```
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv('/content/drive/MyDrive/1788410-1767134-1729261-1613779-Red_wine__(1).csv')
print(df)
          fixed acidity volatile acidity citric acid residual sugar chlorides \
    0
                    7.4
                                    0.700
                                                 0.00
                                                                  1.9
                                                                           0.076
                    7.8
                                                 0.00
                                                                           0.098
    1
                                    0.880
                                                                  2.6
    2
                    7.8
                                                 0.04
                                                                           0.092
                                    0.760
                                                                  2.3
    3
                   11.2
                                    0.280
                                                 0.56
                                                                  1.9
                                                                           0.075
                    7.4
                                    0.700
                                                 0.00
                                                                  1.9
                                                                           0.076
                    . . .
                                                  . . .
                                                                            . . .
     . . .
                                     . . .
                                                                  . . .
    1594
                    6.2
                                    0.600
                                                 0.08
                                                                  2.0
                                                                           0.090
                    5.9
    1595
                                    0.550
                                                 0.10
                                                                  2.2
                                                                           0.062
    1596
                    6.3
                                    0.510
                                                 0.13
                                                                  2.3
                                                                           0.076
    1597
                    5.9
                                    0.645
                                                 0.12
                                                                  2.0
                                                                           0.075
                    6.0
    1598
                                    0.310
                                                 0.47
                                                                  3.6
                                                                           0.067
          free sulfur dioxide total sulfur dioxide density
                                                               pH sulphates \
    0
                         11.0
                                              34.0 0.99780 3.51
                                                                        0.56
    1
                         25.0
                                              67.0 0.99680 3.20
                                                                        0.68
                         15.0
                                              54.0 0.99700 3.26
    2
                                                                        0.65
                                              60.0 0.99800 3.16
    3
                         17.0
                                                                        0.58
    4
                         11.0
                                              34.0 0.99780 3.51
                                                                        0.56
                                                        ...
                          . . .
                                               . . .
                                                                        . . .
     . . .
                                              44.0 0.99490 3.52
    1594
                         32.0
                                                                        0.58
    1595
                         39.0
                                              51.0 0.99512 3.52
                                                                        0.76
    1596
                         29.0
                                              40.0 0.99574 3.52
                                                                        0.75
    1597
                         32.0
                                              44.0 0.99547 3.52
                                                                        0.71
    1598
                         18.0
                                              42.0 0.99549 3.52
                                                                        0.66
          alcohol quality
    0
              9.4
                       5.0
                       5.0
    1
              9.8
                       5.0
    2
              9.8
    3
              9.8
                       6.0
              9.4
    4
                       5.0
    1594
             10.5
                       5.0
    1595
             11.2
                       6.0
    1596
             11.0
                       6.0
    1597
             10.2
                       5.0
    1598
             11.0
                       6.0
     [1599 rows x 12 columns]
df.hist(bins=25,figsize=(10,10))
# display histogram
plt.show()
```



```
# plot bar graph
plt.bar(df['quality'],df['alcohol'],color='red')
# label x-axis
plt.xlabel('quality')
#label y-axis
plt.ylabel('alcohol')
```

Text(0, 0.5, 'alcohol')

ploting heatmap
plt.figure(figsize=[19,10],facecolor='blue')
hm = sns.heatmap(df.corr(),annot=True)

