SinoMCU 8 位单片机

上海晟矽微电子股份有限公司

Shanghai SinoMCU Microelectronics Co., Ltd.

目录

1	产品简	介	4
	1.1	产品特性	
	1.2	订购信息	5
	1.3	引脚排列	5
	1.4	引脚说明	<i>6</i>
2	中央处	理器	
	2.1	指令集	
	2.2	程序存储器(OTP)	g
	2.1	数据存储器	g
	2.2	堆栈	10
	2.3	烧录配置选项 OPBIT	11
	2.4	控制寄存器	
3	系统时	钟	
	3.1	外接晶体振荡器	16
	3.2	外部 RC 振荡器	16
	3.3	内置高精度 RC 振荡器	
	3.4	内置低速 RC 振荡器	
	3.5	工作模式	
	3.6	高速模式	
	3.7	低速模式	
	3.8	休眠模式	
	3.9	绿色模式	
4			
	4.1	复位条件	
	4.2	上电复位	
	4.3	外部复位	
	4.4	掉电复位	
	4.5	WDT 看门狗复位	
5		W21-11/1/2/E	
5	5.1	IO 工作模式	
	5.1	上拉电阻控制	
	5.1	端口模式控制	
6			
U	6.1	看门狗(WDT)	
	6.2	定时器 TO	
	6.3	定时器 T1	
7		換器(ADC)	
,	7.1	ADC 功能介绍	
	7.1	ADC 转换时序图	
	7.2	ADC 操作步骤	
	7.3 7.4	ADC #午少塚ADC 相关寄存器	
		ADC 相关可存备	
	7.5	ADC 1苯正 见明但往思事坝	

	7.5	.1. ADC 信号格式	
	7.5.	.2. AD 转换时间	33
	7.5.	.3. AD 引脚配置	33
8	中断		35
	8.1	外中断	35
	8.2	定时器中断	35
	8.3	ADC 转换中断	35
	8.4	中断相关寄存器	36
9	电气参数	数	38
	9.1	极限参数	38
	9.2	直流特性参数	38
	9.3	ADC 特性参数	41
	9.4	交流电气参数	42
10	特性	生曲线图	44
	10.1	普通 IO 输出高电平驱动电流 VS 输出电平	44
	10.2	普通 IO 输出低电平驱动电流 VS 输出电平	45
	10.3	输入高低电平 VS 电源电压	46
	10.4	上拉电阻 VS 电源电压	47
	10.5	LIRC 动态功耗 VS 电源电压	47
	10.6	休眠模式功耗 VS 温度	48
	10.7	休眠模式功耗 VS 电源电压	48
	10.8	绿色模式下低频功耗 VS 电 <mark>源电压</mark>	
	10.9	LVD 电压 VS 温度	49
	10.10	POR 电压 VS 温度	57
	10.11	HIRC=16MHz 频率	57
	10.12	HIRC=8MHz 频率	59
	10.13	HIRC=4Mz 频率	60
	10.14	HIRC=2MHz 频率	62
	10.15	HIRC=1MHz 频率	63
	10.16	HIRC=455KHz 频率	65
	10.17	内部 LIRC(32KHz)频率	66
	10.18	外部 RC(R=1K,C=100pf)频率	67
	10.19	外部 RC(R=3K,C=100pf)频率	68
	10.20	外部 RC(R=1K,C=1000pf)频率	69
	10.21	AD 参考电压(4V)VS 电源电压	70
	10.22	AD 参考电压(4V)VS 温度	70
	10.23	AD 参考电压(3V)VS 电源电压	
	10.24	AD 参考电压(3V)VS 温度	71
	10.25	AD 参考电压(2V)VS 电源电压	
	10.26	AD 参考电压(2V)VS 温度	
	10.27	最低工作电压 VS 系统时钟 FCPU 关系图	
11		装外形尺寸	
12	版之	本修订记录	77

1 产品简介

1.1 产品特性

- ♦ 8位 CPU 内核
 - ✓ 精简指令集
 - ✓ 高频模式下 2T/4T/8T/16T 可设; 低频工作模式下为 4T
- ◆ 程序存储器空间
 - ✓ 1K*16 程序存储器空间(OTP)
- ◆ 数据存储器空间
 - ✓ RAM 空间: 128 字节。
- ◆ 4级深度硬件堆栈
- ◆ 4 组 I0 口
 - ✓ 6 位 P0 端口,具有端口唤醒功能,P03 和 P02 与晶振脚复用,P04 与复位脚复用
 - ✓ 5位 P4端口, P40-P44与 AD 模拟输入复用
 - ✓ 2位 P5 端口
- ◆ 支持低功耗工作模式(休眠功耗小于1uA)
- ◆ 内部看门狗计数器,时钟源由内部低速 RC 振荡器提供(24KHz@3V,32KHz@5V)
- ◆ 2个带有 PWM、BUZ 功能 8 位定时/计数器
 - ✓ T0: 自动装载定时器/计数器/PWM0/BUZ0输出。
 - ✓ T1: 自动装载定时器/计数器/PWM1/BUZ1输出。
- ◆ 5+1 通道 12 位模数转换器
 - ✓ 参考电压可选用外接或内置高精度参考电压(VDD、4V、3V、2V可选)
 - ✓ 外部 5 路模拟信号源输入+内部 1 路 VDD/4
- ◆ 中断
 - ✓ 两路外部中断源(INTO、INT1)
 - ✓ 定时器 0 中断
 - ✓ 定时器1中断
 - ✓ AD 转换中断
- ◆ 双时钟振荡模式
 - ✓ 内嵌高频振荡器(16M) + 内嵌低频振荡器(32K)
 - ✓ 外部高频 RC 振荡器+ 内嵌低频振荡器 (32K)
 - ✓ 外部高频晶体振荡器+ 内嵌低频振荡器(32K)
 - ✓ 外部低频晶体振荡器+ 内嵌低频振荡器 (32K)
- ◆ 低电压复位 LVR (多级复位电压可选)
- ◆ 低电压检测 LVD (多级检测电压可选)
- ◆ 工作电压
 - ✓ 3.0V-5.5V @Fcpu=8MHz (HIRC 16MHz/2T)
 - ✓ 2.7V-5.5V @Fcpu=4MHz (HIRC 16MHz/4T)
 - ✓ 2.0V-5.5V @Fcpu=2MHz (HIRC 16MHz/8T)
 - ✓ 2.0V-5.5V @Fcpu=1MHz (HIRC16MHz/16T)
 - ✓ 2.0V-5.5V @Fcpu=500KHz (HIRC16MHz/32T)
- ♦ 封装形式:

✓ DIP14/SOP14/MSOP10/DIP8/SOP8

1.2 订购信息

产品名称	封装形式	其他
MC32P7030A0B	DIP14	
MC32P7030A0J	SOP14	
MC32P7030A0I	MSOP10	
MC32P7030A0A	DIP8	
MC32P7030A0H	SOP8	

1.3 引脚排列

1.4 引脚说明

引脚名	I/O	描述
VDD	-	电源正端
GND	-	电源负端
P04/RST/[VPP]	I	输入口;复位输入;编程高压管脚VPP
P03/OSCI	I/O	GPIO/上拉电阻;晶体振荡器输入;外部RC输入
P02/OSCO/[SDO]	I/O	GPIO/上拉电阻;晶体振荡器输出;编程数据输出管脚SDO
P01/INT1	I/O	GPIO/上拉电阻;外部中断1输入
P00/INT0	I/O	GPIO/上拉电阻;外部中断0输入
P44/AIN4/[SDK]	I/O	GPIO/上拉电阻;模数转换器通道4;编程时钟管脚SCK
P43/AIN3	I/O	GPIO/上拉电阻;模数转换器通道3
P42/AIN2	I/O	GPIO/上拉电阻;模数转换器通道2
P41/AIN1	I/O	GPIO/上拉电阻;模数转换器通道1
P40/AIN0/VREFH	I/O	GPIO/上拉电阻;模数转换器通道0;模数转换器参考电压输入
P54/PWM0/BUZ0/[SDO]	I/O	GPIO/上拉电阻; PWM0/BUZ0;编程数据输出管脚SDO
P53/PWM1/BUZ1/[SDI]	I/O	GPIO/上拉电阻; PWM1/BU <mark>Z1;编程数据输入管脚SDI</mark>

2 中央处理器

2.1 指令集

MC32P7030的指令是精简指令集。下表是指令汇总表。

注:指令 JBSET/JBCLR/CMPR/JZR/JZAR/DJZR/DJZAR 对 IOPO/IOP4/IOP5 的操作请参考《MC32P7030 应用笔记 AN01》

助记符	说明	操作	周期	影响
ADDAR R	寄存器 R 内容和 ACC 相加 , 结果存到 ACC	R+ACC→ACC	1	C,DC,Z
ADDRA R	寄存器 R 内容和 ACC 相加 , 结果存到 R	R+ACC→R	1+M	C,DC,Z
ADCAR R	带 C 标志的加法 , 结果存到 ACC	R+ACC+C→ACC	1	C,DC,Z
ADCRA R	带 C 标志的加法 , 结果存到 R	R+ACC+C→R	1+M	C,DC,Z
ASUBAR R	ACC 和寄存器 R 内容相减,结果存到 ACC	ACC-R→ACC	1	C,DC,Z
ASUBRA R	ACC 和寄存器 R 内容相减 , 结果存到 R	ACC-R→R	1+M	C,DC,Z
ASBCAR R	ACC 和寄存器 R 内容相减(带 C 标志), 结果存到 ACC	ACC-R-/C→ACC	1	C,DC,Z
ASBCRA R	ACC 和寄存器 R 内容相减(带 C 标志), 结果存到 R	ACC-R-/C→R	1+M	C,DC,Z
ANDAR R	寄存器 R 内容和 ACC 与操作,结果存到 ACC	R and ACC→ACC	1	Z
ANDRA R		R and ACC→R	1+M	Z
ORAR R	寄存器 R 内容和 ACC 或操作,结果存到 ACC	R or ACC→ACC	1	Z
ORRA R	寄存器 R 内容和 ACC 或操作,结果存到 R	R or ACC→R	1+M	Z
XORAR R	寄存器 R 内容和 ACC 异或操作,结果存到 ACC	R xor ACC→ACC	1	Z
XORRA R	寄存器 R 内容和 ACC 异或操作,结果存到 R	R xor ACC→R	1+M	Z
CLRR R	对 R 清零	0→R	1	Z
		R[7]→C		
RLAR R	寄存器 R 循环左移(带 C 标志) , 结果存到 ACC	R[6:0]→ACC[7:1]	1	С
		C→ACC[0]		
		R[7]→C		
RLR R	寄存器 R 循环左移(带 C 标志), 结果存到 R	R[6:0]→R[7:1]	1+M	С
	100	C→R[0]		
		C→ACC[7]		
RRAR R	寄存器 R 循环右移(带 C 标志) , 结果存到 ACC	R[7:1]→ACC[6:0]	1	С
		R[0]→C		
		C→R[7]		
RRR R	寄存器 R 循环右移(带 C 标志) , 结果存到 R	R[7:1]→R[6:0]	1+M	С
		R[0]→C		
		R[7:4]→ACC[3:0]	_	
SWAPAR R	交換 R 的高低字节 , 结果存到 ACC 	R[3:0]→ACC[7:4]	1	_
		R[7:4]→R[3:0]		
SWAPR R	交換 R 的高低字节 , 结果存到 R 	R[3:0]→R[7:4]	1+M	-
MOVAR R	将R存到ACC	R→ACC	1	Z
MOVRA R	将 ACC 存到 R	ACC→R	1	-
JZAR R	R 加 1 , 结果存到 ACC ; 结果为 0 , 则跳过下一条指令	R+1→ACC,结果为 0,则 PC+2→PC	1+J	-
		1		1

