Arquitetura de Redes de Computadores

Luiz Paulo Maia

Camada de Redes Redes e subredes

Número de redes e hosts por classe

Classe	Redes	Hosts	Descrição		
A	128 (2 ⁷)	16777216 (2 ²⁴)	Redes muito grandes		
В	16384 (214)	65536 (2 ¹⁶)	Redes médias/grandes		
С	2097152 (2 ²¹)	256 (2 ⁸)	Redes pequenas		

Intervalos de endereços por classe

Classe	Endereço Inicial	Endereço Final		
A	0.0.0.0	127.255.255.255		
В	128.0.0.0	191.255.255.255		
С	192.0.0.0	223.255.255.255		

Redes e Sub-redes

- No esquema de endereçamento IP em apenas dois níveis, o endereço é dividido em duas partes:
 - Identificação da rede e;
 - Identificação do host;
- Esquema com dois níveis pode ser insuficiente;

Rede sem sub-redes

Rede com sub-redes

Rede 146.164.0.0 pertence ao tipo B

Sub-redes

- O subendereçamento é implementado na prática utilizando-se parte dos bits destinados à identificação do host.
- Nesse caso, o endereço é dividido em três partes:
 - identificação da rede;
 - identificação da sub-rede e;
 - identificação do host dentro da sub-rede;

Endereçamento e subendereçamento

(a)	Id. da rede	Id. do host		
(b)	ld. da rede	Id. da sub-rede Id. do h		

Exemplo de subendereçamento

Sub-rede	Endereço da Sub-rede	Endereço Inicial	Endereço Final	Endereço de Broadcast	
1	146.164.1.0	146.164.1.1	146.164.1.254	146.164.1.255	
2	146.164.2.0	146.164.2.1	146.164.2.254	146.164.2.255	
3	146.164.3.0	146.164.3.1	146.164.3.254	146.164.3.255	
	200		A. I. I.	1200	
254	146.164.254.0	146.164.254.1	146.164.254.254	146.164.254.255	

Endereçamento hierárquico

Sub-redes

- Analisando apenas para o endereço 146.164.2.70, não é possível identificar se há ou não a utilização do esquema de subendereçamento.
- Para diferenciar os dois tipos de endereçamento, utiliza-se uma máscara de bits, chamada de máscara de sub-rede (subnet mask).

- A máscara de sub-rede permite especificar os bits do identificador de host que estão sendo utilizados para subendereçamento.
 - Para isso, a máscara é formada por uma sequência de bits 1, que representa a parte da rede e sub-rede,
 - Seguida de uma sequência de bits 0, que representa a parte do host.

Exemplos de máscaras de sub-rede

11111111	00000000	00000000	00000000	=	255	0	0	0
11111111	11111111	00000000	00000000	=	255	255	0	0
11111111	11111111	11111111	00000000	=	255	255	255	0

Exemplo de máscara de sub-rede

- A máscara sozinha (também) não permite identificar se há utilização de sub-redes.
 - O subendereçamento é uma combinação da classe do endereço com a máscara de sub-rede.
 - Por exemplo, enquanto a máscara 255.255.255.0 para um endereço classe B implementa o esquema de sub-redes, a mesma máscara para um endereço classe C não implica subendereçamento.

- O exemplo anterior considerou um subendereçamento com 256 sub-redes e cada uma contendo 254 hosts.
- Mas suponha uma instituição que tenha cerca de 1000 hosts;

- O subendereçamento permite manipular a máscara de sub-rede de forma a refletir as necessidades da instituição.
 - Nesse caso, como são 1000 hosts, basta calcular a potência de dois mais próxima e descobrir o número de bits necessários para representá-los.
 - 1024 (2¹⁰), ou seja **dez** bits para endereçamento dos hosts.

- O subendereçamento permite manipular a máscara de sub-rede de forma a refletir as necessidades da instituição.
 - Como existem 16 bits possíveis* para subendereçamento e são necessários dez para hosts, sobram seis bits para endereçamento de sub-redes.
 - A máscara de sub-rede em decimal deverá representar essa sequência de bits, tendo, assim, a máscara 255.252.0.

*considere que estamos usando um endereço classe B

Quantidade de Endereços por rede

Para calcular quantos hosts você terá a disposição para uma sub-rede, pegue a quantidade de bits reservado para hosts e calcule usando a seguinte fórmula

$$QH = 2^n - 2$$

QH = quantidade de Hosts n = quantidade de bits reservado para hosts

Quantidade de Endereços por rede

Por que subtrair 2 na fórmula anterior?

