Homework 3

Rostagno 295706

January 14, 2025

Esercizio 1

• Punto a: Per calcolare la funzione di best response di ciascun giocatore i, dobbiamo massimizzare $u_i(x)$ rispetto a x_i , mantenendo fissati gli x_i con $j \neq i$.

Calcoliamo la derivata parziale di $u_i(x)$ rispetto a x_i :

$$\frac{\partial u_i(x)}{\partial x_i} = -x_i + c_i + \beta \sum_{j \neq i} W_{ij} x_j.$$

Imponiamo che la derivata parziale sia uguale a zero per trovare il punto critico:

$$-x_i + c_i + \beta \sum_{j \neq i} W_{ij} x_j = 0$$

Risolvendo per x_i :

$$x_i = c_i + \beta \sum_{j \neq i} W_{ij} x_j.$$

La funzione di best response per il giocatore i è:

$$B_i(x_{-i}) = c_i + \beta \sum_{j \neq i} W_{ij} x_j$$

• **Punto b:** Dalle slide possiamo scrivere in forma matriciale la condizione per l'equilibrio di Nash:

$$x^* = c + \beta W x^*$$

dove x^* é la configurazione dell'equilibrio di Nash Risolviamo per x^* :

$$(I - \beta W)x^* = c \implies x^* = (I - \beta W)^{-1}c$$

a patto che $(I - \beta W)$ sia invertibile.

La matrice $(I - \beta W)$ è invertibile se e solo se $\beta \lambda_{\max}(W) < 1$, dove $\lambda_{\max}(W)$ è il raggio spettrale di W (il massimo valore assoluto tra gli autovalori di W).

Dato che $w_i = \sum_j W_{ij}$ rappresenta il grado uscente del nodo i, la condizione:

$$\beta w_i < 1, \quad \forall i \in V,$$

garantisce che $\beta \lambda_{\max}(W) < 1$, poiché $\lambda_{\max}(W) \leq \max_i w_i$.

• Punto c: Per definizione da prima abbiamo:

$$x^* = (I - \beta W)^{-1}c$$

La matrice $(I-\beta W)^{-1}$ agisce come una trasformazione lineare su c, quindi:

$$x^* = Mc \text{ con } M = (I - \beta W)^{-1}$$

quindi x^* dipende linearmente da c.

Data la condizione (1) sappiamo che M é una matrice ben definita e la sua inversa é una matrice non negativa.

• Punto d: Sia y la somma delle componenti di x^* , ovvero:

$$y = \sum_{j \in V} x_j^*.$$

Dal punto precedente, sappiamo che $x^* = Mc$, dove $M = (I - \beta W)^{-1}$. Questo implica:

$$y = \sum_{j \in V} x_j^* = \sum_{j \in V} \left(\sum_{i \in V} M_{ji} c_i \right).$$

Invertendo l'ordine delle sommatorie:

$$y = \sum_{i \in V} \left(\sum_{j \in V} M_{ji} \right) c_i.$$

Definiamo $z_i = \sum_{j \in V} M_{ji}$, quindi:

$$y = \sum_{i \in V} z_i c_i.$$

Indichiamo z come il vettore $z = M^{\top} \mathbf{1}$, dove $\mathbf{1}$ è il vettore colonna con tutte le componenti pari a 1.

Questo si collega alla centralità di Katz, definita come:

$$z = \sum_{k=0}^{\infty} (\beta W^{\top})^k \mathbf{1}.$$

Questo sviluppo dimostra che z_i rappresenta la centralità di Katz normalizzata del nodo i rispetto al grafo W, ponderata dal parametro β . Possiamo ora esprimere y come il prodotto scalare tra il vettore c e il vettore c normalizzato. Normalizziamo c dividendo per $\sum_{j\in V} z_j$, ottenendo:

$$y = \left(\sum_{j \in V} z_j\right) \cdot \left(\sum_{i \in V} \frac{z_i}{\sum_{j \in V} z_j} c_i\right).$$

• Punto e: Dato che $y = \sum_{i \in V} z_i c_i$, e sfruttando la linearità della varianza per variabili indipendenti, abbiamo:

$$\operatorname{Var}[y] = \operatorname{Var}\left[\sum_{i \in V} z_i c_i\right] = \sum_{i \in V} z_i^2 \operatorname{Var}[c_i].$$