JZR R	R加1,结果存到R;结果为0,则跳过下一条指令	R+1→R , 结果为 0 , 则 PC+2→PC	1+M+J	-
DJZAR R	R 减 1 , 结果存到 ACC ; 结果为 0 , 则跳过下一条指令	R-1→ACC , 结果为 0 , 则 PC+2→PC	1+J	-
DJZR R	R 减 1 , 结果存到 R ; 结果为 0 , 则跳过下一条指令	R-1→R , 结果为 0 , 则 PC+2→PC	1+M+J	-
BCLR R,b	对 R 的第 b 位清零	0→R[b]	1+M	-
BSET R,b	对 R 的第 b 位置 1	1→R[b]	1+M	-
JBCLR R,b	如 R 的第 b 位为 0 , 则跳过下一条指令	如 R[b]=0,则 PC+2→PC	1+J	-
JBSET R,b	如 R 的第 b 位为 1,则跳过下一条指令	如 R[b]=1,则 PC+2→PC	1+J	-
ADDAI K	立即数 K 和 ACC 相加,结果存到 ACC	K+ACC→ACC	1	C,DC,Z
ASUBAI K	ACC 和立即数相减,结果存到 ACC	ACC-K→ACC	1	C,DC,Z
ANDAI K	立即数 K 和 ACC 与操作,结果存到 ACC	K and ACC→ACC	1	Z
ORAI K	立即数 K 和 ACC 或操作,结果存到 ACC	K or ACC→ACC	1	Z
XORAI K	立即数和 ACC 异或,结果存到 ACC	K xor ACC→ACC	1	Z
MOVAI K	将立即数存到 ACC	K→ACC	1	-
RETURN	从子程序返回	TOS→PC	2	-
RETIE		TOS→PC	2	1
VETTE	从中断返回	1→GIE	2	
CALL K	 子程序调用	PC+1→TOS	2	_
CALL N	<u>大</u> 怪净姛用 	K→PC	2	
GOTO K	无条件跳转	K→PC	2	-
NOP	空操作	空操作	1	-
CMPI K	ACC 与立即数比较;如果相等,则跳过下一条指令	A-K , 结果为 0 , 则 PC+1→PC	1+J	C, Z
CMPR R	ACC与R比较;如果相等,则跳过下一条指令	A-R , 结果为 0 , 则 PC+1→PC	1+J	C, Z
PUSH	暂存 ACC 和 c, DC, Z	ACC和 c, DC, Z→BUF	1	-
POP	恢复 ACC 和 c, DC, Z	BUF→ACC和c, DC, Z	1	C,DC,Z
XCH R	ACC 与 R 交换	ACC←→R	1+M	-
MOVC	读取 ROM	ROM[FSR1,FSR0] →HIBYTE , ACC	2	-

注: 条件跳转指令为真时, J=1, 否则 J=0; 目的寄存器为 RAM 时, M=1, 否则 M=0。

2.2 程序存储器 (OTP)

1K*16BIT 的程序存储器空间,程序存储器空间(0000H - 03FFH)。

例:通过 MOVC 访问 FSR1*256+FSR0 指向的程序存储器中内容,高 8 位存放在数据寄存器区 11H, 低 8 位存放在数据寄存器区 10H

MOVAI 55H

MOVRA FSRO : 将55H 写入 FSRO

MOVAI 01H

MOVRA FSR1 ; 将01H 写入 FSR1

MOVC ; 读取 FSR1*256+FSR0 指向(0155H)程序存储器

;的内容,其中高8位放在HIBYTE 寄存器,低8

; 位放在A 寄存器

MOVRA 10H ; 低 8 位放到数据寄存器 10H 地址

MOVAR HIBYTE ; 从 HIBYTE 读取高 8 位

MOVRA 11H ; 高 8 位放到数据寄存器 11H 地址

2.1 数据存储器

数据寄存器分为两个个区,通用存储区器区SRAM(128Byte空间)和系统功能寄存器区SFR,具体地址分配参照下表。

数据存储器区地址映射表:

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
00H – 7FH	SRAM							
80H – 87H	-	-/	HIBYTE	FSR0	FSR1	-	PFLAG	-
88H – 8FH	-	-	-	-	-	-	-	-
90H – 97H	ı	-	-	-	ı	-	ı	-
98H – 9FH	ı	-	-	-	ı	-	ı	-
A0H – A7H	ı	-	-	-	ı	-	ı	-
A8H – AFH	1	-	-	-	1	-	ANSEL	VREF
B0H – B7H	-	ADCR	ADRH	ADRL	-	-	-	-
B8H – BFH	OEP0			-	-	-	-	PEDGE
C0H – C7H	ı	-	ı	-	OEP4	OEP5		
C8H – CFH	INTF	INTE	OSCM	-	WDTR	T0D	PCL	PCH
D0H – D7H	IOP0	-	-	-	IOP4	IOP5	-	-
D8H – DFH	TXCR	-	T0CR	T0C	T1CR	T1C	T1D	STKP
E0H – E7H	PUP0	-	-	-	PUP4	PUP5	-	INDF
E8H – EFH	-	-	-	-	-	-	-	-
F0H – F7H	ı	-	-	-	ı	-		-
F8H – FFH	STK3L	STK3H	STK2L	STK2H	STK1L	STK1H	STK0L	STK0H

注:上表中"-"数据存储区地址未用,读出数据为0

直接寻址模式:以指令的低9位作为数据存储器地址

例:通过直接寻址模式把55H数据写入10H地址,然后对10H地址数据加1

MOVAI 55H

MOVRA 10H ; 把数据 55H 写入 10H 地址数据存储器中

间接寻址模式: 当访问INDF时, FSR1*256+FSR0作为数据存储器地址

例:通过间接寻址模式 0 把 55H 数据写入 0010H 地址数据存储器

CLRR FSR1
MOVAI 10H
MOVRA FSR0
MOVAI 55H

MOVRA INDF ; 把数据 55H 写入 FSR1*256+FSR0 指向数据存储器中

2.2 堆栈

4级堆栈深度,当程序响应中断或执行子程序调用指令时CPU会将PC自动压栈;当运行子程序返回指令时,栈顶数据赋予PC。

堆栈指针寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	GIE	-	-	-		STKP2	STKP1	STKP0
R/W	R/W	-	-	~ \	-	R/W	R/W	R/W
初始值	0	-		-	-	1	1	1

BIT[7] GIE – 总中断使能

0: 屏蔽所有中断

1: 中断源是否产生中断有相应的控制位决定

BIT[2:0] **STKP[2:0]** - 堆栈指针寄存器

堆栈寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnH	-	-	-	-	-	-	STKn9	STKn8
R/W	-	-	-	-	-	-	R/W	R/W
初始值	-	-	-	-	-	-	0	0

BIT[1:0] STKnH - 堆栈寄存器 n 高 2 位

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnL	STKn7	STKn6	STKn5	STKn4	STKn3	STKn2	STKn1	STKn0
R/W								
初始值	0	0	0	0	0	0	0	0

BIT[7:0] STKnL - 堆栈寄存器 n 低 8 位

2.3 烧录配置选项 OPBIT

用户配置字简称OPBIT是OTP中的4个特殊字,用于对系统功能进行配置。OPBIT在烧写用户程序时通过专用烧写器来设置。MC32P7030的OPBIT定义如下。

OPBITO:

位	符号	功能说明			
BIT[1:0]	WDTC	WDT 工作模式控制位			
		00:始终关闭看门狗			
		01:休眠模式下关闭看门狗			
		11:始终开启看门狗			
BIT[3:2]	-	-			
BIT[6:4]	FCPUS	高速模式 Fcpu 速度选择			
		000:机器周期 Fcpu 为 1 个高速时钟周期 Fhosc/Fhirc			
		001:机器周期 Fcpu 为 2 个高速时钟周期 Fhosc/Fhirc			
		010:机器周期 Fcpu 为 4 个高速时钟 <mark>周期</mark> Fhosc/Fh <mark>irc</mark>			
		011:机器周期 Fcpu 为 8 个高速时钟 <mark>周期</mark> Fhosc/Fhirc			
		100:机器周期 Fcpu 为 16 <mark>个高速时钟周期</mark> Fhosc/Fhirc			
		101:机器周期 Fcpu 为 32 个高速时钟周期 Fhosc/Fhirc			
		110:机器周期 Fcpu 为 64 个高速时钟周期 Fhosc/Fhirc			
		111:机器周 <mark>期 Fcp</mark> u 为 <mark>128 个</mark> 高速时钟周期 Fhosc/Fhirc			
BIT[7]	MCLRE	外 <mark>部复位使能</mark>			
		0:屏蔽外部复位功能			
		1:使能外部复位功能			
BIT[10:8]	FOSCS	低频时钟选择位			
		000:内部高频 HIRC			
		100:外部4M-16M 晶体			
		101:外部 455K 晶体			
		110:外部 32K 晶体			
		111 : 外部 RC			
BIT[14:11]	-	-			
BIT[15]	ENCR	代码加密选项			
		0:使能代码加密			
		1:不使能代码加密			

