- 1. Setup
 - a. Create a directory on Desktop.
 - b. Open a Terminal window.
 - c. Exit and close the windown.
 - d. Open another window and cd to that directory.
 - e. Run the GHCi interpreter. (Type ghci at the terminal prompt.)
 - f. Close the interpreter.
 - g. Run it again.
- 2. Basic Evaluation (Enter each expression after the Prelude> prompt.)
 - a. Arithmetic expressions (Int)
 - i. 3
 - ii. 3 + 7
 - iii. 3 + 7*5
 - iv. (3 + 7)*5
 - b. Arithmetic expressions (Float)
 - i. 2.0
 - ii. 2.0 * 4
 - iii. 2.0 + 5.0*4
 - c. Boolean expressions
 - True (constructor)
 - ii. False
 - iii. True && False
 - iv. True || False
 - v. True && (False || True)
 - vi. Not (True && (False || True))
 - vii. 5 == 7
 - viii. 5 <= 7
 - d. String expressions
 - i. "Shannon"
 - ii. "Shannon" ++ "Gray"
 - e. Conditional expressions
 - i. if 8 == 3 + 5 then 4 else 7
 - f. Lambda expressions and function application
 - i. $(\ n -> n + 1) 5$
 - g. Let expressions
 - i. let a = 4 in a + 3

- ii. let $f = \langle n \rangle n + 1$ in f 4
- h. List expressions
 - i. []
 - ii. 3:[]
 - iii. [3, 2, 5]
- 3. Haskell Files
 - a. Have them open Aquamacs Emacs.
 - b. Create a new file (test.hs).
 - c. Place a single variable binding in there.
 - i. value = 7
 - d. Save it to the student's subfolder of Desktop.
 - e. Load in Haskell and evaluate the variable by name.
- 4. Recursion
 - a. Factorial (regular and with patterns)
 - b. Member
 - c. Sum
- 5. Introduce them to Laboratory Assignment 1