ERG2011A Ultimate Tutorial: Whole Semester in a Nutshell

Prepared by Adrian Sai-wah TAM (swtam3@ie.cuhk.edu.hk)

6th December 2004

Summary of Course 1

You have learnt:

- Vector operation
- Vector differentiation (grad, div, curl)
- Vector integration (Green's, Stroke's, GDT)
- Differential equation (homogeneous, non-homo., higher-order)
- Laplace transform
- Fourier series, and some transform

2 Vectors in a Nutshell

2.1**Vector operation**

- Vector in ordered triple notation: $\vec{x} = [x_1, x_2, x_3]$
- Vector dot product: $\vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta = x_1y_1 + x_2y_2 + x_3y_3$
- Vector cross product: $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$ Vector triple product: $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$

2.2 **Vector differentiation**

- 3D vector function: $\mathbf{v}(t) = [v_1(t), v_2(t), v_3(t)]$
- Comparing vector differentiation and scalar differentation:

Vector Differentiation	Scalar Differentiation		
$\frac{d}{dt}c\mathbf{v}(t) = c\frac{d}{dt}\mathbf{v}(t)$	$\frac{d}{dx}cf(x) = c\frac{d}{dx}f(x)$		
$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \frac{d\mathbf{u}(t)}{dt} + \frac{d\mathbf{v}(t)}{dt}$	$\frac{d}{dx}[f(x) + g(x)] = \frac{df(x)}{dx} + \frac{dg(x)}{dx}$		
$\frac{d}{dt}[\mathbf{u}(t)\cdot\mathbf{v}(t)] = \mathbf{u}(t)\cdot\frac{d\mathbf{v}(t)}{dt} + \frac{d\mathbf{u}(t)}{dt}\cdot\mathbf{v}(t)$	$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{dg(x)}{dx} + \frac{df(x)}{dx}g(x)$		
$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}(t) \times \frac{d\mathbf{v}(t)}{dt} + \frac{d\mathbf{u}(t)}{dt} \times \mathbf{v}(t)$			
$\frac{d}{dt}[\mathbf{u}(t)\cdot\mathbf{v}(t)\times\mathbf{w}(t)] = \frac{d\mathbf{u}(t)}{dt}\cdot\mathbf{v}(t)\times\mathbf{w}(t) + \mathbf{u}(t)\cdot\frac{d\mathbf{v}(t)}{dt}\times\mathbf{w}(t) + \mathbf{u}(t)\cdot\mathbf{v}(t)\times\frac{d\mathbf{w}(t)}{dt}$			
$\mathbf{v}'(t) = [v_x(t), v_y(t), v_z(t)]' = v_x'(t)\mathbf{i} + v_y'(t)\mathbf{j} + v_z'(t)\mathbf{k}$			

- The tangent of curve $\mathbf{r}(t)$ at the point $\mathbf{r}(\tau)$ is: $\mathbf{s}(t) = \mathbf{r}(\tau) + t\mathbf{r}'(\tau)$
- Length of curve $\mathbf{r}(t)$ from point $\mathbf{r}(a)$ to $\mathbf{r}(b)$ is: $\ell = \int_a^b \sqrt{\mathbf{r}'(t) \cdot \mathbf{r}'(t)} dt$
- Vector differential operator: Nabla, $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$

	grad	div	curl	Laplacian
Notation	$\operatorname{grad} f = \nabla f$	$\operatorname{div}\mathbf{v} = \nabla\cdot\mathbf{v}$	$\operatorname{curl}\mathbf{v} = \nabla \times \mathbf{v}$	$\nabla^2 f = \text{div grad } f$
	$\frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$	$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$	$\left \begin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_x & v_y & v_z \end{array}\right $	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \nabla \cdot (\nabla f)$
Value	Vector	Scalar	Vector	Scalar

• Directional derivative: $D_{\hat{\mathbf{a}}}f = (\text{grad } f) \cdot \hat{\mathbf{a}}$ (slope of f at the direction of $\hat{\mathbf{a}}$)

