On the estimation of conditional probabilities

Marco Cattaneo
Department of Statistics, LMU Munich

WPMSIIP 2012, Munich, Germany 13 September 2012

▶ given: **probabilistic model** $\{P_{\theta} : \theta \in \Theta\}$ for the random objects X and Y

▶ given: **probabilistic model** $\{P_{\theta} : \theta \in \Theta\}$ for the random objects X and Y

with X = A and Y = (B, C)

▶ given: **probabilistic model** $\{P_{\theta} : \theta \in \Theta\}$ for the random objects X and Y

with X = A and Y = (B, C)

given: exchangeable/independent observations

$$(X_1, Y_1) = (x_1, y_1), \dots (X_n, Y_n) = (x_n, y_n), Y_0 = y_0$$

▶ given: **probabilistic model** $\{P_{\theta} : \theta \in \Theta\}$ for the random objects X and Y

given: exchangeable/independent observations

$$(X_1, Y_1) = (x_1, y_1), \dots (X_n, Y_n) = (x_n, y_n), Y_0 = y_0$$

• goal: **estimate** $P(X_0 = x \mid \mathcal{D}, Y_0 = y_0)$

Bayesian with prior π on θ :

- **Bayesian** with prior π on θ :
 - if π is a conjugate prior for the probabilistic model P_{θ} , then the posterior $\pi \mid \mathcal{D}$ can be easily calculated, while calculation of the posterior $\pi \mid (\mathcal{D}, Y_0 = y_0)$ can be more difficult

- **Bayesian** with prior π on θ :
 - if π is a conjugate prior for the probabilistic model P_{θ} , then the posterior $\pi \mid \mathcal{D}$ can be easily calculated, while calculation of the posterior $\pi \mid (\mathcal{D}, Y_0 = y_0)$ can be more difficult
 - $P(X_0 = x \mid \mathcal{D}, Y_0 = y_0) = \frac{E_{\pi \mid \mathcal{D}} (P_{\theta}(X_0 = x, Y_0 = y_0))}{E_{\pi \mid \mathcal{D}} (P_{\theta}(Y_0 = y_0))} = E_{\pi \mid (\mathcal{D}, Y_0 = y_0)} (P_{\theta}(X_0 = x \mid Y_0 = y_0))$

- **Bayesian** with prior π on θ :
 - if π is a conjugate prior for the probabilistic model P_{θ} , then the posterior $\pi \mid \mathcal{D}$ can be easily calculated, while calculation of the posterior $\pi \mid (\mathcal{D}, Y_0 = y_0)$ can be more difficult
 - $P(X_0 = x \mid \mathcal{D}, Y_0 = y_0) = \frac{E_{\pi \mid \mathcal{D}} (P_{\theta}(X_0 = x, Y_0 = y_0))}{E_{\pi \mid \mathcal{D}} (P_{\theta}(Y_0 = y_0))} = E_{\pi \mid (\mathcal{D}, Y_0 = y_0)} (P_{\theta}(X_0 = x \mid Y_0 = y_0))$
- maximum likelihood:

- **Bayesian** with prior π on θ :
 - if π is a conjugate prior for the probabilistic model P_{θ} , then the posterior $\pi \mid \mathcal{D}$ can be easily calculated, while calculation of the posterior $\pi \mid (\mathcal{D}, Y_0 = y_0)$ can be more difficult
 - $P(X_0 = x \mid \mathcal{D}, Y_0 = y_0) = \frac{E_{\pi \mid \mathcal{D}} (P_{\theta}(X_0 = x, Y_0 = y_0))}{E_{\pi \mid \mathcal{D}} (P_{\theta}(Y_0 = y_0))} = E_{\pi \mid (\mathcal{D}, Y_0 = y_0)} (P_{\theta}(X_0 = x \mid Y_0 = y_0))$

maximum likelihood:

•
$$\hat{P}(X_0 = x \mid \mathcal{D}, Y_0 = y_0)$$
:

$$\frac{P_{\hat{\theta}_{\mathcal{D}}}(X_0 = x, Y_0 = y_0)}{P_{\hat{\theta}_{\mathcal{D}}}(Y_0 = y_0)} \neq P_{\hat{\theta}_{(\mathcal{D}, Y_0 = y_0)}}(X_0 = x \mid Y_0 = y_0)$$

- **Bayesian** with prior π on θ :
 - if π is a conjugate prior for the probabilistic model P_{θ} , then the posterior $\pi \mid \mathcal{D}$ can be easily calculated, while calculation of the posterior $\pi \mid (\mathcal{D}, Y_0 = y_0)$ can be more difficult
 - $P(X_0 = x \mid \mathcal{D}, Y_0 = y_0) = \frac{E_{\pi \mid \mathcal{D}} (P_{\theta}(X_0 = x, Y_0 = y_0))}{E_{\pi \mid \mathcal{D}} (P_{\theta}(Y_0 = y_0))} = E_{\pi \mid (\mathcal{D}, Y_0 = y_0)} (P_{\theta}(X_0 = x \mid Y_0 = y_0))$
- maximum likelihood:
 - $\hat{P}(X_0 = x \mid \mathcal{D}, Y_0 = y_0)$:

$$\frac{P_{\hat{\theta}_{\mathcal{D}}}(X_0 = x, Y_0 = y_0)}{P_{\hat{\theta}_{\mathcal{D}}}(Y_0 = y_0)} \neq P_{\hat{\theta}_{(\mathcal{D}, Y_0 = y_0)}}(X_0 = x \mid Y_0 = y_0)$$

