

AD-A095 634

ROCKWELL INTERNATIONAL DALLAS TEX COLLINS RADIO GROUP
STRESS ANALYSIS OF AIRCRAFT MODIFICATIONS (C-141B AIRCRAFT), JO--ETC(U)
OCT 80 D B RAGAN

F/G 1/3
F09603-80-C-0602

NL

UNCLASSIFIED

1 of 2
29603

AD A 095634

REVIS.

LTR	DESCRIPTION	DATE	APVD
	1	~	~

LEVEL

20

STRESS ANALYSIS
OF
AIRCRAFT MODIFICATIONS
(C-141B AIRCRAFT).

DTIC
ELECTRICAL
FEB 25 198

FEB 25 1981

JOINT AIRBORNE COMMUNICATIONS CENTER/COMMAND POST
(JACC/CP) PROVISIONS

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

121	122	123	124	125	125	127	Approved for public release, Distribution Unlimited																
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48

4094:

REL REV_ _ TC_ _ CR_ _ NB_ _ DL_ _

REVISIONS

LTR	DESCRIPTION	DATE	APVD

STRESS ANALYSIS
OF
AIRCRAFT MODIFICATIONS
(C-141B AIRCRAFT)

JOINT AIRBORNE COMMUNICATIONS CENTER/COMMAND POST
(JACC/CP) PROVISIONS

REV STATUS	REV																								
OF SHEETS	SHEET	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
CONTRACT NO.										ROCKWELL INTERNATIONAL CORPORATION COLLINS RADIO GROUP															
F09603-80-C-0602										DALLAS, TEX 75207 NEWPORT BEACH, CALIF 92663 CEDAR RAPIDS, IA 52406															
PREP D.B. RAGAN 10-24-80										STRESS ANALYSIS C-141B AIRCRAFT JACC/CP PROGRAM															
CHK																									
APVD																									
										SIZE	CODE IDENT	DWG NO.													
										A	13499	649-2924-001													
										SCALE															
										SHEET 1 OF 127															
										METRIC															

REL REV ____ TC ____ CR ____ NB ____ DL ____ TU ____

TABLE OF CONTENTS

SUMMARY

REFERENCES

1.0	AT1108 UHF/VHF/AM ANTENNA INSTALLATION	P. 5
2.0	H.F. LONGWIRE INSTALLATION	P. 9
3.0	UPS-192 HF RECEIVE ANTENNA INSTALLATION	P. 29
4.0	437S-1C VHF/FM ANTENNA INSTALLATION	P. 32
5.0	DMC34-3/B UHF SATCOM ANTENNA INSTALLATION	P. 47

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 2

SUMMARY

Stress Analyses were performed on the following aircraft modifications:

- AT1108 Antenna Installation,
- HF Longwire Installation,
- UPS-192 Antenna Installation,
- 437S-1C Antenna Installation, and
- SATCOM Antenna Installation .

The detailed conclusions of each of the topics above are contained after each sub-analysis. However, the general conclusion is that each of the subject modifications in no way impare the airworthiness of the aircraft in that the aircraft strength is equal to or greater than the original unmodified strength.

P 4

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 3

↓

REFERENCES

1. T.O. 1C-141A-3
2. MIL HDBK 5C
3. Formulas For Stress and Strain, 5th Edition, Roark & Young
4. Analysis and Design of Flight Vehicle Structures, 2nd Edition, E.F. Bruhn

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 4

1.0 AT 1108 UHF / VHF / AM ANTENNA INSTALLATION
Dwg. No. 649-2883-001

The antenna is mounted on top of the fuselage at F.S. 1267, LBL 6.40. The modification consist of a rectangular plate, 5.12 x 12.25 x .093 thk, attached to the original skin and a 7.29 x 6.90 x .080 thk doubler. The new rivets are NAS 1097D4. There are two .750 Dia. holes in the doubler and filler plate.

Reference Drawings : 649-2883 Installation
 649-2880 Filler
 649-2879 Doubler

(a) Strength of original skin structure

Skin : 7075 T6 Clad .056 thk (Ref 1)

Critical Shear buckling stress of panel

$$a = 20.0 \quad \} \quad a/b = 3.33 \\ b = 6 \quad \}$$

K ≈ 8.5 (Ref 3 table 35 manner 4 b)

$$\begin{aligned} S_{cr} &= K \frac{E}{1 - \mu^2} \left(\frac{t}{b} \right)^2 \\ &= 8.5 \frac{(10.3 \times 10^6)}{.89} \left(\frac{.056}{6} \right)^2 = 8559 \text{ psi} \end{aligned}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 5

Critical shear flow in panel

$$\begin{aligned}q_{cr} &= S_{cr} \cdot t \\&= 8559 (.056) = 479 \text{ lb/in}\end{aligned}$$

(b) strength of filler plate : 2024 T3 .093 thk.

$$\left. \begin{array}{l} a = 12.25 \\ b = 5.12 \end{array} \right\} \quad a/b = 2.39$$

$$K \approx 9.5$$

$$S_{cr} = 9.5 \left(\frac{10.5 \times 10^6}{.89} \right) \left(\frac{.093}{5.12} \right)^2 = 36,978 \text{ psi}$$

Critical Shear Flow

$$q_{cr} = 36,978 (.093) = 3439 \text{ lb/in}$$

Strength of doubler : 2024 T3 .080 thk.

$$\left. \begin{array}{l} a = 7.29 \\ b = 6.90 \end{array} \right\} \quad a/b = 1.05$$

$$K \approx 12.7$$

$$S_{cr} = 12.7 \left(\frac{10.5 \times 10^6}{.89} \right) \left(\frac{.080}{6.9} \right)^2 = 20,141 \text{ psi}$$

$$q_{cr} = 20,141 (.08) = 1611 \text{ lb/in}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 6

(C) Circular CUTOUT

Assume area between holes ineffective

$$V_1 = V_2 = \frac{1}{2} 8 (6.90) = 3.45 8$$

$$I_1 = I_2 = \frac{.229 (3.08)^3}{12} = .558 \text{ in}^4$$

$$\text{MoM } M_1 = 3.45 (479)(1.14) = 1884 \text{ in-lb}$$

This moment is greater than actual when considering the area between the two holes will actually resist bending.

Maximum Bending Stress

$$\sigma_B = \frac{1884 (3.08)}{.558} = 10,399 \text{ psi}$$

SKIN
0.056

$$\sigma_{allow} = 64 \text{ ksi } 2024 \text{ T3} \quad (\text{Ref 2})$$

$$\text{M.S.} = \frac{64000}{10,399} - 1 = - - - + 5.19$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 7

(d) CONSIDER PURE TENSION LOAD IN SKIN

Load lost by cutout in skin

$$72000 \text{ psi} (.75)(.056) = 3024 \text{ lbs}$$

Using filler as load carrying member

$$2024 \text{ T3 } F_{tu} = 62 \text{ ksi } F_{bnu} = 125 \text{ ksi } \text{ (Ref 2)}$$

$$\sigma = \frac{3024}{(5.12 - .75)(.093)} = 7441 \text{ psi}$$

M.S. +

Use NAS 1097D4 rivets to transfer load. Ultimate Shear Strength = 443 lbs, yield strength = 251 lbs

$$\text{Rivets required} = \frac{3024}{251} = 12$$

Rivets installed = 23

$$\text{MS} = \frac{23}{12} - 1 - - - - + .92$$

(e) Summary

The analysis shows that sufficient strength to carry all induced loads has been designed into the modification with the following Margins of Safety

$$\text{M.S. (Tensile ult.)} = 5.19$$

$$\text{M.S. (Rivet attachment)} = .92$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 8

2.0 H.F. LONGWIRE INSTALLATION

Two H.F. longwire antennas are mounted on the
upperside of the aircraft at F.S. 1126, L&RBL
44.56, W.L. 272 and connected to the tail
structure (tail lifting point) at FS 1695,
L&RBL 8.0 WL 450

Reference Drawings: '649-2824 Installation

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 9

a) Geometry of installation

$$\theta = \sin^{-1} \frac{177.89}{596.21} = 17.36^\circ$$

$$\alpha = \sin^{-1} \frac{36.56}{597.33} = 3.51^\circ$$

$$\gamma = \sin^{-1} \frac{177.89}{597.33} = 17.33^\circ$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 10

Vertical stabilizer lateral movement

$$X = \frac{24(142.21)}{232}$$

$$X = 14.71 \text{ inches}$$

Extension of antenna length

Tension takeup must move $598.41 - 597.33 = 1.08$ inches

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 11

Load on tail fitting

$$P_{Ten, max} = \text{Tension} \times \sin \alpha_{max}$$

$$= 109.57 \text{ lbs}$$

$$P_{shear max} = \text{Tension} \times \cos \alpha_{min.}$$

$$= 1274 \text{ lbs}$$

Plan View

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 12

b) Tail Fitting P/N 649-2801

Mat'L. 2024-T351 QQ-A-25014

$$F_{tu} = 62,000 \text{ psi} \quad (\text{Ref 2})$$

$$F_{su} = 37,000 \text{ psi}$$

$$F_{bru} = 115,000 \text{ psi} \quad (e/D=2)$$

Bearing

Bearing Factor 2.0
Fitting Factor 1.15

$$f_{bru} = \frac{1275}{.10(.25)} = 51000 \text{ psi}$$

$$\text{M.S.} = \frac{115000}{51000(2)} - 1 = \underline{\underline{\underline{\underline{\quad}}}} + .13$$

Shear tearout

$$f_s = \frac{1275}{2(.10)(.50 - .25 \cos 40^\circ)} = 20665 \text{ psi}$$

$$\text{M.S.} = \frac{37000}{20665(1.15)} - 1 = \underline{\underline{\underline{\underline{\quad}}}} + .56$$

The fitting is secured to the tail structure with 4 - NAS 517-4 bolts 160,000 psi minimum U.T.S.
the Longwire is secured to the fitting by one AN4 bolt. Single shear strength of 368 lbs.

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 13

C) Antenna Mast installation P/N 15186 C.I. 83044

A 2.50 inch diameter hole is cut in the aircraft skin for the mast installation.

Skin : 7075-T6 clad .056 thk (Ref 1)

$F_{tu} = 72000 \text{ psi}$ (Ref 2)

Load capability lost

$$P = 2.5 (.056)(72000) = 10,080 \text{ lbs.}$$

Two doublers are used to carry load thru plus distribute the 1274 lb Longwire load' into the skin and stringers.

Ref. drawings 649-2838 doubler
649-2839 doubler

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 14

Doubler material 2024-T3 .080" thk
 $F_{tu} = 62000 \text{ psi}$ (Ref 2)

Tension load capability of doublers

$$P = [4.06 + 5.62 - 2(2.50)] (.080)(62000) = 23213 \text{ lbs}$$

$$\text{M.S.} = \frac{23213}{10,680 + 1274} - 1 = \frac{23213}{11954} - 1 = 1.04$$

RIVET capability on .056 skin

$$\begin{array}{ll} \text{NAS 1097D4} & 442 \text{ lbs} \\ \text{NAS 1097D6} & 977 \text{ lbs} \end{array} \quad \left. \begin{array}{l} \text{Ref 2} \\ \vdots \end{array} \right.$$

$$15(442) = 6630 \text{ lbs}$$

$$8(977) = \frac{7816 \text{ lbs}}{14446 \text{ lbs}}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		15

$$MS = \frac{14446}{11354} - 1 = .27$$

VIEW A-A

Shear load $1274 \cos 17.3^\circ = 1216 \text{ lbs}$

Tension load $1274 \sin 17.3^\circ = 379 \text{ lbs}$

Load on aft angle

$$\sum M_{R_F} = 1216(1.6) - 379(1.875) - 3.75 R_F = 329 \text{ lb}$$

Fwd angle

$$\sum F_V 379 - 329 + R_F = 0$$

$R_F = 50 \text{ lbs}$ Tension or Reaction

$$\frac{1274}{6} = 112 \text{ lb Shear / Bolt on MS24693}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		16

Analysis of angle 649-2839

AND 10134-1204

$$I_{xx} = .0124 \text{ in}^4 \quad \bar{y} = .239 \text{ inch.}$$

Bending Stress

$$\sigma_B = \frac{323(1-.239)}{.0124}$$

$$\sigma_B = 19840 \text{ psi} \quad \text{M.S. +}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 17

d) Coupler mount 649-2806

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		18

d.1)

Design loads per MIL-A-8865

Fwd. 9.0 g

AFT. 1.5 g

Vert. 2.0 g up
4.5 g down

Lateral 1.5 g

Ultimate loads are 1.5 design

Load distribution on
vertical supports

Fwd support $\frac{12.84}{28.59} V_B$

Fwd = .45 V_B

AFT = .55 V_B

The aft vertical and horizontal
strut takes the most load.

Therefore analysis will be done
on aft struts.

Analysis for 6.75 g Vert. down:

$$\sum M_A = .55(37)(24.32)(6.75) - 17.7B$$

$$B_V = 189 \text{ lbs.}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 19

section property of tubular support struts

$$\text{Area} = .168 \text{ in}^2$$

$$I = .00958 \text{ in}^4$$

Stress at Joint C on horizontal strut

$$\sigma_b = \frac{907 (.375)}{.00958} = 35,501 \text{ psi}$$

Mat L properties 2024 T3 tubing

$$F_{tu} = 64,000 \text{ psi} \quad (\text{Ref 2})$$

$$F_{su} = 39,000 \text{ psi}$$

$$MS = \frac{64000}{35501} - 1 \quad \text{Bending} \quad + .80$$

$$\bar{\tau} = \frac{189}{.168} = 1125 \text{ psi}$$

$$MS = \frac{39000}{1125} - 1 \quad \text{Shear} \quad + 33.7$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 20

d.2)

Clip 649-2817

$$F_{tu} = 64 \text{ KSC} \quad (\text{Ref F 2})$$

$$F_{bru} = 104 \text{ KSC} \quad (e/d = 1.5)$$

Tension across section A-A

$$H_{rea} = 2(.31)(.061) = .038 \text{ in}^2$$

$$P = 189 \text{ lbs} (1.15) \text{ fitting factor} = 217 \text{ lbs}$$

$$\sigma_T = \frac{217}{.038} = 5720 \text{ psi} \quad MS = +$$

$$\sigma_{Br} = \frac{217}{4(.187)(.061)} = 4756 \text{ psi} \quad MS = +$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 21

d.3) Load in aft Vertical Strut & rivet pattern

MS 27039-1 Screw Ten. allowable = 2500 lbs
 Shear = 2125 lbs Single S.
 2024 T3 bearing Allow = 104 Ksc ($e/d = 1.5$)

M.S. +

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		22

$$P_H = 189 \sin 31^\circ = 97 \text{ lbs}$$

$$P_V = 189 \cos 31^\circ = 162 \text{ lbs}$$

P_H is reacted into the aircraft skin by 2 NAS 1097D6 rivets (787 lbs single shear each) and 5 NAS 1097D5 rivets (615 lbs single shear)

$$\text{Load per rivet} = \frac{97}{7} = 14 \text{ lbs} \quad \text{M.S. +}$$

P_V on stringer * 82

$$162 \left(\frac{3.17}{5.77} \right) (1.15 \text{ fitting factor}) = 102 \text{ lbs}$$

This load is transferred by 2 MS20470AD4 rivets

Excentric load on rivet

$$P = \frac{.61 (102) (.31)}{2 (.31)^2} = 133 \text{ lbs}$$

$$\text{Axial load} = \frac{102}{2} = 51 \text{ lbs}$$

$$\text{Resultant max. load} = 133 + 51 = 184 \text{ lbs}$$

Shear strength of MS 20470AD4 into .063 mat'l. is 388 lbs (ref 2)

$$\text{M.S.} = \frac{338}{184} - 1 = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} - \underline{\hspace{1cm}} + \underline{\hspace{1cm}} .84$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 23

d.4) ANALYSIS OF DRAG BRACE SYSTEM

$$\begin{aligned} \text{Fwd load} &= 37^{\#}(9g)(1.5) \\ &= 500 \text{ lbs} \end{aligned}$$

AXIAL LOAD IN DRAG BRACE

$$P_A = \frac{500}{\cos 29^\circ} = 572 \text{ lbs}$$

$$S_T = \frac{572}{.168} = 3403 \text{ psi} \quad \text{M.S. +}$$

$$P_V = 500 \tan 29^\circ = 277 \text{ lbs}$$

$$P_V = \frac{277}{5} = 55 \text{ lb/bolt+ M.S. +}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 24

↓

Analysis of angle clip 649-2822 & 649-2828

Assume all 500 lb load goes into the top two MS27039-1 fasteners.

Assume a section .38 inches wide on each side of fastener resists load

$$I = \frac{.75 (.187)^3}{12} = 4.09 \times 10^{-4} \text{ effective area}$$

$$\sigma_B = \frac{250 (.40) (.093)}{4.09 \times 10^{-4}} = 22,755 \text{ psi}$$

Mat'l Strength for 2024-T3511 extrusion

$$F_{tu} = 54000 \text{ psi LT} \quad (\text{Ref 2})$$

$$F_{su} = 29000 \text{ psi}$$

$$F_{bru} = 108000 \text{ psi } (e/D = 2)$$

$$MS = \frac{54000}{22755} - 1 \quad \underline{\text{Bending}} \quad | 1.37$$

Clip Shear at heel

$$\Sigma = \frac{250}{.063 (.40)} = 4960 \text{ psi MS +}$$

Bearing from 500 # load

$$\Sigma_B = \frac{250}{(.187)(.063)} = 21,221 \text{ psi MS +}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 25

Fore - Aft Drag load is carried into top skin
by 2 ~ NAS 1097D6 rivets and 5 ~ NAS 1097D5 rivets

VIEW C - C

Torsional shear stress on rivets A & B

$$\begin{aligned}\tau_t &= \frac{500 (.50) (2.42)}{2[(2.43)(.028) + (1.702)(.019) + (.833)(.019)] + .3 (.019)} \\ &= \frac{605}{236} = 2561 \text{ psi}\end{aligned}$$

Axial shear stress :

$$\tau_a = \frac{500}{2(.028) + 5(.019)} = 3311 \text{ psi}$$

Total shear stress on rivet B :

$$\tau_{tot} = 2561 + 3311 = 5872 \text{ psi} \quad \text{M.S. +}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 26

The vertical load produced by the drag load is carried by the 649-2812 channel to the aircraft stringers thru the 649-2811 clips. The clips are secured to the stringers by 2 ~ MS20470AD4 rivets.

Vertical load to stringers

$$V = 277 \cos 31^\circ = 237 \text{ lbs}$$

Shear load to skin

$$H = 277 \sin 31^\circ = 143 \text{ lbs}$$

Stringer #82 has the greater load due to forward loading.

Vertical load str #2 = .59 (237) = 140 lbs

Excentric load on rivets

$$P = \frac{.81(140)(.31)}{2(.31)^2} = 183 \text{ lbs}$$

$$\text{Axial load} = \frac{140}{2} = 70 \text{ lbs}$$

Resultant maximum load = 253 lbs

Shear strength of MS20470AD4 into .063 mat -
is 388 lbs (Ref 2)

$$M.S. = \frac{388}{253} - 1 = \underline{\quad} \quad \underline{.53}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 27

The H component of the vertical load is 193 lbs which is sheared into the skin by 7 rivets

$$\text{Stress on rivets} = \frac{193}{2(0.028) + 5(0.019)} = 947 \text{ psi}$$

$$\text{Load on Rivet B} = 947(0.028) = 26.5 \text{ lbs}$$

The resultant stress on rivet B (max. stressed rivet)

$$is \sqrt{(5872 \text{ psi})^2 + (947 \text{ psi})^2}$$

$$R = 5948 \text{ psi}$$

Allowable shear stress on 2017-T31

(D) rivet is 34000 psi (Ref 2)

$$M.S. = \frac{34000}{5948} - 1 = 4.72$$

(e) SUMMARY

The analysis shows that the design is of sufficient strength to carry all induced loads with the following minimum margins-of-safety

Tension M.S. = 0.80 (P. 20)

Bearing M.S. = 0.13 (P. 13)

Rivet attachment M.S. = 0.27 (P. 16)

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 28

3.0 UPS-192 H.F. RECEIVE ANTENNA INSTL
DWG. NO. 649-2797-001

The antenna is mounted on the bottom of the fuselage at F.S. 846, LBL 2.95. The modification consists of a doubler 4.25" x 8.00" x .080 thk. attached to the inside of the fuselage skin by 34 NAS 1097 D5 rivets. There is one .906 diameter hole drilled in the center of the doubler.

Reference Drawings

649-2797 Installation
649-2796 Doubler

(a) Consider Compression load in bottom skin

Load lost by cutout in skin
skin is 7079 T6 clad .071 thk (Ref 1)

$F_{cy} = 62,000 \text{ psi}$ (Ref 2)

$$P_{lost} = 62000 (.071)(.903 + .218 + .218)$$

$$P_{lost} = 5894 \text{ lbs}$$

Load capability of doubler
matL 2024 T3 .080 thk.

$$F_{cy} = 39000 \text{ psi}$$

$$P_{capability} = 39000 (4.08_{eff} - 1.339)(.080) = 8552 \text{ lbs}$$

$$\text{M.S.} = \frac{8552}{5894} - 1 \quad \underline{\quad \quad \quad \quad \quad \quad \quad \quad} \quad .45$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 29

(b) Buckling of Sheet

critical buckling stress of original aircraft panel

$$\sigma_{cr} = \frac{\pi^2 k_c E}{12(1-\mu^2)} \left(\frac{t}{b}\right)^2$$

$$\text{for } \frac{b}{t} = \frac{5.1}{.071} = 72 \quad k_c = 5.5 \quad (\text{Ref 4 P.C5.3})$$

$$\sigma_{cr} = 10,330 \text{ psi}$$

critical buckling of doubler

$$b_w = 4.24 - .08 = 4.16$$

$$b_f = .75 - .04 = .71$$

$$\frac{b_f}{b_w} = .17$$

$$\frac{t_w}{t_f} = 1.0$$

$$k_w = 4.6 \quad (\text{Ref 4 P.C6.3})$$

$$\sigma_{cr} = \frac{k_w \pi^2 E}{12(1-\mu^2)} \left(\frac{t_w}{b_w}\right)^2 = 16,801 \text{ psi} \quad \text{in web}$$

compressive load on doubler

$$P_c = \frac{5894}{.946} = 13203 \text{ psi}$$

$$\text{M.S.} = \frac{16801}{13203} = 1 \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{.37}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 30

(C) Rivets required to transfer load

NAS 1097 D5 P = 755 (Ref 2)

$$\# \text{ rivets} = \frac{58.94}{7.55} = 7.8 \text{ rivets}$$

No. rivets in design INSTL. = 17

$$MS = \frac{17}{8} - 1 \quad - \quad - \quad - \quad + \quad 1.12$$

(d) Summary

The analysis of this installation shows that it is of sufficient strength to carry the load.

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 31

4.0 4375-1C VHF/FM ANTENNA INSTALLATION

Two VHF/FM Antennas are mounted on the underside of the aircraft at F.S. 529.00 E L & R BL 48.5. A third antenna is mounted atop the Inflight Refueling housing at F.S. 507 C

Reference Drawings : 649-2884 Installation
 649-2900 Installation
 649-2898 Doubler

(a) 649-2900 Installation

The two lower antennas are in line with the flight of the aircraft and have a maximum drag of 2.55 lbs at 510 mph 30,000 ft altitude.

During take off and landing the antennas experience a side load due to the angle of attack with the airstream.

