Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант <u>14</u>

Виконав студент: ІП-15 Кондрацька Соня Леонідівна

Перевірив:

Лабораторна робота № Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 14

Задача

Обчислити площу фігури S, обмежену функціями $f1(x) = 1 / \cos(x)$ і $f2(x) = 3 - x^2$

1) Постановка задачі

Дано дві функції. За допомогою методу трапецій визначаємо площу обмежену цими функціями.

2) Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Початкова точка інтегрування	Раціональне число	a	Вхідні дані
Кінцева точка інтегрування	Раціональне число	b	Вхідні дані
Кількість частин на які ми розбили графік	Натуральне число	n	Вхідні дані
Лічильник	Натуральне число	i	Проміжні дані
Крок розбиття	Раціональне число	h	Проміжні дані
Площа	Раціональне додатне число	S	Результат
Інтеграл першої функції	Раціональне число	f1	Проміжні дані
Інтеграл другої функції	Раціональне число	f2	Проміжні дані

Задаємо значення змінним. Вираховуємо крок розбиття та часткові значення інтегралів які знаходимо за допомогою метода трапецій.

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \cdot \left(f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right)$$

За допомогою арифметичних циклів знаходимо значення суми елементів потрібних для визначення інтегралів функцій.

Використовуємо функцію ром для знаходження числа в заданому степені.

Використовуємо функцію abs для визначення площі обмеженої графіками.

Використовуємо тригонометричні функції : cos(x).

3) Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Введення змінних. Задаємо значення змінних.
- Крок 3. Розраховуємо значення кроку розбиття.
- Крок 4. Деталізуємо дію арифметичного циклу для знаходження інтегралу першої функції.
- Крок 5. Деталізуємо дію арифметичного циклу для знаходження інтегралу другої функції.
- Крок 6. Розраховуємо значення суми.

Псевдокод

Крок 1.

Початок

Введення початкових значень a, b, n.

Розраховуємо значення кроку розбиття.

Арифметичний циклу для знаходження інтегралу першої функції.

Арифметичний циклу для знаходження інтегралу другої функції.

Визначення суми.

Кінець

Крок 2.

початок

a := -1.029;

b:=1.029;

n = 10000;

Розраховуємо значення кроку розбиття.

Арифметичний циклу для знаходження інтегралу першої функції.

Арифметичний циклу для знаходження інтегралу другої функції.

```
Визначення суми.
   кінець
Крок 3.
   початок
      a := -1.029;
      b = 1.029;
      n = 10000;
      h = (b - a) / n;
      Арифметичний циклу для знаходження інтегралу першої функції.
     Арифметичний циклу для знаходження інтегралу другої функції.
      Визначення суми.
   кінець
Крок 4.
   початок
      a := -1.029;
      b = 1.029;
      n = 10000;
      h := (b - a) / n;
     f1 = 1/\cos(a) + 1/\cos(b);
        повторити
          для і від і1 до і2
             f1 += 2 * (1/\cos(a + i * h));
        все повторити
     f1 *= h / 2;
     Арифметичний циклу для знаходження інтегралу другої функції.
      Визначення суми.
   кінець
Крок 5.
   початок
      a := -1.029;
      b = 1.029;
      n = 10000:
      h := (b - a) / n;
      f1 = 1/\cos(a) + 1/\cos(b);
        повторити
           для і від і1 до і2
             f1 += 2 * (1/\cos(a + i * h));
        все повторити
     f1 *= h / 2;
     f2 = (3-pow(a,2))+(3-pow(b,2));
         повторити
           для і від і1 до і2
              f2 += 2 * (3-pow(b,2));
         все повторити
     f2 *= h / 2;
```

Визначення суми.

кінець

```
Крок 6.
   початок
      a := -1.029;
      b = 1.029;
      n = 10000;
      h := (b - a) / n;
     f1 = 1/\cos(a) + 1/\cos(b);
        повторити
          для і від і1 до і2
            f1 += 2 * (1/\cos(a + i * h));
        все повторити
     f1 *= h / 2;
     f2 = (3-pow(a,2))+(3-pow(b,2));
        повторити
          для і від і1 до і2
             f2 += 2 * (3-pow(b,2));
        все повторити
      f2 *= h / 2;
      S = abs(f2 - f1);
   кінець
```

4) Блок-схема

Крок 2

5) Випробування

5) Випробування Блок	Дія	
	Початок	
2	a:= -1.029; b:= 1.029; n:= 10; h = 0.2058;	
3	f1 =1/cos(a) + 1/cos(b)= 3.87841; повторити для і від 1 до 9 f1 += 2 * (1/cos(a + i * h))=6.82011; все повторити	
	повторити для і від 1 до 9 f1=9.27293; все повторити	
	повторити для і від 1 до 9 f1=11.4552; все повторити	
	повторити для і від 1 до 9 f1=13.4983; все повторити	
	повторити для і від 1 до 9 f1=15.4983; все повторити	
	повторити для і від 1 до 9 f1=17.5414; все повторити	
	повторити для і від 1 до 9 f1=19.7237; все повторити	
	повторити для і від 1 до 9 f1=22.1765; все повторити	
	повторити	

Основи програмування – 1. Алгоритми та структури даних

	для і від 1 до 9 f1=25.1182;
	все повторити
	f1 *= h / 2=2.58466278;
4	f2 = (3-pow(a,2))+(3-pow(b,2))=3.882318;
	повторити
	для і від 1 до 9 f2 += 2 * (3-pow(b,2))=8.527;
	все повторити
	повторити
	для і від 1 до 9
	f2 =13.7646;
	все повторити
	повторити для і від 1 до 9
	f2 =19.4258;
	все повторити
	повторити
	для і від 1 до 9 f2 =25.3411;
	все повторити
	повторити
	для і від 1 до 9
	f2 =31.3411;
	все повторити
	повторити
	для і від 1 до 9 f2 =37.2564;
	все повторити
	повторити
	для і від 1 до 9
	f2 =42.9176;
	все повторити
	повторити для і від 1 до 9
	f2 = 48.1552;
	все повторити
	повторити
	для і від 1 до 9 £2 _52 7000:
	f2 =52.7999; все повторити
	f2 *= h / 2=5.43310971;
5	S = abs(f2 - f1) = 2.8484;
	Кінець

6) Висновки

Ми дослідили особливості роботи арифметичних циклів та набули практичних навичок їх використання під час складання програмних специфікацій.

В результаті виконання лабораторної роботи ми отримали алгоритм для визначення площі обмеженої функціями за допомогою арифметичного циклу, розділивши задачу на 6 кроків: визначення основних дій, введення змінних, задання значення змінним, деталізування дії арифметичного циклу для знаходження інтегралу першої функції, деталізування дії арифметичного циклу для знаходження інтегралу другої функції, розраховування значення суми.