MuZero

Keith L. Downing

December 6, 2024

* This presentation assumes familiarity with Reinforcement Learning (RL), Monte Carlo Tree Search (MCTS) and JAX, as presented in other lectures for this course.

DeepMind Dominance

Model-Based -vs- Model-Free RL

- In a Markov Decision Process (MDP), model(M) := mapping: (state, action) → (state, reward).
- In AI, a model may also include details such as all legal moves, terminal-state criteria, and any other rules of the game or constraints of the domain.
- Policy := mapping: state → action.
- Model-based RL systems either have M at the outset or try to learn M via trial-and-error domain experience (i.e. episodes of problem-solving / game-play).
- Model-free RL uses domain experience to adjust its policy but does not rely on a model, and does not try to learn one. It just uses trial-and-error to learn what actions do / don't achieve good results in different situations / states: it learns a useful policy.
- M is well-known for board games such as Chess, Checkers, Go, etc., since the rules of the game are non-ambiguous, and for any action (a) taken in game state (s) (1): the legality of the action is easily determined, and (2) the new state (s') and reward (r) that result from applying a to s are easily determined.
- Models for arcade games (e.g. Atari) are much more elusive: although the legality of actions is not so difficult to determine, their consequences can be very complex, often requiring a good simulator, and occasionally involving stochasticity. E.g. results of one paddle hit in Breakout.

Complexity of Arcade-Game Pixel Images

- Resolution of a Go Board: 19 x 19.
- Pixel Resolution of Atari 2600 games: 192 x 160.

Resolution of Simulations -vs- RL Game States

Abstract States

- Abstract states are not alternate representations of real-game states.
- They are functional patterns (identical to the activation patterns in NN hidden layers) that enable predictions of policies, values and rewards in the real-game situation.
- But they do not support the prediction of future real-game states.

Action Time -vs- Reaction Time

- Human Reaction Time = 200 300 msec := Time to process sensory information and then perform an action based on it.
- Human Action Time = 60 80 msec := Time to perform a simple action, such as a finger tap.
- ightarrow Humans can perform 3-5 actions per round of sensory processing.
- → In a video game, they can do 3-5 actions per viewed image.
- → An AI system to play video games might take several actions per input image.
- This is obviously not the case for turn-taking board games (e.g. chess, checkers, poker, go, etc.)
- MuZero allows each action to transform an abstract state to a new one, but for each real game state it permits a short sequence of actions without requiring explicit transitions to other real game states.

Basic Monte Carlo Tree Search (MCTS)

Reinforcement Learning with MCTS

Play many episodes of the *game*. ∀ action decisions of each episode, do:

MCTS Algorithm

- Use episode's current game state (s_k) as basis for tree root (R).
- ** Use Tree Policy from root to a leaf node
- Expand the leaf node: generate all children.
- Randomly pick one child.
- Do a rollout from that child to a final state (s*) using the Behavior Policy.
- Backpropagate value(s*) along the vine from s* → R, updating Q values and visit counts on all edges.
- Go to **

After building the tree via many simulations (i.e. loops in above algorithm):

- Use visit counts as basis for a probability distribution (D_k) .
- Sample from D_k to get next move in the current episode.
- Save pair (s_k, D_k) as training case for the **actor** neural network.
- At episode end (state s*), use value (v*) of the final state to create training cases for critic neural network: (s, v*) ∀s ∈ s₀ → s* discounts to v* may apply.

Model-Based MCTS

Classic MCTS

- Classic MCTS is model-based and uses a complete model (M) known from the start.
- M is used to compute all legal actions for a state, and all consequent states and rewards once the action is applied.
- Hence, the MCTS tree is built from real game states and legal successor (child) states based on legal actions.
- This is impossible without the model.

MuZero MCTS

- MuZero may have a model (or a good simulator), but it is not available to u-MCTS.
- MuZero uses M to compute next states and rewards in the real episodes.
- But u-MCTS has no model for transitions in the simulated episodes (from a leaf node on down).
- In fact, u-MCTS cannot even recognize a game-ending state.
- It relies on a dynamics model M_d that tries to learn a mapping between abstract states which have no direct correlation to states in the real-game episodes.
- But by learning M_d (and 2 other mappings) and using training data from the real-game episodes, it indirectly learns a useful policy for real-game states.

Three Core Neural Networks in MuZero

- Representation Network = mapping from real-game to abstract states.
- Dynamics Network = A supporting model, but not an actual game model.
- Prediction Network = A policy (actor) and state evaluator (critic).

Connecting the Networks

Reinforcement Learning with u-MCTS

Play many episodes of the *game*. ∀ action decisions of each episode, do:

u-MCTS Algorithm

- Use sequence of current episode's game states $(s_{k-q}...s_k)$ as input to the Representation Network (NN_r) , producing abstract state σ_k .
- Generate a root node (N_k) with state = σ_k .
- ** Use Tree Policy from root to a leaf node
- Expand the leaf node: generate all children.
- Randomly pick one child node (N_c).
- Rollout from N_c to a max-depth state (σ_m) using Dynamics Network (NN_d) and Prediction Network (NN_p) . u-MCTS default: rollout just one level below N_c .
- Use NN_p to produce v_m (value of node σ_m). Backpropagate v_m along the vine σ_m ~ N_k, updating Q values and visit counts on all edges.
- Go to **

After building the tree via many simulations (i.e. loops in above algorithm):

- Use visit counts as basis for a probability distribution (D_k) .
- Sample from D_k to get next move in the current episode.
- Save pair $(s_{k-q} \dots s_k, D_k)$ (along with value (N_k) , episode actions and rewards) as training case for the $NN_r + NN_d + NN_p$ aggregate network.

