(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 7. Juni 2001 (07.06.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/40339 A1

- (51) Internationale Patentklassifikation⁷: C08F 293/00, C08L 53/00, C10M 143/10, C08F 2/38, C08K 5/00
- (21) Internationales Aktenzeichen:

PCT/EP00/11502

(22) Internationales Anmeldedatum:

18. November 2000 (18.11.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 09/450,744 30. November 1999 (30.11.1999) US
- (71) Anmelder: ROHMAX ADDITIVES GMBH [DE/DE]; Kirschenallee, 64293 Darmstadt (DE).

- (72) Erfinder: SCHERER, Markus; Saarbrückerstrasse 19, 66822 Lebach (DE). SOUCHIK, Joan; 1475 Granary Road. Blue Bell, PA 19422 (US). BOLLINGER, Joseph, Martin; 1445 Sandys Lane, N. Wales, PA 19454 (US).
- (74) Anwalt: RÖHM GMBH; Patente, Kirschenallee, 64293 Darmstadt (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

- (54) Title: BLOCK COPOLYMERS AND METHOD FOR THE PRODUCTION AND UTILIZATION THEREOF
- (54) Bezeichnung: BLOCKCOPOLYMERE SOWIE VERFAHREN ZUR HERSTELLUNG UND VERWENDUNG

(1), R^6 R^5 OR^4

(II),

 R^9 R^8 OR^7

(III)

(57) Abstract: The invention relates to block copolymers that are obtained by polymerizing a mixture of olefinically unsaturated monomers consisting of: a) 0 to 40 weight % of one or more ethylenically unsaturated ester compounds of formula (I), wherein R represents hydrogen or methyl. R¹ represents a linear or branched alkyl radical having 1 to 5 carbon atoms, R² and R³ independently represent hydrogen or a group of formula COOR', wherein R1' represents hydrogen or an alkyl group having 1 to 5 carbon atoms; b) 10 to 98 weight % of one or more ethylenically unsaturated ester compounds of formula (II), wherein R represents hydrogen or a group of formula -COOR'', wherein R'' represents hydrogen or an alkyl group having 6 to 15 carbon atoms, c) 0 to 80 weight % of one or more ethylenically unsaturated ester compounds of formula (III), wherein R represents hydrogen or methyl, R² represents a linear or branched alkyl radical having 16 to 30 carbon atoms, R³ and R⁰ independently represent hydrogen or a group of formula -COOR''', wherein R''' represents hydrogen or an alkyl group having 16 to 30 carbon atoms, d) 0 to 50 weight % of comonomers, whereby the mixture of ethylenically unsaturated monomers is discontinuously modified during chain growth with the purpose of obtaining block copolymers whose blocks have at least 30 monomer units. The novel copolymers are used as setting point improvers.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Blockcopolymere, die dadurch erhältlich sind, dass man eine Mischung von olefinisch ungesättigten Monomeren polymerisiert, die aus a) 0 bis 40 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (I) worin R Wasserstoff oder Methyl darstellt, R¹ einen linearen oder verzweigten Alkylrest mit 1 bis 5 Kohlenstoffatomen bedeutet, R² und R³ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR' darstellen, worin R' Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen bedeutet, b) 10 bis 98 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (II) worin R Wasserstoff oder Methyl darstellt, R⁴ einen linearen oder verzweigten Alkylrest mit 6 bis 15 Kohlenstoffatomen bedeutet, R⁵ und R⁶ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR' darstellen, worin R' Wasserstoff oder eine Alkylgruppe mit 6 bis 15 Kohlenstoffatomen bedeutet, c) 0 bis 80 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (III) worin R Wasserstoff der Methyl darstellt, R² einen linearen oder verzweigten Alkylrest mit 16 bis 30 Kohlenstoffatomen bedeutet, R³ und R³ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR'' darstellen, worin R'' Wasserstoff oder eine Alkylgruppe mit 16 bis 30 Kohlenstoffatomen bedeutet, d) 0 bis 50 Gew.-% Comonomer besteht, wobei man die Mischung der ethylenisch ungesättigten Monomere während des Kettenwachstums diskontinuierlich verändert, so dass man Blockcopolymere erhält, deren Blöcke mindestens 30 Monomereinheiten aufweisen. Die neuen Copolymere finden als Stockpunktverbesserer Anwendung.

WO 01/40339 A1

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Blockcopolymere sowie Verfahren zur Herstellung und Verwendung

Die vorliegende Erfindung betrifft Blockcopolymere, Konzentrate und Schmieröle, die diese Copolymere aufweisen, Verfahren zur Herstellung dieser Copolymere sowie deren Verwendung als Stockpunktserniedriger.

Schmieröle, insbesondere Mineralöle, die beispielsweise durch Destillation aus Erdölen gewonnen werden, enthalten in der Regel langkettige n-Alkane, die einerseits ein gutes Viskositäts-/Temperaturverhalten bewirken, andererseits aber beim Abkühlen in kristalliner Form ausfallen und dadurch das Fließen der Öle beeinträchtigen oder völlig verhindern ("stocken"). Eine Verbesserung der Tieftemperaturfließeigenschaften kann beispielsweise durch Entparaffinierung erreicht werden. Allerdings steigen die Kosten erheblich an, wenn eine vollständige Entparaffinierung erzielt werden soll. Daher wird ein Pourpoint bis zu einem Bereich von ca. -15°C durch partielle Entparaffinierung erzielt, der durch Zugabe von sogenannten Pourpoint-Erniedrigern oder Stockpunktsverbesserern, weiter herabgesetzt werden kann. Diese Mittel können bereits in Konzentrationen von 0,01 bis 1 Gew.-% den Stockpunkt wirksam herabsetzen.

Die Wirkungsweise dieser Verbindungen ist noch nicht vollständig aufgeklärt. Allerdings wird angenommen, daß paraffinähnliche Verbindungen in die wachsenden Paraffinkristallflächen eingebaut werden und so verhindern, daß eine weitere Kristallisation und insbesondere die Bildung von ausgedehnten Kristallverbänden eintritt.

014033041 |

WO 01/40339 2 PCT/EP00/11502

Eine stockpunktverbessernde Wirkung bestimmter
Strukturelemente ist bekannt. So zeigen insbesondere
Polymere mit ausreichend langen Alkylseitenketten eine
pourpointverbessernde Wirkung. Hierbei wird angenommen,
daß diese Alkylgruppen in die wachsenden Paraffinkristalle eingebaut werden und das Kristallwachstum
stören (Vergleiche Ullmanns Enzyklopädie der
technischen Chemie, 4. Auflage, Band 20, Verlag Chemie,
1981, S. 548). Von technisch anwendbaren
Pourpointerniedrigern muß darüber hinaus verlangt
werden, daß sie gute thermische, oxidative und
chemische Stabilität, Scherfestigkeit usw. besitzen.
Darüber hinaus sollten die Stockpunktverbesserer
kostengünstig herstellbar sein, da sie in großen Mengen
eingesetzt werden.

Poly(meth) acrylate mit langkettigen Alkylresten werden weithin als Stockpunkterniedrgier eingesetzt. Diese Verbindungen sind beispielsweise in US-PS 2 091 627, US-PS 2 100 993, US-PS 2 114 233 und EP-A-0 236 844 beschrieben. Im allgemeinen werden diese Pourpoint-Erniedriger durch radikalische Polymerisation erhalten. Dementsprechend können sie kostengünstig hergestellt werden. Die Tieftemperatureigenschaften, die sich beispielsweise aus den Stockpunkten gemäß ASTM D-97, den Minirotationsviskosimetrie-Versuchswerten gemäß ASTM D-4684 oder den Scanning-Brookfieldresultaten gemäß ASTM D-5133 ergeben, sind für vielen Anwendungen brauchbar, trotzdem genügen die Tieftemperatureigenschaften vielen Anforderungen noch nicht.

Hierbei sollte berücksichtigt werden, daß wirksamere Additive in einer geringeren Menge zugegeben werden könnten, um eine gewünschte Fließeigenschaft bei tiefen WO 01/40339 PCT/EP00/11502

Temperaturen zu erzielen. Bei den eingesetzten Mengen an Schmierölen und Biodieselkraftstoffen ergäben sich auch bei relativ geringen Unterschieden erhebliche Einsparpotentiale.

In Anbetracht des Standes der Technik ist es nun Aufgabe der vorliegenden Erfindung Additive zur Verfügung zu stellen, durch die im Vergleich zu herkömmlichen Zusätzen verbesserte Fließeigenschaften von Schmierölen und Biodieselkraftstoffen bei tiefen Temperaturen erzielt werden können. Des weiteren war Aufgabe der vorliegenden Erfindung Additive zur Verfügung zu stellen, die eine hohe Stabilität gegen Oxidation und thermische Belastung sowie eine hohe Scherfestigkeit besitzen. Zugleich sollten die neuen Additive einfach und kostengünstig herstellbar sein.

Gelöst werden diese sowie weitere nicht explizit genannte Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhängen ohne weiteres ableitbar oder erschließbar sind, durch Blockcopolymere mit allen Merkmalen des Patentanspruchs 1. Zweckmäßige Abwandlungen der erfindungsgemäßen Copolymere werden in den auf Anspruch 1 rückbezogenen Ansprüchen unter Schutz gestellt. Hinsichtlich des Konzentrats als Schmieröladditiv liefert Anspruch 9 die Lösung der zugrunde liegenden Aufgabe, während Ansprüche 11 und 14 Schmieröle bzw. Dieselkraftstoffe schützen, die erfindungsgemäße Copolymere aufweisen. Bezüglich des Verfahrens zur Herstellung von Blockcopolymeren und deren Verwendung stellen die Ansprüche 16 und 17 eine Lösung des Problems dar.

Dadurch, daß man eine Mischung von olefinisch ungesättigten Monomeren polymerisiert, die aus

a) 0 bis 40 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (I)

$$R^3$$
 OR^1
 (I) ,

worin R Wasserstoff oder Methyl darstellt, R¹ einen linearen oder verzweigten Alkylrest mit 1 bis 5 Kohlenstoffatomen bedeutet, R² und R³ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR' darstellen, worin R' Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen bedeutet,

b) 10 bis 98 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (II)

$$R^{6}$$
 R^{5}
 OR^{4}
(II),

worin R Wasserstoff oder Methyl darstellt, R^4 einen linearen oder verzweigten Alkylrest mit 6 bis 15 Kohlenstoffatomen bedeutet, R^5 und R^6 unabhängig Wasserstoff oder eine Gruppe der Formel -COOR'' darstellen, worin R'' Wasserstoff oder eine Alkylgruppe mit 6 bis 15 Kohlenstoffatomen bedeutet,

c) 0 bis 80 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (III)

$$R^9$$
 OR^7
 (III) ,

worin R Wasserstoff oder Methyl darstellt, R^7 einen linearen oder verzweigten Alkylrest mit 16 bis 30 Kohlenstoffatomen bedeutet, R^6 und R^9 unabhängig

Wasserstoff oder eine Gruppe der Formel -COOR'''
darstellen, worin R''' Wasserstoff oder eine
Alkylgruppe mit 16 bis 30 Kohlenstoffatomen bedeutet,

d) 0 bis 50 Gew.-% Comonomer

besteht, jeweils bezogen auf das Gesamtgewicht der ethylenisch ungesättigten Monomere, wobei man die Mischung der ethylenisch ungesättigten Monomere während des Kettenwachstums diskontinuierlich verändert, sind Blockcopolymere erhältlich, die eine hohe Wirksamkeit als Stockpunktverbesserer oder Fließverbesserer aufweisen. Die stockpunktsverbessernde Wirkung kann beispielsweise gemäß ASTM D 97 bestimmt werden.

