Université des Sciences et de la Technologie d'Oran. 2021-2022 Faculté des Mathématiques — Informatique — LMD — MI - 1ère Année. Analyse1

Fiche deTD1 Nombres réels et nombres complexes

Exercice 1:

- 1. Montrer les inégalités suivantes :
 - (a) $|x| + |y| \le |x + y| + |x y|, \forall x, y \in \mathbb{R}. (*)$
 - (b) $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}, \forall x, y \in \mathbb{R}_+.(*)$
 - (c) $\left|\sqrt{x} \sqrt{y}\right| \le \sqrt{|x y|}, \forall x, y \in \mathbb{R}_+.$
- 2. Soit [x] la partie entière de x, montrer que $\forall x, y \in \mathbb{R}$:
 - (a) $x \le y \Rightarrow [x] \le [y] \cdot (*)$
 - (b) $[x] + [y] \le [x + y] \le [x] + [y] + 1$.

Exercice 2:

- 1. Montrer que:
 - (a) la somme d'un nombre rationnel et d'un nombre irrationnel est un nombre irrationnel.(*)
 - (b) $\sqrt{2} \notin \mathbb{Q}$ et que 0,336433643... $\in \mathbb{Q}$
- 2. Soit $a \in [1, +\infty[$, simplifier $x = \sqrt{a + 2\sqrt{a 1}} + \sqrt{a 2\sqrt{a 1}}$
- 3. Soit $n \in \mathbb{N}^*$, calculer $\prod_{k=1}^n \left(1 + \frac{1}{k}\right)$, en déduire que:

$$\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right) = \ln\left(n + 1\right).(*)$$

Exercice 3:

On considère l'ensemble $E\subseteq\mathbb{R}$ muni de l'ordre usuel et A une partie de E, déterminer pour chacun des ensembles suivants: l'ensemble des majorants Maj(A), l'ensemble des minorants Min(A), la borne supérieure $\sup(A)$, la borne inférieure $\inf(A)$, le plus petit élément $\min(A)$ et le plus grand élément $\max(A)$.

1.
$$A = [-\alpha, \alpha], [-\alpha, \alpha], [-\alpha, \alpha], [-\alpha, \alpha].$$
 (telque $\alpha > 0$), $E = \mathbb{R}.$ (*)

2.
$$A = \{x \in \mathbb{R} / x^2 < 2 \}, E = \mathbb{R}. (*)$$

3.
$$A = \{1 - \frac{1}{n} / n \in \mathbb{N}^* \}, E = \mathbb{R}. (*)$$

Exercice 4:

Soit A une partie non-vide et bornée de \mathbb{R} . On note $B = \{|x - y| ; (x, y) \in A^2\}.$

- 1. Justifier que B est majorée, on note $\sup B$ la borne supérieure de cet ensemble,
- 2. Montrer que sup $B = \sup A \inf A$.

Exercice 5:

On note par $P_B(R)$ l'ensemble des parties bornées de \mathbb{R} , montrer que $\forall A, B \in P_B(\mathbb{R})$:

1.
$$\sup (A \cup B) = \max(\sup A, \sup B)$$
; (*)

2.
$$\inf (A \cup B) = \min(\inf A, \inf B)$$

- 3. Si $A \cap B \neq \emptyset$ alors :
 - a) $\sup (A \cap B) \leq \min(\sup A, \sup B)$

b)
$$\inf (A \cap B) \ge \max(\inf A, \inf B) (*)$$

4.
$$\sup (A+B) = \sup A + \sup B$$
; $\inf (A+B) = \inf A + \inf B$
où $A+B = \{x+y \mid x \in A \text{ et } y \in B\}$

5.
$$\sup(-A) = -\inf(A); \inf(-A) = -\sup A;$$

tel que $-A = \{-x \mid x \in A\}.$

Exercice 6:

En utilisant la caractérisation de la borne supérieure et la borne inférieure montrer que :

- $\sup A = \frac{3}{2}, \text{ inf } A = 1 \text{ pour } A = \left\{ \frac{3n+1}{2n+1}, n \in \mathbb{N} \right\} (*)$
- $\sup C = 1, \text{ inf } C = 0 \text{ pour } C = \{e^{-n}, n \in \mathbb{N}\} (*)$ $\sup D = -1, \text{ inf } D = -2 \text{ pour } D = \{\frac{1}{n^2} 2, n \in \mathbb{N}^*\} (*)$

Déterminer le maximum et le minimum de chacun de ces ensembles s'ils existent. (*)

Exercice 7 (*):

Soit le nombre complexe z = x + iy, et \overline{z} son conjugué, on définit

$$L(z) = z\left(\overline{z} - 4\left(1 - i\sqrt{3}\right)\right) - 4i\left(x\sqrt{3} - y\right) + 12.$$

- 1. Montrer que $L(z) \in \mathbb{R}, \forall z \in \mathbb{C}$.
- 2. Déterminer l'ensemble (C) des points M; d'affixe z, tels que L(z) = 0.
- 3. Soit ω l'affixe du centre du cercle (C), donner la forme exponentielle de ω , puis montrer que $\omega^{2016} = 2^{4032}$.
- 4. Résoudre dans \mathbb{C} l'équation : $z^2 + (3i 4)z + 1 7i = 0$.
- 5. Soit P le polynôme de la variable complexe z, tel que:

$$P(z) = z^3 + z^2 \left(\sqrt{3} - 4i\right) + z\left(-5 - 3i\sqrt{3}\right) - 2\left(\sqrt{3} - i\right)$$

- (a) Montrer que 2i est une racine de P, puis factoriser P(z).
- (b) Déduire toutes les solutions de P(z) = 0.

Exercice 8:

Dans le plan complexe; muni du repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$; on considère les points A, B, C, E et F dont les affixes sont données par:

$$z_A = \sqrt{3} + i, z_B = \sqrt{3} - i, z_C = i, z_E = 2ie^{i\frac{2\pi}{3}}, z_F = 2e^{i\frac{\pi}{2}}.$$

- 1. Ecrire z_A, z_B sous la forme exponentielle et z_E et z_F sous la forme algèbrique.
- 2. Vérifier que $\left(\frac{z_A}{2}\right)^{2013} + \left(\frac{iz_E}{2}\right)^{2013} = -1 i$.

- 3. Soit le nombre complexe $2\alpha = (-1 + \sqrt{3}) + i(1 + \sqrt{3})$,
 - (a) Déterminer le nombre complexe z_D tel que $z_D=\alpha^2$, puis l'écrire sous la forme exponentielle.
 - (b) Déterminer l'entier naturel $n \in \mathbb{N},$ tel que $\left(\frac{z_D}{z_E}\right)^n \in \mathbb{R}.$