für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

IPv6 Workbook *Grundlagen und Adressierung*

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Einführung:

Name:

IPv4 bietet einen Adressraum von etwas über vier Milliarden IP-Adressen ($2^{32} = 256^4 = 4.294.967.296$), von denen 3.707.764.736 verwendet werden können, um Computer und andere Geräte direkt anzusprechen¹. In den Anfangstagen des Internets, als es nur wenige Rechner gab, die eine IP-Adresse brauchten, galt dies als weit mehr als ausreichend. Aufgrund des unvorhergesehenen Wachstums des Internets herrscht heute aber Adressenknappheit. Im Januar 2011 teilte die IANA der asiatischen Regional Internet Registry APNIC die letzten zwei frei zu vergebenden Netze zu². Gemäß einer Vereinbarung aus dem Jahr 2009³ wurde am 3. Februar 2011 schließlich der verbleibende Adressraum gleichmäßig auf die regionalen Adressvergabestellen verteilt⁴. Darüber hinaus steht den regionalen Adressvergabestellen kein weiterer IPv4-Adressraum mehr zur Verfügung. Am 15. April 2011 teilte APNIC die letzten frei zu vergebenden Adressen für die Region Südostasien zu⁵; am 14. September 2012 folgte dann RIPE NCC mit der letzten freien Zuteilung in der Region Europa/Naher Osten⁶. Seitdem haben APNIC- und RIPE NCC-Mitglieder jeweils nur noch Anspruch auf eine einzelne Zuteilung von IPv4-Adressraum der minimalen Zuteilungsgröße⁷.

Klasse:

Die historische Entwicklung des Internets wirft ein weiteres Problem auf: Durch die mit der Zeit mehrmals geänderte Vergabepraxis von Adressen des IPv4-Adressraums ist dieser inzwischen stark fragmentiert, d. h., häufig gehören mehrere nicht zusammenhängende Adressbereiche zur gleichen organisatorischen Instanz. Dies führt in Verbindung mit der heutigen Routingstrategie (Classless Inter-Domain Routing) zu langen Routingtabellen, auf welche Speicher und Prozessoren der Router im Kernbereich des Internets ausgelegt werden müssen. Zudem erfordert IPv4 von Routern, Prüfsummen jedes weitergeleiteten Pakets neu zu berechnen, was eine weitere Prozessorbelastung darstellt.

Aus diesen Gründen begann die IETF bereits 1995 die Arbeiten an IPv6. Im Dezember 1998 wurde IPv6 mit der Publikation von RFC 2460 auf dem Standards Track offiziell zum Nachfolger von IPv4 gekürt.

¹ Heise.de Datenschützer besorgt über IPv6; ↑ ^{a b} IANA:

² APNIC: Two /8s allocated to APNIC from IANA Meldung vom 1. Febr. 2011

³ ICANN: Global Policy for the Allocation of the Remaining IPv4 Address Space

⁴ Twitter-Verlautbarung der IANA zum Ende des IPv4-Adressraums

⁵ APNIC: APNIC IPv4 Address Pool Reaches Final /8

⁶ RIPE NCC:

⁷ APNIC: Policies for IPv4 address space management in the Asia Pacific region, Abschnitt 9.10.1 RIPE NCC:

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Die wesentlichen neuen Eigenschaften von IPv6 umfassen:

Vergrößerung des Adressraums von IPv4 mit 2³² (≈ 4,3 Milliarden) Adressen auf 2¹²⁸(≈ 340 Sextillionen) Adressen bei IPv6, d. h. Vergrößerung um den Faktor 2⁹⁶.

Klasse:

Datum:

- Vereinfachung und Verbesserung des Protokollrahmens (Kopfdaten); dies entlastet Router von Rechenaufwand.
- Zustandslose automatische Konfiguration von IPv6-Adressen; zustandsbehaftete Verfahren wie DHCP werden beim Einsatz von IPv6 damit in vielen Anwendungsfällen überflüssig
- Mobile IP sowie Vereinfachung von Umnummerierung und Multihoming
- Implementierung von IPSec innerhalb des IPv6-Standards⁸. Dadurch wird die Verschlüsselung und die Überprüfung der Authentizität von IP-Paketen ermöglicht⁹.
- Unterstützung von Netztechniken wie Quality of Service und Multicast

Aufgabe 1: Kurz und knapp....

Name:

2001:0DB8:9696:0000:0000:0000:0000:0000/64 ist ein typisches IPv6-Netz. Wie oft passt das

gesam	te IPv4-Internet hinein?
	Gar nicht, das IPv6-Netz ist kleiner als das IPv4-Internet.
	Es passt genau einmal hinein.
	Rund 4,2 Billionen mal.
	Rund 4,2 Milliarden mal.

Die hauptsächliche Motivation zur Vergrößerung des Adressraums besteht in der Wahrung des Ende-zu-Ende-Prinzips¹⁰, das ein zentrales Designprinzip des Internets ist¹¹: Nur die Endknoten des Netzes sollen aktive Protokolloperationen ausführen, das Netz zwischen den Endknoten ist nur für die Weiterleitung der Datenpakete zuständig. Dazu ist es notwendig, dass jeder Netzknoten global eindeutig adressierbar ist12.

Heute übliche Verfahren wie Network Address Translation (NAT), welche derzeit die IPv4-Adressknappheit umgehen, verletzen das Ende-zu-Ende-Prinzip¹³. Sie ermöglichen den so angebundenen Rechnern nur ausgehende Verbindungen aufzubauen. Aus dem Internet können diese hingegen nicht ohne weiteres kontaktiert werden. Auch verlassen sich IPSec oder Protokolle auf höheren Schichten wie z. B. FTP und SIP teilweise auf das Ende-zu-Ende-Prinzip und sind mit NAT nur eingeschränkt oder mittels Zusatzlösungen funktionsfähig¹⁴. Besonders für Heimanwender bedeutet IPv6 damit einen Paradigmenwechsel: Anstatt vom Provider nur eine einzige IP-Adresse zugewiesen zu bekommen und über NAT mehrere Geräte ans Internet anzubinden, bekommt der Anwender global eindeutigen IP-Adressraum für ein ganzes Teilnetz zur Verfügung gestellt, so dass jedes seiner Geräte eine IP-Adresse aus diesem erhalten kann. Damit wird es für

⁸ RFC 6434, Abschnitt 11

⁹ IPsec wurde zusätzlich auch für IPv4 spezifiziert, dort ist die Umsetzung aber optional, während sie für IPv6 zunächst in RFC 4294 vorgeschrieben war. Diese Vorschrift wurde aber mit RFC 6434 zurückgenommen.

siehe etwa RFC 2775, Abschnitt 5.1

¹¹ RFC 3724, Abschnitt 2

¹² siehe etwa RFC 2775, Abschnitt 5.1

¹³ RFC 2993, Abschnitt 6

¹⁴ Stefan Wintermeyer: Asterisk 1.4 + 1.6. Addison-Wesley, München; 1. Auflage 2009. Kapitel 8.

für Elektrotechnik. Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Endbenutzer einfacher, durch das Anbieten von Diensten aktiv am Netz teilzunehmen. Zudem entfallen die Probleme, die bei NAT durch die Adressumschreibung entstehen.

Datum:

Bei der Wahl der Adresslänge und damit der Größe des zur Verfügung stehenden Adressraums waren mehrere Faktoren zu berücksichtigen. Zum einen müssen pro Datenpaket auch Quell- und Ziel-IP-Adresse übertragen werden. Längere IP-Adressen führen damit zu erhöhtem Protokoll-Overhead, d. h. das Verhältnis zwischen tatsächlichen Nutzdaten und der zur Vermittlung notwendigen Protokolldaten sinkt¹⁵. Auf der anderen Seite sollte dem zukünftigen Wachstum des Internets Rechnung getragen werden. Zudem sollte es zur Verhinderung der Fragmentierung des Adressraums möglich sein, einer Organisation nur ein einziges Mal Adressraum zuweisen zu müssen. Um den Prozess der Autokonfiguration sowie Umnummerierung und Multihoming zu vereinfachen, war es außerdem wünschenswert, einen festen Teil der Adresse zur netzunabhängigen eindeutigen Identifikation eines Netzknotens zu reservieren. Die letzten 64 Bit der Adresse bestehen daher in der Regel aus der EUI-64 der Netzwerkschnittstelle des Knotens.

IPv6-Adressen sind 128 Bit lang (IPv4: 32 Bit). Die letzten 64 Bit bilden bis auf Sonderfälle einen für die Netzwerkschnittstelle (engl. Interface) eindeutigen Interface Identifier. Eine Netzwerkschnittstelle kann unter mehreren IP-Adressen erreichbar sein; in der Regel ist sie dies mittels ihrer link-lokalen Adresse und einer global eindeutigen Adresse. Derselbe Interface Identifier kann damit Teil mehrerer IPv6-Adressen sein, welche mit verschiedenen Präfixen auf dieselbe Netzwerkkarte gebunden sind. Insbesondere gilt dies auch für Präfixe möglicherweise verschiedener Provider; dies vereinfacht Multihoming-Verfahren.

IPv6 Address Components

- An IPv6 address consists of two parts:
 - A subnet prefix
 - An interface ID

16

Da die Erzeugung des Interface Identifiers aus der global eindeutigen MAC-Adresse die Nachverfolgung von Benutzern ermöglicht, wurden die Privacy Extensions (RFC 4941) entwickelt, um diese permanente Kopplung der Benutzeridentität an die IPv6-Adressen aufzuheben. Indem der Interface Identifier zufällig generiert wird und regelmäßig wechselt, soll ein Teil der Anonymität von IPv4 wiederhergestellt werden.

