# Supplementary Material for "AutoBCS: Blockbased Image Compressive Sensing with Datadriven Acquisition and Non-iterative Reconstruction"

#### I. EXTENDED ABLATION STUDY

The influences of the octave reconstruction subnetwork and generated LSM on the performance of the proposed AutoBCS framework are investigated; and AutoBCS for color images is also studied in this extended Section.

As depicted in the paper, the initial reconstruction subnetwork is essential and indispensable in the proposed AutoBCS framework; however, the effectiveness of the octave reconstruction subnetwork has not yet been verified. Supplementary Fig. 1 illustrates the output images from each sub-network, showing that the octave reconstruction subnetwork can significantly alleviate artifacts and improve image quality. Overall, both reconstruction subnetworks are essential in the proposed AutoBCS framework. Without the initial reconstruction subnetwork,  $x_i$  cannot be directly reconstructed by the octave reconstruction subnetwork from the measurement vector  $y_i$ , while there would be heavy artifacts in the reconstruction results if there were no octave reconstruction subnetwork.



Supplementary Fig. 1. Comparison of the results restored from the initial and octave reconstruction sub-networks of AutoBCS at  $\tau$  =0.25. Red arrows point to the blocking artifacts in the initial reconstruction output.

A comparative experiment is designed to elucidate the importance of the generated LSM for the proposed AutoBCS scheme. A variant of AutoBCS, called AutoBCS(GSM), is obtained by using a fixed GSM instead of using the LSM, and it is trained with the same training datasets as before with the same training parameters. A comparison between the variant version and the original AutoBCS on an image at  $\tau=0.1$  is shown in Supplementary Fig. 2. Moreover, we have compared the proposed AutoBCS and the traditional BCS reconstruction algorithms (including IRLS, D-SPL, MH-SPL, WaPT, and GBsR) with our generated LSM on three typical benchmark databases, i.e., Set5, Set14, and BSD100, as shown in SUPPLEMENTAL TABLE I. According to these results, the generated LSM can not only significantly enhance the quality

of reconstructed images rom both the initial and octave reconstruction subnetworks, but also improve the recovery performance of traditional BCS reconstruction methods.

Moreover, our proposed AutoBCS can be directly applied to color images. For example, we can use our trained AutoBCS models on the RGB color space for the color images 'Peppers', 'Tiger', 'Dock', and 'Desert' at different sampling rates, as shown in Supplementary Fig. 3. For color image 'Peppers', the PSNR/SSIM values are 34.41/0.8726, 33.85/0.8641, 31.49 /0.8155, 28.92/0.7625, 24.41/0.6452 at the sampling rate of 0.3, 0.25, 0.1, 0.04, 0.01, respectively. Supplementary Fig. 3 verifies that the proposed AutoBCS contains rich semantic content even at a particularly low sampling rate. Overall, it shows that AutoBCS achieves comparable results on color images as it does on gray images.

#### II. EXTENDED FIGURE

#### A. Extended Figure 1



Extended Fig. 1. Comparison of noisy image reconstruction for traditional BCS approaches (D-SPL and GBsR) and AutoBCS on Set5 in case of  $\tau$  =0.1 with Gaussian noise of  $\sigma_n$ =0.1, where the second and the fourth rows are corresponding image errors. Please zoom in for better comparison.



Supplementary Fig. 2. Comparison of the reconstruction images from both the initial and octave reconstruction sub-networks for AutoBCS(GSM) and AutoBCS at  $\tau = 0.1$ . Please zoom in for better comparison.

#### B. Extended Figure 2



Extended Fig. 2. Comparison of the reconstruction images for Auto-BCS(U-net) and the original AutoBCS at  $\tau=0.25.$ 

## C. Extended Figure 3



Extended Fig. 3. Comparison of image reconstruction using three sensing matrices combined with traditional GBsR algorithm. First column: the original image; the reconstruction columns are based on GSM, BcSM and our trained LSM, respectively. Please zoom in for better comparison.



Supplementary Fig. 3. Illustration of reconstructed color images by using AutoBCS at different sampling rates. The first column: original image; the reconstruction columns for left to right correspond to  $\tau = 0.3$ ,  $\tau = 0.25$ ,  $\tau = 0.1$ ,  $\tau = 0.04$ , and  $\tau = 0.01$ , respectively. Please zoom in for better comparison.

