Rechnernetze und verteilte Systeme (BSRvS II)

- Prof. Dr. Heiko Krumm
 FB Informatik, LS IV, AG RvS
 Universität Dortmund
- Computernetze und das Internet
- Anwendung
- Transport
- Vermittlung
- Verbindung
- Multimedia
- Sicherheit
- Netzmanagement
- Middleware
- Verteilte Algorithmen

• DiffServ

IntServ

Verteilung

• QoS

Multimedia-Kommunikation: Dienstgüte - QoS

Multimedia-Anwendungen:

Audio- und Video-Übertragung im Netz ("Kontinuierliche Daten")

Netz garantiert Mindestgüte Anwendungsfunktion braucht bestimmten Leistungspegel.

Kapitel 6: Übersicht

- 6.1 Multimedia Netzanwendungen
- 6.2 Audio- und Videostreaming
- 6.3 Realzeit Multimedia: Voice over IP / Internet-Telephonie
- 6.4 Protokolle für Realzeit-Anwendungen RTP,RTCP,SIP
- 6.5 Multimedia-Verteilung im Netz

- 6.6 Über Best Effort hinaus
- 6.7 Scheduling und Policing Mechanismen
- 6.8 Integrated Services und Differentiated Services
- **6.9 RSVP**

Multimedia Netz-Anwendungen

Anwendungsklassen:

- 1) Streaming gespeicherter Audiound Video-Daten
- 2) Streaming aktueller Audio- und Video-Daten (live)
- 3) Interaktive Realzeit-Audio und Video-Kommunikation

Jitter:

Veränderungen der Übertragungszeiten der Pakete eines Stroms

Grundlegende Eigenschaften:

- Typisch: Verzögerung ist kritisch
 - Ende-zu-Ende-Verzögerung
 - Jitter(Verzögerungsschwankungen)
- ◆ Aber Verluste sind akzeptabel: seltene Paketverluste werden kaum bemerkt
- ◆ Unterschied zu klassischem Datentransfer, wo Verluste nicht akzeptabel, aber Verzögerungen unkritisch sind.

Streaming gespeicherter Multimediadaten

Streaming:

- Daten sind bei Quelle gespeichert
- Sie werden zum Kunden übertragen
- ◆ Streaming: Das Abspielen beim Kunden beginnt, noch bevor die gesamte Datei übertragen ist
 - Zeitanforderung für die noch zu übetragenden Daten:
 Rechtzeitig zum lückenlosen Abspielen!

Streaming

Streaming: Interaktivität

- 10 sec Anfangsverzögerung OK
- 1-2 sec bis Kommando wirkt OK
- Protokoll RTSP wird dazu oft benutzt (später)
- ◆ Zeitanforderung für die noch zu übertragenden Daten: Rechtzeitig zum unterbrechungsfreien Abspielen

Streaming Live Multimedia

Beispiele:

- Internet Radio Talkshow
- Live Sportereignis

Streaming

- Playback Puffer
- Playback kann um einige 10 sec verzögert werden
- Auch bei Playback gibt es Rechtzeitigkeitsanforderungen

<u>Interaktivität</u>

- Vorwärtsspulen nicht möglich
- Pause und Rückwärtsspulen möglich

Interaktive Realzeit-Multimediadaten

Anwendungen:

IP Telephonie, Video-Konferenz, Verteilte interaktive Welten

- ◆ Anforderungen an Übertragungsverzögerung:
 - Audio: < 150 msec gut, < 400 msec OK
 - » Muss Anwendungsbearbeitung und Transferzeit umfassen
 - » Höhere Verzögerung stören die Interaktivität
- Sitzungsaufbau
 - Wie veröffentlicht der Angerufene seine
 IP Adresse, Port-Nummer und Codieralgorithmen?

Multimedia über das heutige Internet

TCP/UDP/IP: "Best-Effort Service"

♦ keine Garantien zu Verzögerungszeiten und Verlustfreiheit

? ? ? ? ? ABER: Anwendungen brauchen Mindestgüte, um adäquat ?zu funktionieren ?

