Convolutional Neural Network (CNN)

Cunshi Wang (Chinese Academy of Sciences)

Image

418 x 418 x 3

I'm good at processing images!

418 x 418 x 1

Convolution

- Filter size
- Stride
- Padding

K

 $\mathbf{I} * \mathbf{K}$

Boundary Detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1		
1	0	-1		
1	0	-1		
3 ×3				

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Convolution

- Filter size
- Stride
- Padding

Pooling layer

- Max pooling: If somewhere detected the feature, keep it; if not, the number will be small.
- Average pooling: dimensional reduction

Fully Connected layer

- A layer that matches one feature to another feature space.
- Cost a lot of parameters

VGG: Oxford Visual Geometry Group

• The deeper the network, the better the performance

		ConvNet C	onfiguration		
A	A-LRN	В	С	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB image	e)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128
-		max	pool	rt.n	
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
		max	pool	NO. NO. 11	5-00-10
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512
- O ANC-			pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512
			pool		
			4096		
			4096		
		(2007, 1970)	1000		
		soft-	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Inception

Parallel each convolution together

1x1 convolutions

Filter concatenation

3x3 convolutions

Previous layer

5x5 convolutions

3x3 max pooling

ResNet

 Residual to prevent gradient vanishing

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.