1 2	3	4	5	6	7	8	9	0	
00	Ø	0	\bigcirc	0	0		0	0	
00	0	\circ	\circ		0		0	\circ	
00	\circ	Ø	\circ	\bigcirc	\circ	\bigcirc	\circ	\bigcirc	
00		\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	
00	0	\circ	\bigcirc	0	\circ	0	\circ	\bigcirc	
00	Ø	\circ	\circ	0	\bigcirc	\bigcirc	0	\bigcirc	
\cap	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	

Tropper

Solid State Physics, Minitest 6 March 31st 2016 Good luck!

1. True or false?

- (a) Bands with a higher curvature have a higher effective mass. (10 pt)
- (b) Conductivity of holes is opposite to the conductivity of electrons. (10 pt)

Aaaa

2. Fermi level of a doped semiconductor

Consider a semiconductor with all parameters known, so $m_e, m_h, E_G, E_A, E_D, N_A, N_D$ are all given.

(a) Draw schematically the density of states G(E) for such a semiconductor, denote all material parameters on the plot. (10 pt)

H2/10 mor/d

small band writing

This is low I want wit if I wint will my had. B4 least this is hun I least it at shad

(c) Compute the value of E_F at T=0. (20 pt) Justify your answer. (15 pt)

mon man de de la mon

(d) Compute the value of E_F when $N_A = 0$ and T = 0 (while $N_D \neq 0$). (10 pt) Justify your answer. (10 pt) Hint: in this limit the donor band plays a role similar to the valence band.

man montanno boldo vidalo

In the questions (b), (c), and (d) use the charge conservation to derive the answers. Reminder: the concentration of conduction electrons in the Boltzmann limit is $n_e = N_C \exp[-(E_G - E_F)/kT]$, where $N_C \sim (m_e T)^{3/2}$ (and a similar expression holds for holes).

defensite (sit, *)

not-2+ yr

1 2									
\circ	0	0	0	\circ	0	\bigcirc	0	\circ	
O	0	\circ	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\circ	
\circ	0	\circ	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\circ	
\circ	0	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\circ	\circ	
\circ	0	\circ	\bigcirc	\bigcirc	0	\bigcirc	\circ	\circ	
\circ	0	\circ	\bigcirc	\bigcirc	\circ		\bigcirc	\circ	
\cap	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	(4)	

NUMBER THE PARTIES.

Solid State Physics, Minitest 6 March 31st 2016 Good luck!

1. True or false?

- (a) Bands with a higher curvature have a higher effective mass. (10 pt)
- (b) Conductivity of holes is opposite to the conductivity of electrons. (10 pt)

Mr-Ha

2. Fermi level of a doped semiconductor

Consider a semiconductor with all parameters known, so $m_e, m_h, E_G, E_A, E_D, N_A, N_D$ are all given.

(a) Draw schematically the density of states G(E) for such a semiconductor, denote all material parameters on the plot. (10 pt)

Not atall

(c) Compute the value of E_F at T=0. (20 pt) Justify your answer. (15 pt)

125

(d) Compute the value of E_F when $N_A = 0$ and T = 0 (while $N_D \neq 0$). (10 pt) Justify your answer. (10 pt) Hint: in this limit the donor band plays a role similar to the valence band.

MANUESOME

In the questions (b), (c), and (d) use the charge conservation to derive the answers. Reminder: the concentration of conduction electrons in the Boltzmann limit is $n_e = N_C \exp[-(E_G - E_F)/kT]$, where $N_C \sim (m_e T)^{3/2}$ (and a similar expression holds for holes).

Duddin			11 U		UL.				
						7			
	\circ	\circ	0	\circ	0	0	\circ	0	0
\bigcirc		\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ
\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\circ
\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\circ	\circ	\bigcirc	\circ
\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	(\circ	\circ	\bigcirc	\circ
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\circ	\circ	\bigcirc
\bigcirc		\bigcirc							

Vaile

Solid State Physics, Minitest 6 March 31st 2016 Good luck!