Da im Privatbereich in der IPv6-Adresse aber sowohl der Interface Identifier als auch das Präfix allein recht sicher auf einen Nutzer schließen lassen können, ist aus Datenschutzgründen in Verbindung mit den Privacy Extensions ein vom Provider dynamisch zugewiesenes, z. B. täglich wechselndes, Präfix wünschenswert. (Mit einer statischen Adresszuteilung geht in der Regel ins-

¹⁵ Eine Diskussion des Problems findet sich in einem Internet-Draft von W. Eddy, Comparison of IPv4 and IPv6 Header Overhead.

¹⁶ IPv6-Part21-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name:

Datum:

besondere ein Eintrag in der öffentlichen Whois-Datenbank einher.) Dabei ist es wie oben beschrieben grundsätzlich möglich, auf derselben Netzwerkkarte sowohl IPv6-Adressen aus dynamischen als auch aus fest zugewiesenen Präfixen parallel zu verwenden. In Deutschland hat der Deutsche IPv6-Rat Datenschutzleitlinien formuliert, die auch eine dynamische Zuweisung von IPv6-Präfixen vorsehen.¹⁷

Klasse:

Aufgabe	e 2: Kurz und knapp
IPv6-Ad	dressen sind länger als IPv4-Adressen. Was ist bei IPv6 noch anders?
	Netzwerkklassen (Class A, B, C) werden abgeschafft.
	Der IPv6-Header enthält keine Checksumme mehr.
	Router fragmentieren IPv6-Pakete nicht.
	Pv6-Adressen bleiben lebenslang persönlich zugeordnet.
	Network Address Translation (NAT) ist nicht mehr möglich.
vacy Ex	ein Host nicht anhand seiner IPv6-Adresse identifiziert werden kann, gibt es die "Pri- ktensions". Wie funktionieren sie? Alle Pakete werden über Privacy-Server im Internet umgeleitet. Der Router ersetzt die wiedererkennbaren IPv6-Adressen der Hosts durch seine eigene (NAT). Der Host wechselt regelmäßig und zufällig seine Adresse. Der Router setzt den "Lokal Part" der Adresse auf 0 und füllt ihn bei den Antwortpaketen wieder aus.

¹⁷ German IPv6 Council: Leitlinien IPv6 und Datenschutz

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Adressnotation

Name:

Die textuelle Notation von IPv6-Adressen ist in Abschnitt 2.2 von RFC 4291 beschrieben:

- IPv6-Adressen werden gewöhnlicherweise hexadezimal (IPv4: dezimal) notiert, wobei die Zahl in acht Blöcke zu jeweils 16 Bit (4 Hexadezimalstellen) unterteilt wird. Diese Blöcke werden durch Doppelpunkte (IPv4: Punkte) getrennt notiert: 2001:0db8:85a3:08d3:1319:8a2e:0370:7344.
- 2. Führende Nullen innerhalb eines Blockes dürfen ausgelassen werden: 2001:0db8:0000:08d3:0000:8a2e:0070:7344 ist gleichbedeutend mit 2001:db8:0:8d3:0:8a2e:70:7344.
- 3. Mehrere aufeinander folgende Blöcke, deren Wert 0 (bzw. 0000) beträgt, dürfen ausgelassen werden. Dies wird durch zwei aufeinander folgende Doppelpunkte angezeigt: 2001:0db8:0:0:0:0:1428:57ab ist gleichbedeutend mit 2001:db8::1428:57ab. Ein einzelner Block, dessen Wert 0 beträgt, darf jedoch nicht ausgelassen werden¹⁸.

Die Reduktion durch Regel 3 darf nur <u>einmal</u> durchgeführt werden, das heißt, es darf höchstens eine zusammenhängende Gruppe aus Null-Blöcken in der Adresse ersetzt werden.

Die Adresse 2001:0db8:0:0:8d3:0:0:0 darf demnach entweder zu 2001:db8:0:0:8d3:: oder 2001:db8::8d3:0:0:0 gekürzt werden; 2001:db8::8d3:: ist unzulässig, da dies mehrdeutig ist und fälschlicherweise z. B. auch als 2001:db8:0:0:0:8d3:0:0 interpretiert werden könnte. Es empfiehlt sich den Block mit den meisten Null-Blöcken zu kürzen.

IPv6 Address Abbreviation Example

Ebenfalls darf für die letzten vier Bytes (also 32 Bits) der Adresse die herkömmliche dezimale Notation verwendet werden. So ist ::ffff:127.0.0.1 eine alternative Schreibweise für ::ffff:7f00:1. Diese Schreibweise wird vor allem bei Einbettung des IPv4-Adressraums in den IPv6-Adressraum verwendet.

¹⁸ RFC 5952, A Recommendation for IPv6 Address Text Representation, S. Kawamura (August 2010), Abschnitt 4.2.2: http://tools.ietf.org/html/rfc5952#section-4.2.2

¹⁹ IPv6-Part21-Addr-Types, 2006, Cisco Systems

Heinz-Nixdorf-Berufskolleg
für Elektrotechnik, Informations- und Telekommunikationstechnik
der Stadt Essen

Name	e:	Klasse:	Datum:	
Aufo	gabe 3: Kurz und knapp			
	ches sind gültige IPv6-Adressen?	?		
	::		1:DB8::abf:1::7	
П	2001:DB8::abf:1:7	□ 200	1:0DB8:0000:0000:0ab	of:0001:0007
П	::ffff:192.0.2.128	= = = =		
<mark>Aufg</mark>	gabe 4: Kurz und knapp			
a) Ha	andelt es sich bei der IPv6-Adresse	en		
	1. 2001:0db8::1428:57ab			
	2. 2001:db8::28:b			
	um die gleiche Adresse wie			
	a. 2001:0db8:0000:0000:00	00:0000:1428:57	ab	
	b. 2001:0db8::0028:000b?			
b) G	eben Sie die IPv6-Adresse in verkü	ırzter Schreibweis	se an:	
2001	:0db0:85a3:0000:1319:0000:0000:	0044		
_	gabe 5: Kurz und knapp			
Welc	cher Fehler ist bei der Angabe der I	Pv6-Adresse 200	1::25de::cade gemach	t worden?
	Natatian and IDate Administra			
	-Notation von IPv6-Adressen	1.1	· 11 20 D	
ın eli	ner URL wird die IPv6-Adresse in e	ckige klammern	eingeschiossen , z. B.	:
_	h. W //[0004.0.dls 0.05 - 0.00 d0.404	10.0-00070.70	4.41/	
•	http://[2001:0db8:85a3:08d3:131	19:8a2e:0370:734	14]/	
Diag	a Natatian vanhindant dia fälaahli	iaha lutawawatatia	un van Dawterumanaare	ala Tail day IDvC
	e Notation verhindert die fälschli	cne interpretation	n von Portnummern	als Tell der IPV6-
Adre	sse.			
•	h. W //[0004.0.dls 0.05 - 0.00 d0.404	10.0-00070.70	141.0000/	
•	http://[2001:0db8:85a3:08d3:131	19:8a2e:0370:734	14]:8080/	
Aufo	soho 6. Kurz und knonn			
	<mark>jabe 6: Kurz und knapp</mark>	fon im Brows	or sine IDv6 Verbine	duna zum Carvar
	wählt man beim Internet-Sur	ien im browse	eine irvo-verbind	aung zum Server
_	v.example.com aus?			
	http6://www.example.com			
	http://www.example.com:6	Tarta alla etelesi		
	Gar nicht, der Browser trifft die E	:ntscheidung auto	omatiscn.	
	http://[www.example.com]			

RFC 3986, Abschnitt 3.2.2 Sco / IPv6_Grundlagen_Adressierung_13

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Netznotation

IPv6 verwendet eine andere Netzmaske als IPv4. Die wesentlichen Unterschiede sind in RFC 5942 (IPv6 Subnet Model) zusammengefasst.

Bei der Präfixlänge für IPv6 wird schlicht wie im CIDR die Anzahl der Bits im Netzwerkteil getrennt durch "/" hinter die IPv6-Adresse geschrieben. Dazu werden die erste Adresse (bzw. die Netzadresse) und die Länge des Präfixes in Bits getrennt durch einen Schrägstrich notiert.

Zum Beispiel steht 2001:0db8:1234::/48 für das Netzwerk mit den Adressen 2001:0db8:1234:0000:0000:0000:0000 bis 2001:0db8:1234:ffff:ffff:ffff.

Die Größe eines IPv6-Netzwerkes (oder Subnetzwerkes) im Sinne der Anzahl der vergebbaren Adressen in diesem Netz muss also eine Zweierpotenz sein. Da ein einzelner Host auch als Netzwerk mit einem 128 Bit langen Präfix betrachtet werden kann, werden Host-Adressen manchmal mit einem angehängten "/128" geschrieben.

Beispiel:

2001:0db8:85a3:08d3:1319:8a2e:0370:7347/64.

Die Präfixlänge ist in diesem Falle /64,

das Netz 2001:0db8:85a3:08d3:0000:0000:0000:0000/64

der Geräteteil oder Interface Identifier 1319:8a2e:0370:7347.

