Stochastik I

Blatt 6

Aufgabe 1 (3+2=5 Punkte)

Wir betrachten den Maßraum $(\mathbb{R}, \mathcal{B}, \lambda)$.

(a) Wir definieren für $n \in \mathbb{N}$ und $i \in \{1, ..., n\}$

$$A_n^i := \left\lceil \frac{i-1}{n}, \frac{i}{n} \right\rceil \quad \text{ und } \quad f_n^i(x) := \mathbbm{1}_{A_n^i}(x), \quad (x \in \mathbb{R}).$$

Untersuchen Sie die Folge

$$(f_1^1, f_2^1, f_2^2, f_3^1, f_3^2, f_3^3, \dots)$$

auf fast sichere Konvergenz und Konvergenz in $L^1(\lambda)$.

(b) Wir definieren

$$g_n(x) := \frac{1}{n} \mathbb{1}_{[0,n]}(x), \quad (x \in \mathbb{R}).$$

Untersuchen Sie die Folge $(g_n)_{n\in\mathbb{N}}$ auf fast sichere Konvergenz und Konvergenz in $L^1(\lambda)$.

Aufgabe 2 (3+3=6 Punkte)

Sei $(f_n)_{n\in\mathbb{N}}$ eine nichtfallende Folge von messbaren, eigentlich Riemann-integrierbaren Funktionen $f_n:[0,1]\to\mathbb{R}$, die punktweise gegen eine eigentlich Riemann-integrierbare Grenzfunktion $f:[0,1]\to\mathbb{R}$ konvergieren.

(a) Zeigen Sie

$$\lim_{n\to\infty} \int_0^1 f_n(s) \ ds = \int_0^1 f(s) \ ds,$$

wobei die beiden auftretenden Integrale Riemann-Integrale sind.

(b) Zeigen Sie durch Angabe eines Gegenbeispiels, dass in Teil (a) im Allgemeinen auf die Forderung der Riemann-Integrierbarkeit der Grenzfunktion f nicht verzichtet werden kann.

Hinweis: Hierbei können Sie zum Beispiel eine Folge von Indikatorfunktionen zu geeigneten Mengen rationaler Zahlen betrachten.

Aufgabe 3 (9 Punkte)

Sei Ω eine nicht-leere Menge, \mathcal{R} ein Ring auf Ω und μ ein endlicher Inhalt auf \mathcal{R} . Weiter sei

$$X = \sum_{i=1}^{m} a_i \mathbb{1}_{A_i}$$

eine Funktion in \mathcal{E} mit paarweise disjunkten Mengen $A_i \in \mathcal{R} \ (i=1,\ldots,m), \ \cup_{i=1}^m A_i = \Omega \ \text{und} \ a_i \geq 0$

$$\int_{\Omega} X(\omega) \ \mu(d\omega) := \sum_{i=1}^{m} a_i \mu(A_i)$$

(Dieses Integral ist wohldefiniert, was man mit den gleichen Methoden wie im Fall, dass \mathcal{R} eine σ -Algebra und μ ein Maß sind, zeigen kann). Zeigen Sie die folgenden Äquivalenzen:

- (i) μ ist ein Prämaß.
- (ii) Für alle nichtsteigenden Folgen $(X_n)_{n\in\mathbb{N}}$ in \mathcal{E} mit $\lim_{n\to\infty}X_n=0$ gilt

$$\int_{\Omega} X_n \ d\mu \to 0.$$

(iii) Für alle $X \in \mathcal{E}$ gilt

$$\int_{\Omega} X \ d\mu = \inf \left\{ \sup_{n \in \mathbb{N}} \int_{\Omega} Y_n \ d\mu : \ (Y_n)_{n \in \mathbb{N}} \text{ ist nicht fallende Folge in } \mathcal{E} \text{ mit } \sup_{n \in \mathbb{N}} Y_n \ge X \right\}.$$