Notes on Optimization

Liu Zhizhou

First Created: August 6, 2022 Last Modified: August 7, 2022

Contents

1	Derivatives	1
2	Convexity	4
3	Main Optimality Conditions	٤

1 Derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$. The gradient of f at x is defined as the column vector

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}.$$

If f is a vector-valued function, i.e. $f: \mathbb{R}^n \to \mathbb{R}^m$, with component functions f_1, \ldots, f_m , then

$$\nabla f(x) = \begin{bmatrix} \nabla f_1(x) & \cdots & \nabla f_m(x) \end{bmatrix}.$$

The transpose of ∇f is called the *Jacobian* of f. The Jacobian of f is the matrix whose ij-th entry is equal to the partial derivative $\frac{\partial f_i}{\partial x_i}$.

The *Hessian* of $f: \mathbb{R}^n \to \mathbb{R}$ is the matrix whose ij-th entry is equal to $\frac{\partial^2 f}{\partial x_i \partial x_j}$, denoted by $\nabla^2 f$.

Be careful that, for $f: \mathbb{R}^n \to \mathbb{R}$, $\nabla^2 f \neq \nabla(\nabla f)$, but $\nabla^2 f = \nabla(\nabla f^T)$.

Proposition 1.1 (chain rule). Let $f: \mathbb{R}^k \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^n$ be smooth functions, and h = g(f(x)). Then

$$\nabla h(x) = \nabla f(x) \nabla (g(f(x)))$$

for all $x \in \mathbb{R}^k$.

Some useful relations:

1.
$$\nabla(Ax) = A^T$$
;

- 2. $\nabla(x^TAx) = (A+A^T)x$; in particular, if Q is symmetric, then $\nabla(x^TQx) = 2Qx$ and $\nabla(\|x\|^2) = \nabla(x^Tx) = 2x$;
- 3. $\nabla(f(Ax)) = A^T \nabla f(Ax);$
- 4. $\nabla^2(f(Ax)) = A^T \nabla^2 f(Ax) A;$

The shape of the left hand side would be helpful to memorize the right hand side.

Theorem 1.2 (Second Order Taylor Expansions). Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable over an open sphere S centered at a vector x. Then for all d such that $x + d \in S$,

1. we have

$$f(x+d) = f(x) + d^T \nabla f(x) + \frac{1}{2} d^T \left(\int_0^1 \left(\int_0^t \nabla^2 f(x+\tau d) \mathrm{d}\tau \right) \mathrm{d}t \right) d.$$

2. there exists

$$f(x+d) = f(x) + d^T \nabla f(x) + \frac{1}{2} d^T \nabla^2 f(x+\alpha d) d.$$

3. there holds

$$f(x+d) = f(x) + d^{T}\nabla f(x) + \frac{1}{2}d^{T}\nabla^{2}f(x)d + o(\|d\|^{2}).$$

2 Convexity

Definition 2.1 (convex set, convex function). A subset C of \mathbb{R}^n is called *convex* if

$$\alpha x + (1 - \alpha)y \in C$$

for all $x, y \in C$ and $\alpha \in [0, 1]$. A function $f: C \to \mathbb{R}$ is called *convex* if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \tag{2.1}$$

for $x, y \in C$ and $\alpha \in [0, 1]$. The function is called *concave* if -f is convex.

Definition 2.2 (strictly convex). The function f is called *strictly convex* if Eq.(2.1) is strict for all $x \neq y$ and $\alpha \in (0,1)$.

Proposition 2.3 (First Derivative Characterizations). Let C be a convex subset of \mathbb{R}^n and let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable over \mathbb{R}^n . Then

1. f is convex over C if and only if

$$f(z) \ge f(x) + (z - x)^T \nabla f(x) \tag{2.2}$$

for all $x, z \in C$.

2. f is strictly convex over C if and only if the above inequality is strict whenever $x \neq z$.

Definition 2.4 (strongly convex). A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *strongly convex* if for some $\sigma > 0$, we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\sigma}{2} \|x - y\|^2$$
 (2.3)

for all $x, y \in \mathbb{R}^n$.

It can be shown that an equivalent definition is that

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \sigma \|x - y\|^2$$
(2.4)

for all $x, y \in \mathbb{R}^n$.

3 Main Optimality Conditions

Theorem 3.1 (Necessary Optimality Conditions). Let x^* be an unconstrained local minimum of $f: \mathbb{R}^n \to \mathbb{R}$, and assume that f is continuously differentiable in an open set S containing x^* . Then we have the *First Order Necessary Condition*:

$$\nabla f(x^*) = 0. (3.1)$$

If in addition f is twice continuously differentiable within S, then we have the Second Order Necessary Condition:

$$\nabla^2 f(x^*) \succeq 0. \tag{3.2}$$

The intuition of this theorem is considering

$$f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^T \Delta x$$

and similarly for second order,

$$f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x^*) \Delta x.$$

Read rigorous proof to see the reason.

