Chapter 14 (AIAMA) Probabilistic Reasoning

Sukarna Barua Assistant Professor, CSE, BUET

- Consider the query:
- We need to compute: [compute for both and]
- Express in terms of joint distributions [we already know how to compute joint distribution]

where is the normalizing constant [we can find the value of later]

- How to compute
- Add all hidden variables to get full joint distribution

- Query variable:
- Evidence variables:
- Hidden variables:

• Finally, we get the following:

- Compute and [expression has
- Find [Using the eq.

- **Question**: How many operations (multiplications + additions)?
 - Answer: [For each] Mult: 16, Sum: 4, Total = 20 operations

Computing using join distribution naively:

- Required operations: 20
- Can we improve?
 - Yes, move sums inside [closest to the factors having the hidden variable]
 - Sums are evaluated early and gets multiplied once [rather than every time during joint calculation]

- Move summations inside:
- Two alternate ways to do it:
 - Option 1:
 - **•** Option 2:
 - Which one is more efficient in terms of operations?

- Which one is more efficient? Assume and compute both.
- Equation 1:
 - Required # of multiplications: 9, # of sums = 3, total = 12
- **Equation 2:**
 - Required # of multiplications: 11, # of sums = 3, total = 14

So order matters! However, finding optimal order is difficult!

Using the CPT data, we calculate:

Hence,
,)
[After normalizing as probabilities sum to 1]

- An evaluation tree is shown for the expression:
 - Blank circled nodes represent multiplication [*Notice the repetition of sub-paths*]

- **Problem:** Repeated subexpression evaluation
- The following products are computed twice in two paths of the tree!

- Steps of variable elimination algorithm:
 - Step 1: Compute factors for each node of Bayesian Network and instantiate/restrict evidence variables.
 - Step 2: For some order of variables ():
 - (2a) If variable is a hidden variable, then multiply all the factors of
 - **■** (2b) Sum-out
 - Step 3: Multiply remaining factors.
 - Step 4: Normalize the final factor to eliminate .

- Consider the following expression:
 - Query variable:
 - **E**vidence variable:
 - Hidden variable:
- We will use variable elimination algorithm to calculate

- Query:
- Joint probability expression of BN:

- **Step 1**: Compute all the factors of BN.
- The BN has five factors [note the joint probability expression]:

Variable Elimination Algorithm: Compute Factors

- Query:
- **Step 1a**: Compute all the factors of BN. [don't restrict evidences now]

$$f_1(B) = P(B)$$

Т	0.001
F	0.999

$$f_2(E) = P(E)$$

T	0.002
F	0.998

$$f_3(A, B, E) = P(A|B, E)$$

Т	T	Т	0.95
Т	T	F	0.94
Т	F	Т	0.29
Т	F	F	0.001
F	T	Т	0.05
F	T	F	0.06
F	F	Т	0.71
F	F	F	0.999

$$f_4(J,A) = P(J|A)$$

Т	Т	0.90
Т	F	0.05
F	Т	0.10
F	F	0.95

$$f_5(M,A) = P(M|A)$$

T	T	0.70
T	F	0.01
F	T	0.30
F	F	0.99

Variable Elimination Algorithm: Restrict Factors

- Query:
- **Step 1b**: Instantiate/restrict evidence variables in all factors [and .
 - Restrict to true in [Keep only rows where
 - Note that is removed from factor expression.

$$f_4(J,A) = P(J|A)$$

T T 0.90

T F 0.05

F T 0.10

F 0.95

Variable Elimination Algorithm: Restrict Factors

- Query:
- **Step 1b**: Instantiate/restrict evidence variables in all factors. [and .
 - Restrict *M* to true in [Keep only rows where

0.99

F

$$f_5(M,A) = P(M|A)$$

T T 0.70

T F 0.01

F T 0.30

T 0.70

F 0.01

Variable Elimination Algorithm: Multiply Factors

- Query:
- Step 2: Select every variable (in any order) which is hidden [Here, and
 - Multiply all factors of and then sum-out the variable.
 - Suppose we select in this order: E, A.
 - First we select E
 - Multiple all factors having E and get a new factor:
 - Sum-out and get a new factor:
 - Note that after summing-out, is removed from factor-argument.

