riseset Group

John D. Baker

https://github.com/bakerjd99/jackshacks/blob/main/riseset.ijs

SHA-256: ed530a64158a9d38bed64f47c124434e8108b27d8032b671554656a77dbefa85

June 3, 2024

Contents

riseset Overview	2
riseset Interface	3
riseset Algorithm Notes	3
riseset Source Code	6
=: Index	56

riseset Overview

riseset is a collection of basic astronomical algorithms that compute the rise, transit, and set times of IAU-named stars.

riseset is distributed as an auxillary J addon. Auxillary addons are hosted in private GitHub repositories. riseset can be installed in the local J folder ~addons/jacks with:

```
load 'pacman'

NB. files from https://github.com/bakerjd99/jackshacks
install 'github:bakerjd99/jackshacks'

NB. installed files
dir '~addons/jacks'

Once installed it can be loaded and run with:

load '~addons/jacks/riseset.ijs'
location_yellowstone 0

NB. IAU stars rising/setting over Old Faithful
fmt_today iau_today 0
```

For more details about setting up, running, and "hacking" riseset refer to the Jupyter notebook riseset_notebook.ipynb or the pdf version of same riseset_notebook.pdf. Both of these files are installed with riseset.

2

riseset Interface RISESET OVERVIEW

riseset Interface

```
baby_today [13] named Babylonian stars rising/setting today
fmt_today [21] format today verbs result
iau_today [23] named IAU stars rising/setting today
loadstars [26] loads riseset star data
nav_today [35] named navigation stars rising/setting today
navdaylist [36] sky safari 6_0 observing list of today's navigation stars
riseset [44] rise, transit, set times of stars
```

riseset Algorithm Notes

Many riseset algorithms are taken from Jean Meeus's book Astronomical Algorithms. A PDF copy of this book is available here:

```
https://ia802807.us.archive.org/20/items/astronomicalalgorithmsjeanmeeus1991/
```

also here:

```
https://www.amazon.com/s?i=stripbooks&rh=p_27%3AJean+Meeus&s=relevancerank&text=Jean+Meeus&ref=dp_byline_sr_book_1
```

Nutation algorithms are from Jay Tanner's site:

```
https://neoprogrammics.com/nutations/index.php
```

Markdown versions of Tanner's algorithms are stored in the JOD futs and utils dictionaries — see:

- 1. nutation_in_longitude_dPsi_md
- 2. nutation_in_obliquity_of_ecliptic_dEpsDeg_md

RISESET OVERVIEW

The sunrise and set verb sunriseset1 is a J version of a BASIC program featured in the March 3 1995 Astronomical Computing column of Sky and Telescope. The Free Library maintains a copy of this article - see:

```
https://www.thefreelibrary.com/Sunrise+sunset+challenge%3a+the+winners.-a016565215
https://skyandtelescope.org/about-us/sky-and-telescope-index/
Many other interesting BASIC Sky and Telescope programs are here:
```

https://skyandtelescope.org/astronomy-resources/basic-programs-from-sky-telescope/

You can display the markdown referenced about with the JOD expressions:

```
load 'general/jod'
od ;:'futs utils'
NB. display markdown documents
4 disp ; }.@(4&dn1)&.> 'nutation_';'nasa_'
```

Many examples showing how to use various riseset words are in the JOD futs test suite riseset. You can display all the test cases with the JOD expressions:

- 3 grp 'riseset' NB. test cases in suite
- 3 disp 'riseset' NB. display test suite
- 4 rtt 'riseset' NB. run all tests in suite

riseset Source Code

```
NB.*riseset s-- compute rise, transit and set times of IAU named stars.
NB.
NB. verbatim: interface word(s):
NB. -----
NB. baby_today - named Babylonian stars rising/setting today
NB. fmt today - format today verbs result
NB. iau today - named IAU stars rising/setting today
NB. loadstars - loads riseset star data
NB. nav today - named navigation stars rising/setting today
NB. navdaylist - sky safari 6_0 observing list of today's navigation stars
NB. riseset - rise, transit, set times of stars
NR
NB. created: 2023mar09
NB. changes: -----
NB. 23mar29 (iau tonight) renamed (iau today)
NB. 23mar29 various location setting verbs (location_uluru) added
NB. 23mar30 (nav today) added
NB. 23apr01 (fmt today) added
NB. 23apr06 (navdaylist) added
NB. 23apr08 (baby_today) added
NB. 23apr27 show sunrise/set times added (localsun)
coclass 'riseset'
(9!:11) 16 NB. high print precision
```

