Convergence/divergence tests

- DCT: $0 \le a_n \le b_n$; $\sum_{n=1}^{\infty} b_n$ (C) $\Rightarrow \sum_{n=1}^{\infty} a_n$ (C); $\sum_{n=1}^{\infty} a_n$ (D) $\Rightarrow \sum_{n=1}^{\infty} b_n$ (D)
- LCT: $\lim_{n\to\infty}\frac{a_n}{b_n}=L\in(0,\infty)$ then $\sum_{n=1}^\infty a_n(\mathbb{C}/\mathbb{D})\iff\sum_{n=1}^\infty b_n(\mathbb{C}/\mathbb{D}).$
- AST: If $c_1 \geq c_2 \geq c_3 \geq \ldots \geq 0$, $\lim_{n \to \infty} c_n = 0$ then $\sum_{n=0}^{\infty} (-1)^n c_n$ (C)
- Ratio/Root Let $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$ (Ratio) $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ (Root). $\rho < 1$ (AC); $\rho > 1$ (D); $\rho = 1$ inconclusive.

A. Larios (UNL) Lecture 23 1/10

More examples

Test whether the following series converges absolutely or conditionally.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2^n}}$$

Is there an easier way?

• Use a comparison test to determine if the series below converges

$$\sum_{n=2}^{\infty} \frac{n-2}{4^n+2}$$

Use the ratio test to study the series

$$\sum_{n=1}^{\infty} \frac{3^n}{(2n)!}$$

Clicker question #2 - from last time

Which test is **inconclusive** for the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{(\sqrt{5}-1)^n}$$

- The divergence test
- The ratio test
- The alternating series test
- (The root test)
- The comparison test

9.5 Power series

In this section we focus on the power series about x = a

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

where $c_n \in \mathbb{R}$ is an arbitrary sequence.

• If all $c_n = 1$, $n \ge 0$ then we have

$$\sum_{n=1}^{\infty} (x-a)^n = \frac{1}{1-(x-a)}, \quad |x-a| < 1.$$

- The series depends on x; powers of x a
- The convergence of the series will depend on values of x
- The sum of the series will depend on *x*.

Theorem

If a power series $\sum_{n=0}^{\infty} c_n x^n$ converges for $x=\alpha$, then it converges **absolutely** for $|x|<|\alpha|$. If it diverges for $x=|\beta|$ then it diverges for $|x|>|\beta|$.

- A power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has a **radius of convergence** R;
- It converges absolutely when |x a| < R and diverges when |x a| > R; Hence, to find R it is enough to work with absolute values;
- The collection of all x for which the series converges is called the **interval of convergence**. The convergence at the end-points must be checked separately.

Why does the interval of convergence matter?

- If $R = \infty$, then the series converges absolutely for all x.
- If R = 0 then the series converges only when x = a.
- We can add, subtract, multiply, term-by term differentiate, integrate series within the interval of convergence. The result converges at every interior point of the interval of convergence of the original.

How do we find the radius of convergence?

- Ratio (and root) test are most useful to determine the radius of convergence. Apply it to absolute value of the series
- For the end-points use the usual analysis for series.

Example 1

Specify a and c_n for the following series. Find the radii and intervals of convergence. Determine for which x the series converge absolutely, for which x it diverges, and for which x, if any, it converges conditionally.

$$\sum_{n=0}^{\infty} (2x-6)^n$$

- a =
- \circ $c_n =$
- Apply the **Ratio Test** (need the limit of the ratio < 1):
- R =
- Interval of convergence
- Check each end-point of the interval of convergence

8/10

Clicker question #1

For the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+2)^n}{n}$$

determine a and c_n

- $a = 2, c_n = (-1)^n$
- a = 2, $c_n = (1)^n$ a = 2ⁿ, $c_n = \frac{(-1)^n}{n}$ a = 2, $c_n = \frac{(-1)^n}{n}$ a = -\frac{2}{n}, $c_n = (-1)^n$

- $a = -2, \quad c_n = \frac{(-1)^n}{n}$

Clicker question #2

For the same power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+2)^n}{n}$$

determine the interval of convergence:

- $(-\infty,\infty)$
- (-3,-1)
- [-3, -1]
- (-3, -1]
- [-3, -1)