

DIGITAL AUDIO MOSFET

IRFB4020PbF

Features

- Key parameters optimized for Class-D audio amplifier applications
- Low R_{DSON} for improved efficiency
- Low Q_G and Q_{SW} for better THD and improved efficiency
- Low QRR for better THD and lower EMI
- 175°C operating junction temperature for ruggedness
- Can deliver up to 300W per channel into 8Ω load in half-bridge configuration amplifier

Key Par	ameters	
V _{DS}	200	V
R _{DS(ON)} typ. @ 10V	80	mΩ
Q _g typ.	18	nC
Q _{sw} typ.	6.7	nC
R _{G(int)} typ.	3.2	Ω
T _J max	175	°C

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	200	V	
V _{GS}	Gate-to-Source Voltage	±20		
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	18		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	13		
I _{DM}	Pulsed Drain Current ①	52		
P _D @T _C = 25°C	5°C Power Dissipation ® 100		W	
P _D @T _C = 100°C	Power Dissipation ⊕	52		
	Linear Derating Factor	0.70	W/°C	
TJ	Operating Junction and	-55 to + 175	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300		
	(1.6mm from case)	300		
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{euc}	Junction-to-Case		1.43	
R _{ecs}	Case-to-Sink, Flat, Greased Surface	0.50		°c/w
R _{eJA}	Junction-to-Ambient ®		62	1

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	200			V	V _{GS} = 0V, I _D = 250μA
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.23	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	T —	80	100	mΩ	V _{GS} = 10V, I _D = 11A ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0		4.9	V	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-13		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current	_	_	20	μΑ	$V_{DS} = 200V, V_{GS} = 0V$
				250		$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
9 _{fs}	Forward Transconductance	24	_		S	$V_{DS} = 50V, I_{D} = 11A$
Q_g	Total Gate Charge	T	18	29		
Q_{gs1}	Pre-Vth Gate-to-Source Charge	 —	4.5			V _{DS} = 100V
Q_{gs2}	Post-Vth Gate-to-Source Charge	I —	1.4		nC	V _{GS} = 10V
Q_{gd}	Gate-to-Drain Charge		5.3			I _D = 11A
Q_{godr}	Gate Charge Overdrive	 —	6.8			See Fig. 6 and 18
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		6.7			
R _{G(int)}	Internal Gate Resistance		3.2		Ω	
t _{d(on)}	Turn-On Delay Time		7.8	_		V _{DD} = 100V, V _{GS} = 10V ③
t _r	Rise Time		12			I _D = 11A
t _{d(off)}	Turn-Off Delay Time	—	16		ns	$R_G = 2.4\Omega$
t _i	Fall Time	T —	6.3			
C _{iss}	Input Capacitance	_	1200			V _{GS} = 0V
Coss	Output Capacitance		91		рF	V _{DS} = 50V
C _{rss}	Reverse Transfer Capacitance		20			f = 1.0MHz, See Fig.5
C _{oss} eff.	Effective Output Capacitance		110			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V$
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		94	Lm
I _{AR}	Avalanche Current ⑤	See Fig. 14, 1	5, 16a, 16b	Α
E _{AR}	Repetitive Avalanche Energy ®			mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S @ T _C = 25°C	Continuous Source Current		_	18		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current	—	_	52		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage		_	1.3	٧	$T_J = 25^{\circ}C$, $I_S = 11A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		82	120	ns	T _J = 25°C, I _F = 11A
Q _{rr}	Reverse Recovery Charge		280	420	nC	di/dt = 100A/µs ③

- \odot Repetitive rating; pulse width limited by max. junction temperature. \odot R_{θ} is measured at T_J of approximately 90°C.
- ② Starting $T_J = 25^{\circ}C$, L = 1.62mH, $R_G = 25\Omega$, $I_{AS} = 11A$.
- 3 Pulse width \leq 400 μ s; duty cycle \leq 2%.

- ⑤ Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information.

IRFB4020PbF

Fig 1. Typical Output Characteristics

 V_{GS} , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Junction Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

V_{GS.} Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage

IRFB4020PbF

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Typical Avalanche Current Vs.Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of Timax. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asTimax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 14, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav f

Z_{thJC}(D, t_{av}) = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} = 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \triangle \text{T/} \; Z_{th,JC} \\ I_{av} = 2\triangle \text{T/} \; [1.3 \cdot \text{BV} \cdot Z_{th}] \end{split}$$
EAS (AR) = PD (ave) tav

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18a. Gate Charge Test Circuit

Fig 18b Gate Charge Waveform

IRFB4020PbF

LEAD ASSIGNMENTS

HEXEET

387s. CoPACK

DIODES I.- ANODE/OPER 2.- CATHODE 3.- ANODE

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

c1

D

D1

D2

F

E1

e eì

L1

øΡ

0

0.36

14.22

8.38

12.19

9 66

8.38

12.70

3.54

2.54

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
- DMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61 & c1 APPLY TO BASE METAL ONLY. CONTROLLING DIMENSION: INCHES.
- THERMAL PAR CONTOUR OPTIONAL WITHIN DIMENSIONS FIREDS & FL

0.56

16.51

9.02

12.88

10.66

8.89

14.73

6.35

4.08

3.42

DIMENSIO	N E2 X H1 [WHERE STAMP RE ALLOWED.		
		DIMEN	ISIONS		
SYMBOL	MILLIM	ETERS	INCHES		1
ľ	MIN.	MAX.	MIN.	MAX.	NOTES
A	3.56	4.82	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.04	2.92	.080	.115	
b	0.38	1.01	.015	.040	!
Ь1	0.38	0.96	.015	.038	5
b2	1.15	1.77	.045	.070	İ
b3	1.15	1.73	.045	.068	
	25.0	0.61	014	004	1

.014

560

.330

.480

.380

.330

.500

.139

.100

.022

650

355

.507

.420

350

580

.250

.161

.135

7

4,7

7.8

3

TO-220AB Part Marking Information

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE 'C'

Note: "P" in assembly line position indicates "Lead-Free"

TO-220AB packages are not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 03/06