CS5344 Finding Frequent Itemsets

Motivation

- Association rule discovery
 - Find associations between items in a dataset
- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrence of other items in the transaction

Market-Basket Transactions

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Example Association Rules

```
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

Implication means co-occurrence, not causality!

Market-Basket Model

- Large set of items
 - e.g., things sold in a supermarket
- Large set of baskets, each basket is a small subset of items
 - e.g., the things a customer buys in a shopping trip
- Want to discover association rules
 - People who bought Diaper tend to buy Beer

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Application

- A chain store keeps TBs of data about what customers buy together
 - Sales data collected with barcode scanners
- What can you do with such data?
 - Reveals how customers typically navigate stores
 - Shelf management: position items strategically
 - Marketing and sales promotion
 - Suggests tie-in "tricks", e.g., run sale on diapers but raise the price of beer

Frequent Itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- Itemset collection of one or more items
 - e.g. {Milk, Bread}
- k-itemset: itemset that contains k items
- Support for itemset *I*: number of baskets containing all items in *I*
 - Often expressed as a fraction of the total number of baskets
 - e.g. support of {Milk, Bread} = 2/5
- Frequent itemset: an itemset whose support is ≥ minimum support threshold (minsup)

Example

- Items = {milk, coke, pepsi, beer, juice}
- Minimum support threshold = 3 baskets
- Frequent itemsets:
 - {m}, {c}, {b}, {j} 1-itemsets
 - {m, b}, {b, c}, {c, j} 2-itemsets
- {m, c} is not a frequent itemset
 - only appear in two baskets
- Note: All items appearing in frequent 2-itemsets also appear in frequent in 1-itemsets

B1	m, c, b
B2	m, p, j
В3	m, b
B4	c, j
B5	m, p, b
B6	m, c, b, j
B7	c, b, j
B8	b, c

Association Rules

- IF-THEN rules about the contents of baskets
 - $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j"
- Rule evaluation metrics:
 - Support of a rule is the fraction of baskets that contain the itemset { i₁,...,i_k, j }
 - Confidence of this association rule is the probability of j given $l = \{i_1, ..., i_k\}$

$$\operatorname{conf}(I \to j) = \frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}$$
 Measures how often item j occurs in baskets that contain I

Example

- Association rule: {m, b} → c
- Support = 2/8 = 0.25
 - Fraction of baskets that contain the itemset {m, b, c}
- Confidence = 2/4 = 0.5

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

B 1	m, c, b	
B2	m, p, j	
В3	m, b	
B4	c, j	
B5	m, p, b	
B6	m, c, b, j	
B7	c, b, j	
B8	b, c	

Task: Find Association Rules

- Find all association rules with support ≥ minsup and confidence ≥ minconf
- Brute-force approach
 - List all possible association rules
 Given d unique items:

Total number of itemsets = 2^d Total number of rules = R

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

- Compute support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
- Computationally prohibitive!

Task: Find Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules from the same itemset have identical support but can have different confidence
- If an itemset does not satisfy minsupp, do not need to generate the rules

Mining Association Rules

- Step 1: Find all frequent itemsets I
 - Generate all itemsets whose support ≥ minsup
- Step 2: Generate rules
 - For every subset X of I, generate $X \rightarrow I X$
 - If {A,B,C,D} is a frequent itemset, the candidate rules are:

$ABC \rightarrow D$	$ABD \rightarrow C$	ACD → B	BCD → A
$A \rightarrow BCD$	$B \rightarrow ACD$	$C \rightarrow ABD$	$D \rightarrow ABC$
$AB \rightarrow CD$	$AC \rightarrow BD$	$AD \rightarrow BC$	$BC \rightarrow AD$
$BD \rightarrow AC$	$CD \rightarrow AB$		

- If |I| = k, we have $2^k 2$ candidate association rules that involve all the attributes (ignoring $I \to \emptyset$ and $\emptyset \to I$)
- Output rules above confidence threshold

Example

- minsup = 3
- *minconf* = 0.75
- (1) Frequent itemsets

(2) Generate rules:

$$b \rightarrow m$$
. conf = 4/6

$$m \rightarrow b$$
: conf = 4/5

$$b \rightarrow c$$
: conf = 4/6

. . .

b,
$$c \rightarrow m : conf = 3/5$$

b, m
$$\rightarrow$$
 c: conf = 3/4

$$b \rightarrow c$$
, m: conf = $3/6$

B 1	m, c, b
B2	m, p, j
В3	m, b
B4	c, j
B5	m, p, b
B6	m, c, b, j
B7	c, b, j
B8	b, c

Rule Generation

- How to generate rules from frequent itemsets efficiently?
- Observations:
 - Confidence of rules generated from the same itemset has
 anti-monotone property: If X' ⊆ X → f(X') ≥ f(X)
 - If I = {A,B,C,D}, then $conf (ABC \rightarrow D) \ge conf (AB \rightarrow CD) \ge conf (A \rightarrow BCD)$

Recall: conf $(X \rightarrow Y)$ = support $(X \cup Y)$ / support (X)

Rule Generation

Lattice of rules

Task: Find Frequent Itemsets

