AMENDMENTS TO THE CLAIMS

- 1. (withdrawn) A method for real-time detecting and quantifying a nucleic acid template in a PCR mixture comprising the steps of
- a) thermally cycling the PCR mixture, wherein the PCR mixture comprises a thermostable polymerase, the nucleic acid template, primers to amplify at least one amplicon from the nucleic acid template, and a double stranded DNA dye, wherein the amplicon has a melting temperature of T_m ;
- b) obtaining cycle by cycle a pre- T_m emission at a MT below the T_m and a post- T_m emission at the a MT above the T_m ;
- c) determining cycle by cycle an emission amount of the amplicon, which is the difference between the pre- T_m emission and the post- T_m emission.
- 2. (withdrawn) The method of claim 1 wherein the double stranded DNA dye is a double stranded DNA intercalating dye.
- 3. (withdrawn) The method of claim 2 wherein the double stranded DNA intercalating dye is selected from the group consisting of ethidium bromide, YO-PRO-1, Hoechst 33258, SYBR Gold, and SYBR Green I.
- 4. (withdrawn) The method of claim 1 wherein the double stranded DNA dye is a primer-based double stranded DNA dye.
- 5. (withdrawn) The method of claims 4 wherein the primer-based double stranded DNA dye is selected from the group consisting of fluorescein, FAM, JOE, HEX, TET, Alexa Fluor 594, ROX, and TAMRA, rhodamine, BODIPY-FI.

- 6. (withdrawn) The method of claim 1 wherein the MT below the T_m is 0.25 $^{\rm O}$ C below, 0.5 $^{\rm O}$ C below, 1.0 $^{\rm O}$ C below, 1.5 $^{\rm O}$ C below, or 2.0 $^{\rm O}$ C below the T_m .
- 7. (withdrawn) The method of claim 1 wherein the MT above the T_m is 0.25 O C above, 0.5 O C above, 1.0 O C above, 1.5 O C above, or 2.0 O C above the T_m .
- 8. (withdrawn) The method of claim 1 wherein the emission amount of the amplicon is obtained through a computer program which performs a calculation of subtracting the pre- T_m emission from the post- T_m emission or the post- T_m emission from the pre- T_m emission.
- 9. (original) A method for real-time detecting and quantifying a first nucleic acid template and a second nucleic acid template in a PCR mixture comprising the steps of
- thermostable polymerase, a double stranded DNA dye, the first template and the second template, primers for amplifying a first amplicon from the first template and a second amplicon from the second template, and wherein the first amplicon has a first T_m and the second amplicon has a second T_m ;
- b) obtaining cycle by cycle a first emission at a first MT between an annealing/extension temperature and the first T_m and a second emission at a second MT between the first T_m and the second T_m ;
- c) determining cycle by cycle a first emission amount of the first amplicon which is the difference between the first emission and the second emission, and a second emission amount of the second amplicon which is the second emission.

- 10. (original) The method of claim 9 further comprising a step of obtaining cycle by cycle a third emission at a third MT between the second T_m and a total denaturing temperature, wherein the second emission amount is the difference between the second emission and the third emission.
- 11. (original) The method of claim 9 wherein the double stranded DNA dye is a double stranded DNA intercalating dye.
- 12. (original) The method of claim 11 wherein the double stranded DNA intercalating dye is selected from the group consisting of ethidium bromide, YO-PRO-1, Hoechst 33258, SYBR Gold, and SYBR Green I.
- 13. (original) The method of claim 9 wherein the double stranded DNA dye is a primer-based double stranded DNA dye.
- 14. (original) The method of claims 13 wherein the primer-based double stranded DNA dye is selected from the group consisting of fluorescein, FAM, JOE, HEX, TET, Alexa Fluor 594, ROX, and TAMRA, rhodamine, BODIPY-FI.
- 15. (original) The method of claim 9 wherein the first MT is 0.25 O C below the first T_m , 0.5 O C below the first T_m , 1.0 O C below the first T_m , 1.5 O C below the first T_m , or 2.0 O C below the first T_m , and wherein the first MT is higher than the annealing temperature.
- 16. (original) The method of claim 9 wherein the second MT is 0.25 O C below the second T_m , 0.5 O C below the second T_m , 1.0 O C below the second T_m , 1.5 O C below the second T_m , or 2.0 O C below the second T_m , and wherein the second MT is higher than the first T_m .

