A complete bacterial genome assembled de novo using only nanopore sequencing data

Nicholas J Loman, Joshua Quick, Jared T Simpson

Long Read Sequencing

Oxford Nanopore (this paper), Pacific Biosciences

Uses:

- Span large variations
- Resolve tricky regions (repeats)
- Speed, portability (ONT)
- Direct base modification, RNA detection (ONT)

Weaknesses

- > Error rate (ONT R7.3 chemistry: 15 20%)
- Cost/Yield

Nanopore Data

Figure S1: Simulated ideal signal data to illustrate the data that is input into our model. The black points are sampled current levels at a given time. The red lines are the events detected by a feature detection algorithm, which partitions the samples into discrete segments.

Raw data

- Ionic current readings as DNA passes through a protein pore
 - 5 bases occupy pore at once (now 6 with R9)
- > 4 kHz sampling rate

Sequence data

- Current readings segmented into events (edge detection)
 - Mean, standard deviation, duration
- ➤ Translate into 5-mers
 - Metrichor (RNN, previously HMM)

Assembly of E. coli - Data

Four MinION runs:

- E. coli K-12, a genome of 4.6 Mb
- 22,270 reads
- 133.6 Mb ~ 29x coverage

Assembly of E. coli - Outline

Compute Overlaps (Daligner) Primary Assembly

Multiple Sequence Alignment (POA)
Celera Assembler

Polish

Map reads to primary assembly (bwa-mem) Segment and anchor Compute consensus

Primary Assembly

Compute read overlaps with Daligner

Consensus and correction with POA

Read GCTACGAT

Add overlapping sequence GCTCGATT

Assembly with Celera

Draft: 98.5% accuracy

Figures from Jared Simpson (LC 2015)

Polish - Outline

Map reads (bwa-mem with -x ont2d)

Segment and anchor

Mutate and evaluate

Probabilistic Model:

- Profile HMM
- Train Transitions

Segment and Anchor

Split alignment into 10kb segments that overlap by 200bp

Assign anchor points every 50bp - define a mapping between draft assembly and events in reads

Compute consensus for each segment between two anchors

Segment and Anchor

Split alignment into 10kb segments that overlap by 200bp

Assign anchor points every 50bp - define a mapping between draft assembly and events in reads

Compute consensus for each segment between two anchors

Mutate and Evaluate

Block replacement method

Choose best candidate from C, repeat until convergence

Probabilistic Model

Choose best candidate:

$$C' = \operatorname*{argmax}_{S \in \mathcal{C}} P(\mathcal{D}|S)$$

$$P(\mathcal{D}|S) = \prod_{k=1}^r P(e_{i,k},e_{i+1,k},...,e_{j,k}|S,oldsymbol{\Theta})$$

Forward Algorithm to compute over all paths in Profile HMM

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

$$\begin{split} t(M_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(M_{s_{i-1}} \to E_{s_{i-1}}) &= p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ t(M_{s_{i-1}} \to M_{s_i}) &= 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ t(E_{s_{i-1}} \to E_{s_{i-1}}) &= p_{ee} \\ t(E_{s_{i-1}} \to M_{s_i}) &= 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ t(K_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(K_{s_{i-1}} \to M_{s_i}) &= 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

$$\begin{split} & t(M_{s_{i-1}} \to K_{s_i}) = f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ & t(M_{s_{i-1}} \to E_{s_{i-1}}) = p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ & t(M_{s_{i-1}} \to M_{s_i}) = 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ & t(E_{s_{i-1}} \to E_{s_{i-1}}) = p_{ee} \\ & t(E_{s_{i-1}} \to M_{s_i}) = 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ & t(K_{s_{i-1}} \to K_{s_i}) = f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ & t(K_{s_{i-1}} \to M_{s_i}) = 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Function (lookup table) of expected event means. Calculated from alignment of reads to previous C using Viterbi, counting the types of transitions.

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

$$\begin{split} &t(M_{s_{i-1}} \to K_{s_i}) = f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ &t(M_{s_{i-1}} \to E_{s_{i-1}}) = p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ &t(M_{s_{i-1}} \to M_{s_i}) = 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ &t(E_{s_{i-1}} \to E_{s_{i-1}}) = p_{ee} \\ &t(E_{s_{i-1}} \to M_{s_i}) = 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ &t(K_{s_{i-1}} \to K_{s_i}) = f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ &t(K_{s_{i-1}} \to M_{s_i}) = 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Leverage knowledge that you haven't gone to a K state, and scale.

