Matematika 1

Marija Rašajski (beleške: Luka Simić)

Decembar 2019

1 Diferencijalni račun

Definicija 1.1. Neka je f definisana u okolini tačke x_0 uključujući i samu tačku x_0 . Ako postoji (konačna ili beskonačna) granična vrednost

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

kažemo da je $f(x_0)$ (prvi) izvod f u tački x_0 .

Ako se posmatra samo levi/desni limes njegova vrednost je levi/desni izvod, i kažemo da funkcija ima izvod u nekoj tački ako i samo ako ima i levi i desni izvod u toj tački i oni su jednaki.

Geometrijska interpretacija 1.1. Neka je f(x) neprekidna u x_0 i definisana u nekoj njenoj okolini. Neka je Δx proizvoljna (obično mala) veličina koju nazivamo priraštaj argumenta x. Kada se x promeni od x do Δx , funkcija f se promeni od f(x) do $f(x + \Delta x)$. Veličinu $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$ nazivamo priraštajem funkcije f(x).

$$tg(\alpha) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Kada $\Delta x \to 0$, sečica AB postaje tangenta u tački $A(x_0, y_0)$. Dakle, izvod y = f(x) u tački x_0 jednak je tangensu ugla koji tangenta u toj tački zaklapa sa pozitivnim smerom x-ose.

1.1 Tangenta

Definicija 1.2. Ako postoji konačan izvod $f'(x_0)$, tada pravu čija je jednačina $y - y_0 = f'(x_0)(x - x_0)$ nazivamo tangentom krive y = f(x) u tački (x_0, y_0) . Ako je izvod beskonačan, tada je jednačina tangente $x = x_0$. Ako ne postoji ni konačan ni beskonačan izvod tada u datoj tački kriva nema tangentu.

1.2 Normala

Definicija 1.3. Ako postoji tangenta krive y = f(x) u tački (x_0, y_0) , prava koja je normalna na tangentu i sadrži (x_0, y_0) naziva se normalnom krive y = f(x) u tački (x_0, y_0) . Ako je izvod konačan i različit od 0, jednačina normale je $y - y_0 = \frac{-1}{f'(x_0)}(x - x_0)$. Ako je beskonačan, jednačina normale je $y = y_0$. Ako je nula, jednačina normale je $x = x_0$.

Definicija 1.4. Ugao između krivih y = f(x) i y = g(x) koje se seku u tački čija je apscisa x_0 definiše se kao oštar ugao između njihovih tangenti u presečnoj tački (ako obe tangente postoje). Tangens tog ugla je

$$tg(\alpha) = \left| \frac{f'(x_0) - g'(x_0)}{1 + f'(x_0)g'(x_0)} \right|$$

Definicija 1.5. Ako funkcija f u tački x_0 ima konačan izvod kažemo da je ona u toj tački diferencijabilna.

Teorema 1.1. Ako je f diferencijabilna u x_0 onda je i neprekidna u x_0 .

$$\begin{array}{ll} \textit{Dokaz. } f \text{ ima konačan izvod u } x_0 \implies \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ je konačan.} \implies \lim_{x \to x_0} f(x) = f(x_0) \implies \lim_{x \to x_0} (f(x) - f(x_0)) = 0 \lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) = 0 \end{array} \qquad \Box$$

1

Teorema 1.2. Neka su f i g diferencijabilne u x i neka su α i β proizvoljni realni brojevi. Tada je funkcija $\alpha f + \beta g$ diferencijabilna u x i važi:

$$(\alpha f(x) + \beta g(x))' = \alpha f'(x) + \beta g'(x)$$

Dokaz.

