Social Computing Project: Final Report

Data Augmentation for Hate Speech Detection

Sayar Ghosh Roy* 20171047 Souvik Banerjee*

Saujas Vaduguru* 20171098 Ujwal Narayan* 20171170

1 Introduction

As part of this course project, we explore different methods of improving hate speech detection models through data augmentation techniques. We consider the binary text classification formulation of the hate speech detection task. We select and formulate multiple diverse data augmentation techniques, and benchmark them against hate speech detection tasks based on datasets from multiple social media platforms including Reddit, Gab, and Twitter.

In this report, we describe the various augmentation approaches we have explored, our experimental pipeline, and our findings from the application of these approaches to the hate speech detection task. Our code (with all prior deliverables) are publicly available on GitHub at https://github.com/sayarghoshroy/Augment4Gains. Our presentation slides can be found here. Note that this report is a conspectus of our previous documents along with complete quantitative evaluation results. For more details on specific models, refer to our prior submissions.

2 Data

We focus on the data collected by Qian et al. (2019). Their dataset contains posts which are scraped from the Reddit¹ and Gab² platforms, which typically have longer text samples, and tends to follow a more formal style than the posts on a platform like Twitter. The dataset contains human-annotated counter narratives specific to particular comment threads. In addition, they provide a list of indices of comments which contains instances of hate. We extract each user response in every post from these datasets separately and lookup the corresponding indices list to assign a binary label to every single

user response, namely 1 for hateful, offensive or derogatory and 0 for otherwise. Each response, composed of multiple sentences is thus one datapoint.

As a pre-processing step, we remove information such as hashtags, mentions, URLs, emojis, etc. from every datapoint. We only leverage the cleaned text without any additional features for our augmented sample generation and classification tasks. For each dataset, we randomly divided the data in a 70:10:20 ratio (as done in Qian et al. (2019)) into training, validation and testing splits (following the decision). Our processed Reddit dataset contains 15619 train samples, 2231 validation samples, and 4464 test samples while the processed Gab dataset carries 23643, 3377, and 6756 samples for training, validation, and testing respectively.

We also compare our methods with data from Twitter³ (Gao and Huang, 2017). Although our augmentation approaches are designed keeping a more formal style of English language text in mind, we will evaluate how each of these techniques work out on cleaned Tweet texts. Our processed Twitter dataset contains 17348 train samples, 2478 validation samples, and 4957 test samples. Throughout this document, we will refer to our three datasets as simply Reddit, Gab, and Twitter.

3 Alteration-based methods

3.1 Non-contextual methods

The first type of alteration-based methods we explore applies specific transformations to words in the input text without considering the sense in which these words are used.

3.1.1 ThreshAug

In order to make relevant substitutions of words with appropriate alternatives without access to a human-crafted knowledge base (such as a the-

^{*}Equal contribution. Order determined by roll number.

¹www.reddit.com

²gab.com

 $^{^3}$ twitter.com

Figure 1: The easy data augmentation (EDA) pipeline.

sauraus, etc.), we make use of pretrained word embeddings (GLoVe in our actual implementation). This approach is adapted from the approach proposed by Rizos et al. (2019). These embeddings allow us to determine the relative similarity between each word in the vocabulary space of a text corpus. Now the question remains about which words to substitute. A substitution is determined by two factors. First, any potential replacement word must exceed the cosine distance threshold t, where $t \in [0,1]$ and it must match the POS-tag assigned to the word. The intuition behind the inclusion of both the above requirements is that two words must have been seen in sufficiently equal contexts such that one can be replaced with the other without changing the sentence semantics. We follow Rizos et al. (2019) and use POS tags to choose words of only very specific tags like common nouns, adjectives and verbs.

3.1.2 Easy Data Augmentation

While there are a variety of techniques involved in data augmentation for text classification tasks, one of the most easiest yet surprisingly performant one is the Easy Data Augmentation (EDA) method (Wei and Zou, 2019). EDA consists of the following four basic operations.

