

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 December 2000 (14.12.2000)

PCT

(10) International Publication Number
WO 00/75337 A1

(51) International Patent Classification⁷: C12N 15/51, C07K 14/18, C12Q 1/68, C12N 7/00

(21) International Application Number: PCT/US00/15293

(22) International Filing Date: 2 June 2000 (02.06.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/137,694 4 June 1999 (04.06.1999) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:
US 60/137,694 (CON)
Filed on 4 June 1999 (04.06.1999)

(71) Applicant (for all designated States except US): THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; Offices of Technology Transfer, National Institutes of Health, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BUKH, Jens [DK/US]; 2018 Baltimore Road, #J42, Rockville, MD 20851 (US). YANAGI, Masayuki [JP/US]; 257 Congressional Lane, # 402, Rockville, MD 20852 (US). EMERSON, Suzanne, U. [US/US]; 4517 Everett Street, Kensington, MD 20895 (US). PURCELL, Robert, H. [US/US]; 17517 White Ground Road, Boyds, MD 20841 (US).

[Continued on next page]

(54) Title: INFECTIOUS cDNA CLONE OF GB VIRUS B AND USES THEREOF

(57) Abstract: The present invention relates to nucleic acid sequence which comprises the genome of an infectious GB virus B clone. The invention also relates to the use of the nucleic acid sequence of the infectious GB virus B clone to indirectly study the molecular properties of HCV, and in the production of HCV/GBV-B chimeras. The invention further relates to the use of the infectious nucleic acid sequence of GB virus B clone and the HCV/GBV-B chimeras in the development of vaccines and therapeutics for HCV.

(74) **Agents:** FEILER, William, S. et al.; Morgan & Finnegan, LLP, 345 Park Avenue, New York, NY 10154 (US).

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(81) **Designated States (national):** AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Published:

- *With international search report.*
- *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- 1 -

◦ Title of Invention

Infectious cDNA clone of GB Virus B and Uses Thereof

Field of Invention

5 The present invention relates to nucleic acid sequence which comprises the genome of an infectious GB virus B (GBV-B) clone. The invention also relates to the use of the nucleic acid sequence of the infectious GB virus B clone to study indirectly the molecular
10 properties of hepatitis C virus (HCV), and in the production of HCV/GBV-B chimeras. The invention further relates to the use of the infectious nucleic acid sequence of the GB virus B clone and the HCV/GBV-B chimeras in the development of vaccines and therapeutics
15 for HCV.

Background of Invention

20 Transmission studies of potential human hepatitis agents were first reported in 1967 (Deinhardt 1967). Four tamarins inoculated with acute phase sera from a surgeon with acute hepatitis (patient GB) developed hepatitis, as did most tamarins inoculated in serial passage studies. Subsequent studies indicated
25 that the etiological agent responsible for the development of hepatitis in these animals was not any of the known human hepatitis viruses (Purcell 1994). In 1995, two related RNA viruses named GB virus-B (GBV-B) and GB virus A (GBV-A) were identified in acute phase sera of a tamarin which developed hepatitis following inoculation with serum of the eleventh tamarin passage of the putative GB agent (Simons 1995a).

30

35 GBV-B infection of tamarins resulted in acute resolving hepatitis (Schlauder 1995, Buhk 1997). The

- 2 -

- natural host of GBV-B is still unknown as the virus has not been detected in uninoculated animals or in humans.

5 GBV-A, on the other hand, is an indigenous tamarin virus rather than a component of the original GB inoculum (Bukh 1997, Erker 1998). Experimental infection of tamarins with GBV-A did not produce hepatitis (Schlauder 1995). A human agent, GBV-C or hepatitis G virus, most closely related to GBV-A, was later identified (Simons 1995b, Linnen 1996). However, 10 it is still not clear whether this virus actually causes hepatitis (Alter 1998, Bukh 1998a). Thus, of the known GB viruses, GBV-B may be the only true hepatitis virus.

15 Based on analysis of their genomic sequences, GBV-A, GBV-B and GBV-C were classified as members of the *Flaviviridae* family of viruses, and among the known viruses, GBV-B is the virus most closely related to hepatitis C virus (HCV) (Muerhoff 1995, Robertson 1998).

20 The GBV-B virus contains a positive-sense, single-stranded RNA genome of 9143 nucleotides (nts) (Simons 1995a, Muerhoff 1995). The viral genome of GBV-B consists of a 5' untranslated region (UTR), a single long open reading frame (ORF) and a 3' UTR. Based on 25 known motifs, structural proteins were predicted to be encoded in the 5' portion of the ORF and nonstructural (NS) proteins in the 3' portion of the ORF (Muerhoff 1995). The hydropathy plots of the polyproteins of GBV-B and HCV are very similar even though the overall 30 homology of the predicted polyproteins between GBV-B and HCV is only about 25-30% (Muerhoff 1995). The putative envelope proteins (E1 and E2) of GBV-B and HCV share common structural features, and significant homology was 35 observed between the NS3 serine protease, the NS3 RNA

- 3 -

o helicase, and the NS5 RNA-dependent RNA polymerase regions of GBV-B and HCV (Muerhoff 1995). Furthermore, the function and substrate specificity of the GBV-B and HCV NS3 serine proteases are also similar (Scarselli 1997). The genomic structure and organization of GBV-B and HCV share additional features of interest. First, colinear regions with significant sequence homology were identified in the 5' UTRs (Muerhoff 1995) and the predicted IRES structure of GBV-B is similar to that of HCV (Lemon 1997). Second, both viruses begin the 3' UTR with a short sequence followed by a poly (U) stretch followed by additional nucleotides (50 nucleotides for GBV-B and 98 nucleotides for HCV). However, the 3' terminal sequence of HCV forms a stable stem-loop structure (Kolykhalov 1996) whereas the published 3' terminal sequence of GBV-B does not.

To date, molecular studies of HCV are severely limited by the lack of an efficient cell culture system for the virus and by expense and limited availability of chimpanzees, the sole animal model for HCV. Accordingly, a less expensive and more readily available animal than chimpanzees is necessary as an animal model for the study of HCV.

Summary of Invention

The present invention relates to nucleic acid sequence which comprises the genome of an infectious GB virus B (GBV-B) clone. It is therefore an object of the invention to provide nucleic acid sequence which encodes an infectious GBV-B. Such nucleic acid sequence is referred to throughout the application as "infectious nucleic acid sequence".

- 4 -

o As significant structural homology exists between the genomes of GBV-B and HCV, the invention also relates to the use of infection of tamarins with the infectious nucleic acid sequence of GBV-B or with 5 mutants of the infectious sequence to study indirectly the molecular properties of hepatitis C virus (HCV) or as a preliminary screen to identify agents which have antiviral activity against HCV.

10 The invention further relates to "chimeric nucleic acid sequences" consisting of portions of the infectious nucleic acid sequence of GBV-B and portions of the nucleic acid sequences of other viruses closely related to GBV-B such as HCV, GBV-C or other members of 15 the *Flaviviridae* family which do not replicate in tamarins. In a preferred embodiment, the chimeric nucleic acid sequences consist of portions of the infectious nucleic acid sequence of GBV-B and portions of the nucleic acid sequence of HCV. The nucleic acid 20 sequences taken from GBV-B and HCV can be open-reading frame sequences, and/or sequences from the 5'UTR and/or 3'UTR.

25 In one embodiment, GBV-B/HCV chimeras may be made in which 5' or 3' UTR sequences of the GBV-B infectious clone are replaced with the corresponding sequence from an HCV clone.

30 In another embodiment, GBV-B/HCV chimeras may be constructed in which the structural or non-structural regions of GBV-B are replaced by corresponding regions of HCV. Thus, such a chimera would contain, for example, the HCV structural region in a GBV-B "genomic backbone". Of course, it is understood by one of skill 35 in the art that the construction of the above-described

- 5 -

- o chimeric nucleic acid sequences may be reversed such that, for example, the GBV structural region may replace the structural region of an HCV genome to produce a chimera in which the GBV structural region is contained in an HCV backbone.

5 The invention further relates to the use of the chimeric nucleic acid sequences of the invention to study the functions of HCV genes, and for the development of vaccine and antiviral agents against HCV.

10 The invention also relates to the use of the infectious GBV-B nucleic acid sequence, the mutated GBV-B nucleic acid sequences or the chimeric sequences of the invention to identify cell lines capable of supporting the replication of GBV-B or the chimeras of the invention.

15 The present invention also relates to the polypeptides encoded by the nucleic acid sequences of the invention or fragments thereof.

20 The present invention further relates to the in vitro and in vivo production of GBV-B, mutant GBV-B viruses or chimeric GBV-B/HCV viruses from the nucleic acid sequences of the invention.

25 The invention also provides that the nucleic acid sequences and viruses of the invention be supplied in the form of a kit, alone or in the form of a pharmaceutical composition.

30 Brief Description Of Figures

Figure 1 shows a flow diagram of GB virus transmission studies in two species of tamarins, *Saguinus mystax* (SM) and *Saguinus oedipus* (SO). The animals infected with GBV-B (Simons 1995a) are boxed.

- 6 -

- Two serum pools (GB 8/93 and GB 2/94) were made from acutely infected animals. Both pools contained GBV-B, as well as GBV-A (Simons 1995) at a titer of 10^8 genome equivalent (GE)/ml. A 10% liver homogenate (CT 11/91) was made from a sacrificed tamarin. A number of *S. mystax* tamarins (SM 737, 749, 750, 760, 782, 795 and 799) and *S. oedipus* tamarins (SO 100) were naturally infected with GBV-A_{SM} and GBV-A_{SO}, respectively, prior to inoculation (Bukh 1997). Only two tamarins (SM 720 and 748), both GBV-A_{SM} negative, became infected with GBV-A (Simons 1995) following inoculation. Tamarins SM42 and SM670 were not tested for GBV-A or GBV-A_{SM}.

Figure 2 shows the course of GBV-B infection in tamarins (*S. mystax*) inoculated with a dilution series of the GB 2/94 pool. All animals were inoculated intravenously at week 0 with 1 ml of the indicated dilution. Results of qualitative RT-nested PCR for GBV-B in serum are shown at the top (filled circles, positive; empty circles, negative). Serum levels of isocitrate dehydrogenase (ICD in units/ml); shaded area) and the estimated \log_{10} GBV-B GE titer (vertical columns) were plotted against time.

Figure 3 shows alignment of the 3' UTR sequences of GBV-B. The sequence of the infectious clone of GBV-B (pGBB) is shown at the top (nts. 9038-9399). The other sequences shown are: pGBB5-1, a non-infectious clone of GBV-B; GBV-B, a prototype of GBV-B (Simons 1995); eleven "gb" clones obtained from CT 11/91 liver homogenate by 5' RACE on the minus-strand GBV-B RNA; four "29" clones obtained from GB 2/94 pool by RT-PCR across 5'-to-3'-end-ligated viral GBV-B RNA; and seven "GBB3" clones obtained from GB 2/94 pool by standard RT-PCR.

- 7 -

- ° With pGBB as the reference, nucleotide substitutions or insertions are shown as uppercase letters, identical nucleotides are shown as dots and nucleotide deletions are shown as dashes.

5 Figure 4 shows the predicted secondary structure of the 3' UTRs of GBV-B and HCV as determined by the program "mfold" (Genetics Computer Group).

10 Figure 5 shows the course of GBV-B infection in *S. mystax* tamarins transfected with RNA transcripts of pGBB. Both animals were negative for GBV-A_{SM}. At week 0 transcription mixtures were injected into tamarins by percutaneous intrahepatic injection guided by ultrasound. Results of qualitative RT-nested PCR for GBV-B in serum 15 is shown at the top (filled circles, positive; empty circles, negative). Serum levels of isocitrate dehydrogenase (ICD in units/ml; shaded area) and the estimated log₁₀ GBV-B GE titer (vertical columns) were plotted against time.

20 Figures 6A-6F show the nucleotide sequence of the infectious hepatitis C virus clone of genotype 1a strain H77C and Figures 6G-6H show the amino acid sequence encoded by the clone.

25 Figures 7A-7F show the nucleotide sequence of the infectious hepatitis C virus clone of genotype 1b strain HC-J4 and Figures 7G-H show the amino acid sequence encoded by the clone.

30 Description of The Invention

The present invention relates to nucleic acid sequence which comprises the genome of an infectious GB virus B (GBV-B) clone. The nucleic acid sequence which 35 comprises the genome of an infectious GBV-B virus is

- 8 -

- ° shown in SEQ ID NO:1 and is contained in the plasmid construct pGBB deposited with the American Type Culture Collection (ATCC) on May 28, 1999 and having ATCC accession number PTA-152. The present invention relates 5 to the identification of a 260 nucleotide sequence at the 3' end of the infectious GBV-B clone which is shown in Example 3 to be necessary for the development of the infectious clone.

Since GBV-B is the virus most closely related 10 to HCV, the present invention also relates to experimental infection of tamarins with the infectious GBV-B clone of the invention or with mutants of the infectious GBV clone to study indirectly the molecular properties of HCV or as a preliminary screen to identify 15 agents which have antiviral activity against HCV. For example, since the predicted internal ribosome entry site (IRES) structure in the 5'UTR of GBV-B is similar to that of HCV (Lemon 1997), the NS3 serine proteases of 20 GBV-B and HCV have been shown to share substrate specificity in vitro (Scarselli 1997), and the 3'UTRs of HCV (Yanagi 1999) and GBV-B (see Examples) have been 25 shown to be critical for viral infectivity, mutagenesis of these regions in the GBV-B infectious clone may be undertaken to examine IRES function, NS3 serine protease activity or the role of the 3'UTR in viral infectivity 30 in vivo. Where such "mutations" are introduced into the GBV-B clone of the invention to create a "mutated" GBV-B sequence, the mutations include, but are not limited to, point mutations, deletions and insertions. Of course, one of ordinary skill in the art would recognize that the size of the insertions would be limited by the 35 ability of the resultant nucleic acid sequence to be

- 9 -

- ° properly packaged within the virion. Such mutations could be produced by techniques known to those of skill in the art such as site-directed mutagenesis, fusion PCR, and restriction digestion followed by religation.

5 Alternatively, given the significant structural homology that exists between the genomes of GBV and HCV, the infectious GBV-B clone may be used to screen for inhibitors of IRES function or viral enzyme activity (for example, NS3 helicase, NS3 protease, NS2-
10 NS3 protease or NS5B RNA polymerase activity). Such inhibitors may be useful as antiviral agents to HCV since viral enzyme activity and IRES function are known to be critical for HCV replication.

15 The effect of such inhibitors on the IRES function or viral activity of the GBV-B encoded by the infectious sequence of the invention may be measured by assays known to those of skill in the art to measure directly or indirectly viral replication or viral
20 pathogenicity. Such assays include, but are not limited to, the measurement of virus titer in serum or liver of an infected tamarin by PCR or the measurement of GBV-B viral protein expression in liver cells of an infected tamarin by immunofluorescence or Western blot. Of course, it is understood that a comparison of results obtained for control tamariins (treated only with infectious nucleic acid sequence) with those obtained
25 for treated tamariins (nucleic acid sequence and
30 antiviral agent) would indicate, the degree, if any, of antiviral activity of the candidate antiviral agent. Of course, one of ordinary skill in the art would readily understand that the tamariins can be treated with the
35 candidate antiviral agent either before or after

- 10 -

- ° exposure to the infectious nucleic acid sequence of the present invention.

In yet another embodiment, the invention relates to "chimeric nucleic acid sequences" which consist of portions of the infectious nucleic acid sequence of GBV-B and portions of nucleic acid sequences of viruses which are related to GBV-B such as HCV, GBV-C and other members of the Flaviviridae family which do not infect tamarins. In a preferred embodiment, chimeric nucleic acid sequences consist of portions of the infectious nucleic acid sequence of GBV-B and portions of nucleic acid sequences of hepatitis C viruses (HCV) of various genotypes or subtypes; preferably portions of nucleic acid sequence of infectious HCV clones of genotypes 1a (ATCC accession number PTA-157; Figures 6A-6F), 1b (ATCC accession number 209596; Figures 7A-7F) or 2a (ATCC accession number PTA-153; SEQ ID NO: 4). The nucleic acid sequences taken from GBV-B and HCV can be open-reading frame sequences, and/or sequences from the 5'UTR and/or 3'UTR. The gene borders of the HCV genome, including nucleotide and amino acid locations, have been determined, for example, as depicted in Houghton, M. (1996), and the putative gene borders of the GBV-B are shown in Table 1.

Of course, it is understood that the production of GBV-B/HCV chimeras could include insertion of specific genes or regions of the infectious GBV-B clone into an HCV "genomic backbone" (where the HCV genomic backbone is preferably an infectious nucleic acid sequence of HCV genotypes 1a, 1b or 2a described above) or alternatively, could include insertion of

- 11 -

° specific genes (or portions thereof) or regions of an HCV genome into the GBV-B infectious clone of the invention. Of course, where HCV genes or regions are to be inserted into the GBV-B infectious clone, it is to be understood that the inserted HCV sequences may be unmodified or may be mutated in order to examine the effect of the mutation(s) on the function of the inserted HCV gene or region in the chimeric GBV-B-HCV virus.

10 Such chimeras can readily be produced by methods known to those of ordinary skill in the art.

In one embodiment, GBV-B/HCV chimeras may be made in which 5' or 3' UTR sequences of the GBV-B infectious clone are replaced with the corresponding sequence from an HCV clone. For example, chimeras may be constructed in which the IRES sequence of the infectious GBV-B clone is replaced by the IRES sequence of HCV. Such chimeras can be used in identifying inhibitors of IRES activity which would be useful as antiviral agents, or could be used to examine HCV IRES function in vivo. Alternatively, mutations could be introduced into the HCV IRES contained in the GBV-B clone in order to examine the effect of the mutation(s) on IRES function in vivo.

30 Alternatively, GBV-B/HCV chimeras may be made in which the 3'UTR sequence of GBV-B is replaced by the 3'UTR sequence of HCV. As the 3' terminal stem-loop structure is believed to be important for initiation of RNA replication and has been shown to be critical for infectivity of HCV in vivo, such chimeras may be used for more detailed analysis of the function of the 3' UTR

- 12 -

- o sequence of HCV in vivo and for the testing of candidate antiviral agents.

In another embodiment, GBV-B/HCV chimeras may be constructed in which the structural or non-structural regions of GBV-B are replaced by corresponding regions of HCV. Such chimeras would be useful in identifying whether the inability of HCV to infect tamarins is due to the inability of HCV's structural region to bind the receptor necessary for infection of tamarins or to the absence of sequences in HCV's nonstructural regions which are necessary for replication in tamarins. For example, the ability to infect tamarins with GBV-B/HCV chimeras in which the non-structural region of GBV-B is replaced by the non-structural region of HCV would indicate that the structural genes of GBV-B are necessary for viral infection in tamarins, and that the inability of HCV to infect tamarins is likely due to its lack of receptors for HCV.

Alternatively, the ability to infect tamarins with GBV-B/HCV chimeras in which the structural region of GBV-B is replaced by the structural region of HCV would indicate that the non-structural genes of GBV-B are critical for viral infection in tamarins, and that the inability of HCV to infect tamarins is likely due to HCV's lack of nonstructural sequences which are necessary for replication in tamarins.

Of course, GBV-B-HCV chimeras may be constructed in which only a portion of the non-structural or structural regions of GBV-B are replaced by the corresponding portions of HCV sequences. For example, a chimera in which only one or two of the three structural genes (C, E1 and E2) of GBV-B are replaced by

- 13 -

° the corresponding HCV structural genes may be made. In one embodiment, nucleic acid sequences comprising the E1 and E2 genes of GBV-B may be replaced by the sequences comprising the HCV E1 and E2 genes. In another 5 embodiment, nucleic acid sequence comprising either the E1 or E2 gene of GBV-B is replaced by sequence encoding either the HCV E1 or E2 gene.

Alternatively, only a fragment of a GBV-B structural gene in the infectious GBV clone may be 10 replaced with the corresponding HCV gene fragments. For example, the amino terminal of the GBV-B E1 gene may be replaced by the corresponding portion of an HCV E1 gene or an amino terminal portion of the GBV-B E2 gene may be 15 replaced by an amino terminal portion of HCV E2 gene tht containing the HVR1 region. As the structural genes of HCV are believed to be important for neutralization, chimeras containing an HCV structural gene(s) or fragment(s) thereof can be used to develop vaccines 20 against HCV.

In yet another embodiment, chimeras in which individual non-structural genes of GBV-B, such as NS3 RNA helicase, NS3 protease, or the NS5B RNA-dependent 25 RNA polymerase are replaced by the corresponding non-structural genes of HCV may be constructed. Such chimeras would, for example, be useful in identifying inhibitors of viral enzyme activity which would be useful as antiviral agents. Of course, it is understood 30 that in order to construct chimeras in which the polyprotein cleavage sites of the GBV-B remain intact, it may be desirable to replace only a fragment of a nonstructural gene of GBV-B with the corresponding HCV 35 gene fragment.

- 14 -

- The present invention also relates to polypeptides encoded by the nucleic acid sequences of the invention or fragments thereof. In one embodiment, said polypeptide or polypeptides may be fully or partially purified from viruses produced by cells transfected with the nucleic acid sequences of the invention. In another embodiment, the polypeptide or polypeptides may be produced recombinantly from a fragment of the nucleic acid sequences of the invention.
5 In yet another embodiment, the polypeptides may be chemically synthesized.
10

The present invention further relates to the in vitro and in vivo production of GBV-B, mutated GBV-B or chimeric GBV-B/HCV viruses from the nucleic acid sequences of the invention.
15

In one embodiment, the sequences of the invention can be inserted into an expression vector that functions in eukaryotic cells. Eukaryotic expression vectors suitable for producing high efficiency gene transfer in vivo are well known to those of ordinary skill in the art and include, but are not limited to, plasmids, vaccinia viruses, retroviruses, adenoviruses
20 and adeno-associated viruses.
25

In another embodiment, the sequences contained in the recombinant expression vector can be transcribed in vitro by methods known to those of ordinary skill in the art in order to produce RNA transcripts which encode the GBV-B of the invention. The GBV-B of the invention may then be produced by transfecting cells by methods known to those of ordinary skill in the art with either the in vitro transcription mixture containing the RNA
30
35

- 15 -

- transcripts or with the recombinant expression vectors containing the nucleic acid sequences described herein.

In assaying the ability of the mutated GBV-B sequences or of the chimeric sequences of the invention to infect tamarins, the virulence phenotype of the virus produced by transfection of tamarins with the sequences of the invention can be monitored by methods known in the art such as measurement of liver enzyme levels (alanine aminotransferase (ALT) or isocitrate dehydrogenase (ICD)) or by histopathology of liver biopsies.

The present invention also relates to the use of the infectious GBV-B sequence, the mutated GBV-B nucleic acid sequences or the chimeric sequences of the invention to identify cell lines capable of supporting the replication of GBV-B or the chimeras of the invention.

Transfection of tissue culture cells with the nucleic acid sequences of the invention may be done by methods of transfection known in the art such as electroporation, precipitation with DEAE-Dextran or calcium phosphate, or incorporation into liposomes.

In one such embodiment, the method comprises the growing of animal cells in vitro and transfecting the cells with the nucleic acid of the invention, then determining if the cells show indicia of GBV-B or HCV infection. Such indicia include the detection of viral antigens in the cell, for example, by immunofluorescence procedures well known in the art; the detection of viral polypeptides by Western blotting using antibodies specific therefor; and the detection of newly transcribed viral RNA within the cells via methods such

- 16 -

- o as RT-PCR. The presence of live, infectious virus particles following such tests may also be shown by injection of cell culture medium or cell lysates into healthy, susceptible animals, with subsequent exhibition of the signs and symptoms of GBV-B infection.

5 Suitable cells or cell lines for culturing GBV-B or the chimeric GBV-B-HCV include, but are not limited to, lymphocyte and hepatocyte cell lines known in the art.

10 Alternatively, primary hepatocytes can be cultured, and then infected; or, the hepatocyte cultures could be derived from the livers of infected tamarins. In addition, various immortalization methods known to those of ordinary skill in the art can be used to obtain cell-lines derived from hepatocyte cultures. For example, primary hepatocyte cultures may be fused to a variety of cells to maintain stability.

15 20 The invention also provides that the nucleic acid sequences and viruses of the invention be supplied in the form of a kit, alone or in the form of a pharmaceutical composition.

25 All scientific publication and/or patents cited herein are specifically incorporated by reference. The following examples illustrate various aspects of the invention but are in no way intended to limit the scope thereof.

30 EXAMPLES

Materials and Methods

Source of GB virus B

Two tamarin pools VR-806, (American Type Culture Collection) and H205, were used for experimental

- 17 -

- ° transmission of the GB virus agents to tamarins species *Saguinus mystax* and *Saguinus oedipus*.

Amplification, cloning and sequence analysis of GBV-B
5 Viral RNA was extracted from aliquots of the
GB 2/94 serum pool or CT 11/91 liver homogenate with the
TRIzol system (GIBCO/BRL). Primers used in cDNA
synthesis and PCR amplification were based on the
genomic sequence of GBV-B published by Simons et al
10 (Simons 1995) shown in SEQ ID NO:3. Long RT-PCR was
performed using Superscript II reverse transcriptase
(GIBCO/BRL) and the Advantage cDNA polymerase mix
(Clontech) as described previously (Tellier 1996). Four
15 subgenomic regions of GBV-B covering the entire
published sequence (Simons 1995) were amplified from
serum and the PCR products were purified and cloned into
pGEM-9zf(-) (Promega) or pCR2.1 vector (Invitrogen)
using standard procedures.

20 The 5' terminus of GBV-B was amplified from
serum by using the rapid amplification of cDNA ends
(RACE) with dC or dA tailing (GIBCO/BRL) and GBV-B
specific antisense primers. Two different approaches
25 were used to determine the 3' terminal sequence of GBV-
B. In one approach, GBV-B RNA extracted from serum was
circularized with T4 RNA ligase (Promega) and the 5'-to-
3'-end-ligated viral RNA was amplified in RT-PCR using
specific GBV-B primers. In the second approach, the 5'
30 end of the negative strand GBV-B RNA extracted from the
liver homogenate was amplified using the 5' RACE with dc
tailing and GBV-B specific sense primers. The PCR
products were cloned directly into pCR2.1-TOPO by using
the TOPO TA Cloning Kit (Invitrogen).
35

- 18 -

o The consensus sequence of GBV-B was determined by direct sequencing of PCR products (nucleotides 1-9078 and nucleotides 9130-9359) and by sequence analysis of the clones (nucleotides 1-7135 and nucleotides 7151-9399). Nucleotide positions correspond to those of the infectious clone (pGBB). Analyses of genomic sequences were performed with GeneWorks (Oxford Molecular Group) (Bukh 1995). To determine whether the GenBank data base contained sequences with homology to the GBV-B 3' UTR sequence identified in the present invention, a "Blast" search was performed. The predicted secondary structure of the GBV-B and HCV 3' UTR sequences were determined by the program "mfold" (Genetics Computer Group).