The cross sectional area of the antenna is 168 in² (1.17 ft²)

Assume maximum angle of attack of 14° during take off rotation at M = 0.48

The antenna blade will be treated as a flat plate for side load analysis

Dynamic pressure at sea level

$$C = 1118 \text{ FPS}$$

$$\rho = .002378 \text{ lb sec}^2/\text{ft}^4$$

$$V = 200 (1.688) = 338 \text{ FT/sec}$$

$$S = \frac{1}{2} (.002378) (338)^2 = 135.51 \text{ lb/ft}^2$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 32

(d) INCLINED PLATE

FIG. 5.—WIND PRESSURES ON ELEMENTARY BODIES

(FROM ASCE PAPER 3269)

for $\lambda = 1.6$ at $\alpha = 76^\circ$

$$C_D = .21 \quad C_L = .67 \quad C_{CP} = .51$$

At takeoff rotation

$$F_D = C_D A g \\ = .21 (1.17)(135.5) = 33.3 \text{ lbs}$$

$$F_L = C_L A g$$

$$= .67 (1.17)(135.5) = 106.2 \text{ lbs}$$

At sea level, antenna cross section drag = 1.64 lbs

Center of pressure on the antenna $\bar{x} = 7.49''$

$$F'_D = 33.3 + 1.64 = 34.94 \text{ lbs}$$

$$F'_L = 106.2 \text{ lbs}$$

$$M = (106.2 + 34.94)(7.49) = 1057 \text{ in-lb}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 33

Antenna attachment loads

Assumption: The antenna stiffness is of such magnitude that the antenna tends to rotate as a rigid body about its edge

Bolt tension due to lift

$$F_L = \frac{106}{8} = 13.25 \text{ lbs}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 34

Drag load Per bolt

$$F_D = \frac{3.3}{8} = 4.1 \text{ lbs}$$

Load due to Moment

$$M = \frac{2F}{3.88} \left[(3.88)^2 + (3.22)^2 + (.95)^2 + (4.1)^2 \right]$$

$$M = 13.66 F$$

$$F = \frac{1057}{13.66} = 77.4 \text{ lbs}$$

Summation of loads

Bolts # 1 & 2 $F_D = 4.1 \text{ lbs}$

$$F_L = 13.25 + \frac{3.32}{3.88} (77.4) = 79.5 \text{ lbs}$$

Bolts # 3 & 4 $F_D = 4.1 \text{ lbs}$

$$F_L = 13.25 + 77.4 = 90.6 \text{ lbs}$$

Bolts # 5 & 6 $F_D = 4.1 \text{ lbs}$

$$F_L = 13.25 + \frac{.95}{3.88} (77.4) = 32.2 \text{ lbs}$$

Bolts # 7 & 8 $F_D = 4.1 \text{ lbs}$

$$F_L = 13.25 + \frac{.41}{3.88} (77.4) = 21.4 \text{ lbs}$$

Pivot Point

$$\sum F_L = -223.7 + 106 = -117.7 \text{ lbs}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 35

Section properties of angle installation

Effective width of skin

$$w = 1.9 t \sqrt{E/F_{cy}}$$

skin : 7475-T761

$t = .071$ (Ref L.A.C. Dwg 3F30503)

$F_{cy} = 60,000 \text{ psi}$ (Ref 2)

$F_{tu} = 71,000 \text{ psi}$

$$w_{\text{skin}} = 1.9 (.071) \sqrt{\frac{10^7}{60 \times 10^3}} = 1.74 \text{ inches}$$

Effective width of doubler

mat L : 2024-T3 .100 thk

$F_{cy} = 37,000 \text{ psi}$ (Ref 2)

$F_{tu} = 62,000 \text{ psi}$

$w_{\text{doubler}} = 3.23$

Moment of inertia of skin, doubler and angle

$$I = .0326 \text{ in}^4 \quad \bar{y} = .172 \text{ inches}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 36

Reactions on Angle 649-2899-001 (worst case)

- ANGLE - ANTENNA ATTACHMENT

* ICES STRUDL-II
* THE STRUCTURAL DESIGN LANGUAGE

* CIVIL ENGINEERING SYSTEMS LABORATORY
* MASSACHUSETTS INSTITUTE OF TECHNOLOGY
* CAMBRIDGE, MASSACHUSETTS

* 14.24.47 09 OCT 80

* UNIVAC 1100 SERIES EXEC 8
* VERSION 2.7

PREPARED BY MAARTEN VET

NODE COORDINATES

X Y

1	0.00	0.00	SUPPORT
2	1.04	0.00	
3	4.74	0.00	
4	5.92	0.00	
5	5.82	0.00	SUPPORT

TYPE PLANE FRAME

MEMBER INCIDENCES

1	1	2
2	2	3
3	3	4
4	4	5

MEMBER PROPERTIES

1 1 4 AX .5568 IZ .0326 SZ .0326

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 37

CONSTANTS

E 1.00E7 ALL

G 3.80E6 ALL

LOADING "DRAG"

NODE LOADS

2 FORCE Y +90.6
3 FORCE Y +21.4
4 FORCE Y -54.8

Assumptions: 1/2 pivot point load is taken by this angle

STIFFNESS ANALYSIS

UNITS KIPS

OUTPUT DECIMAL 4

LIST FORCES,REACTIONS,DISPLACEMENTS ALL

OUTPUT DECIMAL 3

LIST MAX STRESS,EACH LOAD,ALL MEMBERS,SECT FR DS 0.00 0.20

SIZE A	CODE IDENT 13499	DWG NO. 649-297-001
SCALE	REV	SHEET 38

UNIVAR LOAD STATUS LOTS

DATE 100980 PAGE 3

PRINTS OF LATEST ANALYSIS

PROBLEMS - ANGLE TITLE = ANTENNA ATTACHMENT

ACTIVE JOINTS INCH KIPS RADIAN DEG SECUND

ACTIVE STRUCTURE TYPE: PLANE FRAME

ACTIVE COORDINATE AXES X Y

LOADING - DRAGS

MEMPHIS FORCES

MEMPHIS	JOINT	FORCES			MOMENTS			BENDING			
		AXIAL	SHEAR Y	TORSIONAL	X FORCE	Z FORCE	X MOMENT	Y MOMENT	Z MOMENT	X ROT	Z ROT
1	1	*0000	*0013							*0026	
1	2	*0000	*0013							*0020	
2	2	*0000	*0093							*0250	
2	5	*0000	*0093							*0000	
3	3	*0000	*0307							*0000	
3	4	*0000	*0307							*0176	
4	4	*0000	*0281							*0116	
4	5	*0000	*0281							*0039	

RESISTANT JOINT LOADS - SUPPORTS

JOINT	FORCES			MOMENTS			ROTATIONS			
	X FORCE	Y FORCE	Z FORCE	X MOMENT	Y MOMENT	Z MOMENT	X ROT	Y ROT	Z ROT	
1	GLO	*0000	*0013							*0026
1	GLO	*0000	*0281							*0009
	TOTALS	*0000	*0532							*0677

UNIVERSITY JOINT DISPLACEMENTS - SUPPORTS

JOINT	DISPLACEMENTS			ROTATIONS		
	X DISPL	Y DISPL	Z DISPL	X ROT	Y ROT	Z ROT
1	*0.001	*0.000	*0.000			

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 39

UNIVAC AND STREETS ICES

DATE 100980

PAGE

RESULTANT JOINT DISPLACEMENTS - FREE JOINTS

JOINT	X DISPL	Y DISPL	Z DISPL	X ROT	Y ROT	Z ROT
2	.000	.000	.000	.0001	.0001	.0001
3	.000	.000	.000	.0000	.0000	-.0000
4	.000	.000	.000	.0000	.0000	-.0000

INTERNAL MEMBER RESULTS

MEMBER MAXIMUM STRESS FOR EACH LOADING

MEMBER 1

LOADING	MAX NORMAL AT SECTION	MIN NORMAL AT SECTION
DRAG	1.927 .0000 FR	-1.927 .0000 FR

MEMBER 2

LOADING	MAX NORMAL AT SECTION	MIN NORMAL AT SECTION
DRAG	.767 .0000 FR	-.767 .0000 FR

MEMBER 3

LOADING	MAX NORMAL AT SECTION	MIN NORMAL AT SECTION
DRAG	.540 1.0000 FR	-.540 1.0000 FR

MEMBER 4

LOADING	MAX NORMAL AT SECTION	MIN NORMAL AT SECTION
DRAG	.540 .0000 FR	-.540 .0000 FR

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 40

ASSUMPTION: THE NAS 623 FASTENERS ATTACHING THE ANGLE TO THE BEAM CAN TRANSFER MOMENT INTO THE A/C ZEE SECTION

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 41

Maximum bending Stress

$$\text{C}_B = \frac{62.8 (1.00)}{.0326} = 1926 \text{ psi}$$

$$MS = \frac{34000}{1926} - 1 \quad - \quad - \quad - \quad - \quad | \quad 16.6$$

End moment on clip 649-2895-002

Moment M is reacted by 2 MS 20470 RIVETS
since the N.A. is even with bottom of doubler

$$P = \frac{62 \cdot 8}{62} = 101 \text{ lbs}$$

This load is reacted by 2 MS20470D4 which have a single shear strength of 442 lbs

$$MS = \frac{884}{101(1.5)} - 1 = - - - - + 4.8$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 42

USE .190 thick radius
block to force P load
into corner of Angle
as a tension load
rather than a bending
load around angle corner.

$$P = 101 \text{ lbs}$$

VIEW A-A

NAS 623-2 bolts will withstand an ultimate tensile strength of 1740 lbs

M.S. +

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 43

↓

(b) Connector CUTOUT in Skin

Load capability in skin lost

$$P_{lost} = 71000 (1.12 + .218 + .218)(.071) = 7844 \text{ lbs}$$

the 649-2898 doubler must pick up this load

$$62000 (3.95 - 1.12 - .218 - .218)(.10) = 14843 \text{ lbs}$$

$$MS = \frac{14843}{7844} - 1 = \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad | .89$$

Rivets required to transfer load. Use NAS 1097 D5,
ultimate single shear strength = 690 lbs (Ref 2)

$$\frac{7844}{690} = 11.4 = 12 \text{ rivets}$$

Rivets installed:

$$12 \text{ NAS 1097 D5} \quad 8280 \text{ lbs}$$

$$4 \text{ NAS 1097 AD3} \quad \frac{1492 \text{ lbs}}{9772 \text{ lbs}}$$

$$MS = \frac{9772}{7844} - 1 = \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad | .24$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 44

(C) 649-2884 INSTALLATION

No analysis will be run on the 437S-1C installation on the inflight refueling housing since the antenna at all times is parallel to the line of flight, maximum drag load is 2.55 lbs and the I.R. housing does not carry major structural loads. Any side loads due to yaw maneuvers or roll maneuvers is transferred as shear into the skin and to the structural member of the housing.

Doubler installation (649-2888 doubler)

Load lost by cutout :

Skin : 7079-T6 clad .053 thk (Ref 1)

$F_{tu} = 69000 \text{ psi}$ (Ref 2)

$$P = 69000(.75)(.053) = 2743 \text{ lbs}$$

Doubler 2024 T3 .063 thk

$F_{tu} = 62000 \text{ psi}$

$$P_{\text{capability}} = 62000(2.5 - .75)(.063) = 6835 \text{ lbs}$$

$$\text{MS} = \frac{6835}{2743} - 1 = \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} + 1.49$$

Number M520470AD4 rivets required to transfer Load. Single shear strength = 388 lbs (Ref 2)

$$\text{Rivets Regd} = \frac{2743}{388} = 7$$

Rivets installed = 10

$$\text{M.S.} = \frac{10}{7} - 1 = \underline{\quad}$$

0.43

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 45

(d) Summary

The analysis of the 9375-1C antenna installation shows that it is of sufficient strength to carry the induced loads with the following margins-of-safety

Tensile M.S. = 0.89 (P. 44)

Rivet Shear M.S. = 0.24 (P. 44)

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 46

5.0 SATCOM ANTENNA INSTALLATION

DWG. NO 649-2851

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 47

Satcom skin doubler installation

Ref dwg 649-2851 Installation
649-2871 Doubler

the doubler is mounted on the pressure skin
at F.S. 654, LBL 23.0

Strength lost in original skin by cutout

Aircraft skin 7079-T6 clad .053 thk (Ref 1)

$F_{tu} = 69,000 \text{ psi}$ (Ref 2)

$$P_{lost} = 69000 (.053)(.765) = 2998 \text{ lbs}$$

Capability of doubler

2024 T3 .063 thk

$F_{tu} = 60,000 \text{ psi}$ (Ref 2)

$$P_{capability} = 60,000 (2.50 - .765)(.063) = 6558 \text{ lbs}$$

$$MS = \frac{6558}{2998} - 1 \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad + 1.34$$

Rivets required to transfer load

use 6 MS 20470 D5 RIVETS

$P_{rivet} = 675 \text{ lbs}$ (Ref 2)

$$\text{Rivets required } \frac{2998}{675} = 4.4 \text{ rivets}$$

$$M.S. = \frac{6}{4.4} - 1 \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad + .36$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 48

F.S. 663 Doubler installation

Ref dwg: 649-2918 doubler.

VIEW LWK AFT
F.S. 663

Buckling Stress in Part!

$$S = 12.25$$

$$k = 4$$

$$a/b = 3.06 \quad K = 5.02 \quad (\text{Ref 4 Table 3E-4})$$

$$S_{cr} = 5.02 \left(\frac{10.3 \times 10^6}{.89} \right) \left(\frac{.032}{4} \right)^2 = 3718 \text{ PSI}$$

$$\gamma = 3718 (.032) = 119 \text{ #/inch}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 49

Tension load capability lost by cutout

web $F_{tu} = 70,000 \text{ psi}$ (Ref 2)

$$P = 1.25(.032)(70000) = 2800 \text{ lbs}$$

Doubler: 2024 T3 $F_{tu} = 62000 \text{ psi}$

$$\text{Doubler strength} = .050(2.00)(62000) = 6200 \text{ lbs}$$

$$\text{MS.} = \frac{6200}{2800} - 1 \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad + \underline{\quad 1.21 \quad}$$

load transfer from web to doubler

MS 20470D4 rivet Single shear strength for .032 matl

$$411 \text{ lbs (.964)} = 396 \text{ lbs}$$

8 rivets are used on each symmetry line

$$8(396) = 3168 \text{ lbs}$$

$$\text{MS} = \frac{3168}{2800} - 1 \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad \underline{\quad} \quad + \underline{\quad 0.13 \quad}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 50

SUMMARY

AN ANALYSIS WAS PERFORMED ON THE HONEYCOMBY AIRCRAFT PANEL, P/N 3W12010, TO DETERMINE ITS CAPABILITY TO REACT THE FORCES INDUCED INTO IT BY THE UHF ANTENNA DUE TO AERODYNAMIC LOADING. AS THE ANALYSIS PROGRESSSED, IT WAS DETERMINED THAT THE ANTENNA SHOULD HAVE A ZERO ANGLE OF ATTACK, RATHER THAN THE 7-DEGREES USED IN THE ANALYSIS: THUS, THE ANALYSIS IS SOMEWHAT TRUNCATED. HOWEVER, THE ANALYSIS DID SHOW THAT THE PANEL IS MORE THAN ADEQUATE TO TAKE OUT THE SHEAR AND BENDING LOADS INDUCED BY THE ANTENNA.

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 51

1.0 ANALYTICAL MODEL

AN ANALYTICAL MODEL WILL BE MADE OF THE HONEYCOMB AIRCRAFT PANEL TO WHICH THE ANTENNA ATTACHES (SEE LAYOUT THAT FOLLOWS). THE PANEL WILL BE MODELED USING TRIANGULAR FLAT-PLATE ELEMENTS HAVING BOTH SHEAR AND BENDING CAPABILITY. THE ANTENNA WAS ASSUMED TO BE ATTACHED DIRECTLY TO THE AIRCRAFT PANEL WITH THROUGH-BOLT INSERTS IMPLANTED BETWEEN THE HONEYCOMB FACINGS AT EACH ATTACHMENT LOCATIONS. IT SHOULD BE NOTED THAT IN THIS ATTACHMENT CONFIGURATION, THE ANTENNA HAS A NORMAL ANGLE OF ATTACK OF 7-DEGREES.

BECAUSE THE STRUCTURAL COMPUTER CODE USED IN THE ANALYSIS DOES NOT HAVE A HONEYCOMB FINITE ELEMENT IN ITS LIBRARY, AN OVERLAY ELEMENT WAS FABRICATED FOR THIS PURPOSE WITH THE TRUE SHEAR THICKNESS AND AN ARTIFICIAL FLEXURAL MODULUS SO AS TO YIELD THE CORRECT FLEXURAL STIFFNESS.

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 52

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 53

'C141-B' 'DM C34-3/B UHF ANTENNA MOD'

* ICES STRUDL-II *
* THE STRUCTURAL DESIGN LANGUAGE *
*
* CIVIL ENGINEERING SYSTEMS LABORATORY *
* MASSACHUSETTS INSTITUTE OF TECHNOLOGY *
* CAMBRIDGE, MASSACHUSETTS *
*
* 08.18.46 30 JUL 80 *
*
* UNIVAC 1100 SERIES EXEC B *
* VERSION 2.7 *
*

PREPARED BY MAARTEN VET

NODE COORDINATES

	X	Y	Z
1	32.60	638.50	289.70
2	32.60	641.27	290.59
3	32.60	644.04	291.48
4	32.60	646.80	293.37
5	32.60	649.57	293.26
6	32.60	652.34	294.14
7	32.60	655.11	295.03
8	32.60	657.87	295.92
9	32.60	660.64	296.81
10	32.60	663.41	297.70
11	32.60	666.23	298.16
12	32.60	669.05	298.62
13	32.60	671.86	299.08
14	32.60	674.68	299.54
15	32.60	677.50	300.00
16	10.50	638.50	295.00
17	10.50	641.27	295.36
18	10.50	644.04	295.71
19	10.50	646.80	296.07
20	10.50	649.57	296.42
21	10.50	652.34	296.78
22	10.50	655.11	297.13
23	10.50	657.87	297.49
24	10.50	660.64	297.84
25	10.50	663.41	298.20
26	10.50	666.23	298.56
27	10.50	669.05	298.92
28	10.50	671.86	299.28

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 54

29	10.50	674.68	299.64
30	10.50	677.50	300.00
31	13.00	638.50	294.95
32	15.50	638.50	294.90
33	18.00	638.50	294.70
34	20.50	638.50	294.50
35	23.00	638.50	294.10
36	25.50	638.50	293.70
37	28.00	638.50	292.75
38	30.50	638.50	291.80
39	13.00	663.41	298.20
40	15.50	663.41	298.20
41	18.00	663.41	298.20
42	20.50	663.41	298.15
43	23.00	663.41	298.10
44	25.50	663.41	298.00
45	28.00	663.41	297.90
46	30.50	663.41	297.80
47	13.00	677.50	300.00
48	15.50	677.50	300.00
49	18.00	677.50	300.00
50	20.50	677.50	300.00
51	23.00	677.50	300.00
52	25.50	677.50	300.00
53	28.00	677.50	300.00
54	30.50	677.50	300.00
55	13.00	644.04	295.67
56	18.00	644.04	295.48
57	23.00	644.04	294.99
58	28.00	644.04	293.92
59	13.00	649.57	296.39
60	18.00	649.57	296.26
61	23.00	649.57	295.88
62	28.00	649.57	295.08
63	23.00	655.11	296.77
64	28.00	655.11	296.25
65	23.00	660.64	297.66
66	28.00	660.64	297.42
67	23.00	666.23	298.86
68	28.00	666.23	298.32
69	23.00	671.86	299.62
70	28.00	671.86	299.16
71	15.07	654.00	296.70
72	17.69	654.00	297.03
73	13.75	656.06	296.88
74	19.00	656.06	297.03
75	13.75	658.74	297.48
76	19.00	658.74	297.42
77	13.75	661.41	297.94
78	19.00	661.41	297.92
79	13.75	665.41	298.51
80	19.00	665.41	298.51
81	13.75	667.89	298.90
82	19.00	667.89	298.90
83	13.75	670.37	299.29
84	19.00	670.37	299.29
85	13.75	672.56	299.63

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 56

86	19.00	672.56	299.63	
87	15.07	674.92	300.00	
88	17.69	674.92	300.01	
101	32.60	638.50	289.50	SUPPORT
102	32.60	641.27	290.03	SUPPORT
103	32.60	644.04	290.98	SUPPORT
104	32.60	646.80	292.87	SUPPORT
105	32.60	649.57	292.76	SUPPORT
106	32.60	652.34	293.64	SUPPORT
107	32.60	655.11	294.53	SUPPORT
108	32.60	657.87	295.42	SUPPORT
109	32.60	660.64	296.31	SUPPORT
110	32.60	663.41	297.20	SUPPORT
111	32.60	666.23	297.61	SUPPORT
112	32.60	669.05	298.12	SUPPORT
113	32.60	671.86	298.58	SUPPORT
114	32.60	674.68	299.04	SUPPORT
115	32.60	677.50	299.50	SUPPORT
116	10.50	638.50	294.50	SUPPORT
117	10.50	641.27	294.86	SUPPORT
118	10.50	644.04	295.21	SUPPORT
119	10.50	646.80	295.57	SUPPORT
120	10.50	649.57	295.72	SUPPORT
121	10.50	652.34	296.28	SUPPORT
122	10.50	655.11	296.63	SUPPORT
123	10.50	657.87	296.99	SUPPORT
124	10.50	660.64	297.34	SUPPORT
125	10.50	663.41	297.70	SUPPORT
126	10.50	666.23	298.06	SUPPORT
127	10.50	669.05	298.42	SUPPORT
128	10.50	671.86	298.78	SUPPORT
129	10.50	674.68	299.14	SUPPORT
130	10.50	677.50	299.50	SUPPORT
131	13.00	638.50	294.45	SUPPORT
132	15.50	638.50	294.40	SUPPORT
133	18.00	638.50	294.20	SUPPORT
134	20.50	638.50	294.00	SUPPORT
135	23.00	638.50	293.60	SUPPORT
136	25.50	638.50	293.20	SUPPORT
137	28.00	638.50	292.25	SUPPORT
138	30.50	638.50	291.30	SUPPORT
139	13.00	663.41	297.70	SUPPORT
140	15.50	663.41	297.70	SUPPORT
141	18.00	663.41	297.70	SUPPORT
142	20.50	663.41	297.65	SUPPORT
143	23.00	663.41	297.60	SUPPORT
144	25.50	663.41	297.50	SUPPORT

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 57

145	28.00	663.41	297.40	SUPPORT
146	30.50	663.41	297.30	SUPPORT
147	13.00	677.50	299.50	SUPPORT
148	15.50	677.50	299.50	SUPPORT
149	18.00	677.50	299.50	SUPPORT
150	20.50	677.50	299.50	SUPPORT
151	23.00	677.50	299.50	SUPPORT
152	25.50	677.50	299.50	SUPPORT
153	28.00	677.50	299.50	SUPPORT
154	30.50	677.50	299.50	SUPPORT

NODE RELEASES

101 TO 115	FORCE	Y	MOMENT	Y
116 TO 130	FORCE	X Y	MOMENT	Y
131 TO 138	FORCE	X Y	MOMENT	X
139 TO 146	FORCE	X		
147 TO 154	FORCE	X Y	MOMENT	X

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 58

TYPE BENDING

ELEMENT INCIDENCES

1	2	38	1	52	61	72	60
2	38	58	37	53	72	61	63
3	58	38	2	54	72	63	74
4	58	2	3	55	63	76	74
5	4	58	3	56	63	65	76
6	58	4	62	57	76	65	78
7	62	4	5	58	42	41	78
8	6	62	5	59	78	65	42
9	62	6	64	60	42	65	43
10	64	6	7	61	67	42	43
11	8	64	7	62	42	67	80
12	64	8	66	63	41	42	80
13	66	8	9	64	67	82	80
14	66	9	46	65	67	69	82
15	66	46	45	66	82	69	84
16	46	9	10	67	84	69	86
17	11	46	10	68	69	50	66
18	11	68	45	69	50	69	51
19	46	68	45	70	86	50	88
20	12	68	11	71	88	50	49
21	68	12	70	72	56	32	33
22	70	12	13	73	55	32	56
23	14	70	13	74	32	55	31
24	70	14	54	75	56	59	55
25	54	14	15	76	59	56	60
26	70	54	53	77	60	71	59
27	58	36	37	78	71	60	72
28	57	36	58	79	72	73	71
29	36	57	35	80	74	73	72
30	58	61	57	81	74	75	73
31	61	58	62	82	75	74	76
32	64	61	62	83	78	75	76
33	61	64	63	84	75	78	77
34	64	65	63	85	77	76	48
35	65	64	66	86	40	78	41
36	65	66	44	87	40	39	77
37	65	44	43	88	40	79	39
38	44	66	45	89	80	79	40
39	68	44	45	90	80	40	41
40	68	67	44	91	80	81	79
41	44	67	43	92	81	80	82
42	68	69	67	93	84	81	82
43	69	68	70	94	81	84	53
44	70	52	69	95	84	85	63
45	52	70	53	96	85	84	86
46	69	52	51	97	85	80	88
47	57	34	35	98	85	88	87
48	56	34	57				
49	34	56	53				
50	61	56	57				
51	56	61	60				

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 59

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 60

99	88	48	87
100	48	88	49
101	31	17	16
102	31	55	17
103	17	55	18
104	55	19	18
105	55	59	19
106	19	59	20
107	59	21	20
108	59	71	21
109	21	71	22
110	22	71	73
111	73	23	22
112	23	73	75
113	75	24	23
114	24	75	77
115	39	24	77
116	24	39	25
117	39	26	25
118	26	39	79
119	81	26	79
120	26	81	27
121	27	81	83
122	27	83	28
123	28	83	85
124	85	29	28
125	87	29	85
126	29	87	47
127	29	47	30
128	47	87	48

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 61

TYPE SPACE FRAME

MEMBER INCIDENCES

201	1	101	228	28	128
202	2	102	229	29	129
203	3	103	230	30	130
204	4	104	231	31	131
205	5	105	232	32	132
206	6	106	233	33	133
207	7	107	234	34	134
208	8	108	235	35	135
209	9	109	236	36	136
210	10	110	237	37	137
211	11	111	238	38	138
212	12	112	239	39	139
213	13	113	240	40	140
214	14	114	241	41	141
215	15	115	242	42	142
216	16	116	243	43	143
217	17	117	244	44	144
218	18	118	245	45	145
219	19	119	246	46	146
220	20	120	247	47	147
221	21	121	248	48	148
222	22	122	249	49	149
223	23	123	250	50	150
224	24	124	251	51	151
225	25	125	252	52	152
226	26	126	253	53	153
227	27	127	254	54	154

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 62

ELEMENT PROPERTIES

1 TO 128 TYPE 'SBCT' THICKNESS .024

MEMBER PROPERTIES

201 TO 254 AX .0228 IX .0002 IY .0001 IZ .0001

CONSTANTS

E 1.14E10 ALL
G 3.80E6 ALL
POISSON .33 ALL

E 1.00E7 201 TO 254
G 3.80E6 201 TO 254
POISSON .33 201 TO 254

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 63

SHEAR PROPERTIES

$$\text{THICKNESS} = (2)(.012) = .024 \text{ - IN}$$

$$G = 3.8 \times 10^6 \text{ - PSI}$$

FLEXURAL PROPERTIES

$$EI = (10.0 \times 10^6)(2)(.012 \times 1,000)(.2335)^2 \\ = .01309 \times 10^6 \text{ LB-IN}^2/\text{IN}$$

EQUIVALENT ISOTROPIC PLATE .024-IN. THK

$$E_E \left[\frac{1}{12} (1,000)(.024)^3 \right] = 1.152 E_E \times 10^{-6}$$

EQUIVALENT FLEXURAL MODULUS

$$E_E = \frac{.01309 \times 10^6}{1.152 \times 10^{-6}} = 1.130 \times 10^{10} \text{ PSI}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 64

LOADING "DRAG"

NODE

LOADS

71.72

FORCE Y +5.05

FORCE Z +39.36

73.74

FORCE Y +5.05

FORCE Z +34.63

75.76

FORCE Y +5.05

FORCE Z +32.38

77.78

FORCE Y +5.05

FORCE Z +30.13

79.80

FORCE Y +5.05

FORCE Z +26.77

81.82

FORCE Y +5.05

FORCE Z +24.69

83.84

FORCE Y +5.05

FORCE Z +22.60

85.86

FORCE Y +5.05

FORCE Z +20.76

87.88

FORCE Y +5.05

FORCE Z -59.32

STIFFNESS ANALYSIS REDUCE BAND ROOT

OUTPUT DECIMAL 3

UNITS KIPS

LIST REACTIONS,DISPLACEMENTS,STRESSES ALL

SIZE A	CODE IDENT 134.99	DWG NO. 649-2924-001
SCALE	REV	SHEET 65

2.0 - AERODYNAMIC CALCULATIONS

2.1 - MAXIMUM DYNAMIC PRESSURE

REFERENCE: T.O. 1C-141A-1, FIGURE 5-8.

