PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08027366 A

(43) Date of publication of application: 30.01.96

(51) Int. CI

C08L 69/00 C08K 7/08

C08K 7/14 C08L101/00

(21) Application number: 06164337

(22) Date of filing: 15.07.94

(71) Applicant:

MITSUBISHI GAS CHEM CO INC

(72) Inventor:

KANAYAMA SATOSHI SHIMAOKA GORO IWAKIRI TOKIAKI OKAZAKI KAZUO KAMANO HIDEHIKO

(54) POLYCARBONATE RESIN COMPOSITION

(57) Abstract:

PURPOSE: To obtain a polycarbonate resin composition which can give a molding excellent in strengths, repeated fatigue characteristics, appearance and heat resistance by mixing a polycarbonate resin with aluminum borate whiskers and glass fibers under specified conditions.

CONSTITUTION: Desirably 95-60wt.% thermoplastic

resin (1) (e.g. polybutylene terephthalate) is previously melt-blended separately or simultaneously with desirably 5-40wt.% aluminum borate whiskers, a thermoplastic resin (2) (e.g. polycarbonate resin) and 5-40wt.% glass fibers, and desirably 5-300 pts.wt. obtained mixture or each of the obtained mixtures is melt-blended with desirably 100 pts.wt. polycarbonate resin or mixture thereof with thermoplastics (1) and (2).

COPYRIGHT: (C) 1996, JPO

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-27366

(43)公開日 平成8年(1996)1月30日

(51) Int. Cl. 6	識別記号	庁内整理番号	FI 技術表示箇所
C08L 69/00	LPN		
C08K 7/08	KKN		
7/14	KKN		
C08L101/00	LTA		
	-		審査請求 未請求 請求項の数13 OL (全8頁)
(21)出願番号	特願平6-164	3 3 7	(71)出願人 000004466
			三菱瓦斯化学株式会社 東京都千代田区丸の内2丁目5番2号
(22)出願日	平成6年(199	4) 7月15日	
			(72)発明者 金山 聡 神奈川県平塚市東八幡5丁目6番2号 三
			をエンジニアリングプラスチックス株式会
			をエンシー アリングラフステラフスト
			1-1
			(72)発明者 島岡 悟郎 神奈川県平塚市東八幡5丁目6番2号 三
			変エンジニアリングプラスチックス株式会
			※エンシー/ りょう / ハッ / ハッパー
			在技術センタード
			最終頁に続く

(54)【発明の名称】ポリカーボネート樹脂組成物

(57)【要約】

【目的】 高強度で優れた繰り返し疲労特性を有し、かつ外観の改良された成形品を得ることができるポリカーボネート樹脂組成物を提供する。

【構成】 予め熱塑性樹脂とホウ酸アルミニウムうィスカーおよびガラス繊維とを溶融混合した後、得られた混合物とポリカーボネート樹脂又はポリカーボネート樹脂および熱可塑性樹脂と溶融混合してなるポリカーボネート樹脂組成物。

【特許請求の範囲】

【請求項1】ポリカーボネート樹脂にホウ酸アルミニウムウィスカー及びガラス繊維を配合するに際して、予め熱可塑性樹脂(1)とホウ酸アルミニウムウィスカー、熱可塑性樹脂(2)とガラス繊維とを各々又は同時に溶融混合した後、得られた混合物とポリカーボネート樹脂又はポリカーボネート樹脂及び熱可塑性樹脂(1)、

(2) とを溶融混合することを特徴とするポリカーボネート樹脂組成物。

【請求項2】熱可塑性樹脂(1)とホウ酸アルミニウムウィスカーとの混合割合が、熱可塑性樹脂(1)95~60重量%に対してホウ酸アルミニウムウィスカー5~40重量%である請求項1記載のポリカーボネート樹脂組成物。

【請求項3】熱可塑性樹脂(2)とガラス繊維との混合割合が、熱可塑性樹脂(2)95~60重量%に対してガラス繊維5~40重量%の混合比率である請求項1記載のボリカーボネート樹脂組成物。

【請求項4】ポリカーボネート樹脂又はポリカーボネート樹脂及び熱可塑性樹脂(1)、(2)100重量部に対して、熱可塑性樹脂(1)とホウ酸アルミニウムウィスカーの混合物5~300重量部を配合する請求項1記載のポリカーボネート樹脂組成物。