Darüber hinaus zeigen Schmieröle, die die erfindungsgemäßen Blockcopolymere umfassen, hervorragende Minirotationsviskosimetriewerte (MRV), die gemäß ASTM D 4684 erhalten werden können, und Scanning-Brookfieldresultate, wie diese sich nach ASTM D 5133 ergeben.

Biodieselkraftstoffe, die einen Gehalt an Blockcopolymere der vorliegenden Erfindung aufweisen, zeigen bei Cold-Filter-Plugging-Point-Messungen nach IP 309 oder Low-Temperature-Flow-Test-Versuchen gemäß ASTM D 4539 außergewöhnliche Resultate.

Falls ein bestimmte Fließeigenschaften bei einer vorgegebenen Temperatur erzielt werden sollen, so kann die Menge an Additiv durch die vorliegende Erfindung vermindert werden.

Zugleich lassen sich durch die erfindungsgemäßen Blockcopolymere eine Reihe weiterer Vorteile erzielen. Hierzu gehören u.a.: WO 01/40339 6 PCT/EP00/11502

⇒ Die Copolymere der vorliegenden Erfindung zeigen eine enge Molekulargewichtsverteilung. Hierdurch zeigen sie eine hohe Stabilität gegen Schereinwirkungen.

- ⇒ Die erfindungsgemäßen Blockcopolymere können kostengünstig hergestellt werden.
- ⇒ Die Blockcopolymere zeigen eine hohe Oxidationsstabilität und sind chemisch sehr beständig.
- ⇒ Die Blockcopolymere zeigen in vielen unterschiedlichen Mineralölen oder Biodieselkraftstoffen eine hervorragende Wirksamkeit.

Blockcopolymere bezeichnen Copolymere, die mindestens zwei Blöcke aufweisen. Blöcke sind hierbei Segmente des Copolymers, die eine konstante Zusammensetzung aus einem oder mehreren Monomerbausteinen aufweisen. Die einzelnen Blöcke können aus verschiedenen Monomeren aufgebaut sein. Des weiteren können sich die Blöcke auch nur durch die Konzentration an verschiedenen Monomerbausteinen unterscheiden, wobei innerhalb eines Blockes eine statistische Verteilung der verschiedenen Monomerbausteine vorliegen kann.

Gemäß einem interessanten Aspekt der vorliegenden Erfindung zeichnen sich die verschiedenen Blöcke durch einen Konzentrationsunterschied von mindestens eines Monomerbausteins von 5% oder mehr, bevorzugt mindestens 10% und besonders bevorzugt mindestens 20% aus, ohne daß hierdurch eine Beschränkung erfolgen soll.

WO 01/40339 7 PCT/EP00/11502

Der Terminus "Konzentration der Monomerbausteine"
bezieht sich auf die Zahl an diesen Einheiten, die von
den eingesetzten Monomeren abgeleitet sind, bezogen auf
die Gesamtzahl an wiederkehrenden Einheiten innerhalb
eines Blockes. Der Konzentrationsunterschied ergibt
sich aus der Differenz zwischen den Konzentrationen
mindestens eines Monomerbausteins zweier Blöcke.

Dem Fachmann ist die Polydispersität von Polymeren bewußt. Dementsprechend beziehen sich auch die Angaben bezüglich des Konzentrationsunterschiedes auf ein statisches Mittel über alle Polymerketten der entsprechenden Segmente.

Die Länge der Blöcke kann in weiten Bereichen variieren. Erfindungsgemäß weisen die Blöcke mindestens 30, vorzugsweise mindestens 50, besonders bevorzugt mindestens 100 und ganz besonders bevorzugt mindestens 150 Monomereinheiten auf.

Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung zeigen die Längen der verschiedenen Blöcke des Copolymeren ein Verhältnis im Bereich von 3 zu 1 bis 1 zu 3, vorzugsweise 2 zu 1 bis 1 zu 2 und besonders bevorzugt 1,5 zu 1 bis 1 zu 1,5, obwohl auch andere Längenverhältnisse der Blöcke zueinander von der vorliegenden Erfindung umfaßt werden sollen.

Neben Diblockcopolymeren sind auch Blockcopolymere, die mindestens drei, bevorzugt mindestens vier Blöcke aufweisen, Gegenstand der vorliegenden Erfindung.

Die Zusammensetzungen, aus denen die erfindungsgemäßen Blockcopolymere erhalten werden, enthalten insbesondere (Meth) acrylate, Maleate und/oder Fumarate, die

unterschiedliche Alkoholreste aufweisen. Der Ausdruck (Meth) acrylate umfaßt Methacrylate und Acrylate sowie Mischungen aus beiden. Diese Monomere sind weithin bekannt. Hierbei kann der Alkylrest linear, cyclisch oder verzweigt sein.

Mischungen, aus denen die erfindungsgemäßen Copolymere erhältlich sind, können 0 bis 40 Gew.-%, insbesondere 0,5 bis 20 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (I) enthalten

$$R^3$$
 OR^1
 (I) ,

worin R Wasserstoff oder Methyl darstellt, R¹ einen linearen oder verzweigten Alkylrest mit 1 bis 5 Kohlenstoffatomen bedeutet, R² und R³ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR' darstellen, worin R' Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen bedeutet.

Beispiele für Komponente a) sind unter anderem

(Meth)acrylate, Fumarate und Maleate, die sich von
gesättigten Alkoholen ableiten, wie
Methyl (meth) acrylat, Ethyl (meth) acrylat,
n-Propyl (meth) acrylat, iso-Propyl (meth) acrylat,
n-Butyl (meth) acrylat, tert-Butyl (meth) acrylat und
Pentyl (meth) acrylat;
Cycloalkyl (meth) acrylate, wie Cyclopentyl (meth) acrylat;
(Meth) acrylate, die sich von ungesättigten Alkoholen
ableiten, wie 2-Propinyl (meth) acrylat,
Allyl (meth) acrylat und Vinyl (meth) acrylat.

Als wesentlichen Bestandteil enthalten die zu polymerisierenden Zusammensetzungen 10 bis 98 Gew.-%, insbesondere 20 bis 95 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (II)

$$R^{6}$$
 R^{5}
 OR^{4}
(II),

worin R Wasserstoff oder Methyl darstellt, R⁴ einen linearen oder verzweigten Alkylrest mit 6 bis 15 Kohlenstoffatomen bedeutet, R⁵ und R⁶ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR'' darstellen, worin R'' Wasserstoff oder eine Alkylgruppe mit 6 bis 15 Kohlenstoffatomen bedeutet.

Zu diesen gehören unter anderem (Meth) acrylate, Fumarate und Maleate, die sich von gesättigten Alkoholen ableiten, wie Hexyl (meth) acrylat, 2-Ethylhexyl (meth) acrylat, Heptyl (meth) acrylat, 2-tert.-Butylheptyl (meth) acrylat, Octyl (meth) acrylat, 3-iso-Propylheptyl (meth) acrylat, Nonyl (meth) acrylat, Decyl (meth) acrylat, Undecyl (meth) acrylat, 5-Methylundecyl (meth) acrylat, Dodecyl (meth) acrylat, 2-Methyldodecyl(meth)acrylat, Tridecyl(meth)acrylat, 5-Methyltridecyl(meth)acrylat, Tetradecyl(meth)acrylat, Pentadecyl (meth) acrylat; (Meth)acrylate, die sich von ungesättigten Alkoholen ableiten, wie z. B. Oleyl(meth)acrylat; Cycloalkyl (meth) acrylate, wie 3-Vinylcyclohexyl (meth) acrylat, Cyclohexyl (meth) acrylat, Bornyl (meth) acrylat; sowie die entsprechenden Fumarate und Maleate.

WO 01/40339 10 PCT/EP00/11502

Darüber hinaus können die erfindungsgemäß zu verwendenden Monomermischungen 0 bis 80 Gew.-%, vorzugsweise 0,5 bis 60 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (III) aufweisen

$$R^9$$
 OR7 (III),

worin R Wasserstoff oder Methyl darstellt, R^7 einen linearen oder verzweigten Alkylrest mit 16 bis 30 Kohlenstoffatomen bedeutet, R^8 und R^9 unabhängig Wasserstoff oder eine Gruppe der Formel -COOR'' darstellen, worin R''' Wasserstoff oder eine Alkylgruppe mit 16 bis 30 Kohlenstoffatomen bedeutet.

Beispiele für Komponente c) sind unter anderem (Meth) acrylate, die sich von gesättigten Alkoholen ableiten, wie Hexadecyl (meth) acrylat, 2-Methylhexadecyl (meth) acrylat, Heptadecyl (meth) acrylat, 5-iso-Propylheptadecyl (meth) acrylat, 4-tert.-Butyloctadecyl (meth) acrylat, 5-Ethyloctadecyl (meth) acrylat, 3-iso-Propyloctadecyl (meth) acrylat, Octadecyl (meth) acrylat, Nonadecyl (meth) acrylat, Eicosyl (meth) acrylat, Cetyleicosyl (meth) acrylat, Stearyleicosyl(meth)acrylat, Docosyl(meth)acrylat und/oder Eicosyltetratriacontyl (meth) acrylat; Cycloalkyl (meth) acrylate, wie 2,4,5-Tri-t-butyl-3-Vinylcyclohexyl (meth) acrylat, 2,3,4,5-Tetrat-butylcyclohexyl(meth)acrylat; Oxiranylmethacrylate, wie

WO 01/40339 11 PCT/EP00/11502

10,11-Epoxyhexadecylmethacrylat; sowie die entsprechenden Fumarate und Maleate.

Die Esterverbindungen mit langkettigem Alkoholrest, insbesondere die Komponenten (b) und (c), lassen sich beispielsweise durch Umsetzen von (Meth)acrylaten, Fumaraten, Maleaten und/oder den entsprechenden Säuren mit langkettigen Fettalkoholen erhalten, wobei im allgemeinen eine Mischung von Estern, wie beispielsweise (Meth) acrylaten mit verschieden langkettigen Alkoholresten entsteht. Zu diesen Fettalkoholen gehören unter anderem Oxo Alcohol® 7911 und Oxo Alcohol® 7900, Oxo Alcohol® 1100 von Monsanto; Alphanol® 79 von ICI; Nafol® 1620, Alfol® 610 und Alfol® 810 von Condea; Epal® 610 und Epal® 810 von Ethyl Corporation; Linevol® 79, Linevol® 911 und Dobanol® 25L von Shell AG; Lial 125 von Augusta® Mailand; Dehydad® und Lorol® von Henkel KGaA sowie Linopol® 7 - 11 und Acropol® 91 Ugine Kuhlmann.

Von den ethylenisch ungesättigten Esterverbindungen sind die (Meth)acrylate gegenüber den Maleaten und Fumaraten besonders bevorzugt, d.h. R^2 , R^3 , R^5 , R^6 , R^8 und R^9 der Formeln (I), (II) und (III) stellen in besonders bevorzugten Ausführungsformen Wasserstoff dar.

Die Komponente d) umfaßt insbesondere ethylenisch ungesättigte Monomere, die sich mit den ethylenisch ungesättigten Esterverbindungen der Formeln (I), (II) und/oder (III) copolymerisieren lassen.

