Spectral Shape Analysis for 3D matching

Prof. Umberto Castellani, Simone Melzi and Riccardo Marin

UNIVERSITÀ di **VERONA**

SAPIENZA Università di Roma

DESCRIPTOR FOR SHAPE MATCHING

Motivations: point-to-point matching

Descriptor for shape matching

How do you suggest to find the most similar point to the orange one?

$$distance = \mathcal{D}(\operatorname{desc}_{\mathcal{X}}, \operatorname{desc}_{\mathcal{Y}}) = \|\operatorname{desc}_{\mathcal{X}} - \operatorname{desc}_{\mathcal{Y}}\|$$

8

 $y = \Pi(x) = argrittr(|acsc_{\mathcal{X}}(x)| - acsc_{\mathcal{Y}}(g)||$ Descriptor for shape matching

Desired properties

A **descriptor (signature)** should be:

- Effective
- Concise
- Repetable

The properties of the descriptor should be evaluated w.r.t. the kind of deformations that would be matched (near isometric tiger deformation)

SHOT: an example of descriptor

For all p we define the covariance matrix:

$$\mathbf{M} = \frac{1}{\sum_{i:d_i \le R} (R-d_i)} \sum_{i:d_i \le R} (R-d_i) (\mathbf{p}_i - \mathbf{p}) (\mathbf{p}_i - \mathbf{p})^T$$

From the eigenvetors of M we obtain a LRF (x, y, z) that is then used to define:

SHOT
Signature of Histograms of OrienTations

SHOT: Signature of Histograms of OrienTations

Once we have the LRF for every point **p** we can define a **coherent 3D grid**

The 3D space around p is subdivided in 32 regions each of wich is a different bin of the histogram that describes the point.

The value of each bin is a weighted sum of $cos\theta_i$ where θ_i is the angle between the normals of the point p and the point within each region of the 3D grid.

SHOT: a comment

SHOT is an extrinsic descriptor: it depends on the 3D embedding of the shape

The analysis for the point p is performed looking at how the shape behaves around the point.

To obtain a coherent description of similar points and to be invariant to rigid deformations the LRF is necessary.

The SHOT descriptors is not invariant to non-rigid deformations.

LBO and isometry invariance

Two shapes are isometric ⇔ their LBO agree

$$d_{\mathcal{X}}(x,x') = d_{\mathcal{Y}}(f(x),f(x')),\ orall\ x,x'$$

Any quantity derived from the LBO is invariant to isometry

Spectral embedding

15

GPS = **Global Point Signature**

$$GPS(x) = \left[-\frac{1}{\sqrt{\lambda_1}} \phi_1(x), -\frac{1}{\sqrt{\lambda_2}} \phi_2(x), \dots, -\frac{1}{\sqrt{\lambda_Q}} \phi_Q(x) \right]$$

Heat diffusion

 ${\mathcal X}$ is a Riemannian surface, u(x,t) is the amount of heat in a point $\,x\in{\mathcal X}\,$

at time $\,t\in\mathbb{R}\,$

Given a initial distribution u_0 of heat on ${\mathcal X}$ at time t=0, ($u_0(x)=u(x,0)$)

How is it diffused over time on the surface?

Heat equation

From physics that the heat diffusion is governed by the **heat equation**:

$$\Delta_{\mathcal{X}} u(x,t) = - \underbrace{\frac{\partial u(x,t)}{\partial t}}_{\text{derivative in time}}$$
 The LBO derivative in time vatives in space

derivatives in space

u(x,t) solution of the heat equation is a function of $x\in\mathcal{X}$ and time $t\in\mathbb{R}$ which satisfies the **heat equation** for a given initial condition $u_0(x) = u(x,0)$

Given an initial heat distribution f on $\mathcal X$

The solution of the heat diffusion at time $t \in \mathbb{R}$ is given by the heat operator H_t

$$H_t = e^{-t\Delta_{\mathcal{X}}}$$

$$e^{-t\lambda_l}$$

$$\Delta_{\mathcal{X}}: \mathcal{F}(\mathcal{X}, \mathbb{R}) \longrightarrow \mathcal{F}(\mathcal{X}, \mathbb{R}) \quad H_t: \mathcal{F}(\mathcal{X}, \mathbb{R}) \longrightarrow \mathcal{F}(\mathcal{X}, \mathbb{R})$$

Given an initial heat distribution f on $\mathcal X$

$$H_t f(x) = \int_{\mathcal{X}} k_t(x, y) f(y) d\mu(y)$$

 $H_t(f)$ is the heat distribution at time $t \in \mathbb{R}$ and H_t is the **heat operator**

