

六西格玛控制(上) -统计过程控制

2022

六西格玛黑带课程培训

孙照宇 上飞公司 工装中心(工程技术部) 机电集成设计室 上海市浦东新区上飞路919号B04-217 邮箱:sunzhaoyu@comac.intra

课程内容

1	基本概念
2	计量型数据控制图
3	计数型数据控制图
4	习题

关于SPC的一个例子

2015年4月: 某工厂的 Scrap 量达到了年度最低 2%; 经理褒奖了那家工厂; 举行庆祝会: 所有人都享用了丰盛的食物; "所有人应该为自己的成就感到自豪!" Scrap Level (%) 举行party J F M A 2015年

关于SPC的一个例子 — cont.

2015年6月:

- · Scrap 量连续2个月持续增加;
- 经理很想收回奖励;
- "对成果的认可反而带来了反面效果。 实现的的成果(改善)没有维持下去, Scrap量又增多了。

关于SPC的一个例子 — cont.

2015年11月:

- Scrap 量增加到了2.6%, 于是经理决定采取措施;
- 为了解决这个问题,经理召开了"特别会议",强调完Scrap量的重要性后 经理便离开了会议室。
- 但是员工们都不知道应该做些什么;而且,除此之外他们还有其它需要改 **盖的重要指标。**
- 所以他们没有采取任何为了减少 Scrap 量的措施。

关于SPC的一个例子 - cont.

2016年6月:

2015年

- · 经理了解到从去年年末开始, Scrap量在减少;
- "情况正在好转!"

(实际上并没有采取任何措施,但是经理不知道。)

2016年

关于SPC的一个例子 - cont.

SPC导出了不同的结论 ······

关于SPC的一个例子 — cont.

SPC导出了不同的结论 ······

但是, 理由是什么呢?

• 经理:

- "嘿,我是根据data做出决定的。---- 但是我怎么可能错了呢?"

Black Belt:

- "你的决定是看到了高点和低点做出的,但是,实际上数据的变化是因为噪音(common cause variation)造成的。观察data,流程上没有大的变化。"

SPC基本概念

= Statistical techniques used to examine process variation

= Process, ANY Process

= Controlling the process through active management

认识波动-Variation

不同的人对待波动的态度:

- Pessimist's View of Variation: "I hate variation. If only things would be done the same way every time, many of my problems would go away. It is difficult to understand why it is so pervasive."
- Optimist's View of Variation: "I respect variation. The only way that we can learn about the cause-and-effect mechanisms operating in a process is by studying variation in outputs and inputs. Once we understand cause-and-effect mechanisms, then we can reduce variation and do a better job of meeting customer needs."

什么是波动?

- 没有两个东西是完全一样的。
 - 过程随着时间会发生变化;
 - 过程的测量随时间会发生变化。

- 量化过程波动的大小是改进过程的一个关键的步骤;
- **理解造成波动的原因**能帮助我们决定采取什么措施能改善过程。

我们的目标:最小化波动(Minimize Variation)

- 过程中永远都会存在波动;
- 但是,我们可以做的是:让波动最小化,同时围绕在Target附近!

两种类型的波动

异常波动(可查明原因):

- 有特别的事情发生在某个 特别的时间或地点;
- 由异常原因造成的。

● 偶然波动(一般原因):

- 永远存在于过程中,只是程度或大或小一点;
- 由偶然原因造成的。

波动之一: 偶然波动

COMMON CAUSE (Noise)

- 也称为"随机波动" (Random Variation);
- 存在于任何过程中,是客观存在并且不可避免的;
- 由过程众多无法排除或很难排除的偶然因素产生的,例如机器的微小振动、原材料质量的细微差别、生产环境中温度的变化等等都会对产品质量产生影响,会给产品带来质量差异;
- 由于这类原因众多,影响有正有负,在互相抵消后会围绕着某一平均水平上下波动;
- 。当过程中<u>只有</u>偶然波动时,过程将会是**稳定的**(Stable)、<mark>可预测的</mark>(Predictable)、**受控的**(in-control)

