Plan and Goal Recognition in the Real World

Felipe Meneguzzi†

†Pontifical Catholic University of Rio Grande do Sul, Brazil felipe.meneguzzi@pucrs.br

Pelotas, October, 2018

Table of Contents

- Introduction
 - Motivation and Intuition
- 2 Goal Recognition as reasoning over Heuristics
- Online Goal Recognition as Reasoning over Landmarks
- 4 Real World Applications
 - Plan Recognition using Video Data
 - Plan Recognition in Latent Space
- 5 Summary and Future Directions

Introduction

- Recognizing plans and goals of others is a critical ability for intelligent interaction:
 - important for humans/agents working in the same environment
 - increasingly important as we build more intelligent systems
- Overall area of Plan, Activity and Intent Recognition
 - Activity recognition: recognizing meaningful activities from low-level sensor data
 - Plan/Intent/Goal recognition: recognizing intentional higher-level sequences of activities

Introduction

- Goal Recognition is the task of recognizing agents' goal that explains a sequence of observations of its actions;
 - Related to plan recognition, i.e. recognizing a top-level action
 - A specific form of the problem of abduction
- Approaches to goal and plan recognition divided into roughly two types:
 - Plan-library based (classical plan recognition)
 - Domain-theory based (plan recognition as planning, or PRAP)

Flavors of Recognition Formalism

Plan Library

Domain Theory (PRAP)

```
(define (domain grid)
(:requirements :strips :tvping)
(:types place shape key)
(:predicates (conn ?x ?y - place)
             (key-shape ?k - key ?s - shape)
             (lock-shape ?x - place ?s - shape)
             (at ?r - key ?x - place )
             (at-robot ?x - place)
             (locked ?x - place)
             (carrying ?k - kev)
             (open ?x - place)
(:action unlock
: parameters (?curpos ?lockpos — place ?kev — kev ?shape — shape)
:precondition (and (conn ?curpos ?lockpos) (key-shape ?key ?shape)
                   (lock-shape ?lockpos ?shape) (at-robot ?curpos)
                   (locked ?lockpos) (carrying ?kev))
:effect (and (open ?lockpos) (not (locked ?lockpos)))
(:action move
:parameters (?curpos ?nextpos - place)
: precondition (and (at-robot ?curpos) (conn ?curpos ?nextpos) (open ?r
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos)))
(:action pickup
: parameters (?curpos - place ?kev - kev)
:precondition (and (at-robot ?curpos) (at ?key ?curpos))
:effect (and (carrying ?key)
   (not (at ?key ?curpos)))
```


breaking egg

from Miquel Ramirez's thesis

Wooden pieces $p_1, p_2, \dots p_n$ Pieces have shapes and colors Bins b_1, b_2, \dots, b_n The possible **goals** the trainer expected to pursue:

- ① Store all triangles in b_1
- ② Store all spheres in b_2
- 3 Store all cubes in b_3
- 4 Store red objects in b_2
- \circ Store green objects in b_3
- **6** Store blue objects in b_1

7 / 59

from Miquel Ramirez's thesis

Wooden pieces $p_1, p_2, \dots p_n$ Pieces have shapes and colors Bins b_1, b_2, \dots, b_n One possible *plan* for the trainer to achieve goal #1 (store all triangles in b_1):

- 1 Walk from B3 into A4
- Pick p₃ up
- Walk from A4 into B3
- Walk from B3 into C2
- ⑤ Pick p₄ up
- **6** Throw p_3 into b_1
- Throw p_4 into b_1

from Miquel Ramirez's thesis

Wooden pieces $p_1, p_2, \dots p_n$ Pieces have shapes and colors Bins b_1, b_2, \dots, b_n If sensors miss 70% of *walk* actions and half *pick* and *drop* actions, we may only see:

- Pick p₃ up
- Walk from A4 into B3

7 / 59

from Miquel Ramirez's thesis

Wooden pieces $p_1, p_2, \dots p_n$ Pieces have shapes and colors Bins b_1, b_2, \dots, b_n If sensors miss 70% of walk actions and half pick and drop actions, we may only see:

- Pick p₃ up
- Walk from A4 into B3

Here, we could deduce either goal #1 or #4 (store all red objects in b_2), as other tasks are less *likely*.

