

Welcome to:

Automation and Orchestration

Unit objectives

After completing this unit, you should be able to:

- Learn the concept of automation and orchestration
- Understand key concepts in orchestration
- Gain knowledge on bridging realities, orchestration and programmable infrastructure
- Understand the concept of open source and standards
- Learn about peer perspectives on container orchestration survey
- Gain knowledge on cisco-Cloud-native capabilities and a deeper user experience
- Gain an insight into consideration for containers in production

Automation and orchestration

Figure: Automation and orchestration

Source: https://techture.global/wp-content/uploads/2018/03/Process-Automation-2.png

Key concepts in orchestration

Figure: Key concepts in orchestration

Source: https://www.clipart.email/make-a-clipart/?image=549234

Popular orchestra platforms: Swarm

Docker

IBM ICE (Innovation Centre for Education)

Figure: Popular orchestra platforms: swarm docker

Source: https://pbs.twimg.com/media/Cif2obHWwAA2G9g?format=jpgandname=large

Kubernetes

• The Kubernetes traces their architectural lineage to Google Borg, an inner cluster management scheme that lists more than two billion containers a day.

Figure: Kubernetes

Source: https://pbs.twimg.com/media/Cif2obHWwAA2G9g?format=jpgandname=large

Apache Mesos

====

• With roots in the superior registering world, Mesos supports Hadoop, Spark and more in addition Docker and containers.

Figure: Apache mesos

Source: https://pbs.twimg.com/media/Cif2obHWwAA2G9g?format=jpgandname=large

Container orchestration survey

Figure: Container orchestration survey

Container adoption

Figure: Some containers are used by 71% of the end-customers reviewed.

http://thenewstack.io/wp-content/uploads/2016/06/Chart_Container-Adoption-Among-Survey-Participants.png

Representation of DevOps pros

Job Responsibility: Responses From End Users

Figure: Representation of DevOps pros.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Job-Responsibility-End-Users.png

Defining the functionality of container orchestration

IBM ICE (Innovation Centre for Education)

Figure: Product of container orchestration

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Defining-Container-Orchestration-Functionality.png

Response from end users

IBM ICE (Innovation Centre for Education)

Defining Container Orchestration Functionality: Responses from End Users

Figure: When app designers believe about container orchestration, scheduling is not top-of-mind.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Defining-Container-Orchestration-Functionality-End-Users.png

Defining containers as a service **function**

IBM ICE (Innovation Centre for Education)

Figure: CaaS most related container orchestration and registers.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Defining-CaaS-Functionality-1.png

Confusion abounds outside the vendor territory

IBM ICE (Innovation Centre for Education)

Figure: In characterizing container orchestration and CaaS, the vendors were stingy.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Comparing-End-User-vs-Vendor-Functional-Expectations.png

Products/services used for container management and orchestration

IBM ICE (Innovation Centre for Education)

Figure: Container supervision for 4 5% of end customers who use, or test containers is based on platforms focused on orchestrating.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Primary-Method-of-Managing-Orchestrating-Containers.png

Container control is reduced by the use of configuration management tools

Platform as a Service (e.g., OpenShift, Deis)

IBM ICE (Innovation Centre for Education)

Figure: Container control is reduced using configuration management tools as companies move into production.

10%

5%

13%

15%

20%

25%

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Primary-Method-of-Managing-Orchestrating-Containers-Differences-by-Implementation-Status.png

Orchestration primary method

Figure: In its tools for configuring IT operations CaaS and orchestral platforms such as Swarm, Kubernetes and Mesos prevail.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Primary-Method-of-Managing-Orchestrating-Containers-Differences-Based-on-Job-Roles-v2.png

Top orchestration products

Top Orchestration Products Based on Expected Usage Within Next Year

Figure: Container orchestration arrangements for Kubernetes, Ansible, Mesos/Mesosphere, Amazon ECS and Docker Swarm top customers.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Top-Orchestration-Products-Based-on-Expected-Usage-Within-Next-Year.png

Expected top orchestration products

Figure: Among those directing preliminary projects or evaluations, Hashicorp and OpenShift are most often believed of.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Top-Orchestration-Products-Based-on-Expected-Usage-Within-Next-Year-Differences.png

Service discovery tools

Figure: Discover services of Consul, zookeeper and others which are used frequently used than other tools

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Service-Discovery-Tools-Used-for-Containers.png

Planning tools

Figure: Generally planned for open sources tools like Kubernetes, Marathon and Swarm.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Scheduling-Tools-Used-for-Containers.png

Cluster management

Figure: Cluster management is a tripartite battle between Kubernetes, Swarm and Mésos, taking the trend of evaluating the Mesospheric environment into account.