WO 01/40339 12 PCT/EP00/11502

Jedoch sind Comonomere zur Polymerisation gemäß der vorliegenden Erfindung besonders geeignet, die der Formel entsprechen:

worin R1 und R2 unabhängig ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Halogene, CN, lineare oder verzweigte Alkylgruppen mit 1 bis 20, vorzugsweise 1 bis 6 und besonders bevorzugt 1 bis 4 Kohlenstoffatomen, welche mit 1 bis (2n+1) Halogenatomen substituiert sein können, wobei n die Zahl der Kohlenstoffatome der Alkylgruppe ist (beispielsweise CF_3), α , β - ungesättigte lineare oder verzweigte Alkenyl- oder Alkynylgruppen mit 2 bis 10, vorzugsweise von 2 bis 6 und besonders bevorzugt von 2 bis 4 Kohlenstoffatomen, welche mit 1 bis (2n-1) Halogenatomen, vorzugsweise Chlor, substituiert sein können, wobei n die Zahl der Kohlenstoffatome der Alkylgruppe, beispielsweise CH2=CCl-, ist, Cycloalkylgruppen mit 3 bis 8 Kohlenstoffatomen, welche mit 1 bis (2n-1) Halogenatomen, vorzugsweise Chlor, substituiert sein können, wobei n die Zahl der Kohlenstoffatome der Cycloalkylgruppe ist; $C(=Y^*)R^{5^*}$, $C (=Y^*) NR^{6^*}R^{7^*}, Y^*C (=Y^*) R^{5^*}, SOR^{5^*}, SO_2R^{5^*}, OSO_2R^{5^*},$ $NR^{8+}SO_2R^{5+}$, PR^{5+} , $P(=Y^*)R^{5+}$, Y^*PR^{5+} , $Y^*P(=Y^*)R^{5+}$, NR^{8+} welche mit einer zusätzlichen Re-, Aryl- oder Heterocyclyl-Gruppe quaternärisiert sein kann, wobei Y* NR8', S oder O, vorzugsweise O sein kann; R5' eine Alkylgruppe mit 1 bis 20 Kohlenstoffatomen, eine Alkylthio mit 1 bis 20 Kohlenstoffatomen, OR^{15} (R^{15} ist Wasserstoff oder ein Alkalimetall), Alkoxy von 1 bis 20 Kohlenstoffatomen, Aryloxy oder Heterocyklyloxy ist; R^{6*} und R^{7*} unabhängig Wasserstoff oder eine Alkylgruppe mit 1 bis 20 Kohlenstoffatomen sind, oder R^{6*} und R^{7*} können zusammen eine Alkylengruppe mit 2 bis 7 vorzugsweise 2 bis 5 Kohlenstoffatomen bilden, wobei sie einen 3 bis 8-gliedrigen, vorzugsweise 3 bis 6-gliedrigen Ring bilden, und R^{6*} Wasserstoff, lineare oder verzweigte Alkyl- oder Arylgruppen mit 1 bis 20 Kohlenstoffatomen sind;

R^{3*} und R^{4*} unabhängig ausgewählt aus der Gruppe bestehend aus Wasserstoff, Halogen (vorzugsweise Fluor oder Chlor), Alkylgruppen mit 1 bis 6 Kohlenstoffatomen und COOR^{9*}, worin R^{9*} Wasserstoff, ein Alkalimetall oder eine Alkylgruppe mit 1 bis 40 Kohlenstoffatomen ist, sind, oder R^{1*} und R^{3*} können zusammen eine Gruppe der Formel (CH₂)_{n'} bilden, welche mit 1 bis 2n' Halogenatomen oder C₁ bis C₄ Alkylgruppen substituiert sein kann, oder der Formel C(=0)-Y*-C(=0) bilden, wobei n' von 2 bis 6, vorzugsweise 3 oder 4 ist und Y* wie zuvor definiert ist; und wobei zumindest 2 der Reste R^{1*}, R^{2*}, R^{3*} und R^{4*} Wasserstoff oder Halogen sind.

Hierzu gehören unter anderem

Hydroxylalkyl (meth) acrylate, wie

3-Hydroxypropylmethacrylat,

3,4-Dihydroxybutylmethacrylat,

2-Hydroxyethylmethacrylat,

2-Hydroxypropylmethacrylat,

2,5-Dimethyl-1,6-hexandiol (meth) acrylat,

1,10-Decandiol (meth) acrylat;

Aminoalkyl (meth) acrylate, wie

N-(3-Dimethylaminopropyl) methacrylamid,

3-Diethylaminopentylmethacrylat,

3-Dibutylaminohexadecyl (meth) acrylat;

Nitrile der (Meth) acrylsäure und andere stickstoffhaltige Methacrylate, wie N-(Methacryloyloxyethyl)diisobutylketimin, N-(Methacryloyloxyethyl)dihexadecylketimin, Methacryloylamidoacetonitril, 2-Methacryloyloxyethylmethylcyanamid, Cyanomethylmethacrylat; Aryl (meth) acrylate, wie Benzylmethacrylat oder Phenylmethacrylat, wobei die Arylreste jeweils unsubstituiert oder bis zu vierfach substituiert sein können; carbonylhaltige Methacrylate, wie 2-Carboxyethylmethacrylat, Carboxymethylmethacrylat, Oxazolidinylethylmethacrylat, N- (Methacryloyloxy) formamid, Acetonylmethacrylat, N-Methacryloylmorpholin, N-Methacryloyl-2-pyrrolidinon, N-(2-Methacryloyloxyethyl)-2-pyrrolidinon, N-(3-Methacryloyloxypropyl)-2-pyrrolidinon, N-(2-Methacryloyloxypentadecyl)-2-pyrrolidinon, N-(3-Methacryloyloxyheptadecyl)-2-pyrrolidinon; Glycoldimethacrylate, wie 1,4-Butandiolmethacrylat, 2-Butoxyethylmethacrylat, 2-Ethoxyethoxymethylmethacrylat, 2-Ethoxyethylmethacrylat; Methacrylate von Etheralkoholen, wie Tetrahydrofurfurylmethacrylat, Vinyloxyethoxyethylmethacrylat, Methoxyethoxyethylmethacrylat, 1-Butoxypropylmethacrylat, 1-Methyl-(2-vinyloxy)ethylmethacrylat, Cyclohexyloxymethylmethacrylat, Methoxymethoxyethylmethacrylat, Benzyloxymethylmethacrylat,

```
Furfurylmethacrylat,
2-Butoxyethylmethacrylat,
2-Ethoxyethoxymethylmethacrylat,
2-Ethoxyethylmethacrylat,
Allyloxymethylmethacrylat,
1-Ethoxybutylmethacrylat,
Methoxymethylmethacrylat,
1-Ethoxyethylmethacrylat,
Ethoxymethylmethacrylat;
Methacrylate von halogenierten Alkoholen, wie
2,3-Dibromopropylmethacrylat,
4-Bromophenylmethacrylat,
1,3-Dichloro-2-propylmethacrylat,
2-Bromoethylmethacrylat,
2-Iodoethylmethacrylat,
Chloromethylmethacrylat;
Oxiranylmethacrylate, wie
2,3-Epoxybutylmethacrylat,
3,4-Epoxybutylmethacrylat,
10,11-Epoxyundecylmethacrylat,
2,3-Epoxycyclohexylmethacrylat;
Glycidylmethacrylat;
Phosphor-, Bor- und/oder Silicium-haltige Methacrylate,
wie
2-(Dimethylphosphato)propylmethacrylat,
2-(Ethylenphosphito)propylmethacrylat,
Dimethylphosphinomethylmethacrylat,
Dimethylphosphonoethylmethacrylat,
Diethylmethacryloylphosphonat,
Dipropylmethacryloylphosphat,
2-(Dibutylphosphono)ethylmethacrylat,
2,3-Butylenmethacryloylethylborat,
Methyldiethoxymethacryloylethoxysilan,
Diethylphosphatoethylmethacrylat;
 schwefelhaltige Methacrylate, wie
Ethylsulfinylethylmethacrylat,
```

4-Thiocyanatobutylmethacrylat, Ethylsulfonylethylmethacrylat, Thiocyanatomethylmethacrylat, Methylsulfinylmethylmethacrylat, Bis (methacryloyloxyethyl) sulfid;

Trimethacrylate, wie
Trimethyloylpropantrimethacrylat;
Vinylhalogenide, wie beispielsweise Vinylchlorid,
Vinylfluorid, Vinylidenchlorid und Vinylidenfluorid;

heterocyclische (Meth)acrylate, wie 2-(1-Imidazolyl)ethyl(meth)acrylat, 2-(4-Morpholinyl)ethyl(meth)acrylat und 1-(2-Methacryloyloxyethyl)-2-pyrrolidon;

Vinylester, wie Vinylacetat;

Styrol, substituierte Styrole mit einem Alkylsubstituenten in der Seitenkette, wie z. B. α -Methylstyrol und α -Ethylstyrol, substituierte Styrole mit einem Alkylsubstitutenten am Ring, wie Vinyltuluol und p-Methylstyrol, halogenierte Styrole, wie beispielsweise Monochlorstyrole, Dichlorstyrole, Tribromstyrole und Tetrabromstyrole;

Heterocyclische Vinylverbindungen, wie 2-Vinylpyridin, 3-Vinylpyridin, 2-Methyl-5-vinylpyridin, 3-Ethyl-4-vinylpyridin, 2,3-Dimethyl-5-vinylpyridin, Vinylpyrimidin, Vinylpiperidin, 9-Vinylcarbazol, 3-Vinylcarbazol, 4-Vinylcarbazol, 1-Vinylimidazol, 2-Methyl-1-vinylimidazol, N-Vinylpyrrolidon, 2-Vinylpyrrolidon, N-Vinylpyrrolidin, 3-Vinylpyrrolidin, N-Vinylcaprolactam, N-Vinylbutyrolactam, Vinylcaprolactam, Vinylthiophen, Vinylthiolan, Vinylthiazole und hydrierte Vinyloxazole; Vinyloxazole und hydrierte Vinyloxazole;

Vinyl- und Isoprenylether; Maleinsäure und Maleinsäurederivate, wie beispielsweise Mono- und Diester der Maleinsäure, Maleinsäureanhydrid, Methylmaleinsäureanhydrid, Maleinimid,
Methylmaleinimid;
Fumarsäure und Fumarsäurederivate, wie beispielsweise

Mono- und Diester der Fumarsäure;

Diene wie beispielsweise Divinylbenzol.

Ganz besonders bevorzugte Mischungen weisen Methylmethacrylat, Butylmethacrylat, Laurylmethacrylat, Stearylmethacrylat und/oder Styrol auf.

Diese Komponenten können einzeln oder als Mischungen eingesetzt werden. Voraussetzung ist allerdings, daß mindestens zwei verschiedene Monomere polymerisiert werden.

Blockcopolymere der vorliegenden Erfindung können beispielsweise dadurch erhalten werden, daß man die Mischung der ethylenisch ungesättigten Monomere, d.h. die relative Konzentration der einzelnen Monomere zueinander, während des Kettenwachstums diskontinuierlich ändert. Dies bedeutet, daß eine Polymerkette bei mindestens zwei verschiedenen Zusammensetzungen der Monomere wächst. Diskontinuierlich bedeutet, daß die Änderung der Mischung der ethylenisch ungesättigten Monomere schnell im Bezug auf die Reaktionsdauer bei konstanter Monomerzusammensetzung, also dem Kettenwachstum des jeweiligen Blockes erfolgt. Dies kann in weiten Bereichen schwanken. Im allgemeinen ist das Verhältnis aus Zugabezeit zur Reaktionsdauer bei konstanter Monomerzusammensetzung kleiner 1 zu 10, vorzugsweise 1 zu 20 und besonders bevorzugt kleiner 1 zu 100.