$$u(x) = \alpha f(x) + \beta g(x)$$

$$u'(x) = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = \lim_{h \to 0} \frac{\alpha f(x+h) + \beta g(x+h) - \alpha f(x) - \beta g(x)}{h} =$$

$$= \lim_{h \to 0} \frac{\alpha (f(x+h) - f(x)) + \beta (g(x+h) - g(x))}{h} =$$

$$= \alpha \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \beta \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} =$$

$$= \alpha f'(x) + \beta g'(x)$$

Teorema 1.3. (Izvod proizvoda i količnika) Ako su funkcije f i g diferencijabilne u tački x, tada je funkcija f(x)g(x) takođe diferencijabilna u tački x. Ako je $g(t) \neq 0$ za svako t u nekoj okolini tačke x, onda je i funkcija $\frac{f(x)}{g(x)}$ diferencijabilna u tački x i važi:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Dokaz.

$$(f(x)g(x))' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} =$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} =$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h} =$$

$$= f'(x)g(x) + f(x)g'(x)$$

Teorema 1.4. (Izvod složene funkcije) Neka je g diferencijabilna u x_0 i h(x) = f(g(x)) je definisana u nekoj okolini x_0 , pri čemu je f diferencijabilna u $t_0 = g(x_0)$. Tada je i h diferencijabilna u x_0 i važi:

$$h'(x_0) = (f(g(x)))'|_{x=x_0} = f'(t)|_{t=g(x_0)} \cdot g(x_0)$$

Teorema 1.5. (Izvod inverzne funkcije) Neka je f monotona i neprekidna na intervalu (a, b) i neka u nekoj tački $x \in (a, b)$ ima konačan izvod $f'(x_0) \neq 0$. Tada je inverzna funkcija f^{-1} diferencijabilna u tački $y_0 = f(x_0)$ i važi jednakost:

$$(f^{-1}(y_0))' = \frac{1}{f'(x_0)}$$

1.3 Logaritamski izvod

$$f(x) = u(x)^{v(x)}$$
$$ln(f(x)) = ln(u(x)^{v(x)})$$
$$\frac{f'(x)}{f(x)} = (v(x)ln(u(x)))'$$

2 Ekstremumi

Definicija 2.1. Ako je f definisana u nekoj okolini $(x_0 - \varepsilon, x_0 + \varepsilon)$ tačke x_0 i ako za svako x u toj okolini važi da je $f(x) \geq f(x_0)$ kažemo da funkcija f ima lokalni minimum u tački x_0 (analogno za lokalni maksimum). Lokalni maksimum i minimum nazivaju se i lokalni ekstremumi.

Postoje i strogi lokalni ekstremumi kada se koriste strogi znaci nejednakosti; u suprotnom konstantna funkcija može imati ekstremume u svakoj tački. Najveći i najmanji ekstremum funkcije na datom skupu su takođe globalni.

Definicija 2.2. Tačka x_0 u kojoj je $f'(x_0) = 0$ naziva se stacionarna tačka funkcije f.

Teorema 2.1. (Fermaova teorema) Ako funkcija f u tački x_0 ima lokalni ekstremum i ako u $f(x_0)$ ima izvod tada je $f'(x_0) = 0$.

Dokaz.

$$f(x_0) = y$$

$$f'(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$

$$f'(x_0) = \lim_{h \to 0^-} \frac{f(x_0) - f(x_0 - h)}{h} \ge 0$$

f ima izvod u x_0 pa su levi i desni izvod u toj tački jednaki, a to je moguće samo ako su jednaki nuli $\implies f'(x_0) = 0$. Analogno za lokalni minimum.

Teorema 2.2. (Rolova teorema) Neka je funkcija f definisana na segmentu [a,b] i neka važi:

- f je neprekidna na [a, b]
- f je diferencijabilna na (a, b)
- f(a) = f(b)

Tada postoji $c \in (a, b)$ tako da važi f'(c) = 0.

Geometrijska interpretacija 2.1. Ako je kriva y = f(x) neprekidna na zatvorenom intervalu [a, b] i u svakoj tački (a, b) ima tangentu, a važi f(a) = f(b), onda postoji bar jedna tačka $c \in (a, b)$ u kojoj je tangenta na krivu paralelna sa x-osom.

