PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-282148

(43)Date of publication of application: 14.11.1989

(51)Int.CI.

CO4B 35/14

(21)Application number: 63-109095

(71)Applicant: SHINAGAWA REFRACT CO LTD

(22)Date of filing:

06.05.1988

(72)Inventor: NOBUHARA KEIICHI

NISHIYAMA HIDEAKI HOSAKA RYUICHI MATSUDA KENSAKU

(54) MELTED SILICEOUS REFRACTORY BRICK RESISTANT TO GASEOUS CHLORINE

(57)Abstract:

PURPOSE: To obtain a refractory brick wherein the service life of a chlorine furnace is prolonged and both maintenance and controlling thereof are made easy and cost reduction is enabled by molding a specified refractory raw material while utilizing water—soluble alginate as a binder and calcining the molded article and impregnating the calcined article with gaseous chlorine resistant substance.

CONSTITUTION: A refractory raw material which consists of both ≥99.0% SiO2 and trace quantity of the content of Al2O3 and Fe2O3 and has particle size distribution of several micron W5.0mm diameter is molded by a slurry casting method while utilizing 0.1W0.3wt.% water—soluble alginate as a binder. Then this molded article is calcined at 1200W1350° C and the calcined article is impregnated with gaseous chlorine resistant substance and a melted siliceous refractory brick having ≤5% apparent porosity is obtained. As the utilized water—soluble alginate, ammonium alginate, sodium alginate and potassium alginate are shown. SiO2 content must be regulated to ≥99.0% because impurities especially Al2O3 and Fe2O3, etc., easy—to react with gaseous chlorine are made little.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

19日本国特許庁(JP)

① 特 許 出 顯 公 閉

® 公開特許公報(A) 平1-282148

®Int. Cl. ⁴

識別記号

庁内整理番号

國公開 平成1年(1989)11月14日

C 04 B 35/14

8924-4G

審査請求 有 請求項の数 3 (全3頁)

2発明の名称 耐塩素ガス用溶融シリカ質耐火煉瓦

②特 顋 昭63-109095

②出 顯 昭63(1988)5月6日

個発 明 者 延 原 敬 岡山県備前市浦伊部1099-15 個発 明 者 西山 英 昭 岡山県和気郡和気町大中山1279 個発 明者 保 坂 隆 福島県いわき市内郷高坂町1-69-5 @発明者 松田 研 作 岡山県邑久郡長船町福岡字福永1203 仞出 顧 人 品川白煉瓦株式会社 東京都千代田区大手町2丁目2番1号

四代 理 人 弁理士 八木田 茂 外2名

明細書

1. 発明の名称

耐塩素ガス用溶融シリカ質耐火煉瓦

2. 特許請求の範囲

- (1) S101 99.0%以上で A2 10。及びFe10。の合有量が微量であり、粒度分布が数ミクロン~5.0mm 径である耐火物原料を0.1~0.3 重量%の水溶性アルギン酸塩をバインダーとして泥漿鋳込法により成型し、1200°~1350℃で焼成し、該焼成品を耐塩素がス物質で含浸し、見掛気孔率を5%以下とした、ことを特徴とする耐塩素がス用溶験シリカ質耐火煉瓦。
- (2) 前記水格性アルギン酸塩が、アルギン酸アンモニウム、アルギン酸ナトリウム又はアルギン酸カリウムである請求項1記載の耐塩素ガス用格 融シリカ質耐火煉瓦。
- (1) 前記耐塩素ガス物質がシリカゾル又はケイ酸ソーダである請求項1記載の耐塩素ガス用溶融シリカ質耐火煉瓦。

3. 発明の詳細な説明

産業上の利用分野

本発明は耐塩素ガス、特に塩化炉及び付帯設備 に好適な耐塩素ガス用溶融シリカ質耐火煉瓦に関 する。

従来の技術

T10 * 原料と炭素原料を用い、 700~1000℃に加然しながら塩素ガスを送入し、スポンジ金属チタニウム製造用原料である TiC & 4 を生成する塩化炉が知られている。この種塩化炉の内張耐火物は塩素ガスの影響が比較的軽微な部位はSiO * 55%、 A & * 20 * 40~45%とから主としてなる粘土質煉瓦を用い、塩素ガスとの反応が大きい部位にはSiO * 255%以上含有する溶融シリカ質煉瓦が一般使用されている。

