Centro delle velocità

martedì 19 novembre 2024 11:16

I on punto di ROIM, Cyt.c. Va=0 per t=t, re w xo?

$$\underline{V}_{GV} = \underline{Q} = \underline{V}_{A} + \underline{W} \wedge \overrightarrow{A}_{GV}$$
 (1)

$$\frac{1}{AC} = \frac{|\underline{w}|}{|\underline{w}|}$$

052ERVAWDN1

$$V_A = v_C = Q$$
 per RSS.

Rss

CVEA

Rss

GU = B

Cv = D

CV "SI MUDUELY SUL CORPO RIGIDO E' UN PUNTO de R CHE CAMBIA NEL TEMPS

$$\tilde{V}P = \tilde{V}P_{\alpha} + \tilde{V}P_{\alpha}$$

OEG => +t GEFESSO

3) DISTRIBUZ. VELDCOA!

4) COME TROVIAMO IL CU ? FATRE = CV TEOREMA DI CHASLES direanne NP. Na =) N delle dir 1 opena travettorie di Pea (8p, 80) =) 1 delle to a 8 pe 8 te

CIR(t)

CENTRO DI ISTANTANEA ROTAZIONE (définito de W & O)

tet1

- Om RSS SU OF =) 3) PROPR. FONDAMENTALE
 - toccomo in agri istorie => CV/CIR **⇒**)
 - 3) horno to in comune
 - desnivono la gume. del noto R =)

Qa # 0

1cr = 0

$$C = 0$$

$$a_{Q} = 0$$

$$a_{0} - \longrightarrow 0$$

$$a_{0} = \underbrace{d}_{db} v_{0} = \underbrace{\theta r \dot{v}}_{i}$$

$$a_{0} = \underbrace{d}_{db} v_{0} = \underbrace{\theta r \dot{v}}_{i}$$

$$\underline{\alpha}_{c_{1}} = \frac{\ddot{\theta}_{1}}{\ddot{\theta}_{1}} + (-\frac{\ddot{\theta}_{1}}{\ddot{\theta}_{1}}) - \frac{\dot{\theta}^{2}}{\ddot{\theta}^{2}} (-r_{1})$$

CASO GENERALE

$$ac = -Dw^2n$$

o)
$$n \perp t_0$$
 also the $t_0 = 0$ possions scepter to $n' = \frac{1}{100}$

- ·) A) & moto RES rispetto al TELALO w=w
 - B) R u
- al corpo (NMOTO
- $\omega = \omega_2 \omega_1$

•)
$$\frac{1}{D} = \frac{1}{\widehat{R}_{f}} - \frac{1}{\widehat{R}_{m}}$$

$$\frac{1}{R_{f}} = \frac{1}{R_{m}}$$

$$\underline{a}_{\omega} = -D\omega^2 \underline{n}$$

$$\frac{1}{D} = \frac{1}{R_c} - \frac{1}{R_M}$$

$$R_{n} = \overrightarrow{C_{n}O_{n}} \cdot N = (R_{n}N_{n}) \cdot N = R_{n} > 0$$

POLARI CIRCOLARI

$$a_{cv} = -b\omega^2 h$$

$$\frac{2}{R} = \frac{1}{C} \cdot R = -R$$

$$\frac{1}{D} = \frac{1}{\widehat{R}_{k}} - \frac{1}{\widehat{R}_{m}} = -\frac{1}{R} - \frac{1}{R}$$

$$\frac{1}{D} = -\frac{r+R}{Rr}$$

$$\underline{acv} = \underbrace{Rr}_{\Gamma+R} w^2 n$$

$$\hat{R}_{n} = \vec{c}_{n} \cdot \vec{c}_{n} \cdot \vec{c}_{n} = R$$

$$\hat{R}_{m} = \vec{c}_{n} \cdot \vec{c}_{m} \cdot \vec{c}_{n} = R$$

$$\hat{R}_{n} - \hat{C}_{n}\hat{O}_{n} \cdot \hat{N} = r$$

$$\frac{1}{p} = \frac{1}{R} - \frac{1}{r} = \frac{r - R}{Rr}$$

$$D = \frac{Rr}{r-R}$$
 20

$$a_{cv} = \frac{Rr}{r-R} w^2 n$$

$$\frac{1}{D} = \frac{1}{r} - \frac{1}{R} = \frac{R-r}{rR}$$

$$D = \frac{rR}{R-r} > 0$$

$$\underline{a}_{cr} = - \frac{rR}{R-r} w^2 N$$