波动之二: 异常波动

SPECIAL CAUSE

- 不可预测的(Unpredictable);
- 是某种特定的原因,往往造成产品与质量标准发生较大的整体偏差, 例如加工机器未按质量标准调试好、原材料质量不合格、加工方法 不对等等。;
- 可能只发生一次,也可能对过程造成永久的改变;
- 由这种原因产生的误差,一经查明都是可以纠正的;
- 如果过程呈现出异常波动,通常称过程不受控(out-of-control)、不稳定(unstable)。

控制图是识别异常波动/异常原因的最好的方法。

控制图的分类 (按用途)

• 分析用控制图

- 用于分析过程是否为统计控制状态 (统计稳态)
- 用于分析过程的能力是否满足要求 (技术稳态)

控制用控制图

- 当过程达到确定的状态后,将分析用控 制图的控制限延长,作为控制用控制图 的控制限,用于日常管理保持所确定的 状态。
- 使用判异准则。

Goal is to understand current process.

控制图的基本形式

SPC的起源和发展

- 控制图(Control Chart)的起源
 - 1924年,美国的休哈特(W.A.Sheuhart)首先提出用控制图进行工序控制,起到直接控制生产过程,稳定生产过程的质量达到预防为主的目的。
 - 因其用法简单且效果显著,人人能用,到处可用,遂成为实施品质管制不可缺少的主要工具,当时称为(Statistical Quality Control)。

SPC的必要性

漏斗效应(Funneling Effect)

Measure

Analyze

Improve

Control*

找出所有的X's

筛选主要的X's

确定关键的X's

控制关键的X's (*)

控制图的原理

• 休哈特这么说:

- 1. 在一切制造过程中所呈现出的波动有两个分量。第一个分量是过程内部引起的稳定分量(即偶然波动/随机因素 Common Cause);第二个分量是可查明原因的间断波动(即异常波动/特殊因素 Special Cause)。
- 2. 那些可查明原因的波动可以用有效的方法加以识别,并可被剔除,但偶然波动是不会消失的,除非改变基本过程来减少它。
- 3. 基于3sigma限的控制图可以把偶然波动与异常波动区分开来。

正态分布

控制图原理

控制图的基本形式

判异准则

- 思路: 小概率事件原理
- 思想:
 - 1. 点出界就判异;
 - 2. 界内点排列不随机判异。

判异准则 (特殊原因检验)

检验1:一个点距离中心线超过3σ

P = 2*0.00135 = 0.0027

检验2:连续九点在中心线的同一侧

$$P = 2*(0.5)9 = 0.003906$$

判异准则(特殊原因检验)- cont.

检验3:六个点排成一行单边上升或下降

 $P = 2*(1/6!)*(0.9973)^6 = 0.002733$

检验4:连续十四个点交替上升和下降

判异准则(特殊原因检验)- cont.

检验5:连续三个点中有两个距离中心线超过2σ(同一侧)

 $P = 2*C_3^2(1-0.9772)^2*0.9772 = 0.003048$

检验6:连续五个点中有四个距离中心线超过 1σ (同一侧)

 $P = 2*C_5^4(1-0.8413)^4*0.8413 = 0.005331$

判异准则(特殊原因检验)- cont.

检验7:连续排列的十五个点都位于距离中 心线1σ范围内(任一侧)

 $P = (1-0.1587*2)^{15} = 0.00326$

检验8:分布于中心线两侧的连续八个点距 离中心线都超过 1σ

 $P = (0.1587*2)^8 = 0.000103$

控制图的使用步骤

- 1. 确定控制对象(质量特性);
- 2. 确定使用何种控制图(选择合适的控制图);
- 3. 确定抽样方法和抽样数量;
- 4. 收集数据,绘制控制图;
- 5.分析过程稳定性(若失控,找出原因,进行纠正,防止再发生;然后重复前5步);
- 6. 进行其它分析(如过程能力分析);
- 7. 延长控制限,作控制用控制图,进行日常管理。

