Линейная алгебра

Овчинников Алексей Витальевич

Литература

- 1. С. Б. Кадомцев. Аналитическая геометрия и линейная алгебра.
- 2. В. А. Ильин, Э. Г. Позняк. Линейная алгебра.
- 3. Н. Ч. Крутицкая, А. В. Тихонравов, А. А. Шишкин. Аналитическая геометрия и линейная алгебра с приложениями.

1. Обозначения

 \mathbb{N} — множество натуральных чисел.

 \mathbb{Z} — множество целых чисел.

— множество рациональных чисел.

 \mathbb{R} — множество вещественных чисел.

 \mathbb{C} — множество комплексных чисел.

 \mathbb{K} — любое из перечисленных множеств.

 \mathbb{K}_0 — множество $\mathbb{K} \setminus 0$.

 $\mathbb{R}_+ = \{ x \in \mathbb{R} : x > 0 \}.$

 \mathbb{K}^n — множество столбцов высоты n с элементами из \mathbb{K} .

 $\mathbb{K}^{m\times n}$ — множество матриц размера $m\times n$ с элементами из \mathbb{K} (m строк, n столбцов).

2. Числовое поле

Числовое поле $(\mathbf{Ч\Pi})$ — это множество чисел, в котором корректны арифметические операции: сложение, вычитание, умножение, деление на ненулевое число.

Примеры числовых полей: \mathbb{Q} , \mathbb{R} , \mathbb{C} .

He являются числовыми полями: \mathbb{N} , \mathbb{Z} , \mathbb{R} \ \mathbb{Q} .

 \mathbb{K} — любое из перечисленных числовых полей.

3. Умножение матриц

Будем использовать нумерацию элементов матрицы с помощью верхних и нижних индексов; верхний индекс обозначает номер строки, нижний — номер столбца. Рассмотрим матрицу $A \in \mathbb{K}^{n \times m}$,

$$A = \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_m^1 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}.$$

Разбиение этой матрицы на столбцы имеет вид

$$A = [A_1 \quad A_2 \quad \dots \quad A_m],$$

где

$$A_{1} = \begin{pmatrix} a_{1}^{1} \\ a_{1}^{2} \\ \vdots \\ a_{1}^{n} \end{pmatrix}, \quad A_{2} = \begin{pmatrix} a_{2}^{1} \\ a_{2}^{2} \\ \vdots \\ a_{2}^{n} \end{pmatrix}, \quad \dots, \quad A_{m} = \begin{pmatrix} a_{m}^{1} \\ a_{m}^{2} \\ \vdots \\ a_{m}^{n} \end{pmatrix}.$$

Разбиение этой матрицы на строки имеет вид

$$A = \begin{bmatrix} A^1 \\ A^2 \\ \vdots \\ A^n \end{bmatrix},$$

2

где

$$A^{1} = (a_{1}^{1} \quad a_{2}^{1} \quad \dots \quad a_{m}^{1}),$$

$$A^{2} = (a_{1}^{2} \quad a_{2}^{2} \quad \dots \quad a_{m}^{2}),$$

$$\dots$$

$$A^{n} = (a_{1}^{n} \quad a_{2}^{n} \quad \dots \quad a_{m}^{n}).$$

Рассмотрим матрицы $A \in \mathbb{K}^{n \times m}$, $B \in \mathbb{K}^{m \times p}$. Их произведение — это матрица $C \in \mathbb{K}^{n \times p}$, элементы которой вычисляются по формуле

$$c_k^j = \sum_{l=1}^m a_l^j b_k^l, \quad \begin{array}{l} j = 1, \dots, n, \\ k = 1, \dots, p. \end{array}$$

Рассмотрим разбиение матрицы C на столбцы:

$$C = [C_1 \quad \dots \quad C_n],$$

и обсудим строение k-го столбца:

$$C_k = \begin{pmatrix} c_k^1 \\ \vdots \\ c_k^n \end{pmatrix} = \begin{pmatrix} \sum_{l=1}^m a_l^1 b_k^l \\ \vdots \\ \sum_{l=1}^m a_l^n b_k^l \end{pmatrix} = \sum_{l=1}^m \begin{pmatrix} a_l^1 \\ \vdots \\ a_l^n \end{pmatrix} b_k^l = \sum_{l=1}^m A_l b_k^l = A \cdot B_k.$$

Таким образом,

- (1) k-й столбец матрицы AB равен линейной комбинации столбцов матрицы A с коэффициентами, равными элементам k-го столбца матрицы B.
- (2) k-й столбец матрицы AB равен произведению матрицы A на k-й столбец матрицы B.

Задача. Сформулируйте и докажите самостоятельно аналогичное утверждение для строк матрицы AB.

4. Группа

Группа (G, *) — это множество G, снабженное операцией

$$*: G \times G \to G, \quad (a,b) \mapsto a * b,$$

удовлетворяющей следующим требованиям:

- (1) $\forall a, b, c \in G$: (a * b) * c = a * (b * c) (ассоциативность);
- (2) $\exists e \in G \ \forall a \in G : e * a = a * e = a$ (существование нейтрального элемента);
- (3) $\forall a \in G \ \exists a' \in G : \ a*a' = a'*a = e$ (существование обратного элемента). Обратный элемент обозначается a^{-1} .

5. Примеры групп

- 1. $(\mathbb{Z}, +)$; $(\mathbb{Q}, +)$; $(\mathbb{R}, +)$; $(\mathbb{C}, +)$. Здесь e = 0.
- 2. (\mathbb{R}_+, \cdot) . Здесь e = 1.
- 3. (\mathbb{Q}_0, \cdot) ; (\mathbb{R}_0, \cdot) ; (\mathbb{C}_0, \cdot) . Здесь e = 1.
- $4.\ GL(n;\mathbb{K})=\{A\in\mathbb{K}^{n\times n}:\det A\neq 0\}.$ Операция умножение матриц, $e=\mathbf{I}$ (единичная матрица порядка n). (Проверьте!)

Вопрос. Что является обратным элементом?

- 5. $SL(n; \mathbb{K}) = \{A \in \mathbb{K}^{n \times n} : \det A = 1\}$. Операция умножение матриц, $e = \mathbf{I}$ (единичная матрица порядка n). (Проверьте!)
- 6. $U(1) = \{z \in \mathbb{C} : |z| = 1\}$. Операция умножение комплексных чисел, e = 1. (Проверьте!)

Вопрос. Что является обратным элементом?

Вопрос. Что является единичным элементом? Что является обратным элементом? **Задача.** Рассмотрим множество G монотонных строго возрастающих числовых функций на отрезке [1, -1] и введем на этом множестве операцию композиции функций:

$$\forall f, g \in G: (f * g)(x) = f(g(x)), x \in [-1, 1].$$

Покажите, что (G,*) — группа. Что является нейтральным элементом этой группы? Что представляет собой обратный элемент?

6. Простейшие свойства групп

Теорема. Пусть (G,*) — группа.

- (1) Нейтральный элемент в группе единствен.
- (2) $\forall a \in G$ обратный элемент a^{-1} единствен.
- (3) $\forall a \in G \text{ uneem } (a^{-1})^{-1} = a.$
- (4) $\forall a, b, c \in G$: $a * b = a * c \Rightarrow b = c$; $b * a = c * a \Rightarrow b = c$.

 \mathcal{A} оказательство. 1. Допустим, что $\exists e' \neq e$ такой, что $\forall a \in G \colon e' * a = a = a * e'$. Положим a = e; тогда e' * e = e. С другой стороны, по определению e, e' * e = e'. Итак, e' = e.

2. Пусть $b=a^{-1}$. Допустим, что $\exists c$ такой, что a*c=c*a=e. Тогда

$$c = c * e = c * (a * b) = (c * a) * b = e * b = b.$$

Завершите доказательство самостоятельно.

7. Абелевы группы

Группа (G, *) называется абелевой (коммутативной), если

$$a * b = b * a \quad \forall a, b \in G.$$

В случае абелевых групп групповая операция часто называется сложением и обозначается знаком +, обратный элемент для a называется противоположным и обозначается -a, а единичный элемент называется нулем и обозначается 0.

Вопрос. Какие из перечисленных выше групп являются абелевыми?

8 Полгруппы

Пусть (G,*) — группа. Непустое подмножество $S\subset G$ называется noderpynnoй группы G, если выполнены следующие условия:

- (1) $\forall s \in S : s^{-1} \in S$;
- (2) $\forall s, t \in S : st \in S$.

Обозначение:

 $S \subset G$ — подмножество группы G;

 $S \subseteq G$ — подгруппа группы G.

Теорема. Пусть (G,*) — группа. Если $S \in G$, то S является группой относительно операции *.

Задача. Докажите теорему самостоятельно.

9. Примеры подгрупп

- 1. $(\mathbb{Z}, +) \in (\mathbb{Q}, +) \in (\mathbb{R}, +) \in (\mathbb{C}, +)$.
- 2. $U(1) \subseteq (\mathbb{C}_0, \cdot)$.
- 3. $SL(n, \mathbb{K}) \subseteq GL(n, \mathbb{K})$.
- 4. $SO(2) \in SL(2,\mathbb{R})$; $SO(2) \in GL(2,\mathbb{R})$.

10. Гомоморфизм групп

Пусть (G,*) и (H,\star) — две группы. Отображение $f:G\to H$ называется гомоморфизмом, если

$$f(a * b) = f(a) \star f(b) \quad \forall a, b \in G.$$

Множество всех гомоморфизмов групп (G,*) и (H,\star) обозначается $\operatorname{Hom}(G,H)$.

Теорема. Пусть $f: G \to H$ — гомоморфизм групп (G, *) и (H, \star) . Тогда:

- (1) $f(e_G) = e_H$;
- (2) $\forall g \in G : f(g^{-1}) = (f(g))^{-1}$.

Доказательство.

1. Так как $e_G = e_G * e_G$, то имеем

$$f(e_G) = f(e_G * e_G) = f(e_G) * f(e_G).$$

Умножим обе части на $f(e_G)^{-1}$; получим

$$e_H = f(e_G) \star f(e_G)^{-1} = f(e_G) \star f(e_G) \star f(e_G)^{-1} = f(e_G)$$

2. Поскольку $g * g^{-1} = e_G = g^{-1} * g$, находим

$$f(g * g^{-1}) = f(e_G) = f(g^{-1} * g) \Rightarrow f(g) \star f(g^{-1}) = e_H = f(g^{-1}) \star f(g);$$

отсюда в силу единственности обратного элемента вытекает $f(g^{-1}) = f(g)^{-1}$.

11. Примеры гомоморфизмов групп

1. $(G, *) = (\mathbb{R}, +), (H, *) = (\mathbb{R}_+, \cdot), f = \exp$: $f(a * b) \equiv e^{a+b} = e^a \cdot e^b \equiv f(a) * f(b).$

2. $(G, *) = (\mathbb{C}_0, \cdot), (H, \star) = (\mathbb{R}_0, \cdot), f = |\cdot|$:

$$f(a * b) = |a \cdot b| = |a| \cdot |b| \equiv f(a) \star f(b).$$

3. $(G, *) = GL(n; \mathbb{K}), (H, *) = (\mathbb{K}_0, \cdot), f = det$:

$$f(a * b) \equiv \det(a \cdot b) = \det a \cdot \det b \equiv f(a) \star f(b).$$

12. Ялро и образ гомоморфизма

Пусть (G,*) и (H,*) — две группы, $f:G\to H$ — гомоморфизм.

