

NASA Technical Memorandum 81573

NASA-TM-81573 19810002603

Completion of Evaluation of Manufacturing Processes for B/Al Composites Containing 0.2-mm-Diameter Boron Fibers

Thomas J. Moore and Paul E. Moorhead Lewis Research Center Cleveland, Ohio

FIBROAY COPY

DEC 8 1980

tancle - (Lsearch Center Library, Nasa Hawatani Vindinia

September 1980

Trade names or manufacturer's names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied by the National Aeronautics and Space Administration.

COMPLETION OF EVALUATION OF MANUFACTURING PROCESSES FOR B/A1

COMPOSITES CONTAINING 0.2-mm-DIAMETER BORON FIBERS

by Thomas J. Moore and Paul E. Moorhead

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

SUMMARY

In Part II of a two-part program, four fabricators produced a total of 54 B/1100 A1, B/6061 A1, and B/2024 A1 panels for evaluation. The eight-ply unidirectional, 45 to 50 volume percent, panels were made using 0.20-mm-diameter boron fibers which were obtained from a single supplier. About half the panels were made using fugitive binder tape and the remainder from dry woven tape. Hot press consolidation was carried out in vacuum except for one set of dry woven tape panels which were hot pressed in air. A single testing contractor conducted nondestructive inspection, metallography, fractography and mechanical property tests. The mechanical property tests included 21° and 260° C tensile tests and 21° C shear tests.

Panel quality, as measured by nondestructive evaluation, was generally good as were the 21°C tensile properties. The panels hot pressed in air, however, delaminated in the shear tests. Ultrasonic C-scan delineated these delaminated areas. Shear strength values were lower in these panels. But tensile strengths were not affected by the delaminations because of the relation between the tensile loading direction and the delaminations. Composite tensile strength was found to be proportional to the volume percent boron and the aluminum matrix rather than to the tape used or fabrication technique. Suitability of these composites for 260°C service was confirmed by tensile tests. Reproducibility of the tensile strengths of panels in Part II compared to those of Part I was very good for the B/6061 Al panels, fair for B/1100 Al and good for B/2024 Al panels. A recommendation is made to fabricate additional air hot pressed dry woven tape panels in order to more fully evaluate the most potentially cost-effective manufacturing process.

INTRODUCT ION

A two-part study designed to evaluate the effect of manufacturing procedures on mechanical properties and cost of B/Al composite panels has been completed. The objective was to find ways to lower the cost of B/Al composites while retaining strength at least equivalent to that of current commercial B/Al products. It was shown in Part I (ref. 1) that B/Al panels can be fabricated with economical, 0.20-mm-diameter boron fibers with quality and strength comparable to composites containing 0.14-mm-diameter boron. From the five kinds of B/Al tape studied in Part I, two were selected for further evaluation in Part II: fugitive binder tape and dry woven tape. The former represents current manufacturing practice while the latter is more economically attractive because of shorter hot pressing time and the possibility of hot press consolidation in air.

This report covers Part II of the program in which a total of 54 B/Al panels were manufactured. Two fabricators used fugitive binder tape and the other two fabricators used dry woven tape. Testing and evaluation was similar to Part I, except that in Part II, elevated temperature tensile and room temperature shear tests were included. The more comprehensive Part II evaluation of the two most promising tapes was designed to verify the reproducibility of the Part I results and to provide a data base for these composites. Tensile strength was obtained at 260° C to determine material suitability for certain applications such as in turbine engines, and to evaluate the effect of processing on elevated temperature properties. Shear strengths were calculated from shear tests parallel to the boron fibers. The mode of failure was useful in evaluating the integrity at the Al/Al and Al/B interfaces.

MATERIALS AND FABRICATION

The B/Al composite panel fabrication and evaluation program is shown in table I. Boron fibers were produced by Composite Technology, Incorporated (CTI), the same basic organization that produced the fibers used in Part I of this program.* Continuous 0.2-mm-diameter boron fibers were produced by hydrogen reduction of boron trichloride on a $13-\mu\text{m}-$ diameter tungsten wire substrate.

Two fabricators, Amercom Incorporated (AI) and DWA Composite Specialties, Incorporated (DWA) were supplied with spooled boron fibers. Fugitive binder tape was produced by a process in which the boron fibers are aligned on an aluminum backing foil and held in place by a fugitive binder (organic resin). The binder is designed to burn off completely, prior to consolidation by hot pressing. Overall processing time in the furnaces includes in-process control requirements for each fabricator related to heating rates and outgassing cycles prior to consolidation. These outgassing data are not shown here. But the parameters used by AI and DWA in the vacuum hot press consolidation are shown in table II.

CTI provided the other two fabricators, TRW Incorporated (TRW) and United Technologies, Hamilton Standard Division, (UT), with dry woven tape. As shown in figure 1, this dry woven tape product was available in the form of broad goods 122 by 762 cm with the fibers aligned in the 122 cm direction. The boron fibers were cross woven with 20 by 300 $\mu \rm m$ 5056 Al ribbon, four ribbons per cm. Since there is no binder, the dry woven tape package is heated directly to the hot press consolidation temperature with alignment of the boron fibers maintained by the cross woven 5056 Al ribbons. The hot pressing parameters used by TRW and UT are also presented in table II. Note that TRW pressed in vacuum and UT used an air environment.

Six composite panels 2 by 254 by 305 mm were produced for nine combinations of tape, aluminum matrix alloy and fabrication procedure (table I). These 54 panels were made with an eight-ply layup of unidirectional fibers. Specified volume percent of fibers was 45 to 50.

Because of out-of-flatness problems and problems with resistance heaters within their ceramic dies, UT repeated the hot press consolidation cycle for 7 of 12 panels (table III). These reruns were made on the basis

^{*}CTI was formerly known as Composite Materials Corporation.

of flaws indicated by ultrasonic C-scan examination by UT. However, no improvement in C-scan quality was noted by UT for the reprocessed panels.

EVALUATION PROCEDURES

The testing program conducted at Martin Marietta Corporation is outlined in table I. Determinations of panel flatness and liquid penetrant, X-ray, and ultrasonic inspections were made as described in reference 1.

Panel Layout and Cutting

Each panel was identified with a code (table I) and scribed with the specimen layout as shown in figure 2. The code consisted of a prefix for the panel followed by the test specimen identification. Example: The specimen AF7-L260-2 was taken from panel number AF7 for longitudinal tensile testing at 260° C. The last digit indicates specimen number 2 taken from the location shown in figure 2. Individual specimens were wet cut from the panels using a 254-mm-diameter diamond-impregnated cutting wheel and a specially designed cutoff table (ref. 1). No attempt was made to avoid (or include) flawed areas as determined by NDI when cutting the test specimens. But it was noted when specimens were taken from areas that included flaws.

Composite Tensile Tests

For the room temperature longitudinal tensile tests, 2024-T3 A1 end tabs were adhesive bonded to the tensile blanks as shown in figure 3. Fiberglass-phenolic end tabs rather than matching aluminum alloy tabs were used for longitudinal tensile testing at 260° C for convenience. Tabs were not used for either room temperature or 260° C transverse tests.

