- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 settembre 2014

			(Co	gno	me)				_			(No	me)			-	ume	ı ma	trice	ola)

1	0000
2	0000
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	00000

1. Dato $\alpha \geq 0,$ la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A: $\alpha > \pi$ B: $0 < \alpha < 1$ C: $\alpha \ge e$ D: $\alpha > 0$ E: N.A.

2. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a A: \sqrt{e} B: $\frac{1}{2}$ C: $-\frac{1}{2}$ D: 1 E: N.A.

3. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

B: 0 C: $+\infty$ D: 1 E: N.A. A: N.E.

4. L'integrale

$$\int_{-1}^{1} |1 - x| \, dx$$

vale

A: N.A. B: 3/2 C: 5/2 D: 0 E: $\sqrt{2}$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: convessa B: derivabile ovunque C: N.A. D: iniettiva E: surgettiva

6. La funzione $f(x) = \begin{cases} \frac{x \pi}{3.14} & \text{per } x < 0 \\ \vdots & \end{cases}$

A: è derivabile, ma non continua. B: non è né continua né derivabile. C: N.A. D: è continua, ma non derivabile. E: è continua e derivabile.

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^x - 1 < 0\}$$

valgono

A: $\{-\infty, N.E., 0, N.E.\}$ B: N.A. C: $\{-\infty, N.E., 0, 0\}$ D: $\{-\infty, N.E., 1, 1\}$ E: $\{-\infty, N.E., 2\pi, 2\pi\}$

8. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A:
$$t^2e^{t^2}+c$$
 B: $e^t(t-1)+c$ C: N.E. D: $t\log(t)+c$ E: N.A.

9. Il numero complesso $z = \overline{1+i} \mathrm{e}^{-i\frac{\pi}{2}}$ vale

A: N.A. B: 1 C:
$$i$$
 D: $1 + i$ E: $-1 - i$

10. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

La retta tangente al grafico di
$$y(x) = \cos(3x)$$
 nel punto $x_0 = \frac{\pi}{18}$ vale

A: $3x + \frac{\pi}{18}$ B: N.A. C: $+\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$ D: $\frac{1}{2}\left(-3x + \frac{\pi}{6} + \sqrt{3}\right)$ E: $1 + \cos(3x)\left(x - \frac{\pi}{6}\right)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 settembre 2014

			(Co	gno	me)				_			(No	me)			-	(N	ume	ro d	i ma	trice	ola)

1	0000
2	0000
3	0000
4	0000
5	00000
6	0000
7	
8	0000
9	0000
10	00000

1. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

La retta tangente al grafico di
$$y(x) = \cos(3x)$$
 nel punto $x_0 = \frac{\pi}{18}$ vale

A: $+\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$ B: $3x + \frac{\pi}{18}$ C: $1 + \cos(3x)(x - \frac{\pi}{6})$ D: $\frac{1}{2}\left(-3x + \frac{\pi}{6} + \sqrt{3}\right)$ E: N.A.

2. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: 1 B:
$$+\infty$$
 C: N.E. D: N.A. E: 0

3. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^x - 1 < 0 \}$$

valgono

A:
$$\{-\infty, N.E., 0, 0\}$$
 B: $\{-\infty, N.E., 2\pi, 2\pi\}$ C: N.A. D: $\{-\infty, N.E., 0, N.E.\}$ E: $\{-\infty, N.E., 1, 1\}$

4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: iniettiva B: N.A. C: convessa D: derivabile ovunque E: surgettiva

5. L'integrale

$$\int_{-1}^{1} |1 - x| \, dx$$

vale

A: N.A. B: 0 C:
$$\sqrt{2}$$
 D: $5/2$ E: $3/2$

6. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A: N.A. B:
$$-\frac{1}{2}$$
 C: $\frac{1}{2}$ D: 1 E: \sqrt{e}

7. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A:
$$\alpha \ge e$$
 B: $\alpha > \pi$ C: $0 < \alpha < 1$ D: N.A. E: $\alpha > 0$

8. La funzione $f(x) = \begin{cases} \frac{x \pi}{3.14} & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è continua e derivabile. C: è continua, ma non derivabile. D: N.A. E: è derivabile, ma non continua.

9. Il numero complesso $z = \overline{1+i} \mathrm{e}^{-i\frac{\pi}{2}}$ vale

A:
$$i$$
 B: $-1 - i$ C: $1 + i$ D: N.A. E: 1

10. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A: N.E. B: N.A. C:
$$e^t(t-1) + c$$
 D: $t^2e^{t^2} + c$ E: $t\log(t) + c$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 settembre 2014

			(Co	gno	me)				_			(No	me)			-	(N	ume	ro d	i ma	trice	ola)

1	0000
2	
3	
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A:
$$t \log(t) + c$$
 B: $e^t (t-1) + c$ C: N.E. D: $t^2 e^{t^2} + c$ E: N.A.

2. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A: 1 B: N.A. C:
$$\sqrt{e}$$
 D: $\frac{1}{2}$ E: $-\frac{1}{2}$

3. La funzione
$$f(x) = \begin{cases} \frac{x \pi}{3.14} & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: N.A. C: è continua, ma non derivabile. D: è derivabile, ma non continua. E: è continua e derivabile.

