Chest X-ray Classifier vs Clinical Diagnosis Performance Version 1

This summary compares the performance of an AI model trained on chest X-rays with published clinical benchmarks. It highlights areas where the AI aligns with or falls short of typical radiologist-level sensitivity.

Condition	Model Performance	Clinical Benchmark	Remarks
NORMAL	0.991	95-99%	Excellent (matches
			expert-level review)
BACTERIAL	0.866	80-90%	Strong, close to
PNEUMONIA			clinical diagnosis
COVID 19	0.855	70-90%	Comparable to early
			COVID imaging
			studies
PNEUMOTHORAX	0.718	85-95%	Needs improvement
			(misses some cases)
VIRAL PNEUMONIA	0.676	70-85%	Slightly below range
LUNG NODULES	0.669	65-85%	Acceptable, on the
			lower end
MASS	0.633	60-80%	Within clinical
			variation
EMPHYSEMA	0.506	50-75%	Borderline (often
			underdiagnosed in
			X-rays)
PLEURAL	0.372	40-70%	Significantly
THICKENING			underperforming

We are actively working to enhance this model's accuracy and reliability. Upcoming updates will include additional training data, better handling of non-chest X-ray inputs, and expanded support for edge-case diagnoses. Our goal is to build a more robust and clinically aligned system through iterative validation and model refinement.

Sources & References

Bairwa, H., & `Jangid, R. (2024). Pneumonia Detection from Chest X-Rays Using the Chexnet Deep Learning Algorithm. https://doi.org/10.20944/preprints202407.0104.v1

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). Chestx-Ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 3462–3471. https://doi.org/10.1109/cvpr.2017.369

Johnson, A.E.W., Pollard, T.J., Berkowitz, S.J. et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data 6, 317 (2019). https://doi.org/10.1038/s41597-019-0322-0