

Dark matter searches with Run 2 data

Patrick Rieck on behalf of the Exotics, Higgs and SUSY groups

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

> ATLAS Week Berlin 8 October 2019

Outline

- ► Landscape of models
- Overview of searches
- Combination of searches

Outline

- ► Landscape of models
- Overview of searches
- Combination of searches

BSM Mediator and Long Lived Particle searches covered in Exotics Working Group report by Nishu on Friday.

Landscape of models

Simplified Models

- New mediators introduced ad hoc for SM-WIMP interaction
- Not UV-complete, also anomalies
- e.g. Z' resonance⇒ Mono-Jet signature:

Landscape of models

Simplified Models

- New mediators introduced ad hoc for SM-WIMP interaction
- Not UV-complete, also anomalies
- e.g. Z' resonance⇒ Mono-Jet signature:

Consistent Models

- UV-completeness, achieved with a larger particle content
- Hence more complex phenomenology
- Example: 2HDM+Pseudoscalar ⇒ Mono-h signature

Includes SUSY, see also Will's talk

Landscape of models

Simplified Models

- New mediators introduced ad hoc for SM-WIMP interaction
- Not UV-complete, also anomalies
- e.g. Z' resonance⇒ Mono-Jet signature:

Consistent Models

- UV-completeness, achieved with a larger particle content
- Hence more complex phenomenology
- ► Example: 2HDM+Pseudoscalar⇒ Mono-h signature

Includes SUSY, see also Will's talk

More Exotic Models

- e.g. strongly interacting massive particles - SIMPs
- QCD-like phenomenology in the dark sector
- ► Example: dark showers ⇒ semi-visible jets

Signature

- E_T^{miss} > 200 GeV + up to 4 jets
 ⇒ sensitivity to several new phenomena
- ► Signal region (no leptons) + W, Z and top-quark control regions

Improvements

- ▶ More control regions (W(ev), Z(ee))
- MET threshold lowered to 200 GeV
- ► Lepton veto p_T thresholds lowered
- Overall approx. 20 % sensitivty increase due to analysis improvements only

Status

 Control Region fits being studied, then proceed to unblinding, circulate to ATLAS by the end of this year

- ► W/Z+jets backgrounds including electroweak NLO corrections
- \blacktriangleright $Wt/t\bar{t}$ interference modelling affecting backgrounds in top control region Patrick Rieck · MPP Munich Dark Matter Searches

MET+H(bb)

Signature

- Associated production of dark matter and a Higgs boson, H→ bb ⇒ signal peak in di-b-jet mass distribution
- Target b-jet pairs in both resolved and merged topologies, for the latter use variable-radius track jets

Improvements

- Resolved event selection
- Background modelling uncertainties

Status

Finalised event selection, target Moriond 2020

Particularities

 Consider this analysis as a use case for a machine learning based boosted H-boson tagger (after this full Run 2 MET+H(bb) paper) – link to slides

MET+H(bb)

Signature

- Associated production of dark matter and a Higgs boson, H→ bb ⇒ signal peak in di-b-jet mass distribution
- Target b-jet pairs in both resolved and merged topologies, for the latter use variable-radius track jets

Improvements

- Resolved event selection
- Background modelling uncertainties

Status

Finalised event selection, target Moriond 2020

Particularities

 Consider this analysis as a use case for a machine learning based boosted H-boson tagger (after this full Run 2 MET+H(bb) paper) – link to slides

MET+H(bb)

Signature

- Associated production of dark matter and a Higgs boson, H→ bb ⇒ signal peak in di-b-jet mass distribution
- Target b-jet pairs in both resolved and merged topologies, for the latter use variable-radius track jets

Improvements

- Resolved event selection
- Background modelling uncertainties

Status

Finalised event selection, target Moriond 2020

Particularities

 Consider this analysis as a use case for a machine learning based boosted H-boson tagger (after this full Run 2 MET+H(bb) paper) – link to slides

MET+s(WW)

Signature

- New mediator Z' acquiring a mass due to a dark Higgs boson s ⇒ signal peak in invariant mass distribution at m_s
- Assuming $m_s > 2m_W \Rightarrow \text{MET+}WW(qqqq)$ final state dominating

Improvements

First analysis targeting this final state

Status

Finalising event selection, circulate to ATLAS this year

- ▶ Use track-assisted reclustered (TAR) jets to identify merged $s \rightarrow WW \rightarrow qqqq$ decays
 - ⇒ Flexibility for boosted jet reconstruction due to TAR jets
 - Choice of radius parameter
 - Track-based substructure (hence high granularity)
 - Bottom-up uncertainties

