SOLVING ODE'S

GENERAL SOLUTION

DEFINITION

The **General Solution** includes arbitrary constants and we use the initial conditions to determine the values of these constants.

The arbitrary constants are constants of integration

$$F(x) = \int f(x)dx + C$$

SOLVING ODE'S USING FTC

FTC

LEMMA

$$y'(t) = f(t)$$
 $\Rightarrow y(t) = y(t_0) + \int_{t_0}^t f(u) du$

EXAMPLE

EXAMPLE

$$egin{cases} y'(t) &= t^2 \ y(1) &= 3 \end{cases}$$

FREE FALL

EXAMPLE

$$egin{cases} z''(t) &= -g \ z(0) &= z_0 \ z'(0) &= v_0 \end{cases}$$

Let
$$v=z'\dots$$

SEPARABLE ODE'S

SEPARABLE ODE'S

DEFINITION

A separable ODE is an ODE of the form

$$f(y)y'=g(t)$$

EXPONENTIAL GROWTH/DECAY

$$egin{cases} y' &= 3y \ y(0) &= 4 \end{cases}$$

EXAMPLE

$$egin{cases} y' &= (x^2-4)(3y+2) \ y(0) &= -2 \end{cases}$$