Veriopt Theories

September 17, 2022

Contents

1	Can	onicalization Optimizations 1
	1.1	AbsNode Phase
	1.2	AddNode Phase
	1.3	AndNode Phase
	1.4	BinaryNode Phase
	1.5	ConditionalNode Phase
	1.6	MulNode Phase
	1.7	Experimental AndNode Phase
	1.8	NotNode Phase
	1.9	OrNode Phase
	1.10	ShiftNode Phase
	1.11	
	1.12	SignedRemNode Phase
		SubNode Phase
		XorNode Phase
		NegateNode Phase
		AddNode
	1.17	NegateNode
1	Ca	anonicalization Optimizations
ir	nport Optin Sema	Common is $nizationDSL. Canonicalization$ $ntics. IRTree Eval Thms$
		size-pos[size-simps]: 0 < size y size-pos[size-simps]: 0 < size y
		size-non-add[size-simps]: size (BinaryExpr op a b) = size a + (size b) * bluction op; auto)

```
\mathbf{lemma}\ size\text{-}non\text{-}const[size\text{-}simps]:
  \neg is\text{-}ConstantExpr y \Longrightarrow 1 < size y
  using size-pos apply (induction y; auto)
  apply (metis Suc-lessI mult-eq-1-iff mult-pos-pos n-not-Suc-n numeral-2-eq-2
  \mathbf{by} \; (\textit{metis add-strict-increasing less-Suc0 linorder-not-less \; \textit{mult-2-right not-add-less2}}) \\
lemmas \ arith[size-simps] = Suc-leI \ add-strict-increasing
definition well-formed-equal :: Value \Rightarrow Value \Rightarrow bool
  (infix \approx 50) where
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
lemma well-formed-equal-defn [simp]:
  \textit{well-formed-equal} \ v_1 \ v_2 = (v_1 \neq \textit{UndefVal} \longrightarrow v_1 = v_2)
  unfolding well-formed-equal-def by simp
end
1.1
        AbsNode Phase
theory AbsPhase
 imports
    Common
begin
phase AbsNode
 terminating size
begin
lemma abs-pos:
  fixes v :: ('a :: len word)
  assumes 0 \le s v
  shows (if v < s \ 0 \ then - v \ else \ v) = v
 by (simp add: assms signed.leD)
lemma abs-neg:
  fixes v :: ('a :: len word)
  assumes v < s \theta
  assumes -(2 \cap (Nat.size\ v-1)) < s\ v
 shows (if v < s \ \theta then -v \ else \ v) = -v \land \theta < s - v
 \mathbf{by} \; (smt \; (verit, \; ccfv\text{-}SIG) \; assms(1) \; assms(2) \; signed\text{-}take\text{-}bit\text{-}int\text{-}greater\text{-}eq\text{-}minus\text{-}exp})
     signed-take-bit-int-greater-eq-self-iff sint-0 sint-word-ariths(4) word-sless-alt)
```

```
lemma abs-max-neg:
 fixes v :: ('a :: len word)
 assumes v < s \theta
 assumes - (2 ^(Nat.size v - 1)) = v
 shows -v = v
 using assms
 by (metis One-nat-def add.inverse-neutral double-eq-zero-iff mult-minus-right size-word.rep-eq)
lemma final-abs:
 fixes v :: ('a :: len word)
 assumes take-bit (Nat.size v) v = v
 assumes -(2 \cap (Nat.size\ v-1)) \neq v
 shows 0 \le s (if v < s 0 then -v else v)
proof (cases v < s \theta)
 case True
 then show ?thesis
 proof (cases\ v = -(2 \cap (Nat.size\ v - 1)))
   case True
   then show ?thesis using abs-max-neg
     using assms by presburger
 \mathbf{next}
   case False
   then have -(2 (Nat.size v - 1)) < s v
     unfolding word-sless-def using signed-take-bit-int-greater-self-iff
       by (smt (verit, best) One-nat-def diff-less double-eq-zero-iff len-gt-0 lessI
less-irrefl
        mult-minus-right neg-equal-0-iff-equal signed.rep-eq signed-of-int
        signed-take-bit-int-greater-eq-self-iff\ signed-word-eqI\ sint-0\ sint-range-size
       sint-sbintrunc' sint-word-ariths(4) size-word.rep-eq unsigned-0 word-2p-lem
        word-sless.rep-eq word-sless-def)
   then show ?thesis
     using abs-neg abs-pos signed.nless-le by auto
 qed
next
 case False
 then show ?thesis using abs-pos by auto
qed
lemma wf-abs: is-IntVal x \Longrightarrow intval-abs x \ne UndefVal
 using intval-abs.simps unfolding new-int.simps
 using is-IntVal-def by force
fun bin-abs :: 'a :: len word \Rightarrow 'a :: len word where
 bin-abs\ v = (if\ (v < s\ 0)\ then\ (-v)\ else\ v)
```

```
lemma val-abs-zero:
    intval-abs (new-int b \ \theta) = new-int b \ \theta
   by simp
lemma less-eq-zero:
    assumes val-to-bool (val[(IntVal\ b\ 0) < (IntVal\ b\ v)])
   shows int-signed-value b \ v > 0
   using assms unfolding intval-less-than.simps(1) apply simp
   by (metis\ bool-to-val.elims\ val-to-bool.simps(1))
lemma val-abs-pos:
   assumes val-to-bool(val[(new-int b \ 0) < (new-int b \ v)])
   shows intval-abs (new-int b v) = (new-int b v)
   using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
   by force
lemma val-abs-neg:
   assumes val-to-bool(val[(new\text{-}int\ b\ v) < (new\text{-}int\ b\ 0)])
   shows intval-abs (new-int b v) = intval-negate (new-int b v)
   using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
   by force
lemma val-bool-unwrap:
    val-to-bool (bool-to-val v) = v
   by (metis bool-to-val.elims one-neg-zero val-to-bool.simps(1))
lemma take-bit-unwrap:
    b = 64 \implies take-bit\ b\ (v1::64\ word) = v1
   by (metis size64 size-word.rep-eq take-bit-length-eq)
lemma bit-less-eq-def:
   fixes v1 v2 :: 64 word
   assumes b \le 64
   shows sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v1))
        < sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v2)) \longleftrightarrow
        signed-take-bit (63::nat) (Word.rep v1) < signed-take-bit (63::nat) (Word.rep
v2)
   using assms sorry
lemma less-eq-def:
   shows val-to-bool(val[(new\text{-}int\ b\ v1) < (new\text{-}int\ b\ v2)]) \longleftrightarrow v1 < s\ v2
  {\bf unfolding} \ new-int. simps \ intval-less-than. simps \ bool-to-val-bin. simps \ bool-to-val. simps \ bool-to
int-signed-value.simps apply (simp add: val-bool-unwrap)
   apply auto unfolding word-sless-def apply auto
    unfolding signed-def apply auto using bit-less-eq-def
   apply (metis bot-nat-0.extremum take-bit-0)
```

```
by (metis bit-less-eq-def bot-nat-0.extremum take-bit-0)
{f lemma}\ val-abs-always-pos:
 assumes intval-abs (new-int b v) = (new-int b v')
 shows \theta \leq s v'
 using assms
proof (cases v = \theta)
 case True
  then have v' = \theta
   using val-abs-zero assms
    by (smt (verit, ccfv-threshold) Suc-diff-1 bit-less-eq-def bot-nat-0.extremum
diff-is-0-eq len-gt-0 len-of-numeral-defs(2) order-le-less signed-eq-0-iff take-bit-0 take-bit-signed-take-bit
take-bit-unwrap)
 then show ?thesis by simp
next
 case neg0: False
 then show ?thesis
 proof (cases\ val\ to\ bool(val[(new\ int\ b\ 0)<(new\ int\ b\ v)]))
   case True
   then show ?thesis using less-eq-def
     using assms val-abs-pos
      by (smt (verit, ccfv-SIG) One-nat-def Suc-leI bit.compl-one bit-less-eq-def
cancel-comm-monoid-add-class. diff-cancel diff-zero len-gt-0 len-of-numeral-defs(2)
mask-0\ mask-1\ one-le-numeral\ one-neq-zero\ signed-word-eqI\ take-bit-dist-subL\ take-bit-minus-one-eq-mask
take-bit-not-eq-mask-diff take-bit-signed-take-bit zero-le-numeral)
 next
   case False
   then have val-to-bool(val[(new\text{-}int\ b\ v) < (new\text{-}int\ b\ \theta)])
     using neq0 less-eq-def
     by (metis\ signed.neqE)
    then show ?thesis using val-abs-neg less-eq-def unfolding new-int.simps
intval-negate.simps
     by (metis signed.nless-le take-bit-0)
 qed
qed
lemma intval-abs-elims:
 assumes intval-abs x \neq UndefVal
 shows \exists t \ v \ . \ x = IntVal \ t \ v \land intval-abs \ x = new-int \ t \ (if int-signed-value \ t \ v <
0 then - v else v
 using assms
 by (meson intval-abs.elims)
\mathbf{lemma}\ wf-abs-new-int:
  assumes intval-abs (IntVal\ t\ v) \neq UndefVal
  shows intval-abs (IntVal\ t\ v) = new-int\ t\ v\ \lor\ intval-abs\ (IntVal\ t\ v) = new-int
t(-v)
```

```
using assms
  using intval-abs.simps(1) by presburger
lemma mono-undef-abs:
 assumes intval-abs (intval-abs x) \neq UndefVal
 shows intval-abs x \neq UndefVal
 using assms
 by force
lemma val-abs-idem:
 assumes intval-abs(intval-abs(x)) \neq UndefVal
 shows intval-abs(intval-abs(x)) = intval-abs(x)
 using assms
proof -
  obtain b v where in-def: intval-abs x = new-int b v
   using assms intval-abs-elims mono-undef-abs by blast
 then show ?thesis
  proof (cases\ val\ to\ bool(val[(new\ int\ b\ v)\ <\ (new\ int\ b\ 0)]))
   then have nested: (intval-abs\ (intval-abs\ x)) = new-int\ b\ (-v)
     using val-abs-neg intval-negate.simps in-def
     by simp
   then have x = new\text{-}int \ b \ (-v)
     using in-def True unfolding new-int.simps
   \mathbf{by}\ (smt\ (verit,\ best)\ intval-abs.simps(1)\ less-eq-def\ less-eq-zero\ less-numeral-extra(1)
      mask-1 mask-eq-take-bit-minus-one neg-one.elims neg-one-signed new-int.simps
            one-le-numeral one-neq-zero signed.neqE signed.not-less take-bit-of-0
val-abs-always-pos)
   then show ?thesis using val-abs-always-pos
     \mathbf{using} \ \mathit{True} \ \mathit{in-def} \ \mathit{less-eq-def} \ \mathit{signed}. \mathit{leD}
     using signed.nless-le by blast
 next
   case False
   then show ?thesis
     using in-def by force
 qed
qed
lemma val-abs-negate:
 assumes intval-abs (intval-negate x) \neq UndefVal
 shows intval-abs (intval-negate x) = intval-abs x
 using assms apply (cases x; auto)
  apply (metis less-eq-def new-int.simps signed.dual-order.strict-iff-not signed.less-linear
        take-bit-0)
 by (smt (verit, ccfv-threshold) add.inverse-neutral intval-abs.simps(1) less-eq-def
```

```
less-eq-zero
   less-numeral-extra(1)\ mask-1\ mask-eq-take-bit-minus-one\ neg-one.elims\ neg-one-signed
   new-int.simps one-le-numeral one-neg-zero signed.order.order-iff-strict take-bit-of-0
    val-abs-always-pos)
Optimisations
optimization AbsIdempotence: abs(abs(x)) \longmapsto abs(x)
  apply auto
 by (metis UnaryExpr unary-eval.simps(1) val-abs-idem)
optimization AbsNegate: (abs(-x)) \longmapsto abs(x)
   apply auto using val-abs-negate
 by (metis\ unary-eval.simps(1)\ unfold-unary)
end
end
       AddNode Phase
1.2
{\bf theory}\ AddPhase
 imports
   Common
begin
phase AddNode
 terminating size
begin
lemma binadd-commute:
 assumes bin-eval BinAdd x y \neq UndefVal
 shows bin-eval BinAdd x y = bin-eval BinAdd y x
 using assms intval-add-sym by simp
optimization AddShiftConstantRight: ((const v) + y) \longmapsto y + (const v) when
\neg (is\text{-}ConstantExpr\ y)
 using size-non-const apply fastforce
 unfolding le-expr-def
 apply (rule\ impI)
 subgoal premises 1
   apply (rule allI impI)+
   subgoal premises 2 for m p va
    apply (rule BinaryExprE[OF 2])
    subgoal premises 3 for x ya
```

```
apply (rule BinaryExpr)
       using 3 apply simp
       using 3 apply simp
       using 3 binadd-commute apply auto
       done
     done
   done
 done
optimization AddShiftConstantRight2: ((const\ v) + y) \longmapsto y + (const\ v) when
\neg (is\text{-}ConstantExpr\ y)
 unfolding le-expr-def
  apply (auto simp: intval-add-sym)
 using size-non-const by fastforce
lemma is-neutral-0 [simp]:
 assumes 1: intval-add (IntVal\ b\ x)\ (IntVal\ b\ 0) \neq UndefVal
 shows intval-add (IntVal b x) (IntVal b 0) = (new-int b x)
 using 1 by auto
optimization AddNeutral: (e + (const (IntVal 32 0))) \mapsto e
 unfolding le-expr-def apply auto
 using is-neutral-0 eval-unused-bits-zero
 by (smt (verit) add-cancel-left-right intval-add.elims val-to-bool.simps(1))
ML-val \langle @\{term \langle x = y \rangle \} \rangle
\mathbf{lemma}\ \mathit{NeutralLeftSubVal} :
 assumes e1 = new-int b ival
 shows val[(e1 - e2) + e2] \approx e1
 apply simp using assms by (cases e1; cases e2; auto)
optimization RedundantSubAdd: ((e_1 - e_2) + e_2) \longmapsto e_1
 apply \ auto \ using \ eval-unused-bits-zero \ NeutralLeftSubVal
 unfolding well-formed-equal-defn
 by (smt (verit) evalDet intval-sub.elims new-int.elims)
lemma allE2: (\forall x \ y. \ P \ x \ y) \Longrightarrow (P \ a \ b \Longrightarrow R) \Longrightarrow R
 by simp
```

```
lemma just-goal2:
  assumes 1: (\forall a \ b. \ (intval\text{-}add \ (intval\text{-}sub \ a \ b) \ b \neq UndefVal \ \land \ a \neq UndefVal
    intval-add (intval-sub a b) b=a))
 shows (BinaryExpr BinAdd (BinaryExpr BinSub e_1 e_2) e_2) \geq e_1
  {\bf unfolding}\ le-expr-def\ unfold-binary\ bin-eval.simps
 by (metis 1 evalDet evaltree-not-undef)
optimization RedundantSubAdd2: e_2 + (e_1 - e_2) \longmapsto e_1
  \mathbf{by}\ (\mathit{smt}\ (\mathit{verit},\ \mathit{del-insts})\ \mathit{BinaryExpr}\ \mathit{BinaryExprE}\ \mathit{RedundantSubAdd}(1)\ \mathit{bi-lose}
nadd-commute le-expr-def rewrite-preservation.simps(1))
{\bf lemma}~ Add To Sub Helper Low Level:
 shows intval-add (intval-negate e) y = intval-sub y \in (is ?x = ?y)
 by (induction y; induction e; auto)
optimization AddToSub: -e + y \longmapsto y - e
  using AddToSubHelperLowLevel by auto
print-phases
{f lemma}\ val	ext{-}redundant	ext{-}add	ext{-}sub:
  assumes a = new-int bb ival
 assumes val[b + a] \neq UndefVal
 shows val[(b+a)-b]=a
  using assms apply (cases a; cases b; auto)
  by presburger
\mathbf{lemma}\ \mathit{val-add-right-negate-to-sub} :
  assumes val[x + e] \neq UndefVal
  shows val[x + (-e)] = val[x - e]
  using assms by (cases x; cases e; auto)
\mathbf{lemma}\ exp-add\text{-}left\text{-}negate\text{-}to\text{-}sub\text{:}
 exp[-e + y] \ge exp[y - e]
```

```
apply (cases e; cases y; auto)
using AddToSubHelperLowLevel by auto+
```

