Pt₃Ni

Pt₃Ni bulk

- Pt₃Ni 2x2x2 bulk: 24 Pt atoms, 8 Ni atoms. EPS_SCF=1.0E-6
- Multiple minima exist with different Pt spin moments

	Waterpre Time Color With an electric Copin Monteness		
•	1D grid search performed for CUTOFF (600), KPOINTS (1x1x1), ADDED MOS (30), ELECTRON	JIC TEMPER	ATURE (300)

Spin moment Ni, Pt

0.61, 0.20

0.67, 0.16

0.65, 0.16

0.58, 0.10

Source

This work

[2] DFTB

[3] DFTB

[1] VASP PBE

•	K-points seem to improve	e interface SCF convergence	but decrease bulk convergence
---	--------------------------	-----------------------------	-------------------------------

Multiplicity	Magnetization Ni, Pt	Energy / Ha	Spin moment Ni, Pt
0		-4239.1402	0.00, 0.00
17		-4239.1402	0.00, 0.00
17	2.00, 0.00	-4239.1707	0.63, 0.00
17	2.00, 0.00	-4239.1712	0.63, 0.10
17	2.00, 0.00	-4239.1743	0.61, 0.21

^[1] Sharma, B. K., Kwon, O., Odkhuu, D. & Hong, S. C. Electronic structure and magnetism of various surfaces of the catalytic material Pt3Ni: Density-functional study. *Journal of Magnetism and Magnetic Materials* 339, 89–93 (2013).

^[2] Paudyal, D., Saha-Dasgupta, T. & Mookerjee, A. Magnetic properties of X–Pt (X = Fe,Co,Ni) alloy systems. J. Phys.: Condens. Matter 16, 2317–2334 (2004).

^[3] Singh, P. P. Relativity and magnetism in Ni–Pd and Ni–Pt alloys. *Journal of Magnetism and Magnetic Materials* **261**, 347–352 (2003).

Pt₃Ni bulk optimization

- Pt₃Ni 2x2x2 bulk: 24 Pt atoms, 8 Ni atoms. EPS_SCF=5.0E-7
- 8x8 2D grid search for Pt, Ni magnetisations which sum to odd integer multiplicity
- Minimum at Ni=2.0, Pt=0.0. Finite Pt magnetisation does not improve convergence

Pt₃Ni bulk optimization

- Pt₃Ni 2x2x2 bulk: 24 Pt atoms, 8 Ni atoms. EPS_SCF=1.0E-6
- 8x8 2D grid search for BROYDEN_MIXING ALPHA, BETA
- Minimum at ALPHA=4.0E-2, BETA=4.0E-3

345

- 0.932, 0.390

5

Convergence is challenging, EPS_SCF=1E-7 required 12 restarts to converge EPS_SCF=5.0E-7

0.279

3

Slab (right) spin moments larger than bulk (left), consistent with literature [1]

