

پیاده سازی سنسور مجازی دما روی برد Arduino

پروژه پنجم درس مدارهای واسط استاد درس: دکتر فصحتی دستیار تدریس راهنما: مهندس توکلی

اعضای تیم:

رایا رضائی

اميرمحمد كوشكى

مهراد ميلانلو

فهرست مطالب	
پیادهسازی روی برد	

شرح پروژه:

ما در این پروژه قصد پیادهسازی یک پیشبینی کننده دمای باطری برروی برد آردوئینو را داریم. این مدار دمای فعلی محیط، میزان ولتاژ و میزان جریان را به عنوان ورودی گرفته و دمای فعلی باطری را خروجی می دهد.

این مدار به ما این قابلیت را میدهد که نیاز به پیادهسازی سخت افزار اضافه و صرف هزینه برای اندازه گیری دمای باطری باطری نباشیم و تنها با سنسورهای موجود برای اندازه گیری دمای محیط و داشتن ولتاژ و جریان به دمای فعلی باطری برسیم.

پیادهسازی پروژه:

برای train کردن مدل از فایل دیتاستی که در اختیارمان قرار داده شده استفاده می کنیم.

1	Voltage_measured (Volts)	Current_measured (Amps)	Temperature_measured (C)	Time (secs)	Source_File	Ambient Temperature	Delta_Temperature	state	cycle_number
2	3.873017221	-0.001200661	24.65535783	0	Cycle_1_charge.csv	24	0.655357834	charge	1
3	3.479393559	-4.030268478	24.66647981	2.532	Cycle_1_charge.csv	24	0.666479812	charge	1
4	4.000587822	1.512730647	24.67539447	5.5	Cycle_1_charge.csv	24	0.67539447	charge	1
5	4.012395194	1.509063282	24.69386509	8.344	Cycle_1_charge.csv	24	0.693865094	charge	1
6	4.019708059	1.511318193	24.70506946	11.125	Cycle_1_charge.csv	24	0.70506946	charge	1
7	4.025409467	1.51277913	24.71813972	13.891	Cycle_1_charge.csv	24	0.718139717	charge	1
8	4.030636266	1.511838343	24.73114415	16.672	Cycle_1_charge.csv	24	0.731144147	charge	1
9	4.035348959	1.510245404	24.74128965	19.5	Cycle_1_charge.csv	24	0.741289654	charge	1
10	4.039716367	1.507795762	24.75901141	22.282	Cycle_1_charge.csv	24	0.759011414	charge	1
11	4.04354121	1.507322026	24.76689109	25.063	Cycle_1_charge.csv	24	0.766891095	charge	1
12	4.046724069	1.510225939	24.77833908	27.828	Cycle_1_charge.csv	24	0.778339076	charge	1
13	4.050320832	1.51185336	24.79565341	30.641	Cycle_1_charge.csv	24	0.795653409	charge	1
14	4.053477757	1.510139289	24.79560886	33.453	Cycle_1_charge.csv	24	0.795608863	charge	1
15	4.056879474	1.512817714	24.80759179	36.219	Cycle_1_charge.csv	24	0.807591786	charge	1
16	4.06020401	1.509577661	24.82664625	39.735	Cycle_1_charge.csv	24	0.826646253	charge	1
17	4.06309148	1.512772146	24.83742133	42.578	Cycle_1_charge.csv	24	0.837421333	charge	1
18	4.066063636	1.509769494	24.8467593	45.438	Cycle_1_charge.csv	24	0.846759303	charge	1
19	4.068105681	1.51136777	24.84916666	48.297	Cycle_1_charge.csv	24	0.849166658	charge	1
20	4.070910891	1.513397984	24.85294998	51.188	Cycle_1_charge.csv	24	0.852949982	charge	1
21	4.073140624	1.511197352	24.86507399	54.047	Cycle_1_charge.csv	24	0.865073985	charge	1
22	4.075311977	1.511244173	24.87506247	56.922	Cycle_1_charge.csv	24	0.875062473	charge	1
23	4.077986508	1.508112631	24.88648983	59.797	Cycle_1_charge.csv	24	0.886489825	charge	1
24	4.079760222	1.508852666	24.90653923	62.688	Cycle_1_charge.csv	24	0.906539228	charge	1
25	4.081802115	1.510345307	24.90930298	65.657	Cycle_1_charge.csv	24	0.909302977	charge	1

شکل ۱: تصویری از دیتاست

همان طور که در تصویر نیز میبینیم دمای محیط ۲۴ درجه سانتی گراد بوده و ولتاژ در بازه ی [3.873,4.2] ولت بوده و جریان در بازه [-0.002,1.51] آمپر میباشد.