【請求項5】ポリカーボネート樹脂又はポリカーボネート樹脂及び熱可塑性樹脂(1)、(2)100重量部に対して、熱可塑性樹脂(2)とガラス繊維の混合物5~300重量部を配合する請求項1記載のポリカーボネート樹脂組成物。

【請求項6】熱可塑性樹脂(1)が、熱可塑性ポリエステル樹脂、ポリスチレン系樹脂、ポリアリーレンエステル系樹脂、ポリオレフィン系樹脂、ジエン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリスルホン系樹脂、ポリフェニレン系樹脂から選ばれる少なくとも一種である請求項1記載のポリカーボネート樹脂組成物。

【請求項7】 熱可塑性樹脂(1)が、熱可塑性ポリエステル樹脂である請求項6記載のポリカーボネート樹脂組成物。

【請求項8】 熱可塑性樹脂(1)が、ポリエチレンテレフタレート、ポリブチレンテレフタレートである請求項7記載のポリカーボネート樹脂組成物。

【請求項9】熱可塑性樹脂(2)が、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリスチレン系樹脂、ポリアリーレンエステル系樹脂、ポリオレフィン系樹脂、ジエン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリスルホン系樹脂、ポリフェニレン系樹脂から選ばれる少なくとも一種である請求項1記載のポリカーボネート樹脂組成物。

【請求項10】 熱可塑性樹脂(2)が、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂から選ばれる少なくとも一種である請求項9記載のポリカーボネート樹脂組

成物。

【請求項11】熱可塑性樹脂(2)が、ポリカーボネート樹脂である請求項10記載のポリカーボネート樹脂組成物。

【請求項12】熱可塑性樹脂(2)が、熱可塑性ポリエステル樹脂である請求項10記載のポリカーボネート樹脂組成物。

【請求項13】熱可塑性樹脂(2)が、ポリエチレンテレフタレート、ポリプチレンテレフタレートである請求項12記載のポリカーボネート樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はポリカーボネート樹脂組成物に関する。更に詳しくは、あらかじめ熱可塑性樹脂(1)とホウ酸アルミニウムウィスカー、熱可塑性樹脂(2)とガラス繊維とを各々又は同時に溶融混合した後、ポリカーボネート樹脂又はポリカーボネート樹脂及び熱可塑性樹脂(1)、(2)と溶融混合してなる良好な外観を有し、強度、繰り返し疲労特性、耐熱性等に優れた成形品を得ることができるポリカーボネート樹脂組成物に関する。

[0002]

【従来の方法及びその課題】ポリカーボネート樹脂は、優れた機械的強度、耐衝撃強度、耐熱性を有する場場にいた人間の特性を改良する場合には、適当な熱可塑性樹脂とのポリマーアロイとしても、適当な熱可塑性樹脂とのポリマーをガラスは、ホウ酸アルミニウムウィスカーやが知られている。 【0003】しかし、ポリカーがおおいるを検充填剤を使用することが知られて物をでは、ホウ酸アルミニウムウィスカーの様な、高いであるには、カウムウィスカーの様な、カカーの様な、カカーの様な、カカーの様な、カカーの様な、カカーの様な、カカーの様なが発生し、成形品の外観不良が発生する。この様なクックを解決する方法として、一般に無機充填剤をシランが、発生し、成形品の外観不良が発生する。この様なクック酸で表面の理する方法が知られているが実情である。

【0004】また無機充填剤としてガラス繊維を使用した場合には、強度や繰り返し疲労特性については改善されるが、その表面外観性に関してはガラス繊維の浮きによる外観不良が発生する。ガラス繊維の繊維長、繊維径を変えたり、成形条件を変えたりしても、満足する結果が得られていない。

[0005]

【課題を解決するための手段】本発明者らは、上記の欠点を改良した、外観、強度、繰り返し疲労特性、耐熱性等に優れた成形品を得ることができるポリカーボネート樹脂組成物について鋭意検討した結果、あらかじめ熱可50 塑性樹脂(1)とホウ酸アルミニウムウィスカー、熱可