- Synonym Replacement (SR): Here n randomly selected words are replaced with one of it's synonyms chosen at random. These synonyms are generated by querying Word-Net (Miller, 1995), however it's important to note here that for synonym replacement all the senses of the word are considered and not just the sense in which it is currently being used.
- Random Swap (RS): Here two words are randomly chosen from the sentence and their positions are swapped. This operation is repeated n times

- Random Deletion (RD): Here each word of the sentence is randomly removed with the probability p.
- Random Insertion (RI): Here a randomly chosen synonym of a randomly selected word is inserted randomly into the sentence. This operation is then repeated n times.

Figure 1 illustrates the pipeline with some hypothetical examples.

For operations such as SR, RI and RS, in order to prevent the new sentences from being too noisy we formulate n to be dependent on the length of the sentence l, given by $n=\alpha l$ where α indicates the percentage of the sentence that will be modified. Other than these hyper-parameters, we also cap the number of generated sentences per source sentence with a parameter n_{aug} so as to avoid pollution of the source data.

While the methods are simplistic and do not lead always lead to generation of high quality grammatically correct data, they have been shown to produce significant performance boosts.

3.2 Contextual methods

The second type of alteration-based methods we explore applies transformations to words in the input text based the sense in which these words are used.

3.2.1 Synonym substitution

When augmenting samples by substituting words with their synonyms. it becomes important to identify the right sense of the word so that the right synonyms of that word can be found. We follow the approach of Yap et al. (2020) to perform *word sense disambiguation* and identify the WordNet sense to which the word that is used corresponds.

To perform WSD, we first need to identify the right phrases to substitute or replace and thus we

Figure 2: The SYNONYM pipeline.

chunk the sentence. Once the sentence is split into multiple chunks, we check if that particular chunk is present in WordNet. If it is present, we then leverage BERT to rank all the senses of the word in the context of the sentence. We pick the sense with the highest rank as the correct sense of the word. If the chunk is not present in WordNet, we backoff and search through all the words of the chunks individually and repeat the process we mentioned earlier to identify the sense of the word. Once we found the right sense of the word, we query WordNet again to retrieve the set of synonyms and hypernyms associated with the particular word or phrase. Once we have the synonyms, we substitute these synonyms in-place of the original word or phrase to generate new samples for training.

This method leverages both BERT and WordNet (Miller, 1995) to find the right sense of the word. We term this augmentation method SYNONYM, and illustrate the pipeline in Figure 2.

3.2.2 Masked language modelling-based substitution

With the advent of contextualized word representations (Peters et al., 2018; Devlin et al., 2019), we have access to methods that can compute word embeddings that can allow for sense disambiguation based on context. Kobayashi (2018) propose using contextual embeddings in the data augmentation pipeline for text classification tasks. Similar to Rizos et al. (2019), who select words for substitution and determine the alternatives using word embedding similarity, Kobayashi (2018) select words to substitute, and use a bidirectional language model to choose the word to be substituted.

Using the language model, they obtain the distribution $p(w_i'|S \setminus \{w_i\})$, where S is the sample, w_i is the word chosen for substitution, and w_i' is the alternative word. Then, they sample from the dis-

Figure 3: The MLM pipeline.

tribution $p(w_i'|S \setminus \{w_i\})$, which is the distribution predicted by the model.

We use a pretrained BERT model with an MLM head to generate samples for augmentation. We choose whole words (as opposed to tokens in the TLM vocabulary, which tend to be subwords) with a fixed probability, and replace these words in the data with the <code>[MASK]</code> token. We then pass these to a TLM with the MLM head, and obtain the distribution over tokens that can fill the <code>[MASK]</code> token. This distribution, which is equivalent to $p(w_i'|S\setminus\{w_i\})$, is then used to sample replacements and obtain augmented samples. This pipeline is illustrated in Figure 3. We use this technique to augment data to two different degrees – one sample for each training sample (MLM₁) and five samples for each training sample (MLM₅).

4 Generation-based methods

In addition to methods that generate new samples by applying transformations to words in input text, we also explore methods where an augmentation sample is generated from scratch, constrained either by the class of the generated sample, or by the meaning of a training sample.