To determine elastic moduli the tensile specimens were instrumented with a mechanical extensometer. For testing at 260° C the extensometer was insulated to minimize heat effects. Average loading rates were approximately 2500 MPa/min for longitudinal tests and 200 MPa/min for the transverse tests. A load/strain curve was plotted for each specimen from which the elastic moduli and ultimate strengths were computed. A quartz lamp clam shell furnace was used to heat the elevated temperature test specimens.

Composite Shear Tests

The shear test, illustrated in figure 4, produced shear loading parallel to the boron fibers. Although this steel loading block arrangement with serrated grip faces produced satisfactory results, hole boring of the B/Al test specimens with a 12.7-mm-diameter diamond-core drill was too time consuming. Therefore, in the early stages of shear testing, the test procedure was altered. In the modified procedure the shear specimens were sandwiched between the loading blocks and compressed with sufficient force in a testing machine to impart grip face marks on the composite specimen

surface similar to the indentations that were produced by the bolting procedure. C-clamps were used to hold the loading blocks in place during testing. This procedure proved to be highly successful in the balance of the shear testing program.

Average loading rate in compression, to apply the shear load, was approximately 100 MPa/min. A load-deflection curve was plotted for each specimen from which shear strength was computed from the peak load.

Boron Fiber Tests

Boron fibers were removed from the composites by selective dissolution of the aluminum matrix in a 0.2 N sodium hydroxide solution. The fibers were then adhesive bonded to steel loading washers. The bonding area on these washers was sufficient to insure failure within a 152 mm gage length.

Twenty boron fibers were tested at 21°C for each composite panel to determine the tensile strength in the processed condition.

Fractography

Two typical fractures of tensile specimens from each panel (one longitudinal, one transverse) were examined on a scanning electron microscope (SEM). During SEM examination, any evidence of aluminum-aluminum delamination or aluminum-boron separation or transverse cracking in the boron fibers was documented. All SEM examinations were performed at a magnification of 100.

Metallography

All specimens selected were cut using a diamond grit cutting wheel at predetermined locations (fig. 2) and mounted in a Bakelite thermoplastic material.

Fiber distribution and overall quality was determined at a magnification of 50, while the integrity at the aluminum-aluminum interface, aluminum-boron interaction, small matrix voids, and delaminated areas were examined at a magnification of 200. All boron volume percent measurements were made with the aid of an image analyzing computer.

RESULTS

Mechanical properties of individual composite test specimens, boron fiber strength data, volume percent boron determinations, and non-destructive inspection results are shown in table III. Average values for much of these data are shown in table IV.

Longitudinal Tensile Strength of Composites

Average tensile strength at 21° and 260° C of the B/Al panels is plotted against average volume percent boron and aluminum matrix as shown in figure 5. For the B/6061 Al and for B/2024 Al panels (upper scatter-

band), it is evident that tensile strength increases with increasing volume percent boron. The DWA and AI B/6061 Al fugitive binder panels are stronger than the dry woven tape B/6061 Al panels. But this effect is probably a function of volume percent boron rather than an effect of the kind of tape used.

The tensile strength versus volume percent boron plot in figure 5 for the B/1100 A1 panels shows a wider scatterband than was observed for the B/6061 A1 panels. But the trend of increasing panel strength with increasing volume percent boron is apparent. In the following paragraphs average tensile strengths at 21° and 260° C will be compared for the fabricators and for each type of composite: B/1100 A1, B/6061 A1, and B/2024 A1. A comparison will also be made of the properties of composite panels fabricated in Part I and Part II of the program.

B/1100 A1. - Average strengths of composite panels at 21° and 260° C are shown in table IV and plotted in figure 6. AI and DWA B/1100 A1 panels were nearly equal in strength at 21° C (1190 and 1200 MPa). The UT panels were next strongest at 1140 MPa, and the TRW panels were weakest at 1030 MPa. If the properties of the one UT panel (UW8 from table III) that was not subjected to multiple hot press consolidation cycles is considered typical, the 21° C tensile strength would be 1210 MPa rather than 1140 MPa. This shows the potential for the air hot pressed dry woven tape panel to be as strong as the fugitive binder panels made by AI and DWA.

At 260°C the average tensile strength of the DWA and UT panels were nearly identical (1080 and 1070 MPa, respectively). The AI panels were a little weaker at 1000 MPa. The TRW panels were still lower in strength (890 MPa). Average tensile strength at 260°C, compared to the strength at 21°C, decreased from 6 to 16 percent for the four kinds of panels (see figs. 5 and 6).

Photographs showing typical fractures (fig. 7) exhibit square, even fracture for the AI tests (fugitive binder specimens AF8-2 and AF11-2). For these specimens the lack of boron pullout from the matrix indicates that chemical bonds were established between the boron fibers and the matrix during hot press consolidation. Conversely, a major amount of fiber pullout was observed for DWA and UT specimens (dry woven specimens DF11-3, DF10-2, UW8-3, and UW 12-2). An intermediate amount of pullout was observed for the TRW panels (see dry woven specimens TW11-2 and TW12-2 in fig. 7). Scanning electron photomicrographs illustrating both even facture and boron fiber pullout are shown in figure 8.

B/6061 A1. - The DWA panels were strongest at 21°C (fig. 6) with an average tensile strength of 1590 MPa. The AI panels at 1400 MPa were next strongest. Strengths of the two dry woven tape panels were lower: 1240 MPa for TRW, and 1280 MPa for UT. If the four (of six) UT panels which were only hot press consolidated once (table II) were considered, the average strength of the UT panels would be notably improved to 1360 MPa.

Average tensile strength at 260° C varied from 1460 and 1370 MPa for the fugitive binder panels to 1250 and 1140 MPa for the dry woven tape panels (fig. 6). Average tensile strength at 260° C compared to 21° C strength decreased only 2 to 8 percent. This is about half the decrease observed for B/1100 A1 panels.

The degree of boron fiber pullout from the matrices was less for the B/6061 Al than was observed previously for the B/1100 Al panels. AI and UT specimens (AF14-2, AF13-2, UW13-3, and UW18-1) (fig. 7) show very little pullout. For the others, DF13-3, DF14-2, TW18-1, and TW21-2, some boron pullout was evident.

B/2024 A1. - Average strength of these dry woven tape panels was similar to that of the dry woven tape TRW and UT B/6061 A1 panels (fig. 6). At 21° C, the average strength was 1280 MPa. It dropped to 1220 MPa (5 percent) at 260° C.

Although the fractures of TW24-3 and TW24-2 have irregular surfaces, there was only slight evidence of boron fiber pullout (fig. 7).

Tensile Strength: Part I versus Part II

The four fabricators that made panels in groups of six for Part II used the same kind of tape and fabrication technique to produce the Part I panels in triplicate. A plot of the comparative 21° C strengths of Part I and Part II panels in figure 9, shows that weaker B/1100 Al panels were produced by three fabricators in Part II. Strength decreases were 13 percent for AI panels, 21 percent for DWA panels, and 28 percent for TRW panels. Conversely, the tensile strength of the UT panels was up 13 percent. The reasons for this lack of strength reproducibility for the B/1100 Al panels are not known.