6

```
NB.*end-header
NB. carriage return character
CR=: 13{a.
NB. minutes before and after sunset (0=ignore sun)
DARKTRS=: 60
NB. seconds per day
DAYSECS=: 86400
NB. interface words (IFACEWORDSriseset) group
IFACEWORDSriseset=: <;. 1 ' baby today fmt today iau today loadstars nav today navdaylist riseset'</pre>
NB. current Julian date
JULIAN=: 2460030.5
NB. line feed character
LF=: 10{a}.
NB. horizon limit in degrees
LIMITHORZ=: 20
NB. limiting magnitude
LIMITMAG=: 3.
```

```
NB. Name/description of observer location
LOCATIONNAME=: 'Meridian'
NB. indicates sun never rises or sets in (sunriseset0) and (sunriseset1) results
NORTSESET=: 99
NB. approximate epoch J2000 obliquity of the ecliptic degrees, minutes, seconds
OBLIQUITYDMS2000=: 23 26 21.4480000000000004
NB. observer latitude longitude, west longitudes negative
OBSLOCATION=: 116.375956000000002 43.6467749999999981
NB. root words (ROOTWORDSriseset) group
ROOTWORDSriseset=: <;._1 ' IFACEWORDSriseset ROOTWORDSriseset VMDriseset baby_today fmt_today iau_today loc
>..>ation uluru location yellowstone navdaylist'
NB. standard altitude stars - compensates for horizon atmospheric refraction
STDALTITUDE=: 0.56669999999999999
NB. UTC time zone offset in hours
UTCOFFSET=: 6
NB. version, make count and date
VMDriseset=: '0.9.85';11;'03 Jun 2024 15:22:14'
```

```
NB. retains string after first occurrence of (x)
afterstr=: ] }.~ #@[ + 1&(i.~)@([ E. ])
NB. all zero, first, second, ... nth differences of nl: alldifs ?.10#100
alldifs=: ([: >: [: i. [: - #) {.&.> [: <"1 (}. - }:)^:(i.@#@[)
apparRADEC=: 4 : 0
NB.*apparRADEC v-- apparent RA and DEC for epoch (x) from J2000.0
NB. RA and DEC.
NB.
NB. This verb adjusts J2000 RA and DEC coordinates to another
NB. epoch. The method is based on Meeus (20.3) pg 126. This
NB. calculation ignores stellar proper motions and assumes that
NB. (y) RA DEC values are J2000.0. The resulting positions are
NB. accurate enough for basic rise, transit,
                                                            set
NB. calculations.
NB.
NB.\ dyad:\ ft = .\ flYmd\ apparRADEC\ ftRADEC
NB.
     2028 11 13.19 apparRADEC 41.054063 ,. 49.227750
NB.
NB.
     (f. "1 ciau) =: f: "1 ciau
NB.
NB.
     2023 4 22 apparRADEC RA_J2000 ,: Dec_J2000
'zet z th'=. zetzthT0 x NB. final epoch t
'ra dec'=. y
                      NB. J2000 ra, dec
```

```
NB. meeus (20.4) pg. 126
A=. (cosd dec)*sind ra + zet
B=. ((cosd th)*(cosd dec)*cosd ra + zet) - (sind th)*sind dec
C=. ((sind th)*(cosd dec)*cosd ra + zet) + (cosd th)*sind dec
NB. NIMP star close celestial poles
NB. new dec, ra
ran=. z + atan2 A ,: B [ decn=. dfr arcsin C
ran ,: decn
)
NB. seconds correction apparent sidereal time - meeus pg. 84 - (Δpsi * cos(eps))/15
apparsecs=: 15 %~ (3600 * nutation_longitude_dPsi) * [: cosd meanobliquityjd0
NB. apparent Greenwich sidereal - hms: apparsidjd0 julfrcal |: 2023 1 3,:1991 2 8.5
apparsidjd0=: ([: dmsfrdd 15 %~ [: nth0 meansidjd0) + 0 0 ,"1 [: ,. apparsecs
NB. applies the verb in string (x) to (y)
apply=: 128!:2
NB. arc cosine
arccos=: 2&o.
NB. arc sine
arcsin=: 1&o.
```

```
NB. arc tangent
arctan=: 3&o.
NB. signal with optional message
assert=: 0 0" $ 13!:8^:((0: e. ]) (12" ))
atan2=: 3 : 0
NB.*atan2 v-- arctangent of (Y % X) in degrees.
NB.
NB. FORTRAN (ATN2) variation of the standard (arctan) (380.) for
NB. ratios. Based on a PASCAL function from Astronomy on the
NB. Personal Computer by Montenbruck and Pfleger ISBN
NB. 0-387-52754-0 pq. 9.
NB.
NB. Result is between _180 <: atan2 <: 180 degrees
NB.
NB. monad: fl = .atan2 fl YX
NB.
     atan2 1 ,: 1 NB. 45 degrees
NB.
     atan2 1 ,: %: 3 NB. 30 degrees
NB.
NB.
NB.
     NB. random ratios comparing two atan2 verbs
NB.
     r=: ?. 2 500$50
NB.
     r=: r * (\$r) \$ (?.~*/\$r) { (*/\$r)\$ 1 1}
     (atan2b \mid .r) -: atan2 r
NB.
NB.
```

```
NB.
     NB. surprisingly (atan2) is faster than (atan2b)
     NB. (j 9.41 2023) but (atan2b) consumes less memory
NB.
NB.
     NB. 1000 ts''1 'atan2b r',: 'atan2 |.r'
NB. vector J
                              NB. scalar PASCAL
rad=. 0.0174532925199432955
                             NB. CONST RAD=0.0174532925199433;
r=. 0 #~ {: $y
b0 = . *./0 = y
                             NB. IF (X=0.0) AND (Y=0.0) THEN ATN2:= 0.0
ir=. i. #r=. 0 (I. b0)} r
if. +./b1=. -.b0 do.
 t=. |(I. b1) {"1 y
                             NB. AX =: ABS(X); AY =: ABS(Y)
  it=. (I. b1) { ir
 b2=. (1{t}) > 0{t}
                            NB. IF (AX>AY) THEN PHI=: ARCTAN(AY/AX)/RAD
 s=. (I. b2) {"1 t
 r=. (rad %~ arctan %/s) (b2#it)} r
 s=. (I. -.b2) {"1 t}
                             NB. ELSE PHI=: 90.0-ARCTAN(AX/AY)/RAD;
 r=. (90 - rad %~ arctan %/ |.s) (it #~ -.b2)} r
end.
x10=. I. b1 *. (1{y}) < 0
                             NB. IF (X<0.0) THEN PHI=: 180.0-PHI;
r=. (180 - x10{r}) (x10)} r
y10=. I. b1 *. (0{y}) < 0
                             NB. IF (Y<0.0) THEN PHI=: -PHI;
(-y10{r}) (y10)} r
```

```
)
baby_today=: 3 : 0
NB.*baby_today v-- named Babylonian stars rising/setting today.
NB.
NB. monad: (bt; clLoc; itRs; flParms) =. baby today uuIqnore
jd=. julfrcal ymd=. 3 {. 6!:0 ''
(ymd; jd; OBSLOCATION; UTCOFFSET; LIMITMAG; LIMITHORZ; LOCATIONNAME; DARKTRS) baby_today y
NB. star data
({."1 IAU)=. {:"1 IAU [ 'IAU NAV'=. loadstars 0
bs=. babylonian_named_stars 0
NB. !(*)=. IAU_Name Designation
'Rs lName sRs cParms'=. x today calc }. 0 {"1 bs
\it NB.\ include\ Designation\ names
Rs=. 1 0 2 3 {"1 Rs ,.~ (IAU_Name i. 0 {"1 Rs){Designation
Rs; 1Name; sRs; cParms
)
babylonian named stars=: 3 : 0
NB.*babylonian named stars v-- identified Babylonian stars approx
NB. 1500 BCE.
NB.
```

```
NB. Stars with modern names identified from ancient Babylonian
NB. tablets. Most stars will be shining long after we are gone.
NB. It's fun to seek out stars that the ancients found important
NB. enough to catalog. Source data comes from a spreadsheet TAB
NB. here:
NB.
NB. https://www.iau.org/public/themes/naming stars/
NB.
NB. monad: bt=. babylonian named stars uuIgnore
NB. load babylonian stars !(*)=. HIP IAU Name jpath
bs=. parsebomcsv read jpath '~addons/jacks/testdata/babylonian normal stars.csv'
NB. cross reference with current names
(0 {"1 ciau)=. 1 {"1 ciau [ 'ciau cnavs'=. loadstars 0
bs=. bs #~ 1,HIP e.~ }. 0 {"1 bs
ix=. HIP i. }. 0{"1 bs
bs=. ('IAU Name';ix{IAU Name) ,. bs
NB. remove columns without names
bs #"1~ ] 0 < #&> 0 { bs
NB. retains string before first occurrence of (x)
beforestr=: ] {.~ 1&(i.~)@([ E. ])
NB. boxes open nouns
boxopen=: <^:(L. = 0:)
```

```
cold_iau_named_stars=: 3 : 0
NB.*cold iau named stars v-- convert IAU btcl to column dictionary.
NB.
NB. monad: bt =. cold_iau_named_stars btcl
NB.
     iau=.; {: , > {: 4 get 'iau named stars 2022 txt'
NB.
      ciau=. cold iau named stars parse iau named stars iau
NB.
NB.
NB.
     NB. define columns
     (0 {"1 ciau)=: 1 {"1 ciau
NB.
c=. 0{"1 t=. |: y}
pO=. c i. ;:'Vmag RA_J2000 Dec_J2000'
d=. _999&".&> p0 { t=. }."1 t
'invalid mag, ra, dec' assert -. 999 e. d
p1=. c i. ;: 'IAU Name Designation HIP Bayer Name'
c ,. (<"1 ] p1 { t) , <"1 d
NB. cosine radians
cos=: 2\&o.
NB. cosine degrees
cosd=: cos@rfd
NB. character table to newline delimited list
ctl=: \}.@(,@(1&(,"1)@(-.@(*./\."1@(=&' '@])))) # ,@((10{a.)&(,"1)@]))
```

```
darktransits=: 4 : 0
NB.*darktransits v-- mask selecting transits before and after sunset.
NB.
NB. dyad: pl = itHrmn darktransits (itSrs ; iaMins)
NB.
NB.
     'Riseset Location cParms'=. (location yellowstone~ 1935 7 6) nav today 0
     srs=, localsum 1935 7 6
NB.
NB.
     (>{:"1 Riseset) darktransits srs;60
NB. sun rise/set in day minutes - dark minutes
'srs bam'=. y
        (NORISESET,1) -: O{srs do. O #~ #x NB. sun is always up
if.
