Labour Force Participation of the Elderly in Europe - The importance of being healthy

Phi Nguyen Julian Winkel Claudia Guenther

Statistical Programming Languages WS2017/2018 Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

Outline

- Motivation
- Background
- Current project status

Overview on quantlets Highlights

Next steps

Motivation — 2-1

Labour Force Participation of Elderly in Europe

- ☐ Changing demographics in Europe as social & economic challenge
- □ Policy recommendation to improve labor force participation of Elderly

Research question:

How is the labor force participation behavior of individuals aged 50-64 in 11 European countries influenced by different health indicators?

Background

Adriaan Kalwij and Frederic Vermeulen (2005), IZA DP No. 1887

Labour Force Participation of the Elderly in Europe: The Importance of Being Healthy

- Use of preliminary data set of wave 1 of SHARE data set
- Investigate employment potential of healthy elderly Europeans

Multidimensionality of health
Great variation across countries

Declining employment related to declining health

SHARE - Survey of Health, Ageing and Retirement in Europe

- Panel database of micro data on health, socio-economic status and social and family networks
- Over 120,000 individuals aged 50 or older
- easySHARE as simplified data set containing comprised information of all waves, available on http://www.share-project.org/

Overview on Quantlets

- Quantlet 1: Read and Clean easyshare dataset
- Quantlet 2: Summary Statistics
- Quantlet 3: Probit Regression
- Quantlet 4: Wald Test
- Quantlet 5: Counterfactual exercise
- Quantlet 6: Graphical representation

Quantlet 1: Read and Clean easyshare dataset

- Input: Data frame and wave. Output: List of data frames
- Conversion of country data from ISO code to a human-readable format
- Relevant error messages

```
# Split data frames into country/gender splits, then
    standardize numeric

splits = split(df.out, f = list(df.out$country,
    df.out$gender), drop = TRUE)

df.reg = standardize.df(df.out)
    df.splits = lapply(splits, standardize.df)
```

Quantlet 1: Read and Clean easyshare dataset

```
# Create necessary dummary variables for regression
2
  dummify = function(data.frame) {
          data.frame = data.frame %>%
              dplyr::select(-country, -gender)
          model
                     = ~ 0 + .
         new.df = model.matrix(model, data.frame)
         new.df = data.frame(new.df)
         return (new.df)
10
11
  df.splits = lapply(df.splits, dummify)
12
```

Quantlet 2: Summary Statistics

- Summary statistic tables of health characteristics of the elderly
- contains functions that calculate labor participation rates and type of labor chosen by gender and country
- Usage of 'pmap' in 'purrr' package to loop over groupings
- Prints tables into readable html format

Quantlet 2: Summary Statistics

	Nonparticipation	Half time	Full time
Austria	0.510	0.0513	0.439
Belgium	0.442	0.0827	0.476
Denmark	0.269	0.0782	0.653
France	0.395	0.0519	0.553
Germany	0.355	0.0534	0.591
Greece	0.299	0.1576	0.543
Italy	0.482	0.1048	0.413
Netherlands	0.337	0.0971	0.566
Spain	0.348	0.1049	0.547
Sweden	0.186	0.0898	0.725
Switzerland	0.174	0.1147	0.711
TOTAL	0.533	0.1999	0.267

Quantlet 3: Probit Regression

- Probit regression for each country and both gender groups based on 'glm'
- Calculation of marginal effects based on 'probitmfx'
- Wald test using own-built Wald test

```
allModels = lapply(df.splits, function(z){
    z = z[-z$age50]

model = glm(z$labor_participationTRUE ~.,
family = binomial(link = "probit"), data = z)

return(model)
}

allSummaries = lapply(allModels, summary)
```

Quantlet 3: Probit Regression

```
wald.log = list()
  for(i in 1:length(allSummaries)){
    SummaryElement = allSummaries[[i]]
3
    health = c(16:19)
4
    testOutput = try(joint.wald.test(allSummaries[[i]],
      health, 0.95))
6
    if(class(testOutput) == "try-error"){
7
8
      msg = paste0("Wald Test failed for Model Element ", i)
      warning (msg)
10
      wald.log[[i]] = "Error"
11
    } else{
12
      wald.log[[i]] = testOutput
13
    }}
14
```

Quantlet 4: Wald Test

■ Wald test for joint significance of regression coefficients

```
joint.wald.test = function(model.summary, spec, signf.1){
2
  joint.wald.test
                     = numeric(6)
  names(joint.wald.test) = c("Name","W","p-value", "df")
  beta
                         = model.summary$coefficients[,1]
6 Var beta est
               = vcov(model.summary)
  W = t(beta[spec]) %*% solve(Var_beta_est[spec,spec]) %*%
    beta[spec]
8
      chi2
                         = qchisq(signf.1, df=length(spec))
                         = 1-pchisq(W,length(spec))
      pval
10
      joint.wald.test[1] = "Chi2 test"
11
      joint.wald.test[2] = format( W, digits = 4)
12
```

Quantlet 5: Counterfactual exercise

- Definition of data set with perfectly healthy individuals
- ☐ Calculate decline in participation due to decline in health condition

Quantlet 6: Graphical representation

Distribution of h_perceived by Country

Faceted by country & gender. Distribution of the entire data set shown is overlaid on each graph.

Next steps for project

- Add error messages to Wald tests
- Export all replicated results
- ☐ Review code to assure coherence with style guide
- □ Review code to assure coherence between quantlets