塑性樹脂(2)とガラス繊維とを各々又は同時に溶融混合した後、ポリカーポネート樹脂又はポリカーポネート樹脂及び熱可塑性樹脂(1)、(2)を溶融混合することにより、ウィスカーの凝集が抑えられ、ガラス繊維の浮きも抑えられ、高強度で、繰り返し疲労特性に優れ且つ外観の良好な成形品が得られることを見い出した。

【0006】すなわち、本発明は、ポリカーボネート樹脂にホウ酸アルミニウムウィスカー及びガラス繊維を配合するに際して、予め熱可塑性樹脂(1)とホウ酸アルミニウムウィスカー、熱可塑性樹脂(2)とガラス繊維 10とを各々又は同時に溶融混合した後、得られた混合物とポリカーボネート樹脂又はポリカーボネート樹脂及び熱可塑性樹脂(1)、(2)とを溶融混合してなる樹脂組成物に関する。本発明の樹脂組成物は、高強度で繰り返し疲労特性に優れ且つ外観の良好な成形品を提供することができるものである。

【0007】本発明において用いられるポリカーボネート樹脂は、芳香族ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物をホスゲン又は炭酸のジエステルと反応させる事によって得られる分岐していてもよい熱 20可塑性芳香族ポリカーボネート重合体又は共重合体である。

【0008】 芳香族ジヒドロキシ化合物の一例は、2, 2-ビス (4-ヒドロキシフェニル) プロパン (=ビス フェノールA)、2,2-ビス(3,5-ジブロモー4 ーヒドロキシフェニル)プロパン(=テトラプロモビス フェノールA)、ビス(4-ヒドロキシフェニル)メタ ン、1,1-ビス(4-ヒドロキシフェニル)エタン、 2, 2-ビス(4-ヒドロキシフェニル)プタン、2, 2-ビス(4-ヒドロキシフェニル)オクタン、2,2 - ビス(4 - ヒドロキシ-3-メチルフェニル)プロパ ン、1,1-ビス(3-t-ブチル-4-ヒドロキシフ ェニル)プロパン、2,2-ビス(4-ヒドロキシー 3, 5-ジメチルフェニル)プロパン、2, 2-ビス (3-ブロモ-4-ヒドロキシフェニル) プロパン、 2, 2-ビス(3, 5-ジクロロ-4-ヒドロキシフェ ニル)プロパン、2,2-ビス(3-フェニルー4-ヒ ドロキシフェニル) プロパン, 2, 2-ビス(3-シク ロヘキシル-4-ヒドロキシフェニル)プロパン,1, 1 - ピス (4 - ヒドロキシフェニル - 1 - フェニルエタ ン、ビス(4-ヒドロキシフェニル)ジフェニルメタン 等で例示されるビス(ヒドロキシアリール)アルカン 類;1,1-ビス(4-ヒドロキシフェニル)シクロペ ンタン、1,1-ピス(4-ヒドロキシフェニル)シク ロヘキサン等で例示される、ピス(ヒドロキシアリー ル) シクロアルカン類;4,4'-ジヒドロキシジフェ ニルエーテル4,4'-ジヒドロキシ-3,3'-ジメ チルジフェニルエーテル等で例示されるジヒドロキシジ アリールエーテル類; 4, 4'-ジヒドロキシジフェニ ルスルフィド、4、4′ージヒドロキシー3、3′ージ 50

【0009】又、分岐した芳香族ポリカーポネート樹脂を得るには、フロログリシン、2,6ージメチルー2,4,6ートリ(4ーヒドロキシフェニル)-3ーヘプテン、4,6ーシメチルー2,4,6ートリ(4ーヒドロキシフェニル)-2ーヘプテン、1,3,5ートリ(2ーヒドロキシフェニル)ベンゾール、1,1,1ートリ(4ーヒドロキシフェニル)エタン、2,6ービスフェール、 α , α "ートリ(4ーヒドロキシフェニル)ノール、 α , α "ートリ(4ーヒドロキシフェニル))-4ーメチルフェニル)-1,3,5ートリイソプロピルベンゼン等で例示されるポリヒドロキシ化合物、及び3,3ービスフェールにスフェノール、5,7ージクロルイサチンビスフェノール、5,7ージクロルイサチンビスフェノールなどが例示される。

