## HG62F SERIES (Hitachi CMOS Gate Array) High I/O to Gate Ratio

**JANUARY, 1990** 

# **@ HITACHI®**

The F series consists of 6 masterslices ranging from 2,178 to 10,076 available gates with high I/O pin counts ranging from 136 pins to 208 pins.

The HG62F series is a mastersliced gate array fabricated on 1.0  $\mu$ m CMOS process with double metal interconnect technology and has a capability of Auto-diagnosis support.

Internal gate delay time is as low as 0.7 nanosecond per gate and output buffer speed is improved as 3.5 ns with maximum drivability of 24 mA output current.

As LSI design is fully automated by DA (Design Automation) system, a desirable LSI can be designed in a short development turn around time by user description of logic diagrams and test vectors.

#### **■ FEATURES**

#### High I/O pin counts

20 to 50% improvement in a comparison with current HG62E series.

\*ex. maximum 152 I/O signal pads for 4,309 gates

#### Auto-diagnosis

Automatic test circuit and test pattern generation

#### · High speed operation

#### · High drivability output

Selective buffers with IOL = 8 mA or 24 mA

#### Low power dissipation

#### · Flexible input and output variations

Input, output and I/O common buffers

Choice of CMOS and TTL I/O interface

Noise reduced output buffers for simultaneous switching operation

Oscillator, Schmitt inputs, pull up/down resistors etc.

#### Design support environment

Hierarchical design capabilities

Fault simulator availability for test pattern evaluation

Automatic test pattern generation

Local design support centers

Variety of EWS interface designs

DAISY, MENTOR, VALID, SYNOPSYS & VERILOG® supported.

Quick development turn around time

Verilog\* is a registered trademark of Gateway Design Automation Corporation.



## ■ LINE UP

|                                     | •        | HG62F22 | HG62F33 | HG62F43 | HG62F58 | HG62F75 | HG62F101 |
|-------------------------------------|----------|---------|---------|---------|---------|---------|----------|
| Gate count                          |          | 2,178   | 3,297   | 4,309   | 5,821   | 7,488   | 10,076   |
|                                     | QFP-100  | ○96     | ○96     | ○ 96    |         |         |          |
| Package type and                    | QFP5-136 | 0128    | ○128    | 0128    | 0128    | 0128    |          |
| max. available<br>Signal pin number | QFP5-168 |         |         | ○152    | 0152    | ○152    | 0152     |
|                                     | QFP5-208 |         |         |         |         | 0 192   | 0 192    |

Notes QFP: QFP1420 QFP5: QFP2828

## ■ ABSOLUTE MAXIMUM RATINGS

| Item Supply Voltage   |                       | Symbol          | Rating                       | Unit |
|-----------------------|-----------------------|-----------------|------------------------------|------|
|                       |                       | V <sub>CC</sub> | -0.3 to +6.7                 | V    |
| Terminal              | Input                 | $V_{TI}$        | -0.3 to +6.7                 | V    |
| Voltage               | Output                | $V_{TO}$        | -0.3 to V <sub>CC</sub> +0.3 | v    |
| Outmut Current        | per one output        | Io              | -32 to +32                   | mA   |
| Output Current        | per one $V_{CC}$ -GND | $I_{OT}$        | -70 to +70                   | mA   |
| Operating Temperature |                       | Topr            | -20 to +75                   | °C   |
| Storage               | with Bias             | Tbias           | -20 to +85                   | °C   |
| Temperature           | without Bias          | $T_{stg}$       | -55 to +125                  | °C   |

## ■ ELECTRICAL CHARACTERISTICS

## • $V_{CC} = 5 \text{ V } \pm 5\%$ , $T_a = 0 \text{ to } +70^{\circ}\text{C}$

| Item                              |                                 | Symbol                                          | Test Conditions                         | min.                | typ. | max.                  | Unit    |
|-----------------------------------|---------------------------------|-------------------------------------------------|-----------------------------------------|---------------------|------|-----------------------|---------|
| Input Voltage (TTL Level)         |                                 | $V_{IHT}$                                       |                                         | 2.2                 | _    | V <sub>CC</sub> +0.3  | V       |
|                                   |                                 | $V_{ILT}$                                       |                                         | -0.3                |      | 0.8                   | v       |
| Input Voltage (CMOS Level)        |                                 | $V_{I\!H\!C}$                                   |                                         | 0.7×V <sub>CC</sub> |      | V <sub>CC</sub> +0.3  | v       |
| Input Voltage                     | e (CMOS Level)                  | $V_{ILC}$                                       |                                         | -0.3                | _    | 0.3 × V <sub>CC</sub> | V       |
|                                   |                                 | $V_{TT}$                                        | V <sub>CC</sub> = 5 V                   | 1.5                 | _    | 2.5                   | v       |
| Schmitt Trigg                     | er (TTL Level)                  | V <sub>TT</sub> -                               | V <sub>CC</sub> = 5 V                   | 0.5                 | -    | 1.5                   | V       |
|                                   |                                 | $\triangle V_{TT}$                              | V <sub>CC</sub> = 5 V                   | 0.3                 | _    | _                     | v       |
|                                   |                                 | V <sub>TC</sub> +                               | V <sub>CC</sub> = 5 V                   | 2.8                 | _    | 4.0                   | V       |
| Schmitt Trigg                     | er (CMOS Level)                 | V <sub>TC</sub> -                               | V <sub>CC</sub> = 5 V                   | 1.2                 | _    | 2.4                   | v       |
|                                   |                                 | $^{-}$ $^{\scriptscriptstyle \triangle V}_{TC}$ | V <sub>CC</sub> = 5 V                   | 0.3                 | _    | _                     | v       |
| 0                                 |                                 | $V_{OH}$                                        |                                         |                     | _    | _                     | V       |
| Output Volta                      | ge $(I_{OL} = 2 \text{ mA})$    | $V_{OL}$                                        | TBD                                     |                     | _    |                       | v       |
| Output Voltage ( $I_{OL}$ = 8 mA) |                                 | $V_{OH}$                                        | $I_{OH} = -2 \text{ mA}$                | 3.5                 | -    | _                     | v       |
|                                   |                                 | $V_{OL}$                                        | $I_{OL} = 8 \text{ mA}$                 | -                   | _    | 0.4                   | v       |
|                                   | (* 12 )                         | $V_{OH}$                                        | TDD.                                    |                     | _    | _                     | v       |
| Output Volta                      | ge $(I_{OL} = 12 \text{ mA})$   | $V_{OL}$                                        | TBD                                     | _                   |      |                       | v       |
| 0                                 | (1 24 1)                        | $V_{OH}$                                        | $I_{OH} = -12 \text{ mA}$               | 3.5                 | _    |                       | V       |
| Output Volta                      | ge ( $I_{OL} = 24 \text{ mA}$ ) | $V_{OL}$                                        | <i>I<sub>OL</sub></i> = 24 mA           | _                   | _    | 0.4                   | V       |
| Input Leakag                      | e Current                       | $I_{LI}$                                        |                                         | _                   | _    | 1                     | μΑ      |
| Output Leaka                      | ige Current                     | $I_{LO}$                                        | at high impedance                       | -                   | _    | 1                     | μΑ      |
| Pull-up Curre                     | nt                              | $I_{PU}$                                        | $V_{IN}$ = GND                          | 80                  | 220  | 550                   | μА      |
| Pull-down Cu                      | rrent                           | $I_{PD}$                                        | $V_{IN} = V_{CC}$                       | 80                  | 220  | 550                   | μΑ      |
|                                   | Internal                        | $t_{pd}$                                        | 2 input NAND, FO = 2, $A\hat{x}$ = 2 mm |                     | 0.7  | _                     | ns      |
| Gate Delay                        | Input Buffer                    | $t_{pd}$                                        | FO = 2, AQ = 2 mm                       | _                   | 3.5  | -                     | ns      |
|                                   | Output Buffer                   | $t_{pd}$                                        | $C_L$ = 50 pF                           | _                   | 1.2  | -                     | ns      |
| Power Dissipa                     | ition                           | $I_{CC}$                                        | Internal 2 input NAND at 10 MHz         |                     | 40   | _                     | μA/Gate |

## • $V_{CC} = 5 \text{ V} \pm 5\%$ , $T_a = -20 \text{ to } +75^{\circ}\text{C}$

| Ite                                     | m                          | Symbol                                  | Test Conditions                           | min.                | typ. | max.                 | Unit    |
|-----------------------------------------|----------------------------|-----------------------------------------|-------------------------------------------|---------------------|------|----------------------|---------|
|                                         |                            | $V_{I\!HT}$                             |                                           | 2.4                 | _    | V <sub>CC</sub> +0.3 | v       |
| Input Voltage (TTL Level)               |                            | $V_{ILT}$                               |                                           | -0.3                |      | 0.8                  | v       |
| Innut Voltage (CMOS I area)             |                            | $V_{I\!H\!C}$                           |                                           | 0.7×V <sub>CC</sub> | _    | V <sub>CC</sub> +0.3 | V       |
| Input Voltage (                         | Input Voltage (CMOS Level) |                                         |                                           | -0.3                | _    | $0.3 \times V_{CC}$  | V       |
|                                         |                            | $V_{TT^{\pm}}$                          | <i>V<sub>CC</sub></i> = 5 V               | 1.5                 | _    | 2.5                  | v       |
| Schmitt Trigger                         | (TTL Level)                | V <sub>TT</sub> -                       | V <sub>CC</sub> = 5 V                     | 0.5                 | _    | 1.5                  | v       |
|                                         |                            | $^{\scriptscriptstyle \triangle}V_{TT}$ | <i>V<sub>CC</sub></i> = 5 V               | 0.3                 | _    | -                    | v       |
|                                         |                            | $V_{TC}^+$                              | V <sub>CC</sub> = 5 V                     | 2.8                 | _    | 4.0                  | V       |
| Schmitt Trigger                         | (CMOS Level)               | V <sub>TC</sub> -                       | V <sub>CC</sub> = 5 V                     | 1.2                 | _    | 2.4                  | v       |
|                                         |                            | $^{\triangle V}TC$                      | V <sub>CC</sub> = 5 V                     | 0.3                 | -    | _                    | V       |
| Output Voltage ( $I_{OL}$ = 2 mA)       |                            | $V_{OH}$                                | TIPE                                      |                     | _    | _                    | V       |
|                                         |                            | $V_{OL}$                                | TBD                                       | -                   |      |                      | V       |
| Output Voltage (I <sub>OL</sub> = 8 mA) |                            | $V_{OH}$                                | $I_{OH} = -2 \text{ mA}$                  | 3.5                 | -    | _                    | V       |
| Output voitage                          | $(I_{OL} = 8 \text{ mA})$  | $V_{OL}$                                | I <sub>OL</sub> = 8 m A                   | _                   | _    | 0.4                  | V       |
| Output Valtage                          | (I = 12 m A)               | $v_{OH}$                                | TBD                                       |                     | _    |                      | V       |
| Output Voltage                          | (IOL - 12 IIIA)            | $v_{OL}$                                | 180                                       | _                   |      |                      | V       |
| Output Voltage                          | (I 24 m A)                 | $V_{OH}$                                | $I_{OH} = -12 \text{ mA}$                 | 3.5                 | _    |                      | V       |
| Output voltage                          | (IOL - 24 IIIA)            | $V_{OL}$                                | <i>I<sub>OL</sub></i> = 24 mA             | _                   |      | 0.4                  | V       |
| Input Leakage C                         | Current                    | $I_{L\!I}$                              |                                           | _                   |      | 1                    | μA      |
| Output Leakage                          | Current                    | $I_{LO}$                                | at high impedance                         | -                   | _    | 1                    | μA      |
| Pull-up Current                         |                            | $I_{PU}$                                | $V_{I\!N}$ = GND                          | 80                  | 220  | 550                  | μΑ      |
| Pull-down Curre                         | ent                        | $I_{PD}$                                | $V_{IN} = V_{CC}$                         | 80                  | 220  | 550                  | μΑ      |
| 1                                       | Internal                   | $t_{pd}$                                | 2 input NAND, FO = 2, $AQ = 2 \text{ mm}$ | _                   | 0.7  | _                    | ns      |
| Gate Delay                              | Input Buffer               | $t_{pd}$                                | FO = 2, Al = 2 mm                         | _                   | 1.2  | -                    | ns      |
|                                         | Output Buffer              | $t_{pd}$                                | $C_L$ = 50 pF                             | -                   | 3.5  |                      | ns      |
| Power Dissipation                       | on                         | $I_{CC}$                                | Internal 2 input NAND at 10 MHz           | _                   | 40   | _                    | μA/Gate |

## ■ TERMINAL CAPACITANCE ( $T_a = 25$ °C, f = 1 MHz)

| Item                 | Symbol | Test Conditions        | min. | typ. | max. | Unit |
|----------------------|--------|------------------------|------|------|------|------|
| Terminal Capacitance | $C_T$  | $V_{in} = 0 \text{ V}$ | _    | _    | 12.5 | pF   |

<sup>\*</sup>This parameter is sampled and not 100% tested.

#### DEVELOPMENT FLOW

Development flow of gate arrays is shown below. Logic design and test patterns development are done by users. These are fed to a computer which performs logic simulation. The machine drawn logic diagram is checked by the user. After the logic simulation and timing rule check, fault simulation is performed with test patterns designed by user to verify logic design. Auto-diagnosis detects the faults which fault simulation could not find. Then automatic layout and delay check of critical path are performed. After these design check, PG tape and test tape are generated. Sample production takes very short time because it needs only metal wiring on inventory wafers.

Finished wafers are probed with following two test patterns,

of users design and auto-generation, then assembled, tested again and shipped.

There are two standard interfaces between a user and Hitachi, Namely:

#### (1) Logic diagram interface

The user supplies logic diagram and test patterns to Hitachi. Further jobs are done by Hitachi except for same confirmation by the user.

#### (2) Logic file interface

The user performs simulations by himself on his EWS, simulator or Hitachi's terminal for design. Then the user supplies Hitachi with complete logic file. Our engineers are willing to support the customer.



#### AUTO-DIAGNOSIS

Following is a schematic diagram of auto-diagnosis using scan bus. Auto-diagnosis requires such signals as address and scan bus assigned to flip-flop, read/write line, test clock etc. Diagnosis control circuit including address decoder controls these signals. Normal pin can be used as the pin of address and scan bus. Two test dedicated pins are required to control

the test control circuit. Use flip-flops with scan (read/write) function, which consist of master part (performs normal functions) and slave part (latches data for a time). When you design logic, it is not necessary to take the circuits mentioned before into consideration.



The algorithm of combination circuit is not so complex, it is possible to generate high fault coverage of test patterns. But if the circuit includes flip-flops, it is difficult to get high fault coverage. Entire circuit is partitioned into combination circuits separated by flip-flops. Flip-flops are regarded as I/O terminals using scan bus. DA will generate the test patterns of every combination circuit separated by flip-flops.

#### Procedure

#### (1) Auto-generation of test circuit

DA system will generate all test circuits; test control circuit, multiplexer, address, scan bus and clock after the logic verification by simulation.

#### (2) Auto-generation of test patterns

DA system will generate test patterns. The following is an example of testing combination circuit CC1 in the diagram.

- ① Scan in the data for CC1 testing at the slave side of flip-flop. Select address A1, then data is transmitted by the route of external I/O Pin  $\rightarrow$  Scan bus  $(SB_1) \rightarrow W_1 \rightarrow F_1M$   $\rightarrow F_1S$ .
- ② The data passed CC1 is transmitted to flip-flop. The circuit becomes normal operation mode and the data is transmitted by the route of  $F_1S \rightarrow CC1 \rightarrow F_2M$ .
- ③The data in flip-flop is scanned out on external I/O Pin. Select address  $A_2$ , then data is transmitted by the route of  $F_2M \rightarrow F_2S \rightarrow SB_1 \rightarrow external$  I/O Pin.

Apply these procedure to generate high fault coverage of test patterns based on the fault detection algorithm of combination circuit.

| No. | Item                | Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Examples                                                                                                                                                                                                         |  |  |
|-----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.  | Forms               | Size A-3 forms supplied by Hitachi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |  |  |
| 2.  | Logic symbol        | <ol> <li>(1) Draw logic diagram with exactly the same symbols as shown in Macrocell Library including function name, terminal name and the size.</li> <li>(2) The internal symbol surrounded by dotted line can be omitted but macro function name must be described and the position of terminal can not be changed instead.</li> <li>(3) The template shall be provided.</li> <li>(4) 3-state gate will occupy 2 blocks in the drawing form.</li> </ol>                                                                                                                | Function name FDPC3 CK + Q Pin function name PR CL Open terminal (#may be omitted)                                                                                                                               |  |  |
| 3.  | Characters          | <ol> <li>2 to 3mm higher or larger alphabets, +, -,</li> <li>to 9 in total 38 characters.</li> <li>The letters shown in the table must be written as in the bottom column.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                    | Alphabet I J O U Script i j ō u                                                                                                                                                                                  |  |  |
| 4.  | Signal/element name | <ol> <li>Give name all LSI pins within 8 letters.</li> <li>Give name elements and internal signals within 14 letters. You can use different names for element and its output signal. For easy reference of signal name,</li> <li>Use same name for a element and its output when it has only one output signal.</li> <li>For the output signal names, use the combined names of element and its output terminals, when it has two or more output terminals.</li> <li>It is easier to name a macrocell by using its location and page number of logic diagram.</li> </ol> | ABC (element name)  ABC (signal name)  XYZ (element name)  LD  G  XYZ+Q (signal name)  D  XYZ-Q (signal name)                                                                                                    |  |  |
| 5.  | Hierarchical design | The user can define his own macrocell as block (UD macro) and also can define blocks within the block.  (1) Give name to the macrocells which composes UD macro within 14 letters.  (2) Name input and output terminals of UD macro within 4 letters.  (3) Give functional name to UD macro within 8 letters. Don't use letter '-' (minus) in the UD macro name.  (4) For the symbol size of a UD macro, the width is the 'A' size of the template. Hight can be determined in proportion to the number of input or output terminals.                                    | AB (within 14 letters)  C Input terminal name (within 4 letters)  UD macro function name (within 8 letters)  MACRO1  B  C  C  C  Input terminal name (within 4 letters)  Output terminal name (within 4 letters) |  |  |



| No. | Item            | Rules                                                                                                                                                                                                                                                                                                                                                                                                  | Examples                                   |
|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|     |                 | Now, UD-macro can be used in a same way as macrocells in cell library.  For users' convenience it is recommended to give element or signal names 8 letters or less.  User has to deal with the longer names proportion to the depth of hierarchical level in the simulation.                                                                                                                           |                                            |
| 6.  | Signal line     | <ul> <li>(1) LSI input/output signal must be shown by and LSI pin number in [ ].</li> <li>(2) Up to three lines can be connected to one junction point</li> </ul>                                                                                                                                                                                                                                      | (good) (no good)                           |
| 7.  | Symbol layout   | <ol> <li>(1) A signal should flow from left to right.</li> <li>(2) No symbol is allowed to be placed in the first, the 13th column and in the R row.         (Shadow area)</li> <li>(3) Keep at least one spacing row every four adjacent occupied rows to keep area for wiring.</li> <li>(4) Keep at least one spacing column in every other column, to assure indication of signal names.</li> </ol> | A                                          |
| 8.  | Cross reference | (1) When signal line extends to another sheet of machine drawing, following informations are indicated automatically.  K15, B-10  logic location to be connected  page number of logic diagram to be connected  terminal specification of signal destination  KSink  SSource  Z3-state output  N3-state control                                                                                        | 1 2 3 4 5 12 13  A B C Q R Cross reference |