Optimisations

```
optimization RedundantAddSub: (b + a) - b \mapsto a

apply auto using val-redundant-add-sub eval-unused-bits-zero

by (smt (verit) evalDet intval-add.elims new-int.elims)
```

optimization AddRightNegateToSub: $x + -e \mapsto x - e$ using AddToSubHelperLowLevel intval-add-sym by auto

optimization $AddLeftNegateToSub: -e + y \mapsto y - e$ **using** exp-add-left-negate-to-sub **by** blast

end

 \mathbf{end}

1.3 AndNode Phase

```
theory AndPhase
imports
Common
Proofs.StampEvalThms
begin
```

phase AndNode terminating size begin

lemma bin-and-nots: $(^{\sim}x \& ^{\sim}y) = (^{\sim}(x \mid y))$

 $\mathbf{by} \ simp$

 $\mathbf{lemma}\ \mathit{bin-and-neutral} :$

$$(x \& {^{\sim}}False) = x$$

by $simp$

lemma val-and-equal:

```
\begin{array}{ll} \textbf{assumes} \ x = \textit{new-int} \ \textit{b} \ \textit{v} \\ \textbf{and} & \textit{val}[x \ \& \ x] \neq \textit{UndefVal} \\ \textbf{shows} & \textit{val}[x \ \& \ x] = x \end{array}
```

```
using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-and-nots} :
  val[^{\sim}x \& ^{\sim}y] = val[^{\sim}(x \mid y)]
 apply (cases x; cases y; auto) by (simp add: take-bit-not-take-bit)
{f lemma}\ val\mbox{-} and\mbox{-} neutral:
 assumes x = new-int b v
          val[x \& ^{\sim}(new\text{-}int \ b' \ \theta)] \neq \textit{UndefVal}
 and
 shows val[x \& ^{\sim}(new\text{-}int \ b' \ \theta)] = x
  using assms apply (cases x; auto) apply (simp add: take-bit-eq-mask)
  by presburger
lemma val-and-zero:
 assumes x = new-int b v
 shows val[x \& (IntVal \ b \ \theta)] = IntVal \ b \ \theta
  using assms by (cases x; auto)
lemma exp-and-equal:
  exp[x \& x] \ge exp[x]
  apply auto using val-and-equal eval-unused-bits-zero
 by (smt (verit) evalDet intval-and.elims new-int.elims)
{f lemma}\ exp	ext{-} and	ext{-} nots:
  exp[^{\sim}x \& ^{\sim}y] \ge exp[^{\sim}(x \mid y)]
  apply (cases x; cases y; auto) using val-and-nots
 by fastforce+
\mathbf{lemma}\ exp\text{-}sign\text{-}extend:
 assumes e = (1 \ll In) - 1
 shows BinaryExpr BinAnd (UnaryExpr (UnarySignExtend In Out) x)
                          (ConstantExpr(new-int b e))
                        \geq (UnaryExpr(UnaryZeroExtend\ In\ Out)\ x)
 apply auto
 subgoal premises p for m p va
   proof -
     obtain va where va: [m,p] \vdash x \mapsto va
       using p(2) by auto
     then have va \neq UndefVal
      by (simp add: evaltree-not-undef)
     then have 1: intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b
e)) \neq UndefVal
       using evalDet p(1) p(2) va by blast
     then have 2: intval-sign-extend In Out va \neq UndefVal
```

```
by auto
     then have 21:(0::nat) < b
      by (simp\ add:\ p(4))
     then have 3: b \sqsubseteq (64::nat)
      by (simp \ add: \ p(5))
     then have 4: -((2::int) \hat{b} div (2::int)) \sqsubseteq sint (signed-take-bit (b - Suc
(0::nat)) (take-bit\ b\ e))
      by (simp \ add: \ p(6))
   then have 5: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) < (2::int)
^ b div (2::int)
      by (simp \ add: p(7))
     then have 6: [m,p] \vdash UnaryExpr (UnaryZeroExtend In Out)
            x \mapsto intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b e))
      apply (cases va; simp)
      apply (simp\ add: \langle (va::Value) \neq UndefVal \rangle) defer
       subgoal premises p for x3
        proof -
          have va = ObjRef x3
           using p(1) by auto
            then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) ^ b div (2::int)
           by (simp add: 5)
          then show ?thesis
           using 2 intval-sign-extend.simps(3) p(1) by blast
        qed
       subgoal premises p for x4
        proof -
          have sg1: va = ObjStr x4
           using 2 p(1) by auto
            then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) \cap b \ div \ (2::int)
           by (simp add: 5)
          then show ?thesis
           using 1 sq1 by auto
        qed
        subgoal premises p for x21 x22
          proof -
           have sgg1: va = IntVal \ x21 \ x22
             by (simp \ add: \ p(1))
           then have sgg2: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e))
< (2::int) \hat{} b div (2::int)
             by (simp \ add: 5)
           then show ?thesis
             sorry
           qed
          done
```

```
by (metis evalDet p(2) va)
   \mathbf{qed}
 done
lemma val-and-commute[simp]:
  val[x \& y] = val[y \& x]
  apply (cases x; cases y; auto)
 by (simp add: word-bw-comms(1))
Optimisations
optimization And Equal: x \& x \longmapsto x
 using exp-and-equal by blast
optimization And Shift Constant Right: ((const\ x)\ \&\ y) \longmapsto y\ \&\ (const\ x)
                                      when \neg (is\text{-}ConstantExpr\ y)
 using val-and-commute apply auto
 using size-non-const by auto
optimization And Nots: (^{\sim}x) \& (^{\sim}y) \longmapsto ^{\sim}(x \mid y)
   defer using exp-and-nots
   apply presburger sorry
{\bf optimization}\ And Sign Extend:\ Binary Expr\ Bin And\ (\ Unary Expr\ (\ Unary Sign Extend))
In Out)(x)
                                            (const\ (new\text{-}int\ b\ e))
                            \longmapsto (\mathit{UnaryExpr}\ (\mathit{UnaryZeroExtend}\ \mathit{In}\ \mathit{Out})\ \mathit{x})
                               when (e = (1 << In) - 1)
  using exp-sign-extend by simp
optimization And Neutral: (x \& {}^{\sim}(const (Int Val \ b \ \theta))) \longmapsto x
  when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
  apply auto using val-and-neutral
 by (smt\ (verit)\ Value.sel(1)\ eval-unused-bits-zero\ intval-and.elims\ intval-word.simps
     new-int.simps new-int-bin.simps take-bit-eq-mask)
end
context stamp-mask
```

then show ?thesis

begin

end

```
lemma And Right Fall through: (((and (not (\downarrow x)) (\uparrow y)) = 0)) \longrightarrow exp[x \& y] \ge
 apply simp apply (rule impI; (rule allI)+)
 apply (rule impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
    using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
    using p(2) by blast
   have v = val[xv \& yv]
    using p(2) xv yv
    by (metis BinaryExprE bin-eval.simps(4) evalDet)
   then have v = yv
    using p(1) not-down-up-mask-and-zero-implies-zero
   by (smt (verit) eval-unused-bits-zero intval-and.elims new-int.elims new-int-bin.elims
p(2) unfold-binary xv yv)
   then show ?thesis using yv by simp
 qed
 done
exp[x]
 apply simp apply (rule impI; (rule allI)+)
 apply (rule\ impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
    using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
    using p(2) by blast
   have v = val[xv \& yv]
    using p(2) xv yv
    by (metis BinaryExprE bin-eval.simps(4) evalDet)
   then have v = xv
    using p(1) not-down-up-mask-and-zero-implies-zero
   by (smt (verit) and commute eval-unused-bits-zero intval-and elims new-int simps
new-int-bin.simps p(2) unfold-binary xv yv)
   then show ?thesis using xv by simp
 qed
 done
end
```

BinaryNode Phase

```
{\bf theory} \ {\it BinaryNode}
 imports
   Common
begin
{f phase} BinaryNode
 terminating size
begin
optimization BinaryFoldConstant: BinaryExpr op (const v1) (const v2) \longmapsto Con-
stantExpr (bin-eval op v1 v2)
 unfolding le-expr-def
 apply (rule allI impI)+
 subgoal premises bin for m p v
   print-facts
   apply (rule BinaryExprE[OF bin])
   subgoal premises prems for x y
    print-facts
   proof -
    have x: x = v1 using prems by auto
    have y: y = v2 using prems by auto
    have xy: v = bin-eval \ op \ x \ y using prems \ x \ y by simp
    have int: \exists b \ vv \ . \ v = new-int b \ vv \ using \ bin-eval-new-int prems by fast
    show ?thesis
      \mathbf{unfolding} \ prems \ x \ y \ xy
      apply (rule ConstantExpr)
      apply (rule validDefIntConst)
      using prems x y xy int sorry
    qed
   done
 done
print-facts
end
end
       ConditionalNode Phase
1.5
theory ConditionalPhase
 imports
```

```
Common
   Proofs. Stamp Eval Thms
begin
```

```
phase ConditionalNode
 terminating size
begin
lemma negates: \exists v \ b. \ e = IntVal \ b \ v \land b > 0 \implies val\text{-}to\text{-}bool \ (val[e]) \longleftrightarrow
\neg(val\text{-}to\text{-}bool\ (val[!e]))
 unfolding intval-logic-negation.simps
 by (metis (mono-tags, lifting) intval-logic-negation.simps(1) logic-negate-def new-int.simps
of\text{-}bool\text{-}eq(2) one-neg-zero take-bit-of-0 take-bit-of-1 val-to-bool.simps(1))
lemma negation-condition-intval:
 \mathbf{assumes}\ e = \mathit{IntVal}\ b\ ie
 assumes \theta < b
 shows val[(!e) ? x : y] = val[e ? y : x]
 using assms by (cases e; auto simp: negates logic-negate-def)
optimization NegateConditionFlipBranches: ((!e) ? x : y) \mapsto (e ? y : x) when
(wf\text{-}stamp\ e \land stamp\text{-}expr\ e = IntegerStamp\ b\ lo\ hi \land b > 0)
 apply simp using negation-condition-intval
 by (smt (verit, ccfv-SIG) ConditionalExpr ConditionalExprE UnaryExprE negates
unary-eval.simps(4) valid-value-elims(3) wf-stamp-def)
optimization DefaultTrueBranch: (true ? x : y) \mapsto x.
optimization DefaultFalseBranch: (false ? x : y) \longmapsto y.
optimization Conditional Equal Branches: (e ? x : x) \longmapsto x.
optimization condition-bounds-x: ((u < v) ? x : y) \mapsto x
   when (stamp-under\ (stamp-expr\ u)\ (stamp-expr\ v)\ \land\ wf-stamp\ u\ \land\ wf-stamp\ v)
 apply simp apply (rule impI) apply (rule allI)+ apply (rule impI)
 using stamp-under-defn
 by force
optimization condition-bounds-y: ((u < v) ? x : y) \mapsto y
   when (stamp-under\ (stamp-expr\ v)\ (stamp-expr\ u)\ \land\ wf-stamp\ u\ \land\ wf-stamp\ v)
 apply simp apply (rule impI) apply (rule allI)+ apply (rule impI)
 using stamp-under-defn-inverse
 by force
\mathbf{lemma}\ \mathit{val-optimise-integer-test}\colon
 assumes \exists v. x = IntVal \ 32 \ v
  shows val[((x \& (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0) : (IntVal 32 0)]
1)] =
        val[x \& IntVal 32 1]
```

```
using assms apply auto
 apply (metis (full-types) bool-to-val.simps(2) val-to-bool.simps(1))
 by (metis (mono-tags, lifting) and-one-eq bool-to-val.simps(1) even-iff-mod-2-eq-zero
odd-iff-mod-2-eq-one val-to-bool.simps(1))
optimization ConditionalEliminateKnownLess: ((x < y) ? x : y) \mapsto x
                            when (stamp-under\ (stamp-expr\ x)\ (stamp-expr\ y)
                                 \land wf-stamp x \land wf-stamp y)
   using stamp-under-defn by auto
optimization Conditional Equal IsRHS: ((x eq y) ? x : y) \mapsto y
 apply auto
 by (smt (verit) Value.inject(1) bool-to-val.simps(2) bool-to-val-bin.simps evalDet
intval-equals. elims\ val-to-bool. elims(1))
optimization normalizeX: ((x eq const (IntVal 32 0)) ?
                           (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto x
                       when (x = ConstantExpr (IntVal 32 0)) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
optimization normalizeX2: ((x eq (const (IntVal 32 1))) ?
                            (const\ (IntVal\ 32\ 1)): (const\ (IntVal\ 32\ 0))) \longmapsto x
                                   when (x = ConstantExpr (IntVal 32 0) | (x =
ConstantExpr (IntVal 32 1))).
optimization flip X: ((x \ eq \ (const \ (Int Val \ 32 \ 0))) \ ?
                       (const\ (IntVal\ 32\ 1)): (const\ (IntVal\ 32\ 0))) \longmapsto
                        x \oplus (const (IntVal 32 1))
                       when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
optimization flipX2: ((x eq (const (IntVal 32 1))) ?
                        (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
                        x \oplus (const (IntVal 32 1))
                       when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
lemma stamp-of-default:
 assumes stamp-expr \ x = default-stamp
 assumes wf-stamp x
 shows ([m, p] \vdash x \mapsto v) \longrightarrow (\exists vv. \ v = IntVal \ 32 \ vv)
  using assms
 by (metis default-stamp valid-value-elims(3) wf-stamp-def)
```

```
optimization OptimiseIntegerTest:
         (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
           (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
             x & (const (IntVal 32 1))
             when (stamp-expr \ x = default-stamp \land wf-stamp \ x)
    apply simp apply (rule impI; (rule allI)+; rule impI)
    subgoal premises eval for m p v
proof -
    obtain xv where xv: [m, p] \vdash x \mapsto xv
        using eval by fast
    then have x32: \exists v. xv = IntVal 32 v
       using stamp-of-default eval by auto
  obtain lhs where lhs: [m, p] \vdash exp[(((x \& (const (Int Val 32 1))) eq (const (Int Val 32 1)))]
32 0))) ?
           (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1)))] \mapsto lhs
        using eval(2) by auto
    then have lhsV: lhs = val[((xv & (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0))
0): (Int Val \ 32 \ 1)]
       using \ xv \ evaltree. Binary Expr \ evaltree. Constant Expr \ evaltree. Conditional Expr
     by (smt (verit) ConditionalExprE ConstantExprE bin-eval.simps(11) bin-eval.simps(4)
evalDet intval-conditional.simps unfold-binary)
    obtain rhs where rhs: [m, p] \vdash exp[x \& (const (Int Val 32 1))] \mapsto rhs
        using eval(2) by blast
    then have rhsV: rhs = val[xv \& IntVal 32 1]
       by (metis BinaryExprE ConstantExprE bin-eval.simps(4) evalDet xv)
    have lhs = rhs using val-optimise-integer-test x32
       using lhsV rhsV by presburger
    then show ?thesis
       by (metis eval(2) evalDet lhs rhs)
\mathbf{qed}
    done
optimization opt-optimise-integer-test-2:
         (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
                                    (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
                                 when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr (IntVal 32 0)) | (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr (IntVal 32 0)) | (x = Consta
32 1))) .
```

