Problem J. Apollo versus Pan

Time limit 2000 ms **Mem limit** 262144 kB

Only a few know that Pan and Apollo weren't only battling for the title of the GOAT musician. A few millenniums later, they also challenged each other in math (or rather in fast calculations). The task they got to solve is the following:

Let x_1, x_2, \ldots, x_n be the sequence of n non-negative integers. Find this value:

$$\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (x_i \,\&\, x_j) \cdot (x_j \,|\, x_k)$$

Here & denotes the <u>bitwise and</u>, and | denotes the <u>bitwise or</u>.

Pan and Apollo could solve this in a few seconds. Can you do it too? For convenience, find the answer modulo $10^9 + 7$.

Input

The first line of the input contains a single integer t ($1 \le t \le 1000$) denoting the number of test cases, then t test cases follow.

The first line of each test case consists of a single integer n ($1 \le n \le 5 \cdot 10^5$), the length of the sequence. The second one contains n non-negative integers x_1, x_2, \ldots, x_n ($0 \le x_i < 2^{60}$), elements of the sequence.

The sum of n over all test cases will not exceed $5 \cdot 10^5$.

Output

Print t lines. The i-th line should contain the answer to the i-th text case.

Sample 1

Input	Output
8 2 1 7 3 1 2 4 4 4 5 5 5 5 5 5 5 6 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	128 91 1600 505 0 1 502811676 264880351