

(19) World Intellectual Property Organization International Bureau

A CORNA CONTROL DA CORNA DESTRUTARA I NA TRE MENTE DENIE BONTO GRAN CORNA CORNA DA CORNA DE CORNA DE CORNA DE

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publication Number WO 01/12660 A2

(51) International Patent Classification7: C07K 14/00

(21) International Application Number: PCT/JP00/05356

(22) International Filing Date: 10 August 2000 (10.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 11/230344
 17 August 1999 (17.08.1999)
 JP

 11/252551
 7 September 1999 (07.09.1999)
 JP

 11/281132
 1 October 1999 (01.10.1999)
 JP

 11/301624
 22 October 1999 (22.10.1999)
 JP

 11/313877
 4 November 1999 (04.11.1999)
 JP

(71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CII, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/12660 A2

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE PROTEINS

(57) Abstract: The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells expressing these DNAs and antibodies directed to these proteins.

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, eukaryotic 10 expressing these DNAs and antibodies directed to these proteins. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies directed to these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, 15 the cDNAs can be utilized as gene sources for producing the proteins encoded by these cDNAs in large quantities. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantities can be utilized for detection of the corresponding receptors or 20 ligands, screening of novel small molecule pharmaceuticals and the like. The antibodies of the present invention can be utilized for the detection, quantification, purification and the like of the proteins of the present invention.

10

15

20

2

BACKGROUND ART

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation differentiation induction, the control, the transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as the so that they possess hidden injection or the drip, potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like addition, pharmaceuticals. In currently employed as secretory proteins other than those described above are undergoing clinical trials for developing their use as pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them expected to lead to development of novel pharmaceuticals utilizing them.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and the like in the material transport and the signal transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion

15

channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides and amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities in these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, so that isolation of new genes encoding the membrane proteins has been desired.

10 Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the 20 protein. After synthesis on ribosomes, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the 25

WO 01/12660 PCT/JP00/05356

4

whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

5 OBJECTS OF INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells that are capable of expressing these DNAs and antibodies directed to these proteins. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

15

20

10

ō

SUMMARY OF INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the present invention provides a human protein having hydrophobic domain(s), namely a protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. Moreover, the present invention provides a DNA

encoding said protein, exemplified by a cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150, an expression vector that is capable of expressing said DNA by in vitro translation or in eukaryotic cells, a transformed eukaryotic cell that is capable of expressing said DNA and of producing said protein and an antibody directed to said protein.

10 BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03171.

ig. 2 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03424.

Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03444.

Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03478.

Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03499.

	Fig.	6	illustrates	the
	hydrophobicity/hydroph	ilicity pro	ofile of the protein en	coded
	by clone HP03500.			
	Fig.	7	illustrates	the
5			ofile of the protein er	coded
J	by clone HP10691.			
	Fig.	8	illustrates	the
	hydrophobicity/hydroph	nilicity pr	ofile of the protein e	ncoded
	by clone HP10703.			
10	Fig.	9	illustrates	- the
	hydrophobicity/hydroph	nilicity p	cofile of the protein e	ncoded
			2.2	
	Fig.	10	illustrates	the
	hydrophobicity/hydrop	hilicity p	rofile of the protein ϵ	encoded
15	by clone HP10712.			
	Fig.	11	illustrates	
	hydrophobicity/hydrop	hilicity p	rofile of the protein o	encoded
	by clone HP03010.		: · · · · · · · · · · · · · · · · · · ·	
	Fig.	12	illustrates	
20	hydrophobicity/hydrop	philicity I	profile of the protein	encoded
	by clone HP03576.	. · · · · · · · · · · · · · · · · · · ·		
	Fig.	13	illustrates	
	hydrophobicity/hydro	philicity	profile of the protein	encoded
	by clone HP03611.			
25	Fig.	14	illustrates	: the

DISCOURT SINO DITORENAS IS

And the second

20

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03612.

Fig. 15 illustrates hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10407.

Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10713.

illustrates

the hydrophobicity/hydrophilicity profile of the protein encoded 10 by clone HP10714.

17

Fig.

Fig. 18 illustrates hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10716.

15 Fig. 19 illustrates hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10717.

Fig. 20 illustrates . the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10718.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03745.

Fig. 22 illustrates . the 25 hydrophobicity/hydrophilicity profile of the protein encoded

the

by clone HP03747.

illustrates 🚟 23 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10719.

illustrates the 24 Fig. 5 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10720.

illustrates ' the 25 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10721. 10

the illustrates 26 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10725.

illustrates 27 Fig. hydrophobicity/hydrophilicity profile of the protein encoded 15 . . by clone HP10727.

the illustrates 28 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10728.

29 illustrates Fig. 20 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10730.

the illustrates 30 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10742.

	•	Fig.	31	ill	ustra	tes .	the
		hydrophobicity/hydrophil	icity	profile of	the	protein	encoded
	•	by clone HP03800.			•		
		Fig.	32	ill	ıstrai	tes .	the
	5	hydrophobicity/hydrophil	icity	profile of	the	protein	encoded
		by clone HP03831.					
		Fig.	33	illu	ıstrat	ces	the
		hydrophobicity/hydrophil	icity	profile of	the	protein	encoded
	•	by clone HP03879.					
	10	Fig.	34	illu	strat	es	the
		hydrophobicity/hydrophil	icity	profile of	the	protein	encoded
		by clone HP03880.					
		Fig.	35	illu	strat	.es	the
		hydrophobicity/hydrophil:	icity p	profile of	the	protein	encoded
	15	by clone HP10704.					:
		Fig.	36	illu	strat	es	the
		hydrophobicity/hydrophili	icity p	profile of	the	protein	encoded
		by clone HP10715.					
		Fig.	37	illu	strat	es	the
	20	hydrophobicity/hydrophili	city p	profile of	the ;	protein	encoded
		by clone HP10724.	-				
		Fig.	38	illu	strate	es _.	the
		hydrophobicity/hydrophili	city p	profile of	the p	protein	encoded
		by clone HP10733.					
٠.	2.5	Fig.	39	illu	strate	es .	the

	hydrophobicity/hydrophili	city	profile	of th	e prote	ein e	encodeo	ţ
	by clone HP10734.	• •						
	Fig.	10	i	llustr	ates	-	the	9
	hydrophobicity/hydrophili	city	profile	of th	e prot	ein (encode	£
5	by clone HP10756.				•		:	
	Fig.	41	i	llustr	ates		th	e
	hydrophobicity/hydrophili	city	profile	of th	e prot	ein.	encode	d
	by clone HP03670.			•		÷		
	Fig.	42	i	llustr	rates		th	е
10	hydrophobicity/hydrophil:	city	profile	of th	ne prot	ein	encode	d
	by clone HP03688.				·		A.	
	Fig.	43	· i	llust	rates	•	th	e
	hydrophobicity/hydrophil	city	profile	of th	ne prot	ein	encode	:d
	by clone HP03825						*	
15	Fig.	44	. i	illust	rates		: th	ıe
	hydrophobicity/hydrophil	icity	profile	of the	he prot	tein	encode	ed.
.,	by clone HP03877.							
	Fig.	45	. :	illust	rates		tì	ıe
	hydrophobicity/hydrophil	icity	profile	of t	he pro	tein	encode	∍d
20	by clone HP10765.	• 0						
	Fig.	46		illust	rates		tl	he
	hydrophobicity/hydrophil	icity	y profile	of t	he pro	tein	encode	ed
	by clone HP10766.			•		•		
	Fig.							he
25	hydrophobicity/hydrophil	icit	y profile	e of t	he pro	tein	encod	ed

by clone HP10770.

Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10772.

Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10773.

Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10776.

DETAILED DESCRIPTION OF THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolating proteins 15 from human organs, cell lines or the like, a method for preparing peptides by the chemical synthesis based on the amino acid sequences of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the 20 present invention. Among these, the method for producing proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the cDNA of the present invention, and then carrying out in vitro translation using this RNA as a 25

region into a suitable expression vector by the method known in the art may lead to expression of a large amount of the encoded protein in prokaryotic cells such as Escherichia coli, Bacillus subtilis, etc., and eukaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by incorporating the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing promoters for these RNA polymerases are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

会

37 11 7

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant

BNSDOCID: <WO 0112860A2 L>

25

Ġ.

5

10

15

10

15

expression vector in which the translated region of the cDNA of the present invention is incorporated into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation of the host cells with this expression vector, the resulting transformant is cultivated, whereby the protein encoded by the cDNA can be produced in large quantities in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region to express the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the surface of cell membrane, by incorporating the translated region of the cDNA into an expression vector for eukaryotic

cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells, Chinese hamster ovary CHO cells and the like, budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes and the like. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method and the like.

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated and purified from the culture by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or centrifugation, dialysis, solvent precipitation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric 25 focusing, ion-exchange chromatography, hydrophobic

BNSDOCID-FWO 0112860A2 L3

¢.

5

10

15

10

15

20

chromatography, affinity chromatography, reverse phase chromatography and the like.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP-A 8-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are added. Accordingly, such proteins or peptides to which sugar chains are added shall also come

10

15

20

25

RNSDOCID <WO 0112660A2 L >

٠

within the scope of the protein of the present invention.

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A)* RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-(1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be libraries by synthesizing CDNA from the cloned oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which oligonucleotides are then used as the primers.

The CDNAs of the present invention characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or the base sequences 10 represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Tables 1 and 2 summarizes the clone number (HP number), the cell from which the cDNA clone was obtained, the total number of bases of the cDNA, and the number of the amino acid residues of the encoded protein, 15 for each of the cDNAs.

: ..

BNCUCCID - MU VITAREURS I -

Table 1

Table						Number
			HP		Number	of amino
SEQ	ID N	0	number	Cell	of	acid
* -					bases	residues
1,	11,	21	HP03171	Thymus	2042	267
2,	12,	22	HP03424	Liver	1433	419
3,	13,	23	HP03444	Kidney	. 1917 .	415
4,	14,	24	HP03478	Umbilical cord blood	2258	380
5,	15,	25	HP03499	Kidney	1973	585
6, [.]	16,	26	HP03500	kidney	1606	331
7,	17,	27	HP10691	Umbilical cord blood	2380	345
8,	18,	28	HP10703	Kidney	2017	89
9,	19,	29	HP10711	Kidney	1606	406
10,	20,	30	HP10712	Kidney	1695	192
31,	41,	51	HP03010	Kidney	1551	377
32,	42,	52	HP03576	Kidney	1713	81
33,	43,	53	·HP03611	Kidney	1758	487
34,	44,	54	HP03612	Kidney	1550	375
35,	45,	55	HP10407	Stomach cancer	1485	350
36,	46,	56	HP10713	Kidney	2694	667
37,	47,	57	HP10714	Umbilical cord blood	3297	464
38,	48,	58	HP10716	Umbilical cord blood	2126	470
39,	49,	59	HP10717	Kidney	1781	243
40,	50,	60	HP10718	Umbilical cord blood	1788	270
61,	71,	81	HP03745	Kidney	1376	389
62,	72,	82	HP03747	Umbilical cord blood	2392	348
63,	73,	83	HP10719	Kidney	1416	261
64,	74,	84	HP10720	Kidney	1347	222
65,	75,	85	HP10721	Kidney	2284	183

Table 2

SEQ I	D NO	0	HP number	Cell	Number of bases	Number of amino acid residues
66, 7	6,	86	HP10725	Kidney	1737	262
67, 7	7,	87	HP10727	Umbilical cord blood	1556	168
68, 7	8,	88	HP10728	Umbilical cord blood	1855	243
69, 7	9,	89	HP10730	Umbilical cord blood	2530	428
70, 8	Ο,	90	HP10742	Umbilical cord blood	1911	283
91, 10	1, :	111	HP03800	Umbilical cord blood :	1633	476
92, 10	2, :	112	HP03831	Kidney	1095	226
93, 10	3, :	113	HP03879	Kidney	1602	305
94, 10	4, :	114	HP03880	Kidney	897	227
. 95, 10	5, :	115	HP10704	Kidney	1866	441
96, 10	6, :	116	HP10715	Umbilical cord blood	2198	265
97, 10	7, :	117	HP10724	Umbilical cord blood	2180	208
98, 10	8, 3	118	HP10733	Umbilical cord blood	1527	400
99, 10	9, :	119	HP10734	Umbilical cord blood	1905	192
100, 11	0, 3	120	HP10756	Kidney	998	260
121, 13	1, :	141	HP03670	Umbilical cord blood	1622	337
122, 13	2, 3	142	HP03688	Umbilical cord blood	2475	236
123, 13	3, :	143	HP03825	Kidney	1739	560
124, 13	4,	144	HP03877	Kidney	2005	406
125, 13	5, :	145	HP10765	Umbilical cord blood	1558	453
126, 13	6, 3	146	HP10766	Kidney	1005	59
127, 13	7,	147	HP10770	Kidney	969	210
128, 13	8,	148	HP10772	Kidney	1241	165
129, 13	9,	149	HP10773	Kidney	1174	162
130, 14	0,	150	HP10776	Kidney	1012	221

The same clones as the cDNAs of the present invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human

WO 01/12660 PCT/JP00/05356

₹

5

10

15

20

25

PNSDOCIDE WO 0112660A2 L >

20

tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150.

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 shall come within the scope of the present invention.

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can

10

15

20

be utilized as the probes for the genetic diagnosis.

The antibody of the present invention can be obtained from a serum after immunizing an animal using the protein of the present invention as an antigen. A peptide that is chemically synthesized based on the amino acid sequence of the present invention and a protein expressed in eukaryotic or prokaryotic cells can be used as an antigen. Alternatively, an antibody can be prepared by introducing the above-mentioned expression vector for eukaryotic cells into the muscle or the skin of an animal by injection or by using a gene gun and then collecting a serum therefrom (JP-A 7-313187). Animals that can be used include a mouse, a rat, a rabbit, a goat, a chicken and the like. A monoclonal antibody directed to the protein of the present invention can be produced by fusing B cells collected from the spleen of the immunized animal with myelomas to generate hybridomas.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for

. 25

Last team a series

5

10

15

20

(

introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the invention can be used by the research community for various The polynucleotides can be used to express purposes. for analysis, characterization recombinant protein therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either at a particular stage of constitutively or differentiation or development or in disease states); "as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA patients to identify potential sequences in disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein

(such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris t al., Cell '75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-10 throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding 15 protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can 20 be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or 2.5 agonists of the binding interaction. .:..

10

15

20

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation

10

15

20

Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 25 137:3494-3500, 1986; Bertagnolli et al., J. Immunol.

RNSDOCIO - WO 011288042 L -

145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

- Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
- Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology.

 J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a.

10

15

. 20

Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

25 Immune Stimulating or Suppressing Activity

10

. 15

20

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania malaria spp. and various fungal infections such candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune

10

15

. 20

pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. immune suppression is desired in . which conditions, (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an may progress or response already in immune immune response. induction of an preventing the inhibited by functions of activated T cells may be inducing specific suppressing T cell responses or by tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by

. 25

10

15

20

the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. tissue transplants, rejection of Typically, in transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the cells without transmitting the corresponding immune costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant.

BNSDOCID: <WO 0112660A2 L >

5.

10

15

. 20

Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases.

Many autoimmune disorders are the result of inappropriate

· 25.

10

15

20

activation of T cells that are reactive against self tissue and which promote the production of cytokines autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antiqens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents induce antigen-specific tolerance of may autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can ... be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York,

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

10

15

. 20

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte

10

15

20

antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having-B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a

· 1 · 25

10

15

20

cytoplasmic-domain truncated portion) of an MHC class I lphachain protein and β , microglobulin protein or an MHC class II α chain protein and an MHC class II eta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated invariant chain, can such as the protein, cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19;

.25

20

25

BRICOCIO - MICH MILIBERDAD I -

Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.

10

15

2.5

Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-In Vitro assays for Interscience (Chapter 3, Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 20 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or

10

15

20 -

erythroid cells; in supporting the growth and proliferation granulocytes cells such as myeloid (i.e., traditional CSF activity) monocytes/macrophages useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting megakaryocytes proliferation of and growth the consequently of platelets thereby allowing prevention or disorders such various platelet treatment of thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without and paroxysmal nocturnal aplastic anemia limitation, hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or marrow conjunction with bone (i.e.. ex-vivo in progenitor cell transplantation or with peripheral as normal transplantation (homologous or heterologous)) cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

25. Suitable assays: for proliferation and

- 5

differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

10 Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. 15 Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. 20 Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New 25 York, NY. 1994; Long term bone marrow cultures in the

10

15

20

presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth

WO 01/12660 PCT/JP00/05356

42

repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or

معطعان الماسيتين

RNSDOCID: <WO = 0112660A2 | >

10

15

20

10

15

- 20

٠, ٠

ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be in the treatment of tendinitis, carpal tunnel useful The defects. syndrome and other tendon ligament or compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be cells and for proliferation of neural for useful regeneration of nerve and brain tissue, i.e. for treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nerve injuries, system, such as peripheral nervous peripheral neuropathy and localized neuropathies, central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic

:25

10

15

20

BNSDCCID: ZWO 0112660A2 L >

lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

25 A protein of the present invention may also be

useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of

10

15

10

15

20

follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572; 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et

2.2

10

al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, and/or endothelial epithelial eosinophils, Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized For example, attraction of lymphocytes, infections. monocytes or neutrophils to tumors or sites of infection may 15 result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell

- 25

chemotaxis.

5

10

15

20

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other

A CARLON CONTRACTOR

10

15

hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen

10

15

20

presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity

10

15

20

may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the promoting inhibiting or inflammatory process, extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, rejection, nephritis, complement-mediated hyperacute cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly

(such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body example, breast size or shape (such as, for part augmentation or diminution, change in bone form or shape); effecting biorhythms or cardiac cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or

10

15

10

15

nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders), and violent behaviors: providing analgesic effects or other reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulinlike activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

15 St. St. St.

in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold

213.7

20

25

Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the attached instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having

10 Hydrophobic Domains

Human liver cDNA library (WO 98/21328) and human stomach cancer cDNA library (WO 98/21328), as well as the cDNA libraries constructed from human kidney mRNA (Clontech), human thymus mRNA (Clontech) and human umbilical cord blood mRNA were used as cDNA libraries.

Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length cDNA clones. The hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic domain. A clone that has a hydrophobic region

10

15

·20 ·

being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [35S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 µl containing 12.5 µl µ of TNT rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to the kit), 2 µl of an amino acid mixture (without methionine), 2 μ l of [35S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 µl of T7 RNA polymerase, and 20 U of RNasin. experiment in the presence of a membrane system was carried out by adding 2.5 µl of a canine pancreas microsome fraction (Promega) to the reaction system. To 3 µl of the reaction solution was added 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis.

. 2,5

10

15

20

25

The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression in COS7

Escherichia coli cells harboring the expression vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2 x YT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added thereto, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10⁵ COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Trishydrochloride (pH 7.5) (TDMEM). A suspension containing 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 µl of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

10

15

2.0

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [35S]cysteine or [35S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Preparation of Antibodies

A plasmid vector containing the cDNA of the present invention was dissolved in a phosphate buffer solution (PBS: 145 mM NaCl, 2.68 mM KCl, 8.09 mM Na2HPO4, 2 mM KH_2PO_4 , pH 7.2) to a concentration of 2 $\mu g/\mu l$. 25 μl each (a total of 50 µl) of the thus-prepared plasmid solution in PBS was injected into the right and left musculi quadriceps femoris of three mice (ICR line) using a 26 guage needle. After similar injections were repeated for one month at intervals of one week, blood was collected. The collected blood was stored at 4°C overnight to coagulate the blood, and then centrifuged at 8,000 x g for five minutes to obtain a supernatant. NaN, was added to the supernatant to a concentration of 0.01% and the mixture was then stored at 4°C. The generation of an antibody was confirmed immunostaining of COS7 cells into which the corresponding vector had been introduced or by Western blotting using a

10

15

20

25

cell lysate or a secreted product.

(5) Clone Examples

<HP03171> (SEQ ID NOS: 1, 11 and 21)

Determination of the whole base sequence of the cDNA insert of clone HP03171 obtained from cDNA library of human thymus revealed the structure consisting of a 90-bp 5'-untranslated region, a 804-bp ORF, and a 1148-bp 3'untranslated region. The ORF encodes a protein consisting of 267 amino acid residues and there existed one putative transmembrane domain. Figure 1 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyteof the present protein. In vitro Doolittle method, translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight of 30,234 predicted from the ORF. In this case, The addition of a microsome led to the formation of a product of 38 kDa. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Thr-Thr at position 169).

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to chicken putative transmembrane protein E3-16 (Accession No. AAB70816). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and chicken putative

transmembrane protein E3-16 (GG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.0% in the entire region.

Table 3

25 (1) からはは (1) からから (2) からがら (2) からがら (2) からいる

غور دومه محافظ الرابي والمستعدد الرابان

HP RATRRINKRGAKNCNAIRHFENTFVVETLICGVV

* ** * ** * *** * ****

GG KEAMKGIQKREAVNCRKIRHFENRFAMETLICEQ

5

10

15

20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL036384) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

en in de la companya de la companya

<HP03424> (SEQ ID NOS: 2, 12 and 22)

Determination of the whole base sequence of the cDNA insert of clone HP03424 obtained from cDNA library of human liver revealed the structure consisting of a 4-bp 5'-untranslated region, a 1260-bp ORF, and a 169-bp 3'-untranslated region. The ORF encodes a protein consisting of 419 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight

BNSDOCID- (WO 0112660A2 L

10

15

of 46,375 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein six sites at which N-glycosylation may occur (Asn-Ala-Ser at position 29, Asn-Val-Thr at position 40, Asn-Cys-Thr at position 112, Asn-Lys-Ser at position 135, Asn-Ile-Ser at position 172 and Asn-Phe-Ser at position 189). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspartic acid at position 28.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 40.8% in the intermediate region of 218 amino acid residues.

in the original of the control of th

25

	Table 4	
	, , , , , , , , , , , , , , , , , , ,	-
	HP MSCAGRAGPARLAALALLTCSLWPARADNASQEYYTALINVTVQEPGRGAPLTFRIDRGR	
5	HP YGLDSPKAEVRGQVLAPLPLHGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKIS	:
	HP RAAFHNAVAVVIYNNKSKEEPVTMTHPGTGDIIAVMITELRGKDILSYLEKNISVQMTIA	
	* ** *.*. *.*	
	DM MQLEKMQIKGKTRNIAAVITYQNIGQDLSLTLDKGYNVTISII	
10		. (2*,
	HP VGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAA	
	* * * * .****** * * ***** ** . * * . * . * . *	
	DM EGRRGVRTISSLNRTSVLFVSISFIVDDILCWLIFYYIQRFRYMQAKDQQSRNLCSVT	٠
15	HP KKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEH	n:
	**** *. * * * * * * * * * * * * * * * *	
	DM KKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEFHKNCIDPWLIEH	
	HP CTCPMCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLEPLR	
20	******* * * *	347
	DM RTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQPLQPLQ	
	e in the second of the second	
	HP TSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVEW	
	.**	
25	DM ASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMPHAITAS	= <u>C</u>

HP F

DM HQVTDV

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA082118) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03444> (SEQ ID NOS: 3, 13 and 23)

15 Determination of the whole base sequence of the cDNA insert of clone HP03444 obtained from cDNA library of human kidney revealed the structure consisting of a 209-bp 5'-untranslated region, a 1248-bp ORF, and a 460-bp 3'untranslated region. The ORF encodes a protein consisting of 20 415 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was somewhat smaller than the molecular 25

10

15

weight of 45,691 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 42 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 24.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human type I procollagen C-proteinase enhancer protein (Accession No. BAA23281). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human type I procollagen C-proteinase enhancer protein (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.6% in the entire region.

20 Table 5

HP MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYP

* **. * * **** *** . . *****. . **

CP MLPAATASLLGPLLTACALLPFA-Q-GQTPNYTRPVFLCGGDVKGESGYVASEGFPNLYP

the second section of the second second

	HP PNSKCTWKITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGH-ANGQRIGRFCGTFRPG
	. * * **** * * * * * * * * * * * *
	CP PNKECIWTITVPEGQTVSLSFRVFDLELHPACRYDALEVFAGSGTSGQRLGRFCGTFRPA
-	HP ALVSSGNKMMVQMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDR
5	
	. **. ** * * *
	CP PLVAPGNQVTLRMTTDEGTGGRGFLLWYSGRATSGTEHQFCGGRLEKAQGTLTTPNWPES
	HP DYPAGVTCVWHIVAPKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGD
10	***, *, * ***, ** , *, *, *, *****, *, *
	CP DYPPGISCSWHIIAPPDQVIALTFEKFDLEPDTYCRYDSVSVFNGAVSDDSRRLGKFCGD
	HP SPPAPIVSERNELLIQFLSDLSLTADGFIGHYIFRPKKLPTTTE
	· *. * ** **** **. **** · * *
15	CP AVPGSISSEGNELLVQFVSDLSVTADGFSASYKTLPRGTAKEGQGPGPKRGTEPKVKLPP
	HP QPVTTTFPVTTGLKTTVALCQQKCRRTGTLEGNYCSSDFVLAGTVITTITRDG-SLHATV
	CP KSQPPEKTEESPSAPDAPTCPKQCRRTGTLQSNFCASSLVVTATVKSMVREPGEGLAVTV
20 .	
	HP SIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRRGLNYIIMGQVGEDGRGKIM-PNSF
	*. *. **. *
	CP SLIGAYKTGGLDLPSPPTGASLKFYVPCKQCPPMKKGVSYLLMGQV-EENRGPVLPPESF
25-	HP IMMFKTKNQKLLDALKNKQC

CP VVLHRPNQDQILTNLSKRKCPSQPVRAAASQD

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D78874) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03478> (SEQ ID NOS: 4, 14 and 24)

Determination of the whole base sequence of the cDNA insert of clone HP03478 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 224-bp 5'-untranslated region, a 1143-bp ORF, and a 891-bp 3'-untranslated region. The ORF encodes a protein consisting of 380 amino acid residues and there existed five putative transmembrane domains. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the

15

10

protein was similar to Halocynthia roretzi HrPET-1 protein (Accession No. BAA81907). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Halocynthia roretzi HrPET-1 protein (HR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.8% in the entire region.

Table 6

HP MLQTLYDYFWWERLWLPVNLTWADLEDRDGRVYAKASDLYITLPLALLFLIVRYFFEL 15 HR MDLLMDLYHWFWNEKFWLPQNLTWEDLKRTEEKQFGETRDLWLTFPLCITVLCIRFSVEK HP YVATPLAALLNIKEKTRLRAPPNATLEHFYLTSGKQPKQVEVELLSRQSGLSGRQVERWF HR GIARPLGKWLNLSERLHTPPRENIVLEKVYKTITRKPNYSQVEDLCKQTGWRKHEINVWF .20 HP RRRRNQDRPSLLKKFREASWRFTFYLIAFIAGMAVIVDKPWFYDMKKVWEGYPIQSTIPS HR RKKNLVGRPTTLTKFQETFWRFAFYLTSFFYGLYVMYDQECVWQTEKCFSNYPEDHVLSQ detoke grant i rektor var i troch de destat

7.1

	HP Q-YWYYMIELSFYWSLLFSIASDVKRKDFKEQIIHHVATIILISFSWFANYIRAGTLIMA
	* ** *** ** ** ** *** * * *** * * *** *
	HR KIYYYYLIELAFYSATTLTQFFDVKRKDFWEMFIHHIVTIILLCGSYTLNYTKMGAFILV
5	HP LHDSSDYLLESAKMFNYAGWKNTCNNIFIVFAIVFIITRLVILPFWILHCTLVYPLELYP
	.***.*. * *** .** * ** * ******.**.
	HR VHDSADFYIEFAKMGKYANNSLVTNVGFISFTISFFLSRLVILPLWIVPSIWFYGIYTYN
	HP AFFGYYFFNSMMGVLQLLHIFWAYLILRMAHKFITGKLVEDERSDREETESSEGEEAAAG
10	******* * * ****.
	HR CAMA-WLFCALL-ILQLLHFYWFSHIVKAAYASILVGVIERDTRSESEDSSAEDETAKYS
	HP GGAKSRPLANGHPILNNNHRKND
	*.
15	HR VGSGDYTESNGIHKRVVTAR

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T27334) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03499> (SEQ ID NOS: 5, 15 and 25)

25

10

15

Determination of the whole base sequence of the cDNA insert of clone HP03499 obtained from cDNA library of human kidney revealed the structure consisting of a 129-bp 5'-untranslated region, a 1758-bp ORF, and a 86-bp 3'untranslated region. The ORF encodes a protein consisting of 585 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 63 kDa that was almost identical with the molecular weight of 63,987 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 82 kDa. In addition, there exist in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-Ile-Thr at position 89, Asn-Glu-Thr at position 106, Asn-Ala-Thr at position 189, Asn-Arg-Thr at position 220 and Asn-Ala-Thr at position 315).

The search of the protein database using the amino 20 acid sequence of the present protein revealed that the protein was similar to Chinese hamster hypothetical protein A30227). Table 7 shows 2BE2121 (Accession No. comparison between amino acid sequences of the human protein hamster of the present invention (HP) and Chinese 25 hypothetical protein 2BE2121 (CH). Therein, the marks of -,

	*, and . represent a gap, an amino acid residue ide	entical
•	with that of the protein of the present invention,	and an
	amino acid residue similar to that of the protein	of the
-	present invention, respectively. The both proteins sh	ared a
. 5	homology of 44.8% in the entire region.	•2
	Table 7	
	HP MVCREQLSKNQVKWVFAGITCVSVVVIAAIVLAITLRRPGCELEACSPDADMLDYLLSLG	
10	***. *	no mp. Novalles de
	CH SWSENILDYFLRNS	***
		.· •
	HP QISRRDALEVTWYHAANSKKAMTAALNSNITVLEADVNVEGLGTANETGVPIMAHPPTIY	
	. *. **** *. * . **. *	2 :
15	CH QITTEDGAEIIWYHAANHKSQMQEALRSAAHMIEADVLLPSDGSEHGQPIMAHPPEMN	٠
	HP SDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRQLTEEGKVRRPIWINADILKGP	
	*****. **. *. *. ********. * * *. *	
	CH SDNTLQEWLAEVM-KSNKGIKLDFKSLAAARASMLFLDNVKQHLQCPVWMNADVLPGP	
20		U L
	HP NMLISTEVNATQFLALVQEKYPKATLSPGWTTFYMSTSPNRTYTQAMVEKMHELVGGVPQ	
	* * * * * * * * * * * * * * * * * * * *	
	CH NG-SSKVVDAKAFLDTVTSFFPDVTFSLGWTTGWHPEKVNEGYSWTMVKEMDYICSGLTQ	
	restreet to the second of the	
25	HP RVTFPVRSSMVRAAWPHFSWLLSQSERYSLTLWQAASDPMSVEDLLYVRDNTAVHQVYYD	dī.

RNSDOCID: <WO 0112660A2 L >

The state of the s

HP IFEPLLSQFKQLALNATRKPMYYTGGSLIPLLQLPGDDGLNVEWLVPDVQGSGKTATMTL

5 * **

CH ILEPQSHEFKQAIGI

Furthermore, the search of the GenBank using the

base sequences of the present cDNA has revealed the
registration of sequences that shared a homology of 90% or
more (for example, Accession No. R92398) among ESTs. However,
since they are partial sequences, it can not be judged
whether or not they encode the same protein as the protein
of the present invention.

<HP03500> (SEQ ID NOS: 6, 16 and 26)

Determination of the whole base sequence of the cDNA insert of clone HP03500 obtained from cDNA library of human kidney revealed the structure consisting of a 134-bp 5'-untranslated region, a 996-bp ORF, and a 476-bp 3'-untranslated region. The ORF encodes a protein consisting of 331 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro

2.5

translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 37,694 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the amino acid sequence of the protein matched with that of human hypothetical protein (Accession No. AAC05803) in which a region of 62 amino acid residues from glycine at position 88 to lysine at position 149 was deleted.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340631) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10691> (SEQ ID NOS: 7, 17 and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10691 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 246-bp 5'-untranslated region, a 1038-bp ORF, and a 1096-bp 3'-untranslated region. The ORF encodes a protein consisting of 345 amino acid residues and there existed at least two putative transmembrane domains. Figure, 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the

RNSDOCID- -WO 0112880A2 I >

25

20

1 - 1 - 1 - 1 - 1 - 2 - 3A

10

Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human BB1 protein (Accession No. AAB37433). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human BB1 protein (BB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The C-terminal region of 215 amino acid residues of the present protein shared a homology of 81.9% with the N-terminal region of human BB1 protein.

Table 8

HP MSPEEWTYLVVLLISIPIGFLFKKAGPGLKRWGAAAVGLGLTLFTCGPHTLHSLVTILGT

- -20

15

HP WALIQAQPCSCHALALAWTFSYLLFFRALSLLGLPTPTPFTNAVQLLLTLKLVSLASEVQ

HP DLHLAQRKEMASGFSKGPTLGLLPDVPSLMETLSYSYCYVGIMTGPFFRYRTYLDWLEQP

125 BB 1411 MASGFSKGPTLGLLRRALPDGDT-QLQLLLRGNHDRPVLPLPHLPGLAGAA 45

A CONTRACTOR OF THE STATE OF THE STATE OF THE STATE OF

. .

15

20

ومواجا ومردانا الماسات

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W48653) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10703> (SEQ ID NOS: 8, 18 and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10703 obtained from cDNA library of human kidney revealed the structure consisting of a 359-bp

10

15

20

5'-untranslated region, a 270-bp ORF, and a 1388-bp 3'untranslated region. The ORF encodes a protein consisting of 89 amino acid residues and there existed one putative transmembrane domain. Figure 8 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 18 kDa that was larger than the molecular weight of 10,469 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T08343) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10711> (SEQ ID NOS: 9, 19 and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10711 obtained from cDNA library of human kidney revealed the structure consisting of a 29-bp 5'-untranslated region, a 1221-bp ORF, and a 356-bp 3'-untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 9 depicts the

15

20

25

BNSDOCID - WO 011266042 L

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 44 kDa that was almost identical with the molecular weight of 43,836 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein seven sites at which N-glycosylation may occur (Asn-Ser-Thr at position 65, Asn-Trp-Ser at position 95, Asn-Val-Ser at position 134, Asn-Ile-Thr at position 159, Asn-Gly-Ser at position 187, Asn-Arg-Ser at position 230 and Asn-Leu-Thr at position 333). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 36.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse kidney predominant protein (Accession No. BAA92527): Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse kidney predominant protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the protein of the present invention, respectively. The

both proteins shared a homology of 79.9% in the entire region.

Table 9

.

5

- 20 MM PTGAFANGSLTFKVQAFSRSGRPAQPPRLLHTADVCQLEVALVGASPRGNHSLFGLEVAT

- 25

خوذنجية بدا لمين م

5 HS PPVDGLSPLVLGIMAVALGAPGLMLLGGGLVLLLHHKKYSEYQSIN

**** . ************** **** *********

MM PPVDIFSPLVLGIMAVALGAPGLMFLGGGLFLLLRHRRYSEYQSIN

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA362394) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10712> (SEQ ID NOS: 10, 20 and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10712 obtained from cDNA library of human kidney revealed the structure consisting of a 52-bp 5'-untranslated region, a 579-bp ORF, and a 1064-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed four putative transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

25

10

15

20

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse calcium channel gamma 5 subunit (Accession No. CAB86387). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse calcium channel gamma 5 subunit (MM). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 75.0% in the entire region.

Table 10

25 MM WYFCTIGNHSEPHCLRDLSQAHMPGLAVGMGLARSVAAMAVVAAIFGLEMLIVSQVCEDV

خوار مرمان ورماد الأمام والحارات

. 80

HS HSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGFTLMFWCEFTASFLLFLNAIS

MM RSRRKWAIGSYLLLVAFILSSGGLLTFIILLKNQINLLGFTLMFWCEFTASFLFFLNAAS

. . .

5

HS GLHINSITHPWE

****** * **

MM GLHINSLTQPWDPPAGTLAYRKRGYDGTSLI

10

15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA910339) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<+ <+ <+ HP03010> (SEQ ID NOS: 31, 41 and 51)

Determination of the whole base sequence of the

CDNA insert of clone HPO3010 obtained from cDNA library of

human kidney revealed the structure consisting of a 97-bp

5'-untranslated region, a 1134-bp ORF, and a 320-bp 3'
untranslated region. The ORF encodes a protein consisting of

377 amino acid residues and there existed at least eight

putative transmembrane domains. Figure 11 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 42 kDa that was almost identical with the molecular weight of 41,462 predicted from the ORF as well as a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana hypothetical protein (Accession No. AAC34490). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana hypothetical protein (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 42.0% in the entire region other than the N-terminal region.

20

15

5

10

Table 11

HP MDSALSDPHNGSAEAGGPTNSTTRPPSTPEGIALAYGSLLLMALLPIFFGALRSVRCARG

* * *.

25 AT MKNCERFANLALAGLTLAPLVVRVNPNLNVILTACITVYVGCFRS

	HF	KNASDMPETITSRDAARFPIIASCTLLGLYLFFKIFSQEYINLLLSMYFFVLGILALSHT
		* *** * ***. * **. * . * .
	AT	VKDTPPTETMSKEHAMRFPLVGSAMLLSLFLLFKFLSKDLVNAVLTAYFFVLGIVALSAT
5		
	НР	ISPFMNKFFPASFPNRQYQLLFTQGSGENKEEIINYEFDTKDLVCLGLSSIVGVWYLLRK
		. * * *
	ΑT	LLPAIRRFLPNPWNDNLIVWRFPYFKSLEVEFTKSQVVAGIPGTFFCAWYAWKK
10	НР	HWIANNLFGLAFSLNGVELLHLNNVSTGCILLGGLFIYDVFWVFGTNVMVTVAKSFEAPI -
		. *. **. * *. * ** ***. ***. *** * ***. ****. ***
	ΑT	HWLANNILGLSFCIQGIEMLSLGSFKTGAILLAGLFFYDIFWVFFTPVMVSVAKSFDAPI
	НР	KLVFPQDLLEKGLEANNFAMLGLGDVVIPGIFIALLLRFDISLKKNTHTYFYTSFAAYIF
15		**. **
	AT	KLLFPTGDALRPYSMLGLGDIVIPGIFVALALRFDVSRRRQPQ-YFTSAFIGYAV
		en e
	ΗР	GLGLTIFIMHIFKHAQPALLYLVPACIGFPVLVALAKGEVTEMFSYEESNPKDPAAVTES
		*. *** * * ****** *** ***
20	ΑT	GVILTIVVMNWFQAAQPALLYIVPAVIGFLASHCIWNGDIKPLLAFDESKTEE-ATTDES
	HP	KEGTEASASKGLEKKEK
	•8	**
	AT	KTSEEVNKAHDE

10

.... Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or (for example, Accession No. AA380429) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03576> (SEQ ID NOS: 32, 42 and 52)

Determination of the whole base sequence of the cDNA insert of clone HP03576 obtained from cDNA library of human kidney revealed the structure consisting of a 88-bp 5'-untranslated region, a 246-bp ORF, and a 1379-bp 3'untranslated region. The ORF encodes a protein consisting of 81 amino acid residues and there existed two putative 15 depicts the 12 domains. Figure transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. In Doolittle method, of translation resulted in formation of a translation product of 20 kDa that was larger than the molecular weight of 9,178 20 predicted from the ORF.

. The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human vacuolar proton ATPase 9 kDa (Accession No. NP_003936). Table 12 shows the comparison

.2.5

٠,

صرور فالجيدة يعتدا والدا

between amino acid sequences of the human protein of the present invention (HP) and human vacuolar proton ATPase 9 kDa (VP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 71.2% in the entire region.

10 Table 12

HP MTAHSFALPVIIFTTFWGLVGIAGPWFVPKGPNRGVIITMLVATAVCCYLFWLIAILAQL

VP MAYHGLTVPLIVMSVFWGFVGFLVPWFIPKGPNRGVIITMLVTCSVCCYLFWLIAILAQL :

15

-5

HP NPLFGPQLKNETIWYVRFLWE

VP NPLFGPQLKNETIWYLKYHWP

* 1

20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W22566) among ESTs. However, since they are partial sequences, it can not be judged

BUSDOCID- - WO 011266042 I -

10

15

20

whether or not they encode the same protein as the protein of the present invention.

<HP03611> (SEQ ID NOS: 33, 43 and 53)

Determination of the whole base sequence of the cDNA insert of clone HP03611 obtained from cDNA library of human kidney revealed the structure consisting of a 189-bp 5'-untranslated region, a 1464-bp ORF, and a 105-bp 3'untranslated region. The ORF encodes a protein consisting of 487 amino acid residues and there existed eleven putative the 13 depicts Figure domains. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human cystine/glutamate transporter (Accession No. BAA82628). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human cystine/glutamate transporter (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

A STATE OF STATE OF STATE

of 43.8% in the entire region other than the N-terminal region.

Table 13

HP MGDTGLRKRREDEKSIQSQEPKTTSLQKELGLISGISIIVGTIIGS *.... *.... *. *. *. *** CG MVRKPVVSTISKGGYLQGNVNGRLPSLGNKEPPGQEKVQLKRKVTLLRGVSIIIGTIIGA 10 HP GIFVSPKSVLSNTEAVGPCLIIWAACGVLATLGALCFAELGTMITKSGGEYPYLMEAYGP ***, ***, ** **, . ** . *, . ***, . ***, . **** *, ****, *, *, . *, . ** CG GIFISPKGVLQNTGSVGMSLTIWTVCGVLSLFGALSYAELGTTIKKSGGHYTYILEVFGP HP IPAYLFSWASLIVIKPTSFAIICLSFSEYVCAPFYVGCKPPQIVVKCLAAAAILFISTVN 15 CG LPAFVRVWVELLIIRPAATAVISLAFGRYILEPFFIQCEIPELAIKLITAVGITVVMVLN HP SLSVRLGSYVQNIFTAAKLVIVAIIIISGLVLLAQGNTKNFDNSFEGAQLSVGAISLAFY 20 CG SMSVSWSARIQIFLTFCKLTAILIIIVPGVMQLIKGQTQNFKDAFSGRDSSITRLPLAFY Library and the control of the contr HP NGLWAYDGWNQLNYITEELRNPYRNLPLAIIIGIPLVTACYILMNVSYFTVMTATELLQS CG YGMYAYAGWFYLNFVTEEVENPEKTIPLAICISMAIVTIGYVLTNVAYFTTINAEELLLS

en en la companya de la companya de

* ** ** ** *

CG MSEKITRTLQIILEVVPEEDKL

A Commence of the Commence of

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R07056) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03612> (SEQ ID NOS: 34, 44 and 54)

25

Determination of the whole base sequence of the cDNA insert of clone HP03612 obtained from cDNA library of human kidney revealed the structure consisting of a 153-bp 5'-untranslated region, a 1128-bp ORF, and a 269-bp 3'untranslated region. The ORF encodes a protein consisting of 375 amino acid residues and there existed seven putative transmembrane domains. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 39 kDa that was somewhat larger than the molecular weight of 37,930 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human monocarboxylate transporter (Accession No. AAC70919). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human monocarboxylate transporter (MC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the N-terminal region of 192 amino acid residues.

25

ENSULCE - WO 011288042 1

5

10

15

Table 14

	НР	MTPQPAGPPDGGWGWVVAAAAFAINGLSYGLLRSLGLAFPDLAEHFDRSAQDTAW
		.*. *******.*.*.* *.** * * *
5	МС	MPPMPSAPPVHPPPDGGWGWIVVGATFISIGFSYAFPKAVTVFFKEIQQIFHTTYSEIAW
	ΗР	ISALALAVQQAASPVGSALSTRWGARPVVMVGGVLASLGFVFSAFASGLLHLYLGLGLLA
		. * *. **. *. * * ****. * * * * *
	MC	ISSIMLAVMYAGGPVSSVLVNKYGSRPVVIAGGLLCCLGMVLASFSSSVVQLYLTMGFIT
10		
	HP	GFGWALVFAPALGTLSRYFSRRRVLAVGLALTGNGASSLLLAPALQLLLDTFGWRGALLL
		*. * * *** ** * ** * * **. *
	МС	GLGLAFNLQPALTIIGKYFYRKRPMANGLAMAGNPVFLSSLAPFNQYLFNTFGWKGSFLI
15	НР	LGAITLHLTPCGALLLPLVLPGDPPAPPRSPLAALGLSLFTRRAFSIFALGTALVGGGYF
		**, *, *, **
	MC	· LGSLLLNACVAGSLMRPLGPNQTTSKSKNKTGKTEDDSSPKKIKTKKSTWEKVNKYLDFS
	НР	VPYVHLAPRFRPGPGGIRSSAGGGRGCDGGCGRPAGLRVAGRPRLGAPPAAAGRIRGSDW
20		
	МС	LFKHRGFLIYLSGNVIMFLGFFAPIIFPAPYAKDQGIDEYSAAFLLSVMAFVDMFARPSV
		AGAVGGGAGARGGRRRELGGSPAGRGCGLWAERGELRPAGFRCTPRAGGRRRCGAGHRAG
	3.57	
2.5	. MC	GLIANSKYTRPRIOVEESEATMENGVCHLLCPLAODYTSLVLYAVEEGLGEGSVSSVLEE

HP DDADEPRGAPGPSPVRLPKG

MC TLMDLVGAPRFSSAVGLVTIVECGPVLLGPPLAGKLVDLTGEYKYMYMSCGAIVVAASVW

5

10

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI742291) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10407> (SEQ ID NOS: 35, 45 and 55)

Determination of the whole base sequence of the cDNA insert of clone HP10407 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 100-bp 5'-untranslated region, a 1053-bp ORF, and a 332-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed at least four putative transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the

10

15

protein was longer by 35 amino acid residues at the N-terminus than human hypothetical protein (Accession No. CAB43375).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of a clone beginning from the 117th base of the present cDNA (Accession No. AL050274).

<HP10713> (SEQ ID NOS: 36, 46 and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10713 obtained from cDNA library of human kidney revealed the structure consisting of a 79-bp 5'-untranslated region, a 2004-bp ORF, and a 611-bp 3'untranslated region. The ORF encodes a protein consisting of 667 amino acid residues and there existed nine putative domains. transmembrane Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of present protein. the In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse retinoic acid-responsive protein (Accession No. AAC16016). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse retinoic acid-

15

responsive protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.1% in the entire region.

Table 15

HP MSSQPAGNQTSPGATEDYSYGSWYIDEPQGGEELQPEGEVPSCHTSIPPGLYHACLAS

*, ***, *, *, *** ****, ** *, ***, * *, . **, * *****

MM MESQASENGSQTSSGVTDDYS--SWYIEEPLGAEEVQPEGVIPLCQLTAPPALLHACLAS

HP LSILVLLLLAMLVRRRQLWPDCVRGRPGLPSPVDFLAGDRPRAVPAAVFMVLLSSLCLLL

, ****, ****, *** * . . . ******* . . . ***** * . . . *****

MM LSFLVLLLLALLVRRRRLWPRCGHRGLGLPSPVDFLAGDLSWTVPAAVFVVLFSNLCLLL

MM PDENPLPFLNLTAASSPDGEMETSRGPWKLLALLYYPALYYPLAACASAGHQAAFLLGTV

. 0

MM LSWAHFGVQVWQKAECPQDPKIYKHYSLLASLPLLLGLGFLSLWYPVQLVQSLRHRTGAG

A CONTRACTOR OF THE PROPERTY O

25

		HP SKGLQSSYSEEYLRNLLCRKKLGSSYH-TSKHGFLSWARVCLRHCIYTPQPGFHLPLKLV
		*. ***. ****. ***. ***. * . ** **
		MM SQGLQTSYSEKYLRTLLCPKKLDSCSHPASKRSLLSRAWAFSHHSIYTPQPGFRLPLKLV
	5	HP LSATLTGTAIYQVALLLLVGVVPTIQKVRAGVTTDVSYLLAGFGIVLSEDKQEVVELVKH
		. *******. *******. ****. ***** ******
		MM ISATLTGTATYQVALLLLVSVVPTVQKVRAGINTDVSYLLAGFGIVLSEDRQEVVELVKH
		HP HLWALEVCYISALVLSCLLTFLVLMRSLVTHRTNLRALHRGAALDLSPLHRSPHPSRQAI
	10	***. *. ******** ***. *. ***. **. **. *
		MM HLWTVEACYISALVLSCASTFLLLIRSLRTHRANLQALHRGAALDLDPPLQSIHPSRQAI
•		
		HP FCWMSFSAYQTAFICLGLLVQQIIFFLGTTALAFLVLMPVLHGRNLLLFRSLESSWPFWL
		, ****, ***** *******, ******, *****, . *, *******, *****, ****
	15	MM VSWMSFCAYQTAFSCLGLLVQQVIFFLGTTSLAFLVFVPLLHGRNLLLLRSLESTWPFWL
		HP TLALAVILQNMAAHWVFLETHDGHPQLTNRRVLYAATFLLFPLNVLVGAMVATWRVLLSA
		*. ******* **. **. ** **. *. *. *****. *.
		MM TVALAVILQNIAANWIFLRTHHGYPELTNRRMLCVATFLLFPINMLVGAIMAVWRVLISS
	20	
		HP LYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSLLLQAQSLLPR
		. ****** ***. ****. **. **. **. *
		MM LYNTVHLGQMDLSLLPQRAASLDPGYHTYQNFLRIEASQSHPGVIAFCALLLHAPSPQPR
. •	25	HP TMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRARWGLAYTLLHNPTLQVFRKT

MM PPLAPQDSLRPAEEEEGMQLLQTKDLMAKGAGHKGSQSRARWGLAYTLLHNPSLQAFRKA

HP ALLGANGAQP

5 ** ** ,*,

20

25

BNSDOCID- - WO 011266042 F >

MM ALTSAKANGTQP

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI760170) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10714> (SEQ ID NOS: 37, 47 and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10714 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 82-bp 5'-untranslated region, a 1395-bp ORF, and a 1820-bp 3'-untranslated region. The ORF encodes a protein consisting of 464 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

10

15

20

vitro translation resulted in formation of a translation product of 49 kDa that was somewhat smaller than the molecular weight of 52,340 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 52 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ala-Thr at position 164 and Asn-Asp-Ser at position 320). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from threonine at position 22.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA861134) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10716> (SEQ ID NOS: 38, 48 and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10716 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 60-bp 5'-untranslated region, a 1413-bp ORF, and a 653-bp 3'-untranslated region. The ORF encodes a protein consisting of 470 amino acid residues and there existed one

putative transmembrane domain at the N-terminus. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 61 kDa that was larger than the molecular weight of 52,086 predicted from the ORF.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein CGI-90 (Accession No. AAD34085). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein CGI-90 (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the entire region.

20 Table 16

and the second of the second o

HP-MSRLGALGGARAGLGLLLGTAAGLGFLCLLYSQRWKRTQRHGRSQSLPNSLDYTQTSDPG

A CONTRACT OF A

the state of the s

HP RHVMLLRAVPGGAGDASVLPSLPREGQEKVLDRLDFVLTSLVALRREVEELRSSLRGLAG

25 Control of the first of the control of the contr

	HP EIVGEVRCHMEENQRVARRRRFPFVRERSDSTGSSSVYFTASSGATFTDAESEGGYTTAN
	CG MALAARLWRLLPFRRGAAPGSRLPA
5	HP AESDNERDSDKESEDGEDEVSCETVKMGRKDSLDLEEEAASGASSALEAGGSSGLEDVLP
	.* *
	CG GPSGSRGIAAPARFRGFEVMGNPGTFNRGLLLSALSYLGFETYQVISQAAVVHATAKVEE
	HP LLQQADELHRGDEQGKREGFQLLLNNKLVYGSRQDFLWRLARAYSDMCELT-EEVSEKKS
10	.*.*** * * . *** . * ******
	CG ILEQADYLYESGETEKLYQLLTQYKESEDAELLWRLARASRDVAQLSRTSEEEKKL
· ·	HP YALDGKEEAEAALEKGDESADCHLWYAVLCGQLAEHESIQRRIQSGFSFKEHVDKAIALQ
	* * * **** * * ***
15	CG LVYEALEYAKRALEKNESSFASHKWYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELN
	HP PENPMAHFLLGRWCYQVSHLSWLEKKTATALLESPLSATVEDALQSFLKAEELQPGFSKA
	* * * ***** ** ** ** ** **.
	CG PKDATSIHLMGIWCYTFAEMPWYQRRIAKMLFATPPSSTYEKALGYFHRAEQVDPNFYSK
20	e, e e e e e e e e e e e e e e e e e e
	HP GRVYISKCYRELGKNSEARWWMKLALELPDVTKEDLAIQKDLEELEVILRD
	· · · · · · · · · · · · · · · · · · ·
	CG NLLLLGKTYLKLHNKKLAAFWLMKAKDYPAHTEEDKQIQTEAAQLLTSFSEKN

. II

And the second

٠-_-

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA852295) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10717> (SEQ ID NOS: 39, 49 and 59)

Determination of the whole base sequence of the cDNA insert of clone HP10717 obtained from cDNA library of human kidney revealed the structure consisting of a 73-bp 5'-untranslated region, a 732-bp ORF, and a 976-bp 3'-untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed two putative transmembrane domains. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was larger than the molecular weight of 26,270 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI478174) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

10

15

20

25

encode the same protein as the protein of the present invention.

<HP10718> (SEQ ID NOS: 40, 50 and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10718 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 86-bp 5'-untranslated region, a 813-bp ORF, and a 889-bp 3'-untranslated region. The ORF encodes a protein consisting of 270 amino acid residues and there existed three putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was smaller than the molecular weight of 31,116 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y53C10A (Accession No. CAA22139). Table 17 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y53C10A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the

10

present invention,	respectively. The both proteins shared a
homology of 54.8%	in the entire region other than the N-
terminal region.	•
5	
	•
НР	MAGAEDWPGQ
CE MTSSSAASSSTTTSSTMM	PDENECLKKEEERFKSPDPAPTLDEEVDIDTLPSMLEDDPNG
	.2.
HP QLELDEDEASCCRWGAQH	AGARELAALYSPGKRLQEWCSVILCFSLIAHNLVHLLLLARW :
, **	***. **. ** . ** * * ***. *
CE NVVECDLGFKGPRWGPQH	AGAKKLASMYSKEKRLQEKVSLFAAIFLFSIVFIN-LLLS-W

CE ESSIWVSVLVSAVLGIMTADFASGLVHWAADTFGSVE-TWFGRSFIRPFREHHVDPTAIT

HP RHDFIETNGDNCLVTLLPLLNMAYKFRTHSPEALEQ--LYPWECFVFCLIIFGTFTNQIH

. *. **... ***. *. . . * . . . * . . . * * . . . * * . . . *****

CE RHDIVEVNGDNCMLCVGPLLWILYQQMTYQRDAITQWATFHW--YILLLGIYVALTNQIH

25 CE KWSHTYFGLPTWVVFLQKAHIILPRSHHKIHHISPHACYYCITTGWLNWPLEYIGFWRKM

HP EDLIQGLTGEKPRADDMKWAQKIK

* .. . ** . ** . ** . **

CE EWVVTTVTGMQPREDDLKWATKLQ

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or 10 (for example, Accession No. AA176107) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, the region from position 466 to position 778 of the cDNA of the present 15 invention matched with the region from position 2 of human ubiquitin-conjugating enzyme position 314 variant 1 (Accession NO. NM_003349) although no match was observed in another region.

<HP03745> (SEQ ID NOS: 61, 71 and 81)

Determination of the whole base sequence of the cDNA insert of clone HP03745 obtained from cDNA library of human kidney revealed the structure consisting of a 99-bp 5'-untranslated region, a 1170-bp ORF, and a 107-bp 3'-untranslated region. The ORF encodes a protein consisting of

25 389 amino acid residues and there existed at least nine

10

102

putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 7 (Accession No. NP_003974). Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 7 (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.0% in the N-terminal region of 397 amino acid residues.

Table 18

20

15

MDRGEKIQLKRVFGYWWGTSFLLINIIG

.*..***... *.*.*

SC MEAREPGRPTPTYHLVPNTSQSQVEEDVSSPPQRSSETMQLKKEISLLNGVSLVVGNMIG

the contract of the contract o

25 HP-AGIFVSPKGVLAYSCMNVGVSLCVWAGCAILAMTSTLCSAEISISFPCSGAQYYFLKRYF

		. ********* *. ** ***
	SC	SGIFVSPKGVLVHT-ASYGMSLIVWAIGGLFSVVGALCYAELGTTITKSGASYAYILEAF
	НР	GSTVAFLNLWTSLFLGSGVVAG-QALLLAEYSIQPFFPSCSVPKLPKKCLALAMLWIVGI
5		* ** **
	SC	GGFIAFIRLWVSLLVVEPTGQAIIAITFANYIIQPSFPSCDPPYLACRLLAAACICLLTF
	HP	LTSRGVKEVTWLQIASSVLKVSILSFISLTGVVFLIRGKKENVERFQNAFDAELPDISHL
		** ** ** * * . *.* . *.**.* . **
10	SC	VNCAYVKWGTRVQDTFTYAKVVALIAIIVMGLVKLCQGHSEHFQDAFEGSSWDMGNL
	НР	IQAIFQGYFAYSGELKKPRTTIPKCIFTALPLVTVVYLLVNISYLTVLTPR
	t	* *. ***
	SC	SLALYSALFSYSGWDTLNFVTEEIKNPERNLPLAIGISMPIVTLIYILTNVAYYTVLNIS
15		
	• нр	EILSSDAVAITWADRAFPSLAWIMPFAISTSLFSNLLISIFKSSRPIYLASQEGQLPLLF
		****** *
	SC	DVLSSDAVAVTFADQTFGMFSWTIPIAVALSCFGGLNASIFASSRLFFVGSREGHLPDLL
20	HP	NTLNSHS-SPFTAVLLLVTLGSLAIILTSLIDLINYIFFTGSLWSILLMIGILRRRYQEP
	٠.٠	
	SC	SMIHIERFTPIPALLFNCTMALIYLIVEDVFQLINYFSFSYWFFVGLSVVGQLYLRWKEP
	HP	NLSIPYKVKLDF

受性 (数

2

5

10

15

20

SC KRPRPLKLSVFFPIVFCICSVFLVIVPLFTDTINSLIGIGIALSGVPFYFMGVYLPESRR

<HP03747> (SEQ ID NOS: 62, 72 and 82)

Determination of the whole base sequence of the cDNA insert of clone HP03747 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 21-bp 5'-untranslated region, a 1047-bp ORF, and a 1324-bp 3'-untranslated region. The ORF encodes a protein consisting of 348 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,685 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from proline at position 39.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human endoplasmic reticulum glycoprotein (Accession No. NP_006807). Table 19 shows the comparison between amino acid sequences of the human protein

BNSD0000-2WO 011286042 1 5

of the present invention (HP) and human endoplasmic reticulum glycoprotein (ER). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.1% in the entire region.

Table 19

10

5

HP MAATLGPLGSWQ-QW-RRCLSARD-----GSRMLLLLLLLGSGQGPQQVGAGQTFEYLK

*. * **** * . . . *. *. ****

ER MAAEGWIWRWGWGRRCLGRPGLLGPGPGPTTPLFLLLL-LGSVTADITDGNS-EHLK

ER REHSLIKPYQGVGSSSMPLWDFQGSTMLTSQYVRLTPDERSKEGSIWNHQPCFLKDWEMH

- HP VHFKIHGQGKKNLHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVF

 ****. ** *********. *. ******. *. * **. * *****

 ER VHFKVHGTGKKNLHGDGIALWYTRDRLVPGPVFGSKDNFHGLAIFLDTYPNDET-TERVF
- ER PYISVMVNNGSLSYDHSKDGRWTELAGCTADFRNRDHDTFLAVRYSRGRLTVMTDLEDKN

Later Commence

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262924) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10719> (SEQ ID NOS: 63, 73 and 83)

Determination of the whole base sequence of the cDNA insert of clone HP10719 obtained from cDNA library of human kidney revealed the structure consisting of a 54-bp

25

15

10

5'-untranslated region, a 786-bp ORF, and a 576-bp 3'-untranslated region. The ORF encodes a protein consisting of 261 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 33 kDa that was larger than the molecular weight of 27,435 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from asparagine at position 19.

acid sequence of the present protein revealed that the protein was similar to mouse endomucin (Accession No. AAD05208). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse endomucin (MM). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 47.9% in the entire region.

-25 . An instance of the second constant x_{ij} , x_{ij} , x_{ij} , x_{ij} , x_{ij}

BNSDOCID: WO 0113660A3 L

	MELLQVTIL-FLLP-SIC-SSNSTGVL-EAANNSLVVTTTKPSITTPNTESLQKNVVTPT
	* *** * * *** * * * *
M	MRLLQATVLFFLLSNSLCHSEDGKDVQNDSIPTPAETSTTKASVTIPGIVSV-TNPNKPA
Н	P TGTTPKGTITNELLKMSLMSTATFLTSKDEGLKATTTDVRKNDSIISNVTVTSVTLPNAV
	. **. *. ** **
M	M DGTPPEGTTKSDVSQTSLVTTINSLTTPKHEVGTTTEGPLRNESSTMKITVPNTPTSNAN
Н	P STLQSSKPKTETQSSIKTTEIPGSVLQPDASPSKTGTLTSIPVTIPENTSQSQVIGTEGG
	***. *. *. **. **. **. **. **.
M	M STLPGSQNKITTQLLDALPKITATPSASLTTAHTMSLLQDTEDR
H	P KNASTSATSRSYSSIILPVVIALIVITLSVFVLVGLYRMCWKADPGTPENGNDQPQSDKE
	* * * * * * * * * * * * * * * * * * * *
M	M KIATTPSTTPSYSSIILPVVIALVVITLLVFTLVGLYRICWKRDPGTPENGNDQPQSDKE
ŀ	IP SVKLLTVKTISHESGEHSAQGKTKN

ì	M SVKLLTVKTISHESGEHSAQGKTKN

sequences that shared a homology of 90% or more (for example, Accession No. AA486620) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10720> (SEQ ID NOS: 64, 74 and 84)

Determination of the whole base sequence of the cDNA insert of clone HP10720 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 10 5'-untranslated region, a 669-bp ORF, and a 653-bp 3'untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed a putative secretory signal at the N-terminus and one transmembrane domain in the inner portion. Figure 24 depicts 15. the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,219 predicted from the ORF. In this case, the addition 20 of a microsome led to the formation of a product of 35 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Val-Thr at position 76 and Asn-His-Thr at position 93). Application of the (-3,-1) rule, a method for predicting the 25 cleavage site of the secretory signal sequence, allows to

15

20

Blocker Contraction

expect that the mature protein starts from glutamic acid at position 15.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792241) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP10721> (SEQ ID NOS: 65, 75 and 85)

Determination of the whole base sequence of, the CDNA insert of clone HP10721 obtained from cDNA library of human kidney revealed the structure consisting of a 74-bp 5'-untranslated region, a 552-bp ORF, and a 1658-bp 3'-untranslated region. The ORF encodes a protein consisting of 183 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 19,989 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 22 kDa. Application of the (-3,-1) rule, a method for predicting the

25 Application of the (-3,-1) rule, a method for predicting the

10

15

20

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R27187) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10725> (SEQ ID NOS: 66, 76 and 86)

Determination of the whole base sequence of the cDNA insert of clone HP10725 obtained from cDNA library of human kidney revealed the structure consisting of a 235-bp 5'-untranslated region, a 789-bp ORF, and a 713-bp 3'-untranslated region. The ORF encodes a protein consisting of 262 amino acid residues and there existed one putative transmembrane domain. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example,

1 . 413.

:5

5

10

15

20

Accession No. AI127782) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10727> (SEQ ID NOS: 67, 77 and 87)

Determination of the whole base sequence of the cDNA insert of clone HP10727 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 102-bp 5'-untranslated region, a 507-bp ORF, and a 947bp 3'-untranslated region. The ORF encodes a protein consisting of 168 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was larger than the molecular weight of 17,822 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 29.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

10

15

sequences that shared a homology of 90% or more (for example, Accession No. R80316) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10728> (SEQ ID NOS: 68, 78 and 88)

Determination of the whole base sequence of the cDNA insert of clone HP10728 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 221-bp 5'-untranslated region, a 732-bp ORF, and a 902-bp 3'-untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 26,534 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H23535) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

<HP10730> (SEQ ID NOS: 69, 79 and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10730 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 27-bp 5'-untranslated region, a 1287-bp ORF, and a 1216-bp 3'-untranslated region. The ORF encodes a protein consisting of 428 amino acid residues and there existed one putative transmembrane domain. Figure 29 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight of 48,992 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C19105) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10742> (SEQ ID NOS: 70, 80 and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10742 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 231-bp 5'-untranslated region, a 852-bp ORF, and a 828-

.5

10

15

bp 3'-untranslated region. The ORF encodes a protein consisting of 283 amino acid residues and there existed two putative transmembrane domains. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was smaller than the molecular weight of 31,629 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T35949) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03800> (SEQ ID NOS: 91, 101 and 111)

Determination of the whole base sequence of the cDNA insert of clone HP03800 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 67-bp 5'-untranslated region, a 1431-bp ORF, and a 135-bp 3'-untranslated region. The ORF encodes a protein consisting of 476 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

10

15

20 -

vitro translation resulted in formation of a translation product of 55 kDa that was almost identical with the molecular weight of 54,110 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Lys-Thr at position 81, Asn-Met-Thr at position 132, Asn-Val-Thr at position 307 and Asn-Gln-Thr at position 346). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 23.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mosquito vitellogenic carboxypeptidase (Accession No. P42660). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mosquito vitellogenic carboxypeptidase (VC). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region. In addition, the C-terminal portion beginning from alanine at position 182 matched with

human probable carboxypeptidase (Accession No. AAC23787) except one amino acid residue. Table 21 5 HP MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPK-GDSGQPLFLTPYIEAGKIQKG ...* *. . **. *.****** ... ***... VC MVKFHLLVLIAFTCYTCSDATLWNPYKKLMRGSASPPRPGESGEPLFLTPLLQDGKIEEA 10 HP RELSLYGPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSM VC RNKARVNHPMLSSVESYSGFMTVDAKHNSNLFFWYVPAKNNREQAPILVWLQGGPGASSL HP FGLFVEHGPYVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVAR 15 VC FGMFEENGPFH1HRNKSVKQREYSWHQNHHM1Y1DNPVGTGFSFTDSDEGYSTNEEHVGE HP DLYSALIQFFQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGD . * . . *** . ** . . **, . ***, **, ***, . . ** * . . . ****, * . . . **** 20 VC NLMKFIQQFFVLFPNLLKHPFYISGESYGGKFVPAFGYAIH--NSQSQPKINLQGLAIGD * HP GYSDPESIIGGYAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGD

VC GYTDPLNQL-NYGEYLYELGLIDLNGRKKFDEDTAAAIACAERKDMNSANRLIQGLFDG-

 $e^{i\phi}/25$. The state of the section is the section of ϕ_{i} , ϕ_{i} , ϕ_{i} , ϕ_{i} , ϕ_{i} , ϕ_{i}

НР	LTSDPSYFQNVTGCSNYYNFLRC-TEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVE
	* ***. *** *. **** * *** **** *.*
VC	LDGQESYFKKVTGFSSYYNFIKGDEESKQDSVLMEFLSNPEVRKGIHVGELPFHDSDGHN
НР	KYLREDTVQSVKPWLTEIMNNYKVLIYNGQLDIIVAAALTEHSLMGMDWKGSQEYKK
	* * *** * * **
VC	KVAEMLSEDTLDTVAPWVSKLLSHYRVLFYNGQLDIICAYPMTVDFLMKMPFDGDSEYKR
HP	AEKKVWKIFKSDSEVAGYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDF
	* * . * . * * * * * * * * * * * * *
V C	ANREIYRVDGEIAGYKKRAGRLQEVLIRNAGHMVPRDQPKWAFDMITSFTHKNYL
HP	YVG

BNSDCCID - WC 0112680A2 I 5

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA095665) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present Company of the second second invention.

<HP03831> (SEQ ID NOS: 92, 102 and 112)

Determination of the whole base sequence of the cDNA insert of clone HP03831 obtained from cDNA library of 25

human kidney revealed the structure consisting of a 191-bp 5'-untranslated region, a 681-bp ORF, and a 223-bp 3'-untranslated region. The ORF encodes a protein consisting of 226 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

10 The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human claudin-10 (Accession No. NP_008915). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention 15 (HP) and human claudin-10 (CD). Therein, the marks of -, \star , and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology 20 of 76.2% in the entire region. The C-terminal region downstream from glycine at position 72 completely matched with that sequence.

Table 22

	HP MSRAQIWALVSGVGGFGALVAATTSNEWKVTTRASSVITATWVYQGLWMNCAGNALGS	
	. * * * ***. * ***. * *	
	CD MASTASEIIAFMVSISGWVLVSSTLPTDYWKVSTIDGTVITTATYWANLWKACVTDSTGV	·
5	HP FHCRPHFTIFKVAGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA	
	· * · · · · · · · · · · · · · · · · · ·	
	CD SNCKDFPSMLALDGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA	
	HP GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC	
10	******************	4 ,
	CD GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC	7,*
	HP FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV	
	******************	1
15	CD FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV	:

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N41613) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

25... <HP03879> (SEQ ID NOS: 93, 103 and 113) __ ===

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP03879 obtained from cDNA library of human kidney revealed the structure consisting of a 33-bp 5'-untranslated region, a 918-bp ORF, and a 651-bp 3'-untranslated region. The ORF encodes a protein consisting of 305 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was almost identical with the molecular weight of 34,073 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human NADH-cytochrome b5 reductase (Accession No. Y09501). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human NADH-cytochrome reductase (CT). Therein, the marks of -, \star , and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 63.5% in the entire region other than the N-terminal region.

٠, .

Table 23

	HP MGIQTSPVLLASLGVGLVTLLGLAVGSYLVRRSRRPQVTLLDPNEKYLLRLLDKTTVSHN
	* ** * * * ** ** ** ** ***. **. **.
5	CT MGAQLSTLGHMVLFPVWFLYSLLMKLFQRS-TPAITLESPDIKYPLRLIDREIISHD
	HP TKRFRFALPTAHHTLGLPVGKHIYLSTRIDGSLVIRPYTPVTSDEDQGYVDLVIKVYLKG
	* ****** * * * ***** * * * * * * * * * *
	CT TRRFRFALPSPQHILGLPVGQHIYLSARIDGNLVVRPYTPISSDDDKGFVDLVIKVYFKD
10	
	HP VHPKFPEGGKMSQYLDSLKVGDVVEFRGPSGLLTYTGKGHFNIQPNKKSPPEPRVAKKLG
	***** ****** * ** . ******* * *** * *
	CT THPKFPAGGKMSQYLESMQIGDTIEFRGPSGLLVYQGKGKFAIRPDKKSNPIIRTVKSVG
•	
15	HP MIAGGTGITPMLQLIRAILKVPEDPTQCFLLFANQTEKDIILREDLEELQARYPNRFKLW

	CT MIAGGTGITPMLQVIRAIMKDPDDHTVCHLLFANQTEKDILLRPELEELRNKHSARFKLW
	HP FTLDHPPKDWAYSKGFVTADMIREHLPAPGDDVLVLLCGPPPMVQLACHPNLDKLGYSQK
20	. ***. * . * . * . * . * *** . *** . * *** . * * * * ** *
	CT YTLDRAPEAWDYGQGFVNEEMIRDHLPPPEEEPLVLMCGPPPMIQYACLPNLDHVGHPTE
	HP MRFTY
	10 20 *
25	CT DCEVE

BNSDOCID: -WO 0112660A2 + >

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F06459) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP03880> (SEQ ID NOS: 94, 104 and 114)

Determination of the whole base sequence of the cDNA insert of clone HP03880 obtained from cDNA library of human kidney revealed the structure consisting of a 98-bp 5'-untranslated region, a 684-bp ORF, and a 115-bp 3'untranslated region. The ORF encodes a protein consisting of 227 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,717 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 27 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to

10

15

20

expect that the mature protein starts from aspartic acid at position 23.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat phosphatidylethanolamine-binding protein (Accession No. P31044). Table 24 shows the comparison between amino acid sequences of the human protein invention (HP) and rat of present the phosphatidylethanolamine-binding protein (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the region of 133 amino acid residues other than the N-terminal region.

Table 24

HP MGWTMRLVTAALLLGLMMVVTGDEDENSPCAHEALLDEDTLFCQGLEVFYPELGNIGCKV

RN MAADISQWAGPLSLQEVDEPPQHALRVDYGGVTV

HP VPDCNNYRQKITSWMEPIVKFPGAVDGATYILVMVDPDAPSRAEPRQRFWRHWLVTDIKG

RN DELGKVLTPTQVMNRPSSISWDGLDPGKLYTLVLTDPDAPSRKDPKFREWHHFLVVNMKG

RNSOCIO: «WO 0112660A2 L >

25

HP ADLKKGKIOGOELSAYOAPSPPAHSGFHRYOFFVYLOEGKV---ISLLP-KENKTRGSWK

**..*. **. **.. ** ... ** ... ** ... ** ... **...

RN NDISSGTV----LSEYVGSGPPKDTGLHRYVWLVYEQEQPLNCDEPILSNKSGDNRGKFK

5

HP MDRFLNRFHLGEPEASTQFMTQNYQDSPTLQAPRERASEPKHKNQAEIAAC

...* ... ***. * *. * *. *.

RN VESFRKKYHLGAPVAGTCFQAEWDDSVPKLHDQLAGK

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H83784) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10704> (SEQ ID NOS: 95, 105 and 115)

Determination of the whole base sequence of the

CDNA insert of clone HP10704 obtained from cDNA library of
human kidney revealed the structure consisting of a 141-bp
5'-untranslated region, a 1326-bp ORF, and a 399-bp 3'untranslated region. The ORF encodes a protein consisting of
441 amino acid residues and there existed eight putative
transmembrane domains. Figure 35 depicts the

MCDOCID - WO 011266082 1 -

10

15

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human unknown gene product (Accession No. AAC27544). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human unknown gene product (UP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.1% in the entire region.

Table 25

HP MAIHKALVMCLGLPLFLFPG-AWAQGHVPPGCSQGLNPLYYNLCDRSGAWGIVLE

20 * **... * ... ** . * * * * * ****.*

UN MFVASERKMRAHQVLTFLLLFVITSVASENASTSRGCGLDLLPQYVSLCDLDAIWGIVVE

......

25 UN-AVAGAGALITLLLMLILLVRLPFIKEKEKKSPVGLHFLFLLGTLGLFGLTFAFIIQEDET (#)

HP TCASRRFLFGVLFAICFSCLAAHVFALNFLARKNHGPRGWVIFTVALLLTLVEVIINTE
.*. ****. ***** *.*. *. ** ** ** * **. **
UN ICSVRRFLWGVLFALCFSCLLSQAWRVRRLVRHGTGPAGWQLVGLALCLMLVQVIIAVE
HP LIITLVRGSGEGGPQGNSSAGWAVASPCAIANMDFVMALIYVMLLLLGAFLGAWPALCG
*** * * * * * * * *
UN LVLTVLRDTRPACAYEPMDFVMALIYDMVLLVVTLGLALFTLCG
HP YKRWRKHGVFVLLTTATSVAIWVVWIVMYTYGN-KQHNSPTWDDPTLAIALAANAWAFV
. *** *. *. *. ** ***. * ** *
UN FKRWKLNGAFLLITAFLSVLIWVAWMTMYLFGNVKLQQGDAWNDPTLAITLAASGWVFV
HP FYVIPEVSQVTKSSPEQSYQGDMYPTRGVGY-ETILKEQ-KGQSMFVENKAFSMDEPVA
*, *** * *
UN FHAIPEI-HCTLLPALQENTPNYFDTSQPRMRETAFEEDVQLPRAYMENKAFSMDEHNA
HP KRPVS-PYSGYNGQLLTSVYQPTEMALMHKVPSEGAYDIILPRATANSQVMGSANSTLR
* *
UN LRTAGFPNGSLGKRPSGSLGKRPSAPFRSNVYQPTEMAVVLNGGTIPTAPPSHTGRHLW
AR Mark to the first of the second of the se
HP EDMYSAQSHQAATPPKDGKNSQVFRNPYVWD

10

15

20

25

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA346702) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10715> (SEQ ID NOS: 96, 106 and 116)

Determination of the whole base sequence of the cDNA insert of clone HP10715 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 49-bp 5'-untranslated region, a 798-bp ORF, and a 1351-bp 3'-untranslated region. The ORF encodes a protein consisting of 265 amino acid residues and there existed two putative transmembrane domains. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was larger than the molecular weight of 29,217 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI381750) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

BNSDOCID - WO 011286042 L >

10

invention.

<HP10724> (SEQ ID NOS: 97, 107 and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10724 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 68-bp 5'-untranslated region, a 627-bp ORF, and a 1485-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was almost identical with the molecular weight of 23,850 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T78035) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10733> (SEQ ID NOS: 98, 108 and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10733 obtained from cDNA library of human umbilical cord blood revealed the structure consisting

10

15

20

of a 102-bp 5'-untranslated region, a 1203-bp ORF, and a 222-bp 3'-untranslated region. The ORF encodes a protein consisting of 400 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was larger than the molecular weight of 43,151 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Leu-Thr at position 52, Asn-Ala-Ser at position 131, Asn-Ile-Thr at position 145 and Asn-Leu-Ser at position 343). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from arginine at position 33.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster

GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the entire region.

Table 26

10	HP MAWRREASVGARGVLALALLALALCVPGARGRALEWFSAVVNIEYVDPQTNLTV	/WSVSE
	HP SGRFGDSSPKEGAHGLVGVPWAPGGDLEGCAPDTRFFVPEPGGRGAAPWVALVAF	RGGCTF
	IP KDKVLVAARRNASAVVLYNEERYGNITLPMSHAGTGNIVVIMISYPKGREILEL-	-VQKGI
. 5	* **.*.*	**
	MQLEKMQIKGKTRNIAAVITYQNIGQDLSLT	LDKGY
	IP PVTMTIGVGTRHVQEFISGQSVVFVAIAFITMMIISLAWLIFYYIQRFLY-TG	SQIGS
	*** * * * **.**. * * ******* * .	*
0	DM NVTISIIEGRRGVRTISSLNRTSVLFVSISFIVDDILCWLIFYYIQRFRYMQA	KDQQS
	e e e e e e e e e e e e e e e e e e e	
	P QSHRKETKKVIGQLLLHTVKHGEKGIDVDAENCAVCIENFKVKDIIRILPCKHIF	HRICI
	***, * * * * **. **	*. **
	M RNLCSVTKKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEF	'HKNCI
5		

15

20

	НР	DPWLLDHRTCPMCKLDVIKALGYWGEPGDVQEMPAPESPPGRDPAANLSLALPDDDGSDE
	•	****
	DM	DPWLIEHRTCPMCKLDVLKFYGY-VVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQ
	•	
5	HР	SSPPSASPAESEPQCDPSFKGDAGENTALLEAGRSDSRHGGPIS
		* * *
	DM	PLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMP

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI286184) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10734> (SEQ ID NOS: 99, 109 and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10734 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 124-bp 5'-untranslated region, a 579-bp ORF, and a 1202-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

10

15

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human sodium channel ß2 subunit (Accession No. AAD47196). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human sodium channel ß2 subunit (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 26.3% in the N-terminal region of 152 amino acid residues.

Table 27

HP DOGTYICEIRLKGESQYFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVE

SC DEGIYNCYIMNPPDRHRGHGKIHLQVLMEEPPERDFTVAVIVGASVGGFLAVVILVLMVV

5

HP WIFSGRRAKVTRRKHHCVREGSG

SC KCVRRKKEQKLSTDDLKTEEEGKTDGEGNPDDGAK

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C03216) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10756> (SEQ ID NOS: 100, 110 and 120)

Determination of the whole base sequence of the

CDNA insert of clone HP10756 obtained from cDNA library of
human kidney revealed the structure consisting of a 49-bp
5'-untranslated region, a 783-bp ORF, and a 166-bp 3'untranslated region. The ORF encodes a protein consisting of
260 amino acid residues and there existed a putative
secretory signal at the N-terminus. Figure 40 depicts; the

10

15

20

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 27,356 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW027769) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03670> (SEQ ID NOS: 121, 131 and 141)

Determination of the whole base sequence of the cDNA insert of clone HP03670 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 77-bp 5'-untranslated region, a 1014-bp ORF, and a 531-bp 3'-untranslated region. The ORF encodes a protein consisting of 337 amino acid residues and there existed at least seven putative transmembrane domains. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein KIAA0260

(Accession No. BAA13390). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein KIAA0260 (KI). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 57.6% in the entire region other than the N-terminal region. In addition, the C-terminal region beginning from leucine at position 77 matched with human putative Sqv-7-like protein (Accession No. AJ005866) except one amino acid residue.

Table 28

15

10

5

HP MTAGGQAEAEGAGGEPG

KI NSWSPLGAAAAGPRAARPRRQATAAAAAMAEVHRRQHARVKGEAPAKSSTLRDEEELGMA

..... the second of the second of the second of

HP NKIIHFPDFDKKIPVKLFPLPLLYVGNHISGLSSTSKLSLPMFTVLRKFTIPLTLLLETI

- KI LRVVKFPDLDRNVPRKTFPLPLLYFGNQITGLFSTKKLNLPMFTVLRRFSILFTMFAEGV
- HP ILGKQYSLNIILSVFAIILGAFIAAGSDLAFNLEGYIFVFLNDIFTAANGVYTKQKMDPK
 .* * .* . * . * * . * * . * * . * * . * * . * * . * . * * . * . * * . * . * * . * . * * . * . * * . *
- 5 KI LLKKTFSWGIKMTVFAMIIGAFVAASSDLAFDLEGYAFILINDVLTAANGAYVKQKLDSK

 - KI ELGKYGLLYYNALFMILPTLAIAYFTGDAQKAVEFEGWADTLFLLQFTLSCVMGFILMYA
 - HP TVLCSYYNSALTTAVVGAIKNVSVAYIGILIGGDYIFSLLNFVGLNICMAGGLRYSFLTL

 ****. *******..** ***...*****... **...****...**

 KI TVLCTQYNSALTTTIVGCIKNILITYIGMVFGGDYIFTWTNFIGLNISIAGSLVYSYITF
- 15 HP SSQLKPKPVGEENICLDLKS
 - ... * * * ** **
 - KI TEEQLSKQ-SEANNKLDIKGKGAV

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R24922) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

invention.

5

10

15

20

25

<HP03688> (SEQ ID NOS: 122, 132 and 142)

Determination of the whole base sequence of the cDNA insert of clone HPO3688 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 35-bp 5'-untranslated region, a 711-bp ORF, and a 1729-bp 3'-untranslated region. The ORF encodes a protein consisting of 236 amino acid residues and there existed five putative transmembrane domains. Figure 42 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein W02D9 (Accession No. CAB03470). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein W02D9 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.8% in the entire region other than the N-terminal

BNSDCDD: <WO = 0112880A2 L >

		region
		Table 29
	5	HP MAEAEE
		CE MEILNLSSKFSLSDKPCQKFIFSLFSAVQNSRFKIISFPEIHQKPLPQEEMNSFGNASVD
	LO	HP SPGDPGTASPRPLFAGLSDISISQDIPVEGEITIPMRSRIREFDSSTLNESVRNTIMRDL
		CE IDMLEQEMAAEQTANLSGNIAGMSAPKSSSNRRGPMQEVDLDAEFDTLEEPVWDTVKRDV
	,	HP KAVGKKFMHVLYPR-KSNTLLRDWDLWGPLILCVTLALMLQRDSADSEKDGGPQFAEVFV
. 1	L 5	. ** ** **. * **********. **. **.
	-	HP IVWFGAVTITLNSKLLGGNISFFQSLCVLGYCILPLTVAMLICRLVLLADPGPVNFMVRL ***.*.* * *************************
	20	CE ITFFGSVIVTANIKLLGGNISFFQSLCVIGYCLLPPFVAAVLCSL-FLHGIAFPLRL
		HP-FVVIVMFAWSIVASTAFLADSQPPNRRALAVYPVFLFYFVISWMILTFTPQ ,
	-	CE LITSIGFVWSTYASMGFLAGCQPDKKRLLVIYPVFLFYFVVSWMIISHS

:25

. :

. Y2

٠ ا

ži... : 4.,

5

10

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T51465) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03825> (SEQ ID NOS: 123, 133 and 143)

Determination of the whole base sequence of the cDNA insert of clone HP03825 obtained from cDNA library of human kidney revealed the structure consisting of a 20-bp 5'-untranslated region, a 1683-bp ORF, and a 36-bp 3'untranslated region. The ORF encodes a protein consisting of 560 amino acid residues and there existed seven putative 15 Figure 43 depicts the domains. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 56 kDa that was smaller than the molecular weight of 64,047 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the was similar to Mycobacterium tuberculosis hypothetical protein Rv0235c (Accession No. CAB07001). Table 30 shows the comparison between amino acid sequences

are some of the RNSDOCID: <WO 0112660A2 1 >

10

of the human protein of the present invention (HP) and Mycobacterium tuberculosis hypothetical protein Rv0235c (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the entire region other than the N-terminal region. In addition, the region from alanine at position 293 to proline at position 502 matched with human putative novel protein c360B4.1 (Accession No. CAB56180).

Table 30

HP	MAAPAESLRRRKTGYSDPEPESPPAPGRGPAGSPAHLHTGTFWLTRIVLLKALAFVYFVA
	**. *
МТ	MGWFSAPEYWLGRLALERGTAIIYLIA
HP	FLVAFHQNKQLIGDRGLLPCRVFLKNFQQYFQDRTSWEVFSYMPTILWLMDWSDMNSNLD
	** .* **
МТ	FVAAAQQFRPLIGEHGMLPVPRYLAG-QSFWRTPSIFH-FRYSDRVFAGVCWLGAVLS
HP	LLALLGLGISSFVLITGCANMLLMAALWGLYMSLVNVGHVWYSFGWESQLLETGFLGIFL
• -	* . * . * * . * . *
мт	AAVVAGAASFVPLWATMLIWLTLWVLYLSIVNVGQAWYSFGWESLLLETGFLMIFU

	HP CPLWTLSRLPQHTPTSRIVLWGFRWLIFRIMLGAGLIKIRGDRCWRDLTCMDFHYETQPM
	.* * * * * * * * * * * * * * * * * * *
	MT GNERTAPPILTLLLA-RWLLFRVEFGAGLIKMRGDSCWRSLTCLYYHHETQPM
5	
	HP PNPVAYYLHHSPWWFHRFETLSNHFIELLVPFFLFLGRRACIIHGVLQILFQAVLIVSGN
	*.*** * .**.**** *** * * ***
	MT PGPLSWFFHHLPKPLHRIEVAGNHFAQLVVPFGLFTPQPAASIAAAIIVVTQLWLVASGN
	· · · · · · · · · · · · · · · · · · ·
10	HP LSFLNWLTMVPSLACFDDATLGFLFPSGPGSLKDRVLQMQRDIRGARPEPRFGSVVRRAA
	·*·****·· *** ···· ·* ···* ···* · · · ·
	MT FSWLNWLTILLACSAIDTSS-AAALLPMPAQPALSAPPQWFAGLVV
	. HP NVSLGVLLAWLSVPVVLNLLSSRQVMNTHFNSLHIVNTYGAFGSITKERAEVILQGTASS
15	*** ** . ***** * ** ** . * ******* * ** ** *
	MT VFTAAVLLLSYWPARNLLSSHQRMNMSFNPFHLVNTYGAFGSICRTRREVVIEGTDES
	HP NASAPDAMWEDYEFKCKPGDPSRRPCLISPYHYRLDWLMWFAAFQTYEHNDWIIHLAGKL
	* . * * * * * * * * * * * * *
20	MT:-PITEQTVWKAYEFKGKPGDPRRLPRQWAPYHLRLDWLMWFAAISPGYALPWMTPFLNRL:
	HP LASDAEALSLLAHNPFAGRPPPRWVRGEHYRYKFSRPGGRHAAEGKWWVRKRIGAYFPPL
	* * * * * * * * * * * * * * * * * * * *
	MT LRNDPATLKLLRHNPFP-QSPPRYVRAQLYQYRFTTVAELRRDRA-WWHRTLIGRYVPPM
25	to a serious and a serious contraction of the serious serious serious serious serious and the serious serious

BNSDCCID: <WO = 0112660A2 | L > (Y...)

1.076.13

143

HP SLEELRPYFRDRGWPLPGPL

**

MT SLRKVASPPAD

5

10

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA019047) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03877> (SEQ ID NOS: 124, 134 and 144)

Determination of the whole base sequence of the cDNA insert of clone HP03877 obtained from cDNA library of human kidney revealed the structure consisting of a 106-bp 5'-untranslated region, a 1221-bp ORF, and a 678-bp 3'untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed four putative transmembrane domains. Figure 44 depicts ... the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 49 kDa that was somewhat larger than the molecular weight of 46,208 predicted from the ORF.

10

A PART OF THE PER

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y37D8A (Accession No. CAA21543). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y37D8A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.2% in the intermediate region of 329 amino acid residues.

15 Table 31

HP MAENG

CE MAKKOKKSTEKSERTVEFKEPPKPANSEERLVSTRQFLAKIGQKKLIKKKVKNFRFSKKT

HP KNCDQRRVAMNKEHHNGNFTDPSSVNEKKRREREERQNIVLWRQPLITLQYFSLEILVIL

CE FIDFFSENQKKNCRLKPAGRGMKPSPSQNTLNRMERETIVFWRRPHIVIPYALMEIAHLA

25 HP KEWTSKLWHRQSIVVSFLLLLAVLIATYYVEGVHQQYVQRIEKQFLLYAYWIGLGILSSV 25

1D	GLGTGLHTFLLYLGPHIASVTLAAYECNSVNFPEPPYPDQIICPDEEGTEGTISLWSIIS
ш	*** ***** ***** ** ** ** ** ** * * ** *
CE	GLGSGLHTFLIYLGPHIAAVTMAAYECQSLDFPQPPYPESIQCPSTKSSI-AVTFWQIVA
iΡ	KVRIEACMWGIGTAIGELPPYFMARAARLSGAEPDDEEYQEFEEMLEHAESAQDFA-
	. ***. *************. ** *
Œ	KVRVESLLWGAGTALGELPPYFMARAARISGQEPDDEEYREFLELMNADKESDADQKLSI
ŧΡ	-SRAKLAVQKLVQKVGFFGILACASIPNPLFDLAGITCGHFLVPFWTFFGATLIGKAIIK
	.*** *** *** *********************
Œ.	VERAKSWVEHNIHRLGFPGILLFASIPNPLFDLAGITCGHFLVPFWSFFGATLIGKALVK
ΙP	MHIQKIFVIITFSKHIVEQMVAFIGAVPGIGPSLQKPFQEYLEAQRQKLHHKSEMGTPQG
	. *. *. **. *
CE	MHVQMGFVILAFSDHHAENFVKILEKIPAVGPYIRQPISDLLEKQRKALHKTPGEHSEQD
łР	ENWLSWMFEKLVVVMVCYFILSIINSMAQSYAKRIQQRLNSEEKTK
CE	LIDEENQSFEEEEEAVTPPSSCPLLLSDGFEGVVVKK

Sec. 25 100

5

10

15

20

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T18977) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10765> (SEQ ID NOS: 125, 135 and 145)

Determination of the whole base sequence of the CDNA insert of clone HP10765 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 30-bp 5'-untranslated region, a 1362-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 453 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 48 kDa that was almost identical with the molecular weight of 47,724 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792834) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

10

15

20

encode the same protein as the protein of the present invention.