end

end

1.6 MulNode Phase

```
theory MulPhase
 imports
   Common
   Proofs. Stamp Eval Thms \\
begin
{f phase} \ {\it MulNode}
 terminating size
begin
{\bf lemma}\ bin-eliminate-redundant-negative:
  uminus\ (x:: 'a::len\ word)*uminus\ (y:: 'a::len\ word) = x*y
 by simp
{\bf lemma}\ \textit{bin-multiply-identity}:
 (x :: 'a :: len word) * 1 = x
 by simp
{\bf lemma}\ bin-multiply-eliminate:
 (x :: 'a :: len word) * \theta = \theta
 by simp
{\bf lemma}\ bin-multiply-negative:
 (x :: 'a :: len \ word) * uminus 1 = uminus x
 by simp
lemma bin-multiply-power-2:
 (x:: 'a::len \ word) * (2^j) = x << j
 by simp
lemma take-bit64[simp]:
 fixes w :: int64
 shows take-bit 64 w = w
proof -
 have Nat.size w = 64
   by (simp add: size64)
 then show ?thesis
  by (metis lt2p-lem mask-eq-iff take-bit-eq-mask verit-comp-simplify1(2) wsst-TYs(3))
qed
lemma testt:
 \mathbf{fixes}\ a::\ nat
 fixes b c :: 64 word
 shows take-bit a (take-bit a (b) * take-bit a (c)) =
```

```
by (smt (verit, ccfv-SIG) take-bit-mult take-bit-of-int unsigned-take-bit-eq word-mult-def)
{f lemma}\ val\mbox{-}eliminate\mbox{-}redundant\mbox{-}negative:
 \begin{array}{l} \textbf{assumes} \ val[-x*-y] \neq \textit{UndefVal} \\ \textbf{shows} \ val[-x*-y] = val[x*y] \end{array}
  using assms apply (cases x; cases y; auto)
  using testt by auto
lemma val-multiply-neutral:
  assumes x = new\text{-}int \ b \ v
  shows val[x * (IntVal \ b \ 1)] = val[x]
  using assms by force
lemma val-multiply-zero:
  assumes x = new\text{-}int b v
 shows val[x * (IntVal \ b \ \theta)] = IntVal \ b \ \theta
  using assms by simp
lemma val-multiply-negative:
  assumes x = new-int b v
  shows val[x * intval-negate (IntVal b 1)] = intval-negate x
  using assms
 by (smt\ (verit)\ Value.disc(1)\ Value.inject(1)\ add.inverse-neutral\ intval-negate.simps(1)
      is-IntVal-def mask-0 mask-eq-take-bit-minus-one new-int.elims of-bool-eq(2)
take\text{-}bit\text{-}dist\text{-}neq
    take-bit-of-1\ val-eliminate-redundant-negative\ val-multiply-neutral\ val-multiply-zero
     verit-minus-simplify(4) zero-neq-one)
\mathbf{lemma}\ \mathit{val-MulPower2}\colon
  fixes i :: 64 word
  assumes y = IntVal\ 64\ (2 \cap unat(i))
  and
           0 < i
           i < 64
  and
           val[x * y] \neq UndefVal
  and
  shows val[x * y] = val[x << IntVal 64 i]
  using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
   proof -
     have 63: (63 :: int64) = mask 6
       by eval
     then have (2::int) \cap 6 = 64
       \mathbf{bv} eval
     then have uint \ i < (2::int) \ \widehat{\phantom{a}} 6
```

 $take-bit\ a\ (b*c)$

```
by (metis linorder-not-less lt2p-lem of-int-numeral p(4) size64 word-2p-lem
word-of-int-2p wsst-TYs(3))
     then have and i \pmod{6} = i
      using mask-eq-iff by blast
     then show x^2 \ll unat \ i = x^2 \ll unat \ (and \ i \ (63::64 \ word))
      unfolding 63
      by force
   qed
   by presburger
lemma val-MulPower2Add1:
 fixes i :: 64 word
 \mathbf{assumes}\ y = \mathit{IntVal}\ 64\ ((2\ \widehat{\ }\mathit{unat}(i))\ +\ 1)
          0 < i
 and
 and
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0< x])
          val-to-bool(val[IntVal\ 64\ 0\ <\ y])
 and
 shows val[x * y] = val[(x \ll IntVal 64 i) + x]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
 proof -
   have 63: (63 :: int64) = mask 6
   then have (2::int) \cap 6 = 64
    by eval
   then have and i \pmod{6} = i
     using mask-eq-iff by (simp\ add:\ less-mask-eq\ p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i + (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{} unat i)) + x2
    by (simp add: distrib-left)
   then show x2 * ((2::64 \ word) \cap unat \ i + (1::64 \ word)) = x2 << unat \ (and \ i
(63::64 \ word)) + x2
    by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   using val-to-bool.simps(2) by presburger
lemma val-MulPower2Sub1:
 fixes i :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) - 1)
 and
          0 < i
 and
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0< x])
          val-to-bool(val[IntVal\ 64\ 0\ <\ y])
 and
 shows val[x * y] = val[(x << IntVal 64 i) - x]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
```

```
proof -
   have 63: (63 :: int64) = mask 6
     by eval
   then have (2::int) \cap 6 = 64
     by eval
   then have and i \pmod{6} = i
     using mask\text{-}eq\text{-}iff by (simp\ add:\ less\text{-}mask\text{-}eq\ p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{} unat i)) - x2
     by (simp add: right-diff-distrib')
   then show x2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = x2 << unat \ (and \ i
(63::64 \ word)) - x2
     by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   qed
   using val-to-bool.simps(2) by presburger
{f lemma}\ val	ext{-} distribute	ext{-} multiplication:
 assumes x = new\text{-}int \ 64 \ xx \land q = new\text{-}int \ 64 \ qq \land a = new\text{-}int \ 64 \ aa
 shows val[x * (q + a)] = val[(x * q) + (x * a)]
 apply (cases x; cases q; cases a; auto) using distrib-left assms by auto
\mathbf{lemma}\ val\text{-}MulPower2AddPower2:
  fixes i j :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + (2 \cap unat(j)))
 and
           0 < i
           0 < j
 and
           i < 64
 and
 and
           j < 64
 and
           x = new-int 64 xx
 shows val[x * y] = val[(x << Int Val 64 i) + (x << Int Val 64 j)]
 using assms
 proof -
   have 63: (63 :: int64) = mask 6
     \mathbf{by} \ eval
   then have (2::int) \cap 6 = 64
     by eval
   then have n: IntVal\ 64\ ((2\ \widehat{\ }unat(i))\ +\ (2\ \widehat{\ }unat(j))) =
          val[(IntVal\ 64\ (2\ \widehat{\ }unat(i))) + (IntVal\ 64\ (2\ \widehat{\ }unat(j)))]
     using assms by (cases i; cases j; auto)
  then have 1: val[x * ((IntVal 64 (2 \cap unat(i))) + (IntVal 64 (2 \cap unat(j))))]
          val[(x * IntVal 64 (2 \cap unat(i))) + (x * IntVal 64 (2 \cap unat(j)))]
    \mathbf{using}\ assms\ val\text{-}distribute\text{-}multiplication\ val\text{-}MulPower2\ \mathbf{by}\ simp
  then have 2: val[(x * IntVal 64 (2 \cap unat(i)))] = val[x << IntVal 64 i]
```

```
using assms val-MulPower2
    using Value.distinct(1) intval-mul.simps(1) new-int.simps new-int-bin.simps
    by (smt (verit))
  then show ?thesis
   using 1 Value.distinct(1) assms(1) assms(3) assms(5) assms(6) intval-mul.simps(1)
n\ new\text{-}int.simps\ new\text{-}int\text{-}bin.elims\ val\text{-}MulPower2
    by (smt (verit, del-insts))
  qed
thm-oracles val-MulPower2AddPower2
lemma exp-multiply-zero-64:
 exp[x * (const (IntVal 64 0))] \ge ConstantExpr (IntVal 64 0)
 using val-multiply-zero apply auto
 using Value.inject(1) constant AsStamp.simps(1) int-signed-value-bounds intval-mul.elims
    mult-zero-right new-int.simps new-int-bin.simps nle-le numeral-eq-Suc take-bit-of-0
       unfold\text{-}const\ valid\text{-}stamp.simps(1)\ valid\text{-}value.simps(1)\ zero\text{-}less\text{-}Suc
 by (smt\ (verit))
lemma exp-multiply-neutral:
 exp[x * (const (IntVal \ b \ 1))] \ge x
 using val-multiply-neutral apply auto
 \mathbf{by} \; (smt \; (verit) \; \mathit{Value.inject}(1) \; eval\text{-}unused\text{-}bits\text{-}zero \; intval\text{-}mul.elims \; mult.right\text{-}neutral
     new-int.elims new-int-bin.elims)
thm-oracles exp-multiply-neutral
lemma exp-MulPower2:
 fixes i :: 64 \ word
 assumes y = ConstantExpr (IntVal 64 (2 ^unat(i)))
 and
          0 < i
 and
          i < 64
 and
          exp[x > (const\ IntVal\ b\ \theta)]
          exp[y > (const\ IntVal\ b\ 0)]
 and
 shows exp[x * y] \ge exp[x << ConstantExpr (IntVal 64 i)]
 using assms apply simp using val-MulPower2
 by (metis ConstantExprE equiv-exprs-def unfold-binary)
Optimisations
optimization EliminateRedundantNegative: -x * -y \longmapsto x * y
  apply auto using val-eliminate-redundant-negative bin-eval.simps(2)
 by (metis BinaryExpr)
optimization MulNeutral: x * ConstantExpr(IntVal\ b\ 1) \longmapsto x
  using exp-multiply-neutral by blast
```

```
optimization MulEliminator: x * ConstantExpr (IntVal b 0) <math>\longmapsto const (IntVal b 0)
 apply auto using val-multiply-zero
 \mathbf{using}\ Value.inject(1)\ constant AsStamp.simps(1)\ int-signed-value-bounds\ intval-mul.elims
       mult-zero-right new-int.simps new-int-bin.simps take-bit-of-0 unfold-const
       valid-stamp.simps(1) valid-value.simps(1)
 by (smt (verit))
optimization MulNegate: x * -(const\ (IntVal\ b\ 1)) \longmapsto -x
 apply auto using val-multiply-negative
 apply (smt (verit) Value.distinct(1) Value.sel(1) add.inverse-inverse intval-mul.elims
    intval-negate.simps(1) mask-eq-take-bit-minus-one new-int.simps new-int-bin.simps
     take-bit-dist-neg unary-eval.simps(2) unfold-unary
     val-eliminate-redundant-negative)
 sorry
fun isNonZero :: Stamp \Rightarrow bool where
  isNonZero (IntegerStamp \ b \ lo \ hi) = (lo > 0)
  isNonZero - = False
lemma isNonZero-defn:
 assumes isNonZero (stamp-expr x)
 assumes wf-stamp x
 \mathbf{shows}\ ([m,\,p] \vdash x \mapsto v) \longrightarrow (\exists\, vv\ b.\ (v = \mathit{IntVal}\ b\ vv \land \mathit{val-to-bool}\ \mathit{val}[(\mathit{IntVal}\ b\ v) \land \mathit{val-to-bool}\ \mathit{val}])
(0) < v(0)
 apply (rule \ impI) subgoal premises eval
proof -
 obtain b lo hi where xstamp: stamp-expr x = IntegerStamp b lo hi
   using assms
   by (meson\ isNonZero.elims(2))
  then obtain vv where vdef: v = IntVal\ b\ vv
   by (metis assms(2) eval valid-int wf-stamp-def)
 have lo > 0
   using assms(1) xstamp by force
  then have signed-above: int-signed-value b vv > 0
   \mathbf{using}\ assms\ \mathbf{unfolding}\ \textit{wf-stamp-def}
   using eval vdef xstamp by fastforce
  have take-bit b vv = vv
   using eval eval-unused-bits-zero vdef by auto
  then have vv > \theta
   using signed-above
  \textbf{by} \ (\textit{metis bit-take-bit-iff int-signed-value}. \textit{simps not-less-zero signed-eq-0-iff signed-take-bit-eq-if-positive})
take-bit-0 take-bit-of-0 verit-comp-simplify1(1) word-gt-0)
  then show ?thesis
```

```
using vdef using signed-above
   by simp
\mathbf{qed}
 done
optimization MulPower2: x * y \longmapsto x << const (IntVal 64 i)
                           when (i > 0 \land
                                64 > i \wedge
                                y = exp[const (IntVal 64 (2 \cap unat(i)))])
  defer
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
  obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval(2) by blast
  then obtain xvv where xvv: xv = IntVal 64 xvv
   using eval
  {f using} \ Constant ExprE \ bin-eval. simps (2) \ eval Det \ intval-bits. simps \ intval-mul. elims
new-int-bin.simps unfold-binary
   by (smt (verit))
  obtain yv where yv: [m, p] \vdash y \mapsto yv
   using eval(1) eval(2) by blast
  then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
   \mathbf{by}\ (\mathit{metis}\ \mathit{bin-eval}.\mathit{simps}(2)\ \mathit{eval}(1)\ \mathit{eval}(2)\ \mathit{eval}\mathit{Det}\ \mathit{unfold-binary}\ \mathit{xv})
 have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
  by (smt (verit, ccfv-SIG) ConstantExpr constantAsStamp.simps(1) eval-bits-1-64
take-bit64 validStampIntConst valid-value.simps(1) xv xvv)
 then have rhs: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
i)]
   using xv xvv using evaltree.BinaryExpr
  by (metis Value.simps(5) bin-eval.simps(8) intval-left-shift.simps(1) new-int.simps)
 have val[xv * yv] = val[xv << (IntVal 64 i)]
   using val-MulPower2
   by (metis ConstantExprE eval(1) evaltree-not-undef lhs yv)
 then show ?thesis
   by (metis eval(1) eval(2) evalDet lhs rhs)
qed
 sorry
end
end
       Experimental AndNode Phase
1.7
```

