EXAMENUL DE BACALAUREAT – 2010 Proba E c)

Probă scrisă la MATÉMATICĂ

Varianta 6

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

- Toate subiectele (I, II, III) sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p** 1. Care dintre numerele $2\sqrt[3]{6}$ și $3\sqrt[3]{3}$ este mai mare?
- **5p** 2. Determinați mulțimea valorilor funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|.
- **5p** 3. Determinați $m \in \mathbb{R}$ pentru care ecuația $x^2 x + m^2 = 0$ are două soluții reale egale.
- **5p 4.** Determinați numărul termenilor raționali din dezvoltarea $\left(1 + \sqrt[4]{2}\right)^{41}$.
- **5p 5.** În sistemul de coordonate xOy se consideră punctele A(2,1), B(-2,3), C(1,-3) și D(4,a), unde $a \in \mathbb{R}$. Determinați $a \in \mathbb{R}$ astfel încât dreptele AB și CD să fie paralele.
- **5p 6.** Fie mulțimea $A = \left\{0; \frac{\pi}{6}; \frac{\pi}{2}; \pi; \frac{3\pi}{2}\right\}$. Care este probabilitatea ca, alegând un element din mulțimea A, acesta să fie soluție a ecuației $\sin^3 x + \cos^3 x = 1$?

SUBIECTUL al II-lea

(30 de puncte)

- **1.** Fie matricea $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Pentru $n \in \mathbb{N}^*$, notăm $B_n = A^n + A^{n+1} + A^{n+2}$.
- **5p a)** Arătați că $A^{2010} = a^{670} \cdot I_3$.
- **5p b)** Determinați $a \in \mathbb{R}$ pentru care $\det(B_1) = 0$.
- **5p** c) Determinați $a \in \mathbb{R}$ pentru care toate matricele B_n , $n \in \mathbb{N}^*$ sunt inversabile.
 - **2.** Pe mulțimea \mathbb{R} se definește legea x * y = 2xy 3x 3y + m, $m \in \mathbb{R}$. Fie mulțimea $M = \mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$.
- **5p** a) Determinați $m \in \mathbb{R}$ astfel încât $x * y \in M$, pentru orice $x, y \in M$.
- **5p b)** Pentru m = 6 arătați că (M, *) este grup.
- **5p** c) Pentru m = 6, demonstrați că funcția $f: M \to \mathbb{R}^*$, f(x) = 2x 3 este un izomorfism între grupurile (M, *) și (\mathbb{R}^*, \cdot) .

SUBIECTUL al III-lea

(30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{2x-1} \sqrt[3]{2x+1}$.
- **5p** a) Scrieți ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p b)** Determinați ecuația asimptotei orizontale la graficul funcției f spre $+\infty$.
- **5p** c) Calculați $\lim_{n \to +\infty} \left(\frac{f(1) + f(2) + ... + f(n)}{-\sqrt[3]{2n+1}} \right)^{\sqrt[3]{2n}}$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{x^n dx}{x^2 + x + 1}$.

Bacalaureat 2010 1 Variat

- **5p a)** Calculați $I_1 + I_2 + I_3$.
- **5p b)** Arătați că șirul $(I_n)_{n\geq 1}$ este descrescător.
- **5p c**) Calculați $\lim_{n\to+\infty} I_n$.