Signals, Systems and Modulations

Laboratory no. 1

April 5, 2023

LABORATORY GROUP MEMBERS:

Jan Choraży

Krzysztof Watras

Computer Science Politechnika Warszawska

Documentation of laboratory work results

Table 1:

N transition band		passband ripple	stopband attenuation	
16	0.0938	0.1577	-15.16	
32	0.043	0.186	-16.21	
64	0.0234	0.1999	-16.65	

Design of lowpass FIR filter by sampling in frequency domain

Influence of N on transition band

As N increases, the transition band gets smaller.

Does passband depend much on N? What is the difference between the minimum and maximum values of passband ripple that we have observed? Ans2 $\frac{1}{2}$

Does the stopband attenuation depend much on N? What is the difference between the minimum and maximum values of stopband attenuation that we have observed?

Ans3

Number of DFT points needed to be used to obtain transition band ; 0.05 Ans4

How do zeros of the transfer function influence frequency response of the filter

Ans5

Design of a lowpass FIR filter by windowing in time domain

Table 2:

\mathbf{N}	transition band	passband ripple	stopband attenuation
16	0.0938	0.1577	-15.16
32	0.043	0.186	-16.21
64	0.0234	0.1999	-16.65

Comparison of results with results of sampling in frequency domain

Is it possible to obtain the stopband attenuation > 30 dB? Ans 6 What is the influence of window shape on transition band? Ans 7

Table 3:

window	transition band	stopband attenuation
rectangular	0.0312	-21.46
Hamming	0.1094	-52.66
Blackman	0.1445	-76.66

What is the influence of window shape on stopband attenuation Ans8 Window and its lenght N to obtain the stopband attenuation ¿ 70 dB and transition band; 0.05. Ans9

Observation of a lowpass IIR Butterworth filter

Are there ripples in passband and in stopband?

Ans10

Where are zeros of the transfer function?

Ans11

Where are the poles?

Ans12

What is the influence of the cutoff frequency on zeros and poles? Ans13

Design of a lowpass IIR Butterworth filter

Table 4: Simulation of Butterworth filter Number of zeros and poles | transition band

8	0.289
16	0.1582
32	0.084

Design of a lowpass IIR eliptic filter

Do we observe ripples in passband and in stopband? Ans13

Where are zeros of transfer function?

Ans14

Where are the poles?

Ans15

Are all requirements fulfield?

Ans16

Table 5:					
requred transition band	0.05	0.005			
obtained filter order	13	20			
observed transition band	0.1094	-52.66			
observed passband ripple	0.1445	-76.66			