Topology vector spaces

xuascaler

May 20, 2025

1. Topology spaces

We have seen many important example of Banach spaces, or more generally examples of vector spaces with a metric structure. However, there are also examples of important spaces whose natural structure does not follow from a complete metric.

Example. $X = C_0^0(\mathbb{R}) = \{\text{compactly supported continuous function on } \mathbb{R} \}$ If we let

$$X_n = C_0^0(\left[-n, n\right]) = \{ f \in C_0^0(\mathbb{R}) : supp(f) \subset \left[-n, n\right] \},$$
$$supp(f) = \overline{\{x \mid f(x) \neq 0\}}$$

- $X = \bigcap_{n=1}^{\infty} X_n$
- $X_n \subset C^0([-n,n])$ is closed.(Banach space)
- X_n is nowhere dense in $C^0(-n,n)$ (and in $C^0([-m,m])$ for $m \ge n$).

Of course any reasonable structure in $C_0^0(\mathbb{R})$ should give the subsapce $C_0^0([-n,n])$ natural Banach space structure.

As a consequence of the Baire category theorem, one cannot endow $C_0^0(\mathbb{R})$ with a complete metric whose induced topology is the natural one that we are interesting.

So we need to study structures that are more general than the metric structure.

Definition. A topological space is a set X with a collection (F) of subsets of X, $(\mathcal{F}$ is called topology, and those element in \mathcal{F} are called open sets), such that

- 1. $X, \emptyset \in \mathcal{F}$
- 2. If $A_{\alpha} \in \mathcal{F}$, then $\bigcup_{\alpha} A_{\alpha} \in \mathcal{F}$
- 3. If $A_1, A_2 \in \mathcal{F}$, then $A_1 \cap A_2 \in \mathcal{F}$

Example. • $\mathcal{F} = \{X, \emptyset\}$ is called the weakest topology on X.

• $\mathcal{F} = \{A | A \subset X\}.$

• The metric topology on (X, d) is a topology.

Definition. A topological space is Housdorff if for any $x \neq y$, there exists neighbourhoods U of x, V of y such that $U \cap V = \emptyset$.

Remark.

1. In a Housdorff space, the limit of a convergent sequence is unique.

Proof. Suppose
$$x_n \to x, x_n \to y, y \neq x$$
, take U, V as above. then $\forall n > N, x_n \in U$, because $U \cap V = \emptyset \Leftrightarrow \forall n > N, x_n \notin V$. $x_n \not\to y$.

2. Any single point set $\{x\}$ is closed in a Housdorff space.

Proof.
$$\forall y \neq x$$
, we can find a neigbourhood V_y of y s.t. $x \notin V_y$, so $X \setminus \{x\} = \bigcup_{y \neq x} V_y$ is open. \square

Now let (x, \mathcal{F}) be a topological space.

Definition.

- 1. A subcollection $\mathcal{F}' \subset \mathcal{F}$ is called a base for \mathcal{F} if any open set $U \in \mathcal{F}$ is the union of soem members in \mathcal{F}' .
- 2. A subcollection $\mathcal{F}_{\S}' \subset \mathcal{F}_{\S}$ is called a base at x if every neigbourhood of x contains an element of \mathcal{F}_{\S}' . (But not necessary union of elements in \mathcal{F}')

Example.

- $\mathcal{F}' = \{B(x,r) \mid x \in X, r > 0\}$ for a base for the metric topology on (X,d).
- $\mathcal{F}'_r = \{B(x,r)|r>0\}$ is a local base at x.
- $\mathcal{F}''_x = \{B(x, \frac{1}{n}) \mid n \in (N)\}$ is a local base at x containing only countable many elements.

Remark.

- difference bases may generate the same topology.
- If \mathcal{F}' is a base of \mathcal{F} , then \mathcal{F} is the topology generated by \mathcal{F}' .

Now let (X, \mathcal{F}) and (Y, \mathcal{G}) be topology spaces. let

$$\mathcal{S} = U \times V \mid U \in \mathcal{F}, V \in \mathcal{G}$$

Then S is collection of subsets in $X \times Y$.