- MAX. PERMISSIBLE VELOCITY ABOVE 23,000-FT.
ALTITUDE IS $M = 0.85$
- MAX PERMISSIBLE VELOCITY BELOW 23,000-FT.
ALTITUDE IS 380-KNOTS

2.1.1 - AT 23,000-FT ALTITUDE

$$C = 1025 \text{ - FT/SEC}$$

$$\rho = .002378 \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right)$$

$$= (.002378)(.4046)\left(\frac{1}{.8717}\right) = .001143 \text{ LB-SEC}^2/\text{FT}^4$$

$$v = (1025)(.85) = 871 \text{ FT/SEC}$$

$$q_{\infty} = \frac{1}{2} \rho v^2$$

$$= \frac{1}{2} (.001143)(871)^2 = 434 \text{ - LB/FT}^2$$

2.1.2 - AT SEA LEVEL

$$C = 1117 \text{ - FT/SEC}$$

$$\rho = .002378 \text{ LB-SEC}^2/\text{FT}^4$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		66

$$v = (380)(1.689) \\ = 642 \text{ FT/SEC} \quad (M = .57)$$

$$\gamma_{\infty} = \frac{1}{2} (.002378)(642)^2 = 190 - 18/\text{FT}^2$$

2.2-DRAG & LIFT FORCES

ASSUMPTIONS:

- AS A WORST-CASE, ASSUME THAT THE ANGLE-OF-ATTACK ON THE ANTENNA IS 10° .
- THE SAUCER PORTION OF THE ANTENNA WILL BE TREATED AS A FLAT DISC, RATHER THAN AS AN AIRFOIL.
- THE ENTIRE ANTENNA IS OUTSIDE THE BOUNDARY LAYER. (CONSERVATIVE)

2.2.1 - SAUCER

$$A_{REN} = \frac{\pi}{4} \left(\frac{17.78}{12} \right)^2 = 1.724 - \text{FT}^2$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 67

(d) INCLINED PLATE

FIG. 5.—WIND PRESSURES ON ELEMENTARY BODIES

(FROM ASCE PAPER 3267)

FOR $\lambda=1$ (A SQUARE PLATE) THE DRAG COEFFICIENT IS ALMOST THE SAME AS FOR A CIRCULAR PLATE OF THE SAME AREA.

FROM THE CURVES ABOVE (FOR $\lambda=1$), AT $\alpha=80^\circ$:

$$C_D = .10$$

$$C_L = .40$$

$$C_{CP} = .26$$

(a) AT 23,000-FT ALTITUDE

$$F_D = C_D A \rho_\infty$$

$$= (.10)(1.724)(434) = 74.8 - \text{lb.}$$

$$F_L = C_L A \rho_\infty$$

$$= (.40)(1.721)(434) = 299.3 - \text{lb.}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 68

$$\bar{X} = C_{cD} D = (.26)(17.78) = 4.62 \text{ IN. FROM TOP OF DISC}$$

(b) AT SEA LEVEL

$$F_D = (.10)(1.724)(490) = 84.5 \text{ LB.}$$

$$F_C = (.40)(1.721)(490) = 338.0 \text{ LB.}$$

2-2.2 - BAYONET

REFERENCE: DORNE & MARGOLIN ENGR. REPORT NO. 7051.15, "DM C34-3 ANTENNA AERODYNAMIC ANALYSIS".

$$A_{REF} = 1.237 \text{ FT}^2.$$

(a) AT 23,000-FT ALTITUDE

$$C_D = .06683$$

$$F_D = (.06683)(1.237)(490) = 35.9 \text{ LB}$$

(b) AT SEA LEVEL

$$C_D \approx \frac{1}{2}(.00983 + .01133) = .01058$$

$$F_D = (.01058)(1.237)(490) = 6.4 \text{ LB.}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 69

2.2.3 - TOTAL ANTENNA

REFERENCE: DORNE & MARCOLIN DRAWING
261D 1195, "DM C34-3/B UHF
ANTENNA".

$$Y_{\text{SAUCER}} \approx 10.48 \text{ IN.}$$

$$Y_{\text{BATONET}} \approx 4.86 \text{ IN.}$$

AT 23,000 - FT ALTITUDE

$$F_D = 74.8 + 35.9 = 110.7 \text{ LB}$$

$$F_L = 299.3 \text{ LB}$$

$$\begin{aligned} M &= (74.8)(10.48) + (35.9)(4.86) + (299.3)(4.27) \\ &= 2,236 \text{ IN-LB.} \end{aligned}$$

AT SEA LEVEL

$$F_D = 84.5 + 6.4 = 90.9 \text{ LB.}$$

$$F_L = 338.0 \text{ LB}$$

$$\begin{aligned} M &= (84.5)(10.48) + (6.4)(4.86) + (338.0)(4.27) \\ &= 2,360 \text{ IN-LB.} \end{aligned}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 70

3.0 - FORCES INDUCED INTO THE AIRCRAFT

ASSUMPTION: DUE TO THE STIFFNESS OF THE ANTENNA GUYONET, THE BASE OF THE ANTENNA TENDS TO ROTATE AS A RIGID BODY ABOUT A POINT AT ITS REAR.

RESTORING MOMENT

$$M = \frac{2F}{(20.921)} \left[(20.921)^2 + (18.860)^2 + (16.185)^2 + (13.510)^2 + (9.510)^2 + (7.030)^2 + (4.550)^2 + (2.360)^2 \right]$$

$$= 134.219 F$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 71

M. VET
7-23-50

$$134.219 F = 2,360$$

$$F = 17.58 - \angle 8$$

$$\text{SHEAR PER NODE} = \frac{90.9}{18} = 5.05 - \angle 8$$

$$\text{LIFT PER NODE} = \frac{338.0}{18} = 18.78 - \angle 8$$

$$\text{NODES } 71 \text{ TO } 88 \quad F_y = +5.05 - \angle 8$$

$$\text{NODES } 71, 72 \quad F_z = 17.58 + 18.78 = + 36.36 - \angle 8$$

$$\text{NODES } 73, 74 \quad F_z = (17.58) \left(\frac{18.80}{20.921} \right) + 18.78 = + 34.63 - \angle 8$$

$$\text{NODES } 75, 76 \quad F_z = (17.58) \left(\frac{16.185}{20.921} \right) + 18.78 = + 32.38 - \angle 8$$

$$\text{NODES } 77, 78 \quad F_z = (17.58) \left(\frac{13.510}{20.921} \right) + 18.78 = + 30.13 - \angle 8$$

$$\text{NODES } 79, 80 \quad F_z = (17.58) \left(\frac{9.510}{20.921} \right) + 18.78 = + 26.77 - \angle 8$$

$$\text{NODES } 81, 82 \quad F_z = (17.58) \left(\frac{7.030}{20.921} \right) + 18.78 = + 24.69 - \angle 8$$

$$\text{NODES } 83, 84 \quad F_z = (17.58) \left(\frac{4.550}{20.921} \right) + 18.78 = + 22.60 - \angle 8$$

$$\text{NODES } 85, 86 \quad F_z = (17.58) \left(\frac{2.360}{20.921} \right) + 18.78 = + 20.76 - \angle 8$$

$$\begin{aligned} \text{NODES } 87, 88 \quad F_z &= -\frac{1}{2} [2(36.36 + 34.63 + 32.38 + 30.13 + 26.77 \\ &\quad + 24.69 + 22.60 + 20.76) - 338.0] \\ &= -59.32 - \angle 8 \end{aligned}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		72

M. VET
7-30-90

4.0 - RESULTS OF THE COMPUTER ANALYSIS

4.1 - SHEAR IN THE FACINGS

(ONLY SHEAR STRESS ABOVE 10,000-PSI SHOWN)

ELEMENT	STRESS (PSI)
37	10,637
54	15,467
55	17,000
80	14,251
86	22,191
96	12,582
115	10,941

4.2 - FLEXURE OF THE HONEYCOMB

$$I = (2)(.012 \times 1.000)(.2335)^2$$

$$C = .2395 \text{ IN.}$$

$$S = \frac{I}{C} = .00546 \text{ IN}^3/\text{IN}$$

BENDING STRESS

$$\sigma = \frac{M}{S} = 183.15 \text{ IN-LB/IN IN ELEMENT 60}$$

$$M_{MAX} = 8.638 \text{ IN-LB/IN IN ELEMENT 60}$$

$$\sigma = (183.15)(8.638) = 1,582 \text{ - PSI}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 73

REVIEWS 115

DATE 07/08/08

PAGE 41

www.english-test.net

649-2924-001
Sheet 74

UNIVAC 1100 SERIES ICES

DATE 073000 PAGE 40

00

- 600

- 10 -

- 600

-800

610

1

610

二十一

RESULTANT JOINT DISPLACEMENTS • FREE JOINTS

/-----DISPLACEMENTS-----/-----ROTATIONS-----

649-2924-001
Sheet 75.

RESULTS OF LATEST ANALYSIS

PROBLEM - C144-B TITLE - DM C34-B/B UHF ANTENNA MOD

ACTIVE UNITS INCH KIPS RADIAN DEGF SECOND

ACTIVE STRUCTURE TYPE SPACE FRAME

ACTIVE COORDINATE AXES X Y Z

LOADING - DRAG

ELEMENT STRESSES

ELEMENT	CENTROID	SXX	SYY	SXY	MXY	MYX	MYY	MXZ	MYZ	MZX	MZY
1	CENTROID NODE 2 NODE 38 NODE 1	.6217331-03 .137658-02 .148795-02 .192655-02	.262471-00 .6217331-03 .137658-02 .148795-02 .192655-02	.053405-03 .163206-02 .141222-02 .161444-02	.635710-00 .053405-03 -.163206-02 -.141222-02 -.161444-02	.741859-03 .59519-03 .601643-03	.237266-00				
2	CENTROID NODE 38 NODE 58 NODE 37	.751075-00 -.812685-03 .158571-03 .175365-02 .109157-02	SYY .701199-03 -.221218-03 .186513-02 .113972-02	.245176-00 .701199-03 -.221218-03 .186513-02 .113972-02	SXY .701199-03 -.221218-03 .186513-02 .113972-02	.613763-03 .901635-03 .410668-03	.730847-00				
3	CENTROID NODE 58 NODE 38 NODE 2	SXX -.14350C-02 -.14350C-02 -.161368-02 .227399-02	SYY .701199-03 -.242U97-02 .224453-02 .176153-02	.321717-00 .701199-03 -.242U97-02 .224453-02 .176153-02	SXY .701199-03 -.242U97-02 .224453-02 .176153-02	.49994344-00 .101305-03 .151651-03 .124423-03	.339775-00				
4	CENTROID NODE 58 NODE 2 NODE 3	SXX -.835524-03 -.152851-02 .215757-02 .9317565-03	SYY .130919-02 -.19991-02 -.70227-03 -.101683-02	.563072-00 .130919-02 -.19991-02 -.70227-03 -.101683-02	SXY .130919-02 -.19991-02 -.70227-03 -.101683-02	.151611-03 .153794-03 -.630446-03	.429671-00				
5	CENTROID NODE 4 NODE 58	SXX -.145540-03 -.403624-03 .170732-02	SYY .312196-03 -.301938-03 -.192624-02	.501616-00 .312196-03 -.301938-03 -.192624-02	SXY .312196-03 -.301938-03 -.192624-02	.810163-03 .16127-03	.429671-00				

INVAC 1100 SERIES ICES							
DATE	NODE	J	SERIES	ICES	MXY	MXY	MXY
	4	-	J27794-03	MTY	-630916-03	MXY	-603423-03
CENTROID	SXX	-	244401+01	STY	.363943+00	SXY	-777001+00
	VXX	.	105357-03	VYY	.620555-04		
NUDE 62	MXX	-	143979-03	MTY	.312865-03	MXY	.179129-03
NUDE 58	MXX	-	128554-02	MTY	.14195-02	MXY	.172858-03
NUDE 4	MXX	.	349325-03	MTY	.753571-03	MXY	.796570-04
CENTROID	SXX	-	124172+01	STY	.156258+00	SXY	115361+01
	VXX	.	121252-02	VYY	.157726-03		
NUDE 62	MXX	.	678987-03	MTY	.683334-04	MXY	.137606-03
NUDE 4	MXX	.	170557-02	MTY	.112876-02	MXY	.356116-03
NUDE 5	MXX	.	138657-02	MTY	.10245-02	MXY	.44903-03
CENTROID	SXX	-	235751+01	STY	.299218+00	SXY	-101879-01
	VXX	.	807012-03	VYY	.353760-03		
NUDE 6	MXX	.	735548-04	MTY	.493006-03	MXY	.634516-03
NUDE 62	MXX	.	117700-04	MTY	.40622-03	MXY	.167025-03
NUDE 5	MXX	.	139393-02	MTY	.10421-02	MXY	.715746-04
CENTROID	SXX	-	272771+01	STY	.193408+00	SXY	-920663+00
	VXX	.	36448-03	VYY	.235112-04		
NUDE 6	MXX	.	119397-02	MTY	.140123-02	MXY	.224452-03
NUDE 64	MXX	.	19025-02	MTY	.293667-02	MXY	.333612-03
NUDE 62	MXX	.	761262-03	MTY	.177719-03	MXY	.432146-03
CENTROID	SXX	-	169229+01	STY	.132931+01	SXY	-221827-01
	VXX	.	570946-03	VYY	.163485-03		
NUDE 64	MXX	.	330683-02	MTY	.344990-02	MXY	.499078-03
NUDE 6	MXX	.	795405-03	MTY	.783229-03	MXY	.35463-03
NUDE 7	MXX	.	593708-03	MTY	.309164-03	MXY	.163995-03
CENTROID	SXX	-	706311+00	STY	.261717401	SXY	-247128601
	VXX	.	194862-03	VYY	.29070-03		
NUDE 6	MXX	.	157571-03	MTY	.563273-03	MXY	.463350-03
NUDE 64	MXX	.	202026-02	MTY	.352824-02	MXY	.46673-03
NUDE 7	MXX	.	814734-03	MTY	.201556-03	MXY	.260041-03
CENTROID	SXX	-	522011+00	STY	.169401+01	SXY	-197591+01
	VXX	.	281452-03	VYY	.132828-03		
NUDE 66	MXX	.	1626301-02	MTY	.94021-03	MXY	.699108-04
NUDE 64	MXX	.	202284-02	MTY	.1586926-02	MXY	.616369-03
NUDE 8	MXX	.	814734-03	MTY	.3080822-03	MXY	.362129-03
CENTROID	SXX	-	269201+01	STY	.386173+01	SXY	-128430+01
	VXX	.	807661-04	VYY	.177216-03		
NUDE 66	MXX	.	684558-03	MTY	.697208-03	MXY	.121868-03
NUDE 6	MXX	.	160747-03	MTY	.836187-03	MXY	.516352-03
NUDE 9	MXX	.	375142-03	MTY	.487352-03	MXY	.447774-03

UNIVAC 1100 SERIES ICES

DATE 073089 PAGE 28

14	CENTROID	SXX VXX	*11081+02 "32562+04 "104871-03 "25805-03 .263547-04	SYY VYY MYY MYY MYY	*2222993+01 "106873-03 "254046-03 .459735-03	SXY MXY MXY MXY	*3633556+01 "233827-03 "117046-04 .367269-04
15	CENTROID	SXX VXX	"762859+00 "554945-05 "366911-06 "146233-02 .132428-02	SYY VYY MYY MYY MYY	"113345+00 "512135-03 "652525-03 "204221-02 .443856-03	SXY MXY MXY MXY	*104997+02 "659077-03 "234019-04 .258356-04
16	CENTROID	SXX VXX	*671467+00 "-53126+03 "125780-02 "105281-02 "-297532-03	SYY VYY MYY MYY MYY	*194667+01 "-173588-03 "140116-02 "684535-03 "-394169-03	SXY MXY MXY MXY	*314887+01 "615130-04 "140354-03 .1663556-04
17	CENTROID	SXX VXX	"666856+01 "-67155-03 "950575-05 "130529-02 "-377493-03	SYY VYY MYY MYY MYY	*103461+02 "535670-03 "631016-03 "974775-03 "-570690-03	SXY MXY MXY MXY	*801168+01 "245963-03 "225673-03 .193805-03
18	CENTROID	SXX VXX	"240497+01 "506246-03 "912068-03 "368230-05 "-521485-05	SYY VYY MYY MYY MYY	*802927-01 "472722-03 "101653-02 "-135497-03 "726390-04	SXY MXY MXY MXY	*429220+01 "778634-04 "761394-04 .103578-04
19	CENTROID	SXX VXX	"842531+01 "386553-05 "964277-03 "668503-03 "-109546-02	SYY VYY MYY MYY MYY	*260420-01 "250256-03 "778756-03 "341260-03 "-132719-02	SXY MXY MXY MXY	*206150+01 "168996-03 "18491-04 .103578-04
20	CENTROID	SAX VAX	"226795+01 "-678653-04 "-366296-05 "-709340-04 ".626834-03	SYY VYY MYY MYY MYY	*795087-01 "-331746-03 "-235792-03 "-912037-04 ".710976-05	SXY MXY MXY MXY	*882568+00 "133307-04 "424429-04 .432939-04
21	CENTROID	SAX VAX	"998458+00 "98067-05 ".167584-03 "21922-03 .276726-03	SYY VYY MYY MYY MYY	*264125-01 "461325-05 "735685-04 "202029-03 ".258502-03	SXY MXY MXY MXY	*287136+01 "00644-06 "22024-04 .350649-05

UNIVAC 1100 SERIES ICES

DATE 073088

PAGE 24

22	CENTROID	SXX VXX	-265994+00 .567425+04	SYY VYY	.570084+01 .149070+03	SKY	-.9355664+00 -.316151+04
	NUDE 70	MXX	-.103895+03	MYY	-.221134+03	MXY	-.523517+04
	NUDE 12	MXX	-.149877+03	MYY	-.249622+03	MXY	-.179317+04
	NUDE 13	MXX	-.347131+03	MYY	.222259+03	MXY	-.36906+04
23	CENTROID	SXX VXX	-111914+01 .442615+04	SYY VYY	.363481+01 -.316151+04	SKY	-.152115+01
	NUOC 14	MXX	.142021+03	MYY	.845006+04	MXY	+.526019+04
	NUDE 70	MXX	-.18374+04	MYY	-.14504+03	MXY	+.466690+04
	NUDE 13	MXX	.352345+03	MYY	.17192+03	MXY	-.624937+04
24	CENTROID	SXX VXX	-255037+00 .430701+04	SYY VYY	-.335602+00 -.447655+04	SKY	-.234219+01
	NUDE 59	MXX	.223333+04	MYY	.878426+04	MXY	-.926560+04
	NUDE 70	MXX	.128009+04	MYY	-.58135+04	MXY	-.542860+04
	NUDE 14	MXX	.103416+03	MYY	-.197093+03	MXY	-.555532+04
25	CENTROID	SXX VXX	.693621+00 .100513+02	SYY VYY	.160265+01 -.202389+03	SKY	-.123206+01
	NUOC 54	MXX	-.923377+03	MYY	.92624+03	MXY	-.134666+03
	NUDE 14	MXX	-.00876+03	MYY	.920309+04	MXY	-.31526+04
	NUDE 15	MXX	.1222552+02	MYY	.354361+03	MXY	-.515701+04
26	CENTROID	SXX VXX	.233051+01 .244356+04	SYY VYY	-.173397+01 -.988668+05	SKY	-.120653+01
	NUDE 70	MXX	-.925119+04	MYY	.167962+04	MXY	-.734359+05
	NUDE 54	MXX	-.952453+04	MYY	-.59850+04	MXY	-.104218+04
	NUDE 53	MXX	-.280466+04	MYY	-.317949+04	MXY	-.868269+05
27	CENTROID	SXX VXX	-217322+01 .355762+03	SYY VYY	.777675+00 -.26890+03	SKY	.268857+01
	NUDE 56	MXX	-.156164+02	MYY	.150782+02	MXY	-.392126+04
	NUDE 56	MXX	-.258220+03	MYY	-.452207+03	MXY	-.164403+04
	NUDE 57	MXX	-.878791+03	MYY	.533604+03	MXY	-.191779+03
28	CENTROID	SXX VXX	-260616+01 .311133+03	SYY VYY	.130400+01 .483703+03	SKY	.137859+01
	NUOC 57	MXX	.140181+02	MYY	.109445+02	MXY	-.124456+03
	NUDE 56	MXX	.999934+03	MYY	.599610+03	MXY	-.25649+03
	NUDE 56	MXX	-.103794+02	MYY	.232493+02	MXY	-.136684+03
29	CENTROID	SXX VXX	-230402+01 .234352+03	SYY VYY	.091993+00 -.43043+03	SKY	.141279+01
	NUDE 36	MXX	.913761+03	MYY	.268229+04	MXY	-.122993+03
	NUDE 37	MXX	.511793+03	MYY	-.0902+03	MXY	-.365777+04
	NUDE 37	MXX	.576031+03	MYY	-.775983+03	MXY	-.434077+04

UNIVAC 1100 SERIES ICES

DATE 073000 PAGE 25

30	CENTROID	SXX	-0.556432-01	SYY	.303163+00	SKY	.0000594400
	NODE 56	VXX	-0.489220-03	VYY	.326892-03		
	NODE 61	MXX	-0.211579-02	MYY	-0.235663-02	MXY	.106671-03
	NODE 57	MXX	-0.112420-02	MYY	-0.126532-02	MXY	.126253-03
		MXX	.906331-03	MYY	.843583-03	MXY	.102130-03

31	CENTROID	SXX	-0.198644+01	SYY	.0128900+00	SKY	-.124390+01
	NODE 61	VXX	.242657-03	VYY	.111212-03		
	NODE 58	MXX	-.784353-03	MYY	-.961447-03	MXY	.159486-03
	NODE 62	MXX	-.130350-02	MYY	-.134724-02	MXY	.146001-03
		MXX	.2,6934-03	MYY	.161001-03	MXY	.292391-03

32	CENTROID	SXX	-.358474+01	SYY	.174516+00	SKY	-.182158+01
	NODE 64	VXX	-.125224-03	VYY	.0395068-03		
	NODE 61	MXX	-.155589-02	MYY	-.222375-02	MXY	.148026-03
	NODE 62	MXX	-.982799-03	MYY	-.121113-02	MXY	.575115-04
		MXX	.643339-03	MYY	.372705-03	MXY	.420100-03

33	CENTROID	SXX	-.102592+01	SYY	.103467+02	SKY	-.145696+01
	NODE 61	VXX	-.111124-02	VYY	.121131-02		
	NODE 64	MXX	-.214355-02	MYY	-.191923-02	MXY	.947162-04
	NODE 63	MXX	-.448487-02	MYY	-.466109-02	MXY	.636664-04
		MXX	.401021-02	MYY	.340451-02	MXY	.6697306-03

