El Principio de Inducción

Álgebra y Geometría I (LM, PM, LF, PF, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

2023

Bibliografía

- Kisbie-Miatello, Álgebra I Matemática Discreta I, Cáp. 1
 - https://www.famaf.unc.edu.ar/documents/941/CMat32.pdf
- ► Grimaldi, Secc. 4.1 y 4.2

Motivación

Idea general: el principio de inducción matemática sirve para demostrar enunciados del siguiente estilo:

$$\forall n, P(n)$$

donde P(n) es una proposición abierta que depende del número natural n. Por ejemplo, consideremos la proposición P(n) que dice que "la suma de los primeros n números naturales es igual a n(n+1)/2".

Es decir, queremos probar que cualquiera sea *n* natural,

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

- Podríamos chequear casos particulares
 - Para n = 1 es cierto: $1 = 1 \cdot 2/2$ \checkmark
 - ▶ Para n = 2 es cierto: $1 + 2 = 3 = 2 \cdot 3/2$ ✓
 - Para n = 3 es cierto: $1 + 2 + 3 = 6 = 3 \cdot 4/2$ \checkmark
 - Para n = 2 es cierto: $1 + 2 + 3 + 4 = 10 = 4 \cdot 5/2$ \checkmark
- Pero esto no significa que hayamos probado la afirmación para TODO n.

Principio del buen orden

Sabemos que (\mathbb{R}, \leq) , (\mathbb{Q}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{N}, \leq) . son conjuntos parcialmente ordenados. Algunos de ellos verifican la siguiente propiedad:

Definición

▶ Un subconjunto de A de \mathbb{R} tiene *primer elemento* si existe $a \in A$ tal que

$$a \le x$$
 para todo $x \in A$

y en tal caso decimos que a es **el** primer elemento de A.

▶ Un subconjunto A de \mathbb{R} se dice *bien ordenado* si todo subconjunto no vacío de A tiene primer elemento.

PRINCIPIO DEL BUEN ORDEN DE LOS ENTEROS POSITIVOS:

Todo subconjunto no vacío de \mathbb{Z}^+ tiene primer elemento.

Observación

- ▶ (\mathbb{Q}^+, \leq) **no es bien ordenado**, ya que si se supone que q es su primer elemento, llegamos a un absurdo ya que $0 < \frac{q}{2} < q$, y $\frac{q}{2} \in \mathbb{Q}^+$.
- ightharpoonup cualquier subconjunto *finito* y no vacío de \mathbb{R} tiene primer elemento.
- ► Si *a* < *b* entonces los intervalos
 - \triangleright (a, b) y (a, b] no tienen primer elemento
 - [a, b] y [a, b) sí tienen primer elemento
 - Ninguno de estos cuatro intervalos es un conjunto bien ordenado.
 - ► El conjunto vacío está bien ordenado (aunque no tenga primer elemento).
- ▶ $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{n : -n \in \mathbb{N}\}$ no tiene primer elemento (en consecuencia, no está bien ordenado).

Principio de inducción matemática

Usando el principio de buena ordenación podemos demostrar

Teorema (Principio de Inducción)

Sea P(n) una proposición abierta que depende del número natural $n \in \mathbb{N}$ tal que

- 1. P(1) es verdadera;
- 2. $\forall k \in \mathbb{N} \quad [P(k) \implies P(k+1)].$

Entonces P(n) es verdadera para todo $n \in \mathbb{N}$.

Demostración.

- Consideramos $H = \{k \in \mathbb{N} : P(k) \text{ es falsa}\}$ (deberíamos probar que este conjunto es vacio). Supongamos que $H \neq \emptyset$. Luego, por ser $H \subset \mathbb{N}$ (y suponer H no vacío), H tiene primer elemento, digamos m. Entonces, P(m) es falso y se tiene que P(m-1) es verdadero.
- Notemos que el ítem 1 nos dice que $1 \notin H$, luego $m \ge 2$ y $m 1 \ge 1$.
- ▶ El ítem 2 nos dice que si P(m-1) es verdadero entonces P(m) es verdadero. Entonces $m \in H$ y $m \notin H$. CONTRADICCION.

6/21

Principio de inducción matemática

Demostración.

(continuación)

▶ Resulta $H = \emptyset$ y por lo tanto P(n) es verdadera para todo $n \in \mathbb{N}$.

Ejemplo 1 –aplicando el Principio de inducción matemática

Ejemplo

Probar que $2^n > n$ para todo $n \in \mathbb{N}$.

Consideramos

$$P(n): 2^n > n.$$

- ▶ $P(1): 2^1 > 1$ es verdadera.
- ▶ Probemos que $P(k) \implies P(k+1)$ para todo $k \ge 1$.
 - ▶ Supongamos que P(k): $2^k > k$ es verdadera. Esto es lo que se llama la hipótesis inductiva (HI).
 - Para probar que P(k+1) es verdadera, observamos que

$$2^{k+1} = 2 \cdot 2^k > 2 \cdot k = k + k \ge (k > 1) k + 1.$$

▶ Luego por el Principio de Inducción, P(n) es verdadera para todo $n \in \mathbb{N}$.

