Introduction to Dependent Types Eagan Technology Unconference

Joseph Ching

September 11, 2015

Agenda

Section Outline

Quick Question

How many are familiar with this topic?

A Joke

This is not a m- tutorial, and nothing here will involve burritos.

Disclaimer

There will be many code examples with *very* loose translations to imperative/OOP as we go along. Though please keep in mind that these are merely made up syntactical translations, the actual concepts may differ vastly.

About This Talk

Example languages with dependent types:

- Idris
- Epigram
- Agda
- Coq

About This Talk

Example languages with dependent types:

- Idris
- Epigram
- Agda
- Coq

But we will be using Haskell though.

Honestly, it's because they're way over his head...

Dependent Types

Why do we want them?

- more expressive type system
- encode stronger invariants
- proving correctness of code

Teaser

Example please:

```
infixr 5 :>
    data Vect (n :: Nat) a where
    VNil :: Vect O a
    (:>) :: a -> Vect n a -> Vect (n :+ 1) a
    vs :: Vect 6 Int
    vs = 4 :> 8 :> 15 :> 16 :> 23 :> 42 :> VNil
Translation* please:
    enum Vect < Nat n, A > {
      Vect < 0, A > VNil,
      Vect < n : + 1, A > VCons < A > (A a, Vect < n, A > va)
    Vect<6, Int> vs = VCons(4, VCons(8, VCons(15, VCons(16,
        VCons(23, VCons(42, VNil)))));
```

(*) supreme looseness and totally made-up syntax!!!

Section Outline

Values and Types

Values has Types, or Values are classified by Types.

```
..., -1, 0, 1, 2, 3, ... :: Int
True, False :: Bool
'a', 'b', 'c' :: Char
"abc" :: String ~ [Char]
```

About Data Types

How are data types defined?

- Some are built in magic: Int, Char, function arrow
- Some are built in sugar: list, tuples
 - We can define equivalent non-sugar version ourselves
- Rest can be user defined: Bool, String, Maybe

About Data Types

What are the data types like?

- Multiple Value constructors
- Paremetrize over another Type
- Recursive definition
- Synonyms of other Types
- Combination of the above

Defining Data Types

Define new data type with data.

- Left hand side (LHS) Type constructor
- Right hand side (RHS) Value constructor

Type and Value constructors are capticalized.

Defining Data Types

Our First Example!

Define a person:

```
-- | params for firstname, lastname, age respectively
    data Person = Person String String Int
    barbara :: Person
    barbara = Person "Barbara" "Smith" 30
The Type of the Person Value constructor:
    Person :: String -> String -> Int -> Person
A loose translation:
    enum Person {
      Person(String firstname, String lastname, Int age)
    Person barbara = new Person("Barbara", "Smith", 30)
```

Multiple Value Constructors

Data can have multiple Value constructors:

```
data Bool = False | True

data Weekdays = Sunday | Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday
```

A loose translation:

```
enum Bool { False, True }
enum Weekdays {
   Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
        Saturday
}
```

```
└ Defining Data Types
```

Multiple Value Constructor

You can do type aliasing with type:

```
type String = [Char]
type Side = Double
type Radius = Double
```

For example:

```
data Shape = Triangle Side Side Side
| Rectangle Side Side
| Circle Radius
```

A loose translation:

```
enum Shape {
   Triangle(Double side1, Double side2, Double side3),
   Rectangle(Double length, Double width),
   Circle(Double radius)
}
```

Multiple Value Constructor

Recall Side ~ Radius ~ Double:

```
data Shape = Triangle Side Side Side | Rectangle Side Side | Circle Radius
```

Types of the 3 Value constructors:

```
Triangle :: Side -> Side -> Side -> Shape
Rectangle :: Side -> Side -> Shape
Circle :: Radius -> Shape
```

Example Shapes:

```
myTri, myRect, myCir :: Shape
myTri = Triangle 2.1 3.2 5
myRect = Rectangle 4 4
myCir = Circle 7.2
```

L Defining Data Types

Parametrization

Types can parametrize over another type:

```
data Tuple a b = Tuple a b
With:
    Tuple :: a -> b -> Tuple a b
A loose translation:
    enum Tuple < A , B > {
        Tuple < A , B > (A a , B b)
```

```
└ Defining Data Types
```

