Propositions of solutions for Analysis II by Terence Tao

Frédéric Santos

June 22, 2022

Contents

12 Metric spaces 2

Remarks. The numbering of the Exercises follows the fourth edition of $Analysis\ II$. In order to make the references to $Analysis\ I$ easier, we consider that we begin with Chapter 12 here, as in earlier editions of the textbook. Thus, in particular, a reference to "Exercise 4.3.3" (for instance) will always mean "Exercise 4.3.3 from $Analysis\ I$ ".

12. Metric spaces

Exercise 12.1.1. — Prove Lemma 12.1.1

Consider the sequence $(a_n)_{n=m}^{\infty}$ defined by $a_n := d(x_n, x) = |x_n - x|$ for all $n \ge m$. We have to prove that $\lim_{n\to\infty} a_n = 0$ if and only if $\lim_{n\to\infty} x_n = x$.

- Let be $\varepsilon > 0$. If $\lim_{n \to \infty} a_n = 0$, then there exists an $N \ge m$ such that $|a_n| < \varepsilon$ whenever $n \ge N$. Thus, there exists an $N \ge m$ such that $|x_n x| < \varepsilon$ whenever $n \ge N$, which means that $\lim_{n \to \infty} x_n = x$.
- Let be $\varepsilon > 0$. Conversely, if $\lim_{n \to \infty} x_n = x$, then there exists an $N \ge m$ such that $|x_n x| < \varepsilon$ whenever $n \ge N$. But since $|a_n| := |x_n x|$, it means that $\lim_{n \to \infty} a_n = 0$, as expected.

EXERCISE 12.1.2. — Show that the real line with the metric d(x,y) := |x-y| is indeed a metric space.

Using Proposition 4.3.3, this claim is obvious. All claims (a)–(d) of Definition 12.1.2 are satisfied because:

- (a) comes from Proposition 4.3.3(e)
- (b) also comes from Proposition 4.3.3(e)
- (c) comes from Proposition 4.3.3(f)
- (d) comes from Proposition 4.3.3(g).

EXERCISE 12.1.3. — Let X be a set, and let $d: X \times X \to [0, \infty)$ be a function. With respect to Definition 12.1.2, give an example of a pair (X, d) which...

- (a) obeys the axioms (bcd) but not (a). Consider $X = \mathbb{R}$, and d defined by d(x, x) = 1 and d(x, y) = 5 for all $x \neq y \in \mathbb{R}$.
- (b) obeys the axioms (acd) but not (b). Consider $X = \mathbb{R}$, and d defined by d(x, y) = 0 for all $x, y \in \mathbb{R}$.
- (c) obeys the axioms (abd) but not (c). Consider $X = \mathbb{R}$, and d defined by $d(x, y) = \max(x - y, 0)$ for all $x, y \in \mathbb{R}$.
- (d) obeys the axioms (abc) but not (d). Consider the finite set $X := \{1, 2, 3\}$ and the application d defined by d(1, 2) = d(2, 1) = d(2, 3) = d(3, 2) := 1, and d(1, 3) = d(3, 1) := 5, and d(x, x) = 0 for all $x \in X$.

EXERCISE 12.1.4. — Show that the pair $(Y, d|_{Y\times Y})$ defined in Example 12.1.5 is indeed a metric space.

By definition, since $Y \subseteq X$, we have $x, y \in X$ whenever $x, y \in Y$. And furthermore, since $d|_{Y \times Y}(x, y) := d(x, y)$, then the application $d|_{Y \times Y}$ obeys all four statements (a)–(d) of Definition 12.1.2. Thus, $(Y, d|_{Y \times Y})$ is indeed a metric space.

EXERCISE 12.1.5. — Let $n \ge 1$, and let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be real numbers. Verify the identity $(\sum_{i=1}^n a_i b_i)^2 + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (a_i b_j - a_j b_i)^2 = \sum_{i=1}^n a_i^2 \sum_{j=1}^n b_j^2$, and conclude the Cauchy-Schwarz inequality. Then use the Cauchy-Schwarz inequality to prove the triangle inequality.

Let's prove these three statements.

(i) To prove the first identity, let's use induction on n.

The base case n = 1 is obvious: on the left-hand side, we just get $(a_1b_1)^2$, and on the right-hand side, we get $a_1^2b_1^2$, hence the statement.

Now let's suppose inductively that this identity is true for a given positive integer $n \ge 1$, and let's prove that it is still true for n + 1. We have to prove that

$$\underbrace{\left(\sum_{i=1}^{n+1} a_i b_i\right)^2}_{:=A} + \underbrace{\frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2}_{:=B} = \underbrace{\left(\sum_{i=1}^{n+1} a_i^2\right) \left(\sum_{j=1}^{n+1} b_j^2\right)}_{:=C}$$
(12.1)

where we gave a name to each part of the identity for an easier computation below. Indeed,

• for A, we have

$$A := \left(\sum_{i=1}^{n+1} a_i b_i\right)^2$$

$$= \left(a_{n+1} b_{n+1} + \sum_{i=1}^n a_i b_i\right)^2$$

$$= \left(a_{n+1} b_{n+1}\right)^2 + \left(\sum_{i=1}^n a_i b_i\right)^2 + 2\left(a_{n+1} b_{n+1}\right) \sum_{i=1}^n a_i b_i$$

• for B, we have

$$B := \frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2 + \frac{1}{2} \sum_{j=1}^{n+1} (a_{n+1} b_j - a_j b_{n+1})^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 + \underbrace{\frac{1}{2} \sum_{i=1}^{n} (a_i b_{n+1} - a_{n+1} b_i)^2}_{:=1/2 \times S} + \underbrace{\frac{1}{2} \sum_{j=1}^{n} (a_{n+1} b_{n+1} - b_{n+1} a_{n+1})^2}_{=0}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 + \sum_{k=1}^{n} (a_k b_{n+1} - a_{n+1} b_k)^2$$

• and thus, for A + B, we now use the induction hypothesis (IH) to get:

$$\begin{split} A+B &:= (a_{n+1}b_{n+1})^2 + \left(\sum_{i=1}^n a_ib_i\right)^2 + 2(a_{n+1}b_{n+1})\sum_{i=1}^n a_ib_i \\ &+ \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n (a_ib_j - a_jb_i)^2 + \sum_{k=1}^n (a_kb_{n+1} - a_{n+1}b_k)^2 \\ &= \underbrace{\left(\sum_{i=1}^n a_ib_i\right)^2 + \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n (a_ib_j - a_jb_i)^2}_{\text{apply (IH) here}} \\ &+ (a_{n+1}b_{n+1})^2 + 2(a_{n+1}b_{n+1})\sum_{i=1}^n a_ib_i + \sum_{k=1}^n (a_kb_{n+1} - a_{n+1}b_k)^2 \\ &= \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{j=1}^n b_j^2\right) \\ &+ (a_{n+1}b_{n+1})^2 + 2(a_{n+1}b_{n+1})\sum_{i=1}^n a_ib_i + \sum_{k=1}^n (a_kb_{n+1} - a_{n+1}b_k)^2 \\ &= \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{j=1}^n b_j^2\right) + (a_{n+1}b_{n+1})^2 \\ &+ 2\sum_{i=1}^n a_ia_{n+1}b_ib_{n+1} + \sum_{i=1}^n (a_i^2b_{n+1}^2 - 2a_ib_{n+1}a_{n+1}b_i + a_{n+1}^2b_i^2) \\ &= \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{j=1}^n b_j^2\right) + \sum_{i=1}^n (a_i^2b_{n+1}^2 + a_{n+1}^2b_i^2) \\ &= \left(\sum_{i=1}^{n+1} a_i^2\right) \left(\sum_{j=1}^{n+1} b_j^2\right) \\ &= C \end{split}$$

so that the identity is indeed true for all natural number n.

(ii) We can use this identity to prove the Cauchy-Schwarz identity,

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leqslant \left(\sum_{i=1}^{n} a_i^2 \right)^{1/2} \left(\sum_{i=1}^{n} b_i^2 \right)^{1/2}. \tag{12.2}$$

Indeed, since $B \ge 0$ in the identity (12.1), we have

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leqslant \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{j=1}^{n} b_j^2\right)$$

and thus, taking the square root on both sides, we get (12.2), as expected.

(iii) Finally, we can use the Cauchy-Schwarz inequality to prove the triangle inequality.

We have

$$\sum_{i=1}^{n} (a_i^2 + b_i^2) = \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2 \sum_{i=1}^{n} a_i b_i$$

$$\leq \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2 \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

$$\leq \left(\left(\sum_{i=1}^{n} a_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}\right)^2$$
(by eq. (12.2))

and, since everything is positive, we get the triangle inequality by taking square roots on both sides.

Exercise 12.1.6. — Show that (\mathbb{R}^n, d_{l^2}) in Example 12.1.6 is indeed a metric space.

We have to show the four axioms of Definition 12.1.2.

- (a) For all $x \in \mathbb{R}^n$, we have $d_{l^2}(x,x) = \sqrt{\sum_{i=1}^n (x_i x_i)^2} = 0$, as expected.
- (b) Positivity: for all $x \neq y \in \mathbb{R}^n$, there exists at least one $1 \leq i \leq n$ such that $x_i \neq y_i$, so that $(x_i y_i)^2 > 0$, and $d_{l^2}(x, y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2} > 0$, as expected.
- (c) Symmetry: for all $x, y \in \mathbb{R}^n$, we have

$$d_{l^2}(y,x) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = d_{l^2}(x,y)$$

as expected.

(d) Triangle inequality: for all $x, y, z \in \mathbb{R}^n$, we have

$$d_{l^{2}}(x,z) := \left(\sum_{i=1}^{n} (x_{i} - z_{i})^{2}\right)^{1/2}$$

$$= \left(\sum_{i=1}^{n} (a_{i} + b_{i})^{2}\right)^{1/2} \quad \text{with } a_{i} := x_{i} - y_{i} \text{ and } b_{i} := y_{i} - z_{i}$$

$$\leqslant \left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1/2} + \left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1/2} \quad \text{(Exercise 12.1.5(iii))}$$

$$\leqslant \left(\sum_{i=1}^{n} (x_{i} - y_{i})^{2}\right)^{1/2} + \left(\sum_{i=1}^{n} (y_{i} - z_{i})^{2}\right)^{1/2}$$

$$\leqslant d_{l^{2}}(x, y) + d_{l^{2}}(y, z)$$

as expected.

