AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking

Multiple Pairwise Ranking with

In-batch Hard Negative Sampling

Yang Yu, Qi Liu, Kai Zhang, Yuren Zhang, Chao Song, Min Hou, Yuqing Yuan, Zhihao Ye, Zaixi Zhang, Sanshi Lei Yu

Introduction

Background

- > User modeling, which aims to capture the user's characteristics or interests, is critical for many user-oriented tasks, such as user profiling, personalized recommendation, and click-through rate prediction.
- Most existing methods heavily rely on task-specific labeled data and suffer from the data sparsity problem.
- > Several recent studies tackled this issue by pre-training the user model on massive unlabeled user behavior sequences with a contrastive learning task.
- > They assume different views of the same user behavior sequence constructed via data augmentation are semantically consistent (reflecting similar characteristics or interests of the user), thus maximizing their agreement in the feature space.

Challenge: The Semantic Inconsistency Problem

Each picture represents a news article clicked by the user. Pictures with the same color border reflect similar interests of the user. Dash borders are used to indicate behaviors replaced by the data augmentation method.

- > Due to the diverse interests and heavy noise in user behaviors, existing data augmentation methods tend to lose certain characteristics of the user or introduce noisy interests that the user does not have.
- > The impacts of data augmentation vary significantly across different user behavior sequences.
- > Existing contrastive learning-based methods force the user model to maximize the agreement between the augmented views no matter whether they are similar or not, which may lead to a negative transfer for the downstream task.

Methodology

Mask

Main Idea: Self-Supervised Ranking

- \triangleright Train the user model \mathcal{M} to capture the similarity order between the implicitly augmented view, the explicitly augmented view, and views from other users.
- \triangleright User behavior sequence $S = \{x_1, x_2, ..., x_n\}$
- \triangleright Input S into M twice with different independently sampled dropout masks $\rightarrow u, u^+$ (implicit data augmentation)
- \triangleright Input the augmented behavior sequence \hat{S} into $\mathcal{M} \to \hat{u}$ (explicit data augmentation)
- \triangleright Input the behavior sequence of another user into $\mathcal{M} \rightarrow \boldsymbol{u}^-$
- ightharpoonup Pre-training objective: $sim(u, u^+) \ge sim(u, \widehat{u}) \ge sim(u, u^-)$

Representations

Multiple Pairwise Ranking (MPR) with In-batch Hard Negative Sampling

Reorder

- \triangleright Given a batch of user behavior sequences $\{S_i\}_{i=1}^B$, apply two randomly selected explicit augmentation methods to each sequence $S_i \to \hat{S}_i$ and \tilde{S}_i
- \triangleright Input \hat{S}_i and \tilde{S}_i into \mathcal{M} twice $\rightarrow \hat{u}_i$, \hat{u}_i^+ and \tilde{u}_i , \tilde{u}_i^+

Crop

- > MPR loss: extend the BPR loss to learn two pairwise ranking orders simultaneously.
- For the augmented sequence \hat{S}_i , the user representation \hat{u}_i , \hat{u}_i^+ and each $v \in \{\tilde{u}_i, \tilde{u}_i^+\}$, $\mathbf{w} \in \mathbf{U}_i^- = \left\{\widehat{\mathbf{u}}_j, \widehat{\mathbf{u}}_j^+, \widetilde{\mathbf{u}}_j, \widetilde{\mathbf{u}}_j^+\right\}_{i=1, i \neq i}^B$ form a quadruple for model training.

$$\hat{\mathcal{L}}_i = -\frac{1}{2|\mathbf{U}_i^-|} \sum_{\boldsymbol{v} \in \{\tilde{\boldsymbol{u}}_i, \tilde{\boldsymbol{u}}_i^+\}} \sum_{\boldsymbol{w} \in \mathbf{U}_i^-} \log \sigma \left[\lambda \left(\sin(\hat{\boldsymbol{u}}_i, \hat{\boldsymbol{u}}_i^+) - \sin(\hat{\boldsymbol{u}}_i, \boldsymbol{v}) \right) + (1 - \lambda) \left(\sin(\hat{\boldsymbol{u}}_i, \boldsymbol{v}) - \sin(\hat{\boldsymbol{u}}_i, \boldsymbol{w}) \right) \right]$$

> In-batch negative sampling: for each pairwise ranking order, select the pair with the smallest similarity difference to facilitate model training.

$$\hat{\mathcal{L}}_i = -\log \sigma \left[\lambda \left(\sin(\hat{\boldsymbol{u}}_i, \hat{\boldsymbol{u}}_i^+) - \max_{\boldsymbol{v} \in \{\tilde{\boldsymbol{u}}_i, \tilde{\boldsymbol{u}}_i^+\}} \sin(\hat{\boldsymbol{u}}_i, \boldsymbol{v}) \right) + (1 - \lambda) \left(\min_{\boldsymbol{v} \in \{\tilde{\boldsymbol{u}}_i, \tilde{\boldsymbol{u}}_i^+\}} \sin(\hat{\boldsymbol{u}}_i, \boldsymbol{v}) - \max_{\boldsymbol{w} \in \mathbf{U}_i^-} \sin(\hat{\boldsymbol{u}}_i, \boldsymbol{w}) \right) \right]$$

 \triangleright The loss function $\tilde{\mathcal{L}}_i$ for another augmented sequence $\tilde{\mathcal{S}}_i$ is symmetrically defined and the overall loss is computed as $\mathcal{L} = \sum_{i=1}^{B} (\hat{\mathcal{L}}_i + \tilde{\mathcal{L}}_i)/2B$.