Tuple

Actual built-in sugar:

```
data Tuple a b = Tuple a b
=> data (,) a b = (,) a b
=> data (a, b) = (a, b)
```

An example:

```
type Employed = Bool
barbara, chet, luffy :: (Person, Employed)
barbara = (Person "Barbara" "Smith" 30, True)
chet = (Person "Chet" "Awesome-Laser" 2, False)
luffy = (Person "Luffy D." "Monkey" 19, False)
```

└ Defining Data Types

Maybe

Like Bool, but parametrizes a Type a over the True part:

```
data Maybe a = Nothing | Just a
With:
    Nothing :: Maybe a
    Just :: a -> Maybe a

A loose translation:
    enum Maybe<A> {
        Nothing,
        Just<A>(A a)
```

☐ Defining Data Types

Maybe

```
From previous slide:
```

data Maybe a = Nothing | Just a

```
Say more with Occupation:

type Occupation = Maybe String

barbara2, chet2, luffy2 :: (Person, Occupation)
barbara2 = (Person "Barbara" "Smith" 30, Just "dancer")
chet2 = (Person "Chet" "Awesome-Laser" 2, Nothing)
```

luffy2 = (Person "Luffy D." "Monkey" 19, Just "pirate"

```
Review of Basics
```

└ Defining Data Types

Types with Recursion

```
Natural number:

data Nat = Z | S Nat
```

With:

```
Z :: Nat
S :: Nat -> Nat
```

A loose translation:

```
enum Nat {
  Z,
  S(Nat n)
}
```

Types with Recursion

Natural number:

```
data Nat = Z | S Nat
Z :: Nat
S :: Nat -> Nat

0 ~ Z
1 ~ S Z
2 ~ S (S Z)
3 ~ S (S (S Z))
```

```
Review of Basics
Defining Data Types
```

Types with Recursion

```
List - recursive Type that parametrizes over another Type:
    data List a = Nil | Cons a (List a)

With:
    Nil :: List a
    Cons :: a -> List a -> List a

A loose translation:
    enum List < A > {
        Nil,
        Cons < A > (A a, List < A > as)
    }
}
```

Types with Recursion

Actual built-in sugar is something like:

```
data List a = Nil | Cons a (List a)
=> data [] a = [] | (:) a ([] a)
=> data [a] = [] | (:) a [a]
```

Sugar that List:

```
ints :: List Int
ints = Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))
-- built -in sugar
ints :: [] Int
ints = 1 : 2 : 3 : 4 : []
-- 2x the sugar!
ints :: [Int]
ints = [1, 2, 3, 4]
```

```
Functions
```

Functions

Maps Values of a Type to Values of another Type:

```
even :: Int -> Bool
even 0 = True
even n = if rem n 2 == 0
then True
else False
```

Not as loose translation:

```
Bool even(Int n) {
  switch n:
  case n == 0:
  return True;
  default:
  if rem(n, 2) == 0:
  return True;
  else
  return False;
}
```

Review of Basics

Functions with Recursion

Use recursion for recursive Types:

```
data Nat = Z | S Nat

toInt :: Nat -> Int
toInt Z = 0
toInt (S n) = 1 + toInt n
```

Not as loose translation:

Functions with Recursion

Use recursion for recursive Types:

```
data Nat = Z | S Nat

toInt :: Nat -> Int
toInt Z = 0
toInt (S n) = 1 + toInt n
```

Evaluation is a series of substitutions:

```
three = S (S (S Z)) :: Nat
toInt three :: Int
= toInt (S (S (S Z)))
= 1 + toInt (S (S Z))
= 1 + 1 + toInt (S Z)
= 1 + 1 + 1 + toInt Z
= 1 + 1 + 1 + 1 + 0
= 1 + 1 + 1 + 1
= 1 + 2
= 3
```

Functions with Parametric Polymorphism

Functions can be parametric:

```
data [a] = [] | (:) a [a]
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
```

A translation:

```
Int length(List<A> ls) {
   switch ls:
   case Nil:
   return 0;
   case Cons(x, xs):
   return 1 + length(xs);
}
```

