實驗名稱:實驗二 RC 電路系列實驗

實驗日期:2017.03.12/03.19

組別:20組

實驗施作人員:魏晉成,黃凱陽

報告人: E24066226 魏晉成

一. 實驗原始數據

1、 A 部分-以訊號產生器以及示波器量測 RC 電路對直流與交流訊號的反應 i. RC 電路中電容的充放電

使用電阻 R=1k Ω ,電容 C=0.1 μ F,組成如下(圖一)的 RC 電路,以電壓 0.5V 輸出方波於 RC 電路兩端,並將方波頻率調整至 100Hz 至 2000Hz 區間,選擇最適合的頻率進行訊號測量,最後我們選取 500±100Hz 作為我們進行實驗的頻率;同時我們利用示波器量測電 容兩端的波形,拍攝到的波形圖於下(圖二),而在 500±100Hz 頻率 所測量到的半衰期 τ 1/2、上升時間 t_r 以及下降時間 t_f 則陳列於下(表一)。

(圖一)

(圖二)

500Hz		40	400Hz)Hz
t _r	210µs	t _r	260µs	t_r	240µs
t_f	250µs	t_f	260µs	t_f	220µs
T 1/2	90μs	T 1/2	84µs	T 1/2	80µs
		_	r		

(表一)

ii. RC 電路中電阻的充放電

使用電阻 R=1k Ω ,電容 C=0.1 μ F,組成如下(圖三)的 RC 電路,以電壓 0.5V 輸出方波於 RC 電路兩端,並將方波頻率調整至 100Hz 至 2000Hz 區間,選擇最適合的頻率進行訊號測量,最後我們選取 500±100Hz 作為我們進行實驗的頻率;同時我們利用示波器量測電阻兩端的波形,拍攝到的波形圖於下(圖四),而在 500±100Hz 頻率所測量到的半衰期 τ 1/2、上升時間 t_r 以及下降時間 t_f 則陳列於下(表二)。

500Hz		400	OHz	600)Hz
t _r	230µs	t _r	210µs	t _r	210μs
t _f	240µs	t _f	240µs	t _f	220μs
T 1/2	80μs	T 1/2	84μs	T 1/2	80µs

(表二)

iii. RC 電路中電容對交流訊號的反應

使用電阻 R=1k Ω ,電容 C=0.1 μ F,組成如下(圖五)的 RC 電路,以電壓 0.5V 輸出正弦波於 RC 電路兩端,並將正弦波於 100Hz 至 10kHz 間進行緩慢增加,於頻率 f 小於 1000Hz 時,以每次增加 300Hz,頻率 f 小於 2000Hz 時,以每次增加 500Hz,其餘頻率則每次增加 1000Hz;同時我們利用示波器量測電容兩端的波形,列出電壓隨頻率的變化於 (表三),並測量電壓 $V_{out}=\frac{1}{\sqrt{2}}V_{in}$ 時的正弦波頻率。

(圖五)

f(Hz)	V(mV)	f(Hz)	V(mV)
100	512	4000	198
400	504	5000	148
700	484	6000	134
1000	448	7000	105
1500	368	8000	101
2000	320	9000	96
3000	244	10000	93.6

(表三)

當頻率 f=1600Hz 時,輸出電壓為輸入電壓的 $\frac{1}{\sqrt{2}}$,也就是 354mV,,此時為此 RC 電路的臨界頻率。

iv. RC 電路中電阻對交流訊號的反應

使用電阻 R=1k Ω ,電容 C=0.1 μ F,組成如下(圖六)的 RC 電路,以電壓 0.5V 輸出正弦波於 RC 電路兩端,並將正弦波於 100Hz 至 10kHz 間進行緩慢增加,於頻率 f 小於 1000Hz 時,以每次增加 300Hz,頻率 f 小於 5000Hz 時,以每次增加 500Hz,其餘頻率則每次增加 1000Hz;同時我們利用示波器量測電阻兩端的波形,列出電壓隨頻率的變化於 (表四),並測量電壓 $V_{out}=\frac{1}{\sqrt{2}}V_{in}$ 時的正弦波頻率。

(圖六)

