

UNCLASSIFIED

AD NUMBER

AD348620

CLASSIFICATION CHANGES

TO: **unclassified**

FROM: **confidential**

LIMITATION CHANGES

TO:

**Approved for public release, distribution
unlimited**

FROM:

**Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; MAR 1964.
Other requests shall be referred to
Directorate of Armament Dev., Det 4,
Research and Technology Div., AFSC, Eglin
AFB, FL.**

AUTHORITY

**AFATL ltr, 28 Oct 1975; AFATL ltr, 28 Oct
1975**

THIS PAGE IS UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION
AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEAN-
ING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 and 794. THE
TRANSMISSION OR THE REVELATION OF
ITS CONTENTS IN ANY MANNER TO AN
UNAUTHORIZED PERSON IS PROHIBITED
BY LAW.

~~CONFIDENTIAL~~

ATL-TDR-64-9

Copy of 18th Copies

(Unclassified Title)

RADIALLY EXPANDING FRAGMENTATION WARHEAD STUDY

Summary Report for

16 November 1962 through 15 December 1965

CLASSIFIED BY JWW

ATL Technical Documentary Report No. 64-9
March 1964 Project No. 2835

Directorate of Armament Development
Det 4, Research and Technology Division
Air Force Systems Command
Eglin Air Force Base, Florida

(Prepared under Contract No. AF08(655)-3269 by the Armament Sciences
Laboratory, Research Division, Martin Company, Orlando, Florida.
W. R. Porter, Author).

GROUP-4
Downgraded at 3 year intervals;
Declassified after 12 years.

~~CONFIDENTIAL~~

Best Available Copy

348620
348620

**Best
Available
Copy**

Qualified requesters may obtain copies from DDC. Orders will be expedited if placed through the librarian or other person designated to request documents from DDC.

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws (Title 18, U.S.C., sections 793 and 794). Transmission or revelation in any manner to an unauthorized person is prohibited by law.

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. When not needed, destroy in accordance with pertinent security regulations.

KEYWORD LIST

Listed below are keywords which serve as an index to the contents of this report (AFR 80-29).

Fragmentation

Warheads

Expansion - radial

FOREWORD

This report is a summary of investigations completed during the period from 16 November 1962 through 15 December 1963, under Contract AF 08(635)-3269. Further experimentation and analysis is in progress and is scheduled for completion in mid-April 1964. The contract is administered by the Weapons Division, Research and Technology Branch (ATWR), Detachment 4, RTD, Eglin Air Force Base, Florida. Project engineer for Detachment 4 is Mr. Edward C. Poston, Jr.

This research program is being accomplished by the Martin Company, Orlando Division, Orlando, Florida. Martin Company task leader for the overall effort is Mr. W. R. Porter. Other contributing Martin personnel include Mr. B. W. Gore, Jr., Mr. R. R. Boyce, Mr. D. R. Bragg, Mr. J. M. Allred, and Mr. T. D. Kitchin. This document was prepared by Mr. W. R. Porter under the direction of Mr. E. R. Caponi, Chief, Armament Sciences Laboratory, and Mr. C. A. Borcher, Manager, Structures and Mechanics Research Laboratories.

Acknowledgment is made to Mr. D. J. Dunn, Jr., and Mr. C. Graberick, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, for review of design concepts and helpful suggestions. Detachment 4, RTD personnel Messrs. D. M. Davis, W. Dittrich, and E. C. Poston, Jr., have also contributed valuable design concepts and technical assistance.

~~CONFIDENTIAL~~
ABSTRACT

This report summarizes experimental and analytical accomplishments toward the objective of explosively projecting multilayers of preformed fragments into uniform radial disc patterns and at controlled velocities. The radial velocity of each fragment is to be proportional to its distance from the longitudinal axis of the warhead, and a predictable expansion pattern is to be between 500 feet per second and 2000 feet per second on the diameter.

The program approach emphasizes experimental investigations of various warhead design concepts that could possibly result in radial pattern distributions with controlled fragment velocities. Data are presented on four basic designs and variations thereof, which have been experimentally evaluated through warhead arena testing. Of the designs tested, an explosive layered concept provides the most promise for achieving program objectives. This design is comprised of a cylindrical package of alternating layers of preformed fragments and sheet explosive in either involute wrapping or concentric ring configurations.

Feasibility of the explosive layered concept is demonstrated with four-, six-, and eight-layered model test results. On the eight-layered design, fragment distributions over a 35-degree beam spray are uniform; and velocities of individual fragments range from less than 100 feet per second in the innermost layer to 2300 feet per second in the outermost layer. By varying the thickness of the explosive between fragment layers or the number of fragment layers between explosive layers, velocity gradients can be reduced or increased proportionately. An additional advantage to the explosive layered concept is that the above performance was achieved with a charge-to-metal ratio of only 0.082, excluding end-plate weight. With the energy coupling efficiencies achieved in this design, 1/4-inch diameter steel fragments, weighing 1 gram each, were dispensed in a controlled pattern for a total weight of approximately 35 pounds, including explosive, fragments, inert filler, and end plates.

The analytical portion of this study is oriented toward determining means of describing the physical behavior of multilayer fragments when subjected to an explosion in a radial direction. Classical hydrodynamic and spring mass theories are examined and found inadequate. A semi-empirical approach utilizing equations of the form $V = A \left(\frac{C}{M}\right)^b$ and experimental data are developed. Appropriate constants for both the spiral and

~~CONFIDENTIAL~~

CONFIDENTIAL

concentric ring configurations are derived, and detailed instructions for computing the $\frac{C}{M}$ values are given. It is shown that this approach provides a valid mathematical basis for predicting design parameters and for estimating fragment velocities.

Work items currently in progress include further experimentation toward devising practical means of initiating thin-gage sheet explosive and the development of minimum weight techniques for controlling beam spray angles. Current data indicate that thin-gaged sheet explosive can be initiated by a line wave generator and that hyperboloid models are feasible approaches to beam spray control.

Other topics presented in this document include discussions of test model fabrication techniques, test arrangements and instrumentation, data reduction procedures, and appendices of detailed design and test data.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

Richard H. Cox, USAF
RICHARD F. HARDAWAY
Colonel, USAF
Chief, Weapons Division

CONFIDENTIAL

CONFIDENTIAL

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1	Artist's Concept of Hypothetical Space Intercept	2
2	Basic Projector Designs.	4
3	Firing Fixture	5
4	Explosive-Layered Design Models	6
5	Preliminary Velocity Gradient Summary	7
6	Basic Design Velocity-Space Distribution Comparison . .	9
7	Typical Eight-Layered Distribution Pattern	10
8	Typical Six-Layered Distribution Pattern	11
9	Six-Layered Distribution Pattern - Reduced Explosive Gage, Reduced Average Velocities	12
10	Basic Design I Details	14
11	Basic Design II Details.	15
12	Basic Design III Details	16
13	Basic Design IV Details	18
14	Additional Design Concepts	20
15	Configuration Shaping, Spiral Explosive Layering, Cubical Fragment Preparation	22
16	Configuration Shaping, Concentric Ring Explosive Layering, Spherical Fragment Preparation	22
17	Typical Explosive-Layered Test Models	23
18	Tubular Fragment Packaging.	24
19	Hand Packaging of Fragments	25
20	Interstice Fragment Package.	25
21	Wafer Packaging	26
22	Solid Hexagonal Package.	26
23	Test Arrangement	28
24	Recovery Target	30
25	Test Plan Flow Chart.	31
26	Penetration versus Velocity Calibration Curve.	32
27	Interaction Geometry	39
28	Detonation Products and Medium Interaction with Spherical Fragment	43
29	Static Geometry and Unbalanced Force Interaction . . .	45
30	Cross Sections of Explosive Layered Concepts	51
31	Equation Locus	56

CONFIDENTIAL

CONFIDENTIAL

<u>Figure</u>	<u>Title</u>	<u>Page</u>
32	Test Model Design, Round No. 11 and 12	70
33	Test Model Design, Round No. 39 and 42	71
34	Velocity versus Radial Distribution, Round No. 11	72
35	Velocity versus Radial Distribution, Round No. 12	73
36	Velocity versus Radial Distribution, Round No. 37	74
37	Impact Pattern, Round No. 11	75
38	Impact Pattern, Round No. 37	76
39	Test Model Design Rounds No. 7 and 8	82
40	Test Model Design Rounds No. 13 and 14	83
41	Velocity versus Radial Distribution, Round No. 2	84
42	Velocity versus Radial Distribution, Round No. 26	85
43	Velocity versus Radial Distribution, Round No. 7	86
44	Velocity versus Radial Distribution, Round No. 3	87
45	Velocity versus Radial Distribution, Round No. 27	88
46	Velocity versus Radial Distribution, Round No. 13	89
47	Velocity versus Radial Distribution, Round No. 14	90
48	Velocity versus Radial Distribution, Round No. 17	91
49	Velocity versus Radial Distribution, Round No. 18	92
50	Impact Pattern Round No. 2	93
51	Impact Pattern Round No. 26	94
52	Impact Pattern Round No. 7	95
53	Impact Pattern Round No. 3	96
54	Impact Pattern Round No. 4	97
55	Impact Pattern Round No. 27	98
56	Impact Pattern Round No. 13	99
57	Impact Pattern Round No. 14	100
58	Impact Pattern Round No. 17	101
59	Impact Pattern Round No. 18	101
60	Impact Pattern Round No. 28	102
61	Impact Pattern Round No. 29	103
62	Impact Pattern Round No. 32	104
63	Impact Pattern Round No. 33	104
64	Test Model Design, Rounds No. 9 and 10	108
65	Test Model Design, Rounds No. 15 and 16	109
66	Test Model Design, Rounds No. 21 and 22	110
67	Velocity versus Radial Distribution, Round No. 9	111
68	Velocity versus Radial Distribution, Round No. 10	112
69	Velocity versus Radial Distribution, Round No. 15	113
70	Velocity versus Radial Distribution, Round No. 16	114
71	Velocity versus Radial Distribution, Round No. 21	115
72	Velocity versus Radial Distribution, Round No. 22	116
73	Velocity versus Radial Distribution, Round No. 36	117
74	Impact Pattern, Round No. 15	118
75	Impact Pattern, Round No. 16	119

CONFIDENTIAL

CONFIDENTIAL

<u>Figure</u>	<u>Title</u>	<u>Page</u>
76	Impact Pattern, Round No. 21	120
77	Impact Pattern, Round No. 22	120
78	Impact Pattern, Round No. 36	121
79	Test Model Design, Round No. 19 and 20	134
80	Test Model Design, Round No. 19 and 20 End-Line Initiator	135
81	Test Model Design, Round No. 34	136
82	Test Model Design, Round No. 66	137
83	Test Model Design, Round No. 84	138
84	Test Model Design, Round No. 48 and 49	139
85	Test Model Design, Rounds No. 62 through 65, 80, 81, 83	140
86	Test Model Design, Round No. 77	141
87	Test Model Design, End-Line Initiator, Round No. 77	142
88	Test Model Design, Round No. 82	143
89	Velocity versus Radial Distribution, Round No. 5	144
90	Velocity versus Radial Distribution, Round No. 6	145
91	Velocity versus Radial Distribution, Round No. 19	146
92	Velocity versus Radial Distribution, Round No. 20	147
93	Velocity versus Radial Distribution, Round No. 30	148
94	Velocity versus Radial Distribution, Round No. 34	149
95	Velocity versus Radial Distribution, Round No. 35	150
96	Velocity versus Radial Distribution, Round No. 38	151
97	Velocity versus Radial Distribution, Round No. 41	152
98	Velocity versus Radial Distribution, Round No. 43X	153
99	Velocity versus Radial Distribution, Round No. 48	154
100	Velocity versus Radial Distribution, Round No. 49X	155
101	Velocity versus Radial Distribution, Round No. 52X	156
102	Velocity versus Radial Distribution, Round No. 53	157
103	Velocity versus Radial Distribution, Round No. 54	158
104	Velocity versus Radial Distribution, Round No. 55	159
105	Velocity versus Radial Distribution, Round No. 56	160
106	Velocity versus Radial Distribution, Round No. 56 (Side Cut)	161
107	Velocity versus Radial Distribution, Round No. 57	162
108	Velocity versus Radial Distribution, Round No. 60	163
109	Velocity versus Radial Distribution, Round No. 61	164
110	Velocity versus Radial Distribution, Round No. 62	165
111	Velocity versus Radial Distribution, Round No. 63	166
112	Velocity versus Radial Distribution, Round No. 63 (Side Cut)	167
113	Velocity versus Radial Distribution, Round No. 64	168
114	Velocity versus Radial Distribution, Round No. 64 (Side Cut)	169

CONFIDENTIAL

CONFIDENTIAL

<u>Figure</u>	<u>Title</u>	<u>Page</u>
115	Velocity versus Radial Distribution, Round No. 65	170
116	Velocity versus Radial Distribution, Round No. 70	171
117	Velocity versus Radial Distribution, Round No. 71	172
118	Velocity versus Radial Distribution, Round No. 76	173
119	Velocity versus Radial Distribution, Round No. 77	174
120	Velocity versus Radial Distribution, Round No. 82	175
121	Velocity versus Radial Distribution, Round No. 89	176
122	Velocity versus Radial Distribution, Round No. 89 (Side Cut)	177
123	Impact Pattern, Round No. 5	178
124	Impact Pattern, Round No. 6	179
125	Impact Pattern, Round No. 19	180
126	Impact Pattern, Round No. 20	181
127	Impact Pattern, Round No. 34	182
128	Impact Pattern, Round No. 35	183
129	Impact Pattern, Round No. 38	184
130	Impact Pattern, Round No. 43	185
131	Impact Pattern, Round No. 48	186
132	Impact Pattern, Round No. 49X	187
133	Impact Pattern, Round No. 52X	188
134	Impact Pattern, Round No. 53	189
135	Impact Pattern, Round No. 55	190
136	Impact Pattern, Round No. 56	191
137	Impact Pattern, Round No. 57	192
138	Impact Pattern, Round No. 60	193
139	Impact Pattern, Round No. 61	194
140	Impact Pattern, Round No. 62	195
141	Impact Pattern, Round No. 63	196
142	Impact Pattern, Round No. 64	197
143	Impact Pattern, Round No. 65	198
144	Impact Pattern, Round No. 68	199
145	Impact Pattern, Round No. 70	200
146	Impact Pattern, Round No. 77	201
147	Impact Pattern, Round No. 78	202
148	Impact Pattern, Round No. 79	203
149	Impact Pattern, Round No. 82	204
150	Impact Pattern, Round No. 83	205
151	Impact Pattern, Round No. 89	206
152	Tapered Burster, Design Concept A	211
153	Tapered Burster, Design Concept B	212
154	Shaped Burster Design Concept	213
155	Explosive End Impulse Design Concept	214
156	Velocity versus Radial Distribution, Round No. 44	215

CONFIDENTIAL

CONFIDENTIAL

<u>Figure</u>	<u>Title</u>	<u>Page</u>
157	Velocity versus Radial Distribution, Round No. 45	216
158	Velocity versus Radial Distribution, Round No. 46	217
159	Impact Pattern, Round No. 23	218
160	Impact Pattern, Round No. 24	219
161	Impact Pattern, Round No. 44	220
162	Impact Pattern, Round No. 45	221
163	Impact Pattern, Round No. 46	222
164	Impact Pattern, Round No. 72	223
165	Impact Pattern, Round No. 73	224
166	Impact Pattern, Round No. 74	225
167	Impact Pattern, Round No. 75	226

CONFIDENTIAL

CONFIDENTIAL

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
1	Possible Projector Design Variations	19
2	Speed Performance Comparison	47
3	Speed Differences.	48
4	Standard Deviations	48
5	Results Comparison	57
6	Basic Design I Data Summary.	69
7	Basic Design II Data Summary	79
8	Basic Design III Data Summary	107
9	Basic Design IV Data Summary	125
10	Basic Design Data Summary Special Concepts.	209

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

SECTION 1 - INTRODUCTION

Preliminary experimentation and analysis of multilayer radial fragment projectors was initiated for the Air Force in November 1962 and supplemented for more detailed investigations in March 1963. Contract completion is scheduled for mid-April 1964. However, because of promising state-of-the-art advancements resulting from the current effort, this Summary Report is being published.

The objective of this program, as established by Reference 1, is to examine means of explosively projecting multilayers of fragments in a predictable uniform radial pattern, in such a way that the radial velocity of each fragment is proportional to its distance from the longitudinal axis of the pattern. Figure 1 illustrates the way in which such a warhead concept might be employed in a hypothetical space intercept situation.