Aufg	abe 7: Kurz	und knapp	. <mark>.</mark>						
In	welchem	Subnetz	befindet	sich	der	Host	mit	der	IPv6-Adresse
2001	:0db8:85a3:0)8d3:1319:8a2	2e:0370:73	14/64?					
Aufg	abe 8: Kurz	und knapp	•						
Befir	idet sich der	Host mit de	r IPv6-Adre	esse 200)1:0db8:	:85a3:08d	d3:1319	:8a2e:0	370:7344/64 im
Subr	netz 2001:0db	08:85a3::/48 ?	1						

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Adresszuweisung

Name:

Typischerweise bekommt ein Internetprovider (ISP) die ersten 32 Bit (oder weniger) als Netz von einer Regional Internet Registry (RIR) zugewiesen²¹. Dieser Bereich wird vom Provider weiter in Subnetze aufgeteilt.

Klasse:

Die Länge der Zuteilung an Endkunden wird dabei dem ISP überlassen; vorgeschrieben ist die minimale Zuteilung eines /64-Netzes²³ Ältere Dokumente (z. B. RFC 3177) schlagen eine Zuteilung von /48-Netzen an Endkunden vor; in Ausnahmefällen ist die Zuteilung größerer Netze als /48 oder mehrerer /48-Netze an einen Endkunden möglich²⁴.

Informationen über die Vergabe von IPv6-Netzen können über die Whois-Dienste der jeweiligen RIRs abgefragt werden.

²¹ IPv6 Address Allocation and Assignment Policy von APNIC, ARIN, RIPE NCC, Abschnitt 4.3

²² IPv6-Part21-Addr-Types, 2006, Cisco Systems

²³ IPv6 Address Allocation and Assignment Policy, Abschnitt 5.4.1

²⁴ IPv6 Address Allocation and Assignment Policy, Abschnitt 5.4.2

²⁵ IPv6-Part21-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Einem einzelnen Netzsegment wird in der Regel ein 64 Bit langes Präfix zugewiesen, das dann zusammen mit einem 64 Bit langen Interface Identifier die Adresse bildet²⁶. Der Interface Identifier kann entweder aus der MAC-Adresse der Netzwerkkarte erstellt oder anders eindeutig zugewiesen werden; das genaue Verfahren ist in RFC 4291, Anhang A beschrieben.

Klasse:

IPv6 Subnetting with Global Unicast Addresses

- Default Subnets
 - /23 Registry

Name:

- /32 ISP Prefix
- /48 Site Prefix
 - Bits 49 to 64 are for subnets
 - 2^16 = 65.535 subnets available
- /64 Default Subnet prefix
 - Bits 65 to 128 for Hosts
 - Host bits are either statically assigned, EUI-64, DHCP or random number generated.

27

In diesem Beispiel hat der ISP eine Netzmaske von /32 von der regionalen Registrierungsbehörde erhalten. Dadurch stehen dem ISP 16 SLA Bits mit insg. 65535 /48er Netzwerken für die Adressierung von Kundennetzwerken zur Verfügung.

26

²⁶ RFC 4291, Abschnitt 2.5.4

²⁷ IPv6-Part21-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Aufgabe 9:

Der ISP hat der Service AG einen IPv6 Adressbereich mit der Netzmaske /56 zugewiesen. Erläutern Sie unter Angabe des Rechenwegs, wie viele Subnetze gebildet werden können, wenn der Hostanteil 64 Bit beträgt!

Lösung:

Aufgabe 10:

Der in Aufgabe 9 genannte ISP hat von der Registrierungsbehörde einen Adressbereich mit einer Netzmaske /29 zugewiesen bekommen. Erläutern Sie unter Angabe des Rechenwegs, wie viele IPv6-Netzadressen (in Millionen) der ISP an seine Kunden vergeben kann.

Lösung:

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Adressbereiche

Es gibt verschiedene IPv6-Adressbereiche mit Sonderaufgaben und unterschiedlichen Eigenschaften. Diese werden meist schon durch die ersten Bits der Adresse signalisiert. Sofern nicht weiter angegeben, werden die Bereiche in RFC 4291 bzw. RFC 5156 definiert. Unicast-Adressen charakterisieren Kommunikation eines Netzknotens mit genau einem anderen Netzknoten; Einer-zuvielen-Kommunikation wird durch Multicast-Adressen abgebildet.

Address Type ²⁸	Description	Topology
Unicast	 *One to One" An address destined for a single interface. A packet sent to a unicast address is delivered to the interface identified by that address. 	
Multicast	 "One to Many" An address for a set of interfaces (typically belonging to different nodes). A packet sent to a multicast address will be delivered to all interfaces identified by that address. 	
Anycast	 *One to Nearest* (Allocated from Unicast) An address for a set of interfaces. In most cases these interfaces belong to different nodes. created "automatically" when a single unicast address is assigned to more than one interface. A packet sent to an anycast address is delivered to the closest interface as determined by the IGP. 	

_

²⁸ IPv6-Part1-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Besondere Adressen

Name:

::/128 (128 0-Bits) ist die nicht spezifizierte Adresse. Sie darf keinem Host zugewiesen werden, sondern zeigt das Fehlen einer Adresse an. Sie wird beispielsweise von einem initialisierenden Host als Absenderadresse in IPv6-Paketen verwendet, solange er seine eigene Adresse noch nicht mitgeteilt bekommen hat. Jedoch können auch Serverprogramme durch Angabe dieser Adresse bewirken, dass sie auf allen Adressen des Hosts lauschen.

Klasse:

• ::1/128 (127 0-Bits, ein 1-Bit) ist die Adresse des eigenen Standortes (loopback-Adresse, die in der Regel mit localhost verknüpft ist).

Link-Local-Adressen

• Link-Local-Adressen werden innerhalb abgeschlossener Netzwerksegmente eingesetzt. Man identifiziert sie am Subnetz-Präfix (den ersten 10 Bits) mit dem Wert "fe80::/10":

IPv6 Link-Local Unicast Address

- Link-local addresses play a crucial role in the operation of IPv6.
- They are dynamically created using a link-local prefix of FE80::/10 and a 64-bit interface identifier.

Link-Local-Adressen nutzt man zur Adressierung von Nodes in abgeschlossenen Netzwerksegmenten, sowie zur Autokonfiguration oder Neighbour-Discovery. Dadurch muss man in einem Netzwerksegment keinen DHCP-Server zur automatischen Adressvergabe konfigurieren. Link-Local-Adressen sind mit APIPA-Adressen im Netz 169.254.0.0/16 vergleichbar.

Soll ein Gerät mittels einer dieser Adressen kommunizieren, so muss die Zone ID mit angegeben werden (unter Windows ist das in der Regel die zugehörige Netzwerkschnittstelle), da eine Link-Lokale-Adresse auf einem Gerät mehrfach vorhanden sein kann. Bei einer einzigen Netzwerkschnittstelle würde eine Adresse etwa so aussehen: fe80::7645:6de2:ff:1%1.

²⁹ IPv6-Part2-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Site Local Unicast (veraltet)

• fec0::/10 (fec0... bis feff...), auch standortlokale Adressen (site local addresses), waren die Nachfolger der privaten IP-Adressen (beispielsweise 192.168.x.x). Sie durften nur innerhalb der gleichen Organisation geroutet werden. Die Wahl des verwendeten Adressraums innerhalb von fec0::/10 war für eine Organisation beliebig. Site Local Addresses sind nach RFC 3879 inzwischen veraltet (engl. deprecated) und werden aus zukünftigen Standards verschwinden. Nachfolger der standortlokalen Adressen sind die Unique Local Addresses, die im nächsten Abschnitt beschrieben werden.

Unique Local Unicast

• fc00::/7 (fc... und fd...). Für private Adressen gibt es die Unique Local Addresses (ULA), beschrieben in RFC 4193. Derzeit ist nur das Präfix fd für lokal generierte ULA vorgesehen, mit dem Präfix fc werden in Zukunft wahrscheinlich global zugewiesene eindeutige ULA gekennzeichnet. Auf dieses Präfix folgen dann 40 Bits, die als eindeutige Site-ID fungieren. Diese Site-ID ist bei den ULA mit dem Präfix fd zufällig zu generieren und somit nur sehr wahrscheinlich eindeutig, bei den global vergebenen ULA jedoch auf jeden Fall eindeutig (RFC 4193 gibt jedoch keine konkrete Implementierung der Zuweisung von global eindeutigen Site-IDs an). Nach der Site-ID folgt eine 16-Bit-Subnet-ID, welche ein Netz innerhalb der Site angibt.

Eine Beispiel-ULA wäre fd9e:21a7:a92c:2323::1. Hierbei ist fd das Präfix für lokal generierte ULAs, 9e:21a7:a92c ein einmalig zufällig erzeugter 40-Bit-Wert und 2323 eine willkürlich gewählte Subnet-ID.

Die Verwendung von wahrscheinlich eindeutigen Site-IDs hat den Vorteil, dass zum Beispiel beim Einrichten eines Tunnels zwischen getrennt voneinander konfigurierten Netzwerken Adresskollisionen sehr unwahrscheinlich sind. Weiterhin wird erreicht, dass Pakete, welche an eine nicht erreichbare Site gesendet werden, mit großer Wahrscheinlichkeit ins Leere laufen, anstatt an einen lokalen Host gesendet zu werden, der zufällig die gleiche Adresse hat.

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Multicast

Name:

IPv6 Multicast Address

 The multicast addresses FF00:: to FF0F:: are permanent and reserved.

Klasse:

ff00::/8 (ff...) stehen für Multicast-Adressen.

