Esercizi sulle matrici Corso di Laurea in Informatica A.A. 2005-2006 Docente: Andrea Loi

-1. a) Dire quali sono le dimensioni delle matrici seguenti.

$$\left(\begin{array}{ccc} a & b & c \\ d & e & f \end{array}\right), \left(\begin{array}{ccc} 4 & 1 \\ 1 & 2 \end{array}\right), \left(\begin{array}{ccc} \pi & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- b) Quali delle matrici precedenti possono essere moltiplicate fra loro.
- 0. Moltiplicare le seguenti matrici quando possibile.

$$a) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 7 & 8 \\ 9 & 0 \\ 1 & 2 \end{pmatrix}, b) \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -1 & 3 \\ -2 & 2 \end{pmatrix}, c) \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & 2 \\ 2 & 0 & -2 \end{pmatrix}, d) \begin{pmatrix} 7 & 1 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \end{pmatrix}, e) \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 3 \end{pmatrix}, f) \begin{pmatrix} 0 & 2 & 1 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & 5 \end{pmatrix}$$

1. Siano date le matrici
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & -1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \\ 1 & 3 & 3 \end{pmatrix}$.

- a) Calcolare le terza colonna di AB senza calcolare la matrice AB.
- b) Calcolare la seconda riga di AB, senza calcolare la matrice AB.
- 2. Calcolare i seguenti prodotti

a)
$$\begin{pmatrix} 7 & 2 & \sqrt{3} & 4 \\ 6 & 8 & a^2 & 2 \\ 3 & \sqrt{5} & a & 7 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, b) $\begin{pmatrix} 6a & 2 & 3a^2 \\ 4 & 2\sqrt{a} & 2 \\ 5 & 12 & 3 \end{pmatrix}$ **j**, c) $\begin{pmatrix} 2 & 1 & 8 & 6 \\ 3 & 2\sqrt{3} & 4 \end{pmatrix}$ **k**.

3. Siano A e B due matrici $n \times n$ e supponiamo che A sia simmetrica. Quale delle seguenti equazioni è vera e quale è falsa?

a)
$$(AB)^T = B^T A$$
, b) $(A^T B)^T = B^T A^T$
c) $(A^T B)^T = BA$, d) $(AB)^T = A^T B^T$.

4. Quali delle seguenti matrici sono diagonali? simmetriche? Triangolari? Antisimmetriche?

$$a) \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, b) \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}^{2}, c) \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 0 & 0 \\ b & b \end{pmatrix}, d) \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^{2} e) \begin{pmatrix} 0 & 0 \\ a & a \end{pmatrix}^{2},$$

$$f) \begin{pmatrix} 0 & 0 \\ a & a \end{pmatrix}^{3}, g) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, h) \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} i) \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}^{3},$$

$$l) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{2}, m) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{2}, n) \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}^{4}.$$

- 5. Per quali valori di a le matrici $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$ commutano?
- 6. Determinare le matrici 2×2 che commutano con la matrice $A = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$
- 7. Siano $A \in M_{1,5}$ e $B \in M_{5,1}$ definte come segue: $A = (1, -1, 0, \sqrt{2}, 1),$

$$B = \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}. \text{ Calcolare } AB \in BA.$$

8. Calcolare il determinante e il rango delle seguenti matrici. a) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,

$$b) \left(\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right), c) \left(\begin{array}{ccc} 0 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & 2 & 0 \end{array}\right)$$

- 9. Determinare il rango delle seguenti matrici $A = \begin{pmatrix} 1 & 0 & 2 & 3 & 0 \\ 0 & 1 & 0 & 3 & -1 \end{pmatrix}, B = (1, 0, 2).$
- 10. Quale è l'inversa delle matrici $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, a \neq 0, B = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$?
- 11. Per quali valori del parametro λ le matrici $A=\begin{pmatrix}0&0&\lambda\\1&1&-2\\1&0&1\end{pmatrix}$ e $B=\begin{pmatrix}1&0&2\\\end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 2 \\ \lambda & 0 & -1 \\ 5 & 4 & h \end{pmatrix}$$
 sono invertibili.

- 12. Trovare l'inversa (se possibile) della matrice $A=\left(\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right)$
- 13. Sia S l'insieme delle matrici $n \times n$ simmetriche, T l'insieme delle matrici triangolari, D l'insieme delle matrici $n \times n$ diagonali. Dimostrare che $S \cap T = D$.
- 14. Vero o Falso:
 - 1. Se $A \in M_{n,n}$ ha due righe uguali allora, det A = 0.
 - 2. Se $A, B \in M_{n,n}$, det(AB) = det(BA).
 - 3. Se $A \in M_{n,n}$ e $k \in \mathbb{R}$, $\det(kA) = k \det A$.
 - 4. Se $A \in M_{n,n}$ e $k \in \mathbb{R}$, $\det(kA) = k^n \det A$.
 - 5. Se $A \in M_{n,n}$, n dispari det $A = -\det(-A)$.
 - 6. Se $A \in M_{n,n}$, n pari det $A = \det(-A)$. Giustificare le risposte.
- 15. Sia A una matrice antisimmetrica $n \times n$ con n dispari: dimostare che det A = 0.
- 16. Sia A una matrice ortogonale $n \times n$ dimostare che det $A = \pm 1$.