$\overline{X} - R$ 控制图的作法

- ①收集数据:
 - 收集k组数据(一般要求k≥25; 每组数据个数n≥2; 遵循合理子组原则)
- ②计算各组样本统计量:
 - 如样本平均值、极差及总平均值、极差的平均值。

$$\bar{x}_{i} = \frac{x_{1} + x_{2} + x_{3} + \dots + x_{n}}{n} \qquad R_{i} = x_{\text{max}} - x_{\text{min}} \qquad (i = 1, 2, \dots, k)$$

$$\bar{x} = \frac{\bar{x}_{1} + \bar{x}_{2} + \bar{x}_{3} + \dots + \bar{x}_{k}}{k} \qquad \bar{R} = \frac{R_{1} + R_{2} + R_{3} + \dots + R_{k}}{k}$$

$\overline{X} - R$ 控制图的作法

③计算中心线和控制限:

④ 用各样本点绘在图中,判断状态。

$\overline{X} - R$ 控制图的作法 - 示例

- ①收集25组数据,每组5个;
- ②计算各组样本统计量;
- ③计算中心线和控制限;

Observation	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	X
1	50.0	48.2	56.4	46.8	56.6	
2	42.7	47.3	52.7	42.6	53.9	
3	48.7	49.7	48.6	47.6	58.7	
4	48.8	52.0	50.5	58.9	52.0	
5	42.7	42.4	46.1	54.1	56.3	
6	46.5	50.2	45.9	44.5	44.9	
7	45.4	51.0	46.6	57.9	52.6	
8	51.0	47.7	43.2	44.3	48.0	
9	52.6	54.0	53.4	57.1	56.0	
10	53.4	51.6	54.6	47.8	53.6	
11	53.4	53.2	58.1	51.1	56.0	
12	40.9	47.8	47.2	51.1	56.1	
13	49.1	46.9	58.0	42.5	49.4	
14	50.4	45.7	45.7	45.9	50.2	
15	49.6	42.1	51.2	52.0	46.1	
16	49.3	48.7	52.8	50.5	52.2	
17	46.6	55.5	55.7	52.3	52.2	
18	41.5	46.3	45.0	53.4	48.2	
19	44.3	56.8	46.3	41.8	51.6	
20	49.5	47.0	51.1	48.6	52.7	
21	47.2	47.3	50.8	50.1	48.1	
22	50.8	51.9	44.5	44.5	46.9	
23	49.9	44.6	50.8	50.9	47.4	
24	59.0	54.9	55.6	55.4	56.0	
25	44.5	59.5	58.9	42.0	57.2	

5	X bar	R
.6	51.60	9.8
9	47.84	11.3
.7	50.66	11.1
.0	52.44	10.1
.3	48.32	13.9
9	46.40	5.7
.6	50.70	12.5
.0	46.84	7.8
.0	54.62	4.5
.6	52.20	6.8
.0	54.36	7.0
.1	48.62	15.2
4	49.18	15.5
2	47.58	4.7
.1	48.20	9.9
2	50.70	4.1
.2	52.46	9.1
.2	46.88	11.9
.6	48.16	15.0
.7	49.78	5.7
.1	48.70	3.6
.9	47.72	7.4
.4	48.72	6.3
.0	56.18	4.1
2	52.42	17.5

$\overline{X} - R$ 控制图的作法 - 示例

- ④绘制控制图
- ⑤进行分析.....

