Problemas de Asignación y Transporte

Luis Norberto Zúñiga Morales

22 de marzo de 2023

Contenido

- Introducción
- Problema de transporte
 - Ejemplo prototipo
 - Modelo del problema de transporte
- Más ejemplos
 - Ejemplo con un destino ficticio
 - Ejemplo con un origen ficticio
- 4 Método Símplex Mejorado: Problema de Transporte
 - Preparación para el método símplex
 - Procedimiento general para construir una solución BF inicial
 - Prueba de optimalidad
 - Una iteración

Introducción

Vamos a explorar algunas aplicaciones de la programación lineal.

- El primer problema se conoce como problema de transporte, el cual involucra cómo determinar la manera óptima de transportar bienes.
- El segundo se conoce como problema de asignación, como la asignación de personas a tareas.
- En general, son casos especiales del problema de flujo de costo mínimo.

- Uno de los productos más importantes de la P & T Co. es el chícharo enlatado.
- Los chícharos se producen en tres enlatadoras:
 - Estado de México
 - Puebla
 - Baja California
- Después se envían por camión a cuatro almacenes distintos:
 - Monterrey
 - CDMX
 - Guadalajar
 - Veracruz

- Debido a los costos de transporte, la administración ha iniciado un estudio para reducir ese gasto.
- Se ha estimado la producción en cada enlatadora durante la próxima temporada y se ha asignado a cada almacén cierta cantidad de la producción total de chícharos.

Figura: Idea general del problema prototipo.

Esta información se proporciona en la siguiente tabla en unidades de carga camión, junto con el costo de transporte por camión cargado de cada combinación enlatadora-almacén.

		Cost	o de e			
		1	2	3	4	Producción
	1	464	513	654	867	75
Enlatadora	2	352	416	690	791	125
	3	995	682	388	685	100
Asignación		80	65	70	85	

Figura: Representación parcial de la red del problema de la P & T Co. ¿Cómo se vería completamente?

En realidad, el problema descrito es de programación lineal del tipo problema de transporte. Para formularlo, sea

- Z el costo total del transporte
- Sea x_{ij} , i = 1, 2, 3 y j = 1, 2, 3, 4 el número de cargas de camión enviadas de la enlatadora i al almacén j.

El objetivo es seleccionar valores de estas 12 variables de decisión x_{ij} para minimizar el costo de transporte

En realidad, el problema descrito es de programación lineal del tipo problema de transporte. Para formularlo, sea

- Z el costo total del transporte
- Sea x_{ij} , i = 1, 2, 3 y j = 1, 2, 3, 4 el número de cargas de camión enviadas de la enlatadora i al almacén j.

El objetivo es seleccionar valores de estas 12 variables de decisión x_{ij} para minimizar el costo de transporte

Ejercicio

¿Como se plantea la función de costo y las funciones de restricción para este problema?

Sujeto a las restricciones

$$X_{11} + X_{12} + X_{13} + X_{14}$$
 = 75
 $X_{21} + X_{22} + X_{23} + X_{24}$ = 125
 $X_{31} + X_{32} + X_{33} + X_{34}$ = 100
 $X_{11} + X_{21} + X_{31} + X_{31}$ = 80
 $X_{12} + X_{22} + X_{32} + X_{33} = 65$
 $X_{13} + X_{23} + X_{23} + X_{33} = 70$
 $X_{14} + X_{24} + X_{24} + X_{34} = 85$

Pregunta

¿Qué pueden apreciar en el planteamiento del problema de programación lineal?

Pregunta

¿Qué pueden apreciar en el planteamiento del problema de programación lineal?

- El problema general de transporte se refiere a la distribución de mercancía.
- Desde un grupo de centros de suministros (orígenes)...
- a un grupo de centros de recepción (destinos).
- Se busca minimizar el costo total de distribución.
- Cada origen tiene que distribuir cierto suministro de unidades a los destinos.
- Cada destino tiene cierta demanda de unidades que deben recibir de los orígenes.

Cuadro: Terminología del problema de transporte.

Ejemplo prototipo	Problema general
Cargas de camión de chícharos enlatados	Unidades de un bien
Tres enlatadoras	<i>m</i> orígenes
Cuatro almacenes	n destinos
Producción de la enlatadora i	s_i recursos en el origen i
Asignación al almacén j	Demanda d_i del destino j
Costo de envío por carga de la enlatadora i	Costo c_{ij} por unidad distribuidora desde el
hasta el almacén j	origen <i>i</i> al destino <i>j</i> .

El modelo de un problema de transporte se basa en los siguientes supuestos sobre suministros y demandas.