Hierzu können verschiedene Monomere oder Mischungen von Monomeren chargenweise der Reaktionsmischung zugeben

DVICUOSID: NAU

WO 01/40339 18 PCT/EP00/11502

werden. Hierbei sollte der lebende Charakter von ATRP-Verfahren berücksichtigt werden, so daß die Reaktion zwischen der Zugabe der verschiedenen Monomere bzw. Mischungen von Monomeren über einen längeren Zeitraumunterbrochen werden kann. Ein ähnliches Ergebnis kann auch dadurch erzielt werden, daß man bei einer kontinuierlichen Zugabe von Monomeren deren Zusammensetzungen zu bestimmten Zeitpunkten sprunghaft ändert.

Die zuvor genannten Monomere werden mittels
Initiatoren, die eine übertragbare Atomgruppe
aufweisen, polymerisiert. Im allgemeinen lassen sich
diese Initiatoren durch die Formel Y-(X)m beschreiben,
worin Y das Kernmolekül darstellt, von dem angenommen
wird, daß es Radikale bildet, X ein übertragbares Atom
oder eine übertragbare Atomgruppe repräsentiert und m
eine ganze Zahl im Bereich von 1 bis 10 darstellt,
abhängig von der Funktionalität der Gruppe Y. Falls m >
1 ist, können die verschiedenen übertragbaren
Atomgruppen X eine unterschiedliche Bedeutung haben.
Ist die Funktionalität des Initiators > 2, so werden
sternförmige Polymere erhalten. Bevorzugte übertragbare
Atome bzw. Atomgruppen sind Halogene, wie
beispielsweise Cl, Br und/oder J.

Wie zuvor erwähnt, wird von der Gruppe Y angenommen, daß sie Radikale bildet, die als Startmolekül dienen, wobei sich dieses Radikal an die ethylenisch ungesättigten Monomere anlagert. Daher weist die Gruppe Y vorzugsweise Substituenten auf, die Radikale stabilisieren können. Zu diesen Substituenten gehören unter anderem -CN, -COR und -CO₂R, wobei R jeweils ein Alkyl- oder Arylrest darstellt, Aryl- und/oder Heteroaryl-Gruppen.

WO 01/40339 19 PCT/EP00/11502

Alkylreste sind gesättigte oder ungesättigte, verzweigte oder lineare Kohlenwasserstoffreste mit 1 bis 40 Kohlenstoffatomen, wie beispielsweise Methyl, Ethyl, Propyl, Butyl, Pentyl, 2-Methylbutyl, Pentenyl, Cyclohexyl, Heptyl, 2-Methylheptenyl, 3-Methylheptyl, Octyl, Nonyl, 3-Ethylnonyl, Decyl, Undecyl, 4-Propenylundecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Nonadecyl, Eicosyl, Cetyleicosyl, Docosyl und/oder Eicosyltetratriacontyl.

Arylreste sind cyclische, aromatische Reste, die 6 bis 14 Kohlenstoffatome im aromatischen Ring aufweisen. Diese Reste können substituiert sein. Substituenten sind beispielsweise lineare und verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatome, wie beispielsweise Methyl, Ethyl, Propyl, Butyl, Pentyl, 2-Methylbutyl oder Hexyl; Cycloalkylgruppen, wie beispielsweise Cyclopentyl und Cyclohexyl; aromatische Gruppen, wie Phenyl oder Naphthyl; Aminogruppen, Ethergruppen, Estergruppen sowie Halogenide.

Zu den aromatischen Resten gehören beispielsweise Phenyl, Xylyl, Toluyl, Naphthyl oder Biphenyl.

Der Ausdruck "Heteroaryl" kennzeichnet ein heteroaromatisches Ringsystem, worin mindestens eine CH-Gruppe durch N oder zwei benachbarte CH-Gruppen durch S, O oder NH ersetzt sind, wie ein Rest von Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Pyridin, Pyrimidin und Benzo[a]furan, die ebenfalls die zuvor genannten Substituenten aufweisen können.

WO 01/40339 20 PCT/EP00/11502

Ein erfindungsgemäß verwendbarer Initiator kann jede Verbindung sein, die ein oder mehrere Atome oder Atomgruppen aufweist, welche unter den Polymerisationsbedingungen radikalisch übertragbar ist.

Geeignete Initiatoren umfassen jene der Formeln: $R^{11}R^{12}R^{13}C-X$ $R^{11}C(=0)-X$ $R^{11}R^{12}R^{13}Si-X$ $R^{11}R^{12}N-X$ $R^{11}N-X_{2}$ $(R^{11})_{n}P(O)_{m}-X_{3-n}$ $(R^{11}O)_{n}P(O)_{m}-X_{3-n}$ und $(R^{11})_{m}(R^{12}O)_{m}P(O)_{m}-X_{m}-X_{m}$

worin X ausgewählt ist aus der Gruppe bestehend aus Cl, Br. I. OR10, [wobei R10 eine Alkylgruppe von 1 bis 20 Kohlenstoffatomen, wobei jedes Wasserstoffatom unabhängig durch ein Halogenid, vorzugsweise Flurid oder Chlorid ersetzt sein kann, Alkenyl von 2 bis 20 Kohlenstoffatomen, vorzugsweise Vinyl, Alkynyl von 2 bis 10 Kohlenstoffatomen vorzugsweise Acetylenyl, Phenyl, welches mit 1 bis 5 Halogenatomen oder Alkylgruppen mit 1 bis 4 Kohlenstoffatomen substituiert sein kann, oder Aralkyl (arylsubstituiertes Alkyl in welchem die Arylgruppe Phenyl oder substituiertes Phenyl und die Alkylgruppe ein Alkyl mit 1 bis 6 Kohlenstoffatomen darstellt, wie beispielsweise Benzyl) bedeutet;] SR^{14} , SeR^{14} , $OC(=0)R^{14}$, $OP(=0)R^{14}$, $OP (=0) (OR^{14})_2$, $OP (=0) OR^{14}$, $O-N (R^{14})_2$, $S-C (=S) N (R^{14})_2$, CN, NC, SCN, CNS, OCN, CNO und N_3 darstellt, wobei R^{14} eine Arylgruppe oder eine lineare oder verzweigte Alkylgruppe mit 1 bis 20, vorzugsweise 1 bis 10 Kohlenstoffatomen bedeutet, wobei zwei R14-Gruppen, falls vorhanden, zusammen einen 5, 6 oder 7-gliedrigen heterocyclischen Ring bilden können; und

÷

 R^{11} , R^{12} und R^{13} unabhängig ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Halogene, Alkylgruppen mit 1 bis 20, vorzugsweise 1 bis 10 und besonders bevorzugt 1 bis 6 Kohlenstoffatomen, Cycloalkylgruppen mit 3 bis 8 Kohlenstoffatomen, $R^{e^*}_{3}Si$, $C(=Y^*)R^{5^*}$, $C(=Y^*)NR^{6^*}R^{7^*}$, wobei Y^* , R^{5^*} , R^{6^*} und R^{7^*} wie zuvor definiert sind, COCl, OH, (vorzugsweise ist einer der Reste R^{11} , R^{12} und R^{13} OH), CN, Alkenyl- oder Alkynylgruppen mit 2 bis 20 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen und besonders bevorzugt Allyl oder Vinyl, Oxiranyl, Glycidyl, Alkylen- oder Alkenylengruppen mit 2 bis 6 Kohlenstoffatomen, welche mit Oxiranyl oder Glycidyl, Aryl, Heterocyclyl, Aralkyl, Aralkenyl (arylsubsituiertes Alkenyl, wobei Aryl wie zuvor definiert ist und Alkenyl Vinyl ist, welches mit ein oder zwei C₁ bis C₆ Alkylgruppen und/oder Halogenatomen, vorzugsweise mit Chlor substituiert ist) substituiert sind, Alkylgruppen mit 1 bis 6 Kohlenstoffatomen, in welchen ein bis alle der Wasserstoffatome, vorzugsweise eines, durch Halogen substituiert sind, (vorzugsweise Fluor oder Chlor, wenn ein oder mehr Wasserstoffatome ersetzt sind, und vorzugsweise Fluor, Chlor oder Brom, falls ein Wasserstoffatom ersetzt ist) Alkylgruppen mit 1 bis 6 Kohlenstoffatomen, die mit 1 bis 3 Substituenten (vorzugsweise 1) ausgewählt aus der Gruppe bestehend aus C_1-C_4 Alkoxy, Aryl, Heterocyclyl, $C(=Y^*)R^{5^*}$ (wobei R^{5+} wie zuvor definiert ist), $C(=Y^*)NR^{6+}R^{7+}$ (wobei R^{6+} und R7 wie zuvor definiert sind), Oxiranyl und Glycidyl substituiert sind; (vorzugsweise sind nicht mehr als 2 der Reste R^{11} , R^{12} und R^{13} Wasserstoff, besonders bevorzugt ist maximal einer der Reste R^{11} , R^{12} und R^{13} Wasserstoff);

m=0 oder 1; und m=0, 1 oder 2 darstellt.

WO 01/40339 22 PCT/EP00/11502

Zu den besonders bevorzugten Initiatoren gehören Benzylhalogenide, wie p-Chlormethylstyrol, α -Dichlorxylol, α , α -Dichlorxylol, α , α -Dibromxylol und Hexakis (α -brommethyl) benzol, Benzylchlorid, Benzylbromid, 1-Brom-1-phenylethan und 1-Chlor-1-phenylethan;

Carbonsäurederivate, die an der α -Position halogeniert sind, wie beispielsweise Propyl-2-brompropionat, Methyl-2-chlorpropionat, Ethyl-2-chlorpropionat, Methyl-2-brompropionat, Ethyl-2-bromisobutyrat; Tosylhalogenide, wie p-Toluolsulfonylchlorid; Alkylhalogenide, wie Tetrachlormethan, Tribrom(meth)an, 1-Vinylethylchlorid, 1-Vinylethylbromid; und Halogenderivate von Phosphorsäureestern, wie Dimethylphosphorsäurechlorid.

Der Initiator wird im allgemeinen in einer Konzentration im Bereich von 10⁻⁴ mol/L bis 3 mol/L, vorzugsweise im Bereich von 10⁻³ mol/L bis 10⁻¹ mol/L und besonders bevorzugt im Bereich von 5*10⁻² mol/L bis 5*10⁻¹ mol/L eingesetzt, ohne daß hierdurch eine Beschränkung erfolgen soll. Aus dem Verhältnis Initiator zu Monomer ergibt sich das Molekulargewicht des Polymeren, falls das gesamte Monomer umgesetzt wird. Vorzugsweise liegt dieses Verhältnis im Bereich von 10⁻⁴ zu 1 bis 0,5 zu 1, besonders bevorzugt im Bereich von 5*10⁻³ zu 1 bis 5*10⁻² zu 1.

Zur Durchführung der Polymerisation werden Katalysatoren eingesetzt, die mindestens ein Übergangsmetall umfassen. Hierbei kann jede Übergangsmetallverbindung eingesetzt werden, die mit dem Initiator, bzw. der Polymerkette, die eine

übertragbare Atomgruppe aufweist, einen Redox-Zyklus bilden kann. Bei diesen Zyklen bilden die übertragbare Atomgruppe und der Katalysator reversibel eine Verbindung, wobei die Oxidationsstufe des Übergangsmetalls erhöht bzw. erniedrigt wird. Man geht davon aus, daß hierbei Radikale freigesetzt bzw. eingefangen werden, so daß die Radikalkonzentration sehr gering bleibt. Es ist allerdings auch möglich, daß durch die Addition der Übergangsmetallverbindung an die Übertragbare Atomgruppe die Insertion von ethylenisch ungesättigten Monomeren in die Bindung Y-X bzw. Y(M)z-X ermöglicht bzw. erleichtert wird, wobei Y und X die zuvor genannten Bedeutung haben und M die Monomeren bezeichnet, während z den Polymerisationsgrad darstellt.

