Algebraic Number Theory - Assignment 9

Matteo Durante, 2303760, Leiden University

30th November 2018

Exercise 14

First of all, notice that, given $k \in \mathbb{Z}$, both X - k and $X^2 - (2k+1)X + k(k+1)$ are monic polynomials in $\mathbb{Z}[X]$ with discriminant = 1 up to sign, therefore we only have to check the other implication.

Notice that such a polynomial must have distinct roots, for otherwise $\Delta(f) = 0$.

If it is irreducible in $\mathbb{Z}[X]$ and it has a non-integer root α (which therefore does not lie in \mathbb{Q}), then it is irreducible in $\mathbb{Q}[X]$ and, since $\mathbb{Q}[X]/(f) \cong \mathbb{Q}(\alpha)$ is a non-trivial finite field extension of \mathbb{Q} , we have $\mathbb{Z} \ni |\Delta(f)| \ge |\Delta_{\mathbb{Q}(\alpha)}| \ne 1$, hence the roots of our polynomial must lie in \mathbb{Z} .

If it is the product of two (distinct monic) polynomials in $\mathbb{Z}[X]$, $f = f_1 f_2$, then, calling α_i the roots of f and α_{ki} the roots of f_k , we get $\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2 = \prod_{i < j} (\alpha_{1i} - \alpha_{1j})^2 \cdot \prod_{i < j} (\alpha_{2i} - \alpha_{2j})^2 \cdot \prod_{i,j} (\alpha_{1i} - \alpha_{2j})^2 = \Delta(f_1) \Delta(f_2) Res(f_1, f_2)^2$.

Since $Res(f_1, f_2) \in \mathbb{Z}$, to have $|\Delta(f)| = 1$ we need $|\Delta(f_1)| = |\Delta(f_2)| = 1$ (they already lie in \mathbb{Z}). Iterating the procedure, we get that the absolute values of the discriminants of the irreducible factors have to be = 1, hence f only has integer roots.

Continuing, since $\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2$ and $\alpha_i \in \mathbb{Z}$, we need $|\alpha_i - \alpha_j| = 1$ for every i, j, where $i \neq j$. This means that it can't have more than two roots.

It follows that either it has only one root, and hence f = X - k, or it has only two (consecutive) roots, i.e. $f = (X - k)(X - (k + 1)) = X^2 - (2k + 1)X + k(k + 1)$, for some $k \in \mathbb{Z}$.

Exercise 20

Let A be an integral ring extension of R.

If $x \in R^*$, then $x^{-1} \in R \subset A$, hence $x \in A^*$ and $R^* \subset A^* \cap R$.

We only have to show the opposite inclusion.

Let $x \in A^* \cap R$. Being x^{-1} integral over R, it is the zero of a monic polynomial $f = \sum_{i=0}^n r_i X^i \in R[X]$. It follows that $x^{n-1}(\sum_{i=0}^n r_i x^{-i}) = (\sum_{i=0}^{n-1} x^{n-(i+1)} r_i) + x^{-1} = 0$, hence $x^{-1} = -\sum_{i=0}^{n-1} x^{n-(i+1)} r_i \in R$ and $x \in R^*$.

We notice that the integrality condition is necessary, for $\mathbb{Q}^* \cap \mathbb{Z} = \mathbb{Z} \setminus \{0\} \neq \mathbb{Z}^*$.

References

[1] P. Stevenhagen, Number Rings, 2017.