Tensile strength reproducibility for the B/6061 Al panels, on the other hand, was quite good. Differences in Part 1 and Part II tensile strengths were less than 5 percent. The TRW B/2024 Al Part II panels exhibited 12 percent higher tensile strengths than the Part I panels.

Modulus of Elasticity for Composites

The longitudinal tensile specimens generally exhibited both a primary and secondary modulus of elasticity while the transverse specimens had only one modulus. The dual moduli result from the elastic-elastic and elastic-plastic interactions of the boron fibers and the aluminum alloy matrix in the longitudinal tests.

All modulus data are shown in table III. Average modulus values are shown in table IV except for the transverse 260°C test results. These latter modulus values are of questionable accuracy because of problems encountered with the elevated temperature fixtures.

The average longitudinal primary modulus data obtained at 21° and 260° C are shown in figure 10. The 21° C moduli for the B/1100 A1 AI, DWA, and UT panels were similar (224 to 229 GPa). The modulus for the TRW panels was somewhat lower (191 GPa). At 260° C the moduli for the B/1100 A1 panels decreased from 5 to 12 percent compared to the 21° C moduli.

For the B/6061 Al panels tested at 21° C, the moduli for the AI, DWA and UT panels were also similar (222 to 230 GPa). TRW panels, once again, had a considerably lower modulus (183 GPa). An exception to the rule of a reduction of modulus at elevated temperature was observed for the AI panels. The modulus at 260° C of 238 GPa was 7 percent higher than the 21° C modulus (fig. 10). A modest decrease in modulus of 4 to 7 percent was observed for the other three manufacturers' panels tested at 260° C.

was observed for the other three manufacturers' panels tested at 260° C. The TRW B/2024 Al panels had a higher 21° C modulus than the TRW B/1100 Al and the B/6061 Al (198 GPa versus 191 and 183 GPa). As can be seen in figure 10, however, the 21° and 260° C moduli for the TRW B/2024 Al panels were lower than those obtained from the B/1100 Al and for the B/6061 Al panels of the other fabricators.

Secondary moduli values showed a pattern similar to that obtained for primary modulus (table IV).

Transverse Tensile Properties of Composites

B/1100~A1. - Transverse tensile strength at 21° C for the AI panels (99.1 MPa) was highest (fig. 11). TRW panels were next highest at (81.7 MPa) while the other panels, DWA (60.6 MPa) and UT (44.2 MPa) were considerbly weaker. A significant decrease in strength was observed in the elevated temperature tests, 37 to 41 percent compared to the 21° C tests (fig. 11).

Modulus values for both AI and DWA panels were identical at 21° C (118 GPa) (see table IV). The modulus values were slightly lower for UT panels (106 GPa) and for the TRW panels (104 GPa) (table IV).

B/6061 Al. - As shown in figure 11, the AI panels were strongest at 21° C (194 MPa). DWA (151 MPa) and TRW (146 MPa) panels had similar strengths, while the UT panels were lower (126 MPa). A reduction in strength of 21 to 38 percent was observed when testing was conducted at 260° C.

Modulus values for the fugitive binder panels at 21° C were 129 GPa for AI panels and 122 GPa for DWA panels (table IV). The dry woven tape panels had a somewhat lower moduli, 116 GPa for UT panels and 110 GPa for TRW panels (table IV).

B/2024 A1. - Figure 11 shows that the strength of a TRW dry woven tape panel at 21° C was slightly higher than the strongest B/6061 A1 panel (200 MPa versus 194 MPa). Testing at 260° C reduced the strength of the B/2024 A1 panel 23 percent.

At 21° C the average transverse modulus was 111 GPa (table IV).

Shear Tests of Composites

The following results include shear strengths and shear displacements for each specimen. A wide variation in the degree of shear displacement occurred for unknown reasons and some specimens bottomed out in the tooling. Photographs of typical tested shear specimens are shown in figure 12.

B/1100 A1. - Average shear strength and average displacement are shown in figure 13. The AI and TRW panels show strength slightly higher than the shear strength of annealed 1100 A1 from reference 2. In addition the average displacements are high (12.8 and 12.5 mm). The DWA and UT specimens were weaker and lower in average deformation.

B/6061 Al. - Figure 13 shows that panels from all of the fabricators had higher shear strength than that of annealed 6061 Al (ref. 2), with AI having the highest strength 131 MPa and low (2.3 mm) deformation.

B/2024 A1. - The strength of these panels at 133 MPa (see fig. 13) was slightly higher than that of the strongest B/6061 A1 panel and the annealed 2024 A1 (ref. 2).

Delamination. - Delamination between plies and fiber pullout from the matrix was noted for the UT panels (table III). A photomicrograph of a tested specimen showing major delamination and fiber pullout from the matrix is shown in figure 14. Specimens from all six of the UT B/1100 Al panels exhibited this condition. Of the six UT B/6061 panels, two showed

delaminations. The specimens that were delaminated on testing generally failed at lower loads and at smaller amounts of deformation (table III).

The delamination/fiber pullout condition was not observed for the AI, DWA, and TWA panels.

Tensile Strength of Fibers

For 142 spools of boron fibers with an average diameter of 0.201 mm, CTI reported an average tensile strength of 3790 MPa. It was found that all fabrication processes reduced the room temperature tensile strength of the fibers. The average tensile strength of processed boron fibers obtained from the 54 panels varied from 2740 to 2340 MPA (table IV). This represents a reduction in strength of from 28 to 38 percent. Hot press consolidation of dry woven tape in air resulted in less reduction in strength i.e., only a 30 percent reduction from the strength of unprocessed fibers for both B/1100 Al and B/6061 Al composites. The reason for this effect is not known.

Nondestructive Evaluation

Ultrasonic C-scan indications correlated well with areas of delamination in the shear tests. These delaminations were only severe in the UT panels. No correlation was observed, however, between C-scan indications and tensile strength (tables III and IV). All other kinds of non-destructive inspection showed no noteworthy flaws.

DISCUSSION

Fifty-four B/A1 composite panels were successfully fabricated by four companies using 0.20-mm-diameter boron fibers. B/1100 A1 and B/6061 A1 panels were fabricated from both fugitive binder and dry woven tape, and B/2024 A1 panels were fabricated from only dry woven tape. The most obvious single factor affecting longitudinal tensile strength, besides matrix alloy was volume percent boron. Other factors such as fabricator and kind of tape used, appeared to be of secondary importance. Thus, B/1100 A1 and B/6061 A1 panels made from fugitive binder tape with 46.9 to 49.9 volume percent boron were stronger than corresponding dry woven tape panels which contained 44.3 to 46.6 volume percent boron. Transverse tensile strength of the panels was, of course, a function of the matrix alloy, and the TRW B/2024 panels were strongest. It is worthy of note, however, that the AI B/1100 A1 and B/6061 A1 panels were strongest in each of these matrix groups in the transverse tests.

Tensile tests showed that the B/Al composite panels are serviceable at 260° C. For the B/1100 Al panels, the longitudinal tensile strength at 260° C was 16 percent (or less) below the 21° C values. For B/6061 Al and B/2024 Al panels, the reduction was 8 percent (or less). In the transverse direction, the 260° C tensile strength was up to 41 percent less than the 21° C values.