Supuesto de requerimientos

- Cada origen tiene un suministro fijo de unidades, el cual debe distribuirse completo entre los destinos.
 - s_i denota el número de unidades que suministra el origen i.
- El destino tiene una demanda fija de unidades y debe satisfacerse por los orígenes.
 - *d_i* denota el número de unidades que recibe el destino *j*.

Propiedad de soluciones factibles

Un problema de transporte tiene soluciones factibles si y sólo si

$$\sum_{i=1}^m s_i = \sum_{j=1}^n d_j$$

Es decir, el total de suministros es igual a la demanda.

Nota: En realidad, los suministros pueden representar cantidades máximas (no fijas) que deben distribuirse. En otros casos, las demandas representan cantidades máximas y no fijas. Esto viola el supuesto de requerimientos, pero puede reformularse para que se adapte.

Supuesto de costo

- El costo de distribuir unidades de un origen a un destino es directamente proporcional al número de unidades distribuidas.
- Por lo tanto, este costo es igual al costo unitario c_{ij} de distribución multiplicado por el número de unidades distribuidas.

Parámetros del modelo

- Cualquier problema de ajusta a este modelo de problema de transporte si se puede describir por completo en términos de una tabla de parámetros.
- El objetivo es minimizar el costo total de distribuir unidades.
- Todos los parámetros del modelo están incluidos en esta tabla de parámetros.

Cuadro: Tabla de parámetros del problema de transporte.

		Cost	to por			
				Recursos		
		1	2		n	
Origen	1	C ₁₁	C ₁₂		C _{1 n}	<i>s</i> ₁
	2	<i>C</i> ₂₁	c ₁₂	• • •	C _{2n}	s ₂
	÷				• • •	:
	m	C _{m1}	c_{m2}		C _{mn}	s _m
Demanda		d_1	d_2	• • •	d _n	

Pregunta

¿El problema de los chícharos enlatados cumple todas las restricciones anteriores?

Ejercicio

¿Cómo es el modelo matemático del problema de transporte general? Recuerden que es un tipo especial de problema de programación lineal.

Ejercicio

¿Cómo es el modelo matemático del problema de transporte general? Recuerden que es un tipo especial de problema de programación lineal.

Solución

mín
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s. a. $\sum_{j=1}^{n} x_{ij} = s_i$ para $i = 1, 2, ..., m$
 $\sum_{i=1}^{m} x_{ij} = d_j$ para $j = 1, 2, ..., n$
 $x_{ij} \ge 0$, para todo i, j

Sujeto a las restricciones

$$X_{11} + X_{12} + X_{13} + X_{14}$$
 = 75
 $X_{21} + X_{22} + X_{23} + X_{24}$ = 125
 $X_{31} + X_{32} + X_{33} + X_{34} = 100$
 $X_{11} + X_{21} + X_{31} = 80$
 $X_{12} + X_{22} + X_{32} = 65$
 $X_{13} + X_{23} + X_{33} = 70$
 $X_{14} + X_{24} + X_{34} = 85$

Propiedad de soluciones enteras

En los casos de problema de transporte en los que s_i y d_j toman un valor entero, todas las variables básicas (asignaciones), de **toda** solución básica factible (inclusive la óptima), asumen también valores **enteros**.

Más ejemplos

- Algunos problemas no se ajustan por completo al modelo de un problema de transporte.
- La razón: no cumples el supuesto de requerimientos.
- Sin embargo, es posible reformularlos mediante la introducción de un destino o un origen ficticio.

- La Northern Airplane Company construye aviones comerciales.
- La última etapa del proceso de producción consiste en fabricar las turbinas e instalarlas.
- Debido a los contratos de venta, se deben programar las producción de turbinas para los próximos cuatro meses.

Mes	Instalaciones programadas	Produccón máxima	Costo unitario de producción	Costo unitario de alamacenaje
1	10	25	1.08	0.015
2	15	35	1.11	0.015
3	25	30	1.10	0.015
4	20	10	1.13	

- De esta tabla se desprende que el número acumulado de motores que deben producirse al final de los meses 1,2,3,4 debe ser al menos de 10,23,50 y 70, respectivamente.
- El gerente de producción quiere desarrollar la programación del número de turbinas que se deben fabricar en cada uno de los cuatro meses, de manera que se minimicen los costos totales de producción y almacenamiento.

Para formular este problema matemáticamente vamos a definir las variables

- x_{ii}: ¿Producto?
- *c_{ij}*: ¿Costo?
- s_i: ¿Origen?
- d_j: ¿Destino?

Para formular este problema matemáticamente vamos a definir las variables

- x_{ii} : ¿Producto?
- c_{ij}: ¿Costo?
- s_i: ¿Origen?
- d_i: ¿Destino?