Table of Contents

- IntroductionMotivation and Intuition
- Quantum Control of the Control of
- 3 Online Goal Recognition as Reasoning over Landmarks
- 4 Real World Applications
 - Plan Recognition using Video Data
 - Plan Recognition in Latent Space
- 5 Summary and Future Directions

Motivation

- In this work, we use a planning domain definition to represent agent behavior and environment properties;
- Previous approaches involve multiple calls to a modified planner.
- Our main contribution is twofold:
 - We obviate the need to execute a planner multiple times for recognizing goals; and
 - We develop novel goal recognition heuristics that use planning landmarks.
- We show that our approaches are more accurate and orders of magnitude faster than Ramírez and Geffner's approach.

Computing Achieved Landmarks

- Our heuristics require identifying which fact landmarks have been achieved during the observed plan execution for every candidate goal $G \in \mathcal{G}$;
- For every candidate goal $G \in \mathcal{G}$:
 - Extract ordered landmarks for G;
 - Use achieved landmarks of G in preconditions and effects of every observed action o ∈ O;
 - Under partial observability, we deal with missing actions by inferring that predecessors of observed landmarks must have been achieved;

Landmark-Based Goal Completion Heuristic

• Goal Completion h_{gc} aggregates the percentage of completion of each sub-goal into an overall percentage of completion for all facts of a candidate goal;

$$h_{gc}(G, \mathcal{AL}_G, \mathcal{L}_G) = \left(\frac{\sum_{g \in G} \frac{|\mathcal{AL}_g \in \mathcal{AL}_G|}{|\mathcal{L}_g \in \mathcal{L}_G|}}{|G|}\right)$$
(1)

where:

- \mathcal{AL}_G achieved landmarks for goals in G
- ullet \mathcal{L}_G all landmarks for goals in G

Landmark-Based Uniqueness Heuristic (1 of 2)

 Our second heuristic computes landmark uniqueness: inverse frequency of a landmark within landmarks for candidate goals:

$$L_{Uniq}(L, \mathcal{L}_{\mathcal{G}}) = \left(\frac{1}{\sum_{\mathcal{L} \in \mathcal{L}_{\mathcal{G}}} |\{L|L \in \mathcal{L}\}|}\right)$$
(2)

B
$$L_{Uniq}(L2) = 1/2$$

 $L_{Uniq}(L1) = 1/3$
 $L_{Uniq}(L3) = 1$

Landmark-Based Uniqueness Heuristic (2 of 2)

• Our second heuristic, called h_{uniq} , estimates the goal completion of a candidate goal G by calculating the ratio between the sum of the uniqueness value of the achieved landmarks of G and the sum of the uniqueness value of all landmarks of G;

$$h_{uniq}(G, \mathcal{AL}_G, \mathcal{L}_G, \Upsilon_{uv}) = \left(\frac{\sum_{\mathcal{A}_L \in \mathcal{AL}_G} \Upsilon_{uv}(\mathcal{A}_L)}{\sum_{L \in \mathcal{L}_G} \Upsilon_{uv}(L)}\right)$$
(3)

where:

- Υ_{uv} is a table of uniqueness values
- \mathcal{AL}_G achieved landmarks for goals in G
- \bullet \mathcal{L}_G all landmarks for goals in G

Example (1 of 4)

- Observations:
 - (unstack D B); and
 - (unstack C A).
- The real goal is: (and (ontable D) (on C D) (clear C))

Example (2 of 4)

Achieved Landmarks in Observations:

- (and (ontable D) (clear A) (on A D)), 5 out of 8:
 - [(clear A)], [(clear A) (ontable A) (handempty)],
 [(on C A) (clear C) (handempty)], [(holding D)],
 [(clear D) (on D B) (handempty)]
- (and (ontable D) (clear B) (on B D)), 4 out of 7:
 - [(clear B)], [(ontable B) (handempty)],
 [(on D B) (clear D) (handempty)], [(holding D)]
- (and (ontable D) (clear C) (on C D)), 5 out of 7:
 - [(clear C)], [(clear C) (on C A) (handempty)], [(clear D) (holding C)] [(clear D) (on D B) (handempty)], [(holding D)]

Example (3 of 4) - h_{gc}

Landmark-Based Goal Completion Heuristic

- (and (ontable D) (clear A) (on A D)):
 - Goal Completion: 0.7222
- o (and (ontable D) (clear B) (on B D)):
 - Goal Completion: 0.6666
- (and (ontable D) (clear C) (on C D)):
 - Goal Completion: 0.7777 (highest estimated value)

