Lista 3 zadanie 2

Krystian Grabowski

Treść:

2. (2pkt) Przeanalizuj następujący algorytm oparty na strategii dziel i zwyciężaj jednoczesnego znajdowania maksimum i minimum w zbiorze $S = \{a_1, \dots, a_n\}$:

```
Procedure MaxMin(S:set)

if |S|=1 then return \{a_1,a_1\}
else

if |S|=2 then return (\max(a_1,a_2),\min(a_1,a_2))
else

podziel S na dwa równoliczne (z dokładnością do jednego elementu) podzbiory S_1,S_2
(max1,min1) \leftarrow MaxMin(S_1)
(max2,min2) \leftarrow MaxMin(S_2)
return (\max(max1,max2),\min(min1,min2))
```

Uwaga: Operacja **return** $(\max(a_1, a_2), \min(a_1, a_2))$ wykonuje jedno porównanie.

- Jak pokażemy na jednym z wykładów każdy algorytm dla tego problemu, który na elementach zbioru wykonuje jedynie operacje porównania, musi wykonać co najmniej $\lceil \frac{3}{2}n-2 \rceil$ porównania. Dla jakich danych powyższy algorytm wykonuje tyle porównań? Podaj wzorem wszystkie takie wartości.
- Jak bardzo może różnić się liczba porównań wykonywanych przez algorytm od dolnej granicy?
- Popraw algorytm, tak by osiągał on tę granicę dla każdej wartości n?

Dla jakich wartości się psuje?

Lemat 1

Algorytm wykonuje założoną liczbę porównań dla wartości $2^k-1, 2^k, 2^k+1.$

Dowód indukcyjny Lematu 1

Podstawa

Dla k=0 otrzymamy wartości 0, 1 oraz 2. Dla 0 algorytm wykona 0 porównań. Dla 1 algorytm wykona również 0 porównań. Dla 2 natomiast wykona 1 porówanie. Stąd podstawa indukcji spełniona.

Krok

Załóżmy, że dla każdego k-1 lemat 1 jest prawdziwy. Zobaczmy co się dzieje dla wartości k. Rozpatrując zbiór o liczności 2^k wiemy, że algorytm podzieli go na dwa równoliczne(z dokładnością co do jednego) podzbiory. Stąd zbiory liczące 2^k elementów podzielimy na dwa zbiory liczące 2^{k-1} elementów. Z założenia indukcyjnego algorytm wykona zakładaną liczbę porównań dla tych zbiorów. Podobnie będzie w przypadku 2^k-1 oraz 2^k+1 . Podczas dzielenia 2^k-1 na podzbiory otrzymamy podzbiór o wielkości

 2^{k-1} oraz $2^{k-1}-1$. A podczas dzielenia 2^k+1 zbiory o liczności $2^{k-1}+1$ i 2^{k-1} . Dla obydwu przypadków z założenia indukcyjnego możemy stwierdzić, że algorytm wykona dla nich założoną liczbę porównań. Podsumowując dla:

Dla 2^k

$$2*\lceilrac{3}{2}*2^{k-1}-2
ceil+2=$$

 2^{k-1} parzyste więc możemy usunąć sufit, bo (3*parzysta) podzieli się przez 2 bez reszty.

$$rac{3}{2}*2^k-4+2= \ rac{3}{2}*2^k-2$$

Dla 2^k-1

$$egin{aligned} \lceil rac{3}{2}*(2^{k-1}-1)-2
ceil + \lceil rac{3}{2}*2^{k-1}-2
ceil + 2 = \ & \lceil rac{3}{2}*2^{k-1}-3rac{1}{2}
ceil + rac{3}{2}*2^{k-1} = \ & rac{3}{2}*2^{k-1}+rac{3}{2}*2^{k-1}-3 = \ & rac{3}{2}*2^k-3 \end{aligned}$$

Dla 2^k+1

$$\lceil \frac{3}{2} * (2^{k-1} + 1) - 2 \rceil + \lceil \frac{3}{2} * 2^{k-1} - 2 \rceil + 2 =$$

$$\lceil \frac{3}{2} * 2^{k-1} - \frac{1}{2} \rceil + \frac{3}{2} * 2^{k-1} =$$

$$\frac{3}{2} * 2^{k-1} + \frac{3}{2} * 2^{k-1} =$$

$$\frac{3}{2} * 2^{k}$$

Jeśli wiemy, że dla potęg k-1 osiągamy oczekiwaną liczbę porównań to jak widać w powyższych równaniach dla 2^k (+-1) otrzymamy po scaleniu takie wartości jakie powinniśmy otrzymać według wzoru, czyli $\lceil \frac{3}{2}n-2 \rceil$.