34	CENTROID	SXX	.150654+02	SYY	.196405+01	SKY	.491296+01
	NODE 64	VXX	*.105938-02	VYY	.123103-02		
	NODE 65	MXX	-.405111-02	MYY	-.401376-02	MXY	.312114-03
	NODE 63	MXX	-.261126-02	MYY	-.296339-02	MXY	.260052-03
		MXX	.346036-02	MYY	.233333-02	MXY	.1118014-02

35	CENTROID	SXX	*.103862+02	SYY	*.205789+01	SKY	.212069+01
	NODE 65	VXX	-.886574-03	VYY	.691168-03		
	NODE 64	MXX	-.569887-02	MYY	-.911494-02	MXY	.393029-03
	NODE 66	MXX	-.193924-02	MYY	-.122010-02	MXY	.142136-03
		MXX	-.164883-02	MYY	.135255-02	MXY	.3337234-03

36	CENTROID	SXX	.662061+01	SYY	.126710+02	SKY	-.2866114+00
	NODE 65	VXX	-.137148-02	VYY	.111997-02		
	NODE 66	MXX	-.4,3745-02	MYY	.502850-02	MXY	.644366-03
	NODE 44	MXX	-.726761-03	MYY	.121174-02	MXY	.582019-03
		MXX	-.3,2827-02	MYY	-.203114-02	MXY	.149354-02

37	CENTROID	SXX	-.166170+02	SYY	*.223591+01	SKY	.106566+02
	NODE 65	VXX	-.186300-03	VYY	*.442021-02		
	NODE 44	MXX	-.0,5218-02	MYY	.842668-02	MXY	.392156-03
	NODE 43	MXX	-.589080-03	MYY	.61413-03	MXY	.43003-03
		MXX	-.355070-02	MYY	.694946-02	MXY	.1341442-02

38	CENTROID	SXX	-.100759+02	SYY	*.129119+01	SKY	.812703+01
----	----------	-----	-------------	-----	-------------	-----	------------

UNIVAC 1100 SERIES IC69

DATE 073000

PAGE 26

NUDE 44	VXX	" 4111781-03	VYY	" 3122216-03
	XXX	" 2,7664-03	MTY	" 620271-03
NUDE 66	XXX	" 139700-03	MTY	" 71350-03
NUDE 45	XXX	" 3,3177-03	MTY	" 733266-03
		" 01,6589-02	MTY	

CENTROID	SXX	" 3159305+02	SYY	" 276218+00
	VXX	" 0,115452-03	VYY	" 0355914+00
NUDE 68	XXX	" 132902-02	MTY	" 592731-03
NUDE 44	XXX	" 308578-03	MTY	" 111444-02
NUDE 45	XXX	" 0,9,2690-03	MTY	" 163698-02
				" 558867-03

CENTROID	SXX	" 898569-01	SYY	" 597004+01
	VXX	" 0,222822-03	VYY	" 779285-03
NUDE 68	XXX	" 1,9752-02	MTY	" 594092-03
NUDE 67	XXX	" 9,5172-03	MTY	" 134735-03
NUDE 44	XXX	" 2,5313-02	MTY	" 522747-02
				" 373860-03

CENTROID	SXX	" 222567+02	SYY	" 537627+00
	VXX	" 0,875673-03	VYY	" 270168-02
NUDE 44	XXX	" 3,55857-03	MTY	" 942285-03
NUDE 67	XXX	" 440116-02	MTY	" 335838-02
NUDE 43	XXX	" 257425-02	MTY	" 645653-02
				" 656513-03

CENTROID	SXX	" 316055+00	SYY	" 102169+01
	VXX	" 0,219258-03	VYY	" 140102-03
NUDE 68	XXX	" 1,04922-03	MTY	" 590347-03
NUDE 59	XXX	" 687642-03	MTY	" 554903-03
NUDE 67	XXX	" 770667-03	MTY	" 788494-03
				" 309926-03

CENTROID	SXX	" 1911667-01	SYY	" 672272+00
	VXX	" 2,244153-04	VYY	" 356534-04
NUDE 69	XXX	" 365127-04	MTY	" 295305-04
NUDE 68	XXX	" 111879-03	MTY	" 188148-03
NUDE 70	XXX	" 0,775769-04	MTY	" 505863-04
				" 519175-04

CENTROID	SXX	" 174936+01	SYY	" 998003+00
	VXX	" 4,66142-04	VYY	" 4,661091-04
NUDE 69	XXX	" 343720-04	MTY	" 217265-03
NUDE 52	XXX	" 693298-04	MTY	" 965430-04
NUDE 69	XXX	" 379229-03	MTY	" 252326-03
				" 352759-04

CENTROID	SXX	" 275042+01	SYY	" 159540+01
	VXX	" 0,158096-03	VYY	" 600627-04
NUDE 52	XXX	" 1,77648-03	MTY	" 4,17632-04
NUDE 70	XXX	" 642505-04	MTY	" 184135-04
NUDE 53	XXX	" 1,61286-03	MTY	" 151255-03
				" 317776-04

CENTROID	SXX	" 167634+01	SYY	" 768427-01
	VXX	" 1,508686-03	VYY	" 370319-04

UNIVAC 1101 SERIES ICES

DATE 073060

PAGE 27

47	CENTROID	SXX VXX	*.270344+01 SYT .323503-03 VYY	*.4072256+00 SYT .149273-03 MYY	.533520-03 MXY .750429-04 MXZ .273947-03 MYY	.114713-03 -.935018-06 -.578243-04
48	CENTROID	SXX VXX	*.658869-00 SYT .271440-04 VYY	*.213973-05 SYT .766352-05 MYY	.163658-03 MXY .130225-03 MXZ .582204-03 MYY	.553667-03 -.281605-04 .723532-04
49	CENTROID	SXX VXX	*.333369 01 SYT .347535 03 VYY	*.186121+01 SYT .379410-03 MYY	.4072256+00 SYT .390142-03 MYY	.435486-01 -.31974-04 -.550194-04
50	CENTROID	SXX VXX	*.609709 00 SYT .106445-03 VYY	*.274693+00 SYT .344924-03 MYY	.478619-03 MXY .454411-03 MXZ .488986-03 MYY	.236743+01 -.276071-04 -.419421-04 .691367-04
51	CENTROID	SXX VXX	*.691730-00 SYT .437061-03 VYY	*.121212+01 SYT .244518-03 MYY	.122311-02 MXY .149211-02 MXZ .595772-03 MYY	.374237+00 -.175647-03 -.106000-03 .867666-04
52	CENTROID	SXX VXX	*.63994-01 SYT .548316-03 VYY	*.220179+01 SYT .363115-03 MYY	.333227-04 MXY .312336-03 MXZ .149903-02 MYY	.235992+00 -.162565-03 -.34017-03 .506293-03
53	CENTROID	SXX VXX	*.179058+02 SYT .727018-03 VYY	*.1227265+00 SYT .200354-02 MYY	.155376-02 MXY .142204-02 MXZ .234053-02 MYY	.486641+02 -.235067-03 -.15995-03 -.428044-03
54	CENTROID	SXX VXX	*.111242+02 SYT .605366-03 VYY	*.126346+02 SYT .579064-03 MYY	.102551-02 MXY .142071-02 MXZ	.154671+02 -.210865-03

UNIVAC 1100 SERIES ICES3

PAGE - 28

DATE 073000

NUDE 63 MAX *201017-02 MYY *284541-02 MYY *460026-04
NUUE 74 MAX *166643-02 MYY *149125-02 MYY *442900-04

CENTROID SXX *183479-02 SYV *316216+01 SXV *170003+02

NUDE 63 MAX *195532-02 VYV *143931-02 MYY *561414-02 MYY *260501-03
NUOC 76 MAX *5248671-02 MYY *349151-02 MYY *202125-03
NUDE 74 MAX *320553-02 MYY *215508-02 MYY *870176-05

CENTROID SXX *639408+01 SYV *121929+02 SXV *614694+01

NUOC 63 MAX *838935-03 VYV *513677-03 MYY *365287-02 MYY *333852-04
NUOC 65 MAX *370039-02 MYY *408722-02 MYY *545294-02 MYY *902618-04
NUDE 76 MAX *430956-03 MYY *234167-03 MYY *105336-03

CENTROID SXX *224326+01 SYV *111444+01 SXV *795929+01

NUDE 76 MAX *120006-03 VYV *310298-03 MYY *238226-02 MYY *468087-03
NUOC 65 MAX *165435-02 MYY *401202-02 MYY *48537-02 MYY *325913-03
NUDE 76 MAX *430167-02 MYY *236802-03 MYY *182405-02 MYY *801651-03

CENTROID SXX *2566835+02 SYV *114464+02 SXV *752246+01

NUDE 78 MAX *112771-02 VYV *263364-02 MYY *380293-02 MYY *560899-04
NUUE 42 MAX *536158-02 MYY *40167-02 MYY *626049-03 MYY *16934-03
NUDE 78 MAX *430167-02 MYY *236802-03 MYY *616613-02 MYY *443758-03

CENTROID SXX *106530+02 SYV *103035+02 SXV *165958+01

NUDE 78 MAX *199769-02 VYV *150361-02 MYY *263862-02 MYY *106724-02
NUOC 65 MAX *47605-02 MYY *397113-02 MYY *35001-02 MYY *309680-03
NUDE 42 MAX *317079-02 MYY *286470-02 MYY *315683-02 MYY *438561-03

CENTROID SXX *198129+02 SYV *483091+01 SXV *631601+01

NUOC 42 MAX *110833-02 VYV *16218-02 MYY *109238-02 MYY *879413-04
NUOC 65 MAX *283552-02 MYY *633784-02 MYY *816659-02 MYY *413308-03
NUOC 43 MAX *286470-02 MYY *743025-02 MYY *662086-03 MYY *977507-03

CENTROID SXX *170692+02 SYV *225181-01 SXV *907709+01

NUDE 67 MAX *436012-04 VYV *277003-02 MYY *339117-02 MYY *521299-04
NUUE 42 MAX *461193-02 MYY *618659-02 MYY *456359-02 MYY *976716-04
NUDE 43 MAX *143449-02 MYY *265506-02 MYY *690346-02 MYY *151210-03

CENTROID SXX *476020+01 SYV *106658-02 SXV *665912+00

NUDE 67 MAX *240295-02 VYV *134879-02 MYY *664501-03 MYY *412415-03
NUUE 80 MAX *39252-02 MYY *216710-02 MYY *977507-03

UNIVAC 1100 SERIES ICES

DATE 070800

PAGE 29

NODE 42

MXX -.362638-02 MYY -.493652-02 MXY .921126-03

CENTROID SXX -.340877+02 SYY +.195725+01 SXY -.544736+01

VXX MXX .162000-02 VYY .202797-02 MYY -.124980-02 MXY .153577-03

NODE 42 MXX .144536-02 MYY -.114571-02 MYY -.179685-02 MXY .440833-03

NODE 40 MXX .462498-02 MYY -.114571-02 MYY -.633597-02 MXY .769593-03

NODE 41 MXX -.114571-02 MYY -.633597-02 MXY .769593-03

CENTROID SXX -.490095+01 SYY +.315699+01 SXY .430004+01

NODE 67 VXX MXX -.149554-03 VYY +.195019-02 MYY .543739-03 MXY .254649-03

NODE 62 MXX .420432-03 MYY .424461-03 MXY .230084-03

NODE 80 MXX -.647634-04 MYY .424461-03 MXY .223569-03

MXX -.344440-03 MYY -.599362-04 MXY .223569-03

CENTROID SXX -.575114+01 SYY +.191380+01 SXY -.343675+01

NODE 69 VXX MXX .302937-03 VYY +.598820-04 MYY .298887-03 MXY .191247-03

NODE 82 MXX -.670401-03 MYY -.266380-03 MXY .243185-03

NODE 67 MXX -.558226-03 MYY .121059-02 MXY .232325-03

CENTROID SXX -.419568+01 SYY +.695226+01 SXY +.266713+00

NODE 82 VXX MXX -.705358-03 VYY +.149928-02 MYY .112677-02 MXY .125777-03

NODE 69 MXX -.160151-02 MYY -.259267-03 MXY .269200-03

NODE 84 MXX .630447-03 MYY .248660-02 MXY .348108-03

CENTROID SXX .468372+01 SYY +.5355023+01 SXY +.545202+01

NODE 84 VXX MXX .257683-03 VYY +.168837-02 MYY .252321-02 MXY .235603-03

NODE 69 MXX .222635-02 MYY -.705984-04 MXY .174272-03

NODE 86 MXX -.0960-0-03 MYY -.133503-02 MXY .653592-04

CENTROID SXX .807033+01 SYY +.340696+01 SXY +.290492+01

NODE 69 VXX MXX .141309-03 VYY +.124346-03 MYY .557037-04 MXY .161379-03

NODE 30 MXX .149735-03 MYY .250520-03 MXY .725569-04

NODE 86 MXX .525539-03 MYY -.959524-03 MXY .152726-03

CENTROID SXX .100071+01 SYY +.146104+00 SXY .774604+00

NODE 30 VXX MXX -.34609-03 MYY -.983226-03 MXY .456226-04

NODE 69 MXX -.42946-03 MYY -.565948-03 MXY .14714-03

NODE 91 MXX .75602-03 MYY -.460908-05 MXY .801681-04

CENTROID SXX -.448105+01 SYY +.333615+01 SXY +.431659+01

NODE 86 VXX MXX -.237685-04 VYY +.123598-03 MYY .470926-03 MXY .162793-03

NODE 30 MXX -.755553-05 MYY -.200563-03 MXY .565072-04

NODE 88 MXX -.348622-03 MYY -.2668418-04 MXY .137350-03

CENTROID SXX -.448105+01 SYY +.333615+01 SXY +.431659+01

NODE 86 MXX -.237685-04 VYY +.123598-03 MYY .470926-03 MXY .162793-03

NODE 30 MXX -.348622-03 MYY .200563-03 MXY .565072-04

NODE 88 MXX -.263893-03 MYY -.2668418-04 MXY .137350-03

UNIVAC 1100 SERIES ICES

DATE 073060 PAGE 30

71	CENTROID	XXX VXX	.376881-01 MXX MXX MXX	SYY VYY MYY MYY	.-165724-01 .303903-03 .72205-03 .130119-02	SXY MXY MXY MXY	.-327507-01 .288119-04 .953503-05 .476954-05
	NODE 86		.675062-03	VYY	.303903-03	MXY	.288119-04
	NODE 50		.61685-03	MYY	.72205-03	MXY	.953503-05
	NODE 49		.10612-02	MYY	.130119-02	MXY	.476954-05
			.65555-03	MYY	.303903-03	MXY	
72	CENTROID	XXX VXX	.-197820+01 .5603598-03	SYY VYY	.-719142+00 .1003865-05	SXY	.297841+01
	NODE 56		MXX MXX MXX	MYY MYY MYY	.474473-03 .414310-03 .560561-03	MXY MXY MXY	.273265-04 .168954-03 .111585-04
	NODE 32		.53552-03	MYY			
	NODE 33		.344941-03	MYY			
			.6267127-03	MYY			
73	CENTROID	XXX VXX	.157476+01 .398629-03	SYY VYY	.-617972+00 .501126-04	SXY	.169509+01
	NODE 55		MXX MXX MXX	MYY MYY MYY	.-122258-04 .645904-05 .693873-03	MXY MXY MXY	.165365-03 .17503-03 .226920-03
	NODE 32		.325942-03	MYY			
	NODE 36		.13222-03	MYY			
			.823334-03	MYY			
74	CENTROID	XXX VXX	.-174075+01 .217731-03	SYY VYY	.-100424+01 .115886-03	SXY	.176137401
	NODE 52		MXX MXX MXX	MYY MYY MYY	.176757-05 .818402-03 .238916-03	MXY MXY MXY	.216552-03 .25025-03 .220092-03
	NODE 55		.226464-03	MYY			
	NODE 31		.906741-01	MYY			
			.712512-03	MYY			
			.295107-03	MYY			
75	CENTROID	XXX VXX	.555759-00 .166077-03	SYY VYY	.169153-01 .115886-03	SXY	.736221-01
	NODE 56		MXX MXX MXX	MYY MYY MYY	.176757-05 .818402-03 .238916-03	MXY MXY MXY	.209269-03 .24215-03 .169618-03
	NODE 59		.926972-03	MYY			
	NODE 55		.166096-04	MYY			
76	CENTROID	XXX VXX	.631762+01 .230424-03	SYY VYY	.-100424+01 .344105-04	SXY	.983640+00
	NODE 59		MXX MXX MXX	MYY MYY MYY	.-971272-04 .225376-03 .101655-02	MXY MXY MXY	.796168-04 .58259-04 .103115-03
	NODE 26		.554921-03	MYY			
	NODE 60		.137612-02	MYY			
			.744076-04	MYY			
77	CENTROID	XXX VXX	.282264+01 .530332-04	SYY VYY	.-317954+01 .393265-04	SXY	.192860+01
	NODE 60		MXX MXX MXX	MYY MYY MYY	.-993377-03 .130715-03 .404414-03	MXY MXY MXY	.197045-03 .25331-03 .776440-03
	NODE 71		.140539-02	MYY			
	NODE 59		.12762-03	MYY			
			.454180-03	MYY			
78	CENTROID	XXX VXX	.-165119+01 .02320-02	SYY VYY	.-871078+01 .551010-03	SXY	.858874+00
	NODE 71		MXX MXX MXX	MYY MYY MYY	.-168724-02 .863703-03 .778579-03	MXY MXY MXY	.322842-03 .174538-03 .491199-03
	NODE 60		.155493-02	MYY			
	NODE 72		.675010-03	MYY			

UNIVAC 1100 SERIES ICES

DATE 073080

PAGE 81

79	CENTROID	SXX	*.410316+00	SYY	*.838699+01	SXY	*.116741+01
	NUDE 72	VXX	.993768-03	VYY	-.260189-02	MXY	*.55598-03
	NUDE 73	MXX	-.193159-02	MTY	*.201008-02	MXY	*.581564-03
	NUDE 74	MXX	-.274987-02	MTY	*.298058-02	MXY	*.425583-03
80	CENTROID	SXX	*.563577+01	SYY	.399715+01	SXY	*.142505+02
	NUDE 74	VXX	.244414-03	VYY	.649991-04	MXY	*.210184-03
	NUDE 75	MXX	-.860153-03	MTY	-.109170-02	MXY	*.527461-03
	NUDE 76	MXX	-.550044-03	MTY	-.464068-03	MXY	*.373217-03
81	CENTROID	SXX	*.136323+02	SYY	*.157333+01	SXY	*.627272+01
	NUDE 74	VXX	-.194634-02	VYY	.409993-02	MXY	*.18341-03
	NUDE 75	MXX	-.373121-03	MTY	*.176112-03	MXY	*.608927-04
	NUDE 76	MXX	.788222-02	MTY	*.829782-02	MXY	*.600474-03
82	CENTROID	SXX	*.578256+01	SYY	*.668025+01	SXY	*.769346+01
	NUDE 75	VXX	.758196-03	VYY	.156828-02	MXY	*.239619-04
	NUDE 74	MXX	*.403111-02	MTY	*.420412-02	MXY	*.249537-03
	NUDE 76	MXX	*.172291-02	MTY	*.177583-02	MXY	*.13053-03
83	CENTROID	SXX	*.336643+01	SYY	*.237369+01	SXY	*.701265+01
	NUDE 76	VXX	.306172-03	VYY	.342235-03	MXY	*.41012-03
	NUDE 75	MXX	*.20999-02	MTY	*.247159-02	MXY	*.290831-04
	NUDE 74	MXX	*.434522-02	MTY	*.54124-02	MXY	*.330849-03
84	CENTROID	SXX	*.370376+01	SYY	*.514148+01	SXY	*.532331+01
	NUDE 75	VXX	.12647-02	VYY	*.381426-02	MXY	*.323077-03
	NUDE 76	MXX	.755263-02	MTY	*.010122-02	MXY	*.535227-04
	NUDE 77	MXX	*.568375-03	MTY	*.153759-02	MXY	*.120374-03
85	CENTROID	SXX	*.270530+01	SYY	*.625067+00	SXY	*.215193+01
	NUDE 76	VXX	.715659-04	VYY	-.412668-03	MXY	*.286262-04
	NUDE 46	MXX	-.271832-03	MTY	*.377689-03	MXY	*.494435-04
	NUDE 77	MXX	*.87864-03	MTY	*.664171-03	MXY	*.173238-04
86	CENTROID	SXX	*.115526+02	SYY	*.158835+02	SXY	*.221913+02
	NUDE 40	VXX	.422295-03	VYY	-.520520-02	MXY	*.938257-03
	NUDE 78	MXX	-.172705-02	MTY	*.257616-02	MXY	*.19868-03
	NUDE 41	MXX	*.633552-02	MTY	*.454053-02	MXY	*.912338-03

UNIVAC 1100 SERIES ICES

DATE 072000

PAGE 32

CENTROID

NODE 77

SXX
VXX

NODE 40

SXX
VXX

NODE 59

SYY
VYY

NODE 79

SYY
VYY

NODE 40

SYY
VYY

NODE 59

-0.210061+02 SYY

NODE 79

-0.109115-02 VYY

NODE 40

-0.961557-03 MYY

NODE 59

-0.693001-02 MYY

NODE 40

-0.907519-03 MYY

NODE 59

-0.469902+00 SKY

NODE 79

-0.615158-03 MXY

NODE 40

-0.17487-02 MXY

NODE 59

-0.33721-02 MXY

NODE 40

-0.423517-02 MXY

NODE 59

-0.137569+01 SKY

NODE 79

SXX
VXX

NODE 40

SYY
VYY

NODE 79

SYY
VYY

NODE 40

SYY
VYY

NODE 59

-0.462556+01 SKY

NODE 79

-0.372036-02 MYY

NODE 40

-0.986111-03 MXY

NODE 59

-0.50676-02 MXY

NODE 40

-0.643103-02 MXY

NODE 59

-0.5866681+01 SKY

NODE 79

-0.351069+01 SKY

NODE 40

SXX
VXX

NODE 79

SYY
VYY

NODE 40

SYY
VYY

NODE 59

-0.362144+01 SKY

NODE 79

-0.277231-02 MYY

NODE 40

-0.137156-02 MXY

NODE 59

-0.350630-02 MXY

NODE 40

-0.463555-02 MXY

NODE 59

-0.521152-03 MXY

NODE 40

-0.359033+01 SKY

NODE 79

SXX
VXX

NODE 40

SYY
VYY

NODE 59

SYY
VYY

NODE 79

-0.191138+02 SKY

NODE 40

-0.450563-02 MYY

NODE 59

-0.193390-02 MXY

NODE 40

-0.362119-02 MXY

NODE 59

-0.757233-02 MXY

NODE 40

-0.3599033+01 SKY

NODE 79

SXX
VXX

NODE 40

SYY
VYY

NODE 59

-0.104107+02 SKY

NODE 79

-0.168029-02 MYY

NODE 40

-0.720244-05 MXY

NODE 59

-0.261633-03 MXY

NODE 40

-0.450830-02 MXY

NODE 59

-0.574965+01 SKY

NODE 79

SXX
VXX

NODE 40

SYY
VYY

NODE 59

-0.143733-02 SKY

NODE 79

-0.262315-02 MYY

NODE 40

-0.233330-02 MXY

NODE 59

-0.6467386-03 MXY

NODE 40

-0.891293-03 MXY

NODE 59

-0.626780+01 SKY

NODE 79

SXX
VXX

NODE 40

SYY
VYY

NODE 59

-0.5393163+01 SKY

NODE 79

-0.135345-02 MYY

NODE 40

-0.296756-02 MXY

NODE 59

-0.262285-02 MXY

NODE 40

-0.433374-03 MXY

NODE 59

-0.205771-03 MXY

NODE 40

-0.467386-03 MXY

NODE 59

-0.865239+01 SKY

NODE 79

SXX
VXX

NODE 40

SYY
VYY

NODE 59

-0.117632+02 SKY

NODE 79

-0.659759-03 MYY

NODE 40

-0.198639-02 MXY

NODE 59

-0.433374-03 MXY

NODE 40

-0.205771-03 MXY

NODE 59

-0.467386-03 MXY

NODE 40

-0.369365+01 SKY

NODE 79

SXX
VXX

NODE 40

SYY
VYY

NODE 59

-0.505128-03 MYY

NODE 40

-0.243980-03 MXY

NODE 59

-0.507269-03 MXY

NODE 40

-0.174246-03 MXY

NODE 59

-0.135476-03 MXY

NODE 40

-0.65676+01 SKY

NODE 79

UNIVAC 1100 SERIES ICES

DATE 073000

PAGE 38

96

CENTROID	SXX	.637956+01	SYY	.224N804+01	SXY	.125821+02
NODE 84	VXX	.9331954-03	VYY	.2332131-02		
NODE 85	MXX	.410312-03	MYY	.18637-03	MXY	.962247-00
NODE 85	MXX	.210474-03	MYY	.192517-03	MXY	.260763-03
NODE 85	MXX	.125235-03	MYY	.430129-03	MXY	.822695-00

