2019 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

	_	、单项选择题(第 1 ² 只有一个选项最符	~40 小题,每小题 2 分, 合试题要求)	共80分。下列每题给	ì出的四个选项中,
	1.	设 <i>n</i> 是描述问题规模 x=0; while (n>=(x+1)* x=x+1;	模的非负整数,下列程序 (x+1))	段的时间复杂度是	o
1417年	2.	若将一棵树 T 转化为	B. <i>O</i> (n ^{1/2}) 为对应的二叉树 BT,则 [¬]		
化地是_	A. 3.	对 n 个互不相同的符	。 B.中序遍历 〒号进行哈夫曼编码。若生		
	A. 4. v ‡	56 在任意一棵非空平衡 插入 T ₂ 形成平衡二叉	B. 57 哲二叉树(AVL 树)T ₁ 中 树 T ₃ 。下列关于 T ₁ 与 T 则 T ₁ 与 T ₃ 可能不相同	, 删除某结点 v 之后形	成平衡二叉树 T ₂ ,
	III. A. 5.	. 若 v 不是 T ₁ 的叶结 仅 I 下图所示的 AOE 网	点,则 T_1 与 T_3 一定不相 后点,则 T_1 与 T_3 一定相同 B.仅 II 表示一项包含 8 个活动的	引 C. 仅I、II	
时间	分分	引是。	a=3 $b=4$ $c=8$	g=6 6 h=9	
	6.A.7.I.A.	用有向无环图描述表 5 选择一个排序算法时	B. 12 和 12 長达式 (x+y)((x+y)/x), B. 6 付,除算法的时空效率, 数据的存储方式 III.	C. 8 下列因素中,还需要考	是。 D. 9 虑的是。

8. 现有长度为 11 且初始为空的散列表 HT, 散列函数是 <i>H</i> (key) = key % 7, 采用线性探查 (线性探测再散列) 法解决冲突。将关键字序列 87, 40, 30, 6, 11, 22, 98, 20 依次插入 HT 后, HT
查找失败的平均查找长度是。
A. 4 B. 5.25 C. 6 D. 6.29
9. 设主串 T = "abaabaabcabaabc",模式串 S = "abaabc",采用 KMP 算法进行模式匹配,到
匹配成功时为止,在匹配过程中进行的单个字符间的比较次数是。
A. 9 B. 10 C. 12 D. 15
10. 排序过程中,对尚未确定最终位置的所有元素进行一遍处理称为一"趟"。下列序列
中,不可能是快速排序第二趟结果的是。
A. 5, 2, 16, 12, 28, 60, 32, 72 B. 2, 16, 5, 28, 12, 60, 32, 72
C. 2, 12, 16, 5, 28, 32, 72, 60 D. 5, 2, 12, 28, 16, 32, 72, 60
11. 设外存上有 120 个初始归并段,进行 12 路归并时,为实现最佳归并,需要补充的虚段
个数是。
A. 1 B. 2 C. 3 D. 4
12. 下列关于冯•诺依曼结构计算机基本思想的叙述中,错误的是。
A. 程序的功能都通过中央处理器执行指令实现
B. 指令和数据都用二进制数表示,形式上无差别
C. 指令按地址访问,数据都在指令中直接给出
D. 程序执行前, 指令和数据需预先存放在存储器中
13. 考虑以下 C 语言代码:
<pre>unsigned short usi = 65535; short si = usi;</pre>
执行上述程序段后, si 的值是。
A1 B32767 C32768 D65535
14. 下列关于缺页处理的叙述中,错误的是
A. 缺页是在地址转换时 CPU 检测到的一种异常
B. 缺页处理由操作系统提供的缺页处理程序来完成
C. 缺页处理程序根据页故障地址从外存读入所缺失的页
D. 缺页处理完成后回到发生缺页的指令的下一条指令执行
15. 某计算机采用大端方式,按字节编址。某指令中操作数的机器数为 1234 FF00H,该操
作数采用基址寻址方式,形式地址(用补码表示)为 FF12H,基址寄存器的内容为 F000 0000H,
则该操作数的 LSB (最低有效字节) 所在的地址是。
A. F000 FF12H B. F000 FF15H C. EFFF FF12H D. EFFF FF15H
16. 下列有关处理器时钟脉冲信号的叙述中,错误的是。
A. 时钟脉冲信号由机器脉冲源发出的脉冲信号经整形和分频后形成
B. 时钟脉冲信号的宽度称为时钟周期,时钟周期的倒数为机器主频
C. 时钟周期以相邻状态单元间组合逻辑电路的最大延迟为基准确定
D. 处理器总是在每来一个时钟脉冲信号时就开始执行一条新的指令
17. 某指令功能为 R[r2]←R[r1] + M[R[r0]], 其两个源操作数分别采用寄存器、寄存器间接
寻址方式。对于下列给定部件,该指令在取数及执行过程中需要用到的是。
I. 通用寄存器组(GPRs) II. 算术逻辑单元(ALU)