Nach dem Multicast-Präfix folgen 4 Bits für Flags und 4 Bits für den Gültigkeitsbereich (Scope). Für die Flags sind zurzeit folgende Kombinationen gültig³¹:

- 0: Permanent definierte wohlbekannte Multicast-Adressen (von der IANA zugewiesen)³²
- 1: (T-Bit gesetzt) Transient (vorübergehend) oder dynamisch zugewiesene Multicast-Adressen
- 3: (P-Bit gesetzt, erzwingt das T-Bit) Unicast-Prefix-based Multicast-Adressen (RFC 3306)
- 7: (R-Bit gesetzt, erzwingt P- und T-Bit) Multicast-Adressen, welche die Adresse des Rendezvous Point enthalten (RFC 3956)

Die folgenden Gültigkeitsbereiche sind definiert³³:

- 1: interfacelokal, diese Pakete verlassen die Schnittstelle nie. (Loopback)
- 2: link-lokal, werden von Routern grundsätzlich nie weitergeleitet und können deshalb das Teilnetz nicht verlassen.
- 4: adminlokal, der kleinste Bereich, dessen Abgrenzung in den Routern speziell administriert werden muss.
- 5: sitelokal, dürfen zwar geroutet werden, jedoch nicht von Border-Routern.
- 8: organisationslokal, die Pakete dürfen auch von Border-Routern weitergeleitet werden, bleiben jedoch "im Unternehmen" (hierzu müssen seitens des Routing-Protokolls entsprechende Vorkehrungen getroffen werden).
- e: globaler Multicast, der überallhin geroutet werden darf.
- 0, 3, f: reservierte Bereiche

Die restlichen Bereiche sind nicht zugewiesen und dürfen von Administratoren benutzt werden, um weitere Multicast-Regionen zu definieren³⁴.

32 RFC 3307, Abschnitt 4.1

³⁰ IPv6-Part2-Addr-Types, 2006, Cisco Systems

³¹ RFC 2373, Abschnitt 2.7

³³ RFC 2373, Abschnitt 2.7

³⁴ RFC 4291, Abschnitt 2.7

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

36

Beispiele für wohlbekannte Multicast-Adressen³⁵:

- ff01::1, ff02::1: All Nodes Adressen. Entspricht dem Broadcast.
- ff01::2, ff02::2, ff05::2: All Routers Adressen, adressiert alle Router in einem Bereich.

Klasse:

Global Unicast

Name:

IPv6 Global Unicast Address

 The subnet ID can be used by an organization to create their own local addressing hierarchy.

Alle anderen Adressen gelten als Global-Unicast-Adressen. Von diesen sind jedoch bisher nur die folgenden Bereiche zugewiesen:

- ::/96 (96 0-Bits) stand für IPv4-Kompatibilitätsadressen, welche in den letzten 32 Bits die IPv4-Adresse enthielten. Diese waren für den Übergang definiert, jedoch im RFC 4291 vom Februar 2006 für veraltet (engl. deprecated) erklärt.
- 0:0:0:0:0:ffff::/96 (80 0-Bits, gefolgt von 16 1-Bits) steht für IPv4 mapped (abgebildete) IPv6
 Adressen. Die letzten 32 Bits enthalten die IPv4-Adresse. Ein geeigneter Router kann diese
 Pakete zwischen IPv4 und IPv6 konvertieren.
- 2000::/3 (was dem binären Präfix 001 entspricht) stehen für die von der IANA vergebenen globalen Unicast-Adressen, also routbare und weltweit einzigartige Adressen. 2001-Adressen werden an Provider vergeben, die diese an ihre Kunden weiterverteilen.
- Adressen aus 2001::/32 (also beginnend mit 2001:0:) werden für den Tunnelmechanismus Teredo benutzt.
- Adressen aus 2001:db8::/32 dienen Dokumentationszwecken, wie beispielsweise in diesem Artikel, und bezeichnen keine tatsächlichen Netzteilnehmer.
- 2002-Präfixe deuten auf Adressen des Tunnelmechanismus 6to4 hin.
- Auch mit 2003, 240, 260, 261, 262, 280, 2a0, 2b0 und 2c0 beginnende Adressen werden von Regional Internet Registries (RIRs) vergeben; diese Adressbereiche sind ihnen z. T. aber noch nicht zu dem Anteil zugeteilt, wie dies bei 2001::/16 der Fall ist³⁷.
- 64:ff9b::/96 kann für den Übersetzungsmechanismus NAT64 gemäß RFC 6146 verwendet werden.

³⁵ IANA: Internet Protocol Version 6 Multicast Addresses

³⁶ IPv6-Part2-Addr-Types, 2006, Cisco Systems

³⁷ IANA: IPv6 Unicast Address Assignments

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Aufgabe 11:

Es gibt verschiedene IPv6-Adressen mit Sonderaufgaben und unterschiedlichen Eigenschaften. Diese werden durch die ersten Bits der Adresse, das Präfix, signalisiert: Vervollständigen Sie die folgende Tabelle

	I		
Beschreibung	IPv4	IPv6	Bemerkung
Beschreibung Loopback Adresse			
Default Route			
(undefinierte Adresse)			
(,			
Private Adressen			
Multicast Adressen			
Multicast Adiessell			

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Funktionalität

Name:

Die nachfolgende Grafik zeigt die verschiedenen Möglichkeiten, mit denen IPv6 Unicastadressen an Netzwerkschnittstellen vergeben werden können.

Klasse:

Wie bei IPv4 kann man IPv6 Adressen manuell (statisch) konfigurieren.

IPv6 Unicast Addresses

Übung 1: Bearbeiten Sie folgende Packet-Tracer-Activitiy zur manuellen Konfiguration von IPv6. Sie finden die Activity in Ihrem MyDrive Klassenorder im Unterordner *IPv6/PT_Uebungen*

a. IPv6 Manual Addressing Initial.pka

Link-Local Adresse

Dokumentieren Sie für die Fastethernetschnittstelle von Router 1:

Global Unicast	
Dokumentieren Sie fü	r die Fastethernetschnittstelle von PC1:
Link-Local Adresse	
Global Unicast	
Gateway	

Sco / IPv6_Grundlagen_Adressierung_13

³⁸ IPv6-Part<u>2-Addr-Types, 2006, Cisco Systems</u>

Heinz-Nixdorf-Berufskolleg
für Elektrotechnik, Informations- und Telekommunikationstechnik
der Stadt Essen

Name:	Klasse:	Datum:	
Dokumentieren Sie für d	ie Fastethernetschnittstelle von Ro	outer 2:	
Link-Local Adresse			
Global Unicast			
		_	
	ie Fastethernetschnittstelle von PC	52 :	
Link-Local Adresse			
Global Unicast			
Gateway			
Dokumentieren Sie für d	ie Fastethernetschnittstelle von Ro	outer 3:	
Link-Local Adresse			
Global Unicast			
D (' 0' (''	·	20	
	ie Fastethernetschnittstelle von PC	:3:	
Link-Local Adresse			
Global Unicast			
Gateway			

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Klasse:

Aufgabe 12

Name:

Das Firmennetzwerk besteht aus einer einzelnen Active Directory Domäne. Auf allen Servercomputern ist das Betriebssystem Microsoft Windows Server 2008 installiert. Auf allen Clientcomputern wird Microsoft Windows Vista ausgeführt. Das Unternehmen hat zur Zeit drei Standorte. Ein vierter Standort befindet sich in der Planungsphase.

Ihr Vorgesetzter bittet Sie, dem neuen Standort ein Subnetz unter Verwendung des globalen Adresspräfixes 3FFA:FF2B:4D:A000::/51 zuzuweisen.

Gehen Sie wie folgt vor:

1. Schreiben Sie den Netzwerkanteil der IPv6 Adresse vollständig auf:

- 2. Lösen Sie den Netzwerkanteil der IPv6 Adresse binär auf. Da jedes Hex-Zeichen mit 4 Bit codiert wird, teilen Sie die 16-Bit-Blöcke in 4 mal 4 Bit und jedem Bit wird ein Wert 2ⁿ zugewiesen
- 1. Block

3				F				F				Α			
2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰
0	0	1	1												
Net	Z	•		•				•							,

3. Block

4. Block

0				0				4				D				
2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	
Net	tz															

2. Block

F				F				F2				В			
2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰
Net	tz														

Α				0				0				0				
2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	
Net	Z															

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

- 4. Da jetzt das existierende Netz /51 in 4 weitere Subnetze aufgeteilt werden soll, heißt das 2 weitere Bits aus dem Netzanteil zum Subnetting hinzunehmen sodass /53 entsteht.
- 1. Block

3				F				F				Α			
2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰
0	0	1	1												
Net	tz														

2. Block

F				F				F2				В			
2^3	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰
															1
Ne	tz	,						,							

1. Block

0				0				4				D			
2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰
Net	Z														

4. Block

Α				0				0				0			
2^3	2 ²	2 ¹	2 ⁰	2^3	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2^3	2 ²	2 ¹	2 ⁰
Net	z					ı									

5. Ergänzen Sie die IPv6 Netzwerkadressen im Subnet-ID Bereich für

Standort 1: 3FFA:FF2B:4D: /53

Standort 2: 3FFA:FF2B:4D: /53

Standort 3: 3FFA:FF2B:4D:______/53

Standort 4: 3FFA:FF2B:4D:_______/53

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Aufgabe 12A:

Name:

Vergeben Sie für den unten stehenden Ausschnitt aus dem Netzwerk IPv6-Adressen. Beachten Sie dabei, dass PC 1 / PC 2 in einem anderen Subnetz liegen müssen als PC 3 / PC 4. Nutzen Sie zur Subnetzbildung die IPv6 Adresse: 2001:db8:ae45:2032::/52.

