Alma Mater Studiorum – University of Bologna Department of Computer Science and Engineering Master's Degree in Artificial Intelligence

Master Thesis in Natural Language Processing

SYNBA: A CONTEXTUALIZED SYNONYM-BASED ADVERSARIAL ATTACK FOR TEXT CLASSIFICATION

Supervisor: Prof. Paolo Torroni

Co-supervisors: Dr. Federico Ruggeri

Dr. Giulia De Poli

Candidate: Giuseppe Murro

Introduction

Adversarial Machine Learning

- Intersection of Machine Learning and Cybersecurity
- Aims to trick ML models by providing deceptive input
- Two kinds of Artificial Intelligence Attacks
 - Data poisoning
 - Evasion or Adversarial Attack

Successful textual adversarial example

It is a carefully designed instance with small **perturbations** that cause a machine learning model to make a false prediction, while theinstance is still correctly classified by a human observer

Paradigm shift: from CV to NLP

- Adversarial examples originated in the Computer Vision community
- It is hard to guarantee that the **quality** of the generated textual adversarial examples is **high**
- The **robustness** of ML models can be improved by including high-quality adversarial examples in the training set

Adversarial attacks on Text Classification

Attacks from literature

- They can be classified according to the semantic granularity of the perturbation
- Researchers proposed special attacks in the text domain to maintain semantic consistency and syntactic correctness
- In practice, they frequently violate linguistic constraints

GRANULARITY	ATTACK METHODS	ADVERSARIAL EXAMPLES GENERATED
CHARACTER-LEVEL	DeepWordBug Introduce typos for some words	Original (POS): This film has a special place in my heart Perturbed (NEG): This film has a special place in my herat
WORD-LEVEL	TextFooler Find synonyms exploting cosine similarity between word embeddings	Original (POS): generates an enormous feeling of empathy for its characters Perturbed (NEG): leeds an enormous foreboding of empathy for its fonts
	BERT-Attack (BAE) Use BERT as MLM for word replacement	Original (NEG): bears is even worse than i imagined a movie ever could be. Perturbed (POS): bears is even greater than i imagined a movie ever could be.
SENTENCE-LEVEL	SCPNs Use an encoder-decoder model to produce a paraphrase of the original sentence	Original (NEG): I'd have to say the director is the big problem here Perturbed (POS): By the way, you know, the director is the big problem

Proposed solution

SynBA

- TextFooler and BERT-Attack suffer respectively from a lack of context and semantic similarity
- We tried to combine their strengths in a new recipe called **SynBA** (Synonym-Based adversarial Attack)

Transformation

- For each selected word, replacement candidates are obtained from a weighted function
- The rank of candidates for word replacement is computed by summing up three normalized scores
- The weights were defined after a **hyperparameter tuning** phase

SynBA-Score = λ_1^* MLM-Score + λ_2^* Thesaurus-Score + λ_3^* WordEmb-Score

The confidence of candidates obtained by **MLM** (BERT) in a descending order

WordNet is used to retrieve synonyms and antonyms of the original word

The **cosine similarity** is computed between the reference words and the top closest embeddings

Proposed solution

Constraints

- Constraints are used to avoid the generation of adversarial examples that are too different from the original input text
 - Part-of-speech constraints perturbations to only swap words with the same part of speech
 - Max modification rate limits the number of words that can be perturbed in the input text to a maximum of 20% of total words
 - Word embedding distance throws away perturbations by words with a cosine similarity lower than 0.6
 - Semantic Textual Similarity checks whether the similarity between the original and the perturbed text is higher than a threshold t = 0.7 using a Sentence-BERT pre-trained model

Empirical evaluation

TextAttack 💂

- Python framework that provides implementations for 19 adversarial attacks methods from the literature
- Directly integrated with
 HuggingFace's transformers

Components

- goal function, determines whether the attack is successful in terms of the model outputs
- constraints, determine if a perturbation is valid
- transformation, given an input, generates a set of potential perturbations
- search method, selects promising perturbations from a set of transformations

Experimental results

Datasets

- Sampled 1000 examples from two **movie review** datasets
- IMDB avg. 229 words (± 162) per example
- Rotten Tomatoes avg. 19 words (±9) per example

Target models

• **BERT-base** uncased model fine-tuned according to the dataset used as input

Quality assessment on IMDB

Metric	TextFooler	BERT-Attack	SynBA
Attack success rate (†)	98.39	65.24	92.7
Original/perturbed perplexity (\(\)	41.48/ 63.0	41.78/ 48.4	41.5/ 50.74
Sentence-BERT similarity (↑)	0.928	0.964	0.944
Contradiction rate (↓)	0.053	0.164	0.049

Quality assessment on Rotten Tomatoes

Metric	TextFooler	BERT-Attack	SynBA
Attack success rate (↑)	89.44	61.92	68.56
Original/perturbed perplexity (↓)	72.58/ 154.52	76.96/ 99.91	72.05/ 112.08
Sentence-BERT similarity (↑)	0.805	0.776	0.901
Contradiction rate (\downarrow)	0.196	0.536	0.123

Human evaluation

Human prediction consistency assessment

- Three human annotators were asked to evaluate 100 successful adversarial examples for each attack method
- The task is to decide if the perturbed sample is consistent with the original one

Annotation interface

Survey results

Some adversarial examples

Method	Label	Adversary
Original	POS (99.95%)	peppered with witty dialogue and inventive moments.
TextFooler	NEG (97.79%)	riddled with witty dialogue and inventive min.
BERT-Attack	FAILED	charming with easy ways and dry wit.
SynBA	NEG (99.88%)	riddled with witty dialogue and inventive moments.
Original	POS (99.95%)	the most ingenious film comedy since being john malkovich.
TextFooler	NEG (95.55%)	the most malignant film comedy since being john malkovich.
BERT-Attack	NEG (98.28%)	the most difficult film comedy since being john malkovich.
SynBA	NEG (92.26%)	the most artful film comedy since being john malkovich.
Original	NEG (99.94%)	an unsophisticated sci-fi drama that takes itself all too seriously.
TextFooler	POS (99.88%)	an impressionable sci-fi drama that takes itself all too attentively.
BERT-Attack	POS (98.36%)	an awesome sci-fi drama that takes itself all too soon.
SynBA	FAILED	an unsophisticated sci-fi tragedy that took itself all too heavily.

Conclusions

Limitations

- If the MLM-Score is much higher than the others in the final SynBA score, the best candidate is likely to be an antonym or inconsistent with the original counterpart
- Assessment performed only on movie reviews datasets
- Contradiction rate metric seems to be promising in the context of sentiment analysis, but it could be less informative for other tasks

Future developments

- Extend SynBA to **other tasks** like machine translation, question answering, and text summarization
- Add a new constraint which penalizes the use of words that lead to a contradiction
- Exploit enhanced language models to generate more semantically related perturbations

Thank you all for your attention!