Numerical Simulations for Characterization of Missing Articulatory Information in Ultrasound Imaging for Speech

Sarah R. Li, Suzanne Boyce, PhD, CCC-SLP, & T. Douglas Mast, PhD

¹Biomedical Engineering; ²Communication Sciences and Disorders | University of Cincinnati

University of CINCINNATI

Introduction

- Due to the air-tissue interface at the tongue surface, submental (below the chin) B-mode ultrasound images provide tongue shape information useful for understanding typical and disordered tongue articulation during speech production (e.g., for speech therapy [1]).
- Speech acoustics analyzes the location and extent of constrictions in the vocal tract (e.g., between the tongue and palate) [2], so interest is the geometric shape of the air-tongue interface, often shown as a tongue surface contour.
- However, the anterior tongue tip may be obscured by shadowing from the sublingual air space and/or mandible bone [3].
- Depends on an individual speaker's anatomy and speech movement patterns
- The amount of anterior tongue missing from the image has not been investigated thoroughly.
- Magnetic resonance images (MRI) show the entire vocal tract [2] and can thus be used to understand missing information.
- To avoid ambiguity of tongue shapes, numerical simulations of acoustic wave propagation with the k-Wave toolbox [4] can generate B-mode ultrasound images with known tongue shapes segmented from MRI.
- Simulated images can help understanding of tongue tip visibility (see 5aSC37).

Hypothesis

Numerical simulations using the k-Wave toolbox [4] and segmented tissue maps from MRI can efficiently generate midsagittal B-mode ultrasound images:

- Replicate features of interest (e.g., shadowing, reverberation artifacts) in measured B-mode images
- Secondary goal: determine whether information on tongue tip can be recovered from reverberation artifacts

Methods: Data Data simulation workflow Step 3 Step 1 Map: Coronal (left) and sagittal (right) Step 2 planes, plane location shown by white dashed line Start and end scan lines Masks concatenated. smoothed, and Other soft tissue cropped Step 1: Manually segmented Source tissue masks from MRI, three signal, sagittal slices from each speaker Fig. 1: Steps for simulating Step 2: Manually registered MRI ultrasound images. The speaker with measured ultrasound images is saying the /r/ phoneme in the and adjusted masks (e.g., to word "pour." better match mandible shadow) Step 3: Inputs to simulation: Map of acoustic properties C6-2 transducer as source and receiver Step 4: Simulation using k-Wave toolbox [4]. Shown is a still of a video (see QR code) showing SCAN ME the acoustic pressure wavefront for one scan line, with the transducer shown as the arc on the bottom Link: https://github.com/ SarahRLi/asa-may-2023 (active elements shown as bright yellow and inactive as dark yellow)

Datasets used

- Speakers: 23 speakers producing the American English /r/ phoneme
- Stimuli and image parameters:
 - MRI (for tongue tissue maps): in supine position; midline sagittal slice with two parasagittal slices, 240×240 mm² field-of-view, 3-5 mm slice width, resolution of 0.938-1 mm per pixel
 - Measured ultrasound (for validating simulated ultrasound): midsagittal image in the supine or upright position
 - Varying imaging parameters: curvilinear probes C5-2, C7-4, C8-5 on HDI 5000 machine or C6-2 (center frequency 4 MHz) on Siemens Acuson X300

General parameters

• A linear, fluid (compressional-wave) simulation of acoustic wave propagation in 3D with attenuation was performed in k-Wave.

power law exponent, y of

1.032 (see section "Post-

Transmit/receive Hanning apodization 27 of 192 Active elements Element pitch (mm) 0.385 Element length Azimuthal focal depth (cm) ^a Based on attenuation

Table 2: Final simulation parameters Table 1: Transducer model Grid step size, 0.154 dx (mm) Points per wavelength (PPW, for soft tissue at 4MHz) Courant-Friedrichs-Lewy (CFL) number

Table 3: Final acoustic properties for media used in grid, from [5, 6].

process filtering" on choice of 4 MHz) b Tongue tissue additionally has scatterers added from a random distribution. c See section "Air-tissue interface" d See section "Replicating the bone shadow"	Medium	Speed of sound (m/s)	Density (kg/m³)	Attenuation (Np/m) at 4 MHz ^a
	Soft tissue (including tongue muscle)	1588.4 ^b	1090 ^b	12.13
	Air (at 35°C)	351.9	90 ^c	12.13
	Bone and teeth	925 ^d	1090 ^d	1444

Air-tissue interface

Adjustments to spatial and time steps were made as long as most of the acoustic wave was reflected at the air-tissue interface, demonstrated by reflection amplitude values close to 1 in Table 4.

 Lowered PPW: Based on soft tissue (PPW for air: 0.55)

Table 4: Models for measuring reflection amplitudes at tissue-air interface, from a linear 1D simulation without attenuation

Model	PPW	Density of air (kg/m³)	CFL	Reflection amplitude
Realistic	500	1.15	0.03	0.9995
Lowered PPW	2.5	1.15	0.03	0.8538
Final model	2.5	90	0.3	0.9556
i iliai iliouei	2.3	90	0.5	0.9330

- <u>Final model</u>: Avoided computational instability at higher CFL numbers
 - Instability possibly associated with large air/tissue impedance mismatch
 - Increasing the air density allowed stability at higher CFL (larger time steps).

Replicating the bone shadow Unrealistic reflections from mandible resulted from realistic compressional-wave bone properties, likely from neglect of mode conversion to shear waves. Elastic model [7] is

computationally expensive.

• Matching soft tissue: To reduce reflection, sound speed and density in bone was matched to soft tissue. Bone absorption coefficient was increased to attenuate greater energy transmitted into bone.

