TRIGONOMETRIC EQUALITIES, EQUATIONS AND INEQUALITIES

ZVEZDELINA STANKOVA-FRENKEL UC BERKELEY

Note: For $\triangle ABC$ we denote by α , β , γ , a, b, c, h_a , h_b , h_c , l_a , l_b , l_c , r, R, r_a , r_b , r_c and S its angles, sides, altitudes, angle bisectors, inradius, circumradius, extadii and area. If a problem does not refer to a triangle, then we use x, y, z, etc. to denote arbitrary angles.

1. Prove the equalities:

(a)
$$\cos \frac{\pi}{19} + \cos \frac{3\pi}{19} + \dots + \cos \frac{17\pi}{19} = \frac{1}{2}$$
.

(b)
$$\cos \frac{2\pi}{21} + \cos \frac{4\pi}{21} + \dots + \cos \frac{20\pi}{21} = -\frac{1}{2}$$
.

(c)
$$tg1^{\circ} + tg5^{\circ} + tg9^{\circ} + \cdots + tg177^{\circ} = 45$$
.

(d)
$$tgx + 2tg2x + 4tg4x + 8ctg8x = ctgx.$$

(e)
$$4\cos x \cos y \cos z = \cos(x+y+z) + \sum \cos(-x+y+z)$$
.

2. If $\alpha + \beta + \gamma = \pi$, prove that

(a)
$$\sin \alpha + \sin \beta + \sin \gamma = 4\cos \frac{\alpha}{2}\cos \frac{\beta}{2}\cos \frac{\gamma}{2}$$
.

(b)
$$\sum \operatorname{tg} \frac{\alpha}{2} \operatorname{tg} \frac{\beta}{2} = 1$$
, $\sum \operatorname{ctg} \frac{\alpha}{2} = \prod \operatorname{ctg} \frac{\alpha}{2}$.

(c)
$$\sum \operatorname{ctg} \alpha \operatorname{ctg} \beta = 1 \sum \operatorname{tg} \alpha = \prod \operatorname{tg} \alpha$$
.

(d) (Revisited) For x, y, z > 0:

$$xa^2 + yb^2 + zc^2 \ge 4S\sqrt{xy + yz + zx}.$$

3. If
$$0 < x, y, z < \pi$$
 and $tg\frac{x}{2}$, $tg\frac{y}{2}$, $tg\frac{z}{2}$ are roots of the equation $t^3 + pt^2 + t + q = 0$, then $tgx + tgy + tgz = tgx tgy tgz$.

4.
$$\cos^2 x + \cos^2 y + \cos^2 z + 2\cos x \cos y \cos z = 1$$
 iff $x \pm y \pm z = (2k+1)\pi$ for $k \in \mathbb{Z}$.

5. Show that the given number is a root of the equation and find the other two roots.

(a)
$$x^3 - 5x^2 + 6x - 1 = 0$$
, $4\cos^2\left(\frac{2\pi}{7}\right)$;

(b)
$$x^3 - 33x^2 + 27x - 3 = 0$$
, $tg^2 80^\circ$.

- 11. Let $k \in \mathbb{R}$ and $n \in \mathbb{Z}$.
 - (a) Prove that $8k \sum \sin n\alpha \le 12k^2 + 9$.
 - (b) Find for which values of k (a) becomes equality. Further, show that

