第三部分 油田开发形势

截止 2021 年底,长庆油田已开发 35 个油田(包含李庄子、马家滩、东红庄、直罗),探明含油面积 14816.39 平方公里,地质储量 647925.02 万吨,可采储量 115984.65 万吨;动用含油面积 10774.78 平方公里,地质储量 518553.52 万吨,可采储量 99112.11 万吨。

全油田共有采油井 68494 口,开井 53362 口,井口日产油水平 64668 吨,单井日产油水平 1.21 吨,综合含水 63.14%,地质储量采油速度 0.49%,地质储量采出程度 8.58%,可采储量 采油速度 2.59%,可采储量采出程度 44.89%,剩余可采储量采油速度 4.49%;共有注水井 24040 口,开井 19544 口,日注水平 362169 方,单井日注水量 19 方,月注采比 1.83,累积注采比 1.61。

年产油量超 100 万吨的油田 8 个 (储量占比 74.0%,产量占比 73.6%),是长庆油田持续稳产的骨干油田 (见附件)。同期对比,自然递减由 11.7% ↑ 12.1%,含水上升率由 1.3% ↑ 1.5%,其中,姬塬、靖安、胡尖山、合水、华庆油田自然递减及含水上升率稳定或下降,南梁油田 (10.7% ↑ 11.9%)和庆城油田(12.2% ↑ 17.2%)自然递减上升,安塞油田含水上升率加大(1.4% ↑ 2.9%)。

年产油量在 $50^{\sim}100$ 万吨的油田 5 个(储量占比 14.3%,产量占比 16.9%),同期对比,自然 递减由 10.4% ↓ 10.0%,含水上升率由 2.2% ↓ 0.2%,其中,环江、吴旗、演武、西峰自然递减下降,镇北油田(8.1% ↑ 11.1%)自然递减增大。

年产油量 50 万吨以下的油田 18 个(储量占比 11.7%,产量占比 9.5%),同期对比,自然递减由 13.3% \downarrow 13.0%,含水上升率由 0.9% \uparrow 1.5%,其中,马岭、白豹、元城、彭阳等 13 个油田自然递减保持稳定或下降,绥靖(11.2% \uparrow 14.4%)、华池(11.1% \uparrow 14.1%)等 5 个油田自然递减加大。

第四部分 存在的主要问题

- 一、效益建产的理念仍需加强
- (一) 效益建产的理念未完全落实落地

现场实施存在重速度、重工作量,轻质量、轻效益现象,追求新井时率,技术政策执行不到位,质量管控存在漏洞,影响油田开发实现良性循环。

(二) 开发对象日趋复杂, 单井产量及效益风险大

浅层高效油藏规模变小,变化快,近五年,建百万吨产能油藏个数由 67 个 ↑ 167 个,单个区块建产规模由 1.5 万吨 ↓ 0.6 万吨,油层薄(5 米左右)、变化快,部分油藏注采井网配套难,稳产难度大。超低渗 II、III类油藏水平井提高初期产量技术基本成熟,但递减大。

- 二、老油田稳产仍然存在很大的挑战
- (一) 部分油藏稳产形势没有得到根本性改善

目前产量大于 2 万吨、自然递减大于 11%的油藏有 126 个,产量占比 33.2%。黄 219、白 239、虎 10 等 42 个油藏(产量占比 6.3%)同期对比自然递减仍在增大。

(二)不同类型油藏开发矛盾凸显

一是以安塞长 6、靖安长 6、西峰长 8 为主的特低渗油藏,长期水驱后,平面上多方向见水,注采调控难度大,纵向上高低渗透层间渗流阻力差异变大,剖面水驱不均加剧,2021 年吸水不均井占 40.3%; 二是以姬塬长 8、合水长 8、华庆长 6 为主的超低渗 I / II 类油藏受物性、砂体连通性差等影响,"注不进、采不出"矛盾突出,注水端局部憋压,采油端低压低产,注采压差大,采油速度不足 0.4%。

(三)"重油轻水"观念依然突出

注水管理制度落实不到位,基础工作欠账较多(如三年以上未检串井存量达 6641 口、洗井 频次达标率不足 50%),受油藏认识、井筒、水质、分注工艺因素影响,不同单位、不同层 系分注率差异较大。

(四)长停井、低产井数占比较高

长停采油井 7846 口,占总井数 12.1%; 低产井 14146 口,占总井数 21.8%。多轮次改造效果逐渐变差,提产难度大。其中低产水平井 2144 口,占水平井数 57.5%,低成本的重复改造、找堵水技术储备不足。

三、提高采收率工作仍需持续攻关

(一) 基础工作较为薄弱

气驱、转方式等室内实验、基础理论研究亟需加强,防腐防窜等工艺技术还不完善;气驱用剂、聚表二元驱油体系等关键药剂产品自主研发能力不足;高压小流量气体计量及单井配气工艺设备不成熟。

(二) 主体技术需进一步攻关

除转方式和 CO2 驱外,烃类气驱、空泡驱、化学驱等试验规模小,技术不成熟,还不具备规模推广应用条件,低渗透油田水驱后大幅提高采收率主体技术仍需攻关探索。

附件: 主力油田开发形势

一、姬塬油田

(一) 开发现状

姬塬油田主要开发新庄、耿湾、吴仓堡、马家山、刘峁塬、铁边城等区块,开采层位以长 8、长 6、长 4+5 为主。2021 年底,采油井总井数 19942 口,开井 14393 口,井口日产油水平 16578 吨,单井产能 1.2 吨/天,综合含水 60.4%,地质储量采油速度 0.52%,地质储量采出程度 7.75%;注水井总井数 6456 口,开井 5215 口,日注水平 101772 方,单井日注 20 方,月注采 2.01,累积注采比 1.64。

(二)总体开发形势

2021年, 姬塬油田通过细分注水单元、精细注水调控、欠注井治理、低产低效井及长停井

治理,持续推进提高采收率试验等工作,整体开发形势稳定。

1.水驱状况稳定。

通过井网完善、剖面治理、分层注水等工作,油藏水驱状况基本平稳,与 2020 年相比,水 驱控制程度由 92.7% ↑ 93.2%,水驱储量动用程度由 73.3% ↑ 74.1%。

2.油藏能量稳步上升。

2021年通过欠注井治理、精细注水调整等措施,三叠系地层压力保持水平逐步上升,由 2020年的 92.6% ↑ 93.5%, 侏罗系地层压力保持水平由 88.5% ↑ 89.0%。

3.两项递减略有上升。

同期相比,自然递减由 **11.7%** ↑ **12.4%**,综合递减由 **9.0%** ↑ **9.8%**,含水上升率由 **0.3%** ↑ **0.8%**, 开发形势基本稳定。

(三) 主要工作及效果

1.精细注水管理, 夯实稳产基础。

精细注水:在细分注水单元的基础上,针对不同开发阶段矛盾,持续优化注采技术政策,明确不同开发阶段注水强度、压力保持水平、生产压差等参数合理界限。2021年重点在吴433、罗1、黄3长6、元214、耿271等区块开展精细注水调整,共优化注水政策2886井次,对应7391口油井见效1501口,累计增油3.32万吨,改善了开发效果。

周期注水:根据姬塬油田储层特征及水驱特征,通过数值模拟、油藏工程研究等手段,优化不同类型油藏的周期注水方式、注水频率、注水波动幅度参数,形成了以超低渗 I 类轮换异步、超低渗 II 类排状异步、超低渗III 类隔排异步为主的周期注水技术体系,全面推广周期注水 1530 井次,阶段累增油 2.99 万吨,累降注水量 20.1 万方。

2.加强欠注井治理,确保注够水。

突出"临界高压井超前治理、高压欠注井分类治理、骨头欠注井攻关治理"的思路,积极开展双子膜活性剂、压裂增注等新工艺试验攻关,完成黄 3 长 8、罗 1 等油藏欠注井治理 341口,日增注 3827方。同时针对长 1、长 2 油藏储层孔隙内表面剩余油吸附多、水相流动阻力大的问题,开展双子膜活性剂增注,平均降压幅度 3.1MPa,单井日增注 14 方,实施效果较好,下步可扩大试验。

3.开展措施挖潜,提高单井产能。

以改善油藏开发效果为目的,突出长停井挖潜、低成本措施、套损井治理及油藏综合挖潜治理方向,进一步提高措施质效。2021年实施各类油井措施 1027 井次,累增油 12.9 万吨,有效提升了单井产能。

低沉本解堵:以地层堵塞特征认识为基础,重点在长 2、长 4+5 油藏推广中性液解堵、常规酸化、低成本复合解堵等短平快措施,单井日增油 0.8 吨,产出投入比 1: 2.1。

油井压裂:针对长 2 油藏中高含水期深部堵塞、长 4+5 油藏中含水期频繁堵塞、长 8 油藏物性差驱替建立难度大的问题,开展常规压裂、暂堵压裂、宽带压裂等进攻型措施,单井日增油 1.0 吨。

套损井防治:以防为主,防治相结合,减少套损井存量。常态化开展缓蚀剂投加,结合检泵对大于1吨油井配套阳极短节;综合考虑采出程度、腐蚀情况,按照"隔采座封、井筒再造、井网重构"的分类治理思路,加大长效治理、老井侧钻力度,试验复合贴堵、小套固井,年治理164口,日恢复油量168吨。

4.扩大堵水调剖,改善水驱效果。

通过先导试验、扩大试验、推广试验、规模推广四个发展阶段,形成了不同区块、不同水驱特征下调剖调驱参数与注水政策相结合的技术体系。特低渗~超低渗 I 类油藏采用深部调驱+均衡注水,超低渗 II 类油藏采用先堵后驱+控制注水,超低渗 II 类油藏优化调剖调驱体系+周期注水。2021年共实施堵水调驱 1644 井次,见效油井 1431 口,见效率 30.1%,年增油 9.2 万吨,年降水 7.8 万方。

5.优化井网,挖潜动用剩余油。

围绕长 8、长 6、长 4+5 油藏局部水驱矛盾突出、驱替系统难建立的问题,以改善开发效果、提高采油速度为目的,在池 335、涧 71 等油藏开展局部井网加密、更新 28 口,初期单井产能 2.4 吨/天;老井侧钻重点瞄准侏罗系底水锥进区、长 2 以上浅层套破区、三叠系裂缝见水区等三个方向,突出抓好"剩余油分布规律研究、井位部署、储层改造、政策优化"四个环节,侧钻效果逐年变好,2021 年在盐 44、耿 155、耿 60 等区块实施侧钻井 29 口,初期单井产能 2.7 吨。

6.开展提高采收率试验,积极做好技术储备。

严格方案执行,强化现场管理,稳步推进二氧化碳驱、纳米小分子水驱、表面活性剂驱等提高采收率试验,取得了较好的试验效果。

(1) 二氧化碳驱油试验稳步推进

在黄 3 长 8 油藏形成了"9 注 37 采"实施规模,累计注入 15.1 万吨,完成总设计量的 28.3%。 与注入前相比,区域地层压力由 15.10 MPa ↑ 17.6MPa,水驱储量动用程度由 69.9% ↑ 78.3%, 见效 29 口,见效率 78.0%,见效井日增油 14.6 吨,累计增油 14509 吨,降水 15548 方。

(2)泡沫辅助减氧空气驱试验

在耿 271 区开展 5 井组泡沫辅助减氧空气驱先导试验,探索裂缝性水淹区有效的驱替方式,

累积注入 0.211PV, 完成设计量的 42.20%, 单井日产油 0.97 吨 ↑ 1.11 吨, 含水保持平稳。

(3) 纳米小分子水降压驱油试验

在罗 1 长 8 油藏实施 10 注 36 采,累注 853.7 吨(完成方案设计的 13.8%),累注 0.042PV,试验后整体注水压力由 16.8 MPa ↑ 17.3MPa,油井见效 10 口,见效率 30.6%,见效井日增油 7.9 吨。

(4) 表面活性剂驱油试验

罗 1 长 8 油藏中部实施 4 注 21 采,见效井 10 口,日增油 6.3 吨,累增油 6140 吨,与注入前相比,见效期间自然递减由 2.5% ↓ -11.3%,综合含水由 40.1% ↓ 29.5%;罗 1 西南部实施 6 注 29 采,见效 13 口,日增油 2.5 吨,累增油 415 吨,区域日产油水平 18 吨 ↑ 21 吨,综合含水 82.5% ↓ 78.5%。

(四) 存在的主要问题

1.侏罗系油藏局部采液强度大,存在含水上升风险。

沙 106、盐 44、黄 261 等边底水发育区块,受边水内推及底水锥进影响,导致含水上升加快。 2021 年控压生产 125 口,采液强度由 1.4 ↓ 1.0 方/天 • 米,控压后含水上升速度减缓,目前 仍有 60 口井采液强度偏大,含水上升风险大。

2.储层纵向非均质性强,水驱不均矛盾突出。

受储层非均质性强影响,注水井吸水不均比例大,且部分油藏多层系开发,注采关系复杂,剖面矛盾加剧。其中:吴 433 油藏注水剖面吸水不均 45.5%,池 46 长 8 油藏主力部位北部、中部主要表现为正韵律沉积,随着注入时间的延长,剖面吸水存在下移明显。

3.注水井频繁欠注,能量补充困难。

姬塬长 6、长 8 等油藏受储层物性差、剖面连通性差、水质不配伍等影响,地层渗流阻力大,欠注问题突出。年新增高压欠注井 50 口以上,目前仍有高压欠注井 202 口,主要分布在罗 1 长 8 中部、黄 3 长 8 断层区、黄 57 长 8 中北部及耿 271 长 8 等油藏,欠注区压力保持水平低(75.0%)。

4.套破井逐年增多,治理难度大。

受措施频次多及水质等因素影响,长 2 以上浅层套损井逐年增多,治理措施以隔采座封、套管补贴为主,产能恢复率低。其中:沙 106、盐 44、黄 168 等区块近 3 年年均新增套损井 24 口,日损失产能 65 吨。

5.低产井、长停井多,挖潜难度大。

受储层物性差、孔隙~裂缝见水等因素影响,长6、长8油藏注水见效率低、注采压差逐年增大,有效驱替系统难建立,低产井、长停井逐年增加。其中长8油藏低产井、停产井年均增加60口左右,近年通过精细注采调整、加大改造强度、开展新工艺试验等治理,效果有待进一步提升。