15 Construction of consensus cDNA clones of GBV-B

First, clone pGBB5-1, a consensus clone of GBV-B 2/94 containing the 3' terminus of GBV-B as published by Simons *et al* was constructed (Simons 1995a). The core sequence of the T7 promoter, a 5' guanosine residue and the sequence of GBV-B (9139 nucleotides) were cloned into pGEM-9zf(-) vector using *NotI/SacI* sites. A *BamHI* site was included at the GBV-B 3' terminus. Digested fragments containing the consensus sequence were purified from subclones and ligated using convenient sites. Next, a second consensus clone of GBV-B, clone pGBB, was constructed by inserting the additional 3' terminal sequence, amplified by PCR from one of the clones obtained by the RACE procedure described above, into pGBB5-1 using *XmaI* (at position 9114) and *BamHI* sites. A *XhoI* site was inserted following the GBV-B 3' terminus. DH5-alpha competent cells (GIBCO BRL) were transformed and selected on LB agar plates containing 100 µg/ml

- 19 -

° ampicillin (SIGMA) and amplified in LB liquid cultures at 30°C for 18-20 hrs (Yanagi 1997). Each cDNA clone was re-transformed to select a single clone, and large-scale preparation of plasmid DNA was performed
5 with a QIAGEN plasmid Maxi kit as described previously (Yanagi 1997). Each clone was genetically stable since the digestion pattern was as expected following retransformation and the complete sequence was the expected one.

10 Intrahepatic transfection of tamarins with transcribed GBV-B RNA

In 100 µl reactions, RNA was transcribed *in vitro* with T7 RNA polymerase (Promega) from 10 µg of linearized template plasmid. The plasmid pGBB5-1 was linearized with *Bam*HI (Promega) and the plasmid pGBB was linearized with *Xho*I (Promega). The integrity of the RNA was checked by electrophoresis through agarose gel stained with ethidium bromide. Each transcription mixture was diluted with 400 µl of ice-cold phosphate-buffered saline without calcium or magnesium (SIGMA) and then immediately frozen on dry ice and stored at -80°C. Within 24 hours of synthesis, two transcription mixtures were injected into each tamarin by percutaneous intrahepatic injection guided by ultrasound (Emerson, 1992; Yanagi 1998, 1999). If the tamarin did not become infected, the same transfection
15 was repeated once. All transfected animals were negative for GBV-A_{SM} as determined by the protocol described previously (Bukh 1997a).

Monitoring of experimental course in tamarins

- 20 -

o Serum samples were collected weekly from the tamarins and monitored for liver enzyme levels [alanine aminotransferase (ALT), gamma-glutamyltranspeptidase (GGT), and isocitrate dehydrogenase (ICD)] by standard methods and for GBV-B RNA by a specific reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Total RNA was extracted from 100 µl of serum using the TRIzol reagent. The RNA pellet was resuspended in 10 mM dithiothreitol (DTT) containing 5% (vol/vol) of RNasin (20-40 u/µl) (Promega). The RT-nested PCR was performed with primers from the 5' UTR of GBV-B (external primer pair: 5'-CCT AGC AGG GCG TGG GGG ATT TCC-3' and 5'-AGG TCT GCG TCC TTG GTA GTG ACC-3'; internal primer pair: 5'-GGA TTT CCC CTG CCC GTC TG-3' and 5'-CCC CGG TCT TCC CTA CAG TG-3'). The reverse transcription was performed with avian myeloblastosis virus reverse transcriptase (Promega) and the external anti-sense primer and nested PCR was performed with AmpliTaq DNA polymerase or AmpliTaq Gold DNA polymerase (Perkin Elmer) as described previously (Bukh 1998a). Specificity was confirmed by sequence analysis of selected DNA products. Each set of experiments included a positive control sample (a 10⁻⁶ dilution of GB 8/93, estimated titer 100 genome equivalent (GE)) and appropriate negative control samples. The genome equivalent (GE) titer of GBV-B in positive samples was determined by RT-nested PCR on 10-fold serial dilutions of the extracted RNA (Bukh 1998a). One GE was defined as the number of GBV-B genomes present in the highest dilution positive in RT-nested PCR. The sensitivity of this RT-nested PCR assay for GBV-B was equivalent to that of our RT-nested PCR assay for HCV (Bukh 1998b), for example, conserved NS3

- 21 -

° primers which had the same sensitivity for GBV-B as the 5' UTR primers could detect HCV at optimal sensitivity in samples with known HCV genome titer. Testing for GBV-A and GBV-A variants was performed by RT-nested PCR assays as described previously (Bukh 1997a).
5

The consensus sequence of the complete ORF was determined by direct sequencing of overlapping PCR products obtained by long RT-nested PCR on serum from one of the tamarins infected with RNA transcripts as 10 previously described (Yanagi 1997).

Example 1

Transmission of GB Agent in Tamarins

To generate virus pools of the GB agent, 15 tamarins were inoculated intravenously with pooled sera of the eleventh tamarin passage of this agent (Fig. 1). Acute phase sera from a *S. mystax* tamarin which developed hepatitis were pooled (GB 8/93) and inoculated 20 into additional *S. mystax* tamarins to generate a second pool of acute phase serum (GB 2/94). Both serum pools contained approximately 10^8 GE/ml of GBV-B and GBV-A. A 10% liver homogenate (CT 11/91) was prepared from a *S. oedipus* tamarin which developed hepatitis following 25 inoculation with the twelfth passage of the GB agent. The titer of GBV-B in the liver homogenate was approximately 10^7 GE/ml. The GB 2/94 serum and CT 11/91 liver samples were used as GBV-B cloning sources in the 30 present study.

Inoculation of eight *S. mystax* tamarins with 35 ten-fold serial dilutions of the GB 2/94 pool demonstrated that its infectivity titer of GBV-B was 10^8 tamarin 50% infectious doses (TID₅₀) (Fig. 2). The five

- 22 -

° GBV-B infected tamarins all developed acute resolving hepatitis characterized by early appearance of viremia (weeks 1 or 2 p.i.), peak viral titers of 10^7 - 10^8 GE/ml and clearance of viremia after 9-16 weeks (Fig. 2). Two
5 of these tamarins (*S. mystax* 769 and 777) were infected only with GBV-B and were negative for GBV-A and GBV-A_{SM}, whereas the other three tamarins were infected with both GBV-B and GBV-A_{SM}. A *S. mystax* tamarin inoculated with the liver homogenate also developed acute resolving
10 hepatitis with peak GBV-B titers of 10^7 GE/ml and clearance of viremia after 11 weeks. Likewise, four *S. mystax* tamarins inoculated with dilutions of the GB 8/93 pool developed acute resolving hepatitis with clearance
15 of the GBV-B virus after 11-26 weeks. Thus, GBV-B infection in *S. mystax* tamarins is characterized by acute hepatitis, early appearance of viremia, high peak viral titers and viral clearance.

20

Example 2

Novel 3' Terminal Sequence of GBV-B

25

30

35

The consensus sequence of the complete 5' UTR of GBV-B (nucleotides 1-445) was deduced from 13 clones containing nucleotides 1-283 and 3 clones containing nucleotides 31-445. In addition, the entire 5' UTR sequence was determined by direct sequencing of the amplicons. The sequences of the various clones were highly conserved and the consensus 5' UTR sequence of GBV-B from this pool was identical to that of the previously published sequence for GBV-B (Simons 1995a). It is noteworthy that 13 of 15 clones analyzed from the rapid amplification of cDNA ends (RACE) procedure contained the published GBV-B 5' terminus (A residue)

- 23 -

- ° and that the same 5' terminus was obtained whether the 5' RACE was performed with dC or dA tailing.

The consensus sequence of the ORF (nucleotides 446-9037) was determined by direct sequencing of PCR products obtained using long RT-PCR (Yanagi 1997). In addition, 3 clones containing nts. 446-7135 (one of these clones had a deletion of nts. 3036-3636), 2 clones containing nts. 2019-3373, 5 clones containing nts. 7151-8261 and 7 clones containing nts. 7521-9037 were analyzed. The sequences of GBV-B clones in this pool were very homogeneous. Evidence of micro-heterogeneity was found at only 70 (0.8%) nucleotide and 36 (1.3%) amino acid positions, scattered throughout the ORF. The proportion of amino acid positions with heterogeneity ranged from 0.5-3.2% in different putative gene regions (lowest in NS3 and NS5B; highest in E2 and NS2). The GBV-B ORF sequence differed from the published sequence of GBV-B (Simons 1995) at 34 (0.4%) nucleotide and 12 (0.4%) deduced amino acid positions, respectively (Table 1).

25

30

35

- 24 -

Table 1

Nucleotide and amino acid differences among GBV-B (Simons 1995a), the consensus sequence of GBV-B recovered from a virus pool used as the cloning source (GBV-B, 2/94) and the infectious clone of GBV-B (pGBB).

5	Genomic Region*	Position nt [aa]	Nucleotide			Amino Acid		
			GBV-B	GBV-B 2/94	pGBB	GBV-B	GBV-B 2/94	pGBB
	5' UTR (1-445)							
C (446-913)								
E1 (914-1489)	1030	C	T	T				
E2 (1490-2641)	1498	T	C (t)	C				
	1628 [395]	G	A (g)	A		V	I (V)	I
	2552 [703]	G	A (g)	A		D	N (D)	N
	2562,2563	C,A	A,C	A,C		P	H	H
	[706]							
	2566	T	T	T				
	2625 [727]	C	T	T		A	V	V
NS2 (2642-3385)	2647	C	T (c)	T				
	2816 [791]	C	T	T		L	F	F
	2855 [804]	A	G	G		T	A	A
	3235	A	G	G				
NS3 (3386-5125)	3475**	C	C (t)	T				
	3760	C	T (c)	T				
	4114	C	T	T				
	4117	C	A	A				
	4177	T	C	C				
	4615	C	T	T				
NS4A (5126-5290)								
NS4B (5291-6034)	5329	C	T	T				
	5332	T	C	C				
	5350	A	C	C				
	5455	C	T (c)	T				
NS5A (6035-7267)	6413	T	A (t)	A		L	M (L)	M
	[1990]							
	6577	G	T	T				
	6690	T	C (t)	C		I	T(I)	T
	[2082]							
	6965	T	C (t)	C		S	P (S)	P
	[2174]							
	7015	A	G (a)	G				
	7128	G	A	A		G	E	E
	[2228]							
	7138**	A	A	G				
	7142	A	G	G		T	A	A
	[2233]							
NSSB (7268-9037)	7282	T	C (t)	C				
	7849	C	A	A				
	7852	C	T	T				
	8942	G	A (g)	A		V	I (V)	I
	[2981]							
	8971	T	C	C				
	9026	C	T (c)	T				
3' UTR (9038-9399)	9067	T	C	C				
	Poly(U)	27 nts	11-23 nts	23 nts				
	9134	Deletion	C	C				
	9141-9399	ND	259 nts	259 nts				

*Nucleotide positions corresponding to pGBB. Putative gene borders defined as suggested by homology with HCV (Muerhoff 1995). No homology was observed at the NS2-NS3 junction.

**Positions that differ between the cloning source (GBV-B 2/94) and the infectious clone of GBV-B (pGBB). The change introduced into pGBB at position 7138 introduced an artificial SalI site. nd: Not determined. Nucleotides and amino acids shown in parenthesis were found as a minor species in the cloning source (GBV-B, 2/94)

- 25 -

o The sequence for the 3' UTR is shown in Figure 3. Additional 3' UTR sequence was initially identified by performing RT-PCR across 5'-to-3'-end-ligated viral RNA extracted from serum. In all 4 clones with GBV-B sequences, the 5' UTR was truncated compared to the published sequence (simon 1995a). However, whereas one clone (29c) had the exact 3' terminus previously published by Simons et al. (Simons 1995a), the three other clones (29a, 29b, 29d) had 150 additional terminal nucleotides. Compared with the published sequence, all four clones had a single nucleotide insertion (C residue) at position 9134. Next, RACE using dC-tailing only was performed on the 5' end of the negative-strand RNA extracted from the liver homogenate. All 11 clones analyzed had additional sequences at the 3' terminus. Compared with the published GBV-B sequence, two clones (gb6, gb23) had 259 additional nucleotides, 8 clones (gb9, gb19, gb20, gb21, gb24, gb25, gb30, gb35) had 236 additional nucleotides and 1 clone (gb8) had 232 additional nucleotides. Moreover, all of these clones had the insertion at position 9134. The 3' UTR sequences among the various clones were highly conserved (Fig. 3). To demonstrate that the terminal 22 nucleotides found only in clones gb6 and gb23 existed in circulating viruses, RT-nested PCR was performed on 10-fold serially diluted RNA extracted from the serum pool GB 2/94 using an RT and external antisense primer deduced from this sequence. GBV-B RNA was detected at a dilution of 10^{-7} and the sequence of the amplicon was identical to the sequence recovered from the liver homogenate. Thus, the 3' UTR of GBV-B consists of a short sequence of 30 nucleotides followed by a 11-24

- 26 -

- ° nucleotide-long poly (U) tract (single C residues were observed in GBV-B from the liver homogenate) and a 3' terminal sequence of at least 309 nucleotides. The new GBV-B 3' UTR sequence did not have significant homology 5 to any of the sequences deposited in the GenBank database. A prediction of the secondary structure of the 3' UTR sequence is shown in Figure 4. The most notable feature of the secondary structure is a highly stable stem-loop structure at the very 3' end consisting 10 of 47 nucleotides.

Example 3

The pGBB Clone of GBV-B is Infectious in vivo

15 The infectivity of RNA transcripts from the consensus clone pGBB5-1 which encompassed only the published GBV-B sequence (Simons 1995) was first tested. Within the GBV-B sequence there were no deduced amino acid differences and only 2 nucleotide differences (at 20 nucleotide positions 3475 and 7138) between the consensus sequence of the cloning source (GBV-B 2/94) and the sequence of pGBB5-1 clone. In addition, the 3' UTR of pGBB5-1 had a deletion at nucleotide position 25 9134 and was missing the 3' terminal 259 nucleotides (Fig. 3). Prior to transcription, the pGBB5-1 clone was linearized at the *BamHI* site with digestion at the exact GBV-B 3' terminus. The RNA transcripts from pGBB5-1 were injected into the liver of two tamarins (*S. mystax* 30 797 and 815). GBV-B RNA was not detected in weekly serum samples collected during 17 weeks of follow-up. As the susceptibility of these two tamarins to GBV-B was subsequently demonstrated by experimental infection 35 using a GBV-B virus pool, the consensus clone pGBB5-1

- 27 -

- ° which lacks the 3' terminal sequence of GBV-B is thus not infectious *in vivo*.

Next, the infectivity of RNA transcripts from the full-length consensus GBV-B cDNA clone pGBB was tested. The pGBB clone was identical to the pGBB5-1 clone except in the 3' UTR. Thus, in addition to a 5' UTR of 445 nucleotides, an ORF of 8592 nucleotides encoding 2864 amino acids and a 3' UTR of 103 nucleotides, the pGBB clone also contains an additional 259 nucleotides in its 3' UTR. pGBB was linearized at the *Xho*I site which added an additional C residue at the 3' end of the transcribed GBV-B RNA. When RNA transcripts from the pGBB clone were injected into the liver of two tamarins (*S. mystax* 816 and 817), both tamarins became infected with GBV-B with viremia at week 1 p.i. and peak viral titers of 10^8 GE/ml (Fig. 5). The consensus sequence of PCR products of the complete ORF, amplified from serum obtained during week 2 p.i. from one tamarin (*S. mystax* 817), was identical to the sequence of pGBB, including at the two positions which differed from the consensus sequence of the cloning source and from the published sequence of GBV-B (Table 1). By performing RT-PCR as desired above, it was demonstrated that the very 3' terminal GBV-B sequence of pGBB existed in the circulating viruses in this tamarin. Within two weeks of the transfection both tamarins developed hepatitis with dramatically elevated liver enzyme levels (Fig. 5). Thus, the pGBB clone is infectious *in vivo* whereas the clone pGBB5-1 which lacks the last 259 nucleotides was not.

- 28 -

o
References

1. Alter, H. J., Nakatsuji, Y., Melpolder, J., Wages, J., Wesley, R., Shih, J. W.-K. & Kim, J. P. (1997) The incidence of transfusion-associated hepatitis G virus infection and its relation to liver disease. *N. Engl. J. Med.* 336, 747-754.
5
2. Alter, M. J., Gallagher, M., Morris, T. T., Moyer, L. A., Meeks, E. L., Krawczynski, K., Kim, J. P. & Margolis, H. S. (1997) Acute non-A-E hepatitis in the United States and the role of hepatitis G virus infection. *N. Engl. J. Med.* 336, 741-746.
10
3. Bukh, J. & Apgar, C. L. (1997a) Five new or recently discovered (GBV-A) virus species are indigenous to New World monkeys and may constitute a separate genus of the *Flaviviridae*. *Virology* 229, 429-436.
15
4. Bukh, J., Apgar, C. L., Engle, R., Govindarajan, S., Hegerich, P. A., Tellier, R., Wong, D. C., Elkins, R. & Kew, M. C. (1998b) Experimental infection of chimpanzees with hepatitis C virus of genotype 5a: genetic analysis of the virus and generation of a standardized challenge pool. *J. Infect. Dis.* 178, 1193-1197.
20
5. Bukh, J., Apgar, C. L. and Purcell, R. H. (1997b) Natural history of GBV-A and GBV-B in animal models: discovery of indigenous *Flaviviridae*-like viruses in several species of New World monkeys. In *Viral Hepatitis and Liver Disease* (Proceedings of the IX Triennial International Symposium on Viral Hepatitis and Liver Disease, Rome, Italy, 1996) (M. Rizzetto, R. H. Purcell, J. L. Gerin, G. Verme, Eds.), pp. 392-395. Edizione Minerva Medica, Turin, Italy.
25
6. Bukh, J., Kim, J. P., Govindarajan, S., Apgar, C. L., Foung, S. K. H., Wages, J., Yun, A. J., Shapiro, M., Emerson, S. U. & Purcell, R. H. (1998a) Experimental infection of chimpanzees with hepatitis G virus and genetic analysis of the virus. *J. Infect. Dis.* 177, 855-862.
30
7. Bukh, J., Miller, R. H. & Purcell, R. H. (1995) Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. *Semin. Liver Dis.* 15, 41-63.
35
8. Deinhardt, F., Holmes, A. W., Capps, R. B. & Popper, H. (1967) Studies on the transmission of human viral hepatitis to marmoset monkeys: Transmission of disease, serial passages, and description of liver lesions. *J. Exp. Med.* 125, 673-687.

- 29 -

- 9. Emerson, S. U., Lewis, M., Govindarajan, S., Shapiro, M., Moskal, T. & Purcell, R. H. (1992) cDNA clone of hepatitis A virus encoding a virulent virus: induction of viral hepatitis by direct nucleic acid transfection of marmosets. *J. Virol.* 66, 6649-6654.
- 5 10. Erker, J. C., Desai, S. M., Leary, T. P., Chalmers, M. L., Montes, C. C. & Mushahwar, I. K. (1998) Genomic analysis of two GB virus A variants isolated from captive monkeys. *J. Gen. Virol.* 79, 41-45.
- 10 11. Frolov, I., McBride, M. S. & Rice, C. M. (1998) Cis-acting RNA elements required for replication of bovine viral diarrhea virus-hepatitis C virus 5' nontranslated region chimeras. *RNA* 4, 1418-1435.
12. Houghton, M. (1996) Hepatitis C viruses. In "Fields Virology" (B. N. Fields, D. M. Knipe, P. M. Howley, et al., Eds.), Third ed., pp. 1035-1058. Lippincott-Raven Publishers, Philadelphia.
- 15 13. Kolykhalov, A. A., Feinstone, S. M. & Rice, C. M. (1996) Identification of a highly conserved sequence element at the 3' terminus of hepatitis C virus genome RNA. *J. Virol.* 70, 3363-3371.
14. Kolykhalov, A. A., Agapov, E. V., Blight, K. J., Mihalik, K., Feinstone, S. M. & Rice, C. M. (1997) Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. *Science* 277, 570-574.
- 20 15. Lemon, S. M. & Honda, M. (1997) Internal ribosome entry sites within the RNA genomes of hepatitis C virus and other flaviviruses. *Semin. Virol.* 8, 274-288.
16. Linnen, J., Wages, J., Jr., Zhang-Keck, Z. Y., Fry, K. E., Krawczynski, K. Z., Alter, H., Koonin, E., Gallagher, M., Alter, M., Hadziyannis, S., Karayannidis, P., Fung, K., Nakatsuji, Y., Shih, J. W.-K., Young, L., Piatak, M., Jr., Hoover, C., Fernandez, J., Chen, S., Zou, J.-C., Morris, T., Hyams, K. C., Ismay, S., Lifson, J. D., Hess, G., Foung, S. K. H., Thomas, H., Bradley, D., Margolis, H. & Kim, J. P. (1996) Molecular cloning and disease association of hepatitis G virus: A transfusion-transmissible agent. *Science* 271, 505-508.
- 25 30 35 17. Lu, H.-H. & Wimmer, E. (1996) Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. *Proc. Natl. Acad. Sci. USA* 93, 1412-1417.

- 30 -

- 18. Muerhoff, A. S., Leary, T. P., Simons, J. N., Pilot-Matias, T. J., Dawson, G. J., Erker, J. C., Chalmers, M. L., Schlauder, G. G., Desai, S. M. & Mushahwar I. K. (1995) Genomic organization of GB viruses A and B: Two new members of the *Flaviviridae* associated with GB agent hepatitis. *J. Virol.* 69, 5621-5630.
- 5 19. Purcell RH. (1993) The discovery of the hepatitis viruses. *Gastroenterology* 104, 955-963.
- 20. Rice, C. M. (1996) *Flaviviridae*: The viruses and their replication, In "Fields Virology". (B. N. Fields, D. M. Knipe, P. M. Howley, et al., Eds.), Third ed., pp. 931-959. Lippincott-Raven Publishers, Philadelphia.
- 10 21. Robertson, B., Myers, G., Howard, C., Brettin, T., Bukh, J., Gaschen, B., Gojobori, T., Maertens, G., Mizokami, M., Nainan, O., Netesov, S., Nishioka, K., Shin-i, T., Simmonds, P., Smith, D., Stuyver, L. & Weiner, A. (1998). Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. *Arch. Virol.* 143, 2493-2503.
- 15 22. Scarcelli, E., Urbani, A., Sbardellati, A., Tomei, L., De Francesco, R. & Traboni, C. (1997) GB virus B and hepatitis C virus NS3 serine proteases share substrate specificity. *J. Virol.* 71, 4985-4989.
- 20 23. Schlauder, G. G., Dawson, G. J., Simons, J. N., Pilot-Matias, T. J., Gutierrez, R. A., Heynen, C. A., Knigge, M. F., Kurpiewski, G. S., Buijk, S. L., Leary, T. P., Muerhoff, A. S., Desai, S. M. & Mushahwar I. K. (1995) Molecular and serologic analysis in the transmission of the GB hepatitis agents. *J. Med. Virol.* 46, 81-90.
- 25 24. Simons, J. N., Pilot-Matias, T. J., Leary, T. P., Dawson, G. J., Desai, S. M., Schlauder, G. G., Muerhoff, A. S., Erker, J. C., Buijk, S. L., Chalmers, M. L., Van Sant, C. L. & Mushahwar, I. K. (1995a) Identification of two flavivirus-like genomes in the GB hepatitis agent. *Proc. Natl. Acad. Sci. USA* 92, 3401-3405.
- 30 25. Simons, J. N., Leary, T. P., Dawson, G. J., Pilot-Matias, T. J., Muerhoff, A. S., Schlauder, G. G., Desai, S. M. & Mushahwar, I. K. (1995b) Isolation of novel virus-like sequences associated with human hepatitis. *Nature Med.* 1, 564-569.
- 35 26. Tanaka, T., Kato, N., Cho, M.-J. & Shimotohno, K. (1995) A novel sequence found at the 3' terminus of

- 31 -

- o hepatitis C virus genome. *Biochem. Biophys. Res. Commun.* 215, 744-749.
- 27. Tellier, R., Bukh, J., Emerson, S. U., Miller, R. H. & Purcell, R. H. (1996) Long PCR and its application to hepatitis viruses: amplification of hepatitis A, hepatitis B, and hepatitis C virus genomes. *J. Clin. Microbiol.* 34, 3085-3091.
- 28. Yanagi, M., Purcell, R. H., Emerson, S. U. & Bukh, J. (1997) Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. *Proc. Natl. Acad. Sci. USA* 94, 8738-8743.
- 10 29. Yanagi, M., St. Claire, M., Shapiro, M., Emerson, S. U., Purcell, R. H. & Bukh, J. (1998) Transcripts of a chimeric cDNA clone of hepatitis C virus genotype 1b are infectious *in vivo*. *Virology* 244, 161-172.
- 15 30. Yanagi, M., St. Claire, M., Emerson, S. U., Purcell, R. H. & Bukh, J. (1999) *In vivo* analysis of the 3' untranslated region of the hepatitis C virus after *in vitro* mutagenesis of an infectious cDNA clone. *Proc. Natl. Acad. Sci. USA* 96, 2291-2295.

20

25

30

35

- 32 -

◦ WHAT IS CLAIMED IS:

1. An isolated nucleic acid molecule which encodes GB virus-B, said molecule capable of expressing said virus when transfected into cells.

5 2. The nucleic acid molecule of claim 1, wherein said molecule encodes the amino acid sequence of SEQ ID NO:2.

10 3. The nucleic acid molecule of claim 2, wherein said molecule comprises the nucleic acid sequence of SEQ ID NO:1.

4. A DNA construct comprising a nucleic acid molecule according to claim 1.

15 5. A DNA construct comprising a nucleic acid molecule according to claim 3.

6. An RNA transcript of the DNA construct of claims 4 or 5.

20 7. A cell transfected with the DNA construct of claims 4 or 5.

8. A cell transfected with RNA transcripts of claim 6.

25 9. A GB virus-B polypeptide produced by the cell of claim 7.

10. A GB virus-B polypeptide produced by the cell of claim 8.

30 11. A GB virus-B produced by the cell of claim 7.

12. A GB virus-B produced by the cell of claim 8.

35

- 33 -

- o 13. A GB virus-B whose genome comprises a nucleic acid molecule according to claim 1.
14. A GB virus-B whose genome comprises a nucleic acid molecule according to claim 3.
- 5 15. A method for producing a GB virus-B comprising transfecting a host cell with the DNA construct of claims 4 or 5.
- 10 16. A method for producing a GB virus-B comprising transfecting a host cell with the RNA transcript of claim 6.
- 15 17. A composition comprising a nucleic acid molecule of claim 1 suspended in a suitable amount of a pharmaceutically acceptable diluent or excipient.
18. A composition comprising a nucleic acid molecule of claim 3 suspended in a suitable amount of a pharmaceutically acceptable diluent or excipient.
- 20 19. A nucleic acid molecule comprising a chimeric virus genome, said genome being a GB virus-B genome according to claim 1 in which a 3' or 5' UTR sequence of the genome is replaced by a corresponding region of the 3' or 5' UTR sequence of a hepatitis C virus genome.
- 30 20. The nucleic acid molecule of claim 19, wherein a 3' UTR sequence of the genome of a GB virus-B is replaced by a corresponding 3' UTR sequence of a hepatitis C virus genome.
21. The nucleic acid molecule of claim 20, wherein the 3' UTR sequence is the 3' UTR terminal stem loop sequence.

- 34 -

o 22. The nucleic acid molecule of claim 19,
wherein a 5' UTR sequence of the genome of a GB virus-B
has been replaced by a corresponding 5' UTR sequence of
a hepatitis C virus genome.

5 23. The nucleic acid molecule of claim 22,
wherein the 5' UTR sequence is the IRES sequence.

