

Stochastische Signale Praktikum

1. Allgemeine Befehle

1.1. Standardbefehle		
Befehl	Funktion	
save(filename, variable)	speichert <i>variable</i> in matfile	
load(filename)	lädt Variable aus matfiel	
clear variable	löscht <i>variable</i>	
clear all	löscht alle Variablen im Workspace	
clc	löscht Inhalt des Kommandofensters	
doc expression	Hilfedatei zu expression	
help expression	Kurzhilfe zu expression	

Befehl	Funktion
mod(x,y)	x modulo y (immer positiv)
rem(x,y)	x modulo y (vorzeichenabhängig)
sqrt(x)	\sqrt{x}
exp(x)	e^x
log(x)	Natürlicher Logarithmus $\ln(x)$
floor(x)	Abrunden auf Integer
ceil(x)	Aufrunden auf Integer
sum(x)	Summe über Werte des Vektors
prod(x)	Produkt über Werte des Vektors
min(x)	kleinster Wert des Vektors x
max(x)	größter Wert des Vektors x
all(x)	1 für keine 0 in Vektor x
any(x)	1 für eine Nicht-0 in Vektor x
mean(x)	Mittelwert des Vektors x
sign(x)	Vorzeichen von \times (0 wenn \times =0)
abs(x)	Betrag von x

Operator	Funktion
a>b	Gibt logisch 1 zurück wenn $a>b$, so
a>=b	Gibt logisch 1 zurück wenn $a \geq b$, so
a==b	Gibt logisch 1 zurück wenn $a = b$, so

1.3. Operatoren

-	
a>b	Gibt logisch 1 zurück wenn $a>b$, sonst 0
a>=b	Gibt logisch 1 zurück wenn $a \geq b$, sonst 0
a==b	Gibt logisch 1 zurück wenn $a=b$, sonst 0
a~=b	Gibt logisch 1 zurück wenn $a \neq b$, sonst 0
a*b	Matrix-Matrix-Multiplikation von a und b
a.*b	Elementenweise Multiplikation von a und b
a(a>=0)	Gibt Teilvektor von a zurück, wo der Wert ≥ 0

1.4. Komplexe Zahlen		
Befehl	Funktion	
complex(a,b)	a+jb	
real(z)	Realteil von z	
imag(z)	Imaginärteil von z	
abs(z)	Betrag/Komplexe Amplitude von z	
angle(z)	Phase von z	
conj(z)	konjugiert komplex von z	

1.5. Trigonometrische Funktionen

sin(x), $cos(x)$, $tan(x)$ x in Bogenmaß
sind(x), $cosd(x)$, $tand(x)$
asin(x), $acos(x)$, $atan(x)$ Arcusfunktionen (Rad)
$\operatorname{asind}(x)$, $\operatorname{acosd}(x)$, $\operatorname{antans}(x)$ Arcusfunktionen (Grad

2. Matrizenrechnung

2. Wathzenreemang		
2.1. Rechenoperationen		
Befehl	Funktion	
[a b c]	Zeilenvektor (bzw. vertikales aneinanderreihen)	
[a; b; c]	Spaltenvektor (bzw. horizontales aneinanderreihen)	
[a b c; d e f; g h i]	3x3-Matrix	
$[a \ b] = size(\mathbf{A})$	Dimensionen der Matrix (a Zeilen, b Spalten)	
$inv(\mathbf{A})$	inverse Matrix von 🔏	
A'	$\mathbf{A}^{ op}$ (transponiert konjugiert komplex)	
A .'	${m {m {\mathcal A}}}^ op$ (transponiert)	
${m A}\setminus ec b$	löst $\mathbf{A}\vec{x}=\vec{b}$	
$\mathbf{A}(m,n)$	Element $A_{m,n}$	
$\mathbf{A}(m,:)$	m-te Zeile	
$\mathbf{A}(:,n)$	n-te Spalte	
\mathbf{A} (Bedingung)	Alle Element in A, auf die die Bedingung zutrifft	
$find(\mathbf{A})$	lokalisiert Nicht-Null-Elemente (Indizes)	
$\det(\mathbf{A})$	Determinante von A	
$rank(oldsymbol{\mathcal{A}})$	Rang (Anzahl unabhängiger von A	
[V,D]=eig(A)	Eigenwerte (D) und Eigenvektoren (V) von A	
(a:b:c)	Vektor von a bis c mit Schrittweite b	
linspace(a,b,n)	n Werte im gleichen Abstand von a bis b	
norm(x)	eukl. Norm des Vektors x	
$sum(\mathbf{A})$	Summer der Werte über Spaltenwerte	
$sum(\mathbf{A},2)$	Summer der Werte über Zeilenwerte	
$mean(oldsymbol{\mathcal{A}})$	Mittelwert der Spaltenwerte	
mean(A,2)	Mittelwert der Zeilenwerte	
$numel(oldsymbol{\mathcal{A}})$	Anzahl der Elemente in A	