Example (4 of 4) - h_{unia}

Landmark-Based Uniqueness Heuristic

- (and (ontable D) (clear A) (on A D)), Total_{Unia} = 5.5: • [(clear A)] = 1, [(clear A) (ontable A) (handempty)] = 1,
 - [(on C A) (clear C) (handempty)] = 0.5, [(holding D)] = 0.3333, [(clear D) (on D B) (handempty)] = 0.3333
 - $h_{uniq} = 3.1666 / 5.5 = 0.5757$
- (and (ontable D) (clear B) (on B D)), Total_{Unia} = 5:
 - [(clear B)] = 1, [(ontable B) (handempty)] = 1, [(on D B) (clear D) (handempty)] = 0.3333, [(holding D)] = 0.3333
 - $h_{unig} = 2.6666 / 5 = 0.5333$
- (and (ontable D) (clear C) (on C D)), Total_{Unia} = 4.5:
 - [(clear C)] = 1, [(clear C) (on C A) (handempty)] = 0.5, [(clear D) (holding C)] = 1, [(holding D)] = 0.3333[(clear D) (on D B) (handempty)] = 0.3333
 - $h_{unig} = 3.1666 / 4.5 = 0.71$

Recognized (and (ontable D) (clear C) (on C D)) with:

 $h_{unia} = 0.71$

Experiments and Evaluation

- We evaluate our heuristics over datasets with 15 planning domains (6 of these domains from original Ramírez and Geffner paper):
 - BLOCKS-WORLD, CAMPUS, DEPOTS, DRIVER-LOG, DOCK-WORKER-ROBOTS, EASY-IPC-GRID, FERRY, INTRUSION-DETECTION, KITCHEN, LOGISTICS, MICONIC, ROVERS, SATELLITE, SOKOBAN, AND ZENO-TRAVEL;
- These datasets contain hundreds of goal recognition problems, varying the observability (10%, 30%, 50%, 70%, and 100%);
- We compared our heuristics against the original approach of Ramírez and Geffner (Plan Recognition as Planning. IJCAI, 2009), which is their fastest and most accurate approach;

Experiments and Evaluation - ROC Space (1 of 2)

- Results of our heuristics use threshold $\theta = 20\%$;
- We compare Ramírez and Geffner's approach over ROC space, which shows the trade-off between TPR and FPR;
- We aggregate multiple domains and plot these goal recognition results in ROC space.

Experiments and Evaluation - ROC Space (2 of 2)

Experiments and Evaluation - Recognition Time

Experiments and Evaluation - Recognition Time with Noise

Contributions and Limitations

Contribution so far:

- Use planning landmarks for goal recognition;
- Obviate the need to run a planner during goal recognition, resulting in much faster and highly accurate recognition; and
- Robust dataset to evaluate goal recognition algorithms

• Limitations:

- Sensitive to the presence of landmarks; and
- Low accuracy with very few observations, i.e., 10% of observability;

Table of Contents

- Introduction
 - Motivation and Intuition
- 2 Goal Recognition as reasoning over Heuristics
- 3 Online Goal Recognition as Reasoning over Landmarks
- 4 Real World Applications
 - Plan Recognition using Video Data
 - Plan Recognition in Latent Space
- 5 Summary and Future Directions

Motivation for Efficient Online Goal Recognition

Most goal recognition approaches using domain models have three key limitations:

- (1) assumption of a discrete state-space in a PDDL-like formalism
 - not viable for use with path planning scenarios
- assume all access to all observations at once
 - approaches do not consider the time to recognition
- need to call a planner multiple times per goal to rank hypotheses
 - PRAP is computationally expensive, impractical for long plans

Online vs. Offline Plan Recognition

- Offline plan recognition:
 - All observations received at once;
 - Observations may be incomplete or noisy;
 - One-shot recognition;
- Online plan recognition:
 - Observations received incrementally;
 - Observations may be incomplete or noisy;
 - Objective is to recognize goal as soon as possible, without the full observation sequence

Efficient Online Goal Recognition

Our approach:

- is efficient for online goal recognition;
- works in both discrete and continuous domains;
- minimizes planner calls;
- reasons about landmarks to minimize the number of goal hypotheses;
- returns reliable goal ranking as soon as possible

