Lecture #10, Jan 31st, 2022

- Read Chapter 12.
- Will be on campus for the rest of the quarter.
- CAD 3 Assigned
- Today: Continue Reference Voltage Design.
 - Current References
 - Process Voltage and Temperature Dependence.
 - Constant Voltage (Temp)
 - Proportional to Absolute Temperature (PTAT)
 - Constant Gm (Temp).

Bipolar Primer

BiPolar Device Layout EMATTER

Razavi Expressions for BJT Collector Current

Expressing V_{BE} and Temp Dependence

$$T_{5} = b T^{4+m} \exp\left(\frac{-E_{q}}{KT}\right)$$
constant.

$$I_c = I_s \exp\left(\frac{V_{Be}}{V_{t}}\right)$$

BJT Device Layout

- No Control over area of a BJT Transistor (A) and width of the base (₩). The device size and layout are fixed and part of your Process and Design Kit (PDK).
- Can layout multiple devices in parallel, then short the collector, base and emitters.

$$V_{CC}$$
 R_1
 V_{CC}
 R_2
 V_{CC}
 V_{CC}

· CANNOT ASSUME VBE ON = 0.71

& CAN ASSUME BLARGE 2 150

$$V_T I_{\Lambda} \left(\frac{I_{M}}{I_{S1}} \right) - V_T I_{\Lambda} \left(\frac{I_{S0T}}{I_{S2}} \right) - I_{OUT} R_2 = 0$$

ODASSIME ISI= M·ISZ, IN THIS CASE M=1.

Widlar Current Mirror Characteristics

$$I_{out} = \frac{V_T}{R_2} \cdot \ln \frac{I_{IN}}{I_{OUT}}$$

- "Transcendental" Equation in I_{OUT} . Process of trail and error to find a solution for R_2 , I_{IN} , and I_{OUT} .
- Usually have a desired I_{IN} and I_{OUT}, want to find R₂.
- Can easily generate a low value of current in the μA range with reasonable resistor sizes.

Bob Widlar (1937-1991)

CMOS Version of V_{BF} Referenced C-Source

Temperature-Independent References

- Reference voltages or currents exhibiting little dependence of temperature are useful in analog circuits
- If two quantities having opposite temperature coefficients (TCs) are added with proper weighting, the result displays a zero TC
- For two voltages V_1 and V_2 that vary in opposite directions with temperature, we choose α_1 and α_2 such that $\alpha_1 \partial V_1 / \partial T + \alpha_2 \partial V_2 / \partial T = 0$, obtaining a reference voltage, $V_{REF} = \alpha_1 V_1 + \alpha_2 V_2$, with zero TC
- Characteristics of bipolar transistors have proven the most reproducible and well-defined quantities that can provide positive and negative TCs

Negative-TC Voltage

- The base-emitter voltage of bipolar transistors, or more generally, the forward voltage of a pn-junction diode exhibits a negative TC
- For a bipolar device, $I_C = I_S \exp(V_{BE}/V_T)$, where $V_T = kT/q$
- Saturation current I_S is proportional to $\mu kT n_i^2$, where μ denotes the mobility of minority carriers and n_i is the intrinsic carrier concentration of silicon
- The temperature dependence of these quantities is expressed as $\mu \propto \mu_0 T^m$, where $m \approx -3/2$, and $n_i^2 \propto T^3 \exp[-E_g/(kT)]$, where $E_g \approx 1.12 \text{ eV}$ is the bandgap energy of silicon
- Thus, $I_S = b T^{4+m} \exp \frac{-E_g}{LT}$

where b is proportionality factor