elseif. (NORISESET,0) -: O{srs do. 1 #~ #x NB. sun is always down
elseif. do.
 NB. transit times in day minutes and before/after set minutes
 rs=. dmfrhm x [ 'sr ss'=. dmfrhm srs
 NB. transits occurring when sufficently dark
 (rs < 0 > . sr - bam) + . rs > 1440 < . ss + bam
end.
NB. decimal degrees from degrees, minutes, seconds - inverse (dmsfrdd)
ddfrdms=: (60" #.]) % 3600"
```

```
deltaT0=: 3 : 0
NB.*deltaTO v-- dynamical time \Delta T in seconds.
NB.
NB. Returns the difference in seconds between UT and TD based on
NB. polynomial expressions by Espenak and Meesus. This
NB. calculation is useful for the years -1999 to 3000: a five
NB. thousand year period.
NB.
NB. see: https://eclipse.qsfc.nasa.qov/SEhelp/deltatpoly2004.html
NB.
NB. also in (futs): nasa_polynomial_expressions_for_delta_t_md
NB.
NB. monad: flSecs = deltaTO flYd
NB.
NB.
     ymd=. |: (3 {. 6!:0 ''), _1812 3 12 , _12 12 11 , 2137 12 13, 1700 1 1 ,: 35 7 6
     /: ymd , deltaTO deltaTdy ymd
NB.
NB. (ry) time intervals are (l,u]
NB. before -500:
NB. \Delta T = -20 + 32 * u^2; where: u = (y-1820)/100
ry=. ,: 1999 500
t1=. {{ 20 + 32 * U^2 [U=. (y - 1820) \% 100 }}
NB. between -500 and +500:
     \Delta T = 10583.6 - 1014.41 * u + 33.78311 * u^2 - 5.952053 * u^3
```

```
NB.
           -0.1798452 * u^4 + 0.022174192 * u^5 + 0.0090316521 * u^6; where: u = y/100
NB.
      NOTE: for the year -500 set value of 17190 to 17203.7
ry=. ry , 500 500
t2=. {{ 10583.6 - (1014.41*U) + (33.78311*U^2) - (5.952053*U^3) - (0.1798452*U^4) + (0.022174192*U^5) + 0.}
>..>0090316521*U^6 [ U=. y % 100 }}
NB. between +500 and +1600:
     \Delta T = 1574.2 - 556.01 * u + 71.23472 * u^2 + 0.319781 * u^3
           -0.8503463 * u^{2} - 0.005050998 * u^{5} + 0.0083572073 * u^{6}; where: u = (y-1000)/100
NB.
ry=. ry , 500 1600
t3=. {{ 1574.2 - (556.01*U) + (71.23472*U^2) + (0.319781*U^3) - (0.8503463*U^4) - (0.005050998*U^5) + 0.00}
>..>83572073*U^6 [ U=. (y-1000) % 100 }}
NB. between +1600 and +1700:
NB. \Delta T = 120 - 0.9808 * t - 0.01532 * t^2 + t^3 / 7129; where: t = y - 1600
ry=. ry , 1600 1700
t4=. \{\{120 - (0.9808*t) - (0.01532*t^2) + (t^3)\%7129 [t=.y-1600]\}\}
NB. between +1700 and +1800:
NB. \Delta T = 8.83 + 0.1603 * t - 0.0059285 * t^2 + 0.00013336 * t^3 - t^4 / 1174000; where: <math>t = y - 1700
ry=. ry , 1700 1800
t5=. {{ 8.83 + (0.1603*t) - (0.0059285*t^2) + (0.00013336*t^3) - (t^4)%1174000 [t=.y-1700}}
NB. between +1800 and +1860:
NB. \Delta T = 13.72 - 0.332447 * t + 0.0068612 * t^2 + 0.0041116 * t^3 - 0.00037436 * t^4
           + 0.0000121272 * t^5 - 0.0000001699 * t^6 + 0.000000000875 * t^7; where: t = y - 1800
NB.
ry = . ry , 1800 1860
```

```
t6=. {{ 13.72 - (0.332447*t) + (0.0068612*t^2) + (0.0041116*t^3) - (0.00037436*t^4) + (0.0000121272*t^5) - (0.0000121272*t^5) - (0.0000121272*t^5) + (0.0000121272*t^5) - (0.0000121272*t^5) + (0.00001212*t^5) + (0.000012*t^5) + (0.
>..> (0.000001699*t^6) + 0.00000000875*t^7 [ t=. y - 1800 }}
NB. between 1860 and 1900:
               \Delta T = 7.62 + 0.5737 * t - 0.251754 * t^2 + 0.01680668 * t^3
                              -0.0004473624 * t^4 + t^5 / 233174; where: t = y - 1860
NB.
ry=. ry , 1860 1900
t7=. {{ 7.62 + (0.5737*t) - (0.251754*t^2) + (0.01680668*t^3) - (0.0004473624*t^4) + (t^5)%233174 [ t=. y ]}
>..>- 1860 }}
NB. between 1900 and 1920:
NB. \Delta T = -2.79 + 1.494119 * t - 0.0598939 * t^2 + 0.0061966 * t^3 - 0.000197 * t^4; where: t = y - 1900
ry=. ry , 1900 1920
t8=. \{\{-2.79 + (1.494119*t) - (0.0598939*t^2) + (0.0061966*t^3) - 0.000197*t^4 [ t=. y - 1900 \}\}
NB. between 1920 and 1941:
NB. \Delta T = 21.20 + 0.84493*t - 0.076100 * t^2 + 0.0020936 * t^3; where: t = y - 1920
ry=. ry , 1920 1941
t9=. \{\{ 21.20 + (0.84493*t) - (0.076100*t^2) + 0.0020936*t^3 [ t=. y - 1920 \} \}
NB. between 1941 and 1961:
NB. \Delta T = 29.07 + 0.407*t - t^2/233 + t^3 / 2547; where: t = y - 1950
ry=. ry , 1941 1961
t10=. \{\{29.07 + 0.407*t - ((t^2)\%233) + (t^3)\%2547 [t=. y - 1950]\}\}
NB. between 1961 and 1986:
NB. \Delta T = 45.45 + 1.067*t - t^2/260 - t^3 / 718; where: t = y - 1975
```

```
ry=. ry , 1961 1986
t11=. \{ \{ 45.45 + (1.067*t) - ((t^2)\%260) - (t^3)\%718 [ t=. y - 1975 \} \}
NB. between 1986 and 2005:
      \Delta T = 63.86 + 0.3345 * t - 0.060374 * t^2 + 0.0017275 * t^3 + 0.000651814 * t^4
NB.
           + 0.00002373599 * t^5; where: t = y - 2000
ry=. ry , 1986 2005
t12=. {{ 63.86 + (0.3345*t) - (0.060374*t^2) + (0.0017275*t^3) + (0.000651814*t^4) + 0.00002373599*t^5 [ <math>t
>...>=. y - 2000 }}
NB. between 2005 and 2050:
NB. \Delta T = 62.92 + 0.32217 * t + 0.005589 * t^2; where: t = y - 2000
ry=. ry , 2005 2050
t13=. \{\{62.92 + (0.32217*t) + 0.005589*t^2 [t=.y-2000]\}\}
NB. between 2050 and 2150:
NB. \Delta T = -20 + 32 * ((y-1820)/100)^2 - 0.5628 * (2150 - y)
ry=. ry , 2050 2150
t14=. \{\{ 20 + (32 * ((y-1820)\%100)^2) - 0.5628 * 2150 - y \} \}
NB. after 2150:
NB. \Delta T = -20 + 32 * u^2; where: u = (y-1820)/100
ry=. ry , 2150 3000
t15=. \{\{ 20 + 32 * U^2 [ U=. (y-1820)\%100 \}\}
NB. NOTE: the t(i) verbs match the intervals
ti=. (rb=. /:~ ~. ,ry) I. y
```

```
'year range 1999 to 3000 exceeded' assert -. (0, #rb) e. ti
NB. t(i) gerund
tg=. t1`t2`t3`t4`t5`t6`t7`t8`t9`t10`t11`t12`t13`t14`t15
NB. apply t(i) verbs to appropriate intervals
(;ti </. i.#y) { ;(tg {~ <: ~.ti) apply&.> ti </. y
)
NB. delta \Delta T decimal year: deltaTdy 2023 3 12 ,. 1959 12 11
deltaTdy=: (0 { ]) + 12 %~ 0.5 -~ 1 { ]
NB. degrees from radian
dfr=: *&57.2957795130823229
NB. day minutes from hour minute time: dmfrhm 6 51 ,: 20 39
dmfrhm=: [: +/"1 [: ] 60 1 *"1 ]
NB. degrees, minutes, seconds from decimal degrees - inverse (ddfrdms)
dmsfrdd=: <. (,.) 60 60 #: 3600 * 1 | ,
fmt today=: 3 : 0
NB.*fmt_today v-- format today verbs result.
NB.
```

```
NB. \ monad: \ cl = . \ fmt_today \ (bt ; cl ; fl)
NB.
NB.
      fmt today nav today O
NB.
     fmt_today (location_yellowstone~ 1935 7 6) iau_today 0
'Rs 1Name sRs cParms'=. y
NB. calc parameters
hdr=. <;. 1' Location Sunrise Sunset Mag-Lim Above-Horz Dusk-Min Julian ΔT Longitude Latitude Year Month
>...>Day.dd UTCz'
cParms=. ctl ": <(rjust lName , (":sRs) , ": ,. cParms) ,. ' ' ,. >hdr
NB. rise/set - sorted by transit time
Rs=. >&.> <"1 |: Rs
Rs=. (('5.1'&(8!:2)@,.) &.> 2 \{ Rs) (2) \} Rs
Rs=. ('3.0'&(8!:2)&.>3 { Rs) (3)} Rs
Rs=. ctl ": Rs ,:~ <;. 1' Name Designation Tr-Alt-Deg Tr-24-HrMin'
cParms, LF, Rs
NB. fractional centuries from epoch J2000 Meeus pg. 83: qT0jd julfrcal 1957 10 4.81
gT0jd=: 36525 %~ 2451545. -~ ]
NB. fractional centuries from epoch J2000 Meeus pq. 83: qT0ymd 1957 10 4.81
gTOymd=: 36525 %~ 2451545. -~ julfrcal
```

```
NB. hours, minutes from decimal seconds: hmfrds dsfrhms 20 27 43.23
hmfrds=: [: 24 60&#: 60 %~ ]
iau today=: 3 : 0
NB.*iau \ today \ v-- \ named \ IAU \ stars \ rising/setting \ today.
NB.
NB. monad: (bt; clLoc; itSrs; flParms) =. iau_today uuIgnore
NB.
NB.
      iau today 0
NB.
NB. dyad: (bt; clLoc; itSrs; flParms) =. blYmd_LB_UO_LMAG_LHORZ_LOC iau_today uuIgnore
NB.
      'Riseset Location sRs cParms'=. (location yellowstone~ 1935 7 6) iau today 0
NB.
jd=. julfrcal ymd=. 3 {. 6!:0 ''
(ymd; jd; OBSLOCATION; UTCOFFSET; LIMITMAG; LIMITHORZ; LOCATIONNAME; DARKTRS) iau_today y
NB. date, julian, location, UTC timezone, magnitude, horizon, location, dusk mins
'YMD JD LB UO LMAG LHORZ LOCNAME DARK'=. x
NB. star data
'IAU NAV'=. loadstars 0
(\{."1 \text{ NAV})=. \{:"1 \text{ NAV } [ (\{."1 \text{ IAU})=. \{:"1 \text{ IAU}\}) \}
NB. brighter magnitude limit !(*)=. Vmag IAU Name Designation
'Rs lName sRs cParms'=. x today calc (LMAG > Vmag) # IAU Name
```

```
NB. include Designation names
Rs=. 1 0 2 3 {"1 Rs ,.~ (IAU_Name i. 0 {"1 Rs){Designation
Rs; 1Name; sRs; cParms
intr3p=: 4 : 0