Through-the-thickness shear tests essentially tested the aluminum matrix parallel to the boron fibers. The manner in which the specimens failed was also of interest. For example, the UT shear specimens which

had major C-scan indications, showed major delaminations. Other specimens without C-scan indications showed no delaminations even though large amounts of deformation were produced.

Reproducibility of longitudinal 21° C tensile strength between the panels of Part I and Part II was quite good (< 6 percent difference) for the B/6061 Al panels. The reason for the lower strength of most B/1100 Al panels, up to 27 percent for Part II, is unknown. The reason for the increased strength of the B/2024 Al panels (11 percent) in Part II is also unknown.

Reduction in boron raw material cost and development of less costly fabrication methods were of primary importance in this study. The, raw material cost reductions was handled by the exclusive use of 0.20-mm-diameter boron in place of conventional 0.14 mm. A potential 10 percent raw material cost reduction is anticipated. The use of dry woven tape and hot pressing in air has potential for significant reduction in fabrication costs. The exact amount depends on the specific design of the composite part and the production quantity. Dry woven tape is easy to handle and the lack of a binder greatly decreases hot pressing time. Air hot pressing rather than vacuum hot pressing offers further savings.

Because of these potential cost reduction advantages, the equipment problems that UT encountered were unfortunate. Five of six B/1100 A1 panels and two of B/6061 A1 panels were exposed to more than one hot press consolidation cycle. Therefore, dry woven tape consolidated in air, was evaluated in a nonoptimum consolidation condition.

CONCLUDING REMARKS

In Part I of this program B/Al panels were successfully fabricated using 0.20-mm-diameter boron fibers. Quality and strength were found to be comparable to those of 0.14-mm-diamter B/A1 composites. This report has dealt with Part II of the programs with more extensive evaluation of 0.20-mm-diameter B/Al panels. For Part II, two fabricators successfully produced panels using fugitive binder tape and two other fabricators successfully made panels using dry woven tape. Volume percent boron was related to tensile strength of the composites. Thus, the panels made from fugitive binder tape were generally stronger than those made from dry woven tape because the former had a higher volume percent boron. Longitudinal tensile strengths at 260°C followed the same pattern as the 21°C tests. Since only a moderate weakening effect was observed, these B/Al composites are candidate materials for elevated temperature applications. The shear tests proved to be of value in identifying delaminated areas in the panels that were hot press consolidated in air. These delaminations, which were observed in C-scan examination, could not be clearly associated with either the multiple hot press cycles or to the air hot pressing.

In order to more fully evaluate the most cost-effective manufacturing procedure, additional B/Al panels should be fabricated using dry woven tape and hot press consolidation in air. At least two fabricators should be employed as possible sources. In the B/Al composite, 50 volume percent boron should be maintained rather than the typical 45 percent which was achieved in this program.

REFERENCES

- Moore, T. J.; and Moorhead, P. E.: Evaluation of Manufacturing Pro-Processes for Boron/Aluminum Composites Containing 0.2-mm-Diameter Boron Fibers. NASA TM X-79008, 1978.
- 2. Metals Handbook, Vol. 1, Eighth ed., American Society for Metals, 1961.

TABLE I. - B/Al COMPOSITE PANEL FABRICATION AND EVALUATION PROGRAM

[0.20-mm-diam. boron fibers; 45/50 vol%; unidirectional; eight ply.]

A. Raw materials

- 1. Boron fiber supplier: Composite Technology, Incorporated (CTI)
- 2. Al matrix materials: 1100 A1, 6061 A1, 2024 A1
- 3. B/Al tapes: Fugitive binder, dry woven
- B. Manufacuring of panels (2 mm by 254 mm by 305 mm)
 - 1. Fabricators
 - a. Amercom Incorporated (AI)
 - b. DWA Composite Specialties, Incorporated (DWA)

 - c. TRW Incorporated (TRW)
 d. United Technologies, Hamilton Standard Division (UT)
 - 2. Hot pressed panels with identification codes (54 panels)

Fabricator	Tape	Pressing		Panel codes	
		atmosphere	B/1100 A1	B/6061 Al	B/2024 A1
AI	Fugitive binder	Vacuum	AF7 to AF12	AF13 to AF18	
DWA	Fugitive binder	Vacuum	DF7 to DF12	DF13 to DF18	TW22 to TW27
TRW	Dry woven	Vacuum	TW10 to TW15	TW16 to TW21	
UT	Dry woven	Air	UW7 to UW12	UW13 to UW18	

- C. Testing: Martin Marietta Corporation
 - 1. Nondestructive
 - a. Ultrasonic C-scan

 - b. Radiographyc. Visual (general)d. Liquid penetrant
 - 2. Mechanical
 - a. Tensile properties of composite at 21° and 260° C b. Shear properties of composite at 21° C

 - c. Boron fiber atrength as-received and processed
 - 3. Fractography of composite tensile test specimens
 - 4. Volume percent boron determinations

TABLE II. - HOT PRESSING PARAMETERS FOR EIGHT-PLY B/A1 PANELS

Kind of	Aluminum	Hot pr	essing	Nominal	Pressure,	Time,
tape	matrix alloy	Fabricator	Atmosphere	temperature, OC	MPa	min
Fugitive binder	1100	AI DWA	Vacuum Vacuum	560 580	31.1 31.1	40
	6061	AI DWA	Vacuum Vacuum	530 545	31.1 31.1	30 10
Dry woven	1100	TRW UT	Vacuum Air	495 545	68.9	40 10
	6061	TRW UT	Vacuum Air	495 545	68.9 34.4	40 10
	2024	TRW	Vacuum	480	68.9	40

TABLE III. - TEST DATA SUMMARY

Panel								Mechani	al prop	erties		
code and specimen number		Modu	lus of e	lasticity	, GPa			Ultimate strengt			In-pl	ane shear
number		Longi	tudinal	_	Tana	sverse		strengt.	ı, mra			
	Pri	mary	Seco	ndary	11 411	averse	Longi	tudinal	Trans	averse	Strength,	Displacement,
	21° C	260° C	21° C	260° C	21° C	260 ⁰ С	21 ⁰ C	260° C	21° C	260° C	MPa	mm
AF7-1 AF7-2 AF7-3	213 239 218	194 216 	198 210 197		105 107 131	171 150	1340 1200 1210	849 1000 	95.8 101 102	50.8 70.3	68.9 66.5	16.5 7
AF8-1 AF8-2 AF8-3	225 222 211	210 207 	196 198 189		146 107 107	179 196 	1150 1220 1320	998 1140 	101 101 95.1	61.8 63.5	71.0 71.0 	18 10.5
AF9-1 AF9-2 AF9-3	221 229 231	215 203 	199 199 203		117 130 127	95.1 126 	1200 1250 1230	985 1110 	93 101 101	61.4 60.6	67.8 66.9	18 14
AF10-1 AF10-2 AF10-3	230 234 230	208 229 	197 201 204		123 114 109	165	1170 1130 1310	848 843	103 103 101	59.9 63.3	67.0 66.0	14 6.5
AF11-1 AF11-2 AF11-3	230 199 202	224 213 	191 181 184		110 112 127	86.2	1120 1070 1020	931 1040 	93.1 91.7 103	63.3 66.2	64.9 62.7	16.5 5
AF12-1 AF12-2 AF12-3	225 234 237	213 212 	194 197 212		105 115 137	175 112 	1020 1140 1230	1190 1100	101 95.1 102	59.2 64.6	65.5 67.7	14 14
AF13-1 AF13-2 AF13-3	231 220 219	256 244 	197 179 188	 	127 120 124	127 112	1460 1420 1460	1360 1460	190 203 203	154 151 	132 126 	1.5 1.5
AF14-1 AF14-2 AF14-3	222 238 225	236 240 	201 200 201	 	130 123 134	168	1320 1340 1360	1400 1520	199 183 197	168 145	134 128 	2 2
AF15-1 AF15-2 AF15-3	223 229 225	259 	190 193 195		121 126 129	161 101	1420 1270 1430	1420 	172 192 177	154 150	127 139	3 3
AF16-1 AF16-2 AF16-3	220 219 215	243 232 	192 196 203		134 138 128	15	1410 1310 1520	1370 1430	192 191 207	167 133	112 121	0.5 1.5

