

PRODUCT SPECIFICATION

VACUUM FLUORESCENT DISPLAY MODULE

P/N: EPC-INBM32V1607UD MODEL: EVC16X02-DWP2K

REV	DATE	Description	REMARK
REV 1.0	JUN-09-2023	ORIGNAL	
REV 1.1	JUN-11-2023	Add CGRAM operation instructions	
REV 1.2	JUN-12-2023	Change BUSY signal timing	
REV 1.3	JUN-14-2023	Change SPI communication timing and Write DCRAM,ADRAM,CGRAM Command	0x10,0x20, 0x30,0x40 Change 0xCA,0xCB 0xCC,0xCD
REV 1.4	JUN-25-2023	Change BUSY signal timing	
	, LCH		

Document status	
Public	
rabtic	

Drawn By	Checked By	Confirmed by	
X.A.C.T	Rise	X.A.C.T	

16x2ROW UNIVERSAL VFD 5X7 CHARACTER DOTMATRIX

Features

- On board ultra fast Cortex-M0+ CPU.
- On board wide voltage IO level shift (1.65-5.5V).
- Standard ASCII Font CGROM with 16x2Group CGRAM.
- 255 Step Brightness Adjust.
- Maximum Power consumption as low as 2W.
- Wide Voltage Input 4.5 24V.
- Optional UART or SPI Communication Interface.

Applications

- Audio equipment.
- industrial equipment
- Instrumentation.
- Alarm clock
- Car Radio

MODULE DIAGRAM (BOTTOM)

INTERFACE DIAGRAM(CN2)

Pin NO.	NAME	Pin NO.	NAME
1	VIN+	2	BUSY
3	IOREF	4	UART_RX
5	VIN-	6	UART_TX
7	SPI_CS	8	SPI_DIN
9	RESET	10	SPI_SCK

Note:

- * Do not hot plug this connector.
- * Attention to electrostatic protection.
- * When using an external IO reference, the "IOREF" pin must not be left floating.

Pin Function

Pin		1/0	Description
Name	NO.	I/O	Description
VIN+	1	INPUT	Power input
BUSY	2	OUTPUT	Busy signal output,high active.
IOREF	3	INPUT	IO Port reference voltage input.
UART_RX	4	INPUT	USART Data input.
VIN-	5	-	Ground.
UART_TX	6	OUTPUT	USART Data output.
SPI_CS	7	INPUT	SPI chip select,low active.
SPI_DIN	8	INPUT	SPI data input,LSB First.
RESET	9	INPUT	Module reset,low active.
SPI_SCK	10	INPUT	SPI clock input.

Absolute Maximum Ratings

^{*}Exceeding absolute maximum ratings can cause permanent damage to the module

Item	Min	Max	Unit
VIN+ to GND	-0.3	24	V
IOREF to GND	-0.3	5.5	V
BUSY,IOREF,UART(TX,RX),SPI(DIN,SCK,CS),RESET	-0.3	IOREF+0.3	V
Working temperature	-20	70	°C
Storage temperature	-40	80	°C

Recommended Operating Conditions

Item	Min	Max	Unit
Power input	4.5	20	V
IOREF	1.8	5	V
BUSY,IOREF,UART(TX,RX),SPI(DIN,SCK,CS),RESET	1.8	IOREF	V
Working temperature	-20	55	°C
Storage temperature	-20	70	°C

Electrical Characteristics

	Parameter	Test Conditions	Min	Тур	Max	Unit
DISPLAY PO	OWER SUPPLY		•			
I STDBY1	VIN Standby Current	VIN = 5V, Power OFF		30	35	mA
1	VIN Charalter Orange	VIN = 5V, Power ON,		2/0	200	^
ISTDBY2 VIN Standby Current		ALL Clear, DIMMING Set 255		360	380	m A
		VIN = 5V, Power ON,		400	420	mΛ
		ALL Light, DIMMING Set 255		400	420	mA
Ion	VIN POWER ON Current	VIN = 12V, Power ON,	C	160	165	mA
ION	VIN POWER ON Current	ALL Light, DIMMING Set 255	~	100	103	IIIA
		VIN = 24V, Power ON,	V	70	72	mA
		ALL Light, DIMMING Set 255		70	12	IIIA
UNDERVOL	TAGE PROTECTION					
V UVP	UVLO Voltage		2.9	3.8		٧
IO PORT RE	FERENCE					
Vioref			1.65		5.5	V
LOGIC LEVE	<u>L</u>					
V ı∟ max	Logic Low Threshold	Vioref = 1.65 - 5.5V	0		0.15	V
		V ioref = 1.65 - 1.95V	Vioref		Vioref	٧
V⊪ min		VIURER - 1.03 - 1.73V	-0.2		VIOINEI	•
▼III IIIIII	Logic riigii riii esilota	Vioref > 1.95V	Vioref		Vioref	٧
			-0.4		VIOLE	•
I ı	Input leakage current	Vioref = 1.65 - 5.5V	1		1.5	uA
І ок	Output clamp current	VIOLE 1.00 0.00			25	mA
DATA INTER	RFACE		1	T	1	
BURAT	USART Baud rate			115200		bps
Fclk	SPI Clock Frequency				5	MHz
TPR	Power on Reset Time		20			ms
Trw	Reset Hold Time		1			ms
Тктн	Reset Wait Time		55			ms
DISPLAY						
Scan freque	ency			97		Hz
Luminance		DIMMING Set 255	390	400	420	lux
		DIMMING Set 100	130	150	155	lux
ESD RATING	GS		1			
		Per human-body model			16	KV
VESD	Electrostatic discharge	Air discharge	-15		15	KV
		Contact discharge	-8		8	KV