NB.*intr3p v-- interpolate three values - meeus pg 25.
NB.
NB. dyad: fln intr3p fl
NB.
     NB. meeus pg. 24
NB.
     yi=. 0.884226 0.877366 0.870531
NB.
NB.
      0.05 intr3p yi
NB. y = y2 + (n/2)(a + b nc)
NB. a b c are differences
'only 3 values' assert 3=#y
d=. 1 2{alldifs y
'a b'=. >0{d [ c=. ,/ >1{d} ]}
(1{y}) + (x%2) * a + b + x*c
julfrcal=: 3 : 0
```

```
NB.*julfrcal v-- Julian dates from calendar dates.
NB.
NB. Astronomical Julian date. Similiar to (tojulian) but handles
NB. the fact that Julian days start at noon rather than midnight
NB. for calendar days.
NB.
NB. monad: fl =. julfrcal ilyyyyMMDD / ftyyyyMMDD
NB.
NB.
      julfrcal 2001 9 11
      julfrcal 1776 1941 1867 , 7 12 7 ,: 4 7 1
NB.
NB.
     NB. Meeus (Astronomical Algorithms) test cases (pg. 61)
NB.
     NB. NOTE: the fractional day representation of time
NB.
     2436116.31 = julfrcal 1957 10 4.81 NB. 7.a Sputnik 1
NB.
     1842713.0 = julfrcal 333 1 27.5
NB.
                                          NB. 7.b
NB.
NB.
     NB. zero date is roughly the age of the oldest bristlecone pines (coincidence?)
NB.
     julfrcal -4711 10 29.5
NB. vector J
                                  NB. scalar BASIC
'y m d'=. y
                                  NB. INPUT "Y,M,D";Y,M,D
                                  NB. G=1: IF Y<1582 THEN G=0
g=. 1582 <: y
f=. (d - d1) - 0.5 [d1=. <. d
                                  NB. \quad D1 = INT(D): F = D - D1 - 0.5
j=. - <. 7 * 4 %~ <.y + 12 %~ m+9 NB. J=-INT(7*(INT((M+9)/12)+Y)/4)
                                  NB. IF G=0 THEN 805
s=. * m-9 [ a=. | m-9]
                                  NB. S=SGN(M-9): A=ABS(M-9)
j3=. <. y + s * <. a\%7
                                 NB. J3=INT(Y+S*INT(A/7))
```

```
j3=. - <. 3r4 * >: <. j3 % 100
                               NB. J3 = -INT((INT(J3/100)+1)*3/4)
j=. j + (<.275 * m\%9) + d1 + g*j3 NB. 805 J=J+INT(275*M/9)+D1+G*J3
j=. j+1721027+(2*g)+367*y NB. J=J+1721027+2*G+367*Y
b=. f >: 0
                                 NB. IF F>=0 THEN 825
                                 NB. F=F+1: J=J-1
f = . f + b [ j = . j - b]
f + j
)
NB. left justify table
ljust=: ' '&$: :(] |."_1~ i."1&0@(] e. [))
loadstars=: 3 : 0
NB.*loadstars v-- loads riseset star data.
NB.
NB. monad: blIAU_Nav =. loadstars uuIgnore
NB.
NB.
      loadstars 0
NB.
NB. dyad: blIAU_Nav=. pa loadstars uuIgnore
NB.
      O loadstars O NB. files
NB.
NB.
      1 loadstars 0 NB. JOD
NB.
NB.
     loadstars~ O NB. idiom files
NB.
     loadstars~ 1 NB. idiom JOD
NB.
```

```
NB.
      2 loadstars 0 NB. files - define columns
0 loadstars y
'invalid option' assert x e. 0 1 2
if. x e. 0 2 do.
  NB. load star data from addon directory !(*)=. jpath
 paddon=. jpath '~addons/jacks/testdata/'
  ciau=. read paddon, 'iau named stars 2022.txt'
  cnavs=. read paddon,'Navigation_Stars.txt'
elseif. x-:1 do.
  NB. load star data from JOD (futs) !(*)=. get od require
 rc=. od ;:'futs utils' [ 3 od '' [ require 'general/jod'
  ciau=.; {: , > {: MACRO_ajod_get 'iau_named_stars_2022_txt'
  cnavs=.; {: , > {: MACRO ajod get 'Navigation Stars txt'
end.
ciau=. cold iau named stars parse iau named stars ciau
cnavs=. parsetd cnavs -. CR
cnavs=. (0 { cnavs) ,. <"1 |: }. cnavs</pre>
'star column overlap' assert 0 = \#(0 \{ "1 \text{ cnavs}) ([ -. -.) 0 \{ "1 \text{ ciau} \} )
NB. define columns - override mixed assignments (<:)=:
if. x-:2 do.
  (0 {"1 ciau)=: 1 {"1 ciau
  (0 {"1 cnavs)=: 1 {"1 cnavs
```

```
(<ciau),(<cnavs),<(0 {"1 ciau),0 {"1 cnavs
else.
  (<ciau), <cnavs
end.
localsun=: 3 : 0
NB.*localsun v-- location sun rise/set times in hour minutes.
NB.
NB. monad: itRs =. localsun blLB UO YMD
NB.
      localsun OBSLOCATION; UTCOFFSET; 6!:0 ''
NB.
'LB UO YMD'=. y
_2 ]\ ,sunriseset1 (|.LB),UO,1 |. 3 {. YMD
location_home=: 3 : 0
NB.*location\_home v-- set parameters for "home" location.
NB.
NB. monad: bl =. location_home uuIgnore
NB.
NB.
     location home O
      NB. uses location with current date
NB.
      fmt_today iau_today 0
NB.
```

```
NB.
NB. dyad: bl = flYmfd location_home uuIgnore
NB.
NB.
     NB. uses location with home date
     (location_home 0) iau_today 0
NB.
NB.
     (location home 0) nav today 0
NB.
     NB. arbitrary dates for location
NB.
NB.
     fmt today (1712 3 15.34 location home 0) nav today 0
NB.
     fmt today (location home~ 1933 9 25.75) iau today 0
NB. test date https://www.almanac.com/astronomy/bright-stars/zipcode/83646/2023-03-27
2023 3 27 location home y
JULIAN_riseset_=: julfrcal ymd=. x
NB. longitude, latitude with standard signs
OBSLOCATION riseset =: 116.375956 43.646775
LOCATIONNAME riseset =: 'Home - Meridian'
UTCOFFSET riseset =: 6.0 NB. MST time zone
LIMITMAG riseset =: 3.0 NB. stellar magnitude
LIMITHORZ riseset =: 20 NB. degrees above horizon
ymd; JULIAN; OBSLOCATION; UTCOFFSET; LIMITMAG; LIMITHORZ; LOCATIONNAME; DARKTRS
```

```
)
location_uluru=: 3 : 0
NB.*location_uluru v-- set parameters for Uluru location.
NB.
NB. monad: location_uluru uuIgnore
NB.
      location_uluru O
NB.
     NB. uses location with current date
NB.
     iau today O
NB.
NB.
NB. dyad: bl =. flYmfd location_uluru uuIgnore
NB.
NB.
     NB. uses location with uluru date
     (location uluru 0) iau today 0
NB.
NB.
     NB. arbitrary dates for location
NB.
     fmt_today (1712 3 15.34 location_uluru 0) nav_today 0
NB.
     fmt_today (location_uluru~ 1933 9 25.75) iau_today 0
NB.
2022 10 19 location_uluru y
JULIAN riseset =: julfrcal ymd=. x
NB. longitude, latitude with standard signs
OBSLOCATION riseset =: 131.01941 25.34301
LOCATIONNAME riseset =: 'Uluru - star party diner'
```

```
UTCOFFSET riseset =: 9.5 NB. time zone
LIMITMAG riseset =: 6.0 NB. stellar magnitude
LIMITHORZ riseset =: 5 NB. degrees above horizon
ymd; JULIAN; OBSLOCATION; UTCOFFSET; LIMITMAG; LIMITHORZ; LOCATIONNAME; DARKTRS
location yellowstone=: 3 : 0
NB.*location\_yellowstone v-- set parameters for Old Faithful location.
NB.
NB. monad: location yellowstone uuIqnore
NB.
     location yellowstone O
NB.
     NB. uses location with current date
NB.
NB.
     iau today 0
NB.
NB. dyad: bl =. flYmfd location_yellowstone uuIgnore
NB.
NB.
     NB. uses location with yellowstone date
     (location_yellowstone 0) iau_today 0
NB.
NB.
     NB. arbitrary dates for location
NB.
     fmt today (1712 3 15.34 location yellowstone 0) nav today 0
NB.
     fmt_today (location_yellowstone~ 1933 9 25.75) iau_today 0
NB.
```

```
2013 5 7 location yellowstone y
JULIAN riseset =: julfrcal ymd=. x
NB. longitude, latitude with standard signs
OBSLOCATION riseset =: 110.82792 44.46057
LOCATIONNAME riseset =: 'Yellowstone - Old Faithful'
UTCOFFSET riseset =: 6.0 NB. MST time zone
LIMITMAG_riseset_=: 6.0 NB. stellar magnitude
LIMITHORZ riseset =: 10 NB. degrees above horizon
ymd; JULIAN; OBSLOCATION; UTCOFFSET; LIMITMAG; LIMITHORZ; LOCATIONNAME; DARKTRS
meanobliquityT0=: 3 : 0
NB.*meanobliquityTO v-- mean obliquity of the ecliptic IAU in degrees.
NB.
NB. \ monad: \ fl = . \ meanobliquityTO \ flT
NB. units are decimal arc seconds
ea=. +/3600 60 1 * OBLIQUITYDMS2000
NB. meeus (21.2) pq. 135
3600 \% ea - (46.8150*y) - (0.00059*y^2) + 0.001813*y^3
)
```

```
meanobliquityT1=: 3 : 0
NB.*meanobliquityT1 v-- mean obliquity of the ecliptic Laskar in
NB. degrees.
NB.
NB. Mean obliquity using Laskar's polynomial. This expression is
NB. more accurate than (meanobliquityT0): see Meeus (21.2) pq.
NB. 135.
NB.
NB. \ monad: \ fl = . \ meanobliquityT1 \ flT
NB. units are decimal arc seconds
ea=. +/3600 60 1 * OBLIQUITYDMS2000
NB. time units 10000 Julian years
U=. y \% 100
e0=. (39.05*U^6) + (7.12*U^7) + (27.87*U^8) + (5.79*U^9) + 2.45*U^10
3600 \% ea - (4680.93*U) - (1.55*U^2) + (1999.25*U^3) - (51.38*U^4) - (249.67*U^5) - e0
)
meanobliquityjd0=: 3 : 0