OPBIT1:

位	符号	功能说明
BIT[15:0]	-	-

OPBIT2:

位	符号	功能说明
BIT[0]	-	-
BIT[3:1]	FAS	内部高频振荡器频率选择位
		000 : 16M

		001 : 8M
		010 : 4M
		011 : 2M
		100 : 1M
		101 : 455K
BIT[5:4]	SAMPTS	AD 采样时间选择位
		00:4个ADCLK
		01:6个ADCLK
		10:12个ADCLK
		11:14个ADCLK
BIT[7:6]	-	-
BIT[11:8]	VLVRS	LVR 电压选择位
		0100: LVR 电压=1.8V
		0101:LVR 电压=2.0V
		0110: LVR 电压=2.2V
		0111: LVR 电压=2.4V
		1000: LVR 电压=2.5V
		1001:LVR 电压=2.6V
		1010: LVR 电压=2.7V
		1011:LVR 电压 <mark>=2.8V</mark>
		1100: LVR 电压=3.0V
		1101:LVR 电压=3.2V
		1110:LVR 电压=3.6V
		1111: LVR 电压=3.8V
BIT[15:12]	VLVDS	LVD 电压选择位
		0000 : LVD 电压=1.8V
		0001:LVD 关闭
4		0010:LVD 电压=2.0V
		0011:LVD 电压=2.1V
		0100:LVD 电压=2.2V
		0101:LVD 电压=2.4V
		0110:LVD 电压=2.5V
		0111:LVD 电压=2.6V
-		1000:LVD 电压=2.7V
		1001:LVD 电压=2.8V
		1010:LVD 电压=3.0V
		1011:LVD 电压=3.2V
		1100:LVD 电压=3.3V
		1101:LVD 电压=3.6V
		1110:LVD 电压=4.0V
		1111:LVD 电压=4.2V

OPBIT3:

位	符号	功能说明

BIT[15:0]	-	-	

2.4 控制寄存器

MC32P7030全部控制寄存器列在下表中,具体功能详见各功能模块的说明。

间接寻址寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INDF	INDF7	INDF6	INDF5	INDF4	INDF3	INDF2	INDF1	INDF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	Х	Х	Х	Х	Х	Х	Х	Х

BIT[7:0] **INDFn** – 间接寻址寄存器

INDF: INDF 不是物理寄存器,对 INDF 寻址时间上是对 FSR1*256+FSR0 指向的数据存储器 地址进行访问,从而实现间接寻址模式。

字操作高8位缓存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HIBYTE	HIBYTE7	HIBYTE6	HIBYTE5	HIBYTE4	HIBYTE3	HIBYTE2	HIBYTE1	HIBYTE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	Х	Х	Х	Х	X	X	Х	Х

BIT[7:0] HIBYTEn - 字操作高字节缓冲器

HIBYTE: 通过 MOVC 对 ROM 读取操作时用于存放 FSR1*256+FSR0 指向的程序存储器内容高 8 位数据,低 8 位内容则存入 ACC。

数据指针寄存器()

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSR0	FSR07	FSR06	FSR05	FSR04	FSR03	FSR02	FSR01	FSR00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	Х	Х	X	Х	Х	Х	Х	Х

BIT[7:0] **FSR0n** – 数据指针寄存器 0

FSRO: 间接寻址模式 0 指针或间接寻址模式 1 指针低 8 位。

数据指针寄存器1

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSR1	FSR17	FSR16	FSR15	FSR14	FSR13	FSR12	FSR11	FSR10
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	Х	Х	Х	Х	Х	Х	Х	Χ

BIT[7:0] **FSR1n** – 数据指针寄存器 1

FSR1: 间接寻址模式 0 指针或间接寻址模式 1 指针高 8 位。

程序指针计数器高3位

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCH	-	-	-	-	-	-	PC9	PC8
R/W	-	-	-	-	-	-	W	W
初始值	-	-	-	-	-	-	0	0

注:PCH只可写不可读,禁止使用带回写功能的指令操作PCH

程序指针计数器低8位

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCL	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7:0] PCn - 程序指针计数器低 8 位

对PCL操作指令: PC = (PC[10.0]+A[7.0]) (对PCL操作的加法指令)

PC = {PC[10.8],ALU[7.0](ALU运算结果)}(对PCL操作的其它指令)

CPU状态寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PFLAG	NT0	NPD	LVD36	LVD24		С	DC	Z
R/W	R/W	R/W	R	R	-	R/W	R/W	R/W
初始值	Х	Х	0	0	-	Х	Х	Х

BIT[7:6] NTO NPD 复位状态标志

NT0	NPD	复位状态
0	0	看门狗复位
0	1	保留
1	0	LVD 复位
1	1	外部复位

BIT[5] LVD36 – LVD 3.6V 标志(OPTBIT 中 VLVDS[3]=1 有效)

0: 系统工作电压VDD高于3.6V

1: 系统工作电压VDD低于3.6V

BIT[4] LVD24 – LVD 2.4V 标志 (OPTBIT 中 VLVDS[3]=0 有效)

0: 系统工作电压VDD高于2.4V

1: 系统工作电压VDD低于2.4V

BIT[2] **C** - 进位标志

0: 加法运算时没有进位/减法运算时有借位发生/移位后移出逻辑0

1: 加法运算时有进位/减法运算时没有借位发生/移位后移出逻辑1

DC – 半进位标志

0: 加法运算时低四位没有进位/减法运算时有向高四位借位

1: 加法运算时低四位有进位/减法运算时没有向高四位借位

Z = 零标志

0: 算术或逻辑运算的结果不为零

1: 算术或逻辑运算的结果为零

3 系统时钟

MC32P7030 为双时钟系统,可根据需要通过软件在高速时钟和低速时钟之间任意切换。

系统高速时钟包括外部高速时钟和内部高速时钟。外部高速时钟又包括 4MHz-16MHz、455KHz 晶体/陶瓷、32768Hz 晶体和外部 RC 振荡器,高速时钟振荡器由 OPTION 选项中 FOSC 位选择。低速时钟为内置低频 RC 振荡器。

3.1 外接晶体振荡器

MC32P7030 可外接 32768Hz/455KHz/4MHz-16MHz 晶体振荡器,该振荡器可用于系统高频时钟。 在实际使用中,用户应使晶体离 OSCI、OSCO 引脚的距离尽可能短,这样有助于振荡器的起振和振荡的稳定性。下表列出几种频率的晶振选用电容 Cx 的推荐值。

晶体频率	电容 Cx	最低起振电压(V)
16MHz	10p	2. 7
8MHz	10p/20p	2. 4
4MHz	10p/20p	2. 2
455KHz	100p/220p	1.8
32768Hz	10p/20p	1.6

注:以上电容值仅供参考。根据不同型号晶振,添加电容值的大小应以实测为准。

3.2 外部 RC 振荡器

MC32P7030 可外接外部 RC 振荡器, RC 振荡电路只需要和 0SCI 引脚连接, 电容的容值不能低于 100pF, 电阻值和电容值共同决定频率。

3.3 内置高精度 RC 振荡器

MC32P7030的内置高精度 RC 振荡器,频率可选择 16MHz、8MHz、4MHz、2MHz、1MHz、455KHz,该振荡器可用于系统高速时钟。

3.4 内置低速 RC 振荡器

MC32P7030的内置一个低速 RC 振荡器,该振荡器可用于系统低频时钟,同时用于上电延时定时器、WDT。该振荡器频率典型值 32KHz,误差±50%。

3.5 工作模式

MC32P7030 支持高速工作模式、低速工作模式、休眠模式、绿色模式共有4种工作模式。

工作模式	进入条件
高速工作模式	系统时钟切换到高频振荡器(CLKS=0)
低速工作模式	系统时钟切换到低频振荡器(CLKS=1)
休眠模式	CPUM=01 或 CLKS=0 并且 HOFF=1
绿色模式	CPUM=10

工作模式间的切换

系统时钟选择

Fhose: 外部高速/内部RC振荡器时钟频率。

Flosc: 内部低速 RC 时钟频率。

Fcpu: 指令执行频率。

	4 1/4/11 NY 1-0			
工作模式	高速模式	低速模式	绿色模式	休眠模式
HOSC/HIRC	运行	HOFF控制	HOFF控制	停止
LIRC	运行	运行	运行	停止
CPU 指令	执行	执行	停止	停止
TO	TC0EN 控制	TCOEN 控制	TC0EN控制	无效
			仅 PWM/BUZ 有效	
T1	TC1EN 控制	TC1EN 控制	TC1EN控制	无效
			仅 PWM/BUZ 有效	
看门狗定时器	WDTC 决定	WDTC 决定	WDTC 决定	WDTC 决定
内部中断	全部有效	全部有效	TOIF	全部无效
外部中断	全部有效	全部有效	全部有效	全部无效
唤醒功能	_	-	PO、TOIF、复位	PO、复位

工作模式寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OSCM	-	-	-	CPUM1	CPUM0	CLKS	HOFF	-
R/W	-	-	-	R/W	R/W	R/W	R/W	-
初始值	-	-	-	0	0	0	0	-

BIT[4:3] CPUM[1:0] - 高速振荡器稳定标志

00: 高速/低速模式

01: 休眠模式

10:绿色模式

11: 保留

BIT[2] CLKS - 系统工作时钟选择位

0: 高速时钟作为系统时钟

1: 低速时钟作为系统时钟

BIT[1] HOFF - 高频频振荡器使能

0: 高频振荡器工作

1: 高频振荡器停止

3.6 高速模式

高速模式是系统高速时钟正常工作模式,系统时钟<mark>源由高速振荡器提供</mark>。程序被执行。上电复位或任意一种复位触发后,系统进入高速模式执行程序。当系统从休眠模式被唤醒后进入高速模式。高速模式下,高速振荡器正常工作,功耗最大。