Heutige Anwendungen nutzen Techniken auf Anwendungsebene, um (so gut als möglich) Verzögerungs- und Verlusteffekte zu mildern

Streaming gespeicherter Multimediadaten im Internet

Application-Level Streaming:

"Das beste aus Best-Effort-Internet machen"

- Pufferung auf Client-Seite
- Benutzung von UDP stattTCP
- Codierung und Kompression

Media Player

- Jitter entfernen
- Dekompression
- Fehler-Verschleierung
- GUI-Bedienknöpfe

Internet Multimedia: Streaming

- Browser GETs Metafile
- Browser startet Player, übergibt Metafile
- Player kontaktiert Server
- Server sendet Strom zu Audio/Video-Player

- Nicht-HTTP-Protokoll für Streaming möglich
- UDP statt TCP möglich

Streaming Multimedia: Client-seitige Pufferung

Jitter-Ausgleich

Nutzerkontrolle von Streaming Media: RTSP

<u>HTTP</u>

- Nicht für Multimedia-Austausch gedacht
- Keine Kommandos für Vor- und Zurückspulen, Pause etc.

Real-time Streaming Protocol RTSP: RFC 2326

- Client-Server Application Layer Protokoll.
- Kommandos für Vor- und Zurückspulen, Pause etc.

Nicht enthalten:

- Keine Codierungs- und Kompressionsfestlegungen
- Keine Multimedia-Transfer
 Festlegungen (z.B. UDP, TCP)
- Keine Festlegungen zur Pufferung

RTSP-PDUs werden in separater Verbindung ("Out of Band") übertragen

Interaktive Realzeit-Anwendung: Internet-Telephonie

- Je Richtung gibt es Sprechund Pausenphasen
 - In den Sprechphasen werden alle 20 msec ein Paket generiert, das 160 Datenbyte enthält (entsprechend 8KByte(sec)
 - Jedes Paket wird als UDP-Datagramm gesendet
- UDP Datagramme können:
 - verloren gehen
 - zu langsam transferiert werden
 - 1-10% Verluste sind tolerabel

- Jitter-Behandlung: Fixed Playout Delay
 - Zeitstempel je Paket
 - Abspielen nach konstanter Verzögerungszeit
 - je größer diese Zeit, umso weniger Pakete kommen zu spät
 - je größer diese Zeit, umso weniger kommt ein Gespräch zustande
- Verbesserung: Adaptiver Playout Delay

Behandlung von Paketverlusten

Forward Error Correction (FEC): Einfaches Schema

- ◆ Für je n Pakete wird (n+1)-tesPaket als Parity-Vektor gesendet
 - Redundanz erhöht Bandbreite
 - ermöglicht Rekonstruktion eines verlorenen Pakets, wenn je n-Gruppe höchstens ein Paket verloren geht

Forward Error Correction (FEC): Flexibleres Schema

◆ Dem Datenstrom, der den Audiostrom mit guter Qualität codiert wird ein zweiter Datenstrom überlagert, der den Audiostrom mit schlechter aber kurzzeitig akzeptabler Qualität codiert

Transfer mit dem Real-Time Protokoll (RTP)

- ◆ RTP (RFC 1889)
 Paketformat für Datenpakete, die Audio- und Videodaten enthalten
 - Typkennung für diese Nutzdaten
 - Sequenznummer
 - Zeitstempel

Transfer in UDP-Datagrammen
Interoperabilität zwischen zwei
Anwendungsprozessen, die beide
RTP benutzen und dieselben
Codierungen verstehen.

 Keine QoS-Mechanismen enthalten

Payload type 0: PCM mu-law, 64 kbps
Payload type 3, GSM, 13 kbps
Payload type 7, LPC, 2.4 kbps
Payload type 26, Motion JPEG
Payload type 31. H.261
Payload type 33, MPEG2 video

Real-Time Control Protokol (RTCP)

- RTP: Medientransfer
- RTCP: Jeder RTP-Anwendungsprozess sollte periodisch RTCP-PDUs zu seinen entfernten Partnern senden, um Anpassungen zu ermöglichen:
 - Sender bzw. Empfänger-Report:
 Statistische Daten
 (Paketanzahl, Verlustanzahl, Jitter, ..)
 - Paare aus RTP-Stromzeitstempel und Paketerzeugungszeitstempel zur wechselseitigen Synchronisation von Strömen

