CSE 101 – Oct 11, 2019 (Week 2)

Notes provided by Ben Sihota bsihota@ucsc.edu

PA1

- Run unit tests from Piazza
- Last extension of PA1

Example

Show that $\sqrt{n+10} = \Theta(\sqrt{n})$

Proof: Goal: Find positive c_1, c_2, n_0 such that

$$0 \le c_1 \sqrt{n} \le \sqrt{n+10} \le c_2 \sqrt{n}$$

for all $n \geq n_0$. Let

$$c_1 = 1, c_2 = \sqrt{2}, n_0 = 10$$

Then if $n \geq n_0$, we have

$$-10 \le 0$$
 and $10 \ge n$

$$\therefore -10 \le (1-1)n \text{ and } 10 \le (2-1)n$$

$$\therefore -10 \le (1 - c_1^2)n$$
 and $10 \le (c_2^2 - 1)n$

$$\therefore c_1^2 n \le n + 10 \text{ and } n + 10 \le c_2^2 n$$

$$0 \le c_1^2 n \le n + 10 \le c_2^2 n$$

$$\therefore 0 \le c_1 \sqrt{n} \le \sqrt{n+10} \le c_2 \sqrt{n}$$

$$\therefore \sqrt{n+10} = \Theta(\sqrt{n})$$

Exercise

Let $a, b \in \mathbb{R}$ and b > 0. Show

$$(n+a)^b = \Theta(n^b)$$

Theorem

If h(n) = O(g(n)) and $f(n) \le h(n)$ for all sufficiently large n, then

$$f(n) = O(g(n))$$

Proof By hypothesis, we have pos c_1, n_1 such that

(1) $\forall n \geq n_1, \ 0 \leq h(n) \leq c_1 g(n)$

Also there exists pos n_2 such that

(2) $\forall \geq n_2 : 0 \leq f(n) \leq h(n)$

We must show there exist positive c, n_0 such that

(3) $\forall n \geq n_0 : 0 \leq f(n) \leq cg(n)$

Let $c = c_1$ and $n_0 = \max(n_1, n_2)$

Then if $n \ge n_0$, we have both (1) and (2) true, therefore (3) is also true.

$$\therefore f(n) = O(g(n))$$

 \sim Think of Ω as the "greater than" function

Exercise

If $h(n) = \Omega(g(n))$ and $f(n) \ge h(n)$ for sufficiently large n, then

$$f(n) = \Omega(g(n))$$

Exercise

If $h_1(n) = \Omega(g(n))$ and $h_2(n) = O(g(n))$ and $h_1(n) \le f(n) \le h_2(n)$ for sufficiently large n, then

$$f(n) = \Theta(g(n))$$

Example

Let $k \geq 0$. Then

$$\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$$

Proof
$$\sum_{i=1}^{n} i^k \le \sum_{i=1}^{n} n^k = n * n^k = n^{k+1} = O(n^{k+1})$$

Also

$$\sum_{i=1}^n i^k \ge \sum_{i=\lceil \frac{n}{2} \rceil}^n i^k$$

$$\geq \sum_{i=\lceil \frac{n}{2} \rceil}^{n} \lceil \frac{n}{2} \rceil^2$$

$$= (n - \lceil \frac{n}{2} \rceil + 1) \lceil \frac{n}{2} \rceil^k$$

$$= (\lfloor \frac{n}{2} \rfloor + 1) \lceil \frac{n}{2} \rceil^k$$

$$\geq ((\tfrac{n}{2}-1)+1)(\tfrac{n}{2})^k$$

$$= (\frac{n}{2})^{k+1}$$

$$= (\frac{1}{2})^{k+1} * n^{k+1}$$

$$= const*n^{k+1} = \Omega(n^{k+1})$$

$$\therefore \sum_{i=1}^{n} i^k = \Theta(n^{k+1})$$

Definition

$$o(g(n)) = \{ f(n) | \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \}$$

"g(n) is a strict asymptotic upper-bound"

Review
$$O(g(n)) = \{f(n) | \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \}$$

Obviously: $o(g(n)) \subseteq O(g(n))$

Lemma

$$f(n) = o(g(n)) \iff \lim_{n \to \infty} \left(\frac{f(n)}{g(n)}\right) = 0$$

$$f(n) = o(g(n))$$
 is equivalent to

$$\forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le \frac{f(n)}{g(n)} < c$$

This is the definition of

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$$