- ✓ 程序被执行,所有的功能都可以控制。
- ✓ 系统速率为高速。
- ✓ 高速振荡器和内部低速 RC 振荡器都正常工作。
- ✓ 通过 OSCM 寄存器,系统可以从高速模式切换到其他任何一种模式。
- ✓ 系统从休眠模式唤醒后进入高速模式。
- ✓ 低速模式可以切换到高速模式。
- ✓ 从高速模式切换到绿色模式,唤醒后返回到高速模式。

3.7 低速模式

低速模式为系统低速时钟正常工作模式。系统时钟源由内部低速 RC 振荡器提供。低速模式由 OSCM 寄存器的 CLKS 位控制。当 CLKS=0 时,系统为高速模式;当 CLKS=1 时,系统进入低速模式。切换进入低速模式后,不能自动禁止高速振荡器,必须通过 HOFF 位来禁止以减少功耗。低速模式下,系统速率被固定为 Flosc/4 (Flosc 为内部低速 RC 振荡器频率)。

- ✔ 程序被执行,所有的功能都可控制。
- ✓ 系统速率位低速 (Flosc/4)。
- ✓ 内部低速 RC 振荡器正常工作, 高速振荡器由 H0FF=1 控制。低速模式下, 强烈建议停止高速振荡器
- ✓ 从低速模式切换到休眠模式,唤醒后返回到高速模式。
- ✓ 高速模式可以切换进入低速模式。
- ✓ 从低速模式切换到绿色模式,唤醒后返回到低速模式。

3.8 休眠模式

休眠模式是系统的理想状态,不执行程序,振荡器也停止工作。整个芯片的功耗低于 1uA。休眠模式可以由 PO 的电平变换触发唤醒。从任何工作模式进入休眠模式,被唤醒后都返回到高速模式。由 OSCM 寄存器的 CPUM 位控制是否进入休眠模式,当 CPUM=01,系统进入休眠模式。当系统从休眠模式被唤醒后,CPUM 被自动设置为 00。

- ✔ 程序停止执行,所有的功能被禁止。
- ✓ 所有的振荡器,包括外部高速振荡器、内部高速振荡器和内部低速振荡器都停止工作。
- ✓ 功耗低于 luA。
- ✓ 系统从休眠模式被唤醒后进入高速模式。
- ✓ 休眠模式的唤醒源为P0电平变换触发溢出唤醒。

3.9 绿色模式

绿色模式是另外的一种理想状态。在休眠模式下,所有的功能和硬件设备都被禁止,但在绿色模式下,系统时钟保持工作,绿色模式下的功耗大于休眠模式下的功耗。绿色模式下,不执行程序,但具有唤醒功能的定时器仍正常工作,定时器的时钟源为仍在工作的系统时钟。绿色模式下,有2种方式可以将系统唤醒: 1、P0电平变换触发; 2、具有唤醒功能的定时器溢出,这样,用户可以给定时器设定固定的周期,系统就在溢出时被唤醒。由OSCM寄存器CPUM位决定是否进入绿色模式,当CPUM=10,系统进入绿色模式。当系统从绿色模式下被唤醒后,CPUM被自动设置为00。

- ✔ 程序停止执行,所有的功能被禁止。
- ✓ 具有唤醒功能的定时器正常工作。
- ✓ 作为系统时钟源的振荡器正常工作,其他的振荡器工作状态取决于系统工作模式的配置。
- ✓ 由高速模式切换到绿色模式,被唤醒后返回到高速模式。
- ✓ 由低速模式切换到绿色模式,被唤醒后返回到低速模式。
- ✓ 绿色模式下的唤醒方式为P0电平变换触发唤醒和指定的定时器(T0)溢出。
- ✓ 绿色模式下PWM和BUZ功能仍然有效,但是定时器溢出时不能唤醒系统。

4 复位

4.1 复位条件

MC32P7030 有四种可能的复位方式:

- ◆ 上电复位 POR
- ◆ 外部复位(仅在外部复位引脚处于使能状态)
- ◆ 掉电复位 LVR
- ◆ WDT 看门狗复位

任何一种复位发生时,系统将会重新从 0000H 地址处开始执行指令;另外系统还会将所有的寄存器重置为默认初始值。

上电复位、LVR 复位、外部复位和 WDT 复位会关闭系统主时钟的振荡器,复位解除后才重新打开振荡器,由于振荡器起振和稳定需要一定的时间,所以系统会在主时钟振荡稳定后开始重新工作。

4.2 上电复位

MC32P7030 的上电复位电路可以适应快速、慢速上电的情况,并且<mark>当芯</mark>片上电<mark>过</mark>程中出现电源电压抖动时都能保证系统可靠的复位。

上电复位过程可以概括为以下几个步骤:

- (1) 检测系统工作电压,等待电压高于 V_{POR} 并保持稳定;
- (2) 如果外部复位功能开启,则需等待复位引脚电压高于 V_{III};
- (3) 初始化所有寄存器;
- (4) 开启低频时钟振荡器,并等待 2048 个周期,即 Tcfg 时间;
- (5) 开启主时钟振荡器,等待主时钟振荡器振荡稳定,时间为 Tost;
- (6) 上电结束,系统开始执行指令。

4.3 外部复位

外部复位功能是否开启可以通过 OPBIT 的 MCLRE 配置,选择 MCLRE 后复位引脚的内部上拉电阻自动有效。外部复位引脚是施密特结构的,低电平有效。当外复位引脚为高电平时,系统正常运行;为低电平时,系统产生复位。

4.4 掉电复位

MC32P7030 的 LVR 电压有 12 级(详见烧录配置选项),通过 OPBIT 的 VLVRS 进行配置。电压检测电路有一定的回滞特性,通常回滞电压为 0.1V 左右,则当电源电压下降到 LVR 时 LVR 复位有效,而电压需要上升到 LVR+0.1V 时 LVR 复位才会解除。

4.5 WDT 看门狗复位

WDT 看门狗复位是一种对程序正常运行的保护机制。正常情况下,用户软件会按时对 WDT 定时器进行清零操作,定时器不会溢出。若出现异常状况,程序未按预想执行,出现程序跑飞的状况,那么WDT 定时器会出现溢出从而触发 WDT 复位,系统重新初始化,返回受控状态。

5 I/O P

5.1 IO 工作模式

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOP0	-	-	-	P04D	P03D	P02D	P01D	P00D
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
初始值	-	-	-	Х	Х	Х	Х	Х

BIT[4:0] P0nD − P0 □数据位(n=4-0)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOP4	-	-	-	P44D	P43D	P42D	P41D	P40D
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
初始值	-	-	-	Х	Х	Х	X	X

BIT[4:0] P4nD-P4 口数据位 (n=4-0)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOP5	-	-	-	P54D	P53D	-	-	-
R/W	-	-	-	R/W	R/W	-	-	-
初始值	-	-	-	Х	X	-	-	-

BIT[4:3] P5nD-P5 口数据位(n=4-3)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OEP0	-	1	1	and the same	P03OE	P02OE	P010E	P00OE
R/W		M	-	-	R/W	R/W	R/W	R/W
初始值	- N	- 1	-	-	0	0	0	0

BIT[4:0] **P0nOE** – **P0** 口输出使能寄存器(n=3-0)

- 1: 作为输出口, 读 P0 口读取 P0 口数据寄存器值
- 0: 作为输入口,读P0口读取端口状态

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OEP4	ı	ı	-	P440E	P430E	P420E	P410E	P40OE
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
初始值	ı	1	-	0	0	0	0	0

BIT[4:0] P4nOE - P4 口输出使能寄存器 (n=4-0)

- 1:作为输出口,读 P4 口读取 P4 口数据寄存器值
- 0:作为输入口,读P4口读取端口状态

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OEP5	-	-	-	P54OE	P53OE	-	-	-
R/W	-	-	-	R/W	R/W	-	-	-
初始值	-	-	-	0	0	-	-	-

BIT[4:3]

P5nOE – P5 口输出使能寄存器 (n=4-3)

- 1: 作为输出口,读 P5 口读取 P5 口数据寄存器值
- 0: 作为输入口,读P5口读取端口状态

5.1 上拉电阻控制

P0、P4 和 P5 口每位都有独立的上拉控制寄存器位,控制其上拉电阻在端口作为输入状态时是否有效,端口处于输出状态时,上拉电阻控制位无效。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PUP0	-	-	-	-	P03PU	P02PU	P01PU	P00PU
R/W	-	-	-	-	R/W	R/W	R/W	R/W
初始值	-	-	-	-	0	0	0	0

BIT[4:0]

P0nPU-P0 口上拉电阻选择 (n=4-0)

- 1: P0n 上拉电阻有效
- 0: P0n 上拉电阻无效

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PUP4	-	-	-	P44PU	P43PU	P42PU	P41PU	P40PU
R/W	-	-	1-	R/W	R/W	R/W	R/W	R/W
初始值	-	-		0	0	0	0	0

BIT[4:0]

P4nPU – P4 口上拉电阻选择(n=4-0)

- 1: P4n 上拉电阻有效
- 0: P4n 上拉电阻无效

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PUP5		-	-	P54PU	P53PU	-	-	-
R/W		-	-	R/W	R/W	-	-	-
初始值	-	-	-	0	0	-	-	-

BIT[4:3]

P5nPU-P5 口上拉电阻选择 (n=4-3)

- 1: P5n 上拉电阻有效
- 0: P5n 上拉电阻无效

5.1 端口模式控制

P4 口可以作为通用 IO 口,也可以复用为模拟信号输入端口,ANSEL 寄存器可以设置这些端口的工作模式。当设置为通用 IO 时,相应端口的模拟输入被屏蔽;设置为模拟输入模式时,相应端口的输入功能被屏蔽。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSEL	-	-	-	P44ANS	P43ANS	P42ANS	P41ANS	P40ANS
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
初始值	-	-	-	0	0	0	0	0

BIT[4:0]

P4nANS – P0 口模式选择(n=4-0)

- 1: P4n 端口作为模拟输入
- 0: P4n 端口作为通用 IO 口

6 定时器

6.1 看门狗 (WDT)