													1.0
fixed acidity	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	0.028	0.18	-0.062	0.12	
violable acidity -	-0.26	1	-0.55	0.0019	0.061	-0.011	0.077	0.022	-0.046	-0.26	-0.2	-0.39	+ 0.8
citric acid -	0.67	-0.55	1	0.14	0.2	-0.061	0.035	0.36	0.0084	0.31	0.11	0.23	
residual sugar -	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	0.04	0.0055	0.042	0.014	5,0.6
chlorides	0.094	0.061	0.2	0.056	1	0.0056	0.048	0.2	-0.26	0.37	-0.22	-0.13	- b.4
free sulfur ploxide	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	-0.025	0.052	-0.069	-0.051	
total suffur dioxide -	-0.11	0.077	0.035	0.2	0.048	0.67	1	0.071	-0.16	0.042	-0.21	-0.18	- 0.2
density -	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.038	0.15	-0.5	-0.17	- q.n
pH -	0.028	-0.046	0.0084	0.04	-0.26	-0.025	-0.16	-0.038	1	-0.26	0.23	0.13	

```
for a in range(len(df.corr().columns)):
    for b in range(a):
       if abs(df.corr().iloc[a,b]) >0.7:
           name = df.corr().columns[a]
           print(name)
new_df=df.drop('total sulfur dioxide',axis=1)
  new_df.isnull().sum()
    fixed acidity
    volatile acidity
                           0
    citric acid
                           0
    residual sugar
                           0
    chlorides
    free sulfur dioxide
     density
    рΗ
                           1
    .
sulphates
                           0
     alcohol
                           0
     quality
                           1
     dtype: int64
new_df.update(new_df.fillna(new_df.mean()))
# catogerical vars
next_df = pd.get_dummies(new_df,drop_first=True)
# display new dataframe
next_df
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	density	рН	sulphates	alcohol	quality	
0	7.4	0.700	0.00	1.9	0.076	11.0	0.99780	3.51	0.56	9.4	5.0	ıl.
1	7.8	0.880	0.00	2.6	0.098	25.0	0.99680	3.20	0.68	9.8	5.0	
2	7.8	0.760	0.04	2.3	0.092	15.0	0.99700	3.26	0.65	9.8	5.0	
3	11.2	0.280	0.56	1.9	0.075	17.0	0.99800	3.16	0.58	9.8	6.0	
4	7.4	0.700	0.00	1.9	0.076	11.0	0.99780	3.51	0.56	9.4	5.0	
1594	6.2	0.600	0.08	2.0	0.090	32.0	0.99490	3.52	0.58	10.5	5.0	
1595	5.9	0.550	0.10	2.2	0.062	39.0	0.99512	3.52	0.76	11.2	6.0	
1596	6.3	0.510	0.13	2.3	0.076	29.0	0.99574	3.52	0.75	11.0	6.0	
1597	5.9	0.645	0.12	2.0	0.075	32.0	0.99547	3.52	0.71	10.2	5.0	
1598	6.0	0.310	0.47	3.6	0.067	18.0	0.99549	3.52	0.66	11.0	6.0	

1599 rows × 11 columns

