R Cheat Sheet

"Remote Sensing and GIS for Ecologists"

book.ecosens.org

last updated: 24th April, 2015

Packages

Packages which are used in the book are listed here, more relevant packages are however available within R

RStoolbox various RS functions raster for raster data manipulation

rgdal data import and export, projections

sp for vector data manipulation

rgeos geometry commands

wrspathrow provides Landsat WRS-2 information access to Forest Cover Change product download and analyse MODIS data

bfast analyse time-series data
dismo species distribution modelling
move access and analyse movement data

More spatial R packages are listed here: cran.r-project.org/web/views/Spatial.html

Relevant commands are listed below, actual syntax needs to be checked within the manual pages of each command.

Raster

Raster data manipulation is similar to a spreadsheet or matrix manipulation but with coordinates and projections, hence various also not explictly spatial commands can be applied. Here we mainly list commands designed for spatial data handling.

Import and export

raster()	import (or generate) one raster
	layer
brick()	import raster with multiple layers
writeRaster()	export raster data to file
writeFormats()	list of supported raster file types
getData()	retrieves DEM and climate data di-
	rectly from the web

Information

print()	prints raster metadata
click()	interactively query raster plot
hist()	histogram of raster values per layer
cellStats()	summary statistics of single layers
summary()	summary statistics
extent()	extent of raster data set
ncell()	number of cells (of one layer)
nlayers()	number of bands
names()	prints layer names
str()	print the data structure
NAvalue()	get or set background values

Visualisation

${\rm ggR}(),{\rm ggRGB}()$	ggplot2 plotting commands implemented in RStoolbox
$\operatorname{plot}(),\operatorname{plotRGB}()$	raster plot and RGB plot. Usefull arguments: y=bandnumber,
	add=TRUE (overlay multiple plots)
$\mathrm{image}(),\mathrm{spplot}()$	alternative plotting commands

RasterVis package

levelplot()	fancy way to plot raster data infor-
	mation
densityplot()	raster value density plot
bwplot()	violin plot of raster data values
hovmoller()	spatio-temporal plotting options

Projections

projection()	query or set projection (does NOT
	reproject)
projectRaster()	reprojects raster to new coordinate
	system

Data manipulation

Most raster commands will output a file to a chosen location, if filename= is specified. Otherwise it will use temp files.

stack()	stack different raster layers to- gether
addLayer(); dropLayer()	add/drop a raster layer
crop()	crop raster set to smaller extent
drawExtent()	draw extent on a plot for e.g. in-
	clusion in crop(raster,extent)
drawPolyon()	draw polygon on a plot - alterna-
•	tive to drawExtent()
mask()	masking of background values
merge(); mosaic()	combine raster tiles to a raster with
	larger extent
extract()	extract values from Raster objects,
	using points or polygons
basic operations	
raster*2/raster2	any basic operation, more efficient:
calc()	apply a function to raster data and
overlay()	apply a function which uses multi-
	ple bands, e.g. to calculate NDVI
focal()	moving window operations
distance()	calculate distance to closest fea-
	ture, e.g. distance to water
terrain()	calculate terrain attributes from
	DEM, e.g. slope
zonal()	zonal statistics, for classified raster
reclassify()	reclassify raster values
subs()	substitutes values
resample()	resampling of raster to raster
aggregate()	aggregation of cells
disaggregate()	disaggregation of cells
rasterToPoints()	converts a raster to vector points
rasterToPolygons()	converts a raster to polygons
rasterToContour()	converts raster values to contour
[[]]	address specific raster layer, e.g.
	myRaster[[1]] for first layer of
	myRaster
$x \leftarrow raster > 50$	boolean operation, output is bi-
. [nary
raster[raster <= 50] <- 0	replace all values smaller then 50
1[1 [0] - 0[1 [0]	with 0
r1[r1==50] <- r2[r1==50]	values in r1 whose values are equal
	50 are replaced by the correspond-
	ing values of r2
campleRandem()	random sample from cell vol-co
sampleRandom()	random sample from cell values
sampleRegular()	regular sample from cell values

Time-series analysis

sampleStratified()

For raster time-series analysis some additional commands are needed. Mainly related to the bfast package.

stratified sample from cell values

xxx()	stack different raster layers to-
	gether
xx(); dropLayer()	add/drop a raster layer
xx()	crop raster set to smaller extent

Vector

Vector data often come in shp format including a variety of auxiliary files. All of them are relevant and are needed for further analysis. Note that readShapePoly() etc. from package maptools do NOT automatically read projection information from shapefiles. It is recomended to use readOGR() instead.

