Zadania kwalifikacyjne na warsztaty z tożsamości kombinatorycznych

Piotr Pakosz

27 maja 2013

Do rozwiązania jest 9 zadań, za które można otrzymać w sumie 22 punkty. Proszę się nie obrazić poziomem trudności niektórych z nich. Próg kwalifikacyjny nie będzie wyższy niż 18 punktów. Rozwiązania proszę przesyłać na adres pakosz100@gmail.com najchętniej jako PDF wygenerowany przez Latexa. Na ten sam adres można też kierować wszelkie pytania dotyczące treści zadań lub warsztatów w ogólności. Zadania będzie można 'dobijać' (o ile oczywiście rozwiązania zostaną wysłane przed deadlinem).

Oznaczenie: H_n oznacza liczby harmoniczne, tj. $H_n = \sum_{i=1}^n \frac{1}{i}$ Liczby Fibonacciego: $F_0 = F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$ dla n naturalnych.

Zadanie 1. (2p) określmy $c_n=\frac{1}{n+1}\binom{2n}{n}$ dla n naturalnego. Jest jasne, że c_n są liczbami wymiernymi. Pokazać, że liczby c_n są całkowite

 Zadanie 2. (3p) Niech q będzie zmienną (np. rzeczywistą). Określmy [k] = $1 + q + \ldots + q^{k-1}$ oraz $[k]! = [1] \cdot [2] \cdot \ldots \cdot [k]$. Ponadto $\binom{n}{k}_q = \frac{[n]!}{[k]! \cdot [n-k]!}$. Jest jasne, że $\binom{n}{k}_q$ jest funkcją wymierną zmiennej q. Pokazać, że w istocie jest wielomianem od q.

Zadanie 3. Uzasadnić przez podwójne zliczanie

- a) (1p) $k \binom{n}{k} = n \binom{n-1}{k-1}$ dla n, k naturalnych.
- b) (1p) $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ dla n naturalnego c) (2p) $a^n b^n = (a-b) \cdot \sum_{k=0}^{n-1} a^k b^{n-1-k}$ dla a, b, k naturalnych, że a > b

Zadanie 4. (2p) Niech X będzie zbiorem n-elementowym. Obliczyć sumę $\sum_{A,B\subset X} |A\cap B|$

Obliczyć poniższe sumy. W postaci końcowej można (i należy) Zadanie 5. użyć funkcji H_n

- a) (1p) $\sum_{k=1}^{n} H_k$ b) (1p) $\sum_{k=1}^{n} k \cdot H_k$

Zadanie 6. (1p) Pokaż, że jeżeli 2 wielomiany rzeczywiste $f,g \in \mathbb{R}[x]$ mają równe wartości dla nieskończenie wielu punktów x, to są równe.

Zadanie 7. (3p) Dane są liczby naturalne n, k, r. Znajdź liczbę ciągów (A_1,\ldots,A_k) takich, że $A_i\subseteq\{1,\ldots,n\}$ dla $1\leqslant i\leqslant k$, oraz $|A_1\cap\ldots\cap A_k|=r$

Zadanie 8. (4p) Określamy rekurencyjnie ciąg a_k następującym równaniem: $\sum_{d|n} a_d = 2^n$ (sumowanie odbywa się tylko po dzielnikach dodatnich). Pokazać, że dla każdego n naturalnego $n|a_n$.

Zadanie 9. (1p) Rozwiązać rekurencję:

$$f_0 = 2, f_1 = 0, f_{n+2} = f_{n+1} + f_n + (-1)^n$$

dla n naturalnych. W postaci końcowej rozwiązania można (i należy) użyć funkcji F_n