CURSO MATLAB

Instrutores: Marcelo Brandão e Marcelo Guerra CT-DEE

brandao@dca.ufrn.br

1-Visão Geral

- Janela de Comandos (command window)
- Área de Trabalho (workspace)
- Pasta de Arquivos (current directory)
- Histórico de Comandos (command history)

1-Visão Geral

Menus

- Configuração de Diretórios:
 - File/Set Path...
- Help:
 - help
 - help general
 - help ops

1-Visão Geral

Bibliografia:

- Matlab 7, Fundamentos, Élia Yathie Matsumoto, Ed. Érica, 2004.

- www.mathworks.com

Escalares

- \.' indica casa decimal;
- 'e' para notação científica;
- 'i' e 'j' para notação de números complexos.

Ex:a=4+j*5

Constantes numéricas predefinidas:

Constante		
pi	3.1415926	
eps	2.220446049250313 e-016	
realmin	2.22507385850720 e-308 (menor número real)	
realmax	1.797693134862316 e+308	
Inf	infinito	
NaN	Not-a-number (exemplo: 0/0)	

Operadores

Operador	Descrição	
+	Soma	
-	Subtração	
*	Multiplicação	
/	Divisão	
^	Potênca	
()	Precedência	

Vetores e matrizes:

- delimitadores:

Coluna: "espaço" ou ","

• Linha: ";"

Exemplos:

-
$$a=3$$
 ou $a=[3]$ (1x1)
- $b=[4 5 6 7]$ ou $b=[4,5,6,7]$ (1x4)
- $c=[4 5 6 7;8 9 10 11]$ (2x4)
- $d=[4 5 6 7]'$ ou $d=[4;5;6;7]$ (4x1)

2-Criação de Matrizes

Criando um vetor:

```
-x=0:0.1:1
-x=1:10 (operador ":")
-x=\lim_{n\to\infty} (x_n - x_n) = 0:0.1:1 (operador ":")
```

- help linspace
- Concatenação de matrizes
 - c=[a b] ou c=[a;b]

- Denominação das Variáveis:
 - alfanuméricas iniciadas por letra
 - Ex: x1, alfa
 - máximo de 63 caracteres. (Windows)
 - case-sensitive: x1 + X1
 - 'ans' é a variável reservada para o Matlab armazenar o resultado da última operação.

2-Criação de Matrizes

- Matrizes elementares:
 - zeros
 - ones
 - -eye
 - rand Ex: n=round(5*rand(1,6))

- Outras funções úteis:
 - round → aprox. p/ inteiro mais próximo
 - -floor → aprox para baixo
 - − ceil → aprox para cima
 - rem → resto da divisão
 - -sign → retorna o sinal

3-Formatos Numéricos

help format

- format short precisão simples
- format long precisão dupla
- format short e precisão simples E
- format long e precisão dupla E+
- format hex hexadecimal
- format bank duas casas decimais
- format rat quociente

Indexação: (i,j)

$$-a=[1:10]$$

$$-a2=a(2)$$

$$-a7=a(7)$$

$$-b=a(1:5)$$

(i- linha, j- coluna)

$$-c=a(1:2:9)$$

$$- d = 3*rand(3,4)$$

$$- e = d(1,2:end)$$

$$- f = d(2,:)$$

$$-g=d(:,3:4)$$

- Indexação: (p)
 - Além do padrão de indexação (i,j), o Matlab aceita também, indexação sequênciada.
 - A contagem da posição é feita, seguindo primeiro por linha e depois coluna.
 - -Ex: $d(3,2) \approx d(6)$

Operações com matrizes:

```
    * multiplicação matricial
```

```
    - .* multiplicação escalar
```

```
- / divisão matricial (a/b \rightarrow a*b<sup>-1</sup>)
```

```
    - ./ divisão escalar
```


- Operações com matrizes:
 - ^ potência
 - .^ potência escalar
 - transposta
 - det(a) determinante
 - inv(a) inversa
 - eig(a) autovalores
 - poly(a) polinômio característico

 Eliminando linhas ou colunas de uma matriz:

- a(1,:)=[] elimina a primeira linha
- a(:,3)=[] elimina a terceira coluna

- Modificando elementos de uma matriz:
 - Faz-se referencia ao elemento a ser modificado e o seu novo valor:

- Funções de Informação:
 - size (A)
 - length (A)
 - find(exp) retorna os índices dos
 elementos que satisfazem a
 condição exp

Funções de Manipulação:

```
- diag (diagonal)
```

- tril e triu (matrizes triangulares)
- fliplr e flipud (inverte a ordem)
- sort (organiza em ordem crescente)

Solução de sistemas lineares (A*X=B):

-
$$X=inv(A)*B$$

- $Ex: 4x_1+5x_2=9$ $A=[4 5;7 1] e B=[9;10]$
 $7x_1+x_2=10$ $x_1=1.3226$ e $x_2=0.7419$

Para sistemas sobre-determinados:

Pseudo-inversa (matriz não quadrada):

$$-X=pinv(A)*B$$
 $(pinv(A)=inv(A^{T*}A))$

- Funções para números complexos
 - abs(z) módulo
 - angle(z) ângulo
 - real(z) parte real
 - imag(z) parte imaginária
 - conj(z) retorna o complexo conjugado de z
 - plot(z,'o') traça um gráfico com a parte real no eixo x e a parte imaginária em y.

- Mudança de Base Numérica:
 - bin2dec binária para decimal
 - dec2bin decimal para binária
 - base2dec base especificada para decimal
 - dec2base decimal para base especificada

- Outras Funções Úteis:
 - primes(x) Retorna todos os primos menores que x
 - gcd(a,b) Máximo divisor comum (MDC).
 - Icm(a,b) Mínimo múltiplo comum (MMC).
 - factorial(n) Retorna o fatorial de n

5-Polinômios

- Vetores com os coeficientes:
 - $x^5 + 4x^3 + 5x^2 x 10 = 0$
 - -p=[1045-1-10]
- Achar as raízes (zeros): r= roots(p)
- Encontrar o polinômio a partir das raízes:
 p=poly(r)

- polyval(p,x) e polyvalm(p,X)
 - calculam o valor do polinômio.

- [R,P,K]=residue(B,A)
 - encontra os resíduos, os pólos e os termos diretos da expansão em frações parciais B(s)/A(s)

polyfit – ajusta polinômio aos dados.

```
    Ex: x=1:100;
    y=x.^2+3;
    p=polyfit(x,y,n); onde n é a ordem do polinômio desejado
```

- conv multiplicação de polinômios
 - Ex: c=conv(a,b)
- deconv divisão de polinômios
 - Ex: a=deconv(c,b) e b=deconv(c,a)

polyder – derivada de um polinômio

 polyint – integral analítica de um polinômio

• Plot

```
help plot
xlabel / ylabel
grid
title
Ex: plot(X,Y,'S');
(S= cores e tipos de linha)
```


Cores		Tipo	Tipos de Linha	
b	blue		point	
g	green	-	solid	
r	red		dashed	
С	cyan	*	star	
m	magenta	0	circle	
У	yellow	X	x-mark	
k	black	S	square	

6-Gráficos

- loglog escala logarítmica
- semilogx escala logarítmica em x
- semilogy escala logarítmica em y
- polar Ex: polar(t,2*t)
- figure abre uma nova janela gráfica

subplot

• Ex2:

```
>> y3=y+y2;
>> y4=y-y2;
>> plot(x,y3,'k',x,y2,'r--');
>> xlabel('Amplitude')
>> ylabel('Amplitude')
>> title('Exemplo 2')
```

6-Gráficos

6-Gráficos

Edição na janela gráfica:

- zoom
- ginput(n) → n=número de pontos
- Texto
- Propriedades dos eixos
- Legendas

Ex3 – Gráfico 3D:

```
>> a=-1000:50:1000;

>> b=a;

>> [A,B]=meshgrid(a,b);

>> Z=(-A.^2+B.^2/5)/150;

>> mesh(A,B,Z)
```


Derivada Numérica:

OBS: por ser um processo numérico iterativo, "perde-se" um ponto do vetor.

- Integral Numérica
 - cumsum- calcula uma aproximação da integral através de uma soma acumulada dos elementos. Exemplo:

```
inty=cumsum(der).*diff(x);
plot(x(1:100),der,'--k',x,y,x(1:100),inty,'r')
grid
```

7- Derivadas e Integrais

- Integral definida:
 - quad ou quadl
 - dblquad Integral dupla
 - triplequad Integral Tripla
 - Ex: Q = quad(FUN,A,B)
 a função FUN deve ser definida como:
 FUN = inline('1./(x.^3-2*x-5)');
 A e B são os intervalos de integração.

