MAC2166 – Introdução à Ciência da Computação

ESCOLA POLITÉCNICA - COMPUTAÇÃO / ELÉTRICA - PRIMEIRO SEMESTRE DE 2022

Exercício-Programa 2 (EP2)

Data de Entrega: 4 de junho de 2022

Para se preparar bem para o desenvolvimento de seu EP2, cuja descrição se inicia na próxima página, leia com atenção as instruções abaixo.

- Utilize somente os recursos da linguagem que aprendeu nas aulas.
- Veja em https://www.ime.usp.br/~mac2166/infoepsC/ instruções de entrega dos exercícios-programa e atente para as instruções de preenchimento do cabeçalho do seu programa.
- Leia um FAQ sobre compilação em https://www.ime.usp.br/~mac2166/compilacao/.
- Sempre compile seus programas com as opções -Wall -ansi -pedantic -O2.
- Importante: seu programa deve
 - funcionar para qualquer entrada que está de acordo com o enunciado;
 - estar em conformidade com o enunciado;
 - estar bem estruturado;
 - ser de fácil compreensão, com uso idiomático da linguagem C.

EP2: Corpos Celestes

Neste exercício-programa você implementará um simulador simples capaz de prever bastante bem a trajetória de três corpos celestes que interagem entre si através de atração gravitacional.

1 Simulação de um corpo

1.1 Atração gravitacional

Sejam B_1 e B_2 dois corpos de massas m_1 e m_2 . Supomos que B_1 e B_2 têm forma esférica. Seja d a distância entre os centros de B_1 e B_2 . A lei de gravitação de Newton diz que há entre B_1 e B_2 uma força de atração gravitacional de magnitude

$$G\frac{m_1m_2}{d^2},\tag{1}$$

onde G é uma constante universal, cujo valor é $6.67 \times 10^{-11} \,\mathrm{Nm^2/kg^2}$.

Suponha agora que há um terceiro corpo no sistema, digamos B_0 , de massa m_0 e também de forma esférica. Há atração gravitacional entre B_0 e B_1 e entre B_0 e B_2 , cujas magnitudes podem ser calculadas pela lei de Newton (1). Para saber a força total que age sobre, digamos, o corpo B_0 , devemos calcular a soma (vetorial) das forças F_1 e F_2 que os corpos B_1 e B_2 exercem sobre B_0 .

Observações. Neste exercícios, trataremos corpos com dimensões desprezíveis em relação às distâncias envolvidas, de forma que podemos supor que os corpos são pontos.

1.2 Trajetória de um corpo

Seja r a posição de um corpo B em um instante t_0 . Neste exercício, trabalharemos em duas dimensões, de forma que r pode ser escrito como um par $(r_x, r_y) \in \mathbb{R}^2$. Seja $v = (v_x, v_y)$ a velocidade de B e que essa velocidade seja constante ao longo do tempo. Sabemos então que, no instante $t_0 + \Delta t$, o corpo B estará na posição $r + (\Delta t)v$. Se B sofre uma aceleração a = a(t) no instante t, então a velocidade v(t) de B no instante t varia ao longo do tempo e $v(t) = v(t_0) + \int_{t_0}^t a(t) \, dt$. Assim, a posição de B no instante $t_0 + \Delta t$ será $r + \int_{t_0}^{t_0 + \Delta T} v(t) \, dt$.

Neste exercício (felizmente :-)), você deve ignorar as integrais que ocorrem acima, e deve adotar uma forma aproximada para determinar a posição do corpo B no instante $t_0 + \Delta t$. Vamos supor que conhecemos a aceleração $a(t_0)$ no instante t_0 . O que fazemos

é atualizar o valor atual v da velocidade para o valor $v' = v + (\Delta t)a(t_0)$ e declaramos que B estará na posição $r + (\Delta t)v'$ no instante $t_0 + \Delta t$.

Observação. Quando Δt não é muito grande em relação às outras grandezas envolvidas, a aproximação acima é boa.

