Overview of the Related Concepts

Ebru Aydin Gol

CENG 280, 2022

Overview of the Related Concepts

Finite and infinite sets
Three fundamental proof techniques
Closures

Finite and Infinite Sets

Set: collection of objects

Equinumerous: Sets A and B are equinumerous if there exists a bijection

 $f: A \rightarrow B$ (one-to-one and onto)

Finite: A set is finite if it is equinumerous with $\{1, \ldots, n\}$ for some natural number n.

Infinite: A set is infinite if it is not finite. E.g. natural numbers, the set of integers, set of real numbers, etc.

Countably infinite: A set is countably infinite if it is equinumerous with $\mathbb N$ (natural numbers).

Uncountable: A set is uncountable, if it is not countable.

An alphabet is a finite set of symbols.

A finite sequence of symbols from an alphabet is a string.

The set of all strings over an alphabet Σ is denoted by Σ^*

A subset L of Σ^* is a language.

To show that a set A is countably infinite, define a bijection between A and \mathbb{N} . Enumerate set $A = \{a_0, a_1, \dots, \}, f : N \to A, f(i) = a_i$.

Example

Show that the following sets are countable.

Union two countably infinite sets.

Union of countably infinite collection of countably infinite sets $(\mathbb{N} \times \mathbb{N})$.

Finite / countably infinite / uncountably infinite

Consider alphabet $\Sigma=\{0,1\}$. Decide whether the following sets are finite/countably infinite / uncountably infinite

$$\Sigma^*$$
 L such that $L \subseteq \Sigma^*$
 $\{L \mid L \subseteq \Sigma^*\}$

Consider alphabet $\Sigma = \{\}$. Decide whether the following sets are finite/countably infinite / uncountably infinite

```
\Sigma^*\{L \mid L \subseteq \Sigma^*\}
```

The principle of mathematical induction.

The pigeon hole principle.

The diagonalization principle.

The principle of mathematical induction

Let A be a set of natural numbers such that

$$0 \in A$$
.

For each $n \in \mathbb{N}$, if $\{0, 1, \dots, n\} \subseteq A$, then $n + 1 \in A$.

Then $A = \mathbb{N}$. (*Prove it by contradiction.*)

The goal is to prove that "For all natural numbers $n \in \mathbb{N}$, property P is true". The MI principle is applied to the set $A = \{n \mid P \text{ is true for } n\}$.

The goal is to prove that "For all natural numbers $n \in \mathbb{N}$, property P is true". The MI principle is applied to the set $A = \{n \mid P \text{ is true for } n\}$.

Basis step: Show that P is true for 0. $(0 \in A)$

Induction hypothesis: For an arbitrary $n \in \mathbb{N}$, assume that P holds for each $(0, 1, \dots, n) \in A$

for each $\{0,\ldots,n\}$. $(\{0,1,\ldots,n\}\subseteq A)$

Induction: Show that P is true for n + 1. $(n + 1 \in A)$

Then, by induction principle, $A = \mathbb{N}$, thus, P is true for any $n \in \mathbb{N}$.

The pigeonhole principle

If A and B are finite sets with |A| > |B|, then there is no one-to-one function from A to B.

Proof by MI on n = |B|.

Binary relation: $A \neq \emptyset$, $R \subseteq A \times A$ is a binary relation on A.

A path of length $n \ge 1$ in the relation is a finite sequence (a_1, \ldots, a_n) such that $(a_i, a_{i+1}) \in R$ for $i = 1, \ldots, n-1$. (a_1, \ldots, a_n) is a cycle if all a_i are distinct and $(a_n, a_1) \in R$.

Theorem

Let R be a binary relation on a finite set A. If there is a path from a to b in R, then there is a path of length at most |A|.

Proof by contradiction and Pigeonhole principle.

The diagonalization principle

Let R be a binary relation on a set A, and let the diagonal set D for R be defined as $D = \{a \mid a \in A \text{ and } (a, a) \notin R\}$. For each $a \in A$, let $R_a = \{b \mid b \in A \text{ and } (a, b) \in R\}$. Then D is distinct from each R_a .

The diagonalization principle is used to prove that a set is uncountable. *The idea:* for any enumeration, there exists an element that was not in the list.

Theorem

The set $2^{\mathbb{N}}$ is uncountable.

Proof by diagonalization principle.

Definition (reflexive transitive closure)

Let R be a binary relation on A. R^* is called the reflexive, transitive closure of R if

$$R\subseteq R^\star$$

 R^* is reflexive and transitive

 R^* is the smallest set with these properties.

Definition (reflexive transitive closure)

Let R be a binary relation on A. The reflexive transitive closure of R is the relation:

$$R^* = \{(a, b) \in A \times A \mid \text{ there is a path from } a \text{ to } b \text{ in } R\}$$

Definition (reflexive transitive closure)

Let R be a binary relation on A. The reflexive transitive closure of R is the relation:

$$R^* = \{(a, b) \in A \times A \mid \text{ there is a path from } a \text{ to } b \text{ in } R\}$$

```
Initially R^* = \{\}
for i = 1, ..., |A|
for each (b_1, ..., b_i) \in A^i do
if b_1, ..., b_i is a path in R, then add (b_1, b_i) to R^*
```

Definition (closure)

Let D be a set, let $n \ge 0$, and let $R \subseteq D^{n+1}$ be a (n+1)-ary relation on D. Then a subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever

$$b_1, \ldots, b_n \in B$$
 and $(b_1, \ldots, b_n, b_{n+1}) \in R$

Any property of the form "the set B is closed under relations R_1, \ldots, R_m " is called a closure property of B.

For a set A, the set S satisfies the **inclusion property associated with** A if $A \subseteq S$. Any inclusion property is a closure property by taking R to be unary relation $\{(a) \mid a \in A\}$.

Relations are sets, so we can state one relation is closed under another.

Transitivity is a closure property: Let D be a set. $R \subseteq D \times D$ be a binary relation. TP: if $(a,b),(b,c) \in R$, then $(a,c) \in R$. $Q = \{((a,b),(b,c),(a,c)) \mid a,b,c \in D\}$. R is closed under Q iff R is transitive.

Reflexivity is a closure property: Let $D \neq \emptyset$. $Q' = \{(a, a) \mid a \in D\}$. R is closed under Q' iff R is reflexive (inclusion property).

Theorem

Let P be a closure property defined by relations R_1, \ldots, R_m on a set D. Let $A \subseteq D$. Then there exists a unique set B such that $A \subseteq B$ and B has property P.

 ${\bf N}$ is the closure under addition of the set $\{0,1\}$. ${\bf N}$ is closed under addition and multiplication, but not subtraction.