Expected values

Statistical Inference

Brian Caffo, Jeff Leek, Roger Peng

Expected values

The **expected value** or **mean** of a random variable is the center of its distribution For discrete random variable with PMF , it is defined as follows

where the sum is taken over the possible values of represents the center of mass of a collection of locations and weights,

Example

Find the center of mass of the bars

```
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
     format.pval, round.POSIXt, trunc.POSIXt, units
##
## Attaching package: 'UsingR'
## The following object is masked from 'package:survival':
##
##
     cancer
```

Histogram of galton\$child

Histogram of galton\$parent

The center of mass is the empirical mean

```
hist(galton$child,col="blue",breaks=100)
meanChild <- mean(galton$child)
lines(rep(meanChild,100),seq(0,150,length=100),col="red",lwd=5)
```

Histogram of galton\$child

Example

Suppose that a die is rolled and is the number face up What is the expected value of?

Again, the geometric argument makes this answer obvious without calculation.

Continuous random variables

For a continuous random variable, , with density, , the expected value is defined as follows

This definition borrows from the definition of center of mass for a continuous body

Example

Consider a density where for between zero and one (Is this a valid density?)
Suppose that follows this density; what is its expected value?

Rules about expected values

The expected value is a linear operator

If and are not random and and are two random variables then

Example

You flip a coin, and simulate a uniform random number, what is the expected value of their sum?

Another example, you roll a die twice. What is the expected value of the average? Let and be the results of the two rolls

Example

Let for be a collection of random variables, each from a distribution with mean Calculate the expected value of the sample average of the

Remark

Therefore, the expected value of the **sample mean** is the population mean that it's trying to estimate

When the expected value of an estimator is what its trying to estimate, we say that the estimator is **unbiased**

The variance

The variance of a random variable is a measure of *spread*If is a random variable with mean, the variance of is defined as

the expected (squared) distance from the mean - Densities with a higher variance are more spread out than densities with a lower variance

Convenient computational form

If is constant then

The square root of the variance is called the standard deviation

The standard deviation has the same units as

Example

What's the sample variance from the result of a toss of a die?

Example

What's the sample variance from the result of the toss of a coin with probability of heads (1) of ?

Interpreting variances

Chebyshev's inequality is useful for interpreting variances This inequality states that

For example, the probability that a random variable lies beyond standard deviations from its mean is less than

Note this is only a bound; the actual probability might be quite a bit smaller

Example

IQs are often said to be distributed with a mean of and a sd of

What is the probability of a randomly drawn person having an IQ higher than or below?

Thus we want to know the probability of a person being more than standard deviations from the mean

Thus Chebyshev's inequality suggests that this will be no larger than 6%

IQs distributions are often cited as being bell shaped, in which case this bound is very conservative

The probability of a random draw from a bell curve being standard deviations from the mean is on the order of (one thousandth of one percent)

Example

A former buzz phrase in industrial quality control is Motorola's "Six Sigma" whereby businesses are suggested to control extreme events or rare defective parts Chebyshev's inequality states that the probability of a "Six Sigma" event is less than If a bell curve is assumed, the probability of a "six sigma" event is on the order of (one ten millionth of a percent)