

Rationale

- Artificial neural networks can have many layers
 - Deep neural networks for complex problems
- Challenges when training deep neural networks
 - Vanishing/exploding gradient during backward propagation
 - Insufficient data for large network
 - Training may be extremely slow
 - Risk of overfitting model with millions of parameters
- We consider these challenges and discuss solutions
 - Widely used approaches in deep learning

Objectives

- Vanishing/exploding gradients problems
- Reusing pretrained layers
- Faster Optimizers
- Avoiding overfitting through regularization

Prior Knowledge

- A general understanding of computer science or computer engineering.
- A general experience with programming (e.g., Python).
- A general knowledge of linear algebra.

Vanishing/Exploding Gradients Problem

- Backpropagation going from output layer back to input layer
 - Propagating error gradient backwards
- Gradients often get smaller as algorithm propagates back/down
 - Gradient Descent update leaves connection weights virtually unchanged
 - "Vanishing gradients problem"
- In some cases, the opposite occurs
 - Gradients increase as algorithm diverges
 - "Exploding gradients problem"
- Problem lies in sigmoid activation function and type of initialization
 - Variance of output of layer is much higher than variance of input

Vanishing/Exploding Gradients Problem

- Logistic/sigmoid function saturates at 0 or 1
 - Nearly no gradient at that point
- Very limited gradient
 - Even less when back-propagating

Glorot and He Initialization

- Aim is to maintain "signal" when going through layers
 - Input variance equal to output variance of layer
 - Helpful for forward and backward direction
- Not possible under all circumstances, but initialization can help
- Glorot initialization based on average fan-in and fan-out of layer

Equation 11-1. Glorot initialization (when using the logistic activation function)

Normal distribution with mean 0 and variance
$$\sigma^2 = \frac{1}{\text{fan}_{avg}}$$

Or a uniform distribution between
$$-r$$
 and $+r$, with $r = \sqrt{\frac{3}{\text{fan}_{\text{avg}}}}$

Glorot and He Initialization

- LeCun and He proposed similar initializations
 - Different recommendations depending on activation functions

Table 11-1. Initialization parameters for each type of activation function

Initialization	Activation functions	σ^2 (Normal)
Glorot	None, Tanh, Logistic, Softmax	1 / fan _{avg}
He	ReLU & variants	2 / fan _{in}
LeCun	SELU	1 / fan _{in}

Nonsaturating Activation Functions

- Unstable gradients in part due to poor choice of activation function
 - Logistic/sigmoid activation occurs in biological neural networks
 - Deep neural networks better with different functions
- ReLU (Rectified Linear Unit) good, but not perfect
 - Suffers from "dying ReLU" problem
 - Neurons stop outputting anything but zero
 - Gradient Descent doesn't work well anymore
- Variant of ReLU: leaky ReLU
 - LeakyReLU_{α}(z) = max(αz , z)
 - Maintains small slope in negative range
 - Typical value for α is 0.01

Leaky ReLU

Leaky ReLU:

- Variants:
 - Randomized leaky ReLU (RReLU): random choice of parameter
 - Parametric leaky ReLU (PReLU): parameter can be learned during training

Exponential Linear Unit

Exponential linear unit (ELU)

- ELU_{\alpha}
$$(z) = \begin{cases} \alpha(\exp(z) - 1) & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

- Helps with faster training despite of higher computational cost
- ELU characteristics
 - Average close to 0 to avoid vanishing gradients
 - Nonzero gradient in negative range to avoid dead neurons problem
 - For $\alpha = 1$ smooth everywhere to avoid bouncing near 0

Scaled ELU

Scaled ELU (SELU)

$$- \operatorname{selu}(x) = \lambda \begin{cases} x & \text{if } x > 0 \\ \alpha e^x - \alpha & \text{if } x \le 0 \end{cases}$$

- SELU has self-normalizing property for stack of dense layers
 - Input features must be standardized (mean 0 and standard deviation 1)
 - Hidden layers' weights need to be initialized with LeCun normal initialization.
 - Network needs to be sequential

- He initialization and ELU can reduce vanishing/exploding gradients
 - May come back during training
- Batch normalization (BN) addresses problem
 - Operation before and after activation function of layer
 - Operation zero-centers and normalizes each input
 - Operation scales and shifts results using two parameter vectors per layer
- Batch normalization layer at input replaces StandardScaler

- Batch Normalization algorithm
 - $-\mu_B$ is vector of input means over minibatch B (one per input)
 - σ_B is vector of input standard deviations over mini-batch B (one per input)
 - $-m_{\rm B}$ is number of instances in mini-batch B
 - $-\hat{x}^{(i)}$ is vector of zero-centered and normalized inputs for instance i
 - z⁽ⁱ⁾ is vector of rescaled and shifted of inputs
 - γ is output scale vector (learned)
 - β is output offset vector (learned)

Equation 11-3. Batch Normalization algorithm

1.
$$\mathbf{\mu}_B = \frac{1}{m_B} \sum_{i=1}^{m_B} \mathbf{x}^{(i)}$$

2.
$$\sigma_B^2 = \frac{1}{m_B} \sum_{i=1}^{m_B} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_B)^2$$

3.
$$\widehat{\mathbf{x}}^{(i)} = \frac{\mathbf{x}^{(i)} - \mathbf{\mu}_B}{\sqrt{\mathbf{\sigma}_B^2 + \epsilon}}$$

4.
$$\mathbf{z}^{(i)} = \mathbf{\gamma} \otimes \widehat{\mathbf{x}}^{(i)} + \mathbf{\beta}$$

BN layer is easy to add in Keras

Adds additional variables to model

- Batch normalization has hyperparameters
 - Momentum for exponential moving averages

$$\hat{\mathbf{v}} \leftarrow \hat{\mathbf{v}} \times \text{momentum} + \mathbf{v} \times (1 - \text{momentum})$$

- Good momentum value close to 1 (e.g., 0.9, 0.99, 0.999)
- Axis determines which axis should be normalized
 - Default -1 (last axis using mean and stddev across all axes)
- Batch Normalization has become one of the most-used layers
 - Widely used in deep neural networks
 - Often omitted from diagrams (since it is simply assumed to be present)

Gradient Clipping

- Another technique to mitigate exploding gradients problem
 - Clip gradients during backpropagation
 - Often used in recurrent neural networks instead of batch normalization
- Clipping in range [-1..1]
 - Clipping parameter is hyperparameter
 - Clipping may change direction of vectors
- Clipping by \(\ell_2\) norm preserves direction of vector

Reusing Pretrained Layers

- Training a large DNN from scratch is difficult
 - Need lots of data training data and training time
- Reuse of trained networks is possible: transfer learning
 - Reuse lower layers of neural network trained on similar task
- Example:
 - Have DNN trained to classify 100 categories of animals, plants, vehicles, objects
 - Need DNN to classify different types of vehicles
 - Reuse lower layers of DNN and train additional layers
 - Upper layers less likely to be useful since they differ depending on task
 - Outputs may be different

Transfer Learning

- Illustration of layer reuse
- Lower layer weights are locked
 - Protects their fine-tuned weights
- If results are not good
 - Change number of top layers
 - Unlock some layers' weights after some initial training

- Example assume Fashion MNIST has only eight classes
 - Sandal and Shirt classes removed
- Model A: train Keras model on eight Fashion MNIST classes
 - Use full training set for those eight classes and achieve good accuracy (>90%)
- Model B: binary classifier for shirt (positive) and sandals (negative)
 - Limited training set of only 200 images
- Option 1: train Keras classifier directly based on 200 images
 - Achieve 97.2% accuracy
- Option 2: transfer some layers from Model A, then train
 - Achieve 99.25% accuracy

Split dataset:

```
In [46]: def split dataset(X, y):
             y 5 or 6 = (y == 5) | (y == 6) # sandals or shirts
             y A = y[-y 5 \text{ or } 6]
             y A[y A > 6] = 2 \# class indices 7, 8, 9 should be moved to 5, 6, 7
             y B = (y[y 5 or 6] == 6).astype(np.float32) # binary classification task: is it a shirt (cl
             return ((X[~y 5 or 6], y A),
                     (X[y 5 or 6], y B))
         (X train A, y train A), (X train B, y train B) = split dataset(X train, y train)
         (X valid A, y valid A), (X valid B, y valid B) = split dataset(X valid, y valid)
         (X_test_A, y_test_A), (X_test B, y test B) = split dataset(X test, y test)
         X train B = X train B[:200]
         y train B = y train B[:200]
In [47]: X train A.shape
Out[47]: (43986, 28, 28)
In [48]: X train B.shape
Out[48]: (200, 28, 28)
```

Model A (92.1% accuracy):

Model B – Option 1 (97.2% accuracy):

```
In [56]: model B = keras.models.Sequential()
       model B.add(keras.layers.Flatten(input shape=[28, 28]))
       for n hidden in (300, 100, 50, 50, 50):
           model B.add(keras.layers.Dense(n hidden, activation="selu"))
       model B.add(keras.layers.Dense(1, activation="sigmoid"))
In [57]: model B.compile(loss="binary crossentropy",
                     optimizer=keras.optimizers.SGD(lr=1e-3),
                     metrics=["accuracy"])
In [58]: history = model B.fit(X train B, y train B, epochs=20,
                          validation data=(X valid B, y valid B))
        oss: 0.1482 - val accuracy: 0.9/16
        Epoch 20/20
        oss: 0.1431 - val accuracy: 0.9716
```

- Model B Option 2 model construction
 - Load layers from Model A, add layer, clone, lock weights on transferred layers

Model B – Option 2 model training (train four epochs, then unlock layers)

```
In [63]: history = model B on A.fit(X train B, y train B, epochs=4,
                      validation data=(X valid B, y valid B))
     for layer in model B on A.layers[:-1]:
        layer.trainable = True
     model B on A.compile(loss="binary crossentropy",
                   optimizer=keras.optimizers.SGD(lr=1e-3).
                  metrics=["accuracy"])
     history = model B on A.fit(X train B, y train B, epochs=16,
                      validation data=(X valid B, y valid B))
     Epoch 1/4
     oss: 0.5824 - val accuracy: 0.6359
     Epoch 2/4
     oss: 0.5451 - val accuracy: 0.6836
     Epoch 3/4
     7/7 [============== ] - 0s 11ms/step - loss: 0.5046 - accuracy: 0.7250 - val 1
      oss: 0.5131 - val accuracy: 0.7099
     Epoch 4/4
     oss: 0.4845 - val accuracy: 0.7343
     Epoch 1/16
```

Comparison of Model B options

- Transfer learning outperforms training from scratch
- Improvement depends on specific parameters
 - Limited use for dense networks: better for convolutional neural networks

Unsupervised Pretraining

- Training with unlabeled data
 - Use few labeled instances later
- Layer-by-layer training
 - Greedy layer-wise pretraining

Faster Optimizers

- Training for very deep neural networks can be very slow
- Strategies for speeding up training
 - Applying good initialization of weights
 - Using good activation function
 - Using Batch Normalization
 - Reusing part of a pretrained network built on a similar task
- Additional opportunity for speeding up training: optimizer
 - Use faster optimizer than Gradient Descent optimizer
 - Examples: momentum optimization, Nesterov Accelerated Gradient, AdaGrad, RMSProp, Adam and Nadam optimization

Momentum Optimization

- Momentum optimizer "picks up speed" when descending
 - Momentum gain based on gradient (gradient is acceleration, not speed)
 Equation 11-4. Momentum algorithm

1.
$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\theta \leftarrow \theta + m$$

- Hyperparameter β called momentum
 - Ranging from 0 (high friction) to 1 (no friction)

```
In [67]: optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)
```

Nesterov Accelerated Gradient

- Variation on Momentum Optimization
 - Measures gradient of cost function slightly ahead in the direction of momentum
 Equation 11-5. Nesterov Accelerated Gradient algorithm

1.
$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta} + \beta \mathbf{m})$$

- 2. $\theta \leftarrow \theta + m$
- Generally faster than plain Momentum Optimization

```
In [68]: optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True)
```

Comparison of Momentum Optimizers

- Momentum Optimization vs. Nesterov Accelerated Gradient
 - NAG does better by taking the gradient at end of black arrow instead of beginning

AdaGrad

- AdaGrad scales gradient vector along steepest dimension
 - Avoids misdirection in an optimization "bowl" θ_2 (steep dimension) Equation 11-6. AdaGrad algorithm

1.
$$\mathbf{s} \leftarrow \mathbf{s} + \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \otimes \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) \oslash \sqrt{s + \epsilon}$$

- Works well for simple quadratic problems
- But may stop before global optimum
- Does not work well for deep neural networks


```
In [69]: optimizer = keras.optimizers.Adagrad(lr=0.001)
```

RMSProp

- RMSProp addresses risk of AdaGrad to stop too early
 - Only accumulates gradients from most recent iterations with exponential decay
 Equation 11-7. RMSProp algorithm

1.
$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \otimes \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) \oslash \sqrt{s + \epsilon}$$

Typical decay rate of 0.9

```
In [70]: optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)
```

Adam and Nadam Optimization

- Adaptive Moment Estimation (Adam)
 - Similar to Moment Optimization
 - Keeps exponentially decaying average of past gradients
 - Similar to RMSProp
 - Keeps exponentially decaying average of past squared gradients
 - Steps 3 & 4 correct bias toward zero from initialization
- Nadam is Adam plus Nesterov trick

Equation 11-8. Adam algorithm

1.
$$\mathbf{m} \leftarrow \beta_1 \mathbf{m} - (1 - \beta_1) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\mathbf{s} \leftarrow \beta_2 \mathbf{s} + (1 - \beta_2) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \otimes \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$3. \quad \widehat{\mathbf{m}} \leftarrow \frac{\mathbf{m}}{1 - {\beta_1}^t}$$

4.
$$\widehat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1 - \beta_2^t}$$

5.
$$\theta \leftarrow \theta + \eta \widehat{\mathbf{m}} \oslash \sqrt{\widehat{\mathbf{s}} + \epsilon}$$

Other Optimizers

- Previous examples rely on first-order partial derivatives (Jacobians)
 - Literature also includes optimizer based on second-order partial derivatives
 - Hessian (partial derivatives of Jacobians)
- Hessians difficult for deep neural networks
 - n² Hessians per output compared to n Jacobians

Optimizer Choice

Table 11-2. Optimizer comparison

Class	Linvergence speed	Convergence quality
SGD		***
SGD(momentum=)	\$ X	***
SGD(momentum=, nesterov=True)	英 芸	***
Adagrad	***	* (stops too early)
RMSprop	***	** or ***
Adam	***	** or ***
Nadam	***	** or ***
AdaMax	***	** or ***

- Learning rate is important
 - Low learning rate:
 - Finds the optimum
 - Training takes long
 - High learning rate:
 - Training may diverge
 - Training may not settle down
- Best of both worlds
 - Start with high rate, then reduce

Start with a high learning rate then reduce it: perfect!

- Learning rate schedules
 - Power scheduling
 - Exponential scheduling
 - Piecewise constant scheduling
 - Performance scheduling
 - Others (e.g., 1cycle)
- Learning rate schedulers update the optimizer's learning rate
 - At the beginning of epoch
 - Via parameter in optimizer or through callback function

Example of power scheduling (parameter):

Example of exponential scheduling (callback):

```
In [78]: def exponential decay fn(epoch):
             return 0.01 * 0.1**(epoch / 20)
In [79]: def exponential decay(lr0, s):
             def exponential decay fn(epoch):
                 return 1r0 * 0.1**(epoch / s)
             return exponential decay fn
         exponential decay fn = exponential decay(lr0=0.01, s=20)
In [80]: model = keras.models.Sequential([
             keras.layers.Flatten(input shape=[28, 28]),
             keras.layers.Dense(300, activation="selu", kernel initializer="lecun normal"),
             keras.layers.Dense(100, activation="selu", kernel initializer="lecun normal"),
             keras.layers.Dense(10, activation="softmax")
         model.compile(loss="sparse categorical crossentropy", optimizer="nadam", metrics=["accuracy"])
         n = 25
In [81]: | Ir scheduler = keras.callbacks.LearningRateScheduler(exponential decay fn)
         history = model.fit(X train scaled, y train, epochs=n epochs,
                             validation data=(X valid scaled, y valid),
                             callbacks=[lr scheduler])
```

Regularization

- Avoid overfitting through regularization
 - Deep neural networks have thousands of parameters, thus prone to overfitting
- Batch Normalization acts as regularization
- ℓ_2 and ℓ_1 regularization
 - $-\ell_2$ regularization constrains neural network weights
 - $-\ell_1$ regularization creates sparse model

Dropout Regularization

- **Dropout regularization**
 - Most popular regularization technique for deep neural networks
 - 1-2% accuracy boost even for state-of-the-art neural networks
- Dropout algorithm
 - At every training step, every neuron has probability p of being dropped out
 - Dropped out neuron is temporarily ignored during training step
 - May become active again in next training step
 - After training, neurons are no longer dropped out
 - Typical dropout rates: 10-50%

Dropout Regularization

Dropout in Keras

Monte Carlo Dropout Regularization

- Improvement to prediction of trained model
 - Make multiple predictions while dropout is active
 - Average over all predictions
- Results in more reliable prediction

Max-Norm Regularization

- Max-norm regularization constrains weight of incoming connections
 - For each neuron: $\| \mathbf{w} \|_2$ ≤ r
 - If limit is exceeded, rescale weights after each training step: $\mathbf{w} \leftarrow \mathbf{w} \frac{r}{\parallel \mathbf{w} \parallel_2}$
- In Keras, set kernel_constraint argument:

Practical Guidelines

- Recommended default configuration
- Should not require much hyperparameter tuning

Hyperparameter	Default value
Kernel initializer	He initialization
Activation function	ELU
Normalization	None if shallow; Batch Norm if deep
Regularization	Early stopping ($+\ell_2$ reg. if needed)
Optimizer	Momentum optimization (or RMSProp or Nadam)
Learning rate schedule	1cycle

Practical Guidelines

- If network is stack of dense layers, then it can self-normalize
 - Standardize input features

Hyperparameter	Default value
Kernel initializer:	LeCun initialization
Activation function:	SELU
Normalization:	None (self-normalization)
Regularization:	Early stopping
Optimizer:	Nadam
Learning rate schedule:	Performance scheduling

Practical Guidelines

- If you need sparse model
 - Use ℓ_1 regularization (and zero tiny weights after training)
- If you need low-latency model
 - Use fewer layers
 - Fold Batch Normalization into previous layer
 - Use fast activation function, such as leaky ReLU or ReLU
 - Use sparse model
 - Reduce float precision to 32, 16, or 8 bits
- If building risk-sensitive application
 - Use MC Dropout to get more reliable probability estimates
- TensorFlow Model Optimization Toolkit can help

Summary

- Vanishing/exploding gradients problems
- Reusing pretrained layers
- Faster Optimizers
- Avoiding overfitting through regularization

UMassAmherst

The Commonwealth's Flagship Campus