- 17. (original) The method of claim 9 wherein the second MT is 0.25 $^{\circ}$ C above the first T_m, 0.5 $^{\circ}$ C above the first T_m, 1.0 $^{\circ}$ C above the first T_m, 1.5 $^{\circ}$ C above the first T_m, or 2.0 $^{\circ}$ C above the first T_m, and wherein the second MT is less than the second T_m.
- 18. (original) The method of claim 9 wherein the second MT is the first $T_m + 0.25^{\circ}C$ < the second MT< the second $T_m 0.25^{\circ}C$, the first $T_m + 0.5^{\circ}C$ < the second MT< the second T_m-0.5°C, the first $T_m + 1.0^{\circ}C$ < the second MT< the second $T_m 1.5^{\circ}C$, or the first $T_m + 1.5^{\circ}C$ < the second MT< the second $T_m 1.5^{\circ}C$, or the first $T_m + 2.0^{\circ}C$ <
- 19. (original) The method of claim 10 wherein the third MT is 0.25 o C above the second T_m , 0.5 o C the second T_m , 1.0 o C above the second T_m , 1.5 o C above the second T_m , or 2.0 o C above the second T_m , and wherein the third MT is less than the total denaturing temperature.
- 20. (original) The method of claim 9 wherein the emission amount of the first amplicon is obtained through a computer program performing a calculation of subtracting the first emission from the second emission or subtracting the second emission from the first emission.
- 21. (original) A method for real-time detecting and quantifying a first nucleic acid template and a second nucleic acid template in a PCR mixture comprising the steps of:
 - a) thermally cycling a PCR mixture wherein the PCR mixture comprises a thermostable polymerase, a double stranded DNA dye, the first template and the second template, primers for amplifying a first amplicon from the first template and a second amplicon from the second template, and wherein the first amplicon has a first T_m and the

- second amplicon has a second T_m and the first T_m is less than the second T_m ;
- b) obtaining cycle by cycle a first pre- T_m emission at a MT below the first T_m and a first post- T_m emission at the a MT above the first T_m and a second pre- T_m emission at a MT below the second T_m and a second post- T_m emission at the a MT above the second T_m ;
- c) determining cycle by cycle a first emission amount of the first amplicon which is the difference between the first pre-T_m emission and the first post-T_m emission; and a second emission amount of the second amplicon which is the difference between the second pre-T_m emission and the second post-T_m emission.
- 22. (original) The method of claim 21 wherein the double stranded DNA dye is a double stranded DNA intercalating dye
- 23. (original) The method of claim 22 wherein the double stranded DNA intercalating dye is selected from the group consisting of ethidium bromide, YO-PRO-1, Hoechst 33258, SYBR Gold, and SYBR Green I.
- 24. (original) The method of claim 21 wherein the double stranded DNA dye is a primer-based double stranded DNA dye.
- 25. (original) The method of claims 24 wherein the primer-based double stranded DNA dye is selected from the group consisting of fluorescein, FAM, JOE, HEX, TET, Alexa Fluor 594, ROX, and TAMRA, rhodamine, BODIPY-FI.
- 26. (original) The method of claim 21 wherein the MT below the first T_m and/or the second T_m are 0.25 O C below, 0.5 O C below, 1.0 O C below, 1.5 O C below, or 2.0 O C below.

- 27. (original) The method of claim 21 wherein the MT above the first T_m and/or the second T_m are 0.25 $^{\rm O}$ C above, 0.5 $^{\rm O}$ C above, 1.0 $^{\rm O}$ C above, 1.5 $^{\rm O}$ C above, or 2.0 $^{\rm O}$ C above.
- 28. (original) The method of claim 21 wherein the emission amount of the amplicons is obtained through a computer program performing the calculation of subtracting the pre- T_m emission from the post- T_m emission or subtracting the post- T_m emission from the pre- T_m emission.
- 29. (withdrawn) A method for real-time detecting and quantifying a total of *n* nucleic acid templates in a PCR mixture comprising the steps of:
- a) thermally cycling a PCR mixture, wherein the PCR mixture comprises a thermostable polymerase, nucleic acid templates including *n* nucleic acid templates, primers for amplifying *n* amplicons, and a double stranded DNA dye;
- b) obtaining cycle by cycle a MT_k emission at MT_k and $MT_{(k+1)}$, wherein $T_{m(k-1)} < MT_k < T_{mk} < MT_{(k+1)} < T_{m(k+1)}$, T_{mk} is the T_m of a kth amplicon, $T_{m(k-1)}$ is the T_m of a (k-1)th amplicon except that $T_{m(k-1)}$ is an annealing and/or an extension temperature when k=1, $T_{m(k+1)}$ is the T_m of a (k+1)th amplicon except that $T_{m(n+1)}$ is a total denaturing temperature when k=n, and k and n are positive integers, $1 \not \leq n$, and $n \geq 2$;
- c) determining cycle by cycle an emission amount of the kth amplicon which is the difference between the MT_k emission and the $MT_{(k+1)}$ emission.
- 30. (withdrawn) The method of claim 29 wherein the double stranded DNA dye is a double stranded DNA intercalating dye.