看门狗定时器的时钟为内部低速 RC 振荡器(24KHz @3V, 32KHz @5V),由 OPBIT 的 WDTC 设置看门狗定时器的工作状态。

若选择 WDT 始终使能,在休眠模式和绿色模式下 WDT 依然运行, WDT 溢出时复位芯片。

若选择休眠模式下关闭看门狗,在休眠模式和绿色模式下 WDT 被硬件自动关闭。

看门狗溢出时间= 8192 /内部低速振荡器周期(sec)

VDD	内部低速RC Freq	看门狗溢出时间
3V	24K	341ms
5V	32K	256ms

看门狗清零的方法是对看门狗计数器清零寄存器 WDTR 写入清零控制字 5AH。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTR	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0
R/W	W	W	W	W	W	W	W	W
初始值	0	0	0	0	0	0	0	0

6.2 定时器 T0

T0具有定时器、事件计数器、PWM和BUZ功能。

TOPTS可选择TO的时钟源,TOPR可选择TO的预分频比,所选中的时钟源通过预分频器后产生TOC的时钟,当TOC递增到FF时,产生TO溢出中断请求标志,TOIF置1。由TOCR、TOC、TOD寄存器控制TO的溢出中断间隔时间。TO通过置位TOALOAD实现自动重装功能,当TO溢出时,TOD的值自动装入TOC,TOD内置双重缓存器。

T0可实现事件计数器功能,将T0时钟源由系统时钟更改为外部时钟信号,T0将对外部管脚P00/INT0下降沿进行计数。

TO 可实现占空比可编程控制的 PWM 功能,由 TOPR, TOD 寄存器和 TOCR 寄存器的 TOALOAD 和 BUZOOE 位控制占空比/周期。当 PWMOOE=1 时,将输出 PWM 波形,当 TOC 计数到与 TOD 相等时,PWMO 输出清 0;当 TOC 计数溢出时,PWMO 输出置 1。

TOPR、TOALOAD 和 BUZOOE 位控制 PWMO 的周期, TOD 控制 PWMO 的占空比(脉冲高电平的长度)。 PWMO 内置 4 种可编程控制的分辨率(1/256、1/64、1/32、1/16), 在 PWMOOE = 1 时由 TOALOAD 和 BUZOOE 位控制。

PWM0OE	T0ALOAD	BUZ0OE	PWM0 分辨率	T0D 有效值	
1	0	0	256	00H-FFH	
1	0 1		64	00H-3FH	
1	1	0	32	00H-1FH	
1	1	1	16	00H-0FH	

T0 内置 BUZ 功能,BUZ0 周期为 T0 溢出间隔时间的 2 倍。当 PWM00E=0 且 BUZ00E=1 时,输出 BUZ0 信号,BUZ0 信号的输出频率为 T0 溢出频率的 2 分频。

T0内置绿色模式唤醒功能,由T0GE控制,当芯片进入绿色模式后,如果T0GE=1,当T0溢出时将把芯片从绿色模式唤醒。

与定时器10相关的寄存器说明如下

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TXCR	-	-	-	-	T1PTSX	T0PTSX	T0GE	-
R/W	-	-	-	-	R/W	R/W	R/W	-
初始值	-	-	-	-	0	0	0	-

BIT[3] T1PTSX- T1 内部时钟选择位

0: T1 内部时钟来自 Fcpu

1: T1 内部时钟来自 Fhosc

BIT[2] TOPTSX-T0内部时钟选择位

0: T0 内部时钟来自 Fcpu

1: T0 内部时钟来自 Fhosc

BIT[1] TOGE – TO 绿色模式唤醒使能位

0: 禁止 T0 的唤醒功能

1: 允许 T0 的唤醒功能

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOCR	TC0EN	T0PR2	T0PR1	T0PR0	TOPTS	T0ALOAD	BUZ0OE	PWM0OE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7] TC0EN - T0 使能控制

0: 关闭 T0

1: 启动 T0

BIT[6:4] TOPR[2:0] - TO 预分频倍数选择

T0PR2	T0PR1	T0PR0	T0C			
IUPKZ	IUPKI	TUPKU	T0PTSX=0	T0PTSX=1		
0	0	0	Fcpu / 256	Fosc / 128		
0	0	1	Fcpu / 128	Fosc / 64		
0	1	0	Fcpu / 64	Fosc / 32		
0	1	1	Fcpu / 32	Fosc / 16		
1	0	0	Fcpu / 16	Fosc / 8		
1	0	1	Fcpu / 8	Fosc / 4		
1	1	0	Fcpu / 4	Fosc / 2		
1	1	1	Fcpu / 2	Fosc / 1		

BIT[4:3] TOPTS- TO 时钟源选择

0: 内部时钟(TXCR中TOPTSX 位选择)

1: 外部时钟, 由 P00/INT0 输入

BIT[2] TOALOAD - 重载选择 (PWM0OE=0)

0: 禁止溢出自动重载

1: 允许溢出自动重载

BIT[1] BUZ00E – BUZ0 选择(PWM00E=0)

0: 禁止 BUZ0 输出,端口作为 I/O 口

1: 允许 BUZ0 输出,端口输出 BUZ0 信号

BIT[0] PWM0OE – PWM0 选择

0: 禁止 PWM0 输出,端口作为 I/O 口

1: 允许 PWM0 输出,端口输出 PWM 信号

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOC	T0C7	T0C6	T0C5	T0C4	T0C3	T0C2	T0C1	T0C0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7:0] **TOC[7:0**] – TOC 的值,这是一个读写寄存器。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T0D	T0D7	T0D6	T0D5	T0D4	T0D3	T0D2	T0D1	TODO
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7:0] TOD[7:0] - TOD 的值,这是一个读写寄存器,用于设置 TO 重载值或 PWM 的占空比。

6.3 定时器 T1

T1具有定时器、事件计数器、PWM和BUZ功能。

T1PTS可选择T1的时钟源,T1PR可选择T1的预分频比,所选中的时钟源通过预分频器后产生T1C的时钟,当T1C递增到FF时,产生T1溢出中断请求标志,T1IF置1。由T1CR、T1C、T1D寄存器控制T1的溢出中断间隔时间。T1通过置位T1ALOAD实现自动重装功能,当T1溢出时,T1D的值自动装入T1C,T1D内置双重缓存器。

T1可实现事件计数器功能,将T1时钟源由系统时钟更改为外部时钟信号,T1将对外部管脚P00/INT1下降沿进行计数。

T1 可实现占空比可编程控制的 PWM 功能,由 T1PR, T1D 寄存器和 T1CR 寄存器的 T1ALOAD 和 BUZ10E 位控制占空比/周期。当 PWM10E=1 时,将输出 PWM 波形,当 T1C 计数到与 T1D 相等时,PWM1 输出清 0;当 T1C 计数溢出时,PWM1 输出置 1。

T1PR、T1ALOAD 和 BUZ10E 位控制 PWM1 的周期, T1D 控制 PWM1 的占空比(脉冲高电平的长度)。 PWM1 内置 4 种可编程控制的分辨率(1/256、1/64、1/32、1/16),在 PWM10E = 1 时由 T1ALOAD 和 BUZ10E 位控制。

PWM10E	T1ALOAD	BUZ10E	PWM1 分辨率	T1D 有效值
1	0	0	256	00H-FFH
1	0	1	64	00H-3FH
1	1	0	32	00H-1FH
1	1	1	16	00H-0FH

T1 内置 BUZ 功能, BUZ1 周期为 T1 溢出间隔时间的 2 倍。当 PWM10E=0 且 BUZ10E=1 时,输出 BUZ1 信号, BUZ1 信号的输出频率为 T1 溢出频率的 2 分频。

当芯片进入绿色模式后,如果T1时钟存在则T1正常工作,但溢出无法将芯片从绿色模式唤醒功能。

与定时器[1相关的寄存器说明如下

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1CR	TC1EN	T1PR2	T1PR1	T1PR0	T1PTS	T1ALOAD	BUZ1OE	PWM10E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7] TC1EN – T1 使能控制

0: 关闭 T1

1: 启动 T1

BIT[6:4] T1PR[2:0] - T1 预分频倍数选择

T1PR2	T1PR1	T1PR0	T	LC
IIPKZ	IIPKI	IIPKU	T1PTSX=0	T1PTSX=1
0	0	0	Fcpu / 256	Fosc / 128
0	0	1	Fcpu / 128	Fosc / 64
0	1	0	Fcpu / 64	Fosc / 32
0	1	1	Fcpu / 32	Fosc / 16
1	0	0	Fcpu / 16	Fosc/8
1	0	1	Fcpu / 8	Fosc / 4
1	1	0	Fcpu / 4	Fosc / 2
1	1	1	Fcpu / 2	Fosc / 1

BIT[4:3] T1PTS-T1 时钟源选择

0: 内部时钟(TXCR中T1PTSX 位选择)

1: 外部时钟,由 P01/INT1 输入

BIT[2] T1ALOAD – 重载选择 (PWM1OE=0)

0: 禁止溢出自动重载

1: 允许溢出自动重载

BIT[1] BUZ1OE – BUZ1 选择(PWM1OE=0)

0: 禁止 BUZ1 输出,端口作为 I/O 口

1: 允许 **BUZ1** 输出,端口输出 **BUZ1** 信号

BIT[0] PWM1OE - PWM1 选择

0: 禁止 PWM1 输出,端口作为 I/O 口

1: 允许 PWM1 输出,端口输出 PWM 信号

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1C	T1C7	T1C6	T1C5	T1C4	T1C3	T1C2	T1C1	T1C0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7:0] T1C[7:0] - T1C 的值,这是一个读写寄存器。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1D	T1D7	T1D6	T1D5	T1D4	T1D3	T1D2	T1D1	T1D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7:0] T1D[7:0] - T1D 的值,这是一个读写寄存器,用于设置 T1 重载值或 PWM 的占空比。

7 模数转换器 (ADC)

7.1 ADC 功能介绍

5+1 通道 12 位模数转换器,可通过 ADON 使能模数转换模块,ADCHS 选择转换的模拟通道,可以通过 ADCKS 位选择 ADC 的转换速率以决定 ADC 的转换时间,ADCKS 选择 AD 转换速度,ADEOC 为 AD 启动位及转换结束标志位。