Bevorzugte Übergangsmetalle sind hierbei Cu, Fe, Cr, Co, Ne, Sm, Mn, Mo, Ag, Zn, Pd, Pt, Re, Rh, Ir, In, Yd, und/oder Ru, die in geeigneten Oxidationsstufen eingesetzt werden. Diese Metalle können einzeln sowie als Mischung eingesetzt werden. Es wird angenommen, daß diese Metalle die Redox-Zyklen der Polymerisation katalysieren, wobei beispielsweise das Redoxpaar Cu⁺/Cu²⁺ oder Fe²⁺/Fe³⁺ wirksam ist. Dementsprechend werden die Metallverbindungen als Halogenide, wie beispielsweise Chlorid oder Bromid, als Alkoxid, Hydroxid, Oxid, Sulfat, Phosphat, oder Hexafluorophosphat, Trifluormethansulfat der Reaktionsmischung zugefügt. Zu den bevorzugten metallischen Verbindungen gehören Cu_2O , CuBr, CuCl, CuI, CuN₃, CuSCN, CuCN, CuNO₂, CuNO₃, CuBF₄, Cu(CH₃COO) Cu(CF₃COO), FeBr₂, RuBr₂, CrCl₂ und NiBr₂.

Es können aber auch Verbindungen in höheren Oxidationsstufen, wie beispielsweise CuBr2, CuCl2, CuO,

۲,

WO 01/40339 24 PCT/EP00/11502

CrCl₃, Fe₂O₃ und FeBr₃, eingesetzt werden. In diesen Fällen kann die Reaktion mit Hilfe klassischer Radikalbildner, wie beispielsweise AIBN initiiert werden. Hierbei werden die Übergangsmetallverbindungen zunächst reduziert, da sie mit den aus den klassischen Radikalbildnern erzeugten Radikalen umgesetzt werden. Es handelt sich hierbei um die Reverse-ATRP, wie diese von Wang und Matyjaszewski in Macromolekules (1995), Bd. 28, S. 7572-7573 beschrieben wurde.

Darüber hinaus können die Übergangsmetalle als Metall in der Oxidationsstufe null, insbesondere in Mischung mit den zuvor genannten Verbindungen zur Katalyse verwendet werden, wie dies beispielsweise in WO 98/40415 dargestellt ist. In diesen Fällen läßt sich die Reaktionsgeschwindigkeit der Umsetzung erhöhen. Man nimmt an, daß hierdurch die Konzentration an katalytisch wirksamer Übergangsmetallverbindung erhöht wird, indem Übergangsmetalle in einer hohen Oxidationsstufe mit metallischem Übergangsmetall komproportionieren.

Das molare Verhältnis Übergangsmetall zu Initiator liegt im allgemeinen im Bereich von 0,0001:1 bis 10:1, vorzugsweise im Bereich von 0,001:1 bis 5:1 und besonders bevorzugt im Bereich von 0,01:1 bis 2:1, ohne daß hierdurch eine Beschränkung erfolgen soll.

Die Polymerisation findet in Gegenwart von Liganden statt, die mit dem oder den metallischen Katalysatoren eine Koordinationsverbindung bilden können. Diese Liganden dienen unter anderem zur Erhöhung der Löslichkeit der Übergangsmetallverbindung. Eine weitere wichtige Funktion der Liganden besteht darin, daß die Bildung von stabilen Organometallverbindungen vermieden

WO 01/40339 25 PCT/EP00/11502

wird. Dies ist besonders wichtig, da diese stabilen Verbindungen bei den gewählten Reaktionsbedingungen nicht polymerisieren würden. Des weiteren wird angenommen, daß die Liganden die Abstraktion der übertragbaren Atomgruppe erleichtern.

Diese Liganden sind an sich bekannt und beispielsweise in WO 97/18247, WO 98/40415 beschrieben. Diese Verbindungen weisen im allgemeinen ein oder mehrere Stickstoff-, Sauerstoff-, Phosphor- und/oder Schwefelatome auf, über die das Metallatom gebunden werden kann. Viele dieser Liganden lassen sich im allgemeinen durch die Formel $R^{16}-Z-(R^{15}-Z)_m-R^{17}$ darstellen, worin R^{16} und R^{17} unabhängig H, C_1 bis C_{20} Alkyl, Aryl, Heterocyclyl bedeuten, die ggf. substituiert sein können. Zu diesen Substituenten zählen u. a. Alkoxyreste und die Alkylaminoreste. R16 und R¹⁷ können ggf. einen gesättigten, ungesättigten oder heterocyclischen Ring bilden. Z bedeutet O, S, NH, NR19 oder PR19, wobei R19 die gleiche Bedeutung wie R16 hat. R18 bedeutet unabhängig eine divalente Gruppe mit 1 bis 40 C-Atomen, vorzugsweise 2 bis 4 C-Atomen, die linear, verzweigt oder cyclisch sein kann, wie beispielsweise eine Methylen-, Ethylen-, Propylen- oder Butylengruppe. Die Bedeutung von Alkyl und Aryl wurde zuvor dargelegt. Heterocyclylreste sind cyclische Reste mit 4 bis 12 Kohlenstoffatome, bei denen ein oder mehrere der CH2-Gruppen des Ringes durch Heteroatomgruppen, wie O, S, NH, und/oder NR, ersetzt sind, wobei der Rest R, die gleich Bedeutung hat, wie R16 hat.

Eine weitere Gruppe von geeigneten Liganden läßt sich durch die Formel

$$\begin{array}{c}
R^1 \\
R^2 \\
N \\
R^3
\end{array}$$
(IV)

darstellen, worin R^1 , R^2 , R^3 und R^4 unabhängig H, C_1 bis C_{20} Alkyl-, Aryl-, Heterocyclyl- und/oder Heteroarylrest bedeuten, wobei die Reste R^1 und R^2 bzw. R^3 und R^4 zusammen einen gesättigten oder ungesättigten Ring bilden können.

Bevorzugte Liganden sind hierbei Chelatliganden, die N-Atome enthalten.

Zu den bevorzugten Liganden gehören unter anderem Triphenylphosphan, 2,2-Bipyridin, Alkyl-2,2-bipyridin, wie 4,4-Di-(5-nonyl)-2,2-bipyridin, 4,4-Di-(5-heptyl)-2,2 Bipyridin, Tris(2-aminoethyl)amin (TREN), N,N,N',N',N'-Pentamethyldiethylentriamin, 1,1,4,7,10,10-Hexamethyltriethlyentetramin und/oder Tetramethylethylendiamin. Weitere bevorzugte Liganden sind beispielsweise in WO 97/47661 beschrieben. Die Liganden können einzeln oder als Mischung eingesetzt werden.

Diese Liganden können in situ mit den Metallverbindungen Koordinationsverbindungen bilden oder sie können zunächst als Koordinationsverbindungen hergestellt werden und anschließend in die Reaktionsmischung gegeben werden.

Das Verhältnis Ligand zu Übergangsmetall ist abhängig von der Zähnigkeit des Liganden und der Koordinationszahl des Übergangsmetalls. Im allgemeinen liegt das molare Verhältnis im Bereich 100:1 bis 0,1:1, vorzugsweise 6:1 bis 0,1:1 und besonders bevorzugt 3:1 bis 0,5:1, ohne daß hierdurch eine Beschränkung erfolgen soll.

4

Je nach erwünschter Polymerlösung werden die Monomere, die Übergangsmetallkatalysatoren, die Liganden und die Initiatoren ausgewählt. Es wird angenommen, daß eine hohe Geschwindigkeitskonstante der Reaktion zwischen dem Übergangsmetall-Ligand-Komplex und der übertragbaren Atomgruppe wesentlich für eine enge Molekulargewichtsverteilung ist. Ist die Geschwindigkeitskonstante dieser Reaktion zu gering, so wird die Konzentration an Radikalen zu hoch, so daß die typischen Abbruchreaktionen auftreten, die für eine breite Molekulargewichtsverteilung verantwortlich sind. Die Austauschrate ist beispielsweise abhängig von der übertragbaren Atomgruppe, dem Übergangsmetall, der Liganden und dem Anion der Übergangsmetallverbindung. Wertvolle Hinweise zur Auswahl dieser Komponenten findet der Fachmann beispielsweise in WO 98/40415.

Neben dem zuvor erläuterten ATRP-Verfahren können die erfindungsgemäßen Blockcopolymere beispielsweise auch über RAFT-Methoden ("Reversible Addition Fragmentation Chain Transfer") erhalten werden. Dieses Verfahren ist beispielsweise in WO 98/01478 ausführlich dargestellt, worauf für Zwecke der Offenbarung ausdrücklich Bezug genommen wird.

Die Polymerisation kann bei Normaldruck, Unter- od. Überdruck durchgeführt werden. Auch die

WO 01/40339 28 PCT/EP00/11502

Polymerisationstemperatur ist unkritisch. Im allgemeinen liegt sie jedoch im Bereich von -20° - 200° C, vorzugsweise 0° - 130° C und besonders bevorzugt 60° - 120° C.

Die Polymerisation kann mit oder ohne Lösungsmittel durchgeführt werden. Der Begriff des Lösungsmittels ist hierbei weit zu verstehen.

Vorzugsweise wird die Polymerisation in einem unpolaren Lösungsmittel durchgeführt. Hierzu gehören Kohlenwasserstofflösungsmittel, wie beispielsweise aromatische Lösungsmittel, wie Toluol, Benzol und Xylol, gesättigte Kohlenwasserstoffe, wie beispielsweise Cyclohexan, Heptan, Octan, Nonan, Decan, Dodecan, die auch verzweigt vorliegen können. Diese Lösungsmittel können einzeln sowie als Mischung verwendet werden. Besonders bevorzugte Lösungsmittel sind Mineralöle und synthetische Öle sowie Mischungen hiervon. Von diesen sind Mineralöle ganz besonders bevorzugt.

Mineralöle sind an sich bekannt und kommerziell erhältlich. Sie werden im allgemeinen aus Erdöl oder Rohöl durch Destillation und/oder Raffination und gegebenenfalls weitere Reinigungs- und Veredelungsverfahren gewonnen, wobei unter den Begriff Mineralöl insbesondere die höhersiedenden Anteile des Roh- oder Erdöls fallen. Im allgemeinen liegt der Siedepunkt von Mineralöl höher als 200 °C, vorzugsweise höher als 300 °C, bei 50 mbar. Die Herstellung durch Schwelen von Schieferöl, Verkoken von Steinkohle, Destillation unter Luftabschluß von Braunkohle sowie Hydrieren von Stein- oder Braunkohle ist ebenfalls möglich. Zu einem geringen Anteil werden Mineralöle

WO 01/40339 29 PCT/EP00/11502

٠,

auch aus Rohstoffen pflanzlichen (z.B. aus Jojoba, Raps) od. tierischen (z.B. Klauenöl) Ursprungs hergestellt. Dementsprechend weisen Mineralöle, je nach Herkunft unterschiedliche Anteile an aromatischen, cyclischen, verzweigten und linearen Kohlenwasserstoffen auf.

