物理实验报告

陈建烨 12411913 2025.3.18 P4124

一. 实验名称: 密立根油滴实验

二. 实验目的

- 1.验证电荷量的离散性,测定基本电荷量。
- 2.了解密立根油滴实验的基本原理和实验方法。
- 3.学习使用宏观量测量微观量的方法。

三.实验原理

将带电的油滴通过喷雾方式喷入相距为d的平行极板之间,调节电压U使油滴悬浮在空中,此时油滴满足 $\frac{qU}{d}=mg$,所以 $q=\frac{mgd}{U}$ 。这种方法为静态平衡法。

由于m很小,很难直接测量,我们可以近似将油滴视作球状,所以 $m=
horac{4}{3}\pi r^3$ 。

油滴的半径可以由在空中有阻力情况下的匀速运动来测量。由于存在阻力,且阻力 $F_f \approx 6\pi r \eta v$,当速度最大时满足 $mg=6\pi r \eta v$ 。

而v可以由U=0时记录下落时间t来计算, $v=\frac{l}{t}$ 。

整理后可得 $r=\sqrt{rac{9\eta l}{2
ho gt}}$ 。

但是斯托克斯定律是以连续介质为前提的。对于半径为微米量级的油滴,空气已不能看作连续介质,空气的粘滞系数应作修正: $\eta'=\frac{\eta}{1+\frac{b}{m}}$

最后整理后可得

$$q=rac{18\pi d}{\sqrt{2
ho g}U}[rac{\eta l}{(1+rac{b}{pr})t}]^{rac{3}{2}}$$

其中电容器极板距离 d=5.00mm,油的密度 $\rho=981kg/m$,重力加速度 g=9.79m/s,空气粘滞系数 $\eta=1.83\times 10^{-5}kg/m\cdot s$,粘滞系数修正常数 b=0.00823N/m,大气压强 $p=1.013\times 10^{-5}Pa$,油滴下落距离 l=1.6mm,其余的U,t为待测量,r用 $r=\sqrt{\frac{9\eta l}{2\rho gt}}$ 近似。带入数据简化后

$$q = rac{1.022 imes 10^{-14}}{U[(1+0.02193\sqrt{t})t]^{rac{3}{2}}}$$

四.实验仪器

油滴实验装置

五.实验内容

1.仪器调整

调节面板上的平衡旋钮,使电极板水平。打开仪器和显示器开关,选"平衡法",进入测量界面。

2.练习

- (1)熟悉按键操作,了解各个按键的功能。能熟练调节电压,切换下落,平衡和升高状态,会记录时间。
 - (2)练习喷油和控制油滴平衡。通过调节电压使油滴悬浮在分划板上某处。

3.测量

选择合适的油滴(目视直径约0.1mm),缓慢调节电压,使油滴悬浮在分划板上某处。记录下电压U。将油滴提升到顶部网格线,记录从0mm网格线下落到1.6mm网格线的时间t。重复多次,取平均值。时间测量3次,测5个不同的油滴。

4.计算

根据公式计算出每个油滴的电荷量 q_i 。计算油滴元电荷个数 $n_i=\left[\frac{q_i}{e}\right]$ (其中[]为四舍五入),可以计算出元电荷 $e_i=\frac{q_i}{n_i}=\frac{q_i}{\left[\frac{q_i}{e}\right]}$ 。计算出元电荷的平均值 \bar{e} ,与理论值 $e=1.6\times 10^{-19}C$ 进行比较。计算出相对误差 $E=\frac{|\bar{e}-e|}{e}\times 100\%$ 。

六.实验数据

油滴编号	U/V	t_1/s	t_2/s	t_3/s	$ar{t}/s$
1	129	4.00	4.28	4.12	4.13
2	98	13.40	13.58	13.31	13.43
3	152	14.68	14.61	14.46	14.58
4	147	14.86	15.44	15.25	15.18
5	83	31.51	32.45	31.34	31.77

