

Parameter Estimation

Prof. Suchi Saria

Slides adapted from Profs. Suin Lee & Eran Segal

Key ideas:

- Sufficient Statistics
- MLE for Bayesian Networks
- Conjugate Prior for Table CPDs

Parameter estimation

- Maximum likelihood estimation (MLE)
 - Parameter estimation based on observations
- Bayesian approach
 - Incorporate our prior knowledge

A single variable Bayesian network

Maximum Likelihood Estimator: Review

The Coin example – general case

X

- X: result of a coin toss (head or tail)
- Training data (instances) $D=\langle x[1],...x[m]\rangle$ (M_H heads and M_T tails)
- Parameters: $P(X=h)=\theta$
- Goal: find the model ($\theta \in [0,1]$) that describes the data well
 - "describes the data well" = likelihood of the data given θ $L(\theta:D) = P(D:\theta) = P(x[1],...,x[m]:\theta)$
 - MLE: Find θ maximizing likelihood $L(\theta:D) = \prod_{i=1}^{m} P(x[i] | x[1],...,x[i-1],\theta) = \prod_{i=1}^{m} P(x[i] | \theta) = \theta^{M_H} (1-\theta)^{M_T}$
 - Equivalent to maximizing log-likelihood

$$l(\theta:D) = \log P(D:\theta) = M_H \log \theta + M_T \log(1-\theta)$$

• Differentiating the log-likelihood and solving for θ , we get that the maximum likelihood parameter: $\theta_{mle} = \arg\max l(\theta:D) = \frac{M_H}{M_H + M_T}$

Sufficient Statistics

• For computing the parameter θ of the coin toss example, we only needed M_H and M_T since

$$L(\theta : D) = P(D : \theta) = \theta^{M_H} (1 - \theta)^{M_T}$$

 \rightarrow M_H and M_T are sufficient statistics

Intuitive Definition: Sufficient Statistics

A statistic is *sufficient* with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter"

Sufficient Statistics

• A function s(D) is a sufficient statistic from instances to a vector in \Re^k if, for any two datasets D and D' and any $\theta \in \Theta$, we have

$$\sum_{x[i] \in D} s(x[i]) = \sum_{x[i] \in D'} s(x[i]) \implies L(D:\theta) = L(D':\theta)$$

- We often refer to the tuple $\sum_{x[i] \in D} s(x[i])$ as the sufficient statistics of the data set D.
 - In coin toss experiment, M_H and M_T are sufficient statistics

"Many-to-one" relationship between datasets and statistics

Sufficient Statistics for Multinomial

- Y: multinomial, k values (e.g. result of a dice throw)
- A sufficient statistics for a dataset D over Y is the tuple of counts $<M_1,...M_k>$ such that M_i is the number of times that the $Y=y^i$ in D
- Likelihood function: $L(D:\theta) = \prod_{i=1}^k \theta_i^{M_i}$ where $\theta_i = P(Y = y^i)$
- MLE Principle: Choose Θ that maximize L(D:Θ)
- Multinomial MLE: $\theta^{i} = \frac{M_{i}}{\sum_{i=1}^{m} M_{i}}$

Sufficient Statistic for Gaussian

- Gaussian distribution: $X \sim N(\mu, \sigma^2)$ • Probability density function (pdf): $p(X) = \frac{1}{\sqrt{2\pi}\alpha} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- Rewrite as $p(X) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-x^2 \frac{1}{2\sigma^2} + x \frac{\mu}{\sigma^2} \frac{\mu^2}{\sigma^2}\right)$
 - \rightarrow sufficient statistics for Gaussian: $\langle M, \Sigma_m x[m], \Sigma_m x[m]^2 \rangle$
- MLE Principle: Choose Θ that maximize L(D:Θ)
- Multinomial MLE: $\mu = \frac{1}{M} \sum_{m} x[m]$

$$\sigma = \sqrt{\frac{1}{M} \sum_{m} (x[m] - \mu)^2}$$

- **Parameters**
 - θ_{x0} , θ_{x1}
 - $\theta_{v_0|x_0}$, $\theta_{v_1|x_0}$, $\theta_{v_0|x_1}$, $\theta_{v_1|x_1}$
- Training data:
 - tuples <x[m],y[m]> m=1,...,M
- Likelihood function:

	Y	
X	y 0	y ¹
x ⁰	0.95	0.05
X ¹	0.2	0.8

→ Likelihood decomposes into two separate terms, one for 10 each variable ("decomposability of the likelihood function")

- Parameters
 - θ_{x0} , θ_{x1}
 - $\theta_{y^0|x^0}$, $\theta_{y^1|x^0}$, $\theta_{y^0|x^1}$, $\theta_{y^1|x^1}$
- Training data:
 - tuples <x[m],y[m]> m=1,...,M
- Likelihood function:

$$L(D:\theta) = \prod_{m=1}^{M} P(x[m], y[m]:\theta)$$

$$= \prod_{m=1}^{M} P(x[m]:\theta_{X}) P(y[m] | x[m]:\theta_{Y|X})$$

$$= \left(\prod_{m=1}^{M} P(x[m]:\theta_{X})\right) \left(\prod_{m=1}^{M} P(y[m] | x[m]:\theta_{Y|X})\right)$$

→ Likelihood decomposes into two separate terms, one for each variable ("decomposability of the likelihood function")

Terms further decompose by CPDs:

$$\prod_{m=1}^{M} P(y[m]|x[m]:\theta) = \prod_{m:x[m]=x^{0}} P(y[m]|x[m]:\theta_{Y|X}) \prod_{m:x[m]=x^{1}} P(y[m]|x[m]:\theta_{Y|X})
= \prod_{m:x[m]=x^{0}} P(y[m]|x[m]:\theta_{Y|X^{0}}) \prod_{m:x[m]=x^{1}} P(y[m]|x[m]:\theta_{Y|X^{1}})$$

By sufficient statistics

$$\prod_{m:x[m]=x^1} P(y[m] \mid x[m]: \theta_{y|x^1}) = \theta_{y^0|x^1}^{M[x^1,y^0]} \cdot \theta_{y^1|x^1}^{M[x^1,y^1]}$$

where $M[x^1,y^1]$ is the number of data instances in which X takes the value x^1 and Y takes the value y^1

MLE

$$\theta_{y^0|x^1} = \frac{M[x^1, y^0]}{M[x^1, y^0] + M[x^1, y^1]} = \frac{M[x^1, y^0]}{M[x^1]}$$

Likelihood for Bayesian network

$$L(\Theta:D) = \prod_{m} P(x[m]:\Theta)$$

$$= \prod_{m} \prod_{i} P(x_{i}[m]|Pa_{i}[m]:\Theta_{i})$$

$$= \prod_{i} \left[\prod_{m} P(x_{i}[m]|Pa_{i}[m]:\Theta_{i}) \right]$$

$$= \prod_{i} L_{i}(\boldsymbol{\theta}_{x_{i}|Px_{i}}:X_{i},Pa_{i})$$
Conditional likelihood or "Local likelihood"

 \rightarrow if $\theta_{X_i|Pa(X_i)}$ are disjoint then MLE can be computed by maximizing each local likelihood separately

MLE for Table CPD BayesNets

Multinomial CPD

$$L_{Y}(D:\theta_{Y|X}) = \prod_{m} \theta_{y[m]|X[m]}$$

$$= \prod_{\mathbf{x} \in Val(X)} \left[\prod_{y \in Val(Y)}^{M[\mathbf{x},y]} \theta_{y|\mathbf{x}}^{M[\mathbf{x},y]} \right]$$

 For each value x∈X we get an independent multinomial problem where the MLE is

$$\theta_{y^i|x} = \frac{M[x, y^i]}{M[x]}$$

Bayesian Inference in Graphical Notation: Coin toss example

- Assumptions
 - Given a fixed θ tosses are independent
 - If θ is unknown tosses are not marginally independent
 - each toss tells us something about θ
- The following network captures our assumptions

Reminder: Bayesian Inference

Joint probabilistic model

$$P(x[1],...,x[M],\theta) = P(x[1],...,x[M]|\theta)P(\theta)$$

$$= P(\theta)\prod_{i=1}^{M} P(x[i]|\theta)$$

$$= P(\theta)\theta^{M_H}(1-\theta)^{M_T}$$

Posterior probability over θ

$$P(\theta \mid x[1],...,x[M]) = \frac{P(x[1],...,x[M] \mid \theta)P(\theta)}{P(x[1],...,x[M])}$$
Normalizing factor

For a uniform prior, posterior is the normalized likelihood

Reminder: Bayesian Prediction

Predict the data instance from the previous ones

$$P(x[M+1]|x[1],...,x[M])$$

$$= \int_{\theta} P(x[M+1],\theta \mid x[1],...,x[M])d\theta$$

$$= \int_{\theta} P(x[M+1]|x[1],...,x[M],\theta)P(\theta \mid x[1],...,x[M])d\theta$$

$$= \int_{\theta} P(x[M+1]|\theta)P(\theta \mid x[1],...,x[M])d\theta$$

Solve for uniform prior P(θ)=1 (for 0≤θ≤1) and binomial variable

$$P(x[M+1] = x^{1} \mid x[1],...,x[M]) = \frac{1}{P(x[1],...,x[M])} \int_{\theta}^{\theta} \cdot \theta^{M_{H}} \cdot (1-\theta)^{M_{T}}$$
"Bayesian estimate" $\Rightarrow \frac{M_{H}+1}{M_{H}+M_{T}+2}$ "Imaginary counts"

Reminder: General Formulation

Joint distribution over D,θ

$$P(D,\theta) = P(D|\theta)P(\theta)$$

Posterior distribution over parameters

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

P(D) is the marginal likelihood of the data

$$P(D) = \int_{\theta} P(D \mid \theta) P(\theta) d\theta$$

- Likelihood can be described compactly using sufficient statistics
- We want conditions in which posterior is also compact

Bayesian Estimation in BayesNets: Graphical Notation

Bayesian network for parameter estimation

Bayesian network

- Instances are independent given the parameters
 - (x[m'],y[m']) are d-separated from (x[m],y[m]) given θ
- Priors for individual variables are a priori independent
 - Global independence of parameters $P(\theta) = \prod_{i} P(\theta_{X_i|Pa(X_i)})$

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Posteriors of θ are independent given complete data
 - Complete data d-separates parameters for different CPDs
 - $P(\theta_X, \theta_{Y|X} \mid D) = P(\theta_X \mid D)P(\theta_{Y|X} \mid D)$
 - As in MLE, we can solve each estimation problem separately

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Posteriors of θ are independent given complete data
 - Also holds for parameters within families
 - V-structure is deceptive! Note context specific independence between $\theta_{Y|X=0}$ and $\theta_{Y|X=1}$ when given both X and Y

Reminder: Conjugate Families

- A family of priors $P(\theta;\alpha)$ is conjugate to a model $P(\xi|\theta)$ if for any possible dataset D of i.i.d samples from $P(\xi|\theta)$ and choice of hyperparameters α for the prior over θ , there are hyperparameters α' that describe the posterior, i.e., $P(\theta;\alpha') \propto P(D|\theta)P(\theta;\alpha)$
 - Posterior has the same parametric form as the prior
 - Dirichlet prior is a conjugate family for the multinomial likelihood
- Conjugate families are useful since:
 - Many distributions can be represented with hyperparameters
 - They allow for sequential update within the same representation
 - In many cases we have closed-form solutions for prediction

