Sistemas Operacionais: Sistema de Arquivos

Sistema de Arquivos

- Arquivos
 - Espaço contíguo de armazenamento
 - Armazenado em dispositivo secundário
- Estrutura
 - Nenhuma: seqüência de bytes
 - Registros, documentos, programa executável
 - Semântica: SO + aplicação

Atributos

- Nome
- Tipo (em alguns sistemas)
- Tamanho
- Localização
- Dono do arquivo
- Proteção
- Último acesso
- Última alteração

Operações

- Criar
- Escrever
- Ler
- Reposicionar o ponteiro do arquivo
- Apagar o arquivo
- Truncar o arquivo
- Mapeamento de arquivo na memória

Nomes e extensões

- Tamanho máximo de caracteres
- Extensões
 - Em alguns sistemas controla as operações que podemos fazer nos arquivos
 - Exe, doc, bat
 - Opcional

Tipos de acesso

Sequencial

- Implementação mais simples
- O arquivo é processado de forma seqüencial
 - Compiladores, editores de texto
- O ponteiro do arquivo é automaticamente atualizado quando é realizada uma leitura
- Reposicionamento do ponteiro no início do arquivo

Acesso direto

- O arquivo é composto por "registros" de tamanho fixo
- Uma operação de leitura e escrita é realizada diretamente em um endereço n
- Acesso randômico: discos

Diretórios

- Contém informações dos arquivos armazenados no disco
- Cada disco ou partição contém uma estrutura de diretórios
- Operações
 - Buscar um arquivo
 - Criar um arquivo
 - Apagar um arquivo
 - Listar os arquivos
 - Renomear um arquivo
 - Verificar o conteúdo do sistema de arquivo

Diretório

- Eficiência: localizar um arquivo rapidamente
- Nomes: apropriado para usuários
- Agrupamento
 - Arquivos pertencentes a uma mesma aplicação são organizados através dos diretórios

Diretório – único nível

- Único nível para todos os usuários
- Fácil implementação
- Problemas: conflitos de nome

Diretório – dois níveis

- Cada usuário tem o seu diretório
- Usuários podem ter arquivos com o mesmo nome
- Nomes de arquivos compostos por caminhos (path)
- Busca eficiente

Diretório – estrutura em arvore

- Agrupamento
- Busca eficiente
- Conceito de diretório corrente

Diretório – estrutura em arvore

- Caminho relativo e absoluto
- Apagar
 - Arquivo
 - Diretório: apaga todos os subdiretórios e arquivos

Diretórios- Grafos acíclicos

Diretórios- Grafos acíclicos

- Diretórios e arquivos compartilhados
- Dois nomes diferentes
- Se *dict* apaga *list*. Se a referência é armazenada na forma de endereço, ocorrerá uma inconsistência
- Se um link é apagado, não haverá problemas.
- Se o arquivo é apagado
 - Deixar os ponteiros perdidos
 - Backpointers: apagar todas as referências aos arquivos do sistema
 - Contador

Mount/Umount

- Mount
 - um diretório é montado em qualquer parte do sistema de arquivo
 - Endereço relativo e absoluto

• Umount

Proteção

- Dono do arquivo controla
 - As operações sobre os arquivos
 - Quais os usuários podem fazer operações
- Tipos de acesso
 - Leitura
 - Escrita
 - Execução
 - Apagar
 - Listar

Lista de acesso

- Leitura, escrita e execução
- Três classes de usuários
 - Dono
 - Grupo
 - Público

Implementação do sistema de arquivos

Sistema de arquivos

- Organizado em camadas
- Bloco de controle do arquivo (file control block): estrutura de dados que armazena as informações do arquivo
 - Permissões
 - Acessos (data/hora)
 - Dono/ Grupo
 - Tamanho
 - Blocos do arquivo

Estrutura em camadas

Estrutura de dados no acesso a arquivos

VFS – Virtual file system

- Modelo orientado a objetos
- API única para acesso a diferentes tipos de sistema de arquivos

VFS- virtual file system

Métodos de alocação

Arquitetura de um disco

- Latência do disco= tempo médio de busca + tempo médio de atraso rotacional + tempo de transferência + controlador
- Seagate Barracuda 320Gb (2 discos /4 cabeças)
 - Tempo médio de busca = 8.5 ms
 - Atraso rotacional = 0.5 * (1/7200 rpm)
 - Tempo de transfêrencia = 78 Mbytes/s
 - Tempo controlador= 0.1 ms
 - Track-to-track seek time: 1.0 ms (leitura)