(五)下步重点工作

- 1.优化注采政策,提升开发水平。
- (1)精细注采调整。按照"侏罗系温和注水、长 2油藏强化注水、长 4+5~长 8扩大周期注水"原则,以油藏的压力、剖面、产能等动态特征为指引,在沙 106、耿 155、耿 60、黄 116、黄 57 长 8等油藏持续开展精细注水调控。
- (2)推广周期注水。在不同类型油藏周期注水适应性评价的基础上,根据不同油藏类型、不同开发阶段、不同开发矛盾下合理周期注水模式及参数,重点对黄 43、耿 179、耿 19、耿 117、黄 3 长 6 等油藏进行参数优化,计划实施 368 个井组。
- (3)精细分层注水。针对长期水驱后剖面矛盾加剧、小层潜力未充分发挥的问题,以提高分注率、提高水驱动用程度、缓解剖面矛盾为目的,在单砂体刻画基础上,继续开展层内分注,扩大提级分注,改善纵向水驱状况。2022年计划在池 141、吴 433、黄 3 长 6 等油藏分注 149 口。
- 2.加强欠注治理,补充地层能量。

长 8 油藏扩大双子膜活性剂降压增注新工艺试验,长 4+5、长 8 油藏攻关注聚井复合解堵、宽带压裂增注技术,2022 年计划实施各类措施 279 口。其中:在罗 1 中部、黄 3 长 8、耿 19 等油藏连片欠注区扩大实施宽带压裂试验 13 口、双子膜表活剂增注 12 口、井网转换试验 4 口。

3.加强剖面治理,改善水驱。

按照"持续注入、面上推广、攻关试验"思路,突出"特低渗~超低渗油藏规模注入、低渗透油藏攻关试验"两个方向,坚持小粒径、低浓度、长周期注入,2022年部署聚合物微球驱 1541口、堵水调剖 311口。对效果较差的罗 1 西南部、黄 3 东南部等油藏开展聚合物微球粒径、浓度等参数优化,提高见效率;选取耿 162、元 267等侏罗系油藏开展粘弹自调驱试验 50 口。

4.加强低产低效井治理,挖掘油藏潜力。

以持续改善油藏开发效果为目标,重点开展堵塞井、长停井、低产低效井治理。

一是深入分析油井堵塞机理。通过开展"五敏"实验评价、水锁效应与贾敏效应、油田水配 伍性及储层伤害、注入水与储层岩石配伍性、注入水与原油配伍性等研究,形成油层堵塞因 素综合评价:二是持续在长 2、长 4+5 油藏推广中性液解堵、低成本解堵等成熟工艺,长 4+5、 长 8 油藏扩大多级暂堵压裂等新工艺; 三是依托万口油井挖潜项目组, 持续开展长停井挖潜, 恢复主力层潜力, 试验堵水压裂、水平井找堵水、蓄能压裂等新工艺试验, 加大水淹井、低效井治理技术储备, 实施补孔、转采等措施。

5.持续推进重点开发试验。

以储备油藏持续稳产及提高采收率技术为目的,扎实做好现场试验攻关和效果评价。

一是扩大井网调整试验:结合前期实施效果及储层特征,突出井网完善、短水平井试验、储层优化改造,在罗1、元48、耿83等油藏开展井网加密调整,缓解开发矛盾,充分动用剩余油;二是按照低渗透油藏井间、特低渗透油藏油井排挖潜提高采收率,超低渗油藏水线侧向试验水平井提单产的思路,2022年计划实施老井侧钻、更新共50口;三是推进微生物活化水驱油试验:做好盐44延9、罗257延9油藏微生物活化水驱油现场精细管理、动态监测测试、效果跟踪评价等工作,新增罗141区(16注50采)、学3长2(31注96)试验区,改善油藏水驱状况;三是优化扩大泡沫辅助减氧空气驱:优化耿271区5个井组的注入参数,新增6个井组扩大试验,形成"11注45采"规模试验区;四是持续二氧化碳驱先导试验:按照黄3长8油藏"9注37采"方案,年注入量5.7万吨,预计2022年底累计注入20.74万吨,累计注入0.097PV,完成计划的38.7%,并做好动态监测、井网完善、能量补充、低产井治理、扩大试验的前期准备等五项工作,提升试验效果;五是扩大表面活性剂驱油试验规模:稳步推进罗1西南部"6注29采"试验,计划年注入量3115吨,完成设计的11.7%,结合试验效果,扩大规模至56井组。

6、完善油田动态监测配套。

立足不同油藏开发需求,按照油水井定点测压≥70%、吸水剖面≥30%的两个资料录取要求,注重分注井测调、压力测试合理平面分布、油水井井筒状况监测,突出多层合采区分层多参、低渗透油藏定点剩余油测试、采收率试验区效果评价类测试,为油田开发调整和效果评价提供科学依据。2022 年姬塬油田部署各类监测 7390 井次,其中:油水井测压 1781 井次,吸水剖面 1499 井次,产出剖面 31 井次,工程测井 150 井次,剩余油 49 井次,井间示踪剂监测 34 井组,水驱前缘测试 11 井组,分层调配 2696 井次,吸水指示曲线 694 口,分析化验 443 井次。

二、靖安油田

(一) 开发现状

靖安油田主要开发大路沟、白于山、五里湾、盘古梁、塞 392 等区块。2021 年底,共有采油井总井数 7317 口,开井 5872 口,井口日产油水平 6944 吨,单井产能 1.18 吨/天,综合含水 72.58%,地质储量采油速度 0.50%,采出程度 11.94%;注水井开井 2302 口,日注水平53433 方,单井日注 23 方,月注采比 1.94,累积注采比 1.84。

(二)总体开发形势

2021年靖安油田强化单砂体刻画、注采关系对应及剩余油研究,持续开展小层注采调整、

精细分层注水、周期注水、调剖调驱、低产低效井治理、井网加密、注水井剖面治理及提高 采收率试验,油田开发形势稳中向好。

1. 水驱状况稳定。

2021 年,通过开展精细单砂体刻画,精细注水调整、补孔分注、剖面治理、聚合物微球驱等工作,水驱状况整体向好,水驱控制程度 **93.0%**,水驱动用程度由 **70.9%** ↑ **71.7%**。

2. 油藏能量保持水平合理。

与 2020 年相比,三叠系油藏地层压力保持水平由 101.2% ↑ 102.7%, 侏罗系油藏地层压力保持水平 76.0%, 地层能量基本保持稳定。

3. 两项递减下降,开发形势好转。

同期对比, 年对年自然递减由 **11.3%** ↓ **10.1%**, 综合递减 **9.0%** ↓ **7.6%**, 含水上升率稳定在 **2.1%**, 整体开发形势好转。

(三) 主要工作及效果

- 1. 强化油藏基础研究, 筑牢稳产根基。
- (1)细分开发流动单元。 针对油藏进入中高含水期,水驱油效率下降,水驱开发矛盾日趋复杂的问题,按照差异化管理思路,结合地质特征、水驱类型、开发动态变化,进一步细分流动单元、细化开发矛盾。将 38 个油藏 87 个开发单元细分到了 104 个,分区域细化注水政策,注采调控更加精细、精准。
- (2)强化油藏分类分级管理及预警管理。按照"统一标准、分类管理"的思路, 开展油藏 月度分类分级及预警管理,并制定相应的管理措施,整体上,将油藏预警分类红色预警、橙色预警及黄色预警,其中,红色预警油藏重点监控、专题分析,并开展联合攻关;橙色预警油藏强化治理,加强常态分析及各项措施的监督和落实;黄色预警油藏加大监控力度,提早介入、提前治理。通过治理,靖安油田目前开发水平为 I 级油藏 17 个,II 级油藏 13 个,I+II 级油藏储量占比 93.7%,产量占比 91.3%,25 个可对比油藏中,I 级油藏增加了 2 个。
- (3) 持续开展单砂体精细刻画。立足油藏开发矛盾,按照"深化地质认识、突出水驱研究、加强成果应用"的总体思路,稳步推进单砂体研究工作,建立测井曲线识别标准、单井剖面模板、单砂体侧向连通标准、井组资料模板,逐步发展、完善单砂体划分方法。2021 年对五里湾长 6、陕 123-DP10、白于山、五里湾长 2 等 14 个油藏共计 1086 个井组开展单砂体刻画,摸排各项工作量 247 井次,完成 226 井次,水驱储量控制程度 85.8% ↑ 89.0%,水驱储量动用程度由 70.2% ↑ 73.4%。
- (4) 精细油藏描述研用结合。以深化应用、优化调整为思路,对重点油藏开展二描三描,同时利用已有模型持续开展数值跟踪预测,2021年开展精描研究 3 项、数模跟踪预测 227套,指导注水调整 1603 井次;开展盘古梁长 6、盘古梁侏罗系等油藏剩余油模拟,指导部

署加密井 34 口、开窗侧钻 23 口。

- 2. 精细注采调整,改善开发水平。
- (1)强化单砂体刻画成果应用,完善注采系统,精细平面注水调整,控制含水上升,2021年共计调整注水 2189 井次,调整水量 61842 方,对应 5321 口井中有 1140 口井见效,累计增油 19327 吨。其中,三叠系油藏调整 1981 井次,调整水量 49342 方,对应 4610 口井中有 913 口井见效,累计增油 17639 吨;侏罗系油藏调整 208 井次,调整水量 12500 方,对应 711 口井中 227 口见效,累计增油 1688 吨。
- (2)分层注水。 结合单砂体刻画,按照"层间向层内"转变的思路,依据不同类型油藏剖面特征及需求,通过分注方式优化、分注技术攻关,逐步实现分的精确、注的精准、管的精细。2021年,新增老井分注 105 口,分注井数达 1211 口,分注率 43.1%,对应油井 555 口中 84 口见效,平均单井日增油 0.1 吨,累增油 554 吨,实施区水驱储量动用程度由 64.3% ↑ 65.6%。
- (3)周期注水。通过研究不同类型油藏动态特征,综合考虑选井选层、参数制定、效果评价、优化调整四个方面,突出针对性、差异化注入,重点在陕 123-DP10、塞 392、白于山东、ZJ42-ZJ53 等 17 个油藏实施 406 井组,对应 1271 口油井中 226 口井见效,平均单井日增油 0.03 吨,累增油 2485 吨,累降注入水 81.7 万方,注水有效率进一步提升。
- (4) 微球调驱。特低渗透油藏强化分、堵、驱一体化治理,裂缝发育区单点精准调剖,全区集中规模调驱,突出小粒径、低浓度、长周期微球注入,在进一步合理开发技术政策的基础上,堵水调驱降递减效果明显,在五里湾、盘古梁等油藏实施 392 井组,见效比例 90.3%,其中增油型 33.4%,降递减型 56.9%,吸水指示曲线上折型比例由 53% ↑ 68%,试井资料显示裂缝半长明显减小,深部微裂缝得到有效封堵,井组月度递减率由 1.50% ↓ 0.03%,含水上升幅度 0.17% ↓ -0.05%;超低渗油藏以微球驱适应性评价为目的,区域微球驱配套单点堵水调剖,改善油藏深部水驱,重点在虎狼峁、塞 392 长 6 油藏实施 184 井组,见效比例 78.7%,其中增油型 21.6%,降递减型 57.1%,吸水指示曲线好转占比 23.0%、稳定占比 62.3%,可对比井裂缝半长减小,地层深部封堵作用明显,井组月度递减率 0.66% ↓ 0.11%,含水上升幅度 0.22% ↓ -0.09%。
- 3. 加强油井措施挖潜,努力提高单井产量。

油井措施以效益增产为目标,按照先算后干、算赢再干的原则,突出原层剩余油挖潜、非主力层评价再认识,结合精细油藏描述及单砂体刻画成果,深化地质研究,优化选井选层,注重由"提液增油向控水增油"、"进攻增油向层内挖潜"、"单井治理向区域治理"三个转变,加强长停井、低产井、水平井、套损井治理,2021年开展油井压裂、解堵、补孔等措施605井次,有效率82.6%,平均单井增油0.69吨,累计增油7.17万吨。

4. 开展提高采收率试验,积极做好技术储备。

立足一次水驱,以扩大波及体积、提高采油速度为目标,着力推进泡沫辅助减氧空气驱、功能性水驱两项主体技术试验,持续做好精细注采调整、配套水驱治理工作,不断优化完善提

高采收率技术体系。

(1) 泡沫辅助减氧空气驱

以井组分析、技术研究为基础,突出井组差异化调整 32 井次,重点在五里湾长 6 油藏开展 微球驱+纯注气 2 井组、微球驱+泡沫驱交替注入 7 井组。微球驱+纯注气注入试验:油藏南 部高含水区域开展 2 井组,实施后,液量缓慢下降(近期平稳),含水由 80.8% ↓ 79.6%,井组月度递减率由 0.30% ↓ -0.66%,月含水上升幅度由 0.08% ↓ -0.32%,取得较好阶段效果,后续持续跟踪评价;微球驱+泡沫驱交替注入试验:油藏中部高采出区域开展 7 个井组,微球期间液量下降,注空泡后动态好转,表现出微球封堵、泡沫驱油的特征。

(2) 功能性水驱

(四) 存在的主要问题

1. 进入中高含水阶段,稳产难度加大。

2021年底,靖安油田综合含水为72.6%,可采储量采出程度已达60.22%,塞39区长2(95.5%)、五里湾一区长6(99.4%)等油藏进入中高含水阶段后,含水上升速度加快,采液指数、井底流压下降,堵塞井增多,水驱状况变差,常规注采调整效果逐年变差,控水稳油难度大。

2. 侏罗系油藏控水稳油形势严峻。

新 52、ZJ2 等侏罗系油藏进入高含水开发阶段,高液量、高含水,剩余油分布复杂;杨 66、陕 92 中含水油藏进入含水快速上升阶段,剖面、平面矛盾突出;高 86、XP18 等油藏部分油井采液强度大于合理采液范围,造成边水内推,油井含水上升速度加快,产能损失明显。

同时,侏罗系油藏剖面动用状况偏低。通过剖面治理,水驱动用程度由 57.2% ↑ 58.5%,但 动用程度仍然偏低。陕 92、杨 66 等油藏通过治理水驱动用程度有所上升,但部分水井吸水 形态变差,吸水不均井占比大(44.4%),注入水易沿高渗段突进,导致油井含水上升速度加快,递减加大;且侏罗系油藏整体上水井措施工作量小,常规措施效果差。

3. 受微裂缝影响,平面及剖面水驱动用差。

盘古梁长 6、陕 123-DP10、高 1-高 15 等油藏通过综合治理,油藏整体形势虽有所好转,但 开发水平仍较低,主应力方向裂缝发育,水驱油效率低,主向井见水明显,侧向井见效缓慢, 单井产量低,且随采出程度的增加,侧向见水井比例增大,低产低效井比较增高,降递减难 度增大。

