MATH 750 HW # 1

MARIO L. GUTIERREZ ABED PROF. H. PARLIER

Ex 1-7: A linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is said to be **norm preserving** if |T(x)| = |x|, and similarly it is **inner product preserving** if $\langle Tx, Ty \rangle = \langle x, y \rangle$.

- a) Prove that T is norm preserving iff T is inner product preserving.
- b) Prove that such a linear transformation T is 1-1 and that its inverse T^{-1} is of the same sort.

Proof. For part a), let us assume first that T is norm preserving, so that |T(x)| = |x| holds. Then we have

$$\langle Tx, Ty \rangle = \frac{1}{4}(|Tx + Ty|^2 - |Tx - Ty|^2)$$
 (By the polarization identity)

$$= \frac{1}{4}(|T(x+y)|^2 - |T(x-y)|^2)$$
 (By linearity of T)

$$= \frac{1}{4}(|x+y|^2 - |x-y|^2)$$
 (Since T is norm preserving)

$$= \langle x, y \rangle$$
 (By the polarization identity)

Hence we have shown that T is inner product preserving.

Now we assume that T is inner product preserving, so that $\langle Tx, Ty \rangle = \langle x, y \rangle$ holds. By Theorem 1.2 part (4) on our text, we have that $|x| = \sqrt{\langle x, x \rangle}$, which is true because

$$\langle x, x \rangle = x_1^2 + x_2^2 + \dots x_n^2$$

$$\implies \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots x_n^2}$$

$$= |x|.$$

Using this result then, we have

$$|Tx| = \sqrt{\langle Tx, Tx \rangle} = \sqrt{\langle x, x \rangle} = |x|,$$

thus showing that T is also norm preserving, and we are done.

Now for part b), take two elements $Tx, Ty \in \mathbb{R}^n$ with Tx = Ty, so that Tx - Ty = 0. Then

$$0 = \langle 0, 0 \rangle$$

$$= \langle Tx - Ty, Tx - Ty \rangle$$

$$= \langle x - y, x - y \rangle$$
 (Since T is inner product preserving).

This result implies that x = y, and thus we have that T is injective, as desired.

Lastly, since T is an injective linear operator, it is invertible. Hence $T^{-1} \in \mathcal{L}(\mathbb{R}^n)$ exists and, since T is norm preserving and inner product preserving, for every $x, y \in \mathbb{R}^n$ we have

$$||T^{-1}x|| = ||T(T^{-1}x)|| = ||x||,$$

and

$$\langle T^{-1}x, T^{-1}y\rangle = \langle T(T^{-1}x), T(T^{-1}y)\rangle = \langle x, y\rangle.$$

Therefore T^{-1} is also norm preserving and inner product preserving, and this concludes our proof.

Ex 1-10: If $T: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is a linear transformation, show that there is a number M such that $|T(\mathbf{h})| \leq M|h|$ for $\mathbf{h} \in \mathbb{R}^m$.

(*Hint:* Estimate $|T(\mathbf{h})|$ in terms of $|\mathbf{h}|$ and the entries in the matrix of T.)

Proof. Let A be the matrix associated with the linear map T. That is,

$$A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} := \begin{pmatrix} \mathbf{v}^1 \\ \vdots \\ \mathbf{v}^n \end{pmatrix},$$

so that

$$T(\mathbf{h}) = A\mathbf{h} = \begin{pmatrix} \langle \mathbf{v}^1, \mathbf{h} \rangle \\ \vdots \\ \langle \mathbf{v}^n, \mathbf{h} \rangle \end{pmatrix}.$$

Then we have

$$|T(\mathbf{h})|^2 = \sum_{j=1}^n \langle \mathbf{v}^j, \mathbf{h} \rangle^2$$

$$\leq \sum_{j=1}^n (|\mathbf{v}^j| \cdot |\mathbf{h}|)^2 \qquad (\text{By Theorem 1-1 part (2)})$$

$$= \left(\sum_{j=1}^n |\mathbf{v}^j|^2\right) \cdot |\mathbf{h}|^2.$$

Thus, letting $M = \sqrt{\sum_{j=1}^{n} |\mathbf{v}^{j}|^{2}}$, we have that $|T(\mathbf{h})| \leq M|h|$, as desired.