## ■ DESTINATION OF TEST PATTERNS

| Timing format  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Examples                                                          |                                                                                                                                                                                                                                                                                  |                                               |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
|                |                                                                                                                   | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 300 ns                                                                                                                                                                                                                                                                           |                                               |  |  |
|                | (1) 3 different format of input signal                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Timing<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                       | d(ns)                                                                                                                                                                                                                                                                            | w(ns)                                         |  |  |
|                | DT = d                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  |                                               |  |  |
|                | PP d l                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  |                                               |  |  |
|                | NP +d                                                                                                             | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  | 150                                           |  |  |
|                | (2) I strobe timing for output                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NP                                                                | 70                                                                                                                                                                                                                                                                               | 100                                           |  |  |
|                | (-)                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  |                                               |  |  |
|                | s i                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  |                                               |  |  |
|                | + + + + + + + + + + + + + + + + + + + +                                                                           | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | 250 ns                                                                                                                                                                                                                                                                           |                                               |  |  |
| T              |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  |                                               |  |  |
| l'est patterns |                                                                                                                   | Signal na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | me I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Format                                                            | Pin No.                                                                                                                                                                                                                                                                          | Timing                                        |  |  |
|                | iC = input (CMOS Level)                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iT                                                                | 15                                                                                                                                                                                                                                                                               | 1,                                            |  |  |
|                | iTO = I/O (TTL Level)                                                                                             | INP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iC                                                                | 7                                                                                                                                                                                                                                                                                | I <sub>3</sub>                                |  |  |
|                | OT = output                                                                                                       | RHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iTO.                                                              | 41                                                                                                                                                                                                                                                                               | Io                                            |  |  |
|                |                                                                                                                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                               | 71                                                                                                                                                                                                                                                                               | 10                                            |  |  |
|                |                                                                                                                   | OUT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОТ                                                                | 22                                                                                                                                                                                                                                                                               |                                               |  |  |
|                |                                                                                                                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  |                                               |  |  |
|                | Output H, L, Z, X, M  (Note 1) P or N shows an active pulse in PP and                                             | 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | output s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | strobe tim                                                        | ing is O.                                                                                                                                                                                                                                                                        | 25                                            |  |  |
|                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 30; 5, 10                                                       | 0, 6/20, 2                                                                                                                                                                                                                                                                       |                                               |  |  |
|                | X indefinite or masked                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0                                                               | 1                                                                                                                                                                                                                                                                                | 0                                             |  |  |
|                | (Note 3) Black can be applied for no signal change.                                                               | 0 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z 0 L                                                             |                                                                                                                                                                                                                                                                                  | Н                                             |  |  |
|                | describe the following at the beginning                                                                           | ХН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н                                                                 |                                                                                                                                                                                                                                                                                  | L                                             |  |  |
|                | HORIZONTAL sc, ec; $s_1$ , $e_1$ , $n_1/s_2$ , $e_2$ , $n_2/$                                                     | H L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                 |                                                                                                                                                                                                                                                                                  | L                                             |  |  |
|                | Signal block                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                  |                                               |  |  |
|                | sc~ec: valid column range for test patterns ni: repeat number si: start column of repeat ei: end column of repeat | column ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd end co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lumn of de                                                        | escribed p                                                                                                                                                                                                                                                                       | atterns                                       |  |  |
|                | Test patterns                                                                                                     | Test patterns  (1) Specify signal order.  iT = input (TTL Level)  iC = input (CMOS Level)  iTO = I/O (TL Level)  iCO = I/O (CMOS Level)  OT = output  ODN = open drain output  (2) Describe test pattern with following expression. Horizontal axis shows time.  DT format  PP format  Output  NP format  (Note 1) P or N shows an active pulse in PP and NP format.  (Note 2) Zhigh impedance  Xindefinite or masked  Mmasked  (Note 3) Black can be applied for no signal change.  (3) When the same patterns are repeated, describe the following at the beginning of signal block.  HORIZONTAL sc, ec; s <sub>1</sub> , e <sub>1</sub> , n <sub>1</sub> /s <sub>2</sub> , e <sub>2</sub> , n <sub>2</sub> /  Signal block  sc~ec: valid column range for test patterns  n: repeat number  si: start column of repeat | Test patterns  (1) Specify signal order.  IT = input (TTL Level)  IC = input (CMOS Level)  IT = input (TTL Level)  IC = input (CMOS Level)  IT = input (TTL Level)  INP-  INP  INP | Test patterns  (1) Specify signal order.    T = input (TTL Level) | Test patterns  (1) Specify signal order.  If = input (TTL Level) IC = input (CMOS Level) IT O = I/0 (TTL Level) IC = 3. state output ODN = open drain output ODN = open drain output (2) Describe test pattern with following expression. Horizontal axis shows time.  DT format | Test patterns  (1) Specify signal order.    1 |  |  |

| No. | Item                                                                                                                                                                                                                                                             | Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Examples                                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 3   | Fault coverage<br>and auto-<br>generation of<br>test patterns                                                                                                                                                                                                    | <ol> <li>Auto generated test patterns detects the faults which test patterns of user's design have not detected.         Two test patterns, of user's design and autogeneration, are available for final testing of products.</li> <li>Auto-generated test patterns is to increase the fault coverage. It disregards the real time function of user's hardware. Therefore, user has to design test patterns taking real time function into consideration.         When auto-diagnosis is not required, the final test of products is performed only with test patterns designed for logic verification.         Fault coverage of test patterns shall be as high as possible (final target ≥ 95%). Undetected faults by the test patterns is strongly suggested to be checked in the system test at the user's assembly line.</li> </ol> |                                                                                         |
| 4   | Contents of test patterns                                                                                                                                                                                                                                        | It is requested to submit following two test patterns, functional test patterns and high speed test patterns which are generated under the timing restriction show below respectively. In low speed application, it is allowed to omit high speed test patterns.  (1) Functional test  T≥ 150, d≥ 20, w≥ 50  T-(d+w)≥ 20, 0≤S <t (2)="" (b)="" (c)="" along="" and="" critical="" delay="" dynamic="" function.="" high="" hold="" input="" measure="" of="" output.="" path="" real="" set="" skew="" specified="" speed="" td="" test="" time="" time.<="" to="" up=""><td>S  (2) High speed test (a) Cycle test Corresponding 40 MHz When assuming w = 12.5 d w w</td></t>                                                                                                                                                            | S  (2) High speed test (a) Cycle test Corresponding 40 MHz When assuming w = 12.5 d w w |
|     |                                                                                                                                                                                                                                                                  | Cycle test         Delay test         Skew test           T         500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) Skew test                                                                           |
|     |                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccc} d & \geq 20 & 0 & \geq 20 \\ \hline w & \geq 12.5 & - & \\ s & 450 & \geq 0 & 450 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clock Data testing set-up time                                                          |
| 5   | Limitation of test patterns  (1) Up to 10 sets of test patterns.  (2) Up to 30000 test cycles after expanding the rein a set of test patterns.  (3) Total steps for all sets of test patterns.  (Repeat is counted as 1 time) is limited as show table on right. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F22~F43         4000           F58         6000         4000                            |

## ■ NOTES FOR LOGIC DESIGN

| No. | Item                                                           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lotes                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | Utilization  Auto-diagnosis                                    | Must be 90% or less in order to place and route successfully. When auto-diagnosis is used, must be 85% or less.  Auto-diagnosis causes overhead. You have to take overhead into consideration when auto-diagnosis is required.  The estimation of overhead depends on the numbers of latches, flip-flops and shift resistors (N <sub>F</sub> ). The right equation shows the calculation.  (1) Need two test dedicated pins. (2) Use latch, flip-flop and shift resistor                                                                                         | Maximum gate counts to be used actually.         F22       F33       F43       F58       F75       F101         1960       2970       3880       5240       6740       9070         (1850)       (2800)       (3660)       (4950)       (6360)       (8560)         ( ): When auto-diagnosis is used.         [Maximum gate counts] ≥ (gate counts in user's log + 1.7 × N <sub>F</sub> |
| 3.  | Gate delay                                                     | with scan function.  Gate delay is obtained more accurately after place and route. However rough estimate should also be done using the equations shown right to prevent timing design errors in the earlier design phase.  Effective Fan Out is calculated as sum of Normalized Loading Factor of the output node. These equation may contain the design margin a little bit.                                                                                                                                                                                   | tplh = tolh + Klh.Cl<br>tphl = tohl + Khl.Cl<br>Where, for internal gates<br>Cl = 0.4 x EFO<br>EFO = Σ NLF<br>Variational range:<br>Min = 0.35 x typ<br>Max = 1.8 x typ<br>(Ta = -20 to +75°C, VCC = 5V±5%)                                                                                                                                                                             |
| 4.  | Maximum fanout                                                 | A clock driver, which drives CK inputs of FF's, has a restriction on the number of applicable fanouts, though the other signals have no limitation if lower speed is acceptable.                                                                                                                                                                                                                                                                                                                                                                                 | O Max. Fanout of CK driver Power Inverter 20/30/40 The others 10 The other signals 24                                                                                                                                                                                                                                                                                                   |
| 5.  | Automatic<br>Modification of<br>unconnected<br>inputs of macro | When an input of a macro is left unconnected, the automatic router connects it to either VCC ("1" level) or GND ("0" level). The macrocell list shows which input of each macro will be connected to which level. An input of AND or NAND gates will be connected to VCC, and that of OR or NOR gates to GND, even though these are not indicated in the list. "@" beside an input shows that the input will be connected to VCC, and "#" to GND. It is not allowed to leave an input unconnected dropping "@" nor "#" except the cases of AND, NAND, OR or NOR. | When inputs are left open, input A will be fixed to "1".                                                                                                                                                                                                                                                                                                                                |
| 6.  | Simultaneous<br>Turn on/off of<br>Output Buffers               | The number of output buffers which simultaneously change their output levels must be equal to or less than the figures in the table respectively depending on the buffers.                                                                                                                                                                                                                                                                                                                                                                                       | Buffer         max. number           OT3, OZ3, ODN3         8           OT3R, OZ3R, ODN3R         12                                                                                                                                                                                                                                                                                    |
| 7.  | Testing                                                        | <ol> <li>(1) All the logic must be able to be initialized by external inputs.</li> <li>(2) Restriction due to the Simulator.</li> <li>(a) When one or more inputs associated with FF such as CK, CL and PR is indefinite the output is also indefinite. For example, output of FF will not be fixed when CK input is indefinite even if it is quite evident logically that CK input is stable either in high or low level.</li> </ol>                                                                                                                            | CLK DQ DQ DQ  indefinite CK +Q CLR  CLR  CLR                                                                                                                                                                                                                                                                                                                                            |

| No. | Item   | No                                                                                                                                                                                                                                                                      | otes                                                          |
|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|     |        | <ul> <li>(b) For the given logical variables X, Y, suppose that there is the following relation between them X = Y When X or Y is indefinite, both X + Y and X · Y are also indefinite contrary to the theoretical result.</li> </ul>                                   | indefinite indefinite                                         |
| İ   |        | (3) It is preferable to split a multistage shift registers and/or counters to provide test signals in the proper positions in order to improve the efficiency of testing.                                                                                               | -1-1                                                          |
|     |        | (4) It is preferable to provide test clock in addition to the original clock whose frequency is much lower than other clocks such as a system clock.                                                                                                                    | DOUT DOUT TEST                                                |
|     |        | (5) The figure shows an example of additional test logic to generate several test signals from a single TEST pin, which is helpful when we suffer from the shortage of pins.  Another example shown here is to share the output pin to monitor another internal signal. | A-IN TEST1  B-IN TEST2  from anywhere  TEST3  OUT             |
|     |        | (6) It is very important to do timing design of test logic as well. Is test logic speed OK? Won't unexpected events occur at the transition time from test to normal mode or contrary?                                                                                  | TEST CLK Unexpected glitch will occur when TEST turns on/off. |
| 8.  | Others | (1) As far as a macro is concerned, one signal is prohibited to be employed to multi-input terminals.                                                                                                                                                                   | <b>-⊑</b> >-                                                  |
|     |        | (2) Output-to-output connection is not allowed except among 3-state buffers.                                                                                                                                                                                            |                                                               |
|     |        | (3) A chopper circuit using gate delay is prohibited.                                                                                                                                                                                                                   | \tag{\tag{\tag{\tag{\tag{\tag{\tag{                           |
|     |        | (4) Oscillator circuit should be built as shown. OSC IN and OSC OUT pins should be assigned next to the pins which never change their levels, such as $V_{CC}$ and GND.                                                                                                 | OSCIN XIN OXCOUT XOUT                                         |
|     |        | <ul> <li>(5) Internal bus lines should be prevented from floating,</li> <li>Dummy 3-state buffer is recommended to be added.</li> </ul>                                                                                                                                 | EA DA EB EB EB EB EC EC EC                                    |

## ■ LOGIC DIAGRAM



## ■ EXAMPLE OF LOGIC DESCRIPTION

| LSI profile              | BEGIN PROFILE<br>BEGIN PRODUC<br>IMPLEMENT<br>ROOTBLOCK<br>ARRANGE D                                                  | GATEARR<br>K BOX1<br>P40B0                                                                                                                                       | AY SERIE                                                            | S (HG62F43) ARRAY (HG62F)                                                                                                                                                                                                  | Device Type, master<br>type, package type                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                          | BIGIN PIN  1 INPUT  2 INOUT  3 OUTPUT  4 OUTPUT  10 INPUT  11 INPUT  14 INPUT  END PIN  END PRODUCT  END PROFILE      | RW OUTC OUTB OUTA IN CLK ARO                                                                                                                                     | _                                                                   |                                                                                                                                                                                                                            | Pin assignment                                                                                                      |
| Schematic<br>description | BIGIN LOGIC BEGIN BLOCK B INTERFACE BEGIN NETL G11 G1 G2 G3 AR G4 FD1 G5 G6 BN1 LBL2 LBL1 LD1 G8 G7 G10 G9 END NETLIS | RW, IN, CLI IST (L3, ,1) (B3, ,1) (D3, ,1) (F3, ,1) (L4, ,1) (C4, 1) (J5, ,1) (D5, ,1) (F5, ,1) (G7, ,1) (C7, ,1) (B8, ,1) (E11, ,1) (G9, ,1) (E9, ,1) (C11, ,1) | IT IT IT IT IT IT NR2 NA1 FD ANZ ANZ NA2 BOX2 BOX2 LD OT OT NA3 ITO | ARO; G11 CLK; G1 RW; G2 IN; G3 G11; PCA G1; G4 G3, PCA; FD1A G4, G2; WAND G1, G3; WAND WAND, FD1A; BN1 BN1, WAND; LBLB WAND, G1; LBLA G1, LBLA; LD1A, LD1B C10; OUTA LBLB; OUTB IO1, LD1B, LBLB; G10 LDIA, LBLB; IO1; OUTC | Element name  Location of symbol  G4 (C4, 1) NA1 G1; G4  Macro function name  Input signal name  Output signal name |

|               | BEGIN BLOCK BOX2                                 | Description of BOX2                |
|---------------|--------------------------------------------------|------------------------------------|
|               | INTERFACE C2, C1; CZ                             | (User defined macro)               |
|               | SHAPE; J4, 2, A3                                 |                                    |
|               | BEGIN NETLIST                                    |                                    |
|               | CX (D3, ,2) NA1 C1; $CX$                         |                                    |
|               | CY (F5, ,2) NA2 CX, C2; CY                       |                                    |
|               | PBK1 (F7, ,2) BOX3 C2, CY, CX; CZ<br>END NETLIST |                                    |
| ·             | END BLOCK                                        |                                    |
| _             | BEGIN BLOCK BOX3                                 | Description of BOX3                |
|               | INTERFACE P3, P2, P1; NP                         | (User defined macro)               |
|               | SHAPE; J6, 1, A3                                 | (Oser defined macro)               |
|               | BEGIN NETLIST                                    |                                    |
|               | NG (E3, ,3) NA1 P3; NG                           |                                    |
|               | ER (D4, ,3) EOR P2, NG; ER                       |                                    |
|               | NP (B5, ,3) NAP2 P1, ER; NP                      |                                    |
|               | END NETLIST                                      |                                    |
|               | END BLOCK                                        |                                    |
|               | END LOGIC                                        |                                    |
| Test patterns | BEGIN TEST                                       | Definition of timing               |
|               | BEGIN PATTERN CASE1                              |                                    |
|               | BLOCKNAME BOX1                                   |                                    |
|               | TIMING TRATE (150. 0N) STRB (120. 0N)            |                                    |
|               | BEGIN SIGNAL                                     | 1                                  |
|               | AR0 DT (20. 0N)                                  | 1                                  |
|               | CLK DT (0. 0N)                                   |                                    |
|               | IN PP (50. 0N, 100. 0N)                          |                                    |
|               | OUTA                                             |                                    |
|               | OUTB                                             |                                    |
|               | OUTC DT (0. 0N)                                  |                                    |
|               | RW NP (50. 0N, 100. 0N)                          |                                    |
|               | END SIGNAL                                       |                                    |
|               | BEGIN VECTOR                                     | Description of test patterns       |
|               | HORIZONTAL 1,                                    |                                    |
|               | 1010101 AR0<br>1100101 CLK                       | In this case, the horizontal axis  |
|               | POPOPOP IN                                       | shows time, but there is           |
|               | LLLLLL OUTA                                      | another way of description         |
|               | LLLLLL OUTB                                      | that the vertical axis shows time. |
|               | 111H1H1 OUTC                                     |                                    |
|               | N1 N1 111 RW                                     |                                    |
|               | END VECTOR                                       |                                    |
|               | END PATTERN                                      |                                    |
|               | END TEST                                         |                                    |
| Verification  | BEGIN VERIFY                                     | Condition of logic simulation      |
|               | BEGIN LOGSIM CASE1                               | condition of logic simulation      |
|               | TESTNAME CASE1                                   |                                    |
|               | DELAY TYPICAL                                    |                                    |
|               | LOADC FANOUT                                     |                                    |
|               | DEFAULT STRB (120. 0N)                           |                                    |
|               | BEGIN MONITOR MON1                               |                                    |
|               | BOX1. LBL1. CX STRB (140. 0N)                    |                                    |
|               | BOX1. LBL2. CX STRB (140. 0N)                    |                                    |
|               | END MONITOR                                      |                                    |
|               | COMPARE                                          |                                    |
|               | SRL SIGNAL (EXTERNAL' MONITOR (MON1))            |                                    |
|               | SRF SIGNAL (EXTERNAL, MONITOR (MON1))            |                                    |
|               | ERROR CONFLICT' TIME (10, 0N, 10. 0N)            |                                    |
|               | FAULT SEPARATE (1,999), ASSUME (1), DETECT (2),  |                                    |
|               | MODIFY                                           |                                    |
|               | STOP 7                                           |                                    |
| 1             | END LOGSIM                                       |                                    |
|               | BEGIN TIMING TIM1                                | Specification of timing            |
|               | TESTNAME CASE1                                   | verification                       |
| 1             | DELAY TYPICAL                                    |                                    |
| ı             |                                                  |                                    |
|               | LOADC ROUTING                                    |                                    |
|               | LOADC ROUTING END TIMING END VERIFY              |                                    |



## ■ MACRO CELL LIBRARY

## 1. Input/Output Buffers

| M                          | lacrocell          |                    |                |                |                 |                  |                     | Delay           |                     |                    |
|----------------------------|--------------------|--------------------|----------------|----------------|-----------------|------------------|---------------------|-----------------|---------------------|--------------------|
| Function                   |                    | Equiva-            | Normalized     | Clamp<br>Level |                 | C b al           | tPLH                | (ns)            | t <sub>PHL</sub>    | (ns)               |
| Macro<br>Function Name     | Equivalent Circuit | lent Gate<br>Count | Load<br>Factor | when<br>Open   | Symbol          | Symbol<br>No.    | tOLH                | k <sub>LH</sub> | tOHL                | k <sub>HL</sub>    |
| Input Buffer<br>TTL Level  | Vcc CND            |                    | _              |                |                 | D1               | 0.6                 | 0.3             | 0.8                 | 0.3                |
| Input Buffer<br>CMOS Level | Vcc GND            | _                  | -              |                |                 | D1               | 0.5                 | 0.3             | 0.9                 | 0.3                |
| SCHMITT<br>TTL Level       | Vec                |                    |                |                |                 | D1               | 2.5                 | 1.3             | 9.2                 | 2.0                |
| SCHMITT<br>CMOS Level      | Vcc                | _                  | -              |                |                 | D1               | 2.0                 | 0.6             | 3.6                 | 1.1                |
| OUTPUT<br>OT3              | Vcc GND            | _                  | 1.1            |                | TP>8mA          | D1               | 1.8                 | 0.06            | 3.7                 | 0.06               |
| 3-State<br>OUTPUT          | E-Dollow CVID      | _                  | 1.0<br>1.4     |                | s <sub>mA</sub> | (E)<br>D1<br>(D) | 2.2                 | 0.06            | 3.9                 | 0.06               |
| Open Drain<br>Output       | Vcc                | _                  | 1.1            |                | OD 8mA          | D1               | (t <sub>OLZ</sub> ) |                 | (t <sub>OZL</sub> ) | (k <sub>ZL</sub> ) |

| M                             | acrocell                    |                    |                |                |         |               |               | Delay           |        |        |
|-------------------------------|-----------------------------|--------------------|----------------|----------------|---------|---------------|---------------|-----------------|--------|--------|
| Function                      |                             | Equiva-            | Normalized     | Clamp<br>Level | }       |               | tPLI          | (ns)            | tpHI   | L (ns) |
| Macro<br>Function Name        | Equivalent Circuit          | lent Gate<br>Count | Load<br>Factor | when<br>Open   | Symbol  | Symbol<br>No. |               | k <sub>LH</sub> | tOHL   | kHL    |
| I/O Buffer<br>TTL Level       | Output<br>See "3-state"     |                    | 1.0            |                | 8mA     |               | Outr<br>See ' | out<br>'3-stat  | e"(OZ  | 23)    |
| ITO3                          | Input<br>See "Input Buffer" | _                  | 1.4            |                |         | D2            | Inpu<br>See ' | t<br>Input      | Buffer | -,,,   |
| I/O Buffer<br>CMOS Level      | Output<br>See "3-state"     |                    | 1.0            |                | 8mA     | D2            | Outr<br>See   |                 | e"(OZ  | 3)     |
| ICO3                          | Input<br>See "Input Buffer" | _                  | 1.4            |                |         | D2            | Inpu<br>See ' | t<br>'Input     | Buffer | .,,,   |
| I/O Buffer<br>TTL<br>SCHMITT  | Output<br>See "3-state"     |                    | 1.0            |                | 8mA     |               | Outp<br>See   | out<br>'3-stat  | e"(OZ  | 23)    |
| Level ITSO3                   | Input<br>See "Input Buffer" | _                  | 1.4            |                |         | D2            | Inpu<br>See ' | t<br>'Input     | Buffer | .>>    |
| I/O Buffer<br>CMOS<br>SCHMITT | Output<br>See "3-state"     |                    | 1.0            |                | 8mA     | <b>D</b> 0    | Outp<br>See   |                 | e"(OZ  | 3)     |
| Level<br>ICSO3                | Input<br>See "Input Buffer" |                    | 1.4            |                |         | D2            | Inpu<br>See ' | t<br>'Input     | Buffer | .,,    |
| OSC In<br>2MHz to<br>20MHz    | Vcc                         |                    | _              |                | NIN NIN | D1            | 3.1           | 0.8             | 3.2    | 0.8    |
| OSC Out<br>2MHz to<br>20MHz   | Vcc                         | -                  | _              |                | XOUT    | D1            | 4.0           | 1.2             | 2.5    | 0.9    |
| OSC In<br>32kHz to<br>400kHz  | Vcc                         |                    | _              |                | XIN I   | D1            | 3.1           | 40              | 3.2    | 40     |
| OSC Out<br>32kHz to<br>400kHz | Vcc                         | _                  | _              |                | XOUTI   | D1            | 4.0           | 1.2             | 2.5    | 0.9    |
| XOUT1                         | 4C<br>gnd                   |                    |                |                |         |               |               |                 |        |        |

