MTH 461 15. Graphs

Recall:

Definition

A *graph* (or a *network*) is a pair G = (V, E) where:

- *V* is the set of *vertices* (or *nodes*);
- *E* is the set of *edges*;
- each edge connects two vertices.

Note. We will usually denote vertices of a graph by positive integers: 1, 2, 3, etc.

Examples:

- computer networks
- social networks
- transportation networks
- citation networks
- ecological networks

Some types of graphs

Directed graphs. Every edge has a direction pointing from one vertex to another.

Undirected graphs. Edges do not have a direction.

Simple graphs. There is at most one edge between any two vertices and there are no self-edges (i.e. edges that start and end in the same vertex).

Definition

For a graph with vertices 1, 2, 3, ..., N the *adjacency matrix* of the graph is an $N \times N$ matrix $A = (a_{ij})$ such that

 $a_{ij} =$ (the number of edges from j to i)

Example. Directed graph:

Example. Undirected graph:

Note: The adjacency matrix of an undirected graph is symmetric: $A = A^{T}$.