EE578B - Convex Optimization - Winter 2021

Homework 3

<u>Due Date</u>: Sunday, Jan 31^{st} , 2020 at 11:59 pm

1. Quadratic Functions

Consider the quadratic function

$$f(x) = \frac{1}{2}x^T Q x + c^T x$$

• (PTS:0-2)Rewrite f(x) in the form

$$f(x) = \frac{1}{2}(x - x_c)^T Q(x - x_c) + \text{CONST}$$

• (PTS:0-2) Compute the derivative of both forms of f(x) and show that they are the same.

2. Minimum Norm Problem

Consider the following optimization problem for finding the minimum norm solution to a linear system of equations

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \frac{1}{2}|x|_2^2 = \frac{1}{2}x^T x$$

s.t.
$$Ax = b$$

for $A \in \mathbb{R}^{m \times n}$ full row rank with m < n and $b \in \mathbb{R}^m$. The optimality conditions for this optimization problem are given by

$$\frac{\partial f}{\partial x}^T = x = -A^T v \tag{1}$$

$$Ax = b (2)$$

with dual variable $v \in \mathbb{R}^m$. Let x^*, v^* refer to x and v at optimum.

- (PTS:0-2) Solve for v^* in terms of b. (Hint: start by left multiplying (1) by A and substituting in Ax = b).
- (PTS:0-2) Solve for x^* in terms of b.
- (PTS:0-2) Let the columns of $N \in \mathbb{R}^{n \times (n-m)}$ form a basis for the nullspace of A. Compute $z_1^* \in \mathbb{R}^m$ and $z_2^* \in \mathbb{R}^{n-m}$ such that

$$x^* = \underbrace{\begin{bmatrix} A^T & N \end{bmatrix}}_{P} \begin{bmatrix} z_1^* \\ z_2^* \end{bmatrix}$$

ie. write x^* in terms of the coordinates with respect to the columns of P. Interpret z_1^* and z_2^* in terms of projections of x^* onto $\mathcal{R}(A^T)$ and $\mathcal{R}(N)$. How does z_1^* relate to v^* ? Explain the value of z_2^* intuitively.

• (PTS:0-2) Consider the above problem for $A = [1 \ 1]$ and b = 1. Draw a picture of the optimization space labeling

$$\{x \in \mathbb{R}^2 \mid Ax = b\}, \quad \mathcal{R}(A^T), \quad x^*, \quad -A^T v^*, \quad \text{level sets of } f(x), \quad \frac{\partial f}{\partial x}\big|_{x^*}$$

3. Spherical Level Sets

Now consider the optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2}|x|_2^2 + c^T x = \frac{1}{2}x^T x + c^T x$$
s.t. $Ax = b$

for $A \in \mathbb{R}^{m \times n}$ full row rank with m < n and $b \in \mathbb{R}^m$. The optimality conditions are given by

$$\frac{\partial f}{\partial x}^T = x + c = -A^T v \tag{3}$$

$$Ax = b (4)$$

with dual variable $v \in \mathbb{R}^m$. Let x^*, v^* refer to x and v at optimum.

- (PTS:0-2) Solve for v^* in terms of b. (Hint: start by left multiplying (3) by A and substituting in Ax = b). Using the solution for v^* solve for x^* .
- (PTS:0-2) Write the objective function in the form from Problem 1.

$$\frac{1}{2}x^Tx + c^Tx = \frac{1}{2}z^Tz + \text{CONST}$$

for $z = x - \bar{x}$ for some $\bar{x} \in \mathbb{R}^n$. Rewrite the constraint in terms of z, ie. compute \bar{b} such that

$$Ax = b \qquad \Rightarrow \qquad Az = \bar{b}$$

• **(PTS:0-2)** Show that

$$z^* = x^* - \bar{x} = A^T (AA^T)^{-1} \bar{b}$$

• (PTS:0-2) Consider the above problem for $A = [1 \ 1]$ and b = 1 and $c^T = [-1 \ 1]$ Draw a picture of the optimization space labeling

$$\{x \in \mathbb{R}^2 \mid Ax = b\}, \quad \mathcal{R}(A^T), \quad \text{level sets of } f(x), \quad \bar{x}$$

• (PTS:0-2) Also label

$$x^*, \quad z^* = x^* - \bar{x}, \quad -A^T v^*, \quad \frac{\partial f}{\partial x}\big|_{x^*},$$

and interpret the location of x^* relative to \bar{x}

4. Ellipsoidal Level Sets

Now consider the optimization problem

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \frac{1}{2}x^T Q x + c^T x$$

s.t. $Ax = b$

for $A \in \mathbb{R}^{m \times n}$ full row rank with m < n and $b \in \mathbb{R}^m$. The optimality conditions are given by

$$\frac{\partial f}{\partial x}^T = Qx + c = -A^T v \tag{5}$$

$$Ax = b (6)$$

with dual variable $v \in \mathbb{R}^m$. Let x^*, v^* refer to x and v at optimum.

- (PTS:0-2) Solve for v^* in terms of b. (Hint: start by left multiplying (5) by AQ^{-1} and substituting in Ax = b). Using the solution for v^* solve for x^* .
- (PTS:0-2) Rewrite the optimization problem using the coordinate transformation $x = Q^{-\frac{1}{2}}x'$ (equivalently $x' = Q^{\frac{1}{2}}x$).
- (PTS:0-2) Re-solve the optimization problem using the form from Problem 3 in the x' coordinates and show that you get the same solution as your solution above in the x coordinates.
- (PTS:0-2) Consider the above problem for

$$Q = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad b = 1, \quad c^T = \begin{bmatrix} -1 & 1 \end{bmatrix}$$

Compute the center of the ellipsoidal level sets \bar{x} .

• (PTS:0-2) Draw a picture of the optimization space labeling

$$\{x \in \mathbb{R}^2 \mid Ax = b\}, \quad \mathcal{R}(A^T), \quad \bar{x}, \quad \text{level sets of } f(x), \quad x^*, \quad -A^T v^*, \quad \frac{\partial f}{\partial x}|_{x^*}$$