【0010】ホスゲン法ポリカーボネートの場合、末端 停止剤又は分子量調節剤を使用しても良い。末端停止剤又は分子量調節剤としては、一価のフェノール性水酸基を有する化合物があげられ、通常のフェノール、p-t-ブチルフェノール、トリプロモフェノール等の他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、アルキルエーテルフェノール等が例示される。本発明で使用されるポリカーボネート樹脂は一種類でも、又二種類以上を混合して使用しても良い。

【0011】本発明におけるホウ酸アルミニウムウィスカーとあらかじめ溶融混合される熱可塑性樹脂(1)としては、一般にポリカーボネート樹脂にブレンドできる樹脂であれば良い。このような熱可塑性樹脂としては、例えば、熱可塑性ポリエステル樹脂、ポリスチレン系樹脂、ポリアリーレンエステル系樹脂、ポリオレフィン系樹脂、ジエン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリスルホン系樹脂、ポリフェニレン系樹脂等から選択された一種又は二種以上の混合物である。

[0012] またガラス繊維とあらかじめ溶融混合される熱可塑性樹脂(2)としては、上記した各熱可塑性樹脂以外に、ポリカーボネート樹脂自身も使用することが

できる。

【0013】本発明における熱可塑性ポリエステル樹脂 は、芳香族ジカルポン酸あるいはそのジエステルとグリ コールあるいはアルキレンオキサイドとを公知の方法で 反応させて得られる重合体であり、具体的には、テレフ タル酸或はテレフタル酸ジメチル、ナフタレンジカルボ ン酸、ナフタレンジカルボン酸ジメチルを芳香族ジカル ポン酸の主成分とし、これとエチレングリコール、ブタ ンジオール、シクロヘキサンジメタノールあるいはエチ レンオキサイド等を反応させて得られるポリエチレンテ 10 レフタレート、ポリテトラメチレンテレフタレート(ポ リプチレンテレフタレート)、 ポリエチレンナフタレ ート、ポリテトラメチレンナフタレート(ポリプチレン ナフタレート) などを挙げることができる。またポリエ ステル樹脂は、共重合体であってもよく、例えばシクロ ヘキサンジメタノールとテレフタル酸及びイソフタル酸 との共重合体、シクロヘキサンジメタノール及びエチレ ングリコールとテレフタル酸との共重合体などを挙げる ことができる。

【0014】熱可塑性ポリエステル樹脂は、フェノール 20 とテトラクロロエチレンとを6対4の重量比で混合した混合溶媒中、30℃で測定した固有粘度(極限粘度)が 0.4以上、通常0.5~1.5のものが好ましく、0.4未満では耐衝撃性や耐薬品性の改良が不十分となり好ましくない。

【0015】本発明におけるポリスチレン系樹脂としては、ポリスチレン(PS樹脂)、ABS樹脂、AES樹脂、MBS樹脂、MAS樹脂、AAS樹脂、スチレンーブタジエンブロック共重合体、スチレンー無水マレイン酸共重合体等が望ましい。

【0016】ポリアリレーンエステル系樹脂には、芳香族ジヒドロキシ化合物又はその誘導体と芳香族ジカルボン酸又はその誘導体とを主原料として縮合反応させて得られる重合体または共重合体である。ここで使用する芳香族ジヒドロキシ化合物としては、前記ポリカーボネート樹脂のところで説明したものが好ましく使用され、芳香族ジヒドロキシ化合物の誘導体は、前記芳香族ジヒドロキシ化合物と脂肪酸または芳香族カルボン酸とのジエステルである。芳香族ジカルボン酸としては、前記熱可塑性ポリエステル系樹脂のところで説明したものが好ま 40しく使用される。

【0017】ポリオレフィン系樹脂としては、高密度ポリエチレン樹脂、低密度ポリエチレン樹脂、線状低密度ポリエチレン樹脂、線状低密度ポリエチレン一がロピレン共重合体、エチレンーアクリル酸エステル共重合体、エチレンーグリシジル(メタ)アクリレート共重合体、ポリプロピレン、プロピレン一酢酸ビニル共重合体、プロピレンー塩化ビニル共重合等が望ましい。

