Heterogeneous Returns and the Distribution of Wealth

Decory Edwards

Johns Hopkins University

May 21, 2025

A two-way street between macro and inequality (Ahn et al. 2017):

Empirically, fiscal policy (i.e. stimulus checks) and aggregate shocks can have differential effects across households.

Macro matters for inequality

Representative agent models have a difficult time matching empirical estimates of macro variables (MPC and the wealth distribution).

Inequality matters for macro

Incorporating *heterogeneity across households* can help focus on this second issue.

Key insights from het. agent macro

- Uninsurable, idiosyncratic risk to income and movements in aggregate productivity (Krusell and Smith 1998)
- Classifying models with ex-ante and ex-post heterogeneity (Kaplan and Violante 2022)

Income uncertainty helps. So does time preference heterogeneity.

Q: What other parameters relevant to consumption-saving decisions may be plausibly different across households ex-ante? Do they help better match the wealth distribution?

Incorporating estimates of heterogeneous returns

- Comprehensive, administrative tax data in Norway from 2004 to 2015 (Fagereng et al. 2020)
- ② Documents heterogeneous returns in PSID and structural estimation of a model with skill endowments (Daminato and Pistaferri 2024)

Like time preference het., I find that return het. does well with matching wealth distribution.

Outline

- Empirical evidence of heterogeneous returns
- Model of saving with heterogeneous returns
- 3 Structural estimation of model to match wealth data

A closer look at Fagereng et al. 2020

Following optimal portfolio choice theory from Merton (1969) and Samuelson (1969)

Optimal share in the risky asset is given by

$$\alpha_{it}^m = \frac{\mathbb{E}(r_t^m - r_t^s)}{\gamma_i \sigma_t^2}.$$

 Individual realized return to financial assets can be written as

$$r_{it}^f = r_t^s + \alpha_{it}^m (r_t^m - r_t^s).$$

Figure: Heterogeneity in returns to financial wealth by share of risky assets from Fagereng et al. 2020.

Empirical estimate of heterogeneity

• Step 1: linear regression for the return to net worth using panel

$$r_{it}^{n} = X_{it}^{'}\beta + u_{it}.$$

• Step 2: Add fixed effects

$$u_{it} = f_i + e_{it}$$
.

 $\implies R^2$ goes from .33 to .5.

Figure: Distribution of fixed effects in the return to net worth from Fagereng et al. 2020.

Labor income process

Household income:

$$y_t = p_t \xi_t W_t$$

Permanent component:

$$p_t = p_{t-1}\psi_t$$

Transitory component:

$$\xi_t = \begin{cases} \mu & \text{with probability } \mho \\ (1 - \tau_t)\ell\theta_t & \text{with probability } 1 - \mho \end{cases}$$

(Normalized) Optimization problem

Choose profiles $\{c_{t_n}\}_{n=0}^{\infty}$ that satisfy

$$\begin{array}{rcl} v(m_t) & = & \max_{c_t} u(c_t(m_t)) + \beta \mathcal{D}\mathbb{E}_t[\psi_{t+1}^{1-\rho}v(m_{t+1})] \\ & \text{s.t.} \\ \\ a_t & = & m_t - c_t(m_t), \\ k_{t+1} & = & \frac{a_t}{\mathcal{D}\psi_{t+1}}, \\ \\ m_{t+1} & = & (\neg + r_t)k_{t+1} + \xi_{t+1}, \\ \\ a_t & \geq & 0. \end{array}$$

Production function

$$Y = ZK^{\alpha} (\ell L)^{1-\alpha}$$

Calibration

Standard calibration scheme used to simulate the model.

Description	Parameter	Value	Source
Time discount factor	β	0.99^4	Den Haan, Judd, and Juillard 2010
CRRA	ρ	1	Den Haan, Judd, and Juillard 2010
Capital share	α	0.36	Den Haan, Judd, and Juillard 2010
Depreciation rate	δ	0.025	Den Haan, Judd, and Juillard 2010
Time worked per employee	ℓ	1/.09	Den Haan, Judd, and Juillard 2010
Effective interest rate	$r - \delta$	0.01	Den Haan, Judd, and Juillard 2010
Wage rate	W	2.37	Den Haan, Judd, and Juillard 2010
Unempl. insurance payment	μ	0.15	Den Haan, Judd, and Juillard 2010
Probability of survival	Ø	$(1 - 0.00625)^4$	Yields 40-year working life
Std. dev of $log \theta_{t,i}$	σ_{θ}^2	$0.010 \times 4 \times \sqrt{4}$	Carroll 1992,
			Carroll, Slacalek, and Tokuoka 2015
Std. dev of $\log \psi_{t,i}$	σ_{ψ}^2	$0.010 \times 4/11 \times \sqrt{4}$	Carroll 1992,
	Ψ		Debacker et al. 2013,
			Carroll, Slacalek, and Tokuoka 2015
Unemployment rate	σ	0.07	Mean in Den Haan, Judd, and Juillard 2010

Table 1: Parameter values (annual frequency) for the perpetual youth model.

Estimation procedure

Simulated method of moments (SMM) estimation for R using 2004 SCF wealth data.

