Chemical routes to materials

Preparation of MoS₂ nanosheets to support Pd species for selective steerable hydrogenation of acetylene

Yang Guo¹, Jinlian Xie², Lijuan Jia^{3,*} , Yuzhen Shi², Jian Zhang², Qiuling Chen², and Qingqing Guan²

Received: 18 July 2020 Accepted: 18 September 2020 Published online: 30 September 2020

© Springer Science+Business Media, LLC, part of Springer Nature 2020

ABSTRACT

Selective hydrogenation of acetylene to ethylene while avoiding over-hydrogenation into ethane is challenging for polymer industry. For highly steerable catalyst design of Metal-MoS₂, we reported a few-layer nano-MoS₂ supported Pd catalyst, in which the support was prepared by the exfoliation method of bulk molybdenum disulfide (MoS₂) in formamide solution. The results from TEM, SAED, AFM and Raman spectra analysis confirmed that the few-layer nano-MoS₂ was produced successfully. The XPS result indicates Pd charge transferred to MoS₂, proving strong Pd-MoS₂ interactions. Pd/nano-MoS₂ provided a good catalytic performance for the hydrogenation of acetylene to ethylene, and the ethylene selectivity can reach up to 75% while acetylene conversion can achieve nearly 100%. Comparing with the commercial 5% Pd/C catalyst reported at similar conditions, the Pd/nano-MoS₂ synthesized in this study presents better activity and selectivity. In all, this work shows potential application of MoS₂ nanosheets used as catalyst support to achieve selective steerable reactions.

Introduction

Hydrogenation of acetylene is one of typical and important reactions for polymer industry. The key is to convert acetylene to ethylene while avoid overhydrogenation of ethylene into ethane [1]. Currently, Pd-based catalysts are the most industrially used materials for selective hydrogenation of acetylene. Supports with high surface area are commonly employed to avoid agglomeration of Pd particles. Strong metal-support interactions can make some changes in catalytic properties of Pd catalysts to

Handling Editor: Annela M. Seddon.

Address correspondence to E-mail: sherry2070522@sina.com

¹Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China

²Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China

³ School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, People's Republic of China

achieve high ethylene selectivity [2, 3]. With the new material development, thus, there is still room for seeking novel catalyst supports for high selective hydrogenation of acetylene reaction.

Recently, nanoscale molybdenum disulfide (MoS₂) has attracted ever-growing interests in catalysis field due to good properties such as higher surface area, stronger adsorption ability and reactivity [4]. Compared with bulk MoS₂, nanoscale MoS₂ can either perform alone as a highly efficient catalyst or be used as a catalyst support material [5]. Previous studies have shown that the prepared nano-MoS₂ has two kinds of features: structural defects and complete structure [6, 7]. Coordination unsaturated edge atoms produced on the structural defects can provide enough active sites. This kind of MoS₂ nanosheets is mostly used as catalysts, but Nano-MoS2 with multidegree of structural defects have somehow difficulties for application due to less stability [8]. MoS₂ nanosheets with complete crystal structure have higher atomic exposure rate on the base surface, resulting more edge atoms, more stable and non-agglomerative properties. Thus, it not only has better catalytic performance, but also potential to be used as a catalyst support [4].

Synthesizing complete structural nanoscale MoS₂ still remains a strenuous task. The major methods to produce nanoscale MoS₂ include mechanical exfoliation [9], chemical exfoliation [10, 11] or the combination of chemical and physical growth [12]. The lithium intercalation method in chemical exfoliation [13] and chemical vapor deposition [14] can prepare a large number of few- or mono-layers MoS2 nanosheets, but with structural defects. The nano-MoS2 prepared by hydrothermal method [15, 16] is mostly amorphous, and its internal structure is incomplete and results in many defects. Smith et al. [6] developed a reaction solution system equivalent to the surface energy of MoS₂ by adding sodium dodecyl sulfate (SDS) surfactant, which rapidly prepared twodimensional nano-MoS₂ with complete structure under liquid-phase binding mechanical force (ultrasound). The results strongly proved that a few layers of MoS₂ nanosheets with complete structure can be achieved by liquid-phase exfoliated method, while some exfoliated solvents, e.g., N-methyl-2-pyrrolidone (NMP), isopropanol (IPA), dimethylformamide (DMF), effectively prevented the aggregation [17, 18]. Some solvents used for liquid-phase exfoliation have the properties of cheapness, good dispersibility and strong stability. For instance, isopropyl alcohol (IPA), and aqueous ammonia (NH₃) have been found to be favorable for exfoliation of MoS₂ [19, 20]. Additionally, Huang et al. also found that with NMP assisted by formamide can enhance the exfoliation efficiency [20]. Therefore, it is potential to use formamide to exfoliate bulk MoS₂ for well-structured MoS₂ nanocatalyst support.

