Jerome Dumortier

Production Functions

Production with Two

the Short-Long-Run

Short-Run Production Long-Run Production

Long-Run Productio

Maximizatio

Production Function

Marginal Cost and Marginal Revenue

Producer Theory

Jerome Dumortier

Functions

Concepts
Production with To
Inputs

Production in the Short- and Long-Run

Long-Run Production

Profit Maximization

Maximization

Production Function

Goal of producer theory

- Derivation of the supply function (ultimately derived in the chapter "Cost Theory")
- Explaining changes in output based on changes in input prices

Components

- Production function
- Production in the short- and long-run
- Profit maximization

Jerome Dumortier

Production Functions

Production with To Inputs

Production in the Short- an Long-Run

Long-Run Production

Profit

Maximization

Marginal Cost and Marginal Revenue

Producer Theory vs. Consumer Theory

Similar concepts between producer and consumer theory

- Preferences ⇔ Production technology
- Budget constraint ⇔ Total cost function (unconstrained)
- Consumption choices ⇔ Production choices
- Indifference curves and budget lines become isoquants and isocost lines

Jerome Dumortier

Concents

Production and Production Functions

Production

Process of combining inputs to produce goods and services

Production function

 Maximum amount of output a firm can produce over some period of time from each combination of inputs

Broad applications of production technology

- Production of chairs (output) as a function of inputs (e.g., wood, nails)
- Production of an exam score in a university class based on inputs such as ability and time studying (among others)
- Fertilizer input to produce crop yield

Jerome

Dumortier

Concents

Crop Yield and Nitrogen Fertilization

Jerome Dumortier

Production Functions

Production with Two Inputs

the Short- and Long-Run

Short-Run Production Long-Run Production

Profit

Maximization

Marginal Cost and Marginal Revenue

Cobb-Douglas Production Function

Cobb-Douglas production function with an added parameter A representing total factor productivity (TFP):

$$Q = f(K, L) = A \cdot L^{\alpha} \cdot K^{\beta}$$

Modeling of returns to scale with Cobb-Douglas

- Constant returns to scale: $\alpha + \beta = 1$
- Increasing returns to scale: $\alpha + \beta > 1$
- Decreasing returns to scale: $\alpha + \beta < 1$

Jerome Dumortier

Production

Concepts

Production with Two Inputs

Production in the Short- and

Short-Run Product

Long-Run Product

Profit

Maximizatio

Marginal Cost and

Cobb-Douglas Function: Graphical Representation

Jerome Dumortier

Production with Two Inputs

Cobb-Douglas Function: Returns to Scale

α	β	L	K	Q	t	$f(t \cdot K, t \cdot L)$	$f(t \cdot K, t \cdot L)/Q$
0.4	0.6	10	20	151.57	2	303.14	2.00
8.0	0.4	10	20	209.13	2	480.45	2.30
0.2	0.3	10	20	38.93	2	55.06	1.41

Table 1: Illustration of economies of scale for a Cobb-Douglas production function.

Jerome Dumortier

Functions

Production with Tw Inputs

Production in the Short- and Long-Run

Long-Run Production

Profit Maximization

Maximization

Marginal Cost and Marginal Revenue

Production in the Short- and Long-Run

Common inputs in the production process

• Workers, energy, machinery, factories, etc.

Short-run

- Fixed inputs cannot be adjusted as output changes in the short run
- Examples of fixed inputs: Machinery and factories
- Classification of fixed input as capital (K)

Long-run

- A time horizon long enough for a firm to vary all of its inputs
- Variable inputs can be adjusted up or down as the quantity of output changes and/or input prices change

Jerome Dumortier

Production Functions

Production in the Short- an

Long-Run Short-Run Production

Long-Run Production

Profit

Maximization

Marginal Cost and Marginal Revenue

Short-Run Production Function

Consider the following production function

$$Q = 10 \cdot K^{0.5} \cdot L^{0.5} = 10 \cdot \sqrt{K \cdot L}$$

Capital fixed at $\bar{K}=9$, then the short-run production function is written as

$$Q = 30 \cdot \sqrt{L}$$

Or more generally

$$Q=f(\bar{K},L)$$

Jerome Dumortier

Production Functions

Production with Tw Inputs

Production in the Short- and Long-Run

Short-Run Production

Long-Run Production

Profit Maximization

Maximization

Marginal Cost and Marginal Revenue

Average and Marginal Product of Labor

Marginal product of labor: Additional output produced from one additional worker

$$MPL = \frac{\Delta Q}{\Delta L}$$

Average product of labor: Average quantity per worker

$$AP = \frac{Q}{L}$$

Law of diminishing marginal product

 As more of any input is added to a fixed amount of other inputs, its marginal product eventually declines.