10 24. A nucleic acid molecule comprising a
chimeric virus genome, said genome being a GB virus-B
genome according to claim 1 in which the non-structural
region of the genome of a GB virus-B has been replaced
by the non-structural region of a hepatitis C virus
genome.

15 25. The nucleic acid molecule of claim 24,
wherein at least one gene from the non-structural region
of the genome of a GB virus-B has been replaced by the
corresponding gene from the non-structural region of a
hepatitis C virus genome.

20 26. The nucleic acid molecule of claim 25,
wherein the gene from the non-structural region is
selected from the group consisting of NS3 protease, NS3
RNA helicase, or NS5B RNA polymerase.

25 27. A nucleic acid molecule comprising a
chimeric virus genome, said genome being a GB virus-B
genome according to claim 1 in which the structural
region of the genome of a GB virus-B has been replaced
by the structural region of a hepatitis C virus genome.

30 28. The nucleic acid molecule of claim 27,
wherein at least one gene from the structural region of
the genome of a GB virus-B has been replaced by the

- 35 -

- o corresponding gene from the structural region of a hepatitis C virus genome.

29. The nucleic acid molecule of claim 28, wherein the gene from the structural region is selected
5 from the group consisting of E1, E2 or C.

30. The nucleic acid molecule of claim 28, wherein the E1 and E2 genes from the structural region of the genome of a GB virus-B have been replaced by the
10 E1 and E2 genes of a hepatitis C virus genome.

31. The nucleic acid molecule of claim 28, wherein the E1 gene from the structural region of the genome of a GB virus-B has been replaced by the E1 gene
15 of a hepatitis C virus genome.

32. The nucleic acid molecule of claim 28, wherein the E2 gene from the structural regions of the genome of a GB virus-B has been replaced by the E2 gene
20 of a hepatitis C virus genome.

33. A DNA construct comprising the nucleic acid molecule of claims 19, 24 or 27.

34. An RNA transcript of the DNA construct of
25 claim 33.

35. A virus whose genome comprises a nucleic acid molecule according to claims 19, 24 or 27.

36. A nucleic acid molecule comprising a chimeric virus genome, said genome being a hepatitis C virus genome in which a 3' or 5' UTR sequence of the genome is replaced by a corresponding region of the 3' or 5' UTR sequence of a GB virus-B genome according to
30 claim 1.

35

- 36 -

o 37. A nucleic acid molecule comprising a
chimeric virus genome, said genome being a hepatitis C
virus genome in which the non-structural region of the
genome has been replaced by the non-structural region of
5 a GB virus-B genome according to claim 1.

10 38. A nucleic acid molecule comprising a
chimeric virus genome, said genome being a hepatitis C
virus genome in which the structural region of the
genome has been replaced by the structural region of a
GB virus-B genome according to claim 1.

39. A polypeptide encoded by the nucleic acid
molecule of claims 19, 24 or 27.

15 40. A polypeptide encoded by the nucleic acid
molecule of claims 36, 37 or 38.

20

25

30

35

1/21

FIG. 1

2/21

FIG. 2***S. mystax* 760: 10^{-5} Dilution*****S. mystax* 750: 10^{-6} Dilution*****S. mystax* 769: 10^{-7} Dilution*****S. mystax* 777: 10^{-7} Dilution*****S. mystax* 782: 10^{-8} Dilution*****S. mystax* 768: 10^{-8} Dilution*****S. mystax* 787: 10^{-9} Dilution*****S. mystax* 788: 10^{-9} Dilution**

3/21

FIG. 3

FIG. 4

GB Virus-B (pGBB)

Hepatitis C Virus (pCV-H77C)

5/21

FIG. 5

H77C

10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
GCCAGCCCCC	TGATGGGGGC	GACACTCCAC	CATGAATCAC	TCGGCTGTGA	50
GGAACTACTG	TCTTCAOGCA	GAAAGCGTCT	AACCATGGCG	TTAGTATGAG	100
TGTCGTCAG	CTTCCAGGAC	CCCCCTTCCC	GGGAGAGCCA	TAGTGGCTTG	150
CGGAACCGGT	GAGTACACCG	GAATTGOCAG	GAAGAACGGG	TCCTTCTTIG	200
GATAAAACCG	CTCAATGCGT	GGAGATTTCG	GGTGCACCC	GCAAGACTGC	250
TAGCCGAGTA	GTGTTGGTC	GOGAAAGGCC	TIGTGGTACT	GCCTGATAGG	300
GTGCTTGCAG	GTGCCCCGGG	AGGTCCTCGA	GAACGTGCAC	CATGAGCAOG	350
AATCCTAAAC	CTCAAAGAAA	AACCAAAACGT	AACACCAAAAC	GTGGCCACAA	400
GGAOGTCAAG	TTCCCCGGTG	GGGGTCAGAT	CGTTGGTGGG	GTTTACTTGT	450
TGCCGGCGAG	GGGCCCCAGA	TTGGGTGTC	GGGGAGAGAG	GAAGACTTCC	500
GAGGGTGC	AAACCTCGAGG	TAGACGTCAG	CCATATCCCCA	AGGCAACGTG	550
GGGGAGGGC	AGGACCTGGG	CTCAGCCCCG	GTACCCCTTG	GGGCTCTATG	600
GCAATGAGGG	TTGGGGGTGG	GGGGGATGGC	TGCTGTCCTC	GGGGGGCTCT	650
GGGGCTAGCT	GGGGCCCCAC	AGACCCCCCG	CGTAGGTGCG	GCAATTGGG	700
TAAGGTCAATC	GATACCCCTA	CGTGACGGCTT	GGGGGACCTC	ATGGGGTACA	750
TACCGCTCGT	GGGGGCCCCCT	CTTGGAGGGG	CTGGCCAGGGC	CCTGGGGCAT	800
GGGGTCAGGG	TTCTGGAAGA	GGGGGTGAAC	TATGCAACAG	GGAACCTTCC	850
TGGTTGCTCT	TCTCTATCT	TCCTTCGTC	CTCTCTCTCT	TGCTGACTTG	900
TGCCCGCTTC	AGCTTACCAA	GTGGCCAATT	CTCGGGGGCT	TTACCATGTC	950
ACCAATGATT	GGGCTAACTC	GAGTATTGIG	TACGGAGGGG	GGGATGCCAT	1000
CCTGCACACT	GGGGGGTGTG	TCCTTGGGT	GGGGGAGGGT	AACGCGTGA	1050
GGTGTGGGT	GGGGGTGACC	CCCCGGTGG	CCACCAAGGA	GGGCAAACTC	1100
CCCCACAACGC	AGCTTGCACG	TCAATATCGAT	CTGCTTGTG	GGAGGGCCAC	1150
CCCTCTGCTCG	GGGCTCTACG	TCGGGGACCT	GTGGGGGTCT	GTCTTCTTIG	1200
TIGGTCAACT	GTTAACCTTC	TCTCCCAAGG	CCACCTGGAC	GACGCAAGAC	1250
TGCAATTGGT	CTATCTATCC	GGGCGATATA	AGGGTCAATC	GCATGGCATG	1300
GGATATGATG	ATGAACCTGGT	GGGCTACGGC	AGCGTGGTG	GTAGCTCAGC	1350
TGCTCCGGAT	GGGCGATATA	ATCATGGACA	TGATGGCTGG	TGCTCACTGG	1400
GGAGTGGCTG	GGGGCATAGC	GTATTTCTCC	ATGGTGGGGA	ACTGGGGGAA	1450
GGTGGCTGGTA	GTGCTCTTC	TATTTGGCGG	GGTGGACGGG	GAAACCCACG	1500
TCACCGGGGG	AAATGGGGCC	GGGCGATATA	CTGGGGCTGT	TGGCTCTCTT	1550
ACACCAAGGG	GGGCGATATA	GGGCGATATA	GGGCGATATA	GGGCGATATA	1600
GCACATCAAT	AGCAACGGCT	TGAATTGCAA	TGAAAGCCCT	AAACACCGGCT	1650
GGITAGCAGG	GCTCTTCTAT	CAACACAAAT	TCAACTCTTC	AGGCTGTGCT	1700
GAGAGGTTGG	GGGGCTGGG	GGGGCTGGG	GGGGCTGGG	GGGGCTGGG	1750
TCCTATCAGT	TATGCGAAACG	GGGGCTGGG	GGGGCTGGG	GGGGCTGGG	1800
GGCACTAACCC	TCCAAGACCT	TGTTGGCTTG	TGTTGGCTTG	GGGGCTGGG	1850
GGGGGGTAT	ATGGCTTCAC	GGGGCTGGG	GGGGCTGGG	GGGGCTGGG	1900

FIG. 6A

H77C

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
CAGGTGGGGC	GCGGCTAACCT	ACAGCTGGGG	TGCAAATGAT	AOGGATGTCT
TOGTCCTTAA	CAACACCAGG	CCAOOGCTGG	GCAATTGGTT	OGGTIGTGTACC
TGGATGAACT	CAACCTGGATT	CACCAAAGTG	TGCGGAGGCG	CCCGCTTGCT
CATCGGAGGG	GTGGGCAACA	ACAOCTTGCT	CTGCCCCACT	GATTGCTTCC
GCAAACATCC	GGAAGGCCACA	TACTCTGGT	CGGGCTCGGG	TGCCCTGGATT
ACACCCAGGT	GCATGGTGA	CTACCCGAT	AGGCTTTGGC	ACTAATCCTTG
TACCATCAAT	TACACCATAT	TCAAAGTCAG	GATGTAOGTG	GGAGGGGGTGT
AGCACAGGCT	GGAAGGCGGC	TGCAACTGGA	CGGGGGGGGA	AOGCTIGTGTAT
CTGGAAGACA	GGGACAGGTC	CGAGCTCAGC	CGGTTGCTTC	TGTCACACCAC
ACAGTGGCAG	GTGCTTGGT	GTGCTTTCAC	GACGCTGCGA	GCCTTGTGCGA
CGGGGCTCAT	CCAOCTCCAC	CAGAACATTG	TGGACGTGCA	GTACTTGTAC
GGGGTAGGGT	CAAGCATCGC	GTGCTGGGCC	ATTAAGTGGG	AGTACGTCGT
TCTCTGTTTC	CTTCTGCTTG	CAGACGGGGG	CGTCTGCTCC	TGCTTGTGGA
TGATGTTACT	CATAATCCAA	GGGGAGGGG	CTTGGAGAAA	CTCTGTAATA
CTCAATGCAG	CATCCCTGGC	CGGGACGGAC	GGTCTTGTGT	CCTTCCTCGT
GTGCTCTGTC	TTTGGGTTGT	ATCTGAAGGG	TAGGTCGGTG	CCCCGGAGCGG
TCTACGGGCT	CTACGGGATG	TGGGCTCTCC	TCCTGCTCT	GCTGGGGTTTG
CCTCAGGGGG	CATA CGCACT	GGACACGGAG	GTGGGGCGGT	CGTGTGGCGG
CGTGTGTCIT	GTGGGGTAA	TGGGCGCTGAC	TCTGTOGCCA	TATTACAAGC
GCTATATCAG	CTGGTGCATG	TGGTGGCTTC	AGTATTTCT	GACCAGAGTA
GAAGCGAAC	TGCACGTGIG	GGTTCGGGGG	CTCAACGTCC	GGGGGGGGCG
CGATGCGTC	ATCTTACTCA	TGIGTGTAGT	ACACCCGACC	CTGGTATTTG
ACATCACCAA	ACTACTCTTG	GCCATCTTCG	GACCCCTTTC	GATTCCTCAA
CCCAGTTGTC	TTAAAGTCCC	CTACTTGTGIG	CGGGTTCAAG	GCCTTCTCCG
GATCTGCGCG	CTAGGGGGGA	AGATAGGGG	AGGTCAATTAC	GTGCAAATGG
CCATCATCAA	GTGAGGGGG	CTTACTGGCA	CTTATGIGTA	TAACCATCTC
ACCCCTCTTC	GAGACTGGGC	GCACAAACGGC	CTGCGAGATC	TGGCGTGGC
TGTGGAACCA	GTGGTCTTCT	CGCGAATGGA	GACCAAGCTC	ATCAOGTGGG
GGGCAGATAC	CGGGCGGTGC	GGTGACATCA	TCAACGGCTT	GGGGCTCTCT
GGGGGTAGGG	GCCAGGAGAT	ACTGCTGGG	CCACCGGAOG	GAATGGTCTC
CAACGGGTGG	AGGTCTCTGG	CGGGCATCAC	GGCGTACGCC	CACCAAGCGA
GAGGGCTCT	AGGGIGTATA	ATCACCAAGCC	TGACTGGGGG	GGACAAAAAC
CAAGTGGAGG	GTGAGGTCCA	GATGGTGTCA	ACTGCTACCC	AAACCTTCT
GGCAAGTGT	ATCAATGGGG	TAIGCTGGAC	TCTGTACAC	GGGGGGGGAA
CGAGGACCAT	CGCATCACCC	AAGGGTCTTG	TCATOCAGAT	GTATACCAAT
GTGGACCAAG	ACCTTGTGGG	CTGGGGCGCT	CTCAAGGTT	CCCGCTCAIT
GACACCCGT	ACCTGCGGCT	OCTCGGACCT	TIAACCTGGTC	ACGAGGGCAG
CGATGTCAT	TCCCGTGGCG	CGGGGAGGTG	ATAGCAGGGG	TAGGCTGCTT
				3800

FIG. 6B

8/21

H77C

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
TGCCCCGGC	CCATTCTTA	CITGAAAGGC	TCTCTGGGGG	GTCGGCTGTT
GTGCCCCGGG	GGACACCGGG	TGGGCTTATT	CAGGGGGGGG	GTTGTCGAACC
GTGGAGCTGC	TAAAGCGGTG	GACTTTATCC	CITGTTGAGAA	CCTAGGGACA
ACCATGAGAT	CCCCGGTGTG	CAOGGACAAC	TCTCTCTCAC	CAGCAGTGCC
CCAGAGCTTC	CAGGTGGGGC	ACCTGCTATGC	TCCCACGGGC	AGCGGTAAGA
GCACCAAGGT	CCCGGCTGCG	TACGCAGGCC	AGGGCTACAA	GGTGTGGTG
CTCAACCCCT	CTGTTGCTGC	AACGCTGGGC	TTTGGTGCCT	ACATGTCAAA
GGCCCATGGG	GTGATCTTA	ATATCAGGAC	CGGGGTGAGA	ACAATTAA
CTGGCAGGCC	CATCAOGTAC	TOCACTTAAG	GCAAGTTCCT	TGCGGACGGC
GGGTGCTCAG	GAGGTGCTTA	TGACATAATA	ATTTGIGAOG	AGTGCACTC
CAOGGATGCC	ACATCCTATCT	TGGCCATOGG	CACTGTCCTT	GACCAAGCAG
AGACTGCGGG	GGCGAGACTG	GTGTTGCTCG	CCACTGCTAC	CCCTCGGGGC
TCGGTCACTG	TGTCCCATOC	TAACATCGAG	GAGGTTGCTC	TGTCACCCAC
CGGAGAGATC	COCTTTAACG	GCAAGGCTAT	CCCCCTCGAG	GTGATCAAAG
GGGGAAGACA	TCTCATCTTC	TGCCACTCAA	AGAAGAAGTG	CGACGAGCTC
GGCGCGAAGC	TGGTCGCATT	GGGCATCAAT	CCCCGTGGCT	ACTACOGGG
TCTTGACGTG	TCTGTCATCC	CGACCAGCGG	CGATGTTGTC	GTGTTGTCGA
CCGATGCTCT	CATGACTGGC	TTTACCGGGG	ACTTCGACTC	TGTGATAGAC
TGCAACACGT	GTGTCACTC	GACAGTGGAT	TTCAAGCTTG	ACCCCTACCTT
TACCAATTGAG	ACAACCACGC	TOCCCCAGGA	TGCTGTCCTC	AGGACTCAAC
GGCGGGGGAG	GAATGGCAGG	GGGAAGCCAG	GCATCTATAG	ATTTGIGGCA
GGGGGGGAAC	GGGGCTCCGG	CATGTTGAC	TGTCACGTC	TCTGTGAGTG
CTATGACGGG	GGCTGTCCTT	GGTATGAGCT	CAACGGGGGCC	GAGACTACAG
TTAGGCTACG	AGGGTACATG	AACACCCCGG	GGCTTCCCGT	GTGCCAGGAC
CATCTTGAAT	TTTGGGAGGG	CGCTTTAACG	GGCTCACTC	ATATAGATCC
CCACTTTITA	TCCCAGACAA	ACCAGAGTCG	GGAGAACTTT	OCTTAOCTGG
TAGCGTACCA	AGCCACCGTG	TGGCTTAGGG	CTCAAGCCCC	TOCCCCATCG
TGGGACCAGA	TGTTGAAAGTG	TTTGATCGC	CTAAACCCA	CCCTOCATGG
GCACACACCC	CTGCTATACA	GAATGGGGCG	TGTTCAAGAT	GAAGTCACCC
TGAOGCAACC	AATCACCAAA	TACATCATGA	CAATGATGTC	GGCGACCTG
GAGGTGCGTC	CGAGCAACCTG	GGTGTCTGTT	GGCGGGGTC	TGGCTGCTCT
GGCGCGTAT	TGCGTGTCAA	CAGGCTCGT	GGTCATAGTG	GGCAGGATCG
TCTTGTCGGG	GAAGGGGGCA	ATTATACCTG	ACAGGGAGGT	TCTCTACCG
GAGTTCGATG	AGATGGAAGA	GTGCTCTCAG	CACTTACCGT	ACATOGAGCA
AGGGATGATG	CTCGCTGAGC	AGTTCAAGCA	CAAGGGCCCTC	GGCTCTCTGC
AGACCGGGTC	CGCGCATGCA	GAGGTATICA	CCCGCTGCTG	CCAGACCAAC
TGGCAGAAC	TCGAGGTCTT	TTGGGCGAAG	CACATGTCGA	ATTTCATCAG
TGGGATACAA	TACTTGGGGG	GGCTGTCAAC	GCTGCTGGT	AACCCCGOCA
				5700

H77C

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
TTGCTTCATT	GATGGCTTT	ACAGCTGCG	TCAACCAGCC	ACTAACCAC
GGCCAAACCC	TCCCTCTCAA	CATATTCGGG	GGGTGGGTGG	CTGCCCCAGCT
CGGGGCCCCC	GGTGCAGGCTA	CTGGCTTGT	GGGTGGCTGGC	CTAGCTGGG
CGGACATCGG	CAAGCTTCTGA	CTGGGGAGG	TOCTOGTGG	CATTCTTGCA
GGGTATGGGG	GGGGAGTGGC	GGGAGCTCTT	GTAGCATTCA	AGATCATGAG
CGGTGAGGGC	GGCTCCACGG	AGGAAGCTGG	CAATCTGCTG	GGGGGCGATOC
TCTCGOCTGG	AGGCGCTTGT	GTGGGGTGG	TCTGCGCAGC	AATACTGGCG
CGGCAOGTTG	GGGGGGGGGA	GGGGGGAGTG	CAATGGATGA	GGGGGCTTAAT
AGGCTTCGCC	TCGGGGGGGA	ACCATGTTTC	GGGGGCGCAC	TAAGTGGCGG
AGAGCGATGC	AGGCGCCCGC	GTCACTGCGA	TACTCAGCG	GGGGGGCTGTA
ACCCAGCTCC	TGAGGGGACT	GCATCAGTGG	ATAAGCTGG	AGTGTACCCAC
TCCATGCTCC	GGTCTCTGGC	TAAGGGACAT	CTGGGACTGG	ATATGCGAGG
TGCTGAGCGA	CITTAAGACC	GGGCTGAAAG	CCAAGCTCAT	GGGACAACTG
CCTGGGATTG	CCTTGTGTC	CTGGCGAGGC	GGGTATAGGG	GGGTGGCTGGG
AGGAGAOGGC	ATTATGCCACA	CTGGCTGCGA	CTGTCGGAGC	GAGATCACTG
GACATGTCAA	AAACGGGACG	ATGAGGATCG	GGGGGCTTAG	GGGGGGCGAGG
AACATGTGGA	GTGGGACGTT	GGGGGATTAAC	GGCTACACCA	GGGGGGGGCTG
TACTCCCCCTT	CCTGCGCGGA	ACTATAAGTT	GGGGCTGTTG	AGGGGTTCTG
CAGAGGAATA	GGGGGAGATA	AGGCGGGTGG	GGGACTTCGA	CTACGTATCG
GGTATGACTA	CTGACAATCT	TAAATGCCCG	TGGGAGATCC	CAATGGGGCGA
ATTTTTCACA	GAATTGGGAGG	GGGTCGGGCT	ACACAGTTT	GGGGGGGGCTT
GCAAGCCCTT	GCTGGGGGAG	GGGGTATCAT	TCAGAGTAGG	ACTCCACGGAG
TACCCGGTGG	GGTGGCAATT	ACCTTGGAG	GGGGGACCGG	AGGTGGGGGT
GTGACGTCC	ATGCTCACTG	ATCCCTGCCA	TATAACAGCA	GGGGGGGGCG
GGAGAAGGGT	GGGGAGAGGG	TCACCCCTT	CTATGGCCAG	CTGGGGGGCT
AGCCAGCTGT	GGGGCTCCATC	TCTCAAGGCA	ACTTGGCACCG	CCAACCATGA
CTCCCCCTGAC	GGGGAGCTCA	TAGAGGCTAA	CTGGGGTGG	AGGCAGGGAGA
TGGGGGGCAA	CATCACCAAGG	GTGAGTCAG	AGAACAAAGT	GGGTGATTCTG
GACTCCCTCG	ATCCGCTTGT	GGGGAGGGAG	GGGGGGGGGG	AGGTGCTGGT
ACCTGGAGAA	ATTCCTGGGA	AGTCTGGAG	ATTCGGGGGG	GGGGGGGGCG
TCTGGGCGCG	GGGGGACTAC	AAACCCCGGC	TAGTGGAGAC	GGGGAAAAG
CCTGACTAACG	AAACCACTGT	GGTGGCATGGC	GGGGGGCTAC	GGGGGGGGCG
GTCCCCCTCCT	GTGGCTCCGC	CTGGGAAAAAA	GGGTACGGTG	GGGGGGGGCG
AAATCAACCC	ATCTACTGCC	TTGGGGAGC	GGGGGGGGGG	GGGGGGGGCG
AGCTTCTCAA	CTTGGGGCAT	TAAGGGGGAC	AAATACGACAA	GGGGGGGGCG
GGGGGGGGCG	TCTGGGGTCCC	GGGGGGACTC	GGGGGGGGGG	GGGGGGGGCG
CCATGGGGCC	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGCG
TCATGGTGA	GGGTGAGTAG	GGGGGGGAC	GGGGGGGGGG	GGGGGGGGCG

FIG. 6D

1921

H77C

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
CTCAATGCT TATTCCTGG AAGGGCGACT CGTCACCCCG TGCGCTGGGG				7650
AAGAACAAAA ACTGCCCATC AAOGCACTGA GCAACTCGTT GCTAOGCCAT				7700
CACAATCTGG TGTATTCCAC CACTTCAAGC AGTGCTTGCC AAAGGCAGAA				7750
GAAAGTCACA TTTGACAGAC TGCAAGTTCT GGACAGCCAT TACCAGGAOG				7800
TGCTCAAGGA GGTCAAAGCA GCGGGGTCAA AAGTGAAGGC TAACCTGCCTA				7850
TCGGTAGAGG AAGCTTGCGAG CCTGAOGCCC CCACATTCAAG CCAAATCCAA				7900
GTTCGGCTAT GGGCAAAAG ACGTCGGTIG CCATOCAGA AAGGCGGTAG				7950
CCACACATCAA CTGGTGTGG AAAGACCTTC TGGAAAGACAG TGTAACACCA				8000
ATAGACACTA CCATCATGGC CAAGAACGAG GTTTTCTGGG TTCAAGCTGA				8050
GAAGGGGGGT CGTAAGCAG CTGGTCTCAT CGTGTTCOCCC GAACCTGGCG				8100
TGCGCGTGTG CGAGAAGATG GCGCTGTACG ACGTGGTTAG CAAGCTTCOCCC				8150
CTGGCGGTGA TGGGAAGCTC CTACGGATTG CAATACTCAC CAGGACAGCG				8200
GGTGAATTTC CTGGTGCAAG CGTGGAAAGTC CAAGAAGACC CGATGGGT				8250
TCTCGTATGA TACCCGCTGT TTTGACTCCA CAGTCACTGA GAGGGACATC				8300
CGTAOGGAGG AGCCAATTIA CCAATGTTGT GAACCTGGACC CCCAAGCCG				8350
CGTGGCCATC AAGTCCCTCA CTGAGAOGCT TTATGTTGGG GCGCTCTTA				8400
CCAATTCAAG GGGGAAAAC TGCGGCTTAC GCAGGTGGCG CGCGAGCGC				8450
GTACTGACAA CTAGCTGTG TAACACCCCTC ACTTGCTACA TCAAGGCCCC				8500
GGCAGCTGT CGAGCGCGAG GGCTCAGGA CTGCACCATG CTGGTGTGTG				8550
GCGACGACTT AGTCGTTATC TGIGAAAGTG CCGGGGTCCA GGAGGAOGCG				8600
GCGAGCTGTA GAGCTTCAAC CGAGGCTATG ACCAGGTACT CGCGCCCCCCC				8650
CGGGGACCCC CCACAACCAAG AATACGACTT GGAGCTTATA ACATCATGCT				8700
CCTCCAACGT GTCACTGCC CACGACGGGG CTGGAAAGAG GGCTCTACTAC				8750
CTTACCCCGTG ACCCTACAAAC CCGCTCGCG AGAGCGCGGT GGGAGACAGC				8800
AAGACACACT CCAGTCATT CCTGGCTAGG CAACATAATC ATGTTGGCC				8850
CCACACTGTG GCGGAGGATG ATACTGATGA CCACATTCTT TAGCGTCTTC				8900
ATAGCCAGGG ATCAGCTTGA ACAGGCTCTT AACTGTGAGA TCTAOGGAGC				8950
CTGCTACTCC ATAGAACCCAC TGGATCTACC TCCAATCATT CAAAGACTCC				9000
ATGGGCTCAAG CGCAATTTCAC CTCCACAGIT ACTCTCCAGG TGAAATCAAT				9050
AGGGTGGCCG CATGCGTCAG AAAACTGGG GTCCCCCGCT TCGGAGCTTG				9100
GAGACAOCCG GCGCGGAGCG TCGCGCTAG GCTTCTGTCC AGAGGGGCCA				9150
GGGCTGCGAT ATGIGGCAAG TACCTCTCA ACTGGGCGAT AAGAACAAAG				9200
CTCAAACCTCA CTCCAATAGC GCGCGCTGGC CGGCTGGACT TGTGGGGTIG				9250
GTTCACGGCT CGCTACAGCG CGGGAGACAT TTATCACAGC GTGCTCTCATG				9300
CGCGGCCCCG CTGGTCTGG TTTGCGCTAC TCTGCTCGC TGCAGGGGTA				9350
GGCATCTACC TCTCCCCAA CGATGAAAGG TTGGGGTAAA CACTCCGCC				9400
TCTTAAGCCA TTTCTGTTT TTTTTTTTTT TTTTTTTTTT TTTTTCTTTT				9450
TTTTTTCTT TCTTTCTT CTTCTTTTCC TTTCTTTTCA CCTCTTTAA				9500