4.1 Class-based generation

We present two methods to generate samples constrained only by the class label. The first is a baseline method proposed by Rizos et al. (2019) called GenAug. The second is an approach based on Variational Autoencoders (VAEs).

4.1.1 GenAug

The main idea behind GenAug is extremely similar to that of using RNNs (LSTMs/GRUs) for Natural Language Generation. Training such a model is synonymous to training a word level language model. Hence, for making inferences using such models, we start with a random word from the vocabulary and attempt to predict each in-sequence next word based on the generation so far. Our implementation, specifically takes N words as input and converts each into a 100-dimensional word embedding vector. This sequence of vectors is then passed through a bidrectional-LSTM layer with 128 hidden units each. Finally, the output of the bi-LSTM is fed into a final FCNN layer. The final output represents a probability distribution over each token in the vocabulary the argmax of which produces the output token. We train one model for each class, and use it to generate 2000 samples (1000 for each label) for augmentation (except in the data balanced setting).

4.1.2 Variational autoencoder

We also explore the use of VAEs for generating samples within each class. We adopt the approach presented by Bowman et al. (2016). The model is trained as an autoencoder with an encoder function $f_{enc}(x)$ that maps an input x to a learned code z, and a decoder function f_{dec} that recovers x from the code z. The model is trained to recover the input (with the difference forming one loss term) while keeping the posterior distribution q(z|x) modelled by f_{enc} close to a prior p (with the Kullback-Leibler divergence between p and q forming the second loss term). For the application of text representation learning, the functions f_{enc} and f_{dec} are parametrised as recurrent neural networks.

We train a single VAE model for each class, and then generate samples for each class by sampling a random point $z' \sim \mathcal{U}(0,1)$ in the latent space of the model's learned code, and using the decoder to generate a sequence conditioned on z'. The intuition here is that a model corresponding to a particular class learns a latent space of codes corresponding to the distribution of samples in that particular class.

Then, any point in that latent space is the representation of some sample belonging to that class, and we can decode that sample by conditioning on the point in the latent space.

We adapt an implementation of Bowman et al. (2016)⁴ for our application. The pipeline for VAE is illustrated in Figure 4. We generate one sample of the same class for each sample in the training data.

4.2 Paraphrasing methods

Paraphrases can be defined as sentences conveying the same meaning but with different surface realizations. In this report, we use "augmentation through paraphrasing" to only refer to the paraphrases generated from scratch as paraphrases generated through substitutions or replacements have been covered earlier under alteration-based methods.

We utilize a fully trained Transformer-based sequence to sequence architecture for paraphrase generation. Instead of randomly initializing the Transformer weights prior to fine-tuning, we choose a pretrained Transformer model that has already 'witnessed' and learnt from large chunks of natural language text. Such a pretrained text-to-text Transformer is then fine-tuned auto-regressively on supervised input-source to paraphrased-target mappings.

After manually studying the qualities of various output sentences from these pretrained Transformer encoder-decoder models, we found that PEGASUS produces the best looking sequences with the least amount of noticeable grammatical errors (something which is corroborated in their publication as well). Therefore, we chose to utilize PEGASUS as our base pretrained Transformer model for the paraphrasing task. We used Hugging Face's implementation of PEGASUS⁵ with number of beams for decoding set to 10, a maximum sequence length of 128, with all other hyperparameters set to their default values.

For training an encoder-decoder model for paraphrasing, only the true-labelled sentence pairs from the PAWS-Wiki and PAWS-QQP datasets are considered. These can be regarded as the gold standard for the paraphrase recognition task since all of their supervised samples are based on human judgements.

⁴https://github.com/timbmg/Sentence-VAE

⁵huggingface.co/transformers/model_doc/pegasus.
html

Figure 4: The VAE pipeline.

PAWS-Wiki (Zhang et al., 2019) contains a collection of sentence pairs sourced from Wikipedia labelled for whether one sentence is a paraphrase of the other. Similarly, PAWS-QQP contains contains pairs of Quora questions with similar paraphraseworthiness labels.