Ejercicio

Determinar las variables anteriores.

Como las unidades que se van a distribuir son las turbinas, cada una debe programarse par un mes en particular e instalarse en un mes específico:

- Origen *i*: producción de turbinas en el mes i = 1, 2, 3, 4.
- Destino j: instalación de turbinas en el mes j = 1, 2, 3, 4.
- x_{ij}: número de turbinas producidas en el mes i para instalarlas en el mes j.
- c_{ij} ; costo asociado con cada unidad de x_{ij} .
 - Si $i \le j$: costo por unidad de producción y almacenaje
 - Si i > j: ?
- s_i : ?
- d_i : número de de instalaciones programadas en el mes j.

Cuadro: Tabla incompleta de parámetros de la Northern Airplane Co.

		C				
			Recurso			
		1	2	3	4	
Origen	1	1.080	1.095	1.110	1.125	?
	2	?	1.110	1.125	1.140	?
	3	?	?	1.100	1.115	?
	4	?	?	?	1.130	?
Demanda		10	15	25	20	

Para los costos faltantes:

 Es imposible producir turbinas en un mes determinado para instalarlas el mes anterior.

- Es imposible producir turbinas en un mes determinado para instalarlas el mes anterior.
- Esto implica que $x_{ij} = 0$ para i > j, i.e., **no hay costo real** para esas x_{ij} .

- Es imposible producir turbinas en un mes determinado para instalarlas el mes anterior.
- Esto implica que $x_{ij} = 0$ para i > j, i.e., **no hay costo real** para esas x_{ij} .
- Sin embargo, el problema no se ajusta a los supuestos que se expusieron antes.

- Es imposible producir turbinas en un mes determinado para instalarlas el mes anterior.
- Esto implica que $x_{ij} = 0$ para i > j, i.e., **no hay costo real** para esas x_{ij} .
- Sin embargo, el problema no se ajusta a los supuestos que se expusieron antes.
- Por fortuna, se puede usar el método de la gran M para asignar este valor.

- Es imposible producir turbinas en un mes determinado para instalarlas el mes anterior.
- Esto implica que $x_{ij} = 0$ para i > j, i.e., **no hay costo real** para esas x_{ij} .
- Sin embargo, el problema no se ajusta a los supuestos que se expusieron antes.
- Por fortuna, se puede usar el método de la gran M para asignar este valor.
- Se asigna un valor muy grande a estos costos no identificados para obligar a los valores correspondientes de x_{ij} sean iguales a cero en la solución final.

Para los valores en la columna de recursos:

• Las cantidades producidos en cada mes no son cantidades fijas.

Para los valores en la columna de recursos:

- Las cantidades producidos en cada mes no son cantidades fijas.
- El objetivo es encontrar esas cantidades.

Para los valores en la columna de recursos:

- Las cantidades producidos en cada mes no son cantidades fijas.
- El objetivo es encontrar esas cantidades.
- Es necesario asignar valores fijos, por lo que vamos usar la idea de cotas superiores sobre la cantidad que se puede producir:

$$x_{11} + x_{12} + x_{13} + x_{14} \le 25$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 35$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 30$$

$$x_{41} + x_{42} + x_{43} + x_{44} \le 10$$

Para los valores en la columna de recursos:

- Las cantidades producidos en cada mes no son cantidades fijas.
- El objetivo es encontrar esas cantidades.
- Es necesario asignar valores fijos, por lo que vamos usar la idea de cotas superiores sobre la cantidad que se puede producir:

$$x_{11} + x_{12} + x_{13} + x_{14} \le 25$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 35$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 30$$

$$x_{41} + x_{42} + x_{43} + x_{44} \le 10$$

 Estas restricciones están en forma de desigualdad, pero se pueden volver igualdades con variables de holgura.

• En este problema, agregar variables de holgura se interpreta como asignaciones a un destino ficticio.

- En este problema, agregar variables de holgura se interpreta como asignaciones a un destino ficticio.
- Esto representa la capacidad de producción no utilizada en los meses correspondientes.

- En este problema, agregar variables de holgura se interpreta como asignaciones a un destino ficticio.
- Esto representa la capacidad de producción no utilizada en los meses correspondientes.
- Además, noten que la demanda del destino ficticio es la capacidad total no utilizada:

$$\underbrace{(25+35+30+10)}_{\text{Producción máxima}} - \underbrace{(10+15+25+20)}_{\text{Instalaciones programadas}} = 30$$

- En este problema, agregar variables de holgura se interpreta como asignaciones a un destino ficticio.
- Esto representa la capacidad de producción no utilizada en los meses correspondientes.
- Además, noten que la demanda del destino ficticio es la capacidad total no utilizada:

$$\underbrace{(25+35+30+10)}_{\text{Producción máxima}} - \underbrace{(10+15+25+20)}_{\text{Instalaciones programadas}} = 30$$

 Con esta demanda incluida, la suma de suministros ahora debe ser igual a la suma de las demandas.