2.3 Vector integration

2.3.1 Line integral

- Line integral: $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt = \int_a^b (F_1 dx + F_2 dy + F_3 dz) = \int_a^b [F_1 x'(t) + F_2 y'(t) + F_3 z'(t)] dt$
 - Integrate for **r** sweeping C, but we represent **r** as a function of t, and C is defined by $\mathbf{r}(t) = [x(t), y(t), z(t)]$ for t = a to t = b
 - Line integral may depend on the actual path of C
- Line independent integral:
 - Thm 1 (potential energy): $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ is path independent iff we can find a function f in such that $\mathbf{F} = \operatorname{grad} f$
 - Thm 2: $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ is path independent iff $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = 0$ for all closed path C
 - Thm 3 (Exact differential): $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ is path independent iff curl $\mathbf{F} = \mathbf{0}$
 - * Exact: $F_1 dx + F_2 dy + F_3 dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$, or equiv. $\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z}$, $\frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}$, $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$
- If the line integral is path-independent, we have $\int_{\bf a}^{\bf b} {\bf F}({\bf r}) \cdot d{\bf r} = f({\bf b}) f({\bf a})$
- Double Integral: Integrating over an area R, $\iint_R f(x,y) dx dy = \int_a^b \left[\int_{g(x)}^{h(x)} f(x,y) dy \right] dx = \int_c^d \left[\int_{p(y)}^{q(y)} f(x,y) dx \right] dy$

• Change of variable in double integral:
$$\iint_{R} f(x,y) dx dy = \iint_{R'} f(x(u,v),y(u,v)) \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} du dv$$

2.3.2 Green's theorem

- Green's Theorem: $\iint_{R} \left(\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} \right) dx dy = \oint_{C} \left(F_1 dx + F_2 dy \right)$
 - -R is a closed bounded region in the xy-plane and its boundary is C
 - Alternative form: $\iint_{R} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} dx dy = \oint_{C} \mathbf{F} \cdot d\mathbf{r} \quad \text{where } \mathbf{F} = F_{1}\mathbf{i} + F_{2}\mathbf{j}$
 - Counterclockwise is positive
- Finding Cartesian area using Green's theorem: $A = \frac{1}{2} \oint_C (xdy ydx)$
- Finding polar area using Green's theorem: $A = \frac{1}{2} \oint_C r^2 d\theta$

2.3.3 Surface integrals

- Parametric form of curve (has one variable): $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$
- Parametric form of surface (has two variables): $\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$
 - A curve on the surface: Relating u and v: $\tilde{\mathbf{r}}(t) = \mathbf{r}(u(t), v(t))$
 - Tangents of this curve: $\tilde{\mathbf{r}}'(t) = \frac{d\tilde{\mathbf{r}}}{dt} = \frac{\partial \mathbf{r}}{\partial u}u' + \frac{\partial \mathbf{r}}{\partial v}v' = \mathbf{r}_u u' + \mathbf{r}_v v'$
 - Tangent plane: $h\frac{\partial \mathbf{r}}{\partial u} + k\frac{\partial \mathbf{r}}{\partial v}$ and unit normal is: $\mathbf{n} = \hat{\mathbf{N}} = \frac{1}{|\mathbf{r}_u \times \mathbf{r}_v|} \mathbf{r}_u \times \mathbf{r}_v$
 - If the surface S is represented by g(x, y, z) = 0, then: $\mathbf{n} = \frac{1}{|\text{grad } q|} \text{grad } g$