■ Step 2a: Multiple all factors having E and get a new factor:

- Factor multiplication is a point-wise multiplication of elements in two factors:
 - Multiply rows which have matching values of the variables.
 - Number of rows in the new factor where is number of total variables in the new factor:
 - Multiplying and will give us which will have 8 rows.

- For variable
 - **Step 2a**: Multiple all factors having E and get a new factor:
 - Multiply:

0.002

0.998

$$f_2(E) = P(E)$$

$f_3(A, B, E) = P(A $	B, E)
-----------------------	-------

F	I	ı	0.05
F	T	F	0.06

F	F	T	0.71
F	F	F	0.999

 $f_6(A, B, E)$

T	T	0.0019
Т	F	0.93812
F	T	0.00058
F	F	0.000998
Т	T	0.0001
Т	F	0.05988
F	T	0.00142
т(F	0.997002
	T F F T	T F F T F T T T T F

• For variable E:

- **Step 2b**: Sum-out resulting factor for E and get a new factor:
- **Sum-out**: [sum corresponding rows that have and for E]

$$f_6(A, B, E)$$

Т	Т	Т	0.0019
Т	T	F	0.93812
Т	F	Т	0.00058
Т	F	F	0.000998
F	Т	Т	0.0001
F	Т	F	0.05988
F	F	Т	0.00142
F	F(F	0.997002

Т	T	0.94002
T	F	0.001578
F	T	0.05998
F	F	0.998422

- For variable A
 - Step 2a: Multiple all factors having A and get a new factor:
 - Multiply:

 $f_4(A)$

T	0.90
F	0.05

$$f_4(A) \times f_5(A)$$

 $f_7(A,B)$

 $f_8(A,B)$

•	T	0.63
	F	0.0005

T	T	0.94002
T	F	0.001578
F	T	0.05998
F	F	0.998422

ᆣ>	

_	ı	0.592213
T	F	0.00099414
F	Т	0.00002999
F	F	0.000499211

O E02212

Т	0.70
F	0.01

 $f_5(A)$

- For variable A:
 - **Step 2b**: Sum-out resulting factor for E and get a new factor:
 - **Sum-out**: [sum corresponding rows that have and for E]

 $f_8(A,B)$

Т	Т	0.592213
T	F	0.00099414
F	T	0.00002999
F	F	0.000499211

 $f_9(B)$

Т	0.59224299
F	0.001493351

Bayesian Network: Multiply Remaining Factors

- Query:
- **Step 3:** Multiply remaining factors:

$$f_1(B) = P(B)$$

0.001

 $f_9(B)$

Τ	0.59224299	
F	0.001493351	

 $f_{10}(B)$

Т	0.000592
F	0.001492

Bayesian Network: Normalize Result

- Query:
- Step 4: Normalize the final factor to eliminate.

■ Answer: , 16

- Algorithm pseudocode [RN book]
 - Note: Step 1 (initialization) is missing in the pseudocode [it is implied in the MAKE-FACTOR function which is not a good approach!]

```
function ELIMINATION-ASK(X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e}, observed values for variables \mathbf{E} bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \dots, X_n) factors \leftarrow [] for each var in \mathsf{ORDER}(bn.\mathsf{VARS}) do factors \leftarrow [MAKE-FACTOR(var, \mathbf{e})|factors] if var is a hidden variable then factors \leftarrow \mathsf{SUM-OUT}(var, factors) return \mathsf{NORMALIZE}(\mathsf{POINTWISE-PRODUCT}(factors))
```

Bayesian Network: Irrelevant Variable

- Consider the query:
- Incorporating all hidden variables of the Bayesian Network, we get:

Bayesian Network: Irrelevant Variable

A simple rearrangement of the expression would yield us:

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \sum_{m} P(m \mid a) .$$

- Note that the inner term will evaluate to 1. So it is eliminated from the expression entirely [Irrelevant variable]
- Variable elimination algorithm will automatically sum-out from the expression!
 - Why? [At some point, will be considered as a hidden variable and the summation over will eliminate it]

Bayesian Network: Irrelevant Variable

- In general, we can remove any leaf node that is not a query variable or an evidence variable.
- After removal of initial leaves, there may be some more leaf nodes, and these too may be irrelevant and removed [continue this process].
- Every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query.