五里湾一区受沉积韵律和水重力作用双重影响,吸水不均井比例逐年增加,水驱状况整体稳

定,但吸水形态变差井逐年增多,与低含水期对比,不均匀吸水比例由 42.4% ↑ 63.6%; 盘 古梁长 6 油藏剖面水驱不均矛盾突出,由于油层较厚纵向隔夹层发育,非均质性强,小层之间吸水能力差异性大(强吸水段与弱吸水段吸水量之比 6~8 之间); 高 1-高 15 等多层开发油藏剖面调整难度大,部分井措施后吸水未改善,部分层段不吸水、指状、尖峰吸水井增多。

(五)下步重点工作

1. 持续精细注采调控,不断优化注水开发政策。

在深入单砂体刻画及水驱规律研究的基础上,持续优化分油藏、分部位、分小层注水开发技术政策。

自 2018 年以来,针对靖安油田主力油藏部分区域压力保持水平高、含水上升快、油藏开发形势变差的问题,逐步开展注水政策优化工作,平均单井日注由 2018 年的 31 方 \downarrow 到 2019 年的 28 方 \downarrow 到 2020 年的 21 方 \uparrow 2021 年的 22~23 方,与 2020 年相比,油田递减趋势得到有效控制,自然递减由 11.3% \downarrow 10.1%,重点油藏递减保持稳定或略有下降,含水上升局部得到控制。其中,ZJ42-ZJ53 长 6 油藏自然递减 12.6% \downarrow 11.9%、含水上升率 2.0% \uparrow 2.4%,盘 古梁长 6 油藏自然递减 16.0% \downarrow 13.0%、含水上升率 8.7% \downarrow 4.2%,高 1-高 15 长 6 油藏自然递减 7.0% \downarrow 4.9%、含水上升率 2.0% \downarrow -2.6%,塞 392 长 6 油藏自然递减 11.0% \downarrow 9.5%、含水上升率 6.4% \downarrow 6.3%。

目前,单井日注已基本趋于合理,但针对重点油藏局部区域动态变化较大问题,仍需密切关注井组动态并及时加强调控,2022年将结合生产动态,逐井逐层调控,含水上升快的井组在剖面调整前提下,小幅度控制注水(1-2 方/月)。

2. 强化剖面治理,提高水驱动用程度。

以缓解"层内、层间"矛盾为目的,充分运用吸水剖面、吸水指示曲线、水驱前缘、示踪剂等动态监测资料,结合井组动态变化,计划开展水井措施 1132 井次,其中,常规剖面治理 234 井次、堵水调剖 182 井次、微球驱 813 井次,全面改善油藏平面水驱状况;针对油藏局部注采井网不完善及低压低产区域开展油井转注 27 井次,有效补充地层能量,提升开发水平。

3. 加强堵塞井、低产井、长停井治理,提高单井产量。

深入剖析油藏堵塞机理及低产成因,针对主力油藏五里湾长 6、盘古梁长 6 油藏已进入中含水开发期,继续优化暂堵酸化措施工艺,开展暂堵剂堵水试验,扩大暂堵压裂实施规模,同时开展高含水井、重复堵塞井治理新技术试验,稳定并提高单井产量,2022 年计划实施油井措施 445 井次,其中常规解堵措施 154 井次,低产井治理措施 241 井次,长停井复产 87 井次。

- 4. 扩大提高采收率试验规模,改善油藏开发效果。
- 一是做好五里湾长 6 油藏空气泡沫驱己有的 22 井组继续注入及效果评价工作,做好现场安

全管控及气液比优化,进一步改善并提高试验效果;二是继续在五里湾长 6 油藏南部巩固实施功能水驱驱试验 8 井组,及时优化注入参数;三是针对侏罗系老区高含水、采油速度慢,常规水井措施效果逐年变差,剩余油挖潜难道大的问题,在杨 66 继续开展粘弹自调控剂 7口。

5.开辟稳产示范区,发挥引领示范作用。

聚焦不同类型油藏不同开发阶段主要矛盾,优选水驱基础较好的五里湾长 6、盘古梁长 6、塞 39 长 2 三个油藏,通过 3~5 年技术攻关、持续提升,打造稳产示范区,形成可复制、可推广的技术模式,引领同类油藏高效开发。

五里湾长 6 油藏:随着采出程度增大,水驱波及半径突破 300 米,平面水驱前缘已达油井端,剖面剩余油薄互层分布,常规注采调控难,挖潜难度大;下步紧密围绕"提水驱"和"降递减"两大目标,强化二次单砂体刻画成果转化,在精细注采对应基础上,持续做好小层注水政策优化(300 井次)、微球规模调驱(143 口)、提高采收率试验(空泡驱 45 注 135 采、功能性水驱 60 注 181 采、中相微乳液 6 注 30 采)、剩余油精准动用(补孔分注 42 口、更新侧钻 35 口、层内措施挖潜 45 口)等工作,系统配套井筒管理及动态监测(5522 井次);力争经过 3~5 年,油藏自然递减≤8.0%,采收率≥40%,实现五里湾长 6 油藏硬稳产。

盘古梁长 6 油藏:针对纵向油层厚度大 (17.6 米),长期水驱后,吸水不均加剧(占 46.1%),平面上侧向井逐步见水,含水上升加快(含水上升率 4.2%)的问题,开展"平面+剖面"联合治理,平面上完善注采井网(更新、转注 31 口),精细小层调整(450 井次),剖面上"层内分注(46 口)+调剖调驱(614 口)"结合,配套动态监测(2869 井次),均衡小层水驱,全面提升水驱状况;力争经过 3~5 年,水驱动用程度提高 6~8%,含水上升率≤2.0%,自然递减≤8.0%,全面提升油藏水驱状况。

塞 39 长 2 油藏:针对油藏进入高含水开发阶段(综合含水 84.7%,采出程度 21.4%),控水 稳油难度大,常规调整措施有效率低的问题,以"控水稳油"为目标,立足水驱、改善水驱,持续精细注采调控(30 井次/年)、强化剖面治理(3 □)、规模调剖调驱(42 □),加强动 态监测(59 井次),力争 3~5 年达到自然递减≤5.0%、含水上升率≤1.0%、水驱储量动用程度≥72.0%,实现油藏高效开发。

三、安塞油田

(一) 开发现状

安塞油田主要开发王窑、侯市、杏河、坪桥等区块,主力含油层系为长 6。2021 年底,采油井总井数 9393 口,开井数 7740 口,井口日产油水平 6398 吨,单井产能 0.83 吨/天,综合含水 71.2%,地质储量采油速度 0.5%,采出程度 12.8%;注水井总井数 3612 口,开井数 2916口,日注水平 45117 方,单井日注 15 方,月注采比 1.79,累积注采比 1.87。

(二)总体开发形势

安寨油田持续推进三年(2020~2022)精细注水提升工程,以"完善水驱、改善水驱、三次

采油"为思路,通过精细油藏描述,深化水驱及剩余油分布规律认识,2021年通过持续开展单砂体挖潜、注采调整、周期注水、调剖调驱、加密调整等注采结构调整,有序推进气驱、化学驱等三次采油工作,油田开发形势基本保持稳定。

1. 水驱状况稳定。

通过完善注采对应关系、规模调剖调驱等工作,水驱储量控制程度 85.2%,水驱储量动用程度 75.7%。

2. 地层能量稳定。

通过欠注治理、注水调整等措施,地层压力 8.84MPa,压力保持水平 103.1%,整体压力保持水平合理。

3. 自然递减保持平稳,含水上升率增大。

同期对比,自然递减 11.7%→11.9%,综合递减 9.3%→9.5%,含水上升率由 1.4% ↑ 2.9%。

(三) 主要工作及效果

1. 强化精细注水,筑车油藏稳产基础。

(1) 完善注采对应

通过深化砂体剖面叠置关系、横向连通宽度及接触关系认识,2021 年指导注水端单砂体分注 12 口,水驱储量控制程度由 70.4% ↑ 82.6%,水驱储量动用程度由 77.2% ↑ 80.8%,油井见效比例增加 26.7%,井组递减由 7.3% ↓ -8.9%;采油端单砂体挖潜 60 口,平均单井日增油 0.47吨,有效率 66.7%。

主要认识:单砂体挖潜整体有效率偏低,近两年单井增油下降 0.19 吨/天 (0.66 吨/天 ↓ 0.47 吨/天),主要有 4 方面认识:①单砂体补孔效果受垂向上叠置关系影响大,切叠式纵向连通好,分离式、叠加式受泥质、钙质、物性三类夹层影响,纵向连通差;②23.9%的注水井受前期射孔卡距小,不具备分注条件,需要通过化学方法动用;③单砂体补孔效果与油藏埋深有较大关系,1200 米以下埋深地层,压裂易产生垂向缝,导致与原水淹层窜通;④有注无采井长期超前注水,补孔后油井有效期段,增油效果差,说明水驱前缘已推进至近井地带。

(2) 强化分层注水

依据单砂体刻画成果,重新认识储层特征和水驱矛盾,2021年实施分注124口,全部采用同心双管和波码数字式新工艺分注,实现了小层自动精准测调、层间自动验封,解决了测调成功率低、检配合格率低的问题,实施后分注率 ↑4.3%,分注合格率 ↑4.0%,水驱储量动用程度 ↑11.9%,实施井组对应油井见效比增加20.7%,自然递减 ↓6.9%。

(3) 推广周期注水

针对高含水期稳定注水效果减弱的问题,开展周期注水机理研究,以动用不同水淹级别层段的剩余油为目的,充分考虑"储层地质条件、压力保持水平、水驱渗流特征、油藏开发阶段"四项关键因素,优选实施区域,提高周期注水的针对性,形成了井间交替、排间交错、层间轮换的多元化周期注水模式。2021年推广实施2176 井次,油井见效率31.5%,累增油3.3万吨,累降水7.1万方,减少注水量45.6万方。

(4) 规模调剖调驱

2021 年总体实施 1024 口(微球 944 口+PEG80 口),覆盖油藏规模 115 万吨,实施超过 3 个月的 796 个井组,净增油+降递减比例占 86.6%,阶段递减 3.09% ↓ 0.98%;同时针对多轮次调驱效果减弱,开展两项优化,提升堵水调驱效果:一是粒径优化,在 ZJ85 油藏试验 10 口,井组阶段递减由 11.2% ↓ -2.3%,含水下降 2.2%,目前仍然有效;二是优化注采政策,对塞 37、ZJ89 等 89 个液量下降井组配注上调 191 方,阶段递减由 5.6% ↓ 1.3%,含水上升速度减缓。

(5) 其他专项治理

井筒治理方面:加大检串投入,三年以上未检串井存量由 2204 口 ↓ 1778 口,服役年限大于 5 年管柱占比由 27.9% ↓ 24.5%。

水源保障方面:通过区域联网、局部挖潜,开展产建配套、老井挖潜、系统优化、管控升级 37 口,补充水源 5650 方/天,重点解决了坪桥水源短缺的问题,目前水源整体富余。

水质提升方面:针对站点能力不足、工艺不完善等问题,通过建设前端脱水站 4 座、新工艺立项治理 13 座(已投 6 座)等,水质达标率 ↑ 93.5%,水质合格率 ↑ 57.7%。

2. 优化措施结构,增产效果提升。

(1) 采油井措施

安塞油田 34.5%的井已实施 2 轮次以上的复压、酸化等措施,选井范围受限,措施规模有所压缩,2021 年以"突出高含水井治理、突出控水增产措施、突出效益优选原则"为思路,共实施各类采油井措施 497 口,其中高水井、长停井占比 68.0%,化学堵水、堵水压裂、暂堵压裂等占比 31.3%,将产出投入比>1.0 作为实施红线,方案设计中严格经济效益评价,同期对比,万元增油 ↑ 0.5 吨,产出投入比 ↑ 0.1,有效井单井日增油 0.81 吨。

主要认识:由于主力油藏均已进入高含水开发阶段,剩余油分散,一是不同含水阶段复压效果对比,含水越高效果越差,导致重复压裂适应性变差、效果减弱,主要体现在提液不增油;二是控水增产措施实施效果差异大,堵水技术仍需攻关。

(2) 老井侧钻

以提高采收率、动用剩余油为目的,2021年实施老井侧钻60口,生产满三个月共38口,

平均单井产能 2.1 吨,同比效果保持稳定,目前产能 1.60 吨,日产水平 87.6 吨,累产油 1.6 万吨。

一是针对超低渗储层定向井开发产能低,采用超短水平井开发 27 口,初期产能 3.4 吨,达产年 3.08 吨,含水与周围定向井持平;二是在储层物性差、有效驱替压力系统无法建立区域,采用超短半径柔性杆开窗侧钻 11 口,投产 10 口,单井日产油 1.09 吨(增油 0.73 吨),由于该技术采用裸眼完井压裂改造,无法实现有效分段压裂,易造成裂缝贯通,含水由 23.3% ↑55.1%,下步暂缓实施,继续攻关。

3. 开展提高采收率试验,有序推进三次采油。

目前共开展气驱、化学驱、微生物驱共 3 类 4 项提高采收率试验,覆盖地质储量 1285 万吨,试验区年产油 10 万吨。2021 年重点开展了工艺配套、注入站点升级、注采参数优化等措施,保障了各项提高采收率试验有序开展。

(1) 王窑区泡沫辅助减氧空气驱

2021年为实现站点正常运行,开展止回阀安装、流程调试、气表标定、气液两相系统压力 匹配运行等 6 方面工作,累注 0.061PV(设计 12.3%),生产总体保持平稳,但仍存在气液互窜、注气精确计量等问题。

主要认识: ①气驱效果以降递减、控含水为主,递减由 17.6% ↓ 7.7%,含水稳定在 80%左右,油井见效比例 45.2%,预测采收率提高 1.7%;②空气泡沫补充地层能量效果明显,近 3 年注水量由 6.9 万方/年 ↓ 4.6 万方/年(下调 36%),年注气量 10 万方,目前试验区地层压力保持稳定;③空气泡沫具有封堵高渗通道的功能,60%的见效井表现为含水下降(84.7% ↓ 81.5%),表明新的剩余油参与动用;④长期注水后存在储层深部堵塞问题,注空泡后低渗段渗流能力改善不明显。

(2) ZJ85 区粘弹表活剂驱

开展 4 个井组试验,设计注入量 0.1PV,浓度 0.2%~1.0%,累计注入药品量 546.1 吨,完成总体进度 55.1%。2021 年针对井组含水上升,实施 4 井组 PEG-1 调剖,目前恢复注入表活剂,试验区日产液上升、含水下降,累增油 5294 吨。