Ядро $\ker f$ гомоморфизма f — это множество элементов группы G, образом которых является нейтральный элемент в H:

$$\ker f = \Big\{ g \in G \ \Big| \ f(g) = e_H \Big\}.$$

Образ $\operatorname{im} f$ гомоморфизма f — это множество элементов группы H, имеющих прообраз в группе G:

$$\operatorname{im} f = \Big\{ h \in H \mid \exists g \in G : h = f(g) \Big\}.$$

$$\ker f \in G$$
, $\operatorname{im} f \in H$.

Доказательство.

1. Проверим, что ker $f \in G$. Имеем:

$$g_1 \in \ker f \iff f(g_1) = e_H,$$

 $g_2 \in \ker f \iff f(g_2) = e_H;$

поэтому

$$f(g_1 * g_2) = f(g_1) \star f(g_2) = e_H \quad \iff \quad g_1 * g_2 \in \ker f.$$

2. Проверим, что im $f \in H$. Имеем:

$$h_1 \in \operatorname{im} f \iff \exists g_1 \in G : h_1 = f(g_1),$$

 $h_2 \in \operatorname{im} f \iff \exists g_2 \in G : h_2 = f(g_2).$

Получаем

$$h_1 \star h_2 = f(g_1) \star f(g_2) = f(g_1 * g_2) \in H$$
,

что и требовалось.

13. Примеры

Найдем ядро и образ каждого из рассмотренных выше гомоморфизмов.

- 1. $(G,*)=(\mathbb{R},+), \ (H,\star)=(\mathbb{R}_+,\cdot), \ f=\exp$. Здесь $e_G=0,\ e_H=1$. Условие $f(g)=e_H$ принимает вид $e^g=1$. Поскольку единственным решением уравнения $e^g=1$ является число 0, имеем $\ker f=0=e_G$. Поскольку множество значений функции $g\mapsto e^g$ есть \mathbb{R}_+ , имеем $\operatorname{im} f=\mathbb{R}_+=H$.
- $(G,*)=(\mathbb{C}_0,\cdot), (H,\star)=(\mathbb{R}_0,\cdot), f=|\cdot|$. Здесь $e_G=1, e_H=1$. Числа, удовлетворяющие условию $f(g)=e_H$, т.е. условию |z|=1, имеют вид $e^{i\alpha}, \ \alpha\in[0,2\pi)$, поэтому $\ker f=U(1)$. Очевидно, $\operatorname{im} f=\mathbb{R}_0=H$.
- 3. $(G,*)=GL(n;\mathbb{K}), \ (H,*)=(\mathbb{K}_0,\cdot), \ f=\det$. Здесь $e_G=\mathbf{I}, \ e_H=1$ ($\mathbf{I}-$ единичная матрица порядка n). Условие $f(g)=e_H$ записывается в виде $\det g=1$, т.е. $\ker f=SL(n,\mathbb{K})$. Очевидно, $\operatorname{im} f=\mathbb{K}_0=H$.

14. Изоморфизм групп

Пусть (G,*) и (H,\star) — две группы. Гомоморфизм $f:G\to H$ называется изоморфизмом, если он взаимно однозначен.

Если существует изоморфизм группы (G,*) на группу (H,*), то эти группы называются изоморфными; обозначение $(G,*)\simeq (H,*)$ или $G\simeq H$.

Вопрос. Какие из приведенных гомоморфизмов являются изоморфизмами?

Задача. Доказать, что $U(1) \simeq SO(2)$, построив изоморфизм в явном виде.

Изоморфные группы обладают одинаковыми алгебраическими свойствами.

Отметим, что отношение изоморфности групп обладает следующими свойствами:

- (1) $G \simeq G$;
- (2) $G \simeq H \Rightarrow H \simeq G$;
- (3) если $G \simeq H$ и $H \simeq K$, то $G \simeq K$.

Задача. Докажите самостоятельно.

Теорема. Гомоморфизм групп $f: G \to H$ является изоморфизмом тогда и только тогда, когда $\ker f = e_G$ и $\operatorname{im} f = H$.

Доказательство.

1. Пусть $f:G\to H$ — изоморфизм. Тогда e_H имеет единственный прообраз в G и

$$f^{-1}(e_H) = e_G = \ker f.$$

Кроме того, любой элемент $h \in H$ имеет прообраз, т.е. im f = H.

2. Пусть $\ker f = e_G$ и $\operatorname{im} f = H$. Докажем, что гомоморфизм f взаимно однозначен. Ясно, что у любого $h \in H$ имеется прообраз в G.

Остается доказать, что

$$\forall g_1, g_2 \in G, \ g_1 \neq g_2 : \ f(g_1) \neq f(g_2).$$

Допустим противное, т.е.

$$\exists q_1, q_2 \in G, \ q_1 \neq q_2 : \ f(q_1) = f(q_2).$$

Имеем:

$$f(g_1 * g_2^{-1}) = f(g_1) \star f(g_2^{-1}) = f(g_1) \star f(g_2)^{-1} = f(g_2) \star f(g_2)^{-1} = e_H,$$

т.е. $g_1*g_2^{-1} \in \ker f$. Поскольку $\ker f = e_G$, получаем $g_1*g_2^{-1} = e_G$, т.е. $g_2 = g_1$, противоречие.

Задача. Проиллюстрируйте теорему на примере изоморфизма $U(1) \simeq SO(2)$.

15. Линейное пространство

Линейное пространство (**ЛП**) $V(\mathbb{K})$ над числовым полем \mathbb{K} — это абелева группа V, снабженная операцией умножения элементов группы на числа из поля \mathbb{K} такой, что выполняются следующие требования:

- (1) $\forall \mathbf{x} \in V : 1 \cdot \mathbf{x} = \mathbf{x};$
- (2) $\forall \alpha \in \mathbb{K}, \ \forall \mathbf{x}, \mathbf{y} \in V : \ \alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y};$
- (3) $\forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{x} \in V : (\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x};$
- (4) $\forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{x} \in V : (\alpha \cdot \beta)\mathbf{x} = \alpha \cdot (\beta \mathbf{x}).$

Нейтральный элемент этой абелевой группы называется нулевым вектором и обозначается $\mathbf{0}$.

16. Второе определение ЛП

Линейное пространство (**ЛП**) $V(\mathbb{K})$ над числовым полем \mathbb{K} — это множество V элементов \mathbf{x}, bfy, \dots произвольной природы (векторов), в котором введены две операции:

(А) сложение векторов

$$+: V \times V \to V, \quad (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

(В) умножение вектора на число

$$\bullet : \mathbb{K} \times V \to V, \quad (\alpha, \mathbf{x}) \mapsto \alpha \mathbf{x}$$

так, что выполнены следующие аксиомы:

- (1) $\forall \mathbf{x}, \mathbf{y} \in V : \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (коммутативность сложения):
- (2) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V : \mathbf{x} + (\mathbf{y} + \mathbf{z}) = \mathbf{x} + (\mathbf{y} + \mathbf{z})$ (ассоциативность сложения);
- (3) $\exists \mathbf{0} \in V \ \forall \mathbf{x} \in V \colon \mathbf{x} + \mathbf{0} = \mathbf{x}$ (существование нулевого вектора);
- (4) $\forall \mathbf{x} \in V \exists \mathbf{x}' \in V : \mathbf{x} + \mathbf{x}' = \mathbf{0}$ (существование противоположного вектора);
- (5) $\forall \mathbf{x} \in V : 1 \cdot \mathbf{x} = \mathbf{x};$
- (6) $\forall \alpha \in \mathbb{K}, \forall \mathbf{x}, \mathbf{v} \in V : \alpha(\mathbf{x} + \mathbf{v}) = \alpha \mathbf{x} + \alpha \mathbf{v};$
- (7) $\forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{x} \in V : (\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x};$
- (8) $\forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{x} \in V : (\alpha \cdot \beta)\mathbf{x} = \alpha \cdot (\beta \mathbf{x}).$

Задача. Доказать эквивалентность двух определений ЛП.

- 1. $\mathbb{Q}(\mathbb{Q})$, $\mathbb{R}(\mathbb{Q})$, $\mathbb{C}(\mathbb{Q})$; $\mathbb{R}(\mathbb{R})$, $\mathbb{C}(\mathbb{R})$; $\mathbb{C}(\mathbb{C})$.
- $2.\ \mathbb{Q}(\mathbb{R})$ не **ЛП**. Объясните причину и приведите еще несколько аналогичных примеров.
- 3. Множества «геометрических векторов» на прямой V_1 , на плоскости V_2 , в пространстве $V_3 \mathbf{J} \mathbf{\Pi}$ на \mathbb{R} .
- 4. \mathbb{Q}^n , \mathbb{R}^n , \mathbb{C}^n можно рассматривать как **ЛП** над различными **ЧП** (ср. пример 1). Приведите несколько примеров.
- 5. $\mathbb{K}^{m \times n}$ можно рассматривать как **ЛП** над различными **ЧП** (ср. пример 1). Приведите несколько примеров.
- 6. Множества C(X), $C^p(X)$, состоящие из всех непрерывных (p раз непрерывно дифференцируемых) на открытом множестве $X \subset \mathbb{R}^n$ функций, можно рассматривать как **ЛП** над **ЧП** \mathbb{Q} или \mathbb{R} . Операции:

$$\forall f, g \in C(X), \ \forall x \in X :$$
$$(f+g)(x) = f(x) + g(x);$$
$$\forall f \in C(X), \ \forall \alpha \in \mathbb{K}, \ \forall x \in X :$$
$$(\alpha \cdot f)(x) = \alpha \cdot f(x).$$

7. Множество $\operatorname{Pol}(n,\mathbb{K})$ всех полиномов степени не выше n с коэффициентами из \mathbb{K} , т.е. функций вида

$$x(t) = a_0 + a_1 t^1 + \dots + a_n t^n,$$

где $a_k \in \mathbb{K}, k = 0, \ldots, n$.

Вопрос. Является ли **ЛП** множество всех полиномов степени n? Ответ обоснуйте.

8. Множество ${
m Trig}(n,\mathbb{K})$ всех тригонометрических полиномов порядка не выше n с коэффициентами из \mathbb{K} , т.е. функций вида

$$x(t) = a_0 + \sum_{k=1}^{n} (a_k \cos kt + b_k \sin kt),$$

где $a_0, a_k, b_k \in \mathbb{K}, k = 1, ..., n$.

Вопрос. Является ли **ЛП** множество всех тригонометрических полиномов порядка n? Ответ обоснуйте.

9. Патологический пример. $V = \mathbb{R}, \ \mathbb{K} = \mathbb{R}, \$ операции заданы формулами:

$$\mathbf{x} \oplus \mathbf{y} \stackrel{\text{def}}{=} \mathbf{x} \cdot \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in V = \mathbb{R};$$
 $\alpha \odot \mathbf{x} \stackrel{\text{def}}{=} \mathbf{x}^{\alpha}, \quad \mathbf{x} \in V = \mathbb{R}, \quad \alpha \in \mathbb{K} = \mathbb{R}.$

Проверьте выполнение всех аксиом.

18. Пример **ЛП**: Сопряженное пространство

Пусть $V(\mathbb{K})$ — **ЛП**. Линейным функционалом (**ЛФ**) на **ЛП** V называется любая функция $\boldsymbol{\xi}:V \to \mathbb{K}$, обладающая следующими свойствами:

- (1) $\forall \mathbf{x}, \mathbf{y} \in V : \boldsymbol{\xi}(\mathbf{x} + \mathbf{y}) = \boldsymbol{\xi}(\mathbf{x}) + \boldsymbol{\xi}(\mathbf{y});$
- (2) $\forall \mathbf{x} \in V, \forall \alpha \in \mathbb{K}: \boldsymbol{\xi}(\alpha \mathbf{x}) = \alpha \cdot \boldsymbol{\xi}(\mathbf{x}).$

Иными словами, $\mathbf{J}\Phi$ — это гомоморфизм абелевой группы (V,+) в абелеву группу $(\mathbb{K},+)$, сохраняющий операцию умножения на числа из \mathbb{K} .