Thus, (\mathbb{R}^n, d_{l^2}) is indeed a metric space.

EXERCISE 12.1.7. — Show that (\mathbb{R}^n, d_{l^1}) in Example 12.1.7 is indeed a metric space.

Once again, let's show the four axioms of Definition 12.1.2.

- (a) For all $x \in \mathbb{R}^n$, we have $d_{l^1}(x,x) = \sum_{i=1}^n |x_i x_i| = 0$, as expected.
- (b) Positivity: for all $x \neq y \in \mathbb{R}^n$, there exists at least one $1 \leq i \leq n$ such that $x_i \neq y_i$, so that $|x_i y_i| > 0$, and $d_{l^1}(x, y) = \sum_{i=1}^n |x_i y_i| > 0$, as expected.
- (c) Symmetry: for all $x, y \in \mathbb{R}^n$, we have

$$d_{l^1}(y,x) = \sum_{i=1}^n |y_i - x_i| = \sum_{i=1}^n |x_i - y_i| = d_{l^1}(x,y)$$

as expected.

(d) Triangle inequality: we already know from Proposition 4.3.3(g) (generalized to real numbers) that we have the triangle inequality $|a-c| \leq |a-b| + |b-c|$ for all $a, b, c \in \mathbb{R}$. Thus, for all $x, y, z \in \mathbb{R}^n$, we have

$$d_{l^1}(x,z) := \sum_{i=1}^n |x_i - z_i| \le \sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|) =: d_{l^1}(x,y) + d_{l^1}(y,z)$$

as expected.

Thus, (\mathbb{R}^n, d_{l^1}) is indeed a metric space.

Exercise 12.1.8. — Prove the two inequalities in equation (12.1).

We have to prove that for all $x, y \in \mathbb{R}^n$, we have

$$d_{l^2}(x,y) \le d_{l^1}(x,y) \le \sqrt{n} \, d_{l^2}(x,y)$$
 (12.3)

• The first inequality, since everything is non-negative, is equivalent to $d_{l^2}(x,y)^2 \leq d_{l^1}(x,y)^2$, and we will prove it in this form.

Indeed, using a trivial product expansion, we have

$$d_{l_1}(x,y)^2 := \left(\sum_{i=1}^n |x_i - y_i|\right)^2$$

$$= \left(\sum_{i=1}^n |x_i - y_i|\right) \times \left(\sum_{i=1}^n |x_i - y_i|\right)$$

$$= \sum_{i=1}^n |x_i - y_i|^2 + \sum_{1 \le i, j \le n; i \ne j} |x_i - y_i| \times |x_j - y_j|$$

$$\geqslant \sum_{i=1}^n |x_i - y_i|^2 =: d_{l^2}(x,y)^2$$

as expected.

• For the second inequality, we use the Cauchy-Schwarz inequality, which says that

$$d_{l^{1}}(x,y) := \sum_{i=1}^{n} |x_{i} - y_{i}|$$

$$= \left| \sum_{i=1}^{n} |x_{i} - y_{i}| \times 1 \right|$$

$$\leq \left(\sum_{i=1}^{n} |x_{i} - y_{i}|^{2} \right)^{1/2} \left(\sum_{i=1}^{n} 1^{2} \right)^{1/2}$$

$$\leq d_{l^{2}}(x,y) \times \sqrt{n}$$

as expected.

Exercise 12.1.9. — Show that the pair $(\mathbb{R}^n, d_{l^{\infty}})$ in Example 12.1.9 is a metric space.

Once again, let's show the four axioms of Definition 12.1.2.

- (a) For all $x \in \mathbb{R}^n$, we clearly have $d_{l^{\infty}}(x,x) = \sup\{|x_i x_i| : 1 \le i \le n\} = 0$, as expected.
- (b) Positivity: for all $x \neq y \in \mathbb{R}^n$, there exists at least one $1 \leq j \leq n$ such that $x_j \neq y_j$. Thus $|x_j y_j| > 0$, and $d_{l^{\infty}}(x, y) = \sup\{|x_i y_i| : 1 \leq i \leq n\} \geqslant |x_j y_j| > 0$, as expected.
- (c) Symmetry: for all $x, y \in \mathbb{R}^n$, we have

$$d_{l^{\infty}}(x,y) = \sup\{|x_i - y_i| : 1 \leqslant i \leqslant n\} = \sup\{|y_i - x_i| : 1 \leqslant i \leqslant n\} = d_{l^{\infty}}(y,x)$$

as expected.

(d) Triangle inequality. Let be $x, y, z \in \mathbb{R}^n$. We have $|x_i - z_i| \leq |x_i - y_i| + |y_i - z_i|$ for all $1 \leq i \leq n$, by Proposition 4.3.3(g). But, by definition of the supremum, we have $|x_i - y_i| \leq d_{l^{\infty}}(x, y)$ and $|y_i - z_i| \leq d_{l^{\infty}}(y, z)$ for all $1 \leq i \leq n$. Thus, we have $|x_i - z_i| \leq d_{l^{\infty}}(x, y) + d_{l^{\infty}}(y, z)$ for all $1 \leq i \leq n$; i.e., $d_{l^{\infty}}(x, y) + d_{l^{\infty}}(y, z)$ is an upper bound of the set $\{|x_i - z_i| : 1 \leq i \leq n\}$. By definition of the supremum, it implies that

$$d_{l^{\infty}}(x,z) := \sup\{|x_i - z_i| : 1 \le i \le n\} \le d_{l^{\infty}}(x,y) + d_{l^{\infty}}(y,z)$$

as expected.

Thus, (\mathbb{R}^n, d_{l^1}) is indeed a metric space.

Exercise 12.1.10. — Prove the two inequalities in equation (12.2).

We have to prove that for all $x, y \in \mathbb{R}^n$,

$$\frac{1}{\sqrt{n}}d_{l^2}(x,y) \leqslant d_{l^{\infty}}(x,y) \leqslant d_{l^2}(x,y).$$

First, a preliminary remark. By definition, we have $d_{l^{\infty}}(x,y) := \sup\{|x_i - y_i| : 1 \le i \le n\}$ for all $x, y \in \mathbb{R}^n$. Since this distance is defined as the supremum of a finite set, we know (see Chapter 8 of *Analysis I*) that there exists a $1 \le m \le n$ such that $d_{l^{\infty}}(x,y) = |x_m - y_m|$ (the supremum belongs to the set). The index "m" will have this meaning below.

• Let's prove the first inequality.

$$\frac{1}{\sqrt{n}}d_{l^{2}}(x,y) := \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-y_{i})^{2}}$$

$$\leq \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{m}-y_{m})^{2}}$$

$$\leq \sqrt{\frac{n}{n}(x_{m}-y_{m})^{2}}$$

$$= |x_{m}-y_{m}| =: d_{l^{\infty}}(x,y)$$

as expected.

• Now we prove the second one. We have

$$d_{l^{2}}(x,y) := \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}}$$

$$= \sqrt{(x_{m} - y_{m})^{2} + \sum_{1 \leq i \leq n; i \neq m} (x_{i} - y_{i})^{2}}$$

$$\geqslant \sqrt{(x_{m} - y_{m})^{2}} = |x_{m} - y_{m}| =: d_{l^{\infty}}(x, y)$$

as expected.

EXERCISE 12.1.11. — Show that the discrete metric (X, d_{disc}) in Example 12.1.11 is indeed a metric space.

Once again, let's show the four axioms of Definition 12.1.2.

- (a) For all $x \in X$, we have $d_{\text{disc}}(x,x) := 0$ by definition, so that there is nothing to prove here.
- (b) Positivity: for all $x \neq y \in X$, we have $d_{\text{disc}}(x,y) := 1 > 0$ by definition, so that there's still nothing to prove.
- (c) Symmetry: for all $x, y \in X$, we have $d_{\text{disc}}(x, y) = d_{\text{disc}}(y, x) = 1$, so that d_{disc} obeys the symmetry property.
- (d) Triangle inequality. Let be $x, y, z \in X$, and let's consider $d_{\text{disc}}(x, z)$.
 - If x = z, then $d_{\text{disc}}(x, z) = 0$. And since d_{disc} is a non-negative application, we clearly have $0 =: d_{\text{disc}}(x, z) \leq d_{\text{disc}}(x, y) + d_{\text{disc}}(y, z)$ for all $y \in X$.
 - If $x \neq z$, then we cannot have both x = y and y = z (it would be a clear contradiction with $x \neq z$). Thus, at least one of the propositions " $x \neq y$ ", " $y \neq z$ " is true. Another way to say that is $d_{\text{disc}}(x,y) + d_{\text{disc}}(y,z) \geq 1$. But since $d_{\text{disc}}(x,z) := 1$, we have actually $d_{\text{disc}}(x,y) + d_{\text{disc}}(y,z) \geq d_{\text{disc}}(x,z)$, as expected.

Exercise 12.1.12. — Prove Proposition 12.1.18.

First, recall that for all $x, y \in \mathbb{R}^n$, we have, from Examples 12.1.7 and 12.1.9,

$$\frac{1}{\sqrt{n}} d_{l^2}(x, y) \leqslant d_{l^{\infty}}(x, y) \leqslant d_{l^2}(x, y) \leqslant d_{l^1}(x, y) \leqslant \sqrt{n} d_{l^2}(x, y).$$

Note that n is a real constant here.

• Let's prove that $(a) \Longrightarrow (b)$. If $\lim_{k\to\infty} d_{l^2}(x^{(k)},x) = 0$, then by the limit laws, the sequence $t_k := \sqrt{n} d_{l^2}(x^{(k)},x)$ also converges to 0 as $k\to\infty$, since \sqrt{n} is a constant real number. Thus, we have

$$d_{l^2}(x^{(k)}, x) \leq d_{l^1}(x^{(k)}, x) \leq \sqrt{n} d_{l^2}(x^{(k)}, x)$$

and, by the squeeze test, this implies that $\lim_{k\to\infty} d_{l^1}(x^{(k)}, x)$ as expected.

• Let's prove that $(b) \implies (c)$. If $\lim_{k\to\infty} d_{l^1}(x^{(k)},x) = 0$, then we have

$$0 \le d_{l^{\infty}}(x^{(k)}, x) \le d_{l^{1}}(x^{(k)}, x)$$

and, by the squeeze test, this implies that $\lim_{k\to\infty} d_{l^{\infty}}(x^{(k)}, x)$ as expected.