控制图 - 分析改进前后对比

$\overline{X} - S$ 控制图的作法

①收集数据:

- 收集k组数据(一般要求k≥25; 每组数据个数n>6; 遵循合理子组原则)

②计算各组样本统计量:

- 如样本平均值、标准差及总平均值、标准差的平均值。

$$\overline{x}_i = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$\overline{\overline{x}} = \frac{\overline{x}_1 + \overline{x}_2 + \overline{x}_3 + \dots + \overline{x}_k}{k}$$

$\overline{X} - S$ 控制图的作法

③计算中心线和控制限:

④ 用各样本点绘在图中,判断状态。

$\overline{X} - S$ 控制图的作法 - 示例

I-MR控制图的作法

计算中心线和控制限:

I-MR控制图的作法 — 示例

Delivery Time				
10.3513				
13.3617				
11.0717				
11.0031				
11.0546				
12.4756				
11.1445				
11.6590				
12.5542				
10.9153				
9.7345				
9.9863				
13.8587				
11.4490				
13.1665				
10.6114				
11.7018				
12.5165				
12 1390				

计数型数据控制图

计数型控制图类型	名称含义	数据要求
✓ p图	p = proportion	■ 计件离散型数据(二项分布)■ 允许样本大小变化
✓ np 图	n = sample size	■ 计件离散型数据(二项分布) ■ 需要样本大小不变
✓ C 图	c = count	■ 计点离散型数据(泊松分布) ■ 需要样本大小不变
✓ u 图	u = per unit	■ 计点离散型数据(泊松分布)■ 允许样本大小变化

p图的作法

- ①收集数据:
 - 选取样本量n应充分大,使得np₀≥1,通常:

$$\frac{1}{p_0} < n < \frac{5}{p_0} \qquad \text{if} \qquad \frac{1}{p} < n < \frac{5}{p}$$

 p_0 :给定标准值

P:未给定标准值

② 计算样本不合格品率

p图的作法

③计算p图的控制限

$$UCL_{p} = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n_{i}}}$$

$$CL_{p} = \overline{p}$$

$$LCL_{p} = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n_{i}}}$$

- ④ 样本不合格品率描点
- ⑤ 判稳/判异

关于样本量n_i的说明:

- (1) 若样本量n大小相等,则p 图控制限为两条直线。
- (2)若样本量n_i不全相等,则p 图控制限呈凹凸状。

p图

Needed Assistance	Total Calls
12	1194
15	1276
19	1010
13	1228
9	948
26	990
18	1062
14	1651
17	1285
18	1199
16	1379
24	1424
11	975
15	987
16	1365
10	1454
16	1333
17	1096
20	1155
5	355
8	915
13	1324
12	969
17	867
10	550

np图

• np图控制限计算:

$$UCL_{np} = n_i \overline{p} + 3\sqrt{n_i \overline{p}(1-\overline{p})}$$

$$CL_{np} = n_i \overline{p}$$

$$LCL_{np} = n_i \overline{p} - 3\sqrt{n_i \overline{p}(1 - \overline{p})}$$

要求样本大小相等。

np图

拒绝数	已检验
8	200
13	200
7	200
8	200
5	200
13	200
7	200
12	200
27	200
10	200
12	200
6	200
10	200
9	200
13	200
7	200
8	200
5	200
15	200
25	200
7	200
10	200
5	200
12	200
6	200

c图

• c图控制限计算:

$$UCL_{c} = c + 3\sqrt{c}$$

$$CL_{c} = c$$

$$LCL_{c} = c - 3\sqrt{c}$$

要求样本大小相等。

c图

Fill Low	
	12
	3
	2
	11
	1
	3
	15
	10
	5
	9
	5
	6
	7
	4
	2
	3
	11
	9
	7
	7
	13
	8
	11
	17
	8

u图

• u图

$$UCL_{u} = \overline{u} + 3\sqrt{\overline{u}/n_{i}}$$

$$CL_{u} = \overline{u}$$

$$LCL_{u} = \overline{u} - 3\sqrt{\overline{u}/n_{i}}$$

若样本量ni不全相等,则u图控制限呈凹凸状,处理方法同p图。

u图

Defects	Sample Size
8	4
17	6
18	9
15	6
23	7
9	8
19	10
6	7
14	10
17	7
13	9
15	4
16	5
22	7

- 3. 在分析 $\overline{X} R$ 控制图时应
 - A. 先分析 \overline{X} 图然后再分析 R 图
 - B. 先分析 R 图然后再分析 \overline{X} 图
 - C. \overline{X} 图和 R 图无关,应单独分析
 - D. 以上答案都不对