برای پیدا کردن مدل ایده آل هم از روش خطی استفاده می کنیم و هم شبکه عصبی تا روشی که بهترین پیشبینی را دارد را روی برد منتقل کنیم.

در ادامه مراحل پیادهسازی و تست عملکرد دو مدل رگرسیون خطی و شبکه عصبی را مورد بررسی قرار میدهیم.

مراحل train کردن مدل

ابتدا فایل داده را میخوانیم و ۸۰ درصد دادهها را به عنوان داده training برای یادگیری مدل و ۲۰ درصد دادهها را به عنوان داده testing برای آزمون مدل استفاده میکنیم. و همچنین به منظور آموزش صحیح مدل داده ها را نرمالایز میکنیم

شكل ٢ خواندن فايل ديتاست

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import standardScaler

features = ["Voltage_measured (Volts)", "Current_measured (Amps)", "Ambient Temperature"]
target = "Temperature_measured (C)"

X = df[features].values
y = df[target].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

شکل ۳ بررسی دیتاست و نرمالایز داده ها

مدل رگرسیون خطی

در ادامه با تابع ()LinearRegression مدل خطی خود را میسازیم و مقداری که این مدل پیش بینی می کند را در y_pred_line نگهداری کرده و برای تست عملکرد آن مقدار p_pred_line و میزان خطای میانگین مربعات آن را اندازه گیری کرده و خروجی می دهیم.

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)

y_pred_lin = lin_reg.predict(X_test)

mse_lin = mean_squared_error(y_test, y_pred_lin)
r2_lin = r2_score(y_test, y_pred_lin)

print("Linear Regression Results:")
print(f"Mean Squared Error (MSE): {mse_lin:.4f}")
print(f"R2 Score: {r2_lin:.4f}")

Linear Regression Results:

Mean Squared Error (MSE): 0.3693
R2 Score: 0.6186
```

مدل شبکه عصبی

در ادامه با استفاده از کتابخانه tensorflow یک شبکه عصبی با دو input layer و یک hidden layer را پیاده سازی کرده و همچنین از relu به عنوان تابع فعال ساز آن استفاده می کنیم. و در نهایت میزان خطای میانگین مربعات و R آن را مورد بررسی قرار می دهیم.

```
import tensorflow as tf
from tensorflow import keras

model = keras.Sequential([
    keras.layers.Dense(16, activation='relu', input_shape=(X_train_scaled.shape[1],)),
    keras.layers.Dense(8, activation='relu'),
    keras.layers.Dense(1)
])

model.compile(optimizer='adam', loss='mse')

# Train Model
history = model.fit(X_train_scaled, y_train, epochs=100, batch_size=16, verbose=1, validation_data=(X_test_scaled, y_test))

y_pred_nn = model.predict(X_test_scaled).flatten()

mse_nn = mean_squared_error(y_test, y_pred_nn)

r2_nn = r2_score(y_test, y_pred_nn)

print("Neural Network Results:")
print(f"Mean squared Error (MSE): (mse_nn:.4f)")
print(f"Rea Score: (r2_nn:.4f)")
```

شکل ٤ بيادهسازي شبکه عصبي

