DPENCLASSROOMS

Projet n°2 - Préparer les données pour un organisme de santé publique

Sommaire

Objectif de la démarche

Nettoyage des données

Analyses statistiques

Conclusion

l. Objectif de la démarche

Quoi?

Qui?

L'agence

Améliorer sa base de données

Comment?

Application de suggestion de valeurs manquantes

Principes:

- Licéité, loyauté et transparence
- Limitation des finalités
- Minimisation des données
- Limitation de la conservation
- Intégrité et confidentialité

Aperçu général

2 965 170 observations et 203 variables

4 catégories d'informations :

CODE, URL, CREATOR

PACKAGING_TAGS, LABELS_TAGS, COUNTRIES_TAGS

INGREDIENTS_TEXT,
ALLERGENS,
ADDITIVES_N

Valeurs nutritionnelles moyennes								
	Pour 100 g	Pour ce plat						
Énergie	177 Kcal 734 Kj	512 Kcal 2127 Kj						
Protéines	5,3 g	15,4 g						
Glucides	8,9 g dont sucres: 2,6 g	25,8 g dont sucres: 7,5 g						

ENERGY_100G, FAT_100G, SUGARS_100G

Les étapes :

- Sélection des colonnes non vides
- Sélection des produits français
- Choix des variables à analyser
- Traitement des valeurs aberrantes
- Traitement des valeurs manquantes

1. Sélection des colonnes non vides:

Taux de complétion des colonnes

1. Sélection des colonnes non vides :

Suppression des 70 colonnes

203 colonnes

133 colonnes

2. Sélection des produits français :

- Produits français : environs 30% des données
- 2 965 170 observations 874 918 observations

> Autre sélection : variable product_name

Suppression produit sans noms : 3.2 %

• 874 918 observations

• 846 810 observations

3. Choix des features :

> Sélection des colonnes pour l'analyse

133 colonnes

27 colonnes

4. Traitement des valeurs aberantes:

	energy_kj_100g	fat_100g	saturated_fat_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g
count	8.062300e+04	656434.000000	661933.000000	656258.000000	660995.000000	194009.000000	657880.000000
mean	1.075770e+03	14.278452	5.421087	26.533411	13.497671	3.098052	9.069336
std	3.925083e+03	17.485386	7.950142	27.543451	19.963295	5.841682	11.199501
min	0.000000e+00	0.000000	0.000000	0.000000	-0.100000	0.000000	0.000000
25%	4.200000e+02	1.000000	0.200000	2.300000	0.600000	0.000000	1.500000
50%	9.500000e+02	8.200000	2.000000	13.500000	3.200000	1.500000	6.300000
75%	1.569000e+03	22.400000	8.000000	51.000000	19.000000	3.600000	13.000000
max	1.094259e+06	820.000000	900.000000	966.000000	390.000000	256.000000	2706.000000

Quantité d'énergie exprimée en million Valeurs nutritionnelles pour 100g > 100g Quantités exprimées en nombres négatifs

4. Traitement des valeurs aberantes :

a. Valeurs aberrantes

Remplacement par NAN

Suppression des observations

Valeurs nutritionnelles > 100g

Valeurs négatives

Sugars > carbohydrates

Saturated_fat > fat

Sommes des valeurs nutritionnelles > 102g

Quantité d'énergie > 3800 kj

b. Valeurs atypiques

Remplacement par NaN

Fiber > 20g

Proteins > 40g

Sodium > 40g

- 20 variables
- 685 340 observations

5. Traitement des valeurs manquantes : les lignes

Suppresion des observations ayant :

- ✓ Toutes les variables nutritionnelles manquantes
- ✓ Plus de 10 variables manquantes
- ✓ Des variables catégorielles manquantes (pnns_groups_1 pnns_groups_2 nova_group nutriscore_grade ecoscore_grade)

- 330 945 observations
- 20 variables

Taux de complétion à la fin des traitements

)

5. Traitement des valeurs manquantes : imputation

- ✓ Méthodes d'imputation sur les variables nutritionnelles :
- La médiane
- La médiane par catégorie pnns_groups_1
- Knn Imputer
- Iterative Imputer

✓ Méthode d'imputation ciblée :

- Imputation par 0 : fiber_100g, proteins_100g
- Arbre de décision : nova_group

)

II. Nettoyage des données

5. Traitement des valeurs manquantes : Energy_100g

Fiber_100g

)

II. Nettoyage des données

5. Traitement des valeurs manquantes :

Arbre de décision : Nova_group

variables caractéristiques : pnns_groups_2 et nutriscore_grade

5. Traitement des valeurs manquantes :

- ✓ Imputation de :
- Variables nutritionnelles
- Nutrition_score
- Nova_groupe
- ✓ Test de wilcoxon
- ✓ Vérification des valeurs aberrantes après imputation

Analyse univariée

Analyse bivariée

Analyse multivariée

1. Analyse univariée : variables quantitatives continues

Energy_100g

Quantité d'énergie pour 100g

Quantité d'énergie pour 100g

1. Analyse univariée : variables quantitatives discrètes

1. Analyse univariée : variables qualitatives ordinales

Nutriscore_grade

Nova_group

1. Analyse univariée : variables qualitatives nominales

Pnns_groups_1

Pnns_groups_2

2. Analyse bivariée : heatmap de corrélation

Variables corrélées :

- Energy_100g et fat_100g
- Fat_100g et saturated_fat_100g
- Carbohydrates_100g et sugars_100g

2. Analyse bivariée :

Pairplot

Etiquette:
Nutriscore_grade

2. Analyse bivariée : qualitative - quantitative

Nutriscore_grade

Nutrition_score

Pnns_groups_1

Nutrition_score

5

3. Analyse multivariée :

Analyse en composantes principales :

III. Analyses statistiques

3. Analyse multivariée : ANOVA

Peut-on prédire les variables nutritionnelles à partir du nutriscore_grade ?

Pourquoi l'ANOVA?

Etudier l'impact de la catégorie du nutriscore_grade sur les variables nutritionnelles

Hypothèse de l'ANOVA?

- Normalité : test de Shapiro-Wilk
- Homogénéité des variances : test de Levene

3. Analyse multivariée : ANOVA non paramétrique

Test de Shapiro-Wilk

 Les distributions ne suivent pas une loi normale

Test de Levene Variances non homogènes Test de Kruskal-Wallis:

Les variables nutritionnelles présentent des différences significatives entre les catégories nutriscore_grade

La catégorie du nutriscore_grade a une influence sur les variables nutritionnelles

3. Analyse multivariée : ANOVA

Test de l'ANOVA:

Energy — nutriscore_grade

Test ANOVA - Analyse de la variance

energy_100g

Statistique: 23060.60

Valeur p :0.0000

Il y a des différences significatives entre les groupes.

L'ANOVA confirme le test de Kruskal-Wallis

Régression linéaire

Variable cible : energy_100g

Nutriscore_grade

$$R^2 = 0.23$$

$$RMSE = 684$$

Nutriscore_grade – fat_100g

$$R^2 = 0.68$$

$$RMSE = 445$$

Nutriscore_grade – fat_100g nutrition_score_fr saturated_fat_100g

$$R^2 = 0.71$$

RMSE = 421

Conclusion

- ✓ La précision des prédictions dépend des valeurs déjà renseignées par l'utilisateur.
- ✓ En utilisant les corrélations, on peut prédire les variables nutritionnelles manquantes.
- ✓ L'application proposant des valeurs manquantes est faisable.

