Course Code: MTH174 Course Title: ENGINEERING MATHEMATICS

Paper Code: A

Time Allowed: 3hrs.

Read the following instructions carefully before attempting the question paper.

Max Marks: 60

CO1, L1

CO1, L1

CO1, L1

- 1. Match the Paper Code shaded on the OMR Sheet with the Paper code mentioned on the question paper and ensure that both are the
- 2. This question paper contains 60 questions of 1 mark each. 0.25 marks will be deducted for each wrong answer.
- 3. Attempt all the questions in serial order.
- 4. Do not write or mark anything on the question paper and/or on rough sheet(s) which could be helpful to any student in copying, except your registration number on the designated space.
- 5. Submit the question paper and the rough sheet(s) along with the OMR sheet to the invigilator before leaving the examination hall.

If
$$\begin{bmatrix} a+b & 3 \\ 5 & ab \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 5 & 3 \end{bmatrix}$$
, then what are the values of a and b ?

(a)
$$(2,1)$$
 or $(1,2)$ (b) $(2,4)$ or $(4,2)$ (c) $(0,3)$ or $(3,0)$ (d) $(1,3)$ or $(3,1)$

If
$$B = \begin{bmatrix} 1 & 7 \\ 3 & 1 \end{bmatrix}$$
, $C = \begin{bmatrix} 4 & 1 \\ 6 & 8 \end{bmatrix}$, and $2A + 3B - 6C = 0$,

then what is the value of A?

(a)
$$\begin{bmatrix} 21/2 & 27/2 \\ -15/2 & 45/2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 21/4 & 27/4 \\ -15/4 & 45/4 \end{bmatrix}$$

$$\begin{bmatrix} 21/4 & -15/4 \\ 27/4 & 45/4 \end{bmatrix}$$

$$\begin{bmatrix} 21/2 & -15/2 \\ 27/2 & 45/2 \end{bmatrix}$$

Q3) If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then what is the

value of k for which $A^2 = 8A + kI$?

For what values of
$$\lambda$$
, the given set of equations has a unique solution?

$$2x + 3y + 5z = 9$$
$$7x + 3y - 2z = 8$$

$$2x + 3y + \lambda z = 9$$

(a)
$$\lambda = 15$$
 (b) $\lambda = 5$

(c) For all values except
$$\lambda = 15$$
 (d) For all values except $\lambda = 5$

- Q5) If two of the eigen values of a matrix of order 3 x 3, whose determinant is 36 are 2 & 3 than the third eigen value is.
 - (c) 4 (b) 3
- CO1, L1
- Q6) Find the solution to 9y'' + 6y' + y = 0 for y(0) = 4
 - and $y = (0, -\frac{1}{2})$.

 (a) $y = (4+x)e^{-x/3}$ (b) $y = (4-x)e^{-x/3}$ (c) $y = (8-2x)e^{x/3}$ (d) $y = (1-x)e^{-x/3}$ CO2, L2
- Q7) Find the solution to y'' y = 0.
- (a) $y = c_1 e^x c_2 e^x$ (b) $y = c_1 (e^x + e^{-x})$ (c) $y = c_1 e^x + c_2 e^{-x}$ (d) $y = c_1 e^x c_2 e^{-x}$ CO2, L2

Complementary Function of differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$ is

(a) $y = e^{-x}(\cos x + \sin x)$ (b) $y = c_1 e^x \cos(x + c_2)$ (c) $y = c_1 \cos x + c_2 \sin x$ (d) $y = e^{-x}(c_1 \cos x + c_2 \sin x)$ CO2, L2

If one root of the auxiliary equation is in the form $\alpha+i\beta$, where α , β are real and $\beta\neq 0$ then complementary part of solution of differential equation is

