (3 x 3 ml) et du DCM (3 x 3 ml) donne une résine qui est traitée pendant une heure et demie dans des conditions acides (DCM/acide trifluoroacétique à 50 %). La résine est rincée avec du DCM (5 x 1 ml) et le filtrat évaporé sous pression réduite. Le résidu, repris dans du DCM, est neutralisé avec une solution saturée d'hydrogénocarbonate de sodium pour donner après évaporation un solide (38,2 mg; rendement de 41%; pureté UV de 90% à 210 nm).

RMN ¹H (DMSO D6, 400 MHz, δ): 9,1 (m, 1H); 7,39 (d, 2H, J = 8,4 Hz); 7,33 (d, 2H, J = 8,4 Hz); 7,25 (q, 2H, J = 6,8 Hz); 7,19 (q, 1H, J = 7,2 Hz); 7,11 (m, 4H); 6,8 (d, 2H, J = 8 Hz); 6,75 (s, 1H, H azole); 4,34 (d, 2H, J = 6 Hz); 4,27 (t, 2H, J = 6,8 Hz); 3,14 (m, 1H); 2,89 (t, 2H, J = 6,8 Hz); 2,73 (t, 1H, J = 7,2 Hz); 2,62 (m, 2H). SM/CL: m/z = 491,24 (M+H)⁺.

Une série de 2-arylimino-1,3-thiazole-4(3H)-carboxamides a été synthétisée selon la méthode D à l'aide de notre système robotique (ACT MOS 496):

- Groupes R1 et R2 déjà décrits dans la méthode B
- R3 = -CO-R5
- R4 = H
- Groupes R5 déjà décrits dans la méthode C.

METHODE E

Préparation de résine diamine monoprotégée fonctionnalisée avec l'acide αbromopyruvique

Procédure générale : la résine diamine primaire ou secondaire symétrique monoprotégée (dont la préparation est déjà décrite dans la méthode A) est fonctionnalisée par couplage peptidique avec l'acide α-bromopyruvique (10 éq.), le DIC (10 éq.) et l'HOBt (10 éq.) dans un solvant tel que le DMF à température ambiante. La résine est successivement lavée au DMF puis au DCM après 2 à 24 heures d'agitation avant d'être séchée sous vide. Le test ninhydrine de Kaiser négatif indique une fonctionnalisation complète.

Préparation 22

Résine de Wang N-carbamate de 2-[(3-bromo-2-oxopropanoyl)amino]éthyle

L'HOBt (0,93 g, 6,88 mmol) et l'acide α-bromopyruvique (1,18 g, 6,88 mmol) sont dissous dans 28 ml de DMF (0,5 M). Le DIC (1,07 ml; 6,88 mmol) est ensuite additionné à la seringue pour activer l'acide. Le mélange est agité mélange environ 15

minutes à température ambiante avant de l'ajouter à la résine de Wang N-carbamate d'éthylène diamine (0,8 g; 0,688 mmol; taux de charge de 0,86 mmol/g). Après 3 heures d'agitation à température ambiante, le test ninhydrine de Kaiser étant négatif, la résine est filtrée et lavée successivement au DMF (5 x 20 ml) puis au DCM (5 x 20 ml) avant d'être séchée sous vide. Une résine ocre (0,812 g) est obtenue avec un taux de charge de 0,525 mmol/g calculé à partir de l'analyse élémentaire du brome.

Synthèse de 2-arylimino-1,3-thiazole-4(3H)-carboxamides

Procédure générale: la formation de la thiourée s'effectue dans un solvant tel que le DMF ou le dioxane en mélangeant une quantité équimolaire d'amine primaire et d'isothiocyanate aromatique ou hétéroaromatique. Après 2 à 24 heures d'agitation à température ambiante, la thiourée (2 à 5 éq.) est additionnée à la résine fonctionnalisée puis chauffée à 80°C pendant 2 à 4 heures. La résine 2-arylimino-1,3-thiazole-4(3H)-carboxamide est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rinçage avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

Exemple 5

(2Z)-N-(2-aminoéthyl)-3-[2-(3,4-diméthoxyphényl)éthyl]-2-(phénylimino)-2,3-dihydro-1,3-thiazole-4-carboxamide ($C_{22}H_{26}N_4O_3S$, MM = 426,54):

18 μl (105 μmol; 2 éq.) de β-(3,4-diméthoxyphényl)éthylamine et 12,6 μl (105 μmol; 2 éq.) de phénylisothiocyanate sont agités dans 1 ml de DMF pendant 18 heures. La thiourée est ajoutée à 100 mg (52,5 μmol; taux de charge de 0,525 mmol/g) de résine (préparation 22) et le mélange chauffé à 80°C pendant 3 heures. La résine est alors filtrée puis lavée successivement avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) puis du DCM (5 x 1 ml). Sécher la résine sous vide avant d'ajouter 1 ml de mélange DCM/TFA 50%. On agite 1,5 heures à température ambiante, filtre et rince la résine au DCM. Le résidu récupéré après évaporation est ensuite élué avec du méthanol dans une cartouche d'alumine basique pour isoler 22,2 mg (rendement quantitatif; pureté UV de 93,4% à 230 nm) de solide marron correspondant à l'amine libre.

RMN ¹H (DMSO D6, 100 MHz, δ): 8,42 (m, 1H, NH); 7,32 (t, 2H, J = 7,1 Hz); 7,08-6,63 (m, 6H); 5,76 (s, 1H, H azole); 4,31 (t, 2H, J = 6,6 Hz); 3,72 (s, 6H, OCH₃); 3,32 (s large, 2H); 3,17 (m, 2H); 2,89 (m, 2H); 2,62 (m, 2H). SM/CL: m/z = 427,17 (M+H)⁺.

Une série de 2-arylimino-1,3-thiazole-4(3H)-carboxamides a été synthétisée selon la méthode E à l'aide de notre système robotique (ACT MOS 496):

- Groupes R1:

- Groupes R2 déjà décrits dans la méthode A
- R3 = -CO-R5
- R4 = H
- Groupes R5:

METHODE F

Préparation des résines diamines monoprotégées fonctionnalisées avec des acides aminés N-protégés (Fmoc)

Procédure générale: le couplage peptidique des résines diamines monoprotégées avec des acides aminés N-Fmoc (4 à 10 éq.) commercialement disponibles (Bunin, B.A. The Combinatorial Index, Academic Press, 1998, p. 77-82) s'effectue dans le DMF à température ambiante pendant 1 à 24 heures avec différents agents de couplage classiques (4 à 10 éq.) tels que le dicyclohexylcarbodiimide (DCC), le diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU). La résine est ensuite successivement lavée avec du DMF et du DCM. La séquence de couplage peut être répétée (1 à 2 fois) jusqu'à ce que le test ninhydrine de Kaiser soit négatif.

Préparation 23

Résine de Wang N-carbamate de 4-[({[(9H-fluoren-9-ylméthoxy)carbonyl]amino}acétyl)amino]butyle

L'acide Fmoc-Gly-OH (2,36 g, 7,94 mmol) est activé avec de l'HOBt (1,07 g, 7,94 mmol) et du DIC (1,25 ml, 7,94 mmol) dans 22 ml de DMF pendant 5 minutes avant

d'additionner le mélange à la résine de Wang N-carbamate de butylamine (1 g, taux de charge de 0,794 mmol/g) prégonflée dans 10 ml de DMF. Après 18 heures d'agitation à température ambiante, la résine est lavée successivement au DMF (5 x 20 ml) puis au DCM (5 x 20 ml) avant d'être séchée sous vide. 1,27 g de résine jaune pale est ainsi obtenu présentant un test ninhydrine de Kaiser négatif.

Préparation des résines thiourées

Procédure générale: une résine décrite ci-dessus est déprotégée avec un mélange DMF/pipéridine à 20%. Après une heure d'agitation à température ambiante, la résine est filtrée et lavée successivement au DMF puis au DCM. La séquence de déprotection/lavage est répétée une seconde fois et la résine est séchée sous vide. Cette dernière est prégonflée dans un solvant tel que le DMF ou le DCM puis un isothiocyanate aromatique ou hétéroaromatique (5 à 10 éq.) est ajouté. Le mélange est agité 2 à 24 heures à température ambiante avant de filtrer et laver la résine successivement au DMF puis au DCM. La résine est alors séchée sous vide et un test ninhydrine de Kaiser négatif confirme que la réaction de substitution est complète.

Préparation 24

Résine de Wang N-carbamate de 4-[([(1-naphthylamino)carbothioyl]amino]acétyl)amino]butyle

1,27 g de résine ci-dessus (voir préparation 23) sont déprotégés avec 14 ml de DMF/pipéridine à 20%. Le mélange est agité une heure à température ambiante. La résine est alors filtrée puis lavée au DMF (5 x 30 ml) puis au DCM (5 x 30 ml). La séquence de déprotection/lavage est répétée une fois avant de sécher sous vide la résine. 0,781 g de résine jaune pale a ainsi été obtenue avec un taux de charge de 0,758 mmol/g

calculé d'après l'analyse élémentaire du soufre. A 0,3 g (0,22 mmol) de cette résine thiourée sont additionnés 416 mg (2,2 mmol, 10 éq.) de 1-naphthylisothiocyanate dilués dans 6 ml de DMF. Le mélange est agité 18 heures à température ambiante. La résine est filtrée puis lavée successivement au DMF (5 x 20 ml) puis au DCM (5 x 20 ml). 310 mg de résine jaune pale sont isolés après séchage sous vide avec un taux de charge de 0,66 mmol/g calculé d'après l'analysè élémentaire de l'azote.

Synthèse de 2-arylimino-2,3-dihydrothiazoles

Procédure générale: l'étape de cyclisation régiosélective s'effectue dans des solvants aprotiques comme le dioxane, le DMF ou la N-méthylpyrrolidinone à 80 °C pendant 2 à 3 heures entre la résine thiourée et l'α-bromocétone (2 à 5 éq.). La résine est alors lavée successivement avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. La résine 2-arylimino-2,3-dihydrothiazole est clivée dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1 à 2 heures puis rincée avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium) suivi d'une extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

Exemple 6

 $\label{eq:N-(4-aminobutyl)-2-(2Z)-4-(4-chlorophényl)-2-(1-naphthylimino)-1,3-thiazol-3(2H)-yl)acétamide $$(C_{25}H_{25}ClN_4OS,MM=465,02):$$

$$0 \longrightarrow N \longrightarrow N$$

$$N \longrightarrow N$$

$$N \longrightarrow CI$$

80 mg (52,8 µmol, taux de charge de 0,66 mmol/g) de résine thiourée (préparation 24) et 25,1 mg (105,6 mmol, 2 éq.) de 2-bromo-4'-chloroacétophénone sont dilués dans 1 ml de DMF. Le mélange est chauffé à 80°C pendant 2 heures. La résine est filtrée puis lavée avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) puis du DCM (5 x 1 ml) avant d'être séchée sous vide. On ajoute 1 ml de mélange DCM/TFA 50% et on agite pendant 1,5 heures. La résine est filtrée et rincée au DCM. Le filtrat est évaporé puis redilué dans du méthanol pour élution sur alumine basique. 20,6 mg (rendement de 84%; pureté UV de 94,2 % à 220 nm) de solide jaune sont ainsi isolés après évaporation correspondant à la base libre.

RMN ¹H (DMSO D6, 100 MHz, δ): 8,36 (t, 1H, J = 4,7 Hz, NH); 8,12 (dd, 1H, J = 2,1 et 7,3 Hz); 7,87 (dd, 1H, J = 2,7 et 6,3 Hz); 7,63-7,34 (m, 8H); 7,13 (dd, 1H, J = 1,6 et 6,7 Hz); 6,33 (s, 1H, H azole); 4,44 (s large, 2H); 3,14 (m, 2H); 2,7 (m, 2H); 1,5 (m, 4H). SM/CL: m/z = 465,21 (M+H)⁺.

Une série de 2-arylimino-2,3-dihydrothiazoles a été synthétisée selon la méthode F à l'aide de notre système robotique (ACT MOS 496):

- -R1 = -C(R11R12)-CO-R10
- Groupes R2, R3 et R4 déjà décrits dans la méthode A
- Groupes R10:

$$N \leftarrow N$$
 $N \leftarrow N$
 $N \leftarrow$

- R11 = H
- Groupes R12:

EXEMPLES

10

15

Ci-après sont repris dans des tableaux des exemples obtenus selon les méthodes A, B, C, D, E et F décrites ci-dessus. Ces exemples sont présentés pour illustrer les procédures ci-dessus et ne doivent en aucun cas être considérés comme une limite à la portée de l'invention.

Les composés obtenus ont été caractérisés grâce à leur temps de rétention (tr) et à la spectrométrie de masse (M+H)⁺.

Les chromatogrammes sont obtenus à partir d'un appareil de chromatographie liquide haute performance (Hewlett-Packard 1100) équipé d'un détecteur UV à balayage. Les conditions suivantes ont été employées pour les mesures des temps de rétention par chromatographie liquide haute performance, sachant que la longueur d'onde d'extraction de chacun des chromatogrammes est de 220 nm:

t (min.)	A (%)	B (%)
o	90	10
6	15	85.
8	15	85

Eluant A: eau + 0,02% d'acide trifluoroacétique; éluant B: acétonitrile.

Débit: 1 ml/min; volume injecté: 5 μl; température: 40 °C. Colonne: Uptisphère 3μm ODS, 50 x 4,6 mm i.d. (Interchim)

Les spectres de masse sont obtenus à partir d'un spectromètre de masse simple quadripôle équipé d'une source electrospray (Micromass, Platforme II).

10				PCT/FR	02/00093
		- 144 -			
		NH ₂			
		5			
	R2-N N				
	s	-R3		•	
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
7		>	91,2	3,09	304,2
8		·	93,1	3,38	338,2
9			94	3,56	352,2
10			93,3	3,42	338,2
11		F.	96,6	3,25	342,2
12		N3 .	96,4	3,46	365,2
13			91,9	3,86	393,2
14		0.	96,4	3,44	358,2
15			95,6	3,34	382,2
16		Bruss.	94,5	3,7	408
17		>-	54,43	2,9	305,2
18			50,4	3,14	339,2

		- 145 -	···		
		NH2			
	R2-N N	-R3			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
19			48,9	3,38	535,2
20			39,3	3,26	. 339,2
21		F	49,5	3,06	343,2
22		N3 .	42,3	3,29	366,2
23			43,4	3,7	394,3
24		·	56,7	3,16	359,2
25			45,3	3,09	383,2
26		Br s	45,7	3,3	409
27		> -	96.8	3,41	332,3
28			92,8	3,7	366,3
29			90,6	3,84	380,3
30			93,7	3,76	366,3

		- 146 -						
	NH ₂							
	R2-N N	-R3						
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
31		F. C.	94,4	3,63	370,2			
32		N ₃ .	89,1	3,82	393,2			
33			90,1	4,12	410,2			
34		· ci	96,7	3,83	386,2			
35			95,8	3,67	410,2			
36		Br s.	93,4	4,17	436,1			
37		\	88,4	3,64	329,25			
38			91,8	4,03	363,2			
39	- Z		88,6	- 4,15	377,2			
40	, , , , , , , , , , , , , , , , , , ,		94,1	4,22	363,2			
41	- Z	-	95,2	4,1	376,2			
42	Z 2	N3	92,8	4,35	390,2			

		- 147 - NH ₂						
	·							
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
43			94,1	4,54	418,2			
44		CI	95	4,34	383,1			
45	2		95,1	4,06	407,2			
46		Br S.	93	4,7	433,1			
47		\	96,4	3,32	332,3			
48			92,9	3,62	366,3			
49			95,6	3,76	380,3			
50			95,6	3,64	366,33			
51		F	96	3,51	370,2			
52		N. 1	87	3,69	390,2			
53	-		80,9	4,04	421,3			
54		CI	97,1	3,7	436,1			

	- 148 -							
	NH2							
	R2-N N	-R3						
Ex.	R2	¹ R3	Pureté (%)	tr (min)	[M+H]*			
55			94,6	3,59	410,2			
56		Br s.	95,6	3,92	436,1			
57	CI CO		82,1	3,66	368,2			
58	CI O		90,7	3,94	402,2			
59			85,5	4,06	416,2			
60	CI CI		94,4	4,09	402,2			
61		F	95,1	3,99	406,2			
62	CI O	, , , , , , , , , , , , , , , , , , ,	93,6	4,21	429,2			
63	CI CO		93,6	4,39	457,2			
64	a .		96	4,22	422,1			
65	a Ci		91,6	3,96	446,2			
66	CI CI	B. S.	94,5	4,65	472			

- 149 -								
	NH ₂							
		J						
	R2 N	-R3						
Ex.	R2	¹ ∕ R3	Pureté (%)	tr (min)	[M+H]*			
67		>	97	3,07	348,2			
68		·	93,6	3,36	382,2			
69			93,4	3,54	396,2			
70			94,7	3,41	382,1			
71		F.	96,3	3,24	386,2			
72		N ₂	94,5	3,44	409,1			
73			93,4	3,83	437,2			
74			95,4	3,41	402,1			
75			95,7	3,32	426,2			
76		Br s	92,4	3,64	452,2			
77			98,1	3,66	324,2			
78			91,2	3,98	388,2			

.

WO 02/055510 PCT/FR02/00093

		- 150 -			
		NH ₂			
	R2 N	-R3			
Ex.	R2	; R3	Pureté (%)	tr (min)	[M+H]*
79			81,9	4,09	402,2
80			96,1	4,12	388,2
81			96,1	4,03	392,2
82			94,2	4,24	415,2
83			93,3	4,39	443,3
84			96,3	4,28	408,1
85			94,2	4,0	432,2
86		Br s	95,6	4,7	458,1

•

- 151 -										
1	NH₂									
	R2 N	_N.		4						
]	R3								
	S-									
Ex.	R2	,R3	Pureté (%)	tr (min)	[M+H]*					
87			97	3,35	338,2					
88			94	3,51	352,3					
	~ ·									
89			94	3,58	352,3					
90		F	97	3,42	356,2					
91			86	4,01	422,2					
		F 0								
92			96	3,99	407,3					
<u> </u>										
93		C I	. 7	3,65	391,3					
	~ ·									
94		- L.	92	4,11	378,2					
95			95	3,43	435,2					
		8.7		Ì						
96		B .	97	3,91	422,1					
		S' S'		-,0.	,					
97			43	3,19	339,2					
	~~				-,-					
98			32	3,33	353,2					
				-1						

- 152 - NH ₂										
	R2-N	_N		4						
	s.	R3								
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*					
99			39	3,45	353,2					
100		F.	39	3,28	357,2					
101		F F	42	3,8	423,2					
102			41	3,89	408,2					
103		The state of the s	14	3,43	392,2					
104			39	3,62	379,2					
105			28	3,2	436,2					
106		BC S.	35	3,56	423,1					
107			95	4,65	464,1					
108			89	4,64	478,2					
109			82	4,88	478,1					
110		-	92	4,76	482,1					

- 153 - NH ₂								
	141.12							
	N							
	R2 1	_N R3						
	s-							
Ex.	R2	,R3	Pureté (%)	tr (min)	[M+H] ⁺			
111			90	 5,41	548,1			
112			86	5,13	533,2			
113			9	4,5	517,1			
114			95	5,49	504,1			
115			80	4,4	561,1			
116		Br s	89	5,4	548,0			
117	· F		96	4,85	422,2			
118	· F		91	4,86	436,2			
119	C F		88	5,08	436,2			
120		F	95	4,96	440,2			
121		F. Co	81	5,56	506,2			
122	F F		83	5,34	491,2			

WO 02/055510 PCT/FR02/00093

		- 154 -							
	NH ₂								
	R2-N	-N							
	s-	R3							
Ex.	R2	,R3	Pureté (%)	tr (min)	[M+H]*				
123		C C	3	4,7	475,3				
124	, E		91	5,59	462,2				
125	· F		92	4,61	519,2				
126	. "-"	Br S	92	5,52	506,1				
127			98	3,63	366,3				
128			97	3,76	380,3				
129			98	3,82	380,3				
130			98	3,67	384,2				
131			97	4,16	450,2				
132			96	4,2	435,3				
133		C T	21	3,9	419,3				
134			88	4,28	406,2				

- 155 -								
	NH ₂							
	R2 N	R3						
Ex.	R2	,R3	Pureté (%)	tr (min)	[M+H]*			
135			97	3,68	463,3			
136		Br S	82	4,09	450,1			
137	H,N		93	3,44	417,2			
138	H ₂ N S		94	3,5	431,2			
139	H ₂ N S		95	3,71	431,2			
140	H,N S	F .	95	3,58	435,2			
141	H,N 50	F C	94	4,27	501,2			
142	H,N		93	4,05	486,6			
143	H,N 50		94	4,28	457,2			
144	T,N		92	3,39	514,2			
145	H ₂ N S 0	Br s	85	4,16	501,1			
146			97	3,36	382,2			

- 156 -						
NH ₂						
		كسسر	,			
		كسسم				
	R2-N	_N			1	
	`I	R3				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
147			94	3,53	396,2	
148			97	3,6	396,2	
149			97	3,43	400,2	
150			97	3,95	466,2	
151			95	4,01	451,3	
152		12	15	3,57	435,2	
153			94	4,0	422,2	
154			95	3,45	479,3	
155		Br S.	95	3,84	466,1	
156			96	4,11	388,2	
157			90	4,14	402,2	
158			96	4,31	402,2	

- 157 -						
R2 NH ₂						
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
159			96	4,21	406,2	
160		F. C.	97	4,83	472,3	
161			95	4,57	457,3	
162			96	5,12	428,2	
163			88	4,01	485,3	
164		Br S.	97	4,91	472,1	

j

- 158 - NH ₂								
	R2 N	R3 ,		•				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
165		>-	_. 93	3,52	332,3			
166			99	3,76	370,3			
167		N3 .	97	3,9	393,3			
168		F. C.	98	4,25	436,2			
169		Ci Zo.	98	4,14	431,2			
170			99	4,79	488,2			
171			98	3,74	410,2			
172			98	4,28	410,3			
173			98	4,38	392,2			
174		ci s.	98	4,73	456,2			
175	~ ·	>-	98	4,06	374,3			
176			98	4,37	412,3			

- 159 -							
	NHz						
	R2-N	< <		4			
	s _	R3					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺		
177		N3 .	97	4,46	435,3		
178			98	4,8	478,3		
179		Ci , NO.,	99	4,78	473,3		
180			94	5,43	530,3		
181			97	4,27	452,3		
182			85	4,73	452,4		
183			98	5,07	434,3		
184	C	a .	93	5,33	498,3		
185		>-	98	4,61	458,2		
186			97	5,23	496,1		
187	Ú.	N3	96	5,34	519,1		
188			97	5,72	562,1		

		- 160 -	NILL		
			NH ₂		
	R2-N	R3			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]
189		CI NO.	98	5,57	557,1
190			96	6,16	614,1
191			96	4,97	536,1
192		0	85	5,67	536,2
193			96	5,86	518,1
194		CI S	97	6,32	582,1
195	NC.	\\ \tag{\tag{\tag{\tag{\tag{\tag{\tag{	96	4,16	357,3
196	NC.		98	4,74	395,2
197	NC .	N ₃	97	4,86	418,2
198	NC .	F C	98	5,26	461,2
199	NC	Ci NO ₃	98	5,12	456,2
200	NC .		97	5,72	513,2

- 161 - NH ₂								
			<i>.</i>					
1								
	R2 N	R3		•				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺			
201	NC .		96	4,51	435,2			
202	NC .		98	5,18	435,3			
203	NC .		95	5,37	417,2			
204	NC .	CI S	95	5,84	481,2			
205	F .		96	3,63	350,3			
206	F .		98	3,95	388,2			
207	F	N3 .	95	4,07	411,2			
208	F		98	4,44	454,2			
209	F .	G ZOz	97	4,38	449,2			
210	F .		89	5,03	506,2			
211	F		96	3,87	428,2			
212			97	4,4	428,3			

162 -

- 162 - NH ₂						
1						
	R2-N S	R3				
Ex.	R2	: R3	Pureté (%)	tr (min)	[M+H]*	
213	F		96	4,63	410,2	
214	F.	CI.	96	4,96	474,2	
215	CI NO,	>- *	94	5,38	411,2	
216	Ci O,		98	5,63	449,2	
217	CI NO,	N ₃ .	96	5,77	472,2	
218	CI ZO,		98	6,04	515,2	
219	CI NO,		98	5,74	510,1	
220	CI NO.	F F F	91	6,29	567,2	
221	CI NO.		98	5,53	489,2	
222	CI NO.	0	96	6,38	489,3	
223	CI NO2		97	- 6,0	471,2	
224	CI NO,	CL	98	6,49	535,1	

- 163 -							
	NH ₂						
	R2-N						
	S.	R3					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*		
225	c _i		98	3,99	426,3		
226	CI		98	4,34	464,2		
227	CI .	25	96	4,43	487,3		
228		F F	97	4,78	530,2		
229	CI	CI NO,	98	4,76	525,2		
230	CI CI		96	5,36	582,2		
231	GI .		95	4,23	504,3		
232	c _i	0	97	4,7	504,3		
233	c ₁		98	4,99	486,2		
234	c _i .	G. S.	97	5,3	550,2		
235	H,N	\\ \tag{\tau}	96	3,44	411,2		
236	H,N S		95	3,94	449,2		

- 164 -						
1	NH ₂					
İ						
1						
	R2-N	N		•		
<u></u>	\$ _	R3		*		
Ex.	R2	R3	Puretė (%)	tr (min)	[M+H]*	
237	H ₃ N S	N.	96	4,11	472,3	
238	H,N-\$		95	4,52	515,2	
239	H,N-S	ci Zo,	95	4,39	510,2	
240	H,N-50	" F	94	5,01	567,2	
241	H,N-S		96	3,74	489,2	
242	H,N 50	0	96	4,41 _	489,3	
243	H,N-\$. 96	4,56	471,2	
244	H,N-S	a S.	97	5,01	535,2	

		- 105 - NI	⊣ ₂		
	R2 N	R3			
Ex.	R2	1, R3	Pureté (%)	tr (min)	[M+H] ⁺
245		>-	98,1	3,2	290,2
246			96,9	3,78	324,2
247		NO ₂	69,3	3,88	355,2
248		NC .	99,3	3,79	335,2
249			99,4	3,86	324,2
250		N3 .	98	3,97	351,2
251		B	98,7	4,14	388,1
252			93,5	4,24	379,3
253			82,4	5,16	446,2
254			98,8	3,7	368,2
255		>-	98,5	3,9	332,3
256			92,3	4,4	366,3

