AARHUS TECH SRP

21. december 2017

Monte Carlo Lokalisering

Forfatter
Jacob Emil Ulvedal Rosborg

 $\begin{array}{c} \textit{Vejleder} \\ \textit{Mikkel Stouby Petersen} \\ \textit{Jørn Sanggaard} \end{array}$

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Indhold 2 af 17

Indhold

1.	Indledning	3
	1.1. Opgaveformulering	3
	1.2. Afgrænsning	3
2.	Stokastiske Variable	5
	2.1. Udfaldsrum og delmængder	5
	2.2. Sandsynlighedsfunktion	6
	2.3. Sandsynlighedsfelt	6
	2.4. Stokastiske variabler	7
3.	Monte Carlo Metoden	8
	3.1. Plat eller Krone	8
	3.2. Numerisk integration	9
4.	Monte Carlo Lokalisering	12
	4.1. implementering	13
5.	Diskussion	14
6.	Konklusion og perspektivering	15
Α.	Test	17

1. Indledning 3 af 17

1. Indledning

Nogle problemer er så komplicerede at de næsten er umulige at analysere, modellere og løse algebraisk, f.eks den kaotiske og tilfældige proces der finder sted når man spalter uran-235 (neutron diffusion). Dette problem stod forskerne overfor i 1940 under udviklingen af atombomben i Manhattan projektet. Her blev Monte Carlo Simulering anvendt til at simulere neutroners vandring og dette blev brugt til at vurdere de optimale fysiske forhold for den kæde reaktion der skulle få bomben til at sprænge [3].

Begrebet Monte Carlo Metoden dækker egentlig over en række metoder der kan bruges til at analyse problemer der ikke fremstår løsbare, så som neutron diffusion. For eksempel findes der metoder så som Monte Carlo Simulering, Lokalisering og ud over disse er der yderligere metoder inden for Finans og Medicin. Denne opgave vil fokusere på numerisk integration og lokalisering. Jeg vil yderligere komme ind på Stokastiske Variabler og deres egenskaber, samt anvendelse og implementering af Monte Carlo Lokalisering hvilket er en form for partikelfilter i en autonom robot.

Monte Carlo Metoden blev først rigtigt anvendt da computere blev så udviklede at de kunne udføre disse simuleringer, også kaldet eksperimenter, for os. Da disse simuleringer kræver et forholdsvis stort antal gentagelser, et antal der både ville have krævet arbejdskraft og tid af umådelige proportioner. Alt dette for at opnå et resultat der ikke altid ville være brugbart. Dette resultat vil nemlig altid være en approximering hvorimod en algebraisk tilgang ville udlede værdien og derved være eksakt. Til gengæld er man med metoden i stand til at tackle problemer der så komplekse i sin natur at det ikke er praktisk muligt at udlede disse problemer algebraisk [4]

1.1. Opgaveformulering

- (I) Redegør for, hvad Monte Carlo-algoritmer er, og giv eksempler både praktiske og teoretiske anvendelser. For eksempel i forbindelse med numerisk integration.
- (II) Forklar centrale egenskaber ved stokastiske variable i det omfang det er nødvendigt for at forstå algoritmernes virkemåde.
- (III) Vis, hvordan Monte Carlo-algoritmen kan anvendes til lokalisering af robotter. Kom herunder ind på, hvordan algoritmen kan implementeres.
- (IV) Diskuter Monte Carlo-metodens muligheder og begrænsninger i forbindelse med anvendelse i en konkret autonom robot.

1.2. Afgrænsning

Denne opgave henvender sig til studerende på 3. årgang på en gymnasial uddannelse. For at læse opgaven kræves der ikke en dybdegående forståelse for hverken statistik eller

1. Indledning 4 af 17

algoritmer. Opgaven vil forklare de begreber der er nødvendige for at forstå Monte Carlo Metoden, men kun på et redegørende niveau.