Augmentation-Adaptive Fusion

- > The effects of data augmentation vary significantly across different behavior sequences.
- \triangleright The constant hyper-parameter λ applies a fixed and unified constraint to all samples.
- \triangleright Replace λ with a dynamic coefficient λ_i , which is estimated based on the average similarity between the user representations generated from \hat{S}_i and \tilde{S}_i .

$$\lambda_i = 1 - \frac{1}{4} \sum_{\hat{\boldsymbol{s}} \in \{\hat{\boldsymbol{u}}_i, \hat{\boldsymbol{u}}_i^+\}} \sum_{\tilde{\boldsymbol{s}} \in \{\tilde{\boldsymbol{u}}_i, \tilde{\boldsymbol{u}}_i^+\}} \max(\sin(\hat{\boldsymbol{s}}, \tilde{\boldsymbol{s}}), 0)$$

- \triangleright If \hat{S}_i and \tilde{S}_i are semantically similar, λ_i will be small and $\hat{\mathcal{L}}_i$ will focus on maximizing the latter term min $_{\boldsymbol{v} \in \{\widetilde{\boldsymbol{u}}_i, \widetilde{\boldsymbol{u}}_i^+\}} \operatorname{sim}(\widehat{\boldsymbol{u}}_i, \boldsymbol{v}) - \max_{\boldsymbol{w} \in \mathbf{U}_i^-} \operatorname{sim}(\widehat{\boldsymbol{u}}_i, \boldsymbol{w})$, which forces the user model to discriminate these similar explicitly augmented views from views of other users.
- \triangleright Otherwise, λ_i will be large and train the user model to pull the implicitly augmented view and these dissimilar explicitly augmented views apart.

Experiments

Datasets and Downstream Tasks

- > TTL: users' recent 100 interactions on the QQ Browser platform.
- > App: users' app installation behaviors on OPPO smartphones from 2022-12 to 2023-03.
- $\succ \mathcal{T}_1$: age prediction
- $\succ \mathcal{T}_3$: click recommendation
- $\succ T_5$: gender prediction

- $\succ \mathcal{T}_2$: life status prediction $\succ \mathcal{T}_4$: thumb-up recommendation $\succ \mathcal{T}_6$: CVR prediction

Dataset	TTL				App	
# Behavior Sequences # Different Behaviors Avg. Sequence Length	1,470,149 645,972 54.84				1,575,837 4,047 44.13	
Downstream Task # Samples # Labels/Items	$egin{array}{c c} \mathcal{T}_1 \\ 1,470,147 \\ 8 \end{array}$	T_2 1,020,277 6	\mathcal{T}_3 1,397,197 17,879	T ₄ 255,646 7,539	$\begin{array}{ c c }\hline \mathcal{T}_5 \\ 1,178,603 \\ 2 \end{array}$	$ \begin{array}{r} \mathcal{T}_6 \\ 564,940 \\ 2 \end{array} $

Detailed statistics of each dataset and downstream task.

Performance Comparison Impr (%) indicates the relative improvement compared with the end-to-end training. Pre-train Impr NDCG@10 Impr NDCG@10 Impr 63.62 ± 0.11 1.19 53.14 ± 0.07 1.72 2.37 ± 0.02 19.10 3.06 ± 0.08 6.62 79.61 ± 0.13 1.25 76.04 ± 0.10 1.20 63.88 ± 0.04 1.61 53.45 ± 0.05 2.32 2.46 ± 0.02 23.62 3.42 ± 0.04 19.16 80.34 ± 0.05 2.17 77.92 ± 0.08 3.70

AdaptSSR 65.53 ± 0.04 4.23 54.41 ± 0.02 4.15 2.61 ± 0.03 31.16 3.73 ± 0.03 29.97 82.30 ± 0.03 4.67 79.92 ± 0.05 6.36

Performance with Different Augmentation Methods

#===#===#==#==#==#==#==# සි 64.0 $\frac{3}{4}$ 63.5 -0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Data Augmentation Proportion ρ

User Representation Similarity Distribution Analysis

Distributions of the cosine similarity between user representations generated from the original behavior sequence, different augmented behavior sequences, and behavior sequences of other users with various pre-training methods.