- 166 - NH ₂							
	R2 N R3						
Ex.	R2	₃ R3	Pureté (%)	tr (min)	[M+H]*		
257		NO	82,3	4,55	397,2		
258		ZC .	98,4	4,48	377,3		
259			97,3	4,49	366,3		
260		N3 .	95,4	4,59	393,3		
261		Br ·	98,7	4,77	430,2		
262			90,9	4,76	421,3		
263			98,7	5,72	488,2		
264			97,7	4,33	410,3		
265	H ₂ N S		98,5	3,42	369,2		
266	H ₂ N S 0		94,9	3,91	403,2		
267	H ₂ N S	NOz	98,1	3,81	434,2		
268	H,N	NC .	97,9	3,78	414,1		

-	\sim	
7	n /	_

- 16/ - NH ₂							
	R2 N R3						
Ex.	R2	1. R3	Pureté (%)	tr (min)	[M+H]*		
269	H ₂ N S		98,1	4,06	403,2		
270	H,N	N ₃ .	96,2	4,14	430,2		
271	H ₂ N S	Br ·	98,3	4,28	467,1		
272	H ₂ N S		96,8	4,5	458,2		
273	H ₂ N S		98,3	4,92	525,2		
274	H ₂ N S		97,1	3,84	447,2		
275	0		96,5	4,28	354,2		
276	a .		93,3	5,02	388,2		
277		NO ₂	68,7	4,96	419,2		
278	a .	NC.	97,8	4,86	399,2		
279	CI CI		96	5,13	388,2		
280	CI CI	N3 .	96,9	5,18	415,2		

- 2	•	_	
		-	_

	- 168 - NH ₂					
	R2 N	-N				
	 S~	R3				
Ex.	R2	1 R3	Pureté (%)	tr (min)	[M+H]*	
281	CI CO	Br	98,6	5,31	452,1	
282	a .		89,5	5,54	443,2	
283	CI CI		65,5	5,89	510,2	
284	CI		97,8	4,89	432,2	
285	CI NO.	>	93,2	5,08	369,2	
286	Cr NO,		94,6	5,31	403,1	
287	CI NO ₂	NO ₂	97,6	5,07	434,1	
288	CI NO,	NC .	99,1	5,05	414,1	
289	CI NO ₂		99,1	5,39	403,1	
290	CI NO ₂	N3.	98,3	5,44	430,2	
291	, o o	Br ·	99,4	5,47	467,1	
292			97,4	5,86	458,2	

	1	69	_
۰		03	-

NH ₂							
	R2 N R3						
Ex.	R2	∜.R3	Pureté (%)	tr (min)	[M+H]*		
293	CI CO,		99,5	5,87	525,1		
294	0 20,		98,5	5,21	447,2		
295	H	7	95,7	4,41	396,3		
296			92,9	5,06	430,3		
297		, o,	54	5,19	461,2		
298	3	zc ·	91,8	5,07	441,2		
299	H		95,8	5,18	430,3		
300	3	N ₃	96	5,28	457,3		
301	H	Br	96,9	5,45	494,2		
302	3		87	5,49	485,3		
303	5		35,6	6,18	552,2		
304			96,7	4,97	474,3		

	- 170 - NH ₂					
	R2 N R3					
Ex.	R2	∜ R3	Pureté (%)	tr (min)	[M+H]*	
305	-	>-	83,9	5,24	380,2	
306	F F		92,8	5,39	414,2	
307		NO ₂	92	5,14	445,2	
308		NC .	97,4	5,11	425,1	
309			98,1	5,47	414,2	
310	F .		97,2	5,47	441,1	
311	L L	Br .	97	5,52	478,1	
312	F		93,3	5,99	469,2	
313			98,3	5,91	536,1	
314			96,5	5,31	458,2	
315		> -	98,7	4,12	340,3	
316			93,4	4,66	374,2	

	√NH ₂					
	R2 N	-N R3		ı		
Ex.	R2	1. R3	Puretė (%)	tr (min)	[M+H]*	
317			98,9	4,78	405,2	
318		NC .	97,8	4,71	385,2	
319			98,1	4,78	374,2	
320		N ₃ .	97,2	4,9	401,2	
321		Br ·	98,8	5,09	438,1	
322			95,8	5,07	429,3	
323			98,5	5,82	496,2	
324			97,5	4,59	418,2	

- 172 - NH						
	R2-N N					
	s_/	R3				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
325		>-	93	3,71	358,2	
326			68 + 30	4,0 + 4,1	396,2	
327		F F O	69 + 31	4,5 + 4,6	462,2	
328		0.0	66 + 27	4,7 + 4,8	484,3	
329		Ci NO,	67 + 31	4,4 + 4,6	457,2	
330			67 + 30	4,3 + 4,5	541,2	
331			62 + 33	3,9 + 4,0	436,2	
332			64 + 30	3,5 + 3,6	447,3	
333			65 + 30	4,7 + 4,9	418,2	
334		> -	68 + 29	3,8 + 3,9	372,3	
335			69 + 29	4,2 + 4,3	410,2	
336			68 + 30	4,6 + 4,8	476,2	

√NH ₂						
	R2 N	\		14		
	s_//	R3				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺	
337		~~~·	61 + 32	4,8 + 4,89	498,3	
338		Ci NO,	66 + 30	4,55 + 4,71	471,2	
339			68 + 29	4,46 + 4,58	555,2	
340		1	22 + 11	5,13 + 5,22	520,4	
341			67 + 24	4,09 + 4,14	450,3	
342			71 + 23	3,7 + 3,74	461,3	
343		Q.	67 + 31	4,82 + 5,02	432,2	
344	·	\\ \frac{1}{2}	66 + 31	4,14 + 4,39	404,3	
345	· S		65 + 31	4,74 + 4,94	442,2	
346	", "s"		65 + 31	5,25 + 5,47	508,2	
347	C s	0.0	62 + 29	5,28 + 5,5	530,3	
348	·	CI NO ₃	65 + 30	5,21 + 5,38	503,2	

		- 174 -			<u> </u>		
R2 N N R3							
	\$//		Purotó (%)	tr (min)	[M+H] ⁺		
Ex.	R2	R3	Pureté (%)	tr (min)	[ivi+rij		
349	S-		63 + 30	5,03 + 5,24	587,2		
350		1	64 + 30	5,59 + 5,84	552,3		
351			58 + 28	4,49 + 4,66	482,3		
352	·		64 + 26	4,01 + 4,11	493,3		
353	·		65 + 31	5,54 + 5,71	464,2		
354	N ₃		57 + 24	4,08 + 4,19	399,3		
355	N ₃		62 + 28	4,52 + 4,7	437,2		
356	N ₃		62 + 28	5 + 5,2	503,2		
357	N ₃	0.0	58 + 26	5,08 + 5,25	525,3		
358	N,	CI NO,	62 + 29	4,98 + 5,19	498,2		
359	N ₂		62 + 29	4,82 + 4,99	582,2		
360	N ₃	но	62 + 28	5,39 + 5,58	547,3		

√NH ₂								
	R2 N R3							
	\$//	R3	Pureté (%)	tr (min)	M+H]*			
Ex.	R2	0 0	T di cic (70)					
361	N ₃		56 + 26	4,37 + 4,49	477,3			
362	N ₃ .		64 + 32	5,32 + 5,55	459,2			
363	Br F F		94	6,36	505,2			
364	Br F F		98	6,39	542,1			
365	Br F F	FF O	25 + 72	6,74 + 6,77	608,1			
366	Br F F	0.0	92	7,07	630,2			
367	Br F F	CI NO ₂	23 + 73	6,38 + 6,42	603,1			
368	er F F		26 + 69	6,73 + 6,76	687,1			
369	Br F F	HO	60	7,55	652,3			
370	B _r F _F		82	6,39	582,1			
371	Br F	FON	94	5,74	593,2			
372	2 ar	F	22 + 73	6,68 + 6,74	564,1			

	- 1/6 - NH ₂							
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
373	02N		59 + 27	4,88 + 5,13	403,3			
374	02N		67 + 30	5,35 + 5,44	441,2			
375	O ₂ N .		64 + 34	5,84 + 5,92	507,2			
376	O ₂ N .		62 + 28	6 + 6,13	529,3			
377	02N	CI NO ₂	97	5,58	502,2			
378	O ₂ N		65 + 32	5,71 + 5,8	586,2			
379	02N	110	49 + 23	6,45 + 6,58	551,3			
380	O ₂ N.		61 + 26	5,18 + 5,3	481,2			
381	O ₂ N.	o CO	45 + 21	4,57 + 4,68	492,3			
382	O ₂ N .		84	5,9	463,2			
383	F	>-	56 + 26	4,65 + 4,89	410,2			
384	F		64 + 30	5,29 + 5,47	448,2			

NH ₂							
R2-N R3							
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*		
385		F. Co	65 + 30	5,78 + 5,95	514,2		
386	F	0.0	63 + 27	5,8 + 6,02	536,2		
387	F	CI NO,	65 + 31	5,71 + 5,81	509,1		
388	F		62 + 32	5,59 + 5,79	593,1		
389		T P	30 + 14	6,22 + 6,45	558,3		
390	F 0		57 + 26	5,01 + 5,2	.488,2		
391	F Ü	o C	54 + 26	4,46 + 4,61	499,2		
392	F 0		27 + 11	6,09 + 6,18	470,2		
393			63 + 29	4,53 + 4,6	464,3		
394	H		65 + 30	4,78 + 4,93	502,3		
395		FF O	61 + 28	5,16 + 5,35	568,2		
396		0.0	59 + 25	5,3 + 5,42	590,3		

94 A

- 176-						
R2-N R3						
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺	
397		, o,	60 + 30	5,12 + 5,34	563,2	
398			63 + 32	5,01 + 5,17	647,2	
399	H	1	59 + 26	5,55 + 5,7	612,4	
400	H		52 + 14	4,35 + 4,4	553,3	
401	H		61 + 29	5,36 + 5,64	524,3	

NH ₂								
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
402			88,5	4,52	442,1			
403			94,6	4,72	432,15			
404		N3 .	95	4,78	455,16			
405		CI NO,	98,6	5,19	493,12			
406			95,8	4,99	577,11			
407			95,1	4,44	472,19			
408			96,3	4,0	483,21			
409		Br S	94,5	5,35	498,04			
410			94,1	5,61	454,15			
411			83	5,43	526,03			
412			94,9	5,4	515,97			
413			93,4	5,52	539,00			

	NH ₂				
	R2 N	├ ─R3	,		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
414		0,	97,1	5,48	576,95
415			92,7	5,69	660,99
416			92,2	5,27	555,98
417			92	4,7	567,00
418			89,7	5,73	581,87
419			87,8	5,77	538,00
420			84,4	4,74	446,14
421		F.	92,6	4,9	436,08
422		23	91,2	5,0	459,10
423			72,4	5,0	487,16
424		, , , , , , , , , , , , , , , , , , ,	94,9	5,19	497,07
425	·		91,7	5,18	581,05

	- 181 - NH ₂					
	N N					
	R2 N	> ─R3	,			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
426			91,5	4,67	476,12	
427			89,6	4,16	487,13	
428		Br s	91,7	5,38	501,96	
429			89,9	5,48	458,10	
430			87,1	5,26	484,14	
431			95,7	5,41	474,10	
432		N3.	94,6	5,51	497,12	
433		GI 202	97,4	5,64	535,01	
434			96,2	5,69	619,04	
435 ,	,		94,4	5,21	514,10	
436	- L		94,7	4,67	525,11	
437		Br s	92,7	5,84	539,94	

	- 182 -					
			NH ₂			
	R2 N		•			
	s	R3	,			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
438			91	5,93	496,09	
439	0.0		82,4	4.82	492,18	
440	0.0	F .	92,2	5,03	482,14	
441	0.0	N ₃	90,4	5,08	505,15	
442	0.0		33,4	5,14	533,18	
443	0.0		97,6	5,45	543,07	
444	0.0		93,9	5,26	627,10	
445	0.0		93,6	4,78	522,14	
446	0.0		94	4,34	533,15	
447	0.0	Br S	91,6	5,6	547,98	
448	0.0		92,6	5,82	504,14	
449	C ₁		84,9	5,76	468,08	

	- 183 -					
			NH ₂			
	R2 N					
	s_	R3	,			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
450	Ci	F	95,4	5,54	458,03	
451	CI	N ₃	93,3	5,74	481,03	
452	Ci		85,3	6,21	509,06	
453	CI	0,	97,4	5,62	518,97	
454	Ci		92	5,91	602,90	
455	Ci		91,4	5,54	498,06	
456	Ci	o CNO	91,4	4,98	509,06	
457	CI	Br S	88,7	5,9	523,88	
458	C ₁		88,5	5,88	480,05	
459 ,			88,2	4,69	506,18	
460		F	93,1	4,87	496,15	
461		N3 .	91,2	4,92	519,15	

	- 184 -					
	NH ₂					
	R2 N	R3	•			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]	
462			26,9	5,01	547,17	
463	5	cı No,	93,9	5,26	557,08	
464			93,2	5,08	641,13	
465	H		95,7	4,64	536,15	
466			95,3	4,24	547,15	
467		Br s	92,3	5,39	562,00	
468			92	5,6	518,14	
469	c _i ,		75,3	4,59	494,13	
470	ci -		97,1	4,73	484,11	
471	CI	N ₅	95,4	4,81	507,11	
472	CI		10,7	4,9	535,14	
473	CI	· NO ₂	96,4	5,07	545,02	

\$ 1.8.8.4.4 \$ 1.8.8.4.4

Prof. 52 (1998)

A contraction of the Contract

- 105 -					
	R2 NH ₂				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
474			96,5	4,98	629,05
475			95,2	4,5	524,08
476	c.		96	4,06	535,09
477		Br S.	95,3	5,22	549,95
478	G		94,1	5,36	506,08

JJ	10				PCT/F	'R02/0009
			- 186 -			
			NH ₂			
		R2 N	R3			
	Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]
	479	CN.	>-	45,6	4,95	377,14
	480	CN.	CI	79	5,17	431,07
	481	CN	NO ₂	56,8	4,84	442,08
	482	CN		79,2	5,04	415,07
	483	CN CN	N ₃	78,4	5,25	438,11
	484	CN.	F CO	82,6	5,47	481,10
	485	CZ.	0.0	72,6	5,81	503,17
	486	CN.		79	5,36	560,04
	487	Cz.	Br s	72,1	5,34	480,98
	488	CN.		76,9	5,0	441,09
	489		>	94,5	4,6	386,09
	490			95,4	5,34	440,04

	- 187 -				
	R2-N R3				
Ex.	R2	R3	/ Pureté (%)	tr (min)	[M+H] ⁺
491		NO ₂	95,3	5,05	451,06
492			95,2	5,23	424,07
493		N ₃	93,4	5,35	447,07
494		F F .	96,1	5,67	490,07
495		O.O.	88,5	5,84	512,12
496		, , , , , , , , , , , , , , , , , , ,	92,9	5,55	569,00
497		Br S.	92,8	5,64	489,95
498			92	5,03	450,08
499			96,5	4,87	397,11
500	0,	CI	96,1	5,26	451,06
501	202	NO ₂	96,1	4,95	462,07
502	~ ·		96,3	5,15	435,08

10			•	PC1/FR	02/00033	
	- 188 <i>-</i>					
	NH ₂					
	R2 N N	→R3				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
503	20,	N3	96,2	5,31	458,11	
504	20.		96,5	5,57	501,08	
505	,	0.0	89,3	5,86	523,15	
506	, vo.		95,8	5,46	580,03	
507	, NO.	Br S.	94,2	5,45	500,96	
508	20,		93,5	5,07	461,08	
509	40	\	98,5	4,29	408,18	
510	to.	CI	97,2	4,98	462,13	
511	to.	, NO2	96,4	4,81	473,19	
512	TO.		96,3	4,9	446,17	
513	AD.	N3 .	94,7	4,93	469,19	
514			96,9	5,29	512,17	

- 189 -					
	R2 N	NH ₂			
Ex.	\$ R2	R3	Pureté (%)	tr (min)	[M+H] ⁺
515	+0-	0.0	90,6	5,33	534,20
516	10-		96,3	5,15	591,13
517	10.	Br s	93,5	5,47	512,04
518			95	4,65	472,19
519	-		95,5	5,14	420,13
520	F	·	95,6	5,63	474,07
521	F .	NO ₂	93,8	5,35	485,10
522	FF		95,1	5,53	458,09
523	F.F.	N ₃	94,2	5,67	481,10
524	-		94,6	5,9	524,09
525	F.F.	0.0	88,4	6,15	546,11
526	F		92,6	5,83	603,07

	- 190 - NH ₂					
	DO N. N.					
	R2-N	R3	,			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]	
527		Br S	89,8	5,87	523,97	
528	-		92,3	5,41	484,11	
529	II.	>- *	98,2	3,75	380,18	
530	II.	CI	96,4	4,35	434,11	
531		NO ₂	96,5	4,19	445,13	
532			95,7	4,25	418,14	
533			94,4	4,33	441,13	
534		- L	95,5	4,69	484,14	
535			89,5	4,81	506,18	
536			95,5	4,54	563,08	
537		Br S	92,2	4,79	484,03	
538			93,7	4,07	444,14	

•	19	1 -

√NH ₂								
	R2 N	—R3	,					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
539	CI	>- "	95,4	4,25	416,10			
540	CI	CI	95,7	5,05	470,07			
541	ci O	· NO ₂	95,6	4,81	481,05			
542	· · ·		95,4	4,96	454,07			
543	CI	N3 .	94,4	5,05	477,10			
544	CI		95,9	5,4	520,04			
545	CI		89,5	5,51	542,11			
546	CI	, , , , , , , , , , , , , , , , , , ,	94	5,26	599,02			
547	CI	Brown .	92,9	5,4	519,93			
548	CI		92,3	4,72	480,08			
549	Br Br	>-	92	6,01	585,84			
550	Br Br	CI	96,7	6,18	639,79			

		- 192 -			
	R2-N	NH ₂			
	· s	R3			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
551	Br Br	NO ₂	95,8	5,84	650,83
552	Br		96	6,04	623,81
553	Br Br	N ₃	94,7	6,22	646,85
554	Br Br		95	6,39	689,82
555	Br		88,8	6,7	711,88
556	Br Br		94,9	6,4	768,76
557	Br Br	Brown .	95	6,35	689,71
558	Br Br		93,7	6,01	649,83

30 30 H A A

- 194 -						
		, 	1			
	R2 N	R3	,			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]	
571		N ₃	88,7	4,27	435,19	
572			64,2	4,53	463,25	
573			93,8	5,15	530,18	
574		CI NO.	93,6	4,55	473,17	
575			86,8	4,07	452,21	
576			93,4	4,65	458,24	
577			91,8	3,71	463,23	
578			91,6	4,85	434,20	
579			83,1	4,38	436,23	
580		Br ·	92,7	4,56	486,14	
581		N.3	88,9	4,43	449,24	
582			80,4	4,65	477,25	

which the state in the

- 195 -							
			1				
	R2 N	R3	1				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*		
583			93	5,34	544,19		
584		G	94,3	4,75	487,20		
585			93,2	4,23	466,23		
586			94	4,82	472,28		
587			92,1	3,88	477,28		
588			91,7	5,06	448,23		
589			83,1	4,62	419,20		
590		Br .	93	5,06	469,09		
591		N ₅ .	88	4,89	432,18		
592			88,5	5,02	460,23		
593			93,2	5,69	527,16		
594		, NO.	91,6	5,11	470,15		

	- 196 -							
	N							
	R2	R3	,					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
595	C _N		90,2	4,53	449,19			
596	CZ.		91,9	5,4	455,19			
597	, z		90,2	3,99	460,20			
598		<u></u>	93	5,41	431,16			
599			86,1	4,05	424,22			
600		Br ·	91,8	4,17	474,12			
601		N3	90,2	4,04	437,19			
602			86,4	4,34	465,24			
603			93,5	4,91	532,19			
604		000000000000000000000000000000000000000	93,4	4,3	475,16			
605			87,9	3,86	454,20			
606			91,8	4,47	460,25			

		- 198 -						
	N							
	R2 N	R3	,					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
619	F		76,6	5,06	490,15			
620	F	Br ·	91,2	5,56	539,99			
621	F Br	N	86,7	5,39	503,12			
622	F Br		81	5,47	531,15			
623	F Br		92,2	6,13	598,06			
624	F Br	0,00	84,8	5,59	541,03			
625	F		88	5,04	520,11			
626	F Br		91,6	5,91	526,14			
627	F		89,4	4,49	531,11			
628	F Br		90,3	5,89	502,10			
629	CI		83,3	4,41	458,20			
630	CI	Br .	91,5	4,72	508,08			

		- 199 -			
			1		
	R2 N	R3			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
631	CI	, , , , , , , , , , , , , , , , , , ,	87,8	4,57	471,18
632	CI		57,7	4,71	499,23
633	CI		92,8	5,54	566,12
634	Ci	, o,	93,5	4,93	509,13
635	CI CI		89,3	4,29	488,19
636	ci Ci		93,6	4,99	494,21
637			91,7	3,88	499,21
638	c ·	-·	91,9	5,22	470,18

7.

		- 200 -			
	R2 N N.	N PR3			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]
639	Br		95	7,28	374,10
640	CF ₃		87	7,62	364,24
641	s		84	6,75	342,23
642	NC NC		79	6,6	321,24
643	N N		81	4,96	339,29
644			82	6,44	324,28
645			83	7,16	338,30
646	МеО		59	6,6	356,25
647			.86	7,28	402,23
648			84	7,29	346,26
649	B		85	7,66	388,1
650	CF,		84	7,96	378,21

The state of the s

	Z	Y			
	R2 S	R3	•		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺
651	·s		85	7,14	356,23
652	NC .		73	7,02	335,26
653	-N		76	5,37	353,29
654			83	6,84	338,30
655			81	7,51	352,29
656	MeO OMe		75	6,99	370,27
657	Q.O-		77	7,6	416,26
658	-		80	7,65	360,25
659	Br	F	87	7,37	392,10
660	CF ₃	F	71	7,7	382,16
'661	-s-	F	63	6,9	360,21
662	NC .	F	59	6,7	339,23

		- 202 - N			
	R2 N N	J ,—R3			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
663	-N	F.	80	5,06	357,26
664		F.	63	6,61	342,26
665		F	82	7,28	356,25
666	MeO OMe	F	39	6,74	374,22
667	Q.O.		85	7,42	420,24
668		F .	81	7,39	364,26
669	Br		93	8,28	443,2
670	CF ₃		88	8,61	433,2
671	\s\.		88	7,7	411,2
672	NC .		80	7,76	390,26
, 673	-N		85	6,08	408,3
674			89	7,36	393,3

	- 203 -							
R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
675			84	8,03	407,3			
676	MeO OMe		81	7,59	425,3			
677			83	8,03	471,3			
678			91	8,24	415,2			

U				I CI/FROZ	,,,,,,,
		- 204 -			
	N_ N.	N 			,
	R2		•		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺
679	Br .	O ₂ N	78	7,41	419,09
680		O ₂ N .	75	6,98	369,23
681		O ₂ N	81	7,51	383,23
682		O ₂ N .	85	7,46	391,20
683	NC.	MeO.	74	6,79	351,21
684	-N	MeO.	81	5,18	369,26
685		MeO .	76	6,73	354,26
686		MeO .	87	7,39	368,27
687		MeO .	80	7,48	376,22
688	Br ·		83	8,14	424,11
689	CF ₃		83	8,37	414,14
690	NC .		78	7,48	371,21
691	~~		85	5,88	389,24
692	-		79	7,53	374,24

-	205	-

R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
693			83	8,1	388,23	
694			77	8,18.	452,23	
695			81	8,14	396,20	
696			76	7,94	413,16	

and the state of t

		- 206 -			
	R2 N N	N R3		·	
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
697		<u></u>	86	7,41	402,01
698	OCF ₃		93	7,57	360,16
699		· •	74	6,32	361,23
700	CF ₃	1	88	7,75	344,19
701	N ₃	<u></u>	83	6,88	317,22
702	Br Br	<u></u>	93	8,33	509,9
703	CI	<u></u>	90	8,69	411,99
704	· OMe		72	8,16	382,21
705 _	J.O	→ •	81	7,27	382,2
706			82	7,7	436,05
707	OCF ₃	·	91	7,85	394,16
708		<u> </u>	80	6,59	395,19

		- 207 -			
		,			
	R2 N N	R3	•		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]
709	CF ₃	<u>.</u>	87	7,99	378,16
710	N ₃	<u>.</u>	83	7,3	351,2
711	Br Br		89	8,58	543,85
712	CI		89	8,9	446,01
713	ОМе	<u> </u>	72	8,35	416,19
714		·	82	7,62	416,19
715			85	7,84	436,05
716	OCF ₃		88	7,97	394,14
717			. 75	6,82	395,21
718	CF ₃		88	8,13	378,13
, 719	N ₃		78	7,5	351,2
720	Br Br		91	8,65	543,86

•

:

:

721 CI CI 89 8,97 440	
721 CI CI 89 8,97 440 722 75 8,55 416 723 0 0 83 7,84 416, 724 0 0 90 8,24 506, 725 0 88 8,37 464 726 76 743 465	
721 CI CI 89 8,97 446 722	+H]
723 8,55 416 724 90 8,24 506, 725 CF ₃ 76 7,43 465	16,0
724 90 8,24 506, 725 CF ₃ 0 88 8,37 464 726 76 7,43 465	3,19
725 CF ₃ O 88 8,37 464	-
725 88 8,37 464 726 76 743 465	,01
1 (43 1465)	l,1
30	.17
727 CF ₃ 86 8,52 448,	,1
728 N ₃ CF ₃ O 84 8,11 421,1	11
729 Br CF ₃ O 89 8,97 613,8	8
730 CI CI CF ₃ O 90 9,24 515,94)4
731 CF ₃ O 74 8,94 486,17	7
732 CF ₃ O 81 8,51 486,16	6

				PC 1/FF	102/00093		
		- 209 -					
	N						
	R2 N S	R3					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*		
733		0 N - Br	82	8,15	584,93		
734	OCF ₃	Br -	81	8,26	543,05		
735		ON-BI	69	7,31	544,1		
736	CF ₃	0 N	80	8,43	527,07		
737	N ₃	ON-Br	82	7,99	500,1		
738	Br Br	ON-ST	88	8,92	692,79		
739	CI	ON-St.	85	9,23	594,87		
740	ОМе	o N− ·	71	8,84	565,1		
741 -		0 N	79	8,36	565,08		
742			82	7,77	475,06		
, 743	OCF ₃		81	7,91	433,13		
744			86	6,72	434,21		

:

· :

:

N						
	R2 N S	-R3				
Ex.	R2	R3	Púreté (%)	tr (min)	[M+H] ⁺	
745	CF ₃		82	8,03	417,15	
746	N ₃		74	7,32	390,17	
747	Br Br		86	8,61	582,85	
748			76	8,94	485,01	
749	OMe		73	8,33	455,19	
750	0.0		84	7,59	455,2	
751		CI S	67	8,82	525,96	
752	OCF ₃	CI S	75	8,93	484,08	
753		CI	68	80,8	485,14	
754	CF ₃	CI S	75	9,08	468,06	
755	N ₃	CI	78	8,77	441,06	
756	Br Br	CI S-	81	9,56	.633,79	