- To find frequent itemsets, we need to count
- To count, we need to generate them
- Turns out that finding frequent pairs of items is the hardest
 - Frequent pairs are common, frequent triples are fewer, quadruples are rare.
 - Probability of being frequent drops exponentially with size

Finding Frequent Item Pairs

- Naïve method: Read baskets once, count in main memory the occurrences of each pair
 - From each basket of *n* items, generate its *n(n-1)/2* pairs by two nested loops.
 - If I = {A, B, C, D}, we have AB, AC, AD, BC, BD, CD
- What if (#items)² exceeds main memory?
 - E.g. Walmart has over 100K items
 - Assume counts are 4-byte integers
 - Number of pairs of items: 100,000(100000 1)/2 = 5*109
 - Therefore, 20 GB of memory needed

For machine with 2 GB memory, $n < 2^{15}$ or 33,000

- How to store the n(n-1)/2 counts so that we can quickly find the count for a pair of items?
- Represent items by integers 1 to n
- Count pairs of items {i, j} only if i < j</p>
- Use a 2-dimensional array M where entry M[i, j] gives the count of item pair {i, j} with 1 ≤ i < j ≤ n.</p>
 - Half of the array is wasted
- Use Triangular Matrix or Triples Method

Triangular Matrix Method

- Use a 1-dimensional triangular array T
- Triangular Matrix

4 bytes per pair

- Keep pair counts in lexicographical order:
 - {1,2}, {1, 3}, ...{1, n}, {2, 3}, {2, 4}, ...{2, n}, {3, 4}...
 {n-2, n-1}, {n-2, n}, {n-1, n}
- Store count of pair $\{i, j\}$ at entry T[k] with $1 \le i < j \le n$

where
$$k = (i - 1) \left(n - \frac{i}{2} \right) + j - i$$

Triples Method using Hash Table

- Store counts as triples [i, j, c] where count of pair {i, j} with i < j is c</p>
- Use hash table with i and j as search key
- Only keep pairs with count > 0
- Assume ids of items are also 4 bytes, we need 12 bytes for each pair and some overhead for hashtable

Triples

Triangular Matrix

Triples

What if we have too many items so the pairs cannot fit in main memory?

Apriori Algorithm

- Two-pass approach reduce the need for main memory
- Key idea: Apriori Principle
 - If an itemset is frequent, then all its subsets must be frequent
- Apriori principle holds due to the anti-monotone property of support

$$\forall X, Y : (X \subseteq Y) \Rightarrow \operatorname{support}(X) \geq \operatorname{support}(Y)$$

If item i does not appear in s baskets, then no superset containing i can appear in s baskets

Apriori Principle

Apriori Algorithm

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - Requires memory proportional to number of items
 - Items that appear ≥ s (minsup) times are frequent items
- Pass 2: Read baskets again and count in main memory only those pairs where both items are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so we know what must be counted)

Apriori Algorithm – Main Memory

Frequent k-Itemsets (k > 2)

- For each k, we have
 - $C_k = candidate \ k-itemsets = those that might be frequent (support <math>\geq s$) based on L_1 and L_{k-1}
 - L_k = set of truly frequent k-itemsets

Example

- Suppose minsup = 3
- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{p\} \}$
 - Count support of itemsets in C₁
 - Prune non-frequent: $L_1 = \{\{b\}, \{c\}, \{j\}, \{m\}\}\}$
- $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
 - Count support of itemsets in C₂
 - Prune non-frequent: $L_2 = \{ \{b,c\} \{b,m\} \{c,j\} \{c,m\} \}$
- $C_3 = \{ \{b,c,j\} \{b,c,m\} \{b,m,j\} \{c,j,m\} \}$
 - Count support of itemsets in C₃
 - Prune non-frequent: L₃ = { {b,c,m} }

Note: Generate new candidates C_k from L_{k-1} and L_1 . Can be more careful with candidate generation, e.g., in C_3 we know $\{b,m,j\}$ cannot be frequent since $\{m,j\}$ is not frequent.

B1	m, c, b
B2	m, p, j
В3	m, b
B4	c, j
B5	m, p, b
В6	m, c, b, j
B7	c, b, j
B8	b, c, m

Example

minsup = 2

Apriori Algorithm

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - for size k+1 to be frequent, then all subsets of size k must be frequent
 - e.g., consider extending {1,3} by {5}. Since {1,5} is not frequent, {1,3,5} cannot be frequent
 - e.g., {2,3,5} is potentially frequent since all its subsets are frequent
 - Count the support of each candidate by scanning the baskets
 - Eliminate candidates that are infrequent, leaving only those that are frequent

One pass for each *k* (itemset size)

PCY (Park-Chen-Yu) Algorithm

Motivation

- Pass 1 of Apriori
 - Only individual item counts are stored
 - Remaining memory is not used
- Pass 2 of Apriori
 - Possible that (i, j) is not frequent even though i and j are frequent
 - But we still must count them (and need to store them in memory)
- Can we use the idle memory to reduce memory required in pass 2?

PCY Algorithm – First Pass

- In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a count (do not need the pairs) for each bucket into which pairs of items are hashed
- Number of buckets can be smaller than the number of pairs (collison is possible)

Item counts