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

E: 5-mer has emitted an extra event K: 5-mer has not emitted an event

M: 5-mer has emitted an event

$$\begin{split} t(M_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(M_{s_{i-1}} \to E_{s_{i-1}}) &= p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ t(M_{s_{i-1}} \to M_{s_i}) &= 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ t(E_{s_{i-1}} \to E_{s_{i-1}}) &= p_{ee} \\ t(E_{s_{i-1}} \to M_{s_i}) &= 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ t(K_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(K_{s_{i-1}} \to M_{s_i}) &= 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

Not K state and not E state

$$\begin{split} t(M_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(M_{s_{i-1}} \to E_{s_{i-1}}) &= p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ t(M_{s_{i-1}} \to M_{s_i}) &= 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ t(E_{s_{i-1}} \to E_{s_{i-1}}) &= p_{ee} \\ t(E_{s_{i-1}} \to M_{s_i}) &= 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ t(K_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(K_{s_{i-1}} \to M_{s_i}) &= 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Trained from sample of reads (Viterbi to previous C)

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

E: 5-mer has emitted an extra event K: 5-mer has not emitted an event

M: 5-mer has emitted an event

$$\begin{split} t(M_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(M_{s_{i-1}} \to E_{s_{i-1}}) &= p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ t(M_{s_{i-1}} \to M_{s_i}) &= 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ t(E_{s_{i-1}} \to E_{s_{i-1}}) &= p_{ee} \\ \hline t(E_{s_{i-1}} \to M_{s_i}) &= 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ t(K_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(K_{s_{i-1}} \to M_{s_i}) &= 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

Did not stay in E state

$$\begin{split} t(M_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(M_{s_{i-1}} \to E_{s_{i-1}}) &= p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ t(M_{s_{i-1}} \to M_{s_i}) &= 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ t(E_{s_{i-1}} \to E_{s_{i-1}}) &= p_{ee} \\ t(E_{s_{i-1}} \to M_{s_i}) &= 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ t(K_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(K_{s_{i-1}} \to M_{s_i}) &= 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Like before, not emitting an event is a function of expected current levels

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

E: 5-mer has emitted an extra event K: 5-mer has not emitted an event

M: 5-mer has emitted an event

$$\begin{split} t(M_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(M_{s_{i-1}} \to E_{s_{i-1}}) &= p_{me}(1 - t(M_{s_{i-1}} \to K_{s_i})) \\ t(M_{s_{i-1}} \to M_{s_i}) &= 1 - t(M_{s_{i-1}} \to K_{s_i}) - t(M_{s_{i-1}} \to E_{s_{i-1}}) \\ t(E_{s_{i-1}} \to E_{s_{i-1}}) &= p_{ee} \\ t(E_{s_{i-1}} \to M_{s_i}) &= 1 - t(E_{s_{i-1}} \to E_{s_{i-1}}) \\ t(K_{s_{i-1}} \to K_{s_i}) &= f(|\mu_{s_{i-1}} - \mu_{s_i}|) \\ t(K_{s_{i-1}} \to M_{s_i}) &= 1 - t(K_{s_{i-1}} \to K_{s_i}) \end{split}$$

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

Has not gone to another K state

Probabilistic Model - Emission Probabilities

$$P(e_i|\pi_k = (i, M_{s_j})) = \mathcal{N}(\mu_{s_j}, \sigma_{s_j}^2)$$

 $P(e_i|\pi_k = (i, E_{s_j})) = \mathcal{N}(\mu_{s_j}, (v\sigma_{s_j})^2)$

Emission distributions from M state: known

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

Probabilistic Model - Emission Probabilities

$$P(e_i|\pi_k = (i, M_{s_j})) = \mathcal{N}(\mu_{s_j}, \sigma_{s_j}^2)$$

 $P(e_i|\pi_k = (i, E_{s_j})) = \mathcal{N}(\mu_{s_j}, (v\sigma_{s_j})^2)$

Emission distributions from E state: same as distribution from M, but variance is scaled by v=1.75

Figure S4: The state structure of the Profile Hidden Markov Model we use to calculate the probability of a sequence of events given a known sequence.

Results

Draft: 98.5% accuracy

Polished: 99.5% accuracy

Results

