EXAM 2 CHEAT SHEET

• Infinite series

- Given a series of real numbers $\sum_{n=1}^{\infty} a_n$, its *n*-th partial sum $S_n := \sum_{k=1}^n a_k$. We say the series converges to the sum S if the sequence $\{S_n\}$ converges to $S \in \mathbb{R}$. We say the series diverges if the sequence $\{S_n\}$ diverges.
- We say $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges. We say $\sum_{n=1}^{\infty} a_n$ converges conditionally if $\sum_{n=1}^{\infty} |a_n|$ diverges and $\sum_{n=1}^{\infty} a_n$ converges.
- The series $\sum_{n=1}^{\infty} a_n$ is called a nonnegative series if $a_n \ge 0$ for all n.
- Given a series $\sum_{n=1}^{\infty} a_n$, a series $\sum_{k=1}^{\infty} b_k$ that can be obtained by adding parentheses to $\sum_{n=1}^{\infty} a_n$ is called a regrouping of $\sum_{n=1}^{\infty} a_n$.
- A series $\sum_{n=1}^{\infty} a'_n$ is called a rearrangement of $\sum_{n=1}^{\infty} a_n$ if there exists a bijection $f: \mathbb{N} \to \mathbb{N}$ such that $a'_n = a_{f(n)}$, $\forall n \in \mathbb{N}$. It's called a bounded rearrangement if there exists M > 0 such that $|f(n) n| \leq M$, $\forall n \in \mathbb{N}$.
- Theorem: $\sum_{n=1}^{\infty} a_n$ converges if and only if for all $\epsilon > 0$, there is N > 0 such that $|\sum_{k=n}^{m} a_n| < \epsilon$ whenever $m \ge n > N$.
- Corollary: If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- Corollary: If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then it converges.
- Proposition: If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge and $\alpha, \beta \in \mathbb{R}$, then $\sum_{n=1}^{\infty} \alpha a_n + \beta b_n$ converges.
- Theorem: Let $\sum_{n=1}^{\infty} a_n$ be a nonnegative series. Then (1) the series converges if and only if its partial sums are bounded; (2) if the series diverges, then $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \infty$.
- Theorem: Let $\sum_{n=1}^{\infty} a_n$ be a series and $\sum_{k=1}^{\infty} b_k$ be a regrouping of it. Then (1) if $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{k=1}^{\infty} b_k$ converges and $\sum_{k=1}^{\infty} b_k = \sum_{n=1}^{\infty} a_n$; (2) if $\sum_{n=1}^{\infty} a_n$ is a nonnegative series, then it converges to A if and only if $\sum_{k=1}^{\infty} b_k$ converges to A.
- Corollary: Let $\{S_n\}$ be the sequence of partial sums of the nonnegative series $\sum_{n=1}^{\infty} a_n$. If $\{S_n\}$ has a bounded (or equivalently, convergent) subsequence, then $\sum_{n=1}^{\infty} a_n$ converges.
- Comparison test: Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ be nonnegative series and suppose that $a_n \leq b_n$ for all sufficiently large n. Then $\sum_{n=1}^{\infty} b_n$ converges implies that $\sum_{n=1}^{\infty} a_n$ converges.
- Ratio test: Let $\sum_{n=1}^{\infty} a_n$ be a nonnegative series such that $a_n \neq 0$, $\forall n$. Then (1) if $\limsup_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, then the series converges; (2) if $\liminf_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$, then the series diverges.
- Root test: Let $\sum_{n=1}^{\infty} a_n$ be a nonnegative series. Then (1) if $\limsup_{n\to\infty} \sqrt[n]{a_n} < 1$, then the series converges; (2) if $\limsup_{n\to\infty} \sqrt[n]{a_n} > 1$, then the series diverges.
- Alternating series test: Let $\{a_n\}$ be a monotone sequence that converges to zero. Then the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.
- Dirichlet convergence test: Let $\sum_{n=1}^{\infty} a_n$ be a series with uniformly bounded partial sums, and $\{b_n\}$ be a monotone sequence that converges to zero. Then $\sum_{n=1}^{\infty} a_n b_n$ converges.
- Theorem: Let $\sum_{n=1}^{\infty} a_n$ be a series such that $\lim_{n\to\infty} a_n = 0$ and that there is N > 0 and a convergent regrouping $\sum_{k=1}^{\infty} b_k$ of $\sum_{n=1}^{\infty} a_n$ such that each b_k is the sum of at most N terms of $\{a_n\}$. Then, $\sum_{n=1}^{\infty} a_n$ converges.

