

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta013

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex 4-6i.
- (4p) b) Să se calculeze lungimea segmentului cu capetele în punctele A(3, -2) și C(4, -3).
- (4p) c) Să se calculeze suma de numere complexe $S = i + i^3 + i^5 + i^7$.
- (4p) d) Să se determine $a,b \in \mathbb{R}$, astfel încât punctele A(3,-2) și C(4,-3) să fie pe dreapta de ecuație x + ay + b = 0.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(3,-2), B(2,2) și C(4,-3).
- (2p) f) Să se determine $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\frac{5+8i}{8-5i} = a+bi.$

SUBIECTUL II (30p)

1

- (3p) a) Să se calculeze elementul $\hat{2}^{2006}$ în (Z_8, \cdot) .
- (3p) b) Să se calculeze expresia $E = C_8^3 C_8^5 + C_8^8$.
- (3p) c) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $\log_5 x = 1$.
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $16^x 32 = 0$.
- (3p) e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $3^n < 19$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^5 + 2x 1$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx.$
- (3p) c) Să se calculeze $\lim_{x\to 0} \frac{f(x)-f(0)}{x}.$
- (3p) d) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (3p) e) Să se calculeze $\lim_{n \to \infty} \frac{2 \ln n + 3}{5 \ln n 2}.$

SUBIECTUL III (20p)

Se consideră șirul de funcții $(f_n)_{n\in\mathbb{N}^*}$, $f_n: \mathbb{R} \to \mathbb{R}$, cu $f_1(x) = x$, $f_2(x) = x^2 - 2$ și pentru $\forall n \in \mathbb{N}$, $n \ge 3$, $\forall x \in \mathbb{R}$, $f_n(x) = x \cdot f_{n-1}(x) - f_{n-2}(x)$. Se consideră cunoscute formulele $2\cos a \cdot \cos b = \cos(a+b) + \cos(a-b)$, $\forall a,b \in \mathbb{R}$ și $\cos 2x = 2\cos^2 x - 1$, $\forall x \in \mathbb{R}$.

- (4p) a) Să se calculeze $f_2(1)$.
- (4p) b) Să se calculeze $f_3(x)$, pentru $x \in \mathbb{R}$.
- (4p) c) Să se arate că $f_2(2\cos t) = 2\cos 2t$, pentru $\forall t \in \mathbf{R}$.
- (2p) d) Utilizând metoda inducției matematice, să se arate că $f_n(2\cos x) = 2\cos nx$, $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}$.
- (2p) e) Să se demonstreze că $\forall n \in \mathbb{N}^*$, f_n este o funcție polinomială de gradul n cu coeficienți întregi.
- (2p) **f**) Să se demonstreze că $\forall n \in \mathbb{N}^*$, coeficientul dominant al funcției f_n este egal cu 1, iar termenul liber aparține mulțimii $\{-2, 0, 2\}$
- (2p) g) Dacă pentru $r \in \mathbf{Q}$, $\cos r\pi \in \mathbf{Q}$, să se demonstreze că $\cos r\pi \in \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$.

SUBIECTUL IV (20p)

Se consideră șirurile $(x_n)_{n\geq 1}$, $(y_n)_{n\geq 1}$ definite prin

$$x_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$
, $y_n = x_n - 2\sqrt{n}$, $\forall n \in \mathbb{N}^*$.

(4p) a) Să se arate că
$$\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}}, \forall n \in \mathbb{N}^*$$
.

- (4p) b) Să se deducă inegalitatea $2\sqrt{n+1}-2 < x_n < 2\sqrt{n}-1, \ \forall n \in \mathbb{N}^*, \ n \ge 2$.
- (4p) c) Să se arate că $\lim_{n\to\infty} x_n = +\infty$.
- (2p) d) Să se calculeze $\lim_{n\to\infty}\frac{x_n}{\sqrt{n}}$
- (2p) e) Să se arate că șirul $(y_n)_{n\geq 1}$ este strict descrescător.
- (2p) f) Să se arate că șirul $(y_n)_{n\geq 1}$ este convergent.
- (2p) g) Să se arate că $-2 \le \lim_{n \to \infty} y_n < -1$.