ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Кафедра «Инфокогнитивные технологии»

Практические и лабораторные занятия по дисциплине «Проектирование интеллектуальных систем»

Лабораторная работа № 1

«Решение оптимизационных задач с помощью генетических алгоритмов»

Группа 224-322

Студент Леонов Владислав Денисович

Преподаватель Кружалов Алексей Сергеевич

Цель

Ознакомиться с подходом и приобрести практический навык решения оптимизационных задач с помощью генетических алгоритмов (ГА).

Краткое описание

Разработка программы, которая осуществляет поиск кратчайшего пути для информационного пакета (сообщения) в компьютерной сети с помощью генетических алгоритмов. Задача коммивояжёра - одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного.

Требования к функциональности компьютерной программы

Возможность задания топологии сети с указанием ее размерности и пропускной способностью каналов.

- Настройки работы генетического алгоритма: размер популяции, количество поколений, варианты кроссовера, вероятность мутации и др.
- Указание исходных данных (компьютер-отправитель и компьютер-получатель) и автоматическое заполнение исходных данные топологии сети.
 - Два режима работы:
- пошаговый на экране должны отображаться все представители (хромосомы) одного поколения до и после применения каждого оператора (скрещивания, селекции, редукции и мутации).
- циклический на экране должны отражаться только агрегированные данные по каждому поколению и итоговый набор хромосом.

- На одной из экранных форм должны быть указаны ФИО и e-mail автора приложения, ссылка на учебный курс и год разработки. Эти данные должны быть продублированы в тексте программы (каждого программного модуля).
- Дополнительно необходимо реализовать возможность динамического изменения исходных данных (матрицы связанности графа) во время пошагового режима работы алгоритма.

Содержание отчета

- Название и цель работы.
- Задание, краткое описание предметной области и выбранной задачи.
- Блок-схема с пояснениями реализованного ГА и каждого оператора в отдельности.
- Протоколы проведенных экспериментов (5+), представленные в графиков (допускаются скриншоты в случае программной реализации функциональности).
 - Выводы и рекомендации по использованию разработанных ГА.

Выполнение работы

1. Настройки работы генетического алгоритма: размер популяции, количество поколений, варианты кроссовера, вероятность мутации и др. Выполнение данного пункта показано на рисунке 1.

Рисунок 1 – Панель с настройками работы программы

2. Указание исходных данных (компьютер-отправитель и компьютер-получатель) и автоматическое заполнение исходных данные топологии сети. Выполнение данного пункта показано на рисунке 2.

Рисунок 2 – Исходные данные топологии сети

3. Два режима работы:

- 1) пошаговый на экране должны отображаться все представители (хромосомы) одного поколения до и после применения каждого оператора (скрещивания, селекции, редукции и мутации).
- 2) циклический на экране должны отражаться только агрегированные данные по каждому поколению и итоговый набор хромосом.

Для пошагово режима необходимо включить режим «Пошаговый», после включения которого будет доступна кнопка «Сделать шаг в генетическом алгоритме». Один шаг - это полный цикл работы генетического алгоритма, в таблицу под графом будет выведен текущий результат шага. Активация первого шага происходит по нажатию на кнопку «Использовать генетический алгоритм». Выполнение пошагового режима показано на рисунке 3.

Рисунок 3 – Выполнение пошагового режима

Циклический режим проходится по всем поколениям генетического алгоритма и в конце выводит таблицу итоговой популяции, рисует маршрут на графе, в текстовое поле в самом низу приложения выводит всю информацию об поколениях, а также выводится график зависимости минимальной и средней приспособленности от поколений. Выполнение пошагового режима показано на рисунке 4.

Рисунок 4 – Выполнение циклического режима

4. На одной из экранных форм должны быть указаны ФИО и e-mail автора приложения, ссылка на учебный курс и год разработки. Эти данные должны быть продублированы в тексте программы (каждого программного модуля). Выполнение данного пункта показано на рисунке 5.