- 211 -						
R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
757		cl s	81	9,77	535,91	
758	OMe	CI S	70	9,55	506,12	
759		CI S	78	9,21	506,13	

		- 212 -				
	R2-N S R3					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
760	-	CF ₃ O .	92,9	5,03	436,23	
761	H	~~	90,4	5,56	422,33	
762	\mathcal{H}	CF ₃	94,36	4,94	420,26	
763	H		88,08	5,09	428,30	
764	H		77,6	4,42	423,34	
765	H	H0 .	92,4	5,52	480,38	
766	H		84,6	4,8	402,25	
767			89,8	5,79	462,37	
768		CF ₃	91,9 	5,12	460,20	
769	OMe ·	CF,	91,4	5,14	476,21	
, 770	CF3	CF ₃	94,2	5,67	514,18	
771	-	CF ₃	93,0	5,37	464,18	

		- 213 -	<u></u>		
	_	N			
	R2-N				
	s	-R3	,		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
772		CF ₃	94,5	5,64	572,07
773		CF ₃	87,9	5,76	522,21
774		CF,	91,2	5,12	474,23
775	J.	CF ₃	78,1	5,82	530,27
776		CF ₃ O	88,8	4,55	408,22
777			90,7	5,13	394,34
778		CF ₃	92,6	4,45	392,23
779			88,8	4,65	400,30
780			76,5	3,94	395,33
781	-	H C	90,8	5,11	452,38
782	-		87,7	4,33	374,29
783		ŽO.	91,5	5,35	434,38

	_		-	
•	2	1	4	_

		- 214 -			
	R2-N S	-R3			
Ex.	. R2	R3	Pureté (%)	tr (min)	[M+H]
784		CF ₃ O	92,1	4,61	424,25
785		~0"	89,3	5,28	410,33
786		CF ₃	95	4,49	408,22
787			82,4	4,74	416,27
788	OMe.		73,8	3,95	411,30
789	ОМе	HO .	92,9	5,27	468,36
790	OMe .		84,9	4,39	390,28
791	OMe ·	ŽO-	91,5	5,53	450,37
792		CF ₃ O	90	5,5	462,19
793	CF ₃		93,9	6,25	448,31
794		CF ₃	94,9	5,41	446,22
795	CF ₃		93,5	5,76	454,26

449,30 506,34 428,245 488,34 412,20 93,5 5 396,20 802 CF₃ 92,2 5,35 404,26 803 90,7 4,41 399,28 804 456,34 805 94,2 5,87 378,23 806 89,3 5,05 807 90,9 6,07 438,33

R2-N. /	N			
S	R3	•		
. R2	R3	Pureté (%)	tr (min)	[M+H]
	CF30	88,8	5,43	520,0
		94	6,19	506,19
	CF ₃	95,9	5,33	504,12
		92,9	5,68	512,15
		88,9	4,8	507,18
-	+0	92,3	6,17	564,20
		93,9	5,41	486,14
	ŽO-	93,5	6,35	546,18
	CF ₃ O	91,9	5,41	470,25
		93	5,98	456,34
	CF ₃	91,4	5,29	454,24
		90,4	5,49	462,29
		R2 R3 CF ₃ O R2 R3 Pureté (%) CF ₃ O 88,8 94 95,9 CF ₃ O 92,9 88,9 92,3 93,5 CF ₃ O 91,9 91,4	R2 R3 Pureté (%) tr (min) R2 R3 Pureté (%) tr (min) R3 Pureté (%) tr (min) R3 Pureté (%) tr (min) R4 Figure (%) R5 Pureté (%) tr (min) R6 Pureté	

	- 217 -
R2-N S	N -R3

	ŚR3				
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺
820			86,5	4,75	457,34
821		HO	90,5	5,94	514,34
822			90,1	5,21	436,26
823		—	89,7	6,18	496,37
824		CF ₃ O .	79,4	4,56	422,22
825		~~	92,5	5,08	408,32
826		CF ₃	93	4,45	406,23
827			90,2	4,63	414,26
828			76,3	4,01	409,31
829		H H	94	5,08	466,36
830			90,7	4,34	388,25
831		XO.	92,9	5,29	448,36

	· · · · · · · · · · · · · · · · · · ·	- 218 -			
	R2-N S	R3			
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]
832		CF ₃ O.	56 .	5,3	478,29
833			83,9	5,7	464,38
834		CF ₃	82,1	5,19	462,29
835			80,5	5,31	470,35
836			70,6	4,8.	465,39
837		HO .	82,9	5,67	522,41
838			81	5,07	444,33
839		Ŏ.	83,5	5,91	504,41

٦.

	R2-N N	-R3	.,		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
840		NO	35 + 64	3,68 + 3,78	423,2
841		QMo OMo	98	3,7	438,3
842		Ci Ci	35 + 63	4,3 + 4,4	446,2
843			97	3,71	436,3
844			32 + 65	3,28 + 3,34	447,3
845			96	3,84	392,3
846			96	4,18	447,3
847			30 + 64	3,62 + 3,64	475,3
848		<u> </u>	36 + 61	4,46 + 4,61	418,3
849 ,	F F .	NO2 -	96	5,89	569,1
850	F F .	PMe OMe	94	6,09	584,2
851	Br F	CI	57 + 39	6,55 + 6,6	592,1

	R2-N N R3					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*	
852	Br Br		96	6,16	582,2	
853	F F F .		28 + 59	5,53 + 5,61	593,2	
854	F F F		95	6,35	538,2	
855	Br Br		54 + 41	6,8 + 6,88	593,3	
856	Br Br		94	5,96	621,2	
857	Br Br		56 + 39	6,46 + 6,55	564,2	
858		0"	34 + 63	4,09 + 4,2	451,3	
859		₹ 2 0 0 0 0 0 0 0	96	4,03	466,4	
860			33 <u>+ 6</u> 4	4,69 + 4,76	474,3	
861			27 + 70	4,04 + 4,07	464,4	
862			33 + 63	3,63 + 3,71	475,4	
863			95	4,18	420,4	

	R2-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	N R3	,		
Ex.	R2	1 R3	Puretė (%)	tr (min)	[M+H] ⁺
864			89	4,46	475,4
865			22 + 68	3,94 + 3,98	503,4
866			35 + 62	4,9 + 5,01	446,4
867	PMe C	2000	35 + 61	4,39 + 4,52	487,3
868	PMs E ₁	0 S	33 + 63	4,22 + 4,29	502,3
869	PM°	CI	35 + 62	5,08 + 5,2	510,2
870	PM° -		31 + 63	4,26 + 4,34	500,3
871	PM9		33 + 62	3,82 + 3,91	511,3
872	PM*		31 + 62	4,42 + 4,51	456,3
873	PMe Li		29 + 64	4,66 + 4,72	511,4
874	ome Ci		33 + 57	4,11 + 4,2	539,3
875	PMe -	-	35 + 62	5,26 + 5,39	482,3

	R2 N N	—R3	<i>f</i>		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*
876		NO2	32 + 65	3,63 + 3,7	467,3
877		OMe OMe	97	3,69	482,4
878		01	35 + 62	4,2 + 4,28	490,3
879			94	3,69	480,3
880			28 + 68 	3,3 + 3,33	491,3
881			96	3,8	436,3
882			96	4,18	491,4
883			94	3,63	519,3
884			36 + 61	4,28 + 4,42 ·	462,3
885	CI OMe	Ž Ž	36 + 62	4,24 + 4,36	517,3
886	OM6	QMe OMe	28 + 69	4,15 + 4,21	532,3
887	OMe OMe	CI	35 + 62	4,84 + 4,96	540,2

	-223-					
	R2-N R3					
Ex.	R2	R3	Puretė (%)	tr (min)	[M+H]*	
888	OMe OMe		33 + 64	4,15 + 4,22	530,3	
889	CIOMe		32 + 63	3,76 + 3,84	541,3	
890	CI OMe		32 + 63	4,28 + 4,36	486,3	
891	ON B		24 + 73	4,56 + 4,6	541,3	
892	OM6 OM6		31 + 59	4,05 + 4,11	569,3	
893	O. Me	·	35 + 61	4,99 + 5,14	512,3	
894	0,14	0, 0, .	33 + 64	5,59 + 5,7	576,3	
895	0,4	OMe	35 + 61	5,29 + 5,39	591,3	
896	3.2	CI	26 + 71	6,32 + 6,35	599,2	
897	O,N		34 + 63	5,41 + 5,5	589,3	
898	0,N	0 N	35 + 61	4,88 + 4,99	600,3	
899	o'n		35 + 62	5,63 + 5,72	545,3	

	R2-N N					
	S.	R3	,			
Ex.	R2	, R3	Pureté (%)	tr (min)	[M+H]*	
900	O,M, C		34 + 61	5,76 + 5,86	600,3	
901	om S		34 + 68	5,16 + 5,28	628 <u>,</u> 3	
902	a,N. C. S. C.		98	6,45	571,3	
903	N S S S S S S S S S S S S S S S S S S S	ZO2	35 + 60	3,84 + 3,93	502,3	
904	N S S S S S S S S S S S S S S S S S S S	2 0 0 0 0 0 0	32 + 62	3,72 + 3,79	517,3	
905	N. I.S. I.O.	CI CI	32 + 62	4,59 + 4,68	525,2	
906	N. IS IO		33 + 61	3,75 + 3,82	515,3	
907	N. I.S. I.O		29 + 64	3,18 + 3,26	526,3	
908	N S NO		- · 32 + 59	4 + 4,09	471,3	
909	N S NO		32 + 60	4,28 + 4,38	526,3	
910	N. J.S.		34 + 56	3,62 + 3,71	554,3	
911	N S NO	<u> </u>	31 + 63	4,58 + 4,66	497,3	

R1							
	N R3						
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H]*		
912			6,8 + 91,2	3,6 + 3,76	332,22		
913			- 88,1	3,94	352,19		
914			89,6	4,22	380,22		
915	·		61,6	3,95	382,17		
916			83,5	3,8	377,19		
917	·	B	84,2	4,41	430,10		
918	-	N	70,9	4,24	393,18		
919	·	O _z N	84,1	4,1	397,16		
920		Br S.	82,2	4,55	436,05		
921			82,8	4,66	392,17		
922		> "	98	4,25	380,22		
923			91,1	4,26	400,17		

	- 226 - R1							
	R3							
Ex.	N R1	. R3	Púreté (%)	tr (min)	[M+H]*			
924			92,4	4,46	428,21			
925			93,8	4,23	430,20			
926		2	86,4	4,14	425,17			
927		Br .	92,3	4,7	478,11			
928		23	82	4,56	441,18			
929		O ₂ N .	90,9	4,44	445,18			
930		Br s	89,8	4,9 .	484,07			
931			86,4	5,0	440,17			
932		>-	97,2	4,38	394,22			
933			86,3	4,48	414,18			
934	<u>,</u>		92,6	4,68	442,22			
935			91	4,44	444,22			

	R1								
	N S J								
Ex.	R1	R3	Púreté (%)	tr (min)	[M+H]*				
936			85,9	4,34	439,18				
937		Br	88,2	4,86	492,12				
938		N3.	83,6	4,71	455,2				
939		0,1	87,8	4,59	459,19				
940	·	Br s	89,8	5,0	498,09				
941	·		 83,9	5,14	454,20				
942	F.		87,7	4,26	384,17				
943	F.		94,7	4,5	404,15				
944	F.		18,6 + 76,4	4,2 + 4,64	432,18				
945	F.		95,2	4,32	434,16				
946	F.	2	92	4,46	429,15				
947	F	B	94,4	5,08	482,06				

- 228 -									
	R1 N $R1$ $R3$								
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H]*				
948		N ₅	. 93	4,86	445,16				
949	F	0,10	94,2	4,82.	449,13				
950	C .	Br S	93,1	5,34	488,03				
951	F .		93,7	5,47	444,16				
952			91,5	4,43	400,13				
953	CI		95	4,82	420,12				
954	· Ci		14,8 + 81,2	4,38 + 4,88	448,15				
955	·		95,8	4,64	450,13				
956		, , , , ,	95	4,79	445,11				
957	Ci	Br	95,4	5,4	498,06				
958		N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	93,9	5,14	461,12				
959		O ₂ N .	94,5	5,12	465,10				

	R1 N R3								
	s s								
Ex.	R1	R3	Purețė (%)	tr (min)	[M+H] ⁺				
960	,	Br S	94,6	5,62	504,00				
961			96,4	5,74	460,13				
962			6,5 + 87,5	4,2 + 4,54	416,19				
963			92,9	4,76	436,17				
964			17,3 + 6,2	4,5 + 4,9	464,21				
965			 92,6	4,64	466,17				
966			89	4,76	461,16				
967		Br	94,1	5,32	514,09				
968		N ₂ .	92,1	5,09	477,19				
969		O ₂ N .	90,5	5,1	481,16				
970	O , .	Br s	92	5,56	520,02				
971	Oź.		93	5,72	476,17				

	R1 N N R3								
	N S								
Ex.	R1	. R3	Púreté (%)	tr (min)	[M+H]*				
972			91,6	4	410,16				
.973			89,7	4,28	430,15				
974			83,4	4,46	458,19				
975			96,9	4,19	460,16				
976			58,2	4,29	455,12				
977		Br	 81,4	4,84	508,06				
978		N ₂ .	85,8	4,64	471,15				
979		O ⁵ N	46,8	4,62	475,14				
980		Br S.	77,4	5,06	514,021				
981			61,7	5,24	470,16				
982		>-	4,8	3,54	356,15				
983			71,4	4,1	376,14				

*231-								
	N R1							
Ex.	R1	· R3	Puretė (%)	tr (min)	[M+H]*			
984			79	4,3	404,17			
985			88,3	4,0	406,13			
986			12,2	5,32	401,11			
987		Br	46,5	4,72	454,04			
988		, , , , , , , , , , , , , , , , , , ,	56,3	4,49	417,15			
989		O ₂ N .	13,8	5,52	421,12			
990		Br S.	35,3	4,95	460,02			
991			9,1	5,71	416,11			

N N N P3						
		s R3	1			
Ex.	R1	R3	Puretė (%)	tr (min)	[M+H] ⁺	
992	*	NO ₂	95,3	3,33	367,12	
993	*		91,9	3,97	400,03	
994	*		92,5	3,64	336,17	
995	*	N3 .	83,7	3,75	363,13	
996	*	L L L L	94,7	4,88	458,11	
997	**		 93,1	4,03	372,14	
998	*		92,6	3,37	380,14	
999	**	(T)-·	92,1	4,36	362,12	
1000	*	~ .	91	3,32	405,11	
1001		NO ₂	87,8	3,9	397,14	
1002	*	· Br	64,2	4,46	430,09	
1003	1		61,6	4,18	366,23	

	N N R3								
Ex.	R1	- R3	Pureté (%)	tr (min)	[M+H] ⁺				
1004		N ₅	45,6	4,26	393,16				
1005			72,4	5,28	488,17				
1006	\		67	4,47	402,17				
1007			51,1	3,86	410,16				
1008		<u> </u>	57,6	4,86	392,16				
1009	·	~.	75,1	3,92	435,16				
1010	-0	NO2	90,7	3,24	399,13				
1011	_0	ar ·	79,6	3,79	432,06				
1012	_0		74,5	3,55	368,16				
1013	^0:	N ₃	58,8	3,62	395,15				
1014	, · ·	F .	81	4,65	490,15				
1015			86,8	3,88	404,17				

٠.

N N N N N N N N N N							
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H]*		
1016	\°\		71,4	3,3	412,13		
1017.	0	<u> </u>	73,7	4,13	394,15		
1018	0	~ · ·	80,5	3,3	437,15		
1019		NO ₂	94,6	4,19	417,10		
1020			94,8	4,76	450,07		
1021			 92,9	4,42	386,13		
1022		N3 .	88,8	4,56	413,11		
1023		" " " " " " " " " " " " " " " " " " "	94,1	5,48	508,13		
1024			93,8	4,79	422,13		
1025			92,3	4,04	430,15		
1026		<u> </u>	90	5,08	412,10		
1027	O'.	~.	93,2	3,95	455,13		

	N R1 N R3							
Ex.	R1	. R3	Pureté (%)	tr (min)	[M+H] ⁺			
1028	C .	NO2	92,6	4,3	435,1			
1029	C F	ar.	92,8	4,9	470,1			
1030	C F		89,2	4,6	404,1			
1031	F.	N.1	89,2	4,76	431,1			
1032	F.	E E E	94,3	5,6	526,1			
1033	F.		93,5	5	440,2			
1034	F.		92,4	4,2	448,1			
1035	CF.	-·	87,9	5,2	430,1			
1036	C F		93,6	4,1	473,2			
1037		NO ₂	80,4	4,16	447,14			
1038			72,7	4,72	480,08			
1039			77	4,39	416,14			

	N N R3							
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H] ⁺			
1040		N ₃	59,2	4,5	443,16			
1041			16,8	5,98	538,12			
1042			59,5	4,74	452,16			
1043			74	4,02	460,16			
1044		· ·	26,3	5,52	442,13			
1045			 91	3,82	485,17			
1046		NO ₂	89,8	5,09	507,19			
1047		er ·	84,5	5,52	540,09			
1048			86	5,06	476,21			
1049		N3	75,6	5,22	503,21			
1050		F	90,3	6,14	598,15			
1051			85,9	5,38	512,22			

R1								
	N N R3							
Ex.	R1	. R3	Pufeté (%)	tr (min)	[M+H]*			
1052			81,3	4,68	520,19			
-1053			83,3	5,66	502,20			
1054			82	4,92	545,17			
1055		NO ₂	93,1	4,34	445,16			
1056		·	81,5	4,77	478,10			
1057			79,9	4,46	414,17			
1058			70,2	4,56	441,15			
1059		" " " " " " " " " " " " " " " " " " "	85,8	5,56	536,11			
1060			84,1	4,73	450,19			
1061			78,4	4,12	458,20			
1062		·	83,3	5,13	440,16			
1063			83,1	4,22				

	N R3							
Ex.	R1	R3	Pťreté (%)	tr (min)	[M+H]*			
1064	^ .		86,6	3,52	338,12			
1065	^	NO ₂	90,4	3,44	383,09			
1066			87,3	4,25	422,10			
1067		Br	85,9	4,04	416,04			
1068	\\\		70,5	4,4	444,18			
1069			80,1	4,83	474,13			
1070	^ .		80,6	4,34	402,16			
1071	^ .		8,08	4,37	378,14			
1072	\	a C	86,5	4,77	442,06			
1073	^		83,4	4,72	405,12			
1074	^ ○ ∕ · · .		90,5	3,02	340,15			
1075	<i>> ></i> .	NO ₂	93,5	2,98	385,10			

--

	N S R3						
Ex.	R1	. R3	Puretė (%)	tr (min)	[M+H]*		
1076	· · · · · · · · · · · · · · · · · · ·		91,7	3,9	424,12		
1077	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Br	90,8	3,62	418,04		
1078	/° ✓.		8,08	4,09	446,18		
1079			88,1	4,6	476,12		
1080	/ ⁰ ∕ .		91,5	3,98	404,16		
1081	<i>></i> ° <i>√</i> .		89,2	3,87	380,13		
1082	/º ✓✓.	CI S-·	87,3	4,36	444,10		
1083	^⁰ ✓ .		90,6	4,24	407,13		
1084			86,4	4,24	414,15		
1085		200	91,8	4,21	459,17		
1086			88,2	4,89	498,19		
1087		Br	85,8	4,71	492,12		

R1 N R3							
Ex.	R1	· R3	Puretė (%)	tr (min)	[M+H] ⁺		
1088		0.0	76,1	4,9	520,21		
1089			83,3	5,45	550,17		
1090			84.9	4,9	478,24		
1091			86,1	5,08	454,19		
1092			78	5,38	518,14		
1093			84,5	5,38	481,21		
1094			37,5	3,36	386,14		
1095		NOz	57,1	3,35	431,14		
1096	O.		44	3,78	470,17		
1097		Br ·	42	3,62	464,09		
1098		0.0	38,8	4,14	492,21		
1099	J.	E E E	45,2	3,98	522,14		

	R1 N R3							
	N	S_//	1	r	,			
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H] ⁺			
1100			33,4	3,99	450,20			
1101		· ·	44,7	3,68	426,14			
1102	· .	CI	33,4	4,08	490,12			
1103			42,4	3,67	453,17			
1104	F.		92,6	4,23	390,14			
1105	F.	NO ₂	91,9	4,1	439,1			
1106	C .		92,1	5	474,13			
1107	· ·	Br ·	93	4,85	468,04			
1108	C F		86,5	5,04	496,18			
1109	C .	" " " " " " " " " " " " " " " " " " "	92,8	5,5	526,13			
1,110	C .		92,8	5,1	454,17			
1111	CY.	-·	92	5,1	430,10			

		R1'			
	N	S R	3 .		
Ex.	R1	R3	Puŗeté (%)	tr (min)	[M+H]
1112	C F	CI CI	92,8	5,48	494,08
1113	F		92,8	5,1	457,18
1114	C ₁		93,8	4,6	406,10
1115	CI .	NO ₂	93,6	4,5	451,03
1116			93,1	5,2	490,10
1117		Br	94,5	5,1	483,99
1118			89,54	5,29	512,13
1119			95,2	5,6	542,1
1120			92,8	5,38	470,15
1121			93,4	5,3	445,94
1122	Ci '	a S	94,7	5,7	510,05
1123	CI		94,3	5,3	473,04

	R1 N R3							
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H]			
1124			89,5	4,06	400,12			
1125		NO ₂	92,1	4,13	445,13			
1126			88,9	4,81	484,15			
1127		Br ·	88,8	4,56	478,09			
1128		0.0	82,4	4,76	506,20			
1129		F F	 88,6	5,36	536,12			
1130			85,7	4,78	464,18			
1131			84	4,94	440,15			
1132		CI S	64,3	5,38	504,10			
1133			88,4	5,16	467,17			
1434			82,7	3,76	446,16			
1135		NO ₂	89	3,77	491,14			

	N R1 R3						
Ex.	R1	R3	Pưreté (%)	tr (min)	[M+H] ⁺		
1136			87,1	4,4	530,13		
-1137		Br	84,6	4,21	524,08		
1138			76	4,52	552,19		
1139			85,6	4,98	582,12		
1140			83,1	4,44	510,21		
1141	0-		88,3	4,6	486,19		
1142		CI S	1,5	5,07	550,12		
1143			84	4,75	513,16		

	N	R1			
	s.	R3	•		
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H]*
1144			75	4,48	300,16
1145	•		82	4,89	348,16
1146	-	C _O	86,7	4,72	354,09
1147	•	Br	89	4,96	398,01
1148	-	NC	87	4,37	345,18
1149	<u> </u>		90	5,4	396,1
1150	•	HO	89	5,9	448,2
1151	-	Br s	85	5	404
1152	-		85	4,96	360,10
1153			91	4,39	417,14
1154	D,	_\	95	5,14	366,21
1155	D.		92	5,52	414,17

		- 246 -			
	N S	R1 N R3			
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H]*
1156		CI	95	5,37	420,13
1157		Br	93 -	5,6	464,08
1158	D.	NC NC	94	5 .	411,2
1159			91	6,04	462,19
1160		HO	91,5	6,4	514,2
1161		B, s	92,6	5,7	470,1
1162		<u> </u>	93,8	5,6	426,14
1163			91,4	5,02	483,21
1164	g .	1	96,3	5,55	420,10
1165	a .		78,2	5,81	468,10
1166	a .	CI	96,7	5,6	474,06
1167	a J	Br	96,9	5,8	517,97

	N	R1			
	S				
Ex.	R1	R3	Pureté (%)	tr (min)	[M+H]*
1168	a .	NC .	94,2	5,18	465,06
1169	a .		94	6,25	516,10
1170	a .	HO	96,4	6,52	568,2
1171		Br S.	94,6	5,9	524,0
1172	a ·		94,9	5,81	480,07
1173			91,9	5,25	537,09
1174	MeO MeO	<u> </u>	77,4	5,24	486,16
1175		-	96,8	5,36	402,15
1176			92,4	5,66	450,19
1177		CI	93,3	5,48	456,12
1.178		Br	93,3	5,7	500,08
1179		NC .	90,7	5,12	447,15

.

