Linguagens - 1 e 2

19 de maio de 2024

Introdução

Alfabeto: conjunto finito de símbolos cujas combinações formam os elementos da linguagem

Sintaxe: Diz quais, de todas as combinações de símbolos do alfabeto, pertencem à linguagem

Semântica: descreve o significado dos elementos da linguagem

Ao conjunto de todas as strings sobre um alfabeto T chama-se T^* Sejam L_1 e L_2 subconjuntos de T^* . Define-se a concatenação de duas linguagens

$$\mathcal{L} = \mathcal{L}_1$$
 . $\mathcal{L}_2 = \{\mu \in T^* | \mu = \mu_1.\mu_2 \land \mu_1 \in \mathcal{L}_1 \land \mu_2 \in \mathcal{L}_2\}$

Ist é, é o conjunto das strings que se obtêm concatenando strings de L₁ com strings de L₂.

. Enpersois Degulares

- 1. ϕ carateriza a linguagem {} (linguagem vazia a que não pertence qualquer string).
- 2. ε carateriza a linguagem $\{\varepsilon\}$ (linguagem cuja única string é a string vazia. É de notar a diferença com a anterior!).
- 3. a carateriza a linguagem {a}
- 4. $\mathbf{p} + \mathbf{q}$ carateriza a linguagem $L_p \cup L_q$
- 5. **p q** carateriza a linguagem $L_p.L_q$
- 6. (p) carateriza a linguagem L_p
- 7. \mathbf{p}^* carateriza a linguagem \mathbf{L}_p^*
- 8. \mathbf{p}^+ carateriza a linguagem L_n^+

a)
$$\ell = (a)^+$$

2

- 321. 2 E-123

· Algebra des enpenões regulares

1.
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

$$2. \ \alpha + \beta = \beta + \alpha$$

3.
$$\alpha + \phi = \phi + \alpha = \alpha$$

4.
$$\alpha + \alpha = \alpha$$

5.
$$(\alpha . \beta) . \gamma = \alpha . (\beta . \gamma)$$

6.
$$\alpha$$
 . $\varepsilon = \varepsilon$. $\alpha = \alpha$

7.
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

8.
$$(\beta + \gamma) \cdot \alpha = \beta \cdot \alpha + \gamma \cdot \alpha$$

9.
$$\alpha^+ = \alpha \cdot \alpha^* = \alpha^* \cdot \alpha$$

10.
$$\alpha^* = \varepsilon + \alpha^+$$

11.
$$(\alpha + \varepsilon)^+ = (\alpha + \varepsilon)^* = \alpha^*$$

-12. se
$$X = \beta + \alpha \cdot X$$
 então $X = \alpha^* \cdot \beta$

13. se X =
$$\beta$$
 + X . α então X = β . α^*

Hormul

Mais

$$X_{1} = \beta + \alpha.X$$

$$X_{2} = \beta + \alpha. (\beta + \alpha.X)$$

$$= \beta + \alpha.\beta + \alpha.\alpha.X$$

$$X_{3} = \beta + \alpha.\beta + \alpha.\alpha.\beta + \alpha.\alpha.\alpha.X$$

$$\Rightarrow X = (\xi + \alpha + \alpha.\alpha + \alpha.\alpha.\alpha.x).\beta$$

$$= \alpha^{*}.\beta$$

$$X_1 = \beta + X. \alpha$$

$$X_2 = \beta + (\beta + X. \alpha) \alpha$$

$$= \beta + \beta. \alpha + X. \alpha. \alpha$$

$$X_3 = \beta + \beta \cdot \alpha + (\beta + X \cdot \alpha) \cdot \alpha \alpha$$

$$= \beta + \beta \cdot \alpha + \beta \cdot \alpha + X \cdot \alpha \alpha$$

$$= \beta \cdot (\varepsilon + \alpha + \alpha \cdot \alpha + \alpha \cdot \alpha + \cdots)$$

Enercicio (1.2)