Множество всех **ЛФ** на **ЛП** V обозначается V^* и называется пространством, сопряженным к V.

Введем операции сложения $\mathbf{J}\mathbf{\Phi}$ и умножения $\mathbf{J}\mathbf{\Phi}$ на число:

$$\forall \boldsymbol{\xi}, \boldsymbol{\eta} \in V^* : (\boldsymbol{\xi} + \boldsymbol{\eta})(\mathbf{x}) = \boldsymbol{\xi}(\mathbf{x}) + \boldsymbol{\eta}(\mathbf{x}) \ \forall \mathbf{x} \in V;$$
$$\forall \boldsymbol{\xi} \in V^*, \ \forall \alpha \in \mathbb{K} : (\alpha \boldsymbol{\xi})(\mathbf{x}) = \alpha \cdot \boldsymbol{\xi}(\mathbf{x}) \ \forall \mathbf{x} \in V.$$

Нулевым вектором сопряженного пространства V^* является $\mathbf{J}\mathbf{\Phi}$ $\boldsymbol{\theta}$ такой, что $\boldsymbol{\theta}(\mathbf{x})=0$ $\forall \mathbf{x}\in V.$

Теорема. Если $V - \mathbf{JII}$ над \mathbf{YII} \mathbb{K} , то V^* также является \mathbf{JII} над \mathbb{K} .

Задача. Докажите теорему самостоятельно.

Задача. $V=\operatorname{Pol}(n,\mathbb{R})$. Для любого $\mathbf{x}=x(t)\in V$ положим

$$\boldsymbol{\xi}(\mathbf{x}) = \int_0^1 x(t)dt.$$

Докажите, что $\boldsymbol{\xi} - \boldsymbol{\varLambda} \boldsymbol{\Phi}$.

19. Простейшие свойства **ЛП**

Теорема. Пусть $V(\mathbb{K})$ — произвольное **ЛП**.

- (1) Нулевой элемент 0 единствен.
- (2) $\forall \mathbf{x} \in V$ противоположный элемент \mathbf{x}' единствен.
- (3) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V : \mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z} \Rightarrow \mathbf{x} = \mathbf{y}.$
- (4) $\forall \mathbf{x} \in V : 0 \cdot \mathbf{x} = \mathbf{0}$.
- (5) $\forall \mathbf{x} \in V$ противоположный элемент \mathbf{x}' равен $-1 \cdot \mathbf{x} \equiv -\mathbf{x}$.

Доказательство. 1, 2, 3 следуют из аналогичной теоремы для групп.

4.
$$0 \cdot \mathbf{x} + \mathbf{x} = 0 \cdot \mathbf{x} + 1 \cdot \mathbf{x} = (0+1)\mathbf{x} = 1 \cdot \mathbf{x} = \mathbf{x} = \mathbf{0} + \mathbf{x} \Rightarrow 0 \cdot \mathbf{x} = \mathbf{0}$$
.

5. Положим $\mathbf{v} = (-1) \cdot \mathbf{x}$. Тогда

$$x + y = 1 \cdot x + (-1) \cdot x = (1 + (-1))x = 0 \cdot x = 0$$

П

 \Rightarrow у — противоположный для \mathbf{x} .

20. Линейная комбинация

Пусть $V(\mathbb{K}) - \mathbf{JII}$, $\mathbf{x}_1, \dots, \mathbf{x}_p \in V$.

$$\alpha^1 \mathbf{x}_1 + \dots + \alpha^p \mathbf{x}_p \equiv \sum_{k=1}^p \alpha^k \mathbf{x}_k.$$

 ${\bf JK}$ векторов ${\bf x}_1,\dots,{\bf x}_p\in V$ называется *тривиальной*, если все коэффициенты этой ${\bf JK}$ равны нулю, и *нетривиальной*, если хотя бы один из коэффициентов отличен от нуля.

Очевидно, тривиальная **ЛК** всегда равна нулевому вектору.

21. Линейная зависимость и независимость

Векторы $\mathbf{x}_1, \dots, \mathbf{x}_p \in V$ называются *линейно зависимыми* (**ЛЗ**), если существует их нетривиальная ЛК, равная нулевому вектору.

Пример: Рассмотрим **ЛП** $\mathbb{R}^2(\mathbb{R})$.

Элементы $\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ и $\mathbf{x}_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ **ЛЗ**, так как существует нетривиальная **ЛК** этих векторов, равная $\mathbf{0}$:

$$-2 \cdot \mathbf{x}_1 + 1 \cdot \mathbf{x}_2 = -2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \mathbf{0}.$$

Векторы $\mathbf{x}_1, \dots, \mathbf{x}_p \in V$ называются *линейно независимыми* (**ЛН**), если из равенства их **ЛК** нулевому вектору следует, что эта **ЛК** тривиальна.

Пример: Рассмотрим **ЛП** $\mathbb{R}^2(\mathbb{R})$.

Векторы
$$\mathbf{y}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\mathbf{y}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ **ЛН**. Действительно,

$$\alpha^1 \mathbf{y}_1 + \alpha^2 \mathbf{y}_2 = \alpha^1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix}.$$

22. Гомоморфизм и изоморфизм **ЛП**

Пусть (V,\mathbb{K}) (операции $+,\cdot$) и (W,\mathbb{K}) (операции \oplus,\odot) — два **ЛП** над одним и тем же **ЧЛ** \mathbb{K} .

Отображение $f:V\to W$ называется гомоморфизмом, если

$$f(x+y) = f(x) \oplus f(y) \quad \forall x, y \in V,$$

$$f(\alpha \cdot x) = \alpha \odot f(x) \quad \forall x \in V, \quad \alpha \in \mathbb{K}.$$

Множество всех гомоморфизмов **ЛП** V, W обозначается Hom(V, W).

Теорема. Пусть $f: V \to W -$ гомоморфизм.

- (1) $f(\mathbf{0}_V) = \mathbf{0}_W$;
- (2) $\forall \mathbf{x} \in V : f(-x) = -f(x)$.

Задача. Докажите теорему самостоятельно.

Изоморфизм **ЛП** V и W — это взаимно однозначный гомоморфизм. **ЛП** V и W называются uзоморфнымu, если существует изоморфизм $f:V\to W$; в этом случае пишут $V\simeq W$.

Теорема. Пусть $V \simeq W$, $f: V \to W - изоморфизм$.

- (1) $\forall \mathbf{x} \in V, \ \mathbf{x} \neq \mathbf{0}_V : f(\mathbf{x}) \neq \mathbf{0}_W.$
- (2) Если ${\bf x}_1, \dots, {\bf x}_p \in V {\bf J}{\bf H}$ векторы, то векторы $f({\bf x}_1), \dots, f({\bf x}_n) \in W$ также ${\bf J}{\bf H}$.
- (3) Если $\mathbf{x}_1, \dots, \mathbf{x}_p \in V \mathbf{J}\mathbf{3}$ векторы, причем нетривиальная $\mathbf{J}\mathbf{K}$ этих векторов, равная $\mathbf{0}_V$, имеет коэффициенты $\alpha^1, \dots, \alpha^p$, то векторы $f(\mathbf{x}_1), \dots, f(\mathbf{x}_p) \in W$ также $\mathbf{J}\mathbf{3}$, причем нетривиальная $\mathbf{J}\mathbf{K}$ этих векторов, равная $\mathbf{0}_W$, имеет те же коэффициенты $\alpha^1, \dots, \alpha^p$.

Доказательство. 1. Пусть $\mathbf{x} \in V$, $\mathbf{x} \neq \mathbf{0}_V$. Предположим, что $f(\mathbf{x}) = \mathbf{0}_W$. Имеем:

$$f(\mathbf{x}) = \mathbf{0}_W = 0 \cdot \mathbf{y} = 0 \cdot f(\mathbf{z}) = f(0 \cdot \mathbf{z}) = f(\mathbf{0}_V).$$

Таким образом, в силу взаимной однозначности отображения f, получаем $\mathbf{x} = \mathbf{0}_V$; противоречие.

2. Пусть $\mathbf{x}_1, \dots, \mathbf{x}_p \in V - \mathbf{J}\mathbf{H}$ векторы. Предположим, что векторы $f(\mathbf{x}_1), \dots, f(\mathbf{x}_p) \in W$ **JJ3**, т.е. $\exists \beta^1, \dots, \beta^p \in \mathbb{K}$, не все равные 0, такие, что

$$\beta^1 f(\mathbf{x}_1) + \dots + \beta^p f(\mathbf{x}_p) = \mathbf{0}_W.$$

Имеем

$$\beta^1 f(\mathbf{x}_1) + \dots + \beta^p f(\mathbf{x}_p) = \mathbf{0}_W = f(\beta^1 \mathbf{x}_1 + \dots + \beta^p \mathbf{x}_p)$$

откуда

$$\beta^1 \mathbf{x}_1 + \dots + \beta^p \mathbf{x}_p = \mathbf{0}_V,$$

т.е. векторы $\mathbf{x}_1, \dots, \mathbf{x}_n$ **ЛЗ**; противоречие.

3. Докажите самостоятельно.

Отметим, что отношение изоморфности $\mathbf{J}\mathbf{\Pi}$ обладает следующими свойствами:

- (1) $V \simeq V$;
- (2) $V \simeq W \Rightarrow W \simeq V$;
- (3) если $V \simeq W$ и $W \simeq U$, то $V \simeq U$.

Задача. Докажите самостоятельно.

10

23. Линейная оболочка

Пусть $V(\mathbb{K}) - \mathbf{J}\mathbf{\Pi}, \ \mathbf{x}_1, \dots, \mathbf{x}_p \in V.$

Линейная оболочка (**ЛО**) векторов $\mathbf{x}_1, \dots, \mathbf{x}_p \in V$ — это множество всех **ЛК** этих векторов, т.е. множество

$$L(\mathbf{x}_1, \dots, \mathbf{x}_p) = \Big\{ \sum_{k=1}^p \alpha^k \mathbf{x}_k \mid \alpha^k \in \mathbb{K}, \ k = 1, \dots, p \Big\}.$$

Теорема.

- (1) Если среди векторов $\mathbf{x}_1, \dots, \mathbf{x}_p$ имеется нулевой вектор, то эти векторы **ЛЗ**.
- (2) Если система векторов $x_1, ..., x_q, x_{q+1}, ..., x_p$ содержит **ЛЗ** подсистему $x_1, ..., x_q$, то вся система **ЛЗ**.
- (3) Если векторы $\mathbf{x}_1, \ldots, \mathbf{x}_p$ **ЛЗ**, то среди них имеется вектор, являющийся **ЛК** остальных векторов.
- (4) $Ecnu \mathbf{x} \in L(\mathbf{x}_1, \dots, \mathbf{x}_p)$, mo

$$L(\mathbf{x}, \mathbf{x}_1, \dots, \mathbf{x}_p) = L(\mathbf{x}_1, \dots, \mathbf{x}_p).$$

(5) $Ecnu \mathbf{y}_1, \ldots, \mathbf{y}_k \in L(\mathbf{x}_1, \ldots, \mathbf{x}_n)$, mo

$$L(\mathbf{y}_1,\ldots,\mathbf{y}_k)\subset L(\mathbf{x}_1,\ldots,\mathbf{x}_p).$$

Доказательство.