<HP10766> (SEQ ID NOS: 126, 136 and 146)

Determination of the whole base sequence of the cDNA insert of clone HP10766 obtained from cDNA library of human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 180-bp ORF, and a 675-bp 3'untranslated region. The ORF encodes a protein consisting of 59 amino acid residues and there existed two putative transmembrane domains. Figure 46 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 10 kDa or less that was almost identical with the molecular weight of 6,098 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T85491) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10770> (SEQ ID NOS: 127, 137 and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10770 obtained from cDNA library of

10

15

20

human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 633-bp ORF, and a 186-bp 3'-untranslated region. The ORF encodes a protein consisting of 210 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was larger than the molecular weight of 22,156 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792771) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10772> (SEQ ID NOS: 128, 138 and 148) =

Determination of the whole base sequence of the cDNA insert of clone HP10772 obtained from cDNA library of human kidney revealed the structure consisting of a 19-bp 5'-untranslated region, a 498-bp ORF, and a 724-bp 3'-untranslated region. The ORF encodes a protein consisting of 165 amino acid residues and there existed four putative transmembrane domains. Figure 48 depicts the

20

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F11871) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10773> (SEQ ID NOS: 129, 139 and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10773 obtained from cDNA library of human kidney revealed the structure consisting of a 186-bp 5'-untranslated region, a 489-bp ORF, and a 499-bp 3'untranslated region. The ORF encodes a protein consisting of 162 amino acid residues and there existed four putative transmembrane domains. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

- K _ L

: SZ

12

14.1 2 4

5

10

15

20

sequences that shared a homology of 90% or more (for example, Accession No. N33828) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10776> (SEQ ID NOS: 130, 140 and 150) /

Determination of the whole base sequence of the cDNA insert of clone HP10776 obtained from cDNA library of human kidney revealed the structure consisting of a 207-bp 5'-untranslated region, a 666-bp ORF, and a 139-bp 3'-untranslated region. The ORF encodes a protein consisting of 221 amino acid residues and there existed three putative transmembrane domains. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 24,883 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI929639) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, 5 expression vectors for these DNAs and eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, they are considered to be proteins controlling proliferation and/or the differentiation of the cells. 10 Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents control the proliferation and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present 15 invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for expressing these proteins in large quantities. Cells into which these genes introduced to express these proteins can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibody of the present invention can be utilized for the detection, quantification, purification and the like of the protein of the present invention.

25 The present invention also provides genes

10

15

20

corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons; introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or information sequence the disclosed from primers identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254;

10

15

. 20

Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA. 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination,

10

15

20

preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the identified in accordance with known invention can be techniques for determination of such domains from sequence information.

proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed

10

15

20

protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is,

10

15

naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

the second control of the second control of the second control of the second control of the second control of

BNCDOCID - WO 011288042 I >

Table 32

Stringency	Poly-	Hybrid	Hybridization Temperature	Wash
Condition	nucleotide	Length	and Buffer	Temperature
	Hybrid	(bp) *		and Buffer
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C;
			42°C; 1×SSC,50%	0.3×SSC
			formamide	
В	DNA: DNA	<50	T ₈ *; 1×SSC	T _s *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C;
			45°C; 1×SSC,50%	0.3×SSC
		4	formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	Tp*; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C;
			50°C; 1×SSC,50%	0.3×SSC
	· ·	<u> </u>	formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50%	
			formamide	
. Н	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
		_	45°C; 4×SSC,50%	
			formamide	
J	DNA: RNA	.<50	T _J *; 4×SSC	T _J *; 4×SSC
K.	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50%	ļ
			formamide	
L	RNA: RNA	< 50 .	T _L *; 2×SSC	T _L *; 2×SSC
М	DNA: DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
[40°C; 6×SSC,50%	·
			formamide	
. N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50%	
			formamide	
P	DNA: RNA	<50	T _p *; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
	,		45°C; 6×SSC,50%	·
			formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

BNCOTID - MIC DITTREAKS 1 .

- t: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides.

 When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- t: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
- 15 $*T_B T_R$: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, $T_m(^{\circ}C) = 2 (\#of A + T bases) + 4 (\# of G + C bases)$. For hybrids between 18 and 49 base pairs in length, $T_m(^{\circ}C) = 81.5 + 16.6 (log_{10}[Na^{\dagger}]) + 0.41 (\%G+C) (600/N)$, where N is the number of bases in the hybrid, and $[Na^{\dagger}]$ is the concentration of sodium ions in the hybridization buffer $([Na^{\dagger}])$ for $1 \times SSC = 0.165M$.

10

15

20

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

-WO DITTERNATI

. 5

4

1

CLAIMS

- 1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.
- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS:

 10 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140.
 - 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.
 - 7. An antibody directed to the protein according to Claim 1.

BUSDOCID- - WO 0112660A2 L >

Fig.1

PINSDOCIO: <WO 0112660A2 L >

.

0.00

Hydrophilicity/Hydrophobicity

4.00

Fig.2

recommendation of

-<u>ig</u>.3

Hydrophilicity/Hydrophobicity

-ig.4

BNSDOCID- <WO 0112660A2 1 >

a see ye

5/50

Fig.5

Fig.7

ENSPOYID -WO 011266042 1

<u>න</u> න

BNSDOCID: <WO 0112880A2 L >

Fig.9

בו בשפרותי ישה יחושפרות ו

, ,, ,,

ig.10

BNSDOCID- WO 011266042 I >

#1 × 8 × 44

-ig.11

12/50

Hydrophilicity/Hydrophobicity

Fig. 12

BNSDOCID - WO 011266042 L >

in the second second

13/50

Fig.13

Fig.14

Fig. 15

BNSDDCID: <WO __nsignedab l >

16/50

Fig.16

__

BNSDOCID: WO 011366042 L >

18/50

Fig. 18

ΙŢ

Fig. 19

BREDOCIO SUO 01136601

.

Fig.21

BNSDOCH -WO DITSERNAS I S

. . .

Fig.22

Hydrophilicity/Hydrophobicity

BNSDOCID: - WO 0112660A2 L :

Fig. 23

Fig.24

Fig. 25

Fig.26

BNSDCOD-SWO 011266042 I S

Hydrophilicity/Hydrophobicity.

Fig.28

PNSDOCID: <WO 0112660A2 I

Fig.29

BNSDOCID: -WO -----

Fig.30

BNSDCCID-WC 0112660A2 L:

-ig.31

Ηλάκορριβοιτη/Ηγακορρορίοιτη

-ig.32

BNSUUCIU->MU UTTSEEUTS I >

....

Fig.33

Fig.34

BRIEDOCIO - MIO - DI 1366043 1 -

....

-ig.35

BNSDOCID- -WO - D112680A2 I -

Fig.36

BNSDOCIO - WO 011266082 I S

Fig. 37

The state of the s

BRICHARIO MIL MITTERNAT I .

Hydrophilicity/Hydrophobicity

Fig.38

BNSDOCID: <WO 0112660A2 L >

Fig.39

BNSDOCID- -WO 0112660A2 I -

.

Fig. 40

-ig.41

Hydrophilicity/Hydrophobicity

Fig.42

-ig.43

Fig.44

BNSDOCID <WO 0112660A2 1 >

Fig. 45

Hydrophilicity/Hydrophobicity

Fig 4

BNSDOCID -WO DISSESSAN

Hydrophilicity/Hydrophobicity

BNSDOCID: <WO 0112660A2 I

Fig. 49

. - - - -

ΗλακοβρίΙς είτη Ηλακοβρορίες τ

Fig.50

BNSDDCID->WO 0112660A2 L>

٠÷

1 /307

SEQUENCE LISTING

<110> Sagami Chemical Research Center,
Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 662029

<150> JP 11-230344

<151> 1999-08-17

<150> JP 11-252551

<151> 1999-09-07

<150> JP 11-281132

<151> 1999-10-01

<150> JP 11-301624

<151> 1999-10-22

<150> JP 11-313877

<151> 1999-11-04

<160	> 15	0													
							,								
<210	> 1		•			•									
<211> 267															
<212> PRT															
<213> Homo sapiens															
<400)> 1														
Met	Val	Lys	Ile	Ser	Phe	Gln	Pro	Ala	Val	Ala	Gly	Ile	Lys	Gly	Asp
1				5					10					15	
Lys	Ala	Asp	Lys	Ala	Ser	Ala	Ser	Ala	Pro	Ala	Pro	Ala	Ser	Ala	Thr
			20					25					30		
Glu	Ile	Leu	Leu	Thr	Pro	Ala	Arg	Glu	Glu	Gln	Pro	Pro	Gln	His	Arg
	35						40		45						•
Ser	Lys	Arg	Gly	Ser	Ser	Val	Gly	Gly	Val	Cys	Tyr	Leu	Ser	Met	Gly
	50					55					60				
Met	Val	Val	Leu	Leu	Met	Gly	Leu	Val	Phe	Ala	Ser	Val	Tyr	Ile	Tyr
65					70					75					80
Arg	Tyr	Phe	Phe	Leu	Ala	Gln	Leu	Ala	Arg	Asp	Asn	Phe	Phe	Arg	Cys
				85					90					95	
Gly	Val	Leu	Tyr	Glu	Asp	Ser	Leu	Ser	Ser	Gln	Val	Arg	Thr	Gln	Met
			100					105					110		
Glu	Leu	Glu	Glu	Asp	Val	Lys	Ile	Tyr	Leu	Asp	Glu	Asn	Tyr	Glu	Arg
		115					120				•	125			
Ile	Asn	Val	Pro	Val	Pro	Gln	Phe	Gly	Gly	Gly	Asp	Pro	Ala	Asp	Ile

135

140

130

Ile His Asp Phe Gln Arg Gly Leu Thr Ala Tyr His Asp Ile Ser	Leu											
145 150 155	160											
Asp Lys Cys Tyr Val Ile Glu Leu Asn Thr Thr Ile Val Leu Pro	Pro											
165 170 175	•											
Arg Asn Phe Trp Glu Leu Leu Met Asn Val Lys Arg Gly Thr Tyr	Leu											
180 185 190												
Pro Gln Thr Tyr Ile Ile Gln Glu Glu Met Val Val Thr Glu His	Val											
195 200 205												
Ser Asp Lys Glu Ala Leu Gly Ser Phe Ile Tyr His Leu Cys Asn	Gly											
210 215 220												
Lys Asp Thr Tyr Arg Leu Arg Arg Arg Ala Thr Arg Arg Arg Ile	Asn											
225 230 235	240											
Lys Arg Gly Ala Lys Asn Cys Asn Ala Ile Arg His Phe Glu Asn	Thr											
245 250 255												
Phe Val Val Glu Thr Leu Ile Cys Gly Val Val												
260 265	•											
⟨210⟩ 2												
<211> 419												
<212> PRT												
<213> Homo sapiens												
Met Ser Cys Ala Gly Arg Ala Gly Pro Ala Arg Leu Ala Ala Leu	⟨400⟩ 2 1											
mer set che uta gith uta gith the uta uta ren	410											
1	Ala											

			20					25					30	•	
Glu	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Prọ	Gly	Arg
		35					40		,		٠	45			
Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	Leu	Asp
	50	•				55	٠, د				60				
Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	Gln	Val	Leu	Ala	Pro	Leu	Pro	Leu
65					70					75					80
His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	Gln	Thr	Arg	Phe	Phe
				85	٠.		٠		90					· 95	
Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	Gly	Asn
			100					105				-	110		
Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	Ala	Val
		115					120					125			
Ala	Val	Val	Ile	Tyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	Pro	Val	Thr	Met
	130					135		,			140				
Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr	Glu	Leu
145					150					155					160
Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser	Val	Gln
				165				•	170					175	٠ .
Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	Ser	Arg
			180					185				. '	190		
Gly					Val										
•		195	·		9		200	e	\$	٠. ،	:	205			, .,
Ser	Ser	Ala	Trp	Leu	Ile	Phe	Tyr	Phe	Ile	Gln	Lys	Ile	Arg	Tyr	Thr
	210		-8-			215	,				220	ļ.			

Asn	Ala	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	Lys	Lys
225					230					235					240
Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	Lys	Glu
				245					250					255	
Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	Tyr	Lys
			260					265					270		
Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	His	Lys
		275					280					285			
Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	Met	Cys
	290					295					300				
Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	Pro	Cys
305					310					315					320
Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	Gln	Ala
				325					330					335	
Va]	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	Ser	Leu
			340					345					350		
G13	Leu	Glu	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	Gln	Asp
	-	355					360					365			
G1	Glu	Leu	Thr	. Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	Thr	Lys
	370				•	375		:			380				
G1	ı Trp	Phe	·Ile	Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	Thr	Leu
38	5				390					395				-	400
Cy	s Tyr	Met	Ile	Ile	Arg	Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asn	Glu	Val.
				405	,				410	, .				415	
Gl	ı Trp	Phe			· ·			-						. ,•	

(210)	3			,•											
(211)	> 41	5	. •				•	. •	i	8	*	;; ⋅	•	•	,
(212	> PR	T										' .			
<213	> Ho	mos	apie	ns			-		: •		. •		•	- t	
<400	> 3		•					-							
Met	Arg	Gly	Ala	Asn	Ala	Trp	Ala	Pro	Leu	Cys	Leu	Leu	Leu	Ala	Ala
1				5					10					¹ 15	
Ala	Thr	Gln	Leu	Ser	Arg	Gln	Gln	Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr
			20					25					30		
Cys	Gly	G1 y	Ile	Leu	Thr	Gly	Glu	Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly
	.• .	35					40			ė	٠	45		•	
Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr
	50	•				55					60	•			
Val	Pro	Glu	Gly	Lys	Val	Val	Val	Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu
65					70					75					80
Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly
				85	,			,	-90)			•	95	
His	Ala	Asr	ı Gly	Gln	Arg	Ile	Gly	Arg	Phe	Cys	Gly	Thr	Phe	Arg	Pro
			100)				105	; :	7 (110	√,	. :
Gly	Ala	a Lei	ı Val	Ser	Ser	Gly	Asr	ı Lys	Met	t Met	t Val	Glr	Met	Ile	Ser
,		11	5		:	:	120)				125	5		,
Asp	Ala	a Ası	n Thi	r Ala	a Gly	, Āsi	n Gly	y Phe	e Me	t ['] Ala	a Met	t Phe	e Ser	Ala	a Ala
	130					13					140				
Glu	ı Pr	o As	n Gl	u Ar	g Gl	y As	p G1 1	n Ty:	r Cy	s Gl	y G1	y Lei	ı Leu	ı Ası	p Arg

145					150					155					160
Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro
		-	;	165					170	,				175	٠
Ala	Gly	Val	Thr	Cys	Val	Trp	His	Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu
			180					185					190		
Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys
		195					200					205			
Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala
	210					215					220				
Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val
225					230					235					240
Ser	Glu	Arg	Asn	Glu	Leu	Leu	Ile	Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu
				245					250					255	
Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu
			260					265					270		
Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr
	٠	275		•			280				•	285			
Gly	Leu	Lys	Thr	Thr	Val	Ala	Leu	Cys	Gln	Gln	Lys	Cys	Arg	Arg	Thr
	290					295					300				
Gly	Thr	Leu	Glu	Gly	Asn	Tyr	Cys	Ser	Ser	Asp	Phe	Val	Leu	Ala	Gly
305	. ,	~		•	310					315					320
Thr	Val	Ile	Thr	Thr	Ile	Thr	Arg	Asp	Gly	Ser	Leu	His	Ala	Thr	Val
٥			٠.	325	•		<i>:</i> ·	÷ ,.	330		٠.		0	335	
Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	Gly	Asn	Leu	Ala	Ile	Gln	Gln	Ala
Ξ.,			340	, -				345			٠.		350	1.	

Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	Thr	Val	Val	Cys	Lys	Gln	Cys	Pro
	• •	355					360				٠.	365			
Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	Ile	Île	Met	Gly	Gln	Val	Gly	Glu
	370	٠.				375					380	,			
Asp	Gly	Arg	Gly	Lys	Ile	Met	Pro	Asn	Ser	Phe	Ile	Met	Met	Phe	Lys
385	. •				390		٠,		•	395			•	•	400
Thr	Lys	Asn	Gln	Lys	Leu	Leu	Asp	Ala	Leu	Lys	Asn	Lys	Gln	Cys	
				405					410					415	;
															-
<21	0> 4									٠					Ι.
<21	1> 3	80													
<21	2> Pl	RT			,										. :
<21	3> H	ОШО	sapi	ens											
<40	0> 4									•					
Met	Leu	Gln	Thr	Leu	Tyr	Asp	Tyr	Phe	Trp	Trp	Glu	Arg	Leu	Trp	Leu
1				5			. •	•	10					15	·: .
Pro	Val	Asn	Leu	Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Val
			20)				25					30	٠.	
Tyr	Ala	Lys	Ala	Ser	Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	Ala	Leu	Leu
		35	,	•			· 40		,	-	,	45			
Phe	Leu	Ile	· Val	Arg	Tyr	Phe	Phe	Glu	Leu	Tyr	Val	Ala	Thr	Pro	Leu
+	50					55					60				
Ala	Ala	Leu	Leu	ı Asn	Ile	Lys	Glu	Lys	Thr	Arg	Leu	Arg	Ala	Pro	Pro
65	;		•		70	· ·				75	1	٠. ٠,		٠.	∵80
Asr	Ala	Thr	. Let	ı Glu	ı His	Phe	Tyr	Leu	Thr	Ser	Gly	Lys	Gln	Pro	Lys

				85		•			90					95	
G1n	Val	Glu	Val	Glu	Leu	Leu	Ser	Arg	Gln	Ser	Gly	Leu	Ser	Ģly	Arg
			100		. *			105					110		
Gln	Val	Glu	Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser
		115					120					125			
Leu	Leu	Lys	Lys	Phe	Arg	Glu	Ala	Ser	Trp	Arg	Phe	Thr	Phe	Tyr	Leu
	130					135		7 0			140				· ·
Ile	Ala	Phe	Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe
145					150					155					160
Tyr	Asp	Met	Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile
				165					170					175	
Pro	Ser	Gln	Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser
			180					185					190		
Leu	Leu	Phe	Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu
		195					200					205			
Gln	Ile	Ile	His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp
	210					215					220				
Phe	Ala	Asn	Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp
225	٠,				230					235					240
Ser	Ser	Asp	Tyr	Leu	Leu	Glu	Ser	Ala	Lys	Met	Phe	Asn	Tyr	Ala	Gly
٠.			;	245					250		٠.		٠.	255	
Trp	Lys	Asn	Thr	Cys	Asn	Asn	Ile	Phe	Ile	Val	Phe	Ala	Ile	Val	Phe
۲,		٠.	260			٠,,	٠.	265	•		. •		270		. :
Ile	Ile	Thr	Arg	Leu	Val	Ile	Leu	Pro	Phe	Trp	Ile	Leu	His	Cys	Thr
1.71	. :	275	: '				280			.*		285	_	; .	

Leu Val Tyr Pro Leu Glu Leu Tyr Pro Ala Phe Phe Gly Tyr Tyr Phe 300 290 295 Phe Asn Ser Met Met Gly Val Leu Gln Leu Leu His Ile Phe Trp Ala 315 310 Tyr Leu Ile Leu Arg Met Ala His Lys Phe Ile Thr Gly Lys Leu Val 330 335 325 Glu Asp Glu Arg Ser Asp Arg Glu Glu Thr Glu Ser Ser Glu Gly Glu 340 345 350 Glu Ala Ala Gly Gly Gly Ala Lys Ser Arg Pro Leu Ala Asn Gly 355 360 365 His Pro Ile Leu Asn Asn Asn His Arg Lys Asn Asp 380 370 375 <210> 5 <211> 585 <212> PRT * <213> Homo sapiens **<400> 5** Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys Trp Val Phe 1 5 10 15 Ala Gly Ile Thr Cys Val Ser Val Val Val Ile Ala Ala Ile Val Leu 20 25 30 Ala Ile Thr Leu Arg Arg Pro Gly Cys Glu Leu Glu Ala Cys Ser Pro 45 35 40 Asp Ala Asp Met Leu Asp Tyr Leu Leu Ser Leu Gly Gln Ile Ser Arg

	50					55					60			٠	
Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn	Ser	Lys	Lys
65					70					.75					80
Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	Glu	Ala	Asp
	•			85					90					95	
Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	Val	Pro	Ile
			100					105				í	110		
Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	Glu	Gln	Trp
		115					120					125			
Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	Leu	Asp	Phe
	130					135					140				
Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leụ	Arg	Gln	Leu
145					150					155					160
Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	Ala	Asp	Ile
				165					170					175	
Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	Ala	Thr	Gln
			180					185					190		
Phe	Leu	Ala	Leu	Val	Gln	G1u	Lys	Tyr	Pro	Lys	Ala	Thr	Leu	Ser	Pro
		195					200					205			
Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	Thr	Tyr	Thr
••	210	*		•		215					220				;
Gln	Ala	Met	Val	Glu	Lys	Met	His	Glu	Leu	Val	Gly	Gly	Val	Pro	Gln
225			×	•	230		ï ,i.	, . · .	,	235	: .	•	e •	:	240
Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	Ala	Trp	Pro
t .	,		٠,	245				σ.,	250					255	

His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	Leu	Thr	Leu
	•		260				-	265				•	270	•	· 5
Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	Leu	Tyr	Val
		275	,				280					285			
Arg	Asp	Asn	Thr	Ala	Val	His	Gln	Val	Tyr	Tyr	Asp	Ile	Phe	Glu	Pro
	290					295	٠.		•		300			•	. 1
Leu	Leu	Ser	Gln	Phe	Lys	Gln	Leu	Ala	Leu	Asn	Ala	Thr	Arg	Lys	Pro
305		ر			310					315		•			320
Met	Tyr	Tyr	Thr	Gly	Gly	Ser	Leu	Ile	Pro	Leu	Leu	G1n	Leu	Pro	Gly
•				325	0				330					335	
Asp	Asp	Gly	Leu	Asn	Val	Glu	Trp	Leu	Val	Pro	Asp	Val	Gln	Gly	Ser
		, .	340				•	345	- 1		:	÷ -	350		·)(· • .
Gly	Lys	Thr	Ala	Thr	Met	Thr	Leu	Pro	Asp	Thr	Glu	Gly	Met	Ile	Leu
	··· .	355					360					365			
Leu	Asn	Thr	Gly	Leu	Glu	Gly	Thr	Val	Ala	Glu	Asn	Pro	Val	Pro	Ile
	370					375					380				
Val	His	Thr	Pro	Ser	Gly	Asn	Ile	Leu	Thr	Leu	Glu	Ser	Cys	Leu	G1n
385	;				390		,			395					400
Gln	Leu	Ala	Thr	His	Pro	G1y	His	Trp	Gly	Ile	His	Leu	G1n	Ile	Ala
				405	i			. +	410			٠		415	
Glu	ı Pro	Ala	ı Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	Arg	Leu	Ser
			420)			-	425	i				430	ÿ	
Sei	r Leu	ı Gly	/ Leu	ı Lev	ı His	Trp	Pro	Val	Trp	Val	Gly	Ala	Lys	: Ile	Ser
															ea.
н	s G1s	i Sei	r Pha	e Ser	· Val	Pro	Glv	, His	; Val	Ala	G1v	Ars	g Glu	ı Let	ı Leu

450 455 460
Thr Ala Val Ala Glu Val Phe Pro His Val Thr Val Ala Pro Gly Trp
465 470 475 480
Pro Glu Glu Val Leu Gly Ser Gly Tyr Arg Glu Gln Leu Leu Thr Asp
485 490 495
Met Leu Glu Leu Cys Gln Gly Leu Trp Gln Pro Val Ser Phe Gln Met
500 505 510
Gln Ala Met Leu Leu Gly His Ser Thr Ala Gly Ala Ile Gly Arg Leu
515 520 525
Leu Ala Ser Ser Pro Arg Ala Thr Val Thr Val Glu His Asn Pro Ala
530 535 540
Gly Gly Asp Tyr Ala Ser Val Arg Thr Ala Leu Leu Ala Ala Arg Ala
545 550 555 560
Val Asp Arg Thr Arg Val Tyr Tyr Arg Leu Pro Gln Gly Tyr His Lys
565 570 575
Asp Leu Leu Ala His Val Gly Arg Asn
580 585
<210> 6
<211> 331
<212> PRT
<213> Homo sapiens
⟨400⟩ 6 •
Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly Pro Phe Ser Phe
(1) 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 5 1

Leu	Leu	Leu	Val	Leu	Leu	Leu	Val	Thr	Arg	Ser	Pro	Val	Asn	Ala	Cys
		ı	20	•				25					30		
Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	Phe	Ser	Phe	Glu
	•	^{:.} 35					40					45			
Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	G1n	Val	Leu	Lys	Pro	Arg	Asp	Arg
	50		•	•		55					60		-		,
Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	Ala	Pro	Glu	Asn
65					70	•		٠.		75			•	٠.	80
Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asn	Gly	Ala	Thr	Gly	Val
,	• •			85		. •	•		90					95	
Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro	Val	Leu	Met	His
	••		100	•				105		•	•		110	•	
Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly	Arg	Leu	Cys	Asp
		115					120			-		125			
Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala	Ala	Asn	His	Arg
	130					135		٠.		•	140				
Leu	Arg	Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr	Leu	Arg	Glu	Ala
145					150					155					160
Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Ţhr	Ile	Phe	Phe	Asp	Val	Lys
				165					170					175	•
Gly	His	Ala	His	Lys	Ala	Thr	Glu	Ala	Leu	Lys	Lys	Met	Tyr	Met	Glu
			180					185			.*		190		•
Phe	Pro	G1n	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser	Phe			Glu
		195				•	200					205	٠	•	
Va 1	Ha	Tvr	ive	Met	Aro	Gln	Thr	Asp	Arø	Asp	Va1	He	Thr	Ala	Leu

210	215		220
Thr His Arg Pro	Trp Ser Leu	Ser His Thr Gly	Asp Gly Lys Pro Arg
225	230	235	240
Tyr Asp Thr Phe	Trp Lys His	Phe Ile Phe Val	Met Met Asp Ile Leu
	245	250	255
Leu Asp Trp Ser	Met His Asn	Ile Leu Trp Tyr	Leu Cys Gly Ile Ser
260		265	270
Ala Phe Leu Met	Gln Lys Asp	Phe Val Ser Pro	Ala Tyr Leu Lys Lys
275	:	280	285
Trp Ser Ala Lys	Gly Ile Gln	Val Val Gly Trp	Thr Val Asn Thr Phe
290	295		300
Asp Glu Lys Ser	Tyr Tyr Glu	Ser His Leu Gly	Ser Ser Tyr Ile Thr
305	310	315	320
Asp Ser Met Val	Glu Asp Cys	Glu Pro His Phe	
	325	330	
<210> 7 .			
⟨211⟩ 345			
<212> PRT			
<213> Homo sapie	ens		
<400> 7			
Met Ser Pro Glu	Glu Trp Thr	Tyr Leu Val Val	Leu Leu Ile Ser Ile
1	5	10	15
Pro Ile Gly Phe	Leu Phe Lys	Lys Ala Gly Pro	Gly Leu Lys Arg Trp
, 20		25	

Gly Ala Ala Ala V	al Gly Leu Gly I	Leu Thr Leu Ph	e Thr Cys G	ly Pro
35	40		45	
His Thr Leu His S	er Leu Val Thr	Ile Leu Gly Th	r Trp Ala L	eu Ile
	55		60	
50 Gln Ala Gln Pro (Ala Leu Ala Lo	eu Ala Trp 1	Thr Phe
Gln Ala Gln Pro		75		80
6 5	10			Pro Thr
Ser Tyr Leu Leu	Phe Phe Arg Ala			95
	85	90		
Pro Thr Pro Phe	Thr Asn Ala Val	Gln Leu Leu I		Lys Leu
100		105	110	
Val Ser Leu Ala	Ser Glu Val Glm	Asp Leu His	Leu Ala Gln	Arg Lys
115	120)	125	
Glu Met Ala Ser	Gly Phe Ser Lys	s Gly Pro Thr	Leu Gly Leu	Leu Pro
130	135	- V	140	
	Leu Met Glu Th	r Leu Ser Tyr	Ser Tyr Cys	Tyr Val
145	150	155		160
	r Gly Pro Phe Ph	ne Arg Tyr Arg	Thr Tyr Let	ı Asp Trp
Gly lie met in	165	170		175
a. a. D.	o Phe Pro Gly A		Leu Arg Pr	o Leu Leu
		185		0: :
18			ıleu Phe Le	eu Leu Ser
Arg Arg Ala Ti	rp Pro Ala Pro L	200 · ·	205	
195				
Ser His Leu P	he Pro Leu Glu A	Ala Val Arg Gl	u Asp Ala P	le tyr nia
210		•		
And Pro Tell P	ro Ala Arg Leu	Phe Tyr Met Il	e Pro Val P	he Phe Ala

SHENOVID JWO 0112660A2 1 3

225	230 .	235	240
Phe Arg Met Arg Phe	Tyr Val Ala Trr) Ile Ala Ala Gl	u Cys Gly Cys
245		250	255
Ile Ala Ala Gly Phe	Gly Ala Tyr Pro	Val Ala Ala Ly	s Ala Arg Ala
260	265		270
Gly Gly Gly Pro Thr	Leu Gln Cys Pro	Pro Pro Ser Ser	r Pro Glu Lys
275	280	285	
Ala Ala Ser Leu Glu	Tyr Asp Tyr Glu	Thr Ile Arg Asn	Ile Asp Cys
290	295	300	•
Tyr Ser Thr Asp Phe	Cys Val Arg Val	Arg Asp Gly Met	Arg Tyr Trp
005	310	315	320
Asn Met Thr Val Gln	Trp Trp Leu Ala	Gln Tyr Ile Tyr	
325		330	335
Pro Ala Arg Ser Tyr V	al Leu Arg Leu	•	
340	345		
⟨210⟩ 8	•	: *	
<211≻ 89			
<212> PRT			
<213> Homo sapiens			·
<400> 8			,
Met Tyr Met Gln Asp Ty	r Trp Arg Thr T	rp Leu Lys Gly [eu Arg Gly
1 5			
Phe Phe Phe Val Gly Va	1 Leu Phe Ser A	la Val Ser Ile A	la Ala Phe
· · · · · · · · · 20			

Cys Thr Phe Leu Val Leu Ala Ile Thr Arg His Gln Ser Leu Thr Asp 35 40 Pro Thr Ser Tyr Tyr Leu Ser Ser Val Trp Ser Phe Ile Ser Phe Lys 60 50 👙 55 Trp Ala Phe Leu Leu Ser Leu Tyr Ala His Arg Tyr Arg Ala Asp Phe 75 65 70 Ala Asp Ile Ser Ile Leu Ser Asp Phe 85 <210> 9 <211> 406 <212> PRT <213> Homo sapiens <400> 9 Met Arg Gly Ser Val Glu Cys Thr Trp Gly Trp Gly His Cys Ala Pro 15 10 1 Ser Pro Leu Leu Leu Trp Thr Leu Leu Leu Phe Ala Ala Pro Phe Gly 30 20 25 Leu Leu Gly Glu Lys Thr Arg Gln Val Ser Leu Glu Val Ile Pro Asn 45 40 35 Trp Leu Gly Pro Leu Gln Asn Leu Leu His Ile Arg Ala Val Gly Thr 60 50 55 Asn Ser Thr Leu His Tyr Val Trp Ser Ser Leu Gly Pro Leu Ala Val 75 80 70 Val Met Val Ala Thr Asn Thr Pro His Ser Thr Leu Ser Val Asn Trp

	85			90	95	
Ser Leu Leu	Leu Ser	Pro Glu	Pro Asp	Gly Gly Le	eu Met Val Leu Pro)
	100	•	105		110	
Lys Asp Ser	Ile Gln	Phe Ser	Ser Ala	Leu Val Ph	e Thr Arg Leu Leu	1
115			120		125	
Glu Phe Asp	Ser Thr	Asn Val	Ser Asp	Thr Ala Al	a Lys Pro Leu Gly	7
130	-	135		. 14		
Arg Pro Tyr	Pro Pro	Tyr Ser	Leu Ala	Asp Phe Se	r Trp Asn Asn Ile)
145		150		155	160)
Thr Asp Ser	Leu Asp	Pro Ala	Thr Leu	Ser Ala Th	r Phe Gln Gly His	>
	165			170	175	
Pro Met Asn	Asp Pro	Thr Arg	Thr Phe	Ala Asn Gl	y Ser Leu Ala Phe	> •
	180		185		190	
Arg Val Gln	Ala Phe	Ser Arg	Ser Ser	Arg Pro Al	a Gln Pro Pro Arg	ζ
195			200		205	
Leu Leu His	Thr Ala	Asp Thr	Cys Gln	Leu Glu Va	l Ala Leu Ile Gly	7
210		215		. 22	0	
Ala Ser Pro	Arg Gly	Asn Arg	Ser Leu	Phe Gly Le	u Glu Val Ala Thr	.
225		230		235	240)
Leu Gly Gln	Gly Pro	Asp Cys	Pro Ser	Met Gln Gl	u Gln His Ser Ile	;
	245			250	255	
Asp Asp Glu	Tyr Ala	Pro Ala	Val Phe	Gln Leu As	p Gln Leu Leu Trp)
71 m	260	, · .,	., _ 265		270	
Gly Ser Leu	Pro Ser	Gly Phe	Ala Gln	Trp Arg Pr	o Val Ala Tyr Ser	•
275	45 % 4 %		280	ing and a second	285	

Gln Lys Pro	Gly	Gly	Arg	Glu	Ser	Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro
290		•	-	295	٠		•		300		•	•	
Leu His Pro	Åla	Leu	Ala	Tyr	Ser	Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg
305			310	•			٠	315	•	**	•		320
Ala Phe Phe	Gly	Ser	Gln	Asn	Asn	Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe
• •		325			-		330	•			•	335	. •
Gly Ala Ser	Thr	Gly	Pro	Gly	Tyr	Trp	Asp	Gln	His	Tyr	Leu	Ser	Trp
	340					345					350		٠.
Ser Met Leu	Leu	G1y	Val	Gly	Phe	Pro	Pro	Val	Asp	Gly	Leu	Ser	Pro
355					360					365			
Leu Val Leu	Gly	Ile	Met	Ala	Val	Ala	Leu	Gly	Ala	Pro	Gly	Leu	Met
370				375					380			•	. *
Leu Leu Gly	Gly	Gly	Leu	Val	Leu	Leu	Leu	His	His	Lys	Lys	Tyr	Ser
385			390					395	.				400
Glu Tyr Glr	ı Ser	Ile	Asn				•					:	
		405											
													i
<210> 10													·
<211> 192										•			
<212> PRT													
<213> Homo	sapi	iens											
<400> 10										•		•	٠.
Met Thr Al	a Vai	l Gly	/ Val	G1:	n Ala	Ğ1r	n Arı	g Pro	o Lev	ı G13	Glr	ı Arg	g Gln
1	٠.		5 .				. 10)				15	5· · ·
Pro Arg Ar	g Se:	r Phe	e Phe	e Glo	u Sei	r Pho	e Ile	e Ar	g Thi	r Lei	ı Ile	e Ile	• Thr

			20					25					30		
Cys	Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly
		35		.			40		_			45			
His	Trp	Leu	Leu	Ala	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys
	50					55					60				
Thr	Thr	Thr	Asn	Gln	Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	G1n
65	;				70					75					80
Ala	His	Val	Pro	Gly	Leu	Ala	Val	Gly	Met	Gly	Leu	Val	Arg	Ser	Val
				85					90					95	
Gly	Ala	Leu	Ala	Val	Val	Ala	Ala	Ile	Phe	Gly	Leu	Glu	Phe	Leu	Met
			100					105					110	,	
Val	Ser	Gln	Leu	Cys	Glu	Asp	Lys	His	Ser	Gln	Cys	Lys	Trp	Val	Met
		115					120					125			•
Gly	Ser	Ile	Leu	Leu	Leu	Val	Ser	Phe	Val	Leu	Ser	Ser	Gly	Gly	Leu
	130					135					140				-
Leu	Gly	Phe	Val	Ile	Leu	Leu	Arg	Asn	Gln	Val	Thr	Leu	Ile	Gly	Phe
145					150					155					160
Thr	Leu	Met	Phe	Trp	Cys	Glu	Phe	Thr	Ala	Ser	Phe	Leu	Leu	Phe	Leu
				165					170					175	
Asn	Ala	Ile	Ser	Gly	Leu	His	Ile	Asn	Ser	Ile	Thr	His	Pro	Trp	Glu
			180					185					190		
<210)> 11		••						,				•		·
<211	> 80)1					•				,		* .		
<212	> DN	IA								. ,	. غ ـ •				

ENCHACIO - MO 011266042 I

ノリコソト	HAMA	CONTARC
\ /. I .)/	LIUIUV	sapiens

		^	^	•		• •	
•	л	п	11	- >	•	1 1	

atggtgaaga ttagcttcca gcccgccgtg gctggcatca agggcgacaa ggctgacaag 60 120 gcgtcggcgt cggcccctgc gccggcctcg gccaccgaga tcctgctgac gccggctagg gaggagcagc ccccacaaca tcgatccaag agggggagct cagtgggcgg cgtgtgctac 180 240 ctgtcgatgg gcatggtcgt gctgctcatg ggcctcgtgt tcgcctctgt ctacatctac agatacttct ttcttgcaca gctggcccga gataacttct tccgctgtgg tgtgctgtat 300 360 gaggactece tgteeteeca ggteeggact cagatggage tggaagagga tgtgaaaate 420 tacctcgacg agaactacga gcgcatcaac gtgcctgtgc cccagtttgg cggcggtgac cctgcagaca tcatccatga cttccagcgg ggtctgactg cgtaccatga tatctccctg 480 ** 540 gacaagtgct atgtcatcga actcaacacc accattgtgc tgccccctcg caacttctgg 600 gagetectea tgaaegtgaa gagggggaee tacetgeege agaegtaeat cateeaggag 660 gagatggtgg tcacggagca tgtcagtgac aaggaggccc tggggtcctt catctaccac 720 ctgtgcaacg ggaaagacac ctaccggetc cggcgccggg caacgcggag gcggatcaac 780 aagcgtgggg ccaagaactg caatgccatc cgccacttcg agaacacctt cgtggtggag 801 acgctcatct gcggggtggt g

<210> 12

<211> 1257

<212> DNA

<213> Homo sapiens

<400> 12

atgagetgeg eggggegge gggeeetgee eggetegeeg egetegeet getgaeetge 60
ageetgtgge eggeaegge agacaaegeg ageeaggagt actaeaegge geteateaae 120
gtgaeggtge aggageeegg eegeggegee eegeteaegt ttegeatega eegeggege 180

tacgggc1	ttg	actccccaa	ggccgaggtc	cgcggccagg	tgctggcgcc	gctgcccctc	240
cacggagi	ttg	ctgatcatct	gggctgtgat	ccacaaaccc	ggttctttgt	ccctcctaat	300
atcaaaca	agt	ggattgcctt	gctgcagagg	ggaaactgca	cgtttaaaga	gaasatatca	360
cgggccg	ctt	tccacaatgc	agttgctgta	gtcatctaca	ataataaatc	caaagaggag	420
ccagtta	cca	tgactcatcc	aggcactgga	gatattattg	ctgtcatgat	aacagaattg	480
aggggta	agg	atattttgag	ttatctggag	aaaaacatct	ctgtacaaat	gacaatagct	540
gttggaad	ctc	gaatgccacc	gaagaacttc	agccgtggct	ctctagtctt	cgtgtcaata	600
tccttta	ttg	ttttgatgat	tatttcttca	gcatggctca	tattctactt	cattcagaag	660
atcaggt	aca	caaatgcacg	cgacaggaac	cagcgtcgtc	tcggagatgc	agccaagaaa	720
gccatca	gta	aattgacaac	caggacagta	aagaagggtg	acaaggaaac	tgacccagac	780
tttgatc	att	gtgcagtctg	catagagagc	tataagcaga	atgatgtcgt	ccgaattctc	840
ccctgca	agc	atgttttcca	caaatcctgc	gtggatccct	ggcttagtga	acattgtacc	900
tgtccta	tgt	gcaaacttaa	tatattgaag	gccctgggaa	ttgtgccgaa	tttgccatgt	960
actgata	acg	tagcattcga	tatggaaagg	ctcaccagaa	cccaagctgt	taaccgaaga	1020
tcagccc	tcg	gcgacctcgc	cggcgacaac	tcccttggcc	ttgagccact	tcgaacttcg	1080
gggatct	cac	ctcttcctca	ggatggggag	ctcactccga	gaacaggaga	aatcaacatt	1140
gcagtaa	caa	aagaatggtt	tattattgcc	agttttggcc	tcctcagtgc	cctcacactc	1200
tantana	tas	teateagage	cacagetage	ttgaatgeta	atoaootaoa	atggttt	1257

<210> 13

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 13

atgaggggcg cgaacgcctg ggcgccactc tgcctgctgc tggctgccgc cacccagctc

60

to	geggeage	agtccccaga	gagacctgtt	ttcacatgtg	gtggcattct	tactggagag	120
to	tggattta	ttggcagtga	aggttttcct	ggagtgtacc	ctccaaatag	caaatgtact	180
tε	ggaaaatca	cagttcccga	aggaaaagta	gtcgttctca	atttccgatt	catagacctc	240
ga	agagtgaca	acctgtgccg	ctatgacttt	gtggatgtgt	acaatggcca	tgccaatggc	300
ca	agcgcattg	gccgcttctg	tggcactttc	cggcctggag	cccttgtgtc	cagtggcaac	360
a	agatgatgg	tgcagatgat	ttctgatgcc	aacacagctg	gcaatggctt	catggccatg	420
t	tctccgctg	ctgaaccaaa	cgaaagaggg	gatcagtatt	gtggaggact	ccttgacaga	480
C	cttccggct	cttttaaaac	ccccaactgg	ccagaccggg	attaccctgc	aggagtcact	540
t,	gtgtgtggc	acattgtagc	cccaaagaat	cagcttatag	aattaaagtt	tgagaagttt	600
g	atgtggagc	gagataacta	ctgccgatat	gattatgtgg	ctgtgtttaa	tggcggggaa	660::
g	tcaacgatg	ctagaagaat	tggaaagtat	tgtggtgata	gtccacctgc	gccaattgtg	720 ::
t	ctgagagaa	atgaacttct	tattcagttt	ttatcagact	taagtttaac	tgcagatggg	780
t	ttattggtc	actacatatt	caggccaaaa	aaactgccta	caactacaga	acagcctgtc	840
а	ccaccacat	tccctgtaac	cacgggttta	aaaaccaccg	tggccttgtg	tcaacaaaag	900 .
t	gtagacgga	cggggactct	ggagggcaat	tattgttcaa	gtgactttgt	attagccggc	. 960
а	ctgttatca	caaccatcac	tcgcgatggg	agtttgcacg	ccacagtctc	gatcatcaac	1020
а	itctacaaag	agggaaattt	ggcgattcag	caggcgggca	agaacatgag	tgccaggctg	1080
a	ctgtcgtct	gcaagcagtg	ccctctcctc	agaagaggtc	taaattacat	tattatgggc	1140
C	aagtaggtg	aagatgggcg	gagcaaaato	atgccaaaca	gctttatcat	gatgttcaag	1200
ε	accaagaatc	agaageteet	ggatgcctta	aaaaataago	aatgt		1245

⟨210⟩ 14

<211> 1140

<212> DNA

<213> Homo sapiens

<400> 14

atgctccaga	ccttgtatga	ttacttctgg	tgggaacgtc	tgtggctgcc	tgtgaacttg	60
acctgggccg	atctagaaga	ccgagatgga	cgtgtctacg	ccaaagcctc	agatetetat	120
atcacgctgc	ccctggcctt	gctcttcctc	atcgttcgat	acttctttga	gctgtacgtg	180
gctacaccac	tggctgccct	cttgaacata	aaggagaaaa	ctcggctgcg	ggcacctccc	240
aacgccacct	tggaacattt	ctacctgacc	agtggcaagc	agcccaagca	ggtggaagta	300
gagettttgt	cccggcagag	cgggctctct	ggccgccagg	tagagcgttg	gttccgtcgc	360
cgccgcaacc	aggaccggcc	cagtctcctc	aagaagttcc	gagaagccag	ctggagattc	420
acattttacc	tgattgcctt	cattgccggc	atggccgtca	ttgtggataa	accctggttc	480
tatgacatga	agaaagtttg	ggagggatat	cccatacaga	gcactatccc	ttcccagtat	540
tggtactaca	tgattgaact	ttccttctac	tggtccctgc	tcttcagcat	tgcctctgat	600
gtcaagcgaa	aggatttcaa	ggaacagatc	atccaccatg	tggccaccat	cattctcatc	660
agcttttcct	ggtttgccaa	ttacatccga	gctgggactc	taatcatggc	tctgcatgac	720
tcttccgatt	acctgctgga	gtcagccaag	atgtttaact	acgcgggatg	gaagaacacc	780
tgcaacaaca	tcttcatcgt	cttcgccatt	gtttttatca	tcacccgact	ggtcatcctg	840
cccttctgga	tcctgcattg	caccctggtg	tacccactgg	agctctatcc	tgccttcttt	900
ggctattact	tcttcaattc	catgatggga	gttctacagc	tgctgcatat	cttctgggcc	960
tacctcattt	tgcgcatggc	ccacaagttc	ataactggaa	agctggtaga	agatgaacgc	1020
agtgaccggg	aagaaacaga	gagctcagag	ggggaggagg	ctgcagctgg	gggaggagca	1080
aagagccggc	ccctagccaa	tggccacccc	atcctcaata	acaaccatcg	taagaatgac	1140

<210> 15 ·

⟨211⟩ 1755

<212> DNA

<213≻ Homo sapiens

. .

<400> 15

60 atggtctgca gggagcagtt atcaaagaat caggtcaagt gggtgtttgc cggcattacc 120 tgtgtgtctg tggtggtcat tgccgcaata gtccttgcca tcaccctgcg gcggccaggc 180 tgtgagctgg aggcctgcag ccctgatgcc gacatgctgg actacctgct gagcctgggc 240 cagatcagcc ggcgagatgc cttggaggtc acctggtacc acgcagccaa cagcaagaaa 300 gccatgacag ctgccctgaa cagcaacatc acagtcctgg aggctgacgt caatgtagaa 360 gggctcggca cagccaatga gacaggagtt cccatcatgg cacaccccc cactatctac 420 . agtgacaaca cactggagca gtggctggac gctgtgctgg gctcttccca aaagggcatc 480 aaactggact tcaagaacat caaggcagtg ggcccctccc tggacctcct gcggcagctg 540 % acagaggaag gcaaagtccg gcggcccata tggatcaacg ctgacatctt aaagggcccc 600 aacatgctca tctcaactga ggtcaatgcc acacagttcc tggccctggt ccaggagaag 660 tateceaagg ctaccetate tecaggetgg accacettet acatgtecae gteceeaaac 720 aggacgtaca cccaagccat ggtggagaag atgcacgagc tggtgggagg agtgccccag 780 agggtcacct tecetgtacg gtettecatg gtgcgggetg cetggeecca etteagetgg 840 ctgctgagcc aatctgagag gtacagcctg acgctgtggc aggctgcctc ggaccccatg 900 teggtggaag atetgeteta egteegggat aacaetgetg tecaccaagt etactatgae. 960 atctttgagc ctctcctgtc acagttcaag cagctggcct tgaatgccac acggaaacca 1020 atgtactaca caggaggcag cctgatccct cttctccagc tgcctgggga tgacggtctg 1080 aatgtggagt ggctggttcc tgacgtccag ggcagcggta aaacagcaac aatgaccctc 1140 ccagacacag aaggcatgat cctgctgaac actggcctcg agggaactgt ggctgaaaac 1200 cccgtgccca ttgttcatac tccaagtggc aacatcctga cgctggagtc ctgcctgcag 1260 cagctggcca cacatcccgg acactggggc atccatttgc aaatagcgga gcccgcagcc 1320 cteeggeeat ecetggeett getggeacge eteteeagee ttggeetett geattggeet 1380 gtgtgggttg gggccaaaat ctcccacggg agtttttcgg tccccggcca tgtggctggc 1440 agagagetge ttacagetgt ggetgaggte ttececeaeg tgactgtgge accaggetgg

cctgaggagg tgctgggcag tggctacagg gaacagctgc tcacagatat gctagagttg 1500
tgccaggggc tctggcaacc tgtgtccttc cagatgcagg ccatgctgct gggccacagc 1560
acagctggag ccataggcag gctgctggca tcctccccc gggccaccgt cacagtggag 1620
cacaacccag ctgggggcga ctatgcctct gtgaggacag cattgctggc agctagggct 1680
gtggacagga cccgagtcta ctacaggcta ccccagggct accacaagga cttgctggct 1740
catgttggta gaaac 1755

<210> 16

<211> 993

<212> DNA

<213> Homo sapiens

<400> 16 ⋅

60 atgtggctgt gggaggacca gggcggcctc ctgggccctt tctccttcct gctgctagtg 120 ctgctgctgg tgacgcggag cccggtcaat gcctgcctcc tcaccggcag cctcttcgtt 180 ctactgcgcg tcttcagctt tgagccggtg ccctcttgca gggccctgca ggtgctcaag 240 ccccgggacc gcatttctgc catcgcccac cgtggcggca gccacgacgc gcccgagaac 300 acgctggcgg ccattcggca ggcagctaag aatggagcaa caggcgtgga gttggacatt 360 gagtttactt ctgacgggat tcctgtctta atgcacgata acacagtaga taggacgact 420 gatgggactg ggcgattgtg tgatttgaca tttgaacaaa ttaggaagct gaatcctgca 480 gcaaaccaca gactcaggaa tgatttccct gatgaaaaga tccctaccct aagggaagct 540 gttgcagagt gcctaaacca taacctcaca atcttctttg atgtcaaagg ccatgcacac 600 aaggetactg aggetetaaa gaaaatgtat atggaattte etcaactgta taataatagt 660 gtggtctgtt ctttcttgcc agaagttatc tacaagatga gacaaacaga tcgggatgta 720 ataacagcat taactcacag accttggagc ctaagccata caggagatgg gaaaccacgc 780 tatgatactt tctggaaaca ttttatattt gttatgatgg acattttgct cgattggagc

atgcataata	tcttgtggta	cctgtgtgga	atttcagctt	tcctcatgca	aaaggatttt	840
gtatccccgg	cctacttgaa	gaagtggtca	gctaaaggaa	tccaggttgt	tggttggact	900
gttaatacct	ttgatgaaaa	gagttactac	gaatcccatc	ttggttccag	ctatatcact	960
gacagcatgg	tagaagactg	cgaacctcac	ttc			993
(i)		•	•	• • • •		
<210> 17					** ** ** **	
<211> 1035						
<212> DNA					=	
<213> Homo	sapiens				<i>i</i> , + ≤ ±	
<400> 17						
atgtcgcctg	aagaatggac	gtatctagtg	gttcttctta	tctccatccc	catcggcttc	60
ctctttaaga	aagccggtcc	tgggctgaag	agatggggag	cagccgctgt	gggcctgggg	120
ctcaccctgt	tcacctgtgg	ccccacact	ttgcattctc	tggtcaccat	cctcgggacc	180
tgggccctca	ttcaggccca	gccctgctcc	tgccacgccc	tggctctggc	ctggactttc	240
tcctatctcc	tgttcttccg	agccctcagc	ctcctgggcc	tgcccactcc	cacgcccttc	300
accaatgccg	tccagctgct	gctgacgctg	aagctggtga	gcctggccag	tgaagtccag	360
gacctgcatc	tggcccagag	gaaggaaatg	gcctcaggct	tcagcaaggg	gcccaccctg	420
gggctgctgc	ccgacgtgcc	ctccctgatg	gagacactca	gctacagcta	ctgctacgtg	480
ggaatcatga	caggcccgtt	cttccgctac	cgcacctacc	tggactggct	ggagcagccc	540
ttccccgggg	cagtgcccag	cctgcggccc	ctgctgcgcc	gcgcctggcc	ggcccgctc	600
ttcggcctgc	tgttcctgct	ctcctctcac	ctcttcccgc	tggaggccgt	gcgcgaggac	660
gccttctacg	cccgcccgct	gcccgcccgc	ctcttctaca	tgatccccgt	cttcttcgcc	720
ttccgcatgc	gcttctacgt	ggcctggatt	gccgccgagt	gcggctgcat	tgccgccggc	780
+++ agaacct	accccataac	coccasaocc		gcggccccac	cctccaatgc	840

ccaccccca gcagtccgga gaaggcggct tccttggagt atgactatga gaccatccgc

aacatcgact	gctacagcac	agatttctgc	gtgcgggtgc	gcgatggcat	gcggtactgg	960
aacatgacgg	tgcagtggtg	gctggcgcag	tatatctaca	agagcgcacc	tgcccgttcc	1020
tatgtcctgc	gcctt -		•	;		1035
<210> ⋅ 18		-			•	
<211> 267 -						
<212> DNA						
<213> Homo	sapiens					
<400> 18						
atgtacatgc	aagattattg	gaggacctgg	ctcaaggggc	tgcgcggctt	cttcttcgtg	60
ggcgtcctct	tctcggccgt	ctccatcgct	gccttctgca	ccttcctcgt	gctggccatc	120
acceggeate	agagcctcac	agaccccacc	agctactacc	tctccagcgt	ctggagcttc.	180
atttccttca	agtgggcctt	cctgctcagc	ctctatgccc	accgctaccg	ggctgacttt	240
gctgacatca	gcatcctcag	cgatttc			•	267
<210> 19						
<211> 1218						
<212> DNA						
<213> Homo	sapiens				a .	
<400> 19					٠.,	
atgcgcggct	ctgtggagtg	cacctggggt	tgggggcact	gtgccccag	cccctgctc	60
ctttggactc	tacttctgtt	tgcagcccca	tttggcctgc	tgggggagaa	gacccgccag	120
gtgtctctgg	aggtcatccc	taactggctg	ggcccctgc	agaacctgct	tcatatacgg	180
gcagtgggca	ccaattccac	actgcactat	gtgtggagca	gcctggggcc	tctggcagtg	240
				t	ant ant acts	30

RNSDOCID--WO DITOREDAD I

tccctgagc	ccgatggggg	cctgatggtg	ctccctaagg	acagcattca	gttttcttct	360
gcccttgttt	ttaccaggct	gcttgagttt	gacagcacca	acgtgtccga	tacggcagca	420
aagcctttgg	gaagaccata	tcctccatac	tccttggccg	atttctcttg	gaacaacatc	480
actgattcat	tggatcctgc	caccctgagt	gccacatttc	aaggccaccc	catgaacgac	540
cctaccagga	cttttgccaa	tggcagcctg	gccttcaggg	tccaggcctt	ttccaggtcc	600
agccgaccag	cccaaccccc	tcgcctcctg	cacacagcag	acacctgtca	gctagaggtg	660
gccctgattg	gagcctctcc	ccggggaaac	cgttccctgt	ttgggctgga	ggtagccaca	720
ttgggccagg	gccctgactg	ccctcaatg	caggagcagc	actccatcga	cgatgaatat	780
gcaccggccg	tcttccagtt	ggaccagcta	ctgtggggct	ccctcccatc	aggctttgca	840
cagtggcgac	cagtggctta	ctcccagaag	ccggggggcc	gagaatcagc	cctgccctgc	900 :
caagcttccc	ctcttcatcc	tgccttagca	tactctcttc	cccagtcacc	cattgtccga	960
gccttctttg	ggtcccagaa	taacttctgt	gccttcaatc	tgacgttcgg	ggcttccaca	1020
ggccctggct	attgggacca	acactacctc	agctggtcga	tgctcctggg	tgtgggcttc	1080
cctccagtgg	acggcttgtc	cccactagtc	ctgggcatca	tggcagtggc	cctgggtgcc	1140
ccagggctca	tgctgctagg	gggcggcttg	gttctgctgc	tgcaccacaa	gaagtactca	1200
gagtaccagt	ccataaat					1218

<210> 20

⟨211⟩ 576

<212> DNA

<213> Homo sapiens

<400> 20

atgactgccg teggegtgca ggcccagagg cetttgggce aaaggcagee eegeeggtee 60
ttetttgaat cetteateeg gacceteate ateaegtgt tggccetgge tgtggteetg 120
teeteggtet ceattgtga tgggcactgg eteetggetg aggacegeet ettegggete 180

tggcacttct gcaccaccac caaccagagt gtgccgatct gcttcagaga cctgggccag	240
gcccatgtgc ccgggctggc cgtgggcatg ggcctggtac gcagcgtggg cgccttggcc	300
gtggtggccg ccattttgg cctggagttc ctcatggtgt cccagttgtg cgaggacaaa	360
cactcacagt gcaagtgggt catgggttcc atcctcctcc tggtgtcttt cgtcctctcc	420
teeggegge teetgggttt tgtgateete eteaggaace aagteacaet categgette	480
accetaatgt tttggtgcga atteactgce teetteetee tetteetgaa egecateage	540
ggccttcaca tcaacagcat cacccatccc tgggaa	576
ya · · · · · · · · · · · · · · · · · · ·	
<210> 21	
<211> 2042	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (91)(894)	
<400> 21	
tccggtgcct gcagagctcg gagcggcgga ggcagagacc gaggctgcac cggcagaggc	60
tgcggggcgg acgcgcgggc cggcgcagcc atg gtg aag att agc ttc cag	111
Met Val Lys Ile Ser Phe Gln	
1 5	
ccc gcc gtg gct ggc atc aag ggc gac aag gct gac aag gcg tcg gcg	159
Pro Ala Val Ala Gly Ile Lys Gly Asp Lys Ala Asp Lys Ala Ser Ala	
20	
tog god cot gog cog god tog god acc gag atc ctg ctg acg cog got.	207
Ser Ala Pro Ala Pro Ala Ser Ala Thr Glu Ile Leu Leu Thr Pro Ala	

25		•			30					35		• •			
gag	gag	cag	ccc	cca	caa	cat	cga	tcc	aag	agg	ggg	agc	tça	gtg	255
Glu	Glu	Gln	Pro	Pro	Gln	His	Arg	Ser	Lys	Arg	Gly	Ser	Ser	Val	•
				45	•				50		. •			55 ··	
ggc	gtg	tgc	tac	ctg	tcg	atg	ggc	atg	gtc	gtg	ctg	ctc	atg	ggc · ·	303
Gly	Val	Cys	Tyr	Leu	Ser	Met	Gly	Met	Val	Val	Leu	Leu	Met	Gly∵	
			60					65					70	••	
gtg	ttc	gcc	tct	gtc	tac	atc	tac	aga	tac	ttc	ttt	ctt	gca	cag	351
Val	Phe	Ala	Ser	Val	Tyr	Ile	Tyr	Arg	Tyr	Phe	Phe	Leu	Ala	Gln	
		75					80					85			
															399
Ala		Asp	Asn	Phe	Phe		Cys	G1 y	Val	Leu		Glu	Asp	Ser ⁻	•
														•	
											-				447
	Ser	Gln	Val	Arg		Gln	Met	Glu	Leu		Glu	Asp	Val	Lys	
													•	•	405
															495
Tyr	Leu	Asp	Glu		lyr	Glu	Arg	116		Val	Pro	vai	Pro		
							4	-4-			***	***			543
															J40
-	•		_												
															591
														_	
	gag Glu ggc Gly gtg Val gcc Ala tcc Ser 105 tac Tyr ggc Gly act Thr	gag gag Glu Glu ggc gtg Gly Val gtg ttc Val Phe gcc cga Ala Arg 90 tcc tcc Ser Ser 105 tac ctc Tyr Leu ggc ggc Gly Gly act gcg Thr Ala	gag gag cag Glu Glu Gln ggc gtg tgc Gly Val Cys gtg ttc gcc Val Phe Ala 75 gcc cga gat Ala Arg Asp 90 tcc tcc cag Ser Ser Gln 105 tac ctc gac Tyr Leu Asp ggc ggc ggt Gly Gly Gly act gcg tac Thr Ala Tyr	gag gag cag ccc Glu Glu Gln Pro ggc gtg tgc tac Gly Val Cys Tyr 60 gtg ttc gcc tct Val Phe Ala Ser 75 gcc cga gat aac Ala Arg Asp Asn 90 tcc tcc cag gtc Ser Ser Gln Val 105 tac ctc gac gag Tyr Leu Asp Glu ggc ggc ggt gac Gly Gly Gly Asp 140 act gcg tac cat Thr Ala Tyr His	gag gag cag ccc cca Glu Glu Gln Pro Pro 45 ggc gtg tgc tac ctg Gly Val Cys Tyr Leu 60 60 60 gtg ttc gtc gtc Val 75 75 gcc cga gat aac ttc Ala Arg Asn Phe 90 90 90 90 90 tcc tcc cag gtc cgg Ser Ser Gln Val Arg 105 105 100 100 100 100 tac ctc gag gag gac 125 ggc ggc ggt gac cct Gly Gly Asp Pro 140 140 140 act ggt tac cat gat Thr Ala Tyr His	gag gag cag ccc caa Glu Glu Gln Pro Pro Gln 45 <td< th=""><th>gag cag ccc cca caa cat Glu Glu Gln Pro Gln His 45 45 ggc gtg tgc tac ctg tcg atg Gly Val Cys Tyr Leu Ser Met 60 60 45 tac atc 8tg ttc gcc tct gtc tac atc 8tg ttc gcc tct gtc tac atc 8cc cga gat aac ttc ttc cgc Ala Arg Asn Phe Phe Arg 90 95 95 45 45 110 110 tac tcc cag gtc cgg act cag Ser Gln Val Arg Thr Gln 105 110 110 110 110 tac ctc gag aac tac gag</th><th>gag gag cag ccc cca caa cat cga Glu Glu Gln Pro Gln His Arg 45 ggc gtg tgc tac ctg tcg atg ggc Gly Val Cys Tyr Leu Ser Met Gly gtg ttc gcc tct gtc tac atc tac Yal Phe Ala Ser Val Tyr Ile Tyr gcc cga gat aac ttc ttc cgc tgt Ala Arg Asn Phe Phe Arg Cys gcc cga gat cga act cag atg tcc tcc cag gct cgg act cag atg ser Gln Val Arg Thr Gln Arg tcc gac gag gac tac gac gac <</th><th>gag gag cag ccc cca caa cat cga tcc Glu Glu Glu Pro Pro Glu His Arg Ser ggc gtg tgc tac ctg tcg atg ggc atg ggc gtg tgc tac ctg tcg met Gly Met ggg gtg tcc tct gtc tac atc tac aga gtg ttc gcc tct gtc tac atc tac aga gcc cga gat aac ttc ttc cgc tgt ggt gcc cga gat aac ttc tcc cgc tgt ggt dala Arg Asn Phe Phe Arg Cys Gly dala Arg Glu Arg Thr Glu Met Glu dala ctc gag aac tac gag cgc atc <th>gag gag cag ccc cag cat cgg tcc aag Glu Glu Glu Pro Pro Glu His Arg Ser Lys 45 15 15 50 ggc gtg tgc tac ctg tcg atg gtc atg gtc Gly Val Cys Tyr Leu Ser Met Gly Met Val gtg ttc gcc tct gtc tac atc tac aga tac gtg ttc gcc tct gtc ttc tcc atg gg gg</th><th>gag gag ccc cca caa cat cga tcc aag agg Glu Glu Glu Pro Pro Glu His Arg Ser Lys Arg 45 60 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 62 62 61 62 61</th><th>gag gag cag ccc cca caa cat cga tcc aag agg ggg Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu 60 65 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe 75 80 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr 90 95 100 tcc tcc cag gtc cgg act cag atg agg ctg gag agg Ser Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu 105 110 110 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct Tyr Leu Asp Glu Asn Tyr Glu Arg Ile Asn Val Pro 125 130 ggc ggc ggt ggt gac cct gca gac atc atc cat gac ttc Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe 140 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat Thr Ala Tyr His Asp Ile Ser Leu Asp Lys Cys Tyr</th><th>gag gag cag ccc cca caa cat cga tcc aag agg agg agc Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly Ser 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg ctc Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu Leu 60 65 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt ctt Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe Leu 75 80 85 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat gag Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr Glu 90 95 100 tcc tcc cag gtc cgg act cag atg aga ctg gag gag gat Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu Asp 115 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct gtg ggc ggc ggt gac cct gca gac atc atc atc cat gac tc cag Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe Gln 140 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc tat gtc 110 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc 110 145</th><th>gag gag cag ccc cca caa cat cga tcc aag agg ggg agc tca Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly Ser Ser 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg ctc atg Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu Leu Met 60 65 70 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt ctt gca Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe Leu Ala Ass 75 80 85 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat gag gac Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr Glu Asp 90 95 100 tcc tcc cag gtc cag act cag atg gag ctg gaa gag gat gtg gag gag gat gtg Ser Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu Asp Val 110 105 110 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct gtg ccc 125 Tyr Leu Asp Glu Asn Tyr Glu Arg Ile Asn Val Pro Val Pro 125 130 125 ggc ggc ggt gac cct gca gac atc atc cat gac ttc cag cgg Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe Gln Arg 140 145 150 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc 140</th><th>gag gag cag cag cag cag cag cag cag cag</th></th></td<>	gag cag ccc cca caa cat Glu Glu Gln Pro Gln His 45 45 ggc gtg tgc tac ctg tcg atg Gly Val Cys Tyr Leu Ser Met 60 60 45 tac atc 8tg ttc gcc tct gtc tac atc 8tg ttc gcc tct gtc tac atc 8cc cga gat aac ttc ttc cgc Ala Arg Asn Phe Phe Arg 90 95 95 45 45 110 110 tac tcc cag gtc cgg act cag Ser Gln Val Arg Thr Gln 105 110 110 110 110 tac ctc gag aac tac gag	gag gag cag ccc cca caa cat cga Glu Glu Gln Pro Gln His Arg 45 ggc gtg tgc tac ctg tcg atg ggc Gly Val Cys Tyr Leu Ser Met Gly gtg ttc gcc tct gtc tac atc tac Yal Phe Ala Ser Val Tyr Ile Tyr gcc cga gat aac ttc ttc cgc tgt Ala Arg Asn Phe Phe Arg Cys gcc cga gat cga act cag atg tcc tcc cag gct cgg act cag atg ser Gln Val Arg Thr Gln Arg tcc gac gag gac tac gac gac <	gag gag cag ccc cca caa cat cga tcc Glu Glu Glu Pro Pro Glu His Arg Ser ggc gtg tgc tac ctg tcg atg ggc atg ggc gtg tgc tac ctg tcg met Gly Met ggg gtg tcc tct gtc tac atc tac aga gtg ttc gcc tct gtc tac atc tac aga gcc cga gat aac ttc ttc cgc tgt ggt gcc cga gat aac ttc tcc cgc tgt ggt dala Arg Asn Phe Phe Arg Cys Gly dala Arg Glu Arg Thr Glu Met Glu dala ctc gag aac tac gag cgc atc <th>gag gag cag ccc cag cat cgg tcc aag Glu Glu Glu Pro Pro Glu His Arg Ser Lys 45 15 15 50 ggc gtg tgc tac ctg tcg atg gtc atg gtc Gly Val Cys Tyr Leu Ser Met Gly Met Val gtg ttc gcc tct gtc tac atc tac aga tac gtg ttc gcc tct gtc ttc tcc atg gg gg</th> <th>gag gag ccc cca caa cat cga tcc aag agg Glu Glu Glu Pro Pro Glu His Arg Ser Lys Arg 45 60 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 62 62 61 62 61</th> <th>gag gag cag ccc cca caa cat cga tcc aag agg ggg Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu 60 65 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe 75 80 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr 90 95 100 tcc tcc cag gtc cgg act cag atg agg ctg gag agg Ser Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu 105 110 110 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct Tyr Leu Asp Glu Asn Tyr Glu Arg Ile Asn Val Pro 125 130 ggc ggc ggt ggt gac cct gca gac atc atc cat gac ttc Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe 140 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat Thr Ala Tyr His Asp Ile Ser Leu Asp Lys Cys Tyr</th> <th>gag gag cag ccc cca caa cat cga tcc aag agg agg agc Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly Ser 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg ctc Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu Leu 60 65 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt ctt Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe Leu 75 80 85 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat gag Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr Glu 90 95 100 tcc tcc cag gtc cgg act cag atg aga ctg gag gag gat Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu Asp 115 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct gtg ggc ggc ggt gac cct gca gac atc atc atc cat gac tc cag Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe Gln 140 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc tat gtc 110 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc 110 145</th> <th>gag gag cag ccc cca caa cat cga tcc aag agg ggg agc tca Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly Ser Ser 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg ctc atg Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu Leu Met 60 65 70 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt ctt gca Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe Leu Ala Ass 75 80 85 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat gag gac Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr Glu Asp 90 95 100 tcc tcc cag gtc cag act cag atg gag ctg gaa gag gat gtg gag gag gat gtg Ser Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu Asp Val 110 105 110 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct gtg ccc 125 Tyr Leu Asp Glu Asn Tyr Glu Arg Ile Asn Val Pro Val Pro 125 130 125 ggc ggc ggt gac cct gca gac atc atc cat gac ttc cag cgg Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe Gln Arg 140 145 150 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc 140</th> <th>gag gag cag cag cag cag cag cag cag cag</th>	gag gag cag ccc cag cat cgg tcc aag Glu Glu Glu Pro Pro Glu His Arg Ser Lys 45 15 15 50 ggc gtg tgc tac ctg tcg atg gtc atg gtc Gly Val Cys Tyr Leu Ser Met Gly Met Val gtg ttc gcc tct gtc tac atc tac aga tac gtg ttc gcc tct gtc ttc tcc atg gg gg	gag gag ccc cca caa cat cga tcc aag agg Glu Glu Glu Pro Pro Glu His Arg Ser Lys Arg 45 60 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 62 62 61 62 61	gag gag cag ccc cca caa cat cga tcc aag agg ggg Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu 60 65 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe 75 80 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr 90 95 100 tcc tcc cag gtc cgg act cag atg agg ctg gag agg Ser Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu 105 110 110 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct Tyr Leu Asp Glu Asn Tyr Glu Arg Ile Asn Val Pro 125 130 ggc ggc ggt ggt gac cct gca gac atc atc cat gac ttc Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe 140 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat Thr Ala Tyr His Asp Ile Ser Leu Asp Lys Cys Tyr	gag gag cag ccc cca caa cat cga tcc aag agg agg agc Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly Ser 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg ctc Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu Leu 60 65 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt ctt Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe Leu 75 80 85 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat gag Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr Glu 90 95 100 tcc tcc cag gtc cgg act cag atg aga ctg gag gag gat Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu Asp 115 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct gtg ggc ggc ggt gac cct gca gac atc atc atc cat gac tc cag Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe Gln 140 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc tat gtc 110 145 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc 110 145	gag gag cag ccc cca caa cat cga tcc aag agg ggg agc tca Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly Ser Ser 45 50 ggc gtg tgc tac ctg tcg atg ggc atg gtc gtg ctg ctc atg Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu Leu Met 60 65 70 gtg ttc gcc tct gtc tac atc tac aga tac ttc ttt ctt gca Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe Leu Ala Ass 75 80 85 gcc cga gat aac ttc ttc cgc tgt ggt gtg ctg tat gag gac Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr Glu Asp 90 95 100 tcc tcc cag gtc cag act cag atg gag ctg gaa gag gat gtg gag gag gat gtg Ser Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu Asp Val 110 105 110 115 tac ctc gac gag aac tac gag cgc atc aac gtg cct gtg ccc 125 Tyr Leu Asp Glu Asn Tyr Glu Arg Ile Asn Val Pro Val Pro 125 130 125 ggc ggc ggt gac cct gca gac atc atc cat gac ttc cag cgg Gly Gly Gly Asp Pro Ala Asp Ile Ile His Asp Phe Gln Arg 140 145 150 act gcg tac cat gat atc tcc ctg gac aag tgc tat gtc 140	gag gag cag cag cag cag cag cag cag cag

ctc	aac	acc	acc	att	gtg	ctg	ccc	cct	cgc	aac	ttc	tgg	gag	ctc	ctc	639
Leu	Asn	Thr	Thr	Ile	Val	Leu	Pro.	Pro	Arg	Asn	Phe	Trp	Glu	Leu	Leu	
•	, ,	170		,		-	175					180	.•	* -	•	
atg	aac	gtg	aag	agg	ggg	acc	tac	ctg	ccg	cag	acg	tac	atc	atc	cag	687
Met	Asn	Val	Lys	Arg	Gly	Thr	Tyr	Leu	Pro	G1n	Thr	Tyr	Ile	Ile	Gln	
	185					190					195				-	
gag	gag	atg	gtg	gtc	acg	gag	cat	gtc	agt	gac	aag	gag	gcc	ctg	ggg '	735
Glu	Glu	Met	Val	Val	Thr	Glu	His	Val	Ser	Asp	Lys	Glu	Ala	Leu	Gly	
200					205					210					215	
tcc	ttc	atc	tac	cac	ctg	tgc	aac	ggg	aaa	gac	acc	tac	cgg	ctc	cgg	783
Ser	Phe	Ile	Tyr	His	Leu	Cys	Asn	Gly	Lys	Asp	Thr	Tyr	Arg	Leu	Arg	
				220					225					230		
cgc	cgg	gca	acg	cgg	agg	cgg	atc	aac	aag	cgt	ggg	gcc	aag	aac	tgc	831
Arg	Arg	Ala	Thr	Arg	Arg	Arg	Ile	Asn	Lys	Arg	Gly	Ala	Lys	Asn	Cys	
			235					240					245			
aat	gcc	atc	cgc	cac	ttc	gag	aac	acc	ttc	gtg	gtg	gag	acg	ctc	atc	879
Asn	Ala	Ile	Arg	His	Phe	G1u	Asn	Thr	Phe	Val	Val	Glu	Thr	Leu	Ile	
		250					255					260				
tgc	ggg	gtg	gtg	tga	ggcc	ctc	ctcc	ccca	ga a	cccc	ctgc	c gt	gttc	ctc	· X ·	930
Cys	Gly	Val	Val													
	265	٠													••	
ttt	tctt	ctt	tccg	gctg	ct c	tctg	gccc	t cc	tcct	tccc	cct	gctt	agc	ttgt	actttg	990
gac	gcgt	ttc	tata	gagg	tg a	catg	tctc	t cc	attc	ctct	сса	accc	tgc	ccac	ctccct	1050
gta	ccag	agc	tgtg	atct	ct c	ggtg	gggg	g cc	catc	tctg	ctg	acct	ggg	tgtg	gcggag	1110
gga	gagg	cga	tgct	gcaa	ag t	gttt	tctg	t gt	ccca	ctgt	ctt	gaag	ctg	ggcc	tgccaa	1170

agootgggoo cacagotgoa coggoagooo aaggggaagg acoggttggg ggagoogggo	1230
atgtgaggcc ctgggcaagg ggatggggct gtgggggcgg ggcggcatgg gcttcagaag	1290
tatctgcaca attagaaaag tcctcagaag ctttttcttg gagggtacac tttcttcact	1350
gtccctattc ctagacctgg ggcttgagct gaggatggga cgatgtgccc agggagggac	1410
ccaccagage acaagagaag gtggctacet gggggtgtee cagggaetet gteagtgeet	1470
tcagcccacc agcaggagct tggagtttgg ggagtgggga tgagtccgtc aagcacaact	1530
gttctctgag tggaaccaaa gaagcaagga gctaggaccc ccagtcctgc cccccaggag	1590
cacaagcagg gtcccctcag tcaaggcagt gggatgggcg gctgaggaac ggggcaggca	1650
aggtcactgc tcagtcacgt ccacggggga cgagccgtgg gttctgctga gtaggtggag	1710
ctcattgctt tctccaaget tggaactgtt ttgaaagata acacagaggg aaagggagag	1770%
ccacctggta cttgtccacc ctgcctcctc tgttctgaaa ttccatcccc ctcagcttag	1830 -
gggaatgcac ctttttccct ttccttctca cttttgcatg tttttactga tcattcgata	1890
tgctaaccgt tctcagccct gagccttgga gaggagggct gtaacgcctt cagtcagtct	1950
ctggggatga aactettaaa tgetttgtat atttteteaa ttagatetet ttteagaagt	2010
gtctatagaa caataaaaat cttttacttc tg	2042
<210> 22	
<211> 1433	
<212> DNA	
<213> Homo sapiens	
(213) nomo Saprens	
<220>	
<221> CDS <222> (5) (1264)	
(4007 22	46
gacg atg age tge geg ggg egg gge eet gee egg etc gee geg	-20
Met Ser Cys Ala Gly Arg Ala Gly Pro Ala Arg Leu Ala Ala -	

					0	. 10				5				1		
g 9	gcg	aac	gac	gca	cgg	gca	ccg	tgg	ctg	agc	tgc	acc	ctg	ctg	gcc	ctc
ì	Ala	Asn	Asp	Ala	Arg	Ala	Pro	Trp	Leu	Ser	Cys	Thr	Leu	Leu	Ala	Leu
)	30					25					20					15
: 14	ccc	gag	cag	gtg	acg	gtg	aac	atc	ctc	gcg	acg	tac	tac	gag	cag	agc
•	Pro	Glu	Gln	Val	Thr	Val	Asn	Ile	Leu	Ala	Thr	Tyr	Tyr	Glu	Gln	Ser
		45					40					35	•			
19	ggg	tac	cgc	ggg	cgc	gac	atc	cgc	ttt	acg	ctc	ccg	gcc	ggc	cgc	ggc
,	Gly	Tyr	Arg	Gly	Arg	Asp	Ile	Arg	Phe	Thr	Leu	Pro	Ala	Gly	Arg	G1y
			60					55					50			
23	ctg	ccg	gcg	ctg	gtg	cag	ggc	cgc	gtc	gag	gcc	aag	ccc	tcc	gac	ctt
	Leu	Pro	Ala	Leu	Val	Gln	Gly	Arg	Val	Glu	Ala	Lys	Pro	Ser	Asp	Leu
				75					70					65		
28	cgg	acc	caa	cca	gat	tgt	ggc	ctg	cat	gat	gct	gtt	gga	cac	ctc	ccc
•	Arg	Thr	G1n	Pro	Asp	Cys	Gly	Leu	His	Asp	Ala	Val	Gly	His	Leu	Pro
					90					85					80	
33	agg	cag	ctg	ttg	gcc	att	tgg	cag	aaa	atc	aat	cct	cct	gtc	ttt	ttc
	Arg	Gln	Leu	Leu	Ala	Ile	Trp	Gln	Lys	Ile	Asn	Pro	Pro	Val	Phe	Phe
	110					105			•		100					95
38	aat,	cac	ttc	gct	gcc	cgg	tca	ata	aaa	gag	aaa	ttt	acg	tgc	aac	gga
	Asn	His	Phe	Ala	Ala	Arg	Ser	Ile	Lys	Glu	Lys	Phe	Thr	Cys	Asn	Gly
		125					120	, •				115	,	-	. 0.	
43	gtt	cca	gag	gag	aaa	tcc	aaa	aat	aat	tac	atc	gtc	gta	gct	gtt	gca
	Val	Pro	Glu	Glu	Lys	Ser	Lys	Asn	Asn	Tyr	Ile	Val	Val	Ala	Val	Ala
			140					135				-	130	1		

acc	atg	act	cat	cca	ggc	act	gga	gat	att	att	gct	gtc	atg	ata	aca	478
Thr	Met	Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr ·	
		145		÷.			150		-			155			•	
gaa	ttg	agg	ggt	aag	gat	att	ttg	agt	tat	ctg	gag	aaa	aac	atc	tct	526
Glu	Leu	Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser-	
	160					165					170		•			
gta	caa	atg	aca	ata	gct	gtt	gga	act	cga	atg	cca	ccg	aag	aac	ttc	574
Val	G1n	Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	
175					180					185					190	
agc	cgt	ggc	tct	cta	gtc	ttc	gtg	tca	ata	tcc	ttt	att	gtt	ttg	atg	622
Ser	Arg	Gly	Ser	Leu	Val	Phe	Val	Ser	Ile	Ser	Phe	Ile	Val	Leu	Met	
				195	•				200	٠.				205	0.50	
att	att	tct	tca	gca	tgg	ctc	ata	ttc	tac	ttc	att	cag	aag	atc	agg	670
Ile	Ile	Ser	Ser	Ala	Trp	Leu	Ile	Phe	Tyr	Phe	Ile	Gln	Lys	Ile	Arg	
			210					215					220	-		
tac	aca	aat	gca	cgc	gac	agg	aac	cag	cgt	cgt	ctc	gga	gat	gca	gcc	718
Tyr	Thr	Asn	Åla	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	
		225					230					235		•		
aag	aaa	gcc	atc	agt	aaa	ttg	aca	acc	agg	aca	gta	aag	aag	ggt	gac ·	766
Lys	Lys	Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	
•	240					245	×.				250					
aag	gaa	act	gac	cca	gac	ttt	gat	cat	tgt	gca	gtc	tgc	ata	gag	agc	814
Lys	Glu	Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	
255	٠.	٠.		-	260					265	ι .		5. × .	.r i	270	
tat	aag	cag	aat	gat	gtc	gtc	cga	att	ctc	ccc	tgo	aag	cat	gtt	ttc	862

Tyr	Lys	Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	
	:			275				٠	280	٠.				285	·	
cac	aaa	tcc	tgc	gtg	gat	ccc	tgg	ctt	agt	gaa	cat	tgt	acc	tgt	cct	910
His	Lys	Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	
-		-	290	-	•			295					300			
atg	tgc	aaa	ctt	aat	ata	ttg	aag	gcc	ctg	gga	att	gtg	ccg	aat	ttg	958
Met	Cys	Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	
		305					310					315				
cca	tgt	act	gat	aac	gta	gca	ttc	gat	atg	gaa	agg	ctc	acc	aga	acc	1006
Pro	Cys	Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	
	320					325					330					
caa	gct	gtt	aac	cga	aga	tca	gcc	ctc	ggc	gac	ctc	gcc	ggc	gac	aac	1054
Gln	Ala	Val	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	
335					340					345					350	
tcc	ctt	ggc	ctt	gag	cca	ctt	cga	act	tcg	ggg	atc	tca	cct	ctt	cct	1102
Ser	Leu	Gly	Leu	Glu	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	
-		٠.		355		• •		۸.	360				-	365	-	
cag	gat	ggg	gag	ctc	act	ccg	aga	aca	gga	gaa	atc	вас	att	gca	gta	1150
Gln	Asp	Gly	Glu	Leu	Thr	Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	
•			370	•			, .	375		••••	• 0		380			
aca	aaa	gaa	tgg	ttt	att	att	gcc	agt	ttt	ggc	ctc	ctc	agt	gcc	ctc	1198
Thr	Lys	Glu	Trp	Phe	Ile	Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	
٠.		385	. :	, -	•	• •	390				•	395	- 1	•		
aca	ctc	tgc	tac	atg	atc	atc	aga	gcc	aca	gct	agc	ttg	aat	gct	aat	1246
Thr	Leu	Cys	Tyr	Met	Ile	Ile	Arg	Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asn	

ANGULU - MU - UTSEEURS 1

400	405	•	410	?	
gag gta gaa tgg ttt	tgaagaagaa a	aaacctgct t	tctgactga t	tttgcctt	1300
Glu Val Glu Trp Phe			e ·		
415	e •		• (4)		
gaaggaaaaa agaacctat	t tttgtgcatc	atttaccaat	catgccacac	aagcatttat	1360
ttttagtaca ttttatttt	t tcataaaatt	gctaatgcca	aagctttgta	ttaaaagaaa	1420
taaataataa aat				- '	1433
·					
<210> 23					
<211> 1917					.:.
<212> DNA	•	• •		٠.	
<213> Homo sapiens				· · · .	
<220>					
<221> CDS					
<222> (210)(1457)				•	
<400> 23	·	•	. • .	1	
gtateceeg getacetgg	g ccgccccgcg	gcggtgcgcg	cgtgagaggg	agcgcgcggg	60
cagccgagcg ccggtgtga	g ccagcgctgc	tgccagtgtg	agccagcgct	gctgccagtg	120
tgagcggcgg tgtgagcgc	g gtgggtgcgg	aggggcgtgt	gtgccggcgc	gcgcgccgtg	180
gggtgcaaac cccgagcgt	c tacgctgcc	atg agg ggc	gcg aac gc	c tgg gcg	233
	• -	Met Arg Gly	Ala Asn Ala	a Trp Ala	
*	٠	1	5	e d'a	
cca ctc tgc ctg ctg	ctg gct gcc	gcc acc cag	ctc tcg cg	g cag cag	28
Pro Leu Cys Leu Leu	Leu Ala Ala	Ala Thr Gln	Leu Ser Ar	g Gln Gln	
10	15		20 :	10 m	

BNSOCCID AWO 011286042 I

cc	cca	gag	aga	cct	gtt	ttc	aca	tgt	ggt	ggc	att	ctt	act	gga	gag	329
Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr	Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	
25		•			30				-,	35					40	
tct	gga	ttt	att	ggc	agt	gaa	ggt	ttt	cct	gga	gtg	tac	cct	cca	aat	377
Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly	Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	
				45					50					55		
agc	aaa	tgt	act	tgg	aaa	atc	aca	gtt	ссс	gaa	gga	aaa	gta	gtc	gtt	425
Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr	Val	Pro	Glu	Gly	Lys	Val	Val	Val	
			60					65					70	١		
ctc	aat	ttc	cga	ttc	ata	gac	ctc	gag	agt	gac	aac	ctg	tgc	cgc	tat	473
Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu	Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	
		75					80					85	;			
gac	ttt	gtg	gat	gtg	tac	aat	ggc	cat	gcc	aat	ggc	cag	cgc	att	ggc	521
Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly	His	Ala	Asn	Gly	Glr	Arg	g Ile	Gly	
	90					95					100)				
cgc	ttc	tgt	ggc	act	ttc	cgg	cct	gga	gcc	ctt	gtg	tco	agt	t ggo	aac	569
Arg	Phe	Cys	Gly	Thr	Phe	Arg	Pro	Gly	Ala	Leu	Val	Sea	r Sei	r Gly	y Asn	
105		-	,		110)				115	j				120	
aag	atg	ate	gte	g cag	g atg	att	tct	gat	gcc	aac	ace	a gc	t gg	c aa	t ggc	617
Lys	Met	: Met	: Val	Glr	n Met	: Ile	Ser	r Asp	Ala	Asr	1 Thi	r Ala	a Gl	y As	n Gly	
				. 125	5				130). '				13	5	
ttc	at	g gc	at	g tto	c tco	c gct	gc	t gaa	a cca	a aa	c ga	a ag	a gg	g ga	t cag	665
Phe	Me1	t Ala	a Me	t Pho	e Sei	r Ala	a Ala	a Glu	ı Pro	Ası	n Gl	u Ar	g Gl	y As	p Gln	
••	<u>.</u>	r	14	0 - 7.		, .	- :	145	5				.15	0	· · ·	
tat	t tg	t :gg:	a gg	a ct	c ct	t ga	c ag	a cc	t tc	c gg	c tc	t, tt	t aa	a ac	c ccc	713

BRIGHTYPID- JWO 1110860A2 I -

Tyr	Cys	Gly	Gly	Leu	Leu	Asp	Arg	Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	
		155			• ,	٠	160		•		. •	165	. 1		- 3	
aac	tgg	cca	gac	cgg	gat	tac	cct	gca	gga	gtc	act	tgt	gtg	tgg	cac	761
Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro	Ala	Gly	Val	Thr	Cys	Val	Trp	His	
	170		• •	. 8	•	175		•			180		. •	. 1		
att	gta	gcc	cca	aag	aat	cag	ctt	ata	gaa	tta	aag	ttt	gag	aag	ttt	809
Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu	Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	
185	•	•			190		•			195				,	200	
gat	gtg	gag	cga	gat	aac	tac	tgc	cga	tat	gat	tat	gtg	gct	gtg	ttt	857
Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys	Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	
				205					210					215		
aat	ggc	ggg	gaa	gtc	aac	gat	gct	aga	aga	att	gga	aag	tat	tgt	ggt	905
Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala	Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	
		•	220			*	-	225					230		÷	
gat	agt	cca	cct	gcg	cca	att	gtg	tct	gag	aga	aat	gaa	ctt	ctt	att	953
Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val	Ser	Glu	Arg	Asn	Glu	Leu	Leu	Ile	
	٠.	235					240		٠	.,		245	2	. ,		
cag	ttt	tta	tca	gac	tta	agt	tta	act	gca	gat	ggg	ttt	att	ggt	cac	1001
Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu	Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	
	250			,		255		٠			260	. •	•		4 Long	
tac	ata	ttc	agg	cca	aaa	aaa	ctg	cct	aca	act	aca	gaa	cag	cct	gtc	1049
Tyŕ	Ile	Phe	Arg	Pro	Lys	Lys	Leu	Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	
265					270 ⁻	٠.		•	-	275			•	;	280	
acc	acc	aca	ttc	cct	gta	acc	acg	ggt	tta	888	acc	acc'	gtg	gcc	ttg	1097
Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr	Gly ·	Leu	Lys	Thr	Thr	Val	Alá	Leu	

