

## PROBABILITY & STATISTICS

Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation
Method of moments
Method of maximum likelihood

Summary

Chapter 7: Point Estimation of Parameters

## Learning objectives

- 1. Introduction
- 2. Sampling Distributions
- 3. General Concepts Of Point
- 4. Estimation Methods Of Point Estimation



#### SET UP PROBLEM

2/31

Introduction

Sampling **Distributions** 

General concepts of point estimation

Methods of point estimation Method of moments Method of maximum likelihood

Summary

Let X is a random variable with probability distribution f(x), which is characterized by the unknown  $\theta = (\theta_1, \theta_2, ..., \theta_k)$ 

For example,  $X \sim N(\mu, \sigma^2)$  then  $\theta = (\mu, \sigma^2)$ .

How to "determine" the values of  $\theta$ ?



#### PROBLEMS IN ENGINEERING

#### Introduction

# Sampling Distributions

General concepts of point

estimation

Methods of point estimation
Method of moments
Method of maximum likelihood

## In engineering, we often need to estimate

- 1. The mean  $\mu$  of a single population.
- 2. The variance  $\sigma^2$  (or standard deviation ) of a single population.
- 3. The proportion *p* of items in a population that belong to a class of interest.
- 4. The difference in means of two populations,  $\mu_1 \mu_2$ .
- 5. The difference in two population proportions,  $p_1 p_2$ .

#### Summary



#### PROBLEMS IN ENGINEERING

#### Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

#### Summary

## The important results on point estimation

- 1. For  $\mu$ , the estimate is the  $\hat{\mu} = \overline{x}$ , sample mean.
- 2. For  $\sigma^2$ , the estimate is  $\hat{\sigma}^2 = s^2$ , the sample variance.
- 3. For p, the estimate is  $\hat{p} = x/n$ , the sample proportion.
- 4. For  $\mu_1 \mu_2$ , the estimate is  $\hat{\mu}_1 \hat{\mu}_2 = \bar{x}_1 \bar{x}_2$
- 5. For  $p_1 p_2$ , the estimate is  $\hat{p}_1 \hat{p}_2$



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum likelihood

Summary

#### Definition

## Random Sample

The random variables  $X_1$ , ....,  $X_n$  are called a random sample of size n if

- The  $X_i$ 's are independent
- Every  $X_i$  has the same probability distribution

#### Definition

Statistic

• A statistic  $\hat{\Theta}$  is any function of the observations  $X_l$ , ...,  $X_n$ :

$$\hat{\Theta} = h(X_1, ..., X_n)$$

• The probability distribution of a statistic is called a sampling distribution.



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

Example

Two important statistic

• Sample mean  $\overline{X}$ 

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$

• Sample variance S<sup>2</sup>

$$S^{2} = \frac{(X_{1} - \overline{X})^{2} + ... + (X_{n} - \overline{X})^{2}}{n - 1}$$



Introduction

Sampling **Distributions** 

General concepts of point estimation

Methods of point estimation Method of moments Method of maximum likelihood

Summary

#### Theorem

In above example, if  $(X_1, ..., X_n)$  is a random sample of size n take from a normal distribution  $N(\mu, \sigma^2)$  then

• X has a normal distribution  $N(\mu, \sigma^2/n)$ 

•  $\frac{(n-1)S^2}{\sigma^2}$  has a chi-square distribution with *n*-1 degrees of freedom (see pages 273-274).



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

Theorem

Central Limit Theorem

Let  $(X_1, ..., X_n)$  is a random sample of size n take from a population with mean  $\mu$  and finite variance  $\sigma^2$ , and if  $\overline{X}$  is the sample mean, the limiting form of the distribution of

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

As  $n \to \infty$ , is the standard normal distribution.

Remark: The normal approximation for  $\overline{X}$  depends on the sample size n.



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

Summary

Figure 7-1
Distributions of average scores from throwing dice.





Introduction

Sampling **Distributions** 

General concepts of point estimation

Methods of point estimation Method of moments Method of maximum likelihood

Summary

#### Definition Point Estimate

- A **point estimate** of some population parameter  $\theta$  is a single numerical value  $\hat{\theta}$  of a statistic  $\hat{\Theta}$ .
- The statistic  $\hat{\Theta}$  is called the **point estimator**.

## Two steps to find point estimation:

Step 1. Determine  $\hat{\Theta}$  by using the theoretical results.

Steps 2. Calculate  $\hat{\theta}$  from the experimental data.

Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

Summary

### Example

Market researchers use the number of sentences per advertisement as a measure of readability for magazine advertisements. The following represents a random sample of the number of sentences found in 15 advertisements. Find a point estimate of the population mean,  $\mu$ .

