XE-2022

EE24Btech11022 - Eshan Sharma

1) A two-dimensional potential flow solution for flow past an airfoil has a streamline pattern as shown in the figure. Which of the following conditions is additionally required to satisfy the Kutta condition?

- a) Addition of a source of strength Q > 0
- b) Addition of a source of strength Q < 0
- c) Addition of a circulation of strength $\Gamma > 0$ (counter-clockwise)
- d) Addition of a circulation of strength Γ < 0 (clockwise)
- 2) Consider the Blasius solution for the incompressible laminar flat plate boundary layer. Among the following options, select the correct relation for the development of the momentum thickness Θ with distance X from the leading edge along the length of the plate.
 - a) $\Theta \propto X^{2/3}$
 - b) $\Theta \propto X^{1/2}$
 - c) $\Theta \propto X^{1/7}$
 - d) $\Theta \propto X^{-2/3}$
- 3) In a two-dimensional potential flow, the doublet is a limit of the superposition of
 - a) a uniform stream and a source
 - b) a source and a sink of equal strength
 - c) a uniform stream and a sink
 - d) a source and a vortex
- 4) An ideal glider has drag characteristics given by $C_D = C_{D_0} + C_{D_i}$, where $C_{D_i} = KC_L^2$ is the induced drag coefficient, C_L is the lift coefficient, and K is a constant. For maximum range of the glider, the ratio C_{D_0}/C_{D_i} is
 - a) 1
 - b) $\frac{1}{3}$
 - c) 3
 - d) $\frac{3}{2}$
- 5) The figures shown in the options are schematics of airfoil shapes (not to scale). For a civilian transport aircraft designed for a cruise Mach number of 0.8, which among them is aerodynamically best suited as a wing section?

d)

6) For a longitudinally statically stable aircraft, which one of the following represents the relationship between the coefficient of pitching moment about the center of gravity $C_{m_{cg}}$ and absolute angle of attack α_a ?

(Note: nose-up moment is positive.)

7) In a single-spool aviation turbojet engine, which of the following is the correct relationship between the total work output W_t of a 2-stage axial turbine and the total work required W_c by a 6-stage axial compressor, neglecting losses?

a)
$$W_t = 2W_c$$

- b) $W_t = 6W_c$
- c) $W_t = W_c$
- d) $W_t = 3W_c$
- 8) For a stage of a 50% reaction ideal axial flow compressor (symmetrical blading), select the correct statement from the options given.
 - a) The stagnation enthalpy rise across the rotor is 50% of the rise across the stage.
 - b) The static enthalpy rise across the rotor is 50% of the rise across the stage.
 - c) Axial velocity component of the flow at the rotor exit is 50% of that at the rotor entry.
 - d) The static pressure rise across the rotor is 50% of the rise across the stator.
- 9) An aircraft is cruising with a forward speed V_a and the jet exhaust speed relative to the engine at the exit is V_j . If $\frac{V_j}{V_a} = 2$, what is the propulsive efficiency?
 - a) 0.50
 - b) 1.00
 - c) 0.33
 - d) 0.67
- 10) Consider the four basic symmetrical flight loading conditions corresponding to the corners of a typical V-n diagram. For one of these flight loading conditions, it is observed that (i) the compressive bending stresses have a maximum value in the bottom aft region (see figure) of the wing cross-section; and (ii) the tensile bending stresses are maximum in the upper forward region (see figure) of the wing cross-section. For the preceding observations, select the corresponding flight loading condition from the options given.

- a) Positive high angle of attack
- b) Positive low angle of attack
- c) Negative high angle of attack
- d) Negative low angle of attack
- 11) Which one of the following figures represents the qualitative variation of absolute deceleration $\left|\frac{dV}{dt}\right|$ with altitude h (measured from the mean sea level) for a space vehicle undergoing a ballistic entry into the Earth?s atmosphere?

a)

- 12) Which of the following statement(s) is/are true about harmonically excited forced vibration of a single degree-of-freedom linear spring-mass-damper system?
 - a) The total response of the mass is a combination of free vibration transient and steady-state response.
 - b) The free vibration transient dies out with time for each of the three possible conditions of damping (under-damped, critically damped, and over-damped).
 - c) The steady-state periodic response is dependent on the initial conditions at the time of application of external forcing.
 - d) The rate of decay of free vibration transient response depends on the mass, spring stiffness and damping constant.
- 13) Which of the following statement(s) is/are true about the state of stress in a plane?
 - a) Maximum or major principal stress is algebraically the largest direct stress at a point.
 - b) The magnitude of minor principal stress cannot be greater than the magnitude of major principal stress.
 - c) The planes of maximum shear stress are inclined at 90 degrees to the principal axes.
 - d) The normal stresses along the planes of maximum shear stress are equal.