4.3 大模型的分布式训练

林洲汉

2024年秋季学期

- ▶ 为什么需要并行计算
- ▶ 数据并行
- ▶ 模型并行
 - ▶ 流水线并行
 - ▶ 张量并行
- ▶序列并行
- ▶ 其他并行方法

为什么需要并行计算

近年来,随着Transformer架构的提出,使得深度学习模型轻松突破上万亿规模参数,传统的单机单卡模式已经无法满足超大模型进行训练的要求。

因此,我们需要基于单机多卡、甚至是多机多卡进行分布式大模型的训练。

为什么需要并行计算

并行计算, 能够大幅降低训练模型所需要的**时间开销** 并行计算使**超大参数**规模的模型训练成为可能

在WikiPedia上训练BERT模型时

• 单卡3090: 58小时/epoch 加速6倍

• 8卡3090: 9.5小时/epoch

模型参数: 2 bytes

梯度: 2 bytes

优化器状态: 12 bytes (Adam)

即使是80G显存的H100,一张卡也只能装下

GPU显存分配

80GB/16Bytes=5.0B

如果不使用并行计算,只用一张GPU训练GPT-3需要355年!

目录

- ▶ 为什么需要并行计算
- ▶ 数据并行
- ▶ 模型并行
 - ▶ 流水线并行
 - ▶ 张量并行
- ▶ 序列并行
- ▶ 其他并行方法

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

数据并行就是将把数据分摊到不同的计算设备上,同时进行 计算。

首先由主GPU将数据分发到每个GPU上

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

首先由主GPU将数据分发到每个GPU上然后由主GPU将模型分发到每个GPU上

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

首先由主GPU将数据分发到每个GPU上然后由主GPU将模型分发到每个GPU上

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

每个GPU独立进行前向计算,得到模型输出

前向计算

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

将每个GPU的计算结果发回主GPU

前向计算

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

主GPU计算loss和梯度

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

将梯度分发到每个GPU上

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

每个GPU独立计算参数更新

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

将每个GPU计算得到的参数更新发回主GPU

数据并行就是将把数据分摊到不同的计算设备上,同时进行计算。

主GPU更新模型参数,并同步到所有GPU

PyTorch中的DP(DataParallel)就采用了上面的方法

优点: 使用方便, 基本无需修改已有的训练代码。

缺点: GPU负载严重不均衡,通信是很大的瓶颈

```
18186 / 24564 MB

9824 / 24564 MB
```

主GPU负载远高于其他GPU

PyTorch中的DDP(DistributedDataParallel)对此进行了改进

Loss在各GPU中独立计算,各GPU之间只同步一次梯度,然后独立进行反向传播和参数更新

目录

- ▶ 为什么需要并行计算
- ▶ 数据并行
- ▶ 模型并行
 - ▶ 流水线并行
 - ▶ 张量并行
- ▶序列并行
- ▶ 其他并行方法

模型并行

数据并行中,每个GPU上都加载完整的模型,能够训练的模型大小受到显存大小限制

如何训练更大参数量的模型?

我们需要进一步拆分模型

一张卡放不下, 那就放在两张卡上

模型并行

数据并行中,每个GPU上都加载完整的模型,能够训练的模型大小受到显存大小限制

如何训练更大参数量的模型?

我们需要进一步拆分模型

- 流水线并行:将模型按层拆分

张量并行: 将矩阵计算拆分

一张卡放不下的模型, 那就放在两张卡上

流水线并行

模型并行

模型并行从计算图的切分角度,可以分为以下几种:

- ▶ 按模型的layer层切分到不同设备,即层间并行,我们称之为流水线并行。
- 将计算图中的层内的参数切分到不同设备,即层内并行,我们称之为张量模型并行。

层内并行

和计算机的流水线一样,将模型分为几个不同的部分,不同 的显卡所加载的模型的不同的层, 依次参与计算:

不同GPU上加载模型的不同层

block2

block1

和计算机的流水线一样,将模型分为几个不同的部分,不同的显卡所加载的模型的不同的层,依次参与计算:

逐层进行前向计算

和计算机的流水线一样,将模型分为几个不同的部分,不同的显卡所加载的模型的不同的层,依次参与计算:

计算资源的利用率不高

和计算机的流水线一样,将模型分为几个不同的部分,同步计算不同的批次数据,形成一个流水线

IF	ID	EX	MEM	WB				
↓ <i>i</i>	IF	ID	EX	MEM	WB			
<i>t</i> →		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
				IF	D	EX	MEM	WB