FIG. 6E

H77C

10	20	30	40	50	
<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	
TCGTGGCTCC	ATCTTACGCC	TAGTCACGGC	TAGCTGIGAA	AGGTCCTGTGA	9550
GGCGCATGAC	TCCAGAGAGT	GCTGATACTG	GCCTCTCTGC	AGATCATGT	9599

H77C

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
MSTINPKPQRK	TKRNINRRPQ	DVKFPGGGQI	VGGVYLLPRR	GPRLGVRATR
KTSERSQPRG	RRQPIPKARR	PEGRIWAQPG	YPWPLYGNEG	CGWAGWLLSP
RGSRPSWGPT	DPRRRSRNLG	KVIDTILTCGF	ADLMGYIPLV	GAPLOGAARA
LAHGVRVLED	GVNYATGNLP	GCSFSIFILLA	LLSCLTVPAS	AYQVRNSSL
YHVINDCPNS	SIVYEAADAI	LHTPGCVPCV	REGNASRCWV	AVITPIVATRD
GKLPTTQLRR	HIDLIVGSAT	LCSALYVGDL	CGSVFLMQL	FIFSPRRHWT
TQDNCSTYP	GHITGHRMAW	DMMNWSPTA	ALWVAQLLRI	PQAIMDMIAIG
AHWGVLAGIA	YFSMVGNWAK	VLMVLLLFAG	VDAEIHVTGG	NAGRITTAGLV
GLITPGAKQN	IQLININGSW	HINSTALNN	ESLNTGWL	LFYQHKFNSS
GCPERLASCR	RLTDFAQGNG	PISYANGSGL	DERPYCWHP	PRPOGIVPAK
SVCGPVYCFT	PSPWVVGTTD	RSGAPTYSWG	ANDIDVFVLN	NIRPPLGNWF
GCTWMNSTGF	TKVOGAPPCV	IGGVGNNTLL	CPIDCFRKHP	EATYSRCGSG
PWITPRCMVD	YPYRLWHYPC	TINYTIFKVR	MYVGGVEHRL	EAAONWIRGE
RCDLEDRDRS	EISPLLLSTT	QWQLPCSFT	TLPALSTGLI	HLHQNIVDVQ
YLYVGVGSSIA	SWAIKWEYVV	LLFLLLADAR	VCSCLWMMLL	ISQAEAALEN
LVLNAASLA	GHGGLVSFLV	FFCFAWYLKG	RWPGAVYAL	YGMWPLLLL
LALPORAYAL	DTEVAASCQGG	VVLVGLMALT	LSPYYKRYIS	WCMWLQYFL
TRVEAQLHW	VPPLNVRGGR	DAVILLMCVV	HPTLVFDITK	LLAIFGPLW
ILQASLLKVP	YFVRVQGLLR	ICALARKIAG	GHVQMAIIK	LGALTGTYVY
NHLTPLRWA	HNGLERLAVA	VEPVVFSRME	TKLITWGADT	AACGDIINGL
PVSARRGQEI	LLGPADGMVS	KGWRLLAPIT	AYAQQTTRGLL	GCITSLSLTGR
DKNQVEGEVQ	IVSTATQTFL	ATCINGVCWT	VYHGAGIRTI	ASPKGPVIQM
YTNDQDLVG	WPAFQGSRSL	TPCTCGSSDL	YLVTRHADVI	PVRRRGDSRG
SLLSPRPISY	LKGSSGGPLL	CPAGHAVGLF	RAAVCTRGA	KAVDFIPVEN
LGTIMRSPVF	TDNSSPPAVP	QSFQVAHLHA	PTGSGKSTKV	PAAYAAQGYK
VLVLNPSVAA	TLFGCAYMSK	AHGVDPNIRT	GVRTITIGSP	ITYSTYGF
ADGGCSGGAY	DIICDECHS	TDATSILGIG	TVLDQAETAG	ARLWVLATAT
PPGSVTVSHP	NIEEVALSTT	GEIPFYGKAI	PLEVIKGGRH	LIFCHSKKKC
DELAALKVAL	GINAVAYYRG	LDVSVIPTSG	DVVVSTDAL	MTGFTGDFDS
VIDCNCTVTQ	TVDFSLDPTF	TIEITTLQD	AVSRTQRRGR	TGRGKPGIYR
FVAPGERPSG	MFDSSVLCEC	YDAGCAWYEL	TPAETTVRLR	AYMNTPGLPV
CQDHLEFWEG	VFTGLTHIDA	HFLSQTKQSG	ENFPYLVAYQ	ATVCARAQAP
PPSWDQMWC	LIRLKPTLHG	PTPLLYRLGA	VQNEVILTHP	ITKYIMTCMS
ADLEWVTSIW	VLVGGVLAAL	AAACLSTGCV	VIVGRIVLSG	KPAIIPDREV
LYQEFDEMEE	CSQHLPYIEQ	GMMLAEQFKQ	KALGLIQTAS	RHAEVITPAV
QTNWQKLEVF	WAKHMWNFIS	GIQYLAGLST	LPGNPATIASL	MAFTAATISP
LTTGQTLFN	ILGGWVAAQL	AAPGAATAFV	GAGLAGAAIG	SVGLGKVLD
ILAGYAGVA	GALVAFKIMS	GEVPSTEDLV	NLLPATLSPG	ALVVGWCAA

13 | 21

H77C

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
ILRRHVGPGF GAVQAMNRLI AFASRGHNVS PIHYVPESDA AARVIAILSS				1950
LTVTQLLRLR HQWISSECIT PCSGWLRLDI WDWISEVLSDFKTIWLKAKLM				2000
PQLPGIPFVS CQGYRGWR GDGIMHTRCH CGAEITGHVK NGIMRIVGPR				2050
TCRNMSGTIF PINAYTTGPF TPLPAPNYKF ALWRVSAEY VEIRRVGDFH				2100
YVSGMTIDNL KCPOQIPSPE FFTELDGVRLLRFAPPCKPL LREEVSFRVG				2150
LHEYPVGSQF PCEPEPDVAV LTSMLTDPSH ITAEAAGRRL ARGSPPSMAS				2200
SSASQLSAPS LKATCTANHD SPDAAELIEAN LLWRQEMGGN ITRVESENKV				2250
VILDSEFDPLV AEEDEREVSV PAEILRKSR FARALPVWAR PDYNPPLVET				2300
WKKPDYEPPV VHGCPLPPPR SPPVPPPRKK RIVVLTESTIL STALAELATK				2350
SFGSSSTSGI TGDNITTSSE PAPSGCPPDS DVESYSSMPP LEGEPGDPDL				2400
SDGSWSIVSS GADTEDWCC SMSYSWTIGAL VTPCAAEEQK LPINALNSNL				2450
LRHHNLVYST TSRSAQQRQK KVTFDRLQVL DSHYQDVLKE VKAAASKVKA				2500
NLLSVEEACS LTPPHSAKSK FGYGAKDVRC HARKAVAHIN SWKDLLEDS				2550
VTPIDITIMA KNEVFCVQPE KGGRKPARLI VFPDLGVRVC EKMALYDWS				2600
KLPLAVMGSS YGFQYSPGQR VEFLVQAWKS KKTPMGFSYD TRCFDSLIVTE				2650
SDIRTEEAIIY QCCDLDPRQAR VAIKSLTERL YVGGPLINSR GENCGYRRCR				2700
ASGVLTTSOG NTILTGYIKAR AACRAAGLQD CIMLVOGDDL WVICESAGVQ				2750
EDAASLRAFT EAMTRYSAPP GDPPQPEYDL ELITSCSSNV SVAHDGAGKR				2800
VYLYLTRDPIT PLARAAWETA RHTPVNSWLGNIIIMFAPIIW ARMILMTHFF				2850
SVLIARDQLE QALNCETIYGA CYSIEPLDLP PIIQLRHGLS AFSLHSYSPG				2900
EINRVAACLR KLGVPPLRAW RHRARSVRAR LLSRGGRAAI CGKYLFWAV				2950
RTKLKLTPIA AAGRLLDLSGW FTAGYSGGDI YHSVSHARPR WFWFCLLLLIA				3000
AGVGIYLLPN R				3011

HC-J4

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
GCCAGGGGGC	TGATGGGGGC	GACACTCAC	CATGAATCAC	TCCCCGTGGA
GGAACATACG	TCTTCAQGCA	GAAAGGGTCT	AGOCATGGCG	TTAGTATGAG
TGTGTTGGAG	CTTOCAGGAC	CCCCCTTCCC	GGGAGAGGCCA	TAGTGGTCTG
CGGAAACGGT	GAGTACACCG	GAATTGCCAG	GAOGACGGGG	TCCCTTCCTG
GATCAACCG	CTCAATGCC	GGAGATTGG	GGTGCCCCC	GGGAGACTGC
TAGCCGAGTA	GTTGTTGGTC	GGAAAGGCC	TTGTGGTACT	GGCTGATAGG
GTGCTTGCGA	GTGCCCCGGG	AGGTCTGTA	GAOGTGGCAC	CATGAGCACG
AATCCTAAAC	CTCAAAGAAA	AAACAAACGT	AAACACCAACC	GGGGCCCCACA
GGACGTCAAG	TTCCCCGGCG	GTGGTCAGAT	CGTGGTGGGA	GTTCACCTGT
TGCGCGCGAG	GGGGCCCCAGG	TTGGGTGTG	GGGGGACTAG	GAAGGCTTCC
GAGCGGTGCG	AACTCTGGG	AAGGGGACAA	OCTATCCAA	AGGCTCGCGG
AACCGAGGGC	AGGGCCCTGGG	CTCAGCCCCG	GTAACCTTGG	CCCCCTCTATG
GCAATGAGGG	CTTGGGTGCG	GCAGGATGSC	TCTGTCAAC	GGGGGGCTOC
CGGCGTAGIT	GGGGCCCCAC	GGACCCCCGG	CGTAGGTGCG	GTAACCTGGG
TAAGGTCACTC	GATAACCTTA	CATGGGGCTT	CGGGGATCTC	ATGGGGTACA
TTCCGCTCGT	GGGGGGGGGG	CTAGGGGGG	CTGCGAGGCG	CTTGGCACAC
GGTGTGGGG	TTCTGGAGGA	GGGGGTGAAAC	TATGCAACAG	GGAACTTGCC
CGGTTGCTCT	TTCTCTATCT	TCCTCTTGGC	TCTGCTGTCC	TGTTTGACCA
TOCCAGCTTC	CGCTTATGAA	GTGGGCAACG	TGTCCCCGAT	ATACCATGTC
ACGAACGACT	GCTCCAACTC	AAGCATTGIG	TATGAGGGCAG	CGGACGTGAT
CATGCATACT	CCCCGGTGCG	TGCCCCGTG	TCAGGAGGGT	AACAGCTCCC
GTGCTGGGT	AGCGCTCACT	CCCCGGCTCG	GGGGCAGGAA	TGCCAGGGTC
CCCACTACGA	CAATAQGAQG	CCACGTGCGAC	TTGCTCGTTG	GGACGGCTGC
TTTCTGCTCC	GCTATGTAQG	TGGGGGATCT	CTGCGGATCT	ATTTTCTCG
TCTCCGAGCT	GTTCACCTTC	TCGGCTCGCC	GGCATGAGAC	AGTGCAGGAC
TGCAACTGCT	CAATCTATCC	GGGCATGTA	TCAGGTCAAC	GCATGGCTTG
GGATATGATG	ATGAACCTGGT	CACCTACAAAC	AGGCGTAGTG	GTGTCGCACT
TGCTCCGGAT	CCCCAACGCT	GTGGTGGACA	TGGTGGGGGG	GGCCCACCTGG
GGAGGCTCTGG	GGGGGCTTGC	CTACTTATCC	ATGGTACGGA	ACTGGGCTAA
GGTTCGATT	GTGGGGCTAC	TCTTTCGCGG	CGTTGACGGG	GAGACCCACA
CGAOGGGGAG	GGTGGGGCGC	CACACCACT	CCCCGGTTCAC	GTCCCTTTTC
TCATCTGGGG	CGTCTCAGAA	AATCCAGCTT	GTGAATACCA	ACGGCAGCTG
GCACATCAAC	AGGACTGCCC	TAAATTGCAA	TGACTCCCTC	CAAACGGGT
TCTTTCGCGC	GCTGTTTAC	GCACACAAGT	TCAACTCGTC	GGGGTGGCCG
GAGGGCATGG	CCAGCTGCGG	CCCCATTGAC	GGGTTCGCCC	AGGGGTGGGG
CCCCATCACC	TATACTAACG	CTAACAGCTC	GGATCAGAGG	CCTTATTGCT
GGCATTACGC	GGCTCGACCG	TGTGGTGTG	TACCCCGCGTC	GCAGGTGTGT
GGTCCAGTGT	ATTGTTTAC	CCCCAGGCGT	GTGTTGGTGG	GGACCCACCGA

FIG. 7A

HC-J4

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
TCGTTCCGGT	GTCCTTAOGT	ATAGCTGGGG	GGAGAATGAG	ACAGAOGTGA
TGCTCCTCAA	CAACACOGT	CGCGCACACAAG	GCAACTGGTT	CGGCTGTACA
TGGATGAATA	GTACTGGGTT	CACTAAGACG	TGCGGAGGTC	CGCGCTGTTAA
CATGGGGGGG	GTCGGTAACC	GCAACCTTGAT	CTGCCCCACG	GACTGCTTCC
GGAAGCACCC	CGAGGGCTACT	TACACAAAAT	GTGGCTGGGG	CGCGCTGGITG
ACACCTAGGT	GCCTAGTAGA	CTACCCATAC	AGGCTTTCGC	ACTAACCCCTG
CACTCTCAAT	TTTCCATCT	TTAAGGTTAG	GATGTATGTG	CGGGGGCGTGG
AGCACAGGCT	CAATGCGCA	TGCAATTGGA	CTCGAGGAGA	CGCGCTGTAAAC
TTGGAGGACA	GGGATAGGTC	AGAACTCAGC	CGCGCTGTGC	TGCTCTACAAC
AGAGTCCCAG	ATACTGCGCT	GTGCTTTCAC	CAACCTAACG	GCTTTATCCA
CTGGTTTGTAT	CCATCTOCAT	CAGAACATCG	TGGACGTGCA	ATACCTGTAC
GGTGTAGGGT	CAGCGTTGT	CTCGCTTGCA	ATCAAATGGG	AGTACATCCT
GTGCTTTTC	CTTCTCTGG	CAGACGCGCG	CGTGTGTGCC	TGCTTGTGGA
TGAATGCTGCT	GATAAGCCAG	GCTGAGGCCG	CGCTTAGAGAA	CTTGGTGGTC
CTCAATGCGG	CGTCCGTGCC	CGGAGCGCAT	GGTATTCTCT	CGCTTCTGT
GTTCCTCTGC	CGCGCTGGT	ACATTAAGGG	CAGGCTGGCT	CGTGGGGGGG
CGTATGCTTT	TTATGGGTA	TGGCGCTGC	TCCTGCTOCT	ACTGGCGTIA
CCACCAACGAG	CTTACCGCTT	GGACCGGGAG	ATGGCTGCAT	CGTGGGGGGG
TGCGGTTCTT	GTAGGCTCTG	TATTCTTGAC	CTTGTACCCA	TACTACAAAG
TGTTTCTCAC	TAGGCTCATA	TGGTGGTTAC	AATACTTTAT	CACCAGAGCC
GAGGGCGACA	TGCAAGTGTG	GGTCCCCCCC	CTCAACGTC	GGGGAGCCCG
CGATGCGCATC	ATCCTCTCA	CGTGTGGGT	TCATCCAGAG	TIAATTTTTG
ACATCACCAA	ACTCTGCTC	GOCATACTCG	GCCCCGCTCAT	CGTGTCTCCAG
GCTGGCATAA	CGAGAGTGCC	GTACTTGTG	CGCGCTCAAG	CGCTCATTCG
TCCATGCAATG	TTAGTGGGAA	AAGTGGCGG	GGGTCAATTAT	GFCCAAATGG
TCTTCATGAA	GCTGGGGCGG	CTGACAGGTA	CGTACGTTA	TAACCATCT
ACCCCACTGC	GGGACTGGGC	CCACCGGGGC	CTACGAGACC	TGCGGTGGC
GGTAGAGGCC	GTGCTCTCT	CGGCCATGGA	GACCAAGGTC	ATCAACTGGG
GAGCAGACAC	CGCTGGTGT	GGGGACATCA	TCTGGGTCT	ACCGCTCTCC
CCCCGAAGGG	GGAGGGAGAT	ATTTTGGGA	CGCGCTGATA	GTCTCGAAGG
GCAAGGGTGG	CGACTCCCTG	CGCCCATCAC	GGCGTACTCC	CAACAAACGC
GGGGCGTACT	TGGTTGCATC	ATCACTAGCC	TCACAGGCCG	GGACAAGAAC
CAGGTGGAAG	GGGAGGGTCA	AGTGGTTCT	ACCGCAACAC	AATCTTCT
GGCGACCTGC	ATCAACGGCG	TGTGCTGGAC	TCTCTCAT	CGCGCTGGCT
CGAAGACCT	AGCGGGTCCA	AAAGGTCCA	TCACCCAAAT	GTACACCAAT
GTAGACCTGG	ACCTCGTCGG	CTGGCAGGCG	CCCCCGGGGG	CGCGCTCCAT
GACACCATGC	AGCTGTGGCA	GCTOGGACCT	TTACTTGGTC	ACGAGACATG
CTGATGTCAT	TCCCGTGGC	CGCGGAGGCG	ACAGCAGGGG	AAGTCTACTC
				3800

FIG. 7B

16/21
HC-J4

10	20	30	40	50
<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>
TCGGGCGAGGC	CGGTCTCCGA	CCTGAAAGGC	TCTTGGGGTG	GTCATTGCT
TTGCCCTTTCG	GGGCAOGTGTG	TGGGCGCTTT	CGGCGCTGCT	GTGTGCGACCC
GGGGGGTGC	GAAGGGGGTG	GACITCATAC	CGGTGAGTC	TATGGAAACT
ACCATGCGGT	CTCGGGCTTT	CACAGACAAC	TCAAOCOCOC	CGGCTGTAC
GCAGACATTC	CAAGTGGCAC	ATCTGCAOGC	TCTTACTGGC	AGCGGCAAGA
GCACCAAAGT	CGCGCTGCG	TATGCAGOC	AAGGGTACAA	GGTGTGCGIC
CTGAACCGGT	CGGTGCGOOGC	CACCTTGGG	TTTGGGGGT	ATATGTCCAA
GGCACACGGT	ATCGACCGTA	ACATCAGAAC	TGGGTTAAGG	ACCATTACCA
CGGGCGGCCTC	CATTAOGTAC	TCCACCTATG	GCAAGTTCT	TGCGGAGGGT
GGCTGTTCTG	GGGGCGCTA	TGACATCATA	ATATGTGATG	AGTGCACACTC
AACTGACTCG	ACTAACATCT	TGGGCATOGG	CACAGTOCTG	GACCAAGGGG
AGACGGCTGG	AGCGGGGCTC	GTGCGCTCG	CCACCGCTAC	AOCTCOGGGA
TCGGTTACCG	TGCCACACCC	CAATATCGAG	GAAATAGGOC	TGTCACAAACAA
TGGAGAGATC	CCCTCTATG	GCAAAGOCAT	CCOCATTGAG	GOCATCAAGG
GGGGGAGGCA	TCTCAATTTC	TGOCATTCCA	AGAAGAAATG	TGACGAGCTC
GOOGCAAAGC	TGACAGGCGT	CGGACTGAAC	GCTGTAGGCAT	ATTACCGGGG
CCTTGTGTTG	TCCGTACATAC	CGCCTATOGG	AGACGTGCGT	GTGCGGGCAA
CAGACGCTCT	AATGACGGGT	TTCACCGGG	ATTTTGACTC	AGTGTATGAC
TGCAATACAT	GTGTCACCCA	GACAGTCGAC	TTCAGCTTGG	ATCCCCACCTT
CACCAATTGAG	ACGACGGAOG	TGCCCCAAGA	CGCGGTGCG	CGCTCGAAC
GGCGAGGTAG	AACTGGCAGG	GGTAGGAGTG	GCATCTACAG	GTITGTGACT
CCAGGAGAAC	GGCCCTCGGG	CATGTTGAT	TCTTCGGTCC	TGTGTGAGTG
CTATGACCGG	GGCTGTCCTT	GGTATGAGCT	CAOGCCCGCT	GAQACCTCGG
TTAGGTTCGG	GGCTTACCTA	AATACACCAG	GGTTCGGCGT	CTGCCAGGAC
CATCTGGAGT	TCTGGGAGAG	CGTCTTCACA	GGCCTCAACCC	ACATAGATCC
CCACTTCCIG	TOCCAGACTA	AACAGGGCAGG	AGACAACTTT	OCTTACCTTG
TGGCATATCA	AGCTACAGTG	TGCGGCCAGGG	CTCAAGCTCC	ACCTCCATOG
TGGGACCAAA	TGTGGAAGTG	TCTCATACGG	CTGAAACCTA	CACTGCAOGG
GCCAACACCC	CTGCTGTATA	GGCTAGGAGC	CGTCCAAAAT	GAGGTCACTCC
TCACACACCC	CATAACTAAA	TACATCATGG	CATGCATGTC	GGCTGACCTG
GAGGTGCTCA	CTAGCACCTG	GGTGTCTGGT	GGCGGAGTC	TTGCGCTTT
GGCGCGATAC	TGCCCTGAOGA	CAGGCAGTGT	GTCTTGTG	GGCAGGATCA
TCTTGTCCGG	GAAGCCAGCT	GTGCGTCCCG	ACAGGGAAAGT	CTCTCTACCA
GAGITCGATG	AGATGGAAGA	GTGTCCTCA	CAACTTCCTT	ACATCGAGCA
GGGAATCCAG	CTCGCCGAGC	AATTCAAGCA	AAAGGCCCTC	GGTTTGTGTC
AAACGGCACAC	CAAGCAAGCG	GAGGTGCTG	CTCCCGTGGT	GGAGTCACAG
TGGCGAGGCC	TTCAGACCTT	CTGGGCGAAG	CACATGTGGA	ATTTCATCAG
CGGAATACAG	TACCTAGCGAG	GCTTATOCAC	TCTGCCTGG	AAACCCCGCGA

17/21

HC-J4

10	20	30	40	50
1234567890	1234567890	1234567890	1234567890	1234567890
TAGCATCATT	GATGGCATT	ACAGCTTCTA	TCACTAGGCCC	GCTCACCAAC
CAAAACACCC	TCCTGTTAA	CATCTTGGGG	GGATGGGTTGG	CTGCGCAACT
CGCTCTCCC	AGGGCTGGGT	CAGCTTGTG	GGGAGCCGGC	ATCGCGGGAG
CGGCTGTTGG	CAGCATAGGC	CTTGGGAAGG	TGCTTGTTGA	CATCTTGGCG
GGCTTAIGGGG	CAGGGGTAGC	CGGCGCACTC	GTGGCTTTA	AGGTCAITGAG
CGGCGAGGTG	CGCTCCACCG	AGGAOCTGGT	CAACTTACTC	OCTGOCATCC
TCTCTCTTGG	TGCGCTGGTC	GTGGGGGTGG	TGTGOGCAGC	AATACTGGGT
CGGCAOGTGG	GGGGGGGAGA	GGGGGCTGTG	CAGTGGATGA	AOCGGCTGAT
AGCGTTGGCT	TGAGGGGGTA	ACCAOGCTTC	CGCTTAOGCAC	TATGTGCGTG
AGAGCGAACG	TGCAGCAOGT	GTCACTCAGA	TCTCTCTCTAG	CGCTTAACCATC
ACTCAACTGC	TGAAGCGGCT	CCACCACTGG	ATTAATGAGG	ACTGCTCTAC
GCCATGCTCC	GGCTCGTGGC	TAAGGGATGT	TTGGGATTGG	ATATGCCACGG
TGTGACTGTA	CTTCAAGACC	TGGCTCCAGT	CGAAACTCT	GGCGCGGTTA
CGGGGAGTCC	CTTCTCTGTC	ATGCCAACCG	GGGTACAAGG	GAGTCCTGGCG
GGGGGACCGC	ATCATGCAAA	CCACCTGCC	ATGOGGGAGCA	CAGATCGCG
GACATGTCAA	AAACGGTTC	ATGAGGATCG	TAGGGCCTAG	AAACCTGCAGC
AACACGTGGC	ACGGAACGTT	CCCATCAAC	GCATACACCA	CGGGACCTTG
CACACCCCTCC	CCGGCGGCCA	ACTATTCCAG	GGCGCTATGG	CGGGTGGCTG
CTGAGGAGTA	CGTGGAGGTT	ACGGCGTGG	GGGATTTCGA	CTACGTGAGC
GGCATGACCA	CTGACAAOGT	AAAGTCCCCA	TGCCAGGTT	GGGGCCCCCGA
ATTCTTCACG	GAGGTGGATG	GAGTCGGGTT	GCACAGGTAC	GCTCGGGGT
GCAAACCTCT	TCTACGGGAG	GACGTCAOGT	TOCAGGTGG	GCTCAACCAA
TACCTGGTGT	GGTGGCAGCT	CCCATGCGAG	CCCGAACCGG	ACGTAACAGT
GCTTACTTCC	ATGCTCACCG	ATCCCTCCCA	CATTACAGCA	GAGACGGCTA
AGCGTAGGCT	GGCTAGAGGG	TCTCCCCCT	CTTAGCCAG	CTCATCAGCT
AGCCAGTTGT	CTGCGCCCTC	TTTGAAGGGG	ACATGCACTA	CCCAACCATGA
CTCCCCGGAC	CTGACCTCA	TCGAGGCGAA	CCTCTTGTGG	CGGCAGGAGA
TGGGGGGAAA	CATCACTCGC	GTGGAGTCAG	AGAATAAGGT	AGTAATTCTG
GACTCTTTCG	AACCGCTTCA	CGGGGAGGGG	GTGAGAGGG	AGATAATCCGT
CGGGGGCGGAG	ATCCCTGCGAA	AACTCAGGAA	GTCTCCCCCTCA	GGGTGCGCCA
TATGGGCACG	CCCGGACTAC	AACTCTCCAC	TGCTAGAGTC	CTGGAAAGGAC
CCGGACTACG	TCCCTCGGGT	GGTACAOGGA	TGCGCATTC	CACTAACCAA
GGCTCTCTCA	ATACCAOCTC	CAOGGAGAAA	GGGGAGGTT	GTCCTGACAG
AATCCAATGT	GTCTTCTGCC	TTGGGGGAGC	TOGOCACTAA	GAACCTTGGT
AGCTCCGGAT	CGTCGGCGGT	TGATAGCGGC	ACGGCGACCG	CCCTTCCCTGA
CCTGGCCCTCC	GAACGACGGTG	ACAAAGGATC	CGACGTTGAG	TGTTACTCCT
CCATGCCCGCC	CTTGAAGGGG	GAGGGGGGGG	ACCCCGATCT	CAGCGACGGG
TCTTGGTCTA	CGTGTAGTGA	GGAGGCTAGT	GAGGATGTGG	TCTGCTGCTC
				7600