(3) 塞 37 区聚合物微球+表活剂驱

开展 15 个井组的聚合物微球和表面活性剂交替注入(周期半年,共 10 年),已累注微球 148.9 吨、表活剂 79.5 吨,完成总设计 14.4%,注入体积 0.054PV,试验区递减由 7.7% \downarrow 2020 年 2.0%,含水保持稳定,2021 年表活剂未按期注入,目前递减为 8.0% 。

主要认识: ①CDMP-1 主要含甜菜碱表面活性剂,注入后注水压力下降,试验区含水下降,具有洗油作用;②CDMP-2 为微生物类表面活性剂,基液粘度高,具有调驱作用,注入期间液量、含水均呈下降趋势。

(四) 存在的主要问题

1. 老区进入高含水开发阶段,稳产难度加大。

目前全油田综合含水 71.2%, 岩心实验表明, 过等渗点后水相相对渗透率上升速度明显加快, 加之裂缝、高渗带突进, 含水上升加速, 在注水开发的 33 个单元中有 29 个进入高含水开发阶段, 产量占 74.1%, 油井见水问题突出, 无效注水加大。

2. 单砂体条件下油藏精细研究工作还需持续开展。

通过对单砂体的沉积微相、内部构型、叠置关系、接触关系精细刻画研究,受砂体连通程度、油层压裂程度、油水井射开程度三个因素影响,原小层水驱动用及控制程度的评价,已不能满足油藏精细开发的需求,需开展单砂体条件下的水驱动用状况评价,加大测试、研究、实验等方面工作。

- 3. 稳产技术储备不足,制约老油田长期稳产。
- 一是开发对象日趋复杂,开发技术配套亟需提升。自然能量开发油藏午 237,储层致密主要 采取长段水平井开发,初期递减在 20%以上,需探索能量补充的有效方式; 老区水平井受裂 缝发育、超前注水影响,整体含水较高,需加大水平井找水及治理技术攻关; 超低渗区块超 短加密水平井,需开展稳产技术政策研究,保障长期稳产。
- 二是高含水开发阶段,剩余油分布复杂,水驱效率下降,措施增产手段与开发需求不匹配。 剖面剩余油多以薄互层状分布,位于启动压力高的超低渗层段,驱替难度大,薄差层剩余油 精准评价和精准动用技术亟需突破,堵水压裂、油井堵水等高含水井控水增产技术需要持续 攻关。
- 4. 注水井筒基础仍然比较薄弱, 待治理工作量大。
- 一是 2020 年以来,通过加大检串投入,三年以上未检串井存量由 2047 口 ↓ 1303 口,但三年未检串井比例仍高达 35.4%;二是管柱服役年限长、普通涂料油管占比高。目前在用普通涂料油管 113 万米,占比 21.3%;三是注水井井筒故障存量大。受区域限制无法更新、井筒状况复杂、作业周期长等问题,大修难度逐年加大,导致 74 口无法正常注水或无法精细分注,集中在杏河及王窑油藏,其中带病注水 41 口(无法分注 8 口),停注 33 口,影响注水 670 方/天。
- 5. 采出水处理工艺现场管理难度大。
- 一是 7 座集输站点处理生活污水 419 方/天,其中杏河站因生活水细菌超标,导致供注水系统腐蚀速率加快、管线淤堵频繁,日常维护工作量大;4 座措施废液处理站最大处理能力 1200 方/天,高峰期产生废液 1802 方/天,不能满足运行需求。二是新型采出水处理设备未开展常态化维护。目前已配套"生化/气浮+过滤"处理工艺站点 14 座,由于设备结构复杂、操作精细,故障后维修难度大,导致水质平稳运行困难。

(五)下步重点工作

- 1. 深入开展基础研究,为剩余油挖潜奠定基础。
- (1)推进单砂体二次精细刻画,建立划分标准,评价不同单砂体构型动用潜力。以重点油藏典型井为突破,动静结合、以点带面,分两年完成油水井二次精细刻画,2022年计划6559口,潜力动用评价50口以上。
- (2) 开展重点油藏及重点试验区精细描述,指导精细注采调整及剩余油挖潜。一是推进塞 158、塞 216、谭南 410、塞 169 等 4 个油藏三次精细描述,提出油藏综合调整方案;二是 对空泡、层系优化简化等重点试验区数值模拟全覆盖,进行精细解剖;三是精细刻画剩余油分布,指导周期注水、调剖调驱、侧钻部署、单砂体补孔等工作 485 井次。
- (3)精细地质研究,评价长停井潜力。对 1441 口长停井的储量动用状况及剩余油潜力精细评价,开展三年百口长停井治理挖潜工程。2022 年安排复产 100 口以上,盘活可采储量 80.0 万吨,开井率提高 1%,恢复 1.5 万吨生产能力。
- 2. 抓好精细注水工程, 夯实老油田稳产基础。

按照"立足油藏、完善配套、重点治理、示范引领"的工作思路,抓好"水源保障、水质提升、井筒治理、系统优化"四项工程,夯实老油田稳产基础。

- (1) 加大水源保障。以降低绝对欠注率、提升配注合格率为目标,2022 年持续推进欠注井治理工作,全年控制目标 5.0%。一是计划在坪桥、王南、王窑、侯市等区块实施 30 口,预计补充水源 2376 方/天;二是深化欠注机理研究,针对不同欠注类型,采取具有针对性的措施,计划措施增注 183 口,末端增压治理 20 口。
- (2) 水质提升工程。一是配套"气浮+过滤"2座,解决生活污水问题1项,提升站点能力、完善处理工艺;二是配套负压排泥装置8具,提升现场管理水平、降低劳动强度;三是开展三相分离器24具、储罐清理61座的日常维护共758次,降低水处理系统二次污染风险;四是做好合同保障、物料保障及管理保障。加快侯十一转、杏河站2座站点的水质提升改造进度,通过提升,2022年水质达标率由94.5%↑95.5%,站点达标率64.0%↑84.0%。
- (3) 井筒治理工程。立足井筒矛盾,围绕注水基础指标,按照重点区块、重点井型优先治理的思路,开展以检串、洗井为主的井筒治理工作。一是优先消除 7 年以上清水井、5 年以上采出水井,计划实施 600 口,更换管柱 30.0 万米;二是密闭洗井,按照洗测一体、优先采出水井、结合欠注井治理的思路,部署 2615 井次;针对井口压力高,带压动力不足的情况,部署 100 井次;三是液氮冷冻,针对井口压力高,带压动力不足的情况,部署 100 井次;四是继续推广合注井暂堵免泄压试验,部署 10 井次。
- (4) 系统优化工程。一是对 5 座采出水站点扩能,建设前端脱水站点 1 座、敷设管线 112.1 公里;二是供注管网治理,更换供注管线 67.5 公里,对 50 公里隐患非金属管线接头强化处理;三是供注站点优化,建设一体化无人值守站点 1 座,关停供水站 2 座、注水橇 11 座;四是措施废液点,加快坪桥、杏北区块 2 座废液点站外管网建设及杏北站内处理配套,建成

后满足坪桥、杏河高峰期措施废液运行需求。

3. 抓有效注水工程,降低油田自然递减。

部署转注、分注、大修等注水工作500口,水油措施比例1.5:1,配套堵水调驱583口。

- (1) 持续推进单砂体条件下的注采对应完善。加强单砂体沉积微相、内部构型、剩余油分布等研究,加强单砂体研究成果的应用,持续完善小层注采,完善分注工艺配套,2022 年安排转注、分注、大修、更新等措施 212 口,分注工艺升级 100 口。
- (2)精细推进注水井调剖调驱。围绕稳油控水和改善水驱,结合前期调驱效果,针对各油藏特征及不同体系的适应性,2022年实施"三个一体化"管理,即调剖调驱一体化、双向调堵一体化、调驱调控一体化,部署调剖调驱 583 口,促进全油田自然递减下降,含水受控。
- (3) 持续做好精细注采调控。一是围绕不同油藏不同开发阶段的矛盾,以压力、水驱为导向,优化注水政策,超低渗油藏以控水稳压、特低渗以降水降压为目的,提高注水有效性;二是全面推广周期注水,制定不同油藏周期注水政策,推广层间轮换注水,探索脉冲、短周期注水,部署 1500 口; 三是扩大间歇采油,实施 200 口左右; 四是针对见水见效程度高井,控制采液强度,降低无效采出。
- 4. 抓好油藏综合治理,解决突出开发矛盾。

按照公司油藏分类分级管理标准,结合油藏开发形势和产量规模,2022年在王窑、杏河等 5个油藏开展综合治理,以精细有效注水为核心,解决多油层开发、双高开发阶段油藏稳产难题,部署措施工作量 3015 井次,自然递减 14.8% ↓ 12.5%。

- (1)公司级治理: 塞 6 立足高含水期提高采收率,突出改善水驱、提升驱油效率,重点抓好精细有效注水、产液结构调整、三次采油技术攻关及现场保障,部署各类措施 23 项 601 井次,递减控制在 14.6%以内。
- (2)综合治理区:塞 21 油藏在持续巩固水源保障的基础上,重点抓好水源恢复后的精细调控、日常水源维护、钻停区域补水、小排距加密区精细注采调控等工作,部署各类措施 14 项 258 井次,递减控制在 14.5%以内;塞 127 开展注水井井筒治理、纵向潜力研究、层间精细调整及油水双向调堵等工作,部署各类措施 16 项 1197 井次,递减控制在 11.0%以内;塞 158 油藏立足精细小层注水,解决水质和井筒问题,部署各类措施 19 项 789 井次,自然递减控制在 10.6%以内; ZJ85 油藏立足小层潜力发挥,着力开展小层精细注采调控(层间轮换注水 5 口,隔采简化层系 6 口),重点部署各类措施 13 项 170 井次,自然递减控制在 12.5%以内。
- 5. 调整措施结构,提升措施质量效益。

立足油藏综合治理,持续优化工艺技术,突出高含水井、长停井、低产低效区块连片治理。 扩大暂堵压裂、堵水压裂、化学堵水等措施工作量,全年实施 280 口,有效率≥85%,单井 日增油≥0.8 吨,累计净增油 3.4 万吨,不断提升措施质量效益;长停井复产坚持"五个不 等于"思路,以提高油水井利用率、恢复产能为目的,在剩余油分布规律研究的基础上,依托新技术挖潜剩余油,部署 50 口,累增油 0.6 万吨。

6. 快速推进三次采油技术试验。

泡沫辅助减氧空气驱试验:一是持续跟踪评价王窑试验区 2021 年 11 月注采参数整体优化后的实施效果,并及时调整,2022 年开展 3 口单砂体补孔,完善注采关系,4 口前置酸酸化+多级暂堵压裂,改善渗流状况;二是开展气液混合防窜工艺、稳流配气装置研发、小流量计气仪表研制等方面攻关,研究站内发泡气液输送工艺可行性,不断提升工艺技术水平。

微生物活化水:通过改进站内重点工艺流程,提升塞 169 微生物活化水驱目标菌浓,在站点改造前菌浓≥100 万个/毫升,站点改造后,菌浓≥500 万个/毫升。

粘弹表活剂驱: ZJ85 油藏实施 6 井组, 2022 年根据井组动态变化特征、动态监测资料及试验区压力变化,合理调整注水井配注及药剂浓度,优选油井开展酸化压裂等解堵措施,同时开展表活剂驱油机理研究。

聚合物微球+表活剂驱:在塞 37 油藏已开注,持续加强现场管控,严格执行试验方案。

7. 加强油藏监测资料录取。

2022 年动态监测部署以指导油田开发精细调整为目标,与重点油藏综合治理、生产管理结合、安全环保治理相结合,部署各类监测工作量 2991 井次。

四、胡尖山油田

(一) 开发现状

胡尖山油田主要开发侏罗系的延 9、延 10 以及三叠系的长 4+5、长 6 等油藏,包括胡 307-新 46、胡 151、胡 154、安 201 等 50 余个区块。油井总井数 4462 口,开井数 3175 口,井口日产油水平 3289 吨,单井产能 1.04 吨/天,综合含水 74.4%,地质储量采油速度 0.51%,地质储量采出程度 9.51%;注水井总井数 1406 口,开井数 1100 口,日注水平 20411 方,单井日注 19 方,月注采比 1.54,累计注采比 1.4。

(二)总体开发形势

2021 年,围绕效益开发、提质增效两大目标,持续推进油田开发深度调整,坚持注水专项治理,精细油藏管控、优化方案部署、强化过程管控等措施,油田稳产基础不断夯实,开发形势不断好转。

1.递减及含水上升率下降。

与 2020 年相比, 自然递减 16.9% ↓ 16.5%, 综合递减 14.3% ↓ 13.4%, 含水上升率 2.7% ↓ 1.6%, 开发形势好转。

2.地层能量保持状况。

侏罗系油藏地层压力 9.7MPa,压力保持水平 90.1%;三叠系油藏地层压力 13.6MPa,压力保持水平 90.3%,压力保持水平稳步提升。

3.水驱状况保持稳定。

通过单砂体刻画,完善注采对应关系,加强注水剖面治理,水驱状况基本保持稳定,目前水驱储量控制程度 96.9%,水驱储量动用程度 71.0%。

(三) 主要工作及效果

- 1. 坚持注水核心、加快实施进度。
- (1) 加大了注水专项治理力度。开展"注水大会战",完成"洗井、检串、测调、调剖、增注"等9项3067井次,相比2020年增加了1020井次,特别是加大了分注井测调、洗井、检串等工作力度(其中低渗透油藏分注井调配频次由2.4↑3.1次/口,洗井、检串工作量由145↑231井次),配注合格率达到98.8%,分注合格率达到74.4%。
- (2)加强了水驱综合治理力度。以"完善水驱、提升水驱、改善水驱"为治理思路,重点突出三个结合,实施转注、分注、调剖调驱等728井次,实施区水驱控制程度和动用程度均得到提升、平均月度递减下降1.2%,月含水上升速度下降0.4%。
- 2. 突出分类治理,油藏开发形势逐步好转。

低渗透油藏以控含水、促进二次见效为目标,开展注采调整、补孔+PEG-1调剖、微凝胶+PEG 系列等工作 349 井次,同期对比,月度含水上升速度 0.1% ↓ 0%,水驱动用程度上升 2.1%,采收率提高 1.5%。

