

M54/74HC125 M54/74HC126

QUAD BUS BUFFERS (3-STATE)

- HIGH SPEED
 - $t_{PD} = 8 \text{ ns (TYP.)} AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)}$ AT 25 °C
- OUTPUT DRIVE CAPABILITY
 15 LSTTL LOADS
- BALANCED PROPAGATION DELAYS tplh = tphl
- SYMMETRICAL OUTPUT IMPEDANCE IOL = IOH = 6 mA (MIN.)
- HIGH NOISE IMMUNITY V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS125/126

B1R F1R (Ceramic Package) M1R C1R (Micro Package) (Chip Carrier) ORDER CODES: M54HCXXXF1R M74HCXXXM1R M74HCXXXXC1R

DESCRIPTION

The M54/74HC125/126 are high speed CMOS QUAD BUS BUFFER (3-STATE) FABRICATED IN SILICON GATE C^2 MOS technology.

They have the same high speed performance of LSTTL combined with true CMOS low power consumption.

These devices require the same 3-STATE control input G to be taken high to make the output go into the high impedance state.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

September 1993

CHIP CARRIER

TRUTH TABLE (HC125)

Α	G	Υ
X	Н	Z
L	L	L
Н	L	Н

TRUTH TABLE (HC126)

Α	G	Y
X	L	Z
L	Н	L
Н	Н	Н

PIN DESCRIPTION (HC125)

PIN No	SYMBOL	NAME AND FUNCTION
1, 4, 10, 13	G1 to G4	Output Enable Input
2, 5, 9, 12	A1 to A4	Data Inputs
3, 6, 8, 11	Y1 to Y4	Data Outputs
7	GND	Ground (0V)
14	Vcc	Positive Supply Voltage

PIN DESCRIPTION (HC126)

PIN No	SYMBOL	NAME AND FUNCTION
1, 4, 10, 13	G1 to G4	Output Enable Input
2, 5, 9, 12	A1 to A4	Data Inputs
3, 6, 8, 11	Y1 to Y4	Data Outputs
7	GND	Ground (0V)
14	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

CIRCUIT DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	500 (*)	mW
T_{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage		2 to 6	V
V_{I}	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T_{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	သို့ သိ
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol	Parameter	Vcc			_A = 25 ^o C and 7		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit	
	(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V_{IH} or		1.9	2.0		1.9		1.9		
	Output Voltage	4.5		· / _{IH} or	4.4	4.5		4.4		4.4		
		6.0			5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	V _{IH}	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
l _{OZ}	3 State Output Off-state Current	6.0		V _{IH} or V _{IL}			±0.5		±5		±10	μΑ
I _{CC}	Quiescent Supply Current	6.0		V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 6 \text{ ns}$)

		Te	est Co	nditions				Value				
Symbol	Symbol Parameter	V _{CC}	C _L			_A = 25 ^c C and 7		1	85 °C HC		125 °C HC	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0				20	60		75		90	
t_{THL}	Time	4.5	50			6	12		15		18	ns
		6.0				5	10		13		15	
t _{PLH}	Propagation	2.0				36	75		95		110	
t_{PHL}	Delay Time	4.5	50			9	15		19		22	ns
		6.0				8	13		16		19	
		2.0				52	105		130		160	
		4.5	150			13	21		26		32	ns
		6.0				11	18		22		27	
t_{PZL}	3 State Output	2.0				36	75		95		110	
t _{PZH}	Enable Time	4.5	50	$R_L = 1 K\Omega$		9	15		19		22	ns
		6.0				8	13		16		19	
		2.0				52	105		130		160	
		4.5	150	$R_L = 1 K\Omega$		13	21		26		32	ns
		6.0				11	18		22		27	
t_{PLZ}	3 State Output	2.0				48	80		100		120	
t_{PHZ}	Disable Time	4.5	50	$R_L = 1 K\Omega$		12	16		20		24	ns
		6.0				10	14		17		20	
CIN	Input Capacitance					5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance					35						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. Icc(opr) = C_{PD} •V_{CC} •f_{IN} + Icc

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

THE OTHER INPUTS ARE CONNECTED TO $\ensuremath{V_{\text{CC}}}$ LINE OR GND LINE

THE OTHER INPUTS ARE CONNECTED TO VCC LINE OR GND LINE

Plastic DIP14 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7.0			0.276
D		3.3			0.130	
E	0.38			0.015		
e3		15.24			0.600	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	1.52		2.54	0.060		0.100
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO14 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MAX. MIN.		MAX.
А			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8° (r	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