FIG. 7D

HC-J4

10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
AATGTCCTAT	AOGTGGACAG	GOGCCTGAT	CACGCCATGC	GCTGCGGAGG	7650
AAAGTAAGCT	GOCCATCAAC	COGTTGAGCA	ACTCTTTGCT	GGTCACCCAC	7700
AACATGGCT	ACGCCACAAC	ATCCCGCAGC	GCAAGCCIOC	GCCAGAAGAA	7750
GGTCACCTTT	GACAGATTGC	AAGTCTTGGA	TGATCATTAC	GGGGACGTAC	7800
TCAAGGAGAT	GAAGGGAAAG	GOGTCCACAG	TIAAGGCTAA	GCTTCTATCT	7850
ATAGAGGAGG	CCTGCAAGCT	GAOGCCCCCA	CATTGGCCA	AACTCAAATT	7900
TGGCTATCGG	GCAAAGGAOG	TOCGGAACCT	ATCCAGCAGG	GOOGTTAACCC	7950
ACATCCGCTC	CGTGTGGGAG	GACTTGCTGG	AAGACACTGA	AACACCAATT	8000
GACACCACCA	TCATGGCAAA	AAGTGGGTT	TTCCTGGCIOC	AACCAGAGAA	8050
GGGAGGGCGC	AAGCCAGCTC	GCCTTATCGT	ATTOCCAGAC	CTGGGAGTTTC	8100
GTGTATGCGA	GAAGATGGCC	CTTACGACG	TGGCTCCAC	OCTTCTCAG	8150
GCGGTGATGG	GCTOCTCATA	CGGATTCAA	TACTCCCCA	AGCAGGGGT	8200
CGAGTTCTG	GTGAATACT	GGAAATCAA	GAAATGCGCT	ATGGGCTTCT	8250
CATATGACAC	CGCTGTTTT	GACTCAAOGG	TCACTGAGAG	TGACATTGCT	8300
GTTGAGGAGT	CAATTIAOCA	ATGTTGTGAC	TTGGCCCCCG	AGGCCAGACAA	8350
GGCCATAAGG	TOGCTCACAG	AGCGGCTTTA	CATGGGGGT	CCCCCTGACTA	8400
ACTCAAAAGG	GCAGAACTGC	GGTTATGCC	GGTGGCGCGC	AAGTGGGTG	8450
CTGAOGACTA	GCTGCGTAA	TACOCTCACA	TGTTACTTGA	AGGCCACTGC	8500
AGCCTGTGCA	GCTGCAAAGC	TOCAGGACTG	CAOGATGCTC	GTGAACGGAG	8550
ACGACCTTGT	CGTTATCTGT	GAAGCCGGG	GAACCCAGGA	GGATGCGGGG	8600
GCGCTACGAG	OCTTCACGGA	GGCTATGACT	AGGTATTCCG	CCCCCCCCCGG	8650
GGATCCGCCC	CAACCAGAAAT	ACGACCTGGA	GCTGATAACA	TCATGTTCT	8700
CCAATGTGTC	AGTGGGGCAC	GATGCATCTG	GCAAAAGGGT	ATACIACCTC	8750
AACCGTGACC	CCACCAACCCC	CTTGCACGG	GCTGGTGGG	AGACAGCTAG	8800
ACACACTCCA	ATCAACTCTT	GGCTAGGCAA	TATCATCATG	TATGGCGCCA	8850
CCCTATGGGC	AAGGATGATT	CTGATGACTC	ACTTTTCTC	CATCTCTIA	8900
GCTCAAGAGC	AACTGAAAA	AGCCTGGAT	TGTCAGATCT	ACGGGGCTTG	8950
CTACTCCATT	GAGCCACTTG	ACCTAOCCTCA	GATCATTGAA	CGACTOCATG	9000
GTCTTAGGGC	ATTTACACTC	CACAGTTACT	CTCCAGGTGA	GATCAATAGG	9050
GTGGCTTCAT	GCCTCAGGAA	ACTTGGGGTA	CCACCCCTTG	GAACCTGGAG	9100
ACATCGGGCC	AGAAGTGTCC	GCGCTAAGCT	ACTGTCCCCAG	GGGGGGAGGG	9150
CGGCCACTTG	TGGCAGATAAC	CTCTTTAACT	GGGCAGTAAAG	GACCAAGCTT	9200
AAACTCACTC	CAATCCGGC	CGCGTCCCCAG	CTGGACTTGT	CTGGCTGGGT	9250
CGTGGCTGGT	TACAGGGGGG	GAGACATATA	TCACAGCTG	TCTCGTGGCC	9300
GACCCCGCTG	GTTCGGTGTG	TGCCTACTCC	TACTTTCTGT	AGGGGTAGGC	9350
ATTIACCTGC	TOCCCCAACCG	ATGAACGGGG	AGCTAAOCAC	TOCAGGCCCT	9400
AAGCCATTTC	CTGTTTTTTT	TTTTTTTTT	TTTTTTTTT	TCTTTTTTTT	9450
TTTCTTCTCT	TTCTTCTCTT	TTTCTCTT	TTTCTCCCTT	CTTAAATGGT	9500

FIG. 7E

19/21

10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
GGCTCCATCT	TAGCCCTAGT	CAOGGCTAGC	TGTGAAAGGT	CCGTGAGCG	9550
CATGACTGCA	GAGAGTGCTG	ATACTGGCT	CTCTGCCAGAT	CATGT	9595

10	20	30	40	50
<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>
MSTINPKPQRK	TKRNINRRPQ	DVKFPGGGQI	VGGVYLLPRR	GPRLGVRAIR
KASERSQPRG	RRQPIPKARR	PEGRAWAQPG	YPWPLYGNNEG	LGNAGWLLSP
RGSRPSWGPT	DPRRRSRNLG	KVIDTILTOGF	ADLMGYIPLV	GAPLGGAAARA
LAHGVRLLED	GVNYATGNLP	GCSFSIFILLA	LLSCLTIPAS	AYEVNVSGI
YHVINDCSNS	SIVYEADVI	MHTPGCVPCV	QEGRSSRCWV	ALTPTLAARN
ASVPTTTIRR	HVDLLMGTAA	FCSAMYVGDL	OGSIFLVSQL	FTFSPRRHET
VQDCNCSIYP	GHVSGHRMAW	DMMMNWSPTT	ALWSQLIRI	PQAWDMVAG
AHWVLAGLA	YYSMVGNWAK	VLIVALLFAG	VDGEIHTITGR	VAGHTTSGFT
SLFSSGASQK	IQLVNINGSW	HINRTALNCN	DSLQTGEFAA	LFYAHKENSS
GCPERMASCER	PIDWFAQGNG	PITYTKPNSS	DQRPYCWHYA	PRPOGVVPAS
QVOGPVYCFT	PSPWVVGTTD	RSGVPTYSWG	ENETDVMLLN	NTRPPQGNWF
GCTWMNSTIGF	TKTCOGGPPCN	IGGVGNRTLII	CPTDCFRKHP	EATYIKOGSG
PWLTPRCLVD	YPYRLWHYPC	TLNFSIFKVR	MYVGGVEHRL	NAACNWTRGE
RCNLEDRDRS	ELSPLLLSTT	EWQILPCAFT	TLPALSTIGLI	HHQNIVDQ
YLYGVGSAFV	SFAIKWEYIL	LLFLILLADAR	VCACIUMMLL	IAQAEAALEN
LVVLNAASVA	GAHGILSFLV	FFCAAWYIKG	RLAPGAAYAF	YGWPPLLLL
LALPPRAYAL	DREMAASCQG	AVLVGLVFLT	LSPYYKVFLT	RLIWNLQYFI
TRAFAHMQW	VVPLNVRGGR	DAIILLTCAV	HPELIFDITK	LLIAILGPM
VHQAGITRVP	YFVRAQGLIR	ACMLVRKVAG	GHYVQMVFMK	LGALTGTYYV
NHLTPLRDWA	HAGLRDLAVA	VEPVVFSAME	TKVITIWGADT	AAQCDIILGL
PVSARRGKEI	FLGPADSLEG	QGWRLLAPIT	AYSQQTRGV	GCITITSLTGR
DKNQVEGEVQ	VVSTATQSFL	ATCINGVCWT	VYHGAGSKTL	AGPKGPITQM
YINVDDLWV	WQAPPGARSM	TPCSCGSSDL	YLVTRHADVI	PVRRRGDSRG
SILSPRPVSY	LKGSSGGPLL	CPSGHVVGVF	RAAVCTRGVA	KAVIDFIPVES
METIMRSPVF	TDNSTPPAVP	QTFQVAHLHA	PTGSGKSTKV	PAAYAAQGYK
VLVLNPSVAA	TLGFGAYMSK	AHGIDPNIRT	GVRTTTTGGS	ITYSTYKGFL
ADGGCGSGGAY	DIICCDECHS	TDSTTILGIG	TVLDQAETAG	ARLWVLATAT
PPGSVTVPHP	NIEEIGLSNN	GEIPFYGKAI	PIEAIKGGRH	LIFCHSKKKC
DELAAKLTGL	GLNAVAYYRG	LDVSVIPPIG	DVVVATDAL	MTGFTGDFDS
VIDCNTCVTQ	TVDFSLLDPTF	TIEITTVQD	AVSRSQLRGR	TGRGRSGIYR
FVTPGERPSG	MFDSSVLCEC	YDAGCAWYEL	TPAETSVR	AYLNTPGLPV
CQDHLEFWES	VFTGLITHIDA	HFLSQTKQAG	INFPLYVAYQ	ATVCARAQAP
PPSWDQMWC	LIRLKPTLHG	PTPLLYRLGA	VQNEVILTHP	ITKYIMACMS
ADLEVVTSTW	VLVGGVLAAL	AAVCLTTGSV	VIVGRIILSG	KPAVVPDREV
LYQEFDEMEE	CASQLPYTEQ	GMQLAEQFKQ	KALGLLQSTAT	KQAEAAAPVV
ESKWRALETIF	WAKHMANFIS	GIQYLAGLST	LPGNPATIASL	MAFTASITSP
LTTQNTILFN	ILGGWVAAQL	APPSAASAFV	GAGIAGAAGV	SIGLGVLVD
ILAGYGAGVA	GALVAFKVM	GEVPSTEDLV	NLLPATLSPG	ALVVGUVCAA
				1900

10	20	30	40	50
<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>
ILRRHVGPG	GAVQWMNRLI	AFASRGNHVS	PIHYVPESDA	AARVIQILSS
LTITQLLKRL	HQWINECDCST	PCSGSWLRDV	WDWICIVLTD	FKIWLQSKILL
PRLPGVPF	LIS CQRGYKGWR	GDGIMQTCP	CGAQIAGHVK	NGSMRIVGPR
TCNSNIWHGT	F PINAYTTGPC	TPSPAPNYSR	ALWRVAAEY	VEVIRVGDFH
YVIGMTTIN	V KCPCQVPAPE	FFTEVDGVRL	HRYAPACKPL	LREDVTFQVG
LNQYLVGSQ	L PCEPEPDVIV	LTSMLTDPSH	ITAETAKRL	ARGSPPSLAS
SSASQLSAPS	LKA	TCTTHHD	SPDADLIEAN	LLWROEMGGN
VILDSEFPLH	EAEILRKSRK	FPSALPIWAR	PDVNPPLLES	2300
WKDPDYVPPV	VHGCPPLPTK	APPPIPPIRK	RIVLITESNV	SSALAEALAIK
TFGSSGSSAV	DSGTATALPD	LASDDGDKGS	DVESYSSMPP	LBGEPGDPDL
SDGSWSTVSE	EASEDWVCCS	MSYTWTGALI	TPCAAEEESKL	PINPLSNLL
RHHNMVYATT	SRSASLRQKK	VIFDRLQVLD	DHYRDVLKEM	KAKASTVKAK
LLSIEEACKL	TPPHSAKSKE	GYGAKDVRNL	SSRAVNHIRS	WEDLLEDTE
TPIDTTIMAK	SEFVCVQPEK	GGRKPARLIV	FPDLGVRVCE	KMALYDWST
LPQAVMGSSY	GFQYSPKQRV	EFLVNIWKS	KCPMGFSYDT	RCFDSTIVTES
DIRVEESTYQ	CCDLAPEARQ	AIRSLITERLY	IGGPLTINSKG	QNOGYRRCRA
SGVLTTSCGN	TLTCYLKATA	ACRAAKLQDC	TMLVNGDDLV	VICESAGTQE
DAAALRAFTE	AMIRYSAPPG	DPPQPEYDLE	LITSCSSNVS	VAHDASGKRV
YYLITRDPTTP	LARAAWETAR	HTPINSWLGN	IIMYAPTLWA	RMILMTYFFS
ILLAQEQLEK	ALDCQTYGAC	YSIEPLDLPQ	IIERIHGLSA	FTLHSYSPGE
INRVASCLRK	LGVPLRLTW	HRARSVRAKL	LSQGGRAATC	GRYLFNWAVR
TKLKLTPIPA	ASQLDLSGW	VAGYSGGDIY	HSLSRARPRW	FPLCLLLL
GVGIYLLENR			SV	3010

SEQUENCE LISTING

<110> Bukh, Jens
Purcell, Robert
Yanagi, Masayuki
Emerson, Suzanne

<120> Infectious cDNA Clone of GB virus B and Uses Thereof

<130> 2026-4308PC

<140> TBA
<141> 2000-06-02

<150> 60/137,694
<151> 1999-06-04

<160> 5

<170> PatentIn Ver. 2.1

<210> 1
<211> 9399
<212> DNA
<213> GBV-B virus

<400> 1

accacaaaaca ctccagtttg ttacactccg ctaggaatgc tcctggagca cccccctag 60
cagggcggtgg gggatttccc ctgccccgtct gcagaagggt ggagccaacc accttagtat 120
gtaggcggtgg cgactcatga cgctcggtgt atgacaagcg ccaagcttga cttggatggc 180
cctgtatgggc gttcatgggt tcgggtgtgg tggcgcttta ggcagectcc acgccccacca 240
cctcccaagat agagcggtgg cactgttaggg aagaccgggg accggtaact accaaggacg 300
cagacctctt ttttagtatac acgcctccgg aagtagttgg gcaagccccac cttatatgtgt 360
tgggatggtt ggggttagcc atccataccg tactgcctga tagggcctt gcgaggggat 420
ctgggagtct ctagaacgtt agcacatgcc tgttatttct actcaaaca gtcctgtacc 480
tgcgcccaga acgcgcaga acaaggcagac gcaggcttca tatcctgtgt ccattaaaac 540
atctgttgaa aggggacaac gagcaaagcg caaatgtccag cgcatgctc ggcctcgtaa 600
ttacaaaatt gctggtatcc atgatggctt gcagacattt gctcaggctg ctttgcac 660
tcatgggtgg ggacgccaag accctcgcca taagtctcg aatctggaa tccttctgg 720
ttaccctttg ggggtggattt gtgtatgtt aactcacaca cctcttagtag gcccgttgt 780
ggcaggagcg gtcgttcgac cagtcgtccca gatagtacgc ttgtctggagg atggagtcaa 840
ctgggctact gttgggttcg gtgtccaccc ttttgggtt gttctgttat ctttggctg 900
tccctgttagt ggggcgcggg tcactgaccc agacacaaat accacaatcc tgaccaattt 960
ctgcccacgt aatcaggtt tctattgttc tccttccact tgcctacacg agcctgggtt 1020
tgtgtatgtt gggacgagt gctgggttcc cgccaaatcc tacatctcac acccttccaa 1080
ttggactggc acggactcc tcttggctga ccacattgtt tttgttatgg ggcctttgtt 1140
gacctgtgac gccccttgaca ttgggtgatgtt gttgtgtgcg tgtgtatttag tcgggtactg 1200
gcttgcagg cactggctta ttccacataga cctcaatgaa actggtaactt gttacctgg 1260

taccgatgca accaccgtgt tgggcattgg aaaggtccta accgaagctc catccaaaaaa 4200
tgtaggcta gtggttcttg ccacggctac cccccctgga gtaatcccta caccacatgc 4260
caacataact gagattcaat taaccgatga aggcactatc cccttcattt gaggctacca aaaaacactg 4320
taaggaggaa aatctgaaga aaggagaca ctttatctt gaggctacca aaaaacactg 4380
tgatgagctt gctaacgagt tagctcgaaa ggaaataaca gctgtctttt actatagggg 4440
atgtgacatc tcaaaaatcc ctgagggcga ctgtgttagta gttgcactg atgccttgt 4500
tacagggta actggtgact ttgattccgt gtatgactgc agcctcatgg tagaaggcac 4560
atgccatgtt gacccatgacc ctacttcac catgggtttt cgtgtgtcg gggtttcagc 4620
aatagttaaa ggccagcgtt gggccgcac aggccgtggg agagctggca tataactacta 4680
tgttagacggg agttgtaccc cttcgggtat gttccctgaa tgcaacattt tgaaagcctt 4740
cgacgcagcc aaggcatggtt atggttgtc atcaacagaa gctcaaacta ttctggacac 4800
ctatcgcacc caacctgggt tacctgcgtt aggagcaat ttggacgagt gggctgtatct 4860
cttttctatg gtcaaccccg aacccattt tgtcaataact gaaaaagaa ctgctgacaa 4920
ttatgtttt tgactgcag cccaactaca actgtgtcat cagtaggtct atgctgctcc 4980
caatgacgca ccacgggtggc agggagcccg gcttgggaaa aaacccctgtg gggttctgtg 5040
gcccggcggc ggcgcgtacg cctgtctgg cccagagccc agcgaggtga ccagatacca 5100
aatgtgcttc actgaagtca atacttctgg gacagccgca ctgcgtgtt ggcgtggagt 5160
ggctatggct tatctagcca ttgacacttt tggcgccact tgggtgcggc gttgctggtc 5220
tattacatca gtcccttaccg gtgctactgt cgccccagtg gttgacgaaag aagaaatcgt 5280
ggaggagtgt gcatcatttca ttcccttggg gccccatgggtt gctgcaattt acaagctgaa 5340
gagtaacaatc accacaacta gtccttcac attggaaacc gcccctgaaa aacttaacac 5400
ctttcttggg cctcatgcag ctacaatccct tgctatcata gagtattgtt gtgggttagt 5460
cactttaccc tacaatccct ttgcatcatg cgtgtttgtt ttcatgtcggtt gtattactac 5520
cccactaccc tacaagatca aaatgttccct gtcatttattt ggaggcgcaa ttgcgtccaa 5580
gcttacagac gctagaggcg cactggcggtt catgtggcc ggggctgcgg gaacagctct 5640
tggtacatgg acatcggtgg gttttgttccct tgacatgcta ggcggctatg ctgcccctc 5700
atccactgct tgcttgacat tttaatgtttt gatgggttag tggccacta tggatcagct 5760
tgctgggttta gtctactccg cgttcaatcc ggcgcaggaa gttgtggcg tcttgcagc 5820
tttgcaatg tttgttttga caacagcagg gccagatcac tggcccaaca gacttcttac 5880
tatgtttgtt aggagcaaca ctgtatgtaa tgagtactttt attgcactc gtgacatccg 5940
caggaagata ctgggcattt tggaggcatc tacccttgg agtgtcatat cagcttgcatt 6000
ccgttggctc cacaccccgaa cggaggatga ttgcggcctc attgcttggg gtcttagagat 6060
ttggcaggat gtgtcaattt tctttgtat ttgctttaat gtccttaaag ctggagttca 6120
gagcatgggtt aacatttccctt gttgtctttt ctacagctgc cagaaggggtt acaaggccc 6180
ctggatttggaa tcaggtatgc tccaaagcacg ctgtccatgc ggtgctgaac tcatttttc 6240
tggtaatgggat gtttttgc aactttacaa aggaccacca acttgcattttaa attactggag 6300
aggggctgtt ccagtcaacg ctaggtgtt ggggtcggtt agaccggacc caactgatttgc 6360
gactagtctt gtcgtcaattt atggcgttagt ggactactgtt aaatatgaga aatgggaga 6420
tcacatccccccat ttttgcgttcc aatgtctgtt ttccatccagg tggcccaac 6480
cttgagagct gcagtggccg tggacggcgat acaggttccatg tggatcttagt gtgagccaa 6540
aactccctgg acgacatctg cttgtgttta cggccatgc ggtaaaggta aactgtttaa 6600
gctcccttcccg cgcgttgacg gtcacacacc tgggtgtcgatc atgcaacttta atttgcgttgc 6660
tgcacttgatg acacatgtt gtaattccac aacaaacact cctagtgtatg aagccgcagt 6720
gtccgcgtt ttttcaaac aggagggttgcg ggttacaaac caatttgcgtt gggcaatttc 6780
agctggcgat gacaccacca aactgcccacg cccctccatc gaagaggtag tggtaagaaa 6840
gcgcacgttcc cggggcaagaa ctgggtcgat taccttgcctt cccctccgaa gatccgtccc 6900
aggagtgtaa tggcctgaaa gcctgcaacg aagtgaccccg ttagaagggtc cttcaaaaccc 6960
ccctccatc ccacccatgttcc tacagggttgcg catgcccattt ccccttggg ggggggttgc 7020

gtgtaaccct ttcactgcaa ttggatgtgc aatgaccgaa acaggcggag gccctgatga 7080
tttacccagt taccctccca aaaaggaggt ctctgaatgg tcagacgaaa gttggtcgac 7140
ggctacaacc gttccagct acgttactgg ccccccgta cctaagatac ggggaaagga 7200
ttccactcag tcagcccccg ccaaacggcc tacaaaaaaag aagttggaa agagttagtt 7260
ttcgtgcagc atgagctaca cctggaccga cgtgattagc ttcaaaactg cttctaaagt 7320
tctgtctgca actcgggcca tcactagtgg tttcctcaaa caaagatcat tggtgtatgt 7380
gactgagccg cgggatgcgg agcttagaaa acaaaaagtc actattaata gacaacctct 7440
gttcccccca tcataaccaca agcaagttag attggctaaag gaaaaagctt caaaagttgt 7500
cggtgtcatg tgggactatg atgaagtagc agctcacacg ccctctaagt ctgctaagtc 7560
ccacatcaact ggccttcggg gcactgatgt tcgttctgga gcagcccgca aggctgttct 7620
ggacttgcag aagtgtgtcg aggcaggtga gataccgagt cattatcgcc aaactgtgat 7680
agttccaaag gaggaggctt tcgtgaagac cccccagaaa ccaacaaaga aaccccaag 7740
gcttatctcg tacccccacc ttgaaatgag atgtgttag aagatgtact acggtcaggt 7800
tgctcctgac gtatgtttaaag ctgtcatggg agatgcgtac gggtttagt atccacgtac 7860
ccgtgtcaag cgtctgttgt cgatgtggc acccgatgca gtcggagcca catgcgatac 7920
agtgtgtttt gacagtagcca tcacacccga ggatatcatg gtggagacag acatctactc 7980
agcagctaaa ctcagtgacc aacaccgagc tggcattcac accattgcga ggcagttata 8040
cgctggagga ccgatgatcg cttatgtatgg ccgagagatc ggatatcgta ggttaggtc 8100
ttccggcgtc tatactacccctt caagttccaa cagtttgacc tgctggctga aggtaaatgc 8160
tgcagccgaa caggctggca tgaagaaccc tcgcttcctt atttgcggcg atgattgcac 8220
cgtaatttgg aagagcgccg gagcagatgc agacaaacaa gcaatgcgtg tctttgctag 8280
ctggatgaag gtgatgggtg caccacaaga ttgtgtgcct caacccaaat acagtttgg 8340
agaattaaca tcatgctcat caaatgttac ctctggaaattt accaaaagtg gcaagcctta 8400
ctactttctt acaagagatc ctctgtatccc ctttggcagg tgctctgccc agggtctggg 8460
atacaacccc agtgcgtcgt ggattgggtt tctaatacat cactacccat gtttgggtt 8520
tagccgtgtg ttggctgtcc atttcatggc gcagatgctc tttgaggaca aacttcccg 8580
gactgtgacc tttgactggtt atggaaaaaa ttatacgggtg cctgtagaag atctgcccag 8640
catcattgtctt ggtgtgcacg gtattgggc tttctcggtg gtgcgtaca ccaacgctga 8700
gatccctcaga gtttcccaat cactaacaga catgaccatg cccccctgc gaggctggcg 8760
aaagaaaagcc agggcggtcc tcgcccagcgc caagaggcgt ggccggagcac acgcaaaatt 8820
ggctcgcttc ttctctgtgc atgctacatc tagacctcta ccagatttgg ataagacgag 8880
cgtggctcgg tacaccactt tcaattattt tgatgtttac tccccggagg gggatgtgtt 8940
tattacacca cagagaagat tgcagaagtt ctttgcgttgaag tattttggctg tcattgtttt 9000
tgccctaggg ctcattgtcg ttggattagc catcagctga acccccaaat tcaaaaattaa 9060
ctaacagttt tttttttttt tttttttttt agggcagcgg caacagggga gaccccgggc 9120
ttaacgaccc cgccgatgtg agtttggcga ccatggtgga tcagaaccgt ttgggtgaa 9180
gccatggctt gaaggggatg acgtcccttc tggctcatcc acaaaaacccg tctcgggtgg 9240
gtgaggagtc ctggctgtgtt gggaaagcgt cagtataatt cccgtcgtgt gtgggtacgc 9300
ctcacgacgt atttgcggcc tgcagagc gtatgtacca gggctgcacc ccggttttt 9360
ttccaagcgg agggcaaccc ccgcttggaa taaaaaactt 9399