Stokastiske Variable

En væsentlig del af Monte Carlo Metodens teori og praksis bygger på Stokastiske Variabler. For at forstå Stokastiske Variabler kræves der en forståelse for nogle simplere begreber indenfor statistik. Disse begreber er udfaldsrum, delmængde, sandsynlighedsfunktion samt sandsynlighedsfelt. De nævnte begreber er også essentielle inden for statistik generelt.

2.1. Udfaldsrum og delmængder

Der findes to typer af udfaldsrum, henholdsvis et diskret og kontinuert udfaldsrum. Forskellen på disse to er at der i et diskret udfaldsrum kun er et givent antal mulige udfald. Et eksempel på et diskret udfaldsrum kunne være en sekssidet terning. Denne sekssidet terning vil have et udfaldsrum U der indeholder elementerne 1,2,3,4,5,6,7 dette kan skrives som $U=\{1,2,3,4,5,6\}$. Altså vi har tale om et udfaldsrum med længden seks, hvilket skrives |U|=6 eller som n. Hvorimod et kontinuert udfaldsrum kunne være højden på elever i en klasse, udfaldsrummet kunne altså være defineret som U=[150cm;210cm]. Udfaldsrummet er kontinuert da elevers højde kan variere med et infinitesimal, altså elev a kunne være en uendeligt lille mængde højere end elev b. I sådan et udfaldsrum findes der ikke nogen længde af udfaldsrummet, altså $|U| \notin \mathbb{R}$. Derfor kaldes det også et endeligt og et ikke-endeligt udfaldsrum [6].

En delmængde er en mængde af udfaldsrummet, det beskrives ofte med A eller B. Hvis vi tager udgangspunkt i den sekssidet terning igen, kunne en delmængde af dets udfaldsrum være $A = \{1, 3\}$. Altså en delmængde indeholder altså en eller flere elementer fra udfaldsrummet.

Ydermere vil et bestemt element i et udfaldsrum eller delmængde denoteres u_i eller a_i , altså for henholdsvis A og U. Det vil sige hvis vi har en mængde Q vil et bestemt element i Q denoteres som q_i . Desuden findes der en række operatorer der beskriver delmængders relationer til hinanden og udfaldsrummet.

- 1. $A \cup B$: udfaldet ligger i enten A eller B, evt. i både A og B
- 2. $A \cap B$: udfaldet ligger i både A og B
- 3. $A \setminus B$: udfaldet ligger i A og ikke B
- 4. A^c : udfaldet ligger ikke i A (dette kan også denoteres \bar{A})

Betegnelserne er de samme, som vi bruger i mængdelæren, og vi taler derfor om foreningsmængden $A \cup B$, fællesmængden $A \cap B$, mængdedifferensen $A \setminus B$ samt komplementærmængden A^c [6]. Nedenstående figurer også kaldet venn-diagrammer, illustreres overstående mængder og deres operatorer.

2. Stokastiske Variable 6 af 17

2.2. Sandsynlighedsfunktion

Sandsynlighedsfunktion denoteres P og beskriver sandsynligheden for et element i et udfaldsrummet U. For eksempel kunne $P(\{1,2\}) = 0.8$ og P(3) = 0.2 hvor udfaldsrummet $U = \{1,2,3\}$. Dette betyder at sandsynligheden for 1 eller 2 er 80% hvorimod sandsynligheden for 3 er 20%. Desuden kan vi bruge additions loven til at udlede den totale sandsynlighed for udfaldsrummet [6].

$$P(1) + P(2) + P(3) = 1 (2.1)$$

$$P(\{1,2\}) + P(3) = 1 \tag{2.2}$$

Desuden kan $\{1,2\}$ også beskrives som en delmængde af U på formen $A = \{1,2\}$, altså bliver det desuden gældende at P(A) = P(1) + P(2)

2.3. Sandsynlighedsfelt

Et sandsynlighedsfelt findes på to former, det endelige - også kaldet det diskrete sandsynlighedsfelt - samt det kontinuærte sandsynlighedsfelt også kaldet et ikke-endeligt sandsynlighedsfelt. Et sandsynlighedsfelt kan denoteres (U, P) og er bestående af et udfaldsrum U og en sandsynlighedsfunktion P. Hvis der er tale om et symmetrisk sandsynlighedsfelt, vil følgende være gældende for P.