しかしながら、従来の塩化炉内張りに用いられている煉瓦は何れも10~15%の見掛気孔率を有しているために、気孔に沿って塩素ガスが煉瓦内に侵入し組織腹弱化を生起したり、内張耐火物と炉内反応生成物との摩頼を生じ、煉瓦の損傷が大きく、短命となっていることが知られている。

特開平1-282148 (2)

発明が解決しようとする課題

前述した如き従来方式の諸欠陥を解決し、塩化炉の寿命の延命化並びに保守、管理を容易とし、コストダウンを意図するものである。

護題を解決するための手段

本出駅人会社の商品 SUBMAX-Sは SIO # 89.6%合有の溶融シリカ質耐火煉瓦であって、浸漬ノズル用として開発販売されているが、この煉瓦の見掛気孔率は11.0%前後であり、塩化炉内張煉瓦としては見掛気孔率が大であって塩素ガスによる組織の酸化はまぬがれない。

本発明者等はこの種塩化炉用内張耐火物に好遺な耐火煉瓦の開発に成功したものであり、その技術的構成は前記特許請求の範囲各項に明記したとおりであるが、各必須の技術的構成について以下に詳述する。

\$10.含有量は高い程不能物、特に塩素ガスと易反応性の A.C.10。、 Fe.0。 等が少なくなるため、
\$10.含有量は99.0%以上としなければならない。
粒度分布は微細粒度の原料を用いることにより見

せ、見掛気孔率の低下を図り、耐塩素ガス含浸物 質としてはシリカゾル、ケイ酸ソーダ等が好適か つ効果的である。

事族例

見掛気孔率の異なる溶融シリカ質焼成れんが及び粘土質れんがの耐塩素ガス特性を第1表に示す。第1表から見掛気孔率 1.3%のれんが試料や1はね2,3、4,5に比較して塩素ガスによる 重量級が少なくシリカ質耐火煉瓦特性が向上していることが明らかである。

掛気孔率の低下に有用であり、連続した粒度分布の材料を用いることにより、より緻密な鋳込品を得ることができ、5.0cm 径より大なる粒子の存在は泥漿鋳込の際に偏析する傾向があり、均一拡散銀織が得られない。

バインダーとして用いる水溶性アルギン酸塩は、アルギン酸アンモニウム、アルギン酸ナトリウム又はアルギン酸カリウムであり添加量は0.1~0.3 重量%であり、0.1 重量%未満では所要の結合が得られず、0.3 重量%をこえる必要がない。上記上限をこえて添加すると、クリストバライト転移の促進剤として働き、煉瓦組織の緻密化を阻害するばかりか、塩素ガスとの反応を助長し、また Tica 4 等による摩耗が促進される。

焼成温度は1200°~1350℃とし、1350℃を超えると、煉瓦組織中にクリストバライトの転移が起り、組織の緻密化が阻害される。従って、従来品に比しほ× 100~150 ℃高い焼成温度範囲が必要である。

更に、焼成品は耐塩素ガス物質により含浸さ

第 1 表

	K	#4 No	1	2	3	4	5
金米	溶融シリカ		100	100	100	90	-
	シャモット		-	-	-	-	90
	粘土		-	-	-	10	10
化学组成		SiO ₂	99.5	99.5	99.5	91.5	53.6
(%)		A.Q. 20a	-	-	_ ·	8.0	42.8
見掛気孔率(%)			1.3	3.6	9.9	1.5	12.5
かさ比重			2.14	2.17	1.97	2.35	2.40
●1 塩素ガステスト (重量減少率(%))			0.7	2.4	5.5	25.9	84.5
•2 摩託テスト (摩託量 (cm²)			10	26	35	15	22
•1 スポーリングテスト (亀製発生回数)			20回以 上	20回以上	下 50回訂	6回目	2回目
含 浸 剤			अभि	ケイ酸ソーダ	-	-	_

•1;1100℃、24 時間、 CA;:24A/hr

+2;サンドプラスト法:圧力3.5Kgf/cm2 珪石粒、3分間吹付

•1:1000℃空冷

発明の効果

- (1) 気孔率が低いので塩素ガスの侵入が少ない。
- (2) 従って、塩化炉内張材として使用すると、 内張りの損傷が極めて少なく、内張りの寿命が延 長され、作業性が改良される。