1 Сформулируйте определение алгебры над полем. Приведите два примера.

А - векторное (линейное) пространство над полем \mathbb{F} с дополнительной операцией умножения:

$$A \times A \to A$$

А - называется алгеброй над полем \mathbb{F} , если выполнены следующие свойства:

$$\forall x, y, z \in A$$

 $\forall \lambda, \beta \in \mathbb{F}$

- 1) (x+y)z = xz + yz
- 2) x(y+z) = xy + xz
- 3) $(\alpha x) \cdot (\beta y) = (\alpha \beta)(xy)$

Примеры:

- 1) $\mathbb C$ является двумерной алгеброй над $\mathbb R$
- 2) Алгебра многочленов $\mathbb{F}[x]$
- 3) Квантернионы: Н

2 Сформулируйте определение тензора. Приведите два примера.

Пусть F - поле, V - векторное (линейное) пространство над полем $F,\,V*$ - сопряжённое векторное пространство; $p,q\in\mathbb{N}$

Тогда любое полилинейное отображение $f: \underbrace{V \times V \times ... \times V}_p \times \underbrace{V * \times V * \times ... \times V *}_q \to \mathbb{F}$

называется Тензором типа (p,q) и валентности p+q

Примеры:

- 1) Тензор типа (1,0) Линейная функция на V, то есть ковектор (элемент V*)
- 2) Тензор типа (0,1) Линейная функция на V*, но $V**\cong V\Rightarrow$ это вектор
- 3) Тензор типа (2,0) билинейная форма на V
- 3) Тензор типа (1,1) можно интерпретировать, как линейные операторы на V

3 Дайте определение эллипса, как геометрического места точек. Выпишите его каноническое уравнение. Что такое эксцентриситет эллипса? В каких пределах он может меняться?

Определение: Эллипсом называют геометрическое место точек, сумма расстояний от которых до двух данных точек, называемых фокусами, постоянна.

Каноническое уравнение эллипса: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Эксцентриситет эллипса $\mathcal{E} = \sqrt{1-\frac{b^2}{a^2}}$ лежит на полуинтервале [0,1) и служит мерой "Сплюснутости" эллипса.

4 Дайте определение гиперболы, как геометрического места точек. Выпишите её каноническое уравнение. Что такое эксцентриситет гиперболы? В каких пределах он может меняться?

Определение: Гиперболой называют геометрическое место точек, модуль разности расстояний от которых до двух данных точек, называемых фокусами, постоянен.

Каноническое уравнение гиперболы: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Эксцентриситет гиперболы $\mathcal{E} = \sqrt{1 + \frac{b^2}{a^2}}$ лежит на полуинтервале > 1 и характерезует угол между ассимптотами.

5 Дайте определение параболы, как геометрического места точек. Выпишите её каноническое уравнение.

Определение: Параболой называют геометрическое место точек плоскости, равноудалённых от данной точки (фокуса) и прямой (директрисы).

Каноническое уравнение параболы: $y^2 = 2px$

6 Сформулируйте теорему о классификации прямых второго порядка.

Для любой кривой второго порядка существует ПДСК (прямоугольная декартова система координат) O_{xy} , в которой уравнение этой кривой имеет один из следующих видов:

Эллиптческий тип

1	2	3
Эллипс	Пустое множество (Мнимый эллипс)	Точка
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$

Гиперболический тип

4	5	
Гипербола	Пара пересекающихся прямых	
$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1,$ где $a\geq b>0$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	

Гиперболический тип

6	7	8	9
Парабола	Пара прямых	Пустое множество	Прямая
$y^2 = 2px$	$y^2 = d$, где $d > 0$	$y^2 = -d$, где $\mathrm{d} > 0$	$y^2 = 0$

7 Дайте определение цилиндрической поверхности.

Рассмотрим кривую ϕ , лежащую в некоторой плоскости P, и прямую L, не лежащую в P. Определение: Цилиндрической поверхностью называют множество всех прямых, параллельных L и пересекаюих ϕ

8 Дайте определение линейчатой поверхности. Приведите три примера.

Определение: Линейчатой называют поверхность, образованную движением прямой линии. Любой цилиндр является линейчатой поверхностью. Примеры:

- 1) Эллиптический цилиндр $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 2) Гиперболический цилиндр $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
- 3) Параболический цилиндр $y^2 = 2px$

9 Дайте определение полуторалинейной формы. Дайте определение эрмитовой формы.