特低渗~超低渗油藏以降递减、提升水驱为目标,实施调剖调驱、转注、分注、增注等工作569 井次,同期对比,年对年自然递减下降1.0%,压力保持水平上升1.9%。

3. 深化地质认识、加大老井复查。

按照"深挖侏罗系、扩大主力区、拓展新区域"思路,全年完钻探评井 15 口、复查老井 3500 余口,发现有利区 25 个,新增地质储量 6560 万吨。

- (1) 复查老区挖潜力。坚持"四个重新认识",通过"老井资料再复查,砂体展布再认识,平面构造再刻画",开展补孔/隔采评价 19 口,新增储量 780 万吨,其中为 2022 年准备落实区 7 个,储量 500 万吨,可建产能 5.8 万吨。
- (2) 挖掘资源潜力。坚持"老区还有新层系、老井还有新潜力"理念,以动静态资料为切入点,全面复查老井350口,发现A21延10、扩大胡201延10含油面积,新增地质储量

435 万吨,可建产能 9.0 万吨。

- (3) 突破郝滩新领域。根据"古河两侧找富集,主砂体带上寻串珠"的勘探模式,通过古地貌刻画,结合三维地震资料应用,复查资料 394 口,初步预测侏罗系油藏 10 个,含油面积 106 平方公里,地质储量 5150 万吨。
- (4) 联合探评找发现。以增储需求为导向,全年部署探评井 37 口,完钻 15 口,发现了胡 402 延 9、胡 440 延 10 层等 3 个有利区,新增地质储量 195 万吨;同时为规避建产风险,实施老井补孔 7 口,进一步扩大了胡 153 延 92 层,安 81 延 102 含油面积,落实可建产储量 165 万吨。
- 4. 精细油藏研究,精准开发调整工作。

(1) 精细单砂体刻画

重点对胡 154、安 175、胡 151 等区块 1821 口井开展二次单砂体刻画,实施水井补孔 14 口、直接分注 3 口、油井转注 26 口、优化注水层系 31 口,水驱控制程度 95.8% ↑ 97.0%;油井补孔 36 口、隔采 33 口、优化层系 7 口,平均单井日增油 0.9 吨。

(2) 精细油藏描述

2021年开展了安 175、胡 151、胡 307-新 46 精细油藏描述工作,指导注水调整 39 井次,降 低区域注采比 0.23,对 7个油藏开展加密调整部署研究,实施潜力层补孔 25 口、侧钻更新 19 口、加密 6 口;同时开展不同油藏、不同开发阶段剩余油分布特征研究,初步形成了层内挖潜、井间挖潜及井网加密调整三个剩余油挖潜主力方向。

5. 强化技术革新,改善油藏开发效果。

以改善油藏开发效果为目标,突出高含水井、长停井、低成本解堵、套损井治理四个治理方向,油水井措施各项工作稳步推进,关键技术指标持续向好,实现了措施增产与效益双丰收,有效改善油藏整体开发效果。2021 年完成油井措施 283 口,单井日增油 1.12 吨,措施有效率 84.1%。

(四) 存在的主要问题

1. 低渗透油藏预测最终采收率低。

部分油藏采油速度、注水强度偏大,导致边水内推、底水锥进,含水上升加快,常规注水调整适应性逐年变差,其中元 63、元 149 等 8 个油藏标定采收率 20.0% (储量占比 16.8%,产量占比 10.3%),预测最终采收率不到 15%。

- 2. 特低渗~超低渗 I/II 类油藏注水有效率低。
- 一是胡 154、安 201 等三叠系主力油藏长期高注采比,吨油耗水量高,无效注水严重,特别

是胡 154 长 4+5 油藏加密后水驱规律复杂,通过开展周期注水、调剖调驱等工作,取得了一定成效,但多轮次后效果变差;二是元 196、胡 120 长 9 油藏长期注不够、注不进(欠注井 25 口),压力保持水平低,稳产基础薄弱。

3. 套损井逐年增多, 局部储量失控。

2018 年以来年均新增套损井 40 口以上,当年损失产能达 1.0 万吨以上。2021 年新增 46 口套损井,治理 37 口,产能恢复率仅有 64.7%,全年影响产量 1.8 万吨。

4. 提高采收率技术不够完善。

高含水~特高含水期油藏 48 个,占比 84.2%,储量占比 85.0%,常规注采调整效果有限,急 需开展提高采收率试验。但自 2013 年仅开展微生物驱油、微生物活化水驱两项试验,覆盖面积 23.3 平方公里,地质储量 1395 万吨(5.0%),实施项目少、规模小、连续性差,三次采油技术储备不足。

5. 低产低效井占比大。

油田低产井 1771 口, 井数占比 39.7%, 产量占比 8.2%, 影响整体开发效益, 共有"双低"油藏 17 个, 储量占比 49.6%, 产量占比 24.9%, 平均采油速度 0.27%, 采出程度 2.96%。

(五)下步重点工作

1. 注水专项治理。

以"四条注水"为主线,立足水驱、改善水驱,狠抓井网完善、精细分层、水井维护、水驱提升四项工程,计划部署工作7项2445井次。

2. 推广三项技术。

以提水驱、提效益为目标,持续推广小型解堵(低渗透油藏生物酶解堵 20 口、特低渗~超低 渗油藏井筒深度净化或多效复合增产 200 口、低成本解堵或 YS 增能解堵 50 口)、高注采比 油藏治理(安 201 长 6 裂缝性油藏)、周期注水技术体系(A17 长 4+5 油藏),同时持续丰富 三项技术内涵,逐步实现胡尖山油田效益稳产。

3. 深化两项研究。

针对低渗透油藏注水开发后井间剩余油分布规律复杂、动用难度大的问题,在精细单砂体刻画及剩余油规律研究基础上,重点对安 62、新 46 等 4 个油藏(产量占低渗透油藏 40.8%) 开展油水井各类工作 232 井次,提升低渗透油藏整体开发效果。

4. 打造两个示范区。

围绕注-驱-采系统工程,打造胡 154 区综合治理、低渗透油藏控水降递减两个示范区,以点

连线,以线带面,集中工作量、新技术,总结形成可推广的技术体系,带动同类型油藏开发水平提升。

五、合水油田

(一) 开发现状

合水油田主要开发庄 211、庄 73、庄 36 等油藏。目前采油井总井数 2844 口,开井数 2392 口,井口日产油水平 3443 吨,单井产能 1.44 吨/天,综合含水 43.8%,地质储量采油速度 0.51%,采出程度 4.58%;注水井总井数 1206 口,开井 1044 口,日注水平 14393 方,单井日注 14 方,月注采比 1.81,累积注采比 1.91。

(二)总体开发形势

2021年,通过精细注采双向调整、剖面治理,周期注水+微球调驱及水平井日常管理等工作,油田整体水驱状况稳定;受超低渗Ⅲ类油藏地层压力下降影响,油田压力呈下降趋势;两项递减下降,整体开发形势好转。

1、水驱状况平稳。

2021 年通过强化剖面治理、微球调驱、周期注水等工作,整体水驱状况保持平稳,水驱控制程度 **93.3%**,水驱储量动用程度 **70.3%**。

2、压力保持水平有所下降。

受超低渗Ⅲ油藏地层压力下降影响,三叠系油藏压力保持水平呈下降趋势,2021 年底地层压力保持水平 86.7%; 侏罗系油藏压力保持稳定在89.7%。

3、两项递减下降。

与 2020 年相比,自然递减由 10.8% ↓ 10.1%,综合递减由 8.4% ↓ 6.4%,含水上升率由 1.7% ↓ 1.0%,开发形势好转。

(三) 主要工作及效果

- 1、精细注水调控, 夯实能量基础。
- (1)精细单砂体刻画,完善注采对应关系。2021年重点对庄 36、庄 205、庄 9等油藏开展单砂体刻画 979 井次,制定补孔、压裂等工作 147 井次,水驱控制程度提升 0.8%。庄 9区庄 131 单元高含水井连片补孔长 6 层后注采对应关系不完善,2021年补孔分注 4 口,对应采油井生产动态平稳,表现出见效特征;庄 138 区长 6 储层物性差、准自然能量开发能量不足、单井产能低(0.53 吨/天),分区域转注 6 口,可对比井压力上升 0.8MPa。
- (2) 持续优化注水政策,实现控水稳油。在精细油藏描述基础上,持续优化注水技术政策,

2021 年累计优化 1166 井次,推广周期注水 211 井次,拉低自然递减 1.4%。低渗透油藏以预防边水内推为目的,实施边弱内强注水方式,边部注水强度控制在 1.0-1.1 方/天,内部注水强度控制到 1.1~1.2 方/天;特低渗~超低渗 II 类油藏以提高水驱动用为目的,开展关停主向水淹井、排状交错式周期注水等方式,月注采比控制在 3.0 以内;超低渗III类油藏以建立有效驱替为目的,在注采敏感区域开展周期注水,有效减缓含水上升速度。

(3)强化剖面治理,改善水驱效果。针对特低渗、超低渗油藏水驱不均问题,在庄 36、庄 9、庄 211 等微球调驱油藏开展粒径、浓度、注入方式及单井用量四项参数优化,粒径由 2018 年的 100 纳米优化到 50 纳米,浓度由 0.2%~0.5%优化到 0.15%,单井用量由 5.0 吨/口~7.0 吨/口增大到 6.5 吨/口~8.0 吨/口,注入方式由单井注入改为干线注入,整体调驱效果有所改善。2021 年实施 381 口(其中连续注入 203 口),单井日增油 0.1 吨,累增油 9517 吨,平均月度递减由 0.6% ↓ 0.1%。

取得认识:一是微球调驱注入压力具有封堵-突破周期性变化,庄 73、庄 211 等油藏微球区注入压力出现多次封堵-突破变化,体现出深部调驱作用。二是微球调驱具有改善水驱效果、扩大水驱波及体积的作用,庄 73 区优势水驱方向改变,水驱波及体积扩大。

2、合理调控生产压差,充分发挥油井生产潜力。

为充分发挥油层潜力,2021年在庄 36、庄 73、庄 211等油藏开展平面调整主侧向生产压差、合理流压等生产参数优化工作 231 井次,拉低自然递减 1.0%。

- (1) 定向井调整主侧向生产压差。针对特低渗~超低渗 II 类油藏主向易见水、侧向受效差的问题,2021 年重点在庄 73、庄 138、庄 205 区开展主侧向压差调整 119 井次,主侧向生产压差平均增大 1.6MPa,压力场分布趋于均匀,当年增油 4160 吨。
- (2) 水平井优化生产压差。针对超低渗III~页岩油油藏注水受效难、低产低效井多的问题,2021 年实施生产压差调整 41 井次,降低流压 1.7MPa,平均单井日增油 0.57 吨,有效期 126 天,单井累增油 147 吨。
- 3、优化压裂水淹井排液方式。

针对新老叠合开发压裂水淹问题,在管理上总结形成压前风险识别、压中过程管控、压后处理恢复"三项管控"措施;优化排液后,含水下降更快,平均见水率缩短3天,生产时率提升,产能恢复率提升10%以上。

4、强化选井选层,提高单井产能。

2021年围绕定向井潜力分析、水平井生产规律研究的思路,指导精细选井选层 450 余口, 实施 256 口,水平井措施占比逐年增大,措施当年累增油 6.0 万吨。

(1) 老井复查补孔。2021 年在庄 121 延 9 油藏补孔 4 口井,初期日产油 2.0 吨/天,目前 1.8 吨/天,累产油 763 吨,预计有利区面积 1.5 平方公里。

- (2) 厚油层层内挖潜。充分利用单砂体刻画成果,在庄 36、庄 73 开展层内剩余油挖潜 11口,平均单井产能提升 0.44 吨/天,当年累增油 1853 吨。
- 5、加强水平井管理,确保水平井高效开发。

针对水平井开发递减大的特点,推广分段酸化、氮气泡沫冲砂、卡堵水技术,探索完善水平 井治理适用工艺。

- (1)分段酸化。针对储层物性好、初期产量高、地层压力保持水平高、出现明显堵塞的井实施分段酸化。近三年累计实施 19 口,措施效果持续提升,2021 年扩大长 3 以上浅层井实施比例(33%, 2 口),累增油 3600 吨。
- (2)冲砂。针对井筒出砂液量突降问题,通过优化冲砂工具、优选技术体系,2021年形成规模推广应用,当年增油突破1.2万吨。
- (3) 机械卡堵水。针对水平井注水开发区缝网复杂易见水问题,开展水平井找水技术研究, 找水准确率由 50.0% ↑ 78.3%,累计实施 54 井次,有效 48 井次,单井增油 648 吨。
- 6、推进开发试验,储备稳产技术。
- (1) 庄 288 区线注线采试验。为探索超低渗Ⅲ类油藏有效补能方式,在庄 288 区开展水平井交错布缝试验,实现由井间驱替向段间驱替补能方式转变,分三批部署试验井 12 口(6油+6水),已投产投注 6油 6水。从生产动态看:线注线采可以起到补能作用,与定向井注水水平井采油的五点井网对比,投产后同时间内,动液面较高;但同时部分层段存在裂缝沟通现象,见水风险大,下步实施段间周期注水。
- (2) 庄 230 区烃源气驱试验。为探索页岩油有效补能方式,2019 年试注 3 口,5 口井见效,3 口井气窜,目前日增油 0.22 吨,累增油 2506 吨;同时开展定向井水平井轮注,水平井轮注注气量由 6000 方/天优化为 3000 方/天,固平 66-64 井最高日增油 4.13 吨,固平 65-65 井连续 3 年压力上升(8.15MPa ↑ 8.65MPa ↑ 10.46MPa)。
- (3) 庄 211 区新老井一体化改造。提高纵向储量动用程度,老井补能提单产,新井控缝快动用,3口老井及1口新井已正常生产,3口老井产能2.6吨/天↑7.8吨/天,采油速度0.15%↑0.43%。
- (4) 庄 36 区加密调整。连片水淹、采出程度低的西部区域,开展加密调整 10 口,单井日产液 3.8 方,日产油 1.1 吨,含水 58.6%。
- (5) 庄 36、庄 73 区侧钻。在套损井多、主向水淹采出程度低区域开展老井侧钻 5口,单井日产油 1.65 吨,含水 40.1%。
- (四) 存在的主要问题
- 1、特低渗~超低渗油藏水驱矛盾日益突出。

特低渗~超低渗Ⅱ类主力油藏进入中含水期,受储层非均质性及微裂缝发育影响,平面上水驱方向由单一向多方向转变,剖面吸水不均井占比高,如庄 36 区 2021 年剖面吸水不均井占57.5%,对应油井含水上升,制约油藏稳产。

