

KOM120B #8 Array 1 Dimensi (1D)

Tim Pengajar KOM120B – Algoritme dan Dasar Pemrograman

Departemen Ilmu Komputer - FMIPA

Nilai UTS Kuliah

Nilai UTS Praktikum

Perlu ekstra waktu untuk belajar dan berlatih lebih baik

	NILAI	K1	K2	КЗ	K4	K5	K6	ALL	PERSEN
_	0	0	0	3	1	0	0	4	2.02
I	100	15	12	12	12	29	30	110	55.56
	200	6	7	6	6	6	9	40	20.20
	300	2	2	4	1	5	6	20	10.10
	400	4	4	4	8	4	0	24	12.12
	JUMLAH	27	25	29	28	44	45	198	100.00

Variabel Tunggal

Perhatikan potongan program berikut:

```
int i, n, nilai, sum=0;
scanf("%d", &n);
for(i=0;i<n;i++)
{
    scanf("%d", &nilai);
    sum += nilai;
}
printf("%d %d\n", nilai, sum);</pre>
```

i	012345
n	5
nilai	89472
sum	0 8 17 21 28 30

Input data:

5 8 9 4 7 2 Setiap variabel menempati 1 lokasi dalam memori, sehingga terjadi proses *override* saat nilai baru dimasukkan (**nilai sebelumnya digantikan oleh nilai baru**) → kita hanya bisa mendapatkan nilai akhir.

Contoh Problem

Diketahui n data bilangan bulat sebagai masukan, mulai data posisi ke-1 hingga ke-n. Selanjutnya ditanyakan beberapa nilai data pada posisi tertentu. Nilai -9 untuk mengakhiri pertanyaan.

Contoh input:

```
5
8 9 4 7 2
4 5 4 1 -9
```

Contoh output:

Sulit (mungkin tidak bisa) diselesaikan hanya menggunakan variabel tunggal. **Mengapa?**

Variabel Berindeks

Dalam matematika dikenal variabel berindeks:

$$X_0$$
, X_1 , X_2 , . . , X_{n-1} .

Angka 0, 1, 2, . . . , n-1 pada variabel \times disebut sebagai indeks atau subscript.

- Variabel berindeks diimplementasikan dalam program berupa array x[0], x[1], x[2], . . . , x[n-1], dengan n adalah ukuran array.
- Selang nilai yang valid bagi indeks suatu variabel array berukuran n adalah 0 sampai dengan n-1.

Array

- Definisi: kumpulan elemen bertipe data sama yang diakses dengan nama yang sama.
- Deklarasi:

```
data-type array-name[size];
```

- Berdasarkan indeksnya, array dapat dibedakan menjadi:
 - \circ Array berdimensi satu (1D) \rightarrow vektor di Matematika \rightarrow 1 indeks
 - \circ Array berdimensi dua (2D) \rightarrow matriks di Matematika \rightarrow 2 indeks
 - Array berdimensi banyak → lebih dari 2 indeks
- Berdasarkan deklarasi ukurannya, array dapat dibedakan menjadi:
 - Array statis : ukuran array merupakan nilai konstan
 - Array dinamis : ukuran array merupakan nilai variabel

Array 1D

- Ukuran array statis dapat dinyatakan secara eksplisit atau implisit
- Contoh:

Alokasi Memori

- Elemen array disimpan di memori secara kontinyu (contiguous) → tanpa sela, bukan random
- Indeks: 0, 1, 2, . . . , size-1
- Jika mengakses indeks di luar selang, maka akan diperoleh data lain.

```
// Apa outputnya?
//
int i=50;
int a[]={10,11,12,13,14,15};
int x=100;
printf("%d\n", a[6]);
```


Batasan Indeks Array

- Berapa batas maksimum ukuran array dalam C? Tidak ada batasan yang pasti berapa ukuran maksimum array C, namun dipastikan finitely.
- Dalam membuat program yang menggunakan array statis, ukuran array biasanya didefinisikan menggunakan konstanta. Contoh:

```
#include <stdio.h>
#define SIZE 100
int main()
{
    int a[SIZE];
    // code
}
```


Kembali ke Contoh Problem

- Butuh batasan berapa nilai n (banyaknya data) maksimum? Misal 100.
- Karena pertanyaan posisi data bersifat random, maka masukkan semua data ke dalam variabel array.

```
#include <stdio.h>
#define SIZE 100
int main()
    int i, n, nilai[SIZE], pos;
    scanf("%d", &n);
    for(i=0;i<n;i++)
        scanf("%d", &nilai[i]);
    scanf("%d", &pos);
    while (pos!=-9) {
        printf("%d\n", nilai[pos-1]);
        scanf("%d", &pos);
    return 0;
```

Apa yang Terjadi dengan Program Ini?

```
#include <stdio.h>
                              Diskusi #1
int main() {
  int a[3], b[4] =\{4,5,2,3\};
  int c[] = \{3, 2, 1\}, d[4] = \{0\};
  int e[5] = \{1\}, f[];
  printf("%d %d %d\n", a[0], b[1], c[2]);
  printf("%d %d %d\n", d[3], e[4], f[5]);
  return 0;
```


Diskusi #2

Terdapat soal sbb:

Buat program untuk mendapatkan bilangan terkecil dan terbesar dari n bilangan bulat.

Apakah perlu array?

Diskusi #3

Apa isi array berikut?

```
int a[5]={5};
int b[5]={1,2};
```

Latihan 1: Banyaknya Bilangan

Buat program membaca n bilangan bulat (n>0), dan menghitung banyaknya bilangan yang lebih besar dan yang lebih kecil dari rata-rata.

Contoh Input:

```
5 -> banyaknya data
2 5 10 4 1 -> nilai-nilai data
```

Contoh Output:

```
4.40 2 3 -> rata2, yg lbh besar, yg lbh kecil
```


Latihan 2: Frekuensi Bilangan

Buat program membaca n bilangan bulat (0<n<2 Milyar), yang masing-masing memiliki kisaran nilai [-100,100], dan hitung frekuensi setiap bilangan.

Contoh Input:

5

-> banyaknya data

-2 14 -2 5 -2

-> nilai-nilai data

Contoh Output:

-2 ada 3

5 ada 1

14 ada 1

Latihan 3: Merge

Diketahui 2 deretan bilangan yang sudah terurut ascending, masing-masing diakhiri dengan -9. Buat program mencetak seluruh bilangan yang ada secara terurut ascending juga. [TIDAK BOLEH ADA PROSES SORTING ARRAY]

Contoh Input:

2 5 9 -9

4 8 10 15 20 -9

Contoh Output:

2 4 5 8 9 10 15 20

