

ROBOT VISION - CONTENTS

01 INTRODUCTION TO COMPUTER VISION

- **02** ROBOT VISION PART1
- **03** ROBOT VISION PART2

- Computer Vision Scope
- Challenges in Computer Vision
- Understanding Images

- Examples of 2D Vision in robots
- · Introduction to image processing
- Tutorial on image processing

- Examples of 3D Vision in robots
- Assignment on closest blob

Why should we study Vision

- It is a powerfull perceptual modality (the most powerfull?), allowing the acquisition of very rich information of the surrounding environment
 - Object position and velocities
 - Relationships among objects
 - Object identity
 - Interact with the world in a non-invasive way (without physical contact)
- Complex perceptual system. Above 50% of the human visual cortex is dedicated to processing visual information
- Biological systems are still not very well understood

What is an Image?

What is an Image?

What is an Image?

Make computer/robots understand images and videos

Specific Recognition Tasks

- Outdoor, indoor
- City, forest, factory

Image Annotation

- Street
- People
- Buildings
- Mountains
- Tourism
- Cloudy
- Bricks

Make computer/robots understand images and videos

Object Detection

• Find Pedestrian

Image Segmentation

Computer Vision Scope

Computer Vision is Challenging...

Computer Vision is Challenging...

First task:

• Find remote control

Computer Vision is Challenging...

- Where was this picture taken?
- How many people are there?
- What are they doing?
- What is the object the person on the left is standing on?
- Why is this a funny picture?

Computer Vision is Challenging...

- Where was this picture taken?
- How many people are there?
- What are they doing?
- What is the object the person on the left is standing on?
- Why is this a funny picture?

Computer Vision is Challenging...

- Where was this picture taken?
- How many people are there?
- What are they doing?
- What is the object the person on the left is standing on?
- Why is this a funny picture?

Computer Vision is Challenging...

- Where was this picture taken?
- How many people are there?
- What are they doing?
- What is the object the person on the left is standing on?
- Why is this a funny picture?

Computer Vision is Challenging...

- Where was this picture taken?
- How many people are there?
- What are they doing?
- What is the object the person on the left is standing on?
- Why is this a funny picture?

Computer Vision is Challenging...

- Where was this picture taken?
- How many people are there?
- What are they doing?
- What is the object the person on the left is standing on?
- Why is this a funny picture?

02 - 2D ROBOT VISION

Image Processing

What is meant by image processing?

- It is an umbrella term for many functions that:
 - Analyses images
 - Convert one representation into another
- Perform operations on an image to:
 - get an enhanced image,
 - **extract** useful information from it.
- Type of signal processing
 - Input is an image
 - Output is an image or characteristics/features
- Examples
 - Filtering
 - Image Enhancement
 - Edge detection
 - Segmentation
 - Image Analysis

Applications that Process Images

- Object segmentation
- Face recognition
- Iris recognition
- Fingerprint recognition
- Character recognition
- Mathematical morphology
- Detecting Edges

Image Processing

- Erode original image.
- · Dilate eroded image.
- Smooths object boundaries, eliminates noise (isolated pixels) and maintains object size.

Image Processing

Thresholding Image

Find Contours in image

OpenCV Library

- OpenCV is a large scale, open library for computer vision (in C++, w/ Python, Java and Matlab interfaces).
- The **OpenCV** framework contains numerous state-of-the art algorithms including *filtering*, *feature extraction* and matching, 3D reconstruction, video analysis and many more.
- **OpenCV** is *cross-platform*, and has been successfully compiled and deployed on Linux, MacOS, Windows, and Android/iOS.
- Website: opencv.org

Tutorial #1 Image Processing

Simple module that basically:

- Start off with Where's Wally :-)
- loading an illustration
- performing simple image processing
 - Cropping
 - Blurring
 - Modifying contrast

https://github.com/vvv-school/tutorial_find-wally

Tutorial #2 Image Processing

Simple module that basically:

- Track something round and red :-)
- Work on live image streams
- performing simple image processing
 - Spatial Filters (GaussianBlur)
 - Morphology (dilate, erode)
 - Detect Circles (HoughCircles)

https://github.com/vvv-school/tutorial_yarp-opencv

Online Learning Object Detection Pipeline for Humanoid Robots

Elisa Maiettini, Vadim Tikhanoff, Giulia Pasquale Lorenzo Natale, Lorenzo Rosasco

Assignment Robot Vision

By now, you should be familiar with:

- Getting images from streams
- Smoothing Images
- Eroding and Dilating (Morphology transformation)
- Basic thresholding
- Hough Circle Transform
- Template Matching
- · Finding contours in your image
- Image Moments
- Point Polygon Test

Impelment a complex module that:

- Get streams of images
- **processing** techniques to make the disparity image cleaner for processing. (GaussianBlur, erode, dilate)
- Retrieve the maximum value and its position.
- Apply thresholding on that point to remove unwanted background
- Find the contour of the closest object with its moment and mass center
- Draw it on the disparity image
- Get its bounding box (ROI-Region of Interest)
- Create a cropped image containing the RGB image of the ROI
- Fill in a YARP bottle as a list
- Finally, **stream** the resulting **image** out.

https://github.com/vvv-school/assignment closest-blob

Robot {vision}