Técnicas de Inteligencia Artificial Tema 1.1

Representación del Conocimiento

Representación del conocimiento

- Si tenemos conocimiento específico sobre un problema (dominio) es más fácil resolverlo.
- Podemos combinar el conocimiento sobre el dominio con conocimiento general sobre resolución de problemas.
- Este conocimiento permite a los algoritmos de IA orientar la búsqueda y reducir el coste de obtener una solución.
- Problemas
 - ¿Cómo elegir una representación que permita de manera sencilla traducir desde el mundo real al mundo representado?
 - ¿Cómo se usa de manera eficiente esta representación?

Información y conocimiento

- La información se define como un conjunto de hechos básicos, sin interpretación, obtenidos de la definición de un problema.
 - Ejemplo: Dato numérico de un análisis de sangre
- El conocimiento se define como un conjunto de hechos de alto nivel que modelan de manera estructurada la experiencia sobre un dominio, o que son obtenidos a partir de la interpretación de hechos básicos.
 - Ejemplos:
 - Interpretación de los valores de un análisis de sangre para determinar si son normales, altos o bajos.
 - Las estructuras de datos y los métodos para diagnosticar pacientes a partir de la interpretación de un análisis de sangre.

Información y conocimiento

- La IA necesita diferentes tipos de conocimiento que no están disponibles en bases de datos y otras fuentes de conocimiento:
 - Hechos. Creencias y conocimiento observable. Conocimiento sobre los objetos de un dominio y sus relaciones.
 - **Procedimientos**. Cómo conocer. Conocimiento sobre los procesos que involucran a estos objetos o que son útiles para manipularlos.
 - **Significado**. Relacionar y definir los conocimientos. Conocimiento que es difícil de representar como hechos básicos, como intencionalidad, causalidad, objetivos, información temporal, conocimiento "de sentido común", etc.
- Conocimiento = Información + Interpretación

Representación del conocimiento

- Para representar el conocimiento se necesita:
 - Su estructura.
 - Para qué será usado por los agentes inteligentes.
 - Cómo será usado por los agentes inteligentes.
 - Cómo será obtenido.
 - Cómo será almacenado y manipulado.
- No existe una respuesta completa a estas cuestiones desde un punto de vista biológico o neurofisiológico.
 - Utilizaremos formalismos que simulen la adquisición, estructura y manipulación del conocimiento para construir sistemas inteligentes.

Framework de la Representación del Conocimiento

- La resolución de problemas requiere grandes cantidades de conocimiento y algún mecanismo para la manipulación del conocimiento.
- Importante diferenciar entre:
 - Mundo real (qué se quiere representar): Dominio. El conocimiento es una descripción del mundo.
 - Su representación: **Formalismos de representación**. Forma en la que el conocimiento es codificado.
- Necesitamos saber sobre las cosas que queremos representar:
 - Objetos. Hechos sobre objetos en el dominio.
 - Eventos. Acciones que ocurren en el dominio.
 - Funcionamiento. Conocimiento sobre cómo hacer cosas.
 - Meta-conocimiento. Conocimiento sobre cosas que conocemos.
- Necesitamos saber qué cosas podemos manipular.
 - Formalismos: Representación de los objetos, en términos de símbolos, que pueden ser manipulados en los programas.

Formalismos de representación

- Un formalismo de representación es un mecanismo para representar el mundo real en un ordenador.
- Un formalismo de representación es una combinación de:
 - Estructuras de datos para codificar el problema: Parte estática.
 - Estructuras de datos que almacenan el conocimiento sobre el dominio del problema y las acciones para manipular el conocimiento de forma coherente con su interpretación. **Parte dinámica**.

Formalismos de representación: Parte estática

- Las estructuras estáticas incluyen:
 - La estructura de datos que representa el conocimiento sobre el problema.
 - Las acciones que permiten crear, modificar o eliminar elementos de la estructura de datos.
 - Predicados que permiten consultar la estructura de datos.
 - Semántica de la estructura de datos: una correspondencia semántica entre el mundo real y la representación elegida.

Formalismos de representación: Parte dinámica

- La parte dinámica está compuesta de:
 - Estructuras de datos que almacenan el conocimiento sobre el dominio.
 - Acciones que permiten:
 - Interpretar la información del problema (parte estática) usando el conocimiento sobre el dominio (parte dinámica).
 - Controlar el uso de la información: estrategias de control.
 - Obtener nuevo conocimiento.