Landmarks in Continuous Domains

We need a notion of landmark in continuous domains

- Redefine landmarks as areas surrounding goals
 - Goals Black dots
 - Surrounding Rectangles continuous landmark areas
- To reach a goal the observed motion must intersect (go through) the corresponding landmark area.
- In this work, landmark areas roughly correspond to rooms partitioned as rectangular Voronoi diagrams
 - Other notions of numeric landmarks may apply (e.g. Scala et al. IJCAI 2017)

Online Recognition with Landmarks

- Generate the ordered set of achieved landmarks
- Maintain the group of goals eliminated due to landmarks
- For every observation:
 - Check if it "achieved" a landmark
 - If observations backtrack, re-instate goals
- Rank goals using the landmark completion heuristic h_{gc}

Goal Mirroring with Landmarks

Combines landmark reasoning with goal mirroring

- Compute landmarks and optimal plans for all goals
- For every observation:
 - Compute plan prefix, and for every goal
 - Either prune goals that have passed the last landmark; or
 - Compute plan suffix (from last observation) using planner
 - Compute cost ratio between prefix+suffix and optimal plan

- Rank unpruned goals based on a **normalized** cost ratio
- Ranks $P(g_k \mid O)$ using a normalizing factor $\eta 1 / \sum_{g_k \in G} rank(g_k)$
- Approximates $P(g \mid O) = \eta \sum_{g_k \in G} P(O \mid g_k) P(g_k)$ for all goals, assuming $P(g_k) = 0$ for pruned goals

Plan and Goal Recognition in the Real World

Continuous Evaluation

- Cubicles environment and robot (OMPL)
- 11 points spread evenly over the environment
- 220 problems

Discrete Evaluation

- Dataset expanded from Ramirez and Geffner's original work
- Domains extracted from the IPC competition
- Hundreds of goal recognition problems

Domains

- BLOCKS-WORLD
- Campus
- DEPOTS
- DRIVER-LOG
- DOCK-WORKER-ROBOTS
- EASY-IPC-GRID
- Ferry
 - INTRUSION-DETECTION
- KITCHEN
- LOGISTICS
- MICONIC
- ROVERS
- SATELLITE
- SOKOBAN: and
- ZENO-TRAVEL

Performance Results

33 / 59

Efficiency Results

Contributions and Limitations

Contribution so far:

- Extended de idea of landmarks for continuous domains; and
- Developed online algorithms able to recognize plans in discrete and continuous domains;
- Very efficient in both discrete and continuous domains.

• Limitations:

- Naive notion of spatial landmarks;
- Much better performance on discrete domains.

Table of Contents

- IntroductionMotivation and Intuition
- 2 Goal Recognition as reasoning over Heuristics
- 3 Online Goal Recognition as Reasoning over Landmarks
- 4 Real World Applications
 - Plan Recognition using Video Data
 - Plan Recognition in Latent Space
- 5 Summary and Future Directions

Plan Recognition using Video Data

Plan Recognition using Video Data

Plan recognition

 Task of recognizing the plan (i.e., the sequence of actions) the observed agent is following in order to achieve his intention (Sadri, 2012)

Activity recognition

- The task of recognizing the independent set of actions that generates an interpretation to the movement that is being performed (Poppe, 2010)
- Such task is particularly challenging in the real physical world
- Much research effort focuses on activity and plan recognition as separate challenges:
- We develop a hybrid approach that comprises both activity and plan recognition;
- The approach infers, from a set of candidate plans, which plan a human subject is pursuing based exclusively on fixed-camera video.

Poppe, R. A survey on vision-based human action recognition. Image and Vision Computing 28(6), pp. 976-990, 2010. Sadri, Fariba, Intention Recognition in Agents for Ambient Intelligence: Logic-Based Approaches,

Ambient Intelligence and Smart Environments, pp. 197-236, 2012.