- a execução da tarefa A seguida da execução da tarefa B se representa pela expressão regular
 A . B
- a execução da tarefa se c então A senão B se representa pela expressão regular c.A +
 ¬c.B
 - a execução da tarefa **skip** se representa pela expressão regular ε .
- a execução da tarefa **abort** se representa pela expressão regular ϕ .
 - a)
 - i) enquanto c fazer A
 - ii) repetir A até o
 - i) A primeira ação a executar é o cálculo da condição c; se esta for falsa não se executa mais nada; senão executa-se a ação A e depois voltamos ao mesmo ponto. Isto é,

$$7C.E + C.A. (7C.E + C.A. (...))$$
= $7C.E + C.A. 7C + C.A. C.A. 7C + ...$
= $(C.A)^*$. $7C$
Ly faz rentidor

ii) A.
$$(C.E + 7C.(A.(C.E + 7C.A.^-)))$$

= A.C + A.7C.A.C + A.7C.A.7C.A.7C.+---
= $(A.7C)^*$. A.C

- (b) Usando as propriedades de expressões regulares (e o facto de $\neg \neg c = c$) mostre que:
 - (i) $(enquanto\ c\ fazer\ A) = (Se\ c\ ent\~ao\ (repetir\ A\ at\'e-c)\ sen\~ao\ skip)$
 - (ii) $(repetir\ A\ at\'ec) = (A;\ enquanto\ \neg c\ fazer\ A)$

$$(c.A)^*$$
. $7c = c.(t.c)^*$. $A.7c + 7c.E$
= $(c.A)^*$. $7c + 7c.E$
= $((c.A)^{\frac{1}{2}} + E).7c$
= $(c.A)^*$. $7c$

ii)
$$(A.7C)^*.A.C$$

= $A.((C7.A)^*.C)$
= $(A.7C)^*.A.C$

ph

$$A \cdot (C \cdot E + 7C \cdot (A \cdot C \cdot E + 7C \cdot A \cdot -)))$$

= $A \cdot C + A \cdot 7C \cdot A \cdot C + A \cdot 7C \cdot A \cdot 7C \cdot A \cdot C + -$

= (A.76) . A.C

(c) Considere o procedimento P definido como

 $P = se \ c \ ent{\tilde{ao}} \ A \ sen{\tilde{ao}} \ (B;P)$

- (i) Determine uma expressão regular que caraterize a sua execução.
- (ii) Usando as propriedades das expressões regulares, determine uma versão iterativa (usando enquanto) do procedimento P.

$$P = BC \ C \text{ entro} \ A \ BCO \ (B; P)$$
 $C.A + 7C.B.P$
 $C.A + 7C.B.(C.A + 7C.B.P)$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.7C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$
 $C.A + 7C.B.C.A + 7C.B.C.B + P + \cdots$

(1.2) GRAMÁTICAS

T: conjunto finito de símbolos terminais (alfabeto)

N : conjunto de símbolos não terminais

S : símbolo não terminal especial chamado símbolo inicial

P : é um conjunto de produções, sendo que:

Uma produção é <u>um par (α, β) </u>, e escrevemos $\alpha \to \beta$, em que α e β são sequências finitas de símbolos terminais e não terminais. Dada uma produção $\alpha \to \beta$ dizemos que α é o lado direito e que β é o lado esquerdo da produção.

XE (TUN) * & BE (TUN) *

Dizemos que α deriva imediatamente em β e notamos $\alpha \Rightarrow \beta$ se e só se

Isto é, exsite uma produção em que

- o lado esquero é uma substring de $\boldsymbol{\alpha}$
- β pode ser obtida substituindo δ 1 por δ 2 em α .

a - lado direito

- β pode ser obtida substituindo $\delta 1$ por $\delta 2$ em $\alpha.$

$$G = (T, N, S, P)$$

 $L = \{ \mu \in T^* : S \Rightarrow \mu \}$

(conjunto de strings que se podem derivar do símbolo inicial S)

Exercício 13

Exercício 1.3 Escreva gramáticas para especificar a sintaxe das seguintes linguagens:

(a) strings constituidas por um ou mais a's

$$5 \rightarrow a$$
 on $5 \rightarrow a \mid aS$

(b) strings constituidas por um ou mais a's seguidas de zero ou mais b's

$$5 \rightarrow AB$$
 $A \rightarrow a \mid aA$
 $B \rightarrow \varepsilon \mid bB$

