savvasrealize.

3-3 Additional Practice

Polynomial Identities

Prove the polynomial identity.

1.
$$x^2 - y^2 = (x - y)(x + y)$$

 $x^2 - y^2 = (x^2 + xy - xy + y^2)$
 $x^2 - y^2 = x^2 - y^2$
2. $(x^4 - y^4) = (x^2 + y^2)(x + y)(x - y)$
 $(x^4 - y^4) = (x^2 + y^2)(x^2 - xy + xy - y^2)$
 $(x^4 - y^4) = (x^2 + y^2)(x^2 - y^2)$
 $(x^4 - y^4) = (x^4 + x^2y^2 - x^2y^2 - y^4)$
 $(x^4 - y^4) = (x^4 - y^4)$

Use polynomial identities to multiply the polynomial.

3.
$$(3x + 9) (3x - 9)$$
 4. $(-6x^2 + 7y^3)^2$ 5. $(8x^4 + 5y^3)^2$ 9 $x^2 - 81$ 36 $x^4 + 84x^2y^3 + 49y^3$ 64 $x^8 + 80y^3 + 25y^6$

Use polynomial identities to factor the polynomial.

6.
$$n^6 - 25m^4$$
 7. $16x^{12} - 64y^4$ 8. $b^2 - 36c^4$ ($n^3 - 5m^2$)($n^3 + 5m^2$) ($4x^6 - 8y^2$)($4x^6 + 8y^2$) ($b - 6c^2$)($b + 6c^2$)

9. $25x^6 - 100y^4$ 10. $225x^6 - y^{10}$ ($5x^3 - 10y^2$)($5x^3 + 10y^2$) ($15x^3 - y^5$)($15x^3 + y^5$)

Expand the equations using Pascal's Triangle and the Binomial Theorem.

11.
$$(x + 0.5)^3$$

 $x^3 - 1.5x^2 + 0.75x - 0.125$
12. $(s + 4t)^6$
 $s^6 + 24s^5t + 240s^4t^2 + 1280s^3t^3 + 3840s^2t^4 + 6144st^5 + 4096t^6$

Use Pascal's Triangle to expand the equations below.

13.
$$(3a-3b)^4$$
 14. $(3m-2n)^5$ 15. $(a-4)^5$ 81 a^4-324a^3b+ 243 $m-810m^4+$ $a^5-20a^4+160a^3+81b^4+240mn^4-32n^5-1024$

16. A rectangular lawn has an area of a^3 – 125. Use the difference of cubes to find out the dimensions of the rectangle. $(a-5)(a^2+5a+25)$