9 20 18 16 9 9 11 13 22 16 5 18 6 6 5

Step 1. 
$$\hat{\Theta} = \frac{X_1 + ... + X_{15}}{15}$$

Step 2. A point estimate for  $\mu$  is

$$\hat{\mu} = \frac{9 + 20 + \dots + 6 + 5}{15} = \frac{183}{15} = 12.2$$



#### UNBIASED ESTIMATOR

Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

Summary

Definition

**Unbiased Estimator** 

The point estimator  $\hat{\Theta}$  is an **unbiased estimator** for the parameter  $\theta$  if

$$E(\hat{\Theta}) = \theta$$

If the estimator is not unbiased, then the difference

$$E(\hat{\Theta} - \theta)$$

is called the **bias** of the estimator  $\hat{\Theta}$ .



#### **UNBIASED ESTIMATOR**

Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

Summary

Example

Suppose that X is a random variable with mean  $\mu$  and variance  $\sigma^2$ . Let  $X_1$ , ...,  $X_n$  be a random sample of size n from the population represented by X. Show that the sample mean  $\overline{X}$  and sample variance  $S^2$  are unbiased estimators of  $\mu$  and  $\sigma^2$ , respectively.

For the sample mean.

$$E(\overline{X}) = E \frac{X_1 + \dots + X_n}{n} = \frac{EX_1 + \dots + EX_n}{n} = \mu$$



#### UNBIASED ESTIMATOR

Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

Summary

Now consider the sample variance. We have

$$E(S^{2}) = E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}\right] = \frac{1}{n-1} E\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= \frac{1}{n-1} E \sum_{i=1}^{n} (X_i^2 + \overline{X}^2 - 2\overline{X}X_i) = \frac{1}{n-1} E \left( \sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

$$=\frac{1}{n-1}\left[\sum_{i=1}^n E(X_i^2)-nE(\overline{X}^2)\right]$$

$$E(S^2) = \sigma^2$$



#### MINIMUM VARIANCE UNBIASED ESTIMATOR

Introduction

Sampling **Distributions** 

General concepts of point estimation

Methods of point estimation Method of moments

> Method of maximum

likelihood

Summary

Minimum Variance Unbiased Estimator Definition

If we consider all unbiased estimators of  $\theta$ , the one with the smallest variance is called the **minimum variance** unbiased estimator (MVUE).



The sampling distributions of two unbiased estimators

 $\hat{\Theta}_1$  and  $\hat{\Theta}_2$ .





#### MINIMUM VARIANCE UNBIASED ESTIMATOR

Introduction

Sampling
Distributions

General concepts of point estimation

Methods of point estimation
Method of moments
Method of maximum likelihood

Summary

#### Theorem

Let  $(X_1, ..., X_n)$  is a random sample of size n take from a normal distribution  $N(\mu, \sigma^2)$ , the sample mean  $\overline{X}$  is the MVUE for  $\mu$ .



### STANDARD ERROR

Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum

likelihood

Summary

Definition Minimum Variance Unbiased Estimator

The **standard error** of an estimator  $\hat{\Theta}$  is its standard deviation, given by

$$\sigma_{\hat{\Theta}} = \sqrt{V(\hat{\Theta})}$$

If the standard error involves unknown parameters that can be estimated, substitution of those values into  $\sigma_{\hat{\Theta}}$  produces an **estimated standard error**, denoted by  $\hat{\sigma}_{\hat{\Theta}}$ 

#### Remark

If the random sample of size n take from a normal distribution  $N(\mu, \sigma^2)$  then  $\overline{X}$  has a normal distribution  $N(\mu, \sigma^2/n)$ .



#### STANDARD ERROR

Introduction

Sampling
Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

Summary

Standard error of  $\overline{X}$  is

$$\sigma_{\hat{X}} = \frac{\sigma}{\sqrt{n}}$$

If we did not know  $\sigma$  then the estimated standard error of

 $\overline{X}$  would be

$$\hat{\sigma}_{\hat{X}} = \frac{S}{\sqrt{n}}$$



#### STANDARD ERROR

Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments
Method of maximum
likelihood

Summary

#### Exercise

A new method of measuring the thermal conductivity of Armco iron: Using a temperature of 100°F and a power input of 550 watts, the following 10 measurements of thermal conductivity (in Btu/hr-ft-°F) were obtained:

41.60, 41.48, 42.34, 41.95, 41.86,

42.18, 41.72, 42.26, 41.81, 42.04

a, Find a point estimate of the mean thermal conductivity at 100°F and 550 watts.

b, Find the estimated standard error of  $\overline{X}$ 



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

Definition

The kth moments

Let  $(X_1, ..., X_n)$  be a random sample from random variable X with the probability distribution f(x)

- The kth moment of X are denoted by  $M_k := E(X^k)$
- The corresponding kth sample moment is

$$\overline{X}^k = \frac{X_1^k + \dots + X_n^k}{n}$$



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

**Definition** 

The kth moments

Let  $(X_1, ..., X_n)$  be a random sample from either a probability mass function or probability density function with m unknown parameters  $(\theta_1, \theta_2, ..., \theta_m)$ . The moment estimators  $\hat{\Theta}_1, ..., \hat{\Theta}_m$  are found the following system

$$\begin{cases} M_1 = \overline{X}^1 \\ \dots \\ M_m = \overline{X}^m \end{cases}$$



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

### Example

Suppose that  $X_1$ , ...,  $X_n$  be a random sample of size n from a normal distribution  $N(\mu, \sigma^2)$ . Find the moment estimators of  $\mu$  and  $\sigma^2$ .