Serial Data Transmission Timing Chart

SPI(One Command)

USART(One Command)

AC Characteristics(SPI)

Item	Symbol	Condition	Min	Max	Unit
CLK Frequency	Tclk		-	5	MHz
CLK Pulse width	Tw		200		ns
Data Setup Time	Tds		100		ns
DIN Hold Time	Th		10		ns
CS Setup Time	Tcss	SPI Mode,IOREF=3.3V	200		ns
CS Hold Time	Tcsh		200		ns
CS Wait Time	Tcsw		120		ns
Data Processing Time	Tbusy			120	us
Data Wait Time	Tbusyh		5	10	ns

Copyright © 2013-2023 EEI TECHNOLOGY ELECTRONIC Studio

(SPEC_V1.4 25-JUN-2023)

RESET Timing Chart

Note:

(1)A reset is required before the module is powered on.
(2)After completing the reset operation, it is necessary to wait for the CPU initialization to be completed. At this time, the "BUSY" signal will be enabled. During this period, the data received by the CPU will be invalid.

Therefore, it is necessary to send data to the module after "BUSY" is disabled.

BUSY Signal output

Note:

- (1) When the data transmission is completed, the signal output indicates the data processing status.
- (2) While the signal is enabled, any data received by the CPU will be invalidated, so be sure to transmit data after the signal is disabled.

Function configuration(1-2)

Interface & test mode configuration

Configuration	Function
J1 OPEN	Power on entry normal mode
J1 SHORT	Power on entry test mode
J2 OPEN	Select SPI Interface
J2 SHORT	Select USART Interface

Note

- (1) Attention to electrostatic protection.
- (2) Do not move the jumper while working.
- (3) If it is configured in the power-on state, the configuration will take effect after reset.

Function configuration(2-2)

10 Port reference configuration

Configuration	Function
J3 OPEN	Select +3V3 reference
J4 SHORT	
J3 SHORT	Select external reference
J4 OPEN	

Note:

- (1) Attention to electrostatic protection.
- (2) Do not move the jumper while working.

Pattern Details

Overview of software functions

Item	Description
DCRAM Quantity	22/1/ v2D a.v.)
CGRAM Quantity	32(16x2Row).
CGROM Font Table	Standard ASCII Font.
ADRAM Quantity	20(4x5Group).
Brightness level control	255Step.
Standby Mode	Filament driver Enable control.