| M                                                       | facrocell          |                    |                |                |        |               | ]                | Delay           |                  |                 |
|---------------------------------------------------------|--------------------|--------------------|----------------|----------------|--------|---------------|------------------|-----------------|------------------|-----------------|
| Function                                                |                    | Equiva-            | Normalized     | Clamp<br>Level |        | G             | tPLH             | (ns)            | t <sub>PH1</sub> | (ns)            |
| Macro<br>Function Name                                  | Equivalent Circuit | lent Gate<br>Count | Load<br>Factor | when<br>Open   | Symbol | Symbol<br>No. | t <sub>OLH</sub> | k <sub>LH</sub> | tOHL             | k <sub>HL</sub> |
| Input Buffer<br>TTL Level<br>with Pull-Up               | Vcc                | _                  | _              |                | T      | D2            | 0.6              | 0.3             | 0.8              | 0.3             |
| Input Buffer<br>TTL Level<br>with Pull-<br>Down<br>ITD  | Vcc GND            | _                  | _              |                | T T    | D2            | 0.6              | 0.3             | 0.8              | 0.3             |
| Input Buffer<br>CMOS Level<br>with Pull-Up              | Vcc GND            | _                  | _              |                | 2      | D2            | 0.5              | 0.3             | 0.9              | 0.3             |
| Input Buffer<br>CMOS Level<br>with Pull-<br>Down<br>ICD | Vcc<br>GND         | _                  | _              |                | C C    | D2            | 0.5              | 0.3             | 0.9              | 0.3             |
| Schmitt<br>TTL Level<br>with Pull-Up                    | Vcc                | _                  | _              |                |        | D2            | 2.5              | 1.3             | 9.2              | 2.0             |
| Schmitt<br>TTL Level<br>with Pull-<br>Down<br>ITSD      | Vcc<br>GND         | _                  | _              |                |        | D2            | 2.5              | 1.3             | 9.2              | 2.0             |
| Schmitt<br>CMOS Level<br>with Pull-Up                   | Vcc<br>GND         |                    | _              |                |        | D2            | 2.0              | 0.6             | 3.6              | 1.1             |
| Schmitt<br>CMOS Level<br>with Pull-<br>Down<br>ICSD     | VCC<br>GND         | -                  | _              |                |        | D2            | 2.0              | 0.6             | 3.6              | 1.1             |

| M                                        | lacrocell                   |                    |                |                |        |               | Γ                             | Delay                             |        |      |
|------------------------------------------|-----------------------------|--------------------|----------------|----------------|--------|---------------|-------------------------------|-----------------------------------|--------|------|
| Function                                 |                             | Equiva-            | Normalized     | Clamp<br>Level |        | C 11          | tPLH                          | (ns)                              | tpHI   | (ns) |
| Macro<br>Function Name                   | Equivalent Circuit          | lent Gate<br>Count | Load<br>Factor | when<br>Open   | Symbol | Symbol<br>No. | t <sub>OLH</sub>              | k <sub>LH</sub>                   | tOHL   | kHI  |
| I/O Buffer<br>TTL Level<br>with Pull-Up  | Output<br>See "3-state"     |                    | 1.0            |                | 8mA 9  | D2            | Output<br>See "3-state" (O    |                                   |        |      |
| ITO3U                                    | Input<br>See "Input Buffer" |                    | 1.4            |                |        | D2            | Input<br>See "Input Buffer"   |                                   |        |      |
| I/O Buffer<br>TTL Level                  | Output<br>See "3-state"     |                    | 1.0            |                | 8mA    | Da            | Outp<br>See "                 |                                   | te"(OZ | 3)   |
| with Pull-<br>Down<br>ITO3D              | Input<br>See "Input Buffer" |                    | 1.4            |                |        | D2            | Input<br>See "                |                                   | Buffer | .,,, |
| I/O Buffer<br>CMOS Level                 | Output<br>See "3-state"     |                    | 1.0            |                | 8mA 9  | D2            |                               | Output See "3-state" (OZ3)  Input |        |      |
| with Pull-Up<br>ICO3U                    | Input<br>See "Input Buffer" | _                  | 1.4            |                |        | D2            | See "Input Buffer"            |                                   |        |      |
| I/O Buffer<br>CMOS Level<br>with Pull-   | Output<br>See "3-state"     |                    | 1.0            | 7              | 8mA    | D2            | Output<br>See "3-state" (OZ3) |                                   |        | 3)   |
| Down<br>ICO3D                            | Input<br>See "Input Buffer" | _                  | 1.4            |                |        | D2            | Input<br>See "                |                                   | Buffer | .,,  |
| I/O Buffer<br>TTL Schmitt                | Output<br>See "3-state"     |                    | 1.0            |                | 8mA \$ | D2            | Outp<br>See "                 |                                   | e"(OZ  | 3)   |
| Level with<br>Pull-Up<br>ITSO3U          | Input<br>See "Input Buffer" |                    | 1.4            |                |        | D2            | Input<br>See "                |                                   | Buffer | .,,  |
| I/O Buffer<br>TTL Schmitt                | Output<br>See "3-state"     |                    | 1.0            |                | 8mA    | D2            | Outp<br>See "                 |                                   | e"(OZ  | 3)   |
| Level with<br>Pull-Down<br>ITSO3D        | Input<br>See "Input Buffer" | _                  | 1.4            |                |        | D2            | Input<br>See "                |                                   | Buffer | ,,,  |
| I/O Buffer<br>CMOS Schmitt<br>Level with | Output<br>See "3-state"     |                    | 1.0            |                | 8mA 9  | D2            | Outp<br>See "                 |                                   | e"(OZ  | 3)   |
| Pull-Up ICSO3U                           | Input<br>See "Input Buffer" |                    | 1.4            |                |        | D2            | Input<br>See "                |                                   | Buffer | ,,,  |
| I/O Buffer<br>CMOSSchmitt                | Output<br>See "3-state"     |                    | 1.0            |                | 8mA    | D.C.          | Outp<br>See "                 |                                   | e"(OZ  | 3)   |
| Level with<br>Pull-Down<br>ICSO3D        | Input<br>See "Input Buffer" | -<br>  -           | 1.4            |                |        | D2            | Input<br>See "Input Buffer"   |                                   | ,,     |      |

| M                                             | acrocell                               |                      |                    | Clamp        |             |           |                     | Γ               | Delay                   |               |
|-----------------------------------------------|----------------------------------------|----------------------|--------------------|--------------|-------------|-----------|---------------------|-----------------|-------------------------|---------------|
| Function                                      | Equippedant Cincuit                    | Equiva-<br>lent Gate | Normalized<br>Load | Level        | Symbol      | Symbol    | tPLH                | (ns)            | tPHL                    | (ns)          |
| Macro<br>Function Name                        | Equivalent Circuit                     | Count                | Factor             | when<br>Open | Symbol      | No.       | tolh                | k <sub>LH</sub> | toHL                    | kHL           |
| 3-State<br>Output<br>with Pull-Up             | E-Dollary                              | _                    | 1.0                |              |             | (E)<br>D2 | 2.2                 | 0.06            | 3.9                     | 0.06          |
| OZ3U                                          | D————————————————————————————————————— |                      | 1.4                |              | 8mA         | (D)       | 1.8                 |                 | 3.7                     |               |
| 3-State<br>Output<br>with Pull-Down           | E-Dollar P                             | _                    | 1.0<br>1.4         |              | 8mA         | (E)<br>D2 | 2.2                 | 0.06            | 3.9                     | 0.06          |
| OZ3D                                          | GND—                                   |                      | 1.4                |              | <i>&gt;</i> | (D)       | 1.8                 |                 | 3.7                     |               |
| Open Drain<br>Output<br>with Pull-Up<br>ODN3U | - Vec Th                               | _                    | 1.1                |              | on 8mA      | D2        | (t <sub>OLZ</sub> ) | _               | (t <sub>OZL</sub> ) 3.7 | (kZL)<br>0.06 |

## **GND Noise Reduction Buffers**

| N                          | Macrocell                              | ]                    |                    | C)                     |          |            |                  | De              | lay                 |                    |
|----------------------------|----------------------------------------|----------------------|--------------------|------------------------|----------|------------|------------------|-----------------|---------------------|--------------------|
| Function                   |                                        | Equiva-<br>lent Gate | Normalized<br>Load | Clamp<br>Level<br>when | Symbol   | Symbol     |                  | (ns)            | t <sub>PHL</sub>    | (ns)               |
| Macro<br>Function Name     | Equivalent Circuit                     | Count                | Factor             | Open                   |          | No.        | t <sub>OLH</sub> | k <sub>LH</sub> | tOHL                | k <sub>HL</sub>    |
| Totem-pole output          | V <sub>cc</sub> −                      | _                    | 1.1                |                        | TR 8mA   | <b>D</b> 1 | 2.8              | 0.06            | 11.7                | 0.06               |
| OT3R                       | GND-                                   |                      |                    |                        |          |            |                  |                 |                     |                    |
| 3-state output             |                                        |                      | 1.0                |                        |          | (E)        | 3.2              | 0.01            | 11.9                |                    |
| OZ3R                       | D GND                                  | _                    | 1.8                |                        | R 8mA    | D1 (D)     | 2.8              | 0.06            | 11.7                | 0.06               |
| Open-drain                 | V <sub>CC</sub>                        |                      |                    |                        |          |            | (tOLZ)           |                 | (t <sub>OZL</sub> ) | (k <sub>ZL</sub> ) |
| output                     | —————————————————————————————————————— | _                    | 1.1                |                        | OR 8mA   | D1         | 2.8              | _               | 11.7                | 0.06               |
| ODN3R                      | GND —                                  |                      |                    |                        |          |            |                  |                 |                     |                    |
| I/O buffer<br>TTL level    | Output<br>See "3-state"                |                      | 1.0                |                        | 8mA<br>R | D2         | Outpi<br>See "   |                 | e" (OZ:             | 3R)                |
| ITO3R                      | Input<br>See "Input buffers"           |                      | 1.8                |                        |          | D2         | Input<br>See "   | Input           | buffers             | ;"                 |
| I/O buffer<br>CMOS level   | Output<br>See "3-state"                |                      | 1.0                |                        | R 8mA    |            | Outpu<br>See ":  |                 | e" (OZ:             | 3R)                |
| ICO3R                      | Input<br>See "Input buffers"           | _                    | 1.8                |                        |          | D2         | Input<br>See "   |                 | buffers             | ,,,                |
| I/O buffer<br>TTL Schmitt- | Output<br>See "3-state"                |                      | 1.0                |                        | 8mA      | Da         | Outpi<br>See ":  |                 | e" (OZ3             | 3R)                |
| trigger<br>ITSO3R          | Input<br>See "Input buffers"           | _                    | 1.8                |                        |          | D2         | Input<br>See "   | Input           | buffers             | ,,                 |
|                            | Output<br>See "3-state"                |                      | 1.0                |                        | 8mA      | Da         | Outpu<br>See ":  |                 | " (OZ3              | 3R)                |
| trigger<br>ICSO3R          | Input<br>See "Input buffers"           | _                    | 1.8                |                        |          | D2         | Input<br>See "   |                 | buffers             | ,,                 |

| N                                | Macrocell                    |                      |                    | Clamp        |         |           |                             | Е               | elay                |                    |
|----------------------------------|------------------------------|----------------------|--------------------|--------------|---------|-----------|-----------------------------|-----------------|---------------------|--------------------|
| Function                         |                              | Equiva-<br>lent Gate | Normalized<br>Load | Level        | Symbol  | Symbol    | t <sub>PLH</sub>            | (ns)            | t <sub>PHL</sub>    | (ns)               |
| Macro<br>Function Name           | Equivalent Circuit           | Count                | Factor             | when<br>Open |         | No.       | tOLH                        | k <sub>LH</sub> | t <sub>OHL</sub>    | k <sub>HL</sub>    |
| 3-state output                   | E-Dop-Do-J                   |                      | 1.0                |              | Z Z     | (E)       | 3.2                         |                 | 11.9                |                    |
| with Pull-Up                     |                              |                      | 1.8                |              | R 8mA   | D2        | 2.0                         | 0.06            | 117                 | 0.06               |
| OZ3RU                            | GND—                         |                      |                    |              | onia    | (D)       | 2.8                         |                 | 11.7                |                    |
| 3-state output                   |                              |                      | 1.0                |              | 8mA     | (E)<br>D2 | 3.2                         | 0.06            | 11.9                | 0.06               |
| with Pull-Down OZ3RD             | D GND                        | _                    | 1.8                |              | R N     | (D)       | 2.8                         | 0.06            | 11.7                | 0.06               |
| Open-drain                       | Vec                          |                      |                    |              |         |           | (tOLZ)                      |                 | (t <sub>OZL</sub> ) | (k <sub>ZL</sub> ) |
| output<br>with Pull-Up           |                              | _                    | 1.1                |              | OR C    | D2        | 2.8                         | _               | 11.7                | 0.06               |
| ODN3RU                           | GND                          |                      | ·                  |              | 8mA     |           |                             |                 |                     |                    |
| I/O buffer<br>TTL level          | Output<br>See "3-state"      |                      | 1.0                |              | 8mA P   |           | Outp                        |                 | e" (OZ3             | (R)                |
| with Pull-Up                     | Input                        | -                    | 1.0<br>1.8         |              |         | D2        | Input                       |                 |                     | - <del></del>      |
| ITO3RU                           | See "Input buffers"          |                      |                    |              | 7       |           | See "                       | Input           | buffers             | •••                |
| I/O buffer<br>TTL level          | Output<br>See "3-state"      |                      | 1.0                |              | 8mA     |           | Outp                        | ut<br>3-state   | e" (OZ3             | R)                 |
| with Pull-Down                   | Input                        | _                    | 1.8                |              | 1       | D2        | Input                       |                 | `                   |                    |
| ITO3RD                           | See "Input buffers"          |                      |                    |              | <u></u> |           |                             |                 | buffers'            |                    |
| I/O buffer<br>CMOS level         | Output<br>See "3-state"      |                      | 1.0                |              | 8mA 9   | D0        | Outp                        |                 | e" (OZ3             | R)                 |
| with Pull-Up                     | Input                        | _                    | 1.8                |              |         | D2        | Input                       |                 |                     |                    |
| ICO3RU                           | See "Input buffers"          |                      |                    |              |         |           |                             |                 | buffers'            | <del></del>        |
| I/O buffer<br>CMOS level         | Output<br>See "3-state"      |                      | 1.0                |              | R 8mA   | D2        | Outp                        | ui<br>3-state   | e" (OZ3             | 3R)                |
| with Pull-Down ICO3RD            | Input<br>See "Input buffers" | _                    | 1.8                |              |         | 102       | Input                       | Innut           | buffers'            | ,,                 |
| I/O buffer                       | Output                       |                      |                    |              | # M     |           | Outp                        |                 | bullets             |                    |
| TTL Schmitt-                     | See "3-state"                | _                    | 1.0                |              | 8mA9    | D2        |                             |                 | e" (OZ3             | R)                 |
| trigger with Pull-<br>Up ITSO3RU | Input<br>See "Input buffers" |                      | 1.8                |              |         |           | Input<br>See "              |                 | buffers             | ,,                 |
| I/O buffer<br>TTL Schmitt-       | Output<br>See "3-state"      |                      | 1.0                |              | 8mA     |           | Outp                        | ut<br>3-state   | e" (OZ3             | R)                 |
| trigger with Pull-               | Innut                        | _                    | 1.8                |              |         | D2        | Input                       |                 |                     | 30                 |
|                                  | See "Input buffers"          |                      |                    |              | 7 #     | -         | See "Input buffers"  Output |                 |                     |                    |
| I/O buffer<br>CMOS Schmitt-      | Output<br>See "3-state"      |                      | 1.0                |              | 8mA 9 € | D2        |                             |                 | e" (OZ3             | (R)                |
| trigger with Pull-<br>Up ICSO3RU | Input<br>See "Input buffers" | _                    | 1.8                |              |         | DZ        | Input<br>See "              |                 | buffers             | ,,                 |
| I/O buffer                       | Output<br>See "3-state"      |                      | 1.0                |              | 8mA     |           | Outp                        | ut              | e" (OZ3             |                    |
| trigger with Pull-               | Input<br>See "Input buffers" | _                    | 1.0<br>1.8         |              |         | D2        | Input                       |                 | buffers             | _                  |
| - ICSOSKD                        | inper ouries                 |                      |                    | L            |         |           |                             |                 |                     |                    |

#### **High Drivability Buffers**

| N                                             | Macrocell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                    | 61                     |         |                  |                            | Ι               | Delay                   |                             |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|------------------------|---------|------------------|----------------------------|-----------------|-------------------------|-----------------------------|
| Function                                      | Equivalent Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equiva-<br>lent Gate<br>Count | Normalized<br>Load | Clamp<br>Level<br>when | Symbol  | Symbol           | tpLH                       | (ns)            | t <sub>PH</sub>         | L(ns)                       |
| Macro<br>Function Name                        | Equivalent Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Count                         | Factor             | Open                   | -       | No.              | 1                          | k <sub>LH</sub> | tOHL                    | k <sub>HL</sub>             |
| Totem-pole output OT5                         | Vcc ¬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                             | 1.8                |                        | TP 24mA | D1               | 1.4                        | 0.04            | 2.0                     | 0.033                       |
| 3-state output                                | D GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                             | 1.0<br>2.8         |                        | 24mA    | (E)<br>D1<br>(D) | 1.8                        | 0.04            | 2.2                     | 0.033                       |
| Open-drain output                             | V <sub>cc</sub> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                             | 1.8                |                        | OD 24mA | D1               | (t <sub>OLZ</sub> )        | _               | (t <sub>OZL</sub> )     | (k <sub>ZL</sub> )          |
| I/O buffer<br>TTL level                       | Output<br>See "3-state"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                             | 1.0<br>2.8         |                        | 24mA    | D2               | Outp<br>See "              | '3-stat         | e" (OZ                  | 5)                          |
| ITO5<br>I/O buffer                            | See "Input buffers" Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                    |                        | 24mA    |                  | See "                      | Input           | buffer                  | s''                         |
| CMOS level                                    | See "3-state"  Input See "Input buffers"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 1.0<br>2.8         |                        |         | D2               | See "                      | '3-stat<br>t    | e" (OZ<br>buffers       | <del></del>                 |
| I/O buffer<br>TTL Schmitt-<br>trigger         | Output<br>See "3-state"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                             | 1.0<br>2.8         |                        | 24mA    | D2               | Outp<br>See "              |                 | e" (OZ                  | 5)                          |
| ITSO5                                         | Input<br>See "Input buffers"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 2.0                | :                      |         |                  |                            | Input           | buffers                 | s"                          |
| I/O buffer<br>CMOS Schmitt-<br>trigger        | Output<br>See "3-state"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                             | 1.0<br>2.8         |                        | 24mA    | D2               |                            | 3-stat          | e" (OZ                  | 5)                          |
| ICSO5                                         | Input<br>See "Input buffers"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 2.0                |                        |         |                  | Input<br>See "             | Input           | buffers                 | ;"<br>———                   |
| 3-state<br>output<br>with Pull-Up<br>OZ5U     | E Vcc Vcc Dollar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                             | 1.0<br>2.8         |                        | 24mA    | (E)<br>D2<br>(D) | 1.8                        | 0.04            | 2.2                     | 0.033                       |
| 3-state<br>output<br>with Pull-Down<br>OZ5D   | E - VCC - OND - ON | -                             | 1.0<br>2.8         |                        | 24mA    | (E)<br>D2<br>(D) | 1.8                        | 0.04            | 2.2                     | 0.033                       |
| Open-drain<br>output<br>with Pull-Up<br>ODN5U | Vcc Vcc GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                             | 1.8                |                        | 24mA    |                  | (t <sub>OLZ</sub> )<br>1.4 | _               | (t <sub>OZL</sub> ) 2.0 | (k <sub>ZL</sub> )<br>0.033 |

| N                                          | Macrocell                    |                      |                    | Clamp        |         |        | Ι                                                        | Delay            |                 |
|--------------------------------------------|------------------------------|----------------------|--------------------|--------------|---------|--------|----------------------------------------------------------|------------------|-----------------|
| Function                                   |                              | Equiva-<br>lent Gate | Normalized<br>Load | Level        | Symbol  | Symbol | t <sub>PLH</sub> (ns)                                    | t <sub>PHI</sub> | (ns)            |
| Macro<br>Function Name                     | Equivalent Circuit           | Count                | Factor             | when<br>Open | by moor | No.    | t <sub>OLH</sub> k <sub>LH</sub>                         | t <sub>OHL</sub> | k <sub>HL</sub> |
| I/O buffer<br>TTL level<br>with Pull-Up    | Output<br>See "3-state"      |                      | 1.0                |              | 24mA9   | D2     | Output<br>See "3-stat                                    | te" (OZ          | 5)              |
| ITO5U                                      | Input<br>See "Input buffers" |                      | 2.8                |              |         | D2     | Input<br>See "Input                                      | buffers          | 3"              |
| I/O buffer<br>TTL level<br>with Pull-Down  | Output<br>See "3-state"      |                      | 1.0                |              | 24mA    | D2     | Output<br>See "3-stat                                    | e" (OZ           | 5)              |
| ITO5D                                      | Input<br>See "Input buffers" |                      | 2.8                |              | 7       | D2     | Input<br>See "Input                                      | buffers          | ,"              |
| I/O buffer<br>CMOS level<br>with Pull-Up   | Output<br>See "3-state"      |                      | 1.0                |              | 24mAq   | D2     | Output<br>See "3-state" (OZ5)  Input See "Input buffere" |                  |                 |
| ICO5U                                      | Input See "Input buffers"    | _                    | 2.8                |              |         | D2     |                                                          |                  |                 |
| I/O buffer<br>CMOS level<br>with Pull-Down | Output<br>See "3-state"      |                      | 1.0                |              | 24mA    | D2     | Output                                                   |                  |                 |
| ICO5D                                      | Input<br>See "Input buffers" |                      | 2.8                |              |         | D2     |                                                          |                  | ,,,             |
| I/O buffer<br>TTL Schmitt-                 | Output<br>See "3-state"      |                      | 1.0                |              | 24mAq   | D2     | Output<br>See "3-stat                                    | e" (OZ:          | 5)              |
| trigger with Pull-<br>UP<br>ITSO5U         | Input<br>See "Input buffers" | _                    | 2.8                |              |         | D2     | Input<br>See "Input                                      | buffers          | ,,              |
| I/O buffer TTL Schmitt-                    | Output<br>See "3-state"      |                      | 1.0                |              | 24mA    | D2     | Output<br>See "3-stat                                    | e" (OZ:          | 5)              |
| trigger with Pull-<br>Down<br>ITSO5D       | Input<br>See "Input buffers" |                      | 2.8                |              |         | D2     | Input<br>See "Input                                      | buffers          | ,,,             |
| I/O buffer<br>CMOS Schmitt-                | Output<br>See "3-state"      |                      | 1.0                |              | 24mA    | D2     | Output<br>See "3-state" (OZ5)                            |                  | 5)              |
| trigger with Pull-<br>UP ICSO5U            | Input<br>See "Input buffers" | _                    | 2.8                |              |         | על     | Input<br>See "Input                                      | buffers          | ,,              |
| I/O buffer<br>CMOS Schmitt-                | Output<br>See "3-state"      |                      | 1.0                |              | 24mA    | D2     | Output<br>See "3-stat                                    | e" (OZ5          | 5)              |
| trigger with Pull-<br>Down<br>ICSO5D       | Input<br>See "Input buffers" |                      | 2.8                |              |         | D2     | Input<br>See "Input                                      | buffers          | ,,              |