- Integral definida:
 - Para o cálculo de integrais duplas e triplas, deve-se prestar atenção nos intervalos de integração:
 - help dblquad
 - help triplequad

- Derivadas e Integrais Analíticas
 - Variáveis Simbólicas
 syms x define x como variável simbólica

```
- Ex: syms t
    dt=diff(cos(t))
    dt2=diff(t*cos(t))
    dt3=diff(exp(-t)*cos(t))
```


7- Derivadas e Integrais

```
-Ex (cont):
  int(cos(t))
  int(cos(t), 0, pi/2)
  int(dt3)
  syms a
  int(1/(t^2+1))
  int(1/(t^2+1),-a,a)
```

8- Outras funções de variáveis simbólicas:

simple

```
Ex: syms t

z=cos(t)^2+sin(t)^2;

y=simple(z)
```

solve – resolver: 10/t2 = 4-t
 Ex: f=solve(10/t^2 - 4+t)
 eval(f)

8- Outras funções de variáveis simbólicas:

• Resolver equações simultâneas :

```
Ex: syms x y

eq1=2*x^2-x+2*y^2-8*y;

eq2=x^2+2*x+y^2-6*y+1;

[X Y]=solve(eq1,eq2)
```


Arquivos *.m (m-files)

File / New / m-file

• >> edit

Arquivos *.m (m-files)

- Script : sequência de comandos para automatizar processos repetitivos.
- Função: aceita parâmetros de entrada e retorna parâmetros de saída.

- Observações sobre funções:
 - Utiliza o seu próprio espaço de memória para armazenar variáveis.
 - É possível a implementação de estruturas lógicas.
 - Aceita parâmetros de entrada e retorna parâmetros de saída.

% - transforma em comentário

Cabeçalho

 help nome_da_função – exibe o cabeçalho da função

- O código das funções do Matlab pode ser visualizado:
 - edit nome_da_função
 - Ex: edit polyedit rootsedit quad

• IF, ELSE IF, ELSE

SWITCH

• FOR

WHILE


```
• Ex: IF / ELSE IF / ELSE
  if I < 3
  N=pi;
  elseif I==3
  N=2*pi;
  else
  N=0;
  end
```


• Ex SWITCH: function tipo=teste(valor) switch valor case 3 tipo= 'Numero 3' case 5 tipo= 'Número 5' otherwise tipo='valor nao tabelado' end

• Ex FOR:

```
soma=0;
for n=1:30
soma=soma+n;
end
```


• Ex WHILE:

while I<m
<executa expressão>
end

- Códigos eficiente para Matlab
 - Evitar criação de variáveis desnecessárias.

 Vetorizar os algoritmos, evitando, quando possível o uso de estruturas de repetição.

 Ex- script para automatizar o exemplo 6.3:

```
% script para automatizar o exemplo 6.3 a=-1000:50:1000; b=a; [A,B]=meshgrid(a,b); Z=(-A.^2+B.^2/5)/150; mesh(A,B,Z) %salvar como script1.m
```


 Ex Função para converter graus em radianos (deg2rad / rad2deg):

function y=g2r(grau)y=pi*grau/180;

 Ex: Função para traçar o gráfico do seno e cosseno de x, num intervalo especificado:

- Ex: Função para calcular o somatório de 2 senóides.
 - Parâmetros de Entrada: a1, a2, ω_1 , ω_2 , Φ_1 e Φ_2 .
 - Parâmetros de Saída: Y, plot(x,y).
 - Garantir que seja exibidos no gráfico pelo menos
 2 períodos da função de menor frequência.

```
%Exemplo 9.2
%Somatorio de 2 senoides
     Y = som(a1,a2,w1,w2,f1,f2)
% onde:
% a-amplitude
% w-frequencia em rad/s
% f-fase em radianos
function Y = som(a1,a2,w1,w2,f1,f2)
%cria a base de tempo e garante
%que sejam exibidos 2 periodos da
%onda de menor frequencia
if w1 < w2
  T1=2*pi/w1;
  t = linspace(0, 2*T1, 200);
else
  T2=2*pi/w2;
  t = linspace(0, 2*T2, 200);
end
```



```
Y1=a1*sin(w1*t+f1);
Y2=a2*sin(w2*t+f2);
Y=Y1+Y2;

%plota o grafico de Y, Y1 e Y2

plot(t,Y,t,Y1,'k--',t,Y2,'r--')
grid
xlabel('Tempo')
ylabel('Amplitude')
title('Exemplo 2 - Somatorio de 2
senoides')
```


