ទិសមភាព

មូលដ្ឋានគ្រឹះ

រៀបរៀងដោយ ជា ពិសិដ្ឋ

នុលដ្ឋានគ្រឹះនៃទិសមភាព

វិសមភាពជាផ្នែកមួយដែលពេញនិយមខ្លាំងក្នុងវិស័យគណិតវិទ្យា ។ មិនត្រឹម តែប៉ុណ្ណោះវិសមភាពជាផ្នែកមួយនៃគណិតវិទ្យាដែលមានលក្ខណៈពិសេសៗជាច្រើន ។ ក្នុងឯកសារនេះ យើងនឹងចាប់ផ្ដើមនិយាយពីមូលដ្ឋានគ្រឹះនៃវិសមភាព ។ លក្ខណៈ

i- បើ
$$x \geq y$$
 និង $y \geq z$ នោះ $x \geq z$ ចំពោះគ្រប់ x , y និង $z \in \mathbb{R}$ ។

ii- បើ
$$x \geq y$$
 និង $a \geq b$ នោះ $x + a \geq y + b$ ចំពោះគ្រប់ a , b , x និង $y \in {\rm IR}$ ។

iii- បើ
$$x \ge y$$
 នោះ $x + z \ge y + z$ ចំពោះគ្រប់ x , y និង $z \in \mathbb{R}$ ។

iv- បើ
$$x \ge y$$
 និង $a \ge b$ នោះ $xa \ge yb$ ចំពោះគ្រប់ x , y , a និង $b > 0$ ។

v- បើ
$$x \in \mathbb{R}$$
 នោះ $x^2 \ge 0$ សមកាពពេល $x = 0$ ។ ជាពិសេសចំពោះ

$$A_i \in \operatorname{IR}^+$$
និង $x_i \in \operatorname{IR}$, $i = \overline{1,n}$ គេបាន

$$A_1 x_1^2 + A_2 x_2^2 + ... + A_n x_n^2 \ge 0$$
 សមភាពកើតឡើងពេល

$$x_1 = x_2 = \dots = x_n = 0$$
 1

ទាំងនេះជាលក្ខណៈសាមញ្ញ ងាយៗ តែមានប្រយោជន៍ខ្លាំងណាស់ក្នុងការស្រាយ បញ្ជាក់វិសមភាព ។ ពិសេស គឺ v ។

ខាងក្រោមនេះជាឧទាហរណ៍មួយចំនួននៃការស្រាយបញ្ជាក់វិសមភាពតាមរយៈការ ប្រើលក្ខណៈទាំងប្រាំខាងលើ ។

ខ្មុំនេះខ្មុំខ្មុំ

បង្ហាញថា
$$x + \frac{1}{x} \ge 2$$
ចំពោះគ្រប់ $x > 0$ ។

ಕ್ಷುಟಾಟ

ឃើងមាន
$$(x-1)^2 \ge 0 \Longrightarrow x^2 - 2x + 1 \ge \Longrightarrow x^2 + 1 \ge 2x$$

ដោយ
$$x > 0$$
 យើងបាន $\frac{x^2 + 1}{x} \ge 2 \Rightarrow x + \frac{1}{x} \ge 2$

ដូចនេះ $x + \frac{1}{x} \ge 2$ សមភាពពេល x = 1

ದ ಭೋಣಜಾ

គេឲ្យ a , b>0 ។ បង្ហាញថា $\frac{a}{b}+\frac{b}{a}\geq 2$ ។

ಕ್ರುಟಾಟ

ឃើងមាន
$$(a-b)^2 \ge 0 \Rightarrow a^2-2ab+b^2 \ge 0 \Rightarrow a^2+b^2 \ge 2ab$$
 ដោយ a , $b>0$

ឃើងបាន
$$\frac{a^2+b^2}{ab} \ge 2 \Rightarrow \frac{a}{b} + \frac{b}{a} \ge 2$$

ដូចនេះ $\frac{a}{b} + \frac{b}{a} \ge 2$ សមភាពពេល a = b

ននាមារឆ្នាំ ៣

(វិសមភាព Nesbitt)

គេឲ្យ
$$a$$
 , b និង $c>0$ ។ បង្ហាញថា $\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\geq \dfrac{3}{2}$ ។

ಕ್ರುಳಾರ್

តាម ឧទាហរណ៍ ២ យើងបាន

ដូចនេះ
$$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}$$
 សមភាពពេល $a=b=c$

ឧនាមារស្នំ ៤

គេឲ្យ a , b និង c ជាចំនួនពិត ។ បង្ហាញថា $a^2+b^2+c^2 \geq ab+bc+ca$ ។ **ស្សទាយ**

ឃើងមាន
$$(a-b)^2 \ge 0 \Rightarrow a^2 - 2ab + b^2 \ge 0$$

$$a^2 + b^2 \ge 2ab$$

$$b^2 + c^2 \ge 2bc$$

$$c^2 + a^2 \ge 2ca \tag{3}$$

បុក (1), (2) និង (3) ឃើងបាន
$$2(a^2+b^2+c^2) \ge 2(ab+bc+ca)$$

ដូចនេះ
$$a^2 + b^2 + c^2 \ge ab + bc + ca$$

ឧនាមារស៍ ៥

គេឲ្យ a , b និង c ជាចំនួនពិត ។ បង្ហាញថា

$$3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$$

ಕ್ರುಳಾಲ

តាមឧទាហរណ៍ ៤ យើងបាន

$$3(ab+bc+ca) = ab+bc+ca+2(ab+bc+ca)$$

$$\leq a^2+b^2+c^2+2(ab+bc+ca)$$

$$= (a+b+c)^2$$

$$\leq a^2+b^2+c^2+2(a^2+b^2+c^2)$$

$$= 3(a^2+b^2+c^2)$$

ដូចនេះ
$$3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$$

៩ ណៃខានន

គេឲ្យ x , y និង z>0 ហើយ បំពេញលក្ខខណ្ឌ x+y+z=1។ បង្ហាញថា $\sqrt{6x+1}+\sqrt{6y+1}+\sqrt{6z+1}\leq 3\sqrt{3}$ ។

ಕ್ರುಟಾಟ

ឃាំ
$$\sqrt{6x+1} = a$$
 , $\sqrt{6y+1} = b$ និង $\sqrt{6z+1} = c$

ឃើងបាន
$$a^2 + b^2 + c^2 = 6(x + y + z) + 3 = 9$$

តាមឧទាហរណ៍ ៥ យើងបាន $(a + b + c)^2 \le 3(a^2 + b^2 + c^2) = 27$

$$\Rightarrow a+b+c \leq 3\sqrt{3}$$
 ដូចនេះ $\sqrt{6x+1}+\sqrt{6y+1}+\sqrt{6z+1} \leq 3\sqrt{3}$

ននាសះឃុំ ព្យ

គេឲ្យ a , b និង c ជាចំនួនពិត ។ បង្ហាញថា $a^4+b^4+c^4 \geq abc\big(a+b+c\big)$ ។ **ស្សទាយ**

តាមឧទាហរណ៍ ៤ យើងមាន
$$x^2 + y^2 + z^2 \ge xy + yz + zx$$
 យើងពាន $a^4 + b^4 + c^4 \ge a^2b^2 + b^2c^2 + c^2a^2$
$$= (ab)^2 + (bc)^2 + (ca)^2$$

$$\ge (ab)(bc) + (bc)(ca) + (ca)(ab)$$

$$= abc(a+b+c)$$
 ដូចនេះ $a^4 + b^4 + c^4 \ge abc(a+b+c)$