$$|\sin n\alpha| \le \frac{3\sqrt{3}}{2}.$$

- 12. Let T be $\triangle ABC$, and let P be in the plane of T, different from the vertices of T. Prove that there exists triangle $T_0 = T_0(P)$, possibly degenerate, with sides $a \cdot PA$. $b \cdot PB$ and $c \cdot PC$. If $R_0 = R_0(p)$ is the circumradius of T_0 , find the set of points P for which $PA \cdot PB \cdot PC \leq R \cdot R_0$. When is equality attained?
- 13. Let P be a point inside $\triangle ABC$. Lines through P, parallel to the sides of the triangle, intersect the other sides in spoints B_1 and B_2 , A_1 and A_2 , and C_1 and C_2 , with B_1 , $A_2 \in AB$; C_1 , $B_2 \in BC$; and A_1 , $C_2 \in AC$. Prove that
 - (a) $S_{A_1B_1C_1} \leq \frac{1}{3}S_{ABC}$.
 - (b) $S_{A_1C_2B_1A_2C_1B_2} \ge \frac{2}{3}S_{ABC}$.
- 14. For $\triangle ABC$ let M=(R-2r)/2r. An inequality $P\geq Q$ for elements of $\triangle ABC$ is called *strong* (weak) if $P-Q\leq M$ ($P-Q\geq M$).
 - (a) Prove that the inequality $\sum \sin^2 \frac{\alpha}{2} \ge \frac{3}{4}$ is strong.
 - (b) Prove that the inequality $\sum \cos^2 \frac{\alpha}{2} \ge \sum \sin \beta \sin \gamma$ is weak.
- 15. Consider the known inequalities: $\sum tg^2 \frac{\alpha}{2} \ge 1$: $2-8 \prod \sin \frac{\alpha}{2} \ge 1$. Prove or disprove:

$$tg^2\frac{\alpha}{2}+tg^2\frac{\beta}{2}+tg^2\frac{\gamma}{2}\geq 2-8\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}.$$

- 16. Prove the following inequalities:
 - (a) $(1 \cos \alpha)(1 \cos \beta)(1 \cos \gamma) \ge \cos \alpha \cos \beta \cos \gamma$:
 - (b) $(1 + \cos 2\alpha)(1 + \cos 2\beta)(1 + \cos 2\gamma) + \cos 2\alpha \cos 2\beta \cos 2\gamma \ge 0$.
- 17. Let $\triangle ABC$ be such that $\sum \operatorname{tg}^2(\frac{\alpha}{2}) = l$, for some $1 \le l < 2$. Prove that

$$\operatorname{tg}\frac{\gamma}{2}<\frac{\cos\frac{\alpha-\beta}{2}}{\sin\frac{\alpha+\beta}{2}}\cdot$$

6. Prove that for an arbitrary triangle:

(a)
$$\sin \frac{\alpha}{2} = \sqrt{\frac{a^2 - (b-c)^2}{4bc}}$$
; $\cos \frac{\alpha}{2} = \sqrt{\frac{p(p-a)}{bc}}$.

(b)
$$\frac{r}{a} = \frac{\sin\frac{\beta}{2}\sin\frac{\gamma}{2}}{\cos\frac{\gamma}{2}}; \frac{r}{4R} = \sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}.$$

(c)
$$bc \cos^2 \frac{\alpha}{2} + ca \cos^2 \frac{\beta}{2} + ab \cos^2 \frac{\gamma}{2} = p^2$$
.

(d)
$$\frac{\cos\frac{\alpha}{2}}{l_a} + \frac{\cos\frac{\beta}{2}}{l_b} + \frac{\cos\frac{\gamma}{2}}{l_c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
.

(e)
$$tg^2 \frac{\alpha}{2} + tg^2 \frac{\beta}{2} + tg^2 \frac{\gamma}{2} = \frac{r_a^2 + r_b^2 + r_c^2}{r_a r_b + r_b r_c + r_c r_a}$$

(f)
$$\left(tg \frac{\alpha}{2} + tg \frac{\beta}{2} + tg \frac{\gamma}{2} \right)^2 = \frac{(r_a + r_b + r_c)^2}{r_a r_b + r_b r_c + r_c r_a}$$

7. Solve the trigonometric equations:

(a)
$$tgx + tg2x + tg3x + tg4x = 0$$
.

(b)
$$d\sin x + tgx + 1 = \frac{1}{\cos x}$$
 for a fixed $d \in \mathbb{R}$.

(c)
$$\frac{1}{\cos x \cos 2x} + \frac{1}{\cos 2x \cos 3x} + \dots + \frac{1}{\cos 100x \cos 101x} = 0.$$

(d)
$$1 + 2 \sum_{k=1}^{2^{n}-1} \cos 2kx = 0 \text{ for } n \in \mathbb{N}.$$

(e)
$$\operatorname{ctg} 2x + 2 \sum_{k=0}^{n} \frac{1}{2^{k}} \operatorname{tg} \frac{x}{2^{k}} = 0$$
 for $n \in \mathbb{N}$.