## 2. Power Gates

| M                               | acrocell           |                      |                    | Clamp         |         |               | ]                | Delay           |                  |                 |
|---------------------------------|--------------------|----------------------|--------------------|---------------|---------|---------------|------------------|-----------------|------------------|-----------------|
| Function                        |                    | Equiva-<br>lent Gate | Normalized<br>Load | Level<br>when | Symbol  | C h a1        |                  | (ns)            | t <sub>PHL</sub> | (ns)            |
| Macro<br>Function Name          | Equivalent Circuit | Count                | Factor             | Open          | j       | Symbol<br>No. | <sup>t</sup> OLH | k <sub>LH</sub> | <sup>t</sup> OHL | k <sub>HL</sub> |
| Power<br>inverter               | <b>→&gt;</b> —     | 1                    | 1.2                | @             |         | _             | 0.3              | 0.6             | 0.3              | 0.5             |
| NAP<br>Power<br>inverter        | <b>&gt;</b>        | 2                    | 1.4                | @             | —3P>>>- | _             | 0.3              | 0.4             | 0.6              | 0.4             |
| NA3P<br>Power                   |                    |                      |                    |               | -       |               |                  |                 |                  |                 |
| inverter  NA4P                  | $\longrightarrow$  | 2                    | 1.6                | @             | -4P >   | _             | 0.3              | 0.3             | 0.6              | 0.3             |
| 2-input<br>power<br>NAND<br>NAP | =D-                | 2                    | 1.2                | @             |         |               | 0.3              | 0.6             | 0.4              | 0.6             |
| 3-input<br>power<br>NAND<br>NAP | <b>≡</b> D⊷        | 3                    | 1.2                | @             |         | _             | 0.3              | 0.6             | 0.4              | 0.7             |
| 4-input<br>power NOR<br>NAP     |                    | 4                    | 1.2                | @             |         |               | 0.3              | 0.6             | 0.4              | 0.8             |
| 2-input<br>power<br>NOR<br>NRP  | ⇒>                 | 2                    | 1.2                | #             |         | _             | 0.4              | 1.0             | 0.6              | 0.5             |
| 3-input<br>power<br>NOR<br>NRP  | <b>=</b> D•        | 3                    | 1.2                | #             |         | _             | 0.4              | 1.4             | 0.6              | 0.5             |
| 4-input<br>power<br>NOR<br>NRP  | <b>■</b> >         | 4                    | 1.2                | #             |         | -             | 0.5              | 1.9             | 0.6              | 0.5             |
| Power<br>buffer                 | <b>→</b>           | 2                    | 1.0                | @             | P       | _             | 0.8              | 0.6             | 0.6              | 0.5             |
| ANP<br>Power                    |                    |                      |                    |               |         |               |                  |                 |                  |                 |
| buffer AN3P                     | <b>→</b>           | 3                    | 1.2                | @             | ——3P    | _             | 0.7              | 0.4             | 0.5              | 0.4             |
| Power buffer                    | <b>─</b>           | 3                    | 1.2                | @             |         |               | 0.8              | 0.3             | 0.6              | 0.3             |
| AN4P                            |                    |                      |                    |               | •       |               |                  |                 | j                |                 |

## 3. GATES

|                        | астосеll           | 4                    |                    | G!             | İ        |        | <b></b> | Delay           | 1    |        |
|------------------------|--------------------|----------------------|--------------------|----------------|----------|--------|---------|-----------------|------|--------|
| Function               |                    | Equiva-<br>lent Gate | Normalized<br>Load | Clamp<br>Level | Symbol   | Symbol | tPLH    | (ns)            | tPHI | _ (ns) |
| Macro<br>Function Name | Equivalent Circuit | Count                | Factor             | when<br>Open   | Symbol   | No.    | tolh    | k <sub>LH</sub> | tOHL | kHL    |
| Inverter<br>NA         | <b>─</b> >>-       | 1                    | 1                  | @              | <b>→</b> | _      | 0.2     | 1.2             | 0.3  | 0.9    |
| 2-Input<br>NAND<br>NA  | <b></b>            | 1                    | 1                  | @              | =        | _      | 0.2     | 1.2             | 0.3  | 1.2    |
| 3-Input<br>NAND<br>NA  | <b>=</b>           | 2                    | 1                  | @              | <b>₽</b> | _      | 0.2     | 1.2             | 0.3  | 1.3    |
| 4-Input<br>NAND<br>NA  |                    | 2                    | 1                  | @              | <b>D</b> |        | 0.3     | 1.2             | 0.3  | 1.5    |
| 6-Input<br>NAND<br>NA  | <b>—</b>           | 5                    | 1                  | @              |          |        | 0.8     | 1.2             | 1.5  | 0.9    |
| 8-Input<br>NAND        |                    | 6                    | 1                  | @              |          |        | 0.9     | 1.2             | 1.6  | 0.9    |
| 9-Input<br>NAND<br>NA  |                    | 7                    | 1                  | @              |          | -      | 0.9     | 1.2             | 1.6  | 0.9    |
| 12-Input<br>NAND       |                    | 8                    | 1                  | @              |          | _      | 0.9     | 1.2             | 1.9  | 0.9    |

| M                      | [acrocell          | ·                  |                |                |             |               |      | Delay           | <del></del> | <del></del> |
|------------------------|--------------------|--------------------|----------------|----------------|-------------|---------------|------|-----------------|-------------|-------------|
| Function               |                    | Equiva-            | Normalized     | Clamp<br>Level |             | G 1 1         | tplH | (ns)            | tPHL        | (ns)        |
| Macro<br>Function Name | Equivalent Circuit | lent Gate<br>Count | Load<br>Factor | when<br>Open   | Symbol      | Symbol<br>No. | tOLH | k <sub>LH</sub> | tOHL        | kHL         |
| 16-Input<br>NAND       |                    | 11                 | 1              | @              |             |               | 0.9  | 1.2             | 1.6         | 1.2         |
| 2-Input<br>NOR<br>NR   | ⇒-                 | 1                  | 1              | #              | =>~         | _             | 0.3  | 2.0             | 0.7         | 0.9         |
| 3-Input<br>NOR<br>NR   | <b>∌</b> >         | 2                  | 1              | #              | <b>⇒</b>    | _             | 0.4  | 2.8             | 0.7         | 0.9         |
| 4-Input<br>NOR<br>NR   | <b>—</b>           | 2                  | 1              | #              | <b>\$</b> ~ | _             | 0.4  | 3.7             | 0.7         | 0.9         |
| 6-Input<br>NOR<br>NR   |                    | 5                  | 1              | #              | <b>⇒</b>    | _             | 1.2  | 1.2             | 1.0         | 0.9         |
| 8-Input<br>NOR<br>NR   |                    | 6                  | 1              | #              |             | _             | 1.3  | 1.2             | 1.0         | 0.9         |
| 9-Input<br>NOR<br>NR   |                    | 7                  | 1              | #              |             | -             | 1.3  | 1.2             | 1.0         | 0.9         |

| M                      | acrocell           |                      |                |                |          |               |     | Delay           | ·    |                 |
|------------------------|--------------------|----------------------|----------------|----------------|----------|---------------|-----|-----------------|------|-----------------|
| Function               |                    | Equiva-<br>lent Gate | Normalized     | Clamp<br>Level |          | Cross h = 1   | tpl | 4 (ns)          | tpH] | L (ns)          |
| Macro<br>Function Name | Equivalent Circuit | Count                | Load<br>Factor | when<br>Open   | Symbol   | Symbol<br>No. |     | k <sub>LH</sub> | tOHL | k <sub>HL</sub> |
| 12-Input<br>NOR        |                    | 8                    | 1              | #              |          | _             | 1.4 | 1.2             | 1.0  | 0.9             |
| 16-Input<br>NOR        |                    | 11                   | 1              | #              |          |               | 1.3 | 2.0             | 1.0  | 0.9             |
| Buffer AN1             | <b>→</b>           | 1                    | 1              | @              | ->-      | _             | 0.6 | 1.2             | 0.5  | 0.9             |
| 2-input<br>AND<br>AN2  | <b>—</b> D—        | 2                    | 1              | @              | =        | _             | 0.7 | 1.2             | 0.5  | 0.9             |
| 3-input<br>AND<br>AN3  | ≡⊃—                | 2                    | 1              | @              |          | _             | 0.9 | 1.2             | 0.7  | 0.9             |
| 4-input<br>AND         |                    | 3                    | 1              | @              | <b>1</b> |               | 1.0 | 1.2             | 0.8  | 0.9             |
| 2-input<br>OR          |                    | 2                    | 1              | #              | <b>⇒</b> |               | 0.7 | 1.2             | 0.7  | 0.9             |

| M                      | lacrocell          |                      |                    | <b>C1</b>      |             |               | I                | Delay           |      |                 |
|------------------------|--------------------|----------------------|--------------------|----------------|-------------|---------------|------------------|-----------------|------|-----------------|
| Function               |                    | Equiva-<br>lent Gate | Normalized<br>Load | Clamp<br>Level | Symbol      | Ch -1         | t <sub>PLH</sub> | (ns)            | tPHL | (ns)            |
| Macro<br>Function Name | Equivalent Circuit | Count                | Factor             | when<br>Open   | •           | Symbol<br>No. | tOLH             | k <sub>LH</sub> | tOHL | k <sub>HL</sub> |
| 3-input<br>OR          | <b>⇒</b> >         | 2                    | 1                  | #              | <b>=</b>    | _             | 0.7              | 1.2             | 0.9  | 0.9             |
| 4-input<br>OR<br>OR4   | <b>\$</b> -        | 3                    | 1                  | #              | <b>&gt;</b> | _             | 0.7              | 1.2             | 1.2  | 0.9             |
| 2-input<br>EOR         | #D—                | 3                    | 1.2                | #              | *>-         | _             | 1.0              | 2.0             | 1.1  | 0.9             |
| 2-input<br>ENOR        | <b>⊅</b> >         | 3                    | 1.2                | #              | #>~         |               | 0.9              | 1.2             | 1.0  | 1.2             |

#### 4. 3-STATE GATES

|                                 | Macrocell             |                 |                |                |        |        |       |                | De               | lay             |                   |                   |
|---------------------------------|-----------------------|-----------------|----------------|----------------|--------|--------|-------|----------------|------------------|-----------------|-------------------|-------------------|
| Function                        |                       | Equiva-<br>lent | Normal-        | Clamp<br>Level | Symbol | Symbol | _     |                |                  | (ns)            | t <sub>PH</sub> . | <sub>L</sub> (ns) |
| Function<br>Name                | Equivalent<br>Circuit | Gate<br>Count   | Load<br>Factor | When<br>Open   | 3ym001 | No.    | ınpuı | Output<br>Name | <sup>t</sup> OLH | K <sub>LH</sub> | <sup>t</sup> OHL  | K <sub>HL</sub>   |
| 3-State<br>Inverter             | Ē P                   | 1               | 1              | @              |        | _      | D     |                | 0.4              | 2.0             | 0.8               | 1.2               |
| (Internal)<br>NAZ               | E                     | 1               | 1              | •              |        |        | E/Ē   |                | 0.2              | 2.0             | 0.3               | 1.2               |
| 3-State<br>Buffer<br>(Internal) | <u>ε</u>              | 3               | 1.2            | # @            |        |        | D     |                | 0.8              | 1.2             | 0.7               | 0.9               |
| ANZ                             | D————                 |                 |                |                |        |        | E     |                | 1.0              |                 | 1.0               |                   |

#### 5. AND-NOR, OR-AND GATES

|                              | Macrocell             |                 |                 |                |        |        |               |                | Delay            |          |                  |          |
|------------------------------|-----------------------|-----------------|-----------------|----------------|--------|--------|---------------|----------------|------------------|----------|------------------|----------|
| Function                     | F                     | Equiva-<br>lent | Normal-<br>ized | Clamp<br>Level | Symbol | Symbol |               |                | t <sub>PLF</sub> | (ns)     | t <sub>PH</sub>  | L(ns)    |
| Function<br>Name             | Equivalent<br>circuit | Gate<br>Count   | Load<br>Factor  | When<br>Open   | 27     | No.    | Input<br>Name | Output<br>Name | 1                | $K_{LH}$ | <sup>t</sup> OHL | $K_{HL}$ |
| 2-OR-<br>NAND                | D-0                   | 2               | 1               | #              |        | Al     | OR<br>input   |                | 0.4              | 2.0      | 0.8              | 1.2      |
| NAR23                        |                       | 2               | 1               | @              |        | ;<br>  | NAND<br>input |                | 0.3              | 2.0      | 0.8              | 1.2      |
| 3-OR-<br>NAND                | <b>⇒</b>              | 2               | 1               | #              |        | A2     | OR<br>input   |                | 0.5              | 2.8      | 0.8              | 1.2      |
| NAR34                        |                       | 2               | 1               | #<br>@         |        | A2     | NAND<br>input |                | 0.4              | 2.0      | 0.8              | 1.2      |
| 2-OR-<br>3NAND               | <b>⊅</b> -            | 2               | 1               | #              |        | A2     | OR<br>input   |                | 0.4              | 2.0      | 0.9              | 1.3      |
| NAR24                        |                       | 2               | 1               | @<br>@         |        | A2     | NAND<br>input |                | 0.4              | 2.0      | 0.8              | 1.5      |
| 2-Wide<br>2-Input<br>OR-NAND |                       | 2               | 1               | # # #          |        | A1     |               |                | 0.4              | 2.0      | 0.8              | 1.2      |
| NA2R2                        |                       |                 |                 | #              |        |        |               |                |                  |          |                  |          |

|                              | Macrocell    |                 |                 |                       |             |            |       |               | De               | lay             |                  |          |
|------------------------------|--------------|-----------------|-----------------|-----------------------|-------------|------------|-------|---------------|------------------|-----------------|------------------|----------|
| Function                     | Equivalent   | Equiva-<br>lent | Normal-<br>ized | Clamp<br>Level        | Symbol      | Symbol     | Input | Output        | t <sub>PLF</sub> | r(ns)           | t <sub>PHI</sub> | (ns)     |
| Function<br>Name             | Circuit      | Gate<br>Count   | Load<br>Factor  | When<br>Open          |             | No.        | Name  | Name          | t <sub>OLH</sub> | K <sub>LH</sub> | t <sub>OHL</sub> | $K_{HL}$ |
| 3-Wide<br>3-Input<br>OR-NAND |              | 3               | 1               | # # # # #             |             | A3         |       |               | 0.4              | 2.0             | 0.9              | 1.3      |
| 2-Wide<br>3-Input<br>OR-NAND |              | 4               | 1               | # #                   |             | <b>A</b> 2 |       | NAND          | 0.8              | 2.8             | 1.0              | 1.2      |
| NA2R3N                       | <b>■</b> D 「 |                 |                 | # #                   |             |            |       | In-<br>verter | 1.2              | 1.2             | 1.1              | 0.9      |
| 2-Wide<br>4-Input<br>OR-NAND |              | 5               | 1               | #<br>#<br>#           |             | A4         |       | NAND          | 1.1              | 3.7             | 1.0              | 1.2      |
| NA2R4N                       |              | ,               | 1               | # # #                 |             | AT         |       | In-<br>verter | 1.2              | 1.2             | 1.4              | 0.9      |
| 3-Wide<br>3-Input<br>OR-NAND |              | 5               | 1               | #<br>#<br>#<br>#      | <b>№</b> +Y |            |       | NAND          | 1.0              | 2.8             | 1.2              | 1.3      |
| NA3R3N                       |              |                 |                 | #<br>#<br>#<br>#      |             |            |       | In-<br>verter | 1.4              | 1.2             | 1.3              | 0.9      |
| 3-Wide<br>4-Input<br>OR-NAND |              | 7               | 1               | ######                | ₩<br>₩<br>₩ |            |       | NAND          | 1.4              | 3.7             | 1.2              | 1.3      |
| NA3R4N                       |              | /               | 1               | #<br>#<br>#<br>#<br># |             |            |       | In-<br>verter | 1.4              | 1.2             | 1.7              | 0.9      |

|                              | Macrocell             |                         |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |               | De               | lay      | -                |          |
|------------------------------|-----------------------|-------------------------|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------------|------------------|----------|------------------|----------|
| Function                     | Equivalent            | Equiva-<br>lent<br>Gate | Normal-<br>ized<br>Load | Clamp<br>Level<br>When | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Symbol     | Input | Output        | t <sub>PLF</sub> | (ns)     | t <sub>PH</sub>  | (ns)     |
| Function<br>Name             | Equivalent<br>Circuit | Count                   | Factor                  | Open                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No.        | Name  | Name          | t <sub>OLH</sub> | $K_{LH}$ | t <sub>OHL</sub> | $K_{HL}$ |
| 4-Wide<br>2-Input<br>OR-NAND |                       | 5                       | 1                       | @<br>@<br>@<br>@       | D + Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A4         |       | NAND          | 0.7              | 2.0      | 1.3              | 1.5      |
| NA4R2N                       |                       |                         | 1                       | @ @ @                  | - Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A          |       | In-<br>verter | 1.5              | 1.2      | 1.0              | 0.9      |
| 4-Wide<br>3-Input<br>OR-NAND |                       | 7                       | 1                       | #########              | D + Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |       | NAND          | 1.2              | 2.8      | 1.6              | 1.5      |
| NA4R3N                       |                       | ·                       | -                       | # # # # #              | N-Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | :     | In-<br>verter | 1.8              | 1.2      | 1.5              | 0.9      |
| 4-Wide<br>4-Input<br>OR-NAND |                       | 9                       | 1                       | #######                | \(\rm \text{\rm \rm \rm \text{\rm \text{\rm \text{\rm \text{\rm \rm \rm \rm \rm \rm \text{\rm \text{\rm \rm \rm \rm \rm \rm \rm \rm \rm \rm | <b>A</b> 5 |       | NAND          | 1.7              | 3.7      | 1.6              | 1.5      |
| NA4R4N                       |                       |                         |                         | #########              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AJ         |       | In-<br>verter | 1.8              | 1.2      | 2.0              | 0.9      |
| 6-Wide<br>2-Input<br>OR-NAND |                       | 8                       | 1                       | <b>®®®®®®</b> ®        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       | NAND          | 1.4              | 1.2      | 1.6              | 0.9      |
| NA6R2N                       | 100                   |                         |                         | 8 8 8 8                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       | In-<br>verter | 1.3              | 2.0      | 1.2              | 0.9      |