2 MATH 5080

- Theorem: Let $\sum_{n=1}^{\infty} a_{f(n)}$ be a bounded rearrangement of $\sum_{n=1}^{\infty} a_n$. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} a_{f(n)}$ converges. And if they do, they converge to the same sum.
- Theorem: If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then all of its rearrangements also converge absolutely and to the same sum.
- Theorem: Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge absolutely. Then the sum of all the terms in their product matrix, in any order, form an absolutely convergent series $\sum_{n=1}^{\infty} a_{k_n} b_{j_n}$, and there holds $\sum_{n=1}^{\infty} a_{k_n} b_{j_n} = \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right)$.

• Riemann integration

- A partition P of an interval [a,b] is defined as a finite set of points $x_0, x_1, \dots, x_n \in [a,b]$ such that $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$. We also write $\Delta x_i = x_i x_{i-1}$ and define $\lambda(P) = \max_{1 \le i \le n} \{\Delta x_i\}$.
- Given a function $f:[a,b] \to \mathbb{R}$. Suppose there exists $I \in \mathbb{R}$ such that $\forall \epsilon > 0$, $\exists \delta > 0$ such that for all partition P of [a,b] with $\lambda(P) < \delta$, for all $\xi_i \in [x_{i-1},x_i]$, $i=1,\cdots,n$, there holds $|\sum_{i=1}^n f(x_i)\Delta x_i I| < \epsilon$, then f is said to be *Riemann integrable* on [a,b], denoted as $f \in R[a,b]$, and $I := \int_a^b f(x) dx$ is called the *definite integral* of f on [a,b].
- Let f be a bounded function on [a,b] and P be a partition of [a,b]. Write $M_i = \sup_{x_{i-1} \leq x \leq x_i} f(x)$ and $m_i = \inf_{x_{i-1} \leq x \leq x_i} f(x)$, $\forall i = 1, \dots, n$. Then $U(P,f) := \sum_{i=1}^n M_i \Delta x_i$ and $L(P,f) := \sum_{i=1}^n m_i \Delta x_i$ are called the upper sum and lower sum of f with respect to P.
- We say a partition P^* is a refinement of P if $P^* \supset P$.
- The upper integral $\overline{\int}_a^b f(x) dx := \inf_P U(P, f)$, the lower integral $\underline{\int}_a^b f(x) dx := \sup_P L(P, f)$.
- Theorem: If $f \in R[a, b]$, then f is bounded.
- Proposition: If $P^* \supset P$, then $U(P^*, f) \leq U(P, f)$ and $L(P^*, f) \geqslant L(P, f)$.
- Proposition: For any partitions P_1 and P_2 of [a,b], there holds $L(P_1,f) \leq U(P_2,f)$. Moreover, there holds $\int_a^b f(x) dx \leq \overline{\int}_a^b f(x) dx$.
- Theorem: Let f be bounded on [a,b]. Then the following are equivalent: (1) $f \in R[a,b]$; (2) $\underline{\int}_a^b f(x) dx = \overline{\int}_a^b f(x) dx$; (3) $\forall \epsilon > 0$, there exists a partition P of [a,b] such that $U(P,f) L(P,f) < \epsilon$.
- Theorem: If f is continuous on [a, b], then $f \in R[a, b]$
- Theorem: If f is monotone on [a, b], then $f \in R[a, b]$.
- Theorem: Let f be bounded on [a, b]. Suppose that f has only finitely many discontinuities on [a, b], then $f \in R[a, b]$.
- Theorem: If $f, g \in R[a, b]$, and $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g \in R[a, b]$ and $\int_a^b \alpha f + \beta g = \alpha \int_a^b f + \beta \int_a^b g$.
- Theorem: If $f, g \in R[a, b]$, then $fg \in R[a, b]$.
- Theorem: If $f, g \in R[a, b]$ and that $f \ge g$ on [a, b], then $\int_a^b f \ge \int_a^b g$.
- Theorem: If $f \in R[a, b]$, then $|f| \in R[a, b]$ and $\left| \int_a^b f \right| \le \int_a^b |f|$.
- Theorem: If $m \leq f(x) \leq M$ on [a,b] and $f \in R[a,b]$, then $m(b-a) \leq \int_a^b f \leq M(b-a)$.
- Theorem: If $g \in R[a, b]$ and that $m \leq g(x) \leq M$ on [a, b]. Then, if f is continuous on [m, M], there holds $f(g) \in R[a, b]$.