Definition. The topology generated by S is called the product topology on $X \times Y$.

Example. The usual topology on \mathbb{R}^2 is the product topology of the usual topology on \mathbb{R} , since any open subset in \mathbb{R}^2 is the union of "open rectangles".

Let X, Y be topology spaces.

Definition.

- 1. A map $f: X \to Y$ is called continuous at $x \in X$ if the inverse image of every open neigbourhood of f(x) contains an open neigbourhood of x.
- 2. f is continuous on X if it is continuous at every $x \in X$, in other words, $\forall V \in \mathcal{G}$, one has $f^{-1}(V) \in \mathcal{F}$.

Property. If $f: X \to Y$ is continuous at x, and $x_n \to x$, then $f(x_n) \to f(x)$.

Proof. For any neigbourhood V of f(x), the inverse image $f^{-1}(V)$ is a neigbourhood of x. So for any neigbourhood V, we can find N s.t. $\forall n > N, x_n \in f^{-1}(V)$. V can be any neigbourhood, so it can be any small. So $\forall n > N, f(x_n) \in V, f(x_n) \to f(x)$.

Definition. A map $f: X \to Y$ is a homeomorphism if it is continuous, invertable and the inverse is also continuous.

Topological Vector Spaces

Roughly speaking, a topological vector space is a vector space endowed with a topology so that the vector space operations (vector addition, scalar multipliation) are compatable with the topological structure (i.e are continuous).

Definition. Let X be a vector space endowed with a Housdorff topology(some books do not require this) \mathcal{F} . It is said to be topological vector space if the mappings

$$X \times X \to X, (x, y) \to x + y$$

 $\mathbb{R}(\text{or } \mathbb{C}) \times X \to X, (\alpha, x) \to \alpha x$

are continuous. (We use product topology on $X \times X$, $\mathbb{R} \times X$) By definition, the continuity of vector addition and scalar multiplication means

- $\forall x \in X, y \in X, \forall V \in \mathcal{F}_{x+y}, \exists U_x \in \mathcal{F}_x, \exists U_y \in \mathcal{F}_y \text{ s.t. } U_x + U_y \subset V.$
- $\forall \alpha \in \mathbb{R}, \forall V \in (F)_{\alpha x}, \exists \epsilon > 0, U_x \in \mathcal{F}_x \text{ s.t. } (\alpha \epsilon, \alpha + \epsilon) \cdot U_x \subset V.$

Remark.

- For any $A, B \subset X$, we denote $A + B = \{x + y \mid x \in A, y \in B\}$
- For any $I \subset \mathbb{R}$, $A \subset X$, we denote $I \cdot A = \{\alpha x \mid \alpha \in I, x \in A\}$

Example.

• example +

$$A = \{(x,0) \mid -1 \le x \le 0\}, B = \{(1,y) \mid -1 \le y \le 1\}$$
$$A + B = \{(x,y) \mid 0 \le x \le 2, -1 \le y \le 1\}$$

 \bullet example \cdot

$$A = \{(1,0),(2,0)\}$$

$$2A = \{(2,0),(4,0)\} \neq A + A = \{(2,0),(3,0),(4,0)\}$$

• For any $a \in X$, one has a translation operator

$$T_a: X \to X, x \to T_a(x) = a + x$$

• For any $0 \neq \alpha \in \mathbb{R}$, one has a multiplication operator.

$$M_{\alpha}: X \to X, x \to M_{\alpha}(x) = \alpha x$$

Property. For any $a \in X$ and any $0 \neq \alpha \in \mathbb{R}$, T_a and M_{α} are homeomorphisms.

Proof. T_a and M_{α} are both invertable, with inverse T_{-a} and $M_{\frac{1}{\alpha}}$ respectively. Moreover, they are all continuous according to the continuity of vector addition and scalar multipliation.

Corollary. A subset A is open if and only if a+A is open. So \mathcal{F} is determined by any local base \mathcal{F}'_0 at 0.