PROJECT NAME:- HOSING PRICE REGRESSION

SUBMITTED TO:- TECH-A-INTERN

SUBMITTED BY:- SHIVESH PANDEY

LEVEL-2 TASK-1 DATA SCIENTIST

replace Housing.csv? [y]es, [n]o, [A]ll, [N]one, [r]ename:

import pandas as pd
df=pd.read csv('Housing.csv')

Archive: housing-dataset.zip

df

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	bas€
0	13300000	7420	4	2	3	yes	no	
1	12250000	8960	4	4	4	yes	no	
2	12250000	9960	3	2	2	yes	no	
3	12215000	7500	4	2	2	yes	no	
4	11410000	7420	4	1	2	yes	yes	
540	1820000	3000	2	1	1	yes	no	
541	1767150	2400	3	1	1	no	no	
542	1750000	3620	2	1	1	yes	no	
543	1750000	2910	3	1	1	no	no	

544 1750000 3850 3 1 2 yes no 545 rows × 13 columns

Next steps: Generate code with df

View recommended plots

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	object
6	guestroom	545 non-null	object
7	basement	545 non-null	object
8	hotwaterheating	545 non-null	object
9	airconditioning	545 non-null	object
10	parking	545 non-null	int64
11	prefarea	545 non-null	object
12	furnishingstatus	545 non-null	object
	' ' ' (

dtypes: int64(6), object(7)
memory usage: 55.5+ KB

df.describe()

	price	area	bedrooms	bathrooms	stories	р
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.0
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.6
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.8
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.0
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	0.0
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	0.0
75 %	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.(
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	3.(

df.shape

(545, 13)

df.dropna()

price area bedrooms bathrooms stories mainroad guestroom base

0	13300000	7420	4	2	3	yes	no
1	12250000	8960	4	4	4	yes	no
2	12250000	9960	3	2	2	yes	no
3	12215000	7500	4	2	2	yes	no
4	11410000	7420	4	1	2	yes	yes
540	1820000	3000	2	1	1	yes	no
541	1767150	2400	3	1	1	no	no
542	1750000	3620	2	1	1	yes	no
543	1750000	2910	3	1	1	no	no
544	1750000	3850	3	1	2	yes	no

545 rows × 13 columns

plt.boxplot(df.price)
q1=df.price.quantile(0.25)
q2=df.price.quantile(0.75)
iqr=q2-q1

df=df[(df.price >= q2-iqr*1.5) & (df.price <= q1+iqr*1.5)]


```
plt.boxplot(df.area)
q1=df.area.quantile(0.25)
q2=df.area.quantile(0.75)
iqr=q2-q1
df=df[(df.area>=q2-iqr*1.5) & (df.area<=q1+iqr*1.5)]</pre>
```



```
plt.figure(figsize=(18,15))
n=0
for i in df[['price', 'area', 'bedrooms', 'bathrooms', 'stories','parking']]:
    n+=1
    plt.subplot(2,3,n)
    plt.subplots_adjust(hspace=0.5,wspace=0.5)
    sns.boxplot(df['{}'.format(i)])
```


sns.pairplot(df)
plt.show

```
matplotlib.pyplot.show
 def show(*args, **kwargs)
 /usr/local/lib/python3.10/dist-packages/matplotlib/pyplot.py
 Display all open figures.
 Parameters
 block : bool, optional
a_6
5000
 4000
 3000
 3.5
```


df.head()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	baseme
68	6860000	6000	3	1	1	1	0	
70	6790000	4000	3	2	2	1	0	
71	6755000	6000	4	2	4	1	0	
72	6720000	5020	3	1	4	1	0	
73	6685000	6600	2	2	4	1	0	

Next steps: Generate code with df

View recommended plots

```
x=['furnishingstatus']
mapping={'furnished':2,'semi-furnished':1,'unfurnished':0}
df[x]=df[x].applymap(lambda x: mapping.get(x))
```

df.head(5)

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	baseme
68	6860000	6000	3	1	1	1	0	
70	6790000	4000	3	2	2	1	0	
71	6755000	6000	4	2	4	1	0	
72	6720000	5020	3	1	4	1	0	
73	6685000	6600	2	2	4	1	0	

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

import numpy as np

```
x= df.iloc[:, 1:].values
y= df.iloc[:, 0].values
```

x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.8, random_

df.shape

```
.
    (397, 13)

from sklearn.linear_model import LinearRegression
regressor= LinearRegression()
regressor.fit(x_train, y_train)

▼ LinearRegression
LinearRegression()
```

Train Score: 0.6808007036159243 Test Score: 0.513516874279074

print('Train Score: ', regressor.score(x_train, y_train))
print('Test Score: ', regressor.score(x_test, y_test))

Start coding or <u>generate</u> with AI.

y_pred= regressor.predict(x_test)