CENTROID	SXX	.574252+01	SYY	.415727+01	SXY	.326206+01
NODE 85	VXX	.244018-03	VYY	.159369-03		
NODE 86	MXX	.457083-03	MYY	.16682-03	MXY	.479020-00
NODE 86	MXX	.296212-03	MYY	.996173-03	MXY	.479020-00
NODE 86	MXX	.169374-04	MYY	.390321-03	MXY	.156069-03

CENTROID	SXX	.587976+01	SYY	.452641+01	SXY	.306261+01
NODE 85	VXX	.139546-03	VYY	.281940-03		
NODE 86	MXX	.630561-03	MYY	.664945-04	MXY	.366870-00
NODE 86	MXX	.424298-03	MYY	.207271-03	MXY	.771221-00
NODE 86	MXX	.121814-03	MYY	.645249-03	MXY	.255931-00

CENTROID	SXX	.494285+01	SYY	.168722+01	SXY	.139961+01
NODE 85	VXX	.876735-04	VYY	.159448-03		
NODE 86	MXX	.119116-03	MYY	.344216-03	MXY	.771223-00
NODE 86	MXX	.508766-03	MYY	.656086-03	MXY	.713026-00
NODE 86	MXX	.304775-03	MYY	.358212-03	MXY	.496184-00

CENTROID	SXX	.689869+01	SYY	.208200+01	SXY	.515009+00
NODE 85	VXX	.189331-03	VYY	.222504-03		
NODE 86	MXX	.317534-03	MYY	.734334-03	MXY	.139997-00
NODE 86	MXX	.223561-03	MYY	.598845-03	MXY	.189011-00
NODE 86	MXX	.410645-03	MYY	.111746-03	MXY	.747093-00

CENTROID	SXX	.677208+00	SYY	.159820+01	SXY	.103909+01
NODE 86	VXX	.704422-04	VYY	.197679-04		
NODE 87	MXX	.275985-03	MYY	.717983-04	MXY	.288006-03
NODE 87	MXX	.111756-03	MYY	.102334-03	MXY	.306818-03
NODE 87	MXX	.612030-04	MYY	.909327-04	MXY	.306877-03

CENTROID	SXX	.187902+00	SYY	.966667+00	SXY	.162707+01
NODE 85	VXX	.539116-04	VYY	.998828-04		
NODE 85	MXX	.126163-03	MYY	.415110-04	MXY	.247647-00
NODE 85	MXX	.213009-03	MYY	.346469-03	MXY	.253395-00
NODE 85	MXX	.107381-03	MYY	.910549-04	MXY	.328061-03

CENTROID	SXX	.211986+01	SYY	.538262+01	SXY	.176652+01
NODE 85	VXX	.137500-03	VYY	.416665-04		

UNIVAC 1100 SERIES ICES									
NUDE 17	MAX	.0482327-04	MYY	.196363-03	MXY	.-306928-03			
NUDE 35	MAX	.05403-05	MYY	.46282-03	MXY	.-249924-03			
NUDE 18	MAX	.-163704-03	MYY	.40106-04	MXY	.-2666237-03			
CENTROID	SXX	.402433+00	SYY	.-821380-01	SXY	.-63376+00			
NUDE 35	VXX	.160392-03	VYY	.734417-05	MXY	.-257271-03			
NUDE 19	MAX	.516134-03	MYY	.360743-03	MXY	.-24954-03			
NUDE 18	MAX	.123278-03	MYY	.162229-03	MXY	.-242511-03			
CENTROID	SXX	.-164685+01	SYY	.-104500-01	SXY	.290193+01			
NUDE 35	VXX	.174684-03	VYY	.600576-04	MXY	.-198337-03			
NUDE 39	MAX	.299960-03	MYY	.526138-03	MXY	.-193642-03			
NUDE 19	MAX	.651061-03	MYY	.692591-03	MXY	.-270369-03			
CENTROID	SXX	.633599+01	SYY	.-1694356-02	SXY	.366425+01			
NUDE 19	VXX	.253957-03	VYY	.-177481-03	MXY	.-20455-03			
NUDE 39	MAX	.331003-03	MYY	.359991-03	MXY	.-67060-04			
NUDE 20	MAX	.706196-03	MYY	.701768-03	MXY	.-134719-03			
CENTROID	SXX	.454534+01	SYY	.-106097-02	SXY	.-87365+01			
NUDE 59	VXX	.302775-03	VYY	.204928-03	MXY				
NUDE 21	MAX	.720431-03	MYY	.705878-03	MXY	.-67933-04			
NUDE 20	MAX	.616554-03	MYY	.545061-03	MXY	.-258934-04			
CENTROID	SAX	.-449602-01	SYY	.46219+01	SXY	.990613+00			
NUDE 59	VAX	.-43960-05	VYY	.-606320-04	MXY	.421062-04			
NUDE 71	MAX	.63120-03	MYY	.368759-03	MXY	.-676229-04			
NUDE 21	MAX	.553972-03	MYY	.351665-03	MXY	.-258864-04			
CENTROID	SAX	.-530332+01	SYY	.-181669-01	SXY	.-141821+01			
NUDE 21	VAX	.-232674-03	VYY	.-168209-03	MXY	.-687547-04			
NUDE 71	MAX	.503442-03	MYY	.380091-03	MXY	.-826624-04			
NUDE 21	MAX	.714974-03	MYY	.460085-03	MXY	.-673222-04			
CENTROID	SXX	.-790813+01	SYY	.-200466+01	SXY	.171695+01			
NUDE 22	VXX	.-128601-02	VYY	.-131397-02	MXY	.-266953-03			
NUDE 71	MAX	.-16823-02	MYY	.124627-03	MXY	.-223571-03			
NUDE 73	MAX	.946755-03	MYY	.167925-02	MXY	.-661471-03			
CENTROID	SXX	.124501+01	SYY	.-2246399-01	SXY	.556701+01			
NUDE 73	VAX	.-233664-03	VYY	.-409762-03	MXY	.-156903-03			

UNIVAT 1100 SERIES ICES									
NODE	23	MXX	-103427-02	MYY	-276930-04	MXY	-0161680-03	MXX	MYY
NODE	22	MXX	.668945-04	MYY	.121626-02	MXY	-.0240613-03	MXX	MYY
CENTROID	SXX	*621477+01	SYY	*392102+00	SXY	*661634+01			
NODE	23	VXX	.125727-02	VYY	.432386-02	MYY	*345773-03	MXX	MYY
NODE	73	MXX	-.21046-02	MYY	-.236707-02	MYY	*124504-04	MXX	MYY
NODE	75	MXX	-.542442-02	MYY	-.561082-02	MYY	*562767-03	MXX	MYY
CENTROID	SXX	*287553+01	SYY	*8989522+01	SXY	*799766+00			
NODE	75	VXX	.754407-03	VYY	.498670-03	MYY	*351969-03	MXX	MYY
NODE	24	MXX	.434483-02	MYY	.491112-02	MYY	*668737-03	MXX	MYY
NODE	23	MXX	.172431-02	MYY	.188668-02	MYY	*02107-03	MXX	MYY
CENTROID	SXX	*417634+01	SYY	*419599+01	SXY	*519619+01			
NODE	24	VXX	.304502-03	VYY	-.334467-02	MYY	*70843-03	MXX	MYY
NODE	75	MXX	.169129-02	MYY	.243336-02	MYY	*140642-03	MXX	MYY
NODE	77	MXX	.760897-02	MYY	.81023-02	MYY	*587504-03	MXX	MYY
CENTROID	SXX	*120954+02	SYY	*205635+01	SXY	*109407+02			
NODE	59	VXX	.155308-03	VYY	-.722895-03	MYY	*71942-04	MXX	MYY
NODE	24	MXX	-.257593-02	MYY	-.454942-02	MYY	*405476-02	MXX	MYY
NODE	77	MXX	-.337661-03	MYY	-.203953-02	MYY	*501157-03	MXX	MYY
CENTROID	SXX	*312634+01	SYY	*736205+01	SXY	*269138+01			
NODE	59	VXX	-.126777-03	VYY	.135324-02	MYY	*108892-02	MXX	MYY
NODE	24	MXX	-.144119-02	MYY	-.31461-02	MYY	*143068-03	MXX	MYY
NODE	59	MXX	-.119679-02	MYY	-.22211-02	MYY	*443069-03	MXX	MYY
NODE	25	MXX	.755559-03	MYY	.153926-03	MYY	*412924-03	MXX	MYY
CENTROID	SXX	*5053956+01	SYY	*715968+01	SXY	*5589999+01			
NODE	59	VXX	-.0331810-04	VYY	-.462226-03	MYY	*174571-02	MXX	MYY
NODE	26	MXX	-.714158-05	MYY	-.312211-02	MYY	*03012-03	MXX	MYY
NODE	25	MXX	-.138151-04	MYY	-.30012-03	MYY	*501668-02	MXX	MYY
CENTROID	SXX	*19011+01	SYY	*116766+01	SXY	*6407225+02			
NODE	26	VXX	.170014-03	VYY	.593354-02	MYY	*325836-03	MXX	MYY
NODE	39	MXX	-.129466-02	MYY	-.25265-02	MYY	*851757-04	MXX	MYY
NODE	79	MXX	-.750339-02	MYY	-.053727-02	MYY	*214032-03	MXX	MYY
CENTROID	SXX	*203088+00	SYY	*115465+02	SXY	*442620+01			
NODE	61	VXX	*251284-03	VYY	-.122920-02	MYY	*673468-03	MXX	MYY
NODE	26	MXX	*77651-03	MYY	*103200-04	MYY	*203877-03	MXX	MYY

UNIVAC 1100 SERIES ICES

	NODE	79	MAX	.305347+02	MTY	.305347+02	MTY	.275128+03	DATE 073080	PAGE
120	CENTROID	SXX	.975360+00	STY	*.131709+02	SKY			.840017+01	
	NUDE	26	VXX	.349511+03	VYY	*.721261+03				
	NUDE	51	MAX	.176409+02	MTY	.18209+02	MTY	*.686697+04		
	NUDE	51	MAX	.265084+01	MTY	.270116+02	MTY	*.221252+03		
	NUDE	27	MAX	.753149+02	MTY	.288771+03	MTY	*.640636+05		
121	CENTROID	SXX	.728750+01	STY	*.103620+02	SKY			.460577+01	
	NUDE	83	VXX	.635866+04	VYY	*.126275+02				
	NUDE	27	MAX	.106759+02	MTY	*.883257+03	MTY	*.703332+04		
	NUDE	51	MAX	.739493+05	MTY	.654813+03	MTY	*.221496+05		
			.246634+02	MTY	.240207+02	MTY	*.12860+03			
122	CENTROID	SXX	.157012+01	STY	*.142678+02	SKY			.873450+01	
	NUDE	83	VXX	.159263+03	VYY	.269358+03				
	KDC	26	MAX	.437803+03	MTY	.686465+03	MTY	*.412916+03		
	NUDE	51	MAX	.152254+03	MTY	.635557+03	MTY	*.40201+03		
	NUDE	27	MAX	.425557+03	MTY	.539201+04	MTY	*.541697+03		
123	CENTROID	SXX	.74749+01	STY	*.231102+01	SKY			.533322+01	
	NUDE	28	VXX	.247328+34	VYY	.358305+04				
	NUDE	53	MAX	.253104+05	MTY	.812255+04	MTY	*.412246+03		
	NUDE	51	MAX	.281735+05	MTY	.268448+03	MTY	*.410022+03		
			.115660+03	MTY	.272522+03	MTY	*.419258+03			
124	CENTROID	SXX	.10089+01	STY	*.90006+01	SKY			.349303+00	
	NUDE	85	VXX	.725560+04	VYY	.486671+04				
	NUDE	29	MAX	.923346+04	MTY	.424887+03	MTY	*.207476+03		
	NUDE	28	MAX	.66+52+04	MTY	.598021+03	MTY	*.210023+03		
			.153117+03	MTY	.399358+03	MTY	*.208497+03			
125	CENTROID	SXX	.396623+01	STY	*.916648+00	SKY			.653373+01	
	NUDE	87	VXX	.547435+04	VYY	.369833+03				
	NUDE	29	MAX	.792494+05	MTY	.631266+03	MTY	*.251653+03		
	NUDE	51	MAX	.313753+05	MTY	.122771+03	MTY	*.202779+03		
	NUDE	47	MAX	.112689+05	MTY	.388165+03	MTY	*.211879+03		
126	CENTROID	SXX	.2258547+01	STY	*.2221545+01	SKY			.346411+01	
	NUDE	29	VXX	.146019+03	VYY	*.2137367+03				
	NUDE	47	MAX	.16153+04	MTY	.347245+03	MTY	*.90507+03		
	NUDE	47	MAX	.44475+03	MTY	.245817+04	MTY	*.121936+03		
			.530792+04	MTY	.208743+04	MTY	*.901642+04			
127	CENTROID	SXX	.641901+01	STY	*.842101+01	SKY			.750074+01	
	NUDE	29	VXX	.23629+04	VYY	*.494434+05				
	NUDE	47	MAX	.79047+04	MTY	.250364+04	MTY	*.152401+03		
	NUDE	30	MAX	.11249+05	MTY	.186677+03	MTY	*.739317+04		
			.249591+04	MTY	.616257+04	MTY	*.113196+03			

UNIVAC 1100 SERIES ICES

DATE 072009 PAGE 87

CENTROID	SXX	SYY	SXY	.153401+01
NODE 97	.252921-01 MAX	.7200640000 VY	.144002-03 MTY	.169363-03
NODE 97	.524222-04 MAX	.908584-04 MAX	.256585-03 MTY	.507634-04
NODE 98		.999156-04 MAX	.371688-03 MTY	.131790-03
		.378496-03 MAX	.717022-03 MTY	

128

649-2924-001
Sheet 92

LOADING - DMAG

RESULTANT JOINT LOADS - SUPPORTS

JOINT	X FORCE	Y FORCE	Z FORCE	X MOMENT	Y MOMENT	Z MOMENT
101 GLO	.012	.000	.000	.000	.000	.000
102 GLO	.000	.000	.000	.000	.000	.000
103 GLO	.003	.000	.000	.012	.000	.000
104 GLO	.000	.000	.000	.011	.000	.000
105 GLO	.002	.000	.000	.000	.000	.000
106 GLO	.001	.000	.000	.039	.016	.000
107 GLO	.100	.000	.000	.003	.000	.000
108 GLO	.000	.000	.000	.000	.000	.000
109 GLO	.001	.000	.000	.009	.000	.000
110 GLO	.000	.000	.000	.020	.000	.000
111 GLO	.000	.000	.023	.000	.000	.000
112 GLO	.001	.000	.000	.002	.000	.000
113 GLO	.002	.000	.000	.002	.001	.000
114 GLO	.002	.000	.000	.002	.000	.000
115 GLO	.002	.000	.000	.002	.001	.000
116 GLO	.000	.000	.001	.000	.000	.000
117 GLO	.000	.000	.001	.000	.000	.000
118 GLO	.000	.000	.000	.000	.000	.000
119 GLC	.000	.000	.000	.003	.000	.000
120 GLO	.000	.000	.000	.000	.000	.000
121 GLO	.000	.000	.000	.001	.000	.000
122 GLO	.000	.000	.000	.021	.000	.000
123 GLO	.000	.000	.000	.020	.000	.000
124 GLO	.000	.000	.000	.050	.012	.000
125 GLO	.000	.000	.000	.005	.000	.000
126 GLO	.000	.000	.000	.019	.000	.000
127 GLO	.000	.000	.000	.001	.000	.000
128 GLO	.000	.000	.000	.007	.000	.000
129 GLO	.000	.000	.000	.001	.000	.000
130 GLO	.000	.000	.000	.012	.000	.000
131 GLO	.000	.000	.000	.005	.000	.000
132 GLO	.000	.000	.000	.015	.000	.000
133 GLO	.000	.000	.000	.002	.000	.000
134 GLO	.000	.000	.000	.017	.017	.000
135 GLO	.000	.000	.000	.001	.000	.000
136 GLO	.000	.000	.000	.003	.000	.000
137 GLO	.000	.000	.000	.002	.000	.000
138 GLO	.000	.000	.000	.016	.000	.000
139 GLO	.000	.000	.000	.035	.004	.000
140 GLO	.000	.000	.000	.017	.026	.000
141 GLO	.000	.000	.000	.012	.035	.003
142 GLO	.000	.000	.000	.007	.089	.002
143 GLO	.000	.000	.000	.008	.020	.003
144 GLO	.000	.000	.000	.008	.018	.003
145 GLO	.000	.000	.000	.007	.003	.000

UNIVAC 1100 SERIES ICES

		DATE 073060	PAGE	39
146	GLO	.009		-.000
147	GLO	.000	.008	-.000
148	GLO	.000	.003	-.000
149	GLO	.000	.005	-.000
150	GLO	.000	.002	-.000
151	GLO	.000	.030	-.000
152	GLO	.000	.001	-.000
153	GLO	.000	.006	-.000
154	GLO	.000	.000	-.000
TOTALS		-.091	.024	.001

RESULTANT JOINT DISPLACEMENTS - SUPPORTS

JOINT	DISPLACEMENTS			ROTATIONS		
	X DISPL	Y DISPL	Z DISPL	X ROT	Y ROT	Z ROT
101	GLO	.000	.000	.000	.000	.000
102	GLO	.000	.000	.000	.000	.000
103	GLO	.000	.000	.000	.000	.000
104	GLO	.000	.000	.000	.000	.000
105	GLO	.000	.000	.000	.000	.000
106	GLO	.000	.000	.000	.000	.000
107	GLO	.000	.000	.000	.000	.000
108	GLO	.000	.000	.000	.000	.000
109	GLO	.000	.000	.000	.000	.000
110	GLO	.000	.000	.000	.000	.000
111	GLO	.000	.000	.000	.000	.000
112	GLO	.000	.000	.000	.000	.000
113	GLO	.000	.000	.000	.000	.000
114	GLO	.000	.000	.000	.000	.000
115	GLO	.000	.000	.000	.000	.000
116	GLO	.000	.000	.000	.000	.000
117	GLO	.000	.000	.000	.000	.000
118	GLO	.000	.000	.000	.000	.000
119	GLO	.000	.000	.000	.000	.000
120	GLO	.000	.000	.000	.000	.000
121	GLO	.000	.000	.000	.000	.000
122	GLO	.000	.000	.000	.000	.000
123	GLO	.000	.000	.000	.000	.000
124	GLO	.000	.000	.000	.000	.000
125	GLO	.000	.000	.000	.000	.000
126	GLO	.000	.000	.000	.000	.000
127	GLO	.000	.000	.000	.000	.000
128	GLO	.000	.000	.000	.000	.000
129	GLO	.000	.000	.000	.000	.000
130	GLO	.000	.000	.000	.000	.000
131	GLO	.000	.000	.000	.000	.000
132	GLO	.000	.000	.000	.000	.000
133	GLO	.000	.000	.000	.000	.000
134	GLO	.000	.000	.000	.000	.000
135	GLO	.000	.000	.000	.000	.000
136	GLO	.000	.000	.000	.000	.000
137	GLO	.000	.000	.000	.000	.000
138	GLO	.000	.000	.000	.000	.000

SUMMARY

A STRESS ANALYSIS WAS PERFORMED ON THE ANTENNA ADAPTER MOUNT (649-2848-001) UNDER WHAT WAS CONSIDERED A WORST CASE AERODYNAMIC LOADING CONDITION OF THE ANTENNA. THE ANALYSIS OF THE CASTING SHOWS THAT IT IS OF SUFFICIENT STRENGTH TO CARRY ALL INDUCED LOADS WITH THE FOLLOWING MARGINS-OF-SAFETY (CASTING FACTOR OF 2.0 INCLUDED):

MS (CASTING TENSILE YIELD) = +2.24
MS (CASTING SHEAR ULT) = +11.2
MS (ATTACHMENT BOLTS TENSION) = +30.4

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 95

AD-A095 634 ROCKWELL INTERNATIONAL DALLAS TEX COLLINS RADIO GROUP F/G 1/3
STRESS ANALYSIS OF AIRCRAFT MODIFICATIONS (C-141B AIRCRAFT). JO--ETC(U)
OCT 80 D B RAGAN F09603-80-C-0602

UNCLASSIFIED

NL

232
29.6.8

END
DATE FILMED
13-8-81
DTIC

TABLE OF CONTENTS

<u>SECTION</u>		<u>PAGE</u>
1.0	INTRODUCTION	98
2.0	LOCATION OF THE NODE POINTS	100
3.0	LOCATION OF THE FINITE ELEMENTS	106
4.0	PROPERTIES OF THE STRUCTURAL COMPONENTS	115
5.0	LOADING OF THE CASTING STRUCTURE	116
6.0	MISCELLANEOUS ANALYSIS AND EXECUTION STATEMENTS	120
7.0	RESULTS OF THE COMPUTER ANALYSIS	121
8.00	FORCES INDUCED INTO THE AIRCRAFT	126

APPENDICES

- A AERODYNAMIC LOADING CALCULATIONS
- B LISTING OF COMPUTER RESULTS

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 96

'C141-B' 'DM C34-3/B UHF ANTENNA MOD'

*
* ICES STRUDL-II
* THE STRUCTURAL DESIGN LANGUAGE
*
* CIVIL ENGINEERING SYSTEMS LABORATORY
* MASSACHUSETTS INSTITUTE OF TECHNOLOGY
* CAMBRIDGE, MASSACHUSETTS
*
* 17.14.36 22 AUG 80
*
* UNIVAC 1100 SERIES EXEC 8
* VERSION 2.7
*

PREPARED BY MAARTEN VET

SIZE A	CODE IDENT 134.99	DWG NO. 649-2924-001
SCALE	REV	SHEET 97

1.0 INTRODUCTION

A STRESS ANALYSIS WILL BE PERFORMED ON THE ADAPTER CASTING WHICH IS THE TRANSITION BETWEEN THE DM C34-3/B UHF ANTENNA AND THE FUSELAGE OF THE C141-B AIRCRAFT. THE ADAPTER WAS ADDED TO COMPENSATE FOR THE 7-DEGREE FORWARD SLOPE OF THE FUSELAGE; THUS THE ANTENNA WILL FLY WITH A ZERO ANGLE OF ATTACK. THE LOADINGS TO BE CONSIDERED ARE THE AERODYNAMIC FORCES INDUCED DUE TO EITHER THE MAXIMUM PERMISSIBLE VELOCITY OF 380 KNOTS AT SEA LEVEL OR MACH 0.85 ABOVE 23,000 FEET ALTITUDE; WHICHEVER PRESENTS THE WORST CASE CONDITION. HOWEVER, TO ENSURE THAT A CONSERVATIVE ANALYSIS IS PRESENTED, THE AERODYNAMIC FORCES WILL BE CALCULATED FOR AN ARBITRARY 10-DEGREE ANGLE OF ATTACK; SUCH AS MIGHT BE ENCOUNTERED DURING TAKEOFF OR SHARP MANEUVERING IN FLIGHT.

THE CASTING WILL BE MODELED USING TRIANGULAR PLATE ELEMENTS FOR THE BASIC CASTING WALLS AND TRIDIMENSIONAL ELEMENTS FOR THE HOLD-DOWN BOSSSES. THE CASTING MATERIAL IS ALUMINUM ALLOY A356-T6.