(c) strings que representam os números inteiros

 (d) strings que representam os números reais (em Pascal, i.e., com parte inteira, parte decima e expoente opcionais mas tem de existir parte inteira ou parte decimal)

5 -2 Sinal Mantine Enjounte Sinal -> '+' | '-' | E Siral Mantinse Enfocute

Siral > '+' | '-' | E

Mantinsa > Digitos Meno Digitos

Digitos > E | Digito Digitos

Meior > Digito!!! Digito | E

Digito > '0' | ... | '9'

Expoente > E | 'E' Siral Digito

Pelo mans L

digito

Uma das ideias chaves na escrita de gramáticas é identificar os blocos constituintes das strings a caraterizar e associar-lhes um símbolo não terminal, como no exemplo acima.

Exercício 1.4 Escreva gramáticas para especificar a sintaxe das seguintes linguagens:

(a) strings constituidas por zero ou mais \mathbf{a} 's seguidas de zero ou mais \mathbf{b} 's sendo o número de \mathbf{a} 's igual ao número de \mathbf{b} 's.

5 -> a5b | Ab | E 5 -> a5B | E

(b) strings constituidas por zero ou mais **a**'s seguidas de zero ou mais **b**'s seguidas de zero ou mais **c**'s sendo o número de **a**'s mais o número de **b**'s igual ao número de **c**'s.

a*b*c* lon(a*+b*) = lon(c*) $S \rightarrow a Sc | b S c | E$

(c) strings constituidas por a's e b's sendo o número de a's igual ao número de b's.

Aure = ab a Aure b

(a's e b's followstar

misturado

 $5 \rightarrow aB \mid bA \mid \mathcal{E}$ $A \rightarrow a5 \mid bAA \quad \text{(strings com mais um a do que b's)}$

$$A \rightarrow \alpha S \mid b AA$$
 (strings com mais um a do que b's)

(strings com um b a mais do que a's)

aaababbb

aababbb

a BB

a (aBB) (aBB)

Yne(-)* , RM-In EL

Y 1, 9, 3 E(-)*,

My IBEL > My-IB-EL

a) abab

b) aabb

2 Linguagens Regulares 21 Grannities Regulare

Uma gramática independente do contexto G=(T,N,S,P) diz-se regular à direita, quando todas as produções são da forma:

 $\begin{array}{c} A \rightarrow \mu \\ \text{ou } A \rightarrow \mu \\ \text{B} \\ \text{em que A,B} \in N \\ \text{e} \\ \mu \in T* \end{array}$

2.1
(a) strings constituidas por um ou mais a's seguidas de zero ou mais b's

à direita quando todas as produções são da forma:

$$\label{eq:alpha} \mathbf{A} \to \boldsymbol{\mu}$$
 ou $\mathbf{A} \to \boldsymbol{\mu}$ B

e em que A,B \in N e $\mu \in$ T*

Isto é, todas as produções têm do lado direito, no máximo ${\bf um}$ símbolo não terminal (e este é o último símbolo do lado direito).

à esquerda quando todas as produções são da forma:

ou
$$A \rightarrow B \mu$$
 partornal

Isto é, têm do lado direito, no máximo um símbolo não terminal (e este é o primeiro símbolo do lado direito).

strings que representam números interos

à direito:

$$S \rightarrow '+'N \mid '-'N \mid N$$

$$N \rightarrow 'O' \mid \cdots \mid 'q'$$

$$N \rightarrow 'O'N \mid \cdots \mid 'q'N$$

a esquerda

$$S \rightarrow Siml \mid S N$$

 $Siml \rightarrow +1 \mid -1 \mid E$
 $S \rightarrow S \cdot 0' \mid A \cdot 1' \mid ... \mid A \cdot 8' \mid A \cdot 9'$
 $-S \rightarrow S \cdot 0' \mid S \cdot 1' \mid ... \mid S \cdot 8' \mid S \cdot 9'$
 $-A \rightarrow ++1 \mid -1 \mid E$

Exercício 2.2)

