

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE171003204

FCC REPORT

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: Star G58

Trade mark: EKO

FCC ID: 2AC7IEKOSG58

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Oct., 2017

Date of Test: 17 Oct., to 31 Oct., 2017

Date of report issued: 02 Nov., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	02 Nov., 2017	Original

Tested by: Mike DU Date: 02 Nov., 2017

Test Engineer

Reviewed by: Quantum Date: 02 Nov., 2017

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	19
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.		
7	TES	ST SETUP PHOTO	53
0	CIT	T CONSTRUCTIONAL DETAILS	EA

4 Test Summary

Test Items	Section in CFR 47	Result				
Antenna requirement	15.203/15.247 (c)	Pass				
AC Power Line Conducted Emission	15.207	Pass				
Conducted Peak Output Power	15.247 (b)(3)	Pass				
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass				
Power Spectral Density	15.247 (e)	Pass				
Band Edge	15.247(d)	Pass				
Conducted and Radiated Spurious Emission	15.205/15.209	Pass				
Pass: The EUT complies with the essential requirements in the standard.						

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp			
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122			
Manufacturer/Factory:	Interglobe Connection Limited			
Address:	UNIT1302(A), 13/F, PROSPERITY COMMERCIAL CENTRE, 982 CANTON ROAD, MONGKOK, KOWLOON, HONG KONG			

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	Star G58
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.6 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2500mAh
AC adapter with two plugs :	Model: Star G58 Input: AC100-240V 50/60Hz 0.15A Output: DC 5.0V, 1000mA

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 54

Report No: CCISE171003204

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		

Transmitting mode	Keep the EUT in continuous transmitting	with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)	
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)	

Report No: CCISE171003204

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
Cable	HP	10503A	N/A	02-25-2017	02-24-2018
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is -0.6 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
•						
Receiver setup:	RBW=9 kHz, VBW=30 k		ID 10			
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log	arithm of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test setup:	AUX Equipment Test table/Insula Remark EUT: Equipment Under LISN Line Impedence St. Test table height=0 8m	E.U.T EMI Receiver	Iter — AC power			
Test Instruments:	Refer to section 5.8 for d	etails				
Test mode:	Refer to section 5.3 for d	etails				
Test results:	Passed					

Measurement Data:

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Mobile Phone FIIT : EKO Star G58 Model Test Mode : Wifi mode

Power Rating : AC 120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

emark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
7.50	MHz	dBu₹	₫B	₫₿	dBu∀	dBu∜	dB	
1	0.178	43.17	-0.36	10.77	53.58	64.59	-11.01	QP
2	0.182	27.02	-0.35	10.77	37.44	54.42	-16.98	Average
2 3 4 5 6 7 8 9	0.238	36.41	-0.33	10.75	46.83	62.17	-15.34	QP
4	0.242	19.71	-0.33	10.75	30.13	52.04	-21.91	Average
5	0.299	35.27	-0.32	10.74	45.69	60.28	-14.59	QP
6	0.361	18.70	-0.32	10.73	29.11	48.69	-19.58	Average
7	0.521	37.01	-0.30	10.76	47.47	56.00	-8.53	QP
8	0.527	20.88	-0.30	10.76	31.34	46.00	-14.66	Average
9	0.641	34.46	-0.30	10.77	44.93	56.00	-11.07	QP
10	0.647	19.84	-0.30	10.77	30.31	46.00	-15.69	Average
11	0.909	19.39	-0.29	10.84	29.94			Average
12	1.166	36.87	-0.28	10.89	47.48	56.00	-8.52	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 13

Site : CCIS Shielding Room

Condition : FCC PART15 B QP LISN LINE

EUT : Mobile Phone
Model : EKO Star G58
Test Mode : Wifi mode
Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

COMME	Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
	MHz	dBuV	₫₿	₫B	dBu∛	₫BuV	₫₿	******
1	0.178	44.47	-0.54	10.77	54.70	64.59	-9.89	QP
2	0.182	27.84	-0.53	10.77	38.08	54.42	-16.34	Average
3	0.238	37.72	-0.52	10.75	47.95	62.17	-14.22	QP
1 2 3 4 5 6 7 8 9	0.242	22.88	-0.52	10.75	33.11	52.04	-18.93	Average
5	0.299	34.53	-0.51	10.74	44.76	60.28	-15.52	QP
6	0.361	21.08	-0.50	10.73	31.31	48.69	-17.38	Average
7	0.727	22.55	-0.48	10.78	32.85	46.00	-13.15	Average
8	0.848	23.15	-0.49	10.82	33.48	46.00	-12.52	Average
9	1.027	22.44	-0.49	10.87	32.82	46.00	-13.18	Average
10	1.111	35.53	-0.48	10.88	45.93	56.00	-10.07	QP
11	1.166		-0.48				-10.02	QP
12	1.229	35.27	-0.47	10.90	45.70	56.00	-10.30	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
16St CIT	802.11b	802.11g	Limit(dBin)			
Lowest	12.19	9.36	9.04	10.79		
Middle	12.47	11.71	11.73	11.51 30.00		Pass
Highest	13.22	12.47	12.48	12.28		