R: existem 2 endereços especiais que são reservados em todas a redes ou subredes.

- Endereço da rede (primeiro)
- Endereço de broadcast (último)

Exemplo

Encontre os valores de máscara de sub-rede, endereço de rede, broadcast e faixa de endereços utilizaveis para um subrede que acomode 120 dispositivos;

Use e endereço classe C 192.168. 0 . X 255.255.255.0

Exemplo

- . Máscara de Sub-rede: 255.255.255.128
 - a. 11111111111111111111111111110000000
 - $_{\rm b.}$ $2^7 = 128 \text{ hosts}$

Exemplo

- . Endereço de Rede: 192.168.0.0
- . Endereço de Broadcast: 192.168.0.127

 Endereços IP Utilizáveis: 192.168.0.1 a 192.168.0.126

192.168. 0 . 148

255.255.255.128

Vantagens e Desvantagens

- 1. **Segmentação de Tráfego:** As sub-redes permitem segmentar o tráfego de rede em grupos lógicos. Isso ajuda a reduzir o tráfego de broadcast e colisões, melhorando o desempenho da rede.
- Isolamento de Falhas: Se ocorrer uma falha em uma sub-rede, ela geralmente não afetará outras sub-redes. Isso isola problemas e torna a solução de problemas mais fácil.
- 3. **Organização Lógica:** Sub-redes criam uma organização lógica da rede, tornando mais fácil entender a topologia da rede.
- 4. Redução de Colisões: Redes antigas, como as Ethernet tradicionais, sofrem com colisões de dados. Ao dividir a rede em sub-redes menores, você pode reduzir o número de colisões, melhorando o desempenho.

Vantagens e Desvantagens

- Complexidade de Gerenciamento: À medida que o número de sub-redes aumenta, o gerenciamento e a configuração da rede podem se tornar mais complexos. Manter um registro preciso das sub-redes, máscaras de sub-rede e faixas de endereços IP pode ser desafiador, especialmente em redes muito grandes.
- 2. **Necessidade de Hardware Adicional:** Em alguns casos, a implementação de sub-redes pode exigir hardware adicional, como roteadores e switches gerenciáveis, o que pode aumentar os custos.
- Aumento do Tráfego de Broadcast: Embora o uso de sub-redes possa reduzir o tráfego de broadcast em cada sub-rede individual, o roteamento entre sub-redes pode gerar tráfego adicional de broadcast, especialmente se não for configurado corretamente.
- 4. **Complexidade de Solução de Problemas:** Quando ocorrem problemas de conectividade em uma rede com sub-redes, a solução de problemas pode ser mais complexa do que em redes sem sub-redes, exigindo habilidades avançadas de rede.

Endereçamento sem classe

- A utilização das classes gerou um problema quanto à otimização do uso de endereços;
 - Classless Inter-Domain Routing (CIDR);
 - Permite a criação de sub-redes com tamanhos variados;
 - Uso de uma nova notação;
 - 200.10.10.0/25
 - /25 significa a quantidade de bits usados para identificação de redes;

Endereçamento sem classe

• O CIDR usa uma notação simplificada que combina o endereço IP com a máscara de sub-rede em um formato fácil de entender. Isso torna a configuração e a documentação de redes mais simples e menos propensa a erros.

Endereço IP: 172.16.0.0 (Classe B)

Máscara de Sub-rede: 255.255.240.0

Endereço IP: 172.16.0.0/20

Exercício

Calcule a máscara de subrede e os endereços de rede e broadcast para duas sub-redes, cada uma suportando até 50 hosts. Use a faixa de endereço classe C 192.168.100.X

Exercício

Sub-rede 1:

- Endereço de Rede: 192.168.100.0/26 (255.255.255.192)
- Endereço de Broadcast: 192.168.100.63/26
- Faixa de Endereços IP Utilizáveis: 192.168.100.1/26 a 192.168.100.62/26

Sub-rede 2:

- Endereço de Rede: 192.168.100.64/26 (255.255.255.192)
- Endereço de Broadcast: 192.168.100.127/26
- Faixa de Endereços IP Utilizáveis: 192.168.100.65/26 a 192.168.100.126/26

Dúvidas, Perguntas, Questionamentos?