1. Пусть $\mathbf{x}_1 = \mathbf{0}$; тогда

$$1 \cdot \mathbf{x}_1 + 0 \cdot \mathbf{x}_2 + \cdots + 0 \cdot \mathbf{x}_n$$

нетривиальная **ЛК**, равная нулевому вектору.

2. Если векторы $\mathbf{x}_1, \dots \mathbf{x}_q$ **ЛЗ**, то это означает, что $\exists \alpha^1, \dots, \alpha^q$, не все равные 0 и такие, что

$$\sum_{k=1}^{q} \alpha^k \mathbf{x}_k = \mathbf{0}.$$

Тогда, очевидно, ЛК

$$\sum_{k=1}^{q} \alpha^k \mathbf{x}_k + \sum_{k=q+1}^{p} 0 \cdot \mathbf{x}_k$$

нетривиальна и равна 0.

3. Так как векторы $\mathbf{x}_1, \dots \mathbf{x}_n$ **ЛЗ**, то $\exists \alpha^1, \dots, \alpha^p$, не все равные 0, такие, что

$$\alpha^1 \mathbf{x}_1 + \cdots + \alpha^p \mathbf{x}_n = \mathbf{0}.$$

Предположим, что $\alpha^p \neq 0$. Тогда

$$\mathbf{x}_p = -\frac{\alpha^1}{\alpha^p} \mathbf{x}_1 - \dots - \frac{\alpha^{p-1}}{\alpha^p} \mathbf{x}_{p-1},$$

что и требовалось.

4. Обозначим

$$L_1 = L(\mathbf{x}_1, \dots, \mathbf{x}_p), \quad L_2 = L(\mathbf{x}, \mathbf{x}_1, \dots, \mathbf{x}_p).$$

Требуется доказать, что $L_1 = L_2$, т.е. что

$$L_1 \subseteq L_2$$
 и $L_2 \subseteq L_1$.

Первое вложение очевидно:

$$\mathbf{y} \in L_1 \Rightarrow \mathbf{y} = \alpha^1 \mathbf{x}_1 + \dots + \alpha^p \mathbf{x}_p =$$

= $0 \cdot \mathbf{x} + \sum_{k=1}^p \alpha^k \mathbf{x}_k \Rightarrow \mathbf{y} \in L_2.$

$$\mathbf{x} \in L_1 \implies \mathbf{x} = \beta^1 \mathbf{x}_1 + \dots + \beta^p \mathbf{x}_p,$$

$$\mathbf{y} \in L_2 \implies \mathbf{y} = \alpha \mathbf{x} + \alpha^1 \mathbf{x}_1 + \dots + \alpha^p \mathbf{x}_p =$$

$$= \alpha(\beta^1 \mathbf{x}_1 + \dots + \beta^p \mathbf{x}_p) + \alpha^1 \mathbf{x}_1 + \dots + \alpha^p \mathbf{x}_p =$$

$$= (\alpha\beta^1 + \alpha^1) \mathbf{x}_1 + \dots + (\alpha\beta^p + \alpha^p) \mathbf{x}_p$$

$$\implies \mathbf{y} \in L_1.$$

5. Докажите самостоятельно.

24. Размерность и базис ЛП

Размерность **ЛП** $V(\mathbb{K})$ — это целое неотрицательное число n, обладающее следующими свойствами:

- (1) в $V \exists n \mathbf{JH}$ векторов;
- (2) любые n+1 векторов **ЛЗ**.

Обозначение: $n = \dim V$; пространство V называется n-мерным.

Если в **ЛП** V имеется как угодно много **ЛН** векторов, то V называется бесконечномерным, $\dim V = \infty$.

Базис **ЛП** $V(\mathbb{K})$ — это упорядоченный набор векторов $\mathbf{e}_1, \dots, \mathbf{e}_n$, обладающий следующими свойствами:

- (1) векторы $e_1, ..., e_n$ **ЛН**;
- (2) $\forall \mathbf{x} \in V \exists x^1, \dots, x^n \in \mathbb{K}$ такие, что

$$\mathbf{x} = x^1 \mathbf{e}_1 + \dots + x^n \mathbf{e}_n = \sum_{k=1}^n x^k \mathbf{e}_k.$$
(1)

Числа x^1, \ldots, x^n называются координатами (компонентами) вектора $\mathbf x$ относительно базиса $\mathbf e_1, \ldots, \mathbf e_n$, а формула (1) — разложением вектора $\mathbf x$ по базису $\mathbf e_1, \ldots, \mathbf e_n$.

Правило суммирования Эйнштейна: Если в некотором одночлене индекс появляется ровно два раза, один раз вверху и один раз внизу, то считается, что по этому индексу производится суммирование; пределы изменения индекса либо указываются, либо ясны из контекста. Пример: запись $x^k \mathbf{e}_k$ ($k=1,\ldots,n$) эквивалентна сумме (1).

Поскольку

$$\sum_{k=1}^{p} x^k \mathbf{e}_k = \sum_{l=1}^{p} x^l \mathbf{e}_l,$$

имеем

$$x^k \mathbf{e}_k \equiv x^l \mathbf{e}_l, \quad k = 1, \dots, p; \quad l = 1, \dots, p.$$

Суммирование с символом Кронекера.

Символ Кронекера — это обозначение элементов единичной матрицы:

$$\delta_k^j = \begin{cases} 1, & \text{если } j = k, \\ 0, & \text{если } j \neq k. \end{cases}$$

Часто встречаются суммы вида $a_j \delta_k^j, \ b^k \delta_k^j$ и т. п. В развернутом виде первая из этих сумм имеет вид

$$a_1\delta_k^1 + a_2\delta_k^2 + \dots + a_k\delta_k^k + \dots + a_n\delta_k^n$$
.

Из n слагаемых в этой сумме отлично от нуля лишь одно, а именно k-е, поэтому вся сумма равна a_k . Таким образом,

$$a_i \delta_k^j = a_k$$
.

Теорема. Разложение по базису единственно, т.е. $\forall \mathbf{x} \in V$ его координаты x^1, \dots, x^n определены однозначно.

12

Доказательство. Предположим, что вектор ${\bf x}$ можно разложить по базису ${\bf e}_1,\dots,{\bf e}_n$ двумя способами:

$$\mathbf{x} = x^1 \mathbf{e}_1 + \dots + x^n \mathbf{e}_n = y^1 \mathbf{e}_1 + \dots + y^n \mathbf{e}_n.$$

Вычитая из первого разложения второе, получим

$$(x^{1} - y^{1})\mathbf{e}_{1} + \dots + (x^{1} - y^{1})\mathbf{e}_{1} = \mathbf{0}.$$

Так как базисные векторы **ЛН**, заключаем, что в последнем разложении все коэффициенты равны нулю, т.е. $x^k = y^k, \ k = 1, \dots, n$.

Условимся записывать координаты x^1, \dots, x^n вектора $\mathbf x$ относительно базиса $\mathbf e_1, \dots, \mathbf e_n$ в виде столбца:

$$X_e = egin{pmatrix} x^1 \ dots \ x^n \end{pmatrix} \; \leftrightarrow \; \mathbf{x}$$
 в базисе $\mathbf{e}_1, \dots, \mathbf{e}_n.$

Теорема. Пусть в базисе $\mathbf{e}_1, \dots, \mathbf{e}_n$ **ЛП** $V(\mathbb{K})$ имеем

$$\mathbf{x} \leftrightarrow \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}, \quad \mathbf{y} \leftrightarrow \begin{pmatrix} y^1 \\ \vdots \\ y^n \end{pmatrix}.$$

Тогда

$$\mathbf{x} + \mathbf{y} \leftrightarrow \begin{pmatrix} x^1 + y^1 \\ \vdots \\ x^n + y^n \end{pmatrix}, \quad \alpha \mathbf{x} \leftrightarrow \begin{pmatrix} \alpha x^1 \\ \vdots \\ \alpha x^n \end{pmatrix} \quad \forall \alpha \in \mathbb{K}.$$

Теорема. Пусть $V(\mathbb{K}) - \mathbf{J}\mathbf{\Pi}$ над $\mathbf{H}\mathbf{\Pi}$ \mathbb{K} , $\mathbf{e}_1, \dots, \mathbf{e}_n$ — базис в V. Отображение $f: V \to \mathbb{K}^n$, сопоставляющее каждому вектору $\mathbf{x} \in V$ столбец его координат, является изоморфизмом $\mathbf{J}\mathbf{\Pi}$ V и \mathbb{K}^n , $V \simeq \mathbb{K}^n$.

Теорема. Все ЛП одной размерности над одним и тем же ЧП изоморфны.

Задача. Докажите эти теоремы самостоятельно.

Задача. Докажите, что если $\mathbf{e}_1,\dots,\mathbf{e}_n$ — базис в **ЛП** V, то $V=L(\mathbf{e}_1,\dots,\mathbf{e}_n)$. Обратное утверждение неверно: если $V=L(\mathbf{x}_1,\dots,\mathbf{x}_p)$, то нельзя утверждать, что векторы $\mathbf{x}_1,\dots,\mathbf{x}_p$ образуют базис в V. Объясните почему.

Теорема. ЛП $V(\mathbb{K})$ является n-мерным тогда и только тогда, когда оно имеет базис, состоящий из n векторов.

Доказательство. 1. Пусть $\dim V = n$. Тогда $\exists \mathbf{x}_1, \dots, \mathbf{x}_n - \mathbf{J}\mathbf{H}$, но $\forall \mathbf{x} \in V$ векторы $\mathbf{x}, \mathbf{x}_1, \dots, \mathbf{x}_n - \mathbf{J}\mathbf{J}$, т.е. $\exists \alpha, \alpha^1, \dots, \alpha^n$, не все равные нулю, такие, что

$$\alpha \mathbf{x} + \alpha^1 \mathbf{x}_1 + \dots + \alpha^n \mathbf{x}_n = \mathbf{0}.$$

Ясно, что $\alpha \neq 0$; в противном случае получили бы

$$\alpha^1 \mathbf{x}_1 + \cdots + \alpha^n \mathbf{x}_n = \mathbf{0}.$$

что возможно лишь при $\alpha^1=\cdots=\alpha^n=0$ (при этом $\alpha=0$), противоречие. Таким образом,

$$\mathbf{x} = -\frac{\alpha^1}{\alpha} \mathbf{x}_1 - \dots - \frac{\alpha^n}{\alpha} \mathbf{x}_n,$$

т.е. упорядоченный набор $\mathbf{x}_1, \dots, \mathbf{x}_n$ является базисом в V.

2. Пусть $\mathbf{e}_1, \dots, \mathbf{e}_n$ — базис в V. Докажем, что любые n+1 векторов $\mathbf{x}_1, \dots, \mathbf{x}_{n+1}$ в V **JI3**. Разложим каждый из этих векторов по базису:

$$\mathbf{x}_1 = x_1^1 \mathbf{e}_1 + x_1^2 \mathbf{e}_2 + \dots + x_1^n \mathbf{e}_n,$$

...

 $\mathbf{x}_{n+1} = x_{n+1}^1 \mathbf{e}_1 + x_{n+1}^2 \mathbf{e}_2 + \dots + x_{n+1}^n \mathbf{e}_n$

Составим матрицу, столбцами которой являются столбцы координат этих векторов:

$$X = \begin{pmatrix} x_1^1 & x_2^1 & \dots & x_{n+1}^1 \\ x_1^2 & x_2^2 & \dots & x_{n+1}^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & \dots & x_{n+1}^n \end{pmatrix}.$$

Это матрица размера $n \times (n+1)$ (*n* строк, n+1 столбцов), поэтому ее ранг

$$\operatorname{rk} X \leq n$$
.

Отсюда следует, что столбцы матрицы (их количество n+1) **ЛЗ**; следовательно, векторы $\mathbf{x}_1, \dots, \mathbf{x}_{n+1}$ также **ЛЗ**.