A Hybrid Architecture for Activity and Plan Recognition

Conceptually divided in two main parts

- CNN-based activity recognition (CNN)
- CNN-backed symbolic plan recognition (SBR)

39 / 59

Experiments: Dataset

- ICPR 2012 Kitchen Scene Context based Gesture Recognition dataset (KSCGR)
- 5 recipes for cooking eggs in Japan
 - Ham and Eggs, Omelet, Scrambled-Egg, Boiled-Egg and Kinshi-Tamago
 - Each recipe is performed by 7 subjects
 (5 in training set, 2 in testing set)
- 9 cooking activities composes the dataset
 - Breaking, mixing, baking, turning, cutting, boiling, seasoning, peeling, and none

Summary of the Results

Conducted experiments on two levels:

- Activity Recognition
 - Accuracy lower than 50% (in 9-label classification) for infrequent activities
 - Very good accuracy to identify "no-action"
- Overall Plan Recognition
 - Low accuracy for overall plan recognition using plan-libraries

Contributions and Future Work

- We developed a hybrid architecture for activity and plan recognition
- Pipeline includes:
 - A CNN for activity recognition that feeds directly into:
 - a modified (SBR) approach that uses the CNN to index activities in the plan library
- Approach limited by the plan library in the plan recognizer
- Next steps:
 - Employ other deep learning architectures such as Long-Short Term Memory networks (LSTM) and 3D CNNs
 - Use a more flexible approach for plan recognition, such as PRAP
 - Explore object recognition to provide additional clues of the activity that is being performed

Demo video: https://youtu.be/BoiLjU1vg3E

Plan Recognition in Latent Space

Motivation

- Goal and Plan Recognition depend on high-quality domain engineering
 - PDDL domain theory for PRAP
 - Plan Library for traditional PR
- We would like to obviate the need for most domain engineering
 - Learn domain models directly from raw data
 - Recognize goals using raw data as observations

Variational Autoencoders

- Autoencoders are a specific type of Neural Network intended to learn representations
- Consists of three key parts
 - Encoder network
 - Latent layer (the middle layer)
 - Decoder network
- Trained in an unsupervised manner
- Variational Autoencoders force the the encoder network to generate latent vectors following some distribution (typically a unit-gaussian one)

Gumbel-softmax autoencoders and planning

- Planners view states as sets of logical propositions (i.e. binary vectors)
- We would like to be able to learn state representations from raw data
- We force an autoencoder to have a categorial distribution in the latent layer:
 - Gumbel-softmax activation can be annealed into a categorical distribution
 - Latent layer now correspond to logic bits
 - Can learn a PDDL transition function from pairs of states

Goal Recognition using Raw Data

 Once we learn the internal representation, we can recognize plans as sequences of steps

Goal Recognition in Latent Space

Key steps in the approach

- Train autoencoder using an image dataset (binary representation)
- Infer transition function from pairs of encoded images (states)
- Convert Goal Recognition problem to latent space using autoencoder
- Recognize goals using PRAP algorithms (ours)

Domains

Experiments consisted of predicting final state of 3 distinct games

Figure: Sample state for each domain.

Experiments

					POM (h _{uniq})			RG	
Domain	9	(%) Obs	0	Time (s) θ (0 / 10)	Accuracy % θ (0 / 10)	Spread in G θ (0 / 10)	Time (s)	Accuracy %	Spread in $\mathcal G$
8-Puzzle	6.0	10	1.0	0.074 / 0.080	33.3% / 33.3%	2.6 / 2.6	0.179	100.0%	4.8
		30	3.0	0.079 / 0.085	83.3% / 83.3%	1.0 / 2.5	0.188	100.0%	1.3
		50	4.0	0.088 / 0.091	100.0% / 100.0%	1.1 / 1.6	0.191	100.0%	1.3
	l	70	5.3	0.092 / 0.100	100.0% / 100.0%	1.0 / 1.0	0.210	100.0%	1.0
		100	7.3	0.108 / 0.110	100.0% / 100.0%	1.0 / 1.0	0.246	83.3%	1.1
MNIST	6.0	10	1.2	0.555 / 0.562	40.0% / 60.0%	1.6 / 3.2	21.25	100.0%	6.0
		30	3.0	0.587 / 0.599	20.0% / 80.0%	1.4 / 3.0	22.26	100.0%	4.8
		50	4.0	0.609 / 0.628	60.0% / 80.0%	2.2 / 2.8	22.48	100.0%	4.8
		70	5.8	0.631 / 0.654	60.0% / 100.0%	2.4 / 3.6	23.53	100.0%	3.2
		100	7.8	0.676 / 0.681	80.0% / 100.0%	2.4 / 3.0	26.34	100.0%	3.4

- Learned domain-theory representations for all experimental domains
- Learned models useable to recognize goals almost as well as