$$P(U) = 1 \tag{2.3}$$

$$P(u_1) + P(u_i) + \dots + P(u_n) = 1$$
(2.4)

$$P(u_1) = P(u_i) = \dots = P(u_n) = \frac{1}{|U|}$$
(2.5)

De to udsagn udtrykker derved at sandsynligheden for $P(U_i)$ er i intervallet [0; 1] samt at den samlede sandsynlighed for feltet er 1, hvor 1 = 100%. I et ikke-symmetrisk sandsynlighedsfelt vil de to første regler af de overstående tre gælde, men sandsynligheden for de enkelte elementer i udfaldsrummet er ikke nødvendigvis lig, altså kan $P(u_1) \neq P(u_2)$ [6].

2.4. Stokastiske variabler

Stokastiske variabler findes af to typer der begge denoteres med X, lad desuden x_i være et konkret udfald, disse to typer er henholdsvis diskret og kontinuert. En stokastiske variable er en variable som kan tage alle værdier i et givent udfaldsrum, med sandsynligheden P, altså $P(X=u_i)=P(u_i)$. Forskellen mellem diskret og kontinuert stokastiske variabler er deres udfaldsrum og deres tilhørende regneregler. Et eksempel på en stokastiske variabel kunne være Europæisk Roulette, dette spil har et symmetrisk sandsynlighedsfelt med udfaldsrummet $U = \{0, 1, ..., 36\}$ der har indeholder 37 = |U| udfald. Det vil altså sige at den kugle man smider ned i spillet kan beskrives som en stokastiske variable X og den har en lige stor sandsynlighed for at tage et udfald i udfaldsrummet, da der er tale om et symmetrisk sandsynlighedsfelt. Altså $P(u_1) = P(u_i) = ... = P(u_n)$, det betyder at P(X=1) = P(X=4). Ydermere er roulettens udfaldsrum opdelt i tre farver grøn, rød og sort, disse kan betegnes som delmængderne henholdsvis G, R og S. Vi kan således beskrive sandsynligheden for at den stokastiske variabel X vil ligge i en delmængde således $P(X \in S) = P(X \in R) = \frac{18}{37}$ og $P(X \in G) = \frac{1}{37}$. Delmængden G kunne også have været defineret som $G = (R \cup S)^c$, altså de udfald som ikke falder ind under hverken R eller S, eller G = 0 [1]

Lad desuden $\mathbb{E}[X]$ være den forventede værdi af X, den forventede værdi skal forstås næsten som et gennemsnit. I det ovenstående eksempel vil den forventede værdi X være $\mathbb{E}[X] = 18$, dette kan udregnes på følgende måde:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \frac{u_i}{n} \tag{2.6}$$

Dette er kun tilfældet da det er et symmetrisk sandsynlighedsfelt, hvis sandsynligheden for de forskellige udfald er forskellige fra hinanden, altså $P(u_1) \neq P(U_2)$. Her ville man bruge følgende formel for den forventede værdi af X.

$$\mathbb{E}[X] = \sum_{i=1}^{n} u_i \times P(u_i) \tag{2.7}$$

Stokastiske Variabler på en computer er ofte repræsenteret som et pseudo-genereret tilfældigt tal, hvilket er et tilfældigt tal udvalgt af computeren. Disse tilfældigt genererede tal bliver brugt til at udføre eksperimenter og simulering af Monte Carlo Metoden [4]. Dette vil komme til udtryk i det følgende afsnit, hvori det vil blive vist hvordan Monte Carlo Simulering gør brug af Stokastiske Variabler.

3. Monte Carlo Metoden

I dette afsnit vil opgaven komme ind på...

Monte Carlo Metoden har sit navn efter Stanislaw Ulams onkel, som ofte spillede på Casino Monte Carlo i Monaco. Metoden refererer herved til de sandsynligheder og de tilfældige udkom der kan finde sted i sådanne spil. Ulam var en af de forskere der arbejdede på Monte Carlo Metoden under Manhatten Projektet, som blev iværksat i 1942 [2]. Metoden blev udviklet for at kunne simulere neutroners diffusion. Det var nødvendigt at udvikle og benytte denne metode, da problemet var for komplekst til at kunne blive afledt algebragisk eller blive løst med datidige metoder. Metoden blev først anvendt på gamle analoge computere, hvilket begrænsede kompleksiteten af simulationen [3].

