PCA And Sequence Alignment

Abdullah Taman

2024-03-09

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
           1.1.4
                       v readr
                                   2.1.5
## v forcats 1.0.0
                       v stringr
                                    1.5.1
## v ggplot2 3.4.4
                                    3.2.1
                     v tibble
## v lubridate 1.9.3
                     v tidyr
                                   1.3.1
## v purrr
              1.0.2
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(rentrez)
## Warning: package 'rentrez' was built under R version 4.3.3
library(seqinr)
## Warning: package 'seqinr' was built under R version 4.3.3
## Attaching package: 'seqinr'
## The following object is masked from 'package:dplyr':
##
##
       count
library(Biostrings)
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:lubridate':
##
       intersect, setdiff, union
## The following objects are masked from 'package:dplyr':
```

```
##
##
       combine, intersect, setdiff, union
##
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
##
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, aperm, append, as.data.frame, basename, cbind,
##
       colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
##
       get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
##
       match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
       Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
##
##
       table, tapply, union, unique, unsplit, which.max, which.min
##
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
##
## The following objects are masked from 'package:lubridate':
##
       second, second <-
##
##
## The following objects are masked from 'package:dplyr':
##
       first, rename
##
##
## The following object is masked from 'package:tidyr':
##
##
       expand
##
## The following object is masked from 'package:utils':
##
##
       findMatches
##
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
##
## Loading required package: IRanges
## Attaching package: 'IRanges'
## The following object is masked from 'package:lubridate':
##
##
       %within%
## The following objects are masked from 'package:dplyr':
##
##
       collapse, desc, slice
##
## The following object is masked from 'package:purrr':
```

```
##
##
       reduce
##
## The following object is masked from 'package:grDevices':
##
##
       windows
##
## Loading required package: XVector
##
## Attaching package: 'XVector'
## The following object is masked from 'package:purrr':
##
##
       compact
##
## Loading required package: GenomeInfoDb
##
## Attaching package: 'Biostrings'
##
## The following object is masked from 'package:seqinr':
##
##
       translate
##
## The following object is masked from 'package:base':
##
##
       strsplit
library(ggplot2)
library("FactoMineR")
## Warning: package 'FactoMineR' was built under R version 4.3.3
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.3.3
library('corrr')
## Warning: package 'corrr' was built under R version 4.3.3
# Part One
First performing the PCA
cancer <- read.csv("J:/champions work/datasets/BrainCancerMin.csv", header = TRUE)</pre>
?princomp()
## starting httpd help server ... done
```

Now we'll perform the PCA I faced an issue with the code, This error: Error in princomp.default(remove_type, cor = TRUE, scores = TRUE): 'princomp' can only be used with more units than variables

```
remove_type <- subset(cancer, select = c(3:ncol(cancer)))
data_normalized <- scale(remove_type)
corr_matrix <- cor(data_normalized)
ggcorrplot(corr_matrix)</pre>
```



```
data.pca <- princomp(as.data.frame(corr_matrix))
#summary(data.pca)</pre>
```

Comp.1 vs Comp.2

Comp.1 vs Comp.3

Comp.2 vs Comp.3

Component 1 vs Component 2 is the best, why? You could see that the number of points that are overlapped is the least number in it.

```
# Extract eigenvalues
eigenvalues <- data.pca$sdev^2

# Create data frame for plotting
scree_data <- data.frame(Component = 1:length(eigenvalues), Eigenvalue = eigenvalues)

# Plot scree plot
ggplot(scree_data, aes(x = Component, y = Eigenvalue)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(1, 20, by = 1)) + # Adjust x-axis breaks for better readability
labs(x = "Principal Component", y = "Eigenvalue", title = "Scree Plot for First 20 Principal Component"</pre>
```

Scree Plot for First 20 Principal Components

Principal Component

In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis.[1] The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA). We could see that starting from the 6th eigen value the eigen values are so small that they don't affect anything in the results.

Part Two

```
diab <- read.csv("J:/champions work/datasets/diabetes_prediction_dataset.csv")
allele1 <- substr(diab$alleles, 1, 1) # First character of alleles
allele2 <- substr(diab$alleles, 2, 2) # Second character of alleles
allele_counts <- table(No_Diabetes = c(allele1, allele2), Diabetes = rep(diab$diabetes, 2))
# Convert table to data frame for easier manipulation
allele_counts_df <- as.data.frame(allele_counts)</pre>
# Print the resulting table
print(allele_counts_df)
    No_Diabetes Diabetes Freq
##
## 1
               Α
                        0 91660
               С
## 2
                        0 91340
## 3
               Α
                           8499
                        1
               С
## 4
                           8501
```

```
allele_counts <- matrix(c(91660, 8499, 91340, 8501), ncol = 2, byrow = TRUE)

# Perform Fisher's exact test
fisher_result <- fisher.test(allele_counts)

# Extract p-value
p_value <- fisher_result$p.value

# Report the p-value
print(p_value)</pre>
```

[1] 0.816139

It's not significant at all, .81 is very big. Which means that the association is not significant.