			Recursos						
	1 2 3 4 5(D)								
	1	1.080	1.095	1.110	1.125	0	25		
Origon	2	М	1.110	1.125	1.140	0	35		
Origen	3	М	М	1.100	1.115	0	30		
	4	М	М	М	1.130	0	10		
Deman	da	10	15	25	20	30			

- Metro Water District es una dependencia que administra la distribución de agua en cierta región geográfica árida.
- Compran agua y la revenden, importándola de los ríos Colombo, Sacron y Calorie.
- Los clientes principales son las ciudades A, B, C, D.

- La ciudad D no se puede abastecer con agua del río Calorie.
- El precio que el distrito cobra por medida de consumo es independiente de la fuente de agua y es el mismo para todas las ciudades.
- ¿Cómo asignar el agua disponible durante el próximo verano? Se desar asignar toda el agua disponible de los tres ríos, satisfaciendo el mínimo consumo y minimizando el costo total.

Cuadro: Datos de recursos de agua del Metro Water District.

	Cos	sto po	or un	idad	Recursos
	Α	В	С	D	necuisos
Río Colombo	16	13	22	17	50
Río Sacron	14	13	19	15	60
Río Calorie	19	20	23	-	50
Mínimo necesario	30	70	0	10	
Solicitado	50	70	30	∞	

- La tabla anterior ya casi se encuentra en la forma apropiada.
- Los ríos son los orígenes y las ciudades los destinos.
- ¿Cuáles deben ser las demandas en cada destino?
- Las variables de decisión tienen cotas superior e inferior.
 - Cota superior: la cantidad solicitada a menos que exceda la cantidad total disponible después de satisface necesidades mínimas de las otras ciudades.
 - Para la ciudad D:

$$(50 + 60 + 50) - (30 + 70 + 0) = 60$$

 Sin embargo, las cantidades de las demandas que se incluyen en al tabla de parámetros deben ser constantes.

 Vamos a suponer que no es necesario satisfacer las necesidades mínimas, de manera que las cotas superiores son las únicas restricciones sobre las cantidades a asignar.

- Vamos a suponer que no es necesario satisfacer las necesidades mínimas, de manera que las cotas superiores son las únicas restricciones sobre las cantidades a asignar.
- Ahora tenemos un exceso de capacidad de demanda, contrario al problema anterior.

- Vamos a suponer que no es necesario satisfacer las necesidades mínimas, de manera que las cotas superiores son las únicas restricciones sobre las cantidades a asignar.
- Ahora tenemos un exceso de capacidad de demanda, contrario al problema anterior.
- El ajuste consiste en introducir un **origen ficticio** para *enviar* la **capacidad de demanda no utilizada**.

- Vamos a suponer que no es necesario satisfacer las necesidades mínimas, de manera que las cotas superiores son las únicas restricciones sobre las cantidades a asignar.
- Ahora tenemos un exceso de capacidad de demanda, contrario al problema anterior.
- El ajuste consiste en introducir un origen ficticio para enviar la capacidad de demanda no utilizada.
- La cantidad imaginaria de recursos para este origen ficticio corresponde al excedente de la suma de las demandas sobre la suma de los recursos reales:

$$\underbrace{(50+70+30+60)}_{\text{Demanda solicitada}} - \underbrace{(50+60+50)}_{\text{Recursos disponibles}} = 50$$

Ejercicio

¿Cómo se ve la tabla? Hagan su mejor esfuerzo.

Cuadro: Tabla de parámetros sin las necesidades mínimas del Metro Water District.

	Cos	sto p	idad	Recursos	
	Α	В	С	D	necuisos
Río Colombo	16	13	22	17	50
Río Sacron	14	13	19	15	60
Río Calorie	19	20	23	М	50
Ficticio	0	0	0	0	50
Solicitado	50	70	30	60	

Para considerar las necesidades mínimas:

- La ciudad C no estableció una necesidad mínima, no hay nada que hacer.
- La ciudad D no requiere ajuste ya que su demanda (60) excede en 10 la cantidad disponible en el origen ficticio (50), por lo que la cantidad que le debe llegar desde los orígenes reales será por lo menos de 10 en cualquier solución factible.
- La necesidad de la ciudad B es igual a la cantidad solicitada, que debe abastecer de los orígenes reales y no del ficticio.
 - Necesita ayuda de la gran M para penalizar cualquier recurso que venga del origen ficticio.

