

RAPPORT DE TRAVAUX PRATIQUE CHIMIE REACTION D'OXYDOREDUCTION

MEMBRES DU GROUPE

EVALUATEUR

. DJOSSOU Kokou Armand Light

M. FAMBI

- . DOH Kodzo Ben
- . SEGUE Yao Louis Freeman

DATE: 01/12/2024

Sommaire

- INTRODUCTION
- EXPERIENCE 1
- EXPERIENCE 2
- EXPERIENCE 3
- EXPERIENCE 4
- EXPERIENCE 5
- EXPERIENCE 6
- CONCLUSION

INTRODUCTION

Par définition une réaction d'oxydoréduction est une réaction mettant en présence un oxydant et un réducteur et conduisant à des transferts d'électrons. Par ces séances de travaux pratiques nous avons pu mettre en évidence plusieurs réactifs pour observer les réactions d'oxydations et de réduction.

1. EXPERIENCE 1 : Réduction des ions du cuivre par le fer métallique

1.1. Réactifs

- . Morceau de fil de fer
- . Solution de sulfate de cuivre (CuSO4)

1.2. Manipulation

Mettons dans une éprouvette un morceau de fil de fer et ajoutons 2 ml d'une solution 0.5N de sulfate de cuivre

1.3. Observation

La solution de sulfate de cuivre a progressivement perdu sa couleur bleue et le fil de fer devient rougeatre (depot des ions cuivre sur le métal fer)

1.4. Réaction

$$. Fe \rightarrow Fe^{2+} + 2e^{-}$$

$$. Cu^{2+} + 2e^- \rightarrow Cu$$

1.5. Transfert d'électron

- . Le fer métallique (Fe) cède deux électrons pour devenir l'ion fer Fe^{2+}
- . L'ion Cu^{2+} capte deux électrons pour devenir du cuivre métallique

1.6. Réaction Globale

$$Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$$

2. EXPERIENCE 2 : Oxydation des ions de fer Fe^{2+} par le permanganate de potassium $KMnO_4$

2.1. Réactifs

- . solution de permanganate de potassium
- solution d'acide nitrique
- . solution de sulfate de fer

2.2. Manipulation

- Versons dans une éprouvette 2 ml d'une solution 0.001N de $KMnO_4$;
- Ajoutons quelques 2 à 3 gouttes de solution 2N de l'acide sulfurique ;
- Ajoutons goutte par goutte une solution 0.5N de sulfate de fer 2 jusqu'à la décoloratio-

2.3. Observation

La solution violette de permanganate de potassium se décolore progressivement avec l'ajout de la solution de sulfate de fer

2.4. Réactions

$$MnO_4$$
- + 8H⁺+ 5e- $\rightarrow Mn_2^+$ + 4H₂O
 $Fe_2^+ \rightarrow Fe_3^+ + e^-$

2.5. Transfert d'électrons

En milieu acide, l'ion permanganate (MnO_4^-) est réduit en ion manganèse (Mn_2^+)

L'ion Fe_2^+ est oxydé en ion Fe_3^+

2.6. Réaction Globale

$$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

3. EXPERIENCE 3 : Réduction de l'acide nitrique par le cuivre

3.1. Réactifs

- . Fil de cuivre
- . Solution d'acide nitrique

3.2. Manipulation

Mettre dans une éprouvette un morceau de fil de cuivre et ajouter 2 ml de solution de l'acide nitrique.

3.3. Observation

On note la formation de bulles de gaz et une dissolution progressive du cuivre dans la solution d'acide nitrique. On réalise aussi la formation d'une solution bleue à la fin

3.4. Réactions

$$Cu \rightarrow Cu^{2+} + e^{-}$$

 $NO^{3-} + 2H^{+} + e^{-} \rightarrow NO_{2} + H_{2}O$

3.5. Transfert d'électrons

- Le cuivre libère deux électrons pour se transformer en ions cuivre (Cu^{2+});
- En présence des ions hydrogène, les ions nitrate (NO_3^-) libèrent un électron pour former l'oxyde d'azote