There is a function $k_t:\mathcal{X} imes\mathcal{X}\longrightarrow\mathbb{R}$ such that:

$$H_t f(x) = \int_{\mathcal{X}} k_t(x, y) f(y) d\mu(y)$$

 k_t is the heat kernel and $k_t(x,y)$ corresponds to the heat transferred from x to y in time $t \in \mathbb{R}$

For an initial delta distribution of heat δ_x , $x \in \mathcal{X}$

the heat kernel
$$\ k_t(x,y) = \sum_{l=0} e^{-t\lambda_l} \phi_l(x) \phi_l(y)$$

Heat Kernel signature

For an initial delta distribution of heat $\delta_x, \ x \in \mathcal{X}$

$$k_t(x,x) = \sum_{l=0}^{\infty} e^{-t\lambda_l} \phi_l(x) \phi_l(x)$$

Is the amount of heat remaining at x after the time $t \in \mathbb{R}$

$$extbf{HKS}(x) = [k_{t_1}(x, x), k_{t_2}(x, x), \dots, k_{t_Q}(x, x)] \quad t_1 < t_2 < \dots t_Q \in \mathbb{R}$$

is the heat kernel signature (HKS) at the point $x \in \mathcal{X}$ for a given set of time scales t_1, \ldots, t_O

HKS as a filter on the frequencies

$$k_t(x,x) = \sum_{l=1}^{\infty} e^{-t\lambda_l} \phi_l(x) \phi_l(x) = \sum_{l=1}^{\infty} e^{-t\lambda_l} \phi_l(x)^2$$

$$g_t(\lambda_l) = e^{-t\lambda_l}$$

A low-pass filter applied to the frequencies to produce the HKS

The wave equation (Schrödinger)

Heat equation:
$$\Delta \chi u(x,t) = -\frac{\partial u(x,t)}{\partial t}$$

$$\frac{\partial u(x,t)}{\partial t}$$
 Wave equation:
$$i\Delta \chi u(x,t) = \frac{\partial u(x,t)}{\partial t}$$

$$\frac{\partial u(x,t)}{\partial t}$$
 missing a minus

It encodes oscillation rather than dissipation as done by the heat equation

Idea: point $\mathcal{X} \longleftrightarrow$ the average probabilities of quantum particles of different energies to be measured at x

WKS = wave kernel signature

• a quantum particle with unknown position on the surface

 f_E^2 the probability distribution with expectation value E estimated at time t=0

$$\psi_E(x,t) = \sum_{k=0}^{\infty} e^{iE_kt} \phi_k(x) f_E\left(E_k\right) \text{ = the wave function (solution of the wave eq.)}$$

 $|\psi_E(x,t)|^2$ = the probability to find the particle at $(\textbf{\textit{x}},\textbf{\textit{t}})$

$$WKS(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2$$

= the average probability over the time to find the particle at position $x \in \mathcal{X}$ given the initial energy E

WKS = wave kernel signature

• a quantum particle with unknown position on the surface

$$f_E^2$$
 the probability distribution with expectation value E (at $t=0$)

$$WKS(E, x) = \sum_{l=1}^{\infty} f_E(E_l)^2 \phi_l(x)^2$$

= the average probability over the time to find the particle at position $x \in \mathcal{X}$ given the initial energy E

$$WKS(x) = [WKS(E_1, x), WKS(E_2, x), \dots, WKS(E_Q, x)]$$

The wave kernel

$$f_E(E_l)^2 = f_E(\lambda_l)^2 = e^{-\frac{(\log(E) - \log(\lambda_l))^2}{2\sigma^2}}$$

$$k_E(x,x) = WKS(E,x) = \sum_{l=1}^{\infty} f_E(E_l)^2 \phi_l(x)^2$$

$$k_E(x,x) = \sum_{l=1}^{\infty} e^{-\frac{(\log(E) - \log(\lambda_l))^2}{2\sigma^2}} \phi_l(x)^2$$

WKS as a filter on the frequencies

$$k_E(x,x) = \sum_{l=1}^{\infty} e^{-\frac{(\log(E) - \log(\lambda_l))^2}{2\sigma^2}} \phi_l(x)^2$$

$$g_t(\lambda_l) = e^{-\frac{(\log(E) - \log(\lambda_l))^2}{2\sigma^2}}$$

A band-pass filter applied to the frequencies to produce the WKS

HKS vs WKS

GPS visualization

Descriptor for shape matching

 $R.\ Rustamov,\ Laplace-Beltrami\ eigenfunctions\ for\ deformation\ invariant\ shape\ representation,\ SGP,\ 2007$

HKS visualization

WKS visualization

Spectral descriptors

A common structure is shared by the spectral descriptors HKS and WKS

$$desc_q(x) = \sum_{l=1}^k g_{t_q}(\lambda_l) \phi_l^2(x), \quad \forall q \in 1, \dots, Q$$
 The square of each dimension of the spectral embedding functions of the eigenvalues