Определение: $f: V \times V \to \mathbb{E}$ называется полуторалинейной $(\frac{3}{2}$ - лин.) формой на комплексном векторном пространстве, если:

 $\forall x, y, z \in V$ и $\forall \alpha, \beta \in \mathbb{C}$:

- 1) $f(\alpha x + \beta y, z) = \alpha f(x, z) + \beta f(y, z)$
- 2) $f(x,\alpha y+\beta z)=\overline{\alpha}f(x,y)+\overline{\beta}f(x,z)$ полуторалинейность

(это аналог билинейной формы)

Определение: Полуторалинейная форма называется эрмитовой, если $f(y,x) = f(\overline{x,y})$

10 Как меняется матрица эрмитовой формы при замене базиса?

Пусть P - матрица перехода от базиса $e_1,...,e_n$ в V к базису $e'_1,...,e'_n$ в V' Тогда м-ца эрмитовой (любой $\frac{3}{2}$ - линейной) формы преобразуется по формуле: $F'=P^TFP$

11 Дайте определение эрмитова пространства.

Определение: Эрмитовым пространством H называется пара состоящая из конечномерного векторного пространство V над $\mathbb C$ и положительно определённой эрмитовой $\frac{3}{2}$ -линеной формы. Т.е. на V задана функция (x|y) = f(x,y), такая, что $\forall x,y,z \in V$ выполнено:

1) $(x|y) = \overline{(y|x)}$ - эрмитовость

- 2) $(\alpha x + \beta y|z) = \alpha(x|z) + \beta(y|z)$ полуторалинейность
- 3) $(x|x) \ge 0$ и $(x|x) = 0 \Leftrightarrow x = 0$ положительная определённость

12 Что можно сказать про собственные значения унитарного оператора?

Все собственные значения унитарного оператора по модулю равны 1, то есть они именют вид $e^{i\phi}$

13 Дайте определение сопряжённого оператора в эрмитовом пространстве. Дайте определение эрмитова оператора.

Определение: Линейный оперетор φ^* , действующий в эрмитовом пространстве H называется сопряжённым к φ , если $\forall x,y \in H$:

 $(\varphi(x)|y) = (x|\varphi^*(y))$

Определение: Оператор φ в эрмитовом пространстве H называется эрмитовым (самосопряжённым), если $\varphi^* = \varphi$

14 Как найти матрицу сопряжённого оператора в произвольном базисе эрмитова пространства?

 \forall линейного оператора φ в конечномерном эрмитовом пространстве $\exists !$ сопряжённый линейный оператор φ^* , при этом его матрицей будет:

 $A_1: \overline{A_1} = \overline{\Gamma^{-1}}A^T\Gamma$

A если базис является ОНБ, то: $A_1 = \overline{A}^T \equiv A^*$

15 Сформулируйте определение унитарной матрицы. Сформулируйте определение унитарного оператора.

Определение: Матрица называется унитарной, если $A^*A = E$

Определение: Линейный оператор на эрмитовом пространстве H называется унитарным, если:

 $(\varphi(x)|\varphi(y)) = (x|y), \forall x, y \in H$

16 Каков канонический вид унитарного оператора?

Канонический вид унитарного линейного оператора является диагональным и все собственные значения по модулу равны 1, т.е:

$$\Sigma = \begin{pmatrix} e^{i\varphi_1} & 0 & \dots & 0 \\ 0 & e^{i\varphi_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{i\varphi_n} \end{pmatrix}, \ \text{где } \varphi_i \ \text{может совпадать c } \varphi_j$$

17 Сформулируйте критерий унитарности оператора использующий его матрицу.

Если матрица линейного оператора является унитарной в ОНБ, то оператор является унитарным.

18 Сформулируйте утверждение о сингулярном разложении в эрмитовом пространстве.

Сингулярное разложение:

 $\forall A \in M_n(\mathbb{C})$ может быть представлена в виде:

 $A = P \sum V^*$, где:

P и V - унитарные матрицы,

 $\sum \in M_{mn}(\mathbb{R})$

На диагонали: $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq ... \geq \sigma_n \geq 0$

19 Сформулируйте утверждение о полярном разложении в эрмитовом пространстве.

Полярное разложение:

 \forall квадратная матрица из $M_n(\mathbb{C})$ представима в виде:

 $A = H \cdot P$, где:

H - эрмитова матрица с неотрицательными собственными значениями

 ${\cal P}$ - унитарная