Specific technical requirements of this program are:

- 1 By experimentation, devise and evaluate techniques or methods of explosively projecting multilayers of fragments in a radially expanding pattern.
- 2 Attempt to devise means of controlling radial velocity of each fragment so as to obtain a predictable uniform growth pattern between 500 feet per second and 2,000 feet per second on the diameter. The ratio of total fragment mass to explosive mass shall be the maximum commensurate with these growth rates.
- 3 Attempt to describe analytically the physical behavior of multilayer fragments when subjected to an explosive acceleration in a radial direction.
- 4 From conclusions drawn during this program make recommendations as to the need for future studies.

This report summarizes achievements in both the experimental and analytical phases of this program; describes detailed items such as experimental arrangements, fabrication techniques, and methods of reducing and presenting data; and gives complete data on the various design concepts tested for explosively projecting multilayers of fragments in a radially expanding pattern.

CONFIDENTIAL

CONFIDENTIAL

Figure 1. Artist's Concept of Hypotehtical Space Intercept

CONFIDENTIAL

CONFIDENTIAL

SECTION 2 - EXPERIMENTAL PROGRAM

This section summarizes the experimental portion of the fragmentation warhead study. It discusses the approach followed, sets forth significant accomplishments, and describes techniques employed in the collection, reduction, and interpretation of experimental data. Detailed data pertinent to each test are included in the appendices of this report.

A. APPROACH

The experimental approach consisted of testing four basic design concepts of explosive radial fragment projectors and variations thereof (Figure 2). The prime objective was to define those concepts that offered the most potential for achieving program requirements. After establishing this goal, more extensive testing of each model was conducted to determine more thoroughly the performance characteristics and effects of parameter variations.

The warhead models were tested in an arena, using an 8-foot by 8-foot by 12-inch celotex target to collect a 32-degree sector of the fragments. The fragments in this sector were marked so that their velocity and trajectory could be correlated with their location in the warhead. Initially, the beam spray was controlled by a massive fixture (Figure 3) so that parameters affecting velocity gradients could be isolated and controlled. When velocity gradients were successfully controlled, techniques for controlling beam spray were investigated.

B. SIGNIFICANT RESULTS

Of the various design concepts initially investigated, experimental data show that the explosive-layered concept in either a spiral or concentric ring configuration (Figure 4) offers the most potential for achieving program objectives. Figure 5, a summary plot of fragment velocity gradients versus fragment row locations within the individual test models, illustrates this potential. In this presentation the various models tested are grouped under the headings of their basic design concept. The curves shown are fitted through the mean of each velocity interval determined for the fragments in that particular row location. The vertical extent of the heavy line on each fragment row indicates minimum and maximum velocities. Ideally, a straight-line slope with overlapping velocity intervals quite similar to those obtained for Round Nos. 30, 38, and 43 is sought.

CONFIDENTIAL

CONFIDENTIAL

Figure 2. Basic Projector Designs

CONFIDENTIAL

CONFIDENTIAL

Figure 3. Firing Fixture

CONFIDENTIAL

CONFIDENTIAL

Figure 4. Explosive-Layered Design Models

CONFIDENTIAL

CONFIDENTIAL

Figure 5. Preliminary Velocity Gradient Summary

CONFIDENTIAL

CONFIDENTIAL

Further experimental evidence of the performance potential of the explosive-layered concept (Basic Design IV) is illustrated by the data presented in Figure 6. These are polar sectional plots* typical of the results obtained for each basic design. These presentations show how the fragments' velocity/space distributions would appear to an observer viewing the fragment pattern formation, at a given instant in time, down the warhead model's longitudinal axis. By comparing these plots it is obvious that fragments from Basic Designs I, II, and III are projected as a solid group while those of Basic Design IV have the potential of moving in a graduated manner from some minimum velocity to a higher outer velocity. The angular banding or grouping effect evidenced on the Basic Design IV plot results from a fabrication characteristic that has subsequently been corrected.

The feasibility of the explosive-layered design concept to project multi-layers of fragments radially into uniformly distributed patterns and at controlled velocity gradients has been confirmed through supplemental experimentation. Both six- and eight-layered models have been successfully tested without fragment break-up. Figure 7 is a polar sectional plot of average fragment velocity versus space distribution for an eight-layered test model, and Figure 8 is a similar presentation for a six-layered model.

The eight-layered test model contained 8000 fragments at a total weight of 19.4 pounds and only 2 pounds of explosive. The conventional charge-to-mass ratio is 0.082, exclusive of the weight for two half-inch-thick steel end plates. The six-layered model contained 4600 fragments for a total weight of 10.6 pounds and only 1 pound of explosive. The charge-to-metal ratio is 0.080, exclusive of two half-inch-thick steel end plates. In addition, results from several tests utilizing cubic and hexagonal shaped fragments instead of spherical fragments promise even further improvements in pattern distributions and average velocities as evidenced by deeper penetrations in the recovery target.

In the velocity distributions discussed above, the overall average fragment velocities are higher than believed necessary. The feasibility of reducing the average velocity for each layer by using thinner-gaged explosive between fragment layers has been demonstrated in subsequent experiments (Figure 9).

The results described were obtained in experiments wherein the warhead models were fired in a massive test fixture, thereby confining the ends of the model to retain the fragment-beam spray angle to the order of 35 de-

*For detailed explanations of these data presentations and the techniques employed in obtaining them, refer to paragraphs E and F of this chapter.

Basic Design I
(Explosive Fragment Package)

Warhead
Center Line

Basic Design III
(Buffered Fragment Package)

Warhead
Center Line

CONFIDENTIAL

Figure 6. Basic Design Velocity-Space Distribution Comparison

CONFIDENTIAL

CONFIDENTIAL

Figure 7. Typical Eight-Layered Distribution Pattern

CONFIDENTIAL

10

Velocity ~ ft/sec

Row	Average Velocity	Computed Balls Available
X 1	255	27
Δ 2	374	44
o 3	562	60
□ 4	911	76
◇ 5	1,265	92
◇ 6	1,648	108

CONFIDENTIAL

Figure 8. Typical Six-Layered Distribution Pattern

CONFIDENTIAL

CONFIDENTIAL

Figure 9. Six-Layered Distribution Pattern - Reduced Explosive Gage,
Reduced Average Velocities

CONFIDENTIAL

CONFIDENTIAL

grees or less. Subsequent experimental data utilizing explosive end confinement and hyperboloid center bursters show promise of achieving a narrow-beam spray angle without massive end confinement. Further experimentation to confirm these data is now in progress.

Further detailed discussion of results recorded during the experimental portion of this program as applicable to each basic design group is presented in paragraph G, following discussions of other items pertinent to the understanding of the overall program.

C. BASIC WARHEAD MODEL DESIGNS

The basic model designs tested during this program are illustrated in Figure 2 and described in section A; they are further described below.

1. BASIC DESIGN I

This design is basic in that it comprises an intermixing of explosive and spherical fragments about a center explosive burster (Figure 10). The thin walls of the center burster tube are perforated to permit intimate contact of explosive within the burster tube with that in the interstices of the fragment package. Single-point end initiation with a Hercules J-2 blasting cap special (electric) is employed on all models of this design. Liquid explosive, nitromethane with a special activator, rather than a cast or pressed explosive, is used on all models of this design concept to minimize the potential hazard of inadvertent initiation from the numerous places where point contact could occur. Basic Design I is referred to as an explosive-filled fragment package.

2. BASIC DESIGN II

This design consists of an intermixing of inert filler, Laminac 4116, and spherical fragments surrounding a center explosive burster (Figure 11). Single-point end initiation is employed. The inert filler bonds individual fragments into a composite package, increases confinement, and assists in preventing fragment breakup at the time of warhead detonation (Reference 2). Basic Design II is referred to as an inert-filled fragment package.

3. BASIC DESIGN III

This design is a buildup of alternate layers of spherical fragments and inert buffer materials (Figure 12). Explosive projection is by an explosive-filled central burster tube initiated by a single detonator at one end. In concept, varying thicknesses of buffering materials are expected to absorb varying amounts of energy between fragment layers and produce the desired velocity gradients. The design is referred to as a buffered fragment pack.

CONFIDENTIAL

CONFIDENTIAL

Figure 10. Basic Design I Details

CONFIDENTIAL

CONFIDENTIAL

Figure 11. Basic Design II Details

CONFIDENTIAL

CONFIDENTIAL

Figure 12. Basic Design III Details

CONFIDENTIAL

CONFIDENTIAL

4. BASIC DESIGN IV

This design is quite similar to Basic Design III except that sheet PETN explosive is used in place of buffering materials. In this concept, the velocity gradient is to be achieved by introducing energy between the various fragment layers. Single point initiation of a central explosive burster is employed. Detonations have been successfully achieved on a number of variations wherein a line wave generator is affixed to the outermost explosive layer of a spiral winding of explosive and fragments (Figure 13). This design concept is referred to as the explosive-layered fragment pack.

5. DESIGN VARIATIONS

A number of design variations on each basic concept are possible. The more significant variations that have been investigated experimentally in this program are summarized in Table 1. These variations were selected for testing parameter extremes and not for design optimization.

6. OTHER CONCEPTS

Other design concepts that have been subjected to limited testing include inert fragment packages with tapered center bursters and inert fragment packages with explosive in the end plates only, initiated at both ends simultaneously (Figure 14). In concept, the tapered burster designs are expected to project fragments in a dish type of pattern; whereas the explosive end plate design is expected to produce a sharp compressive impulse on the fragment package and result in a random distribution of low velocity fragments.

D. MODEL FABRICATION TECHNIQUES

Design drawings and descriptions of the various types of warhead models fabricated for this program are given in the appendices. Because of the wide number of variables investigated, each test model is hand made. Discussion of the more salient features pertinent to the fabrication of these devices follows.

1. FRAGMENTS

The type of fragment employed in this program includes quarter-inch diameter steel spheres (SKF 36-300, Grade 200, Polished) and quarter-inch steel (SAE-1015) cubes. Spheres are used in the major portion of the test models because of economics and ready availability. To prevent fragment breakup at the time of detonation, the spherical fragments are heat treated to a hardness of Rockwell B-85.

CONFIDENTIAL

CONFIDENTIAL

Figure 13. Basic Design IV Details

CONFIDENTIAL

CONFIDENTIAL

TABLE 1
Possible Projector Design Variations

DESIGN I	DESIGN II	DESIGN III	DESIGN IV
<u>Variation A</u> Center explosive core and explosive in interstices	<u>Variation A</u> Buffer material between explosive and fragments	<u>Variation A</u> Variable buffer thickness - progressive thick to thin	<u>Variation A</u> Spiral configuration
<u>Variation B</u> No center explosive burster	<u>Variation B</u> Shaped explosive-fragment interface	<u>Variation B</u> Variable buffer thickness - progressive thin to thick	<u>Variation B</u> Concentric ring configuration
	<u>Variation C</u> Shaped explosive-fragment interface with buffer		<u>Variation C</u> Varied explosive thickness, thickest outside
			<u>Variation D</u> Reverse thickness on above
			<u>Variation E</u> Combine inert buffer and explosive layer

CONFIDENTIAL

CONFIDENTIAL

Figure 14. Additional Design Concepts

CONFIDENTIAL

CONFIDENTIAL

Identification marking of fragments is accomplished with a simple tooling fixture that permits a number of fragments to be marked simultaneously. Marked fragments are used only in that sector of the model where recovery is to be accomplished. Other identification processes attempted, but which proved unsatisfactory, were painting, metallic coatings, and coating with epoxy dyes where the heat of detonation and/or friction of impact obscured or removed the identifying colors.

2. FRAGMENT PACKAGING

The most expeditious packaging technique employed in the current program involves the use of cylindrical rods to shape the overall test model and configuration (Figures 15 and 16). As the rods are removed, fragments are fed through an assembly fixture into the voids. This process is repeated until the test model is fully packaged with fragments (Figure 17).

Another technique uses individual fragments packed in paper tubes, which are hand placed about the burster tube sequentially until the test model is complete (Figure 18). Unfortunately, experimental data indicated that the paper tubes had a slight but identifiable and reproducible effect upon fragment distribution. Figure 19 illustrates the fragment package.

For designs requiring higher-density packaging, small quantities of fragments are placed into the space between the center burster tube and outer warhead case which have been previously assembled to one end plate. This unit, in turn, is placed on a shake table and fragments added until the package is filled (Figure 20).

An alternate technique (Figure 21) is gluing fragments to paperboard wafers which, in turn, are stacked about the center burster tube.

For solid packages of cubic and hexagonal fragments, simple hand placement of individual fragments is used (Figure 22).

CONFIDENTIAL

CONFIDENTIAL

Figure 15. Configuration Shaping, Spiral Explosive Layering,
Cubical Fragment Preparation

Figure 16. Configuration Shaping, Concentric Ring Explosive Layering,
Spherical Fragment Preparation

CONFIDENTIAL

CONFIDENTIAL

Figure 17. Typical Explosive-Layered Test Models

CONFIDENTIAL

CONFIDENTIAL

Figure 18. Tubular Fragment Packaging

CONFIDENTIAL

CONFIDENTIAL

Figure 19. Hand Packaging of Fragments

Figure 20. Interstice Fragment Package

CONFIDENTIAL

CONFIDENTIAL

Figure 21. Wafer Packaging

Figure 22. Solid Hexagonal Package

CONFIDENTIAL

CONFIDENTIAL

3. INERT FILLER

Upon completion of the fragment packaging by the various techniques previously described, the resulting package is filled with an inert material (Laminac No. 4116 with cobalt methylethelkeytone peroxide accelerator). Aside from securing the fragments firmly in place, it is believed that this filler improves energy coupling to the fragments to prevent fragment fracture.

CAUTION: When an accelerator is mixed with the Laminac resin, heat is generated during the curing process. The explosive used in layered design models is rubberized sheet PETN which decomposes rapidly at 410°F. Based on curing temperature tests, the quantity of actuator used in all Laminac mixtures was restricted to less than 3 ml for each 328 grams of resin to keep the exothermal reaction below 375°F.

4. EXPLOSIVE

Explosives used during this program include Composition C-4, Cyclonite (RDX), liquid nitromethane, and rubberized sheet PETN (DuPont No. EL-506A). Composition C-4 and RDX are used as the explosive load for center bursters in all design models except Basic Design I, which requires the liquid nitromethane. Sheet PETN is used in all explosive layered designs and for explosive end-plate experiments.

Fabrication procedures employed for those designs using sheet PETN involve cutting the explosive to the required size and covering it completely with cloth gun tape. It has been found that this tape prevents melting of the rubberizing material in the PETN during the Laminac curing process. When necessary to increase length of the explosive sheet, edges of separate sheets are feathered and spliced.

E. TEST ARRANGEMENT AND INSTRUMENTATION

A test arena is employed throughout this program (Figure 23). In this arrangement, celotex recovery targets are used for recording fragment impact patterns and fragment penetration depths for each fragment layer. Average fragment velocities are measured with a high-speed Fastax camera Model WF-4; a Wollensak, one-millisecond, timing light, pulse generator; and an industrial timer "Goose" Model J-515. Camera framing rates vary from 5000 to 8000 frames per second depending upon the velocity anticipated for a specific test. This in turn provides data for calibration of the celotex recovery media in terms of velocity versus depth of penetration. Fragment velocities determined from a penetration calibration curve are relative measures and may differ in some small degree from absolute measurements. However, it is believed that the calibration technique is applicable to the scope of the current program and that use of more precise and expensive techniques is not warranted at this time. Care

CONFIDENTIAL

CONFIDENTIAL

Figure 23. Test Arrangement

CONFIDENTIAL

CONFIDENTIAL

has been taken to use the same type of celotex (Building Board Finish 20, Federal Specification LLL-1-535) and to pack all targets as nearly alike as possible.

The face of each recovery target is marked with a grid of one-foot squares on the face (Figure 24). Through careful correlation of fragment impact location with depth of penetration, fragment layer markings, and Fastax camera records, both fragment velocities and space distributions are determined. The sampling procedure is restricted to a recovery area of 8 feet square.

On all warhead models employing a single detonator, initiation is accomplished by a 500-volt dc supply. For test models requiring dual detonators, initiation is accomplished by a 9000-volt single-pulse unit to ensure simultaneous detonation. The basic design for this unit was obtained from the Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland (Reference 3).

A diagrammatic representation of the test plan followed throughout this program is illustrated by Figure 25.

F. DATA REDUCTION PROCEDURES

Data resulting from the previously described test arrangement includes:

- 1 Fastax film records for velocity measurements,
- 2 Still photographic records of the impact patterns,
- 3 Fragment recovery records giving fragment layer identification and depth of penetration.