FOR B/A1 PANELS

			, -: -:		Nondes	tructive inspe	ction indic	ations	
	rocessed bor iber strengt MPa		Boron fibers, vol %	Flatness Δh,	Thic m	kness,	Liquid pene- trant	X-ray	Ultrasonic C-scan indication
Minimum	Maximum	Average			Average	Variation			area, percent
1730	3280	2820	48.4 53.4 48.2	1.24	1.95	0.076	S.P.	S.M.I. M.F.	<1
2110	2940	2600	52.4 51.7 52.1	1.22	1.93	0.051	S.P.	M.F.	<1
1050	3250	2620	47.2 45.8 50.0	0.686	1.93	0.076	S.P.	M.I. M.F.	0
2320	3370	3140	50.9 51.8 49.6	1.09	1.94	0.025	S.P.	M.I. M.F.	<1
1700	3220	2540	45.7 44.7 48.2	0.889	1.91	0.076	S.P.	S.M.I. M.F.	<1
1300	3309	2450	47.6 26.7 45.4	1.02	1.93	0	S.P.	L.F.D. M.I.	<1
1890	3320	2550	44.9 45.0 44.6	0.889	1.98	0.051	S.P.	M.I. M.F.	<1
1480	3080	2440	46.9 44.6 49.5	2.11	1.98	0.025	S.P.	M.I. M.F.	<1
1720	3340	2730	47.7 48.0 48.4	0.457	1.97	0.025	S.P.	M.F.	<1
2140	3680	2890	47.1 46.8 48.9	3.10	1.97	0.025	S.P.	M.I. M.F.	<1

TABLE III.

Panel			=					Mechani	cal prop	erties		
code and specimen number		Modulı	ıs of ele	asticity,	GPa			Ultimate strength			In-pl	ane shear
number		Longit	udinal		Tran	sverse		- Strengt	, ma			r. =
	Prima	ary	Seco	ndary	It all:		Longi	tudinal	Tran	sverse	Strength,	Displacement,
	21º C	260° C	21° C	260° C	21° C	260° C	21° C	260° C	21° C	260° C	MPa	mm
AF17-1 AF17-2 AF17-3	221 210 217	238 221 	197 193 192		130 130 130	89.6 95.1 	1410 1410 1470	1300 1280	199 194 202	152 150	125 135 	2 2.5
AF18-1 AF18-2 AF18-3	222 219 219	232 214 	193 193 199	 	125 133 137	161 165 	1330 1360 1480	1100 1470	199 192 197	156 157	148 139 	5 3
DF7-1 DF7-2 DF7-3	 214	189 204 	184 186 176		150 111 125	101 161	1180 1160 1210	1080 1120	62.1 72.4 53.8	40.4 38.4	55.9 48.5	4 3
DF8-1 DF8-2 DF8-3	207 214 214	172 182 	187 193 190	 	100 123 114	133 114	1350 1410 990	1170 1210 	55.2 52.4 51.0	33.6 37.0	71.7 53.5	5.5 3
DF9-1 DF9-2 DF9-3	236 231 218	188 	187 193 197	174 168 	117 116 126	201	1250 1090 1260	1110 921 	53.1 53.1 51.7	29.5 31.4	61.0 41.9	5.5 1.5
DF10-1 DF10-2 DF10-3	217 276	207 	181 205 179	204 182	112 112 116	201 203 	1230 1200 1280	1050 1080 	55.2 69.6 66.2	33.7 35.4	63.0 50.0	8.5 3.5
DF11-1 DF11-2 DF11-3	224 239 220	228 	183 201 186	183	111 119 112	100	1200 1240 1150	1050 1040	69.6 79.3 60.7	42.1 39.8	52.9	 4
DF12-1 DF12-2 DF12-3	263 	242 	177 202 183	195 183 	119 116 133	76.5 73.7	1060 1090 1200	1020 1080	55.2 71.7 57.9	34.6 35.4	46.1	1
DF13-1 DF13-2 DF13-3	223 210 218	180 234 	183 175 195		152 86.2 93.1	223 145 	1420 1480 1460	1380 1380 	177 123 120	127 123	94.6 129	3 3
DF14-1 DF14-2 DF14-3	221 244 	205 210 	190 200 199		119 130 121	157	1720 1720 1710	1510 1420	176 146 133	105 100	97.2 105 	1.5 2

- Continued.

					Nondes	tructive inspe	ction indic	ations	
	Processed bo fiber streng MPa		Boron fibers, vol %	Flatness Δh, mm	Thic m	kness, m	Liquid pene- trant	X-ray	Ultrasonic C-scan indication
Minimum	Maximum	Average			Average	Variation			area, percent
1890	3030	2420	45.7 47.7 49.7	1.78	1.97	0.025	S.P.	M.I. M.F.	<1
1310	3340	2680	45.7 43.5 49.1	1.57	1.98	0.025	S.P.	M.I. M.F.	<1
1450	2290	2100	49.1 47.8 48.7	3.00	2.29	0.051	S.P.	S.M.I.	1
1190	3120	2580	46.8 48.1 46.0	0.635	2.32	0.051	S.P.	S.F.B.	1
1120	2510	2140	50.0 49.2 48.7	2.29	2.28	0.051	S.P.	L.F.D. S.M.I.	<1
1750	2920	2370	49.9 50.1 50.6	2.49	2.29	0.051	S.P.	L.F.D. S.M.I.	<1
1180	2740	2380	48.3 46.8 51.3	3.05	2.30	0.051	S.P.	L.F.D. S.M.I.	<1
2150	2790	2460	47.1 50.1 52.1	1.85	2.30	0.025	S.P.	S.M.1. S.F.	<1
1580	3140	2590	51.8 47.5 50.0	2.34	2.21	0.203	S.P.	L.F.D. S.M.I.	30
1760	3100	2540	47.7 47.1 48.4	4.14	2.16	0.076	S.P.	L.F.D. S.M.I.	25

TABLE III.

