1

WHAT IS CLAIMED IS:

1	1. A method for maintaining a consistent pressure between two chambers
2	in a processing facility, wherein the two chambers have a slit valve there
3	between, the method comprising the steps of:
4	determining when the slit valve is open;
5	measuring a pressure of the first chamber while the slit valve is open;
6	measuring a pressure of the second chamber while the slit valve is open
7	calibrating first and second pressure sensors, associated with the first
8	and second chambers, respectively, relative to each other while the slit valve is
9	open; and
10	closing the slit valve when the pressure sensors have been calibrated
11	relative to each other.

- 2. The method of claim 1 wherein the slit valve is a vacuum-sealed door.
- The method of claim 1 wherein the calibrating is performed by changing a reading value of the first pressure sensor to be in accordance with the second pressure sensor.
- 1 4. The method of claim 3 wherein the second chamber is a transfer chamber connecting the first chamber to a third chamber.
- The method of claim 3 further comprising:

 monitoring the change of the reading value of the first sensor; and
 determining if the change indicates a faulty system.

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

12

13

6. A method for maintaining a consistent pressure in a processing facility				
having a transfer chamber used to transfer materials to and from a process				
chamber, wherein the two chambers have a valve there between, the method				
comprising the steps of:				
determining when the valve is open;				
maggiring a pressure of the transfer chamber while the valve is open.				

measuring a pressure of the transfer chamber while the valve is open; measuring a pressure of the processing chamber while the valve is open; calibrating a pressure sensor on the processing chamber relative to a pressure sensor on the transfer chamber while the valve is open; and closing the valve when the pressure sensors on the processing chamber

and transfer chamber are relatively calibrated.

The method of claim 6 wherein the transfer chamber is also used to 7. transfer materials to and from a loading chamber, the transfer chamber and loading chamber having a second valve there between, the method further comprising:

determining when the second valve is open;

measuring a pressure of the transfer chamber while the second valve is open;

measuring a pressure of the loading chamber while the second valve is open;

calibrating a pressure sensor on the loading chamber relative to the pressure sensor on the transfer chamber while the second valve is open; and closing the second valve when the pressure sensors on the loading chamber and transfer chamber are relatively calibrated.

1	8.	An automated system for controlling processing of a product in a				
2	proc	processing facility, said system compromising:				
3		first, second, and third chambers;				
4		first, second, and third pressure sensors associated with the first,				
5	seco	second, and third chambers, respectively, for measuring a pressure inside each				
6	cha	mber;				
7		first, second, and third exhaust lines connected to the first, second, and				
8	third chamber, respectively;					
9		first, second, and third pressure restriction control valves connected to				
10	the first, second, and third exhaust lines, respectively;					
11		a first material transfer valve connecting the first chamber to the second				
12	cha	mber;				
13		a second material transfer valve connecting the second chamber to the				
14	thi	third chamber				
15		a control module connected to the first and second material transfer				
16	val	ves, the first, second and third pressure sensors, the first, second and third				
17	vai	riable restriction control valves, and the first, second and third chambers,				
18	the	e control module including processing capabilities for performing the steps				
19	of:					
20		measuring the pressure in the first and second chamber while the				
21		first material transfer valve is closed;				
22		adjusting the first and second variable restriction control valves				
23		until the first and second pressure sensors have similar readings while				
24		the first material transfer valve is closed; and				
25		calibrating the first pressure sensor to generate a reading similar				
26		to that of the second pressure sensor when the first material transfer				
27		valve is open.				

1	9.	The system described in claim 8 wherein the first and second material				
2	transfer valves are vacuum-sealed doors.					
1	10.	The system described in claim 8 wherein the transfer chamber includes				
2		oot for handling of the materials being processed.				
1	11.	The system described in claim 8 wherein the control module also				
2	inclu	includes processing capabilities for:				
3		detecting a fault in the system by monitoring the adjustment of				
4		the first pressure sensor over a period of adjustments.				
1 .	12.	The system described in claim 8 wherein the control module also				
2	inclu	includes processing capabilities for:				
3		measuring the pressure in the second and third chambers while				
4		the second material transfer valve is closed;				
5		adjusting the second and third variable restriction control valves				
6		until the second and third pressure sensors have similar readings while				
7		the second material transfer valve is closed; and				
8		calibrating the third pressure sensor attached to the third				
9 .		chamber to generate a reading similar to that of the second pressure				
10		sensor when the second material transfer valve is open.				
1	13.	The system described in claim 12 wherein the control module also				
2	incl	udes processing capabilities for:				
3		detecting a fault in the system by monitoring the adjustment of				
4		the first, second, and third pressure sensors over a period of				
5		adjustments.				

1	14.	The system described in claim 13 wherein the control module also			
2	includes processing capabilities for:				
3		determining that the fault is associated with the third chamber if			
4		only the third sensor requires significant adjustment over the period of			
5		adjustments.			
1	15.	The system described in claim 13 wherein the control module also			
2	includes processing capabilities for:				
3		determining that the fault is associated with the second chamber			
4		if both the first and third sensors require significant adjustment over			
5		the period of adjustments.			