The procedures employed in utilizing these data are discussed below.

1. CALIBRATION CURVE

To obtain an approximation of fragment velocity, a calibration curve relating depth of penetration to velocity was prepared. These data were obtained by projecting a number of the Fastax film records (single frame technique) and correlating range data records with a large number of individual penetration versus velocity data points. These data are then plotted and fitted by the least squares technique, assuming the form $y = ax^2 + bx + c$. Figure 26 illustrates the resulting calibration curve. Although the data scatter is broad, it provides a valid basis for statistical analysis and relative fragment velocity determination.

CONFIDENTIAL

CONFIDENTIAL

Figure 24. Recovery Target

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Figure 25. Test Plan Flow Chart

CONFIDENTIAL

Figure 26. Penetration versus Velocity Calibration Curve

CONFIDENTIAL

CONFIDENTIAL

2. IMPACT PATTERNS

Following each test firing the individual fragment impact points are numbered and permanent photographic records are made (Appendices I through V). Graphic records of the impact patterns are also made with the penetration depth of each fragment recorded along with its specific impact location.

3. VELOCITY GRADIENT PLOTS

The average velocity of each layer is plotted to present graphically the velocity gradient between layers and the range of velocities for each layer. These plots are illustrated by Figure 5 and described in paragraph B. They are also presented in the appendices for each model tested.

By reviewing and comparing these gradient plots, evidence as to the performance characteristics of a given design is obtained. Ideally, a straight line slope and overlapping row dispersion is sought. The exact slope and dispersion varies according to the number of fragment layers in a particular design and the maximum velocities required.

4. POLAR DISTRIBUTION PLOTS

Polar plots (Figure 6) are prepared to illustrate thoroughly the velocity and space distribution performance of a given test model*. This presentation shows how the fragment pattern would appear to an observer viewing its formation, at a given instant, along the warhead's longitudinal axis. Average fragment velocities are plotted radially along with angular positions and fragment row location as shown by the coded data points. Velocities are determined from the previously described calibration curve and angular position from measurements of fragment impact locations on the face of the recovery target. By multiplying the fragment velocity by appropriate time factors, spatial distribution of individual fragments can be determined. The velocities recorded are calculated as the average velocity between the warhead test model and recovery target location, 14 feet. These velocities have not been corrected for air retardation. Considering the short distance involved, the error introduced by using these velocity values is approximately 1 percent less than the initial velocities within the velocity interval of interest.

*These plots are prepared only if a review of the velocity gradient plots described in paragraph 3 above shows that they are necessary.

CONFIDENTIAL

CONFIDENTIAL

G. DISCUSSION OF RESULTS

The most significant results of this experimental program are discussed in paragraph B of this section and briefly summarized below:

- 1 Of the various design concepts investigated, the explosive layered approach offers the most potential for achieving program objectives;
- 2 Feasibility of the explosive layered concept to project multilayers of fragments radially into uniform patterns and at controlled velocity gradients has been confirmed with six- and eight-layered test models without fragment damage.
- 3 Cubic and hexagonal fragments promise improvement in coupling efficiencies and pattern distributions.
- 4 Reduced gage explosive or added fragment layers between explosive sheets promises a feasible means of reducing overall average fragment velocities.
- 5 Fragment beam spray angle can be controlled through massive end confinement. However, explosive end plates and shaped center bursters such as hyperboloid configurations promise feasible means of achieving very narrow beam spray angles without excessive parasitic weight.

Other results based on the data collected in this program, as applicable to each basic design concept, are discussed below.

1. BASIC DESIGN I (EXPLOSIVE FRAGMENT PACKAGE)

Fragments from these test models tend to move as a group in a torus type of pattern as though projected by the central burster only. Removal of the center burster resulted in low order detonations, very low fragment velocities, and undefinable distribution patterns. Confirmation of the low order detonation was achieved in part through color photography of the detonation process and showed very black smoke which, for this explosive, is typical of burning rather than high order detonation. Reproducible results for a similar individual test model were unsatisfactory as illustrated by the data presented in Appendix I.

2. BASIC DESIGN II (INERT FRAGMENT PACKAGE)

Of the interface attenuation materials tested, thick aluminum tubing resulted in the lowest overall velocities but no gradient. Rubber was effective in reducing velocities; whereas an air cavity provided the greatest gradient potential, yet was insufficient to meet program objectives. Since no significant differences were observed with any of these materials, a

CONFIDENTIAL

CONFIDENTIAL

combination burster tube comprised of walled aluminum and a single wrap of rubber was selected for remaining test models of this design series.

Other tests conducted included use of large diameter (1 1/2 inch) center bursters, which resulted in damage to the two innermost fragment rows, and hyperboloid center bursters, which provided reduced beam spray angles. Impact patterns indicated distinct vertical banding effects, proven to be the result of attenuation due to packaging individual fragments in paper tubes.

Because of these results and since the detailed data presented in Appendix II show the fragment layers to move essentially as a group with little to no velocity gradient between layers, further consideration of this concept was discontinued.

3. BASIC DESIGN III (BUFFERED FRAGMENT PACKAGE)

Tests of aluminum, rubber, and combinations of these materials as energy absorbers between the fragment layers resulted in the fragments being dispersed as a solid group with virtually no velocity gradients. Variations in thicknesses of materials gave essentially the same results. Based on these observations and detailed data presented in Appendix III, it was concluded that the buffered layered approach was ineffective in the control of velocity gradients.

4. BASIC DESIGN IV (EXPLOSIVE-LAYERED FRAGMENT PACKAGE)

All models of this concept that have been tested (spiral or concentric ring configurations) indicate an excellent potential for achieving the desired velocity gradient control and pattern distribution. Aside from the more significant results pertinent to this design concept, which have been described in paragraph B of this section, other applicable observations on the test performed are listed below:

- 1 Good gradient and pattern distributions have been achieved by both center burster and outside end-line initiation.
- 2 A 5/8-inch diameter C-4 explosive burster as employed in the concentric ring design models appears to be minimum for reliable detonation; 1/2-inch diameter, C-4 bursters have resulted in low order detonations and possibly deflagration of subsequent explosive layers.
- 3 A 1/2-inch diameter, RDX burster has been successfully employed in both six- and eight-layered test models. (To keep inner fragment row velocities to a minimum it is desirable to have a minimum explosive force in the center burster initiation concept.)

CONFIDENTIAL

CONFIDENTIAL

- 4 Removal of the center explosive burster tube and utilizing outside end-line initiation results in desirable decreased velocities of the inner fragment row as compared to designs utilizing center bursters.
- 5 Velocities of various fragment layers have been changed by varying the thickness of explosive associated with that particular layer.
- 6 In nearly all models tested, overall average fragment velocities are higher than program objectives. However, line-initiated thin-gaged explosives (0.042 and 0.025) have been utilized to reduce average velocities.
- 7 Spiral, explosive layered models with external end-line initiation show a tendency to distinct velocity separations between fragment layers, with small dispersions between minimum and maximum velocities for any given layer. This effect is not as pronounced with a similar center-initiated model. Indications are that center initiation may cause a "mixing" effect, probably due to collisions and energy exchange between fragments in different layers, thereby resulting in a more continuous overall velocity distribution.

Detailed data pertinent to all models tested on this concept are given in Appendix IV.

5. OTHER CONCEPTS

Results of all testing with the tapered burster design have resulted in the fragment package moving as a group without any gradient potential. In these designs, fragment layers are marked from top to bottom of the fragment package; whereas layer identification in the previously discussed concepts was outward from the innermost row. This concept was expected to produce a dish type of pattern with those fragments having the greatest height of explosive achieving the highest velocities. The inadequate results thus far obtained may be a function of the explosive column diameter, column shape, length-to-diameter effects, or method of initiation. Further investigations are required before conclusive results can be formulated.

Only two tests of the explosive end-impulse concept have been accomplished. Data are very sketchy but indicate a potential for achieving a random distribution with very low fragment velocities and large beam spray angles. Fragment velocities were so low that only small indentations in the recovery target were obtained. Also, large numbers of fragments were found in the ground plane between the warhead and recovery target. Again, further investigations of this concept are required to permit conclusive evaluation.

CONFIDENTIAL

CONFIDENTIAL

H. CURRENT PROGRAM EXPERIMENTATION

Experimentation to devise practical means of initiating thin-gaged (0.042 and 0.025) sheet explosive is currently in progress. External end-line initiators have been effectively employed; however, attempts to initiate these thin sheet explosives with the center burster concept have resulted in deflagrations and unburned PETN as evidenced by instrumentation and fragments of PETN in the arena.

Experiments into beam spray control without massive end confinement are also in progress. Although detailed data are not available at this time, two explosive-layered test models shaped as hyperboloids have been fired; all fragments impacted within the 8-foot recovery target, indicating considerable improvement in beam spray angle.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

SECTION 3 - ANALYTICAL PROGRAM

This section describes the development of computational procedures currently used to predict fragment speeds expected during the initial firing of a test round. The objective is to arrive at this prediction by considering the design geometry of a specific model as well as the physical properties of the explosive and fabrication materials.

To meet this objective many approaches have been conceived and explored. Some of these have provided useful quantitative information and guidelines that highlighted feasible alternatives at times when it seemed that an impasse had been reached. A chronological accounting of these developments and subsequent progress follows.

A. HYDRODYNAMIC SHOCK CONCEPT

In the beginning of this program, an attempt was made to predict the results to be expected using various combinations of layers of explosives, layers of balls, and layers of liner material. The precept forming the basis for these original predictions is demonstrated by the interaction geometry depicted in Figure 27.

Figure 27. Interaction Geometry

The physical description of the presumed situation is as follows. The explosive liner and liner-ball layer interfaces represent contact discontinuities that separate regions of different densities and equations of state. When the detonation wave of the explosive reaches the explosive-liner boundary, an instantaneous adjustment sends a forward moving shock into the liner and a reflected wave back into the gaseous detonation products. This reflected wave constitutes a compressional shock because the shock impedance of the detonation products is less than that of the liner. When the shock in the liner reaches the layer of fragments, it is assumed that a similar adjustment occurs; however, the reflected wave in the liner can be one of either rarefaction or compression, depending on the relative magnitudes of the shock impedances of the materials of the fragments and liners.

CONFIDENTIAL

CONFIDENTIAL

The problem consisted of ascertaining the magnitudes of pressures, particle speeds, and shock speeds taking into account the fact that, in general, several layers of fragments would be encountered. (For computational purposes, no more than four layers of fragment were initially considered.) In undertaking the analysis, Chapman-Jouquet conditions were assumed at the detonation front, and shock attenuation was neglected.

Under the above restrictions, the conditions ahead of and behind a plane shock front are connected by Rankine-Hugoniot equations:

$$\frac{U - u_1}{V_1} = \frac{U - u_2}{V_2} = M \quad (1)$$

$$P_2 = P_1 = \frac{(u_2 - u_1)^2}{V_1 - V_2} \quad (2)$$

$$E_2 - E_1 = \frac{1}{2} (P_1 + P_2) (V_1 - V_2) \quad (3)$$

where:

U = shock speed

u = particle speed

P = pressure

V = specific volume

E = specific internal energy

M = mass flux across the front.

Subscript 1 refers to the region ahead of the shock.

Subscript 2 refers to the region behind the shock.

Along with these classical equations, an equation of state representing the materials at a boundary is needed. It was assumed that this equation had the form:

$$E = E(P, V) = (\gamma - 1)^{-1} PV \quad (4)$$

Upon substituting Equation (4) into Equation (3), an equation is obtained that can be used to relate P_2 to V_2 provided P_1 and V_1 are held fixed. A plot of P_2 versus V_2 generates the classical Hugoniot curve. Using the initial states denoted by the relations $P_1 = 0$, $V_1 = V_0$, and $u_1 = 0$ yields a curve that can be referred to as the (P,u) curve.

Those states (P,V) that can be reached through a backward facing wave rarefaction are known to lie on an adiabat defined by the relation:

CONFIDENTIAL

CONFIDENTIAL

$$\left(\frac{\partial E(P,V)}{\partial V} \right)_S = -P \quad (5)$$

where, in general:

$$u_2 - \int_1^2 \sqrt{-\left(\frac{\partial P}{\partial V} \right)_S} dV = \text{a constant.} \quad (6)$$

Hence, the locus of possible (P, u) state for the rarefaction can be obtained by eliminating V from Equations (5) and (6).

This hypothesis has been used to generate curves - available in the literature of explosive phenomena - of the type P versus u and U versus u for several combinations of materials and explosives. These curves were used to obtain preliminary estimates of the speeds of the various layers of fragments in test rounds that were fabricated and test fired. Examples and inferences based on these curves are discussed subsequently.

Using RDX explosive to approximate composition C4 explosive, P versus u and U versus u curves were used to estimate the pressures and particle speeds transmitted to single layers of steel balls through various types of plane shaped liners placed between the balls and the explosive. The results showed that changing the liner material introduced changes in the speed of the balls; however, these induced changes were too slight to provide effective control of fragment speeds through the use of different liner materials. This was confirmed through experimentation with Basic Design III.

Another example investigated toward defining feasible design models resulted in an effective possible combination. Assuming that four layers of steel fragments were adjacent to four explosive layers consisting of 70/30 tetrytol, cast composition B, RDX, and 70/23 octal, respectively, it was found that the innermost explosive layer should consist of 70/23 octal. This in turn should be followed by a layer of fragments, a layer of RDX explosive, a layer of fragments, a layer of composition B explosive, a layer of fragments, a layer of 70/30 tetrytol, and a layer of fragments in that order. It was found that the average initial speed of the layers of fragments, beginning with the outermost layer and moving inward, would be 3031, 188, 188, and 285 feet per second respectively if all explosive layers are detonated simultaneously. Although it was anticipated that these numbers would not agree with those obtained in a firing test, the solution indicated that some control over experimental results could be achieved by using layers of different types of explosives. By analogy, the idea of using different layer thicknesses of one type of explosive between the layers of fragments was conceived (Basic Design IV). Unfortunately, the available curves cannot be used easily and conveniently to conduct an experimental design program that complies with the test objectives and experimental

CONFIDENTIAL

CONFIDENTIAL

procedures, e.g., no motion is imparted to a fragment if the explosive in the layers ahead of or behind the fragment are the same, regardless of the magnitude of the ratio of their thicknesses. Consequently, an attempt was made to provide an alternate technique that could be expected to yield useful results. The first alternative considered was based on the spring-mass concept, and experiments to test its feasibility were incorporated into the test program. The results of this investigation are discussed in the paragraph below.

B. SPRING-MASS SYSTEM CONCEPT

In this approach, the equation of motion for a fragment in the i^{th} fragment layer of a multilayer ring fragment package is tentatively written as follows:

$$m_i \ddot{X}_i = K_i (X_i - X_{i-1}) - D_i \dot{X}_i - F_{i+1} \quad (7)$$

where:

m = mass of i^{th} fragment layer

\ddot{X}_i = instantaneous acceleration of i^{th} fragment layer

K_i = effective spring constant of i^{th} fragment layer

X_i = position of i^{th} fragment layer

X_{i-1} = position of $(i-1)^{\text{th}}$ fragment layer

D_i = effective damping factor of i^{th} fragment layer

\dot{X}_i = instantaneous speed of i^{th} fragment layer

F_{i+1} = reaction force of $(i+1)^{\text{th}}$ layer.

As a basis for considering this approach it was anticipated that, given a round design having a center burster surrounded only by layered fragment rings, the succession of events following round detonation could be described in this manner. For a short time, all fragment layers would move away from the detonation center as a single unit and the inertia of the fragments reacting with the impulsive force could be used to store up compressive elastic energy between the respective rings. After the impulsive force is largely dissipated, the fragments in the rings subsequently release the stored up energy, thereby imparting a speed gradient between the successive rings. If this speed gradient is controllable and sufficient for the purposes of this study, then it seems reasonable to presume that the spring-mass concept should simulate the experimental environment adequately insofar as prediction of fragment speeds is the primary re-

CONFIDENTIAL

CONFIDENTIAL

quirement. To ascertain if this hypothesis were reasonable, several test rounds were fabricated and fired. The conclusions based on interpreting the test data (e.g., Test 2) were:

- 1 In the speed range of interest, there was no significant speed gradient between fragment rings.
- 2 In a higher speed range, a slight speed gradient between fragment rings is apparent.

These conclusions indicated that the spring-mass system concept does not apply in the speed range of interest. Again, it seemed that the most obvious means of controlling speed gradients would be to include explosive layers between the fragment rings. That the spring-mass system analogy reasonably simulates the interaction phenomena in the detonation of explosive layered rounds was considered to be extremely doubtful; consequently, this concept was discarded and has not been used to test results.

