Pypianoroll: Open Source Python Package for Handling Multitrack Pianoroll

Hao-Wen Dong, Wen-Yi Hsiao and Yi-Hsuan Yang

Research Center for IT Innovation, Academia Sinica, Taipei, Taiwan [Documentation] https://salu133445.github.io/pypianoroll/

>> Core Classes

- → each beat has the same length (beat_resolution)
- → note length can represent a musically-meaningful amount of time (such as a 4th or 8th note)
- # save tempo information in the tempo array

Attributes of a Multitrack object

Attribute	Description
tracks	List of Track objects
beat_resolution	Resolution of a beat (in time step)
tempo	Array that records the tempo value
	(in bpm) at each time step
downbeat	Array that indicates the locations of
	downbeats (the first beat of a bar)
name	Name of the multitrack

Attributes of a Track object

Attribute	Description
pianoroll	Pianoroll matrix
program	Program number according to General
	MIDI Level 1 specification
is_drum	Whether it is a percussion track
name	Name of the track

>> Manipulation Utilities

pianoroll level # clip append_track merge tracks # binarize remove tracks # transpose remove empty tracks # pad to multiple get_merged_pianoroll # assign constant get_stacked_pianoroll # trim_trailing_silence

>> Evaluation Metrics

n_pitches_used empty_bar_rate qualified_note_rate # n_pitch_classes_used drum_in_pattern_rate # in_scale_rate polyphonic rate # tonal distance [2] (designed for evaluating generative system [1])

>> Content Analysis Utilities

key detection (future plan) melody recognition

chord recognition (may contribute to applications chord-related feature like lead sheet arrangement [3])

>> Visualization

>> Data I/O

extraction

(use compressed column storage to save space)

>> References

- [1] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang. MuseGAN: Symbolicdomain music generation and accompaniment with multi-track sequential generative adversarial networks. In *Proc. AAAI*, 2018.
- [2] C. Harte, M. Sandler, and M. Gasser. Detecting harmonic change in musical audio. In Proc. ACM Workshop on Audio and Music Computing Multimedia, 2006.
- [3] H.-M. Liu and Y.-H. Yang. Lead sheet generation and arrangement by conditional generative adversarial network. In *Proc. ICMLA*, 2018.
- [4] C. Raffel and D. P. W. Ellis. Intuitive analysis, creation and manipulation of MIDI data with pretty_midi. In ISMIR Late Breaking and Demo Papers, 2014.