```
FOR (each basket):

FOR (each item in the basket):

add 1 to item's count;

FOR (each pair of items):

hash the pair to a bucket;

add 1 to the count for that bucket;
```

Example

- Suppose we have 10 items 1 to 10, then we have 45 pairs
- Suppose memory is only enough to hold 10 item counts, and 10 buckets
- Suppose we have a basket with items {1, 3, 7, 9}

Observations about Buckets

- If a bucket contains a frequent pair, then the bucket is surely frequent
- Note: A bucket can still be frequent even without any frequent pair
 - There may be collisions, so more than one pair may be hashed to the same bucket, and total count > s
- If a bucket has total count < s, none of its pairs can be frequent
 - Pairs that hash to this bucket eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2: Only need to count pairs that hash to frequent buckets

PCY Algorithm – Pass 2

- Replace the buckets by a bit vector
 - 1 means bucket count exceeds support s (frequent bucket);
 0 means it did not
 - Hash value now corresponds to the bit position
 - 4 byte integer counts replaced by bits, so the bit vector requires 1/32 of memory
- Count all pairs {i, j} that meet the conditions for being a candidate pair
 - Both i and j are frequent items
 - Pair {i, j} hash to a bucket whose bit in the bit vector is 1 (frequent bucket)
- Both conditions are necessary for the pair to have a chance of being frequent

PCY Algorithm – Main Memory

Find Frequent Itemsets in ≤ 2 Passes

- Apriori and PCY take k passes to find frequent itemsets of size k. Can we use fewer passes?
- Random sampling
 - May miss some frequent itemsets
 - Useful for application where it is not essential to discover every frequent itemset
 - e.g. supermarket, does not run a sale based on every itemset we find
- SON (Savasere, Omiecinski, and Navathe)
 - Exact answer in two full passes
 - Implemented by MapReduce

Random Sampling

- Take a random sample of the market baskets
- Load sample into main memory
- Run a frequent itemset mining algorithm (e.g., Apriori) in main memory
- Reduce support threshold proportionally to match sample size
 - e.g. if sample 1% of baskets, then we should look for itemsets that appear in at least s/100 of the baskets

Copy of sample baskets

Space for counts

Main memory

Random Sampling

False positives

- Itemset may be frequent in the sample but not in the entire set of baskets (due to reduced threshold)
- Run a second pass through all the baskets to verify that the candidate itemsets are truly frequent
 - Can remove false positives totally

False negatives

- Itemset is frequent in the original set of baskets but not picked out from the sample
- Scanning a second time does not help
 - Using smaller threshold helps catch more truly frequent itemsets, but requires more space

SON Algorithm

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - We are not sampling, but processing the baskets in memory-sized chunks
 - Use ps as threshold if each subset is fraction p of all the baskets and s is the support threshold
 - Store on disk the frequent itemsets found for each chunk
- An itemset becomes a candidate if it is frequent in any one or more subsets of the baskets
- Second pass counts all the candidate itemsets and determine which are frequent in the entire set of baskets

SON Algorithm

- Key idea: Monotonicity
 - If an itemset is not frequent in any chunk, then it is not frequent in the entire set of baskets
 - Support for itemset ≤ ps in each chunk.
 - Number of chunks is 1/p
 - Total support for itemset $\leq (1/p)ps = s$
 - Every itemset that is frequent in the entire set of baskets is frequent in at least one chunk
 - No false negatives
 - We can be sure that all the truly frequent itemsets are among the candidates

SON – Distributed Version

- SON lends itself to distributed data mining
 - Each chunk can be processed in parallel
 - Frequent itemsets from each chunk combined to form candidates
- Distribute candidates to all the nodes
 - Each node count support for each candidate in a subset of basket
 - Accumulate the counts of all candidates

SON and MapReduce

Phase 1: Find candidate itemsets

- Map
 - Take assigned subset of baskets and find the frequent itemsets.
 - Lower support threshold from s to ps if each Map task gets fraction p of the total number of baskets.
 - Output is a set of key-value pairs (F, 1) where F is a frequent itemset, value is always 1 (irrelevant).

Reduce

- Each Reduce task is assigned a set of keys (itemsets)
- Output keys that appear one or more times (candidate itemsets)

SON and MapReduce

Phase 2: Find true frequent itemsets

Map

- Take output from Reduce function in Phase 1 and a portion of the baskets.
- Map task counts occurrences of candidate itemsets among the baskets.
- Output is a set of key-value pairs (C, v) where C is a candidate itemset, and v is its support.

Reduce

- Reduce task take assigned itemsets as keys and sum the associated values (total support)
- Output itemsets whose sum ≥ s (frequent in dataset)

Summary

- Finding frequent itemsets is expensive
- Finding frequent pairs is hard
 - Memory constraint
- Apriori and PCY Algorithms
 - k passes to find frequent k-itemsets
- Random sampling and SON Algorithms