Practical - 14

AIM

Implement a classification/ logistic regression problem.

PROBLEM

Based on a dataset predict whether an employee will leave a company or not.

CODE & OUTPUT

```
In [2]:
         import pandas as pd
         from matplotlib import pyplot as plt
         %matplotlib inline
In [4]:
         df = pd.read csv("employee retention.csv")
         df.head()
Out[4]:
           satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident le
        0
                      0.38
                                    0.53
                                                                                                         0
                                                    2
                                                                       157
                                                                                            3
         1
                      0.80
                                    0.86
                                                    5
                                                                       262
                                                                                            6
                                                                                                         0
         2
                      0.11
                                    0.88
                                                    7
                                                                      272
         3
                      0.72
                                    0.87
                                                                       223
                                                    2
         4
                      0.37
                                    0.52
                                                                       159
In [5]:
          # exploring data to see which attributes have direct impact on employee retention
         df.groupby('left').mean()
Out[5]:
             satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident
         left
          0
                    0.666810
                                  0.715473
                                                3.786664
                                                                  199.060203
                                                                                       3.380032
                                                                                                     0.175009
          1
                    0.440098
                                                3.855503
                                                                  207.419210
                                                                                       3.876505
                                                                                                     0.047326
                                  0.718113
In [6]:
          # From the above evidence, we can say that attributes that affect an employee leaving or .
          # 1. Satisfaction Level (satisfaction level of employees leaving is relatively low that the
          \# 2. Average Monthly Hours (employees who left worked more on an average that the employed
          # 3. Promotion Last 5 Years (employees who got a promotion in the last 5 years are more 1
          # Now we see the impact of Salary on the employees leaving the firm
         <AxesSubplot:xlabel='salary'>
Out[6]:
```



```
In [7]: # We can see that employees with high salary are less likely to leave the company
# Now we see the department wise retention rate
pd.crosstab(df.Department,df.left).plot(kind='bar')
```

Out[7]: <AxesSubplot:xlabel='Department'>


```
In [9]: # From the above evidence, department have some impact on employee retention but not hat if
# consider department as important feature

# Thus, we have 4 independent variables for our model:
# 1. Satisfaction Level
# 2. Average Monthly Hours
# 3. Promotion Last 5 Years
# 4. Salary

subset_df = df[['satisfaction_level', 'average_montly_hours', 'promotion_last_5years', 'satisfaction_level', 'average_montly_hours', 'promotion_last_5years', 'promotion_last_5y
```

```
Out[9]: satisfaction_level average_montly_hours promotion_last_5years salary

0 0.38 157 0 low
```

	satisfaction_level	average_montly_hours	promotion_last_5years	salary
1	0.80	262	0	medium
2	0.11	272	0	medium
3	0.72	223	0	low
4	0.37	159	0	low

In [12]:
we have to convert Salary into a numeric field to be able to do the analysis
salary_dummies = pd.get_dummies(subset_df.salary, prefix = "salary") # get the salary_high
df_with_dummies = pd.concat([subset_df, salary_dummies], axis="columns") # concatenate the
df_with_dummies.drop("salary", axis="columns", inplace=True) # drop the original salary fi
df_with_dummies.head()

Out[12]:		satisfaction_level	average_montly_hours	promotion_last_5years	salary_high	salary_low	salary_medium
	0	0.38	157	0	0	1	0
	1	0.80	262	0	0	0	1
	2	0.11	272	0	0	0	1
	3	0.72	223	0	0	1	0
	4	0.37	159	0	0	1	0

```
In [13]: X = df_with_dummies
y = df.left
```

Out[20]: LogisticRegression()

```
In [21]: y_pred = model.predict(X_test)
```

```
In [22]: print(y_pred)
```

[0 0 0 ... 0 0 0]

```
In [23]: model.score(X_test, y_test)
```

Out[23]: 0.7764761904761904