MATH 5080 3

- Corollary: If $f \in R[a, b]$ and g is a function obtained by changing the value of f at finitely many points on [a, b]. Then, $g \in R[a, b]$ and $\int_a^b g = \int_a^b f$.
- Theorem, Let a < c < b, then $f \in R[a, b]$ if and only if $f \in R[a, c]$ and $f \in R[c, b]$. Moreover, when $f \in R[a, b]$, there holds $\int_a^b f = \int_a^c f + \int_c^b f$.
- Fundamental Theorem of Calculus (part I): Let $f \in R[a, b]$ and suppose that there is a differentiable function F on [a, b] such that F'(x) = f(x), $\forall x \in [a, b]$ (i.e. F is an antiderivative of f on [a, b]). Then, $\int_a^b f = F(b) F(a)$.
- Fundamental Theorem of Calculus (part II): Let $f \in R[a,b]$. Define $F(x) := \int_a^x f(t) dt$, $\forall x \in [a,b]$. Then F is continuous on [a,b]. In addition, if f is continuous at $x_0 \in [a,b]$, then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.
- Theorem: Let f be continuous on [a, b] and φ have integrable derivative on $[\alpha, \beta]$. Suppose $\varphi(\alpha) = a$, $\varphi(\beta) = b$, and $\varphi(t) \in [a, b]$, $\forall t \in [\alpha, \beta]$. Then $\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$.
- Theorem: Let F, G be differentiable on [a,b], and that $F'=f\in R[a,b]$, $G'=g\in R[a,b]$. Then $\int_a^b Fg=F(b)G(b)-F(a)G(a)-\int_a^b fG$.

