Scran Method

Scran Method 1/13

scran Method: Steps

- Constructing Pools of Cells
 - Group cells into pools to mitigate zero counts.
 - Pooling similar cells averages out dropouts.
- Summing Counts Across Pools
 - Sum gene counts across cells in each pool.
 - Reduces impact of zero counts and technical noise.
- Calculating Pool-Based Size Factors
 - Compute size factors for each pool.
 - Normalize summed counts for library size differences.

Scran Method 2 / 13

scran Method: Steps

- Openion of the Deconvolution of Cell-Specific Factors
 - Deconvolute pool-based factors to infer cell-specific factors.
 - Solve a linear system relating pooled and individual factors.
- Normalization of Individual Cell Counts
 - Normalize original counts using cell-specific size factors.
 - Adjusts for library size differences at the cell level.

Scran Method 3 / 13

Scran Normalization: A Mathematical Overview

 Y_{ij} : Count of gene i in cell j. Expected Count: $E(Y_{ij}) = \theta_j \lambda_{i0}$

- θ_j : Cell-specific bias.
- λ_{i0} : Expected transcript count for gene i.

Adjusting the Count (Z_{ij}) : $Z_{ij} = \frac{Y_{ij}}{t_j}$

• t_j : Adjustment factor for cell j.

Expected Adjusted Count $(E(Z_{ij}))$: $E(Z_{ij}) = \frac{\theta_j \lambda_{i0}}{t_i}$

Scran Method 4/1

Pooling Cells

Consider a pool k

$$E(V_{ik}) = \lambda_{i0} \sum_{j \in S_k} \frac{\theta_j}{t_j} \tag{1}$$

where:

- $E(V_{ik})$: Expected summed of Z_{ij} expression value for gene i in pool k.
- S_k : Set of cells in pool k.

Scran Method 5 / 13

Reference Pseudo-Cell in Scran Normalization

• Averaged Reference Pseudo-Cell U_i , define U_i as the mean of Z_{ij} across all N cells in the entire dataset, with S_0 referring to the set of all cells in the data set.

$$E(U_i) = \lambda_{i0} N^{-1} \sum_{j \in S_0} \frac{\theta_j}{t_j}$$
 (2)

Scran Method 6 / 13

Normalization Against Reference Pseudo-Cell

Normalization Process

• Each cell pool k is normalized against the reference pseudo-cell. For a non-DE gene i, define R_{ik} as the ratio of V_{ik} to U_i .

$$R_{ik} = \frac{V_{ik}}{U_i} \tag{3}$$

Expectation of R_{ik}

• The expectation of R_{ik} represents the true size factor for the pooled cells in S_k .

Scran Method 7 / 13

Calculation of Size Factor

$$E(R_{ik}) \approx \frac{E(V_{ik})}{E(U_i)} = \frac{\sum_{j \in S_k} \frac{\theta_j}{t_j}}{N^{-1} \sum_{j \in S_0} \frac{\theta_j}{t_i}}$$
(4)

Simplifying the expectation, we get:

$$E(R_{ik}) = \frac{\sum_{j \in S_k} \frac{\theta_j}{t_j}}{C} \tag{5}$$

- The approximation assumes that the variance of U_i is small, which is valid for datasets with hundreds of cells.
- C is a constant that does not depend on the gene, cell, or S_k .

Scran Method 8 / 13

Estimation of Pool-Based Size Factor

- Denote the realizations of Y_{ij} , V_{ik} , U_i , and R_{ik} as y_{ij} , v_{ik} , u_i , and r_{ik} , respectively.
- The pool-based size factor $E(R_{ik})$ is estimated by taking a robust average (e.g., the median) of r_{ik} across all genes.

Scran Method 9 / 13

Calculating rik

Observed Values:

- y_{ij} : Observed count of gene i in cell j.
- v_{ik}: Observed sum of adjusted expression values for gene i across all cells in pool k.
- u_i : Observed mean of adjusted expression values for gene i across all cells in the dataset.

• Calculating r_{ik}:

• Calculated as $r_{ik} = \frac{v_{ik}}{u_i}$.

Scran Method 10 / 13

Using Estimates of $E(R_{ik})$ and Setting Up Linear Equations

- Estimates of $E(R_{ik})$ are derived from various cell pools.
- These estimates are used to estimate θ_i for each cell.

Linear Equation Formation

• For each cell pool k, linear equations are formed using the estimates of $E(R_{ik})$.

$$E(R_{ik}) = \frac{\sum_{j \in S_k} \frac{\theta_j}{t_j}}{C} \tag{6}$$

- The process is repeated with different cell pools.
- This leads to a system of linear equations.

Scran Method 11 / 13

Solving the System and Final Estimation

Least-Squares Method

- The system is solved using least-squares methods.
- This provides estimates of $\frac{\theta_j}{t_j}$ for all cells.

Deconvolution and Estimating θ_j

- The process represents deconvolution of cell pool factors to individual cell factors.
- By multiplying the estimated $\frac{\theta_j}{t_j}$ by t_j , an estimate of θ_j is obtained for each cell.

Scran Method 12 / 13

Constructing the Linear System by Selecting Cell Pools

Grouping Cells by Library Size:

 Cells are ordered by total counts and partitioned into odd and even groups.

Arranging Cells in a Ring:

- Cells are arranged in a ring, with odd cells on one side and even cells on the other.
- Starts with largest libraries at 12 o'clock, moving clockwise to smallest at 6 o'clock, then through odd cells.

Using a Sliding Window:

- A sliding window moves across the ring, each window containing the same number of cells.
- Each window defines a single instance of S_k .

Defining Separate Equations:

• Each window of cells defines a separate equation in the linear system.

Advantages of the Ring Structure:

• Ensures uniform selection of cell pools.

Scran Method 13 / 13