Devoir surveillé n°07: corrigé

SOLUTION 1.

1.

$$\begin{split} \mathbb{U}_4 = & \{1,i,-1,-i\} \\ \mathbb{U}_6 = & \left\{1,e^{\frac{i\pi}{3}},e^{\frac{2i\pi}{3}},-1,e^{\frac{4i\pi}{3}},e^{\frac{5i\pi}{3}}\right\} \\ \mathbb{U}_4 \cap \mathbb{U}_6 = & \{-1,1\} = \mathbb{U}_2 \\ G = & \left\{1,e^{\frac{i\pi}{6}},e^{\frac{i\pi}{3}},i,e^{\frac{2i\pi}{3}},e^{\frac{5i\pi}{6}},-1,e^{\frac{7i\pi}{6}},e^{\frac{4i\pi}{3}},-i,e^{\frac{5i\pi}{3}},e^{\frac{11i\pi}{6}}\right\} = \mathbb{U}_{12} \end{split}$$

Ainsi card $\mathbb{U}_4 = 4$, card $\mathbb{U}_6 = 6$, card $\mathbb{U}_4 \cap \mathbb{U}_6 = 2$ et card G = 12.

- 2. Soit $z \in \mathbb{U}_{m \wedge n}$. On a donc $z^{m \wedge n} = 1$. Puisque m et n sont des multiples de $m \wedge n$, on a également $z^m = 1$ et $z^n = 1$. Donc $z \in \mathbb{U}_m \cap \mathbb{U}_n$. Ainsi $\mathbb{U}_{m \wedge n} \subset \mathbb{U}_m \cap \mathbb{U}_n$.
- 3. Soit $z \in \mathbb{U}_m \cap \mathbb{U}_n$. On a donc $z^m = 1$ et $z^m = 1$. D'après le théorème de Bezout, il existe $(u, v) \in \mathbb{Z}^2$ tel que $mu + nv = m \wedge n$. Ainsi $z^{m \wedge n} = (z^m)^u (z^n)^v = 1$ et $z \in \mathbb{U}_{m \wedge n}$. Ainsi $\mathbb{U}_m \cap \mathbb{U}_n \subset \mathbb{U}_{m \wedge n}$.
- **4.** Soit $z \in G$. Il existe donc $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$ tels que $z = z_1 z_2$. Dans ce cas, $z^{m \vee n} = z_1^{m \vee n} z_2^{m \vee n}$. Mais comme $m \vee n$ est un multiple de m, $z_1^{m \vee n} = 1$. De même, $m \vee n$ étant un multiple de n, $z_2^{m \vee n} = 1$. Ainsi $z^{m \vee n} = 1$ et $z \in \mathbb{U}_{m \vee n}$. Ainsi $z \in \mathbb{U}_{m \vee n}$.
- 5. Soit $z \in \mathbb{U}_{m \vee n}$. Par le théorème de Bezout, il existe $(u,v) \in \mathbb{Z}^2$ tel que $um + vn = m \wedge n$. Posons $m' = \frac{m}{m \wedge n}$ et $n' = \frac{n}{m \wedge n}$. Remarquons que m' et n' sont entiers. On peut alors poser $z_1 = z^{vn'}$ et $z_2 = z^{um'}$. On a bien $z = z_1 z_2$ puisque um' + vn' = 1. De plus, $\frac{mn}{m \wedge n} = m \vee n$ donc $z_1^m = z^{v(m \vee n)} = 1$ et $z_2^n = z^{u(p \vee n)} = 1$. Ainsi $z = z_1 z_2$ avec $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$. Donc $z \in G$. Ainsi $\mathbb{U}_{m \vee n} \subset G$.

SOLUTION 2.

- **1. a.** Puisque a > 1 et n > 0, $a^n + 1 > 2$. Puisque $a^n + 1$ est premier et distinct de 2, il est impair. Ainsi a^n est pair et donc a est pair.
 - **b.** On a $a^k \equiv -1[a^k+1]$, puis $(a^k)^m \equiv -1[a^k+1]$. Puisque m est impair, $a^{km} \equiv -1[a^k+1]$ i.e. $a^n+1 \equiv 0[a^k+1]$. Ainsi a^k+1 divise a^n+1 . Puisque a^n+1 est premier, on en déduit que $a^k+1=1$, ce qui est exclu, ou $a^k+1=a^n+1$. Puisque a>1, on obtient k=n et donc m=1, ce qui est impossible car $m \ge 3$.
 - c. On déduit de la question précédente que n n'admet pas de diviseur premier impair. Le seul diviseur premier de n est donc 2. Le théorème de décomposition en facteurs premiers assure alors que n est une puissance de 2.
- **2. a.** Soit $n \in \mathbb{N}$.