Command List

			MSE	}						LSB		
N0.	Command	Byte	B7	B6	B5	В4	В3	B2	B1	В0	Hex	Description
1	DISPCLR	1 st	0	1	0	1	0	1	0	1	0x55	Clear Display.
		1 st	1	0	1	1	0	0	0	1	0xB1	Display Power control Command.
2	PWRCTR	2 nd	0	0	0	0	0	0	0	EN		EN = 0 Power 0FF, EN = 1 Power 0N.
	DIMMOTD	1 st	1	0	1	0	0	0	0	0	0xA0	Set display brightness Command.
3	DIMMCTR	2 nd	L7	L6	L5	L4	L3	L2	L1	L0	1	Brightness level.
		1 st	1	0	1	0	0	0	0	1	0xA1	Cursor configuration Command.
4	CURCFG	2 nd					E1	E0	B1	В0		En = Row0/Row1 Cursor Enable. Bn = Row0/Row1 Cursor Blink Enable.
		1 st	1	0	1	0	0	0	1	0	0xA2	Set cursor position Command.
5	CURPOS	2 nd	0	0	0	0	0	0	0	SR	2.	SR = 0, select Row0.
		3 rd	0	0	0	0	P3	P2 (P1	P0		SR = 1, select Row1.
		1 st	1	1	0	0	1	1	PI	0	0xCC	Cursor position. Write auxiliary drive RAM Command.
		2 nd	0	0	0	0	0	A2	A1	A0		Select auxiliary drive start Address.
6	ADRAMWR	3rd					D3	D2	D1	D0		Write auxiliary drive Data.
	/ DIGHT					4						Note: This command supports
		n.Byte			-(7	D3	D2	D1	D0		continuous write
		1 st	1	1	0	0	1	1	0	1	0xCD	Write custom memory Command.
		2 nd	0	0	0	0	0	0	0	SR		SR = 0, select Row0. SR = 1, select Row1.
		3 rd	0	0	0	0	A3	A2	A1	A0		Select custom memory Address.
7	CGRAMWR	4 th		D6	D5	D4	D3	D2	D1	D0		Write 5X7 matrix COM1 Data.
,	CONAMIVIO	5 th		D14	D13	D12	D11	D10	D9	D8		Write 5X7 matrix COM2 Data.
		6 th		D22	D21	D20	D19	D18	D17	D16		Write 5X7 matrix COM3 Data.
		7 th		D30	D29	D28	D27	D26	D25	D24		Write 5X7 matrix COM4 Data.
		8 th		D38	D37	D36	D35	D34	D33	D32		Write 5X7 matrix COM5 Data.
	X X	1 st	1	1	0	0	1	0	1	0	0xCA	Write Row0 DCRAM Command.
		2 nd	0	0	0	0	А3	A2	A1	A0		Select Row0 DCRAM start Address.
8	DCRAMOWR	3 rd	D7	D6	D5	D4	D3	D2	D1	D0		Write DCRAM Data.
												Note: This command supports
		n.Byte	D7	D6	D5	D4	D3	D2	D1	D0		continuous write
		1 st	1	1	0	0	1	0	1	1	0xCB	Write Row1 DCRAM Command.
		2 nd	0	0	0	0	А3	A2	A1	Α0		Select DCRAM start Address.
8	DCRAM1WR	3 rd	D7	D6	D5	D4	D3	D2	D1	D0		Write DCRAM Data.
							1					Note: This command supports
		n.Byte	D7	D6	D5	D4	D3	D2	D1	D0		continuous write

Command Summary

0x55	DISPCLR(Clear Display)											
Bit	B7	B7 B6 B5 B4 B3 B2 B1 B0										
DISPCLR	0	0 1 0 1 0 1 0 1 0										
Parameter												
Description				clear the leared.	screen dis	splay.	5					

0xB1	PWRCTR(Display Power Control)										
Bit	B7	B6	B5	B4	B3 B2	B1	В0	Hex			
PWRCTR	1	0	1	1	0 0	0	1	0xB1			
Parameter 1st	0	0	0	0	0 0	0	EN				
Description	(2) Powe	er-on defa	ult state E		ne display drive pow	ver.					

0xA0	. 0	DIMMCTR(Display brightness level Control)								
Bit	B7 B6	B5	В4	В3	B2	B1	В0	Hex		
DIMMCTR	1 0	1	0	0	0	0	0	0xA0		
Parameter 1 st	L7 L6	L5	L4	L3	L2	L1	L0			
Description	(1) This command (2) Power-on defa		=	=	ss of the d	isplay.				

0xA1	CURCFG(Cursor Configuration)											
Bit	В7	В6	B5	B4	В3	B2	B1	В0	Hex			
CURCFG	1	0	1	0	0	0	0	1	0xA1			
Parameter 1st	E1 E0 B1 B0											
Description	(2) Powe (3) E1/E0	r-on defa : Row1/Ro	ult state E ow0 Curso	configure [1:0], B[1:0] or Enable or Blink Er] = 0x00. control.							

0xA2		CURPOS(Set Cursor Position)										
Bit	B7	B6	B5	B4	В3	B2	B1	В0	Hex			
CURPOS	1	0	1	0	0	0	1	0	0xA2			
Parameter 1 st	0	0	0	0	0	0	0	SR				
Data 1 st	0	0	0	0	P3	P2	P1	P0				
Description	(2) Powe (3) SR : S	r-on defa	ult state 9 v0/Row1, 9	SR, P[3:0] = SR = 0 Rov	ursor posit = 0x00. v0, SR = 1,		S					