. 285	;	290 2	95
tgt caa caa aag tgt	aga cgg acg ggg	act ctg gag ggc aat t	at tgt 1145
Cys Gln Gln Lys Cys	Arg Arg Thr Gly	Thr Leu Glu Gly Asn T	yr Cys
300	305	310 -	
tca agt gac ttt gta	a tta gcc ggc act	gtt atc aca acc atc a	ct cgc 1193
Ser Ser Asp Phe Val	l Leu Ala Gly Thr	Val Ile Thr Thr Ile T	hr Arg
315	320	325	
gat ggg agt ttg cad	c gcc aca gtc tcg	atc atc aac atc tac a	aaa gag 1241
Asp Gly Ser Leu His	s Ala Thr Val Ser	Ile Ile Asn Ile Tyr I	ys Glu
330	335	340	
gga aat ttg gcg at	t cag cag gcg ggc	aag aac atg agt gcc a	agg ctg 1289
Gly Asn Leu Ala Il	e Gln Gln Ala Gly	Lys Asn Met Ser Ala A	Arg Leu
345	350	355	360
act gtc gtc tgc aa	g cag tgc cct ctc	ctc aga aga ggt cta a	aat tac 1337
Thr Val Val Cys Ly	s Gln Cys Pro Leu	Leu Arg Arg Gly Leu	Asn Tyr
36	5	370	375
att att atg ggc ca	a gta ggt gaa gat	ggg cga ggc aaa atc	atg cca 1385
Ile Ile Met Gly Gl	n Val Gly Glu Asp	o Gly Arg Gly Lys Ile	Met Pro
380	385	390	
		c aag aat cag aag ctc	
Asn Ser Phe Ile Me	et Met Phe Lys Th	r Lys Asn Gln Lys Leu	Leu Asp
: 395	400	405	
gcc tta aaa aat a	ag caa tgt taacag	tgaa ctgtgtccat ttaago	1480
Ala Leu Lys Asn L	ys Gln Cys	· . · · · · · · · · · · · · · · · · · ·	
, 410	. 415 .		repen

tgtattetge cattgeettt gaaagateta tgttetetea gtagaaaaaa aaataettat	1540
aaaattacat attotgaaag aggattooga aagatgggao tggttgacto ttoacatgat	1600
ggaggtatga ggcctccgag atagctgagg gaagttcttt gcctgctgtc agaggagcag	1660
ctatctgatt ggaaacctgc cgacttagtg cggtgatagg aagctaaaag tgtcaagcgt	1720
tgacagcttg gaagcgttta tttatacatc tctgtaaaag gatattttag aattgagttg	1780
tgtgaagatg tcaaaaaaag attttagaag tgcaatattt atagtgttat ttgtttcacc	1840
ttcaagcctt tgccctgagg tgttacaatc ttgtcttgcg ttttctaaat caatgcttaa	1900
taaaatattt ttaaagg	1917
<210> 24	
<211> 2258	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
⟨222⟩ (225) (1367)	
<400> 24 · · · · · · · · · · · · · · · · · ·	
tttttcccgg ctgggctcgg gctcagctcg actgggctcg gcggcggcg gcggcggcgc	60
ccgcggctgg cggaggaggg agggcgaggg cgggcgcggg ccggcgggcg	120
ggaggagagg cgcggggagc caggcctcgg ggcctcggag caaccacccg agcagacgga	180
gtacacggag cagcggcccc ggccccgcca acgctgccgc cggg atg ctc cag	233
Met Leu Gln	
the second of th	
acc ttg tat gat tac ttc tgg tgg gaa cgt ctg tgg ctg cct gtg aac	281
Thr Leu Tyr Asp Tyr Phe Trp Trp Glu Arg Leu Trp Leu Pro Val Asn	

. 5		10		1	15		
ttg acc tgg	gcc gat	cta gaa	gac cga	gat gga cg	gt gtc tac	gcc aaa	329
Leu Thr Trp	Ala Asp	Leu Glu	Asp Arg	Asp Gly Ar	g Val Tyr	Ala Lys	
20		25 .		30		35	
gcc tca gat	ctc tat	atc acg	ctg ccc	ctg gcc tt	g ctc ttc	ctc atc	377
Ala Ser Asp	Leu Tyr	Ile Thr	Leu Pro	Leu Ala Le	u Leu Phe	Leu Ile	
•	. 40			45		50	
gtt cga tac	ttc ttt	gag ctg	tac gtg	gct aca cc	a ctg gct	gcc ctc	425
Val Arg Tyr	Phe Phe	Glu Leu	Tyr Val	Ala Thr Pr	o Leu Ala	Ala Leu	
	55		60		65		
ttg aac ata	aag gag	aaa act	cgg ctg	cgg gca cc	t ccc aac	gcc acc	473
Leu Asn Ile	Lys Glu	Lys Thr	Arg Leu	Arg Ala Pro	o Pro Asn	Ala Thr	
70	-		75		80		
ttg gaa cat	ttc tac	ctg acc	agt ggc	aag cag cc	c aag cag	gtg gaa	521
Leu Glu His	Phe Tyr	Leu Thr	Ser Gly	Lys Gln Pro	o Lys Gln	Val Glu	
85		90		9	5 .	· .	
gta gag ctt	ttg tcc	cgg cag	agc ggg	ctc tct gg	c cgc cag	gta gag	569
Val Glu Leu	Leu Ser	Arg Gln	Ser Gly	Leu Ser Gly	y Arg Gln	Val Glu	
100		105		110		115	
cgt tgg ttc	cgt cgc	cgc cgc	aac cag	gac cgg cco	c agt ctc	ctc aag	617
Arg Trp Phe	Arg Arg	Arg Arg	Asn Gln	Asp Arg Pro	o Ser Leu	Leu Lys	
erit, e e	120			125	- «	130	
aag; ttc.cga	gaa gcc.	agc.tgg	aga ttc	aca ttt tad	c ctg att	gcc ttc	665
Lys Phe Arg	Glu Ala	Ser Trp	Arg Phe	Thr Phe Ty	r Leu Ile	Ala Phe	
3.13 11 5 y	135		. 140		145		

att	gcc	ggc	atg	gcc `	gtc	att	gtg	gat	aaa	ccc	tgg	ttc	tat	gac	atg	713
Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe	Tyr	Asp	Met	
		150					155				•	160		•	.i	•
aag	aaa	gtt	tgg	gag	gga	tat	ccc	ata	cag	agc	act	atc	cct	tcc	cag -	761
Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile	Pro	Ser	Gln ·	
	165					170					175					
tat	tgg	tac	tac	atg	att	gaa	ctt	tcc	ttc	tac	tgg	tcc	ctg	ctc	ttc	809
Tyr	Trp	Tyr	Tyr	Met	Ile	G1u	Leu	Ser	Phe	Tyr	Trp	Ser	Leu	Leu	Phe	
180		•			185					190				(6)	195	
agc	att	gcc	tct	gat	gtc	aag	cga	aag	gat	ttc	aag	gaa	cag	atc	atc	857
Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu	Gln	Ile	Ile	
				200					205	• 16				210) '	•
cac	cat	gtg	gcc	acc	atc	att	ctc	atc	agc	ttt	tco	tgg	ttt	gco	aat	905
His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp	Phe	Ala	Asn	
			215			•		220)				225	*		
tac	ato	cga	gct	ggg	act	cta	atc	atg	gct	cte	cat	gac	tct	tc	gat	953
Tyr	· Ile	· Arg	, Ala	Gly	Thr	Leu	Ile	Met	. Ala	Leu	ı His	s Asp	Ser	Sei	r Asp	
		230)		•		235	;				240)			
tac	cte	g cti	g gag	tca	a gcc	aag	ate	ttt	t aad	tac	c gc	g gga	a tgg	g aa	g aac	1001
Tyı	r Lei	ı Lei	ı Glu	ı Ser	r Ala	Lys	Met	: Phe	e Ası	n Ty	r Ala	a Gly	y Tr	p Ly	s Asn	
	24	5 '				250)	•			25	5		÷		
ace	c tg	c aa	c aac	ato	c tto	ato	gto	tte	c gc	c at	t gt	t tt	t at	c at	c acc	1049
Th	г Су	s As	n Ası	n Ile	e Pho	e Ile	va:	l Ph	e Al	a Il	e Va	1 Ph	e Il	e Il	e Thr	
26						5										
cg	a ct	g gt	c at	c ct	g cc	c tto	tg:	g at	c ct	g ca	t tg	c ac	c ct	g gt	g tac	1097

Arg	Leu	Val	Ile	Leu	Pro	Phe	Trp	Ile	Leu	His	Cys	Thr	Leu	Val	Tyr	
				280		. *			285					290		
cca	ctg	gag	ctc	·tat	cct	gcc	ttc	ttt	ggc	tat	tac	ttc	ttc	aat	tcc	1145
Pro	Leu	Glu	Leu	Tyr	Pro	Ala	Phe	Phe	Gly	Tyr	Tyr	Phe	Phe	Asn	Ser	
			295					300					305			
atg	atg	gga	gtt	cta	cag	ctg	ctg	cat	atc	ttc	tgg	gcc	tac	ctc	att	1193
Met	Met	Gly	Val	Leu	Gln	Leu	Leu	His	Ile	Phe	Trp	Ala	Tyr	Leu	Ile	
		310					315					320			•	
ttg	cgc	atg	gcc	cac	aag	ttc	ata	act	gga	aag	ctg	gta	gaa	gat	gaa	1241
Leu	Arg	Met	Ala	His	Lys	Phe	Ile	Thr	Gly	Lys	Leu	Val	Glu	Asp	Glu	
	325					330					335					
cgc	agt	gac	cgg	gaa	gaa	aca	gag	agc	tca	gag	ggg	gag	gag	gct	gca -	1289
Arg	Ser	Asp	Arg	Glu	Glu	Thr	Glu	Ser	Ser	Glu	Gly	Glu	G1u	Ala	Ala	
340					345					350					355	
gct	ggg	gga	gga	gca	aag	agc	cgg	ccc	cta	gcc	aat	ggc	cac	ССС	atc	1337
Ala	Gly	Gly	Gly	Ala	Lys	Ser	Arg	Pro	Leu	Ala	Asn	Gly	His	Pro	Ile	
				360					365					370		
ctc	aat	aac	aac	cat	cgt	aag	aat	gac	tgaa	ccat	ta t	tcca	gctg	gc ct	ссса	1390
Leu	Asn	Asn	Asn	His	Arg	Lys	Asn	Asp		ė						-
	•		375					380								
gatt	aatg	ca t	aaag	ccaa	g ga	acta	ccct	gct	ccct	gcg	ctat	aggg	tc a	cttt	aagct	1450
ctgg	ggaa	aa a	ggag	aaag	t ga	gagg	agag	ttc	tctg	cat	cctc	cctc	ct t	gctt	gtcac	1510
ccag	ttgc	ct, t	taaa	ccaa	a tt	ctaa	ccag	cct	atcc	cca	ggta	gggg	ga c	gttg	gttat	1570
atto	tgtt	ag a	gggg	gacg	g to	gtat	tttc	ctc	ccta	ccc	gcca	agto	at c	cttt	ctact	1630
gctt	ttga	gg c	cctc	cctc	a go	tctc	tgtg	ggt	aggg	gtt	acaa	ttca	ca t	tcct	tattc	1690

tgagaatttg	gccccagctg	tttgcctttg	actccctgac	ctccagagcc	agggttgtgc	1750
cttattgtcc	catctgtggg	cctcattctg	ccaaagctgg	accaaggcta	acctttctaa	1810
gctccctaac	ttgggccaga	aaccaaagct	gagcttttaa	ctttctccct	ctatgacaca	1870
aatgaattga	gggtaggagg	agggtgcaca	taaccettac	cctacctctg	ccaaaaagtg	1930
ggggctgtac	tggggactgc	tcggatgatc	tttcttagtg	ctacttcttt	cagctgtccc	1990
tgtagcgaca	ggtctaagat	ctgactgcct	cctttctctg	gcctcttccc	ccttccctct	2050
tctcttcagc	taggctagct	ggtttggagt	agaatggcaa	ctaattctaa	ttttattta	2110
ttaaatattt	ggggttttgg	ttttaaagcc	agaattacgg	ctagcaccta	gcatttcagc	2170
agagggacca	ttttagacca	aaatgtactg	ttaatgggtt	ttttttaaa	attaaaagat	2230
taaataaaaa	atattaaata	aaacatgg				2258

<210> 25

⟨211⟩ 1973

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (130)...(1887)

<400> 25

gagcagacca ggcccggtgg agaattaggt gctgctggga gctcctgcct cccacaggat 60
tccagctgca gggagcctca gggactctgg gccgcacgga gttgggggca ttccccagag 120
agcgtcgcc atg gtc tgc agg gag cag tta tca aag aat cag gtc aag 168
Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys

tgg gtg ttt gcc ggc att acc tgt gtg tct gtg gtg gtc att gcc gca 216

Trp	Val	Phe	Ala	Gly	Ile	Thr	Cys	Val	Ser	Val	Val	Val	Ile	Ala	Ala	
•	, 15					20					25					
ata	gtc	ctt	gcc	atc	acc	ctg	cgg	cgg	cca	ggc	tgt	gag	ctg	gag	gcc	264
Ile	Val	Leu	Ala	Ile	Thr	Leu	Arg	Arg	Pro	Gly	Cys	Glu	Leu	Glu	Ala	
30			-		35					40					45	
tgc	agc	cct	gat	gcc	gac	atg	ctg	gac	tac	ctg	ctg	agc	ctg	ggc	cag	312
Cys	Ser	Pro	Asp	Ala	Asp	Met	Leu	Asp	Tyr	Leu	Leu	Ser	Leu	Gly	Gln	
				50					55					60		
atc	agc	cgg	cga	gat	gcc	ttg	gag	gtc	acc	tgg	tac	cac	gca	gcc	aac	360
Ile	Ser	Arg	Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn .	
			65					70					75			
agc	aag	aaa	gcc	atg	aca	gct	gcc	ctg	aac	agc	aac	atc	aca	gtc	ctg	408
Ser	Lys	Lys	Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	
		80					85					90				
gag	gct	gac	gtc	aat	gta	gaa	ggg	ctc	ggc	aca	gcc	aat	gag	aca	gga	456
Glu	Ala	Asp	Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	
: .	95	, .				100					105			•		•
gtt	ccc	atc	atg	gca	cac	ccc	ccc	act	atc	tac	agt	gac	aac	aca	ctg	504
Val	Pro	Ile	Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	
110				·	115					120					125	
gag	cag	tgg	ctg	gac	gct	gtg	ctg	ggc	tct	tcc	caa	aag	ggc	atc	aaa	552
Glu	Gln	Trp	Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	
•••			٠, ٠٠	130	. `				135					140	·	
ctg	gac	ttc	aag	aac	atc	aag	gca	gtg	ggc	ccc	tcc	ctg	gac	ctc	ctg .	600
Leu	Asp	Phe	Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leu	

			145					150					155	•	• • •		
cgg	cag	ctg	aca	gag	gaa	ggc	888	gtc	cgg	cgg	ccc	ata	tgg	atc	aac		648
Arg	Gln	Leu	Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn		
	•	160	•				165					170					
gct	gac	atc	tta	aag	ggc	ccc	aac	atg	ctc	atc	tca	act	gag	gtc	aat		696
Ala	Asp	Ile	Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn		
	175					180				•	185	- · .	,				
gcc	aca	cag	ttc	ctg	gcc	ctg	gtc	cag	gag	aag	tat	ccc	aag	gct	acc		744
Ala	Thr	Gln	Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr		
190					195					200				-	205		
cta	tct	cca	ggc	tgg	acc	acc	ttc	tac	atg	tcc	acg	tcc	cca	aac	agg		792
Leu	Ser	Pro	Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg		
				210					215					220			
acg	tac	acc	caa	gcc	atg	gtg	gag	aag	atg	cac	gag	ctg	gtg	gga	gga		840
Thr	Tyr	Thr	Gln	Ala	Met	Val	G1u	Lys	Met	His	Glu	Leu	Val	Gly	Gly	•	•
		٠.,	225					230					235				
gtg	ccc	cag	agg	gtc	acc	ttc	cct	gta	cgg	tct	tcc	atg	gtg	cgg	gct		888
Val	Pro	Gln	Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala		
		240				•	245	٠				250			* *		
gcc	tgg	ccc	cac	ttc	agc	tgg	ctg	ctg	agc	caa	tct	gag	agg	tac	agc		936
Ala	Trp	Pro	His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser		
	255					260					265			,	٠.		
ctg	acg	ctg	tgg	cag	gct	gcc	tcg	gac	ccc	atg	tcg	gtg	gaa	gat	ctg		984
															Leu		
		• :													285		

ctc	tac	gtc	cgg	gat	aac	act	gct	gtc	cac	caa	gtc	tac	tat	gac	atc	1032
Leu	Tyr	Val	Arg	Asp	Asn	Thr	Ala	Val	His	Gln _.	Val	Tyr	Tyr	Asp	Ile	
-	-		٠	290					295					300		
ttt	gag	cct	ctc	ctg	tca	cag	ttc	aag	cag	ctg	gcc	ttg	aat	gcc	aca	1080
Phe	G1u	Pro	Leu	Leu	Ser	Gln	Phe	Lys	Gln	Leu	Ala	Leu	Asn	Ala	Thr	
			305					310					315			
cgg	aaa	cca	atg	tac	tac	aca	gga	ggc	agc	ctg	atc	cct	ctt	ctc	cag	1128
Arg	Lys	Pro	Met	Tyr	Tyr	Thr	Gly	Gly	Ser	Leu	Ile	Pro	Leu	Leu	Gln	
		320					325					330				
ctg	cct	ggg	gat	gac	ggt	ctg	aat	gtg	gag	tgg	ctg	gtt	cct	gac	gtc	1176
Leu	Pro	Gly	Asp	Asp	Gly	Leu	Asn	Val	Glu	Trp	Leu	Val	Pro	Asp	Val	
	335					340	•				345					
cag	ggc	agc	ggt	aaa	aca	gca	aca	atg	acc	ctc	cca	gac	aca	gaa	ggc	1224
Gln	Gly	Ser	Gly	Lys	Thr	Ala	Thr	Met	Thr	Leu	Pro	Asp	Thr	Glu	Gly	
350					355					360					365	
															ccc	1272
Met	Ile	. Lei	. Leu	Asn	Thr	Gly	Leu	Glu	Gly	Thr	Val	Ala	Gli		Pro	
-				370					375					380		
															g tcc.	1320
Val															ı Ser	
			. 385										39			
															t ttg	1368
Cys	s Le	u Gl											'	e Hi	s Leu	
£		40												-	• •	
caa	a at	a gc	g ga	gcc	c gc	a gc	c ct	c cg	g cc	a tc	c ct	g gc	c _. tt	g ct	g gca	1416

BRICHACIO MO UTINECURO I -

Gln	Ile	Ala	Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	
	415	•				420					425	• •		, •		
cgc	ctc	tcc	agc	ctt	ggc	ctc	ttg	cat	tgg	cct	gtg	tgg	gtt	ggg	gcc	1464
Arg	Leu	Ser	Ser	Leu	Gly	Leu	Ļeu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	
430					435					440		9 •		- • ·	~445	
aaa	atc	tcc	cac	ggg	agt	ttt	tcg	gtc	ccc	ggc	cat	gtg	gct	ggc	aga	1512
Lys	Ile	Ser	His	Gly	Ser	Phe	Ser	Val	Pro	Gly	His	Val	Ala	Gly	Arg	
				450			•		455					460		
gag	ctg	ctt	aca	gct	gtg	gct	gag	gtc	ttc	ccc	cac	gtg	act	gtg	gca	1560
Glu	Leu	Leu	Thr	Ala	Val	Ala	Glu	Val	Phe	Pro	His	Val	Thr	Val	Ala	1
•	•		465				٠	470					475			
cca	ggc	tgg	cct	gag	gag	gtg	ctg	ggc	agt	ggc	tac	agg	gaa	cag	ctg	1608
Pro	Gly	Trp	Pro	Glu	Glu	Val	Leu	Gly	Ser	Gly	Tyr	Arg	Glu	Gln	Leu	
		480					485		•	•		490	•		•	•
ctc	aca	gat	atg	cta	gag	ttg	tgc	cag	ggg	ctc	tgg	caa	cct	gtg	tcc	1656
Leu	Thr	Asp	Met	Leu	Glu	Leu	Cys	Gln	Gly	Leu	Trp	Gln	Pro	Val	Ser	
•	495					500					505	•		,		
ttc	cag	atg	cag	gcc	atg	ctg	ctg	ggc	cac	agc	aca	gct	gga	gcc	ata	1704
Phe	Gln	Met	Gln	Ala	Met	Leu	Leu	Gly	His	Ser	Thr	Ala	Gly	Ala	[:] Ile	
510	٠	•	•		515	. ,		•		520			•		525	
ggc	agg	ctg	ctg	gca	tcc	tcc	ccc	cgg	gcc	acc	gtc	aca	gtg	gag	cac	1752
Gly	Arg	Leu	Leu	Ala	Ser	Ser	Pro	Arg	Ala	Thr	Val	Thr	Val	Glu	·His	
			•	530					535		. :		٠.	540	. 1	
aac	cca	gct	ggg	ggc	gac	tat	gcc	tct	gtg	agg	aca	gca	ttg	ctg	gca	1800
ÀSS	Dwa	410	G1 _w	G1 _v	Acn	Tur	Δ1a	Sar	Val	Ara	Thr	Ala	Lau	ررغ آ	· 41a	

545	550	555	
gct agg gct gtg gac agg a	acc cga gtc tac tac	agg cta ccc cag ggc	1848
Ala Arg Ala Val Asp Arg T	Thr Arg Val Tyr Tyr	Arg Leu Pro Gln Gly	
560	565	570	
tac cac aag gac ttg ctg g	gct cat gtt ggt aga	aac tgagcaccca ggggtg	1900
Tyr His Lys Asp Leu Leu A	Ala His Val Gly Arg	Asn	
575 5	580	585	
gtgggccagc ggacctcagg gcg	ggaggett cccacgggga	ggcaggaaga aataaaggtc	1960
tttggctttc tcc			1973
⟨210⟩ 26			
<211> 1606			
<212> DNA			
<213> Homo sapiens			
⟨220⟩	·	+	
<221> CDS			
<222>. (135) (1130)		,	
<400> _. 26			
attgtgcggc gctggtcccc tca	agagggtt cctgctgctg	ccggtgcctt ggaccctccc	60
cetegettet egttetactg cee	ccaggagc ccggcgggtc	cgggactccc gtccgtgccg	120
gtgcgggcgc cggc atg tgg	ctg tgg gag gac cag	ggc ggc ctc ctg ggc	170
Met Trp	Leu Trp Glu Asp Gln	Gly Gly Leu Leu Gly.	
$p_{\mathbf{x}_{i}}$, q_{i} , p_{i}	5	10	
cct ttc tcc ttc ctg ctg	cta.gtg.ctg ctg ctg	gtg acg cgg agc ccg	218
Pro Phe Ser Phe Leu Leu	Leu Val Leu Leu Leu	Val Thr Arg Ser Pro	•

		15					20					25	•			
gtc	aat	gcc	tgc	ctc	ctc	acc '	ggc	agc '	ctc	ttc	gtt	cta	ctg	cgc	gtc	266
Val	Asn	Ala	Cys	Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	
	30					35			÷		40					
ttc	agc	ttt	gag	ccg	gtg	ссс	tct	tgc	agg	gcc	ctg	cag	gtg	ctc	aag ·	314
Phe	Ser	Phe	Glu	Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys	
45					50					55					60	
ccc	cgg	gac	cgc	att	tct	gcc	atc	gcc	cac	cgt	ggc	ggc	agc	cac	gac	362
Pro	Arg	Asp	Arg	Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	
				65					70					75	;	
gcg	ccc	gag	aac	acg	ctg	gcg	gcc	att	cgg	cag	gca	gct	aag	aat	gga	410
Ala	Pro	Glu	Asn	Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asn	Gly	
			80)				85					90)		;
gca	aca	ggc	gtg	gag	ttg	gac	att	gag	ttt	act	tct	gac	ggg	g ati	cct	458
Ala	Thr	· Gly	Val	Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	. Ası	Gly	, I1e	e Pro	
		95	5				100)				108	5			
gto	tta	ate	g cad	gat	; aac	aca	gta	gat	age	ace	act	t gai	t gg	g ac	t ggg	506
Va]	. Le	ı Met	t His	s Asp	Asn	Thr	· Val	. Ası	Are	g Thr	Th	r Asj	p G1;	y Th	r Gly	
	110) ·				115	5.		•		12	0 -		•	٠ ; .	•
cġa	a tti	g tg	t ga	t ttį	g aca	tt1	t gaa	a caa	a ati	t ag	g aa	g ct	g aa	t cc	t gca	554
Ar	g Le	u Cy:	s As	p Lei	u Thi	r Phe	e Glu	ı Glı	n·Ile	e Ar	g Ly	s Le	u As	n·Pr	o Ala	
12	5		,	٠,	130	0	· •		- '	13	5	· •,			140	
gc	a aa	c ca	c ag	a ct	c ag	g aa	t ga	t tt	c cc	t ga	t ga	a aa	g at	c cc	t acc	602
															o Thr	
															55.	<u>:</u>

cta	agg	gaa	gct	gtt	gca	gag	tgc	cta	aac	cat	аас	ctc	aca	atc	ttc	650
Leu	Arg	Glu	Ala	Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Lhi	Ile	Phe	-
			160	·				165					170			
ttt	gat	gtc	aaa	ggc	cat	gca	cac	aag	gct	act	gag	gct	cta	aag	aaa	698
Phe	Asp	Val	Lys	Gly	His	Ala	His	Lys	Ala	Thr	Glu	Ala	Leu	Lys	Lys	
		175	•				180					185				
atg	tat	atg	gaa	ttt	cct	caa	ctg	tat	aat	aat	agt	gtg	gtc	tgt	tct	746
Met	Tyr	Met	Glu	Phe	Pro	Gln	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser	
	190					195					200					
ttc	ttg	cca	gaa	gtt	atc	tac	aag	atg	aga	caa	aca	gat	cgg	gat	gta	794
Phe	Leu	Pro	Glu	Val	Ile	Tyr	Lys	Met	Arg	Gln	Thr	Asp	Arg	Asp	Val	
205				•	210					215					220	•
ata	aca	gca	tta	act	cac	aga	cct	tgg	agc	cta	agc	cat	aca	gga	gat	842
Ile	Thr	Ala	Leu	Thr	His	Arg	Pro	Trp	Ser	Leu	Ser	His	Thr	Gly	Asp	
				225					230					235		
ggg	aaa	cca	cgc	tat	gat	act	ttc	tgg	aaa	cat	ttt	ata	ttt	gtt	atg	890
Gly	Lys	Pro	Arg	Tyr	Asp	Thr	Phe	Trp	Lys	His	Phe	Ile	Phe	Val	Met	
			240					245					250			
atg	gac	att	ttg	ctc	gat	tgg	agc	atg	cat	aat	atc	ttg	tgg	tac	ctg	938
Met	Asp	Ile	Leu	Leu	Asp	Trp	Ser	Met	His	Asn	Ile	Leu	Trp	Tyr	Leu	
		255					260					265			e .	
tgt	gga	att	tca	gct	ttc	ctc	atg	caa	aag	gat	ttt	gta	tcc	ccg	gcc	986
Cys	Gly	Ile	Ser	Ala	Phe	Leu	Met	Gln	Lys	Asp	Phe	Val	Ser	Pro	Ala	
	270					275					280			٠, ٠		
tac	tte	ลลฐ	ลลด	tee	tca	get.	ลลล	o o a	atc	cag	σtt	σtt	σσt	100	act	1034

Tyr Leu Lys Lys Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thr	
285 290 295 300	
gtt aat acc ttt gat gaa aag agt tac tac gaa tcc cat ctt ggt tcc	1082
Val Asn Thr Phe Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser	
305 310 315	
age tat ate act gae age atg gta gaa gae tge gaa eet cae tte	1127
Ser Tyr Ile Thr Asp Ser Met Val Glu Asp Cys Glu Pro His Phe	
320 325 330	
tag actttcacgg tgggacgaaa cgggttcaga aactgccagg ggcctcatac	1180
agggatatca aaataccctt tgtgctagcc caggccctgg ggaatcaggt gactcacaca	1240
aatgcaatag ttggtcactg catttttacc tgaaccaaag ctaaacccgg tgttgccacc	1300
atgcaccatg gcatgccaga gttcaacact gttgctcttg aaaatctggg tctgaaaaaa	1360
cgcacaagag cccctgccct gccctagctg aggcacacag ggagacccag tgaggataag	1420
cacagattga attgtacaat ttgcagatgc agatgtaaat gcatgggaca tgcatgataa	1480
ctcagagttg acattttaaa acttgccaca cttatttcaa atatttgtac tcagctatgt	1540
taacatgtac tgtagacatc aaacttgtgg ccatactaat aaaattatta aaaggagcac	1600
taaagg	1606
<210> 27	
<211> 2380	
<212> DNA	
<213> Homo sapiens	
(220)	
<221> CDS	
<222> (247) (1284)	

BNSDOCID: <WO 0112660A2 L

4.00

<400> 27

agtgtggacc tggactcgaa tcccgttgcc gactcgcgct ctcggcttct gctccggggc	. 60
ttetteectg eccegecegg geectgaecg tggettette eccggeetga tetgegeage	120
ccggcgggcg cccagaagga gcaggcggcg cgggggggg	180
cggagctgcg gcggcaagcg ggctgggact gctcggccgc ctcctgcccg gcgagcagct	240
cagacc atg tcg cct gaa gaa tgg acg tat cta gtg gtt ctt ctt atc	288
Met Ser Pro Glu Glu Trp Thr Tyr Leu Val Val Leu Leu Ile	
1 5	
tcc atc ccc atc ggc ttc ctc ttt aag aaa gcc ggt cct ggg ctg aag	336
Ser Ile Pro Ile Gly Phe Leu Phe Lys Lys Ala Gly Pro Gly Leu Lys	
15 20 25 30	
aga tgg gga gca gcc gct gtg ggc ctg ggg ctc acc ctg ttc acc tgt	384
Arg Trp Gly Ala Ala Ala Val Gly Leu Gly Leu Thr Leu Phe Thr Cys	
35 40 45	
ggc ccc cac act ttg cat tct ctg gtc acc atc ctc ggg acc tgg gcc	432
Gly Pro His Thr Leu His Ser Leu Val Thr Ile Leu Gly Thr Trp Ala	
ctc att cag gcc cag ccc tgc tcc tgc cac gcc ctg gct ctg gcc tgg	480
Leu Ile Gln Ala Gln Pro Cys Ser Cys His Ala Leu Ala Leu Ala Trp	
. 65 70 75	
act ttc tcc tat ctc ctg ttc ttc cga gcc ctc agc ctc ctg ggc ctg	528
Thr Phe Ser Tyr Leu Leu Phe Phe Arg Ala Leu Ser Leu Leu Gly Leu	
. 80	
ccc act ccc acg ccc ttc acc aat gcc gtc cag ctg ctg ctg acg ctg	576
Pro Thr Pro Thr Pro Phe Thr Asn Ala Val Gln Leu Leu Thr Leu	

95					100					105				,	110	
aag	ctg	gtg	agc	ctg	gcc	agt	gaa	gtc	cag	gac	ctg	cat	ctg	gcc	cag	624
Lys	Leu	Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	Gln	
,		•		115				1	120					125		
agg	aag	gaa	atg	gcc	tca	ggc	ttc	agc	aag	ggg	ccc	acc	ctg	ggg	ctg'	672
Arg	Lys	Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu ·	
			130					135		• •		÷	140			
ctg	ссс	gac	gtg	ccc	tcc	ctg	atg	gag	aca	ctc	agc	tac	agc	tac	tgc	720
Leu	Pro	Asp	Val	Pro	Ser	Leu	Met	Glu	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys	. •
		145					150					155				į
tac	gtg	gga	atc	atg	aca	ggc	ccg	ttc	ttc	cgc	tac	cgc	acc	tac	ctg	768
Tyr	Val	Gly	Ile	Met	Thr	Gly	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu ·	
	160					165					170				. •	
gac	tgg	ctg	gag	cag	ccc	ttc	ccc	ggg	gca	gtg	ccc	agc	ctg	cgg	ccc	816
Asp	Trp	Leu	Glu	Gln	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	
175	,				180					185	. •	* .			190	
ctg	ctg	cgc	cgc	gcc	tgg	ccg	gcc	ccg	ctc	ttc	ggc	ctg	ctg	ttc	ctg	864
Leu	Leu	Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	Gly	Leu	Leu	Phe	Leu	
••		•		195					200	<u>.</u>				205	; <u>.</u>	
ctc	tcc	tct	cac	ctc	ttc	ccg	ctg	gag	gcc	gtg	cgc	gag	gac	gcc	ttc	912
Leu	Ser	Ser	His	Leu	Phe	Pro	Leu	Glu	Ala	Val	Arg	Glu	···Asp	Ala	Phe	
		-	210		٠.			215		•			220): t		
tac	gcc	cgc	ccg	ctg	ccc	gcc	cgc	ctc	ttc	tac	atg	ato	ccc	gto	ttc	960
Tyr	Ala	Arg	Pro	Leu	Pro	Ala	Arg	Leu	Phe	Tyr	Met	Ile	Pro	Val	: Phe-	
<u>.</u> .		225				*	230	· .	· •		1 .	. 235	;. ·		P. 015	:

ttc gcc ttc cgc atg cgc	ttc tac gtg gcc t	gg att gcc gcc gag tgc 10	800
Phe Ala Phe Arg Met Arg	Phe Tyr Val Ala T	rp Ile Ala Ala Glu Cys	-
240	245	250	
ggc tgc att gcc gcc ggc	ttt ggg gcc tac c	cc gtg gcc gcc aaa gcc 10	056
Gly Cys Ile Ala Ala Gly	Phe Gly Ala Tyr P	ro Val Ala Ala Lys Ala	
255 260	2	65 270	
cgg gcc gga ggc ggc ccc	acc ctc caa tgc c	ca ccc ccc agc agt ccg 1	104
Arg Ala Gly Gly Gly Pro	Thr Leu Gln Cys P	ro Pro Pro Ser Ser Pro	
275	. 280	285	-
gag aag gcg gct tcc ttg	gag tat gac tat g	ag acc atc cgc aac atc 1	152
Glu Lys Ala Ala Ser Leu	Glu Tyr Asp Tyr G	lu Thr Ile Arg Asn Ile	
290	295	300	
gac tgc tac agc aca gat	ttc tgc gtg cgg g	tg cgc gat ggc atg cgg 1	200
Asp Cys Tyr Ser Thr Asp	Phe Cys Val Arg V	al Arg Asp Gly Met Arg	
305	310	315	
tac tgg aac atg acg gtg	cag tgg tgg ctg g	cg cag tat atc tac aag 1	248
Tyr Trp Asn Met Thr Val	Gln Trp Trp Leu A	la Gln Tyr Ile Tyr Lys	
320	325	330	
age gea cet gee egt tee	tat gtc ctg cgc c	tt tagaagcaga aactcagcc 1	300
Ser Ala Pro Ala Arg Ser	Tyr Val Leu Arg L	eu	
335 340	3	45	
gggtgcggcg gctcacgcct g	gaatcccag cactttgg	ga ggcccaagca ggtggatcat l	360
gaggagcgcc tggaccatgc 1	gctgagcgc ctactggc	ac ggcctccacc cgggctacta 1	420
cctgagette ctgaccatec o	gctgtgcct ggctgccg	ag ggccggctgg agtcagccct 1	480
gcgggggcgg ctgagcccag g	gggccagaa ggcctggg	ac tgggtgcact ggttcctgaa 1	540

BNSDOCID -WO DIJORGAA I -

			-4444	-+-++	component	1600
gatgcgcgcc	tatgactaca	tgtgcatggg	cttcgtgctg	ctctccttgg	Cegacaccet	1000
teggtactgg	gcctccatct	acttctgtat	ccacttcctg	gccctggcag	ccctggggct	1660
ggggctggct	ttaggtgggg	gcagccccag	ccggcggaag	gcagcatccc	agcccaccag	1720
ccttgccccg	gagaagctcc	gggaggagta	agctgtcacg	acgctccctc	tgccagctgg	1780
tcccgggaat	tctgtgaacc	aggctgctgt	ctcctccca	gaaagagtcc	ttaccttgga	1840
gagggtcctg	gagagaattt	cctcttcccc	agctaaatac	cctgcctgca	actgaagcag	1900
acccgggggt	gtcctccctg	ccctctgccc	agaggccacc	tccactccta	caaaatcaaa	1960
gtattgtcca	gacaagagtc	actggcccct	gctccagctt	ctgggtatcc	agagagcact	2020
gcacttcccc	aaaacggaag	gggcccctgg	gcagtgggtt	ttgggcaaat	tccctttctt	2080
tgcatccaca	atgtggggtc	ggagcttggg	ggcaggtcct	gggagtggga	agcctcttcc	2140
ttgtgtcttt	cgctccactt	ttagctcatc	gcaccaatat	tgcagacttg	gaaggaagca	2200
taagcttccc	atttcacaaa	ggggaaactg	aggtgcgggt	gegegggeet	ggggacggcc	2260
gtcccatggc	ttccatctga	gccacctcgg	gaccccagca	ctcctggcgc	cctcttctca	2320
togottggco	tatgacaggt	caccgtgtgt	aaatctttco	: caataaagtg	ttgcacaaag	2380

<210> 28

<211> 2017

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (360)...(629)

<400> 28

tccacacatt aagaaacgct ggtggagttt taaatgcctc tccggggaag gaggaaagcc 60
tgagaatgaa tctgacctca gacccaaatc cattcaacgg agttctggta atttggaaga 120

agga	aaga	gca	acct	ggaa	ac t	gaca	ggaaa	a gg	atga	caag	ttg	ggag	tca	cagg	tatatg	180
atg	ggcc	tcc	ccat	gtgg	at c	ctta	gtgc	t gt	ggca	gagc	cct	tgtt	att	gtgc	tgggat	240
ttt	ccct	cca	gctc	ccgg	cc g	gaage	ctgg	g cte	cacg	tggg	agc	tcag	tgc	cctc	ctgcta	300
caga	atct	gtc	tctt	cctt	ac aa	atgg	ggtge	c tg	gcac	tgtg	ggt	ctg	gtg	acgc	acgtg	359
atg	tac	atg	caa	gat	tat	tgg	agg	acc	tgg	ctc	aag	ggg	ctg	cgc	ggc	407
Met	Tyr	Met	Gln	Asp	Tyr	Trp	Arg	Thr	Trp	Leu	Lys	Gly	Leu	Arg	Gly	
1				. 5	÷				10					15		
ttc	ttc	ttc	gtg	ggc	gtc	ctc	ttc	tcg	gcc	gtc	tcc	atc	gct	gcc	ttc	455
Phe	Phe	Phe	Val	Gly	Val	Leu	Phe	Ser	Ala	Val	Ser	Ile	Ala	Ala	Phe	
			20					25					30			
tgc	acc	ttc	ctc	gtg	ctg	gcc	atc	acc	cgg	cat	cag	agc	ctc	aca	gac	503
Cys	Thr	Phe	Leu	Val	Leu	Ala	Ile	Thr	Arg	His	Gln	Ser	Leu	Thr	Asp	
		. 35					40					45				
ccc	acc	agc	tac	tac	ctc	tcc	agc	gtc	tgg	agc	ttc	att	tcc	ttc	aag	551
Pro	Thr	Ser	Tyr	Tyr	Leu	Ser	Ser	Val	Trp	Ser	Phe	Ile	Ser	Phe	Lys	
	50			٠		55					60				.•	
tgg	gcc	ttc	ctg	ctc	agc	ctc	tat	gcc	cac	cgc	tac	cgg	gct	gac	.ttt	59 9
Trp	Ala	Phe	Leu	Leu	Ser	Leu	Tyr	Ala	His	Arg	Tyr	Arg	Ala	Asp	Phe	
65	- •	•			70					75			•	•	80	
gct	gac	atc	agc	atc	ctc	agc	gat	ttc	tgad	ccae	388 8	ggtg				640
Ala	Asp	Ile	Ser	Ile	Leu	Ser	Asp	Phe								
				85											,	
aggt	tctc	tgc a	accci	tgggi	38 88	ccti	tagga	a cci	tgga	ctca	gcct	tctga	aga	tgtt	gggaga	700
ggct	tacto	ccc a	ассс	cctg	gt ga	accc	cagaa	a cta	gtgg	aga	aaat	tacad	cag	cagg	acgagt	760
gtgg	gtcte	cc a	aggaa	agct	gt co	ctgc	ccgt	cco	cttte	gag	gaas	acct	gag	tgtg	gtagag	820

880	agaccttttc	gggcagcttt	cctggccaga	tcctcatcag	gccatgttgt	aggggatcct
940	ttgagatgga	tttttttt	ttttctttt	ctttcttttt	gttttctttt	aaatgaatct
1000	tgcaacctcc	ctcagctcac	gtagtgcgat	ctggagtgca	gtcacccagg	gtcttactct
1060	attacaggca	agtagctggg	tggcctctca	tctcctgcct	ttcaagcaat	gcctcccagg
1120	tgccatgttg	gacagggttt	ttttagtaga	atttttgtgt	tgcccggcaa	tctgccacca
1180	ttccaaagtg	cgcctcagcc	gtgattcacc	ctgatctcag	tctcgaactc	gccaggctgg
1240	gcacgcagtg	tgttttctta	ggcctggatc	caccgcgccc	aggtgtgagc	ctgggattat
1300	tagggccatg	ggtcaaggtg	aaagtcaaga	ccagggcaac	gtacttaagg	aggaatcttt
1360	cactctcttc	ctgccctagg	tccatccccg	ggcaagggtt	ctatgctgca	aggcctggac
1420	agacctctta	tatctagcag	agttcagaaa	tggggaggtc	gttgggcacc	ccaaggccag
1480	gagtgtgcta	ggtctcccat	tcccagagct	atcctgttgt	ccagcacccc	aacccccatc
1540	ccatacaccc	acacaggcat	tcactcacac	cccacccatc	gccgtggccc	gagccagata
1600	ctgcccctgt	gaatgtgctt	gggtcacggg	gccagactca	cccaaatgag	cagaagactt
1660	aacctgtgcc	agagcccca	gaggctggaa	caacatagta	gggaaggggg	aagggctttg
1720	ctgcacccag	agtgcccttg	gccttctcag	tttccattct	cagecetgeg	catgcccctc
1780	cttcaactag	teteactgee	ctccagcccc	ttctctccca	aggagagacc	accaccggco
1840	tgcccataca	tctgcttttc	aggacacaaa	tcccttctga	ttttacatt	agctttcacc
1900	gatgattttc	ttggtacaag	gaaggggctg	acttgggagg	ggctcaccta	ctggcccaag
1960	gcccctcagc	gatgtgtcct	cttcccatct	cggtctcccc	g ccattttgca	tgttagactg
2017	ttgtatc	cagcggccat	agcaaaaata	ctgtcacttt	atctgtgtca	tctttgccti

⟨210⟩ 29

<211> 1606

<212> DNA

<213> Homo sapiens

<220>			
<221> CDS	* *		a •
<222> (30)(1250)	: '		
<400> 29			
acctcttccg tcggctgaat tgcggc	gt atg cgc ggc	tct gtg gag tgc a	cc 53
	Met Arg Gly	y Ser Val Glu Cys T	hr .
• •	. 1	5	
tgg ggt tgg ggg cac tgt gcc	ecc age ecc etg	g ctc ctt tgg act c	ta 101
Trp Gly Trp Gly His Cys Ala	Pro Ser Pro Leu	Leu Leu Trp Thr L	eu
10 15		20	
ctt ctg ttt gca gcc cca ttt i	gc ctg ctg ggg	g gag aag acc cgc c	ag 149
Leu Leu Phe Ala Ala Pro Phe	Gly Leu Leu Gly	Glu Lys Thr Arg G	ln
25 30	35	5	40
gtg tct ctg gag gtc atc cct a	ac tgg ctg ggc	ccc ctg cag aac c	tg 197
Val Ser Leu Glu Val Ile Pro	Asn Trp Leu Gly	Pro Leu Gln Asn L	eu
45	50	. 55	
ctt cat ata cgg gca gtg ggc	icc aat tcc aca	ctg cac tat gtg t	gg 245
Leu His Ile Arg Ala Val Gly	Thr Asn Ser Thr	Leu His Tyr Val T	rp
60	65	. 70	
agc agc ctg ggg cct ctg gca	gtg gta atg gtg	g gcc acc aac acc c	cc 293
Ser Ser Leu Gly Pro Leu Ala	Val Val Met Val	Ala Thr Asn Thr P	ro
75	80 .	85	•
cac age acc etg age gte aac	igg ago ctc ctg	g cta tcc cct gag c	çc 341
His Ser Thr Leu Ser Val Asn	Irp Ser Leu Leu	ı Leu Ser Pro Glu P	ro
90		100	· · ·

gat	ggg	ggc	ctg	atg	gtg	ctc	cct	aag	gac	agc	att	cag	ttt	tct	tct	389
Asp	Gly	Gly	Leu	Met	Val	Leu	Pro	Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	
105		•			110	•				115			• •	•	120-1-	
gcc	ctt	gtt	ttt	acc	agg	ctg	ctt	gag	ttt	gac	agc	acc	aac	gtg	tcc	437
Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu	Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	
				125				•	130					135		
gat	acg	gca	gca	aag	cct	ttg	gga	aga	cca	tat	cct	cca	tac	tcc	ttg	485
Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly	Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	
			140					145					150	٠,		
gcc	gat	ttc	tct	tgg	aac	aac	atc	act	gat	tca	ttg	gat	cct	gcc	acc	533
Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile	Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	
		155		•			160					165		. •		
ctg	agt	gcc	aca	ttt	caa	ggc	cac	ccc	atg	aac	gac	cct	acc	agg	act	581
Leu	Ser	Ala	Thr	Phe	Gln	Gly	His	Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	
	170	• •				175					180	. د		•-	,	
ttt	gcc	aat	ggc	agc	ctg	gcc	ttc	agg	gtc	cag	gcc	ttt	tcc	agg	tcc	629
Phe	'Ala'	Asn	Gly	Ser	Leu	Ala	Phe	Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser 🕝	
185	•				190		•			195					200	
agc	cga	cca	gcc	caa	ccc	cct	cgc	ctc	ctg	cac	aca	gca	gac	acc	tgt .	677
Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg	Leu	Leu	His	Thr	Ala	Asp	Thr	Cys	
-	•			205	•				210					215	٠.	
cag	cta	gag	gtg	gcc	ctg	att	gga	gcc	tct	ccc	cgg	gga	aac	cgt	tcc	728
Gln	Leu	Glu	Val	Ala	Leu	Ile	G1y	Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	
		-	220	• , ,		•		225	٠٠,.		٠.		230		e is t	
ctø	+++	aaa	cta	gag	ota	acc	909	tta	gar	cag	gge	cct	gar	tac.	ccc	773

BNSDCCID: <WC 0112660A2 1 :

· cass

Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr	Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	
		235				.· .	240	-	•			245				
tca	átg	cag	gag	cag	cac,	tcc	atc	gac	gat	gaa	tat	gca	ccg	gcç	gtc	821
Ser	Met	Gln	Glu	Gln	His	Ser	Ile	Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	
	250				-	255					260				·.	
ttc	cag	ttg	gac	cag	cta	ctg	tgg	ggc	tcc	ctc	cca	tca	ggc	ttt	gca	869
Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp	Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	
265	,	-		•	270	•				275	,				280	
cag	tgg	cga	cca	gtg	gct	tac	tcc	cag	aag	ccg	ggg	ggc	cga	gaa	tca	917
Gln	Trp	Arg	Pro	Val	Ala	Tyr	Ser	Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	
				285					290					295		
gcc	ctg	ccć	tgc	caa	gct	tcc	cct	ctt	cat	cct	gcc	tta	gca	tac	tct	965
Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro	Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	
			300					305					310	ı		
ctt	ccc	cag	tca	ccc	att	gtc	cga	gcc	ttc	ttt	ggg	tcc	cag	aat	aac	1013
Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg	Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	
		315	i				320	1				325	,	0	• ,	
															tat	1061
Phe	Cys	. Ala	Phe	Asn	Leu	Thr	Phe	Gly	Ala	Ser	Thr	Gly	Pro	Gly	Tyr	
	330					335					340				. •	
															tţc	1109
															y Phe	٠
															360	. = -
															a gtg	1157
Pr	o Pr	o Va	l As	p G1;	y Lei	ı Sei	r Pro	o Lei	u Va	l Le	u Gl	y Il	e Me	t Al	a Val	

	٠	*	•	365	•		!		370	• •		٠.		375	• •		
gcc	ctg	ggt	gcc	cca	ggg	ctc	atg	ctg	cta	ggg	ggc	ggc	ttg	gtt	ct	g	1205
Ala	Leu	Gly	Ala	Pro	Gly	Leu	Met	Leu	Leu	Gly	Gly	Gly	Leu	Val	Le	u	
	•	••	380		•			385			٠.		390		- "		
ctg	ctg	cac	cac	aag	äag	tac	tca	gag	tac	cag	tcc	ata	aat	taa	1 11		1250
Leu	Leu	His	His	Lys	Lys	Tyr	Ser	Glu	Tyr	Gln	Ser	Ile	Asn				
		395				•	400					405		-			
ggc	ccgc	tct	ctgg	aggg	aa g	gaca	ttact	t gaa	acct	gtct	tgc	tgtg	cct	cgaa	act	ctg	1310
gag	gttg	gag	catca	aagt	tc c	agcc.	ggcc	c ct	tcac	tccc	cca	tctt	gct	tttc	tgt	gga	1370
acc	tcag	agg	ccag	cctc	ga c	ttcc	tggag	g ac	ccc	aggt	ggg	gctt	cct	tcat	act	ttg	1430
ttg	gggg	act	ttgg	aggc	gg g	cagg	ggaca	a gg	gcta	ttga	taa	ggtc	ccc	ttgg	gtgt	tgc	. 1490
ctt	cttg	cat	ctcc	acac	at t	tccc	ttgga	a tg	ggac	ttgc	agg	ccta	aat	gaga	aggc	att	1550
ctg	actg	gtt	ggct	gccc	tg g	aagg	caaga	a aa	atag	attt	att	tttt	ttc	acag	gg		1606
<21	0> 3	0		•							•				• •	- /	
<21	1> 1	695												٠			
<21	2> D	NA	*	•				•						,			
<21	3> H	lomo	sapi	ens						•			•	•	α.	•	
<22	20>		٠		•					•						*:•	
<22	21> 0	DS			•					•				•	-		
			(6														
<40) (2)	30	. •	. •							•		• .		- 1	.`	
aci	agcc	gagc	agct				ggct										55
•		•		•		•			٠.		•	. •	•	. [Met	£ .`	

RNSCOCID: <WO 0112660A2 I

97 - 11 S S S S 24

act	gcc	gtc	ggc	gtg	cag	gcc	cag	agg	cct	ttg	ggc	caa	agg	cag	ccc	103
Thr	Ala	Val	Gly	Val	Gln	Ala	Gln	Arg	Pro	Leu	Gly	Gln	Arg	Gln	Pro	
			. 5			•		10					15			·
cgc	cgg	tcc	ttc	ttt	gaa	tcc	ttc	atc	cgg	acc	ctc	atc	atc	acg	tgt	151
Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	Ile	Arg	Thr	Leu	Ile	Ile	Thr	Cys	
		20					25					30				
gtg	gcc	ctg	gct	gtg	gtc	ctg	tcc	tcg	gtc	tcc	att	tgt	gat	ggg	cac	199
Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly	His	
	35					40					45					
tgg	ctc	ctg	gct	gag	gac	cgc	ctc	ttc	ggg	ctc	tgg	cac	ttc	tgc	acc	247
Trp	Leu	Leu	Ala	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys	Thr	
50					55					60				-	65	
acc	acc	aac	cag	agt	gtg	ccg	atc	tgc	ttc	aga	gac	ctg	ggc	cag	gcc	295
Thr	Thr	Asn	Gln	Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	Gln	Ala	
				70					75					80		
cat	gtg	ccc	ggg	ctg	gcc	gtg	ggc	atg	ggc	ctg	gta	cgc	agc	gtg	ggc	343
His	Val	Pro	Gly	Leu	Ala	Val	Gly	Met	Gly	Leu	Val	Arg	Ser	Val	Gly	
			85					90					95			
gcc	ttg	gcc	gtg	gtg	gcc	gcc	att	ttt	ggc	ctg	gag	ttc	ctc	atg	gtg	391
Ala	Leu	Ala	Val	Val	Ala	Ala	Ile	Phe	Gly	Leu	Glu	Phe	Leu	Met	Val	
*	•	100					105					110				
tcc	cag	ttg	tgc	gag	gac	aaa	cac	tca	cag	tgc	aag	tgg	gtc	atg	ggt.	439
Ser	Gln	Leu	Cys	Glu	Asp	Lys	His	Ser	Gln	Cys	Lys	Trp	Val	Met	Gly	
	-115					120					125					
tcc	atc	ctc	ctc	ctg	gtg	tct	ttc	gtc	ctc	tcc	tcc	ggc	ggg	ctc	ctg	487

Ser Ile Leu Leu Val Ser Phe Val Leu Ser Ser Gly Gly Leu Leu	· *
130 135 140 145	i
ggt ttt gtg atc ctc ctc agg aac caa gtc aca ctc atc ggc ttc acc	535
Gly Phe Val Ile Leu Leu Arg Asn Gln Val Thr Leu Ile Gly Phe Thr	•
150 155 160	
cta atg ttt tgg tgc gaa ttc act gcc tcc ttc ctc ctc ttc ctg aac	583
Leu Met Phe Trp Cys Glu Phe Thr Ala Ser Phe Leu Leu Phe Leu Asr	ı
165 170 175	•
gcc atc agc ggc ctt cac atc aac agc atc acc cat ccc tgg gaa tg	630
Ala Ile Ser Gly Leu His Ile Asn Ser Ile Thr His Pro Trp Glu	្ន
180 185 190	
accgtggaaa ttttaggccc cctccaggga catcagattc cacaagaaaa tatggtc	aaa 690
atgggacttt tccagcatgt ggcctctggt ggggctgggt tggacaaggg ccttgaa	acg 750
gctgcctgtt tgccgataac ttgtgggtgg tcagccagaa atggcccggg ggcctct	gca 810
cctggtctgc agggccagag gccaggaggg tgcctcagtg ccaccaactg cacaggc	tta 870
gccagatgtt gattttagag gaagaaaaaa acattttaaa actccttctt gaatttt	ctt 930
ccctggactg gaatacagtt ggaagcacag gggtaactgg tacctgagct agctgca	cag 990
ccaaggatag ttcatgcctg tttcattgac acgtgctggg ataggggctg cagaatc	cct 1050
ggggctccca gggttgttaa gaatggatca ttcttccagc taagggtcca atcagtg	cct 1110
attettecae cageteaaag ggeettegta tgtatgteee tggetteage tttggte	atg 1170
ccaaagagge agagttcagg attccctcag aatgccctgc acacagtagg tttccaa	acc 1230
atttgactcg gtttgcctcc ctgcccgttg tttaaacctt acaaaccctg gataacc	cca 1290
tettetagea getggetgte ecetetggga getetgeeta teagaaceet acettaa	iggt 1350
gggtttcctt ccgagaagag ttcttgagca agctctccca ggagggccca cctgact	tgct 1410
antacacago estececaag georgigigi geatgigiet gietitigig agggita	gac 1470

agco	tcag	388	cacc	attt	tt a	atcc	cagaa	з са	catt	tcaa	aga	gcac	gta	tcta	gacct	g	153
ctgg	acto	ctg	cagg	gggt	ga g	gggg	aacag	g cg	agag	cttg	ggt	aatg	att	aaca	cccat	g	159
ctgg	ggat	tgc	atgg	aggt	ga a	gggg	gccag	g ga	acca	gtgg	aga	tttc	cat	cctt	gccag	С	165
acgt	ctgt	tac	ttct	gttca	at t	aaag	tgcto	cc	tttc	tagt	cct	tt					169
<210	> 31	l															
<211	> 37	77					•										
<212	> PF	₹T	•			-							•	•	•		
<213	> Hc	эпо :	sapi	ens													
<400	> 31																
Met	Asp	Ser	Ala	Leu	Ser	Asp	Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly		
1				5					10					15			
Gly	Pro	Thr	Asn	Ser	Thr	Thr	Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile		
			20					25					30				
Ala	Leu	Ala	Tyr	Gly	Ser	Leu	Leu	Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe		
		35					40					45					
Phe	Gly	Ala	Leu	Arg	Ser	Val	Arg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser		
	50					55					60						
Asp	Met	Pro	Glu	Thr	Ile	Thr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile		
65		1			70					75					80		
Ile	Ala	Ser	Cys	Thr	Leu	Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe		
	i v			85					90		-			95			
Ser	Gln	G1u	Tyr	Ile	Asn	Leu	Leu	Leu	Ser-	Met	Tyr	Phe	Phe	Val	Leu		
•	.; ,		100					105					110				
Gly:	Ile	Leu	Ala	Leu	Ser	His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe :		

BUSDOCID -WO 0112660421

		115					120					125		•.	٠.	-
Phe	Pro	Ala	Ser	Phe	Pro	Asn	Arg	Gln	Tyr	Gln	Leu	Leu	Phe	Thr	Gln	
	130					135	,				140		.,			
Gly	Ser	Gly	Glu	Asn	Lys	Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr	
145					150					155					160	
Lys	Asp	Leu	Val	Cys	Leu	Gly	Leu	Ser	Ser	Ile	Val	Gly	Val	Trp	Tyr	
				165					170					175	٠.	
Leu	Leu	Arg	Lys	His	Trp	Ile	Ala	Asn	Asn	Leu	Phe	Gly	Leu	Ala	Phe	
			180					185					190			
Ser	Leu	Asn	Gly	Val	Glu	Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly	
		195					200			•		205		,	•	
Cys	Ile	Leu	Leu	Gly	Gly	Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe	;
	210					215					220					
Gly	Thr	Asn	Val	Met	Val	Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile	;
225			,		230					235		•			240)
Lys	Leu	Val	Phe	Pro	Gln	Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asr	1
	;	; .		245					250	. ,	,	•		255	·	
Asn	Phe	Ala	Met	Leu	Gly	Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe	3
			260					265					270	, .		
Ile	Ala	Leu	Leu	Leu	Arg	Phe	Asp	Ile	Ser	Leu	Lys	Lys	s Asr	Thu	Hi	5
		275	5				280)				285	5			•
Thr	- Tyr	r Phe	e Tyr	Thr	Ser	Phe	Ala	Ala	Tyr	· Ile	Phe	G1;	y Let	ı Gl	y Le	u
	290) ·				295	5 .	. •,			300). •	·: ·.		r. ***	٠:
Th	r Ile	e Phe	e Ile	e Met	t His	: Ile	e Phe	e Lys	His	s Ala	a Glr	ı Pro	o Ala	a Lei	u Le	u
309	5 ·: .	r (<u>.</u>	· 310)		"		319	5.	ı · -	٠.		- 32	0

Tyr	Leu	Val	Pro	Ala	Cys	Ile	Gly	Phe	Pro	Val	Leu	Val	Ala	Leu	Ala
				325					330					335	
Lys	Gly	Glu	Val	Thr	Glu	Met	Phe	Ser	Tyr	Glu	Glu	Ser	Asn	Pro	Lys
			340					345					350		
Asp	Pro	Ala	Ala	Val	Thr	Glu	Ser	Lys	Glu	Gly	Thr	Glu	Ala	Ser	Ala
		355					360					365			
Ser	Lys	Gly	Leu	Glu	Lys	Lys	Glu	Lys							
	370		. 1			375									;
<210)> 32	2													
<2 11	1> 81	l													
<212	2> PF	RT				ı									
<213	3> Ho	omo s	sapie	ens											
<400)> 32	2 .													
Met	Thr	Ala	His	Ser	Phe	Ala	Leu	Pro	Val	Ile	Ile	Phe	Thr	Thr	Phe
1			٠.	. 5					10					15	٠.
Trp	G1y	Leu	Val	Gly	Ile	Ala	Gly	Pro	Trp	Phe	Val	Pro	Lys	Gly	Pro
	,		20					25					30		
Asn	Arg	Gly	Val	Ile	Ile	Thr	Met	Leu	Val	Ala	Thr	Ala	Val	Cys	Cys
	· . •	:. 35	• :				40					45			
Tyr	Leu	Phe	Trp	Leu	Ile	Ala	Ile	Leu	Ala	Gln	Leu	Asn	Pro	Leu	Phe
	.50	٠.	٠	٠.		55					60	•		÷	٠.٠
Gly	Pro	Gln	Leu	Lys	Asn	Glu	Thr	Ile	Trp	Tyr	Val	Arg	Phe	Leu	Trp
65	. د د د		, :		.70					, 75		· .			. 80
Glu									•	•				:	7

BNSDOCID- - WO - 0112660A2 1 5

		21.													
<210	> -33	} ~ ·		•			,					. •	•	7	
<211	> 48	7													
<212	> PR	aT.		٠.				•			,	,	7		٠.
<213	> Hc	omo s	apie	ns										٠.	
<400	> 33	3								٠.				•	
Met	Gly	Asp	Thr	Gly	Leu	Arg	Lys	Arg	Arg	Glu	Asp	Glu	Lys	Ser	Ile
1				5					10					15	
Gln	Ser	Gln	Glu	Pro	Lys	Thr	Thr	Ser	Leu	Gln	Lys	Glu	Leu	Gly	Leu
			20					25					30		
Ile	Ser	Gly	Ile	Ser	Ile	Ile	Val	Gly	Thr	Ile	Ile	Gly	Ser	Gly	Ile ·
	ì	35					40					45 ·	٠.		
Phe	Val	Ser	Pro	Lys	Ser	Val	Leu	Ser	Asn	Thr	Glu	Ala	Val	Gly	Pro.
	50	•	٠,		-	55	. *				60				
Cys	Leu	Ile	Ile	Trp	Ala	Ala	Cys	Gly	Val	Leu	Ala	Thr	Leu	Gly	Ala
65	<u>.</u> •	. : •	:		70				٠.	.75	;				80
Leu	Cys	Phe	Ala	Glu	Leu	Gly	Thr	Met	Ile	Thr	Lys	Ser	Gly	Gly	Glu
				85					90	. •				-95	1 4
Tyr	Pro	Tyr	Leu	Met	Glu	Ala	Tyr	Gly	Pro	Ile	Pro	Ala	Tyr	Leu	Phe
		:	100	. •			٠,	105	,				110		• :
Ser	Trp	Ala	Ser	Leu	Ile	Val	Ile	Lys	Pro	Thr	Ser	Phe	Ala	Ile	Tle
:	11.	115	•	• •	. 1	. ·	120			٠,		125		•	••. •
															Cys
	120	1				125					140				+1

Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala	Ala	Ile	Leu
145					150					155					160
Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly	Ser	Tyr	Val
	: .	1		165					170					175	,
Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala	Ile	Ile	Ile
			180					185					190		
Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys	Asn	Phe	Asp
		195					200					205			
Asn	Ser	Phe	Glu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile	Ser	Leu	Ala
	210					215					220				
Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	Asp	Gly	Trp	Asn	Gln	Leu	Asn	Tyr
225	٠.		٠		230					235					240
Ile	Thr	Glu	Glu	Leu	Arg	Asn	Pro	Tyr	Arg	Asn	Leu	Pro	Leu	Ala	Ile
				245					250					255	
Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	Met	Asn	Val
		•	260					265					270	:	
Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	Ser	Gln	Ala
		275					280					285			
Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	Ser	Trp	Ile
	290					295					300				
Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	Asn	Gly	Thr
305					310					315				٠.	320
Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	Glu	Gly	His
				325					330				•	335	
Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	Thr	Pro	Ala

	340					345					350		
Pro Ala Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	Ile	Ile	Pro
355				•	360	.•				365	•		
Gly Asp Ile	Asn	Ser	Leu	Val	Asn	Tyr	Phe	Ser	Phe	Ala	Ala	Trp	Leu
370		•		375			. •		380		,		
Phe Tyr Gly	Leu	Thr	Ile	Leu	G1y	Leu	Ile	Val	Met	Arg	Phe	Thr	Arg
385			390					395	. 0	•		• • •	400
Lys Glu Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	Pro	Val	Leu
	a ^a	405					410					415	• •
Met Thr Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	Ile	Ser	Lys
	420					425					430		**
Pro Thr Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	Ser	Gly	Leu
435					440					445			, ·
Leu Phe Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	Ala	Gln	Lys
450 ·		•	• •	455	• •				460				
Ile Ser Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met	Glu	Val	Val
465		:	470		• 0	• •		475		:	•• 9		480
Pro Pro Glu	ı Glu	Asp	Pro	Glu									
		485	-	T		٠.	• •			•			5 (2)
<210> 34		٠	٠		•	٠.	.		•	• (0 •	٠	•	
<211> 375													
<212> PRT	٠							· • ·	٠	• . • .			الانتها ويمو
<213≻ Ношо	sap	iens											
<400> 34·		• 10		٠٠ ،	. r .	. ' • 0	i • .	• 1		:		· /.	

Met	Thr	Pro	Gln	Pro	Ala	Gly	Pro	Pro	Asp	Gly	Gly	Trp	Gly	Trp	Val
.1	' <i>‡</i> .			5					. 10			• =		15	
Val	Ala	Ala	Ala	Ala	Phe	Ala	Ile	Asn	Gly	Leu	Ser	Tyr	Gly	Leu	Leu
•		.••	20		٠.			25		•			30	• 0	
Arg	Ser	Leu	Gly	Leu	Ala	Phe	Pro	Asp	Leu	Ala	Glu	His	Phe	Asp	Arg
		. 35					40					45			
Ser	Ala	Gln	Asp	Thr	Ala	Trp	Ile	Ser	Ala	Leu	Ala	Leu	Ala	Val	Gln
	- 50					55		:			60				
Gln	Ala	Ala	Ser	Pro	Val	Gly	Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala
65					70					75					80
Arg	Pro	Val	Val	Met	Val	Gly	Gly	Val	Leu	Ala	Ser	Leu	Gly	Phe	Val
				85					90					95	
Phe	Ser	Ala	Phe	Ala	Ser	Gly	Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly
			100					105					110		
Leu	Leu	Ala	Gly	Phe	Gly	Trp	Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly
	•	115				•	120					125			
Thr	Leu	Ser	Arg	Tyr	Phe	Ser	Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu
	130					135					140				
Ala	Leu	Thr	Gly	Asn	Gly	Ala	Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu
145	:	•			150					155		•			160
Gln	Leu	Leu	Leu	Asp	Thr	Phe	Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu
				165					170					175	٠.
Gly	Ala	Ile	Thr	Leu	His	Leu	Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro
			180	٠				185					190		
Leu	Val	Leu	Pro	Gly	Asp	Pro	Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala

		195	•			•	200		•			205			
Ala	Leu	Gly	Leu	Ser	Leu	Phe	Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala
	210		٠.			215		٠.		•	220	:	0.	· · .	
Leu	Gly	Thr	Ala	Leu	Val	Gly	Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His
225		• :			230					235		:		÷	240
Leu	Ala	Pro	Arg	Phe	Arg	Pro	Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala
				245					250			•		255	٠,
Gly	Gly	Gly	Arg	Gly	Cys	Asp	Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu
			260				٠	265					270		
Arg	Val	Ala	Gly	Arg	Pro	Arg	Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly
	•	275					280				•	285			
Arg	Ile	Arg	Gly	Ser	Asp	Trp	Ala	Gly	Ala	Val	Gly	Gly	G1y	Ala	Gly
	290		٠	•		295	·.				300		•		
Ala	Arg	Gly	Gly	Arg	Arg	Arg	Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg
305					310		•			315	•	•			320
Gly	Cys	Gly	Leu	Trp	Ala	Glu	Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe
٠.				325					330			•		335	. * • •
Arg	Cys	Thr	Pro	Arg	Ala	Gly	Gly	Arg	Arg	Arg	Cys	Gly	Ala	Gly	His
.•	:		340		•	•	•	345				•	350	•	٠.
Arg	Ala	Gly	Asp	Asp	Ala	Asp	Glu	Pro	Arg	Gly	Ala	Pro	Gly	Pro	Ser
	·	355		. <i>*</i>	•	:	360		•	•		365			: .:·
Pro	Val	Arg	Leu	Pro	Lys	Gly						:			•
, ,.	370	.•	•			375	0.4	•		:	: .,	*	. 8	7.4	
													•		
<210)> 35	5	. :		. :	• .	1 11 1	••	: :		: : .	·	*		

DNEDOCID: -NIO 011000000

. . . .

<211	> 35	0					• •								
<212	>. PR	T													
<213	> Ho	nno s	apie	ns ·					•				•		
<400	> 35	i .												-	
Met	Ala	Thr	Thr	Ala	Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly
1				5					10					15	
Pro	Glu	Trp	Gly	Gly	Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala
			20			•		25			•		30		
Val	Ile	Asp	Met	Glu	Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu
		35					40					45			
Asp	Met	Gly	Glu	Leu	His	Gln	Arg	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala
	50					55					60				
Asp	Ala	Ala	Asp	Ala	Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu
65					70					75					80
Gly	Met	Lys	Gly	Phe	Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln
		•		85					90		-			95	
Met	Trp	Gln	Ala	Gly	Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr
			100					105					110		. •
Ala	Asn	Ile	Asp	Ile	Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln-
	.•	115	•	. •			120					125			
Val	Arg	Ser	Arg	Leu	Leu	Glu	Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn
	130)				135					140				· ;
Phe	Pro	Gln	Lys	Ile	Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val
145	5				150)				155					160
Phe	. Thr	Leu	ı Val	l Ala	lle	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	. Asp	Thr:

			165					170					175	٠	:
Ile Ile	Arg	Glu	Gly	Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe	
		180					185				٠.	190			:
Gly Tyr	Trp	Leu	Gly	Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Leu	
	195	· ·				200	٠.				205		. *	6.7	
Cys Asn	Ala	Gln	Ile	Thr	Met	Leu	Gln	Met	Leu	Ala		Leu	G1v	Tvr	
210					215					220	,		٠.,		
	Pha	G1 v	Иic	Cvc		Vo1	Lou	Dha	Tla		Т	4	71.	11: _	
Gly Leu	ille	GIY			116	val	Leu	rne		ınr	ıyr	ASN	lle		
225				230					235					240	•
Leu His	Ala	Leu	Phe	Tyr	Leu	Phe	Trp	Leu	Leu	Val	Gly	Gly	Leu	Ser	
			245					250					255		
Thr Leu	Arg	Met	Val	Ala	Val	Leu	Val	Ser	Arg	Thr	Val	Gly	Pro	Thr	
٠		260		•			265					270			
Gln Arg	Leu	Leu	Leu	Cys	Gly	Thr	Leu	Ala	Ala	Leu	His	Met	Leu	Phe	
€.	275			٠.		280					285		: '		
Leu Leu	Tyr	Leu	His	Phe	Ala	Tyr	His	Lys	Val	Val-	Glu	Gly	Ile	Leu	
290			i.		295					300	,			· . ·	-
Asp Thr	Leu	G1 u	G1 v			Πe	Pro	Pro	٦١٥		Ara	Va 1	Pro	Ara	
305		,	01)			110		110		UIII	ur R				
	_			310	_				315	_				320	
Asp Ile															
•			325					330	•		٠. ٠		335		.*
Asn Ala															
1	.•	340	£			•	345			•	Ė	350	. · · · ·	*	•
٠.,				٠.٠	· .				•					ż	
(210) 36	ار خور	, .		. ,		٠, .	. ,			<i>:</i> ,	; ; ,		, 1 .,	,··	

RNSOCCIO--WO OTTORROAD I >

Commence of the second

<211	> 66	5 7 :									,	. *			
<212	>, PF	RT _.		<i>:</i> :		,. ·									
<213) Ho	omo s	apie	ens									is .		
<400)> 3€	3 , .	. •				•						. •	-	. •
Met	Ser	Ser	Gln	Pro	Ala	Gly	Asn	Gln	Thr	Ser	Pro	Gly	Ala	Thr	Glu
1				. 5					10					15	
Asp	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu	Pro	Gln	Gly	Gly	Glu
			20					25					30		
Glu	Leu	Gln	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys	His	Thr	Ser	Ile	Pro
		35					40					45			
Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu	Ser	Ile	Leu	Val	Leu
	50	٠				55					60				
Leu	Leu	Leu	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	Leu	Trp	Pro	Asp	Cys
65					70					75					80
Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	Val	Asp	Phe	Leu	Ala	Gly
	· 1 .		٠.	85					90					95	
Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Väl	Phe	Met	Val	Leu	Leu	Ser
			100	į				105					110		
Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	Glu	Asp	Ala	Leu	Pro	Phe	Leu	Thr
	•	115	;				120		,			125	٠.		
Leu	Ala	. Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	Glu	Ala	Pro	Arg	Gly
	130)	•		÷	135					140)			
Ala	Tr	Lys	, Ile	e Leu	Gly	Leu	Phe	Туг	Туг	Ala	Ala	Leu	Туг	Tyr	Pro
149	5,				150					155	5	: '			160
Let	ı Ala	a Ala	a Cys	s Ala	1 Thr	Ala	Gly	/ His	s Thi	r Ala	a Ala	His	s Lei	ı Let	ı Gly

					165					170					175		•
;	Ser	Thr	Leu	Ser	Trp	Ala	His	Leu	Gly	Val	Gln	Val	Trp	Gln	Arg	Ala	
				180					185				2	190			
(Glu	Cys	Pro	Gln	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	Tyr	Ser	Leu	Leu	Ala	
			195					200	ï			*	205			٠.	
:	Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Gly	Phe	Leu	Ser	Leu	Trp	Tyr	Pro	
		210			٠		215					220				٠,	
,	Val	Gln	Leu	Val	Arg	Ser	Phe	Ser	Arg	Arg	Thr	Gly	Ala	Gly	Ser	Lys	
:	225					230	•				235	٠				240	
(Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Tyr	Leu	Arg	Asn	Leu	Leu	Cys	
		- '			245					250	•				255		
4	Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	Lys	His	Gly	Phe	Leu	
		· i		260					265					270			
:	Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	Tyr	Thr	Pro	Gln	Pro	
		. •	275					280					285	1			
•	Gly	Phe	His	Leu	Pro	Leu	Lys	Leu	Val	Leu	Ser	Ala	Thr	Leu	Thr	Gly	
		290					295					300	•)	٠.	• 8	: '	
•	Thr	Ala	Ile	Tyr	Gln	Val	Ala	Leu	Leu	Leu	Leu	Val	Gly	Val	Val	Pro	
:	305				, ,	310					315		•	•	• •	320	
•																Leu	
	7			:	325		•		•	330				. '	335	** 3	1
]											-					Val	
	. •		•	340	٠.	<i>.</i>		•	345				0	350	∴	: 1	
(Ser :	
		۰ ۵	355				,	360					365		٠, .	11 75	

RNSDOCID: «WO 0112660A2 I

4 - 1 - 1 - 1 - 1 - 1

Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr	Phe	Leu	Val	Leu	Met	Arg	Ser
	370			-		375					380		-		
Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	His	Arg	Gly	Ala	Ala
385					390					395					400
Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	Pro	Ser	Arg	G1n	Ala
	·			405					410					415	
Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	Thr	Ala	Phe	Ile	Cys
			420					425				•	430		· -
Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	Leu	Gly	Thr	Thr	Ala
		435					440					445			
Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	Gly	Arg	Asn	Leu	Leu
	450					455					460				
Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	Trp	Leu	Thr	Leu	Ala
465					470					475					480
Leu	Ala	Val	Ile	Leu	Gln	Asn	Met	Ala	Ala	His	Trp	Val	Phe	Leu	Glu
				485					490					495	÷ •
Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	Arg	Val	Leu	Tyr	Ala
			500)				505					510		
Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	Val	Gly	Ala	Met	Val
	. ,	.,515	5.	,			520)		÷		525	5		
Ala	Thr	Tr	Arg	g Val	Leu	Leu	Ser	Ala	Leu	Tyr	Asr	ı Ala	Ile	His	Leu
	., 53 0) , .			• .	538	5		÷		-540) .	. •		
G1 ₃	Glr	n Me	t, Asj	Lei	ı Sei	Let	ı Lev	Pro	Pro	Arg	g Ala	a Ala	Thr	Leu	ı Asp
548	5	. ·		. ; '	, 550)				555	5	0			560
Pro	o Gly	y Ty:	r Ty	r Thi	r Tyi	r Arı	g Asr	n Phe	e Lei	ı Lys	s Ile	e Gl	u Val	l Sei	r Gln

		. !	565	• •				570			,		575	, ,
Ser His P	ro A	lal	Met	Thr	Ala	Phe	Cys	Ser	Leu	Leu	Leu	Gln	Ala	Gln
. 1 - 2	5	80 .					585	÷				590	:	
Ser Leu L	.eu P	ro A	Arg	Thr	Met	Ala	Ala	Pro	Gln	Asp	Ser	Leu	Arg	Pro .
5	95					600					605		.:	
Gly Glu G	lu A	.sp (Glu	Gly	Met	Gln	Leu	Leu	Gln	Thr	Lys	Asp	Ser	Met
610			•		615					620	•			. , .
Ala Lys G	ly A	la A	Arg	Pro	Gly	Ala	Ser	Arg	Gly	Arg	Ala	Arg	Trp	Gly
625				630					635					640
Leu Ala T	yr T	hr l	Leu	Leu	His	Asn	Pro	Thr	Leu	Gln	Val	Phe	Arg	Lys
. *		(645					650					655	
Thr Ala L	.eu L	.eu (Gly	Ala	Asn	Gly	Ala	Gln	Pro					
•	. 6	60					665							
•														
<210> 37								· ·						· . · ·
<211> 464	Į													
<212> PRT			•		è	,	•				• .		٠. ،	i.*
<213> Hom	o sa	pie	ns											
<400> 37				•	-			8	:		٠.		•	. .
Met Ile V	al C	ys 1	Leu	Leu	Phe	Met	Met	Ile	Leu	Leu	Ala	Lys	Glu	Val
1.:		,	5		ı	:		:- 10			*.		15	· .
Gln Leu V	/al A	sp (G1n	Thr	Asp	Ser	Pro	Leu	Leu	Ser	Leu	Leu	Gly	Gln
	•	20		· ·.	۰٠.		. 25	٠.		:	· •	30	• •	
Thr Ser S	Ser L	.eu :	Ser	Trp	His	Leu	Val	Asp	Ile	Val	Ser	Tyr	Gln	Ser
#11# .2%	35	; ;	1	••		40		٠.		, , , ,	45	:	. :	a si

RNSDOCID: <WO 0112660A2 + >

....

Val	Leu	Ser	Tyr	Phe	Ser	Ser	His	Tyr	Pro	Pro	Ser	Ile	Ile	Leu	Ala
	50	•				55					60				
Lys	Glu	Ser	Tyr	Ala	Glu	Leu	Ile	Met	Lys	Leu	Leu	Lys	Val	Ser	Ala
65	٠.	1.			70					75		.			. 80
Gly	Leu	Ser	Ile	Pro	Thr	Asp	Ser	Gln	Lys	His	Leu	Asp	Ala	Val	Pro
				85					90					95	
Lys	Cys	Gln	Ala	Phe	Thr	His	Gln	Met	Val	Gln	Phe	Leu	Ser	Thr	Leu
			100					105					110		•••
Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	Leu	Glu	Gln	Glu	Met	Ser
		115					120					125			
Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	Pro	Pro	Asp	Met	Asp	Ser
	130					135					140				
Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	Phe	Met	Glu	Val	Leu	Met
145			•		150					155					160
Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala	Glu	Phe	Leu	Arg	Gly	Ser
				165					170		,			175	٠ .
Ile	Arg	Thr	Trp	Ile	Gly	Gln	Lys	Met	His	Gly	Leu	Val	Val	Leu	Pro
			180					185					190		
Leu	. Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala	Ser	Val	Arg	His	Met	Ala
	· '	195	i ,,				200					205			ž.
Glu	Thr	Thr	Glu	Ala	Cys	Ile	Thr	Ala	Tyr	Phe	Lys	Glu	Ser	Pro	Leu
	210) ,				215	;			: ·	220)		.,	_ · · ·
Asn	Gln	Asr	Ser	Gly	Trp	Gly	Pro	Ile	Leu	Val	Ser	Leu	Gln	Val	Pro
225	5 .				230)				235	i				240
C1.		. Th.	- Mat	- 61.	. C1:	Phe	Len	Gir	Gli	ı Cvs	Lei	Thr	· Leu	ı G1 v	Ser

	245	. '	250		. •	255
Tyr Leu Thr	Leu Tyr	Val Tyr L	eu Leu Gln	Cys Leu	Asn Ser	Glu Gln
	260		265		270	•
Thr Leu Arg	Asn Glu	Met Lys V	al Leu Leu	Ile Leu	Ser Lys	Trp Leu
275		. 2	280		285	e Seat each
Glu Gln Val	Tyr Pro	Ser Ser \	/al Glu Glu	Glu Ala	Lys Leu	Phe Leu
290	•	295		300		-
Trp Trp His	Gln Val	Leu Gln l	Leu Ser Leu	Ile Gln	Thr Glu	Gln Asn
305		310		315		320
Asp Ser Val	Leu Thr	Glu Ser	Val Ile Arg	Ile Leu	Leu Leu	Val Gln
	325		330	•		335
Ser Arg Gla	n Asn Leu	Val Ala	Glu Glu Arg	Leu Ser	Ser Gly	Ile Leu
	340		345		350	I
Gly Ala Il	e Gly Phe	Gly Arg	Lys Ser Pro	Leu Ser	· Asn Arg	Phe Arg
35	5		360		365	e i.i. a
Val Val Al	a Arg Ser	Met Ala	Ala Phe Leu	ı Ser Val	Gln Val	Pro Met
370	· Y ,	375		380		,
Glu Asp Gl	n Ile Arg	g Leu Arg	Pro Gly Ser	r Glu Lei	ı His Lev	ı Thr Pro
385	i	390		395		400
Lys Ala Gl	n Gln Ala	a Leu Asn	Ala Leu Gl	u Ser Me	t Ala Se	r Ser Lys
	40	5 ·	: 41	0 .		415 -
Gln Tyr Va	al Glu Ty	r Gln Asp	Gln Ile Le	u Gln Al	a Thr Gl	n Phe Ile
	420	ì	425		· · 43	0
Arg His P	ro Gly Hi	s Cys Leu	Gln Asp Gl			
. 4	35		440		445	Section Const.

Leu	ı Val	. Asr	n Cys	s Lei	ı Tyr	Pro	Glu	ı Val	l His	s Ty	r Lei	ı Ası	o His	: Ile	Arg
	450					455	5				460)			
<21	0> 3	8 .		* .								. *			
<21	1> 4	70													
<21	2>, P	RT													
⟨21	3> H	omo	sapi	ens											
<40	0> 3	8													
Met	Ser	Arg	Leu	Gly	Ala	Leu	Gly	Gly	Ala	Arg	Ala	Gly	Leu	Gly	Leu
1				5					10					15	
Leu	Leu	Gly	Thr	Ala	Ala	Gly	Leu	G1y	Phe	Leu	Cys	Leu	Leu	Tyr	Ser
			20					25					30		
Gln	Arg	Trp	Lys	Arg	Thr	Gln	Årg	His	Gly	Arg	Ser	Gln	Ser	Leu	Pro
		35					40					45			
Asn	Ser	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met
	50	• ,	•			55					60				
Leu	Leu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro
65					70					75					80
Ser	Leu	Pro	Arg	Glu	Gly	Gln	Glu	Lys	Val	Leu	Asp	Arg	Leu	Asp.	Phe
,	•, •	~ <i>t</i>		85			٠.		90		ı			95	
Val	Leu	Thr	Ser	Leu	Val	Ala	Leu	Arg	Arg	Glu	Val	Glu	Glu	Leu	Arg
٠٠.	. ~	•_	100			; ,	•	105				,	110	,· · · .	٠,٠
													Val		
tr.	4 -	115					120				٠.	125			
His	Met	Glu	Glu	Asn	Gln	Aro	Va 1	412	Ara	A == ==	1	A 2	Dho	Dwa	Dha

	130	* =	£) '	* * .	, •	135					140	•. •		'	
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr
145		•			150					155					160
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	Tyr
				165					170					175	
Thr	Thr	Ala	Asn	Ala	Glu	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu
			180					185				,	190		
Ser	Glu	Asp	Gly	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly
,		195					200					205			
Arg	Lys	Asp	Ser	Leu	Asp	Leu	Glu	Glu	Glu	Ala	Ala	Ser	Gly	Ala	Ser
	210	;				215					220			,	
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro
225	, i				230					235					240
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys
		•		245	•				250			ŧ		255	
Arg	Glu	ı Gly	Phe	e Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser
			260)		٠.		265	,				270	,	
Arg	g Glr	n Asp	Phe	e Lei	ı Trp	Are	Leu	ı Ala	Arg	Ala	Tyr	Ser	· Asp	Met	Cys
		279	5				280)		٠.		285	;	-	
Gli	u Lei	u Thi	r Glu	u Glı	ı Val	l Sei	r Glu	ı Lys	Lys	Ser	Tyr	Ala	ı Leu	Asp	Gly
	: 29	0 -	• •			298	5		٠.		300			• •	
Ly	s Gl	u Gl	u Ala	a Gl	u Ala	a Ala	a Leu	ı Glu	ı Lys	s Gly	y Asp	Glu	ı Ser	· Ala	a Asp
30	5		•		. 31	0	•			315	5			*	320
Су	s Hi	s Le	u Tr	р Ту	r Al	a Va	l Le	u Cy:	s Gly	y Gli	n Lei	ı Ala	a Glu	ı Hi	s Glu
	ا.			32			1								5 :

Ser Ile Gln Arg Arg Ile Gln Ser Gly Phe Ser Phe Lys Gl	u His Val
340 345 35	50
Asp Lys Ala Ile Ala Leu Gln Pro Glu Asn Pro Met Ala Hi	s Phe Leu
355 360 . 365	
Leu Gly Arg Trp Cys Tyr Gln Val Ser His Leu Ser Trp Le	u Glu Lys
370 375 380	
Lys Thr Ala Thr Ala Leu Leu Glu Ser Pro Leu Ser Ala Th	r Val Glu
385 390 395	400
Asp Ala Leu Gln Ser Phe Leu Lys Ala Glu Glu Leu Gln Pr	o Gly Phe
405 410	415
Ser Lys Ala Gly Arg Val Tyr Ile Ser Lys Cys Tyr Arg Gl	u Leu Gly
420 425 43	0
Lys Asn Ser Glu Ala Arg Trp Trp Met Lys Leu Ala Leu Gl	u Leu Pro
435 440 445	
Asp Val Thr Lys Glu Asp Leu Ala Ile Gln Lys Asp Leu Gl	u Glu Leu
450 455 460	٠.
Glu Val Ile Leu Arg Asp	٠.
465 470	
⟨210⟩ 39	8 · · · ·
⟨211⟩ 243	
<212> PRT	
<213> Homo sapiens	
<400> 39	
Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro Val Ass	

. , .

1				5					10		÷			15	
Ser	Val	Thr	Pro	Tyr	Thr	Pro	Ser	Thr	Ala	Asp	Ile	Gln	Val	Ser	Asp
	•		20					25					30	,	• :
Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	Ile	Phe	Leu	G1y
		35					40					45		•	. 2
Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	Lys	Tyr	Gln	Gly
	50					55					60				
Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	Val	Leu	Leu	Ser
65					70					75					80
		Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	Phe	Lys	Met	Leu
				85					90					95	
Ser	- Cys	Glr	ı Lei	ı Cys	Lys	Glu	Ser	Glu	Glu	Arg	Val	Pro	Asp	Ser	Glu
			100					105		•			110		
Glr	ı Thi	r Pro	o G1;	, Gly	Pro	Ser	- Phe	. Val	Phe	e Thi	- Gly	ı Ile	Asr	Glr	n Pro
		11					120					125		, *	
Ile	e Thi	r Ph	e Hi:	s Gly	/ Ala	a Thi	r Val	l Val	Gli	n Tyi	r Il	e Pro	o Pro	o Pro	o Tyr
	130					13					14			, ,	,
Gl			o G1	u Pr	o Me	t Gl	y Il	e Ası	n Th	r Se	r Ty	r Le	u Gl	n Se	r Val
14					15					15					160
		r Pr	о Су	s Gl	y Le	u Il	e Th	r Se	r Gl	y Gl	y Al	a Al	a Al	a Al	a Met
			•	16					17						5
Se	er Se	r Pr	o Pr			r Ty	r Th	r Il	е Ту	r Pr	o Gl	n As	p As	n Se	r'Ala
		- ··	18		•	•		18							· . !''
pı	ne Va	al V2			u Gl	y Cv	rs Le			ne Th	ır As	sp Gl	ly G1	ly As	sn'His'
															1 . 1

Ar	g Pro	Ası	n Pro	As _l	o Va	l Asp	Glr	Leu	Glu	ı Glu	ı Thi	r Gli	n Lei	u Gl	u Glu
	210)				215	;				220)			
Gl	ı Ala	. Cys	s Ala	Cys	s Phe	Ser	Pro	Pro	Pro	Tyr	Glu	ı Glu	ı Ile	e Ty	r Ser
22	5			•	230)				235	i				240
Let	ı Pro	Arg	5												-
	•														
<2 :	0> 4	0													
<21	.1> 2	70													
<21	2> P	RT													
<21	3> H	ото	sapi	ens											
<40	0> 4	0													
Met	Ala	Gly	Ala	Glu	Asp	Trp	Pro	Gly	Gln	Gln	Leu	Glu	Leu	Asp	Glu
1		•		5					10			•		15	
Asp	Glu	Ala	Ser	Cys	Cys	Arg	Trp	Gly	Ala	Gln	His	Ala	Gly	Ala	Arg
	-		20					25					30		
Glu	Leu	Ala	Ala	Leu	Tyr	Ser	Pro	Gly	Lys	Arg	Leu	Gln	Glu	Trp	Cys
	٠.	35	٠.	•			40					45			
Ser	Val	Ile	Leu	Cys	Phe	Ser	Leu	Ile	Ala	His	Asn	Leu	Val	His	Leu
	50					- 55					60				
Leu	Leu	Leu	Ala	Arg	Trp	Glu	Asp.	Thr	Pro	Leu	Val	Ile	Leu	Gly	Val
65					70					75			•		80
Val	Ala	Gly	Ala	Leu	Ile	Ala	Asp	Phe	Leu	Ser	Gly	Leu	Val	His	
				85					90		-			95	· •
Gly	Ala	Asp	Thr	Trp	Gly	Ser	Val	Glu		Pro	Ile	Val	Glv		Ala
													,	_,_	

BNGDYCID->WO OTTORROAD I >

Phe Ile Arg Pro Phe Arg Glu His His Ile Asp Pro Thr Ala Ile Thr	
115 120 125	
Arg His Asp Phe Ile Glu Thr Asn Gly Asp Asn Cys Leu Val Thr Leu	
130 135 140	
Leu Pro Leu Leu Asn Met Ala Tyr Lys Phe Arg Thr His Ser Pro Glu	
145 150 155 160	
Ala Leu Glu Gln Leu Tyr Pro Trp Glu Cys Phe Val Phe Cys Leu Ile	
165 170 175	
lle Phe Gly Thr Phe Thr Asn Gln Ile His Lys Trp Ser His Thr Tyr	٠.
180 185 190	
Phe Gly Leu Pro Arg Trp Val Thr Leu Leu Gln Asp Trp His Val Ile	
195 200 205	
Leu Pro Arg Lys His His Arg Ile His His Val Ser Pro His Glu Thr	
210 215 220	
Tyr Phe Cys Ile Thr Thr Gly Trp Leu Asn Tyr Pro Leu Glu Lys Ile	;
225 230 235 240)
Gly Phe Trp Arg Arg Leu Glu Asp Leu Ile Gln Gly Leu Thr Gly Glu	1
245 250 255	. '
Lys Pro Arg Ala Asp Asp Met Lys Trp Ala Gln Lys Ile Lys	
260 265 270	. *
	. 5.*
⟨210⟩ 41° · · · · · · · · · · · · · · · · · · ·	
⟨211⟩ 1131	
⟨212⟩ DNA	11.
<213> Homo sapiens	

<400> 41

					Č.	
atggactcgg	ccctcagcga	tccgcataac	ggcagtgccg	aggcaggcgg	cccaccaac	60
agcactacgc	ggccgccttc	cacgcccgag	ggcatcgcgc	tggcctacgg	cagectectg	120
ctcatggcgc	tgctgcccat	cttcttcggc	gccctgcgct	ccgtacgctg	cgcccgcggc	180
aagaatgctt	cagacatgcc	tgaaacaatc	accagccggg	atgccgcccg	cttccccatc	240
atcgccagct	gcacactctt	ggggctctac	ctctttttca	aaatattctc	ccaggagtac	300
atcaacctcc	tgctgtccat	gtatttcttc	gtgctgggaa	tcctggccct	gtcccacacc	360
atcagcccct	tcatgaataa	gtttttcca	gccagctttc	caaatcgaca	gtaccagctg	420
ctcttcacac	agggttctgg	ggaaaacaag	gaagagatca	tcaattatga	atttgacacc	480
aaggacctgg	tgtgcctggg	cctgagcagc	atcgttggcg	tctggtacct	gctgaggaag	540
cactggattg	ccaacaacct	ttttggcctg	gccttctccc	ttaatggagt	agageteetg	600
cacctcaaca	atgtcagcac	tggctgcatc	ctgctgggcg	gactcttcat	ctacgatgtc	660
ttctgggtat	ttggcaccaa	tgtgatggtg	acagtggcca	agtccttcga	ggcaccaata	720
aaattggtgt	ttccccagga	tctgctggag	aaaggcctcg	aagcaaacaa	ctttgccatg	780
ctgggacttg	gagatgtcgt	cattccaggg	atcttcattg	ccttgctgct	gcgctttgac	840
atcagcttga	agaagaatac	ccacacctac	ttctacacca	gctttgcagc	ctacatette	900
ggcctgggcc	ttaccatctt	catcatgcac	atcttcaagc	atgctcagcc	tgccctccta	960
tacctggtcc	ccgcctgcat	cggttttcct	gtcctggtgg	cgctggccaa	gggagaagtg	1020
acagagatgt	tcagttatga	ggagtcaaat	cctaaggatc	cagcggcagt	gacagaatcc	1080
aaagagggaa	cagaggcatc	agcatcgaag	gggctggaga	agaaagagaa	a	1131
	.*		,			
<210> .42.				· · · : · · · ·	· · · · · · · · · · · · · · · · · · ·	
<211>.,243,				4		
<212> DNA			- +	* * * * *		
<213≥ .Homo	sapiens	* * * * *	5.			