七.数据处理

$$\begin{array}{l} q_1 = \frac{1.022 \times 10^{-14}}{U_1[(1+0.02193\sqrt{t_1})\bar{t}_1]_2^3} = \frac{1.022 \times 10^{-14}}{129 \times [(1+0.02193\sqrt{4.3})_4.13]_2^3} = 8.83 \times 10^{-18} \\ q_2 = \frac{1.022 \times 10^{-14}}{U_2[(1+0.02193\sqrt{t_2})\bar{t}_2]_2^3} = \frac{1.022 \times 10^{-14}}{98.00 \times [(1+0.02193\sqrt{14.3})_13.43]_2^3} = 1.89 \times 10^{-18} \\ q_3 = \frac{1.022 \times 10^{-14}}{U_3[(1+0.02193\sqrt{t_4})\bar{t}_4]_2^3} = \frac{1.022 \times 10^{-14}}{152.00 \times [(1+0.02193\sqrt{14.58})_14.58]_2^3} = 1.07 \times 10^{-18} \\ q_4 = \frac{1.022 \times 10^{-14}}{U_4[(1+0.02193\sqrt{t_4})\bar{t}_4]_2^3} = \frac{1.022 \times 10^{-14}}{147.00 \times [(1+0.02193\sqrt{15.18})_14.58]_2^3} = 1.04 \times 10^{-18} \\ q_5 = \frac{1.022 \times 10^{-14}}{U_5[(1+0.02193\sqrt{t_5})\bar{t}_5]_2^3} = \frac{1.022 \times 10^{-14}}{147.00 \times [(1+0.02193\sqrt{15.18})_15.18]_2^3} = 5.77 \times 10^{-19} \\ n_1 = \left[\frac{q_1}{e}\right] = \frac{[8.83 \times 10^{-18}}{1.60 \times 10^{-19}} \approx 55 \\ n_2 = \left[\frac{q_2}{e}\right] = \left[\frac{1.89 \times 10^{-18}}{1.60 \times 10^{-19}}\right] \approx 7 \\ n_4 = \left[\frac{q_4}{e}\right] = \frac{[1.07 \times 10^{-19}}{1.60 \times 10^{-19}} \approx 6 \\ n_5 = \left[\frac{q_5}{e}\right] = \frac{[1.77 \times 10^{-19}}{1.760 \times 10^{-19}} \approx 4 \\ e_1 = \frac{q_1}{n_1} = \frac{8.83 \times 10^{-18}}{1.50 \times 10^{-19}} = 1.57 \times 10^{-19} \\ e_2 = \frac{q_2}{n_2} = \frac{1.89 \times 10^{-18}}{1.50 \times 10^{-19}} = 1.53 \times 10^{-19} \\ e_4 = \frac{q_4}{q_4} = \frac{1.04 \times 10^{-18}}{1.60 \times 10^{-19}} = 1.53 \times 10^{-19} \\ e_4 = \frac{q_4}{q_4} = \frac{1.04 \times 10^{-18}}{1.60 \times 10^{-19}} = 1.44 \times 10^{-19} \\ e_5 = \frac{q_5}{n_5} = \frac{5.77 \times 10^{-19}}{4} = 1.44 \times 10^{-19} \\ = \frac{e}{e} = \frac{e(1+e_2+e_3+e_4+e_5}{e} = \frac{1.61 \times 10^{-19}-1.60 \times 10^{-19}}{1.60 \times 10^{-19}} \times 100\% = 1.60\% \\ \end{array}$$

八.误差分析

- 1.电压和时间测量误差
- 2.油滴本身浮力。
- 3.计算化简过程中的近似,常数的取值。
- 4.油滴本身的布朗运动。下落过程中形状不规则变化。

九.实验结论

通过本次实验,验证了电荷量的离散性,测得元电荷 e_i 与理论值 $e=1.6\times 10^{-19}C$ 相近,相对误差E=1.60%在合理范围内。