Incompletitud de la representación del conocimiento

- Cualquier representación siempre será incompleta debido a:
 - **Cambios**. El mundo real es dinámico y cambia continuamente, pero nuestra representación solo captura un instante.
 - Volumen. Una cantidad ingente de información para representar: vista parcial del mundo.
 - Complejidad. La realidad tiene demasiados detalles que resultan muy difíciles de captar.
- El problema del cambio está relacionado con los procesos de adquirir y mantener la representación del conocimiento (Frame Problem).
- Los problemas de volumen y complejidad están relacionados con la granularidad de la representación.

Propiedades de los formalismos de la representación

- Un formalismo de representación del conocimiento tiene las siguientes propiedades:
 - Del propio formalismo.
 - Adecuación representacional. Debe permitir la representación de todos los tipos de conocimiento requeridos por el problema.
 - Adecuación inferencial. Debe permitir manipular el conocimiento representado para obtener nuevo conocimiento a partir del actual.
 - Relacionados con el uso de la representación.
 - Eficiencia inferencial. Debe ser fácil inferir nuevo conocimiento a partir del actual. Relacionado con la habilidad de incorporar información adicional para focalizar la atención de los mecanismos de inferencia hacia áreas prometedoras (metaconocimiento).
 - Eficiencia adquisicional. Debe ser capaz de incorporar nuevo conocimiento a la representación de manera sencilla. Idealmente, el agente inteligente debe poder obtener nueva información de manera autónoma e incorporarla a la representación.

Tipología del conocimiento

Conocimiento declarativo

- El conocimiento se representa de manera independiente de los mecanismos que vayan a utilizarlo.
 - Los axiomas se asume que son verdaderos a menos que se encuentre un contraejemplo.
 - Los dominios representan el mundo físico y su funcionalidad percibida.
- El control del uso adecuado del conocimiento se realiza:
 - Mediante heurísticas de propósito general que determinan la mejor forma de usar el conocimiento.
 - Mediante el uso del conocimiento que se tiene sobre el control del uso del conocimiento que guía el mecanismo de resolución del problema.
- Tipos de conocimiento declarativo:
 - Conocimiento relacional.
 - Conocimiento heredable.
 - Conocimiento inferencial.

Conocimiento procedimental

• El conocimiento explícitamente define cómo usarse.

Conocimiento procedimental

- Este conocimiento incluye el control de la información en su representación y los procedimientos específicos para utilizarlo.
 - Programas. El conocimiento es definido como algoritmos que permiten obtener nuevo conocimiento a partir de hechos.
 - Ejemplo: Fecha_nacimiento = DD-MM-AAAA. Funcion Edad (Fecha_nacimiento:fecha)
 - Reglas de producción. Si una condición se cumple, ciertas acciones o inferencias se realizan.
 - Ejemplo: SI condicion ENTONCES acciones.
 - Este tipo de conocimiento es más eficiente computacionalmente, pero dificulta la obtención de nuevo conocimiento a partir de él, y es complicado de adquirir y modificar.

Reglas de producción

- Conjunto de reglas definidos como pares <condición,acción>
 - "Si condición entonces acción".
- Ciclo emparejar-resolver-actuar.
 - Emparejar. El agente comprueba que condiciones de reglas se cumplen.
 - Resolver.
 - Múltiples reglas de producción pueden ejecutarse al mismo tiempo (conjunto de conflicto).
 - El agente debe seleccionar la regla del conjunto de conflicto (resolución del conflicto).
 - Actuar. Si se cumple alguna regla, se ejecuta la acción correspondiente.
- Memoria de trabajo:
 - Una regla puede escribir conocimiento en la memoria de trabajo.
 - El conocimiento puede emparejarse y ejecutar otras reglas.

Reglas de producción

- Las condiciones y las acciones deben definirse de manera clara.
 - Se pueden expresar fácilmente usando lógica de primer orden.
- Ejemplos:
 - SI (en la parada del autobus Y llega el autobus) ENTONCES acción(montar en el bus).
 - SI (en el autobus Y no pagado Y se tiene tarjeta de bus) ENTONCES acción(pagar con tarjeta) Y añadir(pagado).
 - SI (en el autobus Y pagado Y asiento vacio) ENTONCES accion(sentarse).