- 31. (withdrawn) The method of claim 30 wherein the double stranded DNA intercalating dye is selected from the group consisting of ethidium bromide, YO-PRO-1, Hoechst 33258, SYBR Gold, and SYBR Green I.
- 32. (withdrawn) The method of claim 29 wherein the double stranded DNA dye is a primer-based double stranded DNA dye that is covalently linked to the primers.
- 33. (withdrawn) The method of claims 32 wherein the primer-based double stranded DNA dye is selected from the group consisting of fluorescein, FAM, JOE, HEX, TET, Alexa Fluor 594, ROX, and TAMRA, rhodamine, BODIPY-FI.
- 34. (withdrawn) The method of claim 29 wherein $T_{m(k-1)} + 0.25^{\circ}C < MT_k < T_{mk}$, $T_{m(k-1)} + 0.5^{\circ}C < MT_k < T_{mk}$, $T_{m(k-1)} + 1.0^{\circ}C < MT_k < T_{mk}$, $T_{m(k-1)} + 1.5^{\circ}C < MT_k < T_{mk}$, or $T_{m(k-1)} + 2.0^{\circ}C < MT_k < T_{mk}$.
- 35. (withdrawn) The method of claim 29 wherein T_{mk} +0.25°C< $MT_{(k+1)}$ < $T_{m(k+1)}$, T_{mk} +0.5°C< $MT_{(k+1)}$ < $T_{m(k+1)}$, T_{mk} +1.0°C< $MT_{(k+1)}$ < $T_{m(k+1)}$, T_{mk} +1.5°C< $MT_{(k+1)}$ < $T_{m(k+1)}$, T_{mk} +2.0°C< $MT_{(k+1)}$ < $T_{m(k+1)}$.
- 36 (withdrawn) The method of claim 29 wherein $T_{m(k-1)} < MT_k < T_{mk} 0.25^{\circ}C$, $T_{m(k-1)} < MT_k < T_{mk} 0.5^{\circ}C$, $T_{m(k-1)} < MT_k < T_{mk} 1.5^{\circ}C$, or $T_{m(k-1)} < MT_k < T_{mk} 2.0^{\circ}C$.
- 37. (withdrawn) The method of claim 29 wherein $T_{mk} < MT_{(k+1)} < T_{m(k+1)} 0.25^{O}C$, $T_{mk} < MT_{(k+1)} < T_{m(k+1)} 0.5^{O}C$, $T_{mk} < MT_{(k+1)} < T_{m(k+1)} 1.0^{O}C$, $T_{mk} < MT_{(k+1)} < T_{m(k+1)} 1.5^{O}C$, $T_{mk} < MT_{(k+1)} < T_{m(k+1)} 2.0^{O}C$.
- 38. (withdrawn) The method of claim 29 wherein $T_{m(k-1)} + 0.25^{\circ}C < MT_k < T_{mk} 0.25^{\circ}C$, $T_{m(k-1)} + 0.5^{\circ}C < MT_k < T_{mk} 0.5^{\circ}C$, $T_{m(k-1)} + 1.0^{\circ}C < MT_k < T_{mk} 1.0^{\circ}C$, $T_{m(k-1)} + 1.5^{\circ}C < MT_k < T_{mk} 1.5^{\circ}C$ or $T_{m(k-1)} + 2.0^{\circ}C < MT_k < T_{mk} 2.0^{\circ}C$.