3.6. Réaction Globale

$$Cu + 4MnO_3^- \rightarrow Cu(NO3)_2 + 2NO_2 + 2H_2O$$

4. EXPERIENCE 4: Réaction d'auto oxydoréduction

4.1. Réactifs

- cristaux d'iode
- solution de soude (NaOH)
- solution d'acide sulfurique

4.2. Manipulation

- mettre dans une éprouvette 2 à 3 cristaux d'iode
- ajouter dans un premier temps 2 ml de la solution de soude
- ensuite ajouter à la solution obtenue 2 ml de solution 2N de l'acide sulfurique

4.3. Observation

En mettant de la solution de NaOH sur les cristaux d'iode, il y a eu dissolution des cristaux d'iode et formation d'une solution de couleur brunatre.

Avec l'ajout de l'acide sulfurique on observe une coloration jaune avec formation et depot d'iode

4.4. Réactions

$$I_2 + 2e^- \rightarrow 2I^-$$

 $\frac{1}{2}I_2 + 60H^- \rightarrow IO_3 + 6e^- + 3H_2O$

4.5. Transfert d'électron

- Une partie des molécules d'iode (12) est réduite en ions iodure (1-) en perdant deux électrons
- Une autre partie des molécules d'iode (I2) est oxydée en ion iodate (IO3-) en captant six molécules d'ions OH-

4.6. Réaction globales

$$3I_2 + 60H^- \rightarrow IO_3 + 5I^- + 3H_2O$$

5. EXPERIENCE 5 : Oxydation de l'alcool éthylique par le permanganate de potassium en milieu acide et en milieu basique

5.1. En milieu acide

5.1.1. Réactifs

- l'alcool éthylique
- solution de permanganate de potassium
- solution d'acide sulfurique

5.1.2. Manipulation

- mettons dans une éprouvette 1 ml de solution de permanganate de potassium
- ajoutons 1 ml de solution 2N de l'acide sulfurique
- ajoutons 2 ml d'alcool éthylique
- chauffons l'éprouvette

5.1.3. Observation

L'ajout de l'acide sulfurique à la solution de permanganate de potassium n'apporte pas de modification mais l'ajout de l'alcool éthylique a éclaircit la solution Après chauffage, la solution devient incolore et dégage une odeur.

5.1.4. Réactions

$$C_2H_5OH + H_2O \rightarrow CH_3COOH + 4e - + 4H^+$$

 MnO_4 - + $8H^+$ + $5e^- \rightarrow Mn_2^+ + 4H_2O$

5.1.5. Transfert d'électron

En milieu acide, le permanganate (MnO4-) est réduit en ion manganèse (Mn2+) en captant 8 molécules d'ions H+

L'alcool éthylique est oxydé en acide acétique (CH3COOH).

5.1.6. Réaction globale

$$4MnO_4$$
- + $5C_2H_5$ OH + $12H^+ \rightarrow 5CH_3$ COOH + $4Mn_2^+$ + $11H_2O$

5.2.1: En milieu basique

5.2.1. Réactifs

- l'alcool éthylique
- solution de permanganate de potassium
- solution d soude

5.2.2. Manipulation

- mettons dans une éprouvette 1 ml de solution de permanganate de potassium
- ajoutons 1 ml de solution 2N de soude
- ajoutons 2 ml d'alcool éthylique

5.2.3. Observations

L'ajout de la soude au permanganate de potassium donne une coloration qui s'éclaircit avec l'ajout de l'alcool éthylique

5.2.4. Réactions

$$C_2H_5{
m OH} + 3OH^- \rightarrow CH_3{
m CO}O^- + 4H_2{
m O} + 4e - MnO_4^- + e^- \rightarrow MnO_4^{2-}$$

5.2.5. Transfert d'électron

En milieu basique, le permanganate est réduit en ion manganate (MnO42-)

L'alcool éthylique est oxydé en acétate (CH3COO-).

5.2.6. Réaction globale

$$MnO_4$$
- $+C_2H_5OH$ $+2OH^- \rightarrow MnO_4^{2-} + CH_3COO^- + 2H_2O$

Conclusion

Cette séance de travaux pratiques nous a permis d'observer les transformations au sein des réactions chimiques d'oxydoréduction.