Herein, a new process of formamide solvent-assisted ultrasonic exfoliation of bulk MoS₂ was developed to prepare few-layer nano-MoS₂-based catalyst support with a well-structured nanosheet. The microbubble N₂ was used to enhance the impact force through the process of rapid enlargement and closing shrinkage under the action of ultrasonic field. We further tested the metal-MoS₂ interactions experimentally for selective hydrogenation of acetylene. In addition, a series of characterizations of the products (such as SEM, TEM, AFM, etc.) were carried out. The findings in this work are expected to be useful for further application of few-layer nano-MoS₂ for highly steerable design of catalysis systems.

Experiments

Materials

Chemical reagents used were of analytic grade. None of the reagents were treated with special treatment. The nitrogen is highly pure. MoS_2 (Sinopharm Chemical Reagent Co. Ltd, 98%) was purchased in powder form. All of the glassware were cleaned and reused after treatment with V_{HNO3} : $V_{HCL} = 1:3$. During the experiment, the deionized water (Milli-Q, Millipore) was used.

Preparation of nano-layer MoS₂

300 mg of MoS₂ was added into 40 mL of formamide solution (Damao chemical reagent factory) and filled the nitrogen. The mixture was sonicated (SB2200-T, Branson Ultrasonics (shanghai) Co. Ltd) for 8 h in icewater bath. Afterward, the mixture was centrifuged at 4000 rpm for 30 min to collect supernatant. Furthermore, the top dispersion was centrifuged at 8000 rpm for 30 min to discard the unexfoliated flakes. Then, the supernatant centrifuged again at 12,000 rpm for 30 min. The process was repeated for several times until the supernatant became light-

colored. The final sediment MoS₂ nanosheets were obtained.

Preparation of catalyst

The MoS₂ nanosheets supported Pd catalysts applied in this work, were prepared according to the ethylene glycol reduction method, as previously reported [21]. Ethylene glycol was used as solvent and reducing agent. The detail process is as follows: 0.85 g MoS₂ nanosheets and 1.5 g PVP (Polyvinyl Pyrrolidone) were added to boiling flask-3-neck filled with 200 ml of ethylene glycol. After sonicating and stirring at room temperature, MoS2 nanosheets were impregnated with palladium nitrate solution (12.36 mg) by magnetic stirring, subsequent adding sodium hydroxide (9 mg). Then the mixture was placed into an oil bath at 463 K and reduced for 4 h with continuous magnetic stirring. Finally, the mixture was washed and filtered with equal volume of ethanol. Then, we dried catalyst at 333 K for 10 h. Finally, 0.87 wt % Pd/MoS₂ nanosheets were prepared, which was detected by inductively coupled plasma (ICP) with an IRIS Interpid (II) XSP and NU AttoM.

Catalytic performance evaluation

Selective hydrogenation of acetylene was performed by a continuous flow fixed-bed stainless steel micro reactor over prepared Pd/MoS₂ nanosheets catalyst. 100 mg of the catalyst was reduced with flowing 20 vol % H_2/N_2 (20.4 mL min⁻¹) at 358 K for 1 h prior to use in the reaction. After the sample was cooled to room temperature, a gas mixture with a space velocity of 40,000 mL h⁻¹ g⁻¹ was introduced into the reactor, simulating the frontend hydrogenation conditions with 20.0 vol % C₂H₂ and 20.0 vol % H₂ balanced with He at a fixed H_2 /acetylene ratio of 2. Mass flow controllers were used to control all gas flows. The reaction temperature was held constant for 20 min before ramping to the next temperature point. Reactant and reaction products were analyzed by gas chromatograph (GC7890A, Agilent, USA) with a thermal conductivity detector (TCD), which equipped a long silica packed column (Φ0.25 mm * 50 mm, Al₂O₃/Na₂SO₄ coating). The conversion and selectivity were calculated as:

$$Conversion = \frac{C_{C_2H_2(inlet)} - C_{C_2H_2(outlet)}}{C_{C_2H_2(inlet)}} \times 100\% \tag{1}$$

$$Selectivity = \frac{C_{C_2H_2(outlet)}}{C_{C_2H_2(inlet)} - C_{C_2H_2(outlet)}} \times 100\% \tag{2} \label{eq:energy}$$