- 39. (withdrawn) The method of claim 29 wherein $T_{mk} + 0.25^{\circ}C < MT_{(k+1)} < T_{m(k+1)} 0.25^{\circ}C$, $T_{mk} + 0.5^{\circ}C < MT_{(k+1)} < T_{m(k+1)} 0.5^{\circ}C$, $T_{mk} + 1.0^{\circ}C < MT_{(k+1)} < T_{m(k+1)} 1.0^{\circ}C$, $T_{mk} + 1.5^{\circ}C < MT_{(k+1)} < T_{m(k+1)} 1.5^{\circ}C$, or $T_{mk} + 2.0^{\circ}C < MT_{(k+1)} < T_{m(k+1)} 2.0^{\circ}C$.
- 40. (withdrawn) The method of claim 29 wherein $2 \le n \le 35$, $2 \le n \le 18$, $2 \le n \le 10$, $2 \le n \le 7$, or $2 \le n \le 5$.
- 41. (withdrawn) The method of claim 40 wherein n = 2, 3, 4, or 5.
- 42 (withdrawn) The method of claim 29 wherein the PCR mixture further comprises a FRET based probe.
- 43. (withdrawn) The method of claim 42 wherein the FRET based probe is selected from the group consisting of a Taqman probe, a double-dye oligonucleotide probe, an Eclipse probe, a Molecular Beacon probe, a Scorpion probe, a Hybridization probe, a ResonSense probe, a Light-up probe, and a Hy-Beacon probe.
- 44. (withdrawn) The method of claim 29 wherein the PCR mixture further comprises a second primer-based double stranded DNA dye that emits differently from the double stranded DNA dye.
- 45. (withdrawn) The method of claim 29 wherein the emission amount of the kth amplicon is obtained through a computer program performing the subtraction of MT_k emission from $MT_{(k+1)}$ emission or the subtraction of the $MT_{(k+1)}$ emission from MT_k emission.
- 46. (withdrawn) A method for detecting and quantifying a total of *n* nucleic acid templates in multiplex real-time PCR comprising the steps of:

- a) thermally cycling a PCR mixture, wherein the PCR mixture comprises a thermostable polymerase, nucleic acid templates including *n* nucleic acid templates, primers for amplifying *n* amplicons, and a double stranded DNA dye;
- b) obtaining cycle by cycle a pre- T_{mk} emission of the kth amplicon at a MT between $T_{m(k-1)}$ and T_{mk} and a post- T_{mk} emission of the kth amplicon at a MT between T_{mk} and $T_{m(k+1)}$, wherein $T_{m(k-1)} < T_{mk} < T_{m(k+1)}$, T_{mk} is the T_m of a kth amplicon, $T_{m(k-1)}$ is the T_m of a (k-1)th amplicon except that $T_{m(k-1)}$ is an annealing and/or an extension temperature when k=1, $T_{m(k+1)}$ is the T_m of a (k+1)th amplicon except that $T_{m(n+1)}$ is a total denaturing temperature when k=n, and k and k are positive integers, $1 \le 4 \le n$, and $k \le n$.
- c) determining cycle by cycle an emission amount of the kth amplicon which is the difference between the pre- T_{mk} emission and the post- T_{mk} emission.
- 47. (withdrawn) The method of claim 46 wherein the double stranded DNA dye is a double stranded DNA intercalating dye.
- 48. (withdrawn) The method of claim 47 wherein the double stranded DNA intercalating dye is selected from the group consisting of ethidium bromide, YO-PRO-1, Hoechst 33258, SYBR Gold, and SYBR Green I.
- 49. (withdrawn) The method of claim 46 wherein the double stranded DNA dye is a primer-based double stranded DNA dye.
- 50. (withdrawn) The method of claims 49 wherein the primer-based double stranded DNA dye is selected from the group consisting of fluorescein, FAM, JOE, HEX, TET, Alexa Fluor 594, ROX, and TAMRA, rhodamine, BODIPY-FI.