• Sequences and series of functions

- Let $\{f_n\}$ be a sequence of functions defined on a set $D \subset \mathbb{R}$. Suppose for all $x \in D$ the sequence $\{f_n(x)\}$ converges to limit $f(x) \in \mathbb{R}$, then f(x) is a function defined on D and that $\lim_{n\to\infty} f_n(x) = f(x)$, $\forall x \in D$. We say $\{f_n\}$ converges on D pointwisely to f. Similarly, if $\sum_{n=1}^{\infty} f_n(x)$ converges at every $x \in D$ and define $S(x) = \sum_{n=1}^{\infty} f_n(x)$, then S(x) is called the sum of the series and we say the series converges to S(x) pointwisely on D.
- Let $\{c_n\} \subset \mathbb{R}$. Then $\sum_{n=0}^{\infty} c_n x^n$ is called a *power series*. The numbers $\{c_n\}$ are called the *coefficients* of the series. The number $R := \sup\{|x| : \sum_{n=0}^{n} c_n x^n \text{ converges}\}$ is called the *radius of convergence* of the series. The set on which the series converges is called the *interval of convergence*.
- We say a sequence $\{f_n\}$ converges uniformly on D (denoted as $f_n \rightrightarrows f$) if for all $\epsilon > 0$, there is N > 0 such that $|f_n(x) f(x)| < \epsilon$ for all $x \in D$ and n > N. Similarly, we say a series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on D if its partial sum sequence $\{S_n(x)\}$ converges uniformly on D.
- Given a set D and a function $f: D \to \mathbb{R}$, the uniform norm (or, sup norm) on D is defined as $||f||_{U(D)} := \sup_{x \in D} |f(x)|$.
- We say a series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly absolutely on D if the series $\sum_{n=1}^{\infty} |f_n(x)|$ converges uniformly on D.
- Suppose f is infinitely differentiable at x_0 . Then $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ is called the Taylor series of f at x_0 . Suppose in addition that the series converges to f(x) on some neighborhood U of x_0 , then we say the series is the Taylor expansion of f on U centered at x_0 . If for all $x_0 \in I$, there exists $\delta > 0$ such that f has a Taylor expansion on $(x_0 \delta, x_0 + \delta)$ centered at x_0 , then f is said to be real analytic on the interval I.
- Let f be infinitely differentiable on $(x_0 R, x_0 + R)$. Then the remainder term of order n of the Taylor series of f at x_0 is the function $R_n(x) := f(x) \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x x_0)^k$.
- Let f be defined on an interval I. We say f can be approximated by polynomials on I if $\forall \epsilon > 0$, there exists a polynomial p(x) such that $|f(x) p(x)| < \epsilon$ for all $x \in I$.
- Let (X,d) be a metric space. Then $S \subset X$ is sequentially compact if any sequence $\{a_n\} \subset S$ has a convergent subsequence whose limit is contained in S.
- A family of functions $\{f_n\}$ are equicontinuous at $x_0 \in D$ if for all $\epsilon > 0$, there is $\delta > 0$ such that $|f_n(x_0) f_n(y)| < \epsilon$ for all $n \in \mathbb{N}$, whenever $|x_0 y| < \delta$. The family $\{f_n\}$ are called uniformly equicontinuous on D if for all $\epsilon > 0$, there is $\delta > 0$ such that $|f_n(x) f_n(y)| < \epsilon$ for all $n \in \mathbb{N}$ and all $x, y \in D$ whenever $|x y| < \delta$.