- $e^{\alpha x}(c_1\cos\alpha x + c_2\sin\alpha x)$ (b) $e^{\alpha x}(c_1\cos\beta x + c_2\sin\beta x)$ (c) $e^{\alpha x}(c_1\cos\alpha x + c_2\sin\beta x)$
- CO2, L2 $e^{\alpha x}(c_1\cos\beta x+c_2\sin\alpha x)$
- Q10) The functions f_1, f_2, f_3, f_n are said to be linearly dependent if Wronskian of the functions $W(f_1, f_2, f_3, ..., f_n) =$
- (a) 0 (b) 1 (c) Non-Zero (d) None of these
- CO2, L2

CO2, L2

co2, 12

- QII) Value of $\frac{1}{R^2+a^2}\cos ax =$ $\int_{2a}^{(a)} -\frac{x}{2a} \sin ax \qquad \qquad \int_{2a}^{(b)} \frac{x}{2a} \sin ax \qquad \qquad -\frac{x}{2a} \cos ax \qquad \qquad \frac{(d)}{2a} \cos ax$
- Q12) Find the particular integral of (D² + 3D + 2) $y = e^x$
 - $\frac{e^x}{6} \qquad \frac{e^x}{12} \qquad \frac{e^x}{18} \qquad \frac{e^x}{24}$

If function $X = k \cos(ax + b)$, then a trial solution (in method of undetermined coefficients) 013) will be $c_1 \sin(ax+b) + c_2 \cos(ax+b)$ (b) $c_1 \sin(ax+b)$ (c) $c_1 \cos(ax+b)$ none of these CO2, L2 The P.I. of $y'' + 4y = 9 \sin x$ is Q14) 2 cos x (b) 3 cos x (c) 4 cos x 5 cos x O15) The general solution of the equation $y'' - 5y' + 9y = \sin 3x$ is CO2, 1.2 $y = Ae^{-x} + Be^{-4x} + 15\cos 2x$ (b) $y = Ae^{x} + Be^{4x} + 15\sin 2x$ (c) $y = Ae^{-x} + Be^{-x} + 15\sin 2x$ $y = Ae^x + Be^{4x} + \frac{1}{16}\cos 2x$ CO2, 1.2 Q16) Which of the following is an "even" function of £? $t^2 - 4t$ (c) $\sin 2t + 3t$ (d) $t^3 + 6$ Given the periodic function $f(x) = \begin{cases} -x, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$, then the value of the fourier Q17) CO3, 1.3 coefficient b, can be computed as (a) 1 (c) 0 (d) none of these In the Fourier series of function $f(x) = \sin x$, $0 < x < 2\pi$, the value of the Fourier CO3, 1.3 Q18) $b_n = 0 \,\forall \, n$ (b) $b_n = \frac{(-1)^n}{n\pi}$ (c) $b_n = 0, n \neq 1 \text{ and } b_1 = 1$ (a) none of these For Fourier series expansion of periodic function f(x) defined in (-1,1) if f(x) is CO3, L3 an even function then, $b_n = 0$ (c) $a_0 = 0$ (d) both a_0 and a_n is zero (a) $a_n = 0$ (b) Fourier series of the periodic function with period 2π defined by $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases} \text{ is } \frac{\pi}{4} + \sum \left[\frac{1}{\pi n^2} (\cos n\pi - 1) \cos nx - \frac{1}{n} \cos n\pi \sin nx \right].$ COT! 1.3 Then the value of the sum of the series $1 + \frac{1}{2^2} + \frac{1}{6^2} + \cdots$ is $\frac{\pi^2}{4}$ (b) $\frac{\pi^2}{4}$ (c) $\frac{\pi^2}{4}$ (d) CO3, L3 (Q21) Which of the following condition is necessary for Fourier series expansion of f(x) in (c,c+2l). (a) f(x) should be continuous in (c,c + 2/) (b) f(x) should be periodic

(c) f(x) should be even function (d) f(x) should be odd function.

