Math 417 Problem Set 11 Solutions

Starred (*) problems were due Friday, November 30.

(*) 75. Show that if $H, K \subseteq G$ are subgroups of G, and HK is also a subgroup, then $|H| \cdot |K| = |HK| \cdot |H \cap K|$.

[Hint: show that if you pick coset representatives $A = \{a_1(H \cap K), \dots, a_n(H \cap K)\}$ of the subgroup $H \cap K$ in H, then the map $A \times K \to HK$ given by $(a(H \cap K), k) \mapsto ak$ is a <u>bijection</u>.]

Let's do what the hint says. $H \cap K$ is a subgroup of G, and $H \cap K \subseteq H$, so we can treat $H \cap K$ as a subgroup of H, and so it has left cosets. If we call them $a_1(H \cap K), \ldots, a_n(H \cap K)$, then we can use them to build the function described in the hint: $(a_i(H \cap K), k) \mapsto a_i k$. We will show that this function is both injective and surjective.

For injective, since $A \times K$ is <u>not</u> a group (and we <u>don't</u> expect this function to be a homomorphism), we really need to show that (*) $a_{i_1}k_1 = a_{i_2}k_2$ implies $a_{i_1} = a_{i_2}$ and $k_1 = k_2$. But means that $x = a_{i_2}^{-1}a_{i_1} = k_2k_1^{-1}$, and so x is in H (because the a_i 's are) and in K (since the k_i 's are), so $a_{i_2}^{-1}a_{i_1} \in H \cap K$, so $a_{i_1}(H \cap K) = a_{i_2}(H \cap K)$. So $a_{i_1} = a_{i_2}$ since the a_i come from distinct (and therefore disjoint) cosets. Then $x = k_2k_1^{-1} = a_{i_2}^{-1}a_{i_1} = e_G$, so $k_1 = k_2$. So $(a_{i_1}, k_1) = (a_{i_2}, k_2)$, and so the function φ is injective.

For surjective, we start with $x \in HK$, so x = hk with $h \in H$ and $k \in K$. Then $h(H \cap K)$ is a coset of $H \cap K$ in H and so $h(H \cap K) = a_i(H \cap K)$ for some i. But this means that $a_i^{-1}h \in H \cap K$, so $a_i^{-1}h = w$ for some $w \in H \cap K$, and so $h = a_iw$. Then $x = hk = (a_iw)k = a_i(wk)$ with $w \in H \cap K \subseteq K$ and $k \in K_i$ so $wk = k' \in K$. So $x = a_ik' = \varphi(a_i, k^prime)$, so w is in theimage of φ . So φ is surjective.

Consequently, φ is a bijection, so $|HK| = |A \times K| = |A| \cdot |K|$. But $|A| = [H: H \cap K] = |H|/|H \cap K|$ is the index of $H \cap K$ in H; rearranging terms, we get $|HK| \cdot |H \cap K| = |H| \cdot |K|$, as desired.

(*) 77. If $|G| = p^n$ with p prime, show that for every k, $1 \le k \le n$, there is a <u>normal</u> subgroup $N \le G$ with $|N| = p^k$.

[Hint: take the quotient by some element of the center of G, and use induction!]

We will argue by induction. The base case is n = 0, i.e., $|G| = p^0 = 1$; then for every factor of |G| (i.e., 1), we have a normal subgroup H = G with |H| = the factor. We now assume that the result is true for every group with order p^k for k < n.

We have seen in class that every group G with $|G| = p^n$ has non-trivial center, $Z(G) \neq \{e_G\}$. Picking $g \in Z(G)$, $g \neq e_G$, then |g| divides $|G| = p^k$, so $|g| = p^\ell$ for some $\ell > 0$. Then we know that, setting $x = g^{p^{\ell-1}}$, we have $|x| = |g^{p^{\ell-1}}| = p$, and $x \in Z(G)$, so $N = \langle x \rangle$ is a normal subgroup of G.