- Adressierung typischerweise über Multicast-Adressen
 - RTP und RTCP benutzen dieselbe Gruppenadresse, aber verschiedene Port-Nummern

Session Initiation Protokoll (SIP)

Vision

- ◆ Jede Form von Telekommunikation (Telephonie, Videokonferenzen, ..) werden über das Internet abgewickelt.
- Adressaten werden durch Namen oder E-Mail-Adressen identifiziert, nicht mehr durch Telephinnummern
- Der Angerufene kann unabhängig davon erreicht werden, ob er momentan am Arbeitsplatz-PC sitzt, auf Reisen ist, oder ..

Dienste

- Anruf-Erzeugung
 - Rufen des Partners
 - Abstimmen der Medien und der Codierung
 - Beenden der Sitzung
- Ermittlung der aktuellen IP-Adresse des Partners
- Verbindungsverwaltung
 - Medien- und Codec-Änderungen
 - Neue Partner dazu
 - Anrufweiterleitung und Pausieren

Setting up a call to a known IP address

- Alice's SIP invite
 message indicates her
 port number & IP
 address. Indicates
 encoding that Alice
 prefers to receive (PCM
 ulaw)
- Bob's 200 OK message indicates his port number, IP address & preferred encoding (GSM)
- SIP messages can be sent over TCP or UDP; here sent over RTP/UDP.
- Default SIP port number is 5060.

Namensübersetzung und Nutzerlokation

♦ SIP Registrar Server

Nutzer melden sich dort jeweils aktuell an

♦ SIP Proxy Server

 Übernimmt die Weiterleitung der SIP-Nachrichten für einen Nutzer (u.U. über eine Kette von Proxies)

Caller jim@umass.edu with places a call to keith@upenn.edu

- (1) Jim sends INVITE message to umass SIP proxy.
- (2) Proxy forwards request to upenn registrar server.
- (3) upenn server returns redirect response, indicating that it should try keith@eurecom.fr
- (4) umass proxy sends INVITE to eurecom registrar.
- (5) eurecom registrar forwards INVITE to 197.87.54.21, which is running keith's SIP client.
- (6-8) SIP response sent back

(9) media sent directly between clients.

Content Distribution Networks (CDNs)

Replikation

um Transfers zu sparen, werden die Inhalte in Kopien auf vielen Servern gespeichert

- Interessante Aspekte
 - Auswahl und Verteilung der Inhalte
 - Finden des nächsten Servers für einen Kunden
 - Aktualisierung der Server bei Updates
 - Gemeinsame Teilwege beim Ausliefern derselben Inhalte an verschiedene Kunden

Kapitel 6: Übersicht

- 6.1 Multimedia Netzanwendungen
- 6.2 Audio- und Videostreaming
- 6.3 Realzeit Multimedia: Voice over IP / Internet-Telephonie
- 6.4 Protokolle für Realzeit-Anwendungen RTP,RTCP,SIP
- 6.5 Multimedia-Verteilung im Netz

- 6.6 Über Best Effort hinaus
- 6.7 Scheduling und Policing Mechanismen
- 6.8 Integrated Services und Differentiated Services
- **6.9 RSVP**

Internet-Evolution für Multimedia

Integrated Services IntServ

- Grundlegende Änderungen im Internet, so dass Anwendungen Bandbreite reservieren können
- Neue, komplexe Software in Hosts und Routern

Laissez-Faire

- Keine besonderen Änderungen
- Ausbau des Netzes, wenn mehr Bandbreite benötigt
- Multimedia und
 Gruppenkommunikation über
 Anwendungssysteme
 - Application Layer

Differentiated Services DiffServ

- Wenige Änderungen im Internet
- Dienste
 - Erste Klasse
 - Zweite Klasse
 - ◆ Audio-Übertragungsrate
 - CD: **1.411 Mbps**
 - MP3: **96**, **128**, **160** kbps
 - Internet telephony: 5.3 13 kbps
 - ◆ Video-Übertragungsrate
 - MPEG 1 (CD-ROM) **1.5 Mbps**
 - MPEG2 (DVD) **3-6 Mbps**
 - MPEG4 (oft im Internet verwendet)< 1 Mbps