|                                       | Macrocell             |                 |                 |                |        | T             |               |               | De               | lay      |                  |          |
|---------------------------------------|-----------------------|-----------------|-----------------|----------------|--------|---------------|---------------|---------------|------------------|----------|------------------|----------|
| Function                              | Fauivalent            | Equiva-<br>lent | Normal-<br>ized | Clamp<br>Level | Symbol | Symbol<br>No. | Input         | Output        | t <sub>PLF</sub> | (ns)     | t <sub>PH</sub>  | L(ns)    |
| Function<br>Name                      | Equivalent<br>Circuit | Gate<br>Count   | Load<br>Factor  | When<br>Open   |        | No.           | Name          | Name          | t <sub>OLH</sub> | $K_{LH}$ | t <sub>OHL</sub> | $K_{HL}$ |
| 8-Wide<br>2-Input<br>OR-NAND          |                       | 10              | 1               |                |        | <b>A</b> 5    |               | NAND          | 1.5              | 1.2      | 1.6              | 0.9      |
| NA8R2N                                |                       |                 |                 | <b>©©©©©©©</b> |        | :             |               | In-<br>verter | 1.4              | 2.8      | 1.2              | 0.9      |
| 2 AND<br>OR-NAND                      | _                     |                 |                 | @              |        |               | AND<br>input  |               | 0.4              |          | 0.8              |          |
| e e e e e e e e e e e e e e e e e e e |                       | 2               | 1               | @<br>#         |        | <b>A</b> 1    | OR<br>input   |               | 0.4              | 2.0      | 0.8              | 1.3      |
| NARA24                                |                       |                 |                 | @              |        |               | NAND<br>input |               | 0.4              |          | 0.7              |          |
| 2 AND-<br>NOR                         |                       |                 | 1               | @              |        |               | AND<br>input  |               | 0.4              | 2.0      | 0.8              | 1.2      |
| NRA23                                 |                       | 2               | 1               | <b>@</b><br>#  |        | A1            | NOR<br>input  |               | 0.3              | 2.0      | 0.7              | 1.2      |
| 3 AND-<br>NOR                         |                       | 2               |                 | @              |        |               | AND<br>input  |               | 0.4              | 2.0      | 0.8              | 1.2      |
| NRA34                                 |                       | 2               | 1               | <b>@</b><br>#  |        | A2            | NOR<br>input  |               | 0.3              | 2.0      | 0.7              | 1.3      |
| 2 AND-<br>3 NOR                       | <b>_D</b>             | 2               | 1               | @              |        | A2            | AND<br>input  |               | 0.5              | 2.8      | 0.8              | 1.2      |
| NRA24                                 |                       | _               |                 | #              |        |               | NOR<br>input  |               | 0.4              |          | 0.7              |          |
| 2-Wide<br>2-Input<br>AND-NOR<br>NR2A2 |                       | 2               | 1               | @ @ @          |        | <b>A</b> 1    |               |               | 0.4              | 2.0      | 0.8              | 1.2      |

|                              | Macrocell             |                                  |                                   |                                |                                     |               |               |                | De               | lay |                  |     |
|------------------------------|-----------------------|----------------------------------|-----------------------------------|--------------------------------|-------------------------------------|---------------|---------------|----------------|------------------|-----|------------------|-----|
| Function Function Name       | Equivalent<br>Circuit | Equiva-<br>lent<br>Gate<br>Count | Normal-<br>ized<br>Load<br>Factor | Clamp<br>Level<br>When<br>Open | Symbol                              | Symbol<br>No. | Input<br>Name | Output<br>Name | t <sub>PLH</sub> |     | t <sub>PH1</sub> |     |
| 3-Wide<br>2-Input<br>AND-NOR |                       | 3                                | 1                                 | @ @ @ @                        |                                     | <b>A</b> 3    |               |                | 0.6              | 2.8 | 0.8              | 1.2 |
| 2-Wide<br>3-Input<br>AND-NOR |                       | 4                                | 1                                 | @ @ @                          | D <sub>1</sub>   D <sub>1</sub>   Y | A2            |               | NOR            | 0.6              | 2.0 | 1.0              | 1.3 |
| NR2A3N                       | <b>≡</b> D-1          |                                  |                                   | @                              |                                     |               |               | In-<br>verter  | 1.2              | 1.2 | 0.9              | 0.9 |
| 2-Wide<br>4-Input<br>AND-NOR |                       | 5                                | 1                                 | @ @ @                          |                                     | A4            |               | NOR            | 0.6              | 2.0 | 1.1              | 1.5 |
| NR2A4N                       |                       |                                  |                                   | @ @ @                          | D - Y                               |               |               | In-<br>verter  | 1.3              | 1.2 | 0.9              | 0.9 |
| 3-Wide<br>3-Input<br>AND-NOR |                       | 5                                | 1                                 | @ @ @ @                        | <u> </u>                            |               |               | NOR            | 0.8              | 2.8 | 1.0              | 1.3 |
| NR3A3N                       |                       | 3                                | 1                                 | 8888                           |                                     |               |               | In-<br>verter  | 1.2              | 1.2 | 1.1              | 0.9 |
| 3-Wide<br>4-Input<br>AND-NOR |                       | 7                                | 1                                 | 8888                           |                                     |               |               | NOR            | 1.3              | 2.8 | 1.3              | 1.5 |
| NR4A4N                       |                       | ,                                | 1                                 | @ @ @ @ @                      |                                     |               |               | In-<br>verter  | 1.5              | 1.2 | 1.6              | 0.9 |

| <del></del>                  | Macrocell             |                 |                 |                |        | <u> </u>   |       |               | De               | lay      |                  |                 |
|------------------------------|-----------------------|-----------------|-----------------|----------------|--------|------------|-------|---------------|------------------|----------|------------------|-----------------|
| Function                     | Fauivolent            | Equiva-<br>lent | Normal-<br>ized | Clamp<br>Level | Symbol | Symbol     | Input | Output        | t <sub>PLF</sub> | (ns)     | t <sub>PH</sub>  | L(ns)           |
| Function<br>Name             | Equivalent<br>Circuit | Gate<br>Count   | Load<br>Factor  | When<br>Open   |        | No.        | Name  | Name          | t <sub>OLH</sub> | $K_{LH}$ | t <sub>OHL</sub> | K <sub>HL</sub> |
| 4-Wide<br>2-Input<br>AND-NOR |                       | 5               | 1               | # # #          |        | A4         |       | NOR           | 1.0              | 3.7      | 1.1              | 1.2             |
| NR4A2N                       |                       |                 |                 | # # #          |        |            |       | In-<br>verter | 1.3              | 1.2      | 1.3              | 0.9             |
| 4-Wide<br>3-Input<br>AND-NOR |                       | 7               | 1               |                |        |            |       | NOR           | 1.5              | 3.7      | 1.1              | 1.3             |
| NR4A3N                       |                       |                 |                 | @ @ @ @        |        |            |       | In-<br>verter | 1.3              | 1.2      | 1.8              | 0.9             |
| 4-Wide<br>4-Input<br>AND-NOR |                       | 9               | 1               |                |        | <b>A</b> 5 |       | NOR           | 2.3              | 3.7      | 1.5              | 1.5             |
| NR4A4N                       |                       |                 | •               | 0000000        |        | A          |       | In-<br>verter | 1.7              | 1.2      | 2.6              | 0.9             |

|                              | Macrocell             |                 |                 |                       |        |            |       |               | De               | lay      |                  |          |
|------------------------------|-----------------------|-----------------|-----------------|-----------------------|--------|------------|-------|---------------|------------------|----------|------------------|----------|
| Function                     | Equivalent (          | Equiva-<br>lent | Normal-<br>ized | Clamp<br>Level        | Symbol | Symbol     | Input | Output        | t <sub>PLF</sub> | (ns)     | t <sub>PH</sub>  | L(ns)    |
| Function<br>Name             | Equivalent<br>Circuit | Gate<br>Count   | Load<br>Factor  | When<br>Open          |        | No.        | Name  | Name          | t <sub>OLH</sub> | $K_{LH}$ | t <sub>OHL</sub> | $K_{HL}$ |
| 6-Wide<br>2-Input<br>AND-NOR |                       | 8               | 1               | # # # # #             |        |            |       | NOR           | 1.6              | 1.2      | 1.3              | 0.9      |
| NR6A2N                       |                       |                 |                 | #<br>#<br>#<br>#<br># |        |            |       | In-<br>verter | 1.0              | 1.2      | 1.4              | 1.2      |
| 8-Wide<br>2-Input<br>AND-NOR | 9 4 4 4<br>           | 10              | 1               | ########              |        | <b>A</b> 5 |       | NOR           | 1.3              | 1.2      | 1.4              | 0.9      |
| NR8A2N                       |                       |                 |                 | ########              |        | AS         |       | In-<br>verter | 1.6              | 1.2      | 1.6              | 0.9      |
| 2 AND-<br>OR-NAND            |                       |                 |                 | #                     |        |            |       | OR<br>input   | 0.5              | -        | 1.2              |          |
|                              |                       | 2               | 1               | #<br>@                |        | Al         |       | AND<br>input  | 0.4              | 2.8      | 0.8              | 1.2      |
| NRAR24                       |                       |                 |                 | #                     |        |            |       | NOR<br>input  | 0.3              |          | 0.7              |          |

## 6. MULTIPLEXERS

|                                       | Macrocell                       |                                  |                                   |                                |                                                                                                  |                |                                                                 |                | De                                            | lay  |                                               |      |
|---------------------------------------|---------------------------------|----------------------------------|-----------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|----------------|-----------------------------------------------|------|-----------------------------------------------|------|
| Function<br>Function<br>Name          | Equivalent<br>Circuit           | Equiva-<br>lent<br>Gate<br>Count | Normal-<br>ized<br>Load<br>Factor | Clamp<br>Level<br>When<br>Open | Symbol                                                                                           | Symbol<br>No.  | Input<br>Name                                                   | Output<br>Name | t <sub>PLF</sub>                              | (ns) | t <sub>PHI</sub>                              | (ns) |
| 2 to 1                                | Yn y                            |                                  | 1.2                               | ###                            | M2TIN<br>S + y                                                                                   |                | Y <sub>0</sub> Y <sub>1</sub> S                                 | +Y             | 1.1<br>1.1<br>1.3                             | 1.2  | 0.8                                           | 0.9  |
| Multi-<br>plexer<br>M2T1N             | XI                              | 3                                | 1                                 | #                              | Y <sub>1</sub> -Y                                                                                | B2             | Y <sub>0</sub> Y <sub>1</sub> S                                 | -Y             | 0.5<br>0.5<br>0.9                             | 2.0  | 0.9                                           | 1.2  |
| 4 to 1<br>Multi-                      | Y <sub>1</sub> - Y <sub>2</sub> | 9                                | 1                                 | #####                          | M4T1N A B Y6 Y1 Y1 Y1                                                                            | В4             | Y <sub>0</sub> Y <sub>1</sub> Y <sub>2</sub> Y <sub>3</sub> A   | +Y             | 1.2<br>1.2<br>1.2<br>1.2<br>2.5<br>2.5        | 1.2  | 1.7<br>1.7<br>1.7<br>1.7<br>2.7<br>2.7        | 0.9  |
| plexer<br>M4T1N                       | Yr A B                          |                                  |                                   | ##                             | Yo Yu                                                                                            |                | Y <sub>0</sub> Y <sub>1</sub> Y <sub>2</sub> Y <sub>3</sub> A B | - <b>Y</b>     | 1.4<br>1.4<br>1.4<br>1.4<br>2.4<br>2.4        | 3.7  | 1.0<br>1.0<br>1.0<br>2.3<br>2.3               | 1.3  |
| 8 to 1<br>Multi-<br>plexer            |                                 | 21                               | 1                                 | ######                         | M8T1N A B C Y <sub>0</sub> Y <sub>1</sub> + Y                                                    | B <sub>6</sub> | Y <sub>0</sub>                                                  | +Y             | 2.5                                           | 1.2  | 2.0                                           | 1.3  |
| m8TIN                                 |                                 | 21                               | 1                                 | ######                         | Y <sub>2</sub> Y <sub>3</sub> -Y -Y <sub>4</sub> -Y <sub>5</sub> -Y <sub>6</sub> -Y <sub>7</sub> | D6             | Y <sub>0</sub>                                                  | _Y             | 2.2                                           | 1.2  | 2.0                                           | 0.9  |
| 1 to 2<br>Demulti-<br>plexer<br>M1T2N | Y +0 -0 +1 A -1                 | 4                                | 1.2                               | # @                            | M1T2N<br>A +0<br>-0<br>Y +1<br>-1                                                                | В3             | Y A Y A Y A Y A                                                 | +0 +1 -0 -1    | 1.2<br>1.3<br>1.2<br>1.2<br>0.5<br>0.8<br>0.5 | 1.2  | 0.8<br>1.1<br>0.8<br>0.8<br>1.0<br>1.1<br>1.0 | 0.9  |

## 7. DECODERS

|                  |                                                          |                 |                                   |                |                                            | Delay         |               |                |                       |                 |                  |                 |
|------------------|----------------------------------------------------------|-----------------|-----------------------------------|----------------|--------------------------------------------|---------------|---------------|----------------|-----------------------|-----------------|------------------|-----------------|
| Function         | Equivalent Circuit  -3 +3 -2 +2 -1                       | Equiva-<br>lent | Normal-<br>ized<br>Load<br>Factor | Clamp<br>Level | Symbol                                     | Symbol<br>No. | Input<br>Name |                | t <sub>PLH</sub> (ns) |                 | t <sub>PH</sub>  | (ns)            |
| Function<br>Name | Equivalent<br>Circuit                                    | Gate            |                                   | When<br>Open   |                                            |               |               | Output<br>Name | t <sub>OLH</sub>      | K <sub>LH</sub> | t <sub>OHL</sub> | K <sub>HL</sub> |
|                  | -2<br>-2<br>-2<br>-2<br>-2<br>-1<br>-1<br>-1             | 8               | 1                                 | #              |                                            | <b>B</b> 5    | A<br>B        | -0             | 1.5                   | 1.2             | 1.7              | 1.2             |
|                  |                                                          |                 |                                   |                |                                            |               | A<br>B        | -1             | 1.7                   | 1.2             | 2.0              | 1.2             |
| 2-bit<br>Decoder |                                                          |                 |                                   |                | D2T4N<br>+0<br>-0<br>A +1<br>-1            |               | A<br>B        | -2             | 1.5                   | 1.2             | 2.0              | 1.2             |
|                  |                                                          |                 |                                   |                |                                            |               | A<br>B        | -3             | 1.7                   | 1.2             | 2.0              | 1.2             |
|                  |                                                          |                 |                                   |                | B -2 +3 -3 -3                              |               | A<br>B        | +0             | 2.0                   | 1.2             | 1.7              | 0.9             |
|                  |                                                          |                 |                                   |                |                                            |               | A<br>B        | +1             | 2.3                   | 1.2             | 1.9              | 0.9             |
|                  |                                                          |                 |                                   |                |                                            |               | A<br>B        | +2             | 2.0                   | 1.2             | 1.7              | 0.9             |
| D2 T4 N          |                                                          |                 |                                   |                |                                            |               | A<br>B        | +3             | 2.3                   | 1.2             | 1.9<br>1.9       | 0.9             |
| 3-bit<br>Decoder | -0<br>-1<br>-2<br>-3<br>-3<br>-4<br>-4<br>-5<br>-6<br>-6 | 1.4             | 1.8                               | # # #          | D3TB  -0  A -1  -2  B -3  -4  C -5  -6  -7 | <b>B</b> 5    | A<br>B<br>C   | _0             | 1.4                   | 1.2             | 1.2              | 1.3             |
| D3 T8            |                                                          |                 |                                   |                |                                            |               |               |                |                       |                 |                  |                 |

## 8. LATCHES (with Scan Function)

| Macrocell                    |                                                                                                                                                                                     |                                                                                  |               | -             |                   |            | $\begin{array}{c c} & \text{Delay} \\ \hline & t_{PLH}(\text{ns}) & t_{PHL}(\text{ns}) \end{array}$ |                 |                          |     |                          |     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------|---------------|-------------------|------------|-----------------------------------------------------------------------------------------------------|-----------------|--------------------------|-----|--------------------------|-----|
| Function<br>Function<br>Name | Truth table                                                                                                                                                                         | Equival Normal-<br>lent ized Level Symbol<br>Gate Load When<br>Count Factor Open | Symbol<br>No. | Input<br>Name | Output<br>Name    |            | (ns)                                                                                                | t <sub>PH</sub> | K <sub>HL</sub>          |     |                          |     |
| RS-<br>Latch                 | SN RN +Q -Q<br>0 0 0 0<br>0 1 1 0<br>1 0 0 1                                                                                                                                        | 8                                                                                | 1             | @             | D+ 0,0            | A3         | \overline{S}                                                                                        | +Q              | 2.7<br>2.5<br>2.5        | 1.0 | 2.6<br>2.6               | 0.6 |
| LRS0                         | 1 1 Latch                                                                                                                                                                           |                                                                                  |               | @             |                   |            | R                                                                                                   | <b>−Q</b>       | 2.7                      | 1.0 | _                        | 0.6 |
| RS-<br>Latch                 | S     R     +Q     -Q       0     0     Latch       0     1     0     1       1     0     1     0       1     1     1     1                                                         | 8                                                                                | 1             | #             |                   | <b>A</b> 3 | S<br>R                                                                                              | +Q              | 2.4                      | 1.0 | 3.3                      | 0.6 |
| LRS3                         |                                                                                                                                                                                     |                                                                                  |               |               |                   |            | S<br>R                                                                                              | <b>−</b> Q      | 2.4                      | 1.0 | 2.7                      | 0.6 |
| 2-Input<br>RS<br>Latch       | SN RN +Q -Q<br>0 0 0 0<br>0 1 1 0<br>1 0 0 1<br>1 1 Latch                                                                                                                           | 9                                                                                | 1             | @ @ @ @       |                   | <b>A</b> 4 | Ī<br>Ī                                                                                              | +Q              | 2.7                      | 1.0 | 2.6                      | 0.6 |
| LR2S20                       |                                                                                                                                                                                     |                                                                                  |               |               |                   |            | \overline{S}                                                                                        | -Q.             | 2.6                      | 1.0 | 2.6                      | 0.6 |
| 2-Input<br>RS                | S R +Q -Q<br>0 0 Latch                                                                                                                                                              | 9                                                                                | _             | # # #         | -Q                |            | S<br>R                                                                                              | +Q              | 2.4                      | 1.0 | 3.1                      | 0.6 |
| Latch<br>LR2S23              | $\begin{array}{c ccccc} 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 1 \\ \end{array}$                                                                               |                                                                                  | 1             |               | <b>→</b>          | A4         | S<br>R                                                                                              | -Q              | 2.4                      | 1.0 | 3.7                      | 0.6 |
| D-Latch<br>LD                | G +Q −Q 1 D D  Latch                                                                                                                                                                | 5                                                                                | 1             | @ @           | - G - Q - D - Q   | С          | G                                                                                                   | +Q              | 3.2                      | 1.2 | 2.9                      | 0.9 |
|                              |                                                                                                                                                                                     |                                                                                  |               |               |                   |            | G<br>D                                                                                              | -Q              | 2.6                      | 1.2 | 2.9                      | 0.9 |
| D-Latch                      | G CL +Q −Q 1 0 D D                                                                                                                                                                  | 6                                                                                | 1 1 1         | @ @ #         | D - Q             | С          | G<br>CL                                                                                             | +Q              | 3.5<br>2.3               | 1.2 | 3.4                      | 0.9 |
| with<br>CLR                  |                                                                                                                                                                                     |                                                                                  |               |               |                   |            | D<br>G                                                                                              |                 | 3.5                      |     | 3.4                      |     |
| LDC1                         | X   1   0   1   X: Don't care                                                                                                                                                       |                                                                                  |               |               |                   |            | CL<br>D                                                                                             | -Q              | 2.1<br>3.1               | 1.2 | 2.0<br>3.2               | 0.9 |
| D-Latch<br>with              | G   PR   +Q   -Q   1   0   D   D                                                                                                                                                    | 6                                                                                | 1 1           | @ @ #         | LDP1 G +Q D -Q PR | С          | G<br>PR<br>D                                                                                        | +Q              | 3.3<br>2.4<br>3.3        | 1.2 | 3.2<br>2.5<br>3.2        | 0.9 |
| PRE<br>LDP1                  | 0   Latch                                                                                                                                                                           |                                                                                  | 1             |               |                   |            | G<br>PR                                                                                             | -Q              | 2.9                      | 1.2 | 3.0                      | 0.9 |
|                              |                                                                                                                                                                                     | 7                                                                                | 1 1 1 1       | @             |                   |            | D<br>G                                                                                              |                 | 2.9<br>3.8               |     | 3.0                      |     |
| D-Latch<br>with<br>PRE/      | $ \begin{array}{c cccc} G & PR & CL & +Q & -Q \\ \hline 1 & 0 & 0 & D & \overline{D} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $ |                                                                                  |               | @             | LDPC3<br>c, +Q    |            | PR<br>CL<br>D                                                                                       | +Q              | 2.9<br>2.3<br>3.8        | 1.2 | 2.8<br>2.4<br>3.5        | 0.9 |
| CLR LDPC3                    | X   1   0   1   0                                                                                                                                                                   |                                                                                  |               | #             | PR CL             | С          | G<br>PR<br>CL                                                                                       | -Q              | 3.2<br>2.5<br>2.1<br>3.2 | 1.2 | 3.5<br>2.6<br>2.0<br>3.5 | 0.9 |

|                        | Macrocell                                                           |                 |                 |                |                                                                                          |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Del              | lay             |                  |                 |
|------------------------|---------------------------------------------------------------------|-----------------|-----------------|----------------|------------------------------------------------------------------------------------------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|-----------------|
| Function               |                                                                     | Equiva-<br>lent | Normal-<br>ized | Clamp<br>Level | Symbol                                                                                   | Symbol |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tPLH             | (ns)            | t <sub>PHI</sub> | (ns)            |
| Function<br>Name       | Truth table                                                         | Gate<br>Count   | Load<br>Factor  | When<br>Open   | 5, 111001                                                                                | No.    | Input<br>Name  | Output<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t <sub>OLH</sub> | k <sub>LH</sub> | t <sub>OHL</sub> | k <sub>HL</sub> |
| 4-Bit<br>latch         | G +Q <sub>0</sub> +Q <sub>1</sub> +Q <sub>2</sub> +Q <sub>3</sub>   | 20              | 1 1 1           | (B) (B)        | $ \begin{array}{c c} \hline LD4 \\ G \\ \hline D0 + Q_0 \\ \hline D1 + Q_1 \end{array} $ | B4     | G              | +Q <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5              | 1.2             | 3.2              | 0.9             |
| LD4                    | 1 D <sub>0</sub> D <sub>1</sub> D <sub>2</sub> D <sub>3</sub> Latch | 20              | 1 1             | @ @            | $ \begin{array}{c}                                     $                                 | 154    | D <sub>0</sub> | +Q₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.2              | 1.2             | 2.9              | 0.9             |
| 4-Bit<br>latch<br>with |                                                                     |                 | 1               | @ @            | LD4C1<br>G                                                                               |        | G              | To do to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 3.6              |                 | 3.2              |                 |
| CLR                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$              | 26              | 1<br>1<br>1     | @ @            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                    | B4     | D <sub>0</sub> | Q <sub>0</sub> +Q <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3              | 1.2             | 2.9              | 0.9             |
| LD4C1                  |                                                                     |                 | 1               | #              | D3 + Q3                                                                                  |        | CL             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0              |                 | 2.7              |                 |

