Basi di dati

Capitolo 9:

La normalizzazione

1/57

Normalizzazione

- Procedura che permette di trasformare schemi non normalizzati in schemi che soddisfano una forma normale
- La normalizzazione va utilizzata come tecnica di verifica dei risultati della progettazione di una base di dati
- · Non costituisce una metodologia di progettazione

3/57

5/57

Anomalie

- Lo stipendio di ciascun impiegato è ripetuto in tutte le ennuple relative
 - ridondanza
- Se lo stipendio di un impiegato varia, è necessario andarne a modificare il valore in diverse ennuple
 - anomalia di aggiornamento
- Se un impiegato interrompe la partecipazione a tutti i progetti, dobbiamo cancellarlo
 - · anomalia di cancellazione
- Un nuovo impiegato senza progetto non può essere inserito
 - · anomalia di inserimento

Forme normali

- Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la "qualità", cioè l'assenza di determinati difetti
- Quando una relazione non è normalizzata:
 - · presenta ridondanze.
 - si presta a comportamenti poco desiderabili durante gli aggiornamenti
- Le forme normali sono di solito definite sul modello relazionale, ma hanno senso in altri contesti, ad esempio il modello E-R

2/57

Una relazione con anomalie

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

4/57

Perché questi fenomeni indesiderabili?

- abbiamo usato un'unica relazione per rappresentare informazioni eterogenee
 - · gli impiegati con i relativi stipendi
 - i progetti con i relativi bilanci
 - le partecipazioni degli impiegati ai progetti con le relative funzioni

Per studiare in maniera sistematica questi aspetti, è necessario introdurre un vincolo di integrità:

la dipendenza funzionale

8/57

Proprietà

· Ogni impiegato ha un solo stipendio (anche se

 Ogni impiegato in ciascun progetto ha una sola funzione (anche se può avere funzioni diverse in

Notazione

partecipa a più progetti)Ogni progetto ha un bilancio

progetti diversi)

 $Y \rightarrow Z$

• Esempi:

Impiegato → Stipendio

Progetto → Bilancio

Impiegato Progetto → Funzione

10/57

Un inciso: altre FD, particolari

- Impiegato Progetto → Progetto
- Si tratta però di una FD "banale" (sempre soddisfatta)
- Y → A è non banale se A non appartiene a Y
- Y \rightarrow Z è non banale se nessun attributo in Z appartiene a Y

7/57

Dipendenza funzionale

- relazione r su R(X)
- due sottoinsiemi non vuoti Y e Z di X
- esiste in r una dipendenza funzionale (FD) da Y a Z se, per ogni coppia di ennuple t₁ e t₂ di r con gli stessi valori su Y, risulta che t₁ e t₂ hanno gli stessi valori anche su Z

9/57

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Impiegato → Stipendio Progetto → Bilancio Impiegato Progetto → Funzione

11/57

Le anomalie sono legate ad alcune FD

- gli impiegati hanno un unico stipendio
 Impiegato → Stipendio
- i progetti hanno un unico bilancio Progetto → Bilancio

13/57

FD e anomalie

- La terza FD corrisponde ad una chiave e non causa anomalie
- Le prime due FD non corrispondono a chiavi e causano anomalie
- La relazione contiene alcune informazioni legate alla chiave e altre ad attributi che non formano una chiave
- Le anomalie sono causate dalla presenza di concetti eterogenei:
 - proprietà degli impiegati (lo stipendio)
 - proprietà di progetti (il bilancio)
 - · proprietà della chiave Impiegato Progetto

15/57

Che facciamo se una relazione non soddisfa la BCNF?

 La rimpiazziamo con altre relazioni che soddisfano la BCNF

Come?