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 98

 ANTENNA ATTACHMENTS

FWD

Y

3.50
2.80
2.63
2.25

1.31

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET

21.56
21.25
20.25
19.31
18.56

16.37
15.63
14.63
13.89
13.00
12.00
11.41

09.38
07.41
06.58
05.58
04.74
03.76
02.76
02.06
00.94
00.00
-0.75
-1.06

GENERAL OUTLINE
OF THE
ANTENNA MOUNT

2.0--LOCATION OF THE NODE POINTS

UNITS INCHES,DEGREES

2.1--LOWER SLOPING PLANE

NODE COORDINATES

	X	Y	Z
1	-1.06	+0.00	.13
2	-0.75	-1.31	-.09
3	00.00	-2.25	0.00
4	00.94	-2.88	0.12
5	02.06	-3.50	0.25
6	02.76	-3.50	0.34
7	03.76	-3.50	0.46
8	05.58	-3.50	0.69
9	06.58	-3.50	0.81
10	09.38	-3.50	1.15
11	12.00	-3.50	1.47
12	13.00	-3.50	1.60
13	14.63	-3.50	1.80
14	15.63	-3.50	1.92
15	18.56	-3.50	2.28
16	19.31	-3.00	2.37
17	20.25	-2.38	2.49
18	21.25	-1.31	2.61
19	21.56	+0.00	2.65
20	09.38	-2.63	1.15
21	09.38	+0.00	1.15
22	-0.75	+1.31	-.09
23	00.00	+2.25	0.00
24	00.94	+2.88	0.12
25	02.06	+3.50	0.25
26	02.76	+3.50	0.34
27	03.76	+3.50	0.46
28	05.58	+3.50	0.69
29	06.58	+3.50	0.81
30	09.38	+3.50	1.15
31	12.00	+3.50	1.47
32	13.00	+3.50	1.60
33	14.63	+3.50	1.80
34	15.63	+3.50	1.92
35	16.56	+3.50	2.28
36	19.31	+3.00	2.37
37	20.25	+2.38	2.49
38	21.25	+1.31	2.61
39	09.38	+2.63	1.15
40	00.50	-1.50	0.06
41	01.38	-2.13	0.17
42	02.76	-2.63	0.34
43	03.76	-2.63	0.46

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 100

LOWER SLOPING PLANE

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		101

2.2--UPPER PLANE

NODE COORDINATES

NODE	X	Y	Z	
101	-1.06	+0.00	3.20	
102	-0.75	-1.31	3.20	
103	00.00	-2.25	3.20	
104	00.94	-2.88	3.20	
105	02.06	-3.50	3.20	
106	02.76	-3.50	3.20	
107	03.76	-3.50	3.20	
108	05.58	-3.50	3.20	
109	06.58	-3.50	3.20	
110	09.08	-3.50	3.20	
111	12.00	-3.50	3.20	
112	13.00	-3.50	3.20	
113	14.63	-3.50	3.20	
114	15.63	-3.50	3.20	
115	18.56	-3.50	3.20	
116	19.51	-3.00	3.20	
117	20.25	-2.38	3.20	
118	21.25	-1.31	3.20	
119	21.56	+0.00	3.20	
120	09.58	-2.63	3.20	
121	09.58	+0.00	3.20	
122	-0.75	+1.31	3.20	
123	00.00	+2.25	3.20	
124	00.94	+2.88	3.20	
125	02.06	+3.50	3.20	
126	02.76	+3.50	3.20	
127	03.76	+3.50	3.20	
128	05.58	+3.50	3.20	
129	06.58	+3.50	3.20	
130	09.08	+3.50	3.20	
131	12.00	+3.50	3.20	
132	13.00	+3.50	3.20	
133	14.63	+3.50	3.20	
134	15.63	+3.50	3.20	
135	16.56	+3.50	3.20	
136	19.51	+3.00	3.20	
137	20.25	+2.38	3.20	
138	21.25	+1.31	3.20	
139	09.08	+2.63	3.20	
140	00.50	-1.50	3.20	
141	01.58	-2.13	3.20	
142	02.76	-2.63	3.20	
143	03.76	-2.63	3.20	
144	05.58	-2.63	3.20	
145	06.58	-2.63	3.20	
146	12.00	-2.63	3.20	
147	13.00	-2.63	3.20	
148	14.63	-2.63	3.20	
149	15.63	-2.63	3.20	
	150	18.88	-2.25	3.20
	151	19.75	-1.69	3.20
	152	00.50	+1.50	3.20
	153	01.58	+2.13	3.20
	154	02.76	+2.63	3.20
	155	03.76	+2.63	3.20
	156	05.58	+2.63	3.20
	157	06.58	+2.63	3.20
	158	12.00	+2.63	3.20
	159	13.00	+2.63	3.20
	160	14.63	+2.63	3.20
	161	15.63	+2.63	3.20
	162	18.88	+2.25	3.20
	163	19.75	+1.69	3.20
	165	02.06	+0.00	3.20
	164	00.00	+0.00	3.20
	166	04.74	+0.00	3.20
	167	07.41	+0.00	3.20
	168	11.41	+0.00	3.20
	169	13.89	+0.00	3.20
	170	15.63	+0.00	3.20
	171	18.56	+0.00	3.20
	172	00.00	-1.31	3.20
	173	02.06	-2.63	3.20
	174	04.74	-2.63	3.20
	175	07.41	-2.63	3.20
	176	11.41	-2.63	3.20
	177	13.89	-2.63	3.20
	178	18.56	-2.63	3.20
	179	00.00	+1.31	3.20
	180	02.06	+2.63	3.20
	181	04.74	+2.63	3.20
	182	07.41	+2.63	3.20
	183	11.41	+2.63	3.20
	184	13.89	+2.63	3.20
	185	18.56	+2.63	3.20
	186	16.57	-2.63	3.20
	187	16.57	+2.63	3.20

SIZE A	CODE IDENT 13499	DWG NO.	
		649-2924-001	
SCALE	REV	SHEET	102

UPPER HORIZ. PLANE

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		103

FLATTENED STARBOARD SIDE

FLATTENED PORT SIDE

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		104

2.3--SUPPORT NODES

NODE COORDINATES

	X	Y	Z	
220	09.58	-2.63	0.15	SUPPORT
221	09.58	+0.00	0.15	SUPPORT
239	09.58	+2.63	0.15	SUPPORT
240	00.50	-1.50	-.94	SUPPORT
241	01.38	-2.13	-.83	SUPPORT
242	02.76	-2.63	-.66	SUPPORT
243	03.76	-2.63	-.54	SUPPORT
244	05.58	-2.63	-.31	SUPPORT
245	06.58	-2.63	-.19	SUPPORT
246	12.00	-2.63	0.47	SUPPORT
247	13.00	-2.63	0.60	SUPPORT
248	14.63	-2.63	0.80	SUPPORT
249	15.63	-2.63	0.92	SUPPORT
250	18.88	-2.25	1.32	SUPPORT
251	19.75	-1.69	1.42	SUPPORT
252	00.50	+1.50	-.94	SUPPORT
253	01.38	+2.13	-.83	SUPPORT
254	02.76	+2.63	-.66	SUPPORT
255	03.76	+2.63	-.54	SUPPORT
256	05.58	+2.63	-.31	SUPPORT
257	06.58	+2.63	-.19	SUPPORT
258	12.00	+2.63	0.47	SUPPORT
259	13.00	+2.63	0.60	SUPPORT
260	14.63	+2.63	0.80	SUPPORT
261	15.63	+2.63	0.92	SUPPORT
262	18.88	+2.25	1.32	SUPPORT
263	19.75	+1.69	1.42	SUPPORT

NODE RELEASES

220, 239	FORCE	Y
240 TO 263	FORCE	Y

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 105

3.0--LOCATION OF THE FINITE ELEMENTS

3.1--UPPER HORIZONTAL SURFACE

TYPE BENDING

ELEMENT INCIDENCES

1	101	172	164
2	172	101	102
3	102	103	172
4	172	103	140
5	104	173	141
6	173	104	105
7	106	173	105
8	173	106	142
9	107	174	143
10	107	108	174
11	174	108	144
12	109	175	145
13	109	110	175
14	175	110	120
15	110	176	120
16	110	111	176
17	176	111	146
18	112	177	147
19	112	113	177
20	177	113	148
21	114	186	149
22	114	115	186
165	186	115	178
23	115	116	178
24	178	116	150
25	118	151	117
26	119	151	118
27	163	119	138
28	138	137	163
29	136	185	162
30	185	136	135
31	135	134	187
32	187	134	161
166	135	187	185
33	133	184	160
34	133	132	184
35	184	132	159
36	131	183	158
37	131	130	183
38	183	130	139
39	130	182	139
40	130	129	157
41	182	129	157
42	128	181	156

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 106

43	128	127	181	78	170	150	171
44	181	127	155	79	171	150	151
45	126	180	154	80	119	171	151
46	180	126	125	81	171	119	163
47	125	124	180	82	162	171	163
48	180	124	153	83	162	170	171
49	123	179	152	84	170	162	185
50	123	122	179	85	170	185	187
51	101	179	122	168	170	187	161
52	179	101	164	86	160	170	161
53	172	165	164	87	170	160	169
54	165	172	140	88	169	160	184
55	141	165	140	89	159	169	184
56	173	165	141	90	159	168	169
57	142	165	173	91	168	159	158
58	143	165	142	92	168	158	183
59	165	143	166	93	139	168	183
60	166	143	174	94	168	139	131
61	144	166	174	95	139	167	121
62	144	167	166	96	167	139	182
63	167	144	145	97	157	167	182
64	167	145	175	98	156	167	157
65	120	167	175	99	167	156	166
66	167	120	121	100	166	156	181
67	120	168	121	101	155	166	156
68	168	120	176	102	155	165	166
69	146	168	176	103	165	155	154
70	147	168	146	104	165	154	180
71	168	147	169	105	165	180	155
72	169	147	177	106	152	165	153
73	148	169	177	107	165	152	179
74	169	148	170	108	165	179	164
75	170	148	149				
167	186	170	149				
76	178	170	186				
77	170	178	150				

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 108

3.2--VERTICAL SIDE ELEMENTS

TYPE BENDING

ELEMENT INCIDENCES

109	1	102	101	133	1	122	101
110	102	1	2	134	122	1	22
111	3	102	2	135	23	122	22
112	102	3	103	136	122	23	123
113	4	105	104	137	24	125	124
114	105	4	5	138	125	24	25
115	6	105	5	139	26	125	25
116	105	6	106	140	125	26	126
117	7	108	107	141	27	128	127
118	108	7	8	142	128	27	28
119	9	110	109	143	29	130	129
120	110	9	10	144	130	29	30
121	11	110	10	145	31	130	30
122	110	11	111	146	130	31	131
123	12	113	112	147	32	133	132
124	113	12	13	148	133	32	33
125	14	115	114	149	34	135	134
126	115	14	15	150	135	34	35
127	16	115	15	151	36	135	35
128	115	16	116	152	135	36	136
129	17	118	117	153	37	138	137
130	118	17	18	154	138	37	38
131	19	118	18	155	19	138	38
132	118	19	119	156	138	19	119

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 109

FLATTENED STARBOARD SIDE

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 110

3.3--CAST BOSSES

TYPE TRIUMENSIONAL

ELEMENT INCIDENCES

200	3	4	104	103	40	41	141	140
201	6	7	107	106	42	43	143	142
202	8	9	109	108	44	45	145	144
203	11	12	112	111	46	47	147	146
204	13	14	114	113	48	49	149	148
205	16	17	117	116	50	51	151	150
206	52	53	153	152	23	24	124	123
207	54	55	155	154	26	27	127	126
208	56	57	157	156	28	29	129	128
209	58	59	159	158	31	32	132	131
210	60	61	161	160	33	34	134	133
211	62	63	163	162	36	37	137	136

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 111

3.4--TRANSVERSE KIB

TYPE BENDING

ELEMENT INCIDENCES

157	110	20	10
158	20	110	120
159	121	20	120
160	20	121	21
161	121	39	21
162	39	121	139
163	130	39	139
164	39	130	30

TRANSVERSE RIB

(X = 09.38)

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 112

3.5--SUPPORT MEMBERS

TYPE SPACE FRAME

MEMBER INCIDENCES

300	220	20
301	221	21
302	239	39
303	240	40
304	241	41
305	242	42
306	243	43
307	244	44
308	245	45
309	246	46
310	247	47
311	248	48
312	249	49
313	250	50
314	251	51
315	252	52
316	253	53
317	254	54
318	255	55
319	256	56
320	257	57
321	258	58
322	259	59
323	260	60
324	261	61
325	262	62
326	263	63

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		113

3.6--DUMMY FRAMING MEMBERS

IN ORDER TO HAVE COMPATIBILITY OF DEGREES-OF-FREEDOM AT ALL THE NODE POINTS, THIN DUMMY MEMBERS WILL BE USED TO MAKE UP A VIRTUAL FRAME HAVING INSIGNIFICANT STIFFNESS.

TYPE SPACE FRAME

MEMBER INCIDENCES

400	1	2	437	101	102			
401	2	3	438	102	103			
402	3	4	439	103	104			
403	4	5	440	104	105	473	1	101
404	5	6	441	105	106	474	2	102
405	6	7	442	106	107	475	5	105
406	7	8	443	107	108	476	10	110
407	8	9	444	108	109	477	15	115
408	9	10	445	109	110	478	18	118
409	10	11	446	110	111	479	19	119
410	11	12	447	111	112	480	22	122
411	12	13	448	112	113	481	25	125
412	13	14	449	113	114	482	30	130
413	14	15	450	114	115	483	35	135
414	NOT USED		451	115	116	484	38	138
415	15	16	452	116	117			
416	16	17	453	117	118			
417	17	18	454	118	119			
418	18	19	455	101	122			
419	1	22	456	122	123			
420	22	23	457	123	124			
421	23	24	458	124	125			
422	24	25	459	125	126			
423	25	26	460	126	127			
424	26	27	461	127	128			
425	27	28	462	128	129			
426	28	29	463	129	130			
427	29	30	464	130	131			
428	30	31	465	131	132			
429	31	32	466	132	133			
430	32	33	467	133	134			
431	33	34	468	134	135			
432	34	35	469	135	136			
433	35	36	470	136	137			
434	36	37	471	137	138			
435	37	38	472	138	119			
436	38	29						

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		114

4.0--PROPERTIES OF THE STRUCTURAL COMPONENTS

ELEMENT PROPERTIES

1 TO 108	TYPE	'SBCT'	THICKNESS	.190
109 TO 114	TYPE	'SBCT'	THICKNESS	.375
115 TO 128	TYPE	'SBCT'	THICKNESS	.190
129 TO 132	TYPE	'SBCT'	THICKNESS	1.25
133 TO 138	TYPE	'SBCT'	THICKNESS	.375
139 TO 152	TYPE	'SBCT'	THICKNESS	.190
153 TO 156	TYPE	'SBCT'	THICKNESS	1.25
157 TO 164	TYPE	'SBCT'	THICKNESS	1.00
165 TO 168	TYPE	'SBCT'	THICKNESS	.190
200 TO 211	TYPE	'IPLSCSH'		

MEMBER PROPERTIES

300 TO 326	AX .0228	IX .0002	IY .0001	SY .0007	IZ .0001	SZ .0007
400 TO 413	AX .0361	IX .0002	IY .0001	IZ .0001		
415 TO 454	AX .0561	IX .0002	IY .0001	IZ .0001		

CONSTANTS

E 1.00E7	ALL
G 3.00E6	ALL
POISSON .53	ALL

E 2.90E7	300 TO 326
G 1.20E7	300 TO 326
POISSON .50	300 TO 326

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 115

5.0--LOADING OF THE CASTING STRUCTURE

THE LOADING TO BE APPLIED IS FOR THE SEA LEVEL FLIGHT AT THE MAXIMUM VELOCITY OF 380-KNOTS. THIS CONDITION RESULTS IN THE WORST-CASE DYNAMIC LOADING.

DRAG FORCE 90.90-LB.

LIFT FORCE 338.0-LB.

MOMENT 2360 IN.-LB.

LOADING "DRAG"

NODE LOADS

172.179	FORCE X +5.68	FORCE Z +42.82
173.180	FORCE X +5.68	FORCE Z +40.41
174.181	FORCE X +5.68	FORCE Z +37.28
175.182	FORCE X +5.68	FORCE Z +34.16
176.183	FORCE X +5.68	FORCE Z +29.49
177.184	FORCE X +5.68	FORCE Z +26.59
186.187	FORCE X +5.68	FORCE Z +23.69
178.185	FORCE X +5.68	FORCE Z -65.44

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 116

ANTENNA ATTACHMENT LOADS *

ASSUMPTION: THE ANTENNA STIFFNESS IS OF SUCH MAGNITUDE THAT THE ANTENNA TENDS TO ROTATE AS A RIGID BODY ABOUT ITS AFT EDGE.

LIFT LOADING

$$\text{EACH NODE } F_Z = + \frac{338.0}{16} = + 21.13$$

DRAG LOADING

$$\text{EACH NODE } F_X = + \frac{90.9}{16} = + 5.68$$

* SEE APPENDIX 'A'
FOR LOAD CALCS.

SIZE A	CODE IDENT 134.99	DWG NO. 649-2924-001
SCALE	REV	SHEET 117

MOMENT LOADING

$$M_R = \frac{2F}{18.56} \left[(18.56)^2 + (16.50)^2 + (13.82)^2 + (11.15)^2 + (7.13)^2 + (4.67)^2 + (2.19)^2 \right]$$

$$= 108.81 F$$

$$F = \frac{2360}{108.81} = +21.69$$

SUMMATION

NODES 172, 179 FORCE X = +5.68

$$\text{FORCE Z} = +21.13 + 21.69 = +42.82$$

NODES 173, 180 FORCE X = +5.68

$$\text{FORCE Z} = +21.13 + \left(\frac{16.50}{18.56} \right) (21.69) = +40.41$$

NODES 174, 181 FORCE X = +5.68

$$\text{FORCE Z} = +21.13 + \left(\frac{13.82}{18.56} \right) (21.69) = +37.28$$

NODES 175, 182 FORCE X = +5.68

$$\text{FORCE Z} = +21.13 + \left(\frac{11.15}{18.56} \right) (21.69) = +34.16$$

NODES 176, 183 FORCE X = +5.68

$$\text{FORCE Z} = +21.13 + \left(\frac{7.15}{18.56} \right) (21.69) = +29.49$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 118

NODES 177, 184 FORCE X = +5.68

$$\text{FORCE } Z = +21.13 + \left(\frac{4.67}{18.56} \right) (21.69) = +26.59$$

NODES 186, 187 FORCE X = +5.68

$$\text{FORCE } Z = +21.13 + \left(\frac{2.19}{18.56} \right) (21.69) = +23.69$$

NODES 178, 185 FORCE X = +5.68

$$\text{FORCE } Z = -234.44 + \frac{338.0}{2}$$

$$= -65.94$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 119

6.0--MISC. ANALYSIS AND EXECUTION STATEMENTS

STIFFNESS ANALYSIS REDUCE BAND ROOT

UNITS KIPS

OUTPUT DECIMAL 3

LIST FORCES,REACTIONS,STRESSES ALL

FINISH

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 120

7.0 - RESULTS OF THE COMPUTER ANALYSIS

7.1 - STRESSES IN THE FINITE ELEMENTS

7.1.1 - UPPER HORIZ. SURFACE

MAX. SHEAR STRESS = 23.5-PSI IN EL. 25

MAX. DIRECT STRESS = 46.7-PSI IN EL. 24

MAX. BEND. MOMENT = 20.4 IN-LB/IN IN EL. 44

MAX. BENDING STRESS

$$S_B = \frac{6M}{L^2}$$

$$= \frac{(6)(20.4)}{(0.190)^2} = 3,391 \cdot \text{PSI}$$

7.1.2 - VERTICAL SURFACE

MAX. SHEAR STRESS = 51.1-PSI IN EL. 127

MAX. DIRECT STRESS = 132.0-PSI IN EL. 128

MAX. BEND. MOMENT = 4.12 IN-LB/IN IN EL. 134

= 3.12 IN-LB/IN IN EL. 126

= 8.83 IN-LB/IN IN EL. 156

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 121

$$\text{MAX. BENDING STRESS} = \frac{(6)(1.12)}{(0.375)^2} = 176 - \text{PSI}$$

$$= \frac{(6)(3.12)}{(0.190)^2} = 519 - \text{PSI}$$

$$= \frac{(6)(8.83)}{(1.25)^2} = 34 - \text{PSI}$$

7.1.3 - TRANSVERSE RIB

$$\text{MAX. SHEAR STRESS} = 5.5 - \text{PSI IN EL. 164}$$

$$\text{MAX. DIRECT STRESS} = 10.6 - \text{PSI IN EL. 157}$$

$$\text{MAX. BEND. MOMENT} = 10.1 \text{ IN-LB/IN IN EL. 169}$$

$$\text{MAX. BENDING STRESS} = \frac{(6)(10.1)}{(1.00)^2} = 61 - \text{PSI}$$

7.1.4 - HOLD-DOWN BOSSES

$$\text{MAX. SHEAR STRESS} = 903.7 - \text{PSI IN EL. 205}$$

$$\text{MAX. DIRECT STRESS} = 857.0 - \text{PSI IN EL. 211}$$

7.1.5 - MARGINS - OF - SAFETY

AL CASTING ALLOY A356-T6

PER QQ-A-601

A CASTING FACTOR OF 2.0 WILL BE USED

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 122

FROM MIL-HDBK-5C , TABLE 3.13.S.O(b)

ASSUMING THE LOWEST CLASS CASTING

$$F_{TY} = 22 - \text{ksi}$$

$$F_{SU} = 22 - \text{ksi}$$

$$\text{M.S. (TEENS. YLD)} = \frac{22,000}{(2.0)(3,391)} - 1.0 = + 2.24$$

$$\text{M. S. (SHEAR ULT)} = \frac{22,000}{(2.0)(903.7)} - 1.0 = + 11.2$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		123

7.2 - ATTACHMENT BOLT LOADS

RESULTANT JOINT LOADS - SUPPORTS

JOINT		FORCES		
		X FORCE	Y FORCE	Z FORCE
220	GLO	-.010	.000	-.007
221	GLO	-.009	-.000	-.007
239	GLO	-.011	.000	-.007
240	GLO	-.001	.000	-.038
241	GLO	-.002	.000	-.034
242	GLO	-.003	.000	-.028
243	GLO	-.003	.000	-.016
244	GLO	-.003	.000	-.028
245	GLO	-.003	.000	-.012
246	GLO	-.001	.000	-.022
247	GLO	-.001	.000	-.010
248	GLO	-.002	.000	-.015
249	GLO	-.002	.000	-.007
250	GLO	-.004	.000	.050
251	GLO	-.005	.000	.002
252	GLO	-.001	.000	-.037
253	GLO	-.002	.000	-.033
254	GLO	-.003	.000	-.028
255	GLO	-.003	.000	-.015
256	GLO	-.003	.000	-.028
257	GLO	-.003	.000	-.015
258	GLO	-.002	.000	-.021
259	GLO	-.002	.000	-.010
260	GLO	-.002	.000	-.016
261	GLO	-.002	.000	-.006
262	GLO	-.004	.000	.054
263	GLO	-.005	.000	-.003
TOTALS		-.091	-.000	-.338

FROM THE ANALYTICAL MODEL IT CAN BE SEEN
THAT TWO NODES AT EACH ROSS REPRESENT
THE TIE-DOWN ARRANGEMENT.

$$\text{MAX. TENSION} = 38 + 34 = 72 \text{ LB}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 124

AN. 3 BOLTS (10-32)

$$\left. \begin{array}{l} P_s = 2126-\text{LB} \\ P_t = 2259-\text{LB} \end{array} \right\} \text{MIL-HDBK-5C, TABLES 8.1.5(a) & (b)}$$

SINCE THE SHEAR IS INSIGNIFICANT, INTERACTION EQUATIONS WILL NOT BE USED.

$$\text{M.S. (TENS. UL)} = \frac{2259}{72} - 1.0 = + \underline{\underline{30.4}}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 125

8.0 - FORCES INDUCED INTO THE AIRCRAFT

8.1 - ASSUMPTIONS

- DUE TO THE STIFFNESS OF THE ANTENNA BAYONET, IN COMPARISON TO THE BENDING STIFFNESS OF THE HONEYCOMB PANEL; THE BASE OF THE ANTENNA WILL TEND TO ROTATE AS A RIGID BODY.
- BECAUSE OF THE STIFFNESS OF THE TRANSVERSE A/C STIFFENER, IN COMPARISON TO THE HONEYCOMB PANEL STIFFNESS; THE ANTENNA WILL ROTATE ABOUT THE STIFFENER AND THE ATTACHMENTS TO THE STIFFENER WILL TAKE OUT ALMOST ALL OF THE LIFT FORCE.
- THE AERODYNAMIC FORCES FOR THE WORST-CASE SEA LEVEL FLIGHT WILL CREATE THE MORE SEVERE LOADINGS CONDITION.

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET 126

8.2 - REACTION TO THE MOMENT

IN REALITY, THE AFT END OF THE ANTENNA LOADS THE PANEL IN COMPRESSION WITH SOME FORM OF DISTRIBUTED LOADING; PERHAPS TRIANGULAR IN NATURE. THE PROBLEM IS AN INDETERMINATE ONE WHOSE SOLUTION WILL REQUIRE A KNOWLEDGE OF ATTACHMENT BOLT AND PANEL SPRING RATES. TO SIMPLIFY THE SOLUTION, ASSUME EACH PORTION OF THE A/C PANEL ON EACH SIDE OF THE PIVOT LINE REACTS ONE-HALF OF THE MOMENT.

$$2 \left[\frac{F}{8.44} \left(\overline{8.14}^2 + \overline{5.94}^2 + \overline{3.00}^2 \right) \right] = \frac{1}{2} (2360)$$

$$F = 13.11-\text{LB TENSION}$$

8.3 - REACTION TO THE FORCES

ASSUME ALL THE LIFT FORCES IS TAKEN IN THE ATTACHMENTS AT THE TRANSVERSE STIFFENER.

$$F = \frac{1}{3} (338.0) = 112.7-\text{LB TENSION}$$

ASSUME ONLY ONE-HALF OF THE ATTACHMENTS TAKE OUT THE DRAG FORCE

$$F = \frac{1}{6} (90.9) = 15.2-\text{LB SHEAR}$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET 127

APPENDIX A

AERODYNAMIC LOADING CALCULATIONS

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET A-1

A.0 - AERODYNAMIC CALCULATIONS

A.1 - MAXIMUM DYNAMIC PRESSURE

REFERENCE: T.O. 1C-141A-1, FIGURE 5-8.