Panel								Mec han i	al prop	erties		
code and specimen number		Modul	us of ela	sticity,	GPa			Ultimate strength			In-pl	ane shear
number		Longit	udinal		Trans	verse			.,			
	Prima	ary	Seco	ndary	ITALL	sver se	Longi	udinal	Trans	sverse	Strength, MPa	Displacement,
	21º C	260° C	21º C	260° C	21º C	260° C	21° C	260° C	21º C	260° C	rur et	aut
DF15-1 DF15-2 DF15-3	252 248	212 210 	203 202 181	 	125 129 124	123	1710 1650 1620	1350 1370	145 155 163	96.5 93.8	101	2
DF16-1 DF16-2 DF16-3	228 227	209 243 	200 203 203		117 136 108	130	1680 1710 1490	1590 1340 	147 164 136	137 121	101 120	2 2
DF17-1 DF17-2 DF17-3	265 236 	215 231	216 203 191		125 132 143	163 177	1570 1530 1330	1440 1600 	163 152 159	131 121	105 110	1 2
DF18-1 DF18-2 DF18-3	209 214 221	224 203 	190 197 195		119 112 128	92.4	1650 1590 1490	1550 1590 	145 155 163	128 117 	88.9 115 	1 3.5
TW10-1 TW10-2 TW10-3	190 181	141 160 	149 143 -		113 110 87.6	185	1130 1180 1190	1110 1060	85.5 85.5 86.9	48.3 54.1	67.7 67.5	9 12.5
TW11-1 TW11-2 TW11-3	182 186 188	188 182 	139 141 145	145 137 	101 101 112	170 121	1060 943 993	904 783	74.5 80 84.1	51.1 51.4	67.0 64.3	9.5 10.5
TW12-1 TW12-2 TW12-3	203 179 185	166 156 	150 152 148		109 101 110	139 168 	1060 1030 1170	983 874 	80.0 81.4 78.6	52.3 51.6	67.8 68.6	10 15
TW13-1 TW13-2 TW13-3	221 	145 139 	143 143 143		94.5 111 93.8	136 164 	958 1150 991	842 794 	85.5 87.6 85.5	54.6 53.3	66.1 66.0	14 8.5
TW14-1 TW14-2 TW14-3	 190 191	176 154 	158 153 150		106 112 99.3	176 185 	1040 1000 1060	721 980 	77.3 80.7 77.2	47.8 49.4 	66.7 62.5 	10 20
TW15-1 TW15-2 TW15-3		212	145 154 149	149 148 	97.2 102 108	170 172	884 840 910	785 794 	80.0 79.0 81.0	51.3 52.3	68.3 71.0	12.5 18

- Continued.

					Nondes	tructive inspe	ction indic	ations	· · · · · · · · · · · · · · · · · · ·
	Processed bor fiber streng MPa		Boron fibers, vol %	Flatness Δh, mm		kness, mm	Liquid pene- trant	X-ray	Ultrasonic C-scan indication
Minimum	Maximum	Average			Average	Variation			area, percent
2260	3090	2750	47.8 52.3 50.4	6.50	2.2i	0.102	S.P.	S.M.I.	35
1680	2740	2250	48.2 50.5 49.2	3.66	2.19	0.025	S.P.	s.m.1.	15
1850	3590	3040	50.7 47.6 47.1	2.16	2.18	0.102	S.P.	F.B. S.M.I.	15
1720	3400	2480	50.6 49.0 50.6	1.80	2.15	0.051	s.P.	S.M.1.	15
1680	3390	2790	41.0 45.1 42.4	2.16	2.21	0.076	S.P.	L.F.D. F.B. S.M.1.	<1
1670	3500	2670	45.2 42.7 42.5	1.42	2.23	0.051	S.P.	IF.D. S.M.I.	<1
2150	3140	2700	46.5 47.2 46.3	2.84	2.18	0.051	S.P.	L.F.D. F.B. S.M.I.	5
1810	3080	2460	44.7 45.8 43.8	1.55	2.29	0.051	S.P.	L.F.D. S.M.I.	<1
2340	3300	2920	45.2 44.3 46.5	2.29	2.16	0.025	S.P.	L.F.D. S.M.1.	1
2640	3200	2880	45.5 43.5 43.2	2.46	2.16	0.025	None	L.F.D. S.M.I.	1

TABLE III.

Pane1							·	Mechanica	al proper	ties	••••	-
code and specimen number		Modu.	lus of e	lasticity	, GPa		ţ	Jitimate i			In-pl	ane shear
Hamber		Longi	tudinal		Tran	sverse					ļ	·
	Pri	mary	Second	lary	11 411	- ver se	Longitu	udinal	Trans	everse	Strength,	Displacement,
	21° C	260° C	21° C	260° C	21º C	260° C	21° C	260° C	21° C	260° C	mra	mm.
TW16-1 TW16-2 TW16-3	 168	165 168 	148 145 	 141 	101 110 108		1300 1260 1300	1190 1120	140 140 150	102 103	87.6 100	2.5 7
TW17-1 TW17-2 TW17-3	208 190 197	162 186 	152 150 177	141 	118 110 110	82.7 126 	1220 1340 1290	1130 1240 	145 147 141	98.6 95.1	84.8 98.6	2 5.5
TW18-1 TW18-2 TW18-3	198 172	186 184 	150 150 155	136 140 	107 113 114	76.5 	1360 1300 1330	1180 1270	146 150 148	103 104 	91.7 95.8	4 3
TW19-1 TW19-2 TW19-3	185 175 168	168 163 	147 147 148	125 	107 108 108	95.1 100	847 1160 1160	1030 918	150 150 153	102 101	93.8 100 	3.5 6
TW20-1 TW20-2 TW20-3	160 	152 140 	133 134 142	121 	96.5 108 105	86.9 123	1150 1270 1270	1130 1060 	150 142 143	101 96.5	97.9 94.5 	6.5 5.5
TW21-1 TW21-2 TW21-3	 187	190 171 	144 149 154	125 139 	115 114 126	110 101	1230 1290 1330	1210 1180 	147 146 139	99.3 114 	98.0 100	5 7 ———
TW22-1 TW22-2 TW22-3	171 205 209	177 193 	150 150 157	139 	109 110 110	103 110	1020 1190 1160	1020 999 	194 193 197	159 156	121 132 	1 1.5
TW23-1 TW23-2 TW23-3	199 212 178	173 188 	154 151 152		112 114 118	93.8	1470 1410 1450	1370 1320 	194 199 200	161 149	132 146	1.5 3
TW24-1 TW24-2 TW24-3	190 188 206	228 190 	163 158 170		110 113 109	91.0 107	1360 1340 1500	1440 1310	201 201 183	155 150	134 129 	1.5 1.5
TW25-1 TW25-2 TW25-3	165 	177 202 	151 158 163		105 118 110	117	1180 1150 1160	1300 1240	205 215 208	156 152	125 130	1 1

- Continued.

