Universidad Católica Boliviana "San Pablo" Unidad Académica Cochabamba Departamento de Posgrado Ing. Mauricio Alejandro Quezada Bustillo

DML-004 – GUÍA DE LABORATORIO 5 IMPLEMENTACION DE AZURE AUTOML

© Objetivo

- Construir un flujo end-to-end usando Azure AutoML.
- Comparar el rendimiento de todos los modelos generados.
- Evaluar por qué Azure selecciona el *Best Model* y justificar esa elección con evidencias.
- Reflexionar sobre ventajas y limitaciones de usar AutoML frente a pipelines manuales.

Dataset sugerido

- Cada estudiante debe seleccionar un dataset público desde Kaggle (clasificación o regresión).
- Ejemplos:
 - Clasificación: Heart Disease, Titanic, Bank Marketing.
 - o **Regresión**: California Housing, Student Performance.
- El dataset debe estar en **formato CSV** y subirse a Azure ML Studio.

Pasos del laboratorio

1. INGRESO AL ENTORNO

Accede a Azure ML Studio → sección Automated ML.

Crea un nuevo experimento.

2. CARGAR DATASET

Subir el archivo CSV desde Kaggle.

Revisar columnas, tipos de datos y valores nulos.

Definir la columna objetivo (target) según el dataset.

3. CONFIGURAR TAREA

Seleccionar tipo de tarea:

- Clasificación (ej. Titanic, Heart Disease).
- Regresión (ej. California Housing).

Elegir métrica principal:

- Clasificación → F1 Score o AUC-ROC.
- Regresión → RMSE.

Universidad Católica Boliviana "San Pablo" Unidad Académica Cochabamba Departamento de Posgrado Ing. Mauricio Alejandro Quezada Bustillo

CA BOTH PARTICIPATION OF THE P

4. AJUSTES DE EXPERIMENTO

Definir tiempo límite (ej. 1h).

Número máximo de modelos a probar (ej. 50).

Activar early stopping.

División de datos 80/20 para train/test.

5. EJECUCIÓN Y MONITOREO

Iniciar el experimento.

Observar en tiempo real la lista de modelos que se van generando.

Comparar cómo evolucionan las métricas a medida que AutoML prueba diferentes algoritmos e hiperparámetros.

6. RESULTADOS

Revisar el ranking de modelos generados.

Identificar el Best Model y documentar:

- Algoritmo elegido (ej: LightGBM, Random Forest, XGBoost, etc.).
- Principales hiperparámetros utilizados.
- Métricas clave: Precision, Recall, F1, AUC-ROC (clasificación) o RMSE/R² (regresión).

Comparación con otros modelos del ranking:

- Seleccionar al menos 3 modelos distintos del Best Model (ej. segundo lugar, último lugar y uno intermedio).
- Revisar sus métricas detalladas.
- Comparar en tablas y gráficas:
 - o Matriz de confusión, curva ROC (clasificación).
 - o Predicciones vs valores reales, error residual (regresión).
- Argumentar con ejemplos por qué esos modelos son peores que el Best Model (ej: más falsos negativos, peor balance en Precision vs Recall, mayor error de predicción, etc.).

Universidad Católica Boliviana "San Pablo" Unidad Académica Cochabamba Departamento de Posgrado Ing. Mauricio Alejandro Quezada Bustillo

7. REGISTRO Y DESPLIEGUE

Usar la pestaña de Predicciones en AutoML.

Seleccionar filas de prueba o cargar un archivo CSV con nuevos datos.

Comparar cómo predice el Best Model frente a otros modelos del ranking. 8. PRUEBA DEL

Actividades de análisis

- 1. Explica por qué AutoML eligió el Best Model:
 - ¿Qué métrica priorizó?
 - ¿Cómo se comporta frente a los otros modelos del ranking?
- 2. Haz una tabla comparativa de al menos 4 modelos (Best Model, segundo, intermedio, último) mostrando sus métricas principales.
- 3. Analiza Accuracy vs Recall (en clasificación):
 - ¿Qué métrica es más importante para tu dataset?
 - Ejemplo: en Heart Disease, es peor fallar un positivo (Recall bajo) que un negativo.
- 4. Cambia la métrica objetivo del experimento (ej: de AUC-ROC a Accuracy).
 - ¿El Best Model cambia?
 - Explica por qué sí o por qué no.

5. Reflexiona:

- ¿Qué ventajas encontraste en usar AutoML?
- ¿Qué limitaciones viste frente a construir un pipeline manual?

Entregables

- Capturas de pantalla de cada paso (dataset, configuración, resultados, pruebas).
- Tabla comparativa con al menos 4 modelos.
- Documento en Word o PDF con respuestas a las actividades de análisis.
- Nombre y link del dataset usado desde Kaggle.