We experiment with two modes of inference with paraphrasing models:

- PARAPHRASE: Pass the entire training sample to the paraphrasing model as input. We found that the outputs tend to focus on the initial part of the input, and lose information in the later parts of the input.
- SENTENCEPARAPHRASE: To address the information loss, we generated paraphrases for each sentence in the input sample independently and concatenated sentence-specific paraphrases to produce a comprehensive paraphrase for the complete sample.

We also explored the use of VAEs used as autoencoders for paraphrasing, but did not pursue the line of investigation as inspections of the generated samples revealed that the generated paraphrases were of poor quality.

5 Experiments

5.1 Classification model

Fine-tuning of pretrained Transformer models such as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) is becoming the new baseline for various tasks in the NLP domain. For evaluating our data augmentation approaches, we utilize a pretrained models (BERT and RoBERTa) as text encoders, paired with a Multi-Layer Perceptron (MLP) classifier head that considers the final-layer output embedding of the [CLS] token. We utilize the Adam optimizer to train our classification architecture for a total of 4 epochs and save the model weights corresponding to the point in training that manifested the least validation loss.

5.2 Test Bench

We require a uniform scheme of evaluating all of our augmentation approaches. Therefore, for each dataset under consideration (be it Reddit, Gab, or Twitter), we lock the validation and the testing data. All the augmented examples are based solely on the training samples. This is to ensure that there is no seepage of information and as such, the classification models do not indirectly look at some modified version of a test (or validation) sample.

Every augmentation method can be viewed as an

Figure 5: Our complete experimental pipeline

algorithm that takes in a sample of text as input conditioned on which one or more revamped samples are produced. In our pipeline, the in-question augmentation procedure is applied to all the training datapoints. The generated samples are appended to the existing training split resulting in the augmented train data-frame. The classification testbench utilizes the newly created training set, taking care of the downstream steps. Figure 5 illustrates the complete experimental pipeline we adopt.

5.3 Class balancing

To address the class imbalance in the datasets we consider two approaches.

5.3.1 Class balancing in the loss function

One way of dealing with class imbalance in the base as well as some of the augmented datasets is to weigh each class differently in the loss function during training.

We implement the option of weighing terms in the classifier loss accordingly to counter the effects of class imbalance. We use two different ways of weighing the terms in the loss function:

- Type-1:
 - Weight for positive sample: $\frac{\max\{N,P\}}{P}$
 - Weight for negative sample: $\frac{\max\{N,P\}}{N}$
- Type-2:
 - Weight for positive sample: $\frac{N+P}{2P}$

– Weight for negative sample: $\frac{N+P}{2N}$

where P is the number of positive samples, and N is the number of negative samples.

5.3.2 Class balancing by augmentation

Another way is to differentially augment the classes to reduce the class imbalance. Here, we augment samples to equalize the numbers of samples in the classes. Using the techniques presented before, we generate sufficient quantities of augmentation samples for each class. Then we augment each class with enough samples to make the total number of samples in the augmented training data for each class equal to 15000. This addresses the class imbalance problem by augmenting samples to amend this imbalance. We term this method as data balancing.

6 Results

Table 1 shows the performance of the best (most accurate) augmentation methods on each dataset⁶. Our full results, grouped by dataset, and further by class balancing method, are presented in Appendix A.

We find that the effectiveness of augmentations varies across datasets as well as choice of pretrained encoder models. While SENTENCEPARAPHRASE is found to work well with BERT, other augmentation methods are seen to perform well with RoBERTa. We also see that different augmentation methods, combined with different methods of class balancing perform best on each dataset. In some cases, the class balancing alone provides the best performance.

6.1 Comparison of augmentation paradigms

An interesting phenomenon we observe is that on Reddit and Gab data, we find generation-based augmentation methods doing well, while on Twitter data, the best performing augmentation methods are both alteration-based methods. One possible reason for this could be the stylistic differences between Twitter data and Reddit and Gab data that motivated our focus on Reddit and Gab in the first place.