Komponentenweises Rechnen durch einen Punkt vor einem Operator Bsp: A.^2 quadriert jedes Element der Matrix A Inlinefunktion: $\mathbb{Q}(x)(f(x))$

2.2. Spezielle Matrizen

Befehl	Funktion
eye(m,n)	m imes n Einheitsmatrix
zeros(m,n)	m imes n 0-Matrix
ones(m,n)	m imes n 1-Matrix
$diag(ec{x})$	Diagonalmatrix mit den Werten von $ec{x}$
rand(m,n)	m imes n Zufallsmatrix (Werte: 0-1)
randi(imax,m,n)	integer Zufallsmatrix mit max. imax
magic(n)	n imes n magisches Quadrat

3. Schleiflab

while:	for:
while expression	for i=0:1:20
statements	statements
end	end
Schleife vorzeitig verlassen mit break	

4. Plotten

Befehl	Funktion
plot(x,y,'prop')	Plottet x und y mit Farbe/Symbol 'prop'
stem(y)	Plottet diskrete y Werte (nicht verbunder
bar(x,y)	Plottet x und y in einem Balkendiagramn
xlim([a b])	Begrenzt Bereich der x-Achse auf [a,b]
ylim([c d])	Begrenzt Bereich der y-Achse auf [c,d]
axis([a b c d])	Kombination aus xlim + ylim
xlabel('Name')	Benennt x-Achse
ylabel('Name')	Benennt y-Achse
title('Titel')	Tituliert den Plot
subplot(H,B,Position)	Selektiert Plot in Figure mit $H \times B$ Plots
Beispiel:	
figure(1);	% new figure
clf;	% clear old figures
plot(x, y, 'k');	% plot y(x) in black 'k'
hold on;	% more plots in same figure
plot(x, z, 'ro')	% plot z(x) in red circles
legend('v', 'z')	% names of plots
hold off;	

5. Stochastische Zufallsvariablen

5.1. Realisierung von Standardmodellen

Befehl	$m imes n$ -Realisierung einer \dots
rand(m,n)	gleichverteile ZV (Werte: 0-1)
randn(m,n)	Standardnormalverteilung $\mathcal{N}(0,1)$
gamrnd(k,t,m,n)	gammaverteile ZV, shape k, scale t
binornd(n,p,m,n)	Binomialverteilung mit Parameter n, p
binornd(1,p,m,n)	Bernoulliverteilung mit Wahrscheinlichkeit p
geornd(p,m,n)	Geometrische Verteilung mit Wahrsch. p
exprnd(1/lambda,m,n)	Exponentialverteilung mit Parameter λ
Beispiele:	
Befehl	Ergebnis
2*rand+1	gleichverteile ZV im Bereich [1,3]
plot(y,unifpdf((y-1)/2)/2)	plottet PDF der oberen ZV
plot(x,unifpdf(2*x)*2)	PDF einer gv. ZV im Bereich [0,0.5]
sigma*randn+mu	Realisierung der Normalv. $\mathcal{N}(\mu, \sigma^2)$

5.2. Wahrscheinlichkeitsdichtefunktion (PDF) $f_X(x)$

Befehl	PDF an den Stellen x einer
unifpdf(x,a,b)	Gleichverteilung im Intervall [a,b]
poisspdf(x,lambda)	Poissonverteilung mit Parameter λ
normpdf(x,mu,sigma)	Normalverteilung mit Parameter mu und sigma
gampdf(x,k,t)	Gammaverteilung mit shape k und scale t

poisscdf(X,lambda) Poissonverteilung mit Parameter λ Normalverteilung mit Parameter μ und σ normcdf(X,mu,sigma) cdfplot(X)Schätzt und plottet CDF von X

Befehl

unifcdf(x,a,b)

5.3. Kommulative Verteilungsfunktion (CDF) $F_X(x)$

CDF an den Stellen x einer . . .

