Data Mining Lab Assignment-5

CSE 6th semester

(Language/Platform: Python)

Note: Feature Selection- Select k useful features out of n futures in a dataset, where k<n.

Objective 1:

Load page_block.csv numeric (Beginner's Guide Page-block Classification (kaggle.com)) dataset (make appropriate preprocessing if required). Use **Fisher's Score** (f) ranking method for assigning an appropriate rank to each feature and select the top k ranked features.

$$f = \frac{\mu_1^2 - \mu_2^2}{\sigma_1^2 + \sigma_2^2}$$

Where $\mu_1, \mu_2, \sigma_1, \sigma_2$ are means and standard deviations for negative and positive class respectively.

Write the equivalent function in python for the following:

- 1. Compute the mean of attribute values against both class labels.
- 2. Compute the standard deviation of attribute values against both class labels.
- 3. ComputeFisher's score (f) the for each attribute.
- 4. Assigned rank for each attribute (High f value has a high ranking).

Objective 2:

Load buys_computer.csv nominal (<u>Buy Computer (kaggle.com)</u>) dataset (make appropriate preprocessing if required). Use the information gain formula.

Let dataset D with two class labels c_1 and c_2 then expected information (entropy) info (D) can be computed by the formula as given below:

$$Info(D) = -\sum_{i=1}^{label} p_i log_2 p_i$$

Where p_i is the probability of class c_i and label is the number of classes(2 in the case of the binary class dataset).

The entropy of an attribute A with v nominal labels can be computed by the formula as given below:

$$Info_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

Where $|D_i|$ is count (v_i) and |D| is count (D).

The information gain of attribute A is given by the formula as follows:

$$Gain (A) = Info(D) - Info_A (D)$$

Write the equivalent function in python for the following:

- 1. Compute the entropy (info (dataset)) of the entire dataset.
- 2. Compute Info_A(Dataset) for each attribute A in the dataset.

- 3. Compute Information Gain (A) for each attribute A in the dataset.4. Select k attributes with the highest information gain.