- Para la ciudad A, los recursos del origen ficticio son suficientes para .ªbastecer"por lo menos parte de la necesidad mínima además de la adicional solicitada.
- Si la necesidad mínima es 30, se deben hacer ajustes para que el origen ficticio contribuya en más de 20 al abastecimiento total (50).
- Esto se logra si se divide la ciudad A en dos destinos:
 - Uno con 30 unidades de demanda y un costo M para agua del origen ficticio.
 - Otra con una demanda de 20 y con un costo unitario de 0 para la asignación del destino ficticio.

	С	osto	Recursos			
	A1	A2	В	С	D	necuisos
Río Colombo	16	16	13	22	17	50
Río Sacron	14	14	13	19	15	60
Río Calorie	19	19	20	23	М	50
Ficticio	М	0	M	0	0	50
Solicitado	30	20	70	30	60	

Método Símplex Mejorado: Problema de Transporte

- El problema de transporte es un tipo especial de problemas de programación lineal.
- Si se aprovecha su estructura particular, se puede lograr un ahorro de cálculos.
- Este método se conoce como método símplex de transporte.

Método Símplex Mejorado: Problema de Transporte

Cuadro: Tabla de coeficientes de las restricciones del problema de transporte.

Lo esencial es convertir el problema a uno que se ajuste al método símplex tradicional:

- Construir la tabla de los coeficientes de restricción (Cuadro 6).
- 2 Convertir la función objetivo a la forma de maximización.
- 3 Usar el método de la gran M para introducir variables artificiales z_1, z_2, \dots, z_{m+n} (m+n funciones de restricción).

Como resultado, obtendríamos una tabla como se muestra a continuación donde los elementos que **no se muestran** son iguales a **cero**.

Cuadro: Tabla símplex original antes de aplicar el método símplex al problema de transporte.

Variable Ec.			Lado				
básica	LU.	Z	· · · X _{ij}	\cdots Z_i	· · · Z _{m+j}	• • •	derecho
Ζ	(0) (1) :	-1	C _{ij}	М	M		0
Z_i	(i) :	0	1	1			S _i
Z _{m+j}	m + j	0	1		1		d _j
	m + n						

Después de cada iteración subsecuente, el renglón 0 tendría la siguiente forma:

Variable	Ec.		Co	Lado			
básica	LC.	Z	 X _{ij}	 Zi	 Z _{m+j}		derecho
Z	(0)	-1	$c_{ij}-u_i-v_j$	$M - u_i$	$M - v_j$		$-\sum_{i=1}^m s_i u_i - \sum_{j=1}^n d_j v_j$

donde

- u_i es el múltiplo del renglón i original que se restó del renglón 0 original en todas las iteraciones del método símplex que condujeron a la tabla actual.
- v_j es el múltiplo del renglón m + j original que se restó del renglón 0 original en todas las iteraciones del método símplex que condujeron a la tabla actual.

Cuadro: Formato de tabla símplex de transporte

			Desti	Recursos	11.		
		1	2	• • •	n	necuisos	U _i
	1	C ₁₁	C ₁₂		C _{1n}	s ₁	
Origen	2	C ₂₁	<i>C</i> ₂₂		C _{2n}	s ₂	
	÷	•••			• • •	:	
	m	C _{m1}	C _{m2}		C _{mn}	s _m	
Demanda		<i>d</i> ₁	d_2		d _n	Z =	
Demanda	V_j						

Si x_{ij} es una variable básica

Si x_{ij} es una variable no básica

 c_{ij}

- No se necesitan variables artificiales.
- El renglón 0 actual se puede obtener sin usar ningún otro renglón con sólo calcular los valores de u_i y v_i de manera directa.
- La variable básica que sale se puede identificar de manera sencilla sin usar los coeficientes de la variable básica entrante.
- Se puede eliminar casi toda la tabla símplex (si lo hacen de la manera tradicional, necesitarían hacer muchas iteraciones).

- En los problemas de transporte con m recursos y n destinos, el número de restricciones funcionales es m + n.
- Sin embargo, el número de variables básicas que se necesitan es m+n-1.
- Para construir una solución BF inicial consiste en seleccionar, una por runa, las m + n 1 variables básicas.
- Después de cada selección, se asigna a esa variable un valor que satisface una de las restricciones, lo que elimina el renglón o columna de esa restricción para cualquier nueva asignación.

- Se selecciona la siguiente variable básica (asignación) entre los renglones y columnas en que todavía se puede hacer una asignación de acuerdo con algún criterio.
- 2. Se hace una asignación que sea tan grande como para que se use el resto de los recursos en ese renglón o la demanda restante en esa columna (lo que resulte menor).