- Let's prove that $(c) \Longrightarrow (d)$. Suppose that $\lim_{k\to\infty} d_{l^{\infty}}(x^{(k)},x) = 0$. Then, for all $1 \leqslant j \leqslant n$, we have $0 \leqslant |x_j^k x_j| \leqslant d_{l^{\infty}}(x^{(k)},x)$. Still by the squeeze test, this implies that $\lim_{k\to\infty} |x_j^k x_j| = 0$, i.e. that $(x_j^k)_{k=m}^{\infty}$ converges to x_j as $k\to\infty$ (by Lemma 12.1.1), as expected.
- Finally, let's prove that $(d) \implies (a)$. Using the definition of convergence is more appropriate here. Let be $\varepsilon > 0$ a positive real number, and let be $1 \le j \le n$. By definition, there exists a natural number $N \ge m$ such that $|x_j^{(k)} x_j| \le \varepsilon/\sqrt{n}$ whenever $k \ge N$. Thus, if $k \ge N$, we have

$$d_{l^2}(x^{(k)}, x) := \sqrt{\sum_{j=1}^n (x_j^{(k)} - x_j)^2} \leqslant \sqrt{\sum_{j=1}^n \frac{\varepsilon^2}{n}} \leqslant \varepsilon$$

so that $\lim_{k\to\infty} d_{l^2}(x^{(k)}, x) = 0$, i.e., $(x^k)_{k=m}^{\infty}$ converges to x as $k\to\infty$ in the l^2 metric (by Lemma 12.1.1), as expected.

Exercise 12.1.13. — Prove Proposition 12.1.19.

Let be $(x^{(n)})_{n=m}^{\infty}$ a sequence of elements of a set X.

- First suppose that $(x^{(n)})_{n=m}^{\infty}$ is eventually constant. Thus, by definition, there exists an $N \ge m$ and an element $x \in X$ such that $(x^{(n)})_{n=m}^{\infty} = x$ for all $n \ge N$. This implies that we have $d_{\text{disc}}(x^{(n)}, x) = 0$ for all $n \ge N$. In particular, for all $n \ge 0$, we have $d_{\text{disc}}(x^{(n)}, x) \le \varepsilon$ whenever $n \ge N$, so that $(x^{(n)})_{n=m}^{\infty}$ indeed converges to $n \ge N$ with respect to $n \ge N$.
- Conversely, suppose that $(x^{(n)})_{n=m}^{\infty}$ converges to x with respect to d_{disc} . Let be $\varepsilon = 1/2$. By definition, there exists an $N \ge m$ such that $d_{\text{disc}}(x^{(n)}, x) \le 1/2$ whenever $n \ge N$. Since $d_{\text{disc}}(x^{(n)}, x)$ cannot be 1, it is necessarily equal to 0, so that $x^{(n)} = x$ whenever $n \ge N$. Thus, the sequence $x^{(n)}$ is indeed eventually constant.

Exercise 12.1.14. — Prove Proposition 12.1.20.

Suppose that we have $\lim_{n\to\infty} d(x^{(n)}, x) = 0$ and $\lim_{n\to\infty} d(x^{(n)}, x') = 0$. Suppose, for the sake of contradiction, that we have $x \neq x'$. Thus, the real number $\varepsilon := \frac{d(x,x')}{3}$ is positive.

Since $x^{(n)}$ converges to x, there exists a $N_1 \ge m$ such that $d(x^{(n)}, x) \le \varepsilon$ whenever $n \ge N_1$. Similarly, since $x^{(n)}$ converges to x', there exists a $N_2 \ge m$ such that $d(x^{(n)}, x') \le \varepsilon$ whenever $n \ge N_2$.

By the triangle inequality, we thus have, for all $n \ge \max(N_1, N_2)$,

$$d(x, x') \leqslant d(x, x^{(n)}) + d(x^{(n)}, x') \leqslant \varepsilon + \varepsilon = \frac{2}{3}d(x, x')$$

which is a contradiction (since d(x, x') > 0 by hypothesis).

Thus, the limit is unique, and we must have x = x'.

EXERCISE 12.1.15. — Let be $X := \{(a_n)_{n=0}^{\infty} : \sum_{n=0}^{\infty} |a_n| < \infty \}$. We define on this space the metrics $d_{l^1}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) := \sum_{n=0}^{\infty} |a_n - b_n|$, and $d_{l^{\infty}}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) := \sup_{n \in \mathbb{N}} |a_n - b_n|$.

We have to prove the following statements.

1. d_{l^1} is a metric on X.

We have to prove the four axioms of Definition 12.1.2.

- (a) Let be $(a_n)_{n=0}^{\infty} \in X$. We have $d_{l^1}((a_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}) = \sum_{n=0}^{\infty} |a_n a_n| = 0$, as expected.
- (b) Let be $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty}$ two distinct elements of X. Since they are distinct, there exists at least one $m \in \mathbb{N}$ such as $|a_m b_m| > 0$. Thus, $d_{l^1}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) = \sum_{n=0}^{\infty} |a_n b_n| \ge |a_m b_m| > 0$, as expected.
- (c) Symmetry: we clearly have

$$d_{l^1}((b_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}) = \sum_{n=0}^{\infty} |b_n - a_n| = \sum_{n=0}^{\infty} |a_n - b_n| = d_{l^1}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}).$$

(d) Finally, let's prove the triangle inequality. Let be $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty}$, $(c_n)_{n=0}^{\infty} \in X$. Since we have the triangle inequality for the usual distance d on \mathbb{R} (i.e., we have $|a_n - c_n| \leq |a_n - b_n| + |b_n - c_n|$ for all $n \in \mathbb{N}$), we have immediately

$$d_{l^{1}}((a_{n})_{n=0}^{\infty}, (c_{n})_{n=0}^{\infty}) := \sum_{n=0}^{\infty} |a_{n} - c_{n}|$$

$$\leqslant \sum_{n=0}^{\infty} (|a_{n} - b_{n}| + |b_{n} - c_{n}|) \text{ (consequence of Prop. 7.1.11(h))}$$

$$\leqslant \sum_{n=0}^{\infty} |a_{n} - b_{n}| + \sum_{n=0}^{\infty} |b_{n} - c_{n}| \text{ (by Proposition 7.2.14(a))}$$

$$\leqslant d_{l^{1}}((a_{n})_{n=0}^{\infty}, (b_{n})_{n=0}^{\infty}) + d_{l^{1}}((b_{n})_{n=0}^{\infty}, (c_{n})_{n=0}^{\infty}).$$

Thus, d_{l^1} is indeed a metric on X.

2. $d_{l^{\infty}}$ is a metric on X.

Once again, we have to prove the four axioms of Definition 12.1.2.

- (a) Let be $(a_n)_{n=0}^{\infty} \in X$. We have $d_{l^{\infty}}((a_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}) = \sup_{n \in \mathbb{N}} |a_n a_n| = 0$, as expected.
- (b) Let be $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty}$ two distinct elements of X. Since they are distinct, there exists at least one $m \in \mathbb{N}$ such as $|a_m b_m| > 0$. Thus, $d_{l^{\infty}}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) = \sup_{n \in \mathbb{N}} |a_n b_n| \ge |a_m b_m| > 0$, as expected.
- (c) Symmetry: we clearly have

$$d_{l^{\infty}}((b_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}) = \sup_{n \in \mathbb{N}} |b_n - a_n| = \sup_{n \in \mathbb{N}} |a_n - b_n| = d_{l^{\infty}}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}).$$

(d) Finally, let's prove the triangle inequality. Let be $(a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (c_n)_{n=0}^{\infty} \in X$. Since we have the triangle inequality for the usual distance d on \mathbb{R} (i.e., we have $|a_n-c_n| \leq |a_n-b_n|+|b_n-c_n|$ for all $n \in \mathbb{N}$), we have immediately $|a_m-c_m| \leq \sup_{n \in \mathbb{N}} |a_n-b_n|+\sup_{n \in \mathbb{N}} |b_n-c_n|$ for all $m \in \mathbb{N}$, by definition of the supremum. In other words, $(\sup_{n \in \mathbb{N}} |a_n-b_n|+\sup_{n \in \mathbb{N}} |b_n-c_n|)$ is an upper bound for the set $\{|a_m-c_m|: m \in \mathbb{N}\}$. Thus we have, still by definition of the supremum, $\sup_{n \in \mathbb{N}} |a_n-c_n| \leq \sup_{n \in \mathbb{N}} |a_n-b_n|+\sup_{n \in \mathbb{N}} |b_n-c_n|$, as expected.

Thus, $d_{l^{\infty}}$ is indeed a metric on X.

3. There exist sequences $x^{(1)}$, $x^{(2)}$, ..., of elements of X (i.e., sequences of sequences) which are convergent with respect to $d_{l^{\infty}}$, but are not convergent with respect to $d_{l^{1}}$.

Here we are dealing with sequences of sequences: we have a sequence $(x^{(k)})_{k=1}^{\infty}$ where each $x^{(k)}$ is itself a sequence of real numbers. Thus, let's define $(x^{(k)})_{k=1}^{\infty}$ as follows:

$$x_n^{(k)} := \begin{cases} 1/(k+1) & \text{if } 0 \leqslant n \leqslant k \\ 0 & \text{if } n > k. \end{cases}$$

Just to make things clearer, we have for instance

$$x^{(1)} := \frac{1}{2}, \frac{1}{2}, 0, 0, 0, \dots$$

$$x^{(2)} := \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, \dots$$

$$x^{(3)} := \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, \dots$$

Also, let be the null sequence $(a_n)_{n=0}^{\infty}$ defined by $a_n := 0$ for all $n \in \mathbb{N}$. Thus:

• $(x^{(k)})_{k=1}^{\infty}$ converges to $(a_n)_{n=0}^{\infty}$ w.r.t. the metric $d_{l^{\infty}}$. Indeed, if we consider a given positive integer k (fixed), we have

$$|x^{(k)} - a_n| = |x^{(k)}| = \begin{cases} 1/(k+1) & \text{if } 0 \le n \le k \\ 0 & \text{if } n > k. \end{cases}$$

so that $d_{l^{\infty}}\left((x_n^{(k)})_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}\right) := \sup_{n \in \mathbb{N}} |x^{(k)} - a_n| = \frac{1}{k+1}.$

Thus, $\lim_{k\to\infty} d_{l^{\infty}}\left((x_n^{(k)})_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}\right) = 0$, or in other words, $(x^{(k)})_{k=1}^{\infty}$ converges to $(a_n)_{n=0}^{\infty}$ w.r.t. the metric $d_{l^{\infty}}$ in X.

