

Processors & Pipelines

Important concepts from CS:APP 4.4

These slides adapted from materials provided by the textbook authors.

Real-World Pipelines: Car Washes

Sequential

Pipelined

Parallel

Idea

- Divide process into independent stages
- Move objects through stages in sequence
- At any given times, multiple objects being processed

Computational Example

System

- Computation requires total of 300 picoseconds
- Additional 20 picoseconds to save result in register
- Must have clock cycle of at least 320 ps

3-Way Pipelined Version

System

- Divide combinational logic into 3 blocks of 100 ps each
- Can begin new operation as soon as previous one passes through stage
 A.
 - Begin new operation every 120 ps
- Overall latency increases
 - 360 ps from start to finish

Pipeline Diagrams

Unpipelined

- Cannot start new operation until previous one completes
- 3-Way Pipelined

Up to 3 operations in process simultaneously

Operating a Pipeline

Limitations: Nonuniform Delays

- Throughput limited by slowest stage
- Other stages sit idle for much of the time
- Challenging to partition system into balanced stages

Limitations: Register Overhead

- As try to deepen pipeline, overhead of loading registers becomes more significant
- Percentage of clock cycle spent loading register:
 - 1-stage pipeline: 6.25%
 - 3-stage pipeline: 16.67%
 - 6-stage pipeline: 28.57%
- High speeds of modern processor designs obtained through very deep pipelining