1.3 Trajetória sob uma força gravitacional

Seja m a massa do corpo B da Seção 1.2. Suponha que B sofre uma atração gravitacional dada por uma força $F = (F_x, F_y)$, devido a outros corpos presentes no sistema. A segunda lei de Newton diz que B sofre então uma aceleração a dada por a = (1/m)F. Note que, conforme B muda de posição, a força gravitacional F que ele sofre pode mudar, dado que F depende da posição relativa de B em relação aos outros corpos do sistema. De qualquer forma, conhecendo a posição r, a velocidade v de B e a força F no instante t_0 , podemos usar o método descrito na Seção 1.2 para determinar (aproximadamente) a posição de B no instante $t_0 + \Delta t$ (nesse método, ignoramos que F pode mudar entre t_0 e $t_0 + \Delta t$). Fazemos o seguinte:

$$a \leftarrow (1/m)F \tag{2}$$

$$v \leftarrow v + (\Delta t)a \tag{3}$$

$$r \leftarrow r + (\Delta t)v \tag{4}$$

O valor de r calculado em (4) acima é a posição de B no instante $t_0 + \Delta t$ (aproximadamente).

Observação. Note que, em (2), (3) e (4), as quantidades a, F, v e r são vetores. Assim, por exemplo, para executar (2), você precisa fazer $a_x \leftarrow F_x/m$ e $a_y \leftarrow F_y/m$, onde $a = (a_x, a_y)$ e $F = (F_x, F_y)$. Algo análogo vale para (3) e (4).

1.4 Exemplo

Suponha que a Terra está na origem $(0,0) \in \mathbb{R}^2$, e que ela não se move. Suponha que, no instante $t_0=0$, a Lua está na posição

$$(r_x^{(0)}, r_y^{(0)}) = (3.63 \times 10^8, 0) \tag{5}$$

e tem velocidade

$$(v_x^{(0)}, v_y^{(0)}) = (0.0, 1072). (6)$$

Note que, em (5) e (6), omitimos as unidades. Quando fazemos isso, supomos que a unidade adotada é a do sistema internacional (assim, a unidade em (5) é o metro e em (6) é m/s). Vamos adotar $7.342 \times 10^{22} \,\mathrm{kg}$ como a massa da Lua e $5.972 \times 10^{24} \,\mathrm{kg}$ como a massa da Terra.

Com as informações acima, usando (1), vemos que

$$F_0 = (-2.21946 \times 10^{20}, 0) \tag{7}$$

é a força que age sobre a Lua no instante $t_0 = 0$ (os números são dados com no máximo 6 dígitos significativos). Executando os passos (2), (3) e (4) com $\Delta t = 3600$ s (uma hora), vemos que a posição da Lua no instante $t_1 = 3600$ é

$$r(t_1) = r(3600) = (3.62961 \times 10^8, 3.8592 \times 10^6).$$
 (8)

A força que age na Lua no instante $t_1 = 3600$ é

$$F_1 = (-2.21956 \times 10^{20}, -2.35996 \times 10^{18}), \tag{9}$$

e executando os (2), (3) e (4) com $\Delta t = 3600\,\mathrm{s}$ novamente, vemos que a posição da Lua no instante $t_2 = 7200$ é

$$r(t_2) = r(7200) = (3.62882 \times 10^8, 7.71798 \times 10^6).$$
 (10)

Podemos repetir o processo acima para obter a posição da Lua a cada hora. Repetindo o processo até o instante $T=864000=10\times24\times3600$ (dez dias), obtemos as posições $r(3600),\,r(2\times3600),\,...,\,r(240\times3600)$. O arquivo https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/moon_10.out contém a posição original $(3.63\times10^8,0)$ da Lua e as 240 posições acima. O mar de números no arquivo moon_10.out não é muito fácil de se "entender". Plotando os 241 pontos em moon_10.out, obtemos a imagem no arquivo https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/moon_10.pdf. Vemos assim que nossa simulação faz sentido.

Executando o processo acima para $T=2332800~(27~{\rm dias})~{\rm e}~T=86400000~(1000~{\rm dias}),$ obtemos os arquivos moon_27.* e moon_1000.* em https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/.

Se pomos como velocidade inicial da Lua

$$(v_x^{(0)}, v_y^{(0)}) = (0.0, 1400), (11)$$

e simulamos sua trajetória por 250 dias e por 300 dias, obtemos os arquivos moon14_250.*

e moon14_300.* em https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/. Note como a órbita da Lua é diferente com (12). Compare os valores em (6) e (12) para entender de onde vem a diferença, pelo menos intuitivamente.