			· · · · · · · · · · · · · · · · · · ·	<u> </u>	Nondes	structive insp	ection indic	ations	
	Processed bo fiber streng MPa		Boron fibers, vol %	Flatness Δh,	1	nm	Liquid pene- trant	X-ray	Ultrasonic C-scan indication
Minimum	Maximum	Average			Average	Variation			area, percent
1830	2930	2450	44.9 41.0 47.2	2.54	2.28	0.025	S.P.	L.F.D. S.M.I.	20
1940	2840	2490	43.8 43.6 43.0	1.78	2.31	0.025	S.P.	L.F.D. S.M.I.	5
2080	3590	2760	42.3 48.7 47.6	1.09	2.30	0.051	S.P.	L.F.D. S.M.I.	10
1390	3040	2400	44.9 46.3 43.8	1.60	2.33	0.025	S.P.	L.F.D. S.M.L.	5
1560	2830	2160	40.7 42.9 43.9	2.39	2.51	0.076	None	1F.D. S.M. (.	5
1260	2760	2300	42.9 42.7 47.3	1.78	2.28	0.025	S.P.	L.F.D. M.I.	5
2360	3060	2720	42.1 47.0 45.3	1.65	2.22	0.025	S.P.	V.P.	5
2150	3360	2680	43.0 41.2 44.2	1.17	2.24	0.051	S.P.	None	10
1160	3570	2560	42.8 46.8 47.4	1.93	2.09	0.025	S.P.	S.M.I. S.F.	10
1790	2730	2260	46.7 48.8 48.0	2.03	2.08	0.025	S.P.	S.M.1.	20

TABLE III.

Pane1								Mechanic	al prope	rties		
code and specimen number		Modul	lus of el	asticity	, GPa			Ultimate strength			In-pla	ane shear
Homber		Longit	tudinal		Trans	verse			·			
	Prin	nary	Second	lary			Longit	udinal	Trans	verse	Strength, MPa	Displacement,
	21º C	260° C	21º C	260° C	21º C	260° C	21º C	260° C	21º C	260° C		
TW26-1 TW26-2 TW26-3	216 197 213	190 187 	183 164 181		114 111 106	99.3 105 	1320 1300 1200	1090 1260 	208 195 212	153 150	116 162	1 3
TW27-1 TW27-2 TW27-3	219 191 214	188 183 	165 162 161		111 119 107	117 108	1150 1260 1370	1110 1240 	199 194 194	150 165	125 141	1 1
auw7-1 auw7-2 auw7-3	197 231 206	218 201 	167 176 174		122 101 100	71.0	1260 998 1200	912 1120 	44.4 41.4 41.9	36.6 36.2	53.2 b53.4	5 5.5
UW8-1 UW8-2 UW8-3	207 225 229	172 230 	170 179 185		97.2 101 99.3		1290 1100 1250	1050 1020 	39.5 44.7 47.1	9.51 24.1	64.8 b35.5	10 3
CUW9-1 CUW9-2 CUW9-3	209 228 218	205 195 	181 172 181		121 117 103		1080 1120 964	1100 1090 	50.8 48.7 41.9	26.7 31.7	61.1 b64.5	9 8
auw10-1 auw10-2 auw10-3	332 261	202 204 	186 178 177		103 110 126		1080 1130 1130	1050 971 	55.8 55.2 53.8	38.3 36.8	d _{42.3} 51.6	4 3
auw11-1 auw11-2 auw11-3	223 198 212	216 191	178 170 181		101 110 101	199 166 	1030 1230 1220	1090 1330	35.5 46.7 53.1	13.1 23.9	65.3 b _{21.0}	7 5
auw12-1 auw12-2 auw12-3	237 208 205	186 205 	189 178 174		97.9 103 99.3	160	1170 1040 1150	999 1110 	27.9 30.3 36.2	8.48 21.1 	52.5 b27.2	7 4.5

aTwo hot pressing cycles.
bMajor delamination during shear testing.
CThree hot pressing cycles.
dSome delamination during shear testing.

- Continued.

					Nondes	tructive inspe	ction indi	cations	
	Processed bo fiber streng MPa		Boron fibers, vol %	Flatness Δh, mm	1	kness, mm	Liquid pene- trant	X-ray	Ultransonic C-scan indication
Minimum	Maximum	Average			Average	Variation			area, percent
1620	3200	2590	42.6 46.9 44.7	2.95	2.14	0.051	S.P.	L.F.D. S.M.I.	20
1920	2530	2080	45.4 44.5 44.9	3.30	2.16	0.051	S.P.	M.I. S.F.	20
1250	3330	2610	42.0 44.0 43.5	1.98	1.87	0.025	C S.P.	F.C. S.M.I. S.F.	60
2140	2980	2610	44.3 44.0 46.5	2.92	1.91	0.051	D.S. S.P.	F.C. L.F.D. S.M.I.	70
1060	3310	2590	43.8 42.0 48.9	1.22	1.94	0.025	S.P.	F.C. L.F.D. S.M.I.	85
2300	2960	2650	48.7 46.8 45.6	1.24	1.91	0	D.N. S.P.	F.C.,S.F. L.F.D. S.M.I.,S.F.	95
1780	3060	2630	45.1 44.0 40.9	1.96	1.89	0.051	D.N. S.P.	F.C., IF.D. M.I. V.P.	75
2230	3200	2740	46.8 43.2 47.8	1.83	1.92	0.025	S.P.	F.C. L.F.D. S.M.I.,M.I.	80

TABLE III.

Panel code and specimen number	Mechanical properties													
	Modulus of elasticity, GPa							Ultimate tensile				In-plane shear		
		Longi	udinal				strength, MPa							
	Primary		Secondary		Transverse		Longitudinal		Transverse		Strength,	Displacement,		
	21° C	260° C	21° C	260° C	21° C	260 ⁰ С	21° C	260° C	21° C	260 ⁰ С	MPa	mm		
UW13-1 UW13-2 UW13-3	213 221 229	224 185	182 180 185		122 118 122	193	1110 932 1170	1120 1140 	128 125 134	82.0 84.1	95.8 	11		
UW14-1 UW14-2 UW14-3	202 255 232	206 192	179 175 173		106 117 117		1380 1460 1390	1370 1420	101 103 107	73.8 68.9	85.5 92.4 	4 8 		
auw15-1 auw15-2 auw15-3	216 210 228	254 243	185 185 177	184 174 	96.5 108 112	95.1	776 1050 973	990 1040 	131 129 140	51.3 79.3	117 d86.2	9 2 		
UW16-1 UW16-2 UW16-3	292 203 212	225 220 	194 183 179		118 118 127	84.8	1280 1480 1380	1420 1400 	116 125 126	80.0 78.6	95.8 101 	8 9 		
UW17-1 UW17-2 UW17-3	256 	172 176	175 171 177		112 119 117	130	1560 1640 1490	1370 1390 	130 132 126	75.8 83.4	90.3 96.5 	5.5 6.5		
auw18-1 auw18-2 auw18-3	201 197 199	226 249 	178 173 174	172 	122 119 112	201 112 	1310 1240 1330	1320 1050 	129 140 143	82.0 97.2	110 d90.3	5 2.5		

 $^{^{8}\}mathrm{Two}$ hot pressing cycles. dSome delamination during shear testing.

- Concluded.