CO3, L3

Calabara Carata	
Given the periodic function $f(t) = \begin{cases} 1 & for - 1 \le t < 0 \\ -2 & for 0 \le t < 1 \end{cases}$ The coefficient g_0 of the continuous Fourier series associated with the given	
Q22) The coefficient a_0 of the continuous Fourier series associated with the given function $f(t)$ can be computed as	Aug 19 mil
(a) 0 (b) 1 μ c) -1 (d) -2	CO3, L3
The state of the s	
$(1+x for -\pi \le x \le 0)$	
Q23) Given the periodic function $f(x) = \begin{cases} 1 + x & \text{for } -\pi \le x \le 0 \\ 1 - x & \text{for } 0 \le x \le \pi \end{cases}$ The coefficient a_x of the continuous Fourier series associated with the given	S. Shire
The coefficient a_0 of the continuous Fourier series associated with the given function $f(x)$ can be computed as	
(a) . 2 (b) π (c) $\frac{\pi}{2} + (d) = 2 - \pi$	CO3, L3
the second of th	
Q24) The value of $\cos 2n\pi$ is (a) -1 (b) 0 (c) 1 (d) π	4
· · · · · · · · · · · · · · · · · · ·	CO3, L3
Given the periodic function $f(x) = x \sin x$, $-\pi \le x \le \pi$ with period 2π . The	The state of the state of
Q25) Given the periodic function $f(x) = x \sin x$, $-x = x \cos x$, coefficient a_0 of the continuous Fourier series associated with the given function $f(x)$ can be computed as	The second second
(a) $0^{(b)} 2\pi \cdot {(c)} \frac{2}{\pi} $ (d) 2	CO3, L3
The half range Fourier sine series of $f(x) = 1$ in $(0, \pi)$ is	- Late di J.
(a) .0 (b) $\frac{4}{\pi} (\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots)$	· · · · · · · · · · · · · · · · · · ·
$\frac{4}{4}\left(\sin 2x + \frac{\sin 4x}{\sin 4x} + \frac{\sin 6x}{\sin 6x} + \dots\right)$	CO3, L3
$\int_{c^{(c)}}^{\frac{4}{\pi}} (\sin x - \frac{\sin 3x}{3} + \frac{\sin 5x}{5} - \cdots)$	
Q27) The function sin nx cosnx is. (a) Odd fuction (b) even function (c) cannot determined (d) none of these	4
(a) Odd fuction (b) even function (c) calmot Determine (c)	
	CO3, L3
Given the periodic function $f(t) = \begin{cases} t^2 & \text{for } 0 \le t \le 2 \\ -t + 6 & \text{for } 2 \le t \le 6 \end{cases}$	
The coefficient a_0 of the continuous Fourier series associated with the given	940147 kiloni
function $f(t)$ can be computed as	
(a) $\frac{8}{9}$ (b) $\frac{16}{9}$ (c) $\frac{24}{9}$ (d) $\frac{32}{9}$	
The period of the $f(x) = \cos 2x$ is	CQ3, L3
The period of the $f(x) = \cos 2x$ is (29)	775, 13
(a) π (b) $\frac{\pi}{2}$ (c) 2π (d) 4π	-10 m
	Art No.
Q30) Which of the following is an "odd" function of t?	
Q30)	CO3, L3

 $\sin 2t + 3t^{-(d)}$

4

Q31) The value of
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$

(a) (b) 1 (c) 2 (d) Does not exist

CO1, L3

Q32) If
$$u = y^x$$
 then $\frac{\partial u}{\partial x}$ is

(a) xy^{x-1} (b) 0 (c) $y^x logy$ (d) none of these

CO1, L3

If
$$x = r\cos\theta$$
, $y = r\sin\theta$ then $\frac{\partial r}{\partial x}$ is

 $sec\theta$ (b) $sin\theta$ (c) $cos\theta$

CO1, L3

Q34) If
$$u = \frac{x^2 + y^2 + xy}{x + y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ equals

CO1, L3

(a) If p=0 and q=0,
$$rt - s^2 > 0$$
, $r < 0$ then $f(x, y)$ is

Minimum (c) saddle point (d) None of these

CO1, L3

(236)
$$u = x^2 + y^2$$
 then $\frac{\partial u}{\partial x}$ is

(a) 0 (b) 2 (c) 2x+2y (d) 2x

CO1, L3

(37) If
$$u = f\left(\frac{x}{y}\right)$$
 then

(a)
$$x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$$
 (b) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ (c) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$ (d) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$
 (c)

