1. Начертана е графиката на данните "heartrade" от пакета "UsingR". Коя от възможностите може да отговаря на уравнението на регресия (коефициент на корелация, свободния член и коефициента пред *x* в уравнението на регресия)?

simple.lm(age, maxrate)

(Intercept) x cor=-0.9534656, intercept=210.0485, heartrate\$age=-0.7977

2. За данните "survey" от пакета "MASS" съдържащи височината на студентите "Height" - напишете функция, с която да направите проверка дали данните за височината на студентите са нормално разпределени. Получени са следните резултати. Анализирайте ги.

shapiro.test(Height)

Shapiro-Wilk normality test

```
data: Height
W = 0.98841, p-value = 0.08844
isNorm = function(X){
    sha = shapiro.test(X)
    p1 = sha$p.value

    if (p1 <= .05)
        print("not normal dist.")
    else
        print("normal dist.")
}</pre>
```

- 3. Интервалите между пристиганията на клиенти в работно време в магазин, измерени в часове са хи-квадрат разпределени със 3 степени на свобода.
 - а) Симулирайте интервалите между пристиганията на 250 клиента, като вземете в предвид само работното време;
 - б) Начертайте хистограма на данните;
 - в) Сравнете хистограмата с теоритичното разпределение.

```
    a) r=rchisq(n=250, df = 3)
    b) hist(r, prob=T)
    points(min(r):max(r), dchisq(min(r):max(r),3), type="h", lwd=2, col="gold") points(min(r):max(r), dchisq(min(r):max(r),3), type="p", lwd=3, col="purple") curve(dchisq(x,3), add=T, col="purple", lwd=2)
```

- 4. Нека X е броя на пиките, паднали се при случайно изтегляне на 10 карти с връщане от колода от 52 карти. Използвайте вградени функции в R, за да:
 - а) Генерирате 300 наблюдения над X;
 - б) Пресметнете теоритичната вероятност да има най-много 5 пики включително ;
 - в) Пресметнете теоритичната вероятност, броят на изтеглените пики да попадне в интервала (2,7);

```
a) X = rbinom(n=300, size=10, prob=1/4)
\delta) pbinom(q=5, size=10, prob=1/4)
B)
І-ви начин:
       pbinom(q=6, size=10, prob=1/4)-pbinom(q=2, size=10, prob=1/4)
II-ри начин:
       pbinom(q=2, size=10, prob=1/4, lower.tail=F)-pbinom(q=6, size=10, prob=1/4,
lower.tail=F)
III-ти начин:
       1-(pbinom(q=2, size=10, prob=1/4)+pbinom(q=6, size=10, prob=1/4, lower.tail=F))
IV-ти начин:
       sol=function(s=10, p=1/4){
              ans=0
              for(i in 3:6){
                      ans=ans+dbinom(x=i, size=s, prob=p)
              }
              ans
       }
```

- Клиентите на даден интернет доставчик създават нови акаунти със средна интензивност 10 Пресметнете какъв ще бъде средно броя на акаунтите, които ще бъдат създадени през утрешния ден.
 - а) Симулирайте 200 реализации на X;
 - б) Пресметнете вероятността да бъдат създадени точно 13 акаунта;
 - в) Намерете минималния брой акаунти, които ще бъдат създадени утре с вероятност поне 95%.

6. Премахнете последните 3 колони в дейтасет survey.

c=ncol(survey)
left=c-2; right=c
s=survey[-c(left:right)]

7. Първите 6 реда на дейтасета "statistics" изглеждат така

	gender	martialStatus	s worki	ingStatus	age		
1	Male	Married		Workir	ng	45	
2	Female	Unma	arried	Workir	ng	22	
3	Female	Marri	ed		Not w	orking	36
4	Male	Unmarried	Work	ing	32		
5	Female	Marri	ed		Work	ing	42
6	Male	Unmarried	Not V	Vorking	28		

Коя/Кои от следните функции в R ще добавят нова колона съдържаща нормализираната възраст

- a. statistics\$normalized <- age/sd(age)
- b. statistics\$normalized <- age-mean(age)/sd(age)
- с. statistics\$normalized <- scale(age) единствения верен отговор
- d. statistics\$normalized <- age-mean(age)

Друг начин, по който може да добавим колона с нормаличираната възраст е: statistics\$normalized <- (age-mean(age, na.rm=T))/sd(age, na.rm=T), забележете разликата с b. - тук делим на sd (стандартното отклонение) цялата разлика между дадена възраст и средната възраст

8. Първите 6 реда на data frame-a "statistics" изглеждат така (показано е на предходната задача)

Напишете код в R, който да конвертира пола във факторна променлива.

Отговор: as.factor(gender)

9. Първите 6 реда на дейтасета "ToothGrowth" изглеждат така

	len	supp	dose
1	4.2	VC	0.5
2	11.5	VC	0.5
3	7.3	VC	0.5
4	5.8	VC	0.5
5	6.4	VC	0.5
6	10.0	VC	0.5

Където "len" е дължината на зъба, "supp" е метода - витамин С или портокалов сок и "dose" е колко грама им е даден 0.5, 1 или 2 mg. Напишете скрипт в R, с който да нарисувате как се изменя дължината на зъба при промяна на дозата и метода.