720

780

90 /307

. 11 - - - -

<400> 42	
atgacggcgc actcattcgc cctcccggtc atcatcttca ccacgttctg gggcctcgtc	60
ggcatcgccg ggccctggtt cgtgccgaag ggacccaacc gcggagtgat catcaccatg	120
ctggtcgcca ccgccgtctg ctgttacctc ttctggctca tcgccatcct ggcgcagctg	180
aaccccctgt tcgggcccca gctgaagaat gagaccatct ggtacgtgcg cttcctgtgg	240
gag	243
<210> 43	
<211> 1461	
<212> DNA	* t.e.
<213> Homo sapiens	រា
<400> 43	
atgggggata ctggcctgag aaagcggaga gaggatgaga agtcgatcca gagccaagag	60 -
cctaagacca ccagtctcca aaaggagctg ggcctcatca gtggcatctc catcatcgtg	120
ggcaccatca ttggctctgg gatcttcgtt tcccccaagt ctgtgctcag caacacggaa	180
gctgtggggc cctgcctcat catatgggcg gcttgcgggg tcctcgcgac gctgggtgcc	240
ctgtgctttg cggagcttgg cacaatgatc accaagtcag ggggagagta tccctacctg	300
atggaggeet acgggeecat eccegeetae etetteteet gggeeageet gategteatt	360
aagcccacgt ccttcgccat catctgcctc agcttctccg agtatgtgtg tgcgcccttc	420
tatgtgggct gcaagcctcc tcaaatcgtt gtgaaatgcc tggccgccgc cgccatcttg	480
ttcatctcga cagtgaactc actgagcgtg cggctgggaa gctacgtcca gaacatcttc	540
accgcggcca agctggtgat cgtggccatc atcatcatca gcgggctggt gctcctggcc	600
caaggaaaca caaagaattt tgataattct ttcgagggcg cccagctgtc tgtgggagcc	660

atcagcctgg cgttttacaa tggactctgg gcctatgatg gatggaatca actcaattac

atcacagaag aacttagaaa cccttacaga aacctgcctt tggccattat catcgggatc

cccct	ggtga	cggcgtgcta	catcctcatg	aacgtgtcct	acttcaccgt	gatgactgcc	840
accga	actcc	tgcagtccca	ggcggtggct	gtgacatttg	gtgaccgtgt	tctctatcct	900
gcttc	ttgga	tcgttccact	ttttgtggca	ttttcaacca	tcggtgctgc	taacgggacc	960
tgctt	cacag	cgggcagact	catttacgtg	gcgggccggg	agggtcacat	gctcaaagtg	1020
ctttct	ttaca	tcagcgtcag	gcgcctcact	ccagcccccg	ccatcatctt	ttatggtatc	1080
atagca	aacga	tttatatcat	ccctggtgac	ataaactcgt	tagtcaatta	tttcagcttt	1140
gccgca	tggc	tgttttatgg	cctgacgatt	ctaggactca	tcgtgatgag	atttacaagg	1200
aaagag	ctgg	aaaggcctat	caaggtgccc	gtagtcattc	ccgtcttgat	gacactcatc	1260
tctgtg	tttt	tggttctggc	tccaatcatc	agcaagccca	cctgggagta	cctctactgt	1320
gtgctg	ttta	tattaagcgg	ccttttattt	tacttcctgt	ttgtccacta	caagtttgga	1380
tgggct	caga	aaatctcaaa	gccgattacc	atgcaccttc	agatgctaat	ggaagtggtc	1440
ccaccg	gagg	aagaccctga	g				1461

⟨210⟩ 44

<211> 1125

<212> DNA

<213> Homo sapiens

<400> 44

atgacccccc	agcccgccgg	accccggat	gggggctggg	gctgggtggt	ggcggccgca	60
gccttcgcga	taaacgggct	gtcctacggg	ctgctgcgct	cgctgggcct	tgccttccct	120
gaccttgccg	agcactttga	ccgaagcgcc	caggacactg	cgtggatcag	cgccctggcc	180
ctggccgtgc	agcaggcagc	cagccccgtg	ggcagcgccc	tgagcacgcg	ctggggggcc	240
cgcccgtgg	tgatggttgg	gggcgtcctc	gcctcgctgg	gcttcgtctt	ctcggctttc	300
gccagcggtc	tgctgcatct	ctacctcggc	ctgggcctcc	tcgctggctt	tggttgggcc	360
ctggtgttcg	ccccgccct	aggcaccctc	tcgcgttact	tctcccgccg	tcgagtcttg	420

gcggtggggc	tggcgctcac	cggcaacggg	gcctcctcgc	tgctcctggc	gcccgccttg	480
cagcttctcc	tcgatacttt	cggctggcgg	ggcgctctgc	tectectegg	cgcgatcacc	540
ctccacctca	cccctgtgg	cgccctgctg	ctaccctgg	tccttcctgg	agacccccca	600
gccccaccgc	gtagtcccct	agctgccctc	ggcctgagtc	tgttcacacg	ccgggccttc	660
tcaatctttg	ctctaggcac	agccctggtt	gggggcgggt	acttcgttcc	ttacgtgcac	720
ttggctcccc	gctttagacc	ggggcctggg	gggatacgga	gcagcgctgg	tggtggccgt	780
ggctgcgatg	ggggatgcgg	gcgcccggct	ggtctgcggg	tggctggcag	accaaggctg	840
ggtgcccctc	ccgcggctgc	tggccgtatt	cggggctctg	actgggctgg	ggctgtgggt	900
ggtggggctg	gtgcccgtgg	tgggcggcga	agagagctgg	gggggtcccc	tgctggccgc	960
ggctgtggcc	tatgggctga	gcgcggggag	ttacgccccg	ctggttttcg	gtgtactccc	1020
cgggctggtg	ggcgtcggag	gtgtggtgca	ggccacaggg	ctggtgatga	tgctgatgag	1080
cctcgggggg	ctcctgggcc	ctcccctgtc	aggetteeta	aggga	; ·	1125

<210> 45

<211> 1050

<212> DNA

<213> Homo sapiens

<400> 45

CARTIN OF LAND LAND

aagatggto	a acttcccca	gaaaattgca	ggtgaactct	atggacctct	catgctggtc	480
ttcactctg	g ttgctatcct	actccatggg	atgaagacgt	ctgacactat	tatccgggag	540
ggcaccctg	a tgggcacagc	cattggcacc	tgcttcggct	actggctggg	agtctcatcc	600
ttcatttac	t tccttgccta	cctgtgcaac	gcccagatca	ccatgctgca	gatgttggca	660
ctgctgggc	t atggcctctt	tgggcattgc	attgtcctgt	tcatcaccta	taatatccac	720
ctccacgcc	c tettetacet	cttctggctg	ttggtgggtg	gactgtccac	actgcgcatg	780
gtagcagtg	t tggtgtctcg	gaccgtgggc	cccacacagc	ggctgctcct	ctgtggcacc	840
ctggctgcc	c tacacatgct	cttcctgctc	tatctgcatt	ttgcctacca	caaagtggta	900
gaggggatc	c tggacacact	ggagggcccc	aacatcccgc	ccatccagag	ggtccccaga	960
gacatccct	g ccatgotoco	tgctgctcgg	cttcccacca	ccgtcctcaa	cgccacagcc	1020
aaagctgtt	g cggtgaccct	gcagtcacac	•			1050

⟨210⟩ 46

<211> 2001

<212> DNA

<213> Homo sapiens

<400> 46

atgtcgtccc	agccagcagg	gaaccagacc	tccccgggg	ccacagagga	ctactcctat	60
ggcagctggt	acatcgatga	gccccagggg	ggcgaggagc	tccagccaga	gggggaagtg	120
ccctcctgcc	acaccagcat	accacccggc	ctgtaccacg	cctgcctggc	ctcgctgtca	180
atccttgtgc	tgctgctcct	ggccatgctg	gtgaggcgcc	gccagctctg	gcctgactgt	240
gtgcgtggca	ggcccggcct	gcccagccct	gtggatttct	tggctgggga	caggccccgg	300
gcagtgcctg	ctgctgtttt	catggtcctc	ttgagctccc	tgtgtttgct	gctccccgac	360
gaggacgcat	tgcccttcct	gactctcgcc	tcagcaccca	gccaagatgg	gaaaactgag	420
gc.tccaagag	gggcctggaa	gatactggga	ctgttctatt	atgctgccct	ctactaccct	480

540	cacgctgtcc	tgctcggcag	gctgcacacc	tggccacaca	gtgccacggc	tggctgcct
600	gcccaagatc	gtccccaggt	agggcagagt	ggtctggcag	ttggggtcca	tgggcccacc
660	attcctgagc	tgggcctcgg	cctctcctgc	ggcctccctg	actccctgct	tacaagtact
720	aggctccaag	ggacaggagc	ttcagccgta	ggtgagaagc	ctgtgcagct	ctttggtacc
780	gaagaagctg	tcctttgcag	ctgaggaacc	tgaggaatat	gcagctactc	gggctgcaga
840	ctgcttgaga	gggcccgcgt	ttcctgtcct	caagcatggc	accacacctc	ggaagcagct
900	gctttcagct	tgaagctggt	catctcccgc	gccaggattc	acactccaca	cactgcatct
960	cgtggtaccc	tgctggtggg	gccctgctgc	ttaccaggtg	ggacggccat	acactgacag
1020	ggccggcttt	cctacctgct	acggatgtct	aggggtcacc	aggtgagggc	actatccaga
1080	ccatctgtgg	tggtgaagca	gtggtggagc	caagcaggag	tctccgagga	ggaatcgtgc
1140	cttcctggtc	gcttactcac	gtcttgtcct	ctcagccttg	tgtgctacat	gctctggaag
1200	aggagctgcc	ctctgcaccg	aaccttcgag	acacaggacc	cactggtgac	ctgatgcgct
1260	attctgttgg	gccaagccat	catccctccc	tcggagtccc	gtcccttgca	ctggacttga
1320	gcagcagatc	ggctcctggt	atctgccttg	gacagccttt	gtgcctacca	atgagcttca
1380	gctccatggc	tcatgcctgt	ttcctggtgc	ggccctggcc	tgggaaccac	atcttcttcc
1440	gactttggcc	ccttctggct	tcctcgtggc	ttccctggag	tgctcttccg	aggaacctcc
1500	tcatgatgga	tcctggagac	cattgggtct	catggcagcc	tcctgcagaa	ctggctgtga
1560	cttcccctc	cctttcttct	tatgcagcca	gcgagtgctc	tgaccaaccg	cacccacagc
1620	cctctacaac	tcctctctgc	tggcgagtgc	ggtggccacc	tgggtgccat	aatgtgctgg
1680	cactctcgac	cgagagccgc	ctgctgccac	ggacctcagc	ttggccagat	gccatccacc
1740	gcatccagcc	tcagccagtc	aagattgaag	aaacttcttg	acacgtaccg	cccggctact
1800	gaccatggca	tcctacccag	gcgcagagcc	gctcctgcaa	tctgctccct	atgacagcct
1860	gctacagaca	ggatgcagct	gaagacgaag	accaggggag	acagcctcag	gcccccagg
1920	tcgctggggt	gcggcagggc	ggggccagcc	agctaggccc	tggccaaggg	aaggactcca
1980	ggccctgttg	tccgcaagac	ctgcaggtct	caacccaacc	cgctgctgca	ctggcctaca

ggtgccaatg	gtgcccagcc	c		- •	• •	2001
• • • •	÷. •		•	· ·	• •	
<210> 47.			•			
<211> 1392		,				
<212> DNA						
<213> Homo	sapiens					
<400> 47						
atgattgtct	gcctcctttt	catgatgatt	ttattggcaa	aggaagttca	actggtagac	60
caaacagatt	cacctttact	tagtctcctt	ggacagacaa	gctcactttc	atggcatctt	120
gtggatattg	tgtcgtacca	gagtgtgcta	agttatttca	gcagccatta	cccgccgtcc	180
atcatcctgg	caaaagaatc	ttatgctgaa	ttaatcatga	agctcctaaa	agtgtctgcg	240
ggcctttcta	ttcctactga	cagccagaag	catcttgatg	cagttccaaa	atgccaagct	300
tttactcatc	agatggttca	attcctcagc	accctggaac	aaaatggaaa	aatcacctta	360
gcagtcctag	aacaggaaat	gtctaagctc	ttagacgata	tcattgtctt	taacccgccc	420
gacatggaca	gccagacccg	ccacatggcc	ctcagcagcc	tctttatgga	agtcctgatg	480
atgatgaaca	acgcgactat	tccaacagca	gagttccttc	ggggcagtat	ccggacctgg	540
attggccaaa	aaatgcatgg	gctggtggtg	ctgccccttt	taacagcagc	ctgccagagc	600
ctggcgtccg	tccgccacat	ggctgagact	acagaagcct	gcatcactgc	ctacttcaaa	660
gaaagccctc	tcaatcagaa	ttcaggatgg	ggacccattc	tggtatccct	tcaggttccc	720
gagctcacca	tggaagagtt	cctgcaggag	tgcctcacct	tgggcagtta	cttgactctt	780
tacgtctact	tgcttcagtg	tttaaacagc	gaacagactt	taaggaatga	aatgaaagtg	840
ctgctcatct	taagcaagtg	gctggaacag	gtgtacccaa	gctccgtgga	ggaagaggca	900
aagctgtttt.	tgtggtggca	ccaagtcctt	cagetetece	tcattcagac	agagcagaat	960
gactccgtcc	tgacagaatc	tgtcattcga	attctgctct	tggttcagag	caggcagaac	1020
ctcgtggctg	aggagagact	cagctctggg	atcctggggg	caattgggtt	tggccggaag	1080

96 /307

tcgcctttgt	ctaacaggtt	ccgagtggtt	gcccgaagca	tggctgcctt d	ctttcagtt	1140
				ctgaattaca 1		1200
				caagtaagca (1260
				atcctggcca		1320
				atccagaagt		1380
		000000000000000000000000000000000000000				1392
gaccacatac	ga					
<210> 48	•					
<211> 1410						
<212> DNA					••	
<213> Homo	sapiens				. •	
<400> 48		٠				
atgtctagac	tgggagccct	gggtggtgco	cgtgccgggc	tgggactgtt	gctgggtacc	60
gccgccggc	ttggattcct	gtgcctcctt	tacagccagc	gatggaaacg	gacccagcgt	120
catggccgca	gccagagcct	gcccaactc	ctggactata	cgcagacttc	agatcccgga	180
cgccacgtga	a tgctcctgcg	ggctgtccca	a ggtggggctg	gagatgcctc	agtgctgccc	240
				tggactttgt		300
				a gcctgcgagg		360
				c agagagtggc		420
				t ccagctctgt		480
				g ggggttacac		540
						600
				g aggacgggga		660
				g acttggagga		720
tcaggtgco	t ccagtgccc	t ggaggctgg	ga ggttcctca	g gcttggagga	tgtgctgccc	
			+-o+-o-		ggagggcttc	780

ctcctgcagc aggccgacga gctgcacagg ggtgatgagc aaggcaagcg ggagggcttc

cagctgctgc	tcaacaacaa	gctggtgtat	ggaagccggc	aggactttct	ctggcgcctg	840
gcccgagcct	acagtgacat	gtgtgagctc	actgaggagg	tgagcgagaa	gaagtcatat	900
gccctagatg	gaaaagaaga	agcagaggct	gctctggaga	agggggatga	gagtgctgac	960
tgtcacctgt	ggtatgcggt	gctttgtggt	cagctggctg	agcatgagag	catccagagg	1020
cgcatccaga	gtggctttag	cttcaaggag	catgtggaca	aagccattgc	tctccagcca	1080
gaaaacccca	tggctcactt	tcttcttggc	aggtggtgct	atcaggtctc	tcacctgagc	1140
tggctagaaa	aaaaaactgc	tacagccttg	cttgaaagcc	ctctcagtgc	cactgtggaa	1200
gatgccctcc	agagetteet	aaaggctgaa	gaactacagc	caggattttc	caaagcagga	1260
agggtatata	tttccaagtg	ctacagagaa	ctagggaaaa	actctgaagc	tagatggtgg	1320
atgaagttgg	ccctggagct	gccagatgtc	acgaaggagg	atttggctat	ccagaaggac	1380
ctggaagaac	tggaagtcat	tttacgagac				1410

<210> 49

<211> 729

<212> DNA

<213> Homo sapiens

<400> 49 · ·

atggagcagg gcagcggccg cttggaggac ttccctgtca atgtgttctc cgtcactcct 60
tacacaccca gcaccgctga catccaggtg tccgatgatg acaaggcggg ggccaccttg 120
ctcttctcag gcatcttct gggactggtg gggatcacat tcactgtcat gggctggatc 180
aaataccaag gtgtctccca ctttgaatgg acccagctcc ttgggcccgt cctgctgtca 240
gttggggtga cattcatcct gattgctgtg tgcaagttca aaatgctctc ctgccagttg 300
tgcaaagaaa gtgaggaaag ggtcccggac tcggaacaga caccaggagg accatcattt 360
gttttcactg gcatcaacca acccatcacc ttccatgggg ccactgtggt gcagtacatc 420
cctcctcctt atggttctcc agagcctatg gggataaata ccagctacct gcagtctgtg 480

gtgagcccct g	eggeeteat	aacctctgga	ggggcagcag	ccgccatgtc	aagtcctcct	540
caatactaca c	catctaccc	tcaagataac	tctgcatttg	tggttgatga	gggctgcctt	600
tctttcacgg a	ncggtggaaa	tcacaggccc	aatcctgatg	ttgaccagct	agaagagaca	660
cagctggaag a	nggaggcctg	tgcctgcttc	tctcctcccc	cttatgaaga	aatatactct.	720
ctccctcgc	٠	8 .	* • •		1 · · · · · · · · · · · · · · ·	729
			,		• ,• •	
<210> 50	•	. •	٠			
<211> 810				• • •	• • •	
<212> DNA					, ** . * * ·	
<213> Homo`	sapiens				٠. •	
<400> 50						
atggcgggcg	ccgaggactg	gccgggccag	cagctggagc	tggacgagga	cgaggcgtct	60
tgttgccgct	ggggcgcgca	gcacgccggg	gcccgcgagc	tggctgcgct	ctactcgcca	120
ggcaagcgcc	tccaggagtg	gtgctctgtg	atcctgtgct	tcagcctcat	cgcccacaac	180
ctggtccatc	tcctgctgct	ggcccgctgg	gaggacacac	ccctcgtcat	actcggtgtt	240
gttgcagggg	ctctcattgc	tgacttcttg	tctggcctgg	tacactgggg	tgctgacaca	300
tggggctctg	tggagctgcc	cattgtgggg	aaggctttca	tccgaccctt	ccgggagcac	360
cacattgacc	caacagctat	cacacggcac	gacttcatcg	gagaccaacgg	ggacaactgc	420
ctggtgacac	tgctgccgct	gctaaacatg	gcctacaagt	teegeaceea	cagccctgaa	480
gccctggagc	agctataccc	ctgggagtgo	ttcgtcttc1	gcctgatcat	cttcggcacc	540
ttcaccaacc	agatccacaa	gtggtcgcac	acgtacttt	g ggctgccacg	ctgggtcacc	600
ctcctgcagg	actggcatgt	catectgeea	cgtaaacac	c atcgcatcca	ccacgtctca	660
ccccacgaga	cctacttctg	g catcaccaca	a ggctggctc	a actaccctc1	t ggagaagata	720
ggcttctggc	gacgcctgga	a ggacctcato	cagggcctg	a cgggcgagaa	a gcctcgggca	780
gatgacatga	aatgggccca	a gaagatcaa	a '	 1 (3.4) (31.7) 	r gyrus Abdai	810

		-											•			
<210	> 51		٠.							٠.						
<211	> 15	551														,
<212	> DN	IA.							٠.						•	
<213	> Hc	omo :	sapi	ens												
<220	>															
<221	> CI	S	••	-	٠											
<222	> (9	8)	. (12	231)												
<400	> 51															
caagg	ggga	ac g	gtggo	cttt	cc c	tgca	gagc	c gg1	tgtc	tccg	cct	gcgt	ccc ·	tgct	gcagca	60
accgg	gago	tg g	gagto	egga	tc c	cgaad	cgca	c cci	tege	at	g gao	t to	g gc	c ct	c agc	115
										Me	t Asp	Ser	r Ala	a Le	u Ser	
-											l			!	5	
gat o	cg	cat	aac	ggc	agt	gcc	gag	gca	ggc	ggc	ccc	acc	aac	agc	act	163
Asp F	ro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly	Gly	Pro	Thr	Asn	Ser	Thr	
			10					15					20			
acg c	gg	ccg	cct	tcc	acg	ccc	gag	ggc	atc	gcg	ctg	gcc	tac	ggc	agc -	211
Thr A	lrg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile	Ala	Leu	Ala	Tyr	Gly	Ser	
		25					30					35				
ctc c	tg	ctc	atg	gcg	ctg	ctg	ссс	atc	ttc	ttc	ggc	gcc	ctg	cgc	tcc	259
Leu L	.eu	Leu	Met	Ala	Leu	Leu	Pro.	Ile	Phe	Phe	Gly	Ala	Leu	Arg	Ser	
1 %	40		·. , ·	. 5		45					50					
gta o	gc.	tgc	gcc	cgc	ggc	aag	aat	gct	tca	gac	atg	cct	gaa	aca	atc	307
Val A	lrg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser	Asp	Met	Pro	Glu	Thr	Ile	
55					- 60					65					70	

r grant manager

acc	agc	cgg	gat	gcc	gcc	cgc	ttc	ccc	atc	atc	gcc	agc	tgc	aca	ctc	355
hr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile	Ile	Ala	Ser	Cys	Thr	Leu	
				75					80				•	85	٠.	
ttg	ggg	ctc	tac	ctc	ttt	ttc	aaa	ata	ttc	tcc	cag	gag	tac	atc	aac ·	403
Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe	Ser	Gln	Glu	Tyr	Ile	Asn	-
			90					95					100		•	
ctc	ctg	ctg	tcc	atg	tat	ttc	ttc	gtg	ctg	gga	atc	ctg	gcc	ctg	tcc	451
Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu	Gly	Ile	Leu	Ala	Leu	Ser	
		105					110					115			. ,	
cac	acc	atc	agc	ссс	ttc	atg	aat	aag	ttt	ttt	cca	gcc	ago	ttt	cca	499:)
His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe	Phe	Pro	Ala	Ser	Phe	Pro	4
	120					125					130	•	,			
aat	cga	cag	tac	cag	ctg	ctc	ttc	aca	cag	ggt	tct	ggg	g gaa	a aad	aag	547
Asn	Arg	Gln	Tyr	Gln	Leu	Leu	Phe	Thr	Gln	Gly	Ser	Gly	Glu	ı Ası	n Lys	
135	;· ·		•		140)				145					150	·-
gaa	gag	ato	ato	aat	tat	gaa	ttt	gac	acc	aag	gac	ct	g gt	g tg	c ctg	595
Glu	ı Glu	ı Ile	e Ile	Asn	Tyr	Glu	ı Phe	Asp	Thr	Lys	Asp	Le	u Va	l Cy	s Leu	
				155	5 '				160)			٠.	16	5	
ggo	e ct	g age	c ago	c ato	gtt	t ggo	gto	tgg	g tac	cte	g ct	g ag	g aa	g ca	c tgg	643
G1;	y. Lei	ı Se:	r Sei	r Ile	e Val	l G1;	y Val	Tr	ı Tyı	r Lei	ı Lei	ı Ar	g Ly	s Hi	s Trp	,
•			·17	0 '				175	5				18	0	· ·	.9
at	t gc	c aa	c aa	c ct	t tt	t gg	c ct	g gc	c tte	c tc	c ct	t aa	t gg	a gt	a gag	691
															ıl Glu	
															37.0	
															gc gg	

Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly	Cys	Ile	Leu	Leu	Gly	Gly	
	200	ı	e	-		205					210					
cto	ttc	atc	tac	gat	gtc	ttc	tgg	gta	ttt	ggc	acc	aat	gtg	atg	gtg	787
Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe	Gly	Thr	Asn	Val	Met	Val	
215					220					225					230	
aca	gtg	gcc	aag	tcc	ttc	gag	gca	cca	ata	aaa	ttg	gtg	ttt	ccc	cag	835
Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile	Lys	Leu	Val	Phe	Pro	G1n	
		,	٠.	235					240					245		
gat	ctg	ctg	gag	aaa	ggc	ctc	gaa	gca	aac	aac	ttt	gcc	atg	ctg	gga	883
Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn	Asn	Phe	Ala	Met	Leu	Gly	
			250					255					260			
ctt	gga	gat	gtc	gtc	att	cca	ggg	atc	ttc	att	gcc	ttg	ctg	ctg	cgc	931
Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe	Ile	Ala	Leu	Leu	Leu	Arg	
		265					270					275				
ttt	gac	atc	agc	ttg	aag	aag	aat	acc	cac	acc	tac	ttc	tac	acc	agc	979
Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His	Thr	Tyr	Phe	Tyr	Thr	Ser	
	280					285					290				:	
ttt	gca	gcc	tac	atc	ttc	ggc	ctg	ggc	ctt	acc	atc	ttc	atc	atg	cac	1027
Phe	Ala	Ala	Tyr	Ile	Phe	Gly	Leu	Gly	Leu	Thr	Ile	Phe	Ile	Met	His	
295					300					305		•		. •	310	
atc	ttc	aag	cat	gct	cag	cct	gcc	ctc	cta	tac	ctg	gtc	ССС	gcc	tgc	1075
Ile	Phe	Lys	His	Ala	Gln	Pro	Ala	Leu	Leu	Tyr	Leu	Val	Pro	Ala	Cys	
				315					320			•	ı	325		
atc	ggt	ttt	cct	gtc	ctg	gtg	gcg	ctg	gcc	aag	gga	gaa	gtg	aca	gag	1123
Ile	Gly	Phe	Pro	Val	Leu	Val.	Ala	Leu.	Ala	Lvs	Glv	Glu	Val	Thr	Glu	

330 335 335	
atg ttc agt tat gag gag tca aat cct aag gat cca gcg gca gtg aca	1171
Met Phe Ser Tyr Glu Glu Ser Asn Pro Lys Asp Pro Ala Ala Val Thr	
345 345 350 355	
gaa too aaa gag gga aca gag gca toa gca tog aag ggg otg gag aag	1219
Glu Ser Lys Glu Gly Thr Glu Ala Ser Ala Ser Lys Gly Leu Glu Lys	
360 365 370	
aaa gag aaa tg atgcagctgg tgcccgagcc tctcagggcc agaccagaca	1270
Lys Glu Lys	
375	::
gatgggggct gggcccacac aggcgtgcac cggtagaggg cacaggaggc caagggcagc	1330
tccaggacag ggcagggggc agcaggatac ctccagccag gcctctgtgg cctctgtttc	1390
cttctccctt tcttggccct cctctgctcc tccccacacc ctgcaggcaa aagaaacccc	1450
cagcttcccc cctccccggg agccaggtgg gaaaagtggg tgtgattttt agattttgta	1510
ttgtggactg attttgcctc acattaaaaa ctcatcccat g	1551
<210> 52	
<211> 1713	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
<222> (89) (334)	
<400> 52	
totooggag stacksaget gaggacecae geacetgeag egeeegetge teggeeetge	60

atcetgeetg ggeateetge geeeggee atg acg geg cae tea tte gee ete	112
Met Thr Ala His Ser Phe Ala Leu	
ccg gtc atc atc ttc acc acg ttc tgg ggc ctc gtc ggc atc gcc ggg	160
Pro Val Ile Ile Phe Thr Thr Phe Trp Gly Leu Val Gly Ile Ala Gly	
10 . 15 20	
ccc tgg ttc gtg ccg aag gga ccc aac cgc gga gtg atc atc acc atg	208
Pro Trp Phe Val Pro Lys Gly Pro Asn Arg Gly Val Ile Ile Thr Met	
25 30 35 40	
ctg gtc gcc acc gcc gtc tgc tgt tac ctc ttc tgg ctc atc gcc atc	256
Leu Val Ala Thr Ala Val Cys Cys Tyr Leu Phe Trp Leu Ile Ala Ile	
45 50 55	
ctg gcg cag ctg aac ccc ctg ttc ggg ccc cag ctg aag aat gag acc	304
Leu Ala Gln Leu Asn Pro Leu Phe Gly Pro Gln Leu Lys Asn Glu Thr	
60 65 70	
atc tgg tac gtg cgc ttc ctg tgg gag tgacccgcc gcccccgacc	350
Ile Trp Tyr Val Arg Phe Leu Trp Glu	
75 80	
caggtgccca gctctcggaa tgactgtggc tccactgtcc ctgacaaccc cttcgtccgg	410
acceteccee acacaactat gtetggteac cagetecete etgetggeac ceagagacee	470
ggaccegeag ggeetgeetg gtteetggaa gtetteecag tetteecage cageeegge	530
cctggggagc cctgggcaca gcagcggccg aggggatgtc ctgctccaat acccgcactg	590
ctctggagtt tgccctcttt cccaaggaga tgctgctggg gagctggtat gggtggggtc	650
tttcccttta cagacggggc agatgccagg actcagccca tcctgaggag gacacgtgtc	710
ctcatggaga gggtgctccg gcccaggcgg gggagtcagt gcccagtcag cagctctgcc	770

accatcctgc	tgggaactgg	gggggcctct	attgggttat	aggcaaggcc	ttttctctgg	830
catggaattg	ttaattttct	gaćacgtcta	gatgtgaaat	ttctgaaaat	gttgaagcag	890
agaaacattc	acacacaaaa	agcaacatag	tcatgtgggt	ccagatggcc	tcagtcctag	950
atgttggcac	cctttgctgt	gtctcctcag	agtatectgt	tecgeetect	gccacctgga	1010
cctccctcag	tggatgtctt	ccctccccg	accccagcct	gtcagtccga	gcacagtgca	1070
ggtttggctc	tgacttgggċ	ttttggctgc	agtgggggtg	gatttcagag	cctctcatgg	1130
cagcatctaa	gtgaccagag	ctgggatgag	agaggggaag	gggcaatgtg	agtggcgcta	1190
tgggacgġgc	cagccctgct	cctgagccag	ccccgccctc	tgcccctgg	ccctgggctc	1250
tgtgctaggg	atggtgaaga	atgggggcgt	gccagcctgg	caggagtggg	aagcaacacg	1310
caggggtccc	ggacctctcc	agccttgccc	tcacgcttac	ccgagctccc	agtgtggtta	1370
gcacagagct	cacccacctt	gcctggctcc	cagctggggc	ctgtcctcac	tggtgctcca	1430
ggggaagaaa	cgacagcctc	acttctgtat	ggactgctga	tgtggcctgc	catcctgttc	1490
agcgggcatt	gtctttggag	cagcaggaga	ataggatgcc	tctcactcac	atgccagttc	1550
ctggctggcc	agctgctcag	ggctcaggct	ggggcctccc	attgacatcc	tcccctaca	1610
ctccctctct	gagcctccgt	cgcccctcct	gttgggtaag	ggtgttgagt	gtgacttgtg	1670
ctgaaaacct	ggttcatata	taataaataa	tggtgatgaa	aag		1713

<210> 53

<211> 1758

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (190)...(1653)
<400> 53

ttt	ctag	ggt	tgga	ccgt	gc a	ggca	cggg	c gg	tcag	ctgg	gcc	gcag	ctc	ctcc	ggcto	t	60
gca	gggt	cac (ggagg	gaag	cc a	gctc	ccct	a gto	ccag	gccg	agc	ttgc	act	tgcg	tcttg	ţt .	120
ctg	ctgc	tgc ·	tgaad	caa	ga ti	ttage	ctgt	g cg	cct	cctt	gca	gtct	cct	ggaa	ccago	a	180
gga	ggaaa	ac a	tg gg	gg ga	at a	ct g	gc c	tg ag	ga a	ag c	gg ag	ga ga	ag g	at g	ag		228
		. Me	et G	Ly A	sp Tl	hr G	ly L	eu Ai	rg L	ys Ai	rg Ai	rg G	lu A	sp G	lu		
			1				5					10					
aag	tcg	atc	cag	agc	caa	gag	cct	aag	acc	acc	agt	ctc	caa	aag	gag		276
Lys	Ser	Ile	Gln	Ser	Gln	Glu	Pro	Lys	Thr	Thr	Ser	Leu	Gln	Lys	Glu		
	15					20					25						
ctg	ggc	ctc	atc	agt	ggc	atc	tcc	atc	atc	gtg	ggc	acc	atc	att	ggc		324
Leu	Gly	Leu	Ile	Ser	Gly	Ile	Ser	Ile	Ile	Val	Gly	Thr	Ile	Ile	Gly		
30					35				•	40			•		45		
tct	ggg	atc	ttc	gtt	tcc	ccc	aag	tct	gtg	ctc	agc	aac	acg	gaa	gct		372
Ser	Gly	Ile	Phe	Val	Ser	Pro	Lys	Ser	Val	Leu	Ser	Asn	Thr	Glu	Ala		
				50					55					60			
gtg	ggg	ссс	tgc	ctc	atc	ata	tgg	gcg	gct	tgc	ggg	gtc	ctc	gcg	acg	•	420
Val	Gly	Pro	Cys	Leu	Ile	Ile	Trp	Ala	Ala	Cys	Gly	Val	Leu	Ala	Thr		
	× .		65					70					75		. •		
ctg	ggt	gcc	ctg	tgc	ttt	gcg	gag	ctt	ggc	aca	atg	atc	acc	aag	tca		468
Leu	Gly	Ala	Leu	Cys	Phe	Ala	Glu	Leu	Gly	Thr	Met	Ile	Thr	Lys	Ser		
		80					85					90			• .		
ggg	gga	gag	tat	.ccc	tac	ctg	atg	gag	gcc	tac	ggg	ccc	atc	ccc	gcc		516
Gly	Gly	Glu	Tyr	Pro	Tyr	Leu	Met	Glu	Ala	Tyr	Gly	Pro	Ile	Pro	Ala		
J	95		٠.	. 19		100					105				. 5		
tac	ctc	ttc	tcc	tgg	gcc	agc	ctg	atc	gtc	att	aag	ccc	acg	tcc	ttc		564

Tyr	Leu	Phe	Ser	Trp	Ala	Ser	Leu	Ile	Val	Ile	Lys	Pro	Thr	Ser	Phe		
110	.	٠,			115		• •			120	• :	٠.	, •		125		
gcc	atc	atc	tgc	ctc	agc	ttc	tcc	gag	tat	gtg	tgt	gcg	ccc	ttc	tat.	6	512
Ala	Ile	Ile	Cys	Leu	Ser	Phe	Ser	Glu	Tyr	Val	Cys	Ala	Pro	Phe	Tyr		
				130					135	-	٠.		.,	140			
gtg	ggc	tgc	aag	cct	cct	caa	atc	gtt	gtg	aaa	tgc	ctg	gcc	gcc	gcc	6	660
Val	Gly	Cys	Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala		
		٠.	145				٠.	150	٠.	- •		٠	155		·		
gcc	atc	ttg	ttc	atc	tcg	aca	gtg	aac	tca	ctg	agc	gtg	cgg	ctg	gga		708
Ala	Ile	Leu	Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly		47.
	-	160		ŕ			165					170					
agc	tac	gtc	cag	aac	atc	ttc	acc	gcg	gcc	aag	ctg	gtg	atc	gtg	gcc.		756
Ser	Tyr	Val	Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala.		
	175					180					185						
atc	atc	atc	atc	agc	ggg	ctg	gtg	ctc	ctg	gcc	caa	gga	aac	aca	aag		804
Ile	Ile	Ile	Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asr	1 Tha	Lys		
190					195	•		•		200	, ,			•	- 205.		
aat	ttt	gat	aat	tct	ttc	gag	ggc	gcc	cag	ctg	tct	gte	gga	a gco	atc		852
Asn	Phe	e Asp	Asr	ı Ser	Phe	Glı	Gly	Ala	Gln	Leu	Ser	· Val	Gl	y. Ala	a Ile	•	
		;		210)				215			•	٠	220) ; '	-	
ago	cte	g gc	g tti	t tac	aa1	gg	a cto	tgg	gcc	tat	gat	t gga	a tg	g aa	t caa		900
Sei	r::Lei	ı Ala	a Pho	e Ty	r Ası	n Gl	y Leu	Trp	Ala	Туз	. Ası	G1;	y Tr	p As	n Gln.		
		•	· 2 2	5 ·		-		230)		. •	.·	23	5. ,	ja K		
cte	c aa	t ta	c at	c ac	a ga	a ga	a cti	t aga	a 880	cci	t ta	c ag	a aa	c ct	g cct		948
Le	u Ası	n ¹Ty	r Il	e Th	r Gl	u Gl	u Lei	ı Arı	g Ası	n Pro	о Ту	r Ar	g As	n Le	u.Pro		

BRIGHTONIN - MATTERNAS I S

 $(A_{k+1}(A_k) \cap A_k) = (A_{k+1}(A_k) \cap A_k)$

		240	•				245					250			٠	
ttg	gcc	att	atc	atc	ggg	atc	ссс	ctg	gtg	acg	gcg	tgc	tac	atc	ctc	996
Leu	Ala	Ile	Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	
	255					260					265				-	
atg	aac	gtg	tcc	tac	ttc	acc	gtg	atg	act	gcc	acc	gaa	ctc	ctg	cag	1044
Met	Asn	Val	Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	
270					275					280					285	
tcc	cag	gcg	gtg	gct	gtg	aca	ttt	ggt	gac	cgt	gtt	ctc	tat	cct	gct	1092
Ser	Gln	Ala	Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	
				290					295					300		
tct	tigg	atc	gtt	cca	ctt	ttt	gtg	gca	ttt	tca	acc	atc	ggt	gct	gct	1140
Ser	Trp	Ile	Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	
	5		305				,	310					315			
aac	ggg	acc	tgc	ttc	aca	gcg	ggc	aga	ctc	att	tac	gtg	gcg	ggc	cgg	1188
Asn	Gly	Thr	Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	
		320					325					330			٠.,	
gag	ggt	cac	atg	ctc	aaa	gtg	ctt	tct	tac	atc	agc	gtc	agg	cgc	ctc	1236
Glu	Gly	His	Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	
	335					340					345					
act	cca	gcc	ccc	gcc	atc	atc	ttt	tat	ggt	atc	ata	gca	acg	att	tat	1284
Thr	Pro	Ala	Pro	Ala	Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	
350		• • •			355			٠.		360		,- •			365	
atc	atc	cct	ggt	gac	ata	aac	tcg	tta	gtc	aat	tat	ttc	agc	ttt	gcc	1332
					Ile											
				370					375							

	•															
gca	tgg	ctg	ttt	tat	ggc	ctg	acg	att	cta	gga	ctc	atc	gtg	atg	aga	1380
Ala	Trp	Leu	Phe	Tyr	Gly.	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	
		•	385				,	390		•		٠.	395	; .	: *	
ttt	aca	agg	aaa	gag	ctg	gaa	agg	cct	atc	aag	gtg	ccc	gta	gtc	att	1428
Phe	Thr	Arg	Lys	Glu	Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	
		400					405			•		410	,	4 ÷	. 5	
ccc	gtc	ttg	atg	aca	ctc	atc	tct	gtg	ttt	ttg	ġtt	ctg	gct	cca	atc	1476
Pro	Val	Leu	Met	Thr	Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	
¥.	415					420					425	• 4		• ! •	1	
atc	agc	aag	ccc	acc	tgg	gag	tac	ctc	tac	tgt	gtg	ctg	ttt	ata	tta	. 1524
Ile	Ser	Lys	Pro	Thr	Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	
430					435					440					445	
agc	ggc	ctt	tta	ttt	tac	ttc	ctg	ttt	gtc	cac	tac	aag	ttt	gga	tgg	1572
Ser	Gly	Leu	Leu	Phe	Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	
		,		450					455					460		
gct	cag	aaa	atc	tca	aag	ccg	att	acc	atg	cac	ctt	cag	atg	cta	atg	1620
Ala	Gln	Lys	Ile	Ser	Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met ·	
:			465	•				470	· ·				475	; · ··		
gaa	gtg	gto	cca	ccg	gag	gaa	gac	cct	gag	taa	caag	ctc	cgto	tctt	gt	1670
Glu	Val	Val	Pro	Pro	Glu	Glu	Asp	Pro	Glu					•.	•	
agc	caag	tca	gctg	aatt	ta t	tttc	ttaa	ıg ca	atat	ttgt	ggt	tati	tct	tcc1	ttttt	1730
ctt	acga	ata	aaait	atac	tc 'a	igate	gttt		;		,		;		•	1758
															1 247	
<21	.0> 5	54									1	:				•

BNSDOCID: <WO 0112660A2 L >

ورمت ويها الها الها

<211> 1550	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
<222> (154)(1281)	
<400> 54	
ctctgtttac cgagagagcc cgtccaagtt gggctccatc gctgccctcg ctccccttcg	60
gggcctccgc ccgcctggga agcagagaga aagccgggcc cagcccttcc tcacccttcc	120
cctccccgca ccgcccggag aggtcggacg gcg atg acc ccc cag ccc gcc gga	174
Met Thr Pro Gln Pro Ala Gly	
\$ - 5	
ccc ccg gat ggg ggc tgg ggc tgg gtg gtg gcg gcc gca gcc ttc gcg	222
Pro Pro Asp Gly Gly Trp Gly Trp Val Val Ala Ala Ala Ala Phe Ala	
10 15 20	
ata aac ggg ctg tcc tac ggg ctg ctg cgc tcg ctg ggc ctt gcc ttc	270
Ile Asn Gly Leu Ser Tyr Gly Leu Leu Arg Ser Leu Gly Leu Ala Phe	
25 30 35	
cct gac ctt gcc gag cac ttt gac cga agc gcc cag gac act gcg tgg	318
Pro Asp Leu Ala Glu His Phe Asp Arg Ser Ala Gln Asp Thr Ala Trp	
40 45 50 55	
atc agc gcc ctg gcc ctg gcc gtg cag cag gca gcc agc ccc gtg ggc	366
Ile Ser Ala Leu Ala Leu Ala Val Gln Gln Ala Ala Ser Pro Val Gly	
, , , , , , , , , , , , , , , , , , , 	
age gee etg age acg ege tgg ggg gee ege eee gtg gtg atg gtt ggg	414

Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala	Arg	Pro	Val	Val	Met	Val	Gly	
	,		75					80			-		85			
ggc	gtc	ctc	gcc	tcg	ctg	ggc	ttc	gtc	ttc	tcg	gct	ttc	gcc	agc	ggt	462
Gly	Val	Leụ	Ala	Ser	Leu	Gly	Phe	Val	Phe	Ser	Ala	Phe	Ala	Ser	Gly ···	
		90					95					100		•. •		
ctg	ctg	cat	ctc	tac	ctc	ggc	ctg	ggc	ctc	ctc	gct	ggc	ttt	ggt	tgg	510
Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Phe	Gly	Trp	
	105					110	-		٠		115		٠		•	
gcc	ctg	gtg	ttc	gcc	ccc	gcc	cta	ggc	acc	ctc	tcg	cgt	tac	ttc	tcc	558
Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly	Thr	Leu	Ser	Arg	Tyr	Phe	Ser	-
120					125					130					135	
cgc	cgt	cga	gtc	ttg	gcg	gtg	ggg	ctg	gcg	ctc	acc	ggc	aac	ggg	gcc	606
Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu	Ala	Leu	Thr	Gly	Asn	Gly	Ala	
				140					145					150		
tcc	tcg	ctg	ctc	ctg	gcg	ccc	gcc	ttg	cag	ctt	ctc	ctc	gat	act	ttc	654
Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu	Gln	Leu	Leu	Leu	Asp	Thr	Phe	
٠	r	• •	155					160		•		•	165	t		
ggc	tgg	cgg	ggc	gct	ctg	ctc	ctc	ctc	ggc	gcg	atc	acc	ctc	cac	ctc	702
Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu	Gly	Ala	Ile	Thr	Leu	His	Leu	
-		170	•		•		175	ı		•		180	•	·* · · · ·	. • .	
acc	ccc	tgt	ggc	gcc	ctg	ctg	cta	ccc	ctg	gtc	ctt	cct	gga	gac	cccr	750
Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro	Leu	Val	Leu	Pro	G1 y	Asp	Pro-	
-	185					190					195		. '•	:	1.	
cca	gcc	cca	ccg	cgt	agt	ccc	cta	gct	gcc	ctc	ggc	ctg	agt	ctg	ttc	798
Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala	Ala	Leu	Gly	·Leu	Ser	Leu	Phe	

200	:				205			٠		210					215	
aca	cgc	cgg	gcc	ttc	tca	atc	ttt	gct	cta	ggc	aca	gcc	ctg	gtt	ggg	. 846
Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala	Leu	Gly	Thr	Ala	Leu	Val	Gly	
	.:			220					225	-				230		
ggc	ggg	tac	ttc	gtt	cct	tac	gtg	cac	ttg	gct	ccc	cgc	ttt	aga	ccg	894
Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His	Leu	Ala	Pro	Arg	Phe	Arg	Pro	
		•	235					240					245			
ggg	cct	ggg	ggg	ata	cgg	agc	agc	gct	ggt	ggt	ggc	cgt	ggc	tgc	gat	942
Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Cys	Asp	
		250					255					260				
ggg	gga	tgc	ggg	cgc	ccg	gct	ggt	ctg	cgg	gtg	gct	ggc	aga	cca	agg	990
Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu	Arg	Val	Ala	Gly	Arg	Pro	Arg	,
	265					270					275					
ctg	ggt	gcc	cct	ccc	gcg	gct	gct	ggc	cgt	att	cgg	ggc	tct	gac	tgg	1038
Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly	Arg	Ile	Arg	Gly	Ser	Asp	Trp	
280					285					290					295	
gct	ggg	gct	gtg	ggt	ggt	ggg	gct	ggt	gcc	cgt	ggt	ggg	cgg	cga	aga	1086
Ala	Gly	Ala	Val	Gly	Gly	Gly	Ala	Gly	Ala	Arg	Gly	Gly	Arg	Arg	Arg	
				300					305					310		
gag	ctg	ggg	ggg	tcc	cct	gct	ggc	cgc	ggc	tgt	ggc	cta	tgg	gct	gag	1134
Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg	Gly	Cys	Gly	Leu	Trp	Ala	Glu	
			315	<i>:</i>				320		٠,		1.	325	,	: ••	ı
cgc	ggg	gag	tta	cgc	ccc	gct	ggt	ttt	cgg	tgt	act	ccc	cgg	gct	ggt	1182
Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe	Arg	Cys	Thr	Pro	Arg	Ala	Gly	
ų.	∴ •	330	de de				335				;	340		• I	י	

ggg cgt cgg agg tgt ggt gca ggc cac agg gct ggt gat gat gct gat	. 1230
Gly Arg Arg Arg Cys Gly Ala Gly His Arg Ala Gly Asp Asp Ala Asp	
345	
gag cct cgg ggg gct cct ggg ccc tcc cct gtc agg ctt cct aag gga	1278
Glu Pro Arg Gly Ala Pro Gly Pro Ser Pro Val Arg Leu Pro Lys Gly	
360 365 370 375	
tg agacaggaga cttcaccgcc tctttcctcc tgtctggttc tttgatcctc	1330
tccggcagct tcatctacat agggttgccc agggcgctgc cctcctgtgg tccagcctcc	1390
cctccagcca cgcctccccc agagacgggg gagctgcttc ccgctcccca ggcagtcttg	1450
ctgtccccag gaggccctgg ctccactctg gacaccactt gttgattatt ttcttgtttg	1510
agcccctccc ccaataaaga atttttatcg ggttttcctg	1550
<210> 55	
<211> 1485	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS · · · · · · · · · · · · · · · · · · ·	
<222> (101) (1153)	
<400> 55	•
ctctcctcga ccctggacgt ctaccttccg gaggcccaca tcttgcccac tccgcgcgc	g 60
gggctagcgc gggtttcagc gacgggagcc ctcaagggac atg gca act aca gcg	115
Met Ala Thr Thr Ala	
$eta_{i,j}$, $eta_{i,j}$	
gog cog gog ggo ggo cga aat gga got ggo cog gaa tgg gga ggg	163

Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly	Pro	Glu	Тгр	Gly	Gly	
		٠,		10					15					20		
ttc	gaa	gaa	aac	atc	cag	ggc	gga	ggc	tca	gct	gtg	att	gac	atg	gag .	211
Phe (Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala	Val	Ile	Asp	Met	Glu	
			25					30					35			
aac a	atg	gat	gat	acc	tca	ggc	tct	agc	ttc	gag	gat	atg	ggt	gag	ctg	259
Asn I	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu	Asp	Met	G1y	Glu	Leu	
		40					45			•		50		,		
cat	cag	cgc	ctg	cgc	gag	gaa	gaa	gta	gac	gct	gat	gca	gct	gat	gca	307
His (Gln	Arg.	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala	Asp	Ala	Ala	Asp	Ala	
	55					60					65					
gct g	gct	gct	gaa	gag	gag	gat	gga	gag	ttc	ctg	ggc	atg	aag	ggc	ttt	355
Ala A	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu	Gly	Met	Lys	Gly	Phe ⁻	
70					75					80					85	
aag g	gga	cag	ctg	agc	cgg	cag	gtg	gca	gat	cag	atg	tgg	cag	gct	ggg	403
Lys (Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln	Met	Trp	Gln	Ala	Gly	
95		••	•	90		-			95					100	-	
aaa a	aga	caa	gcc	tcc	agg	gcc	ttc	agc	ttg	tac	gcc	aac	atc	gac	atc	451
Lys A	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr	Ala	Asn	Ile	Asp	Ile	
.		:	105	•				110					115			
ctc a	aga	ссс	tac	ttt	gat	gtg	gag	cct	gct	cag	gtg	cga	agc	agg	ctc	499
Leu A	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln	Val	Arg	Ser	Arg	Leu	
1- 1	1 34	120					125					130	1		. • •	
																5.40
ctg, g	gag	tcc	atg	atc	cct	atc	aag	atg	gtc	aac	ttc	ccc	cag	aaa	att	547

	135				. ,	140			• •		145				* **	
gca	ggt	gaa	ctc	tat	gga	cct	ctc	atg	ctg	gtc	ttc	act	ctg	gtţ	gct	595
Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val	Phe	Thr	Leu	Val	Ala	
150	:	٠.	. :		155	. *	:			160				•	165	
atc	cta	ctc	cat	ggg	atg	aag	acg	tct	gac	act	att	atc	cgg	gag	ggc	643
Ile	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr	Ile	Ile	Arg	Glu	Gly	
		٠		170					175	٠				180	-	
acc	ctg	atg	ggc	aca	gcc	att	ggc	acc	tgc	ttc	ggc	tac	tgg	ctg	gga	691
Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe	Gly	Tyr	Trp	Leu	Gly	
		٠.	185					190					195		٠	
gtc	tca	tcc	ttc	att	tac	ttc	ctt	gcc	tac	ctg	tgc	aac	gcc	cag	atc	739
Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Leu	Cys	Asn	Ala	Gln	Ile	
	٠	200					205					210				
acc	atg	ctg	cag	atg	ttg	gca	ctg	ctg	ggc	tat	ggc	ctc	ttt	ggg	cat	787
Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	G1y	Tyr	Gly	Leu	Phe	Gly	His	
	215	; <i>.</i>				220					225	i		•		
tgo	att	gto	ctg	tto	atc	acc	tat	aat	atc	cac	ctc	cac	gco	cto	ttc	835
Cys	: Ile	e Val	Leu	. Phe	Ile	Thr	Туг	Asn	Ile	His	Leu	His	Ala	a Let	ı Phe	
230). <i>'</i> '	; :	:	٠.	235					240)	٠			. 245	
tad	cto	e ito	c tgg	g ctg	g ttg	gtg	gg1	t gga	ctg	tcc	aca	a ctg	cg	c at	g gta	883
Tyi	r Lei	ц Phe	e Trp	Let	ı Leu	Val	Gl	y Gly	r Leu	Ser	Thi	r Leu	Ar	g Me	t Val	<i>:</i>
	·· . ·	. ;		250) .	٠.			255	5	٠, .		٠.	· 26	0 "	
gc	a gt	g tt	g gt	g tc	t cgg	gaco	c gt	g gg	c ccc	aca	a ca	g cgg	ct	g ct	c ctc	93
Al	a Va	l Le	u Va	1 Se	r Arg	g Thi	r Va	1 G1;	y Pro	Th	r Gl	n Arg	g Le	u Le	u Leu	•
4.			26	5 :		1		270	0	٠.	.		27	5	1.77	

tot our are eta art are eta car	atg ctc ttc ctg ctc tat ctg cat	070
		979
Cys Gly Thr Leu Ala Ala Leu His	Met Leu Phe Leu Leu Tyr Leu His	
280 285	290	
ttt gcc tac cac aaa gtg gta gag	ggg atc ctg gac aca ctg gag ggc	1027
Phe Ala Tyr His Lys Val Val Glu	Gly Ile Leu Asp Thr Leu Glu Gly	
295 300	305	
ccc aac atc ccg ccc atc cag agg	gtc ccc aga gac atc cct gcc atg	1075
Pro Asn Ile Pro Pro Ile Gln Arg	Val Pro Arg Asp Ile Pro Ala Met	
310 315	320 325	
ctc cct gct gct cgg ctt ccc acc	acc gtc ctc aac gcc aca gcc aaa	1123
Leu Pro Ala Ala Arg Leu Pro Thr	Thr Val Leu Asn Ala Thr Ala Lys	
330	335 340	
gct gtt gcg gtg acc ctg cag tca	cac tgaccccacc tgaaattett	1170
Ala Val Ala Val Thr Leu Gln Ser	His	
345	350	
ggccagtcct ctttcccgca gctgcagag	a ggaggaagac tattaaagga cagtcctgat	1230
gacatgtttc gtagatgggg tttgcagct	g ccactgaget gtagetgegt aagtacetee	1290
ttgatgcctg tcggcacttc tgaaaggca	c aaggecaaga acteetggee aggaetgeaa	1350
ggctctgcag ccaatgcaga aaatgggtc	a gctcctttga gaacccctcc ccacctaccc	1410
cttccttcct ctttatctct cccacattg	t cttgctaaat atagacttgg taattaaaat	1470
gttgattgaa gtctg	•	1485
<210> 56	**	
<211> 2694		
/212\\ DNA 1		

BNSDOCID: <WO 0112660A2 L >

T-1

<213> Homo	sapiens		• • •	· >	•	1 (77	
<220>		•	· ·			: :	
<221> CDS						·:	
<222> (80).	(2083)					* ; * * *	
< 400> , 56 .	, '					: • • •	
gtagactctg	cggatcccg	a gaccago	gcc acto	atcctg ca	gcactggg g	acagacaga	60
gcaggagaag	ggccagaga	atg tcg	tcc cag	cca gca g	gg aac cag	acc .tcc	112
,		Met Ser	Ser Gln	Pro Ala G	Gly Asn Gln	Thr Ser	
-)(1		5		10	
ccc ggg gc	c aca gag	gac tac t	cc tat g	ggc agc tg	gg tac atc	gat gag.	160
Pro.Gly Al	a Thr Glu	Asp Tyr S	Ser Tyr (Gly Ser Tr	rp Tyr Ile	Asp Glu	
	15		20		. 25	•	
ccc cag gg	g ggc gag	gag ctc o	cag cca (gag ggg ga	aa gtg ccc	tcc tgc	208
Pro Gln Gl	y Gly Glu	Glu Leu (Gln Pro (Glu Gly G	lu Val Pro	Ser Cys	
3	0		35 - ,		40		
cac acc ag	c ata cca	ccc ggc	ctg tac.	cac gcc t	gc ctg gcc	tcg ctg.	256
His Thr Se	r Ile Pro	Pro Gly I	Leu Tyrj	His Ala C	ys Leu Ala	Ser Leu	
45.	*	50			55		
tca atc ct	t gtg ctg	ctg ctc	ctg gcc	atg ctg g	tg agg cgc	cgc.cag	304
Ser Ile Le	eu Val Leu	Leu Leu	Leu; Ala	Met Leu V	al Arg Arg	Arg Gln,	
60		65		70		75	
ctc tgg co	t gac tgt	gtg cgt	ggc agg	ccc ggc c	tg ccc agc	cct gtg	352
Leu Trp Pr	o Asp Cys	Val Arg	Gly Arg	Pro Gly L	eu Pro Ser	Pro; Val;	
	80	ı		85		90 _(1,0,1)	
gat ttc ti	tg gct ggg	gac agg	ccc cgg	gca gtg c	ct gct gct	gtt.ttc	400

Asp	Phe	Leu	Ala	Gly	Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Val	Phe	
	,		95					100					105			
atg	gtc	ctc	ttg	agc	tcc	ctg	tgt	ttg	ctg	ctc	ccc	gac	gag	gac	gca	448
Met	Val	Leu	Leu	Ser	Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	G1u	Asp	Ala	
		110					115					120				
ttg	ccc	ttc	ctg	act	ctc	gcc	tca	gca	ссс	agc	caa	gat	ggg	aaa	act	496
Leu	Pro	Phe	Leu	Thr	Leu	Ala	Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	
-	125			-		130					135					
gag	gct	cca	aga	ggg	gcc	tgg	aag	ata	ctg	gga	ctg	ttc	tat	tat	gct	544
Glu	Ala	Pro	Arg	Gly	Ala	Trp	Lys	Ile	Leu	Gly	Leu	Phe	Tyr	Tyr	Ala	
140					145					150					155	
gcc	ctc	tac	tac	cct	ctg	gct	gcc	tgt	gcc	acg	gct	ggc	cac	aca	gct	592
Ala	Leu	Tyr	Tyr	Pro	Leu	Ala	Ala	Cys	Ala	Thr	Ala	Gly	His	Thr	Ala	
				160					165					170		
gca	cac	ctg	ctc	ggc	agc	acg	ctg	tcc	tgg	gcc	cac	ctt	ggg	gtc	cag	640
Ala	His	Leu	Leu	Gly	Ser	Thr	Leu	Ser	Trp	Ala.	His	Leu	Gly	Val	Gln _,	
• -			175					180					185	, -		
gtc	tgg	cag	agg	gca	gag	tgt	ccc	cag	gtg	ccc	aag	atc	tac	aag	tac	688
Val	Trp	Gln	Arg	Ala	Glu	Cys	Pro	Gln	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	
-		190					195					200				
tac,	tcc	ctg	ctg	gcc	tcc	ctg	cct	ctc	ctg	ctg	ggc	ctc	gga	ttc	ctg .	736
Tyr	Ser	Leu	Leu	Ala	Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leų	Gly	Phe	Leu	
• •	205,	•			,	210					215				•	
agc	ctt	tgg	tac	cct	gtg	cag	ctg	gtg	aga	agc	ttc	agc	cgt	agg	aca	784
Ser	Leu	Trp	Tyr	Pro	Val	Gln	Leu	Val	Arg	Ser	Phe	Ser	Arg	Arg	Thr	

220				'	225			•	• •	230	•			4.2 °	235 ·	
gga	gca	ggc	tcc	aag	ggg	ctg	cag	agc	agc	tac	tct	gag	gaa	tat	ctg	832
Gly .	Ala	Gly	Ser	Lys	Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Týr	Leu	
			t	240					245			•		250	88	
agg	aac	ctc	ctt	tgc	agg	aag	aag	ctg	gga	agc	agc	tac	cac	acc	tcc	880
Arg	Asn	Leu	Leu	Cys	Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	
		٠٠.	255		•			260		•			265	•		
aag	cat	ggc	ttc	ctg	tcc	tgg	gcc	cgc	gtc	tgc	ttg	aga	cac	tgc	atc	928
Lys	His	Gly	Phe	Leu	Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	
	•	270	٠	•			275					280			***	7.1
tac	act	cca	cag	cca	gga	ttc	cat	ctc	ccg	ctg	aag	ctg	gtg	ctt	tca	976
Tyr	Thr	Pro	Gln	Pro	Gly	Phe	His	Leu	Pro	Leu	Lys	Leu	Val	Leu	Ser	
	285					290			٠	•)	295				•	
gct	aca	ctg	aca	ggg	acg	gcc	att	tac	cag	gtg	gcc	ctg	ctg	ctg	ctg	1024
Ala	Thr	Leu	Thr	Gly	Thr	Ala	Ile	Tyr	Gln						Leu	- ·
300	•				305	•				310	٠				315	
gtg	ggc	gtg	gta	ccc	act	atc	cag	aag	gtg	agg	gca	ggg	gigto	acc	acg	1072
Val	Gly	Val	Val	Pro	Thr	Ile	Gln	Lys	Val	Arg	Ala	Gly	Val	Thr	Thr	
٠	. `	• •		320	-	•		•	325	V 4	٠			330)	
gat	gto	tcc	tac	ctg	ctg	gco	ggo	ttt	gga	atc	gte	cto	tcc	ga ₍	g gac	1120
Asp	Va!	Ser													ı Asp	
-			`338	5" `		•	•	340) ′ "	•	4.		`34	5 '	and take	
aag	ca	g gag	ggtg	gte	gag	g ct	ggtg	g aag	g cac	cat	cte	g tgg	g gç	t ct	ġ gaa	1168
Lys	Gli	n Glu	ı Val	l Val	l Glu	ı Lei	ı Vai	l Lys	s His	His	Lei	i Tr	o' Ala	a Le	u Glù	
1	· 3 .3	⁻ 350	0	٠.		: .	35	5 -	•	1 1	• •	36	0 · .;	(1 ·	12 T 10	

gtg	tgc	tac	atc	tca	gcc	ttg	gtc	ttg	tcc	tec	tta	oto	800	ttc	ctø	1216
101					Ala		Val	Leu	Ser	Cys		Leu		rne		
•	365	•	•			370					375			•		
gtc	ctg	atg	cgc	tca	ctg	gtg	aca	cac	agg	acc	aac	ctt	cga	gct	ctg	1264
Val	Leu	Met	Arg	Ser	Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	
380					385					390					395	
cac	cga	gga	gct	gcc	ctg	gac	ttg	agt	ссс	ttg	cat	cgg	agt	ccc	cat	1312
His	Arg	Gly	Ala	Ala	Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	
				400					405					410		
ccc	tcc	cgc	caa	gcc	ata	ttc	tgt	tgg	atg	agc	ttc	agt	gcc	tac	cag	1360
					Ile											
110	Jei	νπ g			116	1 110	Cys		me c	Jei	1 116	361		lyl	GIII	
	٠		415					420					425			
aca	gcc.	ttt	atc	tgc	ctt	ggg	ctc	ctg	gtg	cag	cag	atc	atc	ttc	ttc	1408
Thr	Ala	Phe	Ile	Cys	Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	
•		430					435					440	-	٠.		
ctg	gga	acc	acg	gcc	ctg	gcc	ttc	ctg	gtg	ctc	atg	cct	gtg	ctc	cat	1456
Leu	Gly	Thr	Thr	Ala	Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	
	445					450					455					
ggc	agg	aac	ctc	ctg	ctc	ttc	cgt	tcc	ctg	gag	tcc	tcg	tgg	ccc	ttc	1504
Glv	Arg	Asn	Leu	Leu	Leu	Phe	Arg	Ser	Leu	G1u	Ser	Ser	Trp	Pro	Phe	
								•••							475	
														•		4.550
					ctg								_			1552
Trp	Leu	Thr	Leu	Ala	Leu	Ala	Val	Ile	Leu	Gln	Asn	Met	Ala	Ala	His	
<i>::</i>	2°\$3.5			480					485		•1		·	490	•	
tgg	gtc	ttc	ctg	gag	act	cat	gat	gga	cac	cca	cag	ctg	acc	aac	cgg	1600

Trp	Val	Phe	Leu	Glu	Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	
			495					500					505		:	
cga	gtg	ctc	tat	gca	gcc	acc	ttt	ctt	ctc	ttc	ccc	ctc	aat	gtg	ctg	1648
Arg	Val	Leu	Tyr	-Ala-	Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	
	-	510	• •				515					520				
gtg	ggt	gcc	atg	gtg	gcc	acc	tgg	cga	gtg	ctc	ctc	tct	gcc	ctc	tac	1696
Val	Gly	Ala	·Met	Val	Ala	Thr	Trp	Arg	Val	Leu	Leu	Ser	Ala	Leu	Tyr	
	525					530					535					
aac	gcc	atc	cac	ctt	ggc	cag	atg	gac	ctc	agc	ctg	ctg	cca	ccg	aga	1744
Asn	Ala	Ile	His	Leu	Gly	Gln	Met	Asp	Leu	Ser	Leu	Leu	Pro	Pro	Arg	; ;
540					545					550					555	
gcc	gcc	act	ctc	gac	ccc	ggc	tac	tac	acg	tac	cga	aac	ttc	ttg	aag	1792
Ala	Ala	Thr	Leu	Asp	Pro	Gly	Tyr	Tyr	Thr	Tyr	Arg	Asn	Phe	Leu	Lys	
٠				560					. 565					570) .	
att	gaa	gto	ago	cag	tcg	cat	cca	gcc	atg	aca	gcc	tto	tgo	tco	ctg	1840
Ile	Glu	Va]	Ser	- Gln	Ser	His	Pro	Ala	Met	Thr	Ala	Phe	e Cys	Ser	Leu	•
٠.			575	5				580	١				585	, ,		
ctc	cts	g caa	a gcg	g cag	ago	ctc	cta	ccc	agg	acc	ate	g gca	a gco	ccc	cag	1888
Leu	Leu	ı Glı	n Ala	a Glr	Ser	Leu	Leu	Pro	Arg	Thr	Met	t Ala	a Ala	a Pro	Gln	
	-	59	0	-			595	;				60	0	* :		
gac	age	c ct	c ag	a cca	ggi	g gag	gaa	gac	gaa	ggg	g at	g ca	g ct	g cta	a cag	1936
Asp	Se:	r Le	u Ar	g Pro	G1;	y Glu	Glı	ı Ası	Glu	ı Gly	y Me	t Gl	n Le	u Le	u Gln	
	60	5 ·				610	1				61	5			, , .	
aca	a aa	g ga	c tc	c at	g gc	c aag	gga	a gc	t ag	g cc	c gg	g gc	c ag	c cg	c ggc	1984
															g Gly	

620 625 630 635	
agg gct cgc tgg ggt ctg gcc tac acg ctg ctg cac aac cca acc ctg	2032
Arg Ala Arg Trp Gly Leu Ala Tyr Thr Leu Leu His Asn Pro Thr Leu	
640 645 650	
cag gtc ttc cgc aag acg gcc ctg ttg ggt gcc aat ggt gcc cag ccc	2080
Gln Val Phe Arg Lys Thr Ala Leu Leu Gly Ala Asn Gly Ala Gln Pro	
655 660 665	
tgagggcagg gaaggtcaac ccacctgccc atctgtgctg aggcatgttc	2130
ctgcctacca tcctcccc tccccggctc tcctcccagc atcacaccag ccatgcagcc	2190
agcaggtcct ccggatcacc gtggttgggt ggaggtctgt ctgcactggg agcctcagga	2250
gggctctgct ccacccactt ggctatggga gagccagcag gggttctgga gaaagaaact	2310
ggtgggttag ggccttggtc caggagccag ttgagccagg gcagccacat ccaggcgtct	2370
ccctaccctg gctctgccat cagccttgaa gggcctcgat gaagccttct ctggaaccac	2430
tocagoccag otocacotca goottggcot toacgotgtg gaagcagoca aggoacttoo	2490
teaccecte agegecaegg acetetetgg ggagtggeeg gaaageteee gggeetetgg	2550
cctgcagggc agcccaagtc atgactcaga ccaggtccca cactgagctg cccacactcg	2610
agagccagat atttttgtag tttttatgcc tttggctatt atgaaagagg ttagtgtgtt	2670
ccctgcaata aacttgttcc tgag	2694
<210> 57	
<211> 3297	
<212> DNA	
<213> Homo sapiens	
<220> · ·	
<221> CDS (422	

BNSDOCID: <WO 0112660A2 E >

Land of the state of the

<222> (83) (1477)				
<400> 57	•		• (1)	
ggggtctgta ctctgtgaa	ng tcaactgggt ta	gtgtgctc tctgatgo	ect ggaattecag 60)
tecceaccea gaaaccego	ea gc atg att gt	ce tge etc ett tte	atg atg att 112	?
	Met Ile Va	al Cys Leu Leu Pho	e Met Met Ile	
	. 1 .	5 ,	. 10	
tta ttg gca aag gaa	gtt caa ctg gta	a gac caa aca gat	tca cct tta 160)
Leu Leu Ala Lys Glu	Val Gln Leu Val	l Asp Gln Thr Asp	Ser Pro Leu	
15		20	25	
ctt agt ctc ctt gga	cag aca agc tca	a ctt tca tgg cat	ctt gtg gat 208	3
Leu Ser Leu Leu Gly	Gln Thr Ser Ser	r Leu Ser Trp His	Leu Val Asp	
30	. 39	5	40	
attigtg tcg tac cag	agt gtg cta ag	t tat ttc agc agc	cat tac ccg 250	6
Ile Val Ser Tyr Gln	Ser Val Leu Se	r.Tyr Phe Ser Ser	His Tyr Pro	
45	. 50		o .	
ccg tcc atc atc ctg	gca aaa gaa tc	t tat gct gaa tta	atc atg aag 30	4
Pro Ser Ile Ile Leu	Ala Lys Glu Se	r Tyr Ala Glu Leu	Ile.Met Lys	
60	65	70		
ctc cta aaa gtg tct	gcg ggc ctt tc	t att cct act gad	agc cag aag 35	2
Leu Leu Lys Val Ser				
75	80	85	90	
cat ctt gat gca gtt	cca aaa tgc ca	a get ttt act cat	cag atgigtt 40	0
His Leu Asp Ala Val				
95		100	105 🔀	
30				

caa ttc ctc agc acc ctg gaa caa aat gga aaa atc acc tta gca gtc

BNSDOCID: <WO 0112660A2 1 >

The state of the s

448

: 🚡

Gln	Phe	Leu	Ser	Thr	Leu	Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val,	
	-	-	110					115					120			
cta	gaa	cag	gaa	atg	tct	aag	ctc	tta	gac	gat	atc	att	gtc	ttt	aac .	496
Leu	Glu	G1n	Glu	Met	Ser	Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	
		125					130					135				
ccg	ccc	gac	atg	gac	agc	cag	acc	cgc	cac	atg	gcc	ctc	agc	agc	ctc	544
Pro	Pro	Asp	Met	Asp	Ser	Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	
	140					145					150				•	
ttt	atg	gaa	gtc	ctg	atg	atg	atg	aac	aac	gcg	act	att	cca	aca	gca	592
Phe	Met	Glu	Val	Leu	Met	Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala	
155					160					165					170	
gag	ttc	ctt	cgg	ggc	agt	atc	cgg	acc	tgg	att	ggc	caa	aaa	atg	cat	640
Glu	Phe	Leu	Arg	Gly	Ser	Ile	Arg	Thr	Trp	Ile	Gly	Gln	Lys	Met	His	
				175					180					185		
ggg	ctg	gtg	gtg	ctg	ccc	ctt	tta	aca	gca	gcc	tgc	cag	agc	ctg	gcg	688
Gly	Leu	Val	Val	Leu	Pro	Leu	Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala .	
•	•	٠	190	•	÷			195			•		200	٠.	-	
tcc	gtc	cgc	cac	atg	gct	gag	act	aca	gaa	gcc	tgc	atc	act	gcc	tac	736
Ser	Val	Arg	His	Met	Ala	Glu	Thr	Thr	Glu	Ala	Cys	Ile	Thr	Ala	Tyr	
		.205	. 8				210	•				215				
ttc.	aaa	gaa	agc	cct	ctc	aat	cag	aat	tca	gga	tgg	gga	ccc	att	ctg	784
Phe	Lys	Glu	Ser	Pro	Leu	Asn	Gln	Asn	Ser	Gly	Trp	Gly	Pro	Ile	Leu	
• •	220					225	-				230					
gta	tcc	ctt	cag	gtt	ccc	gag	ctc	acc	atg	gaa	gag	ttc	ctg	cag	gag	832
Va1	Ser	Len	Gln	Va1	Pro	Glu	Leu	Thr	Mat	Glu	Clu	Pho	Lou	Gln.	Glu	

235	• •	•	•	•	240					245					250	
tgc -	ctc	acc	ttg	ggc	agt	taç	ttg	act	ctt	tac	gtc	tac	ttg	ctt	cag	880
Cys	Leu	Thr	Leu	Gly	Ser	Tyr	Leu	Thr	Leu	Tyr	Val	Tyr	Leu	Leu	Gln	
:	٠		• •	255			4		260					265	٠	,
tgt	tta	aac	agc	gaa	cag	act	tta	agg	aat	gaa	atg	aaa	gtg	ctg	ctc	928
Cys	Leu	Asn	Ser	Glu	Gln	Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	
		•	270					275				,	280			
atc	tta	agc	aag	tgg	ctg	gaa	cag	gtg	tac	cca	agc	tcc	gtg	gag	gaa	976
Ile	Leu	Ser	Lys	Trp	Leu	Glu	Gln	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	
-		285	ı				290					295				
gag	gca	aag	ctg	ttt	ttg	tgg	tgg	cac	caa	gtc	ctt	cag	cto	tcc	ctc	1024
Glu	Ala	Lys	Leu	Phe	Leu	Trp	Trp	His	Gln	Val	Leu	G1n	Leu	Ser	Leu	. •
:	300	١	•			305					310	-				
att	cag	aca	gag	cag	aat	gac	tcc	gto	ctg	aca	gaa	tct	gto	att	t cga	1072
Ile	Gln	Thr	Glu	'G1r	Asn	Asp	Ser	Val	Leu	Thr	Glu	ı Ser	· Val	l· Ile	e Arg	:
315					320	· '				325	5		٠	•	330	•
att	cts	cto	ttg	g gti	t cag	ago	agg	cag	g aac	cto	gt	g gc1	t ga	g ga	g aga	1120
Ile	Lev	ı Lei	ı Lei	ı Va	l Glr	Ser	Arg	g Gli	n Asr	Leu	ı Va	l Ala	a Gl	u Gl	u Arg	5
٠.	٠	17.		33	5	•			340) '				34	5	• 1
cto	age	c tc	t gg	gat	c cti	g 888	g gca	a at	t ggg	g tt	t gg	c cg	g aa	g tc	g cct	1168
Lei	Se:	r Se	r Gl	y Il	e Le	u Gl	y Ala	a Il	e Gl	y Ph	e Gl	y Ar	g Ly	s Se	r Pro	o :
ï		:	35	0.		٠.		35	5 .	·. •		•	36	0 '		·
ttį	g tc	t aa	c ag	g tt	c cg	a gt	g gt	t gc	c cg	a ag	c at	g gc	t go	c tt	c ct	t 1216
Lei	u [:] Se	r As	n Ar	g Ph	e Ar	g Va	l Va	1 A1	a Ar	g Se	r Me	t Al	a Al	a Pł	ne Le	u
4.3	:	² ·36	55	, , ,			37	0	••.	. '	Ç +	37	' 5	•	30.0	11

tca	gtt	cag	gtt	cct	atg	gaa	gat	cag	atc	cgt	ttg	agg	cct	ggc	tct	1264
Ser	Val	Gln	Val	Pro	Met	Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	
•	380	;	•.			385				•	390	•				
gaa	tta	cat	ctg	acc	ССС	aaa	gct	cag	cag	gct	ctg	aat	gct	ctt	gaa	1312
Glu	Leu	His	Leu	Thr	Pro	Lys	Ala	Gln	Gln	Ala	Leu	Asn	Ala	Leu	Glu	
395					400					405					410	
tcc	atg	gca	tca	agt	aag	cag	tat	gtt	gaa	tac	cag	gat	caa	ata	ttg	1360
Ser	Met	Ala	Ser	Ser	Lys	Gln	Tyr	Val	Gļu	Tyr	Gln	Asp	Gln	Ile	Leu	
				415					420					425		
caa	gcc	acc	caa	ttt	ata	agg	cat	cct	ggc	cat	tgc	ctt	caa	gat	ggg	1408
Gln	Ala	Thr	Gln	Phe	Ile	Arg	His	Pro	Gly	His	Cys	Leu	Gln	Asp	Gly	
			430					435					440			
aaa	agc	ttc	ttg	gct	ctt	ctc	gtt	aac	tgt	ctg	tat	cca	gaa	gtg	cat	1456
Lys	Ser	Phe	Leu	Ala	Leu	Leu	Val	Asn	Cys	Leu	Tyr	Pro	Glu	Val	His	
		445					450					455				
tat	ttg	gac	cac	ata	cga	tagt	ta a	cact	gagg	c to	ttga	aaaa	ccc	atte	ctg	1510
Tyr	Leu	Asp	His	Ile	Arg									В	i	•
	460															
ttta	tgtt	ta c	attt	aact	t tg	ctgt	tgca	caa	gtaa	ctt	tgct	caat	tg c	acte	tagag	1570
ctca	gttt	gg c	caat	gtgt	a gt	tgac	tgag	atg	caag	ttg	ggag	gcgt	ta g	gatat	tagat	1630
aatt	ttgg	gg t	gtgt	gtgt	g tg	tgtg	tgtg	tgt	tttc	tta	gcto	ttaa	ıga c	ctto	tgggg	1690
acto	ttta	ag t	tttt	:atat	t ta	tcca	caag	aga	aact	tac	taag	ttcc	ac t	tggg	tgcag	1750
agco	acto	ac a	gttg	ccga	a tg	tccc	agto	ato	tcac	aag	acct	ccag	gaț g	gagt	tcttt	1810
gtat	gttt	cc a	ctto	tgtc	t ct	gttt	tate	taa	atgt	tcc	agat	ctga	ica a	cctt	ggaag	1870
tcac	tcag	ta c	cctt	actt	t ta	aacc	ccat	ttg	tgtt	cct	ccaa	agta	aa g	gaagt	caatt	1930

ttga	aaaatt	tctgcatttc	tcaaatgtgg	acaaatacaa	tagttttaaa	gtattgtttt	1990
tctc	agaagg	gagataaaaa	tgccgagtta	gttaaagtgg	gtcatgtgta	aaatacgacc	2050
actt	gatcgt	gattatagtg	ggcagtagag	atgatgacaa	gtcaatttcc	atccagccgt	2110
gtat	cctcat	ggagaagctg	cctgtctgaa	tcaggatggc	aagctggcag	tctgggagga	2170
gcat	gttttg	cacagatgtt	ttgtttggtc	cacttggtga	ggagtgcaga	cagggctgcc	2230
tctc	tctagt	cgggagagtc	tgtgcattcc	ctcgggccct	gaccctagcc	tcattcacat	2290
cact	tgcccc	tgtcgacacc	taagtttgca	ccctttgata	gacaccatgt	tcgatatctg	2350
aaag	gctcag	tgtcaggaga	cagagactga	gggagactga	agacctgatt	ctctgttccc	2410
tgct	tgtttt	ttaacttcaa	actcagatga	agccaatgga	cctgctgaaa	cacttgtctg	2470
tgga	aactgg	gtcaggtcgg	gagatctact	gaaatttggc	ttttttcca	tagccacgtg	2530
cct1	tctgttg	ttgacagttc	attcattacc	aaagcctgtg	tgtaactttg	ccttgttctg	2590
tggo	ccatctt	cttgctcatg	ttatttctcc	tgggaatgag	cagtttgact	tctgttccca	2650
cgt	tcctcat	tctatcagct	ctagatggat	tttgcctgca	tagctggctt	aatatgtctt	2710
tgt	gtatggg	tagtctgtag	cctgagaata	tttacctaaa	aatgtctaaa	cagccaccaa	2770
gaa	tgtttat	aggggtatag	gaatatagtt	aacagagtgc	taatctctcc	tcaaatgtcc	2830
ttt	tggaatg	cttccccaa	aattgggaag	ttggtaggag	cttttcttta	ctttgaattt	2890
ctt	tacttgg	acagaacgat	tctgccttaa	agacacgctt	tgcagctctg	ataaagaaca	2950
tcc	ctgttta	gtctcttgag	ttttacaggc	cacaaaatgt	ccgtctcaga	gggatctgtc	3010
tca	gcttttc	: ttatttttgo	ttctctccgt	tttcaaaatt	aatcatcttg	ttctctgtat	3070
aag	aaaattt	gagaagctgt	ggacaattta	atagtctgat	ctggcaacag	g cgatttttgt	3130
ttg	gaaatat	tttgtgtttt	ctttgaggag	gatataatta	ctgatatcct	aggatgtgaa	3190
att	tttgagt	gacagtatgo	acattttaaa	gaaaattat	g attaatctg1	ataatgtttt	3250
ttg	gtctgta	a aasattatas	a aaaataaaat	catttatct	t tggttgt .		3297
				1		: 1.5 (5) 5 (5) 5 (5)	

<2112	> 2	126					•									
<212	> Di	NA														
<213>	> H	ошо	sapi	ens										:		
<220>	>		,													
<221>	> CI	DS											•			
<222>	> (6	51).	(1	473)												
<400>	> 58	3														
aacac	tga	aca ;	gcgt	gagc	cc g	cggc	ggct	g ct	gcca	tggt	ggc	tggc	ggc	cggg	tgcagc	60
atg t	ct	aga	ctg	gga	gcc	ctg	ggt	ggt	gcc	cgt	gcc	ggg	ctg	gga	ctg	108
Met S	er	Arg	Leu	Gly	Ala	Leu	Gly	Gly	Ala	Arg	Ala	Gly	Leu	Gly	Lėu	
1				5					10				•	15		
ttg c	tg	ggt	acc	gcc	gcc	ggc	ctt	gga	ttc	ctg	tgc	ctc	ctt	tac	agc	156
Leu L	.eu	Gly	Thr	Ala	Ala	Gly	Leu	Gly	Phe	Leu	Cys	Leu	Leu	Tyr	Ser	
			20					25					30			
cag c	ga	tgg	aaa	cgg	acc	cag	cgt	cat	ggc	cgc	agc	cag	agc	ctg	ccc.	204
Gln A	rg	Trp	Lys	Arg	Thr	Gln-	Arg	His	Gly	Arg	Ser	Gln	Ser	Leu	Pro	
•	:	35		· ·			40					45				
aac t	cc	ctg	gac	tat	acg	cag	act	tca	gat	ccc	gga	cgc	cac	gtg	atg	252
Asn S	er	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met	
• !	50		. v			55	; .				60			ķ ·	,	
ctc c	tg	cgg	gct	gtc	cca	ggt	ggg	gct	gga	gat	gcc	tca	gtg	ctg	ccc	300
Leu L	eu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro	
65	. •	٠		:	70		. ·		•	75		,		• ,	80	
agc. c	tt.	cca	cgg	gaa	gga	cag	gag	aag	gtg	ctg	gac	cgc	ctg	gac	ttt	348
Ser L	eu	Pro	Arg	Glu	Gly	Gln	Glu	Lys	Val	Leu	Asp	Arg	Leu	Asp	Phe	

PNSDOCID: WO 011266042 I

HARA FRANCISCO

				85					90					:95	. * *:	
gtg	ctg	acc	agc	ctt	gtg	gcg	ctg	cgg	cgg	gag	gtg	gag	gag	ctg	aga	396
Val	Leu	Thr	Ser	Leu	Val	Ala	Leu	Arg	Arg	Glu	Val	Glu	Glu	Leu	Arg	
			100					105					110			
agc	agc	ctg	cga	ggg	ctt	gcg	ggg	gag	att	gtt	ggg	gag	gtc	cga	tgc	444
				Gly												
		115					120					125				
cac	atg			aac	cag	aga	gtg	gct	cgg	cgg	cga	agg	ttt	ccg	ttt.	492
															Phe	
1113	130								J		140					2
-+-									tec	agc	tet	gtc	tac	ttc	acg	540
															Thr	
		GIU	Arg	261			1111	Uly	261	155			•,,-		160	
145					150											588
															tac	500
Ala	Ser	Ser	Gly	Ala	Thr	Phe									y Tyr	
	٠			. 165				•) •						000
															a gaa	636
Thr	Thr	Ala	a Asr	n Ala	Glu	ı Ser	Asp	Asn	Glu	ı Arg	, Asp	Sei	. Ası	Lys	s Glu	
	. · ·		180) (•		•	185	5 .				190) ·· .	-i.a	
agt	; gag	g ga	ggi	g gaa	a gat	t gaa	i gtg	ago	tg1	t gag	act	gt	g aa	g at	g ggg	684
Sea	- Glu	ı Ası	p G1	y Glu	ı Ası	o Glu	ı Val	Sei	c Cy:	s Glu	ı Thr	. Va	l Ly:	s Me	t Gly:	
	٠.,	: 19	5	•	٠.	٠.	200). "	:			· 20	5	٠	71:: 11:	
ag	a aa	g ga	t tc	t ct	t ga	c tt	g gag	g ga	a ga	g gca	a gc1	t tc	a gg	t gc	c tcc·	732
Ar	g Ly:	s As	p Se	r Le	u As	p Lei	u Glu	ı Gl	u Gl	u Ala	a Ala	a Se	r Gl	y Al	a: Ser.,	
	c. 91	n .	, -	1 4		21	5 ·			-	220	0	Ŋ	, · · ·	60 3 20	

agt	gcc	ctg	gag	gct	gga	ggt	tcc	tca	ggc	ttg	gag	gat	gtg	ctg	ccc	780
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro	
225					230	٠.	•			235	,				240	
ctc	ctg	cag	cag	gcc	gac	gag	ctg	cac	agg	ggt	gat	gag	caa	ggc	aag	828
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys	
				245					250					255		
cgg	gag	ggc	ttc	cag	ctg	ctg	ctc	aac	aac	aag	ctg	gtg	tat	gga	agc	876
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser	
			260					265					270			
cgg	cag	gac	ttt	ctc	tgg	cgc	ctg	gcc	cga	gcc	tac	agt	gac	atg	tgt	924
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys	
		275			ē		280					285				
gag	ctc	act	gag	gag	gtg	agc	gag	aag	aag	tca	tat	gcc	cta	gat	gga	972
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly	
	290					295					300					
aaa	gaa	gaa	gca	gag	gct	gct	ctg	gag	aag	ggg	gat	gag	agt	gct	gac	1020
Lys	Glu	Glu	Ala	Glu	Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp	
305			-		310					315					320	
tgt.	cac	ctg.	tgg	tat	gcg	gtg	ctt	tgt	ggt	cag	ctg	gct	gag	cat	gag	1068
Cys	His	Leu	Trp	Tyŗ	Ala	Val	Leu	Cys	Gly	Gln	Leu	Ala	Glu	His	Glu	
			1	325					330					335		
agc	atc	cag	agg	cgc	atc	cag	agt	ggc	ttt	agc	ttc	aag	gag	cat	gtg	1116
Ser	Ile	Gln	Arg	Arg	Ile	Gln	Ser	Gly	Phe	Ser	Phe	Lys	Glu	His	Val	
. 7	3 <u>:</u>		340			٠,,		345			-		350			
gac.	aaa	gcc	att	gct	ctc	cag	cca	oaa	aac	ccc	ate	get	cac	ttt	ctt	1164