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·		Nondestructive inspection indications					
	Processed bo fiber streng MPa		Boron fibers, vol %	Flatness Ah, mm	1	kness,	Liquid pene- trant	X-r ay	Ultrasonic C-scan indication area, percent
Minimum	Maximum	Average			Average	Variation		:	
1050	3190	2590	45.0 44.9 46.3	0.737	1.86	0.025	S.P.	F.C. S.M.I.	5
2140	2830	2450	45.7 46.8 44.9	0.914	1.83	0	S.P.	F.C. S.M.1. M.I.	100
1410	3000	2230	44.9 48.1 43.5	3.07	1.84	0.025	D.S. S.P.	F.C.,L.F.D. S.F. S.M.I.	50
2300	3230	2760	47.2 48.4 48.5	1.19	1.85	0.025	S.P.	F.C. M.I.	60
1560	3670	3080	44.4 48.1 49.4	0.940	1.83	0.025	S.P.	F.C. M.I. V.P.	40
2260	3300	2760	48.8 46.7 47.1	2.27	1.86	0.051	D.S. S.P.	F.C. L.F.D. S.M.I.	30

24

TABLE IV. - AVERAGE TEST DATA FOR B/A1 PANELS

Kind of tape	Aluminum matrix alloy		ressing	C-scan Average Average indication boron, proces								Average ultimate tensile strength,				Average in-plane shear	
		y Fabri- Atmos		area,	vol %	boron		Longitudinal			Trans-	MPa			Strength,	Deforma-	
				average percent		fiber strength,	Primary		Secondary		Verse	Longitudinal		Transverse		MPa	tion,
			ļ			MPa	21º C	260° C	21° C	260° C	21º C	21º C	260° C	21º C	260° C		720
Fugitive	1100	AI	Vacuum	<1	48.9	2700	224	212	197		118	1190	1000	99.1	62.1	67.2	12.8
binder		DWA	Vacuum	<1	48.9	2340	229	202	188	184	118	1200	1080	60.6	35.9	54.4	4.0
	6061	AI	Vacuum	<1	46.9	2620	222	238	195		129	1400	1370	194	153	131	2.3
		DWA	Vacuum	23	49.3	2610	230	215	196		122	1590	1460	151	117	106	2.1
Dry woven	1100	TRW	Vacuum	<2	44.5	27 40	191	165	147	145	104	1030	890	81.7	51.5	67.0	12.5
ļ		UT	Air	78	44.9	2640	225	202	178		106	1140	1070	44.2	26.1	49.4	5.9
	6061	TRW	Vacuum	8	44.3	2430	183	170	149	134	110	1240	1140	146	102	95.2	4.8
		UT	Air	48	46.6	2650	223	214	179	177	116	1280	1250	126	78.0	96.4	6.4
	2024	TRN	Vacuum	14	45.1	2480	198	190	161	139	111	1280	1220	200	155	133	1.5

Figure 1. - Roll of dry woven tape broad goods 122 cm x 762 cm. Boron fibers 0.20 mm diam cross woven with 20 μm x 300 μm 5056 Al ribbon, four ribbons per cm.

Figure 2. - Test specimen layout for boron aluminum composite panels. (Dimensions are in mm.)

Figure 3. - Straight sided boron/aluminum tensile test specimen with end tabs.

(a) Tested specimen and block supports.

(b) Clamp arrangement.

Figure 4. - Composite shear test details.

(c) Test machine.

Figure 4. - Concluded.

Figure 5. - Effect of volume percent boron on longitudinal tensile strength for B/Al composite sheet at 21° C and at 260° C.

Figure 6. - Average longitudinal tensile strength of B/Al composites at 21C and 260C as related to fabricator and kind of tape.

(a) Room temperature tests.

Figure 7. - Typical fracture areas of B/AI tensile specimens.

(b) 260C tests. Figure 7. - Concluded.

(a) Even fracture with no delaminations or boron fiber pullout in $21^{\rm O}$ C test.

(b) Boron fiber pullout in 260° C test.

Figure 8. - Fracture surfaces of longitudinal B/AI tensile specimens.

Figure 9. - Comparative average longitudinal tensile strength of B/AI composites at 21C for Part I and Part II of the program.

Figure 10. - Average longitudinal primary modulus of elasticity for B/AI composite panels at 21C and 260C.

Figure 1L - Average transverse tensile strength of B/AI composite panels.

B/1100 AI B/6061 AI B/2024 AI

Figure 12. - Typical shear specimens tested at 21C.

Figure 13. - Average shear strength and average displacement obtained from room temperature shear tests of B/AI composites.

Figure 14. - B/1100 Al shear test specimen showing severe delaminations and separation of the boron fibers from the matrix.

1. Report No. NASA TM-81573	2. Government Acces	sion No.	on No. 3, Recipient's Catalog No.			
4. Title and Subtitle COMPLETION	OF EVALUATION	OF	5. Report Date			
MANUFACTURING PROCESS	ES FOR B/AI CO	MPOSITES	September 1980			
CONTAINING 0.2-mm-DIAM		6. Performing Organization Code				
7. Author(s)			8. Performing Organiz	ation Report No.		
Thomas J. Moore and Paul E	. Moorhead		E-543			
	· · · · · · · · · · · · · · · · · · ·		10. Work Unit No.			
9. Performing Organization Name and Address						
National Aeronautics and Spa	ce Administration	}	11. Contract or Grant	No		
Lewis Research Center		i	TI. COMMISCE OF GISHE	140.		
Cleveland, Ohio 44135		-	12 Tune of Beneat a	ad Parlad Causard		
12. Sponsoring Agency Name and Address			13. Type of Report at			
National Aeronautics and Spa	ce Administration	Ļ	Technical M	emorandum		
Washington, D.C. 20546			14. Sponsoring Agency	/ Code		
15. Supplementary Notes						
				•		
16. Abstract						
	am four fabricat	ome amaduand a total	L - C E A TO /1100 A	1 D /6061 A1		
In Part II of a two-part progr		_	•			
and B/2024 Al panels for eva						
were made using 0.20-mm di						
About half the panels were m						
tape. Hot press consolidation	n was carried out	in vacuum except fo	or one set of dry	woven tape		
panels which were hot presse	d in air. A single	testing contractor	conducted nonde	structive		
inspection, metallography, fr	actography and m	echanical property	tests. The mec	hanical prop-		
erty tests included 21 ⁰ and 26	00 C tensile tests	and 210 C shear te	sts. Panel qual	itv. as mea-		
sured by nondestructive evalu						
The panels hot pressed in air				•		
delineated these delaminated						
tensile strengths were not aff						
sile loading direction and the						
portional to the volume perce						
fabrication technique. Suitab	_			•		
sile tests. Reproducibility of						
Part I was very good for the	3/6061 Al panels,	fair for B/1100 Al	and good for B/	2024 Al panels.		
A recommendation is made to	fabricate addition	al air hot pressed	dry woven tape j	panels in order		
to more fully evaluate the mo 17. Key Words (Suggested by Author(s))	st potentially cost					
Composite materials		18. Distribution Statement Unclassified - unlimited				
Fabrication		l				
		STAR Category	24			
Testing						
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*		
Unclassified	Uncle	haifiee				

•		
•		
•		
•		

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

SPECIAL FOURTH CLASS MAIL BOOK

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

NNSN

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return