Teorema 2.3. (Košijeva teorema) Neka su f i g funkcije definisane na [a, b] za koje važi:

- f i g su neprekidne na [a, b]
- f i g su diferencijabilne na (a, b)
- $q'(x) \neq 0$ za svako $x \in (a, b)$

Tada postoji $c \in (a, b)$ tako da je $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Dokaz.

$$g(b) - g(a) \neq 0$$

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g(x)$$

Dovoljan dokaz: $\varphi'(x) = 0$. φ je definisana na [a, b].

- φ je neprekidna na [a,b] jer su to isto f i g
- $\bullet \ \varphi$ je diferencijabilna na [a,b]jer su to isto f i g
- $\varphi(a) = \varphi(b)$?

$$\varphi(a) = f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g(a) = \frac{f(a)g(b) - f(a)g(a) - f(b)g(a) + f(a)g(a)}{g(b) - g(a)}$$

$$\varphi(b) = \frac{f(b)g(b) - f(b)g(a) - f(b)g(b) + f(a)g(b)}{g(b) - g(a)} \implies \varphi(a) = \varphi(b)$$

$$\implies (\exists c \in (a, b))(\varphi'(c) = 0) \implies f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0$$

$$\implies (\exists c \in (a, b)) \frac{f(b) - f(a)}{g(b) - b(a)} = \frac{f'(c)}{g'(c)}$$

Geometrijska interpretacija 2.2. Ako je kriva zadata parametrom $x=g(t),\ y=f(t),\ t\in[a,b],$ kriva spaja tačke A(g(a),f(a)) i B(g(b),f(b)). Koeficijent pravca prave kroz tačke a i b je $\frac{f(b)-f(a)}{g(b)-g(a)}$ a koeficijent prava tangente za $c\in(a,b)$ je $\frac{f'(c)}{g'(c)}$. Košijeva teorema tvrdi da postoji $c\in(a,b)$ takva da je tangenta na krivu u C(g(c),f(c)) paralelna sečici na krivu kroz A i B.

Teorema 2.4. (Lagranžova teorema) Neka je f definisana na [a,b] i neka važe (1) i (2). Tada postoji $c \in (a,b)$ tako da važi $\frac{f(b)-f(a)}{b-a}=f'(c)$

Dokaz. Košijeva teorema za g(x) = x.

Geometrijska interpretacija 2.3. Ako je kriva y = f(x) neprekidna na [a,b] i u svakoj tački (a,b) ima tangentu, onda postoji tačka $c \in (a,b)$ takva da je tangenta u C(c,f(c)) paralelna sečici kroz tačke A(a,f(a)) i B(b,f(b)).

2.1 Izvodi višeg reda

Definicija 2.3. Izvod f nazivamo prvim izvodom sa oznakom f'. Ako je definisan izvod reda n-1, u oznaci $f^{(n-1)}$, tada se izvod reda n definiše sa $f^{(n)}(x) = (f^{(n-1)}(x))'$. Za funkciju koja u tački x ima konačan izvod reda n kažemo da je u toj tački n puta diferencijabilna.

Teorema 2.5. (Lajbnicova teorema) Neka je f(x) = u(x)v(x) i neka su u i v n puta diferencijabilne u x. Tada je f n puta diferencijabilna u x i važi:

$$(u \cdot v)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} \cdot v^{(n-k)}$$

Dokaz. Indukcijom, polazeći od definicije i izraza za prvi izvod proizvoda (slično dokazu binomne formule). Koristi se $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$.