8. Solve the system of trigonometric equations provided $\cos x \cos y \cos z \neq 0$:

$$\sin x \sin y = \sin z \div 3\cos x \cos y$$

$$\sin y \sin z = \sin x - 5 \cos y \cos z$$

$$\sin z \sin x = \sin y - 3\cos z \cos x$$

9. Eliminate x, y, z from the following system provided $\cos x \cos y \cos z \neq 0 \neq \sin x \sin y \sin z$:

$$\sin y \sin z \sin(y+z) = a \cos^2 y \cos^2 z$$

$$\sin z \sin x \sin(z+x) = b \cos^2 z \cos^2 x$$

$$\sin x \sin y \sin (x+y) = c \cos^2 x \cos^2 y$$

$$\sin x \sin y \sin z = d \cos x \cos y \cos z$$

10. Prove that if for all $x \sum_{k=1}^{n} a_1 \cos kx \ge -1$, then $\sum_{k=1}^{n} a_k \le n$.

11. Prove the inequalities:

(a)
$$4\sin 3x + 5 \ge 4\cos 2x + 5\sin x$$
.

(b)
$$8\cos x \cos 3x \le 5 + 5\cos 2x + 8\cos x \sin 2x$$
.

(c)
$$\cos x + n\cos nx + 2n\cos 2nx + 1 + \frac{33}{16}n \ge 0$$
 for all integer $n \ge 0$.

(d)
$$tgx + tg2x + 2tg4x + 4ctg8x \ge 1$$
 when $tgx > 0$.

(e)
$$\sin \frac{1}{n-1} - 2\sin \frac{1}{n} + \sin \frac{1}{n+1} > 0$$
 for all natural $n \ge 2$.

(f)
$$\frac{\sin^{n+2}x}{\cos^n x} + \frac{\cos^{n+2}x}{\sin^n x} \ge 1$$
 for all $x \in (0, \pi/2)$ and all integer $n \ge 0$.

(f)
$$\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \dots + \frac{1}{n}\sin nx > 0$$
 for all $x \in (0, \pi)$ and all $n \in \mathbb{N}$.

(g)
$$\sqrt{\frac{\sin(z-z)\sin z}{\cos z\cos^2 z}} + \sqrt{\frac{\sin(y-z)\sin z}{\cos y\cos^2 z}} \le \sqrt{\tan y}$$
 if $\tan x$ and $\tan y \ge \tan z \ge 0$.

(h)
$$\prod_{k=0}^{n-1} \sin \frac{(2k+1)\pi}{2n} \ge \frac{1}{\sqrt{n^n}} \text{ for all } n \in \mathbb{N}.$$

12. For an arbitrary triangle show the inequalities:

(a)
$$\sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \le \frac{1}{8}$$
.

(b)
$$\cos \alpha + \cos \beta + \cos \gamma \le \frac{3}{2}$$
.

(c)
$$\sin^2 \frac{\alpha}{2} + \sin^2 \frac{\beta}{2} + \sin^2 \frac{\gamma}{2} \ge \frac{3}{4}$$

(d)
$$\cos^2 \frac{\alpha}{2} + \cos^2 \frac{\beta}{2} + \cos^2 \frac{\gamma}{2} \le \frac{9}{4}$$
.

(e)
$$\cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2} \le \frac{3\sqrt{3}}{2}$$
.

(f)
$$\cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \le \frac{3\sqrt{3}}{8}$$
.

(g)
$$\sin \alpha + \sin \beta + \sin \gamma \le \frac{3\sqrt{3}}{2}$$
.

(h)
$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma \le \frac{9}{4}$$
.

(i)
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \ge \frac{3}{4}$$
.

$$(j) \ \frac{1}{\sin^2\alpha + \sin^2\beta} + \frac{1}{\sin^2\beta + \sin^2\gamma} + \frac{1}{\sin^2\gamma + \sin^2\alpha} \ge 2.$$

(k)
$$tg\frac{\alpha}{2} + tg\frac{\beta}{2} + tg\frac{\gamma}{2} \ge \sqrt{3}$$
.

$$(l) \ \operatorname{tg}^2\frac{\alpha}{2} + \operatorname{tg}^2\frac{\beta}{2} + \operatorname{tg}^2\frac{\gamma}{2} \geq 1.$$

$$(\mathrm{m}) \sin\alpha\sin\beta\sin\gamma \leq \frac{3\sqrt{3}}{8}.$$

(n)
$$\sqrt[n]{\sin\alpha} + \sqrt[n]{\sin\beta} > \sqrt[n]{\sin\gamma}$$
.

