Компьютерные методы обработки изображений

Лекция 9

Обработка цветных изображений

Человек различает **тысячи** оттенков цвета и порядка **двух десятков** оттенков серого

Как правило значения пикселей изображения представляются в виде 8-битового числа. Для цветных изображений — 24 бита (3 канала * 8 бит)

Обработка цветных изображений

Человек различает **тысячи** оттенков цвета и порядка **двух десятков** оттенков серого

Как правило значения пикселей изображения представляются в виде 8-битового числа. Для цветных изображений — 24 бита (3 канала * 8 бит)

Обработку цветных изображений можно разделить на:

- Обработку в **натуральных цветах** (например, цифровая камера)
- Обработка в **псевдоцветах** (присвоение цветов значениям интенсивности монохромного сигнала)

CRAB NEBULA NATURAL COLOR **ULTRAVIOLET LIGHT INFRARED LIGHT BLACK & WHITE IMAGES TAKEN OF FILTERED LIGHT** COLORS ASSIGNED TO BLACK & WHITE IMAGES FINAL IMAGE AFTER COMBINING THE COLORED IMAGES

Колбочки (6-7 миллионов) отвечают за восприятие цвета

65 % всех колбочек воспринимают красный свет, 33 % воспринимают зеленый свет 2 % воспринимают синий цвет (наиболее чувствительные)

По этой причине красный (R), зеленый (G) и синий (B) называются первичными основными цветами

Рис. 6.3. Кривые спектральной чувствительности колбочек человеческого глаза (зависимость относительного коэффициента поглощения от длины волны)

a 6

Сложение **первичных** цветов = **вторичные** основные цвета (пурпурный, голубой, желтый)

Вторичные цвета являются первичными цветами для красителей: цвет определяется как цвет красителя, который поглощает, или вычитает, некоторый один первичный основной цвет светового источника и отражает либо пропускает два оставшихся

ис. 6.4. Первичные и вторичные основные цвета световых источников и красителей. (Изображение предоставлено General Electric Co., Lamp Business Division)

Один пиксель состоит из трех "подпикселей", соответствующих каждому из каналов RGB

Диаграмма цветностей МКО (международная комиссия по освещению)

Диаграмма предназначена для задания цветов

Разработали стандартный набор **монохроматических первичных основных цветов** (приблизительно соответствует экспериментальным данным)

Функция х (красной) и у (зеленой) координат цветности. Значение синей координаты (z) можно получить как z = 1 - (x + y)

Цветность = **цветовой тон** (доминирующий цвет, воспринимаемый наблюдателем) + **насыщенность** (связана с количеством белого цвета)

Рис. 6.5. Диаграмма цветностей. (Изображение предоставлено General Electric Co., Lamp Business Division)

- Наличие первичных цветов не означает, что **все** цвета спектра могут быть воспроизведены
- Отрезок, соединяющий 2 точки определяет цвета, которые можно получить путем смешивания этих 2-х цветов
- На границе диаграммы чистые (монохроматические) цвета, внутри смесь цветов
- Если 3 цвета смешиваем, то диапазон цветов, которые можно получить, лежат внутри треугольника

Рис. 6.5. Диаграмма цветностей. (Изображение предоставлено General Electric Co., Lamp Business Division)

У RGB мониторов треугольник показывает диапазон воспроизводимых цветов (цветовой охват)

Рис. 6.6. Типичный цветовой охват цветного монитора (треугольная область) и цветного печатающего устройства (внутренняя область сложной формы)

Эллипсы МакАдама

Эллипсы порогового цветоразличения (примерно) показывают области на диаграмме цветности, неразличимые для среднего человеческого глаза

Цветовые модели. RGB

Цветовые модели (цветовое пространство) — некоторая система координат, в которой каждый цвет представляет собой точку в пространстве

RGB (Red, Green, Blue)

