Transformers: shining in OOV inflection, but beaten on true neologisms by a non-neural model

OOVs in the Spotlight: How to Inflect them?

Tomáš Sourada, Jana Straková, Rudolf Rosa {sourada, strakova, rosa}@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics Prague, Czech Republic

Introduction

task:
 lemma + number + case → inflected form

- morphological inflection in out-ofvocabulary (OOV) conditions
- SOTA systems may struggle when asked to inflect unseen lemma
- focus on Czech nouns, extend to 16
 languages and all POS

Data

- train-dev-test split of morphological dictionary (lemma-disjoint)
- additional test set of neologisms (real-world OOVs)
- released as Czech OOV InflectionDataset

Methods

- non-neural retrograde model (based on suffix similarity of lemmas)
- LSTM- and Transformer-based encoderdecoder, trained from scratch, extensively tuned

Results

- SIGMORPHON'22 OOV conditions:
- our seq2seq SOTA in 9 of 16 langs
- Czech simulated OOV conditions:
- Transformer performs the best
- Czech true OOVs (neologisms):
- overall performance drop
- Transformer defeated by nonneural models

Discussion

- small test set of neologisms: would the results scale on a large one?
- is morphological dictionary a good train set for inflecting true OOVs?
- if not, how to select the train data?

Da	itasets Iemma	tag	form
	elektrořidič elektrořidič elektrořidič	S1 S2 S3	elektrořidič elektrořidiče elektrořidičovi
	elektrořidič elektrořidič	 P6 P7	elektrořidičích elektrořidiči

Set	lemmas	forms	Source
train	360k	5.04M	MorfFlex
dev	44k	616k	MorfFlex
test-MorfFlex	44k	616k	MorfFlex
test-neologisms	101	1.4k	Čeština 2.0

Non-neural retrograde model

		1			
HRA	ND		ÚŘAD		
hr-ad	hr-ady		úř-ad	úř-ady	
hr-adu			úř-adu		
hr-adu	•••	\longrightarrow	úř-adu	•••	
•••			•••		
hr-adem	hr-ady		úř-adem	úř-ady	

Results

test set	Mor	fFlex	neologisms		
model	FA	FPA	FA	FPA	
сору	22.6	1.5	13.1	0	
sklonuj.cz	88.9	74.4	86.2	55	
SIG nonneur	94.8	88.2	89.5	71	
SIG trm	95.5	87.3	87.5	63	
SIG trm-tune	96.2	90.2	86.5	55	
Retrograde	94.9	88.6	89.3	71	
LSTM	96.2	89.8	87.0	58	
Transformer	96.2	90.4	87.2	61	
majority-vote	96.4	90.7	90.4	64	

SIGMORPHON 2022 comparison

						<u> </u>			
	Submitted systems				Baselines		Ours		
Lang	CLUZH	Flexica	OSU	TüM	UBC	Neural	NonNeur	LSTM	TRM
ang	76.6	64.4	73.7	71.9	74.1	73.4	68.7	76.3	75.5
ara	81.7	65.5	78.7	78.5	65.5	81.9	50.8	79.2	82.6
asm	83.3	75.0	75.0	91.7	83.3	83.3	83.3	83.3	83.3
got	92.9	41.4	94.1	91.7	91.7	93.5	87.6	92.3	92.3
hun	93.5	62.9	93.1	92.8	91.5	94.4	73.1	92.8	94.4
kat	96.7	95.7	96.7	96.7	96.7	97.3	96.7	97.3	97.8
khk	94.1	47.1	94.1	94.1	88.2	94.1	88.2	100.0	94.1
kor	71.1	55.4	50.6	56.6	60.2	62.7	59.0	49.4	62.7
krl	87.5	69.8	85.9	57.8	85.4	57.8	20.8	89.1	85.9
lud	87.3	92.0	92.9	93.4	88.2	94.3	93.4	89.2	92.0
non	85.2	77.0	85.2	80.3	90.2	88.5	80.3	83.6	88.5
pol	96.1	85.9	94.9	74.0	95.7	74.4	86.3	96.1	95.6
poma	76.1	54.5	70.1	69.4	73.3	74.1	47.8	75.2	76.3
slk	93.5	90.0	92.2	70.4	95.7	71.1	92.4	95.2	95.7
tur	93.7	57.9	95.2	80.2	92.9	79.4	66.7	95.2	92.9
vep	71.5	58.8	70.0	57.5	68.8	59.2	60.4	70.7	68.8
average	86.3	68.3	83.9	78.6	83.8	80.0	72.2	85.3	86.1