Ejemplo

Probar que $n^2 + 3 > n$ para todo $n \in \mathbb{N}$.

Consideramos

$$P(n): n^2 + 3 > n.$$

- ▶ Verificamos P(1). En efecto, $1^2 + 3 = 4 > 1$.
- ▶ Dado $n \ge 1$, suponemos que P(n) es cierta y probamos P(n+1). En efecto,

$$(n+1)^2 + 3 = n^2 + 2n + 1 + 3$$

= $n^2 + 3 + 2n + 1$
> $n+2n+1$ (por HI)
> $n+1$

por ende P(n+1) es cierta.

▶ Por el Principio de Inducción, P(n) vale para todo $n \in \mathbb{N}$.

Simbolo sumatoria

Recordamos la notación

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

Esta notación se lee sumatoria entre i = 1 e i = n de los x_i . Formalmente, dados n números (reales, complejos, etc.) x_1, \ldots, x_n podemos definir la

suma
$$\sum_{i=1}^{n} x_i$$
 como

$$\begin{cases} \sum_{i=1}^{1} x_i = x_1 \\ \sum_{i=1}^{k+1} x_i = \left(\sum_{i=1}^{k} x_i\right) + x_{k+1}, & 1 \le k \le n-1 \end{cases}$$

Ejemplo 2-Usando el simbolo sumatoria y el P. de inducción matemática

Ejemplo

Probar que para todo $n \in \mathbb{N}$ y para todo $c \in \mathbb{C}$ se cumple

$$\sum_{i=1}^{n} c = nc \tag{1}$$

ightharpoonup Probamos para n=1:

$$\sum_{i=1}^{1} c = c = 1 \cdot c$$

 \triangleright Suponemos cierto para n y probamos para n+1:

$$\sum_{i=1}^{n+1} c = \left(\sum_{i=1}^{n} c\right) + c = nc + c = (n+1)c$$

▶ Por el Principio de Inducción, (1) vale para todo $n \in \mathbb{N}$.

Ejemplo

Volvamos al ejemplo que vimos al principio. Probar que para todo $n \in \mathbb{N}$ se cumple

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{2}$$

ightharpoonup Caso n=1:

$$\sum_{i=1}^{1} i = 1 = \frac{1 \cdot (1+1)}{2}$$

ightharpoonup Caso $n \Longrightarrow$ caso n+1

$$\sum_{i=1}^{n+1} i = \left(\sum_{i=1}^{n} i\right) + (n+1) \stackrel{=}{=} \frac{n(n+1)}{2} + n + 1$$
 $= (n+1)\left(\frac{n}{2} + 1\right) = \frac{(n+1)(n+2)}{2}$

Luego por el Principio de Inducción, (2) es verdadera para todo $n \in \mathbb{N}$.

12 / 21

Podemos modificar ligeramente el principio de inducción para demostrar afirmaciones que son verdaderas a partir de un cierto número natural $n_0 \ge 1$.

Teorema

Sea P(n) una proposición abierta que depende del número natural $n \in \mathbb{N}$ y sea $n_0 \in \mathbb{N}$. Supongamos que

- 1. $P(n_0)$ es verdadera;
- 2. $P(k) \implies P(k+1)$ para todo $k \ge n_0$.

Entonces P(n) es verdadera para todo $n \ge n_0$.

Demostración.

- ightharpoonup Consideramos $Q(n) = P(n_0 + n 1)$.
- ▶ Observemos que $Q(1) = P(n_0)$ es verdadera.
- ▶ Sea $k \ge 1$ y supongamos $Q(k) = P(n_0 + k 1)$ es verdadera.
- ▶ Como $n_0 + k 1 \ge n_0$, sigue que $P(n_0 + k) = Q(k + 1)$ es verdadera.
- ▶ Luego, $Q(k) \implies Q(k+1)$ para todo $k \ge 1$.
- Por el Principio de Inducción Q(n) es verdadera para todo $n \ge 1$, o equivalentemente P(n) es verdadera para todo $n \ge n_0$.

Ejemplo 3 -aplicando el Principio de inducción matemática

Ejemplo

Probar que $2^n > 2n + 1$ para todo $n \ge 3$.

Consideramos

$$P(n): 2^n > 2n + 1.$$

- Observemos que
 - P(1): "2 > 3" es falsa
 - P(2): "4 > 5" es falsa
- \triangleright P(3): 8 > 7 es verdadera.
- ▶ Sea $n \ge 3$, supongamos que P(n) es cierta y probemos P(n+1). En efecto,

$$2^{n+1} = 2 \cdot 2^n > 2 \cdot (2n+1) = 2 \cdot (n+1+n) = 2(n+1) + 2n > 2(n+1) + 1$$

Así $P(n) \implies P(n+1)$ y por el teorema anterior, P(n) es verdadera para todo $n \ge 3$.