Latência do disco

- Leitura de 64 Kb
- Latência do disco= 8.5 ms + 0.5 * (7200rpm)
 + 64Kb/ (78MBytes) + 0.1 ms
- Latência do disco= 8.5 ms + 0.5 *
 (7200/60000 ms) + 64Kb / (78Kbytes/ms) +
 0.1 ms
- Latência do disco= 8.5 + 4.2 + 0.8 + 0.1
- Latência do disco= 13.6 ms

Métodos de alocação

- Contígua
- Lista ligada
- Indexada

Alocação contígua

- Cada arquivo contém um conjunto de blocos alocados de forma contígua no disco
- Armazenar apenas o bloco inicial e o número de blocos do arquivo
- Acesso randômico
- Problema da alocação dinâmica
- Aumento de tamanho do arquivo?
 - Não pode crescer
 - Alocar um novo espaço

Alocação contígua

Endereçamento – alocação contígua

- Mapeamento Endereço lógico p/ físico
 - End/ 512 (considerando blocos de 512 bytes)
 - Q bloco
 - R deslocamento

Alocação – lista ligada

- Cada arquivo composto por uma lista ligada de blocos do disco
- Não precisa ser contígua
- Armazena apenas o bloco inicial
- Sem acesso randômico

Alocação – lista ligada

Endereçamento – lista ligada

- Endereço / 511
 - − Q= bloco
 - R+1= endereço do byte

FAT – file allocation table

Alocação indexada

- Todos os ponteiros para o arquivo são armazenados em uma tabela
 - Tabela de índices
- Acesso randômico

Alocação indexada

Endereçamento- alocação indexada

- Endereço /512
 - -Q = numero bloco
 - -R = deslocamento

Tabela de indices- 2 níveis

UNIX

Gerenciamento de espaços livres

Mapa de bit

- Cada bit representa um bloco do disco
- Calculo do bloco livre
 - (número de bits por palavra) * (número de 0) +
 deslocamento até o primeiro bit 1
- É necessário armazenar os mapas de bits no disco
 - Qual o overhead?
- Fácil obtenção de um espaço contíguo

Lista ligada

- Espaço livre:Armazenar apenas o ponteiro do início da lista
 - Sem perda de espaço
- Difícil obtenção de um conjunto de blocos contíguos

Lista ligada

Sistema baseado em Log

- Log (journaling): cada atualização no sistema de arquivos é armazenada em um arquivo de log (transação)
 - Uma transação é considerada aceita quando, quando escrita no arquivo de log
 - O sistema de arquivos não está necessariamente atualizado
- As transações no arquivo de log são processadas de forma assíncrona
- Se um sistema é reinicializado, as transações no arquivo são processadas antes do início da utilização do sistema
- Duas escritas são necessárias: log + sistema de arquivos

Ext3

- Journaling pode ser configurado em 3 modos
 - Journal: armazena no arquivo de log os dados e metadados (diretórios e informações sobre o arquivo) no arquivo de log.
 - Duas escritas
 - Ordered: armazena no arquivo de log apenas as atualizações nos metadados.
 - As atualizações no conteúdo do arquivo são armazenadas diretamente no sistema de arquivos. Os metadados são escritos em definitivo depois da escrita do conteúdo do arquivo.
 - WriteBack: armazena no arquivo de log apenas as atualizações nos metadados.
 - As atualizações nos metadados e nos arquivos são realizados de forma assíncrona.

Escalonamento do disco

Escalonamento do disco

- O sistema operacional é responsável por utilizar o HW de forma eficiente – disco: acesso rápido e largura de banda
- Acesso
 - Tempo de busca
 - Latência rotacional
- Minimizar o tempo de busca
- Tempo de busca ≈ Distância da busca

Arquitetura de um disco

- Latência do disco= tempo médio de busca + tempo médio de atraso rotacional + tempo de transferência + controlador
- Seagate Barracuda 320Gb (2 discos /4 cabeças)
 - Tempo médio de busca = 8.5 ms
 - Atraso rotacional = 0.5 *(1/7200 rpm)
 - Tempo de transfêrencia = 78 Mbytes/s
 - Tempo controlador= 0.1 ms
 - Track-to-track seek time: 1.0 ms (leitura)

Algortimos para escalonamento do disco

• Fila de requisições(0-199)

98, 183, 37, 122, 14, 124, 65, 67

Cabeça do disco: 53

Primeiro a chegar, primeiro a ser servido

• Total de movimentos: 640 cilindros

```
queue = 98, 183, 37, 122, 14, 124, 65, 67
    head starts at 53
14
      37 536567
                      98 122124
                                            183 199
```

Menor tempo de busca primeiro

- Seleciona o menor tempo de busca considerando a posição atual da cabeça do disco
- Pode ocorrer starvation

236 movimentos

SCAN

 Algoritmo do elevador: atende todas as requisições em uma direção e depois retorna atendendo as demais

208 movimentos