The quotient group H = G/N has order $|G|/|N| = p^n/p = p^{n-1}$, and so, by the inductive hypothesis, for every k with $1 \le k \le n$, we have $k-1 \le n-1$ and so there is a normal subgroup N_1 in H with order p^{k-1} . The quotient map $\varphi: G \to H = G/N$ is surjective, and so by a previous problem set, we know that the inverse image $N_2 = \varphi^{-1}(N_1)$ is a normal subgroup of G, and $[G:N_2] = [H:N_1] = |H|/|N_1| = p^{n-1}/p^{k-1} = p^{n-k}$, and so $|N_2| = |G|/[G:N_2] = p^n/p^{n-k} = p^k$. So N_2 is a normal subgroup of G of order p^k . So for every group G with $|G| = p^n$ and every $1 \le k \le n$ we have found a normal subgroup of G of order p^k . This establishes the inductive step.

So, we have shown by induction that for every group G with $|G| = p^n$ and every $1 \le k \le n$ there is a normal subgroup of G of order p^k .

(*) 79. In class we showed that for p a prime, $|GL(2,\mathbb{Z}_p)| = p(p-1)(p^2-1)$. So, for example, $|GL(2,\mathbb{Z}_5)| = 5 \cdot 4 \cdot 24 = 480$, and so (by Sylow) $GL(2,\mathbb{Z}_5)$ must have elements of order 3 and of order 5. Find some! Are the subgroups that they generate normal?

There are many ways to do this; $480 = 3 \cdot 160 = 3 \cdot 2^5 \cdot 5$ and $480 = 5 \cdot 96 = 5 \cdot 2^5 \cdot 3$, and so Sylow theory tells us that the 3-Sylow subgroup(s) have order 3, and the 5-Sylow subgroup(s) have order 5. Sylow theory tells us that all 3-Sylow and 5-Sylow subgroups are conjugate, and so <u>one</u> such subgroup is normal \Leftrightarrow this <u>is</u> one such subgroup. A 3-Sylow subgroup contains 2 elements of order 3, and a 5-Sylow subgroup contains 4 elements of order 5, so finding more than that many elements of each order in $GL(2, \mathbb{Z}_5)$ will imply that the Sylow subgroups cannot be normal....

Actually finding such elements can be accomplished by some experimentation. For example, we could start with a matrix at random, like

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right),$$

and take powers of it, hoping to find that its order is a <u>multiple</u> of 3 or 5; then an appropriate power of A has order 3 (or 5). In this case,

$$A^2 = \begin{pmatrix} 0 & 3 \\ 3 & 2 \end{pmatrix}, A^3 = \begin{pmatrix} 3 & 3 \\ 3 & 0 \end{pmatrix}, A^4 = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}, A^5 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = -I, \text{ and so }$$

$$A^{10}=(-I)^2=I,$$
 and so $B=A^2=\left(egin{array}{cc} 0 & 3 \\ 3 & 2 \end{array}
ight)$ has order 5.

This matrix has determinant 1, and so any power of it has determinant 1, and any matrix conjugate to it has determinant 1. On the other hand,

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has $A^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $A^3 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$, $A^4 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$, and $A^5 = I$. So $|A| = 5$ and no power of A is B , so $\langle A \rangle \neq \langle B \rangle$, so neither subgroup can be normal!

Finding elements of order 3 took me somewhat longer! But (you can check!) the matrix

$$A=\left(\begin{array}{cc}2&2\\2&1\end{array}\right) \text{ has } A^6=\left(\begin{array}{cc}3&0\\0&3\end{array}\right), \text{ and so } A^{12}=\left(\begin{array}{cc}4&0\\0&4\end{array}\right) \text{ and } A^{24}=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)=I.$$

So $C = A^8 = \begin{pmatrix} 4 & 3 \\ 3 & 0 \end{pmatrix}$ has order dividing 3; since C isn't the identity, it has order 3 (!).

 $\langle C \rangle$ is normal \Leftrightarrow every conjugate of C is either C or C^2 . But $C^2 = \begin{pmatrix} 0 & 2 \\ 2 & 4 \end{pmatrix}$ while (picking a conjugating element at random) taking $X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we have $XCX^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$, and so $\langle C \rangle$ is not normal.

So, Sylow theory tells us that <u>no</u> subgroup of order 3 or 5 in $GL(2, \mathbb{Z}_5)$ will be a normal subgroup!

