fish-vs-eco

- 1. fish to eco
- Bence2003论文: p寄生*p攻击后死亡=p死亡
- 2. eco to fish
- Lake Michigan: 幼年种群密度和juvenile (可以吸鱼的时期) 的种群密度之间的关系 (可以用来反推存活率)
- 3. database
- commercial: 五大湖捕捞量 (可以作为种群相对密度的数据)
- erie: 仅lake erie的捕捞量(可以作为lake erie生态系统中种群相对密度的数据)
- LakeErieFish: 五大湖中之一的鱼抽样数据(可以做lake erie生态系统中鱼的体重和游泳距离的数据)
 - Length
 - weight
 - water quality
- 五大湖七鳃鳗入侵防治时间线
- 4. Task 1
- t1b.xlsx:对density-%M的线性拟合,相关系数为0.5452, p = 0.0668 < 0.1,说明在90%的置信水平 上拒绝原假设,幼虫密度与雄性占比有显著的相关性
- 5. pictures
- life cycle of fish: 鳗鱼的生命周期图
- problem overview: 第一天腾讯会议的图

总模型

用线性回归拟合性别比和幼体密度函数

- 通过引用文献,说明性别比和成年体密度无明显联系
- 密度不要用等级,用真实密度(只有等级的值用该等级平均密度代替)
- 计算拟合优度
- 证明两个数据线性相关, 计算皮尔逊相关系数
- 检验皮尔逊相关系数是否显著:夏皮洛-威尔克检验(可直接用spss计算,具体算出在p=?下可拒绝原假设)
- 把皮尔逊相关系数和夏皮洛-威尔克检验的公式写上,显得高端
- 数据见数据文档

从幼体密度推算成体密度

参考文档

• 假设:幼鱼期:4年,吸血(成年)期2年快引点文献来证明

- 假设: 幼鱼每年存活率为0.627, 引用文献《Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths》
- 密度等于单位体积 (面积) 的数量, 因此下面都计算单位面积数量

 N^{larval} : 当前时刻单位体积幼鱼数量

 $D^{larval} = 4$ 年:幼虫时期的时长 (duration),单位:年

 $P_u:y$ 年前出生的幼鱼,存活到现在并且没有变态的概率(计算公式见下文)

B:每年出生的幼鱼数量(未知数,我们要解出B)

$$egin{aligned} N^{larval} &= \sum_{y=0}^{D^{larval}} P_d B \ &= \left[\sum_{y=0}^{D^{larval}} P_y
ight] B \end{aligned}$$

注:从今年,到4年前出生的所有未成年鱼,在今年都可能还未成年,在5年前出生的幼鱼,我们认为它要么死了,要么成年了

 $P_y:y$ 年前出生的幼鱼,存活到现在的概率且没有变态的概率

y: 时间段,当y=0时,不考虑死亡率、变态率, $P_y=1$

 $S^{larval} = 0.627$: 幼鱼每年存活率

 m_i : 幼鱼在第i年变态为成年鱼的概率 (计算公式见下文)

$$P_y = \prod_{i=1}^y S^{larval} (1-m_i)$$

• 假设: $\beta_0 = -23.886$ 、 $\beta_1 = 0.186$

 m_i : 幼鱼在第i年变态为成年鱼的概率

 $\beta_0 = -23.886$

 $\beta_1 = 0.186$

 $ar{l}$: 鱼长度区间的中点 (我们用平均/中位数长度代替 <math>(计算公式见下文))

 Δl_i : i年前的鱼预期的长度变化量 (计算公式见下文)

$$m_i = rac{exp[eta_0 + eta_1(\overline{l} + \Delta l_i)]}{1.0 + exp[eta_0 + eta_1(\overline{l} + \Delta l_i)]}$$

注:

• β_0 、 β_1 引用《Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths》 $\beta 0$ and $\beta 1$ are parameters characterizing the length at which metamorphosis occurs

• m: 使用了逻辑斯蒂回归模型,引用<u>https://www.sciencedirect.com/science/article/abs/pii/S038</u> 0133013001846

假设: $L_{\infty}=159mm$

假设: d=0.515年(188天)

 $\Delta l_i:i$ 年前的鱼预期的长度变化量

 $L_{\infty}=159$: 渐进长度

 $ar{l} = L_{\infty}/2 = 79.5 mm$: 鱼长度区间的中点

d=0.515: 对特定溪流的成长季时长(growingseasonduration)

$$\Delta l_i = (L_{\infty} - \overline{l})[1.0 - exp(-i imes d)]$$

注:

- $L_{\infty}159mm$ 引用三篇论文
 - https://www.sciencedirect.com/science/article/abs/pii/S0380133008715880
 - https://benthamopen.com/ABSTRACT/TOFISHSJ-2-59
 - https://www.sciencedirect.com/science/article/abs/pii/S0380133013001846
- Δl_i 的计算引用
 - von Bertalanffy growth equation
 - «Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths
 »

• d=188天引用: https://www.sciencedirect.com/science/article/abs/pii/S0380133003704845

将算出来的 P_y 、性别比算出的密度带入最上面的公式,可以算出B

假设:成年鱼存活率为1快找个文献论证一下 (或者根本不提这个事了)

 $N^{\it juvenile}$: 当前时刻单位体积成年鱼数量

 $D^{larval} = 4$ 年:未成年时期的时长 (duration),单位:年

 $D^{juvenile} = 2$ 年:成年时期的时长(duration),单位:年

 $S^{larval} = 0.627$: 幼鱼每年存活率

 P_y : 幼鱼存活y年,且没有变态的概率(前面算过了)

 $R_{y}:y$ 年前的那一年出生的鱼,在今年或之前成年并存活的概率

 m_i :幼鱼在第i年变态为成年鱼的概率 (前面算过了)

B:每年出生的幼鱼数量 (前面算过了)

思路: 今年成年鱼的数量,等于寿命时间范围内,每年出生的鱼的数量,乘这些鱼存活并变态的概率

今年出生的未成年鱼不会成年

1年前出生的未成年鱼今年成年的概率等于存活一年并变态

$$R_1 = S^{larval} m_1$$

2年前出生的未成年鱼现在成年且存活的概率等于: 出生就成年(概率为0) + 幼鱼存活1年再成年 + 幼鱼存活2年, 今年成年

$$R_2 = S^{larval} m_1 + S^{larval} (1 - m_1) \times S^{larval} m_2$$

3年前出生的未成年鱼现在成年且存活的概率等于: 出生就成年(概率为0) + 幼鱼存活1年再成年 + 幼鱼存活2年再成年 + 幼鱼存活3年再成年

$$egin{aligned} R_3 &= S^{larval} m_1 \ &+ S^{larval} (1-m_1) imes S^{larval} m_2 \ &+ S^{larval} (1-m_1) imes S^{larval} (1-m_2) imes S^{larval} m_3 \end{aligned}$$

4年前出生的未成年鱼现在成年且存活的概率等于: 出生就成年(概率为0) + 幼鱼存活1年再成年(但是成年后活了2年就死了) + 幼鱼存活2年再成年 + 幼鱼存活3年再成年 + 幼鱼存活4年再成年

$$egin{aligned} R_4 &= S^{larval}(1-m_1) imes S^{larval}m_2 \ &+ S^{larval}(1-m_1) imes S^{larval}(1-m_2) imes S^{larval}m_3 \ &+ S^{larval}(1-m_1) imes S^{larval}(1-m_2) imes S^{larval}(1-m_3) imes S^{larval}m_4 \end{aligned}$$

5年前出生的未成年鱼现在成年且存活的概率等于: 出生就成年(概率为0) + 幼鱼存活1年再成年(但是成年后活了2年就死了) + 幼鱼存活2年再成年(但是成年后活了2年就死了) + 幼鱼存活3年再成年 + 幼鱼存活4年再成年

$$egin{aligned} R_5 &= S^{larval}(1-m_1) imes S^{larval}(1-m_2) imes S^{larval}m_3 \ &+ S^{larval}(1-m_1) imes S^{larval}(1-m_2) imes S^{larval}(1-m_3) imes S^{larval}m_4 \end{aligned}$$

6年前出生的未成年鱼现在成年且存活的概率等于: 出生就成年(概率为0) + 幼鱼存活1年再成年(但是成年后活了2年就死了) + 幼鱼存活2年再成年(但是成年后活了2年就死了) + 幼鱼存活3年再成年(但是成年后活了2年就死了) + 幼鱼存活4年再成年

$$R_6 = S^{larval}(1-m_1) imes S^{larval}(1-m_2) imes S^{larval}(1-m_3) imes S^{larval}m_4$$

如果一个幼虫超过4年了还没成年,我们认为它已经死了

总公式如下:

$$egin{aligned} R_y &= \sum_{i=max(y-D^{juvenile},0)}^{min(y,D^{larval})} P_{i-1}S^{larval}m_i \ P_0 &= 1 \ y &= 1,2...\left(D^{larval} + D^{juvenile}
ight) \ N^{juvenile} &= \sum_{y=1}^{D^{juvenile}+D^{larval}} R_y B \end{aligned}$$

注:当前时刻成年鱼的数量,等于所有 $D^{juvenile}+D^{larval}$ 年前出生的鱼这样,就从性别比,幼虫密度到出生量B,计算出了当前成年个体的数量