	N	R1 -N -R3			
Ex.	R1	R3	Pµretė (%)	tr (min)	[M+H]*
1180			91,9	6,12	498,21
1181		HO	95,1	6,5	550,3
1182		Br S	92,8	5,7	506,0
1183		<u></u>	94,9	5,74	462,15
1184			91,4	5,13	519,17
1185	°,	\ ,	 73,6	3,52	346,19
1186	°.		71,5	4,5	394,17
1187	°.	CI	82,2	4,58	400,10
1188	°.	Br	78,6	4,86	444,09
1189	0		70,5	5,3	442,17
1,190	°,.	<u> </u>	76,8	5	406,13
1191			80,5	4,1	463,19

-	249	

R2-N NO R5					
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*
1192		N.	28,3	3,61	373,15
1193			64,3	2,55	396,15
1194			66,8	3,58	425,13
1195		2	51,9	3,47	387,07
1196			75,8 	4,43	471,21
1197			66,4	2,38	399,15
1198		N. 5 10	42,6	3,11	474,14
1199		~	45,3	4,39	457,18
1200			64	4,62	485,21
1201		CIN	55,1	4,09	429,12
1202		E E	75	4,22	449,13
1203		P N	67,9	3,64	417,11

250	-

		- 250 - N				
		كسب				
	DO N.					
	R2 NO					
-		R5	,			
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*	
1204		X	31,7 + 17,3	4,65 + 4,8	429,24	
1205		Dn.	41,8	3,86	407,14	
1206			67,8	4,58	487,20	
1207	H .		33,2	4,31	415,20	
1208		Z + ·	60 ,9	3,29	438,21	
1209			58	4,29	467,18	
1210		s ,	51,9	4,21	429,15	
1211			70	5,03	513,24	
1212			22,9	3,17	441,19	
1213		N.S.O.	71,8	3,81	516,16	
1214			35,4	5,03	499,23	
1215	<u></u>		64	5,18	527,25	

αc_4	
757	_

R2 N O /						
Ex.	R2	₁ R5	Pureté (%)	tr (min)	[M+H]*	
1216		a N.	68 ,2	4,71	471,19	
1217	H		76,5	4.84	491,18	
1218	H	Z + ·	67,6	4,35	459,16	
1219	H	X	28,7 + 14,2	5,27 + 5,4	471,30	
1220	+	~ ·	66,9	4,52	449,21	
1221			64,1	5,17	529,21	
1222		, ·	49,7	4,55	423,19	
1223		\(\sqrt{\sqrt{z}}.	78,8	3,41	446,17	
1224			76,2	4,48	475,15	
1225		2	68,3	4,42	437,12	
1226			79,6	5,24	521,17	
1227			49,1	3,29	449,20	

		- 252 -			
		~			
	R2-N	N JO	1		
	\$ <u> </u>	R5	,		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺
1228		N. S. O.	72,2	4	524,15
1229			69,7	5,22	507,20
1230		~ · ·	75	5,42	535,20
1231		a N.	78	4,93	479,13
1232		F F	79,1 	5,04	499,16
1233		Z - :	82,6	4,56	467,13
1234		~	45 + 24,6	5,53 + 5,7	479,26
1235		~ · ·	77	4,75	457,18
1236		, , , , , , , , , , , , , , , , , , ,	70,4	5,41	537,18
1237	CI .		47,7	4,38	407,12
1238	CI CI	Z	71,3	3,27	430,12
1239	CI.	° I I	70,2	4,35	459,10

		N N		. 	
		لسر			:
	R2-N				
	s s	R5	,		
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H]*
1240	CI .	s ,	68,1 -	4,27	421,06
1241	CI .		78,8	5,13	505,13
1242	ci .		24	3,17	433,11
1243	CI .	N. 5.0	74,2	3,86	508,08
1244	CI .		. 43 	5,16	491,08
1245	CI .		71,8	5,38	519,12
1246	CI .		69,9	4,85	463,05
1247	CI .	FF	79,2	4,96	483,10
1248	CI	Z .	77,9	4,45	451,0 <u>7</u>
1249	CI	X N	42,6 + 23,5	5,42 + 5,6	463,20
1250	CI	N.	70	4,65	441,11
1251	CI		72	5,36	521,12

		- 254 - N					
	R2-N		1				
	s ~	R5	,				
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺		
1252. —	F F	, x	28,2	4,96	441,14		
1253	F F	2 + -	65,8	3,69	464,14		
1254	F F		51	4,86	493,14		
1255		2	64,5	4,79	455,08		
1256	F F		72,2	5,55	539,16		
1257		$\left\{\begin{array}{c} z \\ \vdots \\ z \\ \end{array}\right\}$	27,2	3,59	467,16		
1258		N. S. O	38,6	4,38	542,12		
1259			49,4	5,53	525,16		
1260		O	60,6	5,73	553,20		
1261		a N.	67,7	5,27	497,13		
1262		F F	80,8	5,34	517,12		
1263	F F	E Z	78	4,92	485,13		

		- 255 -					
R2-N N O N							
Ex.	R2	, R5	Puretė (%)	tr (min)	[M+H] ⁺		
1264		* .	28,5 + 14,4	5,87 + 6,0	497,26		
1265		~ ·	60,5	5,13	475,16		
1266	F F		65,7	5,73	555,14		

- 256 - — N								
	R2-N NO							
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*			
1267		OMe N	60	3,86	439,18			
1268		ON.	88,1	2,89	478,24			
1269		, N	89,1	3,83	389,20			
1270		Z - ·	94,3	2,41	396,14			
1271			94	2,33	418,20			
1272			80,3	4,05	533,17			
1273			93	4,33	485,23			
1274			90,5	4,27	471,22			
1275		· i	82,4	3,94	423,20			
1276		BI	92,8	4,07	487,10			
1277		Z	92,3	4,09	463,16			
1278		0 N N	90,6	2,9	430,20			

		- 257 -			
		N			
	R2 N	O R5	•		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]
1279		Z + -	94,7	3,69	431,14
1280			90,6	4,37	471,21
1281			86,4	4,51	501,20
1282		Z	93,1	4,16	463,09
1283	Ci Ci	OMe N	63,6	5,58	541,11
1284	Ci C		82,4	4,23	580,17
1285		→ • • • • • • • • • • • • • • • • • • •	87,6	5,63	491,16
1286		Z + .	91,5	4,03	498,13
1287		N N	89,5	3,91	520,13 -
1288			82,2	5,61	635,14
, 1289			92,3	5,9	587,14
1290			89,9	5,86	573,11

		N			
	R2-N	P5			
Ex.	R2	. R5	Pureté (%)	tr (min)	[M+H]*
1291	F F	i i	90	5,66	525,14
-1292		B	90,9	5,73	589,02
1293	Ci Ci	Z - :	91,2	5,69	565,07
1294	F F	ON.	89,4	4,72	532,13
1295	F F	Z +	93,3	5,44	533,08
1296			93,1	5,95	573,11
1297	F F		90,1	6,06	603,16
1298	L L	Z	90,3	5,79	565,00
1299		OMe .	63,6	4,65	515,20
1300			82,9	3,63	554,24
1301		→ .	85,9	4,67	465,23
1302		Z :	85,4	3,41	472,20

	- 259 -							
	R2-N-NO 1							
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*			
1303		N N	83,7	3,31	494,23			
1304		N S	84,2	4,79	609,20			
1305			86,5	5,11	561,20			
1306			84,2	5,11 ·	547,19			
1307		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	84,8	4,75	499,23			
1308		Z	89	4,89	539,15			
1309		° ,	85,9	3,76	506,23			
1310		Z	88,5	4,59	507,17			
1311			87,8	5,16	547,20			
1312			1,5	5,6	577,22			
, 1313		Z	89,7	4,99	539,10			
1314		OMe .	65,3	4,81	545,20			

Ex.	R2 N S	R5	•		i							
	s	R5	•									
	R2		,		R2-N N O							
	R2	R5										
1315			Puretė (%)	tr (min)	[M+H]*							
			86,7	3,82	584,25							
1316		~~~.	87,6	4,81	495,24							
1317		Z - ·	91	3,63	502,20							
1318			90,2	3,54	524,24							
1319		s s	85,4 	4,91	639,22							
1320			85,7	5,21	591,23							
1321			90	5,19	577,22							
1322		z + ·	87,9	4,87	529,22							
1323		B .	86,4	5	593,12							
1324		n	87,5	5,01	569,16							
1325		0 N	89,7	4	536,23							
1326		Z +	89,6	4,73	537,18							

204	

		N			
	R2 N	P5	,		
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H]*
1327			89,6	5,24 	577,24
1328			86,7	5,33	607,24
1329		z	90,6	5,1	569,10
1330		OMe .	62,1	4,17	467,23
1331		ON.	92,8	3,23	506,28
1332		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	81,3	4,14	417,24
1333		\[\sum_{z-\dagger} \]	91,9	2,95	424,19
1334		$ $ $ $	91,8	2,87	446,24
1335			78,7	4 <u>,3</u> 1	561,19
1336	P	i	89,5	4,58	513,25
1337			91,3	4,54	499,24
1338		N.	80,3	4,24	451,23

		- 262 -			
		N			
	R2-N	N O R5	•		
Ex.	R2	, R5	Puretė (%)	tr (min)	[M+H]*
1339		B	77,6	4,37	515,12
1340		Z - Z	85,7	4,37	491,18
1341		of N.	92,3	3,34	458,25
1342		Z + :	90,8	4,05	459,19
1343			79,9 	4,63	499,25
1344			76,6	4,75	529,24
1345			91,9	4,45	491,13

		- 203 - N				
	R2-N		•			
	ş	RS	,			
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H] ⁺	
1346		N	56,9 + 24,5	4,07 + 4,2	417,23	
1347	-	F-NN-N-	64,6 + 24,4	4,98 + 5,1	526,30	
1348		N	62,4 + 25,1	3,96 + 4,1	430,25	
1349			80,5	3,44	490,37	
1350			65,4 + 27,8	4,9 + 5,0	503,31	
1351			64,5 + 25,5	5,6 + 5,7	536,35	
1352		N—N—N—	86,8	3,3	509,30	
1353		, , , , , , , , , , , , , , , , , , ,	64,1 + 29,8	5,02 + 5,1	537,26	
1354		, N.	60,8 + 32,2	5,37 + 5,5	543,32	
1355			59,6 + 31,5	5,24 + 5,3	545,30	
1356		MeO N.	61,6 + 24,8	4,69 + 4,8	527,31	
1357			88,7	3,8	536,36	

		- 264 -						
	R2 N							
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]			
1358			87,5	3,8	528,3			
1359			58 + 25,2	4,12 + 4,3	417,2			
1360			68,1 + 24,5	5,22 + 5,3	529,3			
1361		61	64,8 + 23,1	5,12 + 5,2	535,19			
1362		N	61,9 + 21,6	5,46 + 5,5	535,23			
1363	F F F	F	90,4	6,06	644,33			
1364	F F F	N N	89,7	5,31	548,24			
1365	E E		84,3	4,5	608,34			
1366			95,2	6,06	621,27			
1367		- (1) N (90,9	6,6	654,4			
1368		N N + ·	84,2	4,41	627,29			
1369	F F F	2 → ·	92,8	6,12	655,27			

-

...

510				PCT/FR	02/00093
_		- 265 -			
		N		· · · · · · · · · · · · · · · · · · ·	
		\rightarrow			
		-			
	R2 N	-N. 10	i		
	Ę	R5	/		
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H]*
1370	F F		91,9	6,4	661,33
1371	E F		93,2	6,3	663,32
1372	F F F	MoO N .	87,3	5,9	645,32
1373	F F F		87,5	4,7	654,4
1374	F F F	00	84,8	4,7	646,38
1375	F F F		71,8	5,53	535,23
1376	F F F	÷	94,2	6,28	647,32
1377	F F		91,6	6,25	653,22
1378			63 + 26,1	3,98 + 4,2	441,30
1379		F	64,5 + 28	4,8 + 5,0	550,36
1380		× × × ×	65,1 + 26,9	3,93 + 4,1	454,30
1381			· 56,6 + 30,1	3,54 + 3,6	514,40

		- 266 -				
	R2 N	, , , , , , , , , , , , , , , , , , ,	1			
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺	
1382			64,8 + 30,3	4,64 + 4,9		
1383			64,3 + 28,3	5,33 + 5,6	560,39	
1384		N → ·	64,5 + 24,8	3,5 + 3,6	533,35	
1385			62,9 + 27,5	4,77 + 5,0	561,29	
1386		O .	48,5 + 20,8 	5,08 + 5,3	567,36	
1387			61,2 + 27,5	4,98 + 5,2	569,33	
1388		MeO N. a.	58,4 + 22,7	4,5 + 4,7	551,36	
1389			65,1 + 26,4	3,92 + 4,0	560,38	
1390			63,6 + 26,1	3,92 + 4,1	552,43	
1391			64 + 27,3	4,01 + 4,2	441,30	
1392	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		66,2 + 28,9	4,96 + 5,2	553,35	
1393		G G G	62,8 + 26,6	4,84 + 5,0	559,23	

		- 267 -			
		<			
		-			
	R2-N		•		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]
1394		N-	59,4 + 26,3	3,95 + 4,1	
1395	5	F——NN—	63,7 + 28,7	4,89 + 5,1	554,28
1396	s ·	N N	62 + 27,9	3,9 + 4,1	458,27
1397	s ·		58,9 + 28,7	3,48 + 3,5	518,35
1398			62,9 + 29,3	4,75 + 5,0	531,28
1399			63,2 + 28,4	5,46 + 5,7	564,32
1400		N	58,3 + 30,4	3,39 + 3,5	537,30
1401	s ·		61,8 + 28,3	4,88 + 5,0	565,23
1402	\$		61,5 + 27,9	5,2 + 5,4	571,28
1403	\$		62,2 + 29,5	5,09 + 5,3	573,28
1404		NeO Ne	60,6 + 26,7	4,54 + 4,7	555,30
1405			59,2 + 31,8	3,86 + 4,0	564,32

			- 268 -				
		<	\leq				
		R2-N) 85	<i>f</i> ,		
E	۲.	R2	R5		Pureté (%)	tr (min)	[M+H]
140	06				59,3 + 31,2	3,86 + 4,	0 556,3
140)7	\$			49,3 + 21,7	4 + 4,2	445,26
140	8	s			64,4 + 29,7	5,07 + 5,	3 557,28
140	9	S		-	61,7 + 27,9	4,96 + 5,	563,20
1410	٥	0,4	N-	•	62,4 + 25,4	5,24 + 5,4	552,27
1411	'	0,4	FNN		63,6 + 28,1	5,91 + 6,0	661,33
1412		2,4	N N		60,5 + 30,2	5,14 + 5,2	565,25
1413	0				87,2	4,43	625,36
1414	0.		, .		60,9 + 31,9	5,88 + 6,0	638,30
1415	0,		-(\)-	,	61,1 + 31,2	6,47 + 6,6	671,37
1416	o.	0,0	$N \longrightarrow N \longrightarrow N$		89,3	4,34	644,35
1417	ο'n	0,0		6	66,6 + 25,7	5,96 + 6,0	672,28
					·L		

		- 269 <i>-</i>						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
	R2 N	N C R5						
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H]			
1418	an Ost	0000	65,1 + 25,4	6,25 + 6,3				
1419	O'N'	0.01	63 + 27,5	6,13 + 6,2	680,32			
1420	O,M	MeO N	54,7 + 29,8	5,75 + 5,8	662,33			
1421	ON S		91,7	4,71	671,38			
1422	O,M,C		89,3	4,72	663,41			
1423	0,N		49 + 23,9	5,34 + 5,4	552,26			
1424	O,M	÷	64,1 + 27,2	6,18 + 6,2	664,34			
1425	o,M O s O		62,3 + 27,3	6,13 + 6,2	670,25			

.

	7	- 270 -			
	R2 N	) >	•		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*
1426			78,4	4,58	463,27
1427		N.	53,4	4,48	471,23
1428			86,2	3,67	526,29
1429		OMe .	86	4,58	542,25
1430		$\sum_{CI} N - N$	84,9 	4,98	546,21
1431			42,9	3,26	494,27
1432			84,4	4,14	522,26
1433			83,2	4,72	570,25
1434			87,1	4,04	530,22
1435			45,6	3,16	464,25
1436			85,6	4,4	475,20
1437		F N	84,2	4,96	541,18

		411-			
	R2-N	) .0			
	5	R5	,		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺
1438			87,2	3,88	554,28
1439			84,5	4,39	437,23
1440		F N	33,8	5,34	593,17
1441			9,5	4,7	463,24
1442	PM•		78,8 	5,11	499,20
1443	PM*	N.	46,9	4,98	507,17
1444	PMe C ₁		87,9	3,88	562,19
1445		OMe N -	85,6	4,95	578,19
1446	OMO Ci.	CI	84,9	5,3	582,14
1447	S.We		49	3,45	530,19
1448			81,4	4,62	558,18
1449			83	5,06	606,20

	7	- 212 -			
	R2-N	) o			
	s	R5	,		
Ex.	R2	R5	Puretė (%)	tr (min)	[M+H] ⁺
1450	PMs G		84,9	4,42	566,15
1451	OM6	2	40,7	3,5	500,19
1452	PMs Ci	. + 2	85,1	4,87	511,13
1453	OF THE C	* N	87,4	5,33	577,13
1454	OM.		85,6 	4,08	590,24
1455	OM-	2*'	54,9	4,92	473,21
1456	PMe Ci	Z - ·	43	5,66	629,13
1457	OMe Ci		17,2	5,2	499,20
1458			77,6	4,3	479,20
1459			6,75	4,2	487,18
1460			85,2	3,32	542,22
1461		OMe	- 87	4,22	558,19

Ex. R2 R5 Pureté (%) tr (min) [M+H]  1462	_		- 273 -			
Ex. R2 R5 Pureté (%) tr (min) [M+H]  1462			>			
Ex. R2 R5 Pureté (%) tr (min) [M+H]  1462		R2-N				
1462		s_	R5	,		
1462       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	Ex	r. R2	R5	Pureté (%)	tr (min)	[м+н]
1463       82,9       2,74       510,23         1464       81,6       3,84       538,20         1465       84,1       4,41       586,21         1466       85,5       3,66       546,16         1467       81,7       4,11       491,15         1468       81,7       4,11       491,15         1469       83,7       4,71       557,14         1470       82,2       3,59       570,24         1471       66,1       4,11       453,19         1472       66,1       4,11       453,19         1473       9,9       4,44       479,20	146	52		85,9		562,14
1465	146	3 00	11 1	82,9	2,74	510,23
1466	146	4		81,6	3,84	538,20
1467	146	1 \ 1 \ 1		84,1	4,41	586,21
1467       49,3       2,8       480,20         1468       81,7       4,11       491,15         1469       83,7       4,71       557,14         1470       82,2       3,59       570,24         1471       66,1       4,11       453,19         1472       9,9       4,44       479,20	1466	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		85,5 	3,66	546,16
1469	1467			49,3	2,8	480,20
1470 66,1 4,11 453,19  1472 9,9 4,44 479,20	1468	1 1 1 1	Z -	81,7	4,11	491,15
1471 66,1 4,11 453,19  1472 9,5 5,12 609,14	1469	ハンノ	F O N	83,7	4,71	557,14
1472	1470			82,2	3,59	570,24
1472 29,5 5,12 609,14 1473 9,9 4,44 479,20			<u> </u>	66,1	4,11	453,19
1 1 1 1 1 3 4 4 4 14/9.201	· 1			29,5	5,12	609,14
	1473			9,9	4,44	479,20

	R2 N N N N N N N N N N N N N N N N N N N							
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H]*			
1474			82,8	5,36	491,28			
1475		~~.	58,2	5,29	499,26			
1476			86,5	4,37	554,27			
1477		OMe N -	86,68	5,33	570,26			
1478		CI N	84,1	5,67	574,20			
1479		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70,3	3,89	522,29			
1480			84,2	4,94	550,28			
1481			84,5	5,44	598,26			
1482			86	4,84	558,24			
1483		2 2 2 3	50,1	3,93	492,29			
1484	Ú	, z	82,5	5,23	503,25			
1485	VO	× × ×	79,3	5,68	569,19			

	R2-N	) >	,		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*
1486			87,3 -	4,51	582,31
1487		Z + .	79,7	5,22	465,25
1488			26,1	6,06	621,20
1489		5	16,1	5,51	491,28
1490	F		77	5,02	453,22
1491	F ·	N.	48,4	4,88	461,16
1492	-		83,3	3,74	516,22
1493	F .	OMe ·	84,6	4,85	532,2
1494	F	CI N N N N N N N N N N N N N N N N N N N	84,4	5,23	536,15
1495	-	~ ·	69,9	3,29	484,23
1496	F	J	79,5	4,51	512,22
1497	F	J.	81,9	4,96	560,17

_			- 2/6 -			
		R2-N	Ps Rs	•	•	
L	Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺
	1498		C,O	85,5	4,29	520,16
-  -	1499			67,7	3,32	454,19
	1500	F	Z .	82,7	4,78	465,14
	1501	F .	F O N	82,1	5,26	531,13
	1502	F		84,8 	3,95	544,22
	1503	F	Z.+.	77,5	4,83	427,16
1	1504	F	F F N	24	5,6	583,11
1	505	-		17,7	5,12	453,21

	N				
	R2 N N	O R5	,		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*
1506			89,7	5,52	596,26
1507		· Ci	87.2	5,37	562,23
1508		50-	77	4,62	583,26
1509			89,1	3,7	579,25
1510		<b>₩</b>	88,6	5,32	535,23
1511		-00	87,6	4	570,27
1512	F_CI	<u> </u>	88	5,12	474,19
1513	- ·	0 ⁵ N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	90,5	5,09	519,14
1514	F	c(_)(_) ·	91,2	5,7	505,1
1515	E .	<b>○</b>	88	3,74	475,17
1516	F_CI		86,7	5,58	487,20
1517	F·	000	88,3	3,88	532,18

		- 278 -			
	R2 N N	O R5			
Ex.	R2	1. R5	Pureté (%)	tr (min)	[M+H]*
1518	-		90,4	3	487,27
1519		÷	92,8	4,86	443,21
1520		-On0	87,8	3,58	478,28

.

•

•

,

	N				
	R2 N N	/°			
	s_/	R5	,		
Ex.	R2	1- R5	Puretė (%)	tr (min)	[M+H]*
1521			90,4	5,2	478,28
1522			79,8	5,37	488,26
1523		O ₂ N	90,3	5,13	523,27
1524	+	c⊢	81,2	5,7	509,2
1525	+		91	3,88	479,26
1526	+		91,5	5,62	491,29
1527	+	·-OTO;	91,1	4,1	536,28
1528	+	· \( \)	91,9	5,68	546,25
1529			92	5,54	512,24
1530			91,4	3,7	529,3
1531	+	<u></u>	92,4	5,49	485,23
1532	+	-000	89,4	4,2	520,28

		- 280 -			
	N	·			
	R2 N N	O R5			
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H]*
1533	MeO .	(	90,1	4,56	452,20
1534	MeO		76,8	4,76	462,18
1535	MeO	O ₂ N-\(\bigce\)-\(\bigce\)-\(\bigce\)	92,5	4,58	497,22
1536	MeO .		93,4	3,21	453,21
1537	MeO .	·	91,2	5,04	465,22
1538	MeO .	-000	92,7	3,44	510,22
1539	MeO .	· + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	89,6	5,14	520,18
1540	MeO .	· CI	90,2	4,93	486,17
1541	MeO		89,4	2,98	503,26
1542	MeO	<b>₩</b> •	90,9	4,84	459,18
1543	MeO		89,1	3,55	494,26

	- 281 - N						
	R2-N	R5	•				
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]*		
1544		N	83,5	4,19	425,25		
1545			78,8	5,1	535,25		
1546			79,7	4,67	484,23		
1547			88	5,46	537,27		
1548			87,4	4,72	480,22		
1549			82	4,94	494,23		
1550		F N	89,6	4,92	522,18		
1551		\$-\frac{1}{2}	86,9	5,03	599,27		
1552			84,3	4,7	486,20		
1553		, i	82,7	3,36	455,18		
1554		(S-10)+-	82	3,68	543,20		

	- 282 - N						
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
	R2-N	O R5	•				
Ex.	R2	1 R5	Pureté (%)	tr (min)	[M+H] ⁺		
1555			86,7	3,91	557,20		
1556		, , , , , , , , , , , , , , , , , , ,	80,9	5,06	496,26		
1557			83,1	4,35	420,21		
1558			87,5	5,2	530,22		
1559		\ \ \ \	·· 76,7	4,62	495,27		
1560			80,9	4,44	531,25		
1561			85,7	5,16	584,30		
1562			85,4	4,51	527,25		
1563			82,1	4,66	541,25		
1564	0,0	F N	87,4	4,66	569,19		
1565	0.0	\$	82,9	5,03	646,34		

	- 284 -						
	N						
	.N						
	R2 N	(O R5	,				
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]		
1577			82	5,17	596,28		
1578		F. N.	89,7	5,14	624,22		
1579		\$-0-·	86,1	5,22	701,35		
1580	0,0		85,1	4,92	588,23		
1581		2	 81,7	3,67	557,23		
1582		\$	81	3,9	645,32		
1583		,— ·	85,2	4,12	659,31		
1584		~~~.	82,4	5,26	598,26		
1585		, N.	83,6	4,62	522,25		
1586			85,3	5 <b>,</b> 39 .	632,29		
1587	Br		82,8	4,94	481,16		

... ... _

	- 285 - N						
	R2-N N R5						
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺		
1588	Br		84,3	4,71	517,16		
1589	Br		89,6	5,54.	570,16		
1590	Br	CC .	87,8	4,78	513,13		
1591	Br		85,2	4,99	527,15		
1592	Br	Z Z	90,9	4,98	555,07		
1593	Br		88,1	5,21	632,22		
1594	Br		86,9	4,72	519,10		
1595	Br	2 1	87,4	3,47	488,12		
1596	Br	\$	82,5	3,82	 576,16		
1597	Br		86,1	4,06	590,12		
1598	Br		85,1	5,08	529,16		

		- 287 -			<del></del> -		
	N						
	R2 N N		,				
Ex.	_	R5	Pureté (%)	tr (min)	[M+H]*		
1601	<b>P</b> -	ż	88,1	3,87	409,24		
1602		N	90,1	4,0	423,26		
1603		2-1	60,2	4,1	443,21		
1604		T 2	91	3,9	427,24		
1605		L-{1	 57,6	4,4	493,23		
1606		2	48,1	4,12	423,27		
1607		CI Z	45,1	4,2	443,22		
1608		F 2 - 1	60,8	4,49	493,24		
1609		O ₂ N N	54,5	3,98	454,26		
1610	Q	CI N	84	4,19	443,23		
1611	Q'-		92,8	4,49	493,25		
1612	Q	C Z	86,2	4,51	477,21		

-

·..

-

		- 288 - N		<del></del>						
	R2-NNN		,							
-	s //	R5	Duraté (9()	4- ()	Th.4 . 1.17*					
Ex.	R2	* R5	Pureté (%)	tr (min)	[M+H] ⁺					
1613			84,1	4,84	.545,22					
1614		Z -:	77,7	4,34	459,30					
1615		7:	90,6	3,95	423,29					
1616			91,8	4,6	499,35					
1617	P		91,9	4,86	519,27					
1618			62	4,6	545,3					
1619			91,7	4,28	449,32					
1620		\\ \tag{\tau}.	63,1	4,62	483,29					
1621		Z + :	83,8	4,41	431,26					
1622		N.	64,2	4,55	445,26					
1623		2+:	48,9	4,66	465,21					
1624		2 - 1	89	4,46	449,27					

		- 289 -						
	N							
	-	J						
	R2-N N		,					
Ex.	_ Š// R2	R5	Pureté (%)	tr (min)	[M+H] [*]			
1625		2+1	56,7	- 4,94	- 515,24			
1626		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	78,4	4,65	445,25			
1627	-	Ž.	44,5	4,72	465,21			
1628	-	F Z	84,7	5,01	515,24			
1629		O,N	73,9	4,5	476,27			
1630	-	c z ···	76,8	4,74	465,21			
1631	-	F N	88,6	5,02	515,24			
1632	-	C 7	90,6	5,05	499,19			
1633			89,4	5,35	567,21			
1634	-	, z	80,6	4,88	481,28			
1635	9-	i i	90,6	4,49	445,26			
1636			91,1	5,14	521,28			

....

		- 290 -			•
	R2 N N	O R5_	,		
Ex.	R2 ·	R5	Pureté (%)	tr (min)	[M+H]*
1637		2	91,2	5,38	- 541,23
1638			90	5,1	567,3
1639		~.	92,9	4,84	471,28
1640		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	88,3	5,13	505,28

-

*:* 

ı.