$$F_{n+1}-1=2^{2^{n+1}}=(2^{2^n})^2=(F_n-1)^2$$

b. On raisonne par récurrence. On a bien $F_1-2=3=F_0$. Supposons qu'il existe $n \in \mathbb{N}^*$ tel que $F_{n+1}=(F_n-1)^2+1$. Alors, d'après la question précédente

$$F_{n+1} - 2 = (F_n - 1)^2 - 1 = F_n(F_n - 2) = F_n \prod_{k=0}^{n-1} F_k = \prod_{k=0}^{n} F_k$$

Par récurrence, $F_n - 2 = \prod_{k=0}^{n-1} F_k$ pour tout $n \in \mathbb{N}^*$.

- **c.** On a $n \in \mathbb{N}^*$ et on peut appliquer la question précédente. Ainsi $\mathbf{F}_n 2 = \prod_{k=0}^{n-1} \mathbf{F}_k$ ou encore $\mathbf{F}_n \prod_{k=0}^{n-1} \mathbf{F}_k = 2$. D'une part, $\mathbf{F}_m \wedge \mathbf{F}_n$ divise \mathbf{F}_n et, d'autre part, $\mathbf{F}_m \wedge \mathbf{F}_n$ divise \mathbf{F}_m donc $\prod_{k=0}^{n-1} \mathbf{F}_k$ puisque m < n. Ainsi $\mathbf{F}_m \wedge \mathbf{F}_n$ divise 2. Par ailleurs, \mathbf{F}_n est impair donc $\mathbf{F}_m \wedge \mathbf{F}_n = 1$.
- 3. a. Puisque p divise F_n , $2^{2^n} \equiv -1[p]$. En élevant au carré, $2^{2^{n+1}} \equiv 1[p]$ donc $2^{n+1} \in A$.
 - **b.** A est une partie non vide (d'après la question précédente) de \mathbb{N}^* : elle admet donc un minimum.

- **c.** Notons q et r le quotient et le reste de la division euclidienne de 2^{n+1} par m. On a donc $2^{n+1} = qm + r$ avec $0 \le r < m$. De plus, $q \in \mathbb{N}$ puisque 2^{n+1} et m sont positifs. Ainsi $2^{2^{n+1}} = (2^m)^q \cdot 2^r$. Or $m \in A$ donc $2^m \equiv 1[p]$ puis $(2^m)^q \equiv 1[p]$. Finalement $2^{2^{n+1}} \equiv 2^r[p]$. Or $2^{n+1} \in A$ donc $2^r \equiv 1[p]$. Si on avait r > 0, on aurait $r \in A$ et r < m, ce qui est impossible car $m = \min A$. Ainsi r = 0 de sorte que m divise 2^{n+1} .
- **d.** Il s'ensuit que m est une puissance de 2. Il existe donc un entier naturel $q \le n+1$ tel que $m=2^q$. Supposons $q \le n$. Puisque $2^{2^q} \equiv 1[p]$, on obtient en élevant à la puissance 2^{n-q} , $2^{2^n} \equiv 1[p]$. Or p divise F_n donc $2^{2^n} \equiv -1[p]$. Ainsi $2 \equiv 0[p]$ i.e. p divise 2. Puisque p est premier, on aurait p=2, ce qui est impossible car F_n est impair.
- e. Puisque F_n est impair, $p \neq 2$ et donc p est impair. En particulier, 2 est premier avec p. D'après le petit théorème de Fermat, $2^{p-1} \equiv \mathbb{1}[p]$ et $p-1 \in A$.
- **f.** En écrivant à nouveau la division euclidienne de p-1 par m, la minimalité de m montre que m divise p-1 i.e. $p \equiv 1[m]$. Puisque $m = 2^{n+1}$, $p \equiv 1[2^{n+1}]$.

SOLUTION 3.

 On trouve sans peine que F = vect((1,1,0),(0,1,1)) donc F est bien un sous-espace vectoriel de E. Par ailleurs,

$$\begin{cases} x+y-z=0 \\ x-y-z=0 \end{cases} \Longleftrightarrow \begin{cases} y=0 \\ x=z \end{cases}$$

donc G = vect((1,0,1)). Ainsi G est bien un sous-espaces vectoriel de E.

- 2. Une résolution de système montre que $F \cap G = \{(0,0,0)\}$. Par ailleurs, la question précédente montre que $\dim F = 2$ et $\dim G = 1$ puisque les familles ((1,1,0),(0,1,1)) et ((1,0,1)) sont clairement libres. Ainsi $\dim F + \dim G \dim E$ donc F et G sont bien supplémentaires dans E.
- 3. On remarque que (1,2,3) = (0,2,2) + (1,0,1). On vérifie sans peine que $(0,2,2) \in F$ et que $(1,0,1) \in G$. Ainsi (0,2,2) est le projeté de (1,2,3) sur F parallélement à F.