V(mV)	f(Hz)	V(mV)
64.8	4000	476
144	4500	484
228	5000	484
280	6000	484
368	7000	484
352	8000	484
436	9000	484
444	10000	484
464	4000	476
	64.8 144 228 280 368 352 436 444	64.8 4000 144 4500 228 5000 280 6000 368 7000 352 8000 436 9000 444 10000

(表四)

當頻率 f=1700Hz 時,輸出電壓為輸入電壓的 $\frac{1}{\sqrt{2}}$,也就是 354mV,,此時為此 RC 電路的臨界頻率。

2、 B 部分-RC 電路實作與檢測

利用萬用電路板以及電子零件組成如下(圖七)的電路,以紅色與綠色 LED 顯示 RC 電路中電容充放電時的電壓,並在完成電路後進行測試的下方兩組照片。

(圖七)

i. 紅色 LED 亮度隨時間變化情形

(圖八)由左到右為紅色 LED 燈在電容充電第1到7秒的情形。

ii. 綠色 LED 亮度隨時間變化情形 (圖九)由左到右為綠色 LED 燈在電容放電第1到7秒的情形。

(圖九)

3、 C部分-光電訊號轉換實作

在B部分所實作的電路中,我們以肉眼觀測紅色以及綠色 LED 的亮度,然而僅以肉眼觀測難免有失公正,同時也無法數據化 LED 實際發出的亮度,於是我們將 LED 分別套上光敏電阻,並以電腦紀錄量測到的電阻值,以數據化其發光強度。

i. 紅色 LED 在電容充電時所測量到的光敏電阻值 在(表四)到(表六)分別記錄了三次電容充電時,紅光 LED 上的 光敏電阻值。

時間	光敏電阻值($M\Omega$)	6.875	0.091
0.000	0.017	7.500	0.127
0.625	0.015	8.125	0.259
1.250	0.014	8.750	0.381
1.875	0.013	9.375	0.549
2.500	0.012	10.000	0.776
3.125	0.017	10.625	0.946
3.750	0.019	11.250	1.206
4.375	0.027	11.875	1.595
5.000	0.038	12.500	2.071
5.625	0.056	13.125	2.429
6.250	0.067	13.750	3.173

(表四)

時間	光敏電阻值($M\Omega$)	7.500	0.134
0.000	0.006	8.125	0.330
0.625	0.007	8.750	0.395
1.250	0.008	9.375	0.568
1.875	0.010	10.000	0.778
2.500	0.013	10.625	1.017
3.125	0.018	11.250	1.220
3.750	0.024	11.875	1.659
4.375	0.029	12.500	2.183
5.000	0.040	13.125	2.474
5.625	0.058	13.750	2.788
6.250	0.070	14.375	3.235
6.875	0.095	15.000	3.749

(表五)

時間	光敏電阻值($M\Omega$)	7.500	0.102
0.000	0.007	8.125	0.142
0.625	0.007	8.750	0.333
1.250	0.007	9.375	0.473
1.875	0.009	10.000	0.667
2.500	0.011	10.625	0.811
3.125	0.014	11.250	1.049
3.750	0.019	11.875	1.462
4.375	0.026	12.500	1.672
5.000	0.036	13.125	2.208
5.625	0.042	13.750	2.926
6.250	0.062	14.375	3.551
6.875	0.087	15.000	3.922

(表六)

ii. 綠色 LED 在電容放電時所測量到的光敏電阻值 在(表七)到(表九)分別記錄了三次電容放電時,綠光 LED 上的 光敏電阻值。

時間	光敏電阻值($M\Omega$)	時間	光敏電阻值($M\Omega$)
0.000	0.067	5.625	0.384
0.625	0.062	6.250	0.566
1.250	0.056	6.875	0.722
1.875	0.054	7.500	0.871
2.500	0.055	8.125	1.243
3.125	0.059	8.750	1.717
3.750	0.083	9.375	2.322
4.375	0.214	10.000	3.018
5.000	0.314	10.625	3.325

(表七)

時間	光敏電阻值($k\Omega$)	2.500	101.4
0.000	35.9	3.125	144.7
0.625	47.7	3.750	201.4
1.250	59.6	4.375	239.0
1.875	71.4	5.000	331.0

(表八)