theory NewAnd imports

```
Common
    Graph.Long
begin
lemma bin-distribute-and-over-or:
  bin[z \& (x | y)] = bin[(z \& x) | (z \& y)]
 by (smt (verit, best) bit-and-iff bit-eqI bit-or-iff)
lemma intval-distribute-and-over-or:
  val[z \& (x | y)] = val[(z \& x) | (z \& y)]
 apply (cases \ x; \ cases \ y; \ cases \ z; \ auto)
 using bin-distribute-and-over-or by blast+
\mathbf{lemma}\ exp\text{-}distribute\text{-}and\text{-}over\text{-}or:
  exp[z \& (x | y)] \ge exp[(z \& x) | (z \& y)]
 apply simp using intval-distribute-and-over-or
 using BinaryExpr\ bin-eval.simps(4,5)
 using intval-or.simps(1) unfolding new-int-bin.simps new-int.simps apply auto
 by (metis\ bin-eval.simps(4)\ bin-eval.simps(5)\ intval-or.simps(2)\ intval-or.simps(5))
{\bf lemma}\ intval\text{-} and\text{-} commute:
  val[x \& y] = val[y \& x]
 by (cases x; cases y; auto simp: and.commute)
{f lemma}\ intval	ext{-}or	ext{-}commute:
  val[x \mid y] = val[y \mid x]
 by (cases x; cases y; auto simp: or.commute)
\mathbf{lemma}\ intval\text{-}xor\text{-}commute:
  val[x \oplus y] = val[y \oplus x]
 by (cases x; cases y; auto simp: xor.commute)
\mathbf{lemma}\ exp\text{-} and\text{-} commute:
  exp[x \& z] \ge exp[z \& x]
 apply simp using intval-and-commute by auto
lemma exp-or-commute:
  exp[x \mid y] \ge exp[y \mid x]
 apply simp using intval-or-commute by auto
lemma exp-xor-commute:
  exp[x \oplus y] \ge exp[y \oplus x]
 apply simp using intval-xor-commute by auto
lemma bin-eliminate-y:
 assumes bin[y \& z] = 0
 shows bin[(x \mid y) \& z] = bin[x \& z]
```

```
using assms
  by (simp add: and.commute bin-distribute-and-over-or)
lemma intval-eliminate-y:
  assumes val[y \& z] = IntVal \ b \ \theta
  \mathbf{shows} \ val[(x \mid y) \ \& \ z] = val[x \ \& \ z]
  using assms bin-eliminate-y by (cases x; cases y; cases z; auto)
lemma intval-and-associative:
  val[(x \& y) \& z] = val[x \& (y \& z)]
  apply (cases \ x; \ cases \ y; \ cases \ z; \ auto)
  by (simp\ add:\ and.assoc)+
{\bf lemma}\ intval\text{-}or\text{-}associative:
  val[(x \mid y) \mid z] = val[x \mid (y \mid z)]
  apply (cases x; cases y; cases z; auto)
  by (simp add: or.assoc)+
\mathbf{lemma}\ intval\text{-}xor\text{-}associative:
  val[(x \oplus y) \oplus z] = val[x \oplus (y \oplus z)]
  apply (cases x; cases y; cases z; auto)
 by (simp \ add: xor.assoc)+
lemma exp-and-associative:
  exp[(x \& y) \& z] \ge exp[x \& (y \& z)]
  {\bf apply} \ simp \ {\bf using} \ intval\text{-} and \text{-} associative \ {\bf by} \ fastforce
lemma exp-or-associative:
  exp[(x \mid y) \mid z] \ge exp[x \mid (y \mid z)]
  apply simp using intval-or-associative by fastforce
{\bf lemma}\ exp\text{-}xor\text{-}associative:
  exp[(x \oplus y) \oplus z] \ge exp[x \oplus (y \oplus z)]
  apply simp using intval-xor-associative by fastforce
lemma intval-and-absorb-or:
  assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
  assumes val[x \& (x \mid y)] \neq UndefVal
  \mathbf{shows} \ val[x \ \& \ (x \mid y)] = val[x]
  using assms apply (cases x; cases y; auto)
  by (metis\ (mono-tags,\ lifting)\ intval-and.simps(5))
lemma intval-or-absorb-and:
  assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
  assumes val[x \mid (x \& y)] \neq UndefVal
  shows val[x \mid (x \& y)] = val[x]
  using assms apply (cases x; cases y; auto)
  by (metis\ (mono-tags,\ lifting)\ intval-or.simps(5))
```

```
{f lemma}\ exp	ext{-}and	ext{-}absorb	ext{-}or:
  exp[x \& (x \mid y)] \ge exp[x]
 apply auto using intval-and-absorb-or eval-unused-bits-zero
 by (smt (verit) evalDet intval-or.elims new-int.elims)
lemma exp-or-absorb-and:
  exp[x \mid (x \& y)] \ge exp[x]
 apply auto using intval-or-absorb-and eval-unused-bits-zero
 by (smt (verit) evalDet intval-or.elims new-int.elims)
definition IRExpr-up :: IRExpr \Rightarrow int64 where
  IRExpr-up \ e = not \ 0
definition IRExpr-down :: IRExpr \Rightarrow int64 where
  IRExpr-down \ e = 0
lemma
 assumes y = \theta
 \mathbf{shows}\ x + y = or\ x\ y
 using assms
 by simp
lemma no-overlap-or:
 assumes and x y = 0
 shows x + y = or x y
 using assms
 by (metis bit-and-iff bit-xor-iff disjunctive-add xor-self-eq)
context stamp-mask
begin
lemma intval-up-and-zero-implies-zero:
 assumes and (\uparrow x) (\uparrow y) = 0
 assumes [m, p] \vdash x \mapsto xv
 assumes [m, p] \vdash y \mapsto yv
 assumes val[xv \& yv] \neq UndefVal
 shows \exists b \cdot val[xv \& yv] = new\text{-}int b \theta
 using assms apply (cases xv; cases yv; auto)
 using up-mask-and-zero-implies-zero
```

```
apply (smt (verit, best) take-bit-and take-bit-of-0)
 by presburger
lemma exp-eliminate-y:
 and (\uparrow y) (\uparrow z) = 0 \longrightarrow BinaryExpr\ BinAnd\ (BinaryExpr\ BinOr\ x\ y)\ z \ge Bina-
ryExpr BinAnd x z
 apply simp apply (rule impI; rule allI; rule allI; rule allI)
 subgoal premises p for m p v apply (rule \ impI) subgoal premises e
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using e by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using e by auto
   obtain zv where zv: [m,p] \vdash z \mapsto zv
     using e by auto
   have lhs: v = val[(xv \mid yv) \& zv]
     using xv yv zv
       by (smt (verit, best) BinaryExprE bin-eval.simps(4) bin-eval.simps(5) e
evalDet)
   then have v = val[(xv \& zv) \mid (yv \& zv)]
     by (simp add: intval-and-commute intval-distribute-and-over-or)
   also have \exists b. \ val[yv \& zv] = new\text{-}int \ b \ 0
     using intval-up-and-zero-implies-zero
     by (metis calculation e intval-or.simps(5) p unfold-binary yv zv)
   ultimately have rhs: v = val[xv \& zv]
     using intval-eliminate-y lhs by force
   from lhs rhs show ?thesis
     by (metis BinaryExpr BinaryExprE bin-eval.simps(4) e xv zv)
 \mathbf{qed}
 done
 done
lemma leadingZeroBounds:
 fixes x :: 'a :: len word
 assumes n = numberOfLeadingZeros x
 shows 0 < n \land n < Nat.size x
 using assms unfolding numberOfLeadingZeros-def
 by (simp add: MaxOrNeg-def highestOneBit-def nat-le-iff)
{f lemma}\ above-nth-not-set:
 fixes x :: int64
 assumes n = 64 - numberOfLeadingZeros x
 shows j > n \longrightarrow \neg(bit \ x \ j)
 using assms unfolding numberOfLeadingZeros-def
 by (smt (verit, ccfv-SIG) highestOneBit-def int-nat-eq int-ops(6) less-imp-of-nat-less
max-set-bit size64 zerosAboveHighestOne)
no-notation LogicNegationNotation (!-)
```

```
lemma zero-horner:
 horner-sum of-bool 2 (map (\lambda x. False) xs) = 0
 apply (induction xs) apply simp
 by force
lemma zero-map:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows map \ f \ [0..< n] = map \ f \ [0..< j] @ map \ (\lambda x. \ False) \ [j..< n]
 apply (insert assms)
 by (smt (verit, del-insts) add-diff-inverse-nat atLeastLessThan-iff bot-nat-0.extremum
leD map-append map-eq-conv set-upt upt-add-eq-append)
lemma map-join-horner:
 assumes map f [0..< n] = map f [0..< j] @ map (\lambda x. False) [j..< n]
 shows horner-sum of-bool (2::'a::len\ word)\ (map\ f\ [0...< n]) = horner-sum\ of-bool
2 (map f [0..< j])
proof -
 have horner-sum of-bool (2::'a::len word) (map f[0..< n]) = horner-sum of-bool
2 \pmod{f[0..<j]} + 2 \cap length[0..<j] * horner-sum of-bool 2 \pmod{f[j..<n]}
   using horner-sum-append
    by (smt (verit) assms diff-le-self diff-zero le-add-same-cancel2 length-append
length-map length-upt map-append upt-add-eq-append)
  also have ... = horner-sum of-bool 2 (map f [0...< j]) + 2 \widehat{} length [0...< j] *
horner-sum of-bool 2 (map (\lambda x. False) [j..<n])
   using assms
   by (metis calculation horner-sum-append length-map)
 also have ... = horner-sum of-bool 2 (map f [0..< j])
   using zero-horner
   using mult-not-zero by auto
 finally show ?thesis by simp
qed
lemma split-horner:
 assumes j \leq n
 assumes \forall i. j < i \longrightarrow \neg(f i)
 shows horner-sum of-bool (2::'a::len word) (map f[0..< n]) = horner-sum of-bool
2 (map \ f \ [0..< j])
 apply (rule map-join-horner)
 apply (rule zero-map)
 using assms by auto
lemma transfer-map:
 assumes \forall i. i < n \longrightarrow f i = f' i
 shows (map f [0..< n]) = (map f' [0..< n])
 using assms by simp
lemma transfer-horner:
 assumes \forall i. i < n \longrightarrow f i = f' i
```

```
shows horner-sum of-bool (2::'a::len\ word)\ (map\ f\ [0...< n]) = horner-sum\ of-bool
2 \pmod{f' [\theta ... < n]}
  using assms using transfer-map
  by (smt\ (verit,\ best))
lemma L1:
  assumes n = 64 - numberOfLeadingZeros (\uparrow z)
 assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
  shows and v zv = and (v mod 2^n) zv
proof -
  have nle: n \leq 64
   using assms
   using diff-le-self by blast
  also have and v zv = horner-sum \ of-bool \ 2 \ (map \ (bit \ (and \ v \ zv)) \ [0...<64])
   using horner-sum-bit-eq-take-bit size 64
   by (metis size-word.rep-eq take-bit-length-eq)
  also have ... = horner-sum of-bool 2 (map (\lambda i. bit (and v zv) i) [0..<64])
   \mathbf{by} blast
 also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit v i) \wedge (bit zv i))) [\theta..<64])
   using bit-and-iff by metis
  also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit\ v\ i) \land (bit\ zv\ i))) [0... < n])
  proof -
   have \forall i. i \geq n \longrightarrow \neg(bit\ zv\ i)
     using above-nth-not-set assms(1)
     using assms(2) not-may-implies-false
    by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne\ linorder-not-le\ nat-int-comparison(2)\ not-numeral-le-zero\ size 64\ zero-less-Suc
zerosAboveHighestOne)
   then have \forall i. i \geq n \longrightarrow \neg((bit \ v \ i) \land (bit \ zv \ i))
     by auto
   then show ?thesis using nle split-horner
     by (metis (no-types, lifting))
  qed
  also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^n) i) \wedge (bit zv
i))) [0..< n])
  proof -
   have \forall i. i < n \longrightarrow bit (v \mod 2 \widehat{\ } n) i = bit v i
     by (metis bit-take-bit-iff take-bit-eq-mod)
    then have \forall i. i < n \longrightarrow ((bit \ v \ i) \land (bit \ zv \ i)) = ((bit \ (v \ mod \ 2 \widehat{\ n}) \ i) \land (bit \ v \ i))
zv(i)
     \mathbf{by}\ force
   then show ?thesis
     by (rule transfer-horner)
  also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^n) i) \wedge (bit zv
i))) [0..<64])
  proof -
   have \forall i. i \geq n \longrightarrow \neg(bit \ zv \ i)
     using above-nth-not-set \ assms(1)
```

```
using assms(2) not-may-implies-false
          by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne\ linorder-not-le\ nat-int-comparison(2)\ not-numeral-le-zero\ size 64\ zero-less-Suc
zerosAboveHighestOne)
         then show ?thesis
              by (metis (no-types, lifting) assms(1) diff-le-self split-horner)
    qed
    also have ... = horner-sum of-bool 2 (map (bit (and (v mod 2^n) zv)) [0...<64])
         by (meson bit-and-iff)
    also have \dots = and (v \mod 2 \hat{\ } n) zv
         using horner-sum-bit-eq-take-bit size 64
         by (metis size-word.rep-eq take-bit-length-eq)
    finally show ?thesis
             using \langle and (v::64 \ word) \ (zv::64 \ word) = horner-sum \ of-bool \ (2::64 \ word)
(map\ (bit\ (and\ v\ zv))\ [0::nat..<64::nat]) \land (horner-sum\ of-bool\ (2::64\ word)\ (map\ variety))
(\lambda i::nat. bit ((v::64 word) mod (2::64 word) ^ (n::nat)) i \land bit (zv::64 word)
i) [0::nat..<64::nat]) = horner-sum\ of-bool\ (2::64\ word)\ (map\ (bit\ (and\ (v\ mod\ (
(2::64 \ word) \ \widehat{\ } n) \ zv)) \ [0::nat..<64::nat]) \land (horner-sum \ of-bool \ (2::64 \ word) \ (map)
(\lambda i::nat.\ bit\ ((v::64\ word)\ mod\ (2::64\ word)\ ^(n::nat))\ i\ \wedge\ bit\ (zv::64\ word)\ i)
[0::nat..< n] = horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit (v mod (2::64
word) \cap n i \wedge bit zv i [0::nat..<64::nat] \rightarrow \langle horner-sum of-bool (2::64 word)
(map\ (\lambda i::nat.\ bit\ (v::64\ word)\ i\ \land\ bit\ (zv::64\ word)\ i)\ [0::nat..<64::nat]) =
horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<n::nat])
\langle horner\text{-}sum \ of\text{-}bool \ (2::64 \ word) \ (map \ (\lambda i::nat. \ bit \ (v::64 \ word) \ i \ \wedge \ bit \ (zv::64 \ word)
word) i) [0::nat.. < n::nat] = horner-sum\ of-bool\ (2::64\ word)\ (map\ (\lambda i::nat.\ bit
(v \mod (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (borner-sum of-bool (2::64))
word) (map (bit (and ((v::64 word) mod (2::64 word) ^ (n::nat)) (zv::64 word)))
[0::nat..<64::nat] = and (v \mod (2::64 \mod n) \implies (horner-sum of-bool (2::64
word) (map\ (bit\ (and\ (v::64\ word)\ (zv::64\ word)))\ [0::nat..<64::nat]) = horner-sum
of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<64::nat]) by pres-
burger
qed
lemma up-mask-upper-bound:
    assumes [m, p] \vdash x \mapsto IntVal\ b\ xv
    shows xv \leq (\uparrow x)
    using assms
   by (metis (no-types, lifting) and idem and right-neutral bit.conj-cancel-left bit.conj-disj-distribs(1)
bit.double-compl\ ucast-id\ up-spec\ word-and-le1\ word-not-dist(2))
lemma L2:
     assumes numberOfLeadingZeros (\uparrow z) + numberOfTrailingZeros (\uparrow y) \ge 64
    assumes n = 64 - numberOfLeadingZeros (\uparrow z)
    assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
    assumes [m, p] \vdash y \mapsto IntVal\ b\ yv
    shows yv \mod 2 \hat{\ } n = 0
proof -
     have yv \mod 2 \hat{n} = horner\text{-}sum \text{ of-bool } 2 \pmod{bit } yv) [0..< n])
         by (simp add: horner-sum-bit-eq-take-bit take-bit-eq-mod)
```

```
also have ... \leq horner-sum of-bool 2 (map (bit (\uparrow y)) [0..< n])
   using up-mask-upper-bound assms(4)
  \textbf{by} \ (\textit{metis} \ (\textit{no-types}, \textit{opaque-lifting}) \ \textit{and.right-neutral} \ \textit{bit.conj-cancel-right} \ \textit{bit.conj-disj-distribs} (1)
bit.double-compl\ horner-sum-bit-eq-take-bit\ take-bit-and\ ucast-id\ up-spec\ word-and-le1
word-not-dist(2)
 also have horner-sum of-bool 2 (map (bit (\uparrow y)) [0...< n]) = horner-sum of-bool 2
(map (\lambda x. False) [0..< n])
 proof -
   have \forall i < n. \neg (bit (\uparrow y) i)
     using assms(1,2) zerosBelowLowestOne
     by (metis add.commute add-diff-inverse-nat add-lessD1 leD le-diff-conv num-
berOfTrailingZeros-def)
   then show ?thesis
     by (metis (full-types) transfer-map)
 also have horner-sum of-bool 2 (map (\lambda x. False) [0..<n]) = 0
   using zero-horner
   by blast
 finally show ?thesis
   by auto
qed
thm-oracles L1 L2
lemma unfold-binary-width-add:
 shows ([m,p] \vdash BinaryExpr\ BinAdd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAdd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
 assume 3: ?L
 show ?R apply (rule evaltree.cases[OF 3])
   apply force+ apply auto[1]
   apply (smt (verit) intval-add.elims intval-bits.simps)
   by blast
\mathbf{next}
  assume R: ?R
  then obtain x \ y where [m,p] \vdash xe \mapsto IntVal \ b \ x
       and [m,p] \vdash ye \mapsto IntVal\ b\ y
       and new-int b \ val = bin-eval \ BinAdd \ (IntVal \ b \ x) \ (IntVal \ b \ y)
       and new-int b val \neq UndefVal
   by auto
 then show ?L
   using R by blast
```