Ex 1-18: If $A \subset [0,1]$ is the union of open intervals (a_i,b_i) such that each rational number in (0,1) is contained in some (a_i,b_i) , show that $\partial A = [0,1] \setminus A$.

Proof. Let K = [0, 1]. It is clear that A is open since by hypothesis we have $A = \bigcup_i (a_i, b_i)$, which is a union of open sets (which is open). Hence we must have that $A^c = K \setminus A$ is closed in K, which implies that $\overline{K \setminus A} = K \setminus A$.

Now since

$$\partial A = \bar{A} \cap \overline{K \setminus A} = \bar{A} \cap (K \setminus A),$$

it suffices to show that $K \setminus A \subseteq \bar{A}$, which holds if and only if $\bar{A} = K$.

Now take any $x \in K$ and any open neighborhood U of x in K. Since \mathbb{Q} is dense, there exists a rational $r \in U$. Since there is some i such that $r \in (a_i, b_i)$, we know that $U \cap (a_i, b_i) \neq \emptyset$, which means that $x \in \bar{A}$. Hence A is dense in K (i.e. $K = \bar{A}$), which implies that $K \setminus A \subseteq \bar{A}$, and thus $\partial A = [0, 1] \setminus A$, as desired.

Ex 1-21: a) If A is closed and $x \notin A$, prove that there is a number d > 0 such that $|y - x| \ge d$ for all $y \in A$.

- b) If A is closed, B is compact, and $A \cap B = \emptyset$, prove that there is d > 0 such that $|y x| \ge d$ for all $y \in A$ and $x \in B$. (*Hint*: For each $b \in B$, find an open set U containing b such that this relation holds for $x \in U \cap B$.)
- c) Give a counterexample in \mathbb{R}^2 if A and B are closed but neither is compact.

Proof. a) By hypothesis, A^c is open, since A is closed. Since $x \in A^c$, there exists an open ball $\mathcal{B}_d(x)$ with radius d > 0 such that $x \in \mathcal{B}_d(x) \subset A^c$. Then we have that $|y - x| \ge d$ for all $y \in A$, as desired.

b) What we need to show is that the distance from A to B, which we denote by d(A, B), is greater than 0. Since A is closed and $A \cap B = \emptyset$, for each point $x \in B$, there exists $\delta_x > 0$ so that $d(x, A) > 3\delta_x$. Since the union of open balls $\bigcup_{x \in B} \mathcal{B}_{2\delta_x}(x)$ covers B, and B is compact, we may find a subcover, which we denote by $\bigcup_{j=1}^{N} \mathcal{B}_{2\delta_j}(x_j)$. If we let $\delta = \min\{\delta_1, \ldots, \delta_N\}$, then we must have $d(A, B) \geq \delta > 0$. Indeed, if $x \in B$ and $y \in A$, then for some j we have $|x_j - x| \leq 2\delta_j$, and by construction $|y - x_j| \geq 3\delta_j$. Therefore

$$|y - x| \ge |y - x_j| - |x_j - x| \ge 3\delta_j - 2\delta_j \ge \delta,$$

as desired.

c) Let A be the x-axis and B be the graph of the exponential function. Figure 1 below shows this counterexample:

FIGURE 1. Counterexample in \mathbb{R}^2 if A and B are closed but neither is compact. \square

Ex 1-22: If U is open and $C \subset U$ is compact, show that there is a compact set D such that $C \subset \operatorname{int}(D)$ and $D \subset U$.