2.2 Lopitalovo pravilo

Teorema 2.6. (Lopitalovo pravilo) Neka su f i g diferencijabilne u nekoj okolini tačke $a \in \mathbb{R}$ (osim možda u a) i neka je:

- $\lim_{x\to a} \frac{f(x)}{g(x)}$ tipa $\frac{0}{0}$ ili $\frac{\infty}{\infty}$
- $g'(x) \neq 0$ u nekoj okolini tačke a
- Postoji $\lim_{x\to a} \frac{f'(x)}{g'(x)}$

Tada postoji i $\lim_{x\to a} \frac{f(x)}{g(x)}$ i važi

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Direktnom primenom Lopitalovog pravila nalaze se granične vrednosti tipa $\frac{0}{0}$ ili $\frac{\infty}{\infty}$ svođenjem na granične vrednosti količnika izvoda. U slučaju neodređenosti tipa $0-\infty$ ili $\infty-\infty$ treba prvo algebarskim transformacijama dovesti funkciju u odgovarajući oblik. U slučaju neodređenosti tipa 0^0 , ∞^0 ili 1^∞ datu funkciju treba logaritmovati pa dobijamo jedan od navedenih slučajeva.

3 Monotonost

Teorema 3.1. Neka je f definisana i neprekidna na intervalu (a,b) $(a,b \in \overline{\mathbb{R}})$ i neka funkcija f ima izvod za svako $x \in (a,b)$.

- Ako je $(\forall x \in (a,b))f'(x) > 0$, f je monotono rastuća na (a,b)
- Ako je $(\forall x \in (a,b))f'(x) < 0, \, f$ je monotono opadajuća na (a,b)
- Ako je $(\forall x \in (a,b))f'(x) = 0$, f je konstantna na (a,b)

Dokaz. Pomoću Lagranžove teoreme.

Teorema 3.2. Neka je x_0 stacionarna tačka funkcije f. Ako je $f''(x_0) > 0$, tada funkcija u tački x_0 ima lokalni minimum. Analogno za lokalni maksimum.

Ako je $f''(x_0) = 0$, neka je k red prvog sledećeg izvoda u x_0 koji je različit od nule, tj. neka je:

$$f'(x_0) = f''(x_0) = \dots = f^{(k-1)}(x_0) = 0, f^{(k)}(x_0) \neq 0 (\neq \pm \infty)$$

Ako je k neparan broj tada funkcija u tački x_0 nema lokalni ekstremum. Ako je k paran u $f^{(k)}(x_0) > 0$, f ima lokalni minimum, u suprotnom maksimum.

4 Konveksnost i konkavnost

Definicija 4.1. Ako svako $\lambda \in [0,1]$ i za svako $x_1, x_2 \in (a,b)$ važi da je

$$f(\lambda x_1 + (1 - \lambda x_2)) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

tada kažemo da je f konkavna na intervalu (a,b). (Umesto (a,b) može biti proizvoljan otvoren, zatvoren, konačan ili beskonačan interval.)

Teorema 4.1. Neka je f diferencijabilna na intervalu (a,b). Tada je f konveksna na (a,b) ako i samo ako je f' neopadajuća na (a,b).

Teorema 4.2. Neka je f dva puta diferencijabilna na (a,b). Tada je f konveksna na (a,b) ako i samo ako $f''(x) \ge 0$ u svakoj tački $x \in (a,b)$, a konkavna obrnuto. Tačka u kojoj funkcija menja konveksnost naziva se prevojna tačka.

Definicija 4.2. Neka je f definisana na nekom intervalu $(x_0 - h, x_0 + h)$, pri čemu je na intervalu $(x_0 - h, x_0)$ konkavna, a $(x_0, x_0 + h)$ konveksna. Tada se kaže da je x_0 prevojna tačka funkcije f. Ako f ima drugi izvod u prevojnoj tački, onda je on jednak nuli. Naime, prvi izvod ima lokalni ekstremum u prevojnoj tački, pa po Fermaovoj teoremi je izvod prvog izvoda u toj tački jednak nuli. U prevojnoj tački ne mora da postoji drugi izvod.

5 Asimptote

Definicija 5.1. Neka je data funkcija y = f(x). Ako je a tačka nagomilavanja domena funkcije f i ako su granične vrednosti $\lim_{x\to a} f(x)$ ili $\lim_{x\to a^-} f(x)$ ili $\lim_{x\to a^+} f(x)$ jednake $+\infty$ ili $-\infty$, za pravu x=a kažemo da je vertikalna asimptota.

