Gépelemek mechatronikai mérnököknek

Vári Gergő (MQHJ0H)

2025. október 2.

Karimás csőkötés tervezése

1. ábra: Összeállított modell

Gépelemek mechatronikai mérnököknek

BMEGEGIBMGE

4	TT/	• •	• •	1 4
Ι.	Haz	ZI T	ela	dat

Név: Vari Gergo
Neptun kód: MQHJ0H
Gyakorlatyczető: Szabó Gyula

1. A feladat bevezetése

A megadott adatokkal tervezzen egy csővéget vakkarimával lezáró csavarkötést és szilárdságilag ellenőrizze az elemeket.

2. A feladat értékelése

Az elérhető maximális pontszám 15 pont.

3. Adatok

A vezeték folyadékot szállít.

4. A feladat részletezése

- a) Vázolja fel méretarányosan a konstrukció előtervét!
- b) Számítsa ki a vakkarima minimálisan szükséges vastagságát, majd válasszon szabványos méretű lemezvastagságot!
- c) Válasszon megfelelő méretű lapos tömítést és számítsa ki a minimálisan szükséges tömítő erőt!
- d) Számítsa ki az üzemi nyomásból a csavarra jutó terhelést!
- e) Egy reális biztonsági tényező felvételével határozza meg a csavar előfeszítését és számítsa ki a szükséges meghúzási nyomatékot!
- f) Határozza meg a csavarban ébredő egyenértékű feszültséget és válassza ki a csavar megfelelő anyagát!
- g) Készítse el a kötés összeállítási rajzát! Jelölje rajta a főbb méreteket!

Beadási határidő: a hallgatói tájékoztatóban leírtaknak megfelelően

A feladat beadásával kijelentem, hogy ezt a feladatot meg nem engedett segítség nélkül, saját magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint idéztem, vagy azonos tartalomban, de átfogalmazva más tartalomból átvettem, egyértelműen, a forrás megadásával jelöltem. Ennek megszegése a TVSZ 135§ értelmében kerül szankcionálásra!

Tartalomjegyzék

1	Konstrukció előterve				
2	Vakkarima vastagsága és karima szabványok2.1 Minimális vastagság2.2 Szabvány -és anyagválasztás2.3 Előtervek				
3	Tömítés kiválasztása				
4	Csavarra jutó terhelés				
5	Csavar előfeszítése és meghúzási nyomatéka				
6	Összeállítási rajz				

1 Konstrukció előterve

2. ábra: Konstrukció előtervének rajza

$\mathbf{2}$ Vakkarima vastagsága és karima szabványok

2.1 Minimális vastagság

$$d_t = \frac{(d_1 - 2s) + d_4}{2} = 109 \,[\text{mm}] \tag{1}$$

$$y_k = \frac{k}{\pi} \tag{2}$$

$$y_k = \frac{k}{\pi}$$

$$y_d = \frac{2}{3} \frac{d_t}{\pi}$$
(2)

(4)

$$b_{\min} = \frac{d_t}{2} \sqrt{\frac{3p_{ii}}{\sigma_{\text{hajl}}} \left(1 - \frac{2}{3} \frac{d_t}{k}\right)} = 5.243 \,[\text{mm}]$$
 (5)

$$\sigma = \frac{d_t^2}{4} \frac{3p_{\ddot{\mathbf{u}}}}{b_{\min}^2} \left(1 - \frac{2}{3} \frac{d_t}{K} \right) = 7.783 \,[\text{MPa}] \tag{6}$$

$$n = \frac{\sigma_{\text{hajl}}}{\sigma} = 37.26 \left[-\right] \tag{7}$$

2.2 Szabvány -és anyagválasztás

2.3 Előtervek

3. ábra: Karima előtervének rajza

$$\begin{split} D &= 230 \, [\text{mm}] \\ f &= 3 \, [\text{mm}] \\ d_4 &= 138 \, [\text{mm}] \\ d_2 &= 26 \, [\text{mm}] \\ s &= 4.45 \, [\text{mm}] \\ N &= 8 \, [\text{db}] \\ K &= 180 \, [\text{mm}] \\ b &= 32 \, [\text{mm}] \\ d_3 &= 120 \, [\text{mm}] \\ d_1 &= 88.9 \, [\text{mm}] \\ M &= M24 \\ h &= 78 \, [\text{mm}] \end{split}$$

4. ábra: Vakkarima előtervének rajza

$$D=230\,[\mathrm{mm}]$$

$$f = 3 \, [\mathrm{mm}]$$

$$d_4 = 138 \, [\mathrm{mm}]$$

$$d_2=26\,[\mathrm{mm}]$$

$$K = 180 \, [\mathrm{mm}]$$

$$b=32\,[\mathrm{mm}]$$

3 Tömítés kiválasztása

5. ábra: Tömítés előtervének rajza

 $d_1 = 95 \, [\mathrm{mm}]$

 $d_2 = 115 \, [\mathrm{mm}]$

 $d_3=154\,[\mathrm{mm}]$

 $b_t = 3 \, [\mathrm{mm}]$

 $b_m = 5 \, [\mathrm{mm}]$

 $h_{\rm max}=0.5\,[{\rm mm}]$

 $h_{\min} = 0.3 \, [\text{mm}]$

4 Csavarra jutó terhelés

5 Csavar előfeszítése és meghúzási nyomatéka