III. 存储器 (Memory) IV. 指令译	码器(ID)	
A. 仅 I、II B. 仅 I、II、III		D. 仅I、III、IV
18. 在采用"取指、译码/取数、执行、访存、	写回"5段流水线的	处理器中, 执行如下指
令序列,其中 s0、s1、s2、s3 和 t2 表示寄存器编号	크,	
I1: add s2,s1,s0 //R[s2]←F	R[s1]+R[s0]	
I2: load s3,0(t2) //R[s3]←M	1[R[t2]+0]	
I3: add s2,s2,s3 //R[s2] \leftarrow F I4: store s2,0(t2) //M[R[t2]	R[s2]+R[s3] +01←R[s2]	
下列指令对中,不存在数据冒险的是。	.0] (1([02]	
A. II和I3 B. I2和I3	C. I2和I4	D. I3和I4
19. 假定一台计算机采用 3 通道存储器总线,		DDR3-1333,即内存条
所接插的存储器总线的工作频率为 1333MHz, 总约		
是。	, (36)26) (7 1)	
A. 10.66GB/s B. 32GB/s	C. 64GB/s	D. 96GB/s
20. 下列关于磁盘存储器的叙述中,错误的是	<u>. </u>	
A. 磁盘的格式化容量比非格式化容量小		
B. 扇区中包含数据、地址和校验等信息		
C. 磁盘存储器的最小读写单位为一字节		
D. 磁盘存储器由磁盘控制器、磁盘驱动器和	盘片组成	
21. 某设备以中断方式与 CPU 进行数据交换,	CPU 主频为 1GHz,i	设备接口中的数据缓冲
寄存器为32位,设备的数据传输率为50kB/s。若每	每次中断开销(包括中)	断响应和中断处理) 为
1000个时钟周期,则 CPU 用于该设备输入/输出的时	可自占整个 CPU 时间的	百分比最多是。
A. 1.25% B. 2.5%	C. 5%	D. 12.5%
22. 下列关于 DMA 方式的叙述中,正确的是	· · · · · · · · ·	
I. DMA 传送前由设备驱动程序设置传送参数	[
II. 数据传送前由 DMA 控制器请求总线使用。		
	权	
III. 数据传送由 DMA 控制器直接控制总线完		
III. 数据传送由 DMA 控制器直接控制总线完 IV. DMA 传送结束后的处理由中断服务程序	成	
	成	
IV. DMA 传送结束后的处理由中断服务程序	完成	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II	完成 完成 B.仅 I、III、IV D.I、II、III、IV	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV	完成 完成 B.仅 I、III、IV D.I、II、III、IV	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是	完成 完成 B.仅 I、III、IV D.I、II、III、IV	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是 A. 内核级线程的调度由操作系统完成	完成 完成 B. 仅 I、III、IV D. I、II、III、IV -°	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是A. 内核级线程的调度由操作系统完成B. 操作系统为每个用户级线程建立一个线程C. 用户级线程间的切换比内核级线程间的切D. 用户级线程可以在不支持内核级线程的操	i.成 完成 B. 仅 I、III、IV D. I、II、III、IV -° 控制块 换效率高 作系统上实现	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是A. 内核级线程的调度由操作系统完成B. 操作系统为每个用户级线程建立一个线程C. 用户级线程间的切换比内核级线程间的切	i.成 完成 B. 仅 I、III、IV D. I、II、III、IV -° 控制块 换效率高 作系统上实现	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是A. 内核级线程的调度由操作系统完成 B. 操作系统为每个用户级线程建立一个线程 C. 用户级线程间的切换比内核级线程间的切 D. 用户级线程可以在不支持内核级线程的操 24. 下列选项中,可能会将进程唤醒的事件是 I. I/O 结束 II. 某进程退出临界区 III.	:成 完成 B. 仅 I、III、IV D. I、II、III、IV -° 控制块 换效率高 作系统上实现 !:。 当前进程的时间片用完	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是A. 内核级线程的调度由操作系统完成B. 操作系统为每个用户级线程建立一个线程C. 用户级线程间的切换比内核级线程间的切D. 用户级线程可以在不支持内核级线程的操24. 下列选项中,可能会将进程唤醒的事件是I. I/O 结束 II. 某进程退出临界区 III. 第A. 仅 I B. 仅 III	成 完成 B. 仅 I、III、IV D. I、II、III、IV -° 控制块 换效率高 作系统上实现 些。 当前进程的时间片用完 C. 仅 I、II	D. I. II. III
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是 A. 内核级线程的调度由操作系统完成 B. 操作系统为每个用户级线程建立一个线程 C. 用户级线程间的切换比内核级线程间的切 D. 用户级线程可以在不支持内核级线程的操 24. 下列选项中,可能会将进程唤醒的事件是 I. I/O 结束 II. 某进程退出临界区 III. 第 A. 仅 I B. 仅 III 25. 下列关于系统调用的叙述中,正确的是	:成 完成 B. 仅 I、III、IV D. I、II、III、IV -° 控制块 换效率高 作系统上实现 !。 当前进程的时间片用完 C. 仅 I、II	
IV. DMA 传送结束后的处理由中断服务程序A. 仅 I、II C. 仅 II、III、IV 23. 下列关于线程的描述中,错误的是A. 内核级线程的调度由操作系统完成B. 操作系统为每个用户级线程建立一个线程C. 用户级线程间的切换比内核级线程间的切D. 用户级线程可以在不支持内核级线程的操24. 下列选项中,可能会将进程唤醒的事件是I. I/O 结束 II. 某进程退出临界区 III. 第A. 仅 I B. 仅 III	:成 完成 B. 仅 I、III、IV D. I、II、III、IV -° 控制块 换效率高 作系统上实现 !。 当前进程的时间片用完 C. 仅 I、II	