- 51. (withdrawn) The method of claim 46 wherein the MT between $T_{m(k-1)}$ and T_{mk} is $T_{m(k-1)}$ +0.25 O C< the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} , $T_{m(k-1)}$ +0.5 O C< the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} , $T_{m(k-1)}$ +1.0 O C< the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} , $T_{m(k-1)}$ +1.5 O C< the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} , or $T_{m(k-1)}$ +2.0 O C< MT_k < T_{mk} .
- 52. (withdrawn) The method of claim 46 wherein the MT between T_{mk} and $T_{m(k+1)}$ is T_{mk} +0.25°C< the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$, T_{mk} +0.5°C< the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$, T_{mk} +1.0°C< the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$, T_{mk} +1.5°C< the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$, T_{mk} +2.0°C< the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$.
- 53. (withdrawn) The method of claim 46 wherein the MT between $T_{m(k-1)}$ and T_{mk} is $T_{m(k-1)}$ < the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} -0.25 O C, $T_{m(k-1)}$ < the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} -0.5 O C, $T_{m(k-1)}$ < the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} -1.0 O C, $T_{m(k-1)}$ < the MT between $T_{m(k-1)}$ and T_{mk} < T_{mk} -2.0 O C.
- 54. (withdrawn) The method of claim 46 wherein the MT between T_{mk} and $T_{m(k+1)}$ is T_{mk} < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ -0.25 O C, T_{mk} <the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ -0.5 O C, T_{mk} < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ -1.0 O C, T_{mk} <the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ -1.5 O C, T_{mk} <the MT between T_{mk} and $T_{m(k+1)}$ <0.0 O C.
- 55.. (withdrawn) The method of claim 46 wherein the MT between $T_{m(k-1)}$ and T_{mk} is $T_{m(k-1)} + 0.25^{O}$ C<the MT between $T_{m(k-1)}$ and $T_{mk} < T_{mk}$ -0.25 O C, $T_{m(k-1)} + 0.5^{O}$ C<the MT between $T_{m(k-1)}$ and $T_{mk} < T_{mk}$ 0.5 O C, $T_{m(k-1)} + 1.0^{O}$ C<the MT between $T_{m(k-1)}$ and $T_{mk} < T_{mk}$ 1.5 O C or $T_{m(k-1)} + 2.0^{O}$ C<the MT between $T_{m(k-1)}$ and $T_{mk} < T_{mk} 2.0^{O}$ C.

- 56. (withdrawn) The method of claim 46 wherein the MT between T_{mk} and $T_{m(k+1)}$ is T_{mk} + $0.25^{\circ}C$ < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ - $0.25^{\circ}C$, T_{mk} + $0.5^{\circ}C$ < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ - $0.5^{\circ}C$, T_{mk} + $1.0^{\circ}C$ <the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ - $1.0^{\circ}C$, T_{mk} + $1.5^{\circ}C$ < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ - $1.5^{\circ}C$, or T_{mk} + $2.0^{\circ}C$ < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ - $1.5^{\circ}C$, or T_{mk} + $1.5^{\circ}C$ < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ - $1.5^{\circ}C$, or T_{mk} + $1.5^{\circ}C$ < the MT between T_{mk} and $T_{m(k+1)}$ < $T_{m(k+1)}$ - $1.5^{\circ}C$.
- 57. (withdrawn) The method of claim 46 wherein $2 \le n \le 35$, $2 \le n \le 18$, $2 \le n \le 10$, $2 \le n \le 7$, or $2 \le n \le 5$.
- 58 (withdrawn) The method of claim 46 wherein the PCR mixture further comprises a FRET based probe.
- 59. (withdrawn) The method of claim 46 wherein the FRET based probe is selected from the group consisting of a Taqman probe, a double-dye oligonucleotide probe, an Eclipse probe, a Molecular Beacon probe, a Scorpion probe, a Hybridization probe, a ResonSense probe, a Light-up probe, and a Hy-Beacon probe.
- 60. (withdrawn) The method of claim 46 wherein the PCR mixture further comprises a second primer-based double stranded DNA dye that emits differently from the double stranded DNA dye.
- 61. (withdrawn) The method of claim 46 wherein the emission amount of the kth amplicon is obtained through a computer program performing the subtraction of the pre- T_{mk} emission from the post- T_{mk} emission or the subtraction of the post- T_{mk} emission from the pre- T_{mk} emission
- 62. (withdrawn) A computer software program for quantifying a real-time PCR amplicon which, when executed by a computer processor, performs the subtraction

of a pre- T_m emission from a post- T_m emission or the subtraction of the post- T_m emission from the pre- T_m emission.