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u$$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 1$$

If u is a homogeneous of x, y of order n, then

(A)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = u$$

$$y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} = u$$

$$y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} = u$$

$$y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} = u$$

$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} = nu \quad (c$$

$$y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = nu$$
 (d)

$$y\frac{\partial u}{\partial x} - x\frac{\partial u}{\partial y} = nu$$

139) If
$$u = x^2 t a n^{-1} \left(\frac{y}{x} \right)$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ at $x = y = 1$ is

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{2}$ (c) $-\frac{\pi}{4}$ (d) π

(340) (a)
$$4x+2y$$
 (b) $2x+y$ (c) $2x+4y$ (d) $2x+4y$ (d) $x+4y$

COI, L3

If z = f(x, y) and $x = r\cos\theta$, $y = r\sin\theta$, then $\frac{\partial z}{\partial r}$ is

$$\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$$

$$\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta \qquad \qquad \frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta \qquad \qquad (c) \qquad \frac{\partial f}{\partial x}\cos\theta - \frac{\partial f}{\partial y}\sin\theta \qquad \qquad \frac{\partial f}{\partial x}\sin\theta - \frac{\partial f}{\partial y}\cos\theta$$

$$\frac{\partial f}{\partial x}\cos\theta - \frac{\partial f}{\partial y}\sin\theta$$

(d) -2

$$\frac{\partial f}{\partial x} \sin\theta - \frac{\partial f}{\partial y} \cos\theta$$

CO1, L3

Q42) If
$$x^4 + y^2 = c$$
, where c is a constant, then value of $\frac{dy}{dx}$ at (1,1) is

CO1, L3

(243) If f(x,y) = 0 then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{\partial y}{\partial f}$$
 (b) $-\frac{\partial f}{\partial y}$ (c) $-\frac{\partial f}{\partial x}$ (d) $\frac{\partial y}{\partial x} \cdot \frac{\partial f}{\partial y}$

$$\begin{pmatrix} c \\ -\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial f} \end{pmatrix}$$

$$\frac{\partial y}{\partial x} \cdot \frac{\partial f}{\partial y}$$

CO1, L3

Q44) The function $f(x,y) = y^2 - x^3 has$

- (a) a minimum at (0,0)
- (b) a minimum at (1,1)
- (c) neither minimum nor maximum at (0,0)
- (d) a maximum at (1,1)

CO1, L3

The minimum value of $\sqrt{x^2 + y^2}$ is

Q45)

CO1, L3

The value of $\iiint_V dx dy dz$, where $V: x^2 + y^2 + z^2 = 4$ is

(a)
$$8\pi$$
 (b) $\frac{32\pi}{3}$ (c) $\frac{16\pi}{3}$ (d) $8\frac{\pi}{3}$

COS, LA

The value of $\iint_R^{\square} dx \, dy$, where $R: x^2 + y^2 = 2y$ is

$$(2\pi \ (b) \ \pi \ (c) \ 4\pi \ (d) \frac{\pi}{2}$$

CO5, L4

The value of the integral $\int_0^1 \int_0^{1-x} x \ dy \ dx$ is $\frac{1}{2} \quad \text{(b)} \quad \frac{1}{3} \quad \text{(c)} \quad \frac{2}{3} \quad \text{(d)} \quad \frac{1}{6}$

(a)
$$\frac{1}{2}$$
 (b)

$$\frac{1}{3}$$
 (c) $\frac{2}{3}$ (d)

The value of the integral $\int_a^b \int_a^b xy \ dx \ dy$ is

CO5, 14

$$(a) \qquad (b-a)^2$$

$$(b-a)^2$$
 (b) $\frac{(b-a)^2}{2}$ (c) $\frac{(b^2-a^2)^2}{4}$ (d) $\frac{b^2-a^2}{4}$