- **1** No ex-ante heterogeneity: R-point model Estimate a common rate of return across households by finding the \grave{R} which matches the capital-to-output ratio ($\frac{K}{Y}=7.47$).
- ② Ex-ante heterogeneity: R-dist model Estimate a **Uniform distribution** of returns across households by finding the \grave{R} , ∇ which match empirical Lorenz targets, given $\frac{K}{V}$.

	Net worth percentile	Cumulative net worth
Г	20th	18%
	40th	.95%
	60th	5.3%
	80th	17.09%

How good is the fit?

Lifecycle version of the model

- Education cohort $e \in \{D, HS, C\}$
- Initial wealth-to-income k_0 and income p_0 levels
- Education-age dependent mortality rates (Brown, Liebman, and Pollet 2007)
- Modified labor income uncertainty $y_t = \xi_t \psi_t \overline{\psi}_{es} p_{t-1}$ (Cagetti 2003)
 - Education-age dependent shock variances (Sabelhaus and Song 2010)

Calibration

Description	Parameter	Value
Population growth rate	N	0.0025
Technological growth rate	Γ	0.0037
Rate of high school dropouts	$ heta_D$	0.11
Rate of high school graduates	θ_{HS}	0.55
Rate of college graduates	$ heta_C$	0.34
Labor income tax rate	au	0.0942

Table 2: Parameter values (annual frequency) for the lifecycle model.

How good is the fit?

Model performance: returns distribution

Empirical values from Fagereng et al. 2020

		St. Dev
Net worth (after tax)	0.0365	0.0781

Values from the structural estimation (uniform distribution for R)

	Mean	St. Dev
PY-Point	0.071	0.0
PY-Dist	0.055	0.006
LC-Point	0.063	0.0
LC-Dist	0.049	0.010

Model performance: untargeted moments

Empirical Lorenz Shares (10-Year)

age	20th	40th	60th	80th
25-30	-0.0723	-0.0657	-0.0266	0.1099
30-40	-0.008	0.0054	0.057	0.1813
40-50	-0.0001	0.0187	0.0776	0.2178
50-60	0.0018	0.0215	0.0766	0.2126
60-70	0.0011	0.0188	0.0726	0.2081

Simulated Lorenz Shares (10-Year)

age	20th	40th	60th	80th
25-30	-0.0002	0.0305	0.1005	0.2532
30-40	-0.0101	0.0122	0.0841	0.2609
40-50	-0.0052	0.0121	0.0787	0.2569
50-60	0.0011	0.0209	0.0866	0.2593
60-70	0.0016	0.0203	0.0811	0.2459

Work to be done

- Robustness checks
 - Plausible parameter values for time preferences and risk aversion
 - Different measures of wealth (liquid and/or financial)

References I

- Ahn, Sehyoun et al. (2017). "When Inequality Matters for Macro and Macro Matters for Inequality". In: *NBER Chapters*, pp. 1–75. URL: https://ideas.repec.org/h/nbr/nberch/13927.html.
- Brown, Jeffrey R, Jeffrey B Liebman, and Joshua Pollet (Nov. 2007). "Appendix: Estimating Life Tables That Reflect Socioeconomic Differences in Mortality". en. In: *The Distributional Aspects of Social Security and Social Security Reform*. University of Chicago Press, pp. 447–458. ISBN: 9780226241890. URL: https://www.degruyter.com/document/doi/10.7208/9780226241890-013/html?lang=en.
- Cagetti, Marco (2003). "Wealth Accumulation over the Life Cycle and Precautionary Savings". In: *J. Bus. Econ. Stat.* 21.3, pp. 339–353. ISSN: 0735-0015. URL: http://www.jstor.org/stable/1392584.

References II

Carroll, Christopher et al. (2017). "The distribution of wealth and the marginal propensity to consume". In: Quantitative Economics 8.3, pp. 977–1020. DOI: https://doi.org/10.3982/QE694. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/QE694. URL:

https://onlinelibrary.wiley.com/doi/abs/10.3982/QE694.

Daminato, Claudio and Luigi Pistaferri (May 2024). "Returns Heterogeneity and Consumption Inequality Over the Life Cycle". DOI: 10.3386/w32490. URL: http://www.nber.org/papers/w32490.

References III

- Fagereng, Andreas et al. (2020). "Heterogeneity and Persistence in Returns to Wealth". In: *Econometrica* 88.1, pp. 115–170. DOI: https://doi.org/10.3982/ECTA14835.eprint: https: //onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA14835. URL: https: //onlinelibrary.wiley.com/doi/abs/10.3982/ECTA14835.
- Kaplan, Greg and Giovanni L Violante (2022). The Marginal Propensity to Consume in Heterogeneous Agent Models. Working Paper 30013. National Bureau of Economic Research. DOI: 10.3386/w30013. URL: http://www.nber.org/papers/w30013.
- Krusell, Per and Anthony Smith (1998). "Income and Wealth Heterogeneity in the Macroeconomy". In: Journal of Political Economy 106.5, pp. 867-896. DOI: 10.1086/250034. URL: https: //ideas.repec.org/a/ucp/jpolec/v106y1998i5p867-896.html.

References IV

Sabelhaus, John and Jae Song (May 2010). "The great moderation in micro labor earnings". In: *J. Monet. Econ.* 57.4, pp. 391-403. ISSN: 0304-3932. DOI: 10.1016/j.jmoneco.2010.04.003. URL: https://www.sciencedirect.com/science/article/pii/S0304393210000358.