Data Mining / Text Mining Term Project

Sibt Ul Hussain , Atique Ur Rehman May 8, 2017

1 Background

As less than 10% of worlds citizens own automobiles, the frequency at which citizens commute on taxis, buses, trains, and planes is very high. Uber, the dominant ride-hailing company, processes over 11 million trips, plans over 9 billion routes and collects over 50TB of data per day. To meet needs of riders, Uber must continually innovate to improve cloud computing and big data technologies and algorithms in order to process this massive amount of data and uphold service reliability. Supply-demand forecasting is critical to enabling Uber to maximise utilisation of drivers and ensure that riders can always get a car whenever and wherever they may need a ride. Supply-demand forecasting helps to predict the volume of drivers and riders at a certain time period in a specific geographic area. For instance, demand tends to surge in residential areas in the mornings and in business districts in the evenings. Supply-demand forecasting allows Didi to predict demand surges and guide drivers to those areas. The end result is higher earnings for drivers and no surge pricing for riders!

2 Definition and Evaluation Criteria

2.1 Defination

A passenger calls a ride(request) by entering the place of origin and destination and clicking "Request Pickup" on the Didi app. A driver answers the request (answer) by taking the order.

Didi divides a city into n non-overlapping square districts $D=d_1,d_2...,d_n$ and divides one day uniformly into 144 time slots $t_1,t_2,...,t_{144}$, each 10 minutes long. In district d_i , and time slot t_j , the number of passengers' requests is denoted as r_{ij} , and drivers' answers as a_{ij} . In district d_i and time slot t_j the demand is denoted as $demand_{ij}=r_{ij}$ and the supply as $supply_{ij}=a_{ij}$, and the demand supply gap is: $gap_{ij}:gap_{ij}=r_{ij}-a_{ij}$. Given the data of every district d_i and time slot t_j , you need to predict $gap_{ij}, \forall d_i \in D$.

2.2 Evaluation Metrics

Given i districts and j time slots, for district d_i in time slot t_j , suppose that the real supply-demand gap is gap_{ij} , and predicted supply-demand gap is s_{ij} , then:

$$MAE = \frac{1}{n} \sum_{d_i} \left(\frac{1}{q} \sum_{t_i} |gap_{ij} - s_{ij}| \right)$$

The lowest MAE will be the best.

The detailed description of each field is as follows:

Table 1: Description

Data name	Data type	Example
District ID	string	1,2,3,4 (the same as district mapping ID)
Time slot	string	$\left \ 2016\text{-}01\text{-}23\text{-}1 \right.$ (The first time slot on Jan. 23rd, 2016) $\left \ \right.$
Prediction value	double	6.0

3 Data Format

The training set contains three consecutive weeks of data for City M in 2016, and you need to forecast the supply-demand gap for a certain period in the fourth and fifth weeks of City M. The test set contains the data of half an hour before the predicted time slot. The specific time slots where you need to predict the supply-demand gap are shown in the

explanation document in the test set.

The Order Info Table, Weather Info Table and POI Info Table are available in the database, while the District Definition Table and Traffic Jam Info Table are derived from other tables in the database. All sensitive data has been anonymised.

3.1 Order Info Table

Table 2: Order Info

Field	Type	Meaning	Example
order_id	string	order ID	$\begin{tabular}{ll} 70 fc 7c 2bd 2caf 386 bb 50 f8 fd 5d fe f0 cf \\ \end{tabular}$
driver_id	string	driver ID	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
passenger_id	string	user ID	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
start_district_hash	string	departure	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
dest_district_hash	string	destination	929ec6c160e6f52c20a4217c7978f681
Price	double	Price	37.5
Time	string	Timestamp of the order	2016-01-15 00:35:11

The Order Info Table shows the basic information of an order, including the passenger and the driver (if driver_id =NULL, it means the order was not answered by any driver), place of origin, destination, price and time. The fields order_id, driver_id, passenger_id, start_hash, and dest_hash are made not sensitive.

3.2 District Info Table

The District Info Table shows the information about the districts to be evaluated in the contest. You need to do the prediction given the districts from the District Definition Table. In the submission of the results, you need to map the district hash value to district mapped ID.

Table 3: District Info

Field	Type	Meaning	Example
district_hash	string	District hash	$\begin{tabular}{ll} 90c5a34f06ac86aee0fd70e2adce7d8a \\ \end{tabular}$
district_id	string	District ID	1

3.3 POI Information Table

The POI Info Table shows the attributes of a district, such as the number of different facilities. For example, 2#1:22 means in this district, there are 22 facilities of the facility class 2#1. 2#1 means the first level class is 2 and the second level is 1, such as entertainment#theater, shopping#home appliance, sports#others. Each class and its number is separated by f

Table 4: POI Information

Field	Type	Meaning	Example
district_hash	string	District hash	74c1c25f4b283fa74a5514307b0d0278
poi_class	string	POI class and its number	1#1:41 2#1:22 2#2:32

3.4 Traffic Jam Info Table

The Traffic Jam Info Table shows the overall traffic status on the road in a district, including the number of roads at different traffic jam levels in different time periods and different districts. Higher values mean heavier traffic.

Table 5: Traffic Jam Info

Field	Type Meaning	Example
district_hash	string Hash value of the district	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$
tj_level	string \mid Number of road sections at different congestion levels	1:231 2:33 3:13 4:10
tj_time	string Timestamp	2016-01-15 00:35:11

3.5 Weather Info Table

The Weather Info Table shows the weather info every 10 minutes each city. The weather field gives the weather conditions such as sunny, rainy, and snowy etc; all sensitive information has been removed. The unit of temperature is Celsius degree, and PM2.5 is the level of air pollutions.

Table 6: Weather Info

Field	Type	Meaning	Example
Time	string	Timestamp	2016-01-15 00:35:11
Weather	int	Weather	7
temperature	double	Temperature	-9
PM2.5	double	pm25	66

4 Test Data

All the tables in test data are same except the order table it has the following fields:

Table 7: Order Info (Test)

Field	Type Meaning	Example
order_id	string order ID	$\begin{tabular}{ll} 70 fc 7c 2bd 2caf 386bb 50f8fd 5dfe f 0cf \\ \end{tabular}$
passenger_id	string user ID	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
start_district_hash	string departure	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
dest_district_hash	string destination	929ec6c160e6f52c20a4217c7978f681
Time	string Timestamp of the order	2016-01-15 00:35:11

5 Submission

Submission file will have the predicted gap values for all the regions and all the time slots where any order was made. You must skip the time slots where no order was made. A sample submission file is attached.