• But $(x^{(k)})_{k=1}^{\infty}$ does not converges to $(a_n)_{n=0}^{\infty}$ w.r.t. the metric d_{l^1} . Indeed, we have, for each given (fixed) k,

$$d_{l^1}\left((x_n^{(k)})_{n=0}^{\infty},(a_n)_{n=0}^{\infty}\right) = \sum_{n=0}^k \frac{1}{k+1} = 1$$

Thus, we clearly do not have $\lim_{k\to\infty} d_{l^1}\left((x_n^{(k)})_{n=0}^{\infty},(a_n)_{n=0}^{\infty}\right)=0$, i.e., $(x^{(k)})_{k=1}^{\infty}$ does not converge to $(a_n)_{n=0}^{\infty}$ w.r.t. the metric d_{l^1} .

4. Conversely, any sequence which converges with respect to d_{l^1} also converges with respect to $d_{l^{\infty}}$.

Suppose, for the sake of contradiction, that $(x^{(k)})_{k=1}^{\infty}$ does not converge to $(a_n)_{n=0}^{\infty}$ w.r.t. the metric $d_{l^{\infty}}$, but does converge to $(a_n)_{n=0}^{\infty}$ w.r.t. the metric d_{l^1} .

In this case, there exists a $\varepsilon > 0$ such that, for all $k \ge 1$, we have $(\sup_{n \ge 0} |x_n^{(k)} - a_n|) > \varepsilon$. In particulier, for all $k \ge 1$ and all $n \ge 0$, we have $|x_n^{(k)} - a_n| > \varepsilon$. Thus, $\sum_{n=0}^{\infty} |x_n^{(k)} - a_n|$ is not even a convergent series, and we cannot have $\lim_{k \to \infty} \left(\sum_{n=0}^{\infty} |x_n^{(k)} - a_n|\right) = 0$.

Note that this exercise actually shows that in this space X, the metrics are not equivalent; instead, the convergence in the taxi cab metric is stronger than the convergence in the sup norm metric. Thus, Proposition 12.1.18 is not true for any metric space.

EXERCISE 12.1.16. — Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be two sequences in a metric space (X,d). Suppose that $(x_n)_{n=1}^{\infty}$ converges to a point $x \in X$, and $(y_n)_{n=1}^{\infty}$ converges to a point $y \in X$. Show that $\lim_{n\to\infty} d(x_n,y_n) = d(x,y)$.

On the one hand, the triangle inequality applied two times to d gives us

$$d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n)$$

but this is only half of what we need to prove the result.

Similarly, we have

$$d(x,y) \leq d(x,x_n) + d(x_n,y_n) + d(y_n,y)$$

so that we can combine the previous two inequalities to get

$$-d(x_n, x) - d(y_n, y) \le d(x_n, y_n) - d(x, y) \le d(x_n, x) + d(y_n, y)$$

i.e.,

$$|d(x_n, y_n) - d(x, y)| \le d(x_n, x) + d(y_n, y).$$

Let be $\varepsilon > 0$. By hypothesis, there exists a $N_1 \ge 1$ such that $d(x_n, x) \le \varepsilon/2$ whenever $n \ge N_1$. Similarly, there exists a $N_2 \ge 1$ such that $d(y_n, y) \le \varepsilon/2$ whenever $n \ge N_2$. Thus, if we set $N := \max(N_1, N_2)$, then for all $n \ge N$ we have

$$|d(x_n, y_n) - d(x, y)| \le d(x_n, x) + d(y_n, y) \le 2\varepsilon/2 \log \varepsilon$$

which shows that $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$, as expected.

Exercise 12.2.1. — Verify the claims in Example 12.2.8

Let be (X, d_{disc}) a metric space, and E a subset of X.

- Let be $x \in E$. Then x is an interior point of E. Indeed, we have $B(x, 1/2) = \{x\} \subseteq E$.
- Let be $y \notin E$. Then y is an exterior point of E. Indeed, we have $B(y, 1/2) \cap E = \{y\} \cap E = \emptyset$.
- Finally, there are no boundary points of E in (X, d_{disc}) . Indeed, let be r > 0 and any $x \in X$. We will always have $B(x, r) = \{x\}$ by definition of the discrete metric d_{disc} . Thus, we have either $x \in E$ and then $x \in \text{int}(E)$, or $x \notin E$ and then $x \in \text{ext}(E)$. Thus, E has no boundary points.

Exercise 12.2.2. — Prove Proposition 12.2.10.

We have to prove the following implications:

- Let's show that $(a) \Longrightarrow (b)$. We will use the contrapositive, assuming that x_0 is neither an interior point of E, nor a boundary point of E. By definition, it means that x_0 is an exterior point of E, i.e. that there exists r > 0 such that $B(x_0, r) \cap E = \emptyset$. This is precisely the negation of x_0 being an adherent point of E. Thus, we have showed that if x_0 is an adherent of of E, it is either an interior point of a boundary point.
- Let's show that $(b) \implies (c)$. Let be a positive integer n > 0, and suppose that x_0 is either an interior point of E, or a boundary point of E. In either case, the set $A_n := B(x_0, 1/n) \cap E$ is non empty, i.e., there exists $a_n \in X$ such that $d(a_n, x_0) < 1/n$. By the (countable) axiom of choice, we can define a sequence $(a_n)_{n=1}^{\infty}$ such that $a_n \in A_n$ for all $n \ge 1$.

Let be $\varepsilon > 0$. There exists N > 0 such that $1/N < \varepsilon$ (Exercise 5.4.4). Thus, for all $n \ge N$, we have

$$d(a_n, x_0) < \frac{1}{n} \leqslant \frac{1}{N} < \varepsilon$$

i.e., the sequence $(a_n)_{n=1}^{\infty}$ converges to x_0 with respect to the metric d, as expected.

• Finally, let's show that $(c) \Longrightarrow (a)$. Let be r > 0. If $(a_n)_{n=1}^{\infty}$ in E converges to x_0 with respect to d, then there exists a n such that $d(x_0, a_n) < r$. But since $a_n \in E$, it means that $B(x_0, r) \cap E$ is non empty, i.e. that x_0 is an adherent point of E.

Exercise 12.2.3. — Prove Proposition 12.2.5.

Let be (X, d) a metric space.

(a) Let be $E \subseteq X$. First suppose that E is open; this means that $E \cap \partial E = \emptyset$. Let be $x \in E$, then we have $x \notin \partial E$. But since $x \in E$, we have $x \in \overline{E}$, and thus $x \in \operatorname{int}(E)$ by Proposition 12.2.10(b). We have shown that $x \in E \implies x \in \operatorname{int}(E)$, and since the converse implication is trivial (Remark 12.2.6), we have $E = \operatorname{int}(E)$ as expected.

Now suppose that $E = \operatorname{int}(E)$. Let be $x \in E$. We thus have $x \in \operatorname{int}(E)$. By definition, x is thus not a boundary point of E, i.e. $x \notin \partial E$. This means that $E \cap \partial E = \emptyset$, i.e. that E is open, as expected.

- (b) Let be $E \subseteq X$. First suppose that E is closed; i.e. that $\partial E \subseteq E$. Let be $x \in \overline{E}$. By Proposition 12.2.10, we have $\overline{E} = \operatorname{int}(E) \cup \partial E$; such that \overline{E} is the union of two subsets of E, and thus is itself a subset of E, as expected.
 - Conversely, suppose that $\overline{E} \subseteq E$. It means that $\operatorname{int}(E) \cup \partial E \subseteq E$, and in particular that $\partial E \subseteq E$, i.e. that E is closed, as expected.
- (c) Let be $x_0 \in X$, r > 0 and $E := B(x_0, r)$. To show that E is open, we must show that E = int(E) (by Proposition 1.2.15(a)), and in particular that $E \subseteq \text{int}(E)$ (the converse inclusion being trivial). Let be $x \in E$, and let's show that $x \in \text{int}(E)$. By definition, we have $d(x, x_0) < r$, so that $\varepsilon := r d(x, x_0)$ is a positive real number. Thus, let be $y \in B(x, \varepsilon)$. By the triangle inequality, we have

$$d(x_0, y) < d(x, x_0) + d(x, y)$$

$$< d(x, x_0) + \varepsilon$$

$$< d(x, x_0) + r - d(x, x_0) = r$$

so that $y \in E$. Thus, there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq E$, i.e., x is an interior point of E. This shows that $E \subseteq \text{int}(E)$, as expected.

Now let be $F:=\{x\in X:d(x,x_0)\leqslant r\}$, and let be $(a_n)_{n=1}^\infty$ a convergent sequence in F. To show that F is closed, we have to show that $\ell:=\lim_{n\to\infty}a_n$ lies in F (Proposition 12.2.15(b)). Suppose, for the sake of contradiction, that $\ell\notin F$. We thus have $d(\ell,x_0)>r$, so that $\varepsilon:=d(\ell,x_0)-r$ is a positive real number. Since $(a_n)_{n=1}^\infty$ converges to ℓ , there exists a N>0 such that $d(a_n,\ell)<\varepsilon$ whenever $n\geqslant N$. By the triangle inequality, for $n\geqslant N$, we have

$$d(x_0, \ell) \leq d(x_0, a_n) + d(a_n, \ell)$$

$$d(x_0, a_n) \geq d(x_0, \ell) - d(a_n, \ell)$$

$$\geq d(x_0, \ell) - \varepsilon$$

$$\geq d(x_0, \ell) + r - d(\ell, x_0)$$

$$\geq r$$

and thus, $a_n \notin B(x_0, r)$, a contradiction. Thus, we must have $\ell \in F$, so that F is indeed a closed set.

- (d) Let be $\{x_0\}$ a singleton with $x_0 \in X$. To show that E is closed, we may use Proposition 12.2.15(b), and show that $\{x_0\}$ contains all its adherent points. Let be $(a_n)_{n=1}^{\infty}$ a convergent sequence in $\{x_0\}$; it can only be the constant sequence x_0, x_0, \ldots Since it is a constant sequence, its limit can only be x_0 itself, and this limit belongs to $\{x_0\}$. Thus, $\{x_0\}$ is a closed set.
- (e) First we can form a lemma: for any subset $E \subseteq X$, we have $\operatorname{int}(E) = \operatorname{ext}(X \backslash E)$. This is a direct consequence of Definition 12.2.5. Indeed, $x \in \operatorname{int}(E)$ iff there exists a r > 0 such that $B(x,r) \subseteq E$, which is equivalent to " $\exists r > 0 : B(x,r) \cap (X \backslash E) = \emptyset$ ", which is equivalent to $x \in \operatorname{ext}(X \backslash E)$.

