VERMES MIKLÓS Fizikaverseny 2017. április 8. III. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

I. feladat

1.) Az egymástól d távolságra található A és B pontokból egyszerre indítunk el két járművet. Az A-ból indított jármű v1 sebessége B felé irányított, míg a B-ből induló jármű v2 sebessége merőleges az AB szakaszra.

Határozzuk meg a járműveket elválasztó távolság legkisebb értékét!

3 p
2) Egy 10 m/s kezdősebességgel ferdén elhajított test sebessége 0,5 s múlva 8 m/s.

a) Mekkora maximális magasságot ér el, és mennyi idő alatt?

5 p

b) Számítsátok ki a hajítási távolságot!

c) Mekkora a hajítás kezdőpontjához viszonyítva a test helyzetvektorának a modulusza, amikor a sebesség 8 m/s? (g = 10 m/s²)
1 p

II. feladat

Az $m_1 = 2 kg$ tömegű $\alpha = 60^\circ$ -os lejtőn levő $m_2 = 0.5 kg$ tömegű testet állandó F = 5 N vízszintes irányú erővel húzzuk az 1. *ábrán* látható módon. Határozzuk meg, ha nincs súrlódás:

\mathcal{O}	
a) a lejtő gyorsulását a földhöz képest,	6 p
b) az <i>m</i> ₂ tömegű test gyorsulását a földhöz képest,	3 p
c) az F erőnek azt az értékét, amelynek hatására az m_2 tömegű test nem csúszik	
a lejtőn!	1 p

1. ábra

III. feladat

1.) Vízszintes felületen lévő, $m_1 = 4 kg$ és $m_2 = 2.5 kg$ tömegű testekhez elhanyagolható tömegű csigákat rögzítünk. Az ábrán látható módon elhelyezett elhanyagolható tömegű fonállal a rendszert mozgatni kezdjük úgy, hogy a fonál végére vízszintes irányú, állandó F = 2.5 N erőt fejtünk ki. A súrlódás elhanyagolható.

a) Milyen gyorsulással mozognak a testek?

b) Mekkora a fonál azon végének gyorsulása, amelyre az F erőt kifejtjük? 1,5 p

2. ábra

2.) A 2. *ábra* szerinti elrendezésben a rugó kezdetben nyújtatlan, rugóállandója k = 50 N/m, a hasábok tömege m = 0.5 kg. A két test, illetve az alsó test és a talaj között a csúszási és a tapadási súrlódási együttható értéke is $\mu = 0.5$.

a) Az alsó hasábot lassan, egyenletesen jobbra húzzuk. Ábrázoljuk a mozgatáshoz szükséges F húzóerőt az x elmozdulás függvényében a $0 \le x \le 30$ cm intervallumban! 2 p

b) Ezután a rendszer nyugalmi helyzetében az alsó testet különböző távolságokból engedjük el az adott intervallumon belül, megszüntetve az F erőt *x* különböző értékeire. Ábrázoljuk a fenti intervallumban a meginduló testek kezdeti gyorsulását *x* függvényében abban a pillanatban, amikor az alsó testre ható erő megszűnik!

3. *ábra* 5 p

1,5 p