LA3 Basis, Linear Operator

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

February 13, 2021

Overview

Ch2. Fields and vector spaces

- 2.6 Basis and Dimension
- 2.7 Properties of Bases
- 2.8 Polynomial Interpolation and the Lagrange Basis

Ch3 Linear Operators

3.1 Linear Operators

Recall

► Linear Combination:

$$\sum_{i=1}^k a_i v_i, \quad a_i \in F, v_i \in V.$$

▶ Linearly Independent: For all $\{v_1, \dots, v_k\} \subset X$,

$$\sum_{i=1}^k a_i v_i = 0 \implies a_i = 0 \text{ for all } i.$$

 $ightharpoonup v_1 \neq 0$

$$\underbrace{\{v_1\}\subset\{v_1,v_2\}\subset\cdots\{v_1,\cdots,v_n\}}_{\text{linearly independent}}\subset\underbrace{\{v_1,\cdots,v_n,v_{n+1}\}\subset\cdots}_{\text{linearly dependent for all }v_{n+1}},$$

Every basis has the same cardinality (even infinite-dimensional).

Definition

A subset X of V is called a basis for V if

- 1. span X = V
- 2. X is linearly independent.

i.e., every vector v in V can be written in a unique way as linear combination of elements of Χ.

Example

- $ightharpoonup \{(1,0),(0,1)\} \subset \mathbb{R}^2.$
- $\blacktriangleright \{1, x, x^2, \cdots, x^n\} \subset \mathcal{P}_n(\mathbb{R})$
- $\blacktriangleright \{(1,0,0),(1,1,0),(1,1,1)\} \subset \mathbb{R}^3.$

For n > 0, let $V = \mathbb{R}^n$ and $e_i = (0, \dots, \underbrace{1}, \dots, 0) \in V$. Then $\{e_1, \dots, e_n\}$ is a basis for

V, and is called the standard basis for V.

Example

Let $\mathcal{P}(\mathbb{R})$ be the set of all polynomials and let $X = \{1, x, x^2, \dots\}$.

- (1) span $X = \mathcal{P}(\mathbb{R})$
- (2) X is linearly independent.

Definition

V is said to be finite-dimensional if $V=\{0\}$ or V has a finite basis.

Example

- $ightharpoonup \mathbb{R}^n$ is a finite-dimensional vector space.
- $ightharpoonup \mathcal{P}(\mathbb{R})$ is an infinite-dimensional vector space.

Remark

- (1) If $\underbrace{\{v_1, \cdots, v_n\}}_{\text{non zero}}$ is linearly dependent, then $\exists k \text{ such that } u_k \in \text{span}\{v_1, \cdots, \hat{v}_k, \cdots, v_n\}$.
- (2) Suppose $\{u_1, \dots, u_m\}$ is a basis for V. Then for any n > m, $\{v_1, \dots, v_n\}$ is linearly dependent.
- (3) Every basis (for finite-dimensional vector space) has the same cardinal. So we can define the dimension of V by dim V = |basis|.

Example

- $ightharpoonup \dim \mathbb{R}^n = n.$
- $ightharpoonup \dim \mathcal{P}_n(\mathbb{R}) = n+1.$

Remark

Basis is not unique!

(1) Span:

$$span\{v_1, \dots, v_n\} = span\{\alpha v_1, v_2, \dots, v_n\} \quad (\alpha \neq 0)$$
$$= span\{v_1 + v_2, v_2, \dots, v_n\}$$

So

$$\operatorname{span}\{v_1,\cdots,v_n\}=\operatorname{span}\{\alpha_1v_1+\sum_{i=2}^n\alpha_iv_i,v_2,\cdots,v_n\}\quad (\alpha_1\neq 0).$$

- (2) Linearly Independence: Suppose $\{v_1, \dots, v_n\}$ is linearly independent.
- $\rightarrow \{\alpha v_1, \cdots, v_n\}$ is linearly independent for $\alpha \neq 0$.
- $\rightarrow \{v_1 + v_2, \cdots, v_n\}$ is linearly independent.
- $\rightarrow \{\alpha_1 v_1 + \sum_{i=2}^n \alpha_i v_i, \dots, v_n\}$ is linearly independent for $\alpha_1 \neq 0$.

(b) Suppose $\{v_1, \dots, v_n\}$ is a basis and $u \in V$ but $u \notin \{v_1, \dots, v_n\}$. Then $\{v_1, \dots, v_n, u\}$ is linearly dependent.