Verbesserte Dienstgüte in IP Netzen

Internet bisher: "Best Effort – das Beste draus machen"

Zukünftig: Next Generation Internet mit QoS Garantien

- RSVP: Signalisierung für Ressourcenreservierungen
- Differentiated Services: Priorisierungen
- Integrated Services: Feste Garantien
- Grundprobleme des Ressourcensharings und der Staubildung sind schon sichtbar an:

- Beispiel: 1Mbps I P-Telephonie und FTP nutzen einen 1.5 Mbps Link gemeinsam
 - FTP-Burst können Router verstopfen und Audio-Verluste bewirken
 - Priorität für Audio vor FTP wäre eine Lösung

Prinzip 1

Pakete werden markiert, damit die Router zwischen verschiedenen Verkehrsklassen unterscheiden können

- Anwendung weist Fehlverhalten auf (z.B. Audio sendet mit mehrfacher Rate)
 - Policing (Reglementierung): Setze durch, dass die Audioquelle ihre maximale Rate nicht überschreitet
- Markieren und Policing an der Netz-Grenze (ähnlich ATM Netzinterface)

Prinzip 2

Schütze eine Klasse vor Fehlverhalten (Überlastung des Netzes) durch andere: **Isolation**

♦ Feste Bandbreiten-Reservierung ist keine gute Lösung: Ineffizienz

Prinzip 3

Die Ressourcen sollen trotz Isolation möglichst effizient mehrfach genutzt werden.

Der Boden der Tatsachen

Man kann nicht mehr übertragen, als die Link-Leistung zulässt.

Prinzip 4

Call Admission: Ein Fluss deklariert seinen Bedarf. Das Netz entscheidet, ob es den Fluss zulassen kann.

Prinzipien für QoS-Garantien: Zusammenfassung

Im Folgenden: Entsprechene Mechanismen

Scheduling und Policing Mechanismen

- Scheduling: Einplanung und Auswahl des nächsten auf Link zu sendenen Pakets
- ◆ FIFO (first in first out) Scheduling: Senden in Empfangsreihenfolge
 - Discard Policy: Falls ein ankommendes Paket auf eine volle Queue trifft:
 Welches Paket soll gelöscht werden?
 - » Tail Drop: ankommendes Paket
 - » Priorität: Prioritätskennungen, niederpriores Paket
 - » Random: zufällige Auswahl

Scheduling Mechanismen

Priority Scheduling: Sende höchstpriores Paket als nächstes

- mehrere Prioritätsklassen Problem: Fairness
 - Priotitätskennung im Paketheader, Portnummer, Protokolltyp, etc.

Andere Sttrategien (vgl. Prozessorscheduling)

- Round Robin
- Weighted Fair Queuing

Policing Mechanismen

Ziel: Zur Laufzeit soll der Paketstrom so begrenzt werden, dass ausgemachte Schranken nicht überschritten werden

Schranken für:

- ◆ (Langfristige) mittlere Senderate
- **♦** Spitzenrate
- ◆ (Maximale) Burst-Größe

Mechanismen sollen für Nutzer nachvollziehbar sein.

Policing Mechanismen: Leaky Bucket Verfahren

Begrenze Burst-Größe und mittlere Rate

(Idee: Der lecke Eimer – Zufluss und Abfluss, Zufluss darf, solange Eimer nicht überläuft, größer als Abfluss sein (Burst), muss aber im Mittel kleiner gleich Abfluss sein)

IETF – Internet: Integrated Services (IntServ)

- ◆ Architektur, um QoS-Garantien für individuelle Anwendungsanforderungen in IP-Netzen zu unterstützen
- Mittel: Ressourcen-. Vorabreservierung, Router verwalten "Virtuelle Verbindungen"
- ◆ Neue Verbindungen müssen zugelassen und können abgelehnt werden:

Call Admission

Fragestellung:

Kann ein neuer Fluss zugelassen werden, ohne die Leistunsgarantien an bestehende Flüsse zu gefährden?