Conjugate Prior for Table CPDs: Dirichlet Priors

• A Dirichlet prior is specified by a set of (non-negative) hyper-parameters $\alpha_1,...\alpha_k$ so that

$$\theta = [\theta_1, ..., \theta_k] \sim \text{Dirichlet}(\alpha_1, ..., \alpha_k) \text{ if}$$

$$p(\theta) = \frac{1}{Z} \prod_{k} \theta_{k}^{\alpha_{k}-1} \text{ where } \sum_{k} \theta_{k} = 1, \quad \Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$
 and
$$Z = \frac{\prod_{i=1}^{k} \Gamma(\alpha_{i})}{\Gamma(\sum_{i=1}^{k} \alpha_{i})}.$$

 Intuitively, hyper-parameters correspond to the number of imaginary counts before starting the coin toss experiment

Dirichlet Priors – Example

Dirichlet Priors

- Dirichlet priors have the property that the posterior is also Dirichlet
 - Prior is Dir($\alpha_1, \dots \alpha_k$) $p(\theta) = \frac{1}{Z} \prod_k \theta_k^{\alpha_k 1}$
 - Data counts are M₁,...,M_k
 - Posterior is Dir($\alpha_1 + M_1, \dots \alpha_k + M_k$) $p(\theta \mid D) = \frac{1}{Z'} \prod_k \theta_k^{\alpha_k + M_k 1}$
- The hyperparameters $\alpha_1,...,\alpha_K$ can be thought of as "imaginary" counts from our prior experience
- Equivalent sample size = α₁+...+α_K
 - The larger the equivalent sample size the more confident we are in our prior

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

26

- Posteriors of θ can be computed independently
 - For multinomial $\theta_{X_i|pa_i}$ posterior is Dirichlet with parameters

$$(\alpha_{X_{i}=1|pa_{i}} + M[X_{i}=1|pa_{i}]), ..., (\alpha_{X_{i}=k|pa_{i}} + M[X_{i}=k|pa_{i}])$$

$$P(X_{i}[M+1] = x_{i} | Pa_{i}[M+1] = pa_{i}, D) = \frac{\sum_{i} \alpha_{x_{i}|pa_{i}} + M[x_{i}, pa_{i}]}{\sum_{i} \alpha_{x_{i}|pa_{i}} + M[x_{i}, pa_{i}]}$$

Assessing Priors for BayesNets

We need the α(x_i,pa_i) for each node x_i

- We can use initial parameters Θ_0 as prior information
 - Need also an equivalent sample size parameter M'
 - Then, we let $\alpha(x_i,pa_i) = M' \cdot P(x_i,pa_i|\Theta_0)$
- This allows to update a network using new data
 - Example network for priors
 - P(X=0)=P(X=1)=0.5
 - P(Y=0)=P(Y=1)=0.5
 - M'=1
 - Note: $\alpha(x_0)=0.5 \ \alpha(x_0,y_0)=0.25$

Case Study: ICU Alarm Network

- The "Alarm" network
 - 37 variables
- Experiment
 - Sample instances
 - Learn parameters
 - MLE
 - Bayesian

Case Study: ICU Alarm Network

- MLE performs worst
- Prior M'=5 provides best smoothing

Parameter Estimation Summary

- Estimation relies on sufficient statistics
 - For multinomials these are of the form M[x_i,pa_i]
 - Parameter estimation

$$\hat{\theta_{x_i|pa_i}} = \frac{M[x_i, pa_i]}{M[pa_i]} \qquad P(x_i \mid pa_i, D) = \frac{\alpha_{x_i, pa_i} + M[x_i, pa_i]}{\alpha_{pa_i} + M[pa_i]}$$
MLE

Bayesian (Dirichlet)

- Bayesian methods also require choice of priors
- MLE and Bayesian are asymptotically equivalent
- Both can be implemented in an online manner by accumulating sufficient statistics