Klasse:

Geben Sie für die IPv6 Adresse folgendes an:

	-
Site-Präfix:	
Subnet-Präfix	
Das Netz	
Interface Identifier	

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

1. Schreiben Sie den Netzwerkanteil der IPv6 Adresse vollständig auf:

2. Lösen Sie den Netzwerkanteil der IPv6 Adresse binär auf. Da jedes Hex-Zeichen mit 4 Bit codiert wird, teilen Sie die 16-Bit-Blöcke in 4 mal 4 Bit und jedem Bit wird ein Wert 2ⁿ zugewiesen

1. Block

2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2°
Net	tz									•					

2. Block

3. Block

4. Block

für Elektrotechnik. Informations- und Telekommunikationstechnik der Stadt Essen

Klasse: Datum:

Name: 3. Da jetzt das existierende Netz /52 in _____weitere Subnetze aufgeteilt werden soll, heißt das _____ weitere Bits aus dem Netzanteil zum Subnetting hinzunehmen sodass / entsteht. 1. Block 2. Block Netz Netz 1. Block 4. Block Netz Netz??? 4. Ergänzen Sie die IPv6 Netzwerkadressen im Subnet-ID Bereich und Interface Identifier für 2001:db8:ae45: : / Subnetz 1:

2001:db8:ae45:______:___/____ bis _____ Hostbereich von:

2001:db8:ae45: : / Subnetz 2:

Hostbereich von:

Aufgabe 12B:

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Die Weinstein AG in Stralsund ist eine Weinhandlung. Jährlich verkauft sie ca. 6 Mio. Flaschen Wein über verschiedene Vertriebswege. Sie betreibt einen Groß- und Versandhandel sowie eine Weinladenkette mit 60 Filialen. Sie wurden eingestellt, um als Projektmitarbeiter die Umstellung auf ein neues DV System in der Geschäftsstelle zu organisieren.

Netzwerkplan der Geschäftsstelle:

Ebene 0: Technikbereich und Archiv Etage 1: Eingangsbereich und Verkauf Etage 2: Cafeteria und Verwaltung

Etage 3: Entwicklung

a) Der Kunde wünscht ein vollständiges Adressierungsschema für die neue Geschäftsstelle. Sie haben die IPv6-Adresse 2001: b8:ae::/50 erhalten.

Jede Ebene in beiden Gebäuden soll ein eigenes Teilnetz bilden. Die Teilnetze in den Ebenen sollen alle gleich groß sein und auf eine möglichst hohe Anzahl an Hosts pro Teilnetz optimiert werden. Geben Sie für jedes Teilnetz die Subnetzadresse an.

Lösung:

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Autokonfiguration

Mittels Stateless Address Autoconfiguration (SLAAC, zustandslose Adressenautokonfiguration, spezifiziert in RFC 4862) kann ein Host vollautomatisch eine funktionsfähige Internetverbindung aufbauen. Dazu kommuniziert er mit den für sein Netzwerksegment zuständigen Routern, um die notwendige Konfiguration zu ermitteln.

Stateless Address Autoconfiguration

Ablauf

Zur initialen Kommunikation mit dem Router weist sich der Host eine link-lokale Adresse zu, die im Falle einer Ethernet-Schnittstelle etwa aus deren Hardware-Adresse berechnet werden kann. Damit kann ein Gerät sich mittels des Neighbor Discovery Protocols (NDP) auf die Suche nach den Routern in seinem Netzwerksegment machen. Dies geschieht durch eine Anfrage an die Multicast-Adresse ff02::2, über die alle Router eines Segments erreichbar sind (Router Solicitation).

ICMPv6 Message ⁴⁰	Type	Description
Neighbor Solicita- tion (NS)	135	Sent by a host to determine the link-layer address of a neighbor. Used to verify that a neighbor is still reachable. An NS is also used for Duplicate Address Detection (DAD).
Neighbor Adver- tisement (NA)	136	A response to a NS message. A node may also send unsolicited NA to announce a link-layer address change.
Router Advertise- ment (RA)	134	RAs contain prefixes that are used for on-link determination or address configuration, a suggested hop limit value and MTU value. RAs are sent either periodically, or in response to a RS message.
Router Solicitation (RS)	133	When a host is booting it sends out an RS requesting routers to immediately generate an RA rather than wait for their next scheduled time.

Ein Router versendet auf eine solche Anfrage hin Router Advertisements. Sie besitzen Informationen über die Lifetime, die MTU und das Präfix des Netzwerks. An ein solches Präfix hängt der Host den auch für die link-lokale Adresse verwendeten Interface Identifier an.

.3

³⁹ IPv6-Part2-Addr-Types, 2006, Cisco Systems

⁴⁰ IPv6-Part2-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Um die doppelte Vergabe einer Adresse zu verhindern, ist der Mechanismus Duplicate Address Detection (DAD – Erkennung doppelt vergebener Adressen) vorgesehen⁴¹. Ein Gerät darf bei der Autokonfiguration nur unvergebene Adressen auswählen. Der DAD-Vorgang läuft ebenfalls ohne Benutzereingriff via NDP ab.

Klasse:

EUI-64⁴²

Name:

Als EUI-64 (64-Bit Extended Unique Identifier) bezeichnet man ein vom IEEE standardisiertes IP-Adressformat zur Identifikation von Netzwerkgeräten. Eine EUI-64 Adresse ist 64 Bit lang und setzt sich aus zwei Teilen zusammen:

- Die ersten 24 Bit identifizieren den Hardwarehersteller (siehe OUI)
- Die restlichen 40 Bit dienen der Geräteidentifikation

Eine Variante davon ist das sogenannte modifizierte EUI-64 Adressformat, welches bei IPv6 zum Einsatz kommt. Dieses unterscheidet sich darin, dass der Wert des siebten Bits einer EUI-64 Adresse, auch Universal Bit genannt, von 0 auf 1 gesetzt wird.

Umrechnung

Eine 48 Bit lange MAC-Adresse lässt sich auch ohne Probleme in das modifizierte EUI-64 Adressformat umrechnen. Dazu geht man wie folgt vor:

- 1. Die MAC-Adresse wird in zwei 24 Bit lange Teile geteilt, wobei der erste Teil die ersten 24 Bit und der zweite Teil die letzten 24 Bit der modifizierten EUI-64 Adresse bilden
- 2. Die restlichen 16 Bits werden nach folgendem Bitmuster belegt: 1111 1111 1111 1110 (Hexadezimal: FFFE)
- 3. Nach Schritt zwei befindet sich die Adresse im EUI-64-Format. Wenn man nun wie oben erwähnt den Wert des siebten Bits invertiert, erhält man die modifizierte EUI-64-Adresse.

EUI-64 IPv6 Interface Identifier

.

⁴¹ RFC 2462, Abschnitt 5.4

⁴² Meinel Christoph, Harald Sack: Internetworking: Technische Grundlagen und Anwendungen. Springer, Heidelberg 2012

⁴³ IPv6-Part2-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

Aufgabe 13: Kurz und kna	pp
In IPv4 findet ein Host die E	Ethernet-Adresse zu einer IP-Adresse mit Hilfe des Address Resolution
Protocol (ARP). Welches Pr	otokoll dient dazu in IPv6?
□ Ebenfalls ARP	
□ ARPv6	
□ Neighbor Discovery F	
 Next Hop Recognition 	n Protocol (NHRP)
Ühung 2: Rearheiten Sie	folgende Packet-Tracer-Activitiy zur dynamischen Konfiguration von
IPv6.	Tolgondo Tablet Trabel Fibrilly Zali dynamiconem Remingaration von
	rem MyDrive Klassenorder im Unterordner IPv6/PT_Uebungen
a. IPv6 Auto-Configura	tion Addressing Initial.pka
Dokumentieren Sie für die F	Fastethernetschnittstelle von Router 1:
Link-Local Adresse	
EUI-64 Unicast	
Dokumentieren Sie für die F	Fastethernetschnittstelle von PC1:
Link-Local Adresse	
EUI-64 Unicast	
Gateway	
Dokumentieren Sie für die F	Fastethernetschnittstelle von Router 2:
Link-Local Adresse	
EUI-64 Unicast	
Dokumentieren Sie für die F	Fastethernetschnittstelle von PC2:
Link-Local Adresse	
EUI-64 Unicast	
Gateway	
Dokumentieren Sie für die F	astethernetschnittstelle von Router 3:
Link-Local Adresse	
EUI-64 Unicast	
Dokumentieren Sie für die F	Fastethernetschnittstelle von PC3:
Link-Local Adresse	
EUI-64 Unicast	
Gateway	

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

Sie verwenden stateless host autoconfiguration mit EUI-64 in der DMZ des Netzwerks. Die Routerfirewall 1 unterstützt auf seinem Fastethernet Interface e0 IPv6.

Ausschnitt aus der Konfiguration des Fastethernet Interface e0 der Router Firewall 1:

 Physikalische Adresse
 : 00-E0-81-55-32-A7

 DHCP aktiviert
 : Nein

 IP-Adresse
 : 2001:db8:ae45:232::c7b:303a

 IP-Adresse
 : fe80::2e0:81FF:FE55:32a7%5

 IP-Adresse
 : 192.168.2.20

 Subnetzmaske
 : 255.255.255.0

Die IPv6-Adressvergabe- Einstellungen des Webservers stehen auf "Auto". Die physikalische Adresse des Webservers lautet: 0A-E0-FF-02-AB-CD. Wie lautet:

- I. Die Link Local IPv6 Adresse des Webservers?
- II. Die Global Unicast Adresse des Webservers, wenn im in der DMZ ein Präfix von /64 verwendet wird?

