

HACETTEPE UNIVERSITY DEPARTMENT OF GEOMATICS ENGINEERING

ADJUSTMENT COMPUTATION & PARAMETER ESTIMATION 2021-2022 SPRING TERM ASSIGNMENT 4

ABDULSAMET TOPTAŞ - 21905024

To perform a weighted least-square adjustment the below levelling net, the levelling observation at the know fixed heights of the benchmark in 101 and 102 are given. Please form;

a) a linearited observation equations

b) the coefficient matrix of the Linearized observation eq. (j'cobian matrix, design matrix). the weight of (1) and the reduced observation vector (e)

c) Estimate me, Sx, x tmx, v tmu, e f m and query it. (= f(xx + &)

Renchmork	Fixed (known) height, H (meter)
101	2200,116
102	2422,628

n=5, v=2 f=n-v=3 There is adjustment

-	observed height difference in meter	Line height in Lan	10 11 1 0110 00
e,	31,78L	0,7	Hs = H101 - 1, = 2, 168, 32m
l ₂	117.134	0,8	+16=+1101+12=2.317,250m
13	105.788	1,5	
lu	148, 914	1,2	
15	254, 288	1,1	100 100 100

a)
$$\hat{l} = l_1 + v_1 = H_{101} - H_5 \Rightarrow v_1 = -8H_5 - [l_1 - (H_{101} - H_5)] = 0$$
 $\hat{l} = l_2 + v_2 = H_6 - H_{101} = 0$
 $\hat{l} = l_3 + v_3 = H_{102} - H_6 = 0$
 $\hat{l} = l_3 + v_3 = H_{102} - H_6 = 0$
 $\hat{l} = l_4 + v_4 = H_6 - H_5 \Rightarrow v_4 = 8H_6 - 8H_5 - [l_4 - (H_6 - H_6^6)] = 0.01$
 $\hat{l} = l_4 + v_4 = H_6 - H_5 \Rightarrow v_4 = 8H_6 - 8H_5 - [l_4 - (H_6^6 - H_6^6)] = -0.004$
 $\hat{l} = l_5 + v_5 = H_{102} - H_5 \Rightarrow v_5 = -8H_5 - [l_5 - (H_{102} - H_6^5)] = -0.008$

b)
$$v_{1} = -8+15$$
 $v_{2} = 8+16$
 $v_{3} = -8+16-1$
 $v_{4} = 8+16-8+15+0.4$
 $v_{5} = -8+15+0.4$
 $v_{7} = -8+15+0.4$
 $v_{8} =$

C)
$$S_{x} = (A^{T}, P, A)^{T} \cdot (A^{T}, P, \ell)$$
 $= \begin{bmatrix} 0,3426 & 0,1038 \\ 0,1078 & 0,2951 \end{bmatrix} \cdot \begin{bmatrix} 1,0606 \\ -1 \end{bmatrix}$
 $M_{x} = \frac{1}{4} \frac{m_{0}}{\sqrt{P_{1}}} = \frac{0,5233}{\sqrt{P_{1}}} = \frac{0}{2} M_{x}$
 $M_{x} = \begin{bmatrix} 0,2596 \\ -0,2850 \end{bmatrix}$
 $M_{x} = \begin{bmatrix} 0,2596 \\ -0,2850 \end{bmatrix}$

$$Qx = (A^{T}PA)^{-1}$$

$$mx = \pm m_{0} \int Qx \, dqp$$

$$Qx = \left[0.34.26 \quad 0.1018 \right]$$

$$Qx = \left[0.34.26 \quad 0.1018 \right]$$

$$Qx = \left[0.34.26 \quad 0.1018 \right]$$

$$Qx = \left[0.3063 \quad 0.3951 \right]$$

$$mx = \left[0.3063 \quad 0.3289 \right]$$

* (Calculated using Matlab).

$$\hat{f} = \begin{bmatrix}
0.3063 \\
0.3289 \\
0.3289
\\
0.3810 \\
0.3063
\end{bmatrix}$$

$$\hat{f} = \begin{bmatrix}
-0.2596 \\
-0.2850 \\
0.2850 \\
-0.5446 \\
-0.2596
\end{bmatrix}$$

K (Cakulated using Matlab)

Abdulsamet TOPTAS
21905024

Smith

Balance the leveling grid given below using the indirect measures method. Ha = 80,673 m.