Escreva uma gramática regular à direita para caracterizar a sintaxe dessa linguagem

$$T \rightarrow A + A - A$$

$$A \rightarrow d \mid dA$$

$$E \rightarrow F \mid +F \mid -F$$

$$F \rightarrow dF \mid d \cdot A$$
in directal

2.2 CONVERSÃO DE GRAMÁTICAS EM EXPRESSÕES REGULARES

Emerciaio 2.3

- $\bullet \ S \to \mathit{Sinal} \ \mathit{RealSemSinal}$
- $Sinal \rightarrow \varepsilon |+|-$
- $\bullet \ \ RealSemSinal \rightarrow Inteiro \ ParteDecimal$
- $\bullet \;\; Inteiro \rightarrow \; digito \; | \; digito \; Inteiro$
- $\bullet \ \mathit{ParteDecimal} \rightarrow \varepsilon | \ \textit{'.'} \ \mathit{Inteiro}$

Determine uma expressão regular equivalente.

Solução:

2.2.1 Grandities Simplemente Régulares

2.2.2 Conversão de GR em GSR

Seja $G_1 = (T_1,N_1,S_1,P_1)$ uma gramática regular à direita. Então é possível escrever uma gramática $G_2 = (T_2,N_2,S_2,P_2)$ simplesmente regular à direita tal que a linguagem gerada é

Um processo standard para atingir este objectivo é o seguinte:

•
$$N_2 = N_1 \cup \{X_1, X_2, ..., X_n\} \cup Z$$

•
$$Z \to \varepsilon \notin P_2$$
 Conjusts de produções
• $S \to E \notin P_2$ Conjusts de produções
• $S \to E \to E \oplus P_1$ então $A \to B \in P_2$

• se
$$A \rightarrow B \in P_1$$
 então $A \rightarrow B \in P_2$

• se
$$A \to B \in P_1$$
 então $A \to B \in P_2$
• se $A \to a$ $B \in P_1$ então $A \to a$ $B \in P_2$
• se $A \to a \in P_1$ então $A \to a$ $Z \in P_2$

• se
$$A \to a \in P_1$$
 então $A \to a Z \in P_2$

• se
$$A \rightarrow a_1 a_2 ... a_m B \in P_1$$
 então

$$- A \rightarrow a_1 X_1 \in P_2$$

$$- X_1 \rightarrow a_2 X_2 \in P_2$$

$$- X_{m-2} \to a_{m-1} X_{m-1} \in P_2$$

$$-X_{m-1} \rightarrow a_m B \in P_2$$

• se $A \to a_1 a_2 ... a_m \in P_1$ então

$$- A \to a_1 X_1 \in P_2$$

$$-\ X_1\to a_2\ X_2\in P_2$$

$$\begin{array}{l} - \quad \dots \\ - \quad \mathbf{X}_{m-2} \to \mathbf{a}_{m-1} \quad \mathbf{X}_{m-1} \in P_2 \end{array}$$

$$-X_{m-1} \rightarrow a_m Z \in P_2$$

Exercílio 2.4

$$S \rightarrow A d$$

$$A \rightarrow \varepsilon \mid '+' \mid '-' \mid Ad \mid F \times_{1}$$

$$F \rightarrow \varepsilon \mid '+' \mid '-' \mid Fd$$

$$X_{1} \rightarrow d \mid \cdot \mid$$

2.3 Antómatos

2.2.1 Gramáticas Simplesmente Regulares (GSR)

Uma gramática G=(T,N,S,P) diz-se simplesmente regular à direita quando todas as produções são da forma:

$$A \rightarrow a E$$

em que A,B \in N e \mathbf{a} \in T, com excepção para a produção

$$Z \to \varepsilon$$

à esquerda quando todas as produções são da forma:

$$A \rightarrow B a$$

em que $A,B\in N$ e a
 $\in T^*,$ com excepção para a produção

$$Z \to \varepsilon$$

Ao símbolo Z chama-se o símbolo final.