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH		6dB Emission	Limit(kHz)	Result			
1031 011	802.11b	802.11g	802.11g 802.11n(H20) 802.11n(H40)		Ellint(Kriz)	rtosuit	
Lowest	9.76	15.28	15.28	35.52			
Middle	9.68	15.28	15.28	35.52	>500	Pass	
Highest	9.76	15.28	15.28	35.52			
Test CH		99% Occupy		Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Result	
Lowest	12.80	16.40	17.60	36.16			
Middle	12.96	16.56	17.68	36.16	N/A	N/A	
Highest	13.36	16.64	17.76	36.16			

Test plot as follows:

802.11b

Date: 17.0CT.2017 17:14:21

Lowest channel

Date: 17.0CT.2017 17:15:04

Date: 17.0CT.2017 17:15:52

Date: 17.0CT.2017 17:25:18

Date: 17.0CT.2017 17:25:36

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11g

Date: 17.0CT.2017 17:16:34

Lowest channel

Date: 17.0CT.2017 17:26:00

Lowest channel

Date: 17.0CT.2017 17:17:17

Date: 17.0CT.2017 17:18:10

Date: 17.0CT.2017 17:26:16

Date: 17.OCT.2017 17:26:32

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(H20)

6dB EBW

Date: 17.0CT.2017 17:18:58

Date: 17.0CT.2017 17:26:55

Lowest channel

Date: 17.0CT.2017 17:19:38

Date: 17.0CT.2017 17:27:12

Middle channel

Middle channel

Date: 17.OCT.2017 17:27:30 Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(H40)

Date: 17.0CT.2017 17:21:15

Date: 17.0CT.2017 17:24:35

Lowest channel

Lowest channel

Date: 17.0CT.2017 17:22:01

Date: 17.0CT.2017 17:24:19

Middle channel

Middle channel

Date: 17.0CT.2017 17:23:51

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH		Power Spec	Limit(dBm)	Result			
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesult	
Lowest	2.72	-3.09	-3.14	-3.72			
Middle	2.82	-0.00	-0.52	-4.20	8.00	Pass	
Highest	4.08	0.08	0.87	-2.82			

Test plot as follows:

Date: 17.0CT.2017 17:49:12

Date: 17.0CT.2017 17:50:31

Date: 17.0CT.2017 17:49:55

Highest channel

Date: 17.0CT.2017 17:51:03

Date: 17.0CT.2017 17:51:22

Date: 17.0CT.2017 17:51:44

Highest channel

Test mode: 802.11n(H20)

Date: 17.0CT.2017 17:52:10

Lowest channel

Date: 17.0CT.2017 17:52:32

Date: 17.0CT.2017 17:52:56

Middle channel

Highest channel

Test mode: 802.11n(H40)

Date: 17.0CT.2017 17:53:41

Lowest channel

Date: 17.0CT.2017 17:53:58

Middle channel

Date: 17.0CT.2017 17:54:15

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

-						
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Project No.: CCISE1710032

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 54

6.6.2 Radiated Emission Method

6.6.2	Radiated Emission Me	nission Method								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
	Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1								
	Test Frequency Range:	2.3GHz to 2.5GHz								
	Test Distance:	3m								
	Receiver setup:	Frequency	Detec	tor	RBW	V	BW	Remark		
	·	Above 1GHz	Peal		1MHz		ИHz	Peak Value		
			RMS		1MHz		ИHz	Average Value		
	Limit:	Frequenc	У	Lin	nit (dBuV/m @	3m)		Remark		
		Above 1Gł	Ηz		54.00 74.00			verage Value Peak Value		
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 do to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height at tower. The antenna height is varied from one meter to four meters abe the ground to determine the maximum value of the field streng Both horizontal and vertical polarizations of the antenna are seemake the measurement. For each suspected emission, the EUT was arranged to its wo case and then the antenna was tuned to heights from 1 meter meters and the rota table was turned from 0 degrees to 360 do to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that di have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a dispersion. 						ted 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-		
	Test setup:	Notes and the second se	AE E	· W	Har 3m Ground Reference Plane	n Antenna	Antenna Too	wer		
	Test Instruments:	Refer to section	5.8 for c	detail	s					
	Test mode:	Refer to section	5.3 for c	detail	S					
	Test results:	Passed								

