Übung Radsätze

Aufgabe 1 (Radsatzwellen) Sizzieren Sie die Verläufe der Momente M_x , M_y und M_z entlang der Radsatzwelle für folgende Fälle:

- a) Klotzbremse einseitig auf das Rad wirkend
- b) Klotzbremse beidseitig auf das Rad wirkend
- c) Eine Wellenbremsscheibe
- d) Zwei Wellenbremsscheiben
- e) Zwei Radbremsscheiben

Aufgabe 2 (Radsätze/Wärmeeintrag) Ein bereiftes Rad mit Laufkreisdurchmesser $d=920~\mathrm{mm}$ wird in einem Gefälle mit einer Klotzbremse dauergebremst, um die Geschwindigkeit konstant zu halten.

- Spezifische Wärmekapazität Stahl: $c=477~{
 m \frac{J}{kg\,K}}$
- Geschwindigkeit: $v = 70 \frac{\mathrm{km}}{\mathrm{h}}$
- Radsatzlast: $2Q = 22, 5 \,\mathrm{t}$
- Streckenneigung: $i_k = \{2, 4\}\%$
- a) Bestimmen Sie den Leistungseintrag der Klotzbremse während der Beharrungsbremsung in den beiden angegeben Streckenneigung unter folgenden Annahmen:
 - Es findet kein Transfer von abzubremsenden Massen statt, d.h. jedes Rad bremst sich selbst
 - Die Verbundsohle nimmt 10 % des Leistungseintrags auf
- b) Bestimmen Sie die Temperaturentwicklung im Radreifen unter folgenden Annahmen:
 - Keine Wärmeleitung in den Radsteg
 - Radreifendicke: $d=90\,\mathrm{mm}$
 - Radbreite: $b = 140 \,\mathrm{mm}$

Datei: SFTI-16-Ue6 1 Datum: 23. Juni 2016