

⑪公開特許公報(A)

昭54—139065

⑫Int. Cl.³
H 05 K 3/00
H 05 K 3/06識別記号 ⑬日本分類
59 G 4⑭内整理番号 ⑮公開 昭和54年(1979)10月29日
6819—5F
7638—5F 発明の数 1
審査請求 未請求

(全 5 頁)

⑯金属スルーホール型プリント配線板製造用レジスト

⑰発明者 原田勲
埼玉県入間郡鶴ヶ島町藤金491
の12

⑱特許 昭53—45935

⑲出願人 日本スチレンペーパー株式会社
東京都千代田区内幸町2丁目1
番1号

⑳出願 昭53(1978)4月20日

㉑同 同
共立工業株式会社
東京都千代田区神田駿河台3丁
目6番地の1

㉒発明者 魏山博之

㉓同 代理人 弁理士 板井一穂

平塚市中原1丁目11の17

㉔同 吉村正平

富岡市一ノ宮4260の4

㉕同 中沢二郎

横浜市鶴見区東寺尾中台24の15

明細書

1. 発明の名称

金属スルーホール型プリント配線板製造用レジスト

2. 特許請求の範囲

可溶性樹脂、該可溶性樹脂の溶媒、及び必要に応じて添加される不溶性固体微粉末から主としてなり、再溶解可能な乾燥塗膜を形成することできる金属スルーホール型プリント配線板製造のための孔部充填用レジストについて、これに可溶性樹脂の貯蔵庫及び/又は非溶媒であり且フレジストの加熱乾燥温度で気化する液体又は上記温度で分解してガスを発生する化合物を乾燥時の体積変化率が-10%以上であるごとく含有させてなるレジスト。

3. 発明の詳細な説明

本発明は金属スルーホール型プリント配線板の製造過程で使用するレジストに関するものである。フェノール樹脂、エポキシ樹脂、ポリカーボネート、ポリエチレン等、電気絶縁性のよいプラスチックからなる薄板の表面に鋼板等の金属箔から

なるいわゆるプリント配線回路を形成させたプリント配線板は、各種電子機器に広く利用されている。そして、近年は、集積回路の使用等により高度に複雑化した回路のために、基板の両面に回路を形成したものも製作されるようになった。

ところで両面にプリント配線されたものの場合は、これにハンダ付する部品の端子やリード脚を挿入する孔の底面を解等の金具でメッキし、その孔の位置で両表面に回路があるとき、これらの回路が電気的に接続されるようにするのが普通である。このような金属メッキされた孔部を有するプリント配線板——金属スルーホール型プリント配線板——は、構造が複雑であるだけに、その製造には特別の困難性を伴う。

すなわち、この種のプリント配線板は通常下記のようない工程を経て製造されるが、レジストの充填による孔部金属メッキ層の保護がしばしば不免になり易く、この部分に塗エッティングが行われてしまうことが多いのである。

① 両面金属箔表層基板に部品のリード脚等を

挿入する孔を穿設する。

- ② 穿設された孔にメッキを施す。
- ③ メッキされた孔にレジストを充填し、乾燥する。
- ④ 金属箔表面を研磨する。
- ⑤ レジストによる回路パターンの印刷を施す。
- ⑥ エッチングを行う。
- ⑦ レジストを除去する。

この点につき更に詳述すると、第1図のように孔部に充填されたレジスト1は乾燥すると第2図1'のように収縮し、表面の比率率($\frac{d}{D} \times 100$)は、レジストの組成や乾燥条件によっても異なるが、通常20%以上に達する。このような乾燥収縮が著しい場合は孔部メッキ面の一部が露出し、一方その上を被り回路パターン用レジスト膜2も亀裂を生じたり欠陥を生じたりする(第3図)。したがって露出した孔部メッキ面はエッチング工程で侵され消失してしまうのである(第4図)。なお各図中、3はプラスチック基板、4は金属箔及びメッキ膜である。