A selection of further solutions.

74. If $H, K \subseteq G$ are subgroups of G, then we can define the <u>product</u> (sets) $HK = \{hk : h \in H, k \in K\}$ and $KH = \{kh : k \in K, h \in H\}$.

Show that HK is a subgroup of $G \Leftrightarrow HK = KH$.

We need to show two things: if HK is a subgroup then HK - KH, and if HK = KH then HK is a subgroup.

For the first, we want to show that HK = KH, that is, $HK \subseteq KH$ and $KH \subseteq HK$. But if HK is a subgroup then it is closed under multiplication. Then given $h \in H$ and $k \in K$, we have (since H and K are subgroups) $e \in H$ and $e \in K$, so $k = ek \in HK$ and $k \in K$ and $k \in K$.

On the other hand, if $x \in HK$ then $x^{-1} \in HK$ since HK is a subgroup, and so $x^{-1} = hk$ for some $h \in H$ and $k \in K$. Then $x = (x^{-1})^{-1} = (hk)^{-1} = k^{-1}h^{-1}$, with $k^{-1} \in K$ and $h^{-1} \in H$ (since they are subgroups), so $x \in KH$. So $KH \subseteq HK$, and so HK = KH

If, conversely, we start with HK = KH, then we wish to show hat HK is a subgroup, that is, $e \in HK$, HK is closed under multiplication, and HK is closed under inversion. (we could combine these, using the 'one-step' subgroup test; we will not do that here). But $e \in H$ and $e \in K$, since both are subgroups, so $e = ee \in HK$. And if $x, y \in HK$, then $x = g_1h_1$ and $y = g_2h_2$ for some $g_1, g_2 \in H$ and $h_1, h_2 \in K$. Then

$$xy = (g_1h_1)(g_2h_2) = g_1(h_1g_2)h_2 = g_1(gh)h_2 = (g_1g)(hh_2) \in HK$$

since, because KH = HK, $h_1g_2 \in KH$ can be expressed as gh for some $g \in H$ and $h \in K$. So HK is closed under multiplication.

Finally, if $x \in HK$ then x = hk for some $h \in H$ and $k \in K$, and then $x^{-1} = (hk)^{-1} = k^{-1}h^{-1}$ with $k^{-1} \in K$ and $h^{-1} \in H$ (since H and K are subgroups), so $x^{-1} \in KH = HK$ (by hypothesis), so HK is closed under inversion. So all of the properties of a subgroup hold and so HK is a subgroup of G, so long as HK = KH.

80. Show that every group of order 175 is abelian.

 $175 = 5 \cdot 35 = 5 \cdot 5 \cdot 7 = 5^2 \cdot 7$. So Sylow theory tells us that G has subgroups H_5 and H_7 with $|H_5| = 25$ and $|H_7| = 7$. If \mathcal{H}_5 and \mathcal{H}_7 are the sets of 5-Sylow and 7-Sylow

subgroups, then $n = |\mathcal{H}_5|$ divides 175 (so is one of 1, 5, 7, 25, 35, 175) and is $\equiv 1 \mod 5$, so is <u>not</u> a multiple of 5, and so is 1 or 7, and therfore is 1. So H_5 has no other conjugates, and so H_5 is a normal subgroup of G. In adddition, $m = |\mathcal{H}_7|$ divides 175 and is $\equiv 1 \mod 7$ (so is not a multiple of 7, so is one of 1, 5, 25), so $|\mathcal{H}_7| = 1$, and so H_7 is a normal subgroup.

Then we have the quotient groups G/H_5 and G/H_7 , and $|G/H_5|=175/25=7$ and $|G/H_7|=175/7=25$, so we know that both of these groups are abelian. And we can build the homomorphism $\varphi:G\to G/H_5\oplus G/H_7$ which sends $g\in G$ to (gH_5,gH_7) , and this homomorphism is 1-to-1 (since its kernel is $H_5\cap H_7$, whose order divides both 25 and 7, so $|H_5\cap H_7|=1$ and φ has trivial kernel). Therefore, under φ we have that G is isomorphic to its image, which is a subgroup of an abelian group, and so is abelian.