25. Примеры

1. $\dim \mathbb{K}(\mathbb{K}) = 1$; базис состоит из одного элемента, в качестве которого можно взять любое ненулевое число из К. Число 1 образует так называемый стандартный базис.

2. dim $\mathbb{R}(\mathbb{Q}) = \infty$.

Задача. Объясните почему.

3. $\dim \mathbb{C}(\mathbb{R}) = 2$; базис состоит из двух элементов, в качестве которых можно взять два любых ненулевых комплексных числа, сумма которых не равна нулю. Стандартный базис образуют числа 1. i.

Задача. Докажите.

4. $\dim \mathbb{K}^n(\mathbb{K}) = n$. Стандартный базис образуют столбцы

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

5. $\dim \mathbb{C}^n(\mathbb{R}) = 2n$. Стандартный базис состоит из столбцов

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix},$$

$$\mathbf{e}_{n+1} = \begin{pmatrix} i \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_{n+2} = \begin{pmatrix} 0 \\ i \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbf{e}_{2n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ i \end{pmatrix}.$$

6. dim $\mathbb{K}^{m \times n}(\mathbb{K}) = mn$. Стандартный базис состоит из mn матриц

$$\mathbf{e}_{ij} = \begin{pmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix}, \quad i = 1, \dots, m, \\ j = 1, \dots, n,$$

где единица стоит на пересечении i-й строки и j-го столбца.

7. dim $Pol(n, \mathbb{K}) = n + 1$. Стандартный базис состоит из многочленов

$$\mathbf{e}_0 = 1, \quad \mathbf{e}_1 = t, \quad \mathbf{e}_2 = t^2, \quad \dots, \quad \mathbf{e}_n = t^n.$$

8. $\dim \operatorname{Trig}(n,\mathbb{K}) = 2n+1$. Стандартный базис состоит из тригонометрических многочленов

$$\mathbf{e}_0 = 1,$$
 $\mathbf{e}_1 = \cos t,$ $\dots,$ $\mathbf{e}_n = \cos nt,$ $\mathbf{e}_{-1} = \sin t,$ $\dots,$ $\mathbf{e}_{-n} = \sin nt.$

14

26. Матрица гомоморфизма

Рассмотрим гомоморфизм $f: V \to W$, где $\dim V = m$, $\dim W = n$. Выберем какие-либо базисы в этих **ЛП**: $\mathbf{e}_1, \dots, \mathbf{e}_m$ — базис в $V, \mathbf{f}_1, \dots, \mathbf{f}_n$ — базис в V. Найдем образы векторов $\mathbf{e}_1, \dots, \mathbf{e}_m$:

$$f(\mathbf{e}_1), \ldots, f(\mathbf{e}_m).$$

Эти векторы лежат в W и, следовательно, их можно разложить по базису $\mathbf{f}_1, \dots, \mathbf{f}_n$:

$$f(\mathbf{e}_1) = a_1^1 \mathbf{f}_1 + \dots + a_1^n \mathbf{f}_n,$$

$$\dots, \qquad f(\mathbf{e}_k) = a_k^l \mathbf{f}_l,$$

$$f(\mathbf{e}_m) = a_m^1 \mathbf{f}_1 + \dots + a_m^n \mathbf{f}_n.$$

где k = 1, ..., m, l = 1, ..., n.

Матрица

$$A = \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_m^1 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}$$

называется матрицей гомоморфизма f в паре базисов $\mathbf{e}_1, \dots, \mathbf{e}_m$ и $\mathbf{f}_1, \dots, \mathbf{f}_n$. Найдем теперь образ у произвольного вектора $\mathbf{x} \in V$, $\mathbf{y} = f(\mathbf{x})$. Пусть

$$\mathbf{x} = x^k \mathbf{e}_k, \quad X = \begin{pmatrix} x^1 \\ \vdots \\ x^m \end{pmatrix}.$$

Тогда

$$f(\mathbf{x}) = f(x^k \mathbf{e}_k) = x^k f(\mathbf{e}_k) = x^k a_k^l \mathbf{f}_l.$$

Таким образом, координаты вектора у равны

$$y^l = x^k a_k^l, \qquad k = 1, \dots, m,$$
$$l = 1, \dots, n.$$

В матричной форме:

$$Y = AX$$
.

27. РАНГ ПРОИЗВЕДЕНИЯ МАТРИЦ

Рассмотрим произведение двух матриц C = AB, где $A \in \mathbb{K}^{n \times m}$, $B \in \mathbb{K}^{m \times p}$, $C \in \mathbb{K}^{n \times p}$. Поскольку столбцы матрицы C суть линейные комбинации столбцов матрицы A, получаем

$$L(C_1, \dots, C_p) \subset L(A_1, \dots, A_m) \Rightarrow \dim L(C_1, \dots, C_p) \leq \dim L(A_1, \dots, A_m).$$

Таким образом,

$$\operatorname{rk}(AB) \leq \operatorname{rk} A$$
.

Задача. Докажите самостоятельно неравенство

$$rk(AB) < rk B$$
.

$$\boldsymbol{\varepsilon}^k(\mathbf{e}_j) = \delta_j^k$$
.

Тогда $\forall \mathbf{x} = x^j \mathbf{e}_i \in V$ имеем:

$$\varepsilon^k(\mathbf{x}) = \varepsilon^k(x^j \mathbf{e}_j) = x^j \varepsilon^k(\mathbf{e}_j) = x^j \delta^k_j = x^k.$$

Теорема. dim $V^* = n$. Базис в V^* образуют $\mathbf{J}\boldsymbol{\Phi} \ \varepsilon^1, \dots, \varepsilon^n$.

Доказательство.

1. Проверим, что **ЛФ** $\varepsilon^1, \ldots, \varepsilon^n$ **ЛН**. Пусть

$$\alpha_k \boldsymbol{\varepsilon}^k = \boldsymbol{\theta},$$

где $\boldsymbol{\theta} - \mathbf{J}\mathbf{\Phi}$ такой, что $\boldsymbol{\theta}(\mathbf{x}) = 0 \ \forall \mathbf{x} \in V$. Тогда

$$0 = \boldsymbol{\theta}(\mathbf{e}_i) = (\alpha_k \boldsymbol{\varepsilon}^k)(\mathbf{e}_i) = \alpha_k \cdot \boldsymbol{\varepsilon}^k(\mathbf{e}_i) = \alpha_k \delta_i^k = \alpha_i,$$

T.e. $\alpha_i = 0$.

2. Йроверим, что любой **ЛФ** можно представить в виде **ЛК** функционалов $\varepsilon^1,\dots,\varepsilon^n$. Если $\boldsymbol{\xi}\in V^*$ и $\mathbf{x}=x^k\mathbf{e}_k\in V$, то

$$\boldsymbol{\xi}(\mathbf{x}) = \boldsymbol{\xi}(x^k \mathbf{e}_k) = x^k \boldsymbol{\xi}(\mathbf{e}_k) = \boldsymbol{\varepsilon}^k(\mathbf{x}) \boldsymbol{\xi}_k,$$

где введено обозначение

$$\xi_k = \boldsymbol{\xi}(\mathbf{e}_k).$$

Таким образом,

$$\boldsymbol{\xi} = \xi_k \boldsymbol{\varepsilon}^k = \xi_k \boldsymbol{\varepsilon}^k, \quad k = 1, \dots, n.$$

Базис $\varepsilon^1, \dots, \varepsilon^n$ в сопряженном **ЛП** V^* называется сопряженным по отношению к базису $\mathbf{e}_1, \dots, \mathbf{e}_n$ в исходном **ЛП** V. Числа ξ_k называются координатами **ЛФ** $\boldsymbol{\xi}$ относительно сопряженного базиса $\varepsilon^1, \dots, \varepsilon^n$.

29. Линейное подпространство

Пусть $V(\mathbb{K})$ — **ЛП**. Подмножество $P \subset V$ называется линейным подпространством (**ЛПП**) пространства V, если выполнены следующие условия:

- (1) $\forall \mathbf{x}, \mathbf{v} \in P : \mathbf{x} + \mathbf{v} \in P ;$
- (2) $\forall \mathbf{x} \in P, \forall \alpha \in \mathbb{K}: \alpha \mathbf{x} \in P$.

В любом **ЛП** V имеются *тривиальные* **ЛПП**: $\{0\}$ и V.

Обозначения:

- $P \subset V \iff P$ является подмножеством V;
- $P \in V \iff P$ является нетривиальным **ЛПП** V.

Теорема. Пусть $V-\mathbf{JII}$ над $\mathbf{YII} \ \mathbb{K} \ u \ P \Subset V$. Тогда P тоже является \mathbf{JII} над $\mathbf{YII} \ \mathbb{K}$.

Задача. Докажите теорему самостоятельно.

Примеры ЛПП

- 1. $V_1 \subseteq V_2 \subseteq V_3$.
- 2. $\mathbb{R}(\mathbb{R}) \in \mathbb{C}(\mathbb{R}); \mathbb{R}^n(\mathbb{R}) \in \mathbb{C}^n(\mathbb{R}).$

Задача. Найдите размерность и базис этих ЛПП.

3. Подмножество в $\mathbb{K}^n(\mathbb{K})$, состоящее из столбцов, сумма элементов которых равна нулю, является **ЛПП** в $\mathbb{K}^n(\mathbb{K})$.

Задача. Найдите размерность и базис этого ЛПП.

4. В $\mathbf{J}\mathbf{\Pi} \ \mathbb{K}^{n \times n}(\mathbb{K})$ квадратных матриц порядка n линейными подпространствами являются следующие подмножества.

(1) Подмножество симметричных матриц

$$S\mathbb{K}^{n\times n} = \left\{ A \in \mathbb{K}^{n\times n} \mid A^T = A \right\}$$

(символ T означает транспонирование).

(2) Подмножество кососимметричных матриц

$$A\mathbb{K}^{n\times n} = \Big\{ A \in \mathbb{K}^{n\times n} \ \Big| \ A^T = -A \Big\}.$$

(3) Подмножество, состоящее из матриц с нулевым следом:

$$P = \left\{ A \in \mathbb{K}^{n \times n} \mid \operatorname{tr} A = 0 \right\}.$$

Задача. Найдите размерность и базис каждого из указанных ЛПП.

Залача. Докажите, что $P \subseteq A\mathbb{K}^{n \times n}$.

5. В **ЛП** $\operatorname{Pol}(n, \mathbb{K})$ подпространствами являются множества

$$S\operatorname{Pol}(n,\mathbb{K}) = \left\{ x(t) \in \operatorname{Pol}(n,\mathbb{K}) \mid x(-t) = x(t) \right\},$$
$$A\operatorname{Pol}(n,\mathbb{K}) = \left\{ x(t) \in \operatorname{Pol}(n,\mathbb{K}) \mid x(-t) = -x(t) \right\},$$

состоящие из четных и нечетных многочленов.

Задача. Найдите размерность и базис каждого из указанных ЛПП.

30. Пополнение базиса

Теорема. Пусть

$$P \subseteq V$$
, $\dim P = p < \dim V = n$,

 $\mathbf{e}_1,\ldots,\mathbf{e}_p$ — базис в P. Тогда $\exists \mathbf{e}_{p+1},\ldots,\mathbf{e}_n \in V \setminus P$ такие, что

$$\mathbf{e}_1, \ldots, \mathbf{e}_p, \mathbf{e}_{p+1}, \ldots, \mathbf{e}_n$$

- базис в V.