```
# Extract BMI samples for each allele family
BMI AA <- subset(diab, alleles == "AA")$bmi
BMI_AC <- subset(diab, alleles == "AC")$bmi
BMI_CC <- subset(diab, alleles == "CC")$bmi</pre>
# Perform t-test between BMI samples for AA and AC allele families
t_test_AA_AC <- t.test(BMI_AA, BMI_AC)</pre>
# Perform t-test between BMI samples for AA and CC allele families
t_test_AA_CC <- t.test(BMI_AA, BMI_CC)</pre>
# Perform t-test between BMI samples for AC and CC allele families
t_test_AC_CC <- t.test(BMI_AC, BMI_CC)</pre>
# Report p-values
p_value_AA_AC <- t_test_AA_AC$p.value
p_value_AA_CC <- t_test_AA_CC$p.value
p_value_AC_CC <- t_test_AC_CC$p.value</pre>
# Print p-values
print(p_value_AA_AC)
```

```
## [1] 0.5125191
```

```
print(p_value_AA_CC)
```

[1] 0.8228364

```
print(p_value_AC_CC)
```

[1] 0.6691533

It's clear that there is no real significant difference between the family of alleles when it's related to BMI phenotype.

Part Three

There are two mismatches.


```
seq1 <- entrez_fetch(db = "nucleotide", id = "NG_050578.1", rettype = "fasta")</pre>
seq2 <- entrez_fetch(db = "nucleotide", id = "X03562.1", rettype = "fasta")</pre>
seq1
## [1] ">NG_050578.1 Homo sapiens INS-IGF2 readthrough (INS-IGF2), RefSeqGene on chromosome 11\nGAGGTGC
seq1_lines <- unlist(strsplit(seq1, "\n"))</pre>
seq1_lines <- seq1_lines[!grepl(">", seq1_lines)]
seq1 clean <- paste(seq1 lines, collapse = "")</pre>
seq2 lines <- unlist(strsplit(seq2, "\n"))</pre>
seq2_lines <- seq2_lines[!grepl(">", seq2_lines)]
seq2_clean <- paste(seq2_lines, collapse = "")</pre>
seq1 <- DNAStringSet(seq1_clean)</pre>
seq2 <- DNAStringSet(seq2_clean)</pre>
print(seq1)
## DNAStringSet object of length 1:
       width seq
##
## [1] 39098 GAGGTGCGGATCCTGGGCGGCCAGGGAAGGTCTC...CCATCCCTCCACTCATCCATCCATCCCTC
print(seq2)
## DNAStringSet object of length 1:
       width seq
## [1] 8837 CCCAACCCCGCGCACAGCGGGCACTGGTTTCGGG...TCTCCCTTCTCACGGGAATTTTCAGGGTAAACT
freq_seq1 <- alphabetFrequency(seq1)</pre>
freq_seq2 <- alphabetFrequency(seq2)</pre>
print(freq_seq1)
                          TMRWSYKVHDBN-+.
## [1,] 7355 12386 11660 7697 0 0 0 0 0 0 0 0 0 0 0 0 0
print(freq_seq2)
                     G
                          TMRWSYKVHDB N-+.
## [1,] 1388 3037 2697 1685 0 0 0 0 0 0 0 0 0 30 0 0 0
seq1_has_gaps_ambiguous <- any(names(freq_seq1) %in% c("-", "N"))</pre>
seq2_has_gaps_ambiguous <- any(names(freq_seq2) %in% c("-", "N"))</pre>
print(seq1_has_gaps_ambiguous)
## [1] FALSE
```