当 ADEOC 标志为'1'时,对该寄存器写入'0'将将启动模数转换,转换结束后,转换结果被放在 ADRH 和 ADRL 中,ADEOC 将自动置'1',同时中断标志 ADIF 置'1',若 GIE 和 ADIE 使能,将产生 AD 中断。

7.2 ADC 转换时序图

7.3 ADC 操作步骤

模数转换设置步骤:

- ◆ S1: 设置 OEP4 将相应的端口设置为输入端口,同时关闭上拉电阻
- ◆ S2: 设置 ANSEL 将相应的端口设置为模拟端口
- ◇ S3:设置 ADCKS 选取适当的 AD 转换时钟
- ♦ S4:设置 VREF 选择参考电压
- ◆ S5: 使能 ADON ^{注2}
- ◆ S6: 置位 GCHS 和设置 ADCHS 选取 AD 转换通道
- ♦ S7: ADST 写入 1 启动 AD 转换
- ◆ S8: 等待 ADEOC 置 1 (或利用 AD 中断)
- ◆ S9: 读取 AD 转换结果 (ADDRH、ADDRL)
- ◆ 重复 S6~S8 对不同的通道进行转换或对同一通道多次转换

注1:ADC 转换过程中或者ADON 未使能时,ADRH/ADRL 中的数据未知,选在ADC 转换结束且ADON 使能的情况下读取ADC 转换数据。

注2:切换不同通道后,前两次转换值必须舍弃。

注3:如果选择内部参考电压 2V/3V/4V 时,需要在使能ADON 后等待参考电压稳定,而且不同2V/3V/4V 之间相互切换时也需要等待参考电压稳定。(时间 > 200us)

7.4 ADC 相关寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCR	ADON	ADST	ADEOC	GCHS	-	ADCHS2	ADCHS1	ADCHS0
R/W	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
初始值	0	0	0	0	-	0	0	0

BIT[7] ADON - ADC 功能使能位

1: 使能 ADC 功能

0: 不使能 ADC 功能

BIT[6] ADST - ADC 启动位

1: AD 转换开始,对 ADST 写入 1 启动 AD 转换

0: AD 转换过程中,转换结束后自动置 0

BIT[5] ADEOC - ADC 转换结束标志

1: AD 转换结束

0: AD 转换过程中

BIT[4] GCHS - ADC 通道使能位

1: AD 转换通道开启

0: AD 转换通道关闭

BIT[2:0] ADCHS[2:0] – ADC 模拟通道选择

ADCHS[2:0]	ADC 模拟通道选择
000	AIN0
001	AIN1
010	AIN2
011	AIN3
100	AIN4
101	VDD/4

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VREF	VREFS	-	-	-	-	-	VRS1	VRS0
R/W	R/W	1	1	-	-	1	R/W	R/W
初始值	0	-	-	-	-	-	0	0

BIT[2:0] VREFS – ADC 参考电压选择位

- 1: 开启 ADC 外部参考电压,参考电压来自 P40/AIN0/VREFH 引脚
- 0: 禁止 ADC 外部参考电压, ADC 使用内置参考电压

BIT[1:0] VRS[1:0] - ADC 内置参考电压选择

VRS[1:0]	ADC 内置参考电压选择
00	2V

01	3V
10	4V
11	VDD

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSEL	-	-	-	P44ANS	P43ANS	P42ANS	P41ANS	P40ANS
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
初始值	-	-	-	0	0	0	0	0

BIT[4:0] P4nANS - P0 口模式选择(n=4-0)

1: P4n 端口作为模拟输入

0: P4n 端口作为通用 IO 口

注: 当引脚 AD 功能使能时,端口必须设置为输入无上拉电阻

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADRH	ADR11	ADR10	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4
R	R	R	R	R	R	R	R	R
初始值	Х	Х	Х	Х	Х	X	Х	Х

BIT[7:0] ADRn – ADC 转换结果寄存器高 8 位(n=11-4)。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADRL	-	ADCKS1	-	ADCKS0	ADR3	ADR2	ADR1	ADR0
R	-	R/W		R/W	R	R	R	R
初始值	-	0	100	0	Х	Х	Х	Х

BIT[6,4] ADCKS[1:0] – AD 转换时钟选择

ADCKS[1:0]	AD 转换时钟频率选择 F _{ADC}
00	Fcpu/16
01	Fcpu/8
10	Fcpu
11	Fcpu/2

注: AD 转换时钟频率需设置为≤500KHz

BIT[3:0] ADRn - ADC 转换结果寄存器低 4 位(n=3-0)。

7.5 ADC 操作说明和注意事项

7.5.1. ADC 信号格式

ADC采样电压范围为参考电压高/低电平之间,ADC参考低电压为VSS,高电压包括VDD/4V/3V/2V,外部参考电压由P4.0 /VREFH引脚提供(由VREFS控制)。VREFS = 0时,ADC参考电压选择内部参考源;VREFS = 1时,ADC参考电压选择外部参考源(P4.0/VREFH)。ADC参考电压的范围为:(ADC参考高电压-ADC参考低电压) \geq 2V,ADC参考低电压为VSS=0V,故ADC参考高电压范围为2V $^{\sim}$ VDD,外部参考电压需在此范围之内。

- ✓ ADC内部参考低电压=0V
- ✓ ADC内部端口低电压=VDD/4V/3V/2V。 (VREFS = 0)
- ✓ ADC外部参考电压=2V~VDD。(VREFS = 1)

ADC采样输入信号电压必须在ADC参考低电压和ADC参考高电压之间,若ADC输入信号的电压不在此范围内,则ADC的转换结果会出错(满量程或者为0)。

7.5.2. AD 转换时间

ADC转换时间是指从ADS=1 (开始ADC) 到EOC=1 (ADC结束) 所用的时间,由ADC分辨率和ADC时钟Rate 控制,12位ADC的转换时间为1/(ADC时钟/4)*(SAMPTS+12)。ADC的时钟源为Fcpu,包括Fcpu/1,Fcpu/2,Fcpu/8,Fcpu/16,由ADCKS[1:0]位控制。

ADC的转换时间会影响ADC的性能,如果输入高Rate的模拟信号,必须要选择一个高Rate的ADC转换Rate。如果ADC的转换时间比模拟信号的转换Rate慢,则ADC的结果出错。故选择合适的ADC时钟Rat和ADC分辨率才能得到合适的ADC转换Rate。

注 1: AD 转换精度与 AD 转换时钟有关系,时钟越低,精度越高。为了达到高精度,建议选择 FADC <500KHz。对于 FADC 大于 500KHz 频率情况,必须对同一个通道连续转换多次,舍弃前 3 次数据,取第 4 次之后的数据。

注 2: AD 转换过程分为 SAMPLE 时间和 CONVERT 时间,SAMPLE 时间由 OPBIT2 中的 SAMPTS 位控制,SAMPTS 选择时间越长精度越高,建议选择最大的 14 个 ADCLK。

7.5.3. AD 引脚配置

ADC输入引脚与P4口共用,ADC输入通道的选择由ADCHS[2:0]控制,ADCCHS[2:0]=000时选择AIN0,ADCCHS[2:0]=001时选择AIN1……同一时间设置P4口的一个引脚作为ADC的输入引脚,该引脚必须设置为输入引脚,禁止内部上拉,并首先由程序使能ANSEL寄存器。通过ADCHS[2:0]选择好ADC输入通道后,GCHS置1以使能ADC功能。

- ✓ ADC输入引脚为GPIO引脚时必须设为输入模式。
- ✓ 必须禁止ADC输入引脚的内部上拉电阻。
- ✓ ADC输入通道的ANSEL位必须置1.

EVHENB = 1时, P4. 0/AIN0为ADC外部参考源的输入引脚,此时,P4. 0必须设为输入模式,并禁止其上拉电阻。

- ✔ ADC外部参考源输入引脚为GPIO引脚时必须设为输入模式。
- ✓ 必须禁止ADC外部参考源输入引脚的内部上拉电阻

ADC输入引脚与普通I/0引脚共用。当输入一个模拟信号到CMOS结构端口时,尤其当模拟信号为1/2 VDD时,可能产生额外的漏电流。当P4输入多个模拟信号时,也会产生额外的漏电流。睡眠模式下,上

述漏电流会严重影响到系统的整体功耗。ANSEL为P4口的配置寄存器,将ANSEL[4:0]置1,其对应的P4引脚将被设为纯模拟信号输入引脚,从而避免上述漏电流的产生。

8 中断

MC32P7030 的中断有外中断(INT0,INT1)、定时器中断(T0,T1)、ADC 转换中断。外部中断、定时器中断可被 CPU 状态寄存器 STKP 的 GIE 位屏蔽。

中断响应过程如下:

- ◆ 当发生中断请求时, CPU 将相关下一条要执行的指令的地址压栈保存(累加器 A 和状态寄存器需要软件保护,可使用 PUSH 指令),对中断屏蔽位 GIE 清 0,禁止中断响应。与复位不同,硬件中断不停止当前指令的执行,而是暂时挂起中断直到当前指令执行完成。
- ◆ CPU 执行中断时,程序跳到中断向量 0008H 地址开始执行中断代码,中断代码应该先保存累加器 A 和状态寄存器,然后判断是哪一个中断响应。
- ◆ 执行完中断内容后应该恢复累加器 A 和状态寄存器,可使用 POP 指令,然后执行 RETIE 返回主程序。这时,从堆栈取出 PC 的值,然后从中断发生时的那条指令的后一条指令继续执行。

有中断请求发生并被响应后,程序转至0008H执行中断子程序。响应中断之前,必须保存ACC、PFLAG的内容。芯片提供PUSH和POP指令进行入栈保存和出栈恢复,从而避免中断结束后可能的程序运行错误。

8.1 外中断

MC32P7030 有 2 路外部中断源,INT0 中断源可以设置为上升沿触发、下降沿触发和变化触发三种模式, INT1 只支持下降沿触发模式,当外部中断触发时,外部中断标志(INT0IF、INT1IF)将被置 1,若中断总使能位 GIE 为 1 且外部中断使能位(INT0IE、INT1IE)为 1 ,则产生外部中断。

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PEDGE	-	-		MINT01	MINT00	-	-	-
R/W	-	-	1 -	R/W	R/W	-	-	-
初始值	-	-	7-0	1	0	-	-	-