The volume bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 is

CO5, 1.4

COS. LA

The value of the integral $\int_{\pi=-1}^{\pi=1} \int_{y=1}^{y=3} \int_{x=2}^{x=4} x^2 y^3 z \ dx \ dy \ dz$ is

Q51)

(a) 70 (b)
$$\frac{35}{3}$$
 (c) $\frac{65}{6}$ (d) 0

CO5, L4

On changing the order of integration, $\int_0^1 \int_y^{y^{\frac{1}{2}}} e^{x^2} dx dy =$ _____

Q52)

$$\int_{0}^{1} \int_{x}^{x^{3}} e^{x^{2}} dy dx \qquad \qquad \int_{0}^{1} \int_{x}^{x^{\frac{1}{3}}} e^{x^{2}} dy dx \qquad \qquad \int_{0}^{1} \int_{x^{\frac{1}{3}}}^{x} e^{x^{2}} dy dx \qquad \qquad \int_{0}^{1} \int_{x^{2}}^{x} e^{x^{2}} dy dx \qquad \qquad \int_{0}^{1} \int_{x^{2}}^{x} e^{x^{2}} dy dx$$

CO5, LA

Q53) For evaluating $\iiint_T dx dy dz$, where T is the boundary of $x^2 + y^2 + z^2 = a^2$, if we transform Cartesian co-ordinate (x, y, z) into spherical polar co-ordinate (r, θ, ϕ) i.e. x = $r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ then the limit for θ will be

· (a) $0 to 2\pi$ (b)

$$0 to \pi/2$$
 (d)

CO5, L4

If we change the order of integration for $\int_0^{8a} \int_{x^2}^{2x} xy \, dy \, dx$ then what will be the limit for $x \inf \int xy \, dx \, dy$?

$$\frac{y}{2} \le x \le \sqrt{4\alpha y}$$
 (b) $\sqrt{4\alpha y} \le x \le \frac{y}{2}$ (c) $\sqrt{4\alpha y} \le x \le \frac{y}{4}$

$$\sqrt{4\alpha y} \le x \le \frac{y}{4}$$

$$4ay \le x \le 2y$$

Q55) The area of the region bounded by $0 \le x \le 1$, $0 \le y \le x$ is

(d) none of these

Q56) The polar form of $\iint_R \sqrt{x^2+y^2} dx \, dy$, where $R: x^2+y^2 \le 4$, $x \ge y \ge 0$ is

CO5, L4

CO5, L4

$$\int_0^{\pi} \int_0^2 r \, dr \, d\theta \qquad (b) \qquad \int_0^{\frac{\pi}{4}} \int_0^2 r^2 \, dr \, d\theta \qquad (c) \qquad \int_0^{\frac{\pi}{4}} \int_0^2 r^2 \, dr \, d\theta \qquad (d) \qquad \int_0^{\pi} \int_0^2 r^2 \, dr \, d\theta$$

$$\int_0^{\frac{\pi}{2}} \int_0^2 r^2 dr d\theta$$

$$\int_0^{\pi} \int_0^2 r^2 dr d\theta$$

Q57) If we change the Cartesian coordinates to spherical polar coordinates i.e. $x=r\sin\theta\cos\phi$, $y=r\sin\theta\sin\phi$, $z=r\cos\theta$, then the Jacobian of transformation is

CO5, L4

 $r\sin\theta$ (c) $r^2\sin\theta$ (d) $r\cos\phi$ (a) r (b)

(58)

The value of the integral $\int_{-1}^{1} \int_{1}^{3} \int_{2}^{4} xyz \, dx \, dy \, dz$ is

CO5, L4

24 (b) 48 (c) 12 (d) 0

COS, L4

In polar form the equation of circle $x^2 + y^2 = 4y$ is given by

 $r = 4 \sin \theta$ (b)

$$r=2\sin\theta$$

$$r = 2\sin\theta$$
 (c) $r = 4\cos\theta$ (d) $r = 2$

$$r = 7$$

The value of I (1 drdy dz ig اص) none of these

- end of paper-