び可溶性樹脂の溶剤を主成分とするものであるが、必須補助成分として発泡剤を含有することにより、乾燥時の体積変化率が-10%以上であるものである。

ここで乾燥時の体積変化率とは、使用状態又はそれに近い状態(例えば厚さ2mmのプラスチック板に直径2mmの孔を穿設してここにレジストを充填させた状態)で加熱乾燥したときの体積変化率であり、乾燥前のレジストの体積(すなわち孔部容積)をV₀とし乾燥後のレジストの体積をVとすれば次式で表わされる。

$$\text{体積変化率} = \frac{V - V_0}{V_0} \times 100$$

体積変化率が0であることはもちろん望ましいわけであるが、実用上は体積変化率0を目標とするよりも若干膨張する特性を持つものとし、乾燥後金属箔面より突出した部分を削り落とすようにしたほうがよい。したがって、特に望ましい体積変化率は0~+10%であるが、体積変化率20%程度迄のものも使用可能である。一方収縮傾向

上述のような原因による孔部メッキ膜の消失を防ぐには、パターンレジスト印刷後及びエッチング前に入念な検査を行なってレジストの欠陥部を発見し修正するしかなく、そのためには多くの時間と費用は莫大なものであった。レジストの改良や使用方法の工夫により乾燥収縮をなるべく小さくしようとする試みも行われたが、酸化チタン等の顔料をマロン酸性ロジンのよう樹脂の揮発性有機溶媒浴液中に分散させたような従前のレジストなどでは、乾燥時浴液の揮発によるある程度の収縮は避けられず、配合比や乾燥条件を調節することによる収縮防止効果には限界があった。そこで本発明者らは、種々検討の結果、浴液の揮発による体積減少分を相殺するに充分な気泡をレジストの乾燥硬化物中に形成させることに想到し、更に研究を重ねた結果、以下に詳述するような本発明を完成するに至ったのである。

本発明によって提供された新規な孔部充填用レジストは、従来品と同様、不活性固体微粉末(但しこれは用いない場合もある)、可溶性樹脂、及

を持つものであっても、体積変化率が-10%程度迄のものは実用上ほとんど障害なく使用することができる。

次に本発明のレジストの構成成分について説明する。

前述のごとく、不活性固体微粉末、可溶性樹脂及びその溶剤は本発明のレジスト特有の構成成分ではなく、周知のレジスト又はこの種の塗料もしくはその類似物の製造に使われるものを適宜選択使用することができるが、樹脂及び溶剤については、所望の発泡構造を形成するよう、用いる発泡剤の特性に応じて好ましい組合せがあり得ること、もちろんである。

不活性固体微粉末はレジストの運動特性を調整すると共にレジストを識別容易な色調に着色するために用いられるものであり、好ましい具体例としては酸化チタン、硫酸バリウム、二氧化硅、酸化マグネシウム、酸化カルシウム等の無機化合物のほか、ナイロン、ポリエステル、ポリエチレン等の有機高分子の微粒子を挙げることができる。

可溶性樹脂とは、後述の溶剤に可溶であると共に溶剤溶液から乾燥した後も同一又は異なる溶剤（アルカリ水溶液の水性塗膜を含む）に可溶なものであり、且つ孔部に充填されたレジストが乾燥後容易に崩壊脱落しない硬化物となるために必要な、ペインダーとしての能力を持つものをいう。本発明のレジストはパターン形成用レジストで被覆される孔部充填用レジストであること、及びこれを用いると孔部を被うパターン形成用レジスト裏に前述のような欠陥を生ずる恐れがないことの2点により、可溶性樹脂がエッチング液に対する耐性を有することは必ずしも必要でない。好ましい具体例としては、変性ロジン、変性石油樹脂、変性ゲンマーリ酸などがある。

溶剤としては、これを揮発させるための乾燥工程における加熱温度が基板の耐熱限界を越えないよう、沸点が150℃以下のものを用いることが望ましい。もちろんこの溶剤は使用する発泡剤に対して不活性なものが好ましい。

以上の3成分は本発明のレジストにおいても量

的には通常主成分となるものであり、これらの配合比は、通常不活性固体微粉末0～80%（重量%、以下同じ）、好ましくは20～70%，可溶性樹脂5～90%，好ましくは10～70%，溶剤5～80%，好ましくは10～30%の範囲で適宜決定する。