Ydermere er Monte Carlo Metoden også en algoritme, hvilket betyder at det er en process som er udført i nogle logiske trin, trin som beskriver udførelse af metoden. En algoritme kunne f.eks. være trinene involveret i at sortere et sæt kort. Lad kortspillet være et sæt kort og et element værende ét enkelt spillekort, kortspillet kan således sorteres på følgende måde:

- 1. Vælg et vilkårligt element e_i fra sættet.
- 2. Placere elementet bagest i sættet.
- 3. Sammenlign nu e_i med elementet lige før e_{i-1} hvis $e_i > e_{i-1}$ bytter de plads. Dette gentages indtil $e_i < e_{i-1}$ eller i = 0.
- 4. Gentag denne process indtil kortspillet er sorteret

Denne sorterings algoritme er også kaldet boblesortering og dennes navn kommer af måden elementerne i sættet bobler til toppen. [5]

3.1. Plat eller Krone

Et eksempel på udførelse af Monte Carlo Simulering kunne være spillet Plat eller Krone, spillets regler er som følgende:

- 1. Hver spiller satser på en side af mønten.
- 2. Mønten kastes op i luften.
- 3. Vinderen er den spiller hvis sats er den side af mønten der vender op af.

Man kan også beskrive Plat og Krone med et symmetrisk sandsynlighedsfelt (U, P), hvor udfaldsrummet U ville være $U = \{Plat, Krone\}$ og sandsynlighedsfunktionen P hvor følgende er sandt da det er et symmetrisk sandsynlighedsfelt:

$$P(Plat) = P(Krone) = \frac{1}{2} \tag{3.1}$$

Vi kan desuden beskrive mønten med en stokastiske variable X. Den forventede værdi af X kan ligedes beskrives som værende $\mathbb{E}[X] = \frac{1+2}{2} = 1,5$ hvis Plat = 1 og Krone = 2 altså den gennemsnitlig værdi af udfaldsrummet.

Vi kan finde frem til en approximering af den forventede værdi af X ved brug af Monte Carlo Simulering. I den sammenhæng lad $\mathbb{E}[X]$ være den forventede værdi af X. Vi kan derved opskrive følgende udsagn hvor x_i er en konkret simulering af X:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \frac{x_i}{n} \tag{3.2}$$

Vi kan udfører en simulering der simulere 1000 eksperimenter, hvor X er uafhængig.

import random

random.seed (42)

Dette vil give os $\mathbb{E}[X] = 1,519$, hvis vi udførte dette eksperiment 100 gange ville vi finde at vores resultat varierer. Dette skyldes at X er tilfældigt bestemt for hver simulering og er uafhængig af forgående simuleringer, altså hvad der ville betragtes som normal opførelse for en mønt [1].

3.2. Numerisk integration

Det overstående eksempel med Plat eller Krone virker måske lidt dumt da vi med nemhed kan udlede det algebraisk, altså tage summen af udfaldsrummet og dele med antallet af mulige udfald. Men et andet tilfælde hvor man kan anvende Monte Carlo Metoden er numerisk integration. I nogle tilfælde er det let at udlede integralet algebragisk, men der findes også tilfæde hvor det er umuligt. Disse funktioners integraler kan udledes ved hjælp af numeriske metoder, heriblandt Monte Carlo Metoden også kaldet Hit-or-Miss. [4]

Lad os betragte enhedscirkelen der befinder sig inden for et kvadrat med dimensionerne 2×2 , denne figurs integral kan let udledes men er valgt for nemheds skyld.

