CdL Fisica - Meccanica - (prof. Spurio) 07/01/2021

Esercizio A

Due blocchi di massa M_1 =1.20 kg e M_2 =0.25 kg sono appesi come in figura: M_1 è appeso al soffitto con un filo inestensibile e di massa trascurabile, mentre M_2 è appeso a M_1 tramite una molla ideale di costante elastica k=30 N/m e lunghezza a riposo L_0 =20 cm. All'istante iniziale (t = 0) i corpi sono fermi e la molla è compressa dal basso, con distanza fra M_1 e M_2 pari a L_0 /2. Nel moto successivo, M_2 scende fino a raggiungere una distanza massima L_{max} da M_1 . Calcolare

- 1. il valore della tensione T₁ all'istante iniziale
- 2. La posizione di equilibrio per la molla, calcolata rispetto alla base della massa M₁
- 3. Mostrare che la forza di richiamo della molla produce una forza elastica rispetto la posizione di equilibrio determinata. Calcolare in tal caso:
- 4. il valore di L_{max} , e il corrispondente valore della tensione T_1 .
- 5. La massima velocità raggiunta da M₂ durante la discesa

Esercizio B

A un'asta verticale di momento d'inerzia trascurabile sono sospese due masse identiche m=0.25 kg attraverso due sbarrette rigide di lunghezza L=20 cm e massa trascurabile. Quando il sistema ruota intorno all'asse verticale con velocità angolare costante ω , esiste una configurazione in cui l'angolo θ che le due sbarrette formano rispetto alla verticale è costante nel tempo e funzione di ω .

- 1. Assumendo che θ sia costante durante la rotazione, si determini la relazione tra la velocità angolare ω e l'angolo θ , trascurando tutte le forze di attrito.
- 2. Si determini la minima velocità angolare ω_0 per cui $\theta > 0$.

Si supponga ora che le due masse m siano soggette ad una forza di attrito viscoso proporzionale alla loro velocità, $\mathbf{F} = -\beta \mathbf{v}$, con $\beta = 3.0$ kg/s, e che il sistema venga mantenuto in rotazione da un motore con velocità angolare $\omega_1 = 14$ rad/s. In queste condizioni, assumendo sempre che l'angolo θ sia costante durante la rotazione, si calcoli:

- il lavoro per ogni giro compiuto dal motore per vincere l'attrito viscoso;
- la componente assiale L_z del momento angolare del sistema rispetto al punto di sospensione delle sbarrette.

Improvvisamente il motore si spegne ed il sistema comincia a rallentare a causa dell'attrito.

5. (Difficile) Si calcoli dopo quanto tempo L_z si è ridotto del 90% rispetto al valore calcolato al punto precedente.

Esercizio A	Esercizio B
1) T ₁ = 8.8 N	2) ω ₀ = 7.0 rad/s
2) L _{eq} = 0.28 m	3) L=19.8 J
4) L _{max} = 0.46 m; T=19.6 N	5) t*=0.2 s
5) v _{max} = 1.98 m/s	