Proof. Because $C \subset U$, and U is open, then for each $x \in C$ there is an open rectangle U_x with $x \in U_x \subset U$. Now consider the collection of all of these rectangles, one for each point in C. For each x, we will minimize U_x to get a smaller open rectangle V_x in the following way:

The i^{th} side of U_x should be an interval $(x_i - \delta_i, x_i + \varepsilon_i)$ containing x_i . Now we trim off half the distance from x_i to the boundary on each side, so that the i^{th} side of V_x is $(x_i - \delta_i/2, x_i + \varepsilon_i/2)$. Then the closed rectangle $\overline{V_x}$ is a proper subset of $U_x \subset U$.

Now let \mathcal{O} the open cover for C consisting of all the V_x . Since there is one V_x for each $x \in C$, this certainly covers C. But C is compact, so we only need finitely many of these rectangles, say V_{x_1}, \ldots, V_{x_k} .

Now let

$$D = \overline{V_{x_1}} \bigcup \cdots \bigcup \overline{V_{x_1}}.$$

Since each $\overline{V_{x_j}}$ is compact, and there are finitely many of them in the union forming D, we have that D must be compact. Moreover, $C \subset (V_{x_1} \bigcup \cdots \bigcup V_{x_k}) = \operatorname{int}(D)$ and $D \subset U$, as we set out to prove.

Ex 1-28: If $A \subset \mathbb{R}^n$ is not closed, show that there is a continuous function $f: A \longrightarrow \mathbb{R}$ which is not bounded. (*Hint:* If $x \in \mathbb{R}^n \setminus A$ but $x \notin \text{int}(\mathbb{R}^n \setminus A)$, let f(y) = 1/|y-x|.)

Proof. Since A is not closed, we have $A \cap \partial A = \emptyset$. Now we choose $x \in \partial A$, so that $x \notin A$, and let f(y) = 1/|y - x| for all $y \in A$. Clearly f is not bounded, since the closer we pick $y \in A$ to a point $x \in \partial A$, the more this function will blow up to infinity. Thus what's left for us to show is that f is indeed a continuous function:

Pick an arbitrary $p \in A$, and then for any $\varepsilon > 0$ we choose

$$\delta = \min \left\{ \frac{|p-x|}{2}, \frac{\varepsilon |p-x|^2}{2} \right\},$$

so that for any y with $0 < |y - p| < \delta$, we have $|y - x| \ge |p - x|/2$.

Then,

$$|f(y) - f(p)| = \left| \frac{1}{|y - x|} - \frac{1}{|p - x|} \right| = \frac{||p - x| - |y - x||}{|y - x||p - x|}$$

$$\leq \frac{|p - y|}{|y - x||p - x|}$$

$$< \frac{2\delta}{|p - x|^2} \leq \varepsilon.$$

$$(\clubsuit)$$

This result proves the continuity of f that we desire, but before concluding our proof we need to show why it is true that the inequality (\clubsuit) holds. That is, we need to show that

for any x, y it is always the case that $|||x|| - ||y||| \le ||x - y||$:

$$||x - y||^2 = \sum_{j=1}^n (x_j - y_j)^2$$

$$= ||x||^2 + ||y||^2 - 2\sum_{j=1}^n x_j y_j$$

$$\ge ||x||^2 + ||y||^2 - 2||x|| ||y||$$

$$= (||x|| - ||y||)^2.$$

Taking square roots yields the desired result, and our proof is done.

Ex 1-29: If A is compact, prove that every continuous function $f: A \to \mathbb{R}$ takes on a maximum and a minimum value.

Proof. Since A is compact and f is continuous, Theorem 1-9 guarantees that $f(A) \subset \mathbb{R}$ is compact, and hence it is closed and bounded. Let m and M be the greatest lower bound and least upper bound, respectively, of f(A). Then m and M are boundary points of f(A), both of which are in f(A) since this is a closed set. Hence m and M are the minimum and maximum values, respectively, attained by any continuous function f with compact domain A.