2、水平井有效补能和低产井治理技术仍需攻关。

合水油田水平井以注水开发为主,由于储层物性差,见效比例低,见效周期长(28.4 个月), 且见效后 13~15 个月后含水上升,低产井逐渐增多。目前低产水平井 286 口,占水平井总井 数的 41.9%,剩余储量大,水平井有效提单产技术需进一步攻关。

3、新老区层系高度叠合,钻井、试油对老区影响大。

庄 211、庄 51、庄 73 老区动用层位高度叠合,在产建钻井、试油过程中井间干扰严重,老 井影响大。

- 一是新井钻井过程中配合停注导致能量补充不足,递减增大。区域压力保持水平下降 5~10%, 递减增加 6%。
- 二是新井压裂规模大,裂缝延伸长,缝网串通,造成邻井水淹。压裂结束后,含水下降恢复需 1~3 个月,平均产恢复率 73.8%。
- 4、采出水系统问题突出。

采出水系统主要采用"微电解氧化预处理+膜过滤"、"预处理+两级过滤"、"生化一体化"、"气浮一体化" 四种水处理工艺。目前共有处理设备 12 套,理论处理能力 6700 方/天,实际处理量 4331 方/天。

- (1) 部分站点采出水系统处理能力不足。庄一转目前处理能力 400 方/天,目前产水 593 方/天,远期达 718 方/天,处理能力缺口大; 庄二联建设能力 1000 方/天,目前实际处理能力 650 方/天,远期产水 1260 方/天,处理能力不足。
- (2)页岩油集中投产,采出水处理及回注能力不足,注入层系不配伍。庄三联目前处理能力 1000 方/天,目前产水 795 方/天,无富余处理及回注能力;页岩油排液:2022 年庄 230 区块 49 口井集中投产,预计高峰期庄三联新增产水 1200 方/天,庄三联产水及回注能力不足。
- (3) 措施返排液处理系统不满足需求。目前配套返排液处理站 3 座,处理能力 32 万方 / 年 ,高峰期产水 1450 方/天,负载率达 111.5%; 且庄 288 处理站水质不达标,采用"混凝搅拌+无纺布过滤"工艺,工艺简单。

(五)下步重点工作

1、精细注水管理, 夯实能量基础。

抓实完善水驱、改善水驱、提高水驱三项工作,强化注水日常管理,确保实现水驱动用程度 ≥72.0%,压力保持水平≥88.0%。

- (1) 立足单砂体刻画,细分开发单元,完善层系对应
- 一是针对特低渗~超低渗 II 油藏水驱不均矛盾突出的现象,2022 年计划在庄 211、宁 138、庄 288、庄 205 等油藏进行二次单砂体刻画 1293 井次。
- 二是对产建区庄 205、宁 138 等油藏持续细化开发单元, 2022 年开发单元细化至 74 个。
- 三是以单砂体刻画为依据,充分结合生产动态、动态监测资料,对庄 9、庄 36、宁 146 等油藏有采无注井开展补孔分注 15 井次。
- (2) 精细注采参数调整,进一步夯实稳产基础

以"整体持续温和,局部加强注水,优化周期注水"的思路,计划优化注水调整 800 井次,推广实施周期注水 189 井次,预计年增油 1.2 万吨,降低自然递减 0.8%。

(3) 攻关长 3 以上浅层顽固性高压欠注治理技术

立足欠注机理、水质配伍性研究,不断优化酸液配方体系,试验低碳混溶及双子膜在线酸化两项技术,提高措施效果,2022年计划实施 70口;推广应用液力柱塞增压橇 8座,合计增注水量 16 万方;在庄 73、庄 211 等井筒故障井大修 15口,保障水驱控制程度达到 93.0%以上。

(4) 强化水井剖面治理,改善水驱效果

通过扩大微球调驱、深部堵水调剖、选择性增注、强化分注井管理,进一步提高水驱。

- 一是针对因裂缝发育、高渗带、大孔道等造成的水驱不均问题,2022年在庄73、庄36、庄9等规模注入的基础上,优化注水量与注入浓度,实施微球调驱387口,持续改善水驱效果;在庄211、庄288等超低渗III类水平井开发油藏新增152口,全区覆盖,整体评价油藏实施效果。
- 二是重点在庄 211、庄 288 等水平井开发区单一方向裂缝性见水区域实施单井调堵水,调剖 复注,控水稳油;在庄 277 区大斜度井区域实施连片调剖 3 口,在庄 73 连线水淹井区域开展"水线"调剖,堵两头注中间,促使侧向井受效。
- 三是针对单层不吸、吸水不均井计划开展选择性增注 20 口,集中在庄 73、庄 36、庄 9、庄 205 区等区。

四是开展分注工艺升级、井筒治理、分注井测调、遇阻整改、井口治理等工作 4995 井次,确保分层注水合格率提升至 77.0%以上。

2、挖掘油藏潜力,提高单井产能。

以提升油藏开发效果为目标,加大长停井、水平井治理,全年计划实施油井措施 260 口,措施增油≥5.0 万吨,平均单井日增油≥1.1 吨,治理注水井 140 口。

- (1) 长停井复产复注。在长停原因分析基础上,开展直接复产 119 口,提高开井率 2.5%,复注 49 口,提高开井率 3.9%;二是以"新层潜力评价、老层治理挖潜"为目标措施复产长停采油井 80 口,措施有效率≥80.0%,全年累计增油 1.2 万吨;三是全方位开展捞油潜力普查,优化捞油周期,2022 年计划长停井捞油复产 39 口,新增捞油 2000 吨,提高开井率 0.8%。
- (2)强化低产水平井治理工作。针对低产低效水平井占比大(41.9%)的问题,2022年开展水平井冲砂、机械卡堵水、分段酸化等治理80口,平均单井日增油≥1.6吨,年增油2.0万吨;针对水平井机械卡堵水遇卡频次高问题,2022年在庄211、庄288区试验开展自适应化学堵水2口,探索水平井堵水新工艺;针对庄51长6油藏受储层物性差、采出程度低(3.2%)的问题,2022年计划开展连片水平井重复压裂3口,预计复压井初期平均单井产能≥8.0吨,提升庄51区整体采收率2.1%。
- (3)做好定向井低产井治理工作。深入低产成因及潜力分析,开展低产井分类治理,2022 年计划治理 84 口,单井日增油 1.1 吨,年累计增油 1.6 万吨。
- (4) 套破井治理工作。开展套破治理 16 口,其中注水井开展采出水回注井定点监测 20 口,封井、更新 5 口;采油井开展套破治理 16 口、新工艺试验 2 口、侧钻 20 口、更新 3 口,增油 2000 吨,产能恢复率≥ 60.0%。
- 3、推进提高采收率试验,储备新技术。

按照成熟技术推广应用、前瞻技术探索试验的思路,持续优化技术参数,强化试验效果分析, 2022 年计划在庄 73、庄 36 等 4 个区扩大侧钻 20 口,在庄 230 区扩大探索烃源气驱补能试验至 7 注 37 采,储备提高采收率技术。

- 一是侧钻技术:以充分挖潜剩余油为目标,针对庄 73 区主向连线水淹问题,考虑井筒、井场条件,2022 年水淹或低产区实施 20 口,预计初期单井产能≥2.0 吨。
- 二是烃源气驱试验:针对页岩油能量补充困难的问题,庄 230 区扩大规模至 7 注 37 采,预 计提升试验区采收率 8.0%;优选油藏中部徐 66-64 等 4 口定向井开展注伴生气先导试验,探索长 7 致密砂岩油藏的有效开发方式。

六、华庆油田

(一) 开发现状

截止 2021 年 12 月,华庆油田共有采油井 4130 口,开井 3361 口,井口日产油水平 4186 吨,单井产能 1.25 吨/天,综合含水 49.6%,地质储量采油速度 0.34%,采出程度 3.34%;注水井

总井数 1959 口,开井 1585 口,日注水平 28287 方,单井日注 18 方,月注采比 2.69,累积注采比 2.95。

(二)总体开发形势

2021年持续以"降递减、提单产、提采油速度"为思路,通过开展精细单砂体刻画、注采调整、周期注水、调剖调驱、低产井治理等工作,有序推进元 284 转变开发方式和白 153 微生物活化水等三次采油试验,油田开发形势稳定。

1.水驱状况稳定。

通过完善注采对应关系、规模调剖调驱等工作,整体水驱状况稳定,水驱储量控制程度 93.2%,水驱储量动用程度由 71.5 ↑ 72.0%。

2.地层能量稳定。

通过欠注治理、注水调整等措施,压力保持水平由92.3% ↑92.6%,整体压力保持水平合理。

3.两项递减和含水上升率下降。

同期对比, 年对年自然递减由 9.4% ↓ 8.7%, 综合递减 7.3% ↓ 5.9%, 含水上升率由 2.6% ↓ 2.2%, 整体开发形势好转。

(三) 主要工作及效果

以精细单砂体刻画为基础,重点开展精细注水调整、注水井剖面治理、低产井治理和提高采收率试验等工作。

1.精细单砂体刻画,深化油藏认识。

通过深化砂体剖面叠置关系、横向接触关系认识,2021年重点对白239、里98等7个区块完成单砂体刻画935口井,依托单砂体研究成果,精细注水调整、措施挖潜等331井次,治理区水驱储量动用程度提升0.5%。

主要认识:①孤立式单砂体采用大规模体积压裂改造补能,可以有效动用剩余油;②切叠式单砂体采用双向补孔,补孔有效油层段、挤封无效注水层,动用低含水层剩余油;③对接式单砂体通过水井补孔、提级分注等完善注采对应。

2.精细注水调整,降低油藏递减。

(1)精细注水调控

在精细单砂体认识的基础上,理清注采关系及动用潜力,依据水驱特征,优化精细注水调控模式。2021年共优化注水调整 796 井次,强化注水 437 井次,控制注水 359 井次,对应油

井见效 240 口,单井日增油量 0.65 吨,累计增油 16781 吨,同期对比见效率 17.0% ↑ 21.2%。

(2) 优化周期注水

结合油藏地层压力、见水见效特征,持续开展以脉冲注水促见效、限压注水控含水为重点的 4 种周期注水模式,规模实施 533 个井组,实施区地层压力稳定,含水由 56.9% ↓ 54.9%,见 效油井 218 口,见效比例由 14.1% ↑ 20.0%,自然递减下降 0.7%。

(3) 欠注井分类治理

通过分析储层物性、矿物成分、欠注特征,对欠注井实施酸化、压裂等措施,共治理 61 口,日增注 627 方,累计增注 5.2 万方。

3.精细剖面治理,提升小层动用。

(1) 精细分层注水

按照深挖老井潜力、产建源头分注的原则,实施精细分层注水 56 口(老井分注 5 口,产建分注 51 口),分注率提升至 74.5%,水驱储量动用程度由 71.5% ↑ 72.0%。

(2) 洗井检串

2021 年开展洗井检串 **2138** 井次,三年以上未检串率由 **46.8%** ↓ **29.8%**。同时完善数字化测调工艺,分注合格率由 **74.2%** ↑ **79.9%**。

(3) 持续推进调剖调驱

按照聚合物微球改善油藏整体水驱,裂缝发育区连片堵水调剖的原则,2021年重点在白239、元284 北部、元427等油藏实施微球调驱372 井组,在白182、里98等微裂缝发育区实施连片调剖调驱60口,累增油7237吨。

4.加强低产井治理,恢复储量动用。

(1) 常规措施

坚持效益优先原则,深挖储层潜力,侏罗系开展小型压裂、三叠系开展复合解堵等恢复性措施 149 井次,累计增油 2.9 万吨,实施区采油速度提高 0.1%。

(2) 更新侧钻

结合剩余油分布特点,2021年重点在午72、富县等侏罗系油藏实施更新井30口,单井日产油1.9吨,综合含水34.9%,累计产油6152吨,恢复地质储量101.5万吨。

(3) 长停井治理

精细选井选层,明确复产潜力,全年共治理 75 口,累计增油 4904 吨,开井率由 82.0% ↑ 82.7%,恢复动用地质储量 343 万吨,新增长 3 以上浅层地质储量 210 万吨。

5.推进重点试验攻关,提升油藏开发水平。

(1) 元 284 转变开发方式工业化试验

持续推进元 284 转变开发方式三年(2020~2022 年)工业化试验。2021 年以"强管理、重攻关、深研究"为抓手,全年实施 83 口(水平井 35 口、定向井 48 口),开井 54 口(水平井 13 口、采油井 8 口、转采井 33 口),实施区日产油水平由 19 吨 ↑ 180 吨,采油速度由 0.17% ↑ 0.76%。

主要认识:①井间微地震结果显示,转变开发方式试验后缝控储量、缝控面积较注水开发可以提高 3 倍以上,能够实现井间驱替向缝间渗流的转变;②结合压力测试模拟,压前补能 8000 方,体积改造入地液 3.0 万方,地层压力保持水平可以由 77.0% ↑ 110.0%,合理的压前补能液量在 6000 方~10000 方左右;③2021 年定向井产量未达标(预期 2.5 吨、实际 1.8 吨),主要受水平井腰部采油井自然能量开发、试验前压力保持水平低影响,需攻关定向井有效补能方式。

(2) 微生物活化水驱试验

2021 年通过在白 153、白 452 扩大试验区(41 注 144 采)配套脉冲注水、宽带压裂、过程调剖等提升潜力技术,新增见效油井 12 口,累增油 754 吨,自然递减下降 2.5%,含水稳定,预计最终采收率 18.8% ↑ 23.9%。

主要认识:①水驱矛盾得到改善。并均吸水厚度提升 0.32 米,水驱储量动用程度提高 1.8%,优势方向弱化,平面波及范围变大,侧向水驱动用程度提高。②地层压力稳步提升。主侧向井压力保持水平差值由 6.4% ↓ 2.4%,试验区压力保持水平 95.5% ↑ 97.7%;③措施挖潜效果提升。试验区措施单井日增油较常规区高 0.5 吨,半年递减率较常规区减小 5.2%。

(3) 水平井补能新试验

一是缝间异步注采:在元 284 转变注水开发方式先导试验区优选 3 口水平井(地层压力保持水平低于 75%)开展试验,试验后平均日增油 1.7 吨,累计增油 372 吨;②同井同步注采:针对井间驱替难建立的初期高产、后期低液低产水平井,选取陈平 14-01 开展同井注采缩小驱替距离,扩大油水接触面积试验,单段注水期内累计增油 673 吨。