On Reddit and Gab data, we find that Transformer-based paraphrasing methods perform well. This augmentation method provides improvements with both BERT and RoBERTa models, and

⁶* indicates that a model without augmentation outperforms this model under some class balancing method.

Dataset	BEI	RT		RoBERTa		
	Augmentation	Balancing	Accuracy	Augmentation	Balancing	Accuracy
Reddit Gab Twitter	SENTENCEPARAPHRASE SENTENCEPARAPHRASE MLM	None Type-2 Data	92.3611* 92.6732 96.1267	PARAPHRASE SENTENCEPARAPHRASE ThreshAug	None None None	92.2267* 92.7916 95.9855*

Table 1: Most accurate models

is the best performing augmentation method on data that typically has longer form, slightly more formal style of text. Another encouraging and interesting finding is that these paraphrasing models are robust to a move away from their training domain (Wiki and Quora), and are able to provide improvements even on Reddit and Gab data. This suggests the direction of exploring Transformer-based paraphrasing as an augmentation method in other domains and tasks as well, to harness the ability of these models to capture patterns in language in a powerful and robust way.

In contrast, we find that alteration-based augmentation methods, which have been shown to provide improvements in other settings, do not perform well in this setting. In most cases, on Reddit and Gab data, alteration-based augmentation leads to degradation of performance.

6.2 Comparison of class balancing methods

Figure 6 shows how the accuracy of a the classification model varies based on the class balancing method. We find that for Reddit data, type-1 and type-2 balancing work well when no augmentation is performed, but tends to degrade performance when used in conjunction with augmentation methods. Data balancing on the other hand works best among the class balancing methods on Reddit. We see a similar trend for Gab data in some cases, although in others type-2 balancing outperforms data balancing, reversing the trend.

However, examining similar results on Twitter data does not reveal such a clear trend, further highlighting the qualitative differences between Reddit or Gab, and Twitter data.

References

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space. In *Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning*, pages 10–21, Berlin, Germany. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Lei Gao and Ruihong Huang. 2017. Detecting online hate speech using context aware models. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 260–266, Varna, Bulgaria. INCOMA Ltd.

Sosuke Kobayashi. 2018. Contextual augmentation: Data augmentation by words with paradigmatic relations. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pages 452–457, New Orleans, Louisiana. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.

George A. Miller. 1995. Wordnet: A lexical database for english. *Commun. ACM*, 38(11):39–41.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics.

Jing Qian, Anna Bethke, Yinyin Liu, Elizabeth Belding, and William Yang Wang. 2019. A benchmark dataset for learning to intervene in online hate speech.

Georgios Rizos, Konstantin Hemker, and Björn Schuller. 2019. Augment to prevent: Short-text data augmentation in deep learning for hate-speech classification. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, CIKM '19, page 991–1000, New

Figure 6: Accuracy of different models when combined with different class balancing methods (no balancing, type-1, type-2, and data balancing repsectively).

York, NY, USA. Association for Computing Machinery.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 6382–6388, Hong Kong, China. Association for Computational Linguistics.

Boon Peng Yap, Andrew Koh, and Eng Siong Chng. 2020. Adapting BERT for word sense disambiguation with gloss selection objective and example sentences. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 41–46, Online. Association for Computational Linguistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019. PAWS: Paraphrase Adversaries from Word Scrambling. In *Proc. of NAACL*.

A Full results

Comprehensive collection of quantitative results can be found below. For viewing sample augmentation outputs, refer to our slide deck or Intermediate reports 1 and 2.