Veja como seria a trajetória da Lua (300 dias) com velocidade inicial

$$(v_x^{(0)}, v_y^{(0)}) = (0.0, 1500) \tag{12}$$

nos arquivos moon15_300.* em https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/.

Observação. Veremos mais à frente como usar o software gnuplot para produzir imagens como a imagem em moon_10.pdf a partir de arquivos como moon_10.out.

2 Sistema de vários corpos

O material discutido até agora é suficiente para simularmos sistemas celestes com vários corpos. Vamos agora considerar o caso em que temos três corpos B_0 , B_1 e B_2 . Suponha que temos as posições r_0 , r_1 e r_2 e velocidades v_0 , v_1 , e v_2 desses corpos no instante t_0 . Ademais, suponha que esses corpos têm massa m_0 , m_1 e m_2 . Suponha também que queremos descobrir a trajetória desses corpos até um dado instante T, determinando suas posições nos instantes t_0 , $t_1 = t_0 + \Delta t$, $t_2 = t_0 + 2\Delta t$, ..., onde Δt é dado.

Para determinar a posição do corpo B_0 no instante t_1 , determinamos primeiro a força gravitacional F_0 que age sobre B_0 por conta dos corpos B_1 e B_2 (veja a Seção 1.1). Agora executamos os passos (2), (3) e (4) para obter a posição $r_0(t_1)$ de B_0 no instante t_1 . Note que devemos executar o procedimento análogo para os corpos B_1 e B_2 , para obter suas posições $r_2(t_1)$ e $r_3(t_1)$ no instante t_1 . Repetimos esse processo para obter a posições de B_0 , B_1 e B_2 nos instantes t_2 , t_3 , etc.

Exemplo. No que segue, para especificarmos os dados de um corpo no instante $t_0 = 0$, vamos fornecer uma quíntupla, a saber,

$$(r_x, r_y, v_x, v_y, m). (13)$$

Isto é, vamos fornecer as coordenadas da posição do corpo no instante t_0 , as duas componentes do vetor velocidade no instante t_0 , e sua massa. Neste exemplo, temos três corpos B_0 , B_1 e B_2 , caracterizados pelas seguintes três quíntuplas:

$$(0.0, 0.0, 0.0, 0.0, 1.9885 \times 10^{30}),$$
 (14)

$$(1.47095 \times 10^{11}, 0.0, 0.0, 30290, 5.972 \times 10^{27})$$
 (15)

e

$$(1.36732 \times 10^{11}, 0.0, 0.0, 35290, 7.342 \times 22).$$
 (16)

Simulando a evolução de B_0 , B_1 e B_2 com o método acima, usando $\Delta t = 3600$ até T = 31104000 (360 dias), obtemos o arquivo em https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/fun.out. Note que a primeira linha desse arquivo especifica as coordenadas de B_0 , B_1 e B_2 no instante $t_0 = 0$. A segunda linha especifica as coordenadas desses corpos no instante t_1 e assim por diante. Plotando esses pontos, obtemos a imagem em https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/fun.pdf.

3 Seu programa

Neste EP, você deve escrever um programa, digamos ep2.c, que recebe na entrada padrão três quíntuplas especificando três corpos como acima e os valores de T e Δt , e que envia para a saída padrão as coordenadas dos três corpos nos instantes $t_0 = 0$, $t_1 = t_0 + \Delta t$, $t_2 = t_0 + 2\Delta t$, ..., $t_k = t_0 + k\Delta t$, onde k é o maior inteiro tal que $t_k \leq T$.

Exemplo. Com a entrada https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/fun.in, seu programa deve produzir a saída https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/fun.out. De fato, o arquivo fun.out foi obtido executando-se

Se você usa o PowerShell, você precisará fazer

Seu programa será executado como acima, para verificar se ele está de acordo com as especificações do enunciado.

Observação. O cômputo de trajetórias como descrevemos acima envolve aritmética de números em ponto flutuante. Assim sendo, pode ocorrer de seu programa produzir, com entrada fun.in, uma saída que é levemente diferente da saída fun.out fornecida acima, por conta de erros de arredondamento.