Vi kan starte med at bestemme udfaldsrummet af den overstående figur, dette er U og er alle de punkter der findes i kvadratets plan. Det integral vi ønsker at finde er

cirklen, hvorfor vi lader cirklen være delmængde A. Desuden er sandsynligheden P for alle udfald i udfaldsrummet U lige, altså for to givne udfald i U er $P(U_1) = P(U_2)$. Dette betyder at der er tale om et symmetrisk sandsynlighedsfelt, med et udfaldsrum der er bestående af punkter der findes på kvadratets plan. Den stokastiske variabel X vil ligeledes repræsentere et muligt punkt på kvadratets plan. Dette felt er i teorien et kontinuert sandsynlighedsfelt, hvilket også ville gøre vores stokastiske variabel til en kontinuerlig variabel. Hvis vi har n stokastiske variabler X og n' betegner de stokastiske variabler der ligger inden for cirklens areal, altså således at hvis X = (0.5; 0.5) vil det være et udfald i delmængden A. Dette betyder at alle elementer i delmængden A vil opfylde $a_i x^2 + a_i y^2 \le 1^2$, hvor a_i er et konkret tilfælde og $a_i x$ er dets x koordinat samt $a_i y$ er dets y koordinat. Nedenstående figur viser et eksempel på n antal konkrete stokastiske variabler x_i i udfaldsrummet U hvor n' er de konkrete x_i som befinder sig i A.

Vi kan herved udregne en approximering af sandsynligheden for P(A).

$$P(A) = \frac{n'}{n} \tag{3.3}$$

Hvis vi ønsker af finde arealet af cirklen skal vi gange med arealet af vores udfaldsrum, da dette var en kvadrat med dimensionerne 2×2 får vi følgende udtryk.

$$Areal(A) = \frac{n'}{n} \times 4 \tag{3.4}$$

En simulering af dette kan udtrykkes i følgende Python kode, hvor vi har 100000 konkrete stokastiske variabler

 $print("areal = {:d}/{:d}*{:d}={:f}".format(nc, nk, a, nc/nk*a))$

Vi vil finde at arealet af cirklen ville være 3,140280 og derved vil $\pi=3,140280$, da fejlen ved udregningen af et integral på denne måde er $\sqrt{\frac{1}{n}}$ ville vi finde at vi skulle øge antallet af punkter med en faktor 100 for at reducere fejlen med en faktor 10 [4].

4. Monte Carlo Lokalisering

Dette afsnit vil komme ind på, hvordan en autonom robot kan implementere en Monte Carlo Algoritme for således at kunne lokalisere sig selv på et kendt kort.

Der tages udgangspunkt i en autonom robot, der har fire hjul og mindst to elektriskemotorer med enkoder. Elektriskemotorer med enkoder afgiver et elektrisk signal n antal gange per total rotation af motorens akse. Dette kan eksempelvis være implementeret ved brug af en hall sensor, der måler på en magnet eller en optisk sensor, som måler på et optisk gitter der følger aksen. Således er robotten i stand til at udregne, hvor langt den har bevæget sig i en given retning. Denne længde udregnes i det følgende. Lad d være diameteren af robottens hjul,lad n være antallet af impulser per rotation, og lad til sidst n_t være et antal impulser målt efter en given tid. Længden L, som robotten har bevæget sig ved antal målte impulser n_t , kan således udregnes på følgende måde:

$$L = d \times \pi \times \frac{n_t}{n} \tag{4.1}$$

Et eksempel på overstående formel, kunne være at robotten havde et sæt hjul med diameteren 5cm altså d=5cm samt en hallsensor der giver 20 impulser per totale rotationer af aksen. Når robotten har bevæget sig 4512 impulser kan vi udregne den længde robotten har bevæget sig:

$$L = 5cm \times \pi \times \frac{4512}{20} = 3543,71cm = 35,4371m \tag{4.2}$$

Vi kan også udregne vinklen θ for robotten, da dette er en simpel implementering af Dead-reckoning vil vi kun udføre rotationer, når robotten står stille.

Desuden har robotten en sensor der er placeret under den, denne sensoren måler farven af hvad robotten bevæger sig på. Sensoren måler et resultat på formen (r, g, b), hvor (0,0,0) vil være sort og (255,0,0) ville være en rød farve.