 \mathcal{A} оказательство. Так как p < n, то $\exists \mathbf{e}_{p+1} \in V$ такой, что векторы $\mathbf{e}_1, \dots, \mathbf{e}_p, \mathbf{e}_{p+1}$ **ЛН**; при этом $\mathbf{e}_{n+1} \notin P$, так как в противном случае получили бы $\dim P > p$.

Если p+1=n, пополнение базиса завершено. Если p+1< n, продолжаем процесс. \square

31. Пересечение и сумма **ЛПП**

Теорема. Если $P \subseteq V$, $Q \subseteq V$, то $P \cap Q \subseteq V$.

Доказательство. Проверим выполнение требований определения:

$$\mathbf{x}, \mathbf{y} \in P \cap Q \iff \begin{cases} \mathbf{x}, \mathbf{y} \in P \\ \mathbf{x}, \mathbf{y} \in Q \end{cases}$$
$$\iff \begin{cases} \mathbf{x} + \mathbf{y} \in P \\ \mathbf{x} + \mathbf{y} \in Q \end{cases} \iff \mathbf{x} + \mathbf{y} \in P \cap Q.$$

П

Второе условие проверяется аналогично.

Замечание. Если $P \Subset V$, $Q \Subset V$, то $P \cup Q$ не является, вообще говоря, **ЛПП**.

Задача. Приведите соответствующий пример.

Суммой P+Q **ЛПП** $P,Q \subseteq V$ называется **ЛО** всевозможных векторов вида $\mathbf{x}+\mathbf{y}$, где $\mathbf{x} \in P$, $\mathbf{v} \in Q$, т.е.

$$P + Q = \left\{ \alpha \mathbf{x} + \beta \mathbf{y} \mid \alpha, \beta \in \mathbb{K}, \ \mathbf{x} \in P, \ \mathbf{y} \in Q \right\}.$$

Таким образом, $\forall \mathbf{z} \in P + Q$: $\exists \mathbf{x} \in P$, $\exists \mathbf{v} \in Q$ такие, что $\mathbf{z} = \mathbf{x} + \mathbf{v}$.

Теорема. Если $P \subseteq V$, $Q \subseteq V$, то $P + Q \subseteq V$.

Задача. Докажите теорему.

$$\mathbf{z} = \mathbf{x}' + \mathbf{y}' = \mathbf{x}'' + \mathbf{y}''.$$

Теорема. Пусть $V - \mathbf{JIII}$, $P \subseteq V$, $Q \subseteq V$. Тогда

$$\dim(P+Q) = \dim P + \dim Q - \dim(P \cap Q). \tag{2}$$

Доказательство.

Пусть $\mathbf{e}_1, \dots, \mathbf{e}_r$ — базис в $P \cap Q$, $\dim(P \cap Q) = r$;

 $\mathbf{f}_1, \dots, \mathbf{f}_p$ — его дополнение до базиса в P, $\dim P = r + p$;

 $\mathbf{g}_1, \dots, \mathbf{g}_q$ — его дополнение до базиса в Q, $\dim Q = r + q$.

Тогда все эти векторы образуют базис в P+Q (объясните почему), и

$$\dim(P+Q) = r + p + q = (p+r) + (q+r) - r =$$
$$= \dim P + \dim Q - \dim(P \cap Q).$$

32. Прямая сумма **ЛПП**

Пусть $V(\mathbb{K}) - \mathbf{J}\mathbf{\Pi}$, $P \in V$, $Q \in V$. Тогда для любого вектора $\mathbf{z} \in P + Q$ существуют такие $\mathbf{x} \in P$, $\mathbf{y} \in Q$, что $\mathbf{z} = \mathbf{x} + \mathbf{y}$. Такое разложение, вообще говоря, не единственно. Если же оно единственно, то сумма **ЛПП** называется *прямой суммой*; $P \oplus Q$.

Теорема. Симма **ЛПП** Р и Q является прямой суммой тогда и только тогда, когда $P \cap Q = \{0\}.$

Доказательство.

1. Пусть $P \cap Q = \{0\}$. Тогда базис в $P \cap Q$ пуст, и его дополнения до базисов в P и Qсуть

$$\mathbf{f}_1, \dots, \mathbf{f}_p, \qquad \mathbf{g}_1, \dots, \mathbf{g}_q,$$

где $p=\dim P,\,q=\dim Q.$ Базис в P+Q состоит из всех этих векторов, поэтому $\forall \mathbf{z}\in P+Q$ имеем

$$\mathbf{x} = \underbrace{x^1 \mathbf{f}_1 + \dots + x^p \mathbf{f}_p}_{=\mathbf{x}} + \underbrace{y^1 \mathbf{g}_1 + \dots + y^q \mathbf{g}_q}_{=\mathbf{y}}.$$

Это разложение единственно (единственность разложения по базису) $\Rightarrow P + Q = P \oplus Q$.

2. Пусть $P + Q = P \oplus Q$. Докажем, что $P \cap Q = \{0\}$.

Предположим противное, т.е. допустим, что $\exists \mathbf{v} \in P \cap Q, \mathbf{v} \neq \mathbf{0}$. Тогда $\mathbf{v} \in P, \mathbf{v} \in Q$ и $\forall \mathbf{z} \in P \oplus Q$ имеем

$$\mathbf{z} = \mathbf{x} + \mathbf{y} = \underbrace{\mathbf{x} + \mathbf{v}}_{\in P} + \underbrace{\mathbf{y} - \mathbf{v}}_{\in Q},$$

т.е. разложение вида z = x + y не единственно; противоречие.

Задача. Докажите, что

$$\mathbb{K}^{n\times n} = S\mathbb{K}^{n\times n} \oplus A\mathbb{K}^{n\times n}.$$

Задача. Докажите, что

$$Pol(n) = S Pol(n) \oplus A Pol(n).$$

33. Ядро и образ гомоморфизма

Пусть $V(\mathbb{K})$ и $W(\mathbb{K})$ — два **ЛП** над **ЧП** \mathbb{K} , $f:V\to W$ — гомоморфизм.

Ядро $\ker f$ гомоморфизма f — это множество векторов из V

$$\ker f = \left\{ \mathbf{x} \in V \mid f(x) = \mathbf{0}_W \right\}.$$

Образ $\operatorname{im} f$ гомоморфизма f — это множество векторов из W

$$\operatorname{im} f = \{ \mathbf{y} \in W \mid \exists \mathbf{x} \in V : \mathbf{y} = f(\mathbf{x}) \}.$$

Теорема. Писть $f: V \to W - гомоморфизм$ **ЛП**.

$$\ker f \subseteq V$$
, $\operatorname{im} f \subseteq W$.

Доказательство. 1. Проверим, что $\ker f \in V$. Имеем:

$$\mathbf{x} \in \ker f \iff f(\mathbf{x}) = \mathbf{0}_W,$$

$$\mathbf{y} \in \ker f \iff f(\mathbf{y}) = \mathbf{0}_W;$$

поэтому

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}) = \mathbf{0}_W \iff \mathbf{x} + \mathbf{y} \in \ker f.$$

Завершите доказательство самостоятельно

Теорема. Пусть $f: V \to W -$ гомоморфизм **ЛП**.

$$\dim \ker f + \dim \operatorname{im} f = \dim V. \tag{3}$$

П

Доказательство. Пусть $\dim V = n$, $\dim \ker f = p$, $\mathbf{e}_1, \dots, \mathbf{e}_n$ — базис в $\ker f$, $\mathbf{e}_{n+1}, \dots, \mathbf{e}_n$ его дополнение до базиса в V.

Имеем $f(\mathbf{e}_1) = \cdots = f(\mathbf{e}_n) = \mathbf{0}_W$.

Докажем, что векторы $\mathbf{f}_{p+1} = f(\mathbf{e}_{p+1}), \ldots, \mathbf{f}_n = f(\mathbf{e}_n)$ образуют базис в im f.

Предположим, что эти векторы **JI3**, т.е. $\exists \alpha^{p+1}, \dots, \alpha^n \in \mathbb{K}$, не все равные нулю, такие, что

$$\alpha^{p+1}\mathbf{f}_{p+1} + \dots + \alpha^n\mathbf{f}_n = \mathbf{0}_W.$$

В таком случае

$$\mathbf{0}_{W} = \alpha^{p+1} \mathbf{f}_{p+1} + \dots + \alpha^{n} \mathbf{f}_{n} =$$

$$= \alpha^{p+1} f(\mathbf{e}_{p+1}) + \dots + \alpha^{n} f(\mathbf{e}_{n}) =$$

$$= f(\alpha^{p+1} \mathbf{e}_{p+1} + \dots + \alpha^{n} \mathbf{e}_{n}),$$

откуда следует, что

$$\alpha^{p+1}\mathbf{e}_{p+1} + \dots + \alpha^n\mathbf{e}_n = \mathbf{0}_V,$$

П

Далее, $\forall \mathbf{y} \in \operatorname{im} f \ \exists \mathbf{x} \in V$ такой, что $\mathbf{y} = f(\mathbf{x})$. Имеем:

$$\mathbf{x} = x^1 \mathbf{e}_1 + \dots + x^p \mathbf{e}_p + x^{p+1} \mathbf{e}_{p+1} + \dots + x^n \mathbf{e}_n,$$

$$\mathbf{y} = f(\mathbf{x}) = \underbrace{x^1 f(\mathbf{e}_1) + \dots + x^p f(\mathbf{e}_p)}_{=\mathbf{0}_W} + x^{p+1} f(\mathbf{e}_{p+1}) + \dots + x^n f(\mathbf{e}_n) =$$

$$= x^{p+1} \mathbf{f}_{p+1} + \dots + x^n \mathbf{f}_n,$$

т.е. любой вектор $\mathbf{y} \in W$ может быть разложен в **ЛК** векторов $\mathbf{f}_{p+1}, \dots, \mathbf{f}_n$. Таким образом, векторы $\mathbf{f}_{p+1}, \dots, \mathbf{f}_n$ образуют базис в $\inf f$ и, следовательно, $\dim \inf f = n - p$. Итак.

 $\dim V = n = p + (n - p) = \dim \ker f + \dim \operatorname{im} f.$

34. Матрицы и отображения

Рассмотрим **ЛП** $V=\mathbb{K}^m$ и $W=\mathbb{K}^n$. Элементы этих **ЛП** — столбцы с элементами из \mathbb{K} . Пусть $A\in\mathbb{K}^{n\times m}$; тогда любому столбцу $X\in\mathbb{K}^m$ можно поставить в соответствие столбец $Y\in\mathbb{K}^n$ по правилу

$$Y = AX$$
.

Задача. Докажите, что отображение $\mathbf{A}:\mathbb{K}^m \to \mathbb{K}^n$, заданное этой формулой, является гомоморфизмом $\mathbf{J}\mathbf{\Pi}$.

Задача. Докажите, что $\operatorname{Hom}(\mathbb{K}^m,\mathbb{K}^n)=\mathbb{K}^{n\times m}$.

Найдем образ im **A** гомоморфизма **A**:

im
$$\mathbf{A} = \{ Y \in \mathbb{K}^n \mid \exists X \in \mathbb{K}^m : Y = AX \}.$$

Столбец AX представляет собой линейную комбинацию столбцов матрицы A; поэтому

$$\operatorname{im} \mathbf{A} = L(A_1, \dots, A_m) \in \mathbb{K}^n,$$

т.е. образ гомоморфизма ${\bf A}$ представляет собой линейную оболочку столбцов матрицы A.

Базис в $\operatorname{im} \mathbf{A}$ образуют базисные столбцы матрицы A. Поэтому

$$\dim \operatorname{im} \mathbf{A} = \operatorname{rk} A$$
.

Проблема. Как найти базисные столбцы матрицы?