Functions with Parametric Polymorphism

Functions can be parametric:

```
data [a] = [] | (:) a [a]
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
```

Evaluation is a series of substitutions:

```
xs = [4, 8, 15] = 4 : 8 : 15 : [] :: [Int]
length xs :: Int
= length [4, 8, 15]
= 1 + length [8, 15]
= 1 + 1 + length [15]
= 1 + 1 + 1 + length []
= 1 + 1 + 1 + 1 + 0
= 1 + 1 + 1
= 1 + 2
= 3
```

Higher-order Functions

Functions that take functions as params:

-- actual name is (\$)

```
apply :: (a -> b) -> a -> b
     apply f x = f x
     -- acutal name is (.)
     compose :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
     compose f g = \x -> f (g x)
Yay translations:
     B apply(Func < A, B > f, A a) {
       return f(a);
     }
    Func<A, C> compose(Func<B, C> f, Func<A, B> g) {
       return x \Rightarrow f(g(x));
```

Section Outline

λ -Calculus

So far, we have seen:

- function application
- function abstraction (aka higher-order functions)
- variable binding
- substitution
- => basis for simply typed λ -calculus.

∟_{λ-} Calculus

λ -Calculus

You: Sure...

Me: Ah, yes, we want to extend λ -calculus so we can have more forms of abstractions!

λ -Calculus

You: Sure...

Me: Ah, yes, we want to extend λ -calculus so we can have more forms of abstractions!

Q: But how?

A: What if I tell you...

...you should already be familiar with 2 axes of extension :)

 \vdash Extensions on λ -calculus

Subtype Polymorphism

Given data types T and P, if there is a relation between T and P by some notion of substitutability with T in place of P, then we say T is a subtype of the supertype P, denoted by T <: P.

The is an extension on λ -calculus with subtype polymorphism and is denoted by $\lambda_{<:}$.

=> Object Oriented Programming

Though this is not an axis that we are interested in.

 \vdash Extensions on λ -calculus

Parametric Polymorphism

Introduce a mechanism of universal quantification over Types: Types can abstract over Types, allows for generic data types and generic functions.

=> Generic Programming

Recall:

```
data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)

(.) :: (b -> c) -> (a -> b) -> (a -> c)
map :: (a -> b) -> [a] -> [b]
```

The name for this extension is formally second order λ -calculus, aka System F, denoted by $\lambda 2$.

Value and Type Interdependency

Re-thinking functions:

```
even :: Int -> Bool
even 0 = True
even n = if rem n 2 == 0
then True
else False
```

even maps Ints to True and False.

- => Values on RHS depends on the Values on LHS
- => Values depending on Values
- => Ordinary λ -calculus

 \vdash Extensions on λ -calculus

Value and Type Interdependency

Re-thinking parametrized data types:

```
data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)
```

Maybe and List take a Type and return Value constructors

- => Values on RHS depends on the Type on LHS
- => Values depending on Types
- => Parametric polymorphism of $\lambda 2$

 \vdash Extensions on λ -calculus

Value and Type Interdependency

Then what about the other cases of dependencies?

- Values depending on Values: λ -calculus
- Values depending on Types: λ 2, System F

Value and Type Interdependency

Then what about the other cases of dependencies?

- Values depending on Values: λ -calculus
- Values depending on Types: $\lambda 2$, System F
- Types depending on Types: $\lambda \underline{\omega}$
 - => Type-level programming via type operators

Value and Type Interdependency

Then what about the other cases of dependencies?

- Values depending on Values: λ -calculus
- Values depending on Types: $\lambda 2$, System F
- Types depending on Types: $\lambda \underline{\omega}$ => Type-level programming via type operators
- Types depending on Values: $\lambda\Pi$ => Dependent types

 \vdash Extensions on λ -calculus

Lambda Cube

System F_c

Currently, Haskell as of GHC 7.10.2

- no true type operators
- type-level programming through:
 - type families
 - equalities and coercions on Types

This axis of extension on $\lambda 2$ is termed System F_c.