This implies that the interior points of E are the exterior points of $X \setminus E$, and conversely, that the exterior points of E are the interior points of E. Thus, in particular, we have this useful fact:

$$\partial E = \partial(X \setminus E). \tag{12.4}$$

Now we go back to the main proof. First suppose that E is open. Thus, by Definition 12.2.12, we have $E \cap \partial E = \emptyset$, so that $\partial E \subseteq X \setminus E$, which means that $X \setminus E$ is a closed set. The converse also applies: if we suppose that $X \setminus E$ is closed, then $\partial(X \setminus E) \subseteq X \setminus E$. By equation (12.4) above, this is equivalent to $\partial E \subseteq X \setminus E$, and thus we have $\partial E \cap E = \emptyset$. This means that E is open, as expected.¹

- (f) Let E_1, \ldots, E_n be open sets. Thus, for all $1 \le i \le n$, if $x \in E_i$, there exists a $r_i > 0$ such that $B(x, r_i) \subseteq E_i$. Let's define $r := \min(r_1, \ldots, r_n)$. We have $B(x, r) \subseteq B(x, r_i) \subseteq E_i$ for all $1 \le i \le n$, i.e. $B(x, r) \subseteq E_1 \cap \ldots \cap E_n$. Thus, $E_1 \cap \ldots \cap E_n$ is an open set. Also, let F_1, \ldots, F_n be closed sets. By the previous result (e), the complementary sets $X \setminus F_1, \ldots X \setminus F_n$ are open sets. Thus, we have just proved that $(X \setminus F_1) \cap \ldots \cap (X \setminus F_n)$ is an open set. But we have $(X \setminus F_1) \cap \ldots \cap (X \setminus F_n) = X \setminus (F_1 \cup \ldots \cup F_n)$, and this set is open. Thus, by (e), its complementary set, $F_1 \cup \ldots \cup F_n$, is closed, as expected.
- (g) Let $(E_{\alpha})_{\alpha \in I}$ be open sets. Suppose that we have $x \in \bigcup_{\alpha \in I} E_{\alpha}$. By definition, there exists a $i \in I$ such that $x \in E_i$. Since E_i is an open set, there exists $r_i > 0$ such that $B(x, r_i) \subseteq E_i \subseteq \bigcup_{\alpha \in I} E_{\alpha}$. Thus, by (a), $\bigcup_{\alpha \in I} E_{\alpha}$ is an open set, as expected. Now let be $(F_{\alpha})_{\alpha \in I}$ be closed sets. Suppose that we have a convergent sequence $(x_n)_{n=1}^{\infty}$ such that $x_n \in \bigcap_{\alpha \in I} F_{\alpha}$ for all $n \ge 1$. Thus, for all $\alpha \in I$, the sequence $(x_n)_{n=1}^{\infty}$ entirely belongs to the closed set F_{α} , so that its limit ℓ also lies in F_{α} according to (b). Thus, $\ell \in \bigcup_{\alpha \in I} F_{\alpha}$, so that $\bigcap_{\alpha \in I} F_{\alpha}$ is a closed set, as expected.
- (h) Let be $E \subseteq X$.
 - Let's show that $\operatorname{int}(E)$ is the largest open set included in E. It has not clearly be proved in the main text that $\operatorname{int}(E)$ is an open set, so we begin by proving it. Let be $x \in \operatorname{int}(E)$. By definition, there exists r > 0 so that $B(x,r) \subseteq E$. But by (c), we know that B(x,r) is an open set, so that any point y of B(x,r) is an interior point of this open ball, and thus an interior point of E. Thus, $\operatorname{int}(E)$ is open. Now consider another open set $V \subseteq E$, and let's show that $V \subseteq \operatorname{int}(E)$. If $x \in \operatorname{int}(V)$, then there exists r > 0 such that $B(x,r) \subseteq V \subseteq E$, so that $x \in \operatorname{int}(E)$. This shows that $V \subseteq \operatorname{int}(E)$, as expected.
 - Similarly, let's show that \overline{E} is the smallest closed set that contains E. First we show that \overline{E} is closed, i.e. that $\overline{E} \subseteq \overline{E}$. (Hint: see Exercise 9.1.6 for an intuition.) Let be $x \in \overline{E}$. By definition, for all r > 0, $B(x,r) \cap \overline{E} \neq \emptyset$. Thus, there exists $y \in B(x,r)$ such that $y \in \overline{E}$. Thus, because B(x,r) is an open set and y is adherent to E, there exists $\varepsilon > 0$ such that $B(y,\varepsilon) \subseteq B(x,r)$ and $B(y,\varepsilon) \cap E \neq \emptyset$; i.e., there exists $z \in B(y,\varepsilon) \subseteq B(x,r)$ such that $z \in E$. We have showed that whenever $x \in \overline{E}$, we have $B(x,r) \cap E \neq \emptyset$ for all r > 0, i.e. that x is an adherent point of E, as expected. Thus, \overline{E} is closed.

Now we consider a closed set K such that $E \subseteq K$, and we have to show that $\overline{E} \subseteq K$. Let be $x \in \overline{E}$. By definition, for all r > 0, we have $B(x,r) \cap E \neq \emptyset$. But since $E \subseteq K$, we also have $B(x,r) \cap K \neq \emptyset$ for all r > 0. Thus, x is an adherent point of K, i.e., $x \in \overline{K}$. But since K is closed, we have $K = \overline{K}$, and thus $x \in K$. This shows that $\overline{E} \subseteq K$, as expected.

¹This important result will be used in future proofs to turn any statement on closed sets into a statement on open sets.

EXERCISE 12.2.4. — Let (X,d) be a metric space, x_0 be a point in X, and r > 0. Let B be the open ball $B := B(x_0,r) = \{x \in X : d(x,x_0) < r\}$, and let C be the closed ball $C := \{x \in X : d(x,x_0) \le r\}$.

Let's prove the following claims:

(a) Show that $\overline{B} \subseteq C$.

Let be $x \in \overline{B}$. By definition, since x is an adherent point of B, for all $\varepsilon > 0$ we have $B(x,\varepsilon) \cap B \neq \emptyset$. In other words, there exists y such that we have both $d(x,y) < \varepsilon$ and $d(x_0,y) < r$. Thus, by the triangle inequality, we have

$$d(x, x_0) \le d(x, y) + d(y, x_0)$$

 $\le \varepsilon + r \text{ for all } \varepsilon > 0$

which is equivalent (as a quick proof by contradiction would show) to $d(x, x_0) \leq r$. Thus, $x \in C$.

We have indeed proved that $\overline{B} \subseteq C$.

(b) Give an example of a metric space (X, d), a point x_0 , and a radius r > 0 such that \overline{B} is *not* equal to C.

Let's take $X = \mathbb{R}$, $d = d_{\text{disc}}$, x = 0 and r = 1. One the one hand, we have $B := \{0\}$ and $C := \mathbb{R}$. Now let's work out \overline{B} . By Proposition 12.2.15(bd), B is closed, so that we have $\overline{B} = B$. Thus, we clearly do not have $\overline{B} \neq C$ here. (Note however that any $x_0 \in \mathbb{R}$ would be convenient here; there is nothing special about 0.)

Exercise 12.3.1. — Prove Proposition 12.3.4(b).

Let's show each direction of the equivalence.

• First suppose that E is relatively closed w.r.t. Y, and let's show that there exists a closed subset $K \subseteq X$ such that $E = K \cap Y$.

Since E is closed w.r.t. Y, the set $Y \setminus E$ is open w.r.t. Y (by Proposition 12.2.15(e)). Thus, by (a), there exists an open subset $V \subseteq X$ such that $Y \setminus E = V \cap Y$.

Let be $K := X \setminus V$; this subset $K \subseteq X$ is closed w.r.t. X by Proposition 12.2.15(e) since it is the complementary set of an open set. We have to show that $E = K \cap Y$.

- Let be $x \in E$. Thus, we have $x \in Y$, since $E \subseteq Y$. And since $x \in E$, by definition, we have $x \notin Y \setminus E$. Thus, $x \notin V \cap Y$, which implies that $x \notin V$ (since $x \in Y$). Thus, by definition, $x \in K$, and thus, $x \in K \cap Y$.
- Conversely, let be $x \in K \cap Y$. By definition, $x \in Y$ and $x \notin V$. Thus, $x \notin V \cap Y$, or, in other words, $x \notin Y \setminus E$. We finally get $x \in E$, as expected.

Thus, we have indeed $E = K \cap Y$, for some closed subset $K \subseteq X$, as expected.

• Now let's prove the converse implication: suppose that $E = K \cap Y$ for some closed subset $K \subseteq X$, and let's prove that E is relatively closed w.r.t. Y.

Still by Proposition 12.2.15(e), we know that the subset $V := X \setminus K$ is open w.r.t. X. Thus, by the previous result from this exercise, $V \cap Y$ is relatively open w.r.t. Y. Thus, its complementary set $Y \setminus (V \cap Y) = Y \setminus V$ is relatively closed w.r.t. Y. Now we want to show that $E = Y \setminus V$ to close the proof.

- First suppose that $x \in E$. Since $E = K \cap Y$, we thus have $x \in Y$ and $x \in K$, i.e. $x \notin V$. Thus, $x \in Y \setminus V$.
- Now suppose that $x \in Y \setminus V$. We thus have $x \in X$ (since $Y \subseteq X$) and $x \notin V$, so that we necessarily have $x \in K$. Thus $x \in Y \cap K$, i.e. $x \in E$.

Thus $E = Y \setminus V$ is relatively closed w.r.t. Y, as expected.

Exercise 12.4.1. — Prove Lemma 12.4.3.

We have to prove that any subsequence $(x^{(n_j)})_{j=1}^{\infty}$ of a convergent sequence $(x^{(n)})_{n=m}^{\infty}$ converges to the same limit as the whole sequence itself.

Suppose that the whole sequence $(x^{(n)})_{n=m}^{\infty}$ converges to x_0 . Let be $\varepsilon > 0$. By definition, we have a positive integer $N \ge m$ such that $n \ge N \implies d(x^{(n)}, x_0) \le \varepsilon$. Our aim here is to show that there exists a positive integer $J \ge 1$ such that $j \ge J \implies d(x^{(n_j)}, x_0) \le \varepsilon$.

