SALARY PREDICTION USING UNITED STATES CENSUS BUREAU DATA

ABHAY JOSHI
ADITYA CHAYAPATHY
JAGADEESH BASAVARAJU

PROBLEM STATEMENT

- To develop marketing profiles of individuals with a focus on \$50,000 as a key number for salary.
- To identify the factors that determine the individual's income.
- To develop an application to predict the income of an individual.

age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	class
39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in- family	White	Male	2174	0	40	United- States	<=50K
50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0	40	United- States	<=50K
53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

DATA SET

Source :

United States Census Bureau

Data cleaning:

 Removed records having incomplete ("?") data present in them.

Classes:

- Above 50K (">50K")
- Below 50K ("<=50K")

• Features:

- 14 features with 8 features having categorial data.
- Skewed dataset (train data + test data):
 - 34014 records belonging to "<=50K" class
 - 11208 records belonging to ">50K" class
- Data used for analysis:
 - <=50K 11208 (randomly sampled from 34014 records)</p>
 - >50K 11208

INITIAL ANALYSIS

- Top 5 important features based on initial analysis through data exploration:
 - Capital-gain
 - Age
 - Occupation
 - Education-num
 - Marital-status
- Redundant features based on initial analysis through data exploration:
 - Capital-loss
 - Fnlwgt
 - education

80 70 60 50 30 20 20000 40000 60000 80000 100000 capital-gain ° >50K

IMPORTANT FEATURES

- Scatter plot:
 - Features Covered: age, capital-gain
 - X axis Capital-gain
 - Y axis Age
- Inferences:

• <=50K

- There seems to be a separation between the two classes of data with the exception of a few outliers.
- Individuals with high capital gain are more likely to earn more than 50K income.

IMPORTANT FEATURES CONT.

Mosaic Plot:

- Features covered: occupation
- Categories in the order as they appear:
 - Adm-clerical
 - Exec-managerial
 - Handlers-cleaners
 - Prof-specialty
 - Other-service
 - Sales
 - Transport-moving
 - Farming-fishing
 - Machine-op-inspct
 - Tech-support
 - Craft-repair
 - Protective-serv
 - Armed-Forces
 - Priv-house-serv

• Inferences:

- For most categorial data, the distribution of the two classes are highly skewed hinting that this feature can be used to distinguish among the two classes.
- Individuals with occupations such as "Execmanagerial", "Prof-speciality" are more likely to earn 50K income.

IMPORTANT FEATURES CONT.

- Parallel coordinate plot:
 - Features Covered: education-num, age, capital-gain
 - Each of the features are scaled to value between 0 and 1.
- Box plot:
 - Features Covered : education-num
- Inferences:
 - From the parallel coordinate plot, we can see that the yellow lines and the red lines can be distinguished using the combination of these three features.
 - From the box plot, we can see that the distribution of the education among the two classes of data vary drastically.
 - Individuals with high education number are more likely to earn greater than 50K income.
 - Older individuals are likely to earn more than younger individuals.

IMPORTANT FEATURES CONT.

• Mosaic Plot:

- Features covered: marital-status
- Categories in the order as they appear:
 - Never-married
 - Married-civ-spouse
 - Divorced
 - Married-spouse-absent
 - Separated
 - Married-AF-spouse
 - Widowed

Inferences:

- For most categorial data, the distribution of the two classes are highly skewed hinting that this feature can be used to distinguish among the two classes.
- Individuals with marital-status of "married-civ-spouse" are more likely to earn more than 50K income.
- Individuals with marital-status of "never-married" are more likely to earn less than 50K income.

Mean

Above 50K = 188149.96217368142 Below 50K = 189325.58364411295

Median

Above 50K = 176185.0 Below 50K = 178615.0

Standard Deviation

Above 50K = 102814.88940721683 Below 50K = 103992.09230884453

REDUNDANT FEATURES

1. Education:

• Similar information is encoded in "education-num" feature. Hence, this feature can be ignored.

2. Capital-loss:

 As seen in the figure, for both classes of data, they show similar distribution indicating that this feature may not help in distinguishing between the two classes of data.

3. Fnlwgt:

 As seen in the figure, for both classes of data, fnlwgt has similar statistical properties. Also, their distribution is similar as it is evident from the box-and-whisker plot. Hence, this feature may not help in distinguishing between the two classes of data.

age	workclass	education-num	marital-status	occupation	relationship	race	sex	capital-gain	hours-per-week	native-country	class
38	3	9	2	3	1	2	1	0	35	2	1
54	3	9	2	1	2	2	2	0	40	2	0
19	6	10	7	3	6	2	1	0	30	2	0
49	6	13	2	1	2	2	2	0	43	2	1
25	6	13	7	1	3	2	2	0	50	2	0

MACHINE LEARNING ANALYSIS

Features excluded:

- Fnlwgt
- Education-num
- Captial-loss

2. Feature Engineering:

- All the numerical features are left as is.
- For each categorial data, a numerical number is assigned based on the distinguishing factor of that category from our initial data exploration analysis.

3. Data Normalization:

 Each feature is scaled to a value between 0 and 1. This is done to ensure that the ML algorithms give equal importance to each feature.

4. Data Division:

 Data is split in the ratio of 80:20 where 80 percent of the data is used for training and 20 percent of the data is used for testing.

FEATURE IMPORTANCE

Pie Chart:

- Shows the importance of the features based on the top 2 accurate ML models.
- MI models covered:
 - Random Forest
 - Gradient Boosting

• Inferences:

- Both the trained models more or less infer the same level of importance to each of the features.
- As per our initial analysis, the algorithms too provide high importance to the same set of features.

QUESTIONS

