

ÚRK FEI STU V BRATISLAVE

Príklad aplikácie pokročilých metód automatického riadenia

Tímový projekt

BC. MICHAL PETKÁČ,

BC. MICHAL KOVÁČ,

BC. DANIEL MALENKA,

BC. ONDREJ DURMIS,

BC. DMYTRO SIKOMAS,

BC. LUKÁŠ PÓCSIK

Úvod do problematiky projektu

- Aplikácia pokročilých metód automatického riadenia
- Adaptívne riadene s referenčným model
- Reálny nelineárny systém
- oÚlohy:
 - o Návrh a realizácia metódy spracovania nameraných dát
 - Identifikácia systému
 - Simulačný model
 - Návrh riadenia

Plán vypracovávania projektu

1/4 LS	2/4 LS	3/4 LS	4/4 LS
Prvotná komunikácia so školiteľom ohľadom jeho požiadaviek k danej téme.	Realizácia prevodovej charakteristiky z nameraných dát pre reálny systém.	Tvorba dokumentácie (spracovanie dát, identifikácia)	Tvorba dokumentácie (MRAC gradientný, porovnanie výsledkov,)
Vizualizácia dát, ktoré boli nameraných na reálnom systéme školiteľom.	ldentifikácií simulačného modelu z nameraných dát.	Validovanie identifikovaného simulačného modelu so školiteľom.	Realizácia riadenia s MRAC gradientným.
Rozdelenie činnosti v tíme, voľba vedúceho tímu a stanovenie si termínov aj s konkrétnymi cieľmi.	Realizácia prechodových charakteristík z nameraných dát pre reálny systém.	Realizácia riadenia s PI regulátorom pomocou metódy "Pole Placement".	Komunikácia so školiteľom ohľadom stanovenie si termínu prezentovania výsledkov projektu.

Opis reálneho systému

- oJednosmerný motor:
 - o K6A27, štítkové údaje: 12V 8W [1.9A S3 1.65% 8000 1/min],1987
- Tachodynamo:
 - K4A2, štítkové údaje: 2V/1000 1/min, max 5000 1/min, 1983
- Výkonový prvok pre realizáciu PWM napájania: HITFET BTS 117
- oPWM rozlíšenie: 8 bit.
 oADC rozlíšenie: 10 bit (pre 0-5V)

Extrakcia dát z reálneho systému

- Prechodové charakteristiky motora
- > Filtrácia šumu

Identifikácia simulačného modelu

- oldentifikácia z prechodovej charakteristiky
- Sústava v tvare prenosovej funkcie prvého rádu $G(s) = \frac{K}{Ts+1}$

$$y_1 = 0.33 \ y(\infty), t_1 = t_{0.33}$$

$$y_2 = 0.7 \ y(\infty), t_2 = t_{0.7}$$

$$oT = 1,245(t_{0,7} - t_{0,33})$$

Data

[t1, y1] [t2, y2]

Validácia simulačného modelu

- Zmena parametrov modelu systému podľa pracovného bodu
- Porovnanie výstupu modelu s nameranými dátami

Voľba cieľov riadenia

- Výstup sleduje referenčný signál
- Zohľadnenie identifikovanej časovej konštanty modelu
- Vyjadrenie v tvare prenosovej funkcie rádu identifikovaného modelu

$$O\frac{y_m}{r} = \frac{3}{s+3}$$

Návrh riadenia s PI regulátorom

Syntéza regulátora pomocou metódy rozmiestňovania pólov

Výpočet parametrov regulátora

Simulácia v prostredí Matlab

Návrh riadenia s MRAC

- OUplatnili sme návrh riadenia s MRAC gradientným
- •Riadený systém bol vyjadrený ako: $\frac{y(s)}{u(s)} = \frac{b_0}{s+a_0}$
- •Referenčný model mal tvar: $\frac{y_m(s)}{r(s)} = \frac{b_m}{s + a_m}$
- oUvažovali sme zákon riadenia v tvare: $u(s) = \Theta_1 \cdot y(s) + \Theta_2 \cdot r(s)$
- oAdaptačnú odchýlku sme uvažovali v tvare: $e = y(s) y_m(s)$
- oZákon adaptácie pre parametre Θ_1 a Θ_2 : $\begin{bmatrix} \dot{\Theta}_1 \\ \dot{\Theta}_2 \end{bmatrix} = -\alpha \cdot e \cdot \begin{bmatrix} \frac{1}{s+a_m} \cdot y(s) \\ \frac{1}{s+a_m} \cdot r(s) \end{bmatrix}$

Výsledky práce

Zhodnotenie výsledkov práce

Riadenie s referenčným modelom

Pri zmene pracovného bodu je trvalá regulačná odchýlka

Výhody adaptívneho riadenia s referenčným modelom

- Predpísané správanie v ľubovoľnom pracovnom bode
- Nulová trvalá regulačná odchýlka

Výhody PID regulátora

- Nie je potrebný čas na adaptáciu
- Nulová trvalá regulačná odchýlka

Priestor pre vaše otázky

Ďakujeme za pozornosť