We have to solve following system

$$\begin{cases} M_1 = \overline{X}^1 \\ M_2 = \overline{X}^2 \end{cases} \quad \text{or} \quad \begin{cases} EX = \frac{X_1 + \dots + X_n}{n} \\ EX^2 = \frac{X_1^2 + \dots + X_n^2}{n} \end{cases}$$

Here 
$$E(X) = \mu$$
 and  $E(X^2) = V(X) + (EX)^2 = \sigma^2 + \mu^2$ 



Introduction

Sampling
Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

04/01/2022

Hence, by solving the above system we have

$$\mu = \overline{X}, \quad \sigma^2 = \frac{\sum_{i=1}^{n} X_i^2 - n(\overline{X})^2}{n} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

Finally, the moment estimators are





Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of

moments

Method of maximum likelihood

Summary

#### **Definition**

#### Maximum likelihood Estimator

Suppose that X is a random variable with probability distribution  $f(x, \theta)$ , where  $\theta$  is a single unknown parameter. Let  $x_1, x_2, x_n$  be the observed values in a random sample of size n. Then the **likelihood function** of the sample is

$$L(\theta) = f(x_1, \theta) f(x_2, \theta) \dots f(x_n, \theta)$$

The maximum likelihood estimator (MLE) of  $\theta$  is the value of  $\theta$  that maximizes the  $L(\theta)$ .



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

#### Example

Let X is a Bernoulli random variable. The probability mass function is

$$f(x,p) = \begin{cases} p^{x}(1-p)^{1-x}, & x = 0,1\\ 0 & otherwise \end{cases}$$

Find the maximum likelihood estimator of p.

The likelihood function of a random sample of size n is

$$L(p) = p^{x_1}(1-p)^{1-x_1}p^{x_2}(1-p)^{1-x_2}\cdots p^{x_n}(1-p)^{1-x_n}$$

$$= \prod_{i=1}^n p^{x_i}(1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i}(1-p)^{n-\sum_{i=1}^n x_i}$$



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

04/01/2022

$$\ln L(p) = \left(\sum_{i=1}^n x_i\right) \ln p + \left(n - \sum_{i=1}^n x_i\right) \ln(1-p)$$

$$\frac{d \ln L(p)}{dp} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{\left(n - \sum_{i=1}^{n} x_i\right)}{1 - p}$$

The maximum likelihood estimator of p is

$$\hat{P} = \frac{X_1 + \dots + X_n}{n}$$

Is this a unbiased estimator?



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

04/01/2022

#### Exercise

Let X is a random variable, which has probability mass function is

$$f(x) = \begin{cases} p & , & x = -1 \\ 1 - p & , & x = 1 \\ 0 & , & otherwise \end{cases}$$

Find the maximum likelihood estimator of *p*.

Solution:

$$f(x) = \begin{cases} p^{\frac{1-x}{2}} (1-p)^{\frac{1+x}{2}}, & x = -1, 1 \\ 0, & otherwise \end{cases}$$

$$\hat{P} = \frac{1}{2} - \frac{X_1 + \dots + X_n}{2n}$$



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

#### **Invariance Property**

Let  $\hat{\Theta}_1,...,\hat{\Theta}_k$  be the maximum likelihood estimators of the parameters  $\theta_1,...,\theta_k$ . Then the maximum likelihood estimator of any function  $h(\theta_1,...,\theta_k)$  of these parameters is the same function  $h(\hat{\Theta}_1,...,\hat{\Theta}_k)$  of the estimators  $\hat{\Theta}_1,...,\hat{\Theta}_k$ .



Introduction

Sampling Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

#### Exercise

Let X be normally distributed  $N(\mu, \sigma^2)$ , where both  $\mu$  and  $\sigma^2$  are unknown.

- (a) Find the maximum likelihood estimator of  $\mu$  and  $\sigma^2$ .
- (b) Find the maximum likelihood estimator of  $\theta = \mu^2 \sigma^2$ .

Solution:

$$\hat{\mu} = \overline{X}, \quad \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

$$\hat{\theta} = (\overline{X})^2 \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$



### **SUMMARY**

Introduction

Sampling
Distributions

General concepts of point estimation

Methods of point estimation

Method of moments

Method of maximum likelihood

Summary

We have studied:

- 1. Sampling distributions
- 2. General concepts of point estimation: Unbiased Estimator
  - 3. Methods of point estimation
- Method of Moments
- Method of Maximum Likelihood

Homework: Read slides of the next lecture.