SOLUTION 4.

- **1.** Les solutions de (\mathscr{F}) sont les fonctions $t \mapsto \lambda e^t + \mu e^{-t}$ avec $(\lambda, \mu) \in \mathbb{R}^2$. Les solutions de (\mathscr{G}) sont les fonctions $t \mapsto \lambda \cos t + \mu \sin t$ avec $(\lambda, \mu) \in \mathbb{R}^2$.
- 2. Soit f une solution de (\mathcal{E}) . On raisonne par récurrence. f est manifestement de classe \mathcal{C}^0 sur \mathbb{R} . Supposons que f soit de classe \mathcal{C}^{4n} pour un certain $n \in \mathbb{N}$. Alors $f^{(4)} = f$ est de classe $\mathcal{C}^{(4n)}$ sur \mathbb{R} . Finalement f est de classe \mathcal{C}^{4n+4} autrement dit de classe $\mathcal{C}^{4(n+1)}$ sur \mathbb{R} . Par récurrence, f est de classe $\mathcal{C}^{(4n)}$ sur \mathbb{R} pour tout f0. Ainsi f1 est de classe f2 sur f3.
- 3. Soit $f \in F$. Alors f est de classe \mathscr{C}^{∞} et f'' = f. Par conséquent $f^{(4)} = f'' = f$ donc $f \in E$. Ainsi $F \subset E$. Soit $f \in G$. Alors f est de classe \mathscr{C}^{∞} et f'' = -f. Par conséquent $f^{(4)} = -f'' = f$ donc $f \in E$. Ainsi $G \subset E$.
- **4.** D'après les questions précédentes, $F \subset E \subset \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $F = \text{vect}(t \mapsto e^t, t \mapsto e^{-t})$. Ainsi F est un sous-espace vectoriel de $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

De la même manière, $G \subset E \subset \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $G = \text{vect}(\cos, \sin)$. Ainsi F est un sous-espace vectoriel de $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

5. Remarquons que

$$(f'' + f)'' - (f'' + f) = f^{(4)} - f = 0$$

donc $f'' + f \in F$. De même,

$$(f''-f)''+(f''-f)=f^{(4)}-f=0$$

donc $f'' - f \in G$.

6. Tout d'abord, $F \subset E$ et $G \subset E$ donc $F + G \subset E$. Réciproquement, soit $f \in E$. Alors $f = \frac{1}{2}(f'' + f) - \frac{1}{2}(f'' - f) \in F + G$ d'après la question précédente. Ainsi E = F + G. Enfin, soit $f \in F \cap G$. Alors f = f'' = -f donc f est nulle. Ainsi $F \cap G = \{0\}$. Finalement, $E = F \oplus G$.

7. Puisque

$$E = F \oplus G = \text{vect}(t \mapsto e^t, t \mapsto e^{-t}) \oplus \text{vect}(\cos, \sin) = \text{vect}(t \mapsto e^t, t \mapsto e^{-t}, \cos, \sin)$$

les solutions de (\mathcal{E}) sont les fonctions de la forme

$$t \mapsto \alpha e^t + \beta e^{-t} + \gamma \cos t + \delta \sin t$$

avec $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$.

SOLUTION 5.

1. La suite nulle appartient clairement à E. Soient ensuite $(u, v) \in E^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Alors pour tout $n \in \mathbb{N}$,

$$(\lambda u + \mu v)_{n+4} + (\lambda u + \mu v)_{n+2} + (\lambda u + \mu v)_n = \lambda (u_{n+4} + u_{n+2} + u_n) + \mu (v_{n+4} + v_{n+2} + v_n) = 0$$

Ainsi $\lambda u + \mu v \in E$.

2. Soit $u \in F$. Soit $n \in \mathbb{N}$. Alors

$$u_{n+2} + u_{n+1} + u_n = 0$$

$$u_{n+3} + u_{n+2} + u_{n+1} = 0$$

$$u_{n+4} + u_{n+3} + u_{n+2} = 0$$

En additionnant la première et la dernière égalité et en retranchant la seconde, on obtient

$$u_{n+4} + u_{n+2} + u_n = 0$$

Ainsi $u \in E$ puis $F \subset E$. Soit $u \in G$. Soit $n \in \mathbb{N}$. Alors

$$u_{n+2} - u_{n+1} + u_n = 0$$

$$u_{n+3} - u_{n+2} + u_{n+1} = 0$$

$$u_{n+4} - u_{n+3} + u_{n+2} = 0$$

En additionnant les trois égalités, on obtient

$$u_{n+4} + u_{n+2} + u_n = 0$$

Ainsi $u \in E$ puis $G \subset E$.

