Matematik aflevering 1

Opgave 9.168, 9.169, 9.171, 9.175, 9.194, 9.200

9.168

Løs ligningen $x^2+x-12=0$ Ligningen er en andengradsligning da der er x^2 og xJeg starter med at finde deskriminanten

$$d = b^2 - 4ac$$

Værdierne for denne ligning er $a=1,\ b=1,\ c=-12$ Jeg indsætter dem

$$d = 1^2 - 4 \cdot 1 \cdot -12 = 1 - (-48) = 49$$

Så bruger jeg formlen

$$x = \frac{-b \pm \sqrt{d}}{2a}$$

Jeg indsætter mine værdier

$$x = \frac{-1 \pm \sqrt{49}}{2 \cdot 1} = \frac{-1 \pm 7}{2}$$
$$x = -4 \lor x = 3$$

Så løsningen på andengradsligningen er $x=4 \vee x=-0.5$

9.169

I et koordinatsystem er to vektorer \vec{a} og \vec{b} bestemt ved

$$\vec{b} = \begin{pmatrix} 2 \\ t+1 \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} t-1 \\ 3 \end{pmatrix}$$

Jeg ved at hvis de skal være orthogonale skal deres prikprodukt være 0 dvs.

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \begin{pmatrix} 2 \\ t+1 \end{pmatrix} \cdot \begin{pmatrix} t-1 \\ 3 \end{pmatrix} \Leftrightarrow 2 \cdot (t+1) + (t-1) \cdot 3 = 0$$

Så har vi en ligning hvor vi kan isolere og finde t

$$2t + 2 + 3t - 3 = 0 \Leftrightarrow 5t = 1 \Leftrightarrow t = 0.2$$

Så hvis vectorerne \vec{a} og \vec{b} skal være orthogonale skal t
 være 0.2

9.171

En funktion f er bestemt ved

$$f(x) = e^x - x - 1$$

Undersøg om f er en løsning til differentialligningen

$$\frac{dy}{dx} = y + x$$

Jeg starter med at indsætte f(x) ind på y's plads

$$\frac{dy}{dx} = e^x - x - 1 + x = e^x - 1$$

Så finder jeg f'(x) og ser om den er ens med ovenstående da

$$\frac{dy}{dx} = f'(x)$$

$$f'(x) = (e^x - x - 1)' = e^x - 1$$

Jeg ser så at de er ens og derfor ved jeg at f(x) er en løsning til differentialligningen

9.175

kable(a)

Kunder
10
23
16
21
10
9

Tegn en sumkurve, og bestem kvartilsættet

Jeg starter med at finde frekvensen for hvert interval ved at tage antal kunder i intervallet og dividere det med antallet af kunder i alt

a\$Frekvens <- a\$Kunder/sum(a\$Kunder)*100 kable(a)

Mængde	Kunder	Frekvens
10	10	11.23596
20	23	25.84270
30	16	17.97753
40	21	23.59551
50	10	11.23596
60	9	10.11236

Så finder jeg den kummulerede frekvens

a\$Kumfrek <- cumsum(a\$Frekvens)
kable(a)</pre>

Mængde	Kunder	Frekvens	Kumfrek
10	10	11.23596	11.23596
20	23	25.84270	37.07865
30	16	17.97753	55.05618
40	21	23.59551	78.65169
50	10	11.23596	89.88764
60	9	10.11236	100.00000

Så kan jeg plotte dataet ind med Mængden på x-aksen og den kummulerede frekvens på y-aksen og aflæse hvor på grafen henholdsvis 25, 50 og 75 procent skærer grafen så jeg kan finde kvartilsættet

```
b <- seq(0, a$Mængde[1], length = 4*a$Kunder[1])
for(i in 1:(length(a$Mængde)-1)){
    b <- append(b, seq(a$Mængde[i], a$Mængde[i+1], length = 4*a$Kunder[i+1]))
}

plot(a$Mængde, a$Kumfrek)
lines(a$Mængde, a$Kumfrek)
abline(25, 0)
abline(50, 0)
abline(50, 0)
points(x = list(median(b), quantile(b, 0.25), quantile(b, 0.75)), y = list(50, 25, 75), col</pre>
```


Figure 1: plot of chunk unnamed-chunk-4 $\,$

Så kan jeg så aflæse kvartilsættet på grafen til at være $Q_1=15.4\ median=27.2\ Q_3=38.5$

9.194