

Integer Programming

Introduction

- When one or more variables in an LP problem must assume an integer value we have an Integer Linear Programming (ILP) problem.
- ILPs occur frequently...
 - Scheduling workers
 - Manufacturing airplanes
- Integer variables also allow us to build more accurate models for a number of common problems.

Relaxation

Original ILP

MAX:
$$2X_1 + 3X_2$$

S.T.:
$$X_1 + 3X_2 \le 8.25$$

$$2.5X_1 + X_2 \le 8.75$$

$$X_1, X_2 >= 0$$

 X_1 , X_2 must be integers

• LP Relaxation

MAX:
$$2X_1 + 3X_2$$

S.T.:
$$X_1 + 3X_2 \le 8.25$$

$$2.5X_1 + X_2 \le 8.75$$

$$X_1, X_2 >= 0$$

Integer Feasible vs. LP Feasible Region

Integer Feasible vs. LP Feasible Region

Integrality Conditions

```
MAX: 350X_1 + 300X_2 } profit

S.T.: 1X_1 + 1X_2 <= 200 } pumps

9X_1 + 6X_2 <= 1566 } labor

12X_1 + 16X_2 <= 2880 } tubing

X_1, X_2 >= 0 } nonnegativity

X_1, X_2 must be integers } integrality
```

Integrality conditions are easy to state but make the problem much more difficult (and sometimes impossible) to solve.

Solving ILP Problems

- When solving an LP relaxation, sometimes you "get lucky" and obtain an integer feasible solution.
- This was the case in the original Blue Ridge Hot Tubs problem in earlier chapters.
- But what if we reduce the amount of labor available to 1520 hours and the amount of tubing to 2650 feet?

Integrality Conditions

```
MAX: 350X_1 + 300X_2 } profit

S.T.: 1X_1 + 1X_2 <= 200 } pumps

9X_1 + 6X_2 <= 1520 } labor

12X_1 + 16X_2 <= 2650 } tubing

X_1, X_2 >= 0 } nonnegativity

X_1, X_2 must be integers } integrality
```

Optimal solution of the relaxed problem:

$$X_1 = 116,9444$$
 $X_2 = 77,9167$

Corresponding to a maximum profit of \$64306

Rounding

- It is tempting to simply round a fractional solution to the closest integer solution.
- In general, this does not work reliably:
 - The rounded solution may be infeasible.
 - The rounded solution may be suboptimal.

How Rounding Down Can Result in an Infeasible Solution

	Blue Ridg	e Hot Tubs		
	Aqua-Spas	Hydro-Luxes		
Number to Make	117	78	Total Profit	
Unit Profits	\$350	\$300	\$64,350	
Constraints			Used	Available
Pumps Req'd	1	1	195	200
Labor Reg'd	9	6	1521	1520
Tubing Req'd	12	16	2652	2650

How Rounding Down Can Result in an Infeasible Solution

How Rounding Down Can Result in an Infeasible Solution

	Blue Ridg	e Hot Tubs		
	Aqua-Spas	Hydro-Luxes		
Number to Make	116	77	Total Profit	
Unit Profits	\$350	\$300	\$63,700	
Constraints			Used	Available
Pumps Req'd	1	1	193	200
Labor Req'd	9	6	1506	1520
Tubing Req'd	12	16	2624	2650

Stopping Rules

- Because B&B can take so long, most ILP packages allow you to specify a suboptimality tolerance factor.
- This allows you to stop once an integer solution is found that is within some % of the global optimal solution.
- Bounds obtained from LP relaxations are helpful here.
 - Example
 - > LP relaxation has an optimal obj. value of \$64,306.
 - > 95% of \$64,306 is \$61,090.
 - ➤ Thus, an integer solution with obj. value of \$61,090 or better must be within 5% of the optimal solution.

Bounds

• The optimal solution to an LP relaxation of an ILP problem gives us a *bound* on the optimal objective function value.

• For maximization problems, the optimal relaxed objective function values is an *upper bound* on the optimal integer value.

• For minimization problems, the optimal relaxed objective function values is a *lower bound* on the optimal integer value.

Branch-and-Bound

- The Branch-and-Bound (B&B) algorithm can be used to solve ILP problems.
- Requires the solution of a series of LP problems termed "candidate problems".
- *Theoretically*, this can solve any ILP.
- *Practically*, it often takes *LOTS* of computational effort (and time).