

Ejercicios de recursividad

Diseño y Análisis de Algoritmos

Ejercicio 1 Suma de números impares

Se pide implementar un método recursivo que, dado un determinado entero no negativo n, calcule la siguiente suma:

$$S(n) = \sum_{i=1}^{n} (2i - 1)$$

Ejercicio 2 Número de dígitos de un número entero no negativo

Se pide implementar un método recursivo que calcule el número de dígitos de un determinado entero $n \ge 0$.

Ejercicio 3 Algoritmo de Horner

En este ejercicio se pide implementar una versión recursiva del **algoritmo de Horner**, que sirve para evaluar polinomios de manera eficiente. En concreto, evalúa un polinomio de grado n utilizando solamente n multiplicaciones. La clave detrás del algoritmo de Horner es la descomposición de un polinomio p(x) de grado n de la siguiente manera:

$$p(x, \mathbf{d}) = d_0 + x(d_1 + x(d_2 + \dots + x(d_{n-1} + d_n x) \dots))$$

donde d representa los coeficientes del polinomio de grado n. En concreto, d_0 es la constante, mientras que d_n es el coeficiente asociado al término x^n . El método recibirá la lista de coeficientes \mathbf{d} que definen el polinomio, y el número real x.

Ejercicio 4 Recursividad múltiple

Se pide implementar la siguiente función mediante métodos recursivos, para un entero positivo n:

$$f(n) = \begin{cases} 1 & \text{si } n = 1, 2\\ 1 + \sum_{i=1}^{n-2} f(i) & \text{si } n \geqslant 3 \end{cases}$$

El sumatorio en el caso recursivo se puede implementar de dos maneras: (1) usando un bucle, y (2) mediante una segunda función recursiva. Implementad ambos casos.

Ejercicio 5 Raíz cuadrada mediante el método de Newton-Raphson

El método de Newton-Raphson sirve para hallar ceros de una función. Se basa en la siguiente regla que define una secuencia:

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

Partiendo de un valor inicial x_0 la secuencia debe converger a un valor concreto para obtener la solución. Se pide implementar una versión recursiva del método para hallar \sqrt{a} , donde a es un número real no negativo. Para ello se debe buscar un cero de la función $f(x) = x^2 - a$.

Ejercicio 6 Insertar elemento en una lista ordenada

Se pide implementar un método recursivo que reciba una lista ordenada \mathbf{a} de números, y otro número x como parámetro. El algoritmo deberá devolver una nueva lista ordenada que contenga x y los elementos de \mathbf{a} . Es decir, deberá insertar x en la lista \mathbf{a} de manera que ésta siga estando ordenada.

Ejercicio 7 Insert-sort

Se pide implementar una versión recursiva del algoritmo de ordenación *insert-sort* (inserción directa). El método deberá llamar a función definida en el ejercicio anterior.

Ejercicio 8 Variante de las torres de Hanoi

Asuma que las tres torres están dispuestas de izquierda a derecha. En esta variante las reglas del problema son las mismas que las del original, pero NO se permite mover discos directamente desde la torre de la izquierda a la de la derecha, ni viceversa, como ilustra la siguiente figura:

Dados n discos ubicados en la torre de la izquierda, implementa un procedimiento que resuelva el problema, y mueva los n discos a la torre de la derecha.