Нейронные сети для табличных данных

Agenda

- Factorization Machine
- Deep FM
- TabNet

Factorization Machine

$$\begin{split} \hat{y}(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \pmb{v}_i, \pmb{v}_j \rangle x_i x_j \\ \\ w_0 \in R, \, w \in R^n, \, \pmb{v} \in R^{n \times k} \end{split}$$

- w_0 смещение (bias);
- w_i определяет влияние каждой характеристики по отдельности;
- $\langle \pmb{v}_i, \pmb{v}_j \rangle$ попарное взаимодействие двух характеристик (второго порядка). То есть вместо того, чтобы сделать один вес для каждой пары, модель делает именно факторизацию обучаемых параметров каждой характеристики и по отдельности строит связи.

Factorization Machine

Сложность вычислений для второго порядка O(kn)

$$\begin{split} &\sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j} \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j} - \frac{1}{2} \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle x_{i} x_{i} \\ &= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{j,f} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{i,f} x_{i} x_{i} \right) \\ &= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right) \left(\sum_{j=1}^{n} v_{j,f} x_{j} \right) - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right) \\ &= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right) \end{split}$$

Deep Factorization Machine (DeepFM)

Deep Factorization Machine (DeepFM)

Модель учит объяснять таргет на основе "low- and high-order feature interactions".

$$\hat{y} = sigmoid(y_{FM} + y_{DNN})$$

FM component

Deep component

Deep component

Embedding Layer:

$$a^{(0)} = [e_1, e_2, ..., e_m], \quad$$

Hidden Layer:

$$\boldsymbol{a}^{(l+1)} = sigmoid(\boldsymbol{W}^{(l)}\boldsymbol{a}^{(l)} + \boldsymbol{b}^{(l)})$$

Выход:

$$y_{DNN} = sigmoid(W^{|H|+1}a^H + b^{|H|+1}), \label{eq:ydnn}$$

где |H| - кол-во скрытых слоев.

TabNet

https://arxiv.org/pdf/1908.07442.pdf

TabNet

Предлагает нейронную сеть с последовательным механизмом внимания для интерпретации результата.

Объединяем полносвязные слои в блоки

Linear + Batch Norm

torch.nn.Linear

torch.nn.BatchNorm1d

GLU -- Gated Linear Unit

Split

Выходной тензор из Feature Transformer делим на две части:

$$[d[i],a[i]] = f_i(M[i] \cdot f)$$

$$d[i] \in R^{B \times N_d}$$

И

$$a[i] \in R^{B \times N_a}$$

Первая часть d[i] идет на агрегацию с другими выходами от каждого шага. Вторая часть a[i] идет для вычисления маски -- в **Attentive Transformer**.

Механизм внимания

Attention Layer

Механизм внимания

Влияние механизма внимания происходит при backpropagation -- обновлении весов.

Так как происходит произведение на тензор, следовательно, каждый соответсвующий вес, который участвовал в вычислении тензора, получает свой дополнительный множитель.

Attentive Transformer - Механизм внимания в TabNet

Sparsemax аналог Softmax

Sparsemax исправляет недостаток Softmax: Softmax никогда не примет значение ноль.

И для тех случаев, где нужно получить разреженное распределение вероятности, Softmax не подходит.

Sparsemax

Идея заключается в том, чтобы найти такое пороговое значение, которое бы позволило обнулить некоторые значения и оставить отличные от нуля другие.

Sparsemax

$$\operatorname{sparsemax}_i(\boldsymbol{z}) = [z_i - \tau(\boldsymbol{z})]_+$$

au(z) - пороговая функция, которая определяет, что обнулить, а что оставить.

Sparsemax

Algorithm 1 Sparsemax Evaluation

Input: z

Sort
$$z$$
 as $z_{(1)} \geq \ldots \geq z_{(K)}$

Find
$$k(\boldsymbol{z}) := \max \left\{ k \in [K] \mid 1 + k z_{(k)} > \sum_{j \leq k} z_{(j)} \right\}$$

Define
$$\tau(z) = \frac{\left(\sum_{j \leq k(z)} z_{(j)}\right) - 1}{k(z)}$$

Output: p s.t. $p_i = [z_i - \tau(z)]_+$.

Механизм внимания в TabNet. Prior Scale

 $M[i]=sparsemax(P[i-1]\cdot h_i(a[i-1])),$ где i - номер шага, $h_i(a[i-1])$ выход после BatchNorm, P[i-1] - Prior Scale

Prior Scale - как часто использовалась характеристика до текущего шага

$$P[i] = \prod_{j=1}^{i} (\gamma - M[j])$$

, где γ - параметр релаксации, с увеличением γ характеристике будет придаваться бОльший вес.

Маска

$$M_{b,i}[i] = 0$$

Это значит j-я характеристика в батче b для i-го наблюдения не оказалась значительной.

Важно то, что маска вычисляется для каждого шага и наблюдения отдельная. В статье не предложен способ получения агрегированной маски по всем наблюдениям, но можно получить агрегированную для всех шагов (decision steps).

Маска

$$M_{agg-b,j} = \sum_{i=1}^{N_{steps}} \eta_b[i] M_{b,j}[i] / \sum_{j=1}^{D} \sum_{i=1}^{N_{steps}} \eta_b[i] M_{b,j}[i]$$

$$\eta_b[i] = \sum_{c=1}^{N_d} ReLU(d_{b,c}[i])$$

Если $d_{b,c}[i] < 0$, то значит все характеристики на i-м шаге не будут влиять на агрегированное решение.

Маска

Целевая функция для контролирования степени разреженности маски

$$L_{sparse} = \sum_{i=1}^{N_{steps}} \sum_{b=1}^{B} \sum_{j=1}^{D} \frac{-M_{b,j}[i]log(M_{b,j}[i] + \varepsilon)}{N_{steps} \cdot B}$$

Суммируется с основной целевой функцией с коэффициентом λ_{sparse}

