Fall 2024

Instructor: Mohammed A. Shehab

Machine learning project information (30%)

Project Details

Objective:

Each project is focused on solving a specific real-world problem through machine learning, including tasks like data preprocessing, model training, evaluation, deployment, and tracking. Students will explore the complete model-building lifecycle, from initial data analysis to deployment.

Dataset:

Each project is associated with a suitable dataset:

- Cybersecurity Threat Detection: CICIDS 2017 Dataset (Kaggle).
- Sentiment Analysis: IMDb Movie Reviews Dataset.
- Plant Disease Detection: Plant Village Dataset.
- Patient Health Risk Prediction: Diabetes Health Indicators Dataset or Heart Disease UCI Dataset.

Project Components

- 1. Feature Engineering and Exploratory Data Analysis (EDA)
 - Objective: Understand the dataset, identify trends, and engineer new features to improve model performance.
 - o Tasks:
 - Conduct an exploratory data analysis to observe feature distributions, correlations, and patterns.
 - Visualize data with histograms, box plots, and heatmaps.
 - Create additional features if they could enhance model accuracy.
 - Deliverable: Insights from EDA, supported by visualizations, included in the final report.

2. Model Training and Comparison

- Objective: Train, compare, and select the best-performing model, exploring ensemble methods if applicable.
- o Tasks:

Fall 2024

Instructor: Mohammed A. Shehab

- Train at least two different models (e.g., decision tree, random forest) and evaluate their performance.
- Experiment with ensemble techniques (e.g., voting, stacking) to potentially improve performance.
- Deliverable: A report section discussing model comparison, choice, and the effect of any ensemble methods.

3. Evaluation Metrics

 Objective: Assess model performance through a variety of metrics to understand strengths and weaknesses.

o Tasks:

- For classification: Calculate metrics like ROC, AUC, accuracy, precision, recall, and F1-score.
- For regression (if relevant): Use R-squared, MAE, and MSE.
- o **Deliverable**: Comparative analysis of metrics, documented in the report.

4. Interpretability and Explainability

 Objective: Analyze the model's decision-making process to understand feature importance and enhance transparency.

o Tasks:

- Use interpretability tools (e.g., SHAP, LIME) to explain key features influencing predictions, especially for complex models.
- Deliverable: A report section explaining the most influential features based on model interpretations.

5. Deployment with Docker

 Objective: Containerize the model using Docker and deploy it with a REST API for real-time predictions.

o Tasks:

- Create a Dockerfile with all dependencies, enabling easy deployment.
- Set up a REST API (using Flask or FastAPI) to serve predictions.
- **Deliverable:** Docker image with instructions for running and testing the container.

6. Performance Tracking with MLflow

 Objective: Log model metrics, parameters, and experiment versions using MLflow for performance tracking.

Fall 2024

Instructor: Mohammed A. Shehab

- o Tasks:
 - Track model metrics during training and deployment for analysis and comparison.
 - Use MLflow to log all experiments, parameters, and versions.
- o **Deliverable**: MLflow logs showing metrics and comparison across model versions.

Project Workflow

1. Data Preprocessing and EDA

- Load and clean the dataset, handling missing values, normalizing or scaling numerical features, and encoding categorical variables.
- Conduct EDA, visualizing feature distributions and identifying potential relationships to guide feature engineering.

2. Model Training, Comparison, and Ensemble

- Train multiple models (e.g., logistic regression, decision trees) and evaluate them using relevant metrics.
- Experiment with ensemble methods (e.g., voting, stacking) if it improves model performance.

3. Evaluation Metrics and Analysis

 Evaluate models on various metrics, comparing results to understand model strengths and weaknesses, particularly for imbalanced datasets.

4. Interpretability and Explainability

 Use tools like SHAP or LIME to explain model decisions and analyze feature importance, ensuring model transparency.

5. **Docker Deployment**

 Build and deploy the model in a Docker container with a REST API, allowing for easy real-time predictions.

6. MLflow Tracking

 Log all experiments, tracking parameters and metrics over multiple model versions with MLflow.

Fall 2024

Instructor: Mohammed A. Shehab

Deliverables

1. Code:

 Scripts or Jupyter notebooks for EDA, model training, evaluation, deployment, and MLflow tracking.

2. EDA Visualizations:

 Visualizations such as histograms, box plots, and heatmaps documenting data characteristics and feature correlations.

3. Model Comparison and Interpretability Analysis:

 Report sections analyzing model performance and feature importance, including any ensemble techniques applied.

4. Docker and MLflow:

 Dockerfile and container instructions for deployment, plus MLflow logs tracking model metrics.

5. Final Report:

 A report summarizing project objectives, methodology, EDA findings, model evaluation, interpretability analysis, deployment steps, and key takeaways.

Evaluation Criteria

1. Data Preprocessing and EDA (20%)

- EDA Insights (10%): Effective visualizations and insights on feature distributions and correlations.
- Feature Engineering (10%): Creation of new features and analysis of their impact on model performance.

2. Model Training, Comparison, and Ensemble (25%)

- Model Implementations (15%): Successful training and tuning of at least two models, with clear model selection rationale.
- Ensemble Techniques (10%): Exploration and analysis of ensemble techniques, if applied.

3. Evaluation Metrics (15%)

 Metric Analysis (15%): Calculation and interpretation of metrics, with discussion on metric effectiveness for the project's objectives.

Fall 2024

Instructor: Mohammed A. Shehab

- 4. Interpretability and Explainability (10%)
 - Feature Importance (10%): Clear analysis using SHAP, LIME, or similar tools to explain key features affecting model predictions.

5. Deployment and Performance Tracking (20%)

- Docker Deployment (10%): Complete Docker container with functional API for predictions.
- MLflow Tracking (10%): Accurate MLflow logging of parameters, metrics, and model versions.

6. Presentation (10%)

- Clarity and Organization (5%): Clear presentation, effectively communicating objectives, methodology, and results.
- Visuals and Engagement (5%): Use of visuals for data insights and effective collaboration among group members.