X图显示子组间的波动,并表明过程的稳定性 R图显示子组内的波动性,也反映了所考察过程的波动程度

- 75. 某企业希望分析其加工轴棒的直径波动情况并进行过程控制。工序要求为Φ20±0.02 毫米。在对直径的测量时,有两种意见,一是建议用塞规,测量结果为通过/不通过,每分钟可测 5 根;另一种意见是采用游标卡尺测出具体直径值,每分钟只能测 1 根轴。经验表明,轴的合格率为 99%左右。若希望进行过程控制,应采取的最佳方案是:
 - A. 用塞规,每次检测 100 件作为一个样本,用 np 控制图
 - B. 用塞规,每次检测 500 件作为一个样本,用 np 控制图
 - C. 用游标卡尺,每次连续检测5根轴,用X-R控制图
 - D. 用游标卡尺,每次连续检测 10 根轴,用X-R 控制图

76. 在计算出控制图的上下控制限后,可以比较上下控制限与上下公差限的数值。这两个限制范围的 关系是:

- A. 上下控制限的范围一定与上下公差限的范围相同
- B. 上下控制限的范围一定比上下公差限的范围宽
- C. 上下控制限的范围一定比上下公差限的范围窄
- D. 上下控制限的范围与上下公差限的范围一般不能比较

控制线与公差限确实没有关系,公差限是"外部"对产品特性提出的合格标准,控制线是(生产过程没有异常的情况下)描述产品特性实际概率分布的

77. 一位工程师每天收集了 100²00 件产品,每天抽样数不能保证相同,准备监控每天不合格品数,他应当使用以下哪种控制图?

A. u

B. np

C. c

D. p

- 78. 在研究完改进措施后,决定进行试生产。试生产半月后,采集了 100 个数据。发现过程仍未受控,且标准差过大,平均值也低于目标要求。对于这 3 方面的问题的解决顺序应该是:
 - A. 首先分析找出过程未受控的原因,即找出影响过程的异常变异原因,使过程达到受控。
 - B. 首先分析找出标准差过大的原因,然后减小变异。
 - C. 首先分析找出平均值太低的原因,用最短时间及最小代价调整好均值。
 - D. 以上步骤顺序不能肯定,应该根据实际情况判断解决问题的途径。
- 79. 在性佳牌手机生产车间,要检测手机的抗脉冲电压冲击性能。由于是破坏性检验,成本较高,每小时从生产线上抽一部来作检测,共连续监测 4 昼夜,得到了 96 个数据。六西格玛团队中,王先生主张对这些数据画"单值-移动极差控制图",梁先生主张将 3 个数据当作一组,对这 32 组数据作
- "Xbar-R 控制图"。这时你认为应使用的控制图是:
 - A. 只能使用"单值-移动极差控制图"
 - B. 只能使用"Xbar-R控制图"。
 - C. 两者都可以使用,而以"Xbar-R控制图"的精度较好。
 - D. 两者都可以使用,而以"单值-移动极差控制图"的精度较好。

105. $\overline{X} - R$ 控制图比 X - MR (单值移动极差) 控制图应用更为普遍的原因在于:

- A. $\overline{X} R$ 图可适用于非正态的过程
- B. $\overline{X} R$ 有更高的检出力
- C. $\overline{X} R$ 图作图更为简便
- D. $\overline{X} R$ 图需要更少的样本含量

107. 在芯片生产车间,每天抽8块芯片检查其暇疵点个数。为了监测暇疵点数,对于控制图的选用,

- 下列正确的是:
 - A. 使用 C 控制图最方便
 - B. 也可以使用 U 控制图,效果和 C 控制图相同,但不如 C 控制图方便
 - C. 也可以使用 p 控制图,效果和 C 控制图相同,但不如 C 控制图方便
 - D. 使用 np 控制图,效果和 C 控制图相同

106. 在 \overline{X} 图中,下列情况可判为异常:

	UCL
A	
В	
С	CL
С	
В	
A	
	LCL
State to the terms of the first	

- A. 连续 3 点中有 2 点落在中心线同一侧的 B 区以外
- B. 连续 15 点落在中心线两侧的 C 区内
- C. 连续 9 点落在中心线同一侧
- D. 连续 4 点递增或递减

74. 以下是2009年6月份我国H1N1流感感染人数统计数据,我们可以用何种控制图监控情况是否恶化?

