Data Structures (DS) GTU # 3130702

Unit-2 **Linear Data Structure**

- Array
 - Representation of arrays
 - One dimensional array
 - Two dimensional array
- Applications of arrays
 - Symbol Manipulation (matrix representation of polynomial equation)
 - Sparse matrix
- Sparse matrix and its representation

One Dimensional Array

- ☐ Simplest data structure that makes use of computed address to locate its elements is the one-dimensional array or vector.
- Number of memory locations is sequentially allocated to the vector.
- ☐ A vector size is fixed and therefore requires a fixed number of memory locations.
- ☐ Vector A with subscript lower bound of "one" is represented as below....

- L_0 is the address of the first word allocated to the first element of vector A
- C words is size of each element or node
- The address of element Ai is

$$Loc(Ai) = L_o + (C*(i-1))$$

- Let's consider the more general case of a vector A with lower bound for it's subscript is given by some variable b.
- The address of element Ai is

$$Loc(Ai) = L_0 + (C*(i-b))$$

Two Dimensional Array

- ☐ Two dimensional arrays are also called **table** or **matrix**
- □ Two dimensional arrays have two subscripts
- □ Column major order matrix: Two dimensional array in which elements are stored column by column is called as column major matrix
- □ Two dimensional array consisting of **two rows** and **four columns** is stored sequentially by columns: A[1,1], A[2,1], A[2,2], A[2,2], A[1,3], A[2,3], A[1,4], A[2,4]

Column major order matrix

☐ The address of element A [i, j] can be obtained by expression

Loc (A [i, j]) =
$$L_0 + (j-1)*2 + (i-1)$$

Loc (A [2, 3]) = $L_0 + (3-1)*2 + (2-1) = L_0 + 5$

□ In general for two dimensional array consisting of **n rows** and **m columns** the address element A [i,j] is given by

Loc (A [i , j]) =
$$L_0 + (j-1)*n + (i - 1)$$

Row major order matrix

■ Row major order matrix: Two dimensional array in which elements are stored row by row is called as row major matrix


```
n = no of rows, m = no of columns
b1 = lower bound subscript of row
u1 = upper bound subscript of row
n = u1 - b1 + 1
b2 = lower bound subscript of column
u2 = upper bound subscript of column
m = u2 - b2 + 1
```

The address element A [i,j] is given by

Loc (A [i, j]) =
$$L_0 + (i-1)*m + (j-1)$$

• The address element A [i , j] is given by

Loc (A [i,j]) =
$$L_0 + (i-b1)*(u2-b2+1) + (j-b2)$$

Applications of Array

- 1. Symbol Manipulation (matrix representation of polynomial equation)
- 2. Sparse Matrix

- Matrix representation of polynomial equation
 - ☐ We can use array for different kind of operations in polynomial equation such as addition, subtraction, division, differentiation etc...
 - We are interested in finding suitable representation for polynomial so that different operations like addition, subtraction etc... can be performed in efficient manner.
 - Array can be used to represent Polynomial equation.

Address Calculation Problems

□ A matrix **P[15][10]** is stored with each element requiring **8 bytes** of storage. If the base address at **P[0][0]** is **1400**, determine the address at **P[10][7]** when the matrix is stored in Row Major Wise.

■ Solution:

- The given values are: Lo = 1400, b1 = 0, u1 = 14, b2 = 0, u2 = 9, c = 8, i = 10, j=7
- □ Row Major
- □ Address of Loc(Pij) = Lo + [C * ((i b1) (u2 b2 + 1) + (j b2))]

- **1** = 1400 + [856] = 2256

Address Calculation Problems

☐ The array A[-2...10][3...8] contains double type elements require 8 bytes to store. If the base address is 4110, find the address of A[4][5], when the array is stored in Column Major Wise.

■ Solution:

- The given values are: Lo = 4110, b1 = -2, u1 = 10, b2 = 3, u2 = 8, c = 8, i = 4, j=5
- □ Row Major
- □ Address of Loc(Aij) = Lo + [C * ((j b2) (u1 b1 + 1) + (i b1))]

- **= 4110 + [256] = 4366**

Representation of Polynomial equation

	Υ	Y ²	γ3	Υ4
X	XY	XY ²	XY ³	XY ⁴
X ²	X ₃ Y	X ² Y ²	X ² Y ³	X ² Y ⁴
X ³	X ₃ Y	X ³ Y ²	X_3A_3	X ³ Y ⁴
X ⁴	X ⁴ Y	X ⁴ Y ²	X ⁴ Y ³	X ⁴ Y ⁴

$2X^2 + 5XY + Y^2$					$X^2 + 3XY + Y^2 + Y - X$						
		Y	Y ²	γ3	Y ⁴			Υ	Y ²	γ3	Y ⁴
	0	0	1	0	0		0	1	1	0	0
X	0	5	0	0	0	X	-1	3	0	0	0
X ²	2	0	0	0	0	X ²	1	0	0	0	0
X ³	0	0	0	0	0	X ₃	0	0	0	0	0
X ⁴	0	0	0	0	0	X ⁴	0	0	0	0	0

Sparse matrix

- An m x n matrix is said to be **sparse** if "many" of its elements are zero.
- ☐ A matrix that is not sparse is called a *dense matrix*.
- ☐ We can device a simple representation scheme whose space requirement equals the size of the non-zero elements.

Terms	0	1	2	3	4	5	6	7	8
Row	1	1	2	2	2	3	3	4	4
Column	4	7	2	5	8	4	6	2	3
Value	2	1	6	7	3	9	8	4	5

Linear Representation of given matrix

Sparse matrix Cont...

- ☐ To construct matrix structure from liner representation we need to record.
 - Original row and columns of each non zero entries.
 - Number of rows and columns in the matrix.
- ☐ So each element of the array into which the sparse matrix is mapped need to have three fields: row, column and value

Sparse matrix Cont...

Memory Space required to store Linear Representation

 $30 \times 2 = 60 \text{ bytes}$

Linear representation of Matrix

Row	Column	Α
1	3	6
1	5	9
2	1	2
2	4	7
2	5	8
2	7	4
3	1	10
4	3	12
6	4	3
6	7	5

Space Saved = 84 - 60 = 24 bytes

Sparse matrix Cont...

Linear Representation of Matrix

Row	Column	Α
1	3	6
1	5	9
2	1	2
2	4	7
2	5	8
2	7	4
3	1	10
4	3	12
6	4	3
6	7	5

Linear Representation of Matrix

Memory Space required to store Liner Representation = 26 x 2 = 42 bytes