	III. 个同的操作系统	充为应用程序提供了统	一的系统调用接口	
	IV. 系统调用是操作	F系统内核为应用程序	提供服务的接口	
	A. 仅I、IV	B. 仅II、III	C. 仅 I、II、IV	D. 仅 I、III、IV
	26. 下列选项中,可	用于文件系统管理空间	闲磁盘块的数据结构是	o
	I. 位图 II. 雾	索引结点 III. 空间	R磁盘块链 IV. 文件	分配表 (FAT)
	A. 仅I、II	B. 仅I、III、IV	C. 仅I、III	D. 仅II、III、IV
	27. 系统采用二级反	馈队列调度算法进行过	挂程调度。就绪队列 Q1 采月]时间片轮转调度算法,
时间	可片为 10ms;就绪队	列 Q2采用短进程优先	调度算法; 系统优先调度	EQ1队列中的进程,当
Q_1	为空时系统才会调度(Q2中的进程;新创建的	的进程首先进入 Q1; Q1中	的进程执行一个时间片
后,	若未结束,则转入 C	2。若当前 Q1、Q2 为空	Z,系统依次创建进程 Pı、	P_2 后即开始进程调度,
P_{1}	P ₂ 需要的 CPU 时间分	ト别为 30ms 和 20ms,贝	则进程 P_1 、 P_2 在系统中的平	区均等待时间为。
	A. 25ms	B. 20ms	C. 15ms	D. 10ms
	28. 在分段存储管理	里系统中, 用共享段表	描述所有被共享的段。若	进程 P1和 P2共享段 S,
下歹	川叙述中,错误的是_	o		
	A. 在物理内存中仅	保存一份段 S 的内容		
	B. 段 S 在 P ₁ 和 P ₂ ¹	中应该具有相同的段号	•	
	C. P ₁ 和 P ₂ 共享段 S	5 在共享段表中的段表	项	
	D. P ₁ 和 P ₂ 都不再位	使用段 S 时才回收段 S	所占的内存空间	
	29. 某系统采用 LR	U 页置换算法和局部员	置换策略,若系统为进程	P 预分配了 4 个页框,
进程	星P 访问页号的序列为	5 0, 1, 2, 7, 0, 5, 3, 5, 0,	2, 7, 6, 则进程访问上述	页的过程中,产生页置
换的	的总次数是。			
	A. 3	B. 4	C. 5	D. 6
	30. 下列关于死锁的	的叙述中,正确的是	o	
	I. 可以通过剥夺进	程资源解除死锁		
	II. 死锁的预防方法	能确保系统不发生死领	ў	
	III. 银行家算法可以	以判断系统是否处于死	锁状态	
	IV. 当系统出现死银	_锁 时,必然有两个或两	个以上的进程处于阻塞态	
	A. 仅II、III	B. 仅I、II、IV	C. 仅I、II、III	D. 仅 I、III、IV
	31. 某计算机主存控	安字节编址,采用二级	分页存储管理,地址结构	如下所示:
× 6	页目录号(10	位) 面是	(10位) 页内偏	移(12位)
1217	火口水 9 (10	区/ 尺寸	(10 医) 灰竹柳	y (12 <u>E</u>)
1100	虚拟地址 2050 1225	H 对应的页目录号、页	〔号分别是。	
7 2 Sh	A. 081H, 101H	B. 081H、401H	C. 201H、101H	D. 201H, 401H
Avoir	32. 在下列动态分区	区分配算法中,最容易	产生内存碎片的是	0
A LEAST	A. 首次适应算法		B. 最坏适应算法	
75712	C. 最佳适应算法		D. 循环首次适应算	拿法
ADIE	33. OSI 参考模型的]第5层(自下而上)	完成的主要功能是	
171	A. 差错控制	B. 路由选择	、C./会话管理	D. 数据表示转换
	34. 100BaseT 快速!	以太网使用的导向传输	i介质是。	
	A. 双绞线	B. 单模光纤	C. 多模光纤	D. 同轴电缆

