Digital Electronics

See Boolean Algebra for a description of the category as well as references.

NAME	GRAPHICAL SYMBOL	ALGEBRAIC EQN	TRUTH TABLE
BUFFER	AX	X = A	A X 0 0 1 1
NOT	^X	$X = \overline{A}$	A X 0 1 1 0
AND	A X	X = AB or A*B	A B X 0 0 0 0 1 0 1 0 0 1 1 1
NAND	A B O X	$X = \overline{AB} \text{ or } \overline{A*B}$	A B X 0 0 1 0 1 1 1 0 1 1 1 0
OR	AX	X = A + B	A B X 0 0 0 0 1 1 1 0 1 1 1 1
NOR	A	$X = \overline{A + B}$	A B X 0 0 1 0 1 0 1 0 0 1 1 0
EXCLUSIVE-OR (XOR)	$A \longrightarrow X$	$X = A \oplus B$	A B X 0 0 0 0 1 1 1 0 1 1 1 0
EQUIVALENCE (XNOR)	A B X	$X = \overline{A \oplus B}$	A B X 0 0 1 0 1 0 1 0 0 1 1 1

Find all ordered 4-tuples (A, B, C, D), which make the following circuit **FALSE**:

The circuit translates to the following Boolean expression:

$$(\overline{C+D}+\overline{B})\oplus (\overline{A}B)\oplus (\overline{C+D})$$

The following table has the following headings: H1 is $\overline{(C+D)}$, H2 is H1+ \overline{B} , H3 is $\overline{A}B$, H4 is H2 \oplus H3 and H5 is H4 \oplus H1, the final expression.

A	В	C	D	H1	H2	Н3	H4	Н5
0	0	0	0	1	1	0	1	0
0	0	0	1	0	1	0	1	1
0	0	1	0	0	1	0	1	1
0	0	1	1	0	1	0	1	1
0	1	0	0	1	1	1	0	1
0	1	0	1	0	0	1	1	1
0	1	1	0	0	0	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	0	1	0	1	0	1	1
1	0	1	0	0	1	0	1	1
1	0	1	1	0	1	0	1	1
1	1	0	0	1	1	0	1	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

Thus, the 4-tuples (0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,0,1), (1,1,1,0), and (1,1,1,1) all make the circuit **FALSE**.

Find all ordered triplets (A, B, C) which make the following circuit **FALSE**:

The circuit translates to the following Boolean expression: $\overline{AB} + C$. To find when this is **FALSE** we can equivalently find when the $\overline{\overline{AB} + C}$ is **TRUE**. We can simplify this by applying DeMorgan's Law and cancelling the double *not* over AB to yield $AB\overline{C}$. This is **TRUE** when all three terms are **TRUE**, which happens for (1, 1, 0).