Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе №11

Дисциплина: Телекоммуникационные технологии **Тема:** Модуляция и выборка (квантование)

Работу выполнил: Ляшенко В.В. Группа: 3530901/80201 Преподаватель: Богач Н.В.

Оглавление

1	Упражнение 11.1	4
2	Упражнение 11.2	5
3	Упражнение 11.3	6
4	Выводы	11

Список иллюстраций

3.1	Звук барабана
3.2	Спектр сигнала
3.3	Результат применения фильтра сглаживания
3.4	Спектр после выборки
3.5	Спектр после использования фильтра
3.6	Результат масштабирования
3.7	Сравнение сигналов

Листинги

3.1	Получение звука барабана
3.2	Применение фильтра сглаживания
3.3	Функция выборки
3.4	Построение спектра
3.5	Применение фильтра сглаживания
3.6	Применение масштабирования
3.7	Получение сигнала
3.8	Сравнение интерполированного и фильтрованного сигналов

Упражнение 11.1

В начале мы должны для Jupyter загрузить chap11.ipynb, прочитать пояснения и запустить примеры.

Все примеры были успешно запущены.

Упражнение 11.2

В этом упражнении нам требуется посмотреть видео "D/A and A/D | Digital Show and Tell" Криса Монтгомери. В этом видео он демонстрирует теорему о выборках в действии и представляет множество информации о выборках.

Также в этом видео мы можем узнать, почему аналоговый звук в допустимых пределах человеческого слуха (от 20 Γ ц до 20 к Γ ц) может воспроизводиться с идеальной точностью с использованием 16-битного цифрового сигнала 44,1 к Γ ц.

Упражнение 11.3

Вернемся к примеру "Соло на барабане" и применим фильтр НЧ до выборки, а затем, опять же с помощью фильтра НЧ, удалим спектральные копии, вызванные выборкой. Для начала загрузим звук барабана (Рис.3.1).

```
from thinkdsp import read_wave

wave = read_wave('263868__kevcio__amen-break-a-160-bpm.wav')
wave.normalize()
wave.plot()
```

Листинг 3.1: Получение звука барабана

Рис. 3.1: Звук барабана

Данный сигнал имеет частоту дискретизации 44100 Гц. Теперь получим его спектр (Рис.3.2).

Рис. 3.2: Спектр сигнала

Уменьшим частоту дискретизации в 4 раза. А затем перед дискретизацией мы применяем фильтр сглаживания, чтобы удалить частоты выше новой частоты свертки, которая равна частоте кадров разделённой на 2 (Рис.3.3).

```
factor = 4
framerate = wave.framerate / factor
cutoff = framerate / 2 - 1
spectrum.low_pass(cutoff)
spectrum.plot()
```

Листинг 3.2: Применение фильтра сглаживания

Рис. 3.3: Результат применения фильтра сглаживания

Теперь воспользуемся функцией, имитирующей процесс выборки.

```
from thinkdsp import Wave

def sample(wave, factor):
    ys = np.zeros(len(wave))
    ys[::factor] = np.real(wave.ys[::factor])
    return Wave(ys, framerate=wave.framerate)

    Листинг 3.3: Функция выборки
```

Результат применения функции содержит копии спектра, которые слегка заметны при прослушивании звука. Но их можно увидеть при построении спектра (Рис.3.4).

```
sampled_spectrum = sampled.make_spectrum(full=True)
sampled_spectrum.plot()
```

Листинг 3.4: Построение спектра

Рис. 3.4: Спектр после выборки

Мы можем избавиться от спектральных копий, снова применив фильтр сглаживания (Рис.3.5).

```
sampled_spectrum.low_pass(cutoff)
sampled_spectrum.plot()
```

Листинг 3.5: Применение фильтра сглаживания

Рис. 3.5: Спектр после использования фильтра

Мы только что потеряли половину энергии в спектре, но мы можем масштабировать результат, чтобы вернуть её.

```
sampled_spectrum.scale(factor)
spectrum.plot()
sampled_spectrum.plot()
```

Листинг 3.6: Применение масштабирования

Рис. 3.6: Результат масштабирования

Как мы видим, между спектрами до дисктретизации и после нет большой разницы.

Применение функции \max_diff это подтверждает. Полученная разница: 1.8749713606747085e-12.

После фильтрации и масштабирования мы можем снова получить сигнал.

```
interpolated = sampled_spectrum.make_wave()
interpolated.make_audio()
```

Листинг 3.7: Получение сигнала

Разница между интерполированным и фильтрованным сигналом также должна быть небольшой.

```
filtered.plot()
interpolated.plot()
```

filtered.max_diff(interpolated)

Листинг 3.8: Сравнение интерполированного и фильтрованного сигналов

Рис. 3.7: Сравнение сигналов

Полученная разница: 5.56290642113787e - 16.

Выводы

В результате выполнения данной работы мы изучили амплитудную модуляцию, которая играет важную роль в радиосвязи, и ещё теорему о выборках, которая является важнейшей в цифровой обработке сигналов. Также мы получили навыки их применения.