System F_c

Currently, Haskell as of GHC 7.10.2

- not fully dependent either:
 - strong distinction between Values and Types
- emulate dependent types with:
 - handful of language extensions
 - Kind system

Section Outline

Kinds

Q: Types classify Values, but what classifies Types?

A: Kinds

└ Kin ds

Introducing ★

```
-- built - in magic: infinitely many value constructors
data Int = ... | -1 | 0 | 1 | 2 | ...
data Bool = False | True
data [a] = Nil | (:) a [a]
data Maybe a = Nothing | Just a
data (a, b) = (a, b)
Int :: *
Bool :: *
[Int] :: *
[] :: * -> *
Maybe Person :: *
Maybe :: * -> *
(Person, Bool) :: *
(,):: * -> * -> *
```

Other Kinds

There are other Kinds aside from *:

```
(*)
(#)
-- kind of fully realized type
(#)
-- kind of unboxed stuff used internally
Constraint -- kind of constraints and type equality
OpenKind -- superkind of (*) and (#)
AnyK -- polymorphic kind for flexible arity
```

Other Kinds

There are other Kinds aside from *:

All these Kinds are built-in and inferred as of GHC 7.10.2.

All of this will be changed with the next GHC 8.0.1 release.

Language Extensions

Compiler extensions that enable a variety of new functionalities:

- Syntax extension
- Type-level programming
- Generic deriving
- FFI
- Type disambiguation
- Typeclass extension

Each extension has a name, and is enabled with the LANGUAGE pragma.

GADTs

Define data and explicit give type signatures to the Value constructors.

```
data Bool = False | True
data Maybe a = Nothing | Just a
data List a = Nil | Cons a (List a)
```

Becomes:

```
{-# LANGUAGE GADTs #-}
data Bool where
False :: Bool
True :: Bool

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a

data List a where
Nil :: List a
Cons :: a -> List a -> List a
```

GADTs

Define data and explicit give type signatures to the Value constructors.

```
data Bool = False | True
    data Maybe a = Nothing | Just a
    data List a = Nil | Cons a (List a)
Loose translations:
    enum Bool {
      Bool False,
      Bool True
    }
    enum Maybe < A > {
      Maybe < A > Nothing,
      Maybe < A > Just (A a)
    }
    enum List < A > {
      List < A > Nil,
```

List < A > Cons (A a, List < A > as)

Kind Signatures

Specify the Kind of the Type variables:

```
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
data Bool :: * where
False :: Bool
True :: Bool

data Maybe :: * -> * where
Nothing :: Maybe a
Just :: a -> Maybe a

data List :: * -> * where
Nil :: List a
Cons :: a -> List a -> List a
```

DataKinds

Kinds are built-in; no user defined Kinds.

Want Values at the Type level though!

=> Data kind promotion:)

DataKinds

Example:

```
data Bool = False | True
```

With DataKinds, we get something like:

```
{-# LANGUAGE DataKinds #-}
```

Kind		Bool
Туре	Bool	'True 'False
Value	True False	

DataKinds

Example:

```
data Nat = Z | S Nat
```

With DataKinds, we get something like:

```
{-# LANGUAGE DataKinds #-}
```

Kind		Nat
Туре	Nat	'Z 'S Nat
Value	Z S Nat	

Type Families

Type families - type level functions, computed and checked at compile time.

Comes in 2 flavors:

- type synonym families
- data families

and have a few options:

- associated vs. standalone
- lacksquare open vs. closed 1
- injectivity²

Steps toward Dependent Types

Language Extensions

Type Families

At Value level:

Language Extensions

Type Families

At Type level:

Type Operators

Allows usage of symbols in place of Type constructors and Type families.

```
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

data Nat = Z | S Nat

type family (:+) n m where
'Z :+ m = m
('S n) :+ m = 'S (n :+ m)

('S ('S 'Z)) :+ ('S 'Z)
= 'S (('S 'Z) :+ ('S 'Z))
= 'S ('S ('Z :+ ('S 'Z)))
= 'S ('S ('S 'Z))
```

Vectors

Like List, but also indexed by Nat to indicate length.