- Se elimina ese renglón o columna (la que tenía la cantidad más pequeña de los recursos o demandas restantes) para las nuevas asignaciones.
 - Si el renglón y la columna tiene la misma cantidad de recursos y demanda restantes, de manera arbitraria se elimina el renglón.
 - La columna se usará después para proporcionar una variable básica degenerada, es decir, una asignación con cero unidades.
- 4. Si sólo queda un renglón o una columna dentro de las posibilidades, entonces el procedimiento se termina eligiendo cómo básicas cada una de las variables restantes (las variables que no han sido elegidas ni eliminadas al quietar su renglón o columna) asociadas con ese renglón o columna que tiene la única asignación posible. De otra manera, se regresa al paso 1.

	С	osto	Recursos			
	A1	A2	В	С	D	necuisos
Río Colombo	16	16	13	22	17	50
Río Sacron	14	14	13	19	15	60
Río Calorie	19	19	20	23	M	50
Ficticio	М	0	М	0	0	50
Solicitado	30	20	70	30	60	

Primer criterio:

Regla la del esquina noroeste. La primera elección es x_{11} . Da ahí en adelante, si x_{ij} fue la última variable básica seleccionada, la siguiente elección es $x_{i,j+1}$. De otra manera, se elige $x_{i+1,j}$.

Figura: Solución inicial BF de acuerdo con la regla de la esquina noroeste.

Segundo criterio:

Método de aproximación de Vogel: Para cada renglón y columna que queda bajo consideración, se calcula su diferencia, que se define como la diferencia aritmética entre el costo unitario más pequeño c_{ij} y el que le sigue de los que quedan en renglón o columna. En el renglón o columna que tiene la mayor diferencia, se elige la variable que tiene el menor costo unitario que queda.

				Destino				
		1	2	3	4	5	Recursos	Dif. por renglón
	1	1 16 16 13 22 17 50	50	3				
Origen	2	14	14	13	19	15	60	1
ğ	3	19	19	20	23	М	50	0
	4(D)	М	0	М	0	0	50	0
Dem	anda	30	20	70	30	60	Seleccionar $x_{44}=30$	
	por mna	2	14	0	19	15	Eliminar la columna 4	

				Destino			
		1	2	3	5	Recursos	Dif. por renglón
	1	16	16	13	17	50	3
Origen	2	14	14	13	15	60	1
ğ	3	19	19	20	М	50	0
	4(D)	М	0	М	0	20	0
Demanda		30	20	70	60	Seleccionar $x_{45}=2$	
	por mna	2	14	0	15	Eliminar la	a fila 4(D)

				Destino				
		1	2	3	5	Recursos	Dif. por renglón	
	1	16 16	13	17	50	3		
Origen	2	14	14	13	15	60	1	
Ö	3	19	19	20	М	50	0	
	4(D)	М	0	М	0	20	0	
Dem	anda	30	20	70	60	60 Seleccionar x_{45} =		
Dif. por columna		2	14	0	15	Eliminar la fila 4(D)		

				Destino				
		1	2	3	5	Recursos	Dif. por renglón	
	1	16	16	13	17	50	3	
Origen	2	14	14	13	15	60	1	
<u>o</u>	3	19	19	20	М	50	0	
				•				
Dem	anda	30	20	70	60	Seleccionar	ner x ₁₀ = 50	
	por	2	2	0	2	Eliminar		

Ejercicio

Terminar el método de aproximación de Vogel para obtener la solución BF inicial.

El método de aproximación de Vogel toma en cuenta los costos unitarios en forma eficaz, puesto que la **diferencia** representa el mínimo costo adicional en que se incurre por no hacer una asignación en la celda que tiene le menor costo en es columna o renglón.

La prueba de optimalidad estándar del método símplex para el problema de transporte se reduce a lo siguiente:

Prueba de optimalidad

Una solución BF es óptima si y sólo si

$$c_{ij}-u_i-v_j\geq 0$$

para toda (i, j) tal que x_{ij} es no básica. Si x_{ij} es básica, entonces,

$$c_{ij}-u_i-v_j=0$$

				Destino				
		1	2	3	4	5	Recursos	u_i
	1	16	16	13	22	17		
				40		10	50	
	2	14	14	13	19	15		
Origen		30		30			60	
O. Öğ	3	19	19	20	23	М		
		0	20		30		50	
		М	0	М	0	0		
	4(D)					50	50	
Dem	anda	30	20	70	30	60	7-0	F70
v_j							Z=2	570

Figura: Tabla símplex de transporte inicial para nuestro problema.

