

Machine Learning

Problem formulation

Example: Predicting movie ratings

User rates movies using zero to five stars

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	3	4
Swords vs. karate	0	0	5	?

 n_u = no. users n_m = no. movies r(i,j) = 1 if user j has rated movie i $y^{(i,j)}$ = rating given by user j to movie i (defined only if r(i,j)=1)

Machine Learning

Content-based recommendations

Content-based recommender systems $n_n=4$ $n_m=5$

	Movie	Alice (1) θ^1	Bob (2) θ^2	Carol (3) θ^3	Dave (4) θ^4
x^1	Love at last	5	5	0	0
x^2	Romance forever	5	?	?	0
:	Cute puppies of love	? 4.95	4	0	?
•	Nonstop car chases	0	0	5	4
x^5	Swords vs. karate	0	0	5	?

Let $x_0 = 1$, the intercept term, then the feature vector of movie $1, 2000 \text{ as add}, 1000 \text{ as } x^1 = [1,0.9,0]^T$, and $x^2 = [1,1.0,0.01]^T$, $x^5 = [1,0,0.9]^T$

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars. $\theta^{(j)} \in \mathbb{R}^{n+1}$

Example: $\theta^1 = [0,5,0]^T, x^3 = [1,0.99,0]^T$, then, $(\theta^1)^T x^3 = 4.95$.

Problem formulation

```
r(i,j) = 1 if user j has rated movie i (0 otherwise) y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}
```

```
	heta^{(j)} = parameter vector for user j x^{(i)} = feature vector for movie i For user j, movie i, predicted rating: (\theta^{(j)})^T(x^{(i)})
```

 $m^{(j)}$ = no. of movies rated by user jTo learn $\theta^{(j)}$:

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^{n: \text{number of feature}} (\theta^{(j)}_k)^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

 n_n : number of user

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i, j) = 1} \left((\theta^{(j)})^T x^{(i)} - y^{(i, j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Gradient descent update: $J(\theta^{(1)},...,\theta^{(n_u)})$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

$$\frac{\partial}{\partial \theta_k^{(j)}} J(\theta^{(1)}, \dots, \theta^{(n_u)})$$

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

_	Movie	Alice (1) θ^1	Bob (2) θ^2	Carol (3) θ^3	Dave (4) $ heta^4$	x_1 (romance)	x_2 (action)
x^1	Love at last	5	5	0	0	?	,
x^2	Romance forever	5	?	?	0	?	?
:	Cute puppies of love	Ş	4	0	?	?	?
:	Nonstop car chases	0	0	5	4	?	?
<i>x</i> ⁵	Swords vs. karate	0	0	5	?	?	?

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, \ \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \qquad \begin{array}{l} \text{Given $\theta^{(j)}$, what feature vector should $x^{(i)}$ be?} \end{array}$$

should $x^{(i)}$ be?

Optimization algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, to learn $x^{(1)}, \ldots, x^{(n_m)}$:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $x^{(1)}, \ldots, x^{(n_m)}$ (and movie ratings), can estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
,
can estimate $x^{(1)}, \dots, x^{(n_m)}$

Randomly Guess θ , use θ learn $x(\theta -> x)$, the use x learn $\theta(x -> \theta)$. $\theta -> x -> \theta -> x -> \theta -> x -> \theta$.

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

Given $x^{(1)}, \ldots, x^{(n_m)}$, estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, estimate $x^{(1)}, \ldots, x^{(n_m)}$:

 $\theta^{(1)},\ldots,\theta^{(n_u)}$

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

$$\min_{x^{(1)}, \dots, x^{(n_m)}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

Collaborative filtering algorithm

- 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.
- 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,\ldots,n_u, i=1,\ldots,n_m$:

$$x_{k}^{(i)} := x_{k}^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) \theta_{k}^{(j)} + \lambda x_{k}^{(i)} \right) \longrightarrow \frac{\partial}{\partial x_{k}^{(i)}} J(\dots)$$

$$\theta_{k}^{(j)} := \theta_{k}^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) x_{k}^{(i)} + \lambda \theta_{k}^{(j)} \right) \longrightarrow \frac{\partial}{\partial \theta_{k}^{(j)}} J(\dots)$$

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	n_u =4	n_{m}	=5	
Love at last	5	5	0	0	Г¤	5	0	٦٥
Romance forever	5	?	?	0	$\begin{vmatrix} 9 \\ 5 \end{vmatrix}$	$\frac{5}{?}$	7	0
Cute puppies of love	?	4	0	?	$Y = \begin{bmatrix} 3 \\ ? \end{bmatrix}$	$\frac{1}{4}$	0	?
Nonstop car chases	0	0	5	4	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0 \\ 0$	5 5	$\begin{bmatrix} 4 \\ 0 \end{bmatrix}$
Swords vs. karate	0	0	5	?				