```
Epoch 1/100
40/40
                                2s 9ms/step - loss: 640.0668 - val loss: 614.2879
       Epoch 2/100
40/40
Epoch 3/100
40/40
                              - 0s 3ms/step - loss: 616.6476 - val loss: 587.2632
                               0s 2ms/step - loss: 585.6434 - val_loss: 549.4459
       Epoch 4/100
40/40
Epoch 5/100
40/40
                              - 0s 2ms/step - loss: 541.9496 - val loss: 495.2669
       49/4e
Epoch 6/199
49/49
Epoch 7/199
49/49
Epoch 8/199
49/49
Epoch 9/199
48/49
Epoch 18/199
48/49
Epoch 11/199
49/49
Epoch 11/199
                               - 0s 3ms/step - loss: 486.8701 - val loss: 425.4932
                              - 0s 2ms/sten - loss: 408.1163 - val loss: 343.2305
                               0s 2ms/step - loss: 157.0771 - val_loss: 103.6665
                              - 0s 2ms/step - loss: 93.7738 - val loss: 54.9240
                              — 0s 3ms/step - loss: 49.3461 - val loss: 26.1567
       Epoch 12/100
40/40
Epoch 13/100
40/40
                              - 0s 2ms/step - loss: 24.6089 - val_loss: 12.2179
                              - 0s 2ms/step - loss: 11.0770 - val_loss: 6.3207
       Epoch 14/100
                             — 0s 2ms/step - loss: 5.8655 - val_loss: 3.7734
40/40 -
                                      0s 3ms/step - loss: 0.6884 - val_loss: 0.2581
     Epoch 41/100
     40/40
                                      0s 2ms/step - loss: 0.3350 - val_loss: 0.2497
     Epoch 42/100
     40/40 -
                                      0s 2ms/step - loss: 0.5510 - val_loss: 0.2467
     Epoch 43/100
                                      0s 2ms/step - loss: 0.4364 - val_loss: 0.2385
     40/40
     Epoch 44/100
     40/40
                                      0s 2ms/step - loss: 0.5822 - val_loss: 0.2328
     Epoch 45/100
                                      0s 2ms/step - loss: 0.6641 - val loss: 0.2288
     40/40 -
     Epoch 46/100
     40/40
                                      0s 2ms/step - loss: 0.3928 - val_loss: 0.2233
     Epoch 47/100
     40/40 -
                                      0s 3ms/step - loss: 0.3862 - val loss: 0.2164
     Epoch 48/100
     40/40
                                      0s 2ms/step - loss: 0.5084 - val_loss: 0.2129
     Epoch 49/100
     40/40 -
                                      0s 2ms/step - loss: 0.5169 - val_loss: 0.2063
     Epoch 50/100
     40/40
                                      0s 3ms/step - loss: 0.4384 - val_loss: 0.2064
     Epoch 51/100
     40/40 -
                                      0s 2ms/step - loss: 0.3596 - val_loss: 0.1997
     Epoch 52/100
                                      0s 2ms/step - loss: 0.3659 - val_loss: 0.1956
     40/40 -
     Epoch 53/100
     40/40
                                      0s 2ms/step - loss: 0.4280 - val_loss: 0.1929
     Epoch 54/100
40/40
                                     - 0s 2ms/step - loss: 0.3050 - val_loss: 0.1911
   Epoch 86/100
                                     0s 2ms/step - loss: 0.2128 - val_loss: 0.1130
   Epoch 87/100
                                     0s 3ms/step - loss: 0.2449 - val loss: 0.1075
        Epoch 88/100
                                     0s 2ms/step - loss: 0.2388 - val loss: 0.1086
        40/40
        Epoch 89/100
40/40
                                     0s 2ms/step - loss: 0.2819 - val_loss: 0.1015
        Epoch 90/100
40/40
                                     0s 2ms/step - loss: 0.3232 - val_loss: 0.1084
        Epoch 91/100
40/40
                                     0s 2ms/step - loss: 0.1761 - val_loss: 0.0994
        Epoch 92/100
40/40
                                     0s 2ms/step - loss: 0.2958 - val_loss: 0.0983
        Epoch 93/100
40/40
                                     0s 2ms/step - loss: 0.1534 - val_loss: 0.0963
        Epoch 94/100
        40/40
                                     0s 3ms/step - loss: 0.2511 - val_loss: 0.0931
        Epoch 95/100
        40/40
                                     0s 2ms/step - loss: 0.1713 - val_loss: 0.0911
        Epoch 96/100
        40/40
                                     0s 2ms/step - loss: 0.2586 - val_loss: 0.0916
        Epoch 97/100
        40/40
                                    - 0s 3ms/step - loss: 0.1995 - val loss: 0.0920
        Epoch 98/100
40/40
                                   - 0s 3ms/step - loss: 0.1568 - val loss: 0.0848
        Epoch 99/100
        40/40 -
                                   — 0s 2ms/step - loss: 0.1480 - val loss: 0.0823
        Epoch 100/100
40/40
                                   — 0s 2ms/step - loss: 0.1612 - val_loss: 0.0824
        Neural Network Results:
        Mean Squared Error (MSE): 0.0824
R<sup>2</sup> Score: 0.9149
```

میبینیم که هر چه جلوتر میرویم میزان loss مدل کمتر شده میزان خطای میانگین مربعات و R آن نیز خروجی داده می شود.

مقایسه مدل ها و انتخاب مدل دقیق تر

در این بخش با رسم نمودار برای مقدار خطای میانگین مربعات و R هر دو مدل دقت آنها را می سنجیم.