0.876, 0.39

1	2
,	_

			Hirshfeld	d Charges							Hirshfeld	Charges			
#Atom	Element	Kind	Ref Charge	Popula	ation	Spin moment	Net charge	#Atom	Element	Kind	Ref Charge	Popula	ation	Spin moment	Net charge
1	Ni	1	18.000	9.422	8.809	0.612	-0.231	1	Ni	1	18.000	9.516	8.640	0.876	-0.156
2	Ni	1	18.000	9.422	8.809	0.612	-0.231	2	Ni	1	18.000	9.516	8.640	0.876	-0.156
3	Pt	2	18.000	9.066	8.857	0.209	0.077	3	Pt	2	18.000	9.173	8.779	0.394	0.049
4	Pt	2	18.000	9.066	8.857	0.209	0.077	4	Pt	2	18.000	9.173	8.779	0.394	0.049
5	Ni	1	18.000	9.422	8.809	0.612	-0.231	5	Ni	1	18.000	9.516	8.640	0.876	-0.156
6	Ni	1	18.000	9.422	8.809	0.612	-0.231	6	Ni	1	18.000	9.516	8.640	0.876	-0.156
7	Pt	2	18.000	9.066	8.857	0.209	0.077	7	Pt	2	18.000	9.173	8.779	0.394	0.049
8	Pt	2	18.000	9.066	8.857	0.209	0.077	8	Pt	2	18.000	9.173	8.779	0.394	0.049
9	Pt	3	18.000	9.066	8.857	0.209	0.077	9	Pt	3	18.000	9.094	8.815	0.279	0.091
10	Pt	3	18.000	9.066	8.857	0.209	0.077	10	Pt	3	18.000	9.094	8.815	0.279	0.091
11	Pt	3	18.000	9.066	8.857	0.209	0.077	11	Pt	3	18.000	9.094	8.815	0.279	0.091
12	Pt	3	18.000	9.066	8.857	0.209	0.077	12	Pt	3	18.000	9.094	8.815	0.279	0.091
13	Pt	3	18.000	9.066	8.857	0.209	0.077	13	Pt	3	18.000	9.094	8.815	0.279	0.091
14	Pt	3	18.000	9.066	8.857	0.209	0.077	14	Pt	3	18.000	9.094	8.815	0.279	0.091
15	Pt	3	18.000	9.066	8.857	0.209	0.077	15	Pt	3	18.000	9.094	8.815	0.279	0.091
16	Pt	3	18.000	9.066	8.857	0.209	0.077	16	Pt	3	18.000	9.094	8.815	0.279	0.091
17	Ni	4	18.000	9.422	8.809	0.612	-0.231	17	Ni	4	18.000	9.555	8.623	0.932	-0.178
18	Ni	4	18.000	9.422	8.809	0.612	-0.231	18	Ni	4	18.000	9.555	8.623	0.932	-0.178
19	Pt	5	18.000	9.066	8.857	0.209	0.077	19	Pt	5	18.000	9.148	8.759	0.390	0.093
20	Pt	5	18.000	9.066	8.857	0.209	0.077	20	Pt	5	18.000	9.148	8.759	0.390	0.093
21	Ni	4	18.000	9.422	8.809	0.612	-0.231	21	Ni	4	18.000	9.555	8.623	0.932	-0.178
22	Ni	4	18.000	9.422	8.809	0.612	-0.231	22	Ni	4	18.000	9.555	8.623	0.932	-0.178
23	Pt	5	18.000	9.066	8.857	0.209	0.077	23	Pt	5	18.000	9.148	8.759	0.390	0.093
24	Pt	5	18.000	9.066	8.857	0.209	0.077	24	Pt	5	18.000	9.148	8.759	0.390	0.093
25	Pt	6	18.000	9.066	8.857	0.209	0.077	25	Pt	6	18.000	9.169	8.825	0.345	0.006
26	Pt	6	18.000	9.066	8.857	0.209	0.077	26	Pt	6	18.000	9.169	8.825	0.345	0.006
27	Pt	6	18.000	9.066	8.857	0.209	0.077	27	Pt	6	18.000	9.169	8.825	0.345	0.006
28	Pt	6	18.000	9.066	8.857	0.209	0.077	28	Pt	6	18.000	9.169	8.825	0.345	0.006
29	Pt	6	18.000	9.066	8.857	0.209	0.077	29	Pt	6	18.000	9.169	8.825	0.345	0.006
30	Pt	6	18.000	9.066	8.857	0.209	0.077	30	Pt	6	18.000	9.169	8.825	0.345	0.006
31	Pt	6	18.000	9.066	8.857	0.209	0.077	31	Pt	6	18.000	9.169	8.825	0.345	0.006
32	Pt	6	18.000	9.066	8.857	0.209	0.077	32	Pt	6	18.000	9.169	8.825	0.345	0.006

Pt₃Ni(111) Yike structure

- Pt₃Ni(111) surface calculated by Yike using VASP. 45 Pt atoms, 15 Ni atoms
- CUTOFF (600), ADDED_MOS (30), ELECTRONIC_TEMPERATURE (300)

Kpoints Multiplicity		Energy / Ha	IASD	SCF steps	Restarts	
1x1x1	(0*15)+1=1	-8223.3280	0.0	85	0	
1x1x1	(2*15)+1=31	-8223.4133	28.6	286	19	
4x4x1	(0*15)+1=1	-8223.6260	0.0	74	0	
4x4x1	(2*15)+1=31	-8223.6865	24.4	245	19	