List:

```
data List a where
Nil :: List a
Cons :: a -> List a -> List a
```

Vector:

```
-- 'Z ~ 0
-- 'S n ~ n :+ 1
data Vect (n :: Nat) a where
VNil :: Vect Z a
(:>) :: a -> Vect n a -> Vect (S n) a

type Six = S (S (S (S (S Z)))))
vs :: Vect Six Int
vs = 4 :> 8 :> 15 :> 16 :> 23 :> 42 :> VNil
```

Vectors

Like List, but also indexed by Nat to indicate length. List:

```
data List a where
Nil :: List a
Cons :: a -> List a -> List a
```

Module GHC TypeLits provide type-level literals:

```
-- 'Z \sim 0
-- 'S n \sim n :+ 1
data Vect (n :: Nat) a where
VNil :: Vect 0 a
(:>) :: a -> Vect n a -> Vect (n :+ 1) a

vs :: Vect 6 Int
vs = 4 :> 8 :> 15 :> 16 :> 23 :> 42 :> VNil
```

Steps toward Dependent Types

Dependent Type Programming with Vectors

Head

head returns the first element of the List:

```
-- from standard library
-- useless unless we know the list is non-empty
head :: [a] -> a
head [] = error "empty list"
head (x:xs) = x
```

Head

head returns the first element of the List:

```
-- from standard library
-- useless unless we know the list is non-empty
head :: [a] -> a
head [] = error "empty list"
head (x:xs) = x
```

Elm now uses Maybe:

```
mhead :: [a] -> Maybe a
mhead [] = Nothing
mhead (x:xs) = Just x
```

Head

head returns the first element of the List:

```
-- from standard library
-- useless unless we know the list is non-empty
head :: [a] -> a
head [] = error "empty list"
head (x:xs) = x
```

Elm now uses Maybe:

```
\begin{array}{lll} \mbox{mhead} & :: & [\mbox{a}] & -> \mbox{Maybe a} \\ \mbox{mhead} & [\mbox{]} & = \mbox{Nothing} \\ \mbox{mhead} & (\mbox{x}: \mbox{xs}) & = \mbox{Just} & \mbox{x} \end{array}
```

With Vector:

```
vhead :: Vect (S n) a -> a vhead (x:>xs) = x
```

Append

append concatenates 2 Lists:

Evaluation is a series of substitutions:

```
xs = [4, 8] = 4 : 8 : [] :: [Int]

ys = [15, 16, 23, 42] = 15 : 16 : 23 : 42 : [] :: [Int]

append xs ys :: [Int]

= append [4, 8] [15, 16, 23, 42]

= 4 : append [8] [15, 16, 23, 42]

= 4 : 8 : append [] [15, 16, 23, 42]

= 4 : 8 : [15, 16, 23, 42]

= 4 : [8, 15, 16, 23, 42]

= [4, 8, 15, 16, 23, 42]
```

Append

append concatenates 2 Lists:

```
append :: [a] -> [a] -> [a] append [] ys = ys append (x:xs) ys = x : append xs ys
```

With Vector:

```
vappend :: Vect n a -> Vect m a -> Vect (n :+ m) a vappend VNil ys = ys vappend (x:>xs) ys = x :> vappend xs ys
```

Мар

```
map:
```

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
```

Evaluation is a series of substitutions:

```
xs = [4, 8, 15, 16, 23, 42] :: [Int]
even :: Int -> Bool

map even xs :: [Bool]
= map even [4, 8, 15, 16]
= even 4 : map even [8, 15, 16]
= True : even 8 : map even [15, 16]
= True : True : even 15 : map even [16]
= True : True : False : even 16 : map even []
= True : True : False : True : []
= [True, True, False, True]
```

Мар

map maps a function over a List:

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
```

With Vector:

Zip

zip:

```
zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys
```

Evaluation is a series of substitutions:

```
xs = ['a', 'b', 'c'] :: [Char]
ys = [1, 2, 3, 4] :: [Int]

zip xs ys :: [(Char, Int)]
= zip ['a', 'b', 'c'] [1, 2, 3, 4]
= ('a', 1) : zip ['b', 'c'] [2, 3, 4]
= ('a', 1) : ('b', 2) : zip ['c'] [3, 4]
= ('a', 1) : ('b', 2) : ('c', 3) : zip [] [4]
= ('a', 1) : ('b', 2) : ('c', 3) : []
= [('a', 1), ('b', 2), ('c', 3)]
```