▶ likelihood functions $lik_{\mathcal{D}}(\theta) \propto P_{\theta}(\mathcal{D})$ and $lik_{(\mathcal{D}, Y_0 = y_0)}(\theta) \propto P_{\theta}(\mathcal{D}, Y_0 = y_0)$ on Θ have maxima at the points $\hat{\theta}_{\mathcal{D}}$ and $\hat{\theta}_{(\mathcal{D}, Y_0 = y_0)}$, respectively

- **Bayesian** with prior π on θ :
 - if π is a conjugate prior for the probabilistic model P_{θ} , then the posterior $\pi \mid \mathcal{D}$ can be easily calculated, while calculation of the posterior $\pi \mid (\mathcal{D}, Y_0 = y_0)$ can be more difficult
 - ► $P(X_0 = x \mid \mathcal{D}, Y_0 = y_0) =$

$$\frac{E_{\pi \mid \mathcal{D}} \left(P_{\theta} (X_0 = x, Y_0 = y_0) \right)}{E_{\pi \mid \mathcal{D}} \left(P_{\theta} (Y_0 = y_0) \right)} = E_{\pi \mid (\mathcal{D}, Y_0 = y_0)} \left(P_{\theta} (X_0 = x \mid Y_0 = y_0) \right)$$

- maximum likelihood:
 - $\hat{P}(X_0 = x \mid \mathcal{D}, Y_0 = y_0)$:

$$P_{\hat{\theta}_{\mathcal{D}}}(X_0 = x \mid Y_0 = y_0) \neq P_{\hat{\theta}_{(\mathcal{D}, Y_0 = y_0)}}(X_0 = x \mid Y_0 = y_0)$$

▶ likelihood functions $lik_{\mathcal{D}}(\theta) \propto P_{\theta}(\mathcal{D})$ and $lik_{(\mathcal{D}, Y_0 = y_0)}(\theta) \propto P_{\theta}(\mathcal{D}, Y_0 = y_0)$ on Θ have maxima at the points $\hat{\theta}_{\mathcal{D}}$ and $\hat{\theta}_{(\mathcal{D}, Y_0 = y_0)}$, respectively

- **Bayesian** with prior π on θ :
 - if π is a conjugate prior for the probabilistic model P_{θ} , then the posterior $\pi \mid \mathcal{D}$ can be easily calculated, while calculation of the posterior $\pi \mid (\mathcal{D}, Y_0 = y_0)$ can be more difficult
 - ► $P(X_0 = x | \mathcal{D}, Y_0 = y_0) =$

$$\frac{E_{\pi \mid \mathcal{D}} \left(P_{\theta} (X_0 = x, Y_0 = y_0) \right)}{E_{\pi \mid \mathcal{D}} \left(P_{\theta} (Y_0 = y_0) \right)} = E_{\pi \mid (\mathcal{D}, Y_0 = y_0)} \left(P_{\theta} (X_0 = x \mid Y_0 = y_0) \right)$$

- maximum likelihood:
 - $\hat{P}(X_0 = x \mid \mathcal{D}, Y_0 = y_0)$:

$$P_{\hat{\theta}_{\mathcal{D}}}(X_0 = x \mid Y_0 = y_0) \neq P_{\hat{\theta}_{(\mathcal{D}, Y_0 = y_0)}}(X_0 = x \mid Y_0 = y_0)$$

▶ likelihood functions $lik_{\mathcal{D}}(\theta) \propto P_{\theta}(\mathcal{D})$ and $lik_{(\mathcal{D}, Y_0 = y_0)}(\theta) \propto P_{\theta}(\mathcal{D}, Y_0 = y_0)$ on Θ have maxima at the points $\hat{\theta}_{\mathcal{D}}$ and $\hat{\theta}_{(\mathcal{D}, Y_0 = y_0)}$, respectively

example

 $A,B,C\in\{0,1\}$

$$A,B,C\in\{0,1\}$$

D ($n = 100$):	Α	В	С	#
	0	0	0	0
	0	0	1	49
	0	1	0	0
	0	1	1	1
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

$$A, B, C \in \{0, 1\}$$

$$\mathcal{D} \ (n = 100): \begin{array}{c|cccc} A & B & C & \# \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 49 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 48 \\ 1 & 0 & 1 & 1 \\ \end{array}$$

100

$$A,B,C\in\{0,1\}$$

\mathcal{D}	(n	=	100):
---------------	----	---	-------

Α	В	С	#
0	0	0	0
0	0	1	49
0	1	0	0
0	1	1	1
1	0	0	48
1	0	1	1
1	1	0	1
1	1	1	0
			100

estimation of
$$P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1)$$
:

$$A,B,C\in\{0,1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	49
	0	1	0	0
	0	1	1	1
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0