## 9. FLIP-FLOPS (with Scan Function)

|                             | Macrocell                                                                                                                                                                                                      | ļ                                |                                   |                                |                                        |               |                |                |                   | lay                     | <u> </u>          |        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|--------------------------------|----------------------------------------|---------------|----------------|----------------|-------------------|-------------------------|-------------------|--------|
| Function Function Name      | Truth table                                                                                                                                                                                                    | Equiva-<br>lent<br>Gate<br>Count | Normal-<br>ized<br>Load<br>Factor | Clamp<br>Level<br>When<br>Open | Symbol                                 | Symbol<br>No. |                | Output<br>Name | t <sub>PLF</sub>  | (ns)<br>K <sub>LH</sub> | t <sub>PH</sub>   | L (ns) |
| DFF                         | $ \begin{array}{c c} CK + Q - Q \\ \hline                                  $                                                                                                                                   | 7                                | 1                                 | @ @                            | — СК +Q — D -Q                         | С             | CK             | +Q             | 3.9               | 1.2                     | 3.8               | 0.9    |
| FD                          |                                                                                                                                                                                                                |                                  |                                   |                                |                                        |               |                | −Q             | 3.5               | 1.2                     | 3.6               | 0.9    |
| DFF<br>with<br>Load<br>FDL1 | $ \begin{array}{c cccc} CK & L & +Q & -Q \\ \hline                                 $                                                                                                                           | 9                                | 1<br>1<br>1<br>1.2                | @ @ #                          | FDL1 CK DC +Q DL -Q L                  | С             | CK             | +Q<br>-Q       | 3.9               | 1.2                     | 3.8               | 0.9    |
| DFF<br>with<br>CLR          | $ \begin{array}{c cccc} CK & CL & +Q & -Q \\ \hline  & 0 & D & \overline{D} \\ \hline  & 0 & +Q_0 & -Q_0 \end{array} $                                                                                         | 8                                | 1                                 | @ @                            | —————————————————————————————————————— | С             | CK<br>CL<br>CK | +Q             | 4.0               | 1.2                     | 4.1<br>2.1<br>3.7 | 0.9    |
| FDC1                        | X 1 0 1                                                                                                                                                                                                        |                                  | 1.2                               | #                              | CL                                     |               | CL             | -Q             | 1.8               | 1.2                     | _                 | 0.9    |
| DFF<br>with<br>PRE          | $ \begin{array}{c cccc} CK & PR & +Q & -Q \\ \hline                                 $                                                                                                                          | 8                                | 1<br>1                            | @ @                            | FDP1 CK + Q D Q                        | С             | CK<br>RR<br>CK | +Q             | 4.4<br>2.8<br>3.8 | 1.2                     | 4.1<br>-<br>4.1   | 0.9    |
| FDP1                        | X 1 1 0                                                                                                                                                                                                        |                                  | 1.2                               | #                              | PR                                     |               | PR             | <b>−Q</b>      | -                 | 1.2                     | 2.5               | 0.     |
| DFF<br>with<br>PRE/         | CK         PR         CL         +Q         -Q           f         0         0         D         D           L         0         0         +Qo         -Qo           X         1         0         1         0 | 9                                | 1<br>1                            | @                              |                                        | С             | CK<br>CL<br>PR | +Q             | 4.5<br>2.0<br>2.9 | 1.2                     | 4.4<br>2.1<br>—   | 0.     |
| CLR<br>FDPC3                | X                                                                                                                                                                                                              |                                  | 1.2<br>1.2                        | #                              | PR CL                                  |               | CK<br>CL<br>PR | -Q             | 4.1<br>1.8        | 1.2                     | 4.2<br>1.7<br>2.6 | 0.     |
| JKFF                        | CK         J         K         +Q         -Q           f         0         0         0         1           f         1         1         1         0                                                           | 10                               | 1.2<br>1<br>1                     | @ @ #                          | CK +Q                                  | С             | CK             | +Q             | 3.7               | 1.2                     | 4.4               | 0.     |
| FJ                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                          |                                  |                                   |                                |                                        |               |                | -Q             | 3.6               | 1.2                     | 4.4               | 0.     |
| JKFF                        | CK J K CL +Q -Q<br>f 0 0 0 0 1                                                                                                                                                                                 |                                  | 1.2                               | @                              | FJC1<br>CK+Q                           |               | CK             | +Q             | 4.3               | 1.2                     | 4.6               | 0.     |
| with<br>CLR                 | f     1     1     0     1     0       f     0     1     0     +Q <sub>o</sub> -Q <sub>o</sub> f     1     0     0     -Q <sub>o</sub> +Q <sub>o</sub>                                                          | 13                               | 1                                 | #                              | K -Q CL                                | С             | CK             |                | 4.0               |                         | 4.8               |        |
| FJC1                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                          |                                  | 1                                 | #                              |                                        |               | CL             | _Q             | 3.5               | 1.2                     |                   | 0.     |

|                  | Macrocell                                              |                       |                        |                       | 1.00                                                                                            |               |               |                 | De               | lay               |                  |                 |
|------------------|--------------------------------------------------------|-----------------------|------------------------|-----------------------|-------------------------------------------------------------------------------------------------|---------------|---------------|-----------------|------------------|-------------------|------------------|-----------------|
| Function         |                                                        | Equiva-               | Normal-                | Clamp                 |                                                                                                 |               |               |                 | t <sub>PLH</sub> | (ns)              | t <sub>PHI</sub> | (ns)            |
| Function<br>Name | Truth table                                            | lent<br>Gate<br>Count | ized<br>Load<br>Factor | Level<br>When<br>Open | Symbol                                                                                          | Symbol<br>No. | Input<br>Name | Output<br>Name  | t <sub>OLH</sub> | $\mathbf{k}_{LH}$ | t <sub>OHL</sub> | k <sub>HL</sub> |
| JKFF             | CK J K PR CL +Q -Q                                     |                       | 1.0                    |                       |                                                                                                 |               | CK            |                 | 4.3              |                   | 4.6              |                 |
| with<br>PRE/CLR  | f 0 0 1 0 0 1<br>f 1 1 1 0 1 0                         |                       | 1.2                    | @                     | $ \begin{bmatrix} FJPC1 \\ CK + Q \end{bmatrix}$                                                |               | PR            | +Q              | 2.6              | 1.2               | 2.6              | 0.9             |
| ·                | f 0 1 1 0 +Q <sub>0</sub> -Q <sub>0</sub>              |                       | 1                      | #                     | J                                                                                               |               | CL            |                 | _                |                   | 4.8              | •               |
|                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 14                    | 1.0                    | _                     | PR CL                                                                                           | С             | CK            |                 | 4.1              |                   | 4.9              |                 |
|                  | X   X   X   0   0   1   0                              |                       | 1.2                    | @<br>#                | <u> </u>                                                                                        |               | PR            | -Q              | _                | 1.2               | 4.6              | 0.9             |
| FJPC1            | x x x 0 1 1 1                                          |                       |                        |                       |                                                                                                 |               | CL            |                 | 3.6              |                   | 2.6              |                 |
| TFF              |                                                        |                       |                        |                       |                                                                                                 |               | CK            |                 | 4.0              |                   | 4.1              |                 |
| with<br>CLR      | CK CL +Q -Q                                            |                       | 1                      | @                     | FTC1<br>CK+Q                                                                                    |               | O.T.          | +Q              |                  | 1.2               | 2.1              | 0.9             |
|                  | $\int 0 -Q_0 + Q_0$                                    | 9                     |                        |                       | -Q                                                                                              | С             | CL            |                 | _                |                   | 2.1              |                 |
|                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                       | 1.2                    |                       | CL                                                                                              |               | CK            | -Q              | 3.8              | 1.2               | 3.7              | 0.9             |
| FTC1             |                                                        |                       | 1.2                    | #                     |                                                                                                 |               | CL            | _ <b>U</b>      | 1.8              | 1.2               | _                | 0.9             |
| TFF              |                                                        |                       |                        |                       |                                                                                                 |               | CK            |                 | 4.4              |                   | 4.1              |                 |
| with             | CK PR +Q -Q                                            |                       | 1                      | @                     | FTP1<br>CK+Q                                                                                    |               |               | +Q              |                  | 1.2               | 4.1              | 0.9             |
| PRE              | ∫ 0 -Q₀ +Q₀                                            | 9                     |                        |                       | -Q                                                                                              | C             | PR            |                 | 2.8              |                   |                  |                 |
|                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | -                     |                        |                       | PR                                                                                              |               | CK            |                 | 3.8              | 1, 2              | 4.1              | 0.0             |
| FTP1             |                                                        |                       | 1.2                    | #                     |                                                                                                 |               | PR            | -Q              | _                | 1.2               | 2.5              | 0.9             |
| TFF              |                                                        |                       |                        |                       |                                                                                                 |               | CK            |                 | 4.5              |                   | 4.4              |                 |
| with<br>PRE/CLR  | CK PR CL +Q -Q                                         |                       | 1                      | @                     | FTPC3<br>CK +Q                                                                                  |               | PR            | +Q              | 2.9              | 1.2               |                  | 0.9             |
| 1 KL/CLK         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                       |                        |                       | -Q                                                                                              |               | CL            |                 | 2.0              | ļ                 | 2.1              |                 |
|                  | X 1 0 1 0                                              | 10                    |                        |                       | PR CL                                                                                           | C             | CK            |                 | 4.1              |                   | 4.2              |                 |
|                  | X   0   1   0   1                                      |                       | 1.2                    | #                     |                                                                                                 |               | PR            | -Q              |                  | 1.2               | 2.6              | 0.9             |
| FTPC3            |                                                        |                       | 1.2                    | #                     |                                                                                                 |               | CL            |                 | 1.8              |                   | 1.7              | ]               |
| 4-Bit            |                                                        |                       |                        |                       |                                                                                                 |               |               |                 |                  |                   |                  |                 |
| DFF              |                                                        |                       | 1 1                    | @<br>@                | CK FD4                                                                                          |               |               | +Q <sub>0</sub> |                  |                   |                  |                 |
| :                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 28                    | 1                      | @                     | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ D_1 + Q_1 \end{array}$                           | B4            | CK            | ₹               | 4.1              | 1.2               | 4.0              | 0.9             |
|                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                       | 1 1                    | @                     | $D_2 + Q_2$                                                                                     |               |               | +Q <sub>3</sub> |                  |                   |                  |                 |
| PD4              |                                                        |                       |                        |                       | $D_3 + Q_3$                                                                                     |               |               |                 |                  |                   |                  |                 |
| FD4              |                                                        |                       |                        |                       |                                                                                                 |               |               |                 |                  | -                 | -                |                 |
| 4-Bit<br>DFF     |                                                        |                       | 1                      | @<br>@                | FD4C1<br>CK                                                                                     |               | CK            |                 | 4.4              |                   | 4.3              |                 |
| with<br>CLR      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 22                    | 1                      | @                     | $D_0 + Q_0$                                                                                     | D.            |               | +Q <sub>0</sub> |                  |                   |                  | 0.0             |
|                  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 33                    | 1                      | @                     | $D_1 + Q_1$ $D_2 + Q_2$                                                                         | B4            |               | <b>10</b>       |                  | 1.2               |                  | 0.9             |
|                  | X 1 0 0 0 0                                            |                       | 1                      | #                     | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$ |               | CL            | +Q <sub>3</sub> | _                |                   | 3.3              |                 |
| FD4C1            |                                                        |                       |                        |                       |                                                                                                 |               |               |                 |                  |                   |                  |                 |
|                  |                                                        |                       |                        |                       |                                                                                                 |               |               |                 |                  |                   |                  |                 |

# 10. SHIFT REGISTERS (with Scan Function)

|                                              | Macrocell                                                                                                                                                                                                                                                                                                                                                                                      |                         |                         |                        |                       |               |           |        | De   | lay             |                  |                 |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------|-----------------------|---------------|-----------|--------|------|-----------------|------------------|-----------------|
| Function<br>Function                         | Truth table                                                                                                                                                                                                                                                                                                                                                                                    | Equiva-<br>lent<br>Gate | Normal-<br>ized<br>Load | Clamp<br>Level<br>When | Symbol                | Symbol<br>No. | Input     | Output | tPLH | r(ns)           | t <sub>PH1</sub> | (ns)            |
| Name<br>———————————————————————————————————— |                                                                                                                                                                                                                                                                                                                                                                                                | Count                   | Factor                  | Open                   |                       |               | Name      | Name   | tOLH | k <sub>LH</sub> | tOHL             | k <sub>HL</sub> |
| 2-Bit SR                                     | CK +A +B                                                                                                                                                                                                                                                                                                                                                                                       | 12                      | 1                       | @                      | ZSR<br>CK +A          | B1            | СК        | +A     | 4.1  | 1.2             | 4.0              | 0.9             |
| ZSR                                          | $\frac{1}{1} + A_0 + B_0$                                                                                                                                                                                                                                                                                                                                                                      |                         | 1                       | @                      | D +B                  |               |           | +B     | 4.1  | 1.2             | 4.0              | 0.9             |
| 2 Dia CD                                     |                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                        |                       |               | CK        |        | 2.4  |                 | 2.6              |                 |
| 2-Bit SR<br>with<br>CLR                      | CK CLA CLB +A +B                                                                                                                                                                                                                                                                                                                                                                               |                         | 1<br>1                  | @ @                    | ZSRC1<br>             |               | CLA       | +A     | _    | 1.2             | 2.5              | 0.9             |
|                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                          | 15                      | 1.2<br>1.2              | #                      | CLA +B ——             | C             | CK        |        | 2.4  |                 | 2.6              |                 |
| ZSRC1                                        | X X 1 X 0                                                                                                                                                                                                                                                                                                                                                                                      |                         |                         |                        |                       |               | CLB       | +B     | _    | 1.2             | 2.5              | 0.9             |
| 2-Bit SR                                     | CK CLA CLB PRA PRB +A +B                                                                                                                                                                                                                                                                                                                                                                       |                         |                         | -                      |                       |               | СК        |        | 4.7  | -               | 4.6              |                 |
| with<br>CLR/PRE                              | f     0     0     0     0     D     +A <sub>o</sub> 1     0     0     0     0     +A <sub>o</sub> +B <sub>o</sub> X     1     X     X     X     0     X                                                                                                                                                                                                                                        |                         | 1<br>1                  | @<br>@                 | ZSRCP3<br>CK<br>D + A |               | CLA +A    | +A     | 2.0  | 1.2             | 2.1              | 0.9             |
|                                              | X X 1 X X X 0                                                                                                                                                                                                                                                                                                                                                                                  | 17                      | 1.2<br>1.2              | ##                     | CLA<br>PRA            | B4            | PRA       |        | 2.9  |                 | -                |                 |
|                                              | X   X   X   1   X   1   X   X   X   X                                                                                                                                                                                                                                                                                                                                                          |                         | 1.2<br>1.2<br>1.2       | # #                    | CLB +B                |               | CK<br>CLB | +B     | 2.0  | 1.2             | 2.1              | 0.9             |
| ZSRCP3                                       | X X 1 X 1 X 0                                                                                                                                                                                                                                                                                                                                                                                  |                         |                         |                        |                       |               | PRB       | _      | 2.9  |                 |                  |                 |
| 4-Bit SR                                     |                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                        |                       |               |           | +A     | 4.2  | 1.2             | 4.1              | 0.9             |
| 4-Dit SK                                     | CK +A +B +C +D                                                                                                                                                                                                                                                                                                                                                                                 |                         |                         |                        | ZSR4<br>CK + A        |               |           | +B     | 4.2  | 1.2             | 4.1              | 0.9             |
|                                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                         | 28                      | 1                       | @<br>@                 | D +B +C +C +D +D      | С             | CK        | +C     | 4.2  | 1.2             | 4.1              | 0.9             |
| ZSR4                                         |                                                                                                                                                                                                                                                                                                                                                                                                | !                       |                         |                        | <u> </u>              |               |           | +D     | 4.2  | 1.2             | 4.1              | 0.9             |
| 4-Bit SR                                     |                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                        |                       |               | CK        | +A     | 4.5  | 1.2             | 4.4              | 0.9             |
| with CLR                                     |                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                        | ZSR4C1                |               | CLA       | ית     | _    | 1.2             | 2.1              | 0.5             |
|                                              | CK         CLACLB         CLCCLD         +A         +B         +C         +D           f         0         0         0         0         0         +A <sub>0</sub> +B <sub>0</sub> +C <sub>0</sub> 1/2         0         0         0         0         +A <sub>0</sub> +B <sub>0</sub> +C <sub>0</sub> +D <sub>0</sub> X         1         X         X         0         X         X         X |                         | 1<br>1<br>1.2           | @<br>@<br>#            | CK +A D +B CLA +C     | D4            | CK<br>CLB | +B     | 4.5  | 1.2             | 2.1              | 0.9             |
|                                              | X X 1 X X X 0 X X<br>X X 1 X X X 0 X X<br>X X X 1 X X X 0 X<br>X X X 1 X X X 0 X                                                                                                                                                                                                                                                                                                               | 36                      | 1.2<br>1.2<br>1.2       | #                      | CLB +D CLC<br>CLD     | I B4          | CK        | +C     | 4.5  | 1.2             | 4.4<br>2.1       | 0.9             |
| ZSR4C1                                       |                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1.2                     | #                      |                       |               | CK        | +D     | 4.5  | 1.2             | 4.4              | 0.9             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                        |                       |               | CLD       | ا ك.   | _    | 1.4             | 2.1              | 0.9             |

