高斯和伯努利朴素贝叶斯--连续特征

L先生AI课堂

高斯朴素贝叶斯

Gaussian Naive Bayes是指当特征属性为连续值时,而且分布服从高斯分布,那么在计算P(x|y)的时候可以直接使用高斯分布的概率公式:

$$g(x,u,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-u)^2}{2\sigma^2}}$$

$$P(x_i \mid y_k) = g(x_i, u_{i,y_k}, \sigma_{i,y_k})$$

• 因此只需要计算出各个类别中此特征项划分的各个均值和标准差

	1	2	3	4	5	6	7	8	9	10
x1	1.1	1.2	1.3	2.1	2.2	2.3	2.4	3.1	3.1	4.1
x2	1	1	1	2	2	2	2	3	3	4
У	-1	1	1	-1	-1	-1	1	1	1	1

$$g(x,u,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-u)^2}{2\sigma^2}}$$

$$P(x_i \mid y_k) = g(x_i, u_{i,y_k}, \sigma_{i,y_k})$$

$$U(x1|y=1)=(1.2+1.3+2.4+3.1+3.1+4.1)/6=u11$$

$$\sigma (x1|y=1) = ((1.2 - u11)^2 + (1.3 - u11)^2 + (2.4 - u11)^2 + (3.1 - u11)^2 + (1.2 - u1)^2 + (4.1 - u1)^2)/6$$

伯努利朴素贝叶斯

• Bernoulli Naive Bayes是指当**特征属性为连续值时**,而且分布服从伯努利分布,那么在计算P(x|y)的时候可以直接使用伯努利分布的概率公式:

$$P(x_k \mid y) = P(1 \mid y)x_k + (1 - P(1 \mid y))(1 - x_k)$$

• 伯努利分布是一种离散分布,只有两种可能的结果。1表示成功,出现的概率为p; 0表示失败,出现的概率为q=1-p.

	1	2	3	4	5	6	7	8	9	10
x1	1.1	1.2	1.3	0	0	0	0	0	0	0
x2	1	1	1	0	0	0	0	0	0	0
У	-1	1	1	-1	-1	-1	1	1	1	1

$$P(x_k \mid y) = P(1 \mid y)x_k + (1 - P(1 \mid y))(1 - x_k)$$

$$P(x=1.1|y=1)=2/6=1/3$$