1. True or false?

- (a) Bands with a higher curvature have a higher effective mass. (10 pt)
- (b) Conductivity of holes is opposite to the conductivity of electrons. (10 pt)

False

2. Fermi level of a doped semiconductor

Consider a semiconductor with all parameters known, so $m_e, m_h, E_G, E_A, E_D, N_A, N_D$ are all given.

(a) Draw schematically the density of states G(E) for such a semiconductor, denote all material parameters on the plot. (10 pt)

law of mass action;
$$np = NcNve^{-E_G/k_BT}$$
 intrinsic: $n = p = \sqrt{NcNv}e^{-E_G/2k_BT}$
 $n = Nce^{(a-E_G)/k_BT}$
 $p = Nve^{-a/k_BT}$
 $Nv = e^{(2a-E_G)/k_BT}$
 $Nv = e^{(2a-E_G)/k_BT}$

(c) Compute the value of E_F at T=0. (20 pt) Justify your answer. (15 pt)

$$T=0$$
: valence band completely filled. if $N_D > N_A$, acceptor level also completely filled and donor level partially $\longrightarrow E_F = E_D$.

If $N_D < N_A$, all donor electrons go to acceptor levels which becomes partially filled $\longrightarrow E_F = M_A$ E_A

(d) Compute the value of E_F when $N_A = 0$ and T = 0 (while $N_D \neq 0$). (10 pt) Justify your answer. (10 pt) Hint: in this limit the donor band plays a role similar to the valence band.

In the questions (b), (c), and (d) use the charge conservation to derive the answers. Reminder: the concentration of conduction electrons in the Boltzmann limit is $n_e = N_C \exp[-(E_G - E_F)/kT]$, where $N_C \sim (m_e T)^{3/2}$ (and a similar expression holds for holes).

[aw of mass action:
$$np = NcN_V e^{-Ee/hgT}$$
. [whinsic: $n=p = \sqrt{NcN_V e^{-Ee/hgT}}$]

 $n=N_C e^{(u-Ee)/hgT}$
 $N_C = (2a-Ee)/hgT$
 $N_V = e^{-h/hgT}$
 $N_V = e^{-h/hgT}$

(asing definitions of N_V and N_C)

(c) Compute the value of E_F at T=0. (20 pt) Justify your answer. (15 pt)

T=0: valence band completely filled. If $N_P > N_A$, acceptor level also completely filled, and donor level partially \rightarrow $E_F = E_D$. If $N_D < N_A$, all donor electrons go to acceptor level which becomes partially filled \rightarrow $E_F = E_A$

(d) Compute the value of E_F when $N_A=0$ and T=0 (while $N_D\neq 0$). (10 pt) Justify your answer. (10 pt) Hint: in this limit the donor band plays a role similar to the valence band.

between Ep and Ef.

In the questions (b), (c), and (d) use the charge conservation to derive the answers. Reminder: the concentration of conduction electrons in the Boltzmann limit is $n_e = N_C \exp[-(E_G - E_F)/kT]$, where $N_C \sim (m_e T)^{3/2}$ (and a similar expression holds for holes).

1	2	3	4	5	6	7	8	9	0
0	0	0	0	\bigcirc	\circ	0	\bigcirc	0	\circ
\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\circ
\bigcirc	\bigcirc		0	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\circ
0	\circ	\bigcirc	\bigcirc		\circ	\circ	\bigcirc	\bigcirc	\circ
\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\circ	\circ	\bigcirc	\circ
\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\circ
\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

NUMBER TO THE TOTAL .

Adrigan

Solid State Physics, Minitest 6 March 31st 2016 Good luck!

1. True or false?

- (a) Bands with a higher curvature have a higher effective mass. (10 pt)
- (b) Conductivity of holes is opposite to the conductivity of electrons. (10 pt)

False

2. Fermi level of a doped semiconductor

Consider a semiconductor with all parameters known, so $m_e, m_h, E_G, E_A, E_D, N_A, N_D$ are all given.

(a) Draw schematically the density of states G(E) for such a semiconductor, denote all material parameters on the plot. (10 pt)