•		N			
	R2 N N	4			
Ex.	. Š.√/ R2	R5	Pureté (%)	tr (min)	[M+H] [*]
1641		N.	83,5	3,86	423,29
1642		N.	81,9	4	437,30
1643		<u>2</u>	81,1	4,07	457,25
1644		٣- ح	89,9	3,89	441,27
1645		" L" " " " " " " " " " " " " " " " " "	91,5	4,35	507,27
1646		2	70,6	4,08	437,31
1647		Z ·	73,2	4,14	457,26
1648		F F N	91,7	4,42	507,27
1649		O ₂ N	61,9	3,96	468,26
1650		cr N	82,6	4,16	457,25
1651		F. C.	78,5	4,46	507,26
1652	Q	C	80	4,46	491,21

___

1		- 292 -			-			
	∫ N							
	R2 N N	0	<i>,</i>					
	s	R5	,					
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺			
1653		Z	80,7	4,78	559,24			
1654		Z	90,3	4,28	473,33			
1655		Z - ·	91,4	3,93	437,30			
1656			93,5	4,55	513,33			
1657			92,8 	4,82	533,27			
1658			58	4,5	559,3			
1659		~ ·	92,1	4,24	463,32			
1660		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	92,2	4,53	497,29			
1661		, i	36,9	4,42	445,25			
1662			31	4,56	459,28			
1663	· ·	Z + :	38,9	4,67	479,24			
1664		2	43,4	4,47	463,27			

1		- 293 -			·
		$\int$ N			
	R2-N N		<i>f</i>		
ļ	r s_//	R5	/		
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺
1665		2-1	47,9	4,98	529,2
1666		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	32,1	4,66	459,28
1667		2	23	4,74	479,23
1668	-	7	38,1	5,02	529,25
1669		O ₂ N	35,5	4,51	490,27
1670		Cr.	47,1	4,74	479,23
1671		F. N.	37,1	5,04	529,25
1672		2 0	60,9	5,07	513,19
1673		"" " " " " " " " " " " " " " " " " " "	82,8	5,34	581, <u>23</u>
1674		,	20,5	4,91	495,27
1675		Z + .	72	4,52	459,28
1676	-		91,1	5,14	535,30

,		- 294 -			_
		$\int$ N			-
	R2-N-N	<u></u>	•		
	r S <i>√</i> //	R5	<u> </u>		<del></del>
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺
1677	-		89,3	5,4	555,23
1678			52	5,1	581,3
1679		~ ·	91,3	4,84	485,31
1680		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	71,7	5,14	519,29

		N			
	R2 N N	O R5	<i>f</i>		
Ex.	R2	, R5	Pureté (%)	tr (min)	[M+H] ⁺
1681		, HZ	72,7 -	4,26	471,34
1682		ZHZ ZH	76,3	4,36	485,34
1683		HN	51,6	4,47	485,33
1684		HN	33,6	4,39	501,32
1685		HN	79,9	4,7	539,29
1686	<u>.</u>	L L L	76	4,77	555,28
1687	<u>.</u>	HN	53,2	4,34	489,30
1688	Ċ.	HN	59,2	4,51	505,27
1689		HN	74,7	4,57	549,21
1690			82	4,84	547,34
1691		HN	68,8	4,49	485,32
1692		HN	73,4	4,25	501,37

		N N			
	R2-N-N	O R5			
Ex.	R2	R5	Pureté (%)	tr (min)	[M+H]
1693		HN O	75,0	4,83	555,2
1694		HN	44,5	4,39	489,30
1695		HN	42,7	4,57	505,25
1696		. ,HN \	79,8	4,97	547,32
1697		HN	78,9 	4,56	499,39
1698		HN	70,8	4,27	531,36
1699	<u>.</u>	HN	77,5	4,35	507,33
1700	<u>.</u>	·	78,9	4,34	507,33
1701		HN	75,8	4,27	507,32
1702		HN	74,9	4,41	507,32
1703		HN	75,3	4,49	507,29
1704		HN	73,5	4,75	539,22



- 298 - R1										
	N N N N N N N N N N N N N N N N N N N									
	N S R5									
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺					
1706		N	87,3	3,8	448,31					
1707			86,0	4,3	482,24					
1708	**	· ← Z	90,0	2,4	370,24					
1709	\	Z*:	76,6	3,88	387,26					
1710	1	Z → ·	53 <b>,</b> 2	3,0	394,2					
1711		N . N .	91,2	2,3	449,29					
1712	:		87,7	4,13	443,29					
1713			88,3	3,7	419,28					
1714		° N	70,8	3,5	437,25					
1715			87,0	4,4	469,30					
1716	,	B. N.	82,5	4,12	485,20					
1717			88,1	2,59	428,29					

	R1 N S R5								
Ex.	R1	R5	Puretė (%)	tr (min)	[M+H]*				
1718			88,7	2,8	490,35				
1719			79,0	4,68	529,23				
1720		, i	78,0	3,94	399,29				
1721			87.4	3,7	480,32				
1722		CI N	83,1	4,14	514,28				
1723		j	89,1	2,44	402,24				
1724		Z*.	81,5	3,73	419,3				
1725	0	<b>z</b> → ·	56,1	3,0	416,2				
1726	0		90,1	2,3	481,33				
1727			87,3	3,96	475,31				
1728		ON .	75,2	2,9	448,3				
1729	0		85,7	3,61	451,29				

-300 - R1									
	N N O								
			<b>\</b>						
	N		<b>1</b> R5						
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*				
1730		, I	. 74,5	3,37	469,28				
1731			83,7	4,22	501,32				
1732	\°\\	B. N.	86,7	3,95	517,20				
1733	\°\\	5	80,6	2,61	460,32				
1734	\°\\		8,08	2,8	522,35				
1735	,° ,	, , , , , , , , , , , , , , , , , , ,	74,0	4,48	561,23				
1736		z	81,2	3,8	431,31				
1737	ci .		87,1	4,76	546,27				
1738	CI .	CI N-	85,5	5,16	580,24				
1739	CI	± 2 × 2	85,5	3,72	468,24				
1740	CI CI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	82,1	4,74	485,29				
1741	ci Ci	Z	80,7	3,04	492,24				

	R1								
	N S N O R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺				
1742	c C	N→ .	87,7	3,4	547,28				
1743	CI		81,9	4,96	541,23				
1744	cı .		. 55,2	2,9	514,27				
1745	cı		87,2	4,7.	517,25				
1746	ci .		73,7 	4,39	535,21				
1747	ci Ci	0	84,3	5,22	567,25				
1748	ci Ci	Br. N	74,7	4,9	583,16				
1749	ci		76,8	3,53	526,28				
1750	ci	QP	84,3	3,7	588,34				
1751	CI	, , , , , , , , , , , , , , , , , , ,	74,4	5,41	627,20				
1752		z -	80,9	4,88	497,31				
1753			83,4	4,53	516,2				

R1									
	N R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺				
1754			83,2	4,96	550,24				
1755	L	, → ² } _=_z	84,1	3,39	438,25				
1756	L.	\ \ \ \	84,7	4,71	455,28				
1757		Z-►;	56,6	2,8	462,24				
1758		N-N-	85,0 	3,0	517,30				
1759			84,6	4,9	511,26				
1760			82,1	2,8	484,3				
1761			84,4	4,44	487,27				
1762		° C	52,0	4,3	505,23				
1763			84,5	5,12	537,28				
1764	· ,	Br. N.	81,5	4,93	553,17				
1765	<u>.</u>		80,2	3,34	496,29				

	- 303 - R1								
		$\sim$							
	S R5								
Ex.	R1	R5	Pureté (%)	tr (min)	M+H] ⁺				
1766		QP	85,9	3,5	558,31				
17.67	<u>.</u>		53,4	5,39	597,22				
1768		N.	81,6	4,81	467,29				
1769		N-	83,5	3,5	540,32				
1770		CI N-	82,4	5,01	574,27				
1771		Z = Z = Z = Z = Z = Z = Z = Z = Z = Z =	80,9	3,72	462,30				
1772		, z+.	77,9	4,78	479,36				
1773	3		79,3	3,11	486,32				
177	4		85,0	3,4	541,35				
177	5	N.	85,3	4,9	535,31				
177	76		. 74,9	3,0	508,34				
177	77		83,9	4,58	511,33				

- 304 -									
	N $N$ $N$ $N$								
	N		R5						
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*				
1778			69,1	4,4	529,3				
1779			83,1	5,1	561,3				
1780		B. N.	81,8	4,9	577,23				
1781			83,6	3,64	520,34				
1782		QP'	80,9	3,7	582,4				
1783			68,0	5,34	621,28				
1784		z -	76,3	4,85	491,36				

•

,

,

R1 N N O								
	N		5					
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺			
1785		~ ·	77,9	4,44	435,25			
1786		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	78,8	4,83	437,30			
1787		N .	79,5	3,13	464,27			
1788			8,08	3,28	526,38			
1789		0.H————————————————————————————————————	86,6	4,67	543,32			
1790		Z	 74,8	2,9	458,32			
1791			81,7	3,99	508,34			
1792			86,9	5,41	526,38			
1793			86,4	4,85	511,27			
1794			82,2	5,07	533,35			
1795	i.	N_5500	83,1	3,55	536,28			
1796		· i	82,3	4,66	471,3			

	R1 N N O							
N S R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*			
1797		F N	86,3	4,41	461,31			
1798			85,1	4,95	505,33			
1799			76,0	3,5	532,3			
1800		2	81,1	4,87	483,34			
1801	1		68,62	3,96	387,33			
1802	<u></u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	73,4	4,39	389,33			
1803	<u>;</u>	N .	81,2	2,57	416,32			
1804	1		79,2	2,9	478,3			
1805	1	o'n-{\rightarrow}-\rightarrow\n+	83,2	4,26	495,34			
1806			70,2	2,5	410,3			
1807		J.	73,3	3,6	460,37			
1808	1		75,0	5,01	478,39			

N N N O R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺			
1809	1		70,3	4,45	463,31			
1810			83,9	4,73	485,37			
1811	1	N.S.O.	76,5	3,14	488,31			
1812			79,1	4,28	423,35			
1813	3	F Z	79,2	3,99	413,29			
1814	4		75,5	4,55	457,33			
181	5	N-	67,7	3,1	484,3			
181	6	N. C.	62,7	4,44	435,33			
181	7	N.	85,7	5,02	471,33			
18	18		70,2	5,31	473,37			
18	19	- N	86,6	3,59	500,35			
18	20	7 Q Q N	83,8	3,7	562,4			

R1 N N O									
	N S R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*				
1821		oʻri—{ N → ·	88,5	5,04	579,32				
1822		~ · ·	39,8	3,3	494,3				
1823		z ,	85,8	4,55	544,33				
1824			86,4	5,78	562,36				
1825		( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	84,3	5,27	547,25				
1826			69,7	5,58	569,32				
1827		N	70,3	4,17	572,27				
1828		i.	85,4	5,17	507,34				
1829		F N	82,3	4,91	497,28				
1830			82,4	5,41	.541,29				
1831	5	C _S \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	79,4	3,8	568,3				
1832			86,9	5,31	519,33				

R1 N S R5							
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺		
1833	CI .	, , , , , , , , , , , , , , , , , , ,	86,3	4,99	455,27		
1834	a	~ · · ·	84,5	5,3	457,30		
1835	ci .	» · · ·	88,3	3,42	484,27		
1836			83,6	3,65	546,29		
1837	cı · · ·	oʻr-{}-K_N→	88,8	4,91	563,24		
1838	ci .		65,2	3,3	478,24		
1839	ci .	Z .	87,6	4,5	528,30		
1840	ci .		90,4	5,68	546,30		
1841	ci .		82,8	5,31	531,23		
1842	CI		68,2	5,57	553,28		
1843	ci ,	N. S. O	72,4	4,11	556,21		
1844	ci '	İ	83,9	5,15	491,29		

R1									
	N N N O R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺				
1845	G	Z	86,4	4,93	481,27				
1846	CI		86,3	5,29	525,25				
1847	ci .		82,6	3,7	552,3				
1848	·		88,1	5,3	503,29				
1849	ОМе	~ ·	82 <b>,</b> 9	4,25	451,32				
1850	ОМе	N +	82,1	4,64	453,35				
1851	OMe	» · ·	85,6	2,72	480,33				
1852	OMe .		82,9	3,16	542,35				
1853	ОМе	οΉ—{}-M N→ .	87,7	4,28	559,29				
1854	ОМе	\[ \] \\ \]	75,3	2,82	474,33				
1855	OMe ,		84,4	3,83	524,32				
1856	OMe ,		87,0	5,0	542,36				

-311 -									
	N N N O R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺				
1857	OMe		82,6	4,73	527,28				
1858	OMe		65,8	5,01	549,31				
1859	ОМӨ	N. 5. 0	76,4	3,49	552,26				
1860	OMe	Z .	80,4	4,54	487,35				
1861	OMe	F	81,3 	4,28	477,30				
1862	OMe ·		79,9	4,59	521,29				
1863	OMe .		77,5	3,2	548,3				
1864	OMe		86,5	4,65	499,32				

-312 -									
	N S R5								
Ex.	R1	R5	Puretė (%)	tr (min)	[M+H]*				
1865		N.	84,7	4,94	435,29				
1866		~ · ·	85,0	4,66	443,26				
1867		N+	26,2	4,82	494,26				
1868		F	88,4	4,8	502,28				
1869			83,6 	5,48	519,28				
1870			63,17	5,3	451,33				
1871	<u>.</u>		91,1	3,4	542,3				
1872		s	35,7	4,48	435,20				
1873			88,8	3,8	502,26				
1874			87,1	5,41	533,29				
1875	C'		89,5	5,14	513,22				
1876		~~.	47,8	4,82	455,24				

	- 313 -						
	N S R5						
Ex.	R1	R5	Pureté (%)	tr (min)	-{M+H]		
1877			77,1	5,32	521,24		
1878			81,8	5,31	505,26		
1879		N	19,7	4,37	395,24		
1880	·	FY N.	61,4	5,14	511,22		
1881		N.	82,7	4,95	463,31		
1882	<u> </u>	N.	82,2	4,71	471,27		
1883	<u> </u>	N+	67,2	4,84	522,26		
1884	<u></u>	F	87,7	4,9	530,28		
1885			79,4	5,54	547,28		
1886			80,8	5,3	479,34		
1887			88,9	3,6	570,24		
1888		\$ N	30,2	4,53	463,23		

- 314 -							
	N S R5						
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*		
1889			88,9	3,98	530,26		
1890			84,2	5,42	561,30		
1891			75,8	5,17	541,22		
1892			85,8	4,86	483,28		
1893			71,7 	5,33	549,26		
1894	0~.		86,6	5,34	533,29		
1895			54,1	4,43	423,28		
1896	<u></u>	F.F.	47.7	5,16	539,26		
1897	MeO MeO	N.	74,6	4,44	509,30		
1898	MeO MeO	N.	77,6	4,2	517,27		
1899	MeO ,		38,8	4,53	568,26		
1900	MeO MeO	F-W-N-	80,1	4,5	576,3		

		- 315 -					
	N S R5						
Ex.	R1	R5	Pureté (%)	tr (min)	'[M+H]		
1901	MeO		72,3	5,17	593,30		
1902	MeO MeO		77,0	4,88	525,34		
1903	MeO MeO		80,5	3,3	616,3		
1904	MeO MeO	z • ·	34,6	4,03	509,21		
1905	MeO MeO		81,3 	3,6	576,2		
1906	MeO MeO		77,1	5,04	607,31		
1907	MeO MeO		79,6	4,76	587,24		
1908	MeO MeO		77,8	4,38	529,28		
1909	MeO MeO		78,0	4,95	595,28		
1910	MeO MeO		81,1	4,88	579,29		
1911	MeO MeO		32,4	3,89	469,29		
1912	MeO .	بالمركبة المركبة	49,3	4,7	585,26		

		- 316 -					
	N S R5						
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺		
1913	a ·		87,0	5,59	503,20		
1914	a ·	O N	88,5	5,3	511,15		
1915			69,5	5,28	562,16		
1916	a .	F-\(\)N+	89,4	5,3	570,1		
1917	a a		79,1 	5,98	587,17		
1918	a .		82,4	5,84	519,23		
1919	a.		89,5	3,9	610,1		
1920	CI CI	s ,	27,2	5,12	503,11		
1921	CI CI		88,6	4,41	570,13		
1922	G.		86,4	5,91.	601,19		
1923		27.	84,9	5,66	581,11		
1924	CI.	N.	86,4	5,44	523,13		

		- 317 -						
	N S N O R5							
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺			
1925	G.	0.01	61,9	5,81	589,16			
1926	CI		84,7	5,85	573,15			
1927	CI CI	N	36,8	5,1	463,16			
1928		F F	76,4	5,68	579,13			
1929		N	79 <b>,</b> 4	4,65	415,30			
1930		N	84,5	4,41	423,29			
1931		ON-	44,0	4,62	474,29			
1932	· :	F	86,1	4,65	482,3			
1933			78,5	5,33	499,31			
1934			79,6	5,06	431,33			
1935	^ ',		84,6	3,4	522,30			
1936	<u></u>	S N	54,6	4,2	415,21			

• 318 -						
N S R5						
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺	
1937			85,4	3,7	482,29	
1938			83,5	5,21	513,32	
1939		الله الله الله الله الله الله الله الله	85,7	4,92	493,24	
1940			83,0	4,58	435,29	
1941			75,1 	5,1	501,31	
1942			88,2	5,1	485,31	
1943	·		76,1	4,08	375,28	
1944	·	; J	81,1	4,9	491,28	

,

R1								
	N N O							
	N	) s_//	R5					
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺			
1945		(	84,3	4,24	512,26			
1946		N → N N → 1	85,4	3,63	514,25			
1947			86,8	3,1	526,27			
1948		F	87,7	4,32	530,23			
1949		0,N-__N-_\	<b>87,5</b> 	4,24	557,23			
1950		N	88,8	2,9	513,26			
1951			84,5	4,92	540,28			
1952		<u></u>	87,7	4,49	526,27			
1953		j	62,5	3,66	567,26			
1954		`O-{_}-N_N-	89	4,08	542,26			
1955		F N N +	87,7	4,38	530,24			
1956		N-N-	82,4	2,7	513,28			

R1 N N O					
	N	/ S_/	R5		
Ex.	. R1	R5	Pureté (%)	tr (min)	[M+H]*
1957		NO ₂	87,7	4,31	557,23
1958			91,0	4,44	556,27
1959		N N N -	80,7	3,44	514,25
1960		50	68,6	4,67	535,24
1961		N	85,3 	4,32	526,27
1962		N N N	83,0	3,75	528,25
1963	·		88,7	3,28	540,28
1964	<u></u>	F	86,8	4,37	544,25
1965		0 ₂ N-\(\bigce\)-N\(\cdot\)N-\(\cdot\)	89,4	4,29	571,24
1966	<u></u>		86,9	3,1	527,25
1967			86,1	4,94	554,29
1968	·	\( \sigma_{n-1} \)	87,6	4,54	540,27

- 321 - R1							
	N N N						
	N	5 5 7	R5				
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺		
1969			65,4	3,76	581,27		
1970		0-{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\inttitunt_{\int_{\inttitu\tint_{\inttitule\tint_{\inttitunt\int_{\inttitunt\int_{\inttitunle\inttitule\inttitunle\inttitunle\int\inttitunle\intitunle\inttitunle\intitunle\intitunle\intitunle\intitunle\inttitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\intitunle\in\intitunle\intitunle\intitunle\intitunle\intiilitiunle\intitunle\	86,3	4,16	556,28		
1971		N	86,0	4,43	544,25		
1972	O^^.	N	83,2	2,8	527,3		
1973	O~~.	NO2 N	84,8	4,38	571,24		
1974	0		87,8	4,5	570,28		
1975	O~~.	N N N '	80,9	3,55	528,26		
1976	O .	Q~	62,7	4,71	549,27		
1977		N+.	85,7	4,41	526,29		
1978		N-N-N-	84,2	3,82	528,27		
1979	D'		87,4	3,28	540,28		
1980		F-N-N-	86,6	4,47	544,24		

	N N N							
	N S R5							
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*			
1981		0 ₂ N-{}-N	86,4	4,38	571,24			
1982		N-N-	85,9	3,1	527,27			
1983			85,3	5,06	554,28			
1984		N-1	85,3	4,66	540,28			
1985			60,8	3,8	581,28			
1986		0-{\rightarrow}-\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\right	86,1	4,25	556,28			
1987		F N N + .	86,4	4,54	544,25			
1988		NN	75,9	2,86	527,28			
1989		NO ₂	86,5	4,46	571,24			
1990			88,4	4,6	570,29			
1991		N N → ·	79,8	3,62	528,27			
1992		\( \int \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \	63,2	4,82	549,26			

		- 323 -	<del></del>				
	R1 N N						
	N	ال s	R5				
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*		
1993	OWe -		81,8	4,15	572,25		
1994	OMe.	$ \bigvee_{N}^{N} \bigvee_{N} \bigvee_{N} $	81,0	3,58	574,25		
1995	OMe OMe		83,5	3,08	586,3		
1996	OMe OMe	F-(N	84,3	4,2	590,27		
1997	OMe OMe	o²n′—	85,3 	4,12	617,26		
1998	OMe OMe		86,1	2,91	573,28		
1999	OMe OMe	~~~·	85,5	4,74	600,31		
2000	OMe OMe	N	87,3	4,37	586,28		
2001	OMe OMe		68,4	3,6	627,28		
2002	OMe OMe	0-(N-V)	85,4	3,98	602,28		
2003	OMe /	F-N-N	83,1	4,26	590,27		
2004	OMe OMe	N_N-	84,5	2,7	573,26		

- 324 -									
N N N									
	N R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺				
2005	ome -	NO ₂	85,9	4,2	617,27				
2006	OMe OMe		86,9	4,32	616,31				
2007	OMe OMe	N N N N N N N N N N N N N N N N N N N	81,2	3,4	574,24				
2008	OWe	S	69,0	4,54	595,29				
2009		N+.	82,1 	4,72	574,25				
2010		N N N N N N N N N N N N N N N N N N N	80,1	4,15	576,27				
2011			83,9	3,53	588,27				
2012		F	80,8	4,78	592,26				
2013		0²N-{\rightarrow}-\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rig	83,0	4,68	619,26				
2014	J.		85,6	3,35	575,25				
2015			82,9	5,41	602,30				
2016		<u></u>	81,9	4,96	588,26				

		- 320 -							
	N $N$ $N$ $N$ $N$ $N$ $N$ $N$ $N$ $N$								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺				
2017			58,6	4,09	629,29				
2018		0-()-NN '	81,7	4,53	604,27				
2019		F N N + .	81,4	4,84	592,26				
2020		N N + 1	78,7	3,06	575,31				
2021		NO ₂	8 <b>3</b> ,9	4,74	619,25				
2022			82,6	4,89	618,29				
2023		N N N + .	79,5	3,9	576,27				
2024		\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	64,2	5,15	597,27				

1

R1										
N R5										
Ex.	.R1	R5	Pureté (%)	tr (min)	[M+H] ⁺					
2025	00.		88,8	4,94	574,23					
2026		F	88,4	4,96	592,25					
2027	Og.	02N-{\rightarrow}-\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rig	87,7	4,86	619,24					
2028	Q.	N - 1	89,7	3,61	575,2					
2029		(	€ 70,4	5,13	571,25					
2030			88,0	5,58	602,28					
2031	Q.	<u></u>	87,8	5,15	588,26					
2032			76,5	4,24	629,28					
2033		, o-{	88,8	4,7	604,27					
2034	Og.		88,3	5,04	592,25					
2035		NO ₂	89,5	4,96	619,24					
2036		F	87,5	5,41	642,26					

- 327 -									
	N S R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H] ⁺				
2037		F-(1)N+	88,9	5,12	610,24				
2038			89,4	5,07	618,27				
2039		$F \xrightarrow{F} NO_1$	88,7	5,42	687,24				
2040	00.	N-	87,7	3,68	580,30				
2041	J.	_N→ .	85,2 	4,89	574,23				
2042	OT.	F	84,4	4,9	592,25				
2043	OT.	0 ₂ N-\(\bigwidth\)-\(\bigwidth\)-\(\bigwidth\)	84,7	4,78	619,23				
2044		NN	89,0	3,58	575,25				
2045		N+	61,5	5,16	571,22				
2046	OT.		83,2	5,57	602,28				
2047		N-N-	84,4	5,1	588,25				
2048	OT.		73,2	4,25	629,27				

	- 328 -								
	N S R5								
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*				
2049		0-(-)-N-N	85,5 -	4,64	604,26				
2050		F	85,6	4,99	592,2				
2051		NO ₂	85,7	4,93	619,24				
2052		F N N + .	86,2	5,34	642,25				
2053	OT.	F	85,1	5,06	610,23				
2054			84,6	5,06	618,27				
2055		F - NO2	85,4	5,37	687,23				
2056		<u></u>	85,8	3,68	580,30				
2057		N+ ·	68,0	4,37	528,26				
2058		F(_)-N(_)N ·	86,3	4,41	546,22				
2059		) ₂ N-\(\)\(\)\(\)\(\)\(\)	88,1	4,32	573,19				
2060		N-+ .	86,1	3	529,25				

R1								
N R5								
Ex.	R1	R5	Puretė (%)	tr (min)	[M+H] ⁺			
2061	O	N	67,2	4,56	525,25			
2062		~~~~	91,2	4,98	556,26			
2063		\( \sigma_{ \text{N}} \)	87,8	4,56	542,26			
2064			75,6	3,73	583,23			
2065		0-{\rightarrow}-\mu_n	88,7	4,16	558,23			
2066		F N N	88,4	4,46	546,22			
2067		NO2 N-+ .	87,4	4,4	573,20			
2068		F N N + '	87,7	4,88	596,21			
2069		F-N-N-	87,9	4,56	564,21			
2070		- -	87,5	4,51	572,26			
2071	O',	F NO2 N	88,8	4,91	641,20			
2072		\N	86,2	3,08	534,27			

- 330 - R1									
	$N \sim N$								
N S R5									
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*				
2073		N	71,7	4,78	562,25				
2074		F-NN-	82,1	4,8	580,23				
2075		0 ² N-\N_N-	82,6	4,68	607,23				
2076		~ N - 1	79,5	3,4	563,21				
2077		N - 1	67,5 	4,92	559,23				
2078			83,0	5,39	590,27				
2079		\\\	82,5	4,98	576,26				
2080			42,5	4,1	617,23				
2081		0- <b>(</b> )- <b>√</b> N→ .	86,9	4,58	592,26				
2082		F N-	82,5	4,88	580,23				
2083		NO2 N-	81,4	4,77	607,23				
2084		E	82,3	5,24	630,26				

- 331 - R1								
N S R5								
Ex.	 R1	R5	Pureté (%)	tr (min)	[M+H] ⁺			
2085		F-V-N-N-	83,5	4,97	598,20			
2086			81,6	4,93	606,28			
2087.		F NO ₁	82,7	5,25	675,23			
2088		N-+	84,4	3,4	568,26			
2089		N-+ .	67,0	4,64	562,24			
2090		F-NN+	83,0	4,66	580,23			
2091		0 ₂ N-\(\)_\N-	83,6	4,54	607,22			
2092		N	82,5	3,3	563,25			
2093		N+	84,2	4,8	559,22			
209	4		86,2	5,21	590,29			
209	5		83,2	4,82	576,28			
209	6		62,8	3,99	617,26			

	<del> </del>	- 332 -								
	N S R5									
Ex.	R1	R5	Pureté (%)	tr (min)	[M+H]*					
2097		0	86,0	4,44	592,2					
2098		E N N	85,8	4,72	580,25					
2099		NO ₂	84,0	4,62	607,23					
2100		F-N-N-	83,4	5,09	630,26					
2101		F	84,8	4,8	598,21					
2102			83,7	4,78	606,29					
2103		F - NO ₂ N+ ·	83,6	5,1	675,24					
2104		N-+ \	5,6	3,05	568,28					

,

.....