#### 11. Latches (Normal Type)

|                     | Macrocell                                                                                     |                       |                        |                       |               | <u> </u>      |                                     |                | Del               | ay              |                          |                 |
|---------------------|-----------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------|---------------|---------------|-------------------------------------|----------------|-------------------|-----------------|--------------------------|-----------------|
| Function            |                                                                                               | Equiva-               | Normal-                | Clamp                 |               |               |                                     |                | t <sub>PLH</sub>  | (ns)            | t <sub>PHI</sub>         | (ns)            |
| Function<br>Name    | Truth table                                                                                   | lent<br>Gate<br>Count | ized<br>Load<br>Factor | Level<br>When<br>Open | Symbol        | Symbol<br>No. | Input<br>Name                       | Output<br>Name | t <sub>OLH</sub>  | k <sub>LH</sub> | t <sub>OHL</sub>         | k <sub>HL</sub> |
| RS latch            | SN RN +Q -Q 0 0 0 0                                                                           |                       |                        | @                     |               |               | S                                   | +Q             | 1.2               | 1.2             |                          | 0.9             |
|                     | 0 1 1 0                                                                                       | 3                     | 1                      |                       |               | <b>A</b> 3    | $\overline{R}$                      |                | 1.0               |                 | 0.9                      |                 |
| LRS0                | 1 0 0 1<br>1 1 Latch                                                                          |                       |                        | @                     |               |               | R                                   | <b>–</b> Q     | 1.2               | 1.2             | -                        | 0.9             |
| RS latch            | S R +Q -Q 0 0 Latch                                                                           |                       |                        | #                     |               |               | S                                   | +Q             | 0.9               | 1.2             | 1.0                      | 0.9             |
|                     | 0 0 Latch 0 1 0 1                                                                             | 3                     | 1                      | #                     |               | A3            | R                                   |                | _                 |                 | 1.6                      |                 |
| LRS3                | 1         0         1         0           1         1         1         1                     |                       | į                      | #                     |               |               | S<br>R                              | -Q             | 0.9               | 1.2             | 1.6                      | 0.9             |
| 2-Input<br>RS latch | SN RN +Q -Q                                                                                   |                       |                        | @                     |               |               | $\overline{\mathbf{S}}$             | 10             | 1.2               | 1.2             | _                        | 0.0             |
| Tto faton           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                         | 4                     | 1                      | @                     |               | A4            | R                                   | +Q             | 1.1               | 1.2             | 0.9                      | 0.9             |
| LR2S20              | 1 0 0 1<br>1 1 Latch                                                                          |                       |                        | @                     |               |               | $\frac{\overline{S}}{\overline{R}}$ | Q              | 1.1               | 1.2             | 0.9                      | 0.9             |
| 2-Input             | S R +Q -Q                                                                                     |                       |                        | #                     |               |               | S                                   |                | 0.9               |                 | 1.4                      |                 |
| RS latch            | 0 0 Latch 0 1 0 1                                                                             | 4                     | 1                      | #                     |               | A4            | R                                   | +Q             |                   | 1.2             | 2.0                      | 0.9             |
| X D 4644            | 1 0 1 0                                                                                       | 4                     | 1                      | #                     |               | A4            | S                                   | _Q             | _                 | 1.2             | 2.0                      | 0.9             |
| LR2S23              |                                                                                               |                       |                        | #                     |               |               | R                                   |                | 0.9               |                 | 1.4                      |                 |
| D latch             | G +Q -Q<br>1 D D                                                                              |                       | 1.2                    | @                     |               |               | G<br>D                              | +Q             | 1.5               | 1.2             | 1.5                      | 0.9             |
|                     | 1 D D Latch                                                                                   | 4                     | 1                      | @                     |               | С             | G                                   | _Q             | 1.6               | 1.2             | 1.8                      | 0.9             |
| LD                  |                                                                                               |                       |                        |                       |               |               | D                                   |                | 1.6               | 1.2             | 1.8                      | <u> </u>        |
| D latch<br>with     | $ \begin{array}{c cccc} G & CL & +Q & -Q \\ \hline 1 & 0 & D & \overline{D} \end{array} $     |                       | 1.2                    | @ @                   | G - Q         |               | G<br>CL                             | +Q             | 2.8               | 1.2             | 1.4                      | 0.9             |
| CLR                 | ₹ 0 Latch                                                                                     | 5                     | 1                      | (4)                   | D9            | С             | D<br>G                              |                | 2.8               |                 | 2.4                      | ·               |
| LDC1                | X   1   0   1                                                                                 |                       | 1                      | #                     |               |               | CL<br>D                             | -Q             | 2.1               | 1.2             | 1.6                      | 0.9             |
| D latch<br>with     | G PR +Q -Q                                                                                    |                       | 1.2                    | @                     | LDP1<br>C + Q |               | G<br>PR                             | +Q             | 1.6<br>0.7        | 1.2             | 1.8                      | 0.9             |
| PRE                 | $\begin{array}{c cccc} 1 & 0 & D & \overline{D} \\ \hline \downarrow & 0 & Latch \end{array}$ | 5                     | 1                      | @                     | D             | c             | D<br>G                              |                | 1.6               |                 | 1.8                      |                 |
| LDP1                | X 1 1 0 X: Don't care                                                                         |                       | 1                      | #                     | PR            |               | PR<br>D                             | -Q             |                   | 1.2             | 1.0                      | 0.9             |
| D latch<br>with     | G PR CL +Q -Q 1 0 0 D D                                                                       |                       | 1.2                    | @                     | LDPC3<br>C +Q | -             | G<br>PR                             | +Q             | 3.1               | 1.2             | 2.5                      | 0.9             |
| PRE/CLR             | 1 0 0 D D 2 0 0 Latch × 1 0 1 0                                                               | 6                     | 1                      | @                     |               | С             | CL<br>D<br>G                        |                | 1.6<br>3.1<br>2.2 | 1.2             | 1.4<br>2.5<br>2.9        |                 |
| LDPC3               | X 0 1 0 1<br>X 1 1 0 1<br>X: Don't care                                                       |                       | 1 1                    | #                     | PR CL         |               | PR<br>CL<br>D                       | -Q             | 1 5               | 1.2             | 2.9<br>2.0<br>1.4<br>2.9 | 0.9             |

|                          | Macrocell                                                                                                                                                                                                        |                       |                        |                       |                                                                                                        | i             |                |                 | Del              | ay              |                  |                 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|---------------|----------------|-----------------|------------------|-----------------|------------------|-----------------|
| Function                 |                                                                                                                                                                                                                  | Equiva-               | Normal-                | Clamp                 |                                                                                                        |               |                |                 | t <sub>PLF</sub> | (ns)            | t <sub>PHI</sub> | (ns)            |
| Function<br>Name         | Truth table                                                                                                                                                                                                      | lent<br>Gate<br>Count | ized<br>Load<br>Factor | Level<br>When<br>Open | Symbol                                                                                                 | Symbol<br>No. | Input<br>Name  | Output<br>Name  | t <sub>OLH</sub> | k <sub>LH</sub> | toHL             | k <sub>HL</sub> |
| 4-Bit<br>D latch         |                                                                                                                                                                                                                  | 13                    | 1<br>1<br>1            | @<br>@<br>@           |                                                                                                        | B4            | G              | +Q <sub>o</sub> | 1.8              | 1.2             | 1.8              | 0.9             |
| LD4                      | $\begin{array}{c cccc} 1 & D_0 & D_1 & D_2 & D_3 \\ \hline \\ \hline \\ \hline \\ \end{array}$ Latch                                                                                                             | 13                    | 1 1                    | @ @                   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                 |               | D <sub>0</sub> | +Q <sub>3</sub> | 1.5              | 1.2             | 1.5              | 0.9             |
| 4-Bit<br>D latch<br>with | G CL +Q <sub>0</sub> +Q <sub>1</sub> +Q <sub>2</sub> +Q <sub>3</sub>                                                                                                                                             |                       | 1 1                    | @<br>@                | LD4C1<br>G                                                                                             |               | G              |                 | 1.9              |                 | 1.8              |                 |
| CLR                      | $ \begin{array}{ c c c c c c c c c } \hline G & CL & +Q_0 & +Q_1 & +Q_2 & +Q_3 \\ \hline 1 & 0 & D_0 & D_1 & D_2 & D_3 \\ \hline \frac{1}{L} & 0 & Latch \\ \hline X & 1 & 0 & 0 & 0 & 0 \\ \hline \end{array} $ | 14                    | 1<br>1<br>1            | @ @                   | $ \begin{array}{c cccc}  & D0 & + Q_0 \\  & D1 & + Q_1 \\  & D2 & + Q_2 \\  & D3 & + Q_3 \end{array} $ | B4            | D <sub>0</sub> | +Q <sub>0</sub> | 1.6              | 1.2             | 1.5              | 0.9             |
| LD4C1                    |                                                                                                                                                                                                                  |                       | 1                      | #                     | CL                                                                                                     |               | CL             |                 | 1.3              |                 | 1.3              |                 |

## 12. FLIP-FLOPS (Normal Type)

|                  | Macrocell                                                                                                       |               |                 |                |                                       |        |               |                | De               | elay     |                  |                 |
|------------------|-----------------------------------------------------------------------------------------------------------------|---------------|-----------------|----------------|---------------------------------------|--------|---------------|----------------|------------------|----------|------------------|-----------------|
| Function         |                                                                                                                 | Equiva-       | Normal-<br>ized | Clamp<br>Level | Symbol                                | Symbol |               |                |                  | (ns)     | t <sub>PH</sub>  | L (ns)          |
| Function<br>Name | Truth table                                                                                                     | Gate<br>Count | Load<br>Factor  | When<br>Open   | Symbol                                | No.    | Input<br>Name | Output<br>Name | <sup>t</sup> OLH | $K_{LH}$ | <sup>t</sup> OHL | K <sub>HL</sub> |
| DFF              | CK +Q -Q                                                                                                        | 6             | 1               | @              | ————————————————————————————————————— | C      | CV            | +Q             | 2.2              | 1.2      | 2.4              | 0.9             |
| FD               | $ \begin{array}{c c} \hline                                    $                                                |               |                 | @              | D Q                                   |        | CK            | -Q             | 2.5              | 1.2      | 2.5              | 0.9             |
| DFF<br>with      | $ \begin{array}{c cccc} CK & L & +Q & -Q \\ \hline f & 0 & DC & \overline{D}C \\ \end{array} $                  | 8             | 1               | @              | FDL1<br>CK<br>DC Q                    | С      | СК            | +Q             | 2.2              | 1.2      | 2.4              | 0.9             |
| Load<br>FDL1     | $\begin{array}{c cccc} \hline f & 1 & DL & \bar{D}_L \\ \hline \overline{t} & \times & +Q_o & -Q_o \end{array}$ |               | 1 1.2           | @<br>#         | DI, Q                                 |        | CIC           | -Q             | 2.5              | 1.2      | 2.5              | 0.9             |
| DFF<br>with      | CK CL +Q -Q                                                                                                     | 7             | 1<br>1          | @<br>@         | FDC1<br>CK +Q                         | c -    | CK<br>CL      | +Q             | 2.2              | 1.2      | 2.4              | 0.9             |
| CLR<br>FDC1      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                           | ′             | 1.2             | #              | CL                                    |        | CK<br>CL      | -Q             | 2.9<br>0.9       | 1.2      | 2.6              | 0.9             |

|                      | Macrocell                                                                                                                                                                                                                                                             |                 |                |                |                             |        |                |           | De               | elay            |                   |                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|-----------------------------|--------|----------------|-----------|------------------|-----------------|-------------------|-----------------|
| Function             |                                                                                                                                                                                                                                                                       | Equiva-<br>lent | ized           | Clamp<br>Level | Symbol                      | Symbol | Tanus          | Output    | t <sub>PLF</sub> | (ns)            | t <sub>PH</sub>   | $L^{(ns)}$      |
| Function<br>Name     | Truth table                                                                                                                                                                                                                                                           | Gaté<br>Count   | Load<br>Factor | When<br>Open   | ,                           | No.    | Name           |           | <sup>t</sup> OLH | K <sub>LH</sub> | t <sub>OHL</sub>  | K <sub>HL</sub> |
| DFF<br>with<br>PRE   | $ \begin{array}{c cccc} \hline CK & PR & +Q & -Q \\ \hline                                   $                                                                                                                                                                        | 7               | 1<br>1         | @<br>@         | FDP1<br>CK · Q              | С      | CK<br>PR       | +Q        | 2.6              | 1.2             | 2.8               | 0.9             |
| FDPi                 | $\begin{array}{c cccc} \overline{\downarrow} & 0 & +Q_0 & -Q_0 \\ \hline \times & 1 & 1 & 0 \end{array}$                                                                                                                                                              |                 | 1.2            | #              | PR                          |        | CK<br>PR       | −Q        | 2.8              | 1.2             | 3.0               | 0.9             |
| DFF<br>with          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                | 0               | 1 1            | @              | — FDPC3<br>СК - Q<br>— D Q  |        | CK<br>CL<br>PR | +Q        | 2.6<br>-<br>1.0  | 1.2             | 2.8<br>2.9<br>1.2 | 0.9             |
| PRE/<br>CLR<br>FDPC3 | X     1     0     1     0       X     0     1     0     1       X     1     1     1     1                                                                                                                                                                             | 8               | 1.2<br>1.2     | #              | PR CL                       | С      | CK<br>CL<br>PR | -Q        | 3.2<br>0.9       | 1.2             | 3.1<br>0.6<br>1.5 | 0.9             |
| JKFF                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                | 9               | 1.2            | @ @ :          | — CK - Q — J — K Q —        | С      | CK             | +Q        | 2.7              | 1.2             | 2.1               | 0.9             |
| FJ                   | 1 0 -Q <sub>0</sub> -Q <sub>0</sub> 1 1 0 -Q <sub>0</sub> +Q <sub>0</sub> 1 X X +Q <sub>0</sub> -Q <sub>0</sub>                                                                                                                                                       |                 | 1              | #              |                             |        |                | <b>−Q</b> | 2.7              | 1.2             | 2.2               | 0.9             |
| JKFF<br>with<br>CLR  | CK         J         K         CL         +Q         -Q           f         0         0         0         0         1           f         1         1         0         1         0           f         0         1         0         +Q <sub>0</sub> -Q <sub>0</sub> | 12              | 1.2<br>1<br>1  | @<br>@<br>#    | FJC1<br>CK+Q<br>J<br>       | c      | CK<br>CL       | +Q        | 3.2              | 1.2             | 2.6               | 0.9             |
| FJC1                 | f     1     0     0     -Q <sub>o</sub> +Q <sub>o</sub> L     ×     ×     0     +Q <sub>o</sub> -Q <sub>o</sub> ×     ×     1     0     1                                                                                                                             | 12              | 1              | #              | CL                          | ·      | CK<br>CL       | -Q        | 3.0              | 1.2             | 2.8               | 0.9             |
| JKFF<br>with         | CK J K PR CL +Q -Q                                                                                                                                                                                                                                                    |                 |                |                |                             |        | CK             |           | 3.2              |                 | 2.6               |                 |
| PRE/<br>CLR          | f     0     0     1     0     0     1       f     1     1     1     0     1     0       f     0     1     1     0     +Q <sub>0</sub> -Q <sub>0</sub>                                                                                                                 |                 | 1.2            | @ #            | FJPC1<br>CK +Q<br>J<br>K -Q |        | PR<br>CL       | +Q        | 0.9              | 1.2             | 2.1               | 0.9             |
|                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                 | 13              |                |                | PR CL                       | С      | CK             |           | 2.9              | _               | 2.8               |                 |
|                      | X     X     X     0     0     1     0       X     X     X     1     1     0     1                                                                                                                                                                                     |                 | 1.2            | @ #            |                             | }      | PR             | -Q        | 0.9              | 1.2             | 1.1               | 0.9             |
| FJPC1                | X   X   X   0   1   0   0                                                                                                                                                                                                                                             |                 | 1              | #<br>          |                             |        | CL             |           | 3.1              |                 | _                 |                 |
| TFF<br>with<br>CLR   | CK CL +Q -Q                                                                                                                                                                                                                                                           |                 | 1              | @              | FTCI                        |        | СК             | +Q        | 2.2              | 1.2             | 2.4               | 0.9             |
| CLR                  | $\int 0 -Q_0 +Q_0$                                                                                                                                                                                                                                                    | 8               |                |                | -Q                          | c      | CL             |           | -                | 1.2             | 2.5               | 0.7             |
| FTC1                 | $\begin{array}{c ccccc} \overline{\xi} & 0 & +Q_0 & -Q_0 \\ \hline \times & 1 & 0 & 1 \\ \hline \end{array}$                                                                                                                                                          |                 | 1.2            | #              | CL                          |        | CK<br>CL       | _Q        | 0.9              | 1.2             | 2.6               | 0.9             |

|                          | Macrocell                                                                                                                             |                 |                  |                        | i                                                                                                                      |        |       |                 | De               | lay      |                  |          |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------------|------------------------------------------------------------------------------------------------------------------------|--------|-------|-----------------|------------------|----------|------------------|----------|
| Function                 |                                                                                                                                       | Equiva-<br>lent | Normal-<br>ized  | Clamp<br>Level<br>When | Symbol                                                                                                                 | Symbol | Input | Output          | t <sub>PLH</sub> | (ns)     | t <sub>PHI</sub> | (ns)     |
| Function<br>Name         | Truth table                                                                                                                           | Gate<br>Count   | Load<br>Factor   | Open                   |                                                                                                                        | No.    | Name  | Name            | t <sub>OLH</sub> | $K_{LH}$ | t <sub>OHL</sub> | $K_{HL}$ |
| TFF with PRE             |                                                                                                                                       |                 | 1                | @                      | FTP1                                                                                                                   |        | CK    | +Q              | 2.6              | 1.2      | 2.8              | 0.9      |
|                          | $ \begin{array}{c cccc} \hline CK & PR & +Q & -Q \\ \hline \hline f & 0 & -Q_0 & +Q_0 \end{array} $                                   | 0               | 1                | (W)                    | -Q                                                                                                                     | C      | PR    | +Ų              | 1.0              | 1.2      | _                | 0.9      |
|                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 | 8               | 1.2              |                        | PR                                                                                                                     |        | CK    |                 | 2.8              |          | 3.0              | 0.9      |
| FTP1                     |                                                                                                                                       |                 | 1.2              | #                      |                                                                                                                        |        | PR    | -Q              | _                | 1.2      | 1.4              | 0.9      |
| TFF with PRE/CLR         |                                                                                                                                       |                 |                  |                        |                                                                                                                        |        | CK    |                 | 2.6              |          | 2.8              |          |
| FRE/CLR                  | CK PR CL +Q -Q  f 0 0 -Q <sub>0</sub> +Q <sub>0</sub>                                                                                 |                 | 1                | @                      | FTPC3<br>CK +Q                                                                                                         |        | PR    | +Q              | 1.0              | 1.2      | 1.2              | 0.9      |
|                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 | 9               |                  |                        | -Q                                                                                                                     | C      | CL    |                 | -                |          | 2.9              |          |
|                          | X   1   0   1   0                                                                                                                     |                 | 1.2              | #                      | PR CL                                                                                                                  |        | CK    |                 | 3.2              |          | 3.1              |          |
|                          | X 1 1 1 1                                                                                                                             |                 | 1.2              | #                      |                                                                                                                        |        | PR    | _Q              |                  | 1.2      | 1.5              | 0.9      |
| FTPC3                    |                                                                                                                                       |                 |                  |                        |                                                                                                                        |        | CL    |                 | 0.9              |          | 0.6              |          |
| 4-Bit<br>DFF             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                | 21              | 1<br>1<br>1<br>1 | @ @ @                  | $\begin{array}{c c} FD4 \\ CK \\ D_0 + Q_0 \\ \hline D_1 + Q_1 \\ \hline D_2 + Q_2 \\ \hline D_3 + Q_3 \\ \end{array}$ | В4     | CK    | +Q <sub>0</sub> | 2.4              | 1.2      | 2.6              | 0.9      |
| FD4                      |                                                                                                                                       |                 |                  |                        |                                                                                                                        |        |       |                 |                  | <u>.</u> |                  |          |
| 4-Bit<br>DFF with<br>CLR | CK CL +Q <sub>0</sub> +Q <sub>1</sub> +Q <sub>2</sub> +Q <sub>3</sub> f 0 D <sub>0</sub> D <sub>1</sub> D <sub>2</sub> D <sub>3</sub> | 25              | 1 1 1 1          | @ @ @                  | FD4C1<br>CK<br>D <sub>0</sub> + Q <sub>0</sub><br>D <sub>1</sub> + Q <sub>1</sub>                                      | PA     | CK    | +Q <sub>0</sub> | 2.6              | 1.2      | 2.6              | 0.9      |
| FD4C1                    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                               | 23              | 1 1 1            | @ #                    | D <sub>2</sub> + Q <sub>2</sub> D <sub>3</sub> + Q <sub>3</sub> CL                                                     | В4     | CL    | +Q <sub>3</sub> | _                | 1.2      | 1.6              | 0.9      |

