p	q	r	$p \wedge r$	$(p \wedge r) \Rightarrow q$
V	<u>V</u>	V	V	V
V	٧	F	F	ν
V	F	V	V	F
٧	F	F	F	V
E	٧	V	F	V
F	٧	F	Ł	٧
F	F	Ň	F	V
F	F	E	F	V

Sean A={1, 2, 3, 4}, B={1, 3, 5, 7, 9} y C={a, b, c, d, e} conjuntos.

La diferencia de B y A es $B-A= 5,7,9 \Rightarrow q$ que tiene

Luego, el producto cartesiano (B-A) imes C tiene

elementos.

$$B - A = \{5,7,9\}$$

7 K

$$\{5,7,9\}$$
 x $\{a,b,c,d,e\}$

Sean p, q y r las siguientes proposiciones:

p: "Juan tiene hambre".

q: "Juan come pollo".

r: "Juan come golosinas".

Traducir a lenguaje coloquial la proposición compuesta $p \Rightarrow \neg \, r \wedge p$

Si Juan tiene hambre, entonces, Juan no come golosinas y Juan come pollo Sean las siguientes proposiciones,

1.
$$p:7-4=-3$$
 F
2. $q:(\pi)^2=(-\pi)^2$ V

2.
$$q:(\pi)^2=(-\pi)^2$$

3. r: hoy sale el sol.

Determinar el valor de verdad de r sabiendo que la siguiente proposición compuesta es VERDADERA: $(\lnot p \land q) \Longrightarrow r$

Encontrar el resultado de la operación entre intervalos y elegir la correcta descripción por comprensión.

$$(-2,5]-(-1,6]$$

$$(-2,-1,0,1,2,3,4,5]$$
 - $(-1,0,1,2,3,4,5,6]$

$$(-2,-1)$$

Dada la ecuación de la recta 6y-1=3x, la ecuación de una recta paralela que pasa por el punto $P=\left(\frac{6}{5};-\frac{2}{5}\right)$ esta dada por:

Una recta perpendicular a la recta anterior y que pasa por el punto $R=\left(-2;10
ight)$

$$x_1 = -2$$
 , $y_1 = 10$
 $y = -2$, $(x - x_1) + y_1$
 $y = -2$, $(x + 2) + 10$
 $y = -2x - 4 + 10$
 $y = -2x + 6$

$$\begin{cases} y = -2x + 6 \\ y = -2x + 6 \end{cases}$$

$$\begin{cases} y = -2x + 6 \\ y = -2x + 6 \end{cases}$$

$$\begin{cases} y = -2x + 6 \\ y = -2x + 6 \end{cases}$$

$$\begin{cases} y = -2x + 6 \\ -2x + 6 \end{cases}$$

$$\begin{cases} y = -2x + 6 \\ -2x + 6 \end{cases}$$

$$\begin{cases} y = -2x + 6 \\ -2x + 6 \end{cases}$$

$$+6+1=\underbrace{1}_{2}\times+\underbrace{2}_{1}\times \qquad \qquad Y=\underbrace{2}_{5}$$

$$7 = \frac{1+4}{2} \times$$

$$\frac{14}{5} = X$$