4. Dato $\alpha \geq 0,$ la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A:
$$\alpha \ge e$$
 B: $0 < \alpha < 1$ C: $\alpha > 0$ D: $\alpha > \pi$ E: N.A.

5. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: N.A. B: 0 C: N.E. D:
$$+\infty$$
 E: 1

6. L'integrale

$$\int_{-1}^{1} |1 - x| \, dx$$

vale

A: 0 B: N.A. C:
$$\sqrt{2}$$
 D: $5/2$ E: $3/2$

7. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: derivabile ovunque B: N.A. C: iniettiva D: surgettiva E: convessa

8. Il numero complesso $z = \overline{1+i}e^{-i\frac{\pi}{2}}$ vale

A: 1 B:
$$1 + i$$
 C: i D: N.A. E: $-1 - i$

9. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

A: N.A. B:
$$3x + \frac{\pi}{18}$$
 C: $1 + \cos(3x)(x - \frac{\pi}{6})$ D: $+\frac{1}{3} + 3\cos(3x)(x - \frac{\pi}{18})$ E: $\frac{1}{2}(-3x + \frac{\pi}{6} + \sqrt{3})$

10. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^x - 1 < 0 \}$$

valgono

A:
$$\{-\infty, N.E., 0, 0\}$$
 B: $\{-\infty, N.E., 2\pi, 2\pi\}$ C: $\{-\infty, N.E., 1, 1\}$ D: $\{-\infty, N.E., 0, N.E.\}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 settembre 2014

			(Co	gnor	ne)						(No	me)			(N	ume	ro d	i ma	trice	ola)

1	0000
2	0000
3	0000
4	0000
5	00000
6	
7	
8	
9	
10	0000

1. Per t>0 le soluzioni dell'equazione differenziale $x'(t)=te^t$ sono

A: N.A. B:
$$e^{t}(t-1) + c$$
 C: $t^{2}e^{t^{2}} + c$ D: N.E. E: $t \log(t) + c$

2. La funzione $f:\ \mathbb{R}\to\mathbb{R}$ definita da $f(x)=\sqrt{|x|}$ è

A: N.A. B: iniettiva C: surgettiva D: derivabile ovunque E: convessa

3. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^x - 1 < 0 \}$$

valgono

$$\text{A: } \{-\infty, N.E., 1, 1\} \quad \text{B: } \{-\infty, N.E., 0, 0\} \quad \text{C: } \{-\infty, N.E., 0, N.E.\} \quad \text{D: N.A.} \quad \text{E: } \{-\infty, N.E., 2\pi, 2\pi\} \quad \text{The substitution of the property of the property$$

4. L'integrale

$$\int_{-1}^{1} |1 - x| \, dx$$

vale

A:
$$\sqrt{2}$$
 B: N.A. C: 0 D: 3/2 E: 5/2

5. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

A:
$$3x + \frac{\pi}{18}$$
 B: $+\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$ C: N.A. D: $1 + \cos(3x)(x - \frac{\pi}{6})$ E: $\frac{1}{2}\left(-3x + \frac{\pi}{6} + \sqrt{3}\right)$

6. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A: $\alpha > 0$ B: $\alpha \ge e$ C: $0 < \alpha < 1$ D: $\alpha > \pi$ E: N.A.

7. La funzione
$$f(x) = \begin{cases} \frac{x \pi}{3.14} & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: è derivabile, ma non continua. B: è continua e derivabile. C: non è né continua né derivabile. D: è continua, ma non derivabile. E: N.A.

8. Il numero complesso $z = \overline{1+i} e^{-i\frac{\pi}{2}}$ vale

A: 1 B:
$$-1 - i$$
 C: i D: $1 + i$ E: N.A.

9. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A:
$$+\infty$$
 B: N.E. C: N.A. D: 1 E: 0

10. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A:
$$\sqrt{e}$$
 B: $\frac{1}{2}$ C: $-\frac{1}{2}$ D: 1 E: N.A.

15 settembre 2014

			(Co	gnoi	me)						(No	me)			-	(N	ume	ro d	atrico	ola)

1	
2	
3	
4	
5	
6	
7	$lackbox{0}$
8	
9	
10	

15 settembre 2014

			(Co	gnoi	me)						(No	me)			-	(N	ume	ro d	atrico	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

15 settembre 2014

(Cognome)										(Nome)									_	(Numero di matricola)											

\bigcirc

15 settembre 2014

(Cognome)										_	(Nome)									-	(Numero di matricola)											

1	
2	
3	
4	
5	
6	
7	
8	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
9	
10	

15 settembre 2014

PARTE B

1. Studiare, il grafico della funzione

$$f(x) = \sqrt{\left|\frac{x^3 - x^2}{x - 2}\right|}$$

2. Risolvere l'equazione complessa

$$z^2 = -4\overline{z}$$

3. Studiare il limite

$$\lim_{x \to +\infty} \frac{\log^3(\log(x))}{2\log(x)}$$

4. Sia $f(x): \mathbb{R} \to \mathbb{R}$ una funzione continua in tale che f(x) < 0. Si studino le seguenti affermazioni:

$$\mathcal{F}(x) = \int_0^{x^2} f(\tau) d\tau$$
 è crescente

$$\mathcal{F}(x) = \int_0^x \frac{f(\tau)}{\tau} d\tau$$
 è limitata per $x > \frac{1}{2}$