• Decomponendo sulla base delle dipendenze funzionali, al fine di separare i concetti

Non tutte le FD causano anomalie

In ciascun progetto, un impiegato svolge una sola funzione

Impiegato Progetto → Funzione

 Il soddisfacimento è più "semplice", perché Impiegato Progetto è chiave

14/57

Forma normale di Boyce e Codd (BCNF)

- Una relazione r è in forma normale di Boyce e Codd se, per ogni dipendenza funzionale (non banale) X → Y definita su di essa, X contiene una chiave K di r
- La forma normale richiede che i concetti in una relazione siano omogenei (solo proprietà direttamente associate alla chiave)

16/57

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Procedura intuitiva di normalizzazione

- Non valida in generale, ma solo nei "casi semplici"
 - Per ogni dipendenza X → Y che viola la BCNF, definire una relazione su XY ed eliminare Y dalla relazione originaria

19/57

Decomponiamo sulla base delle dipendenze

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

21/57

Decomposizione senza perdita

- Una relazione r si decompone senza perdita su X₁ e X₂ se il join delle proiezioni di r su X₁ e X₂ è uguale a r stessa (cioè non contiene ennuple spurie)
- La decomposizione senza perdita è garantita se gli attributi comuni contengono una chiave per almeno una delle relazioni decomposte

Non sempre così facile

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

 $\begin{array}{c} \text{Impiegato} \rightarrow \text{Sede} \\ \text{Progetto} \rightarrow \text{Sede} \end{array}$

20/57

Proviamo a ricostruire

		Pro
Impiegato	Sede	N
Rossi	Roma	
Verdi	Milano	G
Neri	Milano	Sa
		' Ve

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

	Impiegato	Progetto	Sede	
	Rossi	Marte	Roma	
	Verdi	Giove	Milano	
	Verdi	Venere	Milano	
	Neri	Saturno	Milano	
	Neri	Venere	Milano	
Г	Verdi	Saturno	Milano	
	Neri	Giove	Milano	

Diversa dalla relazione di partenza!

22/57

Proviamo a decomporre senza perdita

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Impiegato	Progetto
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Saturno
Neri	Venere

 $\begin{array}{c} \text{Impiegato} \rightarrow \text{Sede} \\ \text{Progetto} \rightarrow \text{Sede} \end{array}$

24/57

Un altro problema

 Supponiamo di voler inserire una nuova ennupla che specifica la partecipazione dell'impiegato Neri, che opera a Milano, al progetto Marte

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Impiegato	Progetto
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Saturno
Neri	Venere

 $\begin{array}{c} \text{Impiegato} \rightarrow \text{Sede} \\ \text{Progetto} \rightarrow \text{Sede} \end{array}$

25/57

27/57

Impiegato	Progetto	Sede	
Rossi	Marte	Roma	
Verdi	Giove	Milano	
Verdi	Venere	Milano	
Neri	Saturno	Milano	
Neri	Venere	Milano	
Neri	Marte	Milano	

Impiegato Sede
Rossi Roma
Verdi Milano
Neri Milano

Impiegato	Progetto
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Saturno
Neri	Venere
Neri	Marte

26/57

28/57

Conservazione delle dipendenze

- Una decomposizione conserva le dipendenze se ciascuna delle dipendenze funzionali dello schema originario coinvolge attributi che compaiono tutti insieme in uno degli schemi decomposti
- Progetto → Sede non è conservata

Qualità delle decomposizioni

- Una decomposizione dovrebbe sempre soddisfare:
 - la decomposizione senza perdita, che garantisce la ricostruzione delle informazioni originarie
 - la conservazione delle dipendenze, che garantisce il mantenimento dei vincoli di integrità originari

Una relazione non normalizzata

Dirigente	<u>Progetto</u>	<u>Sede</u>	
Rossi	Marte	Roma	
Verdi	Giove	Milano	
Verdi	Marte	Milano	
Neri	Saturno	Milano	
Neri	Venere	Milano	

 $\begin{array}{c} \textbf{Progetto Sede} \rightarrow \textbf{Dirigente} \\ \textbf{Dirigente} \rightarrow \textbf{Sede} \end{array}$

La decomposizione è problematica

- Progetto Sede → Dirigente coinvolge tutti gli attributi e quindi nessuna decomposizione può preservare tale dipendenza
- quindi in alcuni casi la BCNF "non è raggiungibile"

32/57

Una nuova forma normale

- Una relazione r è in terza forma normale se, per ogni FD (non banale) X → Y definita su r, è verificata almeno una delle seguenti condizioni:
 - X contiene una chiave K di r
 - ogni attributo in Y è contenuto in almeno una chiave di r

BCNF e terza forma normale

31/57

- la terza forma normale è meno restrittiva della forma normale di Boyce e Codd (e ammette relazioni con alcune anomalie)
- ha il vantaggio però di essere sempre "raggiungibile"
- se una relazione ha una sola chiave, allora essa è in BCNF se e solo se è in 3NF

