Ternary Logic Machines

Mikhail Glushenkov

c05mgv@cs.umu.se

October 22, 2007

Outline

- Ternary Logic in Theory
 - Principles Of Ternary Logic
 - Ternary Logical Operations
 - Ternary Arithmetic
 - Why is Ternary Logic interesting?
- Ternary Logic in Practice
 - Hardware Systems Based on Ternary Logic
 - Ternary Logic Today

What is Ternary Logic?

- Binary logic operates with two values: 0 and 1(or "true" and "false")
- Ternary logic adds one additional value to the mix
- This value is called -1, $\underline{1}$, "maybe" or "indeterminate"

Ternary Logic: Electrical Engineering View

Say that we have a circuit wired to a 5V power source and to the ground.

- Binary Logic:
 - Voltage interval [GND, 5V] is divided in two parts
 - Signals > 5 mV are HIGH
 - Signals < 5 mV are LOW
 - LOW denotes 0(or "false"), HIGH denotes 1(or "true")
- Ternary Logic:
 - The interval [GND, 5V] is divided in three parts
- Other multi-valued logics are possible

Logical Operations

Binary AND

	True	False
False	False	False
True	True	False

Ternary AND

	True	False	Maybe
False	False	False	False
True	True	False	Maybe
Maybe	Maybe	False	Maybe

Ternary Arithmetic

Balanced Ternary is the most popular number representation:

$$\sum_{k=0}^{n} d_k * 3^k = d_n * 3^n + \ldots + d_1 * 3^1 + d_0 * 3^0$$

Example

Decimal	-4	-3	-2	-1	0	1	2	3	4
Balanced ternary	<u>11</u>	<u>1</u> 0	<u>1</u> 1	1	0	1	1 <u>1</u>	10	11

Advantages of Ternary Logic

- Arguably more "natural" for humans
- Balanced Ternary is in some sense "better" than Two's Complement
 - Symmetrical
 - Simpler
 - No "sign bit"
- More efficient(at least in theory)
 - Logical elements are more expensive, but less logical elements is needed

First Ternary Computer

Figure: Ternary Computer built by Thomas Fowler in 19th Century.

Research on Ternary Computing in USA

- Ternary logic was of interest to American researchers through 1950s-70s
 - Whirlpool A military computer built at MIT
 - TERNAC Research project by the NY University
- Technology never reached a practical stage.

Setun

Figure: Setun – the only general-purpose ternary architecture in history.

Setun, cont.

- Exceptionally simple architecture
- Only 24 instructions
- Three registers(two index registers and one accumulator)
- About 2 Kb of RAM and 6 Kb of permanent storage
- Used balanced ternary and had support for floating-point arithmetic

Setun, cont.

- Exceptionally reliable(according to its creator)
- Use of ternary logic was somewhat accidental
- About 50 such machines were built
- Setun 70 improved version
- Project was not deemed perspective by the authorities
- Its creator still is a ternary logic advocate

Modern Applications of Ternary Logic

- Ternary logic is not used (obviously) in general-purpose architectures today
- But it has some specialized applications fuzzy logic, error-correcting codes

Summary

- Ternary Logic was an interesting alternative at the dawn of digital computing.
- It still has some uses in specialized applications.
- It still is of some interest to the researchers.

Further References

- Third Base
 Brian Hayes, American Scientist vol. 89, Nov. 2001
- Boost.Tribool http://www.boost.org

Questions?

...perhaps the symmetric properties and simple arithmetic of this number system will prove quite important someday – when the "flip-flop" is replaced by "flip-flap-flop".