NB.*meanobliquityjd0 v-- mean obliquity ecliptic for Julian date (y) degrees.
NB.
NB. monad: fl = .meanobliquityjd0 flJD
NB.
NB.
      NB. meeus pg. 136
```

```
NB.
      eO=. ,dmsfrdd meanobliquityjdO 2446895.5
NB.
NB.
      NB. matches to 3 decimals
      23 26 27.407 -: 0.001 round e0
NB.
NB.
NB. dyad: fl = . pa meanobliquityjd0 flJD
NB.
NB.
     NB. Laskar algorithm
NB.
     el=. ,dmsfrdd 1 meanobliguityjd0 2446895.5
0 meanobliquityjd0 y
meanobliquityT0`meanobliquityT1@.(x) gT0jd y
meansid0=: 4 : 0
NB.*meansid0 v-- mean sidereal time at Greenwich for T (x) JD (y).
NB.
NB. \ dyad: \ flDeqs = . \ flT \ meansid \ flJD
NB. meeus (11.4) pg 84
280.46061837 + (360.98564736629 * y - 2451545.0) + (0.000387933 * x^2) - 38710000 % x^3
meansidjd0=: 3 : 0
```

```
NB.*meansidjd0 v-- mean sidereal time at Greenwich for julian day (y) in degrees.
NB.
NB. \ monad: \ fl = . \ meansidjd0 \ flJD
NB.
NB.
      NB. julian day for April 10, 1987 19h:24m:00s UT
      JD=. julfrcal 1987 4,10 + fdfrhms 19 21 0
NB.
NB.
      meansidjd0 JD
(gT0jd y) meansid0 y
nav today=: 3 : 0
NB.*nav today v-- named navigation stars rising/setting today.
NB.
NB. monad: (bt; clLoc; itSrs; flParms) = . nav_today uuIgnore
NB.
      nav today 0
NB.
NB.
NB. dyad: (bt; clLoc; itSrs; flParms) =. blYmd_LB_UO_LMAG_LHORZ_LOC nav_today uuIqnore
NB.
      'Riseset Location sRs cParms'=. (location_yellowstone~ 1935 7 6) nav_today 0
NB.
jd=. julfrcal ymd=. 3 {. 6!:0 ''
(ymd; jd; OBSLOCATION; UTCOFFSET; LIMITMAG; LIMITHORZ; LOCATIONNAME; DARKTRS) nav today y
NB. star data
'IAU NAV'=. loadstars 0
```

```
(\{."1 \text{ NAV})=. \{:"1 \text{ NAV } [ (\{."1 \text{ IAU})=. \{:"1 \text{ IAU}\} ]
NB. !(*)=. Nav Star Name IAU Name Designation
'Rs lName sRs cParms'=. x today calc Nav Star Name
NB. include Designation names
Rs=. 1 0 2 3 {"1 Rs ,.~ (IAU Name i. 0 {"1 Rs){Designation
Rs; 1Name; sRs; cParms
navdaylist=: 3 : 0
NB.*navdaylist v--sky safari 6_0 observing list of today's navigation stars.
NB.
NB. The files created by this verb can be loaded into the Sky
NB. Safari iOS and Mac apps.
NB.
NB. monad: cl = . navdaylist uuIqnore
NB.
      navhome=. navdaylist 0
NB.
      navhome write jpath '~JODIMEX/Navigation_Stars_Home.skylist'
NB.
NB. j profile !(*)=. jpath
skl=. read jpath'~addons/jacks/testdata/Navigation Stars.skylist'
'st loc cParms'=. nav today 0 [ location home 0
NB. skylist header
cst=. 'SortedBy=Default Order'
```

```
hdr=. cst ((,&LF)@[ ,~ beforestr) skl
NB. cut skylist objects
sob=. (] <;.1~ 'SkyObject=BeginObject' E. ]) cst afterstr skl
NB. retain objects that match star and hdr names
b=. +./ (0 \{"1 st) +./@E.&>"0 1 sob
sob=. sob #~ b *. +./ (1 {"1 st) +./@E.&>"0 1 sob
NB. reset sort order
sob=. ];. 2 tlf ;sob
ix=. I. +./"1 (,:'DefaultIndex=') E. sob
ns=. '='&beforestr"1 ix{sob
ns=. ns ,. '=' ,. ljust ": ,. i. #ns
hdr,ctl > (<"1 ns) (ix)  <"1 sob
NB. normalize negative degree sidereal time: nnth0 -1677831.2621266
nnth0=: ] + 360 * [: | [: (<.) 360 %~ ]
NB. normalize positive degree sidereal time: npth0 1677831.2621266
npth0=: ] - 360 * [: (<.) 360 %~ ]
NB. normalize degree sidereal time: nth0 35555 77777
nth0=: npth0`nnth0@.(0&>:@[)
nutation longitude dPsi=: 3 : 0
```

```
NB.*nutation_longitude_dPsi v-- nutation in ecliptical longitude in degrees (1980 iau theory).
NB.
NB. NOTE: the pseudo-code is vector ready and easily converted to J.
NB.
NB. verbatim: algorithm from Jay Tanner https://neoprogrammics.com/nutations/
NB.
NB.
      see: nutation in longitude dPsi md
NB.
NB. monad: flDeg =. nutation_longitude_dPsi flJD
NB.
     ymd=. |: 2023 3 12 , 1959 12 11 , 2135 12 13, 1700 1 1 ,: 1935 7 6
NB.
     JD=. julfrcal ymd NB. no delT adj.
NB.
     2460015.5 = 0{JD}
NB.
     nutation longitude dPsi JD
NB.
NB.
NB.
     NB. see (futs) test: (riseset_tanner_smoke) for examples
T=. (y - 2451545) % 36525 NB. T = (JD - 2451545) / 36525
T2=. T*T
                           NB. T2 = T*T
T3=. T*T2
                           NB.
                                T3 = T*T2
NB. DegToRad = 3.1415926535897932 / 180
DegToRad=. 3.1415926535897932 % 180
NB. w1 = 297.85036 + 445267.11148*T - 0.0019142*T2 + (T3 / 189474)
w1=.297.85036 + (445267.11148*T) - (0.0019142*T2) + (T3 % 189474)
w1=. DegToRad*(w1)
                           NB. w1 = DegToRad*(w1)
```

```
NB. \ w2 = 357.52772 + 35999.05034*T - 0.0001603*T2 - (T3 / 300000)
w2=. 357.52772 + (35999.05034*T) - (0.0001603*T2) - (T3 % 300000)
w2=. DegToRad*(w2)
                   NB. w2 = DegToRad*(w2)
NB. w3 = 134.96298 + 477198.867398*T + 0.0086972*T2 + (T3 / 56250)
w3=. 134.96298 + (477198.867398*T) + (0.0086972*T2) + (T3 % 56250)
w3=. DegToRad*(w3)
                          NB. w3 = DegToRad*(w3)
NB. w4 = 93.27191 + 483202.017538*T - 0.0036825*T2 + (T3 / 327270)
w4=.93.27191 + (483202.017538*T) - (0.0036825*T2) + (T3 % 327270)
w4=. DegToRad*(w4) NB. w4 = DegToRad*(w4)
NB. w5 = 125.04452 - 1934.136261*T + 0.0020708*T2 + (T3 / 450000)
w5=. 125.04452 - (1934.136261*T) + (0.0020708*T2) + (T3 % 450000)
w5=. DegToRad*(w5)
                          NB. w5 = DeqToRad*(w5)
w=. (\sin w5)*((174.2*T) - 171996)
                                                NB. w = \sin(w5)*(-174.2*T - 171996)
w=. w + (\sin 2 * w4 + w5 - w1)*((1.6*T) - 13187) NB. <math>w = w + \sin(2*(w4 + w5 - w1))*(-1.6*T - 13187)
w=. w + (\sin 2 * w4 + w5)*(2274 - 0.2*T)
NB. w = w + \sin(2*(w4 + w5))*(-2274 - 0.2*T)
w=. w + (\sin 2 * w5)*((0.2*T) + 2062)
                                                NB. w = w + \sin(2 * w5)*(0.2*T + 2062)
w=. w + (\sin w2)*(1426 - 3.4*T)
                                                NB. w = w + \sin(w2)*(1426 - 3.4*T)
w=. w + (\sin w3)*((0.1*T) + 712)
                                                 NB. w = w + \sin(w3)*(0.1*T + 712)
NB. w = w + \sin(2*(w4 + w5 - w1) + w2)*(1.2*T - 517)
w=. w + (\sin (2 * w4 + w5 - w1) + w2)*((1.2*T) - 517)
```

```
w=. w + (\sin (2*w4) + w5)*((0.4*T) - 386)
NB. w = w + \sin(2*w4 + w5)*(-0.4*T - 386)
NB. w = w + \sin(2*(w4 + w5 - w1) - w2)*(217 - 0.5*T)
w=. w + (\sin (2 * w4 + w5 - w1) - w2)*(217 - 0.5*T)
w=. w + (\sin (2*w4 - w1) + w5)*(129 + 0.1*T)
                                            NB. w = w + \sin(2*(w4 - w1) + w5)*(129 + 0.1*T)
                                               NB. w = w + \sin(w3 + w5)*(0.1*T + 63)
w=. w + (\sin w3 + w5)*((0.1*T) + 63)
                                           NB. \ w = w + sin(w5 - w3)*(-0.1*T - 58)
w=. w + (\sin w5 - w3)*((0.1*T) - 58)
                                                NB. w = w + \sin(2*w^2)*(17 - 0.1*T)
w=. w + (\sin 2*w2)*(17 - 0.1*T)
w=. w+(\sin 2*w2+w4+w5-w1)*((0.1*T)-16) NB. w=w+\sin(2*(w2+w4+w5-w1))*(0.1*T-16)
w=. w - 301*(sin (2 * w4 + w5) + w3)
                                               NB. w = w - 301*sin(2*(w4 + w5) + w3)
w=. w - 158*(sin w3 - 2*w1)
                                                NB. w = w - 158*sin(w3 - 2*w1)
w=. w + 123*(sin (2 * w4 + w5) - w3)
                                                NB. w = w + 123*sin(2*(w4 + w5) - w3)
w=. w + 63*(sin 2*w1)
                                                NB. \ w = w + 63*sin(2*w1)
w=. w - 59*(sin (2 * w1 + w4 + w5) - w3)
                                                NB. w = w - 59*sin(2*(w1 + w4 + w5) - w3)
w=. w - 51*(sin (2*w4) + w3 + w5)
                                                NB. w = w - 51*sin(2 * w4 + w3 + w5)
                                                NB. w = w + 48*sin(2*(w3 - w1))
w=. w + 48*sin(2 * w3 - w1)
w=. w + 46*(sin (2 * w4 - w3) + w5)
                                                NB. w = w + 46*sin(2*(w4 - w3) + w5)
                                                NB. w = w - 38*sin(2*(w1 + w4 + w5))
w=. w - 38*(sin 2 * w1 + w4 + w5)
