Google Kubernetes Engine

Despliegue y monitoreo de una aplicación escalable y resiliente.

Oscar Hernández

DevOps Engineer en Digital On Us (Sé algunas cosas de Kubernetes)

Conceptos para antes de empezar

- Deployment
- Ingress
- Métricas de Kubernetes
- Stackdriver
- Google Kubernetes Engine
- Cluster/Node Pool regional(es).
- Horizontal Pod Autoscaler

Para entender el repo

- Terraform
- Google Cloud Platform
- Nginx Ingress Controller

Cluster Regional

Masters y Node pools regionales

En lo que a tecnologías de la información respecta, la resiliencia es la capacidad de la infraestructura de proveer y mantener un funcionamiento aceptable a pesar de fallas y desafíos a la operación normal.

Un cluster regional ayuda (pero no cubre por completo) a que esto sea logrado, ya que los nodos maestros y trabajadores están disponibles en todas las zonas de una región, por lo que el cluster continúa funcional incluso cuando una zona completa está no disponible.

[1] - https://cloud.google.com/compute/sla

Google has an internal goal to keep the monthly uptime percentage at 99.5% for the Kubernetes API server for zonal clusters and 99.95% for regional clusters

Monitoreo

La solución actual

Google Kubernetes Engine cuenta ya con una solución para monitorear los recursos de tu cluster (nodos y pods) accesible a los usuarios con sólo marcar una casilla en los ajustes de tu cluster. Las métricas pueden verse rápidamente desde en los detalles del cluster, o se pueden gestionar desde Stackdriver y aprovecharlas al máximo.

Monitoreo:

Logging:

Heapster && Metrics-server

Fluentd

Heapster actualmente se considera obsoleto*

Escalabilidad

Escalado Horizontal de pods y nodos

Ajuste en tiempo real de pods y nodos usando dos componentes diferentes.

Horizontal Pod Autoscaler

Objeto de Kubernetes que ajusta el número de réplicas en un *Controlador de Replicación.*

Por defecto, sólo escalan respecto a métricas de recursos (Memoria y CPU). Tiene la habilidad de escalar respecto a métricas personalizadas o externas, pero se necesita implementar con adaptadores.

Implementations

API	metrics- server	<u>k8s-</u> <u>prometheu</u> <u>s-</u> adapter	azure- metrics- adapter	custom- metrics- stackdriver- adapter	k8s- cloudwatch - adapter	zalando/ kube- metrics- adapter	<u>keda</u>
metrics. k8s.io	Х	Х					
custom. metrics. k8s.io		х	Х	X	X	Х	Х
external. metrics. k8s.io		X	Х	X	Х		Х

Kubernetes te da la posibilidad de desarrollar tu propio adaptador* KubeCon Europe 2019 https://kccnceu19.sched.com/event/MPc1

Cluster Autoscaler

 Proceso que corre en el master y sirve para ajustar el tamaño del cluster en tiempo real.

 Dado que tiene control sobre el cluster mismo, su funcionamiento es complicado.

- Agrega nodos al cluster cuando hay pods pendientes de agendar, tratando de mantener un balance entre zonas.
- Remueve nodos infrautilizados, agendando los pods de éstos en los nodos disponibles.

4. Pods are scheduled on new node

Comportamiento esperado de un Cluster Autoscaler*

Nginx Ingress Controller

En qué consiste?

Una manera alternativa de implementar los *Ingress Resources* definidos y al mismo tiempo aprovechar features que sólo Nginx tiene.

Un despliegue de este Ingress Controller consta de:

- Un deployment que revisa los Ingress Resources definidos y se ajusta automáticamente.
- Un servicio de tipo
 LoadBalancer (L4) que expone
 a este Deployment.

Demo