Im allgemeinen unterscheidet man paraffinbasische, naphtenische und aromatische Anteile in Rohölen bzw. Mineralölen, wobei die Begriffe paraffinbasischer Anteil für längerkettig bzw. stark verzweigte iso-Alkane und naphtenischer Anteil für Cycloalkane stehen. Darüber hinaus weisen Mineralöle, je nach Herkunft und Veredelung unterschiedliche Anteile an n-Alkanen, iso-Alkanen mit einem geringen Verzweigungsgrad, sogenannte monomethylverzweigten Paraffine, und Verbindungen mit Heteroatomen, insbesondere O, N und/oder S auf, denen polare Eigenschaften zugesprochen werden. Der Anteil der n-Alkane beträgt in bevorzugten Mineralölen weniger als 3 Gew.-%, der Anteil der O, N und/oder S-haltigen Verbindungen weniger als 6 Gew.-%. Der Anteil der Aromaten und der monomethylverzweigten Paraffine liegt im allgemeinen jeweils im Bereich von 0 bis 30 Gew.-%. Gemäß einem interessanten Aspekt umfaßt Mineralöl hauptsächlich naphtenische und paraffinbasische Alkane, die im allgemeinen mehr als 13, bevorzugt mehr als 18 und ganz besonders bevorzugt mehr als 20 Kohlenstoffatome aufweisen. Der Anteil dieser Verbindungen ist im allgemeinen ≥ 60 Gew.-%, vorzugsweise ≥ 80 Gew.-%, ohne daß hierdurch eine Beschränkung erfolgen soll.

Eine Analyse von besonders bevorzugten Mineralölen, die mittels herkömmlicher Verfahren, wie Harnstofftrennung und Flüssigkeitschromatographie an Kieselgel,

0440330A+ 1 5

WO 01/40339 30 PCT/EP00/11502

erfolgte, zeigt beispielsweise folgende Bestandteile, wobei sich die Prozentangaben auf das Gesamtgewicht des jeweils eingesetzten Mineralöls beziehen:

n-Alkane mit ca. 18 bis 31 C-Atome:

0,7 - 1,0 %,
gering verzweigte Alkane mit 18 bis 31 C-Atome:

1,0 - 8,0 %,
Aromaten mit 14 bis 32 C-Atomen:

0,4 - 10,7 %,
Iso- und Cyclo-Alkane mit 20 bis 32 C-Atomen:

60,7- 82,4 %,
polare Verbindungen:

0,1 - 0,8 %,
Verlust:

6,9 - 19,4 %.

Wertvolle Hinweise hinsichtlich der Analyse von Mineralölen sowie eine Aufzählung von Mineralölen, die eine abweichende Zusammensetzung aufweisen, findet sich beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 5th Edition on CD-ROM, 1997, Stichwort "lubricants and related products".

Synthetische Öle sind unter anderem organische Ester, organische Ether, wie Siliconöle, und synthetische Kohlenwasserstoffe, insbesondere Polyolefine. Sie sind meist etwas teurer als die mineralischen Öle, haben aber Vorteile hinsichtlich ihrer Leistungsfähigkeit. Zur Verdeutlichung soll noch auf die 5 API-Klassen der Grundöltypen (API: American Petroleum Institute) hingewiesen werden, wobei diese Grundöle besonders bevorzugt als Lösungsmittel eingesetzt werden können.

Diese Lösungsmittel können unter anderem in einer Menge von 1 bis 99 Gew.-%, bevorzugt von 5 bis 95 Gew.-%,

WO 01/40339 31 PCT/EP00/11502

besonders bevorzugt von 5 bis 60 Gew.-% und ganz besonders bevorzugt 10 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Mischung, eingesetzt werden, ohne daß hierdurch eine Beschränkung erfolgen soll.

ų,

Die so hergestellten Polymere weisen im allgemeinen ein Molekulargewicht im Bereich von 1 000 bis 1 000 000 g/mol, vorzugsweise im Bereich von 10*10³ bis 500*10³ g/mol und besonders bevorzugt im Bereich von 20*10³ bis 300*10³ g/mol auf, ohne daß hierdurch eine Beschränkung erfolgen soll. Diese Werte beziehen sich auf das Gewichtsmittel des Molekulargewichts der polydispersen Polymere in der Zusammensetzung.

Der besondere Vorteil von ATRP im Vergleich zur herkömmlichen radikalischen Polymerisationsverfahren besteht darin, daß Polymere mit enger Molekulargewichtsverteilung hergestellt werden können. Ohne daß hierdurch eine Beschränkung erfolgen soll, weisen die erfindungsgemäßen Polymere eine Polydispersität, die durch $M_{\rm w}/M_{\rm h}$ gegeben ist, im Bereich von 1 bis 12, vorzugsweise 1 bis 4,5, besonders bevorzugt 1 bis 3 und ganz besonders bevorzugt 1,05 bis 2 auf.

Verwendung finden erfindungsgemäße Copolymere unter anderem als Zusatz zu Schmierölen und Biodieselkraftstoffen, um den Pourpoint zu erniedrigen. Daher sind weitere interessante Aspekte der vorliegenden Erfindung Schmieröle und Biodieselkraftstoffe, welche erfindungsgemäße Copolymere enthalten.

Die erfindungsgemäßen Copolymere können einzeln oder als Mischung verwendet werden, wobei der Begriff Mischung weit zu verstehen ist. Hiervon werden sowohl WO 01/40339 32 PCT/EP00/11502

Mischungen von verschiedenen Copolymeren der vorliegenden Erfindung als auch Mischungen von erfindungsgemäßen Copolymeren mit herkömmlichen Polymeren umfaßt.

Biodieselkraftstoffe sind an sich bekannt und bezeichnen natürliche, insbesondere nachwachsende Öle, die zum Betreiben von speziell angepaßten Dieselmotoren geeignet sind. Zu diesen Kraftstoffen gehören beispielsweise pflanzliche Öle, wie Rapsöl.

Beispiele für Schmieröle sind unter anderem Motorenöle, Getriebeöle, Turbinenöle, Hydraulikflüssigkeiten, Pumpenöle, Wärmeübertragungsöle, Isolieröle, Schneidöle und Zylinderöle.

Diese Schmieröle weisen im allgemeinen ein Grundöl sowie ein oder mehrere Additive auf, die in der Fachwelt weithin bekannt sind.

Als Grundöl ist im Prinzip jede Verbindung geeignet, die für eine hinreichenden Schmierfilm sorgt, der auch bei erhöhten Temperaturen nicht reißt. Zur Bestimmung dieser Eigenschaft können beispielsweise die Viskositäten dienen, wie sie beispielsweise für Motoröle in den SAE-Spezifikationen festgelegt sind.

Zu den hierfür geeigneten Verbindungen gehören unter anderem natürliche Öle, mineralische Öle und synthetische Öle sowie Mischungen hiervon.

Natürliche Öle sind tierische oder pflanzliche Öle, wie beispielsweise Klauenöle oder Jojobaöle. Mineralische Öle wurden zuvor als Lösungsmittel ausführlich beschrieben. Sie sind insbesondere hinsichtlich ihres günstigen Preises vorteilhaft. Synthetische Öle sind

WO 01/40339 PCT/EP00/11502

unter anderem organische Ester, synthetische Kohlenwasserstoffe, insbesondere Polyolefine, die den zuvor genannten Anforderungen genügen. Sie sind meist etwas teurer als die mineralischen Öle, haben aber Vorteile hinsichtlich ihrer Leistungsfähigkeit.

•3

Diese Grundöle können auch als Mischungen eingesetzt werden und sind vielfach kommerziell erhältlich.

Die erfindungsgemäßen Copolymere können auch als Bestandteil von sogenannten DI-Paketen (Detergent-Inhibitor) oder anderen Konzentraten, die Schmierölen zugesetzt werden, eingesetzt werden, die weithin bekannt sind. Diese Konzentrate umfassen 15 bis 85 Gew.-% eines oder mehrerer Copolymere der vorliegenden Erfindung. Darüber hinaus kann das Konzentrat zusätzlich organische Lösungsmittel, insbesondere ein Mineralöl und/oder ein synthetisches Öl aufweisen.

Neben dem Grundöl enthalten Schmieröle oder die zuvor genannten Konzentrate im allgemeinen Additive. Zu diesen Additiven gehören unter anderem Viskositätsindexverbesserer, Antioxidantien, Alterungsschutzmittel, Korrosionsinhibitoren, Detergentien, Dispergentien, EP-Additive, Entschäumungsmittel, Reibungsminderer, Stockpunkterniedriger, Farbstoffe, Geruchsstoffe und/oder Demulgatoren.

Die Additive bewirken ein günstiges Fließverhalten bei tiefen und hohen Temperaturen (Verbesserung des Viskositätsindexes), sie suspendieren Feststoffe (Detergent-Dispersant-Verhalten), neutralisieren saure Reaktionsprodukte u. bilden einen Schutzfilm auf der Zylinderoberfläche (EP-Zusatz, für "extreme pressure"). Weitere wertvolle Hinweise findet der Fachmann in WO 01/40339 PCT/EP00/11502

Ullmann's Encyclopedia of Industrial Chemistry, Fifth Edition auf CD-ROM, Ausgabe 1998.

Die Mengen, in denen diese Additive eingesetzt werden, sind von dem Anwendungsgebiet des Schmiermittels abhängig. Im allgemeinen beträgt der Anteil des Grundöls jedoch zwischen 25 bis 90 Gew.-%, bevorzugt 50 bis 75 Gew.-%. Der Anteil von Copolymeren der vorliegenden Erfindung in Schmierölen liegt vorzugsweise im Bereich von 0,01 bis 10 Gew.-%, besonders bevorzugt 0,01 bis 2 Gew.-%.

Biodieselkraftstoffe weisen die Copolymere der vorliegenden Erfindung vorzugsweise in einer Menge im Bereich von 0,01 bis 10 Gew.-%, besonders bevorzugt 0,01 bis 2 Gew.-% auf.

Nachfolgend wird die Erfindung durch Beispiele und Vergleichsbeispiele eingehender erläutert, ohne daß die Erfindung auf diese Beispiele beschränkt werden soll.

In den nachfolgenden Versuchen wurden die Stockpunkte gemäß ASTM D 97-93, die MRV-Werte gemäß ASTM 4684-92 und die Scanning-Brookfield-Resultat gemäß ASTM D 5133-90 bestimmt. Der Gelation-Index ist das Maximum der ersten mathematischen Ableitung des Viskositäts-Temperatur-Diagrammms der Scanning-Brookfield-Messung. Hinsichtlich des Yield-Stress-Wertes der MRV-Messung sollte berücksichtigt werden, daß Meßwerte kleiner als 35 Pa aufgrund der Meßgenauigkeit mit dem Wert 0 angegeben sind.

Beispiele 1 und 2

Die ATRP-Polymerisationsversuche wurden in einem Rundkolben durchgeführt, der mit Säbelrührer, Heizpilz,

Stickstoffüberleitung, Intensivkühler und Tropftrichter ausgestattet war. Dabei wurden 100 g des CEMA/LMA-Gemisches (CEMA: Gemisch von langkettigen Methacrylaten, welches aus der Reaktion von Methylmethacrylat mit ®Nafol 1620 von Condea erhalten wurde; LMA: Gemisch von langkettigen Methacrylaten, welches aus der Reaktion von Methylmethacrylat mit ®Lorol von Henkel KGaA erhalten wurde) mit einem 45-55-Gewichtsverhältnis zusammen mit 50 g Toluol (= Beispiel 1) oder 50 g Mineralöl der Fa. Petro Canada (= Beispiel 2) im Reaktionskolben vorgelegt und durch Trockeneiszugabe und Überleiten von Stickstoff inertisiert. Anschließend wurde die Mischung unter Rühren auf 95°C erwärmt. Während des Aufwärmvorgangs wurden 0,48 g CuBr und 1,15 g PMDETA (Pentamethyldiethylentriamin) bei etwa 70°C zugegeben. Nach Erreichen der vorgegebenen Temperatur von 95°C wurden 0,65 g EBiB (Ethyl-2-bromisobutyrat) beigefügt, wobei eine heterogene Mischung gebildet wurde, da der Katalysator nur unvollständig gelöst wurde.

