Math 205A - Week 2

- 1. Can you find two different sequences (a_n) and (b_n) that are subsequences of one another?
- 2. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and satisfies

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0$$

for every $x \in \mathbb{R}$. Does this imply that f is continuous?

3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies the functional equation

$$f(u+v) = f(u) + f(v)$$
 for all $u, v \in \mathbb{R}$.

- (a) Prove that f(mx) = mf(x) for all $x \in \mathbb{R}$ and $m \in \mathbb{Z}$.
- (b) Prove that f(x) = cx for all $x \in \mathbb{Q}$ where c = f(1).
- (c) Deduce that if f is continuous on \mathbb{R} , then f(x) = cx for all $x \in \mathbb{R}$.

- 4. Prove that a countable, closed and bounded subset of \mathbb{R} cannot be perfect. Hint: Suppose $X = \{x_1, x_2, \ldots\}$ and find a decreasing family X_n of closed nonempty subsets of X with $x_n \notin X_n$.
- 5. Let $E \subseteq \mathbb{R}$ be uncountable. Prove that there exists an x in \mathbb{R} such that $E \cap (-\infty, x)$ and $E \cap (x, \infty)$ are both uncountable.