C. SEMIEMPERICAL APPROACH

The method of analysis eventually used has been referred to as a semi-empirical approach. It utilizes both simple empirical and hypothetical concepts to obtain useful design criteria. In general, the inputs include as many physical properties of the model design as feasible such as explosive detonation properties, loading density, round design geometry, fragment material and fragment shape and experimental data to compute measures of empirical constants. These constants account for variations in round-to-round performance, day-to-day effects, initiation energy, and other factors too complex to be accounted for in a more systematic manner.

As an introduction to the semiempirical approach, let the unbalanced force appearing at the mass center of a fragment in the i th layer be defined as shown in Figure 28.

Figure 28. Detonation Products and Medium Interaction with Spherical Fragment

CONFIDENTIAL

CONFIDENTIAL

Considering Figure 28, the unbalanced force appearing at the mass center of the fragment and caused by the pressure on the element of area dS can be written:

$$dF_i = (P_i - \sigma_i) dS \cos \theta = (P_i - \sigma_i) \pi d^2 \cos \theta \sin \theta d\theta = \frac{\pi d^2}{2} (P_i - \sigma_i) \cos \theta \sin \theta d\theta.$$

The total unbalanced force, F_i can then be written:

$$F_i = \frac{\pi d^2}{2} (P_i - \sigma_i) \int_0^{2\pi} \sin \theta \cos \theta d\theta = \pi d^2 (P_i - \sigma_i) \quad (8)$$

where:

P_i = the pressure on the surface of a fragment in the i^{th} layer caused by i^{th} explosive layer detonations

σ_i = the reaction pressure due to the medium properties of inertia and elasticity

d = the fragment (sphere) diameter (0.25 in.)

Under the assumptions that $\sigma_i \ll P_i$ and P_i is defined by the relation:

$$P_i = \frac{\rho_i D_i^2}{g}, \quad (9)$$

the unbalanced force becomes

$$F_i = \pi d^2 \rho_i D_i^2 g^{-1} \quad (10)$$

where:

$g = 32.2 \text{ ft/sec}^2$

ρ_i = packing density of i^{th} explosive layer

D_i = detonation rate of explosive in i^{th} layer.

To extend this analysis to a multilayer round, a four-layer configuration is used for demonstration purposes. The static geometry and unbalanced force interactions during the explosive process are depicted in Figure 29.

F_1 , F_2 , F_3 , and F_4 are the forces exerted on the fragments by the respective explosive columns.

r_1 , r_2 , r_3 , and r_4 are the distances from the round center line to the outermost edge of the respective explosive columns.

CONFIDENTIAL

CONFIDENTIAL

Figure 29. Static Geometry and Unbalanced Force Interaction

Rings I, II, III, and IV denote the rings of the respective fragments.

Let G_I , G_{II} , G_{III} , and G_{IV} be the unbalanced forces on the fragment appearing in each of the respective rings. Then, by definition, the following set of equations apply:

$$\begin{aligned}
 G_I &= K_1 F_1 - K_2 F_2 - K_3 F_3 - K_4 F_4 = m_I \ddot{x}_I \\
 G_{II} &= K_1 F_1 + K_2 F_2 - K_3 F_3 - K_4 F_4 = m_{II} \ddot{x}_{II} \\
 G_{III} &= K_1 F_1 + K_2 F_2 + K_3 F_3 - K_4 F_4 = m_{III} \ddot{x}_{III} \\
 G_{IV} &= K_1 F_1 + K_2 F_2 + K_3 F_3 + K_4 F_4 = m_{IV} \ddot{x}_{IV}
 \end{aligned} \quad (\text{Set 1})$$

where: K_1 , K_2 , K_3 , and K_4 are constants to be computed from experimental data.

m_I , m_{II} , m_{III} , and m_{IV} are the masses of the fragment in the respective ring columns provided all fragments have the same mass. (In the experimental program all fragments in all ring columns were made of steel and all had the same dimensions. Consequently, m_I , m_{II} , m_{III} , and m_{IV} can each be replaced with a common mass denoted by the symbol m .)

Replacing all the m factors appearing in the equations of Set 1 with the common symbol m , defining m by the relation:

$$m = \frac{\pi d^3 \rho}{6g}$$

CONFIDENTIAL

CONFIDENTIAL

substituting Equation (10) into Set 1, and then integrating the resultant set with respect to time leads to the equations of Set 2

$$\begin{aligned}\dot{X}_I &= 6(\rho d)^{-1} (K_1 \rho_1 \dot{D}_1^2 - K_2 \rho_2 \dot{D}_2^2 - K_3 \rho_3 \dot{D}_3^2 - K_4 \rho_4 \dot{D}_4^2) \Delta t'_I \\ \dot{X}_{II} &= 6(\rho d)^{-1} (K_1 \rho_1 \dot{D}_1^2 + K_2 \rho_2 \dot{D}_2^2 - K_3 \rho_3 \dot{D}_3^2 - K_4 \rho_4 \dot{D}_4^2) \Delta t'_{II} \\ \dot{X}_{III} &= 6(\rho d)^{-1} (K_1 \rho_1 \dot{D}_1^2 + K_2 \rho_2 \dot{D}_2^2 + K_3 \rho_3 \dot{D}_3^2 - K_4 \rho_4 \dot{D}_4^2) \Delta t'_{III} \quad (\text{Set 2}) \\ \dot{X}_{IV} &= 6(\rho d)^{-1} (K_1 \rho_1 \dot{D}_1^2 + K_2 \rho_2 \dot{D}_2^2 + K_3 \rho_3 \dot{D}_3^2 + K_4 \rho_4 \dot{D}_4^2) \Delta t'_{IV}\end{aligned}$$

where:

\dot{X}_I , \dot{X}_{II} , \dot{X}_{III} , and \dot{X}_{IV} represent speeds of the fragments in respective ring columns.

$\Delta t'_I$, $\Delta t'_{II}$, $\Delta t'_{III}$, and $\Delta t'_{IV}$ are the effective impulsive loading times influencing the motion of the fragment in respective ring columns.

ρ is the fragment density. (In this study, $\rho = 7.85$ gm/cc).

Introducing the assumptions that:

- 1 The impulsive loading times are all equal and proportional to $d\Delta t/D_i$ (Δt = a constant),
- 2 Pressure exerted on a fragment is proportional to the amount of explosive in a layer of thickness d ,
- 3 Speeds are proportional to the dimensionless constant $(c/m)^b$ leads to the computability equation listed as Set 3.

$$\begin{aligned}K_1 \rho_1 \dot{D}_1 - K_2 \rho_2 \dot{D}_2 - K_3 \rho_3 \dot{D}_3 - K_4 \rho_4 \dot{D}_4 &= (\rho/6) U_I \\ K_1 \rho_1 \dot{D}_1 + K_2 \rho_2 \dot{D}_2 - K_3 \rho_3 \dot{D}_3 - K_4 \rho_4 \dot{D}_4 &= (\rho/6) U_{II} \quad (\text{Set 3}) \\ K_1 \rho_1 \dot{D}_1 + K_2 \rho_2 \dot{D}_2 + K_3 \rho_3 \dot{D}_3 - K_4 \rho_4 \dot{D}_4 &= (\rho/6) U_{III} \\ K_1 \rho_1 \dot{D}_1 + K_2 \rho_2 \dot{D}_2 + K_3 \rho_3 \dot{D}_3 + K_4 \rho_4 \dot{D}_4 &= (\rho/6) U_{IV}\end{aligned}$$

where:

$$U_j = \dot{X}_j \left(\frac{M}{C} \right)_j^b.$$

CONFIDENTIAL

CONFIDENTIAL

Solving these equations for the constants gives the following results:

$$K_1 = \frac{\rho^*(U_I^* + U_{IV}^*)}{12 \rho_1^* D_1^*} \quad K_3 = \frac{\rho^*(U_{III}^* - U_{II}^*)}{12 \rho_1^* D_1^*}$$

$$K_2 = \frac{\rho^*(U_{II}^* - U_I^*)}{12 \rho_2^* D_2^*} \quad K_4 = \frac{\rho^*(U_{IV}^* - U_{III}^*)}{12 \rho_4^* D_4^*}$$

and $U_j^* = \dot{X}_j^* \left(\frac{M^*}{C^*} \right)_j^b$.

All stated values represent actual design and experimental results that have been observed in fabricating and firing four layered test models.

Using Round No. 34 as a normalizing round and using a value of unity for b, these equations were used to predict fragment speeds to be expected in firing Round No. 35, 38, and 43. The results are shown in Table 2 and the results of an error analysis and their computations are shown in Tables 3 and 4. Comparing the entries leads to the following conclusions:

TABLE 2

Speed Performance Comparison
(Explosive Layered Design - Concentric Ring Type)

Round No.	Condition	Average Speed (feet per second)			
		Ring 1	Ring 2	Ring 3	Ring 4
35	Predicted	431	878	1,315	1,674
	Experimental	140	1,080	1,250	1,840
38	Predicted	268	530	1,008	2,373
	Experimental	333	484	882	1,781
43	Predicted	212	389	775	1,567
	Experimental	267	336	1,189	1,863

CONFIDENTIAL

CONFIDENTIAL

TABLE 3
Speed Differences

Round No.	Average Experimental Speed Minus Predicted Speed			
	Ring 1	Ring 2	Ring 3	Ring 4
35	-281	202	-65	166
38	65	-46	-126	-592
43	55	-53	414	286

Round No.	Standard Deviations (feet per second) in Predicted Values			
	Ring 1	Ring 2	Ring 3	Ring 4
35	67	232	454	753
38	71	140	348	1,067
43	33	102	268	704

- 1 Nine of the predicted values lie within one standard deviation of the computed error.
- 2 Two of the remaining predicted values lie within two standard deviations of the computed error.
- 3 Only one fragment was recovered from layer one of Round No. 35; hence, a comparison of predicted and experimental results for this layer is meaningless.

The equations used to compute the dimensionless constant C/M in performing this analysis are:

$$\left(\frac{C}{M}\right)_I = \frac{6 \rho_1 r_1^2 L_1}{\rho d^2 \sum_{i=1}^4 n_i + 6 (\rho_A \ell_1 + \rho_R \ell_2)} \quad (11)$$

$$\left(\frac{C}{M}\right)_{II} = \left(\frac{C}{M}\right)_I + \frac{6 \rho_2 L_2}{\rho d^2 \sum_{i=2}^4 n_i} \quad (12)$$

CONFIDENTIAL

CONFIDENTIAL

$$\left(\frac{C}{M}\right)_{III} = \left(\frac{C}{M}\right)_{II} + \frac{6 \rho_3 L_3}{\rho d^2 \sum_{i=3}^4 n_i} \quad (13)$$

$$\left(\frac{C}{M}\right)_{IV} = \left(\frac{C}{M}\right)_{III} + \frac{6 \rho_4 L_4}{\rho d^2 n_4} \quad (14)$$

where:

$$L_1 = 1$$

$$L_2 = r_2^2 - (r_1 + d + 0.065)^2$$

$$L_3 = r_3^2 - (r_2 + d)^2$$

$$L_4 = r_4^2 - (r_3 + d)^2$$

$$l_1 = (r_1 + 0.005) - r_1^2$$

$$l_2 = (r_1 + 0.065)^2 - (r_1 + 0.005)^2$$

ρ_{AL} = density of aluminum liner (2.699 gm/cc)

ρ_R = density of rubber lining (1.507 gm/cc)

N_i = number of fragment in i^{th} ring.

A list of constants peculiar to Round No. 34 follows:

$$\rho_1^* = 1.66 \text{ gm/cc}$$

$$X_{II}^* = 557 \text{ ft/sec}$$

$$\rho_2^* = \rho_3^* = \rho_4^* = 1.5 \text{ gm/cc}$$

$$X_{III}^* = 785 \text{ ft/sec}$$

$$r_1 = 0.375 \text{ in.}$$

$$X_{IV}^* = 1,252 \text{ ft/sec}$$

$$r_2 = 0.78 \text{ in.}$$

$$n_1 = 14$$

$$r_3 = 1.11 \text{ in.}$$

$$n_2 = 22$$

$$r_4 = 1.44 \text{ in.}$$

$$n_3 = 31$$

$$X_I^* = 475 \text{ ft/sec}$$

$$n_4 = 39$$

CONFIDENTIAL

CONFIDENTIAL

Although the results given by this procedure are encouraging, a major deficiency exists. Neither the results nor the procedure can be used to predict the experimental speeds to be expected in firing a round fabricated with more than four different ring layers of fragments. Before the procedure can be used to predict fragment speeds generated by exploding a round fabricated with five different ring layers, a five-layered round must be fabricated and fired. Because of this shortcoming, an attempt was made to modify the analysis to provide a procedure that could be used to predict fragment speeds for any hypothesized number of ring layers without fabricating and firing a test round. This extension was based on the following considerations. Assuming a normal distribution holds for the experimental observations given in Table 2, the probability that a better comparison is achieved by chance, between the experimental and predicted values is approximately 0.06. This means there is insufficient reason for rejecting the null hypothesis defined by the statement: The means of both the experimental and predicted values are equal. This result implies that the form of the equations used gives reasonable agreement with test data. This conclusion led to a decision to use the least squares method and fit the data to a general equation having the form

$$x_j = U_j \left(\frac{C}{M} \right)^b$$

Because U_j and b are constants and a general equation relating speed to (C/M) was deemed necessary, the equation actually used (note notational change) in this latter phase was

$$V = A \left(\frac{C}{M} \right)^b \quad (15)$$

where:

V = the average fragment speed in feet per second

$\frac{C}{M}$ = dimensionless quantity analogue to the conventional charge-to-mass ratio concept

A, b = constants to be computed using observed test results.

To compute the quantities A and b , it is first necessary to compute C/M values. Because two types of rounds (i.e., rounds incorporating either concentric rings or a spiral design) were under test, two procedures for computing C/M values were needed. Those used are described in paragraphs 1 and 2 below.

1. CONCENTRIC RING PROCEDURE

Figure 30 depicts a cross sectional sketch of this design concept and consists of a central explosive burster surrounded by alternate rings of

CONFIDENTIAL

CONFIDENTIAL

Concentric Ring Concept Spiral Configuration Concept

Figure 30. Cross Sections of Explosive Layered Concepts

CONFIDENTIAL

CONFIDENTIAL

steel balls and PETN explosive. The innermost ring of balls is designed as Ring 1, its C/M as $(C/M)_1$, the next ring of balls encountered in moving away from the center is designated as Ring 2, its C/M as $(C/M)_2$, . . . , etc. Equations used to compute values for these parameters are essentially the same as Equations (11) through (14). (As the forms used are slightly different, they are included herein to ensure completeness.)

$$\left(\frac{C}{M}\right)_1 = 6 \rho_{CB} r_1^2 / d \rho \sum_{j=1}^l n_j \quad (16)$$

and, in general, for i ranging from 2 to l :

$$\left(\frac{C}{M}\right)_i = \left(\frac{C}{M}\right)_{i-1} + \frac{6 \rho_P [r_i - (r_i - T_i)^2]}{d^2 \rho \sum_{j=1}^l n_j} \quad (17)$$

where:

r_i = distance from round centerline to outer edge of i^{th} layer of PETN sheet (in.)
 r_1 = radius of center burster (in.)
 T_i = width of i^{th} layer PETN sheet (in.)
 ρ_{CB} = density of center burster (gm/cc)
 ρ_P = density of PETN (gm/cc)
 ρ = density of steel (gm/cc)
 d = steel ball diameter (in.)
 l = number of rings in round
 N_i = number of balls in j^{th} ring (e.g., $N_j = 2 \pi r_{Bj} / d$)

2. SPIRAL CONFIGURATION PROCEDURE

This configuration is also illustrated in Figure 30. It consists of an explosive center burster, a continuous sheet of PETN explosive, and ball shaped fragments, which are wound about the center burster to form a spiral. The same basic computational procedure is used for spiral rounds as for concentric rounds. The principal difference is in the equations used to compute C/M values. For spiral rounds, these assume the form:

CONFIDENTIAL

CONFIDENTIAL

$$\left(\frac{C}{M}\right)_1 = \frac{6 r_1^2 \rho_{CB}}{L_B d \rho} + \frac{6 L_{C_1} T_1 \rho_P}{L_B d \rho} \quad (18)$$

and, in general, for i ranging from 2 to

$$\left(\frac{C}{M}\right)_i = \left(\frac{C}{M}\right)_{i-1} + \frac{6 L_{C_i} r_1 \rho_P}{\pi d \rho (L_B - L_{B_1} - \dots - L_{B_{i-1}})} \quad (19)$$

where:

r_1 , T_1 , ρ_{CB} , ρ_P , ρ , d , and ℓ are defined in the concentric ring procedure section.

