HW2 1

January 30, 2022

1 Problem 1

$$v_z = \frac{\Delta p R^2}{4 \mu L} [1 - \tilde{r}^2] = v_z^{max} [1 - \tilde{r}^2] \eqno(1)$$

$$c_A = c_{A_0} \tilde{r}^2 \tag{2}$$

where $\tilde{r} = \frac{r}{R}$ and $c_{A_0} = 0.10$ c

Problem 1.1 Find and plot x_A and \tilde{N}_A as functions of \tilde{r} for $x_A(\tilde{r})$ the relationship $c_A=cx_A$ can be used:

$$x_A = \frac{c_A}{c}$$

then (2) can be substituted in for c_A to get

$$x_A = \frac{c_{A_0}\tilde{r}^2}{c} = \frac{0.10c\tilde{r}^2}{c} = 0.10\tilde{r}^2 \tag{3}$$

for $\tilde{N}_A(\tilde{r})$:

$$N_A = c_A v_z \tag{4}$$

given that $\tilde{N}_A = \frac{N_A}{c_{A_0} v_z^{max}}$ (4) can be substituted in for N_A to get

$$\tilde{N}_A = \frac{c_A v_z}{c_{A0} v_z^{max}} = \frac{c x_A v_z}{c_{A_0} v_z^{max}}$$

now (3) can be substituted in for x_A to get

$$\tilde{N}_{A} = \frac{\frac{c_{A_{0}}}{0.10}0.10\tilde{r}^{2}v_{z}}{c_{A_{0}}v_{z}^{max}}$$

now substituting (1) for v_z

$$\tilde{N}_{A} = \frac{v_{z}^{max}(1-\tilde{r}^{2})\tilde{r}^{2}}{v_{z}^{max}} = \tilde{r}^{2}(1-\tilde{r}^{2}) \tag{5}$$

[]: """import packages"""
import matplotlib.pyplot as plt
import numpy as np

[]: ''

Problem 1.2 Find radial location (\tilde{r}) of \tilde{N}_A^{max} For this problem, (5) and the above plot can be used to determine \tilde{r} where \tilde{N}_A is maximum

[]: N = N(r).tolist()
print(r[N.index(max(N))])

0.7074148296593186

 $\tilde{r}=0.707$ at \tilde{N}_A^{max}

Problem 1.3 Find molar flow rate of A (\dot{n}_A) and total volumetric flow rate (\dot{V}) in terms of v_z^{max} , c_{A_0} , and R

For \dot{n}_A :

$$\dot{n}_A = \int N_A dS = \int c_A v_z dS \tag{6}$$

substituting (1) and (2) in for v_z and c_A respectively and using the relationship $dS=2\pi r dr,$

$$\dot{n}_A = \int_0^R c_{A_0} (\frac{r}{R})^2 v_z^{max} (1 - (\frac{r}{R})^2) 2\pi r dr = \frac{2\pi c_{A_0} v_z^{max}}{R^2} \int_0^R r^3 - \frac{r^5}{R^2} dr$$

integrating and evaluating from 0 to R gives

$$\dot{n}_A = \frac{2\pi c_{A_0} v_z^{max}}{R^2} \left[\frac{R^4}{4} - \frac{R^4}{6} \right] \tag{7}$$

for \dot{V} :

$$\dot{V} = \int v_z dS \tag{8}$$

substituting (1) for v_z and $dS=2\pi r dr$ gives

$$\dot{V} = 2\pi v_z^{max} \int_0^R [1 - (\frac{r}{R})^2] dr$$

integrating and evaluating from 0 to R gives

$$\dot{V} = 2\pi v_z^{max} (R - \frac{R}{3}) \tag{9}$$