1	Δh;	S! (FW)
1	43,156	0,65
2	19,218	0,80
3	33,524	1,00
4	57,440	1,40
5	23,862	1,50
6	14,267	1,95
3 4 5	19,218 33,524 57,440 23,962	0,80 1,00 1,40 1,50

Number of Measures = n = 6Unknown Number = U = 3Degrees of Freedom = f = n - U = 6 - 3 > 0So, There is adjustment

$$\Delta h_1 + v_1 = H_{P_1} - H_A$$
 $\Delta h_2 + v_2 = H_{P_1} - H_{P_2}$
 $\Delta h_3 + v_3 = H_{P_3} - H_{P_2}$
 $\Delta h_4 + v_4 = H_{P_3} - H_A$
 $\Delta h_5 + v_5 = H_{P_2} - H_A$
 $\Delta h_6 + v_6 = H_{P_3} - H_{P_1}$

$$\triangle h_1 + \vee_1 = \times - H_A$$
 $\vee_1 = \times - H_A - \triangle h_1$
 $\triangle h_2 + \vee_2 = \times - Y$ $\vee_2 = \times - Y - \triangle h_2$
 $\triangle h_3 + \vee_3 = 2 - Y$ $\vee_3 = 2 - Y - \triangle h_3$
 $\triangle h_4 + \vee_4 = 2 - H_A$ $\vee_4 = 2 - H_A - \triangle h_4$
 $\triangle h_5 + \vee_5 = Y - H_A$ $\vee_5 = Y - H_A - \triangle h_5$
 $\triangle h_6 + \vee_6 = 2 - Y$ $\vee_6 = 2 - Y - \triangle h_6$

Approximate values ;

$$x = x_0 + dx$$
 $y = y_0 + dy$ $z = z_0 + dz$

$$x_0 = H_A + \Delta h_1$$
 $x_0 = 80,693 + 43,156 = 123,829 m$
 $y_0 = H_A + \Delta h_5$ $y_0 = 80,693 + 23,962 = 104,635 m$
 $z_0 = H_A + \Delta h_4$ $z_0 = 80,693 + 57,440 = 138,115 m$

$$V_1 = x - HA - \Delta h_1$$
 $V_2 = x - y - \Delta h_2$
 $V_3 = 2 - y - \Delta h_3$
 $V_4 = 2 - HA - \Delta h_4$
 $V_5 = y - HA - \Delta h_5$
 $V_6 = 2 - x - \Delta h_6$
 $V_1 = 2 + 20 - HA - \Delta h_6$
 $V_1 = 2 + 20 - HA - \Delta h_6$
 $V_2 = 2 + 20 - Ah_6$
 $V_3 = 2 - Ah_6$
 $V_4 = 2 - Ah_6$
 $V_5 = 2 - Ah_6$
 $V_6 = 2 - Ah_6$

The above values are in mm order.

V, = dx +123,829 - 80,673-43,156 VI = dx V2 = dx - dy + 123, 829 - 104, 635-19, 218 V2 = dx - dy - 24 Vu = de +138,115 - 80,673 -57,440 V4=d2 V5 = dy + 104,635 - 80,673 - 23,962 V5 = dy V6= -dx+d2+138, 115-123, 829-14, 267 V6=-dx+d2+14

The above values are in mm order,

The above value are in mm order,
$$v_1 = 1.dx + 0.dy + 0.d2 + 0$$

$$v_2 = 1.dx - 1.dy + 0.d2 - 24$$

$$v_3 = 0.dx - 1.dy + 1.d2 - 46$$

$$v_4 = 0.dx + 0.dy + 1.d2 + 0$$

$$v_5 = 0.dx + 1.dy + 0.d2 + 0$$

$$v_6 = -1.dx + 0.dy + 1.d2 + 17$$

$$v_1 = 1.dx + 0.dy + 1.d2 + 17$$

$$v_2 = 1.dx + 0.dy + 1.d2 + 17$$

$$v_3 = 0.dx + 0.dy + 1.d2 + 17$$

$$v_4 = 0.dx + 0.dy + 1.d2 + 17$$

$$v_6 = -1.dx + 0.dy + 1.d2 + 17$$

$$v_6 = -1.dx + 0.dy + 1.d2 + 17$$

$$v_6 = -1.dx + 0.dy + 1.d2 + 17$$

$$v_6 = -1.dx + 0.dy + 1.d2 + 17$$

$$v_6 = -1.dx + 0.dy + 1.d2 + 17$$

$$P_{i} = \begin{bmatrix} 1/0.65 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/0.80 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/1.00 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/1.40 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/1.50 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/1.95 \end{bmatrix} \qquad P_{i} = \frac{1}{S_{i}(km)}$$

$$P_i = \frac{1}{S_i(kn)}$$

$$P_{i} = \begin{bmatrix} 1.54 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1.25 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1.00 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.91 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.67 & 0 \\ 0 & 0 & 0 & 0 & 0.51 \end{bmatrix} \qquad N = A^{T} P A = \begin{bmatrix} 3.30 & -1.25 & -0.51 \\ -1.25 & 2.92 & -1.00 \\ -0.51 & -1.00 & 2.23 \end{bmatrix}$$