By Definition 12.4.1, we know that we have $m \le n_1 < n_2 < n_3 < \dots$ Thus, as a quick induction would show, we have $n_j \ge m+j-1$ for all $j \ge 1$. Let's take J := N. In this case, if $j \ge J$, i.e. if $j \ge N$, we have $n_j \ge m+N-1 \ge N$. Thus:

$$j \geqslant J \implies n_i \geqslant N \implies d(x^{(n_j)}, x_0) \leqslant \varepsilon.$$

Since this is true for all $\varepsilon > 0$, it means that $(x^{(n_j)})_{j=1}^{\infty}$ converges to x_0 , as expected.

Exercise 12.4.2. — Prove Proposition 12.4.5.

Let $(x^{(n)})_{n=m}^{\infty}$ be a sequence of points in a metric space. We have to prove that the following two statements are equivalent:

- (a) L is a limit point of $(x^{(n)})_{n=m}^{\infty}$.
- (b) There exists a subsequence $(x^{(n_j)})_{j=1}^{\infty}$ of the original sequence which converges to L.

We will prove the two implications, but first, note that (with the notations from Definition 12.4.1) if we have $1 \le m \le n_1 < n_2 < n_3 < \dots$, then a quick induction shows that we have $n_j \ge j$ for all $j \ge 1$.

• First we prove that (b) implies (a). If some subsequence $(x^{(n_j)})_{j=1}^{\infty}$ converges to L, then we have by definition:

$$\forall \varepsilon > 0, \exists J \geqslant 1: j \geqslant J \implies d(x^{(n_j)}, L) \leqslant \varepsilon$$
 (12.5)

Now, consider any $\varepsilon > 0$ and any $N \ge m$. For this particular choice of ε , consider the corresponding real number J given by equation (12.5), and let's define $p := \max(N, J)$. Thus, we have $n_p \ge p \ge J$, and by equation (12.5), we thus have $d(x^{(n_p)}, L) \le \varepsilon$. If we set $n := n_p$, we have indeed found an $n \ge N$ such that $d(x^{(n)}, L) \le \varepsilon$. Thus, L is a limit point of $(x^{(n)})_{n=m}^{\infty}$, as required.

• Now we prove that (a) implies (b). Suppose that L is a limit point of $(x^{(n)})_{n=m}^{\infty}$. By definition, there exists a natural number $n_1 \ge m$ such that $d(x^{(n_1)}, L) \le 1$. Now, for j > 1, let's define inductively $n_j := \min\{n > n_{j-1} : d(x^{(n)}, L) \le 1/j\}$. This set is non-empty (by definition of a limit point), so that the well-ordering principle

(Proposition 8.1.4) ensures that it has a (unique) minimal element, i.e. that n_j indeed exists. Let's define the subsequence $(x^{(n_j)})_{j=1}^{\infty}$ obtained following this process. We thus have $d(x^{(n_j)}, L) \leq 1/j$ for all $j \geq 1$, by construction.

Thus, let be $\varepsilon > 0$. There exists a $j \ge 1$ such that $0 < 1/j < \varepsilon$ (Exercise 5.4.4). Thus, for this positive integer j, we have $d(x^{(n_j)}, L) \le 1/j < \varepsilon$. By construction, for all other natural numbers $k \ge j + 1$, we have $d(x^{(n_k)}, L) \le 1/k \le 1/j \le \varepsilon$.

In summary, for our arbitrary choice of ε , we have showed that there exists $j \ge 1$ such that, for all $k \ge j$, we have $d(x^{(n_k)}, L) \le \varepsilon$. Thus, the subsequence $(x^{(n_j)})_{j=1}^{\infty}$ constructed in this way converges to L, as expected.

Exercise 12.4.3. — Prove Lemma 12.4.7.

Suppose that $(x^{(n)})_{n=m}^{\infty}$ is a convergent sequence of points in a metric space (X, d), and that its limit is x_0 . Let's show that it is a Cauchy sequence.

By the triangle inequality, we know that for all $j, k \ge m$, we have:

$$d(x^{(j)}, x^{(k)}) \le d(x^{(j)}, x_0) + d(x^{(k)}, x_0).$$

Let be $\varepsilon > 0$. Since $(x^{(n)})_{n=m}^{\infty}$ converges to x_0 , there exists an $N \ge m$ such that we have $d(x^{(n)}, x_0) \le \varepsilon/3$ for all $n \ge N$. Thus, if we take $j, k \ge N$, we have:

$$d(x^{(j)}, x^{(k)}) \leq d(x^{(j)}, x_0) + d(x^{(k)}, x_0)$$
$$\leq \varepsilon/3 + \varepsilon/3$$
$$< \varepsilon$$

which means that $(x^{(n)})_{n=m}^{\infty}$ is a Cauchy sequence, as expected.

Exercise 12.4.4. — Prove Lemma 12.4.9.

Let be an arbitrary $\varepsilon > 0$. Since the subsequence $(x^{(n_j)})_{j=1}^{\infty}$ converges to x_0 , there exists a $J \ge 1$ such that $d(x^{(n_j)}, x_0) \le \varepsilon/3$ whenever $j \ge J$.

But the whole sequence $(x^{(n)})_{n=m}^{\infty}$ is supposed to be a Cauchy sequence. Thus, there also exists a $N \ge m$ such that $d(x^{(j)}, x^{(k)}) < \varepsilon/3$ whenever $j, k \ge N$.

Now, let be $K := \max(J, N)$. If $k \ge K$, we have

$$d(x^{(k)}, x_0) \leq d(x^{(k)}, x^{(n_k)}) + d(x^{(n_k)}, x_0)$$
$$< \varepsilon/3 + \varepsilon/3$$
$$< \varepsilon$$

which means that $(x^{(n)})_{n=m}^{\infty}$ converges to x_0 , as expected.

EXERCISE 12.4.5. — Let $(x^{(n)})_{n=m}^{\infty}$ be a sequence of points in a metric space (X,d) and let $L \in X$. Show that if L is a limit point of the sequence $(x^{(n)})_{n=m}^{\infty}$, then L is an adherent point of the set $\{x^{(n)}: n \ge m\}$. Is the converse true?

First suppose that L is a limit point of $(x^{(n)})_{n=m}^{\infty}$. By definition, it means that

$$\forall \varepsilon > 0, \ \forall N \geqslant m, \ \exists n \geqslant N : \ d(x^{(n)}, L) \leqslant \varepsilon$$
 (12.6)

Let be an arbitrary $\varepsilon > 0$, and let's take N = m. By formula (12.6) above, there exists an $n \ge N$ such that $d(x^{(n)}, L) \le \varepsilon$. Thus, this $x^{(n)}$ belongs to both sets $\{x^{(n)} : n \ge m\}$ and $B(L, \varepsilon)$. We have just proved that for all $\varepsilon > 0$, the intersection $B(L, \varepsilon) \cap \{x^{(n)} : n \ge m\}$ is always non-empty. In other words, L is thus an adherent point of $\{x^{(n)} : n \ge m\}$.

However, the converse is not true. Indeed, consider the sequence $(x^{(n)})_{n=1}^{\infty}$ defined in (\mathbb{R},d) by $x^{(1)}=1$ and $x^{(n)}=0$ for all $n\geq 2$, i.e. the sequence $1,0,0,0,\ldots$ It is clear that L:=1 is an adherent point of $\{x^{(n)}:n\geq 1\}$ (which is just the set $\{0,1\}$). But 1 is not a limit point of $(x^{(n)})_{n=1}^{\infty}$, since we have $d(x^{(n)},1)>1/2$ for all $n\geq 2$.

Exercise 12.4.6. — Show that every Cauchy sequence can have at most one limit point.

Suppose that $(x^{(n)})_{n=m}^{\infty}$ is a Cauchy sequence in a metric space (X, d), such that L, L' are limit points. Then we have L = L'. We will give two different proofs for this fact.

- **Proof 1** (short proof using previous results). By Proposition 12.4.5, since L is a limit point of $(x^{(n)})_{n=m}^{\infty}$, there exists a subsequence that converges to L. But by Lemma 12.4.9, it means that the whole original sequence $(x^{(n)})_{n=m}^{\infty}$ also converges to L. The same argument can be used to show that the whole sequence $(x^{(n)})_{n=m}^{\infty}$ converges to L'. But by uniqueness of limits (Proposition 12.1.20), we must have L = L', as expected.
- **Proof 2** (a more "manual" proof). Let be $\varepsilon > 0$. Since $(x^{(n)})_{n=m}^{\infty}$ is a Cauchy sequence, there exists $N \ge m$ such that $d(x^{(p)}, x^{(q)}) \le \varepsilon/3$ for all $p, q \ge N$.

If L is a limit point of $(x^{(n)})_{n=m}^{\infty}$, then for this $N \ge m$, there exists $p \ge N$ such that $d(x^{(p)}, L) \le \varepsilon/3$. Similarly, there exists $q \ge N$ such that $d(x^{(q)}, L') \le \varepsilon/3$.

We thus have, by triangle inequality:

$$d(L, L') \leq d(L, x^{(p)}) + d(x^{(p)}, x^{(q)}) + d(x^{(q)}, L')$$

$$\leq \varepsilon/3 + \varepsilon/3 + \varepsilon/3$$

$$\leq \varepsilon$$

Thus, $d(L, L') \leq \varepsilon$ for all $\varepsilon > 0$, which implies L = L'.

Exercise 12.4.7. — Prove Proposition 12.4.12.

For statement (a), consider a convergent sequence $(y^{(n)})_{n=m}^{\infty}$ of elements of $Y \subseteq X$. Since it is convergent, it is a Cauchy sequence (Lemma 12.4.7). Saying that $(Y, d_{Y \times Y})$ is complete means that $(y^{(n)})_{n=m}^{\infty}$ converges in $(Y, d_{Y \times Y})$. Thus, every convergent sequence in Y has its limit in Y: this is exactly the characterization of closed sets given by Proposition 12.2.15(b).

For statement (b), consider a Cauchy sequence $(y^{(n)})_{n=m}^{\infty}$ of elements of a given closed subset $Y \subseteq X$. Since (X,d) is complete, $(y^{(n)})_{n=m}^{\infty}$ must converge to some value $L \in X$. But since Y is closed, we have $L \in Y$ by Proposition 12.2.15(b). Thus, every Cauchy sequence in Y converges in Y. This means that $(Y, d_{Y \times Y})$ is complete, as expected.