| SUPPLEMENTAL TABLE I: |                                        |                            |                                           |
|-----------------------|----------------------------------------|----------------------------|-------------------------------------------|
|                       | AutoBCS vs. different conventional BCS | methods with our generated | LSM on three typical benchmark databases  |
|                       |                                        |                            | LOW OIL THEE TYDICAL DEHCHIHALK GATADASES |

| Database | Sampling rate τ | IRLS   |       | D-SPL  |       | MH-SPL |       | WaPT   |       | GBsR   |       | AutoBCS |       |
|----------|-----------------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|---------|-------|
|          |                 | SSIM   | PSNR  | SSIM    | PSNR  |
| Set5     | 0.01            | 0.5124 | 20.21 | 0.3552 | 18.30 | 0.5947 | 22.62 | 0.6152 | 23.10 | 0.6278 | 23.79 | 0.6696  | 24.25 |
|          | 0.04            | 0.7320 | 26.45 | 0.6514 | 24.90 | 0.7792 | 27.48 | 0.7921 | 27.95 | 0.8045 | 28.29 | 0.8446  | 29.18 |
|          | 0.1             | 0.8463 | 29.87 | 0.8375 | 29.86 | 0.8499 | 30.89 | 0.8892 | 31.58 | 0.9002 | 32.51 | 0.9190  | 33.28 |
|          | 0.25            | 0.9401 | 34.56 | 0.9355 | 33.58 | 0.9455 | 35.74 | 0.9518 | 36.11 | 0.9544 | 36.62 | 0.9607  | 37.65 |
|          | 0.3             | 0.9530 | 36.01 | 0.9515 | 35.34 | 0.9549 | 36.72 | 0.9610 | 37.08 | 0.9627 | 37.74 | 0.9675  | 38.75 |
|          | Avg.            | 0.7968 | 29.42 | 0.7462 | 28.40 | 0.8248 | 30.69 | 0.8419 | 31.16 | 0.8499 | 31.79 | 0.8723  | 32.62 |
| Set14    | 0.01            | 0.5014 | 20.86 | 0.4553 | 18.63 | 0.5366 | 21.83 | 0.5512 | 22.07 | 0.5626 | 22.66 | 0.5968  | 23.12 |
|          | 0.04            | 0.6651 | 25.10 | 0.5725 | 22.41 | 0.6840 | 25.53 | 0.6954 | 25.78 | 0.7063 | 26.05 | 0.7348  | 28.67 |
|          | 0.1             | 0.8107 | 28.04 | 0.7320 | 25.17 | 0.8011 | 28.33 | 0.8108 | 28.64 | 0.8180 | 28.80 | 0.8343  | 29.56 |
|          | 0.25            | 0.8958 | 31.12 | 0.9029 | 31.53 | 0.9055 | 32.29 | 0.9114 | 32.76 | 0.9162 | 32.93 | 0.9205  | 33.67 |
|          | 0.3             | 0.9149 | 32.85 | 0.9185 | 32.56 | 0.9220 | 33.32 | 0.9287 | 33.89 | 0.9322 | 34.07 | 0.9347  | 34.81 |
|          | Avg.            | 0.7576 | 27.59 | 0.7162 | 26.06 | 0.7698 | 28.26 | 0.7795 | 28.63 | 0.7871 | 28.90 | 0.8042  | 29.97 |
| BSD100   | 0.01            | 0.4987 | 21.42 | 0.4163 | 19.22 | 0.5159 | 22.73 | 0.5279 | 23.07 | 0.5385 | 23.48 | 0.5578  | 23.79 |
|          | 0.04            | 0.6215 | 24.65 | 0.5271 | 22.87 | 0.6419 | 25.54 | 0.6578 | 25.69 | 0.6631 | 25.98 | 0.6833  | 26.40 |
|          | 0.1             | 0.7602 | 27.70 | 0.6647 | 25.66 | 0.7607 | 27.77 | 0.7724 | 27.95 | 0.7784 | 28.15 | 0.7937  | 28.74 |
|          | 0.25            | 0.8814 | 30.98 | 0.8750 | 30.29 | 0.8809 | 31.13 | 0.8957 | 31.41 | 0.8942 | 31.65 | 0.9019  | 32.33 |
|          | 0.3             | 0.8998 | 32.05 | 0.8966 | 31.41 | 0.9028 | 32.12 | 0.9089 | 32.38 | 0.9148 | 32.69 | 0.9215  | 33.39 |
|          | Avg.            | 0.7323 | 27.36 | 0.6759 | 25.89 | 0.7404 | 27.86 | 0.7525 | 28.10 | 0.7578 | 28.39 | 0.7716  | 28.93 |

### D. Extended Figure 4



Extended Fig. 4. Illustration of reconstructed images by using AutoBCS at different sampling rates. The first column: original image; the reconstruction columns for left to right correspond to  $\tau = 0.3$ ,  $\tau = 0.25$ ,  $\tau = 0.1$ ,  $\tau = 0.04$ , and  $\tau = 0.01$ , respectively. Please zoom in for better comparison.