(四) 存在的主要问题

1. 储层物性差、非均质性强,有效驱替系统建立缓慢。

华庆长6为半深湖滑塌浊流沉积,单砂体多期叠置,平面砂体连通性差,一次井网对单砂体控制程度低,油井难见效;纵向非均质性强,层内水驱动用程度差异较大,注采压差大,有

效驱替系统难以建立,采油速度仅为0.34%。

2. 储层微裂缝较发育,见水井治理难度大。

储层微裂缝较发育,注水过程中裂缝不断延伸,采油井多方向、多角度反复见水,油井见水 比例高(38.9%),重复堵水效果差,控水稳油难度加大。

3. 水平井含水上升快,稳产难度大。

华庆油田水平井 404 口,日产油水平 688 吨,主要分布在元 284、白 239、山 156、山 163 等区块。其中高含水井 139 口,占比 34.4%,平均单井产量 1.05 吨,综合含水 81.1%。受超前注水量偏大、裂缝发育影响,治理难度大。

4. 定向井吞吐补能试验效果有待进一步提高。

元 284 试验区定向井吞吐补能试验虽取得了一定效果,但未达到预期,长期稳产难度大,需 开展对吞吐机理、补能时机、配套工艺等技术攻关。

(五)下步重点工作

- 1.强化油藏基础研究,深化水驱规律和剩余油认识。
- (1) 裂缝展布特征研究

基于单砂体刻画、取芯、动态监测结果,结合生产动态规律认识,2022年重点对白239、白452等超低渗储层开展裂缝空间展布形态、延伸规律的精细刻画。

- (2) 重点油藏和重点试验区精细油藏描述
- 一是对里 183 新区开展一次精描,深化地质特征和注采对应关系认识;二是对元 284 转变开发方式试验区开展补能机理和后续稳产对策研究,深化渗流规律和剩余油认识;三是对侏罗系油藏开展精细解剖,指导注采调控、侧钻部署、剩余油挖潜等工作。
- 2.精细注水, 夯实老油田稳产基础。
- (1) 有序推进井网完善
- 一是以完善注采井网为目的,计划转注 3 口;二是计划增注 119 口,措施增注 100 口,系统增注 19 口;三是开展注水井大修 10 口。
- (2) 持续优化周期注水

针对裂缝多方向发育,油井反复见水等问题,不断优化注水政策,2022年计划重点在元284定向井区、里183大斜度区等扩大实施脉冲注水、限压注水等周期注水方式625井组,不断

提高水驱波及体积。

(3) 坚持精细分层注水

一是在单砂体刻画的基础上,以精细注采对应为目标,计划开展提级分注、补孔分注、选择性增注共 33 井次。二是针对检配合格率低、测调遇阻率高等问题,狠抓注水井洗井检串,计划检串 400 口(含措施检串 60 口),密闭洗井 2100 井次,实现小层水量的精细调控。

(4) 规模推进调剖调驱

一是三叠系油藏以改善水驱为目标,结合前期调驱效果,根据不同油藏孔喉半径、水线推进速度等,个性化调整堵剂粒径等参数,2022年重点在白239、元284、里98等油藏实施522口;二是侏罗系油藏以控水增油为目标,在元中、白211、元城富县等油藏开展粘弹自调控剂试验17口。

3.重点油藏综合治理,提升油藏开发水平。

按照油藏分类分级管理标准,结合油藏开发形势和产量规模,2022 年重点针对递减较大的白 239、白 131、元东、白 211、元城富县五个区块开展综合治理,制定措施 875 井次,预计治理后自然递减 21.4% ↓ 14.0%。

- (1) 白 239 长 6 油藏: 针对天然裂缝发育、动态裂缝开启等问题,2022 年在裂缝精细刻画的基础上开展周期注水、调剖调驱、措施挖潜等工作,部署各类措施 10 项 1032 井次,递减控制在 11.5%以内。
- (2) 白 131 长 4+5 油藏: 针对油藏西部见水规律复杂、东部注采连通性差、补能与控水矛盾突出的问题, 2022 年开展井网完善、差异化周期注水、层间精细调整、低产低效井治理等工作, 部署各类措施 11 项 232 井次, 递减控制在 13.0%以内。
- (3) 元东、白 211、元城富县侏罗系油藏: 围绕边底水推进、井筒腐蚀加剧、套破井增多、地层堵塞等问题, 2022 年重点解决水质和井筒问题、持续优化注采技术政策、加大套破井防治力度、强化剩余油研究和挖潜,部署各类措施 10 项 546 井次,自然递减控制在 15.5%以内。
- 4.分类措施挖潜,有效动用剩余油。
- 一是根据油井不同特征开展分类措施治理: 低含水井应用成熟提液增油技术、中高含水井推广控水增油技术、高含水井探索堵水增油技术,堵塞井推广复合解堵技术,2022年计划分类治理80口;二是突出长6油藏厚油层原层挖潜和新层试油试采评价,开展长停井治理58口,预计当年增油3000吨;三是针对侏罗系"双高"油藏,计划在井筒故障、套破等剩余油富集区部署更新井30口。
- 5.稳步推进各项重点试验,打造提速提采示范区。

以提产提速和提高采收率作为重点,扎实做好以提单产为目标的剩余油挖潜工作。

(1) 推进超低渗油藏转变注水开发方式试验

一是完成元 284 区水平井三年规划部署,2022 年计划实施水平井体积压裂 35 口(含山 163 区 2 口),其中含 2021 年提前实施 7 口(含山 163 区 1 口),方案剩余部署 28 口,同时实施定向井 198 口(其中包含配套注水井转采 60 口);二是开展第二轮体积压裂效果评价试验,计划先导试验区实施 2 口(庆平 18、庆平 19)。

(2) 打造白 153 微生物活化水驱示范区

在白 153 区现有扩培装置基础上,扩建 1000 方采出水处理设备,形成 1500 方微生物活化水处理规模,覆盖 52 注 188 采,打造白 153 微生物活化水驱示范区,同时配套动态监测 8 类 135 项,系统评价试验效果。

(3) 攻关水平井转变开发方式合理补能配套技术

计划在元 284 转变注水开发方式先导试验区连片开展 4 口井(2 口水平井、2 口定向井)吞吐试验,同时开展注气补能机理研究,为试验区长期稳产提供技术保障。

七、南梁油田

(一) 开发现状

南梁油田储层多层叠合发育,主力开发层位长 4+5、延 9,开发区块包括南梁西、午 86 长 4+5、午 102、午 243、午 225、午 72 等 25 个。

截止 2021 年 12 月,南梁油田共有采油井 2923 口,开井 2560 口,日产油水平 2946 吨,单井日产油 1.2 吨/天,综合含水 58.8%,地质储量采油速度 0.53%,地质储量采出程度 6.6%;注水井总井数 1100 口,开井 977 口,日注水 18882 方,平均单井日注 19 方,月注采比 2.39,累积注采比 2.3。

(二)总体开发形势

2021年,南梁油田通过精细注采调整、措施挖潜、改善注水工程、规模推广周期注水等工作,平面及剖面矛盾得到一定改善,但由于储层非均质性强、水驱不均等原因,自然递减略有增大,含水上升速度仍然较快,纯老井含水上升率绝对值偏大(4.8%)。

1.水驱状况稳定。

2021年,油田通过井网完善、剖面治理、分层注水等工作,油藏水驱状况保持稳定,与 2020年相比,水驱控制程度由 92% ↑ 93%,水驱储量动用程度由 76% ↑ 77%。

2.地层能量保持稳定。

2021 年地层压力基本保持稳定, 侏罗系地层压力保持水平稳定在 90.6%, 三叠系地层压力保持水平稳定在 91.7%。

3.自然递减略有上升,含水上升率下降,开发形势基本稳定。

与 2020 年对比, 南梁油田综合递减 8.6% ↓ 8.3%, 自然递减 10.7% ↑ 11.9%, 含水上升率 3.6% ↓ 2.6%, 整体开发形势相对稳定。

- (三) 主要工作及效果
- 1.持续优化开发技术政策,降低油藏自然递减。
- (1) 持续优化注水参数,改善开发效果

根据砂体展布、油藏压力、水驱状况、结合油井动态变化持续优化注水参数,注重平面均衡调整,促进均匀见效。三叠系油藏实施注水调整 357 井次,对应油井 938 口,油井见效 298 口,单井日增油 0.25 吨,累计增油 8032 吨,侏罗系油藏注水调整 98 井次,井组含水下降 3.6%,单井日增油 0.35 吨,累计增油 3088 吨。

(2) 优化采液强度,调整平面产液结构

以优化边底水油藏平面产液结构为目的,结合储层油水关系,2021 年持续优化采液强度 117 井次,累计增油 6354 吨,降低油井含水上升风险。

2.开展油井措施挖潜,提高单井产能。

按照"持续稳产、提质增效"的思路,精心选井选层,优化措施工艺,提高措施质量效益。油井措施以效益增产为目标,突出原层剩余油挖潜、非主力层评价再认识,结合油藏精细描述及单砂体刻画成果,深化地质研究,由提液增油向控水增油、进攻增油向层内挖潜、单井治理向区域治理三个转变,加强长停井、低产井、水平井、套损井治理。三叠系 2021 年完成油井措施 886 井次,有效井 787 井次,措施有效率 88.8%,单井日增油 0.77 吨,累计增油 93061 吨; 侏罗系完成油井措施 795 次,有效井 645 井次,措施有效率 81.1%,单井日增油 1.1 吨,累计增油 11146 吨。

3.持续抓好有效注水工程,提高水驱效率。

三叠系油藏针对平面见水、纵向上吸水不均的问题,通过常规调剖、微球调驱相结合,扩大水驱波及,抑制含水上升。午86长4+5油藏2021年6月起,整体微球调驱98个井组+局部PEG调剖7个井组,调剖前后吸水剖面明显好转;午102区微球调驱连片实施169口,对应油井387口,见效比31.2%,含水受控,阶段递减下降6.1%;南梁西西部和南部微球调驱86个井组,累计增油7441吨,累计降采出水2231方。

侏罗系油藏白 211 北部开展聚合物微球调驱试验 16 个井组,自然递减下降 0.2%,含水上升

率下降 0.1%,累计增油 103 吨,南部实施粘弹自调控剂调驱试验 7 个井组,井组综合含水下降 1.3%,增油降水效果明显。

4.推广周期注水,动用低渗层剩余油。

针对高含水期稳定注水效果减弱,开展周期注水机理研究,创新形成了井间交替、排间交错、层间轮换的多元化周期注水模式。午 102 区规模推广 239 口,覆盖比例超过 75%,累计降注水量 3 万方,控水效果明显;南梁西区全年共实施 191 口,累增油 6241 吨,累计降注水量 15 万方;午 86 区实施 141 个井组,平均单井日增油 0.31 吨,累增油 7277 吨,累计降注水量 7 万方。

5.开展层系优化简化试验,解决层间动用不均的矛盾。

优选午 102 油藏矩形区北部长 4+513 层水淹程度高,层间矛盾突出的区域开展层系优化简化 试验,封隔长 4+513 层,单采单注长 4+512 层,目前注水井已完成单注,油井隔采已完成 1口,日增油 1.1 吨/天。

6.套破井治理,有效挖潜剩余油。

针对治理无效井,结合老井动、静态参数量化挖潜潜力,应用水锥形态、水驱前缘分布优化挖潜井位,实施侧钻更新,有效动用油藏剩余储量,提高油藏整体开发效果。2021年在午72区实施套破井更新16口,平均初期产能2.7吨,含水31.1%,累计产油12085吨。

(四) 存在的主要问题

1.纵向多层发育,平面、剖面矛盾突出。

受储层微裂缝及纵向小层发育影响,长 4+5 油藏平面、剖面矛盾突出,多向见水严重。午 86 长 4+5 油藏主向见水 96 口,平均含水 72.1%,见水率达到 81.3%,损失油量 107 吨/天,侧向井见效率低(见效井数 108 口,见效率 42.1%);南梁西长 4+5 油藏,储层平面连续性差,纵向隔夹层发育、非均质性强,剩余油分布不均衡,吸水不均占比高(37.1%),见水 360 口,见水率 92.8%;午 102 非主力层长 4+511、长 4+521 发育不连片,连通性较差,水驱储量控制程度较低(分别为 32.5%、68.8%),吸水不均井占比 45.8%。

2.动态缝开启,油井多方向见水。

午 102 油藏受多剖面矛盾突出、加密钻停、地层深部堵塞等影响,含水上升速度加快,加密区井排矩由 480 米×180 米调整为 240 米×180 米后,自然递减增大,加密井初期递减 28.4%,8个月后趋于稳定,老井递减由 0.8% ↑ 22.0%,第三年递减下降至 9.5%,但仍大于加密前水平。

长期保持高注采比(2.4),动态缝逐步开启,见水井增多。试井解释裂缝型占比19.0%,示踪剂显示跨井组和多方向见水特征,近三年58.3%见水井为裂缝型见水。

通过示踪剂监测、岩心观察及采油井动态判断天然高角度裂缝开启,注水沿裂缝上下窜层。长 3 层 12 口油井与长 4+5 注水井注采反应敏感,窜层见水特征明显;午 34-6 长 4+5 注水开发 10 年,主力长 4+513 距长 63 顶 110 米左右,中间泥质遮挡条件较差,加之裂缝发育,钻试过程中高压溢流、出水出气问题严重。

3.套破井治理难度大,产能恢复率低。

2021 年午 243、午 225、午 292 等区新增套破井 30 口,已长效治理 27 口,产能恢复率低(小套固井恢复率 48.8%、合金贴堵 55.3%、化学堵漏恢复率 25.5%、LEP 长效封隔产能恢复率 75%)。套破特征主要表现为:①套破范围扩大,套破区块扩大至午 243、午 225、午 235、午 292 等南梁全部侏罗系油藏;②识别难度增加,一、二线油井套破与动态变化混杂,精准识别及对策制定难度增加;③产能恢复困难,治理后多伴随地层堵塞,爆压、酸化解堵效果差,产能恢复率低;④水井出现套破,井网受损、环保风险大。

(五)下步重点工作

坚持以"降递减、控含水、提水驱"为核心,强化基础地质研究,持续推进注水结构调整、措施结构调整,抓好重点油藏综合管理,着力提升老油田的持续稳产能力。

1.优化注采政策,确保油藏长期稳产。

三叠系油藏细化油藏开发单元,根据压力、累计注水量,分单元实施差异化注水政策,优化单井配注、分层配水量、周期注水水量差等。2022年计划在南梁西调整 105 井次,月注采比 4.00 ↓ 3.85,注水强度 0.94 方/米 • 天 ↓ 0.91 方/米 • 天; 午 86 长 4+5 针对含水上升快区域控制注采比,下调注水强度,在油井上开展主侧向流压优化,增大主向流压、降低侧向流压,促进油井均匀见效,计划流压优化 15 口; 午 102 区开展储层结垢机理研究,计划开展悬浮酸化增注 20 口。

