Free space path loss, the path loss in
$$\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$$

Isum on this

The space path loss, the path loss in $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss, the path loss in $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss, the path loss in $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss, the path loss in $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss, the path loss in $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

The space path loss is $\frac{P_{+}}{P_{A}} = \frac{(4\pi d)^{2}}{x^{2}}$

=> poedicted path loss for unban environment according to commonly used Okumura - Hatta model

Thermal noise -> for wise to be 0, are need 0 k/-273°C which is not practical possible -> hunjointy distributed across frequency spectrum & hunce suffered as while wise intermodulation notes: happens due to non-linearity in the system

Sweet Lignals are mixed, there will be higher order systems due to non-linearity of the system

> cross talk

impulse noise : fluctuations in electric systems

N > 10 wy k + 10 beg T + 10 beg B 2 - 228.6 dBW + 10 log + 10 log B

$dBW \rightarrow d$	Bm: ado	d 30 dB	
	dBm	dBW -30	conversion
	30	- 30	
	60 \ 90 .	30	
	_ "	60)

7 1000=30dB

$$= \frac{1}{2} = \frac{$$

min SNL -> sender (airte) max SNR -> secciner (user)

Shannon's
$$\frac{2}{S}$$
: $C = B \log_2(1+S/N)$

$$\Rightarrow \frac{S}{N} = 2^{C/B} - 1 , C = capacity & channel$$

$$\therefore \frac{E_B}{N_0} = \frac{B}{C} \left(2^{C/B} - 1\right)$$
 Successfully replace $d SNR$ with B/C

MW: B= C= B kg 2 [1+8] IN=NOB

wight utipath ropagation (MPr) 1) MPP is due to reflection

- @ MPP in due to diffraction (3) MPP in due to stattering
- MPP is due to doppler effect

MPP will manifest into attenuation & 1SI by effects of MPP

=> Sxample gor repachion: Tropascatter Regractor

(3) MPP in due to skattering	-> example gos repueross. "of accepted	
1 MFP is due to depplar effect	Repartor.	
Fading in Mobile Environm	unt	
-> reduction in the level of sign	ed in an undiable manner	
· Facting is due to change in path · moving antennas cocates complex to · Karge Scale Facting -> low degre	hauswission paths	
Reflection: when the reflector sing	e in larger than wourderigth	
Diffurin: occurs at the edge of to wantingth & re	I am implementatable body that its large compared adto where.	
Scattery: By the sige of the of	bestacle in in the order of the wave largth of the signal 1 sec -> 300,000 tem 1 ju sec -> 300 m MPP in flateury is coherence semething.	
received multipath	,	
Flat Fading and Frequen	ney selective fading	
5 will worse in 250/ESA pal		
Fading Charnel @ For turmal @ Lay Gegh f	l noise, AWGN is a suitable model facting, occurs when there are many paths whaten Bridge	
Solution for frequency sele	Whine fading.	
-> flaturing the channel is NE	OT a solution cause channel in not in our touted	
Chievesse Symbol width	gou send > not are more intrested in BW huggy application	QAM -> abits/ Symbol
O Equaligation → Tx → [m]	$\longrightarrow \boxed{101} \longrightarrow \Re$	QPSK -> 26Ks/ sym
	> armente the 14 effect.	
	(FEC) Backward Prior correction to send again	
Seled dummy bits & min	g thise dummy we correct the error	Haring actional later
	u erhors in received bis with the help of reductant to	ATS IN PLEATING BITS
3g: Huffman lodes, Han		
(4) OFDM -> uses much	TIPLE OF THE GONDER SUBCOUTLIERS	
HW: DLOWNENCE BW @ coherence to A fast fading @ flat fading	one 3 store fading G frequency selective fading	

HW WOUNDERE BW (2) coherence time (3) 8 how fading (3) fast fading (5) flat fading (6) frequency selective fading