Agustín Esteva aesteva@uchicago.edu

Due Date: 5-01-2025

Problem 1

Consider the path Γ_R pictured below:

Prove that

$$\int_{\Gamma_R} (\frac{e^{iz}}{z} - \frac{1}{z}) \, dz = 0.$$

SOLUTION: Since Γ_R is closed, it suffices, by Cauchy's theorem, to show that $\frac{e^{iz}}{z} - \frac{1}{z}$ is entire on $D_{R+1}(0)$. Clearly, The function $\in H(D_{R+1}(0) \setminus \{0\})$. We will show that if we define

$$f(z) = \begin{cases} \frac{e^{iz}}{z} - \frac{1}{z}, & z \neq 0\\ i, & z = 0 \end{cases},$$

then f is continuous at 0 since

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{1}{z} \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} - \frac{1}{z} = i.$$

Since we forgive singularities, we have that $f \in H(D_{R+1}(0))$. and so

$$\int_{\Gamma_R} \left(\frac{e^{iz}}{z} - \frac{1}{z}\right) dz = \int_{\Gamma_R} f(z) dz = 0.$$

Suppose that $\gamma_R(\theta) = Re^{i\theta}$, $\theta \in [0, \pi]$ is the upper semicricle arc. Show that

$$\lim_{R\to\infty}\int_{\gamma_R}\frac{e^{iz}}{z}\,dz=0$$

Solution: Consider the paths in the picture above, where $\gamma_R^{(1)}, \gamma_R^{(3)}$ are the small pizza slices and $\gamma_R^{(2)}$ is the big pizza slice. Thus,

$$\begin{split} \left| \int_{\gamma_R} \frac{e^{iz}}{z} \, dz \right| &\leq \left| \int_{\gamma_R^{(2)}} \frac{e^{iz}}{z} \, dz \right| + 2 \left| \int_{\gamma_R^{(1)}} \frac{e^{iz}}{z} \, dz \right| \\ &\leq \operatorname{arclength} \left[\gamma_R^{(2)} \right] \max_{z \in \gamma_R^{(2)}} (\left| \frac{e^{iz}}{|z|} \right|) + 2 \cdot \operatorname{arclength} \left[\gamma_R^{(1)} \right] \max_{z \in \gamma_R^{(1)}} (\left| \frac{e^{iz}}{|z|} \right|) \\ &\leq \pi R \frac{1}{R} \max_{z \in \gamma_R^{(2)}} (\left| e^{iz} \right|) + \epsilon R \frac{1}{R} \max_{z \in \gamma_R^{(1)}} (\left| e^{iz} \right|) \\ &= \pi \max_{y \in \gamma_R^{(2)}} (e^{-y}) + \epsilon \max_{y \in \gamma_R^{(1)}} (e^{-y}) \\ &= \pi e^{-R \sin \left(\frac{\epsilon}{2} \right)} + \epsilon \\ &\to \epsilon \end{split}$$

Prove that if $\tilde{\gamma}_R = \frac{1}{R}e^{i\theta}$, $\theta \in [0, \pi]$, then

$$\lim_{R\to\infty} \int_{\tilde{\gamma}_R} (\frac{e^{iz}}{z} - \frac{1}{z}) \, dz = 0$$

SOLUTION: Again, we estimate

$$\left| \int_{\tilde{\gamma}_R} \left(\frac{e^{iz}}{z} - \frac{1}{z} \right) dz \right| \le \operatorname{arclength} \left[\tilde{\gamma}_R \right] \max_{z \in \tilde{\gamma}_R} \left(\frac{|e^{iz}|}{|z|} - \frac{1}{|z|} \right)$$

$$= \frac{\pi}{R} \max_{z = \frac{1}{R}} (z + \frac{1}{2}z^2 + \dots)$$

$$\to 0$$

Prove that $\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx = \pi$.