Gleichverteilung im Intervall [a,b]

6. Analyse von Zufallsvariablen

6.1. Schätzung von Paramtern einer Zufallsvariable X

x ist ein Vektor von	Vektor von Realisierungen von X	
Befehl	Funktion	
mean(x)	Schätzt Erwartungswert μ der ZV X	
var(x)	Schätzt Varianz $Var(X)$ der ZV X	
std(x)	Schätzt die Standardabweichung σ der ZV X	
length(x)	Anzahl der Realisierungen der ZV X	
mean(x.^3)	Schätzung des 3. Moments der ZV X	

6.2. Histogramm	
Befehl	Funktion
hist(A)	Teilt A in 10 gleiche Bereiche (Bins) und zählt die Elemente im jeweiligen Bin
hist(A,b)	Teilt A in b gleiche Bereiche (Bins) und zählt die Elemente im jeweiligen Bin
hist(A,centers)	Zählt die Elemente in den Bins um den Einträgen in centers
[n,centers]=hist()	Gibt in Anzahl der Elemente in n zurück und die Position der Bins in centers
bar(hist())	Erstellt ein Balkendiagramm des Histogramms

7. Signalverarbeitung

Befehl	Funktion
[a,b]=audioread('') sound(x,b) buffer(x,n)	Liest Audiodatei in Vektor a ein (Abtastrate b Spielt das Signal in Vektor x (Abtastrate b) al Teilt Signalvektor x in nichtüberlappend Frames der Länge n
buffer(x,n,p)	Teilt Signalvektor \times in Frames der Länge n d sich um p überlappen

7.1.1 Lineare Systeme

buffer(1:12,5,3) %liefert ...

Befehl	Funktion	
conv(x,y)	Faltung zwischen Vektor \times und y	
conv(x,y) gibt einen Vektor der Länge length (x) + length (y) - 1 zurück		

8. Begriffe

i.i.d.

Independent and identically distributed (unabhängig und gleichverteilt)

Ergodisch

Eine Zufallsfolge heißt ergodisch, wenn Mittelwerte über die Zeit (für eine einzelne gegebene Realisierung der Folge) zum gleichen Ergebnis führen wie Erwartungswertbildung (für einen einzelnen Zeitpunkt).

Klingonisch

Die Klingonische Sprache ist die von Klingonen gesprochen Sprache. Sie ist im gesamten Klingonischen Imperium verbreitet.

9. Kapitel 1

9.1. Histogramm einer gleichverteilten ZV plotten

function x=hist_rand(N)
% Vektor x mit N Realisierungen von X (Gleichverteilung)
x=rand(N,1);
centers=0+1/40:1/20:1-1/40;
counts=hist(x,centers);
% Normierung von counts fuer eine PDF
counts = counts/N*20;
bar(centers,counts);
xlabel('x')
ylabel('h(x')
title(sprintf('N = %01d',N));

10. Kapitel 2: Quantisierung und Transformation von ZV

10.1. Beispielaufgabe

Gegeben sei eine Zufallsvariable X, die im Intervall [0,1] gleichverteilt ist und eine Zufallsvariable Y=g(X), deren WDF mit der folgenden Funktion ausgewertet werden kann:

function f = mypdf(y)
f=unifpdf(exp(y)).*exp(y);

Folgerungen:

Die Funktion g = g(x) = ln(x)1000 Realisierungen von Y erzeugen: y=log(rand(1000,1));

11. Kapitel 3: Bedingte Verteilung

11.1. Histogramm eines AWGN-Kanals

function hist_out(N,p,sigma) binwidth=0.025: centers = -2+binwidth/2:binwidth:3-binwidth/2; subplot (311) % X O oder 1, Y = X + normalverteiltes Rauschen x=binornd(1,p,N,1); y=awgn_channel(x,sigma) counts=hist(y,centers); bar(centers.counts/(binwidth*sum(counts)).1): vlim([0 2]) xlabel('y') ylabel('h(y)') title(sprintf('N=%01d',N)) subplot (312) % Fall X ist immer 1 x=ones(N,1);y=awgn_channel(x,sigma); counts=hist(y,centers); bar(centers,counts/(binwidth*sum(counts)),1); vlim([0 2]) vlahel('v') ylabel('h(y|x=1)') subplot (313) % Fall X ist immer 0 x=zeros(N,1); y=awgn_channel(x,sigma); counts=hist(y,centers); bar (centers, counts/(binwidth*sum(counts)),1); ylim([0 2]) xlabel('y') ylabel('h(y|x=0)')