2.3.4 Flux integral

• The flux (mass of fluid per unit time) across a surface: $\iint_{S} \mathbf{F} \cdot \mathbf{n} dA = \iint_{R} \mathbf{F}[\mathbf{r}(u,v)] \cdot \mathbf{N}(u,v) du dv$

$$-\operatorname{If} \left\{ \begin{array}{lll} \mathbf{F} &=& F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k} \\ \mathbf{n} &=& \cos\alpha\mathbf{i} + \cos\beta\mathbf{j} + \cos\gamma\mathbf{k} \end{array}, \text{ then} \left\{ \begin{array}{lll} \iint_S \mathbf{F} \cdot \mathbf{n} dA &=& \iint_S (F_1\cos\alpha + F_2\cos\beta + F_3\cos\gamma) dA \\ \iint_S \mathbf{F} \cdot \mathbf{n} dA &=& \iint_R (F_1N_1 + F_2N_2 + F_3N_3) du dv \\ \iint_S \mathbf{F} \cdot \mathbf{n} dA &=& \iint_S (F_1 dy dz + F_2 dz dx + F_3 dx dy) \end{array} \right. \right.$$

• Surface integral without regard to direction: $\iint_S G(\mathbf{r}) dA = \iint_R G(\mathbf{r}(u,v)) |\mathbf{N}(u,v)| du dv$

$$-\iint_{S} G(\mathbf{r})dA = \iint_{R'} G(x, y, f(x, y)) \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} dxdy$$

2.3.5 Gauss' Divergence Theorem

1.
$$\iiint_T \nabla \cdot \mathbf{F} dV = \iint_S \mathbf{F} \cdot \mathbf{n} dA$$

2.
$$\iiint_T \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) dx dy dz = \iint_S (F_1 dy dz + F_2 dz dx + F_3 dx dy)$$

2.3.6 Stroke's Theorem

• For a particle rotating along an axis with the locus of rotation has radius \mathbf{r} , rotating with angular velocity ω and instantaneous velocity \mathbf{v} , then $\omega \times \mathbf{r} = \mathbf{v}$.

$$-\nabla \times \mathbf{v} = \frac{1}{2}\omega$$

• Stroke's theorem:
$$\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} dx dy = \oint_C \mathbf{F} \cdot d\mathbf{r}$$

3 Differential Equations in a Nutshell

3.1 Simple types:

• Separable equations:

$$g(y)dy = f(x)dx$$

$$\int g(y)dy = \int f(x)dx$$

$$G(y) = F(x) + C$$

$$y = G^{-1}(F(x) + C)$$

- Exact differential equation:
 - Criteria 1: Differential equation looks like: M(x,y)dx + N(x,y)dy = 0
 - Criteria 2: M and N are complementary partial derivatives, i.e. $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$
 - Solve by finding $u(x,y) = \int M(x,y) dx = \int N(x,y) dy$
- Integrating factors: Find a function F(x,y) such that F(x,y)M(x,y)dx+F(x,y)N(x,y)dy=0, i.e. the equation becomes exact
 - For simplicity, we usually assume F(x) or F(y) only, i.e. single-variable factors, and they are:

$$F(x) = \exp \int \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) dx$$

$$F(y) = \exp \int \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dy$$

3.2 Linear differential equations

- Standard form: y' + p(x)y = r(x). The solution is $y(x) = e^{-h} \left[\int e^h r dx + C \right]$, where $h = \int p(x) dx$
- If $r(x) \equiv 0$, it is called homogeneous, and then $y(x) = Ce^{-h}$
- Bernoulli equations is those looks like: $y' + p(x)y = g(x)y^a$
 - Solution: By substitution of $u = y^{1-a}$, we can convert the above equation into u' + (1-a)p(x)u = (1-a)g(x)

3.3 Second/Higer order linear differential equations

- Standard form of 2nd-order L.D.E.: y'' + p(x)y' + q(x)y = r(x)
- Properties:
 - 1. If y_1 and y_2 are solutions of the homo LDE and $y_1/y_2 \neq \text{constant}$, they are independent solutions
 - 2. If y_1 and y_2 are independent solutions of the homo LDE, then $c_1y_1 + c_2y_2$ is the general solution
 - 3. If y_3 is a particular solution of non-homo LDE, then the general solution of it is $c_1y_1 + c_2y_2 + y_3$
- Wronski determinant: $W(y_1,y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1y_2' y_2y_1'$
 - $-W(y_1,y_2) \not\equiv 0 \iff y_1 \text{ and } y_2 \text{ are linearly independent}$
- If y_1 is one solution of a homo LDE, then $y_2 = y_1 \int \frac{1}{y_1^2} e^{-\int p(x)dx} dx$ (method of reduction of order)
- Substitution for conversion to homo LDE:

$$\begin{array}{lll} -\ F(x,y',y'')=0 & \Longrightarrow & \text{substitute } z=y' \\ -\ F(y,y',y'')=0 & \Longrightarrow & \text{substitute } z=y',\ y''=z\frac{dz}{dy} \end{array}$$

• Special homo LDE:

	Constant coefficient	Eular-Cauchy equation	
	y'' + ay' + by = 0	$x^2y'' + axy' + by = 0$	
Char. eqn	$\lambda^2 + a\lambda + b = 0$	$m^2 + (a-1)m + b = 0$	
Δ	a^2-4b	$(a-1)^2 - 4b$	
$\Delta > 0$	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$	$y = c_1 x^{m_1} + c_2 x^{m_2}$	
$\Delta = 0$	$y = (c_1 + c_2 x)e^{-ax/2}$	$y = (c_1 + c_2 \ln x) x^{(1-a)/2}$	
$\Delta < 0$	$\lambda = -\frac{1}{2}a \pm i\omega = -\frac{1}{2}a \pm i\sqrt{b - \frac{1}{4}a^2}$	$m = \mu \pm i\nu = (1 - a) \pm i \left(4b - (a - 1)^2\right)$	
	$y = e^{-ax/2}(c_1\cos\omega x + c_2\sin\omega x)$	$y = x^{\mu} [c_1 \cos(\nu \ln x) + c_2 \sin(\nu \ln x)]$	

- Non-homo L.D.E.: Guess y_p and then solve for the unknown coefficients:
 - 1. If r(x) is as shown in the table, choose the corresponding y_p
 - 2. If y_p chosen is already represented by y_h , modify y_p by multiplying x; or multiplying x^2 if y_h is obtained with double root of λ
 - 3. If r(x) is a sum of several functions above, choose y_p to be the sum of corresponding functions accordingly

r(x)	y_p
$ke^{\gamma x}$	$Ce^{\gamma x}$
$kx^n \ (n=0,1,\ldots)$	Polynomial: $\sum_{i=0}^{n} K_i x^i$
$k\cos\omega x$ or $k\sin\omega x$	$K\cos\omega x + M\sin\omega x$
$ke^{\alpha x}\cos\omega x$ or $ke^{\alpha x}\sin\omega x$	$e^{\alpha x}(K\cos\omega x + M\sin\omega x)$

- Method of variation of parameters: for use when r(x) is not in the above table
 - 1. Find homo LDE general solution: $y_h = c_1 y_1 + c_2 y_2$
 - 2. Find Wronskian: $W = y_1y_2' y_2y_1'$
 - 3. Find particular solution: $y_p = -y_1 \int \frac{y_2 r(x)}{W} dx + y_2 \int \frac{y_1 r(x)}{W} dx$
 - 4. General solution: $y = y_h + y_p$

