Machine Learning

Classification Algorithms using WEKA

1. Caesarian Data set

- Applied Class Balancer in the Pre-processing step since the classes were distributed randomly and to reduce the bias.
- KNN algorithm gives more efficient result and ANN was less efficient when compared to others.

K Nearest Neighbor Algorithm

When k=20, the results were more optimal.

Support Vector Machine

2. Diabetics Dataset

- Applied Class Balancer in the Pre-processing step since the classes were distributed randomly and to reduce the bias.
- SVM Algorithm gives more efficient and Decision Tree gives less efficient results when compared to others.

K Nearest Neighbor

When k=20, the results were more optimal.

3. Heart Disease Dataset

- Applied Class Balancer in the Pre-processing step since the classes were distributed randomly and to reduce the bias.
- KNN Algorithm given more efficient result and Decision Tree algorithm gives less efficient results when compared with others.

KNN

When k=1, the results were more optimal.

4. Fertility Dataset

- Applied Class Balancer in the Pre-processing step since the classes were distributed randomly and to reduce the bias.
- KNN Algorithm shows more efficient result and ANN Algorithm gives less efficient results when compared with others.

K Nearest Neighbor

When k= 5, the results were more optimal.

Decision Tree

Artificial Neural Network

5. Breast Cancer Dataset

- Applied Class Balancer in the Pre-processing step since the classes were distributed randomly and to reduce the bias.
- SVM Algorithm is more efficient out of all and Decision Tree Algorithm is least efficient.

K Nearest Neighbor

When k=20, the results were more optimal.