3. Les racines de $X^2 + X + 1$ sont $e^{\frac{2i\pi}{3}}$ et $e^{-\frac{2i\pi}{3}}$ donc

$$F = \text{vect}\left(\left(\cos\left(\frac{2n\pi}{3}\right)\right)_{n\in\mathbb{N}}, \left(\sin\left(\frac{2n\pi}{3}\right)\right)_{n\in\mathbb{N}}\right)$$

Puisque $F \subset E$, F est bien un sous-espace vectoriel de E et la famille $\left(\left(\cos\left(\frac{2n\pi}{3}\right)\right)_{n\in\mathbb{N}}, \left(\sin\left(\frac{2n\pi}{3}\right)\right)_{n\in\mathbb{N}}\right)$ engendre F. Les racines de X^2-X+1 sont $e^{\frac{i\pi}{3}}$ et $e^{-\frac{i\pi}{3}}$ donc

$$G = \operatorname{vect}\left(\left(\cos\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}}, \left(\sin\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}}\right)$$

Puisque $G \subset E$, G est bien un sous-espace vectoriel de E et la famille $\left(\left(\cos\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}},\left(\sin\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}}\right)$ engendre G.

4. Pour tout $n \in \mathbb{N}$,

$$v_{n+2} + v_{n+1} + v_n = u_{n+4} - u_{n+3} + u_{n+2} + u_{n+3} - u_{n+2} + u_{n+1} + u_{n+2} - u_{n+1} + u_n = u_{n+4} + u_{n+2} + u_n = 0$$

car $u \in E$. Ainsi $v \in F$.

Pour tout $n \in \mathbb{N}$

$$w_{n+2} - w_{n+1} + w_n = u_{n+4} + u_{n+3} + u_{n+2} - u_{n+3} - u_{n+2} - u_{n+1} + u_{n+2} + u_{n+1} + u_n = u_{n+4} + u_{n+2} + u_n = 0$$

car $u \in E$. Ainsi $w \in F$.

5. Puisque F et G sont inclus dans E, F + G \subset E. Soit $u \in$ E. Alors, en définissant v et w comme à la question précédente, $u = \frac{1}{2}w - \frac{1}{2}v$. Comme $(u, v) \in$ F \times G, $u \in$ F + G. Ainsi E \subset F + G. Par double inclusion, E = F + G. Soit enfin $u \in$ F \cap G. Alors pour tout $n \in$ N,

$$u_{n+2} + u_{n+1} + u_n = 0$$

$$u_{n+2} - u_{n+1} + u_n = 0$$

En soustrayant ces deux égalités, on trouve $u_{n+1}=0$ pour tout $n\in\mathbb{N}$ i.e. $u_n=0$ pour tout $n\in\mathbb{N}^*$. Enfin, $u_0=-u_1-u_2=0$ donc u est nulle. Finalement $F\cap G=\{(0)_{n\in\mathbb{N}}\}$ puis $E=F\oplus G$.

6. D'après les questions précédentes,

$$\begin{split} \mathbf{E} &= \mathbf{F} \oplus \mathbf{G} = \mathrm{vect}\left(\left(\cos\left(\frac{2n\pi}{3}\right)\right)_{n \in \mathbb{N}}, \left(\sin\left(\frac{2n\pi}{3}\right)\right)_{n \in \mathbb{N}}\right) \oplus \mathrm{vect}\left(\left(\cos\left(\frac{n\pi}{3}\right)\right)_{n \in \mathbb{N}}, \left(\sin\left(\frac{n\pi}{3}\right)\right)_{n \in \mathbb{N}}\right) \\ &= \mathrm{vect}\left(\left(\cos\left(\frac{2n\pi}{3}\right)\right)_{n \in \mathbb{N}}, \left(\sin\left(\frac{2n\pi}{3}\right)\right)_{n \in \mathbb{N}}, \left(\cos\left(\frac{n\pi}{3}\right)\right)_{n \in \mathbb{N}}, \left(\sin\left(\frac{n\pi}{3}\right)\right)_{n \in \mathbb{N}}\right) \end{split}$$

Par conséquent, les éléments de E sont les suites de la forme

$$n \mapsto \alpha \cos\left(\frac{2n\pi}{3}\right) + \beta \sin\left(\frac{2n\pi}{3}\right) + \gamma \cos\left(\frac{n\pi}{3}\right) + \delta \sin\left(\frac{n\pi}{3}\right)$$

avec $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$.