Contributions and Future Work

- We developed an approach for goal recognition capable of obviating the need for human engineering to create a task for goal recognition
- Empirical results shows that our approach comes close to standard goal recognition techniques
- Future work:
 - Improve generalization of state autoencoder
 - Compress redundant (ground) actions
 - Extend the technique for video streams

Table of Contents

- 1 Introduction
 - Motivation and Intuition
- 2 Goal Recognition as reasoning over Heuristics
- Online Goal Recognition as Reasoning over Landmarks
- 4 Real World Applications
 - Plan Recognition using Video Data
 - Plan Recognition in Latent Space
- 5 Summary and Future Directions

Papers reporting these results

AMADO, Leonardo R.; PEREIRA, Ramon F.; AIRES, João Paulo; MAGNAGUAGNO, Maurício C.; GRANADA, Roger Leitzke; and MENEGUZZI, Felipe. **Goal Recognition in Latent Space.** IJCNN, 2018.

VERED, Mor; PEREIRA, Ramon F.; KAMINKA, Gal; and MENEGUZZI, Felipe. Online Goal Recognition as Reasoning over Landmarks. PAIR@AAAI, 2018.

VERED, Mor; PEREIRA, Ramon F.; KAMINKA, Gal; and MENEGUZZI, Felipe. Towards Online Goal Recognition Combining Goal Mirroring and Landmarks. AAMAS, 2018.

Papers reporting these results

FRAGA PEREIRA, Ramon; MENEGUZZI, Felipe. Landmark-based Plan Recognition. ECAI, 2016.

PEREIRA, Ramon F.; OREN, Nir; and MENEGUZZI, Felipe. Landmark-Based Heuristics for Goal Recognition. AAAI, 2017.

PEREIRA, Ramon F.; OREN, Nir; and MENEGUZZI, Felipe. Monitoring Plan Optimality using Landmarks and Domain-Independent Heuristics. PAIR Workshop@AAAI, 2017.

GRANADA, Roger L.; PEREIRA, Ramon F.; MONTEIRO, Juarez; BARROS, Rodrigo; RUIZ, Duncan; and MENEGUZZI, Felipe. Hybrid Activity and Plan Recognition for Video Streams. PAIR Workshop@AAAI, 2017.

PEREIRA, Ramon F.; OREN, Nir; and MENEGUZZI, Felipe. Detecting Commitment Abandonment by Monitoring Plan Execution. AAMAS, 2017.

MONTEIRO, Juarez; GRANADA, Roger; BARROS, Rodrigo and MENEGUZZI, Felipe. Deep Neural Networks for Kitchen Activity Recognition. IJCNN, 2017.

VERED, Mor; PEREIRA, Ramon F.; MAGNAGUAGNO, Maurício C.; KAMINKA, Gal; and MENEGUZZI, Felipe. Online Goal Recognition Combining Landmarks and Planning. GRW@IJCAI, 2017.

Summary

- We progressively relaxed many assumptions about plan recognition:
 - Domain knowledge
 - Quality of observations
 - Exclusively discrete domains
 - Precise domain knowledge
- We illustrated applications of these techniques:
 - Real world video-data
 - Plan Recognition in Latent Space

Future Directions

- Plan Recognition with Domain Theories
 - Use different landmark extraction algorithms;
 - Extend landmark-based heuristics to temporal and non-uniform-cost domains
 - Experiment with more advanced notions of numeric landmarks (e.g. Scala et al.)
- Applications of Plan Recognition
 - Use object recognition techniques (deep learning) to generate fact observations in video
 - Couple the above with plan recognition in domain theories
 - Do plan recognition in latent space

Thanks and Acknowledgement

People involved in this research

- Ramon Fraga Pereira (PhD Student)
- Mor Vered (PhD Student, Bar Ilan University)
- Maurício Magnaguagno (PhD Student)
- Juarez Monteiro (MSc Student)
- Roger Granada (Postdoc)
- Gal Kaminka (Bar Ilan University)
- Nir Oren (University of Aberdeen)
- Rodrigo Barros (PUCRS colleague)
- Duncan Ruiz (PUCRS colleague)

Institutions

- The Scottish Informatics and Computer Science Alliance (SICSA) Distinguished Visiting Fellowship (DVE)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – PQ Fellowship

Plan and Goal Recognition in the Real World

Thank you! Questions?

