Motivation

Frage: Zu welchem Signifikanzniveau hätten wir die Nullhypothese gerade noch verworfen?

Antwort auf diese Frage liefert der *p*–Wert:

Der **p-Wert** eines statistischen Tests gibt die Wahrscheinlichkeit an, unter der Nullhypothese einen extremeren Wert als die realisierte Teststatistik zu beobachten.

Definition

Der p-Wert sagt aus, bis zu welchem vorgegebenen Signifikanzniveau \mathcal{H}_0 verworfen wird.

Damit bewertet er, wie signifikant eine etwaige Abweichung von \mathcal{H}_0 ist.

Entscheidungsregel: Verwerfe \mathcal{H}_0 falls der p-Wert kleiner als α ist.

Für eine statistisch saubere Argumentation, muss das gewünschte Signifikanzniveau α vor der Durchführung des Tests angegeben werden.

Misconceptions

- Warning! A large p-value is not strong evidence in favor of H_0 . A large p-value can occur because H_0 is true or H_0 is false but the test has low power.
- Warning! p-value is not $P(H_0|Data)$, i.e. the p-value is not the probability that the null hypothesis is true
- Correct interpretation: The p-value is the probability under H_0 of observing a value of test statistic the same as or more extreme than what we actually observed!

Beispiel

Wir betrachten das Problem, die Zeichen '8' und 'B' voneinander zu unterscheiden.

Es wird angenommen, dass die Geradlinigkeit der beiden Zeichen normalverteilt ist mit identer Standardabweichung $\sigma=0.05$.

Zur Beantwortung dieser Frage formulieren wir die Nullhypothese

$$\mathcal{H}_0$$
: $\mu_X - \mu_Y = 0$ vs \mathcal{H}_1 : $\mu_X - \mu_Y \neq 0$

und verwenden $\alpha = 0.05$.

Da es sich um ein Zweistichprobenproblem mit bekannter Varianz handelt, greifen wir auf einen Zweistichproben-Gauß-Test zurück.

Der p-Wert ist kleiner als $\alpha = 0.05$, also verwerfen wir die Nullhypothese

$$\mathcal{H}_0$$
: $\mu_X - \mu_Y = 0$.

Das Gerät ist also in der Lage, die beiden Zeichen voneinander zu unterscheiden.