5 heet @

=

	1	2	1 3	1 4
FC I	\$10,000	\$ 12,000	\$14,000	\$ 16,000
operating Cost	\$ 3,000	\$ 2,800	\$ 2,350	\$ 2,100

ROII > 15

1 is concelled

$$ROII = \frac{3,000 - 2,350}{14,000 - 10,000} *100 = 16.25 \% > 15 \%$$

1 is Concelled

is The best choise.

619 Q = \$0.3/1,000,000 BEU

ROII >15%

300 days/yr = 300 + 24 hrs/yr

	1"	2"	3 "	4*
Bto Sayed	300,000	3 50,000	3701000	3&0,000
8tu saved	2.16*109	2.52×10 ³	2.664*10	2.736 * 109
Cost of Bill;	\$648	\$ 756	\$793.2	\$ 820.8
 Cost of ins.	\$ 1,200	\$ 1,600	\$ 1,800	\$ 1,870
Amuel bacd (4)	10%	10%	10%	10%
 Amual fixed (1)	\$ 120	\$ 160	\$ 180	\$ 187
 Total Soving	\$.528	\$ 596	\$ 619.9	\$ 633.8
				

" 2" is beller Than 1"

: 9" is better Than 3"

	Bolez & Steam tubine	gas turbine
Initial investment	\$ 600,000	\$ 4001000
Fuclosols/yr	16,000	23,000
Haintenena/yr	12,000	15,000
Insurance tax/yn	18,000	19,000
Scrvice life	20	10
Schage value	O	O
depreciation /yr	30,000	401000
Handact. Cost/yr	76,000	90,000
	1	1

: Gas turbine is better

old runit

Yo = \$40,000

Vs. \$1,000

n. 15 years

d= 40,000-1000 = \$ 2,600/yr - old

Cost provo = \$ 5,000

tinu umit

Vo=\$70,000

increase in income = \$ 5,000/yr

Labour saving = \$7,000 /yr

additional taxos & ins = \$ 1,000/yr

n = 12

VS=\$1,000 -> == 70,000-1,000

d=\$5,750/yr

the region of comparison) * annual saving = \$ 5,000 + 7,000 - (5,750 - 400) = \$ 5,650

additional investment = 70,000 - 5,000 =\$65,000

5

= \$ 100/yr

Vo = \$ 60000 No = 10 yrs Vo = 0

Labour & man't reduced = \$ 1,000
annual expenses increased = \$ 100

d: 6000-0 = \$ 600/yr

__ annual savings = 1000-1000+100-600 = \$ 400/yr

additional investment = \$6,000 - 600 = \$ 5,400

V. \$ 500,000 ____ Geo.011

V = \$ 400,000 ___ = 0.0095

-- sprinkling system -- (, = 0.0825

Cost of system - \$ 20,000

additional docts = \$ 300/yr

n = 20 years

→ depreciation = 20,000 - 0 = \$ 1,000

- additional investment = \$ 20,000

old annual insurance = 0.011 + 500,000 + 0.0095 + 460,000 = \$'9300/yr

~ Sowings in inschance = 1 9,300 = \$9,325 /yr

- annual zaving s. 9,325 - 1,000 - 300 =\$ 1025

~ ROII = 1025 * 100 = 5.125 % <8 %

Batch system

es produces

$$NPW = -90,000 + \frac{5600}{(1+1)^3} + \frac{5600}{(1+1)^$$

check for i= 0.25 ___ NPW=0 __ il's true value of DCFRR

Cont. system

check for i=092 ____NPW #0 ___ it's true value of DCFRR

-- Check NPW

8-bigapup.

In \$1600 additional capital

\$ 10,000 sovings in yr 1

-\$10,000 // 4 1/ 2

$$i = 15.75 \% > 10\%$$
 Cont. system is better

9- metal value =\$0.2/16

	· &	Я	3	4	5
1	- Capital inv-	\$ 25,000	\$ 35,000	\$ 44,000	\$ 52,000 .
	Recovery %	7 5 %	95%	98%	99.5 %
	metal recoveral	750,000	950,000	980,000	995,000
	valued motal type recovered	\$ 150,000	\$ 190,000	\$ 196,000	\$199,000
	depreciation	\$ 5,000	\$7,006	\$ 8,800	\$ 10,400
	amual op. cost	\$ 6,000	\$ 8,000	\$ 10,000	\$ 11,000
	Total panual exponses	\$ 11,000	\$ 15,000	\$ 18,800	\$ 21,400
	Total sovings	\$ 139,000	\$175,000	\$177,200	\$ 177,600
					-

Compara 25tages 2 3 Stages

" 3 stages is better

4 stages is better

Compare & & 5 stages

4 stages is best choise

? >-	Food = 4º	50,000 lb	solf/day	5% NOOH	40%
	1	2	3	4	5
+ fixed Cost	\$ 18,000	\$36,000	\$54,000	\$ 72,000	\$ 30,000
depreciation	\$ 1,200	\$ 2,400	\$ 3,600	\$ 4,800	\$5,000
fixed charges	20%	20 %	20 %	20%	20%
Pixed Changely, (\$/yr)		\$7,200	\$ 10,800	\$14,400	\$ 18,000
steam Cost	\$ 78,750	J 39,375	\$ 26,250	\$ 19687.5	# 15,750
-annual Hary Cost	\$ 82,350	\$ 46,575	\$ 37,050	\$34087.5	\$ 33750

* Compare D & 2 effects

+ Compar 220 effects

· Compare 3 20 effects

" Compare (2 3 effects

mass of water evoper

massalwater wap.

initial mass of woold = 450,000 * 0.05

= 20,5000 lb/day

* final mass of solas

= 22,500 + 40 = 156.25 /b/day

* mass of water ever /do

= 427,500 - 33,750

= 393,750 1b/day

* mass of steam needed

= 393,750/09X

= 437,500 lb/day

* Cost of steam =

= 437,500 x 0.6 X 1000 = 262.5 /day

= \$ 78750/yr