Sostituendo la varianza di c_i , otteniamo:

$$\operatorname{Var}[y] = \sum_{i \in V} z_i^2 \sigma_i^2.$$

- Punto f: Sappiamo che il gioco quadratico sul grafo é caratterizzato dalla funzione utilità precedente, definita per $j \in V \setminus \{i\}$. Procediamo con la dimostrazione divisa in 4 passi.
 - 1. Condizione di esistenza e unicità dell'equilibrio: Per il grafo ristretto $G^{(-i)}$, l'equilibrio di Nash è dato da:

$$x^{*(-i)} = (I - \beta W^{(-i)})^{-1} c^{(-i)},$$

dove:

- $-W^{(-i)}$ è la matrice dei pesi del grafo ristretto,
- $-c^{(-i)}$ è il vettore ridotto, ottenuto eliminando la componente c_i .

L'esistenza e unicità dell'equilibrio dipendono dall'invertibilità della matrice $I - \beta W^{(-i)}$.

2. Invertibilità di $I - \beta W^{(-i)}$: La condizione per l'invertibilità è che il raggio spettrale di $\beta W^{(-i)}$ sia minore di 1, cioè:

$$\beta \lambda_{\max}(W^{(-i)}) < 1,$$

dove $\lambda_{\max}(W^{(-i)})$ è il massimo autovalore della matrice $W^{(-i)}$.

3. Implicazione della condizione $\beta w_i < 1 \, \forall i$: Poiché $W^{(-i)}$ è una sottostruttura di W, il raggio spettrale di $W^{(-i)}$ è al più uguale a quello di W. Quindi, la condizione $\beta w_j < 1 \, \forall j \in V \setminus \{i\}$ garantisce che:

$$\beta \lambda_{\max}(W^{(-i)}) < 1.$$

4. Conclusione: Sotto la condizione $\beta w_i < 1 \,\forall i$, la matrice $I - \beta W^{(-i)}$ è invertibile, e il gioco quadratico sul grafo ristretto $G^{(-i)}$ ammette un unico equilibrio di Nash.

• Punto g:

• Punto h: Quando il nodo i viene rimosso dal grafo, il nuovo equilibrio $x^{*(-i)}$ è dato da:

$$x^{*(-i)} = M^{(-i)}c^{(-i)},$$

dove $M^{(-i)}$ è la matrice inversa associata al grafo ristretto $G^{(-i)}$. La nuova somma $y^{(-i)}$ delle componenti di $x^{*(-i)}$ diventa:

$$y^{(-i)} = \sum_{j \neq i} x_j^{*(-i)}.$$

La riduzione $y - y^{(-i)}$ è quindi:

$$y - y^{(-i)} = x_i^* + \sum_{j \in V \setminus \{i\}} \left(x_j^* - x_j^{*(-i)} \right).$$

Sfruttando la relazione trovata al punto (g), abbiamo:

$$x_j^* - x_j^{*(-i)} = \frac{M_{ij}M_{ik}}{M_{ii}}$$
 per ogni $j, k \in V \setminus \{i\}.$

Possiamo dunque scrivere:

$$y - y^{(-i)} \propto \frac{z_i^2}{M_{ii}}$$

• Punto i: Svolto algoritmo in python

```
import numpy as np
W = np.array([[0,1,1,1,1,0,0,0,0,0,0],[1,0,1,1,1,0,0,0,0,0,0],[1,1,0,1,1])
[1,1,1,0,1,1,0,0,0,0,0], [1,1,1,1,0,1,0,0,0,0,0], [0,0,0,1,1,0,1,1,0,0,0],
[0,0,0,0,0,1,0,1,1,1,1], [0,0,0,0,0,1,1,0,1,1,1], [0,0,0,0,0,0,1,1,0,1,1],
[0,0,0,0,0,0,1,1,1,0,1],[0,0,0,0,0,0,1,1,1,1,0]]
# Valori di beta
beta_values = [0.1, 0.2]
# Identità di dimensione uguale a W
I = np.eye(W.shape[0])
# Risultati
results = {}
for beta in beta_values:
# Calcolo della matrice M
M = np.linalg.inv(I - beta * W)
# Calcolo di z_i e M_ii
z = M.sum(axis=0) # Somma delle colonne
M_diag = np.diag(M) # Elementi diagonali
# Calcolo del rapporto z_i^2 / M_ii
ratios = z**2 / M_diag
# Nodo chiave
tol=0.0001
rmax=ratios.max()
key_player = np.where(np.isclose(ratios, rmax, atol=tol))[0] + 1
# Salvataggio dei risultati
results[beta] = {
 "M": M,
 "z": z,
 "rmax": rmax,
 "M_diag": M_diag,
 "ratios": ratios,
 "key_player": key_player
```

```
# Stampa risultati
for beta, result in results.items():
print(f"\nBeta = {beta}")
#print("z (Somma colonne):", result["z"])
#print("M_diag (Diagonale):", result["M_diag"])
#print("Ratios (z_i^2 / M_ii):", result["ratios"])
print("Key Player :", result["key_player"])
#print("rmax :", result["rmax"])
```

Esercizio 2

• a1: Tutti i giocatori cercano di coordinarsi.

}

- Se $x_1 = x_2 = x_3 = +1$, ogni giocatore ha $u_i = 2$, che è il massimo.
- Similmente, se $x_1 = x_2 = x_3 = -1$, ogni giocatore ha $u_i = 2$.

Quindi, ci sono due equilibri di Nash:

$$x^* = (+1, +1, +1), \quad x^* = (-1, -1, -1).$$

- **a2**: Due giocatori in V_1 cercano di coordinarsi, mentre uno in V_2 cerca di anti-coordinarsi.
 - Se $x_1 = x_2 = +1$ (giocatori in V_1), il terzo giocatore $x_3 \in V_2$ preferisce $x_3 = -1$.
 - Similmente, se $x_1 = x_2 = -1$, il terzo giocatore preferisce $x_3 = +1$.

Ci sono due equilibri di Nash:

$$x^* = (+1, +1, -1), \quad x^* = (-1, -1, +1).$$

- **a3**: Un giocatore in V_1 cerca di coordinarsi, mentre due in V_2 cercano di anti-coordinarsi.
 - Se $x_2 = -1, x_3 = +1$ (o viceversa), il giocatore $x_1 \in V_1$ sceglie $x_1 = +1$ per coordinarsi con x_3 , oppure $x_1 = -1$ per coordinarsi con x_2 .

Ci sono due equilibri di Nash:

$$x^* = (+1, -1, +1), \quad x^* = (-1, +1, -1).$$

- a4: Tutti i giocatori cercano di anti-coordinarsi.
 - Una configurazione valida è $x_1=-1, x_2=+1, x_3=-1,$ oppure $x_1=+1, x_2=-1, x_3=+1.$

Ci sono due equilibri di Nash:

$$x^* = (-1, +1, -1), \quad x^* = (+1, -1, +1).$$

• b1:

Grafo delle Transizioni - Caso n=3 (Coordinamento)

Figura 1: grafo con $n_1 = 3$

I vari archi hanno probabilità 1 di essere percorsi poiché il giocatore che deve compiere l'azione é scelto casualmente.

La soluzione dunque al limite é la seguente:

$$\begin{cases} \frac{1}{2}, & \text{se } x = (+1, +1, +1), (-1, -1, -1) \\ 0, & \text{negli altri casi} \end{cases}$$

Questo accade perché sono presenti due stati assorbenti.

Grafo delle Transizioni - Caso n=2 (Coordinamento e Anti-coordinamento)

Figura 2: grafo con $n_1 = 2$

I vari archi hanno probabilità 1 di essere percorsi poiché il giocatore che deve compiere l'azione é scelto casualmente.

La soluzione dunque al limite é la seguente:

$$\begin{cases} \frac{1}{2}, & \text{se } x = (+1, +1, -1), (-1, -1, +1) \\ 0, & \text{negli altri casi} \end{cases}$$

Questo accade perché sono presenti due stati assorbenti.

Esercizio 3

• **Punto a:** Abbiamo che il link e_1 ha costo ω_1 mentre il link e_2 ha costo $\omega_2 + \frac{3}{2}x$.