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
N	BERT	92.2715	89.2911	92.2702
None	RoBERTa	92.2715	89.2911	92.2702
Thereahave	BERT	92.0251	89.0739	92.0683
ThreshAug	RoBERTa	91.2186	88.2065	91.3495
EDA	BERT	91.6891	88.7662	91.7879
EDA	RoBERTa	91.8011	88.8168	91.8632
SYNONYM	BERT	89.8438	86.1656	89.6766
SINONIM	RoBERTa	90.625	87.2992	90.4981
MIM	BERT	92.2267	89.3603	92.2725
MLM_1	RoBERTa	90.8602	87.8498	91.039
MI M.	BERT	89.6505	86.258	89.8586
MLM_5	RoBERTa	91.3978	88.0688	91.3922
GenAug	BERT	92.0027	88.8004	91.9584
Genaug	RoBERTa	91.7339	88.7781	91.8152
VAE	BERT	92.3163	89.2684	92.2843
VAE	RoBERTa	91.4875	88.5185	91.5973
SENTENCEPARAPHRASE	BERT	92.3611	89.436	92.3673
SENTENCEFAKAPHRASE	RoBERTa	92.1371	89.1191	92.1409
PARAPHRASE	BERT	92.2715	89.312	92.2778
ГАКАРПКАЗЕ	RoBERTa	92.2267	89.3739	92.2773

Table 2: Results on the Reddit dataset with no class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
NT.	BERT	92.3835	89.5716	92.4272
None	RoBERTa	91.7339	88.9153	91.8628
ThreshAug	BERT	90.5242	87.6379	90.7878
THESHAUS	RoBERTa	91.5099	88.5382	91.6158
EDA	BERT	90.5914	87.7908	90.8743
EDA	RoBERTa	91.6219	88.8425	91.779
SYNONYM	BERT	88.0859	84.4721	88.1591
SINONIM	RoBERTa	86.1328	82.5886	86.455
MLM_1	BERT	91.5323	88.7029	91.6842
MLM1	RoBERTa	90.905	87.9874	91.1093
MI M.	BERT	89.3593	86.3018	89.7145
MLM_5	RoBERTa	91.6891	88.4916	91.6904
GenAug	BERT	90.9274	87.9712	91.1158
Genaug	RoBERTa	89.1129	86.091	89.4971
VAE	BERT	91.7339	88.9354	91.8697
VAE	RoBERTa	90.8378	87.8019	91.0109
SENTENCEPARAPHRASE	BERT	88.1496	85.0869	88.6508
SENTENCEFAKAPHRASE	RoBERTa	90.6138	87.6919	90.8543
PARAPHRASE	BERT	90.345	87.4253	90.6205
PAKAPHKASE	RoBERTa	89.4713	86.4791	89.8332

Table 3: Results on the Reddit dataset with type-1 class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
NI	BERT	92.3835	89.5981	92.4366
None	RoBERTa	91.7563	88.8879	91.865
Thereables	BERT	90.8826	87.9683	91.0909
ThreshAug	RoBERTa	91.4875	88.5115	91.5949
EDA	BERT	90.905	88.0567	91.1324
EDA	RoBERTa	91.353	88.5389	91.5337
SYNONYM	BERT	87.6953	83.963	87.7709
SINONIM	RoBERTa	86.1328	82.5886	86.455
ми	BERT	91.4651	88.6572	91.6332
MLM_1	RoBERTa	90.7258	87.722	90.9244
MIM	BERT	89.7401	86.6263	90.0293
MLM_5	RoBERTa	91.5995	88.5237	91.6567
Canhua	BERT	91.1738	88.2876	91.3536
GenAug	RoBERTa	89.0905	89.2911	92.2702
VAE	BERT	91.8907	89.0825	92.0023
VAE	RoBERTa	90.9498	87.9547	91.122
SENTENCEPARAPHRASE	BERT	91.1738	88.3014	91.3582
SENTENCEPAKAPHRASE	RoBERTa	90.3674	87.4084	90.6272
PARAPHRASE	BERT	91.4203	88.5774	91.5824
гакарнказе	RoBERTa	89.2921	86.3372	89.6878

Table 4: Results on the Reddit dataset with type-2 class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
ThreshAug	BERT	91.3306	88.2086	91.4081
	RoBERTa	91.1514	88.1054	91.2795
MLM	BERT	91.5547	88.4625	91.6122
	RoBERTa	91.4875	88.6021	91.6262
GenAug	BERT	91.8683	88.8555	91.9111
	RoBERTa	92.0699	89.1284	92.1104
SENTENCEPARAPHRASE	BERT	88.9785	85.7531	89.3278
	RoBERTa	91.5771	88.7016	91.7073