Simbolo Productoria

Análogamente la productoria $\prod_{i=1}^n x_i$ de n números x_1, \dots, x_n se define como

$$\begin{cases} \prod_{i=1}^{1} x_i = x_1 \\ \prod_{i=1}^{k+1} x_i = \left(\prod_{i=1}^{k} x_i\right) \cdot x_{k+1}, & 1 \le k \le n-1 \end{cases}$$

Intuitivamente,

$$\prod_{i=1}^n x_i = x_1 \cdot x_2 \cdot \cdots \cdot x_n$$

Se lee *productoria* entre i = 1 e i = n de los x_i .

Ejemplo

Usando la productoria podemos dar la definición de las potencias naturales de un número real. Si $n \in \mathbb{N}$ y $z \in \mathbb{R}$, definimos

$$z^n = \prod_{i=1}^n z^i$$

Ejemplo (factorial)

El factorial del número natural n, denotado por n!, se define como el producto de los primeros n números naturales, es decir,

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n$$

En este caso se define además 0! = 1

Observación

Las definiciones de sumatoria y productoria se extienden para incluir los casos en los que los subíndices se mueven entre dos enteros m y n tales que $m \leq n$. Por ejemplo,

$$\sum_{i=0}^{5} (2i-1) = -1 + 1 + 3 + 5 + 7 + 9 = 21$$

$$\prod_{k=-2}^{1} (k^2 + 1) = ((-2)^2 + 1)((-1)^2 + 1)(0^2 + 1)(1^2 + 1)$$

$$= 5 \cdot 2 \cdot 1 \cdot 2 = 20$$

Usando el simbolo productoria y el P. de inducción matemática

Probar que $n! \ge 2^n$ para todo $n \ge 4$.

- Notar que la afirmación es cierta para n=0, pues $0!=1=2^0$
- Pero es falsa para n = 1, 2, 3:

$$1! = 1 < 2 = 2^1$$
 $2! = 2 < 4 = 2^2$ $3! = 6 < 8 = 2^3$

- ▶ La afirmación es cierta para n = 4. En efecto, $4! = 24 \ge 16 = 2^4$
- ightharpoonup Suponemos cierto para n y probamos para n+1

$$(n+1)! = n! \cdot (n+1) \geq 2^n (n+1) \geq 2^{n+1} \geq 2^{n+1}$$

Importante: en el segundo \geq estamos usando $n+1\geq 2$ (lo cual es cierto porque estamos con n>4).

Por lo tanto la afirmación es válida para todo $n \ge 4$.

MISCELÁNEAS

Teorema (Principio de inducción fuerte.)

Sea P(n) una proposición abierta que depende del número natural n tal que

- 1. P(1) es verdadera.
- 2. Para todo $k \ge 1$, si $P(1), P(2), \dots, P(k)$ son verdaderas, entonces P(k+1) es verdadera.

Entonces P(n) es verdadera para todo $n \in \mathbb{N}$.

Demostración.

- ▶ Sea $X = \{n \in \mathbb{N} : P(n) \text{ es falsa}\}$. Queremos ver que $X = \emptyset$.
- Supongamos por el absurdo que $X \neq \emptyset$ y sea n_0 el primer elemento de X. Observar que $n_0 \geq 2$, pues P(1) es verdadera.
- ▶ Luego, $1, ..., n_0 1 \notin X$, o equivalentemente $P(1), ..., P(n_0 1)$ son verdaderas.
- ▶ El ítem 2 implica que $P(n_0)$ es verdadera y por ende $n_0 \notin X$. Absurdo.

Ejemplo 4-aplicando el P. de inducción matemática a Cardinal de conjuntos

Ejemplo

Probar que si X es un conjunto con n elementos, entonces $|\mathcal{P}(X)| = 2^n$.

- ightharpoonup Hacemos inducción en |X| = n.
- ▶ Si n = 0, entonces $X = \emptyset$. Luego $\mathcal{P}(X) = \{\emptyset\}$ y por ende $|\mathcal{P}(X)| = 1 = 2^0$.
- Notemos también que si |X| = 1, entonces X tiene un único elemento y por lo tanto $\mathcal{P}(X) = \{\emptyset, X\}$. En este caso también se cumple que $|\mathcal{P}(X)| = 2 = 2^1$.
- ▶ Supongamos que la afirmación ya está probada para los conjuntos con n elementos y sea X un conjunto con n+1 elementos.
- ▶ Podemos fijar un elemento $x_0 \in X$ y escribir

$$\mathcal{P}(X) = \mathcal{P}(X - \{x_0\}) \cup \{\{x_0\} \cup A : A \in \mathcal{P}(X - \{x_0\})\}\$$

Como esta unión es disjunta tenemos que