Applied Machine Learning

Introduction

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

What is Machine Learning (ML)?

- The study of computer programs (algorithms) that can learn by example
- ML algorithms can generalize from existing examples of a task
 - e.g. after seeing a training set of labeled images, an image classifier can figure out how to apply labels accurately to new, previously unseen images

Speech Recognition

Machine Learning models can learn by example

- Algorithms learn rules from labelled examples
- A set of labelled examples used for learning is called training data.
- The learned rules should also be able to generalize to correctly recognize or predict new examples not in the training set.

Audio signal

-illophi-i-

Output text

How do I get to Ann Arbor?

Hello!

Please order me a pizza.

Machine Learning models learn from experience

 Labeled examples (Email spam detection)

 User feedback (Clicks on a search page)

 Surrounding environment (self-driving cars)

Machine Learning brings together statistics, computer science, and more...

- Statistical methods
 - Infer conclusions from data
 - Estimate reliability of predictions
- Computer science
 - Large-scale computing architectures
 - Algorithms for capturing, manipulating, indexing, combining, retrieving and performing predictions on data
 - Software pipelines that manage the complexity of multiple subtasks
- Economics, biology, psychology
 - How can an individual or system efficiently improve their performance in a given environment?
 - What is learning and how can it be optimized?

Machine Learning for fraud detection and credit scoring

Web search: query spell-checking, result ranking, content classification and selection, advertising placement

Machine Learning for Speech Recognition

Acoustic model

Language model

Preprocessing

Feature extraction

Decoder

"How do I get to Ann Arbor?"

Lexicon

Machine Learning algorithms are at the heart of the information economy

- Finance: fraud detection, credit scoring
- Web search
- Speech recognition
- eCommerce: Product recommendations
- Email spam filtering
- Health applications: drug design and discovery
- Education: Automated essay scoring

What is **Applied Machine Learning?**

- Understand basic ML concepts and workflow
- How to properly apply 'black-box' machine learning components and features
- Learn how to apply machine learning algorithms in Python using the <u>scikit-learn</u> package
- What is not covered in this course:
 - Underlying theory of statistical machine learning
 - Lower-level details of how particular ML components work
 - In-depth material on more advanced concepts like deep learning

Recommended text for this course

Introduction to Machine Learning with Python

A Guide for Data Scientists
By Andreas C. Müller and Sarah Guido

O'Reilly Media

Applied Machine Learning

Key Concepts in Machine Learning

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

Key types of Machine Learning problems

Supervised machine learning: Learn to predict target values from labelled data.

- Classification (target values are discrete classes)
- Regression (target values are continuous values)

Supervised Learning (classification

Training set

X Sample	Y Target Value (Label)		
x_1	Apple y_1		
x_2	Lemon y_2		
x_3	Apple y_3		
x_4	Orange y_4		

At training time, the classifier uses labelled examples to learn rules for recognizing each fruit type.

Label: Orange

Future sample

After training, at prediction time, the trained model is used to predict the fruit type for new instances using the learned rules.

Examples of explicit and implicit label sources

Explicit labels

Implicit labels

Clicking and reading the "Mackinac Island" result can be an implicit label for the search engine to learn that "Mackinac Island" is especially relevant for the query [vacations in michigan] for that specific user.

Key types of Machine Learning problems

Supervised machine learning: Learn to predict <u>target</u> <u>values</u> from labelled data.

- Classification (target values are discrete classes)
- Regression (target values are continuous values)

<u>Unsupervised</u> machine learning: Find structure in unlabeled data

- Find groups of similar instances in the data (clustering)
- Finding unusual patterns (outlier detection)

Unsupervised learning: finding useful structure or knowledge in data when no labels are available

- Finding clusters of similar users (clustering)
- Detecting abnormal server access patterns (unsupervised outlier detection)

A Basic Machine Learning Workflow

Choose:

- A feature representation
- Type of classifier to use

e.g. image pixels, with k-nearest neighbor classifier

Choose:

- What criterion distinguishes good vs. bad classifiers?
- e.g. % correct predictions on test set

Choose:

• How to search for the settings/parameters that give the best classifier for this evaluation criterion

e.g. try a range of values for "k" parameter in k-nearest neighbor classifier

Feature representation

A list of words with

their frequency counts

Feature Representations

Email

To: Chris Brooks
From: Daniel Romero

Subject: Next course offering

Hi Daniel,

Could you please send the outline for the next course offering? Thanks! -- Chris

	Feature	Count
	to	1
	chris	2
	brooks	1
	from	1
\neg	daniel	2
	romero	1
	the	2

A

Feature

Length

Value

Orange

White

Black

4.3 cm

Yes

Yes

A matrix of color values (pixels)

<u>Picture</u>

Sea Creatures

A set of attribute values

Representing a piece of fruit as an array of features (plus label information)

Represent / Train / Evaluate / Refine Cycle

Extract and select object features

Train models:

Fit the estimator to the data

Feature and model refinement

Evaluation

Applied Machine Learning

Python Tools for Machine Learning

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

scikit-learn: Python Machine Learning Library

- scikit-learn Homepage <u>http://scikit-learn.org/</u>
- scikit-learn User Guide <u>http://scikit-learn.org/stable/user_guide.html</u>
- scikit-learn API reference http://scikit-learn.org/stable/modules/classes.html
- In Python, we typically import classes and functions we need like this:

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

SciPy Library: Scientific Computing Tools

http://www.scipy.org/

- Provides a variety of useful scientific computing tools, including statistical distributions, optimization of functions, linear algebra, and a variety of specialized mathematical functions.
- With scikit-learn, it provides support for *sparse* matrices, a way to store large tables that consist mostly of zeros.
- Example import: import scipy as sp

NumPy: Scientific Computing Library

http://www.numpy.org/

- Provides fundamental data structures used by scikit-learn, particularly multi-dimensional arrays.
- Typically, data that is input to scikit-learn will be in the form of a NumPy array.
- Example import: import numpy as np

Pandas: Data Manipulation and

- Provides key data structures like DataFrame
- Also, support for reading/writing data in different formats
- Example import: import pandas as pd

matplotlib and other plotting libraries

```
matpletlib
```

http://matplotlib.org/

- We typically use matplotlib's pyplot module: import matplotlib.pyplot as plt
- We also sometimes use the seaborn visualization library (http://seaborn.pydata.org/)

import seaborn as sn

And sometimes the graphviz plotting library:
 import graphviz

Versions of main libraries used in this course

Library name	Minimum version			
scikit-learn	0.17.1			
scipy	0.17.1			
numpy	1.11.1			
pandas	0.18.1			
matplotlib	2.0.0			
seaborn	0.7.1			
graphviz	0.7.0			

It's okay if your versions of these don't match ours exactly, as long as the version of scikit-learn and other libraries you're using is the same or greater than listed here.

Applied Machine Learning

An Example Machine Learning Problem

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

The Fruit Dataset

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89
10	1	apple	braeburn	166	6.9	7.3	0.93
11	1	apple	braeburn	172	7.1	7.6	0.92
12	1	apple	braeburn	154	7.0	7.1	0.88
13	1	apple	golden_delicious	164	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69
15	1	apple	golden_delicious	156	7.7	7.1	0.69
16	1	apple	aolden delicious	156	7.6	7.5	0.67

fruit_data_with_colors.txt

Credit: Original version of the fruit dataset created by Dr. Iain Murray, Univ. of Edinburgh

The input data as a table

The scale for the (simplistic) color_score feature used in the fruit dataset

Creating Training and Testing Sets

Applied Machine Learning

Examining the Data

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

Some reasons why looking at the data initially is important Examples of incorrect or missing feature values

- Inspecting feature values may help identify what cleaning or preprocessing still needs to be done once you can see the range or distribution of values that is typical for each attribute.
- You might notice missing or noisy data, or inconsistencies such as the wrong data type being used for a column, incorrect units of measurements for a particular column, or that there aren't enough examples of a particular class.
- You may realize that your problem is actually solvable without machine learning.

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	192
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarir	apple	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn		7.4	7.0	0.89
10	1	apple	braeburn		6.9	7.3	0.93
11	1	apple	braeburn		7.1	7.6	0.92
12	1	apple	braeburn		7.0	7.1	0.88
13	1	apple	golden_delicious	C.	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69

A pairwise feature scatterplot visualizes the data using all possible pairs of features, with one scatterplot per feature pair, and histograms for each feature along the

Individual scatterplot plotting all fruits by their **height** and **color_score**. Colors represent different fruit classes.