Algorytm nie wykonuje założonej liczby porównań jeśli liczność naszego zbioru jest różna od $2^k-1,2^k,2^k+1$, wtedy nasz algorytm wykona więcej porównań. Niech n będzie licznością zbioru. Gdy n jest liczbą parzystą różną od potęg 2, to w binarnej

reprezentacji musi mieć conajmniej dwie jedynki (jedną przy pierwszym $2^k \leq n$, a drugą na mniej znaczącym bicie). Stąd, przy dzieleniu przez 2, które jest przesuwaniem binarnej reprezentacji w prawo, otrzymamy w którymś kroku dwa zbiory o nieparzystej liczbie elementów. W takiej sytuacji możemy oszacować koszt znalezienia min i max dla tych dwóch zbiorów.

Przypadek 1

 $(n-parzyste, rac{n}{2}-nieparzyste)$

$$2*\lceilrac{3}{2}*rac{n}{2}-2
ceil+2=$$

Wiemy, że $\frac{n}{2}$ jest nieparzyste, stąd też pomnożone przez $\frac{3}{2}$ da nam ułamek, który zostanie zaokrąglony w górę (dokładnie dodamy $\frac{1}{2}$). Stąd możemy odrazu dodać $\frac{1}{2}$

$$2*(rac{3}{2}*rac{n}{2}-1.5)+2= \ rac{3}{2}*n-3+2= \ rac{3}{2}*n-1$$

Więc jak widać w przypadku parzystej liczby nie będącej potędą dwójki wykonamy conajmniej 1 porównanie więcej. Do rozpatrzenia mamy jeszcze drugi przypadek, gdy n jest nieparzyste.

Przypadek 2

(n-nieparzyste)

W tym przypadku dzieląc zbiór o nieparzystej liczbie elementów otrzymamy dwa podzbiory. Jeden o liczności parzystej, drugi nieparzystej. Tu również możemy spojrzeć na binarną reprezentację naszego n. Skoro jest nieparzyste to na najmniej znaczącym bicie ma 1. Wiemy, że nie jest to 2^k+1 stąd oprócz najmniej znaczącego bitu oraz tego o największej wadze musi być zapalony jeszcze conajmniej jeden inny. Możemy z tego wywnioskować, że otrzymany zbiór parzysty nie jest potęgą dwójki(+-1), a w takim wypadku przy liczeniu min i max dla niego wykonamy minimum jedno porównanie więcej. Dodatkowo wywołamy się rekurencyjnie znów na zbiorze nieparzystym co w dalszych krokach wygrenruje dodatkowe porównania. Dlatego też w przypadku 2 również nie możemy liczyć na założoną liczbę porównań.

Ile więcej porównań może wykonać przedstawiony algorytm?

Rozpiszę kilka początkowych wartości n. Określę jaką powinny osiągać ilość porównań oraz jaką mają w rzeczywistości.

Tabelka 1.1

n	Oczekiwana	Rzeczywista
1	0	0
2	1	1
3	3	3
4	4	4
5	6	6
6	7	8

Jak widać wartość 6 jest pierwszą wartośćią przy której zakładana liczba porównań nie zgadza się z rzeczywistą. Możemy przedstawić działanie naszego algorytmu jako drzewo binarne. W drzewie tym na pewnym poziomie mamy same 6, czyli najmniejszy przypadek dla którego otrzymujemy niepoprawną liczbę porównań.

Rysunek 1.1

Taki przypadek(6) podzieli się jeszcze na dwa zbiory 3 elementowe oraz na 1 i 2 elementowe. Podczas każdego wywołania algorytmu dla wartości 6(zbiór liczności 6) dodamy pewną nadmiarową liczbę porównań. Od jakiej wartości musimy zacząć, aby otrzymać drzewo przedstawione na rysunku? Wiemy, że w każdym kroku

dzielimy zbiór na dwa równoliczne zbiory. Stąd, aby otrzymać 2^k szóstek nasze n musi być równe 2^k*6 . W każdym kroku podziału podzielimy nasze n przez 2, aż zostaną same wartości 6 i będzie ich 2^k . Czyli patrząc względem n wywołamy się $\frac{n}{6}$ razy na zbiorach o liczności 6 i jak wiemy z Tabelka 1.1 w każdym takim wywołaniu wykonamy jedno nadmiarowe porówanie. Stąd widać, że dla takiego przypadku jest co najmniej $\frac{n}{6}$ więcej porównań. Z drugiej strony jeśli istniałby jakikolwiek inny przykład, który generuje większą liczbę porównań, to wiemy że porównań nie może być nigdy więcej niż węzłów w drzewie. Liczba węzłów w takim drzewie wyraża się następującym wzorem:

$$\sum_{i=0}^{log_2n} 2^i = 2^{log_2n+1} - 1 < 2n$$

Na każdym z poziomów, których jest logarytmicznie wiele dodajemy 2^i wierzchołków. Patrząc binarnie wstawiamy jedynki od 0 do log_n pozycji co jest równe $2^{log_2n+1}-1$, a to będzie zawsze mniejsze od 2n. Chociażby dlatego, że nasze n pomnożone razy dwa przesunie się binarnie w lewo o 1 i będzie miało jedynkę na pozycji log_2n+1 , a $2^{log_2n+1}-1$ pierwszą jedynkę będzie miało na pozycji log_2n+1 (patrząc od najmniej znaczącego bitu). Finalnie takich dodatkowych porównań będzie maksymalnie liniowo wiele.

