ARTICLES NATURE GENETICS

Genomic locus	Gene	Position (GRCh37)	Lead variant	A1	A1 frequency	P value	N
1	AGRN	1:985,377	rs113020870	Т	0.0041	3.83×10 ⁻⁸	776,379
2	CR1	1:207,750,568	rs679515	С	0.82	2.42×10^{-25}	762,176
3	NCK2	2:106,235,428	rs115186657	С	0.0035	1.33×10 ⁻⁸	727,537
4	BIN1	2:127,891,427	rs4663105	С	0.41	3.92×10^{-58}	1,078,540
5	INPPD5	2:234,082,577	rs7597763	С	0.45	4.65×10^{-9}	819,541
6	CLNK	4:11,014,822	rs4504245	G	0.79	5.23×10^{-12}	1,080,458
7	TNIP1	5:150,432,388	rs871269	Т	0.32	1.37×10 ⁻⁹	1,089,904
8	HAVCR2	5:156,526,331	rs6891966	G	0.77	7.91×10^{-10}	1,089,230
9	HLA-DRB1	6:32,583,813	rs1846190	Α	0.30	2.66×10^{-14}	754,040
10	TREM2	6:40,942,196	rs187370608	G	0.997	1.26×10^{-25}	791,668
11	CD2AP	6:47,552,180	rs9369716	Т	0.27	1.70×10^{-17}	1,052,285
12	TMEM106B	7:12,268,758	rs5011436	С	0.41	2.70×10 ⁻⁹	1,123,678
13	ZCWPW1/NYAP1	7:99,932,049	rs7384878	Т	0.69	9.41×10^{-16}	1,084,138
14	EPHA1-AS1	7:143,104,331	rs3935067	G	0.62	4.69×10^{-11}	1,117,025
15	CLU	8:27,466,315	rs1532278	Т	0.39	1.57×10^{-22}	1,126,563
16	SHARPIN	8:145,108,151	rs61732533	G	0.95	3.14×10^{-9}	1,122,653
17	USP6NL/ECHDC3	10:11,718,713	rs7912495	G	0.46	7.68×10^{-15}	1,120,367
18	CCDC6	10:61,738,152	rs7902657	Т	0.54	3.68×10^{-8}	1,126,388
19	MADD/SPI1	11:47,380,340	rs3740688	Т	0.54	8.78×10^{-9}	1,123,185
20	MS4A4A	11:60,021,948	rs1582763	G	0.62	3.40×10^{-33}	1,125,804
21	PICALM	11:85,800,279	rs561655	G	0.35	1.24×10^{-26}	1,126,563
22	SORL1	11:121,435,587	rs11218343	Т	0.96	1.33×10^{-13}	1,125,100
23	FERMT2	14:53,298,853	rs7146179	G	0.89	6.99×10^{-11}	1,089,904
24	RIN3	14:92,938,855	rs12590654	G	0.67	6.63×10^{-17}	1,116,967
25	ADAM10	15:59,057,023	rs602602	Т	0.70	6.22×10^{-15}	1,124,268
26	APH1B	15:63,569,902	rs117618017	Т	0.13	7.00×10^{-12}	889,854
27	SCIMP/RABEP1	17:4,969,940	rs7209200	Т	0.33	3.18×10^{-8}	1,125,637
28	GRN	17:42,442,344	rs708382	T	0.61	1.98×10 ⁻⁹	1,125,622
29	ABI3	17:47,450,775	rs28394864	G	0.54	4.90×10^{-10}	1,084,218
30	TSPOAP1-AS1	17:56,409,089	rs2632516	G	0.54	7.46×10^{-10}	1,082,451
31	ACE	17:61,545,779	rs6504163	Т	0.61	1.23×10^{-9}	1,083,145
32	ABCA7	19:1,050,874	rs12151021	G	0.68	2.81×10^{-15}	1,082,434
33	APOE	19:45,411,941	rs429358	Т	0.84	$<1.0 \times 10^{-300}$	1,126,190
34	NTN5	19:49,213,504	rs2452170	G	0.47	1.72×10 ⁻⁸	1,088,626
35	CD33	19:51,737,991	rs1354106	G	0.37	2.21×10^{-10}	716,038
36	LILRB2	19:54,825,174	rs1761461	С	0.49	1.56×10 ⁻⁹	1,116,336
37	CASS4	20:54,995,699	rs6069737	T	0.083	6.73×10^{-16}	1,087,703
38	APP	21:27,520,931	rs2154482	Т	0.44	7.66×10^{-10}	1,124,606

The P values were identified through a meta-analysis (two-sided test) of summary statistics generated by linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The previously unidentified loci are highlighted in bold. The genes were assigned on the basis of colocalization results, fine-mapping results and previous literature. A1, tested allele; N, sample size.

by Bcl3 in mouse microglia²⁰, where this module was implicated in prolonged exposure to inflammation and aging of microglia. The gene encoding Bcl3 (BCL3) was found to be significantly associated with cerebrospinal fluid amyloid-beta1–42 peptide after conditioning for $APOE^{21}$ and was observed as upregulated postmortem in the brain of patients with LOAD²². Further investigation into this locus in nonEuropean populations may yield more support for the lead variant and improve the fine-mapping analysis.

The lead variant of locus 8 (rs6891966; $P=7.91\times10^{-10}$) is located in an intron of *HAVCR2* (Supplementary Fig. 6). *HAVCR1* and *TIMD4* also map to this region on the basis of brain eQTLs

(PsychENCODE). *HAVCR2* was significantly differentially expressed in bulk brain tissue of patients with LOAD compared to controls²³. *HAVCR2* is preferentially expressed in aged microglia²⁴, was included as one of the top 100 enriched transcripts in brain and microglia and was included in a cluster of transcripts that are involved in sensing endogenous ligands and microbes²⁵. The protein encoded by *HAVCR2* (Havcr2) has been suggested to bind to phosphatidylserine on cell surfaces to mediate apoptosis²⁶ and to interact with amyloid precursor protein²⁷. *TIMD4* is another gene in this region that encodes a protein (TIM-4) with a similar function to Havcr2; it binds to phosphatidylserine on cell surfaces to medi-