L_{C_i} = length of i^{th} loop of the PETN spiral

L_{B_i} = length of i^{th} loop of the fragment spiral

L_B = length of the fragment spiral.

If the PETN thickness is uniform (i.e., $T_1 = T_2 = \dots = T_i = T$), then the following equations can be used to compute measures of L_{C_i} , L_{B_i} and L_B .

$$L_{C_i} = \frac{1}{a} \int_{r_C}^{(r_C + 2\pi i a)} (r_2^2 + a^2)^{\frac{1}{2}} dr - \sum_{k=1}^{i-1} L_{C_k}$$

$$\frac{1}{2a} r^2 \left| \begin{array}{l} r_C + 2\pi i a \\ r_C \end{array} \right. - \sum_{k=1}^{i-1} L_{C_k} \quad (20)$$

$$L_{B_i} = \frac{1}{a} \int_{r_B}^{(r_B + 2\pi i a)} (r^2 + a^2)^{\frac{1}{2}} dr - \sum_{k=1}^{i-1} L_{B_k} \approx$$

$$\frac{r^2}{2a} \left| \begin{array}{l} r_B + 2\pi i a \\ r_B \end{array} \right. - \sum_{k=1}^{i-1} L_{B_k} \quad (21)$$

$$L_B = \sum_{i=1}^{\ell} L_{B_i} \quad (22)$$

CONFIDENTIAL

CONFIDENTIAL

where:

$$a = \frac{(d + T)}{2\pi} \quad (23)$$

$$r_C = r_1 + \frac{T}{2} \quad (24)$$

$$r_B = r_1 + T + \frac{d}{2} \quad (25)$$

If the thickness of PETN varies from loop to loop in the PETN spiral, the length of each loop must be computed separately using the relations:

$$L_{C_i} = \frac{1}{a_i} \int_{r_{C_i}}^{(r_{C_i} + 2\pi a_i)} (r^2 + a^2)^{\frac{1}{2}} dr \approx \frac{1}{2a_i} r^2 \left|_{r_{C_i}}^{r_{C_i} + 2\pi a_i} \right. \quad (26)$$

$$L_{B_i} = \frac{1}{a_i} \int_{r_{B_i}}^{(r_{B_i} + 2\pi a_i)} (r^2 + a^2)^{\frac{1}{2}} dr \approx \frac{1}{2a_i} r^2 \left|_{r_{B_i}}^{r_{B_i} + 2\pi a_i} \right. \quad (27)$$

where:

r_{C_i} is the distance from the center burster centerline to the center of the PETN sheet at the origin of the i^{th} loop in the spiral;

r_{B_i} is the distance from the center burster centerline to the center of the balls at the origin of the i^{th} loop in the spiral;

$$a_i = \frac{(d + T_i)}{2} \quad (28)$$

This completes the description of the procedures to be used in computing values of C/M to be used in obtaining estimates of the constants A and b of Equation (15). To perform this latter operation, Equation (15) is transformed to:

$$\log V = \log A + b \log \left(\frac{C}{M} \right). \quad (29)$$

CONFIDENTIAL

CONFIDENTIAL

Whence, the normalizing equation defining A and b are:

$$\sum_{s=1}^w \log V_s = w \log A + b \sum_{s=1}^w \log \left(\frac{C}{M} \right)_s \quad (30)$$

$$\sum_{s=1}^w (\log V_s) \log \left(\frac{C}{M} \right)_s = (\log A) \sum_{s=1}^w \log \left(\frac{C}{M} \right)_s + b \sum_{s=1}^w \log \left(\frac{C}{M} \right)_s^2 \quad (31)$$

where w is the total number of rings for all rounds. Introducing observed speeds and corresponding values of C/M into Equations (30) and (31), values A and b were computed for both the concentric ring type round and the spiral type round. Substituting these numbers into Equation (15) yields, as the respective prediction equations, the following:

$$\text{Concentric round: } V = 3240 \left(\frac{C}{M} \right)^{0.579} \quad (32)$$

$$\text{Spiral round: } V = 6320 \left(\frac{C}{M} \right)^{0.733} \quad (33)$$

Figure 31 shows the locus of these equations and has been used to provide the comparative values shown in Table 5. Because a statistical analysis of the goodness of fit between predicted and experimental observations has not yet been conducted, no statement concerning the validity of the results can be made at this time. The following observation is made without recourse to statistical analysis. From the experimental data, the fragment speeds within layers can be expected to vary over a range of 200 feet per second. If subsequent analysis and testing confirm that a difference of 200 feet per second between prediction and experiment is acceptable, the number of acceptable comparisons is greater than the number of non-acceptable comparisons. If a difference of 250 feet per second is proven acceptable, the number of acceptable comparisons exceeds the non-acceptable comparisons by a ratio of about three to one. This is sufficient to indicate that the semiempirical approach is a useful basis for the design of test rounds and the prediction of fragment layer speeds.

CONFIDENTIAL

CONFIDENTIAL

Figure 31. Equation Locus

CONFIDENTIAL

CONFIDENTIAL

TABLE 5
Results Comparison

Round No.	Condition	Layer 1	Average Fragment Velocities (Feet per Second)					
			Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7
30	Experimental	No hits	380	820	1800			
	Predicted	330	640	1250	2400			
48	Experimental	259	429	1038	1575			
	Predicted	345	640	1075	1925			
56	Experimental	320	332	534	886	1221	1605	
	Predicted	210	340	500	680	950	1450	
60	Experimental	No hits	203	879	2294			
	Predicted	360	550	1050	1750			
63	Experimental	255	374	562	911	1265	1688	
	Predicted	210	380	600	900	1350	2150	
65	Experimental	258	278	372	595	943	1266	
	Predicted	150	260	400	590	820	1125	2700
70	Experimental	494	573	677	731			2400
	Predicted	290	390	560	890			
71	Experimental	546	714	813	851			
	Predicted	290	390	560	890			
77	Experimental	150	250	280	560	722	1068	
	Predicted	95	210	360	590	1000	1950	
81	Experimental	325	426	565	943	1288	1566	
	Predicted	210	380	600	900	1350	2150	

CONFIDENTIAL

CONFIDENTIAL

TABLE 5 (Cont)

Round No.	Condition	Layer 1	Average Fragment Velocities (Feet per Second)						Layer 8
			Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	
82	Experimental	318	380	454	689	1018	1330	1708	1937
	Predicted	150	260	410	600	810	1120	1550	1550
83	Experimental	385	377	401	436	439	440	425	449
	Predicted	100	170	250	360	490	690	940	1400
84	Experimental	402	391	382	410	459	467		
	Predicted	180	250	340	470	640	950		
85	Experimental	317	367	353	359	376	378		
	Predicted	130	195	330	510	790	1100		
88	Experimental	354	456	819	1168				
	Predicted	265	400	720	1200				
89	Experimental	394	646	681	706				
	Predicted	265	400	720	1200				

CONFIDENTIAL

CONFIDENTIAL

SECTION 4 - CONCLUSIONS

The following major conclusions are based on the data resulting from this study:

- 1 Multiple layers of fragments (four, six, and eight) can be explosively projected into radially expanding patterns by a warhead design concept utilizing alternate layers of fragments and sheet PETN explosive.
- 2 It is feasible to achieve multilayer fragment projection with either spiral or concentric ring configurations of the explosive layered concept.
- 3 Fragment radial velocities can be controlled to obtain uniform radial growth patterns by varying the gage thickness of explosive between fragment layers.
- 4 The explosive layered design promises the desired pattern and velocity distributions for charge-to-metal ratios of 0.080 or less.
- 5 Cubic and hexagonal fragments promise further improvement in packaging and energy coupling efficiencies than that currently obtained with spherical fragments.
- 6 Fragment beam spray angles can be confined to an order of 25 or 30 degrees with massive end confinement. Alternate concepts such as explosive end plates, shaped center bursters combined with light metal end plates, and hyperboloid configurations offer means of achieving the same or improved spray angle control without excessive parasitic weight.
- 7 A semiempirical procedure utilizing equations of the form $V = A(C/M)^b$ and experimental data permits analytical prediction of warhead design parameters and fragment velocity performance.
- 8 Problem areas currently under investigation and requiring further experimental data for resolution include further reduction of fragment velocity and beam spray angle.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

SECTION 5 - RECOMMENDATIONS

Recommendations for future work leading to successful prototype test devices are as follows:

- 1 Continue the experimental program with emphasis on projection of up to 14 or more layers of fragments.
- 2 Expand the analytical effort to include additional physical parameters associated with design, and investigate alternate analytical procedures for predicting the behavior of multilayer fragment packages.
- 3 Continue investigations into alternate means of controlling beam spray angles without excessive parasitic weight such as explosive end plates, hyperboloid configurations, and shaped center bursters.
- 4 Define the feasibility of combining multilayer radial projectors with multilayer end projectors to maintain high-density fragment distribution near the centerline.
- 5 Determine a practical means of initiating thin explosive layers such as end line initiation, cast explosives, manifolding techniques, and voids in fragment package.
- 6 Investigate the effect of different fragment materials such as nickel and tungsten.
- 7 Establish fragment size scaling effects.
- 8 Determine practical and economical fabrication techniques considering serrated cylinders or wire, cast explosives, and tape placement of preformed fragments.
- 9 Establish safety requirements and/or hazard possibilities.
- 10 Investigate methods of projecting in a space environment to determine the effect on the explosive-to-fragment coupling.
- 11 Conduct prototype feasibility demonstrations including static firings and dynamic pattern formations.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

REFERENCES

1. "R&D Exhibit No. ASQW 62-48," 6 June 1963, Detachment 4, ASD, Eglin Air Force Base, Florida, Confidential.
2. Ballistic Research Laboratories Report No. 614, "Experiments with Shrapnel and Wire Wound Model Warheads," N. Share, 1946, Confidential.
3. Technical Note No. 1470, Ballistic Research Laboratories, "Simultaneity of Explosion Times of Engineers Special Detonators," E. Bonner L. Bryant, J. Trimble, August 1962, Unclassified.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

APPENDICES

These appendices present detailed data on all warhead models that have been test fired. Each appendix is organized to present data pertinent to that particular design concept and, where possible, to show the results of a particular design variable change. Round numbers are not sequential and serve only as an identifier for data record files.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

APPENDIX I

BASIC DESIGN I DATA

This appendix summarizes design and test data pertinent to all Basic Design I warhead models.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
68

TABLE 6
Basic Design I Data Summary

Round No.	Round Description									Parameter Varied	Test Objectives
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst Type	Over Diam Diam (in.)	Ht (in.)	Diam (in.)		
11	90.4	778.7	445 454	0.116	Fig. 32	Liquid Nitro-Methane	0.75	3.5	3.0	Liquid explosive in center burster and in fragmentation package interstices	Pattern/velocity gradient check for fragment breakup
12	84.8	778.7	447 455	0.108	Fig. 32	Liquid Nitro-Methane	0.75	3.5	3.0	Same as 11	Same as 11
37	117.5	814.3	790.5	0.134	Fig. 32	Liquid Nitro-Methane	0.75	3.5	3.0	Same as 11	Same as 11
39	124.3	1253.0	894.8	0.061	Fig. 33	None	None	3.5	3.0	Same as 11 with void center	Same as 11
42	124.3	1247.0	856.0	0.095	Fig. 33	None	None	3.5	3.0	Same as 38	Same as 11

CONFIDENTIAL

TABLE 6
Basic Design I Data Summary

m)	Over Ht. (in.)	Dim. Diam. (in.)	Parameter Varied	Test Objectives	Results				Conclusions and Comments	
					Impact Pattern	Beam Spray Angle	Velocity Gradient	Polar Plot		
5	3.5	3.0	Liquid explosive in center burster and in fragmentation package interstices	Pattern/velocity gradient check for fragment breakup	Fig. 37	16 Deg			Fig. 34	Retest scheduled Good gradient potential
5	3.5	3.0	Same as 11	Same as 11	Similar to Round 11	24 Deg			Fig. 35	Gradient reproducibility unsatisfactory Retest scheduled Fragments move as a group
5	3.5	3.0	Same as 11	Same as 11	Fig. 38	21 Deg			Fig. 36	Small gradient Poor reproducibility Fragments move as a group
e	3.5	3.0	Same as 11 with void center	Same as 11	Velocity too low to penetrate target	Not available				Low order detonation No velocity gradient
e	3.5	3.0	Same as 39	Same as 11	Same as Round 39	31 Deg				Same as 39 No further tests of design planned

CONFIDENTIAL

CONFIDENTIAL

Figure 32. Test Model Design, Round No. 11 and 12

CONFIDENTIAL

CONFIDENTIAL

Figure 33. Test Model Design, Round No. 39 and 42

CONFIDENTIAL

CONFIDENTIAL

Figure 34. Velocity versus Radial Distribution, Round No. 11

CONFIDENTIAL

CONFIDENTIAL

Figure 35. Velocity versus Radial Distribution, Round No. 12

CONFIDENTIAL

CONFIDENTIAL

Figure 36. Velocity versus Radial Distribution, Round No. 37

CONFIDENTIAL

CONFIDENTIAL

Figure 37. Impact Pattern, Round No. 11

CONFIDENTIAL

CONFIDENTIAL

Figure 38. Impact Pattern, Round No. 37

CONFIDENTIAL

CONFIDENTIAL

APPENDIX II

BASIC DESIGN II DATA

This appendix summarizes design and test data pertinent to all **Basic Design II** warhead models.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
78

TABLE 7
Basic Design II Data Summary

Round No.	Round Description										Parameter Varied	Test Objectives		
	Expl Mass (grams)	Frag. Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.						
						Type	Diam (in.)	Ht (in.)	Diam (in.)					
2	29.4	1366.0		0.021	Fig. 39	C-4	0.75	3.5	2.8	Basic design	Velocity gradient sphere breakup			
26	27.1	1984.0	445 457	0.014	Fig. 39	C-4	0.75	3.5	3.03	0.75 inch burster; Fragments packaged in paper tubes	Effect of tubes on pattern velocity gradient			
7	26.4	927.0	486 435	0.028	Fig. 39	C-4	0.75	3.5	3.03	Center burster tube	Test effect of aluminum center burster tube			
8	26.4	927.0	467 495	0.028	Fig. 39	C-4	0.75	3.5	3.03	Same as 7	Same as 7			
3	104.1	1573.0	748 750	0.071	Fig. 39	C-4	1.5	3.5	3.8	Larger center burster	Higher fragment velocities			

CONFIDENTIAL

TABLE 7
Basic Design II Data Summary

Param. #	Over Dim.		Parameter Varied	Test Objectives	Results				Conclusions and Comments	
	Ht (in.)	Diam (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient			
75	3.5	2.8	Basic design	Velocity gradient sphere breakup	Fig. 50	40 Deg			Fig. 41	Excessive beam spray; no sphere breakup; fragments move as a group
75	3.5	3.03	0.75 inch burster; Fragments packaged in paper tubes	Effect of tubes on pat- tern velocity gradient	Fig. 51				Fig. 42	Angular banding due to tube pack packaging; fragments move as a group
75	3.5	3.03	Center burster tube	Test effect of alumi- num center burster tube	Fig. 52	17 Deg			Fig. 43	No sphere breakup Fragments move as a group Slight reduction in velocity
75	3.5	3.03	Same as 7	Same as 7		16 Deg			Similar to Round 7	Same as 7
75	3.5	3.8	Larger center burster	Higher fragment velocities	Fig. 53	20 Deg			Fig. 44	Two inner fragment layers damaged Higher velocities on outer rows achieved Fragments move as a group

CONFIDENTIAL

CONFIDENTIAL

TABLE 7 (Cont)

Round No.	Round Description										Parameter Varied	Test Objectives		
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.						
						Type	Diam (in.)	Ht (in.)	Diam (in.)					
4	97.0	2267.0	734 750	042	Fig. 39	C-4	1.5	3.5	3.8	Same as Round 3	Same as Round 3			
27	155.8	4280.0	790 792	0.037	Fig. 39	C-4				Aluminum burster tube	Check results of Round 3			
13	42.0	1638.0	605 606	0.026	Fig. 40	C-4	1.37	2.5	3.5	Shaped burster Laminac buffer Wafer fragment pack construction	Effect on beam spray Pattern Velocity			
14	43.8	1665.0	601 607	0.026	Fig. 40	C-4	1.37	2.5	3.5	Same as 13	Same as 13			
17	34.0	1219.0	607 611	0.025	Fig. 40	C-4	1.37	2.5	3.5	Shaped burster Laminac buffer Tubular fragment pack	Observe effects of frag- ment packaging as compared to Round 13			