Ex 2.6.10
$$\{1+x+x^2, 1-x+x^2, 1+x+2x^2\} \text{ is a basis for } \mathcal{P}_2(\mathbb{Z}_3).$$

 $\mathcal{P}_n(F)$, F is a finite field with |F| = q.

(a) If $n \le q - 1$, $\{1, x, \dots, x^n\}$ is linearly independent. So dim $\mathcal{P}_n(F) = n + 1$. Note that $f \in \mathcal{P}_n(F)$ is a polynomial as a function from $F \to F$.

 $\mathcal{P}_n(F)$, F is a finite field with |F| = q.

(b) If $n \ge q$, $\{1, x, \dots, x^{q-1}\}$ is linearly independent. So dim $\mathcal{P}_n(F) \ge q$.

Note

For a field with finite characteristic (char $F < \infty$), we can view a polynomial $f(x) = a_n x^n + \cdots + a_0$ in two ways:

- \triangleright as a function : in this case, x is determined in F, and write the set of all polynomials as $\mathcal{P}(\mathbb{R})$
- \triangleright as a new object : in this case, we assume x is indeterminant in F, as write the set of all polynomials as F[x] (See 4.4)

For example, for \mathbb{Z}_2 ,

 $\triangleright \mathcal{P}_2(\mathbb{Z}_2) = \{0, 1, x, 1+x\}$:

$$x^2 = x: \begin{array}{l} 0 \mapsto 0 \\ 1 \mapsto 1 \end{array}, \text{ and } x^2 + x = 0: \begin{array}{l} 0 \mapsto 0 \\ 1 \mapsto 0 \end{array}$$

▶ $\{0,1,x,x^2,1+x,1+x^2,x+x^2,1+x+x^2\} \subset F[x]$. In this case, $x \neq x^2$ and $x^{2} + x \neq 0$.

L_{2.6} Basis and Dimension

Ex 2.6.12

Suppose S, T are subspaces of V with dim $S = \dim T = n$. If $S \subset T$, then S = T.

Suppose S, T are subspaces of V and $S \subset T$. Then dim $S \leq \dim T$.

Suppose S and T are finite dimensional vector spaces. Then

$$\dim(S+T)=\dim S+\dim T-\dim(S\cap T).$$

Let V be a vector space over a field F, and suppose S and T are subspaces of V satisfying $S \cap T = \{0\}$. Suppose $\{s_1, \dots, s_k\} \subset S$ and $\{t_1, \dots, t_l\} \subset T$ are bases for S and T, respectively. Prove that

$$\{s_1,\cdots,s_k,t_1,\cdots,t_l\}$$

is a basis for S + T.

Let U and V be vector sapces over a field F, and let $\{u_1, \dots, u_n\}$ and $\{v_1, \dots, v_m\}$ be bases for U and V, respectively. Prove that

$$\{(u_1,0),\cdots,(u_n,0),(0,v_1),\cdots,(0,v_m)\}$$

is a basis for $U \times V$.

LCh2. Fields and vector spaces

L_{2.6} Basis and Dimension

Ex 2.6.18

Suppose F is a finite filed of char F = p. Then $|F| = p^n$.

(a)
$$0, 1, 1+1, \dots, \underbrace{1+1+\dots 1}_{p-1 \text{ times}}$$
 are all distinct.

Suppose F is a finite filed of char F = p. Then $|F| = p^n$.

(b) Identifying the subfield $\{0,1,2,\cdots,p-1\}\subset F$ with \mathbb{Z}_p , prove that F is a vector space over \mathbb{Z}_p .

Suppose F is a finite filed of char F = p. Then $|F| = p^n$.

(c)
$$|F| = p^n$$
.

Summary

- $V \neq \{0\}$: A subset of $\{u_1, \dots, u_m\}$ (lin.indp) is a basis for span $\{u_1, \dots, u_m\}$
- ▶ V fin.dim: Suppose $\{u_1, \dots, u_k \subset V \text{ is linearly independent. If span}\{u_1, \dots, u_k\} \neq V$, then there are u_{k+1}, \dots, u_n such that

$$\{u_1, \cdots, u_n\}$$
 is a basis for V .

Theorem

Suppose $\dim V = n$.