计算机流水线

微批次(MicroBatch)流水线

将传入的小批次(MiniBatch)分块为微批次,人为创建流水线

Gpipe流水线

Bubble时间为 $O(\frac{N-1}{N+M-1})$, M是划分MicroBatch的数量 当 $M \gg N$ 时,这个时间可以忽略不计

目录

- ▶ 为什么需要并行计算
- ▶数据并行
- ▶ 模型并行
 - ▶ 流水线并行
 - ▶ 张量并行
- ▶ 序列并行
- ▶ 其他并行方法

张量并行

- ▶ 设输入数据为X,参数为W。X的维度 = (b,s,h), W的维度 = (h,h')。其中:
 - b: 批量 (batch) 大小;
 - s: 输入序列的长度;
 - h:每个token向量的维度;
 - h': 参数W的hidden size。
- ▶ 那么每次forward的过程如下:

张量并行

▶ 在后续的讨论中如果不做特殊说明,我们不考虑batch大小,也就是假设b=1:

- ▶ 现在我们的问题是: W过大,导致单张显卡无法容纳。
- ▶ 我们需要将 W 切开并放到不同的GPU上。在这一过程中,我们面临三个主要问题:
 - 如何切分W;
 - 切分W后,如何进行forward;
 - 完成forward后,如何进行backward,以计算梯度并更新权重。

我们可以沿着W的行(h维度),或者列(h'维度)切分W。下面我们分别介绍这两种切割办法,并说明它们是如何做forward和backward的。

张量并行

按行切分权重

- (1) 矩阵切分
- N来表示GPU的数量。有几块GPU,就把W按行维度切成几份。下图展示了 N=2时的切割方式:

▶ W按照行维度切开后, X的维度和它不对齐了, 如何再做矩阵乘法呢? 解决办法: 把X "按列切开", 如下图所示:

按行切分权重

- (1) 矩阵切分
- ▶ 完成对输入数据和模型权重矩阵的切分后,我们就可以将 X_1 和 W_1 放在GPU1上, X_2 和 W_2 放在GPU2上,分别进行计算。

GPU1

(2) Forward & Backward

▶ 做完forward,取得预测值Y,进而可计算出损失L,接下来就能做backward。 模型进行forward和backward的整体流程图如下:

按列切分权重

- (1) 矩阵切分
- ▶ 类似地,将权重按列切分后,相应的矩阵相乘计算图如下:

按列切分权重

- (1) 矩阵切分
- ▶ 类似地,将权重按列切分后,相应的矩阵相乘计算图如下:

(2) Forward & Backward

► MLP层

GELU (
$$X$$
 * A) * B = Y (s,h) (h,h') (h',h) (s,h)

其中,GELU是激活函数,A和B分别为两个线性层。 权重切分:

GELU (
$$X$$
 * A_1 A_2) * B

$$(s,h) \qquad (h,h'/N) \qquad (h'/N,h)$$

► MLP层张量并行

▶ 自注意力层张量并行

▶ Embedding层

(1) 输入层embedding

输入数据经过输入Embedding层的过程如下,其中WE代表词向量表,w代表总词表大小:

将Embedding层的参数按照词的维度进行切分,每张卡只存储部分词向量表。然后,通过AllReduce操作汇总各个设备上的部分词向量结果,从而得到完整的词向量结果。

(2)输出层embedding

▶ CrossEntropy层

经过输出层embedding后,CrossEntropy层负责计算模型的损失函数值。在实现张量模型并行时,我们可以将CrossEntropy层的参数按照类别的维度进行切分,每个设备只存储部分类别的参数。然后,在各个设备上并行计算损失函数值,并将各个设备上的损失函数值进行汇总,得到最终的损失函数值。

目录

- ▶ 为什么需要并行计算
- ▶数据并行
- ▶ 模型并行
 - ▶ 流水线并行
 - ▶ 张量并行
- ▶ 序列并行
- ▶ 其他并行方法

序列并行

切分超长输入文本序列,同样可以实现并行。

[Batch Size, Tokens, Hidden Dimension]

数据并行切分batch

序列并行

切分超长输入文本序列,同样可以实现并行。

[Batch Size, **Tokens**, Hidden Dimension] 可能会超过100k

序列并行切分token

序列并行

全连接层的序列并行类似于数据并行,这里按下不表。 但是注意力层怎么办?超长序列上的attention如何计算?

