NOIP 模拟赛

新口欠物	₩⊒⊏	此后	/HT#-/±	工物单
题目名称	神灵庙	断句	绀珠传	天空璋
题目类型	传统型	传统型	传统型	传统型
目录	desire	str	lunatic	season
可执行文件名	desire	str	lunatic	season
输入文件名	desire.in	str.in	lunatic.in	season.in
输出文件名	desire.out	str.out	lunatic.out	season.out
每个测试点时限	2s	1s	2s	4s
内存限制	1024MB	1024MB	1024MB	1024MB
是否捆绑测试	否	是	是	是

提交源程序文件名

```
| 对于 C++ 语言 | desire.cpp | str.cpp | lunatic.cpp | season.cpp |
| :-----: | :-----: | :-----: |
```

编译选项

-lm -std=c++14 -o2 -Wl,--stack=998244353

神灵庙(desire)

题目描述

Madeline 给你了长度为n 的数组 $\{a_n\}$, 要求构造一棵n 个叶子的有根二叉树,树上每个节点到左儿子的边长为1, 到右儿子的边长为2。你还要将 a_i 赋值给每个叶子,一个 a_i 只能赋值给一个叶子。

一个叶子的深度为其到根的简单路径的长度,搭建这棵二叉树所花费的时间为所有叶子的权值与深度之积的和($\sum dep imes val$)。

Madeline 希望能尽快地搭建这棵二叉树,所以希望你帮忙求出最少的搭建时间。

输入格式

从 desire.in 中读入数据。

第一行给定一个整数 n。

第二行给定一个长度为 n 的数组 $\{a_n\}$ 。

输出格式

输出到 desire.out 中。

输出一个整数表示答案。

输入输出样例

输入样例 1

```
1 | 3
2 | 1 2 4
```

输出样例 1

1 14

输入样例 2

```
1 | 4
2 | 1 1 1 1
```

输出样例 2

1 12

数据范围

对于 15% 的数据: $n \le 15$ 。

对于 40% 的数据: $n \leq 100$ 。

对于 70% 的数据: $n \leq 400$ 。

对于 100% 的数据: $1 \le n \le 750, 1 \le a_i \le 10^5$ 。

断句(str)

题目描述

在一次又一次被文言文断句题搞崩心态之后, Madeline 决定用算法的力量来解决断句的问题。

给定字符串集合 S 表示词典,以及字符串 T 表示待断句的句子,问将 T 划分为若干个非空子段(使得每个位置恰被一个子段包含)的方案数,满足划分出的每一段都是 S 中的元素。

我们认为两种划分 P_1 , P_2 不同,当存在位置 p, q 满足:p, q 在 P_1 中位于同一段而在 P_2 中位于不同的段,或 p, q 在 P_2 中位于同一段而在 P_1 中位于不同的段。

答案对 $10^9 + 7$ 取模。

输入格式

从 str.in 中读入数据。

第一行一个正整数表示 |S|。

接下来 |S| 行,每行一个非空字符串,表示 S 的一个元素。这些字符串两两不同。

接下来一行一个非空字符串表示 T。

上述所有字符串都只包含小写英文字母。

输出格式

输出到 str.out 中。

输出一个整数表示答案。

输入输出样例

输入样例 1

```
1 3 2 a 3 b 4 ab 5 abab
```

输出样例 1

1 4

输入样例 2

输出样例 2

1 160

数据范围

子任务 1 (20 分) : $|T| \leq 4000$ 。

子任务 2 ($20\,$ 分): $|S| \leq 650$ 。

子任务 3 (60 分): $|S| \leq 10^5, |T| \leq 10^5, \sum_{s \in S} |s| \leq 2 imes 10^5$ 。

绀珠传 (lunatic)

题目描述

Madeline 给你了 n 条坐落在数轴上的线段,每条线段左端点是 l_i ,右端点是 r_i ($l_i < r_i$) 。

你要把这些线段分成 k 个非空的组,一组线段的价值是这组线段的交的长度,总的价值是每一组价值的和,Madeline 想知道可能的最大总价值是多少。

输入格式

第一行给定两个整数 n, k。

接下来 n 行每行给定两个整数 l_i, r_i 。

输出格式

输出一个整数表示答案。

输入输出样例

样例输入1

```
1 3 2
```

2 1 3

3 2 4

4 3 5

样例输出 1

1 3

样例输入2

```
1 3 1
```

2 1 3

3 2 4

4 3 5

样例输出 2

1 0

数据范围

 $1 \le n \le 10^5, 0 \le l_i < r_i \le 10^6, 1 \le k \le n_{ullet}$

子任务 1 (10分): $n \le 10$ 。

子任务 2 (20分): $n \le 400$

子任务 3 (60分): n < 6000。

子任务 4(10分): 无特殊限制。

天空璋 (season)

题目描述

Madeline 打算将一张无向图的 n 个结点连接起来,初始时图上没有边,要求连接后该图形成一棵连通的树(结点下标从 1 开始)。

可以用一个 $n \times n$ 的二维数组 A 表示在任意两个节点之间连边的代价,在 i,j 之间连边的代价为 $A_{i,j} + A_{i,i}$ 初始时 A 的元素全为 0 ,有 m 次修改 ,第 i 次让 $a_i \leq x \leq b_i$, $c_i \leq y \leq d_i$ 的 $A_{x,y}$ 加 W_i 。

Madeline 想知道修改以后这张图的最小生成树边权和。

输入格式

第一行给定两个整数 n, m。

接下来 m 行输入 5 个整数 a_i, b_i, c_i, d_i, W_i 。

输出格式

输出一个整数表示答案。

样例输入输出

样例输入1

```
      1
      6
      8

      2
      1
      3
      6
      6
      3

      3
      4
      4
      6
      10

      4
      3
      3
      5
      6
      -8

      5
      1
      2
      5
      5
      -7

      6
      1
      2
      6
      6
      -1

      7
      1
      3
      4
      5
      6

      8
      3
      5
      6
      6
      7

      9
      2
      3
      6
      6
      3
```

样例输出 1

```
1 -2
```

样例输入2

```
1 | 5 5
2 | 3 3 4 5 -10
3 | 1 2 3 4 20
4 | 4 4 5 5 -10
5 | 2 2 4 4 -20
6 | 1 1 2 4 0
```

样例输出2

1 -20

数据范围

 $1 \leq n \leq 10^5, 0 \leq m \leq 10^5, -10^6 \leq W_i \leq 10^6, 1 \leq a_i \leq b_i \leq n, 1 \leq c_i \leq d_i \leq n_{ullet}$

子任务 1 (10分) $: n, m \leq 1000$ 。

子任务 2 (20分) : $n, m \leq 5000$ 。

子任务 3 (30分): $n \leq 1000$ 。

子任务 4 (40分): 无特殊限制。