Decomposizione in terza forma normale

- si crea una relazione per ogni gruppo di attributi coinvolti in una dipendenza funzionale
- si verifica che alla fine una relazione contenga una chiave della relazione originaria
- Dipende dalle dipendenze individuate

33/57 34/57

Una possibile strategia

- se la relazione non è normalizzata si decompone in terza forma normale
- alla fine si verifica se lo schema ottenuto è anche in BCNF

Uno schema non decomponibile in BCNF

Dirigente	<u>Progetto</u>	<u>Sede</u>	
Rossi	Marte	Roma	
Verdi	Giove	Milano	
Verdi	Marte	Milano	
Neri	Saturno	Milano	
Neri	Neri Venere		

 $\begin{array}{c} \text{Dirigente} \rightarrow \text{Sede} \\ \text{Progetto Sede} \rightarrow \text{Dirigente} \end{array}$

35/57 36/57

Una possibile riorganizzazione

Dirigente	Progetto	<u>Sede</u>	Reparto
Rossi	Marte	Roma	1
Verdi	Giove	Milano	1
Verdi	Marte	Milano	1
Neri	Saturno	Milano	2
Neri	Venere	Milano	2

Dirigente → Sede Reparto Sede Reparto → Dirigente Progetto Sede → Reparto

37/57

Reparto

Teoria della normalizzazione

- I concetti visti possono essere formalizzati in maniera precisa
- Problema: data una relazione r e un insieme di dipendenze funzionali definite su r, generare una decomposizione di r che:
 - Sia senza perdita e conservi le dipendenze
 - · Contenga solo relazioni normalizzate
- · Faremo riferimento alla 3NF

Implicazione dipendenze funzionali

Decomposizione in BCNF

Progett

Marte

Giove

Marte

Saturno

Venere

<u>Sede</u>

Roma

Milano

Milano

Milano

Milano

Reparto

1

2

- Un insieme F di FD implica un'altra FD f se ogni relazione che soddisfa tutte le FD in F soddisfa anche f.
- · Esempio:

39/57

41/57

Dirigent

Rossi

Verdi

Neri

Sede

Roma

Milano

Milano

- R(Impiegato, Categoria, Stipendio)
- Le FD

Impiegato→Categoria e Categoria→Stipendio

implicano la FD

Impiegato→Stipendio.

Chiusura di un insieme di attributi

 Dati uno schema di relazione R(U), un insieme F di FD definite su U e un insieme di attributi X contenuti in U (cioè X ⊆ U): la chiusura di X rispetto ad F, indicata con X⁺_F, è l'insieme degli attributi che dipendono funzionalmente da X:

$$X_F^+ = \{ A \mid A \subseteq U \text{ e F implica } X \rightarrow A \}$$

Se A appartiene a X⁺_F allora X → A è implicata da F

Calcolo di X⁺_F

Input: un insieme X di attributi e un insieme F di dipendenze funzionali

Output: un insieme X_P di attributi.

- 1.Inizializziamo X_p con l'insieme di input X.
- 2.Se esiste una FD Y \to A in F con Y \subseteq X_P e A $^{\oplus}$ X_P, allora aggiungiamo A a X_P .
- 3. Ripetiamo il passo (2) fino a quando non ci sono ulteriori attributi che possono essere aggiunti a $\rm X_{\rm p}$.

38/57

Calcala di V[†]

42/57

Chiusura e chiave

- Un insieme di attributi K è chiave per uno schema di relazione R(U) su cui è definito un insieme di dipendenze funzionali F se F implica K → U.
- L'algoritmo appena mostrato può essere utilizzato per verificare se un insieme di attributi è chiave.

Proprietà desiderabili di FD

43/57

- Un insieme di dipendenze F è:
 - non ridondante se non esiste dipendenza f ∈
 F tale che F {f} implica f;
 - ridotto se (i) è non ridondante e (ii) non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- · Esempio:

$$F_1 = \{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$$

$$F_2 = \{A \rightarrow B; AB \rightarrow C\}$$

$$F_3 = \{A \rightarrow B; A \rightarrow C\}$$

Calcolo copertura ridotta

44/57

46/57

Coperture di dipendenze funzionali

Due insiemi di dipendenze funzionali F₁ ed F2

anche che ognuno è una copertura dell'altro.