Poprawa algorytmu

Algorym, który zaproponuję wykorzystuje spostrzeżenia z punktu 1. Algorym psuł się gdy:

- dzieliliśmy zbiór o parzystej liczbie elementów na dwa równoliczne zbiory o nieparzystej liczbie elementów.
- dzieliliśmy zbiór o nieparzystej liczbie elementów na dwa zbiory równoliczne co do jednego elementu (jeden parzysty drugi nieparzysty).

Wprowadzając następujące poprawki:

- Gdy n, w danym kroku jest parzyste a po podzieleniu na dwa zbiory
 równoliczne owe zbiory mają nieparzystą liczbę elementów, to przenosimy
 jeden z elementów do drugiego zbioru. W ten sposób otrzymamy dwa zbiory
 o parzystej liczbie elementów.
- Gdy n jest nieparzyste możemy oddzielić jeden element ze zbioru i wywołać sie na zbiorze o parzystej liczbie elementów. Jak pokażę poniżej nie wpłynie to na założoną liczbę porównań.
- w pozostałych przypadkach działamy tak samo jak w algorytmie przedstawionym w treści zadania.

Indunkcyjny dowód wykonywania założonej liczby porównań poniżej

Podstawa

Za podstawę może posłużyć tabelka podobna do *tabelka 1.1*, w której są rozpisane pierwsze przypadki.

n	Oczekiwana	Rzeczywista
1	0	0
2	1	1
3	3	3
4	4	4
5	6	6
6	7	7

Więc jak widać podstawa indukcji jest spełniona.

Krok indukcyjny

W kroku indukcyjnym musimy rozpatrzeć 3 przypadki:

o (n-parzyste, $\frac{n}{2}$ - nieparzyste)

$$T(n)=T(rac{n+2}{2})+T(rac{n-2}{2})+2= \ \lceil rac{3*(n+2)}{4}-2
ceil+\lceil rac{3*(n-2)}{4}-2
ceil+2=$$

n jest liczbą podzielną przez 2, a $\frac{n}{2}$ już nie jest. Skoro tak to $\frac{n+-2}{2}$ będzie już parzyste i podzieli się bez reszty przez 4. Stąd usuwam sufit.

$$rac{3*(n+2)}{4} + rac{3*(n-2)}{4} - 2 = \ rac{3n+6}{4} + rac{3n-6}{4} - 2 = \ rac{6n}{4} - 2 = rac{3}{2}n - 2$$

o (*n*-nieparzyste)

$$T(n)=T(n-1)+T(1)+2=$$

$$\lceil rac{3(n-1)}{2}-2
ceil+0+2=$$

Skoro n nieparzyste to n-1 parzyste i 3(n-1) będzie podzielne przez 2 bez reszty(np * p), stąd usuwam sufit.

$$\frac{3(n-1)}{2}=$$

$$\frac{3}{2}n-\frac{3}{2}$$

Wiemy, że 3 razy liczba nieparzysta, będzie liczbą nieparzystą, czyli niepodzielną przez 2. Jeśli odejmiemy $\frac{3}{2}$ to otrzymamy liczbę całkowitą. Stąd odjęcie od niej $\frac{1}{2}$ i wzięcie sufitu z całości nie zmieni wyniku więc finalnie mogę zapisać:

$$\lceil \frac{3}{2}n - 2 \rceil$$

o (n-parzyste , $\frac{n}{2}$ - parzyste)

$$T(n)=2*T(rac{n}{2})+2=
onumber$$
 $2*\lceilrac{3n}{4}-2
ceil+2=$

 $\frac{3n}{4}$ będzie podzielne bez reszty przez 4, stąd usuwam sufit.

$$rac{3n}{2}-2$$

```
def MaxMin2(S:set)
    if len(S) == 1: return (S[0], S[0])
   if len(S) == 2: return (\max(S[0], S[1]), \min(S[0], S[1]))
   else:
        if n % 2 == 1:
            S1 = pierwszy element z S
            S2 = pozostałe elementy z S
        if n \% 2 == 0 and (n / 2) \% 2 == 0:
            S1 = połowa elementów z S
            S2 = druga połowa elementów z S
        if n \% 2 == 0 and (n / 2) \% 2 == 1:
            S1 = połowa elementów z S oraz element (n/2+1)
            S2 = pozostałe elementy z S
        (s1Max, s1Min) = MinMax2(S1)
        (s2Max, s2Min) = MinMax2(S2)
        return (max(s1Max, s2Max), min(s1Min, s2Min))
```