BIT[4:3] MINTO - 外部中断 0 触发控制位

00: 保留

01: INTO 上升沿触发

10: INTO 下降沿触发

11: INTO 电平变化触发

8.2 定时器中断

定时器 TO、T1 在计数溢出时会置位中断标志 TOIF、T1IF, 若中断总使能位 GIE 为 1 且定时器中断使能位(T0IE、T1IE)为 1 ,则产生定时器中断。

8.3 ADC 转换中断

ADC 转换完成后会置位中断标志 ADIF, 若中断总使能位 GIE 为 1 且定时器中断使能位 (ADIE) 为 1 ,则产生 ADC 中断。

8.4 中断相关寄存器

堆栈指针寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	GIE	-	-	-	-	STKP2	STKP1	STKP0
R/W	R/W	-	-	-	-	R/W	R/W	R/W
初始值	0	-	-	-	-	1	1	1

BIT[7] **GIE** - 总中断使能

0: 屏蔽所有中断

1: 中断源是否产生中断有相应的控制位决定

BIT[2:0] - 堆栈指针寄存器

中断使能寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE	ADIE	T1IE	TOIE	-	-	-0	INT1IE	INTOIE
R/W	R/W	R/W	R/W	-	-	45	R/W	R/W
初始值	0	0	0	-		-	0	0

BIT[7] ADIE – ADC 中断使能

0: 屏蔽 ADC 中断

1: 使能 ADC 中断

BIT[6] T1IE - 定时器 1 使能

0: 屏蔽定时器1中断

1: 使能定时器 1 中断

BIT[5] **TOIE** - 定时器 0 使能

0: 屏蔽定时器 0 中断

1: 使能定时器 0 中断

BIT[1] INT1IE - 外部中断 1 使能

0: 屏蔽外部1中断

1: 使能外部1中断

BIT[0] INTOIE - 外部中断 0 使能

0: 屏蔽外部 0 中断

1: 使能外部 0 中断

中断标志寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTF	ADIF	T1IF	TOIF	-	-	-	INT1IF	INT0IF
R/W	R/W	R/W	R/W	-	-	-	R/W	R/W
初始值	0	0	0	-	-	-	0	0

BIT[7] ADIF - ADC 中断标志

0: 未发生 ADC 中断

1: 发生 ADC 中断, 需软件清零

BIT[1] T1IF- 定时器 1 标志

0: 未发生屏蔽定时器1中断

1: 发生定时器 1 中断, 需软件清零

BIT[0] **TOIF** - 定时器 0 标志

0: 未发生定时器 0 中断

1: 发生定时器 0 中断, 需软件清零

BIT[1] INT1IF – 外部中断 1 标志

0: 未发生外部1中断

1: 发生外部1中断,需软件清零

BIT[0] INTOIF - 外部中断 0 标志

0: 未发生外部 0 中断

1: 发生外部 0 中断, 需软件清零

9 电气参数

9.1 极限参数

参数	符号	值	单位
工作电压	Vdd	-0.3~6.0	V
输入电压	VIN	Vss-0.3 ~ Vdd+0.3	V
工作温度	TA	-40 ~ 85	℃
储存温度	Tstg	-65 ~ 150	℃
流过 VDD 最大电流	IVDDmax	40	mA
流过 GND 最大电流	IGNDmax	40	mA

9.2 直流特性参数

T=25℃

特性	符号	引脚	条件	最小	典型	最大	单位
			Fcpu=8MHz	3.0		5.5	
			Fcpu=4MHz	2.7		5.5	
工作电压	VDD		Fcpu=2MHz	2.0		5.5	V
			Fcpu=1MHz	2.0		5.5	
			Fcpu=500KHz	2.0		5.5	
输入漏电	VLEAK	所有输入引 <mark>脚</mark>				1	uA
输入高电平1	VIH1	所有输入引脚 (除 VPP)		0.7VDD			V
输入低电平1	VIL1	所有輸入引脚 (除 VPP)				0.3VDD	V
输入高电平 2	VIH2	VPP		0.8VDD			V
输入低电平 2	VIL2	VPP				0.2VDD	V
上+六中70 1	RPU1	ᄄᆂᄀᆘᄞ	VDD=5V,Vin=VSS		70		Kohm
上拉电阻 1	KPUI	所有引脚	VDD=3V,Vin=VSS		140		Kohm
工+☆☆70 1	RPD1	P16	VDD=5V,Vin=5V		70		Kohm
下拉电阻 1	KPDI	P10	VDD=3V,Vin=3V		140		Kohm
内架内70 1	RVDD	VDD	VDD=2V~5V,VIN=VSS	16	24	32	Kohm
内置电阻 1	KVDD	VDD	VDD 与 VSS 分压比例	-1%	1/4	+1%	Vvdd
输出高电平 驱动电流 1	IOH1	所有输入引脚 (除 VPP)	Voh=VDD-0.5V	6	12	24	Ма
输出低电平	IOL1	所有输入引脚	Vol=0.5V	8	16	32	Ma
驱动电流 1	IOLI	が行制人が勝	VUI-U.3V	0	10	32	ivid
	VREF1		外部输入参考,VDD=5V	2		VDD	V
VREF 电压	VREF2	P40/VREF	内部参考 2V,VDD=2.5V~5V	-1.5%	2	+1.5%	V
	VINLIZ		温度-40~85℃	-3%	2	+3%	V

			内部参考 3V,VDD=3.5V~5V	-1.5%	3	+1.5%	V
	VREF3		温度-40~85℃	-3%	3	+3%	V
			内部参考 4V,VDD=4.5V~5V	-1.5%	4	+1.5%	V
	VREF4		温度-40~85℃	-3%	4	+3%	V
	VREF5		内部 VDD 参考		VDD		V
-1 1			VDD=5V,Fcpu=1MHz		1.3		Ma
」 动态功耗	IDD	VDD	VDD=3V,Fcpu=1MHz		0.8		Ma
			ADC 关闭,LVR/LVD/WDT 关闭,				
休眠模式功耗 1	ISB1	VDD	高频振荡器关闭,低频振荡器关		0.1	1	Ua
			闭,执行 STOP 指令				
			ADC 关闭, WDT 关闭,LVR/LVD				
休眠模式功耗 2	ISB2	VDD	开启,高频振荡器关闭,低频振		1	3	Ua
			荡器关闭,执行 STOP 指令			10	1
			ADC 关闭 , LVR/LVD 关闭 , 高频				
			振荡器关闭,低频振荡器开启,		3	6	Ua
绿色模式功耗 1	Igreen1	VDD	执行 STOP 指令,VDD=5V				
			ADC 关闭 , LVR/LVD 关闭 , 高频			2	
			振荡器关闭,低频振荡器开启,		1	3	Ua
			执行 STOP 指令,VDD=3V				
经免费 于14年?	Igroon?	VDD	ADC 关闭, LVR/LVD 开启, 高频 作类器关键。作频作类器工户		4	8	Ua
绿色模式功耗 2 Igreen2		VDD	振荡器关闭,低频振荡器开启, 执行 STOP 指令		4	0	Ua
			ADC 关闭, VDD=5V, 内部高频				
低速模式功耗 1	Islow1	VDD	振荡 16M 开启 ,执行 STOP 指令		500		Ua
			ADC 关闭, VDD=5V, 高频振荡				
			关闭 , 低频振荡开启 , 执行 STOP		5	10	Ua
/r>+ +- b- +T 0		1/00	指令				
低速模式功耗 2	Islow2	VDD	ADC 关闭 , VDD=3V , 高频振荡				
			关闭 , 低频振荡开启 , 执行 STOP		2	4	Ua
			指令				
上电复位电压	VPOR	VDD		-15%	1.2	+15%	V
-			VLVRS=0100	-15%	1.8	+15%	V
			VLVRS=0101	-15%	2.0	+15%	V
			VLVRS=0110	-15%	2.2	+15%	V
			VLVRS=0111	-15%	2.4	+15%	V
			VLVRS=1000	-15%	2.5	+15%	V
低电压复位电压	VLVR	VDD	VLVRS=1001	-15%	2.6	+15%	V
			VLVRS=1010	-15%	2.7	+15%	V
			VLVRS=1011	-15%	2.8	+15%	V
			VLVRS=1100	-15%	3.0	+15%	V
			VLVRS=1101	-15%	3.2	+15%	V
			VLVRS=1110	-15%	3.6	+15%	V

	-			T .		1	
			VLVRS=1111	-15%	3.8	+15%	V
			LVDSEL=0000	-15%	1.8	+15%	V
			LVDSEL=0001(LVD 关闭)				
			LVDSEL=0010	-15%	2.0	+15%	V
			LVDSEL=0011	-15%	2.1	+15%	V
			LVDSEL=0100	-15%	2.2	+15%	V
			LVDSEL=0101	-15%	2.4	+15%	V
		VDD	LVDSEL=0110	-15%	2.5	+15%	V
	VIVD		LVDSEL=0111	-15%	2.6	+15%	V
低电压检测电压	VLVD		LVDSEL=1000	-15%	2.7	+15%	٧
			LVDSEL=1001	-15%	2.8	+15%	V
			LVDSEL=1010	-15%	3.0	+15%	V
			LVDSEL=1011	-15%	3.2	+15%	V
			LVDSEL=1100	-15%	3.3	+15%	V
			LVDSEL=1101	-15%	3.6	+15%	V
			LVDSEL=1110	-15%	4.0	+15%	V
			LVDSEL=1111	-15%	4.2	+15%	V