Characterization

Atomic force microscopy (AFM) was used to characterize the morphology of the nanosheets. The suspension was deposited on fresh mica by spin coating and dried under ambient condition. AFM (Bruker Multimode 8, German) was used to obtain images in a tapping mode using Olympus AC240TS probe. Transmission electron microscope (JEM-2100F, Japan) was observed at an accelerating voltage of 200 kV. The surface morphology was examined by a field-emission scanning electron microscopy (FEI PHILIPS XL-30). Raman spectroscopy was performed using in Via-Reflex with 536 nm excitation laser in air under ambient conditions. Ultraviolet Visible (UVvisible) spectroscopy was carried out to analyze the concentration of exfoliated MoS2 with a Cary 60 spectrometer. The excitation wavelength is 532 nm. The gas components from the micro-reactor outlet were analyzed by online gas chromatography (Agilent Technologies 7820A GC system) equipped with an TCD detector.

Results and discussion

Characterization of nano-MoS₂

The suspensions of highly disperse few-layer MoS₂ sheets were prepared from body powder (Fig. 1a) by formamide exfoliation. The concentration of suspensions decreases with the increase of centrifugal rate (Fig. 1b), and the final concentration of MoS₂ nanosheets is about 0.15 mg/mL after 16,000 rpm centrifugation. Most few-layer MoS₂ sheets were obtained in this suspension and were further used as the supports for steerable hydrogenation of acetylene.

To explore the microstructure and quality of the exfoliation MoS₂ nanosheets, TEM analysis was carried out. The TEM images shown in Fig. 1c, d illustrate the two-dimensional ultrathin sheets individually disperse in the solution, showing that the typical piece morphologies of MoS₂ nanosheets. High-resolution TEM images are shown in Fig. 1 e, f.

Figure 1 a Scanning electron microscopy image of MoS_2 powder. **b** Photograph of liquid-phase exfoliated MoS_2 suspension in formamide under different centrifugal rate. $\mathbf{c} \sim \mathbf{f}$ are TEM images of MoS_2 nanosheets. (\mathbf{c} and \mathbf{d}) Low-resolution TEM images of

MoS₂ nanosheets. **e** High-resolution TEM images of MoS₂ sheets. **f** The selected area electron diffraction (SAED) patterns of image of few-layer MoS₂ sheets.

The lattice spacing was measured to be about 0.27 nm (Fig. 1e). It refers to fringe spacingof fewlayer MoS₂ sheets (100 planes) [22]. The morphology of the MoS₂ nanosheets can be observed and their lateral sizes are typically in the range of 150 to 300 nm. The selected area electron diffraction (SAED) was also obtained. The typical hexagonal symmetry of the obtained MoS2 nanosheets is consistent with the typical hexangular atomic structure of MoS₂ [10], indicating that the crystallinity is not damaged during the exfoliation process. It is advantageous to compare with MoS₂ exfoliated by lithium intercalation, which will result in substantial deviation from the original hexagonal structure [23]. Thus, formamide exfoliation can produce well-structured nano-MoS₂.

In order to further determine the size and thickness of MoS_2 nanosheets, AFM imaging was performed for height analysis at multiple locations across the most representative regions in the sample. The AFM topographic images shown in Fig. 2 are consistent with TEM results. The apparent height of MoS_2 nanosheets is found to be $1.2 \sim 1.8$ nm,

corresponding to 3–4 layers of MoS₂ [6]. The objects observed are hundreds of nanometers wide, in agreement with the SEM data. It is clear that the MoS₂ was exfoliated into individual layers. Therefore, the formamide system is promising to exfoliate the bulk MoS₂ for well-structured crystal structure nano-MoS₂.

