Rotational Conservation Laws: Analogies

The purpose of this pod is to draw analogies between the quantities used in rotational motion and those used in linear motion.

Quantities:

Every quantity in rotational motion has an analogous quantity in linear motion:

Rotational Motion Quantity	Symbol	SI Unit	Linear Motion Quantity	Symbol	SI Unit
Moment of Inertia	I	kg m^2	inertial mass	m	kg
Angular velocity	ω	radians per second	Velocity	v	m/s
Angular momentum	L	Kg m^2 radians per second	Momentum	р	kg m /s
torque	τ	Newton- meters	Force	F	Newtons
Rotational Kinetic Energy	RKE, K, or K _r	Joules (J)	Translational Kinetic Energy	KE or K	Joules (J)

No questions yet

Formulas

Most of the rotational motion formulas have an analogous linear motion formula

Rotational Motion Formula	Linear Motion Formula	
_		
$I = mr^2$	None	
$L = I\omega$	p = mv	
$\Sigma\tau\cdot\Delta t=\Delta L$	$J = \Sigma F \cdot \Delta t = \Delta p$	
12	$K = \frac{1}{2}I\omega^2$	
$K_r = \frac{1}{2}mv^2$	$\kappa = \frac{1}{2}I\omega^2$	

Formula	Name	Notes	
$I = mr^2$	Moment of inertia of a point mass	This formula gives the moment of inertia of one point mass. It was discussed in a pervious pod.	
$L = I\omega$	Definition of Angular Momentum		
$\Sigma \tau \cdot \Delta t = \Delta L$	Impulse Formula for Momentum	Analogous to the <i>impulse</i> formula for linear motion	
$K_r = \frac{1}{2}mv^2$	Definition of <i>rotational</i> kinetic energy	Analogous to the definition of linear kinetic energy.	

No questions yet

Conservation Laws:

If you recall that when learning about linear motion, the **Law of Conservation of Momentum** was one of our crucial laws.

For rotational motion, there is an analogous law, the *Law of Conservation of Angular Momentum!*

The Law of Conservation of Momentum:

In any system with no external forces, the total momentum of the system remains the same.

The Law of Conservation of Angular Momentum:

In any system with no external torques, the total angular momentum remains the same.

If you recall when learning about energy, there was a crucial law (in fact the most crucial law in all of science), called the *Law of Conservation of Energy*.

There isn't an analogous law for rotational motion. Instead, rotational kinetic energy is included as one of the new forms of energy!

The Law of Conservation of Energy:

In any system that experiences no external work, the total energy remains the same. Kinetic energy can include translational or rotational kinetic energy.

The work-energy theorem related the work done on a particle to its kinetic energy. This theorem must also be modified to include *both* forms of kinetic energy.

The Work-Energy Theorem:

The total work done on a particle equals the change in kinetic energy of that particle. Kinetic energy can include rotational or translational kinetic energy.