В основе три компоненты: красный, зеленый, синий

Пространство представляет собой куб

Число битов для представления пикселей – **глубина цвета** (как правило 8 бит на канал)

Число возможных цветов $(2^8)^3 =$

Рис. 6.7. Схематическое изображение цветового куба RGB. Точки на главной диагонали представляют оттенки серого цвета: от черного цвета в начале координат до белого цвета в точке (1,1,1)

Цветовые модели. RGB

Цветовые модели (цветовое пространство) – некоторая система координат, в которой каждый цвет представляет собой точку в пространстве

RGB (Red, Green, Blue)

В основе три компоненты: красный, зеленый, синий

Пространство представляет собой куб

Число битов для представления пикселей – глубина цвета (как правило 8 бит на канал)

Число возможных цветов $(2^8)^3 = 16777216$

Рис. 6.7. Схематическое изображение цветового куба RGB. Точки на главной диагонали представляют оттенки серого цвета: от черного цвета в начале координат до белого цвета в точке (1,1,1)

Цветовые модели. СМУ/СМҮК

CMY/CMYK (Cyan, Magenta, Yellow, blacK / голубой, пурпурный, желтый, черный)

Пример: голубая краска освещается белым светом — красный не отражается, т.е. голубой краситель **вычитает** красный из белого

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = 1 - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

C + M + Y = черный, но на практике (при печати) он получается тусклым, поэтому дополняют модель до CMYK

Четырехцветная печать – это CMY + black

Цветовые модели. HSI

HSI (Hue, Saturation, Intensity / цветовой тон, насыщенность, интенсивность)

Естественная модель для описания человеком

Информация о яркости отделена от цветовой

Преобразование из RGB в HSI

$$H = \begin{cases} \theta & \text{при } B \leq G, \\ 360^{\circ} - \theta & \text{при } B > G, \end{cases}$$

$$\theta = \arccos \left\{ \frac{\frac{1}{2} [(R-G) + (R-B)]}{[(R-G)^2 + (R-B)(G-B)]^{1/2}} \right\}.$$

$$S = 1 - \frac{3}{(R+G+B)} [\min(R,G,B)].$$

$$I = \frac{1}{3}(R+G+B).$$

Обработка в псевдоцветах

Присвоение цветов пикселям grayscale изображения

Слева: 6 изображений с камер телескопа Джеймс Уэбб в ближнем инфракрасном диапазоне. Справа: получившееся изображение

Обработка в псевдоцветах

Присвоение цветов пикселям grayscale изображения

Обработка в псевдоцветах

В общем случае можно разные преобразования к разным каналам применять

Обработка цветных изображений

При работе с цветным изображением можно:

- Отдельно обрабатывать каждое значение цветного изображения (скаляр)
- Обрабатывать цветной пиксель как одно целое (вектор)

Чтобы **покомпонентная** и **векторная** обработка совпадали, метод должен быть применим как к скалярам, так и к векторам, а также, чтобы операции над каждой компонентой вектора не зависели от других компонент

$$\mathbf{c}(x,y) = \begin{bmatrix} c_R(x,y) \\ c_G(x,y) \\ c_B(x,y) \end{bmatrix} = \begin{bmatrix} R(x,y) \\ G(x,y) \\ B(x,y) \end{bmatrix}$$

Пример: повышение резкости

Лапласиан применяется к каждой компоненте

$$\nabla^{2} [\mathbf{c}(x,y)] = \begin{bmatrix} \nabla^{2} R(x,y) \\ \nabla^{2} G(x,y) \\ \nabla^{2} B(x,y) \end{bmatrix}.$$

Пример: сверточный слой в CNN

Пример: шум

Может иметь как одинаковые характеристики во всех каналах, так и разные

Если одна компонента RGB зашумлена, то преобразование в HSI приводит к распространению шума на все компоненты HSI

Результат применения линейного фильтра одинаков как для вектора, так и для скаляра Медианный (нелинейный) фильтр таким свойством не обладает