Lo que tenemos que hace es encontrar cada valor u_i y v_j correspondientes a cada variable básica en el sistema:

$$x_{31}$$
: $19 = u_3 + v_1$
 x_{32} : $19 = u_3 + v_2$
 x_{34} : $23 = u_3 + v_4$
 x_{21} : $14 = u_2 + v_1$
 x_{23} : $13 = u_2 + v_3$
 x_{13} : $13 = u_1 + v_3$
 x_{15} : $17 = u_1 + v_5$
 x_{45} : $0 = u_4 + v_5$

- Como existen m + n 1 variables básicas y el número de incógnitas es m + n, se puede asignar un valor arbitrario (0) a cualquier de estas variables.
- Para lograr resolver el sistema, es buena idea seleccionar la u_i
 que tiene el mayor número de asignaciones en su renglón.

$$x_{31}$$
: $19 = u_3 + v_1$ Se hace $u_3 = 0$, $v_1 = 19$
 x_{32} : $19 = u_3 + v_2$ $v_2 = 19$
 x_{34} : $23 = u_3 + v_4$ $v_3 = 23$
 x_{21} : $14 = u_2 + v_1$
 x_{23} : $13 = u_2 + v_3$
 x_{13} : $13 = u_1 + v_3$
 x_{15} : $17 = u_1 + v_5$
 x_{45} : $0 = u_4 + v_5$

$$x_{31}$$
: $19 = u_3 + v_1$ Se hace $u_3 = 0$, $v_1 = 19$
 x_{32} : $19 = u_3 + v_2$ $v_2 = 19$
 x_{34} : $23 = u_3 + v_4$ $v_3 = 23$
 x_{21} : $14 = u_2 + v_1$
 x_{23} : $13 = u_2 + v_3$

Ejercicio

Terminar de encontrar cada valor de u_i y v_i .

 x_{13} : $13 = u_1 + v_3$ x_{15} : $17 = u_1 + v_5$ x_{45} : $0 = u_4 + v_5$

Al final tenemos que

$$v_1 = 19$$
 $u_1 = -5$
 $v_2 = 19$ $u_2 = -5$
 $v_3 = 18$ $u_3 = 0$
 $v_4 = 23$ $u_4 = -22$
 $v_5 = 22$

				Destino				
		1	2	3	4	5	Recursos	u_i
	1	16	16	13 40	22	17 10	50	-5
len	2	30	14	13	19	15	60	-5
Origen	3	19	19 20	20	30	М	50	0
	4(D)	М	0	М	0	50	50	-22
Dem	anda	30	20	70	30	60	7-0	F70
ı	y_j	19	19	18	23	22	Z=2570	

Figura: Tabla símplex de transporte inicial casi completa.

- Ya con estos datos se puede realizar la prueba de optimalidad para verificar los valores de $c_{ij} u_i v_j$.
- Estos cálculos se deben determinar sólo para las variables no básicas (las que no tienen círculos).
- En este caso, tenemos dos candidatos que pueden mejorar:
 - $c_{25} u_2 v_5 = -2$
 - \bullet $C_{44} U_4 V_4 = -1$
- Para determinar cuál de estas entra, otra vez aplicamos el concepto de elegir el que mayor absoluto tenga, que corresponde a x₂₅.

						De	stino						
			1		2		3		4		5	Recursos	u_i
	1	16		16		13		22		17			
			+2		+2	(40)		+4		10	50	-5
	2	14		14		13		19		15			
Origen			30		0	(30)		+1		-2	60	-5
o jrj		19		19		20		23		М			
	3		0	(20		+2		30		M-22	50	0
		М		0		М		0		0			
	4(D)		M+3		+3		M+4		-1	(50	50	-22
Dem	anda		30		20		70		30		60	7.0	F70
v_j			19		19		18		23	22		- Z=2570	

Figura: Tabla símplex de transporte inicial completa.

Paso 1: Encontrar la variable básica entrante

- $c_{ij} u_i v_j$ representa la tasa a la que cambia la función objetivo si se incremente la variable no básica x_{ij} .
- Por lo tanto, la variable básica que entra debe tener un valor negativo para que el costo total de Z disminuya.
- Se elige, de entre los negativos, el que tenga mayor valor absoluto.

Paso 2: Encontrar la variable básica saliente

- Si se incrementa el valor de la variable básica entrante, se establece una reacción en cadena de cambios compensatorios en otras variables básicas.
- Esto para satisface las restricciones de recursos y demanda.
- La primera variable básicas que disminuya su valor hasta cero será la variable básica que sale.

- Si x₂₅ es la variable básica entrante, la reacción en cadena es relativamente sencilla.
- Al aumentar x_{25} debe disminuir x_{15} en la misma cantidad para conservar la demanda de 60 en la columna 5.
- Esto a su vez requiere que se aumente x_{13} en esta cantidad para mantener la oferta de 50 en el renglón 1.
- Lo anterior exige una disminución del valor de x_{23} para conservar la demanda de 70 en la columna 3.