Geben Sie für die Global Unicast Adresse des Webservers folgendes an:

Site-Präfix:	
Subnet-Präfix	
Das Netz	
Interface Identifier	

III. Das Standard Gateway des Webservers, das per stateless host autoconfiguration auf dem Webserver eingetragen wird?

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Aufgabe 15:

Sie überprüfen die Konfiguration eines PC:

C:\>ipconfig /all

	Windows-IP-Konfigur	ration	
	Hostname	: PC-20	
	Ethernet-Adapter LA	AN-Verbindung:	
	Beschreibung Physikalische Ac DHCP aktiviert. IP-Adresse IP-Adresse IP-Adresse Subnetzmaske .	ifisches DNS-Suffix:: IntelPro100/1000 dresse: 00-E0-81-55-32-A7: Nein: 2001:db8:ae45:232::c7b:303a: fe80::2e0:81FF:FE55:32a7%5: 192.168.2.20: 255.255.255.0: 192.168.2.254: 192.168.2.254: 2001:db8:ae45:232::45b:1	
Nenr	nen Sie die Link-Local-	Adresse des PC:	
Nenr	nen Sie die IPv6-Unicas	st-Adresse des PC.	
Gebe	en Sie für die IPv6-Unio	cast-Adresse des PC folgendes an:	
Site	e-Präfix:		
Sub	onet-Präfix		
Das	s Netz		
Inte	erface Identifier		
Bei e	einem Ping-Test vom P	C zum aktiven Server "2001:db8:1234:45::a66:b7" wird dieser nich	ıt
			_:1
errei	icht. Nennen Sie einen	möglichen Grund und eine beschreiben Sie eine Lösungsmöglichk	eit.
errei	icht. Nennen Sie einen	möglichen Grund und eine beschreiben Sie eine Lösungsmöglichk	eit.
errei	icht. Nennen Sie einen	möglichen Grund und eine beschreiben Sie eine Lösungsmöglichk	eit.
errei	icht. Nennen Sie einen	möglichen Grund und eine beschreiben Sie eine Lösungsmöglichk	eit.
errei	icht. Nennen Sie einen	möglichen Grund und eine beschreiben Sie eine Lösungsmöglichk	eit.
errei	icht. Nennen Sie einen	möglichen Grund und eine beschreiben Sie eine Lösungsmöglichk	eit.

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

Der PC kann einen UNIX Server in der Firma nicht erreichen. Ausgabe der Schnittstelle eth0 des Servers zeigt folgende Konfiguration:

ifconfig eth0
eth0: ether 00:90:dc:05:76:30
 inet 192.168.2.222 netmask 255.255.255.0 broadcast 192.168.2.255
 inet6 fe80::290:dcff:fe05:7630%eth0 prefixlen 64
 inet6 2001:db8:ae45:232::c7b:303a prefixlen 64 duplicated
 media: Ethernet autoselect (1000base TX)
 status: active

Nennen Sie eine mögliche Fehlerursache und beschreiben Sie eine Lösung.

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Header-Format

IPv6-Header

Version (4bit)	Traffic Class (8bit)		Flow Label (20 bit)							
	Payload length (16bit)		Next Header (8bit)	Hop Limit (8bit)						
	S	ource Add	ress (128bit)							
	Des	tination A	ddress (128bit)							

Im Gegensatz zu IPv4 hat der IP-Kopfdatenbereich (Header) bei IPv6 eine feste Länge von 40 Bytes (320 Bits).

Optionale, seltener benutzte Informationen werden in so genannten Erweiterungs-Kopfdaten (engl.: *Extension Headers*) zwischen dem IPv6-Kopfdatenbereich und der eigentlichen Nutzlast (engl. *Payload*) eingebettet. Der Kopfdatenbereich eines IPv6-Paketes setzt sich laut RFC 2460 aus den folgenden Feldern zusammen:

Feld	Länge	Inhalt
Version	4 Bit	IP-Versionsnummer (6)
Traffic	8 Bit	Für Quality of Service (QoS) verwendeter Wert. Eine Art Prioritätsverga-
Class		be.
Flow Label	20 Bit	Ebenfalls für QoS oder Echtzeitanwendungen verwendeter Wert. Pakete,
		die dasselbe Flow Label tragen, werden gleich behandelt.
Payload	16 Bit	Länge des IPv6-Paketinhaltes (ohne Kopfdatenbereich, aber inklusive der
Lngth		Erweiterungs-Kopfdaten) in Byte
Next Ha-	8 Bit	Identifiziert den Typ des nächsten Kopfdatenbereiches, dieser kann ent-
der		weder einen Erweiterungs-Kopfdatenbereich (siehe nächste Tabelle) oder
		ein Protokoll höherer Schicht (engl.: <i>Upper Layer Protocol</i>) bezeichnen,
		wie z.B. TCP (Typ 6) oder UDP (Typ 17).
Hop Limit	8 Bit	Maximale Anzahl an Zwischenschritten über Router, die ein Paket zurück-
		legen darf; wird beim Durchlaufen eines Routers ("Hops") um eins verrin-
		gert. Pakete mit null als Hop Limit werden verworfen. Es entspricht dem
		Feld Time to Live (TTL) bei IPv4.
Source	128 Bit	Adresse des Senders
Address		
Destination	128 Bit	Adresse des Empfängers
Address		

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

Wie im Next Header Feld verwiesen sind einige Extension Headers und ein Platzhalter definiert:

44

Name	Тур	Größe	Beschreibung	RFCs
Hop-By-Hop Opti-	0	variabel	Enthält Optionen, die von allen IPv6-Geräten,	RFC 2460,
ons			die das Paket durchläuft, beachtet werden	RFC 2675
			müssen. Wird z. B. für Jumbograms benutzt.	
Routing	43	variabel	Durch diesen Header kann der Weg des Pa-	RFC 2460,
			ketes durch das Netzwerk beeinflusst wer-	RFC 6275,
			den, er wird unter anderem für Mobile IPv6	RFC 5095
			verwendet.	
Fragment	44	64 Bit	In diesem Header können die Parameter ei-	RFC 2460
			ner Fragmentierung festgelegt werden.	
Authentication	51	variabel	Enthält Daten, welche die Vertraulichkeit des	RFC 4302
Header (AH)			Paketes sicherstellen können (siehe IPsec).	
Encapsulating	50	variabel	Enthält Daten zur Verschlüsselung des Pa-	RFC 4303
Security Payload			ketes (siehe IPsec).	
(ESP)				
Destination Options	60	variabel	Enthält Optionen, die nur vom Zielrechner	RFC 2460
			des Paketes beachtet werden müssen.	
Mobility	135	variabel	Enthält Daten für Mobile IPv6.	RFC 6275
No Next Header	59	leer	Dieser Typ ist nur ein Platzhalter, um das	RFC 2460
			Ende eines Header-Stapels anzuzeigen.	

Die meisten IPv6-Pakete sollten ohne *Extension Headers* auskommen, diese können bis auf den *Destination Options Header* nur einmal in jedem Paket vorkommen. Befindet sich ein *Routing Extension Header* im Paket, so darf davor ein weiterer *Destination Options Header* stehen. Die Reihenfolge bei einer Verkettung ist bis auf die genannte Ausnahme die der Tabelle. Alle *Extension Headers* enthalten ein *Next-Header-*Feld, in dem der nächste *Extension Header* oder das *Upper Layer Protocol* genannt wird.

Des Weiteren werden (im Gegensatz zu IPv4) keine Prüfsummen mehr über die IP-Kopfdaten berechnet, es wird nur noch die Fehlerkorrektur in den Schichten 2 und 4 genutzt.

_

⁴⁴ IPv6-Part1-Addr-Types, 2006, Cisco Systems

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Aufgabe 16:

Von einem Protokollanalyzer wurden die folgenden zwei IP-Pakete aufgezeichnet.

Trac	e 1														
60	0.0	0.0	00	00	40	зА	40	FE	C0	0.0	01	00	00	00	0.0
0.0	0.0	AF	Cl	00	В4	00	01	FE	C0	0.0	01	00	00	00	0.0
0.0	0.0	0.0	$_{\mathrm{BE}}$	FE	30	01	F0	81	00	Α4	6В	0C	1C	0.0	41
52	0F	36	47	9F	89	0C	0.0	0.8	09	0A	0B	OΕ	OF	10	11
Trac	e 2														
4.5	0.0	0.0	54	Al	1B	00	00	41	01	55	52	C0	Α8	01	02
C0	Α8	01	В9	0.0	0.0	9B	E3	3F	1C	0.0	09	24	13	36	47
D5	98	OD	0.0	08	09	0A	OВ	0C	OD	OΕ	ΟF	10	11	12	13
14	15	16	17	18	19	1A	1B	10	1F	20	21	22	23	24	25

Für IPv6 sind die Adressen zusätzlich in verkürzter Schreibweise an.

Nennen Sie für Trace 1

a)	die Protokollversion
b)	die Senderadresse
c)	die Empfängeradresse

Geben Sie für die IPv6 Senderadresse an:

Das Netz	
Interface Identifier	

Geben Sie für die IPv6 Empfängeradresse an:

Das Netz	
Interface Identifier	

Heinz-Nixdorf-Berufskolleg für Elektrotechnik, Informations- und Telekommunikationstechnik

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Nennen Si	ie fü	r Trace 2
	d)	die Protokollversion
	e)	die Senderadresse
	f)	die Empfängeradresse

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Αι	ıf	a	a	h	e	1	7	

In einem vorhandenen Netzwerk befinden sich zwei IPv6-konfigurierte Endgeräte. Von einem Protokollanalyzer wurden die folgenden zwei IP-Pakete aufgezeichnet.