侏罗系油藏以"边部加强、中部优化"为主,以"整体温和、局部调整"为原则,在深化油藏开发规律研究的基础上,持续优化注采技术政策,稳定单井产能,减缓自然递减。2022年在午243、午72、白211等区块开展平面采液强度优化,一二线控制18井次,三线加强10井次,措施引效12口,井网优化4井次,平面优化注水6井次,降低油井含水上升风险。

2.加强剖面治理,提升水驱开发效果。

三叠系油藏以扩大波及体积、提高水驱效率为目标,根据不同剖面矛盾和水驱特征,推广酸化调剖(分流酸化)、PEG 堵水调剖及聚合物微球深部调驱等。针对注水问题井,开展措施增注 5 口,单层增注 30 口,大修处理井筒 6 井次,投球调剖 3 口。南梁西整体微球调驱 61 口,对 2021 年注入微球的井组进行跟踪效果,根据开发动态调整;午 102 区在单砂体刻画的基础上,结合吸水、产液剖面和剩余油测试,精细评价厚层砂体内水驱动用状况,针对平面水驱不均、含水持续上升井组,优化粒径 100 纳米,扩大部署微球 88 口,实现连片治理;对裂缝型见水特征明显的 12 个井组进行 PEG 调剖,封堵裂缝促进侧向油井见效。同时通过油水井补孔 52 口进行双向调整,将非主力层水驱控制程度由目前的 32.5%、68.8%提升到 48.6%、75.1%,同时部署单砂体双向补孔、分注、隔注 59 口,完善单砂体注采关系。

侏罗系油藏主要以"改善水驱状况,控制含水上升"为目标,加强白 211 区聚合物微球驱、粘弹自控调驱试验井对应采油井含水及液量监控,确保效果及时体现;同时注水井配套测试吸水剖面 3 井次;以堵塞优势水驱方向、扩大波及体积为目标,开展堵水试验,其中午 243 区试验 2 口、午 225 区试验 4 口,南梁试采区试验 2 口。

3.优化周期注水参数,持续提升水驱效率。

主力油藏周期注水全覆盖,提升水驱效率,南梁西全区覆盖周期注水:全区实施 150 口,促进渗流渗吸,提升水驱效率;同时扩大轮注轮采规模,在午 11 单元、山 122 单元整体实施轮注轮采 25 个井组,采取注 15 天闷 5 天采 10 天的技术政策,重构压力渗流场,控水稳油;午 86 长 4+5 区 2021 年实施 141 口(增注 15 天减注 15 天)周期注水,实现油藏全覆盖,注水参数优化 59 井组,平均水量差 10 万 ↓ 9 方,持续提升水驱效率,2022 年根据生产动态持续优化周期注水参数。午 102 区周期注水覆盖比例 93.8%,实现连片效应,控水效果明显,下步持续开展参数优化工作,控制含水上升。

4.持续套损井治理,坚持防治结合。

围绕"消减套损井、恢复油井产能"两项目标,按照"预防为主、防治结合、兼顾增油"的思路,积极推广套损预防+套破长效治理+储层改造技术系列,全面提升套损防治效果。2022年在午72区、白211区开展缓蚀剂投加152口,优化隔采位置10井次,并开展套损治理+井筒净化等措施7口,提高单井产量,降低套损井产量损失,实现效益增产;午243区计划小套固井10井次,套管补贴2井次,化学堵漏1井次;套损预防方面,计划结合检泵配套阳极防腐等套损预防10井次,预隔采+套管保护液5井次,大力加强套损井防治,促进油井高效生产;针对储量失控区,计划在午72区部署更新井11口,白211区部署更新井2口。

5. 强化动态监测,支撑油藏稳产。

以"强化剖面、指导开发"为主线,突出监测项目有效性和实用性,重点开展吸水剖面测试,掌握注水井分层吸水、剖面动用状况 80 口;分层测调,掌握调前分层注水情况,调配分层注水量等 445 井次;压力测试,掌握区域压力变化,指导分区域注采政策调整 42 井次,有效评价水驱、压力;同时开展剩余油测试、产液剖面测试、示踪剂测试等特殊测试 16 井次,掌握平面水驱方向及剖面动用情况,支撑剩余油研究,指导现场治理决策。

八、庆城油田

(一) 开发现状

庆城油田主要开发西 233、庄 183、庄 230、庄 240、板 4 等区块,开采层位长 7。2021 年底,采油井总井数 702 口,开井 628 口,井口日产油水平 3583 吨,单井产能 5.7 吨/天,综合含水 51.5%,地质储量采油速度 0.61%,采出程度 2.10%;注水井总井数 76 口,开井 64 口,日注水平 914 方,单井日注 14 发,月注采 0.27,累积注采比 0.41。

(二)油田总体开发形势

页岩油水平井采用准自然能量开发,油井初期产量高,递减大。受油藏特征、井身轨迹等因素影响,偏磨、砂堵、结蜡、结垢、脱气严重,修井、措施占井时间长,无杆泵工艺待提升等因素,影响单井产能发挥。

1. 压力保持水平较低。

整体压力保持水平较低,且有降低趋势。2021年全年测压 28 口,压力 13.8MPa,压力保持水平由去年同期的 96.5% ↓ 85.3%。2018年前投产井压力保持水平 73.2%;2018年投产井压力保持水平 89.1%;2019年投产井压力保持水平 90.8%;2020年投产井压力保持水平 94.7%。

2. 两项递减增大。

与 2020 年相比, 两项递减增大, 自然递减由 12.2% ↑ 17.2%, 综合递减由 11.2% ↑ 14.7%。

重点油藏递减增大的是西 233 区、庄 183 区。西 233 区同期对比自然递减由 13.3% ↑ 19.3%,综合递减由 13.1% ↑ 16.7%,递减增大主要原因:2019 年投产 54 口水平井初期递减大,第一年、第二年递减率分别为 30.4%、20.0%。庄 183 区同期对比自然递减由 5.5% ↑ 14.5%,综合递减由 5.5% ↑ 12.0%,该区递减增大原因:南北区域储层物性差异不大,但含油性、原油性质差异较大,造成 2018~2019 年建产区开发效果较差。

(三) 主要工作及效果

1.甜点分类评价。

根据页岩油开发效果分析,水平井产量受流体性质影响较大,高气油比、低原油粘度的甜点区内,水平井累产油量高;二是通过高压物性数据统计、原油流体取样分析,编制了长7页岩油气油比、地面原油粘度图,初步明确了流体性质平面差异化特征;三是初步创建了包含流体性质、脆性指数和水平最小主应力等参数的储层分类评价体系,开展储层精细分类评价,指导部署区优选。

2.技术政策优化。

(1) 井网参数优化

一是水平段长度优化。2018年以来,示范区完钻水平井607口,平均水平段长度1712米,华池区水平井主要为1500米左右,合水区主要为2000米左右。统计井筒投资和产量关系,当水平段长度大于1500米,水平井初期单井产量和第一累产油量增幅远低于井筒投资增幅,因此,水平段长度以1500米为主。

二是井距优化。2018~2021 年水平井井距主要为 300~400 米。统计显示,不同井距均有压窜,井距越小,压窜井、压窜段比例越高。物模实验显示,300 米~400 米井距水平井压后井间压力场干扰较弱;矿场实践显示,随着井距的减小,前三年递减增大,300~400 米井距递减较小。

三是平台布井数优化。示范区 2018 年以来采用大平台布井, 共完钻平台 92 个, 生产数据表明:①布井数过多靶前距区钻井进尺增加, 进尺的增加导致单井钻井费用提升;②随着平台井数的增加, 平台整体压裂周期较长,造成闷井时间被动增加;③随着平台布井数的增多,偏移距增大,井筒质量问题井增多。因此,为了从源头上解决偏磨及后期采油问题,钻井偏移距不宜太大;综合多因素,优化平台布井数主要为6~8 口,其中,300 米井距单平台单层系部署水平井不超过6口。

(2) 合理生产制度优化

一是闷井时间优化。通过岩心渗吸实验、数值模拟、矿场实践等分析,优化压后合理关井时间为 30 天左右。研究显示,随着闷井时间的增长,压裂液侵入基质距离增大,造成储层伤害;矿场实践表明,闷井 10 天内压降最大,闷井 10~35 天内压降减缓,闷井 35 天后压力趋于稳定,渗吸置换作用减弱;随着闷井时间的增长,单井产量呈下降趋势。结合室内研究、数值模拟、矿场实践,优化合理闷井时间为 30 天左右。

二是返排制度优化。过快的返排速率会破坏井筒压力与水力裂缝压力平衡,造成支撑剂回流或嵌入地层,而出砂对缝网导流能力破坏最高可达到 30%以上,微裂缝岩心的应力敏感性较强,裂缝导流能力损害是不可逆的。结合开发规律建立了水平井分类型、分阶段构架,明确不同类型水平井返排采液强度: I类水平井百米水平段返排量为 3.0 方/天,1500 米水平井返排量为 45 方/天;II类水平井百米水平段返排量为 2.5 方/天,1500 米水平井返排量为 38 方/天;III类水平井百米水平段返排量为 2.0 方/天,1500 米水平井返排量为 30 方/天。

三是合理压力系统优化。数值模拟显示,生产初期井底流压较低,初期单井产量较高,但产量递减大,累产低,最终采收率低,优化确定了水平井合理流压应保持在饱和压力(10MPa)附近。开发初期合理流饱比应大于 1.0,合理利用溶解气驱,避免地层过早脱气,部分井稳产初期流饱比偏低,导致生产气油比较高(45 口井大于 200 方/吨)。2021 年通过优化参数、清洁井筒等 155 井次措施控制流压,流饱比有效提升(1.09 ↑ 1.15),平均单井日产液增加 3.2 方,单井日产油增加 1.9 吨。

3. 开展措施攻关,发挥单井最大产能。

针对页岩油长水平段、井眼轨迹复杂特点,2021年优选水平井冲砂作业井55口,有效率63.6%,平均单井日增油3.3吨,累增油20666吨。措施前平均日产液6.0方,日产油2.9吨,动液面1250米;措施后平均日产液11.2方,日产油6.2吨,动液面1055米。

(四)存在的主要问题

1. 水平井单井初期产量逐年下降。

华池区 2018 年~2021 年分年建产区储层特征、水平井长度、钻遇率、气测全烃等变化较小,但受控降成本下降、压裂规模降低、现场质量管控、开发管理等因素,单井初期产量逐年下降。

2. 固井、井筒质量问题,造成单井产量较低。

2018 年以来华池区 **16** 口水平井存在井筒质量问题,导致压裂试不出压,**16** 口水平井平均初期日产油 **10** 吨。

3. 邻井压窜含水升高,影响单井产量。

2018~2021年,华池区不同井距均有压窜现象,被压窜水平井 59 口井,井均受影响 49 天,影响油量 446 吨,2021年压裂影响 14 口井。分析显示,压窜主要受断层或天然裂缝影响,压窜后造成邻井高含水。

板 11 井区、庄 183 叠合开发井区新井压裂均造成跨井距老井水淹,多方向压窜,产能恢复时间长; 2020~2021 年共压裂水淹井 12 口,预计全年影响 9120 吨。

4. 水平井出砂、结垢等复杂井况严重,影响生产时率。

页岩油大平台水平井井身轨迹复杂、原油含蜡量高,以结蜡、偏磨、结垢为主的复杂井况严重,且多种因素交互影响,治理难度较大。重点区块西 233 区检泵周期 260 天,作业频次 1.22 次•口/年,与公司水平井区块相比,采油工艺指标有一定的差距,需持续完善采油工艺配套,全面提升采油工艺水平。

5. 水平井递减较大,预计采收率较低。

页岩油水平井递减较大,投产时间较长的水平井目前日产油低于4吨的井共84口,占比67%,中后期能量补充方式不明确,预计采收率8~9%。

(五)下步重点工作

1. 持续深化甜点优选和平台部署。

在前期甜点分类评价的基础上,加强不同区块生烃能力、沉积、储层特征研究,通过烃源岩、沉积储层、流体性质综合评价,筛选出影响储层品质的生烃能力、油层厚度、储层孔隙度及含油性、流体性质等关键参数,建立一体化甜点分类评价标准,指导有利区分类评价和建产区优化部署。

2. 优化合理开发技术政策。

通过前期开发实践分析,优化了页岩油水平井井网参数、合理闷井时间及返排制度,2022年仍需进一步结合水平井开发效果,开展水平段长度优化,并结合不同返排制度对单井初期产量、开发中后期产量、全生命周期 EUR 的影响分析,优化合理返排制度。

3 持续措施挖潜。

针对低流饱比井控制生产参数,促进动液面恢复,提高流压:同时针对砂堵、结垢水平井开

展冲砂洗井、酸化解堵等措施,恢复单井产能。2022 年计划在西 233、庄 183 等区开展水平井参数优化 60 口;冲砂洗井、酸化解堵等 65 口。

4. 加强重点试验。

- (1) 展短水平井开发试验。根据油层横向发育不连续、断层或裂缝等影响,在庆城油田开展 20 口短水平井开发试验,水平段长度 600~800 米,井距 300~400 米,按照连续油管单段单簇压裂工艺,探索页岩油短水平井提高经济效益开发模式。
- (2) 开展扇形井网压裂试验。针对合 H9、合 H60 平台扇形井网特征,基于三维地质力学模型,开展地应力场演化与应力干扰分析,划分三个区域,计划采用可溶球座+连续油管、变密度+交错布缝组合模式针对性改造。
- (3) 开展注气补能开发试验。针对老区中后期地层能量不足、供液能力降低问题,在庆城油田华池区优先开展 5 口水平井注天然气吞吐试验,探索老井注气补能提高采收率技术。
- 5. 加强油藏监测资料录取。

针对页岩油水平井水平段长后期改造强度大,段间产出不均; 井间干扰严重,体积压裂强度大,易与邻井沟通,导致邻井含水上升、产能损失,且产能难恢复或恢复期较长; 个别新井套破,产能损失大的问题,2022年重点开展水平井产液剖面测试、油井压力恢复情况及套损井检测,共安排动态检测59井次,其中产液剖面测试3井次、套损井检测2井次、分析化验22井次、压力恢复20井次、二流量测试10井次、水平井分段测压2井次。