## 13. SHIFT REGISTERS (Normal Type)

|                      | Macrocell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                   |                |                                    |        |                 |                | De   | lay               |                  |            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|----------------|------------------------------------|--------|-----------------|----------------|------|-------------------|------------------|------------|
| Function             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equiva-<br>lent | Normal-<br>ized   | Clamp<br>Level | Symbol                             | Symbol |                 |                | tPLF | (ns)              | t <sub>PHI</sub> | $L^{(ns)}$ |
| Function<br>Name     | Truth table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gate<br>Count   | Load<br>Factor    | When<br>Open   | -,                                 | No.    | Input<br>Name   | Output<br>Name | tolh | $K_{LH}$          | t <sub>OHL</sub> | $K_{HL}$   |
| 2-Bit SR             | CK +A +B  f D +A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10              | 1 1               | @              | ZSR<br>                            | B1     | CK              | +A             | 2.3  | 1.2               | 2.5              | 0.9        |
| ZSR                  | $\frac{1}{1} + A_0 + B_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | _                 |                |                                    |        |                 | +B             | 2.3  | 1.2               | 2.5              | 0.9        |
| 2-Bit SR with CLR    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                   |                |                                    |        | CK              |                | 2.4  |                   | 2.6              |            |
|                      | CK CLA CLB +A +B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12              | 1<br>1<br>1.2     | @<br>@<br>"    | ZSRC1<br>CK +A                     | C      | CLA             | +A             | -    | 1.2               | 2.5              | 0.9        |
|                      | \[ \begin{array}{c ccccc} \begin{array}{c ccccc} \begin{array}{c ccccc} \begin{array}{c ccccc} \begin{array}{c cccc}  \begin{array}{c cccc} \begin{array}{c cccc} \begin{array}{c ccccc} \begin{array}{c cccc}  \begin{array}{c cccc} \begin{array}{c cccc} \begin{array}{c cccc} \begin{array}{c cccc} \begin{array}{c ccccc} \begin{array}{c cccc}  \begin{array}{c cccc} \begin{array}{c ccccccc} \begin{array}{c cccc} | 12              | 1.2               | #              | CLA +B                             |        | CK              | +B             | 2.4  | 1.2               | 2.6              | 0.9        |
| ZSRC1                | X X 1 X 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                   |                |                                    |        | CLB             | 1.5            | _    | 1.2               | 2.5              | 0.9        |
| 2-Bit SR with        | CK CLA CLB PRA PRB +A +B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 1                 | @              |                                    |        | CK              |                | 2.8  |                   | 3.0              |            |
| CLR/PRE              | 1 0 0 0 0 D +A <sub>0</sub><br>1 0 0 0 0 +A <sub>0</sub> +B <sub>0</sub><br>× 1 × × × 0 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 1<br>1.2          | @<br>#         | ZSRCP3                             |        | CLA<br>PRA      | +A             | 1.0  | 1.2               | 2.9              | 0.9        |
|                      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14              | 1.2<br>1.2        | #<br>#         | CLA PRA CLB +B                     | B4     | CK              |                | 2.8  |                   | 3.0              |            |
|                      | X     X     X     X     1     X     1       X     1     X     1     X     1     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 1.2               | #              | PRB                                |        | CLB             | +B             | _    | 1.2               | 2.9              | 0.9        |
| ZSRCP3               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                   |                |                                    |        | PRB             |                | 1.0  |                   | 1.2              |            |
| 4-Bit SR             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                   |                | 700                                |        | :               | +A             | 2.4  | 1.2               | 2.6              | 0.9        |
|                      | CK +A +B +C +D  T D +A <sub>0</sub> +B <sub>0</sub> +C <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19              | 1                 | @<br>@         | ZSR4<br>CK + A —<br>D + B —<br>+ C | С      | CK              | +B             | 2.4  | 1.2               | 2.6              | 0.9        |
|                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                   |                | +D                                 |        |                 | +C             | 2.4  | 1.2               | 2.6              | 0.9        |
| ZSR4                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                   |                |                                    |        |                 | +D             | 2.4  | 1.2               | 2.6              | 0.9        |
| 4-Bit SR<br>with CLR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 1                 | @              | [200.5]                            |        | CK<br>CLA       | +A             | 2.6  | 1.2               | 2.8              | 0.9        |
|                      | CK         CLA         CLB         CLC         CLD         +A         +B         +C         +D           f         0         0         0         0         0         +A <sub>0</sub> +B <sub>0</sub> +C <sub>0</sub> t         0         0         0         0         +A <sub>0</sub> +B <sub>0</sub> +C <sub>0</sub> +D <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 1<br>1<br>1.2     | @<br>@<br>#    | ZSR4C1<br>                         | _      | CLA  CK  CLB +B | 2.6            | 1.2  | 2.8               | 0.9              |            |
|                      | X 1 X X X 0 X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23              | 1.2<br>1.2<br>1.2 | # # #          | CLB +D CLC CLD                     | B4  -  | CK              | +C             | 2.6  | 1.2               | 2.8              | 0.9        |
| ZSR4C1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | į                 |                |                                    |        | CLC +C          | 2.6            | 1.2  | 2.5<br>2.8<br>2.5 | 0.9              |            |

## 14. OTHERS

|                                          | Macrocell                                                                                               | _               |                   |                       |                                               |                       |                                           |                | De               | lay      |                  |          |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------|-------------------|-----------------------|-----------------------------------------------|-----------------------|-------------------------------------------|----------------|------------------|----------|------------------|----------|
| Function                                 |                                                                                                         | Equiva-<br>lent | Normal-<br>ized   | Clamp<br>Level        | Symbol                                        | Symbol                |                                           |                | t <sub>PLF</sub> | (ns)     | t <sub>PH</sub>  | L(ns)    |
| Function<br>Name                         | Equivalent circuit                                                                                      | Gate<br>Count   | Load<br>Factor    | When<br>Open          | 2,                                            | No.                   |                                           | Output<br>Name | <sup>t</sup> OLH | $K_{LH}$ | t <sub>OHL</sub> | $K_{HL}$ |
| 4-Bit comparator                         | $A_0 \longrightarrow B_0$ $A_1 \longrightarrow B_1$ $A_2 \longrightarrow B_2$ $A_3 \longrightarrow B_3$ | 12              | 1.2               | #########             | ZEQC4 — A0 — B0 — A1 — B1 — A2 — B2 — A3 — B3 | В5                    | $A_0$ $A_1$ $A_2$ $A_3$ $A_0$ $A_1$ $A_2$ |                | 1.4              | 3.7      | 1.6              | 0.9      |
| 1-Bit<br>full-<br>adder                  |                                                                                                         |                 |                   |                       |                                               |                       | A, B                                      | +Co            | 1.8              | 1.2      | 1.5              | 1.2      |
| adder                                    |                                                                                                         | 7               | 1.2<br>1.2        | #                     |                                               | B2                    | Ci                                        |                | 0.9              | 1.2      | 0.8              | 1.2      |
|                                          |                                                                                                         |                 | 1.2               | #                     | CI +S                                         |                       | A, B                                      | +S             | 1.6              | 1.2      | 2.2              | 0.9      |
| FA1                                      |                                                                                                         |                 |                   |                       |                                               |                       | Ci                                        |                | 0.9              |          | 1.3              |          |
| 2-Bit<br>full-<br>adder                  |                                                                                                         |                 |                   |                       |                                               |                       | An, Bn                                    | An, Bn +Co 2.  | 2.7              | 1.2      | 2.6              | 1.2      |
|                                          |                                                                                                         | 14              | 1.2<br>1.2<br>1.2 | # # #                 | FA2<br>A1 +C0<br>B1<br>A0 +S1                 | c                     | Ci                                        |                | 1.8              |          | 1.6              |          |
|                                          |                                                                                                         |                 | 1.2<br>1.2        | #                     | B0 CI +S0                                     |                       | An,Bn                                     | +Sn            | 2.7              | 1.2      | 3.0              | 0.9      |
| FA2                                      |                                                                                                         |                 |                   |                       |                                               |                       | Ci                                        |                | 1.8              | _        | 2.1              |          |
| 4-Bit<br>full-<br>adder                  |                                                                                                         |                 | 1.2<br>1.2        | #                     | FA4<br>A3 +C0                                 |                       | An, Bn                                    | +Co            | 2.2              | 1.2      | 1.9              | 0.9      |
|                                          |                                                                                                         | 43              | 1.2<br>1.2<br>1.2 | #<br>#<br>#           | B3 A2 +S3 B2 A1 +S2                           | B5                    | Ci                                        |                | 2.0              |          | 1.7              |          |
|                                          |                                                                                                         |                 | 1.2<br>1.2<br>1.2 | # # #                 | B1<br>A0 +S1<br>B0                            |                       | An,Bn                                     | +Sn            | 4.3              | 2.0      | 4.4              | 0.9      |
| FA4                                      |                                                                                                         |                 | 1.6               | #                     | CI +S0                                        |                       | Ci                                        |                | 3.6              |          | 3.7              |          |
| 9-Bit<br>parity<br>generator/<br>checker |                                                                                                         | 37              | 1<br>1<br>1<br>1  | #<br>#<br>#<br>#<br># | PTGEN A B C C D E V                           | R5                    | <b>A</b>                                  | Ev             | 4.2              | 3.7      | 3.0              | 1.3      |
| PTGEN                                    |                                                                                                         |                 | 1 1 1 1           | # # #                 | F OD G                                        | B5   ₹ <del>   </del> | 1:2                                       | 4.5            | 0.9              |          |                  |          |

|                  | Macrocell          |                 |                 |                |        |        |               |                | De               | lay      |                  |          |
|------------------|--------------------|-----------------|-----------------|----------------|--------|--------|---------------|----------------|------------------|----------|------------------|----------|
| Function         |                    | Equiva-<br>lent | Normal-<br>ized | Clamp<br>Level | Symbol | Symbol |               |                | t <sub>PLF</sub> | (ns)     | t <sub>PH1</sub> | L(ns)    |
| Function<br>Name | Equivalent circuit | Gate<br>Count   | Load<br>Factor  | When<br>Open   |        | No.    | Input<br>Name | Output<br>Name | t <sub>OLH</sub> | $K_{LH}$ | t <sub>OHL</sub> | $K_{HL}$ |
| Buffer           |                    | 1               | 1               |                |        | A 1    |               | +Y             | 0.6              | 1.2      | 0.6              | 0.9      |
| BUF              |                    | 1               | 1               | @              | - Y    | Al     |               | -Y             | 0.3              | 1.2      | 0.4              | 0.9      |
| Power<br>buffer  | ~~~                |                 | 1.0             |                |        |        |               | +Y             | 0.7              | 0.6      | 0.7              | 0.5      |
| BUFP             |                    | 2               | 1.2             | @              |        | A1     |               | -Y             | 0.4              | 0.6      | 0.4              | 0.5      |

#### 15. TTL 74 SERIES

| Macro Function<br>Name | Function                                                                                  | Gate | Gate count            |  |
|------------------------|-------------------------------------------------------------------------------------------|------|-----------------------|--|
|                        |                                                                                           |      | with scan<br>function |  |
| HS00                   | QUADRUPLE 2-INPUT POSITIVE NAND GATES                                                     | 4    |                       |  |
| HS02                   | QUADRUPLE 2-INPUT POSITIVE NOR GATES                                                      | 4    |                       |  |
| HS04                   | HEX INVERTERS                                                                             | 6    |                       |  |
| HS08                   | QUADRUPLE 2-INPUT POSITIVE AND GATES                                                      | 8    |                       |  |
| HS10                   | TRIPLE 3-INPUT POSITIVE NAND GATES                                                        | 6    |                       |  |
| HS11                   | TRIPLE 3-INPUT POSITIVE AND GATES                                                         | 9    |                       |  |
| HS20                   | DUAL 4-INPUT POSITIVE NAND GATES                                                          | 4    |                       |  |
| HS21                   | DUAL 4-INPUT POSITIVE AND GATES                                                           | 6    |                       |  |
| HS27                   | TRIPLE 3-INPUT POSITIVE NOR GATES                                                         | 6    |                       |  |
| HS30                   | 8-INPUT POSITIVE NAND GATES                                                               | 6    |                       |  |
| HS32                   | QUADRUPLE 2-INPUT POSITIVE OR GATES                                                       | 8    |                       |  |
| HS42                   | BCD-TO-DECIMAL DECODER                                                                    | 28   |                       |  |
| HS43                   | EXCESS 3-TO-DECIMAL DECODER                                                               | 28   |                       |  |
| HS44                   | EXCESS 3-GRAY-TO-DECIMAL DECODER                                                          | 28   |                       |  |
| HS51                   | 2-WIDE 2-INPUT, 2-WIDE 3-INPUT AND-OR-INVERT GATES                                        | 6    |                       |  |
| HS54                   | 4-WIDE 2-INPUT, 3-INPUT AND-OR-INVERT GATE                                                | 9    |                       |  |
| HS55                   | 2-WIDE 4-INPUT AND-OR-INVERT GATE                                                         | 5    |                       |  |
| HS73                   | DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS<br>(WITH CLEAR)                               | 32   | 34                    |  |
| HS74                   | D-TYPE POSITIVE EDGE-TRIGGERED FLIP FLOPS                                                 | 20   | 22                    |  |
| HS75                   | QUADRUPLE LATCHES                                                                         | 16   | 20                    |  |
| HS76                   | DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS (WITH PRESET AND CLEAR)                       | 32   | 34                    |  |
| HS77                   | 4-BIT BISTABLE LATCHES                                                                    | 16   | 20                    |  |
| HS78                   | DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS (WITH PRESET, COMMON CLEAR, AND COMMON CLOCK) | 30   | 32                    |  |
| HS82                   | 2-BIT BINARY FULL ADDER                                                                   | 29   |                       |  |
| HS83                   | 4-BIT BINARY FULL ADDER                                                                   | 63   |                       |  |
| HS85                   | 4-BIT MAGNITUDE COMPARATOR                                                                | 78   |                       |  |
| HS86                   | QUADRUPLE EXCLUSIVE-OR GATES                                                              | 12   |                       |  |
| HS90                   | DECADE COUNTER                                                                            | 41   | 45                    |  |
| HS91                   | 8-BIT SHIFT REGISTER                                                                      | 50   | 58                    |  |
| HS92                   | DIVIDE-BY-TWELVE COUNTER                                                                  | 34   | 38                    |  |
| HS93                   | 4-BIT BINARY COUNTER                                                                      | 32   | 36                    |  |
| HS94                   | 4-BIT SHIFT REGISTER                                                                      | 44   | 48                    |  |
| HS95                   | 4-BIT SHIFT REGISTER                                                                      | 40   | 44                    |  |



| Macro Function<br>Name | Function                                                                          | Gat | with scan-<br>function |
|------------------------|-----------------------------------------------------------------------------------|-----|------------------------|
| HS96                   | 5-BIT SHIFT REGISTER (DUAL PARALLEL-IN, PARALLEL-OUT)                             | 51  | 56                     |
| HS97                   | SYNCHRONOUS 6-BIT BINARY RATE MULTIPLEXER                                         | 144 | 150                    |
| HS98                   | 4-BIT DATA SELECTOR/STORAGE REGISTER                                              | 35  | 39                     |
| HS99                   | 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTER                                             | 46  | 49                     |
| HS109                  | DUAL J-K POSITIVE EDGE-TRIGGERED FLIP FLOPS<br>(WITH PRESET AND CLEAR)            | 28  | 30                     |
| HS113                  | DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS<br>(WITH PRESET)                      | 30  | 32                     |
| HS135                  | QUADRUPLE EXCLUSIVE-OR/NOR GATES                                                  | 24  |                        |
| HS137                  | 3-LINE-TO-8-LINE DECODER/DEMULTIPLEXER WITH ADDRESS LATCHES                       | 36  | 51                     |
| HS138                  | 3-TO-8-LINE DECODER/DEMULTIPLEXER                                                 | 25  |                        |
| HS139                  | DUAL 2-TO-4-LINE DECODERS/DEMULTIPLEXERS                                          | 26  |                        |
| HS147                  | 10-LINE-TO-4-LINE PRIORITY ENCODER                                                | 46  |                        |
| HS148                  | 8-LINE-TO-3-LINE PRIORITY ENCODER                                                 | 49  |                        |
| HS150                  | 16-BIT DATA SELECTOR/MULTIPLEXER                                                  | 101 |                        |
| HS151                  | 1-OF-8-LINE DATA SELECTOR/MULTIPLEXER (WITH STROBE)                               | 54  |                        |
| HS152                  | 1-OF-8-LINE DATA SELECTOR/MULTIPLEXER                                             | 29  |                        |
| HS153                  | DUAL 4-OF-1-LINE DATA SELECTORS/MULTIPLEXERS                                      | 26  |                        |
| HS154                  | 4-OF-16-LINE DECODER/DEMULTIPLEXER                                                | 89  |                        |
| HS155                  | DUAL 2-OF-4-LINE DECODERS/DEMULTIPLEXERS                                          | 23  |                        |
| HS157                  | QUADRUPLE 2-OF-1-LINE DATA SELECTORS/MULTIPLEXERS (WITH NONINVERTED DATA OUTPUTS) | 15  |                        |
| HS158                  | QUADRUPLE 2-OF-1-LINE DATA SELECTORS/MULTIPLEXERS (WITH INVERTED DATA OUTPUTS)    | 11  |                        |
| HS160                  | SYNCHRONOUS DECADE COUNTER                                                        | 76  | 80                     |
| HS161                  | SYNCHRONOUS 4-BIT BINARY COUNTER                                                  | 80  | 84                     |
| HS162                  | FULLY SYNCHRONOUS DECADE COUNTER                                                  | 72  | 76                     |
| HS163                  | FULLY SYNCHRONOUS 4-BIT BINARY COUNTER                                            | 76  | 80                     |
| HS164                  | 8-BIT PARALLEL-OUT SHIFT REGISTER                                                 | 59  | 67                     |
| HS165                  | PARALLEL-LOAD 8-BIT SHIFT REGISTER                                                | 93  | 101                    |
| HS166                  | PARALLEL-LOAD 8-BIT SHIFT REGISTER                                                | 85  | 93                     |
| HS168                  | SYNCHRONOUS DECADE UP/DOWN COUNTER                                                | 94  | 98                     |
| HS169                  | SYNCHRONOUS BINARY UP/DOWN COUNTER                                                | 85  | 89                     |
| HS173                  | 4-BIT D-TYPE REGISTER (WITH 3-STATE OUTPUTS)                                      | 51  | 55                     |
| HS174                  | HEX D-TYPE FLIP FLOPS (WITH CLEAR)                                                | 43  | 49                     |
| 4S175                  | QUADRUPLE D-TYPE FLIP FLOPS (WITH CLEAR)                                          | 29  | 33                     |
| HS176                  | PRESETTABLE DECADE COUNTER                                                        | 74  | 78                     |



| Macro Function<br>Name | Function                                                                             | Gat | Gate count            |  |
|------------------------|--------------------------------------------------------------------------------------|-----|-----------------------|--|
|                        |                                                                                      |     | with scan<br>function |  |
| HS177                  | PRESETTABLE 4-BIT BINARY COUNTER                                                     | 60  | 64                    |  |
| HS180                  | 8-BIT ODD/EVEN PARITY GENERATOR/CHECKER                                              | 30  |                       |  |
| HS181                  | ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR                                             | 119 |                       |  |
| HS182                  | LOOK-AHEAD CARRY GENERATOR                                                           | 41  |                       |  |
| HS183                  | DUAL CARRY SAVE FULL ADDERS                                                          | 40  |                       |  |
| HS190                  | SYNCHRONOUS UP/DOWN DECADE COUNTER<br>(SINGLE CLOCK LINE)                            | 105 | 109                   |  |
| HS191                  | SYNCHRONOUS UP/DOWN 4-BIT BINARY COUNTER (SINGLE CLOCK LINE)                         | 101 | 105                   |  |
| HS192                  | SYNCHRONOUS UP/DOWN DECADE COUNTER<br>(DUAL CLOCK LINE)                              | 91  | 95                    |  |
| HS193                  | SYNCHRONOUS UP/DOWN 4-BIT BINARY COUNTER (DUAL CLOCK LINE)                           | 87  | 91                    |  |
| HS194                  | 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER                                         | 73  | 77                    |  |
| HS195                  | 4-BIT PARALLEL ACCESS SHIFT REGISTER                                                 | 47  | 51                    |  |
| HS198                  | 8-BIT PARALLEL-IN, PARALLEL-OUT BIDIRECTIONAL SHIFT REGISTER                         | 103 | 111                   |  |
| HS199                  | 8-BIT PARALLEL-IN, PARALLEL-OUT SHIFT REGISTER (J-K INPUT FIRST STAGE)               | 89  | 97                    |  |
| HS251                  | 1-OF-8-LINE DATA SELECTOR/MULTIPLEXER (WITH 3-STATE OUTPUTS)                         | 34  |                       |  |
| HS253                  | DUAL DATA SELECTORS/MULTIPLEXERS (WITH 3-STATE OUTPUTS)                              | 32  |                       |  |
| HS257                  | QUADRUPLE 2-TO-1-LINE DATA SELECTORS/MULTIPLEXERS (WITH NONINVERTED 3-STATE OUTPUTS) | 19  |                       |  |
| HS258                  | QUADRUPLE 2-TO-1-LINE DATA SELECTORS/MULTIPLEXERS (WITH 3-STATE OUTPUTS)             | 23  |                       |  |
| HS259                  | 8-BIT ADDRESSABLE LATCH                                                              | 95  | 103                   |  |
| HS273                  | OCTAL D-TYPE POSITIVE-EDGE-TREGGERED FLIP FLOPS (WITH CLEAR)                         | 57  | 65                    |  |
| HS279                  | QUADRUPLE S-R LATCHES                                                                | 18  | 38                    |  |
| HS280                  | 9-BIT ODD/EVEN PARITY GENERATOR/CHECKER                                              | 62  |                       |  |
| HS283                  | 4-BIT BINARY FULL ADDER (WITH FAST CARRY)                                            | 66  |                       |  |
| HS290                  | DECADE COUNTER                                                                       | 40  | 44                    |  |
| HS293                  | 4-BIT BINARY COUNTER                                                                 | 32  | 36                    |  |
| HS298                  | QUADRUPLE 2-INPUT MULTIPLEXERS (WITH STORAGE)                                        | 35  | 39                    |  |
| HS299                  | 8-BIT UNIVERSAL SHIFT/STORAGE REGISTER                                               | 160 | 168                   |  |
| HS373                  | (WITH 3-STATE OUTPUTS)  OCTAL D-TYPE TRANSPARENT LATCHES                             | 49  | 57                    |  |
| HS374                  | (WITH 3-STATE OUTPUTS)  OCTAL D-TYPE EDGE-TRIGGERED FLOP FLOPS                       | 65  | 73                    |  |
| HS390                  | (WITH 3-STATE OUTPUTS)  DUAL DECADE COUNTERS                                         |     | 74                    |  |
| HS393                  | DUAL 4-BIT BINARY COUNTERS                                                           | 66  |                       |  |
|                        | ,                                                                                    | 58  | 66                    |  |
|                        | DUAL 4-BIT DECADE COUNTERS  SYNCHRONOUS PECADE UNITED                                | 78  | 86                    |  |
| HS668                  | SYNCHRONOUS DECADE UP/DOWN COUNTER                                                   | 95  | 99                    |  |
| HS669                  | SYNCHRONOUS 4-BIT BINARY UP/DOWN COUNTER                                             | 80  | 84                    |  |





Unit: mm (inch)



When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.



# Hitachi America, Ltd.

Semiconductor and IC Division

Hitachi Plaza 2000 Sierra Point Parkway, Brisbane, CA 94005-1819 1-415-589-8300

\*Copyright 1990, Hitachi America, Ltd.

Printed in U.S.A.