§ 1.3 Propositional Equivalence (命题等

1. Introduction

Example 1 (page 21)

p V ¬p is always true. It is a tautology. (永真公式) p /\ ¬p is always false. It is a contradiction. (永假公式)

Definition 1 (see page 21)

(1) A compound proposition that is always *true*, no matter what the truth values of the propositions that occur in it, is called a tautology. (2) A compound proposition that is always false, no matter what the truth values of the propositions that occur in it, is called a

(3) A proposition that is neither a tautology nor a contradiction is called a contingency (中性公式).

2. Logical Equivalence

(1) Example 2 (page 22)

Show that ¬(p Vq) and ¬p \ ¬q are logically equivalent. Truth Table

р	q	p∨q	¬(p ∨ q)	٦р	¬q	¬р /\ ¬
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

(2) Definition 2 (logical equivalence)

The propositions p and q are called logically equivalent if poq is a tautology.

The notation p≡q denotes that p and q are logically equivalence.

p≡T denotes that p is a tautology.

Example 4

Show that the propositions $p \lor (q \land r)$ and $(p \lor q) \land (p \lor q)$ V r) are logically equivalent.

	Solu	utior	n: By c	onstructin	g truth	table (page 27).
р	q		q∧r		p∖/q	p\/r	(p\/q)/\(p\/r)
Т	Т	Т	Т	T	Т	T	T
T	Т	F	F	T	Т	Т	Т
T	F	Т					
T	F	F					
F	Т	Т					
F	Т	F	F	F	Т	F	F
F	F	Т					
F	F	F					

(4) Some Important Equivalences

(a) Table 5 (Logical Equivalence)

p ∧ T ≡p Identity laws pVF≣p (同一律) p V T ≡T Domination laws p∧F≣F p V p ≡p Idempotent laws p ∧ p ≣p (**幂等律**)

¬(¬p) ≡p Double negation law (双重否定律)

(3) More Examples

Example 3 (page 23)

Show that $p\rightarrow q$ and $\neg p \lor q$ are logically equivalent.

We construct the truth table for these propositions in the table below. Since the truth values of $p{ o}q$ and $\neg p \lor q$ agree, these propositions are logically equivalence.

р	q	٦p	¬p∨q	p→c
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

p V q ≡ q V p Comi	
p∧q≡q∧P (3	と換律)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)	Associative laws
$(p \land q) \land r \equiv p \land (q \land r)$	(结合律)
$p \lor (q \land r) \equiv (p \lor q) \land (q \land r)$	p V r) Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (q) $	(p ∧ r) (分配律)
¬(p ∧ q) ≡ ¬p ∨ ¬q	De Morgan's laws
p ∨ q = (p ∨ q)¬q	(徳庫根律)
p V (p Λ q) ≡ p	Absorption laws
$p \land (p \lor q) \equiv p$	(吸收律)
p V ¬p ≡ T (排中律)	Negation laws
p /\¬p ≡ F (矛盾律)	

(b) Table 6 (Logical Equivalence Involving Implication)

```
p \rightarrow q \equiv \neg p \lor q
  p \rightarrow q \equiv \neg q \rightarrow \neg p
  p \lor q \equiv \neg p \rightarrow q
 p \land q \equiv \neg(p \rightarrow \neg q)
 \neg(p \rightarrow q) \equiv p \land \neg q
(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)
(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r
(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)
(p \rightarrow r) \ \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r
```

(c) Table 6 (Logical Equivalence Involving Biconditionals)

(d) Questions:

How to verify these equivalences?

Answer: One way is by constructing the truth table.

(6) Constructing New Logical Equivalence (page 26) Example 6: Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

Proof:

= ¬(¬p ∨ q) by Example 3

by the second De Morgan law pר \/ (קר)ר ≡

≡p∧¬q by the double negation law Example 7: Show that ¬(p √ (¬p /\ q)) and ¬p /\ ¬q are logically equivalent.

Proof:

¬(p ∨ (¬p ∧ q))

= ¬p /\ ¬(¬p /\ q)) by the second De Morgan law by the first De Morgan law (pr √ (qr)r) ∧ qr ≡ by the double negation law = ¬p ∧ (p ∨ ¬q) $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$ by the second distributed law

≣ F V (¬p /\ ¬q) because ¬p ∧ p ≡ F

≡ (¬p /\ ¬q) V F by the communicative law for disjunction ⊒ ¬p ∧ ¬q

by the identify law for F

(5) Extension of De Morgan's Law

 $\neg(p \land q) \equiv \neg p \lor \neg q$ can be extended to $\neg (p_1 \land p_2 \land ... \land p_n) \equiv \neg p_1 \lor \neg p_2 \lor ... \neg p_n$

 $\neg(p \lor q) \equiv \neg p \land \neg q$ can be extended to

 $\neg (p_1 \lor p_2 \lor ... \lor p_n) \equiv \neg p_1 \land \neg p_2 \land ... \neg p_n$

Example 8: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology. Solution:

 $(p \land q) \rightarrow (p \lor q)$

 $\equiv \neg (p \land q) \lor (p \lor q)$ by Example 3

≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and communicative

law for disjunction

≡ T V T by example 1 and the communicative

law for disjunction

≡T by domination law

Study the equivalences and make sure you can	
prove them.	