lemma unfold-binary-width-and:

```
shows ([m,p] \vdash BinaryExpr\ BinAnd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
         ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAnd\ (IntVal\ b\ x)\ (IntVal\ b\ y)) \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
  assume \beta: ?L
 show ?R apply (rule\ evaltree.cases[OF\ 3])
   apply force+ apply auto[1] using intval-and.elims intval-bits.simps
   apply (smt (verit) new-int.simps new-int-bin.simps take-bit-and)
   by blast
next
 assume R: ?R
 then obtain x \ y where [m,p] \vdash xe \mapsto IntVal \ b \ x
       and [m,p] \vdash ye \mapsto IntVal\ b\ y
       and new-int b val = bin-eval BinAnd (IntVal b x) (IntVal b y)
       and new\text{-}int\ b\ val \neq UndefVal
   by auto
  then show ?L
   using R by blast
qed
{f lemma}\ mod\mbox{-}dist\mbox{-}over\mbox{-}add\mbox{-}right:
 fixes a \ b \ c :: int64
 fixes n :: nat
 assumes 1: \theta < n
 assumes 2: n < 64
 shows (a + b \mod 2\widehat{\ n}) \mod 2\widehat{\ n} = (a + b) \mod 2\widehat{\ n}
 using mod-dist-over-add
 by (simp add: 1 2 add.commute)
lemma number Of Leading Zeros-range:
  0 \leq numberOfLeadingZeros \ n \land numberOfLeadingZeros \ n \leq Nat.size \ n
 unfolding numberOfLeadingZeros-def highestOneBit-def using max-set-bit
 by (simp add: highestOneBit-def leadingZeroBounds numberOfLeadingZeros-def)
lemma improved-opt:
  assumes number Of Leading Zeros (\uparrow z) + number Of Trailing Zeros (\uparrow y) \geq 64
 shows exp[(x + y) \& z] \ge exp[x \& z]
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
  obtain n where n: n = 64 - numberOfLeadingZeros (\uparrow z)
  obtain b val where val: [m, p] \vdash exp[(x + y) \& z] \mapsto IntVal \ b \ val
   by (metis BinaryExprE bin-eval-new-int eval new-int.simps)
  then obtain xv yv where addv: [m, p] \vdash exp[x + y] \mapsto IntVal\ b\ (xv + yv)
   apply (subst (asm) unfold-binary-width-and) by (metis add.right-neutral)
```

```
then obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
   apply (subst (asm) unfold-binary-width-add) by blast
  from addv obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
   apply (subst (asm) unfold-binary-width-add) by blast
  from val obtain zv where zv: [m, p] \vdash z \mapsto IntVal \ b \ zv
   apply (subst (asm) unfold-binary-width-and) by blast
  have addv: [m, p] \vdash exp[x + y] \mapsto new\text{-}int \ b \ (xv + yv)
   apply (rule evaltree.BinaryExpr)
   using xv apply simp
   using yv apply simp
   by simp+
  have lhs: [m, p] \vdash exp[(x + y) \& z] \mapsto new\text{-int } b \text{ (and } (xv + yv) zv)
   apply (rule evaltree.BinaryExpr)
   using addv apply simp
   using zv apply simp
   using addv apply auto[1]
   by simp
  have rhs: [m, p] \vdash exp[x \& z] \mapsto new\text{-}int \ b \ (and \ xv \ zv)
   apply (rule evaltree.BinaryExpr)
   using xv apply simp
   using zv apply simp
    apply force
   by simp
  then show ?thesis
  proof (cases number Of Leading Zeros (\uparrow z) > 0)
   case True
   have n-bounds: 0 \le n \land n < 64
     using diff-le-self n numberOfLeadingZeros-range
     by (simp add: True)
   have and (xv + yv) zv = and ((xv + yv) mod 2^n) zv
     using L1 \ n \ zv by blast
   also have ... = and ((xv + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
     using mod-dist-over-add-right n-bounds
     by (metis take-bit-0 take-bit-eq-mod zero-less-iff-neq-zero)
   also have ... = and (((xv \mod 2\widehat{\ n}) + (yv \mod 2\widehat{\ n})) \mod 2\widehat{\ n}) zv
      by (metis bits-mod-by-1 mod-dist-over-add n-bounds order-le-imp-less-or-eq
power-0)
   also have ... = and ((xv \mod 2 \hat{} n) \mod 2 \hat{} n) zv
     using L2 \ n \ zv \ yv
     using assms by auto
   also have ... = and (xv \mod 2^n) zv
     using mod-mod-trivial
   by (smt (verit, best) and idem take-bit-eq-mask take-bit-eq-mod word-bw-assocs(1))
   also have \dots = and xv zv
     using L1 \ n \ zv by metis
   finally show ?thesis
     using eval lhs rhs
     by (metis evalDet)
 next
```

```
case False
        then have numberOfLeadingZeros (\uparrow z) = 0
           \mathbf{by} \ simp
        then have numberOfTrailingZeros (\uparrow y) \geq 64
            using assms(1)
            by fastforce
        then have yv = 0
            using yv
                by (metis (no-types, lifting) L1 L2 add-diff-cancel-left' and.comm-neutral
and.idem\ bit.compl-zero\ bit.conj-cancel-right\ bit.conj-disj-distribs(1)\ bit.double-complex and and all of the complex and all of th
less-imp-diff-less\ linorder-not-le\ word-not-dist(2))
        then show ?thesis
            by (metis add.right-neutral eval evalDet lhs rhs)
   qed
qed
done
thm-oracles improved-opt
lemma falseBelowN-nBelowLowest:
    assumes n \leq Nat.size a
   assumes \forall i < n. \neg (bit \ a \ i)
   shows lowestOneBit \ a \geq n
proof (cases \{i. bit a i\} = \{\})
    {f case}\ True
    then show ?thesis unfolding lowestOneBit-def MinOrHighest-def
        using assms(1) trans-le-add1 by presburger
next
    case False
   have n \leq Min (Collect (bit a))
     by (metis False Min-ge-iff assms(2) finite-bit-word linorder-le-less-linear mem-Collect-eq)
    then show ?thesis unfolding lowestOneBit-def MinOrHighest-def
        using False by presburger
qed
lemma noZeros:
    fixes a :: 64 word
    assumes zeroCount \ a = 0
    shows i < Nat.size \ a \longrightarrow bit \ a \ i
    using assms unfolding zeroCount-def size64
    using zeroCount-finite by auto
lemma zerosAboveOnly:
    fixes a :: 64 word
    assumes number Of Leading Zeros \ a = zero Count \ a
    shows \neg(bit\ a\ i) \longrightarrow i \ge (64 - numberOfLeadingZeros\ a)
    sorry
```

```
lemma consumes:
  assumes numberOfLeadingZeros\ (\uparrow z) + bitCount\ (\uparrow z) = 64
  and \uparrow z \neq \theta
 and and (\uparrow y) (\uparrow z) = 0
  shows numberOfLeadingZeros (\uparrow z) + numberOfTrailingZeros (\uparrow y) \geq 64
proof -
  obtain n where n = 64 - numberOfLeadingZeros (\uparrow z)
   by simp
  then have n = bitCount (\uparrow z)
   by (metis add-diff-cancel-left' assms(1))
  have numberOfLeadingZeros\ (\uparrow z) = zeroCount\ (\uparrow z)
   using assms(1) size64 ones-zero-sum-to-width
   by (metis add.commute add-left-imp-eq)
  then have \forall i. \neg (bit (\uparrow z) i) \longrightarrow i \ge n
   using assms(1) zerosAboveOnly
   using \langle (n::nat) = (64::nat) - numberOfLeadingZeros (\uparrow (z::IRExpr)) \rangle by blast
  then have \forall i < n. \ bit \ (\uparrow z) \ i
   using leD by blast
  then have \forall i < n. \neg (bit (\uparrow y) i)
   using assms(3)
   by (metis bit.conj-cancel-right bit-and-iff bit-not-iff)
  then have lowestOneBit (\uparrow y) \geq n
   by (simp\ add: \langle (n::nat) = (64::nat) - numberOfLeadingZeros\ (\uparrow (z::IRExpr)) \rangle
falseBelowN-nBelowLowest size64)
  then have n \leq numberOfTrailingZeros (\uparrow y)
   unfolding numberOfTrailingZeros-def
   by simp
  have card \{i.\ i < n\} = bitCount\ (\uparrow z)
   by (simp\ add: \langle (n::nat) = bitCount\ (\uparrow (z::IRExpr))\rangle)
  then have bitCount (\uparrow z) \leq numberOfTrailingZeros (\uparrow y)
   using \langle (n::nat) \sqsubseteq numberOfTrailingZeros (\uparrow (y::IRExpr)) \rangle by auto
  then show ?thesis using assms(1) by auto
qed
thm-oracles consumes
lemma right:
  assumes numberOfLeadingZeros\ (\uparrow z) + bitCount\ (\uparrow z) = 64
  assumes \uparrow z \neq 0
 assumes and (\uparrow y) (\uparrow z) = 0
 shows exp[(x + y) \& z] \ge exp[x \& z]
apply simp apply (rule allI)+
 subgoal premises p for m p v apply (rule \ impI) subgoal premises e
proof -
  obtain j where j: j = highestOneBit (\uparrow z)
   by simp
```

```
obtain xv b where xv: [m,p] \vdash x \mapsto IntVal b xv
         using e
       by (metis\ EvalTreeE(5)\ bin-eval-inputs-are-ints\ bin-eval-new-int\ new-int.simps)
     obtain yv where yv: [m,p] \vdash y \mapsto IntVal\ b\ yv
         using e EvalTreeE(5) bin-eval-inputs-are-ints bin-eval-new-int new-int.simps
         by (smt (verit) Value.sel(1) bin-eval.simps(1) evalDet intval-add.elims xv)
     obtain xyv where xyv: [m, p] \vdash exp[x + y] \mapsto IntVal\ b\ xyv
         using e EvalTreeE(5) bin-eval-inputs-are-ints bin-eval-new-int new-int.simps
         xv yv
        by (metis\ BinaryExpr\ Value.distinct(1)\ bin-eval.simps(1)\ intval-add.simps(1))
     then obtain zv where zv: [m,p] \vdash z \mapsto IntVal\ b\ zv
         using e EvalTreeE(5) bin-eval-inputs-are-ints bin-eval-new-int new-int.simps
         Value.sel(1) bin-eval.simps(4) evalDet intval-and.elims
         by (smt (verit) new-int-bin.simps)
    have xyv = take-bit\ b\ (xv + yv)
         using xv yv xyv
      by (metis BinaryExprE Value.sel(2) bin-eval.simps(1) evalDet intval-add.simps(1))
     then have v = IntVal\ b\ (take-bit\ b\ (and\ (take-bit\ b\ (xv + yv))\ zv))
         using zv
           by (smt\ (verit)\ EvalTreeE(5)\ Value.sel(1)\ Value.sel(2)\ bin-eval.simps(4)\ e
evalDet intval-and.elims new-int.simps new-int-bin.simps xyv)
     then have veval: v = IntVal\ b\ (and\ (xv + yv)\ zv)
      by (metis\ (no\text{-}types,\ lifting)\ eval-unused-bits-zero\ take-bit-eq-mask\ word-bw-comms(1)
word-bw-lcs(1) zv)
      have obligation: (and (xv + yv) zv) = (and xv zv) \Longrightarrow [m,p] \vdash BinaryExpr
BinAnd \ x \ z \mapsto v
            by (smt \ (verit) \ EvalTreeE(5) \ Value.inject(1) \ (v::Value) = IntVal \ (b::nat)
(take-bit\ b\ (and\ (take-bit\ b\ ((xv::64\ word) + (yv::64\ word)))\ (zv::64\ word))) \land (xyv::64\ word))
word) = take-bit (b::nat) ((xv::64 \ word) + (yv::64 \ word))> bin-eval.simps(4) e
evalDet\ eval-unused-bits-zero evaltree.simps\ intval-and.simps(1)\ take-bit-and xv\ xyv
    have per-bit: \forall n . bit (and (xv + yv) zv) n = bit (and xv zv) n \Longrightarrow (and (xv + yv) zv) n = bit (and xv zv) n \Longrightarrow (and xv zv
yv) zv) = (and xv zv)
         by (simp add: bit-eq-iff)
     show ?thesis
         apply (rule obligation)
         apply (rule per-bit)
        apply (rule allI)
         subgoal for n
     proof (cases \ n \leq j)
         case True
         then show ?thesis sorry
     next
         case False
         then have \neg(bit\ zv\ n)
             by (metis j linorder-not-less not-may-implies-false zerosAboveHighestOne zv)
         then have v: \neg(bit (and (xv + yv) zv) n)
```

```
by (simp add: bit-and-iff)
   then have v': \neg(bit (and xv zv) n)
    by (simp\ add: \leftarrow bit\ (zv::64\ word)\ (n::nat) \rightarrow bit-and-iff)
   from v v' show ?thesis
     by simp
 qed
 done
qed
 done
 done
end
lemma ucast\text{-}zero: (ucast (0::int64)::int32) = 0
 by simp
lemma ucast-minus-one: (ucast (-1::int64)::int32) = -1
 apply transfer by auto
interpretation simple-mask: stamp-mask
 IRExpr-up :: IRExpr \Rightarrow int64
 IRExpr-down :: IRExpr \Rightarrow int64
 unfolding IRExpr-up-def IRExpr-down-def
 apply unfold-locales
 by (simp add: ucast-minus-one)+
phase NewAnd
 terminating size
begin
optimization redundant-lhs-y-or: ((x \mid y) \& z) \longmapsto x \& z
                          when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 using simple-mask.exp-eliminate-y by blast
optimization redundant-lhs-x-or: ((x \mid y) \& z) \longmapsto y \& z
                          when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 using simple-mask.exp-eliminate-y
 by (meson exp-or-commute mono-binary order-refl order-trans)
optimization redundant-rhs-y-or: (z \& (x \mid y)) \longmapsto z \& x
                          when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 using simple-mask.exp-eliminate-y
 by (meson exp-and-commute order.trans)
optimization redundant-rhs-x-or: (z \& (x \mid y)) \longmapsto z \& y
                          when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 using simple-mask.exp-eliminate-y
```

```
by (meson dual-order.trans exp-and-commute exp-or-commute mono-binary or-
der-refl)
```