Рисунок 5 – Информация о приложении

5. Дополнительно необходимо реализовать возможность динамического изменения исходных данных (матрицы связанности графа) во время пошагового режима работы алгоритма. Выполнение данного пункта показано на рисунке 6.

Рисунок 6 – Изменение матрицы связанности

6. Блок-схема с пояснениями реализованного ГА и каждого оператора в отдельности.

Блок схема генетического алгоритма представлена на рисунке 7.

Рисунок 7 — Блок схема генетического алгоритма

Блок схема операции скрещивания представлена на рисунке 8.

Рисунок 8 — Блок схема генетического алгоритма

Блок схема операции мутации представлена на рисунке 9.

Рисунок 9 – Блок схема генетического алгоритма

- 7. Протоколы проведенных экспериментов (5+), представленные в графиков (допускаются скриншоты в случае программной реализации функциональности).
 - 1) Эксперимент 1 (**Правильно**): количество вершин 5; начальная вершина 1; конечная вершина 5; количество индивидуумов в популяции 500; вероятность скрещивания 0,9; вероятность мутации 0,1; количество поколений 50; тип графа полносвязный граф. Результат эксперимента 1 приведен на рисунке 10.

Зависимость минимальной и средней приспособленности от поколения

Рисунок 10 – Результат эксперимента 1

2) Эксперимент 2 (**Правильно**): количество вершин – 7; начальная вершина – 1; конечная вершина – 4; количество индивидуумов в популяции – 500; вероятность скрещивания – 0,9; вероятность мутации – 0,1; количество поколений – 50; тип графа – граничный граф. Результат эксперимента 2 приведен на рисунке 11.

Зависимость минимальной и средней приспособленности от поколения

Рисунок 11 – Результат эксперимента 2

3) Эксперимент 3 (**Неправильно**): количество вершин – 10; начальная вершина – 1; конечная вершина – 2; количество индивидуумов в популяции – 50; вероятность скрещивания – 0,9; вероятность мутации – 0,1; количество поколений – 50; тип графа – рандомный граф. Результат эксперимента 3 приведен на рисунке 12.

Рисунок 12 – Результат эксперимента 3

Поколение

Ó

4) Эксперимент 4 (**Правильно**): количество вершин – 10; начальная вершина – 1; конечная вершина – 2; количество индивидуумов в популяции – 100; вероятность скрещивания – 0,9; вероятность мутации – 0,1; количество поколений – 200; тип графа – рандомный граф. Результат эксперимента 4 приведен на рисунке 13.

Зависимость минимальной и средней приспособленности от поколения

Рисунок 13 – Результат эксперимента 4

1) Эксперимент 5 (**Правильно**): количество вершин – 8; начальная вершина – 4; конечная вершина – 1; количество индивидуумов в популяции – 100; вероятность скрещивания – 0,9; вероятность мутации – 0,1; количество поколений – 50; тип графа – рандомный граф. Результат эксперимента 5 приведен на рисунке 14.

Зависимость минимальной и средней приспособленности от поколения

Рисунок 14 – Результат эксперимента 5

Поколение

30

40

50

20

10

0

No	Кол-во	Начальная	Конечная	Кол-во	Вероятность	Вероятность	Поколений
	вершин	вершина	вершина	особей	скрещивания	мутации	
1	5	1	5	500	0,9	0,1	50
2	7	1	4	500	0,9	0,1	50
3	10	1	2	50	0,9	0,1	50
4	10	1	2	100	0,9	0,1	200
5	8	4	1	100	0,9	0,1	50

Вывод:

Генетический алгоритм зависит от исходных данных и настроенных параметров, кол-во индивидуумов влияет на ширину поиска возможных решений, поэтому чем данный параметр больше, тем больше вероятность того, что генетический алгоритм сможет найти верный путь. Вероятность мутации и скрещивания помогают алгоритму находить новые возможные решения, которые отличаются от решений в исходной популяции.