Pulsos y espectros cuadrados

Los ejercicios con (*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

1. Espectro plano acotado

 $\hat{\phi}(\omega)$ en un $\Delta\omega$ centrado en un ω_0 presenta una amplitud constante $\frac{1}{\Delta\omega}$. En otras ω es nula.

a) Verifique que el correspondiente $\phi(t) = \mathcal{F}^{-1}\hat{\phi}(\omega)$ está dado por:

$$\phi(t) = \frac{1}{\sqrt{2\pi}} \left[\frac{\sin\left(\frac{\Delta\omega}{2}t\right)}{\frac{\Delta\omega}{2}t} \right] e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \operatorname{senc}\left(\frac{\Delta\omega}{2}t\right) e^{i\omega_0 t}.$$

- b) Grafique $\hat{\phi}(\omega)$ y $|\phi(t)|$ para $\omega_0=100\,\mathrm{s}^{-1}$ y $\Delta\omega=4\,\mathrm{s}^{-1}$. ¿Qué parte de la expresión de $\phi(t)$ impone límites temporales para el paquete de mayor amplitud? Determine tales límites.
- c) Sea T un intervalo de tiempo más prolongado que la duración de cualquier experimento que pueda idear. Muestre que si $\Delta\omega$ es suficientemente pequeño como para que $\Delta\omega T\ll 1$, entonces durante un tiempo menor que T, $\phi(t)$ es una función armónica de amplitud y fase casi constantes.

2. Tren de pulsos cuadrados

- a) Muestre que \mathcal{F} es lineal, por tanto $\mathcal{F}(af(x)+bg(x))=a\mathcal{F}f(x)+b\mathcal{F}g(x)$, donde a,b son constantes.
- b) $\phi(t)$ es una serie de pulsos cuadrados de duración Δt que se repiten N veces con un período τ ($\Delta t < \tau$). Si f(n,t) describe la función en cualquiera de los intervalos $[n\tau, (n+1)\tau]$ que contiene estos pulsos de amplitud no nula ϕ_0 en $[n\tau, n\tau + \Delta t]$ de forma que $\phi(t) = \sum_{n=0}^{N} f(n, t),$ compruebe que

$$\mathcal{F}\phi(t) = \mathcal{F}\left[\sum_{n=0}^{N} f(n,t)\right] = \sum_{n=0}^{N} e^{-in\omega\tau} \mathcal{F}f(0,t).$$

- c) Resuelva $\mathcal{F}f(0,t)$ para obtener la expresión completa de $\hat{\phi}(\nu) = \mathcal{F}\phi(t)$.
- d) El rasgo más prominente de $\hat{\phi}(\nu)$ son picos en $\nu_p = p\nu_1 \ (p \in \mathbb{N})$ donde $\nu_1 = \frac{1}{\tau}$, es decir, una serie de armónicos de ν_1 . Encuentre en la expresión de $\phi(\nu)$ el término que depende de τ responsable de este comportamiento y verifique ν_p .
- e) De similar análisis identifique qué término con dependencia en Δt hace que los armónicos más importantes se detecten en $0 < \nu < \frac{1}{\Delta t}$.
- f) Compruebe también que el ancho de banda de los armónicos es $\delta \nu = \frac{2}{(N+1)\tau}$, y calcule cuánto más pequeño es que el $\Delta \nu$ entre sucesivos ν_p .

3. Interfaz entre medios no dispersivos

Dos cuerdas semi-infinitas de distinta densidad lineal de masa, λ_{mizq} y $\lambda_{m \, \text{der}}$, están unidas y sometidas a una tensión T_0 . Sobre la primera se propaga hacia $+\hat{x}$ la perturbación que muestra la figura. Se conocen λ_{mizq} , λ_{mder} , T_0 , x_0 , Δx y h, y se consider que los medios son no dispersivos.

- a) Hallar el desplazamiento $\psi(x,t)$.
- b) Explique cualitativamente cómo cambian estos resultados si el medio es dispersivo.