- MAX. PERMISSIBLE VELOCITY ABOVE 23,000-FT.
ALTITUDE IS M=0.85
- MAX PERMISSIBLE VELOCITY BELOW 23,000-FT.
ALTITUDE IS 380-KNOTS

A.1.1 - AT 23,000-FT ALTITUDE

$$C = 1025 - \text{FT/SEC}$$

$$\rho = .002378 \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right)$$

$$= (.002378)(.1046) \left(\frac{1}{.8419} \right) = .001143 \text{ LB-SEC}^2/\text{FT}^3$$

$$v = (1025)(.85) = 871 \text{ FT/SEC}$$

$$q_\infty = \frac{1}{2} \rho v^2$$

$$= \frac{1}{2} (.001143)(871)^2 = 434 - \text{LB/FT}^2$$

A.1.2 - AT SEA LEVEL

$$C = 1117 - \text{FT/SEC}$$

$$\rho = .002378 \text{ LB-SEC}^2/\text{FT}^3$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET A-2

$$n = (380)(1.689) \\ = 642 \text{ FT/SEC} \quad (M = .57)$$

$$g_{\infty} = \frac{1}{2} (.002378)(642)^2 = 490 - 18/\text{FT}^2$$

A.2-DRAG & LIFT FORCES

ASSUMPTIONS:

- AS A WORST-CASE, ASSUME THAT THE ANGLE-OF-ATTACK ON THE ANTENNA IS 10° .
- THE SAUCER PORTION OF THE ANTENNA WILL BE TREATED AS A FLAT DISC; RATHER THAN AS AN AIRFOIL.
- THE ENTIRE ANTENNA IS OUTSIDE THE BOUNDARY LAYER. (CONSERVATIVE)

A.2.1 - SAUCER

$$\text{AREA} = \frac{\pi}{4} \left(\frac{17.78}{12} \right)^2 = 1.724 - \text{FT}^2$$

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET A-3

(d) INCLINED PLATE

FIG. 5.—WIND PRESSURES ON ELEMENTARY BODIES

(FROM ASCE PAPER 3267)

FOR $\lambda = 1$ (A SQUARE PLATE) THE DRAG COEFFICIENT IS ALMOST THE SAME AS FOR A CIRCULAR PLATE OF THE SAME AREA.

FROM THE CURVES ABOVE (FOR $\lambda = 1$), AT $\alpha = 80^\circ$:

$$C_D = .10$$

$$C_L = .40$$

$$C_{CP} = .26$$

(a) AT 23,000-FT ALTITUDE

$$F_D = C_D A \rho_\infty$$

$$= (.10)(1.724)(434) = 74.8 - \text{LB.}$$

$$F_L = C_L A \rho_\infty$$

$$= (.40)(1.724)(434) = 299.3 - \text{LB.}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET
		A-4

$$\bar{x} = C_{cD} D = (.26)(17.78) = 1.62 - \text{IN. FROM TOP OF DISC}$$

(b) AT SEA LEVEL

$$F_D = (.10)(1.724)(490) = 84.5 - \text{LB.}$$

$$F_c = (.40)(1.724)(490) = 338.0 - \text{LB.}$$

A.2.2 - BAYONET

REFERENCE: DORNE & MARGOLIN ENGR. REPORT NO.
7051.15, "DM C34-3 ANTENNA
AERODYNAMIC ANALYSIS".

$$A_{REF} = 1.237 - \text{FT}^2.$$

(a) AT 23,000-FT ALTITUDE

$$C_D = .06683$$

$$F_D = (.06683)(1.237)(490) = 35.9 - \text{LB}$$

(b) AT SEA LEVEL

$$C_D \approx \frac{1}{2} (.00983 + .01133) = .01058$$

$$F_D = (.01058)(1.237)(490) = 6.7 - \text{LB.}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET A-5

A.2.3 - TOTAL ANTENNA

REFERENCE: DORNE & MARCOLIN DRAWING
261D1195, "DM C34-3/8 UHF
ANTENNA".

$$Y_{SAUCER} \approx 10.48\text{-IN.}$$

$$Y_{BATONET} \approx 4.86\text{-IN.}$$

AT 23,000- FT ALTITUDE

$$F_D = 74.8 + 35.9 = 110.7\text{-LB}$$

$$F_L = 299.3\text{-LB}$$

$$\begin{aligned} M &= (74.8)(10.48) + (35.9)(4.86) + (299.3)(4.27) \\ &= 2,236\text{ IN-LB.} \end{aligned}$$

AT SEA LEVEL

$$F_D = 84.5 + 6.4 = 90.9\text{-LB.}$$

$$F_L = 338.0\text{-LB}$$

$$\begin{aligned} M &= (84.5)(10.48) + (6.4)(4.86) + (338.0)(4.27) \\ &= 2,350\text{ IN-LB.} \end{aligned}$$

SIZE	CODE IDENT	DWG NO.
A	13499	649-2924-001
SCALE	REV	SHEET A-6

APPENDIX B

LISTING OF COMPUTER RESULTS

SIZE A	CODE IDENT 13499	DWG NO. 649-2924-001
SCALE	REV	SHEET B-1

74-8670-140

RESULTS OF LATENT ANALYSIS

RESULTS OF LATEST ANALYSIS

ACTIVE UNITS INCHES KIPS DEGREES
ACTIVE STRUCTURE TYPE SPACE FRAME
ACTIVE COORDINATE AXES X Y Z

LOADING • UKAG

MENT	CENTROID	SXX	*648678-03	SYY	*.111959-02	SKY	*.410852-01
	VXX	MXX	*.355519-02	VYY	*.279333-02	MXY	*.160105-05
NUDE	101		*.251569-02	MYY	*.4247899-02	MXY	*.342179-03
TNUDE	172		*.502916-02	MYY	*.520926-02	MXY	*.171190-03
NUUUE	164		*.157431-02	MYY	*.792244-03	MXY	
	SXX	VXX	*100470-01	SYY	*.137625-02	SKY	*.278003-02
	MXX	MXX	.298524-01	VYY	*.450746-03	MXY	
NUDE	172		*.109900-01	MYY	*.110009-01	MXY	*.107211-02
NUDE	101		*.112935-02	MYY	*.117670-02	MXY	*.331167-04
NUUUE	102		*.6794240-02	MYY	*.361193-02	MXY	*.951104-03
	SXX	VXX	*.658124-02	SYY	*.561796-02	SKY	*.992172-01
	MXX	MXX	*.2094461-01	VYY	*.140133-02	MXY	
NUDE	102		*.816445-02	MYY	*.786159-02	MXY	*.107311-02
NUUUE	103		*.663524-03	MYY	*.683279-03	MXY	*.263350-03
NUUUE	172		*.795865-02	MYY	*.556481-02	MXY	*.678226-03

B-2

UNIVAC 1100 SERIES ICDS

DATE 062200

PAGE 80

NUDE 141 SXX -.2622143-02 MYY -.145344-02 MXY .116711-02

CENTROID SXX VXX -.333396-02 VYY .962546-02 SKY .150166-02

NUDE 104 VXX -.507564-03 VYY .112335-01 MYY -.226179-02 MXY .390123-03

NUDE 105 VXX -.199912-02 VYY -.515355-02 MXY .329359-03

NUDE 173 VXX .494676-02 MYY .575291-02 MXY .537299-03

NUDE 105 VXX .422356-02 MYY

NUDE 105 SXX -.207358-02 VYY .405322-02 SKY .205409-01

VXX .898439-02 VYY .777038-02 MYY .286862-02 MXY .115087-03

NUDE 106 VXX .302173-02 MYY .622729-02 MXY .329359-03

NUDE 173 VXX .618560-02 MYY .516126-02 MXY .107156-03

NUDE 105 VXX .391769-02 MYY

CENTROID SXX VXX -.235114-01 VYY -.216898-01 SKY .795759-02

NUDE 173 VXX -.142867-01 VYY .114722-02 MYY .786307-02 MXY .155356-03

NUDE 106 VXX .791766-02 MYY .197955-03

NUDE 142 VXX .232170-02 MYY .168531-02 MXY .212210-03

NUDE 107 SXX .140964-02 VYY .915153-02 SKY .113456-01

VXX .115734-01 VYY .469555-02 MYY .234410-02 MXY .28135-03

NUDE 174 SXX .364255-02 MYY .805237-02 MXY .922025-04

NUDE 143 SXX .950385-02 MYY .367641-02 MXY .19169-03

NUDE 107 SXX .937787-02 VYY .106086-01 SKY .150084-01

VXX .379003-03 VYY .530170-02 MYY .25974-02 MXY .641007-04

NUDE 106 SXX .137436-02 MYY .250396-02 MXY .641007-04

NUDE 174 SXX .114905-02 MYY .358913-02 MXY .603769-04

CENTROID SXX VXX .112607-01 VYY .242689-01 SKY .106843-01

NUDE 174 VXX .135156-01 VYY .789410-03 MYY .150176-03

NUDE 108 VXX .930523-02 MYY .79536-02 MXY .52775-03

NUDE 144 VXX .235515-02 MYY .994012-03 MXY .286868-03

NUDE 109 VXX .446895-02 MYY .216436-02 MXY .219531-03

CENTROID SXX VXX .168672-01 VYY .115410-01 SKY .961422-02

NUDE 109 VXX .165364-01 VYY .644632-02 MYY .341465-03

NUDE 110 VXX .445215-02 MYY .396172-02 MXY .117263-03

NUDE 175 VXX .261355-02 MYY .914066-02 MXY .52775-03

NUDE 175 VXX .107404-02 MYY .515767-02 MXY .434610-03

CENTROID SXX VXX .143574-01 VYY .934165-03 SKY .726370-02

NUDE 109 VXX .17541-04 VYY .605601-02 MYY .197021-02 MXY .491359-02

NUDE 110 VXX .143867-02 MYY .914066-02 MXY .641007-04

NUDE 175 VXX .63462-02 MYY .455244-02 MXY .219531-03

NUDE 175 VXX .11242-02 MYY .455244-02 MXY .533363-03

UNIVAC 1100 SERIES ICES

DATE 082280

PAGE 32

22	CEN1010	SXX VXX	*104707-01 .162616-02	STY VYY	*467637-02 *501604-02	STY	*429826-02
	NUDE 119	MXX	*17375-02	MTY	*02625-02	MTY	*436209-03
	NUDE 119	MXX	*256461-02	MTY	*253707-02	MTY	*436289-03
	NUDE 106	MXX	.373144-02	MTY	.371474-02	MTY	*351043-03
165	CEN1010	SXX VXX	*246665-02 .844529-02	STY VYY	*590285-02 *180086-01	STY	*555076-02
	NUDE 166	MXX	*371656-02	MTY	*46405-02	MTY	*167512-03
	NUDE 115	MXX	*184491-02	MTY	*54870-02	MTY	*019756-03
	NUDE 176	MXX	*656327-02	MTY	*075512-02	MTY	*493649-03
23	CEN1010	SXX VXX	*318291-01 .638883-02	STY VYY	*541475-02 *938648-02	STY	*219263-01
	NUDE 115	MXX	*479914-02	MTY	*510169-02	MTY	*019786-03
	NUDE 116	MXX	.311515-02	MTY	.275307-02	MTY	*215048-04
	NUDE 176	MXX	*599376-02	MTY	*871977-02	MTY	*111178-02
24	CEN1010	SXX VXX	*202608-01 .106226-01	STY VYY	*466680-01 *308518-01	STY	*172566-01
	NUDE 116	MAX	*272839-02	MTY	*202323-02	MTY	*244875-03
	NUDE 120	MXX	*915507-02	MTY	*948321-02	MTY	*112732-02
	NUDE 176	MXX	*519202-02	MTY	*661161-02	MTY	*227910-02
25	CEN1010	SXX VXX	*219299-01 .252263-02	STY VYY	*581385-01 *163265-02	STY	*234945-01
	NUDE 116	MXX	*142673-02	MTY	*132809-02	MTY	*346414-03
	NUDE 151	MXX	*233264-02	MTY	*172416-02	MTY	*208410-03
	NUDE 117	MXX	*583629-03	MTY	*744553-03	MTY	*255310-03
26	CEN1010	SXX VXX	*103718-01 .78536-04	STY VYY	*832647-02 *247116-05	STY	*279352-02
	NUDE 119	MXX	*680703-05	MTY	*224213-03	MTY	*994572-04
	NUDE 151	MXX	*282165-05	MTY	*153006-05	MTY	*255311-03
	NUDE 116	MXX	*509495-05	MTY	*019557-04	MTY	*177010-03
27	CEN1010	SXX VXX	*126325-01 .176105-03	STY VYY	*765570-02 *276330-05	STY	*333177-02
	NUDE 163	MXX	*335469-03	MTY	*176250-03	MTY	*279011-03
	NUDE 119	MXX	*176046-03	MTY	*246226-03	MTY	*129186-03
	NUDE 138	MXX	*545494-03	MTY	*771068-04	MTY	*205091-03
28	CEN1010	SXX VXX	*102295-01 .116038-02	STY VYY	*956138-01 *865269-03	STY	*155345-01
	NUDE 163	MXX	*38076-02	MTY	*40365-02	MTY	*020893-03
	NUDE 138	MXX	*60590-03	MTY	*67501-03	MTY	*34442-03
	NUDE 137	MXX	*468109-03	MTY	*537241-03	MTY	*156013-03

PAGE	DATE 082200	UNIVAC 1100 SERIES ICES										PAGE	83
		CENTROID	SXX	SYY	SXY	STY	MYY	MXX	MXY	MYY	MXX		
29	NUDE 162	VXX	*.220058-01	VYY	*.421730-01	SYY	*.398200-01	MYY	*.108655-01	MXX	*.126327-03		
	NUDE 136		*.131622-01				*.392659-02	MYY			*.04593-03		
	NUDE 185		*.109866-02				*.492659-02	MYY			*.109473-02		
30	CEN1010	SXX	*.6666325-02	SYY	*.312667-01	SXY	*.173395-01	MYY	*.179812-02	MXX	*.213366-03		
	NUDE 136	VXX	.6666361-02	VYY	.179812-02	MYY	.386176-02	MXX			*.38814-03		
	NUDE 135		.161146				.386176-02	MXX			*.119420-03		
	NUDE 185		*.477449-02				*.984743-02	MXX					
31	CEN1010	SXX	*.192266-01	SYY	*.398758-02	SXY	*.271303-02	MYY	*.104123-03	MXX	*.619522-02		
	NUDE 136	VXX	.209155-02	VYY	.271303-02	MYY	.269525-02	MXX			*.47624-03		
	NUDE 167		*.303195-03				*.393137-04	MXX			*.156452-03		
	NUDE 135		*.507215-02								*.138754-03		
32	CEN1010	SXX	*.152799-01	SYY	*.0553862-02	SXY	*.192722-02	MYY	*.478166-02	MXX	*.119158-03		
	NUDE 167	VXX	.632165-02	VYY	.192722-02	MYY	.197144-03	MXX			*.62564-04		
	NUDE 134		*.520579-02								*.911980-03		
	NUDE 161		*.806244-02										
33	CEN1010	SXX	*.1556890-02	SYY	*.107649-01	SXY	*.1710399-02	MYY	*.152487-02	MXX	*.953072-02		
	NUDE 167	VXX	*.199501-01	VYY	.107649-01	SYY	.100633-02	MYY	.146259-02	MXX	*.561461-03		
	NUDE 165		*.274262-03				*.220308-02	MYY	.166631-02	MXX	*.561101-03		
	NUDE 135		*.806244-02				*.22237-02	MYY	*.207025-02	MXX	*.322153-03		
34	CEN1010	SXX	*.097571-02	SYY	*.193703-01	SXY	*.125395-02	MYY	*.109026-02	MXX	*.0339825-02		
	NUDE 133	VXX	*.1200885-01	VYY	.193703-01	SYY	.100633-02	MYY	.146259-02	MXX	*.333686-03		
	NUDE 164		*.239739-02				*.266631-02	MYY	.166631-02	MXX	*.339116-03		
	NUDE 160		*.630983-02				*.207025-02	MYY					
35	CEN1010	SXX	*.354154-02	SYY	*.774595-02	SXY	*.306657-02	MYY	*.109026-02	MXX	*.213397-03		
	NUDE 133	VXX	*.179585-03	VYY	.774595-02	SYY	.109026-02	MYY			*.213397-03		
	NUDE 132		*.215007-03								*.573156-04		
	NUDE 184		*.008651-02										
36	CEN1010	SXX	*.232049-01	SYY	*.689478-02	SXY	*.4936951-02	MYY	*.588904-02	MXX	*.0317603-02		
	NUDE 184	VXX	*.936951-02	VYY	.689478-02	MYY	.588904-02	MXX			*.109150-03		
	NUDE 132		*.320855-02				*.193107-02	MYY	*.115082-02	MXX	*.165182-04		
	NUDE 159		*.359606-02				*.212483-02	MYY			*.630195-04		

UNIVAC 1100 SERIES ICES

PAGE 34

DATE 082280

</

UNIVAC 1100 SERIES ICES3

DATE 062200 PAGE 36

53	NUOC 101 NUOC 164	SXX VXX	"-935551-02 "-157194-02 VYY	STY MYY MYY	"-249161-02 "-736750-03 SKY	MYY MYY MYY	"-160212-05 "-169211-03
	NUOC 172 NUOC 165 NUOC 164	SXX VXX	"-201946-02 "-146276-02 "-954211-03 VYY	STY MYY MYY	"-287506-02 "-950084-03 "-577987-03 SKY	MYY MYY MYY	"-362379-05 "-246612-05 "-163916-03
54	CENR010 NUOC 165 NUOC 172 NUOC 140	SXX VXX	"-133572-01 "-296666-01 "-136908-02 "-4308921-02 VYY	STY MYY MYY MYY	"-451977-06 "-115120-01 "-221614-02 "-3639397-02 SKY	MYY MYY MYY MYY	"-251916-02 "-3193n7-03 "-100611-02 "-130610-02
55	CENR010 NUOC 141 NUOC 165 NUOC 140	SXX VXX	"-355075-01 "-366832-03 "-116636-02 "-411299-03 "-287542-02 VYY	STY MYY MYY MYY MYY	"-217506-01 "-207952-02 "-966662-04 "-351927-03 "-208796-02 SKY	MYY MYY MYY MYY MYY	"-802709-02 "-719146-03 "-605622-03 "-331126-03
56	CENR010 NUOC 173 NUOC 165 NUOC 141	SXX VXX	"-111646-01 "-186829-01 "-613748-02 "-206611-02 "-535076-02 VYY	STY MYY MYY MYY MYY	"-536605-02 "-929416-02 "-859277-02 "-116237-02 "-235935-02 SKY	MYY MYY MYY MYY MYY	"-461737-02 "-361370-05 "-341370-05 "-705885-03
57	CENR010 NUOC 142 NUOC 165 NUOC 173	SXX VAX	"-165926-01 "-415120-02 "-304431-03 "-642314-02 VYY	STY MYY MYY MYY	"-791912-02 "-127139-01 "-443654-02 "-532103-03 "-343939-02 SKY	MYY MYY MYY MYY	"-186976-02 "-155336-03 "-34366-05 "-153612-04
58	CENR010 NUOC 144 NUOC 165 NUOC 142	SXX VAX	"-277925-01 "-370444-02 "-456472-02 "-262601-02 "-561797-03 VYY	STY MYY MYY MYY MYY	"-116475-01 "-292643-03 "-395550-02 "-148688-02 "-102230-04 SKY	MYY MYY MYY MYY MYY	"-296576-03 "-144446-04 "-562207-03 "-220302-03
59	CENR010 NUOC 165 NUOC 143 NUOC 166	SXX VAX	"-126376-01 "-356812-02 "-534227-03 "-406643-03 "-532995-03 VYY	STY MYY MYY MYY MYY	"-479832-02 "-106716-06 "-505593-04 "-103503-03 "-472343-03 SKY	MYY MYY MYY MYY MYY	"-401400-02 "-196396-04 "-56505-03 "-993360-04
60	CENR010 NUOC 166 NUOC 143	SAX VAX	"-120056-02 "-15681-01 "-432676-03 "-672355-02 VYY	STY MYY MYY MYY	"-724546-03 "-756277-02 "-229485-03 "-703445-02 SKY	MYY MYY MYY MYY	"-333765-02 "-516747-04 "-22074-04

UNIVAC 1100 SERIES ICCS

DATE 082280

PAGE C 87

NODE 174

MAX

.777973-02

MYY

.356200-02

MXY

.201627-04

CENTROID

SXX

.442977-02

STY

.356926-02

SKY

.2246110-02

VXX

.175416-01

VYY

.104400-01

MYY

.667490-02

MXY

.150176-03

MAX

.604646-02

MYY

.10536-03

MXY

.518167-04

MXX

.795262-03

MYY

.350086-02

MXY

MXX

.781404-02

MYY

.101027-03

MXX

.373603-03

MYY

.391056-03

MXY

MXX

.9966386-03

SYY

.013249-04

SKY

.158137-02

MAX

.122504-03

MYY

.111323-03

MXY

MAX

.269426-04

MYY

.590012-03

MXY

MAX

.373603-03

MYY

.292219-04

MAX

.391056-03

MYY

.186102-03

MAX

.316957-02

MYY

.733661-03

MAX

.219770-02

SKY

.106741-02

MAX

.162607-02

MYY

.961675-03

MAX

.116074-04

MYY

.330297-04

MAX

.316957-02

MYY

.733661-03

MAX

.352661-02

SKY

.174295-02

MAX

.117762-02

MYY

.522753-03

MAX

.775102-02

MYY

.456947-03

MAX

.493568-02

MYY

.456666-02

SKY

.174295-02

MAX

.891843-14

MYY

.537549-02

MAX

.133391-02

MYY

.891843-14

MAX

.322048-03

MYY

.131657-03

MAX

.327896-04

MAX

.661024-03

MYY

.663236-05

MAX

.235012-01

STY

.056200-02

SKY

CENTROID

SXX

.202071-01

VYY

.124935-01

MAX

.726640-03

MYY

.117762-02

MXY

MAX

.771625-02

MYY

.775102-02

MXY

MAX

.1344342-02

MYY

.493568-02

MAX

.2360666-02

SKY

.046478-02

STY

.056200-02

SKY

CENTROID

SXX

.059085-02

VYY

.891843-14

MAX

.5321317-02

MYY

.122752-02

MXY

MAX

.120024-02

MYY

.122752-02

MXY

MAX

.577253-02

MYY

.322048-02

MXY

MAX

.3606666-02

SKY

.275708-01

STY

.3539722-02

SKY

CENTROID

SXX

.102723-02

VYY

.472953-04

MAX

.122756-02

MYY

.122752-02

MXY

MAX

.244244-03

MYY

.344545-03

MXY

MAX

.6179097-03

MYY

.322048-03

MXY

MAX

.275708-01

STY

.3539722-02

SKY

CENTROID

SXX

.156609-02

VYY

.991819-04

MAX

.145117-03

MYY

.122752-02

MXY

MAX

.151037-02

MYY

.150006-02

MXY

MAX

.148692-02

MYY

.661024-03

MXY

MAX

.255793-01

STY

.2687059-02

SKY

CENTROID

SXX

.426125-02

VYY

.431617-03

MAX

.644147-03

MYY

.57268-03

MXY

MAX

.44226-02

MYY

.413567-02

MXY

MAX

.444606-02

MYY

.244663-02

MYY

.433071-03

MAX

.106329-03

MYY

.265920-04

MYY

.272800-03

MAX

UNIVAC 1100 SERIES ICES

DATE 082200 PAGE 36

69	CENIR010	SIX	.196070-01	SIV	.165216-02	SIV	-.731330-02
	NUDE 146	VIX	-.214995-01	VIV	.195034-01		
	NUDE 166	MIX	-.556250-02	MIV	-.53497-02	MIV	-.52816-03
	NUDE 168	MIX	-.101876-03	MIV	-.261061-03	MIV	-.43071-03
	NUDE 176	MIX	.617370-02	MIV	.300703-02	MIV	-.48044-03
70	CENIR010	SIX	-.137239-02	SIV	.288101-03	SIV	-.635117-03
	NUDE 147	VIX	.236687-04	VIV	-.669356-03		
	NUDE 166	MIX	-.135139-02	MIV	-.655900-03	MIV	-.290039-03
	NUDE 168	MIX	-.227114-02	MIV	-.946812-03	MIV	-.82416-03
	NUDE 176	MIX	-.296166-02	MIV	-.135415-02	MIV	-.646160-03
71	CENIR010	SIX	.136925-01	SIV	.300961-02	SIV	.149952-02
	NUDE 147	VIX	.166567-03	VIV	.117016-03		
	NUDE 166	MIX	.170442-03	MIV	.255958-03	MIV	.57750-03
	NUDE 168	MIX	-.214943-03	MIV	.103624-03	MIV	.612911-04
	NUDE 176	MIX	-.515212-03	MIV	.103168-02	MIV	.567167-04
72	CENIR010	SIX	.269937-01	SIV	.622039-02	SIV	.169822-02
	NUDE 147	VIX	.111062-01	VIV	.637202-02		
	NUDE 166	MIX	.833563-03	MIV	.701955-03	MIV	.10142-03
	NUDE 168	MIX	-.4963541-02	MIV	.480057-02	MIV	.122646-03
	NUDE 176	MIX	.531649-02	MIV	.240560-02	MIV	.116394-03
73	CENIR010	SIX	.164411-01	SIV	.210004-02	SIV	.572305-02
	NUDE 147	VIX	-.139869-01	VIV	.944573-02		
	NUDE 166	MIX	.398987-02	MIV	.367503-02	MIV	.279420-03
	NUDE 168	MIX	-.19569-02	MIV	.770556-03	MIV	.101442-03
	NUDE 176	MIX	-.562233-02	MIV	.290010-02	MIV	.192021-03
74	CENIR010	SIX	.122265-01	SIV	.495634-02	SIV	-.705562-03
	NUDE 147	VIX	-.310168-03	VIV	.6679515-04		
	NUDE 166	MIX	.503012-03	MIV	.74532-03	MIV	.26419-03
	NUDE 168	MIX	-.350174-03	MIV	.13474-02	MIV	.17588-04
	NUDE 176	MIX	.9724195-03	MIV	.120539-02	MIV	.107792-03
75	CENIR010	SIX	.522932-03	SIV	.181505-02	SIV	.516208-04
	NUDE 147	VIX	-.972445-03	VIV	.444357-03		
	NUDE 166	MIX	-.130157-02	MIV	.11737-03	MIV	.263571-03
	NUDE 168	MIX	-.120846-02	MIV	.903574-03	MIV	.203661-03
	NUDE 176	MIX	-.180411-02	MIV	.460015-03	MIV	.286551-04
167	CENIR010	SIX	.168117-01	SIV	.764146-02	SIV	.136701-02
	NUDE 147	VIX	.113653-01	VIV	.746052-02		
	NUDE 166	MIX	.563557-02	MIV	.633333-02	MIV	.153611-03
	NUDE 170	MIX	.618025-03	MIV	.753510-03	MIV	.263571-03
	NUDE 176	MIX	-.241232-02	MIV	.910478-03	MIV	.203361-03

