ANEXO DE DISEÑO DE HARDWARE

SISTEMAS DE POSICIONAMIENTO DE OBJETOS MEDIANTE LA TECNOLOGÍA BLUETOOTH LOW ENERGY, MODO BEACON

19 de diciembre de 2020

Rubén Arce Domingo Master en automatización y robótica industrial akimbo170@gmail.com

Índice

1	Intr	oducción	5						
2	Emi	nisor beacon							
	2.1	Aspectos a considerar	5						
	2.2	Circuito eléctrico	5						
		2.2.1 Microcontrolador	5						
		2.2.2 Alimentación	5						
	2.3	PCB de control	6						
	2.4	Imágenes reales	7						
3	Rec	eptor beacon o gateway	7						
	3.1	Aspectos a considerar	7						
	3.2	Circuito eléctrico	7						
		3.2.1 Microcontrolador	7						
		3.2.2 Alimentación	8						
	3.3	PCB de control	8						
	3.4	Imágenes reales	9						
	3.5	Conclusiones	9						
ĺn	dice	e de figuras							
	1	Renderizado de PCB del Beacon	6						
	2	PCB del Beacon obtenida con Kicad	6						
	3	Renderizado de PCB del master o gateway	7						
	4	Fuentes de alimentación de la PCB master	8						
	5	Renderizado de PCB del master o gateway	9						
	6		10						
	7	Images reales de la PCB gateway	10						

1. Introducción

Los diseños eléctricos y trazado de las pistas del circuito se han llevado a cabo con Kicad en su versión 5.1.6, se ha empleado este programa debido a que, en primer lugar es de software libre y completamente gratuito y en segundo lugar debido a que puede funcionar en Linux. Además de que es capaz de llevar a cabo cualquier diseño profesional sin problema de licencias o versiones incompatibles.

Todas las PCBs se han llevado a cabo en dos capas con un espesor estándar de 1,6mm y con acabado superficial HASH plomo estaño en los primeros prototipos. En la verisión final se empleará acabado ENIG, o de oro electrolítico para mejorar las especificaciones y durabilidad de la misma.

Se han empleado tanto componentes SMD como through hole y se ha priorizado el precio en la selección de los mismos.

2. Emisor beacon

2.1. Aspectos a considerar

Las premisas para seleccionar el mejor microcontrolador han sido las siguientes:

- 1. Bajo consumo
- 2. Tamaño reducido
- 3. Bluetooth y posibilidad de wifi en caso de eliminar el dispositivo emisor.
- 4. Precio muy competitivo.

2.2. Circuito eléctrico

2.2.1. Microcontrolador

En el caso de microcontrolador se ha optado por un ESP32 de la empresa Espressif (https://www.espressif.com/) debido en gran medida a que dispone de wifi y bluetooth así como de unas excelentes herramientas de desarrollo de software.

2.2.2. Alimentación

Para llevar a cabo la alimentación el microcontrolador y teniendo en cuenta que se han de garantizar los 3,3V en la entrada del micro se ha optado por una batería de Ion-Litio de 1400mAh que además tiene un tamaño reducido. El rango de tensión de la tarjeta va de 12V a 3,6V en el caso de que se opte por alimentarlo por otro método.

2.3. PCB de control

Una vez tenidas en cuenta estas especificaciones en el esquema eléctrico se ha llevado a cabo el ruteo de la tarjeta.

Vemos que se han llevado a cabo el trazado de pistas con planos de masa para prevenir interferencias electromagnéticas y conseguir que no afecte demasiado a la electrónica.

Figura 1: Renderizado de PCB del Beacon

Figura 2: PCB del Beacon obtenida con Kicad

Dejando lo más despejada la zona de la antena para mejor la ganancia de la misma y en consecuencia el alcance, en el caso del beacon se usarán las antenas que integran los microcontroladores.

2.4. Imágenes reales

Tras llevar a cabo la fabricación de las tarjetas prototipo podemos ver los resultados en la figura 3.

Figura 3: Renderizado de PCB del master o gateway

3. Receptor beacon o gateway

3.1. Aspectos a considerar

- 1. Velocidad de procesamiento: el número máximo de equipos a localizar puede ser superior a 500, es por ello por lo que quedan descartados los microcontrodores de 8bits y cristales de menos de 16MHz.
- 2. Wifi/bluetooth: Ha de escuchar a los beacons y subir los datos a internet, es por ello por lo que se hace indispesable que cuente con hardware que permita las dos acciones.

3.2. Circuito eléctrico

3.2.1. Microcontrolador

Teniendo en cuenta estas condiciones previas y contando con procesadores ESP32 del diseño anterior se ha optado por compartir el procesador para ambos equipos. Con esto conseguimos que el software y librerías sean compatibles al $100\,\%$ y ahorre tiempo de desarrollo.

3.2.2. Alimentación

En este caso y puesto que la tarjeta se encontrará estática en un lugar cercano a un enchufe se brindan las siguientes opciones de alimentación:

- 1. 220 VAC.
- 2. 12 VDC.
- 3. 5 VDC, en el caso de que se disponga de un ordenador cerca se podría conectar por USB.

Figura 4: Fuentes de alimentación de la PCB master

3.3. PCB de control

Se ha optado por llevar a cabo el trazado de pistas de alimentación por la cara top y las de señal por la bottom , vemos que hay dos conectores en el extremos de la tarjeta, uno con una UART para comunicarse con otros sistemas de las planta y otro conector para sensores i2c, pensado para la lectura de humedad y temperatura y envío de estos datos a la web de control.

En el apartado de planos se puede ver con mayor detalle el esquema eléctrico y dimensiones de la tarjeta.

Figura 5: Renderizado de PCB del master o gateway

3.4. Imágenes reales

Por último y tras fabricar las tarjetas e imprimir las cajas que lo contienen se obtiene el resultado de las figuras 6 y 7.

3.5. Conclusiones

Una vez recibidas las PCBs se fueron ensamblando a mano sin mayor incidente que la confusión en la posición de un led que por supuesto, tras cargar el firmware en la tarjeta, no se iluminó. Solucionado el incidente y por suerte la versión 1 de las tarjetas fue la definitiva.

Figura 6: Renderizado de PCB del master o gateway

Figura 7: Images reales de la PCB gateway