In [27]: fruits

Out[27]:

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89
10	1	apple	braeburn	166	6.9	7.3	0.93
11	1	apple	braeburn	172	7.1	7.6	0.92
12	1	apple	braeburn	154	7.0	7.1	0.88
13	1	apple	golden_delicious	164	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69
15	1	apple	golden_delicious	156	7.7	7.1	0.69
16	1	apple	golden_delicious	156	7.6	7.5	0.67

In [88]: fruits.shape

Out[88]: (59, 7)

In [88]: fruits.shape

Out[88]: (59, 7)

In [92]: X_train.shape

Out[92]: (44, 4)

In [93]: X_test.shape

Out[93]: (15, 4)

In [94]: y_train.shape

Out[94]: (44,)

In [95]: y_test.shape

Out[95]: (15,)

In [96]: X_train

Out[96]:		height	width	mass	color_score
	42	7.2	7.2	154	0.82
	48	10.1	7.3	174	0.72
	7	4.0	5.8	76	0.81
	14	7.3	7.6	152	0.69
	32	7.0	7.2	164	0.80
	49	8.7	5.8	132	0.73
	29	7.4	7.0	160	0.81
	37	7.3	7.3	154	0.79
	56	8.1	5.9	116	0.73
	18	7.1	7.5	162	0.83
	55	7.7	6.3	116	0.72
	27	9.2	7.5	204	0.77
	15	7.1	7.7	156	0.69
	5	4.3	5.8	80	0.77
	31	8.0	7.8	210	0.82
	16	7.5	7.6	156	0.67

In [98]: y_train

In [97]: X_test

Out[97]:		height	width	mass	color_score
	26	9.2	9.6	362	0.74
	35	7.9	7.1	150	0.75
	43	10.3	7.2	194	0.70
	28	7.1	6.7	140	0.72
	11	7.6	7.1	172	0.92
	2	7.2	7.4	176	0.60
	34	7.8	7.6	142	0.75
	46	10.2	7.3	216	0.71
	40	7.5	7.1	154	0.78
	22	7.1	7.3	140	0.87
	4	4.6	6.0	84	0.79
	10	7.3	6.9	166	0.93
	30	7.5	7.1	158	0.79
	41	8.2	7.6	180	0.79
	33	8.1	7.5	190	0.74

In [99]: y_test

from matplotlib import cm
cmap = cm.get_cmap('gnuplot')
scatter = pd.scatter_matrix(X_train, c= y_train, marker = 'o', s=40, hist_kwds={'bins':15}, figsize=(12,12), cmap=cmap)

A three-dimensional feature scatterplot

A three-dimensional feature scatterplot


```
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
ax.scatter(X_train['width'], X_train['height'], X_train['color_score'], c = y_train, marker = 'o', s=100)
ax.set_xlabel('width')
ax.set_ylabel('height')
ax.set_zlabel('color_score')
plt.show()
```

Applied Machine Learning

K-Nearest Neighbors Classification

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

The k-Nearest Neighbor (k-NN) Classifier Algorithm

Given a training set X_train with labels y_train, and given a new instance x_test to be classified:

- 1. Find the most similar instances (let's call them X_NN) to x_test that are in X_train.
- 2. Get the labels y_NN for the instances in X_NN
- 3. Predict the label for x_test by combining the labels y_NN e.g. simple majority vote

A visual explanation of k-NN

Fruit dataset Decision boundaries with k = 1

A nearest neighbor algorithm needs four things specified

- 1. A distance metric
- 2. How many 'nearest' neighbors to look at?
- 3. Optional weighting function on the neighbor points
- 4. Method for aggregating the classes of neighbor points

A nearest neighbor algorithm needs four things specified

- 1. A distance metric

 Typically Euclidean (Minkowski with p = 2)
- 2. How many 'nearest' neighbors to look at?e.g. five
- 3. Optional weighting function on the neighbor points **Ignored**
- 4. How to aggregate the classes of neighbor points
 Simple majority vote
 (Class with the most representatives among nearest neighbors)

K-nearest neighbors (k=1) for fruit dataset

K-nearest neighbors (k=5) for fruit dataset

K-nearest neighbors (k=10) for fruit dataset

How sensitive is k-NN classifier accuracy to the choice of 'k' parameter?

Fruit dataset with 75%/25% train-test split