Задача вычисления образа Y столбца X при гомоморфизме ${\bf A}$ решается легко с помощью формулы

$$Y = AX$$

Поставим обратную задачу: найти прообраз X элемента Y. Для этого нужно найти решение X уравнения

$$AX = Y$$
.

т.е. системы неоднородных линейных уравнений.

Проблема. Как решить систему неоднородных линейных уравнений?

Найдем ядро $\ker \mathbf{A}$ гомоморфизма \mathbf{A} . Оно состоит из всех столбцов $X \in \mathbb{K}^m$ таких, что

$$AX = \mathbf{0}_n$$

где $\mathbf{0}_n \in \mathbb{K}^n$ — нулевой столбец. Таким образом, вычисление ядра гомоморфизма \mathbf{A} сводится к решению системы однородных линейных уравнений.

Таким образом, множество $M = \ker \mathbf{A}$ решений системы однородных линейных уравнений представляет собой **ЛПП** в \mathbb{K}^m , размерность которого равна

$$\dim M = \dim \ker \mathbf{A} = \dim \mathbb{K}^m - \dim \operatorname{im} \mathbf{A} = m - \operatorname{rk} A.$$

20

Базис в $\ker \mathbf{A}$ называется фундаментальной совокупностью решений ($\mathbf{\Phi}\mathbf{CP}$) системы однородных линейных уравнений.

Проблема. Как решить систему однородных линейных уравнений? Как найти ФСР?

Рассмотрим отображение $\mathbf{B}:\mathbb{K}^n \to \mathbb{K}^n$, соответствующее квадратной невырожденной матрице $B \in \mathbb{K}^{n \times n}$:

$$Y = BX, \quad X \in \mathbb{K}^n, \quad Y \in \mathbb{K}^n.$$

Задача. Докажите, что отображение В является изоморфизмом.

Пусть $A \in \mathbb{K}^{n \times m}$. Рассмотрим матрицу $C = BA \in \mathbb{K}^{n \times m}$. k-й столбец матрицы C представляет собой произведение матрицы B на k-й столбец матрицы A. Поэтому получаем следующее утверждение.

Теорема. Пусть $A \in \mathbb{K}^{n \times m}$, $B \in GL(n, \mathbb{K})$.

- (1) Если столбиы матрииы А **ЛН**, то столбиы матрииы ВА также **ЛН**.
- (2) Если столбцы матрицы А **ЛЗ**, то столбцы матрицы ВА также **ЛЗ**, причем с теми же коэффициентами.

Таким образом, умножение матрицы A слева на невырожденную матрицу B не нарушает линейных зависимостей между столбиами.

Задача. Сформулируйте и докажите аналогичное утверждение для строк матрицы.

Теорема. Пусть $B \in \mathbb{K}^{n \times n}$ — невырожденная матрица. Тогда $\forall A \in \mathbb{K}^{n \times m}$

$$\operatorname{rk} BA = \operatorname{rk} A$$
.

Доказательство. Обозначим C = BA; так как $\det B \neq 0$, имеем $A = B^{-1}C$. Далее,

$$\begin{aligned} \operatorname{rk} C &= \operatorname{rk} BA \leq \operatorname{rk} A, \\ \operatorname{rk} A &= \operatorname{rk} B^{-1} A \leq \operatorname{rk} C \end{aligned} \Rightarrow \operatorname{rk} C = \operatorname{rk} A.$$

35. Упрощенная форма матрицы.

Говорят, что матрица $A \in \mathbb{K}^{n \times m}$ имеет *упрощенную форму*,

(1) некоторые r ($r \geq 0$) ее столбцов являются первыми r столбцами единичной матрицы \mathbf{I}_n ,

П

(2) при r < n последние n - r строк нулевые.

Ранг упрощенной матрицы равен r, а ее базисными столбцами являются r столбцов, совпадающие по виду со столбцами единичной матрицы.

Любая матрица может быть приведена к упрощенной форме при помощи элементарных преобразований строк.

36. Элементарные преобразования строк матрицы

Элементарные преобразования строк матрицы ($\mathbf{Э\Pi C}$) — это следующие преобразования:

- (1) перестановка двух строк;
- (2) умножение строки на ненулевое число;
- (3) добавление к строке другой строки.

Обозначим символом R(A) матрицу, полученную из $A \in \mathbb{K}^{n \times m}$ ЭПС, и символом I единичную матрицу $n \times n$.

Теорема.

$$R(A) = R(\mathbf{I}) \cdot A.$$

Доказательство. Проверим утверждение для простейших **ЭПС**. Пусть R_1 — перестановка первой и второй строк, т.е.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_m^1 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}, \quad R_1(A) = \begin{pmatrix} a_1^2 & a_2^2 & \dots & a_m^2 \\ a_1^1 & a_2^1 & \dots & a_m^1 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}.$$

Далее,

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad R_1(\mathbf{I}) = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Получаем:

$$R_{1}(\mathbf{I}) \cdot A = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1}^{1} & a_{2}^{1} & \dots & a_{m}^{1} \\ a_{1}^{2} & a_{2}^{2} & \dots & a_{m}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{n} & a_{2}^{n} & \dots & a_{m}^{n} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{1}^{2} & a_{2}^{2} & \dots & a_{m}^{2} \\ a_{1}^{1} & a_{2}^{1} & \dots & a_{m}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{n} & a_{2}^{n} & \dots & a_{m}^{n} \end{pmatrix} = R_{1}(A).$$

Пусть R_2 — умножение первой строки на $\alpha \neq 0$. Имеем:

$$A = \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_m^1 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}, \quad R_2(A) = \begin{pmatrix} \alpha a_1^1 & \alpha a_2^1 & \dots & \alpha a_m^1 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}.$$

Далее,

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad R_2(\mathbf{I}) = \begin{pmatrix} \alpha & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Получаем:

$$R_{2}(\mathbf{I}) \cdot A = \begin{pmatrix} \alpha & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1}^{1} & a_{2}^{1} & \dots & a_{m}^{1} \\ a_{1}^{2} & a_{2}^{2} & \dots & a_{m}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{n} & a_{2}^{n} & \dots & a_{m}^{n} \end{pmatrix} =$$

$$= \begin{pmatrix} \alpha a_{1}^{1} & \alpha a_{2}^{1} & \dots & \alpha a_{m}^{1} \\ a_{1}^{2} & a_{2}^{2} & \dots & a_{m}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{n} & a_{2}^{n} & \dots & a_{n}^{n} \end{pmatrix} = R_{2}(A).$$

Пусть R_3 — прибавление к первой строке матрицы A ее второй строки:

$$A = \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_m^1 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}, \quad R_3(A) = \begin{pmatrix} a_1^1 + a_1^2 & a_2^1 + a_2^2 & \dots & a_m^1 + a_m^2 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{pmatrix}.$$

Далее,

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad R_3(\mathbf{I}) = \begin{pmatrix} 1 & 1 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Получаем:

$$R_{2}(\mathbf{I}) \cdot A = \begin{pmatrix} 1 & 1 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1}^{1} & a_{2}^{1} & \dots & a_{m}^{1} \\ a_{1}^{2} & a_{2}^{2} & \dots & a_{m}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{n} & a_{2}^{n} & \dots & a_{m}^{n} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{1}^{1} + a_{1}^{2} & a_{2}^{1} + a_{2}^{2} & \dots & a_{m}^{1} + a_{m}^{2} \\ a_{1}^{2} & a_{2}^{2} & \dots & a_{m}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{n} & a_{2}^{n} & \dots & a_{m}^{n} \end{pmatrix} = R_{3}(A).$$

Теорема доказана.

Задача. Докажите, что матрицы $R_1(\mathbf{I})$, $R_2(\mathbf{I})$ и $R_3(\mathbf{I})$ невырождены.

Теорема. Пусть в матрице A выполнена серия **ЭПС**. Тогда полученная матрица равна произведению матрицы A слева на (невырожденную!) матрицу, полученную из единичной матрицы с помощью той же серии **ЭПС**.

Доказательство. Докажем утверждение для серии из двух **ЭПС** R_1 и R_2 :

$$R_1(R_2(A)) = R_1(\mathbf{I}) \cdot R_2(A) = R_1(\mathbf{I}) \cdot [R_2(\mathbf{I}) \cdot A] =$$
 (4)

$$[R_1(\mathbf{I}) \cdot R_2(\mathbf{I})] \cdot A = R_1(R_2(\mathbf{I})) \cdot A. \tag{5}$$

Теорема. Элементарные преобразования строк матрицы не изменяют линейные зависимости между ее столбцами. В частности,

$$\operatorname{rk} R(A) = \operatorname{rk} A.$$

37. Пример приведения матрицы к упрощенной форме

Приведем к упрощенному виду матрицу

$$\left(\begin{array}{ccccc} 0 & 1 & 3 & 1 & 2 \\ 2 & 1 & 7 & 0 & 2 \\ 3 & 0 & 6 & 1 & 5 \end{array}\right).$$

Для этого нужно провести серию **ЭПС** так, чтобы некоторые из столбцов этой матрицы превратились в первые несколько столбцов единичной матрицы 3×3 , а остальные линейно выражались бы через них.

Сначала проведем **ЭПС**, которое позволит получить единицу в первом столбце; для этого вычтем из третьей строки вторую:

$$\begin{pmatrix} 0 & 1 & 3 & 1 & 2 \\ 2 & 1 & 7 & 0 & 2 \\ 3 & 0 & 6 & 1 & 5 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 3 & 1 & 2 \\ 2 & 1 & 7 & 0 & 2 \\ 1 & -1 & -1 & 1 & 3 \end{pmatrix}.$$

П

$$\begin{pmatrix} 0 & 1 & 3 & 1 & 2 \\ 2 & 1 & 7 & 0 & 2 \\ 1 & -1 & -1 & 1 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & -1 & 1 & 3 \\ 2 & 1 & 7 & 0 & 2 \\ 0 & 1 & 3 & 1 & 2 \end{pmatrix}.$$

Обнуляем все элементы первого столбца, кроме выделенного элемента; для этого вычитаем из второй строки удвоенную первую:

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 3 \\ 2 & 1 & 7 & 0 & 2 \\ 0 & 1 & 3 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & -1 & 1 & 3 \\ 0 & 3 & 9 & -2 & -4 \\ 0 & 1 & 3 & 1 & 2 \end{pmatrix}.$$

Первый столбец полученной представляет собой первый столбец единичной матрицы 3×3 .

Переходим ко второму столбцу. Ясно, что он не является \mathbf{JK} предыдущих столбцов. Превратим его во второй столбец единичной матрицы 3×3 . Единица уже имеется; переставим ее во вторую строку, для чего поменяем местами вторую строку с третьей:

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 3 \\ 0 & 3 & 9 & -2 & -4 \\ 0 & 1 & 3 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & -1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 3 & 9 & -2 & -4 \end{pmatrix}.$$

Теперь обнуляем все элементы второго столбца, кроме выделенного; для этого к первой строке прибавляем вторую, а из третьей вычитаем утроенную вторую:

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 3 & 9 & -2 & -4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & 2 & 5 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 0 & -5 & -10 \end{pmatrix}.$$

Второй столбец полученной матрицы теперь представляет собой второй столбец единичной матрицы 3×3 .

Переходим к третьему столбцу. Очевидно, он равен ${\bf JK}$ первого и второго столбцов с коэффициентами 2 и 3. Превратить его в третий столбец единичной матрицы не удастся.