CONFIDENTIAL

CONFIDENTIAL

TABLE 7 (Cont)

Parameter Varied	Test Objectives	Results				Conclusions and Comments
		Impact Pattern	Beam Spy Angle	Velocity Gradient		
8 Same as Round 3	Same as Round 3	Fig. 54	35 Deg	Unreliable Data		Unreliable data
Aluminum burster tube	Check results of Round 3	Fig. 55			Fig. 45	Slight reduction in outer row fragment velocity Fragments move as a group
Shaped burster Laminac buffer Wafer fragment pack construction	Effect on beam spray Pattern Velocity	Fig. 56	14 Deg		Fig. 46	Good beam spray Small gradient
Same as 13	Same as 13	Fig. 57	10 Deg		Fig. 47	Good beam spray Higher outer row velocities
Shaped burster Laminac buffer Tubular fragment pack	Observe effects of fragment packaging as compared to Round 13	Fig. 58	16 Deg		Fig. 48	Good beam spray Packaging technique may result in lower velocities

CONFIDENTIAL

TABLE 7 (Cont)

Round No.	Round Description									Parameter Varied	Test Objectives
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.			
						Type	Diam (in.)	Ht (in.)	Diam (in.)		
18	41.2	1233.0	604 612	0.032	Fig. 40	C-4	1.37	2.5	3.5	Shaped burster Air interface buffer Tubular fragment pack	Effects of different interface buffer
28	28.5	336.6 Rods 1048.0 1384.6	785.0	0.0171	Fig. 39	C-4	0.75	3.5	2.873	Hexagonal fragments	Velocity gradient Pattern
29	36.9	646 Rods 1307 1953	1406	0.0174	Fig. 40	C-4	1.37 to 0.5 to 1.37 Hyperboloid	3.5	3.8	Hexagonal fragments Shaped burster	Same as 28
32	30.5	1780	900	0.053	Fig. 39	C-4	0.75	3.5	3.1	Cubic fragments	Same as 28
33	40.5	2160	1174	0.0795	Fig. 40	C-4	1.37 to 0.5 to 1.37 Hyperboloid	3.5	3.6	Cubic fragments Shaped burster	Same as 28

CONFIDENTIAL

TABLE 7 (Cont)

First Diam (in.)	Over Dim.		Parameter Varied	Test Objectives	Results				Conclusions and Comments
	Height (in.)	Diam (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient		
1.37	2.5	3.5	Shaped burster Air interface buffer Tubular fragment pack	Effects of different interface buffer	Fig. 59	18 Deg	A line graph showing Velocity (ft/sec) on the y-axis (0 to 2) versus Fragment Layer No. on the x-axis (1 to 8). The data points are approximately (2, 0.5), (3, 0.7), (4, 1.0), and (5, 1.2). Error bars are shown for each point. $\text{Velocity } \times 10^3 \text{ (ft/sec)}$ $\text{Fragment Layer No.}$	Fig. 49	Good gradient potential
0.75	3.5	2.873	Hexagonal fragments	Velocity gradient Pattern	Fig. 60	16 Deg	A graph showing Velocity (ft/sec) on the y-axis (0 to 2) versus Fragment Layer No. on the x-axis (1 to 8). The text "Not Available" is printed in the center of the plot area. Velocity (ft/sec) $\text{Fragment Layer No.}$	Not avail- able	Apparent high average velocities Good beam spray
1.37 to 0.5 to 1.37 Hyper- boloid	3.5	3.8	Hexagonal fragments Shaped burster	Same as 28	Fig. 61	12 Deg	A graph showing Velocity (ft/sec) on the y-axis (0 to 2) versus Fragment Layer No. on the x-axis (1 to 8). The text "Not Available" is printed in the center of the plot area. Velocity (ft/sec) $\text{Fragment Layer No.}$	Not avail- able	Same as 28
0.75	3.5	3.1	Cubic fragments	Same as 28	Fig. 62	20 Deg	A graph showing Velocity (ft/sec) on the y-axis (0 to 2) versus Fragment Layer No. on the x-axis (1 to 8). The text "Not Available" is printed in the center of the plot area. Velocity (ft/sec) $\text{Fragment Layer No.}$	Not avail- able	Same as 28
1.37 to 0.5 to 1.37 Hyper- boloid	3.5	3.6	Cubic fragments Shaped burster	Same as 28	Fig. 63	16 Deg	A graph showing Velocity (ft/sec) on the y-axis (0 to 2) versus Fragment Layer No. on the x-axis (1 to 8). The text "Not Available" is printed in the center of the plot area. Velocity (ft/sec) $\text{Fragment Layer No.}$	Not avail- able	Same as 28

CONFIDENTIAL

2

CONFIDENTIAL

Figure 39. Test Model Design Rounds No. 7 and 8

CONFIDENTIAL

CONFIDENTIAL

Figure 40. Test Model Design Rounds No. 13 and 14

CONFIDENTIAL

CONFIDENTIAL

Figure 41. Velocity versus Radial Distribution, Round No. 2

CONFIDENTIAL

CONFIDENTIAL

Figure 42. Velocity versus Radial Distribution, Round No. 26

CONFIDENTIAL

CONFIDENTIAL

Figure 43. Velocity versus Radial Distribution, Round No. 7

CONFIDENTIAL

CONFIDENTIAL

Figure 44. Velocity versus Radial Distribution, Round No. 3

CONFIDENTIAL

CONFIDENTIAL

Figure 45. Velocity versus Radial Distribution, Round No. 27

CONFIDENTIAL

CONFIDENTIAL

Figure 46. Velocity versus Radial Distribution, Round No. 13

CONFIDENTIAL

CONFIDENTIAL

Figure 47. Velocity versus Radial Distribution, Round No. 14

CONFIDENTIAL

CONFIDENTIAL

Figure 48. Velocity versus Radial Distribution, Round No. 17

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Figure 49. Velocity versus Radial Distribution, Round No. 18

CONFIDENTIAL

Figure 50. Impact Pattern Round No. 2

CONFIDENTIAL

CONFIDENTIAL

Figure 51. Impact Pattern Round No. 26

CONFIDENTIAL

CONFIDENTIAL

Figure 52. Impact Pattern Round No. 7

CONFIDENTIAL

CONFIDENTIAL

Figure 53. Impact Pattern Round No. 3

CONFIDENTIAL

CONFIDENTIAL

Figure 54. Impact Pattern Round No. 4

CONFIDENTIAL

CONFIDENTIAL

Figure 55. Impact Pattern Round No. 27

CONFIDENTIAL

CONFIDENTIAL

Figure 56. Impact Pattern Round No. 13

CONFIDENTIAL

CONFIDENTIAL

Figure 57. Impact Pattern Round No. 14

CONFIDENTIAL

CONFIDENTIAL

Figure 58. Impact Pattern Round No. 17

Figure 59. Impact Pattern Round No. 18

CONFIDENTIAL

CONFIDENTIAL

Figure 60. Impact Pattern Round No. 28

CONFIDENTIAL

CONFIDENTIAL

Figure 61. Impact Pattern Round No. 29

CONFIDENTIAL

CONFIDENTIAL

Figure 62. Impact Pattern Round No. 32

Figure 63. Impact Pattern Round No. 33

CONFIDENTIAL

CONFIDENTIAL

APPENDIX III

BASIC DESIGN III DATA

This appendix summarizes design and test data pertinent to all Basic Design III warhead models.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
106

TABLE 8
Basic Design III Data Summary

Round No.	Round Description										Parameter Varied	Test Objectives		
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.						
						Type	Diam (in.)	Ht (in.)	Diam (in.)					
9	45.7	1390	526	0.033	Fig. 64	C-4	0.75	3.5	3.25	Thin aluminum buffers between fragment layers	Check pattern, velocity gradient, and fragment breakup for Basic Design III			
10	44.1	1419	532 539	0.031	Fig. 64	C-4	0.75	3.5	3.25	Same as round 9				
15	38.6	1680	607 613	0.021	Fig. 65	C-4	0.75	3.5	3.5	Variable thickness buffers of aluminum and rubber Fragments in paper tubes	Buffering effects on velocity and pattern			
16	42.3	1872	608 613	0.022	Fig. 65	C-4	0.75	3.5	3.5	Same as round 15 except fragments not in tubes	Same as 15			
21	42.0	4025		0.010	Fig. 66	C-4	1.37	2.5	4.38	Shaped burster (hyperboloid)	Same as 15			
22	42.0	4110		0.009		C-4	1.37	2.5	4.38	21 aluminum and rubber buffers and 36 aluminum buffers used				
36	26.8	3742		0.007		C-4	1.37	2.5	4.38	Paper tubes used in packing				

CONFIDENTIAL**TABLE 8****Basic Design III Data Summary**

Burst	Over Dim.		Parameter Varied	Test Objectives	Results			Conclusions and Comments
	Diam (in.)	Ht (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient	
0.75	3.5	3.25	Thin aluminum buffers between fragment layers	Check pattern, velocity gradient, and fragment breakup for Basic Design III		16 Deg		Fig. 67 No fragment breakup, good beam spray Fragments move as a group Very small velocity gradient
0.75	3.5	3.25	Same as round 9			16 Deg		Fig. 68 Same as round 9
0.75	3.5	3.5	Variable thickness buffers of aluminum and rubber Fragments in paper tubes	Buffering effects on velocity and pattern	Fig. 74	20 Deg		Fig. 69 No velocity gradient Fragments move as a group Apparently no significant effects caused by difference in buffering material and thickness variations
0.75	3.5	3.5	Same as round 15 except fragments not in tubes	Same as 15	Fig. 75			Fig. 70 Slight gradient improvement Fragments still move as a solid group
1.37	2.5	4.38	Shaped burster (hyperboloid)	Same as 15	Fig. 76	14 Deg		Fig. 71 No significant difference in three rounds
1.37	2.5	4.38	21 aluminum and rubber buffers and 36 aluminum buffers used		Fig. 77	15 Deg		Fig. 72 Small gradient
1.37	2.5	4.38	Paper tubes used in packing		Fig. 78	11 Deg		Fig. 73 Angular banding due to tube pack
								Good beam spray control No noticeable difference in buffering materials

2**CONFIDENTIAL**

CONFIDENTIAL

Figure 64. Test Model Design, Rounds No. 9 and 10

CONFIDENTIAL

CONFIDENTIAL

Figure 65. Test Model Design, Rounds No. 15 and 16

CONFIDENTIAL

CONFIDENTIAL

Figure 66. Test Model Design, Rounds No. 21 and 22

CONFIDENTIAL

CONFIDENTIAL

Figure 67. Velocity versus Radial Distribution, Round No. 9

CONFIDENTIAL

CONFIDENTIAL

Figure 68. Velocity versus Radial Distribution, Round No. 10

CONFIDENTIAL

CONFIDENTIAL

Figure 69. Velocity versus Radial Distribution, Round No. 15

CONFIDENTIAL

CONFIDENTIAL

Figure 70. Velocity versus Radial Distribution, Round No. 16

CONFIDENTIAL

CONFIDENTIAL

Figure 71. Velocity versus Radial Distribution, Round No. 21

CONFIDENTIAL

CONFIDENTIAL

Figure 72. Velocity versus Radial Distribution, Round No. 22

CONFIDENTIAL

CONFIDENTIAL

Figure 73. Velocity versus Radial Distribution, Round No. 36

CONFIDENTIAL

CONFIDENTIAL

Figure 74. Impact Pattern, Round No. 15

CONFIDENTIAL

CONFIDENTIAL

Figure 75. Impact Pattern, Round No. 16

CONFIDENTIAL

CONFIDENTIAL

Figure 76. Impact Pattern, Round No. 21

Figure 77. Impact Pattern, Round No. 22

CONFIDENTIAL

CONFIDENTIAL

Figure 78. Impact Pattern, Round No. 36

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

122

CONFIDENTIAL

APPENDIX IV

BASIC DESIGN IV DATA

This appendix summarizes design and test data pertinent to all Basic Design IV warhead models.

CONFIDENTIAL

123

CONFIDENTIAL

CONFIDENTIAL

124

TABLE 9

Basic Design IV Data Summary

Round No.	Round Description										Parameter Varied	Test Objectives	Impact Patte
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst Type	Burst Diam (in.)	Over Dim. Ht (in.)	Diam (in.)				
5	292.0	1399	1119	0.017	Figs. 79 and 80	None	None	5.0	3.37	Basic design	Velocity gradient	Fig. 123	
6	301.4	1399	1140	0.021	Figs. 79 and 80	None	None	5.0	3.37	Same as 5	Same as 5	Fig. 124	
19	347.4	1193	1213	0.193	Figs. 79 and 80	None	None	5.0	3.5	Same as 5 except center burster removed	Effects of center burster on velocity gradient	Fig. 125	
20	361.	1193	1213	0.193	Figs. 79 and 80	None	None	5.0	3.5	Same as 19 except thin aluminum sheet covering PETN sheets	Buffering effects	Fig. 126	
30	390.1	1193	1224	0.283	Figs. 79 and 80	None	None	5.0	3.5	Thin sheet explosive wrapped in gun tape	Same as 20		

CONFIDENTIAL

TABLE 9

Basic Design IV Data Summary

Dim. Diam. (in.)	Parameter Varied	Test Objectives	Results				Conclusions and Comments
			Impact Pattern	Beam Spy Angle	Velocity Gradient		
3.37	Basic design	Velocity gradient	Fig. 123	35 Deg			Fig. 89 Good gradient potential Angular banding from fragment packaging technique
3.37	Same as 5	Same as 5	Fig. 124	35 Deg			Fig. 90 Same as 5
3.5	Same as 5 except center burster removed	Effects of center burster on velocity gradient	Fig. 125	30 Deg			Fig. 91 Reduced inner row velocity Good gradient potential
3.5	Same as 19 except thin aluminum sheet cover- ing PETN sheets	Buffering effects	Fig. 126	30 Deg			Fig. 92 Slightly reduced average velocities Large pieces of buffer- ing material recovered Good gradient potential
3.5	Thin sheet explosive wrapped in gun tape	Same as 20		30 Deg			Fig. 93 Outer layer velocities very high Increased outer row velocity Good gradient potential

CONFIDENTIAL

CONFIDENTIAL**TABLE 9 (Cont)**

Round No.	Round Description										Parameter Varied	Test Objectives	Impact Pattern			
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.								
						Type	Diam (in.)	Ht (in.)	Diam (in.)							
34	121.7	1102	1247	0.092	Fig. 81	C-4	0.75	3.5	3.375	C-4 center burster Concentric PETN rings	Determine mode of propagation of shock waves	Fig. 127				
35	258.6	1331	1460	0.032	Fig. 81	C-4	0.75	3.5	3.8	C-4 center burster Concentric PETN layers Thick inside to thin outside	Determine effect of variable layered PETN	Fig. 128				
38	289.4	1185	1602	0.148	Fig. 81	C-4	0.75	3.5	3.8	Same as 35 but with thin inside to thick outside	Same as 35	Fig. 129				
41	185.6	1081	1346		Fig. 81	C-4	0.5	3.5	3.6	0.5 inch C-4 center burster Concentric PETN layers	Velocity gradient and pattern	Not available				
43 43X	207.4	1378	1537	0.115	Fig. 81	C-4	0.5	3.5	3.6	Variable explosive layer Small diameter center burster thicknesses	Shock initiation of PETN with small center burster Pattern/velocity gradient	Fig. 130				

CONFIDENTIAL

CONFIDENTIAL

TABLE 9 (Cont)

1	Over Dim.		Parameter Varied	Test Objectives	Results			Conclusions and Comments
	Ht (in.)	Diam (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient	
	3.5	3.375	C-4 center burster Concentric PETN rings	Determine mode of propagation of shock waves	Fig. 127	24 Deg		Fig. 94 Fair gradient All explosive layers detonated
	3.5	3.8	C-4 center burster Concentric PETN layers Thick inside to thin outside	Determine effect of variable layered PETN	Fig. 128	27 Deg		Fig. 95 Fair gradient Row two velocities as high as those in rows three and four
	3.5	3.8	Same as 35 but with thin inside to thick outside	Same as 35	Fig. 129	30 Deg		Fig. 96 Possible means of controlling velocity gradient
	3.5	3.6	0.5 inch C-4 center burster Concentric PETN layers	Velocity gradient and pattern	Not available	30 Deg		Fig. 97 Incomplete detonation of PETN; suspected due to small diameter center burster
	3.5	3.6	Variable explosive layer Small diameter center burster thicknesses	Shock initiation of PETN with small center burster Pattern/velocity gradient	Fig. 130	30 Deg		Fig. 98 Same as 41

CONFIDENTIAL

126

2

TABLE 9 (Cont)

Round No.	Round Description									Parameter Varied	Test Objectives	Imp. Pat.
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.				
						Type	Diam (in.)	Ht (in.)	Diam (in.)			
48	230.9	1229	1176	0.116	Fig. 84	RDX	0.5	4.5	3.5	Explosive layering, spiral configuration Center initiation	Compare effects of center initiation	Fig. 131
49X	188.2	1790	1432	0.085	Fig. 84	RDX	0.5	4.5	3.5	Same as 48	Same as 48	Fig. 132
52X	299.1	1435	39.9	0.272	Fig. 82	C-4	0.75	2.5	3.8	C-4 burster PETN rings PETN end plates Dual initiation	Check of explosive end plate potential and dual initiation	Fig. 133
53	276.4	1441	32.0	0.157 including end plate mass and end plate expl.	Fig. 82	C-4	0.75	2.5	3.8	Same as 52.	Same as 52	Fig. 134
54	194.8	1320	1601	0.111	Fig. 81	C-4	0.625	3.5	3.725	Increased burster size Four layer concentric PETN	Increased reliability of initiation Pattern/velocity distribution	Not available

CONFIDENTIAL**TABLE 9 (Cont)**

t am. (s.)	Over Dim. Ht (in.)	Diam (in.)	Parameter Varied	Test Objectives	Results			Conclusions and Comments
					Impact Pattern	Beam Spy Angle	Velocity Gradient	
4.5	3.5		Explosive layering, spiral configuration Center initiation	Compare effects of center initiation	Fig. 131	24 Deg		Fig. 99 Good gradient Reasonable pattern Center initiation appears effective and possibly provides improved dis- tribution patterns over those obtained with ex- ternal end-line initia- tion
4.5	3.5		Same as 48	Same as 48	Fig. 132	24 Deg		Fig. 100 Same as 48 Good reproducibility
5	2.5	3.8	C-4 burster PETN rings PETN end plates Dual initiation	Check of explosive end plate potential and dual initiation	Fig. 133			Many balls deformed First and second layers lost Poor recovery percent- age
5	2.5	3.8	Same as 52	Same as 52	Fig. 134	24 Deg		Inner row lost Poor recovery percent- age
5	3.5	3.725	Increased burster size Four layer concentric PETN	Increased reliability of initiation Pattern/velocity dis- tribution	Not avail- able	24 Deg		Pattern good Velocity excessive Reliable initiation

CONFIDENTIAL

CONFIDENTIAL**TABLE 9 (Cont)**

Round No.	Round Description										Parameter Varied	Test Objectives	In P
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.					
						Type	Diam (in.)	Ht (in.)	Diam (in.)				
55	197.0	1320	1595	0.117	Fig. 81	C-4	0.625	3.5	3.725	Same as 54	Same as 54		F 1
56	412.9	4540	1816	0.073	Fig. 83	C-4	0.625	5.5	4.26	Six layer concentric PETN 5/8 inch center burster	Pattern/velocity check for additional fragment layers		F 1
57	457.5	4650	1810	0.086	Fig. 83	C-4	0.625	5.5	4.26	Same as 56	Same as 56		F 1
60		1400	49.1	0.061	Fig. 82	C-4	0.75	2.5	3.8	Increased PETN end confinement PETN concentric layers C-4 center burster	Check concept feasibility to control beam spray		F 1
61		1425	48.8		Fig. 82	C-4	0.75	2.5	3.8	Same as 60	Same as 60		F 1

CONFIDENTIAL

CONFIDENTIAL**TABLE 9 (Cont)**

Burst	Over Dim.		Parameter Varied	Test Objectives	Results				Conclusions and Comments
	Diam (in.)	Ht (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient		
0.625	3.5	3.725	Same as 54	Same as 54	Fig. 135	24 Deg			Fig. 104 Same as 54 Good reproducibility
0.625	5.5	4.26	Six layer concentric PETN 5/8 inch center burster	Pattern/velocity check for additional fragment layers	Fig. 136	28 Deg			Figs. 105 and 106 Good pattern High velocities Velocities of rows one and two essentially the same
0.625	5.5	4.26	Same as 56	Same as 56	Fig. 137	28 Deg			Fig. 107 Same as 56 Good reproducibility
0.75	2.5	3.8	Increased PETN end confinement PETN concentric layers C-4 center burster	Check concept feasibility to control beam spray	Fig. 138	24 Deg			Fig. 108 16 mm film indicates mixing of fragments in flight Top velocities excessive Poor recovery percentage
0.75	2.5	3.8	Same as 60	Same as 60	Fig. 139	24 Deg			Fig. 109 Same as 60

CONFIDENTIAL

2

TABLE 9 (Cont)

Round No.	Round Description										Parameter Varied	Test Objectives		
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.						
						Type	Diam (in.)	Ht (in.)	Diam (in.)					
62	454.2	4685	2264	0.083	Fig. 85	RDX	0.5	5.25	4.25	Six layer spiral RDX center initiated	Pattern/velocity distribution			
63	464.6	4805	2278	0.080	Fig. 85	RDX	0.5	5.25	4.25	Same as 62	Same as 62			
64	1019	9880	3043	0.085	Fig. 85	RDX	0.5	6.5	5.5	Same as 62, with 8 fragment layers	Same as 62			
65	1014	9880	3035	0.085	Fig. 85	RDX	0.5	6.5	5.5	Same as 64	Same as 64			
66	331.8	1816	42.6	0.155	Fig. 82	C-4	0.5	3.75	3.7	Four layer spiral C-4 center burster Domed explosive end plates	Explosive confinement of beam spray			

CONFIDENTIAL

TABLE 9 (Cont)

Test Num. am n.)	Over Dim.		Parameter Varied	Test Objectives	Results				Conclusions and Comments
	Ht (in.)	Diam (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient		
5	5.25	4.25	Six layer spiral RDX center initiated	Pattern/velocity dis- tribution	Fig. 140	32 Deg		Fig. 110	Excellent velocity gradient Excessive velocities Good pattern
5	5.25	4.25	Same as 62	Same as 62	Fig. 141	32 Deg		Figs. 111 and 112	Same as 62 Excellent reproduc- ibility
5	6.5	5.5	Same as 62, with 8 fragment layers	Same as 62	Fig. 142	32 Deg		Figs. 113 and 114	Eighth row velocity ex- cessive Velocity gradient good Good pattern
5	6.5	5.5	Same as 64	Same as 64	Fig. 143	32 Deg		Fig. 115	Same as 64 Excellent reproduc- ibility
5	3.75	3.7	Four layer spiral C-4 center burster Domed explosive end plates	Explosive confinement of beam spray	Not avail- able	Exces- sive		Not avail- able	Indications of high velocities in outer layer Large number of frag- ments in ground ripple board indicate possible crossing of fragments

2

CONFIDENTIAL

CONFIDENTIAL**TABLE 9 (Cont)**

Round No.	Round Description									Parameter Varied	Test Objectives	Im. Pa.			
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.							
						Type	Diam (in.)	Ht (in.)	Diam (in.)						
67	306	1405	43.5	0.186	Fig. 82	C-4	0.75	2.75	3.8	Same as 66	Same as 66	No Av. ab.			
68	244.6	2442	1409	0.077	Figs. 79 and 80	None	None	4.0	3.5	Four layer spiral; outside line initiation	Check effects of initiation point	Fig. 14			
69	144.3	2861	1411	0.047	Fig. 84	RDX	0.5	4.5	3.5	Four layer spiral, center initiated, using 1/4 inch cubic fragments	Pattern/velocity for cubic fragments	No Av. ab.			
70	63.1	1208	922.6	0.033	Fig. 84	C-4	0.5	4.5	3.7	Four layer spiral, center initiated, using 0.025 gage PETN sheet	Reduction of overall velocities	Fig. 14			
71	62.0	1482	921.6	0.034	Fig. 84	C-4	0.5	4.5	3.7	Same as 70	Same as 70	No Av. ab.			

CONFIDENTIAL

CONFIDENTIAL**TABLE 9 (Cont)**

Over Dim.		Parameter Varied	Test Objectives	Results				Conclusions and Comments	
				Impact Pattern	Beam Spy Angle	Velocity Gradient			
2.75	3.8	Same as 66	Same as 66	Not Available	Excessive			Not available	Loss of two inner layers of fragments, possibly due to non-simultaneous end plane initiation
4.0	3.5	Four layer spiral; outside line initiation	Check effects of initiation point	Fig. 144	24 Deg			Not available	Heavy concentration of fragments in inner 12 degrees Indication of velocity banding possibly resulting from end-line initiation
4.5	3.5	Four layer spiral, center initiated, using 1/4 inch cubic fragments	Pattern/velocity for cubic fragments	Not Available	16 Deg			Not available	Malassembly of model; retest scheduled
4.5	3.7	Four layer spiral, center initiated, using 0.025 gage PETN sheet	Reduction of overall velocities	Fig. 145	20 Deg			Fig. 116	Reduced velocities Fragments moved as a group Possible initiation problem with thin gaged explosive
4.5	3.7	Same as 70	Same as 70	Not Available	20 Deg			Fig. 117	Same as 70

CONFIDENTIAL

TABLE 9 (Cont)

Round No.	Round No. and Description								Parameter Varied	Test Objectives
	Expl. Mass (grams)	Frag. Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst Type	Over Dim. Diam (in.)	Ht (in.)		
76	302.1	1262	42.7	0.194	Fig. 81	C-4	0.625	2.5	3.8	Four layer concentric, flat explosive end plates, center initiated
77	228.9	3975	2051	0.050	Figs. 86 and 87	Kept clear	Kept clear	5.25	4.25	Six layer spiral, outside initiation
78	508.2	6419	2753	0.065	Fig. 85	RDX	0.5	5.25	4.25	Six layer spiral 1/4 inch cubic fragments 1/2 inch RDX center burster, end initiated
79	509.1	4563	2737	0.075	Fig. 85	RDX	0.5	5.25	4.25	Same as 78 except with hexagonal fragments
80	446.3	4381	2304	0.085	Fig. 85	RDX	0.5	5.25	4.25	Six layer spiral 1/2 inch steel balls 1/2 inch RDX burster Identical to Round 62 Round suspended from scaffold for firing
										Test effects of firing fixture on beam spray and velocity gradient

CONFIDENTIAL

TABLE 9 (Cont)

rst	Over Dim.		Parameter Varied	Test Objectives	Results				Conclusions and Comments	
	Diam (in.)	Ht (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient	Plot		
0.625	2.5	3.8	Four layer concentric, flat explosive end plates, center initiated	Explosive control of beam spray Pattern/velocity gradient	Not available				Fig. 118	Vague pattern, similar to Round 67 Two inner fragment layers lost
Kept clear	5.25	4.25	Six layer spiral, outside initiation	Pattern/velocity distribution	Fig. 146	24 Deg			Fig. 119	Velocity gradient shows some signs of velocity banding
0.5	5.25	4.25	Six layer spiral 1/4 inch cubic fragments 1/2 inch RDX center burster, end initiated	Velocity/pattern distribution for cubic fragments Compares with Round 62	Fig. 147	20 Deg			Not available	Appears to produce higher velocities than identical ball round and comparable gradient Probably improved coupling efficiency
0.5	5.25	4.25	Same as 78 except with hexagonal fragments	Same as 78	Fig. 148	20 Deg			Not available	Same as 78
0.5	5.25	4.25	Six layer spiral 1/2 inch steel balls 1/2 inch RDX burster Identical to Round 62 Round suspended from scaffold for firing	Test effects of firing fixture on beam spray and velocity gradient	Not available	120 Deg			Not available	Velocities and gradient comparable to Round 62 Beam spray excessive

2

CONFIDENTIAL

CONFIDENTIAL

TABLE 9 (Cont)

Round No.	Round Description										Parameter Varied	Test Objectives
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.				
						Type	Diam (in.)	Ht (in.)	Diam (in.)			
81	497.5	3960	2320	0.100	Fig. 85	RDX	0.5	5.25	4.25	Same as 80	Same as 80	
82	876.4	8800	3876	0.082	Fig. 88	RDX	0.5	6.5	6.0	Eight layer spiral with PETN between each row of balls except for two outer rows 1/2 inch RDX center burster	Reduce gradient and dispersion in outer layers of fragments	
83	509.8	8430	3552	0.052	Fig. 88	RDX	0.5	6.5	5.5	Eight layer spiral with 0.042 PETN instead of 0.084 1/2 inch RDX center burster	Show feasibility of reducing all fragment velocities in eight layer configuration	
84	154.2	3019	2041	0.039	Fig. 84	C-4	0.5	4.76	4.25	Six layer concentric 1/2 inch C-4 center burster First 4 rings PETN 0.042 Last ring 0.025	Investigate ability to predict design in accordance with desired performance	
85	311.2	3465	2060	0.102	Fig. 84	RDX	0.5	4.76	4.25	Six layer concentric First two rings 0.025 PETN Next three rings 0.042 PETN Last ring 0.025 PETN	Same as 84	

CONFIDENTIAL

CONFIDENTIAL

TABLE 9 (Cont)

urst Diam (in.)	Over Dim. Ht (in.)		Parameter Varied	Test Objectives	Results				Conclusions and Comments
	Impact Pattern	Beam Spy Angle			Velocity Gradient		Polar Plot		
0.5	5.25	4.25	Same as 80	Same as 80	Not available	120 Deg		Not available	Same as 80
0.5	6.5	6.0	Eight layer spiral with PETN between each row of balls except for two outer rows 1/2 inch RDX center burster	Reduce gradient and dispersion in outer layers of fragments	Fig. 149	32 Deg		Fig. 120	Definite reduction in gradient dispersion between outermost rows Good overall gradient control
0.5	6.5	5.5	Eight layer spiral with 0.042 PETN instead of 0.084 1/2 inch RDX center burster	Show feasibility of reducing all fragment velocities in eight layer configuration	Fig. 150	14 Deg		Not available	Narrow beam spray possibly misleading due to low order detonation; no gradients, probable initiation problem Unburned PETN recovered
0.5	4.76	4.25	Six layer concentric 1/2 inch C-4 center burster First 4 rings PETN 0.042 Last ring 0.025	Investigate ability to predict design in accordance with desired performance	Not available	12 Deg		Not available	Same as 83
0.5	4.76	4.25	Six layer concentric First two rings 0.025 PETN Next three rings 0.042 PETN Last ring 0.025 PETN	Same as 84	Not available	8 Deg		Not available	Same as 83

CONFIDENTIAL

2

TABLE 9 (Cont)

Round No.	Round Description									Parameter Varied	Test Objectives		
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.					
						Type	Diam (in.)	Ht (in.)	Diam (in.)				
86	216.1	1505	28.2	0.108	Fig. 81	C-4 0.375 at each end	0.625	2.5	3.8	Four layer concentric with explosive end plats and 3/8 inch deep, 5/8 inch diam- eter C-4 at each end Rest of center is air space Dual end initiated, sus- pended from scaffold	Investigate mode of detonation Propagation		
87	229.7	1378	28.25	0.129	Fig. 81	C-4 0.375 at each end	0.625	2.5	3.8	Same as 86	Same as 86		
88	160.8	1344	1744	None avail- able	Fig. 81	C-4	1.37 to 0.5 to 1.37	3.5	4.0	Four layer concentric shaped C-4 burster (hyperboloid) Varying thickness PETN rings Dual end initiation Suspended from scaf- fold 1/2 inch steel end plates	Investigate shaped burster effects on beam spray control		
89	107.8	1791	3606	None avail- able	Fig. 81	C-4	1.37 to 0.5 to 1.37	3.5	4.0	Same as 88 except 1 inch thick end plates Suspended from scaf- fold	Same as 86		

CONFIDENTIAL

TABLE 9 (Cont)

n	Over Dim.		Parameter Varied	Test Objectives	Results			Conclusions and Comments
	Ht (in.)	Diam (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient	
5	2.5	3.8	Four layer concentric with explosive end plates and 3/8 inch deep, 5/8 inch diameter C-4 at each end Rest of center is air space Dual end initiated, suspended from scaffold	Investigate mode of detonation Propagation	Not available	Not available		Not available Low order detonation; probable initiation problem Much unburned PETN recovered
5	2.5	3.8	Same as 86	Same as 86	Not available	Not available		Not available Same as 86
3.5	4.0	Four layer concentric shaped C-4 burster (hyperboloid) Varying thickness PETN rings Dual end initiation Suspended from scaffold 1/2 inch steel end plates	Investigate shaped burster effects on beam spray control	Not available	75 Deg		Not available Good velocity gradient Excessive beam spray	
3.5	4.0	Same as 88 except 1 inch thick end plates Suspended from scaffold	Same as 86	Fig. 151	25 Deg		Figs. 121 and 122 Improved beam spray Fragment layers intermixed Probable fabrication error Retest scheduled	