Asp Lys Ala Ile Ala Leu Gln Pro Glu Asn Pro Met Ala His Phe Leu	
355 360 365	
ctt ggc agg tgg tgc tat cag gtc tct cac ctg agc tgg cta gaa aaa	1212
Leu Gly Arg Trp Cys Tyr Gln Val Ser His Leu Ser Trp Leu Glu Lys	
370 380	
aaa act gct aca gcc ttg ctt gaa agc cct ctc agt gcc act gtg gaa	1260
Lys Thr Ala Thr Ala Leu Leu Glu Ser Pro Leu Ser Ala Thr Val Glu	
385 390 395 400	
gat gcc ctc cag agc ttc cta aag gct gaa gaa cta cag cca gga ttt	1308
Asp Ala Leu Gln Ser Phe Leu Lys Ala Glu Glu Leu Gln Pro Gly Phe	A. h.
405 410 415	
tcc aaa gca gga agg gta tat att tcc aag tgc tac aga gaa cta ggg	1356
Ser Lys Ala Gly Arg Val Tyr Ile Ser Lys Cys Tyr Arg Glu Leu Gly	
420 425 430	
aaa aac tot gaa got aga tgg tgg atg aag ttg goo ctg gag ctg cca	1404
Lys Asn Ser Glu Ala Arg Trp Trp Met Lys Leu Ala Leu Glu Leu Pro	
435 440 445	
gat gtc acg aag gag gat ttg gct atc cag aag gac ctg gaa gaa ctg	1452
Asp Val Thr Lys Glu Asp Leu Ala Ile Gln Lys Asp Leu Glu Glu Leu	
450 455 460	
gaa gtc att tta cga gac taaccacgtt tcactggcct tcatgacttg	1500
Glu Val Ile Leu Arg Asp	
465	
atgccactat ttaaggtggg ggggcgggga ggctttttc cttagacctt gctgagatca	1560
ggaaaccaca caaatctgtc tcctgggtct gactgctacc cactaccact ccccattagt	1620

taatttattc taacctctaa cctaatctag aattggggca gtactcatgg cttccgtttc	1680
tgttgttctc tcccttgagt aatctcttaa aaaaatcaag attcacacct gccccaggat	1740
tacacatggg tagagcctgc aagacctgag accttccaat tgctggtgag gtggatgaac	1800
ttcaaagcta taggaacaaa gcacataact tgtcacttta atctttttca ctgactaata	1860
ggactcagta catatagtet taagatcata cettacetae caaggtaaaa agagggatca	1920
gagtggccca cagacattgc tttcttatca cctatcatgt gaattctacc tgtattcctg	1980
ggctggacca cttgataact tccagtgtcc tggcagcttt tggaatgaca gcagtggtat	2040
ggggtttatg atgctataaa acaatgtctg aaaagttgcc tagaatatat tttgttacaa	2100
acttgaaata aaccaaattt gatgtt	2126
<210> 59	
<211> 1781	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (74) (805)	
<400> 59	
aatttggacc tgtgattcct tggttctcac aatcctctcc actctaagaa gcagggtgag	60
cccacaagga gca atg gag cag ggc agc ggc cgc ttg gag gac ttc cct	109
Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro	
5 v	
gtc aat gtg ttc tcc gtc act cct tac aca ccc agc acc gct gac atc	157
Val Asn Val Phe Ser Val Thr Pro Tyr Thr Pro Ser Thr Ala Asp Ile	
15 20 25	

cag	gtg	tcc	gat	gat	gac	aag	gcg	ggg	gcc	acc	ttg	ctc	ttc	tca	ggc	205
Gln	Val	Ser	Asp	Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	
	30		. ,			35				٠.	40	•	٠		0	<i>:</i>
atc	ttt	ctg	gga	ctg	gtg	ggg	atc	aca	ttc	act	gtc	atg	ggc	tgg	atc	253
Ile	Phe	Leu	Gly	Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	
45					50					55		• •			- 60	
aaa	tac	caa	ggt	gtc	tcc	cac	ttt	gaa	tgg	acc	cag	ctc	ctt	ggg	ccc-	301
Lys	Tyr	G1n	Gly	Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	
				65					70			••		75	•	
gtc	ctg	ctg	tca	gtt	ggg	gtg	aca	ttc	atc	ctg	att	gct	gtg	tgo	aag	349
Val	Leu	Leu	Ser	Val	Gly	Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	
•	,		80)				85					90)		
ttc	aaa	ate	ctc	tcc	tgc	cag	ttg	tgc	aaa	gaa	agt	gag	gaa	agg	g gtc	397
Phe	Lys	Met	Leu	Ser	Cys	Gln	Leu	Cys	Lys	Glu	Ser	Glu	Glu	ı Arı	g Val	
		95	5				100	1				105	5			
cce	gao	tc	g gaa	a cag	aca	cca	gga	gga	cca	tca	tti	t gti	ttt	c ac	t ggc	445
Pro	Asp	Sea	r Glu	ı Glm	Thr	Pro	Gly	Gly	Pro	Ser	Phe	e Val	l Phe	e Th	r Gly	
	110)				115	5				120)				
ato	c aac	cca	acce	c ato	aco	tto	cat	ggg	g 'gcc	act	t gt	gʻgt	g ca	g ta	c ato	493
Ile	e Ası	n Gl	n Pr	o Ile	e Thi	r Phe	e His	s Gly	, Ala	a Thi	r Va	l Va	1 G1	n Ty	r Ile	•
12	5			. •	130	0	• •			13	5	•			140)
cc	t cc	t cc	t 'ta	t gg	t tc	t cc	a ga	g cc	t at	g gg:	g at	a aa	t ac	c ag	c tac	541
Pr	o Pr	o Pr	о Ту	r Gl	y Se	r Pr	o Gl	u Pr	o Me	t Gl	y 'Il	e As	n Th	r Se	er Ty	r
				14	5				15	0			•	15	55	
ct	g ca	g to	t gt	ggt	g ag	c cc	c tg	c gg	c ct	c at	a ac	c to	t gg	ga gg	gg gc	a 589

Leu	Gln	Ser	Val	Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	
			160					165		•		-	170		,	
gca	gcc	gcc	atg	tca	agt	cct	cct	caa	tac	tac	acc	atc	tac	cct	caa	637
Ala	Ala	Ala	Met	Ser	Ser	Pŗo	Pro	Gln	Tyr	Tyr	Thr	Ile	Tyr	Pro	Gln	
		175					180					185				
gat	aac	tct	gca	ttt	gtg	gtt	gat	gag	ggc	tgc	ctt	tct	ttc	acg	gac	685
Asp	Asn	Ser	Ala	Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp	
	190				4	195					200					
ggt	gga	aat	cac	agg	ссс	aat	cct	gat	gtt	gac	cag	cta	gaa	gag	aca	733
Gly	Gly	Asn	His	Arg	Pro	Asn	Pro	Asp	Val	Asp	Gln	Leu	Glu	Glu	Thr	
205					210					215					220	
cag	ctg	gaa	gag	gag	gcc	tgt	gcc	tgc	ttc	tct	cct	ccc	cct	tat	gaa	781
Gln	Leu	Glu	Glu	Glu	Ala	Cys	Ala	Cys	Phe	Ser	Pro	Pro	Pro	Tyr	Glu	
	•			225					230					235		
gaa	ata	tac	tct	ctc	cct	cgc	taga	ggct	att	ctga	tat	aata	aca	caa		830
Glu	Ile	Tyr	Ser	Leu	Pro	Arg						, .				
			240											,		
tgct	cago	tc a	ggga	gcaa	g tg	tttc	cgto	att	gtta	cct	gaca	acce	gtg g	gtgtt	ctatg	890
ttgt	aacc	tt c	agaa	gtta	ıc ag	cago	gccc	agg	cago	ctg	acag	agat	ca 1	ttcaa	ggggg	950
gaaa	gggg	aa g	tggg	aggt	g ca	attt	ctca	gat	tggt	aaa	aatt	aggo	tg g	ggctg	gggaa	1010
atto	tcct	cc g	gaac	agtt	t ca	aatt	ccct	cgg	gtaa	gaa	atct	ccte	gta 1	taagg	ttcag	1070
gago	agga	at t	tcac	tttt	t ca	tcca	ccac	cct	cccc	ctt	ctct	gtag	ga a	aggca	ttggt	1130
															gagtt	1190
															ctgga	1250
															cagct	1310

was a commence

gccatctggc ctctctgagg actctgggta ccttaaagac tataaaacaa aacaaaacaa	1370
aaacatcaaa ccaatgaaat aaaataaatc atgtctcctg ctagaatagt attggatacc	1430
tgactaaatt acacaaaata gaccataata ggatagcact gtgaatacat ccttcccgat	1490
cactgagtca cagtgaccct tggctgctgc agttctcgtc tgcaaggttg aagcttgacg	1550
tgtgatgaac atgggtgggc tcttggtcca ccccaggctg gggcctgcgc caagcatgaa	1610
ctagctggga ccagtggctg acagaacaca ggacttccct aagtacccgt aggtccgtgg	1670
agcaagacag agcagagttg ccatgtcaac acatggggaa tgatatgata	1730
ttatgactaa aagaaactca tcttcttcat taaaaaaaact ttggtgtcct t	1781
<210> 60	
<211> 1788	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
<222> (87) (899)	
<400> 60	
attgggcggc gtgatctcgc cgcggttccg cggccctgcc gccgccgccg ccagcagagc	60
gcaccgggcc gatcgggcga gtggcc atg gcg ggc gcc gag gac tgg ccg ggc	113
Met Ala Gly Ala Glu Asp Trp Pro Gly	
1 5	
cag cag ctg gag ctg gac gag gac gag gcg tct tgt tgc cgc tgg ggc	161
Gln Gln Leu Glu Leu Asp Glu Asp Glu Ala Ser Cys Cys Arg Trp Gly	
10 15 20 25	
gcg cag cac gcc ggg gcc cgc gag ctg gct gcg ctc tac tcg cca ggc	209

Ala	Gln	His	Ala	Gly	Ala	Arg	Glu	Leu	Ala	Ala	Leu	Tyr	Ser	Pro	Gly	
	•		•	30		,			. 35					.40)	
aag	cgc	ctc	cag	gag	tgg	tgc	tct	gtg	atc	ctg	tgc	ttc	agc	ctc	atc	257
Lys	Arg	Leu	Gln	Glu	Trp	Cys	Ser	Val	Ile	Leu	Cys	Phe	Ser	Leu	Ile	
			45					50					55	٠		-
gcc	cac	aac	ctg	gtc	cat	ctc	ctg	ctg	ctg	gcc	cgc	tgg	gag	gac	aca	305
Ala	His	Asn	Leu	Val	His	Leu	Leu	Leu	Leu	Ala	Arg	Trp	Glu	Asp	Thr	
		60					65					70			٠.	
ccc	ctc	gtc	ata	ctc	ggt	gtt	gtt	gca	ggg	gct	ctc	att	gct	gac	ttc	353
Pro	Leu	Val	Ile	Leu	Gly	Val	Val	Ala	Gly	Ala	Leu	Ile	Ala	Asp	Phe	
	75					80					85					
ttg	tct	ggc	ctg	gta	cac	tgg	ggt	gct	gac	aca	tgg	ggc	tct	gtg	gag	401
Leu	Ser	Gly	Leu	Val	His	Trp	Gly	Ala	Asp	Thr	Trp	Gly	Ser	Val	Glu	
90					95					100					105	
ctg	ccc	att	gtg	ggg	aag	gct	ttc	atc	cga	ссс	ttc	cgg	gag	cac	cac	449
Leu	Pro	Ile	Val	Gly	Lys	Ala	Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His	
•	•			110					115					120	•	
att	gac	cca	aca	gct	atc	aca	cgg	cac	gac	ttc	atc	gag	acc	aac	ggg	497
Ile	Asp	Pro	Thr	Ala	Ile	Thr	Arg	His	Asp	Phe	Ile	Glu	Thr	Asn	Gly	
			125					130	•				135		-	
gac	aac	tgc	ctg	gtg	aca	ctg	ctg	ccg	ctg	cta	aac	atg	gcc	tac	aag	545
Asp	Asn	Cys	Leu	Val	Thr	Leu	Leu	Pro	Leu	Leu	Asn	Met	Ala	Tyr	Lys	
		140			•		145					150				
ttc	cgc	acc	cac	agc	cct	gaa	gcc	ctg	gag	cag	cta	tac	ccc	tgg	gag	593
Phe	Arg	Thr	His	Ser	Pro	Glu	Ala	Leu	Glu	Gln	Leu	Tvr	Pro	Trp	Glu	

	155	•				160		-	-		165	•	. , .			
tgc	ttc	gtc	ttc	tgc	ctg	atc	atc	ttc	ggc	acc	ttc	acc	aac	cag	atc	641
Cys	Phe	Val	Phe	Cys	Leu	Ile	Ile	Phe	Gly	Thr	Phe	Thr	Asn	G1n	Ile	
170	- *			•	175			•		180	. i		٠.	• • 0	185	
cac	aag	tgg	tcg	cac	acg	tac	ttt'	ggg	ctg	cca	cgc	tgg	gtc	acc	ctc	689
His	Lys	Trp	Ser	His	Thr	Tyr	Phe	Gly	Leu	Pro	Arg	Trp	Val	Thr	Leu	
	•	•		190					195					200		
ctg	cag	gac	tgg	cat	gtc	atc	ctg	cca	cgt	aaa	cac	cat	cgc	atc	cac	737
Leu	Gln	Asp	Trp	His	Val	Ile	Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	
			205					210					215			
cac	gtc	tca	ссс	cac	gag	acc	tac	ttc	tgc	atc	acc	aca	ggc	tgg	ctc	785
His	Val	Ser	Pro	His	Glu	Thr	Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu .	
		220					225					230				
aac	tac	cct	ctg	gag	aag	ata	ggc	ttc	tgg	cga	cgc	ctg	gag	gac	ctc	833
Asn	Tyr	Pro	Leu	Glu	Lys	Ile	Gly	Phe	Trp	Arg	Arg	Leu	Glu	Asp	Leú	
	235					240					245	.:		·: '		
atc	cag	ggc	ctg	acg	ggc	gag	aag	cct	cgg	gca	gat	gac	atg	aaa	tgg	881
Ile	Gln	Gly	Leu	Thr	Gly	Glu	Lys	Pro	Arg	Ala	Asp	Asp	Met	Lys	Trp	
250	i .		-		255	•				260					265	
gcc	cag	aag	atc	aaa	taa	c tt	ctcc	gago	ctg	ctac	ctg	gttg	ccaa	cc		930
Ala	Gln	Lys	Ile	Lys	;	٠								: :	* 2007	
٠.			٠.	270)					. ,		٠.	:	٠, ،	1 •	
tto	ccta	gcc	ccca	aacc	ga a	gcca	tctg	c ca	aatt	.ccag	cct	cttt	gag	ctgg	gcccctc	990
cag	atge	gaga	ggac	atct	cc t	gggc	tggg	c co	aggt	acco	cag	gccca	ccc	ctca	atgacac	1050
aga	atac	ttg	agco	acte	gat t	tttc	attt	c ti	tttt	ttt	: tt1	ttc	tcg	'gcc'	ctcctc	1110

agccacctga	gttgctctat	ctgcaagcct	gactctgcca	gcctccctg	gtagagagga	1170
ggtttaccca	ctccctgcac	gcctgccgtc	cctgccccgc	tgggcagccc	ttcagtgtgg	1230
ctggcgttgg	ggccagtgag	ttgcctcttt	ccctccttgt	ctggccccag	tggtctgggg	1290
agcccccagg	cacacctaag	cgtcgtggag	cattgttctg	ccacagccct	gcatactgac.	1350
cccgggaggc	tgggcaggtg	gacagcccca	gccaccacct	tcagcctagc	ctgtccccca	1410
aggatggtga	agctcagcag	gggtctgagg	gtagccggcc	agaagaggct	ggaacctcct	1470
gctcaagtct	agacccctac	ttctctgctg	ccccaccct	gccagagctg	atgtttccaa	1530
taccaagatg	tcttcacagg	gcacagcccc	tgcagagcat	cttggtcatt	tggaagagga	1590
cacggtatcc	cctctggcca	gagtatgtca	gagaaggaag	agtagggctt	ttttgttttg	1650
tttttttta	aaggtgcttg	cttgtttaat	gtaaataata	gaaagcctta	atatcttttc	1710
tgtaacacgg	agtaatattt	taatgtcatg	ttttggatgt	acataatata	tttataacaa	1770
agcagcaaga	gtctactt				•••	1788
<210> 61						

Ser Leu Cys Val Trp Ala Gly Cys Ala Ile Leu Ala Met Thr Ser Thr

NSDOCID: -WO DIIGERAA I -

	50	•		•	•	55	. '				60			. •	•	
Leu	Cys	Ser	Ala	Glu	Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln	
65	٠-,.	• .* .	! .	٠.	70			٠.		75	:	1	.*	:	80	
Tyr	Tyr	Phe	Leu	Lys	Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn	
٠	. *			85			÷	4	90	٠.		٠.		95	*1:	
Leu	Trp	Thr	Ser	Leu	Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala	
	٠.		100				•	105			•	:	110	11.		
Leu	Leu	Leu	Ala	Glu	Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser	
		115					120		•			125		٠.		
Val	Pro	Lys	Leu	Pro	Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile	
	130					135					140	•				
Val	Gly	Ile	Leu	Thr	Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln	
145					150					155					160	
Ile	Ala	Ser	Ser	Val	Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu	
				165					170					175	. ' .	
Thr	Gly	Val	Val	Phe	Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg	
			180					185				• •	190		1	
Phe	Gln	Asn	Ala	Phe	Asp	Ala	Glu	Leu	Pro	Asp	Ile	Ser	His	Leu	Ile	
d.	•	195					200			. :		205		,	- <i>:</i> ;	,
Gln	Ala	Ile	Phe	Gln	Gly	Tyr	Phe	Ala	Tyr	Ser	Gly	Glu	Leu	Lys	Lys	
	210	•				215					220		٠,		٠.	
Pro	Arg	Thr	Thr	Ile	Pro	Lys	Cys	Ile	Phe	Thr	Ala	Leu	Pro	Leu	Val	
225			٠.		230			٠,		235		٠	. ;	e	240	٠
Thr	Val	Val	Tyr	Leu	Leu	Val	Asn	Ile	Ser	Tyr	Leu	Thr	Val	Leu	Thr	
:	,			245	٠.	. đ			250	9		.: 7	r .	255	· ,	

Pro	Arg	Glu	Ile	Leu	Ser	Ser	Asp	Ala	Val	Ala	Ile	Thr	Trp	Ala	Asp
	. •	÷	260					265					270		
Arg	Ala	Phe	Pro	Ser	Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser	Thr
		275					280					285			•
Ser	Leu	Phe	Ser	Asn	Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro
	290					295					300				
Ile	Tyr	Leu	Ala	Ser	Gln	Glu	Gly	Gln	Leu	Pro	Leu	Leu	Phe	Asn	Thr
305					310					315		,			320
Leu	Asn	Ser	His	Ser	Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr
				325					330					335	
Leu	Gly	Ser	Leu	Ala	Ile	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn
			340					345					350		
Tyr	Ile	Phe	Phe	Thr	Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly
		355					360					365			
Ile	Leu	Arg	Arg	'Arg	Tyr	Gln	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys
	370					375					380				. •
Val	Lys	Leu	Asp	Phe										• .	
385			,												
	:				-										:
<21	.0> 6	2	:							•	÷				
<21	1> 3	48									:				
<21	.2> F	PRT							•			· · · ·	,		
<21	3> 1	lomo	sapi	ens			•								
<40)0> (52	. 0	٠,		,		٠.,	: •		T.			٠.	
Met	t Ala	a Ala	a Thi	r Lei	ı Gly	, Pro	. Lei	Gly	, Sei	Tr	G1r	ı Glı	ı Trp	Are	, Arg

1 .		5	• .	. :	•		10	•	•			15	• •
Cys Leu Ser	Ala	Arg	Asp	Gly	Ser	Årg	Met	Leu	Leu	Leu	Leu	Leu	Leu
* * * * * * *	20		٠.	;		25		٠,	٠٠.	•3	30	i	: ., .
Leu Gly Ser	Gly	Gln	Gly	Pro	Gln	Gln	Val	Gly	Ala	Gly	Gln	Thr	Phe
35					40					45		÷ 1	• .
Glu Tyr Leu	Lys	Arg	Glu	His	Ser	Leu	Ser	Lys	Pro	Tyr	Gln	Gly	Val
50				55					60		٠	•	, ,
Gly Thr Gly	Ser	Ser	Ser	Leu	Trp	Asn	Leu	Met	Gly	Asn	Ala	Met	Val
65 ' '		•	70			,		75					80
Met Thr Gln	Tyr	Ile	Arg	Leu	Thr	Pro	Asp	Met	Gln	Ser	Lys	Gln	Gly
		85					90					95	•
Ala Leu Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	Arg	Asp	Trp	Glu	Leu	Gln
	100					105					110		. •
Val His Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	Lys	Asn	Leu	His	Gly	Asp
115					120					125	;		:
Gly Leu Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	Met	Gln	Pro	Gly	Pro	Val
130				135					140	, ,	٠,	•	. : .
Phe Gly Asn	Met	. Asp	Lys	Phe	Val	Gly	Leu	Gly	Val	Phe	Val	Asp	Thr
145			150)				155	,				160
Tyr Pro Asr	Glu	ı Glu	ı Lys	Gln	Gln	Glu	ı Arg	Val	Phe	Pro	Туг	· Ile	Ser
		165	5				170)				175	; : :
Ala Met Val	l Asr	n Ası	ı Gly	/ Ser	. Leu	. Ser	Туг	. Asp	His	s Glu	ı Arg	g Asp	Gly
	180)				188	5				190) '	•
Arg Pro Thi	r Gli	u Lei	u G1;	y Gly	y Cys	s Thi	r Ala	a Ile	e Va	l Ar	g Ası	n Lei	ı His
νώ τι `19 !	5	Ez .	.,, .		200)		. '	.* .	20	5	' ; n	() (6)

Tyr Asp Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu Thr Ile	;
210 215 220	
Met Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile Glu Val	
225 230 235 240	į
Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser Ser Ile	;
245 250 255	
Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys Leu Phe	:
260 265 270	
Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu Lys Leu His Arg Asp	,
275 280 285	
Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro Glu Met Thr Ala	
290 295 300	
Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe Leu Ile Val Phe Phe	
305 310 315 320	
Ser Leu Val Phe Ser Val Phe Ala Ile Val Ile Gly Ile Ile Leu Tyr	
325 330 335	
Asn Lys Trp Gln Glu Gln Ser Arg Lys Arg Phe Tyr	
340 345	
<210> 63	
<211> 261	
<212> PRT	
<213> Homo sapiens	
<400> 63⋅	
Met Glu Leu Leu Gln Val Thr Ile Leu Phe Leu Leu Pro Ser Ile Cys	

1	٠		٠.	. 5				٠.	10	•		•		15	A 🔻
Ser	Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu .	Ala	Ala	Asn	Asn	Ser	Leu	Val
		٠,	·20	. •			-	25					30	• .•	Estate 19
Val	Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser	Leu
		35					40		ų.	٠		45	**		
G1n	Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr
	50					55		·			60				
Ile	Thr	Asn	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe
65					70					75					80
Leu	Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg
				85					90					95	
Lys	Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu
			100)				105					110	1	
Pro	Asn	Ala	val	Ser	Thr	Leu	Gln	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr
	. •	115	5		•		120	•				125	;		er i .
G1n	Ser	Sez	r Ile	Lys	Thr	Thr	Glu	Ile	Pro	G1 y	Ser	- Val	Leu	Glm	Pro
	130)				135					140	,	٠	•. •	
Asp	Ala	a Ser	r Pro	Se1	Lys	Thr	Gly	Thr	Leu	Thi	Ser	r Ile	e Pro	Va]	Thr
145	5				150)				159	5				160
Ile	e Pro	o Gl	u Ası	n Thi	r Ser	Glr	ı Ser	Gln	Val	Ile	e G1;	y Thi	r Glu	ı Gly	Gly
				16	5				170)				17	5 👯 😘
Lys	s As	n Al	a Se	r Th	r Sei	r Ala	a Thi	Ser	Arg	g Se:	r Ty	r Se			e Ile
			18	0				185	5			•	19	0	• 51
Lei	u Pr	o Va	l Va	1 II	e Ala	a Le	u Il	e Val	Ile	e Th	r Le	u Se	r Va	1 Ph	e Val
٠.	<u>.</u>	- 19	5		ur v.		. 20	0	د	: ,		20	5	· : ·	1. 1 A.

Leu	Val	Gly	Leu	Tyr	Arg	Met	Cys	Trp	Lys	Ala	Asp	Pro	Gly	Thr	Pro
	210	٠.	-:			215			•		220				
Glu	Asn	Gly	Asn	Asp	Gln	Pro	Gln	Ser	Asp	Lys	Glu	Ser	Val	Lys	Leu
225	-:	.· ·			230		-			235					240
Leu	Thr	Val	Lys	Thr	Ile	Ser	His	Glu	Ser	Gly	Glu	His	Ser	Ala	Gln
	-			245					250					255	
Gly	Lys	Thr	Lys	Asn	•										
	•		260		٠.	,			÷		•				
<210)> 64	1													
<21	1> 22	22													
<212	2> PI	RT T						•							
<213	3> Ha	omo s	sapie	ens											
<400)> 6 4	Į.													
Met	Leu	Trp	Leu	Leu	Phe	Phe	Leu	Val	Thr	Ala	Ile	His	Ala	Glu	Leu
1				· 5 .					10			-		15	
Cys	Gln	Pro	Gly	Ala	Glu	Asn	Ala	Phe	Lys	Val	Arg	Leu	Ser	Ile	Arg
			20				-	25					30		
Thr	Ala	Leu	Gly	Asp	Lys	Ala	Tyr	Ala	Trp	Asp	Thr	Asn	Glu	Glu	Tyr
		35					40					45			,
Leu	Phe	Lys	Ala	Met	Val	Ala	Phe	Ser	Met	Arg	Lys	Val	Pro	Asn	Arg
	50					55					60				
Glu	Ala	Thr	Glu	Ile	Ser	His	Val	Leu	Leu	Cys	Asn	Val	Thr	Gln	Arg
65 .	. : .,	•			70					75	-		. ,		80
Val	Ser	Phe	Trp	Phe	Val	Val	Thr	Asp	Pro	Ser	Lys	Asn	His	Thr	Leu

	\$ 15 m	*	•	85	.*				90					95		
Pro	Ala	Val	Glu	Val	Gln	Ser	Ala	Ile	Arg	Met	Asn	Lys	Asn	Arg	Ile	
	: *		100	•				105	•		•	•	110	ì		
Asn	Asn	Ala	Phe	Phe	Leu	Asn	Asp	Gln	Thr	Leu	Glu	Phe	Leu	Lys	Ile	
		115				٠.	120		٠.			125	•			
Pro	Ser	Thr	Leu	Ala	Pro	Pro	Met	Asp	Pro	Ser	Val	Pro	Ile	Trp	Ile	
	130					135					140		ò		- , ·	
Ιlε	: Ile	Phe	Gly	Val	Ile	Phe	Cys	Ile	Ile	Ile	Val	Ala	Ile	Ala	Leu	
145					150					155					160	
Let	ı Ile	e Leu	Ser	Gly	Ile	Trp	Gln	Arg	Arg	Arg	Lys	Asn	Lys	Glu	Pro	
				165					170					175		
Set	r Glu	ı Val	Asp	Asp	Ala	Glu	Asp	Lys	Cys	Glu	Asn	Met	Ile	Thr	Ile	
			180					185					190		. •	
Gl	u Ası	n Gly	, Ile	e Pro	Ser	Asp	Pro	Leu	Asp	Met	Lys	Gly	Gly	His	Ile	
	٠.	198					200					205				
As	n As	p Ala	a Phe	e Met	: Thr	Glu	. Asp	Glu	Arg	g Leu	Thr	Pro	Leu	l		
	21	0				215	;				220)		•	• •	
· <2	10>	65									٠ :	٠,			:	
<2	:11>	183														
<2	212>	PRT													. ·	• :
		Ношо								. ,			•		. ,	
												٠.	•	•	: 1 ·	. ·
															r Phe	
															5 1	

Ile Leu Leu Ser Gly Thr Arg Cys Glu Glu Asn Cys Gly Asn Pr	o Glu
20 25 30	
His Cys Leu Thr Thr Asp Trp Val His Leu Trp Tyr Ile Trp Le	u Leu
35 40 45	- •
Val Val Ile Gly Ala Leu Leu Leu Leu Cys Gly Leu Thr Ser Le	u Cys
50 55 60	
Phe Arg Cys Cys Leu Ser Arg Gln Gln Asn Gly Glu Asp Gl	y Gly
65 70 75	80
Pro Pro Pro Cys Glu Val Thr Val Ile Ala Phe Asp His Asp Sen	. Thr
85 90 99	5
Leu Gln Ser Thr Ile Thr Ser Leu Gln Ser Val Phe Gly Pro Ala	Ala
100 105 110	
Arg Arg Ile Leu Ala Val Ala His Ser His Ser Ser Leu Gly Glr	Leu
115 120 125	
Pro Ser Ser Leu Asp Thr Leu Pro Gly Tyr Glu Glu Ala Leu His	Met
130 135 140	
Ser Arg Phe Thr Val Ala Met Cys Gly Gln Lys Ala Pro Asp Leu	Pro
145 150 155	160
Pro Val Pro Glu Glu Lys Gln Leu Pro Pro Thr Glu Lys Glu Ser	Thr
165 170 175	
Arg Ile Val Asp Ser Trp Asn	
180	
	4,
<210> 66	
<211> 262 · · · · · · · · · · · · · · · · · ·	

BNSDOCID: <WO 0112660A2 1 >

.,

<212	> P	RT	· · .			•••	,	٠	•	•			•			•
<213	> H	omo s	sapie	ens									••			
<400	> 6	6	٠.		•	•				×		·		*.! ·		
Met	Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	G1u	Asn	
1		: .		. 5			٠	٠	10	٠.	٠.		•	· 15	: .	
Lys	Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn	
			20			•		25				•	30	•		
Tyr	Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys	
		35	٠				· 40					45				
Glu	Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly	
	50					55					60			٠.		
Ser	G1 ₃	, Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile	
65					70					75			-		80	
Pro	Ту	r Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val	
				85					90					95	1	-
Phe	Le	u Ala	a Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe	
	-		100)				105	i		•		- 110			
Phe	. Le	u Pho	e Pro	Arg	Ser	· Val	Ile	. Val	Gln	Pro	Ala	Gly	Leu	Asn	Ser	
-		· 11	5		. •		120) ·				125	;			,
Sei	- Th	r Va	l Ala	a Phe	Asp	Glu	ı Ala	a Asp	Ile	Tyı	: Leu	ı Asr	ı Ile	: Thr	Asn	
	13	0				135	5				140)		1 :	i e e	
Ile	e Le	u As	n Il	e Sei	r Ası	n Gly	, Ası	n Ty	r Tyı	r Pro	o Ile	e Met	t Val	Thr	Gln	
14	5				150	0				15	5				160	
Le	u Th	ır Le	u Gl	u Va	l Le	u Hi:	s Le	u Se	r Lei	u Va	l Va	1 G1:	y Gl	n Val	l Ser	
				16	5				17	n				179	5 .i.	

Asn	Asn	Leu	Leu	Leu	His	Ile	Gly	Pro	Leu	Ala	Ser	Glu	G1n	Met	Phe
		٠.	180			. •		185					190		
Tyr	Ala	Val	Ala	Thr	Lys	Ile	Arg	Asp	Glu	Asn	Thr	Tyr	Lys	Ile	Cys
		195					200			*		205		*	•
Thr	Trp	Leu	Glu	Ile	Lys	Val	His	His	Val	Leu	Leu	His	Ile	Gln	Gly
	210					215					220				
Thr	Leu	Thr	Cys	Ser	Tyr	Leu	Ser	His	Ser	Glu	Gln	Leu	Val	Phe	Gln
225	•	. *			230					235					240
Ser	Tyr	Glu	Tyr	Val	Asp	Cys	Arg	Gly	Asn	Ala	Ser	Val	Pro	His	Gln
				245					250					255	
Leu	Thr	Pro	His	Pro	Pro										
		,	260						•			,			
							•								
<210)> 67	,													
<211	> 16	88													
<212	?> PR	RT.													
<213	3> Hc	omo s	sapie	ens										٠,	
<400)> 67	,													
Met	Gly	Val	Pro	Thr	Ala	Leu	Glu	Ala	Gly	Ser	Trp	Arg	Trp	Gly	Ser
1			•	5					10				_	15	
Leu	Leu	Phe	Ala	Leu	Phe	Leu	Ala	Ala	Ser	Leu	Gly	Lys	Asp	Ala	Pro
	;; •	٠٠ :	. 20				. •	25					30		
						Pro									
;;	el o	35					40				•	45			
															Cys

BRIEDOCIO - MO 11366043 1 -

50				· 55	: .	-		•	60	. •				
Leu Pro Leu	Ile	Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser	
65	• •	•	70			*		75			٠,		· 80	υ.
Asn Arg Arg	Ala	Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly	
		85	. •		,		90			···		95	1.7	
Ile Glu Asn	Pro	Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro	
•	100					105					110		•	•
Glu Ala Lys	Val	Arg	His	Pro	Leu	Ser	Tyr	Val	Ala	Gln	Arg	Gln	Pro	
115			•		120					125			9.	•
Ser Glu Ser	Gly	Arg	His	Leu	Leu	Ser	Glu	Pro	Ser	Thr	Pro	Leu	Ser	
130				135					140			,		
Pro Pro Gly	Pro	Gly	Asp	Val	Phe	Phe	Pro	Ser	Leu	Asp	Pro	Val	Pro	
145			150					155					160	
Asp Ser Pro	Asn	Phe	Glu	Val	Ile								.71	
		165												
													·	
<210> 68												•		;
<211> 243													**	
<212> PRT		. •											÷ •	*
<213> Homo	sapi									•	,			
<400> 68				٠	- "			. •			i	:	· ·	
Met Ser Sei	r Gly	y Thr	Glu	ı Lei	ı Let	Tr	Pro	Gly	Ala	a Ala	ı Lei	ı Lev	ı Val	Ì
1		. (5				10) .		~		15	5 .	·
Leu Leu Gl	y Va	l Ala	a Ala	s Sei	r Lei	і Су	s Va	l Ar	g Cy:	s Sei	r Arı	g Pro	Gl	y
ethic form	2	0 ·			:	. 2	5		··		30	0	·	200

Ala	Lys	Arg	Ser	Glu	Lys	Ile	Tyr	Gln	Gln	Arg	Ser	Leu	Arg	Glu	Asp
		35					40					45			
Gln	Gln	Ser	Phe	Thr	Gly	Ser	Arg	Thr	Tyr	Ser	Leu	Val	Gly	Gln	Ala
	50					55					60				
Trp	Pro	Gly	Pro	Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu
65					70					75					80
Leu	Gln	Phe	Tyr	Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln
				85					90					95	·*
Asn	Phe	Ser	Lys	Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp
			100					105					110		
Pro	Ile	Ala	Met	Glu	Tyr	Tyr	Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro
	,	115					120					125			
Glu	Asp	Asp	Asp	Ala	Asn	Ser	Tyr	Glu	Asn	Val	Leu	Ile	Cys	Lys	Gln
	130					135					140				
Lys	Thr	Thr	Glu	Thr	Gly	Ala	Gln	Gln	Glu	Gly	Ile	Gly	Gly	Leu	Cys
145	•	-			150				,	155				:	160
Arg	Gly	Asp	Leu	Ser	Leu	Ser	Leu	Ala	Leu	Lys	Thr	Gly	Pro	Thr	Ser
	•			165					170					175	
Gly	Leu	Cys	Pro	Ser	Ala	Ser	Pro	Glu	Glu	Asp	Glu	Glu	Ser	Glu	Asp
١.		··.	180	•				185				:	190		٠.
Tyr	Gln	Asn	Ser	Ala	Ser	Ile	His	Gln	Trp	Arg	Glu	Ser	Arg	Lys	Val
~ 1	. ر اندی	195	**	•			200				•,	205	; ·	. •	··
Met	Gly	Gln	Leu	Gln	Arg	Glu	Ala	Ser	Pro	Gly	Pro	Val	Ģly	Ser	Pro
•	· 210	·	ι	4 ti	۲.	215	•			•	. 220		٠,		•
Asp	Glu	Glu	Asp	Gly	Glu	Pro	Asp	Tyr	· Val	Asr	Gly	Glu	ı Val	·Ala	Ala

225 230 235 Thr Glu Ala <210> 69 € <211> 428 <212> PRT <213> Homo sapiens <400> 69 Met Ala Arg Ser Leu Cys Pro Gly Ala Trp Leu Arg Lys Pro Tyr Tyr 10 5 Leu Gln Ala Arg Phe Ser Tyr Val Arg Met Lys Tyr Leu Phe Phe Ser 25 20 Trp Leu Val Val Phe Val Gly Ser Trp Ile Ile Tyr Val Gln Tyr Ser 40 45 35 Thr Tyr Thr Glu Leu Cys Arg Gly Lys Asp Cys Lys Lys Ile Ile Cys 50 55 60 Asp Lys Tyr Lys Thr Gly Val Ile Asp Gly Pro Ala Cys Asn Ser Leu 75 80 65 70 Cys Val Thr Glu Thr Leu Tyr Phe Gly Lys Cys Leu Ser Thr Lys Pro 95 85 90 Asn Asn Gln Met Tyr Leu Gly Ile Trp Asp Asn Leu Pro Gly Val Val 100 Lys Cys Gln Met Glu Gln Ala Leu His Leu Asp Phe Gly Thr Glu Leu

Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr
	130					135					140				
Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys
145					150					155	•			٠	160
Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr
				165					170					175	
Val	Ala	Asp	Gly	Asp	Lys	Asp	Gly	Gln	Val	Ser	Leu	Gly	Glu	Ala	Lys
			180					185					190	,	
Ser	Ala	Trp	Ala	Leu	Leu	Gln	Leu	Asn	Glu	Phe	Leu	Leu	Met	Val	Ile
		195					200					205			
Leu	Gln	Asp	Lys	Glu	His	Thr	Pro	Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp
	210		•			215					220				
Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser
225					230					235					240
Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser
				245					250					25 5	·
Met	Asp	Gln	Leu	Phe	Thr	Pro	Ser	Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala
			260					265					270		ē .
Ile	Gly	Leu	Leu	Glu	Phe	Val	Glu	Asp	Val	Phe	His	Gly	Pro	Tyr	Gly
	se ,	275					280					285			
Asn	Phe _:	Leu	Met	Cys	Asp	Thr	Ser	Ala	Lys	Asn	Leu	Gly	Tyr	Asn	Asp
٠.	290	:	. ;•			295			· ·		300				
													Pro		
305	. <i>:</i> ·	,; -		(e)	310	٠.				315			· .		320
													Asn		

* * * * * * * * * * * * * * * * * * * *	325		330	335	
Cys Val Tyr G	ly Thr Asp C	ys Arg Th	ar Ser Cys Asp	Gln Ser Thr Met	
34	40	34	15	350	
Lys Cys Thr So	er Glu Val I	le Gln Pr	o Asn Leu Ala	Lys Ala Cys Gln	
355		360		365	
Leu Leu Lys A	sp Tyr Leu L	eu Arg G	ly Ala Pro Sei	Glu Ile Arg Glu	
370	. 3	375	380	*	
Glu Leu Glu L	ys Gln Leu 1	Tyr Ser C	ys Ile Ala Leu	Lys Val Thr Ala	
385	390		395	400	
Asn Gln Met G	lu Met Glu H	His Ser L	eu Ile Leu Ası	n Asn Leu Lys Thr	
	405		410	415	
Leu Leu Trp L	ys Lys Ile S	Ser Tyr T	hr Asn Asp Se		
4	20	4	25		•
<210> 70		٠			• =
<211> 283				•	
<212> PRT					
<213> Homo sa	apiens				
<400> 70				· · · · · · · · · · · · · · · · · · ·	• •
Met Pro His	Ser Ser Leu	His Pro S	Ser Ile Pro Cy	s Pro Arg Gly His	;
1	. 5		10	St. 7 - 115 1	•
Gly Ala Gln	Lys Ala Ala	Leu Val I	Leu Leu Ser Al	a Cys Leu Val Thr	•
	20		25	30	٠.
Leu Trp Gly	Leu Gly Glu	Pro Pro	Glu His Thr Lo	eu Arg Tyr Leu Val	ι,
···· ·· 35		40	:	45	• •

Leu	His	Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys
	50					55					60		··		
Ser	Leu	Ala	Glu	Glu	Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser
65					70					75					80
Tyr	Trp	Arg	Thr	Val	Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly
				85					90					95	
Ala	Leu	Leu	Leu	Leu	Ser	Ile	Tyr	Phe	Tyr	Tyr	Ser	Leu	Pro	Asn	Ala
			100					105					110		
Val	Gly	Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln
		115					120					125			
Ala	Leu	Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile
•	130					135					140				•
Ser	Ala	Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala
145					150					155					160
Trp	Ser	Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln
				165					170					175	
Ala	Arg	Ile	Arg	Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly
			180					185					190		
Ala	Val	Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val
	٠.	195					200					205		÷: .	
Pro	Asp	Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys
	210				٠,	215	•	:			220			. •	
Leu	Pro	Gln	Gln	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Aŗg	Val	Tyr.
225.	· 2·	J 1.	,,,	:	230			-		235			: .	٠	240
Ser.	Asn.	Ser	Ile	Tyr	Glu	Leu	Leu	Glu	Asn	Gly	Gln	Arg	Asn	Leu	G1n

270

245 250 255

Met Thr Ala Ala Ser Arg Cys Pro Arg Arg Phe Ser Gly Thr Cys Gly

260 265

Arg Arg Lys Arg Lys Arg Leu Leu Trp Ala Ala

275 280

<210> 71

<211> 1167

<212> DNA

<213> Homo sapiens

<400> 71

atggatagag gggagaaaat acagctcaag agagtgtttg gatattggtg gggcacaagt 60 tttttgctta ttaatatcat tggtgcagga atttttgtgt cccccaaagg tgtgttggca 120 tactcttgca tgaacgtggg agtctccctg tgcgtttggg ctggctgtgc catactggcc 180 atgacatcaa ctctttgctc tgcagagata agtataagct tcccatgcag tggagctcaa 240 300 tactattttc tcaagagata ctttggctcc acggttgctt ttttgaatct ctggacatcc 360 ttgtttctgg ggtcaggggt agttgctggc caagctctgc tccttgctga gtacagcatc 420 cagcettttt ttcccagetg ctctgtccca aagetgccta agaaatgtct ggcattggcc 480 atgttgtgga ttgtaggaat tctgacttct cgtggtgtga aagaagtgac ttggcttcag 540 atagctagct cagtgctgaa agtgtccata cttagcttca tttccctaac tggagtagtg ttcctgataa gagggaaaaa ggagaatgta gaacgatttc agaatgcttt tgatgctgaa 600 660 cttccagata tctctcacct tatacaagcc atcttccaag gatattttgc atattcaggg 720 gagctgaaga agcccagaac aacaattccc aaatgcatat ttactgcgtt acctctggtg 780 actgtagttt atttactggt taacatttcc tatctgactg ttctgacacc cagggaaatt 840 ctctcttcag atgctgtagc tatcacatgg gctgatcgag cttttccctc attagcatgg

WO 01/12660

PCT/JP00/05356

155/307

attatgcctt	ttgctatttc	tacctcatta	tttagcaacc	ttctgatttc	tatatttaaa	900
tcttcgagac	caatatatct	tgcaagccaa	gagggccagc	tgcctttgct	atttaataca	960
cttaatagtc	actcttctcc	atttacagct	gtgctactac	ttgtcacttt	gggatccctt	1020
gcaattatct	taacaagtct	aattgatttg	ataaactata	ttttttcac	gggttcatta	1080
tggtctatat	tattaatgat	aggaatacta	aggcggagat	accaggaacc	caatctatct	1140
ataccttata	aggtaaaatt	ggatttc				1167

⟨210⟩ 72

<211> 1044

<212> DNA

<213> Homo sapiens

<400> 72

60 atggcggcga ctctgggacc ccttgggtcg tggcagcagt ggcggcgatg tttgtcggct cgggatggt ccaggatgtt actccttctt cttttgttgg ggtctgggca ggggccacag 120 caagtcgggg cgggtcaaac gttcgagtac ttgaaacggg agcactcgct gtcgaagccc 180 240 taccagggtg tgggcacagg cagtteetca etgtggaate tgatgggcaa tgccatggtg 300 atgacccagt atatccgcct taccccagat atgcaaagta aacagggtgc cttgtggaac 360 cgggtgccat gtttcctgag agactgggag ttgcaggtgc acttcaaaat ccatggacaa 420 ggaaagaaga atctgcatgg ggatggcttg gcaatctggt acacaaagga tcggatgcag ccagggcctg tgtttggaaa catggacaaa tttgtggggc tgggagtatt tgtagacacc 480 540 `taccccaatg aggagaagca gcaagagcgg gtattcccct acatctcagc catggtgaac 600 aacggctccc tcagctatga tcatgagcgg gatgggcggc ctacagagct gggaggctgc acagccattg teegeaatet teattacgae acetteetgg tgattegeta egteaagagg 660 catttgacga taatgatgga tattgatggc aagcatgagt ggagggactg cattgaagtg 720 780 cccggagtcc gcctgccccg cggctactac ttcggcacct cctccatcac tggggatctc

WO 01/12660 PCT/JP00/05356

156/307

tcagataatc	atgatgtcat	ttccttgaag	ttgtttgaac	tgacagtgga	gagaacccca	840
gaagaggaaa	agctccatcg	agatgtgttc	ttgccctcag	tggacaatat	gaagctgcct	900
gagatgacag	ctccactgcc	gcccctgagt	ggcctggccc	tcttcctcat	cgtctttttc	960
tccctggtgt	tttctgtatt	tgccatagtc	attggtatca	tactctacaa	caaatggcag	1020
gaacagagcc	gaaagcgctt	ctac				1044

<210> 73

<211> 783

<212> DNA

<213> Homo sapiens

<400> 73

60 atggaactgc ttcaagtgac cattctttt cttctgccca gtatttgcag cagtaacagc 120 acaggtgttt tagaggcagc taataattca cttgttgtta ctacaacaaa accatctata 180 acaacaccaa acacagaatc attacagaaa aatgttgtca caccaacaac tggaacaact 240 cctaaaggaa caatcaccaa tgaattactt aaaatgtctc tgatgtcaac agctactttt 300 ttaacaagta aagatgaagg attgaaagcc acaaccactg atgtcaggaa gaatgactcc atcatttcaa acgtaacagt aacaagtgtt acacttccaa atgctgtttc aacattacaa 360 420 agttccaaac ccaagactga aactcagagt tcaattaaaa caacagaaat accaggtagt 480 gttctacaac cagatgcatc accttctaaa actggtacat taacctcaat accagttaca attccagaaa acacctcaca gtctcaagta ataggcactg agggtggaaa aaatgcaagc 540 600 acttcagcaa ccagccggtc ttattccagt attattttgc cggtggttat tgctttgatt 660 gtaataacac tttcagtatt tgttctggtg ggtttgtacc gaatgtgctg gaaggcagat ccgggcacac cagaaaatgg aaatgatcaa cctcagtctg ataaagagag cgtgaagctt 720 780 cttaccgtta agacaatttc tcatgagtct ggtgagcact ctgcacaagg aaaaaccaag Back of Alastic 22 Galacia in Service Control 25 Galacia in Alastica 783

BNISDOCID- -WO 011388043 I

•	<210> 74	**		:	•		
	<211> 666				-		
	<212> DNA						
	<213> Homo	sapiens					
	<400> 74						
	atgttgtggc	tgctcttttt	tctggtgact	gccattcatg	ctgaactctg	tcaaccaggt	60
	gcagaaaatg	cttttaaagt	gagacttagt	atcagaacag	ctctgggaga	taaagcatat	120
	gcctgggata	ccaatgaaga	atacctcttc	aaagcgatgg	tagctttctc	catgagaaaa	180
	gttcccaaca	gagaagcaac	agaaatttcc	catgtcctac	tttgcaatgt	aacccagagg	240
	gtatcattct	ggtttgtggt	tacagaccct	tcaaaaaatc	acaccettce	tgctgttgag	300
	gtgcaatcag	ccataagaat	gaacaagaac	cggatcaaca	atgccttctt	tctaaatgac	360
	caaactctgg	aattttaaa	aatcccttcc	acacttgcac	cacccatgga	cccatctgtg	420
	cccatctgga	ttattatatt	tggtgtgata	ttttgcatca	tcatagttgc	aattgcacta	480
	ctgattttat	cagggatctg	gcaacgtaga	agaaagaaca	aagaaccatc	tgaagtggat	540
	gacgctgaag	ataagtgtga	aaacatgatc	acaattgaaa	atggcatccc	ctctgatccc	600
	ctggacatga	agggagggca	tattaatgat	gccttcatga	cagaggatga	gaggctcacc	660
	cctctc						666
	<210> 75						
	<211> 549						
2	<212> DNA	• • •				; .	
·	<213> Homo	sapiens	: : : : :				
	<400>, 75 · ·		**:	•	•••		
	atgggagtcc	gagttcatgt	cgtggcggcc	tcagccctgc	tgtatttcat	cctgctttct	60

RNSDOCID-ZWO 011266042 L 5

gggacgagat	gtgaggaaaa	ctgtggtaat	cctgaacatt	gcctgaccac	agactgggta	120
catctctggt	atatatggţt	gctagtggta	attggcgcgc	tgcttctcct	gtgtggcctg	180
acgtccctgt	gcttccgctg	ctgctgtctg	agccgccagc	aaaatgggga	agatgggggc	240
ccaccaccct	gtgaagtgac	cgtcattgct	ttcgatcacg	acagcactct	ccagagcact	300
atcacatctc	tgcagtcggt	gtttggccct	gcagctcgga	ggatcctggc	tgtggctcac	360
tcccacagct	ccctgggcca	gctgccctcc	tctttggaca	ccctcccagg	gtatgaagaa	420
gctcttcaca	tgagtcgctt	cacagtagcc	atgtgcgggc	agaaagcacc	tgatctaccc	480
ccagtacctg	aagaaaagca	gctgcctcca	acagagaagg	agtcgactcg	aatagttgac	540
tcttggaac	-					. 549
<210> 76					• •	•
<211> 786						
<212> DNA				•		
<213> Homo	sapiens					
<400> 76·			. 0			- ••
atgggtaaga	cgttttccca	gctgggctct	tggcgggagg	atgagaacaa	gtcaatcctg	60
tcctccaaac	cagccattgg	cagcaaggct	gtcaactact	ccagcaccgg	g tagcagcaag	120
tctttttgtt	cctgtgtgcc	ttgtgaagga	actgctgatg	ccagettegt	gacttgtccc	180
acctgccage	g gcagtggcaa	gattccccaa	ı gagctggaga	agcagttgg	ggctctcatt	240
ccctatgggg	g accagaggct	gaagcccaag	g cacacgaago	tctttgtgt	t cctggccgtg	300
ctcatctgc	c tggtgaccto	ctccttcato	gtcttttcc	tgtttcccc	g gtccgtcatt	360
gtgcagcct	g caggeeteaa	a ctcctccaca	a gtggcctttg	g atgaggetg	a tatctacctc	420
aacataacg	a atatcttaaa	a catctccaa	t ggcaactact	t accccatta	t ggtgacacag	480
ctgaccctc	g aggttctgc	a cctgtccct	c gtggtgggg	c aggtttcca	a caaccttctc	540
ctacacatt	g gccctttgg	c cagtgaaca	g atgttttac	g cagtagcta	c caagatacgg	600

RNSHOOTING WO - https://doi.org/

gatgaaaaca	catacaaaat	ctgtacctgg	ctggaaatca	aagtccacca	tgtgcttttg	660
cacatccagg	gcaccctgac	ctgttcatac	ctgagccatt	cagagcagct	ggtctttcag	720
agctatgaat	atgtggactg	ccgaggaaac	gcatctgtgc	cccaccagct	gacccctcac	780
ccacca		•				786
<210> 77						
<211> 504						
<212> DNA						
<213> Homo	sapiens					
<400> 77						
atgggcgtcc	ccacggccct	ggaggccggc	agctggcgct	ggggatccct	gctcttcgct	60
ctcttcctgg	ctgcgtccct	aggcaaagat	gcaccatcca	actgtgtggt	gtacccatcc	120
tcctcccagg	agagtgaaaa	catcacggct	gcagccctgg	ctacgggtgc	ctgcatcgta	180
ggaatcctct	gcctcccct	catcctgctc	ctggtctaca	agcaaaggca	ggcagcctcc	240
aaccgccgtg	cccaggagct	ggtgcggatg	gacagcaaca	ttcaagggat	tgaaaacccc	300
ggctttgaag	cctcaccacc	tgcccagggg	atacccgagg	ccaaagtcag	gcaccccctg	360
tcctatgtgg	cccagcggca	gccttctgag	tctgggcggc	atctgctttc	ggagcccagc	420
accccctgt	ctcctccagg	ccccggagac	gtcttcttcc	catccctgga	ccctgtccct	480
gactctccaa	actttgaggt	catc				504
() ** · · ·	. +	•	• .50 *	• . •		
<210> 78						
<211> 729	ark to be the		· . :			
<212> DNA	-,		•	• %		
<213> Homo	sapiens		***	- 18-		

atgagctcgg	ggactgaact	gctgtggccc	ggagcagcgc	tgctggtgct	gttgggggtg	60
gcagccagtc	tgtgtgtgcg	ctgctcacgc	ccaggtgcaa	agaggtcaga	gaaaatctac	120
cagcagagaa	gtctgcgtga	ggaccaacag	agctttacgg	ggtcccggac	ctactccttg	180
gtcgggcagg	catggccagg	accctggcg	gacatggcac	ccacaaggaa	ggacaagctg	240
ttgcaattct	accccagcct	ggaggatcca	gcatcttcca	ggtaccagaa	cttcagcaaa	300
ggaagcagac	acgggtcgga	ggaagcctac	atagacccca	ttgccatgga	gtattacaac	360
tgggggcggt	tctcgaagcc	cccagaagat	gatgatgcca	attcctacga	gaatgtgctc	420
atttgcaagc	agaaaaccac	agagacaggt	gcccagcagg	agggcatagg	tggcctctgc	480
agaggggacc	tcagcctgtc	actggccctg	aagactggcc	ccacttctgg	tctctgtccc	540
tctgcctccc	cggaagaaga	tgaggaatct	gaggattatc	agaactcagc	atccatccat	600
cagtggcgcg	agtccaggaa	ggtcatgggg	caactccaga	gagaagcatc	ccctggcccg	660
gtgggaagcc	cagacgagga	ggacggggaa	ccggattacg	tgaatgggga	ggtggcagcc	720
acagaagcc					•	729
· · ·			٠			
<210> 79						

<211> 1284

<212> DNA

<213> Homo sapiens

<400> 79

atggcgagga gtctctgtcc gggggcctgg ctaaggaaac cctattacct ccaggctcgc 60
ttctcatatg tgcggatgaa atatctttc ttttcctggt tagtggtttt tgttggaagc 120
tggattatat atgtgcagta ttctacctat acagaattat gcagaggaaa ggactgtaag 180
aaaataatat gtgacaagta caagactgga gttattgatg ggcctgcatg taacagcctt 240
tgtgttacag aaactcttta ctttggaaaa tgtttatcca ccaagcccaa caatcagatg 300
tatttaggga tttgggataa tctaccaggt gttgtgaaat gtcaaatgga acaagcgctt 360

catcttgatt	ttggaactga	attggaacca	agaaaagaaa	tagtgctatt	tgataagcca	420
actagaggaa	ctactgtaca	aaaatttaaa	gaaatggtct	atagtctctt	taaggcaaaa	480
ttgggtgacc	aaggaaacct	ctctgaactg	gttaatctca	tcttgacggt	ggctgatgga	540
gacaaagatg	gccaggtttc	cttgggagaa	gcaaagtcgg	catgggcact	tcttcaactg	600
aatgaatttc	ttctcatggt	gatacttcaa	gataaagaac	ataccccaa	attaatggga	660
ttctgtggtg	acctctatgt	gatggaaagt	gttgaatata	cctctcttta	tggaataagc	720
cttccttggg	tcattgaact	ttttattcca	tctgggttca	gaagaagcat	ggatcagctg	780
ttcacaccat	catggccaag	aaaggccaaa	atagccatag	gacttctaga	atttgtggaa	840
gatgttttcc	atggccccta	cggaaatttc	ctcatgtgcg	atactagtgc	caaaaaccta	900
ggatataatg	ataagtatga	tttgaaaatg	gtggatatga	gaaaaattgt	gccagagaca	960
aacctgaaag	aacttattaa	ggatcgtcac	tgtgagtctg	atttggactg	tgtctatggc	1020
acagattgţa	gaactagctg	tgatcagagt	acaatgaagt	gtacttcaga	agtgatacaa	1080
ccaaacttgg	caaaagcttg	tcagttactc	aaagactacc	tactgcgtgg	tgctccaagt	1140
gaaattcgtg	aagaattaga	aaagcagctt	tattcttgta	ttgctctcaa	agtcacagca	1200
aatcaaatgg	aaatggaaca	ttctttgata	ctaaataacc	taaaaacatt	attgtggaag	1260
aaaatttcct	acactaatga	ctct			· · · · · · · · · · · · · · · · · · ·	1284

<210> 80

<211> 849

<212> DNA

<213> Homo sapiens

atgccccact ccagcetgca tecatecate ccgtgtecca ggggteacgg ggcccagaag 60 gcagcettgg ttetgetgag tgcctgcctg gtgaccettt gggggetagg agagccacca 120 gagcacacte teeggtacet ggtgetecae etageeteee tgcagetggg actgetgtta 180

240

300

Section 1986 Statement

162/307

aacggggtet geageetgge tgaggagetg caccacatee acteeaggta ceggggeage

tactggagga ctgtgcgg	gc ctgcctgggc	tgcccctcc	gccgtggggc	cctgttgctg	300
ctgtccatct atttctac	ta ctccctccca	aatgcggtcg	gcccgccctt	cacttggatg	360
cttgccctcc tgggcctc	tc gcaggcactg	aacatcctcc	tgggcctcaa	gggcctggcc	420
ccagctgaga tctctgca	gt gtgtgaaaaa	gggaatttca	acgtggccca	tgggctggca	480
tggtcatatt acatcgga	ta tctgcggctg	atcctgccag	agctccaggc	ccggattcga	540
acttacaatc agcattac	aa caacctgcta	cggggtgcag	tgagccagcg	gctgtatatt	600
ctcctcccat tggactgt	gg ggtgcctgat	aacctgagta	tggctgaccc	caacattogo	660
ttcctggata aactgccc	ca gcagaccgct	gaccgtgctg	gcatcaagga	tcgģgtttac	720
agcaacagca tctatgag	ct tctggagaac	gggcagcgga	acctgcagat	gacagcagct	780
tctcgctgtc ccaggagg	tt ctccggcacc	tgcggcagga	ggaaaaggaa	gaggttactg	840
tgggcagct		ē			849
			•	• .	
<210> 81					
<211> 1376			. •		
<212> DNA				0	
<213> Homo sapiens					
<220>				* :	
<221> CDS					
<222> (100)(1269	9)				
<400> 81					
atttttattt caggaat	cca tcaacatcc1	t ttgcagctac	ataggcagga	aaatctagaa	60
attgtaattt atataga	att ttaaaactc	t tcaattaca	atg gat aga	ggg gaģ	114
			Met Asp Arg	g Gly Glu	
ingerek in an ea∰ ikk			n	5	

aaa	ata	cag	ctc	aag	aga	gtg	ttt	gga	tat	tgg	tgg	ggc	aca	agt	ttt	162
Lys	Ile	Gln	Leu	Lys	Arg	Val	Phe	Gly	Tyr	Trp	Trp	Gly	Thr	Ser	Phe	
	-	•		10					15					20		
ttg	ctt	att	aat	atc	att	ggt	gca	gga	att	ttt	gtg	tcc	ccc	aaa	ggt	210
Leu	Leu	Ile	Asn	Ile	Ile	Gly	Ala	Gly	lle	Phe	Val	Ser	Pro	Lys	Gly	
			25					30			-		35			
gtg	ttg	gca	tac	tct	tgc	atg	aac	gtg	gga	gtc	tcc	ctg	tgc	gtt	tgg	258
Val	Leu	Ala	Tyr	Ser	Cys	Met	Asn	Val	Gly	Val	Ser	Leu	Cys	Val	Trp	
	•	40					45					50				
gct	ggc	tgt	gcc	ata	ctg	gcc	atg	aca	tca	act	ctt	tgc	tct	gca	gag	306
Ala	Gly	Cys	Ala	Ile	Leu	Ala	Met	Thr	Ser	Thr	Leu	Cys	Ser	Ala	Glu	
	55					60		•			65		•			
ata	agt	ata	agc	ttc	cca	tgc	agt	gga	gct	caa	tac	tat	ttt	ctc	aag	354
Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln	Tyr	Tyr	Phe	Leu	Lys	
70					75					80					85	
aga	tac	ttt	ggc	tcc	acg	gtt	gct	ttt	ttg	aat	ctc	tgg	aca	tcc	ttg	402
Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn	Leu	Trp	Thr	Ser	Leu	
				90					95					100		
ttt	ctg	ggg	tca	ggg	gta	gtt	gct	ggc	caa	gct	ctg	ctc	ctt	gct	gag	450
Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala	Leu	Leu	Leu	Ala	Glu	
•	٠.	. •	105					110	•				115			
tac	agc	atc	cag	cct	ttt	ttt	ссс	agc	tgc	tct	gtc	cca	aag	ctg	cct	498
Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser	Val	Pro	Lys	Leu	Pro	
٠,٠	r* *	120	٠, ٦		٠.	٠.	125			-		130			-	
aag	aaa	tøt	ctg	gca	ttg	gcc	ate	ttø	tøø	att	gta	gga	att	ctg	act	546

Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	lle	Val	Gly	Ile	Leu	Thr	
. • :	135					140				٠	145			• •		
tct	cgt	ggt	gtg	aaa	gaa	gtg	act	tgg	ctt	cag	ata	gct	agc	tca	gtg	594
Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln	Ile	Ala	Ser	Ser	Val	
150				,	155					160					165	
ctg	aaa	gtg	tcc	ata	ctt	agc	ttc	att	tcc	cta	act	gga	gta	gtg	ttc	642
Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu	Thr	Gly	Val	Val	Phe	
	P	-		170					175		٠	•		180	; •	
ctg	ata	aga	ggg	aaa	aag	gag	aat	gta	gaa	cga	ttt	cag	aat	gct	ttt	690
Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg	Phe	Gln	Asn	Ala	Phe	
•	•		185					190					195	•		
gat	gct	gaa	ctt	сса	gat	atc	tct	cac	ctt	ata	caa	gco	ato	ttc	caa	738
Asp	Ala	Glu	ı Lev	Pro	Asp	Ile	Ser	His	Leu	Ile	Glr	n Ala	ı Ile	Phe	Gln	
		200)				205	;				210)	•		
gga	tai	t tti	t gca	tat	t tca	a ggg	gag	cte	g aag	aag	cco	c aga	a aca	a aca	a att	786
Gly	Ту	r Phe	e Ala	туз	r Sei	r Gly	Glu	Leu	ı Lys	Lys	Pro	o Ara	g Thi	r Thi	r Ile	
	21	5				220)				22	5		٠.	• 1	
															t tta	834
Pro	Ly	s Cy	s Il	e Ph	e Th	r Ala	a Lei	ı Pro	o Lei	ı Val	l Th	r Va	l Va	1 Ty	r Leu	
			·) · · ·		5		•			0		•	• •	245	
															t ctc	882
															e Leu	
									25						30 1 /	000
tc															c tca	
C-	_ 'c.	A .	41	o Va	.1 Δ1	a II	e Th	r Tr	n Al	a As	D A	rg Al	la Pł	ie Pi	o Ser	

			265	i				270)				275			
tta	gca	tgg	att	atg	cct	ttt	gct	att	tct	acc	tca	tta	ttt	ago	aac	978
Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser	Thr	Ser	Leu	Phe	Ser	Asn	
		280	1				285					290				
ctt	ctg	att	tct	ata	ttt	aaa	tct	tcg	aga	cca	ata	tat	ctt	gca	agc	1026
Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro	Ile	Tyr	Leu	Ala	Ser	
	295					300					305					
caa	gag	ggc	cag	ctg	cct	ttg	cta	ttt	aat	aca	ctt	aat	agt	cac	tct	1074
Gln	Glu	G1 y	G1n	Leu	Pro	Leu	Leu	Phe	Asn	Thr	Leu	Asn	Ser	His	Ser	
310					315					320					325	
tct	cca	ttt	aca	gct	gtg	cta	cta	ctt	gtc	act	ttg	gga	tcc	ctt	gca	1122
Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr	Leu	Gly	Ser	Leu	Ala	
				330					335					340		
att	atc	tta	aca	agt	cta	att	gat	ttg	ata	aac	tat	att	ttt	ttc	acg	1170
Ile	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn	Tyr	Ile	Phe	Phe	Thr	
			345					350					355		. •	
ggt	tca	tta	tgg	tct	ata	tta	tta	atg	ata	gga	ata	cta	agg	cgg	aga	1218
Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly	Ile	Leu	Arg	Arg	Arg	
		360					365					370	•			
tac	cag	gaa	ссс	aat	cta	tct	ata	cct	tat	aag	gta	aaa	ttg	gat	ttc	1266
Tyr	Ģln	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys	Val	Lys	Leu	Asp	Phe	
,	375	٠.	, .		٠.	380					385	٠,			-	
taat	tct	tttc	tgt	gtga	aata	ac a	gata	ttga	g ta	taac	tgta	ttt	aaga	tta		1320
taat	caga	igc a	tcta	taag	t ag	atct	tctg	aat	actc	agt	tact	gtga	aa c	acat	g	1376

BNSDOCID: <WO 0112660A2 1 >

<210																	
<211	> 239	92				, .			•	•	• •				٠,		
<212	> DNA	A T	,	•		٠.							:				
<213	> Hor	no sa	аріег	ıs													
<220	> / -		*	•		* '		•• .	•				•		سمالت		
<221	> CD	S							٠,				•	1			
<222														,			
·<400	> 82		•					· •	٠			, .	•	r id	* * * 1		
gaag	ggtc	gt t	ggtg	ggaa	a g	atg	gcg	gcg	act	ctg	gga	ccc	ctt	ggg	tcg	5	51
						Met	Ala	Ala	Thr	Leu	Gly	Pro	Leu	G1y	Ser		
						. 1				5			•	<i>t</i> .	· 10		
tgg	cag	cag	tgg	cgg	cga	tgt	ttg	tcg	gct	cgg	gat	ggg	tcc	agg	atg	9	99
Trp	Glņ	Gln	Trp	Arg	Arg	Cys	Leu	Ser	Ala	Arg	Asp	Gly	Ser	Arg	Met		
•				15					20					25			
tta	ctc	ctt	ctt	ctt	ttg	ttg	ggg	tct	ggg	cag	ggg	cca	cag	caa	gtc	. 1	47
Leu	Leu	Leu	Leu	Leu	Leu	Leu	Gly	Ser	Gly	Gln	G1y	Pro	Gln	Gln	Val		
5	. •		. 30		:			35	٠	·		**	40		÷.		
ggg	gcg	ggt	caa	acg	ttc	gag	tac	ttg	aaa	cgg	gag	cac	tcg	ctg	tcg	1	95
Gly	Ala	Gly	Gln	Thr	Phe	Glu	Tyr	Leu	Lys	Arg	Glu	His	Ser	Leu	Ser		
		45	٠ .	· - ·			· 50				~ ,	- 55	; ; *		٠,٠٠		
aag	ccc	tac	cag	ggt	gtg	ggc	aca	ggo	agt	tcc	tca	ctg	tgg	, aat	ctg	2	243
Lys	Pro	Tyr	Gln	Gly	Val	Gly	Thr	Gly	/ Ser	Ser	Ser	Leu	Trp	Asr	ı Leu		
	60)	•			65	,		٠,	٠.	70)	1.00		2579		
ati	g 'ggo	aat	t gcc	atg	gtg	g ate	gaco	c cag	g tai	t ate	c cg	ccti	t acc	e cca	a gat		291
Me	t Gly	y Ası	n Ala	a Met	: Val	l Met	t Thi	r Glı	n Ty	r Ile	e Ar	g Lei	u Thi	r Pro	o Asp		

75			-		80					85	;				. 90	
atg	caa	agt	aaa	cag	ggt	gcc	ttg	tgg	aac	cgg	gtg	сса	tgt	ttc	ctg	339
Met	Gln	Ser	Lys	Gln	Gly	Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	
•				95					100					105		
aga	gac	tgg	gag	ttg	cag	gtg	cac	ttc	aaa	atc	cat	gga	caa	gga	aag	387
Arg	Asp	Trp	Glu	Leu	Gln	Val	His	Phe	Lys	Ile	His	Gly	Gln	G1y	Lys	
. •			110					115					120			
aag	aat	ctg	cat	ggg	gat	ggc	ttg	gca	atc	tgg	tac	aca	aag	gat	cgg	435
Lys	Asn	Leu	His	Gly	Asp	Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	-
		125					130					135				
atg	cag	cca	ggg	cct	gtg	ttt	gga	aac	atg	gac	aaa	ttt	gtg	ggg	ctg	483
Met	Gln	Pro	Gly	Pro	Val	Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	
	140					145					150					
gga	gta	ttt	gta	gac	acc	tac	ccc	aat	gag	gag	aag	cag	caa	gag	cgg	531
Gly	Val	Phe	Val	Asp	Thr	Tyr	Pro	Asn	Glu	Glu	Lys	Gln	Gln	Glu	Arg	
155		;			160		٠.			165				-	170	
gtà	ttc	ссс	tac	atc	tca	gcc	atg	gtg	aac	aac	ggc	tcc	ctc	agc	tat	579
Val	Phe	Pro	Tyr	Ile	Ser	Ala	Met	Val	Asn	Asn	Gly	Ser	Leu	Ser	Tyr	
-				175					180		·			185		
gat	cat	gag	cgg	gat	ggg	cgg	cct	aca	gag	ctg	gga	ggc	tgc	aca	gcc	627
Asp .	His	Glu	Arg	Asp	G1 y	Arg	Pro	Thr	Glu	Leu	Gly	Gly	Cys	Thr	Ala	
٠ <u>٠</u> ٠	• • :		190		·· ·	٠.		195	•	. •	•	٠	200		• •	
att	gtc.	cgc	aat	ctt	cat	tac	gac	acc-	ttc	ctg	gtg	att	cgc	tac	gtc	675
Ile-	Val	Arg	Asn	Leu	His	Tyr	Asp	Thr	Phe	Leu	Val	Ile	Arg	Tyr	Val	
		205	٠.			•, •	210	,	.a ·		. ,.	215	,		÷ .	

aag	agg	cat	ttg	acg	ata	atg	atg	gat	att	gat	ggc	aag	cat	gag	tgg	723
Lys	Arg	His	Leu	Thr	Ile	Met	Met	Asp	Ile	Asp	Gly	Lys	His	Glu	Trp	-
	220					225					230		,)=C•		
agg	gac	tgc	att	gaa	gtg	ccc	gga	gtc	cgc	ctg	ccc	cgc	ggc	tac	tac	771
Arg	Asp	Cys	Ile	Glu	Val	Pro	Gly	Val	Arg	Leu	Pro	Arg	G1 y	Tyr	Tyr	
235					240					245					250	
	aac	900	tee	tcc		act	000	gat	ete		gat.	aat	cat	gat		819
rne	•	inr	Ser .		116	Thr	GLY	иsр		Ser	vsh	VPII	1112			
	•		•	255					260					265		
att	tcc	ttg	aag	ttg	ttt	gaa	ctg	aca	gtg	gag	aga	acc	cca	gaa	gag	867
Ile	Ser	Leu	Lys	Leu	Phe	Glu	Leu	Thr	Val	Glu	Arg	Thr	Pro	Glu	Glu	
			270					275				•	280	•	٠.	
gaa	aag	ctc	cat	cga	gat	gtg	ttc	ttg	ccc	tca	gtg	gac	aat	atg	aag	915
Glu	Lys	Leu	His	Arg	Asp	Val	Phe	Leu	Pro	Ser	Val	Asp	Asn	Met	Lys	
·	٠.	285					290					295			• • •	
ctg	cct	gag	atg	aca	gct	cca	ctg	ccg	ccc	ctg	agt	ggc	ctg	gcc	ctc	963
						Pro										
Leu		oru	INC C		A10		Deu			200			200			
•	300					305		ŕ			310				• :	
ttc	ctc	atc	gtc	ttt	ttc	tcc	ctg	gtg	ttt	tct	gta	ttt	gcc	ata	gtc	1011
Phe	Ľeu	Tle	Val	Phe	Phe	Ser	Leu	Val	Phe	Ser	Val	Phe	Ala	Ile	Val	
315				٠.	320		•			325			-		330	
att	ggt	atc	ata	ctc	tac	aac	aaa	tgg	cag	gaa	cag	agc	cga	aag	cgc	1059
Ile	Gly	Ile	Ile	Leu	Tyr	Asn	Lys	Trp	Gln	Glu	Gln	Ser	Arg	Lys	Arg	
•;	<i>:</i>			335			ų.		340			. •:		345		
++^	+20	taa	ac c	ctcc	tact	ם רר	acca	cttt	tøt	gact	øtc	accc	atga	gg		1110

WO 01/12660 PCT/JP00/05356

169/307

Phe Tyr

tatggaagga	gcaggcactg	gcctgagcat	gcagcctgga	gagtgttctt	gtctctagca	1170
gctggttggg	gactatattc	tgtcactgga	gttttgaatg	cagggacccc	gcattcccat	1230
ggttgtgcat	ggggacatct	aactctggtc	tgggaagcca	cccaccccag	ggcaatgctg	1290
ctgtgatgtg	cctttccctg	cagtccttcc	atgtgggagc	agaggtgtga	agagaattta	1350
cgtggttgtg	atgccaaaat	cacagaacag	aatttcatag	cccaggctgc	cgtgttgttt	1410
gactcagaag	gcccttctac	ttcagttttg	aatccacaaa	gaattaaaaa	ctggtaacac	1470
cacaggettt	ctgaccatcc	attcgttggg	ttttgcattt	gacccaaccc	tctgcctacc	1530
tgaggagctt	tctttggaaa	ccaggatgga	aacttcttcc	ctgccttacc	ttcctttcac	1590
tccattcatt	gtcctctctg	tgtgcaacct	gagctgggaa	aggcatttgg	atgcctctct	1650
gttggggcct	ggggctgcag	aacacacctg	cgtttcactg	gccttcatta	ggtggcccta	1710
gggagatggc	tttctgcttt	ggatcactgt	tccctagcat	gggtcttggg	tctattggca	1770
tgtccatggc	cttcccaatc	aagtctcttc	aggccctcag	tgaagtttgg	ctaaaggttg	1830
gtgtaaaaat	caagagaagc	ctggaagaca	tcatggatgc	catggattag	ctgtgcaact	1890
gaccagctcc	aggtttgatc	aaaccaaaag	caacatttgt	catgtggtct	gaccatgtgg	1950
agatgtttct	ggacttgcta	gagcctgctt	agctgcatgt	tttgtagtta	cgatttttgg	2010
aatcccactt	tgagtgctga	aagtgtaagg	aagctttctt	cttacacctt	gggcttggat	2070
attgcccaga	gaagaaattt	ggctttttt	ttcttaatgg	acaagagaca	gttgctgttc	2130
tcatgttcca	agtctgagag	caacagaccc	tcatcatctg	tgcctggaag	agttcactgt	2190
cattgagcag	cacagcctga	gtgctggcct	ctgtcaaccc	ttattccact	gccttatttg	2250
acaaggggtt	acatgctgct	caccttactg	ccctgggatt	aaatcagtta	caggccagag	2310
tctccttgga	gggcctggaa	ctctgagtcc	tcctatgaac	ctctgtagcc	taaatgaaat	2370
tettaaaate	accesteess	cc .				2392

⟨210⟩ 83

<211	> 14	16														
<212	> DN	A T				. •	٠				•				•	
<213	> Ho	mo s	apie	ns										•	<i>*</i> .	
<220	>									•						
<221	> CD	s	- ()	•			•							٠.,	* ?	
<222	> (5	5)	. (84	0)							•		•		. '	
<400	> 83	;								•		٠			•	
atte	tccc	tg c	ctgc	ttct	g ga	gaaa	gaag	ata	ttga	cac	catc	tacg	gg c	acc	atg	57
٠	٠.			•											Met	
														-	1	
gaa	ctg	ctt	caa	gtg	acc	att	ctt	ttt	ctt	ctg	ccc	agt	att	tgc	agc	105
Glu	Leu	Leu	Gln	Val	Thr	Ile	Leu	Phẹ	Leu	Leu	Pro	Ser	Ile	Cys	Ser	
			5					10					15		•	
ågt	aac	agc	aca	ggt	gtt	tta	gag	gca	gct	aat	aat	tca	ctt	gtt	gtt	153
Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu	Ala	Ala	Asn	Asn	Ser	Leu	Val	Val	
	٠.,	20					25				•	30		•		
act	aca	aca	aaa	cca	tct	ata	aca	aca	cca	aac	aca	gaa	tca	tta	cag	201
Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser	Leu	Gln	
<i>.</i> .	35					40			•		45		• •		. • •	
aaa	aat	gtt	gtc	aca	cca	aca	act	gga	aca	act	cct	aaa	gga	aca	atc	249
Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr	Ile	
150	÷		t	, ,	55		:		• 2	60		٠.		- 27 <i>5</i>	65	
acc	aat	gaa	tta	ctt	aaa	atg	tct	ctg	atg	tca	aca	gct	ąct	tťt	tta	297
Thi	- Asr	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe	Leu	
				70)				75	i				80) <i></i>	

aca	agt	aaa	gat	gaa	gga	ttg	aaa	gcc	aça	acc	act	gat	gtc	agg	aag	345
Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg	Lys	
			85					90					95			
aat	gac	tcc	atc	att	tca	aac	gta	aca	gta	aca	agt	gtt	aca	ctt	сса	393
Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu	Pro	
		100					105					110				
aat	gct	gtť	tca	aca	tta	caa	agt	tcc	aaa	ссс	aag	act	gaa	act	cag	441
Asn	Ala	Val	Ser	Thr	Leu	G1n	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr	Gln	
	115					120					125			-	٠	
agt	tca	att	aaa	aca	aca	gaa	ata	cca	ggt	agt	gtt	cta	caa	cca	gat	489
Ser	Ser	Ile	Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	Val	Leu	Gln	Pro	Asp	
130					135					140					145	
gca	tca	cct	tct	aaa	act	ggt	aca	tta	acc	tca	ata	cca	gtt	aca	att	537
Ala	Ser	Pro	Ser	Lys	Thr	Gly	Thr	Leu	Thr	Ser	Ile	Pro	Val	Thr	Ile	
				150					155					160	<i>t</i> .	
cca	gaa	aac	acc	tca	cag	tct	caa	gta	ata	ggc	act	gag	ggt	gga	aaa	585
Pro	Glu	Asn	Thr	Ser	Gln	Ser	Gln	Val	Ile	Gly	Thr	Glu	Gly	Gly.	Lys	
			165					170					175			
aat	gca	agc	act	tca	gca	acc	agc	cgg	tct	tat	tcc	agt	att	att	ttg	633
Asn	Ala	Ser	Thr	Ser	Ala [.]	Thr	Ser	Arg	Ser	Tyr	Ser	Ser	Ile	Ile	Leu	
		180					185					190				
ccg	gtg	gtt	att	gct	ttg	att	gta	ata	aca	ctt	tca	gta	ttt	gtt	ctg	681
Pro	Val	Val	Ile	Ala	Leu	Ile	Val	Ile	Thr	Leu	Ser	Val	Phe	Val	Leu .	
	195					200					205					
gtg	ggt	ttg	tac	cga	atg	tgc	tgg	aag	gca	gat	ccg	ggc	aça	cca	gaa	729

BNSDOCID: <WO 0112660A2 I >

.

And the second

Val Gly Leu Tyr Arg Met Cys Trp Lys Ala Asp Pro Gly Thr Pro Glu	
210 215 220 225	
aat gga aat gat caa cct cag tct gat aaa gag agc gtg aag ctt ctt	777
Asn Gly Asn Asp Gln Pro Gln Ser Asp Lys Glu Ser Val Lys Leu Leu	
230 235 240	
acc gtt aag aca att tot cat gag tot ggt gag cac tot gca caa gga	825
Thr Val Lys Thr Ile Ser His Glu Ser Gly Glu His Ser Ala Gln Gly	
245 250 255	
aaa acc aag aac tga cagcttgagg aattctctcc acacctaggc aataattacg	880
Lys Thr Lys Asn	
260	
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc	940
ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca	1000
gctgacatgc aataatttga tggaatcaaa aagaaccccg gggctctcct gttctctcac	1060
atttaaaaat teeattaete catttaeagg agegtteeta ggaaaaggaa ttttaggagg	1120
agaatttgtg agcagtgaat ctgacagccc aggaggtggg ctcgctgata ggcatgactt	1180
tccttaatgt ttaaagtttt ccgggccaag aatttttatc catgaagact ttcctacttt	1240
tctcggtgtt cttatattac ctactgttag tatttattgt ttaccactat gttaatgcag	1300
ggaaaagttg cacgtgtatt attaaatatt aggtagaaat cataccatgc tactttgtac	1360
atataagtat tttattcctg ctttcgtgtt acttttaata aataactact gtactc	1416
,	
⟨210⟩ 84	
<211> 1347	
<212> DNA	
(213) Homo caniens	

Wash of the Grade

<220>							
<221> CDS	٠.,					•	
<222> (26).	(694)						٠
<400> 84	•						
gccttgtgtt	ttccaccct	g aaaga atg	ttg tgg	ctg ctc	ttt ttt	ctg gtg	52
		Met	Leu Trp	Leu Leu	Phe Phe	Leu Val	
		1		. , 5			
act gcc att	cat gct g	gaa ctc tgt	caa cca	ggt gca	gaa aat	gct ttt	100
Thr Ala Ile	His Ala (Glu Leu Cys	Gln Pro	Gly Ala	Glu Asn	Ala Phe	
10		15		20		25	
aaa gtg aga	ctt agt a	itc aga aca	gct ctg	gga gat	aaa gca	tat gcc	148
Lys Val Arg	Leu Ser 1	le Arg Thr	Ala Leu	Gly Asp	Lys Ala	Tyr Ala	
	30		35			40	
tgg gat acc	aat gaa g	aa tac ctc	ttc aaa	gcg atg	gta gct	ttc tcc	196
Trp Asp Thr	Asn Glu G	lu Tyr Leu	Phe Lys	Ala Met	Val Ala	Phe Ser	
:•	45	:	50		55		
atg aga aaa	gtt ccc a	ac aga gaa	gca aca	gaa att	tcc cat	gtcicta	244
Met Arg Lys	Val Pro A	sn Arg Glu	Ala Thr	Glu Ile	Ser His	Val Leu	
. 60		65			70		
ctt tgc aat	gta acc c	ag agg gta	tca ttc	tgg ttt	gtg gtt	aca gac	292
Leu Cys Asn	Val Thr G	ln Arg Val	Ser Phe	Trp Phe	Val Val	Thr Asp	
75 ; • .		- 80		85	er a ,	• 8 •	
cct tca aaa	aat cac a	cc ctt cct	gct gtt	gag gtg	caa tca	gcc ata	340
Pro Ser Lys	Asn His T	hr Leu Pro	Ala Val	Glu Val	Gln Ser	Ala Ile	
90 _{7 (17)} †		95	; · ·	100	•	105,	

aga	atg	aac	aag	aac	cgg	atc	aac	aat	gcc	ttc	ttt	cta	aat	gac	caa	388	
Arg	Met	Asn	Lys	Asn	Arg	Ile	Asn	Asn	Ala	Phe	Phe	Leu	Asn	Asp	Gln		
	,			110					115				٠.	120	٠,		
act	ctg	gaa	ttt	tta	aaa	atc	cct	tcc	aca	ctt	gca	cca	ccc	atg	gac	436	
Thr	Leu	Glu	Phe	Leu	Lys	Ile	Pro	Ser	Thr	Leu	Ala	Pro	Pro	Met	Asp		
			125			•		130					135				
cca	tct	gtg	ccc	atc	tgg	att	att	ata	ttt	ggt	gtg	ata	ttt	tgc	atc	484	
Pro	Ser	Val	Pro	Ile	Trp	Ile	Ile	Ile	Phe	Gly	Val	Ile	Phe	Cys	Ile		
	i	140	1			. 1	145					150	,		a - 1		
atc	ata	gtt	gca	att	gca	cta	ctg	att	tta	tca	ggg	ato	tgg	caa	cgt	532	
Ile	Ile	Val	Ala	Ile	Ala	Leu	Leu	Ile	Leu	Ser	Gly	Ile	Trp	Glr	n Arg		
	155	i				160)				165	5					
aga	aga	aag	g aac	aaa	gaa	cca	tct	gaa	gtg	gat	gac	gct	t gaa	a gat	t aag	580	
Arg	Arg	g Lys	s Ası	ı Lys	Glu	Pro	Ser	Glu	Val	. Asp	Asp	Ala	a Glu	ı Ası	p Lys		
170)				175	5				180)				185		
tgi	ga:	a aa	c at	gato	aca	a at	t gaa	a aat	ggo	ato	c cc	c tc	t ga	t cc	c ctg	628	ł
Cys	s Glu	u As	n Me	t Ile	e Thi	r Il	e Glu	ı Ası	ı Gly	, Ile	e Pro	o Se	r As	p Pr	o Leu		
		•	٠.	190)				19	5		٠		20	0 .		
ga	c at	g aa	g g g	a gg	g ca	t at	t aa	t ga	t gc	c tt	c at	g ac	a ga	g ga	t gag	676	ò
As	p Me	t Ly	s Gl	y Gl	y Hi	s Il	e As	n As	p Ala	a Ph	e Me	t Th	r Gl	u As	p Glu		
	<i>- :</i>		20	5				21	0 -		•		21	.5		•	
ag	g ct	c ac	c cc	t ct	c tg	aagg	gct	gttg	ttct	gc t	tcct	caag	ga aa	ttaa	acat	73	0
Ar	g Le	u Tł	ır Pı	o Le	u		••						و				
	٠.	22	20			.		٠,				:		2	\$ · ·	•	
++	 afti	rctei	t øts	zacte	ctg	agca	atcct	ga a	atac	caag	ga go	caga	tcata	a ta	ttttg	ttt 79	0

caccattett et	ttttgtaat	aaattttgaa	tgtgcttgaa	agtgaaaagc	aatcaattat	850
acccaccaac ac	cactgaaa	tcataagcta	ttcacgactc	aaaatattct	aaaatatttt	910
tctgacagta ta	igtgtataa	atgtggtcat	gtggtatttg	tagttattga	tttaagcatt	970
tttagaaata ag	gatcaggca	tatgtatata	ttttcacact	tcaaagacct	aaggaaaaat	1030
aaattttcca gt	ggagaata	catataatat	ggtgtagaaa	tcattgaaaa	tggatccttt	1090
ttgacgatca ct	tatatcac	tctgtatatg	actaagtaaa	caaaagtgag	aagtaattat	1150
tgtaaatgga tg	gataaaaa	tggaattact	catatacagg	gtggaatttt	atcctgttat	1210
cacaccaaca gt	tgattata	tattttctga	atatcagccc	ctaataggac	aattctattt	1270
gttgaccatt to	tacaattt	gtaaaagtcc	aatctgtgct	aacttaataa	agtaataatc	1330
atctcttttt ga	ittgtg					1347
e.						
<210> 85		-			• •	
<211> 2284						
<212> DNA						
<213> Homo sa	piens					
<220>						
<221> CDS	* * * * * * * * * * * * * * * * * * * *			· (c)	, j.	
<222> (75)	(626)					
<400> 85						
aaaatggcac ag	agcattga	aaggaggcaa	cggatgccca	gtgcaagatt	ctgaagaagc	60
aggaattcag cc	cg atg gg	a gtc cga g	tt cat gtc	gtg gcg gcc	tca gcc	110
	Met Gl	y Val Arg V	al His Val	Val Ala Ala	Ser Ala	
3 40 × 50 × 50	1 .	• ((•••	5	. 10	, ,	
ctg ctg tat t	tc atc ct	g ctt tct g	gg acg aga	tgt gag gaa	aac tgt	158

Leu Leu Tyr Phe Ile Leu Leu Ser Gly Thr Arg Cys Glu Glu Asn Cys

		15			÷	•	20		·· •		**	25		<i>:</i>		
ggt a	aat	cct	gaa	cat	tgc	ctg	acc	aca	gac	tgg	gta	cat	ctc	tgg	tat ·	206
Gly	Asn	Pro	Glu	His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Tyr	
	30					35					40	٠				
ata	tgg	ttg	cta	gtg	gta [.]	att	ggc	gcg	ctg	ctt	ctc	ctg	tgt	ggc	ctg	254
Ile	Trp	Leu	Leu	Val	Val	Ile	G1y	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Leu	
45					50					55					· 60	
acg	tcc	ctg	tgc	ttc	cgc	tgc	tgc	tgt	ctg	agc	cgc	cag	caa	aat	ggg ·	302
Thr	Ser	Leu	Cys	Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	Gly	
				65					70					75	•	
gaa	gat	ggg	ggc	cca	cca	ccc	tgt	gaa	gtg	acc	gtc	att	gct	ttc	gat	350
Glu	Asp	Gly	Gly	Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	Asp	
			80					85					90			
cac	gac	agc	act	ctc	cag	agc	act	atc	aca	tct	ctg	cag	tcg	gtg	ttt	398
His	Asp	Ser	Thr	Leu	Gln	Ser	Thr	Ile	Thr	Ser	Leu	Gln	Ser	Val	Phe	
		95					100					105			• • •	
ggc	cct	gca	gct	cgg	agg	atc	ctg	gct	gtg	gct	cac	tcc	cac	agc	tcc	446
Gly	Pro	Ala	Ala	Arg	Arg	Ile	Leu	Ala	Val	Ala	His	Ser	His	Ser	Ser-	
	110					115					120	•				
ctg	ggc	cag	ctg	ccc	tcc	tct	ttg	gac	acc	ctc	cca	ggg	tat	gaa	gaa	494
Leu'	Gly	Gln	Leu	Pro	Ser	Ser	Leu	Asp	Thr	Leu	Pro	Gly	Tyr	Glu	ı-Glu-	
125					130	-	,		*	135					140	
gct	ctt	cac	atg	agt	cgc	ttc	aca	gta	gcc	atg	tgo	gge	cag	g aaa	gca	542
Ala	Leu	His	Met	Ser	Arg	Phe	Thr	Val	Ala	Met	Cys	Gly	Glr	Lys	s-Ala	
. س				-145	; · ·		·· .	н ж	· 150)				· 155	5 · 1 · 1 · 5	

cct	gat	cta	ccc	cca	gta	cct	gaa	gaa	aag	cag	ctg	cct	cca	aca	gag	590
Pro	Asp	Leu	Pro	Pro	Val	Pro	Glu	Glu	Lys	Gln	Leu	Pro	Pro	Thr	Glu	
-	. •	••	160			٠.		165	-	,	,		170			
aag	gag	tcg	act	cga	ata	gtt	gac	tct	tgg	aac	tgat	gag	agci	tgtca	tt	640
Lys	Glu	Ser	Thr	Arg	Ile	Val	Asp	Ser	Trp	Asn						
		175					180									
ttai	taaat	ag (gagte	gagt	g at	tgtc	cagag	tct	tgtgg	gaa	aatg	gaac	ac a	atact	tttc	t 700
aaco	ectea	aga a	agttt	taag	ga tg	gcat	ctaa	cac	cato	att	ctat	ggga	aa g	gatgg	ttct	t 760
acto	ette	gtt (cacag	gcct	t ta	atato	ettec	gat	acag	gaat	gcto	taat	tg g	ggaad	tcta	a 820
ttti	gtat	cc a	aatgg	ccaa	ıa at	tctgo	aagt	aat	ctct	agc	caca	ictga	itt a	actac	taaa	ic 880
cag	gaaag	gca 1	tcaag	gtat	c tt	gaat	tcct	tta	acta	ittg	agte	cata	ita g	gaatt	cctg	t 940
acco	acat	ga 1	tacte	caag	t te	gtgto	tctc	tct	gtca	gct	aato	cact	gc g	ggtta	actg	g 1000
aaaa	ngaaa	ıga (caaca	gtgt	c ag	gcaca	gcca	tce	gacat	taa	tgca	ictga	at e	gcate	cato	t 1060
ttc	tect	ga g	gacag	caat	c ga	tttt	acac	cga	atga	ıcaa	tgat	cato	tt a	agaca	gcac	a 1120
acat	acco	ac 1	tcgga	itato	t aa	aago	tagg	gat	ggca	ittg	ctga	itate	gg	caaag	agaa	c 1180
acag	gtata	ngt a	attta	agte	c ca	aata	tcag	tct	ttct	ttc	tctc	tggt	cc 1	tacco	ctca	g 1240
cagt	atga	aa a	aacto	cata	ic tg	gtgca	igtca	cag	gttgg	gatt	aatt	cttc	ag t	ttcct	ccgc	a 1300
ctgo	aaac	ac a	atata	tgtg	c go	acat	gcat	gta	ataco	tgc	acco	tgtt	tt a	acto	taaa	g 1360
gaat	agte	gtt g	gcttt	actt	c tt	tcct	gttt	tgo	ctgg	gacc	actt	aaag	cc a	acaac	acct	c 1420
tata	agtga	aca o	cacgo	tagt	c to	tagt	ggtg	gcc	ctca	ctg	ccac	ctag	gag g	gagco	atgg	t 1480
ggaa	aaca	aca o	ctctc	tcct	t tg	gagco	tato	tgo	acat	ctc	toga	gtto	tt g	ggago	aaaa	a 1540
ctaa	aatgo	etg a	aacta	agco	t gg	gttga	agatg	ctt	ccca	atgg	acca	itgco	gc a	agcad	agtg	c 1600
taa	tcta	cc a	acaaa	acat	a co	cacci	tecca	aag	gtati	att	atte	gaaa	at d	gagg	gaagt	g 1660
acgo	cacat	ttt a	aggga	aaaa	ic ta	actca	acctt	aga	aaaa	gtca	ctga	aato	ct 1	tttt	ttt	t 1720
ttt	72021	too s	aøtti	tøct	c ti	tgtad	reces	gar	· † aaa	rat o	caat	gges	ntσ.c	ztete	aget	c 1786

وح المراز والمحبوص

actgtaacct ccaccto	ccg gattcaagca	attcttctgc	ctcagcttcc	cgactagctg	1840
ggattacage tgeetge	cac cgtgcccagc	taatttttgt	atttttagtg	gagagggggt	1900
ttcaccatgt tggccag	stet ggtetagaac	tcctgacgtc	aggtgatccg	cccaccttgg	1960
cctcccaaag tgctgga	att agaggcctga	cccctgctc	ctggcctgaa	atctttaaag	2020
ccgttttttc cctaaaa	aac gggaaataat	aacacctcag	aaggtttttg	tgaagatcaa	2080
agaagctaaa tatatg	tggc atgatttgta	aagtgttatg	catatgtatg	ttattcttcc	2140
tactgtcttc taacct	tece ttgeetgeta	tgacttatct	gagagccatg	ttcccattta	2200
tctttttgcc aactat	gtta ctgttgtcac	cacctgaaatg	gctttgtttt	tatcaataaa	2260
tacttgttga ttgtgg	taaa cagc		. • • • • • • • • • • • • • • • • • • •	A Committee of	2284
<210> 86					
<211> 1737			•		
<212> DNA					
<213> Homo sapien	s		÷ •	· · · · ·	
	•				
<222> (236)(10)24)			* . • • · ·	
<400> 86 · · ·				* *	
tttcgattcc actctc	ettee gtttetgte	g ctgcagtcg	t ccgcgggac	t ccggccggtt	60
gccggcccca ggcgg	tgctt ctccccaco	a ccgcccagc	t cageteage	c cagcccagcc	120
cactetgeee ttaga	ggccc ttctcccca	a agacgcact	c cagaagtct	c gccctcgtgc	180
ggctgaggag cctgg	gatce cagacetga	a caagtgaaa	c eccegecee	t gaaga atg	23
				, ,; . Met	
	•			1 711 50 12 1	

ggt aag acg ttt tcc cag ctg ggc tct tgg cgg gag gat gag aac aag.