Since 3-4 layers of MoS₂ show low XRD patterns with high background peaks, therefore the prepared liquid-phase exfoliated MoS2 nanosheets were alternatively characterized by using Raman spectroscopy, and the result is demonstrated in Fig. 3. In a comparison of the exfoliated and bulk MoS₂ samples, the latter shows bands at 376 (E1 2 g) and 401 (A_{1g}) cm⁻¹, while the few-layered MoS₂ exhibits the corresponding bands at 383 and 408 cm⁻¹. Comparing with Li and co-workers' results [23], the peaks have higher frequency in the exfoliated material. The shift in the frequency of the A_{1g} mode as a function of thickness indicates a transition from surface to bulk layers [24]. The intensities of the bands become significantly weaken, revealing that the number of layer decrease. Given the intensity of the full-widths at half

Figure 2 AFM image of a MoS₂ nanosheets, **b** height profiles of MoS₂ nanosheets, **c** AFM height analysis of the image.

Figure 3 Raman spectra recorded using a 536 nm laser.

maximum values are obviously increased in the obtained products than that in the bulk samples, the

few-layers nano- MoS_2 has been synthetized successfully.

Characterization of Pd/nano-MoS₂

We further loaded about 0.87 wt% Pd on the prepared few-layers nano-MoS₂. Due to the high dispersion or low concentration of Pd in the samples, XRD patterns did not find the peak of palladium. Thus, instead, the electronic structures of the elements in Pd/MoS₂ nanocatalyst are probed by XPS.

Figure 4a shows total XPS spectra of the nanocatalyst, which confirms the Pd does exist on the few-layers nano-MoS₂, suggesting a successful synthesis of the Pd/MoS₂ catalyst. In Fig. 4b, c, d, the S 2p, Mo 3d and Pd 3d regions of the Pd/MoS₂ nanocatalyst are shown, respectively. The doublet of Mo⁴⁺ band at 229.7 eV and 232.9 eV in the Mo 3d region of XPS agree well with that of MoS₂ in the literature [25]. Mo,

Figure 4 X-ray photoelectron spectra. **a** The whole region of Pd/MoS_2 nanocatalyst. **b** S 2p region and, **c** Mo 3d region of Pd/MoS_2 , **d** Pd 3d region of catalyst.

Pd and S species also undergo changes in binding energy (BE) upon forming Pd/MoS₂ samples. The S 2p regions of the spectra show a twin peaks of $S 2p_{1/2}$ and S 2p_{3/2} (Fig. 4b) at the corresponding BEs at 163.9 and 162.7 eV respectively. These can be assigned to S²⁻ in MoS₂, but are slightly blue-shifted from those of pure MoS_2 (S $2p_{3/2} = 162.4$ eV), suggesting charge transfer from Pd to MoS₂ [26]. The Pd 3d regions of the spectra are appeared to four sets of peaks as shown in Fig. 4d. The Pd $3d_{5/2}$ peaks at 335.8 eV and 336.8 eV correspond to Pd⁰ and Pd²⁺, respectively [27]. Compared with metallic Pd $(3d_{5/2} = 335.1 \text{ eV})$, the peak assigned to Pd⁰ is blue-shifted, implying charge transfer from Pd to MoS₂ [26]. Thus, strong Pd-nanoMoS₂ interactions do take place, suggesting promoted catalytic properties of Pd catalysts for acetylene hydrogenation.

Figure 5 demonstrates SEM and STEM images of $Pd_{0.87}/MoS_2$ nanocatalyst. As can be seen, Pd particles are scattered on glossy MoS_2 surface with low loading amount of Pd. To prove the existence of Pd particles, x-ray energy dispersive spectroscopy (EDS) was used. It is clear that Pd can be found. Thus, $Pd_{0.87}/MoS_2$ nanocatalyst was synthesized successfully.

Catalytic activity

The catalytic performance of the Pd/MoS₂ nanocatalyst was tested by acetylene selective hydrogenation experiment, and the results are shown in Fig. 6. We can see that, when the temperature is 80 °C, the conversion rate of acetylene reaches almost 100% at both 30,000 mL h^{-1} g^{-1} and 40,000 mL h^{-1} g^{-1} .

Figure 5 a SEM image, b STEM and c EDS of Pd_{0.87}/MoS₂ nanocatalyst.