Отговор:

xyplot(len~supp | dose)

10. Кое/Кои от следните разпределения не са асиметрични:

```
a. N(5, 2)
b. Chi<sup>2</sup>(5)
c. Exp(3)
d. t(10)
sol=function(N=100000){
  X1 = rnorm(n=N, mean=5, sd=2)
  X2 = rchisq(n=N, df=5)
  X3 = rexp(n=N, rate=3)
  X4 = rt(n=N, df=10)
  par(mfrow=c(2,2),oma=c(0,0,2,0))
  hist(X1, main="Normal(mu=5, sigma=2)",xlab=NULL, ylab=NULL)
  hist(X2, main="Xsquare(degree of freedom = 5)",xlab=NULL, ylab=NULL)
  hist(X3, main="Exponential(lambda=3)",xlab=NULL, ylab=NULL)
  hist(X4, main="Student'sT(degree of freedom = 10)",xlab=NULL, ylab=NULL)
  title("Searchig for symmetry", outer=T)
}
```

Searchig for symmetry

Student'sT(degree of freedom = 10)

Отговор: а и d

11. Първите 6 реда на дейтасета "statistics" изглеждат така

	gender	martialStatus	s worki	ngStatus	age		
1	Male	Married		Workir	ng	45	
2	Female	Unma	arried	Workir	ng	22	
3	Female	Marri	ed		Not w	orking	36
4	Male	Unmarried	Work	ing	32		
5	Female	Marri	ed		Work	ing	42
6	Male	Unmarried	Not V	Vorking	28	_	

Какво ще изведе следния скрипт в R:

statistics[statistics\$gender == "Male",][3, 4]

Отговор: Ще селектира само редовете на мъжете от дейтасет-а "statistics" и от тях ще изведе на колко години (4-та колона) е третия мъж (3-ти ред). Т.е. ще изведе числото **28.**

12. Напишете скрипт в R, който да конкатенира двете матрици по редове.

Отговор: rbind(matrix1, matrix2)

13. Първите 6 реда на дейтасета "students" изглеждат така

	Sex	Pulse	Exer	Smoke	Height	Age
1	Female		92	Some	Never 173.00	18.250
2	Male	104	None	Regul	177.80	17.583
3	Male	87	None	Occas	NA	16.917
4	Male	NA	None	Never	160.00	20.333
5	Male	35	Some	Never	165.00	23.667
6	Female		64	Some	Never 172.72	2 21.000

Напишете за всяка една от колоните качествени или количествени данни съдържа. Напишете скрипт в R, който да изведе честотната таблица на това колко често пушат студентите и направете подходяща графика.

Отговор:

Sex - качесвени
Pulse - дискретни количествени (числови)
Exer - качествени
Smoke -качествени
Height - непрекъснати количествени (числови)
Age - непрекъснати количествени (числови)

prob.table(table(Smoke))
barplot(prop.table(table(Smoke)))

14. Мария за домашното си по география трябвало да намери данни за няколко страни и географски показатели за тях. Тя ги записвала в дейтасет "countries" и първите 6 реда от таблицата ѝ изглеждали по следния начин:

	country	р	opulation2	020 la	ndarea	density
1	Austria	9006398	}	82409	109	-
2	Bhutan	NA		NA	20	
3	Canada	3	7742154	9(093510	4
4	Ethiopia	NA		1000000	NA	
5	Finland	5	540720	N	A	NA
6	Honduras	NA		111890	89	

Напишете скрипт в R, с който да и помогнете да преброи общия брой липсващи стойности "NA", които ѝ остава да попълни.

Отговор: sum(is.na(countries))

15. За данните от "survey" от пакета "MASS" съдържащи височините на стундентите "Height" - напишете функция, с която да направите qq-plot за височината на студентите. Получена е следната графика. Анализирайте графиката.

Normal Q-Q Plot

R код: library(MASS) attach(survey) qqnorm(Height) qqline(Height)

qqplot-а сравнява квантила на данните ни с квантила на разпределението което му зададем като второ. В случая използваме вградената функция qqnorm, която знае че ще сравнява данните ни с нормалното разпределение. Когато имаме разлики само в средното - линията ще се транслира нагоре или надолу. Когато имаме разлики само в дисперсията - линията ще се завърти в центъра и в опашките ще се получи раздалечаване от нея. Точно това се получава и на нашата графика - т.е. височината на студентите е нормално

разпределена, с разликата че има по голямо стандартно отклонение отколкото би имало нормалното разпределение със средно, което е равно на средното на нашите данни и дисперсия, която е равна на дисперсията на нашите данни. С други думи имаме по-голяма вероятност да срещнем по-далечно наблюдение в нашите данни, отколкото в данните на нормалното разпределение. В случай, че имаме разлики и в средното и в дисперсията - линията изобщо няма да съответства по никакъв начин на данните ни. Ако например сравним нашите данни за височината с експоненциалното разпределение ще видим, че линията и данните няма да имат нищо общо.

Ако искаме да сравним с някакво друго разпределение, а не с нормалното и отново да е поквантилно, то тогава може да използваме qqplot.das(X, "norm"), като например заместим нормалното с експоненциално и т.н. qqplot.das(X, "exp").

16. Първите 6 реда на "Students" изглеждат както в зад. 13.

Напишете скрипт в R, който въз основа на данните да оцени вероятността случайно избран, понякога спортуващ човек, да се окаже с пулс между 60 и 70 удара в минута включително. Начертайте хистограми на разпределението на студентите според пулса им, ако е известно колко често спортуват.

```
# students=survey
some = survey[!is.na(survey$Exer) & survey$Exer == "Some",]
pulse = survey[!is.na(survey$Pulse) & survey$Pulse >= 60 & survey$Pulse <= 70,]
P=(nrow(pulse) / nrow(some)) * 100; P

# hist
par(mfrow=c(3,1))
hist(survey[survey$Exer == "Some",]$Pulse, prob = T)
hist(survey[survey$Exer == "None",]$Pulse, prob = T)
hist(survey[survey$Exer == "Freq",]$Pulse, prob = T)</pre>
```