					De	stino							
		1		2		3		4		5	Recursos	u_i	
	16		16		13		22		17				
1					+ (40)			L(10) -	50	-5	
		+2		+2	,	Υ		+4	,	Υ			
	14		14		13		19		15				
2	(30)			- (30)			Г	\pm	60	-5	
				0	- (30		+1	L	+ -2			
	19		19		20		23		М				
3	(i)		(20)			(30)				50	0	
			,		+2				M-22				
	М		0		М		0		0				
4(D)									,	<u> </u>	50	-22	
		M+3		+3		M+4		-1	,	50)			
		30		20		70		30		60	7-0	E70	
		19		19		18		23		22	Z=2570		

- El resultado final es que las celdas (2,5) y (1,3) se convierten en celdas receptoras.
- Las celdas donadoras (1,5) y (2,3) asignan una parte de su carga a las celdas receptoras.

- El resultado final es que las celdas (2,5) y (1,3) se convierten en celdas receptoras.
- Las celdas donadoras (1,5) y (2,3) asignan una parte de su carga a las celdas receptoras.

Pregunta

Noten que se eligió la celda (1,5) como donadora para la columna 5 y no la (4,5). ¿A qué se debe esto?

- El resultado final es que las celdas (2,5) y (1,3) se convierten en celdas receptoras.
- Las celdas donadoras (1,5) y (2,3) asignan una parte de su carga a las celdas receptoras.

Pregunta

Noten que se eligió la celda (1,5) como donadora para la columna 5 y no la (4,5). ¿A qué se debe esto?

 A excepción de la variable básica entrante, todas las celdas receptoras y donadoras de la reacción en cadena deben corresponder a variables básicas en la solución BF actual.

- Cada celda donadora disminuye su asignación en una cantidad exactamente igual al aumento que tiene la variable básica entrante.
- Entonces, la celda donadora que comienza con la asignación más pequeña debe ser la primera en llegar a una asignación de cero conforme se incrementa la variable entrante x₂₅.
- Como el valor de $x_{15} = 10$ es menor que el valor de $x_{13} = 30$, la variable básica que sale debe ser x_{15} .

Paso 3: Encontrar la nueva solución BF.

- La nueva solución BF se identificar mediante la suma del valor de la variable básica saliente a las asignaciones de cada celda receptora...
- ...y la resta de esta misma cantidad de las asignaciones de cada celda donadora.

			Destino					
	1	2	3	4	5	Recursos	u_i	
1	16	16	50	22	17	50	-5	
2	30	14	13	19	15	60	-5	
3	19	19 20	20	30	М	50	0	
4(D)	М	0	М	0	50	50	-22	
	30	20	70	30	60	7-0		
	19	19	18	23	22	Z=2	ออบ	

Figura: Segunda tabla símplex de transporte que muestra los cambios en la solución BF.

 Debido al cambio de 10 unidades en las asignaciones de las celdas donadoras a las receptoras, el costo total cambia en

$$\blacksquare Z = 10(15 - 17 + 13 - 13) = 10(-2) = 10(c_{25} - u_2 - v_5)$$

Resumen del método símplex de transporte

Paso inicial: Se construye una solución BF inicial con alguno de los métodos descritos anteriormente.

- Esquina noroeste.
- Aproximación de Voguel.

Prueba de optimalidad: Se obtiene u_i y v_j al elegir el renglón con el mayor número de asignaciones y establecer su $u_i = 0$; después se resuelve el sistema de ecuaciones $c_{ij} - u_i - v_j$ para cada i, j tal que x_{ij} sea básica.

- Si $c_{ij} u_i v_j \ge 0$ para toda i, j tal que x_{ij} es no básica, la solución actual es óptima.
- De lo contrario, se realiza una iteración.

Resumen del método símplex de transporte

Iteración:

- **1** Se determina la variable básica entrante: se elige la variable no básica x_{ij} que tiene le valor más negativo para $c_{ij} u_i v_j$.
- Se determina la variable básica saliente: se identifica la reacción en cadena que se necesita para conservar la factibilidad cuando aumenta el valor de la variable básica entrante. Entre las celdas donadoras se seleccionar la variable básica que tiene el menor valor.
- Se determina la nueva solución BF: se suma el valor de la variable básica saliente a las asignaciones de las celdas receptoras y se resta a las asignaciones de las celdas donadoras.

Método símplex mejorado

Ejercicio

Encontrar la solución óptima para el problema de la Metro Water District Co.