Jerome Dumortier

Production

Concepts
Production with Tw

Production in the Short- and Long-Run

Short-Run Production

Long-Run Production

Profit Maximization

Maximization

Marginal Cost and Marginal Revenue

Marginal and Average Product: Graphical Analysis

Let w be the wage per worker (per unit of L) and let r be the rental rate of capital per unit of K. The total cost of production given a certain level of K and L can be written as follows:

$$TC = w \cdot L + r \cdot K$$

 $K = \frac{TC}{r} - \frac{w}{r} \cdot L$

Jerome Dumortier

Production Functions

Concepts
Production with Tv
Inputs

Production in the Short- and Long-Run

Long-Run Production

Maximizatio

Production Function

Marginal Cost and

Marginal Rate of Technical Substitution

Marginal rate of technical substitution

• The rate at which a firm can substitute one input for another while keeping output constant.

Marginal product of capital and labor

$$MP_K = rac{\Delta Q}{\Delta K}$$
 $MP_L = rac{\Delta Q}{\Delta L}$

Marginal rate of technical substitution, i.e., slope of the isoquant

$$MRTS = -\frac{\Delta K}{\Delta L} = \frac{MP_L}{MP_K}$$

Jerome Dumortier

Long-Run Production

Optimal Production

Profit Maximization

One Input and One Output

Two approaches

- Profit maximizing input choice based on production function
- 2 Profit maximization using marginal revenue and marginal cost

Production function

$$Q = 30 \cdot \sqrt{L}$$

Parameters

• Output price: p = 5

• Wage per worker: w = 10

Jerome Dumortier

Functions

Production with Tw Inputs

Production in the Short- and Long-Run

Short-Run Productio

Profit

Maximization
Production Function

Marginal Cost and Marginal Revenue

Production Function: Solution

Maximizing profit (π) with respect to L

$$\pi = p \cdot f(L) - w \cdot L$$

Solution

$$p \cdot f'(L) = w \quad \Leftrightarrow \quad f'(L) = \frac{w}{p}$$

where f'(L) represents the slope of the production function. Put differently

$$\pi = p \cdot Q - w \cdot L$$

Solving for Q

$$Q = \frac{\pi - w \cdot L}{p} = \frac{\pi}{p} + \frac{w}{p} \cdot L$$

Jerome Dumortier

Productions

Production with Tw Inputs

Production in the Short- and Long-Run

Short-Run Productio

D. C.

Maximization

Production Function

Marginal Cost and Marginal Revenue

Production Function: Graphical Interpretation

Marginal Cost and Marginal Revenue

Profit maximization as a function of output

$$\pi(Q) = R(Q) - C(Q)$$

where $R = p \cdot q$. Cost as a function of output and marginal cost

$$C(Q) = w \cdot \frac{Q^2}{900}$$

$$MC(Q) = 2 \cdot w \cdot \frac{Q}{900}$$

$$MC(Q) = 2 \cdot w \cdot \frac{Q}{900}$$

Jerome Dumortier

Solution: MR(Q)=MC(Q)

Concepts

Description with T

Production in the Short- and

Short-Run Productio

Profit

Maximization

Marginal Cost and Marginal Revenue Marginal Revenue

$$\frac{\Delta R}{\Delta Q} = \mu$$

Marginal Cost

$$\frac{\Delta C}{\Delta Q} = MC$$

Profit maximization condition is

$$MC(Q) = MR(Q)$$

True for any market structure with differences across market structures due to marginal revenue

Jerome Dumortier

Production Functions

Production with Tw Inputs

Production in the Short- and Long-Run

Short-Run Productio

Long-Run Productio

Maximization

Production Functi

Marginal Cost and Marginal Revenue

MR(Q)=MC(Q): Graphical Interpretation

