

National University

Of Computer & Emerging Sciences Karachi

Course Outlines of BS (CS) Degree Program

Course Instructor	Dr. Fahad Riaz, Dr. Khusro Mian, Mr. Jamil Usmani, Ms. Fareeha Sultan, Ms. Alishba Tariq, Mr. Muhammad Amjad.	Semester	Fall
Batch/Section(s)	Batch 2023	Year	2024
Course Title	MT 1004-Linear Algebra	Credit Hours	3
Prerequisite(s)	No	Course TA	

Text Book(s)	
Title of book	Elementary Linear Algebra, 12 th edition
Author(s)	Howard Anton and Anton Kaul

Reference Book(s)		
Title of book	Linear Algebra and its Application	
Author(s)	Gilbert Strang	
Title of book	Coding the Matrix: Linear Algebra through Applications to Computer Science	
Author(s)	Philip N Klein	

Course Description

Elementary operations on matrices, Gaussian and Gauss Jordan elimination, Elementary matrices and matrix factorization, determinants and their properties, vector spaces, subspaces and spanning sets, Linear Independence, Dimensions, Rank of a matrix, Linear transformation, Eigenvalues and Eigenvectors, Inner Product and Orthogonal basis, Diagonalization and Orthogonal Diagonalization, Application of linear algebra

S. No.	Course Learning Outcomes (CLO)	Domain	Taxonomy Level	PLO
1.	Interpreting and finding the solutions of linear equations in detail.	Cognitive	2	
2.	Understanding the core concepts of Euclidean vector spaces and matrix transformations.	Cognitive	2	2
3.	Applying the basic linear algebra concepts in computer science.	Cognitive	3	

Tentative Weekly Lectures Schedule:

Weeks	Contents/Topics	Remarks	Exercises	CLO's	Tools
*** 1 1	Introduction, System of		11(120)		
Week 1	Linear equations, Elementary row operation		1.1 (1-20)		
	Solving system of Linear equations:				
	Gaussian Elimination and Gauss Jordan		1.2 (1-26)		
***	methods		1.5 (1-6, 11-18)		
Week 2	Matrix Operations	Assignment 1	1.6 (1-20)		
	Elementary Matrices, Methods for		, , ,		
	finding Inverse, Invertible Matrices,				
	Diagonal, triangular, and symmetric		1.7 (1-10, 19-28)		Q1, A1,
Week 3	matrices,		1.8 (1-24, 27-41)	1	M1, F
	Matrix Transformations		(CLO 2)	_	1.11, 1
	Application no 1:		1.10 (1-4)		
Week 4	Network Analysis Determinants and their properties,	Ouiz 1	(CLO 3) 2.1 (1-32)		
week 4	Minors, Cofactors, Inverse using	Quiz 1	2.1 (1-32) 2.2 (1-23)		
	cofactors, Cramer's Rule		2.3 (1-29,31,32)		
	General Vector Space		4.1 (1,2,9,11, 12)		
*** 1 5	Subspaces		Example: 1-5,7		
Week 5			4.2 (1-5, 19)		
			Example: 1-6,13		
Week 6		1st Mid Term Ex	am		
Week 7	Spanning Sets		4.3 (1-20)		
,, con ,	Linear Independence		4.4 (1-15)		
	Coordinates and Bases		4.5 (1-22)		
Week 8	Dimensions Change of basis	Quiz 2	4.6 (1-8,10,12-		02.42
	Change of basis		13,15-20) 4.7 (1-19)	2	Q2, A2, M2, F
	Bases for row, column, and null spaces,		4.8 (1-19,21-30)		1412, 1
Week 9	Rank and Nullity	Assignment 2	4.9 (1-14,19-36)		
XX 1 10	Eigenvalues and Eigenvectors		5.1 (1-16)		
Week 10	Diagonalization		5.2 (1-20)		
Week 11	2 nd Mid Term Exam				
	Inner product spaces, Orthogonal		6.1 (1-26)		
Week 12	and orthonormal bases, Gram-	Assignment 3	6.2 (1-12, 17-19)		
	Schmidt Process;			_	
W/osl- 12	QR-Decomposition. Orthogonal		6.3 (1-14, 27-31,	2	
Week 13	Matrices		44-49)		Q3, A3, P,
	Orthogonal Diagonalization, Quadratic		7.1 (1-6) (CLO 1) 7.2 (1-18) (CLO 1)	1	F
Week 14	Forms	Quiz 3	7.3 (1-8(CLO 1)		
	Application no 2:		7.5 (1 0(CLO 1)		
Week 15	Single Value Decomposition	Presentation	9.4	3	
	Markov Chains		5.5		
Week 16	Revision				

Marks Distribution:

Particulars	% Marks	
1. Quizzes and Assignments / Presentations	20	
2. First Mid Exam	15	
3. Second Mid Exam	15	
4. Final Exam	50	
Total:	100	