<210> 2
<211> 2864
<212> PRT
<213> GBV-B virus

<400> 2

Met Pro Val Ile Ser Thr Gln Thr Ser Pro Val Pro Ala Pro Arg Thr
1 5 10 15

Arg Lys Asn Lys Gln Thr Gln Ala Ser Tyr Pro Val Ser Ile Lys Thr
20 25 30

Ser Val Glu Arg Gly Gln Arg Ala Lys Arg Lys Val Gln Arg Asp Ala
35 40 45

Arg Pro Arg Asn Tyr Lys Ile Ala Gly Ile His Asp Gly Leu Gln Thr
50 55 60

Leu Ala Gln Ala Ala Leu Pro Ala His Gly Trp Gly Arg Gln Asp Pro
65 70 75 80

Arg His Lys Ser Arg Asn Leu Gly Ile Leu Leu Asp Tyr Pro Leu Gly
85 90 95

Trp Ile Gly Asp Val Thr Thr His Thr Pro Leu Val Gly Pro Leu Val
100 105 110

Ala Gly Ala Val Val Arg Pro Val Cys Gln Ile Val Arg Leu Leu Glu
115 120 125

Asp Gly Val Asn Trp Ala Thr Gly Trp Phe Gly Val His Leu Phe Val
130 135 140

Val Cys Leu Leu Ser Leu Ala Cys Pro Cys Ser Gly Ala Arg Val Thr
145 150 155 160

Asp Pro Asp Thr Asn Thr Ile Leu Thr Asn Cys Cys Gln Arg Asn
165 170 175

Gln Val Ile Tyr Cys Ser Pro Ser Thr Cys Leu His Glu Pro Gly Cys
180 185 190

Val Ile Cys Ala Asp Glu Cys Trp Val Pro Ala Asn Pro Tyr Ile Ser
195 200 205

His Pro Ser Asn Trp Thr Gly Thr Asp Ser Phe Leu Ala Asp His Ile
210 215 220

Asp Phe Val Met Gly Ala Leu Val Thr Cys Asp Ala Leu Asp Ile Gly
225 230 235 240

Glu Leu Cys Gly Ala Cys Val Leu Val Gly Asp Trp Leu Val Arg His
245 250 255

Trp Leu Ile His Ile Asp Leu Asn Glu Thr Gly Thr Cys Tyr Leu Glu
260 265 270

Val Pro Thr Gly Ile Asp Pro Gly Phe Leu Gly Phe Ile Gly Trp Met
275 280 285

Ala Gly Lys Val Glu Ala Val Ile Phe Leu Thr Lys Leu Ala Ser Gln
290 295 300

Val Pro Tyr Ala Ile Ala Thr Met Phe Ser Ser Val His Tyr Leu Ala
305 310 315 320

Val Gly Ala Leu Ile Tyr Tyr Ala Ser Arg Gly Lys Trp Tyr Gln Leu
325 330 335

Leu Leu Ala Leu Met Leu Tyr Ile Glu Ala Thr Ser Gly Asn Pro Ile
340 345 350

Arg Val Pro Thr Gly Cys Ser Ile Ala Glu Phe Cys Ser Pro Leu Met
355 360 365

Ile Pro Cys Pro Cys His Ser Tyr Leu Ser Glu Asn Val Ser Glu Val
370 375 380

Ile Cys Tyr Ser Pro Lys Trp Thr Arg Pro Ile Thr Leu Glu Tyr Asn
385 390 395 400

Asn Ser Ile Ser Trp Tyr Pro Tyr Thr Ile Pro Gly Ala Arg Gly Cys
405 410 415

Met Val Lys Phe Lys Asn Asn Thr Trp Gly Cys Cys Arg Ile Arg Asn
420 425 430

Val Pro Ser Tyr Cys Thr Met Gly Thr Asp Ala Val Trp Asn Asp Thr
435 440 445

Arg Asn Thr Tyr Glu Ala Cys Gly Val Thr Pro Trp Leu Thr Thr Ala
450 455 460

Trp His Asn Gly Ser Ala Leu Lys Leu Ala Ile Leu Gln Tyr Pro Gly
465 470 475 480

Ser Lys Glu Met Phe Lys Pro His Asn Trp Met Ser Gly His Leu Tyr
485 490 495

Phe Glu Gly Ser Asp Thr Pro Ile Val Tyr Phe Tyr Asp Pro Val Asn
500 505 510

Ser Thr Leu Leu Pro Pro Glu Arg Trp Ala Arg Leu Pro Gly Thr Pro
515 520 525

Pro Val Val Arg Gly Ser Trp Leu Gln Val Pro Gln Gly Phe Tyr Ser
530 535 540

Asp Val Lys Asp Leu Ala Thr Gly Leu Ile Thr Lys Asp Lys Ala Trp
545 550 555 560

Lys Asn Tyr Gln Val Leu Tyr Ser Ala Thr Gly Ala Leu Ser Leu Thr
565 570 575

Gly Val Thr Thr Lys Ala Val Val Leu Ile Leu Leu Gly Leu Cys Gly
580 585 590

Ser Lys Tyr Leu Ile Leu Ala Tyr Leu Cys Tyr Leu Ser Leu Cys Phe
595 600 605

Gly Arg Ala Ser Gly Tyr Pro Leu Arg Pro Val Leu Pro Ser Gln Ser
610 615 620

Tyr Leu Gln Ala Gly Trp Asp Val Leu Ser Lys Ala Gln Val Ala Pro
625 630 635 640

Phe Ala Leu Ile Phe Phe Ile Cys Cys Tyr Leu Arg Cys Arg Leu Arg
645 650 655

Tyr Ala Ala Leu Leu Gly Phe Val Pro Met Ala Ala Gly Leu Pro Leu
660 665 670

Thr Phe Phe Val Ala Ala Ala Ala Gln Pro Asp Tyr Asp Trp Trp
675 680 685

Val Arg Leu Leu Val Ala Gly Leu Val Leu Trp Ala Gly Arg Asn Arg
690 695 700

Gly His Arg Ile Ala Leu Leu Val Gly Pro Trp Pro Leu Val Ala Leu
705 710 715 720

Leu Thr Leu Leu His Leu Val Thr Pro Ala Ser Ala Phe Asp Thr Glu
725 730 735

Ile Ile Gly Gly Leu Thr Ile Pro Pro Val Val Ala Leu Val Val Met
740 745 750

Ser Arg Phe Gly Phe Phe Ala His Leu Leu Pro Arg Cys Ala Leu Val
755 760 765

Asn Ser Tyr Leu Trp Gln Arg Trp Glu Asn Trp Phe Trp Asn Val Thr
770 775 780

Leu Arg Pro Glu Arg Phe Phe Leu Val Leu Val Cys Phe Pro Gly Ala
785 790 795 800

Thr Tyr Asp Ala Leu Val Thr Phe Cys Val Cys His Val Ala Leu Leu
805 810 815

Cys Leu Thr Ser Ser Ala Ala Ser Phe Phe Gly Thr Asp Ser Arg Val
820 825 830

Arg Ala His Arg Met Leu Val Arg Leu Gly Lys Cys His Ala Trp Tyr
835 840 845

Ser His Tyr Val Leu Lys Phe Phe Leu Leu Val Phe Gly Glu Asn Gly
850 855 860

Val Phe Phe Tyr Lys His Leu His Gly Asp Val Leu Pro Asn Asp Phe
865 870 875 880

Ala Ser Lys Leu Pro Leu Gln Glu Pro Phe Phe Pro Phe Glu Gly Lys
885 890 895

Ala Arg Val Tyr Arg Asn Glu Gly Arg Arg Leu Ala Cys Gly Asp Thr
900 905 910

Val Asp Gly Leu Pro Val Val Ala Arg Leu Gly Asp Leu Val Phe Ala
915 920 925

Gly Leu Ala Met Pro Pro Asp Gly Trp Ala Ile Thr Ala Pro Phe Thr
930 935 940

Leu Gln Cys Leu Ser Glu Arg Gly Thr Leu Ser Ala Met Ala Val Val
945 950 955 960

Met Thr Gly Ile Asp Pro Arg Thr Trp Thr Gly Thr Ile Phe Arg Leu
965 970 975

Gly Ser Leu Ala Thr Ser Tyr Met Gly Phe Val Cys Asp Asn Val Leu
980 985 990

Tyr Thr Ala His His Gly Ser Lys Gly Arg Arg Leu Ala His Pro Thr
995 1000 1005

Gly Ser Ile His Pro Ile Thr Val Asp Ala Ala Asn Asp Gln Asp Ile
1010 1015 1020

Tyr Gln Pro Pro Cys Gly Ala Gly Ser Leu Thr Arg Cys Ser Cys Gly
1025 1030 1035 1040

Glu Thr Lys Gly Tyr Leu Val Thr Arg Leu Gly Ser Leu Val Glu Val
1045 1050 1055

Asn Lys Ser Asp Asp Pro Tyr Trp Cys Val Cys Gly Ala Leu Pro Met
1060 1065 1070

Ala Val Ala Lys Gly Ser Ser Gly Ala Pro Ile Leu Cys Ser Ser Gly
1075 1080 1085

His Val Ile Gly Met Phe Thr Ala Ala Arg Asn Ser Gly Gly Ser Val
1090 1095 1100

Ser Gln Ile Arg Val Arg Pro Leu Val Cys Ala Gly Tyr His Pro Gln
1105 1110 1115 1120

Tyr Thr Ala His Ala Thr Leu Asp Thr Lys Pro Thr Val Pro Asn Glu
1125 1130 1135

Tyr Ser Val Gln Ile Leu Ile Ala Pro Thr Gly Ser Gly Lys Ser Thr
1140 1145 1150

Lys Leu Pro Leu Ser Tyr Met Gln Glu Lys Tyr Glu Val Leu Val Leu
1155 1160 1165

Asn Pro Ser Val Ala Thr Thr Ala Ser Met Pro Lys Tyr Met His Ala
1170 1175 1180

Thr Tyr Gly Val Asn Pro Asn Cys Tyr Phe Asn Gly Lys Cys Thr Asn
1185 1190 1195 1200

Thr Gly Ala Ser Leu Thr Tyr Ser Thr Tyr Gly Met Tyr Leu Thr Gly
1205 1210 1215

Ala Cys Ser Arg Asn Tyr Asp Val Ile Ile Cys Asp Glu Cys His Ala
1220 1225 1230

Thr Asp Ala Thr Thr Val Leu Gly Ile Gly Lys Val Leu Thr Glu Ala
1235 1240 1245

Pro Ser Lys Asn Val Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro
1250 1255 1260

Gly Val Ile Pro Thr Pro His Ala Asn Ile Thr Glu Ile Gln Leu Thr
1265 1270 1275 1280

Asp Glu Gly Thr Ile Pro Phe His Gly Lys Lys Ile Lys Glu Glu Asn
1285 1290 1295

Leu Lys Lys Gly Arg His Leu Ile Phe Glu Ala Thr Lys Lys His Cys
1300 1305 1310

Asp Glu Leu Ala Asn Glu Leu Ala Arg Lys Gly Ile Thr Ala Val Ser
1315 1320 1325

Tyr Tyr Arg Gly Cys Asp Ile Ser Lys Ile Pro Glu Gly Asp Cys Val
1330 1335 1340

Val Val Ala Thr Asp Ala Leu Cys Thr Gly Tyr Thr Gly Asp Phe Asp
1345 1350 1355 1360

Ser Val Tyr Asp Cys Ser Leu Met Val Glu Gly Thr Cys His Val Asp
1365 1370 1375

Leu Asp Pro Thr Phe Thr Met Gly Val Arg Val Cys Gly Val Ser Ala
1380 1385 1390

Ile Val Lys Gly Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Ala Gly
1395 1400 1405

Ile Tyr Tyr Tyr Val Asp Gly Ser Cys Thr Pro Ser Gly Met Val Pro
1410 1415 1420

Glu Cys Asn Ile Val Glu Ala Phe Asp Ala Ala Lys Ala Trp Tyr Gly
1425 1430 1435 1440

Leu Ser Ser Thr Glu Ala Gln Thr Ile Leu Asp Thr Tyr Arg Thr Gln
1445 1450 1455

Pro Gly Leu Pro Ala Ile Gly Ala Asn Leu Asp Glu Trp Ala Asp Leu
1460 1465 1470

Phe Ser Met Val Asn Pro Glu Pro Ser Phe Val Asn Thr Ala Lys Arg
1475 1480 1485

Thr Ala Asp Asn Tyr Val Leu Leu Thr Ala Ala Gln Leu Gln Leu Cys
1490 1495 1500

His Gln Tyr Gly Tyr Ala Ala Pro Asn Asp Ala Pro Arg Trp Gln Gly
1505 1510 1515 1520

Ala Arg Leu Gly Lys Lys Pro Cys Gly Val Leu Trp Arg Leu Asp Gly
1525 1530 1535

Ala Asp Ala Cys Pro Gly Pro Glu Pro Ser Glu Val Thr Arg Tyr Gln
1540 1545 1550

Met Cys Phe Thr Glu Val Asn Thr Ser Gly Thr Ala Ala Leu Ala Val
1555 1560 1565

Gly Val Gly Val Ala Met Ala Tyr Leu Ala Ile Asp Thr Phe Gly Ala
1570 1575 1580

Thr Cys Val Arg Arg Cys Trp Ser Ile Thr Ser Val Pro Thr Gly Ala
1585 1590 1595 1600

Thr Val Ala Pro Val Val Asp Glu Glu Glu Ile Val Glu Glu Cys Ala
1605 1610 1615

Ser Phe Ile Pro Leu Glu Ala Met Val Ala Ala Ile Asp Lys Leu Lys
1620 1625 1630

Ser Thr Ile Thr Thr Ser Pro Phe Thr Leu Glu Thr Ala Leu Glu
1635 1640 1645

Lys Leu Asn Thr Phe Leu Gly Pro His Ala Ala Thr Ile Leu Ala Ile
1650 1655 1660

Ile Glu Tyr Cys Cys Gly Leu Val Thr Leu Pro Asp Asn Pro Phe Ala
1665 1670 1675 1680

Ser Cys Val Phe Ala Phe Ile Ala Gly Ile Thr Thr Pro Leu Pro His
1685 1690 1695

Lys Ile Lys Met Phe Leu Ser Leu Phe Gly Gly Ala Ile Ala Ser Lys
1700 1705 1710

Leu Thr Asp Ala Arg Gly Ala Leu Ala Phe Met Met Ala Gly Ala Ala
1715 1720 1725

Gly Thr Ala Leu Gly Thr Trp Thr Ser Val Gly Phe Val Phe Asp Met
1730 1735 1740

Leu Gly Gly Tyr Ala Ala Ala Ser Ser Thr Ala Cys Leu Thr Phe Lys
1745 1750 1755 1760

Cys Leu Met Gly Glu Trp Pro Thr Met Asp Gln Leu Ala Gly Leu Val
1765 1770 1775

Tyr Ser Ala Phe Asn Pro Ala Ala Gly Val Val Gly Val Leu Ser Ala
1780 1785 1790

Cys Ala Met Phe Ala Leu Thr Thr Ala Gly Pro Asp His Trp Pro Asn
1795 1800 1805

Arg Leu Leu Thr Met Leu Ala Arg Ser Asn Thr Val Cys Asn Glu Tyr
1810 1815 1820

Phe Ile Ala Thr Arg Asp Ile Arg Arg Lys Ile Leu Gly Ile Leu Glu
1825 1830 1835 1840

Ala Ser Thr Pro Trp Ser Val Ile Ser Ala Cys Ile Arg Trp Leu His
1845 1850 1855

Thr Pro Thr Glu Asp Asp Cys Gly Leu Ile Ala Trp Gly Leu Glu Ile
1860 1865 1870

Trp Gln Tyr Val Cys Asn Phe Phe Val Ile Cys Phe Asn Val Leu Lys
1875 1880 1885

Ala Gly Val Gln Ser Met Val Asn Ile Pro Gly Cys Pro Phe Tyr Ser
1890 1895 1900

Cys Gln Lys Gly Tyr Lys Gly Pro Trp Ile Gly Ser Gly Met Leu Gln
1905 1910 1915 1920

Ala Arg Cys Pro Cys Gly Ala Glu Leu Ile Phe Ser Val Glu Asn Gly
1925 1930 1935

Phe Ala Lys Leu Tyr Lys Gly Pro Arg Thr Cys Ser Asn Tyr Trp Arg
1940 1945 1950

Gly Ala Val Pro Val Asn Ala Arg Leu Cys Gly Ser Ala Arg Pro Asp
1955 1960 1965

Pro Thr Asp Trp Thr Ser Leu Val Val Asn Tyr Gly Val Arg Asp Tyr
1970 1975 1980

Cys Lys Tyr Glu Lys Met Gly Asp His Ile Phe Val Thr Ala Val Ser
1985 1990 1995 2000

Ser Pro Asn Val Cys Phe Thr Gln Val Pro Pro Thr Leu Arg Ala Ala
2005 2010 2015

Val Ala Val Asp Gly Val Gln Val Gln Cys Tyr Leu Gly Glu Pro Lys
2020 2025 2030

Thr Pro Trp Thr Thr Ser Ala Cys Cys Tyr Gly Pro Asp Gly Lys Gly
2035 2040 2045

Lys Thr Val Lys Leu Pro Phe Arg Val Asp Gly His Thr Pro Gly Val
2050 2055 2060

Arg Met Gln Leu Asn Leu Arg Asp Ala Leu Glu Thr Asn Asp Cys Asn
2065 2070 2075 2080

Ser Thr Asn Asn Thr Pro Ser Asp Glu Ala Ala Val Ser Ala Leu Val
2085 2090 2095

Phe Lys Gln Glu Leu Arg Arg Thr Asn Gln Leu Leu Glu Ala Ile Ser
2100 2105 2110

Ala Gly Val Asp Thr Thr Lys Leu Pro Ala Pro Ser Ile Glu Glu Val
2115 2120 2125

Val Val Arg Lys Arg Gln Phe Arg Ala Arg Thr Gly Ser Leu Thr Leu
2130 2135 2140

Pro Pro Pro Pro Arg Ser Val Pro Gly Val Ser Cys Pro Glu Ser Leu
2145 2150 2155 2160

Gln Arg Ser Asp Pro Leu Glu Gly Pro Ser Asn Leu Pro Pro Ser Pro
2165 2170 2175

Pro Val Leu Gln Leu Ala Met Pro Met Pro Leu Leu Gly Ala Gly Glu
2180 2185 2190

Cys Asn Pro Phe Thr Ala Ile Gly Cys Ala Met Thr Glu Thr Gly Gly
2195 2200 2205

Gly Pro Asp Asp Leu Pro Ser Tyr Pro Pro Lys Lys Glu Val Ser Glu
2210 2215 2220

Trp Ser Asp Glu Ser Trp Ser Thr Ala Thr Thr Ala Ser Ser Tyr Val
2225 2230 2235 2240

Thr Gly Pro Pro Tyr Pro Lys Ile Arg Gly Lys Asp Ser Thr Gln Ser
2245 2250 2255

Ala Pro Ala Lys Arg Pro Thr Lys Lys Lys Leu Gly Lys Ser Glu Phe
2260 2265 2270

Ser Cys Ser Met Ser Tyr Thr Trp Thr Asp Val Ile Ser Phe Lys Thr
2275 2280 2285

Ala Ser Lys Val Leu Ser Ala Thr Arg Ala Ile Thr Ser Gly Phe Leu
2290 2295 2300

Lys Gln Arg Ser Leu Val Tyr Val Thr Glu Pro Arg Asp Ala Glu Leu
2305 2310 2315 2320

Arg Lys Gln Lys Val Thr Ile Asn Arg Gln Pro Leu Phe Pro Pro Ser
2325 2330 2335

Tyr His Lys Gln Val Arg Leu Ala Lys Glu Lys Ala Ser Lys Val Val
2340 2345 2350

Gly Val Met Trp Asp Tyr Asp Glu Val Ala Ala His Thr Pro Ser Lys
2355 2360 2365

Ser Ala Lys Ser His Ile Thr Gly Leu Arg Gly Thr Asp Val Arg Ser
2370 2375 2380

Gly Ala Ala Arg Lys Ala Val Leu Asp Leu Gln Lys Cys Val Glu Ala
2385 2390 2395 2400

Gly Glu Ile Pro Ser His Tyr Arg Gln Thr Val Ile Val Pro Lys Glu
2405 2410 2415

Glu Val Phe Val Lys Thr Pro Gln Lys Pro Thr Lys Lys Pro Pro Arg
2420 2425 2430

Leu Ile Ser Tyr Pro His Leu Glu Met Arg Cys Val Glu Lys Met Tyr
2435 2440 2445

Tyr Gly Gln Val Ala Pro Asp Val Val Lys Ala Val Met Gly Asp Ala
2450 2455 2460

Tyr Gly Phe Val Asp Pro Arg Thr Arg Val Lys Arg Leu Leu Ser Met
2465 2470 2475 2480

Trp Ser Pro Asp Ala Val Gly Ala Thr Cys Asp Thr Val Cys Phe Asp
2485 2490 2495

Ser Thr Ile Thr Pro Glu Asp Ile Met Val Glu Thr Asp Ile Tyr Ser
2500 2505 2510

Ala Ala Lys Leu Ser Asp Gln His Arg Ala Gly Ile His Thr Ile Ala
2515 2520 2525

Arg Gln Leu Tyr Ala Gly Gly Pro Met Ile Ala Tyr Asp Gly Arg Glu
2530 2535 2540

Ile Gly Tyr Arg Arg Cys Arg Ser Ser Gly Val Tyr Thr Thr Ser Ser
2545 2550 2555 2560

Ser Asn Ser Leu Thr Cys Trp Leu Lys Val Asn Ala Ala Ala Glu Gln
2565 2570 2575

Ala Gly Met Lys Asn Pro Arg Phe Leu Ile Cys Gly Asp Asp Cys Thr
2580 2585 2590

Val Ile Trp Lys Ser Ala Gly Ala Asp Ala Asp Lys Gln Ala Met Arg
2595 2600 2605

Val Phe Ala Ser Trp Met Lys Val Met Gly Ala Pro Gln Asp Cys Val
2610 2615 2620

Pro Gln Pro Lys Tyr Ser Leu Glu Glu Leu Thr Ser Cys Ser Ser Asn
2625 2630 2635 2640

Val Thr Ser Gly Ile Thr Lys Ser Gly Lys Pro Tyr Tyr Phe Leu Thr
2645 2650 2655

Arg Asp Pro Arg Ile Pro Leu Gly Arg Cys Ser Ala Glu Gly Leu Gly
2660 2665 2670

Tyr Asn Pro Ser Ala Ala Trp Ile Gly Tyr Leu Ile His His Tyr Pro
2675 2680 2685

Cys Leu Trp Val Ser Arg Val Leu Ala Val His Phe Met Glu Gln Met
2690 2695 2700

Leu Phe Glu Asp Lys Leu Pro Glu Thr Val Thr Phe Asp Trp Tyr Gly
2705 2710 2715 2720

Lys Asn Tyr Thr Val Pro Val Glu Asp Leu Pro Ser Ile Ile Ala Gly
2725 2730 2735

Val His Gly Ile Glu Ala Phe Ser Val Val Arg Tyr Thr Asn Ala Glu
2740 2745 2750

Ile Leu Arg Val Ser Gln Ser Leu Thr Asp Met Thr Met Pro Pro Leu
2755 2760 2765

Arg Ala Trp Arg Lys Lys Ala Arg Ala Val Leu Ala Ser Ala Lys Arg
2770 2775 2780

Arg Gly Gly Ala His Ala Lys Leu Ala Arg Phe Leu Leu Trp His Ala
2785 2790 2795 2800

Thr Ser Arg Pro Leu Pro Asp Leu Asp Lys Thr Ser Val Ala Arg Tyr
2805 2810 2815

Thr Thr Phe Asn Tyr Cys Asp Val Tyr Ser Pro Glu Gly Asp Val Phe
 2820 2825 2830

Ile Thr Pro Gln Arg Arg Leu Gln Lys Phe Leu Val Lys Tyr Leu Ala
 2835 2840 2845

Val Ile Val Phe Ala Leu Gly Leu Ile Ala Val Gly Leu Ala Ile Ser
 2850 2855 2860

<210> 3
<211> 9139
<212> DNA
<213> GBV-B virus

<400> 3
accacaaaca ctccagtttgc ttacactccg ctaggaatgc tcctggagca ccccccttag 60
cagggcggtgg gggatttccc ctgccccgtct gcagaagggt ggagccaacc accttagtat 120
gtaggcgccgg ggaactcatga cgctcgcgtg atgacaagcg ccaagcttga cttggatggc 180
cctgatgggc gttcatgggt tcgggtgg tggcgcttta ggcagcctcc acgcccacca 240
cctcccaagat agagcggcgg cactgttaggg aagaccgggg accggtaact accaaggacg 300
cagacctctt tttgagtatc acgcctccgg aagttagttgg gcaagcccc acstatatgtgt 360
tggatgggtt ggggttagcc atccataccg tactgcctga tagggtcctt gcgagggat 420
ctgggagtct cgtagaccgt agcacatgcc tgtagtttct actcaaacaa gtcctgtacc 480
tgcgcggcaga acgcgcaga acaagcagac gcaggcttca tatcctgtgt ccattaaaac 540
atctgttcaa aggggacaac gagcaaagcg caaagtccag cgcgtatgc ggcctcgtaa 600
ttacaaaatt gctgttatcc atgtggctt gcagacattt gctcaggctg ctttgccagc 660
tcatgggtgg gacgcggcaag accctcgcca taagtctcg aatctggaa tccttctgg 720
ttaccctttg ggggtggattt gtgtatgtt aactcacaca cctcttagtag gcccgttgtt 780
ggcaggagcg gtcgttgcac cagtctgcca gatagtagc ttgctggagg atggagtcaa 840
ctgggctact ggttggttcg gtgtccacct ttttgggtt gttctgttat ctttggcctg 900
tccctgttagt ggggcgcggg tcaactgaccc agacacaaat accacaatcc tgaccaattt 960
ctgcacgcgt aatcaggatc tctatgttc tccttccact tgcctacacg agcctggttt 1020
tgtgatctgt gcggacgagt gctgggttcc cgccaatccg tacatctcac acccttccaa 1080
ttggactggc acggactcc tcttggctga ccacattgtat tttgttatgg ggcgttctgt 1140
gacctgtgac gcccggaca ttgggtgagtt gtgtgggtcg tttgtttagtag tcgggtactg 1200
gcttgcagg cactggcttta ttccataga cctcaatgaa actggtactt gttacctgg 1260
agtgcggact ggaatagatc ctgggttccctt agggtttac ggggtggatgg ccggcaagg 1320
cgaggctgtc atcttcttgc ccaaactggc ttcacaaggta ccatacgcta ttgcgtactat 1380
gtttagcagt gtacactacc tggcggttgg cgctctgatc tactatgcct ctcggggcaa 1440
gtggatctatcg ttgctccttag cgctttagtgc ttacatagaaa ggcacatctg gaaaccccat 1500
cagggtggcc actggatgtt caatagctga gtttgcgtcg ctttggatga taccatgtcc 1560
ttgcctactt tatttggatgtt agaatgtgtc agaagtcatt ttttacatgtc caaagtggac 1620
caggcctatc actcttagatg ataacaactc catatcttgg taccctata caatccctgg 1680
tgcgaggggaa tttatggta aattcaaaaa taacacatgg ggttgcgttcc gtattcgcaa 1740