70	4														
	ace 1	0.0	0.0	0.0	4.0	27	4.0	חח	20	0.1	01	0.0	0.0	0.0	0.0
	00													00	
	00 00		BE												
	2 OF														
		50	4 /	ЭĽ	0)	UC	00	00	UJ	UA	Uυ	ت 0	OT.	TO	ТТ
	ace 2	0.0	- 1	7-1	4 D	0.0	0.0	41	0.1			90	7. 0	0.1	00
	5 00 A8														
	5 98														
	1 15														
		10	Ι,	10	10	TL	ייד	10	11	40	41	44	45	41	25
5.5xc-															
				_											
Bestir	nme	n Si	e de	n T	race	mi	t de	m IF	² v6	Pak	et_				
NI-nn	C	- IF		O	معادا-	مراء -									
Nenn	en S	ен	' Vb	Sen	dera	adre	sse								
Nenn	en Si	e di	e IP	v6 I	Emp	ofän	gera	adre	sse						
Gebe	n Sie	• fü	r die	P۱	v6 S	Send	dera	dre	sse	an	•				
Das N					 						_				
		1													
Interf	ace i	den	tifier	•											
Gebe	n Sie	e fü	r die	e IP	v6 E	mp	fän	qera	adre	esse	an	1			
Das N						-									
Interf		dan	Fifior	•											
mena	ace i	aen	unei												

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

Sie sollen an einem weiteren PC die IPv6-Konfiguration manuell eingeben. Dieser soll mit den beiden konfigurierten Geräten kommunizieren können. Ein IPv6 DNS-Server ist unter FEC0::16/10 erreichbar. Das Standardgateway hat die erste mögliche Adresse im Netz.

igenschaften von Internetprotokoll Version 6 (TCP/IPv6)	?)
Allgemein	
IPv6-Einstellungen können automatisch zugewiesen werden, wenn das Netzwerk diese Funk unterstützt. Wenden Sie sich andernfalls an den Netzwerkadministrator, um die geeigneten IPv6-Einstellungen zu beziehen.	tion
C IPv6-Adresse automatisch beziehen	
Folgende IPv6-Adresse verwenden:	
IPv6-Adresse:	
Subnetzpräfixlänge:	
Standardgateway:	
C DNS-Serveradresse automatisch beziehen	
Folgende DNS-Serveradressen verwenden:	
Bevorzugter DNS-Server:	
Alternativer DNS-Server:	
☐ Einstellungen beim Beenden überprüfen	eitert
ОК	Abbrechen

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Klasse:

Aufgabe	1	8	
---------	---	---	--

Name:

р	t	k	n	u	p	I	е	р	p	0	d
0	S	Z	f	0	g	u	f	i	е	k	n
m	m	е	d	е	j	n	t	p	0	m	ä
u	е	е	С	n	а	i	s	m	S	а	С
I	I	i	а	٧	у	С	р	е	g	Χ	h
t	С	а	n	у	С	а	s	t	b	i	s
I	u	f	m	s	t	s	I	r	а	m	t
С	r	0	p	i	g	t	t	ı	0	а	е
а	r	h	b	b	f	s	I	а	k	I	n
s	h	е	Χ	а	d	е	Z	i	m	а	I
t	I	а	е	а	n	r	p	а	k	е	t
t	t	d	S	а	е	s	s	е	r	d	а
е	h	е	С	Z	W	i	s	С	h	е	n
u	С	r	е	0	n	е	t	Z	t	е	I
W	а	b	W	ä	r	t	s	0	n	f	С
m	Z	i	е	I	r	е	С	h	n	е	r

IPv6 WORDSEARCH EXERCISE

Work on your own and fill in the blanks with the correct terms.

Then find them in the wordsearch grid.

Time: 30 minutes

Datum:

1.	Die IPv6 Adresse wird	beschrieben						
2.	Die Adresse wird in Blöcke	geteilt						
3.	Die Blöcke werden durch einen	getrennt						
4.	Die 32-Bit der IPv4-Adresse werden in die	Stellen der 128-Bit Struk-						
	tur des IPv6 übernommen							
5.	IPv6 ermöglicht drei Verfahren für das Versenden der Daten:	,und						
6.	Ein Datenpaket, das zu einer Unicast-Schnittstelle gesendet wird, wird an der durch die							
	bestimmten Schnittstelle abgeliefert.							
7.	. Ein Datenpaket, das zu einer Multicast-Schnittstelle gesendet wird, wird bei							
durch das Set definierten Schnittstellen abgeliefert.								
8.	In IPv6 werden Erweiterungs zum Transport zusätzlicher Informatio-							
	nen verwendet.							
9.	Sie werden dem Basis Header un	d den Nutzdaten (upper layer						
	header) platziert.							
10.	. Options-Header werden verwendet, um Optionen zu transport	ieren, welche bei						
	Transportschritt ausgewertet werden müssen.							
11.	. Jeder Header (außer dem Destination Options Header) darf	nurmal verwendet						
	werden							

für Elektrotechnik. Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Routing

Während statisches Routing für IPv6 analog zu IPv4 eingerichtet werden kann, ergeben sich für die dynamischen Routingprotokolle einige Änderungen. Zwischen Autonomen Systemen wird das Border Gateway Protocol mit den Multiprotocol Extensions (definiert in RFC 4760) eingesetzt. Als Interior Gateway Protocol stehen OSPF in der Version 3, IS-IS mit Unterstützung von IPv6-TLVs und RIPng als offene Standards zur Verfügung. Die meisten Hersteller unterstützen für IS-IS Multi-Topology Routing, also gleichzeitiges Routing für beide Adressfamilien auch dann, wenn IPv4- und IPv6-Netz sich nicht genau überdecken.

An Endsysteme können eine oder mehrere Default-Routen per Autokonfiguration oder DHCPv6 übergeben werden. Mit DHCPv6-PD (Prefix Delegation) können auch Präfixe zwecks weiteren Routings zum Beispiel an Kundenrouter verteilt werden⁴⁵.

Übung 3: Bearbeiten Sie folgende Packet-Tracer-Activitiy zur statischen Routing mit IPv6. Sie finden die Activity in Ihrem MyDrive Klassenorder im Unterordner IPv6/PT_Uebungen

a. IPv6 Static Routes Initial.pka

Übung 4: Bearbeiten Sie folgende Packet-Tracer-Activitiy zur dynamischen Routing mit IPv6. Sie finden die Activity in Ihrem MyDrive Klassenorder im Unterordner IPv6/PT Uebungen

a. IPv6 RIP Initial.pka

IPv6-Übergangsmechanismen

IPv4 und IPv6 lassen sich auf derselben Infrastruktur, insbesondere im Internet, parallel betreiben. Für den Übergang werden also in der Regel keine neuen Leitungen, Netzwerkkarten oder Geräte benötigt, sofern dafür geeignete Betriebssysteme zur Verfügung stehen. Es gibt zurzeit kaum Geräte, welche IPv6, aber nicht gleichzeitig auch IPv4 beherrschen. Damit jedoch Geräte, die ausschließlich über IPv4 angebunden sind, auch mit Geräten kommunizieren können, die ausschließlich über IPv6 angebunden sind, benötigen sie Übersetzungsverfahren.

Um einen einfachen Übergang von IPv4- zu IPv6-Kommunikation im Internet zu ermöglichen, wurden verschiedene Mechanismen entwickelt. IPv6 wird dabei in der Regel hinzugeschaltet, ohne IPv4 abzuschalten. Grundlegend werden folgende drei Mechanismen unterschieden:

- Parallelbetrieb (Dual-Stack)
- Tunnelmechanismen
- Übersetzungsverfahren

Parallelbetrieb und Tunnelmechanismen setzten voraus, dass die Betriebssysteme der angebundenen Rechner beide Protokolle beherrschen.

39

⁴⁵ Vishwas Manral: RSVP-TE IPv6 Vishwas Manral: Updates to LDP for IPv6

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen Name: Klasse:

Datum:

Es gibt bereits heute Bereiche des Internet, die ausschließlich mittels IPv6 erreichbar sind, andere Teile, die über beide Protokolle angebunden sind und große Teile, die sich ausschließlich auf IPv4 verlassen

Dual-Stack

Bei diesem Verfahren werden allen beteiligten Schnittstellen neben der IPv4-Adresse zusätzlich mindestens eine IPv6-Adresse und den Rechnern die notwendigen Routinginformationen zugewiesen. Die Rechner können dann über beide Protokolle unabhängig kommunizieren. Dieses Verfahren sollte der Regelfall sein, es scheitert derzeit oft daran, dass einige Router (meistens die Zugangsserver des Internetproviders oder die Heimrouter bei den Kunden) auf dem Weg zum IPv6-Internet noch keine IPv6-Weiterleitung eingeschaltet haben oder unterstützen.

Dual-Stack Lite (DS-Lite)

Aufgrund der knappen IPv4-Adressen hat die IETF den Mechanismus "Dual-Stack Lite" (RFC 6333) entwickelt. Hierbei werden dem Kunden nur via IPv6 global routbare IP-Adressen bereitgestellt.

Im LAN des Kunden werden private IPv4-Adressen benutzt (analog zum Vorgehen bei einem NAT). Statt einer NAT-Übersetzung werden die IPv4-Pakete dann durch das Customer Premises Equipment (CPE) in IPv6-Pakete gekapselt. Das CPE benutzt seine globale IPv6-Verbindung, um die Pakete in das Carrier-grade NAT des Internet Service Providers zu transportieren, welches über globale IPv4-Adressen verfügt. Hier wird das IPv6-Paket entpackt und das originale IPv4-Paket wieder hergestellt, danach wird das IPv4-Paket mit NAT auf eine öffentliche IP-Adresse umgesetzt und ins öffentliche IPv4-Internet geroutet.