Source: http://thenewstack.io/wp-content/uploads/2016/06/Chart_Cluster-Management-Tools-Used-for-Containers-rev-10-17-16.png

Acceptances

- Container Orchestration Means:
 - It is usually acknowledged that scheduling, cluster management and service discovery are a piece of container orchestration. Nonetheless, over part of participants also saw provisioning and checking as a function of orchestration.
 - Docker's Swarm is viewed by enormous numbers for those who want to use Docker Cloud and Docker Datacentre as the hidden technology.
 - While research remains to be done, countless Mesos and Kubernetes customers understand what the basic technology uses.
 - Commonly used strategy remains container orchestration platforms. However, when taking a gander at explicit offerings, clients are well on the way to state that they are using Kubernetes which, by themselves, is not an item.

What is Kubernetes?

Figure: Kubernetes

Source: https://cdn.educba.com/academy/wp-content/uploads/2019/05/What-is-Kubernetes.jpg

Clusters and architecture

Kubernetes Architecture

Figure: Clusters and architecture

Source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRQXqVPOtQLTzQg0kIdXuLika6jbvJaJ8se7l3kDhlzsg-Ngweqands

Docker file instructions: CMD

Figure: Docker file instructions: CMD

Source: https://www.tigera.io/wp-content/uploads/2019/10/IBM-Cloud-Kubernetes-Service-clouds.png

Benefits

Figure: Benefits

Source: https://dzone.com/storage/temp/12575486-benifites-of-kubernetes-microservices-architecture.png

Kubernetes and DevOps

UNLEASHING THE POWER OF KUBERNETES IN DEVOPS SPACE

Figure: Kubernetes and DevOps

Source: https://cdn.spec-india.com/wp-content/uploads/2018/10/DevOps-and-Kubernetes.jpg

Figure: Kubernetes vs Docker

Source: https://stackify.com/wp-content/uploads/2019/05/kubernetes-vs-docker-881x441.jpg

Kubernetes and IBM

Figure:Kubernetes and IBM

Source: https://d33wubrfki0l68.cloudfront.net/817bfdd83a524fed7342e77a26df18c87266b8f4/3da7c/images/docs/components-ofkubernetes.png

Kubernetes architecture

Kubernetes Architecture

Etcd - a highly-available key value store which K8s uses for persistent storage of all of its REST API objects

API Server - Kubernetes API server

Controller manager – Daemon that runs controllers (background threads that handle routine tasks). Includes Node Controller, Replication Controller (ReplicaSet), Endpoints Controller, Service Account * Token Controllers)

Scheduler – schedules pods in worker nodes

Figure: Kubernetes architecture

Source: https://d33wubrfki0l68.cloudfront.net/817bfdd83a524fed7342e77a26df18c87266b8f4/3da7c/images/docs/components-of-kubernetes.png

Decentralized approach

Figure: A delineation of conventional compromise circle

Dynamic grouping

Figure: Instances of marks and name choice

Kubernetes structure

Figure: Kubernetes structure

Source: https://d33wubrfki0l68.cloudfront.net/817bfdd83a524fed7342e77a26df18c87266b8f4/3da7c/images/docs/components-of-kubernetes.png

Essential characteristics for manageability

IBM ICE (Innovation Centre for Education)

Figure: Essential characteristics for manageability

Source: https://www.oreilly.com/library/view/managing-kubernetes/9781492033905/assets/mgk8_0401.png


```
$ curl localhost:8001/api
 "kind": "APIVersions",
 "versions": [
   "v1"
 "serverAddressByClientCIDRs": [
     "clientCIDR": "0.0.0.0/0",
     "serverAddress": "10.0.0.1:6443"
 "name": "pods/attach",
 "singularName": "",
 "namespaced": true,
 "kind": "Pod",
 "verbs": []
```

Life of a request

 We shall separate the processing of one request for the API server in order to better comprehend what the API server is doing for each of these various demands.

Authentication:

 Authentication, that creates the identity connected with this request, is the first phase in application processing.

RBAC/Authorization:

After an application's identity has been determined by the API server, it passes on to authorizing it.
 Every implementation in Kubernetes application follows a conventional model of RBAC.

Admission control:

Upon authentication and authorisation of the request, the application passes to an admission check.

Validation:

 Validation of the requests occurs after entry control but can also be done as a portion of admission checks, especially for inner webhook-based validations.