• Reflections still high, likely due to dispersion effects

• Final model: Bayesian optimization used to find sound speed minimizing reflections

¹ Required a CFL of 0.075 **Table 5**: Models adjusting bone properties

ration of measure adjusting boths proportion					
Model (fluid)	Speed of sound (m/s)	Density (kg/m³)	Attenuation (Np/m) at 4 MHz ^a	ſ	
(A) Realistic ¹	3198	1990	170		
(B) Matching soft tissue	1588.4	1090	722		
(C) Final model	925	1090	1444		

Mandible/teeth, slice 2 (midsagittal)

Artifact: reflection from mandible

Measured Ultrasound

Fig. 2: Ultrasound images for testing bone properties; simulated images (A, B, C) filtered with center at 3 MHz

Post-process filtering

Fig. 4: Simulated images from bandpass-filtered (Fig. 3) scan lines, Gaussian centered at (A) 3 MHz and (B) 4 MHz. Final image used (B) was more similar to (C), measured ultrasound

Results and discussion

Fig. 5: Example images and contours. The simulated ultrasound images (C & D) are additionally tinted to show sof tissue as red and mandible/teeth as blue in the tissue maps used, with D showing that a different simulation with an altered tongue tip shape changes the reverberation artifact (green arrows indicating artifact).

Simulated ultrasound images can replicate shadowing and artifacts in measured ultrasound images.

Frequency (MHz)

Original signal

3 MHz center.

40% bandwidth

Gaussian filter

Filtered signal

Source center frequency: 3 MHz

4 MHz center,

30% bandwidth

-Gaussian filter

Filtered signa

Fig. 3: Frequency

spectrum of scan

lines recorded in

simulation. Avoids

aliasing above

~5 MHz

- Adjustments to the anterior tongue shape (Fig. 5D) changed the reverberation artifact (green arrows), demonstrating that the artifact provides tongue tip information.
- Tongue tip thickness (yellow dotted line in Fig. 5C/D, row 1) is apparent.
- Similar to distance between artifact and tongue surface
- Tongue tip position within the shadow may not be apparent.
- In Fig. 5D, row 2, little indication that the adjusted tongue tip was curled upwards compared to 5C
- Some artifacts not seen in measured images; tongue musculature may increase scattering, decreasing energy returned to transducer compared to simulations.
- Still, may be enough to categorize tongue shapes (see 5aSC37): less tongue tip thickness implies a retroflex /r/ vs. a bunched /r/ shape.

Largest tongue / map

Future work

Azimuth (cm)

- Adjust bone parameters to better match measured reflection To understand visibility of tongue tip for the /l/ phoneme
- Decrease PML size, which was large (varied for each map, mean of 36 grid points) to decrease computation time
- Use simulated maps from 3D MRI to understand double-edge artifact (i.e., groove in tongue causes two apparent contours)

Acknowledgements

- NIH/NIDCD grants F31 DC020672, R01 DC05250, 8 UL1 TR000077-05, R01 DC013668, and R01 DC017301
- Additional mentors Dr. Steven Lulich and Dr. Shrikanth Narayanan for discussions on research project, as well as Dr. Maureen Stone for discussion on initial project idea
- Siemens Medical Solutions (lent Acuson X300 ultrasound scanner)

References

- [1] J. L. Preston et al., "Ultrasound Images of the Tongue: A Tutorial for Assessment and
- [2] X. Zhou, C. Y. Espy-Wilson, S. Boyce, M. Tiede, C. Holland, and A. Choe, "A magnetic resonance imaging-based articulatory and acoustic study of 'retroflex' and 'bunched' American English /r/," J Acoust Soc. Am, vol. 123, no. 6, p. 17, Jul. 2008,
- [3] M. Stone, "A guide to analysing tongue motion from ultrasound images," Clin Linguist Phon, vol. 19, no. 6-7, pp. 455-501, Jan. 2005, doi: 10.1080/02699200500113558
- [4] B. E. Treeby and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields," *J Biomed Opt*, vol. 15, no. 2, p.
- [5] T. L. Szabo, *Diagnostic Ultrasound Imaging: Inside Out,* in Biomedical Engineering. Elsevier Science, 2013.
- biological tissues," Version 4.1, Feb. 2022, doi: 10.13099/VIP21000-04-1. itis.swiss/database.
- propagation using the k-Wave MATLAB Toolbox," in 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA: IEEE, Sep. 2014, pp. 146-149. doi: 10.1109/ULTSYM.2014.0037.

Computational efficiency

for absorbing boundaries

Table 6: Total computation times; maps are cropped to tongue size. Computation time: NVIDIA A100 (40 GB) GPU Computation time: NVIDIA RTX2080 Super (8 GB) GPU ¹ Perfectly matched layer (PML Number of grid points (excluding PML¹)

 $53 \text{ s} \times 35 \text{ scan lines} = 31 \text{ min}$ $91 \text{ s} \times 35 \text{ scan lines} = 53 \text{ min}$ $388 \times 392 \times 58$

Smallest tongue / map

 $141 \text{ s} \times 51 \text{ scan lines} = 2 \text{ hr}$ $489 \text{ s} \times 51 \text{ scan lines} = 7 \text{ hr}$ 602 × 627 × 58

Remediation of Speech Sound Errors," J Vis Exp, no. 119, p. e55123, Jan. 2017, doi: 10.3791/55123.

doi: 10.1121/1.2902168

021314, 2010, doi: 10.1117/1.3360308.

[6] P. A. Hasgall et al., "IT'IS Database for thermal and electromagnetic parameters of

[7] B. E. Treeby, J. Jaros, D. Rohrbach, and B. T. Cox, "Modelling elastic wave