34

A signal processing overview of spectral descriptors

$$desc_q(x) = \sum_{l=1}^k g_{t_q}(\lambda_l) \phi_l^2(x), \quad \forall q \in 1, \dots, Q$$

HKS:

$$g_t(\lambda_l) = e^{-t\lambda_l}$$

wks: $\frac{(log(E) - log(\lambda_l))^2}{2\sigma^2}$

How could we obtain stronger spectral descriptors

$$desc_q(x) = \sum_{l=1}^k g_{t_q}(\lambda_l) \phi_l^2(x), \quad \forall q \in 1, \dots, Q$$

What are the best filters to apply in this equation to obtain the best descriptors?

Can we learn them?

Learn filter for spectral descriptors

Given a set of basis functions : $\beta_1(\lambda), \beta_2(\lambda), \ldots, \beta_Z(\lambda)$

We can learn the best coefficients to linearly combine them to obtain the best filters.

What do we need to learn?

The q-th filter is obtained as a linear combination of the basis functions $\{\beta_z(\lambda_l)\}_{z=1}^Z$

$$g_q(\lambda_l) = \left(\sum_{z=1}^Z a_z^q \beta_z(\lambda_l)\right)$$

$$desc_q(x) = \sum_{l=1}^k g_{t_q}(\lambda_l) \phi_l^2(x), \quad \forall q \in 1, \dots, Q$$

$$desc_q(x) = \sum_{l=1}^k \left(\sum_{z=1}^Z a_z^q \beta_z(\lambda_l)\right) \phi_l^2(x)$$

What do we need to learn?

$$desc_q(x) = \sum_{l=1}^k \left(\sum_{z=1}^Z a_z^q \beta_z(\lambda_l)\right) \phi_l^2(x)$$

we should learn the set of coefficients:

$$a_z^q \ \forall q=1,\ldots,Q \ \text{and} \ z=1,\ldots,Z$$

that is equivalent to learn a matrix:

$$oldsymbol{A} \in \mathbb{R}^{Q imes Z}$$
 s.t. $oldsymbol{A}_{q,z} = a_z^q$

Learned descriptors

We can compute a learned kernel signature by learning the matrix $oldsymbol{A} \in \mathbb{R}^{Q imes Z}$

$$\boldsymbol{LKS}(x) = [deso_1^{\boldsymbol{A}}(x), deso_2^{\boldsymbol{A}}(x), \dots, deso_q^{\boldsymbol{A}}(x)]$$

These explixitly depend on the learned matrix

How could we learn this matrix *A*?

Loss definition

Given a pair of shapes ${\mathcal X}$ and ${\mathcal Y}$

We consider a set of points X on $\mathcal X$ such that $\forall x \in X$ we can define a set of points Y on $\mathcal Y$ that is composed by:

- similar points (**positive**) y_+
- dissimilar points (negative) y_{-}

Loss definition

$$LKS(x) = [desc_1^{\mathbf{A}}(x), desc_2^{\mathbf{A}}(x), \dots, desc_q^{\mathbf{A}}(x)] \quad \mathcal{Y}$$

$$argmin \sum_{x \in X} \gamma(\|LKS(x) - LKS(y_+)\|^2) \quad \mathcal{X}$$

$$-(1 - \gamma)(\|LKS(x) - LKS(y_-)\|^2) \quad \mathcal{Y}_{-}$$

Learned filter

Fourier analysis

The Fourier coefficients depend on the Global gerometry of the surface

$$f(x) = \sum_{k \ge 1} \int_{X} f(\xi) \phi_k(\xi) d\xi \ \phi_k(x)$$

$$\mathcal{F}(f)_{k} = \langle f, \phi_k \rangle_{L^2(X)}$$

We want to compute pointwise descriptors

We would like to enforce LOCALIZATION of the Fourier analysis

The only characterization of these coefficients is the frequency that each of them is representing

Fourier and the need for localization

Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks, Boscaini et al. SGP 2015

WFT is the standard solution

Descriptor for shape matching

Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks, Boscaini et al. SGP 2015

WFT

In some case the signal drastically changes in the space-time domain.

The Windowed Fourier Transform (WFT) is the solution for this problem

Theorem of convolution

Convolution on Euclidean domain : $[-\pi, \pi]$ of two functions $f, g: [-\pi, \pi] \to \mathbb{R}$ Is defined as:

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

Convolution Theorem: Fourier transform diagonalizes the convolution operator.