EXERCISE 12.4.8. — The following construction generalizes the construction of the reals from the rationals in Chapter 5. In what follows, we let (X, d) be a metric space.

We have to prove the following statements. Note that this is a generalization of the process of construction of the real numbers, so that we can use all results relative to the real numbers below.

- (a) Given any Cauchy sequence $(x^{(n)})_{n=1}^{\infty}$ in X, we denote $\text{LIM}_{n\to\infty}x_n$ its formal limit. We say that two formal limits $\text{LIM}_{n\to\infty}x_n$, $\text{LIM}_{n\to\infty}y_n$ are equal iff $\lim_{n\to\infty}d(x_n,y_n)=0$. Then, this equality relation obeys the reflexive, symmetry and transitive axioms.
 - This relation is reflexive: for every Cauchy sequence $(x^{(n)})_{n=1}^{\infty}$, we have $d(x_n, x_n) = 0$ for all $n \ge 1$, by definition of a metric. Thus, $d(x_n, x_n)$ is constant and equal to zero, so that $\lim_{n\to\infty} d(x_n, x_n) = 0$.
 - By the property of symmetry of the metric d, we have $d(x_n, y_n) = d(y_n, x_n)$ for all $n \ge 1$ and all Cauchy sequence $(x^{(n)})_{n=1}^{\infty}, (y^{(n)})_{n=1}^{\infty}$. Thus, $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$ iff $\lim_{n\to\infty} d(x_n, y_n) = 0$, iff $\lim_{n\to\infty} d(y_n, x_n) = 0$, which is equivalent to $\lim_{n\to\infty} y_n = \lim_{n\to\infty} x_n$.
 - For transitivity, suppose that $(x^{(n)})_{n=1}^{\infty}$, $(y^{(n)})_{n=1}^{\infty}$ and $(z^{(n)})_{n=1}^{\infty}$ are Cauchy sequences in X. If $\text{LIM}_{n\to\infty}x_n=\text{LIM}_{n\to\infty}y_n$ and $\text{LIM}_{n\to\infty}y_n=\text{LIM}_{n\to\infty}z_n$, then by definition we have $\lim_{n\to\infty}d(x_n,y_n)=0$ and $\lim_{n\to\infty}d(y_n,z_n)=0$. Let be $\varepsilon>0$. By definition, there exists $N_1\geqslant 1$ such that $d(x_n,y_n)\leqslant \varepsilon/2$ whenever $n\geqslant N_1$. Similarly, there exists $N_2\geqslant 1$ such that $d(y_n,z_n)\leqslant \varepsilon/2$ whenever $n\geqslant N_2$. Thus, if $n\geqslant N:=\max(N_1,N_2)$, we have by the triangle inequality $d(x_n,z_n)\leqslant d(x_n,y_n)+d(y_n,z_n)\leqslant \varepsilon$. It means that $\lim_{n\to\infty}d(x_n,z_n)$, i.e. that $\lim_{n\to\infty}x_n=\lim_{n\to\infty}x_n$, as expected.
- (b) Let \overline{X} be the space of all formal limits of Cauchy sequences in X, with the above equality relation. Define a metric $d_{\overline{X}}: \overline{X} \times \overline{X} \to \mathbb{R}^+$ by setting

$$d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n,\mathrm{LIM}_{n\to\infty}y_n) := \lim_{n\to\infty} d(x_n,y_n).$$

Then this function is well-defined and gives \overline{X} the structure of a metric space.

• First we have to show that the limit $\lim_{n\to\infty} d(x_n, y_n)$ exists (in \mathbb{R}^+) for all Cauchy sequences $(x^{(n)})_{n=1}^{\infty}$, $(y^{(n)})_{n=1}^{\infty}$. We already know that \mathbb{R} is complete, thus \mathbb{R}^+ is complete as a closed subset of the complete space \mathbb{R} (Proposition 12.4.12(b)).

Let be the sequence defined by $u_n := d(x_n, y_n)$ for all $n \ge 1$. Obviously, this sequence is in \mathbb{R}^+ , which is a complete space. Thus, to show that it converges, we just have to show that it is a Cauchy sequence.

Consider the usual metric on \mathbb{R}^+ . We have, for all $p, q \ge 1$,

$$|u_p - u_q| = |d(x_p, y_p) - d(x_q, y_q)|$$

$$\leq |d(x_p, x_q) + d(x_q, y_q) + d(y_q, y_p) - d(x_q, y_q)|$$

$$\leq |d(x_p, x_q)| + |d(y_p, y_q)|.$$

Now let be $\varepsilon > 0$. Since $(x^{(n)})_{n=1}^{\infty}$ and $(y^{(n)})_{n=1}^{\infty}$ are Cauchy sequences, there exists $N_1, N_2 \ge 1$ such that $d(x_p, x_q) \le \varepsilon/2$ whenever $p, q \ge N_1$, and $d(y_p, y_q) \le \varepsilon/2$ whenever $p, q \ge N_2$. Thus, if $p, q \ge N := \max(N_1, N_2)$, we have

$$|u_p - u_q| \le |d(x_p, x_q)| + |d(y_p, y_q)| \le \varepsilon.$$

This shows that $(u_n)_{n=1}^{\infty}$ is a Cauchy sequence, and thus, that $\lim_{n\to\infty} d(x_n, y_n)$ exists.

• Now we must show that the axiom of substitution is obeyed. In other words, consider a Cauchy sequence $(z^{(n)})_{n=1}^{\infty}$ in (X,d) such that $\lim_{n\to\infty} z_n = \lim_{n\to\infty} x_n$. We must show that $d_{\overline{X}}(\lim_{n\to\infty} z_n, \lim_{n\to\infty} y_n) = d_{\overline{X}}(\lim_{n\to\infty} x_n, \lim_{n\to\infty} y_n)$, i.e. that

$$\lim_{n \to \infty} d(z_n, y_n) = \lim_{n \to \infty} d(x_n, y_n)$$
(12.7)

By the previous bullet point, we know that both limits in (12.7) do exist. Thus, the limit laws apply. We have:

$$d(z_n, y_n) \leqslant d(z_n, x_n) + d(x_n, y_n)$$

but since $\lim_{n\to\infty} d(z_n, x_n) = 0$ by definition, we obtain

$$\lim_{n \to \infty} d(z_n, y_n) \leqslant \lim_{n \to \infty} d(x_n, y_n)$$

if we take the limits of both sides in the previous inequality.

But similarly, we have $d(x_n, y_n) \leq d(x_n, z_n) + d(z_n, y_n)$, so that a similar argument gives

$$\lim_{n\to\infty} d(x_n, y_n) \leqslant \lim_{n\to\infty} d(z_n, y_n).$$

Thus, we have indeed $\lim_{n\to\infty} d(z_n, y_n) = \lim_{n\to\infty} d(x_n, y_n)$, as expected.

- Finally, we must show that $d_{\overline{X}}$ is a metric on \overline{X} . To prove this statement, we must show that $d_{\overline{X}}$ obeys all four axioms that define a metric.
 - First, it is clear that $d_{\overline{X}}(LIM_{n\to\infty}x_n, LIM_{n\to\infty}x_n) = \lim_{n\to\infty} d(x_n, x_n) = 0$ for all Cauchy sequence $(x^{(n)})_{n=1}^{\infty}$ in (X, d).
 - Now let be two Cauchy sequences $(x^{(n)})_{n=1}^{\infty}$, $(y^{(n)})_{n=1}^{\infty}$ in X, such that $\lim_{n\to\infty} x_n \neq \lim_{n\to\infty} y_n$. This latest property implies that $\lim_{n\to\infty} d(x_n,y_n) > 0$, by definition. Thus, $d_{\overline{X}}(\lim_{n\to\infty} x_n, \lim_{n\to\infty} y_n) > 0$.
 - Symmetry: we have

$$d_{\overline{X}}(\text{LIM}_{n\to\infty}x_n, \text{LIM}_{n\to\infty}y_n) = \lim_{n\to\infty} d(x_n, y_n)$$

$$= \lim_{n\to\infty} d(y_n, x_n) \text{ (symmetry of } d \text{ on } \mathbb{R}^+)$$

$$= d_{\overline{X}}(\text{LIM}_{n\to\infty}y_n, \text{LIM}_{n\to\infty}x_n)$$

for all Cauchy sequences $(x^{(n)})_{n=1}^{\infty}$, $(y^{(n)})_{n=1}^{\infty}$.

- Triangle inequality: by the limit laws, we have

$$\begin{split} d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}z_n) &= \lim_{n\to\infty} d(x_n, z_n) \\ &\leqslant \lim_{n\to\infty} (d(x_n, y_n) + d(y_n, z_n)) \\ &\leqslant \lim_{n\to\infty} d(x_n, y_n) + \lim_{n\to\infty} d(y_n, z_n) \\ &\leqslant d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}y_n) + d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}y_n, \mathrm{LIM}_{n\to\infty}z_n) \end{split}$$

for all Cauchy sequences $(x^{(n)})_{n=1}^{\infty}$, $(y^{(n)})_{n=1}^{\infty}$ and $(z^{(n)})_{n=1}^{\infty}$.

Thus, $d_{\overline{X}}$ is indeed a metric on \overline{X} .

(c) The metric space $(\overline{X}, d_{\overline{X}})$ is complete.

To prove this statement, consider a Cauchy sequence $(u_n)_{n=1}^{\infty}$ in \overline{X} : we have to prove that this sequence converges in $(\overline{X}, d_{\overline{X}})$.

By definition, $(u_n)_{n=1}^{\infty}$ is a Cauchy sequence of formal limits of Cauchy sequences that take their values in X; i.e., for all $k \ge 1$, there exists a Cauchy sequence $(x_n^{(k)})_{n=1}^{\infty}$ of elements of X such that $u_k := \text{LIM}_{n \to \infty} x_n^{(k)}$.

Since all $(x_n^{(k)})_{n=1}^{\infty}$ are Cauchy sequences, then for all $k \ge 1$, there exists a threshold N_k such that $d(x_n^{(k)}, x_{N_k}^{(k)}) < 1/k$ whenever $n \ge N_k$. Thus, (using the countable axiom of choice) we can build a sequence $(z_k)_{k=1}^{\infty}$ defined by

$$z_k := \left(x_{N_k}^{(k)}\right)$$

for all $k \ge 1$. Now:

• We claim that $(z_k)_{k=1}^{\infty}$ is itself a Cauchy sequence. Indeed, consider an arbitrary positive real number $\varepsilon > 0$. We must prove that $d(z_p, z_q) := d(x_{N_p}^{(p)}, x_{N_q}^{(q)})$ is eventually lesser than ε .