Dependent Type Programming with Vectors

Zip

zip creates pair-wise tuples:

```
zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys = []
```

With Vector:

```
vzip :: Vect n a -> Vect n b -> Vect n (a, b) vzip (x:>xs) (y:>ys) = (x,y) :> vzip xs ys vzip VNil = VNil
```

Dependent Type Programming with Vectors

Zip

zip2 with Min type family:

Replicate

replicate repeats an element n times:

```
replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n x = x : replicate (n - 1) x
```

For Vector, we want its Type Vector *n* a to reflect the Value of the first parameter Int.

Pi Types

Π-types - Values in Type signatures. Fake by deriving singleton instances of Sing data family to reflect values to the type level.

```
-- fake with singleton types
data instance Sing (n :: Nat) where
SZ :: Sing Z
SS :: Sing n -> Sing (S n)

-- so we have
SZ :: Sing Z
SS SZ :: Sing (S Z)
SS (SS SZ) :: Sing (S (S Z))
```

Pi Types

Π-types - Values in Type signatures. Fake by deriving singleton instances of Sing data family to reflect values to the type level.

```
-- fake with singleton types
data instance Sing (n :: Nat) where
SZ :: Sing Z
SS :: Sing n -> Sing (S n)

-- so we have
SZ :: Sing Z
SS SZ :: Sing (S Z)
SS (SS SZ) :: Sing (S (S Z))

-- finally:
vreplicate :: Sing (n :: Nat) -> a -> Vect n a
vreplicate SZ a = VNil
vreplicate (SS n) a = a :> vreplicate n a
```

Filter

filter selects elements from a list for given predicate:

We do not know the number of elements for which the predicate will return True, but Vector depends on this number in its Type.

└Pi and Sigma Types

Sigma Types

Σ -types - tuple where 2^{nd} value depends on 1^{st} :

```
-- borrowing Idris's ** dependent pair syntax
-- n ~ S (S (S Z)) ~ 3, singleton version

dpair :: (n :: Nat ** Vect n Char)

dpair = (3 ** 'a' :> 'b' :> 'c' :> VNil)

vfilter :: (a -> Bool) -> Vect n a
-> (p :: Nat ** Vect p a)
```

└Pi and Sigma Types

Sigma Types

Σ -types - tuple where 2^{nd} value depends on 1^{st} :

```
-- borrowing Idris's ** dependent pair syntax
-- n ~ S (S (S Z)) ~ 3, singleton version

dpair :: (n :: Nat ** Vect n Char)

dpair = (3 ** 'a' :> 'b' :> 'c' :> VNil)

vfilter :: (a -> Bool) -> Vect n a
-> (p :: Nat ** Vect p a)
```

Credit to Ertugrul Söylemez:

```
-- Sugar ** for Sigma type constructor and Exists value constructor data Sigma :: KProxy a -> (a -> *) -> * where

Exists :: Sing (x :: a) -> b x

-> Sigma ('KProxy :: KProxy a) b
```

Heterogeneous List

Heterogeneous List indexed by List of Types:

```
infixr 5 ::>
data HList (t :: [*]) where
   HNil :: HList '[]
   (::>) :: t -> HList ts -> HList (t ': ts)

defaults :: HList '[Int, Bool, Maybe a]
defaults = 0 ::> False ::> Nothing ::> HNil
```

Heterogeneous Vector

Heterogeneous Vector indexed by a List of Types:

```
infixr 5 :>>
data HVect (n :: Nat) (t :: [*]) where
  HVNil :: HVect Z '[]
  (:>>) :: t -> HVect n ts -> HVect (S n) (t ': ts)

vdefaults :: HVect 3 '[Int, Bool, Maybe a]
vdefaults = 0 :>> False :>> Nothing :>> HVNil
```

Section Outline

Beyond Dependent Types

- Total functional languages
 - termination and totality check
 - disallow partial functions
 - distinction between data and codata
- Proof assistant languages
 - Ph.D. first please

Questions

Questions?