【0018】ジエン系樹脂としては、1,2ーポリプタ 50 性樹脂(1)、(2)を溶融混合する方法としては、公

ジエン樹脂、トランス-1,4-ポリブタジエン樹脂等 ジエン構造を有する単量体単独またはこれと共重合可能 な単量体との共重合体及びこれらの混合物である。

【0019】ポリアミド系樹脂としては、アミノカルボン酸化合物単独またはジカルボン酸化合物とジアミン化合物からなる共重合体、または α , ω -カプロラクタムを開環重合して得られる重合体が望ましい。

【0020】ポリエーテル系樹脂としては、ボリフェニレンエーテル樹脂が望ましい。

【0021】これら熱可塑性樹脂の中で、ポリカーポネート樹脂と配合した場合の相溶性、および機械的強度、耐薬品性などの物性上の点から、熱可塑性ポリエステル樹脂が特に好適である。しかもポリエステル樹脂のうちでもポリエチレンテレフタレート、ポリプチレンテレフタレートが特に好適に使用される。

【0022】本発明に用いられるホウ酸アルミニウムウィスカーは、一般に、9A1, O, $\cdot 2B$, O, の化学組成で表される針状結晶であり、平均繊維長 $10\sim30$ μ m、平均繊維径 $0.5\sim1.0$ μ mである。又、ホウ酸アルミニウムウィスカーは、あらかじめ、例えばシランカップリング剤等の表面処理剤で処理されているものを使用することもできる。

【0023】本発明における熱可塑性樹脂(1)とホウ酸アルミニウムウィスカーの混合比率は、熱可塑性樹脂(1)95~60重量%に対してホウ酸アルミニウムウィスカー5~40重量%であり、ホウ酸アルミニウムウィスカーが5重量%未満では充分な添加効果を得ることができず、又、40重量%を超えると流動性が不足し、成形性(押出性)が悪化し好ましくない。

10024】本発明に用いられるガラス繊維は、一般に 市販されているものが用いられ、例えば繊維径 $2\sim30$ μ m、繊維長 $3\sim10$ mmのチョップドストランドが挙 げられる。

【0025】本発明における熱可塑性樹脂(2)とガラス繊維の混合比率は、熱可塑性樹脂(2)95~60重量%に対してガラス繊維5~40重量%であり、ガラス繊維が5重量%未満では充分な添加効果を得ることができず、又、40重量%を超えると流動性が不足し、成形性(押出性)が悪化し好ましくない。

【0026】本発明の組成物には更にその目的に応じ、所望の特性を付与する他の添加剤を添加しても良い。例えば、衝撃改良剤、難燃剤、酸化防止剤、熱安定剤、帯電防止剤、可塑剤、離型剤、滑剤、相溶化剤、発泡剤、炭素繊維、セラミックウィスカー等の補強剤、充填剤、染顔料等を、一種又は二種以上、適宜併用しても良い。【0027】本発明において、予め熱可塑性樹脂(1)とホウ酸アルミニウムウィスカー、熱可塑性樹脂(2)とガラス繊維とを各々又は同時に溶融混合した後、ポリカーボネート樹脂又はポリカーボネート樹脂及び熱可塑性樹脂(1)(2)を溶融混合する方法としては、公

知の方法を用いることができる。そのような方法は例え

①2ケ所以上の材料供給口を有する押出機にて、最初の 材料供給口から、予め熱可塑性樹脂(1)とホウ酸アル ミニウムウィスカー、あるいは熱可塑性樹脂(2)とガ ラス繊維とを溶融混練し、2番目の材料供給口からポリ カーボネート樹脂又はポリカーボネート樹脂及び熱可塑 性樹脂 (1)、(2)を供給して溶融混練・押出しペレ ット化する方法。

②予め熱可塑性樹脂 (1) とホウ酸アルミニウムウィス カー、あるいは熱可塑性樹脂(2)とガラス繊維とを溶 融混練して押出しそれぞれペレット化するか、または熱 可塑性樹脂(1)とホウ酸アルミニウムウィスカーおよ び熱可塑性樹脂(2)とガラス繊維とを同時に供給して 溶融混練して押出しペレット化する。このペレットとポ リカーボネート樹脂又はポリカーボネート樹脂及び熱可 塑性樹脂(1)、(2)を溶融混練し押出し、ペレット 化する方法。などが挙げられる。押出機としては、一軸 又は二軸の押出機が好適に使用できる。