Collaborative filtering

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Predicted ratings:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix} \qquad \begin{bmatrix} \underline{(\theta^{(1)})^T(x^{(1)})} & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ \underline{(\theta^{(1)})^T(x^{(2)})} & \underline{(\theta^{(2)})^T(x^{(2)})} & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \underline{(\theta^{(1)})^T(x^{(n_m)})} & \underline{(\theta^{(2)})^T(x^{(n_m)})} & \dots & \underline{(\theta^{(n_u)})^T(x^{(n_m)})} \end{bmatrix}$$

$$X = \begin{bmatrix} \begin{pmatrix} x & y \\ (x^{(2)})^T \\ \vdots \\ (x^{(n_m)})^T \end{bmatrix}$$

$$X = \begin{bmatrix} \left(x^{(1)}\right)^T \\ \left(x^{(2)}\right)^T \\ \vdots \\ \left(x^{(n_m)}\right)^T \end{bmatrix} \qquad \Theta = \begin{bmatrix} \left(\theta^{(1)}\right)^T \\ \left(\theta^{(2)}\right)^T \\ \vdots \\ \left(\theta^{(n_u)}\right)^T \end{bmatrix}$$

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find movies j related to movie i?

small
$$||x^{(i)} - x^{(j)}||$$

5 most similar movies to movie i: Find the 5 movies j with the smallest $\|x^{(i)} - x^{(j)}\|$.

Machine Learning

Implementational detail: Mean normalization

Users who have not rated any movies

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		Г~	_	0	0	٦٦
Love at last	5	5	0	0	<u> </u>	<u> </u>	5	5	0	0	$\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$
Romance forever	5	?	?	0	? 0	V	$\left \frac{5}{2} \right $			0	$\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$
Cute puppies of love	?	4	0	?	? 0	Y =		4	U		$\begin{bmatrix} \cdot \\ 2 \end{bmatrix}$
Nonstop car chases	0	0	5	4	, 0			0	G	4	$\begin{bmatrix} \cdot \\ 2 \end{bmatrix}$
Swords vs. karate	0	0	5	?	, O		Γ_{Ω}	U	\mathbf{G}	U	٠]

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - \underline{y^{(i,j)}})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Let
$$n=2$$
, $\theta^{(5)} \in \mathbb{R}^2$

Because no movie that Eve is rated.so $\theta^{(5)}$ =0,then for every movie, $\theta^{(5)}x^{(i)}$ =0,Eve will rate 0.

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix} \qquad \mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix} \qquad \mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

$$(\theta^{(j)})^T (x^{(i)}) + u_i$$

User 5 (Eve):
$$\theta^{(5)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $(\theta^{(j)})^T (x^{(i)}) + u_i = u_i$

Matrix Factorization

• Matrix Factorization is an effective method for recommender systems.

m, n: numbers of users and items u, v: index for u_{th} user and v_{th} item $r_{u,v}$: u_{th} user gives a rating $r_{u,v}$ to v_{th} item

Matrix Factorization (Cont'd)

k: number of latent dimensions

$$r_{u,v} = \mathbf{p}_{u}^{T} \mathbf{q}_{v}$$

$$Objective \ function : \min_{P,Q} \sum_{(u,v)\in R} (r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})^{2} + \lambda_{P} \|\mathbf{p}_{u}\|_{F}^{2} + \lambda_{Q} \|\mathbf{q}_{v}\|_{F}^{2} \quad (1)$$

Stochastic Gradient Descent (SGD)

• The basic idea of SGD is that, instead of expensively calculating the gradient of

$$\min_{P,Q} \sum_{(u,v)\in R} (r_{u,v} - \mathbf{p}_u^T \mathbf{q}_v)^2 + \lambda_P \|\mathbf{p}_u\|_F^2 + \lambda_Q \|\mathbf{q}_v\|_F^2$$

, it randomly selects a (u,v) entry from the summation and calculates the corresponding gradient.

• Once $\mathbf{r}_{u,v}$ is chosen, the objective function is reduced to $(\mathbf{r}_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})^{2} + \lambda_{P} \mathbf{p}_{u}^{T} \mathbf{p}_{u} + \lambda_{Q} \mathbf{q}_{v}^{T} \mathbf{q}_{v}$

SGD (Cont'd)

$$J = (r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})^{2} + \lambda_{p} \mathbf{p}_{u}^{T} \mathbf{p}_{u} + \lambda_{Q} \mathbf{q}_{v}^{T} \mathbf{q}_{v}$$

$$J = (e_{u,v})^{2} + \lambda_{p} \mathbf{p}_{u}^{T} \mathbf{p}_{u} + \lambda_{Q} \mathbf{q}_{v}^{T} \mathbf{q}_{v} \quad \text{where } e_{u,v} = (r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})$$

$$\frac{\partial J}{\partial \mathbf{p}_{u}} = 2e_{u,v}(-\mathbf{q}_{v}) + 2\lambda_{p}\mathbf{p}_{u} = -2(e_{u,v}\mathbf{q}_{v} - \lambda_{p}\mathbf{p}_{u})$$