typedef struct node
{ int data;
 struct node*next;
} NODE;

- (1) 给出算法的基本设计思想。
- (2) 根据设计思想, 采用 C 或 C++语言描述算法, 关键之处给出注释。
- (3) 说明你所设计的算法的时间复杂度。
- 42. (10 分)请设计一个队列,要求满足:①初始时队列为空;②入队时,允许增加队列占用空间;③出队后,出队元素所占用的空间可重复使用,即整个队列所占用的空间只增不减;④入队操作和出队操作的时间复杂度始终保持为*Q*(1)。请回答下列问题:
 - (1) 该队列是应选择链式存储结构,还是应选择顺序存储结构?
 - (2) 画出队列的初始状态,并给出判断队空和队满的条件。
 - (3) 画出第一个元素入队后的队列状态。
 - (4) 给出入队操作和出队操作的基本过程。
- 43. (8分)有 $n(n \ge 3)$ 位哲学家围坐在一张圆桌边,每位哲学家交替地就餐和思考。在圆桌中心有 $m(m \ge 1)$ 个碗,每两位哲学家之间有一根筷子。每位哲学家必须取到一个碗和两侧的筷子后,才能就餐,进餐完毕,将碗和筷子放回原位,并继续思考。为使尽可能多的哲学家同时就餐,且防止出现死锁现象,请使用信号量的P、V操作[wait()、signal()操作]描述上述过程中的互斥与同步,并说明所用信号量及初值的含义。
- 44. (7分) 某计算机系统中的磁盘有 300 个柱面,每个柱面有 10 个磁道,每个磁道有 200 个扇区,扇区大小为 512B。文件系统的每个簇包含 2 个扇区。请回答下列问题:
 - (1) 磁盘的容量是多少?
- (2)假设磁头在85号柱面上,此时有4个磁盘访问请求,簇号分别为100260、60005、101660和110560。若采用最短寻道时间优先(SSTF)调度算法,则系统访问簇的先后次序是什么?
- (3)第 100 530 簇在磁盘上的物理地址是什么?将簇号转换成磁盘物理地址的过程是由 I/O 系统的什么程序完成的?
- 45. (16 分) 已知 $f(n) = n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$, 计算 f(n)的 C 语言函数 f1 的源程序 (阴影部分) 及其在 32 位计算机 M 上的部分机器级代码如下:

<pre>int f1(int n) {</pre>	
1 00401000 55 push ebp	
if(n>1)	
1100401018 83 7D 08 01 cmp dword	ptr [ebp+8],1
120040101C 7E 17 jle f1+35	h (00401035)
return n*f1(n-1);	
130040101E 8B 45 08 mov eax,	dword ptr [ebp+8]
1400401021 83 E8 01 sub eax,	1
1500401024 50 push eax	
1600401025 E8 D6 FF FF FF call f1 (00401000)
1900401030 OF AF C1 imul eax,	ecx
2000401033 EB 05 jmp f1+3A	h (0040103a)
else return 1;	
2100401035 B8 01 00 00 00 mov eax,	1
}	
2600401040 3B EC cmp ebp,	esp
300040104A C3 ret	

其中,机器级代码行包括行号、虚拟地址、机器指令和汇编指令,计算机 M 按字节编址,int型数据占32位。请回答下列问题:

- (1) 计算 f(10)需要调用函数 f1 多少次? 执行哪条指令会递归调用 f1?
- (2) 上述代码中, 哪条指令是条件转移指令? 哪几条指令一定会使程序跳转执行?
- (3) 根据第 16 行的 call 指令,第 17 行指令的虚拟地址应是多少?已知第 16 行的 call 指令采用相对寻址方式,该指令中的偏移量应是多少(给出计算过程)?已知第 16 行的 call 指令的后 4 字节为偏移量, M 是采用大端方式还是采用小端方式?
- (4) f(13) = 6227020800,但 f1(13)的返回值为 1932053504,为什么两者不相等?要使 f1(13)能返回正确的结果,应如何修改 f1 的源程序?
- (5) 第 19 行的 imul 指令(带符号整数乘)的功能是 $R[eax] \leftarrow R[eax] \times R[ecx]$,当乘法器输出的高、低 32 位乘积之间满足什么条件时,溢出标志 OF = 1?要使 CPU 在发生溢出时转异常处理,编译器应在 imul 指令后应加一条什么指令?
- 46. (7分) 对于题 45, 若计算机 M 的主存地址为 32 位,采用分页存储管理方式,页大小为 4KB,则第 1 行的 push 指令和第 30 行的 ret 指令是否在同一页中(说明理由)? 若指令 Cache 有 64 行,采用 4 路组相联映射方式,主存块大小为 64B,则 32 位主存地址中,哪几位表示块内地址?哪几位表示 Cache 组号?哪几位表示标记(tag)信息?读取第 16 行的 call 指令时,只可能在指令 Cache 的哪一组中命中(说明理由)?
- 47. (9分) 某网络拓扑如题 47图所示,其中 R 为路由器, 主机 H1~H4的 IP 地址配置以及 R 的各接口 IP 地址配置如图中所示。现有若干以太网交换机(无 VLAN 功能)和路由器两类网络互连设备可供选择。

题 47 图

请回答下列问题:

- (1)设备1、设备2和设备3分别应选择什么类型的网络设备?
- (2) 设备 1、设备 2 和设备 3 中,哪几个设备的接口需要配置 IP 地址?为对应的接口配置 正确的 IP 地址。
 - (3) 为确保主机 $H1 \sim H4$ 能够访问 Internet, R 需要提供什么服务?
- (4) 若主机 H3 发送一个目的地址为 192.168.1.127 的 IP 数据报,网络中哪几个主机会接收该数据报?