Intserv: QoS-Garantie-Szenario

Intserv QoS: Dienstmodelle [RFC 2211, RFC 2212]

Guaranteed Service:

- Worst Case Verkehrslast durch Source Policing begrenzt (Leaky Bucket)
- Paketverzögerung ist begrenzt

Controlled Load Service:

 Netz stellt eine QoS zur Verfügung, die derselbe Fluss annähernd auch von einem unbelasteten Netz bekäme

IETF – Internet: Differentiated Services (DiffServ)

Probleme bei Intserv:

- ◆ Skalierbarkeit: Bei großer Flussanzahl werden Router durch die Verwaltung der Flüsse übermäßig belastet
- ◆ Flexible Dienstmodelle: Intserv bietet nur 2 Klassen an.

Man möchte gerne "qualitative" Dienstklassen

Relative Dienst-Unterscheidung: Platin-, Gold- und Silber-Dienste

DiffServ approach:

- ◆ Im Inneren des Netzes nur einfache Funktionen
- ◆ Komplexe Funktionen nur am Rand (Edge Router o. Host)
- ◆ Keine Service-Klassen direkt definiert, nur Funktionseinheiten gegeben, mit denen Services gebildet werden können

DiffServ Architektur

Edge Router:

- Per-Fluss Verkehrsmanagement
- Markiert Pakete als in-profile oder out-profile

Core Router:

- Per-Klasse Verkehrsmanagement
- Pufferung und Scheduling entsprechend Markierung
- In-profile Pakete werden vorgezogen
- Garantierte Weiterleitung

Edge-Router Paket-Markierung

- ◆ Profile: Vorab für Fluss ausgehandelte mittlere Rate A, Eimer-Größe B
- ◆ Jedes Paket wird Fluss-bezogen markiert

Markierung:

- Klassen-Zugehörigkeit
- ◆ Innerhalb einer Klasse: Profil-konform / Profil-verletzend

IP V4: Type of Service Header-Feld, IP V6: Traffic Class Header-Feld (8 Bit, davon 6 benutzt: Differentiated Service Code Point (DSCP))

Konditionierung

- ♦ Nutzer definiert Fluss-Profil (e.g., Rate, Burst-Größe)
- Verkehr wird gemessen und, falls Profil-verletzend, durch Paket-Verluste geformt

Weiterleitung – Pro Hop Behavior (PHB)

- PHB wirkt sich in unterschiedlichen Weiterleitungsleistungsparametern aus
- ◆ PHB definiert Leistungsparameter-Unterschiede als Ziele der einzusetzenden Mechanismen, definiert die Mechanismen aber nicht

Beispiele:

- Klasse A soll je Zeitintervall der Länge 100 msec 22% der Bandbreite des abgehenden Links erhalten
- Klasse A Pakete werden vor Klasse B
 Paketen weitergegeben

PHBs in Entwicklung:

- Expedited Forwarding:
 Mindest-Paket-Weitergabe Rate einer Klasse (Logische
 Verbindung mit
 Mindestbandbreite)
- Assured Forwarding:4 Verkehrsklassen
 - Je Klasse bestimmte Mindestbandbreite
 - Unterschiedliche Verlust-Bedingungen

Signalisierung im Internet

connectionless
(stateless) forwarding
by IP routers

+ best effort
service

= no network signaling
protocols
in initial IP design

- Signalisierung: Austausch von Kontrollinformation im Telekommunikationsnetz, Beispiel: Wählzeichen beim Telefon
- ◆ Neue Anforderung: Reserviere Ressourcen entlang eines Ende-zu-Ende-Pfades, um Dienstgüte zu gewährleisten
- ◆ RSVP: Resource Reservation Protocol [RFC 2205]
 - "... allow users to communicate requirements to network in robust and efficient way." i.e., signaling!
- Vorläufer als Internet-Signalisierprotokoll: ST-II [RFC 1819]