```
next_df['best quality'] = [ 1 if x>=7 else 0 for x in df.quality]
print(next_df)
          fixed acidity volatile acidity citric acid residual sugar chlorides \
    0
                   7.4
                                   0.700
                                                0.00
                                                                1.9
                                                                         0.076
                   7.8
                                                0.00
                                                                         0.098
    1
                                   0.880
                                                                2.6
    2
                   7.8
                                   0.760
                                                0.04
                                                                2.3
                                                                         0.092
    3
                  11.2
                                                0.56
                                                                         0.075
                                   0.280
                                                                1.9
    4
                   7.4
                                   0.700
                                                0.00
                                                                1.9
                                                                         0.076
                    . . .
                                    . . .
                                                 . . .
                                                                         . . .
    . . .
                                                                . . .
                   6.2
                                   0.600
                                                0.08
                                                                         0.090
    1594
                                                                2.0
    1595
                   5.9
                                   0.550
                                                0.10
                                                                2.2
                                                                         0.062
    1596
                   6.3
                                   0.510
                                                0.13
                                                                2.3
                                                                         0.076
                   5.9
                                                0.12
                                                                         0.075
    1597
                                   0.645
                                                                2.0
                   6.0
                                                0.47
    1598
                                   0.310
                                                                3.6
                                                                         0.067
                                                               quality \
          free sulfur dioxide density
                                        pH sulphates alcohol
    0
                        11.0 0.99780 3.51
                                                 0.56
                                                          9.4
                                                                   5.0
                        25.0 0.99680 3.20
    1
                                                 0.68
                                                           9.8
                                                                   5.0
    2
                        15.0 0.99700 3.26
                                                          9.8
                                                                   5.0
                                                 0.65
    3
                        17.0 0.99800 3.16
                                                 0.58
                                                           9.8
                                                                   6.0
                        11.0 0.99780 3.51
                                                          9.4
    4
                                                 0.56
                                                                   5.0
                                                           . . .
    1594
                        32.0 0.99490 3.52
                                                 0.58
                                                          10.5
                                                                   5.0
    1595
                        39.0 0.99512 3.52
                                                 0.76
                                                          11.2
                                                                   6.0
    1596
                        29.0 0.99574 3.52
                                                 0.75
                                                         11.0
                                                                   6.0
    1597
                        32.0 0.99547 3.52
                                                 0.71
                                                         10.2
                                                                   5.0
    1598
                        18.0 0.99549 3.52
                                                 0.66
                                                         11.0
                                                                   6.0
          best quality
    0
    1
                    0
    2
                    0
    3
                    0
                    0
    . . .
                   . . .
    1594
                    0
    1595
                    0
    1596
    1597
                    0
    1598
    [1599 rows x 12 columns]
x =next_df[['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol']].values
y=next_df[['quality']].values
print(x,y)
    [[ 7.4
              0.7
                    0.
                         ... 3.51 0.56
                                            9.4 ]
                    0. ... 3.2
                                            9.8 ]
     [ 7.8
              0.88
                                      0.68
     [ 7.8
              0.76
                   0.04 ... 3.26
                                     0.65
                                           9.8 ]
     . . .
     [ 6.3
              0.51
                    0.13 ... 3.52
                                     0.75 11.
              0.645 0.12 ... 3.52 0.71 10.2 ]
     [ 5.9
     [ 6.
              0.31 0.47 ... 3.52 0.66 11. ]] [[5.]
     [5.]
     [5.]
     [6.]
     [5.]
```

[6.]]

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
     (1279, 10)
     (320, 10)
     (1279, 1)
     (320, 1)
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(x_train,y_train)
     ▼ LinearRegression
     LinearRegression()
m=reg.coef_
c=reg.intercept_
m,c
     (array([[ 7.61299576e-02, -1.11782342e+00, -3.38472674e-01,
              1.52143544e-02, -1.24354762e+00, -1.91370810e-03,
              -4.19066394e+01, 7.06037044e-01, 9.55526413e-01,
              2.56901254e-01]]),
      array([41.77133681]))
  pred_train=reg.predict(x_train)
pred_test=reg.predict(x_test)
result=reg.predict([[7.4,0.70,0.00,1.9,0.076,11.0,0.9978,3.51,0.56,9.4]])
print(result)
     [[5.07928073]]
print(pred_test)
```

```
[5.13212069]
      [5.32330805]
      [5.84315814]
      [5.68022258]
      [6.91446337]
      [6.22540645]
      [6.02181849]
      [5.47810719]
      [6.47165341]
      [5.85131908]
      [6.20383682]
      [5.14085342]
      [5.08900269]
      [5.86087574]
      [6.30643251]
      [5.01725674]
      [5.82854885]
      [5.40879205]
      [5.24801032]
      [5.18790395]
      [5.50468925]
      [5.51932693]
      [6.21625215]
      [6.29524526]
      [5.28217232]
      [6.51317673]
      [5.03139834]
      [5.29518795]
      [5.61867683]
      [5.38023124]
      [5.69979676]
      [4.96234158]
      [6.16791303]
      [5.07029908]
      [5.95648617]
      [5.65208193]
      [6.53485691]
      [5.64355972]
      [5.52328544]
      [5.18021361]
      [6.28527943]
      [5.06213686]
      [6.2457012]
      [6.21070236]
      [6.43820173]
      [5.4409003]
      [5.1731981]
      [6.30357192]
from sklearn.metrics import r2_score
r2_train=r2_score(y_train,pred_train)
r2_test=r2_score(y_test,pred_test)
print(r2_train)
print(r2_test)
     0.3415530519610981
     0.40407582696460875
plt.plot(y_test,color='red',label='Actual')
plt.plot(pred_test,color='blue',label='predicted')
plt.xlabel('Number of red wine')
```

```
plt.ylabel('Quality')
plt.legend()
plt.show()
```


dataset=pd.DataFrame({'Actual':y_test.flatten(),'Predicted' :pred_test.flatten()})
dataset

	Actual	Predicted	
0	6.0	5.370998	11.
1	5.0	5.184550	
2	6.0	5.679594	
3	5.0	5.371354	
4	6.0	5.674634	
315	6.0	5.710216	
316	5.0	5.056126	
317	5.0	5.281007	
318	6.0	6.180738	
319	4.0	5.185488	

320 rows × 2 columns

dataset.head(40).plot(kind='bar')
plt.xlabel('number of red wine')

plt.ylabel('Quality')

Text(0, 0.5, 'Quality')