Table 5: Results on the Reddit dataset with data balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
None	BERT	92.5252	92.3655	92.5021
None	RoBERTa	92.4808	92.3304	92.4633
ThreshAug	BERT	92.3771	92.26	92.3779
THESHAUG	RoBERTa	91.6815	91.5708	91.6903
EDA	BERT	92.0367	91.8795	92.0193
EDA	RoBERTa	91.6963	91.5974	91.7102
SYNONYM	BERT	91.2109	90.9853	91.2304
SYNONYM	RoBERTa	90.625	90.3904	90.6485
MIM	BERT	92.1255	92.0381	92.1413
MLM_1	RoBERTa	92.5696	92.4401	92.5625
MIM	BERT	89.9053	89.6717	89.8639
MLM_5	RoBERTa	92.2291	92.1056	92.2278
Contus	BERT	92.4956	92.3528	92.4821
GenAug	RoBERTa	92.4067	92.282	92.4034
VAE	BERT	92.614	92.4891	92.609
VAE	RoBERTa	92.3031	92.1628	92.2926
SENTENCEPARAPHRASE	BERT	92.466	92.3252	92.4538
SENTENCEFARAPHRASE	RoBERTa	92.7916	92.6731	92.7884
PARAPHRASE	BERT	92.0663	91.9369	92.0633
ГАКАРНКАЗЕ	RoBERTa	92.5104	92.3967	92.5117

Table 6: Results on the Gab dataset with no class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
NI	BERT	92.614	92.4747	92.6014
None	RoBERTa	92.5252	92.3922	92.5167
Thereal Aug	BERT	92.3771	92.26	92.3779
ThreshAug	RoBERTa	91.6815	91.5708	91.6903
EDA	BERT	92.0219	91.8654	92.005
EDA	RoBERTa	92.5992	92.4499	92.5813
CANONAN	BERT	91.2109	91.0076	91.24
SYNONYM	RoBERTa	90.2344	90.2344	90.2738
MIM	BERT	92.0959	92.0005	92.1086
MLM_1	RoBERTa	92.4067	92.2974	92.411
NG 14	BERT	90.3049	90.1341	90.2947
MLM_5	RoBERTa	92.3327	92.2181	92.335
Contus	BERT	92.4808	92.3575	92.4776
GenAug	RoBERTa	92.5104	92.3916	92.5092
VA E	BERT	91.8739	91.7929	91.8938
VAE	RoBERTa	92.3919	92.2827	92.3963
SENTENCEPARAPHRASE	BERT	92.5548	92.4336	92.5521
SENTENCEPAKAPHRASE	RoBERTa	92.5696	92.4501	92.5676
DADADUDAGE	BERT	91.7703	91.6731	91.7844
PARAPHRASE	RoBERTa	92.3327	92.2237	92.3376

Table 7: Results on the Gab dataset with type-1 class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
None	BERT	92.6288	92.4901	92.6164
	RoBERTa	92.614	92.4796	92.604
ThreshAug	BERT	92.3771	92.26	92.3779
	RoBERTa	91.6815	91.5708	91.6903
EDA	BERT	92.2291	92.0787	92.2138
	RoBERTa	92.6288	92.4932	92.618
SYNONYM	BERT	91.2109	90.9966	91.2354
	RoBERTa	90.2344	90.026	90.2738
MLM_1	BERT RoBERTa	91.9923 92.0071	91.9026 91.9074	92.0081
GenAug	BERT	92.5844	92.4677	92.5837
	RoBERTa	92.4808	92.3716	92.4845
VAE	BERT	91.8443	91.7625	91.8641
	RoBERTa	92.4216	92.3121	92.4256
SENTENCEPARAPHRASE	BERT	92.6732	92.5499	92.6685
	RoBERTa	92.5844	92.4792	92.5892
PARAPHRASE	BERT	91.8443	91.7509	91.8595
	RoBERTa	92.1995	92.0911	92.2057

