B. Garbage Collector

time limit per test: 1 second

memory limit per test: 256 megabytes

You're implementing a garbage collector for the language **Simplang++**. Its memory is a linear array of *n* slots. Each slot contains either:

- A non-negative integer (pointer) indicating another slot's index, or
- A negative integer (non-pointer data).

Given the memory array and a set of root pointers, identify all contiguous blocks of unreachable (garbage) slots. Report each garbage block's starting index and size.

Input

- The first line contains two integers n and r, where n ($1 \le n \le 10^5$) is the size of the memory array, and r ($0 \le r \le n$) is the number of root pointers.
- The second line contains n integers $a_0, a_1, \ldots, a_{n-1}$, the memory array description:
 - \circ If $a_i \geq 0$, slot i contains a pointer to slot a_i .
 - \circ If $a_i < 0$, slot i contains non-pointer data.
- The third line contains r distinct integers b_1, b_2, \ldots, b_r ($0 \leq b_i < n$), the root pointers' addresses.

Output

- ullet On the first line, output a single integer m, the number of garbage memory blocks.
- ullet Then output m lines, each containing two integers s_i and c_i , where:
 - \circ s_i : the starting index of the i^{th} garbage memory block.
 - $\circ \ c_i$: the size (number of contiguous slots) of this garbage block.
- Garbage blocks must be reported in ascending order of their starting indices.
- If there are no garbage blocks, output a single line containing 0.

Example

```
input

10 2
1 -3 3 -1 2 7 -2 -1 9 -1
0 4

output

1
5 5
```