UNIVAC 1108 SERVICES ICES

DATE 082260	PAGE 44						
64	CENTROID	SIX	*.9366079-02	SIX	*.186946-01	SIX	*.5864543-02
	NUDE 170	VAX	*.768169-02	VIT	*.152172-01		
	NUDE 162	MXX	*.745471-03	MYY	*.216449-02	MXY	*.215702-03
	NUDE 185	MXX	*.891064-02	MYY	*.107082-01	MXY	*.282293-03
		MXX	*.594461-02	MYY	*.512034-02	MXY	*.270714-02
65	CENTROID	SIX	*.136375-02	SIX	*.190639-02	SIX	*.664675-02
	NUDE 170	VAX	*.582264-02	VIT	*.104184-02		
	NUDE 169	MXX	*.17849-02	MYY	*.39267-03	MXY	*.334426-03
	NUDE 187	MXX	*.794663-02	MYY	*.656466-02	MXY	*.561161-03
		MXX	*.441305-02	MYY	*.347066-02	MXY	*.915027-04
66	CENTROID	SIX	*.205872-01	SIX	*.754377-02	SIX	*.783382-03
	NUDE 170	VAX	*.971197-02	VIT	*.647912-02		
	NUDE 167	MXX	*.143203-02	MYY	*.117986-02	MXY	*.139405-03
	NUDE 161	MXX	*.375530-02	MYY	*.644465-02	MXY	*.19438-03
		MXX	*.143330-02	MYY	*.882290-03	MXY	*.100834-04
67	CENTROID	SIX	*.126266-02	SIX	*.116007-02	SIX	*.107970-02
	NUDE 160	VAX	*.121212-02	VIT	*.59521-03		
	NUDE 170	MXX	*.189107-02	MYY	*.145444-02	MXY	*.170211-03
	NUDE 161	MXX	*.3M2959-03	MYY	*.547337-03	MXY	*.139105-03
		MXX	*.362204-03	MYY	*.509399-04	MXY	*.15434-04
68	CENTROID	SIX	*.123570-01	SIX	*.450636-02	SIX	*.216653-02
	NUDE 170	VAX	*.320662-03	VIT	*.7893971-09		
	NUDE 160	MXX	*.379176-03	MYY	*.920365-02	MXY	*.175886-04
	NUDE 169	MXX	*.433550-03	MYY	*.662445-03	MXY	*.262315-03
		MXX	*.9M2106-03	MYY	*.126398-02	MXY	*.94221-04
69	CENTROID	SIX	*.159852-01	SIX	*.187070-02	SIX	*.682630-02
	NUDE 169	VAX	*.157789-01	VIT	*.920365-02		
	NUDE 160	MXX	*.110421-02	MYY	*.820124-03	MXY	*.104209-03
	NUDE 184	MXX	*.383535-02	MYY	*.347026-02	MXY	*.309018-03
		MXX	*.555127-02	MYY	*.287771-02	MXY	*.206613-03
70	CENTROID	SIX	*.273339-01	SIX	*.561537-02	SIX	*.122933-02
	NUDE 159	VAX	*.16333-01	VIT	*.625111-02		
	NUDE 169	MXX	*.464526-02	MYY	*.481150-02	MXY	*.109630-03
	NUDE 184	MXX	*.907762-03	MYY	*.75524-03	MXY	*.104209-03
		MXX	*.522898-02	MYY	*.227665-02	MXY	*.106520-03
71	CENTROID	SIX	*.139324-01	SIX	*.373607-02	SIX	*.295670-04
	NUDE 159	VAX	*.178966-03	VIT	*.137840-03		
	NUDE 160	MXX	*.292117-03	MYY	*.108893-04	MXY	*.615969-04
	NUDE 169	MXX	*.146619-03	MYY	*.486552-03	MXY	*.57450-05
		MXX	*.315336-03	MYY	*.105705-02	MXY	*.704176-04

UNIVAC 1100 SERIES ICES

DATE 082280 PAGE 41

NUDE 160	VXX	.183103-02	VYY	.549661-03
NUDE 159	MXX	.211475-02	MTY	.782060-03
NUDE 158	MXX	.152790-02	MTY	.260600-03
	MXX	.268066-02	MTY	.393103-03

CENTROID	SXX	.136269-01	STY	.113719-02
NUDE 160	VXX	.191955-01	VYY	.177955-01
NUDE 159	MXX	.131424-04	MTY	.576562-03
NUDE 163	MXX	.513526-02	MTY	.55950-02
	MXX	.548017-02	MTY	.251768-02

CENTROID	SXX	.170765-01	STY	.228209-02
NUDE 159	VXX	.396039-02	VYY	.567366-04
NUDE 168	MXX	.409655-02	MTY	.361567-02
NUDE 163	MXX	.731766-03	MTY	.613701-03
	MXX	.420690-02	MTY	.243114-02

CENTROID	SXX	.453793-02	STY	.283573-02
NUDE 159	VXX	.663422-03	VYY	.576149-03
NUDE 160	MXX	.180770-02	MTY	.147359-02
NUDE 159	MXX	.74717-03	MTY	.911753-03
	MXX	.105167-02	MTY	.559381-03

CENTROID	SXX	.4658669-02	STY	.225125-02
NUDE 159	VXX	.056555-02	VYY	.163206-03
NUDE 167	MXX	.616160-05	MTY	.609747-03
NUDE 121	MXX	.127135-02	MTY	.649561-02
	MXX	.104110-02	MTY	.556342-03

CENTROID	SXX	.576206-02	STY	.356326-02
NUDE 167	VXX	.701053-02	VYY	.520324-03
NUDE 159	MXX	.19246-03	MTY	.035327-02
NUDE 162	MXX	.689463-02	MTY	.661115-02
	MXX	.699036-02	MTY	.355709-02

CENTROID	SXX	.253371-01	STY	.100430-01
NUDE 157	VXX	.233446-01	VYY	.140071-01
NUDE 167	MXX	.533966-02	MTY	.85327-02
NUDE 162	MXX	.626235-03	MTY	.987670-03
	MXX	.862630-02	MTY	.403638-02

CENTROID	SXX	.2225476-01	STY	.120650-02
NUDE 156	VXX	.699966-02	VYY	.957649-03
NUDE 167	MXX	.627507-03	MTY	.191183-04
NUDE 157	MXX	.99639-02	MTY	.662449-02
	MXX	.589741-02	MTY	.3536921-02

CENTROID	SXX	.0661934-02	STY	.167110-02
NUDE 159	VXX	.149135-03	VYY	.134145-03

B-14

UNIVAC 1100 SERIES ICES									
100	NUDE 167	MAX	-4649937-04	MTY	-657258-03	MTY	-6292219-04		
	NUDE 156	MAX	-612229-03	MTY	-116541-03	MTY	-463358-03		
	NUDE 166	MAX	+298948-03	MTY	+239680-03	MTY	+1508943-03		
101	CENIROID	SXX	-6229582-02	SYY	-525100-02	SXY	.312111-02		
	NUDE 166	MAX	-1394061-01	VYY	-121634-01	MTY	-342309-03		
	NUDE 156	MAX	-168142-02	MTY	-164721-02	MTY	-222165-03		
	NUDE 181	MAX	-896800-02	MTY	-102625-01	MTY	-590618-04		
102	CENIROID	SXX	-009900-03	SYY	-563803-03	SXY	-169329-02		
	NUDE 155	MAX	-4649406-03	MTY	-934480-03	MTY	-327849-04		
	NUDE 166	MAX	+80278-03	MTY	-164920-03	MTY	-14364-03		
	NUDE 156	MAX	+274470-02	MTY	+104922-02	MTY	-546515-04		
103	CENIROID	SXX	-1266036-01	SYY	-493786-02	SXY	-496445-02		
	NUDE 155	MAX	355779-04	VYY	-278374-04	MTY	-267506-03		
	NUDE 165	MAX	-469320-03	MTY	-264040-03	MTY	-166998-04		
	NUDE 166	MAX	-628596-03	MTY	-450050-03	MTY	-453699-04		
104	CENIROID	SXX	-278993-01	SYY	-113547-01	SXY	-469866-03		
	NUDE 165	MAX	-223298-02	VYY	-126554-04	MTY	-126469-04		
	NUDE 155	MAX	-239545-02	MTY	-153777-02	MTY	-153625-04		
	NUDE 154	MAX	-31817-02	MTY	-303949-02	MTY	-197868-03		
105	CENIROID	SXX	-191376-01	SYY	-784764-02	SXY	-210033-02		
	NUDE 165	MAX	-163067-01	VYY	-127231-01	MTY	-124468-04		
	NUDE 154	MAX	-263155-03	MTY	-595959-03	MTY	-113440-03		
	NUDE 160	MAX	-449023-02	MTY	-453357-02	MTY	-515766-04		
	NUDE 154	MAX	-640610-02	MTY	-340705-02	MTY	-720142-03		
106	CENIROID	SXX	-110209-01	SYY	-516915-02	SXY	-453243-02		
	NUDE 165	MAX	118296-01	VYY	930105-02	MTY	-709762-01		
	NUDE 160	MAX	-207277-02	MTY	-107772-02	MTY	-122468-04		
	NUDE 155	MAX	-113146-02	MTY	-8512-02	MTY	-124468-04		
107	CENIROID	SXX	-330868-01	SYY	-213001-01	SXY	-709762-01		
	NUDE 165	MAX	314808-03	VYY	-207754-02	MTY	-6047-03		
	NUDE 155	MAX	-44018-03	MTY	-891977-03	MTY	-73374-03		
	NUDE 152	MAX	-119937-02	MTY	-203081-02	MTY	-34153-03		
	NUDE 174	MAX	-294440-02	MTY	-		-		

UNIVAC 1100 SERIES ICES										DATE 082280		PAGE - 43	
NUUC 163		MAX	-	.195391-02	MYY	-	.210087-02		MXY	-	.319795-03		
NUOC 152		MAX	-	.430363-02	MYY	-	.369813-02		MXY	-	.210906-02		
108	CENTROID	SXX	-	.554221-02	STY	-	.435476-02	SKY	-	.450712-02			
		VXX	-	.157052-02	VYY	-	.284787-02		MXY	-	.210678-05		
		MAX	-	.148611-02	MYY	-	.204522-03		MXY	-	.310175-03		
		MAX	-	.203039-02	MYY	-	.284453-02		MXY	-	.112931-03		
		MAX	-	.962022-03	MYY	-	.573402-03		MXY	-			
109	CENTROID	SXX	-	.113363-02	STY	-	.331917-02	SKY	-	.158606-02			
		VXX	-	.255035-02	VYY	-	.677070-04		MXY	-	.819230-05		
		MAX	-	.656867-03	MYY	-	.224895-03		MXY	-			
		MAX	-	.752230-03	MYY	-	.134761-02		MXY	-	.16506-03		
		MAX	-	.502235-03	MYT	-	.207775-02		MXY	-	.774791-04		
110	CENTROID	SAX	-	.697931-02	STY	-	.510461-02	SKY	-	.190214-02			
		VXX	-	.746606-03	VYY	-	.182102-03		MXY	-	.475418-03		
		MAX	-	.413585-04	MYY	-	.405067-02		MXY	-	.422328-04		
		MAX	-	.294477-02	MYV	-	.375053-02		MXY	-	.245020-03		
		MAX	-	.164010-02	MYT	-	.104613-02		MXY	-			
111	CENTROID	SXX	-	.778176-02	STY	-	.536942-02	SKY	-	.6337275-02			
		VXX	-	.470065-02	VYY	-	.166530-02		MXY	-			
		MAX	-	.179055-02	MYV	-	.56853-03		MXY	-			
		MAX	-	.150125-02	MYY	-	.164405-02		MXY	-	.47418-03		
		MAX	-	.356672-02	MYT	-	.165284-02		MXY	-	.614274-03		
112	CENTROID	SXX	-	.606630-02	STY	-	.186438-01	SKY	-	.266605-01			
		VXX	-	.553350-04	VYY	-	.768434-04		MXY	-			
		MAX	-	.122009-03	MYV	-	.765901-03		MXY	-	.697187-03		
		MAX	-	.380391-03	MYY	-	.253561-03		MXY	-	.690842-03		
		MAX	-	.152312-03	MYT	-	.104003-02		MXY	-	.69014-03		
113	CENTROID	SXX	-	.103514-01	STY	-	.167618-01	SKY	-	.163196-01			
		VXX	-	.180620-03	VYY	-	.724604-04		MXY	-			
		MAX	-	.504111-03	MYV	-	.68904-03		MXY	-	.538790-03		
		MAX	-	.328616-03	MYY	-	.191569-02		MXY	-	.736596-03		
		MAX	-	.143492-03	MYT	-	.122332-02		MXY	-	.631693-03		
114	CENTROID	SXX	-	.166327-01	STY	-	.281176-02	SKY	-	.715319-02			
		VXX	-	.169404-02	VYY	-	.101066-02		MXY	-			
		MAX	-	.210496-02	MYV	-	.450847-02		MXY	-			
		MAX	-	.461666-03	MYY	-	.591653-03		MXY	-	.61046-03		
		MAX	-	.143492-02	MYT	-	.122332-02		MXY	-	.561866-03		
115	CENTROID	SXX	-	.219982-01	STY	-	.104116-02	SKY	-	.190401-01			
		VXX	-	.341651-02	VYY	-	.450847-02		MXY	-			
		MAX	-	.100100-02	MYV	-	.290552-02		MXY	-			
		MAX	-	.179625-02	MYY	-	.591653-03		MXY	-	.601662-03		
		MAX	-	.143492-02	MYT	-	.122332-02		MXY	-	.561866-03		

UNIVAC 1100 SERIES ICITS

DATE 082226U PAGE 45

124 CENIROID SXX .637959-01 STY .261551-01 SKY .960201-02
 VXX .736092-03 VTY .602337-04 MXY .357365-03
 MXM .542951-04 MYY .418177-04 MXY .357365-03
 MXM .714944-03 MYY .706324-03 MXY .254444-03
 MXM .55210-03 MYY .176668-03 MXY .262857-03

125 CENIROID SXX .111170-01 STY .683485-02 SKY .333503-01
 VXX .592696-03 VTY .160759-02 MXY .625279-04
 MXM .250288-03 MYY .365984-03 MXY .435289-04
 MXM .424537-03 MYY .357576-03 MXY .435289-04
 MXM .124432-02 MYY .127294-02 MXY .259452-03

126 CENIROID SXX .291632-01 STY .155207-01 SKY .196227-01
 VXX .195343-02 VTY .446026-02 MXY .055568-05
 MXM .256839-02 MYY .312204-02 MXY .733568-04
 MXM .675049-03 MYY .416221-04 MXY .137210-03
 MXM .157577-03 MYY .2534628-03 MXY .137210-03

127 CENIROID SXX .226039-01 STY .133496-01 SKY .511396-01
 VXX .38565-02 VTY .161969-02 MXY .402030-03
 MXM .216640-02 MYY .121560-02 MXY .653663-05
 MXM .688431-03 MYY .170636-02 MXY .941846-04
 MXM .136666-02 MYY .298700-03 MXY .137210-03

128 CENIROID SXX .257758-02 STY .132042-00 SKY .877631-11
 VXX .468011-03 VTY .279248-02 MXY .171665-03
 MXM .331119-03 MYY .657059-03 MXY .571923-04
 MXM .167495-02 MYY .663744-03 MXY .110638-03
 MXM .369119-03 MYY .211695-02 MXY .1767802-02

129 CENIROID SXX .228593-03 STY .757016-02 SKY .613702-02
 VXX .637306-05 VTY .272715-02 MXY .801028-02
 MXM .340407-02 MYY .152336-02 MXY .734577-02
 MXM .536238-02 MYY .253016-02 MXY .1767802-02
 MXM .141123-02 MYY .053705-03 MXY .669536-03

130 CENIROID SXX .200468-01 STY .603055-02 SKY .936830-02
 VXX .27945-02 VTY .348610-02 MXY .539265-02
 MXM .710665-03 MYY .96226-03 MXY .71796-02
 MXM .53374-04 MYY .251576-02 MXY .641679-02
 MXM .479510-02 MYY .669536-03 MXY .467632-02

131 CENIROID SXX .282995-01 STY .530715-02 SKY .150391-01
 VXX .106697-02 VTY .240427-02 MXY .593525-02
 MXM .441123-02 MYY .110063-02 MXY .539265-02
 MXM .793910-03 MYY .174132-02 MXY .71796-02
 MXM .5h7034-02 MYY .79203-03 MXY .641679-02

UNIVAC 1100 SERIES ICES

DATE 082260 PAGE 46

132 CENTROID SMM *476458-02 STY *+530492-02 SKY *150913-01

NUDE 116 VMM *1122911-02 VTY *392634-02 MYY *375415-02

NUDE 119 VMM *731047-02 MYY *137502-02 MYY *14362-02

NUDE 119 VMM *108701-01 MYY *22083-03 MYY *260399-02

NUDE 119 VMM *325908-02 MYY *108352-03 MYY *260399-02

133 CENTROID SMM *368065-03 STY *337380-02 SKY *969978-03

NUDE 1 VMM *237463-03 VTY *681168-04 MYY *89262-03

NUDE 122 MAX *659756-03 MYY *22456-03 MYY *125862-03

NUDE 101 MAX *765575-03 MYY *136569-02 MYY *586947-03

NUDE 101 MAX *505270-03 MYY *208624-02 MYY *586947-03

134 CENTROID SMM *675112-02 STY *520075-02 SKY *138467-02

NUDE 122 VMM *681724-03 VTY *220522-03 MYY *451007-03

NUDE 1 MAX *411919-02 MYY *408949-02 MYY *233986-04

NUDE 22 MAX *291861-02 MYY *376947-02 MYY *220846-03

NUDE 22 MAX *136297-02 MYY *100771-02 MYY *100771-02

135 CENTROID SMM *746716-02 STY *538465-02 SKY *586420-02

NUDE 23 VMM *682433-02 VTY *137726-02 MYY *915850-03

NUDE 122 MAX *178416-02 MYY *560700-03 MYY *451007-03

NUDE 22 MAX *146701-02 MYY *162819-02 MYY *451007-03

NUDE 22 MAX *326977-02 MYY *162595-02 MYY *586421-03

136 CENTROID SAM *363314-02 STY *162603-01 SKY *239966-01

NUDE 122 VMM *500956-04 VTY *754065-04 MYY *660089-03

NUDE 23 MAX *130165-03 MYY *769602-03 MYY *658932-03

NUDE 123 MAX *372063-03 MYY *26117-03 MYY *663660-03

NUDE 123 MAX *151595-03 MYY *104211-02 MYY *593495-03

137 CENTROID SMM *9090911-02 STY *164440-01 SKY *160057-01

NUDE 24 VMM *175664-03 VTY *769517-04 MYY *987492-03

NUDE 125 MAX *225145-03 MYY *705011-03 MYY *329121-03

NUDE 24 MAX *341527-03 MYY *194512-02 MYY *569165-03

NUDE 25 MAX *364972-03 MYY *20536-02 MYY *512199-03

138 CENTROID SMM *162208-01 STY *226664-02 SKY *610606-02

NUDE 125 VMM *166776-02 VTY *101029-02 MYY *472631-02 MYY *329121-03

NUDE 24 MAX *216773-02 MYY *310286-02 MYY *613610-03 MYY *42678-04

NUDE 25 MAX *442253-03 MYY *97052-03 MYY *666850-03 MYY *42678-04

NUDE 25 MAX *140931-02 MYY *121914-02 MYY *310517-03 MYY *42678-04

B-19

- UNIVAC 1100 SERIES ICES

DATE 082260 PAGE 47

140	CENTROID	SXX	-163401-01	STY	-365264-01	SXY	-227304-01
	VXX	MXX	.264342-03	VYY	.644348-03	MYY	.975117-04
	NUDE 125	MXX	.179387-03	MYY	.646775-03	MXY	.328833-04
	NUDE 26	MXX	.351079-03	MYY	.104894-03	MXY	.651974-04
	NUDE 126	MXX	.244357-03	MYY	.769394-03	MXY	
141	CENTROID	SXX	-145171-01	STY	-194025-01	SXY	-252061-01
	VXX	MXX	.439023-04	VYY	.107079-03	MYY	.173014-04
	NUDE 27	MXX	.982853-04	MYY	.251284-03	MXY	.123631-03
	NUDE 128	MXX	.553680-04	MYY	.504924-03	MXY	.531617-04
	NUDE 127	MXX	.148742-04	MYY	.416683-04	MXY	
142	CENTROID	SXX	.968621-02	STY	.236151-01	SXY	.23/872-01
	VXX	MXX	.313895-03	VYY	.153953-03	MYY	.102846-04
	NUDE 129	MXX	.391394-03	MYY	.567701-03	MXY	.45227-04
	NUDE 27	MXX	.264681-03	MYY	.420261-03	MXY	.115945-06
	NUDE 28	MXX	.315151-03	MYY	.166086-03	MXY	
143	CENTROID	SXX	.308057-02	STY	.251939-01	SXY	.224637-01
	VXX	MXX	.684866-05	VYY	.165554-04	MYY	.373696-04
	NUDE 29	MXX	.465935-04	MYY	.156205-04	MXY	.83035-04
	NUDE 130	MXX	.151510-04	MYY	.608446-04	MXY	.602030-04
	NUDE 129	MXX	.273599-04	MYY	.875808-05	MXY	
144	CENTROID	SXX	.590612-01	STY	.050612-02	SXY	.402956-01
	VXX	MXX	.252038-03	VYY	.161411-03	MYY	.40103-04
	NUDE 130	MXX	.182940-03	MYY	.269768-03	MXY	.497109-04
	NUDE 29	MXX	.361274-03	MYY	.302499-03	MXY	.252880-04
	NUDE 30	MXX	.320068-03	MYY	.660113-04	MXY	
145	CENTROID	SXX	.296662-01	STY	.119462-02	SXY	.405476-02
	VXX	MXX	.909365-04	VYY	.166800-03	MYY	.140291-03
	NUDE 31	MXX	.110361-03	MYY	.744075-04	MXY	.401035-04
	NUDE 230	MXX	.238517-03	MYY	.288111-03	MXY	.772412-04
	NUDE 30	MXX	.190292-03	MYY	.150363-04	MXY	
146	CENTROID	SXX	.203084-02	STY	.231749-01	SXY	.160542-01
	VXX	MXX	.116037-03	VYY	.499779-03	MYY	.246362-03
	NUDE 130	MXX	.111009-03	MYY	.237641-03	MXY	.209111-03
	NUDE 31	MXX	.353532-03	MYY	.236520-03	MXY	.227757-03
	NUDE 131	MXX	.158346-03	MYY	.521345-03	MXY	
147	CENTROID	SXX	.114302-02	STY	.213360-01	SXY	.6480000-02
	VXX	MXX	.319503-04	VYY	.105553-03	MYY	.235464-03
	NUDE 32	MXX	.165512-03	MYY	.169587-03	MXY	.211377-03
	NUDE 133	MXX	.424329-04	MYY	.674021-04	MXY	.223431-03
	NUDE 32	MXX	.241569-04	MYY	.373398-04	MXY	
148	CEN1K00	SXX	.652515-01	STY	.251674-01	SXY	.111597-01

NIVAC 1100 SERIES ICES

DATE 082200 PAGE 50

八

B-23

UNIVAC 1100 SERVICES ICES

DATE 082220U

PAGE 51

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

