On the Downstream Performance of Compressed Word Embeddings

Avner May, Jian Zhang, Tri Dao, Chris Ré
Stanford University

Word Embeddings

Important for strong NLP performance

Take a lot of memory

Word Embedding Compression

What determines whether a compressed embedding matrix will perform well on downstream tasks?

Motivating Observation

Existing ways of measuring compression quality often fail to explain relative downstream performance.

Better compression quality measure

Worse downstream performance

Our Contributions: Outline

- 1 Define a **new measure** of compression quality.
- (2) Prove **generalization bounds** using this measure.
- 3 Show strong empirical correlation w. downstream performance.
- (4) Use measure to **select** compressed embeddings.

Up to 2x lower selection error rates than the next best measure.

Defining the Measure: Intuition from Linear Regression

Observation:

Predictions are a projection onto the span of *left singular vectors*.

Defining the Measure: Eigenspace Overlap Score (EOS)

Intuition:

Measures similarity between the span of left singular vectors.

Theoretical Results (informal): Linear Regression

Expected difference between compressed and uncompressed test mean-squared error is determined by EOS.

Empirical Correlation: Beyond Linear Regression

EOS attains strong correlation with downstream model accuracy.

[1] Yin and Shen, On the Dimensionality of Word Embeddings. NeurIPS 2018.

Empirical Correlation: Beyond Linear Regression

EOS attains up to 2x lower selection error rates than 2nd best.

[1] Avron et al., ICML 2017. [2] Yin and Shen. NeurIPS 2018. [3] Zhang et al., AISTATS 2019.

Our Contributions: Summary

- 1 Defined a **new measure** of compression quality.
- 2) Proved **generalization bounds** using this measure.
- 3 Showed strong **empirical correlation** w. downstream perf.
- (4) Used measure to **select** compressed embeddings.

THANK YOU!

Poster #185, 5-7 pm today!

Paper: https://arxiv.org/pdf/1909.01264.pdf

E-mail: avnermay@cs.stanford.edu