BNSDOCID: <WO 0112660A2 1 >

THE SALE OF THE SA

286

Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn	Lys	
	·., ·	-	. 5	:				10		•			15	٠,		
tca	atc	ctg	tcc	tcc	aaa	cca	gcc	att	ggc	agc	aag	gct	gtc	aac	tac	334
Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn	Tyr	
		20					25					30				
tcc	agc	acc	ggt	agc	agc	aag	tct	ttt	tgt	tcc	tgt	gtg	cct	tgt	gaa	382
Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys	Glu	
• .	-35			*		.40					45					
gga	act	gct	gat	gcc	agc	ttc	gtg	act	tgt	ccc	acc	tgc	cag	ggc	agt	430
Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly	Ser	
50					55					60					65	
ggc	aag	att	ccc	caa	gag	ctg	gag	aag	cag	ttg	gtg	gct	ctc	att	ccc .	478
Gly	Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile	Pro	
				70					75					80		
tat	ggg	gac	cag	agg	ctg	aag	ccc	aag	cac	acg	aag	ctc	ttt	gtg	ttc	526
Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val	Phe	
٠٠.	٠ ;	,	- 85	•				90					95	. ,		
ctg	gcc	gtg	ctc	atc	tgc	ctg	gtg	acc	tcc	tcc	ttc	atc	gtc	ttt	·ttc	574
Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe	Phe	
•••	n to	-100		r		• (105	•				110				
ctg	ttt	ccc	cgg	tcc	gtc	att	gtg	cag	cct	gca	ggc	ctc	aac	tcc	.tcc	622
Leu	Phe	Pro	Arg	Ser	Val	Ile	Val	Gln	Pro	Ala	Gly	Leu	Asn	Ser	Ser	
•	-115	;		5		120	, .				125	-				
aca	gtg	gcc	ttt	gat	gag	gct	gat	atc	tac	ctc	аас	ata,	acg	aat	atc	670
Thr	Val	A1c	Dho	400	Cl.	41.	10-	T1-	Т	ĭ	1	Tla	Th-	105	T1.	

INCOMPLETE OM- -UI-

130	5 · · · · - · ·	140 145	
tta aac atc tcc aat gg	c aac tac tac ccc	att atg gtg aca cag ctg	718
Leu Asn Ile Ser Asn Gl	y Asn Tyr Tyr Pro	Ile Met Val Thr Gln Leu	
150	155	160	
acc ctc gag gtt ctg ca	c ctg tcc ctc gtg	g gtg ggg cag gtt tcc aac	766
Thr Leu Glu Val Leu Hi	s Leu Ser Leu Val	Val Gly Gln Val Ser Asn	
165	170	175	
aac ctt ctc cta cac at	t ggc cct ttg gcc	e agt gaa cag atg ttt tac	814
Asn Leu Leu Leu His Il	e Gly Pro Leu Ala	a Ser Glu Gln Met Phe Tyr	
180	185	190	
gca gta gct acc aag at	a cgg gat gaa aac	c aca tac aaa atc tgt acc	862
Ala Val Ala Thr Lys Il	e Arg Asp Glu Asn	n Thr Tyr Lys Ile Cys Thr	
195	200	205	
tgg ctg gaa atc aaa gt	c cac cat gtg ctt	t ttg cac atc cag ggc acc	910
Trp Leu Glu Ile Lys Va	al His His Val Leu	u Leu His Ile Gln Gly Thr	
210 21	.5	220 225	
ctg acc tgt tca tac ct	g agc cat tca gag	g cag ctg gtc ttt cag agc	958
Leu Thr Cys Ser Tyr Le	eu Ser His Ser Glu	u Gln Leu Val Phe Gln Ser	
230	235	5 240	
tat gaa tat gtg gac t	go oga gga aac go	a tot gtg ccc cac cag ctg	1006
Tyr Glu Tyr Val Asp C	ys Arg Gly Asn Ala	a Ser Val Pro His Gln Leu	
245	250	255	
acc cct cac cca cca t	gaccigic igcigico	ct gtactccagg cacctgcaac	1060
Thr Pro His Pro Pro		salah kanalan dan ber	
260	1	$(x_1, x_2, x_3) = (x_1, x_2, x_3, x_4, x_4, x_4, x_5, x_4, x_5, x_4, x_5, x_5, x_5, x_5, x_5, x_5, x_5, x_5$	

cctggtctat	atctcccaca	actccctggt	gactaaggaa	ggactacaga	ggctttgcca	1120
aaggagaagc	cctgcctcat	cacaccctta	cctcccaccc	cctcagcaca	ggaagettge	1180
tttgaagtta	acttcataca	cacacactca	tatcctccag	tttccccag	attctttcag	1240
gggctgccat	cagattctgc	ccttggttag	ttttttgttt	tttttttgg	tagagacaga	1300
gtctcactgt	tggtccaggt	tggttttgaa	ctcctgggct	caagcgatcc	tcccttcttg	1360
gcctcccaaa	gcacttggat	tacagatgtg	agcctgtgcc	tggctggtct	ttcttgagga	1420
aaatctgacc	tggcattttc	ttgaggcacc	ttagattccc	tggagtggca	cctggccttt	1480
ctgtactgag	cacctggtca	gtctgaaggg	ggcatttcac	cccagctcca	tcagggctgg	1540
cagtcccgtc	tgaatgtgga	gagagctgta	gttttatctg	gcttttaaaa	catggacctg	1600
ccggctgggc	gcagtggctt	acacctgtaa	tcccagtact	ttgggaggcc	gaagtgggtg	1660
gatcacttga	gggcaggagt	tcgtgaccag	cctggtcaac	atggtgaaac	cttgtctcta	1720
ctaaaaatac	aaaaatt					1737

<210> 87

<211> 1556

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (103)... (609) ...

<400> 87

agogoteact egetegeact cagtegeggg aggetteece gegeeggeeg egteeegee 60 geteeegge accagaagtt eetetgegeg teegaeggeg ac atg gge gte eee. 114

Met Gly Val Pro

non operation in the first process of all more than $1,\dots,1,\dots,1,\dots$

BNSDOCID: <WO 0112660A2 | >

animorus — " au compane

acg	gcc	ctg	gag	gcc	ggc	agc	tgg	cgc	tgg	gga	tcc	ctg	ctc	ttc	gct	162
Thr	Ala	Leu	Glu	Ala	Gly	Ser	Trp	Arg	Trp	Gly	Ser	Leu	Leu	Phe	Ala	
5	t.;	;		•	10	•	•	•	٠	15		-	. :		20	
ctc	ttc	ctg	gct	gcg	tcc	cta	ggc	aaa	gat	gca	cca	tcc	aac	tgt	gtg	210
Leu	Phe	Leu	Ala	Ala	Ser	Leu	Gly	Lys	Asp	Ala	Pro	Ser	Asn	Cys	Val	
				25	•				30			٠.,	å	35	. 5	
gtg	tac	cca	tcc	tcc	tcc	cag	gag	agt	gaa	aac	atc	acg	gct	gca	gcc	258
Val	Tyr	Pro	Ser	Ser	Ser	Gln	Glu	Ser	Glu	Asn	Ile	Thr	Ala	Ala	Ala	
	8		40		:			45		-			50	٠,	· .	
ctg	gct	acg	ggt	gcc	tgc	atc	gta	gga	atc	ctc	tgc	ctc	ccc	ctc	atc	306
Leu	Ala	Thr	Gly	Ala	Cys	Ile	Val	Gly	Ile	Leu	Cys	Leu	Pro	Leu	Ile	
		55					60					-65			• • • •	
ctg	ctc	ctg	gtc	tac	aag	caa	agg	cag	gca	gcc	tcc	aac	cgc	cgt	gcc	354
Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser	Asn	Arg	Arg	Ala	
	70					75					80			٠. :		
cag	gag	ctg	gtg	cgg	atg	gac	agc	aac	att	caa	ggg	att	gaa	aac	ccc	402
Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly	Ile	Glu	Asn	Pro	
85					90					95					100	
ggc	ttt	gaa	gcc	tca	cca	cct	gcc	cag	ggg	ata	ccc	gag	gcc	aaa	gtc ·	450
Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro	Glu	Ala	Lys	Val.	
				105					110					115	Appet	
agg	cac	ссс	ctg	tcc	tat	gtg	gcc	cag	cgg	cag	cct	tct	gag	tct	ggg	498
Arg	His"	Pro	Leu	Ser	Tyr	Val	Ala	Gln	Arg	·G1n	Pro	Ser	Gļu	Ser	Gly:	
ı			120	• •				125					130			
cgg	cat	ctg	ctt	tcg	gag	ССС	agc	acc	ccc	ctg	tct	cct	cca	ggc	ccc	546

Arg His Leu Leu Ser Glu Pro Ser Thr Pro Leu Ser Pro Pro Gly Pro	
135 140 145	
gga gac gtc ttc ttc cca tcc ctg gac cct gtc cct gac tct cca aac	594
Gly Asp Val Phe Phe Pro Ser Leu Asp Pro Val Pro Asp Ser Pro Asn	
150 155 160	
ttt gag gtc atc tagc ccagctgggg gacagtgggc tgttgtggct gggtctgggg	650
Phe Glu Val Ile	
165	
caggtgcatt tgagccaggg ctggctctgt gagtggcctc cttggcctcg gccctggttc	710
cctccctcct gctctgggct cagatactgt gacatcccag aagcccagce cctcaacccc	770
totggatgot acatgggggat gotggacggo toagcoootg ttocaaggat tttggggtgo	830
tgagattctc ccctagagac ctgaaattca ccagctacag atgccaaatg acttacatct	890
taagaagtet cagaacgtee ageeetteag cagetetegt tetgagacat gageettggg	950
atgtggcagc atcagtggga caagatggac actgggccac cctcccaggc accagacaca	1010
gggcacggtg gagagacttc tccccgtgg ccgccttggc tcccccgttt tgcccgaggc	1070
tgctcttctg tcagacttcc tctttgtacc acagtggctc tgggggccagg cctgcctgcc	1130
cactggccat cgccaccttc cccagctgcc tcctaccagc agtttctctg aagatctgtc	1190
aacaggttaa gtcaatctgg ggcttccact gcctgcattc cagtccccag agcttggtgg	1250
tcccgaaacg ggaagtacat attggggcat ggtggcctcc gtgagcaaat ggtgtcttgg	1310
gcaatctgag gccaggacag atgttgcccc acccactgga gatggtgctg agggaggtgg	1370
gtggggcctt ctgggaaggt gagtggagag gggcacctgc ccccgccct ccccatcccc	1430
tactcccact gctcagcgcg ggccattgca agggtgccac acaatgtctt gtccaccctg	1490
ggacactict gagtatgaag cgggatgcta ttaaaaaacta catggggaaa caggtgcaaa	1550
ccctgg - see on .	1556

BNSDOCID: <WO 0112660A2 I >

. . . .

a prae seed the recover

⟨210⟩ 88 ′ · · · · · · · · · · · · · · · · ·	
<211> 1855	
<212> DNA	
<213> Homo sapiens	
<220> ∴	
<221> CDS	
<222> (222) (953)	
<400> 88	
cagagatgga atttcaccgt gttgcctagg ctggtctgga gctcttgatc tcaagcgatc	60
ctccctgcct cggcctccca acgtgctggg attataggcg tgagccaccg ctcctggcca	120
gggtctgttc ctagttgcaa cagttcttgg aaacccactc gagagggcca cgcctccatt	180
caccaggeca egeateacaa gaggeaacae caggagecaa e atg age teg ggg	233
Met Ser Ser Gly	
1	
act gaa ctg ctg tgg ccc gga gca gcg ctg ctg gtg ctg ttg ggg gtg	281
Thr Glu Leu Leu Trp Pro Gly Ala Ala Leu Leu Val Leu Leu Gly Val	
5 10 15 20	
gca gcc agt ctg tgt gtg cgc tgc tca cgc cca ggt gca aag agg tca	329
Ala Ala Ser Leu Cys Val Arg Cys Ser Arg Pro Gly Ala Lys Arg Ser	
·	
gag aaa atc tac cag cag aga agt ctg cgt gag gac caa cag agc ttt	377
Glu Lys Ile Tyr Gln Gln Arg Ser Leu Arg Glu Asp Gln Gln Ser Phe	
acg ggg tcc cgg acc tac tcc ttg gtc ggg cag gca tgg cca gga ccc.	425
The Classes And The Tur Ser Leu Val Gly Gle Ala Tre Pro Gly Pro	

		55					60					65			. •		
ctg	gcg	gac	atg	gca	ccc	aca	agg	aag	gac	aag	ctg	ttg	caa	ttc	tac		473
Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu	Leu	Gln	Phe	Tyr		
	. 70					75					80		-				
ССС	agc	ctg	gag	gat	cca	gca	tct	tcc	agg	tac	cag	aac	ttc	agc	aaa		521
Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln	Asn	Phe	Ser	Lys		
85					90					95					100		
gga	agc	aga	cac	ggg	tcg	gag	gaa	gcc	tac	ata	gac	ccc	att	gcc	atg.		569
Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp	Pro	Ile	Ala	Met		
				105					110					115			
gag	tat	tac	aac	tgg	ggg	cgg	ttc	tcg	aag	ccc	cca	gaa	gat	gat	gat		617
Glu	Tyr	Tyr	Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro	Glu	Asp	Asp	Asp	•	
			120					125					130				
gcc	aat	tcc	tac	gag	aat	gtg	ctc	att	tgc	aag	cag	aaa	acc	aca	gag		665
Ala	Asn	Ser	Tyr	Glu	Asn	Val	Leu	Ile	Cys	Lys	Gln	Lys	Thr	Thr	Glu		
	L	135					140			•		145					
aca-	ggt	gcc	cag	cag	gag	ggc	ata	ggt	ggc	ctc	tgc	aga	ggg	gac	ctc		713
Thr	Gly	Ala	Gln	Gln	Glu	Gly	Ile	Gly	Gly	Leu	Cys	Arg	Gly	Asp	Leu		
	150	•				155					160						
agc	ctg	tca	ctg	gcc	ctg	aag	act	ggc	ccc	act	tct	ggt	ctc	tgt	ссс		761
Ser	Leu	Ser	Leu	Ala	Leu	Lys	Thr	Gly	Pro	Thr	Ser	Gly	Leu	Cys	Pro		
165	.,. .		·. ·		170		٠.			175					180		
tct.	gcc	tcc	ccg	gaa	gaa	gat	gag	gaa	tct	gag	gat	tat	cag	aac	tca	;	809
Ser	Ala	Ser	Pro	Glu	Glu	Asp	Glu	Glu	Ser	Glu	Asp	Tyr	Gln	Asn	Ser		
				185					190					195			

gca tcc atc cat cag tg	g cgc gag tcc	agg aag gtc atg ggg	caa ctc 857
Ala Ser Ile His Gln Tr	p Arg Glu Ser	Arg Lys Val Met Gly	Gln Leu
200	205	210	- 1.11.
cag aga gaa gca tcc co	t ggc ccg gtg	gga agc cca gac gag	gag gac 905
Gln Arg Glu Ala Ser Pr	o Gly Pro Val	Gly Ser Pro Asp Glu	Glu Asp
. 215	220	225	· ·:
ggg gaa ccg gat tac gt	g aat ggg gag	gtg gca gcc aca gaa	gcc 950
Gly Glu Pro Asp Tyr Va	l Asn Gly Glu	Val Ala Ala Thr Glu	Ala 🧎
230	235	240	
tagggcagac caagaagaaa	ggagccaagg caa	aagagga ccactgtgct	catggaccca 1010
tcgctgcctt ccaaggacca	tttcccagag cta	actcaact tttaagcccc	tgccatggtt 1070
gctcctggaa ggagaaccag	ccaccctgag gad	ccacctgg ccatgcgtgc	acageetggg 1130
aaaagacagt tactcacggg	agctgcaggc ccg	gtcaccaa gccctctccc	gacccagget 1190
ttgtggggca ggcacctggt	accaagggta acc	coggetee tggtatggae	ggatgcgcag 1250
gatttaggat aagctgtcac	ccagtcccca taa	acaaaacc actgtccaac	actggtatct 1310
gtgttctttt gtgctatgaa	tttggattcc taa	attgctat tgttggttgc	tggggtttta 1370
aatgattgat aagcttgtac	agttaactta tag	gaggggga gccatattta	acattctgga 1430
tttcagagta gagatttctg	tgttgtctcc tag	gaaagcat tacatgtagt	ttatttcagc 1490
atccttgttg ggtggggccc	tggctctctt cc	cctttggt gggacctccc	ctttctttgg 1550
gcttcagttc actcaggaag	aaatgaggct gt	cgccatct ttatgtgctt	ccagtggaaa 1610
tgtcacttgc tacagacaat	agtgcatgag ag	tctagaga agtagtgacc	agaacagggc 1670
agagtaggtc ccctccatgg	ccctgaatcc tc	ctctgctc cagggctggc	ctctgcagag 1730
ctgattaaac agtgttgtga	ctgtctcatg gg	aagagctg gggcccagag	ggaccttgag 1790
tcagaaatgt tgccagaaaa	agtatctcct cc	aaccaaaa catctcaata	aaaccatttt 1850
agttg ".	· •	:	185

<210)> 8.9	•														
<211	> 25	530	••	٠.									. •			
<212	2> Di	A	÷											٠.	··· •	
<213	3> Ho	ошо :	sapie	ens												
<220)>								٠							
<221	l> CI	os	٠				,00					.‡			٠.	
<222	2> (2	28)	. (13	314)		٠.					•				•	
<400)> 89	€													-	
agce	gcgg	ogg (ggcga	atgte	gt ga	atta	cc at	tg go	cg ag	gg ag	gt c1	tc tg	gt co	eg gi	gg	51
							Ме	et A	la Ai	rg Se	er Le	eu Cy	rs Pi	ro G	ly	•
							,	1				5			•	
gcc	tgg	cta	agg	aaa	ccc	tat	tac	ctc	cag	gct	cgc	ttc	tca	tat	gtg	99
Ala	Trp	Leu	Arg	Lys	Pro	Tyr	Tyr	Leu	Gln	Ala	Arg	Phe	Ser	Tyr	Val	
	10					15					20	•			•	
cgg	atg	aaa	tat	ctt	ttc	ttt	tcc	tgg	tta	gtg	gtt	ttt	gtt	gga	agc	, 147
Arg	Met	Lys	Tyr	Leu	Phe	Phe	Ser	Trp	Leu	Val	Val	Phe	Val	Gly	Ser	
25		-			30					35					40	
tgg	att [.]	ata	tat	gtg	cag	tat	tct	acc	tat	aca	gaa	tta	tgc	aga	gga	195
Trp	Ile	Ile	Tyr	Val	Gln	Tyr	Ser	Thr	Tyr	Thr	Glu	Leu	Cys	Arg	Gly	
-	t.,		ť .	·45			•		50		•	•		.55	*	•
aag	gac	tgt	aag	aaa	ata	ata	tgt	gac	·aag	tac	aag	act	gga	gtt	att	243
Lys	Asp	Cys	Lys	Lys	Ile	Ile	Cys	Asp	Lys	Tyr	Lys	Thr	Gly	Val	Ile	
3'	• 5	.• •	. 60			٠.	. •	65	:		٠,	- •	70	• .	. · · • •	
oat	- à a a	cct	oca	.tot	·aac	200	ctt	tot	att	aca	gaa	act	ctt	tac	ttt	291

BNGULU--MU UITSEEURS I

. . . .

Asp	Gly	Pro	Ala	Cys	Asn	Ser	Leu	Cys	Val	Thr	Glu	Thr	Leu	Tyr	Phe	
		75					80					85		. ,		
gga	aaa	tgt	tta	tcc	acc	aag	ссс	aac	aat	cag	atg	tat	tta	ggg	att 🕚	339
Gly	Lys	Cys	Leu	Ser	Thr	Lys	Pro	Asn	Asn	Gln	Met	Tyr	Leu	Gly	Ile	
	90					95					100		٠.	,	i •	
tgg	gat	aat	cta	cca	ggt	gtt	gtg	aaa	tgt	caa	atg	gaa	caa	gcg	ctt	387
Trp	Asp	Asn	Leu	Pro	Gly	Val	Val	Lys	Cys	Gln	Met	Glu	G1n	Ala	Leu	
105					110					115		٠		,	120	
cat	ctt	gat	ttt	gga	act	gaa	ttg	gaa	cca	aga	aaa	gaa	ata	gtg	cta	435
His	Leu	Asp	Phe	Gly	Thr	Glu	Leu	Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	1.0
	,	-		125			,		130					135		
ttt	gat	aag	cca	act	aga	gga	act	act	gta	caa	aaa	ttt	aaa	gaa	atg	483
Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr	Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	
			140					145					150			
gtc	tat	agt	ctc	ttt	aag	gca	aaa	ttg	ggt	gac	caa	ġga	aac	ctc	tct	531
Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys	Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	
:	٠.,	155					160					165			* * * * *	
gaa	ctg	gtt	aat	ctc	atc	ttg	acg	gtg	gct	gat	gga	gac	aaa	gat	ggc ·	579
Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr	Val	Ala	Asp	Gly	Asp	Lys	Asp	Gly.	
	170		٠.			175			٠.		180	, ,	,		÷ : .	
cag	gtt	tcc	ttg	gga	gaa	gca	aag	tcg	gca	tgg	gca	ctt	ctt	caa	ctg	627
Gln	· Val	Ser	Leu	Gly	Glu	Ala	Lys	Ser	Ala	Trp	Ala	Leu	Leu	Gln	Leu·	
185		•		٠.	190				-	195	•	٠.	′ :	v . 6	200	
aat	gaa	ttt	ctt	ctc	atg	gtg	ata	ctt	caa	gat	aaa	gaa	cat	acc	ccc	675
Aen	Glu	Pho	Leui	Ten	Met	Val	He	Leu	Gln	Asp	Lvs	Glu	His	Thr	Pro ·	

	•	•		205	•				210		-			215	-	
aaa	tta	atg	gga	ttc	tgt	ggt	gac	ctc	tat	gtg.	atg	gaa	agt	gtt	gaa	723
Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp	Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	
			220				•	225					230			
tat	acc	tct	ctt	tat	gga	ata	agc	ctt	cct	tgg	gtc	att	gaa	ctt	ttt	771
Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser	Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	
	٠.	235					240					245				
att	cca	tct	ggg	ttc	aga	aga	agc	atg	gat	cag	ctg	ttc	aca	cca	tca.	819
Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser	Met	Asp	Gln	Leu	Phe	Thr	Pro	Ser	
	250					255					260				-	
tgg	cca	aga	aag	gcc	aaa [.]	ata	gcc	ata	gga	ctt	cta	gaa	ttt	gtg	gaa	867
Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala	<u>Į</u> le	Gly	Leu	Leu	Glu	Phe	Val	Glu	
265	. •	٠			270					275					280	
gat	gtt	ttc	cat	ggc	ссс	tac	gga	aat	ttc	ctc	atg	tgc	gat	act	agt	915
Asp	Val	Phe	His	Gly	Pro	Tyr	Gly	Asn	Phe	Leu	Met	Cys	Asp	Thr	Ser	
		٦ ٠		285			,		290					295	· · .	
gcc	aaa	aac	cta	gga	tat	aat	gat	aag	tat	gat	ttg	aaa	atg	gtg	gat	963
Ala	Lys	Asn	Leu	Gly	Tyr	Asn	Asp	Lys	Tyr	Asp	Leu	Lys	Met	Val	Asp	
		•	300					305					310			
atg	aga	aaa	att	gtg	cca	gag	aca	aac	ctg	aaa	gaa	ctt	att	aag	gat	1011
Met	Arg	Lys	Ile	Val	Pro	Glu	Thr	Asn	Leu	Lys	Glu	Leu	Ile	Lys	Asp	
٠	¹ ·.	315	, č		r,		320					325		٠,	1977 F.	
cgt	cac	tgt	gag	tct	gat	ttg	gac	tgt	gtc	tat	ggc	aca	gạt	tgt	aga	1059
Arg	His	Cys	Glu	Ser	Asp	Leu	Asp	Cys	Val	Tyr	Gly	Thr	Asp	Cys	Arg	
	-330	· •	· · · ·			335		<i>.</i> .			340	_			* 1.54	

act ago tgt gat cag agt aca atg aag tgt act tca gaa gtg ata caa	1107
Thr Ser Cys Asp Gln Ser Thr Met Lys Cys Thr Ser Glu Val Ile Gln	
345 350 355 360	
cca aac ttg gca aaa gct tgt cag tta ctc aaa gac tac cta ctg cgt	1155
Pro Asn Leu Ala Lys Ala Cys Gln Leu Leu Lys Asp Tyr Leu Leu Arg	
365 370 375	
ggt gct cca agt gaa att cgt gaa gaa tta gaa aag cag ctt tat tct	1203
Gly Ala Pro Ser Glu Ile Arg Glu Glu Leu Glu Lys Gln Leu Tyr Ser	
380 385 390	
tgt att gct ctc aaa gtc aca gca aat caa atg gaa atg gaa cat tct	1251
Cys Ile Ala Leu Lys Val Thr Ala Asn Gln Met Glu Met Glu His Ser	
395 400 405	
ttg ata cta aat aac cta aaa aca tta ttg tgg aag aaa att tcc tac	1299
Leu Ile Leu Asn Asn Leu Lys Thr Leu Leu Trp Lys Lys Ile Ser Tyr	
410 415 420	
act aat gac tot tagttoatt tggacataat taccatttta agaaacctgc	1350
Thr Asn Asp Ser	
425 ··· · · · · · · · · · · · · · · · · ·	
cacttttaaa gaacaatttt gagcattaaa aaaaaatggc ttcaaattcc tgccagtta	ac 1410
acaaaactcc ttcccccag gcctgagaag ccatcagtat gtgattactg aagtaatg	gc 1470
aggigtagga tcaacaggic cccaagaigt cattcigcc cittiagaag cccigita	ca 1530
tetecgaagt acatteattg tgtaactatt ttgactgact ttaaaaacca atgetgtg	
aagcttcatt ccataaacat caacagtgag tgatttgtag atttacctta gccaaaat	
caatgctgga agcattgtgt ttgcattgaa gctgctgttc aacaagaaaa tttataaa	
to the terror and the constitution of the cons	

ttaaacttgc	ttctttataa	aacagatgtt	gggttaatag	catggtttac	tgtattaaag	1830
acttatacac	ccatttttaa	cctcattcag	acatcaagtt	atgtgtagct	tcacaatggt	1890
tcaagtggct	tacttcaaga	aatcttatac	ttgacagtac	accaatttta	ttgactaaaa	1950
atggatgaac	tttcctaaag	attcaaaggg	cccatcttag	tatcacgcag	ctgactgagc.	2010
ccttcaaaac	tgacatctta	aggcccaatc	aagatccaca	tatcctgatt	ttgaactatg	2070
tgaaagtggg	actgttaagt	gcaagactaa	aataaattat	agcagacttt	ttagtaataa	2130
ctttccattt	tcaaacagta	tatcctgtgg	gccaaagggc	tatttcttaa	agaggcatgt	2190
aaatgtattt	atttatctaa	tgttttttc	cccatgtaaa	cttgatatac	aaggtttagt	2250
atttgctcct	ctttcatatt	attttcacac	gtatactcag	atttggcatg	tacctttcaa	2310
catctccata	aaattaaaca	ccttttggag	aaaagatcca	ctattttctg	ctcaaaggtt	2370
tcgcctacct	aaagtggaac	atgttaaaaa	tctatgtgac	catcactgga	cagctttctc	2430
tcaaaacttt	ccttcaacgc	catggattag	caccagtttt	gtttacttta	aggtactttt	2490
cccattcatc	atctggttat	aataaatgga	tggaagaaat			2530

<210> 90

<211> 1911

<212> DNA

<213> Homo sapiens

⟨220⟩

<221> CDS

<222> (232)...(1083)

<400> 90 Juli

aaaatatgag acgggaatc atcgtgtgat gtgtgtgctg cctttggctg agtgtgtgga 60
gtcctgctca ggtgttaggt acagtgtgtt tgatcgtggt ggcttgaggg gaacccgctg 120
ttcagagctg tgactgcggc tgcactcaga gaagctgccc ttggctgctc gtagcgccgg 180

عامدة بالرازية والأرازية الإ

gcct	tctc	tc	ctcgt	catc	a tc	caga	gcag	сса	gt gt	ccg	ggag	gcag	aa g	atg	ccc		237
		, .								٠.		·· ·		Met	Pro	٠.	
	, ,	٠.								·	٠.		. . .	# %]		. 2	
cac	tcc	agc	ctg	cat	сса	tcc	atc	ccg	tgt	ccc	agg	ggt	cac	ggg	gcc		285
His	Ser	Ser	Leu	His	Pro	Ser	Ile	Pro	Cys	Pro	Arg	Gly	His	Gly	Ala		٠
		5		. 8	•		10					15			å		
cag	aag	gca	gcc	ttg	gtt	ctg	ctg	agt	gcc	tgc	ctg	gtg	acc	ctt	tgg		333
Gln:	Lys	Ala	Ala	Leu	Val	Leu	Leu	Ser	Ala	Cys	Leu	Val	Thr	Leu	Trp		
	20					25					30			, •	m,		
ggg	cta	gga	gag	cca	cca	gag	cac	act	ctc	cgg	tac	ctg	gtg	ctc	cac		381
Gly	Leu	Gly	Glu	Pro	Pro	Glu	His	Thr	Leu	Arg	Tyr	Leu	Val	Leu	His		
35		- *	•	·	40					45					- 50		
cta	gcc	tcc	ctg	cag	ctg	gga	ctg	ctg	tta	aac	ggg	gtc	tgc	agc	ctg		429
Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys	Ser	Leu		
				55					60					65			
gct	gag	gag	g ctg	cac	cac	atc	cac	tcc	agg	tac	cgg	ggc	agc	tac	tgg		477
Ala	Glu	Glu	ı Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser	Tyr	·Trp		
			70					75					80		÷		
agg	act	gt	g cgg	gcc	tgc	ctg	ggc	tgc	ccc	ctc	cgc	cgt	ggg	gco	ctg		525
Arg	Thr	Va:	l Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly	Ala	Leu	٠ -	
		8	5				90)				. 95		٠.			
ttg	cte	ct;	g tcc	ato	tat	ttc	tac	tac	tcc	cto	cca	aat	gcg	ggto	ggo		573
Leu	Lei	ı Le	u Ser	·Ile	yr:	· Phe	Tyr	Tyr	Ser	Leu	Pro	Asn	a Ala	a Val	l [,] G13	; :	
	. 100) +				- 105					110	1		. ,	1		
CCS	z ccc	: tt	c act	t tgg	g atg	ctt	. gcc	c ctc	ctg	g -ggc	cto	tce	g ca	g gc	a cta	g : ,	621

Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln	Ala	Leu	
115	٠.	·· .			120					125					130	
aac	atc	ctc	ctg	ggc	ctc	aag	ggc	ctg	gcc	cca	gct	gag	atc	tct	gca	669
Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile	Ser	Ala	
				135					140					145		
gtg	tgt	gaa	aaa	ggg	aat	ttc	aac	gtg	gcc	cat	ggg	ctg	gca	tgg	tca	717
Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala	Trp	Ser	
	•		150		٠.			155					160	-		
tat	tac	atc	gga	tat	ctg	cgg	ctg	atc	ctg	cca	gag	ctc	cag	gcc	cgg	765
Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln	Ala	Arg	
	. •	165					170					175				
att	cga	act	tac	aat	cag	cat	tac	aac	aac	ctg	cta	cgg	ggt	gca	gtg	813
Ile	Arg	Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly	Ala	Val	
	180					185					190					
agc	cag	cgg	ctg	tat	att	ctc	ctc	cca	ttg	gac	tgt	ggg	gtg	cct	gat	861
Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val	Pro	Asp.	
195	•			. •	200					205				•	210	
aac	ctg	agt	atg	gct	gac	ccc	aac	att	cgc	ttc	ctg	gat	aaa	ctg	ccc	909
Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Pḥe	Leu	Asp	Lys	Leu	Pro	
	: •			215	÷				220					225	÷.	
cag	cag	acc	gct	gac	cgt	gct	ggc	atc	aag	gat	cgg	gtt	tac	agc.	aac	957
Gln	G1n	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Arg	Val	Tyr	Ser	Asn	•
			230					235					240		3	
agc ·	atc	tat	gag	ctt	ctg	gag	aac	ggg	cag	cgg	aac	ctg	cag	atg	aca	1005
Ser	Ile	Tyr	Glu	Leu	Leu	Glu	Asn	Gly	Gln	Arg	Asn	Leu	Gln-	Met	Thr	

245 245 250 250	
gca gct tct cgc tgt ccc agg agg ttc tcc ggc acc tgc ggc agg agg	1053
Ala Ala Ser Arg Cys Pro Arg Arg Phe Ser Gly Thr Cys Gly Arg Arg	
260 270 270	
aaa agg aag agg tta ctg tgg gca gct tgaagacctc agcggtgccc	1100
Lys Arg Lys Arg Leu Leu Trp Ala Ala	
275 280	
agtacctcca cgatgtccca agagcctgag ctcctcatca gtggaatgga aaagcccctc	1160
cetetecgea eggatttete ttgagaccea gggtcaccag gecagageet ecagtggtet	1220
ccaagcctct ggactggggg ctctcttcag tggctgaatg tccagcagag ctatttcctt	1280
ccacaggggg ccttgcaggg aagggtccag gacttgacat cttaagatgc gtcttgtccc	1340
cttgggccag tcatttcccc tctctgagcc tcggtgtctt caacctgtga aatgggatca	1400
taatcactgc cttacctccc tcacggttgt tgtgaggact gagtgtgtgg aagtttttca	1460
taaactttgg atgctagtgt acttaggggg tgtgccaggt gtctttcatg gggccttcca	1520
gacccactcc ccaccettet cccetteett tgcccgggga cgccgaactc tctcaatggt	1580
atcaacagge teettegeee tetggeteet ggteatgtte cattattggg gageeecage	1640
agaagaatgg agaggaggag gaggctgagt ttggggtatt gaatcccccg gctcccaccc	1700
tgcagcatca aggttgctat ggactctcct gccgggcaac tcttgcgtaa tcatgactat	1760
ctctaggatt ctggcaccac ttccttccct ggccccttaa gcctagctgt gtatcggcac	1820
ccccacccca ctagagtact ccctctcact tgcggtttcc ttatactcca cccctttctc	1880
aacggtcctt ttttaaagca catctcagat t	1911
and the second s	
<210> 91	
<211> 476 • • • • • • • • • • • • • • • • • • •	
Z010\.DDT	

RNSDOCID: «WO 0112660A2 I >

A CAR COMPANY

<213	3> Ho	0000 5	sapie	ens									•		
<400)> 9 1	l					٠.								
Met	Val	Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	Leu	Met
1				5					10				,	. 15	
Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	Val	Ser
			20					25					30	•	
Met	Pro	Pro	Lys	Gly	Asp	Ser	Gly	Gln	Pro	Leu	Phe	Leu	Thr	Pro	Tyr
		35	. .				40					45			
Ile	Glu	Ala	Gly	Lys	Ile	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	Val	Gly
	50					55		,			60				
Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	G1y	Phe	Leu	Thr	Val
65					70					75					80
Asn	Lys	Thr	Tyr	Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	Ala	Gln
				85					90					95	
Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	Gly	Pro
	.•		100		÷			105					110		
G1 y	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	His	Gly	Pro	Tyr	Val
		115					120					125			
Val	Thr	Ser	Asn	Met	Thr	Leu	Arg	Asp	Arg	Asp	Phe	Pro	Trp	Thr	Thr
•	130				٠.	135					140	·			
Thr	Leu	Ser	Met	Leu	Tyr	Ile	Asp	Asn	Pro	Val	Gly	Thr	Gly	Phe	Ser
145	• '				150					155				. •	160
Phe	Thr	Asp	Asp	Thr	His	Gly	Tyr	Ala	Val	Asn	Glu	Asp	Asp	Val	Ala
-	. 1			165	1				170			٠.		175	٠.,
Ara	Acn	Lau	Tvr	Sor	Ala	الم أ	٦١م	Gla	Pho	Phe	Gln	Tle	Phe	Pro	Glu

			180					185				;	190		
Tyr	Lys	Asn	Asn	Asp	Phe	Tyr	Val	Thr	Gly	Glu	Ser	Tyr	Ala	Gly	Lys
	٠.	195	• .				200			••.:		205	. '	- }	ν .
Tyr	Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro	Val	Arg
	210		٠.	. ?	٠.	215					220	,*		Ţ. •	• • .
Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	Ile	Ala	Ile	Gly	Asp	Gly	Tyr	Ser
225	٠.				230				٠,	235		· t	•		240
Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr	Gln	Ile
	2		· .	245	•	•			250				0	255	71.
Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	Gln	Cys	His
			260					265					270		
Glu	Cys	Ile	Glu	His	Ile	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala	Phe	Glu
		275					280		•	•		285		, .	÷.; «
Ile	Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Ser	Asp	Pro	Ser	Tyr
	290)			•	295		•			300)		, .	, .
Phe	Gln	n Asr	Val	Thr	Gly	Cys	Ser	· Asn	Туг	- Tyr	Asn	Phe	Leu	Arg	Cys
305	5				310)				315	5			•	. 320
Thi	Glu	ı Pro	Glu	ı Asp	Glr	Leu	Tyr	Tyr	· Val	Lys	s Phe	e Let	. Sei	Leu	Pro
	:.	•		325	5		٠.		330)				335	5 (; `
Glu	ı Val	l Ar	g Glı	n Ala	a Ile	e His	s Val	l Gly	/ Ası	n Gli	1 Tha	r Phe	e Ası	n Asp	Gly
•			340	0	4			345	5	. 1	:		35) ·	
Th	r':11e	e Va	1 G 1	u Ly:	s Ty	r Lei	ı Arı	g Glu	u As	p Th	r Val	l G1:	n Se	r Va	l Lys
ı	-	35	5	· · .		٠.	36	0	· · ·			. 36	5		
Pr	o Tr	p Le	u Th	r Gl	u Il	e Me	t Ås	n Ası	n Ty	r Ly	s Va	l Le	u Il	е Ту	r Asn
•.	· '37	0 .		• • .		37	5	; , . E.		٠	38	0 :	·ή.	٠,٠	9.A

Gly	Gln	Leu	Asp	Ile	Ile	Val	Ala	Ala	Ala	Leu	Thr	Glu	His	Ser	Leu
385		٠.٠	. 8		390					395					400
Met	Gly	Met	Asp	Trp	Lys	Gly	Ser	Gln	Glu	Tyr	Lys	Lys	Ala	Glu	Lys
				405				,	410					415	
Lys	Val	Trp	Lys	Ile	Phe	Lys	Ser	Asp	Ser	Glu	Val	Ala	Gly	Tyr	Ile
			420					425					430		
Arg	Gln	Ala	Gly	Asp	Phe	His	Gln	Val	Ile	Ile	Arg	Gly	Gly	Gly	His
		435	-				440					445			
Ile	Leu	Pro	Tyr	Asp	Gln	Pro	Leu	Arg	Ala	Phe	Asp	Met	Ile	Asn	Arg
	450					455					460				
Phe	Ile	Tyr	Gly	Lys	Gly	Trp	Asp	Pro	Tyr	Val	G1y				
465			•		470			•		475					
<210)> .92	2	,										•		
<211	l> 2 2	26													
<212	2>, PR	RT .										٠			· .
<213	3> Hc	omo s	apie	ens											
<400)> 92	?													
Met	Ser	Arg	Ala	Gln	Ile	Trp	Ala	Leu	Val	Ser	Gly	Val	Gly	Gly	Phe
1	:			. 5					10					15	,
Gly	Ala	Leu	Val	Ala	Ala	Thr	Thr	Ser	Asn	Glu	Trp	Lys	Val	Thr	Thr
			20					25					30		
Arg	Ala	Ser	Ser	Val	Ile	Thr	Ala	Thr	Trp	Val	Tyr	Gln	Gly	Leu	Trp
		35					40					45			
Met	Asn	Cys	Ala	Gly	Asn	Ala	Leu	Gly	Ser	Phe	His	Cys	Arg	Pro	His

ENCLUCIO -MU UTISENTO I -

. . .

	50	-	••		• 0	55					60	-			٠
Phe '	Thr	Ile	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	Arg	Gly	Leu
65	,				70	•		٠		75	•	• •		~1	80
Met	Ile	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	Phe	Ala	Leu
		- , •		85	.*	• •	•		90				. •	95	·
Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys	Ala	Lys	Ala
			100					105	٠				110		\$
Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser	Gly	Leu	Cys
		115	•			٠	120		• .		-	125	•	•	
Ser	Met	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asn	Lys	Ile	Thr	Thr	Glu	Phe
	130					135				•	140				
Phe	Asp	Pro	Leu	Phe	Val	Glu	Gln	Lys	Tyr	Glu	Leu	Gly	Ala	Ala	Leu
145					150					155					160
Phe	Ile	Gly	Trp	Ala	Gly	Ala	Ser	Leu	Cys	Ile	Ile	Gly	Gly	Val ⁻	Ile
				165					170					175	
Phe	Cys	Phe	Ser	Ile	Ser	Asp	Asn	Asn	Lys	Thr	Pro	Arg	Tyr	Thr	Tyr
			180	1				185					190		
Asn	Gly	Ala	Thr	Ser	Val	Met	Ser	Ser	Arg	Thr	Lys	Tyr	His	Gly	Gly
		195					200		·			205		•	
Glu															Ala:
	210	. 1		•		215	•			••	220		1	×	Pt. + 1
Tyr													٠		
225	~ 4		. • •	•	5.		•	. •	•	• •	•			. 4.	

<21	l> 30)5					-								
<212	2> _. PI	RT .													
<213	3> Ho	0000	sapie	ens											
<400)> 93	3											. •		-
Met	Gly	Ile	Gln	Thr	Ser	Pro	Val	Leu	Leu	Ala	Ser	Leu	Gly	Val	Gly
1				5					10					15	
Leu	Val	Thr	Leu	Leu	Gly	Leu	Ala	Val	Gly	Ser	Tyr	Leu	Val	Arg	Arg
			20					25					30		•
Ser	Arg	Arg	Pro	Gln	Val	Thr	Leu	Leu	Asp	Pro	Asn	Glu	Lys	Tyr	Leu
		35					40					45			
Leu	Arg	Leu	Leu	Asp	Lys	Thr	Thr	Val	Ser	His	Asn	Thr	Lys	Arg	Phe
	50					55					60				
Arg	Phe	Ala	Leu	Pro	Thr	Ala	His	His	Thr	Leu	Gly	Leu	Pro	Val	Gly
65					70					75					80
Lys	His	Ile	Tyr	Leu	Ser	Thr	Arg	Ile	Asp	Gly	Ser	Leu	Val	Ile	Arg
ı	-•	•		85					90			,		95	
Pro	Tyr	Thr	Pro	Val	Thr	Ser	Asp	Glu	Asp	Gln	Gly	Tyr	Val	Asp	Leu
			100					105					110		
Val	Ile	Lys	Val	Tyr	Leu	Lys	Gly	Val	His	Pro	Lys	Phe	Pro	Glu	Gly
		115					120					125			
Gly	Lys	Met	Ser	Gln	Tyr	Leu	Asp	Ser	Leu	Lys	Val	Gly	Asp	Val	Val
	130					135					140			· ·	
Glu	Phe	Arg	Gly	Pro	Ser	Gly	Leu	Leu	Thr	Tyr	Thr	Gly	Lys	Gly	His
145					150					155	ŧ				160
Phe	Asn	Ile	Gln	Pro	Asn	Lys	Lys	Ser	Pro	Pro	Glu	Pro	Arg	Val	Ala

BNCUCIU--MU UTTSEEUTS I

				165					170					175	• :	
Lys	Lys	Leu	Gly	Met	Ile	Ala	Gly	Gly	Thr	Gly	Ile	Thr	Pro	Met	Leu	
			180					185					190	•	Sec.	-
G1n	Leu	Ile	Arg	Ala	Ile	Leu	Lys	Val	Pro	Glu	Asp	Pro	Thr	Gln	Cys	
	٠ ,	195			٠.		200					205		.: •	,	
Phe	Leu	Leu	Phe	Ala	Asn	Gln	Thr	Glu	Lys	Asp	Ile	Ile	Leu	Arg	Glu	
	210					215	•				220				,	
Asp	Leu	Glu	Glu	Leu	Gln	Ala	Arg	Tyr	Pro	Asn	Arg	Phe	Lys	Leu	Trp	
225				•	230	•	ė			235					240	
Phe	Thr	Leu	Asp	His	Pro	Pro	Lys	Asp	Trp	Ala	Tyr	Ser	Lys	Gly	Phe	
				245					250				٠.	255		
Val	Thr	Ala	Asp	Met	Ile	Arg	Glu	His	Leu	Pro	Ala	Pro	Gly	Asp	Asp	
			260)				265		٠			270		3	
Val	Leu	Val	Leu	Leu	Cys	Gly	Pro	Pro	Pro	Met	Val	G1n	Leu	Ala	Cys	
		275	; '				280	ı				285				
His	Pro	Asr	ı Let	ı Asp	Lys	Leu	Gly	Tyr	Ser	Gln	Lys	Met	. Arg	Phe	Thr	
	290)			,	295					300			,		٠.
Tyı	•															
30	5	÷					•	*	•	,	•					12
<2	10> '	94	٠				ċ			:		,	•	. :	• "	•
<2	11>	227												١		
<2	12>	PRT	••			.*			•			•	;	٠	·, ·••	7
			_	iens											7.2	
<4	00>	94	÷ .,	:	'	: :	:			• •		. : •	1 -5	' . : '	•	, ;

Ме	t Gl	y Tr	p Th	r Mei	t Arg	, Lei	ı Va	l Thi	- Ala	a Ala	Lei	ı Lei	u Le	u Gl	y Leu
,	l ,	•	•	8	5		. •		10)				15	5 .
Me	t Me	t Va	l Va	l Thr	Gly	Asp	Glu	ı Asp	Glu	ı Asr	Sei	Pro	Cy:	s Ala	a His
			20)				25	;				30) .	
Glu	ı Ala	a Lei	ı Lei	ı Asp	Glu	Λsp	Thr	Leu	Phe	Cys	Glr	Gly	/ Lei	ı Glu	ı Val
		38	5				40)				45	5		
Phe	: Туг	Pro	o Glu	ı Leu	Gly	Asn	Ile	Gly	Cys	Lys	Val	Val	Pro	Asp	Cys
	50)				55	ı				60)			,
Asn	Asn	Туг	Arg	Gln	Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	· Val	Lys
65					70					75					80
Phe	Pro	Gly	Ala	Val	Asp	Gly	Ala	Thr	Tyr	Ile	Leu	Val	Met	Val	Asp
	• • •			85		•			90					95	
Pro	Λsp	Ala	Pro	Ser	Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His
			100					105					110		
Trp	Leu	Val	Thr	Asp	Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile
	:	115					120					125		٠.	. · · ·
Gln	Gly	Gln	Glu	Leu	Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His
	130					135					140				
Ser	Gly	Phe	His	Arg	Tyr	Gln	Phe	Phe	Val	Tyr	Leu	Gin	Glu	Gly	Ĺys
145					150					155				;	160
Val	Ile	Ser	Leu	Leu	Pro	Lys	Glu	Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys -
	•	• •		165				•	170			•		175	
Met	Asp	Arg	Phe	Leu	Asn	Arg	Phe	His	Leu	Gly	Glu	Pro	Glų	Ala	Ser
	(-	:	180		,			185		,			190	٠٠,	
Thr	Gln	Phe	Met	Thr	Gln .	Asn	Tyr	Gln	Asp	Ser	Pro	Thr	Leu	Gln	Ala

195 200 205 Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile 210 215 220 Ala Ala Cys **225** <210> 95 <211> 441 <212> PRT <213> Homo sapiens <400> 95 Met Ala Ile His Lys Ala Leu Val Met Cys Leu Gly Leu Pro Leu Phe . 15 1 10 5 Leu Phe Pro Gly Ala Trp Ala Gln Gly His Val Pro Pro Gly Cys Ser 30 20 25 Gln Gly Leu Asn Pro Leu Tyr Tyr Asn Leu Cys Asp Arg Ser Gly Ala 40 45 Trp Gly Ile Val Leu Glu Ala Val Ala Gly Ala Gly Ile Val Thr Thr 60 50 55 Phc Val Leu Thr Ile Ile Leu Val Ala Ser Leu Pro Phe Val Gln Asp 65 70 75 75 80 Thr Lys Lys Arg Ser Leu Leu Gly Thr Gln Val Phe Phe Leu Leu Gly 85 90 95 Thr Leu Gly Leu Phe Cys Leu Val Phe Ala Cys Val Val Lys Pro Asp ... 100 me to the 105 me to the 110 me and the

BNSDOCID: <WO 0112660A2 + >

the second of th

Phe	Ser	Thi	Cys	Ala	Ser	Arg	Arg	Phe	Leu	Phe	Gly	Val	Leu	Phe	Ala
	• • •	115	5		•	٠.	120	1				125			
He	Cys	Phe	e Ser	Cys	Leu	Ala	Ala	His	Val	Phe	Ala	Leu	Asn	Phe	Leu
	130					135	ı				140		,		
Ala	Arg	Lys	. Asn	His	Gly	Pro	Arg	Gly	Trp	Val	Ile	Phe	Thr	Val	Ala
145					150					155					160
Leu	Leu	Leu	Thr	Leu	Val	Glu	Val	Ile	Ile	Asn	Thr	Glu	Trp	Leu	Ile
				165					170					175	
Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly	Gly	Pro	G1n	Gly	Asn	Ser
			180					185					190		
Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	۸la	Ile	Ala	Asn	Met	Asp
		195					200					205		-	
Phe	Val	Met	۸la	Leu	Ile	Tyr	Val	Met	Leu	Leu	Leu	Leu	Gly	Ala	Phe
	210					215					220				
Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	Tyr	Lys	Arg	Trp	Arg	Lys
225					230					235	٠			,	240
His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	Thr	Ser	Val	Ala	Ile	Trp
				245					250					255	
Val	Val	Trp	Ile	Val	Met	Tyr	Thr	Tyr	Gly	Asn	Lys	Gln	His	Asn	Ser
			260					265						:	
Pro	Thr	Trp	Asp	Asp	Pro	Thr	Leu	Ala	lle	Ala	Leu	Ala	Ala	Asn	Ala
		275					280					285			٠.
															Thr
	·290		· . · ·	-		295	. • •				300	•		A.	:
Lvs	Ser	Ser	Pro	Glu	Gln	Ser	Tvr	Gln	Glv	Aen	Mot	Tvr	Pro	Thr	Ara

305	1 · ·			٠.,	310	•				315			•		320′	
Gly	Val	Gly	Tyr	Glu	Thr	Ile	Leu	Lys	Glu	Gln	Lys	Gly	Gln	Ser	Met	
	;	:		325					330		,		9.0	335	.•.	
Phe	Val	Glu	Asn	Lys	Ala	Phe	Ser	Met	Asp	Glu	Pro	Val	Ala	Ala	Lys	
	:.		340	, 8	: •			345					350		٠.	
Arg	Pro	Val	Ser	Pro	Tyr	Ser	Gly	Tyr	Asn	Gly	Gln	Leu	Leu	Thr	Ser	
		355					360					365				
Val	Tyr	Gln	Pro	Thr	Glu	Met	Ala	Leu	Met	His	Lys	Val	Pro	Ser	Glu	
	370		. *			375					380				,	
Gly	Ala	Tyr	Asp	Ile	Ile	Leu	Pro	Arg	Ala	Thr	Ala	Asn	Ser	Gln	Val	
385	٠.	-		•	390					395					400	
Met	Gly	Ser	Ala	Asn	Ser	Thr	Leu	Arg	Ala	Glu	Asp	Met	Tyr	Ser	Ala	
	٠.	÷		405					410					415		
Gln	Ser	His	Gln	Ala	Ala	Thr	Pro	Pro	Lys	Asp	Gly	Lys	Asn	Ser	Gln	
•	. ;	•	420					425			•		430		٠٠.	
Val	Phe	Arg	Asn	Pro	Tyr	Val	Trp	Λsp			-					
	1.1	435				•	440							•		
							,									
<21	0> 9	6								. ,				, .	`,	
<21	1> 2	65	٠.													
<21	2> P	RT ·					,				•		. ,		. ,	
<21	3> H	omo	sapi	ens:										٠.,		
<40	0> 9	6		••				,		•	. :	. :				
Met	Ala	Ala	Ala	Val	Pro	Lys	Arg	Met	Arg	Gly	Pro	Ala	Gln	Ala	Lys	
								,	.10	. , .				15		

RNSDOCID: <WQ 0112660A2 | >

the allers of the contract of

Leu	Leu	Pro	Gly	Ser	Ala	Ile	Gln	Ala	Leu	Val	Gly	Leu	Ala	Arg	Pro	
		٠٠,	20				•	25					30		. '	
Leu	Val	Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val	
	٠.	35				-	40					45				
Ser	Arg	Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser	
	50					55					60					
Thr	Pro	Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser	
65					70					75					80	
Ile	Ser	Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys	
				85					90					95		
Ser	Gly	Gly	Λla	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser	
			100					105					110			
Gln	Glu	Glu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	He	Glu	Glu	Glu	Asp	
		115					120					125				
Leu	Leu	Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp	
	130					135					140		:	1		
Asn	Gly	Asp	Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg	
145					150					155					160	
Asp	Asp	Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met	
				165					170				•	175	÷ ••	
Glu	Ile	Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	Ile	
	• ; •		180					185					190	1.		1
Glu	Glu	Glu	Asp	Ser	His	Phe	Phe	Phe	llis	Leu	Ile	lle	Phe	Ala	Phe	
	:	195	. • •	,			200			,	•	205		. :	• 6	
Cys	Пe	Ala	Val	Val	Tyr	He	Thr	Tvr	His	Asn	Lvs	Arg	Lvs	lle	Phe	

210				215	٠.		. '		220		4	.*•	٠.٠	•
Leu Leu Val	Gln	Ser	Arg	Lys	Trp	Arg	Asp	Gly	Leu	Cys	Ser	Lys	Thr	
225		1 .	230	• •	•			235	•		•	•. •	240	
Val Glu Tyr	His	Arg	Leu	Asp	Gln	Asn	Val	Asn	Glu	Ala	Met	Pro	Ser	
; **	. ;	245		•	9 .	,.	250	• • •		•**.		255		•
Leu Lys Ile	Thr	Asn	Λsp	Tyr	Ile	Phe								
• .	260			٠		265	•				•	÷		
	•													
<210> 97		;	•		•				٠	,	, ,			•
<211> 208														
<212> PRT														•
<213> Homo	sapi	ens												
<400> 97												:		
Met Leu Gly	/ Leu	Leu	Val	Ala	Leu	Leu	Ala	Leu	Gly	Leu	Ala	Val	Phe	
1		5					10					15		• '
Ala Leu Le	ı Asp	Val	Trp	Tyr	Leu	Val	Arg	Leu	Pro	Cys	Ala	Val	Leu	
Jones.	20	,				25			٠.	- : * *	30		*	
Arg Ala Ar	g Leu	Leu	Gln	Pro	Arg	Val	Arg	Asp	Leu	Leu	Ala	Glu	Gln	
: 38	5 ·				40			•		45			.:	
Arg Phe Pro	o Gly	Arg	Val	Leu	Pro	Ser	Asp	Leu	Asp	Leu	Leu	Leu	His	
· 50 · · ·			. ,	55					60		. • •		1.	
Met Asn As	n Ala	Arg	Tyr	Leu	Arg	Glu	Λla	Asp	Phe	Λla	Arg	Val	Ala	
65		٠. ٠	·70		* *	•		7 5	,		ı	• 1	80	
His Leu Th	r Arg	Cys	Gly	Val	Leu	Gly	Ala	Leu	Arg	Glu	Leu	Arg	Ala	
Sant 1		85					90	: . :	٠,		. 44 -	.95	41.	.`

Carrier Brights

His	Thr	Val	Leu	Ala	Ala	Ser	Cys	Ala	Arg	His	Arg	Arg	Ser	Leu	ı Arg	
	• .		100		•			105		٠.			110)	• •	
Leu	Leu	Glu	Pro	Phe	Glu	Val	Arg	Thr	Arg	Leu	Leu	Gly	Trp	Asp	Asp	•
	4.	115					120)				125				
Arg	Ala	Phe	Tyr	Leu	Glu	Ala	Arg	Phe	Val	Ser	Leu	Arg	Λsp	Gly	Phe	
	130					135					140					
Val	Cys	Ala	Leu	Leu	Arg	Phe	Arg	Gln	His	Leu	Leu	Gly	Thr	Ser	Pro	
145					150					155					160	
Glu	Λrg	Val	Val	Gln	His	Leu	Cys	Gln	Arg	Arg	Val	Glu	Pro	Pro		
				165					170					175		
Leu	Pro	Ala	Asp	Leu	Gln	His	Trp	lle	Ser	Tyr	Asn	Glu	Ala			
			180				-	185		·			190			
Gln	Leu	Leu	Arg	Met	Glu	Ser	Gly		Ser	Asp	Vai	Thr		Asn	Gln	
		195	•				200					205	.,, 0	пор	01	
<210	>. 98	.														
<211	·	•			•	•					•	•		•. •	:	
<212																
<213			anio	ne												
														•		
															Leu	
															4 -	-
Ala I																
	٠.,	*	20,	٠. ,	,			25	٠.				30	٠,	٠,	٠.
Arg A	Ala.∣	Leu (Glu '	Trp	Phe	Ser.	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp	

	la 11	⁻ 35		٠,		ì	40		•		•	45				٠.
Pro	Gln	Thr	Asn	Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe	
	50	×		٠.		55			٠.		60	•	•			
Gly	Asp	Ser	Ser	Pro	Lys	G1u	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro	
65	1.1			. •	70		. •			75					80	
Trp	Ala	Pro	Gly	Gly	Λsp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe	
				85					90					95	i	
Phe	Val	Pro	Glu	Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu	
			100					105					110	:		·
Val	Ala	Arg	Gly	Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala	
		115					120					125				
Arg	Arg	Asn	Λla	Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly	
•	130					135					140			,		
Asn	lle	Thr	Leu	Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val	
145					150					155					160	
Ile	Met	Ile	Ser	Tyr	Pro	Lys	Gly	Arg	Glu	Ile	Leu	Glu	Leu	Val	Gln	
				165					170					175		
Lys	Gly	Ile	Pro	Val	Thr	Met	Thr	Ile	Gly	Val	Gly	Thr	Arg	His	Val	
			180			•		185					190	,	٠	
Gln	Glu	Phe	lle	Ser	Gly	Gln	Ser	Val	Val	Phe	Val	Λla	lle	Ala	Phe	
		195	¢				200			•		205			٠ ٤	•
Ile	Thr	Met	Met	Ile	Ile	Ser	Leu	Ala	Trp	Leu	Ile	Phe	Tyr	Tyr	Ile	
	210				•	215				٠.,	220	:		,		•
Gln	Arg	Phe	Leu	Tyr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg	
225	• ;				. 230			٠.		235	٠.	, .		د. ۋ يا	240	٠.

Lys	Glu	Thr	Lys	Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Val	Lys
			٠	245	٠,٠	٠.			250					255	
His	Gly	Gļu	Lys	G1 y	Ile	Лsp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys
		٠.	260				-	265	,				270		
Ile	Glu	Asn	Phe	Lys	Val	Lys	Asp	Ile	Ile	Arg	Ile	Leu	Pro	Cys	Lys
	•	275					280					285			
His	Ile	Phe	His	Arg	Ile	Cys	Ile	Asp	Pro	Trp	Leu	Leu	Asp	llis	Arg
	290					295					300				
Thr	Cys	Pro	Met	Cys	Lys	Leu	Asp	Val	Ile	Lys	Ala	Leu	Gly	Tyr	Trp
305					310					315					320
G1 y	Glu	Pro	Gly	Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro .
				325					330					335	
Gly	Arg	Asp	Pro	Ala	Ala	Asn	Leu	Ser	Leu	Λla	Leu	Pro	Asp	Asp	Asp
			340					345					350		
Gly	Ser	Asp	Glu	Ser	Ser	Pro	Pro	Ser	Ala	Ser	Pro	Λla	Glu	Ser	Glu
	.	355			• 1		360					365			
Pro	Gln	Cys	Asp	Pro	Ser	Phe	Lys	Gly	۸sp	Ala	Gly	Glu	Asn	Thr	Λla
	370					37 5					380				
Leu	Leu	Glu	Ala	Gly	Arg	Ser	Asp	Ser	Arg	His	Gly	Gly	Pro	Ile	Ser
385					390					395			. 7		400
	<i>:</i> :										,				·.
<210)> _. 99) . _. .					٠٠ ۽:		٠.					. •	
<211	> 19	32					• .								
<212	?;.PF	RT _{.,}	: •						•						
<213															

RNSDOCID: «WO 0112660A2 L >

.

A CHARLESTEE CONTRACTOR

<400)>. 99	9 ^	. :	•	•	• • •			•	•		*	₩		• • •
Met	Phe	Cys	Pro	Leu	Lys	Leu	He	Leu	Leu	Pro	Val	Leu	Leu	Asp	Tyr
1		÷		· 5	•	•			10			•	٠.	15	
Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu	Thr	Val
		· .	20	· ·	Ε.	•	• •	25		٠		•	30		•
His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	Glu
		35					40					45			
Λsp	Lys	Cys	He	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu	His
	· 50	٠.				55					60		,		
Ala	Lys	Лsp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val	Pro
65					70		٠			75			•		80
Ile	Gly	Arg	Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Asn	Leu	Cys
	••		•	85					90					95	
Asn	Asp	Gly	Ser	Leu	Leu	Leu	G1n	Asp	Val	Gln	Glu	Ala	Asp	Gln	Gly
	٠.		100					105	٠				110	•	* .
Thr	Tyr	lle	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe	Lys
	•	115		•	•		120					125			*** * *
Lys	Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu	Met
	130					135					140	••		•	
Val	His	Val	Gly	Gly	Leu	Ile	Gln	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr
145					150					155					160
Glu	Val	Lys	His	Val	Thr	Lys	Val	Glu	Trp	lle	Phe	Ser	Gly	Arg	
				165					170					175	٠,,
Ala	Lys	Val	Thr	Arg	Arg	Lys	His	llis	Cys	Val	Arg	Glu	Gly	Ser	Gly
			180					185				•••	190	1	11 1444

Later Congression Congression

<210> 100	*		٠.	• 10		٠.		•		•		
<211> 260				• •				-	.•			
<212> PRT	•		. ,						• †•		8.	: 1
<213> Homo sapiens												
<400> 100									•			
Met Ala Gly	Ser Pr	o Leu	Leu	Trp	Gly	Pro	Arg	Ala	Gly	Glŷ	Val	Gly
1		5				10					115	
Leu Leu Val	Leu Le	u Leu	Leu	Gly	Leu	Phe	Arg	Pro	Pro	Pro	Ala	Leu
	20				25					30		
Cys Ala Arg	Pro Va	l Lys	Glu	Pro	Arg	Gly	Leu	Ser	Ala	Ala	Ser	Pro
35				40					45			
Pro Leu Ala	Glu Th	r Gly	Ala	Pro	Arg	Arg	Phe	۸rg	Arg	Ser	Val	Pro
50			55					60				
Arg Gly Glu	Ala Al	a Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Λla	Leu	Ala
65		70					75					80
65 His Leu Leu	Glu Ala		Arg	G1n	Glu	Arg		Arg	Ala	Glu	Ala	
	Glu Ala	a Glu	Arg	Gln	Glu	Arg 90		Arg	Ala	Glu	Ala 95	Gln
	8	a Glu 5				90	Ala				95	Gln ₹
His Leu Leu	8	a Glu 5				90	Ala				95 Arg	Gln ₹
His Leu Leu	89 Asp Gli	a Glu 5 1 Gln	Ala	Arg	Val 105	90 Leu	Ala Ala	G1n	Leu	Leu 110	95 Arg	Gln Val
His Leu Leu Glu Ala Glu	89 Asp G10 100 Pro Arg	a Glu 5 n Gln g Asn	Ala	Arg Asp	Val 105 Pro	90 Leu	Ala Ala	Gln Gly	Leu Leu	Leu 110 Asp	95 Arg 	Gln Val
His Leu Leu Glu Ala Glu Trp Gly Ala	89 Asp G10 100 Pro Arg	Glu Gln Gln G Asn	Ala	Arg Asp	Val 105 Pro	90 Leu Ala	Ala Ala Leu	Gln Gly	Leu Leu 125	Leu 110 Asp	95 Arg Asp	Gln Val Asp
His Leu Leu Glu Ala Glu Trp Gly Ala	Asp Gli 100 Pro Ari	a Glu 5 n Gln g Asn	Ala Ser Gln	Arg Asp 120 Leu	Val 105 Pro	90 Leu Ala Arg	Ala Leu	Gln Gly Leu	Leu Leu 125	Leu 110 Asp	95 Arg Asp	Gln Val Asp

145	150	155	160
Ala Ala Ala Leu Arg	Pro Arg Pro P	ro Val Tyr Asp A	sp Gly Pro Ala
165		170	175
Gly Pro Asp Ala Glu	Glu Ala Gly A	sp Glu Thr Pro A	sp Val Asp Pro
180	1	85	190
Glu Leu Leu Arg Tyr	· Leu Leu Gly A	rg Ile Leu Ala G	ly Ser Ala Asp
195	200	. 2	05
Ser Glu Gly Val Ala	ı Ala Pro Arg A	rg Leu Arg Arg A	la Ala Asp His
210	215	220	e e e e e
Asp Val Gly Ser Glu		lu Gly Val Leu G	ly Ala Leu Leu
225	230	235	240
Arg Val Lys Arg Leu			
245		250	255
	,	200	
Leu Leu Pro Pro		,	· John Williams
260			
	*		
<210> 101	• • •		
<211> 1428	•	٠.	
<212> DNA		; ·	grade to the first terms of the
<213> Homo sapiens			
<400> 101		. 8	
atggttggtg ccatgtg	gaa ggtgattgtt	togotggtoc tgtt	gatgcc tggcccctgt 60
gatgggctgt ttcgctc	cct atacagaagt	gtttccatgc cacc	aaggg agactcagga 120
cagccattat ttctcac	ccc ttacattgaa	getgggaaga teca	aaaagg aagagaattg 180
agittggicg gccctit	ccc aggactgaac	atgaagagtt atgo	ggett ceteacegtg 240

BNSDOCID: <WO 0112680A2 1 >

A CONTRACT CAND TOTAL

aataagactt	acaacagcaa	cctcttcttc	tggttcttcc	cagctcagat	acagccagaa	300
gatgccccag	tagttctctg	gctacagggt	gggccgggag	gttcatccat	gtttggactc	360
tttgtggaac	atgggcctta	tgttgtcaca	agtaacatga	ccttgcgtga	cagagacttc	420
ccctggacca	caacgctctc.	catgctttac	attgacaatc	cagtgggcac	aggcttcagt _.	480
tttactgatg	atacccacgg	atatgcagtc	aatgaggacg	atgtagcacg	ggatttatac	540
agtgcactaa	ttcagttttt	ccagatattt	cctgaatata	aaaataatga	cttttatgtc	600
actggggagt	cttatgcagg	gaaatatgtg	ccagccattg	cacacctcat	ccattccctc	660
aaccctgtga	gagaggtgaa	gatcaacctg	aacggaattg	ctattggaga	tggatattct	. 720
gatecegaat	caattatagg	gggctatgca	gaattcctgt	accaaattgg	ctigttggat	780
gagaagcaaa	aaaagtactt	ccagaagcag	tgccatgaat	gcatagaaca	catcaggaag	840
cagaactggt	ttgaggeett	tgaaatactg	gataaactac	tagatggcga	cttaacaagt	900
gateettett	acttccagaa	tgttacagga	tgtagtaatt	actataactt	tttgcggtgc	960
acggaacctg	aggatcagct	ttactatgtg	aaatttttgt	cactcccaga	ggtgagacaa	1020
gccatccacg	tggggaatca	gactttaat	gatggaacta	tagttgaaaa	gtacttgcga	1080
gaagatacag	tacagtcagt	taagccatgg	ttaactgaaa	tcatgaataa	ttataaggtt	1140
ctgatctaca	atggccaact	ggacatcatc	gtggcagctg	ccctgacaga	gcactccttg	1200
atgggcatgg	actggaaagg	atcccaggaa	tacaagaagg	cagaaaaaaa	agtittggaag	1260
atcittaaat	ctgacagtga	agtggctggt	tacateegge	aagcgggtga	cttccatcag	1320
gtaattattc	gaggtggagg	acatatttta	ccctatgacc	agcctctgag	agcttttgac	1380
atgattaatc	gattcattta	tggaaaagga	tgggatcctt	atgitgga		1428
• • •	. •	-	•		* 1 = - 4	
(210> _{5.} 102 ;				· ·· · ·	e	
<211> 678	• • •				•	
(212>, DNA ;	. If the late of the Mark			* "** *	. · · · · · · · · · · · · · · · · · · ·	
(213) Homo	canienc					

14007 102						
atgtccaggg	cgcagatctg	ggctctggtg	tctggtgtcg	gagggtttgg	agctctcgtt	60
gctgctacca	cgtccaatga	gtggaaagtg	accacgcgag	cctcctcggt	gataacagcc	120
acttgggttt	accagggtct	gtggatgaac	tgcgcaggta	acgcgttggg	ttctttccat	180
tgccgaccgc	attttactat	cttcaaagta	gcaggttata	tacaggcatg	tagaggactt	240
atgategetg	ctgtcagcct	gggcttcttt	ggttccatat	ttgcgctctt	tggaatgaag	300
tgtaccaaag	teggaggete	cgataaagcc	aaagctaaaa	ttgcttgttt	ggctgggatt	360
gtattcatác	tgtcagggct	gtgctcaatg	actggatgtt	ccctatatgc	aaacaaaatc	420
acaacggaat	tctttgatcc	tctctttgtt	gagcaaaagt	atgaattagg	agccgctctg	480
tttattggat	gggcaggagc	ctcactgtgc	ataattggtg	gtgtcatatt	ttgcttttca	540
atatotgaca	acaacaaaac	acccagatac	acatacaacg	gggccacatc	tgtcatgtct	600
teteggacaa	agtatcatgg	tggagaagat	tttaaaacaa	caaaccette	aaaacagttt	660
gataaaaatg	cttatgtc				•	678
	- 1					
<210> 103					- 30 - 10	
<211> 915					• •	
<212> DNA					\$	
<213> Homo	sapiens	٠		• .		
<400> 103		· .				
atggggatco	agacgagccc	cgtcctgctg	gcctccctgg	gggtggggct	ggtcactctg	60
ctcggcctgg	g ctgtgggctc	ctacttggtt	cggaggtccc	gccggcctca	ggtcactctc	120
ctggacccca	a atgaaaagta	cctgctacga	ctgctagaca	agacgactgt	gagccacaac	180
accaagagg	t teegettige	cctgcccacc	gcccaccaca	ctctggggct	gcctgtgggc	240
aaacatatc	t acctctccac	ccgaattgat	ggcagcctgg	teatcaggee	atacactcct	300
atcaccaati	a atgaggatea	. aggetatgtg	gatettetea	tcaaggteta	cctgaagggt-	360

gtgcacccca	aatttcctga	gggagggaag	atgtctcagt	acctggatag	cctgaaggtt	420
ggggatgtgg	tggagtttcg	ggggccaagc	gggttgctca	cttacactgg	aaaagggcat	480
tttaacattc	agcccaacaa	gaaatctcca	ccagaacccc	gagtggcgaa	gaaactggga	540
atgattgccg	gcgggacagg	aatcacccca	atgctacagc	tgatccgggc	catcctgaaa	600
gtccctgaag	atccaaccca	gtgctttctg	ctttttgcca	accagacaga	aaaggatatc	660
atcttgcggg	aggacttaga	ggaactgcag	gcccgctatc	ccaatcgctt	taagctctgg	720
ttcactctgg	atcatccccc	aaaagattgg	gcctacagca	agggctttgt	gactgccgac	780
atgatccggg	aacacctgcc	cgctccaggg	gatgatgtgc	tggtactgct	ttgtgggcca	840
ccccaatgg	tgcagctggc	ctgccatccc	aacttggaca	aactgggcta	ctcacaaaag	900
atgcgattca	cctac					915

<210> 104

<211> 681

<212> DNA

<213> Homo sapiens

<400> 104

atgggttgga caatgagget ggtcacagca gcactgttac tgggtctcat gatggtggtc 60 actggagacg aggatgagaa cagcccgtgt gcccatgagg ccctcttgga cgaggacacc 120 ctcttttgcc agggccttga agttttctac ccagagttgg ggaacattgg ctgcaaggtt 180 gttcctgatt giaacaacta cagacagaag atcacctcct ggatggagcc gatagtcaag 240 ttcccggggg ccgtggacgg cgcaacctat atcctggtga tggtggatcc agatgccct 300 agcagagcag aacccagaca gagattctgg agacattggc tggtaacaga tatcaagggc. 360 gccgacctga agaaagggaa gattcagggc caggagttat cagcctacca ggctcctcc 420 ccaccggcac acagtggctt ccatcgctac cagttetttg tetatettca ggaaggaaaa 480 gtcatctctc tccttcccaa ggaaaacaaa actcgaggct cttggaaaat ggacagattt. 540

ctgaaccgtt	tccacctggg	cgaacctgaa	gcaagcaccc	agttcatgac	ccagaactac	600
caggactcac	caaccctcca	ggctcccaga	gaaagggcca	gcgagcccaa	gcacaaaaac	660
caggcggaga	tagctgcctg	c			14 - W - 17	681
	r • • • • •	* .			yu	
<210> 105	. :			• • •	•	
<211> 1323				• • • • •	J.,	
<212> DNA	·			•		
<213> Homo	sapiens			.)		
<400> 105		•		••		
atggccatcc	acaaagcctt	ggtgatgtgc	ctgggactgc	ctctcttcct	gttcccaggg	60·
gcctgggccc	agggccatgt	cccacccggc	tgcagccaag	gecteaaccc	cctgtactac	120
aacctgtgtg	accgctctgg	ggcgtggggc	atcgtcctgg	aggccgtggc	tggggcgggc	180
atigicacca	cgtttgtgct	caccatcatc	ctggtggcca	geeteectt	tgtgcaggac	240
accaagaaac	ggagcctgct	ggggacccag	gtattcttcc	ttctggggac	cctgggcctc	300
ttctgcctcg	tgtttgcctg	tgtggtgaag	cccgacttct	ccacctgtgc	ctctcggcgc	360
ttcctctttg	gggttctgtt	cgccatctgc	ttetettgte	tggcggctca	cgtctttgcc	420
ctcaacttcc	tggcccggaa	gaaccacggg	ccccggggct	gggtgatctt	cactgigget	480
ctgctgctga	ccctggtaga	ggtcatcatc	aatacagagt	ggctgatcat	caccctggtt	540
cggggcagtg	gcgagggcgg	ccctcagggc	aacagcagcg	caggetggge	cgtggcctcc	600
ccctgtgcca	tegecaacat	ggacttigtc	atggcactca	tctacgtcat	gctgctgctg	660
ctgggtgcct	tcctgggggc	ctggcccgcc	ctgtgtggcc	gctacaagcg	ctggcgtaag	720
catggggtct	tigtgctcct	caccacagec	acctccgttg	ccatatgggt	ggtgtggatc	780
gtcatgtata	cttacggcaa	caagcagcac	aacagtccca	cctgggatga	ccccacgctg	840
gecategee	tegeegeeaa	tgcctgggcc	ttegteetet	tctacgicat	ccccgaggtc	900
t a s a a a a a a t co	- edeaateess		agetaceage	, gggacatgta	ccccacccgg	960

ggcgtgggct	atgagaccat	cctgaaagag	cagaagggtc	agagcatgtt	cgtggagaac	1020
aaggcctttt	ccatggatga	gccggttgca	gctaagaggc	cggtgtcacc	atacagcggg	1080
tacaatgggc	agctgctgac	cagtgtgtac	cagcccactg	agatggccct	gatgcacaaa	1140
gttccgtccg	aaggagctta	cgacatcatc	ctcccacggg	ccaccgccaa	cagccaggtg	1200
atgggcagtg	ccaactcgac	cctgcgggct	gaagacatgt	actcggccca	gagccaccag	1260
gcggccacac	cgccgaaaga	cggcaagaac	tctcaggtct	ttagaaaccc	ctacgtgtgg	1320
gac						1323

<210> 106

<211> 795

<212> DNA

<213> Homo sapiens

<400> 106

atggccgctg ccgtcccgaa gaggatgagg gggccagcac aagcgaaact gctgcccggg 60 teggecatee aagecettgt ggggttggeg eggeegetgg tettggeget eetgettgtg 120 teegeegete tatecagtgt tgtateaegg aetgatteae egageeeaac egtaeteaac 180 tcacatattt ctaccccaaa tgtgaatget ttaacacatg aaaaccaaac caaaccttct 240 atttcccaaa tcagcaccac cctccctccc acgacgagta ccaagaaaag tggaggagca 300 totgiggico cicatocoto gociacioti eigicicaag aggaageiga taacaatgaa 360 gatectagia tagaggagga ggatettete atgetgaaca gttetecate cacagecaaa 420 gacactctag acaatggcga ttatggagaa ccagactatg actggaccac gggccccagg 480 gacgacgacg agtctgatga caccttggaa gaaaacaggg gttacatgga aattgaacag 540 tcagtgaaat cttttaagat gccatcctca aatatagaag aggaagacag ccatttcttt 600 660 tttcatctta ttatttttgc tttttgcatt gctgttgttt acattacata tcacaacaaa aggaagattt ttcttctggt tcaaagcagg aaatggcgtg atggcctttg ttccaaaaca 720

gtggaatacc	atcgcctaga	tcagaatgtt	aatgaggcaa	tgccttcttt	gaagattacc	780
aatgattata	ttttt		* .		1 (1)	795
-3.5		•			***	
<210> 107			*8			
<211> 624				, r	•• ,	
<212> DNA						
<213> Homo	sapiens					
<400> 107						
atgctggggc	tgctggtggc	gttgctggcc	ctggggctcg	ctgtctttgc	gctgctggac	60
gtctggtacc	tggtgcgcct	tccgtgcgcc	gtgctgcgcg	cgcgcctgct	gcagccgcgc	120
gtccgtgacc	tgctagctga	gcagcgcttc	ccgggccgcg	tgctgccctc	ggacttggac	180
ctgctgttgc	acatgaacaa	cgcgcgctac	ctgcgcgagg	ccgactttgc	gcgcgtcgcg	240
cacctgaccc	gctgcggggt	gctcggggcg	ctgagggagt	tgcgggcgca	cacggtgctg	300
gcggcctcgt	gcgcgcgcca	ccgccgctcg	ctgcgcctgc	tggagccctt	cgaggtgcgc	- 360
accegeetge	tgggctggga	cgaccgcgcg	ttctacctgg	aggcgcgctt	tgtcagcctg	420
cgggacggtt	tcgtgtgcgc	gctgctgcgc	ttccggcagc	acctgctggg	cacctcaccc	480
gagegegteg	tgcagcacct	gtgccagcgc	agggtggagc	cccctgagct	gcccgctgat	540
ctgcagcact	ggatctccta	caacgaggcc	agcagccagc	tgctccgcat	ggagagtggg	600
ctcagtgatg	tcaccaagga	ccag	÷	. : *	: .	624
	*.	* * * * *		· · · · ·	39 S.S.	
<210>-108		·		•• • • • •	٠ د د د د	
	• ()-					
<212> DNA	• •••		• • • • • • • • • • • • • • • • • • • •	1	. N	
<213> Homo	sapiens				to the same	

BNSDOCID: <WO 0112660A2 I

to the first of the second of

atggcgtggc	ggcggcgcga	agccagcgtc	ggggctcgcg	gcgtgttggc	tctggcgttg	60
ctcgccctgg	ccctgtgcgt	gcccggggcc	cggggccggg	ctctcgagtg	gttctcggcc	. 120
gtggtaaaca	tcgagtacgt	ggacccgcag	accaacctga	cggtgtggag	cgtctcggag	180
agtggccgct	teggegaeag	ctcgcccaag	gagggcgcgc	atggcctggt	gggcgtcccg	240
tgggcgcccg	gcggagacct	cgagggctgc	gcgcccgaca	cgcgcttctt	cgtgcccgag	300
cccggcggcc	gaggggccgc	gccctgggtc	gccctggtgg	ctcgtggggg	ctgcaccttc	360
aaggacaagg	tgctggtggc	ggcgcggagg	aacgcctcgg	ccgtcgtcct	ctacaatgag	420
gagcgctacg	ggaacatcac	cttgcccatg	tctcacgcgg	gaacaggaaa	tatagtggtc	480
attatgatta	gctatccaaa	aggaagagaa	attttggagc	tggtgcaaaa	aggaattcca	540
gtaacgatga	ccataggggt.	tggcacccgg	catgtacagg	agticatcag	cggtcagtct	600
gtggtgtttg	tggccattgc	cttcatcacc	atgatgatta	tctcgttagc	ctggctaata	660
ttttactata	tacagcgttt	cctatatact	ggctctcaga	ttggaagtca	gagccataga	720
aaagaaacta	agaaagttat	tggccagctt	ctacttcata	ctgtaaagca	tggagaaaag	780
ggaattgatg	ttgatgctga	aaattgtgca	gtgtgtattg	aaaatttcaa	agtaaaggat	840
attattagaa	ttctgccatg	caagcatatt	tttcatagaa	tatgcattga	cccatggctt	900
ttggatcacc	gaacatgtcc	aatgtgtaaa	cttgatgtca	tcaaagccct	aggatattgg	960
ggagagcctg	gggatgtaca	ggagatgcct	gctccagaat	ctcctcctgg	aagggatcca	1020
gctgcaaatt	tgagtctagc	tttaccagat	gatgacggaa	gtgatgagag	cagtccacca	1080
tcagcctccc	ctgctgaatc	tgagccacag	tgtgatccca	gctttaaagg	agatgcagga	1140
gaaaatacgg	cattgctaga	agccggcagg	agtgactctc	ggcatggagg	acccatctcc	1200
2.00						
<210>. 109.					•,• • • • •	

<210> 109

<211> 576

<212> DNA

<213>:Homo sapiens

<pr

<400> 109 -		* 1:		•			
atgttttgcc	cactgaaact	catcctgctg	ccagtgttac	tggattattc.	cttgggcctg	60	
aatgacttga	atgtttcccc	gcctgagcta	acagtccatg	tgggtgattc	agctctgatg	120	
ggatgtgttt	tccagagcac	agaagacaaa	tgtatattca	agatagactg	gactctgtca	180	
ccaggagagc	acgccaagga	cgaatatgtg	ctatactatt	actccaatct	cagtgtgcct	240	
attgggcgct	tccagaaccg	cgtacacttg	atgggggaca	acttatgcaa	tgatggctct	300	
ctcctgctcc	aagatgtgca	agaggctgac	cagggaacct	atatctgtga	aatccgcctc	360	
aaaggggaga	gccaggtgtt	caagaaggcg	gtggtactgc	atgtgcttcc	agaggagccc	420	
aaagagctca	tggtccatgt	gggtggattg	attcagatgg	gatgtgtttt	ccagagcaca	480	
gaagtgaaac	acgtgaccaa	ggtagaatgg	atattttcag	gacggcgcgc	aaaggtaaca	540	**
aggaggaaac	atcactgtgt	tagagaaggc	tctggc		•	576	
ş · · · ·					•		
<210> 110					, ê ·		
<211> 780		٠					
<212> DNA			•	•	•		
<213> Homo	sapiens	-		,	· · · · · · · · · · · · · · · · · · ·		
<400> 110		• •		-	Land to the second		
atggcggggt	egcegetget	ctgggggccg	cgggccgggg	gcgtcggcct	tttggtgctg	60	
ctgctgctcg	gcctgtttcg	geegeeeee	gcgctctgcg	cgcggccggt	aaaggagccc	120	
cgcggcctaa	gcgcagcgtc	teegeeettg	gctgagactg	gcgctcctcg	ccgcttccgg	180	
cggtcagtgc	cccgaggtga	ggcggcgggg	gcggtgcagg	agctggcgcg	ggcgctggcg	240	
catctgctgg	aggccgaacg	tcaggagcgg	gcgcgggccg	aggcgcagga	ggctgaggat	300	
cagcaggcgc	gcgtcctggc	gcagctgctg	cgcgtctggg	gegeeeeeg	caactctgat	360	
ccggctctgg	gcctggacga	cgaccccgac	gcgcctgcag	cgcagctcgc	tegegetetg	420	
ctccgcgccc	gccttgaccc	Lgccgccctc	gcagcccagc	ttgtccccgc	gecegteece	480	

gcc	gcg	gcgc	tcc	gacco	ccg	gccc	ccggt	to ta	acgao	egace	g gc	ccg	cggg	ccci	ggatgct	540
gag	gag	gcag	gcga	acgag	gac a	accc	gacgi	g ga	accc	gago	tg:	tga	ggta	cttį	gctggga	600
cgg	atto	cttg.	cggg	gaago	ege (ggact	teega	g gg	gggtg	gcag	ccc	cgcg	gccg	ccto	eegeegt	660
gcc	gcce	gacc	acga	atgtg	gg (ctcte	gaget	g co	ccct	gagg	gcg	tgct	tggg	ggcg	gctgctg	720
cgt	gtga	ıaac	gcct	agag	gac o	ccgg	gcgcc	c ca	iggte	cctg	cac	gccg	gcct	ctte	ccacco	780
<21	0> 1	11														
<21	1> 1	633														
<21	2> D	NA														
<213	3> н	omo	sapi	ens												
<220)>															
<22	ı> c	DS														
<222	2> (68).	(1	498)												
<400)> 1	11														
acaa	accg	gct	gggg	tcct	tg c	gcgc	cgcg	g ct	cagg.	gagg	agc	accg	act	gcgc	cgcacc	60
ctga	igag	atg	gtt	ggt	gcc	atg	tgg	aag	gtg	att	gtt	tcg	ctg	gtc	ctg .	. 109
		Met	Val	Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	
	,	1				5					10					
ttg	atg	cct	ggc	ccc	tgt	gat	ggg	ctg	ttt	cgc	tcc	cta	tac	aga	agt	157
Leu	Met	Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	
15					20					25					30 .	
gtt	tcc	atg	cca	cct	aag	gga	gac	tca	gga	cag	cca	tta	ttt	ctc	acc .	205
Val	Ser	Met	Pro	Pro	Lys	Gly	Asp	Ser	Gly	Gln	Pro	Leu	Phe	Leu	Thr	
	- 4	·- •	• 1	. 35					40			11		45	. :	
cct	tac	att	gaa	gct	ggg	aag	atc	caa	aaa	gga	aga	gaa	ttg	agt	ttg ,	253