                                                NB. w = w - 31*sin(2*(w3 + w4 + w5))
w=. w - 31*(sin 2 * w3 + w4 + w5)
                                                NB. w = w + 29*sin(2*w3)
w=. w + 29*(sin 2*w3)
                                                NB. w = w + 29*sin(2*(w4 + w5 - w1) + w3)
w=. w + 29*(sin (2 * w4 + w5 - w1) + w3)
w=. w + 26*(sin 2*w4)
                                                NB. w = w + 26*sin(2*w4)
                                                NB. w = w - 22*sin(2*(w4 - w1))
w=. w - 22*(sin 2* w4 - w1)
                                                NB. w = w + 21*sin(2*w4 + w5 - w3)
w=. w + 21*(sin (2*w4) + w5 - w3)
w=. w + 16*(sin (2*w1) - w3 + w5)
                                                NB. w = w + 16*sin(2*w1 - w3 + w5)
w=. w - 15*(sin w2 + w5)
                                                 NB. w = w - 15*sin(w2 + w5)
```

```
w=. w - 13*(\sin w3 + w5 - 2*w1)
                                                 NB. w = w - 13*sin(w3 + w5 - 2*w1)
w=. w - 12*(\sin w5 - w2)
                                                 NB. w = w - 12*sin(w5 - w2)
                                                 NB. w = w + 11*sin(2*(w3 - w4))
w=. w + 11*(sin 2 * w3 - w4)
                                                NB. w = w - 10*sin(2*(w4 + w1) + w5 - w3)
w=. w - 10*(sin (2 * w4 + w1) + w5 - w3)
                                                 NB. w = w - 8*sin(2*(w4 + w1 + w5) + w3)
       8*(\sin (2 * w4 + w1 + w5) + w3)
w=. w + 7*(sin (2 * w4 + w5) + w2)
                                                NB. w = w + 7*sin(2*(w4 + w5) + w2)
w=. w - 7*(\sin w3 - (2*w1) + w2)
                                                 NB. w = w - 7*sin(w3 - 2*w1 + w2)
w=. w - 7*(sin (2 * w4 + w5) - w2)
                                                NB. w = w - 7*sin(2*(w4 + w5) - w2)
w=. w - 7*(sin (2*w1) + (2*w4) + w5)
                                                 NB. w = w - 7*sin(2*w1 + 2*w4 + w5)
        6*(sin (2*w1) + w3)
                                                 NB. w = w + 6*sin(2*w1 + w3)
W = V + V
w=. w + 6*(sin 2 * w3 + w4 + w5 - w1)
                                                 NB. w = w + 6*sin(2*(w3 + w4 + w5 - w1))
w=. w + 6*(sin (2 * w4 - w1) + w3 + w5)
                                                 NB. w = w + 6*sin(2*(w4 - w1) + w3 + w5)
w=. w - 6*(sin (2 * w1 - w3) + w5)
                                                 NB. w = w - 6*sin(2*(w1 - w3) + w5)
       6*(sin (2*w1) + w5)
                                                 NB. w = w - 6*sin(2*w1 + w5)
w = . w -
w=. w + 5*(sin w3 - w2)
                                                 NB. \ w = w + 5*sin(w3 - w2)
w=. w - 5*(sin (2* w4 - w1) + w5 - w2)
                                                 NB. w = w - 5*sin(2*(w4 - w1) + w5 - w2)
w=. w - 5*(\sin w5 - 2*w1)
                                                 NB. w = w - 5*sin(w5 - 2*w1)
       5*(sin (2 * w3 + w4) + w5)
                                                 NB. w = w - 5*sin(2*(w3 + w4) + w5)
w = . w -
                                                 NB. w = w + 4*sin(2*(w3 - w1) + w5)
        4*(\sin (2 * w3 - w1) + w5)
w = w + w
                                                 NB. w = w + 4*sin(2*(w4 - w1) + w2 + w5)
        4*(\sin (2 * w4 - w1) + w2 + w5)
W = . W +
w=. w + 4*(\sin w3 - 2*w4)
                                                 NB. \ w = w + 4*sin(w3 - 2*w4)
w=. w - 4*(\sin w3 - w1)
                                                 NB. \ w = w - 4*sin(w3 - w1)
       4*(\sin w2 - 2*w1)
                                                 NB. w = w - 4*sin(w2 - 2*w1)
w = v - v
w=. w - 4*(\sin w1)
                                                 NB. w = w - 4*sin(w1)
w=. w + 3*(sin (2*w4) + w3)
                                                 NB. w = w + 3*sin(2*w4 + w3)
                                                 NB. w = w - 3*sin(2*(w4 + w5 - w3))
w=. w - 3*(sin 2 * w4 + w5 - w3)
                                                 NB. w = w - 3*sin(w3 - w1 - w2)
w=. w - 3*(\sin w3 - w1 - w2)
```

```
3*(\sin w2 + w3)
                                                     NB. \ w = w - 3*sin(w2 + w3)
w=. w -
   w - 3*(\sin (2 * w4 + w5) + w3 - w2)   NB. w = w - 3*\sin(2*(w4 + w5) + w3 - w2)   w - 3*(\sin (2 * w1 + w4 + w5) - w2 - w3)   NB. w = w - 3*\sin(2*(w1 + w4 + w5) - w2 - w3)
w=. w - 3*(sin (2 * w4 + w5) + w3 - w2)
w=. w - 3*(sin (2 * w4 + w5) + 3*w3)
                                                    NB. w = w - 3*sin(2*(w4 + w5) + 3*w3)
                                                     NB. w = w - 3*sin(2*(w1 + w4 + w5) - w2)
w=. w - 3*(sin (2 * w1 + w4 + w5) - w2)
dPsiDeg=. w \% 36000000.0 NB. dPsiDeg = w / 36000000.0
)
parse iau named stars=: 3 : 0
NB.*parse\_iau\_named\_stars v-- IAU named star list to btcl header
NB. table.
NB.
NB. Original star name data was downloaded from:
NB.
NB. https://www.iau.org/public/themes/naming stars/
NB.
NB. and slightly adjusted in Excel and saved as a Unicode UTF-8
NB. CSV export.
NB.
NB. monad: btcl = parse iau named stars clTxt
NB.
NB.
      NB. get stars
      iau=. read jpath '~addons/jacks/testdata/iau named stars 2022.txt'
NB.
NB.
      parse iau named stars iau
NB. parse utf8 csv
```

```
t=. parsebomcsv y
NB. extract relevant columns
c=. ;:'IAU Name Designation HIP Bayer Name Vmag RA J2000 Dec J2000'
t=. t {"1~ (0 { t) i. c
NB. scrub objects with questionable magnitude
t #~ ~: 999&".&> (c i. <'Vmag') {"1 t
NB. parses utf8 csv files with optional BOM mark
parsebomcsv=: [: parsecsv [: utf8 ] }.~ 0 3 { ~ (239 187 191{a.) -: 3 {. ]
parsecsv=: 3 : 0
NB.*parsecsv v-- parses comma delimited files. (x) is the field
NB. delimiter. Lines are delimited with either CRLF or LF
NB.
NB. monad: btcl = parsecsv cl
NB. dyad: btcl = ca parsecsv cl
NB.
    ',' parsecsv read 'c:\comma\delimted\text.csv'
NB.
',' parsecsv y
'separater cannot be the " character' assert -. x -: '"'
```

```
NB. CRLF delimited *.csv text to char table
y=. x ,. ]; . 2 y -. CR
NB. bit mask of unquoted " field delimiters
b=. -. }. ~:/\ '"' e.~ ' ' , , y
b=. ($y) $ b*., x = y
NB. use masks to cut lines
b <;._1"1 y
NB. parse TAB delimited table text - see long document
parsetd=: [: <;. 2&> (a.{~9}) ,&.>~ [: <;. 2 [: (] , ((10{a.)" = {:) }. (10{a.)" ) (13{a.) -.~ ]
NB. reads a file as a list of bytes
read=: 1!:1&(]`<0.(32&>0(3!:0)))
NB. radians from degrees
rfd=: *&0.0174532925199432955
riseset=: 4 : 0
NB.*riseset v-- rise, transit, set times of IAU named stars.
NB.
NB. dyad: (btRs ; flParms) =. blYMD_UO_LB_AOBJ riseset blclStarNames
NB.
```

```
NB.
      LB=. _116.375956 43.646775
                                     NB. Meridian
      YMD=. 2023 3 27
NB.
      UO=. 6
NB.
NB.
      (YMD; UO; LB) riseset 'Algol'
      (YMD; UO; LB) riseset 'Algol'; 'Rigel'; 'Spica'
NB.
NB.
NB.
      NB. add objects not IAU names - need name, ra, dec
      ADB=. (<;:'Venus'),(<41.73129),<18.44092
NB.
NB.
      AOB=. ,&.> (;:'OBJ_Name OBJ_RA_J2000 OBJ_Dec_J2000') ,. AOB
NB.
      (YMD; UO; LB; <AOB) riseset 'Venus'
NB. local time, UT offset (O=Greenwich), Latitude Longitude
'ymfd uo LB AOB'=. 4 \{.\ x
NB. convert LB to meeus convention
LB=. 1 1 * LB
NB. local time to UT
UT=. ymfd + 0 0,uo%24
NB. look up RA, Dec
'IAU Navigation'=. loadstars 0
NB. IAU stars !(*)=. IAU_Name RA_J2000 Dec_J2000
(\{."1 \text{ IAU})=. \{:"1 \text{ IAU}\}
Stars=. boxopen y
if. #AOB do.
```

```
NB. insert additional objects
  (\{."1 AOB)=. \{:"1 AOB
  NB. !(*)=. OBJ Dec J2000 OBJ Name OBJ RA J2000
  IAU Name -. OBJ Name , IAU Name
  RA J2000=. OBJ RA J2000 , RA J2000
  Dec J2000=. OBJ_Dec_J2000 , Dec_J2000
end.
if. O e. b=. Stars e. IAU Name do.
  smoutput 'not in IAU named stars -> '; Stars #~ -.b