Tunnelmechanismen

Um Router, die IPv6 nicht weiterleiten, auf dem Weg zum IPv6-Internet zu überbrücken, gibt es eine Vielzahl von Tunnelmechanismen. Dabei werden IPv6-Pakete in den Nutzdaten anderer Protokolle, meist IPv4, zu einer Tunnelgegenstelle übertragen, die sich im IPv6-Internet befindet. Dort werden die IPv6-Pakete herausgelöst und zum Ziel via IPv6-Routing übertragen. Der Rückweg funktioniert analog.

6in4 benutzt zum Beispiel den Protokolltyp 41, um IPv6 direkt in IPv4 zu kapseln.

Der Mechanismus 6to4 benötigt keine Absprache mit einer Gegenstelle, denn diese benutzt wohlbekannte, mehrfach im Internet vergebene IPv6-Adressen (Anycast), und die getunnelten Pakete werden zur nächstgelegenen Gegenstelle zugestellt und dort verarbeitet. Dem angebundenen Rechner steht dann ein IPv6-Adressbereich zur Verfügung, der sich aus dessen öffentlicher IPv4-Adresse errechnet. Auch ein solcher Tunnel kann auf aktuellen Linux-Rechnern mit öffentlicher IPv4-Adresse durch wenige Handgriffe eingerichtet werden⁴⁶.

Befindet sich ein Rechner in einem privaten IPv4-Adressbereich und findet beim Verbinden mit dem Internet NAT statt, so können Mechanismen wie AYIYA oder Teredo helfen. Diese Protokolle kapseln IPv6-Pakete als Nutzdaten meist in UDP-Paketen.

_

⁴⁶ Peter Bieringer: Linux IPv6 Howto, Abschnitt 9.4

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name: Klasse: Datum:

Natürlich ist es auch möglich, IPv6 über allgemeinere Tunnelverfahren wie GRE, L2TP oder MPLS zu transportieren, insbesondere, wenn noch Routingprotokolle wie IS-IS parallel übertragen werden müssen.

Übersicht über gängige Übergangsmechanismen:

4in6 Tunneling von IPv4 in IPv6 6in4 Tunneling von IPv6 in IPv4

6over4 Transport von IPv6-Datenpaketen zwischen Dual-Stack Knoten über ein

IPv4-Netzwerk

6to4 Transport von IPv6-Datenpaketen über ein IPv4-Netzwerk

AYIYA Anything In Anything

Dual-Stack Netzknoten mit IPv4 und IPv6 im Parallelbetrieb

Dual-Stack Lite Wie Dual-Stack, jedoch mit globaler IPv6 und Carrier-NAT IPv4

6rd IPv6 rapid deployment

ISATAP Intra-Site Automatic Tunnel Addressing Protocol NAT64 Übersetzung von IPv4-Adressen in IPv6-Adressen

Teredo Kapselung von IPv6-Datenpaketen in IPv4-UDP-Datenpaketen

SIIT Stateless IP/ICMP Translation

Aufgabe 19: Kurz und knapp...

Walcha	IP-Version	calltan	Dual-St	ack Systa	ma havarz	uaan2
Weiche	IP-Version	SOUTEN	DHAI-St	ack-Syste	me nevorz	uaen /

grundsätzlich IPv6
grundsätzlich IPv4
Natives IPv6, dann IPv4, dann IPv6 per Teredo oder 6to4
IPv6 per Teredo oder 6to4, dann IPv4, dann natives IPv6

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Aufgabe 19: Zur Wiederholung...

Name:

Ordnen Sie die Aussagen den richtigen Erläuterungen zu:

Klasse:

Nr.	Aussage		Aussage Nr.	Erläuterung
1	Two rules for shortening IPv6 addresses			48 bits
2	Rules for writing IPv6 prefixes?	-		It is broken in half and FFFE is inserted in the middle The 7th bit (from I to right) of the 1st half, is turned to a 1
3	What IPv6 prefix defines the addresses used as global unicast addresses			FF00::/8
4	Registry prefix is assigned by / to	-		Neighbor Discovery Protocol
5	ISP prefix is assigned by / to	-		2000::/3
6	Site prefix is assigned by / to			IPv6
7	Subnet prefix is assigned by / to			enterprise engineer to a particular link
8	How long is the site prefix			RA (router advertisement) RS (router solicitation)
9	How long is the Interface ID			All routers on this link
10	How does the MAC address turn into the Interface ID			All IPv6 nodes on this link
11	What prefix do IPv6 multicasts have?			omit the leading 0s in any given quartet represent 1 or more consecutive quartets of all hex 0s with a double colon, but only once in an address
12	If you use the eui-64 keyword with the ipv6 address command, how long of a prefix should you provide?			172.16.0.0 to 172.31.255.255
13	NDP			192.168.0.0 to 192.168.255.255
14	NDP is part of what larger protocol?			RIR to an ISP
15	What part of IPv6 performs the function that ARP performed for IPv4			127.0.0.1
16	Two main NDP messages			10.0.0.0 to 10.255.255.255
17	What does the multicast FF02::2 mean			ICANN to an RIR
18	What does the multicast FF02::1 mean	<u> </u>		anycast
19	NDP is {enabled disabled} by default			Write up to the last quartet that isn't all 0s. Finish the entire quartet, even if the last digits are 0s. Show a double colon and then the slash and the number
20	Class A range of private IPv4 addresses			ISP to a customer (site)
21	Class B range of private IPv4 addresses			TRUE
22	Class C range of private IPv4 addresses			global unicast, unique local, link local
23	stateless autoconfiguration allows you to learn what			TRUE
24	T/F: Stateless autoconfiguration uses NDP RS/RA messages			FE80::/10
25	Unique local addresses have what prefix			First ten bits of FE80, 54 zeros, and the EUI-64 formatted interface ID
26	Three categories of IPv6 unicast addresses			/16
27	T/F: Packets from link local addresses are never forwarded to other subnets			NDP

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Name:

ISATAP does not support IPv4 NAT

Datum:

28	Link local addresses have what prefix	64-bit
29	What is the format of the link local	64 bits
	address	
30	All multicast addresses that should	FD00::/8
	stay on a local link have what prefix	
	length?	
31	IPv6 replaces the broadcast with the	IPv6 address, prefix, default router IP
		address
32	What is the IPv4 loopback address	FALSE, IPv6 does not use the net-
		work command
33	What is the unknown address and	ipv6 rip name enable
	what is it for	
34	T/F: To enable IPv6 routing on an in-	Allows two dual-stack hosts to create
	terface, use the network command	a tunnel to eachother using a tunnel
	with the IPv6 connected network	 through the IPv4 network/internet
35	Global configuration command to ena-	Manually Configured Tunnel
	ble IPv6 routing	
36	how to enable an RIPng on an inter-	show ipv6 route
37	face	lk's a magning all Os and it say ha
31	command to show the IPv6 routing table	It's ::, meaning all 0s, and it can be
	lable	used when hosts send packets in an effort to discover their IP addresses
38	T/F: the name given in the ipv6 router	ipv6 unicast-routing
30	rip name command must be the same	ipvo unicast-routing
	on all routers in an AS	
39	MCT	Intra-site Automatic Tunnel Address-
33	IVIOT	ing Protocol
40	ISATAP	Allows two dual-stack hosts to create
"	10,717	a tunnel to eachother using a tunnel
		through the IPv4 network/internet
41	How does Teredo tunnelling work	FALSE
42	Difference between ISATAP and 6to4	FF02::2
	tunneling	

Klasse:

What address are RS messages sent

and what set of hosts do they identify?|

für Elektrotechnik, Informations- und Telekommunikationstechnik der Stadt Essen

Datum:

Anhang:

Name:

IPv6 Subnet Tabelle

Die Subnet Tabelle verschafft einen schnellen Überblick über Netzwerk- und Hostnanteil einer IPv6-Adresse.

Klasse:

Für jede Präfix-Länge (Netzwerkanteil der IP-Adresse) sind rechts die Anzahl der IP-Adressen im Subnetz angegeben.

Provider bekommen in der Regel ein /32 Netz zugewiesen, Endkunden für gewöhnlich ein /48 oder /56 Netz. Für die Autokonfiguration benötigt man zumindest ein /64 Netz

2001:0db8:0126:0000:0000:0000:0000:0000	Anzahl	der	IP-A	dres	sen
128					
124					16
120					256
116				- 4	096
112				65	536
108			·- 1	048	576
104			16	777	216
100			268	435	456
96		4	294	967	296
92		- 68	719	476	736
88	1	099	511	627	776
84	17	592	186	044	416
80	281	474	976	710	656
76	- 4 503	599	627	370	500
72	72 057	594	037	927	900
68 1	152 921	504	606	850	000
64 18	446 744	073	709	600	000
60 295	147 905	179	353	000	000
56 4 722	366 482	869	650	000	000
52 75 557	863 725	914	300	000	000
48 1 208 925	819 614	630	000	000	000
44 19 342 813	113 834	100	000	000	000
	821 345	000	000	000	000
36 4 951 760 157	141 520	000	000	000	000
32 79 228 162 514	264 300	000	000	000	000
28 1 267 650 600 228	230 000	000	000	000	000
24 20 282 409 603 651	700 000	000	000	000	000
20 324 518 553 658 427					