Figure: The fundamental flow of an HTTP container log request

Figure: An example of multi-channel framework for the Kubernetes Web Socket

Figure: An instance of the web-based port forwarding information framework

Watch operations

Figure: Watch operations

Source: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/data metrics analytics desktop laptop.png?itok=9QXd7AUr

API server internals

for: { namespaces}

for crd in AllCustomResourceDefinitions:


```
if !RegisteredPath(crd):
    registerPath

for path in AllRegisteredPaths:
    if !CustomResourceExists(path):
        markPathInvalid(path)
        delete custom resource data
        delete path

IO803 19:59:19.929302 1 trace.go:76] Trace[1449222206]:
    "Create /api/v1/namespaces/default/events" (started: 2018-08-03
    19:59:19.001777279 +0000 UTC m=+25.386403121) (total time: 927.484579ms):
Trace[1449222206]: [927.401927ms] [927.279642ms] Object stored in database
IO803 19:59:20.402215 1 controller.go:537] quota admission added evaluator
```

```
schedule (pod): string
   nodes := getAllHealthyNodes()
   viableNodes := []
   for node in nodes:
                     for predicate in predicates:
                         if predicate (node, pod):
             viableNodes.append(node)
   scoredNodes := PriorityQueue<score, Node[]> priorities :=
   GetPriorityFunctions() for node in viableNodes:
       score = CalculateCombinedPriority(node, pod, priorities)
       scoredNodes[score].push(node)
   bestScore := scoredNodes.top().score
   selectedNodes := []
         while scoredNodes.top().score == bestScore:
           selectedNodes.append(scoredNodes.pop())
   node := selectAtRandom(selectedNodes)
   return node.Name
```

```
kind: Pod
. . .
spec:
 affinity:
   nodeAffinity:
     requiredDuringSchedulingIgnoredDuringExecution:
       nodeSelectorTerms:
       - matchExpressions:
        # foo == A or B - key: foo
          operator: In values:
          - A
          - B
. . .
```

Checkpoint (1 of 2)

Multiple choice questions:

- The goal of Docker Swarm _____.
 - a) Use a similar Docker API that works with the core Docker engine.
 - b) Use SOAP connector to connect with Docker.
 - c) Use application to run container inside the physical server.
 - d) Non of the above.
- The architecture of Kubernetes relies on a
 - a) Just master server.
 - b) Master server with various components.
 - c) API endpoint.
 - d) Non of the above.
- 3. Apache MESOS is manager of the cluster that makes running functions:
 - a) On a pool of data centre.
 - b) On a pool of common servers more predictable.
 - c) On a pool of array volumes.
 - d) Non of the above.

Checkpoint solutions (1 of 2)

Multiple choice questions:

- The goal of Docker Swarm _____.
 - a) Use a similar Docker API that works with the core Docker engine.
 - b) Use SOAP connector to connect with Docker.
 - c) Use application to run container inside the physical server.
 - d) Non of the above.
- The architecture of Kubernetes relies on a ______.
 - a) Just master server.
 - b) Master server with various components.
 - c) API endpoint.
 - d) Non of the above.
- 3. Apache MESOS is manager of the cluster that makes running functions:
 - a) On a pool of data centre.
 - b) On a pool of common servers more predictable.
 - c) On a pool of array volumes.
 - d) Non of the above.

Checkpoint (2 of 2)

Fill in the blanks:

1.	Red Hat customer choosecontributions in its configuration management.	_ as	а	way	to	integrate	other	Red	Hat
2.	Docker Swarm Kubernetes and Marathon were frequently used tools for								
3.	is a open source container orchestration tool.								
4.	IBM cloud pack utilizes and cloud applications.	IBM t	ech	nolog	gies	to allow cl	ients to) gene	erate

True or False:

- 1. DevOps combines IT operations and hardware deployment processes. True/False
- 2. Kubernetes and Mesosphere are orchestration tools. True/False
- 3. Amazon elastic cloud service is a VM handling service used on a virtual machine cluster for VM monitoring. True/False

Checkpoint solutions (2 of 2)

Fill in the blanks:

- 1. Red Hat customer choose Ansible as a way to integrate other Red Hat contributions in its configuration management.
- 2. Docker Swarm Kubernetes and Marathon were frequently used tools for <u>container</u> planning.
- 3. <u>Kubernetes</u> is a open source container orchestration tool.
- IBM cloud pack utilizes <u>Docker</u> and IBM technologies to allow clients to generate cloud applications.

True or False:

- 1. DevOps combines IT operations and hardware deployment processes. False
- 2. Kubernetes and Mesosphere are orchestration tools. True
- Amazon elastic cloud service is a VM handling service used on a virtual machine cluster for VM monitoring. False

Question bank

Two mark questions:

- Define Apache Mesos.
- 2. What is kubernets?
- Define container as a services.
- Define planning.

Four mark questions:

- 1. Explain security.
- Explain advantages of managed kubernets.
- Explain types of request.
- Explain implicit or dynamic groping.

Eight mark questions:

- Explain in detail head node components.
- Explain key components in orchestration.

Unit summary

Having completing this unit, you should be able to:

- Learn the concept of automation and orchestration
- Understand key concepts in orchestration
- Gain knowledge on bridging realities, orchestration and programmable infrastructure
- Understand the concept of open source and standards
- Learn about peer perspectives on container orchestration survey
- Gain knowledge on cisco-cloud-native capabilities and a deeper user experience
- Gain an insight into consideration for containers in production