end

end

1.8 NotNode Phase

```
theory NotPhase
  imports
    Common
begin
\mathbf{phase}\ \mathit{NotNode}
  terminating size
begin
lemma bin-not-cancel:
 bin[\neg(\neg(e))] = bin[e]
 by auto
lemma val-not-cancel:
  assumes val[^{\sim}(new\text{-}int\ b\ v)] \neq UndefVal
  shows val[^{\sim}(^{\sim}(new\text{-}int\ b\ v))] = (new\text{-}int\ b\ v)
  using bin-not-cancel
  by (simp add: take-bit-not-take-bit)
lemma exp-not-cancel:
  shows exp[^{\sim}(^{\sim}a)] \ge exp[a]
  using val-not-cancel apply auto
  \mathbf{by}\ (\textit{metis eval-unused-bits-zero intval-logic-negation.} \textit{cases intval-not.simps} (1)
     intval-not.simps(2) intval-not.simps(3) intval-not.simps(4) new-int.simps)
Optimisations
optimization NotCancel: exp[^{\sim}(^{\sim}a)] \longmapsto a
  by (metis exp-not-cancel)
\mathbf{end}
end
```

1.9 OrNode Phase

theory OrPhase

```
imports
    Common
begin
phase OrNode
 terminating size
begin
lemma bin-or-equal:
  bin[x \mid x] = bin[x]
 by simp
\mathbf{lemma}\ \mathit{bin-shift-const-right-helper}\colon
 x \mid y = y \mid x
 by simp
\mathbf{lemma}\ \mathit{bin-or-not-operands}\colon
 (^{\sim}x \mid ^{\sim}y) = (^{\sim}(x \& y))
 by simp
{f lemma}\ val	ext{-}or	ext{-}equal:
  assumes x = new\text{-}int \ b \ v
  and (val[x \mid x] \neq UndefVal)
 shows val[x \mid x] = val[x]
  apply (cases x; auto) using bin-or-equal assms
  by auto+
\mathbf{lemma}\ \mathit{val-elim-redundant-false} :
  assumes x = new\text{-}int \ b \ v
         val[x \mid false] \neq UndefVal
 shows val[x \mid false] = val[x]
  using assms apply (cases x; auto) by presburger
\mathbf{lemma}\ \mathit{val-shift-const-right-helper}\colon
  val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
 by (simp add: or.commute)+
\mathbf{lemma}\ \mathit{val-or-not-operands}\colon
 val[^{\sim}x \mid ^{\sim}y] = val[^{\sim}(x \& y)]
 apply (cases \ x; \ cases \ y; \ auto)
 by (simp add: take-bit-not-take-bit)
lemma exp-or-equal:
  exp[x \mid x] \ge exp[x]
```

using val-or-equal apply auto

```
by (smt (verit, ccfv-SIG) evalDet eval-unused-bits-zero intval-negate.elims int-
val-or.simps(2)
      intval\text{-}or.simps(6)\ intval\text{-}or.simps(7)\ new\text{-}int.simps\ val\text{-}or\text{-}equal)
lemma exp-elim-redundant-false:
exp[x \mid false] \ge exp[x]
  using val-elim-redundant-false apply auto
  by (smt (verit) Value.sel(1) eval-unused-bits-zero intval-or.elims new-int.simps
      new-int-bin.simps\ val-elim-redundant-false)
Optimisations
optimization OrEqual: x \mid x \longmapsto x
 by (meson exp-or-equal le-expr-def)
optimization OrShiftConstantRight: ((const\ x)\ |\ y) \longmapsto y\ |\ (const\ x)\ when\ \neg (is-ConstantExpr
  using size-non-const apply force
 apply auto
 by (simp add: BinaryExpr unfold-const val-shift-const-right-helper)
optimization EliminateRedundantFalse: x \mid false \longmapsto x
 by (meson exp-elim-redundant-false le-expr-def)
optimization OrNotOperands: (^{\sim}x \mid ^{\sim}y) \longmapsto ^{\sim}(x \& y)
 defer
  apply auto using val-or-not-operands
 apply (metis\ BinaryExpr\ UnaryExpr\ bin-eval.simps(4)\ intval-not.simps(2)\ unary-eval.simps(3))
 sorry
end
context stamp-mask
begin
Taking advantage of the truth table of or operations.
```

If row 2 never applies, that is, can BeZero x & can BeOne y = 0, then (x|y) =

Likewise, if row 3 never applies, can BeZero y & can BeOne x = 0, then (x|y) = y.

```
lemma OrLeftFallthrough:
 assumes (and (not (\downarrow x)) (\uparrow y)) = 0
 shows exp[x \mid y] \ge exp[x]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     using eval
     by (metis BinaryExprE bin-eval-new-int new-int.simps)
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width)
     by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
     by force+
   have vdef: v = intval\text{-}or (IntVal b xv) (IntVal b yv)
     \mathbf{using}\ e\ xv\ yv
     by (metis\ bin-eval.simps(5)\ eval(2)\ evalDet\ unfold-binary)
   have \forall i. (bit xv i) | (bit yv i) = (bit xv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ xv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
   by (smt (verit, ccfv-threshold) and idem assms bit.conj-disj-distrib eval-unused-bits-zero
intval-or.simps(1) new-int.simps new-int-bin.simps not-down-up-mask-and-zero-implies-zero
word-ao-absorbs(3) xv yv)
   then show ?thesis
     using vdef
     using xv by presburger
 qed
 done
lemma OrRightFallthrough:
 assumes (and (not (\downarrow y)) (\uparrow x)) = 0
 shows exp[x \mid y] \ge exp[y]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     using eval
     \mathbf{by}\ (\mathit{metis}\ \mathit{BinaryExprE}\ \mathit{bin-eval-new-int}\ \mathit{new-int}.\mathit{simps})
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width)
     by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
     bv force+
   have vdef: v = intval - or (IntVal b xv) (IntVal b yv)
     using e xv yv
```

```
by (metis\ bin-eval.simps(5)\ eval(2)\ evalDet\ unfold-binary)
   have \forall i. (bit xv i) \mid (bit yv i) = (bit yv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ yv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
      by (metis (no-types, lifting) assms eval-unused-bits-zero intval-or.simps(1)
new-int.elims\ new-int-bin.elims\ stamp-mask.not-down-up-mask-and-zero-implies-zero
stamp-mask-axioms\ word-ao-absorbs(8)\ xv\ yv)
   then show ?thesis
     using vdef
     using yv by presburger
 qed
 done
end
end
1.10
         ShiftNode Phase
theory ShiftPhase
 imports
   Common
begin
{f phase} ShiftNode
  terminating size
begin
fun intval-log2 :: Value \Rightarrow Value where
  intval-log2 \ (IntVal \ b \ v) = IntVal \ b \ (word-of-int \ (SOME \ e. \ v=2^e)) \ |
  intval-log2 - = UndefVal
fun in-bounds :: Value \Rightarrow int \Rightarrow int \Rightarrow bool where
  in-bounds (IntVal b v) l h = (l < sint <math>v \land sint v < h)
  in-bounds - l h = False
lemma
 assumes in-bounds (intval-log2 val-c) 0 32
 shows intval-left-shift x (intval-log2 val-c) = intval-mul x val-c
  apply (cases val-c; auto) using intval-left-shift.simps(1) intval-mul.simps(1)
intval-log2.simps(1)
 sorry
lemma e-intval:
  n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32 \longrightarrow
   intval-left-shift x (intval-log2 val-c) =
   intval\text{-}mul\ x\ val\text{-}c
proof (rule impI)
 assume n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32
```

```
show intval-left-shift x (intval-log2 val-c) =
   intval-mul \ x \ val-c
   proof (cases \exists v . val-c = Int Val 32 v)
     case True
     obtain vc where val-c = IntVal 32 vc
       using True by blast
     then have n = IntVal \ 32 \ (word-of-int \ (SOME \ e. \ vc=2^e))
        using \langle n=intval-log2\ val-c\ \wedge\ in-bounds\ n\ 0\ 32 \rangle\ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
   next
     case False
     then have \exists v . val-c = IntVal 64 v
       sorry
     then obtain vc where val-c = IntVal 64 vc
     then have n = IntVal \ 64 \ (word-of-int \ (SOME \ e. \ vc=2^e))
        using \langle n = intval-log2 \ val-c \wedge in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
     then show ?thesis sorry
qed
\mathbf{qed}
optimization e:
 x * (const \ c) \longmapsto x \ll (const \ n) \ when \ (n = intval-log2 \ c \land in-bounds \ n \ 0 \ 32)
 using e-intval
 using BinaryExprE ConstantExprE bin-eval.simps(2,7) sorry
end
end
         SignedDivNode Phase
1.11
{f theory} \ Signed Div Phase
 imports
    Common
begin
{f phase} \ Signed Div Node
 terminating size
begin
\mathbf{lemma} \ \mathit{val-division-by-one-is-self-32} \colon
 \mathbf{assumes}\ x = \textit{new-int 32 v}
 shows intval-div x (IntVal 32 1) = x
```

```
using assms apply (cases x; auto)
 by (simp add: take-bit-signed-take-bit)
\quad \text{end} \quad
\quad \text{end} \quad
         SignedRemNode Phase
1.12
{\bf theory} \ {\it SignedRemPhase}
 imports
   Common
begin
phase SignedRemNode
 terminating size
begin
lemma val-remainder-one:
 assumes intval\text{-}mod\ x\ (IntVal\ 32\ 1) \neq UndefVal
 shows intval-mod x (IntVal 32 1) = IntVal 32 0
 using assms apply (cases x; auto) sorry
value word-of-int (sint (x2::32 word) smod 1)
\mathbf{end}
end
         SubNode Phase
1.13
theory SubPhase
 imports
    Common
begin
\mathbf{phase}\ \mathit{SubNode}
  terminating size
begin
{\bf lemma}\ bin-sub-after-right-add:
 shows ((x::('a::len) \ word) + (y::('a::len) \ word)) - y = x
 \mathbf{by} \ simp
```