MET+s(WW)

Signature

- New mediator Z' acquiring a mass due to a dark Higgs boson $s \Rightarrow$ signal peak in invariant mass distribution at ms
- Assuming $m_s > 2m_W \Rightarrow MET+WW(qqqq)$ final state dominating

Improvements

First analysis targeting this final state

Status

Finalising event selection, circulate to ATLAS this year

- ▶ Use track-assisted reclustered (TAR) jets to identify merged $s \rightarrow WW \rightarrow qqqq$ decays
 - ⇒ Flexibility for boosted jet reconstruction due to TAR jets
 - Choice of radius parameter
 - Track-based substructure (hence high granularity)
 - Bottom-up uncertainties

VBF+MET

Signature

- Pair of jets with $|\Delta \eta| > 3.8$, MET>150 GeV, signal excess at large MET and dijet-mass
- Primary channel to search for invisible Higgs boson decays

Improvements

- Event selection and multi-region fitting
- Considering a Machine Learning approach
- Increased background MC statistics

Status

► Finalising Machine Learning studies and object selection, target Moriond 2020

- ► Demanding *W/Z*+jets background MC generation (previously major uncertainty)
 - More efficient filters used in Sherpa 2.2.7
 - Ideally include electroweak NLO corrections and correlate W and Z+jets backgrounds in the statistical model (3 ACEs involved)
- ► Recently kicked-off a VBF+MET+Photon analysis targeting the same physics

 Patrick Rieck · MPP Munich

 Dark Matter Searches

$MET+Z(\ell\ell)$

Signature

 MET + leptons, which are used for triggering => lower MET scenarios accessible

Improvements

 Event selection optimised, including object based MET significance

Status

 Committment increased recently; aiming to finalise in summer 2020

- ▶ To be included in the $H \rightarrow$ inv. combination
- ▶ Main background $Z(\ell\ell)Z(\ell\nu)$ investigating a data-driven estimate based on $Z(\ell\ell)$ + γ events link to slides

Signature

- 2HMD+a model leading to single top-quark + Dark Matter production
 - Wt channel (single and di-lepton) dominating due to H[±] resonance
 - Also consider t-channel production

Improvements

First analysis targeting this final state

Status

 Started EB review, circulate to ATLAS by the end of this year

Particularities

- Signal parameter scan using m_a, tan β and m[±]_H
- Investigating BDT based signal separation for t-channel production

Wt 1 Lepton

Wt 2 Lepton

Dark Matter + Heavy Flavour pair production

links to glance

Signature

- Alternative interpretation to stop search: simplified model with dark matter + (pseudo)scalar, essentially ttH, H →inv.
- Covering all lepton multiplicities
- ► Also investigate MET+ $b\bar{b}$ final state

Improvements

Using a multi-bin approach

Status

- Finalise MET+ $t\bar{t}$ with 0, 1, 2 leptons this fall
- ► MET+bb̄ to follow until Moriond 2020 at the latest

- ▶ To be included in the $H \rightarrow$ inv. combination
- $Wt/t\bar{t}$ interference modelling affecting backgrounds in top control region
- ▶ Possible future improvements: dedicated high-p_T b-tagging and DNN top-quark tagging with large-R jets

Dark Matter + Heavy Flavour pair production

links to glance

Signature

- Alternative interpretation to stop search: simplified model with dark matter + (pseudo)scalar, essentially ttH, $H \rightarrow inv$.
- Covering all lepton multiplicities
- Also investigate MET+ $b\bar{b}$ final state

Improvements

Using a multi-bin approach

Status

- Finalise MET+ $t\bar{t}$ with 0, 1, 2 leptons this fall
- MET+ $b\bar{b}$ to follow until Moriond 2020 at the latest

- To be included in the $H \rightarrow inv$, combination
- $Wt/t\bar{t}$ interference modelling affecting backgrounds in top control region
- ► Possible future improvements: dedicated high-p_T b-tagging and DNN top-quark tagging with large-R jets

More MET+X searches ongoing

More ongoing analyses

- Mono-Photon: EB requested
- MET+Jets/Z(\(\ell \ell \))+Jets with unfolding: SM measurement, extends Mono-Jet sensitivity at low MET
- ► Mono-W/Z(qq): ramping up efforts
- Mono-H(γγ): more sensitivity to lower MET compared to Mono-H(bb), finalise by next summer
- ▶ Mono-H($\tau\tau$): finalise within this year
- Mono-Top: lack of person power
- Semi-visible jets: requesting signal MC (see Nishu's talk on Friday)

More signatures to be investigated

- Dark Matter simplified model with t-channel mediators LHC Dark Matter Working Group effort started (link to slides)
- SIMP models, e.g. as probed by semi-visible jets

Combinations of Dark Matter searches

 $A_{p}.\Delta_{q\geqslant \pm t}$

Simplified Model Z' mediator

- Summary of exclusion limits of dark matter and resonance searches
- ► Complementarity: large exclusion range achieved via overlay
- Scanning parameter space of couplings and masses
- Compare with direct detection limits on WIMPs

Combinations of Dark Matter searches

Arragett

2HDM+Pseudoscalar

- Scanning the space of 5 free parameters; new benchmarks under discussion to further highlight complimentarity of different analyses
- Sensitivity provided by O(10) ongoing physics analyses, including MET+X and resonance searches
 link to slides
- ► In particular: statistical combination of MET+H(bb) and MET+Z(ℓℓ) searches
- Coordinating efforts early on within the CDM group

Combinations of Dark Matter searches

Higgs-boson decays to weakly interacting particles

- 6 analyses to be statistically combined
- Coordinating efforts early on within the CDM and HComb groups in order to harmonize
 - Physics objects PFlow!
 - Uncertainty schemes
 - Event selection avoid overlaps
- Results will also enter the common Run 2 Higgs coupling combination

Summary

- ▶ Work in progress for a multitude of MET+X signatures
 - Extending early Run 2 results with gradual improvements
 - Exploring new final states and new CP techniques
- Combinations being prepared in parallel with efforts of contributing analyses
- More signatures to be explored in the future

Backup

 Direct detection: nuclear recoil from elastic scattering

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation
- Collider searches: associated production of dark matter and SM particles

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation
- Collider searches: associated production of dark matter and SM particles

- Direct detection: nuclear recoil from elastic scattering
- Indirect detection: dark matter annihilation
- Collider searches: associated production of dark matter and SM particles

Comparison of search strategies:

	Direct	Indirect	Collider - LHC
Typical mass range Observables beyond m_χ Model dependence	10 GeV $< m_\chi <$ 1 TeV $\sigma_{\chi N \to \chi N}$ DM on Earth	10 GeV $<$ m_χ $<$ 100 TeV $\sigma_{\chi\chi \to NN}$ DM in space	$m_\chi \lesssim 1 \text{ TeV}$ many particle physics

RECAST

- Aim to maximize the physics output of BSM searches ⇒ analysis preservation
- Exotics and SUSY groups: for this purpose implemented RECAST as a requirement
- Growing number of published results using RECAST. Examples in MET+X context: Mono-H(bb)
 - 2HDM+Pseudoscalar reinterpretation: Dark Matter Summary paper, 36 fb⁻¹
 - Dark Higgs boson Mono-s(bb): complementary to Mono-s(WW), dedicated PUB note, 80 fb⁻¹

ATLAS PUB Note ATL-PHYS-PUB-2019-032 11th August 2019

RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two b-quarks

The ATLAS Collaboration

(12 August 2019

The numeroperation of a search for data numer produced an association with a Higgs book origing to be busine reads with BELEGES, to character all the BELEGES, a confidence formwork designed to be foliate original to the search of the BELEGES and the BELE

© 2019 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license

RECAST

- Aim to maximize the physics output of BSM searches ⇒ analysis preservation
- Exotics and SUSY groups: for this purpose implemented RECAST as a requirement
- Growing number of published results using RECAST. Examples in MET+X context: Mono-H(bb)
 - 2HDM+Pseudoscalar reinterpretation: Dark Matter Summary paper, 36 fb⁻¹
 - Dark Higgs boson Mono-s(bb): complementary to Mono-s(WW), dedicated PUB note, 80 fb⁻¹

RECAST

- Aim to maximize the physics output of BSM searches ⇒ analysis preservation
- Exotics and SUSY groups: for this purpose implemented RECAST as a requirement
- Growing number of published results using RECAST. Examples in MET+X context: Mono-H(bb)
 - 2HDM+Pseudoscalar reinterpretation: Dark Matter Summary paper, 36 fb⁻¹
 - Dark Higgs boson Mono-s(bb): complementary to Mono-s(WW), dedicated PUB note, 80 fb⁻¹