9.3 ADC 特性参数

VDD=5V, T=25℃

特性	符号	条件	最小	典型	最大	单位	
ガンンがませませ	ILE	VDD=VREF=5V			±3	LSB	
积分线性误差	ILE	FADC=1MHz			ΞS	LSD	
) 微分线性误差	DLE	VDD=VREF=5V			±3	LSB	
1	DLE	FADC=1MHz			ΞS	LSB	
上限偏置误差	EOT	VDD=VREF=5V		±1	±3	LSB	
工限洲且庆左	LOT	FADC=1MHz			13	LSD	
下限偏置误差	EOB	VDD=VREF=5V		±1	±3	LSB	
PIRIM且庆 左	ЕОВ	FADC=1MHz		±1	±3	LSB	
		VDD=VREF=5V			+ 4	LSB	
		FADC=2MHz			±4	LSB	
		VDD=5V,VREF=2.5V				LCD	
转换精度	ACC	FADC=1MHz		R	±4	LSB	
		VDD=5V,			Δ.		
				内部 2V/3V/4V			±8
		FADC=500KHz					
#±+42.□-+6-h	FADC	VDD=5V	, A		500	KHz	
转换时钟	FADC	VDD=3V			500	KHz	
转换时间	T _{con}		16	20	27	1/FADC	
ADC 输入电压	V _{IAN}	The second visit of the se	0		VDD	V	
ADC 输入阻抗	R _{IAN}		2M			ohm	
ADC 输入电流	I _{IAN}	VDD=5V			10	Ua	
4DC		VDD=5V		-	2		
ADC 动态电流	I_{add}	AD 转换中		1	3	Ma	
4DC #4 * th >*	1	VDD=5V		0.1	1	115	
ADC 静态电流	I _{ads}	ADON=0		0.1	1	Ua	
生油中 (1)	VOC	FADC≤500KHz	-2		2	Mv	
失调电压	VOS	FADC=1MHz~2MHz	-10		10	Mv	

9.4 交流电气参数

VDD=5V, T=25℃

特性	符号	条件	最小	典型	最大	单位
中型壳体 DC1CM 标类体态	FLUID C1	T=25℃ VDD=5V	-2%	16	+2%	MHz
内部高频 RC16M 振荡频率	FHIRC1	T=-40°C~85°C VDD=2 ~5V	-5%	16	+5%	MHz
中郊宣栖 DCOM 振芽梅変	FHIRC2	T=25℃ VDD=5V	-2%	8	+2%	MHz
内部高频 RC8M 振荡频率	FHIRCZ	T=-40°C~85°C VDD=2 ~5V	-5%	8	+5%	MHz
内部高频 RC4M 振荡频率	FHIRC3	T=25℃ VDD=5V	-2%	4	+2%	MHz
內中向娛 RC4IVI 派汤娛辛	FHIRCS	T=-40°C~85°C VDD=2 ~5V	-5%	4	+5%	MHz
内部高频 RC2M 振荡频率	FHIRC4	T=25°C VDD=5V	-2%	2	+2%	MHz
的中间炎 NCZIVI IX为火平	FHIRC4	T=-40°C~85°C VDD=2 ~5V	-5%	2	+5%	MHz
内软壳板 DC1M 坛类城家	FHIRC5	T=25°C VDD=5V	-2%	1	+2%	MHz
内部高频 RC1M 振荡频率		T=-40°C~85°C VDD=2 ~5V	-5%	1	+5%	MHz
	EL IIDCC	T=25℃ VDD=5V	-2%	455	+2%	KHz
内部高频 RC455K 振 <mark>荡频率</mark>	FHIRC6	T=-40°C~85°C VDD=2 ~5V	-5%	455	+5%	KHz
内部低频 RC 振荡频率	FLIRC	T=25°C VDD=5V	-50%	32	+50%	KHz
外部 16M 晶体起振电压	VXT16M	T=25°C	2.7			V
外部 8M 晶体起振电压	VXT8M	T=25℃	2.4			V
外部 4M 晶体起振电压	VXT4M	T=25°C	2.2			V
外部 455K 晶体起振电压	VXT455K	T=25℃	1.8			V
外部 32768 晶体起振电压	VLEXT	T=25℃	1.6			V
外部 32768 晶体起振时间	FLEXT	T=25℃ VDD=5V		1		S

		T=25℃				
外部 RC 频率 1	FERC1	VDD=5V	-50%	3.4	+50%	MHz
		REXT=1K,CEXT=100Pf				
		T=25℃				
外部 RC 频率 2	FERC2	VDD=5V	-50%	1.3	+50%	MHz
		REXT=3K,CEXT=100Pf				
		T=25°C				
外部 RC 频率 3	FERC3	VDD=5V	-50%	590	+50%	KHz
		REXT=1K,CEXT=1000Pf				

10 特性曲线图

注:本节列出的特性曲线图仅作为设计参考,部分数据可能超出芯片额定的工作条件范围,为保证芯片 能正常工作,请严格按照电气特性说明。

10.1 普通 IO 输出高电平驱动电流 VS 输出电平

10.2 普通 IO 输出低电平驱动电流 VS 输出电平

10.3 输入高低电平 VS 电源电压

10.4 上拉电阻 VS 电源电压

10.5 LIRC 动态功耗 VS 电源电压

10.6 休眠模式功耗 VS 温度

10.7 休眠模式功耗 VS 电源电压

10.8 绿色模式下低频功耗 VS 电源电压

10.9 LVD 电压 VS 温度

10.10 POR 电压 VS 温度

10.11 HIRC=16MHz 频率

10.12 HIRC=8MHz 频率

10.13 HIRC=4Mz 频率

10.14 HIRC=2MHz 频率

10.15 HIRC=1MHz 频率

10.16 HIRC=455KHz 频率

10.17 内部 LIRC (32KHz) 频率

10.18 外部 RC (R=1K, C=100pf) 频率

10.19 外部 RC (R=3K, C=100pf) 频率

10.20 外部 RC (R=1K, C=1000pf) 频率

10.21 AD 参考电压 (4V) VS 电源电压

10.22 AD 参考电压 (4V) VS 温度

10.23 AD 参考电压 (3V) VS 电源电压

10.24 AD 参考电压 (3V) VS 温度

10.25 AD 参考电压 (2V) VS 电源电压

10.26 AD 参考电压 (2V) VS 温度

10.27 最低工作电压 VS 系统时钟 FCPU 关系图

注:系统最低工作电压和系统工作频率 FCPU 有关,不同的工作频率 FCPU 最低工作电压不同。

如下图所示,当工作频率提高时系统正常工作电压也随之提高,但由于 POR 电压固定(1.2V@25 $^{\circ}$),在系统最低工作电压和 PO R 电压之间就会出现一个不能正常工作的电压区域,此区域系统不能正常工作也不会产生 POR 复位,称之为死区,必须根据不同的工作频率设置大于死区电压的 LVR 电压避免出现死区。

LVR 电压选择如下:

FCPU 频率(Hz)	LVR 电压值(V)
8M	3.0
4M	2.7
2M	2.0
1M	2.0
500Khz	2.0

11 封装外形尺寸

SOP8

SYMBOL	М	ILLIMET	ER			
STIVIBUL	MIN	NOM	MAX			
Α	ı	ı	1.77			
A1	0.08	0.18	0.28			
A2	1.20	1.40	1.60			
A3	0.55	0.65	0.75			
b	0.39	-	0.48			
b1	0.38	0.41	0.43			
С	0.21	-	0.26			
c1	0.19	0.20	0.21			
D	4.70	4.90	5.10			
E	5.80	6.00	6.20			
E1	3.70	3.90	4.10			
е	1.27BSC					
L	0.50	0.65	0.80			
L1	1.05BSC					
θ	0	-	8°			

DIP8

	1						
SYMBOL	MILLIMETER						
STIVIBOL	MIN	NOM	MAX				
Α	3.60	3.80	4.00				
A1	0.51	-	-				
A2	3.10	3.30	3.50				
А3	1.50	1.60	1.70				
b	0.44	-	0.53				
b1	0.43	0.46	0.48				
B1		1.52BSC	-				
С	0.25	-	0.31				
c1	0.24	0.25	0.26				
D	9.05	9.25	9.45				
E1	6.15	6.35	6.55				
е		2.54BSC	-				
Ea	7.62BSC						
Eb	7.62	-	9.50				
Ec	0	-	0.94				
L	3.00	-	-				

MSOP10

CVMPOL	М	ILLIMET	ER		
SYMBOL	MIN	NOM	MAX		
Α	-	-	1.10		
A1	0.05	-	0.15		
A2	0.75	0.85	0.95		
А3	0.30	0.35	0.40		
b	0.19	-	0.28		
b1	0.18	0.20	0.23		
С	0.15	-	0.20		
c1	0.14	0.152	0.16		
D	2.90	3.00	3.10		
E	4.70	4.90	5.10		
E1	2.90	3.00	3.10		
е	1	0.50BSC			
L /	0.40	\ - \	0.70		
L1	0.95BSC				
θ	0	J	8°		

DIP14

SYMBO	MILLIMETER		
L	MIN	NOM	MAX
Α	3.60	3.80	4.00
A1	0.51	-	-
A2	3.10	3.30	3.50
A3	1.42	1.52	1.62
b	0.44	1	0.53
b1	0.43	0.46	0.48
B1	1.52BSC		
С	0.25	ı	0.31
c1	0.24	0.25	0.26
D	18.90	19.10	19.30
E1	6.15	6.35	6.55
е	2.54BSC		
Ea	7.62BSC		
Eb	7.62	-	9.50
Ec	0	-	0.94
L	3.00	-	-

SYMBOL	MILLIMETER		
STIVIBOL	MIN	МОМ	MAX
Α	-	-	1.77
A1	0.08	0.18	0.28
A2	1.20	1.40	1.60
А3	0.55	0.65	0.75
b	0.39	-	0.48
b1	0.38	0.41	0.43
С	0.21	1	0.26
c1	0.19	0.20	0.21
D	8.45	8.65	8.85
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
е	1.27BSC		
L	0.50	0.65	0.80
L1	1.05BSC		
θ	0	-	8°

12 版本修订记录

版本号	修订日期	修订内容
V1.0	2016-01-26	新建
V1.1	2016-04-05	修改订购信息笔误
		增加 P02 的 SDO 功能描述
		删除 P04 引脚描述中的开漏输出和上拉电阻
		删除 P04OE , P04PU
		修改直流特性参数的 VREF 端口为 P40
V1.2	2017-04-05	更新页眉
		增加指令的应用笔记说明
V1.3	2017-10-10	修改 LVR 配置项,修改工作电压特性及推荐 LVR 值;
		修改 HIRC 电气参数
V1.4	2018-10-17	增加 ADC 应用注释:建议 AD 时钟限制 500KHz以下,采样时间配置为 14
		个ADCLK