tgtgccatcg tactgcacta tgggcaactga tgcagtgtgg aacgacactc gcaacactta 1800
cgaagcatgc ggtgtaaacac catggctaac aaccgcattt cacaacggct cagccctgaa 1860
attggctata ttacaataacc ctgggtctaa agaaatgttt aaacccata attggatgtc 1920
aggccatttg tattttgagg gatcagatac ccctatacgat tactttatg accctgtgaa 1980
ttccactctc ctaccacccg agaggtgggc tagggtgccc ggtacccac ctgtggtagc 2040
tggttttgg ttacaggttc cgcaagggtt ttacagtgtat gtgaaagacc tagccacagg 2100
attgatcacc aaagacaaag cctggaaaaa ttatcagggtc ttatattccg ccacgggtgc 2160
tttgcgtctt acgggagttt ccaccaaggc cgtggtgcta attctgttgg ggttgtgtgg 2220
cagcaagtat cttatTTAG CCTACCTCTG TTACTTGTCC CTTTGTGG GGCACGCTTC 2280
tggttaccct ttgcgtctg tgctccatc ccagtcgtat ctccaagctg gctggatgt 2340
tttgcgtctt aactttttgc ttgattttc ttcatctgtt gctatctccg 2400
ctgcaggcta cgttatgctg cccttttagg gtttgtgccc atggctgcgg gcttgcctc 2460
aactttttt gttgcagcag ctgctgcaccc accagattat gactgggtgg tgctgactgct 2520
agtggcaggg ttagtttgg gggccggccg taaccgtggt caccgcatac ctctgttgg 2580
aggccttgg cctctggtag cgctttaac cctcttgcatttggatcgctc ctgttgcggc 2640
ttttgatacc gagataattt gagggtgtac aataccaccc gtagtagcat tagttgtcat 2700
gtctcgatcc ggcttctttt ctcacttgcatttggatcgctg gcttagtta actcctatct 2760
ttggcaacgt tgggagaatt ggtttggaa cgtttacacta agacccggaga ggttttccct 2820
tgtgcgtgtt tgtttccccg gtgcacata tgacgcgtg gtgactttct gtgtgtgtca 2880
cgtagctttt ctatgtttaa catccagtgc agcatcgatc tttggactg actcttaggg 2940
tagggcccat agaatgttgg tgcgtctcgaa aagatgtcat gcttggattt ctcattatgt 3000
tcttaagttt ttcccttttag tgtttggtaa gaatgggtgtt ttttctata agcacttgca 3060
tggtgatgtc ttgcctaatttgcatttggatcgctg gaaactacca ttgcaagagc cattttccct 3120
ttttgaaggc aaggcaaggg tctataggaa tgaaggaaga cgcttggcgt gtggggacac 3180
ggttgatggt ttgcgtcttgcatttggatcgctg cggcgaccc ttgttgcgtg ggttggctat 3240
gccggccagat gggtggccca ttaccgcacc ttttgcgtg cagttgtctt ctgaacgtgg 3300
cacgctgtca gcgttggcgt tggatcgatc tggatagac ccccaactt ggactggaaac 3360
tatcttcaga tttagatctc tggccacttag ctacatggga ttgttgcgtt acaacgtgtt 3420
gtataactgtt caccatggca gcaagggggc cccgttggctt catccacag gctctataaca 3480
cccaataacc gttgacgggg ctaatgttgcatttggatcgctg ggttggcgtt 3540
gtcccttact cgggtgttttgcatttggatcgctg cggggggatctt ctgttgcgtt 3600
attgggttgcatttggatcgctg ggttggcgtt cccgttgcatttggatcgctg 3660
ggctgttgcatttggatcgctg cgggttggccca ttaccgcacc ttttgcgtg cagttgtctt 3720
gtatgttgcatttggatcgctg cgggttggccca ttaccgcacc ttttgcgtg cagttgtctt 3780
gggtgtgtcttggatcgctg cgggttggccca ttaccgcacc ttttgcgtg cagttgtctt 3840
tgtgcctaacc ggttggcgtt cccgttgcatttggatcgctg cgggttggccca ttaccgcacc 3900
caaattacca ctttcttaca tggatcgatc tggatcgatc tggatcgatc tggatcgatc 3960
ggctacaaca gcatcaatgc caaagtacat gcacgcgtac tacggcgtga atccaaattt 4020
ctatTTTAAT ggcaaatgtt gcaacacagg ggcttgcatttggatcgctg cgggttggccca ttaccgcacc 4080
gtacctgacc ggacatgtt cccgttgcatttggatcgctg cgggttggccca ttaccgcacc 4140
taccgtatgc accaccgtgtt tggatcgatc tggatcgatc tggatcgatc tggatcgatc 4200
tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc 4260
caacataact gagattcaat taaccgtatgc tggatcgatc tggatcgatc tggatcgatc 4320
taaggaggaa aatctgttgcatttggatcgctg cccgttgcatttggatcgctg cgggttggccca ttaccgcacc 4380
tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc 4440
atgtgacatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc tggatcgatc 4500
tacagggtac actgggtact tggatcgatc tggatcgatc tggatcgatc tggatcgatc 4560
atgcctatgtt gacccatgtt gacccatgtt gacccatgtt gacccatgtt gacccatgtt 4620

aatagttaaa ggccagcgta gggccgcac aggccgtggg agagctggca tatactacta 4680
 tgttagacggg agttgtaccc ctccggtat gttccctgaa tgcaacattt ttgaaggcctt 4740
 cgacgcagcc aaggcatggt atgggttgtc atcaacagaaa gctcaaacta ttctggacac 4800
 ctatcgacc caacctgggt tacctgcgtt aggagcaat ttggacgagt gggctgatct 4860
 cttttctatg gtcaaccccg aacccattt tgtcaatact gcaaaaaagaa ctgctgacaa 4920
 ttatgtttt gtagactgcag cccaaactaca actgtgtcat cagtaggct atgctgtcc 4980
 caatgacgca ccacggtggc agggagcccg gcttggaaa aaaccttggc gggttctgtg 5040
 gcgcttggac ggcgctgacg cctgtctgg cccagagccc agcgaggtga ccagatacca 5100
 aatgtgttc actgaagtca atactctgg gacagccgca ctcgcgttg gcgttggagt 5160
 ggctatggct tatctagcca ttgacacttt tggcccaact tgtgtgcggc gttgctggc 5220
 tattacatca gtccttaccc gtgctactgt cgccccagtg gttgacgaaag aagaaatcgt 5280
 ggaggagtgt gcatcattca ttcccttggg ggcattgtt gctgcaattt acaagctgaa 5340
 gagtacaatc accacaacta gtccttcac attggaaacc gccctgaaa aacttaaacac 5400
 ctttcttggg cctcatgcag ctacaatcct tgctatcata gagtattgt gtggtttagt 5460
 cactttaccc gacaatccct ttgcatcatg cgtgtttgtt ttcattgcgg gtattactac 5520
 cccactaccc cacaagatca aaatgttccct gtcattattt ggaggcgcaa ttgcgtccaa 5580
 gcttacagac gctagaggcg cactggcggtt catgatggcc ggggctgcgg gaacagctct 5640
 tggatcatgg acatcggtgg gttttgtctt tgacatgcta ggcggctatg ctggcccttc 5700
 atccactgct tgcttgacat ttaaatgctt gatgggttag tggcccaacta tggatcagct 5760
 tgctggttt gtcactccg cttcaatcc ggcggcagga gttgtggcg tcttgtcagc 5820
 ttgtgcaatg tttgttttga caacagcagg gccagatcac tggcccaaca gacttcttac 5880
 tatgcttgct aggagcaaca ctgtatgtaa tgtagtacttt attgccactc gtgacatccg 5940
 caggaagata ctgggcattt tggaggcattc tacccttgg agtgtcatat cagcttgcatt 6000
 ccgttggctc cacaccccgaa cggaggatga ttgcggcctc attgcttggg gtcttagagat 6060
 ttggcagtat gtgtgcaatt tctttgtat ttgcttaat gtccttaaag ctggagttca 6120
 gagcatggtt aacatttctg gttgtccctt ctacagctgc cagaagggtt acaagggccc 6180
 ctggatttggaa tcaggtatgc tccaaggcacg ctgtccatgc ggtgctgaac tcatcttttc 6240
 tgttgagaat gttttgtcaa aactttacaa aggaccaga acttggtaa attactggag 6300
 aggggctgtt ccagtcaacg ctaggctgtg tgggtcggtt agaccggacc caactgattt 6360
 gactagtctt gtcgtcaattt atggcgttag ggactactgt aaatatgaga aaatggaga 6420
 tcacatcccc ttacagcag tatcccttc aatgtctgt ttcaccagg tgcccccaac 6480
 cttgagagct gcagtggccg tggacggcgat acaggttcag ttttatctag gtgagcccaa 6540
 aactccctgg acgacatctg cttgtgtta cggtcctgac ggttaaggta aaactgttaa 6600
 gttcccttc cgcgttgacg gtcacacacc tgggtgtgcgc atgcaactta atttgcgtga 6660
 tgcacttgag acaaattgact gtaattccac aaacaacact cctagtgtat gaggcccgat 6720
 gtccgtctt gtttcaaaac aggagttgtcg gctgtacaaac caattgtttt aggcaatttc 6780
 agctggcggtt gacaccacca aactgccagc cccctccatc gaagaggttag tggtaagaaa 6840
 ggcgcaggatcc cgggcaagaa ctgggtcgat taccttgcctt cccctccga gatccgtccc 6900
 aggaggtgtca tggctctgaaa gcctgcaacg aagtgacccg tttagaaggc cttcaaaacct 6960
 ccctccctca ccacctgttc tacagttggc catgcccgtt cccctgttgg gagcgggtga 7020
 gtgttaaccctt ttcactgcaaa ttggatgtgc aatgaccgaa acaggccggag gccctgtatg 7080
 tttacccagt taccctccca aaaaggaggt ctctgaatgg tcagacgaaa gttggtcgac 7140
 ggctacaacc gttccagat acgttactgg ccccccgtac cctaagatac ggggaaagga 7200
 ttccactcgat tcagccccccg ccaaacggcc tacaaaaaaag aagttggaaa agagttagt 7260
 ttctgtgcacg atgagctaca cctggaccga cgtgatttagc ttcaaaactg cttctaaagt 7320
 tctgtctgca actcgccca tcactagtgg tttctcaaaa caaagatcat tggatgtatgt 7380
 gactgagccg cgggatgcgg agcttagaaaa acaaaaaagtc actattaata gacaacctct 7440
 gttcccccca tcataaccaca agcaagttagt gaaaaagctt caaaagttgt 7500

cgggtgtcatg tgggactatg atgaagttagc agctcacacg ccctctaagt ctgctaagtc 7560
 ccacatcaact ggccttcggg gcactgtatgt tcgttctgga gcagcccgca aggctgttct 7620
 ggacttgcag aagtgtgtcg aggcaggta gataccgagt cattatcgac aaactgtatg 7680
 agttccaaag gaggaggatct tcgtgaagac cccccagaaa ccaacaaaga aacccccaag 7740
 gcttatctcg tacccccacc ttgaaatgag atgtgttgag aagatgtact acggtcaggt 7800
 tgctcctgac gtagttaaag ctgtcatggg agatgcgtac gggttgttag atccacgtac 7860
 ccgtgtcaag cgtctgttgt cgatgtggc acccgatgca gtcggagcca catgcgatac 7920
 agtgtgtttt gacagtacca tcacacccga ggatatcatg gtggagacag acatctactc 7980
 agcagctaaa ctcagtgacc aacaccgagc tggcattcac accattgcga ggcagttata 8040
 cgctggagga ccgatgatcg cttatgatgg ccgagagatc ggatatcgta ggtgttaggtc 8100
 ttccggcgctc tatactaccc caagtccaa cagtttgacc tgctggctga aggtaaatgc 8160
 tgcagccgaa caggctggca tgaagaaccc tcgcttcctt atttgcggcg atgattgcac 8220
 cgttaatttgg aagagcgccg gagcagatgc agacaaacaa gcaatgcgtg tctttgctag 8280
 ctggatgaag gtgatgggtg caccacaaga ttgtgtgcct caacccaaat acagtttgg 8340
 agaattaaca tcatgctcat caaatgttac ctctggaaatt accaaaaatg gcaagccta 8400
 ctactttctt acaagagatc ctcgtatccc cttggcagg tgctctgccc agggcttggg 8460
 atacaacccc agtgcgtgcgt ggattggta tctaatacat cactacccat gtttgggtt 8520
 tagccgtgtg ttggctgtcc atttcatgga gcagatgctc tttgaggaca aacttcccga 8580
 gactgtgacc tttgactggat atggggaaaaa ttatacgggt cctgtagaag atctgcccag 8640
 catcattgtc ggtgtgcacg gtattgaggc tttctcggtg gtgcgtaca ccaacgctga 8700
 gatcctcaga gtttcccaat cactaacaga catgaccatg cccccctgc gggctggcg 8760
 aaagaaaagcc agggcggtcc tcgccagcgc caagaggcggt ggccggacac acgaaaatt 8820
 ggctcggttc cttctctggc atgctacatc tagacctcta ccagatttgg ataagacgag 8880
 cgtggctcggt tacaccactt tcaattatttgc tgatgtttac tccccggagg gggatgtgtt 8940
 tattacacca cagagaagat tgcagaagtt ctttgcgtt tattttggctg tcattttttt 9000
 tgcccttaggg ctcattgtc ttggattagc catcagctga aaccccaaat tcaaaaattaa 9060
 ctaacagttt tttttttttt tttttttttt agggcagcgg caacagggga gaccccgggc 9120
 ttaacgaccc cgcgatgtg 9139

<210> 4
 <211> 9711
 <212> DNA
 <213> Hepatitis C virus

<400> 4

acccgccccct aatagggcg acactccgccc atgaatcaact cccctgtgag gaactactgt 60
 cttcacgcag aaagcgctta gccatggcgtagt tagtatgagt gtcgtacagc ctccaggccc 120
 cccccctcccg ggagagccat agtggctgc ggaaccgggt agtacaccgg aattgccgg 180
 aagactgggt ctttcttgg ataaacccac tctatgccc gccatttggg cgtgcccccg 240
 caagactgtc agccgagtag cgttgggttg cgaaaggccct tgggtactg cctgtatagg 300
 tgcttgcgag tgccccggga ggtctcgtag accgtgcacc atgagcacaa atcctaaacc 360
 tcaaagaaaa accaaaagaa acaccaacccg tcgcccacaa gacgttaagt ttccggcg 420
 cggccagatc gttggcgagg tatacttgc gccgcgcagg ggccccaggt tgggtgtgcg 480
 cgcgacacagg aagacttcgg agcggtccca gccacgtggaa aggcggccagc ccatccctaa 540
 agatcgccgc tccactggca aatccctgggg aaaaccagga taccctggc ccctatacgg 600
 gaatgagggga ctggctggg caggatggct cctgtccccc cgaggttccc gtcccttttgc 660
 gggcccaat gaccccgccg ataggcgcg caacgtgggt aaggtcatcg ataccctaac 720

gtgcggctt gccgaccta tgggtacat ccctgtcgtg ggcgccccgc tcggcggcgt 780
 cgccagagct ctcgcgcatt gcgtgagagt cctggaggac ggggttaatt ttgcaacagg 840
 gaacttaccc ggttgcctt ttttatctt cttgtggcc ctgctgcctt gcatcaccac 900
 cccggctctcc gctgccgaag tgaagaacat cagtaccggc tacatggtga ctaacgactg 960
 caccaatgac agcattaccc ggcagctcca ggctgctgtc ctccacgtcc cccgggtgcgt 1020
 cccgtgcgag aaagtgggaa atgcatttca gtgctggata ccggctcac cgaatgtggc 1080
 cgtgcagcgg cccggcgccc tcacgcaggg cttgcggacg cacatcgaca tgggtgtgat 1140
 gtccgcacg ctctgccttg ccctctacgt gggggacctc tgccgtgggg tggatgcgtc 1200
 agcccaaattt ttcattgtct cggccagca ccactgggtt gtccaaagact gcaattgttc 1260
 catctaccct ggtaccatca ctggacaccg catggcatgg gacatgtatga tgaactggtc 1320
 gcccacggct accatgtatcc tggcgtacgc gatgcgtgtc cccgaggtca ttatagacat 1380
 cattagcggg gctcattggg gcgtcatgtt cggcttggcc tacttctcta tgcagggagc 1440
 gtgggcgaaa gtcgttgtca tccttctgtt gggccgggg gtggacgcgc gcacccatac 1500
 tgggggggt tctgccgcg agaccaccgg ggcctcacc agcttattt acatggggccc 1560
 caggcagaaa atccagctcg ttaacaccaa tggcagctgg cacatcaacc gcacccgcct 1620
 gaactgcaat gactccttgc acaccggctt tatgcgtct ctgttctaca cccacagctt 1680
 caactcgtca ggtatgtcccg aacgcattgtc cgcctgcgc agtatcgagg cttccgggt 1740
 gggatggggc gccttgcata atgaggataa tgcaccaat ccagaggata ttagacccta 1800
 ttgcgtggcac tacccaccaa ggcagttgtgg cgtggcttcc gcgaagactg tgggtggccc 1860
 agtgtactgt ttccacccca gcccagttgtt agtgggcacg accgacaggc ttggagcgc 1920
 cacttacacg tggggggaga atgagacaga tgcaccaat ttgaacagca ctgcaccacc 1980
 gctggggtca tgggtcggt gcacgtggat gaacttcttgc ggctacacca agacttgcgg 2040
 cgcacccaccc tgccgtacta gagctgactt caacgcgc acggacctgt tggcccccac 2100
 ggactgtttt agaagcatc ctgataccac ttacctcaaa tgcggctctg gggccctggct 2160
 cacgcacagg tgcctgatcg actaccctca caggctctgg cattaccctt gcacagttaa 2220
 ctataccatc ttcaaaataa ggtatgtatgt gggaggggtt gagcacaggc tcaacggctgc 2280
 atgcaatttc actcggtggg atcggtgcaaa ctggaggac agagacagaa gtcaactgtc 2340
 tcctttgtt cactccacca cggaatgggc cattttacct tgcgtttact cggacctgccc 2400
 cgccttgcg actggcttcc tccacctca ccaaaacatc gtggacgtac aattcatgtt 2460
 tggcctatca cctgcctca caaaatcatc cgtccgtatgg gagttggtaa tacttattt 2520
 cctgcttca gcccacgcca gggtttgcgc ctgcttacgt atgctcatct tgggtggcca 2580
 ggcgaagca gcaactagaga agctggcat ctgcacgcgt gcgagcgcag ctggctgca 2640
 tggcttccata tattttgtca tcttttgcgtt ggcgtgttgg tacatcaagg tgcgggtagt 2700
 ccccttagct acctattccc tcactggctt gtggccctt agcctactgc tcctagcatt 2760
 gcccccaacag gctttagctt atgacgcata tgcacgcgc cagataggag cggctctgt 2820
 ggtaatgatc actcttccca ctctcaccctt cgggtataag acccttctca gcccgtttt 2880
 gtgggtgggtt tgctatcttc tgaccctggg ggaagctatg gtccaggagt gggcaccacc 2940
 tatgcagggtt cgcggggcc ggtatggcat catatggcc gtcgcacat tctacccagg 3000
 tgggtgtttt gacataacca agtggctttt ggcgggtgtt gggccctgtt accttctaaa 3060
 aggtgtttt acgcgcgtgc cgtacttgcgtt cagggtctcac gctctactga ggtatgtgcac 3120
 catggcaagg catctcgccgg gggcaggta cgtccagatg ggcgtacttag cccttggcag 3180
 gtggactggc acttacatct atgaccaccc caccctatg tcggattggg ctgcttagtgg 3240
 cctgcgggac ctggcggtcg ccgttgcgtt tgcacccatcc agtccgtatgg agaagaaagt 3300
 cattgtctgg ggagcggaga cagctgtttt tggggacattt tgcacccatc ttccctgtc 3360
 cggccgactt ggtcggtggg tccctccctgg cccagctgtatgg ggcgtataccctt ccaagggtgt 3420
 gagtcttctc gccccatca ctgcatttgcgc ccaggacaca cgtggccctt tgggcaccat 3480
 agtgggtgacg atgacggggc ggcacaagac agaacaggct gggaaattt agtgcctgtc 3540
 cacagtcact cgtccttcc tcggaaatccatc catctcgccgg gttttgttgcgtt ctgtctacca 3600

tggagctggc aacaagactc tggccggctc acggggtccg gtcacgcaga tgtactccag 3660
 tgctgagggg gacttagtag ggtggcccg cccccctggg actaaatctt tggagccgtg 3720
 cacgtgtgga gcggtcgacc tgtacctggt cacgcggAAC gctgatgtca tcccggtcg 3780
 aagacgcggg gacaaacggg gagcgctact ctcccccaga CCTCTTCCA CCTTGAAGGG 3840
 gtcctcaggaa ggcccgggtgc tatgcggcaggg gggccacgct gtcggagtct tccgggcagc 3900
 tgtgtgtctt cggggcgtgg ctaagtccat agatttcata cccgttgaga cactcgacat 3960
 cgtcacgcgg tcccccacct ttagtgacaa cagcacacca cctgctgtgc cccagaccta 4020
 tcaggtcgaa tacttgcattt cccccactgg cagtggaaag agcaccaaag ttccctgtcgc 4080
 atatgtgtctt caggggtata aagtgttagt gcttaatccc tcagtggctg ccaccctggg 4140
 gtttggggcg tacttgcata aggcacatgg catcaatccc aacattagga ctggagtcag 4200
 gactgtgacg accggggcgc ccatcacgtt ctccacatata gggaaattcc tcggccatgg 4260
 gggctgtgcg ggccggcgcct acgacatcat catabgtat gaatgccatg ccgtggactc 4320
 taccaccatc cttggcatcg gaacagtctt tgatcaagca gagacagctg gggtcagact 4380
 aactgtgtctt gctacagctt cccccctgg gtcagtgtaca accccccacc ccaacataga 4440
 ggaggtggcc cttggggcagg agggcgagat ccccttctat gggagggcga ttccctgtc 4500
 ttacatcaag ggaggaagac atctgtatctt ctggccattca aagaaaaagt gtgacgagct 4560
 cgccggcggcc cttcggggta tgggcttggaa ctcagtgca tactacagag ggttggacgt 4620
 ctccgtata ccaactcagg gagacgtat ggtcgctgc accgacgccc tcatgacagg 4680
 gtatactggg gactttgact ccgtgtatcgat ctgcacacgtt ggggtactc aagttgtaga 4740
 cttcagtttta gacccacat tcaccataac cacacagatt gtcaccaatg acgctgtctc 4800
 acgttagccag cgccggggtc gcacgggtag gggaaagactg ggcatttata ggtatgttc 4860
 cactggtgag cgagcctcagg gaatgtttga cagtgttagt ctctgttagt gctacgacgc 4920
 agggggccca tggtatgagc tcacaccatc ggagaccacc gtcaggctca gggcgtattt 4980
 caacacgccc ggtttgcctg tggccaaga ccatctttagt ttttggagg cagttttcac 5040
 cggcctcaca cacatagatg cccacttcctt ttcccaaaca aagcaatcg gggaaaattt 5100
 cgcatactta acagcctacc aggctacagt gtgcgttagg gccaaagccc cccccccgtc 5160
 ctgggacgtc atgttggaaatgttgcactcg actcaagccc acactcgtgg gccccacacc 5220
 tctcctgtac cgcttggcgt ctgttacca cgggttcacc ctcacacatc ccgtgacgaa 5280
 atacatcgcc acctgcatttc aagccgaccc tggatgtatcg accagcacat gggcttggc 5340
 agggggagtc ttggccggccg tggccgttta ttggcttggc accgggtgtg tttgcattcat 5400
 cggccgcttgc cacattaacc agcgagccgt cgttgcgtcc gacaaggagg tcccttatga 5460
 ggctttgtat gagatggagg aatgtgcctc tagggcggct ctcattgaag aggggcagcg 5520
 gatagccgag atgctgaagt ccaagatcca aggcttattt cagcaagctt ccaaacaagc 5580
 tcaagacata caacccactg tgcaggcttc atggcccaag gttagaacaat tctggccaa 5640
 acacatgtgg aacttcattt gggccatcca atacctcgca ggactatcaa cactgcccagg 5700
 gaaccctgca gtagcttcca tggatggcgtt cagtggccgc ctcaccagtc cgctgtcaac 5760
 aagcaccact atccttctca acattttggg gggctggcta gcatccaaa ttgcaccacc 5820
 cgcggggcc actggcttc ttgtcgtgg cctagtggtt gctggccgt gcaagtatagg 5880
 cttagttaatgttgcgtt acatcctggc agggatgttgcgtt gggggcattt cgggggtctct 5940
 cgtcgcatccatc aagatcatgt ctggcgagaa gcccctccatg gaggatgtcg tcaacttgct 6000
 gcctgttgcattt ctgtctccgg tggcccttggatgttgcgtt acatcgtggccg ccattctgtcg 6060
 ccgacacgtg ggaccggggg aaggccgttgcgtt ccaatggatg aatagactca ttggcccttgc 6120
 ttccagagga aatcacgtcg ccccccacca ctacgtgacg gagtcggatg cgctgcagcg 6180
 tgtgacccaa ctacttggctt cccttaccat aaccagcgttgcgtt ctcagaagac tccacaactg 6240
 gattactgag gactgccccca tccccatgcgg cgggtcggtgg ctccgcgtatg tggggactg 6300
 ggtttgcacc atcctaacaatg actttaaaaat ttggctgacc tccaaattat tccaaagat 6360
 gcccggccctc ccctttgtctt cctgtcaaaa ggggtacaag ggcgtgtggg ccggcactgg 6420
 catcatgacc acacgggtgc cttggccgc caatatctctt ggcaatgtcc gtttggcgtc 6480

catgagaatc acggggccta agacctgcat gaatatctgg caggggacct ttccttatcaa 6540
 ttgttacacg gaggggccagt gcgtccgaa acccgccca aactttaagg tcgccatctg 6600
 gagggtgtgcg gcctcagagt acgcggaggt gacgcagcac gggtcataacc actacataac 6660
 aggactcacc actgataact tgaaagtccc ctgccaacta ccctctcccg agttctttc 6720
 ctgggtggac ggagtgcaga tccatagtt tgccccca ca cgaaggcgt tttccggaa 6780
 tgaggtctcg ttctgcgtt ggcttaattc atttgcgtc gggtcccgac ttccttgcga 6840
 ccctgaaccc gacacagacg tattgatgtc catgctaaca gatccatctc atatcacggc 6900
 ggagactgca ggcggcggt tagcgcgggg gtcaccccca tccgaggcaa gtcctcggc 6960
 gagccagcta tcggcaccat cgctgcgagc cacctgcacc acccacggca aagcctatga 7020
 tgtggacatg gtggatgcta acctgttcat gggggcgat gtgactcggg tagagtctgg 7080
 gtccaaagtg gtctttctgg actctctcga cccaatggtc gaagaaagga ggcaccttga 7140
 gccttcgata ccatcagaat acatgtccc caagaagagg ttcccaccag ctttaccggc 7200
 ctgggcacgg cctgattaca acccaccgct tggaaatcg tggaaaaggc cagattacca 7260
 accggccact gttgcgggct gtgctctccc tcctccttagg aaaaccccgaa cgcctccccc 7320
 aaggaggcgc cggacagtgg gcctaagtga ggactccata ggagatgccc ttcaacagct 7380
 ggccattaag tcctttggcc agccccccccc aagcggcgat tcaggcctt ccacggggc 7440
 gggcgctgcc gattccggca gtcagacgcc tcctgatgag ttggccctt cggagacagg 7500
 ttccatctct tccatgcccc ccctcgaggg ggagcttggaa gatccagacc tgagcctga 7560
 gcaggttagag ccccaaaaaa cccccccaggg gggggtggca gctcccgct cggactcggg 7620
 gtcttggct acttgcgtccg aggaggacga ctccgtcgtg tgctgtcca tgtcataactc 7680
 ctggaccggg gctctaataa ctccctgttag tcctcgaagag gagaagttac cgattaaccc 7740
 cttgagcaac tcctgttgca gatatacaca caaggtgtac tgtaccacaa caaagagcgc 7800
 ctcactaagg gctaaaaagg taactttga taggatgca gtcgtcgact cctactacga 7860
 ctcagtctta aaggacatta agctagcggc tcctcaaggc accgcaggc tcctcaccat 7920
 ggaggaggct tgccagttaa cccccccca ttctcgaaga tctaaatatg ggtttggggc 7980
 taaggaggct cgcagcttgc ccgggaggcgc cgttaaccac atcaagtcgg tggaaagga 8040
 ctcctggag gactcagaaa caccatttc cacaaccatt atggccaaaa atgaggtgtt 8100
 ctgcgtggac cccaccaagg gggcaagaa acagactcgc cttatcgat accctgaccc 8160
 cggcgctcagg gtctgcgaga agatggccct ttatgacatt acacaaaaac ttccctcaggc 8220
 ggtgatgggg gtttctttagt gattccagta ttcccccgct cagcggtag agtttctt 8280
 gaaagcatgg gcgaaaaaga aggaccctat gggttttcg tatgataacc gatgctttga 8340
 ctcaaccgtc actgagagag acatcaggac tgaggagtcc atatatcggtt cttgtccctt 8400
 gcccggagg gcccacactg ccatacactc gctaactgag agactttacg tggggggc 8460
 tatgttcaac agcaaggcgg aaacctgcgg gtacaggcgt tgccgcgcca gccccgtgt 8520
 caccactagc atggggaaaca ccatcacatg ctacgtaaa gccttagcgg cttgtaaagc 8580
 tgcaggata atcgccca caatgtgtt atgcggcgat gacttgggtt tcatctcaga 8640
 aagccagggg accgaggagg acgagcggaa cctgagagcc ttcacggagg ctatgaccag 8700
 gtattctgcc ctccttgggtt accccccccag accggagttt gatctggagc tgataacatc 8760
 ttgctctca aatgtgtctg tggcgctggg cccacaaggc cggcgagat actacctgac 8820
 cagagaccctt accactccaa tcgccccggc tgcctggaa acagtttagac actccctgt 8880
 caattcatgg ctggaaaaca tcatccagta cggcccgacc atatggcgtc gcatggccct 8940
 gatgacacac ttcttctcca ttctcatggc tcaagacacg ctggaccaga acctcaactt 9000
 tgagatgtac ggagcgggtt actccgttag tcccttggac ctcccagcta taattgaaag 9060
 gttacatggg ctgcgtcgctt tttctctgca cacatacact cccccacgaac tgacacgggt 9120
 ggcttcagcc ctcagaaaac ttggggcgcc acccctcaga gcgtgaaaga gccggggc 9180
 tgcagtcagg gctccctca tctccctgtgg gggggagagcg gccgtttgcg gtcgtatct 9240
 cttcaattgg gcggtgaaga ccaagctcaa actcactcca ttgcccggaaag cgccctccct 9300
 ggatttatcc agctggttca cgcgtcggcgc cggcggggc gacatttac acagcgtgtc 9360

gcgtgcccga ccccgcttat tgcttttg cctactccta cttttttag ggtaggcct 9420
 tttcctactc cccgctcggt agagcggcac acattagcta cactccatag ctaactgtcc 9480
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 9540
 tttttttttt tttttttttt ttttctttt tttctctttt cttctttct taccttattt 9600
 tactttcttt cctggggct ccatcttagc cctagtcacg gctagctgtg aaaggtccgt 9660
 gagccgcatg actgcagaga gtgccgtaac tggctctct gcagatcatg t 9711