else.
  ix=. IAU Name i. Stars
 RA=. <ix{RA J2000 [ Dec=. <ix{Dec J2000
 riseset_calc UT;uo;LB;(<Stars),RA,Dec</pre>
end.
)
riseset_calc=: 3 : 0
NB.*riseset_calc v-- rise, transit, set times of stars.
NB.
NB. Main rise/set calculations. Argument (y) set in (riseset).
NB.
NB. monad: (btRs; flParms) =. riseset_calc blYMD_UO_LB_OBJ_RA_Dec
'ymd uo LB obj ra dec'=. ,&.> y
NB. (L) longitude, west positive
```

```
NB. (B) latitude, north positive
'L B'=. LB
obj=. obj ,"O 1 a:,a: NB. result table
NB. dynamical time \Delta T in fractional days NOTE: \Delta T is not
NB. going to change a lot over the interpolation period !(*)=. nc
if. O=nc<'DeltaTsOveride riseset ' do. dTs=. DeltaTsOveride riseset
else.
 dTs=. ,/deltaT0 deltaTdy ymd
end.
dTfd=. dTs%DAYSECS
NB. apparent sidereal time Greenwich at Oh in degrees
thO=. ,/ddfrdms 15 * apparsidjdO JD=. julfrcal ymd
NB. TD times \Delta T + UT = TD
TD=. (2 \{. ymd), "1 0 (1 0 1 + \{:ymd) + dTfd
NB. apparent ra, dec for _1 0 1 days around rise/set
rdi=. |: TD apparRADEC"1 ra ,: dec
hO=. STDALTITUDE
NB. approximate times (14.1) meeus pg. 98
cosH0=. ((sind h0) - (sind B)*sind (<a:;1;1){rdi} % (cosd B)*cosd (<a:;1;1){rdi}
NB. 1 indicates above or below horizon
```

```
bhrz=. 1 < |cosH0
obj=. (<"0 bhrz) (<a:;1)} obj
obj=. (<'above or below horizon') (<(I. bhrz);2)} obj
ix=. I. -. bhrz NB. objects that rise and set
NB. m(i) are fractional day times (1|) puts mi in [0,1]
HO=. dfr arccos ix{cosHO
m0=. 1|360 \% ((<ix;0;1){rdi}) + L - th0
m1=. 1 | m0 - H0 \% 360
m2 = .1 | m0 + H0 \% 360
NB. rise, transit, setting
m=. m1 ,. m0 ,. m2
NB. sidereal time at Greenwich - meeus pg. 99
th=. nth0 th0 + 360.985647*m
NB. adjusted ra, dec
rda=. nu intr3p"1 ix{rdi [ nu=. dTfd + m
NB. local hour angles
rax=. <a:;0 [ decx=. <a:;1
H=. (th - L) - rax{rda
NB. body's altitude (12.6) meeus pq. 89
sih=. ((sind B)*sind decx{rda) + (cosd B)*(cosd decx{rda)*cosd H
```

```
NB. degree altitudes positive
h=. |dfr arcsin sih
NB. corrections for transits (trx), rise/sets (rsx)
dltm=. ($m)$0
trx=. <a:;1 [ rsx=. <a:;0 2
dltm=. (-(trx{H})\%360) trx} dltm
drs=. rsx { (h - h0) \% 360 * (cosd decx{rda})*(cosd B)*sind H
dltm=. drs rsx} dltm
m=. m + dltm
NB. calc parameters Julian date, \Delta T, Longitude, Latitude, ymfd, timez
cParms=. JD,dTs,(-L),B,ymd,uo
NB. objects, above/below, altitudes, fractional day UT, UT hours/minutes
cParms ;~ (<"2 (,."1 ] 0.5 round h) ,"1 (,."1 m) ,"1 ] 1 round hmfrds DAYSECS*m) (<ix;2)} obj
NB. right justify table
rjust=: ' '&$: :(] |." 1~ +/"10(-.0(<./\."10([ = ]))))
NB. round (y) to nearest (x) (e.g. 1000 round 12345)
round=: [ * [: (<.) 0.5 + %~
NB. sine radians
sin=: 1\&o.
```

```
NB. sin degrees
sind=: sin@rfd
NB. session manager output
smoutput=: 0 0 $ 1!:2&2
sunriseset1=: 3 : 0
NB.*sunriseset1 v-- computes sun rise and set times - see group
NB. documentation.
NB.
NB. This verb has been adapted from a BASIC program submitted by
NB. James Brimhall to *Sky & Telescope's* "shortest sunrise/set
NB. program" contest. Winning entries were listed in the March
NB. 1995 Astronomical Computing column.
NB.
NB. monad: itHM =. sunriseset1 flBLHMDY | ftBHMDY
NB.
NB.
     NB. rise and set times observer location today
     td=. (|.OBSLOCATION) , UTCOFFSET, 1 |. 3 {. 6!:0 ''
NB.
     sunriseset1 td
NB.
NB.
NB.
     NB. rise and set times on June 30 1995 on Greenwich meridian
NB.
     t0=. 0 0 0 6 30 1995 NB. equator
NB.
     t1=. 49 0 0 6 30 1995 NB. north - lat of western US/Canada border
NB.
     t2=. 47 0 0 6 30 1995 NB. south - southern Chile and Argentina
NB.
     t3=. 75 0 0 6 30 1995 NB. far north (sun always up)
```

```
t4=. _75 0 0 6 30 1995 NB. far south (sun always down)
NB.
NB. latitude, longitude, time-zone, month, day, year !(*)=. la lo tz m d y
y=. # la [ 'la lo tz m d y'=. |: tabit y
dr=. 1r180p1 [ dd=. 360 % 365.25636 [ rt=. 50r60
NB. days into year with leap year adjustment
dm=. 0 31 59 90 120 151 181 212 243 273 304 334
dl=. (2 {. dm}), >: 2 {. dm}
bl=. 0 = 4 \mid y \mid m=. <: m
dy=. d + ((-.bl) * m { dm}) + bl * m { dl}
dy=. 0.5 + dy - 10 \% 360
NB. (th) angle Earth has moved since winter solstice
th=. 9.357001 + (dd * dy) + 1.914 * sin dr * (dd * dy) - 3.97
c3=. 0.3978 * cos dr * th
dc=. (- % dr) * arctan c3 % %: 1 - c3 ^ 2
NB. adjust for positive and negative latitudes
bl=. la < 0
a1=. ((-.b1) * (90 - la) + dc) + b1 * (90 + la) - dc
a2=. ((-.b1) * (la - 90) + dc) + b1 * (90 - la) - dc
NB. sun never rises or sets masks
nvset =. a2 >: - rt [ nvrise=. a1 < - rt
NB. corrections
```

```
c1=. ((sin - dr * rt) - (sin drdc) * sin drla) % (cos drdc) * cos drla
t2=. dr %~ arctan (%: 1 - c1 ^ 2) % c1
t1=. 360 - t2 [ b1=. c1 < 0
t2=. (t2 * -.b1) + b1 * 180 + t2
t1=. (t1 * -.b1) + b1 * 360 - t2
NB. first order equation of time
et=. 0.1511 * \sin dr * 17.86 + 2 * dddy=. dd * dy
et=. (0.1276 * \sin dr * dddy - 3.97) - et
drla=. drdc=. dddy=. 0
NB. time zone adjusted rise and set times
tr=. (t1 % 15) - 12 [ ts=. t2 % 15
tr=. tr - et [ ts=. ts - et
s=. ts + tc [ r=.tr + tc [ tc=.(-tz) - lo % 15
hrmn=. (<. r) ,: 1 round 60 * 1|r
hrmn=. hrmn , (<.12 + s) ,: 1 round 60 * 1|s
NB. adjust for when sun never rises or sets
hrmn=. hrmn *"1 -. bl [ bl=. nvset +. nvrise
hrmn=. NORISESET (<0;bl # pos) } hrmn [ pos=. i. {: $ hrmn</pre>
1 (<1;nvset # pos) } hrmn
NB. promotes only atoms and lists to tables
tabit=: ]`,:@.(1&>:@(#@$))^:2
```

```
NB. appends trailing line feed character if necessary
tlf=: ] , ((10{a.)"_ = {:) }. (10{a.)"_
today_calc=: 4 : 0
NB.*today calc v-- named (y) stars rising/setting today.
NB.
NB. dyad: (bt; clLoc; itSrs; flParms) =. bl today_calc blclIauStars
NB.
     IauStars=. ;:'Algol Rigel Spica'
NB.
NB.
      'Riseset lName sRs cParms'=. (location uluru 0) today calc IauStars
NB. date, julian, lat/lon, UTCz, magnitude, horizon, location, dusk minutes
'YMD JD LB UO LMAG LHORZ LOCNAME DARK'=. x
'Rsiau cParms'=. (YMD;UO;LB) riseset y [ srs=. localsun LB;UO;YMD
NB. retain rising setting - circumpolar NIMP
Rsiau=. Rsiau #~ -. ; 1 {"1 Rsiau
\it NB. name ,. transit altitude, hour minutes
ahm=. 1&{&.> 2 {"1 Rsiau
Rsiau=. (0 {"1 Rsiau) ,. (0 {&.> ahm) ,. (<2 3){&.> ahm
NB. retain above local horizon
Rsiau=. Rsiau #~ LHORZ < O&{&> 1 {"1 Rsiau
NB. retain stars transiting when dark
```

```
if. O<DARK do. Rsiau=. Rsiau #~ (>{:"1 Rsiau) darktransits srs;DARK end.
NB. sort by transit time
(LOCNAME; srs; LMAG, LHORZ, DARK, cParms); Rsiau {~ /: >2 {"1 Rsiau}
NB. character list to UTF-8
utf8=: 8&u:
zetzthT0=: 3 : 0
\it NB.*zetzthT0~v-- epoch adjustment terms for J2000 RA DEC in degrees.
NB.
NB.\ monad:\ fT = .\ zetzthTO\ ftYYYYMMDD
NB.
NB.
      zetzthT0 2028 11 13.19
NB.
      zetzthT0 2023 4 23 , 1988 3 20 ,: 1987 4,10 + fdfrhms 19 21 0
NB.
t=. gTOymd y
't2 t3'=. t (^"1 0) 2 3 NB. t^2 and t^3
NB. meeus (20.3) pg. 126
zet=. (2306.2181*t) + (0.30188*t2) + 0.017988*t3
     (2306.2181*t) + (1.09468*t2) + 0.018203*t3
z=.
th=. (2004.3109*t) + (0.42665*t2) + 0.041833*t3
```

```
NB. insure degree result rank matches (y) rank
3600 % zet , z (,\,\;)@.(2=#$y) th
NB.POST riseset post processor.
(".;(0=nc <'SHOWSMO ijod '){'1';'SHOWSMO ijod ') smoutput IFACE riseset=: (0 : 0)
NB. (riseset) interface word(s): 20240603j152214
NB. baby_today NB. named Babylonian stars rising/setting today
NB. fmt today NB. format today verbs result
NB. iau today NB. named IAU stars rising/setting today
NB. loadstars NB. loads riseset star data
NB. nav_today NB. named navigation stars rising/setting today
NB. navdaylist NB. sky safari 6 0 observing list of today's navigation stars
NB. riseset
               NB. rise, transit, set times of stars
   NB. rise/set time example
   fmt today nav today location yellowstone 0
cocurrent 'base'
coinsert 'riseset'
```