Conocimiento relacional

- Permite comparar dos objetos mediante atributos equivalentes
- Cualquier instancia donde dos objetos son comparados es un tipo relacional de conocimiento.
- Usado para asociar elementos de un dominio con los elementos de otro dominio o un conjunto de restricciones de diseño.
 - El conocimiento relacional es hecho de objetos consistentes en atributos y sus correspondientes valores.
 - Los resultados de este tipo de conocimiento es un mapeado de elementos entre diferentes dominios.

Cliente	Dirección	Ventas	
F. García	Alicante	54383	
J. Pérez	Alicante	493211	

Conocimiento relacional

- Las tablas son una forma simple de almacenar los hechos
 - Los hechos sobre un conjunto de objetos se ponen en columnas
 - Esta representación permite pocas oportunidades de inferencia.
- Dados los hechos no es posible responder a preguntas simples cómo "¿Quién es el cliente con más ventas?"
- Sin embargo, si se tiene un procedimiento para encontrar al cliente con más ventas, entonces estos hechos permitirán al procedimiento obtener la respuesta.

Cliente	Dirección	Ventas	
F. García	Alicante	54383	
J. Pérez	Alicante	493211	

Conocimiento relacional

- Problema: no hay mucho conocimiento representado.
- Se necesitan algunos mecanismos para mejorar la representación, como el **motor de inferencia**, que obtiene nuevo conocimiento a partir de la representación.
 - Ejemplo: media de ventas de un producto, mejores clientes, tipos de clientes, etc.
- Las bases de datos se pueden usar en los Sistemas Basados en Conocimiento.

Cliente	Dirección	Ventas	
F. García	Alicante	54383	
J. Pérez	Alicante	493211	

- Conocimiento heredado: los elementos heredan atributos de sus padres.
- El conocimiento se incorpora a las jerarquías de diseño encontradas en el dominio funcional, físico y de procesos.
- Dentro de esta jerarquía, los elementos heredan atributos de sus padres, aunque, en algunos casos, no todos los atributos son adecuados para los elementos hijo.
 - La representación básica debe ser aumentada con mecanismos de inferencia.
 - La herencia es una herramienta poderosa de inferencia, pero puede resultar inadecuada.

- Es útil para estructurar el conocimiento de forma jerárquica (jerarquía taxonómica). La representación puede ser red semántica o una colección de frames.
- El objetivo es representar el conocimiento como un árbol o grafo y usar la generalización y la especialización como el objetivo de la representación.
 - Los nodos son conceptos o clases, las aristas son relaciones.
 - Es-un: relación clase-clase.
 - Instancia de: relación clase-instancia.
- El mecanismo de razonamiento es la herencia de propiedades y valores.
 - Herencia simple o múltiple.
 - Valores por defecto.

- Redes semánticas.
 - Representación gráfica como grafo.
 - Aristas indican relaciones.
 - Equivalente a enunciados lógicos (usualmente lógica de primer orden (LPO)).
 - Más fácil de entender que la LPO.
 - Los algoritmos de razonamiento especializados en redes semánticas pueden ser más rápidos.
 - Utilizado en el entendimiento del lenguaje natural.
 - Frase con el mismo significado tienen los mismos grafos.

- Grafos conceptuales.
 - Redes semánticas donde cada grafo representa una única proposición.
 - Los nodos conceptuales puede ser:
 - Concretos (visualizable) como un restaurante.
 - Abstractos (no fácilmente visualizable) como el enfado.
 - Los arcos no tienen etiquetas.
 - En su lugar, se utilizan nodos conceptuales de relación.
 - Facilidad para representar relaciones entre múltiples objetos.

Frames.

- Redes semánticas donde los nodos tienen estructura.
 - Frame con un número de ranuras (edad, altura).
 - Cada ranura almacena un ítem específico de información.
- Cuando el agente afronta una nueva situación.
 - Las ranuras se pueden rellenar (el valor puede ser otro frame).
 - El rellenado puede activar acciones.
 - Puede accionar la recuperación de otros frames.
- Herencia de propiedad entre frames
 - Muy similar a objetos en programación orientada a objetos.

Frames.

- Las ranuras en un frame pueden contener.
 - Información para seleccionar un frame en una situación.
 - · Relaciones con otros frames.
 - Procedimientos para realizar tras rellenar varias ranuras.
 - Información por defecto para usar cuando la información no está disponible.
 - Ranuras vacías: se dejan en blanco a menos que se requiera para una tarea.
 - Otros frames, lo que crea una jerarquía.
- Se pueden expresar en lógica de primer orden.

