# Jeffrey Roberge

Principal Mechanical Engineer



## Objective

Mechanical engineer with eight years of strong computational methods and software experience, looking to develop analytical applications for the purpose of aiding in structural and aero-thermal design of gas turbine engines.

## **Programming**

Java • Python • C++ • Perl · Lua · MatLab · Bash

## **Mechanical Skills**

FEA · ANSYS MAPDL · NX · NXOpen API · Simcenter Multiphysics • Abaqus ISight • SmartUQ

## **Software Skills**

Git · REST APIs · Agile Development and Scrum Supercomputing • IBM LSF · LaTeX · Docker · AWS

#### Certifications

2024 AWS Cloud Practitioner

## Interests

Computational Mechanics · Numerical Methods · Finite Element Analysis

Optimization



# Professional Experience

July 2024-Present

## **Pratt & Whitney**

PRINCIPAL MECHANICAL ENGINEER · System Engineering Tools & Methods, East Hartford, CT 💡



- · Designed and developed pre- and post-processing tools for finite element analysis (FEA), with a focus on low and high cycle fatigue lifing systems, fracture mechanics, creep, strength and burst preditions.
- As mentor, developed new hire skills in Agile software, finite element analysis, and computational mechanics.
- Partnered with Human Resources and the leadership team to source top engineering talent for engineering.

Dec 2020-July 2024

#### **Pratt & Whitney**

SENIOR MECHANICAL ENGINEER · System Engineering Tools & Methods, East Hartford, CT 9



- · On a large multidisciplinary team, quantified powder nickel occlusion and fracture risk using a custom Monte Carlo simulation, and advised fleet management plans to mitigate this billion dollar flight safety issue.
- · Increased engineers' analysis speed by developing nearly 40 software applications for a new FEA toolset.
- · Built training and up-skilled engineers, helping with technical issues in the new FEA solver environment.

Dec 2016-Dec2020

## **Pratt & Whitney**

MECHANICAL ENGINEER · Engineering Development Pro gram, East Hartford, CT 💡



- · Analyzed military high pressure compressor (HPC) static structures and cases during a preliminary design phase
- · As part of the military HPC heat transfer group, iterated with the Design and Structures group to provide an HPC configuration that satisfies material capability and blade tip clearance requirements.
- Studied secondary flow structure by carrying out computational fluid dynamic analyses of the HPC's scavenge paths.
- · Performed part shape optimization via surrogate modeling.

Sep 2014-Sep 2016

## **Structural Optimization Laboratory**

GRADUATE ASSISTANT / TEACHING ASSISTANT · UConn Mechanical Engineering Department, Storrs, CT 9



Developed computational modeling algorithms for obtaining the effective properties of bone scaffold implants and composites, and for designing patient-specific bone scaffolds to expedite rehabilitation of critical size bone defects.

## DEGREES

2013

2016 **Mechanical Engineering** 

M.S. · UConn 🏦

4.17/4.00

**Biomedical Engineering** B.S. · UConn 🟛 3.76/4.00



# **PUBLICATIONS**

2018

Jeff Roberge and Julián Norato, "Computational design of curvilinear bone scaffolds fabricated via direct ink writing," Computer-Aided Design, Vol. 95, February 2018, Pages 1-13.



