FIRST SEMESTER 2021-2022

Course Handout Part II

Date: 20.08.2021

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : **CS F351**

Course Title : Theory of Computation
Instructor-in-Charge : Mrityunjay Singh

Instructors : Raghunath Reddy M, Ramisetty Kavya, S Vishwanath Reddy

1. Scope of the Course:

The scope of this course includes- Languages; Finite automata and regular languages- Regular Expressions, Deterministic and Non-deterministic FA, Conversion from NDFA to DFA, Pumping theorem; Context free languages and CFGs- Push down automata, concepts in parsing, parse trees, Turing machines; Universal Turing Machines; Computability –decidability and semi-decidability, recursive languages, Church-Turing hypothesis; Undecidable problems – the halting problem.

2. Course Objectives:

- a) To provide a mathematical, i.e., proof oriented foundation for the process of computations performed by computers.
- b) To impart an understanding of the notions of automata, formal languages, grammars.
- c) To understand the capabilities and limitations of computing machines.

2. Textbooks:

T1: Elements of Theory of Computation, Harry Lewis and Christos Papadimitriou, Second Edition, PHI, Asia 1998.

3. Reference books:

R1: J.E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Narosa, 1979

R2: Jeffery Shallit, A second course in formal languages and automata theory, Cambridge University Press, 2008

R3: D. C.Kozen, Automata and Computability, Springer-Verlag, 1997.

R4: J.E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Pearson, 2001

R5: M.Sipser, Introduction to the Theory of Computation, Thomson Asia, 1997.

Online Study Material:

NPTEL courses e.g. Theory of Computation, Formal Languages and Automata Theory

4. Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1	To introduce the subject theory of computation and various proof strategies	Introduction, Recap of proof strategies: induction, contradiction, pigeon hole principal, existence etc	T1 Chapter 1, R1 Chapter 1
2-3	To understand mathematical modeling of machines Set, Letter, Alphabet, Language, Mac Grammar		T1 Chapter 1, R1 Chapter 1
4-5	To understand finite automata	Finite Automata	T1 Chapter 2, R1 Chapter 2
6-8		DFA and NFA	T1 Chapter 2, R1 Chapter 2
9-11		Regular Expression, NFA⇔RE⇔Regular Grammar	T1 Chapter 2, R1 Chapter 2
12-13		Closure Properties of Regular languages	T1 Chapter 2, R1 Chapter 3
14-15		Pumping Lemma	T1 Chapter 2, R1 Chapter 3
16-17		Myhill-Neorde Theorem, State Minimization	T1 Chapter 2, R1 Chapter 3
18-20	To understand push down automata	Context Free Grammar, Derivation Tree, Various Normal Forms of CFG	T1 Chapter 3, R1 Chapter 4
21-23		PDA, PDA⇔CFG, Context Free Languages	T1 Chapter 3, R1 Chapter 5
23-28		Properties of Context Free Languages; Pumping Lemma, Ogden's Lemma, Closure Properties, Decision Properties	T1 Chapter 3, R1 Chapter 6
29		Deterministic CFL	R1 Chapter 10
30-32		Definition, Turing Computable Functions, Non-deterministic Turing Machine, Variants of TM,	T1 Chapter 4, R1 Chapter 7
33-35	To understand turing machine	Recursive and Recursive Enumerable Languages, Universal TM, Undecidable Problems, Rice Theorem	T1 Chapter 4- 5, R1 Chapter 8
36-38		Chomsky Hierarchy	R1 Chapter 9
39-40	To understand time complexity class	P, NP, NP-Completeness, co-NP	T1 Chapter 6- 7, R1 Chapter 13

5. Evaluation Scheme:

Sl No.	Component	Duration	Weightage (%)	Date & Time	Nature of Component
1	Mid Sem Test	90 minutes	30	20/10/2021 11.00 -12.30PM	Open Book
2	Quiz 1	30 minutes	10	Before mid sem	Open Book
3	Quiz 2	30 minutes	10	Before mid sem	Open Book
4	Quiz 3	30 minutes	10	After mid sem	Open Book
5	Comprehensive Exam	120 minutes	40	20/12 FN	Open Book

6.Consultation Hour: To be announced in the class

7. Notices: The notices for this course would be emailed to you or put in CMS.

- **8. Make-up Policy:** Make-up (excepting Compre.) may be given for genuine cases with prior permission of IC, and after rigorous scrutiny. *Request of makeup after the exam will not be entertained.* For Comprehensive exam, make-up has to be approved and scheduled by AUGSD.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE CS F351