T é o alfabeto

- Q é um conjunto de estados
- $S \in Q$ é um estado especial chamado estado inicial
- Z ∈ Q é um conjunto de estados chamados estados finais
- δ é uma função de transição de estados

Representamos graficamente um automato da seguinte forma:

- a cada estado fazemos corresponder um círculo com o identificador
- os estados finais são assinalados fazendo-lhes corresponder um círculo diferente;
- sempre que para um dado estado q, existe um símbolo a do alfabeto tal que $\delta(q, a) = q'$, então marcamos uma seta do círculo correspondente ao estado q para o símbolo q' com a etiqueta a.
- o estado inicial é marcado fazendo-lhe chegar uma seta sem origem

Dado um autómato, γ é uma string da linguagem caraterizada por esse aut'omato sse existir um caminho do estado inicial para um estado final tal que a concatenação das etiquetas de todos os seus ramos é igual a y

2.3.1 Antomatos Não Deterministricos (AND) S: Q × (TU{€}) → P(a) ∪ { 1})

A função de transição de estado é uma função que dado um estado e um símbolo do alfabeto dá como resultado um conjunto de estados. Esta função é parcial, i.e., existem pares de valores (q,s) tais que $\delta(q, s) = \bot$.

Conversão de GISR em AND 2.3.2

Dada um gramática simplesmente regular à direita o autómato não deterministico correspondente pode ser obtido da seguinte forma:

- a cada símbolo não terminal corresponde um estado.
- o estado a que corresponde o símbolo S (símbolo inicial da gramática) é o estado inicial
- \bullet o estado correspondente ao símbolo Z é o estado final do autómato.
- $\bullet\,$ para cada produção da forma (A \rightarrow B) \in P coloca-se uma seta do estado correspondente a A para o estado correspondente a B com etiqueta ε .
- $\bullet\,$ para cada produção da forma (A \rightarrow a A) \in P coloca-se uma seta do estado correspondente a A para o estado correspondente a B com etiqueta a.

Exercício 2.5

- $S \rightarrow I \mid E$
- $I \rightarrow A \mid '+' A \mid '-' A$
- $\bullet \ A \to d \ Z \mid d \ A$
- $E \rightarrow '+'F \mid '-'F \mid F$
- $F \rightarrow d F \mid d X_1$
- $X_1 \rightarrow '$. ' A
- $Z \to \varepsilon$

Dada uma gramática simplesmente regular $\underline{\grave{a}}$ esquerda, o autómato não deterministico correspondente pode ser obtido da seguinte forma:

- a cada símbolo não terminal corresponde um estado.
- $\bullet\,$ o estado a que corresponde o símbolo S (símbolo inicial da gramática) é o estado final do autómato.
- o estado correspondente ao símbolo Z é o estado inicial do autómato.
- para cada produção da forma $(A \to B) \in P$ coloca-se uma seta do estado correspondente a B para o estado correspondente a A com etiqueta ε .
- para cada produção da forma $(A \to a A) \in P$ coloca-se uma seta do estado correspondente a B para o estado correspondente a A com etiqueta a.
- \bullet $S \rightarrow A d$
- $A \rightarrow Z \mid Z '+' \mid Z '-' \mid A d \mid X_1 '.'$
- $X_1 \to F d$
- $\bullet \ \ F \rightarrow Z \mid Z \ '+' \mid Z \ '-' \mid F \ d$
- $Z \to \varepsilon$

2.3.3 Antómatos Deterministicos 8: a × T → a U { 1}

Um autómato determinístico A é um autómato em que a função de transição de estado é uma função que dado um estado e um símbolo do alfabeto dá como resultado um estado.

Esta função é parcial, i.e., existem pares de valores (q,s) tais que $\delta(q,s)$ = \perp .

2.3.4 Conversão de AND em AD

Seja $N = (T,Q,S,Z,\delta)$ um autómato determinístico.

Considere-se a seguinte função:

fecho: $P(Q) \rightarrow P(Q)$

fecho (X) $\underline{= X \cup \bigcup_{x \in X} fecho(\delta(x, \varepsilon))}$

isto é, o fecho de um conjunto de estados X: é o conjunto de estados a que se pode chegar dos estados de X através de transições por ε .