(o)
$$\cos \frac{-\alpha + \beta + \gamma}{2} + \cos \frac{\alpha - \beta + \gamma}{2} + \cos \frac{\alpha + \beta - \gamma}{2} \le \frac{3\sqrt{3}}{2}$$
.

(p)
$$\frac{\sin^5\alpha + \sin^5\beta + \sin^5\gamma - (\sin\alpha + \sin\beta + \sin\gamma)^5}{\sin^3\alpha + \sin^3\beta + \sin^3\gamma + (\sin\alpha + \sin\beta + \sin\gamma)^3} \le \frac{15}{2}$$

$$(\mathbf{q})\ \sqrt{5+\mathrm{tg}\frac{\alpha}{2}\mathrm{tg}\frac{\beta}{2}}+\sqrt{5+\mathrm{tg}\frac{\beta}{2}\mathrm{tg}\frac{\gamma}{2}}+\sqrt{5+\mathrm{tg}\frac{\gamma}{2}\mathrm{tg}\frac{\alpha}{2}}\leq 4\sqrt{3}.$$

$$(r)\ \operatorname{tg}^2\frac{\alpha}{2}+\operatorname{tg}^2\frac{\beta}{2}+\operatorname{tg}^2\frac{\gamma}{2}+\operatorname{tg}^2\frac{\alpha}{2}\operatorname{tg}^2\frac{\beta}{2}\operatorname{tg}^2\frac{\gamma}{2}\geq\frac{26}{27}.$$

(s)
$$\sin \alpha + \sin \beta + \sin \gamma \ge \sin 2\alpha + \sin 2\beta + \sin 2\gamma$$
.

13. For an arbitrary triangle show the inequalities:

(a)
$$tg\frac{\alpha}{2} + tg\frac{\beta}{2} + tg\frac{\gamma}{2} \le \frac{9R^2}{4S}$$
.

(b)
$$\frac{\cos\frac{\alpha}{2}}{l_a} + \frac{\cos\frac{\beta}{2}}{l_b} + \frac{\cos\frac{\gamma}{2}}{l_c} \ge \frac{9}{2p}.$$

(c)
$$\frac{\cos^2\frac{\alpha}{2}}{a} + \frac{\cos^2\frac{\beta}{2}}{b} + \frac{\cos^2\frac{\alpha}{2}}{c} \ge \frac{27r}{85}$$
.

(d)
$$\sqrt{a^2 + b^2 - h_c^2} + \sqrt{b^2 + c^2 - h_a^2} + \sqrt{c^2 + a^2 - h_b^2} \le 6R$$

(e)
$$\frac{r}{R} \le \frac{1}{2}$$
.

(e)
$$S \le \frac{3\sqrt{3}}{4}R^2$$
.

(f)
$$\frac{l_a}{b+c} + \frac{l_b}{c+a} + \frac{l_c}{a+b} \le \frac{3\sqrt{3}}{4}$$
.

(f)
$$\frac{a}{l_b + l_c} + \frac{b}{l_c + l_a} + \frac{c}{l_a + l_b} \ge \sqrt{3}$$
.

(g)
$$\frac{a^2}{h_b^2 + h_c^2} + \frac{b^2}{h_c^2 + h_a^2} + \frac{c^2}{h_a^2 + h_b^2} \ge 2.$$

14. If $\alpha + \beta + \gamma = \pi$, prove that for all $n \in \mathbb{N}$:

$$(-1)^{n+1} \left(\sum \cos n\alpha\right) \le \frac{3}{2} \text{ and } -1 \le (-1)^{n+1} \prod \cos n\alpha \le \frac{1}{8}.$$

4.95
-
\$1*
-
_
-
2
-
Àir.
_
\$ 6
*
_
Vig. ■
3.7
_
4 °.
4
5