<210> 5
 <211> 3033
 <212> PRT
 <213> Hepatitis C virus

<400> 5			
Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn			
1	5	10	15
Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly			
20	25	30	
Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala			
35	40	45	
Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro			
50	55	60	
Ile Pro Lys Asp Arg Arg Ser Thr Gly Lys Ser Trp Gly Lys Pro Gly			
65	70	75	80
Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp			
85	90	95	
Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Asn Asp Pro			
100	105	110	
Arg His Arg Ser Arg Asn Val Gly Lys Val Ile Asp Thr Leu Thr Cys			
115	120	125	
Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Val Val Gly Ala Pro Leu			
130	135	140	
Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp			
145	150	155	160
Gly Val Asn Phe Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile			
165	170	175	
Phe Leu Leu Ala Leu Leu Ser Cys Ile Thr Thr Pro Val Ser Ala Ala			

180	185	190
Glu Val Lys Asn Ile Ser Thr Gly Tyr Met Val Thr Asn Asp Cys Thr		
195	200	205
Asn Asp Ser Ile Thr Trp Gln Leu Gln Ala Ala Val Leu His Val Pro		
210	215	220
Gly Cys Val Pro Cys Glu Lys Val Gly Asn Ala Ser Gln Cys Trp Ile		
225	230	235
Pro Val Ser Pro Asn Val Ala Val Gln Arg Pro Gly Ala Leu Thr Gln		
245	250	255
Gly Leu Arg Thr His Ile Asp Met Val Val Met Ser Ala Thr Leu Cys		
260	265	270
Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Gly Val Met Leu Ala Ala		
275	280	285
Gln Met Phe Ile Val Ser Pro Gln His His Trp Phe Val Gln Asp Cys		
290	295	300
Asn Cys Ser Ile Tyr Pro Gly Thr Ile Thr Gly His Arg Met Ala Trp		
305	310	315
Asp Met Met Met Asn Trp Ser Pro Thr Ala Thr Met Ile Leu Ala Tyr		
325	330	335
Ala Met Arg Val Pro Glu Val Ile Ile Asp Ile Ile Ser Gly Ala His		
340	345	350
Trp Gly Val Met Phe Gly Leu Ala Tyr Phe Ser Met Gln Gly Ala Trp		
355	360	365
Ala Lys Val Val Val Ile Leu Leu Leu Ala Ala Gly Val Asp Ala Arg		
370	375	380
Thr His Thr Val Gly Gly Ser Ala Ala Gln Thr Thr Gly Arg Leu Thr		
385	390	395
Ser Leu Phe Asp Met Gly Pro Arg Gln Lys Ile Gln Leu Val Asn Thr		
405	410	415
Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser		
420	425	430
Leu His Thr Gly Phe Ile Ala Ser Leu Phe Tyr Thr His Ser Phe Asn		

435	440	445
Ser Ser Gly Cys Pro Glu Arg Met Ser Ala Cys Arg Ser Ile Glu Ala		
450	455	460
Phe Arg Val Gly Trp Gly Ala Leu Gln Tyr Glu Asp Asn Val Thr Asn		
465	470	475
Pro Glu Asp Met Arg Pro Tyr Cys Trp His Tyr Pro Pro Arg Gln Cys		
485	490	495
Gly Val Val Ser Ala Lys Thr Val Cys Gly Pro Val Tyr Cys Phe Thr		
500	505	510
Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Leu Gly Ala Pro Thr		
515	520	525
Tyr Thr Trp Gly Glu Asn Glu Thr Asp Val Phe Leu Leu Asn Ser Thr		
530	535	540
Arg Pro Pro Leu Gly Ser Trp Phe Gly Cys Thr Trp Met Asn Ser Ser		
545	550	555
Gly Tyr Thr Lys Thr Cys Gly Ala Pro Pro Cys Arg Thr Arg Ala Asp		
565	570	575
Phe Asn Ala Ser Thr Asp Leu Leu Cys Pro Thr Asp Cys Phe Arg Lys		
580	585	590
His Pro Asp Thr Thr Tyr Leu Lys Cys Gly Ser Gly Pro Trp Leu Thr		
595	600	605
Pro Arg Cys Leu Ile Asp Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys		
610	615	620
Thr Val Asn Tyr Thr Ile Phe Lys Ile Arg Met Tyr Val Gly Gly Val		
625	630	635
Glu His Arg Leu Thr Ala Ala Cys Asn Phe Thr Arg Gly Asp Arg Cys		
645	650	655
Asn Leu Glu Asp Arg Asp Arg Ser Gln Leu Ser Pro Leu Leu His Ser		
660	665	670
Thr Thr Glu Trp Ala Ile Leu Pro Cys Ser Tyr Ser Asp Leu Pro Ala		
675	680	685
Leu Ser Thr Gly Leu Leu His Leu His Gln Asn Ile Val Asp Val Gln		

690	695	700
Phe Met Tyr Gly Leu Ser Pro Ala Leu Thr Lys Tyr Ile Val Arg Trp		
705	710	715
720		
Glu Trp Val Ile Leu Leu Phe Leu Leu Ala Asp Ala Arg Val Cys		
725	730	735
Ala Cys Leu Trp Met Leu Ile Leu Leu Gly Gln Ala Glu Ala Ala Leu		
740	745	750
Glu Lys Leu Val Ile Leu His Ala Ala Ser Ala Ala Ser Cys Asn Gly		
755	760	765
Phe Leu Tyr Phe Val Ile Phe Phe Val Ala Ala Trp Tyr Ile Lys Gly		
770	775	780
Arg Val Val Pro Leu Ala Thr Tyr Ser Leu Thr Gly Leu Trp Ser Phe		
785	790	795
800		
Ser Leu Leu Leu Leu Ala Leu Pro Gln Gln Ala Tyr Ala Tyr Asp Ala		
805	810	815
Ser Val His Gly Gln Ile Gly Ala Ala Leu Leu Val Met Ile Thr Leu		
820	825	830
Phe Thr Leu Thr Pro Gly Tyr Lys Thr Leu Leu Ser Arg Phe Leu Trp		
835	840	845
Trp Leu Cys Tyr Leu Leu Thr Leu Gly Glu Ala Met Val Gln Glu Trp		
850	855	860
Ala Pro Pro Met Gln Val Arg Gly Gly Arg Asp Gly Ile Ile Trp Ala		
865	870	875
880		
Val Ala Ile Phe Tyr Pro Gly Val Val Phe Asp Ile Thr Lys Trp Leu		
885	890	895
Leu Ala Val Leu Gly Pro Ala Tyr Leu Leu Lys Gly Ala Leu Thr Arg		
900	905	910
Val Pro Tyr Phe Val Arg Ala His Ala Leu Leu Arg Met Cys Thr Met		
915	920	925
Ala Arg His Leu Ala Gly Gly Arg Tyr Val Gln Met Ala Leu Leu Ala		
930	935	940
Leu Gly Arg Trp Thr Gly Thr Tyr Ile Tyr Asp His Leu Thr Pro Met		

945	950	955	960
Ser Asp Trp Ala Ala Ser Gly Leu Arg Asp Leu Ala Val Ala Val Glu			
965	970	975	
Pro Ile Ile Phe Ser Pro Met Glu Lys Lys Val Ile Val Trp Gly Ala			
980	985	990	
Glu Thr Ala Ala Cys Gly Asp Ile Leu His Gly Leu Pro Val Ser Ala			
995	1000	1005	
Arg Leu Gly Arg Glu Val Leu Leu Gly Pro Ala Asp Gly Tyr Thr Ser			
1010	1015	1020	
Lys Gly Trp Ser Leu Leu Ala Pro Ile Thr Ala Tyr Ala Gln Gln Thr			
1025	1030	1035	1040
Arg Gly Leu Leu Gly Thr Ile Val Val Ser Met Thr Gly Arg Asp Lys			
1045	1050	1055	
Thr Glu Gln Ala Gly Glu Ile Gln Val Leu Ser Thr Val Thr Gln Ser			
1060	1065	1070	
Phe Leu Gly Thr Ser Ile Ser Gly Val Leu Trp Thr Val Tyr His Gly			
1075	1080	1085	
Ala Gly Asn Lys Thr Leu Ala Gly Ser Arg Gly Pro Val Thr Gln Met			
1090	1095	1100	
Tyr Ser Ser Ala Glu Gly Asp Leu Val Gly Trp Pro Ser Pro Pro Gly			
1105	1110	1115	1120
Thr Lys Ser Leu Glu Pro Cys Thr Cys Gly Ala Val Asp Leu Tyr Leu			
1125	1130	1135	
Val Thr Arg Asn Ala Asp Val Ile Pro Ala Arg Arg Gly Asp Lys			
1140	1145	1150	
Arg Gly Ala Leu Leu Ser Pro Arg Pro Leu Ser Thr Leu Lys Gly Ser			
1155	1160	1165	
Ser Gly Gly Pro Val Leu Cys Pro Arg Gly His Ala Val Gly Val Phe			
1170	1175	1180	
Arg Ala Ala Val Cys Ser Arg Gly Val Ala Lys Ser Ile Asp Phe Ile			
1185	1190	1195	1200
Pro Val Glu Thr Leu Asp Ile Val Thr Arg Ser Pro Thr Phe Ser Asp			

1205	1210	1215
Asn Ser Thr Pro Pro Ala Val Pro Gln Thr Tyr Gln Val Gly Tyr Leu		
1220	1225	1230
His Ala Pro Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Val Ala Tyr		
1235	1240	1245
Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala		
1250	1255	1260
Thr Leu Gly Phe Gly Ala Tyr Leu Ser Lys Ala His Gly Ile Asn Pro		
1265	1270	1275
Asn Ile Arg Thr Gly Val Arg Thr Val Thr Thr Gly Ala Pro Ile Thr		
1285	1290	1295
Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ala Gly Gly		
1300	1305	1310
Ala Tyr Asp Ile Ile Cys Asp Glu Cys His Ala Val Asp Ser Thr		
1315	1320	1325
Thr Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly		
1330	1335	1340
Val Arg Leu Thr Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr		
1345	1350	1355
Thr Pro His Pro Asn Ile Glu Glu Val Ala Leu Gly Gln Glu Gly Glu		
1365	1370	1375
Ile Pro Phe Tyr Gly Arg Ala Ile Pro Leu Ser Tyr Ile Lys Gly Gly		
1380	1385	1390
Arg His Leu Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala		
1395	1400	1405
Ala Ala Leu Arg Gly Met Gly Leu Asn Ser Val Ala Tyr Tyr Arg Gly		
1410	1415	1420
Leu Asp Val Ser Val Ile Pro Thr Gln Gly Asp Val Val Val Val Ala		
1425	1430	1435
Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile		
1445	1450	1455
Asp Cys Asn Val Ala Val Thr Gln Val Val Asp Phe Ser Leu Asp Pro		

1460	1465	1470
Thr Phe Thr Ile Thr Thr Gln Ile Val Pro Gln Asp Ala Val Ser Arg		
1475	1480	1485
Ser Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Leu Gly Ile Tyr Arg		
1490	1495	1500
Tyr Val Ser Thr Gly Glu Arg Ala Ser Gly Met Phe Asp Ser Val Val		
1505	1510	1515
Leu Cys Glu Cys Tyr Asp Ala Gly Ala Ala Trp Tyr Glu Leu Thr Pro		
1525	1530	1535
Ser Glu Thr Thr Val Arg Leu Arg Ala Tyr Phe Asn Thr Pro Gly Leu		
1540	1545	1550
Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Ala Val Phe Thr Gly		
1555	1560	1565
Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ser Gly		
1570	1575	1580
Glu Asn Phe Ala Tyr Leu Thr Ala Tyr Gln Ala Thr Val Cys Ala Arg		
1585	1590	1595
Ala Lys Ala Pro Pro Pro Ser Trp Asp Val Met Trp Lys Cys Leu Thr		
1605	1610	1615
Arg Leu Lys Pro Thr Leu Val Gly Pro Thr Pro Leu Leu Tyr Arg Leu		
1620	1625	1630
Gly Ser Val Thr Asn Glu Val Thr Leu Thr His Pro Val Thr Lys Tyr		
1635	1640	1645
Ile Ala Thr Cys Met Gln Ala Asp Leu Glu Val Met Thr Ser Thr Trp		
1650	1655	1660
Val Leu Ala Gly Gly Val Leu Ala Ala Val Ala Ala Tyr Cys Leu Ala		
1665	1670	1675
Thr Gly Cys Val Cys Ile Ile Gly Arg Leu His Ile Asn Gln Arg Ala		
1685	1690	1695
Val Val Ala Pro Asp Lys Glu Val Leu Tyr Glu Ala Phe Asp Glu Met		
1700	1705	1710
Glu Glu Cys Ala Ser Arg Ala Ala Leu Ile Glu Glu Gly Gln Arg Ile		

1715	1720	1725
Ala Glu Met Leu Lys Ser Lys Ile Gln Gly Leu Leu Gln Gln Ala Ser		
1730	1735	1740
Lys Gln Ala Gln Asp Ile Gln Pro Thr Val Gln Ala Ser Trp Pro Lys		
1745	1750	1755
1760		
Val Glu Gln Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile		
1765	1770	1775
Gln Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Val Ala		
1780	1785	1790
Ser Met Met Ala Phe Ser Ala Ala Leu Thr Ser Pro Leu Ser Thr Ser		
1795	1800	1805
Thr Thr Ile Leu Leu Asn Ile Leu Gly Gly Trp Leu Ala Ser Gln Ile		
1810	1815	1820
Ala Pro Pro Ala Gly Ala Thr Gly Phe Val Val Ser Gly Leu Val Gly		
1825	1830	1835
1840		
Ala Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu		
1845	1850	1855
Ala Gly Tyr Gly Ala Gly Ile Ser Gly Ala Leu Val Ala Phe Lys Ile		
1860	1865	1870
Met Ser Gly Glu Lys Pro Ser Met Glu Asp Val Val Asn Leu Leu Pro		
1875	1880	1885
Gly Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Ile Cys Ala Ala		
1890	1895	1900
Ile Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met		
1905	1910	1915
1920		
Asn Arg Leu Ile Ala Phe Ala Ser Arg Gly Asn His Val Ala Pro Thr		
1925	1930	1935
His Tyr Val Thr Glu Ser Asp Ala Ser Gln Arg Val Thr Gln Leu Leu		
1940	1945	1950
Gly Ser Leu Thr Ile Thr Ser Leu Leu Arg Arg Leu His Asn Trp Ile		
1955	1960	1965
Thr Glu Asp Cys Pro Ile Pro Cys Gly Ser Trp Leu Arg Asp Val		

1970	1975	1980
Trp Asp Trp Val Cys Thr Ile Leu Thr Asp Phe Lys Asn Trp Leu Thr		
1985	1990	1995
Ser Lys Leu Phe Pro Lys Met Pro Gly Leu Pro Phe Val Ser Cys Gln		
2005	2010	2015
Lys Gly Tyr Lys Gly Val Trp Ala Gly Thr Gly Ile Met Thr Thr Arg		
2020	2025	2030
Cys Pro Cys Gly Ala Asn Ile Ser Gly Asn Val Arg Leu Gly Ser Met		
2035	2040	2045
Arg Ile Thr Gly Pro Lys Thr Cys Met Asn Ile Trp Gln Gly Thr Phe		
2050	2055	2060
Pro Ile Asn Cys Tyr Thr Glu Gly Gln Cys Val Pro Lys Pro Ala Pro		
2065	2070	2075
Asn Phe Lys Val Ala Ile Trp Arg Val Ala Ala Ser Glu Tyr Ala Glu		
2085	2090	2095
Val Thr Gln His Gly Ser Tyr His Tyr Ile Thr Gly Leu Thr Thr Asp		
2100	2105	2110
Asn Leu Lys Val Pro Cys Gln Leu Pro Ser Pro Glu Phe Phe Ser Trp		
2115	2120	2125
Val Asp Gly Val Gln Ile His Arg Phe Ala Pro Thr Pro Lys Pro Phe		
2130	2135	2140
Phe Arg Asp Glu Val Ser Phe Cys Val Gly Leu Asn Ser Phe Val Val		
2145	2150	2155
Gly Ser Gln Leu Pro Cys Asp Pro Glu Pro Asp Thr Asp Val Leu Met		
2165	2170	2175
Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Thr Ala Ala Arg		
2180	2185	2190
Arg Leu Ala Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser		
2195	2200	2205
Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Lys		
2210	2215	2220
Ala Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Asp		

2225	2230	2235	2240
Val Thr Arg Ile Glu Ser Gly Ser Lys Val Val Val Leu Asp Ser Leu			
2245	2250	2255	
Asp Pro Met Val Glu Glu Arg Ser Asp Leu Glu Pro Ser Ile Pro Ser			
2260	2265	2270	
Glu Tyr Met Leu Pro Lys Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp			
2275	2280	2285	
Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro			
2290	2295	2300	
Asp Tyr Gln Pro Ala Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Arg			
2305	2310	2315	2320
Lys Thr Pro Thr Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser			
2325	2330	2335	
Glu Asp Ser Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe			
2340	2345	2350	
Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Gly			
2355	2360	2365	
Ala Ala Asp Ser Gly Ser Gln Thr Pro Pro Asp Glu Leu Ala Leu Ser			
2370	2375	2380	
Glu Thr Gly Ser Ile Ser Ser Met Pro Pro Leu Glu Gly Glu Leu Gly			
2385	2390	2395	2400
Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Pro Gln Pro Pro Pro Gln			
2405	2410	2415	
Gly Gly Val Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys			
2420	2425	2430	
Ser Glu Glu Asp Asp Ser Val Val Cys Cys Ser Met Ser Tyr Ser Trp			
2435	2440	2445	
Thr Gly Ala Leu Ile Thr Pro Cys Ser Pro Glu Glu Lys Leu Pro			
2450	2455	2460	
Ile Asn Pro Leu Ser Asn Ser Leu Leu Arg Tyr His Asn Lys Val Tyr			
2465	2470	2475	2480
Cys Thr Thr Thr Lys Ser Ala Ser Leu Arg Ala Lys Lys Val Thr Phe			

2485	2490	2495
------	------	------

Asp Arg Met Gln Val Leu Asp Ser Tyr Tyr Asp Ser Val Leu Lys Asp	2500	2505
---	------	------

Ile Lys Leu Ala Ala Ser Lys Val Thr Ala Arg Leu Leu Thr Met Glu	2515	2520
---	------	------

Glu Ala Cys Gln Leu Thr Pro Pro His Ser Ala Arg Ser Lys Tyr Gly	2530	2535
---	------	------

Phe Gly Ala Lys Glu Val Arg Ser Leu Ser Gly Arg Ala Val Asn His	2545	2550
---	------	------

Ile Lys Ser Val Trp Lys Asp Leu Leu Glu Asp Ser Glu Thr Pro Ile	2565	2570
---	------	------

Pro Thr Thr Ile Met Ala Lys Asn Glu Val Phe Cys Val Asp Pro Thr	2580	2585
---	------	------

Lys Gly Gly Lys Lys Ala Ala Arg Leu Ile Val Tyr Pro Asp Leu Gly	2595	2600
---	------	------

Val Arg Val Cys Glu Lys Met Ala Leu Tyr Asp Ile Thr Gln Lys Leu	2610	2615
---	------	------

Pro Gln Ala Val Met Gly Ala Ser Tyr Gly Phe Gln Tyr Ser Pro Ala	2625	2630
---	------	------

Gln Arg Val Glu Phe Leu Leu Lys Ala Trp Ala Glu Lys Lys Asp Pro	2645	2650
---	------	------

Met Gly Phe Ser Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	2660	2665
---	------	------

Arg Asp Ile Arg Thr Glu Glu Ser Ile Tyr Arg Ala Cys Ser Leu Pro	2675	2680
---	------	------

Glu Glu Ala His Thr Ala Ile His Ser Leu Thr Glu Arg Leu Tyr Val	2690	2695
---	------	------

Gly Gly Pro Met Phe Asn Ser Lys Gly Gln Thr Cys Gly Tyr Arg Arg	2705	2710
---	------	------

Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Met Gly Asn Thr Ile Thr	2725	2730
---	------	------

Cys Tyr Val Lys Ala Leu Ala Ala Cys Lys Ala Ala Gly Ile Ile Ala

2740

2745

2750

Pro Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Ser Glu Ser
2755 2760 2765

Gln Gly Thr Glu Glu Asp Glu Arg Asn Leu Arg Ala Phe Thr Glu Ala
2770 2775 2780

Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Arg Pro Glu Tyr
2785 2790 2795 2800

Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala Leu
2805 2810 2815

Gly Pro Gln Gly Arg Arg Arg Tyr Tyr Leu Thr Arg Asp Pro Thr Thr
2820 2825 2830

Pro Ile Ala Arg Ala Ala Trp Glu Thr Val Arg His Ser Pro Val Asn
2835 2840 2845

Ser Trp Leu Gly Asn Ile Ile Gln Tyr Ala Pro Thr Ile Trp Ala Arg
2850 2855 2860

Met Val Leu Met Thr His Phe Phe Ser Ile Leu Met Ala Gln Asp Thr
2865 2870 2875 2880

Leu Asp Gln Asn Leu Asn Phe Glu Met Tyr Gly Ala Val Tyr Ser Val
2885 2890 2895

Ser Pro Leu Asp Leu Pro Ala Ile Ile Glu Arg Leu His Gly Leu Asp
2900 2905 2910

Ala Phe Ser Leu His Thr Tyr Thr Pro His Glu Leu Thr Arg Val Ala
2915 2920 2925

Ser Ala Leu Arg Lys Leu Gly Ala Pro Pro Leu Arg Ala Trp Lys Ser
2930 2935 2940

Arg Ala Arg Ala Val Arg Ala Ser Leu Ile Ser Arg Gly Gly Arg Ala
2945 2950 2955 2960

Ala Val Cys Gly Arg Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu
2965 2970 2975

Lys Leu Thr Pro Leu Pro Glu Ala Arg Leu Leu Asp Leu Ser Ser Trp
2980 2985 2990

Phe Thr Val Gly Ala Gly Gly Asp Ile Tyr His Ser Val Ser Arg

2995

3000

3005

Ala Arg Pro Arg Leu Leu Leu Phe Gly Leu Leu Leu Leu Phe Val Gly
3010 3015 3020

Val Gly Leu Phe Leu Leu Pro Ala Arg
3025 3030

INTERNATIONAL SEARCH REPORT

Internal Application No

PCT/US 00/15293

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/51 C07K14/18 C12Q1/68 C12N7/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WO 95 21922 A (PILOT MATIAS TAMI J ;BUIJK SHERI L (US); SIMONS JOHN N (US); ABBOT) 17 August 1995 (1995-08-17) page 4, line 18 -page 6, line 17 page 55, line 24 -page 56, line 19 page 76; example 5 page 89, line 18 -page 96 page 109; example 15 page 148; example 21 page 427, line 17 -page 432 claims ---- -/-</p>	1,2,4-18

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

17 October 2000

31/10/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Andres, S

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/15293

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SCARSELLI ELISA ET AL: "GB virus B and hepatitis C virus NS3 serine proteases share substrate specificity." JOURNAL OF VIROLOGY, vol. 71, no. 7, July 1997 (1997-07), pages 4985-4989, XP002150190 ISSN: 0022-538X cited in the application the whole document ---	19,24-26
A	HONDA MASA0 ET AL: "A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation." JOURNAL OF VIROLOGY, vol. 73, no. 2, February 1999 (1999-02), pages 1165-1174, XP002150191 ISSN: 0022-538X cited in the application the whole document ---	19,22,23
A	YANAGI MASAYUKI ET AL: "In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 96, no. 5, 2 March 1999 (1999-03-02), pages 2291-2295, XP002150192 ISSN: 0027-8424 cited in the application ---	
A	YANAGI M ET AL: "Transcripts of a chimeric cDNA clone of hepatitis C virus genotype 1b are infectious in vivo" VIROLOGY, vol. 244, no. 1, 1998, pages 161-172, XP002089701 ISSN: 0042-6822 cited in the application ---	
P,X	BUKH JENS ET AL: "Toward a surrogate model for hepatitis C virus: An infectious molecular clone of the GB virus-B hepatitis agent." VIROLOGY, vol. 262, no. 2, 30 September 1999 (1999-09-30), pages 470-478, XP002150193 ISSN: 0042-6822 the whole document --- -/-	1-16,19

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/15293

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	SBARDELLATI ANDREA ET AL: "Identification of a novel sequence at the 3' end of the GB virus B genome." JOURNAL OF VIROLOGY, vol. 73, no. 12, December 1999 (1999-12), pages 10546-10550, XP002150194 ISSN: 0022-538X the whole document -----	1-16, 19
P,X	BUTKIEWICZ N. ET AL.: "Virus-specific cofactor requirement and chimeric hepatitis C virus/GB virus B nonstructural protein 3." J VIROL 2000 MAY;74(9):4291-301, XP002150195 the whole document -----	19, 24-26, 33-35, 37, 39

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 00/15293

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9521922	A 17-08-1995	CA	2166313 A	17-08-1995
		EP	0745129 A	04-12-1996
		JP	10337193 A	22-12-1998
		JP	9511137 T	11-11-1997
		US	5981172 A	09-11-1999
		US	5843450 A	01-12-1998
		US	6051374 A	18-04-2000
		WO	9829747 A	09-07-1998