Proof. Fix some $d \in \mathbb{R}^n$. Consider $g(\alpha) \triangleq f(x^* + \alpha d)$. Then

$$0 \le \lim_{\alpha \to 0} \frac{f(x^* + \alpha d) - f(x^*)}{\alpha} = \frac{\mathrm{d}g}{\mathrm{d}\alpha}(0) = d^T \nabla f(x^*).$$

The " \leq " is because x^* is the local minimum. Replace d by -d, then it must be $\nabla f(x^*) = 0$.

Assume f is twice differentiable. Then the second order expansion of $g(\alpha)$ in $\alpha = 0$ yields

$$g(\alpha) = g(0) + \frac{\mathrm{d}g}{\mathrm{d}\alpha}(0)\alpha + \frac{1}{2}\frac{\mathrm{d}^2g}{\mathrm{d}\alpha^2}(0)\alpha^2 + o(\alpha^2).$$

Equivalently,

$$f(x^* + \alpha d) - f(x^*) = d^T \nabla f(x^*) \alpha + \frac{\alpha^2}{2} d^T \nabla^2 f(x^*) d + o(\alpha^2).$$

Since $\nabla f(x^*) = 0$, for α positive and near 0, we have

$$0 \le \frac{f(x^* + \alpha d) - f(x^*)}{\alpha^2} = \frac{1}{2} d^T \nabla^2 f(x^*) d + \frac{o(\alpha^2)}{\alpha^2}.$$

Then let $\alpha \to 0$, we obtain $d^T \nabla^2 f(x^*) d \geq 0$, which means $\nabla^2 f(x^*) \succeq 0$.

Proposition 3.2. If X is a convex subset of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}$ is convex over X, then a local minimum of f is also a global minimum. If in addition f is strictly convex over X, then f has at most one global minimum over X. Moreover, if f is strongly convex and X is closed, then f has a unique global minimum over X.

Theorem 3.3 (Convex Case - Necessary and Sufficient Conditions). Let X be a convex set and let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function over X. Then

1. If f is continuously differentiable, then

$$\nabla f(x^*)^T (x - x^*) \ge 0$$

for all $x \in X$ is a necessary and sufficient condition for x^* to be a global minimum of f over X.

2. If X is open and f is continuously differentiable over X, then $\nabla f(x^*) = 0$ is a necessary and sufficient condition for x^* to be a global minimum of f over X.

Note that in the second statement, we require X to be open.

The intuition of this theorem is also

$$f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^T \Delta x.$$

The proof of this need the first order characterization of convexity,

$$f(x) \ge f(x^*) + \nabla f(x^*)^T (x - x^*)$$

for all $x \in X$.

A geometric illustration of $\nabla f(x^*)^T(x-x^*)$ is that: $\nabla f(x^*)$ is the direction that f increase the most, the condition means that the connection of x^* and all feasible points x in X has angle less than $\frac{\pi}{2}$ with the gradient; in other words, all the direction makes f increase.

Theorem 3.4 (Second Order Sufficient Optimality Conditions). Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable over an open set S. Suppose that a vector $x^* \in S$ satisfies the conditions: (i) $\nabla f(x^*) = 0$ and (ii) $\nabla^2 f(x^*) \succ 0$. Then x^* is a strict unconstrained local minimum of f. In particular, there exists

scalars $\gamma > 0$ and $\epsilon > 0$ such that

$$f(x) \ge f(x^*) + \frac{\gamma}{2} \|x - x^*\|^2$$

for all $||x - x^*|| < \epsilon$.

Proof. Denote λ the smallest eigenvalue of $\nabla^2 f(x^*)$. Since $\nabla^2 f(x^*) \succ 0$, $\lambda > 0$. We have $d^T \nabla^2 f(x^*) d \geq \lambda \|d\|^2$ for all $d \in \mathbb{R}^n$. By the second order Taylor expansion

$$f(x^* + d) - f(x^*) = \nabla f(x^*)^T d + \frac{1}{2} d^T \nabla^2 f(x^*) d + o(\|d\|^2)$$

$$\geq \frac{\lambda}{2} \|d\|^2 + o(\|d\|^2)$$

$$= \left(\frac{\lambda}{2} + \frac{o(\|d\|^2)}{\|d\|^2}\right) \|d\|^2.$$

Then choose $\epsilon > 0$ and $\gamma > 0$ such that for $||d|| < \epsilon$,

$$\frac{\lambda}{2} + \frac{o(\|d\|^2)}{\|d\|^2} \ge \frac{\gamma}{2}.$$

Then the proof is complete.

References