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Mobile Phone : EKO Star G58 : 802.11.b-L mode Model Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

-		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	−−−dB	
	2390.000 2390.000					51.71 41.34			

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT : Mobile Phone : EKO Star G58 : 802.11.b-L mode Model

Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

-		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	
	2390,000 2390,000								

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUI : Mobile Phone : EKO Star G58 : 802.11.B-H mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

1/1/									
		Read	Ant enna	Cable	Preamp		Limit	Over	
F	req	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	d₿	₫B	dBuV/m	dBuV/m	₫B	
			25.66 25.66						Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone : EKO Star G58 : 802.11.B-H mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Mike

REMARK

	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	dB/m	dB	ав	dBuV/m	dBuV/m	dB	
2483.500 2483.500		The state of the s		(2000) (2000)		100000000000000000000000000000000000000	-23.40 -14.65	Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Mobile Phone : EKO Star G58 : 802.11.G-L mode Model Test mode Power Rating : AC120V/60Hz

Huni:55% 101KPa Environment : Temp: 25.5°C

Test Engineer: Mike

REMARK

2748.845.54	2000	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB/m	d₿	<u>dB</u>	dBuV/m	dBuV/m	₫B	*
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT : Mobile Phone
Model : EKO Star G58
Test mode : 802.11.G-L mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike

REMARK :

Lillian	77. ()		Antenna Factor						
	MHz	dBu∀	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	₫B	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Mobile Phone Model : EKO Star G58
Test mode : 802.11.G-H mode
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK

MAR		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	d₿	
1	2483,500 2483,500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone : EKO Star G58 : 802.11.G-H mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Mike

REMARK

77° 8	Read	Antenna	Cable	Preamp		Limit	Over	
Freq						Line	Limit	Remark
MHz	dBu√	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
2483, 500 2483, 500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

: Mobile Phone EUT : EKO Star G58 : 802.11.N20-L mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Mike

REMA

J	RK :								
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/n	dB	
	2390,000 2390,000								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone : EKO Star G58 : 802.11.N20-L mode Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

MAR	v :	D d	A	C-12-	Dunne		Timin	0	
	Freq	Level	Antenna Factor	Loss	Factor	Level	Limit Line		Remark
	MHz	dBu∀	dB/m	<u>d</u> B	dB	dBuV/m	dBuV/m	dB	
1	2390.000	26.21	25.45	4.69	0.00	56.35	74.00	-17.65	Peak
2	2390, 000	10.21	25.45	4.69	0.00	40.35	54,00	-13.65	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Mobile Phone : EKO Star G58 Model Test mode : 802.11.N20-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

M.	u ;	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq						Line	Limit	Remark
	MHz	₫BuV	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2483.500	700000000000000000000000000000000000000		5	27.7.2.2.2.2.2		74.00		Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Mobile Phone Condition

EUT Model : EKO Star G58
Test mode : 802.11.N20-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:

Huni:55% 101KPa

Test Engineer: Mike REMARK :

ωu	Di .								
		Read	Antenna	Cable	Preamp		Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	₫₿u₹	dB/m	₫B	d₿	dBuV/m	dBuV/m	d₿	
	2483.500								
	2483.500	13.44	25.66	4.81	0.00	43.91	54.00	-10.09	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Mobile Phone : EKO Star G58 Model Test mode : 802.11.N40-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:

Huni:55% 101KPa

Test Engineer: Mike REMARK

CHAN		Pood	out anna	Cabla	Decem		I inst	0	
	Freq	Level	Antenna Factor	Loss	Factor	Level	Limit	Limit	Remark
	MHz	dBu√	dB/m	₫B	dB	dBu∜/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone Model : EKO Star G58
Test mode : 802.11.N40-L mode
Power Rating : AC120V/60Hz

Test Engineer: Mike REMARK Environment : Temp: 25.5°C Huni:55% 101KPa

(CAL)	un .								
			Ant enna						
	rreq	Level	Factor	Loss	ractor	rever	Line	Limit	Kemark
	MHz	dBuV	dB/m	₫₿	dB	dBuV/m	dBuV/n	dB	
	2390.000								Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Mobile Phone : EKO Star G58 : 802.11.N40-H mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Mike

REMARK

	40000	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/m	₫B	₫₿	dBuV/m	dBuV/n	−−−dB	
1 2	2483,500 2483,500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone : EKO Star G58 : 802.11.N40-H mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Mike

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Conducted Emission	on menou
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Test mode: 802.11b