Since $(u_n)_{n=1}^{\infty}$ is a Cauchy sequence in \overline{X} , there exists a $N \ge 1$ such that, if $p, q \ge N$, we have $d_{\overline{X}}(u_p, u_q) < \varepsilon/3$, i.e.:

$$\varepsilon/3 > d_{\overline{X}}(u_p, u_q)$$

$$\geqslant d_{\overline{X}}(\text{LIM}_{n \to \infty} x_n^{(p)}, \text{LIM}_{n \to \infty} x_n^{(q)})$$

$$\geqslant \lim_{n \to \infty} d(x_n^{(p)}, x_n^{(q)})$$

Thus, there exists a $N' \ge 1$ such that, if $n \ge N'$, we have $d(x_n^{(p)}, x_n^{(q)}) \le \varepsilon/3^2$. Also, by Exercise 5.4.4, there exists a k > 0 such that $1/k \le \varepsilon/3$. Thus, if $n, p, q \ge \max(k, N', N_p, N_q)$, we have

$$\begin{split} d(z_p,z_q) &= d(x_{N_p}^{(p)},x_{N_q}^{(q)}) \\ &\leqslant \underbrace{d(x_{N_p}^{(p)},x_n^{(p)})}_{\leqslant 1/p \leqslant \varepsilon/3} + \underbrace{d(x_n^{(p)},x_n^{(q)})}_{\leqslant \varepsilon/3} + \underbrace{d(x_n^{(q)},x_{N_q}^{(q)})}_{\leqslant 1/q \leqslant \varepsilon/3} \\ &\leqslant \varepsilon/3 + \varepsilon/3 + \varepsilon/3 \\ &\leqslant \varepsilon \end{split}$$

Thus, $(z_k)_{k=1}^{\infty}$ is indeed a Cauchy sequence in X.

• Consequently, we can take the formal limit $L := \text{LIM}_{n \to \infty} z_n$, and this formal limit L lies in \overline{X} by definition. We claim that $\lim_{n \to \infty} u_n = L \in \overline{X}$; proving this claim will close the proof of (c).

Let be $\varepsilon > 0$. Since $(z_n)_{n=1}^{\infty}$ is a Cauchy sequence in X, there exists a $N_1 \ge 1$ such that $d(z_p, z_q) \le \varepsilon/2$ whenever $p, q \ge N_1$.

²Indeed, for any sequence $(v_n)_{n=1}^{\infty}$ that converges to ℓ , if we have $0 \le \ell < \varepsilon$, then there exists an $N \ge 1$ such that $v_n \le \varepsilon$ whenever $n \ge N$ (why? use a proof by contradiction.).

Once again, by Exercise 5.4.4, there exists a $K' \ge 1$ such that $1/K' < \varepsilon/2$. Thus, if $k \ge K$ and $n > N_k$, we have

$$d(x_n^{(k)}, z_k) := d(x_n^{(k)}, x_{N_k}^{(k)}) < \frac{1}{k} \leqslant \frac{1}{K} < \frac{\varepsilon}{2}.$$

Thus, by the triangle inequality, we have, for all $n > \max(N_k, N_1)$,

$$d(x_n^{(k)}, z_n) \le d(x_n^{(k)}, z_k) + d(z_k, z_n) \le \varepsilon/2 + \varepsilon/2 \le \varepsilon.$$

Consequently, we have, for all k > K',

$$d_{\overline{X}}(u_k, L) := \lim_{n \to \infty} d(x_n^{(k)}, b_n) < \varepsilon.$$

This shows that $(u_n)_{n=1}^{\infty} \to L$ in $(\overline{X}, d_{\overline{X}})$, which closes the proof.

- (d) We identify an element $x \in X$ with the corresponding formal limit $LIM_{n\to\infty}x$ in \overline{X} .
 - This is legitimate since we have $x = y \iff \text{LIM}_{n \to \infty} x = \text{LIM}_{n \to \infty} y$. Indeed, it is clear that if x = y, then we have $\text{LIM}_{n \to \infty} x = \text{LIM}_{n \to \infty} y$ by definition. Conversely, if $\text{LIM}_{n \to \infty} x = \text{LIM}_{n \to \infty} y$, then we have $\lim_{n \to \infty} d(x, y) = 0$, i.e. d(x, y) = 0, i.e. x = y. Thus, this identification is legitimate.
 - With this identification, we have $d(x,y) = d_{\overline{X}}(x,y)$. Indeed:

$$d_{\overline{X}}(x,y) = d_{\overline{X}}(\text{LIM}_{n \to \infty} x, \text{LIM}_{n \to \infty} y)$$
$$= \lim_{n \to \infty} d(x,y)$$
$$= d(x,y).$$

Thus, (X, d) can be thought of as a subspace of $(\overline{X}, d_{\overline{X}})$.

(e) The closure of X in \overline{X} is \overline{X} .

Indeed, let be C the closure of X in \overline{X} . We clearly have $C \subseteq \overline{X}$, by definition. Thus we just have to show that $\overline{X} \subseteq C$.

Let be $x \in \overline{X}$, and let's show that $x \in C$. By definition, $x \in C$ means that x is an adherent point of X in \overline{X} , i.e. that for all $\varepsilon > 0$, $B_{(\overline{X},d_{\overline{X}})}(x,\varepsilon) \cap X \neq \emptyset$. In other words, for all $\varepsilon > 0$, we must show that there exists a $y \in X$ such that $d_{\overline{X}}(x,y) < \varepsilon$.

Thus, let be $\varepsilon > 0$. By definition, x is the formal limit of a Cauchy sequence $(x_n)_{n=1}^{\infty}$ of elements of X, so that $x := \text{LIM}_{n \to \infty} x_n$. Since $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence, there exists an $N \ge 1$ such that $d(x_n, x_N) < \varepsilon/2$ whenever $n \ge N$. Thus:

$$d_{\overline{X}}(x, x_N) := d_{\overline{X}}(\text{LIM}_{n \to \infty} x_n, \text{LIM}_{n \to \infty} x_N)$$
$$= \lim_{n \to \infty} d(x_n, x_N)$$
$$\leq \varepsilon/2 < \varepsilon$$

so that $y := x_N$ is a convenient choice. This shows that x is an adherent point of X in \overline{X} , as expected.

(f) Finally, the formal limit agrees with the actual limit, i.e., $\lim_{n\to\infty} x_n = \text{LIM}_{n\to\infty} x_n \in \overline{X}$ for all Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X.

Indeed, let be $(x_n)_{n=1}^{\infty}$ a Cauchy sequence of elements of X. We know that (X,d) can be thought of as a subspace of $(\overline{X}, d_{\overline{X}})$, so that $(x_n)_{n=1}^{\infty}$ can be thought of as a sequence of elements of \overline{X} . But we have showed that $(\overline{X}, d_{\overline{X}})$ is complete. Thus, the sequence $(x_n)_{n=1}^{\infty}$ converges in \overline{X} to a certain limit $L \in \overline{X}$; i.e., we have $\lim_{n \to \infty} x_n = L$ for some $L \in \overline{X}$.

Consider this limit L. By definition of \overline{X} , there exists a Cauchy sequence $(a_n)_{n=1}^{\infty}$ of elements of X such that $L := \text{LIM}_{n \to \infty} a_n$. What we need to prove is that we have

$$L = \lim_{n \to \infty} x_n = \text{LIM}_{n \to \infty} a_n = \text{LIM}_{n \to \infty} x_n \tag{12.8}$$

and thus, it is sufficient to show that $LIM_{n\to\infty}a_n = LIM_{n\to\infty}x_n$, since we already have the other equalities. And, by definition of the equality relation established in (a), in order to prove that $LIM_{n\to\infty}a_n = LIM_{n\to\infty}x_n$, we just have to show that $\lim_{n\to\infty} d(x_n, a_n) = 0$. Or, in yet another equivalent way, we have to show that for all $\varepsilon > 0$, there exists an $N \ge 1$ such that $d(x_n, a_n) \le \varepsilon$ whenever $n \ge N$.

Thus, let be an arbitrary $\varepsilon > 0$. Let's unfold our hypotheses.

- We know that the sequence $(x_n)_{n=1}^{\infty}$ converges to L in \overline{X} . Thus, by definition, there exists a $N_1 \geqslant 1$ such that $d_{\overline{X}}(x_k, L) \leqslant \varepsilon/2$ whenever $k \geqslant N_1$. In other words, $\lim_{n\to\infty} d(x_k, a_n) \leqslant \varepsilon/3 < \varepsilon/2$ whenever $k \geqslant N_1$.

 Thus, there exists a N_2 such that $d(x_k, a_n) \leqslant \varepsilon/2$ whenever $k \geqslant N_1$ and $n \geqslant N_2$ (see footnote 2 p. 22 from the present document).
- We also know that $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence. It means that there exists a $N_3 \ge 1$ such that $d(x_p, x_q) \le \varepsilon/2$ for all $p, q \ge N_3$.

Let be $N := \max(N_1, N_2, N_3)$. Using the triangle inequality, we finally get, for all $n \ge N$,

$$d(x_n, a_n) \leq d(x_n, x_N) + d(x_N, a_n)$$

$$\leq \varepsilon/2 + \varepsilon/2$$

$$\leq \varepsilon$$

This closes the proof.

Exercise 12.5.1. — Show that Definitions 9.1.22 and 12.5.3 match when talking about subsets of the real line with the standard metric.

Consider $Y \subseteq \mathbb{R}$ and the standard metric d(x,y) = |x-y| for all $x,y \in \mathbb{R}$. We have to show that both definitions of boundedness are equivalent in this case.

• First, suppose that Y is bounded in the sense of Definition 12.5.3. Thus, there exists a real number x and a positive real number r > 0 such that $Y \subseteq B(x,r)$. In other words, we have $Y \subseteq]x - r, x + r[\subseteq [x - r, x + r]]$. Let be M := |x| + |r|. We clearly have $x + r \le M$, and $-M \le x - r$. Thus, we have $Y \subseteq [-M, M]$, and Y is bounded in the sense of Definition 9.1.22.

• Conversely, suppose that Y is bounded in the sense of Definition 9.1.22. Thus, there exists a positive real M>0 such that $Y\subseteq [-M,M]\subset]-2M,2M[$. But this later interval is simply B(0,2M), so that Y is bounded in the sense of Definition 12.5.1, taking x:=0 and r:=2M.