本発明のレジストに使用する発泡剤は下記A、B2群の物質の中から選ばれ、あるいは両群の発泡剤を併用してもよい。

A： レジストを構成する可溶性樹脂の溶解又は非溶解であり且つレジストの加熱乾燥温度で気化する、他のレジスト構成成分及び孔部マッキ層に対して不活性な液体。

B： レジストの加熱乾燥温度で分解してガス好ましくは不活性なガスを発生する化合物（化学反応を起としてガスを発生する2以上の化合物の組み合わせを含む）。

もちろんこれら2群の物質のすべてが本発明のレジストの実用性ある発泡剤になり得るとは限らないが、レジストを構成する前記主要3成分の性

性や量比のいずれもが発泡構造の形成に影響を及ぼすので、発泡剤についての必要条件をこれ以上一律に規定することは困難である。発泡剤を含む全レジスト組成は、最終的には実験により、乾燥時の体積変化率や硬化物の物性等を検討しながら決定しなければならない。したがって、例示した発泡剤の中には使用可能範囲が限定されるものもあることに注意しなければならない。

好ましい発泡剤の例としては下記のものを挙げることができる。

N,N'-ジメチル-N,N'-ジニトロソテレフタルアミド、N,N'-ジニトロソベンタメチレンテトラミン、ジニトロベンタシテトラミン、ジメチルジニトロテレフタルアミド、アゾビスイソブチロニトリル、ジアゾアミノペンゼン、アゾジカルボン酸バリウム、アゾジカルボンアミド、ベンゼンスルホニルヒドラジド、トルエンスルホニルヒドラジド、D,p'-オキシビス（ベンゼンスルホニルヒドラジド）、S,p'-ジスルホンヒドラジドジ

フェニルスルホン、重炭酸ソーダ、炭酸アンモニウム、重炭酸アンモニウム、カルシウムアジド、過炭酸アンモニウム、ジュウ酸第一鉄、ナトリウムボロハイドライド、トリクロロエチレン、ジクロロエチレン、ジクロロフルオロメタン、トリクロロフルオロメタン、テトラクロロジフルオロエタン、ペータクロロエチレン、トリクロロトリフルオロエタン、ブタン、ベンタン、ヘキサン、シクロヘキサン、テトラクロロメタン、ジクロロメタン。

本発明のレジストには他に必要に応じて分散剤、発泡助剤、着色剤等の補助成分を含有させることができる。

発泡助剤の好ましい具体例としては下記のものを挙げることができる。

尿素、メチロール尿素、エタノールアミン尿素等尿素誘導体、サリチル酸、ステアリン酸、ラクリン酸、ジュウ酸、フル酸、安息香酸、ホウ酸、炭酸、マロン酸、クエン酸、フマル

板製造を可能にしたものである。

次に実施例を示して本発明を説明する。

実施例 1

厚さ 1.6 mm のガラス繊維強化エポキシ樹脂板の両面に鋼箔を積層してなる板上、回路パターンに合わせて形成された孔径 1 mm の孔（鋼メッシュ）115 個に、下記の組成のレジストを充填する。

硬膜パリウム	25 重量部
酸化チタン	20 "
マレイン化ロジン	20 "
ブチルベンゼンとブトキシエタノールとの混合溶剤	25 "
発泡剤（ジニトロベンゼンナトラミンと尿素の混合物）	5 "

次いで 110 °C で 60 分間乾燥し、冷却後、膨張して鋼箔面上に突出したレジスト硬化物を除くと共に鋼箔表面を研磨し、以後常法によりパターン印刷、エッティング、レジスト除去を行なってプリント配線板を得る。

上記のごとくして 300 枚のプリント配線板を

製造し、孔部充填レジストについて乾燥時の体積変化率（無作為に抽出した 100 個所の孔における平均値）を測定した結果、及び製造工程の各段階における欠陥品の発生率を第 1 表に示す。なお、比較例は、発泡剤を含まないレジストを用いた以外は同様にして製造したものである。