- 1. If $\{u_1, \dots, u_n\}$ is linearly independent, then it is a basis.
- 2. If span $\{u_1, \dots, u_n\} = V$, then it is a basis.

Gaussian-Elimination

$$\{v_1,\cdots,v_n\} \Longrightarrow \{\alpha_1v_1+\sum_{i=2}^n \alpha_iv_i,v_2,\cdots,v_n\}$$

Let $S = \text{span}\{v_1, v_2, v_3\} \subset \mathbb{Z}_3^3$, where

$$v_1 = (1, 2, 1), v_2 = (2, 1, 2), v_3 = (1, 0, 1).$$

Find a subset of $\{v_1, v_2, v_3\}$ that is a basis.

Ex 2.7.15

Let V be a vector space over a field F, and let $\{u_1, \dots, u_n\}$ be a basis for V. Let $v_1, \dots, v_k \in V$, and suppose

$$\mathbf{v}_j = \alpha_{1,j}\mathbf{u}_1 + \cdots + \alpha_{n,j}\mathbf{u}_n$$

Define the vectors x_1, \dots, x_k in F^n by

$$x_j = (\alpha_{1,j}, \cdots, \alpha_{n,j}).$$

- (a) $\{v_1, \dots, v_k\}$ is lin.indp $\iff \{x_1, \dots, x_k\}$ lin.idnp.
- (b) $\{v_1, \dots, v_k\}$ spans $V \iff \{x_1, \dots, x_k\}$ spans F^n .

Observe

- For $(x_0, y_0), \dots, (x_n, y_n)$, there is $p(x) = c_0 + c_1 x + \dots + c_n x^n$ such that $p(x_i) = y_i$.
- ► The Lagrange Basis

$$\{1, x, \cdots, x^n\} \longleftrightarrow \{L_0(x), L_1(x), \cdots, L_n(x)\}$$

$$L_0(x) = \frac{(x-x_1)\cdots(x-x_n)}{(x_0-x_1)\cdots(x_0-x_n)}$$

:

$$L_i(x) = \frac{(x - x_0) \cdots (\widehat{x - x_i}) \cdots (x - x_n)}{(x_i - x_0) \cdots (\widehat{x_i - x_i}) \cdots (x_i - x_n)}.$$

Then

$$L_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

and

$$p(x) = y_0 L_0(x) + \cdots + y_n L_n(x).$$

Linear Operators

Linear : x + y, αx .

Definition

Let X and U be a vector spaces over a field F, and let $L: X \to U$. We say L is linear if and only if it satisfies the following conditions:

- 1. $L(\alpha x) = \alpha L(x)$
- 2. L(x + y) = L(x) + L(y).

Remark

- $L(\alpha_1 x_1 + \cdots + \alpha_k x_k) = \alpha_1 L(x_1) + \cdots + \alpha_k L(x_k).$
- L(0) = 0.
- ▶ If $L: X \to U$ and $M: U \to Z$ are linear, then $ML: X \to Z$ is linear.

$$X \xrightarrow{L} U \xrightarrow{M} Z$$
.

Matrix

For $A_{ij} \in F$, $A = (A_{ij})$ is called a $m \times n$ matrix:

$$A = (A_{ij}) = egin{bmatrix} A_{11} & \cdots & A_{1n} \ dots & \ddots & dots \ A_{m1} & \cdots & A_{mn} \end{bmatrix}$$

 (A_{1j}, \dots, A_{mk}) is the j th column and write

$$A_j = egin{bmatrix} A_{1j} \ dots \ A_{mj} \end{bmatrix}$$

 (A_{i1}, \cdots, A_{in}) is the *i* th row and write

$$r_i = \begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$

Matrix

Then we can write A by

$$A = [A_1|\cdots|A_n] = \begin{bmatrix} \frac{r_1}{\vdots} \\ r_m \end{bmatrix}$$

Multiplication

For $A \in F^{m \times n}$ and $x \in F^n$, we can define Ax by

$$Ax = \sum_{j=1}^{n} A_j x_j.$$

Note that A_i 's are vectors and x_i 's are scalar. And

$$(Ax)_i = \sum_{j=1}^n A_{ij} x_j.$$

Remark

Linear Operator \longleftrightarrow Matrix

Ex 3.1.12

Let $A \in F^{m \times n}$ and $B \in F^{n \times p}$. Find the formula $(AB)_{ij}$.

The End