Di conseguenza ci basta risolvere il sistema

$$\begin{cases} f_1 + f_2 = 1\\ \omega_1 = \omega_2 + \frac{3}{2}f_2 \end{cases}$$

e otteniamo come risultato

$$f_1 = 1 - \frac{2}{3}(\omega_1 - \omega_2)$$

 $f_2 = \frac{2}{3}(\omega_1 - \omega_2)$

• Punto b: Il flusso f_1 dipende da ω_1 e ω_2 :

$$f_1 = \begin{cases} 1 - \frac{2}{3}(\omega_1 - \omega_2), & \text{se } \omega_1 - \omega_2 \le \frac{3}{2}, \\ 0, & \text{se } \omega_2 - \omega_1 > \frac{3}{2}. \end{cases}$$

L'incasso del gestore 1 è quindi:

$$u_1(\omega_1,\omega_2)=\omega_1 f_1.$$

Caso $\omega_1 - \omega_2 \leq \frac{3}{2}$: Sostituendo $f_1 = 1 - \frac{2}{3}(\omega_1 - \omega_2)$ nell'incasso:

$$u_1(\omega_1, \omega_2) = \omega_1 \left(1 - \frac{2}{3}(\omega_1 - \omega_2) \right) = \omega_1 - \frac{2}{3}\omega_1^2 + \frac{2}{3}\omega_1\omega_2.$$

Deriviamo rispetto a ω_1 e poniamo la derivata pari a zero:

$$\frac{\partial u_1}{\partial \omega_1} = 1 - \frac{4}{3}\omega_1 + \frac{2}{3}\omega_2 = 0.$$

Risolvendo:

$$\omega_1 = \frac{3 + 2\omega_2}{4}.$$

Il flusso f_2 dipende da ω_1 e ω_2 :

$$f_2 = \begin{cases} \frac{2}{3}(\omega_1 - \omega_2), & \text{se } \omega_1 - \omega_2 > 0, \\ 0, & \text{se } \omega_2 - \omega_1 > 0. \end{cases}$$

L'incasso del gestore 2 è quindi:

$$u_2(\omega_1,\omega_2)=\omega_2 f_2.$$

Caso $\omega_1 - \omega_2 > 0$: Sostituendo $f_2 = \frac{2}{3}(\omega_1 - \omega_2)$ nell'incasso:

$$u_2(\omega_1, \omega_2) = \omega_2 \left(\frac{2}{3}(\omega_1 - \omega_2)\right) = -\frac{2}{3}\omega_2^2 + \frac{2}{3}\omega_1\omega_2.$$

Deriviamo rispetto a ω_2 e poniamo la derivata pari a zero:

$$\frac{\partial u_2}{\partial \omega_2} = -\frac{4}{3}\omega_2 + \frac{2}{3}\omega_1 = 0.$$

Risolvendo:

$$\omega_2 = \frac{\omega_1}{2}.$$

Le funzioni di best response sono dunque:

$$B_1(\omega_2) = \frac{3 + 2\omega_2}{4}$$

$$B_2(\omega_1) = \frac{\omega_1}{2}$$

• **Punto c:** Sostituendo $\omega_2^* = B_2(\omega_1^*) = \frac{\omega_1^*}{2}$ in $\omega_1^* = B_1(\omega_2^*)$:

$$\omega_1^* = \frac{3 + 2\omega_2^*}{4}.$$

Sostituiamo $\omega_2^* = \frac{\omega_1^*}{2}$:

$$\omega_1^* = \frac{3 + 2\left(\frac{\omega_1^*}{2}\right)}{4}.$$

Semplifichiamo:

$$\omega_1^* = \frac{3 + \omega_1^*}{4}.$$

Moltiplichiamo per 4:

$$4\omega_1^* = 3 + \omega_1^*.$$

Portiamo ω_1^* a sinistra:

$$3\omega_1^* = 3 \implies \omega_1^* = 1.$$

Ora sostituiamo $\omega_1^* = 1$ in $\omega_2^* = \frac{\omega_1^*}{2}$:

$$\omega_2^* = \frac{1}{2}.$$