第 1 表

	本 例	比較例
体積変化率	+1.8 %	-30.0 %
パターン印刷欠陥品 ^{#1}	0.2 %	21 %
エッティング後の欠陥品 ^{#2}	0.7 %	15 %
最終製品歩留 ^{#3}	92 %	59 %

* 1 視微鏡観察によって発見された孔部に欠陥を有するもののうち、欠陥孔の数が全孔数の 20 % 以上あり、手直し困難と判定されたものの投入原板に対する割合。

* 2 パターン印刷良品（パターン印刷の欠陥部を手直ししたものも含む）につきエッテ

ングを行なったとき欠陥部が発見されたもののパターン印刷良品に対する割合。

* 3 最終的に検査に合格した製品の投入原板に対する割合。

4. 図面の簡単な説明

第 1 ~ 4 図は従来のレジストを用いたときの欠陥品の発生を説明する図（断面図）である。

1 : レジスト

2 : パターン用レジスト膜

3 : プラスティック基板

4 : 金属部分

代理人 外國士 棚 井 一 端

2/3,AB,LS/1 (Item 1 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2001 JPO & JAPIO. All rts. reserv.

00487065

RESIST FOR PRODUCTION OF METALIC THROUGH HOLE TYPE PRINTED CIRCUIT BOARD

PUB. NO.: 54-139065 A]
PUBLISHED: October 29, 1979 (19791029)
INVENTOR(s): AKIYAMA HIROYUKI
YOSHIMURA SHOHEI
NAKAZAWA JIRO
HARADA ISAO
APPLICANT(s): JAPAN STYRENE PAPER CO LTD [327379] (A Japanese Company or
Corporation), JP (Japan)
KYORITSU KOGYO KK [325639] (A Japanese Company or
Corporation), JP (Japan)
APPL. NO.: 53-045935 [JP 7845935]
FILED: April 20, 1978 (19780420)

2/3,AB,LS/2 (Item 1 from file: 351)
DIALOG(R)File 351:Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.

003479908

WPI Acc No: 1982-27870E/198214

Resist compsn. for printed circuit board prodn. - comprises soluble resin, mixed solvent, inactive solid powder and foaming agent (J5 29.10.79)

Patent Assignee: JAPAN STYRENE PAPER CORP (JASY); KYORITSU KOGYO KK (KYOY)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 82013160	B	19820315				198214 B
JP 54139065	A	19791029				198214

Priority Applications (No Type Date): JP 7845935 A 19780420

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
JP 82013160	B		4		

Abstract (Basic): JP 82013160 B

Resist compsn. consists of soluble resin e.g. maleated rosin, a solvent e.g. a mixed soln. of butylbenzene and butoxyethanol, fine powder of inactive solid material e.g. BaSO₄ or TiO₂ and a foaming agent e.g. a mixt. of dinitropentane-tetramine and urea. The compsn. is packed into metal-plated through-holes in a printed circuit board.

2/3,AB,LS/3 (Item 1 from file: 345)
DIALOG(R) File 345:Inpadoc/Fam.& Legal Stat
(c) 2001 EPO. All rts. reserv.

Acc no: 2893034

Basic Patent (No,Kind,Date): JP 54139065 A2 791029

<No. of Patents: 002>

RESIST FOR PRODUCTION OF METALIC THROUGH HOLE TYPE PRINTED CIRCUIT BOARD
(English)

Patent Assignee: JAPAN STYRENE PAPER CORP; KYORITSU KOGYO

Author (Inventor): AKIYAMA HIROYUKI; YOSHIMURA SHIYOUHEI; NAKAZAWA JIROU;
HARADA ISAO

IPC: *H05K-003/00; H05K-003/06

CA Abstract No: *97(10)083722P;

Language of Document: Japanese

Patent Family:

Patent No	Kind	Date	Applic No	Kind	Date	
JP 54139065	A2	791029	JP 7845935	A	780420	(BASIC)
JP 82013160	B4	820315	JP 7845935	A	780420	

Priority (No,Kind,Date): JP 7845935 A 780420