【0028】本発明の高強度で繰り返し疲労特性に優れ 20 且つ外観の良好な成形品は、上記の方法により得られた 最終組成物を用いて、通常の成形機を使用して成形する ことにより得られる。

[0029]

【実施例】以下、実施例及び比較例によって具体的に説 明するが、本発明はこれらに限定されるものではない。 【0030】各実施例に使用した原材料は下記の通りで ある。

A:ポリカーボネート樹脂(三菱瓦斯化学(株)製、ユ ーピロン S-2000;分子量25,000)

【0031】B:ポリエチレンテレフタレート樹脂(三 菱レイヨン (株) 製、ダイヤナイトMA-523V) 【0032】C:ポリプチレンテレフタレート樹脂(ポ

リプラスチックス(株)製、ジュラネックス600F

【0033】D:ホウ酸アルミニウムウィスカー(四国 化成工業 (株) 製、アルボレックス Y S 1)

【0034】G:チョップドストランド・ガラス繊維 (径13μm) (日本電気硝子(株) 製、ECS03T 5 3 1 P)

【0035】G-PC:ガラス繊維(径13μm)30 %強化ポリカーボネート樹脂(三菱瓦斯化学(株)製、 ユーピロン GS2030M)

【0036】G-PBT:ガラス繊維(径13μm)3 0%強化ポリブチレンテレフタレート樹脂(ポリプラス チックス (株) 製、ジュラネックス X3300)

【0037】参考例1

ポリブチレンテレフタレート樹脂(C)70重量%、ホ ウ酸アルミニウムウィスカー(D)30重量%をタンプ ラーにて混合し、直径30mm二軸ペント式押出機を用 50

いて、バレル温度250℃で押出してペレットを得た (以下、これをD-РВТ-1と略記する)。

[0038] 参考例2

ポリプチレンテレフタレート樹脂(C)を80重量%、 ホウ酸アルミニウムウィスカー (D) を20重量%とし た他は参考例1と同様にしてペレットを得た。(以下、 これをD-РВТ-2と略記する)。

[0039] 参考例3

ポリプチレンテレフタレート樹脂(C)を60重量%、 ホウ酸アルミニウムウィスカー(D)を40重量%とし た他は参考例1と同様にしてペレットを得た。(以下、 これをD-PBT-3と略記する)。

【0040】参考例4

ホウ酸アルミニウムウィスカー(D)15重量%とガラ ス繊維(G)15重量%とを使用した他は参考例1と同 様にしてペレットを得た(以下、これをDG-PBTと 略記する)。

【0041】参考例5

参考例1において、ポレプチレンテレフタレート樹脂の 代わりにポリエチレンテレフタレート樹脂(B)70重 量%を使用し、バレル温度を270℃とした他は参考例 1と同様にしてペレットを得た(以下、これをD-РЕ Tと略記する)。

【0042】 実施例1~5

30

上記の参考例に示した予め熱可塑性樹脂とホウ酸アルミ ニウムウィスカーとを、又は、熱可塑性樹脂とホウ酸ア ルミニウムウィスカーとガラス繊維とを溶融混合して得 られたペレット、及び市販品のガラス繊維と熱可塑性樹 脂とを予め溶融混合して得られたペレット(G-PC, G-PBT)を、表-1に記載の比率でポリカーボネー ト樹脂、熱可塑性樹脂とタンプラーにて混合し、各々直 径40mmの一軸ベント式押出機を用いて、バレル温度 270℃で押出してペレットを得た。 このペレットを 熱風乾燥器中120℃で5時間以上乾燥した後、樹脂温 度270℃、金型温度90℃に射出成形して物性測定用 試験片を得た。各物性値および外観を表-1、2に示

【0043】比較例1~5

表-2に記載の比率で、ポリカーボネート樹脂、熱可塑 40 性樹脂、ホウ酸アルミニウムウィスカー、ガラス繊維及 び、熱可塑性樹脂とホウ酸アルミニウムウィスカー又は ガラス繊維とを予め溶融混合して得られたペレットを、 一括してタンプラーにて混合し、各々直径40mm一軸 ベント式押出機を用いて、バレル温度270℃で押出し てペレットを得た。このペレットを実施例と同様にして 物性測定用試験片を得た。各物性値および外観を表ー3 に示す。