Arquivos de Texto:

```
>> type teste.txt
   1,2,3,4
   5,6,7,8
   9,10,11,12
>> test=dlmread('teste.txt',',')
   test =
      2 3 4
   5 6 7 8
    10 11 12
```


Arquivos de Texto:

```
>> test2=test+7
   test2 =
    8 9 10 11
    12 13 14 15
    16 17 18 19
>> dlmwrite('teste2.txt',test2,',')
>> type teste2.txt
   8,9,10,11
   12,13,14,15
   16,17,18,19
```


- Arquivos de Texto:
 - -load / save

 Carregar arquivo a partir do current directory.

- Arquivos de Som:
 - -[ring fs]=wavread('ring.wav');
 - wavplay(ring,fs);
 - x=1:length(ring);
 - $-y = \sin(10*x);$
 - -ring2=ring+y';
 - -wavplay(ring2,44100)
 - wavwrite(ring2,44100,'ring2.wav');

- Arquivos de Imagem:
 - help images: (toolbox proc. Imagem)
 - I=imread('imagem.jpg');
 - J=imnoise(I,'gaussian');
 - truesize
 - J=imrotate(J,60);
 - imwrite(J,'teste.jpeg')

- Dados em Geral:
 - -X=importdata('arquivo');
 - Verifica a extensão do arquivo especificado e utiliza a função de importação mais conveniente.

11- Funções Estatísticas de um Sinal

max(x)

min(x)

mean(x)

std(x)

12- Simulink

Algoritmo em Diagramas de Blocos

12- Simulink

Sinal senoidal

Sinal rampa

Sinal degrau

Número aleatório

Tempo

Multiplexador

Função de Transferência

Demultiplexador

Mínimo e máximo

Operador Lógico

Switch manual

Valor Absoluto

Função Sinal

Função Matemática

Derivada

Exportar da área e trabalho

Saturador

Importar para a área de trabalho

Função

Terra

Função escrita num arquivo m-file

Entrada

Vem de

Saída

Display

Ir para

Atraso Unitário

 Configurando os parâmetros da Simulação

Introdução ao Matlab 7.0

Exemplos

Exemplos

Exemplos

Demos

Start – Demos – Simulink – Simulink Control Design – Water Tank

Demos

Controller

Water Tank System

Exercícios

Sistema Massa - Mola

Equações básicas da Física:

Aceleração: $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$

Velocidade: $v = \frac{dx}{dt} = \int adt$

Deslocamento: $x = \int v dt$

Força: F = -kx = ma $kx = m\frac{d^2x}{dt^2}$ $a = \frac{d^2x}{dt^2} = -\frac{k}{m}x$

$$E_p = \frac{1}{2}kx^2$$

$$E_c = \frac{1}{2}mv^2$$

Plotar:

- ✓ Energia Cinética e Potencial versus Deslocamento
- ✓ Energia Cinética e Potencial versus Velocidade
- √ Velocidade versus Deslocamento

Diagrama:

Introdução ao Matlab 7.0

Exercícios

Circuito RC - Série

Equações básicas da Física:

Lei de Kirchoff: $e - v_R - v = 0$

$$v_R = Ri(t)$$

$$v_R = Ri(t)$$
 $i(t) = C \frac{dv}{dt}$

$$\frac{dv}{dt} + v = 5$$

$$e - RC\frac{dv}{dt} - v = 0$$

$$\frac{dv}{dt} + \frac{1}{RC}v = \frac{1}{RC}e$$

$$\frac{dv}{dt} + \frac{1}{RC}v = \frac{1}{RC}e$$

onde :
$$v(0) = 10$$

Introdução ao Matlab 7.0

$$v = \frac{1}{RC} \int (e - v) dt$$

Exercícios

Plotar:

√ V(t) versus t

Diagrama:

Simulação:

$$\dot{x} = 5 - x$$

$$Metodo \quad de \quad Euler$$

$$dx = 5 - x$$

$$x = x + dx * h$$

Guide:

