PRŮVODCE HODINOU I

Žáci sestaví obvod, ve kterém bude zapojen ultrazvukový senzor. Na tomto obvodu jim bude vysvětlen princip tohoto senzoru a jeho programování. Tento obvod dále rozšíří o logickou podmínku pro testování vzdálenosti objektů před senzorem. Bude využito dosavadních poznatků z předchozích kapitol a to zejména v oblasti čtení z analogových vstupů.

PŘÍPRAVA

Co bude v této hodině potřeba?

- Součásti obvodu deska Arduino s USB kabelem, kontaktní pole, ultrazvukový senzor, vodiče typu zástrčka-zástrčka.
- Osobní počítač pro studenty s nainstalovaným Arduino IDE.
- (8) Pokud je k dispozici, tak dataprojektor.
- Prezentace k lekci 11.
- n Pracovní listy pro studenty.

1. KROK 10 minut

Na úvod rozdejte studentům sady Arduino. Řekněte, že náplní vašeho kurzu bude se naučit pracovat s ultrazvukovým senzorem.

ZEPTEJTE SE STUDENTŮ

→ Věděli byste na jakém principu pracuje ultrazvukový senzor?

Základním principem je odraz zvukových vln vycházejících ze senzoru od okolních předmětů a jejich následné detekci. Měří se čas, který uplynul od odeslání k přijmutí.

Žáci ať zapojí ultrazvukový senzor podle zobrazeného schématu, který je součástí pracovních listů, nebo přiložené prezentace, kterou lze promítat pomocí dataprojektoru.

UPOZORNĚNÍ

Upozorněte žáky na to, ať se soustředí na správné zapojení pinů ultrazvukového senzoru Trig a Echo.

2. KROK 15 minut

Nyní studentům ukažte prostřednictvím dataprojektoru nebo pracovního listu základní kód, pro implementaci ultrazvukového senzoru.

```
1
    #define trigPin 2
 2
    #define echoPin 3
 3
     long duration;
 4
    int distance;
 5
 6
    void setup() {
 7
       pinMode(trigPin, OUTPUT);
 8
       pinMode(echoPin, INPUT);
 9
       Serial.begin(9600);
10
    }
11
12
    void loop() {
       digitalWrite(trigPin, LOW);
13
14
       delayMicroseconds(5);
15
       digitalWrite(trigPin, HIGH);
16
       delayMicroseconds(10);
17
       digitalWrite(trigPin, LOW);
       duration = pulseIn(echoPin, HIGH);
18
19
       distance = duration * 0.034 / 2;
20
       Serial.print("Distance = ");
21
       Serial.print(distance);
22
       Serial.println(" cm");
23
       delay(50);
24
    }
```

RYCHLÝ TIP

- → Ať žáci vysvětlí implementaci vzorce pro zjištění vzdálenosti předmětu od ultrazvukového čidla.
- → Vzdálenost (cm) = rychlost zvuku (cm/µs) × čas (µs)/2

Žáci ať program nahrají do desky a odzkouší, zda se v sériovém monitoru objevuje vzdálenost od překážek.

3. KROK (10 minut

Na základě zvládnutí principů ovládání motoru, budou studenti řešit následující úkol.

ÚKOL PRO STUDENTY

→ A) Vyzkoušejte přesnost měření vzdálenosti pomocí ultrazvukového senzoru.

Jedná se o jednoduchý experiment, kdy se žáci vzdalují od senzoru a měří pomocí pravítka reálnou vzdálenost a porovnávající s hodnotou na sériovém monitoru.

RYCHLÝ TIP

→ V přechozím úkolu je viditelný přesah i do dalšího předmětu, jako je fyzika. Může se jednat laboratorní práce zaměřené na měření a následné počítání statistický chyb a odchylek.