Pro [·]	Tyr	Ile	Glu	Ala	Gly	Lys	He	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	,	
	٠.	• 4	50				٠	55	1				· 60		j -		
gtc	ggc	cct	ttc	cca	gga	ctg	aac	atg	aag	agt	tat	gcc	ggc	ttċ	ctc	,	301
Val	Gly	Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu		
	: .	¹ 65		٠.	•	1	70	1	*		. :	75	. 1	ė	•. •	. •	
acc	gtg	aat	aag	act	tac	aac	agc	aac	ctc	ttc	ttc	tgg	ttc	ttc	cca		349
Thr	Val	Asn	Lys	Thr	Tyr	Asn	Ser	۸sn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	•	
	80					85					90			•	-		
gct	cag	ata	cag	cca	gaa	gat	gcc	cca	gta	gtt	ctc	tgg	cta	cag	ggt	:	397
Ala	Gln	Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly		
95					100					105					110		
ggg	ccg	gga	ggt	tca	tcc	atg	ttt	gga	ctc	ttt	gtg	gaa	cat	ggg	cct		445
Gly	Pro	Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	llis	Gly	Pro		
				115					120					125	•		
tat	gtt	gtc	aca	agt	aac	atg	acc	ttg	cgt	gac	aga	gac	ttc	ccc	tgg	•	493
Tyr	Val	Val	Thr												Trp	•	
	¥ .	•••	130	•	•			135	•		•	•	140	• •			
acc	aca	acg	ctc	tcc	atg	ctt	tac	att	gac	aat	cca	gtg	ggc	aca	ggc		541
Thr	Thr	Thr	Leu	Ser	Met	Leu	Tyr	Ile	Asp	Asn	Pro	Val	Gly	Thr	Gly	•	
	1 .	145	, 1	•	: .	: •	150	'		•	٠	155	• •		- * *	· -	
															gat		589
Phe	Ser														Asp		
	160														() - 3		
															ttt		637
Val	Ala	۸rg	Asp	Leu	Tyr	Ser	Ala	Leu	He	Gln	Pho	Phe	Gln	lle	Phe	.;	

175	5				180)	÷			185	5				190		
cct	gaa	a ta	t aaa	i aat	aat.	gad	: ttt	tat	gto	act	ggg	g gag	tci	t tai	gca	4	685
Pro	Glu	т Ту	r Lys	Asr	Asn	Asp	Phe	Tyr	· Val	Thr	Gly	/ Glu	Ser	Туг	Ala		
		. ·:		. 195	.				200)				205	5 ,	,	
ggg	aaa	ı ta	tgtg	сса	gcc	att	gca	cac	cto	atc	cat	tcc	cto	aac	cct		733
Gly	Lys	Туг	- Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro		
			210)				215	٠				220)			
gtg	aga	gag	gtg	aag	atc	aac	ctg	aac	gga	att	gct	att	gga	gat	gga		781
Val	Arg	Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	lle	Ala	Ile	Gly	Asp	Gly		
		225	i				230					235					
tat	tet	gat	ccc	gaa	tca	att	ata	ggg	ggc	tat	gca	gaa	ttc	ctg	tac		829
Tyr	Ser	Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr		
	240					245					250						
caa	att	ggc	ttg	ttg	gat	gag	aag	caa	aaa	aag	tac	ttc	cag	aag	cag		877
Gln	He	Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	G1n		
255		٠. ٠			260	٠,				265					270		
tgc	cat	gaa	tgc	ata	gaa	cac	atc	agg	aag	cag	aac	tgg	ttt	gag	gcc		925
Cys	His	G1u	Cys	Ile	Glu	His	lle	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala		
	•			275					280					285			
ttt	gaa	ata	ctg	gat	aaa	cta	cta	gat	ggc	gac	tta	aca	agt	gat	cct	!	973
Phe	Ģlų	Ile	Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Ser	Asp	Pro		
		,	290	-		•*	•	295		٠.			300		0		
tct	tac,	ttc	cag	aat	gtt	aca	gga	tgt	agt	aat	tac	tat	aac	ttt	ttg	. 10	021
Ser	Tyr	Phe	Gln	Asn	Val	Thr	Gly	Cys	Ser	Λsn	Tyr	Tyr	Asn	Phe	Leu		
	100	305	2.4	; .	; .		310	٠,.	٠٠.	ا د ز	٠,,٠	315	1.1		*		

				4		-n+	000	ott	tac	tat	ata	222	t t t	ttσ	tca	1069
			gaa													1000
Arg	Cys	Thr	Glu	Pro	Glu	Asp	Gln	Leu	Tyr	Tyr						•
	320	٠.		;	•	325					330	÷ -		•	•	
ctc	cca	gag	gtg	aga	caa	gcc	atc	cac	gtg	ggg	aat	cag	act	ttt	aat	1117
Leu	Pro	Glu	Val	Arg	Gln	Ala	Ile	His	Val	Gly	Asn	Gln	Thr	Phe	Asn	
335	:				340					345					350	
gat	gga	act	ata	gtt	gaa	aag	tac	ttg	cga	gaa	gat	aca	gta	cag	tca	1165
Asp	Gly	Thr	Ile	Val	Glu	Lys	Tyr	Leu	Arg	Glu	Asp	Thr	Val	Gln	Ser	
				355					360					365	• *	
gtt	aag	cca	tgg	tta	act	gaa	atc	atg	aat	aat	tat	aag	gtt	ctg	atc	1213
Val	Lys	Pro	Trp	Leu	Thr	Glu	Ile	Met	Asn	Asn	Tyr	Lys	Val	Leu	Ile	
			370					375					380			
			caa		700	ata	ate	ata	gea	øct	grr	ctø	aca	gag	cac	1261
Tyr	Asn	Gly	Gln	Leu	Asp	Ile	Ile	Val	Ala	Ala	Ala	Leu	Inr	GIU		
		385					390		-			395	•		· h	
tcc	ttg	atg	ggc	atg	gac	tgg	aaa	gga	tcc	cag	gaa	tac	aag	aag	gca	1309
Ser	Leu	Met	Gly	Met	Asp	Trp	Lys	Gly	Ser	Gln	Glu	Tyr	Lys	Lys	Ala	
	400					405					410	-				
gaa	aaa	aaa	gtt	. tgg	aag	atc	ttt	aaa	tct	gac	agt	gaa	gtg	gct	ggt	1357
Glu	Lys	Lys	: Val	Trp	Lys	Ile	Phe	Lys	Ser	Asp	Ser	Glu	ı Val	Ala	Gly	
415	· · ·				420					425					430	
tac	ato	cgg	g caa	ı gcg	ggt	. gac	tto	cat	cag	gta	att	att	. cga	ggt	gga	1405
															Gly	
-															5	
gga	cat	. at1	t tta	a ccc	tat	gac	cag	g cct	ctg	g aga	ı gci	t tti	t gad	ate	gatt	1453

Gly His Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile	
450 455 460	
aat cga ttc att tat gga aaa gga tgg gat cct tat gtt gga taaac	1500
Asn Arg Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly	
465 470 . 475	
taccitccca aaagagaaca tcagaggiit tcattgciga aaagaaaatc gtaaaaacag	1560
aaaatgtcat aggaataaaa aaattatctt ttcatatctg caagattttt ttcatcaata	1620
aaaattatcc ttg	1633
<210> 112	
<211> 1095	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (192) (872)	
<400>, 112	
ctttaaaatg tcattggtaa accatacttg atcctaaatt cctgtacttc ctcaggccat	60
ccgagcatga aacgctgica cctacccaca tccgctggct gtgacgcttg tcaaagtgtt	120
ctctatcggc tgcatgccta gaccaccaaa gcgttctgac cggacagtgt cactggagaa	180
ggcggcgcga c atg tcc agg gcg cag atc tgg gct ctg gtg tct ggt gtc	230
Met Ser Arg Ala Gln Ile Trp Ala Leu Val Ser Gly Val	
, , , , , , , , 1 , , , , , , , , , , ,	
gga ggg ttt gga gct ctc gtt gct acc acg tcc aat gag tgg aaa	278
Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Scr Asn Glu Trp Lys	

	15	• •	1		•	20	-			٠.٠	25	•		• •		•	
gtg	acc	acg	cga	gcc	tcc	tcg	gtg	ata	aca	gcc	ạct	tgg	gtt	tac	cag		326
Val	Thr	Thr	Arg	Ala	Ser	Ser	Val	Ilė	Thr	Ala	Thr	Trp	Val	Tyr	Gln		
30					35					40	•				·45		
ggt	ctg	tgg	atg	aac	tgc	gca	ggt	aac	gcg	ttg	ggt	tct	ttc	cat	tgc		374
Gly	Leu	Trp	Met	Asn	Cys	Ala	Gly	۸sn	Ala	Leu	Gly	Ser	Phe	His	Cys		
				50					55					60		-	
cga	ccg	cat	ttt	act	atc	ttc	aaa	gta	gca	ggt	tat	ata	cag	gca	tgt		422
Arg	Pro	His	Phe	Thr	Ile	Phe	Lys	Val	Ala	Gly	Tyr	He	Gln	Ala	Cys		
			65					70					75				
aga	gga	ctt	atg	atc	gct	gct	gtc	agc	ctg	ggc	ttc	ttt	ggt	tcc	ata		470
Arg	Gly	Leu	Net	Ile	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile		
		80					85					90					
ttt	gcg	ctc	ttt	gga	atg	aag	tgt	acc	aaa	gtc	gga	ggc	tcc	gat	aaa		518
Phe	Ala	Leu	Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys		
	95					100					105	, ,					
gc¢	aaa	gct	aaa	att	gct	tgt	ttg	gct	ggg	att	gta	ttc	ata	ctg	tca		566
Ala	Lys	Ala	Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser		
110		•			115		•		•	120				•	125		
ggg	ctg	tgc	tca	atg	act	gga	tgt	tcc	cta	tat	gca	aac	aaa	atc	aca		614
Gly	Leu	Cys	Ser	Met	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asn	Lys	Ile	Thr	•	
				130		٠.			135			0 •		140			
acg	gaa	ttc	ttt	gat	cct	ctc	ttt	gtt	gag	caa	aag	tat	gaa	tta	gga		662
Thr	Glu	Phe	Phe	Aśp	Pro	Leu	Phe	Val	Glu	Gln	Lys	Tyr	Glu	Leu	Gly	;	
			145				٠.	150			•	4.	155	٠	23.7		

gcc gct ctg ttt att gga tgg gca gga gcc tca ctg tgc ata att ggt	710
Ala Ala Leu Phe Ile Gly Trp Ala Gly Ala Ser Leu Cys Ile Ile Gly	
160 165 170	
ggt gtc ata ttt tgc ttt tca ata tct gac aac aac aaa aca ccc aga	758
Gly Val Ile Phe Cys Phe Ser Ile Ser Asp Asn Asn Lys Thr Pro Arg	
175 180 185	
tac aca tac aac ggg gcc aca tct gtc atg tct tct cgg aca aag tat	806
Tyr Thr Tyr Asn Gly Ala Thr Ser Val Met Ser Ser Arg Thr Lys Tyr	
190 195 200 205	
cat ggt gga gaa gat ttt aaa aca aca aac cct tca aaa cag ttt gat	854
His Gly Gly Glu Asp Phe Lys Thr Thr Asn Pro Ser Lys Gln Phe Asp	
210 215 220	
aaa aat gct tat gtc t aaaagagete gegggeaage tgeetettga	900
Lys Asn Ala Tyr Val	
225	
gtttgttata aaagcgaact gttcacaaaa tgatcccatc aaggccctcc cataattaac	960
actcaaaact atttttaaaa tatgcatttg aagcatctgt tgattgtatg gatgtaagtg	1020
ticitacata gitagitata taciaatcat titcigitgi ggcttictat aaaaaataaa	1080
cagtttattt acagg	1095
· · · · · · · · · · · · · · · · · · ·	
<210> 113	
<211>,1602	
<pre><212>_DNA.</pre>	
<213> Homo sapiens , , , , , , , , , , , , , , , , , , ,	
<220>	

BNSDOCID- -WO 011266042 L >

<22) -C[OS	• •	•		• •	•			•	Ō	•	:	•		•	
<222	2> (3	34)	. (9	51)			•			÷ .			•				
<400)> 11	13				·		•						. 4			
ttte	gtcag	ggt' g	ggtgg	gagga	aa aa	aggc	géte	c gto	ate	ggg	gate	c ca	gacı	gaġ	ccc		54
							·. ••		Met	t Gly	, Ile	e Glo	ı Thi	r Sei	r Pro		
									1	l · '				5	٠-		
gtc	ctg	ctg	gcc	tcc	ctg	ggg	gtg	ggg	ctg	gtc	act	ctg	ctc	ggc	ctg		102
Val	Leu	l.eu	Ala	Ser	Leu	Gly	Val	Gly	Leu	Val	Thr	Leu	Leu	Gly	Leu		
		10					15					20					
gct	gtg	ggc	tcc	tac	ttg	gtt	cgg	agg	tcc	cgc	cgg	cct	cag	gtc	act		150
Ala	Val	Gly	Ser	Tyr	Leu	Val	Arg	Arg	Ser	Arg	Arg	Pro	Gln	Val	Thr		
	25					30					35						
ctc	ctg	gac	ccc	aat	gaa	aag	tac	ctg	cta	cga	ctg	cta	gac	aag	acg		198
Leu	Leu	Asp	Pro	Asn	Glu	Lys	Tyr	Leu	Leu	Arg	Leu	Leu	Asp	Lys	Thr		
40					45					50			٠.		55		
act	gtg	agc	cac	aac	acc	aag	agg	ttc	cgc	ttt	gcc	ctg	ссс	acc	gcc		246
Thr	Val	Ser	His	Asn	Thr	Lys	Arg	Phe	Arg	Phe	Ala	Leu	Pro	Thr	۸ľa		
				60					65				٠.	70	. ، ر		
cac	cac	act	ctg	ggg	ctg	cct	gtg	ggc	aaa	cat	atc	tac	ctc	tcc	acc		294
His	His	Thr	Leu	Gly	Leu	Pro	Val	Gly	Lys	His	Ile	Tyr	Leu	Ser	Thr		
			75					80					85	٠	~		
cga	att	gat	ggc	agc	ctg	gtc	atc	agg	cca	tac	act	cct	gtc	acc.	agt		342
Arg	Ile	Asp	Gly	Ser	Leu	Val	Ile	Arg	Pro	Tyr	Thr	Pro	Val	Thr	Ser		
		90					95					100	٠,		<i>:</i> .•	÷	
gat	gag	gat	caa	ggc	tat	gtg	gat	ctt	gtc	atc	aag	gtc	tac	ctg	aag ·		390

Asp Glu Ası	Gln Gly T	r Val Asp I	Leu Val Ile	Lys Val Tyr	Leu Lys
105	· · .•	110	• •	115	
ggt gtg cad	ccc aaa t	tt cct gag (gga ggg aag	g atg tct cag	tac ctg 438
Gly Val His	Pro Lys P	ne Pro Glu (Gly Gly Lys	s Met Ser Gln	Tyr Leu
120	1:	25	130)	135
gat agc ct	g aag gtt g	gg gat.gtg p	gtg gag ttt	t cgg ggg cca	agc ggg 486
Asp Ser Le	ı Lys Val G	ly Asp Val	Val Glu Phe	e Arg Gly Pro	Ser Gly
	140		145		150
ttg ctc ac	tac act g	ga aaa ggg (cat ttt aac	att cag ccc	aac aag 534
Leu Leu Thi	Tyr Thr G	ly Lys Gly I	His Phe Asr	n Ile Gln Pro	Asn Lys
	155	:	160	165	
aaa tot co	a cca gaa c	cc cga gtg	gcg aag aaa	a cig gga aig	att gcc 582
Lys Ser Pro	Pro Glu P	ro Arg Val	Ala Lys Lys	s Leu Gly Met	Ile Ala
170)	175		180	
ggc ggg aca	a gga atc a	ec cca atg	cta cag cte	g atc cgg gcc	atc ctg 630
Gly Gly The	Gly Ile T	nr Pro Met 1	Leu Gln Leu	ı Ile Arg Ala	lle Leu
185	- 、 ※	i'80	••	195	A Production
aaa gtc cc	t gaa gat c	ca acc cag	tgc ttt ctg	g ctt ttt gcc	aac cag 678
Lys Val Pro	Glu Asp P	ro Thr Gln (Cys Phe Leu	ı Leu Phe Ala	Asn Gln
200	2	05	. 210) <u> </u>	215
aca gaa aa	g gat atc a	tc ttg cgg	gag gac tta	a gag gaa ctg	cag gcc 726
Thr Glu Ly	s Asp Ile I	le Leu Arg (Glu Asp Leu	a Glu Glu Leu	Gln Ala
. ••	220		225		230
cgc tat cc	aat cgc t	it aag ctc	tgg ttc act	t cig gat cat	ccc cca 774
Arg Tyr Pro	Asn Arg P	ne Lys Leu '	Trp Phe Thi	r Leu Asp His	Pro Pro

• • • • •	235	249		245	*
aaa gat tgg	gcc tac agc	aag ggc ttt	gtg act gcc	gac atg atc	c'gg 822
Lys Asp Trp	Ala Tyr Ser	Lys Gly Phe	Val Thr Ala	Asp Met Ile	Arg
250	. *	255	•	260 ·	.:
gaa cac ctg	ccc gct cca	ggg gat gat	gtg ctg gta	ctg ctt tgt	ggg 870
Glu His Leu	Pro Ala Pro	Gly Asp Asp	Val Leu Val	Leu Leu Cys	Gly
265	•	270	275	•	
cca ccc cca	atg gtg cag	ctg gcc tgc	cat ccc aac	ttg gac aaa	ctg 918
Pro Pro Pro	Met Val Gln	Leu Ala Cys	His Pro Asn	Leu Asp Lys	Leu
280	285		290		295
ggc tac tca	caa aag atg	cga ttc acc	tac tg agca	tcctcc agctt	ccctg 970
Gly Tyr Ser	Gln Lys Met	Arg Phe Thr	Tyr	. •	
	300		305		
gtgctgttcg	ctgcagttgt t	cccatcag ta	ctcaagca cta	taagcct taga	ttcctt 1030
tcctcagagt	ttcaggtttt t	tcagttaca tc	tagagetg aaa	tctggat agta	cctgca 1090
ggaacaatat	tcctgtagcc a	tggaagagg gc	caaggete agt	cactect tgga	tggcct 1150
cctaaatctc	cccgtggcaa c	aggtccagg ag	aggcccat gga	gcagtct cttc	catgga 1210
gtaagaagga	agggagcatg t	acgcttggt cc	aagattgg cta	gttcctt gata	gcatct 1270
tactctcacc	ttctttgtgt c	tgtgatgaa ag	gaacagtc tgt	gcaatgg gttt	tactta 1330
aacttcactg	ttcaacctat g	agcaaatct gt	atgtgtga gta	taagttg agca	tagcat 1390
acttccagag	gtggtcttat g	gagatggca ag	aaaggagg aaa	itgatttc ttca	gatete 1450
aaaggagtct	gaaatatcat 'a	tttctgtgt gt	gtctctct cag	secetge ecag	gctaga 1510
gggaaacagc	tactgataat c	gaaaactgc tg	tttgtggc agg	gaacccct ggct	gtgcaa 1570
ataaatgggg	ctgaggecee t	gtgtgatat tg	***	e e la companya de la	1602
				, .	•

<21	0> 1	14								•		-		-	•	;	:	
<21	1> 8	897																
<21	2> E	NA			٠.										• -			
<21	3> H	omo	sapi	ens								. •					:	
<22	:0>																	
<22	1> C	DS			•													
<22	2> (99).	(7	82)	•													
<40	0> 1	14																
agt	cctc	cca	aagt	actt	gt g	tccg	ggtg	g tg	gact	ggat	tcg	ctgc	gga	gccc	tgga	gsı		60
ctg	cctt	tcc	ttct	ccct	gt g	ctta	acca	g ag	gtgc	cc a	tg g	gt t	gg a	ica a	tg			113
										М	et G	ly T	rp T	hr M	let			
											1				- 5			
agg	ctg	gtc	aca	gca	gca	ctg	tta	ctg	ggt	ctc	atg	atg	gtg	gtc	act	:		161
Arg	Leu	Val	Thr	Ala	Ala	Leu	Leu	Leu	Gly	Leu	Met	Met	Val	Val	Thr	•		
				10		•			15					20				
gga	gac	gag	gat	gag	aac-	agc	ccg	tgt	gcc	cat	gag	gcc	ctc	ttg	gac	:		209
Gly	Asp,	Glu	Asp	Glu	Asn	Ser	Pro	Cys	Ala	His	Glu	Ala	Leu	Leu	Asp			
	•		25					30				٠.	35					
gag	gac	acc	ctc	ttt	tgc	cag	ggc	ctt	gaa	gtt	ttc	tac	cca	gag	ttg	•		257
Glu	Asp	Thr	Leu	Phe	Cys	Gln	Gly	Leu	Glu	Val	Phe	Tyr	Pro	Glu	Leu			
	• • •	40					45	•		•		50			•	• .		
ggg	aac,	att	ggc	tgc	aag	gtt	gtt	cct	gat	tgt	aac	aac	tac	aga	cag		. ;	305
Gly	Asn	Ile	G1 y	Cys	Lys	Val	Val	Pro	Asp	Cys	Asn	Λsn	Tyr	Arg	Gln			
	55 .					60	-	٠٠.	-		65	,•÷		•• •				
aag	atc	acc	tcc-	tgg	atg	gag	ccg	ata	gtc	aag	ttc	ccg	ggg	gcc	gtg		;	353

Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	Val	Lys	Phe	Pro	Gly	Ala	Val	•	
70					75					80					·· 85	•	
gac	ggc	gca	acc	tat	atc	ctg	gtg	atg	gtg	gat	cca	gat	gcc	cct	agc		401
Asp	Gly	Ala	Thr.	Tyr	Ile	Leu	Val	Met	Val	Asp	Pro	Asp	Ala	Pro	Ser		
				90					95					100			
aga	gca	gaa	ccc	aga	cag	aga	tic	tgg	aga	cat	tgg	ctg	gta	aca	gat	•	449
Arg	Λla	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His	Trp	Leu	Val	Thr	Asp		
			105					110					115		i.	•	
atc	aag	ģgc	gcc	gac	ctg	aag	aaa	ggg	aag	att	cag	ggc	cag	gag	tta	•00	497
Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile	Gln	Gly	Gln	Glu	Leu		
		120					125					130					
tca	gcc	tac	cag	gct	ccc	tcc	cca	ccg	gca	cac	agt	ggc	ttc	cat	cgc		545
Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His	Ser	Gly	Phe	His	Arg		
	135			٠.		140					145			•			
tac	cag	ttc	ttt	gtc	tat	ctt	cag	gaa	gga	aaa	gtc	atc	tct	ctc	ctt		593
Tyr	Gln	Phe	Phe	Val	Tyr	Leu	Gln	Glu	Gly	Lys	Val	Ile	Ser	Leu	Leu	-	
150	¥	1.	٠.		155	• •			٠.	160		**		1,	165	•••	
ccc	aag	gaa	aac	aaa	act	cga	ggc	tct	tgg	aaa	atg	gac	aga	ttt	ctg		641
Pro	Lys	Glu	Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys	Meț	Asp	Arg	Phe	Leu		
	;			170	1		٠.		175	•		•••	•	180	ζ, .	•	
aac	cgt	ttc	cac	ctg	ggc	gaa	cct	gaa	gca	agc	acc	cag	ttc	atg	acc		689
Asn	Arg	Phe	His	Leu	Gly	Glu	Pro	Glu	Ala	Ser	Thr	Gln	Phe	Met	Thr		
	• • •		185	٠		٠٠.	•	190			٠		195	٠,	• .		
cag	aac	tac	cag	gac	tca	cca	acc	ctc	cag	gct	ccc	aga	gaa	agg	gcc		737
Gln	Asn	Tyr	Gln	Asp	Ser	Pro	Thr	Leu	Gln	Ala	Pro	Arg	Glu	Arg	Ala	٠,	

200	205	210	
agc gag ccc aag cac aaa	aac cag gcg gag ata	gct gcc tgc t	780
Ser Glu Pro Lys His Lys	Asn Glm Ala Glu Ile	Ala Ala Cys	
215	220	225	
agatageegg ctttgeeate e	gggcatgtg gccacactgc	ccaccaccga cgatgtgggt	840
atggaacccc ctctggatac a	gaacccctt cttttccaaa	taaaaaaaaa atcatcc	897
<210> 115		•	
<211> 1866			
<212> DNA			
<213> Homo sapiens			
⟨220⟩		*	
<221> CDS			
<222> (142)(1467)			
<400> 115			
gcccgcatgc gggggcgtgg ca	agtcaacag caacaaccca	cacgceggea gggceagaaa	6 0
ctcccatctc cctcaccage cg	ggaaagtac gagtcggctc	agcctggagg gacccaacca	120
gagcctggcc tgggagccag g	atg gcc atc cac aaa	gcc ttg gtg atg tgc	171
	Met Ala Ile His Lys	Ala Leu Val Met Cys	
F. F. H. A.	.1 5	. 10	
ctg gga ctg cct ctc ttc	ctg ttc cca ggg gcc	tgg gcc cag ggc cat	219
Leu Gly Leu Pro Leu Phe	Leu Phe Pro Gly Ala	Trp Ala Gln Gly His	
	20 ,	25	
gtc cca ccc ggc tgc agc	caa ggc ctc aac ccc	ctg tac tac aac ctg	267
Val Pro Pro Gly Cys Ser	Gln Gly Leu Asn Pro	Leu Tyr Tyr Asn Leu	

			30					35	٠.				40				
tgt	gac	cgc	tct	ggg	gcg	tgg	ggc	atc	gtc	ctg	gag	gcc	gtg	gct	ggg		315
Cys	Asp	Arg	Ser	Gly	Ala	Trp	Gly	Ile	Val	Leu	Glu	Ala	Val	Ala	Gly		
		45			٠		50					55			••••		
gcg	ggc	att	gtc	acc	acg	ttt	gtg	ctc	acc	atc	atc	ctg	gtg	gcc	agc	•	363
Ala	Gly	Ile	Val	Thr	Thr	Phe	Val	Leu	Thr	Ile	Ile	Leu	Val	Ala	Ser		
	60					65					70						
ctc	ccc	ttt	gtg	cag	gac	acc	aag	aaa	cgg	agc	ctg	ctg	ggg	acc	cag		411
Leu	Pro	Phe	Val	Gln	Asp	Thr	Lys	Lys	۸rg	Ser	Leu	Leu	Gly	Thr	Gln	1	
75					80					85					90		
gta	ttc	ttc	ctt	ctg	ggg	acc	ctg	ggc	ctc	ttc	tgc	ctc	gtg	ttt	gcc		459
Va]	Phe	Phe	Leu	Leu	Gly	Thr	Leu	Gly	Leu	Phe	Cys	Leu	Val	Phe	Ala		
				95					100					105	•		
tgt	gtg	gtg	aag	ccc	gac	ttc	tcc	acc	tgt	gcc	tct	cgg	cgc	ttc	ctc		507
Cys	Val	Val	l.ys	Pro	Asp	Phe	Ser	Thr	Cys	Ala	Ser	Arg	Arg	Phe	Leu		
		•,	110	•		٠.		115					120		-		
tti	ggg	gtt	ctg	ttc	gcc	atc	tgc	ttc	tct	tgt	ctg	gcg	gct	cac	gtc	**	555
Phe	Gly	Val	Leu	Phe	Ala	Ile	Cys	Phe	Ser	Cys	Leu	Ala	Ala	His	Val		
		125					130					135	•				
ιtι	gcc	ctc	aac	ttc	ctg	gcc	cgg	aag	aac	cac	ggg	ccc	cgg	ggo	tgg		603
Phe	Ala	Leu	Asn	Phe	Leu	Ala	Arg	Lys	Asn	His	Gly	Pro	Arg	Gly	Trp		
	-140	-••	٠ ـ .	٠.		145	•	•		٠.	150		•		(a 1.		
															atc		651
Val	lle	Phe	Thr	· Val	Ala	Leu	Leu	Leu	Thr	Leu	Val	Glu	ı Val	Ile	lle	•	
					1.00		_			166					. 170	. •	

BNSDDCID: <WO 0112880A2 I

Zaktovskih i nam i nastv

aat	aca	gag	gtgg	ctg	atc	ato	acc	ctg	gtt	cgg	ggc	agt	gg	c gag	g ggc	699
Asn	Thr	Glu	Trp	Leu	Ile	Ile	Thr	Leu	Val	Arg	Gļy	Ser	Gl	y Glu	Gly	
				175	3		•		180					185	5	
ggc	cct	. cag	ggo	aac	agc	agc	gca	ggc	tgg	gcc	gtg	gcc	tco	ccc	tgt ,	747
G1 y	Pro	Gln	Gly	Asn	Ser	Ser	Ala	Gly	Trp	Ala	Val	Ala	Sei	Pro	Cys	
			190	+				195					200)		
gcc	atc	gcc	aac	atg	gac	ttt	gtc	atg	gca	ctc	atc	tac	gto	atg	ctg	795
Ala	Ile	Ala	Asn	Met	Asp	Phe	Val	Met	Ala	Leu	Ile	Tyr	Val	Met	Leu	
		205					210					215				
ctg	ctg	ctg	ggt	gcc	ttc	ctg	ggg	gcc	tgg	ccc	gcc	ctg	tgt	ggc	cgc	843
Leu	Leu	Leu	Gly	Ala	Phe	Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	
	220					225					230				••	
tac	aag	cgc	tgg	cgt	aag	cat	ggg	gtc	ttt	gtg	ctc	ctc	acc	aca	gcc	891
Tyr	Lys	Arg	Trp	Arg	Lys	His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	
235					240					245					250	
acc	tcc	gtt	gcc	ata	tgg	gtg	gtg	tgg	atc	gtc	atg	tat	act	tac	ggc	939
Thr	Ser	Val	Ala	He	Trp	Val	Val	Trp	Ile	Val	Met	Tyr	Thr	Tyr	Gly	
	٠.			255					260					265		
aac	aag	cag	cac	aac	agt	ccc	acc	tgg	gat	gac	ccc	acg	ctg	gcc	atc	987
Asn	Lys	Gln	His	Asn	Ser	Pro	Thr	Trp	Asp	Asp	Pro	Thr	Leu	Ala	Ile	
			270				٠	275					280			
gcc	ctc	gcc	gcc	aat	gcc	tgg	gcc	ttc	gtc	ctc	ttc	tac	gtc	atc	ccc	1035
Ala	Leu	Ala	Ala	Asn	Ala	Trp	Ala	Phe	Val	Leu	Phe	Tyr	Val	Ile	Pro	
		285	•	•	*	-	290					295		٠.٠	· ·	
gag	gtc	tcc	cag	gtg	acc	aag	tcc	agc	сса	gag	caa	agc	tac	cag	ggg	1083

Glu	Val	Ser	Gln	Val	Thr	Lys	Ser	Ser	Pro	Glu	Gln	Ser	Tyr	Gln	Gly		
	300					305	1 3	, ,4	- •	. :	310	. •	. •	: .,	.::		
gac	atg	tac	ccc	ac c	cgg	ggc	gtg	ggc	tat	gag	acc	atc	ctg	aaa	gag		11,31
Asp	Met	Tyr	Pro	Thr	Arg	Gly	Val	Gly	Tyr	Glu	Thr	Ile	Leu	Lys	Glu	:	
315	·Ţ	<i>:</i> .		,	320			9		325		·* :		•	330	•	
cag	aag	ggt	cag	agc	atg	ttc	gtg	gag	aac	aag	gcc	ttt	tcc	atg	gat		1179
Gln	Lys	Gly	G1n	Ser	Met	Phe	Val	Glu	Asn	Lys	Ala	Phe	Ser	Меt	Asp	•	
	•			335				•	340		•		-	345	- ÷		
gag	ccg	gtt	gca	gct	aag	agg	ccg	gtg	tca	сса	tac	agc	ggg	tac	aat		1227
Glu	Pro	Val	Ala	Ala	Lys	Arg	Pro	Val	Ser	Pro	Tyr	Ser	Gly	Tyr	Asn	•	
			350		٠		•	355					360				
ggg	cag	ctg	ctg	acc	agt	gtg	tac	cag	ccc	act	gag	atg	gcc	ctg	atg		1275
Gly	Gln	Leu	Leu	Thr	Ser	Val	Tyr	Gln	Pro	Thr	Glu	Met	Ala	Leu	Met		
		365					370					375					
cac	aaa	gtt	ccg	tcc	gaa	gga	gct	tac	gac	atc	atc	ctc	cca	cgg	gcc		1323
His	Lys	Val	Pro	Ser	Glu	Gly	Ala	Tyr	Asp	Ile	Ile	Leu	Pro	Arg	Ala		
	380	٠	. •			385		•	• •		390		٠	٠		ē.	•
acc	gcc	aac	agc	cag	gtg	atg	ggc	agt	gcc	aac	tcg	acc	ctg	cgg	gct		1371
Thr	Ala	Asn	Ser	Gln	Val	Met	Gly	Ser	Ala	Asn	Ser	Thr	Leu	Arg	Ala		
395	1.		٠	·	400					405				, (410		
gaa	gac	atg	tac	tcg	gcc	cag	agc	cac	cag	gcg	gcc	aca	ccg	ccg	aaa		1419
Glu	Asp	Met	Tyr	Ser	Ala	Gln	Ser	His	Gln	Ala	Ala	Thr	Pro	Prò	Lys	•	
	٠.	101	•	415		81		.:	420			•	+ 25	425	. •), '		
gac	ggc	aag	aac	tct	cag	gtc	tti	aga	aac	ccc	tac	gtg	tgg	gac			1464
Asp	Gly	Lys	Asn	Ser	Gln	Val	Phe	Λrg	Asn	Pro	Tyr	Väl	Trp	Asp	+:74		

430	435	440	
tgagtc agcggtggcg aggagaggcg g	tcggatttg ggg	agggeee tgaggacetg .	152
gccccgggca agggactete caggeteet	tc ctccccctgg	caggeecage aacatgtgee	1580
ccagatgtgg aagggcctcc ctctctgcc	ca gtgtttgggt	gggtgtcatg ggtgtcccca	1640
cccactcctc agtgtttgtg gagtcgagg	ga gccaacccca	gcctcctgcc aggatcacct	1700
cggcggtcac actccagcca aatagtgtt	tc tcggggtggt	ggctgggcag cgcctatgtt	1760
tetetggaga tteetgeaac eteaagaga	ac ttcccaggcg	ctcaggcctg gatcttgctc	1820
ctctgtgagg aacaagggtg cctaataaa	it acatttctgc	tttatt	1866
<210> 116			
<211> 2198			
<212> DNA			
<213> Homo sapiens			
<220> ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅			
<221> CDS			
<222> (50) (847)	, • .	Set g	
⟨400⟩-116			
aaaatggcgt agagcctagc aacagcgca	g gctcccagcc	gagtccgtt atg gcc	55
		Met Ala	•
ng tre tree tree tree		1	•
gct gcc gtc ccg aag agg atg agg	ggg cca gca	caa gcg aaa ctg ctg	103
Ala Ala Val Pro Lys Arg Met Arg	Gly Pro Ala	Gln Ala Lys Leu Leu	
5 3 5 7 1 1 10 10		415	
ccc ggg tcg gcc atc caa gcc ctt	gtg ggg ttg	gcg cgg ccg ctg gtc	151
Pro Gly Ser Ala Ile Gln Ala Leu	Val Gly Leu	Ala Arg Pro Leu Val	

RNSDOCID-VWO 011266042 LS

	20		٠.			25					30		• • • •				
ttg	gcg	ctc	ctg	ctt	gtg	tcc	gcc	gct	cta	tcc	agt	gtt	gta	tca	cgg'		199
Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val	Ser	Arg		
35		٠.	•	•(•,	40					45		• 4	.:		50		
act	gat	tca	ccg	agc	cca	acc	gta	ctc	aac	tca	cat	att	tct	acc	cca	. :	247
Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser	Thr	Pro		
				55					60		:			65			
aat	gtg	aat	gct	tta	aca	cat	gaa	aac	caa	acc	aaa	cct	tct	att	tcċ		295
Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser	He	Ser		
			70					75					80				
caa	atc	agc	acc	acc	ctc	cct	ccc	acg	acg	agt	acc	aag	aaa	agt	gga		343
															Gly		
• • • • • • • • • • • • • • • • • • • •		85					90					95		٠.			
<i>aa</i> 2	<i>a</i> 02		at a	ate	cct	cat		tea	cct	act	cct			caa	σασ		391
															Glu		
Giy		sei	Vai	vaı	F10		FIO	261	110	1111							
	100					105					110						420
															ctc.		439
G]u	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	He		Glu	Glu	Asp	Leu			•
115	•				120					125					130		
atg	ctg	aac	agt	tct	cca	tcc	aca	gcc	aaa	gac	act	cta	gac	aat	ggc		487
Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp	Asn	Gly		
	,·. ,	•		135	• *	٠.,		÷	140	• • •	• .•	• ;	PI T	145		•	
gat	tat	gga	gaa	cca	gac	tat	gac	tgg	acc	acg	ggc	ccc	agg	gac	gac		535
Asp	Tyr	Gl∙y	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg	Asp [°]	Asp'	٠.	
	1		150				٠.	155		, .		, :	160		240	1	

gac	gag	tct	gat	gac	acc	ttg	gaa	gaa	aac	agg	ggt	tac	atg	gaa	att	583
Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met	Glu	Ile	
	Ē	165					170					175		:		
gaa	cag	tca	gtg	aaa	tct	ttt	aag	atg	cca	tcc	tca	aat	ata	gaa	gag	631
Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	Ile	Glu	Glu	
	180					185					190					
gaa	gac	agc	cat	ttc	ttt	ttt	cat	ctt	att	att	ttt	gct	ttt	tgc	att	679
Glu	Asp	Ser	llis	Phe	Phe	Phe	llis	Leu	Ile	Ile	Phe	Ala	Phe	Cys	Ile	
195					200					205					210	
gct	gtt	gtt	tac	att	aca	tat	cac	aac	aaa	agg	aag	att	ttt	ctt	ctg	727
Ala	Val	Val	Tyr	Ile	Thr	Tyr	His	Asn	Lys	Arg	Lys	Ile	Phe	Leu	Leu	
				215			-		220					225	•	
gtt	caa	agc	agg	aaa	tgg	cgt	gat	ggc	ctt	tgt	tcc	aaa	aca	gtg	gaa	775
Va]	Gln	Ser	Arg	Lys	Trp	Arg	Asp	Gly	Leu	Cys	Ser	Lys	Thr	Val	Glu	
			230					235					240			
tac	cat	cgc	cta	gat	cag	aat	gtt	aat	gag	gca	atg	cct	tct	ttg	aag	823
Tyr	His	Arg	Leu	Asp	Gln	Asn	Val	Asn	Glu	Ala	Met	Pro	Ser	Leu	Lys	
	٠	245					250					255		,		
att	acc	aat	gat	tat	att	ttt	taaa	agc a	actgi	tgati	tt ga	atti	tgct	t		870
Ile	Thr	Asn	Asp	Tyr	Ile	Phe										
	260					265									٠ :	
atg	taati	tt a	atttg	gcttg	ga ct	ttt	tata	t gat	tattı	gtgc	aaat	tgtti	tgc (cata	ggcaat	930
tgg	lacti	taa a	atgag	gaggt	g ag	gtcto	ctct	t tte	gccti	tggt	gcti	ttgga	aaa	ttaaa	atgtca	990
caaa	acga	gta 1	tataa	attti	t ta	itctį	gtac	t tti	tagag	gctg	agti	taat	tca (ggtgi	tccaaa	1050
atgi	lgagi	tta a	aacat	taco	et t a	atati	ttaca	a cta	zttas	gttt	ttai	ttgt	ttt	agati	ttatta .	1110

ENSULUTION - MUSERNAS I -

The state of the s

240/307

tgcttcttct	ggaagtatta	gtgatgctac	tttaaaaaga	tcccaaactt	gtaactaaat	1170
tctgacatat	ctgttactgc	tgactcácat	tcattctccg	ccattcaaat	actattttt	1230
atccacattt	ttttttgttc	ccaaactgta	atgtacaagg	atatgtgtga	taatgctttg	1290
gatttgagta	atatttttt	ttcttccaag	aaaactgctt	tggatatttt	tagataattt	1350
aaacataatt	taggataatg	atattgctca	atctgaccac	aattttaggt	aaaacattaa	1410
atgtgtcaag	aaatcttggc	aacagagact	ctgcagcttg	cagtggacat	agataaaatg	1470
ttacagagat	actattttt	tggttggaat	tactatatta	aatttagaag	cagaaactgg	1530
taaaatgtta	aatacatgta	caattgcttt	tagttagcaa	ttgattgtag	catgggttcc	1590
tccaaggttt	caagcaatgg	gcagagttta	aaattatatc	agattcgttt	acttcgttta	1650
ttattttaca	gtaaatttga	ataaatctta	ggggtcatta	tcacttaaat	aatactgtac	1710
ctaggtcttt	caaattaaaa	ttatacctga	atgaagttgt	ttgtatacat	aaaggatatt	1770
tgtgtacaat	taccttttt	ccccacact	tgttttcttt	gtttttgttt	tttatggcaa	1830
ctggaaagta	tttactatgg	gattcattta	tgtctglctt	tctatcataa	agaattgatc	1890
aatatgtaaa	tatgtgattt	gaaccatggt	tgacttacaa	gtgtcactac	agctttttag	1950
aaaacatagc	cctaatatat	gttaagcagg	accegggtga	gccagtgggc	ttgcgcttta	2010
tgtagagctg	gaagaaggcc	gtccatcctg	tctcttgggc	ggacagtgta	ctttcctaat	2070
agggaaggga	agcacaatgg	aaatacccct	gaaccgtttt	attgcagtaa	tttttttcat	2130
atctgaaact	attatttaat	attttgaata	agatttaaa	aaataaatgg	caaagatata	2190
aatctatg					, ,	2198

<210> 117

<212> DNA

<213> Homo sapiens

<220>14 (1) 32 (4) 32

<22	21> 0	CDS															
<22	22>, ,((69).	(6	95)													
<40	0> 1	.17 -										ż					•
aac	cago	gcc	gcgg	acac	cg g	cacc	ggcg	c ca	cgga	ctcc	gca	ggad	ccc	gcgc	ccgc	cg	60
ccg	ccgc	t at	g ct	g gg	g ct	g ct	ggt	g gc	g tt	g ct	g gc	c ct	g ge	g ct	c gc	t	110
		Ме	t Le	u Gl	y Le	u Le	u Va	1 A1	a Le	u Le	u Al	a Le	eu G1	y Le	u Al	а	
			1 .				5				1	0 .					
gtc	ttt	gcg	ctg	ctg	gac	gtc	tgg	tac	ctg	gtg	cgc	ctt	ccg	tgc	gcc		158
Val	Phe	Ala	Leu	Leu	Asp	Val	Trp	Tyr	Leu	Val	Arg	Leu	Pro	Cys	Ala		
15					20					25					30		
gtg	ctg	cgc	gcg	ege	ctg	ctg	cag	ccg	cgc	gtc	cgt	gac	ctg	cta	gct		206
Val	Leu	Arg	Ala	Arg	Leu	Leu	Gln	Pro	Arg	Val	Arg	Asp	Leu	Leu	Ala		
				35					40					45			
gag	cag	cgc	ttc	ccg	ggc	cgc	gtg	ctg	ccc	tcg	gac	ttg	gac	ctg	ctg		254
Glu	Gln	Arg	Phe	Pro	Gly	Arg	Val	Leu	Pro	Ser	Asp	Leu	Asp	Leu	Leu	:	
	* • 3		50	٠.				55					60				
ttg	cac	atg	aac	aac	gcg	cgc	tac	ctg	cgc	gag	gcc	gac	tti	gcg	cgc		302
Leu	His	Met	Asn	Asn	Ala	Arg	Tyr	Leu	Arg	Glu	Ala	Asp	Phe	Ala	Arg		
		65					70					75					
gtc	gcg	cac	ctg	acc	cgc	tgc	ggg	gtg	ctc	ggg	gcg	ctg	agg	gag	ttg		350
Val	Ala	His	Leu	Thr	Arg	Cys	Gly	Val	Leu	Gly	Ala	Leu	Arg	Glu	Leu		
	80	٠.			• •	85					90				•		
cgg.	gçg	cac	acg	gtg	ctg	gcg	gcc	tcg	tgc	gcg	cgc	cac	cgc	cgc _.	tcg	. *	398
Arg	Ala	llis	Thr	Val	Leu	Ala	Ala	Ser	Cys	Ala	Arg	His	Arg	Arg	Ser	1.5	
95	1 1		٠,		100				٠.	1.05		4.*		٠,	110	. •	

ctg	cgc	ctg	ctg	gag	ccc	ttc	gag	gtg	cgc	acc	cgc	ctg	ctg	ggc	tgg		446
Leu	Arg	Leu	Leu	Glu	Pro	Phe	Glu	Val	Arg	Thr	Arg	Leu	Leu	Gly	Trp		
				115			-		120					125			-
gac	gac	cgc	gcg	ttc	tac	ctg	gag	gcg	cgc	ttt	gtc	agc	ctg	cgg	gac		494
Asp	Asp	Arg	Ala	Phe	Tyr	Leu	Glu	Ala	Arg	Phe	Val	Ser	Leu	Arg	Asp		
			130					135					140				
ggt	ttc	gtg	tgc	gcg	ctg	ctg	cgc	ttc	cgg	cag	cac	ctg	ctg	ggc	acc		542
Gly	Phe	Val	Cys	Ala	Leu	Leu	Arg	Phe	Arg	G1n	His	Leu	Leu	Gly	Thr		
		145					150					155		,			
tca	ccc	gag	cgc	gtc	gtg	cag	cac	ctg	tgc	cag	cgc	agg	gtg	gag	ccc		590
Ser	Pro	Glu	Arg	Val	Val	Gln	His	Leu	Cys	Gln	Arg	Arg	Val	G1u	Pro		
	160					165					170	•					
cct	gag	ctg	ccc	gct	gat	ctg	cag	cac	tgg	atc	tcc	tac	aac	gag	gcc		638
			Pro														
175					180			-		185					190		
agc	agc	cag	ctg	ctc	cgc	atg	gag	agt	ggg	ctc	agt	gat	gtc	acc	aag		686
															Lys	:	
		•		195					200								
gac	cag	tga	ccgc			acac	cgt	ctgc	cct	ggcc	acca	tc c	tggg	cctg	g		740
_	Gln		0080					- 0									
			caga	t aaa	ra o	tete	agee	a ta	etet	gtte	cag	ctee	agt	agcc	tcctga		800
															tctgtg		860
																	920
															tgecet		980
															actcat		
gtg	gġcc	tag	gtag	ggga	gg a	tggt	gcct	g ga	gcag	aggg	acc	caca	agt	gcct	cccgag		1040

cctagatcct g	gctcggacc	actgcaaggg	ccgaggcagg	gccagaccag	agcatcctgg	1100
gtacaggcct g	ggctctcca	gggcctgggc	ctgattcagg	tgcagtgggc	actcctgaag	1160
ggtcagagcg g	catcigcca	ggcagcccct	ctggcttccg	ctgaggtggt	tgcaggcctg	1220
gggcagagcc t	gggtggtca	gaggccgggg	ctagaggcag	atggaaggga	ggcatttgct	1280
gacagaggac g	gggcacccg	ggctcccact	gcagtcggcc	ttgcctcctc	ctcctcct	1340
acctccagtc a	ggctggacg	ggagggtagc	cttgtggctg	agaggggtca	gactaggtgg	1400
cacaggggct c	ctggaaaga	cagcaggett	cctgctgggc	gttcccttgt	tggagggaat	1460
agagtggggg _. t	gggactctg	caggggtgtc	cttgtccact	cgcacccctc	gccgcccacc	1520
agggccatgc t	ctgtgactt	gggctgatcc	ccaccettte	tgggcctaca	gcaccacagg	1580
cegetgtace e	ccttagagc	tgcccctctc	tggcctggcc	ggcagacgtc	ttcttaactc	1640
ctctgtcctc t	atattcagc	atgttccttg	tcagctgctg	ggccggccct	gccttgcgct	1700
agcagagcct c	tcctggcag	cttctcaggt	ctccctaatg	gagacaccag	gctactagga	1760
cactggctgg g	gccaccecc	teetgeetaa	tgcctcacct	tacagctggg	gaaactgagg	1820
cctggaatgg co	ccagagtca	ccaaggcaaa	gttggggctg	gtcccagcct	gaggctccag	1880
ctgatgccct ca	ageteecag	agagggggtg	ccccatctag	ctgggtgcag	gggtcactgc	1940
tigicagete ag	ggccctgt	gcccgcttgc	ctgttcccct	acatetgtge	ctgcacatcc	2000
agaactgeet, ee	ettgeeget (gcctccagga	agcccacctt	gagccagagt	caagggctgc	2060
ngcactgccc ga	itagaacac (gcccgccctc	actgctgitc	ttgccttaca	gccaccatgg	2120
gaaagetgea ac	ctttctgt t	tttatttaaa ·	gaaagcccaa	cattaaaggg	tilicatige	2180

<210> 118
<211> 1527
<212> DNA
<213> Homo sapiens ,
<220>

<22 1	> CI	os ·	•	•		٠.							•		•			
<222	2>**(1	03).	(1	305)) ′			*		. 0		1 +			τ.			
<400)> 11	18		٠										**				
agto	ttc	caig (ggcgg	gcggt	tg g	gtgto	ccgct	t tc	tete	tgċt	ctto	egaci	tgc a	accg	cacto	g	60	
cgc	gtgad	ccc	tgaci	tccc	cc ta	agtca	agcto	ago	eggt	gctg	cc a	atg g	gcg	tgg (egg	-	114	
			٠					,			N	let /	Ala '	Trp /	Arg	•		
												1						
cgg	ċgc	gaa	gcc	agc	gtc	ggg	gct	cgc	ggc	gtg	ttg	gct	ctg	gcg	ttg		162	
Arg	Arg	Glu	Ala	Ser	Val	Gly	Ala	Arg	Gly	Val	l.eu	Ala	Leu	Λla	Leu			
5					10					15					20			•
ctc	gcc	ctg	gcc	ctg	tgc	gtg	ccc	ggg	gcc	cgg	ggc	cgg	gct	ctc	gag		210	
Leu	Ala	Leu	Ala	Leu	Cys	Val	Pro	Gly	Ala	Arg	Gly	۸rg	Ala	Leu	G1u			
				25					30					35	٠			
tgg	ttc	tcg	gcc	gtg	gta	aac	atc	gag	tac	gtg	gac	cċg	cag	acc	aac		258	
Trp	Phe	Ser	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp	Pro	Gln	Thr	Asn			
	• •		40					45			ė		50	÷				
ctg	acg	gtg	tgg	agc	gťc	tcg	gag	agt	ggc	cġc	ttc	ggc	gac	agc	tcg		306	
Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe	Gly	Asp	Ser	Ser	•		
		55	٠.				60			•		65		•				
ccc	aag	gag	ggc	gcg	cat	ggc	ctg	gtg	ggc	gtc	ccg	tgg	gcg	ccc	ggc		354	
Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro	Trp	Ala	Pro	Gly			
	70					75					80				·			
gga	gac	ctc	gag	ggc	tgc	gcg	ccc	gac	acg	cgc	ttc	ttc	gtg	ссс	gag		402	
Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe	Phe	Val	Pro	Glu			
85					90					95					100			

ccc	ggc	ggc	cga	ggg	gcc	gcg	ccc	tgg	gtc	gcc	ctg	gtg	gct	cgt	ggg	450
Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu	Val	Ala	Arg	Gly	
				105			,		110					115		
ggc	tgc	acc	ttc	aag	gac	aag	gtg	ctg	gtg	gcg	gcg	cgg	agg	aac	gcc .	498
Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala	Arg	Arg	Asn	Ala	
			120					125					130			
tcg	gcc	gtc	gtc	ctc	tac	aat	gag	gag	cgc	tac	ggg	aac	atc	acc	ttg .	546
Ser	Ala	Val	Val	Leu	Tyr	Asn	G1 _u	Glu	Arg	Tyr	Gly	Asn	Ile	Thr	Leu	
		135					140					145				
ccc	atg	tct	cac	gcg	gga	aca	gga	aat	ata	gtg	gtc	att	atg	att	agc	594
Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val	lle	Met	Ile	Ser	
	150					155					160					
tat	cca	aaa	gga	aga	gaa	att	ttg	gag	ctg	gtg	caa	aaa	gga	att	cca	642
Tyr	Pro	Lys	Gly	Arg	Glu	Ile	Leu	Glu	Leu	Val	Gln	Lys	Gly	Ile	Pro	
165					170					175					180	
gta	acg	atg	acc	ata	ggg	gtt	ggc	acc	cgg	cat	gta	cag	gag	ttc	atc	690
Val	Thr	Met	Thr	Ile	Gly	Val	Gly	Thr	Arg	His	Val	Gln	Glu	Phe	Ile	
				185					190					195		
agc	ggt	cag	tct	gtg	gtg	ttt	gtg	gcc	att	gcc	ttc	atc	acc	atg	atg	738
Ser	Gly	Gln	Ser	Val	Val	Phe	Val	Ala	Ile	Ala	Phe	Ile	Thr	Met	Met	
	•		200					205					210			
att	atc	tcg	tta	gcc	tgg	cta	ata	ttt	tac	tat	ata	cag	cgt	ttc	cta	786
lle	Ile	Ser	Leu	Ala	Trp	Leu	Ile	Phe	Tyr	Tyr	Ile	Gln	Arg	Phe	Leu	
	• • •	215	e			•	220	. •	:	. •		225	٠		•	
tat	act	ggc	tet	cag	att	gga	agt	cag	agc	cat	aga	aaa	gaa	act	aag	834

Tyr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg	Lys	Glu	Thr	Lys		
	230	2			ye 1	235		• •	;		240	1	٠,	. • *	٧.		
aaa	gtt	att	ggc	cag	ctt	cta	ctt	cat	act	gta	aag	cat	gga	gaa	aag		882
Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Vaĺ	Lys	His	Gly	Glu	Lys		
245	1	1			250			٠.		255		٠.٠			260		
gga	att	gat	gtt	gat	gct	gaa	aat	tgt	gca	gtg	tgt	att	gaa	aat	ttc		930
Gly	Ile	Asp	Val	Asp	Λla	Glu	Asn	Cys	Ala	Val	Cys	Ile	Glu	Asn	Phe		
	٠	•		265				•	270			•	v	275		-	
aaa	gta	aag	gat	att	att	aga	att	ctg	cca	tgc	aag	cat	att	ttt	cat		978
Lys	Val	Lys	Asp	Ile	He	۸rg	Ile	Leu	Pro	Cys	Lys	His	He	Phe	His		•
	•		280					285					290				
aga	ata	tgc	att	gac	cca	tgg	ctt	ttg	gat	cac	cga	aca	tgt	cca	atg		1026
Arg	He	Cys	Ile	Asp	Pro	Trp	Leu	Leu	Asp	His	Arg	Thr	Cys	Pro	Met		
		295					300					305		•			
tgt	aaa	ctt	gat	gtc	atc	aaa	gcc	cta	gga	tat	tgg	gga	gag	cct	ggg	•	1074
Cys	Lys	Leu	Asp	Val	Hle	Lys	Ala	Leu	Gly	Tyr	Trp	Gly	Glu	Pro	Gly	· <u>·</u>	
	310	•			•	315					320			.*			
gat	gta	cag	gag	atg	cct	gct	cca	gaa	tct	cct	cct	gga	agg	gat	cca		1122
Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro	Gly	Arg	Asp	Pro	٠	
325	٠.		٠.		330	•	•			335		•			340		
gct	gca	aat	ttg	agt	cta	gct	tta	сса	gat	gat	gac	gga	agt	gat	gag		1170
Ala	Ala	Asn	Leu	Ser	Leu	Ala	Leu	Pro	Asp	Asp	Asp	Gly	Ser	Λsp	Glu	(1)	
	٠			345	•		••		350	•		٠.	٠,	355		•.	
agc	agt	cca	cca	tca	gcc	tcc	cct	gct	gaa	tct	gag	cca	cag	tgt	gat		1218
Ser	Ser	Pro	Pro	Ser	Ala	Ser	Pro	۸la	Glu	·Ser	Glů	Pro	Gln	Cys	Asp		

360 365 370	
ccc agc ttt aaa gga gat gca gga gaa aat acg gca ttg cta gaa gcc	1266
Pro Ser Phe Lys Gly Asp Ala Gly Glu Asn Thr Ala Leu Leu Glu Ala	
375 380 385	
ggc agg agt gac tct cgg cat gga gga ccc atc tcc tagcacac	1310
Gly Arg Ser Asp Ser Arg His Gly Gly Pro Ile Ser	
390 395 400	
gtgcccactg aagtggcacc aacagaagtt tggcttgaac taaaggacat tttattttt	1370
ttactttagc acataatttg tatatttgaa aataatgtat attattttac ctattagatt	1430
ctgatttgat atacaaagga ctaagatatt ttcttcttga agagactttt cgattagtcc	1490
tcatatattt atctactaaa atagagtgtt taccatg	1527
<210> 119	
<211> 1905	
<212> DNA	
<pre><213> Homo sapiens</pre>	
⟨220⟩	
<221> CDS	
<222> (125) (703)	
<400>.119	
gagcctaacc tagagtgctc gcagcagtct ttcagttgag cttggggact gcagctgtgg	60
ggagattica gigcatigee teeceigggi getetteate tiggatiiga aagitgagag	120
cage atg itt ige eea eig aaa eie ate eig eig eea gig ita eig gat	169
Met Phe Cys Pro Leu Lys Leu Ile Leu Leu Pro Val Leu Leu Asp	
25.1 S. B. S. C. S. S. C. S. S. C. S. S. L. S. S. L. S.	

tat	tcc	ttg	ggc	ctg	aat	gac	ttg	aat	gtt	tcc	ccg	cct	gag	cta	aca		217
Tyr	Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	G1u	Leu	Thr	•	
	ν.	4 * *		20		•	٠.		25					30			
gtc	cat	gtg	ggt	gat	tca	gct	ctg	atg	gga	tgt	gtt	ttc	cag	agc	aca		265
Val	His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr		
			35					40				• .	45			*.	
gaa	gac	aaa	tgt	ata	ttc	aag	ata	gac	tgg	act	ctg	tca	cca	gga	gag		313
Glu	Asp	Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu		
		50					55					60			٠		
cac	gcc	aag	gac	gaa	tat	gtg	cta	tac	tat	tac	tcc	aat	ctc	agt	gtg		361
His	Ala	Lys	Asp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val		
	65					70					75						
cct	att	ggg	cgc	ttc	cag	aac	cgc	gta	cac	ttg	atg	ggg	gac	aac	tta		409
Pro	lle	Gly	Λrg	Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Asn	Leu		
80					85					90					95		
tgc	aat	gat	ggc	tct	ctc	ctg	ctc	caa	gat	gtg	caa	gag	gct	gac	cag	٠.	457
Cys	Asn	Asp	Gly	Ser	Leu	Leu	Leu	Gln	Asp	Val	Gln	Glu	Ala	Asp	Gln	٠.	
				100					105					110	,		
gga	acc	tat	atc	tgt	gaa	atc	cgc	ctc	aaa	ggg	gag	agc	cag	gtg	ttc		505
Gly	Thr	Tyr	Ile	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe		
	٠		115					120					125	-			
aag	aag	gcg	gtg	gta	ctg	cat	gtġ	ctt	cca	gag	gag	ccc	aaa	gag	ctc	••••	553
Lys	Lys	Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu		
	٠.	130	ı				·135	1	. •	v = 1	. 30	140	• •				
atg	gtc	cat	glg	ggt	gga	t [.] t g	atı	cag	atg	gga	tgt	gtt	ttc	cag	agc		601

Met Val Hi	is Val Gly	Gly Leu Ile	Gln Met Gly	Cys Val Ph	e Gln Ser	
145	• • •	150	. •.	155 .		
aca gaa gt	tg aaa cac	gtg acc aag	gta gaa tgg	ata ttt tc	a gga cgg	649
Thr Glu Va	al Lys His	Val Thr Lys	Val Glu Trp	Ile Phe Se	r Gly Arg	
160		165	170		175	
cgc gca aa	ng gta aca	agg agg aaa	cat cac tgt	gtt aga ga	a ggc tct	697
Arg Ala Ly	s Val Thr	Arg Arg Lys	His His Cys	Val Arg Gl	u Gly Ser	
	180		185		190 .	
ggc tgatgg	gtatc aggac	aaagg tagaat	cagg cacatg	agga ggtgtt	gcaa	750
Gly						
gagectggge	tttggtgct	t atcagaacte	g gaccttetce	tagcaatttc	agctttctgg	810
tgggaaagat	aactccaat	g aagaacaaga	acaagaagat	gatgatgatg	cttaactttt	870
tggatgccga	tatgagatt	g tacatgagga	gattgtattt	cgttactacc	acaaactcag	930
gatgtctgcg	gagtactcc	c agagetgggg	ccacttccag	aatcgtgtga	acctggtggg	990
ggacattttc	cgcaatgac	g gttccatcat	gcttcaagga	gtgagggagt	cagatggagg	1050
aaactacacc	tgcagtatc	c acctagggaa	cclggtgttc	aagaaaacca	ttgtgctgca	1110
tgtcagcccg	gaagagcct	c gaacactggt	gaccccggca	gccctgaggc	ctctggtctt	1170
gggtggtaat	cagttggtg	a tcattgtggg	aattgtctgl	gccacaatcc	tgctgctccc	1230
tgttctgata	ttgatcgtg	a agaagacctg	tggaaataag	agttcagtga	attctacagt	1290
cttggtgaag	aacacgaag	a agactaatcc	agagataaaa	gaaaaaccct	gccattttga	1350
aagatgtgaa	ggggagaaa	c acatttactc	cccaataatt	gtacgggagg	tgatcgagga	1410
agaagaacca	agtgaaaaa	t cagaggccac	ctacatgacc	atgcacccag	tttggccttc	1470
tctgaggtca	gatcggaac	a actcacttga	aaaaaagtca	ggtgggggaa	tgccaaaaac	1530
acagcaagcc	·ttttgagaa	g aatggagagt	cccttcatct	cagcagcggt	ggagactctc	1590
tectatatat	atectagae	c actotaccae	tgattteaga	atanagatat	ooogotata	1650

ctcctgtctc attgtttggt caatacactg aagatggaga atttggagcc tggcag	agag 1710
actggacage tetggaggaa caggeetget gaggggaggg gageatggae ttggee	tctg 1770
gagtgggaca ctggccctgg gaaccaggct gagctgagtg gcctcaaacc ccccgt	tgga 1830
tcagaccctc ctgtgggcag ggttcttagt ggatgagtta ctgggaagaa tcagag	ataa 1890
aaaccaaccc aaatc	1905
<210> 120	: · · ·
<211> 998	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (50)(832)	
<400> 120	
gcacttgcca gccagtecge ccgtccggag cccggctcgc tggggcagc atg gcg	55
Profession Profession of the Page 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Met Ala	
	1
Met Ala	1
Met Ala	attg 103
Met Ala l ggg tcg ccg ctg ctc tgg ggg ccg cgg ggc ggc	attg 103 Leu
Met Ala l ggg tcg ccg ctg ctc tgg ggg ccg cgg gcc ggg ggc gtc ggc ctt t Gly Ser Pro Leu Leu Trp Gly Pro Arg Ala Gly Gly Val Gly Leu L	itg 103
ggg tcg ccg ctg ctc tgg ggg ccg cgg gcc ggg ggc gtc ggc ctt t Gly Ser Pro Leu Leu Trp Gly Pro Arg Ala Gly Gly Val Gly Leu L	ttg 103 Leu gcg 151
ggg tcg ccg ctg ctc tgg ggg ccg cgg gcc ggg ggc gtc ggc ctt t Gly Ser Pro Leu Leu Trp Gly Pro Arg Ala Gly Gly Val Gly Leu L 5 10 15 15 15 gtg ctg ctg ctc ggc ctg ttt cgg ccg ccc ccc	attg 103 Leu gcg 151
ggg tcg ccg ctg ctc tgg ggg ccg cgg gcc ggg ggc gtc ggc ctt t Gly Ser Pro Leu Leu Trp Gly Pro Arg Ala Gly Gly Val Gly Leu L 5 10 15 gtg ctg ctg ctc ggc ctg ttt cgg ccg ccc ccc	ttg 103 Leu gcg 151

35	÷	•			40		•			45			•		,. 50 ,		
gct	gag	act	ggc	gct	cct	cgc	cgc	ttc	cgg	cgg	tca	gtg	ccc	cga	ggt		247
Ala	Glu	Thr	Gly	Ala	Pro	Arg	Arg	Phe	Arg	Arg	Ser	Val	Pro	Arg	Gly		
		.•		55			-		60			٠.		65	·.•.		
gag	gcg	gcg	ggg	gcg	gtg	cag	gag	ctg	gcg	cgg	gcg	ctg	gcg	cat	ctg		295
Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala	His	Leu		
	- ,		70					75					80		* -		
ctg	gag	gcc	gaa	cgt	cag	gag	cgg	gcg	cgg	gcc	gag	gcg	cag	gag	gct		343
Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	Gln	Glu	Ala		
		85					90					95					
gag	gat	cag	cag	gcg	cgc	gtc	ctg	gcg	cag	ctg	ctg	cgc	gtc	tgg	ggc	:	391
Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	Gln	Leu	Leu	Arg	·Va]	Trp	Gly		
	100					105					110						
gcc	ccc	cgc	aac	tct	gat	ccg	gct	ctg	ggc	ctg.	gac	gac	gac	ccc	gac		439
Ala	Pro	Arg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp	Pro	Asp		
115	٠	·			120					125					130		
gcg	cct	gca	gcg	cag	ctc	gct	cgc	gct	ctg	ctc	cgc	gcc	cgc	ctt	gac	4	487
Ala	Pro	Ala	Ala	Gln	Leu	Ala	Arg	Ala	Leu	Leu	Arg	Ala	Arg	Leu	Asp		
				135			-		140					145			
cct	gcc	gcc	ctc	gca	gcc	cag	ctt	gtc	ccc	gcg	ccc	gtc	ccc	gcc	gcg		535
														Ala			
			150					155					160		, (, _		
gcg	ctc	cga	ccc	cgg	ccc	ccg	gtc	tac	gac	gac	ggc	ccc	gcg	ggc			583
														Gly			
		165		-			170	·	•	•	•	175					

gat	gct	gag	gag	gca	ggc	gac	gag	aca	ccc	gac	gtg	gac	ccc	gag	ctg	•	631
Asp	Ala	G1ú	Glu	Ala	G1y	Asp	Glu	Thr	Pro	Asp	Val	Asp	Pro	Glu	Leu	7.	
	180	•	•			185		. *			190						
ttg	agg	tac	ttg	ctg	gga	cgg	att	ctt	gcg	gga	agc	gcg	gac	tcc	gag		679
Leu	Arg	Tyr	Leu	Leu	Gly	Arg	Ile	Leu	Ala	Gly	Ser	Ala	Asp	Ser	Glu		
195		. •	•		200					205				÷	210		
ggg	gtg	gca	gcc	ccg	cgc	cgc	ctc	cgc	cgt	gcc	gcc	gac	cac	gat	gtg		727
Gly	Val	Ala	Ala	Pro	Arg	Arg	Leu	Arg	Arg	Ala	Ala	Asp	His	Asp	Val		
	. •			215			:		220	÷				225	•		
ggc	tct	gag	ctg	ccc	cct	gag	ggc	gtg	ctg	ggg	gcg	ctg	ctg	cgt	gtg		775
Gly	Ser	Glu	Leu	Pro	Pro	Glu	Gly	Val	Leu	Gly	Ala	Leu	Leu	Arg	Val		
			230					235					240		٠		
aaa	cgc	cta	gag	acc	ccg	gcg	ccc	cag	gtg	cct	gca	cgc	cgc	ctc	ttg		823
Lys	Arg	Leu	Glu	Thr	Pro	Ala	Pro	Gln	Val	Pro	Ala	Arg	Arg	Leu	Leu		
	··•	245					250					255	٠.,	•	€ '		
cca	ccc	t g	agca	ctgc	c cg	gatc	ccgt	gca	ccct	ggg	accc	agaa.	gt g	cccc	cgcca		880
Pro	Pro	٠.						,							• /		
	260			٠,			•							•	. •		
tcc	cgcc	acc	agga	ctgc	tc c	ccgc	cagc	a cg	tcca	gagc	aac	ttac	ccc	ggcc	agcca	g	940
ccc	tctc	acc	cgag	gatc	cc t	accc	cctg	g cc	ccac	aata	aac	atga	tct	gaag	cagc	• ?	998
	٠.			•		• •				•		. ,	. "	,	21.4	•	
<21	0> 1	21											. :		_		
<21	1> 3	37				•		• •						:	::		
<21	2> P	RT	:	1.	. 1		٠.٠	• ;	. •	, •	٠.	1.11	, :	55	J	• •	
(21	3> H	OMO	sani	ens													

The services the services

<40	0>.1	21							•:						,
Met	Thr	Ala	Gly	Gly	G1n	Ala	Glu	Ala	Glu	Gly	Ala	Gly	Gly	Glu	Pro
1	:	,		. 5	-				10			:		15	i
Gly	Ala	Ala	Arg	Leu	Pro	Ser	Arg	Val	Ala	Arg	Leu	Leu	Ser	Ala	Leu
			20					25					30		•
Phe	Tyr	Gly	Thr	Cys	Ser	Phe	Leu	Ile	Val	Leu	Val	Asn	Lys	Ala	Leu
		35					40					45			
Leu	Thr	Thr	Tyr	Gly	Phe	Pro	Ser	Pro	Ile	Phe	Leu	Gly	Ile	Gly	Gln
	50					55					60				
Met	Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser	Lys	Leu	Asn	Lys	Ile
65					70					75					80
He	His	Phe	Pro	Asp	Phe	Лsp	Lys	Lys	Ile	Pro	Val	Lys	Leu	Phe	Pro
		•		85					90					95	
Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	lle	Ser	Gly	Leu	Ser	Ser	Thr
			100					105					110		
Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	Arg	Lys	Phe	Thr	Ile
		115				٠.	120					125		•	-3 14
Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu	Gly	Lys	Gln	Tyr	Ser
	130					135			•		140				
Leu	Asn	lle	Ile	Leu	Ser	Val	Phe	Ala	Ile	Ile	Leu	Gly	Ala	Phe	Ile
145					150					155					160
Ala	Ala	Gly	Ser	Asp	Leu	Λla	Phe	Asn	Leu	Glu	Gly	Tyr	Ile	Phe	Va,1
				165					170				!	175	٠.,
Phe	Leu	Asn	Asp	Ile	Phe	Thr	Ala	Λla	Asn	Gly	Val	Tyr	Thr	Lys	Ģln
			180					185					190		

Lys	Met	Asp	Pro	Lys	Glu	Leu	Gly	Lys	Tyr	Gly	Val	Leu	Phe	Tyr	Asn
		195	1			,	200		7			205		••	•
Λla	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	lle	Ile	Ser	Val	Ser	Thr	Gly
	210		9 × 9	*. •	•	215			٠		220	٠.		,	****
Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp	Lys	Asn	Val	Val	Phe
225		٠.			230					235			•		240
Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	Phe	Leu	Leu	Met	Tyr
	1 .,			245			٠.		250	•				255	
Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	Leu	Thr	Thr	Ala	Val
			260		•			265					270		
Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr	Ile	Gly	Ile	Leu	Ile
	٠,	275					280					285		٠	E!,.
Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe	Val	Gly	Leu	Asn	Ile
	290	4 -				295					300			. •	
Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	Thr	Leu	Ser	Ser	Gln
305	1.	٠,	٠.		310	* .		,		315				• •	320
Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile	Cys	Leu	Asp	Leu	Lys
		10.4		325					330					335	56 I
Ser															; .;
	** =	14.				٠	. 1			. •	. • 3	•		. ,	****

<21	0> 1:	22 -		٠.		. •	* **		٠.		ı			i	1 .
<21	1> 2	36					٠.					• •			
<21	2> P	RT :	** *	14	,	. •	F. ;				٠.	-1	• •	•	;
<21	3> H	omo	sapi	ens				· · · · ·					11.1		

<40	0> 1	22	:					•		' <u>.</u>					**
Met	Ala	Glu	Ala	Glu	Glụ	Ser	Pro	Gly	Asp	Pro	Gly	Thr	Ala	Ser	Pro
1	·	٠.		. 5			•		10	ł				15	,
Arg	Pro	Leu	Phe	Ala	Gly	Leu	Ser	Asp	Ile	Ser	Ile	Ser	Gln	Asp	Ile
			20					25					30		
Pro	Val	Glu	Gly	Glu	Ile	Thr	Ile	Pro	Жet	Arg	Ser	Arg	Ile	Arg	Glu
		35					40					45			
Phe	Asp	Ser	Ser	Thr	Leu	Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg
	50					55					60				
Asp	Leu	Lys	Ala	Val	Gly	Lys	Lys	Phe	Жet	His	Val	Leu	Tyr	Pro	Arg
65					70					75					80
Lys	Ser	Asn	Thr	Leu	Leu	Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile
				85					90					95	
Leu	Cys	Val	Thr	Leu	Ala	Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser
			100					105					110		
Glu	Lys	Asp	Gly	Gly	Pro	Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp
		115					120			, .		125			2000
Phe	Gly	Ala	Val	Thr	lle	Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn
	130					135					140				
lle	Ser	Phe	Phe	Gln	Ser	Leu	Cys	Val	Leu	Gly	Tyr	Cys	Ile	Leu	Pro
145					150					155		•			160
Leu	Thr	Val	Ala	Met	Leu	He	Cys	Arg	Leu	Val	Leu	Leu	Ala	Asp	Pro :
	٠.	* •		165					170					175	
Gly	Pro	Val	Asn	Phe	Met	Val	Arg	Leu	Phe	Val	Val	Ile	Val	Met	Phe
			180			,	• :	185			•		190		.

Ala Trp Ser	Ile	Val	Ala	Ser	Thr	Ala	Phe	Leu	Λla	Asp	Ser	Gln	Pro	
195	٠.		·		200		;	ю	•	205	ē	•	(1)	•
Pro Asn Arg	Arg	Ala	Leu	Ala	Val	Tyr	Pro	Val	Phe	Leu	Phe	Tyr	Phe	
210		٠	. •	215					220		• •	٠	••:	:
Val Ile Ser	Trp	Met	Ile	Leu	Thr	Phe	Thr	Pro	Gln		٠			
225			230					235						
					•									
<210> 123		٠.,.		•			٠.	٠.				1	•	
<211> 560			٠.					s					*1	
<212> PRT	٠													
<213> Homo :	sapi	ens												
<400> 123			•		,	,								
Met Ala Ala	Pro	Ala	Glu	Ser	Leu	Arg	Arg	Arg	Lys	Thr	Gly	Tyr	Ser	
1		5					10			4		·15	•	
Asp Pro Glu	Pro	Glu	Ser	Pro	Pro	Ala	Pro	Gly	Arg	Gly	Pro	Ala	Gly	
• •	20	ř	•	t		25		ē .	. 8	٠,	30	· .		90.
Ser Pro Ala	His	Leu	His	Thr	Gly	Thr	Phe	Trp	Leu	Thr	Arg	Ile	Val	
35					40		• •			45		•	ņ:·	٠
Leu Leu Lys	Ala	Leu	Ala	Phe	Val	Tyr	Phe	Val	Ala	Phe	Leu	Val	Ala	
50	٠.	• .	-	55	•			,	60	٠,	•	٠.	13.5	* (
Phe His Gln	Asn	Lys	Gln	Leu	Ile	Gly	Asp	Arg	Gly	Leu	Leu	Pro	Cys	`•
65	٠.	16.4	70	٠.	. •		٠.	75	. •	٠.	٠, ٠	: .47	¹ 80	, , ,
Arg Val Phe	Leu	Lys	Asn	Phe	Gln	Gln	Tyr	Phe	Gln	Asp	Arg	Thr	Ser	
£ (1 1 1)	: '	85	. •	r *,	٠,٠	• • •	. 90		3	***		95	or'	, ' ·
Trp Glu Val	Phe	Ser	Tyr	Met	Pro	Thr	Ile	Leu	Trp	Leu	Met	Λsp	Trp	

			100			- 4		105	•	-		-	110		1.0	
Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	Ala	Leu	Leu	Gly	Leu	Gly	
	. :	115		•	. •		120					125				
Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	Ala	Asn	Met	Leu	Leu	Met	
	130					135					140					
Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	Val	Asn	Val	Gly	llis	Val	
145					150					155					160	
Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu	Leu	Glu	Thr	Gly	Phe	Leu	
				165					170					175		
Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	Ser	Arg	Leu	Pro	G1n	His	
			180					185					190			
Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	Gly	Phe	Arg	Trp	Leu	Ile	Phe	
		195					200					205				
Arg	lle	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	Ile	Arg	Gly	Λsp	Arg	Cys	
	210					215		-			220					
Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	Tyr	Glu	Thr	Gln	Pro	Met	
225			· ·		230		:			235					240	
Pro	Asn	Pro	Val	Ala	Tyr	Tyr	Leu	His	His	Ser	Pro	Trp	Trp	Phe	His	
				245					250					255		
Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	Glu	Leu	Leu	Val	Pro	Phe	
	•		260					265					270		•	
Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	Ile	His	Gly	Val	Leu	Gln	
		275					280					285	. •			
Ile	Leu	Phe	Gln	Ala	Val	Leu	Ile	Val	Ser	Gly	Asn	Leu	Ser	Phe	Leu	
	290	. :	rs. :	.:.		295	1.	,			300		5, 1			;

Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	Cys	Phe	Asp	Asp	Ala	Thr
305	ţ.	T	,	,	310	• •		;		315		.0	٠.	•	320
Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	Ser	Leu	Lys	Asp	Arg	Val
	. 9	11.1	-	325					330	,	•	٠.		335	*.
Leu	Gln	Met	Gln	Arg	Asp	lle	Arg	Gly	Ala	۸rg	Pro	Glu	Pro	Arg	Phe
	٠.		340		: • .			345		<i>,</i> ·			350	•	,
Gly	Ser	Val	Val	Arg	۸rg	Ala	Ala	Asn	Val	Ser	Leu	Gly	Val	Leu	Leu
		355					360					365			
Ala	Trp	l.eu	Ser	Val	Pro	Val	Val	Leu	Asn	Leu	Leu	Ser	Ser	Arg	Gln
	370					375					380				
Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	Ile	Val	Asn	Thr	Tyr	Gly
385	. 0				390		i			395			. •	,	400
Ala	Phe	Gly	Ser	He	Thr	Lys	Glu	Arg	Ala	Glu	Val	Ile	Leu	Gln	Gly
	•			405				÷	410			•	•	415	
Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp	Ala	Met	Trp	Glu	Asp	Tyr
	4 -		420					425					430	,	
Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	Arg	Arg	Pro	Cys	Leu	Ile
	,	435					440					445			
Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	Met	Trp	Phe	Ala	Ala	Phe
	450				٠.	455		ī			460				
Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	His	Leu	Ala	Gly	Lys	Leu
465	,, ,	• •			470		, · · ,	. •		475	,		•••		480
Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	Leu	Ala	His	Asn	Pro	Phe
	1			485		•	• • •	•	490			٠,٠	, . :	495	
Ala	Glv	Ara	Pro	Pro	Pro	Arg	Tro	Val	Arg	Glv	Glu	His	Tyr	Arg	Tyr

			500	•		•		505	٠.				510		1.1	
Lys	Phe	Ser	Arg	Pro	G ₁ y	Gly	Arg	His	Ala	Λla	Glu	Gly	Lys	Trp	Trp	
		515			• .		520					525		. • •		
Val	Arg	Lys	Arg	Ile	Gly	Ala	Tyr	Phe	Pro	Pro	Leu	Ser	Leu	Glu	Glu	
	530		8 1			535					540		•			
Leu	Arg	Pro	Tyr	Phe	Arg	Asp	Arg	Gly	Trp	Pro	Leu	Pro	Gly	Pro	Leu	
545					550					555					560	
	٠.															
<210	0> 1:	24 .														-
<21	1> 40	06														
<212	2> PI	RT														
<213	3> H	omo s	sapi	ens												
<400)>- 1:	24							•					,		;
Met	Ala	Glu	Asn	Gly	Lys	Asn	Cys	Asp	Gln	Arg	Arg	Val	Ala	Met	Asn	
1		,		. 5					10					15		
Lys	Glu	His	His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Ģlu	
	٠, ٠		20	٠,				25				.•	30			
Lys	Lys	Arg	Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg	
	• • •	35					40					45				
Gln	Pro	Leu	He	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile	
	50					55					60				.•	
Leu	Lys	Glu	Trp	Thr	Ser	Lys	Leu	Trp	His	Arg	Gln	Ser	Ile	Val	Val	
65		•	-	0	70	-			to t	75					80	٠.
Ser	Phe	Leu	Leu	Leu	Leu	Ala	Val	Leu	Ile	Ala	Thr	Tyr	Tyr	Val	Glu	
	n	,	· • .	85		, ; .	٠	417	90		•. •	· ·	· <u>· ·</u> · ·	95		

Gly	Val	His	Gln	Gln	Tyr	Val	G1n	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu
		. • •	100	,	-		• • •	105					110		
Tyr	Ala	Tyr	Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly
		115	٠	١			120		٠.	•	, . .	125	4.	· ·	: .
Thr	Gly	Leu	His	Ţhr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser
	130				, .	135				; -	140			٠	. •
Val	Thr	Leu	۸la	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro
145					150					155					160
Pro	Tyr	Pro	Asp	Gln	Ile	Ile	Cys	Pro	Λsp	Glu	Glu	Gly	Thr	G1u	Gly
				165					170					175	•
Thr	Ile	Ser	Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys
			180					185					190		• •
Met	Trp	Gly	Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met
		195					200				•	205			
Ala	Arg	Λla	Ala	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr
	210					215	•				220		Ι.		
Gln	Glu	Phe	Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe
225		-		• •	230		•			235				. :	- 240
Ala	Ser	Arg	Ala	Lys	Ļeu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys		
				245					250)			٠	255	•
Phe	Phe	Gly	Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp
		. :	260				•	265				Ė	270	•	1 7 A.
Leu															Phe
	ر پايدا	275		• (•	!	• -	280	,		•	٠	285	5	٠	: * 1=
Pho	Glv	Ala	Thr	Leu	He	Glv	Livs	Ala	He	He	Lys	Met	His	Ile	Gln

	290		٠.	٠.		295	. :	-			300	٠.	:			
Lys	Ile	Phe	Val	Ιlε	lle	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	Gln	Met	
305					310	i				315				,	320	
Val	Ala	Phe	Ile	Gly	Ala	Val	Pro	Gly	Ile	Gly	Pro	Ser	Leu	Gln	Lys	
				325	i				330					335		
Pro	Phe	Gln	Glu	Tyr	Leu	Glu	Ala	Gln	Arg	Gln	Lys	Leu	His	His	Lys	
			340					345					350			
Ser	Glu	Met	Gly	Thr	Pro	G1n	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe	
		355					360					365				
Glu	Lys	Leu	Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	Ile	Ile	
	370					375					380					
Asn	Ser	Met	Ala	Gln	Ser	Tyr	Ala	Lys	Arg	He	Gln	Gln	Arg	Leu	Asn	
385					390					395					400	
Ser	Glu	Glu	Lys	Thr	Lys											
				405												_
<210	> 12	5 .														
<211	> 45	3														
<212	> PR	Т														
<213	Ho	mo s	apie	ns												
<400	12	5												,	: "	
Met C	ly '	Val	Leu (Gly	Arg	Val	Leu	Leu '	Trp	Leu (Gln .	Leu	Cys .	Ala	Leu	
1															. ·.	
Thr C	iln <i>i</i>	Ala '	Val :	Ser	Lys										Val	
	:														2 I 22	

			_	_	٠.			T 1	n	C-	4.1	C1	C1	A 1 -	V = 1	
Ala				Ser												
	: L ·	··35	1			• •	· 40	•	•	• 1	ě	· 45	••	• •	3 +	• •
Glu	Phe	Pro	Ala	Asp	Lys	Met	Val	Ser	Val	Leu	Val	Gln	Glu	Gly	His	
	- 50	١.	٠.	.,	٠.	· 55	١.		•	:	60	. '	٠,		1.7	٠.
Ala	Val	Ser	Asp	Met	Leu	Leu	Pro	Leu	Asp	Gly	Glu	Leu	Val	Leu	Ala	
65		:	,		. 70	٠,				. 75			:		: 80	. 1
Ser	Gly	Ala	G1 y	Phe	Gly	Val	Ser	Asp	Val	Gly	Ser	His	Leu	Asp	Cys	
				85					90	٠.				95	٠,	Ā
Gly	Ala	Gly	Glu	Pro	Ala	Val	Phe	Arg	Asp	Ser	Asp	Arg	Phe	Ser	Trp	
			100					105					110			
His	Asp	Pro	His	Leu	Trp	Arg	Ser	Gly	Asp	Glu	Ala	Pro	Gly	Leu	Phe	
		115			_		120	٠.				125				÷
Phe	Val	Asp	Ala	Glu	Arg	Val	Pro	Cys	Arg	His	Аsp	Asp	Val	Phe	Phe	
	130					135					140	••	•			
Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro	
145					150					155					160	
Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	Leu	Gly	Arg	Thr	Phe	Thr	Arg	Asp	
				165					170					175	•	
Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe	
			180					185					190		. 1	• •
His	Gly	Pro	Gly	Ala	Leu	Ser	Val	Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro	
	:	195	: ·				200					205			74	
Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala	Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala	
				;•.									,			
Ala				Pro												

BNSDOCID: <WO 0112660A2 | >

and the second second second

225					230	٠.				235					240	
Ser	Ala	Leu	Arg	Pro	Gln	Gly	Gln	Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val	
				245			•		250				٠.	255		
Val	Leu	Leu	Thr	His	Gly	Pro	Ala	Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Λla	
			260					265					270			
Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly	Leu	Pro	Gln	Tyr	His	Gly	Leu	Gln	
		275					280					285				
Val	Ala	Val	Ser	Lys	Val	Pro	Arg	Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp	
	290					295					300					
Thr	Glu	Ile	Gln	Val	Val	Leu	Val	Glu	Asn	Gly	Pro	Glu	Thr	Gly	Gly	
305					310					315					320	
Ala	Gly	Arg	Leu	Λla	Arg	Ala	Leu	Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly	
				325					330			•		335		
Glu	Ala	Leu	Gly	Va]	Leu	Glu	Ala	Thr	Met	Arg	Glu	Ser	Gly	Ala	His	
		e.	340					345					350			
Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly	Leu	Λla	Gly	Gly	Val	Ala	Ala	Ala	
		355					360					365				
Val	Leu	Leu	Ala	Leu	Leu	Val	Leu	Leu	Val	Ala	Pro	Pro	Leu	Leu	Arg	
	370					375					380-					
Arg	Ala	Gly	Arg	Leu	Arg	Trp	Arg	Arg	His	Glu	Ala	Ala	Ala	Pro	Ala	
385					390					395					400	
Gly	Ala	Pro	Leu	Gly	Phe	Arg	Asn	Pro	Val	Phe	Asp	Val	Thr	Ala	Ser	
				405					410				,	415		
Glu	Glu	Leu	Pro	Leu	Pro	Arg	Arg	Leu	Ser	Leu	Val	Pro	Lys	Ala	Ala	
	1'(5) ³	.,,1	420		٠.	٧.		425				e i (i	430	, :	;	

Ala	Asp	Ser	Thr	Ser	His	Ser	Tyr	Phe	Val	Asn	Pro	Leu	Phe	Ala	Gly	•
	•	435		٠,	•	•	440		٠	. •		445			•	
Ala	Glu	Ala	Glu	Ala												
	450			0							٠.		,	٠		٠.
								Ţ.								
<210	o> 1	26			•										•	
<21	1> 5	9														
<21	2> F	RT		1										. •		
<21	3> H	lomo	sapi	ens												
<40	0> 1	26									,		•	:	-	
Met	Thr	Ser	Val	Ser	Thr	Gln	Leu	Ser	1.eu	Val	Leu	Met	Ser	Leu	Leu	
1	•			5					10					15		i
Leu	Val	Leu	Pro	Val	Val	Glu	Ala	Val	Glu	Ala	Gly	Asp	Ala	lle	Ala	
			20					25			,		30			٠
Leu	Leu	ı Leu	Gly	Val	Val	Leu	Ser	Ile	Thr	Gly	Ile	Cys	Ala	Cys	Leu	
		35					40					45		•	+ +	
Gly	Val	Tyr	Ala	Arg	Lys	Arg	Asn	Gly	Gln	Met						
	50)	,			55								٠,٠		
															٠,٠	
<21	0>:	127	٠, ٠											٠.	÷	•
<21	1>- :	210									٠,					•
<21	2> 1	PRT	:		÷.					•					er []	· .
<21	3>	Homo	sapi	ens								. •				
<40	0>	127	٠,	3 ,	,		٠, -	٠, ٠	,	٠.	,	'	.•	٠, ،	2 , 8 .	
Met	A1:	a Leu	Pró	Gln	Met	Cvs	Asp	Glv	Ser	His	l.eu	Ala	Ser	Thr	Leu	