Definicija 5.2. Ako je $\lim_{x\to +\infty} f(x)$ jednako $b\in \mathbb{R}$, tada kažemo da je prava y=b desna horizontalna asimptota funkcije f. Analogno za levu.

Definicija 5.3. Ako je $\lim_{x\to+\infty}(f(x)-ax-b)=0$, za neko $a\neq 0$, $b\in\mathbb{R}$ tada pravu y=ax+b nazivamo desnom kosom asimptotom funkcije f. Analogno za levu.

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
$$n = \lim_{x \to \pm \infty} (f(x) - kx)$$

6 Tejlorova formula

Definicija 6.1. Ako funkcija f u okolini tačke a ima konačne izvode do reda n, tada se polinom

$$T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

naziva Tejlorovim polinomog n-tog stepena funkcije f u okolini a.

Definicija 6.2. Ako funkcija u okolini nule ima konačne izvoda do reda n tada se polinom

$$M_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

naziva Maklorenovim polinomom n-tog stepena funkcije f.

Teorema 6.1. Neka je funkcija f n-puta diferencijabilna u a i neka je T_n njen Tejlorov polinom stepena n u okolini tačke a. Tada je:

$$f(x) = T_n(x) + o((x-a)^n), x \to a$$

Ovako predstavljen ostatak naziva se ostatkom u Peanovom obliku. Ova teorema tvrdi da je $R_n(x) = o((x-a)^n), x \to a$, a iz same definicije Tejlorovog polinoma se vidi da je $R_n(a) = 0$.

6.1 Osnovni Maklorenovi razvoji

 $f(x) = e^x$ $f^{(n)}(x) = e^x$ $f^{(n)}(0) = 1, n \in \mathbb{N}$ $f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n), x \to 0$

$$\begin{split} f(x) &= \sin(x) \\ f^{(n)}(x) &= \sin(x + \frac{n\pi}{2}) \\ f^{(n)}(0) &= \sin(\frac{n\pi}{2}) \\ \sin(x) &= 1 - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n}), x \to 0 \end{split}$$

$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}), x \to 0$$

$$(1+x)^{a} = \sum_{k=0}^{n} {a \choose k} x^{k} + o(x^{k}), x \to 0$$

za a=-1 $\frac{1}{1+x}=1-x+x^2-x^3+\ldots+(-1)^{n-1}\frac{x^n}{n}+o(x^n), x\to 0$

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n), x \to 0, x \in (-1, 1]$$

Teorema 6.2. (Jedinstvenost Tejlorovog polinoma) Ako je f n-puta diferencijabilno u a i ako za neki polinom P_n stepena n važi da je $f(x) = P_n(x) + o((x-a)^n), x \to a$, onda je P_n Tejlorov polinom f u okolini tačke a.

Dakle, ako na bilo koji način dobijemo P_n za koji važi $f(x) = P_n(x) + o((x-a)^n), x \to a$ onda je to Tejlorov polinom (pod uslovom da je f n-puta diferencijabilno u a).

U praksi se često Maklorenov razvoj neke funkcije nalazi polazeći od poznatih razvoja elementarnih funkcija.

Teorema 6.3. Neka f ima u okolini a konačne izvode do reda n+1 i neka je $R_n(x)=f(x)-T_n(x)$, gde je T_n Tejlorov polinom f u okolini a. Tada se R_n može predstaviti u sledećim oblicima:

- Lagranžov oblik ostatka: $R_n(x) = \frac{f^{(n+1)(a+\theta(x-a))}}{(n+1)!}(x-a)^{n+1}, \theta \in (0,1)$
- Košijev oblik ostatka: $R_n(x) = \frac{f^{(n+1)(a+\theta(x-a))}}{n!} (1-\theta)^n (x-a)^{n+1}, \theta \in (0,1)$

 $(\theta$ je neodređena veličina koja zavisi od x)