	R2-N-N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
2105	N NH ₂			81,5	4,9	468,27
2106	NH ₂	٠		81,4	5,01	465,28
2107	, N NH ²	Çi -		77,3	5,34	505,31
2108	N NH ₂	Çi -		73,5	4,7	447,29
2109	NH ₂	ç' - ·	F.O.	70,5	5,28	499,26
2110	NH ₂	$\bar{o}$		- 73,9	5,38	491,30
2111	, MAY	$\bar{o}$	OMe OMe	72.0	4,5	489,31
2112	NH ₂			73,0	5,5	521,29
2113	NH ₂	6-		90,0	4,23	381,29
2114	NH ₂		7	76,1	5,02	443,30
2115	NH ₂		₩, .	56,9	4,2	434,32
2116	NH ₂		5	79,8	4,29	431,31
2117	NH ₂			79,1	4,45	471,35
2118	NH ₂			70,2	3,56	413,29

		- 33				
	R2 N N	×1 →—{				
		R5		D	4= (:-)	GA.119+
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[М+Н]
2119	NH ₂			72,4	4,68	465,27
2120	NH ₂		O	78,3	4,66	457,33
2121	N NH2		QMe OMe	90,1	3,41	455,33
2122	NH ₂			82,2	4,38	487,36
2123	, N, NH ²			68,8	2,99	347,34
2124	, NAN NH ²		7	75,2	4,13	409,33
2125	· N NHZ			56,9	4,01	513,30
2126	, NAV NH ²	2000		70,1	3,88	510,29
2127	N NH2		9	77,8	4,16	550,29
2128	N NH2	~		67,7	3,49	492,28
2129	N NH,	~~~	OT.	71	4,27	536,28
2130	NH ₂		QM• OM•	71,4	3,38	534,30
2131	, NAV			67,7	4,29	566,30
2132	· N NH2		1	54,5	2,98	426,29

		- 33						
	R2 N N O R5							
Ex.	R5	R2	R1	Pureté (%)	tr (miṇ)	[M+H] ⁺		
2133	N NH ₂		Ÿ.	70,1	3,85	488,31		
2134	N NH ₂			57,1	4,5	462,36		
2135	NH ₂			83,2	4,61	459,35		
2136	NH ₂		J.	91,6	4,72	499,40		
2137	NH ₂			80,7	3,94	441,32		
2138	· NM-2		FLOOT.	73,9	4,99	493,32		
2139	NH ₂	P	OT.	77,5	4,95	485,37		
2140	NH ₂	P	QMe OMe	77,4	3,79	483,36		
2141	· NM ₂	P	0,00	66,1	4,62	515,38		
2142	N/V/NH2	P	1	70,1	3,49	375,33		
2143	, NAV		T.	74,1	4,46	437,35		
2144	NNH ₂	j	CT.	93,8	5,14	516,28		
2145	· N NH		05	90,0	5,27	513,28		
2146	· N NH2	5-	G.	81,4	5,58	553,30		

	R2-N	R1 O				
	\$ <i></i> //	R5				•
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
2147	NH ₂			78,6	5,02	495,27
2148	NH ₂		S.D.	- 81,4	 5,51	547,21
2149	, MH ²	-	OT.	85,5	5,62	539,29
2150	NH ₂		OM6	78,9	4,86	537,28
2151	, MH ²	$\bar{c}$		83,2	5,76	569,28
2152	, MH ²	$\bar{c}$		90,5	4,62	429,28
2153	, MHZ	0-		91,8	5,31	491,31
2154	N NH2			60,4	4,47	482,33
2155	, MH ²			83,6	4,62	479,31
2156	N NH2			79,1	4,72	519,34
2157	N			72,6	3,96	461,31
2158	, MUT WH ²		F	75,7	5,0	513,27
2159	, NUMA			79,3	4,99	505,34
2160	, NH ²		OMe OMe	89,6	3,72	503,34

	R2 N S	/ N_ //	O R5				
Ex.	R5		R2	R1	Pureté (%)	tr (min)	[M+H] ⁺
2161	.,,,,	NH ₂		0.00	89,6	4,7	535,32
2162		NH,			73,5	3,38	395,32
2163		NH2		7	80,1	4,5	457,32
2164	.,,,,	`NH₂			58,8	4,24	561,29
2165	,,,,	NHZ			77,9	4,16	558,27
2166		NHZ			85,5	4,42	598,29
2167		NH ²			82,8	3,87	540,27
2168		`NH₂		F .	1,54	4,52	592,25
2169		้ทหุ			56,0	4,54	584,25
2170		`NH₂		OMe OMe	82,5	3,76	582,30
2171	.,,,,,	NHŽ			71,8	4,58	614,31
2172	.,	`NH ₂		<u></u>	71,9	3,43	474,30
2173	.,\\\	`ለዚչ		<b>\\\</b>	80,9	4,16	536,28
2174	.,,,,,,	`NH ₂	Q.		61,9	4,76	510,36

	<del>`</del>								
	R2 N N O R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺			
2175	NH ₂		-	83,1	4,93	507,35			
2176	N NIH2			92,0	4,99	547,36			
2177	, MH ²			88,3	4,27	489,35			
2178	NH ₂		FFOUT.	86,3	5,41	541,29			
2179	, MH ²			79,7	5,36	533,36			
2180	, NH		OMe OMe	82,5	4,13	531,35			
2181	, MH ²			74,0	4,99	563,34			
2182	NH ₂		1	76	3,89	423,35			
2183	· NONH2		7	79,8	4,89	485,38			

		- 33	<del></del>			
	R2-N N S	O ( R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺
2184	NH ₂		·	80,8	4,43	501,32
2185	NH ⁷		OMe	66,2	4,18	545,31
2186	, NH ⁷			64,6	5,18	569,27
2187	, _NNH ²	Q	o,M N	57,2	4,78	589,30
2188	, _NNH ³	Q	0	65,7	4,41	529,36
2189	N NH2	20-		65,4	4,52	549,28
2190	, _NNH ²	20	(s)	65,8	4,24	521,29
2191	, _NNH ²	90	<u></u>	71,4	4,19	481,37
2192	NH ₂	20		83,9	4,8	577,32
2193	N NH ₂	20	· C	76,5	4,54	583,24
2194	N NH ₂			67,2	4,76	473,22
2195	, N V NH ⁷	Pr ·	OMe	66,6	4,69	517,20
2196	, N NH			. 71	5,2	541,18
2197	NH ₂	Br	O ₂ N	69	4,73	561,15

			40 -	<del></del>		
	R2 N N	0 ( R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
2198	N/V/NH,	Br .	O~~.	74,8	5,04	501,24
2199	NH,	Br		69,5	5,18	521,16
2200	,	Br	\$ .	79,3	4,8	493,18
2201	, NH ³	Br -	<u></u>	74,9	4,79	453,24
2202	, NH2	Br -		68,9	5,41	549,20
2203	, N NH ²	Br	$\bar{c}$	68	5,2	555,11
2204	NH ₂			66	5,02	463,27
2205	NH ₂		ome :	62,2	4,83	507,28
2206	, NH ⁵			65,2	5,48	531,24
2207	NH ³		O ₂ N	66,3	4,99	551,22
2208	NH ₂			72,9	5,22	491,31
2209	N-V-VNH2	-	ci Ci	77,2	5,31	511,24
2210	N/V/NH2		(s).	62,8	4,98	483,24
2211	NH2		<u></u>	62,4	4,98	443,31

	- 341 -							
	R2 N N O R5							
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺		
2212	"NY NH,			69,6	5,55	539,29		
2213	N NH		Ç.	63,5	5,41	545,19		
2214	*N~~NH,		·	41,2	4,09	455,28		
2215	N NH,		PMe :	58,5	3,73	499,35		
2216	, NH ³			68,8	4,78	523,28		
2217	NH ₂		où Chi	36,2	4,37	543,28		
2218	,			42,9	4,1	483,36		
2219	, MV NH ²			46,1	4,24	503,30		
2220	N/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\[ \sqrt{s}\\	48,4	3,87	475,28		
2221	NH ₂		<u></u>	39	3,8	435,34		
2222	N NH,			48,3	4,55	531,30		
2223	N NH ₂			47	4,33	537,20		
2224	, MH ²			57,4	4,64	541,34		
2225	, MH ²		OMe	69,1	4,34	585,37		

	- 342 -							
	R2 N N O S R5							
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*		
2226	N NH	20		64,6	5,36	609,35		
2227	N NH		on July.	40,2	4,94	629,34		
2228	N NH2	0.0	0	62,6	4,57	569,3		
2229	N NH2	20	cı.	68	4,72	589,31		
2230	, NUM	20-	(s).	61,2	4,44	561,31		
2231	NH2	20-	<u></u>	61,2	4,37	521,36		
2232	" NH2			80,7	5,02	617,37		
2233	, MUT NH ²		C.	74,2	4,77	623,28		
2234	NH ₂	Br -	·	68,1	4,99	513,23		
2235	N NH2	Br	QMe	66,1	4,98	557,22		
2236	N NH2	Br -		68,8	5,38	581,20		
2237	NH ₂	Dir T	0.M .	69,7	4,9	601,19		
2238	, NUM		0	67,1	5,27	541,23		
2239	, N V NH ²	D. T.		72,6	5,45	561,16		

		- 34			<del></del>	
	R2 N N N	O R5			·	
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
2240	, MH ⁷	Br	(s)	75,6	5,09	533,17
2241	N NH ₂	a d	<b>→</b> .	74,6	5,08	493,26
2242	NH ₂	Br		74,2	5,6	589,22
2243	NH ₂	Br	CI.	70	5,48	595,14
2244	NH ₂			63,2	5,24	503,32
2245	N NH		OMe .	61,1	5,1	547,30
2246	, N NH ²		-	63,3	5,65	571,25
2247	N NH		O,N	63,7	5,15	591,28
2248	N NH		0~~.	67,2	5,46	531,31
2249	N NH		c C	76	5,58	551,24
2250	N NH2		\(\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	60,2	5,25	523,26
2251	, MU WH ²		<u></u>	58,8	5,24	483,3
2252	NH ₂	9		72,1	5,76	579,31
2253	N NH2		CI	65,2	5,66	585,20

,				44 -			
		R2 N N	O R5				
	Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
	2254	N NH ₂		<u>.</u>	36	4,36	495,33
	2255	N NH ₂		, Me	- 58,6	3,97	539,36
	2256	NH ₂			70	5,0	563,28
	2257	, NUMP ²	-0-0	02N	50,2	4,55	583,28
	2258	N NH ₂		·	43,2	4,34	523,35
	2259	, NUMP			52	4,53	543,29
	2260	, NUMP	-0		52,1	4,16	515,30
	2261	, NH ²		<u></u>	46,2	4,07	475,38
	2262	NH ₂			55,2	4,82	571,33
2	2263	NH ₂	-0	Q .	51,5	4,63	. 577,22

1

			15 -		·	
	R2 N	R1 >—{ ^O				
}	5_//	R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
2264	, N	H		81,1	4,49	465,35
2265	·	H		84,1	4,7	481,36
2266		H	***	65,7	4,78	445,36
2267	N N	H		63,0	4,51	399,29
2268	·	H		77,8	5,39	555,37
2269	- N	H		78,5	5,21	485,32
2270	· · · · · · · · · · · · · · · · · · ·	H		74,0	5,02	557,37
2271	·	H	MeO	78,1	4,38	525,37
2272	·	H	00.	89,2	5,42	527,38
2273	, N-	+		83,0	5,75	537,30
2274	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			67,8	5,87	525,21
2275	· + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, cj. Ci		83,2	5,75	541,16
2276	, , , , , ,	CI CI	<b>&gt;</b> .	71,9	6,11	505,25
2277	, , , , , ,	CI		70,5	5,14	459,15

		- 34				
	R2 N N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺
2278	h	0000		74,6	6,44	615,23
2279		$\bar{c}$		71,5	5,88	545,10
2280	·	CI		80,2	6,43	617,19
2281	+ N \ \ N	00000	MeQ OMe	93,4	5,82	585,18
2282	·	CI		74,9	6,28	587,19
2283	       	CI		68,3	6,24	597,14
2284	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			65,8	4,02	463,35
2285	·			75,8	4,22	479,33
2286	i N	O.	<b>&gt;</b> .	69,0	4,21	443,37
2287	N N N N N N N N N N N N N N N N N N N	O.		4,2	4,36	397,33
2288	N N			82,7	4,74	553,37
2289	, , , , , , , , , , , , , , , , , , ,	O.	Ğ	89,8	4,62	483,29
2290	, N	0		77,2	4,52	555,33
2291	w	O.	MeO OMe	69,3	3,98	523,35

	R2 N N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
2292	, N			73,3	4,98	525,34
2293	NN			73,1	5,44	535,29
2294	, N	0,00		59,4	5,14	482,30
2295	N	NO2	O.	76,0	5,09	498,28
2296	·	, NO.	×	62,3	5,47	462,32
2297	, , , , , , , , , , , , , , , , , , ,	,		58,6	4,55	416,22
2298	, , , , , , , , , , , , , , , , , , ,	20,		79,5	5,84	572,32
2299	i	NO2	G.	74,9	5,3	502,25
2300		20,		72,7	5,71	574,28
2301	, N	200	MeO	71,1	5,06	542,32
2302	N	20,	00	73,0	5,66	544,29
2303	·	202		64,6	5,62	554,24
2304	N			92,2	4,62	435,30
2305	<b>√ / -</b>			90,1	4,67	451,29

		- 34	<del></del>			<del></del>
	R2 N N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺
2306	м— ·	H	<b>≯</b> √.	84,3	4,76	415,32
2307	и— ·	+		43,7	4,34	369,27
2308	<u>√</u> , · ·	H		83,7	5,44	525,34
2309	<u>√</u> 4	$\mathcal{H}$		80,3	4,96	455,25
2310	<u>√</u> ,	H		83,7	5,26	527,32
2311	<u>r</u> .	H	MeO	82,8	4,64	495,34
2312	√	+		94,1	5,44	497,32
2313	<u>√</u> ,	J		90,1	5,55	507,29
2314	<u>√</u> ,	CI CI		64,7	5,62	495,16
2315	 	CI		50,7	5,54	511,15
2316	<u>м</u> -	$\overline{C}$	<b>≯</b> √.	78,0	5,8	475,22
2317	<u>√</u> - ·			20,9	4,86	429,14
2318	<u>√</u> .			79,2	6,27	585,15
2319	<u>√</u> , .		J.	46,3	5,58	515,12

		- 34						
	R2 N O R5							
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺		
2320	v	0		84,1	6,23	587,20		
2321	N		MeO OMe	91,1	5,64	555,18		
2322	<u>√</u> · · ·		Og.	67,8	6,07	557,22		
2323	<u>√</u> · · ·	CI		23,9	5,96	567,17		
2324	<u></u>			68,1	4,02	433,40		
2325	<u>-</u>			65,6	4,2	449,38		
2326	<u>}</u>		<b>≯</b> √.	83,5	4,14	413,39		
2327	-			36,4	3,94	367,35		
2328	×			87,5	4,82	523,39		
2329	√ · ·		<u>.</u>	65,1	4,42	453,33		
2330	Z		J	91,7	4,59	525,37 ·		
2331	√-·		MeO	81,5	4,01	493,40		
2332	√,-·		Og.	73,9	4,96	495,39		
2333	√,			72,7	5,3	505,33		

		- 36	50 -					
	R2 N N O R5							
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*		
2334	<u>√</u> -			79,9	4,93	452,35		
2335	√—·			81,8	4,88	468,33		
2336	<u></u>		<b>≯</b> √.	85,9	5,17	432,36		
2337	<u>√</u> .	$- \bigcup_{2}^{\bullet} O_{2}^{\circ}$		36,2	4,25	386,28		
2338	<u>√</u>			93,3	5,62	542,36		
2339	<u>м</u>			76,5	4,96	472,3		
2340	<u>√</u> · · ·	-0"		84,9	5,53	544,34		
2341	√—·	2 - 0°	Me O Me	80,6	4,96	512,34		
2342	√-·	,0°		79,6	5,42	514,35		
2343	<b>~</b> → ·	, Z-()-		64,9	5,34	524,27		

1

	R2 N N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺
2344	, N		<i>^</i> √.	76,9	4,54	431,32
2345	N N		· · ·	- 80,7	5,47	457,38
2346	, v v		MeO .	82,2	5,19	507,34
2347	† N		0~.	82,1	5,38	491,35
2348	N N			76,7	5,2	495,30
2349	N N		F	83,1	5,42	531,30
2350	, T			78,5	5,4	547,27
2351	N N		3	86,8	5,58	539,33
2352	× × ×		<b>○</b> `.	79,3	5,37	469,38
2353	N N		F	83,1	5,18	499,31
2354	N N	20"	<i>^</i> √.	82,3	4,32	422,33
2355	, N	20.	<b>~~~</b> .	78,2	5,26	448,39
2356	,	20"	MeO	79,7	4,98	498,37
2357	N N	202	<u></u>	80,0	5,2	482,38

- 352 - '									
	R2 N O R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺			
2358	N N N	NO ₂	-	75,3	5,0	486,34			
2359	, × × × ×		5	81,9	5,26	522,30			
2360	, <del>_</del> _ z	2 0		77,7	5,25	538,29			
2361	z × ×	200		83,9	5,4	530,35			
2362	z - ·	200		81,8	5,16	460,38			
2363	, × × ×	ZO"	F	79,3	5,03	490,31			
2364	·	Br	/º	82,5	4,01	441,22			
2365	, N	В	<b>~~</b> .	80,6	4,98	467,28			
2366	, N N	Br	MeO .	82,7	4,72	517,25			
2367	N N	В	O~~.	83,6	5,0	501,26			
2368	N N	В		84,3	4,9	505,23			
2369	·	B, .	5	82,5	5,48	541,19			
2370	, N	B		86,6	5,5	557,19			
2371	, N	8	3	85,4	5,53	549,24			

		- 35	·····						
	R2 N N O R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺			
2372	, N	B	<u> </u>	82,3	4,9	479,30			
2373	, x	В		81,5	5,26	509,21			
2374	·		<i>^</i> ~.	83,4	4,23	469,37			
2375	, z		<b>~~~</b> .	82,3	4,94	495,40			
2376	,z		MeO	88,1	4,73	545,36			
2377	, N		0	90.4	4,99	529,39			
2378	N N	0.0		90,6	4,92	533,35			
2379	N N	a.	F. C.	85,2	5,62	569,33			
2380	i N	00		84,2	5,6	585,33			
2381	i v	00	3	85,0	5,54	577,38			
2382	N N	00	0	80,6	4,87	507,41			
2383	, N		F	85,9	5,42	537,34			
2384	·		· · · ·	74,2	5,32	455,34			
2385			MeO	92,3	5,1	505,32			

- 354 -									
	R2 N R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H] ⁺			
2386	2		0~~.	78,4	5,23	489,33			
2387				71,3	5,12	493,32			
2388				74,4	5,32	529,27			
2389	2			68,8	5,29	545,25			
2390			3	77,7	5,44	537,33			
2391			<u> </u>	80,7	5,24	467,36			
2392			F .	63,3	5,04	497,30			
2393		ZO ₂	<i>^</i> 0 <i>√</i> · .	87,4	4,16	420,33			
2394	2	NO ₂	~~~.	82,7	5,12	446,38			
2395	2	NO ₂	Meo .	82,4	4,88	496,35			
2396		NO ₂	0	78,0	5,04	480,37			
2397	V.	NO ₂		75,9	4,9	484,33			
2398	~ ~ ·	202	F	71,5	5,16	520,29			
2399		202		65,4	5,12	536,30			

			o5 -			
	R2 N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min)	[M+H]*
2400	10 N	NO ₂	3	76,0	5,28	528,33
2401		NO.	<b>○</b> .	93,8	5,03	458,38
2402	M.	ŽO,	F .	69,2	4,88	488,30
2403	M.	В	<i>^</i> 0 <i>√</i> · .	68,3	3,88	439,23
2404		B	····	70,8	4,89	465,28
2405	7	В	MeO	76,2	4,72	515,23
2406	\(\frac{1}{2}\)	В		76,5	4,88	499,27
2407		Br		90,1	4,88	503,26
2408		В	F	78,8	5,36	539,19
2409		В		76,1	5,31	555,17
2410		B		80,5	5,29	547,22
2411		Br		68,2	4,86	477,30
2412	ZZ.	B	F	55,7	5,1	507,20
2413		0.00	<b>^</b>	69,2	4,12	467,36

		- 35							
	R2 N O R5								
Ex.	R5	R2	R1	Puretė (%)	tr (min)	[M+H]*			
2414	M.	O.O.	<b>~~~</b> .	73,6	4,85	493,41			
2415		0.00	MeO	73,9	4,72	543,36			
2416		00	O~~.	73,4	4,87	527,39			
2417	~ ~ .	an.		90,6	4,92	531,36			
2418	~ ~ .	-	F.F.	71,6	5,5	567,32			
2419	~~~	an.		60,5	5,4	583,32			
2420	~~~.	00		60,8	5,29	575,36			
2421	~~~·	00		58,8	4,82	505,39			
2422	707		F	54,7	5,29	535,31			

,

	() N	Chiral						
R10								
	R2 N	R3						
Ĺ	S	<u> </u>						
Ex.	R10 .	R2	R3	Pureté (%)	tr (min)	[M+H]+		
2423	H ₂ N		*	79,8	3,66	476,30		
2424	H ₂ N			59,3	3,68	496,26		
2425	H ₂ N N		FLOO	60,5	4,2	580,22		
2426	H ₂ N N			52,7	3,68	554,24		
2427	H ₂ N N		>-	72,3	3,87	490,30		
2428	H ₂ N			63,8	3,85	510,26		
2429	H ₂ N		F.F.O.	63,0	4,34	594,23		
2430	H ₂ N ,			54,1	3,82	568,25		
2431	H ₂ N		\\ \tag{\tau}	76,9	3,72	490,30		
2432	H,N ,			70,7	3,73	510,26		
2433	H ² N 2 - ·		F C	69,1	4,23	594,24		
2434	H ₂ N N			52,7	3,72	568,24		
2435	H ₂ N N		>-	76,6	3,92	504,32		

	N	Chiral				
		R10			:	
	R2 N N	_R3				
Ex.	R10	R2 ,	R3	Puretė (%)	tr (min)	[M+H]+
2436	H ₂ N N			64,8	3,9	524,28
2437	H ₂ N			66,2	4,37	608,24
2438	, H ² N V			59,3	3,86	582,27
2439	NH.		\\ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag} \} \} \ta} \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \ta}	74,3	3,9	544,32
2440	NH.			65,4	3,91	564,29
2441	Z .		FLOO.	63,8	4,41	648,30
2442	Z			57,6	3,92	622,31
2443	ž, ,		>-	77,8	4,09	558,34
2444	NH ₂	-		65,5	4,08	578,30
2445	2		F. T. O	64,3	4,5	662,31
2446	NET.	Q		47,6	4,04	636,36
2447	H ₂ N N		>-	78,6	3,88	538,28
2448	H ₂ N .			61,2	3,9	558,24

0001							
	N	Chiral		•			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	R10					
	R2 N	R3	•		4		
Ex.	R10	R2	R3	Pureté (%)	tr (min)	[M+H]+	
2449	H²N N		F.D.	59,8	4,38	642,27	
2450	H²N İ			48,4	3,88	616,30	
2451	H ₂ N N		>-	79,9	4,06	552,28	
2452	H ₂ N N			59,4	4,04	572,25	
2453	H ₂ N N		F F O	61,4	4,52	656,29	
2454	H ₂ N N			50,0	4,02	630,31	
2455	$\left\langle \sum_{z=1}^{2}\right\rangle$		7	76,1	3,74	488,29	
2456	$\begin{pmatrix} z \\ z \end{pmatrix}$			88,3	3,72	508,25	
2457	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{pmatrix}$		# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	84,2	4,21	592,22	
2458	\(\frac{1}{2}\)			82,1	3,71	566,24	
2459	2 .		~ "	72,4	3,96	502,32	
2460	2 -			88,5	3,89	522,27	
2461	7		\$J., ()	86,6	.4,37	606,26	

			<del></del>			
	N	Chiral				
		0      R10				
	R2 N	R3			•	
Ex.	R10 ·	R2	R3	Pureté (%)	tr (min)	[M+H]+
2462	N			77,2	3,8	580,26
		Chiral				<b>L</b>
	R2 N N	R10				
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H]+
2463	H ₂ N N		>	86,6	3,96	487,31
2464	H ₂ N N			58,7	4	507,27
2465	H ₂ N N		F O O	64,9	4,48	591,22
2466	H ₂ N N			40,3	4	565,25
2467	H ₂ N N		\	91,3	4,12	501,31
2468	H ₂ N N			61,2	4,14	521,25
2469	H ₂ N	P		62,4	4,62	605,25
2470	H ₂ N N			33,1	4,13	579,27
2471	+ ₂ N , N		>- *	87,3	4,01	501,31

2472			- 36				
Ex. R10 R2 R3 Pureté tr (min) [M+H]  2472 F 54,0 4,05 521,2  2473	}		Chiral				
Ex. R10 R2 R3 Pureté tr (min) [M+H]  2472	}		P10				
Ex. R10 R2 R3 Purelé tr (min) [M+H]  2472		N N				٠	
2472		R2 S					
2472	Ex.		R2	R3	Pureté	tr (min)	[M+H]+
2473  2474  1	2472	14 1			54,0 -	4,05	521,25
2474  2475  H ₂ N  2476  A,18  515,3  2476  A,18  515,3  68,0  4,19  535,3  2477  A,18  555,  2480  NH3  2481  NH3  2482  NH3  2482  NH3  35,4  4,04  579,2  88,4  4,18  515,3  68,0  4,19  535,3  68,0  4,19  535,3  72,9  4,64  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3  619,3	2473	' '			69,1	4,51	605,26
2475	2474				35,4	.4,04	579,27
2476 68,0 4,19 535,3  2477 72,9 4,64 619,3  2478 72,9 4,64 619,3  2479 92,7 4,18 555,  2480 NM3  2481 NM3  2482 NM3  2482 NM3  2482 NM3  2482 NM3  2482 NM3  2482 NM3  2482 NM3  2482 NM3  2482 NM3  2483 NM3  2484 4,24 659,  2485 NM3  2486 A,72 659,  2487 NM3  2488 A,72 659,  2488 A,72 659,  2488 A,72 659,	2475			\\ \tag{\tau}	88,4	4,18	515,31
2477	2476	) " <i>i</i>			68,0	4,19	535,28
2478  2479  NH-3  2480  NH-3  2481  NH-3  2482  NH-3  2482  NH-3  2482  NH-3  32,6  4,17  593,  92,7  4,18  555,  71,8  4,72  659,  36,4  4,2  633,	2477	H ₂ N N		F To To	72,9	4,64	619,25
2479 92,7 4,18 555,  2480 59,4 4,24 575,  2481 71,8 4,72 659,  2482 NH ₂ 36,4 4,2 633,	2478	H ₂ N N			32,6	4,17	593,28
2480 59,4 4,24 575.  2481 71,8 4,72 659,  2482 NH ₂ 2482 NH ₂ 36,4 4,2 633,	2479	NH,		>-	92,7	4,18	555,33
2481 71,8 4,72 659, 2482 NH ₂ 2482 NH ₂ 36,4 4,2 633,	2480	NH3			59,4	4,24	575,29
2482 N 36,4 4,2 633,	2481	NH.			71,8	4,72	659,33
	2482	NH.			36,4	4,2	633,44
	2483	NH ₂	(P)	>	92,4	4,36	569,34
2484 NH2 62,9 4,38 589,	2484	NH ₃	P-		62,9	1	589,32

1			oz -		•	
		Chiral				
	N N	R10 				
	R2	<b>√</b> 1,				
Ex.	R10	R2	. R3	Puretė	tr (min)	[M+H]+
2485	2		F	71,9	4,82	673,33
2486	Z .			32,2	4,36	647,19
2487	H ₂ N			90,2	4,14	549,28
2488	H ² N N			59,7	4,22	569,24
2489	HÌN		F F O	66,6	4,7	653,25
2490	H ₂ N N			34,5	4,22	627,27
2491	H'N	Q-	>	91,3	4,32	563,30
2492	H ₂ N N			60,8	4,35	583,26
2493	H ₂ N N			73,3	4,8	667,27
2494	H ² N N			32,9	4,34	641,29
2495	Z .			60,4	3,94	499,30
2496	2 .	·		87,0	3,92	519,24
2497	2 .		F O	84,4	4,41	603,24

. . . .