CONFIDENTIAL

CONFIDENTIAL

Figure 79. Test Model Design, Round No. 19 and 20

CONFIDENTIAL

CONFIDENTIAL

Figure 80. Test Model Design, Round No. 19 and 20 End-Line Initiator

CONFIDENTIAL

CONFIDENTIAL

Figure 81. Test Model Design, Round No. 34

CONFIDENTIAL

CONFIDENTIAL

Figure 82. Test Model Design, Round No. 66

CONFIDENTIAL

CONFIDENTIAL

Figure 83. Test Model Design, Round No. 84

CONFIDENTIAL

CONFIDENTIAL

Figure 84. Test Model Design, Round No. 48 and 49

CONFIDENTIAL

CONFIDENTIAL

Figure 85. Test Model Design, Rounds No. 62 Through 65, 80, 81, and 83

CONFIDENTIAL

CONFIDENTIAL

Figure 86. Test Model Design, Round No. 77

CONFIDENTIAL

CONFIDENTIAL

Figure 87. Test Model Design, End-Line Initiator, Round No. 77

CONFIDENTIAL

CONFIDENTIAL

Figure 88. Test Model Design, Round No. 82

CONFIDENTIAL

CONFIDENTIAL

Figure 89. Velocity versus Radial Distribution, Round No. 5

CONFIDENTIAL

CONFIDENTIAL

Figure 90. Velocity versus Radial Distribution, Round No. 6

CONFIDENTIAL

CONFIDENTIAL

Figure 91. Velocity versus Radial Distribution, Round No. 19

CONFIDENTIAL

CONFIDENTIAL

Figure 92. Velocity versus Radial Distribution, Round No. 20

CONFIDENTIAL

CONFIDENTIAL

Figure 93. Velocity versus Radial Distribution, Round No. 30

CONFIDENTIAL

CONFIDENTIAL

Figure 94. Velocity versus Radial Distribution, Round No. 34

CONFIDENTIAL

CONFIDENTIAL

Figure 95. Velocity versus Radial Distribution, Round No. 35

CONFIDENTIAL

CONFIDENTIAL

Figure 96. Velocity versus Radial Distribution, Round No. 38

CONFIDENTIAL

CONFIDENTIAL

Figure 97. Velocity versus Radial Distribution, Round No. 41

CONFIDENTIAL

CONFIDENTIAL

Figure 98. Velocity versus Radial Distribution, Round No. 43X

CONFIDENTIAL

CONFIDENTIAL

Figure 99. Velocity versus Radial Distribution, Round No. 48

CONFIDENTIAL

CONFIDENTIAL

Figure 100. Velocity versus Radial Distribution, Round No. 49X

CONFIDENTIAL

CONFIDENTIAL

Figure 101. Velocity versus Radial Distribution, Round No. 52X

CONFIDENTIAL

CONFIDENTIAL

Figure 102. Velocity versus Radial Distribution, Round No. 53

CONFIDENTIAL

CONFIDENTIAL

Figure 103. Velocity versus Radial Distribution, Round No. 54

CONFIDENTIAL

Figure 104. Velocity versus Radial Distribution, Round No. 55

CONFIDENTIAL

CONFIDENTIAL

Velocity ~fps

Figure 105. Velocity versus Radial Distribution, Round No. 56

Row	Average Velocity fps	Comp Bal Avail
x 1	320	24
Δ 2	332	40
o 3	534	56
□ 4	886	72
○ 5	1,221	88
◊ 6	1,605	104

CONFIDENTIAL

Row	Average Velocity fps	Computed Balls Available	No. Hits
x 1	320	24	10
△ 2	332	40	28
○ 3	534	56	53
□ 4	886	72	70
○ 5	1,221	88	77
◊ 6	1,605	104	87

Round No. 56

Row

x	1
△	2
○	3
□	4
○	5
◊	6

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Figure 107. Velocity versus Radial Distribution, Round No. 57

CONFIDENTIAL

162

CONFIDENTIAL

Figure 108. Velocity versus Radial Distribution, Round No. 60

CONFIDENTIAL

CONFIDENTIAL

Figure 109. Velocity versus Radial Distribution, Round No. 61

CONFIDENTIAL

Row	Average Velocity	Computed Balls Available	No
x	1	234	27
Δ	2	300	44
o	3	507	60
□	4	925	76
◇	5	1,331	92
	6	1,919	108

CONFIDENTIAL

Figure 110. Velocity versus Radial Distribution, Round No. 62

CONFIDENTIAL

CONFIDENTIAL

Velocity ~ ft/

Row	Average Velocity	Con. Balls
x 1	255	
Δ 2	374	
o 3	562	
□ 4	911	
◇ 5	1,265	
◇ 6	1,648	

Figure 111. Velocity versus Radial Distribution, Round No. 63

CONFIDENTIAL

Row	Average Velocity fps	Balls Available	No. Hits
X	1	255	20
△	2	374	35
O	3	562	26
□	4	911	64
○	5	1,265	75
◇	6	1,648	89

CONFIDENTIAL

Figure 112. Velocity versus Radial Distribution, Round No. 63 (Side Cut)

CONFIDENTIAL

CONFIDENTIAL

Figure 113. Velocity versus Radial Distribution, Round No. 64

CONFIDENTIAL

168

Fi

CONFIDENTIAL

Figure 114. Velocity versus Radial Distribution, Round No. 64 (Side Cut)

CONFIDENTIAL

CONFIDENTIAL

Row	Average Velocity f/s	Computed Balls Available	No. Hits
×	258	34	4
▲	278	54	15
○	372	75	47
□	595	95	62
○	943	115	90
◆	1,266	135	106
○	1,636	155	120
□	2,768	175	156

Figure 115.

CONFIDENTIAL

170

CONFIDENTIAL

Figure 115. Velocity versus Radial Distribution, Round No. 65

CONFIDENTIAL

CONFIDENTIAL

Figure 116. Velocity versus Radial Distribution, Round No. 70

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Figure 117. Velocity versus Radial Distribution, Round No. 71

CONFIDENTIAL

Figure 118. Velocity versus Radial Distribution, Round No. 76

CONFIDENTIAL

CONFIDENTIAL

Velocity ~ ft/sec

Figure 119. Velocity versus Radial Distribution, Round No. 77

CONFIDENTIAL

2

Row	Average Velocity	Computed Balls Available	No. Hits
X 1	318	25	5
▽ 2	380	44	22
○ 3	454	63	40
□ 4	689	81	69
◇ 5	1,018	100	91
○ 6	1,330	119	100
◇ 7	1,708	138	134
□ 8	1,937	151	175
• Low velocity hits not identifiable			42

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Figure 121. Velocity versus Radial Distribution, Round No. 89

CONFIDENTIAL

CONFIDENTIAL

Figure 122. Velocity versus Radial Distribution, Round No. 89 (Side Cut)

CONFIDENTIAL

CONFIDENTIAL

Figure 124. Impact Pattern, Round No. 6

CONFIDENTIAL

CONFIDENTIAL

Figure 125. Impact Pattern, Round No. 19

CONFIDENTIAL

CONFIDENTIAL

Figure 126. Impact Pattern, Round No. 20

CONFIDENTIAL

CONFIDENTIAL

Figure 127. Impact Pattern, Round No. 34

CONFIDENTIAL

CONFIDENTIAL

Figure 128. Impact Pattern, Round No. 35

CONFIDENTIAL

CONFIDENTIAL

Figure 129. Impact Pattern, Round No. 38

CONFIDENTIAL

184

CONFIDENTIAL

Figure 130. Impact Pattern, Round No. 43

CONFIDENTIAL

CONFIDENTIAL

Figure 131. Impact Pattern, Round No. 48

CONFIDENTIAL

CONFIDENTIAL

Figure 132. Impact Pattern, Round No. 49X

CONFIDENTIAL

CONFIDENTIAL

Figure 133. Impact Pattern, Round No. 52X

CONFIDENTIAL

CONFIDENTIAL

Figure 134. Impact Pattern, Round No. 53

CONFIDENTIAL

CONFIDENTIAL

Figure 135. Impact Pattern, Round No. 55

CONFIDENTIAL

CONFIDENTIAL

Figure 136. Impact Pattern, Round No. 56

CONFIDENTIAL

CONFIDENTIAL

Figure 137. Impact Pattern, Round No. 57

CONFIDENTIAL

CONFIDENTIAL

Figure 138. Impact Pattern, Round No. 60

CONFIDENTIAL

CONFIDENTIAL

Figure 139. Impact Pattern, Round No. 61

CONFIDENTIAL

CONFIDENTIAL

Figure 140. Impact Pattern, Round No. 62

CONFIDENTIAL

CONFIDENTIAL

Figure 141. Impact Pattern, Round No. 63

CONFIDENTIAL

CONFIDENTIAL

Figure 142. Impact Pattern, Round No. 64

CONFIDENTIAL

CONFIDENTIAL

Figure 143. Impact Pattern, Round No. 65

CONFIDENTIAL

CONFIDENTIAL

Figure 144. Impact Pattern, Round No. 68

CONFIDENTIAL

199

CONFIDENTIAL

Figure 145. Impact Pattern, Round No. 70

CONFIDENTIAL

CONFIDENTIAL

Figure 146. Impact Pattern, Round No. 77

CONFIDENTIAL

CONFIDENTIAL

Figure 147. Impact Pattern, Round No. 78

CONFIDENTIAL

202

CONFIDENTIAL

Figure 148. Impact Pattern, Round No. 79

CONFIDENTIAL

203

CONFIDENTIAL

Figure 149. Impact Pattern, Round No. 82

CONFIDENTIAL

204

CONFIDENTIAL

Figure 150. Impact Pattern, Round No. 83

CONFIDENTIAL

205

CONFIDENTIAL

Figure 151. Impact Pattern, Round No. 89

CONFIDENTIAL

206

CONFIDENTIAL

APPENDIX V
ALTERNATE CONCEPTS DATA

This appendix summarizes design and test data on alternate concepts investigated during the course of this study.

CONFIDENTIAL
207

CONFIDENTIAL

7-6

CONFIDENTIAL

CONFIDENTIAL
208

TABLE 10

Basic Design - Data Summary - Spec

Round No.	Round Description										Parameter Varied	Test Objectives
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.				
						Type	Diam (in.)	Ht (in.)	Diam (in.)			
23	32.8	2636	545 559	0.012	Fig. 152	C-4	1.19 (max)	2.5	3.5	Conical center burster	Pattern and velocity gradient from top to bottom of ground	
24	27.4	2636	607 607	0.010	Fig. 152	C-4	1.19 (max)	2.5	3.5	Same as 23	Same as 23	F
44	62.2	2359	297 686	0.026	Fig. 153	C-4	1.50 (max)	2.5	2.44 to 3.86 (conical)	Conical center burster Fragments in contact with explosive. Initiation at small end	Same as 23	F
45	61.4	2438	299 685	0.027	Fig. 153	C-4	1.50 (max)	2.5	2.44 to 3.86 (conical)	Same as 44	Same as 23	F
46	58.0	2790	612 612	0.021	Fig. 152	C-4	1.50	2.5	3.6	Same as 44 except air gap between fragments and burster	Same as 23	F

CONFIDENTIAL

TABLE 10

Basic Design - Data Summary - Special Concepts

First Diam (in.)	Over Dim. Ht (in.) Diam (in.)		Parameter Varied	Test Objectives	Impact Pattern	Beam Spy Angle	Results		Conclusions and Comments	
	Fig. 159	14 Deg					Velocity Gradient	Polar Plot		
.19 max)	2.5	3.5	Conical center burster	Pattern and velocity gradient from top to bottom of ground					Not available	Data invalid
.19 max)	2.5	3.5	Same as 23	Same as 23	Fig. 160	26 Deg			Not available	Data invalid
.50 max)	2.5	2.44 to 3.86 (con- ical)	Conical center burster Fragments in contact with explosive. Initiation at small end	Same as 23	Fig. 161	20 Deg		Fig. 156	Fragments moved as a group	
.50 max)	2.5	2.44 to 3.86 (con- ical)	Same as 44	Same as 23	Fig. 162	24 Deg		Fig. 157	Same as 44	
.50	2.5	3.6	Same as 44 except air gap between fragments and burster	Same as 23	Fig. 163	28 Deg		Fig. 158	Same as 44	

CONFIDENTIAL

CONFIDENTIAL**TABLE 10 (Cont)**

Round No.	Round Description									Parameter Varied	Test Objectives	Imp Pat			
	Expl Mass (grams)	Frag Mass (grams)	End Plate Mass (grams)	C/M	Type	Cent. Burst		Over Dim.							
						Type	Diam (in.)	Ht (in.)	Diam (in.)						
72	18.6	803	6.9	0.023	Fig. 155	None	None	7.8	2.25	Explosive end plates as confiner and fragment propellant (Eglin concept)	Reduction of weight and fragment velocity Pattern control	Fig			
73	18.9	801	7.3 7.0	0.024	Fig. 155	None	None	2.8	2.5	Same as 72	Same as 72	Fig			
74	11.5	1904	394 399	0.006	Fig. 154	Shaped C-4	0.625	2.88	2.77	Center burster with shaped core; fragments in solid pack	Pattern and velocity from top to bottom of round	Fig			
75	12.7	1897	382 383	.007	Fig. 154	Shaped C-4	0.625	2.88	2.77	Same as 74	Same as 74	Fig			

CONFIDENTIAL

CONFIDENTIAL**TABLE 10 (Cont)**

First Burst	Over Dim.		Parameter Varied	Test Objectives	Results				Conclusions and Comments	
	Ht (in.)	Diam (in.)			Impact Pattern	Beam Spy Angle	Velocity Gradient			
None	7.8	2.25	Explosive end plates as confiner and fragment propellant (Eglin concept)	Reduction of weight and fragment velocity Pattern control	Fig. 164	Too large			Not available	Fastax camera data indicate potential for random fragment distribution at low velocities. Maximum velocity for rounds 72 and 73 was 380 fps
None	2.8	2.5	Same as 72	Same as 72	Fig. 165				Not available	Same as 72
0.625	2.88	2.77	Center burster with shaped core; fragments in solid pack	Pattern and velocity from top to bottom of round	Fig. 166	12 Deg			Not available	Velocities irregular - order to 300 to 400 fps
0.625	2.88	2.77	Same as 74	Same as 74	Fig. 167	12 Deg			Not available	Same as 74

CONFIDENTIAL

2

CONFIDENTIAL

Figure 152. Tapered Burster, Design Concept A

CONFIDENTIAL

CONFIDENTIAL

Figure 153. Tapered Burster, Design Concept B

CONFIDENTIAL

CONFIDENTIAL

Engineer's Special
Used as Initiator

Figure 154. Shaped Burster Design Concept

CONFIDENTIAL

CONFIDENTIAL

Figure 155. Explosive End Impulse Design Concept

CONFIDENTIAL

CONFIDENTIAL

Figure 156. Velocity versus Radial Distribution, Round No. 44

CONFIDENTIAL

CONFIDENTIAL

Figure 157. Velocity versus Radial Distribution, Round No. 45

CONFIDENTIAL

CONFIDENTIAL

Figure 158. Velocity versus Radial Distribution, Round No. 46

CONFIDENTIAL

CONFIDENTIAL

Figure 159. Impact Pattern, Round No. 23

CONFIDENTIAL

CONFIDENTIAL

Figure 160. Impact Pattern, Round No. 24

CONFIDENTIAL

CONFIDENTIAL

#44

Figure 161. Impact Pattern, Record No. 44

CONFIDENTIAL

CONFIDENTIAL

#45

Figure 162. Impact Pattern, Round No. 45

CONFIDENTIAL

CONFIDENTIAL

Figure 163. Impact Pattern, Round No. 46

CONFIDENTIAL

CONFIDENTIAL

Figure 164. Impact Pattern, Round No. 72

CONFIDENTIAL

~~CONFIDENTIAL~~

Figure 165. Impact Pattern, Round No. 73

CONTENTS

A B C D E F G

5

4

7

1

Figure 166. Impact Pattern, Round No. 74

~~CONFIDENTIAL~~

Figure 167. Impact Pattern, Round No. 75