Разделим третью строку на -5:

$$\begin{pmatrix} 1 & 0 & 2 & 2 & 5 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 0 & -5 & -10 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & 2 & 5 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}.$$

Переходим к четвертому столбцу. Единица на нужном месте уже имеется. Уничтожим все элементы четвертого столбца, кроме этой единицы; для этого из первой строки вычитаем удвоенную третью, а из второй — третью:

$$\begin{pmatrix} 1 & 0 & 2 & 2 & 5 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}.$$

Теперь ясно, что пятый столбец полученной матрицы есть линейная комбинация первого, второго и четвертого с коэффициентами $1,\ 0,\ 2.$ Приведение матрицы к упрощенной форме завершено.

В полученной матрице базисными столбцами являются A_1 , A_2 и A_4 , а остальные столбшы линейно выражаются через базисные:

$$A_3 = 2A_1 + 3A_2$$
, $A_5 = A_1 + 2A_4$.

Проверим, что эти же линейные зависимости имеют место в исходной матрице

$$\left(\begin{array}{ccccc} 0 & 1 & 3 & 1 & 2 \\ 2 & 1 & 7 & 0 & 2 \\ 3 & 0 & 6 & 1 & 5 \end{array}\right).$$

Имеем:

$$2A_1 + 3A_2 = 2 \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \\ 6 \end{pmatrix} = A_3,$$
$$A_1 + 2A_4 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} = A_5.$$

38. Вычисление обратной матрицы

Пусть $A \in GL(n,\mathbb{K})$. Вычислим A^{-1} с помощью следующего приема. Рассмотрим блочную матрицу

$$\tilde{A} = [A \mid \mathbf{I}]$$

и с помощью **ЭПС** превратим ее левый блок в единичную матрицу. Это эквивалентно умножению матрицы \tilde{A} слева на невырожденную матрицу B такую, что $BA=\mathbf{I}$, т.е. $B=A^{-1}$. Но при этом правый блок также умножится слева на $B=A^{-1}$ и станет равным $A^{-1}\mathbf{I}=A^{-1}$.

Пример.

Вычислить обратную матрицу для

$$A = \left(\begin{array}{rrr} 2 & -1 & -3 \\ 0 & -1 & -2 \\ -1 & -1 & -1 \end{array}\right).$$

Построим блочную матрицу $[A \mid \mathbf{I}]$ и проведем цепочку **ЭПС**:

$$\begin{pmatrix} 2 & -1 & -3 & 1 & 0 & 0 \\ 0 & -1 & -2 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -2 & -4 & 1 & 0 & 1 \\ 0 & -1 & -2 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 2 & 0 & -1 & 0 & 0 \\ 0 & 3 & 5 & -1 & 0 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 2 & 0 & -1 & 0 & -1 & 3 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & 0 & -1 & -1 & 3 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & 0 & -1 & -1 & 3 & -2 \end{pmatrix}.$$

Обратная матрица равна

$$A^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 5 & -4 \\ 1 & -3 & 2 \end{pmatrix}.$$

Задача. Объясните, что происходит в ситуации, когда левый блок матрицы $[A \mid \mathbf{I}]$ не удается превратить в единичную матрицу с помощью **ЭПС**.

39. Решение однородной системы

Решить систему уравнений

$$\begin{cases} x^2 + 3x^3 + x^4 + 2x^5 = 0, \\ 2x^1 + x^2 + 7x^3 + 2x^5 = 0, \\ 3x^1 + 6x^3 + x^4 + 5x^5 = 0. \end{cases}$$

Запишем матрицу системы

$$\left(\begin{array}{ccccc}
0 & 1 & 3 & 1 & 2 \\
2 & 1 & 7 & 0 & 2 \\
3 & 0 & 6 & 1 & 5
\end{array}\right)$$

и приведем ее к упрощенному виду (см. выше):

$$\left(\begin{array}{ccccc} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{array}\right).$$

Имеем $m=\dim V=5$ (размерность пространства прообразов), $r=\dim \mathbf{A}=3$, поэтому размерность пространства решений равна $\dim \ker \mathbf{A}=5-3=2$.

Переменные, соответствующие базисным столбцам матрицы, называются базисными, остальные переменные — свободными. В нашем примере базисными переменными являются x^1 , x^2 и x^4 , а свободными — x^3 и x^5 . Теперь систему можно переписать в виде

$$\begin{cases} x^1 = -2x^3 - x^5 \\ x^2 = -3x^3, \\ x^4 = -2x^5. \end{cases}$$

Положим $x^3 = 1$ и $x^5 = 0$, а затем $x^3 = 0$ и $x^5 = 1$; получим два столбца

$$X_1 = \begin{pmatrix} -2 \\ -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ -2 \\ 1 \end{pmatrix}.$$

Они $\mathbf{J}\mathbf{H}$ и образуют базис в $\ker \mathbf{A}$, т.е. являются $\mathbf{\Phi}\mathbf{CP}$ исходной однородной системы.

Любое другое решение системы (т.е. вектор из $\ker \mathbf{A}$) имеет вид

$$X = c^1 X_1 + c^2 X_2$$

где c^1 , c^2 — произвольные числа.

Матрица $\Phi = [X_1 \ X_2]$ называется фундаментальной матрицей ($\mathbf{\Phi}\mathbf{M}$) системы однородных уравнений. С ее помощью общее решение системы записывается в виде

$$X = \Phi C, \quad C = \begin{pmatrix} c^1 \\ c^2 \end{pmatrix}.$$

 $oldsymbol{\Phi} oldsymbol{M}$ задает изоморфизм $oldsymbol{\Phi} : \mathbb{K}^{m-r}
ightarrow \ker \mathbf{A}.$

40. Решение неоднородной системы

Решить систему уравнений

$$\begin{cases} x^2 + 3x^3 + x^4 = 2, \\ 2x^1 + x^2 + 7x^3 = 2, \\ 3x^1 + 6x^3 + x^4 = 5. \end{cases}$$

Запишем расширенную матрицу системы

$$\left(\begin{array}{ccc|ccc}
0 & 1 & 3 & 1 & 2 \\
2 & 1 & 7 & 0 & 2 \\
3 & 0 & 6 & 1 & 5
\end{array}\right)$$

и приведем ее к упрощенному виду (см. выше):

$$\left(\begin{array}{ccc|ccc} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{array}\right).$$

Имеем $m=\dim V=4$ (размерность пространства прообразов), $r=\dim \mathbf{A}=3$. Столбец свободных членов Y лежит в \mathbf{JO} столбцов основной матрицы, $Y\in \operatorname{im}\mathbf{A}$, поэтому система совместна (ранг основной матрицы равен рангу расширенной; теорема Кронекера—Капелли).

Систему можно переписать в виде

$$\begin{cases} x^1 = -2x^3 + 1, \\ x^2 = -3x^3, \\ x^4 = 2. \end{cases}$$

Общее решение неоднородной системы представляет собой сумму любого ее частного решения и общего решения соответствующей однородной системы. Частное решение X_0 находим, полагая $x^3=0$:

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix}.$$

ФСР однородной системы состоит из $\dim V - \dim \operatorname{im} \mathbf{A} = 4 - 3 = 1$ столбца, находится из усеченных уравнений

$$\begin{cases} x^1 = -2x^3, \\ x^2 = -3x^3, \\ x^4 = 0 \end{cases}$$

если положить $x^3 = 1$, и имеет вид

$$X_1 = \begin{pmatrix} -2 \\ -3 \\ 1 \\ 0 \end{pmatrix}.$$

Общее решение системы имеет вид

$$X = X_0 + c^1 X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} + c^1 \begin{pmatrix} -2 \\ -3 \\ 1 \\ 0 \end{pmatrix},$$

где c^1 — произвольное число.

41. Составление однородной системы по заданной ФСР

Найти однородную систему уравнений, имеющую ФСР

$$X_1 = \begin{pmatrix} -2 \\ -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ -2 \\ 1 \end{pmatrix}.$$

Произвольное решение X искомой системы является линейной комбинацией двух данных решений, поэтому столбцы матрицы

$$\begin{pmatrix}
-2 & -1 & x^{1} \\
-3 & 0 & x^{2} \\
1 & 0 & x^{3} \\
0 & -2 & x^{4} \\
0 & 1 & x^{5}
\end{pmatrix}$$

должны быть $\mathbf{J}\mathbf{3}$, т.е. ее ранг должен равняться 2. Приведем эту матрицу к упрощенному виду:

$$\begin{pmatrix} -2 & -1 & x^{1} \\ -3 & 0 & x^{2} \\ 1 & 0 & x^{3} \\ 0 & -2 & x^{4} \\ 0 & 1 & x^{5} \end{pmatrix}, \begin{pmatrix} 0 & -1 & x^{1} + 2x^{3} \\ 0 & 0 & x^{2} + 3x^{3} \\ 1 & 0 & x^{3} \\ 0 & -2 & x^{4} \\ 0 & 1 & x^{5} \end{pmatrix}, \begin{pmatrix} 1 & 0 & x^{3} \\ 0 & 0 & x^{2} + 3x^{3} \\ 0 & -1 & x^{1} + 2x^{3} \\ 0 & -2 & x^{4} \\ 0 & 0 & x^{2} + 3x^{3} \end{pmatrix}, \begin{pmatrix} 1 & 0 & x^{3} \\ 0 & -1 & x^{1} + 2x^{3} \\ 0 & 1 & x^{5} \\ 0 & -1 & x^{1} + 2x^{3} \\ 0 & -2 & x^{4} \\ 0 & 0 & x^{2} + 3x^{3} \end{pmatrix}, \begin{pmatrix} 1 & 0 & x^{3} \\ 0 & 1 & x^{5} \\ 0 & 0 & x^{1} + 2x^{3} + x^{5} \\ 0 & 0 & x^{2} + 3x^{3} \end{pmatrix}.$$

Чтобы ранг этой матрицы равнялся двум, необходимо и достаточно, чтобы последние три ее строки были нулевыми. Отсюда получаем систему

$$\begin{cases} x^1 + 2x^3 + x^5 = 0, \\ x^4 + 2x^5 = 0, \\ x^2 + 3x^3 = 0. \end{cases} \iff \begin{cases} x^1 + 2x^3 + x^5 = 0, \\ x^2 + 3x^3 = 0, \\ x^4 + 2x^5 = 0. \end{cases}$$

Матрица последней системы имеет вид

$$\left(\begin{array}{ccccc} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{array}\right).$$

42. Типовые залачи

Задача 1. Найти образ гомоморфизма $f: V \to W$.

Pешение. Выбираем в V и W подходящие базисы, записываем матрицу A гомоморфизма в этих базисах, и задача сводится к нахождению базисных столбцов матрицы A.

Задача 2. Найти ядро гомоморфизма $f: V \to W$.

Pешение. Выбираем в V и W подходящие базисы, записываем матрицу A гомоморфизма в этих базисах, и задача сводится к решению однородной системы AX=0.

Задача 3. Найти прообраз вектора у при гомоморфизме $f: V \to W$.

Решение. Выбираем в V и W подходящие базисы, записываем матрицу A гомоморфизма в этих базисах и столбец Y координат вектора \mathbf{y} , и задача сводится к решению неоднородной системы AX=Y.

Задача 4. Найти базис в **ЛО** векторов $\mathbf{x}_1, \dots, \mathbf{x}_p \in V$.

Pешение. Выбираем базис в V и записываем матрицу A, столбцами которой являются столбцы координат данных векторов в этом базисе. Задача сводится к нахождению базисных столбцов матрицы A.

Задача 5. ЛПП $P \subseteq V$ задано как **ЛО** векторов $\mathbf{x}_1, \dots, \mathbf{x}_p \in V$. Описать это **ЛПП** как ядро подходящего гомоморфизма.

Pешение. Выбираем базис в P (см. задачу 4). Задача сводится к нахождению однородной системы, имеющей заданную **ФСР**.