時間	光敏電阻值($M\Omega$)	時間	光敏電阻值($M\Omega$)
0.000	0.071	6.250	0.532
0.625	0.062	6.875	0.764
1.250	0.056	7.500	1.071
1.875	0.055	8.125	1.431
2.500	0.059	8.750	1.554
3.125	0.078	9.375	2.000
3.750	0.094	10.000	2.489
4.375	0.133	10.625	2.892
5.000	0.305	11.250	3.156
5.625	0.447	11.875	3.633

(表九)

二. 數據分析

值的(表十)。

- 1、 A 部分-以訊號產生器以及示波器量測 RC 電路對直流與交流訊號的反應由於本次在 RC 電路中使用的電阻與電容分別為 $1k\Omega$ 以及 $0.1\,\mu$ F,而根據 RC 電路充放電的理路,此 RC 電路的理論鬆弛時間 τ 為電阻值乘上電容值,即為 $1000\times0.1=100(\mu s)$ 。
 - i. RC 電路中電容的充放電 利用(表一)的數據以及所知的公式 $t_r=t_f=2.2 au$ 以及 $au_{1/2}=ln2 imes au$,我們可以得到包含利用 t_r 、 t_f 及 $au_{1/2}$ 所計算出au理論

500Hz		400Hz		600Hz	
t _r	210µs	t _r	260µs	t _r	240μs
t _f	250μs	t _f	260µs	t _f	220µs
τ _{1/2}	90μs	au 1/2	84μs	au 1/2	80μs

(表一)

	500Hz		400Hz		600Hz	
	Value(μs)	Error(%)	Value(μs)	Error(%)	Value(μs)	Error(%)
$\tau(t_r)$	95	5	118	18	109	9
$\tau(t_f)$	114	14	118	18	100	0
$\tau(\tau_{1/2})$	130	30	121	21	115	15
(表十)						

ii. RC 電路中電阻的充放電

利用(表一)的數據以及所知的公式 $t_r=t_f=2.2 au$ 以及 $au_{1/2}=ln2 imes au$,我們可以得到包含利用 t_r 、 t_f 及 $au_{1/2}$ 所計算出au理論值的(表十一)。

500	500Hz 40		0Hz	600	600Hz	
t _r	230µs	t _r	210µs	t _r	210µs	
t _f	240µs	t _f	240µs	t _f	220µs	
T 1/2	80µs	T 1/2	84μs	T 1/2	80µs	

(表二)

	500Hz		400Hz		600Hz	
	Value(μs)	Error(%)	Value(μs)	Error(%)	Value(μs)	Error(%)
$\tau(t_r)$	105	5	95	5	95	9
$\tau(t_f)$	109	9	109	9	100	0
$\tau(\tau_{1/2})$	115	15	121	21	115	15

(表十一)

iii. RC 電路中電容對交流訊號的反應

首先,利用(表三)中的數據可得知,隨著正弦波頻率的增加, 電容兩端的電壓就越小,得證電容為低通濾波器。

f(Hz)	V(mV)	f(Hz)	V(mV)
100	512	4000	198
400	504	5000	148
700	484	6000	134
1000	448	7000	105
1500	368	8000	101
2000	320	9000	96
3000	244	10000	93.6

(表三)

此外,利用臨界頻率 $\omega_c=2\pi f_c=1/\tau$,利用我們所求得的臨界頻率 $f_c=1600({\rm Hz})$ 得到臨界頻率 $\omega_c\approx 11000(rad/s)$,求得 $\tau=91(\mu s)$,與理論值 $100\mu s$ 相差 9%。

iv. RC 電路中電阻對交流訊號的反應

首先,利用(表四)中的數據可得知,隨著正弦波頻率的增加, 電容兩端的電壓就越大,得證電阳為高通濾波器。

f(Hz)	V(mV)	f(Hz)	V(mV)
100	64.8	4000	476
400	144	4500	484
700	228	5000	484
1000	280	6000	484
1500	368	7000	484
2000	352	8000	484
2500	436	9000	484
3000	444	10000	484
3500	464	4000	476

(表四)