Para a partir de $N=(T,Q,S,Z,\delta)$ se obter o autómato $D=(T',Q',S',Z',\delta')$ correspondente procede-se da seguinte forma:

- \bullet T' = T
- $S' = fecho({S})$
- $\delta'(X,t) = \text{fecho}(\cup_{q \in X}, (\delta(q,t)))$
- Q' define-se recursivamente da seguinte forma:
 - (i) $fecho({S}) \in Q'$
 - (ii) se $q \in Q$ ' então δ ' $(q,t) \in Q$ '

$$S \rightarrow A \mid aS \mid bA$$

 $A \rightarrow ab \mid abA \mid baS$

$$A \rightarrow aX_1 | aX_2 | bX_3$$

C	~ }e	the 5	
(Estado	a	b
(S, A	S, A, X1, X2	A, X3
(S, A, X1, X2	S, A, X1, X2	A, X3, Z
)-	A, X3	X1, X2, S, A	Х3
	A, X3, Z	X1, X2, S, A	Х3
$-$ \ $-$	X3	S. A	

フ	iec	пО	(-	α)	_	/ \	\circ	$\bigcup_{x \in X}$	Je	CIU	00	(u,	رر ء
		٠		,		r	1	1					1

Una linha fore cade montrado

2.3.5 Conversão de ER em AND

4. $\mathbf{e} = \mathbf{p} + \mathbf{q}$ sendo \mathbf{p} e \mathbf{q} expressões regulares

5. $\mathbf{e} = \mathbf{p}$. \mathbf{q} sendo \mathbf{p} e \mathbf{q} expressões regulares

6. $\mathbf{e} = \mathbf{p}^+$ sendo \mathbf{p} uma expressão regular

7. $\mathbf{e} = \mathbf{p}^*$ sendo \mathbf{p} uma expressão regular

Exercício 2.9

2.4 Reconfecedoros Bassados em AD 2.5 Análios de um exemplo

 Vamos tentar escrever um editor de texto muito simples que permita:

- $\bullet\,$ abrir um ficheiro Aficheiro
- $\bullet\,$ posicionar numa determinada linha Plinha
- \bullet inserir texto terminado por esc ${\bf i}~texto~{\bf esc}$
- $\bullet\,$ apagar a linha atual $\mathbf{d}\,$
- $\bullet\,$ apagar as linhas desde uma posição a outra d $linha_1\ linha_2$
- $\bullet\,$ escrever o ficheiro ${\bf s}$
- $\bullet\,$ terminar a edição ${\bf f}$

Todos os comandos (excepto o de inserção de texto) devem ser terminados com RETURN.

 $S \longrightarrow Comando S \mid Fim$

Comando \longrightarrow Com
Abr | Com Pos | Com Ins | Com Apa | Com Esc

 $\begin{array}{ll} ComAbr & \to A \text{ nome return} \\ ComPos & \to P \text{ inteiro return} \\ ComIns & \to i \text{ texto esc} \end{array}$

Com Apa \rightarrow d return | d inteiro ',' inteiro return

 $\begin{array}{ll} \text{ComEsc} & \rightarrow \text{s return} \\ \text{Fim} & \rightarrow \text{f return} \end{array}$

 ${\rm nome} \qquad \quad \to {\rm alfab\acute{e}tico} \mid {\rm nome \ alfanum\acute{e}rico}$

inteiro \rightarrow digito | digito inteiro

 $\begin{array}{lll} \text{texto} & \rightarrow \varepsilon | \text{ linha texto} \\ \text{linha} & \rightarrow \text{RETURN} | \text{ char linha} \\ \text{numérico} & \rightarrow \text{'0'} | \text{'1'} | \dots | \text{'9'} \\ \text{alfanumérico} \rightarrow \text{numérico} | \text{ alfabético} \end{array}$