日期	6月1日.	6月2日	6月3日	6月4日	6月5日	6月6日	6月7日	6月8日	6月9日	6月10日	6月11日
 感染人数	10	4	11	8	8	3	3	16	11	ш.	14
日期	6月12日	6月13日	6月14日	6月15日	6月16日	6月17日	6月18日	6月19日	6月20日	6月21日	6月22日
磁染人数	16	24	20 .	41.	11	27	33	31	28	58	27

- A. Xbar-R图
- B. Xbar-S图
- C. C图
- D. P图
- 75. 在纺纱车间生产中,对于湿度的控制非常重要。由于对于此种纤维材料的纺纱已经生产了一段时间,生产初步达到了稳定。为了监测全车间的湿度情况,每个整点时,在车间内用"田"字形矩形格记录了9处湿度数据。监测了48小时后,要根据这些数据建立控制图。这时应选用下列哪种控制图效果最好?
- A. Xbar-R图
- B. Xbar-S图
- C. I-MR图
- D. P或NP图

76. 在半导体芯片生产中,要将直径 8 英寸(约合 20 厘米)的晶圆盘(wafer)切割成 3000 粒小芯片,目前由于工艺水平的限制,小芯片仍有约百分之一至二的不良率。在试生产了一段时间,生产初期到了稳定。为了监测小芯片的不良率,在两个月内每天固定抽检 5 个晶圆盘,测出不良小芯片总要根据这些数据建立控制图。这时应选用下列何种控制 图?

A. NP 图或 P 图都可以,两者效果一样

- B. NP 图或 P 图都可以, NP 图效果更好
- C. NP 图或 P 图都可以, P 图效果更好
- D. 以上都不对
- 77. 从生产线上收集到上一周的生产汇总数据如下表,如果需要实施统计过程控制,选择哪种控制图合适?

日期	周一	周二	周三	周四	周五	周六	周日
生产量	210	245	197	228	216	236	207
不合格品数	5	7	4	3	8	10	5.

- A. 均值-极差控制图
- B. NP 控制图
- C. P 控制图

D. U 控制图

- 113. 项目小组每隔两小时收集 4 件 B 型车门,准备监控 B 型车门喷涂瑕疵数,且已知 4 件 产品上的缺陷平均数在 5 个以上,他们可以考虑使用以下哪种控制图?
 - A. U 控制图
 - B. NP 控制图
 - C. C控制图
 - D. P 控制图
- 115. 某电子元器件厂对产品生产过程采用 $\overline{X}-R$ 控制图进行过程控制。每 1 个小时在生产现场抽取样本大小为 5 的子组。控制图显示受控,但是在所抽样的 25 组产品中发现总计居然有 10 个产品落入公差限外,针对这一现象,可能正确的判断是:
 - A. $\overline{X} R$ 控制图不好,应采用 $\overline{X} S$ 控制图
 - B. 该过程能力不足(C_p , C_{pk} 低)
 - C. 抽样间隔过长,应该改为半小时抽样一次
 - D. 应先对该过程进行优化和改进,然后再进行控制

- 68. 某油漆工厂为了监测油漆桶的重量,操作工从一批20个桶中随机选取4个,测量桶的重量,每天抽取6次。 应选用以下哪种控制图?
- A. C图
- B. I-MR图
- C. Xbar-R图
- D. P图
- 69. 当计数型数据控制图的控制下限计算得出是小于0时,该如何处置?
- A. 不用标下限
- B. 标示于所计算出的值
- C. 下限标示于0的地方
- D. 以上均不正确