Lowest channel

Date: 18.OCT.2017 10:17:59

30MHz~25GHz

Middle channel

Date: 18.OCT.2017 10:18:31

30MHz~25GHz

Highest channel

Date: 18.0CT.2017 10:18:57 30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 18.OCT.2017 10:20:14

30MHz~25GHz

Middle channel

Date: 18.0CT.2017 10:20:46

30MHz~25GHz

Highest channel

Date: 18.OCT.2017 10:21:23

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 18.OCT.2017 10:22:26

30MHz~25GHz

Middle channel

Date: 18.OCT.2017 10:26:58

Date: 18.OCT.2017 10:27:52

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 18.0CT.2017 10:28:41

30MHz~25GHz

Middle channel

Date: 18.0CT.2017 10:29:21

$30MHz\sim25GHz$

Highest channel

Date: 18.OCT.2017 10:30:04

30MHz~25GHz

6.7.2 Radiated Emission Method

6.7.2 Radiated Em	ission Me	thod								
Test Requiremen	nt:	FCC Part 15 C Se	ection 1	5.209	and 15.205					
Test Method:		ANSI C63.10:201	13							
Test Frequency	Range:	9kHz to 25GHz								
Test Distance:		3m								
Receiver setup:		Frequency	Dete	ctor	RBW	VI	BW	Remark		
·		30MHz-1GHz	Quasi-	peak	120KHz)KHz	Quasi-peak Value		
		Above 1GHz	Pea		1MHz		/IHz	Peak Value		
I imait.			RM		1MHz t (dBuV/m @3i		ИHz	Average Value Remark		
Limit:	-	Frequency 30MHz-88MH	7	LIIIII	40.0	111)	Qı	uasi-peak Value		
		88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value								
		Above 1GHz			54.0		/	Average Value		
Test Procedure:		1. The EUT wa		d on th	74.0	otina	table 0	Peak Value		
		The table was highest radia 2. The EUT was antenna, who tower. 3. The antenna the ground to Both horizon make the med. For each suscase and the meters and to find the meters and to find the meters and the indicate the limit specified Baran the limit specified Buran to fine EUT with have 10dB new to fine for the EUT with the limit specified Buran to fine EUT with the EUT with the limit specified Buran to fine EUT with the limit specified Buran to fine EUT with the limit specified Buran to fine	as rotate ation. Its set 3 in the ight to determine a surem spected and easurem spected aximum eiver system on level cified, the vould be a surem would be a su	meters mount is varied in the vertical tent. emissing tenna table variestem was with Moof the ten test report/ould b	away from the don the top ed from one re maximum on the EUT was turned from the set to Pearland and the EUT in peak ting could be ted. Otherwise re-tested of the done of the top the ted.	ne into of a neter value s of the was a being om 0 of mode stoppise the ne by	erferent variable to four of the fance ante- arrange this fro- degree tect Furde. e was 1 ped and emissione us	r meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees		
Test setup:	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Turn Table Ground Plane									

	Above 1GHz
	Horn Anlenna Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver Test Receiver
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : Mobile Phone Model : EKO Star G58 Test mode : WIFI mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK

CHAIL.		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
_	MHz	dBu∜	$\overline{-dB/n}$	dB	₫B	dBuV/m	dBuV/m	₫B	
1	183.201	44.14	9.86	2.75	28.95	27.80	43.50	-15.70	
2	191.745	44.48	10.58	2.81	28.89	28.98	43.50	-14.52	
2 3 4 5 6	212.270	40.27	11.30	2.86	28.75	25.68	43.50	-17.82	
4	321.061	34.43	13.57	3.01	28.50	22.51	46.00	-23.49	
5	744.866	28.93	19.53	4.34	28.50	24.30	46.00	-21.70	
6	810.265	37.08	19.81	4.32	28.16	33.05	46.00	-12.95	

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL Condition

: Mobile Phone : EKO Star G58 : WIFI mode EUT Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

EMAR	r :								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∛	dB/m	₫B	−−−−dB	dBuV/m	dBuV/m	dB	
1	87, 418 139, 361	47.99 42.13		1.96				-9.45 -19.96	
3	171.995	44.79	9.10	2.67	29.03	27.53	43.50	-15.97	
4 5 6	283, 979 345, 595	41.94	12.91 14.60	2.90 3.08		29. 27 28. 75		-16.73 -17.25	
6	810.265	32.59	19.81	4.32	28.16	28.56	46.00	-17.44	