```
print(seq2_has_gaps_ambiguous)
## [1] FALSE
this means that the two sequences are clean
seq1_has_gaps_ambiguous <- any(grepl("[-N]", seq1))</pre>
seq2_has_gaps_ambiguous <- any(grepl("[-N]", seq2))</pre>
# 2. Remove gaps and ambiguous bases from sequences
seq1_cleaned <- gsub("[-N]", "", seq1)</pre>
seq2\_cleaned \leftarrow gsub("[-N]", "", seq2)
seq1_length_before <- nchar(seq1)</pre>
seq2_length_before <- nchar(seq2)</pre>
seq1_length_after <- nchar(seq1_cleaned)</pre>
seq2_length_after <- nchar(seq2_cleaned)</pre>
print(paste("Sequence 1 length before cleaning:", seq1_length_before))
## [1] "Sequence 1 length before cleaning: 39098"
print(paste("Sequence 2 length before cleaning:", seq2_length_before))
## [1] "Sequence 2 length before cleaning: 8837"
print(paste("Sequence 1 length after cleaning:", seq1 length after))
## [1] "Sequence 1 length after cleaning: 39098"
print(paste("Sequence 2 length after cleaning:", seq2_length_after))
## [1] "Sequence 2 length after cleaning: 8807"
For confirmation, now we're 100% percent that they were clean. We'll work with the seq1, seq2.
run_pairwise_alignment <- function(seq1, seq2) {</pre>
  # Run Pairwise Local Alignment
  alignment <- pairwiseAlignment(seq1, seq2, substitutionMatrix = "BLOSUM62", gapOpening = -10, gapExter
  # Extract alignment score
  alignment_score <- score(alignment)</pre>
  # Calculate width of each sequence before and after alignment
  seq1_width_before <- nchar(seq1)</pre>
  seq2_width_before <- nchar(seq2)</pre>
  seq1_width_after <- nchar(pattern(alignment))</pre>
  seq2_width_after <- nchar(subject(alignment))</pre>
  # Return results
  return(list(
```

