中国科学技术大学2024年春 复分析期末考试试卷

2024年6月19日

姓名:			系别:				学号:			
题号	1	2	3	4	5	6	7	8	9	总分
得分										
阅卷人										

- 1. (15分) 设 $f(z) = \frac{1}{(1-z)(2-z)}$.
 - (1) 求 f(z) 在 z=0 处的 Taylor 级数, 并求其收敛半径;
 - (2) 求 f(z) 在 1 < |z| < 2 中的 Laurent 展开式.
- 2. (15分) 计算下列积分.

$$(1)\int_{|z|=1}\frac{e^z+1}{\sin z}\mathrm{d}z$$

$$(2) \int_0^{+\infty} \frac{x^{\alpha}}{1+x^2} \mathrm{d}x \quad (-1 < \alpha < 1)$$

- 3. (10分) 将 |z-1| < 2 和 |z+1| < 2 的公共部分共形地映为上半平面.
- 4. (10分) 求 $f(z) = \frac{e^{\frac{1}{z}}}{e^z + 1}$ 的所有奇点,并指出其类型.
- 5. (10分) 设 f 为整函数, 且存在正整数 N, 使得当 z 充分大时恒有 $|f(z)| \ge |z|^N$. 证明: f 是次数不低于 N 的多项式.

- 6. (10分) 证明: 幂级数 $\sum_{n=0}^{\infty} z^{2^n}$ 的收敛圆周上每一点都是全纯开拓意义下的奇点.
- 7. (10分) 设 $f: B(0,1) \to B(0,1)$ 为全纯函数. 若存在 $a \in B(0,1)$ 满足 f(a) = a, f'(a) = 1. 证明: 对任意 $z \in B(0,1), f(z) = z$.
- 8. (10分) 设 D 为平面区域,f 为 D 上的全纯函数, z_0 为 f 的 m 阶零点 $(m \ge 1)$. 证明:存在 z_0 的邻域 $U \subset D$ 及 U 上的单叶全纯函数 g 使得当 $z \in U$ 时, $f(z) = g(z)^m$.
- 9. (10分) 证明: 不存在全纯函数 $f: \mathbb{C}\setminus\{0\}\to\mathbb{C}$ 满足对任意 $z\in\mathbb{C}\setminus\{0\}$, $|f(z)|\geq \frac{1}{\sqrt{|z|}}.$

1. II.
$$f(2) = \frac{1}{1-2} - \frac{1}{2-2}$$

$$= \frac{2}{1-2} - \frac{1}{2-2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$$

2. In.
$$e^{\frac{2}{5}+1}$$
 to $B(0,1)$ in to $10^{\frac{1}{2}}$ to $10^{\frac{1}{2}}$. The $10^{\frac{1}{2}}$ to $10^{\frac{1}{2}}$. The $10^{\frac{1}{2}}$ to 1

=>
$$\int_{|z|=1}^{2} \frac{e^{z}+1}{|z|} dz = 2\pi i \operatorname{Res} = 4\pi i$$

这限f(z)= 元为 在C(CO,+M)上这个,且在已复始上存 R 配之(国的)字(国分支、以在已实轨 下存存 f(X)= ex(log(X+2Ti)) = 22Ti X² 1+X² = e 1+X² 极分产——巴西门中里水水水,为一方面, $\left|\int_{V_R} f\right| \leq \frac{R^{\alpha}}{R^2-1} \cdot 2\pi R \rightarrow 0, \quad as \quad R \rightarrow +\infty$ |Srpf| = 1-p2 . 211p-70, as p-10t. 而千九八的四共的平极这个一步,此 Rest first, $\pm i$) = $\frac{z^{\alpha}}{2z}$ | $z=\pm i$ Res(fiz) $\pm i$) = $\frac{1}{2} |z = \pm i$ $\frac{1}{2} |z = \pm i$ $\frac{1}{2} |z = \frac{1}{2} |z =$ 引起5.5.11.作业匙 =

第四次引题课,21(11). 7=0, pt (2k+1) m, 10. 空花之一处无极中限一本性 QXHITTISK. - POTARE. grio 机总位于 Blo,AI内 二有此心的为 云… 张 hle)= g(2) TT(2-21) 722/2/2012 $|f_{(2)}| \leq 2|z|^{n-N}$ as 日初大 十型 => イラスス式 => $f_{(2)} = \frac{h(z)}{\pi(z-z_k)}$ 有理 3.5(学生 罗河果二月匙25m简单 丁仁川 罗山有理,但于整 6. 只然此方点集制者。建进一方、未识了自治的形。 是有点集、造品 $\frac{2}{2} \mathcal{D}(e^{i\frac{k}{2^m}T} + i)^n = \frac{2}{n} e^{i\frac{k}{2^m}\pi} + 2^n$ e 沈是 Zzzzm奇泉. 书本引起6.2.6. 7. in Ya(2): 1-02 / 1/2. g= Jega. Yalofo Ya 2 g: B(0,1)->B(0,1) 2 (2k, g(v)=0 12 g'(0)=1 Schwarz $g = 1_D = \int f = \rho_0 g \cdot \rho^{-1} = 1_D$. 简单版本的 Cartan 允理(第四次讲义习题之门) 论明5第四次习题之后村似)

X

8. is $\beta(z_0,r)$ the for Taylor β $\beta(z_0,r)$ the $\beta(z_0,r)$ the RE+1(B(02,11). A f(2)= 2mh(2). 13/1/2/21= Qm +0, 所以] ruo, s.t. 尤在B(20, n) 内恒不为0 => ヨのFeH(B(B,r,1), sit. F(も) = h(z) => f(も)を(を)が TR g(z)をもを(z)、 とり g'でるに F(を)= (h(を))が +0, => g たるい - 作成以的单位.

Relate to: the local normal form of a holomorphic map between map between surfaces. 丁艺考点出加于以干=0为福武丁飞考点 => 于可以延迟为楚函数g, With Igls JEI 二) g为常数 二) f为常数,但与1月次点 ~~3、考定的是在复习课二系统讲过~