4 Laplace Transform in a Nutshell

f(t)	F(s)	f(t)	F(s)	f(t)	F(s)
f(t)	$\int_{0}^{\infty} e^{-st} f(t) dt$	t	$\frac{1}{s^2}$	$\delta(t)$	1
af(t) + bg(t)	aF(s) + bG(s)	t^2	$\frac{\overline{s_2^2}}{\frac{2}{s^3}}$	1 or $u(t)$	$\frac{1}{e}$
$e^{at}f(t)$	F(s-a)	$t^n, n = 0, 1, 2, \dots$	$\frac{\overset{\circ}{n}!}{s^{n+1}}$	u(t-a)	$\frac{1}{s}e^{-as}$
$ \begin{cases} f(t-a)u(t-a) \\ f(at) \end{cases} $	$e^{-as}F(s)$ $\frac{1}{2}F(\frac{s}{2})$	e^{at}	$\frac{1}{s-a}$	$\delta(t-a)$	e^{-as}
$f^{(n)}(t)$	$\frac{\frac{1}{a}F(\frac{s}{a})}{s^n F(s) - \sum_{n=1}^{n-1} s^{n-1-k} f^{(k)}(0)}$	$\sin \omega t$	$\frac{s-u}{\omega}$ $\frac{s^2+\omega^2}{s^2+\omega^2}$	te^{-at}	$\frac{1}{(s+a)^2}$
	$s F(s) - \sum_{k=0}^{\infty} s \qquad f(0)$	$\cos \omega t$	s	$t\sin \omega t$	$\frac{2\omega s}{(s^2 + \omega^2)^2}$
$\int_0^{\tau} f(\tau) d\tau$	$\frac{1}{s}F(s)$	$\sinh \omega t$	$\frac{\overline{s^2 + \omega^2}}{\overline{s^2 - \omega^2}}$	$e^{at}\sin\omega t$	$\frac{(s + \omega)}{(s-a)^2 + \omega^2}$
tf(t)	$-F'(s)$ $\int_{-\infty}^{\infty} F(s)$	$\cosh \omega t$	$\frac{s}{s^2 - \omega^2}$	$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$\frac{1}{t}f(t)$	$\int_{s} F(\sigma) d\sigma$	f'(t)		sF(s)-j	/ /
f(t) * g(t)	F(s)G(s)	f''(t)	s^2	F(s) - sf(0)	-f'(0)
f(0)	$\lim_{s \to \infty} sF(s)$	tf'(t)		-F(s)-s	F'(s)
$f(\infty)$	$\lim_{s \to 0} sF(s)$	tf''(t)	-2s	$F(s) - s^2 F'$	f(s) - f(0)

5 Fourier Series and Fourier Transform in a Nutshell

5.1 Fourier Series

Fourier representation with period 2π Fourier representation with period p = 2L $f(x) = a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$ $f(x) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos \frac{k\pi}{L}x + b_k \sin \frac{k\pi}{L}x\right)$ where: $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$ where: $a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$ $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$ $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$ $b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{k\pi}{L} x dx$

• Even function means f(-x) = f(x); odd function means f(-x) = -f(x). Examples are cosine and sine.

Even function	Odd function
f(-x) = f(x)	f(-x) = -f(x)
Example: $\cos x$	Example: $\sin x$
$\int_{-L}^{L} f_{\text{even}}(x) dx = 2 \int_{0}^{L} f_{\text{even}}(x) dx$	$\int_{-L}^{L} f_{\text{odd}}(x) dx = 0$
$f_{\text{even}}(x) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos \frac{k\pi}{K} x \right)$	$f_{\text{odd}}(x) = \sum_{k=1}^{\infty} \left(b_k \sin \frac{k\pi}{K} x \right)$

- Further properties of Fourier series representation:
 - $-f(x)=f_1(x)+f_2(x)$ then the Fourier series is the sum of every corresponding coefficients
 - -cf(x) has the Fourier series with each Fourier coefficients of f(x) multiplied by c
- Exponential representation of complex number: $e^{i\theta} = \cos\theta + i\sin\theta$

$$-\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \cosh(i\theta)$$
$$-\sin\theta = \frac{1}{2}(e^{i\theta} - e^{-i\theta}) = \sinh(i\theta)$$

• Complex Fourier series:

Fourier representation with period 2π

Fourier representation with period p = 2L

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}$$

$$\text{where: } c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

$$\text{and: } c_0 = a_0$$

$$c_n = \frac{1}{2} (a_n - ib_n) \quad (n > 0)$$

$$c_{-n} = \frac{1}{2} (a_n + ib_n) \quad (n > 0)$$

$$c_{-n} = \frac{1}{2} (a_n + ib_n) \quad (n > 0)$$

- The integral for finding Fourier coefficients a_n , b_n , c_n can integrate for any complete period p, e.g. $a_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$
 - Hence we usually writes: $c_n = \frac{1}{2L} \int_p f(x) e^{-2in\pi x/p} dx$ for the series $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{2in\pi x/p}$