 $\mathbf{lemma}\ \mathit{sub-self-is-zero}$:

```
shows (x::('a::len) word) - x = 0
  by simp
\mathbf{lemma}\ bin-sub-then-left-add:
  shows (x::('a::len) \ word) - (x + (y::('a::len) \ word)) = -y
 by simp
lemma bin-sub-then-left-sub:
  shows (x::('a::len) \ word) - (x - (y::('a::len) \ word)) = y
 \mathbf{by} \ simp
lemma bin-subtract-zero:
  shows (x :: 'a::len word) - (0 :: 'a::len word) = x
 \mathbf{by} \ simp
lemma bin-sub-negative-value:
 (x :: ('a::len) \ word) - (-(y :: ('a::len) \ word)) = x + y
 by simp
lemma bin-sub-self-is-zero:
 (x :: ('a::len) \ word) - x = 0
 \mathbf{by} \ simp
{f lemma}\ bin\mbox{-}sub\mbox{-}negative\mbox{-}const:
(x :: 'a :: len \ word) - (-(y :: 'a :: len \ word)) = x + y
 by simp
\mathbf{lemma}\ \mathit{val-sub-after-right-add-2}\colon
 assumes x = new-int b v
  \begin{array}{ll} \textbf{assumes} \ val[(x+y)-y] \neq \textit{UndefVal} \\ \textbf{shows} \quad val[(x+y)-y] = val[x] \end{array}
  \mathbf{using}\ \mathit{bin-sub-after-right-add}
  using assms apply (cases x; cases y; auto)
  by (metis (full-types) intval-sub.simps(2))
\mathbf{lemma}\ val\text{-}sub\text{-}after\text{-}left\text{-}sub:
  \begin{array}{ll} \textbf{assumes} \ val[(x-y)-x] \neq \textit{UndefVal} \\ \textbf{shows} \quad val[(x-y)-x] = val[-y] \end{array} 
  using assms apply (cases x; cases y; auto)
  using intval-sub.elims by fastforce
lemma val-sub-then-left-sub:
  assumes y = new\text{-}int b v
  assumes val[x - (x - y)] \neq UndefVal
  shows val[x - (x - y)] = val[y]
  using assms apply (cases x; cases y; auto)
  by (metis (mono-tags) intval-sub.simps(5))
```

```
lemma val-subtract-zero:
 assumes x = new\text{-}int \ b \ v
 assumes intval-sub x (IntVal\ b\ \theta) \neq UndefVal
 shows intval-sub x (Int Val b 0) = val[x]
 using assms by (induction x; simp)
lemma val-zero-subtract-value:
 assumes x = new-int b v
 assumes intval-sub (IntVal\ b\ 0)\ x \neq UndefVal
 shows intval-sub (IntVal b 0) x = val[-x]
 using assms by (induction x; simp)
\mathbf{lemma}\ \mathit{val-sub-then-left-add}\colon
 assumes val[x - (x + y)] \neq UndefVal
 shows val[x - (x + y)] = val[-y]
 using assms apply (cases x; cases y; auto)
 \mathbf{by} \ (\textit{metis} \ (\textit{mono-tags}, \ \textit{lifting}) \ \textit{intval-sub.simps}(5))
{f lemma}\ val	ext{-}sub	ext{-}negative	ext{-}value:
 assumes val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
lemma val-sub-self-is-zero:
 assumes x = new\text{-}int \ b \ v \land val[x - x] \neq UndefVal
 shows val[x - x] = new\text{-}int \ b \ \theta
 using assms by (cases x; auto)
{\bf lemma}\ val\text{-}sub\text{-}negative\text{-}const:
 \mathbf{assumes}\ y = \textit{new-int}\ b\ v \land \textit{val}[x-(-y)] \neq \textit{UndefVal}
 shows val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
\mathbf{lemma}\ exp\text{-}sub\text{-}after\text{-}right\text{-}add:
 shows exp[(x + y) - y] \ge exp[x]
 apply auto using val-sub-after-right-add-2
 using evalDet eval-unused-bits-zero intval-add.elims new-int.simps
 by (smt\ (verit))
\mathbf{lemma}\ \textit{exp-sub-after-right-add2}\colon
 shows exp[(x + y) - x] \ge exp[y]
  using exp-sub-after-right-add apply auto
 using bin-eval.simps(1) bin-eval.simps(3) intval-add-sym unfold-binary
 by (smt\ (z3)\ Value.inject(1)\ diff-eq-eq\ evalDet\ eval-unused-bits-zero\ intval-add.elims
     intval-sub.elims new-int.simps new-int-bin.simps take-bit-dist-subL)
```

 ${\bf lemma}\ exp\text{-}sub\text{-}negative\text{-}value\text{:}$

```
exp[x - (-y)] \ge exp[x + y]
 apply simp using val-sub-negative-value
 by (smt\ (verit)\ bin-eval.simps(1)\ bin-eval.simps(3)\ evaltree-not-undef
     unary-eval.simps(2) unfold-binary unfold-unary)
definition wf-stamp :: IRExpr \Rightarrow bool where
 wf-stamp e = (\forall m \ p \ v. ([m, p] \vdash e \mapsto v) \longrightarrow valid-value \ v \ (stamp-expr \ e))
lemma exp-sub-then-left-sub:
 assumes wf-stamp x \wedge stamp\text{-}expr \ x = IntegerStamp \ b \ lo \ hi
 shows exp[x - (x - y)] \ge exp[y]
 using val-sub-then-left-sub assms apply auto
 subgoal premises p for m p xa xaa ya
   proof-
     obtain xa where xa: [m, p] \vdash x \mapsto xa
      using p(4) by blast
     obtain ya where ya: [m, p] \vdash y \mapsto ya
       using p(7) by auto
     obtain xaa where xaa: [m, p] \vdash x \mapsto xaa
       using p(4) by blast
     have 1: val[xa - (xaa - ya)] \neq UndefVal
      by (metis evalDet p(4) p(5) p(6) p(7) xa xaa ya)
     then have val[xaa - ya] \neq UndefVal
      by auto
     then have [m,p] \vdash y \mapsto val[xa - (xaa - ya)]
    by (smt (verit) 1 evalDet eval-unused-bits-zero intval-sub.elims new-int-bin.simps
p(1)
          p(7) xa xaa ya)
     then show ?thesis
      by (metis evalDet p(4) p(6) p(7) xa xaa ya)
   qed
 done
Optimisations
optimization SubAfterAddRight: ((x + y) - y) \longmapsto x
 using exp-sub-after-right-add by blast
optimization SubAfterAddLeft: ((x + y) - x) \longmapsto y
 using exp-sub-after-right-add2 by blast
optimization SubAfterSubLeft: ((x - y) - x) \longmapsto -y
  apply auto
 by (metis evalDet unary-eval.simps(2) unfold-unary val-sub-after-left-sub)
optimization SubThenAddLeft: (x - (x + y)) \longmapsto -y
  apply auto
 by (metis\ evalDet\ unary-eval.simps(2)\ unfold-unary
```

```
val-sub-then-left-add)
optimization SubThenAddRight: (y - (x + y)) \longmapsto -x
  apply auto
 by (metis evalDet intval-add-sym unary-eval.simps(2) unfold-unary
     val-sub-then-left-add)
optimization SubThenSubLeft: (x - (x - y)) \mapsto y
                          when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
 using exp-sub-then-left-sub by blast
optimization SubtractZero: (x - (const\ IntVal\ b\ \theta)) \longmapsto x
                         when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
 apply auto
 by (smt (verit) add.right-neutral diff-add-cancel eval-unused-bits-zero intval-sub.elims
     intval-word.simps new-int.simps new-int-bin.simps)
optimization SubNegativeValue: (x - (-y)) \mapsto x + y
 using exp-sub-negative-value by simp
thm-oracles SubNegativeValue
optimization SubNegativeConstant: x - (const (intval-negate y)) \mapsto x + (const
  defer
 apply auto sorry
optimization ZeroSubtractValue: ((const\ IntVal\ b\ 0) - x) \longmapsto (-x)
                              when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo
hi
  apply auto unfolding wf-stamp-def
 by (smt (verit) diff-0 intval-negate.simps(1) intval-sub.elims intval-word.simps
         new-int-bin.simps\ unary-eval.simps(2)\ unfold-unary)
fun forPrimitive :: Stamp \Rightarrow int64 \Rightarrow IRExpr where
  for Primitive \ (Integer Stamp \ b \ lo \ hi) \ v = Constant Expr \ (if \ take-bit \ b \ v = v \ then
(IntVal\ b\ v)\ else\ UndefVal)\ |
 for Primitive -- = Constant Expr\ Undef Val
\mathbf{lemma} \ \mathit{unfold-forPrimitive} :
 for Primitive\ s\ v = Constant Expr\ (if\ is-Integer Stamp\ s\ \land\ take-bit\ (stp-bits\ s)\ v =
v then (IntVal (stp-bits s) v) else UndefVal)
 by (cases s; auto)
```

```
lemma forPrimitive-size[size-simps]: size (forPrimitive s v) = 1
 by (cases s; auto)
lemma for Primitive-eval:
 assumes s = IntegerStamp \ b \ lo \ hi
 assumes take-bit b v = v
 shows [m, p] \vdash forPrimitive s v \mapsto (IntVal b v)
 unfolding unfold-forPrimitive using assms apply auto
 apply (rule evaltree.ConstantExpr)
 sorry
\mathbf{lemma}\ evalSubStamp:
 assumes [m, p] \vdash exp[x - y] \mapsto v
 assumes wf-stamp exp[x - y]
 shows \exists b \ lo \ hi. \ stamp-expr \ exp[x - y] = IntegerStamp \ b \ lo \ hi
proof -
 have valid-value v (stamp-expr exp[x-y])
   using assms unfolding wf-stamp-def by auto
 then have stamp-expr\ exp[x-y] \neq IllegalStamp
   by force
 then show ?thesis
   unfolding stamp-expr.simps using stamp-binary.simps
   by (smt\ (z3)\ stamp-binary.elims\ unrestricted-stamp.simps(2))
qed
\mathbf{lemma}\ evalSubArgsStamp:
 assumes [m, p] \vdash exp[x - y] \mapsto v
 assumes \exists lo \ hi. \ stamp-expr \ exp[x - y] = IntegerStamp \ b \ lo \ hi
 shows \exists lo \ hi. \ stamp-expr \ exp[x] = IntegerStamp \ b \ lo \ hi
 using assms sorry
optimization SubSelfIsZero: (x - x) \longmapsto forPrimitive (stamp-expr exp[x - x]) \ \theta
when ((wf\text{-}stamp\ x) \land (wf\text{-}stamp\ exp[x-x]))
 apply (simp add: Suc-lessI size-pos)
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b where \exists lo hi. stamp-expr exp[x - x] = IntegerStamp b lo hi
   using evalSubStamp eval
   by meson
 then show ?thesis sorry
qed
 done
```