char \rightarrow qualquer carater diferente de ESC e de RETURN

makes sense

$_{Est}\backslash ^{Simb}$		RET		ESC		A		P		Z				a	
1						2									
2						3	3	3	3	3				3	3
3		4				3	3	3	3	3				3	3
4						7		9							
5		6													
6															
7						8	8	8	8	8				8	8
8		-4				8	8	8	8	8				8	8
9															
10		-4													
11	11	17	11	4	11	11	11	11	11	11	11	11	11	11	11
12															
13		4										14			
14															
15		4													
16		4													
17	11	17	11	- 4	11				2.2		11	11	11	11	11
1.7	1.1	11	1.1	- 1	11	11	11	11	11	11	11	1.1	1.1	11	1.1
E_{st} $\setminus Simb$		d		f		i		8		2		0		9	
$E_{st} \setminus Simb$	-														-
$Est \setminus Simb$ 1 2	-														-
E_{st} $\stackrel{Simb}{=}$ 1 2 3		d		f 3 3		i		8		z					-
$Est \setminus Simb$ 1 2	3	d 3	3	f 3	3	i 3	3	3	3	2 3		0		9	-
E_{st} $\stackrel{Simb}{\sim}$ 1 2 3	3	d 3 3	3	f 3 3	3	i 3 3	3	3 3	3	2 3		0		9	-
$Est \setminus Simb$ 1 2 3 4 5 6	3	d 3 3	3	f 3 3	3	i 3 3	3	3 3	3	2 3		0		9	-
Est\Simb 1 2 3 4 5 6 7	3	d 3 3	3 3	f 3 3 5	3	i 3 3	3	3 3	3	2 3		0		9	-
Est\Simb 1 2 3 4 5 6 7 8	3 3	3 3 12	3 3	3 3 5	3 3	3 3 11	3 3	3 3 16	3 3	3 3		0		9	-
Est\Simb 1 2 3 4 5 6 7	3 3	3 3 12 8	3 3	f 3 3 5	3 3	3 3 11	3 3	3 3 16	3 3 8	3 3 3		3	3	3	-
Est\Simb 1 2 3 4 5 6 7 8	3 3 8 8	3 3 12 8	3 3	f 3 3 5	3 3	3 3 11	3 3	3 3 16	3 3 8	3 3 3		3	3	3	-
Est\Simb 1 2 3 4 5 6 7 8 9 10 11	3 3	3 3 12 8	3 3	f 3 3 5	3 3	3 3 11	3 3	3 3 16	3 3 8	3 3 3		3 8 10	3 8 10	9 3 8 10	
Est\\Simb\\ 1 2 3 4 5 6 7 7 8 8 9 10 11 12	3 3 8 8	3 3 12 8 8	3 3 8 8	3 3 5 8 8	3 3 8 8	3 3 11 8 8	3 3 8 8	3 3 16 8 8	3 3 8 8	3 3 8 8		3 8 10 10	3 8 10 10	9 3 8 10 10	
Est\Simb 1 2 3 4 5 6 7 8 9 10 11	3 3 8 8	3 3 12 8 8	3 3 8 8	3 3 5 8 8	3 3 8 8	3 3 11 8 8	3 3 8 8	3 3 16 8 8	3 3 8 8	3 3 8 8		8 10 10 11	8 10 10 11	9 3 8 10 10	
Est\\Simb\\ 1 2 3 4 5 6 7 7 8 8 9 10 11 12	3 3 8 8	3 3 12 8 8	3 3 8 8	3 3 5 8 8	3 3 8 8	3 3 11 8 8	3 3 8 8	3 3 16 8 8	3 3 8 8	3 3 8 8		8 10 10 11 13	8 10 10 11 13	9 3 8 10 10 11 13	
Est\\Simb\\ 1 2 3 4 4 5 6 6 7 7 8 9 10 11 12 13	3 3 8 8	3 3 12 8 8	3 3 8 8	3 3 5 8 8	3 3 8 8	3 3 11 8 8	3 3 8 8	3 3 16 8 8	3 3 8 8	3 3 8 8		8 10 10 11 13 13	8 10 10 11 13 13	8 10 10 11 13 13	
Est\\Strats\\ 1 2 3 4 4 5 6 6 7 7 8 9 10 11 12 13 13 14	3 3 8 8	3 3 12 8 8	3 3 8 8	3 3 5 8 8	3 3 8 8	3 3 11 8 8	3 3 8 8	3 3 16 8 8	3 3 8 8	3 3 8 8		8 10 10 11 13 13 15	8 10 10 11 13 13 15	8 10 10 11 13 13 15	-