Compressed Sensing : trouver le k-sous-graphe le plus dense

Dorian Lagadec, Martin Mugnier

27 mars 2019

Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph, Bhaskara, Charikar, Guruswami [2011]

Sommaire

- Théorie des graphes : rappels et présentation du problème du k-sous-graphe le plus dense
- 2 Un résultat théorique : bornes inférieures pour la qualité d'approximation de certaines relaxations SDP
- 3 Une application : la contrainte sphérique de Malick et Roupin
- 4 Conclusions, limites et extensions

Théorie des graphes : rappels et présentation du problème du k-sous-graphe le plus dense

- Graphe : ensemble (E,V) de noeuds et d'arêtes pouvant représenter toutes sortes de réseaux ;
- De nombreux problèmes de graphes, tous liés à une même complexité : la croissance exponentielle de la difficulté;
- Notre problème : trouver le sous-graphe à k noeuds le plus dense dans un graphe non pondéré non orienté. Un problème NP-difficile.

Relaxation convexe d'un problème NP-hard

Problème IP

$$\begin{array}{ll} \max & \sum\limits_{(i,j)\in E(G)} x_{ij} \\ \text{subject to} & \sum\limits_{i\in V} x_i \leq k, \\ & \forall i,j\in V,\; x_{ij}\in \{0,1\} \end{array}$$

- \bullet Problème NP-difficile \to relaxation convexe et solution approximante
- LP : $\forall i, j \in V, \ 0 \le x_{ij} \le 1$
- Relaxation convexe SDP et hiérarchies : introduire des contraintes linéaires et SDP locales de plus en plus importantes

 hiérarchies de Sherali-Adams, Lasserre.

Performance des algorithmes d'approximation?

• Integrality Gap :

$$IG = \frac{\text{Solution approchée}}{\text{Solution du problème en nombre entier}}$$

Trade-off dans les niveaux de hierarchies : précision / coût de calcul

But ultime : trouver une borne inférieure la plus fine possible sur l'integrality gap pour un certain type de relaxations SDP du problème originel.

 \to Avantage : non conditionnel à $\mathscr{P}=\mathscr{N}\mathscr{P}$ pour éliminer potentiellment une large classe d'algorithmes.

Résultats et questions

- Peu de résultats d'innaproximabilité parlants : seulement en $\mathcal{O}(1)$.
- Peut-on donner une borne inférieure qui dépende du niveau dans les hierarchies SA et LAS?
- Qui dépende de n?

Rappel: Pour un graphe à n sommets, n niveaux de SA ou LA conduisent à la solution exacte du pb.

Borne inférieure pour Sherali-Adams

Theorem (Bhaskara et. al, 2011)

Soit $L \leq \frac{\log n}{10\log\log n}$. L'écart d'approximation d'un SA_L est au moins $\Omega\left(\frac{n^{1/4}}{L\log^2 n}\right)$.

Idées de la preuve :

- Propriété de graphes d'Erdos-Renyi bien choisis
- Arbre de Steiner minimal

Borne inférieure pour Lasserre

Theorem (Bhaskara et. al, 2011)

Pour un $\kappa>0$ suffisamment petit, on peut trouver un écart d'approximation en $N^{2/53-O(\kappa)}$ pour le N^{κ} -niveau du Lasserre SDP appliqué au Min-degree.

Idée de la preuve :

Réduction d'un problème de Max-CSP.

Une application : la contrainte sphérique de Malick et Roupin

Problème initial

$$\begin{array}{ll} \max & \quad y^T \, W y \\ \text{subject to} & \quad \langle y, (1,1,\dots,1) \rangle = k \\ & \quad y \in \{0,1\}^n \end{array}$$

Problème final : un lagrangien $\theta(\alpha)$

$$\begin{aligned} \max \langle Q, X \rangle - \alpha \big(||X||^2 - (n+1)^2 \big) \\ \text{subject to} & \langle Q_j, X \rangle = 4k - 2n, j \in \{0, \dots, n\}, \\ & \langle E_j, X \rangle = 1, i \in \{0, \dots, n\}, \\ & X \succcurlyeq 0 \end{aligned}$$

Transformations nécessaires :

- Ajout de contraintes redondantes;
- Changement de variable affine de y vers x (x = 2y 1);
- Homogénéisation de la contrainte quadratique;
- Réécriture du problème sous forme matricielle $(X = xx^T)$;
- Relaxation de la contrainte de rang (rg(X) = 1) par définition) et définition du lagrangien.

Simulations et résultats

Simulation sur un graphe Erdös-Renyi $\mathcal{G}(30,0.4)$ et une recherche du sous-graphe le plus dense à 10 noeuds :

Le temps CPU décroit exponentiellement avec α alors que la borne supérieure augmente linéairement. Autrement dit, avec un α faible mais bien choisi, on a une approximation correcte et extrêmement économe en terme de CPU.

Extension : revenir au problème du sous-graphe le plus dense à k noeuds

Algorithme proposé

- A partir de la matrice X, inférer les noeuds les plus connectés jusqu'à en obtenir k (seuil décroissant);
- Obtenir une nouvelle matrice d'adjacence "approximée" ;
- Comparer cette dernière à la première, retirer les arêtes artificielles et ajouter les arêtes manquantes.

Résultats :

- Une intuition fondée;
- Des résultats théoriques manquants;
- Une validation correcte sur des graphes de petite taille.

15 densest subgraph de $\mathcal{G}(30,0.2)$

10 densest subgraph de $\mathcal{G}(15,0.7)$

10-densest subgraph sur un graphe déterministe avec plusieurs "cliques"

Conclusions, limites et extensions

- Quelle borne pour des régimes plus rapides de relaxation (ex : polynomiaux de n)?
- Peu de proposition de Branch and bound algorithms,
- Instabilité de nos algorithmes quand $n \to \infty$