SOLUTION: By symmetry,

$$\int_{-R}^{R} \frac{\cos(x)}{x} \, dx = \int_{-R}^{R} \frac{1}{x} \, dx = 0.$$

Thus, by the previous part, we can say that in the limit,

$$i \int_{-R}^{R} \frac{\sin(x)}{x} dx = \int_{-R}^{R} \frac{\cos(x) + i \sin(x)}{x} - \frac{1}{x} dx$$

$$= \int_{-R}^{R} \frac{e^{ix}}{x} - \frac{1}{x} dx$$

$$= \int_{\Gamma_R} \frac{e^{iz}}{z} - \frac{1}{z} dz - \int_{\gamma_R} \frac{e^{iz}}{z} - \frac{1}{z} dz$$

$$= \int_{\gamma_R} \frac{1}{z} dz$$

$$= \int_{0}^{\pi} \frac{1}{Re^{i\theta}} Rie^{i\theta}$$

$$= i\pi,$$

and thus

$$\int_{-R}^{R} \frac{\sin(x)}{x} \, dx = \pi$$

Verify the Cauchy-Riemann equations for

$$f(z) = e^{z^2}$$

Solution: $(\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y})$ Note that

$$e^{z^2} = e^{2z} = e^{2x+2iy} = e^{2x}(\cos(2y) + i\sin(2y)) = e^{2x}\cos(2y) + ie^{2x}\sin(2y).$$

Thus

$$\frac{\partial u}{\partial x} = 2e^{2x}\cos(2y)$$
$$= e^{2x}(2\cos(2y))$$
$$= \frac{\partial v}{\partial y}$$

and

$$\frac{\partial v}{\partial x} = 2e^{2x}\sin(2y)$$
$$= -(-2e^{2x}\sin(2y))$$
$$= -\frac{\partial u}{\partial y}$$

Suppose that $a, b \in \mathbb{C}$ with |a| < r < |b| and

$$\gamma(\theta) = re^{i\theta}, \quad \theta \in [0, 2\pi].$$

Evaluate

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} \, dz.$$

Solution: Consider the function

$$f(z) := \begin{cases} \frac{1}{(z-a)(z-b)} - \frac{1}{(z-a)(a-b)}, & z \neq a \\ \frac{-1}{(a-b)^2}, & z = a \end{cases}$$

Note that

$$\lim_{z \to a} f(z) = \lim_{z \to a} \frac{1}{(z - a)(z - b)} - \frac{1}{(z - a)(a - b)}$$

$$= \lim_{z \to a} \frac{1}{z - a} \left[\frac{1}{z - b} - \frac{1}{a - b} \right]$$

$$= \lim_{z \to a} \frac{1}{z - a} \left[\frac{a - b - z + b}{(z - b)(b - a)} \right]$$

$$= \lim_{z \to a} \frac{-1}{(z - b)(a - b)}$$

$$= \frac{-1}{(a - b)^2}$$

. Thus, f is continuous on z = a. Moreover, there exists some R such that |r| < R < b, and thus $f \in H(D_R(0))$ since it forgives z = a. Since γ is closed, we have by Cauchy that

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} - \frac{1}{(z-a)(a-b)} dz = \int_{\gamma} f(z) dz = 0.$$

Thus, it suffices to calculate

$$\frac{1}{a-b} \int_{\gamma} \frac{1}{z-a} \, dz = \frac{1}{a-b} 2\pi i.$$

Thus,

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{b-a}$$

Suppose f(z) is a nonconstant entire function. Prove that the range of f is dense in \mathbb{C} .

Solution: Let $z_0 \in \mathbb{C}$. Suppose there exists some r > 0 such that $f(z) \notin B_r(z)$ for any $z \in \mathbb{C}$. Define

$$g(z) = \frac{1}{f(z) - z_0}.$$

Note that $g \in H(\mathbb{C})$. Note that

$$|g(z)| = \frac{1}{|f(z) - z_0|} < \frac{1}{r}.$$

Thus, g(z) is constant and so $f(z)-z_0$ is constant and thus f is constant. A contradiction.