$$\frac{\partial J}{\partial \mathbf{q}_{v}} = 2e_{u,v}(-\mathbf{p}_{u}) + 2\lambda_{Q}\mathbf{q}_{v} = -2(e_{u,v}\mathbf{p}_{u} - \lambda_{Q}\mathbf{q}_{v})$$

$$\mathbf{p}_{u} = \mathbf{p}_{u} + \gamma (e_{u,v} \mathbf{q}_{v} - \lambda_{P} \mathbf{p}_{u})$$
$$\mathbf{q}_{v} = \mathbf{q}_{v} + \gamma (e_{u,v} \mathbf{p}_{u} - \lambda_{Q} \mathbf{q}_{v})$$

SGD (Cont'd)

$$J = (r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})^{2} + \lambda_{p} \mathbf{p}_{u}^{T} \mathbf{p}_{u} + \lambda_{Q} \mathbf{q}_{v}^{T} \mathbf{q}_{v}$$

$$J = (e_{u,v})^{2} + \lambda_{p} \mathbf{p}_{u}^{T} \mathbf{p}_{u} + \lambda_{Q} \mathbf{q}_{v}^{T} \mathbf{q}_{v} \quad \text{where } e_{u,v} = (r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})$$

consider the user bias and item bias:

ub: the user bias, \mathbf{ub}_{u} : the bias of u_{th} user

ib : the item bias, **ib**, : the bias of i_{th} item

avg: the average of all rates

so
$$e_{u,v}$$
 now equels $r_{u,v} - (\mathbf{p}_u^T \mathbf{q}_v + avg + \mathbf{u} \mathbf{b}_u + i \mathbf{b}_v)$

SGD (Cont'd)

$$J = [r_{u.v} - (\mathbf{p}_u^T \mathbf{q}_v + avg + \mathbf{u}\mathbf{b}_u + i\mathbf{b}_v)]^2 + \lambda_p \mathbf{p}_u^T \mathbf{p}_u + \lambda_Q \mathbf{q}_v^T \mathbf{q}_v + \lambda_{ub} \mathbf{u}\mathbf{b}_u^2 + \lambda_{ib} i\mathbf{b}_v^2$$

$$J = (e_{u,v})^2 + \lambda_p \mathbf{p}_u^T \mathbf{p}_u + \lambda_Q \mathbf{q}_v^T \mathbf{q}_v + \lambda_p \mathbf{u} \mathbf{b}_u^2 + \lambda_Q \mathbf{i} \mathbf{b}_v$$

$$u + iQ_v$$

where
$$e_{u,v} = r_{u,v} - (\mathbf{p}_u^T \mathbf{q}_v + avg + \mathbf{u} \mathbf{b}_u + \mathbf{i} \mathbf{b}_v)$$

$$\frac{\partial J}{\partial \mathbf{p}_{u}} = 2e_{u,v}(-\mathbf{q}_{v}) + 2\lambda_{p}\mathbf{p}_{u} = -2(e_{u,v}\mathbf{q}_{v} - \lambda_{p}\mathbf{p}_{u}), \quad \mathbf{p}_{u} = \mathbf{p}_{u} + \gamma(e_{u,v}\mathbf{q}_{v} - \lambda_{p}\mathbf{p}_{u})$$

$$\frac{\partial J}{\partial \mathbf{q}_{v}} = 2e_{u,v}(-\mathbf{p}_{u}) + 2\lambda_{Q}\mathbf{q}_{v} = -2(e_{u,v}\mathbf{p}_{u} - \lambda_{Q}\mathbf{q}_{v}), \quad \mathbf{q}_{v} = \mathbf{q}_{v} + \gamma(e_{u,v}\mathbf{p}_{u} - \lambda_{Q}\mathbf{q}_{v})$$

$$\frac{\partial J}{\partial \mathbf{u} \mathbf{b}_{u}} = 2e_{u,v}(-1) + 2\lambda_{ub}\mathbf{u} \mathbf{b}_{u} = -2(e_{u,v} - \lambda_{ub}\mathbf{u} \mathbf{b}_{u}), \quad \mathbf{u} \mathbf{b}_{u} = \mathbf{u} \mathbf{b}_{u} + \gamma(e_{u,v} - \lambda_{ub}\mathbf{u} \mathbf{b}_{u})$$

$$\frac{\partial \mathbf{J}}{\partial \mathbf{i} \mathbf{b}_{..}} = 2e_{u,v}(-1) + 2\lambda_{ib}\mathbf{i} \mathbf{b}_{v} = -2(e_{u,v} - \lambda_{ib}\mathbf{i} \mathbf{b}_{v}), \quad \mathbf{i} \mathbf{b}_{v} = \mathbf{i} \mathbf{b}_{v} + \gamma(e_{u,v} - \lambda_{ib}\mathbf{i} \mathbf{b}_{v})$$