u-MCTS Rollouts

AlphaZero -vs- MuZero

- AlphaZero uses the game model(M) in both actual-game episodes and MCTS.
- MuZero uses M in actual-game episodes but not in u-MCTS.
- u-MCTS only works with abstract states (σ_k), so u-MCTS a) cannot recognize any abstract states as *final*, and b) cannot classify actions as legal or illegal w.r.t. σ_k∀k.
- ightarrow All actions (from the complete set of real-game acts) must be considered as possible for $\sigma_k \forall k$ (except for the root state, which does have a direct correspondence to a sequence of real-game states $(s_{k-q} \dots s_k)$ and thus only permits actions that are legal for s_k).
- → All u-MCTS searches must go to a fixed a) max depth or b) number of steps beyond a tree leaf.
- u-MCTS tries to learn a different model (M_d) via it's dynamics network (NN_d) and training data from the real-game episodes.
- Some of that training data comes from u-MCTS, so this is one more example of bootstrapping in RL.
- AlphaZero has mainly been applied to 2-person, deterministic, complete-information games that typically have few intermediate rewards and a clear final state.
- MuZero is designed for 1-person games / puzzles with complex pixel input that
 may have many intermediate rewards and may not have a final state (a.k.a. a
 continuous game; e.g. Atari), although it also works well for 2-person board
 games such as chess and go.

Generating Training Data

Training: u-MCTS Drives Game Episodes

Input to u-MCTS is actually a sequence of states, e.g. $s_{k-q} \dots s_k$, which is not shown to avoid visual clutter.

Hidden States in Elman Networks

- The hidden states that feed back to H (unrolled as H₁ → H₂ → H₃ → H₄) are not compact, lossless representations of earlier text.
- They are abstract patterns that help predict the next word based on some useful functional summary of the past.
- This is a lot different from the hidden layers of autoencoders, which can be decoded into something similar to the original input.

MuZero uses One Big Elman Net

The abstract states are **not** lossless compressions of real states, but patterns that summarize earlier real-game states and actions in a way that provides functional context for predicting proper policies, values and rewards.

Training (BPTT): Episode Provides Features + Targets

Back Propagation Through Time (BPTT)

Computing target state values: z_k^*

$$z_k^* = r_{k+1}^* + \gamma r_{k+2}^* + \gamma^2 r_{k+3}^* + \dots + \gamma^{w-1} v_{k+w}^*$$

- r_i^* = Reward going from state s_{i-1} to state s_i in the real-game episode.
- γ = Discount
- \mathbf{v}_{j}^{*} = Value of abstract state σ_{j} as produced by u-MCTS when σ_{j} is the root state.
- If the episode ends at a final state, s_f , then use the exact evaluation, $value(s_f)$, instead of v_i^* , which is just an estimate.
- Final states in the episode always have an exact evaluation: it's a win, loss or tie.
- Many video games are continuous and do not have a well-defined final state. So evaluations are based entirely on the collection of intermediate rewards.

The Loss Function for MuZero's BPTT

$$L_{k} = \frac{1}{w+1} \sum_{i=0}^{w} \underbrace{c_{r}(r_{k+i}^{*} - r_{k+i})^{2}}_{reward} + \underbrace{c_{v}(z_{k+i}^{*} - v_{k+i})^{2}}_{value} + \underbrace{c_{p}E_{x}(\pi_{k+i} - p_{k+i})}_{policy}$$

where:

- c_r, c_v, c_p = constants for error of reward, value and policy, respectively.
- π_k = policy (probability distribution) produced by u-MCTS when given real-game states $s_{k-q} \dots s_k$ as input (i.e. the basis for its root abstract state).
- p_k = policy (probability distribution) produced by the prediction network (NN_p) when given abstract state σ_k .
- E_x = an error function for comparing two probability distributions, for example cross-entropy.
- Squared differences imply use of mean-squared error for reward and value, but other error functions (such as absolute values of differences) are also possible.
- ** Deepmind's official MuZero loss function also includes a *regularization term* that sums the absolute values of all weights. This penalizes networks with many large weights, which is often a sign of memorization instead of generalization.

Neural Network Training Algorithm: One Minibatch

- For parameters θ_r , θ_d and θ_p (of NN_r , NN_d and NN_p , respectively),
- JAX computes: $\frac{\partial L_k}{\partial \theta_r}$, $\frac{\partial L_k}{\partial \theta_d}$ and $\frac{\partial L_k}{\partial \theta_p}$.
- Use $\frac{\partial L_k}{\partial \theta_r}$, $\frac{\partial L_k}{\partial \theta_d}$ and $\frac{\partial L_k}{\partial \theta_p}$ and the learning rate(s) to update θ_r , θ_d and θ_p .

Trained Networks ⇒ Actor

* Note: The dynamics network is no longer needed. As it learns the abstract-state transitions and rewards, it serves as scaffolding for training the representation and prediction networks.

Overview: RL with MuZero

- Randomly initialize parameters of the 3 Neural Networks: $(NN_r, NN_d, NN_p) = \Psi$
- Perform many episodes, with each action of each episode determined by probability distributions returned by u-MCTS.
- Use Ψ to govern u-MCTS initialization and search in a space of abstract states.
- Combine (a) actual states, (b) actions and (c) rewards from each episode with (d) probability distributions and (e) state values produced by u-MCTS to yield training cases for Ψ.
- After every mth episode, train Ψ using back propagation through time (BPTT) by drawing random sequences from the episodic data.
- After running $n \gg m$ episodes, and $\frac{n}{m}$ rounds of BPTT, consider Ψ fully trained.
- Use NN_r and NN_p to provide a real-time policy for a game-playing agent.