Chapter 2 - Independence

Salvador Castagnino scastagnino@itba.edu.ar

Exercise Solutions

Theorem 2.5

The only implication we will be proving is $(ii) \implies (iii)$, the rest are obvious. Let $\{\beta_i\}_{i\in I}$ be an arbitrary binary sequence and let $\{\alpha_i\}_{i\in I}$ be the binary sequence which makes the class of events independent, let $J \subset I$ be finite (in particular suppose that $J = \{1, ..., n\}$) and let $L \subset J$ be the set such that $i \in L \iff \alpha_i \neq \beta_i$. We define the following algorithm

```
\mathcal{B} = \left\{C_i\right\}_{1 \leq i \leq n} for 1 \leq i \leq n do C_i = B_i^{\alpha_i} end for for 1 \leq i \leq n do if i \in L then C_i = C_i^c end if end for return \mathcal{B}
```

We claim that the following two assertions are invariants of the second loop

- The family of events \mathcal{B} is independent
- At the end of the *i*-th iteration we have that $\{C_j\}_{1 \leq j \leq i} = \{B_j^{\beta_j}\}_{1 \leq j \leq i}$

Before the first iteration, \mathcal{B} is independent by hypothesis and 1-1=0, so both assertions hold.

Assume that both assertions hold at the beginning of iteration i, we prove that they hold at it's end. If $i \notin L$, \mathcal{B} is not modified and $C_i = B_i^{\beta_i}$, thus both properties hold. If $i \in L$, clearly the second assertin holds as we now have $C_i = B_i^{\beta_i}$. Assume that C_i has not been modified this iteration, we then have

$$\mathbb{P}\left[\bigcap_{j=1}^{n}C_{j}\right]=\mathbb{P}\left[C_{i}\right]\prod_{1\leq j\neq i\leq n}\mathbb{P}\left[C_{j}\right]=\mathbb{P}\left[C_{i}\right]\mathbb{P}\left[\bigcap_{1\leq j\neq i\leq n}C_{j}\right]$$

Using the observation stated above the theorem, we have that the event C_i^c and the intersection of all the other events in \mathcal{B} are independent which proves that the first assertion holds after the *i*-th iteration is completed.

Looking at the last iteration of the algorithm and putting together these two invariant we deduce that $\left\{B_i^{\beta_i}\right\}_{i\in J}$ is independent, as we wanted.

Useful Properties