1				5	5				10	•				15	5 .
Arg	Tyr	Cys	Met	Thr	· Val	Ser	Gly	Thr	Val	Val	Leu	Val	Ala	Gly	Thr
			20)				25					30)	
Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	G1 y	Asp	Ala	Thr	Ala	Gln	Pro	Gly
		35					40					45			
Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	Pro	Val	Pro	Glu	Gly	Pro	Ser	Pro
	50					55					60				
Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu
65					70					75					80
Leu	Leu	lle	Gly	Leu	Leu	Trp	Ser	Val	Lys	Ala	Ser	Ile	Pro	Gly	Pro
				85					90					95	
Pro	Arg	Trp	Asp	Pro	Tyr	llis	Leu	Ser	Arg	Asp	Leu	Tyr	Tyr	Leu	Thr
			100					105					110		
Val	Glu	Ser	Ser	Glu	Lys	Ģlu	Ser	Cys	Arg	Thr	Pro	Lys	Val	Val	Asp
		115					120					125			
He	Pro	Thr	Tyr	Glu	Glu	Ala	Val	Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro
	130					135					140				٠
Pro	Thr	Pro	Pro	Ala	Tyr	Pro	Thr	Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly
145					150					155					160
Ser	Arg	Asp	Ala	Leu	Leu	Ser	Thr	Gln	Pro	Ala	Trp	Pro	Pro	Pro	Ser
				165					170					175	. •
Tyr	Glu	Ser	Ile	Ser	Leu	Ala	Leu	Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr
	• *	•	180					185				,	190		
Pro	Ser	Ala	Thr	Arg	Ser	Cys	Ser	Gly	Leu	Val	Gln	Thr	Ala	Arg	Gly
	,	195					200					205			

Gly Ser 🐪 <210> 128 <211> 165 <212> PRT <213> Homo sapiens <400> 128 Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg Arg Arg Phe Leu Leu 10 5 Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu Gly Asp Ala Gly Pro 30 20 25 Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys Pro Leu Pro Arg Leu 45 35 40 Asn Ile His Ser Gly Phe Trp Ile Leu Ala Ser Ile Val Val Thr Tyr 55 60 50 Tyr Val Asp Phe Phe Lys Thr Leu Lys Glu Asn Phe His Thr Ser Ser 75 80 65 70 Trp Phe Leu Cys Gly Ser Ala Leu Leu Leu Val Ser Leu Ser Ile Ala 85 90 95 Phe Tyr Cys Ile Val Tyr Leu Glu Trp Tyr Cys Gly Ile Gly Glu Tyr 105 Asp Val Lys Tyr Pro Ala Leu Ile Pro Ile Thr Thr Ala Ser Phe Ile Ala Ala Gly Ile Cys Phe Asn Ile Ala Leu Trp His Val Trp Ser Phe

	130			•	٠.	135					140	٠.			
Phe	Thr	Pro	Leu	Leu	Leu	Phe	Thr	Gln	Phe	Met	Gly	Val	Val	Met	Phe
145	٠.	· · · · ·			150				•	155					1,60
Ile	Thr	Leu	Leu	Gly											9 •
	î.			165	, .									• ()	
<210)> 1:	29													
<21	> 10	62													
<212	2> PI	RT													
<213	3> Ho	omo :	sapi	ens											
<400)> 1:	29													
Met	Leu	Gln	Thr	Ser	Asn	Tyr	Ser	Leu	Val	Lęu	Ser	Leu	Gln	Phe	Leu
1				5					10					15	.*
Leu	Leu	Ser	Tyr	Asp	Leu	Phe	Val	Asn	Ser	Phe	Ser	Glu	Leu	Leu	Gln
			20					25					30		
Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp	Ile	Ala
		35					40					45			
Val	Leu	Phe	Asn	Ile	Ile	Ile	Ile	Phe	Leu	Met	Phe	Phe	Asn	Thr	Phe
	50					55					60	•	•		
Val	Phe	Gln	Ala	Gly	Leu	Val	Asn	Leu	Leu	Phe	His	Lys	Phe	Lys	Gly .
65					70					75					. 80
Thr	Ile	Ile	Leu	Thr	Ala	Val	Tyr	Phe	Ala	Leu	Ser	Ile	Ser	Leu	His .
	,			85		e			90					95	•
Val	Trp	Val	Met	Asn	Leu	Arg	Trp	Lys	Asn	Ser	Asn	Ser	Phe	Ile	Trp
		er!	100				, , .	105				4.57	110		

ENSULUTION NITSERNAS 1 -

Thr Asp Gly Leu Gln Met Leu Phe Val Phe Gln Arg Leu Ala Ala Val 120 125 Leu Tyr Cys Tyr Phe Tyr Lys Arg Thr Ala Val Arg Leu Gly Asp Pro 140 135 130 His Phe Tyr Gln Asp Ser Leu Trp Leu Arg Lys Glu Phe Met Gln Val 155 160 150 145 Arg Arg <210> 130 <211> 221 <212> PRT <213> Homo sapiens <400> 130 Met Ala Leu Ala Leu Ala Ala Leu Ala Ala Val Glu Pro Ala Cys Gly 🦠 🕒 1 5 10 15 Ser Arg Tyr Gln Gln Leu Gln Asn Glu Glu Glu Ser Gly Glu Pro Glu 25 30 · Gln Ala Ala Gly Asp Ala Pro Pro Pro Tyr Ser Ser Ile Ser Ala Glu 40 45 35 Ser Ala Ala Tyr Phe Asp Tyr Lys Asp Glu Ser Gly Phe Pro Lys Pro 50 55 60 Pro Ser Tyr Asn Val Ala Thr Thr Leu Pro Ser Tyr Asp Glu Ala Glu 80 65 70 75 Arg Thr Lys Ala Glu Ala Thr Ile Pro Leu Val Pro Gly Arg Asp Glu 90 ··· 85

Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	Asp	Asp	Λla	Asp	Gln	Leu	Arg	Ile	
		•	100					105					110			
Gly	Asn	Asp	Gly	Ile	Phe	Met	Leu	Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	
٠.	• .	115					120					125				
Asn	Trp	Ile	Gly	Phe	Phe	Leu	Ser	Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	
	130					135					140					
Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	
145					150		٠.			155					160	
Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	
				165					170					175		
Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	
			180					185				,	190			
Leu	Arg	Gly	Phe	lle	Asn	Tyr	Ala	Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	
		195					200					205				
Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	Val	Leu	Phe	Ile	Tyr				
	210					215					220				•	
														,	· .	
<210)> 13	31														
<21	> 10) i i														
<212	2> Di	NA												••		
<213	3> · Ho	omo s	sapi	ens												
<400)>.13	31 -			·	-	• -		•					•,		
atga	acgg	cg (gcgg	ccag	gc cį	gagge	ccgae	g ggo	eget	ggcg	ggga	agcc	egg (egeg	gcgcgg	60
ctgo	cct	ege (gggtg	ggcco	eg. go	tgc	tgtc	g gc	gctc	ttct	acg	ggaco	ctg	ctcc	ttcctc	120
atc	gtgci	ttg _: 1	tcaad	caag	gc go	etge	lgaco	cjaco	ctace	ggtt	tcc	egtea	acc a	aatt	tteett	180

BNSDOCID - WO DITREED AD L

ggaattgga	ac agat	ggcagc	caccataatg	atactatatg	tgtccaagct	aaacaaaatc	240
attcactto	c ctga	ttttga	taagaaaatt	cctgtaaagc	tgtttcctct	gcctctcctc	300
tacgttgga	ва асса	ataag	tggattatca	agcacaagta	aattaagcct	accgatgttc	360
accgtgcto	a ggaa	attcac	cattccactt	accttacttc	tggaaaccat	catacttggg	420
aagcagtat	t cact	caacat	catcctcagt	gtctttgcca	ttattctcgg	ggctttcata	480
gcagctggg	gt ctga	cttgc	ttttaactta	gaaggctata	ttttgtatt	cctgaatgat	540
atcttcaca	ag cago	aaatgg	agtttatacc	aaacagaaaa	tggacccaaa	ggagctaggg	600
aaa tacgga	ig tact	tttcta	caatgcctgc	ttcatgatta	tcccaactct	tattattagt	660
gtctccact	tg gaga	cctgca	acaggctact	gaattcaacc	aatggaagaa	tgttgtgttt	720
atcctacag	gt ttet	tettte	ctgttttttg	gggtttctgc	tgatgtactc	cacggttctg	780
tgcagctat	tt acaa	ttcagc	cctgacgaca	gcagtggttg	gagccatcaa	gaatgtatcc	840
gttgcctad	ea ttgg	galatt	aatcggtgga	gactacattt	tctctttgtt	aaactttgta	900
gggttaaat	ta tttg	catggc	agggggcttg	agatattcct	ttttaacact	gagcagccag	960
ttaaaacct	ta aacc	tgtggg	tgaagaaaac	atctgtttgg	atttgaagag	С	1011

<210> 132

<211> 708

<212> DNA

<213> Homo sapiens

<400> 132

atggcggaag cggaggagtc tccaggagac ccggggacag catcgcccag gccctgttt 60 gcaggccttt cagatatatc catctcacaa gacatccccg tagaaggaga aatcaccatt 120 cctatgagat ctcgcatccg ggagtttgac agctccacat taaatgaatc tgttcgcaat 180 accatcatgc gtgatctaaa agctgttggg aaaaaattca tgcatgttt gtacccaagg 240 aaaagtaata ctcttttgag agattgggat ttgtggggcc ctttgatcct ttgtgtgaca 300

ctcgcattaa	tgctgcaaag	agactctgca	gatagtgaaa	aagatggagg	gccccaattt	360
gcagaggtgt	ttgtcattgt	ctggtttggt	gcagttacca	tcaccctcaa	ctcaaaactt	420
cttggaggga	acatatcttt	ttttcagagc	ctctgtgtgc	tgggttactg	tatacttccc	480
ttgacagtag	caatgctgat	ttgccggctg	gtacttttgg	ctgatccagg	acctgtaaac	540
ttcatggttc	ggctttttgt	ggtgattgtg	atgtttgcct	ggtctatagt	tgcctccaca	600
gctttccttg	ctgatagcca	gcctccaaac	cgcagagccc	tagctgttta	tcctgttttc	660
ctgttttact	ttgtcatcag	ttggatgatt	ctcaccttta	ctcctcag		708

<210> 133

<211> 1680

<212> DNA

<213> Homo sapiens

<400> 133

atggcggcgc ccgcggagtc gctgaggagg cggaagactg ggtactcgga tccggagcct 60 gagicgccgc ccgcgccggg gcgiggcccc gcaggcictc cggcccatci ccacacgggc 120 accttctggc tgacccggat cgtgctcctg aaggccctag ccttcgtgta cttcgtggca 180 ttcctggtgg ctttccatca gaacaagcag ctcatcggtg acagggggct gcttccctgc 240 300 agagtgitcc tgaagaacit ccagcagtac ttccaggaca ggacgagcig ggaagtcttc 360 agetacatge ceaceateet etggetgatg gaetggteag acatgaacte caacetggae ttgctggctc ttctcggact gggcatctcg tctttcgtac tgatcacggg ctgcgccaac 420 atgcttctca tggctgccct gtggggcctc tacatgtccc tggttaatgt gggccatgtc 480 tggtactctt tcggatggga gtcccagctt ctggagacgg ggttcctggg gatcttcctg 540 tgccctctgt ggacgctgtc aaggctgccc cagcataccc ccacatcccg gattgtcctg 600 tggggcttcc ggtggctgat cttcaggatc atgcttggag caggcctgat caagatccgg 660 ggggaccggt gctggcgaga cctcacctgc atggacttcc actatgagac ccagccgatg 720

780	cttcgagacg	ggttccatcg	tcaccctggt	cctgcaccac	tggcatacta	cccaatcctg
840	ccggcgggcg	tcttcctcgg	cccttcttcc	gctcctggtg	acttcatcga	ctcagcaacc
900	cagcgggaac	tcctcatcgt	ttccaggccg	gcagatcctg	acggggtgct	tgcatcatcc
960	tgacgccacc	cctgctttga	cccagcctgg	gactatggtg	tgaactggct	ctcagcttcc
1020	gcagatgcag	accgagttct	agcctgaagg	tgggccaggc	tgttccctc	ctgggattct
1080	gcgtgcagcc	ccgtggtgcg	agattcggct	gcccgagccc	gaggggcccg	agggacatcc
1140	caacttgctg	ccgtggtcct	ctcagcgtgc	gctggcctgg	tgggcgtcct	aacgtetege
1200	cacttacggg	acatcgtcaa	aactctcttc	cacccacttc	aggtcatgaa	agctccaggc
1260	agccagctcc	tgcagggcac	gaggtgatcc	ggagcgggcg	gcatcaccaa	gccttcggaa
1320	gccaggtgac	tcaagtgcaa	gactacgagt	catgtgggag	ccccgatgc	aacgccagcg
1380	gctgatgtgg	gcctggactg	taccactacc	catctccccg	ggccctgcct	cccagcagac
1440	tggcaagctc	tccacctggc	gactggatca	сдадсаснас	tccagaccta	ttcgcggcct
1500	gggcaggccc	acccettege	ctggcacaca	cttgtccctg	acgecgagge	ctggccagcg
1560	tgggggcagg	tcagccgtcc	aggtacaagt	agagcactac	gggtccgagg	ccgcccaggt
1620	ccctccgctc	gagectactt	aagaggatcg	gtgggtgcgg	agggcaagtg	cacgccgccg
1680	cgggcccctc	ggcctctgcc	gaccgtgggt	ctacttcagg	agctgaggcc	agcctggagg

<210> 134

<211> 1218

<212> DNA

<213> Homo sapiens

<400> 134

atggcagaga atggaaaaaa ttgtgaccag agacgtgtag caatgaacaa ggaacatcat 60 aatggaaatt tcacagaccc clcttcagtg aatgaaaaga agaggaggga gcgggaagaa 120 aggcagaata ttgtcctgtg gagacagccg clcattacct tgcagtattt ttctctggaa 180

atccttgtaa	tcttgaagga	atggacctca	aaattatggc	atcgtcaaag	cattgtggtg	240
tctttttac	tgctgcttgc	tgtgcttata	gctacgtatt	atgttgaagg	agtgcatcaa	300
cagtatgtgc	aacgtataga	gaaacagttt	cttttgtatg	cctactggat	aggcttagga	360
attttgtctt	ctgttgggct	tggaacaggg	ctgcacacct	ttctgcttta	tctgggtcca	420
catatagcct	cagttacatt	agctgcttat	gaatgcaatt	cagttaattt	tcccgaacca	480
ccctatcctg	atcagattat	ttgtccagat	gaagagggca	ctgaaggaac	catttctttg	540
tggagtatca	tctcaaaagt	taggattgaa	gcctgcatgt	ggggtatcgg	tacagcaatc	600
ggagagctgc	ctccatattt	catggccaga	gcagctcgcc	tctcaggtgc	tgaaccagat	660
gatgaagagt	atcaggaatt	tgaagagatg	ctggaacatg	cagagtctgc	acaagacttt	720
gcctcccggg	ccaaactggc	agttcaaaaa	ctagtacaga	aagttggatt	ttttggaatt	780
ttggcctgtg	cttcaattcc	aaatccttta	tttgatctgg	ctggaataac	gtgtggacac	840
tttctggtac	ctttttggac	cttctttggt	gcaaccctaa	ttggaaaagc	aataataaaa	900
atgcatatcc	agaaaatttt	tgitataata	acattcagca	agcacatagt	ggagcaaatg	960
gtggctttca	ttggtgctgt	ccccggcata	ggtccatctc	tgcagaagcc	atttcaggag	1020
tacctggagg	ctcaacggca	gaagcttcac	cacaaaagcg	aaatgggcac	accacaggga	1080
gaaaactggt	tgtcctggat	gtttgaaaag	ttggtcgttg	tcatggtgtg	ttacttcatc	1140
ctatctatca	ttaactccat	ggcacaaagt	tatgccaaac	gaatccagca	gcggttgaac	1200
tcagaggaga	aaactaaa					1218

<210> 135

<211> 1359

<212> DNA

<213> Homo sapiens

<400> 135

atgggcgtcc tgggccgggt cctgctgtgg ctgcagctct gcgcactgac ccaggcggtc 60

120	ccagaaccgg	ccaactggag	gacgtcgcag	cacggacttc	gggtccccaa	tccaaactct
180	agtcctggtg	agatggtgtc	ccggcggaca	cgttgagttc	ccggcggcgc	accccgtgcg
240	cgtcctggct	atggggaact	ctgccgctgg	agacatgctc	acgccgtctc	caagaaggtc
300	cgcgggcgaa	tggactgtgg	ggctcgcacc	ctcagacgtg	gattcggcgt	tcaggagccg
360	gtggcgctct	acccgcacct	tcctggcatg	tgaccgcttc	tccgcgactc	cctgccgtct
420	ccgccacgac	gcgtgccctg	gacgccgagc	cttcttcgtg	cacctggcct	ggggacgagg
480	cgctagcccc	toggccctgg	cgcgtggggc	tgcctccttc	ttccgcctag	gacgtcttct
540	ggacctggct	cgcgcgacga	cggacgttca	ggctctgggc	gcagcatctc	gtgcgtgtcc
600	gctgagcgtg	ggccgggcgc	cgcttccacg	gggccgccta	cgtcccgcgc	gttttcctgg
660	ggcgcagccg	gcaacgcgga	tgcgtctgcg	cccgtcgggc	actgcgcgga	ggccccgagg
720	cgcctgccac	gccccaggc	ggcggccgct	ccagcccctg	eggeeetget	tggatctgcg
780	gttgctgacc	gagccgttgt	gacctctgtg	gcagtgctgt	ggccccaggg	agegeeetee
840	cttcctgggt	tactggacac	cgggcgcgga	ggagcggtac	catttgacct	cacggccccg
900	gtcccggctc	tgccacgctc	gtgtccaagg	gcaggtggcc	accacgggct	ctgcctcagt
960	gacaggcgga	atgggcccga	ctggtggaga	ccaggtggtg	atacggagat	cgtgaggccg
1020	ggccctcggc	agaacggcga	gaegtegeeg	cctcctggcg	tggcccgggc	gcggggcggc
1080	cgcggctggg	ggggcagctc	gcacacgtct	ggagtcgggc	cgaccatgcg	gtcctggagg
1140	ggtggcgccg	tggtcctgct	ctggcgctgc	tgccgtgctg	gcgtggcggc	ctggcgggcg
1200	ggccccggct	acgaggcggc	tggaggaggc	gaggctcagg	gccgcgcggg	ccgctgctgc
1260	ggagctgccc	cggcctccga	ttcgacgtga	caacccggtg	teggetteeg	ggagcgcccc
1320	ccacagttac	acagcaccag	gcggccgcag	ggttccgaag	ggctcagcct	ctgccgcggc
1359	** * *		gccgaggcc	cggggccgag	ctctgttcgc	ttcgtcaacc

<210> 136

Z2115: 177:

540

600

275/307

<212> DNA					. •	
<213> Homo	sapiens			. •		
<400> 136					. '	
atgacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gttgtggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
attacaggca	tttgtgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177
atgacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gttglggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
attacaggca	tttglgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177
<210> 137						
<211> 630		•			• • • •	
<212> DNA						
<213> Homo	sapiens					
<400> 137						
atggccctgc	cccagatgtg	tgacgggagc	cacttggcct	ccaccctccg	ctattgcatg	60
acagtcagcg	gcacagtggt	tctggtggcc	gggacgctct	gcttcgcttg	gtggagcgaa	120
ggggatgcaa	ccgcccagcc	tggccagctg	gccccaccca	cggagtatcc	ggtgcctgag	180
ggccccagcc	ccctgctcag	gtccgtcagc	ttcgtctgct	gcggtgcagg	tggcctgctg	240
ctgctcattg	gcctgctgtg	gtccgtcaag	gccagcatcc	cagggccacc	tcgatgggac	300
ccctatcacc	tctccagaga	cctgtactac	ctcactgtgg	agtcctcaga	gaaggagagc	360
tgcaggaccc	ccaaagtggt	tgacatecce	acttacgagg	aagccgtgag	cttcccagtg	420
gccgaggggc	ccccaacacc	acctgcatac	cctacggagg	aagccctgga	gccaagtgga	480

tegagggatg ceetgeteag cacceagece geetggeete cacceageta tgagageate

agccttgctc ttgatgccgt ttctgcagag acgacaccga gtgccacacg ctcctgctca

ggcctggttc ag	actgcacg	gggaggaagt				630
				y		
				•		
<210> 138		•			* * * * * * * * * * * * * * * * * * * *	
<211> 495			•	• • • •		
<212> DNA						
<213> Homo sa	piens	• •				
<400> 138						
atggactcct cg	cgggcccg	acagcagctc	cggcggcgat	tcctcctcct	gccggacgcc	60
gaggcccage tg	gaccgcga	gggtgacgcc	gggccggaaa	cctccacagc	tgttgagaaa	120
aaggagaaac ct	cttccaag	acttaatatc	cattetggat	tctggatttt	ggcatccatt	180
gttgtgacct at	tatgttga	cttctttaaa	accettaaag	aaaacttcca	cactagcagc	240
tggtttctct gt	ggcagtgc	cttgttgctt	gtcagtttat	caattgcatt	ttactgcata	300
gtctacctgg aa	tggtattg	lggaattgga	gaatatgatg	tcaagtatcc	agccttgata	360
cccattacca ct	gcctcctt	tattgcagca	ggaatttgct	tcaacattgc	tttatggcat	420
gtgtggtcgt tt	ttcactcc	attgttgttg	tttacccagt	ttatgggggt	tgtcatgttt	480
atcacactée tt	gga		•	•	and the second of the second	495
<210> 139	· ·			. =.	F •	
<211> 486					1 - 1 4 1	
<212> DNA				· · ·		
<213> Homo sa	piens	*			e	
<400> 139				٠.	. 4	
atécticaga co	agtaacta	cagcctggtg	ctctctctgc	agttcctgct	gctgtcctat	60
gacctctttg to	aattcctt	ctcagaactg	ctccaaaaga	ctcctgtcat	ccagcttgtg	120
ctcttcatca tc	caggatat ·	tgcagtcctc	ttcaacatca	tcatcatttt	cctcatgttc	180

ttcaacacct	tcgtcttcca	ggctggcctg	gtcaacctcc	tattccataa	gttcaaaggg	240
accatcatcc	tgacagetgt	gtactttgcc	ctcagcatct	cccttcatgt	ctgggtcatg	300
aacttacgct	ggaaaaactc	caacagette	atatggacag	atggacttca	aatgctgttt	360
gtattccaga	gactagcagc	agtgttgtac	tgctacttct	ataaacggac	agccgtaaga	420
ctaggcgatc	ctcacttcta	ccaggactct	ttgtggctgc	gcaaggagtt	catgcaagtt	480
cgaagg						486

<210> 140

<211> 663

<212> DNA

<213> Homo sapiens

<400> 140

atggcgttgg	cgttggcggc	gctggcggcg	gtcgagccgg	cctgcggcag	ccggtaccag	50
cagttgcaga	atgaagaaga	gtctggagaa	cctgaacagg	ctgcaggtga	tgctcctcca	120
ccttacagca	gcatttctgc	agagagcgca	gcatattttg	actacaagga	tgagtctggg	180
tttccaaagc	ccccatctta	caatgtagct	acaacactgc	ccagttatga	tgaagcggag	240
aggaccaagg	ctgaagctac	tatccctttg	gttcctggga	gagatgagga	ttttgtgggt	300
cgggatgatt	ttgatgatgc	tgaccagctg	aggataggaa	atgatgggat	tttcatgtta	360
actitittca	tggcattcct	ctttaactgg	attgggtttt	tcctgtcttt	ttgcctgacc	420
acttcagctg	caggaaggta	tggggccatt	tcaggatttg	gtctctctct	aattaaatgg	480
atcctgattg	tcaggttttc	cacctatttc	cctggatatt	ttgatggtca	gtactggctc	540
tggtgggtgt	tccttgtttt	aggctttctc	ctgtttctca	gaggatttat	caattatgca,	600
aaagt.tcgga	agatgccaga	aactttctca	aatctcccca	ggaccagagt	tctctttatt	660
tat 🚉						663

BNSDOCID: <WO 0112660A2 L >

<210> 141	
<211> 1622	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (78)(1091)	
<400> 141	
ctcttccccg geeeggeegg gegggaceag tgegeageeg gggetggegg geggegggt	60
ccgcggggcc gcaggag atg acg gcc ggc ggc cag gcc gag gcc gag ggc 11	10
Met Thr Ala Gly Gly Gln Ala Glu Ala Glu Gly	
10 5	
get gge ggg gag ece gge geg egg etg eee teg egg gtg gee egg li	58
Ala Gly Gly Glu Pro Gly Ala Ala Arg Leu Pro Ser Arg Val Ala Arg	*
20 25	
ctg ctg tcg gcg ctc ttc tac ggg acc tgc tcc ttc ctc atc gtg ctt 20	06
Leu Leu Ser Ala Leu Phe Tyr Gly Thr Cys Ser Phe Leu Ile Val Leu	
35 40	
gtc aac aag geg etg etg acc acc tac ggt ttc eeg tea eca att ttc 2	54
Val Asn Lys Ala Leu Leu Thr Thr Tyr Gly Phe Pro Ser Pro Ile Phe	
45 50 55	
ctt gga att gga cag atg gca gcc acc ata atg ata cta tat gtg tcc 30	02
Leu Gly Ile Gly Gln Met Ala Ala Thr Ile Met Ile Leu Tyr Val Ser	
60 65 70 75	
	50
<u> </u>	

Lys	Leu	Asn	Lys	He	Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	He	Pro		
	٠.			-80					85				٠.	90	-		
gta	aag	ctg	ttt	cct	ctg	cct	ctc	ctc	tac	gtt	gga	aac	cac	ata	agt	-	398
Val	Lys	Leu	Phe	Pro	Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser		
			95					100					105		-		
gga	tta	tca	agc	aca	agt	aaa	tta	agc	cta	ccg	atg	ttc	acc	gtg	ctc		446
Gly	Leu	Ser	Ser	Thr	Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu		
		110					115					120					
agg	aaa	ttc	acc	att	cca	ctt	acc	tta	ctt	ctg	gaa	acc	atc	ata	ctt	•	494
Arg	Lys	Phe	Thr	Ile	Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu		
	125					130					135						
ggg	aag	cag	tat	tca	ctc	aac	atc	atc	ctc	agt	gtc	ttt	gcc	att	att		542
Gly	Lys	Gln	Tyr	Ser	Leu	Asn	Ile	lle	Leu	Ser	Val	Phe	Ala	He	Ile		
140					145					150				•	155		
ctc	ggg	gct	ttc	ata	gca	gct	ggg	tct	gac	ctt	gct	ttt	aac	tta	gaa		590
Leu	Gly	Ala	Phe	Ile	Ala	Ala	GÌy	Ser	Asp	Leu	Ala	Phe	Asn	Leu	Glu		
	. 8			160		~			165					170			
ggc	tat	att	ttt	gta	Ltc	ctg	aat	gat	atc	ιtc	aca	gca	gca	aat	gga		638
Gly	Tyr	Ile	Phe	Val	Phe	Leu	Asn	Asp	Ile	Phe	Thr	Ala	Ala	Asn	Gly		
	-		175	. 1			•	180		•	•		185				
gtt	tat	acc	aaa	cag	aaa	atg	gac	cca	aag	gag	cta	ggg	aaa	tac	gga		686
Val	Tyr	Thr	Lys	Gln	Lys	Met	Asp	Pro	Lys	Glu	Leu	.Gly	Lys	Tyr	Gly		
		190	1 .			·•••	195		· .	. ,	•	200			t 1	;	
gta	ctt	ttc	tac	aat	gcc	tgc	ttc	atg	att	atc	cca	act	ctt	att	att .		734
Val	Leu	Phe	Tvr	Asn	Ala	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	lle	Ile		

		205		0		•	210	•	. 1	•	: .	215	- ,	÷	;	. • •		
а	gt	gtc	tcc	act	gga	gac	ctg	caa	cag	gct	act	gaa	tţc	aac	caa	tgg		782
S	er	Val	Ser	Thr	Gly	Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp	,	
2	20	:		٠.		225					230	:				235		
а	ag	aat	gtt	gtg	ttt	atc	cta	cag	ttt	ctt	ctt	tcc	tgt	ttt	ttg	ggg		830
L	ys	Asn	Val	Val	Phe	Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	-	
					240					245					250			
t	tt	ctg	ctg	atg	tac	tcc	acg	gtt	ctg	tgc	agc	tat	tac	aat	tca	gcc		878
P	he	Leu	Leu	Met	Tyr	Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala		
				255		ï			260					265				
c	tg	acg	aca	gca	gtg	gtt	gga	gcc	atc	aag	aat	gta	tcc	gtt	gcc	tac		926
L	.eu	Thr	Thr	Ala	Val	Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr		
			270					275					280				•	
а	tt	ggg	ata	tta	atc	ggt	gga	gac	tac	att	ttc	tct	ttg	tta	aac	ttt		974
I	le	Gly	He	Leu	Ile	Gly	Gly	Asp	Tyr	lle	Phe	Ser	Leu	Leu	Asn	Phe		
		285	•				290			•		295			,	٠.	. •	
g	ta	ggg	tta	aat	att	tgc	atg	gca	ggg	ggc	ttg	aga	tat	tcc	ttt	tta		1022
٧	al	Gly	Leu	Asn	Ile	Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu		
3	00	- 4	,		;	305	•				310		•		:	315	*	
а	ca	ctg	agc	agc	cag	tta	aaa	cct	aaa	cct	gtg	ggt	gaa	gaa	aac	atc	•	1070
7	hr	Leu	Ser	Ser	Gln	Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile		
		100	÷.		320	•		•	-	325		,		• •	330	W	•	
t	gt	ttg	gat	ttg	aag	agc	ta	aaga	gtct	gc a	gcag	gatt	g ga	gact	gact			1120
C	ys	Leu	Asp	Leu	Lys	Ser		÷ .	ř	. •	٠			. •	,	•••	٠٠.	
		: ,	441	335					٠.	. 1					.,,	, , ;		

tgtgactgcg ggctgggggg gcattcccag taggaatgtg aagccagagg tttcggattc	1180
gtgacateca ecceetggge aagtgagage atetgeaaaa tgeaaagaga actaceteat	1240
atgcaggatg agccaatggc agtctcaaga aatgtactcg ggcgacacct tacctgtgga	1300
aagcaaatct tttcaaaata agccactggg actcggtagg tggagcccca gctgctcttc	1360
tagggaccta tggggccttc gtggcatctc tgtgctgtgt gctggggagg aggttgatgt	1420
aatggtgact cttttctgat cagcaccttg gccgtgattc ccaaggtccc agccaaagca	1480
aagggccagt tgtttcagtt taaacagaca tgtctttagt ctaataaaat tagttaactg	1540
ccagtaaagt tattigitag cittigatgaa agciatgiig gtatciitcc ctaatcatca	1600
aagtaaataa aaaatcattt ct	1622
<210> 142	
<211> 2475	
<212> DNA	
<213> Homo sapiens	
<220> ·	
<221> CDS	
<222> (36) (746)	
<400> 142	
acctgtggga gcgacccggg agaaggaggg ccaag atg gcg gaa gcg gag gag	53
Met Ala Glu Ala Glu Glu	
28 1 1 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
tet eca gga gae eeg ggg aca gea teg eec agg eec etg ttt gea gge	101
Ser Pro Gly Asp Pro Gly Thr Ala Ser Pro Arg Pro Leu Phe Ala Gly	
15	
cti tca gai ala tcc atc tca caa gac atc ccc gia gaa gga gaa atc	149

Leu	Ser	Asp	lle	Ser	He	Ser	Gln	Asp	Ile	Pro	Val	Glu	Gly	Glu	Ile	
		- 25				•	30		٠.			35				
acc	att	cct	atg	aga	tct	cgc	atc	cgg	gag	ttt	gac	agc	tcc	aca	tta '	197
Thr	Ile	Pro	Met	Arg	Ser	Arg	He	Arg	Glu	Phe	Asp	Ser	Ser	Thr	Leu ·	
	· 40					· 45	÷			• .	50		•		:.	
aat	gaa	tct	gtt	cgc	aat	acc	atc	atg	cgt	gat	cta	aaa	gct	gtt	ggg	245
Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg	Λsp	Leu	Lys	Ala	Val	Gly ·	
55					-60					65				.=	70	
aaa	aaa	ttc	atg	cat	gtt	ttg	tac	cca	agg	aaa	agt	aat	act	ctt	ttg	293
Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg	Lys	Ser	Asn	Thr	Leu	Leu	
				75					80					85	•	
aga	gat	tgg	gat	ttg	tgg	ggc	cct	ttg	atc	ctt	tgt	gtg	aca	ctc	gca	341
Arg	Λsp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile	Leu	Cys	Val	Thr	Leu	Ala	
			90					95					100	* •	•	
tta	atg	ctg	caa	aga	gac	tct	gca	gat	agt	gaa	aaa	gat	gga	ggg	ccc '	389
Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser	Glu	Lys	Asp	Gly	Gly	Pro	
		105					110					115		-: . ',	•	
caa	ttt	gca	gag	gtg	ttt	gtc	att	gtc	tgg	ttt	ggt	gca	gtt	acc	atc	437
G1n	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp	Phe	Gly	Ala	Val	Thr	Ile:	
	120					125					130					
acc	ctc	aac	tca	aaa	ctt	ctt	gga	ggg	aac	ata	tct	ttt	ttt	cag	agc	485
Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn	Ile	Ser	Phe	Phe	Gln	Ser 📆	
135	٠	.:	•	• •	140	٠.				145		٠		i,	150	
ctc	tgt	gtg	ctg	ggt	tac	tgt	ata	ctt	ccc	ttg	aca	gta	gca	atg	ctg	533
יום 1	Cve	.Val	1 611	Glv	Tvr	Cvs	Tle	Leu	Pro	Leu	Thr	Val	Ala	Met	Leu	

ISDOCID: <WO = 0112660A2 1 >

			• =	155			•		160			,		165	:		
att	tgc	cgg	ctg	gta	ctt	ttg	gct	gat	cca	gga	cct	gta	aac	ttc	atg		581
Ile	Cys	Arg	Leu	Val	Leu	Leu	Ala	Asp	Pro	Gly	Pro	Val	Asn	Phe	Met		
			170			•		175				•	180		t.		
gtt	cgg	ctt	ttt	gtg	gtg	att	gtg	atg	ttt	gcc	tgg	tct	ata	gtt	gcc		629
Val	Arg	Leu	Phe	Val	Val	Ile	Val	Met	Phe	Ala	Trp	Ser	Ile	Val	Ala		
-	;	185					190	٠				195				٠.	
tcc	aca	gct	ttc	ctt	gct	gat	agc	cag	cct	cca	aac	cgc	aga	gcc	cta		677
Ser	Thr	Ala	Phe	Leu	Ala	Asp	Ser	Gln	Pro	Pro	Asn	Arg	Arg	Ala	Leu		
	200					205					210						
gct	gtt	tat	cct	gtt	ttc	ctg	ttt	tac	ttt	gtc	atc	agt	tgg	atg	att		725
Ala	Val	Tyr	Pro	Val	Phe	Leu	Phe	Tyr	Phe	Val	Ile	Ser	Trp	Met	Ile		
215					220					225					230		
ctc	acc	ttt	act	cct	cag	taaa	itca	ggaa	tgge	gaa a	ttaa	aaac	c a	gtgaa	ittga		780
Leu	Thr	Phe	Thr	Pro	Gln												
	•	· -		235						*				2			
aago	acat	ct g	gaaag	atgo	aat	tcac	cate	gag	cttt	gtc	tctg	gcco	ett a	atttg	tcta	a .	840
tttt	ggag	gt a	atttg	ataa	c tg	agta	ggtg	agg	agat	taa	aagg	gago	ca i	tatag	cact	g	900
tcac	ccct	ta t	ttga	ggaa	ic t _' g	atgt	ttga	aag	gctg	ttc	tttt	ctct	ct 1	taatg	tcat	t	960
tctt	taaa	aa t	acat	gtgo	a ta	ctac	acac	agt	atat	aat	gcct	cctt	aa g	ggcat	gatg	g 1	020
agto	acce	tg g	tcca	tttg	ggt	gaca	acca	gtg	actt	ggg	aagc	acat	ag a	ataca	tctta	a 1	080
caag	ttga	at a	ıgagt	tgat	a ac	tatt	ttca	gtt	ttga	gaa	tacc	agtt	.ca ę	ggtgc	agcto	e l	140
ttaa	acad	at t	gcct	tate	a ct	atta	gaat	atg	ccto	tct	tttc	ataa	at a	aaaaa	tacat	t !	200
ggto	tata	tc c	attt	tctt	t ta	tttc	tctc	tct	taag	ctt	aaaa	aggc	aa t	tgaga	gaggi	t l	260
tagg	agtg	gg t	tcat	acac	g ga	gaat	gaga	aaa	catg	cat	taac	caat	at t	caga	tttt	g l	320

BNSDOCID: <WO 0112660A2 L >

Later Service Statement

284/307

atcaggggaa	attctacact	tgttgcaaaa	aaaaaaaaa	aaaaagcaaa	gggcctctaa	1380
agaatcagcc	tctttggtcc	ctttgtgctg	tcaccttttt	gccatgttta	acagcatctt	1440
ggttggcact	ctagtcttaa	tcttgctcct	taactttgaa	tatgcagtct	aaaatgtcag	1500
tagtcaacat	gtaattttcc	tttgaaattc	tgaatattcc	agtgctggaa	cttatccaaa	1560
aagaagacct	cagaaactta	gattggtaga	tctctagtgc	atattatcat	gtgggcacct	1620
tetettaggg	tggaatgagg	cagtctggat	gcagcatagt	taaaaggagc	tgtttaatat	1680
tetetgtagt	ctggcctctt	aactagaaag	taaagctaaa	tcagaagcct	gtatttaacc	1740
atgtgaacag	ggagggattt	agtgttctga	tggctgatta	atagaacagc	tagatactta	1800
gagcatgacg	tgggatggga	tgagtttaca	gctgctgcct	tttcatggtg	agcttagcag	1860
ttttctcatt	agatgtgttt	ttttgggttg	gggaatagca	atttatttta	ttgattttag	1920
actttatcaa	gctaattagc	tcccctttag	ataagtacat	gttgcacatg	tgcacctact	1980
tgtaatctca	gatatttatg	cacacaagtg	tgaaggtttt	tcagggagca	gagcatctgg	2040
gacaggctga	ttctgagcta	aacagggctc	ctttaaggca	atatgaactg	ttgccttcta	2100
taaattgcac	attgaggaac	tctaatagac	aaagattagg	tgtcaggcag	aaaacactca	2160
ttgtaaatat	actattagtt	gataaacata	ggactttctt	attccccagt	ttttctttat	2220
catataattt	aaatatttat	tcattttgta	tttaaagact	acctacacat	agatatatga	2280
ttccaaagtc	atactttctc	catccccaca	ttagccaagt	gaatacaggg	ccaaatgggt ·	2340
tcttggaatg	ataataacaa	agcattacaa	agtgggtccc	cttggttcca	gccttgtcca	2400
gagtttttgg	ttatatattt	ctatttatta	caatttacct	tttaaattgt	aaaataaacc	2460
tttgtgtgga	cagag			*	** ***	2475
:					e , 1.1	
<210> 143					, i max	
<211> 1739						

<212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (21)(1703)
<400>143 · · · · · · · · · · · · · · · · · · ·
tgcgccctga cagcccaaca atg gcg gcg ccc gcg gag tcg ctg agg agg
Met Ala Ala Pro Ala Glu Ser Leu Arg Arg
1 5 10
egg aag act ggg tac teg gat eeg gag eet gag teg eeg eeg eeg eeg 9
Arg Lys Thr Gly Tyr Ser Asp Pro Glu Pro Glu Ser Pro Pro Ala Pro
15 20 25
ggg cgt ggc ccc gca ggc tct ccg gcc cat ctc cac acg ggc acc ttc 14
Gly Arg Gly Pro Ala Gly Ser Pro Ala His Leu His Thr Gly Thr Phe
30 35 40
tgg ctg acc cgg atc gtg ctc ctg aag gcc cta gcc ttc gtg tac ttc 19
Trp Leu Thr Arg Ilc Val Leu Leu Lys Ala Leu Ala Phe Val Tyr Phe
45 50
gtg gca ttc ctg gtg gct ttc cat cag aac aag cag ctc atc ggt gac 24
Val Ala Phe Leu Val Ala Phe His Gln Asn Lys Gln Leu Ile Gly Asp
60 65 70
agg ggg ctg ctt ccc tgc aga gtg tlc ctg aag aac ttc cag cag tac . 29
Arg Gly Leu Leu Pro Cys Arg Val Phe Leu Lys Asn Phe Gln Gln Tyr
75 80 85 90 .
tte cag gae agg acg age tgg gaa gie tte age tae atg eec ace ate . 33
Phe Gln Asp Arg Thr Ser Trp Glu Val Phc Ser Tyr Met Pro Thr Ile
Sec. 105

ctc	tgg	ctg	atg	gac	tgg	tca	gac	atg	aac	tcc	aac	ctg	gac	ttg	ctg'	•	386
Leu	Trp	Leu	Met	Asp	Trp	Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	•	
			110					115				٠.	120	٠٠,			٠
gct	ctt	ctc	gga	ctg	ggc	atc	tcg	tct	ttc	gta	ctg	atc	acg	ggc	tgc '		434
Ala	Leu	Leu	Gly	Leù	Gly	Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	.•	
		125		٠٠.		. •	130		٠.,	٠,	:	135					
gcc	aac	atg	ctt	çtc	atg	gct	gcc	ctg	tgg	ggc	ctc	tac	atg	tcc	ctg		482
۸la	Asn	Met	Leu	Leu	Met	Ala	Ala	Leu	Trp	Glý	Leu	Tyr	Met	Ser	Leu	· ·	
	140					145				٠.	150	ţ.	• .	٠,,	2.7.3		
gtt	aat	gtg	ggc	cat	gtc	tgg	tac	tct	ttc	gga	tgg	gag	tcc [.]	cag	ctt		530
Val	۸sn	Val	Gly	His	Val	Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu		
155	٠.				160				,	165				ı	170		
ctg	gag	acg	ggg	ttc	ctg	ggg	atc	ttc	ctg	tgc	cct	ctg	tgg	acg	ctg		578
Leu	Glu	Thr	Gly	Phe	Leu	Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu		
	٠.			175					180				•	185	• :		
tca	agg	ctg	ccc	cag	cat	acc	ccc	aca	tcc	cgg	att	gtc	ctg	tgg	ggc		626
Ser	Arg	Leu	Pro	Gln	His	Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	Gly.	• •	
	10 1		190		٠.			195				٠.	200	:	· .		
ttc	cgg	tgg	ctg	atc	ttc	agg	atc	atg	ctt	gga	gca	ggc	ctg	atc	aag		674
Phe	Arg	Trp	Leu	Ile	Phe	Arg	Ile	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	•-	
		205		٠,	;		210	• .				215		•,	11.	٠.	
atc	cgg	ggg	gac	cgg	tgc	tgg	cga	gac	ctc	acc	tgc	atg	gac	ttc	cac	• .	722
ile	Arg	Gly	Asp	Arg	Cys	Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	:	
													,		1 1		
tat	gag	acc	cag	CCS	atg	ccc	aat	cct	gtg	gca	tac	tac	ctg	cac	cac		770

ıyr	GIU	ınr	GIN	Pro	Met	Pro	Asn	Pro	Vai	Ala	lyr	lyr	Leu	HIS	HIS	
235	• •	.*	,	٠.	240	-			• .	245					250	
tca	ccc	tgg	tgg	ttc	cat	cgc	ttc	gag	acg	ctc	agc	aac	cac	ttc	atc	818
Ser	Pro	Trp	Trp	Phe	His	Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	
				255					260					265		
gag	ctc	ctg	gtg	ccc	ttc	ttc	ctc	ttc	ctc	ggc	cgg	cgg	gcg	tgc	atc	866
Glu	Leu	Leu	Val	Pro	Phe	Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	
	٠.		270					275					280		,	
atc	cac	ggg	gtg	ctg	cag	atc	ctg	ttc	cag	gcc	gtc	ctc	atc	gtc	agc	914
Ile	His	Gly	Val	Leu	Gln	Ile	Leu	Phe	G ln	Ala	Val	Leu	lle	Val	Ser	
		285					290					295				
ggg	aac	ctc	agc	ttc	ctg	aac	tgg	ctg	act	atg	gtg	ccc	agc	ctg	gcc	962
Gly	Asn	Leu	Ser	Phe	Leu	Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	
	300					305					310					
tgc	ttt	gat	gac	gcc	acc	ctg	gga	ttc	ttg	ttc	ccc	tct	ggg	cca	ggc	1010
Cys	Phe	Asp	Asp	Ala	Thr	Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	
315		•			320					325					330	
agc	ctg	aag	gac	cga	gtt	ctg	cag	atg	cag	agg	gac	atc	cga	ggg	gcc	1058
Ser	Leu	Lys	Asp	Arg	Val	Leu	Gln	Met	Gln	Arg	Asp	Iļe	Arg	Gly	Ala	
	· •	•		335					340					345	+ + 1 +	
cgg	ссс	gag	ccc	aga	ttc	ggc	tcc	gtg	gtg	cgg	cgt	gca	gcc	aac	gtc	1106
Arg	Pro	Glu	Pro	Arg	Phe	Gly	Ser	Val	Val	Arg	Arg	Ala	Ala	Asn	Val	
	.· ·	,	350		•	**		355	. •		r		360	•		
tcg	ctg	ggc	gtc	ctg	ctg	gcc	tgg	ctc	agc	gtg	ссс	gtg	gtc	ctc	aac	1154
Ser	Leu	Glv	Val	Leu	Leu	Ala	Trn	Leu	Ser	Val	Pro	Val	Val	l.eu	Asn	

	•	365		٠.		٠.	370		•			375	12		٠.,٠	ė	
ttg	ctg	agc	tcc	agg	cag	gtc	atg	aac	acc	cac	ttc _.	aac	tct	ctt	cac	•	1202
Leu	Leu	Ser	Ser	Arg	G1n	Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His		
	380	••	•			385	٠				390	,	:		x !		
atc	gtc	aac	act	tac	ggg	gcc	ttc	gga	agc	atc	acc	aag	gag	cgg	gcg		1250
Ile	Val	Asn	Thr	Tyr	Gly	Ala	Phe	Gly	Ser	lle	Thr	Lys	Glu	Arġ	Ala		
395					400					405				٠	410	. '	
gag	gtg	atc	ctg	cag	ggc	aca	gcc	agc	tcc	aac	gcc	agc	gcc	ccc	gat		1298
Glu	Val	Ile	Leu	Gln	Gly	Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp		
				415					420					425			
gcc	atg	tgg	gag	gac	tac	gag	ttc	aag	tgc	aag	cca	ggt	gac	ccc	agc		1346
Ala	Met	Trp	G]lu	Asp	Tyr	Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	-	
		•	430				•	435					440		•		
aga	cgg	ccc	tgc	ctc	atc	tcc	ccg	tac	cac	tac	cgc	ctg	gac	tgg	ctg		1394
Arg	Arg	Pro	Cys	Leu	Ile	Ser	Pro	Tyr	His	Tyr	Arg	Leu	Λsp	Trp	Leu	•	•
	• • •	445					450					455		:			
atg	tgg	ttc	gcg	gcc	ttc	cag	acc	tac	gag	cac	aac	gac	tgg	atc	atc		1442
Met	Trp	Phe	Ala	Ala	Phe	Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	lle	Ile		
	460					465					470	+ .		. •	Fres *		
cac	ctg	gct	ggc	aag	ctc	ctg	gcc	agc	gac	gcc	gag	gcc	ttg	tcc	ctg		1490
His	Leu	Ala	Gly	Lys	Leu	Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu		
475					480	•				485		٠			490	-	
ctg	gca	cac	aac	ccc	ttc	gcg	ggc	agg	ccc	ccg	ccc	agg	tgg	gtc	cga		1538
Leu	Ala	His	Asn	Pro	Phe	Ala	Gly	Arg	Pro	Pro	Pro	Arg	Trp	Val	Arg	٠,٠	
	7:. ,	٠	•	195			. • •		500	. •	· (•	<u>:</u> ·	•1	505	*}:+	· ·	

gga gag cac tac agg tac aag ttc agc cgt cct ggg ggc agg cac gcc 1586	
Gly Glu His Tyr Arg Tyr Lys Phe Ser Arg Pro Gly Gly Arg His Ala	
510 515 520	
gcc gag ggc aag tgg tgg gtg cgg aag agg atc gga gcc tac ttc cct 1634	
Ala Glu Gly Lys Trp Trp Val Arg Lys Arg Ile Gly Ala Tyr Phe Pro	
525 530 535	
ccg ctc agc ctg gag gag ctg agg ccc tac ttc agg gac cgt ggg tgg 1682	
Pro Leu Ser Leu Glu Glu Leu Arg Pro Tyr Phe Arg Asp Arg Gly Trp	
540 545 550	
cct ctg ccc ggg ccc ctc tagacgtgca ccagaaataa aggcgaagac 1730	
Pro Leu Pro Gly Pro Leu	
555 560	
ccagccccc 1739	
<210> 144	
<211> 2005	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (107) (1327)	
<400> ,1.44	
ggagcccagc ggcgggtgtg agagtccgta aggagcagct tccaggatcc tgagatccgg 60	
agcagccggg gtcggagcgg ctcctcaaga gttactgatc tatgaa atg gca, gag 115	
Met Ala Glu	

	* 4	٠.	٠.	• 5			٠,	•	**				1 -	•	` ,	-	
aat	gga	aaa	aat	tgt	gac	cag	aga	cgt	gta	gca	atg	aac	aag	gaa	cat	:	163
Asn	Gly	Lys	Asn	Cys	Asp	Gln	Arg	Arg	Val	۸la	Met	Asn	Lys	Glu	His		
	- 5				٠.	10					15		. •				
cat	aat	gga	aat	ttc	aca	gac	ccc	tct	tca	gtg	aat	gaa	aag	aag	agg		211
His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Glu	Lys	Lys	Arg		
20	<i>i</i> •	·			25			•		30					35		
agg	gag	cgg	gaa	gaa	agg	cag	aat	att	gtc	ctg	tgg	aga	cag	ccg	ctc		259
Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg	Gln	Pro	Leu		
				40					45					50			
att	acc	ttg	cag	tat	ttt	tct	ctg	gaa	atc	ctt	gta	atc	ttg	aag	gaa		307
Ile	Thr	Leu	G1n	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile	Leu	Lys	Glu		
			55					60					65				
tgg	acc	tca	aaa	tta	tgg	cat	cgt	caa	agc	att	gtg	gtg	tct	ttt	tta		355
Trp	Thr	Ser	Lys	Leu	Trp	His	Arg	Gln	Ser	Ile	Val	Val	Ser	Phe	Leu	•	
		70					75					80					
ctg	ctg	ctt	gct	gtg	ctt	ata	gct	acg	tat	tat	gtt	gaa	gga	gtg	cat		403
Leu	Leu	Leu	Ala	Val	Leu	Ile	Ala	Thr	Tyr	Tyr	Val	Glu	Gly	Val	His		
	85					90					95						
caa	cag	tat	gtg	caa	cgt	ata	gag	aaa	cag	ttt	ctt	ttg	tat	gcc	tac		451
Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu	Tyr	Ala	Tyr		
100					105					110				:	1.15		
tgg	ata	ggc	tta	gga	att	ttg	tct	tct	gtt	ggg	ctt	gga	aca	ggg	ctg		499
Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly	Thr	Gly	Leu		
	٠			120					125					130			

cac	acc	ttt	ctg	ctt	tat	ctg	ggt	cca	cat	ata	gcc	tca	gtt	aca	tta	547
His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser	Val	Thr	Leu	
	٠		135					140		-			145			
gct	gct	tat	gaa	tgc	aat	tca	gtt	aat	ttt	ccc	gaa	cca	ccc	tat	cct	595
Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro	Pro	Tyr	Pro	
		150					155					160				
gat	cag	att	att	tgt	cca	gat	gaa	gag	ggc	act	gaa	gga	acc	att	tct	643
Asp	Gln	lle	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly	Thr	Ile	Ser	
	165					170					175					
ttg	tgg	agt	atc	atc	tca	aaa	gtt	agg	att	gaa	gcc	tgc	atg	tgg	ggt	691
Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys	Met	Trp	Gly	
180	. • .				185					190					195	
atc	ggt	aca	gca	atc	gga	gag	ctg	cct	cca	tat	ttc	atg	gcc	aga	gca	739
Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met	Ala	۸rg	Ala	
				200					205					210	•	
gct	cgc	ctc	tca	ggt	gct	gaa	cca	gat	gat	gaa	gag	tat	cag	gaa	ttt	787
Ala	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	G1u	Tyr	Gln	Glu	Phe	
			215					220					225			
gaa	gag	atg	ctg	gaa	cat	gca	gag	tci	gca	caa	gac	ttt	gcc	tcc	cgg	835
Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Λsp	Phe	Ala	Ser	Arg	
		230					235					240			·	
gcc	aaa	ctg	gca	ġtt	caa	aaa	cta	gta	cag	aaa	gtt	gga	ttt	ttt	gga	883
Ala	Lys	Leu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys	Val	Gly	Phe	Phe	Gly	
	245		. •	: 8	i,	250	•	,-		- ,	255			. ~	· (1)	
att	ttg	RCC	tet	gct	tca	att	cca	aat	cct	tta	ttt	gat	ctg	gct	gga	931

	Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp	Leu	Ala	Gly		
	260				٠	265	•			•	270		i	* 1	•	275	. :	
	ata	acg	tgt	gga	cac	ttt	ctg	gta	cct	ttt	tgg	acc	ttc	ttt	ggt	gca		979
,	Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe	Phe	Gly	Ala		
			. 9		280	· ·				285		•			290	• 1, 1		
	acc	cta	att	gga	aaa	gca	ata	ata	aaa	atg	cat	atc	cag	aaa	att	ttt		1027
	Thr	Leu	Ile	Gly	Lys	Ala	Ile	Ile	Lys	Met	His	Ile	Gln	Lys	Ile	Phe		
				295		,			300		٠,			305			٠.	
	gtt	ata	ata	aca	ttc	agc	aag	cac	ata	gtg	gag	caa	atg	gtg	gct	ttc		1075
	Val	Ile	Ile	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	Gln	Met	Val	Ala	Phe		
			310					315					320					
	att	ggt	gct	gtc	ccc	ggc	ata	ggt	cca	tct	ctg	cag	aag	cca	ttt	cag	•	1123
	Ile	Gly	Ala	Val	Pro	Gly	Ile	Gly	Pro	Ser	Leu	Gln	Lys	Pro	Phe	Gln		
		325		•			330					335						
	gag	tac	ctg	gag	gct	caa	cgg	cag	aag	ctt	cac	cac	aaa	agc	gaa	atg		1171
	Glu	Tyr	Leu	Glu	Ala	Gln	Arg	Gln	Lys	Leu	His	His	Lys	Ser	Glu	Met		
	340					345				•	350				•	355		
	ggc	aca	cca	cag	gga	gaa	aac	tgg	ttg	tcc	tgg	atg	ttt	gaa	aag	ttg		1219
	Gly	Thr	Pro	Gln	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe	Glu	Lys	Leu		
		- 1	* .		360		. •			365			. •	٠.	370	1-	•	
	gtc	gtt	gtc	atg	gtg	tgt	tac	ttc	atc	cta	tct	atc	att	aac	tcc	atg		1267
	Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	lle	Ile	Asn	Ser	Met		
		٠.	••	375		,	* * *		380	٠		٠.	*	385		•••		
	gca	caa	agt	tat	gcc	aaa	cga	atc	cag	cag	cgg	ttg	aac	tca	gag	gag		1315
	Ala	Gln	Ser	Tyr	Ala	Lys	Arg	He	∙Gln	Gln	Arg	Leu	Asn	Ser	Glu	GTu	:	

390	395		400		
aaa act aaa taagta gaga	aagttt taa	actgcag aaa	attggagt gga	atgggttc	1370
Lys Thr Lys				•	•
405	•	.);			
tgccttaaat tgggaggact c	caagccggg	aaggaaaatt	cccttttcca	acctgtatca	1430
atttttacaa ctttttcct g	gaaagcagtt	tagtccatac	tttgcactga	catactttt	1490
ccttctgtgc taaggtaagg t	atccaccct	cgatgcaatc	caccttgtgt	tttcttaggg	1550
tggaatgtga tgttcagcag c	caaacttgca	acagactggc	cttctgtttg	ttactttcaa	1610
aaggcccaca tgatacaatt a	igagaattcc	caccgcacaa	aaaaagttcc	taagtatgtt	1670
aaatatgtca agctttttag g	gcttgtcaca	aatgattgct	ttgttttcct	aagtcatcaa	1730
aatgtatata aattatctag a	ittggataac	agtcttgcat	gtttatcatg	ttacaattta	1790
atattccatc ctgcccaacc c	ttcctctcc	catcctcaaa	aaagggccat	tttatgatgc	1850
attgcacacc ctctggggaa a	ittgatcttt	aaattttgag	acagtataag	gaaaatctgg	1910
tiggigicit acaagigage t	gacaccatt	ttttattctg	tgtatttaga	atgaagtett	1970
gaaaaaaact ttataaagac a	tcttaatc	attcc			2005
e e e		٠		٠.	
<210> 145				•	
<211> 1558					
<212> DNA					
<213> Homo sapiens				*.	
<220>	**		. ••	* *:	
<221> CDS		•	• • • • • • • • • • • • • • • • • • • •	• .	
<222> (31)(1392)	•• .		• ·		
<400>145			* *:	• •• .	
tcccggtcgg;gtgcaaggag c	cgaggcgag	atg ggc gto	ctg ggc cg	g gtc ctg	54

Met Gly Val Leu Gly Arg Val Leu

			•						1				٠ (5			٠	
	ctg	tgg	ctg	cag	ctc	tgc	gca	ctg	acc	cag	gcg	gtc	tcc	aaa	ctc	tgg		102
	Leu	Trp	Leu	Gln	Leu	Cys	Ala	Leu	Thr	Gln	Ala	Val	Ser	Lys	Leu	Trp		
		10			. 1		15					20						
•	gtc	ccc	aac	acg	gać	ttc	gac	gtc	gca	gcc	aac	tgg	agc	cag	aac	cgg		150
	Val	Pro	Asn	Thr	Asp	Phe	Asp	Val	Ala	Ala	Asn	Trp	Ser	Gln	Asn	Arg		
	25					30					35					40	٠	
	acc	ccg	tgc	gcc	ggc	ggc	gcc	gtt	gag	ttc	ccg	gcg	gac	aag	atg	gtg		198
	Thr	Pro	Cys	Ala	Gly	Gly	Ala	Val	Glu	Phe	Pro	Ala	Asp	Lys	Met	Val		
			•		45					50					55			
	tca	gŧc	ctg	gtg	caa	gaa	ggt	cac	gcc	gtc	tca	gac	atg	ctc	ctg	ccg		246
	Ser	Val	Leu	Val	Gln	Glu	Gly	His	۸la	Val	Ser	Asp	Met	Leu	Leu	Pro		
				60			٠		65					70				
	ctg	gat	ggg	gaa	ctc	gtc	ctg	gct	tca	gga	gcc	gga	ttc	ggc	gtc	tca		294
	Leu	Asp	Gly	Glu	Leu	Val	Leu	Ala	Ser	Gly	Ala	Gly	Phe	Gly	Val	Ser		
			75					80					85					
	gac	gtg	ggc	tcg	cac	ctg	gac	tgt	ggc	gcg	ggc	gaa	cct	gcc	gtc	ttc	٠	342
	Asp	Val	Gly	Ser	His	Leu	Asp	Cys	Gly	Ala	Gly	Glu	Pro	Ala	Val	Phe	•	
		90					95					100			•			
	cgc	gac	tct	gac	cgc	ttc	tcc	tgg	cat	gac	ccg	cac	ctg	tgg	cgc	tct		390
	Arg	Asp	Ser	Asp	Arg	Phe	Ser	Trp	His	Asp	Pro	His	Leu	Trp	Arg	Ser	•	
	105					110					115		, .	٠.	•	120		
	ggg	gac	gag	gca	cct	ggc	ctc	ttc	ttc	gtg	gac	gcc	gag	cgc	gtg	ccc	•	438
	Gly	Asp	Glu	Ala	Pro	Gly	Leu	Phe	Phe	Val	Asp	Ala	Glu	Arg	Val	Pro	•	

				125					130					135			
tgc	cgc	cac	gac	gạc	gtc	ttc	ttt	ccg	cct	agt	gcc	tcc	ttc	cgc	gtg		486
Cys	Arg	His	Asp	Asp	Val	Phe	Phe	Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val		
			140					145					150				
ggg	ctc	ggc	cct	ggc	gct	agc	ccc	gtg	cgt	gtc	cgc	agc	atc	tcg	gct		534
Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro	Val	Arg	Val	Arg	Ser	Ile	Ser	Ala		
	ą	155					160					165					
ctg	ggc	cgg	acg	ttc	acg	cgc	gac	gag	gac	ctg	gct	gtt	ttc	ctg	gcg		582
Leu	Gly	Arg	Thr	Phe	Thr	Arg	Asp	Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala		
	170					175					180						
tcc	cgc	gcg	ggc	cgc	cta	cgc	ttc	cac	ggg	ccg	ggc	gcg	ctg	agc	gtg		630
Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe	His	Gly	Pro	Gly	Ala	Leu	Ser	Val		
185					190					195					200		
ggc	ccc	gag	gac	tgc	gcg	gac	ccg	tcg	ggc	tgc	gtc	tgc	ggc	aac	gcg		678
Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro	Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala		
				205					210					215	-		
gag	gcg	cag	ccg	tgg	atc	tgc	gcg	gcc	ctg	ctc	cag	ссс	ctg	ggc	ggc		726
Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala	Ala	Leu	Leu	Gln	Pro	Leu	Gly	Gly		
			220					225					230				
cgc	tgc	ccc	cag	gcc	gcc	tgc	cac	agc	gcc	ctc	cgg	ccc	cag	ggg	cag		774
Arg	Cys	Pro	Gln	Ala	Ala	Cys	His	Ser	Ala	Leu	Arg	Pro	Gln	Gly	Gln		
	. •	235	. •				240		•	;		245			٠.	,	
tgc	tgt.	gac	ctc	tgţ	gga	gcc	gtt	gtg	ttg	ctg	acc	cac	ggc	ссс	gca		822
Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val	Val	Leu	Leu	Thr	His	Gly	Pro	Ala		
	250			<u>.</u> .		255		 -	₹ · •	,	260			~ :			

ttt	gac	ctg	gag	cgg	tac	cgg	gcg	cgg	ata	ctg	gac	acc	ttc	ctg	ggt		870
Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Ala	Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly		
265					270		•		•	275			•		280	٠	~
ctg	cct	cag	tac	cac	ggg	ctg	cag	gtg	gcc	gtg	tcc	aag	gtg	cca	cgc		918
Leu	Pro	Gln	Tyr	His	Gly	Leu	Gln	Val	Ala	Val	Ser	Lys	Val	Pro	Arg		
		* •		285					290					295	. ,	١	
tcg	tcc	cgg	ctc	cgt	gag	gcc	gat	acg	gag	atc	cag	gtg	gtg	ctg	gtg		966
Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp	Thr	Glu	Ile	Gln	Val	Val	Leu	Val		
			300					305					310	ı			
gag	aat	ggg	ccc	gag	aca	ggc	gga	gcg	ggg	cgg	ctg	gcc	cgg	gcc	ctc		1014
											Leu						
		315				-	320		,			325	,	. •		٠.	
																	1062
											ggc						1062
Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly	Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala		
	330					335					340	٠.	•		j		
acc	atg	cgg	gag	tcg	ggc	gca	cac	gtc	tgg	ggc	agc	tcc	gcg	gct	ggg		1110
Thr	Met'	Arg	Glu	Ser	Gly	Ala	His	Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly		
345					350					355		•		•	360	•	
ctg	gcg	ggc	ggc	gtg	gcg	gct	gcc	gtg	ctg	ctg	gcg	ctg	ctg	gtc	ctg		1158
Leu	Ala	Gly	Gly	Val	Ala	Ala	Ala	Val	Leu	Leu	Ala	Leu	Leu	Val	Leu'		
				365					370		•			375	• (=		
ctg	gtg	gcg	ccg	CCE	ctg	ctg	cgc	cgc	gcg	ggg	agg	ctc	agg	tgg	agg		1206
											Arg						
Dea			380		Dea	Dea		385									
															005.		1254
agg	cac	gag	gcg	gcg	gcc	ccg	gct	gga	gcg	ccc	ctc	ggc	itc	cgc	aac		1204

BRIGHOUTH - MICH - 011266042 I

Arg His Glu Ala Ala Ala Pro Ala Gly Ala Pro Leu Gly Phe Arg Asn	
395 400 405	
ccg gtg ttc gac gtg acg gcc tcc gag gag ctg ccc ctg ccg cgg cgg 13	302
Pro Val Phe Asp Val Thr Ala Ser Glu Glu Leu Pro Leu Pro Arg Arg	
410 415 420	
ctc agc ctg gtt ccg aag gcg gcc gca gac agc acc agc cac agt tac	350
Leu Ser Leu Val Pro Lys Ala Ala Asp Ser Thr Ser His Scr Tyr	
425 430 435 440	
ttc gtc aac cct ctg ttc gcc ggg gcc gag gcc gag gcc t gagcggccgc 14	400
Phe Val Asn Pro Leu Phe Ala Gly Ala Glu Ala Glu Ala	
445 450	
ctgaccgtcg accttggggc tctccaccc ctctggcccc agtcgaactg ggggctagcc 14	460
acctectegt ceagececea aaccteceet teettteeee eteeteeggg ggecaaggae 15	520
agggtggcct tactcagtaa aggtgtttcc tgcacctg	558
<210> 146	
<211> 1005	
<212> DNA	
<213> Homo sapiens	
<220>.	
<221> CDS	
<222> (151) (330)	
<400> 146.	
	60
ceggagetec aggaagggaa aattteaagt cagatagaat tetatatata ceatttett l	20

BNSDOOTH - WO . OTTORENAD I .

ggaaccttca gccctcaaga ttccaacatc atg acc tca gtt tca aca cag ttg	174
Met Thr Ser Val Ser Thr Gln Leu	
1 5	
tcc tta gtc ctc atg tca ctg ctl ttg gtg ctg cct gtt gtg gaa gca	222
Ser Leu Val Leu Met Ser Leu Leu Leu Val Leu Pro Val Val Glu'Ala	
10 15 20	
gta gaa gcc ggt gat gca atc gcc ctt tig tta ggt gig gtt ctc agc	270
Val Glu Ala Gly Asp Ala Ile Ala Leu Leu Cly Val Val Leu Ser	
25 30 35 40	
att aca ggc att tgt gcc tgc ttg ggg gla tat gca cga aaa aga aat	318
lle Thr Gly Ile Cys Ala Cys Leu Gly Val Tyr Ala Arg Lys Arg Asn	
45 50 55	
gga cag atg tga ctttgaaagg cctactgagt caaacctcac cctgaaaacc	370
Gly Gln Met	:
tttgcgcttt agaggctaaa cctgagattt ggtglgtgaa aggttccaag aatcagtaaa	430
taagggagtt tcacattttt cattgtttcc atgaaatggc aacaaacata catttalaaa	490
ttgaaaaaaa aatgttttet ttacaacaaa taatgcacag aaaaatgcag eetataattt	550
gctagttagg tagtcaaaga agtaagatgg ctgaaattta cataagtaat atttcataat	610
cttagaattc tctcaaagca tgtgaaatag gaagaaggaa gttcttgccc agaatcttag	670
gaaatcacca cigiteggit ataatcacig celectgaat egitgaggag tellitaaat	730
tagatttttg ttttgttgtc tcccaagtta atattatatt	790
aaaaaggaaa acttttatct ctagggaaaa aacatttaga aaaatgtatt cagtgtatct	850
aatacigaaa igcggaaaaa aatitaaigi taaaaaaaaa actaiagaca iigacaigga	910
aaagagattt aatgittiga aaaaaaacti tatattaaci gagtaacatc ciccigaiga	970
gaagtactat attaaatata aacccattat gttat	1005

<210	> 14	17			(w										·	
<211	> 96	9														
<212	!> DN	ΙA		<i>;</i>										•		
<213	3> Hc	omo s	sapie	ens												
<220)>															
<221	> CI	os														
<222	?> (1	51).	(7	783)												
<400)>. 14	17														
gctg	gaca	icc 1	tggag	gctgo	င ငန	gagga	acgce	g gag	gaga	agac	ccga	gggt	cg	ccgct	tggtag	60
ggto	gcto	ag o	cctg	geegt	te et	tcac	ccaco	aca	ccti	tcac	ctgo	gcc	ag	ctcc	tgcgc	120
gcc t	ggad	ag o	egeet	gctg	ge ed	egeet	tcccg	gate	g gc	cte	cco	cag	g at	g tgi	gac	174
								Met	t Ala	a Leu	ı Pro	Glr	ı Mei	t Cys	s Asp	
]	l				5			
ggg	agc	cac	ttg	gcc	tcc	acc	ctc	cgc	tat	tgc	atg	aca	gtc	agc	ggc	222
Gly	Ser	His	Leu	Ala	Ser	Thr	Leu	Arg	Tyr	Cys	Met	Thr	Val	Ser	G1y	
	10			· 4		. 15					20				. •	
aca	gtg	gtt	ctg	gtg	gcc	ggg	acg	ctc	tgc	ttc	gct	tgg	tgg	agc	gaa	270
Thr	Val	Val	Leu	Val	Àla	Gly	Thr	Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	
25					30					35					40	
ggg	gat	gca	acc	gcc	cag	cct	ggc	cag	ctg	gcc	cca	ccc	acg	gag	tat	318
Gly	Asp	Ala	Thr	Ala	Gln	Pro	Gly	Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	
	٠.,		••	45			٠.		- 50	-		-	•	- 55	• • • • •	
ccg	gtg	cct	gag	ggc	ccc	agc	ccc	ctg	ctc	agg	tcc	gtc	agc	ttc	gtc	366
Pro	Val	Pro	Glu	Giv	Pro	Ser	Pro	Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	

			10					60					00			
414	tcc	tgg	ctg	ctg	ggc	att	ctc	ctg	ctg	ctg	ggc	ggt	gca	ggt	tgc	tgc
	Ser	Trp	Leu	Leu	Gly	Ile	Leu	Leu	Leu	Leu	Gly	Gly	Ala	Gly	Cys	Cys
	1 10			85					80					7 5		
462	ctc	cac	tat	ccc	gac	tgg	cga	cct	cca	ggg	cca	atc	agc	gcc	aag	gtc
	Leu	His	Tyr	Pro	Asp	Trp	Arg	Pro	Pro	Gly	Pro	Ile	Ser	Ala	Lys	Val
	. •				100					95					90	
510	agc	gag	aag	gag	tca	tcc	gag	gtg	act	ctc	tac	tac	ctg	gac	aga	tcc
	Ser	Glu	Lys	Glu	Ser	Ser	Glu	Val	Thr	Leu	Tyr	Tyr	Leu	Λsp	Arg	Ser
;	120					115					110					105
<i></i> ₹558	gtg	gcc	gaa	gag	tac	act	ccc	atc	gac	gtt	gtg	aaa	ccc	acc	agg	tgc
	Val	Ala	Glu	Glu	Tyr	Thr	Pro	Ile	Asp	Val	Val	Lys	Pro	Thr	Arg	Cys
		135					130					125				
606	acg	cct	tac	gca	cct	cca	aca	cca	ссс	ggg	gag	gcc	gtg	cca	ttc	agc
	Thr	Pro	Tyr	Λla	Pro	Pro	Thr	Pro	Pro	Gly	Glu	Ala	Val	Pro	Phe	Ser
		• '	150					145					140			
654	acc	agc	ctc	ctg	gcc	gat	agg	tcg	gga	agt	cca	gag	ctg	gcc	gaa	gag
	Thr	Ser	Leu	Leu	Ala	Asp	Arg	Ser	Gly	Ser	Pro	Glu	Leu	Λla	Glu	Glu
				165					160					155		
702	ctt	gct	ctt	agc	atc	agc	gag	tat	agc	ccc	cca	cct	tgg	gcc	ccc	cag
	Leu	Ala	Leu	Ser	Ile	Ser	Glu	Tyr	Ser	Pro	Pro	Pro	Trp	Ala	Pro	Gln
•	••	, .			180				-	175	•				170	
750	tca	tgc	tcc	cgc	aca	gcc	agt	ccg	aca	acg	gag	gca	tct	gtt	gcc	gat
	Ser	Cys -	Ser	Arg	Thr	Ala	Ser	Pro	Thr	Thr	Glu	Ala	Ser	Val	Ala	Asp
•	200	٠,٠	٠.,	, ,		195				. :	.190	£ *		, .		185

ggc ctg gtt cag act gca cgg gga gga agt	taaaggctcc tagcaggtcc 800
Gly Leu Val Gln Thr Ala Arg Gly Gly Ser	
205 210	
tgaatccaga gacaaaaatg ctgtgccttc tccaga	gtct tatgcagtgc ctgggacaca 860
gtaggcactc agcaaacgtt cgttgttgaa ggctgt	tcta tttatctatt gctgtataac 920
aaaccacccc agaatttagt ggcttaaaat aaatcc	catt ttattatgt 969
·. ·	•
<210> 148	
<211> 1241	
<212> DNA	
<213> Homo sapiens	
<220>	•
<221> CDS	
<222> (20)(517)	
<400> 148	
atttcggggc ggtaccaag atg gac tcc tcg cg	g gcc cga cag cag ctc cgg 52
Met Asp Ser Ser Ar	g Ala Arg Gln Gln Leu Arg
. 1	5 10
cgg cga ttc ctc ctc ctg ccg gac gcc gag	gcc cag ctg gac cgc gag 100
Arg Arg Phe Leu Leu Leu Pro Asp Ala Glu	Ala Gln Leu Asp Arg Glu
15 20	25
ggt gac gcc ggg ccg gaa acc tcc aca gct	gtt gag aaa aag gag aaa 148
Gly Asp Ala Gly Pro Glu Thr Ser Thr Ala	Val Glu Lys Lys Glu Lys
	. +++ + +++ +++

Pro	Leu	Pro	Arg	Leu	Asn	Ile	His	Ser	Gly	Phe	Trp	Ile	Leu	Ala	Ser	• •	
	45					50			. 4	•	55					•	
att	gtt	gtg	acc	tat	tat	gtt	gac	ttc	ttt	aaa	acc	ctt	aaa	gaa	aac		244
Ile	Val	Val	Thr	Tyr	Tyr	Val	Asp	Phe	Phe	Lys	Thr	Leu	Lys	Glu	Asn		
60					65					70					75		
ttc	cac	act	agc	agc	tgg	ttt	ctc	tgt	ggc	ägt	gcc	ttg	ttg	ctt	gtc	··.	292
Phe	His	Thr	Ser	Ser	Trp	Phe	Leu	Cys	Gly	Ser	Ala	Leu	Leu	Leu	Val		
				80					85					90			
agt	tta	tca	att	gca	ttt	tac	tgc	ata	gtc	tac	ctg	gaa	tgg	tat	tgt		340
Ser	Leu	Ser	Ile	Ala	Phe	Tyr	Cys	Ile	Val	Tyr	Leu	Glu	Trp	Tyr	Cys		
			95					100					105				
gga	att	gga	gaa	tat	gat	gtc	aag	tat	cca	gcc	ttg	ata	ccc	att	acc		388
Gly	Ile	Gly	Glu	Tyr	Asp	Val	Lys	Tyr	Pro	Ala	Leu	Ile	Pro	Ile	Thr		
		110					115					120					
act	gcc	tcc	ttt	att	gca	gca	gga	att	tgc	ttc	aac	att	gct	tta	tgg		436
Thr	Ala	Ser	Phe	Ile	Ala	Ala	Gly	Ile	Cys	Phe	Asn	Ile	Ala	Leu	Trp	•	
	125				•	130					135						
cat	gtg	tgg	tcg	ttt	ttc	act	cca	ttg	ttg	ttg	ttt	acc	cag	ttt	atg		484
His	Val	Trp	Ser	Phe	Phe	Thr	Pro	Leu	Leu	Leu	Phe	Thr	Gln	Phe	Met		
140					145	•			•	150					155		
ggg	gtt	gtc	atg	ttt	atc	aca	ctc	ctt	gga	tga	ttt	ccga	agag	ac			530
Gly	Val	Val	Met	Phe	Ile	Thr	Leu	Leu	Gly					:	,		
	٠.	•	٠.	160			. •		165	•							
agg	gtct	tct	atgt	tgcc	ca g	gctg	tctt	t ga	actc	ctgg	gat	caag	tga	tċct	cctg	cc	590
tca	gcct	teg	aagt	agtt	gg g	acta	cage	с сс	acgo	cacc	gtg	cctr	gct	ggac	atgt	aa	650

atttgaagtg	aatggttaaa	catccagcta	gctgaaagca	tggcagaccc	taacagaaaa	710
gctacagtgt	gtttttgcag	ctatgaagtg	aatggtttcc	tggggaaaat	tgtgactttg	770
tataactgtt	gttgaaacca	gaataaatta	tatttcactt	gcatatgcat	aaattattaa	830
aattttcaga	agtcagtgat	acagaagtac	tattttgcaa	tgttaatctg	tttgagtctt	890
tggagaaagt	ggtttcattg	taggtacata	gtgcactgtt	aatatttaa	acaagtagtt	950
cactcttcca	tttaagggat	agcagttcct	tgtataaaat	gactggatgt	gtataaagga	1010
attatgttgt	catgtgcctt	taaccagctt	tagtaattac	tataatctca	tatttatgat	1070
agttttgtta	ggtgacagga	ccaaatgaaa	atattttatg	ttttctcatc	actttagatt	1130
ttatcattat	gtacattact	gggtttttag	catttcctaa	tgtgaagttt	taatcacttt	1190
taagtataca	ttttttctg	tatcatttaa	ataaaatatt	tttataactt	t	1241
<210> 149				-		
<211> 1174						
<212> DNA						
<213> Homo	sapiens					
<220>	·					
<221> CDS				·		
<222> (187)	(675)					
<400> 149						
ggaagccggg	acgatgtccg	catgacaacc	gacgttggag	tttggaggtg	cttgccttag	60
agcaagggaa	acagetetea	ttcaaaggaa	ctagaagcct	ctccctcagt	ggtagggaga	120
cagccaggag	cggttttctg	ggaactgtgg	gatgtgccct	tgggggcccg	agaaaacaga	180
aggaag atg	ctc cag ac	c agt aac t	ac agc ctg i	gtg ctc tct	ctg cag	228
Met	Leu Gla Th	r Ser Asn T	vr Ser Leu 1	Val Leu Ser	Leu Gln	

ttc	ctg	ctg	ctg	tcc	tat	gac	ctc	ttt	gtc	aat	tcc	ttc	tca	gaa	ctg		276
Phe	Leu	Leu	Leu	Ser	Tyr	Asp	Leu	Phe	Val	Asn	Ser	Phe	Ser	Glu	Leu		
15					20	-		٠	•	25					30		
ctc	caa	aag	act	cct	gtc	atc	cag	ctt	gtg	ctc	ttc	atc	atc	cag	gat		324
Leu	Gln	Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp		
	•	•		35			•	. •	40	•				45	•	,	•
att	gca	gtc	ctc	ttc	aac	atc	atc	atc	att	ttc	ctc	atg	ttc	ttc	aac		372
Ile	Ala	Val	Leu	Phe	Asn	Ile	Ile	Ile	Ile	Phe	Leu	Met	Phe	Phe	Asn		
			50					55					60			•	
acc	ttc	gtc	ttc	cag	gct	ggc	ctg	gtc	aac	ctc	cta	ttc	cat	aag	ttc		420
Thr	Phe	Val	Phe	Gln	Ala	Gly	Leu	Val	Asn	Leu	Leu	Phe	His	Lys	Phe		
		65					70					75					
aaa	ggg	acc	atc	atc	ctg	aca	gct	gtg	tac	ttt	gcc	ctc	agc	atc	tcc		468
Lys	Gly	Thr	Ile	Ile	Leu	Thr	Ala	Val	Tyr	Phe	Ala	Leu	Ser	Ile	Ser		
	80					85					90					•	
ctt	cat	gtc	tgg	gtc	atg	aac	tta	cgc	tgg	aaa	aac	tcc	aac	agc	ttc		516
Leu	His	Val	Trp	Val	Met	Asn	Leu	Arg	Trp	Lys	Asn	Ser	Asn	Ser	Phe	•	
95					100					105					110		
ata	tgg	aca	gat	gga	ctt	caa	atg	ctg	ttt	gta	tţc	cag	aga	cta	gca	•	564
Ile	Trp	Thr	Asp	Gly	Leu	Gln	Met	Leu	Phe	Val	Phe	Gln	Arg	Leu	Ala	٠	
-				115					120					125	•		
gca	gtg	ttg	tac	tgc	tac	ttc	tat	aaa	cgg	aca	gcc	gta	aga	cta	ggc		612
Ala	Val	Leu	Tyr	Cys	Tyr	Phe	Tyr	Lys	Arg	Thr	Ala	·Val	Arg	Leu	Gly		
			130)				135	•				140)			
ant	- 00+		. ++0	tac	· cad	gar	. tct	tto	too	cte	cgc	aas	gas	tto	atg		660

400 1 12 84

180

305/307

Asp Pro His Phe Tyr Gln Asp Ser Leu Trp Leu Arg Lys Glu Phe Met	
145 150 155	
caa gtt cga agg tgacctct tgtcacactg atggatactt ttccttcctg	710
Gin Val Arg Arg	
160	
atagaagcca catttgctgc tttgcaggga gagttggccc tatgcatggg caaacagctg	770
gactttccaa ggaaggttca gactagctgt gttcagcatt caagaaggaa gatcctccct	830
cttgcacaat tagagtgtcc ccatcggtct ccagtgcggc atcccttcct tgccttctac	890
ctctgttcca cccctttcc ttcctttcct ctctgtacca ttcattctcc ctgaccggcc	950
tttcttgccg agggttctgt ggctcttacc cttgtgaagc ttttccttta gcctgggaca	1010
gaaggacctc ccagccccca aaggatctcc cagtgaccaa aggatgcgaa gagtgatagt	1070
tacgtgctcc tgactgatca caccgcagac atttagattt ttatacccaa ggcactttaa	1130
aaaaatgttt tataaataga gaataaattg aattcttgtt ccat	1174
<210> 150	
<211> 1012	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (208) (873)	
<400> 150	
gcctcttccc caggggccgc gtcggagcct ccgcggcggc ggcggtgctt acagcctgag	60
aagagegtet egeeeggag eggeggegge categagace cacceaagge gegteeect	120

eggeeteeca gegeteecaa geegeagegg eegegeeeet teagetaget egetegeteg

231		tg ·	gct	g go	g go	g tt	g go	gʻtt	g go	c at	gcgc	gg ct	gcc	ctgct	cc c	gctt	ctc
		eu į	a Le	a Al	eu Al	a Le	u Al	la Le	et Al	Ме			•				
:	:	* -	- "		5				1					9.			
279		aat	cag	ttg	cag	cag	tac	cgg	agc	ggc	tgc	gcc	ccg	gag	gtc	gcg	gcg
		Asn	Gln	Leu	Gln	Gln	Tyr	Arg	Ser	Gly	Cys	Ala	Pro	Glu	Val	Ala	Ala
			·.			20					15					10	
327		cca	cct	gct	gat	ggt	gca	gct	cag	gaa	cct	gaa	gga	tct	gag	gaa	gaa
		Pro	Pro	Ala	Asp	Gly	Ala	Ala	Gln	Glu	Pro	Glu	Gly	Ser	Glu	Glu	Glu
	•	[:] 40		•			35	•			•	30					25
₹375		aag	tac	gac	ttt	tat	gca	gca	agc	gag	gca	tct	att	agc	agc	tac	cct
		Lys	Tyr	Asp	Phe	Tyr	Ala	Ala	Ser	Glu	Ala	Ser	Ile	Ser	Ser	Tyr	Pro
			55					50					45				
423		aca	aca	gct	gta	aat	tac	tct	cca	ccc	aag	cca	ttt	ggg	tct	gag	gat
		Thr	Thr	Ala	Val	Asn	Tyr	Ser	Pro	Pro	Lys	Pro	Phe	Gly	Ser	Glu	Asp
				70					65					60			
471		atc	act	gct	gaa	gct	aag	acc	agg	gag	gcg	gaa	gat	tat	agt	ccc	ctg
		Ile	Thr	Ala	Glu	Ala	Lys	Thr	Arg	Glu	Ala	Glu	Asp	Tyr	Ser	Pro	Leu
	- 1				85					80					75		
519		ttt	gat	gat	cgg	ggt	gtg	ttt	gat	gag	gat	aga	ggg	cct	gtt	ttg	cct
	•	Phe	Asp	Asp	Arg	Gly	Val	Phe	Asp	Glu	Asp	Arg	Gly	Pro	Val	Leu	Pro
	•			•	٠	100					95					90	
567	•,	tta	atg	ttc	att	ggg	gat	aat	gga	ata	agg	ctg	cag	gac	gct	gat	gat
		Leu	Met	Phe	Ile	Gly	Asp	Asn	Gly	Ile	Arg	Leu	Gln	Asp	Ala	Asp	Asp
	I	120	٠.	•			115					110					105
615		tct	ctg	ttc	ttt	ggg	att	tgg	aac	ttt	ctc	ttc	gca	atg	ttc	ttt	act

هيتوا بديان

1112

Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	Asn	Trp	Ile	G1y	Phe	Phe	Leu	Ser	
				125					130			•		135		
ttt	tgc	ctg	acc	act	tca	gct	gca	gga	agg	tat	ggg	gcc	att	tca	gga	663
Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	
			140					145					150			
ttt	ggt	ctc	tct	cta	att	aaa	tgg	atc	ctg	att	gtc	agg	ttt	tcc	acc	711
Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	•
	•	155					160					165				
tat	ttc	cct	gga	tat	ttt	gat	ggt	cag	tac	tgg	ctc	tgg	tgg	gtg	ttc	759
Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	
	170					175					180					
ctt	gtt	tta	ggc	ttt	ctc	ctg	ttt	ctc	aga	gga	ttt	atc	aat	tat	gca	807
Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	
185					190					195					200	
aaa	gtt	cgg	aag	atg	cca	gaa	act	ttc	tca	aat	ctc	ccc	agg	acc	aga	855
Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	
				205					210		٠			215		
gtt	ctc	ttt	att	tat	taa	agat	gtt	ttct	ggca:	aa g	gcct	tcct	g ca	ttta	tgaa	910
Val	Leu	Phe	Ile	Tyr									·			
			220				-									
ttc	t ct c	tca	agaa	gcaa	ga g	aaca	cctg	c ag	gaag	tgaa	tca	agat	gca	gaac	acagag	970
gaa	taat	cac -	ctgc	ttta	aa a	aaat	aaag	t ac	tgtt	gaaa	ag				•	1012

PNSDOCID: -WO 011266042 L ~

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publication Number WO 01/12660 A3

- (51) International Patent Classification⁷: C12N 15/12, 1/21, 5/10, C07K 14/47, 16/18
- (21) International Application Number: PCT/JP00/05356
- (22) International Filing Date: 10 August 2000 (10.08.2000)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

11/230344	17 August 1999 (17.08.1999)	JP
11/252551	7 September 1999 (07.09.1999)	JP
11/281132	1 October 1999 (01.10.1999)	JP
11/301624	22 October 1999 (22.10.1999)	JP
11/313877	4 November 1999 (04.11.1999)	JP

- (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1. Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

- (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH. GM, KE, LS, MW, MZ. SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 20 September 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

11/12660 A3

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE PROTEINS

(57) Abstract: The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells expressing these DNAs and antibodies directed to these proteins.

INTERNATIONAL SEARCH REPORT

International Application No PC1, JP 00/05356

والمراجا فيهداج A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 C12N15/12 C12N1/21 C12N5/10 C07K14/47 - C07K16/18 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C12N C07K IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) STRAND, MEDLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 99 13074 A (TSURITANI KATSUKI ;YAZAKI Х 1-7 MADOKA (JP); MATSUMOTO KAYO (JP); TAISHO) 18 March 1999 (1999-03-18) SEQ ID NO:1 is 100% identical to SEQ ID NO:1 of present application figure 5 X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19 02 01 27 November 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Herrmann, K Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/JP 00/05356

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1 - 7 (all partially)
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
	•

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Invention 1: Claims 1-7 (all partially)

Polypeptide comprising an amino acid sequence as in SEQ ID NO:1 and subject-matter relating thereto. Polynucleotides encoding the polypeptide of SEQ ID NO:1 such as a polynucleotide comprising a polynucleotide sequence as in SEQ ID NO:11 (coding sequence) or a polynucleotide consisting of a polynucleotide sequence as in SEQ ID NO: 21 (complete cDNA sequence) and subject-matter relating thereto.

2. Claims: Invention 2-50: Claims 1-7 (all partially)

Idem as subject 1 but limited to each of the polypeptides as in SEQ ID NOs:2-10, 31-40, 61-70, 91-100 and 121-130 and polynucleotides as in SEQ ID NOs:12-20, 41-50, 71-80, 101-110, 131-140 and SEQ ID NOs:22-30, 51-60, 81-90, 111-120 and 141-150, respectively. Invention 2 is limited to subject-matter relating to SEQ ID NOs:2 (protein), 12 (coding sequence) and 22 (complete cDNA), invention 3 to SEQ ID NOs 3, 13 and 23, etc.

ormation on patent family members

PC1/JP 00/05356

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9913074 A	18-03-1999	AU 8999298 A JP 11151096 A	29-03-1999 08-06-1999

Form PCT/ISA/210 (patent family ennex) (July 1992)