Part 3: Relational Data, Preparing Data and Linear Models

(a) Relational Data with dplyr

Relational Data with dplyr

- ► Typically, data analysis involves many tables of data that must be combined to answer questions
- ▶ Collectively, multiple tables of data are called relational data
- ▶ Relations are always defined between a pair of tables
- See tibbles x and y

```
## # A tibble: 3 \times 2
##
       key val x
##
     <dbl> <chr>
## 1
         1 \times 1
## 2 2 x2
## 3
         3 \times 3
## # A tibble: 3 x 2
       key val_y
##
     <dbl> <chr>
##
## 1
         1 y1
## 2
         2 y2
         4 y3
## 3
```

Keys

- ▶ The variables used to connect each pair of tables are called keys
- ➤ A key is a variable (or set of variables) that uniquely identifies an observation
- ► There are two types of keys:
 - ▶ A primary key uniquely identifies an observation in its own table
 - ► A foreign key uniquely identifies an observation in another table.

Figure 1: Keys and Relations in flights tables

Mutating Joins

- ► Allows you to combine variables from two tables
- First matches observations by their keys, and then copies across variables from one table to another
- ► Similar to mutate(), the join functions add variables to the right
- Types
 - Inner Join
 - ► Left Join
 - Right Join
 - ► Full Join

Inner Joins

- ▶ Matches pairs of observations when their keys are equal
- Unmatched rows are not included in the result

```
inner_join(x,y)
```

```
## Joining, by = "key"
## # A tibble: 2 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
```


Figure 2: Tables x and y

Left Join

A left join keeps all observations in x

```
left_join(x,y)
```

```
## Joining, by = "key"
## # A tibble: 3 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 3 x3 <NA>
```


Figure 3: Tables \times and y

Right Join

A right join keeps all observations in y

```
right_join(x,y)
## Joining, by = "key"
## # A tibble: 3 x 3
```

key val_x val_y
<dbl> <chr> <chr>

1 1 x1 y1

2 2 x2 y2

3 4 <NA> y3

	х	
key	\$	val_x ‡
	1	xl
	2	x2
	3	x3

Figure 4: Tables x and y

Full Join

A full join keeps all observations in x and y

```
full_join(x,y)
```

```
## Joining, by = "key"
## # A tibble: 4 x 3
## key val_x val_y
## <dbl> <chr> <chr> ## 1 1 x1 y1
## 2 2 x2 y2
## 3 3 x3 <NA>
## 4 4 <NA> y3
```

X			у				
key	\$	val_x ‡	key	÷	val_y	÷	
	1	x1		1	yl		
	2	x2		2	y2		
	3	x3		4	у3		

Filtering Joins

Match observations in the same way as mutating joins, but affect the observations, not the variables. Two types:

- semi_join(x,y) keeps all observations in x that have a match in y
- anti_join(x,y), drops all observations in x that have a match in y.

Semi Joins

Keeps all observations in x that have a match in y

```
semi_join(x,y)

## Joining, by = "key"

## # A tibble: 2 x 2

## key val_x

## <dbl> <chr>
## 1 1 x1

## 2 2 x2
```


Figure 6: Tables x and y

Anti Joins

Drops all observations in \boldsymbol{x} that have a match in \boldsymbol{y} .

```
anti_join(x,y)

## Joining, by = "key"

## # A tibble: 1 x 2

## key val_x

## <dbl> <chr>
## 1 3 x3
```


Figure 7: Tables x and y

Challenge 3.1

- Filter out incomplete flights from the dataset
- ▶ Join the flights data to the weather data
- ► Filter out missing temperature values
- ▶ Plot the relationship between temperatures and departure delays, facet by origin and colour by wind_speed
- Use a sample of 10000 for the plot, with seed 99.

Test Slide with Plot