0xCC		ADRAMWR(Write auxiliary drive Register)											
Bit	В7	B6	B5	В4	В3	B2	B1	В0	Hex				
ADRAMWR	1	1	0	0		1	0	0	0xCC				
Parameter 1st	0	0	0	0	0	A2	A1	Α0					
Data 1 st				<->	O _{D3}	D2	D1	D0					
			/	\\									
Data n				()	D3	D2	D1	D0					

- (1) This command is used to write the auxiliary driver register.
- (2) The auxiliary driver is connected with the icon at the top of the screen.
- (3) Power-on default state A[2:0], D[3:0] = 0x00.
- (4) A[3:0]: Start address, D[3:0] Data.
- (5) This command supports continuous write, When writing continuously, the address will increase automatically, and there is no need to reset the address.
- (6) (Format: Start COMM PARAM DATA0 DATAn End).
- (7) The relationship between the icon and the data is shown in the figure below.

Description

A[2:0] = 0x04	A[2:0] = 0x03	A[2:0] = 0x02	A[2:0] = 0x01	A[2:0] = 0x00	Data
0	ALL	RANDOM	ST	TONE	D0
(FLD	TOTAL	AUTO	SDB	D1
SLEEP	1	MONO	TUNED	00	D2
	¢5			\triangleright	D3

0xCD		CGRAMWR(Write custom memory)											
Bit	B7	B6	B5	В4	В3	B2	B1	В0	Hex				
CGRAMWR	1	1	0	0	1	1	0	1	0xCD				
Parameter 1 st	0	0	0	0	0	0	0	SR					
Parameter 2 nd	0	0	0	0	А3	A2	A1	Α0					
Data 1 st		D6	D5	D4	D3	D2	D1	D0)				
Data 2 nd		D14	D13	D12	D11	D10	D9	D8					
Data 3 rd		D22	D21	D20	D19	D18	D17	D16					
Data 4 th		D30	D29	D28	D27	D26	D25	D24					
Data 5 th		D38	D37	D36	D35	D34	D33	D32					

- (1) This command is used to write custom memory.
- (2) The address of CGRAM (0x00-0x0F) will be mapped to the address of CGROM (0x00-0x0F). If DCRAM writes data within this range, the dot matrix corresponding to the address will point to CGRAM, that is, CGROM address = CGRAM address = A[3:0].
- (3) Power-on default state SR, A[3:0] = 0x00.
- (4) A[3:0] : CGRAM Address, SR : Select Row0/Row1, SR = 0 Row0, SR = 1, Row1.
- (5) This command does not support continuous writing. After the writing is completed, the address will not increase automatically. need to execute this command again.
- (6) D[38:0]: CGRAM Matrix Data, The relationship between the data and the dot matrix is shown in the figure below.

Description

ROW1

 ${\tt Code\#1:0xCD,0x00,0x00,0x55,0xAA,0x55,0xAA,0x55}. \quad {\tt Code\#2:0x10,0x00,0x00.}$

0xCA/0xCB		CGRAMWR(Write custom memory)											
Bit	В7	B6	B5	B4	В3	B2	B1	В0	Hex				
DCRAMWR	1	1	0	0	1	0	1	(CA/CB)	0xCA/0xCB				
Parameter 1st	0	0	0	0	А3	A2	A1	Α0					
Data 1 st	D7	D6	D5	D4	D3	D2	D1	D0					
									\				
Data n	D7	D6	D5	D4	D3	D2	D1	D0					

- (1) This command is used to write character generator.
- (2) D[7:0] character mapping data, send the standard ASCII code to the module to display the corresponding character at the specified position.
- (3) DCRAMWR = 0xCA: Write Row0 DCRAM Data.
- (4) DCRAMWR = 0xCB : Write Row1 DCRAM Data.
- (5) A[3:0]: Starting position Address, The relationship between the address and the starting position is shown in the figure below.
- (6) This command supports continuous write, When writing continuously, the address will increase automatically, and there is no need to reset the address.
- (7) Format: Start COMM PARAM DATA0 DATAn End.

Description

Example of DCRAM

Write Row0 16 characters

ROW1

 ${\tt Code: 0xCA, 0x00, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x47, 0x47, 0x47, 0x47, 0x47, 0x47, 0x47, 0x47, 0x47, 0$

Write Rowl 16 characters

 ${\tt Code}: 0x CB, 0x 00, 0x 31, 0x 32, 0x 33, 0x 34, 0x 35, 0x 36, 0x 37, 0x 38, 0x 41, 0x 42, 0x 43, 0x 44, 0x 45, 0x 46, 0x 47, 0x 48, 0x 47, 0x 47, 0x 48, 0x 47, 0x 4$

Module Outline DIAGRAM

FRONT VIEW

