Nume si prenume	
Grupa:	

Valoare	1p	2p						
Exercitiu	1	2	3	4	5	6	7	8
Punctaj								

Test 1 AA

- 1. Fie $A = \{f_h\}$ unde f_h este problema terminarii programelor. Demonstrati urmatoarea afirmatie: $RE \setminus A \neq \emptyset$.
- 2. Fie problema

$$f_e(M) = \begin{cases} 1 & \text{daca } M(enc(M)) \text{ se termina} \\ 0 & \text{altfel} \end{cases}$$

Demonstrati ca $f_e \notin R$.

- 3. Gasiti complexitatea pentru recurenta T(n) = 4T(n/4) + 1 folosind metoda arborilor (metoda iteratiei).
- 4. Demonstrati marginea gasita prin metoda substitutiei.
- 5. Gasiti un exemplu de functi
i $f,\,g$ astfel incatf(n)=O(g(n)) si
 $g(n)=\Omega(f(n)).$
- 6. Calculati timpul de executie pentru urmatorul raspuns. program, folosind notatii asimptotice:

```
A(int \ v, int \ n) \{ \\ if(v[0] == 0) \\ return \ 1; \\ else \{ \\ int \ s = 0; \\ for(int \ i = 0; i < n; i++) \\ s+ = v[i]; \\ return \ s; \\ \}
```

- 7. Definiti notiunea de problema NP-completa.
- 8. Fie Q o problema din NP, si M o Masina Turing determinista/conventionala care o rezolva. Care afirmatii sunt adevarate si care sunt false? Justificati fiecare raspuns:¹
 - (i) Daca M ruleaza in $O(n^2 \log n)$, atunci $Q \in P$.
 - (ii) Daca M ruleaza in $O(2^n)$, atunci $Q \notin P$.
 - (iii) Daca M ruleaza in $O(2^n)$, atunci Q este NP-completa.
 - (iv) Daca SAT $\leq_p Q$, atunci Q este NP-completa.

 $^{^1\}mathrm{Punctajul}$ la acest exercitiu este acordat pe justificarea fiecarui raspuns.