序列并行: 在attention层重组数据

注意力层按Head划分

林洲汉

GPU间的通信瓶颈

多次通信的等待时间较长

GPU间的通信瓶颈

将GPU连成一个环!

GPU间的通信瓶颈

希望对各个部分分别求和

1				
	a_1	b_1	C ₁	d_1
	•	·	•	•

a_3	b ₃	c ₃	d_3

	a ₄	b ₄	C ₄	d_4
--	----------------	----------------	----------------	-------

GPU间的通信瓶颈

每个GPU只和"下一个"GPU通信 b_1 d_1 C_1 b_2 d_2 \mathbf{C}_2 b_3 d_3 \mathbf{C}_3 b_4 d_4 C_4

GPU间的通信瓶颈

每个GPU只和"下一个"GPU通信

GPU间的通信瓶颈

每个GPU只和"下一个"GPU通信

GPU间的通信瓶颈

每个GPU只和"下一个"GPU通信

$$a_1 + a_2 + a_3 + a_4$$

$$b_1 + b_2 + b_3 + b_4$$

$$b_1 + b_2 + b_3 + b_4$$
 $c_1 + c_2 + c_3 + c_4$

$$d_1 + d_2 + d_3 + d_4$$

$$a_1 + a_2 + a_3 + a_4$$

$$b_1 + b_2 + b_3 + b_4$$

$$c_1 + c_2 + c_3 + c_4$$

$$b_1+b_2+b_3+b_4$$
 $C_1+C_2+C_3+C_4$ $d_1+d_2+d_3+d_4$

$$a_1 + a_2 + a_3 + a_4$$

$$b_1 + b_2 + b_3 + b_4$$

$$b_1+b_2+b_3+b_4$$
 $c_1+c_2+c_3+c_4$ $d_1+d_2+d_3+d_4$

$$d_1 + d_2 + d_3 + d_4$$

$$a_1 + a_2 + a_3 + a_4$$

$$b_1 + b_2 + b_3 + b_4$$

$$b_1+b_2+b_3+b_4$$
 $c_1+c_2+c_3+c_4$ $d_1+d_2+d_3+d_4$

$$d_1 + d_2 + d_3 + d_4$$

在计算时传递kv值

在计算时传递kv值

目录

- ▶ 为什么需要并行计算
- ▶ 数据并行
- ▶ 模型并行
 - ▶ 流水线并行
 - ▶ 张量并行
- ▶ 序列并行
- ▶ 其他并行方法

在数据并行框架下,如果我们想要训练一个超大规模模型 (例如 GPT-3 175B):

- 即使是最好的 GPU 也无法将模型权重完全加载到显存中!
- 此外,训练还需要存储梯度和 优化器状态。

微软提出ZeRO(零冗余优化),是DeepSpeed分布式训练框架的核心,来解决大模型训练中的显存开销问题。ZeRO的核心思想:**将优化器状态、梯度与模型参数切片,划分到多个设备上,**通过按需重构数据进一步减少存储占用,用通讯换显存。

► ZeRO-1 提出对**优化器状态** 进行分区/切片。

ZeRO-1

微软提出ZeRO(零冗余优化),是DeepSpeed分布式训练框架的核心,来解决大模型训练中的显存开销问题。ZeRO的核心思想:**将优化器状态、梯度与模型参数切片,划分到多个设备上,**通过按需重构数据进一步减少存储占用,用通讯换显存。

► ZeRO-2 提出对**优化器状态** 和**梯度**进行分区/切片。

ZeRO-2

微软提出ZeRO(零冗余优化),是DeepSpeed分布式训练框架的核心,来解决大模型训练中的显存开销问题。ZeRO的核心思想:**将优化器状态、梯度与模型参数切片,划分到多个设备上,**通过按需重构数据进一步减少存储占用,用通讯换显存。

ZeRO-3

- ► ZeRO-3 提出对**优化器状态、梯 度和权重**进行分区/切片。
- 在 PyTorch 中, ZeRO-3 通过 FullyShardedDataParallel (简 称FSDP) 实现。

多维混合并行

- ▶ 多维混合并行指将数据并行、模型并行和流水线并行等多种并行技术结合起来进行分布式训练。
- ▶ 通常,在进行超大规模模型的预训练和全参数微调时,都需要用到多维混合并行。