end

end

1.14 XorNode Phase

theory XorPhase

```
imports
    Common
    Proofs. Stamp Eval Thms
begin
\mathbf{phase}\ \mathit{XorNode}
 {\bf terminating}\ size
begin
\mathbf{lemma}\ \mathit{bin-xor-self-is-false} \colon
 bin[x \oplus x] = 0
 by simp
\mathbf{lemma}\ \mathit{bin-xor-commute} \colon
 bin[x \oplus y] = bin[y \oplus x]
 by (simp add: xor.commute)
{\bf lemma}\ bin-eliminate-redundant-false:
 bin[x \oplus \theta] = bin[x]
 by simp
lemma val-xor-self-is-false:
  assumes val[x \oplus x] \neq UndefVal
 shows val-to-bool (val[x \oplus x]) = False
 using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-xor-self-is-false-2}\colon
 assumes (val[x \oplus x]) \neq UndefVal
           x = IntVal 32 v
 shows val[x \oplus x] = bool\text{-}to\text{-}val \ False
 using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-xor-self-is-false-3}\colon
  assumes val[x \oplus x] \neq UndefVal \land x = IntVal 64 v
  shows val[x \oplus x] = IntVal \ 64 \ 0
  using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-xor-commute} :
   val[x \oplus y] = val[y \oplus x]
   apply (cases x; cases y; auto)
```

```
by (simp\ add:\ xor.commute)+
{\bf lemma}\ val\text{-}eliminate\text{-}redundant\text{-}false:
 assumes x = new-int b v
 assumes val[x \oplus (bool\text{-}to\text{-}val\ False)] \neq UndefVal
 shows val[x \oplus (bool\text{-}to\text{-}val\ False)] = x
 using assms apply (cases x; auto)
 by meson
lemma exp-xor-self-is-false:
assumes wf-stamp x \wedge stamp-expr x = default-stamp
shows exp[x \oplus x] \ge exp[false]
 using assms apply auto unfolding wf-stamp-def
  using IntVal0\ Value.inject(1)\ bool-to-val.simps(2)\ constantAsStamp.simps(1)
evalDet
          int-signed-value-bounds new-int.simps unfold-const val-xor-self-is-false-2
valid-int
       valid-stamp.simps(1) valid-value.simps(1)
 by (smt (z3) \ validDefIntConst)
lemma exp-eliminate-redundant-false:
  shows exp[x \oplus false] \ge exp[x]
  using val-eliminate-redundant-false apply auto
 subgoal premises p for m p xa
   proof -
     obtain xa where xa: [m,p] \vdash x \mapsto xa
       using p(2) by blast
     then have val[xa \oplus (IntVal \ 32 \ 0)] \neq UndefVal
       using evalDet p(2) p(3) by blast
     then have [m,p] \vdash x \mapsto val[xa \oplus (IntVal \ 32 \ 0)]
       apply (cases xa; auto) using eval-unused-bits-zero xa by auto
     then show ?thesis
       using evalDet p(2) xa by blast
   qed
 done
Optimisations
optimization XorSelfIsFalse: (x \oplus x) \longmapsto false \ when
                   (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = default\text{-}stamp)
  apply (metis\ One-nat-def\ Suc-less I\ eval-nat-numeral (3)\ less-Suc-eq\ mult.right-neutral
         numeral-2-eq-2 one-less-mult size-pos)
 using exp-xor-self-is-false by auto
optimization XorShiftConstantRight: ((const \ x) \oplus y) \longmapsto y \oplus (const \ x) when
\neg (is\text{-}ConstantExpr\ y)
  unfolding le-expr-def using val-xor-commute size-non-const
  apply simp apply auto
```

```
using val-xor-commute by auto
```

```
optimization EliminateRedundantFalse: (x \oplus false) \longmapsto x using exp-eliminate-redundant-false by blast
```

 $\quad \text{end} \quad$

end

1.15 NegateNode Phase

```
theory NegatePhase
imports
Common
begin
```

phase NegateNode terminating size begin

```
lemma bin-negative-cancel:

-1 * (-1 * ((x::('a::len) word))) = x

by auto
```

```
{\bf lemma}\ \textit{val-negative-cancel}:
```

```
assumes intval-negate (new-int b v) \neq UndefVal shows val[-(-(new\text{-}int \ b \ v))] = val[new\text{-}int \ b \ v] using assms by simp
```

 $\mathbf{lemma}\ \mathit{val-distribute-sub} \colon$

```
assumes x \neq UndefVal \land y \neq UndefVal

shows val[-(x-y)] = val[y-x]

using assms by (cases\ x;\ cases\ y;\ auto)
```

```
\mathbf{lemma}\ exp	ext{-}distribute	ext{-}sub:
```

```
shows exp[-(x-y)] \ge exp[y-x] using val-distribute-sub apply auto using evaltree-not-undef by auto
```

 ${f thm ext{-}oracles}\ exp ext{-} distribute ext{-} sub$

lemma *exp-negative-cancel*:

```
shows exp[-(-x)] \ge exp[x]
 using val-negative-cancel apply auto
 by (metis (no-types, opaque-lifting) eval-unused-bits-zero intval-negate.elims
     intval-negate.simps(1) minus-equation-iff new-int.simps take-bit-dist-neg)
lemma exp-negative-shift:
 assumes stamp-expr \ x = IntegerStamp \ b' lo hi
          unat y = (b' - 1)
 shows exp[-(x >> (const (new-int b y)))] \ge exp[x >>> (const (new-int b y))]
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xa where xa: [m,p] \vdash x \mapsto xa
     using p(2) by auto
    then have 1: intval-negate (intval-right-shift xa (IntVal b (take-bit b y))) \neq
     using evalDet p(1) p(2) by blast
   then have 2: intval-right-shift xa (IntVal b (take-bit b y)) \neq UndefVal
     by auto
    then have 3: -((2::int) \cap b \ div \ (2::int)) \subseteq sint \ (signed-take-bit \ (b-Suc
(0::nat) (take-bit\ b\ y)
     by (simp \ add: \ p(6))
   then have 4: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b y)) < (2::int)
^ b div (2::int)
     using p(7) by blast
   then have 5: (0::nat) < b
     by (simp \ add: \ p(4))
   then have 6: b \sqsubseteq (64::nat)
     by (simp\ add:\ p(5))
   then have 7: [m,p] \vdash BinaryExpr\ BinURightShift\ x
              (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ y))) \mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b y)))
     apply (cases y; auto)
     subgoal premises p for n
      proof -
        have sg1: y = word\text{-}of\text{-}nat n
          by (simp\ add:\ p(1))
        then have sg2: n < (18446744073709551616::nat)
          by (simp \ add: \ p(2))
        then have sg3: b \sqsubseteq (64::nat)
          by (simp add: 6)
        then have sg4: [m,p] \vdash BinaryExpr\ BinURightShift\ x
              (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ (word-of-nat\ n)))) \mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b (word-of-nat
n))))
           sorry
        then show ?thesis
          by simp
```

```
qed
     done
   then show ?thesis
    by (metis evalDet p(2) xa)
 qed
 done
Optimisations
optimization NegateCancel: -(-(x)) \mapsto x
 using val-negative-cancel exp-negative-cancel by blast
optimization DistributeSubtraction: -(x - y) \mapsto (y - x)
 using exp-distribute-sub by simp
optimization NegativeShift: -(x >> (const (new-int b y))) \mapsto x >>> (const
(new\text{-}int \ b \ y))
                            when (stamp-expr \ x = IntegerStamp \ b' \ lo \ hi \land unat \ y)
= (b' - 1)
 using exp-negative-shift by simp
end
end
theory TacticSolving
 imports Common
begin
fun size :: IRExpr \Rightarrow nat where
 size (UnaryExpr op e) = (size e) * 2 |
 size (BinaryExpr BinAdd x y) = (size x) + ((size y) * 2)
 size (BinaryExpr op x y) = (size x) + (size y)
 size (ConditionalExpr \ cond \ t \ f) = (size \ cond) + (size \ t) + (size \ f) + 2
 size (ConstantExpr c) = 1
 size (ParameterExpr ind s) = 2 \mid
 size (LeafExpr \ nid \ s) = 2
 size (Constant Var c) = 2
 size (VariableExpr x s) = 2
lemma size-pos[simp]: 0 < size y
 apply (induction y; auto?)
 subgoal premises prems for op a b
   using prems by (induction op; auto)
 done
phase TacticSolving
 terminating size
```

1.16 AddNode

```
lemma value-approx-implies-refinement:
 assumes lhs \approx rhs
 assumes \forall m \ p \ v. \ ([m, p] \vdash elhs \mapsto v) \longrightarrow v = lhs
 assumes \forall m \ p \ v. \ ([m, p] \vdash erhs \mapsto v) \longrightarrow v = rhs
 \mathbf{assumes} \ \forall \ m \ p \ v1 \ v2. \ ([m, \ p] \ \vdash \ elhs \xrightarrow{} \ v1) \ \longrightarrow ([m, \ p] \ \vdash \ erhs \mapsto v2)
  shows elhs \ge erhs
  using assms unfolding le-expr-def well-formed-equal-def
  using evalDet evaltree-not-undef
  by metis
method explore-cases for x y :: Value =
  (cases x; cases y; auto)
method explore-cases-bin for x :: IRExpr =
  (cases x; auto)
method obtain-approx-eq for lhs rhs x y :: Value =
  (rule meta-mp[where P=lhs \approx rhs], defer-tac, explore-cases x y)
{f method}\ obtain\mbox{-}eval\ {f for}\ exp::IRExpr\ {f and}\ val::Value=
  (rule meta-mp[where P = \bigwedge m \ p \ v. ([m, p] \vdash exp \mapsto v) \Longrightarrow v = val], defer-tac)
\mathbf{method} \ solve \ \mathbf{for} \ lhs \ rhs \ x \ y :: \ Value =
  (match \ \mathbf{conclusion} \ \mathbf{in} \ size \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ )?,
  (match \ \mathbf{conclusion} \ \mathbf{in} \ (elhs::IRExpr) \geq (erhs::IRExpr) \ \mathbf{for} \ elhs \ erhs \Rightarrow \langle
    (obtain-approx-eq lhs rhs x y)?
print-methods
thm BinaryExprE
{\bf optimization}\ opt\hbox{-} add\hbox{-} left\hbox{-} negate\hbox{-} to\hbox{-} sub:
  -x + y \longmapsto y - x
  apply (solve val[-x1 + y1] \ val[y1 - x1] \ x1 \ y1)
 apply simp apply auto using evaltree-not-undef sorry
          NegateNode
1.17
lemma val-distribute-sub:
 val[-(x-y)] \approx val[y-x]
 by (cases \ x; \ cases \ y; \ auto)
optimization distribute-sub: -(x-y) \longmapsto (y-x)
  apply simp
  using val-distribute-sub apply simp
```

```
using unfold-binary unfold-unary by auto
\mathbf{lemma}\ \mathit{val-xor-self-is-false} :
 assumes x = IntVal \ 32 \ v
 shows val[x \oplus x] \approx val[false]
 apply simp using assms by (cases x; auto)
definition wf-stamp :: IRExpr \Rightarrow bool where
  wf-stamp e = (\forall m \ p \ v. ([m, p] \vdash e \mapsto v) \longrightarrow valid-value \ v \ (stamp-expr \ e))
lemma exp-xor-self-is-false:
 assumes stamp-expr \ x = IntegerStamp \ 32 \ l \ h
 assumes wf-stamp x
 shows exp[x \oplus x] >= exp[false]
 unfolding le-expr-def using assms unfolding wf-stamp-def
 using val-xor-self-is-false evaltree-not-undef
 by (smt\ (z3)\ bin-eval.simps(6)\ bin-eval-new-int\ constant AsStamp.simps(1)\ eval Det
int-signed-value-bounds new-int.simps new-int-take-bits unfold-binary unfold-const
valid-int valid-stamp.simps(1) valid-value.simps(1) well-formed-equal-defn)
lemma val-or-commute[simp]:
  val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
 by (simp add: or.commute)+
lemma val-xor-commute[simp]:
  val[x \oplus y] = val[y \oplus x]
  apply (cases x; cases y; auto)
 by (simp \ add: word-bw-comms(3))
lemma exp-or-commutative:
  exp[x \mid y] \ge exp[y \mid x]
 by auto
lemma exp-xor-commutative:
  exp[x \oplus y] \ge exp[y \oplus x]
 by auto
lemma OrInverseVal:
 assumes n = IntVal \ 32 \ v
 shows val[n \mid {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto) using take-bit-or
 by (metis bit.disj-cancel-right mask-eq-take-bit-minus-one)
optimization OrInverse: exp[n \mid {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
```

when $(stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)$

```
unfolding size.simps apply (simp add: Suc-lessI)
 apply auto using OrInverseVal unfolding wf-stamp-def
 \mathbf{by}\ (smt\ (z3)\ constant AsStamp.simps(1)\ eval Det\ int-signed-value-bounds\ mask-eq-take-bit-minus-one
     new-int.elims new-int-take-bits unfold-const valid-int valid-stamp.simps(1)
     valid-value.simps(1) well-formed-equal-defn)
optimization OrInverse2: exp[{}^{\sim}n \mid n] \longmapsto (const \ (new\text{-}int \ 32 \ (not \ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 using OrInverse apply simp
  using OrInverse exp-or-commutative
 by auto
\mathbf{lemma}\ \mathit{XorInverseVal}:
 assumes n = IntVal \ 32 \ v
 shows val[n \oplus {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto)
 by (metis (no-types, opaque-lifting) bit.compl-zero bit.xor-compl-right bit.xor-self
     mask-eq-take-bit-minus-one take-bit-xor)
optimization XorInverse: exp[n \oplus {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  unfolding size.simps apply (simp add: Suc-lessI)
 apply auto using XorInverseVal
  by (smt (verit) constantAsStamp.simps(1) evalDet int-signed-value-bounds int-
val-xor.elims
   mask-eq-take-bit-minus-one\ new-int.\ elims\ new-int-take-bits\ unfold-const\ valid-stamp.simps(1)
     valid-value.simps(1) well-formed-equal-defn wf-stamp-def)
optimization XorInverse2: exp[(^{\sim}n) \oplus n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 using XorInverse apply simp
  using XorInverse exp-xor-commutative
 \mathbf{by} \ simp
end
end
theory ProofStatus
 imports
   AbsPhase
   AddPhase
   AndPhase
   Conditional Phase
   MulPhase
```

```
Negate Phase \\
    NewAnd
    NotPhase
    OrPhase
    Shift Phase
    Signed Div Phase \\
    SignedRemPhase
    SubPhase
     Tactic Solving \\
    XorPhase
begin
\mathbf{declare}\ [[\mathit{show-types=false}]]
print-phases
print-phases!
{\bf print\text{-}methods}
print-theorems
\mathbf{thm}\ opt\text{-}add\text{-}left\text{-}negate\text{-}to\text{-}sub
\textbf{thm-oracles}\ \textit{AbsNegate}
\textbf{export-phases} \ \langle \textit{Full} \rangle
```

 $\quad \text{end} \quad$