

Вычислительные средства

АСОИУ

(5 семестр)

Часть5

Запоминающие устройства

- ПОСНОВНОЕ НАЗНАЧЕНИЕ:
- транение информации;
- приём информации;
- выдача информации

Основные определения и термины

- Запись и чтение;
- Обращение к ЗУ (характеризуется временем обращения);
- Чтение из ЗУ без разрушения информации и с разрушением информации (тогда требуется восстановление);
- Питение из ЗУ без восстановления

Основные определения и термины

- Элемент памяти (ЭП) элемент физической среды для хранения 1 бита информации;
- Ячейка памяти (ЯП) совокупность ЭП для хранения слова, например, байта;
- Запоминающее устройство (ЗУ) совокупность БП, объединённых общим интерфейсом.

Классификация ЗУ

- По типу физической среды для хранения информации:
- Электронные (полупроводниковые);
- Магнитные;
- Оптические;
- **1** Криогенные;
- П- Механические.

Классификация ЗУ

- По способу доступа:
- _- с произвольным доступом;
- с последовательным доступом

Структура памяти 2D

В структуре 2D запоминающие элементы 39 организованы в прямоугольную матрицу размерностью М = k x m, где М — информационная емкость памяти в битах; k — число хранимых слов; m — их разрядность.

Структура памяти 2D

Структура памяти 3D

- Структура 3D позволяет резко упростить дешифраторы адреса с помощью двухкоординатной выборки запоминающих элементов. Принцип двухкоординатной выборки поясняется на примере 3У типа ROM, реализующего только операции чтения данных.
- Здесь код адреса разрядностью п делится на две половины, каждая из которых декодируется отдельно. Выбирается запоминающий элемент, находящийся на пересечении активных линий выходов обоих дешифраторов.

Структура памяти 3D

Структура памяти 2DM

3У типа ROM структуры 2DM для матрицы запоминающих элементов с адресацией от дешифратора DCx имеет как бы характер структуры 2D: возбужденный выход дешифратора выбирает целую строку. Однако в отличие от структуры 2D, длина строки не равна разрядности хранимых слов, а многократно ее превышает. При этом число строк матрицы уменьшается и, соответственно, уменьшается число выходов дешифратора. Для выбора одной из строк служат не все разряды адресного кода, а их часть от An-1 до Ak. Остальные разряды адреса (Ak-1... A0) используются, чтобы выбрать необходимое слово из того множества слов, которое содержится в строке. Это выполняется с помощью мультиплексоров, на адресные входы которых подаются коды Ak-1... A0.

Структура памяти 2DM

Длина строки равна m2k, где m разрядность хранимых слов. Из каждого "отрезка" строки длиной 2k мультиплексор выбирает один бит. На выходах мультиплексоров формируется выходное слово. По разрешению сигнала CS, поступающего на входы ОЕ управляемых буферов с тремя состояниями, выходное слово передается на внешнюю шину.

Структура памяти 2DM

Память с последовательным доступом

Структура буфера FIFO

Память на магнитных доменах. Так же, как элементарной единицей электричества является электрон, элементарная единица в магнетизме - магнитный домен. Он подобен простому магниту, одна сторона которого заряжена положительно, а другая - отрицательно.

Есть барабан, у которого так же есть треки, и так же над каждым треком расположена головка для обмена, но сам барабан не вращается, а за счет некоторых магнитно-электрических эффектов осуществляется перемещение по треку цепочки доменов. При этом каждый домен однозначно ориентирован, то есть либо он бежит стороной, заряженной "+", либо стороной, заряженной "-". Так кодируются ноль и единица. Эта память очень быстродействующая, так как в ней нет никаких механических действий. Эти устройства обычно используются во встроенных вычислительных системах.

- При диаметре домена 2 мкм расстояние между ними 10 мкм.
- Если очередного домена нет, значит это место считается нулём.
- Каждое доменное место на магнитной дорожке представляет объём памяти в 1 бит.