Date:

EXPERIMENT-13

DESIGN THE NETWORK MODEL FOR SUBNETTING – CLASS C ADDRESSING USING PACKET TRACER

AIM: To design the network model for subnetting-class C addressing using packet tracer.

Software/Apparatus required: Packet Tracer/End devices, Hubs, connectors.

Algorithm:

- 1. Determine the network requirements: Identify the number of subnets and hosts required for each subnet.
- 2. Choose a subnet mask: Select a subnet mask that can accommodate the required number of subnets and hosts.
- 3. Calculate the subnet mask and prefix length: Use the formula $2^p 2 = n$, where p is the number of host bits and n is the required number of hosts per subnet, to calculate the number of host bits required. Add these host bits to the Class C network address to create the subnet address. The remaining bits in the subnet mask will be the prefix length.
- 4. Configure the router: Configure the router interface with the subnet address and subnet mask.
- 5. Configure the hosts: Configure each host with an IP address and subnet mask that matches the subnet address and subnet mask used on the router interface.
- 6. Test the network: Verify that the hosts can communicate with each other and with devices on other subnets.
- 7. Monitor network traffic: Use Packet Tracer's built-in network monitoring tools to monitor network traffic and identify any potential issue.

Procedure:

- STEP 1: Click on end devices, select generic Pc's drag and drop it on the window. Click on SWITCH drag and drop it on the window.
- STEP 2: Select the straight through cable and connect all end device to switch. Assign the IP address for all end devices. (Double click the end device Select \rightarrow desktop \rightarrow IP configuration static
- STEP 3: Now set the IP address to Host A (192.168.1.1) in static mode. Similarly set IP address

for Host B (192.168.1.2) and Host C (192.168.1.3)

STEP 4: To view the IP address, give ipconfig command in command prompt. Using ping command, we can establish communication between two host devices.

STEP 6: Now display the packet transmission in simulation mode.

Diagram

Output

Result:

There for designing for network model subnetting has been successfully implemented using packet tracer.

Date:

EXPERIMENT: 14

SIMULATING X, Y, Z COMPANY NETWORK DESIGN AND SIMULATE USING PACKET TRACER

Aim: To simulate X,Y,Z company network design and stimulate using packet tracer.

Software/Apparatus required: Packet Tracer/End devices, Hubs, connectors.

Algorithm:

- 1. Identify the network requirements: Determine the number of users, devices, and servers that will be connected to the network.
- 2. Create a network diagram: Use a network diagramming tool to create a visual representation of the network design, including the devices, servers, switches, routers, and connections.
- 3. Configure the routers: Configure the routers with IP addresses, subnet masks, and routing protocols as needed.
- 4. Configure the switches: Configure the switches with VLANs, and assign ports to each VLAN.
- 5. Configure the servers: Configure the servers with IP addresses, subnet masks, and any necessary applications or services.
- 6. Configure the workstations: Configure the workstations with IP addresses, subnet masks, and any necessary applications or services.
- 7. Configure security: Configure security measures such as firewalls, access control lists, and intrusion detection systems as needed.
- 8. Test the network: Test the network connectivity by pinging devices and verifying that data can be transmitted between them.
- 9. Monitor network traffic: Use Packet Tracer's built-in network monitoring tools to monitor network traffic and identify any potential issues.
- 10. Make adjustments as needed: Make adjustments to the network configuration as needed to improve performance, security, or functionality.

Procedure:

- 1. Start Packet Tracer: Launch Packet Tracer on your computer.
- 2. Create a new project: Click on "File" and select "New", then select "Network" from the options.
- 3. Add devices: Click on the "Devices" tab in the bottom-left corner of the window, and

drag and drop devices onto the workspace. Add devices such as routers, switches, servers, and workstations.

- 4. Connect devices: Use the "Cable" tool to connect the devices together. Configure the connections as needed.
- 5. Configure devices: Double-click on each device to open its configuration menu, and configure its settings such as IP address, subnet mask, and routing protocols. Configure security measures such as firewalls, access control lists, and intrusion detection systems as needed.
- 6. Add applications: Click on the "Applications" tab in the bottom-left corner of the window, and drag and drop applications onto the workstations and servers. Configure the applications as needed.
- 7. Test the network: Use Packet Tracer's built-in testing tools to verify that the network is working correctly. Test the network connectivity by pinging devices and verifying that data can be transmitted between them.
- 8. Monitor network traffic: Use Packet Tracer's built-in network monitoring tools to monitor network traffic and identify any potential issues.
- 9. Make adjustments as needed: Make adjustments to the network configuration as needed to improve performance, security, or functionality.
- 10. Save the project: Click on "File" and select "Save" to save the project.

Diagram