· Questa proprietà consente di utilizzare, dato

un insieme di dipendenze, un altro, a esso

sono equivalenti se F, implica ciascuna

Se due insiemi sono equivalenti diciamo

dipendenza in F2 e viceversa.

equivalente, ma più semplice.

- Sostituiamo l'insieme dato con quello equivalente che ha tutti i secondi membri costituiti da singoli attributi;
- 2. Eliminiamo le dipendenze ridondanti;
- 3. Per ogni dipendenza verifichiamo se esistono attributi eliminabili dal primo membro
- In pratica, per ogni dipendenza $X \to A \in F$, verifichiamo se esiste $Y \subseteq X$ tale che $F \in F$ equivalente a $F \{X \to A\} \cup \{Y \to A\}$.

45/57

Sintesi di schemi in 3NF

Dati uno schema R(U) e un insieme di dipendenze F su U

1. Viene calcolata una copertura ridotta G di F;

- 2.G viene partizionato in sottoinsiemi tali che a ogni insieme appartengono dipendenze che hanno primi membri con la stessa chiusura:
- Viene costruito un insieme U di sottoinsiemi di U, uno per ciascuna partizione di dipendenze, con tutti gli attributi coinvolti nella partizione;
- 4.Se un elemento di ${\bf U}$ è propriamente contenuto in un altro, allora esso viene eliminato da ${\bf U};$
- 5. Viene costruito uno schema di relazione Ri(Ui) per ciascun elemento $U_i \in \mathbf{U}$ con associate le dipendenze in G i cui attributi sono tutti contenuti in U_i ;
- 6.Se nessuno degli Ui è Chiave per R(U), allora viene calcolata una chiave K di R(U) e viene aggiunto allo schema generato uno schema di relazione sugli attributi K, senza dipendenze.

Esempio

Schema: R(MCGRDSPA) FD: M \rightarrow RSDG, MS \rightarrow CD, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow AM. •Al passo 1, si ottiene la copertura ridotta: M \rightarrow D, M \rightarrow G, M \rightarrow C, G \rightarrow R, D \rightarrow S, S \rightarrow D, MP \rightarrow A. •Al passo 2, si partiziona la copertura negli insiemi:

 $G_1 = \{ M \rightarrow D; M \rightarrow G; M \rightarrow C \}, G_2 = \{ G \rightarrow R \},$ $G_3 = \{ D \rightarrow S; S \rightarrow D \}, G_4 = \{ MP \rightarrow A \}$

•l passi 3, 4 e 5 costruiscono uno schema di relazione per ciascuna partizione (senza eliminazioni), con le dipendenze corrispondenti.

•Il passo 6 non ha effetti, perché MP è chiave per la R. •Quindi, viene generato lo schema con le relazioni:

- R₁(MDGC), con le dipendenze {M→D; M→G; M→C}
- $R_2(GR)$ con $\{G \rightarrow R\}$
- R₃²(DS) con {D→S; S→D}
- R₄(MPA) con {MP→A}

47/57 48/57

Progettazione e normalizzazione

- la teoria della normalizzazione può essere usata nella progettazione logica per verificare lo schema relazionale finale
- si può usare anche durante la progettazione concettuale per verificare la qualità dello schema concettuale

Nome fornitore Nome prodotto

Partita Prezzo

IVA

PartitalVA → NomeFornitore Indirizzo

49/57

Analisi dell'entità

 L'entità viola la forma normale a causa della dipendenza:

PartitalVA → NomeFornitore Indirizzo

 Possiamo decomporre sulla base di questa dipendenza Nome prodotto Codice IVA fornitore

(1,1) (0,N)

Prodotto Fornitura Fornitore

Indirizzo

51/57

Analisi della relationship

 La relationship viola la terza forma normale a causa della dipendenza:

Professore → Dipartimento

 Possiamo decomporre sulla base di questa dipendenza

54/57

Ulteriore analisi sulla base delle dipendenze

 La relationship Tesi è in BCNF sulla base delle dipendenze

> Studente → CorsoDiLaurea Studente → Professore

- le due proprietà sono indipendenti
- questo suggerisce una ulteriore decomposizione