Additionally, the ethylene selectivity at $40,000 \text{ mL h}^{-1} \text{ g}^{-1}$ is slightly higher than those of the $30,000 \text{ mL h}^{-1} \text{ g}^{-1}$. This may be attributed to the increased adsorption of the catalyst on ethylene with the standing time, which was further converted. Either at $40,000 \text{ mL h}^{-1} \text{ g}^{-1}$ or $30,000 \text{ mL h}^{-1} \text{ g}^{-1}$, under temperature approximately $150 \, ^{\circ}\text{C}$, the conversion efficiency and ethylene selectivity are the highest. In this occasion, the ethylene selectivity over the Pd/MoS₂ nanocatalyst reaches a maximum at $\sim 75\%$ with 100% acetylene conversion under $40,000 \text{ mL h}^{-1} \text{ g}^{-1}$.

We also compared the selective hydrogenation of acetylene with the commercial catalyst 5% Pd/C from Sigma-Aldrich. The hydrogenation of acetylene with Pd/C can reach 100% under 40,000–80,000 mL h⁻¹ g⁻¹ at temperature 50–180 °C, but the ethylene selectivity is only about 15% at all conditions [21]. Thus, the metal-MoS₂ interactions decrease the hydrogenation activity and the adsorption of ethylene, leading high selective hydrogenation of acetylene toward ethylene. Additionally, it was

reported that 40–59% efficiency and 58–93% selectivity can be achieved by Pd/TiO₂ [28], \sim 65% efficiency and \sim 60% selectivity for Pd/SiO₂ [29], 100% efficiency and 71.27% selectivity for Pd/Al₂O₃ [30]. By comparison, Pd/nano-MoS₂ firmly shows good selectivity. Additionally, layer C₃N₄ was used to support Pd, 99% efficiency and 83% selectivity were found at \sim 110 °C [31], presenting similar high efficiency and selectivity as Pd/nano-MoS₂. Thus, it is potential to use few-layer nano-MoS₂ for highly steerable design of catalytic systems, especially for selective hydrogenation of acetylene toward ethylene.

Conclusions

In this paper, we have successfully prepared few-layer MoS_2 nanosheets through exfoliating the bulk MoS_2 by ultrasonication with formamide solution. It can obtain few hundred nanometers in size and 3–4 layers MoS_2 nanosheets and morphologies of MoS_2

Figure 6 a Acetylene conversion and **b** ethylene selectivity versus reaction temperature over the Pd_{0.87}/ MoS₂ nanocatalyst.

are schistose after exfoliation. The most few-layer MoS₂ sheets exist in the concentration of 0.15 mg/mL suspension and their perfect structures can be well retained. The MoS₂ nanosheets supported Pd catalyst provides high activity and ethylene selectivity during acetylene hydrogenation. Catalytic activity test results indicated that the ethylene selectivity over the Pd/MoS_2 nanosheets catalyst maintains at $\sim 75\%$ acetylene with 100% conversion under 40,000 mL h⁻¹ g⁻¹. SEM and STEM images testify that Pd particles are scattered on glossy MoS₂ surface with low loading amount of Pd. To prove, the X-ray energy dispersive spectroscopy (EDS) proved existence of Pd particles on the MoS₂ nanosheets. It is clear that Pd can be found. Thus, Pd_{0.87}/MoS₂ nanocatalyst was synthesized successfully. The XPS indicated Pd charge transfer from to MoS₂, proving the strong Pd-MoS₂ interactions. In all, it confirms our fabrication method for structurally complete and well-structured few-layer MoS₂ nanosheets and provides potential application of MoS₂ nanosheets for supports to achieve selective steerable reactions.

Acknowledgements

This work is supported by the National Key R&D Program of China (2018YFC1902101, 2018YFC1902105), National Natural Science Foundation of China (51876174, 21767015), Shaanxi Province Natural Science Foundation of China (2018JM5011) and Jiangsu Province Natural Science Foundation of China (BK20191189).