Nach einer Reaktionszeit von ca. 2 Stunden wurden innerhalb von 5 Minuten 100 g eines CEMA/LMA-Gemisches mit einem CEMA:LMA-Gewichtsverhältnis von 15:85 der Mischung beigefügt. Nach Beendigung der Zugabe wurde weitere 4 Stunden bei 95°C gerührt. Anschließend wurde die Mischung auf Raumtemperatur abgekühlt, mit etwa 400 ml Toluol verdünnt und über 10 g Al₂O₃ filtriert, um Verunreinigungen abzutrennen. Danach wurde das verwendete Toluol mit einem Rotationsverdampfer abdestilliert. Diese Mischung wurde mittels GPC analysiert, um das Zahlenmittel des Molekulargewichts (Mn) und die Polydispersität Mw/Mn (PDI) zu bestimmen.

ď

Anschließend wurde die in Tabelle 1 angegebene Menge des so erhaltenen Polymers in ein 15W-40 (SAE) Mineralöl der Fa. Sunoco gegeben. Anschließend wurde die Wirksamkeit des Additivs gemäß den zuvor angegebenen Versuchen getestet. Die erhaltenen Ergebnisse sind in Tabelle 1 dargelegt.

Die Synthese der Vergleichsbeispiele erfolgte gemäß US 5 368 761. Zunächst wurden gemäß dieser Vorschrift 100 g CEMA/LMA-Gemisch mit einem 45-55-Gewichtsverhältnis zusammen mit 50 g Toluol polymerisiert. Die erhaltene Mischung wurde mittels GPC analysiert. Es wurde ein Polymer mit einem Zahlenmittel des Molekulargewichts von 46100 g/mol und einer Polydispersität von 2,11 erhalten.

Der Versuch zur Herstellung konventioneller Polymere wurde wiederholt, wobei jedoch 100 g CEMA/LMA-Gemisch mit einem 15-85-Gewichtsverhältnis verwendet wurde. Das so erhaltene Polymer wies ein Zahlenmittel des Molekulargewichts von 44800 g/mol und eine Polydispersität von 2,02 auf.

Beide Polymere wurden ebenfalls in das Mineralöl der Fa. Farmland gegeben, um die Wirksamkeit der Polymere anhand der zuvor angegebenen Normen zu untersuchen. Die in Tabelle angegebene Menge bezieht sich auf die Summe eines 1:1 Gemisches beider Polymere (0.018 Gew.-% 15:85-Polymer und 0,018 45:55-Polymer). Die erhaltenen Ergebnisse sind ebenfalls in Tabelle 1 dargestellt.

Tabelle 1

	Beispiel 1	Beispiel 2	Vergleich
Mn	57800	62800	46100; 44800

	Beispiel 1	Beispiel 2	Vergleich
PDI	4,18	1,41	2,11; 2,02
Polymergehalt der Mischung			0,018 + 0,018
[Gew%]	0,036	0,03	= 0,036
Stockpunkt	-27	-24	-24
MRV			
Viskosität			70.1
[Pa*s]	22,5	19,2	72,1
Yield Stress			. 7.5
[Pa]	0	0	175
Scanning-			
Brookfield			
Viskosität			
bei -20°C		0.400	. 22000
{mPa*s]	11400	8400	32900
Temp. bei			
30000 mPa*s			10.4
[°C]	-24,2	-26,9	-19,4
Gelation-			
Index bei °C	7,8 bei -19	6,9 bei -28	32,3 bei -18

1500010- 2MO 014033941 F

Patentansprüche

- Blockcopolymere, dadurch erhältlich, daß man eine Mischung von olefinisch ungesättigten Monomeren polymerisiert, die aus
 - a) 0 bis 40 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (I)

$$R^3$$
 R^2
 OR^1
 (I) ,

worin R Wasserstoff oder Methyl darstellt, R¹ einen linearen oder verzweigten Alkylrest mit 1 bis 5 Kohlenstoffatomen bedeutet, R² und R³ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR′ darstellen, worin R′ Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen bedeutet,

b) 10 bis 98 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (II)

$$R^{6}$$
 R^{5}
 OR^{4}
(II),

worin R Wasserstoff oder Methyl darstellt, R⁴ einen linearen oder verzweigten Alkylrest mit 6 bis 15 Kohlenstoffatomen bedeutet, R⁵ und R⁶ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR'' darstellen, worin R'' Wasserstoff oder eine Alkylgruppe mit 6 bis 15 Kohlenstoffatomen bedeutet,

c) 0 bis 80 Gew.-% einer oder mehreren ethylenisch ungesättigten Esterverbindungen der Formel (III)

$$R^9$$
 OR7 (III),

worin R Wasserstoff oder Methyl darstellt, R⁷ einen linearen oder verzweigten Alkylrest mit 16 bis 30 Kohlenstoffatomen bedeutet, R⁶ und R⁹ unabhängig Wasserstoff oder eine Gruppe der Formel -COOR''' darstellen, worin R''' Wasserstoff oder eine Alkylgruppe mit 16 bis 30 Kohlenstoffatomen bedeutet,

d) 0 bis 50 Gew.-% Comonomer

besteht, jeweils bezogen auf das Gesamtgewicht der ethylenisch ungesättigten Monomere, wobei man die Mischung der ethylenisch ungesättigten Monomere während des Kettenwachstums diskontinuierlich verändert, so daß man Blockcopolymere erhält, deren Blöcke mindestens 30 Monomereinheiten aufweisen.

- Blockcopolymere gemäß Anspruch 1, dadurch gekennzeichnet, daß die Blöcke mindestens 50 Monomereinheiten aufweisen.
- 3. Blockcopolymere gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Längen der verschiedenen Blöcke des Copolymeren ein Verhältnis im Bereich von 3 zu 1 bis 1 zu 3 aufweisen.
- 4. Blockcopolymere gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Blockcopolymer mindestens drei Blöcke aufweist.

- 5. Blockcopolymere gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich die verschiedenen Blöcke nur in der Konzentration der Monomerbausteine unterscheiden.
- 6. Blockcopolymere gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich die verschiedenen Blöcke durch einen Konzentrationsunterschied von mindestens eines Monomerbausteins von 5% oder mehr auszeichnen.
- 7. Blockcopolymere gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gewichtsmittel der Molmasse des Copolymers im Bereich von 10 000 500 000 g/mol liegt.
- 8. Blockcopolymere gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Polydispersität $(M_w/M_{\rm ft})$ im Bereich von 1 bis 12, insbesondere von 1,05 bis 2 liegt.
- 9. Konzentrat als Schmieröladditiv, dadurch gekennzeichnet, daß das Konzentrat 15 bis 85 Gew.-% eines oder mehrerer Blockcopolymere gemäß einem oder mehreren der Ansprüche 1 bis 8 enthält.
- 10. Konzentrat gemäß Anspruch 9, dadurch gekennzeichnet, daß das Konzentrat zusätzlich organische Lösungsmittel, insbesondere ein Mineralöl und/oder ein synthetisches Öl aufweist.
- 11. Schmieröl aufweisend Blockcopolymere gemäß einem oder mehreren der Ansprüche 1 bis 8.
- 12. Schmieröl gemäß Anspruch 11, dadurch gekennzeichnet, daß das Blockcopolymere gemäß einem oder mehreren der Ansprüche 1 bis 8 in einer Menge

im Bereich von 0,01 bis 10 Gew.-%, insbesondere 0,01 bis 2 Gew.-% vorhanden ist.

- 13. Konzentrat gemäß Anspruch 9 oder Schmieröl gemäß Anspruch 11, dadurch gekennzeichnet, daß zusätzlich Viskositätsindexverbesserer, Antioxidantien, Korrosionsinhibitoren, Detergentien, Dispergentien, EP-Additive, Entschäumungsmittel, Reibungsminderer und/oder Demulgatoren enthalten sind.
- 14. Biodieselkraftstoff aufweisend Blockcopolymere gemäß einem oder mehreren der Ansprüche 1 bis 8.
- 15. Biodieselkraftstoff gemäß Anspruch 14, dadurch gekennzeichnet, daß das Blockcopolymere gemäß einem oder mehreren der Ansprüche 1 bis 8 in einer Menge im Bereich von 0,01 bis 10 Gew.-%, insbesondere 0,01 bis 2 Gew.-% vorhanden ist.
- 16. Verfahren zur Herstellung von Blockcopolymeren gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man die olefinisch ungesättigte Monomere mittels Initiatoren, die eine übertragbare Atomgruppe aufweisen, und einem oder mehreren Katalysatoren, die mindestens ein Übergangsmetall umfassen, in Gegenwart von Liganden, die mit dem oder den metallischen Katalysatoren eine Koordinationsverbindung bilden können, polymerisiert.
- 17. Verwendung von Copolymeren gemäß einem oder mehreren der Ansprüche 1 bis 8 als Stockpunktverbesserer oder Fließverbesserer.

Int. tional Application No PCT/EP 00/11502

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8F293/00 CO8L C08L53/00 C10M143/10 C08F2/38 C08K5/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO8F CO8L C10M CO8K C09J Documentation searched other than minimum documentation to the extent that such documents are included, in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 945 474 A (LUBRIZOL CORP) 1-15,17X 29 September 1999 (1999-09-29) Υ * Seite 2, Zeile 1-5; Seite 10, Zeile 55 ~ 16 Seite 11, Zeile 5; Seite 3, Zeile 42-45; Seite 3, Zeile 58 - Seite 4, Zeile 10; Seite 5,Zeile 6 -Seite 7, Zeile 11 ; Seite 7, Zeile 39 - Seite 8, Zeile 1 * page 11, line 30 -page 12, line 58; claims 5,8,15-17 X US 4 940 761 A (SPINELLI HARRY J ET AL) 1-4,7,810 July 1990 (1990-07-10) * Spalte 6, Zeile 25-28; Spalte 6, Zeile 30-32 * column 5, line 50-52; claims 1,2; examples -/--Further documents are fisted in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use. exhibition or ments, such combination being obvious to a person skilled in the art *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 6 February 2001 26/02/2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Hammond, A Fax: (+31-70) 340-3016

Int. cional Application No
PCT/EP 00/11502

	citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
Category °	онация от document, with indication, where appropriate, or the relevant passages	
X	US 5 219 945 A (DICKER IRA B ET AL) 15 June 1993 (1993-06-15) * Anspruch 9 ; Spalte 3, Zeile 19 ; Beispiele 1-12 ; Ansprüche 1-19 * column 2, line 41 -column 3, line 52	1-6,8
X	US 5 399 620 A (NIESSNER NORBERT ET AL) 21 March 1995 (1995-03-21) * Spalte 1, Zeile 57-68; Spalte 2, Zeile 57-58; Spalte 2, Zeile 65-66; Spalte 2, Zeile 31-53 * column 3, line 3 -column 4, line 6	1-4,7,8, 16
Y	KOTANI Y ET AL: "LIVING RANDOM COPOLYMERIZATION OF STYRENE AND METHYL METHACRYLATE WITH A RU(II) COMPLEX AND SYNTHESIS OF ABC-TYPE BLOCK-RANDOM COPOLYMERS" MACROMOLECULES, US, AMERICAN CHEMICAL SOCIETY. EASTON, vol. 31, no. 17, 25 August 1998 (1998-08-25), pages 5582-5587, XP000776908 ISSN: 0024-9297 the whole document	1-8
Υ	US 5 807 937 A (MATYJASZEWSKI KRZYSZTOF ET AL) 15 September 1998 (1998-09-15) * Spalte 16, Zeile 48 ; Spalte 14, Zeile 34 ; Beispiele * claims 1-24	1-8
X	US 5 098 959 A (MCGRATH JAMES E ET AL) 24 March 1992 (1992-03-24) * Anspruch 1 * column 1, line 56 -column 2, line 10	1,3,4,8
Y	KOTANI Y ET AL: "LIVING RADICAL POLYMERIZATION OF ALKYL METHACRYLATES WITH RUTHENIUM COMPLEX AND SYNTHESIS OF THEIR BLOCK COPOLYMERS" MACROMOLECULES,US,AMERICAN CHEMICAL SOCIETY. EASTON, vol. 29, no. 22, 21 October 1996 (1996-10-21), pages 6979-6982, XP000629329 ISSN: 0024-9297 abstract	16
	-/	