\mathbf{Index}

()=:, 2 7	DARKTRS_riseset_, 29, 31, 32	LIMITMAG, 7
	DAYSECS, 7	${\tt LIMITMAG_riseset_,29,31,32}$
afterstr, 9	ddfrdms, 16	ljust, <mark>26</mark>
alldifs, 9	deltaT0, <u>17</u>	loadstars, 26
apparRADEC, 9	deltaTdy, 21	localsun, 28
apparsecs, 10	dfr, 21	location_home, 28
apparsidjd0, 10	dmfrhm, 21	location uluru, 30
apply, 10	dmsfrdd, 21	location_yellowstone, 31
arccos, 10	,	LOCATIONNAME, 8
arcsin, 10	<pre>fmt_today, 21</pre>	LOCATIONNAME_riseset_, 29, 30, 32
arctan, 11	ma: 1, 00	
assert, 11	gT0jd, 22	meanobliquityjd0, 33
atan2, 11	gTOymd, 22	${\tt meanobliquityT0}, {\tt 32}$
	hmfrds, 23	meanobliquityT1, 33
baby_today, 13	militus, 20	meansid0, 34
babylonian_named_stars, 13	iau_today, 23	meansidjd0, 34
beforestr, 14	IFACE_riseset, 55	•
boxopen, 14	IFACEWORDSriseset, 7	$\mathtt{nav_today}, 35$
	intr3p, 24	$\mathtt{navdaylist}, {\color{red} 36}$
cold_iau_named_stars, 15		$\mathtt{nnth0},37$
$\cos, 15$	julfrcal, 24	NORISESET, 8
$\cos d$, 15	JULIAN, 7	npth0, 37
CR, 7	JULIAN_riseset_, 29, 30, 32	nth0, 37
ctl, <u>15</u>		nutation_longitude_dPsi, 37
	LF, 7	
darktransits, 16	LIMITHORZ, 7	OBLIQUITYDMS2000, 8
DARKTRS, 7	${\tt LIMITHORZ_riseset_,29,31,32}$	OBSLOCATION, 8

INDEX

OBSLOCATION_riseset_, 29, 30, 32	$\begin{array}{c} \texttt{riseset_calc}, 46 \\ \texttt{rjust}, 49 \end{array}$	$\begin{array}{c} \texttt{tabit},52 \\ \texttt{tlf},53 \end{array}$
parse_iau_named_stars, 42	ROOTWORDSriseset, 8	$today_calc, 53$
parsebomcsv, 43 parsecsv, 43 parsetd, 44	round, 49 sin, 49 sind, 50	UTCOFFSET, 8 UTCOFFSET_riseset_, 29 , 31 , 32 utf8, 54
read, 44	smoutput, 50	VMDriseset, 8
rfd, 44	STDALTITUDE, 8	
riseset, 44	sunriseset1, 50	zetzthT0, 54