此外,利用臨界頻率 $\omega_c=2\pi f_c=1/\tau$,利用我們所求得的臨界頻率 $f_c=1700({\rm Hz})$ 得到臨界頻率 $\omega_c\approx 11000(rad/s)$,求得 $\tau=91(\mu s)$,與理論值 $100\mu s$ 相差 9%。

2、 C 部分-光電訊號轉換實作

i. 紅色 LED 在電容充電時所測量到的光敏電阻值

根據(表四)到(表六)我們能以電阻值對時間的變化繪製下列(圖十)至(圖十二)的散佈圖並將其加上指數型態的趨勢線,由於已知光敏電阻對時間的變化 $r(t) \propto e^{\frac{t}{\tau}}$ (其中 τ 為 RC 電路的鬆弛時間),所以可以將指數擬合後的指數部分視為 $\frac{1}{\tau}$,並且求得實驗 τ 值。

(圖十)

(圖十一)

(圖十二)

(表十二)中呈現的是紅光 LED 搭配光敏電阻所記錄下來的數據表現,除了指數項 $1/\tau$ 以及誤差 R^2 外,還列有 τ 的實驗值以及與理論值 $10000 \times 3000 \mu F = 3s$ 間的誤差。

Group1	Group2	Group3
0.4576	0.4804	0.4814
0.9588	0.9873	0.9872
2.1853	2.0816	2.0773
27	31	31
	0.4576 0.9588 2.1853	0.4576 0.4804 0.9588 0.9873 2.1853 2.0816

(表十二)

ii. 綠色 LED 在電容放電時所測量到的光敏電阻值

根據(表七)到(表九)我們能以電阻值對時間的變化繪製下列(圖十三)至(圖十五)的散佈圖並將其加上指數型態的趨勢線,由於已知光敏電阻對時間的變化 $\mathbf{r}(\mathbf{t}) \propto e^{\frac{t}{\tau}}$ (其中 τ 為 RC 電路的鬆弛時間),所以可以將指數擬合後的指數部分視為 $\frac{1}{\tau}$,並且求得實驗 τ 值。

(圖十三)

(圖十四)

(圖十五)

(表十三)中呈現的是綠光 LED 搭配光敏電阻所記錄下來的數據表現,除了指數項 $1/\tau$ 以及誤差 R^2 外,還列有 τ 的實驗值以及與理論值 $10000 \times 3000 \mu F = 3s$ 間的誤差。

	Group1	Group2	Group3
$1/\tau(1/s)$	0.4491	0.4496	0.4191
R^2	0.9444	0.9943	0.9526
τ(s)	2.2267	2.2242	2.3861
err(%)	26	26	20

(表十二)

三. 結果與討論

- 1、在A部分中以方波作為訊號源時,於我們選定的頻率 500±100Hz 測得的鬆弛時間 τ 都在理論值 $100\,\mu$ s 左右,雖然有時會有較大的誤差 (15~20%),但那通常是在以 τ 1½進行量測時所得到的數據。我認為這是 因為數據求法相異的關係,由於 t 與 t 間的換算是以除法進行計算, 因此可以容許較大的實驗誤差,而以 τ 1½ 求取 τ 時則是要乘上 $\sqrt{2}$,因此 會增加誤差的值,此外精確值也只有到 $10\,\mu$ s,這也擴大了產生誤差的 可能。
- 2、 在 A 部分中以正弦波為訊號源時,可以證實電容為低通濾波器、電阻 為高通濾波器,同時在這部份我們所求得的鬆弛時間 τ 也與理論值 100 μs 在 10%的誤差內。
- 3、 在 B 部分中我們能清楚觀察到紅色 LED 在電容充電時的明暗變化,以 及綠色 LED 在電容放電時亮度慢慢變小。

- 4、在C部分中,儘管這算是一個蠻複雜的實驗,但所得到的數據都不算 太好,在這個理論值τ是3s的情況下,通常得到的是τ=2s左右實驗值, 而與理論值最接近的也有20%的誤差。我認為這是因為實驗透過LED 發光再以光敏電阻接收光線,其中有太多變因會影響到實驗結果,所以 才會收到不大好的效果。
- 5、 儘管這次三周的實驗比較複雜,而且在 C 部分時不小心將直流接成交流,但仍然覺得電學的實驗蠻有趣的,尤其是在焊接電路時。