【0044】各物性の測定は下記によった。

引張強さ; ASTM D-638に基づいて測定した。 曲げ強さ;ASTM D-790に基いて測定した。

荷重たわみ温度; ASTM D-648に基いて測定した。

繰り返し疲労特性:ASTM D-671-Bに基いて 測定した。

表面粗さ:直径100mm円板を用いて測定した。(表

mm内板を用いて側定した。(衣 **表一1** 中、Rmax は最大高さを、R₂ は十点平均粗さをそれぞ わ表す)

(注)表中、「実」は実施例を「比」は比較例を意味する。

【表1】

		実1	実2	実3	実4
組	A	100	76. 7	92	100
	В				
成	С		23. 3	8	
	G-PC		33. 3	40	
	G-PBT	33. 3			
重	D-PBT-1	33.3	33. 3		
掻	D-PBT-2			60	
部	D-PET				
	DG-PBT				66.7
引張強度(kgf/cm²)		713	728	731	715
曲げ強度(kgf/cm²)		1260	1330	1350	1210
曲。	プ弾性率(kgf/cm²)	42900	43100	43100	42300
重	発み温度(℃)	133	133	134	132
繰込	医し疲労特性(サイクル)	135000	138000	139000	132000
面	狙さ Rmax	1.44	1.63	1.61	1. 35
μІ	n) Rz	1.04	0.99	0.96	0.95

【表 2 】

li 表一2

		実5	実6	実7	実8
	A	100	73. 3	94	100
組	В				
	С		26. 7	6	
成	G-PC				199
	G-PBT	33.3	33. 3	8.4	
	D-PBT-1		33. 3	16.6	
重	D-PBT-2				
盘	D-PBT-3				299
部	D-PET				
	DG-PBT				
引張強度(kgf/cm²)		700	712	646	965
曲げ強度(kgf/cm²)		1200	1300	1040	1720
曲げ弾性率(kgf/cm²)		43600	42000	27400	78500
荷重撓み温度(℃)		135	137	131	144
退	区し疲労特性(サイクル)	141000	166000	42000	561000
表面	釘粗さ R max	1. 58	1. 24	1.04	2.83
(,	ım) Rz	1.11	1.00	0.86	1.24

【表3】

		比1	比2	比3	比4	比5
組	A	68.2	81. 1	81. 1	100	100
	В	ŀ				
成	С	31.8	18. 9	18.9		
	D	6.8	8.1			
重	G	6.8		8.1		
量	G-PC					
部	G-PBT	1	27.0			66.7
	D-PBT-1			27. 0	66. 7	
引張強度(kgf/cm²)		682	701	680	681	858
#	由げ強度(kgf/cm²)	1300	1280	1330	1180	1410
曲的	プ弾性率(kgf/cm²)	40400	40600	41200	40000	43500
荷重	「撓み温度(℃)	141	138	141	126	142
繰 退	えし疲労特性(サイクル)	144000	119000	138000	68000	299000
表面	和さ Rmax	1 3. 11	5. 33	7. 55	1.21	10.06
(μ	m) Rz	9. 95	3. 17	6.01	0.89	7.54

[0045]

【発明の効果】本発明のポリカーボネート樹脂組成物 なタは、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロ 熱性 イ樹脂が示す機械的強度を保持し、高強度で、繰り返し 30 る。

疲労特性に優れ且つ外観の良好な成形品が得られ、良好な外観を有し、高強度、良好な繰り返し疲労特性、高耐熱性などが要求される種々の成形材料として有用である。

フロントページの続き

(72)発明者 岩切 常昭

神奈川県平塚市東八幡5丁目6番2号 三 菱エンジニアリングプラスチックス株式会 社技術センター内

(72)発明者 岡崎 一雄

神奈川県平塚市東八幡5丁目6番2号 三 菱エンジニアリングプラスチックス株式会 社技術センター内

(72)発明者 鎌野 英彦

神奈川県平塚市東八幡5丁目6番2号 三 菱エンジニアリングプラスチックス株式会 社技術センター内