

PLANET GENERATOR

Projekt końcowy kursu SDA Data Science

CEL Projektu

Na potrzeby gry typu ekspansja kosmosu:

Stworzenie generatora nowych planet do osiągnięcia efektu Otwartego Świata tzw. OpenWorld

ZESPÓŁ

TOMASZ MULARCZYK

Data Scientist Wannabe

PIOTR PAWŁOWSKI

Data Scientist Wannabe

KROKI PROJEKTOWE

1_

Stworzenie Generatora Al

2

Stworzenie API

- Generative Adversarial Network

3

Stworzenie interfejsu użytkownika

do przetestowania wystawionego API

DZIAŁANIE SIECI GAN

TIMELINE PROJEKTU

21.01

- Zebranie danych
- Obróbka surowych danych

22.01-29.01

- Wytrenowanie modelu
- Utworzenie API
- Utworzenie strony internetowej generatora

22.01

- Zaplanowanie pracy
- Wczytanie danych
- Utworzenie pierwszej sieci neuronowej

29.01-03.02

- Podsumowanie projektu
- Modelowanie 512px Datasetu

DATA UNDERSTANDING

DANE WEJŚCIOWE

- Jakość kontra ilość
- Wykorzystanie setów zdjęciowych ze strony NASA
- Nasz wstępnie przygotowany dataset obejmuje 100 zdjęć dla każdej z planety (x12)

DATA PREPARATION

DANE WEJŚCIOWE

- Jakość kontra ilość
- Wykorzystanie setów zdjęciowych ze strony NASA
- Nasz wstępnie przygotowany dataset obejmuje 100 zdjęć dla każdej z planety (x12)

DATA PREPARATION

DANE WEJŚCIOWE

- Jakość kontra ilość
- Wykorzystanie setów zdjęciowych ze strony NASA
- Nasz wstępnie przygotowany dataset obejmuje 100 zdjęć dla każdej z planety (x12)
- Wstępnie przygotowaliśmy scalling do 64px, 128px, 256px, 512px

MODELING

- Utworzono 8 niezależnych modeli (po 2 na każdą rozdzielczość)
- Każdy model składa się z generatora
 i dyskryminatora; generator z 4 warstw,
 dyskryminator z 3 (w tym po dwie konwolucyjne)
- model_v2 wyróżnia się większa liczbą zastosowanych filtrów
- Dla modelu 512px ograniczyliśmy ilość danych wejściowych do 4 (z 12) planet

model_v1:

Gen: 4L, 64/32F, 7mln params Disc: 3L, 32/32CNN, 18k params

model v2:

Gen: 4L, 128/64F, 440mln params Disc: 3L, 64/128CNN, 2mln params

EVALUATION

- Wraz z rozdzielczością zdjęć i ilością parametrów modelu wzrastała zasobożerność (czas, ram, storage)
 - 8 przygotowanych modeli wytrenowano na 3 równolegle pracujących maszynach wirtualnych pracujących w chmurze Azure
 - Przetwarzanie modelu o największej rozdzielczości i tylko dla 4 planet trwało ok. 5 dni

Data set 512x512px, model_v2

Czas liczenia jednej epoki ~ 20 min;

1 dzień, 10 epoka

3 dzień, 250 epoka

5 dzień, 500 epoka

DEPLOYMENT

Deploy modelu GAN generatora umieszczono w serwisie FastAPI, **endpoint generuje nową planetę.** Wykorzystano platformę Azure.

Layout wykonano w Figma.
Gotowy generator (front
aplikacji testującej API)
zbudowano w React
i umieszczono na publicznym
serwerze.

Infrastruktura

Wygenerowane planety

TWOJA PLANETA:

Projekt końcowy kursu SDA Data Science

WYGENERUJ NOWĄ PLANETĘ

ŹRÓDŁA:

- Aplikacja: http://tomsoft1.pl
- Github: <u>mulatom1/PlanetGenerator</u>
- Projekt aplikacji: <u>figma.com</u>
 Wideo timelapse z sieci GAN: <u>1, 2</u>