$$N = A^{T} P A = \begin{bmatrix} 3.30 & -1.25 & -0.51 \\ -1.25 & 2.02 & -1.00 \\ -0.51 & -1.00 & 2.23 \end{bmatrix}$$

$$\underline{n} = \underline{A}^{T} P l = \begin{bmatrix} 3872 \\ -76.00 \\ 37.28 \end{bmatrix}$$

$$\bar{x} = \bar{a}^{xx} \cdot v = \begin{bmatrix} qx \\ q\bar{a} \end{bmatrix} = \begin{bmatrix} 8/27 \\ -50.87 \end{bmatrix}$$
 www

The Exact Value of the unknown

The Exact Value of the ordinary
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} 123,829 \\ 104,635 \\ 138,113 \end{bmatrix} + \begin{bmatrix} 5,42 \\ -20,94 \\ 8152 \end{bmatrix} = \begin{bmatrix} 123,834 \\ 104,614 \\ 138,122 \end{bmatrix}$$

* (Cakulated Using Matlab)

Corrections (v= A.x-()

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5,12 \\ -20,94 \\ 2,52 \end{bmatrix} = \begin{bmatrix} 0 \\ 24 \\ 46 \\ 0 \\ -10,94 \\ 20,95 \end{bmatrix} = \begin{bmatrix} 5,12 \\ 2,06 \\ -16,54 \\ 8,52 \\ -20,94 \\ 20,95 \end{bmatrix}$$

Ralanced Measures (Ah; = Ah; +v;)

octuned treasures	(AU - PU - AI)			- 0		7	ı
Aho = Aho + Aho Aho Aho Aho Aho	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Dha Dha Dha Dha Dha Dha Dha Dha	2 +	5,12 2,0b -16,54 2,52 -20,94 2,439	= 33.5 53.5 54.1 23.9	210	

Control of Balanced Measures

$$\Delta h_1 + v_1 = H_{P_1} - H_{A}$$
 $\Delta h_2 + v_2 = H_{P_1} - H_{P_2}$
 $\Delta h_3 + v_3 = H_{P_2} - H_{P_2}$
 $\Delta h_4 + v_4 = H_{P_2} - H_{A}$
 $\Delta h_5 + v_5 = H_{P_2} - H_{A}$
 $\Delta h_5 + v_6 = H_{P_3} - H_{A}$
 $\Delta h_6 + v_6 = H_{P_3} - H_{A}$
 $\Delta h_7 + v_8 = H_{P_3} - H_{A}$
 $\Delta h_8 + v_8 = H_{P_3} - H_{A}$

Square Mean Error

$$m_0 = \pm \sqrt{\frac{2^T P \times}{n-v}} = \pm \sqrt{\frac{876,79}{6-3}} = \pm 17,10 \text{ mm}$$

Mean Error of Unknown
$$Q_{x} = N^{-1} = \begin{bmatrix} 0.44 & 0.26 & 0.22 \\ 0.26 & 0.56 & 0.31 \\ 0.22 & 0.31 & 0.64 \end{bmatrix}$$

$$m_x = \pm m_0 \int g_{xx} = \pm 17.10 \int 0.44 = \pm 11.28 \text{ mm}$$

 $m_y = \pm m_0 \int g_{yy} = \pm 17.10 \int 0.56 = \pm 12.82 \text{ nm}$
 $m_t = \pm m_0 \int g_{tt} = \pm 17.10 \int 0.64 = \pm 13.67 \text{ mm}$

* (Calculated using Matbb).

Mean Groot of Mascres

$$m_{Ah} = 13.78$$
 $m_{Ah} = 20.23$
 $m_{Ah} = 15.29$
 $m_{Ah} = 17.10$
 $m_{Ah} = 20.34$
 $m_{Ah} = 17.10$
 $m_{Ah} = 20.34$
 $m_{Ah} = 17.10$
 $m_{Ah} = 20.34$
 $m_{Ah} = 17.10$
 $m_{Ah} = 20.34$

Average Error of Cabrocal Measures

 $Q_{11} = A \cdot Q_{21} \cdot Q_{11} = 0.00 -$

 $m_{V_i} = \pm m_0 \cdot \sqrt{2} v_{ivi}$ Average error of corrections $m_{V_i} = 7.91 \text{ mm}$ $m_{V_i} = 14.91 \text{ mm}$ $m_{V_i} = 9.75 \text{ mm}$ $m_{V_i} = 16.56 \text{ mm}$ $m_{V_i} = 14.13 \text{ mm}$ $m_{V_i} = 19.57 \text{ mm}$

Abdulamet TOPTAS 21905024