Projet Bayésien Dugongs - Volume 2

Marco CAYUELA - Bilel MEZRANI

$Mars\ 2021$

 $Voici\ le\ lien\ pour\ le\ code\ R\ du\ projet: \ \texttt{https://github.com/marcocayuela/BayesianProject/blob/2194c35f09503801275}. ProjetDugongs.R$

Contents

1	Présentation des données	2
2	Modèle choisi	2
3	Estimateur utilisé	3
1	Estimation des paramètres	1

1 Présentation des données

Dans ce problème, on observe la taille de plusieurs dugongs à différents âges. Les observations sont effectuées sur 27 dugongs captifs et la taille est donnée en mètre tandis que l'âge est donné en années. On note N=27. Voici un aperçu des observations :

Poids et âge des 27 dugongs

2 Modèle choisi

On choisit de décrire la croissance des dugongs par une courbe non linéaire comme les points le laissent paraître. Si on appelle μ_i la taille du dugong à l'âge X_i , la la forme qu'on décide de prendre est :

$$\mu_i = \alpha - \beta \gamma^{X_i} \tag{1}$$

On remarque la cohérence de cette forme, qui avec un γ inférieur à 1 tend vers la valeur α qui serait alors la taille à l'âge adulte d'un dugong. μ_i est tel que défini précédemment On modélise l'erreur autour de cette courbe de la taille réelle des dugongs en prenant le modèle de donnée suivant :

$$Y_i \sim \mathcal{N}(\mu_i, \tau)$$
 (2)

où Y_i est la taille observée d'un dugong et μ_i est tel que défini précédemment (taille théorique). τ est la précision de notre loi normale.

Les paramètres du modèle sont α , β , τ et γ .

Voici les lois a priori qu'on a choisi :

$$\alpha, \beta \sim \mathcal{N}(0, s) \tag{3}$$

où $s = 10^4$ qui rend donc ces lois à priori non-informatives.

$$\tau \sim Gamma(a, b) \tag{4}$$

avec a = b = 0.001 qui rend donc cette loi non informative elle aussi.

$$\gamma \sim Unif(0.5, 1) \tag{5}$$

La loi nous permet donc de penser à priori que γ est inférieur à 1 (pour que la taille coverge vers α) et est supérieur à 0.5 (convergence pas trop rapide).

C'est un modèle hiérarchique dont on peut construire le DAG (Direct Acyclic Graph) :

On représente μ_i en pointillés car ces valeurs sont complètement détermines par β , α , γ et les x_i . Donc ' $|\mu_i$ ' et ' $|\beta_i, \alpha, \gamma$ ' sont complètement équivalents.

3 Estimateur utilisé

On va utiliser un échantilloneur Metropolis-Hastings within Gibbs avec scan systématique, il faut donc calculer les lois a priori de chaque paramètre.

On a, en s'aidant du DAG:

$$\pi(\alpha \mid \beta, \tau, \gamma) \propto \pi(\alpha) \prod_{i} \pi(Y_i \mid \tau, \mu_i)$$
 (6)

$$\pi(\beta \mid \alpha, \tau, \gamma) \propto \pi(\beta) \prod_{i} \pi(Y_i \mid \tau, \mu_i)$$
 (7)

$$\pi(\tau \mid \alpha, \beta, \gamma) \propto \pi(\tau) \prod_{i} \pi(Y_i \mid \tau, \mu_i)$$
 (8)

$$\pi(\gamma \mid \alpha, \beta, \tau) \propto \pi(\gamma) \prod_{i} \pi(Y_i \mid \tau, \mu_i)$$
 (9)

On utilise comme noyau de transition K(.,.) une marche aléatoire à échelle logarithmique dont la variance sera ajustée pour chaque paramètre.

A chaque étape de notre estimateur et pour chaque paramètre, on calculera une proposition et on calculeras l'acceptation comme suit : (Les paramètres indexés d'une * sont les propositions.)

