International Islamic University Chittagong Department of Electrical and Electronic Engineering

B. Sc. Engineering in EEE

Final Exam, Autumn 2022

Course Code: MATH 1107

Course Title: Mathematics I

Time: 2 hours 30 minutes

Full Marks: 50

(i) The figures in the right-hand margin indicate full marks

(ii) Course Outcomes and Bloom's Levels are mentioned in additional Columns

	Course Outcomes (COs) of the Questions
CO1	For engineering problems, it is essential to get Knowledge of the limit, continuity, and differentiability, power series, Rolle's Theorem, Mean value theorem, Taylor, and McLaurin series.
CO2	By applying the method of partial differential(PD) to recognize the optimal value of the model equations.
CO3	Implementing the mathematical problems by applying the definite and indefinite along with the surface and volume integration expresses engineering problems

Bloom's Levels of the Questions								
Letter Symbols	R	U	App	An	Е	С		
Meaning	Remember	Understand	Apply	Analyze	Evaluate	Create		

Q. No. Part A

[Answer the questions from the followings]

CO BL

M

- 1. a) (i) Define the term "homogeneous function." If $u = \log(x^3 + y^3 + \text{CO2})$ R, $(x^3 3xyz)$ then show that $(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z})^2 u = -\frac{9}{(x+y+z)^2}$ Ap,
 - (ii) Investigate the maximum and minimum value of $f(x) = (x-2)^3(x-1)^4$ by using first time derivative.
- 1. b) State and prove Euler's theorem.

CO2 R,E 1+2

- 2. a) Evaluate (i) $\int \frac{x^3}{4+x^8} dx$, (ii) $\int \frac{x+3}{x^2+3x+7} dx$, and (iii) $\int \frac{1-\sin x}{x+\cos x} dx$ CO3 Ap 1×3
- 2. b) Evaluate (i) $\int \left(\frac{x \tan^{-1} x}{(1+x^2)^{\frac{3}{2}}}\right) dx$, and (ii) $\int \frac{x^2}{(x+1)(x+4)(x+3)} dx$ CO3 Ap 2 ×3.5

b) Evaluate (i) $\int \frac{x^2}{(x^2+1)(3x^2+1)} dx$, and (ii) $\int \tan^{-1} \sqrt{\frac{1-x}{1+x}} dx$ CO₃ 2×3 2. Part B [Answer the questions from the followings] (i). Evaluate the integral $\int_0^5 2x \, dx$ by the definition of the limit of CO₃ 2.5+2.53. (ii). Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of beta function then Evaluate, $\int_0^1 x^6 (1 - x^4)^9 dx$. 3. b) (i). Evaluate $\int \sin^5 x$ by applying the reduction formula. CO₃ E 2.5+2.5(ii). Evaluate $\int_0^{2a} x^{\frac{9}{2}} (2a - x)^{-\frac{1}{2}} dx$ by applying Willi's formula. 4. a) Evaluate the followings integrals CO₃ E,E2+2:(i) $\int_0^1 \int_{5-y}^{\sqrt{25-y^2}} y dy dx$ (ii) $\int_0^{ln3} \int_0^{ln2} e^{x+y} dy dx$ CO3 E,E b) i) Evaluate $\iiint_R (2x - y + z) dx dy dz$, where $R: 0 \le x \le 1, 0 \le y \le 1$ 3 + 3(ii) Determine the area of the region bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ a) Determine the volume of the spindle shaped solid generated by CO3 5. 5 revolving the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5^{\frac{2}{3}}$. b) Find the volume and area of the curved surface of the paraboloid of CO3 E 5 5. revolution formed by revolving the parabola $y^2 = 4ax$ about the x -axis, and bound the section $x = x_1$. Or, Find the volume and area of the curved surface of the paraboloid of CO3 5. 5 revolution formed by revolving the parabola $x^2 = 4ay$ about the y -axis, and bound the section $y = y_1$. b) Find the volume of the part of the parabola $y^2 = 4ax$ bounded by the 5. CO₃ latus rectum revolves about the tangent at the vertex.

a) Evaluate, $\int e^{2x} \cos 2x \ dx$.

CO₃

4