		- 363				
_		Chiral				
	R2 N N	R10 R3		<del></del>		[M+H]+
Ex.	R10	R2	R3	Pureté	tr (min)	[א+רו]ד
2498	7			B1,4	3,94	577,26
2499	7 .		7	73,9	4,12	513,31
2500	2 .	9		91,5	4,09	533,26
2501	2 .		F O	89,6	4,54	617,26
2502	2 2 .			85,4	4,09	591,27

•

		Chiral			<del></del>				
	R10								
	R2 S	_R3			•				
Ex.	R10	R2	R3	Pureté (%)	tr (min)	[M+H]+			
2503	H'n		<u> </u>	77,7	3,8	471,39			
2504	N N N N N N N N N N N N N N N N N N N			37,7	3,82	491,34			
2505	H²M ,		cr ·	79,7	4,09	525,28			
2506	i i i i i i i i i i i i i i i i i i i			58,5	4,23	541,33			
2507	H ₂ N N			84,6	4,0	485,38			
2508	H ₂ N			73,2	4,0	505,34			
2509	H ² N N		cr ·	82,3	4,25	539,29			
2510	H²N ,	Q		74,2	4,37	555,34			
2511	H ₂ N N		>	<b>57,5</b>	3,56	417,32			
2512	H ₂ N N			66,9	3,56	437,27			
2513	H ₂ N N		cr ·	69,0	3,85	471,26			
2514	H ₂ N N			71,1	4,0	487,33			
2515	H ² N N		7	76,4	3,76	431,34			

- 365 -									
	Chiral								
	N	R10							
	R2 N	_R3							
Ex.	R10	R2	R3	Pureté (%)	tr (min)	[M+H]+			
2516	H ₂ N N			67,8	3,75	451,30			
2517	H ₂ N N			75,2 ·	4,02	485,27			
2518	H ₂ N N			70,4	4,16	501,32			
	<u> </u>	Chiral		·		-			
	Y î								
	N	R10							
	R2 S	R3							
Ex.	R10	R2 ·	R3	Puretė	tr (min)	[M+H]+			
2519	H ₂ N .		>	76,4	3,73	471,38			
2520	H ₂ N ·			67,9	3,76	491,33			
2521	H ₂ N .		cr	75,0	4,04	525,28			
2522	H ₂ N N			71,2	4,17	541,34			
2523	H ₂ N N	9	~ ~	87,9	3,94	485,39			
2524	H ₂ N ,	,		72,2	3,94	505,34			
2525	H ₂ N N	Q	cr	82,1	4,2	539,30			
2526	H ₂ N N			80,9	4,33	555,34			

	- 366 - Chiral								
	R10								
	R2 N R3								
Ex.	R10	R2 🔼	R3	Pureté	tr (min)	[M+H]+			
2527	H ₂ N N			70,7	3,51	417,32			
2528	H ₂ N N			50,3	3,52	437,28			
2529	H₂N N		cr ·	72,4	3,8	471,26			
2530	H ₂ N N			74,5	3,96	487,32			
2531	H ₂ N N			84,4	3,72	431,32			
2532	H ₂ N N			68	3,71	451,29			
2533	H ₂ N N	Q-	cr Cr	89,6	3,98	485,26			
2534	H ₂ N N			77,9	4,12	501,32			
		Chiral							
		R10							
	R2 N S	_R3							
Ex.	R10	R2	. R3	Pureté	tr (min)	+[H+M]			
2535	H ₂ N N		\\\	84,7	3,83	505,34			
2536	H ₂ N N			75,2	3,89	525,30			

		Chiral	***************************************						
		R10							
	R2 N R3								
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H]+			
2537	H ² N ,		cr ·	75,9	4,17	559,25			
2538	H ₂ N .			70,4	4,29	575,30			
2539	H²N , N		> -	90,9	4,03	519,35			
2540	H ² N N			71,5	4,04	539,31			
2541	H²N N		c.	79,2	4,31	573,25			
2542	H ₂ N			80,6	4,43	589,33			
2543	H ₂ N N			77,2	3,62	451,30			
2544	H ₂ N N			69,9	3,65	471,27			
2545	H ₂ N N		cr ·	74,8	3,92	505,22			
2546	H ₂ N N			66,7	4,06	521,26			
2547	H ₂ N N		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	83,5	3,82	465,31			
2548	H ₂ N	(P-		72,9	3,82	485,28			
2549	H ₂ N	P-	cr	33,1	4,1	519,23			

			- 36	8 -			
		0	Chiral				
	h	1	R10 R3				
	R2 S	7	A3			: 	
Ex.	R10	$\Box$	R2	R3	Pureté	tr (min)	[M+H]+
2550	H ₂ N	N †-			- 51,2	4,22	535,28
·	OFI		: Chiral	•			
		L F	·. R10				
	R2 N N	F	₹3	·			
Ex.	R10		R2	R3	Pureté	tr (min)	[M+H]+
2551	HÍN	, - v		\\ \	79,8	3,45	521,33
2552	H ₂ N	z ·			72,6	4,14	541,29
2553	H ₂ N	2		cr ·	63,7	3,79	575,24
2554	H²N	· <del></del> z′			73,8	3,93	591,31
2555	H ₂ N	, — N,		>-	91,2	3,65	535,35
2556	нъи	· + ~,			75,6	3,66	555,29
2557	H ₂ N	, — z	, - ·	cr	78,3	3,94	589,26
2558	H ₂ N	, <del></del> z		O)	69,7	4,06	605,35
2559	H ₂ N	, <del></del> z		\\ \	69,1	3,22	467,29

PCT/FR02/00093

155510						
		- 369				
	OH Q	Chiral				
	V F	१10 २3			,	
	R10	R2	R3	Pureté	tr (min) [f	V+H]+
Ex. 2560	H ₂ N N-			73,7	3,26	187,27
2561	H ₂ N N		c.	79,6	3,56	521,20
2562	H ₂ N N			73,5	3,72	537,27
2563	H ₂ N N		>-	86,1	3,42	481,31
2564	H ₂ N N			77,1	3,43	501,29
256	5 H ₂ N N	1 11 1	Cr	83,0	3,73	535,22
256	6 H ₂ N			71,9	3,86	551,28
		Chiral O				
	R2 N N	R10				
E	x. R10	R2	R3	Pureté	tr (mir	i) [M+H]
25	567 H ₂ N			82,0	3,99	535,3
25	568 H ₂ N	× · ·		40,6	4,04	555,3
2	569 H ₂ N	N N		47,5	5 4,3	1 589,

		Chiral				
	R2 N N	-R3 44				
Ex.	R10 _	R2 '`	R3	Pureté	tr (min)	[M+H]+
2570				37,4	4,43	605,33
2571	1 H ₂ N N			79,3	4,18	549,35
2572	2 H ₂ N N			38,8	4,19	569,30
2573	3 H ₂ N N		cr ·	51,6	4,46	603,28
2574	•			36	4,55	619,35
2575			\\ \tag{*}	61,4	3,77	481,30
2576	·			37,9	3,81	501,28
257	•		cr -	45,6	4,08	535,21
2578				34,9	4,2	551,27
2579	•		>_~	66,2	3,95	495,31
2580	) H ₂ N N			44,8	3,96	515,25
258	·.	Q-	cr ·	54,4	4,23	549,24
2582	2 H ₂ N N	Q		36,5	4,34	565,28

		Chiral							
	R10								
	R2 N N	_R3							
Ex.	R10	R2 🖖	R3	Puretė (%)	tr (min)	[M+H]*			
2583	H ₂ N N			52,2	3,91	465,24			
2584	H ₂ N N		Br	55,9	4	529,14			
2585	H ₂ N N		>-	51,3	3,9	445,29			
2586	H ₂ N N		O _z N	57,4	3,9	510,24			
2587	H ₂ N N			54,3	4,04	479,28			
2588	H ₂ N N		Br	61,7	4,12	543,15			
2589	H ₂ N N			80,0	3,82	465,25			
2590	H ₁ N N		O ₂ N	61,6	3,85	530,20			
2591	H ₂ N N			61,1	3,97	499,25			
2592	H,N N		Br	61,3	4,06	563,1			
2593	N.		<b>→</b> ¯	84,2	3,96	479,29			
2594	H,N N.		O ₂ N .	58,8	3,98	544,20			

- 372 -								
}		Chiral						
	R10							
	R2 N R3							
Ex.	R10	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺		
2595	H,N			61,5	4,1	513,26		
2596	H_N		Br	65,5	4,19	577,1		
	9	Chiral						
		<b></b>				!		
	R2 N N	`R10 -R3						
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H] ⁺		
2597	H ₂ N N		O ₂ N	28,6	3,7	514,16		
2598	H ₂ N N			39,0	3,83	483,24		
2599	H ₂ N N		Br ·	39,9	3,92	547,1		
2600	H ₂ N N			53,5	3,8	463,26		
2601	H ₂ N N		O ₂ N.	28,8	3,83	528,19		
2602	H ₂ N N			31,0	3,96	497,24		
2603	H ² N ,		Br .	34,0	4,05	561,1		
2604	H ₂ N N.		7	64,5	3,72	483,24		

			Chiral				
		S O	`R10 _R3				
	Ex.	R10	R2 🛝	R3	Pureté	tr (min)	[M+H] ⁺
-	2605	H ₂ N		02N	25,4 -	3,78	548,12
	2606	H ₂ N .			36,8	3,9	517,20
	2607	H ₂ N .		Br	31,2	4	581,1
	2608	H ₂ N N .		$\sim$	72,8	3,86	497,24
	2609	H ₂ N N		OzN	31,7	3,9	562,17
	2610	H,N N			40,1	4,02	531,21
	2611	H ₂ N .		Br	38,2	4,12	595,1
	-	OH OH	Chiral R10 R3				
	Ex.	R10 -	` R2	R3	Pureté	tr (min)	[M+H]*
	2612	H ² N		<u> </u>	45,2	3,49	419,24
	2613	H ₂ N		>-	56,6	3,39	439,21
	2614	H _z N N.		>- "	58,6	3,56	453,23

		Chiral						
	R10 R2 N R3 R3							
Ex.	R10	R2	R3	Puretė	tr (min)	[M+H]*		
2615	H ₂ N N		\ <u></u>	65,5	3,96	479,28		
2616	H ₂ N ,		O ₂ N .	50,5	4	544,19		
2617	H ₂ N N			55,7	4,11	513,26		
2618	H ₂ N N		Br	55,5	4,2	577,13		
2619	H ₂ N N		7	67,1	4,09	493,30		
2620	H ₂ N N		02N	53,7	4,11	558,20		
2621	H ₂ N N			55,5	4,22	527,27		
2622	H ₂ N N		Br	72,1	4,3	591,13		
2623	H,M .			81,1	4,02	513,26		
2624	H-M N		O ₂ N .	51,0	4,08	578,18		
2625	H ₂ N N			54,1	4,17	547,21		
2626	H ₂ N N.		Br	65,2	4,26	611,11		
2627	H ₂ N .		\	83,9	4,16	527,27		

	- 375 -							
			Chiral					
		\ \ \	R10					
		N N	-R3					
		R2 \ \ S	/ 		· · · · · · · · · · · · · · · · · · ·			
L	Ex.	R10	R2	R3	Pureté	tr (min)	[M+H]*	
	2628	HAN		O ₂ N	60,2	4,18	592,21	
	2629	H ₂ N N.			63	4,3	561,21	
	2630	M ₂ N .		Br	74,0	4,36	625,11	
	Chiral							
		J	O R10					
		R2 N N	R3	  				
	Ex.	R10	R2	R3	Pureté	tr (min)	[M+H] ⁺	
2	2631	H ₂ N N		\[ \]	83,1	4,06	515,26	
2	2632	H ₂ N ,		O ₂ N	57,8	4,13	580,20	
2	2633	H ₂ N N			37,4	4,22	549,23	
2	2634	H ₂ N		Br ·	43,3	4,31	613,12	
2	2635	H ² N			86,7	4,18	529,27	
2	2636	H ₂ N		O ₂ N .	64,3	4,22	594,19	
2	2637	H ² N N			37,0	4,32	563,25	

		Chiral				
		R10				
	R2 N N	R3			:	
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H] ⁺
2638	H ₂ N N	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Bí.	44,3	4,4	627,15
2639	H ₂ N .		>-	86,9	4,14	549,23
2640	H ₂ N N		O ₂ N .	53,4	4,23	614,17
2641	H ₂ N N .			37	4,3	583,21
2642	H,N C		Br	45,7	4,4	647,11
2643	H ₂ N N			88,9	4,24	563,25
2644	H ₂ N .		O ₂ N .	57,3	4,3	628,19
2645	HÎN N			39,4	4,39	597,22
2646	H ₁ N		Br	44,1	4,48	661,15
	:	•				

/

	OH O Chiral R10									
	R2 N R3									
Ex.	R10	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺				
2647	HN NH ₂			25,6	3,18	495,23				
2648	HN NH,		CF,	33,1	3,59	533,15				
2649	HN NH		NC.	27,0	3	490,2				
2650	HN NH2			33,6	3,14	562,16				
2651	HN		P	27,2	3,36	509,21				
2652	HN NH ₂		CF ₃	32,5	3,76	547,16				
2653	HN NH2		NC.	29,7	3,2	504,2				
2654	HIN NH,			34,8	3,32	576,21				
2655	, Z T		P	73,7	2,93	439,15				
2656			J.F.	60,6	3,37	477,14				
2657			NC.	65,1	2,7	434,1				
2658				69,3	2,92	506,14				
2659				7 <u>2,</u> 5	3,14	453,17				
2660			GF,	77,2	3,55	491,14				

	OH O Chiral R10							
	R2 N R3							
Ex.	R10	R2 ,	R3	Pureté (%)	tr (min)	[M+H]*		
2661	, Z		NC .	66,4	2,9	448,1		
2662	, NOTE I			65,9	3,14	520,15		
	R2 N S	Chiral `R10 -R3						
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H]*		
2663	HN			63,3	3,82	555,21		
2664	HN		, F.	85,8	4,24	593,19		
2665	HN		NC .	87,5	3,8	550,2		
2666	HN			75,1	3,78	622,22		
2667	HN			66,1	3,98	569,21		
2668	HN		CF,	87,2	4,35	607,21		
2669	HN		NC .	82,9	3,9	564,2		
2670	HN			79,1	3,94	636,25		
2671	HZZH		P	82,0	3,55	499,18		

_	- 3/9 -							
	O Chiral							
	R2 N R3							
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H] ⁺		
2672	N NH		ÇF,	82,2	3,93	537,14		
2673	, Z T		NC.	86,4	3,4	494,2		
2674				90,4	3,52	566,15		
2675			P	0,88	3,72	513,19		
2676	, Z J		CF ₃	88,8	4,08	551,15		
2677			NC.	88,9	3,6	508,2		
2678	, Z T			93,6	3,7	580,17		
	R2 N N	Chiral R10 R3						
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H]*		
2679	HN NH2			59,5	4	569,20		
2680	HN NH,		ĘF3	82,6	4,37	607,21		
2681	HN		NC .	74,9	3,9	564,2		

		- 38					
	O Chiral R10 R2 N R3						
L	``````````````````````````````````````	1,					
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H] ⁺	
2682	HN NH,			70,6	3,94	636,26	
2683	HN		-	55,3	4,14	583,24	
2684	HN NH,		CF3	85,3	4,49	621,22	
2685	. HN NH,		NC NC	86,1	4,1	578,2	
2686	HN NH,			72,7	4,09	650,26	
2687	, Z T			87,5	3,74	513,20	
2688	· ZZI		ČF,	86,1	4,1	551,16	
2689	N N N		NC.	87,4	3,6	508,2	
2690	, NONH			87,9	3,73	580,18	
2691	N N I		P	87,2	3,89	527,21	
2692	- N N H		CF,	88,3	4,24	565,15	
2693	, N NH		NC.	89,8	3,8	522,2	
2694	N N N N N N N N N N N N N N N N N N N	9		92,5	3,86	594,17	

		- 38				
		Chiral				
	R2 N N	R10 -R3 4 ₄				
Ex.	R10 -	R2 `	R3	Pureté	tr (min)	[M+H]*
2695	HN NH,			69,9	4,14	605,25
2696	HN NH ₂		ĆF3	81,8	4,55	643,21
2697	HN NH ₂		NC .	65,3	4,1	600,2
2698	. HN NH			69,2	4,11	672,25
2699	HN			74,0	4,28	619,24
2700	. HN NH		CF ₃	69,3	4,67	657,24
2701	HN		NC .	75,9	4,3	614,2
2702	HN NH2	Q		84,8	4,27	686,27
2703	, Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			86,6	3,91	549,16
2704			CF ₃	77,7	4,26	587,13
2705			NC.	69,4	3,8	544,1
2706				88,0	3,9 ·	616,19
2707	$\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$			79,9	4,06	563,18

	- 382 -							
	2	Chiral R10 -R3			•			
	R2 S	J.						
Ex.	R10 _	R2 `,	R3	Pureté	tr (min)	[M+H] ⁺		
2708			CF3	75,9	4,38	601,14		
2709			NC .	62	3,9	603,2		
2710				87,7	4,05	630,21		
	R2 N N	R10						
Ex.	R10	R2	R3	Pureté	tr (min)	[M+H] ⁺		
2711	HN NH,			56,8	3,85	594,20		
2712	HN NH,		GF,	69,7	4,18	632,22		
2713	HN NH-		NC.	62,2	3,7	589,2		
2714	HN NH,			79,2	3,76	661,23		
2715	HN NH,		0-	56,8	4	608,23		
2716	HN NH ₂		JF.	70,5	4,31	646,23		
2717	HN NH ₂		NC.	62	3,9	603,2		

	O Chiral								
	R2 N N	_R3							
Ex.	R10 .	R2	R3	Pureté	tr (min)	[M+H] ⁺			
2718	HN NH,			76,9	3,92	675,26			
2719	, ZZ I			75,5	3,63	538,18			
2720			CF,	79,4	3,96	576,13			
2721	, NATURE THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P		NC .	73	3,5	533,2			
2722				87,0	3,56	605,17			
2723	, ZZI			81,8	3,8	552,18			
2724	, NOTE H	P	CF3	80,1	4,11	590,15			
2725		Q	NC .	79,4	3,6	547,2			
2726	Z Z J	Q		86,3	3,73	619,18			

,

Γ	- 384 -						
	H Chiral						
	NH-						
	R2 N N	<b>R3</b>					
Ex	. R2	R3	Pureté (%)	tr (min)	[M+H] ⁺		
272		<b>\</b>	73,7	4,7	488,3		
272	8		87,1	4,2	508,2		
272	9		90,3	4,3	522,3		
2730		Br	78,2	4,5	586,1		
2731		7	73	4,1	533,2		
2732		CI	86,4	4,5	542,2		
2733		F F	77,7	4,6	576,2		
2734		F CO	80	4,7	592,2		
2735			76,4	4,9	644,2		
2736			81,4	4,6	558,2		
2737		<u> </u>	79,8	4,4	502,3		

H Chiral								
	NH							
	R2 N N	R3						
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*			
2738			87,5	4,4	522,3			
2739			91,4	4,5	536,3			
2740		Br	83,3	4,6	600,1			
2741			- 82	4,3	547,2			
2742		CI	83,9	4,6 	556,2			
2743		FF	85,4	4,7	590,2			
2744			85,2	4,8	606,2			
2745	Q		82	4,3	658,2			
2746	P-		86,7	4,7	572,2			
2747			31,6	4,3	506,3			
2748			- 71,1	4,3	526,2			

"

	H Chiral							
	NH							
	R2 N S	R3						
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺			
2749			89,5	4,4	540,2			
2750			59,6	4,5	604,1			
2751		, , , , , , , , , , , , , , , , , , ,	51,3	4,2	551,2			
2752			62,2	4,5	560,2			
2753		F - L	59,6	4,7	594,2			
2754			63	4,7	610,2			
2755			52,5	4,9	662,2			
2756			67,8	4,6	576,1			
2757		7	81,1	4,6	516,3			
2758			85,8	4,5	536,3			
2759			85,4	4,7	550,3			

.

1

.

		• (	387 -				
Chiral							
	<u> </u>	NH					
	RZ N S	R3			•		
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H] ⁺		
2760			76,6	4,7	614.1		
	TH.	. Ch	iral				
		NH NH	٠				
	R2 N S	R3					
Ex.	R2	R3	Pureté (%)	tr (min)	[M+H]*		
2761		- Z	77,2	4,4	561,2		
2762		CI	85,4	4,7	570,2		
2763	7	FF	79,7	4,8	604,2		
2764		F. C.	81,1	4,9	620,2		
2765		F F	79,2	5,1	672,2		
2766			82	4,8	586,3		

,

	Chiral					
	R2 N S	_R3			-	
Ex.	R2 .	R10	R3	Pureté (%)	tr (min)	[M+H]+
2767		H ₂ N NH		64,3	3,91	530,20
2768		H ₂ N NH	- Z	58,3	3,57	521,22
2769		H ₂ N NH	F.F.	66,7	4,03	564,20
2770		H ₂ N NH	200	65,1	3,71	541,19
2771		H ₂ N NH	NC .	56,1	3,58	521,21
2772		H ₂ N NH		42,1	3,93	544,19
2773		H ₂ N NH	2 Z	34,6	3,59	535,22
2774		H ₂ N NH		46,9	4,05	578,21
2775		H ₂ N NH	- 0°	33,3	3,73	555,19
2776		H ² N NH	NC .	33,4	3,6	535,22
2777		,		39,6	3,97	558,22
		,			L	

			389 -			
	Chiral					
		0 R10				
	R2 N N	R3				
	s <u>"</u> T 50	1		7		1
Ex.	R2	R10	R3	Pureté (%)	tr (min)	[M+H]+
2778			Q _z	47,5	3,63	549,23
2779		H-M NH	F	50,3	4,09	592,23
	TX TX	Ch	iral			·
		R10				
	R2 N N	R3				
Ex.	R2 .	R10	R3	Pureté (%)	tr (min)	[M+H]+
2780		H ₂ N NH	202	40,6	3,76	569,19
2781		- H ⁷ N NH	NC .	42,7	3,63	549,25
2782		H ₂ N	J ₀	35,5	4,0	572,17
2783		H ₂ N NH	, , , , , , , , , , , , , , , , , , ,	33,2	3,69	563,26
2784		- NH		45	4,1	606,27
2785		,	- ZO ₂	36,0	3,82	583,23
		,				

_	·	•	390 -			
		C	hiral			
		R10				
	R2 N S-	R3				
E	x. R2	R10	R3	Pureté (%	6) tr (mir	n) [M+H]-
27	86	H ₂ N N ₁	NC NC	27,1	3,7	563,26
278	37	- H ₂ N NH		73,6	3,98	530,19
278	88	- H ₂ N NH	2	62,5	3,64	521,21
278	9	- H ₂ N NH	F F	74,8	4,09	564,2
279		- H ₂ N NH	0,000	67,7	3,77	541,20
2791		H ₂ N NH	NC	71,3	3,65	521,21
2792		H ₂ N NH	Q ₀	52,4	4,0	544,18
		Chir	al		·	
		0 R10				
-	R2 N N	R3				
Ex.	R2	R10	R3	Pureté (%)	tr (min)	[M+H]+
2793		H ₂ N NH .	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	47,0		535,22
		,				

	H	Chi	ral				
	R10						
	R2 N N	_R3			ı		
Ex.	R2 ·	R10	R3	Pureté (%)	tr (min)	[M+H]+	
2794		H ₂ N - NH		54,7	4,11	578,22	
2795		H ₂ N NH	. 0"	43,7	3,79	555,20	
2796		H ₂ N NH	NC.	44,6	3,67	535,22	
2797		H ₂ N NH		53,7	4,03	558,20	
2798		H ₂ N NH		51,0	3,69	549,23	
2799		H ₂ N NH	F F	56,5	4,15	592,23	
2800		H ₂ N NH	202	48,9	3,83	569,20	
2801		H ₂ N NH	NC .	46,0	3,7	549,24	
2802		H ₂ N NH	) Jō	41,2	4,1	572,21	
2803		H ₂ N NH		36,7	3,76	563,26	
2804		H ₂ N NH	F	47,4	4,2	606,26	



	H Chiral								
	NH NH								
	R2 N R3								
Ex.	R3 .	R2 ,	Puretė (%)	tr (min)	[M+H] ⁺				
2807			52,1 -	3,65	547,22				
2808		P	61,7	3,61	563,24				
2809	2		54,1	3,91	561,26				
2810			56,7	3,69	563,23				
2811			54,7	3,65	547,23				
2812	$\bigcup_{z}^{r}$		63,6	3,96	561,25				
2813			66 <b>,1</b>	4,13	575,26				
2814		+0-	34,9	4,29	589,29				
2815			69,3	3,66	563,24				
2816	NC NC		47,6	3,66	547,23				
2817	NC .		41,4	3,61	563,23				
		,		<del></del>					

	- 394 -						
	Chiral NH						
	R2 N N	R3					
Ex.	R3	R2 ⁴	Pureté (%)	tr (min)	[M+H]*		
2818	NC.		28,5	3,97	561,24		
2819	NC.		56,4	3,71	563,23		
2820	NC.		45,6	3,65	547,22		
2821	NC.		62,6	3,99	561,24		
2822	NC		42,0	4,17	575,26		
2823	NC.		45,7	4,32	589,28		
2824	NC.	F	23,5	3,65	551,21		
2825	NC.	~° .	70,9	3,67	563,22		

1

Certains composés selon l'invention peuvent être obtenus selon la méthode G décrite ci-après.