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	· I level I limit line I		Over Limit (dB)	Polar.	
4824.00	48.89	30.94	6.81	41.82	44.82	74.00	-29.18	Vertical	
4824.00	48.03	30.94	6.81	41.82	43.96	74.00	-30.04	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.80	30.94	6.81	41.82	36.73	54.00	-17.27	Vertical	
4824.00	39.00	30.94	6.81	41.82	34.93	54.00	-19.07	Horizontal	

Test mode: 8	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.16	31.20	6.85	41.84	43.37	74.00	-30.63	Vertical	
4874.00	46.16	31.20	6.85	41.84	42.37	74.00	-31.63	Horizontal	
Test mode: 8	02.11b		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.00	31.20	6.85	41.84	33.21	54.00	-20.79	Vertical	
4874.00	36.10	31.20	6.85	41.84	32.31	54.00	-21.69	Horizontal	

Test mode: 80	Test mode: 802.11b			nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.47	31.46	6.89	41.86	42.96	74.00	-31.04	Vertical
4924.00	47.32	31.46	6.89	41.86	43.81	74.00	-30.19	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.23	31.46	6.89	41.86	32.72	54.00	-21.28	Vertical
4924.00	36.99	31.46	6.89	41.86	33.48	54.00	-20.52	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.92	30.94	6.81	41.82	44.85	74.00	-29.15	Vertical	
4824.00	48.01	30.94	6.81	41.82	43.94	74.00	-30.06	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.79	30.94	6.81	41.82	36.72	54.00	-17.28	Vertical	
4824.00	39.36	30.94	6.81	41.82	35.29	54.00	-18.71	Horizontal	

Test mode: 80)2.11g		Test char	nel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.15	31.20	6.85	41.84	43.36	74.00	-30.64	Vertical
4874.00	46.32	31.20	6.85	41.84	42.53	74.00	-31.47	Horizontal
Test mode: 80)2.11g		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	37.23	31.20	6.85	41.84	33.44	54.00	-20.56	Vertical
4874.00	36.21	31.20	6.85	41.84	32.42	54.00	-21.58	Horizontal

Test mode: 80	Test mode: 802.11g			nnel: Highest		Remark: Peak			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalas	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polar.	
4924.00	46.58	31.46	6.89	41.86	43.07	74.00	-30.93	Vertical	
4924.00	47.28	31.46	6.89	41.86	43.77	74.00	-30.23	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m	(dBuV/m)	Limit	Polar.	
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB))	(ubu v/III)	(dB)		
4924.00	36.24	31.46	6.89	41.86	32.73	54.00	-21.27	Vertical	
4924.00	36.98	31.46	6.89	41.86	33.47	54.00	-20.53	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.11	36.06	6.81	41.82	50.16	74.00	-23.84	Vertical	
4824.00	48.12	36.06	6.81	41.82	49.17	74.00	-24.83	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.64	36.06	6.81	41.82	41.69	54.00	-12.31	Vertical	
4824.00	39.61	36.06	6.81	41.82	40.66	54.00	-13.34	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.15	36.32	6.85	41.84	48.48	74.00	-25.52	Vertical	
4874.00	43.35	36.32	6.85	41.84	44.68	74.00	-29.32	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.25	36.32	6.85	41.84	38.58	54.00	-15.42	Vertical	
4874.00	36.18	36.32	6.85	41.84	37.51	54.00	-16.49	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.51	36.58	6.89	41.86	48.12	74.00	-25.88	Vertical
4924.00	48.21	36.58	6.89	41.86	49.82	74.00	-24.18	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.28	36.58	6.89	41.86	37.89	54.00	-16.11	Vertical
4924.00	37.21	36.58	6.89	41.86	38.82	54.00	-15.18	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	49.16	36.06	6.81	41.82	50.21	74.00	-23.79	Vertical	
4844.00	48.21	36.06	6.81	41.82	49.26	74.00	-24.74	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	40.69	36.06	6.81	41.82	41.74	54.00	-12.26	Vertical	
4844.00	39.65	36.06	6.81	41.82	40.70	54.00	-13.30	Horizontal	

Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.19	36.32	6.85	41.84	48.52	74.00	-25.48	Vertical	
4874.00	43.36	36.32	6.85	41.84	44.69	74.00	-29.31	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.28	36.32	6.85	41.84	38.61	54.00	-15.39	Vertical	
4874.00	36.21	36.32	6.85	41.84	37.54	54.00	-16.46	Horizontal	

Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	47.12	36.45	6.87	41.85	48.59	74.00	-25.41	Vertical	
4904.00	48.11	36.45	6.87	41.85	49.58	74.00	-24.42	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	36.17	36.45	6.87	41.85	37.64	54.00	-16.36	Vertical	
4904.00	37.24	36.45	6.87	41.85	38.71	54.00	-15.29	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.