On prend l'exemple pour α , le principe étant le même pour chaqque paramètre.

$$acceptation = \min\left(1, \frac{g(\alpha^*)}{g(\alpha)} \frac{\alpha^*}{\alpha}\right)$$
 (10)

Le ratio $\frac{\alpha^*}{\alpha}$ est présent car on utilise une marche aléatoire logarithmique. On calcule $g(\alpha)$ ainsi :

$$g(\alpha) = \pi(\alpha) \prod_{i} \pi(Y_i \mid \tau, \mu_i)$$
(11)

Dans les faits, on va réaliser le calcul suivant :

$$\frac{g(\alpha^*)}{g(\alpha)} = \exp\left(\log\left(g(\alpha^*)\right) - \log\left(g(\alpha)\right)\right) \tag{12}$$

$$\log(g(\alpha)) = \log \pi(\alpha) + \sum_{i} \log \pi(Y_i \mid \tau, \mu_i)$$
(13)

Ou les lois de α et de Y_i sachant τ et μ_i sont calculable facilement puisque ce sont des lois normales. De même les lois pur β , τ et γ sont facilement calculables (normales et uniformes).

4 Estimation des paramètres

Maintenant qu'on sait calculer nos lois conditionnelles a posteriori, on peut construire notre estimateur, dont le code se trouve joint à ce rapport.

On simule 100000 itérations pour notre chaîne et on ne prend pas en compte les 1500 premières pour effacer la phase de "warmup".

Voici les taux d'acceptation de nos 4 paramètres, ainsi que les écarts-types que l'on a choisit pour la marche aléatoire logarithmique :

	α	β	au	γ
écart-type	0.07	0.5	1	0.1
taux d'acceptation	12.8 %	12.0 %	32.1 %	14.0 %

On a des taux d'acceptation assez bas mais qu'on ne peut pas faire beaucoup augmenter au risque d'avoir des incrément trop faibles. Regardons la chain obtenue pour α par exemple, on réalise également on ACF(Auto Correlation Function) pour observerla dépendance des simulations sur les précédentes :

On remarque la forte dépendance entre les simulations de alpha par la lecture de l'ACF. On tronque donc la chaine de alpha en prenant un élément sur 10 seulement :

On procède de même pour les autres paramètres. On introduit $\sigma=\frac{1}{\sqrt{\tau}}$ l'écart-type de la distribution des Y_i . Voici les résultats obtenus :

Statistiques de α :

Moyenne	Ecat-type	Quantile 2.5	Mediane	Quantile 97.5
2.651	0.070	2.532	2.646	2.808

Statistiques de β :

Moyenne	venne Ecat-type Quantile 2.5		Mediane	Quantile 97.5
0.974	0.076	0.827	0.973	1.127

Statistiques de σ :

Moyenne	Ecat-type	Quantile 2.5	Mediane	Quantile 97.5
0.0989	0.0149	0.0750	0.0971	0.1386

Densité de sigma

Densité de gamma

Statistiques de γ :

Moyenne	Ecat-type	Quantile 2.5	Mediane	Quantile 97.5
0.862	0.033	0.788	0.866	0.915

On peut maintenant vérifier graphiquement que l'approximation qu'on a faite est cohérente. Voici (page suivante) les points d'observation ainsi que la courbe d'équation $\mu(x) = \hat{\alpha} - \hat{\beta}\hat{\gamma}^x$ où $\hat{\alpha}$, $\hat{\beta}$ et $\hat{\gamma}$ sont les estimateurs de α , β et γ en prenant la moyenne de nos chaines de Markov.

Si on note $\hat{\sigma}$ l'estimateur de σ construit en prenant la moyenne de la chaine de Markov de σ , on peut comparer avec l'estimateur suivant :

$$\tilde{\sigma} = \sqrt{\sum_{i} (Y_i - \mu(x_i))^2} \tag{14}$$

On a $\tilde{\sigma}=0.0906$ et $\hat{\sigma}=0.0990$, qui sont bien proches comme on l'attend. On retrouve donc bien des résultats cohérents.

Poids et âge des 27 dugongs

