COMP 472: Artificial Intelligence Machine Learning port 2 Introduction video #1

Russell & Norvig: Sections 19.1 - 19.2

Next Set of Videos

- 1. Introduction to ML video #/
- 2. Naïve Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Today

- Naïve Bayes Classification
 - Application to Spam Filtering
- Decision Trees
- (Evaluation
- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Remember this slide...

History of AI

- 1980s-2010
- The rise of Machine Learning
 - More powerful CPUs-> usable implementation of neural networks
 - Big data -> Huge data sets are available
 - document repositories for NLP (e.g. emails)
 - billions on images for image retrieval
 - billions of genomic sequences, ...

but Domein Experts

2011: Watson wins at Jeapardy!

still help us determine which features might be relevent

Motivation

- Too many to list here!
 - Recommender systems (eg. Netflix)
 - Pattern Recognition (eg. Handwriting recognition)
 - Detecting credit card fraud
 - Computer vision (eg. Object recognition)
 - Discovering Genetic Causes of Diseases
 - Natural Language Processing (eg. Spam filtering)
 - Speech Recognition / Synthesis
 - Medical Diagnostics
 - Information Retrieval (eg. Image search)
 - Learning heuristics for game playing
 - ...
 - Oh... I'm out of space

What is Machine Learning?

 Learning = crucial characteristic of an intelligent agent

ML

- Constructs algorithms that learn from data
- ie perform tasks that were not explicitly programmed and improve their performance the more tasks they accomplish
- generalize from given experiences and are able to make judgments in new situations

Types of Machine Learning

unlabeled data

unlabeled data

a.ka categorisation labeled data Structure Classification Discovery **Feature** Customer Elicitation Fraud Retention Meaningful Detection compression DIMENSIONALLY Diagnostics REDUCTION Big data Visualisation Forecasting Recommended **SUPERVISED** UNSUPERVISED Predictions Systems **LEARNING** EARNING REGRESSION **Targetted** Process MACHINE Marketing Optimization **LEARNING New Insights** Customer expanple Segmentation REINFORCEMNET Svounting **LEARNING** value Real-Time Decisions Robot Navigation Game AI Skill Aguisition **Learning Tasks** http://www.cognub.com/index.php/cognitive-platform/

Unsupervised learning

We are only given the Xs - not the corresponding f(X)

Types of Learning

- In Supervised learning
 - We are given a training set of (X, f(X)) pairs

big nose	big teeth	big eyes	no moustache	f(X) = not person
small nose	small teeth	small eyes	no moustache	f(X) = person
small nose	big teeth	small eyes	moustache	f(X) = ?

- In Reinforcement learning
 - \square We are not given the (X, f(X)) pairs

- 1					
	small nose	big teeth	small eyes	moustache	f(X) = ?

- But we get a reward when our learned f(X) is right, and we try to maximize the reward
- Goal: maximize the nb of right answers
- In **Unsupervised** learning
 - We are only given the Xs not the corresponding f(X)

big nose	big teeth	big eyes	no moustache	not given
small nose	small teeth	small eyes	no moustache	not given
small nose	big teeth	small eyes	moustache	f(X) = ?

- No teacher involved / Goal: find regularities among the Xs (clustering)
- Data mining

Logical Inference

- Inference: process of deriving new facts from a set of premises
- Types of logical inference:
 - 1. Deduction \checkmark
 - 2. Abduction <
 - 3. Induction & ML from examples

Deduction

- aka Natural Deduction
- Conclusion follows necessary from the premises.
- From $\underline{A} \Rightarrow \underline{B}$ and \underline{A} , we conclude that \underline{B}
- We conclude from the general case to a specific example of the general case
- Ex:

Marcus is a man.

Marcus is mortal.

 $fx man(x) \Rightarrow mortal(x)$ mon(marus)mortal(morus)

Abduction

- Conclusion is one hypothetical (most probable) explanation for the premises
- From $A \Rightarrow B$ and B, we conclude A
- Ex:

Drunk people do not walk straight. Ix drunk(x) => 7 walks(x)

John does not walk straight.

John is drunk.

John is drunk.

Not sound by the sound b

- Not sound... but may be most likely explanation for B
- Used in medicine...
 - \Box in reality... disease \Rightarrow symptoms
 - patient complains about some symptoms... doctor concludes a disease

Induction

- Conclusion about all members of a class from the examination of only a few member of the class.
- From $A \land C \Rightarrow B$ and $A \land D \Rightarrow B$, we conclude $A \Rightarrow B$
- We construct a general explanation based on a specific case.
- Ex:

 New Substitute | All CS students in COMP 472 are smart. $\forall x \in (x) \land (x) \Rightarrow (x) \Rightarrow (x) \land (x) \Rightarrow (x) \land (x) \Rightarrow (x) \land (x) \Rightarrow (x) \land (x) \Rightarrow (x)$
 - Not sound
 - But, can be seen as hypothesis construction or generalisation

Inductive Learning

- = = learning from examples
- Most work in ML
- Training set is given:
 - that includes examples of already classified examples
 - \Box i.e. pairs of (X, f(X))
 - □ Ex:

small nose	big teeth	small eyes	moustache	tiger

- used to "train" a model
- Test setu given:
 - that includes examples of non classified examples
 - for which the model must to make accurate predictions

big nose big teeth small eyes moustache

- Can be seen as learning a function
 - \Box the model uses the training set to find an estimate of the function f(X) given X
 - \Box so that given a new instance X it has never seen before, the model can predict f(X)

supervised borning

Types of Machine Learning

Note: choosing one function over another <u>beyond</u> just looking at the training set is called <u>inductive bias</u> (eg. prefer "smoother" functions)

Inductive Learning Framework

- Input data are represented by a vector of features, X
- Each vector X is a list of (attribute, value) pairs.

 Ex: x = [nose:big] teeth:big, eyes:big, moustache:no]
- The number of attributes is fixed (positive, finite)
- Values can be
 - categorical (aka nominal) unordered values
 - eg. "convertible", "minivan", "SUV", ... "yes", "no"

Note: <u>attribute == feature</u>

- ordinal ordered values
 - e.g., "large", "medium" or "small"
- numerical ordered
 - e.g. frequency of a word in an email (40, 55)
 - e.g. height of a person (1.7, 1.6)
- Each example can be interpreted as a point in a n-dimensional feature space, where n is the number of attributes

Real ML applications typically require hundreds, thousands or millions of examples

Techniques in ML

- Probabilistic Methods
 - output a probability associated with the result of the classification
- Decision Trees
 - Use only discriminating features as questions in a big if-then-else tree
- Neural networks
 - Also called parallel distributed processing or connectionist systems
 - Intelligence arise from having a large number of simple computational units 1 newsh
- **...**

Today

- Introduction to ML
- Naïve Bayes Classification
 - Application to Spam Filtering
- **Decision Trees**
- (Evaluation
- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Up Next

- Introduction to ML
- Naïve Bayes Classification video#2

 Application to Spam Filtering video #3
- 3. Decision Trees
- 4. (Evaluation
- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks