LEAD SCORE CASE STUDY Powering X Education's Sales Transformation

Submitted by:

- Sachin Kanchan
 - Smita Gaikwad
 - Megha Jain

Business Challenge - Lead Conversion

X Education - Online Professional Training Platform

- Current Situation:
 - Generates leads through websites, search engines, and referrals
 - Existing lead conversion rate: Only 30%
 - Significant resource wastage on low-potential leads
 - Inefficient sales process
- Key Pain Points:
 - Time and effort spent on unproductive leads
 - Missed opportunities with high-potential prospects
 - Lack of systematic lead prioritization

Our Strategic Solution - Lead Scoring Model

- Objective: Develop a Predictive Lead Score
- Model Highlights:
 - Scoring Range: 0-100
 - Purpose: Identify "Hot Leads" with high conversion potential
 - Goal: Improve conversion rate from 30% to 80%
- Key Deliverables:
 - 1. Logistic Regression Predictive Model
 - 2. Data-Driven Insights Questionnaire
 - 3. Performance Visualization PPT
 - 4. Actionable Recommendations Summary
- Expected Outcomes:
 - Optimize sales team's efforts
 - Increase conversion efficiency
 - Reduce wasted resources
 - Systematic lead qualification process

Methodology Importing Libraries & Setting up Analytics Environment **Dataset Inspection** Data Pre-Processing **Exploratory Data Analysis** Model Building – Logistic Regression **Model Evaluation** Predictions on Test Set Lead Score Generation Findings & Recommendations

Dataset Inspection

- We start with 37 columns and over 9240 rows.
- Most of these columns are string, with only a handful of numerical features

>		Lead Number	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Asymmetrique Activity Score	Asymmetrique Profile Score
	count	9240.000	9240.000	9103.000	9240.000	9103.000	5022.000	5022.000
	mean	617188.436	0.385	3.445	487.698	2.363	14.306	16.345
5	std	23405.996	0.487	4.855	548.021	2.161	1.387	1.811
	min	579533.000	0.000	0.000	0.000	0.000	7.000	11.000
2	25%	596484.500	0.000	1.000	12.000	1.000	14.000	15.000
	50%	615479.000	0.000	3.000	248.000	2.000	14.000	16.000
	75%	637387.250	1.000	5.000	936.000	3.000	15.000	18.000
	max	660737.000	1.000	251.000	2272.000	55.000	18.000	20.000

	Thus and						
<pre><class 'pandas.core.frame.dataframe'=""></class></pre>							
RangeIndex: 9240 entries, 0 to 9239							
Data columns (total 37 columns):							
# Column	Non-Null Count	Dtype					
0 Prospect ID	9240 non-null	object					
1 Lead Number	9240 non-null	int64					
2 Lead Origin	9240 non-null	object					
3 Lead Source	9204 non-null	object					
4 Do Not Email	9240 non-null	object					
5 Do Not Call	9240 non-null	object					
6 Converted	9240 non-null	int64					
7 TotalVisits	9103 non-null	float64					
	9240 non-null	int64					
-		float64					
9 Page Views Per Visit	9103 non-null						
10 Last Activity	9137 non-null	object					
11 Country	6779 non-null	object					
12 Specialization	7802 non-null	object					
13 How did you hear about X Education	7033 non-null	object					
14 What is your current occupation	6550 non-null	object					
15 What matters most to you in choosing a course	6531 non-null	object					
16 Search	9240 non-null	object					
17 Magazine	9240 non-null	object					
18 Newspaper Article	9240 non-null	object					
19 X Education Forums	9240 non-null	object					
20 Newspaper	9240 non-null	object					
21 Digital Advertisement	9240 non-null	object					
22 Through Recommendations	9240 non-null	object					
23 Receive More Updates About Our Courses	9240 non-null	object					
24 Tags	5887 non-null	object					
25 Lead Quality	4473 non-null	object					
26 Update me on Supply Chain Content	9240 non-null	object					
27 Get updates on DM Content	9240 non-null	object					
28 Lead Profile	6531 non-null	object					
29 City	7820 non-null	object					
30 Asymmetrique Activity Index	5022 non-null	object					
31 Asymmetrique Profile Index	5022 non-null	object					
32 Asymmetrique Activity Score	5022 non-null	float64					
33 Asymmetrique Profile Score	5022 non-null	float64					
34 I agree to pay the amount through cheque	9240 non-null	object					
35 A free copy of Mastering The Interview	9240 non-null	object					
36 Last Notable Activity	9240 non-null	object					
	9240 NON-NUII	object					
dtypes: float64(4), int64(3), object(30)							
memory usage: 2.6+ MB							
39 11 4 7 7		((/					

Data PreProcessing

- Select` seems to be erroneously captured in the data collection process despite not being a valid data point.
- We replaced this with 'Unknown'

NULLS

- We dropped features with Null % over 30%
- Retained 'TAGS' column despite high null% owing to its importance
- Dropped rows where 'TAGS' was Null.
- In low null columns
 - for Numerical Features Imputed nulls with median
 - For Categorical Features imputed nulls with mode
- Capped Outliers in Numerical features
- Reduced sub-categories in 'Lead Source'

Target Imbalance

There is a slight imbalance in the Target variable in the given dataset.

Univariate Analysis - Numerical

- We can see a slight skewness in the dataset
- It's a right tailed distribution for most of the numerical features.

Univariate Analysis - Categorical

- We can see a huge imbalance in most of the categorical features
- Some of these seem moderately balanced

Bivariate Analysis - Numerical

 The only pair showing somewhat linear relationship is between -`TotalVisits` & `Page Views Per Visit`

Multivariate Analysis - Numerical

- A high correlation can be seen between `Page Views Per Visit` & `Total Time Spent on Website`
- A good Correlation can also be seen between `Total Time Spent on Website` & `Converted`
- This could imply that those who are highly interested to buy an education program visit the website often, or spend more time exploring the programs during their visits.

Model Building – Logistic Regression

- We start with one-hot encoding the categorical columns
- We get 112 columns as a result
- Here we have a corr heatmap of all dummy features

Train-Test Split, Scaling & RFE

- We split the data into train & test sets
- Scale the Numerical features using MinMaxScaler
- Using RFE to quickly filter down 12 features for analysis
- We don't see extremely high correlation between features here, but we'll manually check using statsmodels

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Final Model

- At the end of the 5th model, we have no longer any feature with high p-values or VIFs
- We stop dropping any more features and are left with 8 features

	feature	VIF
0	const	4.420
7	Tags_Will revert after reading the email	1.353
1	Total Time Spent on W ebsite	1.261
2	Page Views Per Visit	1.158
3	Last Activity_SMS Sent	1.140
5	Tags_Closed by Horizzon	1.106
4	Tags_Busy	1.066
8	Lead Profile_Student of SomeSchool	1.056
6	Tags_Lost to EINS	1.055

	V 1/		180			V ///	() A
Gene	ralized Linear Model R	Regression	Results				
Dep. V ariable:	Converted	No. Obse	rvations:	4709	9		
Model:	GLM	Df R	esiduals:	4700	0		
Model Family:	Binomial	D	f Model:	8	8		
Link Function:	Logit		Scale:	1.0000	0		
Method:	IRLS	Log-Lik	ælihood:	-580.59	9		
Date:	Tue, 17 Dec 2024	С	eviance:	1161.2	2		
Time:	22:03:35	Pears	son chi2:	4.05e+03	3		
No. Iterations:	8 P	'seudo R-s	qu. (CS):	0.6788	8		
Covariance Type:	nonrobust						
		coef	std err	z	P> z	[0.025	0.975]
	const	-4.4580	0.215	-20.777	0.000	-4.879	-4.037
Total Tir	me Spent on W ebsite	3.4602	0.347	9.966	0.000	2.780	4.141
	Page Views Per Visit	-1.1929	0.375	-3.177	0.001	-1.929	-0.457
L	ast Activity_SMS Sent	1.4433	0.179	8.076	0.000	1.093	1.794
	Tags_Busy	3.3894	0.229	14.799	0.000	2.940	3.838
Tag	s_Closed by Horizzon	9.5875	1.017	9.423	0.000	7.593	11.582
	Tags_Lost to EINS	7.7425	0.634	12.214	0.000	6.500	8.985
Tags_Will revert af	ter reading the email	6.9136	0.207	33.392	0.000	6.508	7.319
Lead Profile_Stu	udent of SomeSchool	-2.3014	0.907	-2.537	0.011	-4.080	-0.523