Inte ional Application No. PCT/EP 00/11502

C (Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	101/21 00/11302
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CASSEBRAS M ET AL: "SYNTHESIS OF DI- AND TRIBLOCK COPOLYMERS OF STYRENE AND BUTYL ACRYLATE BY CONTROLLED ATOM TRANSFER RADICAL POLYMERIZATION" MACROMOLECULAR: RAPID COMMUNICATIONS, WILEY VCH, WEINHEIM, DE, vol. 20, no. 5, May 1999 (1999-05), pages 261-264, XP000847861 ISSN: 1022-1336 abstract	1-8
A	US 5 789 487 A (MATYJASZEWSKI KRZYSZTOF ET AL) 4 August 1998 (1998-08-04) column 18, line 23	1-8

1

Information on patent family members

Inte sional Application No
PCT/EP 00/11502

С	Patent document ited in search report	t	Publication date	!	Patent family member(s)	Publication date
E	EP 0945474	Α	29-09-1999	AU JP	2131099 A 11322870 A	07-10-1999 26-11-1999
	JS 4940761	A	10-07-1990	AU AU AU AU AU BR CA DK EP JP KR NO NO WS US US	600728 B 7348487 A 612581 B 7512887 A 626496 B 7613991 A 8702725 A 1291285 A 42688 A 271587 A 0248596 A 0272285 A 62290708 A 1500198 T 9003043 B 9102674 B 872236 A 880368 A 911451 A 8707265 A 4983679 A 5110869 A 5260424 A	23-08-1990 03-12-1987 18-07-1991 22-12-1987 30-07-1992 01-08-1991 01-03-1988 22-10-1991 29-03-1988 30-11-1987 09-12-1987 29-06-1988 17-12-1987 26-01-1989 04-05-1990 03-05-1991 30-11-1987 28-03-1988 28-03-1988 03-12-1987 08-01-1991 05-05-1992 09-11-1993 25-01-1989
(US 5219945	A	15-06-1993	DE DE EP JP WO	8703887 A 69312057 D 69312057 T 0626977 A 7503990 T 9317057 A	14-08-1997 08-01-1998 07-12-1994 27-04-1995 02-09-1993
	US 5399620	Α	21-03-1995	DE DE EP	4139962 A 59203105 D 0545184 A	09-06-1993 07-09-1995 09-06-1993
1	US 5807937	A	15-09-1998	AU AU BR CA EP JP WO	721630 B 1073997 A 9611512 A 2237055 A 0861272 A 2000500516 T 9718247 A	13-07-2000 05-06-1997 29-06-1999 22-05-1997 02-09-1998 18-01-2000 22-05-1997
	US 5098959	Α	24-03-1992	AU AU EP JP	608016 B 1842088 A 0298667 A 1131221 A	21-03-1991 12-01-1989 11-01-1989 24-05-1989
	US 5789487	Α	04-08-1998	AU BR CA CN EP JP WO	3585997 A 9710273 A 2259995 A 1228789 A 0914352 A 2000514479 T 9801480 A	02-02-1998 10-08-1999 15-01-1998 15-09-1999 12-05-1999 31-10-2000 15-01-1998

Ł

information on patent family members

Intentional Application No
PCT/EP 00/11502

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 5789487 A		US	6111022 A	29-08-2000
		US	6124411 A	26-09-2000
		US	6162882 A	19-12-2000
		US	5945491 A	31-08-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

Int tionales Aktenzeichen PCT/EP 00/11502

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08F293/00 C08L53/00 C10M143/10 C08F2/38 C08K5/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Ť.

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C08F C08L C10M C08K C09J C09D C08G

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	EP 0 945 474 A (LUBRIZOL CORP) 29. September 1999 (1999-09-29)	1-15,17
Y	* Seite 2, Zeile 1-5; Seite 10, Zeile 55 - Seite 11, Zeile 5; Seite 3, Zeile 42-45; Seite 3, Zeile 58 - Seite 4, Zeile 10; Seite 5, Zeile 6 - Seite 7, Zeile 11; Seite 7, Zeile 39 - Seite 8, Zeile 1 * Seite 11, Zeile 30 - Seite 12, Zeile 58; Ansprüche 5,8,15-17	16
X	US 4 940 761 A (SPINELLI HARRY J ET AL) 10. Juli 1990 (1990-07-10) * Spalte 6, Zeile 25-28; Spalte 6, Zeile 30-32 * Spalte 5, Zeile 50-52; Ansprüche 1,2; Beispiele 1-13	1-4,7,8

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
Besondere Kategorien von angegebenen Veröffentlichungen A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist E ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
6. Februar 2001	26/02/2001
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rliswijk	Bevollmächtigter Bediensteter
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Hammond, A

Fomblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

1

Int.:ionales Aktenzeichen PCT/EP 00/11502

<u> </u>	A CAMPORARY (OLI ANOCCUPAR) IN THE CAMPORARY	101/11 00/11502
C.(Fortsetz Kalegorie	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile Betr. Anspruch Nr.
Kalegorie	Dezeldinding des Veronemischung, Soweit enordenen unter Angabe der in Bertacht kontin	Bett. Alispitus Ni.
X	US 5 219 945 A (DICKER IRA B ET AL) 15. Juni 1993 (1993-06-15) * Anspruch 9 ; Spalte 3, Zeile 19 ; Beispiele 1-12 ; Ansprüche 1-19 * Spalte 2, Zeile 41 -Spalte 3, Zeile 52	1-6,8
X	US 5 399 620 A (NIESSNER NORBERT ET AL) 21. März 1995 (1995-03-21) * Spalte 1, Zeile 57-68; Spalte 2, Zeile 57-58; Spalte 2, Zeile 65-66; Spalte 2, Zeile 31-53 * Spalte 3, Zeile 3 -Spalte 4, Zeile 6	1-4,7,8, 16
Y	KOTANI Y ET AL: "LIVING RANDOM COPOLYMERIZATION OF STYRENE AND METHYL METHACRYLATE WITH A RU(II) COMPLEX AND SYNTHESIS OF ABC-TYPE BLOCK-RANDOM COPOLYMERS" MACROMOLECULES,US,AMERICAN CHEMICAL SOCIETY. EASTON, Bd. 31, Nr. 17, 25. August 1998 (1998-08-25), Seiten 5582-5587, XP000776908 ISSN: 0024-9297 das ganze Dokument	1-8
Y	US 5 807 937 A (MATYJASZEWSKI KRZYSZTOF ET AL) 15. September 1998 (1998-09-15) * Spalte 16, Zeile 48 ; Spalte 14, Zeile 34 ; Beispiele * Ansprüche 1-24	1-8
X	US 5 098 959 A (MCGRATH JAMES E ET AL) 24. März 1992 (1992-03-24) * Anspruch 1 * Spalte 1, Zeile 56 -Spalte 2, Zeile 10	1,3,4,8
Υ	KOTANI Y ET AL: "LIVING RADICAL POLYMERIZATION OF ALKYL METHACRYLATES WITH RUTHENIUM COMPLEX AND SYNTHESIS OF THEIR BLOCK COPOLYMERS" MACROMOLECULES,US,AMERICAN CHEMICAL SOCIETY. EASTON, Bd. 29, Nr. 22, 21. Oktober 1996 (1996-10-21), Seiten 6979-6982, XP000629329 ISSN: 0024-9297 Zusammenfassung	16
	-/	

Int. tionales Aktenzeichen
PCT/EP 00/11502

	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Betr. Anspruch Nr.
Kalegorie°	Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht kommenden Teile	Bett. Anspidci Nt.
A	CASSEBRAS M ET AL: "SYNTHESIS OF DI- AND TRIBLOCK COPOLYMERS OF STYRENE AND BUTYL ACRYLATE BY CONTROLLED ATOM TRANSFER RADICAL POLYMERIZATION" MACROMOLECULAR: RAPID COMMUNICATIONS, WILEY VCH, WEINHEIM, DE, Bd. 20, Nr. 5, Mai 1999 (1999-05), Seiten 261-264, XP000847861 ISSN: 1022-1336 Zusammenfassung	1-8
А	US 5 789 487 A (MATYJASZEWSKI KRZYSZTOF ET AL) 4. August 1998 (1998-08-04) Spalte 18, Zeile 23 	1-8

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Ints ionales Aktenzeichen
PCT/EP 00/11502

Im Recherchenberic Ingeführtes Patentdoku		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0945474	Α	29-09-1999	AU 2131099 A JP 11322870 A	07-10-1999 26-11-1999
US 4940761	A	10-07-1990	AU 600728 B AU 7348487 A AU 612581 B AU 7512887 A AU 626496 B AU 7613991 A BR 8702725 A CA 1291285 A DK 42688 A DK 271587 A EP 0248596 A EP 0272285 A JP 62290708 A JP 1500198 T KR 9003043 B KR 9102674 B NO 872236 A NO 880368 A NO 911451 A WO 8707265 A US 4983679 A US 5260424 A ZA 8703887 A	23-08-1990 03-12-1987 18-07-1991 22-12-1987 30-07-1992 01-08-1991 01-03-1988 22-10-1991 29-03-1988 30-11-1987 09-12-1987 29-06-1988 17-12-1987 26-01-1989 04-05-1990 03-05-1991 30-11-1987 28-03-1988 28-03-1988 03-12-1987 08-01-1991 05-05-1992 09-11-1993 25-01-1989
US 5219945	Α	15-06-1993	DE 69312057 D DE 69312057 T EP 0626977 A JP 7503990 T WO 9317057 A	14-08-1997 08-01-1998 07-12-1994 27-04-1995 02-09-1993
US 5399620	Α	21-03-1995	DE 4139962 A DE 59203105 D EP 0545184 A	09-06-1993 07-09-1995 09-06-1993
US 5807937	A	15-09-1998	AU 721630 B AU 1073997 A BR 9611512 A CA 2237055 A EP 0861272 A JP 2000500516 T WO 9718247 A	13-07-2000 05-06-1997 29-06-1999 22-05-1997 02-09-1998 18-01-2000 22-05-1997
US 5098959	A	24-03-1992	AU 608016 B AU 1842088 A EP 0298667 A JP 1131221 A	21-03-1991 12-01-1989 11-01-1989 24-05-1989
US 5789487	A	04-08-1998	AU 3585997 A BR 9710273 A CA 2259995 A CN 1228789 A EP 0914352 A JP 2000514479 T WO 9801480 A	02-02-1998 10-08-1999 15-01-1998 15-09-1999 12-05-1999 31-10-2000 15-01-1998

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte interpolation interpolati

Im Recherchenbericht Datum der angeführtes Patentdokument Veröffentlichur		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5789487 A		US US US US	6111022 A 6124411 A 6162882 A 5945491 A	29-08-2000 26-09-2000 19-12-2000 31-08-1999

Formblatt PCT/ISA/210 (Anhang Patentiamilie)(Juli 1992)

This Page Blank (uspto)