LECTURE 8

Split Functions, Implicit Differentiation and Related Rates

Implicit Differentiation
$$\leftrightarrow \frac{d}{dx}(f(y)) = \frac{d}{dy}(f(y))\frac{dy}{dx}$$
.

Differentiating a relation between x and y implicitly with respect to t will produce a new relation between the rates of change $\frac{dx}{dt}$ and $\frac{dy}{dt}$.

A split function is usually constructed from two or more differentiable component functions. To verify (or force) the differentiability of such a split function we simply need to first verify that the pieces join up (continuity) and then that they *join smoothly* (differentiability) by showing that the derivatives match up properly.

Example 1: Find all real values of a and b such that the function defined by

$$f(x) = \begin{cases} 1 - x^2, & x < 2; \\ ax + b, & x \ge 2. \end{cases}$$

is differentiable at x = 2.

A sketch:

Let $p(x) = 1 - x^2$ and q(x) = ax + b. It helps to name the pieces.

We first demand that the function be continuous at x = 2. That is the pieces must join, and hence p(2) = q(2):

We next force the weld to be smooth! Thus we require that p'(2) = q'(2). That is:

$$p'(x) = \longrightarrow p'(2) =$$

$$q'(x) = \longrightarrow q'(2) =$$

Implicit Differentiation

Usually when you differentiate, your starting point is a nice clean function y = f(x). But sometimes you need to start with a horrible messy relation instead, for example $x^2 + y^3 + 4y^2 = 3$. It can be difficult or even impossible to write y in terms of x. We can still find the derivative $\frac{dy}{dx}$ but need to use **implicit differentiation**. First a simple skill

Example 2: If
$$\frac{3}{7} = \frac{3}{11} \times \frac{*}{*}$$
 what is $\frac{*}{*}$?

$$\star \quad \frac{11}{7} \quad \star$$

Implicit differentiation is little more than the above trick!

Example 3: Find
$$\frac{dy}{dx}$$
 if $x^2 + y^3 + 4y^2 = 3$.

$$\bigstar \quad \frac{-2x}{3y^2 + 8y} \quad \bigstar$$

Example 4: Find $\frac{dy}{dx}$ if $\sin(x) + e^y = \ln(y) + x^3$

$$\bigstar \quad \frac{3x^2y - y\cos(x)}{ye^y - 1} \quad \bigstar$$

Example 5: Find the equation of the tangent to $x^2y^5 + 3y - 2x = 3$ at the point (0,1).

Related Rates

Differentiating a relation between x and y implicitly with respect to t will produce a new relation between the rates of change $\frac{dx}{dt}$ and $\frac{dy}{dt}$.

Example 6: Suppose that the surface area S (in m^2) of a human body is related to its weight W (in kg) by

$$S^3 = \frac{W^2}{512}$$

- a) Bob weighs 64 kg. What is the surface area of his body?
- b) Find a relation between $\frac{dS}{dt}$ and $\frac{dW}{dt}$.
- c) Prove that if Bob's weight were to change in any way, the rate of change of his surface area would be $\frac{1}{48}$ the rate of change of his weight.

$$\bigstar$$
 a) S=2 b) $3S^2 \frac{dS}{dt} = \frac{W}{256} \frac{dW}{dt}$ c) Proof \bigstar

Example 7: A spherical balloon is inflated at a rate of 100 m³/sec. Determine the rate at which the radius is increasing when

- a) r = 5m.
- b) $V = 36\pi \text{ m}^3$.

Our first task is to find a relationship between the central variables which remains fixed throughout the entire process. This is of course the volume formula for a sphere:

$$V = \frac{4}{3}\pi r^3$$

$$\bigstar$$
 a) $\frac{1}{\pi}$ m/sec b) $\frac{100}{36\pi}$ m/sec \bigstar

Error Estimates (Homework)

This topic was of enormous importance before the advent of calculators but is now a bit dated.

Recall that $\frac{\Delta y}{\Delta x} \approx \frac{dy}{dx}$ and hence $\Delta y \approx \frac{dy}{dx} \Delta x$. This gives us a way of estimating errors.

Example 8: Find an error estimate when approximating $\sqrt{9.001}$ by $\sqrt{9}$.

We have x = 9 and $\Delta x = 0.001$.

Let
$$y = \sqrt{x}$$
. Then $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$.

Now
$$\Delta y \approx \frac{dy}{dx} \Delta x \to \Delta y \approx \frac{1}{2\sqrt{x}} \Delta x = \frac{1}{2\sqrt{9}} (0.001) = \frac{1}{6000}$$
.