Model Evaluation – Metrics – Train Set

_/	Training Perf	ormance:			
		precision	recall	f1-score	support
0	0	0.96	0.97	0.96	2502
F	1	0.96	0.96	0.96	2207
	accurac y			0.96	4709
_	macro avg	0.96	0.96	0.96	4709
	weighted avg	0.96	0.96	0.96	4709
7	Confusion M at	rix (Traini	.ng):		
	[[2416 86]				
	[90 2117]]				

Accuracy	0.9626
Sensitivity (Recall)	0.9592
Specificity	0.9656

- We take a look at the Classification Report & Confusion Matrix of the Train Set
- Cross-Validation Scores: [0.96178344 0.96496815 0.95329087 0.96815287 0.95855473]
- Mean CV Accuracy: 96.14% (+/- 1.03%)

Model Evaluation – ROC AUC – Train Set

- The ROC curve with an AUC of 0.99 indicates that the logistic regression model is performing exceptionally well.
- This means the model is highly accurate in distinguishing between positive and negative classes. It has a strong ability to correctly classify instances into their respective categories.

Optimal Cutoff – Accuracy-Sensitivity-Specificity

- We can see that all 3 curves intersect at about 0.4
- The accuracy at this threshold is 0.9637

Optimal Cutoff – Precision-Recall

- We can see that all Precision & Recall intersect at about 0.45
- The accuracy at this threshold is 0.9635

Predictions on Test Set – Evaluation Metrics

- We check for Accuracy on Test Set using both thresholds we found in the earlier sliders
- The 'Accuracy-Sensitivity-Specificity' threshold of 0.4 gives slightly higher accuracy in Test set, so we'll proceed with this value.

400					
Testing Perfo	rmance: precision	recall	f1-score	support	3
0	0.98	0.96	0.97	660	
1	0.95	0.97	0.96	518	
accurac y			0.97	1178	8
macro avg	0.97	0.97	0.97	1178	
weighted avg	0.97	0.97	0.97	1178	
Confusion Mat	rix (Testin	g):			
[[635 25] [14 504]]					
audunt o/	6	<n <="" td=""><td></td><td>///</td><td><u> </u></td></n>		///	<u> </u>

Accuracy	0.9669
Sensitivity (Recall)	0.973
Specificity	0.9621

Model Evaluation – ROC AUC – Test Set

- In the Test Set we see an ROC curve with an AUC of 0.99.
- This means the model is highly accurate in distinguishing between positive and negative classes and can correctly classify instances into their respective categories.

Lead Score & Priority Labels

- Finally, we assign Lead Scores to each Lead
- Lead Score is basically the probability of the Lead to Convert multiplied by 100
- We also categorized the Leads as Very High, High,
 Medium & Low Priority based on their Lead
 Scores
- priority level based on a lead score:
 - Score > 80: Very High
 - Score > 60: High
 - Score > 40: Medium
 - Score ≤ 40: Low
- Higher scores indicate higher priority levels.

Key Findings

- Overall Accuracy: 96.14% (Mean CV Accuracy) on the training set, with consistent performance on the test set
- ROC AUC Score: 0.99, indicating excellent discrimination between converted and non-converted leads
- High Sensitivity (Recall): 95.92%, demonstrating strong ability to identify actual conversions
- High Specificity: 96.56%, showing robust performance in correctly identifying non-converting leads
- Optimal Probability Threshold: Identified at 0.4 using Accuracy-Sensitivity-Specificity curve analysis
- Feature Significance: Successfully reduced feature set while maintaining high predictive performance

Recommendations

- **1. Predictive Insights**: Use the model's output to assign lead scores, enabling the sales and marketing teams to prioritize high-probability leads effectively.
- **2. Periodic Model Validation:** Continuously retrain the model with updated data to ensure its performance remains aligned with evolving customer behaviors and market trends.
- **3. Optimize Campaign Strategies**: Focus marketing and engagement efforts on activities or segments associated with high conversion probabilities as identified by the model.
- **4. Monitor Key Metrics**: Conduct regular evaluations of the model's sensitivity, specificity, and accuracy to ensure consistent performance.
- **5. Iterate and Enhance**: Explore additional features, such as external data sources or behavioral metrics, to further refine the model's predictive capabilities.
- **6. Strategic Use of Thresholds**: Adjust the probability threshold based on specific business goals, such as increasing conversion rates or minimizing false negatives, to optimize resource allocation.