

MIT PROF. SCHWARZ

WIE IRRATIONAL DARF ES SEIN? VON HIMMLISCHER SPHÄRENMUSIK UND CHAOS IM DREIKÖRPERPROBLEM

> 11. DEZEMBER 2024 19:15 UHR, HÖRSAAL 3

Der Glühwein- und Punschverkauf startet 18:30 Uhr vor dem Ziegenledersaal (Innenhof). Dort wird es auch weihnachtliches Gebäck geben.

Bringt euch gern einen eigenen Becher mit :)

Diskrete Strukturen (WS 2024-25) - Halbserie 7

7.1

Seien A und B Mengen mit |A| = |B|. Zeigen Sie dass $|A^2| = |B^2|$.

$$7.2 ag{4}$$

Für eine Menge M und $k \in \mathbb{N}$, definieren wir $\mathcal{P}_k(M) := \{X \subset M : |X| = k\}$. Seien A und B Mengen mit |A| = |B|.

- (a) Zeigen Sie, dass $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.
- (b) Zeigen Sie, dass für jede $k \in \mathbb{N}$ gilt $|\mathcal{P}_k(A)| = |\mathcal{P}_k(B)|$

 $7.3 ag{3}$

Sei A eine unendliche abzählbare Menge. Zeigen Sie dass $|\mathcal{P}_2(A)| = \aleph_0$. (Hinweise: Sie können die Resultate der vorherigen Übungen auf diesem oder einem vorherigen Blatt verwenden.)

- **7.4** Gegeben sei eine injektive Funktion $g: \mathbb{N}^2 \to \mathbb{N}$. Zeigen Sie, dass die Funktion $h: \mathbb{N}^3 \to \mathbb{N}$, definiert durch $h(x_1, x_2, x_3) = g(g(x_1, x_2), x_3)$ für alle $x_1, x_2, x_3 \in \mathbb{N}$ ebenfalls injektiv ist.
- 7.5 Zeigen Sie mit Hilfe des Satzes von Cantor-Schröder-Bernstein, dass

$$|\{q \in \mathbb{Q} \mid q \ge 1\}| = |[0,1] \cap \mathbb{Q}|$$

gilt. Dabei bezeichnet [0, 1] das geschlossene Intervall reeller Zahlen von 0 bis 1.

- **7.6** Betrachten Sie die Funktion $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, die wie folgt definiert ist: für alle $X \in \mathcal{P}(\mathbb{N})$ sei f(X) die Menge, die aus X entsteht, indem jede gerade Zahl $x \in X$ durch x+1 ersetzt wird, und jede ungerade Zahl $x \in X$ durch x+3 ersetzt wird. So ist beispielsweise $f(\{0,8,17,23\}) = \{1,9,20,26\}$.
 - 1. Zeigen Sie, dass für alle $X, Y \in \mathcal{P}(\mathbb{N})$ gilt: Wenn $X \subseteq Y$, dann $f(X) \subseteq f(Y)$.
 - 2. Besitzt f einen Fixpunkt? Begründen Sie Ihre Antwort.

Gegeben sei die Menge $M = \{0, 1, 2, 3, 4, 5\}$ und die **Ordnungsrelation** $R \subseteq M \times M$, dargestellt als **Hasse-Diagramm**:

- 1. Geben Sie R explizit als eine Telimenge von $M \times M$ an.
- 2. Geben Sie für R
 - (a) <u>alle</u> minimalen Elemente,
- (c) alle unteren Schranken für $\{0, 1\}$,
- (b) alle oberen Schranken für $\{1, 3\}$,
- (d) das größte Element von $\{0, 3\}$ an.

7.8 [2]

Gegeben sei die Relation $R\subseteq \mathbb{N}\times \mathbb{N},$ definiert durch

 $(a,b) \in R$ genau dann, wenn a ist Teiler von b.

Ist (\mathbb{N}, R) eine **total geordnete Menge**? Begründen Sie Ihre Antwort.