双 Attention 方法:

假设存在一张图如上,该图有 7 个节点、11 条边,总共有 3 种节点属性。我们采用 8 个 graphlet 来学习该图的信息。首先从 1 号节点开始,分析 1 号节点属于哪些 graphlet,并记下该点属于某种 graphlet 的数目记为 $V_{i,j}$ (其中,i代表节点号,j代表 graphlet 的编号),组成一个 8 维的向量。以此类推,可以得到 7 个 8 维向量。

将相同属性节点得到的 8 维向量对应项相加,得到新的一组 8 维向量,每一项记为 $r_{i,j}$ (其中,i 代表节点类型编号,j 代表 graphlet 的编号)。

用神经网络学习双 Attention 权重系数:

分别对 8 个 graphlet 求权重系数和对 3 种节点类型求权重系数,记为 $w_{i,j}$ (其中,i为两种不同的权重,j为同种权重的不同项) 1)graphlet 权重学习:

2) 节点类型权重学习:

r11	r12	r13	r14	r15	r16	r17	r18		神经网络		w21
r21	r22	r23	r24	r25	r26	r27	r28				w22
r31	r32	r33	r34	r35	r36	r37	r38				w23

将得到的双 Attention 权重系数, 求图信息的嵌入结果。

公式记为:

$$Output = [(r11 + r21 + r31) \times w11 + \dots + (r18 + r28 + r38) \times w18] + [(r11 + r12 + r13 + \dots + r18) \times w21 + \dots + (r31 + r32 + \dots + r38) \times w23]$$