Partiel R106 : Mathématiques discrètes CORRECTION

Tout document et accessoire électronique interdit (Calculatrice, téléphone, etc) durée : 1h15 (+25 minutes tiers temps)

Exercice 1 (4.5 points) *Ecrire à l'aide de quantificateurs les propositions suivantes (on rappelle que l'ensemble des réels est* \mathbb{R}) :

- 1. Il existe un nombre entier naturel qui n'est ni pair ni divisible par 3.
- 2. Aucun entier n'est supérieur à tous les autres.
- 3. Il existe un entier multiple de tous les autres.

Corrigé

- 1. $\exists n \in \mathbb{N}, \neg(2|n) \land \neg(3|n)$
- 2. $\neg(\exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, n \geq m)$ ou $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, n < m$
- 3. $\exists m \in \mathbb{Z}, \forall k \in \mathbb{Z}, k | m$

Exercice 2 (4.5 points) 1. Soit la formule logique : $(p \land q) \Rightarrow (p \Rightarrow \neg q)$.

- (a) Simplifiez la formule autant que possible.
- (b) Vérifiez votre réponse précédente avec une table de vérité.
- 2. Simplifiez $(p \implies q \lor r) \Leftrightarrow (p \implies q) \lor (p \implies r)$.

Corrigé

1.

$$(p \land q) \Rightarrow (p \Rightarrow \neg q) \tag{1}$$

$$\Leftrightarrow \neg (p \land q) \lor (p \Rightarrow \neg q) \tag{2}$$

$$\Leftrightarrow \neg p \lor \neg q \lor \neg p \lor \neg q \tag{3}$$

$$\Leftrightarrow \qquad \neg p \vee \neg q \tag{4}$$

$$\Leftrightarrow \qquad \neg (p \land q) \tag{5}$$

p	q	$p \wedge q$	$\neg (p \land q)$	$p \Rightarrow \neg q$	$(p \land q) \Rightarrow (p \Rightarrow \neg q)$
V	V	V	F	F	F
V	F	F	V	V	V
F	V	F	V	V	V
F	F	F	V	V	V

On vérifie bien que la 4ème et la 6ème colonne ont les mêmes valeurs de vérité.

2.
$$(p \Rightarrow q \lor r) \Leftrightarrow (p \Rightarrow q) \lor (p \Rightarrow r)$$

 $\neg p \lor q \lor r \Leftrightarrow (\neg p \lor q) \lor (\neg p \lor r)$
 $\neg p \lor q \lor r \Leftrightarrow \neg p \lor q \lor r$
 $Vrai$

Il s'agit d'une tautologie.

Exercice 3 (3 points) *Soit* Q *la proposition* $\exists x \in \mathbb{R}$, $\forall n \in \mathbb{N}, n + x > 0$.

- 1. Ecrire la négation de Q.
- 2. La proposition Q est-elle vraie ou fausse. Vous justifierez votre réponse.

Corrigé

- 1. $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, n + x \leq 0$.
- 2. La proposition Q est vraie car on peut prendre x = 1 donc n + x sera strictement supérieur à 0 pour tout n naturel.

Exercice 4 (4 points) Les assertions suivantes sont-elles vraies? Si oui, prouvez les, sinon, donnez un contre exemple. Soient trois entiers naturels non nuls a, b et c,

1.
$$a|b \lor b|c \implies a|c$$

$$2. \ a|b \wedge a|c \implies a|(b+c)$$

Corrigé

- 1. Faux, contre-exemple a=2, b=4 et c=7. On a $2|4\vee 4|7$ vrai car 2|4 (même si $\neg(4|7)$), mais 2|7 faux. Cela donne hypothèse vraie, conclusion fausse donc l'implication est fausse.
- 2. Vrai. $a|b \wedge a|c \Leftrightarrow \exists q \in \mathbb{N}, b = aq \wedge \exists q' \in \mathbb{N}, c = aq'.$ D'où b+c=aq+aq'=a(q+q') donc il existe un naturel k=q+q' tel que b+c=ak, c'est-à-dire a|(b+c).

Exercice 5 (4 points) *Soient* A , B *et* C *trois sous-ensembles de* \mathbb{N} ,

Exprimez sous forme logique puis ensembliste les phrases suivantes :

- 1. Il n'existe pas d'entier naturel appartenant à la fois à A et à B et n'appartenant pas à C.
- 2. Pour qu'un entier appartienne à l'ensemble B, il suffit qu'il soit à la fois dans l'ensemble C et dans l'ensemble A.

Corrigé

1. Logique: $\neg(\exists n \in \mathbb{N}, n \in A \land n \in B \land n \notin C)$.

Ensembliste: $A \cap B \cap (\mathbb{N} \setminus C) = \emptyset$.

2. Logique: $n \in A \land n \in C \Rightarrow n \in B$.

Ensembliste: $A \cap C \subset B$.