RSVP: Funktion – Multimedia-Multicast-Verwaltung

- ♦ Signalisierung Sender → Netz
 - Path Message: Router werden über Sender und seine Route imformiert
 - Path Teardown: Router löschen die Informationen zum Pfad
- ♦ Signalisierung Empfänger → Netz
 - Reservation Message: Reserviere Ressourcen für Pfade zum Empfänger
 - Reservation Teardown: Ziehe Reservierungen zurück
- ◆ Signalisierung Netz → Host: Fehlermeldungen (Pfad / Reservierung)

Anmerkung:

Die Routenermittlung und Broadcast-Gruppen/Adressverwaltung werden außerhalb von RSVP abgewickelt

- Dynamik: Soft State Konzept
 - Bei Routern gespeicherte Zustandsinformationen verfallen nach Zeitintervall
 - Sie müssen durch periodische RVSP-PDUs wieder aufgefrischt werden

RSVP: Einfache Audio Konferenz

- ◆ Die Hosts H1, H2, H3, H4, H5 senden und empfangen
- Multicast-Gruppe m1
- ♦ Keine Filterung: Pakete aller Sender werden weitergeleitet
- ◆ Audio-Rate: b
- ◆ Es wird ein einziger Multicast-Routing-Spannbaum verwendet

RSVP: Pfadzustandsinformation in Routern

- ◆ H1, ..., H5 senden alle Pfadnachrichten an *m1*: (address=*m1*, Tspec=*b*, filter-spec=no-filter,refresh=100)
- Annahme: H1 sendet als erster

RSVP: Pfadzustandsinformation

als nächstes sendet H5

RSVP: Pfadzustandsinformation

- ♦ H2, H3, H5 senden jetzt auch
- Zustandstabellen werden vervollständigt

RSVP: Reservierungsnachrichten − *Empfänger* → *Netz* Signalisierung

- Inhalt der Reservierungsnachrichten
 - Benötigte Bandbreite
 - *Filtertyp:*
 - » no filter: Alle Pakete der Gruppe benutzen die reservierten Ressourcen
 - » fixed filter: Reservierte Ressourcen nur für bestimmte Sender
 - » dynamic filter: Sender-Gruppe kann sich dynamisch ändern
 - Filter-Spezifikation
- ◆ Die Reservierungsnachrichten werden auf den Pfaden von einem Empfänger hin zu den Sendern verbreitet und erzeugen in den durchlaufenen Routern Empfänger-bezogene Zustandsinformation

RSVP: *Empfänger*-Ressourcenreservierung

H1 möchte von allen anderen Hosts der Gruppe Audio empfangen

- ♦ H1 Reservierungsnachricht fließt von H1 zu den Sendern
- H1 reserviert damit Bandbreite für 1 Audio-Strom
- Reservierungstyp "no filter" jeder Sender nutzt reservierte Bandbreite

RSVP: *Empfänger*-Ressourcenreservierung

- ♦ H1 Reservierungsnachricht fließt baumaufwärts zu den Sendern
- Router und Hosts reservieren Bandbreite b, die benötigt wird, um Audio zu H1 zu senden

RSVP: *Empfänger*-Ressourcenreservierung

- Als nächstes reserviert H2 Bandbreite b in Modus "no-filter"
- ◆ H2 gibt an R1 weiter, R1 an H1, aber R2 (?)
- ◆ R2 führt keine Aktion aus, da b auf L6 schon reserviert ist

RSVP: *Empfänger*-Ressourcenreservierung -- Summenrate

Was passiert, wenn mehrere Sender (e.g., H3, H4, H5) gleichzeitig über einen Link senden (e.g., L6)?

- Zufällige Überlagerung der Ströme
- ◆ Der Summenfluss über L6 wird per Leaky Bucket reglementiert (Policing): falls die Summenrate b länger übersteigt, werden Paketverluste auftreten

Kapitel 6: Übersicht

- 6.1 Multimedia Netzanwendungen
- 6.2 Audio- und Videostreaming
- 6.3 Realzeit Multimedia: Voice over IP / Internet-Telephonie
- 6.4 Protokolle für Realzeit-Anwendungen RTP,RTCP,SIP
- 6.5 Multimedia-Verteilung im Netz

- 6.6 Über Best Effort hinaus
- 6.7 Scheduling und Policing Mechanismen
- 6.8 Integrated Services und Differentiated Services
- **6.9 RSVP**