$\mathrm{CSC}165\mathrm{H}1$ - Problem Set 0

Xuanqi Wei

 $March\ 2,\ 2023$

My Courses

• CSC148H1: Intro to Comp Sci by Prof. Diane Horton

• CSC165H1: Math Expr & Rsng for Cs by Prof. Gary Baumgartner

• MAT137Y1: Calculus with Proofs by Prof. Clovis Hamel Ascanio

• MAT224H1: Linear Algebra 2 by Prof. Denis Gorodkov

• STA130H1: STAT Reasoning by Prof. Joshua Speagle

Set notation

$$S_1 \cap S_2 = \{0, 1, 4, 5, 6, 9, 10, 11, 14\}$$

A truth table

р	q	r	$(p \lor q) \Rightarrow (p \Leftrightarrow r)$
Т	Τ	Т	Τ
Τ	Τ	F	F
Т	F	Т	Τ
Т	F	F	F
F	Τ	Τ	F
F	Τ	F	Т
F	F	Τ	Т
F	F	F	Т

A calculation

Part 1

$$\sum_{i=0}^{n-1} (2i+3) = 3n + \frac{2n(n-1)}{2}$$
$$= 3n + n^2 - n$$
$$= n^2 + 2n$$

Part 2 According to the result of Part 1:

$$\sum_{i=0}^{n-1} (2i+3) \ge 165$$
$$n^2 + 2n \ge 165$$
$$n^2 + 2n - 165 \ge 0$$

According to the quadratic formula, when $n^2 + 2n - 165 = 0$, gives:

$$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
, where $a = 1$, $b = 2$, $c = -165$

Therefore,

$$n = \frac{-2 \pm \sqrt{(-2)^2 - 4 \times 1 \times (-165)}}{2 \times 1}$$
$$n = \frac{(-1) \pm 2\sqrt{166}}{2}$$
$$n = -1 \pm \sqrt{166}$$

Since a=1>0, when $n\leq -1-\sqrt{166}$ or $n\geq -1+\sqrt{166}$, $n^2+2n-165\geq 0$ Since $n\geq 0$, when $n\geq -1+\sqrt{166}\approx 11.88,$ $n^2+2n-165\geq 0$, which,

$$n = 12$$