Table 8: Results on the Gab dataset with type-2 class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
ThreshAug	BERT	91.8147	91.7204	91.8297
	RoBERTa	92.1255	92.006	92.127
MLM	BERT	92.3327	92.1859	92.3185
	RoBERTa	92.1847	92.0713	92.1887
GenAug	BERT	92.2883	92.1298	92.268
	RoBERTa	91.9627	91.8594	91.9729
SENTENCEPARAPHRASE	BERT	91.7703	91.6747	91.7851
	RoBERTa	92.4216	92.3132	92.4261

Table 9: Results on the Gab dataset with data balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
None	BERT	96.046	93.1503	96.0945
	RoBERTa	96.1469	93.1975	96.1586
ThreshAug	BERT	95.8443	92.4227	95.7888
	RoBERTa	95.9855	92.7481	95.9513
EDA	RoBERTa	94.3359	90.4339	94.324
	BERT	95.1172	91.8221	95.0868
SYNONYM	BERT	92.9688	83.8231	93.0243
	RoBERTa	90.625	82.401	89.9671
MLM_1	BERT	95.6224	92.0062	95.5605
	RoBERTa	95.8241	92.7757	95.878
MLM_5	RoBERTa	95.3399	91.5983	95.3049
GenAug	BERT	96.0258	92.9373	96.0249
	RoBERTa	96.0662	92.9487	96.0482
SENTENCEPARAPHRASE	BERT	95.2592	91.2562	95.1673
	RoBERTa	95.8644	92.5942	95.8476

Table 10: Results on the Twitter dataset with no class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
None	BERT	95.9855	93.0486	96.0356
	RoBERTa	95.8039	92.9344	95.9111
ThreshAug	BERT	96.1872	93.3919	96.2332
	RoBERTa	95.7636	92.8478	95.8667
EDA	RoBERTa	94.5312	91.1663	94.5951
	BERT	95.3125	92.3686	95.3495
SYNONYM	BERT	91.7969	85.8452	91.6176
	RoBERTa	93.9453	90.3323	94.0492
MLM_1	BERT	95.9653	93.0295	96.0201
	RoBERTa	95.7636	92.7849	95.8496
MLM_5	RoBERTa	95.2592	92.1224	95.4086
GenAug	BERT	95.8241	92.9036	95.9132
	RoBERTa	96.1872	93.492	96.2607
SENTENCEPARAPHRASE	BERT	95.7434	92.5271	95.7681
	RoBERTa	95.8443	92.7877	95.8916

Table 11: Results on the Twitter dataset with type-1 class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
None	BERT	96.167	93.372	96.2174
	RoBERTa	95.6829	92.7743	95.805
ThreshAug	BERT	95.9653	93.0105	96.0148
	RoBERTa	95.7636	92.7912	95.8513
EDA	RoBERTa	95.3125	92.5996	95.24
	BERT	95.6022	92.3042	95.6347
SYNONYM	BERT	91.7969	85.8452	91.6176
	RoBERTa	93.9453	90.3323	94.0492
MLM_1	BERT	95.9855	93.0862	96.046
	RoBERTa	95.4811	92.3107	95.5748
MLM_5	RoBERTa	95.4004	92.3278	95.5376
GenAug	BERT	95.8644	93.0513	95.9741
	RoBERTa	95.8039	92.6573	95.8349
SENTENCEPARAPHRASE	BERT	95.8039	92.6436	95.8311
	RoBERTa	95.8443	92.8008	95.8953

Table 12: Results on the Twitter dataset with type-2 class balancing

Augmentation method	Model	Accuracy	Macro-averaged F1	Weighted F1
ThreshAug	BERT	95.3197	92.1665	95.4521
	RoBERTa	95.1585	91.4079	95.1607
MLM	BERT	96.1267	93.0605	96.1099
	RoBERTa	95.6425	92.3251	92.1887
GenAug	BERT	95.8644	93.009	95.9627
	RoBERTa	95.8039	92.6708	95.8387
SENTENCEPARAPHRASE	BERT	95.2592	92.1224	95.4086
	RoBERTa	95.3601	91.5814	95.31

Table 13: Results on the Twitter dataset with data balancing