- 63. (withdrawn) The computer software program of claim 62 wherein the emission was obtained from a double stranded DNA dye.
- 64. (withdrawn) The computer software program of claim 62 wherein the double stranded DNA dye is a double stranded DNA intercalating dye.
- 65. (withdrawn) The computer software program of claim 64 wherein the double stranded DNA intercalating dye is selected from the group consisting of ethidium bromide, YO-PRO-1, Hoechst 33258, SYBR Gold, and SYBR Green I.
- 66. (withdrawn) The computer software program of claim 62 wherein the double stranded DNA dye is a primer-based double stranded DNA dye that is covalently linked to the primers.
- 67. (withdrawn) The computer software program of claim 66 wherein the primer-based double stranded DNA dye is selected from the group consisting of fluorescein, FAM, JOE, HEX, TET, Alexa Fluor 594, ROX, and TAMRA, rhodamine, BODIPY-FI.
- 68. (withdrawn) The computer software program of claim 62 wherein a pre- T_m emission is obtained at a MT below the T_m of the amplicon and a post- T_m emission is obtained at a MT above the T_m .
- 69. (withdrawn) The computer software program of claim 68 wherein the MT below the T_m is 0.25 $^{\rm O}$ C below, 0.5 $^{\rm O}$ C below, 1.0 $^{\rm O}$ C below, 1.5 $^{\rm O}$ C below, or 2.0 $^{\rm O}$ C below the T_m .

- 70. (withdrawn) The computer software program of claim 68 wherein the MT above the T_m is 0.25 $^{\rm O}$ C above, 0.5 $^{\rm O}$ C above, 1.0 $^{\rm O}$ C above, 1.5 $^{\rm O}$ C above, or 2.0 $^{\rm O}$ C above the T_m .
- 71. (withdrawn) The computer software program of claim 62 which is stored and/or executed in a PCR instrument.
- 72. (withdrawn) The computer software program of claim 62 which is stored and/or executed in a computer connected to a PCR instrument.
- 73. (withdrawn) A computer program product comprising a computer memory having a computer software program, wherein the computer software program, when executed by a computer processor, performs the subtraction of a pre- T_m emission from a post- T_m emission or the subtraction of the post- T_m emission from the pre- T_m emission.
- 74. (withdrawn) The computer program product of claim 73 wherein the emission was obtained from a double stranded DNA dye.
- 75. (withdrawn) The computer program product of claim 73 wherein the double stranded DNA dye is a double stranded DNA intercalating dye.
- 76. (withdrawn) The computer program product of claim 75 wherein the double stranded DNA intercalating dye is selected from the group consisting of ethidium bromide, YO-PRO-1, Hoechst 33258, SYBR Gold, and SYBR Green I.
- 77. (withdrawn) The computer program product of claim 73 wherein the double stranded DNA dye is a primer-based double stranded DNA dye that is covalently linked to the primers.

- 78. (withdrawn) The computer program product of claim 77 wherein the primer-based double stranded DNA dye is selected from the group consisting of fluorescein, FAM, JOE, HEX, TET, Alexa Fluor 594, ROX, and TAMRA, rhodamine, BODIPY-FI.
- 79. (withdrawn) The computer program product of claim 73 wherein a pre- T_m emission is obtained at a MT below the T_m of the amplicon and a post- T_m emission is obtained at a MT above the T_m .
- 80. (withdrawn) The computer program product of claim 79 wherein the MT below the T_m is 0.25 $^{\rm O}$ C below, 0.5 $^{\rm O}$ C below, 1.0 $^{\rm O}$ C below, 1.5 $^{\rm O}$ C below, or 2.0 $^{\rm O}$ C below the T_m .
- 81. (withdrawn) The computer program product of claim 79 wherein the MT above the T_m is 0.25 $^{\rm O}$ C above, 0.5 $^{\rm O}$ C above, 1.0 $^{\rm O}$ C above, 1.5 $^{\rm O}$ C above, or 2.0 $^{\rm O}$ C above the T_m .
- 82. (withdrawn) The computer program product of claim 73 which is stored and/or executed in a PCR instrument.
- 83. (withdrawn) The computer program product of claim 73 which is stored and/or executed in a computer connected to a PCR instrument.
- 84. (withdrawn) A PCR instrument comprising the computer program product of claim 73.