References

- Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37. https://doi.org/10.1038/nchem.121
- [2] Tauster SJ, Fung SC, Baker RTK (1981) JA Horsley 211:1121. https://doi.org/10.1126/science.211.4487.1121
- [3] Guan Q, Yang C, Wang S et al (2019) ACS Catal 9:11146. h ttps://doi.org/10.1021/acscatal.9b04042
- [4] Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) Nat Chem 5:263. https://doi.org/10.1038/nchem.1589
- [5] Tye CT, Smith KJ (2006) Catal Today 116:461. https://doi. org/10.1016/j.cattod.2006.06.028
- [6] Coleman JN, Lotya M, O'Neill A et al (2011) Science 331:568. https://doi.org/10.1126/science.1194975
- [7] Najmaei S, Yuan J, Zhang J, Ajayan P, Lou J (2015) Acc Chem Res 48:31. https://doi.org/10.1021/ar500291j
- [8] Liu G, Robertson AW, Li MM-J et al (2017) Nat Chem 9:810. https://doi.org/10.1038/nchem.2740
- [9] Li H, Wu J, Yin Z, Zhang H (2014) Acc Chem Res 47:1067. https://doi.org/10.1021/ar4002312
- [10] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Nano Lett 11:5111. https://doi.org/10.1021/ nl201874w
- [11] Ma H, Ben S, Shen Z et al (2020) Appl Surf Sci 512:145588. https://doi.org/10.1016/j.apsusc.2020.145588
- [12] May P, Khan U, Hughes JM, Coleman JN (2012) J Phys Chem C 116:11393. https://doi.org/10.1021/jp302365w
- [13] Yang F, Wang K, Hu P et al (2020) Appl Surf Sci 525:145867. https://doi.org/10.1016/j.apsusc.2020.145867
- [14] Shi Y, Li H, Li L-J (2015) Chem Soc Rev 44:2744. https://d oi.org/10.1039/C4CS00256C
- [15] Chang K, Chen W, Ma L et al (2011) J Mater Chem 21:6251. https://doi.org/10.1039/C1JM10174A
- [16] Lin X, Wang J, Chu Z et al (2020) Chin Chem Lett 31:1124. https://doi.org/10.1016/j.cclet.2019.07.003

- [17] Lee K, Kim H-Y, Lotya M, Coleman JN, Kim G-T (2011)
 GS Duesberg 23:4178. https://doi.org/10.1002/adma.
 201101013
- [18] Nguyen TP, Van Le Q, Choi KS et al (2015) Sci Adv Mater 7:700. https://doi.org/10.1166/sam.2015.1891
- [19] Muscuso L, Cravanzola S, Cesano F, Scarano D, Zecchina A (2015) J Phys Chem C 119:3791. https://doi.org/10.1021/ ip511973k
- [20] Huang J, Deng X, Wan H et al (2018) ACS Sustain Chem Eng 6:5227. https://doi.org/10.1021/acssuschemeng.7b 04873
- [21] Jia L, Yu J, Chen Y et al (2017) J Supercrit Fluids 126:79. h ttps://doi.org/10.1016/j.supflu.2017.02.017
- [22] Xi Z, Erdosy DP, Mendoza-Garcia A et al (2017) Nano Lett 17:2727. https://doi.org/10.1021/acs.nanolett.7b00870
- [23] Li H, Zhang Q, Yap CCR et al (2012) Adv Funct Mater 22:1385. https://doi.org/10.1002/adfm.201102111
- [24] Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) ACS Nano 4:2695. https://doi.org/10.1021/nn1003937

- [25] Acerce M, Voiry D, Chhowalla M (2015) Nat Nanotechnol 10:313. https://doi.org/10.1038/nnano.2015.40
- [26] Li H, Yu K, Lei X, Guo B, Fu H, Zhu Z (2015) J Phys Chem C 119:22681. https://doi.org/10.1021/acs.jpcc.5b06729
- [27] Drelinkiewicz A, Hasik M, Kloc M (2000) Catal Lett 64:41. https://doi.org/10.1023/A:1019078718474
- [28] Kang JH, Shin EW, Kim WJ, Park JD, Moon SH (2002) J Catal 208:310. https://doi.org/10.1006/jcat.2002.3583
- [29] Shin EW, Kang JH, Kim WJ, Park JD, Moon SH (2002) Appl Catal A 223:161. https://doi.org/10.1016/S0926-860X (01)00758-X
- [30] Chen MH, Chu W, Dai XY, Zhang XW (2004) Catal Today 89:201. https://doi.org/10.1016/j.cattod.2003.11.027
- [31] Huang X, Xia Y, Cao Y et al (2017) Nano Res 10:1302. h ttps://doi.org/10.1007/s12274-016-1416-z

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