## METHODE G

Synthèse en solution de dérivés 2-iminothiazole-4-carboxamides à partir de diamines symétriques monoprotégées (Boc)

## Procédure générale:

15

La diamine symétrique monoprotégée (Boc) (1 equiv) est agitée durant la nuit avec un isothiocyanate aromatique (1 equiv) à température ambiante dans un solvant anhydre tel que le dioxane, le diméthylformamide ou le chloroforme. A l'intermédiaire isothiourée brut, on ajoute successivement 1 équivalent d'une base inorganique comme de l'hydrogénocarbonate de sodium ou de potassium et 1 équivalent de bromopyruvate d'éthyle préalablement dissous dans un solvant anhydre tel que le dioxane ou le diméthylformamide. Le mélange est ensuite chauffé à 80 °C pendant 1 à 3 heures et les sels inorganiques sont étiminés par filtration. Les solvants sont évaporés sous vide et le résidu est purifié par chromatographie éclair sur gel de silice en utilisant un gradient acétate d'éthyle / heptane. La saponification de l'ester intermédiaire est effectuée dans un solvant tel que le tétrahydrofuranne à l'aide d'une solution 1N de KOH, LiOH ou NaOH. Le mélange est agité vigoureusement pendant 6 à 20 heures à température ambiante puis acidifié avec une solution aqueuse 1N d'acide chlorhydrique jusqu'à

15

25

pH 2,5. La phase organique est extraite plusieurs fois avec du dichlorométhane puis les phase organiques sont lavées avec de l'eau jusqu'à pH neutre et séchées sur sulfate de sodium.

A une solution de l'acide carboxylique intermédiaire (1 équiv.) et d'un agent de couplage peptidique tel que DIC, DIC/HOBt, HATU ou TBTU (1,1 à 2 équiv.), préalablement dissous dans un solvant anhydre comme le diméthylformamide, est ajoutée sous argon une amine primaire ou secondaire (1,1 à 2 équiv.) pré-dissoute dans un solvant anhydre comme le diméthylformamide. Le mélange est agité pendant la nuit à température ambiante. Le solvant est évaporé sous vide et le résidu purifié par chromatographie éclair sur gel de silice en utilisant un gradient acétate d'éthyle / heptane. Le carboxamide intermédiaire est dilué dans un solvant tel que le dichlorométhane ou l'acétate d'éthyle et déprotégé après passage dans la solution d'un courant de chlorure d'hydrogène sec pendant l à 6 heures à température ambiante. Le dichlorhydrate correspondant est isolé soit par filtration du précipité soit, après évaporation sous vide du solvant, par addition de diéthyléther pour une meilleure cristallisation.

### Préparation 25

(2Z)-3-{5-[(tert-butoxycarbonyl)amino]pentyl}-2-[(3,5-diméthylphényl)imino]-2,3-dihydro-1,3-thiazole-4-carboxylate d'éthyle

20  $(C_{24}H_{35}N_3O_4S; MM = 461,63)$ 

Du N-Boc-1,5-diaminopentane (1,04 g; 5 mmol) est agité avec du 3,5-diméthylisothiocyanate (824 mg; 5 mmol) dans 10 ml de dioxane anhydre. A l'intermédiaire isothiourée brut, on ajoute successivement 420 mg (5 mmol) d'hydrogénocarbonate de sodium et 1,08 g (5 mmol) de bromopyruvate d'éthyle préalablement dissous dans 2 ml de dioxane anhydre. Le mélange est ensuite chauffé à 80 °C pendant une heure et les sels inorganiques sont éliminés par filtration. Le dioxane est évaporé sous vide et le résidu jaune est purifié par chromatographie éclair sur gel de

silice (éluant: acétate d'éthyle / heptane 2:8 puis 3:7). Une huile jaune (1,8 g; rendement de 77,9%) correspondant au composé attendu est alors isolée.

RMN ¹H (DMSO- $d_6$ , 400 MHz)  $\delta$ : 7,23 (s, 1H); 6,71 (s large, 1H); 6,65 (s, 1H); 6,54 (s, 2H); 4,26 (q, 2H, J = 6,4 Hz); 4,13 (t, 2H, J = 6,4 Hz); 2,9 (q, 2H, J = 6 Hz); 2,22 (s, 6H); 1,63 (m, 2H); 1,4 (m, 2H); 1,36 (s, 9H); 1,29-1,23 (m, 2H + 3H). SM/CL: m/z = 462,3 (M+H)⁺.

## Préparation 26

Acide (2Z)-3-{5-[(tert-butoxycarbonyl)amino]pentyl}-2-[(3,5-diméthylphényl)imino]-2,3-dihydro-1,3-thiazole-4-carboxylique

10  $(C_2, H_3, N_3O_4S; MM = 433,57)$ 

Le composé de la préparation 25 (1,77 g; 3,83 mmol) est dissous dans 20 ml de tétrahydrofuranne et traité avec 15 ml de solution aqueuse 1N de NaOH. Le mélange est agité vigoureusement pendant 6 heures à température ambiante. Le carboxylate est ensuite acidifié avec une solution aqueuse 1N d'acide chlorhydrique jusqu'à pH 2,5. La phase aqueuse est extraite avec du dichlorométhane (4 x 50 ml) et les phases organiques sont lavées avec de l'eau jusqu'à pH neutre et séchées sur sulfate de sodium. Un solide jaune pâle est isolé (1,51 g; rendement de 90,9%) après évaporation sous vide des solvants.

RMN ¹H (DMSO- $d_6$ , 400 MHz)  $\delta$ : 13,28 (s large, 1H); 7,16 (s, 1H); 6,69 (s large, 1H); 6,65 (s, 1H); 6,54 (s, 2H); 4,17 (t, 2H, J = 7,2 Hz); 2,89 (q, 2H, J = 6,4 Hz); 2,22 (s, 6H); 1,63 (q, 2H, J = 6,8 Hz); 1,41 (m, 2H); 1,36 (s, 9H); 1,25 (m, 2H). SM/CL: m/z = 434,27 (M+H)⁺.

### Préparation 27

 $5-[(2Z)-2-[(3,5-diméthylphényl)imino]-4-{[(1-phénylpropyl)amino]carbonyl}-1,3-thiazol-3(2H)-yl]pentylcarbamate de tert-butyle (<math>C_{31}H_{42}N_4O_3S$ ; MM = 550,76)

5 600 mg (1,38 mmol) de l'acide carboxylique de la préparation 26 sont préalablement activés avec 888 mg (2,76 mmol; 2 équiv.) de TBTU dans 10 ml de diméthylformamide anhydre pendant une heure. 410 μl (2,76 mmol; 2 équiv.) d'α-éthylbenzylamine sont ensuite ajoutés et le mélange agité à température ambiante pendant la nuit. Après évaporation du diméthylformamide, le résidu brut est purifié par chromatographie éclair sur gel de silice (éluant : acétate d'éthyle / heptane 4:6) pour donner un solide blanc (498 mg; rendement de 65,5%).

RMN ¹H (DMSO- $d_6$ , 400 MHz)  $\delta$ : 9,00 (d, 1H, J = 8,4 Hz); 7,36-7,30 (m, 4H); 7,25-7,21 (m, 1H); 6,72 (t, 1H, J = 5,4 Hz); 6,67 (s, 1H); 6,63 (s, 1H); 6,53 (s, 2H); 4,77 (q, 1H, J = 8.8 Hz); 3,95 (m, 2H); 2,84 (q, 2H, J = 6 Hz); 2,21 (s, 6H); 1,74 (m, 2H); 1,51 (m, 2H); 1,36 (s, 9H); 1,31 (q, 2H, J = 7,2 Hz); 1,13 (m, 2H); 0,89 (t, 3H, J = 7,2 Hz).

 $SM/CL : m/z = 551,44 (M+H)^{+}$ .

#### Exemple 2826

Dichlorhydrate de (2Z)-3-(5-aminopentyl)-2-[(3,5-diméthylphényl)imino]-N-(1-phénylpropyl)-2,3-dihydro-1,3-thiazole-4-carboxamide ( $C_{26}H_{34}N_4OS.2HC1$ ; MM = 523,57)

5 300 mg (0,54 mmol) de 5-[(2Z)-2-[(3,5-diméthylphényl)imino]4-{[(1-phénylpropyl)amino]carbonyl}-1,3-thiazol-3(2H)-yl]pentylcarbamate de
tert-butyle sont dissous dans 15 ml d'acétate d'éthyle. Après bullage de chlorure
d'hydrogène anhydre pendant une heure à température ambiante, le sel dichlorhydrate
correspondant précipite. Il est récupéré par filtration et lavé avec du diéthyléther pour
donner un solide blanc (268 mg; rendement de 94,8%).

RMN ¹H (DMSO- $d_6$ , 400 MHz)  $\delta$ : 9,48 (s large, 1H); 8,03 (s large, 3H); 7,39-7,32 (m, 5H); 7,25 (t, 1H, J = 7,2 Hz); 7,00 (m, 3H); 4,80 (q, 1H, J = 8,4 Hz); 4,33 (s large, 2H); 2,70 (q, 2H, J = 6,8 Hz); 2,29 (s, 6H); 1,77 (m, 2H); 1,65 (m, 2H); 1,52 (m, 2H); 1,27 (m, 2H); 0,89 (t, 3H, J = 7,2 Hz).

15 SM/CL:  $m/z = 451,35 (M+H)^{+}$ .

Une série de composés peut être synthétisée selon la méthode G, lesquels incluent :

- les groupes R1 et R2 déjà décrits pour la méthode A; et
- les groupes R5 déjà décrits pour la méthode C.

En particulier, les composés reprix dans le tableau ci-après ont été synthétisés en utilisant la méthode G.

		- 400	· · · · · · · · · · · · · · · · · · ·			
	R2-N N	1 2HCl				
	s 🗸	R5			_	
Ex.	R1	R2	R5	Pureté (%)	tr (min)	[M+H] ⁺
2827	$H_2N$		. HN	69 +27	4.57 + 4.73	477,33
2828	H ₂ N		HN	98	4,36	437,29 -
2829	H ₂ N .		HN	98	4,37	437,33
2830	H ₂ N		HN	98	3,72	423,37
2831	H ₂ N.			99	3,73	423,37
2832	H ₂ N		HN	99	4,07	455,32
2833	H ₂ N .		HN	99	4,29	471,32
2834	H ₂ N		HN	98	4,33	515,24
2835	H ₂ N		, AM	99	3,87	451,34
2836	H ₂ N		· HN	99	3,88	451,34

,

15

20

25

# PROPRIETES PHARMACOLOGIQUES DES PRODUITS DE L'INVENTION

Les composés de la présente invention peuvent et ont été testés en ce qui concerne leur affinité pour différents sous-types de récepteurs de la somatostatine selon les procédures décrites ci-après.

Etude de l'affinité pour les sous-types de récepteurs de la somatostatine humaine :

L'affinité d'un composé de l'invention pour les sous-types de récepteurs de la somatostatine 1 à 5 (sst₁, sst₂, sst₃, sst₄ et sst₅, respectivement) est déterminée par la mesure de l'inhibition de la liaison de [¹²⁵I-Tyr¹¹]SRIF-14 à des cellules transfectées CHO-K1.

Le gène du récepteur sst₁ de la somatostatine humaine a été cloné sous forme d'un fragment génomique. Un segment *Pst*I-XmnI de 1,5 Kb contenant 100 pb de la région 5' non transcrite, 1,17 Kb de la région codante en totalité, et 230 bp de la région 3' non transcrite est modifié par l'addition du linker Bg1II. Le fragment d'ADN résultant est souscloné dans le site *BamH*I d'un pCMV-81 pour donner le plasmide d'expression chez les mammifères (fourni par Dr. Graeme Bell, Univ. Chicago). Une lignée de cellules clonées exprimant de façon stable le récepteur sst₁ est obtenue par transfection dans des cellules CHO-K1 (ATCC) grâce à la méthode de co-précipitation calcium phosphate. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI 1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en cercle, et multipliées en culture.

Le gène du récepteur sst₂ de la somatostatine humaine, isolé sous forme d'un fragment génomique d'ADN de 1.7 Kb BamHI-HindIII et souscloné dans un vecteur plasmidique pGEM3Z (Promega), a été fourni par le Dr. G. Bell (Univ. of Chicago). Le vecteur d'expression des cellules de mammifères est construit en insérant le fragment BamH1-HindII de 1,7 Kb dans des sites de restriction endonucléase compatibles du plasmide pCMV5. Une lignée de cellules clonées est obtenue par transfection dans des cellules CHO-K1 grâce à la méthode de co-précipitation calcium phosphate. Le plasmide pRSV-neo est inclus comme marqueur de sélection.

15

20

25

30

35

Le récepteur sst₃ est isolé comme fragment génomique, et la séquence codante complète est contenue dans un fragment BamHI/HindIII de 2,4 Kb. Le plasmide d'expression chez les mammifères, pCMV-h3, est construit par insertion du fragment NcoI-HindIII de 2,0 Kb dans le site EcoR1 du vecteur pCMV après modification des terminaisons et addition de linkers EcoR1. Une lignée de cellules clonées exprimant de façon stable le récepteur sst₃ est obtenue par transfection dans des cellules CHO-K1 (ATCC) par la méthode de co-précipitation au phosphate de calcium. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI-1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en cercle, et multipliées en culture.

Le plasmide d'expression du récepteur sst₄ humain, pCMV-HX, a été fourni par le Dr. Graeme Bell (Univ. Chicago). Ce vecteur contient le fragment génomique codant pour le récepteur sst₄ humain de 1,4 Kb *NheI-NheI*, 456 pb de la région 5' non transcrite, et 200 pb de la région 3' non transcrite, cloné dans les sites *XbaI/EcoR1* de PCMV-HX. Une lignée de cellules clonées exprimant de façon stable le récepteur sst₄ est obtenue par transfection dans des cellules CHO-K1 (ATCC) par la méthode de coprécipitation au phosphate de calcium. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI 1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en cercle, et multipliées en culture.

Le gène correpondant au récepteur sst₅ humain, obtenu par la méthode PCR en utilisant un clone génomique λ comme sonde, a été fourni par le Dr. Graeme Bell (Univ. Chicago). Le fragment PCR résultant de 1,2 Kb contient 21 paires de bases de la région 5' non transcrites, la région codante en totalité, et 55 pb de la région 3' non transcrite. Le clone est inséré dans un site EcoR1 du plasmide pBSSK(+). L'insert est récupéré sous la forme d'un fragment *Hind*III-XbaI de 1,2 Kb pour sousclonage dans un vecteur d'expression chez les mammifères, pCVM5. Une lignée de cellules clonées exprimant de façon stable le récepteur sst₅ est obtenue par transfection dans des cellules CHO-K1 (ATCC) par la méthode de co-précipitation au phosphate de calcium. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI 1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en ceréle, et multipliées en culture.

Les cellules CHO-K1 exprimant de façon stable l'un des récepteurs sst humain sont cultivées dans un milieu RPMI 1640 contenant 10% de sérum foetal de veau et 0,4 mg/ml de généticine. Les cellules sont collectées avec de l'EDTA 0,5 mM et centrifugées à 500 g pendant environ 5 min à environ 4 °C. Le centrifugat est re-

15

20

suspendu dans un milieu tampon 50 mM Tris à pH 7,4 et centrifugé deux fois à 500 g pendant environ 5 min à environ 4 °C. Les cellules sont lysées par sonication et centrifugées à 39000 g pendant environ 10 min à 4 °C. Le centrifugat est re-suspendu dans le même milieu tampon et centrifugé at 50000 g pendant 10 min à environ 4 °C et les membranes dans le centrifugat obtenu sont stockées à - 80 °C.

Des tests d'inhibition compétitive de liaison avec [¹²⁵I-Tyr¹¹]SRIF-14 sont effectués en double à l'aide de plaques en polypropylène de 96 puits. Les membranes cellulaires (10 μg protéine/puits) sont incubées avec [¹²⁵I-Tyr¹¹]SRIF-14 (0,05 nM) pendant environ 60 min à environ 37 °C dans un milieu tampon 50 mM HEPES (pH 7,4) comprenant 0,2% BSA, 5 mM de MgCl₂, 200 KIU/ml de Trasylol, 0,02 mg/ml de bacitracine et 0,02 mg/ml de fluorure de phénylméthylsulphonyle.

La [125I-Tyr¹¹]SRIF-14 liée est séparée de la [125I-Tyr¹¹]SRIF-14 libre par filtration immédiate à travers des plaques filtres en fibre de verre GF/C (Unifilter, Packard) préimprégné avec 0,1 % de polyéthylènimine (P.E.I.), en utilisant un Filtermate 196 (Packard). Les filtres sont lavés avec du tampon 50 mM HEPES à environ 0-4 °C pendant environ 4 secondes et leur radioactivité est déterminée à l'aide d'un compteur (Packard Top Count).

La liaison spécifique est obtenue en soustrayant la liaison non spécifique (déterminée en présence de 0,1 µM SRIF-14) de la liaison totale. Les données relatives à la liaison sont analysées par analyse en régression non-linéaire assistée par ordinateur (MDL) et les valeurs des constantes d'inhibition (Ki) values sont déterminées.

La détermination du caractère agoniste ou antagoniste d'un composé de la présente invention est effectuée à l'aide du test décrit ci-après.

Test fonctionnel: Inhibition de la production d'AMPc intracellulaire:

Des cellules CHO-K1 exprimant les sous-types de récepteurs de la somatostatine humaine (SRIF-14) sont cultivées dans des plaques à 24 puits dans un milieu RPMI 1640 avec 10% de sérum foetal de veau et 0,4 mg/ml de généticine. Le milieu est changé le jour précédant l'expérience.

Les cellules à raison de 10⁵ cellules/puits sont lavées 2 fois avec 0,5 ml de nouveau milieu RPMI comprenant 0,2 % BSA complété par 0,5 mM de 3-isobutyl-1-méthylxanthine (IBMX) et incubées pendant environ 5 min à environ 37 °C.

La production d'AMP cyclique est stimulée par l'addition de 1 mM de forskoline (FSK) pendant 15-30 minutes à environ 37 °C.

L'effet inhibiteur de la somatostatine d'un composé agoniste est mesuré par l'addition simultanée de FSK ( $1\mu M$ ), SRIF-14 ( $10^{-12}$  M to  $10^{-6}$  M) et du composé à tester ( $10^{-10}$  M à  $10^{-5}$  M).

L'effet antagoniste d'un composé est mesuré par l'addition simultanée de FSK (1µM), SRIF-14 (1 to 10 nM) et du composé à tester (10⁻¹⁰ M to 10⁻⁵ M).

Le milieu réactionnel est éliminé et 200 ml de HCl 0,1 N sont ajoutés. La quantité d'AMPc est mesurée par un test radioimmunologique (Kit FlashPlate SMP001A, New England Nuclear).

#### Résultats :

15

Les tests effectués selon les protocoles décrits ci-dessus ont permis de montrer que les produits de formule générale (I) définie dans la présente demande ont une bonne affinité pour au moins l'un des sous-types de récepteurs de la somatostatine, la constante d'inhibition K_i étant inférieure au micromolaire pour certains des composés exemplifiés, et en particulier pour les produits repris dans le tableau ci-après.

Formule du composé		
CF ₃	K _i (nM) < 200	
N CI NO ₂	< 200	
N N N N N N N N N N N N N N N N N N N	< 200	
N N N N N N N N N N N N N N N N N N N	· < 200	
N. N. N. N. F. F. F.	< 200	

Formule du composé	K _i (nM)
	< 200
N CI CI	< 200
N S P F F	< 200
N N N N N N N N N N N N N N N N N N N	< 200
	< 200

Outre les composés dans les tableaux qui précèdent, chacun des composés des exemples 2827 à 2836 présente également une constante  $K_i$  inférieure à 200 nM.

## Revendications

1. Composé caractérisé en ce qu'il correspond :

à la formule

dans laquelle:

- R2 représente le radical

et R5 représente le radical

- R2 représente le radical

- R2 représente le radical

et R5 représente le radical

- R2 représente le radical!

et R5 représente le radical

- R2 représente le radical

et R5 représente le radical

et R5 représente le radical. - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical et R5 représente le radical - R2 représente le radical - R2 représente le radical et R5 représente le radical

- R2 représente le radical

et R5 représente le radical

- R2 représente le radical et R5 représente le radical



- R2 représente le radical et R5 représente le radical



- R2 représente le radical et R5 représente le radical

- R2 représente le radical

et R5 représente le radical



- R2 représente le radical

et R5 représente le radical

et R5 représente le radical

- R2 représente le radical

- R2 représente le radical

et R5 représente le radical

- R2 représente le radical enfin

et R5 représente le radical



, ou

et P5

- R2 représente le radical



et R5 représente le radical

• à la formule

dans laquelle:

- R10 représente

et R3 représente

- R10 représente

et R3 représente

- R10 représente

- R10 représente

- R10 représente

H₂N N

, R2 représente

et R3 représente

H₂N N

, R2 représente

et R3 représente

H₂N N

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

et R3 représente

, R2 représente

- R10 représente

à la formule

dans laquelle .:

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente.

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

, ou enfin

à la formule

dans laquelle:

- R10 représente :

et R3 représente

$$H_2N$$
 $N$ 

- R10 représente

, R2 représente et R3 représente

$$H_2N$$

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

à la formule

dans laquelle:

10

, ou enfin

- R10 représente

et R3 représente

à la formule

dans laquelle:

- R10 représente

, R2 représente

et R3 représente

- R10 représente

, R2 représente

et R3 représente

dans laquelle R10 représente

à la formule

représente

$$R10$$
 $R2$ 
 $N$ 
 $R3$ 
 $R3$ 
 $R10$ 

10

dans laquelle:

- R10 représente

et R3 représente

- R10 représente

, R2 représente

• ou enfin à la formule

dans laquelle:

ou sel d'un de ces composés.

2. Composé selon la revendication 1, caractérisé en ce qu'il répond à la formule

ou sel d'un de ces composés.

3. A titre de médicament, un composé selon la revendication 1 ou 2 ou un sel pharmaceutiquement acceptable dudit composé.

15

- 4. Composition pharmaceutique comprenant, à titre de principe actif, un composé selon la revendication 1 ou 2 ou un sel pharmaceutiquement acceptable dudit composé.
- 5. Utilisation d'un composé selon la revendication 1 ou 2 ou d'un sel pharmaceutiquement acceptable dudit composé pour préparer un médicament destiné à traiter les états pathologiques ou les maladies dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s).
- 6. Utilisation selon la revendication 5, caractérisée en ce que les états pathologiques ou les maladies à traiter sont choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires, la maladie de Cushing, les gonadotrophinomes et les prolactinomes, les effets secondaires cataboliques des glucocorticoïdes, le diabète insulinodépendant, la rétinopathie diabétique, la néphropathie diabétique, le syndrome X, le phénomène de Dawn, l'angioplastie, l'hyperthyroïdie, le gigantisme. l'angiopathie. gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, le VIPome, l'insulinome, la nésidioblastose, l'hyperinsulinémie, le glucagonome, le gastrinome et le syndrome de Zollinger-Ellison, le GRFome ainsi que le saignement aigu des varices œsophagiennes, les ulcères, le reflux gastroœsophagien, le reflux gastroduodénal, la pancréatite, les fistules entérocutanées et pancréatiques mais aussi les diarrhées, les diarrhées réfractaires du syndrome d'immunodépression acquise, la diarrhée chronique sécrétoire, la diarrhée associée avec le syndrome de l'intestin irrité, les diarrhées induites par la chimiothérapie, les troubles liés au peptide libérateur de gastrine, les pathologies secondaires aux greffes intestinales, l'hypertension portale ainsi que les hémorragies des varices chez des malades avec cirrhose, l'hémorragie gastro-intestinale, l'hémorragie de l'ulcère gastroduodénale, le saignement des vaisseaux greffés, la maladie de Crohn, les scléroses systémiques, le dumping syndrome, le syndrome du petit intestin, l'hypotension, la sclérodermie et le carcinome thyroïdien médullaire, les maladies liées à l'hyperprolifération cellulaire comme les cancers et plus particulièrement le cancer du sein, le cancer de la prostate, le cancer thyroïdien ainsi que le cancer pancréatique et le cancer colorectal, les fibroses et plus particulièrement la fibrose du rein, la fibrose du foie, la fibrose du poumon, la fibrose de la peau, également la fibrose du système nerveux central ainsi que celle du nez et la fibrose induite par la chimiothérapie, et, dans d'autres domaines thérapeutiques, les céphalées y compris les céphalées associées aux tumeurs hypophysaires, les douleurs, les désordres inflammatoires comme l'arthrite, les accès de panique, la chimiothérapie, la cicatrisation des plaies, l'insuffisance rénale résultant d'un retard de croissance, l'hyperlipidémie, l'obésité et le retard de croissance lié à l'obésité, le retard de croissance utérin, la dysplasie du squelette, le syndrome de Noonan, le syndrome d'apnée du sommeil, la

maladie de Graves, la maladie polykystique des ovaires, les pseudokystes pancréatiques et ascites, la leucémie, le méningiome, la cachexie cancéreuse, l'inhibition des H pylori, le psoriasis, le rejet chronique des allogreffes ainsi que la maladie d'Alzheimer et enfin l'ostéoporose.

7. Utilisation selon la revendication 6, caractérisée en ce que les états pathologiques ou les maladies à traifer sont choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires ou les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, et les saignements gastro-intestinaux.