- Ex 1 Soient I et J deux intervalles et f une bijection de I sur J.
 - a) Montrer que si f est strictement monotone, alors f^{-1} est strictement monotone de même sens.
 - b) Montrer que si f est impaire, alors f^{-1} l'est aussi (en supposant que $x \in I \Rightarrow -x \in I$). Cas où f est paire?
- Ex 2 Soit $f: [2, +\infty[\to [1, +\infty[$ définie par $\forall x \ge 2, \ f(x) = x^2 4x + 5.$ Montrer que f est une bijection et calculer sa réciproque. Tracer les courbes de f et de f^{-1} .
- **Ex 3** Soit $f: x \mapsto \frac{x+1}{x+2}$. Montrer que f réalise une bijection de $\mathbb{R} \setminus (-2)$ dans un ensemble à déterminer et calculer sa réciproque. Tracer les courbes de f et de f^{-1} .
- **Ex 4** Montrer que $f: [0, +\infty[\to \mathbb{R}$ définie par $\forall x > 0, f(x) = \sqrt[3]{\ln x}$ est une bijection dont on donnera la réciproque.
- **Ex 5** Exponentielles et logarithmes de base a. On fixe $a \in \mathbb{R}_+^*$
 - a) Etudier la fonction $\exp_a : x \mapsto \exp_a(x) = a^x$ en discutant sur les valeurs de a.
 - b) Montrer que si $a \neq 1$ \exp_a réalise une bijection de \mathbb{R} sur $]0, +\infty[$ dont on note \log_a la réciproque. Calculer l'expression de $\log_a(x)$ pour x>0, et montrer que les propriétés algébriques de \log_a sont les mêmes que celles de \ln .
 - c) Calculer directement $\log_2\left(128\right),\ \log_3\left(\frac{1}{81}\right),\ \log_{10}\left(1000000\right),\ \log_{10}\left(10^{-6}\right)\ \log_2\left(\sqrt{32}\right),\ \log_{10}\left(500\right).$ Le logarithme en base 10 s'appelle logarithme décimal, et est très utilisé.
- Ex 6 Fonctions hyperboliques réciproques :
 - a) Montrer que la fonction sh réalise une bijection de \mathbb{R} sur \mathbb{R} et calculer l'expression de sa réciproque, que l'on notera argsh. Calculer la dérivée de argsh.
 - b) Même question pour la fonction ch de \mathbb{R}_+ sur $[1, +\infty[$ (fonction notée $\operatorname{argch})$.
 - c) Même question pour la fonction th de \mathbb{R} sur]-1,1[(fonction notée argth).
- **Ex 7** Soit $g: x \mapsto \frac{x^3+1}{x^3-1}$ et $f: x \mapsto \sqrt[3]{g(x)}$
 - a) Préciser l'ensemble de définition \mathcal{D} de g et f, leurs ensembles de dérivabilité et l'expression de la dérivée de g. En déduire le tableau de variations de g puis celui de f
 - b) Montrer que f réalise une bijection de $\mathcal D$ sur $\mathcal D$ et calculer sa bijection réciproque. Que peut-on en déduire sur la courbe de f?
- **Ex 8** Soit $f: x \mapsto \frac{x^3 9x}{2(x^2 1)}$.
 - a) Montrer que f réalise une bijection de]-1,1[sur \mathbb{R} .
 - b) Montrer que $f^{-1}\left(\frac{35}{12}\right)=\frac{1}{2}$, puis calculer $\left(f^{-1}\right)'\left(\frac{35}{12}\right)$.
- **Ex 9** Soient a et b deux réels positifs. Montrer que : $\sqrt{a + \sqrt[3]{a^2b}} + \sqrt{b + \sqrt[3]{ab^2}} = \sqrt{\left(\sqrt[3]{a} + \sqrt[3]{b}\right)^3}$. (On pourra factoriser par $a^{2/3}$ et $b^{2/3}$ dans les premières racines).

Ex 10 Soit
$$A = \sqrt[3]{1 + \sqrt{\frac{152}{27}}} - \sqrt[3]{-1 + \sqrt{\frac{152}{27}}}$$
. Montrer que $A^3 + 5A \in \mathbb{N}$.

PCSI 1 Thiers 2019/2020