Import and export

readOGR()	import vector file
writeOGR()	export vector file
ogrDrivers()	list supported file formats
Information	
plot()	vector plot. add=TRUE overlays multiple plots, e.g. combine with raster data
summary()	metadata and data summary
extent()	extent/bounding box of vector data
coordinates()	sets spatial coordinates to create spatial data, or retrieves spatial co- ordinates

Projections

1 Tojections	
projection()	query or set projection (does NOT
	reproject)
spTransform()	reproject vector data to new coor-
	dinate system

Data manipulation

Check out the functions in the rgeos package, which provides most of the classical vector GIS operations such as buffers etc.

subset()	subset spatial data, based on a condition, e.g. keep only certain
merge()	points Merge a Spatial object having a data.frame (i.e. merging of non- spatial attributes)
over()	spatial overlay for points, grids and polygons
rasterize()	Rasterize points, lines, or polygons
distanceFromPoints()	computes the distance to points, output is a raster
extract()	extracts raster values behind points, lines or polygons
gIntersection()	intersection of vector data sets
gBuffer()	Buffer Geometry
gUnion()	

Spatial Modeling

kfold()	partitioning of data set for train-	g
	ing/validation purpose	
evaluate()	cross-validation of models with	С
	presence/absence data	
randomForest()	fits a randomForest model	g
maxent()	executes Maxent from R	
gam()	fits a GAM	c
- ''		f
predict()	predicts statistical model into	r
F()	space (raster)	fe
	space (rasser)	I

Movement Analysis

For most of the following commands the data sets need to be converted to a specific format. The commands are mainly provided in the "move" package but same names might exist in other packages. Use move::spTransform() to address the move command. Please consider checking the AniMove R cheat sheet (www.animove.org).

show()	summary of the move object
as()	coerce movement between object
*	types
angle()	extracts turning angles from a move
	object
speed()	extracts speed from a move object
distance()	extracts distance between locations
	from a move object
time.lag()	extracts time lag between locations
	from a move object
spTransform()	changes the projection of a move ob-
	ject to a default of Azimuthal Equi-
	distance
mcp()	calculates minimum convex polygons
	for SpPdf
kernelUD()	calculates a kernel density surface for
	SpPdf
brownian.bridge()	claculates constant variance Brown-
	ian bridges
brownian.bridge.dyn()	calculates dynamic Brownian bridges
move()	import of movement data sets from
	movebank.org
moveStack()	stacks multiple animal tracks
split()	splits stack into single move objects
movebankLogin()	stores movebank.org credentials
searchMovebankStudies()	reports the studies in movebank.org
	matching search criteria
getMovebankData()	import tracks directly from move-

Miscellaneous

Some useful commands which are related to spatial data analysis.

bank.org

$\begin{array}{l} \operatorname{gmap}() \\ \operatorname{geocode}() \end{array}$	get google maps for your plot geocoding in R
$\begin{aligned} & complete.cases() \\ & gridSample() \end{aligned}$	returns only cases with no missin values sample point from a grid e.g. just on point per pixel
function(){} return() if () {} else{} for () {} while () {}	generates a defined functions returns the output of a function if else statement for loop while statement

Further packages

rNOMADS	data retrievel from NOAA, global and regional weather models
	access and analyse movement data
bcpa	analyse movement tracks

compiled by: Martin Wegmann (martin.wegmann@ecosens.org) and Benjamin Leutner (benjamin.leutner@ecosens.org) 2015

book.ecosens.org