100

estimation of $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1)$:

▶ **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	49
	0	1	0	0
	0	1	1	1
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

- ▶ **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1) \approx 0.010$

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	49
	0	1	0	0
	0	1	1	1
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

- ▶ **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1) \approx 0.010$
- ▶ maximum likelihood $lik_{\mathcal{D}}$: $P_{\hat{\theta}_{\mathcal{D}}}(A_0 = 1 \mid B_0 = 1, C_0 = 1) \approx 0.020$

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	49
	0	1	0	0
	0	1	1	1
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

- **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1) \approx 0.010$
- maximum likelihood lik_D : $P_{\hat{\theta}_D}(A_0 = 1 | B_0 = 1, C_0 = 1) \approx 0.020$
- ▶ **imprecise Bayesian** with IDM₂ priors: $P(A_0 = 1 | D, B_0 = 1, C_0 = 1) \approx [0.0066, 0.15]$

$$A,B,C\in\{0,1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

$$A,B,C\in\{0,1\}$$

$$\mathcal{D}$$
 ($n = 100$):

Α	В	С	#
0	0	0	0
0	0	1	50
0	1	0	0
0	1	1	0
1	0	0	48
1	0	1	1
1	1	0	1
1	1	1	0
			100

estimation of
$$P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1)$$
:

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	C	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0

100

estimation of $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1)$:

▶ **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.073$

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

- ▶ Bayesian with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.073$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1) \approx 0.021$

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

- ▶ **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.073$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1) \approx 0.021$
- ▶ maximum likelihood $lik_{\mathcal{D}}$: $P_{\hat{\theta}_{\mathcal{D}}}(A_0 = 1 \mid B_0 = 1, C_0 = 1) = 1$

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	48
	1	0	1	1
	1	1	0	1
	1	1	1	0
				100

- ▶ **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.073$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1) \approx 0.021$
- maximum likelihood $lik_{\mathcal{D}}$: $P_{\hat{\theta}_{\mathcal{D}}}(A_0 = 1 \mid B_0 = 1, C_0 = 1) = \mathbf{1}$
- ▶ **imprecise Bayesian** with IDM₂ priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx [0.0099, 1]$

$$A,B,C\in\{0,1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	49
	1	0	1	1
	1	1	0	0
	1	1	1	0
				100

$$A,B,C\in\{0,1\}$$

$$D$$
 ($n = 100$):

Α	В	С	#
0	0	0	0
0	0	1	50
0	1	0	0
0	1	1	0
1	0	0	49
1	0	1	1
1	1	0	0
1	1	1	0
			100

estimation of $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1)$:

$$A, B, C \in \{0, 1\}$$

$$\mathcal{D} \; (n=100) : \begin{array}{c|ccccc} A & B & C & \# \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 50 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 49 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{array}$$

100

estimation of $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1)$:

Bayesian with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$

$$A,B,C\in\{0,1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	49
	1	0	1	1
	1	1	0	0
	1	1	1	0
				100

- ▶ **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1)=0$

$$A, B, C \in \{0, 1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	49
	1	0	1	1
	1	1	0	0
	1	1	1	0
•				100

- **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1)=0$
- ▶ maximum likelihood $lik_{\mathcal{D}}$: $P_{\hat{\theta}_{\mathcal{D}}}(A_0 = 1 \mid B_0 = 1, C_0 = 1) = [0, 1]$

$$\textit{A},\textit{B},\textit{C} \in \{0,1\}$$

D (n = 100):	Α	В	С	#
	0	0	0	0
	0	0	1	50
	0	1	0	0
	0	1	1	0
	1	0	0	49
	1	0	1	1
	1	1	0	0
	1	1	1	0
•				100

- **Bayesian** with uniform priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) \approx 0.038$
- ▶ maximum likelihood $lik_{(\mathcal{D}, B_0=1, C_0=1)}$: $P_{\hat{\theta}_{(\mathcal{D}, B_0=1, C_0=1)}}(A_0=1 \mid B_0=1, C_0=1)=0$
- ▶ maximum likelihood $lik_{\mathcal{D}}$: $P_{\hat{\theta}_{\mathcal{D}}}(A_0 = 1 \mid B_0 = 1, C_0 = 1) = [0, 1]$
- imprecise Bayesian with IDM₂ priors: $P(A_0 = 1 | \mathcal{D}, B_0 = 1, C_0 = 1) = [0, 1]$

references

- Cattaneo (2010). Likelihood-based inference for probabilistic graphical models: Some preliminary results. In: PGM 2010, Proceedings of the Fifth European Workshop on Probabilistic Graphical Models, HIIT Publications, pp. 57–64.
- Antonucci, Cattaneo, and Corani (2011). Likelihood-based naive credal classifier. In: ISIPTA '11, Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, SIPTA, pp. 21–30.
- Antonucci, Cattaneo, and Corani (2012). Likelihood-based robust classification with Bayesian networks. In: Advances in Computational Intelligence, Part 3, Springer, pp. 491–500.