

AUSTRALIAN MATHEMATICS COMPETITION WARM-UP PAPER INTERMEDIATE 7

2)2009 Australian Mathematics Trust												
Questions 1 - 4, 3 marks each												
1.	. In the diagram, the value of x is					\sqrt{x}	$\sqrt{x^{\circ}}$					
	(A) 50	(B) 55	(C) 60	(D) 65	(E) 70	115°	125°					
2.	If $5n + 7 >$	100 and n is	an integer,	the minimu	m possible v	value of n	is					
	(A) 18	(B) 19		(C) 20	(D) 21 ((E) 22					
3.	3. A kilogram of a certain sweet contains from 24 to 30 sweets. The minimum weight, in kilograms, of 240 of these sweets is											
	(A) 7	(B) 7.5	Ó	(C) 8	(D)	8.5	(E) 10					
4. Ann and Barbara share a \$250 prize in the ratio of 3:2. Barbara's share is												
	(A) \$50	(B) \$10	00	(C) \$125	(D) \$	3150	(E) \$200					
Questions 5 - 8, 4 marks each												
5. Which is the greatest of the following numbers?												
	(A) $\frac{4}{0.4}$	(B) $\frac{4}{0.44}$	(C	$\frac{4}{(0.4)^2}$	(D) $\frac{4}{\sqrt{0.}}$	44	(E) $\frac{4}{(0.44)^2}$					
6.	The triangle PRS is equilateral and its area is half that of the triangle PQR . What is the size, in degrees, of the angle PRQ ?											
	(A) 75	(B) 80	(C) 90	(D) 1	100 (E) 120	S R					

Intermediate 7 Page 2

7. OX, OY are radii of a circular quadrant. A semi-circle is drawn on XY as shown. T, S and C denote the resulting triangle, segment and crescent.

The ratio

$$\frac{\operatorname{area} T}{\operatorname{area} C}$$

equals

- (A) $\frac{3}{\pi}$
- (B) 1
- (C) $\frac{13}{4\pi}$ (D) $\frac{7}{2\pi}$
- 8. A large watermelon weighs 20 kg, with 98% of its weight being water. It is left to stand in the sun, and some of the water evaporates so that now only 95% of its weight is water. What does it now weigh?
 - (A) 17 kg
- (B) $19.4 \,\mathrm{kg}$
- (C) 10 kg
- (D) 19 kg
- (E) 8 kg

Questions 9 - 10, 5 marks each

9. In the 5×5 square the numbers 1, 2, 3, 4, 5 are arranged in such a way that every number occurs precisely once in each row and precisely once in each column.

1	2		
			1
	x	4	
2		5	
	5		4

In the 5×5 square shown, the entry in the position marked with an x is

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5
- 10. In a soccer tournament eight teams play each other once, with two points awarded for a win, one point for a draw and zero for a loss. How many points must a team score to ensure that it is in the top four (ie has more points than at least four other teams)?
 - (A) 8
- (B) 9
- (C) 10
- (D) 11
- (E) 12