11.2. Maximum-Likelihood-Detektion

$$\max_{\hat{x} \in \{0,1\}} f_{Y \mid X}(y | \hat{x})$$

In unserem Fall: $\hat{x}=\begin{cases}0&y\leq \frac{1}{2}\\1&y>\frac{1}{2}\end{cases}$ Nachteil: Ignoriert das Wissen über die Eingangsverteilung.

function xhat = ml_detector(y)
xhat=(y>0.5);

Nachteil: Ignoriert Wissen über die Eingangsverteilung

11.3. Maximum-A-Posteriori-Detektion

 $\max_{\hat{x} \in \{0,1\}} p_{X \mid Y}(\hat{x}|y)$

mit

$$p_{X\mid Y}(x|y) = \begin{cases} \frac{pf_Z(y-1)}{f_Y(y)} & x = 1\\ \frac{(1-p)f_Z(y)}{f_Y(y)} & x = 0\\ 0 & \text{sonst} \end{cases} = \frac{f_{Y\mid X}(y|x)p_X(x)}{f_Y(y)}$$

function xhat = map_detector(y,p,sigma)
xhat=(p*normpdf(y-1,0,sigma)>(1-p)*normpdf(y,0,sigma));

Nachteil: Die Verteilung der Zufallsvariable am Eingang muss bekannt sein

Spezialfall der diskreten Gleichverteilung $p_X(x)=\frac{1}{|\Omega_X|} \forall x \in \Omega_X$: p_X für alle \times gleich \to kann aus der Entscheidungsregel gestrichen werden. ML äquivalent zu MAP

12. Kapitel 4: Standardmodelle, Erwartungswert und Varianz

12.1. Modellierung für Mobilfunknetz

Überlagerung von Nutzern im Hotspot-Bereich (Normalverteilung) $X_h,\,Y_h$ und anderen Nutzern (Gleichverteilung) $X_h,\,Y_h$ mit der Bernoulli-verteilten ZV B.

$$\mathbf{X}_m = \begin{cases} \mathbf{X}_h & \text{wenn } B = 1 \\ \mathbf{X}_u & \text{wenn } B = 0 \end{cases} \qquad \mathbf{Y}_m = \begin{cases} \mathbf{Y}_h & \text{wenn } B = 1 \\ \mathbf{Y}_u & \text{wenn } B = 0 \end{cases}$$

function M=mixed_positions(N,L,muX,muY,sigma,q)
M=zeros(N,2); % Matrix initialisieren
H=hotspot_positions(N,L,muX,muY,sigma);
U=uniform_positions(N,L);

b=binornd(1,q,N,1); M(b==1,:)=H(b==1,:); M(b==0,:)=U(b==0,:);

12.2. Empirische Realisierung von CDFs

13. Kapitel 5: Zufallsfolgen

13.1. Realisierung einer Zufallsfolge

 $egin{align*} egin{align*} egin{align*}$

function pos=update_positions(pos,delta)
pos=pos+2*delta*(rand(size(pos))-0.5);

14. Kapitel 6: Zufallsfolgen und lineare System

14.1. Signalgenerierung

%Erstellt Sinussignal der Frequenz f1 mit der Amplitude A1, %ueberlagert mit weissen Rauschen mit Parameter sigma function x=create_signal(fS,T,f1,A1,sigma) t=1:T*fS; x=A1*sin(2*pi*f1/fS*t) + sigma*randn(1,fS*T);

14.2. Geschätzte Autokorrelationsfolge

Gegeben:

$$X_n = A_1 \sin(2\pi \frac{f}{f_s} n + \varphi_0) + Z_n$$

wobei $arphi_0$ im Intervall $[0,2\pi]$ stetig gleichverteilt ist.

Geschätzte Autokorrelationsfolge von \boldsymbol{X}_n

Folgerung

- ullet Schätzung der Frequenz: $f=rac{f_S}{40}$
- Der Peak bei $\tau = 0$ ist auf Z_n zurückzuführen
- $\bullet \ \ \mathsf{E}[Z_k Z_l] = 0 \ \mathrm{für} \ k \neq l$