Med et udgangspunk i overstående robot der implementer et Dead-reckoning algoritme, kan vi lokalisere robotten på et kendt kort ved brug af Monte Carlo Lokalisering. Det kendte kort i dette konkrete eksempel er et kort der er kvadratisk af 20×20 meter og er bestående af fliser med forskelig farver, disse farver er henholdsvis rød, grøn, blå og lilla, som illustreret på nedenstående figur.

Altså så vi har et kendt kort hvor der er 400 fliser af forskelige farvers hvilke også er punkter, dette repræsenteret vores udfaldsrum U, hvor dets elementer er punkter på formen $u_i = (x, y)$ og $rgb(u_i)$ er farven i RGB, altså hvis vi har en rød flise på punktet (1,2) vil rgb((1,2)) = (255,0,0). Dette udfaldsrum er en del af et symmetrisk sandsynlighedsfelt, hvilket betyder at robotten har en lige stor sandsynlighed for at befinde sig på et givent punk. Ud fra dette sandsynlighedsfelt kan vi definere en stokastisk variabel X som kan tage hvilket som helst punkt i udfaldsrummet U, hvor x_i er et konkrete punkt. Følgende nedenstående trin er derfor involverede i at lokalisere robotten på kortet.

- 1. n tilfældige konkrete stokastisk variabel x_i bestemmes.
- 2. Robotten laver en måling m på formen (r, g, b) på dens nuværende position
- 3. Målingen m sammenlignes nu med x_i på følgende måde $|m-x_i|$
- 4. Et nyt sandsynlighedsfelt λ hvor $P(x_i) = \frac{|m-x_i|}{s}$ hvor s er summen af alle fejl fra forgående trin og U er de forgående konkrete elementer x_i . Dette vil betyde at der er støre sandsynlighed for de punker med en stor fejl relativt til dem med en lav fejl
- 5. Der bestemmes nu λ_n tilfældige punkter fra λ , hvor $\lambda_n < n$, og fjernes fra λ_U
- 6. Robotten bevæger sig nu en flise i hvilken som helst retning, hvor robotten stadig vil være inden for fliserne. Alle resterende punkter i λ flyttes samme retning og længde
- 7. Der bestemmes nu λ_n , altså samme antal som blev fjernet, punktern fra et sandsynlighedsfelt hvor $P(x_i) = 1 \frac{|m-x_i|}{s}$, altså så punker med en lav fejl har en højere sandsynlighed. En af de omliggende fliser fra dette punkt som robotten kunne have bevæget sig over på vælges og tilføjes til udfaldsrummet λ_u . Der efter gentages de forgående tre trin det antal gange robotten bevæger sig.

Hvis man fulgte overstående trin, vil man finde at man starter ud med en masse punker der ikke er koncentration hvor robotten rent faktisk befinder sig, men som processen gentages bliver der dannet en koncentration af punkter hvor robotten befinder sig, nedenstående figur illustreret dette.

figure

I nedenstående sektion, vil jeg komme ind på en teoretisk implementation af dette i Python.

4.1. implementering

5. Diskussion 15 af 17

5. Diskussion

Muligheder:?

Begrænsning: Praktisk robot på kvadratisk område i forhold til at anvende Monte Carlo Metoden i et åbent rum eller luften?

6. Konklusion og perspektivering

Bibliografi 17 af 17

Bibliografi

- [1] Kasper K. Berthelsen. "Note om Monte Carlo metoden". I: (2014).
- [2] Povl Lebeck Ølgaard. Manhattanprojektet. 2017. URL: http://denstoredanske.dk/index.php?sideId=121576.
- [3] Atomic Heritage Foundation. Computing and the Manhattan Project. 2014. URL: https://www.atomicheritage.org/history/computing-and-manhattan-project.
- [4] Daniel Kjær. "Sandsynlighedsbaserede metoder [Monte Carlo-metoden]". I: (2013).
- [5] toptal. Dubble Sort.
- [6] Nitschky Schmidt Vestergaard. Statistik C. Systime, 2008.

A. Test 18 af 17

A. Test