ITCS 6114

Dynamic programming 0-1 Knapsack problem

0-1 Knapsack problem

- Given a knapsack with maximum capacity
 W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value b_i (all w_i , b_i and W are integer values)
- Problem: How to pack the knapsack to achieve maximum total value of packed items?

0-1 Knapsack problem: a picture

Weight

Benefit value

Item

$$\mathbf{W_{i}}$$

 b_i

This is a knapsack Max weight:
$$W = 20$$

$$W = 20$$

0-1 Knapsack problem

■ Problem, in other words, is to find

$$\max \sum_{i \in T} b_i$$
 subject to $\sum_{i \in T} w_i \leq W$

- The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.
- Just another version of this problem is the "Fractional Knapsack Problem", where we can take fractions of items.

0-1 Knapsack problem: bruteforce approach

Let's first solve this problem with a straightforward algorithm

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W
- Running time will be $O(2^n)$

0-1 Knapsack problem: bruteforce approach

- Can we do better?
- Yes, with an algorithm based on dynamic programming
- We need to carefully identify the subproblems

Let's try this:

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_k = \{items\ labeled\ 1,\ 2,\ ...\ k\}$

Defining a Subproblem

If items are labeled 1..n, then a subproblem would be to find an optimal solution for S_k = {items labeled 1, 2, .. k}

- This is a valid subproblem definition.
- The question is: can we describe the final solution (S_n) in terms of subproblems (S_k) ?
- Unfortunately, we <u>can't</u> do that. Explanation follows....

Defining a Subproblem

$\mathbf{w}_1 = 2$	2	$w_3 = 5$		
$b_1 = 3$	=4	$b_3 = 8$	$b_4 = 4$	
	$b_2 = 5$	9	2	-

Max weight: W = 20

For S₄:

Total weight: 14;

total benefit: 20

w ₂ =4	$w_3 = 5$ $b_3 = 8$	w ₄ =9 b ₄ =10	
$b_2 = 5$			

For S₅:

Total weight: 20

total benefit: 26

Solution for S_4 is not part of the solution for S_5 !!!

8/14/2014

Defining a Subproblem (continued)

- As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is flawed and we need another one!
- Let's add another parameter: w, which will represent the <u>exact</u> weight for each subset of items
- The subproblem then will be to compute B[k,w]

Recursive Formula for subproblems

■ Recursive formula for subproblems:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- It means, that the best subset of S_k that has total weight w is one of the two:
- 1) the best subset of S_{k-1} that has total weight w, **or**
- 2) the best subset of S_{k-1} that has total weight $w-w_k$ plus the item k

Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- The best subset of S_k that has the total weight w, either contains item k or not.
- First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable
- Second case: $w_k <= w$. Then the item k can be in the solution, and we choose the case with greater value

0-1 Knapsack Algorithm

```
for w = 0 to W
  B[0,w] = 0
for i = 0 to n
  B[i,0] = 0
  for w = 0 to W
       if w_i \le w // item i can be part of the solution
              if b_i + B[i-1,w-w_i] > B[i-1,w]
                     B[i,w] = b_i + B[i-1,w-w_i]
              else
                     B[i,w] = B[i-1,w]
_{8/14/2014}else B[i,w] = B[i-1,w] // w<sub>i</sub> > w
```

Running time

for
$$w = 0$$
 to W

$$B[0,w] = 0$$

for
$$i = 0$$
 to n

Repeat *n* times

$$B[i,0] = 0$$

for
$$w = 0$$
 to W

< the rest of the code >

What is the running time of this algorithm?

$$O(n*W)$$

Remember that the brute-force algorithm takes $O(2^n)$

Example

Let's run our algorithm on the following data:

n = 4 (# of elements)

W = 5 (max weight)

Elements (weight, benefit):

(2,3), (3,4), (4,5), (5,6)

Example (2)

for
$$w = 0$$
 to W

$$B[0,w] = 0$$

Example (3)

i W

for
$$i = 0$$
 to n
B[i,0] = 0

Example (4)

Items:

i

2

3

1: (2,3)

2:(3,4)

3:(4,5)

i=1

4: (5,6)

 $b_i=3$

 $w_i=2$

w=1

 $w - w_i = -1$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Example (5)

Items:

-1	100
	() 31
1.	(4,5)
	\ / /

$$b_i=3$$

$$w_i=2$$

$$w=2$$

$$w-w_i=0$$

i=1

if
$$\mathbf{w}_i \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b}_i + \mathbf{B}[i-1,\mathbf{w}-\mathbf{w}_i] > \mathbf{B}[i-1,\mathbf{w}]$
 $\mathbf{B}[i,\mathbf{w}] = \mathbf{b}_i + \mathbf{B}[i-1,\mathbf{w}-\mathbf{w}_i]$
else
 $\mathbf{B}[i,\mathbf{w}] = \mathbf{B}[i-1,\mathbf{w}]$
else $\mathbf{B}[i,\mathbf{w}] = \mathbf{B}[i-1,\mathbf{w}]$ // $\mathbf{w}_i > \mathbf{w}$

W

5

Example (6)

Items:

1.	(7) (2)
1.	(\(\)		ו כ
	1	- 7 -	- /

$$b_i=3$$

$$w_i=2$$

$$w=3$$

$$w-w_i=1$$

i=1

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$
 $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$
else
 $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$
else $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

W

0

2

3

4

Example (7)

Items:

41
$, \mathcal{I}_{\mathcal{I}}$

2: (3,4)

$$i=1$$

$$b_i=3$$

$$w_i=2$$

$$w=4$$

$$w-w_i=2$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$
 $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$
else
 $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$
else $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

W

Example (8)

Items:

i 0	1	2	3	4

1: (2,3)

2:(3,4)

W	1 _	0	1	2	3	4
0		0	0	0	0	0
1		0	0			
2		0	3			
3		0 1	3			
4		0	3			

3: (4,5)

$$i=1$$
 $b_i=3$
 $4: (5,6)$

$$w_i=2$$
 $w=5$

$$w-w_i=2$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$
 $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$
else
 $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$
else $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

5

Example (9)

Items:

i 0

W

0

2

3

4

5

3

1: (2,3)

2: (3,4)

3:(4,5)

i=2 $b_i=4$

4: (5,6)

 $w_i=3$

w=1

 $w-w_i=-2$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Example (10)

Items:

i 0 1 2 3

1: (2,3)

 2: (3,4)

0 0 0 0

3: (4,5)

4: (5,6)

0

0

0

3

3

3

i=2 $b_i=4$

3

 $w_i=3$

4

w=2

5

 $w-w_i=-1$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else B[i,w] = B[i-1,w] // $w_i > w$

Example (11)

Items:

i 0 3 1: (2,3)

W

3

3

3

3

2: (3,4)

0	0	0,	0	0	0

0

3

3:(4,5)

4: (5,6)

0 0

0

0

0

0

i=2 $b_i=4$

$$b_i=4$$

3

$$w_i=3$$

4

$$w=3$$

$$w-w_i=0$$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Example (12)

Items:

i 0 1 2 3						-
	1	0	1	2	3	4

1: (2,3)

W

2: (3,4)

3

4

else $B[i,w] = B[i-1,w] // w_i > w$

3:(4,5)

0

0

0

0

3

3

3

3

i=2 $b_i=4$ 4: (5,6)

$$w_i=3$$

$$w=4$$

$$w-w_i=1$$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]

Example (13)

Items:

i 1: (2,3)

W

2: (3,4) 3:(4,5)

i=2 $b_i=4$ 4: (5,6)

 $w_i=3$ w=5

 $w-w_i=2$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Example (14)

Items:

				-		
i	0	1	2	3	4	
	0					

7

else $B[i,w] = B[i-1,w] // w_i > w$

1: (2,3)

 \mathbf{W}

2: (3,4)

3: (4,5)

i=3 $b_i=5$ 4: (5,6)

 $w_i=4$

3

0

w = 1...3

5

4

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]

Example (15)

Example (13

W		1			-
0	0	0	0,	0	0
1	0	0	0	0	
2	0	3	3	3	
3	0	3	4	4	
32	823	260	- 12	_	

3

0

Items:

1: (2,3)

2:(3,4)

3: (4,5)

4: (5,6)

$$i=3$$

$$b_i=5$$

$$w_i=4$$

$$w=4$$

$$w-w_i=0$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b_i} + \mathbf{B[i-1,w-w_i]} > \mathbf{B[i-1,w]}$
 $\mathbf{B[i,w]} = \mathbf{b_i} + \mathbf{B[i-1,w-w_i]}$
else
 $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$
else $\mathbf{B[i,w]} = \mathbf{B[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

i

Example (15)

i

1: (2,3)

Items:

2:(3,4)

3: (4,5)

4: (5,6)

0	0	0	0	0
0	0	0	0	
0	3	3	3	
0	3	4	4	
0	3	4	5	
0	3	7 -	→ 7	

$$w-w_i=1$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b_i} + \mathbf{B}[i-1,\mathbf{w}-\mathbf{w_i}] > \mathbf{B}[i-1,\mathbf{w}]$
 $\mathbf{B}[i,\mathbf{w}] = \mathbf{b_i} + \mathbf{B}[i-1,\mathbf{w}-\mathbf{w_i}]$
else
 $\mathbf{B}[i,\mathbf{w}] = \mathbf{B}[i-1,\mathbf{w}]$
else $\mathbf{B}[i,\mathbf{w}] = \mathbf{B}[i-1,\mathbf{w}]$ // $\mathbf{w_i} > \mathbf{w}$

W

3

Example (16)

1040				_	100
i	0	1	2	3	4

\mathbf{W}^{-1}	U	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0 -	→ 0
2	0	3	3	3 –	→ 3
3	0	3	4	4 —	→ 4
4	0	3	4	5 –	→ 5
5	0	3	7	7	

1: (2,3)

2:(3,4)

3:(4,5)

4:(5,6)

i=3

 $w_i=4$

w = 1..4

if
$$w_i \le w$$
 // item i can be part of the solution

if
$$b_i + B[i-1,w-w_i] > B[i-1,w]$$

 $B[i,w] = b_i + B[i-1,w-w_i]$

else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Example (17)

i W

Items:

1: (2,3)

2: (3,4)

3:(4,5)

4: (5,6)

i=3

 $b_i = 5$

 $w_i=4$

w=5

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
- To know the items that make this maximum value, an addition to this algorithm is necessary
- Please see LCS algorithm from the previous lecture for the example how to extract this data from the table we built

Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- Running time (Dynamic Programming algorithm vs. naïve algorithm):
 - -LCS: O(m*n) vs. O(n*2^m)
 - − 0-1 Knapsack problem: O(W*n) vs. O(2n)