Semaine n° 2 : du 11 septembre au 15 septembre

Lundi 11 septembre

- Cours à préparer : Chapitre I Trigonométrie et nombres imaginaires
 - Parties 5.4 à 5.7 : Multiplication; conjugué; inverse; formules liant la partie réelle, la partie imaginaire, le module, l'inverse et le conjugué; technique de l'angle moitié.

Mardi 12 septembre

- Cours à préparer : Chapitre II Fonctions usuelles
 - Partie 1 : continuité, dérivabilité; parité, imparité, périodicité; monotonie; tableau de variations
 - Partie 2 : effet d'une transformation sur le graphe.
- Exercices à corriger en classe
 - Feuille d'exercices n° 1 : exercices 6, 7, 8, 10.

Jeudi 14 septembre

- Cours à préparer : Chapitre II Fonctions usuelles
 - Partie 3 : composée de deux fonctions ; propriétés sur la parité, sur la monotonie ; réciproque d'une bijection : définition, graphe, propriétés sur la monotonie, sur la parité, sur la continuité et la dérivabilité.
- Exercices à corriger en classe
 - Feuille d'exercices n° 1 : exercices 12, 13, 14.

Vendredi 15 septembre

- Cours à préparer : Chapitre II Fonctions usuelles
 - Partie 4 : Fonction valeur absolue; inégalité triangulaire.
 - Partie 5: Fonctions puissances entières; fonctions polynomiales et fonctions rationnelles.

Échauffements

Lundi 11 septembre

Pas d'exercice : interrogation écrite

Mardi 12 septembre

Simplifier les quantités suivantes ; si le résultat n'est pas rationnel, le donner sous la forme $a\sqrt{b}$ où aest un nombre rationnel sous la forme d'une fraction irréductible et b est un entier le plus petit possible.

1.
$$\sqrt{8} - 5\sqrt{2} + \sqrt{18}$$

$$3. \left(\sqrt{5}\right)^2 + \left(\frac{2\sqrt{3}}{3}\right)^2$$

2.
$$\frac{3\sqrt{5}}{2} \times \frac{\sqrt{12}}{\sqrt{15}}$$

$$4. \ \frac{3\sqrt{80} + \sqrt{180}}{\sqrt{24} - \sqrt{54}}$$

Jeudi 14 septembre

- Mettre sous forme algébrique $(\sqrt{3}-i)^8$ et $(-1+i)^{10}$.
- Mettre sous forme trigonométrique 2-2i et e $\frac{2i\pi}{5}$ e $\frac{5i\pi}{8}$.
- Cocher toutes les assertions vraies : Soit $z \in \mathbb{C}$, $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$.

$$\Box \operatorname{Re}(z^2) = (\operatorname{Re}(z))^2$$

$$\square \operatorname{Re}(2z) = 2\operatorname{Re}(z)$$

$$\Box \operatorname{Re}(e^{in\theta}) = \cos^n(\theta)$$

$$\Box \operatorname{Re}(2s) = 2\operatorname{Re}(s)$$

$$\Box \operatorname{Re}\left(e^{in\theta}\right) = \cos^{n}(\theta)$$

$$\Box \operatorname{Re}\left(\left(e^{i\theta}\right)^{n}\right) = \cos(n\theta)$$

Vendredi 15 septembre

Soit
$$x$$
 un réel et n un entier. Simplifier $\frac{1+\pi}{\pi^2+\pi}$, $\frac{1}{n}-\frac{1}{n+1}$ et $\frac{x^2-1}{x^2+4x+4} \times \frac{1}{\frac{x^2-4x+3}{x^2-4}}$.

2