fn sample_bernoulli_exp1

Michael Shoemate

December 2, 2024

Proves soundness of fn sample_bernoulli_exp1 in mod.rs at commit 0be3ab3e6 (outdated¹). fn sample_bernoulli_exp1 returns a sample from the Bernoulli(exp(-x)) distribution for some rational argument in [0,1]. This proof is adapted from subsection 5.1 of [CKS20].

1 Hoare Triple

Preconditions

Compiler-verified

• Argument x is of type RBig, a rational bignum

User-verified $x \in [0, 1]$

Pseudocode

Postcondition

Theorem 1.1. For any setting of the input parameter x such that the given preconditions hold, sample_bernoulli_exp1 either returns Err(e) due to a lack of system entropy, or Ok(out), where out is distributed as Bernoulli(exp(-x)).

2 Proof

Assume the preconditions are met.

Lemma 2.1. sample_bernoulli_exp1 only returns Err(e) when there is a lack of system entropy.

Proof. In all usages of sample_bernoulli_rational, the argument passed satisfies its definition preconditions, by the preconditions on x and function logic. Thus, by its postcondition, sample_bernoulli_rational only returns an error when there is a lack of system entropy. The only source of errors in sample_bernoulli_exp1 is from the invocation of sample_bernoulli_rational. Therefore sample_bernoulli_exp1 only returns Err(e) when there is a lack of system entropy.

 $^{^1\}mathrm{See}\ \mathrm{new}\ \mathrm{changes}\ \mathrm{with}\ \mathrm{git}\ \mathrm{diff}\ \mathrm{Obe3ab3e6..655696c5}\ \mathrm{rust/src/traits/samplers/cks20/mod.rs}$

Lemma 2.2. Let K^* denote the final value of k on line 7. Then $P[K^* > n] = \frac{x^n}{n!}$ for any integer $n \ge 0$ [CKS20].

Proof. For k > 0, let a_k denote the k^{th} outcome of sample_bernoulli_rational on line 4. By the definition of sample_bernoulli_rational, under the established conditions and preconditions, each A_k is distributed as Bernoulli(x/k).

If $n \ge 1$, we have:

$$P[K^* > n] = P[A_1 = A_2 = \dots = A_n = \top]$$
 since $K^* > n \iff \forall k \le n, a_k = \top$

$$= \prod_{k=1}^n P[A_k = \top]$$
 all A_k are independent
$$= \prod_{k=1}^n \frac{x}{k}$$
 since $A_k \sim Bernoulli(x/k)$

$$= \frac{x^n}{n!}$$

If n = 0, we also have $P[K^* > 0] = 1 = \frac{x^0}{0!}$.

Lemma 2.3. $is_odd(K^*) \sim Bernoulli(exp(-x))$ [CKS20].

Proof.

$$\begin{split} P[K^* \text{ odd}] &= \sum_{k=0}^{\infty} P[K^* = 2k+1] \\ &= \sum_{k=0}^{\infty} (P[K^* > 2k] - P[K^* > 2k+1]) \\ &= \sum_{k=0}^{\infty} \left(\frac{x^{2k}}{(2k)!} - \frac{x^{2k+1}}{(2k+1)!}\right) \\ &= exp(-x) \end{split}$$
 by 2.2

Proof. Since k is distributed according to K^* , then by 2.3, out is distributed as Bernoulli(exp(-x)). Together with 2.1, Theorem 1.1 holds.

References

[CKS20] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential privacy. *CoRR*, abs/2004.00010, 2020.