5.2 Approximation by trigonometric polynomials

- Parseval's relation: Given $f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, we have $\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = 2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$
- Approximation of periodic function by Fourier series up to n = N: $f(x) \approx F(x) = a_0 + \sum_{n=1}^{N} (a_n \cos nx + b_n \sin nx)$

- The "square error":
$$E = \int_{-\pi}^{\pi} (f - F)^2 dx = \int_{-\pi}^{\pi} f^2(x) dx - \pi \left[2a_0^2 + \sum_{n=1}^{N} (a_n^2 + b_n^2) \right]$$

- E is minimum if a_n and b_n are the Fourier coefficients
- The square error $E \ge 0$ by definition, i.e. we have the Bessel inequality: $2a_0^2 + \sum_{n=1}^N (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx$

5.3 Fourier Transform

- Rationale: Assume it is periodic. For example, f(x) = x, repeats as if -L < x < L. Then take the limit on $L \to \infty$.
 - Any integrable function is a sum of (may be infinitely many) trigonometric functions
 - Fourier coefficients are the magnitude of the corresponding frequency

• Fourier transform is identical to Laplace transform, by replacing $s = i\omega$, i.e., assuming pure imaginary s.

f(t)	F(s)	f(t)	F(s)
$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$	$\delta(t)$	1
af(t) + bg(t)	$aF(\omega) + bG(\omega)$	$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$e^{i\omega_0 t}f(t)$	$F(\omega - \omega_0)$	u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$
$f(t-t_0)$	$e^{-i\omega t_0}F(\omega)$	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
f(at)	$\frac{1}{a}F(\frac{\omega}{a})$	$\sin \omega_0 t$	$-i\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
F(t)	$2\pi f(-\omega)$	$u(t)\cos\omega_0 t$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{i\omega}{\omega_0^2-\omega^2}$
$f^{(n)}(t)$	$(i\omega)^n F(\omega)$	$u(t)\sin\omega_0 t$	$\frac{-i\pi}{2}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega^2}{\omega_0^2-\omega^2}$
$(-it)^n f(t)$	$F^{(n)}(\omega)$	$u(t)e^{-at}\cos\omega_0 t$	$\frac{a+i\omega}{\omega_0^2+(a+i\omega)^2}$
$\int_{-\infty}^{t} f(\tau) d\tau$	$\frac{1}{i\omega}F(\omega) + \pi F(0)\delta(\omega)$	$u(t)e^{-at}\sin\omega_0 t$	$\frac{\omega_0}{\omega_0^2 + (a+i\omega)^2}$
f(t) * g(t)	$\sqrt{2\pi}F(\omega)G(\omega)$	$u(t)e^{-at}$	$\frac{1}{a+i\omega}$
f(t)g(t)	$\frac{1}{2\pi}F(\omega)*G(\omega)$	$u(t)te^{-at}$	$\frac{1}{(a+i\omega)^2}$

A Important Stuff

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y \qquad \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin(x \pm y) = \sin x \sin y \pm \cos x \cos y \qquad \sin 2x = 2 \sin x \cos x$$

$$2 \cos^2 x = 1 + \cos 2x \qquad 2 \sin^2 x = 1 - \cos 2x$$

$$2 \cos x \cos y = \cos(x - y) + \cos(x + y) \qquad \sin x + \sin y = 2 \sin\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right)$$

$$2 \sin x \sin y = \cos(x - y) - \cos(x + y) \qquad \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right)$$

$$2 \sin x \cos y = \sin(x - y) + \sin(x + y) \qquad \cos x + \cos y = 2 \cos\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right)$$

$$2 \cos x \sin y = \sin(x + y) - \sin(x - y) \qquad \cos x - \cos y = -2 \sin\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right)$$

$$\int \cos x dx = \sin x$$

$$\int \sin x dx = -\cos x$$

$$\int \tan x dx = \ln |\sec x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\sec x + \tan x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx = \ln |\cot x + \cot x|$$

$$\int \cot x dx$$