LP46 – Propriétés macroscopiques des corps ferromagnétiques

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

1. Courbe de première aimantation

Elément	$M_{sat} (Am^{-1})$
Fer	1,70 10 ⁶
Cobalt	$1,40\ 10^6$
Nickel	$0,48\ 10^6$

Alliage	$\mu_0 M_{sat} (T)$	$\mu_{r_{\it in}}$	$\mu_{r_{max}}$
Fe, 4% Si	1,97	250	7 000
Fe, 3% Si	2,02		40 000
Anhyster D (50 % Fe, 50 % Ni)	1,6	2 500	25 000
Permalloy (78,5 % Ni, 21,5 % Fe)	1,08	8 000	100 000

Bertin-Faroux-Renault, Electromagnétisme 4, Dunod, 1984.

2. Canalisation des lignes de champ

Flux de fuite dans un tore ferromagnétique

3. Interprétation en domaines de Weiss

Aimantation nulle

Aimantation à saturation

3. Interprétation en domaines de Weiss

Grains microcristallins dans un morceau de NdFeB.

Les domaines sont les rayures claires et foncées sur chaque grain

II. Cycle d'hystérésis d'un ferromagnétique

1. Mise en évidence expérimentale

II. Cycle d'hystérésis d'un ferromagnétique

2. Grandeurs caractéristiques du cycle d'hystérésis

-0.41mT $\leq H \leq 0.41$ mT

Aimantation d'un morceau de $CoFeAl_2O_3$

Observation au microscope à effet Kerr par S. Bedanta et coll. (2012)

II. Ferromagnétiques doux et durs : caractéristiques et utilisations

1. Les ferromagnétiques doux

Alliage	$\mu_0 M_{sat} (T)$	$H_c(A.m^{-1})$
Fe, 4% Si	1,97	24
Fe, 3% Si	2,02	8
Anhyster D (50 % Fe, 50 % Ni)	1,6	20
Permalloy (78,5 % Ni, 21,5 % Fe)	1,08	4

M. Bertin, J.P. Faroux, and J. Renault. Electromagnétisme 4 : milieux diélectriques et milieux aimantés. Dunod, 1984.

II. Ferromagnétiques doux et durs : caractéristiques et utilisations

2. Les ferromagnétiques durs

Alliage	$B_r(T)$	$H_c(A.m^{-1})$
Acier (1% C, 1% Mn)	1,0	$4 \ 10^3$
Alnico 5	1,25	4,6 10 ⁴
Ferroxdur	0,38	1,6 10 ⁵

II. Ferromagnétiques doux et durs : caractéristiques et utilisations

2. Applications aux disques durs

E. du Trémolet de la Lacheisserie. Magnétisme, volume II - Matériaux et applications. EDP Sciences, 2000.