```
alignment_score = alignment_score,
    seq1_width_before = seq1_width_before,
   seq2_width_before = seq2_width_before,
   seq1_width_after = seq1_width_after,
   seq2_width_after = seq2_width_after,
   alignment = alignment
  ))
}
alignment_result <- run_pairwise_alignment(seq1, seq2)</pre>
# Report results
print("Alignment Score:")
## [1] "Alignment Score:"
print(alignment_result$alignment_score)
## [1] 25861
print("Width of Sequences Before Alignment:")
## [1] "Width of Sequences Before Alignment:"
print(paste("Sequence 1:", alignment_result$seq1_width_before))
## [1] "Sequence 1: 39098"
print(paste("Sequence 2:", alignment_result$seq2_width_before))
## [1] "Sequence 2: 8837"
print("Width of Sequences After Alignment:")
## [1] "Width of Sequences After Alignment:"
print(paste("Sequence 1:", alignment_result$seq1_width_after))
## [1] "Sequence 1: 8920"
print(paste("Sequence 2:", alignment_result$seq2_width_after))
## [1] "Sequence 2: 8920"
```

print(nmismatch(alignment_result\$alignment))

[1] 98

print(mismatchTable(alignment_result\$alignment))

##		PatternId	PatternStart	PatternEnd	PatternSubstring	SubjectStart	SubjectEnd
##		1	25041	25041	C	58	58
##	2	1	25042	25042	C	59	59
##	3	1	25221	25221	T	238	238
##	4	1	25222	25222	T	239	239
##	5	1	25449	25449	T	466	466
##	6	1	25727	25727	G	733	733
##	7	1	25759	25759	G	765	765
##	8	1	25780	25780	A	785	785
##	9	1	25794	25794	G	799	799
##	10	1	26198	26198	G	1200	1200
##	11	1	26262	26262	C	1264	1264
##	12	1	26263	26263	G	1265	1265
##	13	1	26533	26533	A	1535	1535
##	14	1	26755	26755	G	1756	1756
	15	1	28038	28038	C	3036	3036
	16	1	28184	28184	C	3178	3178
##		1	28185	28185	T	3179	3179
##		1	28186	28186	G	3180	3180
##		1	28187	28187	G	3181	3181
##		1	28188	28188	C	3182	3182
##		1	28189	28189	G	3183	3183
##		1	28190	28190	G	3184	3184
##		1	28191	28191	C	3185	3185
##		1	28192	28192	G	3186	3186
##		1	28193	28193	G	3187	3187
##		1	28194	28194	A	3188	3188
##		1	28195	28195	G	3189	3189
##		1	28198	28198	G	3190	3190
##		1	28199	28199	G	3191	3191
	30	1	28200	28200	G	3192	3192
##		1	28201	28201	G	3193	3193
##		1	28202	28202	G	3194	3194
##		1	28203	28203	T	3195	3195
##		1	28204	28204	G	3196	3196
	35	1	28205	28205	G	3197	3197
##		1	28206	28206	G	3198	3198
##		1	28207	28207	G	3199	3199
	38	1	28208	28208	T	3200	3200
##		1	28209	28209	G	3201	3201
##		1	28210	28210	G	3202	3202
##		1	28211	28211	G	3203	3203
##		1	28213	28213	G	3205	3205
	43	1	28218	28218	G	3210	3210
	44		28249	28249	C	3217	3217
##	45	1	28383	28383	A	3341	3341

##		1	28426	28426	T	3386	3386
	47	1	28483	28483	T	3443	3443
##	48	1	28626	28626	A	3588	3588
	49	1	28627	28627	G	3589	3589
##	50	1	28628	28628	T	3590	3590
##	51	1	28629	28629	G	3591	3591
##	52	1	28634	28634	G	3596	3596
##	53	1	28638	28638	G	3600	3600
##	54	1	28695	28695	C	3661	3661
##	55	1	28829	28829	A	3793	3793
##	56	1	28856	28856	G	3819	3819
##	57	1	28930	28930	C	3891	3891
##	58	1	29345	29345	T	4309	4309
##	59	1	29346	29346	T	4310	4310
##	60	1	29467	29467	A	4431	4431
##	61	1	29510	29510	C	4478	4478
##	62	1	29511	29511	T	4479	4479
##	63	1	29647	29647	T	4614	4614
##	64	1	29662	29662	G	4629	4629
##	65	1	29728	29728	G	4694	4694
##	66	1	29834	29834	C	4798	4798
##	67	1	30198	30198	A	5160	5160
##	68	1	30210	30210	G	5172	5172
##	69	1	30212	30212	A	5174	5174
##	70	1	30213	30213	T	5175	5175
##	71	1	30284	30284	G	5245	5245
##	72	1	30396	30396	G	5356	5356
##	73	1	30853	30853	T	5813	5813
##	74	1	30905	30905	G	5866	5866
##	75	1	30910	30910	A	5871	5871
##	76	1	31090	31090	C	6051	6051
##	77	1	31091	31091	T	6052	6052
##	78	1	31092	31092	C	6053	6053
##	79	1	31227	31227	C	6188	6188
##	80	1	31587	31587	C	6548	6548
##	81	1	31897	31897	T	6855	6855
##	82	1	32135	32135	T	7096	7096
##	83	1	32165	32165	G	7126	7126
##	84	1	32323	32323	G	7282	7282
##	85	1	32325	32325	C	7284	7284
##	86	1	32342	32342	T	7301	7301
##	87	1	32395	32395	A	7354	7354
##	88	1	32434	32434	T	7393	7393
##	89	1	32473	32473	C	7432	7432
##	90	1	32474	32474	C	7433	7433
##	91	1	32475	32475	C	7434	7434
##	92	1	32476	32476	C	7435	7435
##	93	1	32477	32477	C	7436	7436
##	94	1	32481	32481	A	7440	7440
##	95	1	32501	32501	А	7461	7461
##	96	1	33806	33806	A	8765	8765
##	97	1	33835	33835	T	8794	8794
##	98	1	33836	33836	G	8795	8795
##		SubjectSubstring					

##	1	G
##	2	T
##	3	N
##	4	N
##	5	С
##	6	N
##	7	A
##	8	G
##	9	A
##	10	A
##	11	G
##	12	C
##	13	G
##	14	С
##	15	G
##	16	N
##	17	N
##	18	N
##	19	N
##	20	N
##	21	N
##	22	N
##	23	N
##	24	N
##	25	N
##	26	N
##	27	N
##	28	N
##	29	N
##	30	N
##	31	N
## ##	32 33	N
##	34	N N
##	35	N
##	36	N
##	37	N
##	38	N
##	39	N
##	40	N
##	41	N
##	42	A
##	43	C
##	44	A
##	45	G
##	46	C
##	47	С
##	48	С
##	49	A
##	50	G
##	51	T
##	52	A
##	53	T
##	54	Ā
	-	-

##	55	T
##	56	Т
##	57	T
##	58	C
##	59	G
##	60	G
##	61	T
##	62	C
##	63	A
##	64	A
##	65	A
##	66	T
##	67	G
##	68	T
##	69	G
##	70	A
##	71	A
##	72	C
##	73	A
##	74	T
##	75	T
##	76	T
##	77	C
##	78	T
##	79	T
##	80	A
##	81	C
##	82	C
##	83	C
##	84	A
##	85	T
##	86	C
##	87	G
##	88	N
##	89	G
##	90	G
##	91	G
##	92	G
##	93	G
##	94	G
##	95	G
##	96	G
##	97	G
##	98	T