Evaluation in Machine Learning

- 0. Work through 05-Evaluation; 05-Sampling-Methods and 05-ROC notebooks.
- 1. The *confusion matrix* below shows the evaluation results for a binary classifier when applied to a test set of 768 examples, which are annotated with the class labels: (Pass, Fail).

Predicted Class

Pass	Fail		_
407	93	Pass	Actual
108	160	Fail	Class

From this table calculate:

- a) The precision score for both of the classes.
- b) The recall score for both of the classes.
- c) The F1-measure score for both of the classes.
- d) The overall classification accuracy for the full test set.
- e) The average class accuracy measure for the full test set

2. The table below shows the true class labels for a test set of 12 emails, which are labelled as "spam" or "non-spam". The table also reports the predictions made by three different binary classifiers for those emails.

Example	True Class Label	KNN Prediction	J48 Prediction	SVM Prediction
1	spam	spam	spam	spam
2	non-spam	non-spam	spam	non-spam
3	spam	non-spam	non-spam	spam
4	non-spam	non-spam	non-spam	non-spam
5	spam	spam	spam	spam
6	non-spam	non-spam	non-spam	non-spam
7	non-spam	spam	spam	non-spam
8	non-spam	non-spam	spam	spam
9	spam	spam	non-spam	spam
10	spam	spam	non-spam	non-spam
11	spam	non-spam	non-spam	spam
12	spam	spam	spam	spam

- a) Calculate the *overall accuracy* for each of the classifiers on this data. Based on your calculations, which classifier the most accurate?
- b) Calculate the *precision* of each classifier relative to the "spam" class. Based on your calculations, which classifier achieves the highest precision for this class?
- c) If you had to recommend a classifier for this dataset, which would you recommend and why?

3. The table below shows the number of correct and incorrect predictions made by an image classifier during a 10-fold cross validation experiment, where the goal was to classify 5,000 images into one of three categories: {cats, dogs, people} (i.e. each test set contains 500 images).

Fold	Class: Cats		Class: Dogs		Class: People	
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect
1	82	68	82	68	164	36
2	81	69	102	48	176	24
3	99	51	97	53	160	40
4	81	69	102	48	148	52
5	94	56	99	51	148	52
6	97	53	91	59	162	38
7	81	69	94	56	148	52
8	76	74	79	71	181	19
9	76	74	97	53	160	40
10	96	54	79	71	179	21

- a) What is the *overall accuracy* of the classifier based on the cross-validation results?
- b) What conclusion might be draw about the different classes in the data, based on the results above?
- c) Would *leave-one-out cross validation* be an appropriate evaluation strategy on this dataset?

- 4. The notebook 05 ROC Exercise contains code for loading the diabetes dataset (diabetes.csv).
 - a) Using the code in 05 ROC as a template produce ROC curves for kNN, SVM and Naive Bayes classifiers on the diabetes data.
 - b) Repeat this exercise using synthetic data generated using the code below. What insights do these ROC curves provide?