- Intro
 - Outline
 - nuts and bolts
 - network structure
 - network edge
 - · network core
 - digital subscriber line (DSL)
 - FTTH 光纤到户
 - Packet-switching 分组交换
 - Network of network
 - packet delay
 - Why layering

Intro

Outline

- nuts and bolts
- bandwidth
- Routers路由 and switches交换机
- ISPs IXP
- RFC
- network core: interconnected routers
- DSL
- home network
- · Packet-switching: store-and-forward
- · packet switching
- packet delay
- throughput
- · Why layering
- ISO/OSI
- Encapsulation

nuts and bolts

一些网络中的关键概念

• hosts = end systems

- 。 主机或终端系统是指连接到计算机网络的最终用户设备
- 。 主机又可以分为客户端和服务器

communication links

- 。通讯链路
- 。 bandwidth: 带宽是指在单位时间内传输数据的能力或速率。它通常以位/秒 (bps) 或其倍数来表示。带宽决定了网络传输的数据量和速度

• Routers路由 and switches交换机

- 。 路由是指在计算机网络中选择数据包传输路径的过程
- 。 交换机是在局域网(LAN)内用于连接多个设备的网络设备。它可以根据MAC 地址(Media Access Control Address)来转发数据包

ISPs & IXP

- 。 ISPs: 因特网服务提供商
- 。 IXP: 互联网交换节点,用于不同ISP之间交换互联网流量

• Protocols (协议)

- control sending, receiving of messages
- protocols define format, order of messages sent and received among
 network entities, and actions taken on message transmission, receipt

• RFC: Request for comments 请求评论

。是一种文档系列,用于描述互联网相关的协议、标准、方法和相关主题。它由 互联网工程任务组(IETF)的技术专家编写和贡献

throughput

rate (bits/time unit) at which bits transferred between sender/receiver

network structure

网络边缘是指位于计算机网络边界的部分,包括用户或终端设备的接入点以及与网络连接的设备。网络边缘是与最终用户直接相关的部分,如个人电脑、智能手机、路由器等。在网络边缘,用户可以接入网络服务、发送和接收数据

hosts: clients and servers

network core

switch and router, network in network

Network Edge 负责处理靠近用户端的数据和应用,而 Network Core 则负责在网络的内部进行数据的处理和转发。

之前的笔记里的内容

Edge

- * FTTH -> Fiber To The Home
- * RJ-45 -> 水晶头
- * DSL -> digital subcriber line (use existing telephone line)
- * 使用用户家里基础设施完成数字通信:
 - * 电线-PLC-电力猫
 - * 电视线-广电宽带
 - * 网线
- * home network/Enterprise access networks
- * Wireless access networks
 - * PAN LAN WAN
 - * wireless LANs:
 - * wifi6 802.11AX
- * 互联网是二进制运行的
 - * 包packet: 一堆0or1
 - * Byte=8bit 计算网速基本单元是bit
 - * transmission rate
- * twisted pair (TP)网线
- * coax, fiber

Core

- * 规则: 分组交换
- * 因特网中数据包在每一个网络的尽头被重新封装成包,再发到下一个网络
- * store and forward
- * queueing delay, loss
- * 路由算法 Two key network-core functions
 - * routing 路由, 确定传输路线
 - * forwarding 转发 move packets
- * another方案: 电路交换

digital subscriber line (DSL)

数字用户线路(Digital Subscriber Line,DSL)是一种常用的宽带接入技术,通过普通电话线(称为铜线)来提供高速的数据传输。DSL技术允许用户同时使用互联网和电话服务,而无需为宽带接入而独立安装专用电缆。

- use existing telephone line to central office DSLAM
- data over DSL phone line goes to Internet; voice over DSL phone line goes to telephone net

FTTH 光纤到户

直接从本地中心局拉一条光纤到家庭

Packet-switching 分组交换

通过网络链路和交换机移动数据交换数据的两种基本方法: 电路交换(circuit switch)和分组交换

packet switching allows more users to use network

21700445766493

- store-and-forward
 - entire packet must arrive at router before it can be transmitted on next link

Network of network

多层ISP

21700445868472

packet delay

packet arrival rate to link (temporarily) exceeds output link capacity

- d_{proc} : nodal processing 查找路由表,纠错等
- d_{queue} : queueing delay
- d_{trans} : transmission delay 跟带宽和数据包长度有关, 数据从源节点到链路的时间 (due to store-and-forward)
- d_{prop} :propagation delay 在物理介质传输总长度/传输速率

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)
- $d_{trans} = L/R \leftarrow d_{trans}$ and $d_{prop} \rightarrow d_{prop} = d/s$ very different

d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed (~2x10⁸ m/sec)

Why layering

- * 明确的结构允许识别和关联复杂系统的组成部分。
- * 分层参考模型用于讨论和描述复杂系统。
- * 模块化有助于系统的维护和更新。
- * 对某一层服务的实现的改变对系统的其余部分是透明的。

application

- supporting network applications
- FTP, SMTP, HTTP

transport

- process-process data transfer
- TCP, UDP

network

- routing of datagrams from source to destination
- IP, routing protocols

link

- data transfer between neighboring network elements
- Ethernet, 802.111 (WiFi), PPP

physical

o bits "on the wire

ISO/OSI模型是由国际标准化组织(ISO)于1984年开发的,用于解释计算机之间传输数据的过程

