1. (Computer Center Staffing)

Decision Variables:: x1,x2,x3 :Full time consultants

 Y_1,Y_2,Y_3,Y_4 : Part time consultants

a. Objective Function:

The objective is to minimize staffing cost therefore the will be the equation

$$Z_{Min}=48(Y_1+Y_2+Y_3+Y_4)+112(X_1+X_2+X_3)$$

Constraints:

$$X_1+Y_1 \ge 4$$

$$X_1 + X_2 + Y_2 \ge 8$$

$$X_2+X_3+Y_3 \ge 10$$

$$X_{1=2}, X_{2}=2, X_{3}=3, Y1=2, Y2=4, Y3=5, Y4=3$$

The min cost is $Z_{Min}=48(Y_1+Y_2+Y_3+Y_4)+112(X_1+X_2+X_3)$

$$=48(14)+112(7)$$

b. since company decided to includes meal break,

The minimum staffing cost is $Z_{Min}=48(Y_1+Y_2+Y_3+Y_4)+112(X_1+X_2+X_3)$

Constraints:

$$X_1+Y_1 \ge 4$$

$$X_1 + X_2 + Y_2 \ge 8$$

$$X_2+X_3+Y_3>10$$

To make sure each and every part-time has a full time consultant, I will hire two full time consultants in 12PM-8PM shift.

Hence,
$$X_1=2, X_2=5, X_3=3$$
, $Y1=2, Y2=4, Y3=5, Y4=3$
The min cost is $Z_{Min}=48(Y_1+Y_2+Y_3+Y_4)+112(X_1+X_2+X_3)$
 $=48(14)+112(10)$
 $Z_{Min}=\$1792$

2) Backsavers LP graphical Representation:

Z material	X1 32 3	X2 24 2	>= <=	5000
labor	45	40	<=	84000
intercept	X1	X2		
material	0	2500	5000	
	1666.667	0	5000	
labor	0	2100	84000	
	1866.667	0	84000	
X1	<u><</u>	1000		
X2	<u><</u>	1200		

In the Graph, we have feasible region at cornor points (0,1200) (1000,0)

3) The decision variables are

 X_{1L} = number of large units produced per day at Plant 1,

 X_{1M} = number of medium units produced per day at Plant 1,

X_{1S} = number of small units produced per day at Plant 1,

 X_{2L} = number of large units produced per day at Plant 2,

 X_{2M} = number of medium units produced per day at Plant 2,

 X_{2S} = number of small units produced per day at Plant 2,

 X_{3L} = number of large units produced per day at Plant 3,

 X_{3M} = number of medium units produced per day at Plant 3,

 x_{3S} = number of small units produced per day at Plant 3.

The objective is to maximize

$$Z = 420(x_{1L} + x_{2L} + x_{3L}) + 360(x_{1M} + x_{2M} + x_{3M}) + 300(x_{1S} + x_{2S} + x_{3S})$$
 subject to the following constraints.

Capacity constraints:

$$x_{1L} + x_{1M} + x_{1S} \le 750$$

$$x_{2L} + x_{2M} + x_{2S} \le 900$$

$$x_{3L} + x_{3M} + x_{3S} \le 450$$

Storage space constraints:

$$20x_{1L} + 15x_{1M} + 12x_{1S} \le 13000$$

$$20x_{2L} + 15x_{2M} + 12x_{2S} \le 12000$$

$$20x_{3L} + 15x_{3M} + 12x_{3S} \le 5000$$

Sale constraints:

$$x_{1L} + x_{2L} + x_{3L} \le 900$$

$$x_{1M} + x_{2M} + x_{3M} \le 1200$$

$$x_{1S} + x_{2S} + x_{3S} \le 750$$

Same capacity percentage constraints:

$$900(x_{1L} + x_{1M} + x_{1S}) - 750(x_{2L} + x_{2M} + x_{2S}) = 0$$

$$450(x_{2L} + x_{2M} + x_{2S}) - 900(x_{3L} + x_{3M} + x_{3S}) = 0$$

Nonnegativity constraints:

$$x_{1L} \ge 0$$
, $x_{1M} \ge 0$, $x_{1S} \ge 0$, $x_{2L} \ge 0$, $x_{2M} \ge 0$, $x_{2S} \ge 0$,

$$x_{3L} \ge 0$$
, $x_{3M} \ge 0$, $x_{3S} \ge 0$.