```
import matplotlib.pyplot as plt
import pandas as pd

results = pd.DataFrame({
   "Model": ["Linear Regression", "Neural Network"],
   "MSE": [mse_Lin, mse_nn],
   "R*2 score": [r2_lin, r2_nn]
})

print(results)

fig, ax = plt.subplots(1, 2, figsize=(12, 5))

ax[0].bar(results["Model"], results["MSE"], color=['blue', 'orange'])
ax[0].set_title("Mean Squared Error Comparison")
ax[0].set_ylabel("MSE")

ax[1].bar(results["Model"], results["R*2 Score"], color=['blue', 'orange'])
ax[1].set_ylabel("R*2 Score Comparison")
ax[1].set_ylabel("R*2 Score Comparison")
ax[1].set_ylabel("R*2 Score")
```

شکل 7 مقابسه دقت دو مدل

در ادامه می بینیم که چون شبکه عصبی مقدار خطای میانگین مربعات کمتری داشته و \mathbf{R} آن نیز به یک نزدیک تر است مدل دقیق تری است و آن را برای پیاده سازی رو برد انتخاب خواهیم کرد.

لازم است با کد زیر مقدارهای w و b آن را خروجی بگیریم.

```
# Extract model weights and biases
weights = model.get_weights()

# Save them into a dictionary
model_weights = {
    "WI": weights[9].tolist(),
    "b1": weights[1].tolist(),
    "b2": weights[2].tolist(),
    "b3": weights[3].tolist(),
    "b3": weights[3].tolist(),
    "b3": weights[5].tolist()
}

# Extract scaler parameters
scaler params = {
    "mean": scaler.mean_tolist(),
    "std": scaler.scale_.tolist()
}

import json
with open("model_weights.json", "w") as f:
    json.dump(model_weights, f)

with open("scaler_params.json", "w") as f:
    json.dump(scaler_params, f)

print("Weights and scaler parameters saved!")
```

شکل ۷ خروجی گرفتن مقادیر پارامتر های شبکه عصبی

پیادهسازی روی برد

بعد از setup کردن و شناسایی برد ابتدا شبکه عصبی را براساس شبکه عصبی پیادهسازی شده در مرحله قبل پیاده کرده و در ادامه برای دادن داده به برد برای هر یک پارامتر ها یک عدد float در بازه اعداد موجود در dataset اولیه ساخته و به برد می دهیم و برد به ما دمای پیش بینی شده باطری را می دهد.

شکل ۸ بیادهسازی شبکه عصبی

```
float voltage, current, ambient_temp;

float randomFloat(float minVal, float maxVal) {
    return minVal + ((float)rand() / RAND_MAX) * (maxVal - minVal);
}

void updateValues() {
    voltage = randomFloat(3.873, 4.2);
    current = randomFloat(-0.001, 1.51);
    ambient_temp = randomFloat(24, 24);
}
```

شکل ۹ ایجاد عدد رندوم برای ورودی دادن به مدل

```
void loop() {
    unsigned long currentMillis = millis();
    if (currentMillis - previousMillis >= updateInterval) {
        previousMillis = currentMillis;

        updateValues();
        printValues();
        printValues();
        float predicted_temp = predict(voltage, current, ambient_temp);

        Serial.print("Predicted Temperature: ");
        Serial.println(predicted_temp, 6);
    }
}
```

شكل ۱۰ حلقه اصلى كد

مقدار دمای واقعی در دیتاست مقداری ۲۴ تا ۲۷ درجه سانتی گراد است و پیشبینیها در برخی موارد خطا داشته اما به طور کلی در این بازه هستند.

```
Voltage: 4.14 | Current: 0.00 | Temperature: 24.00

Predicted Temperature: 24.030370

Voltage: 4.14 | Current: 0.95 | Temperature: 24.00

Predicted Temperature: 24.161140

Voltage: 4.20 | Current: 0.97 | Temperature: 24.00

Predicted Temperature: 26.194355

Voltage: 4.10 | Current: 0.92 | Temperature: 24.00

Predicted Temperature: 22.943763

Voltage: 4.12 | Current: 0.10 | Temperature: 24.00

Predicted Temperature: 21.612758

Voltage: 3.88 | Current: 0.77 | Temperature: 24.00
```

شكل اخروجي كد