Experiment Proposals

Saiful Azad

Detecting Intruder Path Using Nodes Positions

- Instruments Needed:
 - No. of nodes: 10
 - Sink: 1
- Scenario Descriptions:
 - Every node knows its position info
 - After detecting a intruder a node sends its position info to the sink via packet
 - We can compare various protocols like MSRP,
 MSRP with FEC, Restricted Flooding etc in this scenario
 - We may also need an engine boat which will continuously create noise
 - We can set up a story board for intruder detection
- Outcome:
 - We can analyze the performance and can come to a conclusion that which protocol is suitable for this kind of scenario
 - We can also demonstrate a comparison between the results we got from simulations and in experiments

Investigating High Throughput Routing Metrics for Underwater Acoustic Networks

- Instruments Needed:
 - No. of nodes: 10
 - Sink: 1
- Scenario Descriptions:
 - Nodes will employ various kind of metrics to find out a high throughput path
 - The metrics we can consider is like
 - Hop Count
 - Packet Pair
 - Round Trip Time (RTT)
 - SNR
 - ETX
 - ETT
 - WCETT, etc...
- Outcome:
 - We can analyze the performance and can come to a conclusion that which metric is suitable for this kind of scenario

Controlling an AUV Movement using a sink and bottom sensors

- Instruments Needed:
 - No. of nodes: 4
 - Sink: 1
 - AUV: 1
- Scenario Descriptions:
 - Every nodes know their position
 - After every random time, a node transmits its position info
 - Based on the position info of multiple nodes,
 AUV can find out its location and move accordingly
- Outcome:
 - It could be the early stage scenario of coastal patrolling
 - We'll learn how we can manage an AUV movement using bottom nodes and surface sink

Thank You

What is your current emotional state?