Alguns detalhes de implementação. Sua implementação deve conter, obrigatoriamente, as funções cujos protótipos são dados a seguir.

1. Função dist():

```
double dist(double p1x, double p1y, double p2x, double p2y);
```

Esta função devolve a distância entre os pontos (p1x, p1y) e (p2x, p2y).

2. Função forca():

Esta função recebe um caractere $c \in \{'x', 'y'\}$, um inteiro $i \in \{0, 1, 2\}$, e dados que especificam três corpos: corpo B_0 na posição (x_0, y_0) com massa m_0 , corpo B_1 na posição (x_1, y_1) com massa m_1 , e corpo B_2 na posição (x_2, y_2) com massa m_2 . Esta função devolve a componente c da força gravitacional total que os corpos B_j com $j \neq i$ exercem sobre o corpo i.

3. Função atualize():

Esta função recebe a posição (*x, *y), a velocidade (*vx, *vy) e a aceleração (ax, ay) de um corpo em um dado instante, digamos t. Esta função atualiza os valores de (*vx, *vy) e (*x, *y) usando (3) e (4) acima, onde $\Delta t = \mathsf{dt}$, de forma que (*x, *y) torna-se a posição do corpo no instante $t + \Delta t$.

Você poderá usar outras funções, se julgar necessário.

4 gnuplot

Para plotar as saídas produzidas pelo seu programa, você deve usar o programa gnuplot. Para instalar o gnuplot em sua máquina, visite http://www.gnuplot.info. Este software é muito útil e você poderá usá-lo em seus projetos futuros. Para ver umas imagens produzidas pelo gnuplot, veja http://gnuplot.sourceforge.net/demo/.

Você precisará conhecer uns poucos comandos do gnuplot para este EP. Uma vez instalado o gnuplot, execute o gnuplot para obter seu *prompt*:

gnuplot>

Neste *prompt*, execute set size ratio -1:

```
gnuplot> set size ratio -1
```

O comando acima faz com que as "escalas" do eixo x e do eixo y sejam a mesma. O gnuplot tem a noção de diretório corrente. Quando dizemos para o gnuplot plotar os pontos em um arquivo (algo que faremos mais à frente), ele supõe que o arquivo está neste diretório corrente (a menos que especifiquemos o nome do arquivo com seu path name).

Para produzir a imagem no arquivo https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/moon_10.pdf, você pode fazer

```
gnuplot> plot "moon_10.out" w d
```

Omitindo w d (que é uma abreviação de with dots), um símbolo diferente é usado para indicar os pontos. Experimente executar o comando acima sem o w d. É importante observar que, nos exemplos acima, supomos que o arquivo $moon_10.out$ está no diretório corrente do gnuplot.

Para produzir a imagem no arquivo https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/fun.pdf, você pode fazer

```
gnuplot> plot "fun.out" u 1:2 w d t "B0", "" u 3:4 w d t "B1", "" u 5:6 w d t "B2"
```

Acima, u é uma abreviação de using. Quando dizemos u 1:2, estamos pedindo que gnuplot use a primeira e a segunda coluna de números em fun.out como as coordenas x e y dos pontos a serem plotados (com "título" B0).

5 Entrega

Neste EP, você deve entregar seu programa ep2.c. Você pode entregar também até 3 arquivos de entrada (como o arquivo fun.in) e as imagens correspondentes. Se você conseguir produzir entradas que produzem órbitas interessantes, você poderá receber um prêmio (a definir).

6 Mais um exemplo

Damos aqui um sistema interessante de três corpos. Simulamos o sistema durante intervalos de tempo variados, a saber, simulamos com valores de T iguais a 1×10^7 , 2×10^7 , 6.3×10^7 , 6.3×10^7 e 6.5×10^7 . Os arquivos de entrada que usamos são os arquivos 3body.in, 3body_200.in, 3body_630.in, 3body_635.in e 3body_650.in, todos disponíveis em https://www.ime.usp.br/~yoshi/2022i/mac2166/sandbox/EPs/EP2/. As imagens correspondentes aparecem em 3body.pdf, 3body_200.pdf, 3body_630.pdf, 3body_635.pdf e 3body_650.pdf.