 \Rightarrow Convolution can be computed in the spectral domain

$$\widehat{(f \star g)} = \hat{f} \cdot \hat{g}$$

WFT on non-Euclidean manifolds

 $\hat{f}_{\omega} = \langle f, e^{2\pi i \omega x} \rangle$

 $e^{i\omega x}f(x)$

Modulation: $(M_{\omega}f)(x) =$

Euclidean domains

Fourier Transform:

Convolution:	$ (f * g)(x) = $ $ \int_{-\infty}^{\infty} \hat{f}_{\omega} \hat{g}_{\omega} e^{2\pi i \omega x} dx $	Convolution: $(f \star g)(x) = \sum_{k\geq 1} \hat{f}_k \hat{g}_k \phi_k(x)$
Translation:		Translation: $(T_{x'}f)(x) =$
	$(f * \delta_u)(x) =$	$(f \star \delta_{x'})(x) =$
	f(x-u)	$\sum_{k\geq 1} \hat{f}_k \phi_k(x') \phi_k(x)$

Manifolds

Fourier Transform: $f_k = \langle f, \phi_k \rangle_{L^2(X)}$

Modulation: $(M_k f)(x) = \phi_k(x) f(x)$

50

WFT on non-Euclidean manifolds

Euclidean domains

Manifolds

Basic Atom:
$$g_{u, \omega}(x) = (M_{\omega} T_{u} g)(x) = g(x - u)e^{2\pi i \omega x}$$

Basic Atom:
$$g_{x',k}(x) =$$

$$(M_k T_{x'}g)(x) =$$

$$\phi_k(x) \sum_{l \ge 1} \hat{g}_l \phi_l(x') \phi_l(x)$$

Windowed Fourier Transform:
$$Sf(u, \omega) =$$

Windowed Fourier Transform:
$$(Sf)_{x,k} = \langle f, g_{x,k} \rangle_{L^2(X)}$$

$$\langle f, g_{u, \omega} \rangle$$

WFT atoms

WFT problems

Learn a new spectral descriptor

Given a set of $P \in \mathbb{N}$ functions $f_1, \ldots, f_P : \mathcal{X} \longrightarrow \mathbb{R}$

$$LSCNN_q(x) = \mathfrak{F}(f_1, \dots, f_P), \ \forall q = 1, \dots, Q$$

$$LSCNN_{q}(x) = \sum_{p=1}^{P} \left(\sum_{k=1}^{K} a_{q,p,k} (Sf_{p})_{x,k} \right)$$

The Windowed Fourier atoms for the function f with translation in x and modulation at frequency k

QUESTION: what is not defined?

Learn the window for each input function

It is easier to learn it in the spectral domain!

We already did something similar, do you remeber where?

In the definition of the optimal shape descriptor!

The windows are obtained as a linear combination of the basis functions $\{\beta_z(\lambda_l)\}_{z=1}^Z$

$$g_p(\lambda_k) = \sum_{z=1}^{Z} b_z^p \beta_z \lambda_k$$

Localized Spectral CNN descriptor (LSCNN)

$$desc(x) = [LSCNN_1(x), LSCNN_2(x), \dots, LSCNN_Q(x)]$$

$$LSCNN_q(x) = \sum_{p=1}^{P} \left(\sum_{k=1}^{K} a_{q,p,k} (Sf_p)_{x,k} \right)$$

$$(Sf_p)_{x,k} = \langle f_p, \sum_{l=1}^K \left(g_p(\lambda_l) \phi_l(x) \phi_k(x) \right) \phi_l \rangle_{\mathcal{X}}$$

Learned windows

Geodesic error

Descriptor for shape matching 58

Evaluation: cumulative error curve

Quantitative comparison

Qualitative comparison

Descriptor for shape matching

Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks, Boscaini et al. SGP 2015

Qualitative comparison

Descriptor for shape matching

Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks, Boscaini et al. SGP 2015

Some conclusions

- Spectral descriptors are invariant to isometric deformations
- Spectral descriptors do not solve the symmetries
- Spectral descriptors can be generalized via data-driven approaches
- WFT can characterize locally the shape
- The data-driven approaches outperform the standard spectral ones
- Other deformations (for from sidometries) can not be faced

Other data-driven approaches

The data-driven approaches seem well-suited to solve the point-to-point mathcing problem

Recentrly this gives rise to a family of approaches that can be collected under the name of:

GEOMETRIC DEEP LEARNING

Geometric deep learning

View-based

Intrinsic (surface-based)

Volumetric

Point-based

Alternatives convolutions

Slide credit M. Ovsjanikov

Euclidean

Non-Euclidean

Limits of the spectral convolution

Unfortunately spectral convolution as many limitations (shape, shift invariances).

Slide credit E. Rodolà

questions?

1.Differential Geometry