MATH 5080

- Proposition: If $\sum_{n=0}^{\infty} c_n x^n$ converges at $x = x_0 \neq 0$, then it converges absolutely at all $x \in (-|x_0|, |x_0|)$.
- Theorem: Given a power series $\sum_{n=1}^{\infty} c_n x^n$, let $\alpha := \limsup_{n \to \infty} \sqrt[n]{|c_n|} \in [0, \infty]$. Then its radius of convergence is $R = \frac{1}{\alpha}$.
- Proposition: Suppose $f_n \rightrightarrows f$ on D. Then for all $D' \subset D$, there holds $f_n \rightrightarrows f$ on D'.
- Proposition: Suppose $f_n \rightrightarrows f$ on D_1 and D_2 , then $f_n \rightrightarrows f$ on $D_1 \cup D_2$.
- Proposition: Suppose $f_n \rightrightarrows f$ and $g_n \rightrightarrows g$ on D and $\alpha, \beta \in \mathbb{R}$. Then $\alpha f_n + \beta g_n \rightrightarrows \alpha f + \beta g$ on D. If $\{f_n\}, \{g_n\}$ are further assumed to be uniformly bounded on D, then $f_n g_n \rightrightarrows fg$ on D.
- Theorem: $f_n \rightrightarrows f$ on D if and only if $||f_n f||_{U(D)} \to 0$ as $n \to \infty$.
- Cauchy convergence criterion: $\{f_n\}$ converges uniformly on D if and only if $\{f_n\}$ form a Cauchy sequence under the sup norm (i.e. for all $\epsilon > 0$, there is N > 0 such that $|f_n(x) f_m(x)| < \epsilon$ whenever $x \in D$ and m, n > N.)
- Corollary: $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on D if and only if for all $\epsilon > 0$, there is N > 0 such that $|\sum_{k=n}^{m} f_k(x)| < \epsilon$ whenever $x \in D$ and $m \ge n > N$.
- Corollary: Let $\{f_n\}$ be a sequence of continuous functions on [a, b]. Suppose that $\{f_n\}$ converges uniformly on (a, b), then it converges uniformly on [a, b].
- Weierstrass M-test: Let $f_n: D \to \mathbb{R}$, $\forall n \in \mathbb{N}$. Suppose for each n, there is $M_n > 0$ such that $|f_n(x)| \leq M_n$, $\forall x \in D$, and suppose that $\sum M_n$ converges. Then $\sum f_n(x)$ converges uniformly absolutely on D.
- Theorem: Suppose $f_n \rightrightarrows f$ on D and $x_0 \in D'$. For each $n \in \mathbb{N}$, suppose $\lim_{x \to x_0} f_n(x) = a_n \in \mathbb{R}$. Then $\{a_n\}$ converges and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} f(x)$.
- Corollary: Suppose $f_n \rightrightarrows f$ on D and every f_n is continuous on D. Then f is continuous on D.
- Proposition: Suppose power series $\sum c_n x^n$ converges at $x = x_0 \neq 0$, then it converges uniformly absolutely on any closed subinterval of $(-|x_0|, |x_0|)$. Moreover, its sum function is continuous on $(-|x_0|, |x_0|)$.
- Theorem: Suppose $f_n \rightrightarrows f$ on [a,b] and that $f_n \in R[a,b]$, $\forall n \in \mathbb{N}$. Then $f \in R[a,b]$ and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.
- Corollary: Suppose the series $\sum f_n(x)$ converges uniformly to S(x) on [a,b] and that $f_n \in R[a,b]$, $\forall n \in \mathbb{N}$. Then $S \in R[a,b]$ and $\int_a^b S = \sum \int_a^b f_n$.
- Corollary: Suppose the radius of convergence of the power series $\sum c_n x^n$ is $R \in (0, \infty]$. Then for any $t_1, t_2 \in (-R, R)$, $\int_{t_1}^{t_2} \sum_{n=0}^{\infty} c_n x^n dx = \sum_{n=0}^{\infty} \int_{t_1}^{t_2} c_n x^n dx = \sum_{n=0}^{\infty} \frac{c_n}{n+1} (t_2^{n+1} t_1^{n+1})$.
- Theorem: Let f_n be differentiable on [a,b], $\forall n \in \mathbb{N}$. Suppose that $\{f_n\}$ converges at some point $x_0 \in [a,b]$ and that for some function g there holds $f'_n \rightrightarrows g$ on [a,b]. Then $\{f_n\}$ converges uniformly to some function f on [a,b] and $f'(x) = \lim_{n \to \infty} f'_n(x)$ on [a,b].
- Corollary: Let f_n be differentiable on [a,b], $\forall n \in \mathbb{N}$. Suppose that the series $\sum f_n(x)$ converges at some point $x_0 \in [a,b]$ and that $\sum f'_n(x)$ converges uniformly on [a,b]. Then $\sum f_n(x)$ converges uniformly to some function S(x) on [a,b] and that $S'(x) = \sum f'_n(x)$ on [a,b].
- Corollary: Suppose the radius of convergence of the power series $\sum c_n x^n$ is $R \in (0, \infty]$. Then for all $x \in (-R, R)$, f is infinitely differentiable at x and $f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) c_n x^{n-k}$ for all $k \in \mathbb{N}$.
- Proposition: If $f(x) = \sum_{n=0}^{\infty} c_n(x-x_0)^n$ on (x_0-R,x_0+R) , then $c_n = \frac{f^{(n)}(x_0)}{n!}$ for all $n \ge 0$ and hence the power series must be the Taylor expansion of f.
- Theorem: Let f be infinitely differentiable on (a, b). If there is M > 0 such that $|f^{(n)}(x)| \leq M^n$ for all $x \in (a, b)$ and all n, then f is real analytic on (a, b), and for any $x_0 \in (a, b)$, one has that f can be Taylor expanded on

MATH 5080

- (a,b) centered at x_0 .
- Weierstrass approximation theorem: Let f be continuous on [a, b]. Then f can be approximated by polynomials on [a, b].
- Arzelà-Ascoli theorem: Let $D \subset \mathbb{R}$ be compact. Then $\mathcal{F} \subset C(D)$ is compact (hence equivalently sequentially compact) if and only if \mathcal{F} is closed, bounded, and uniformly equicontinuous.

• Metric spaces revisited

- Given two metric spaces (X, d_X) , (Y, d_Y) and a map $f: X \to Y$, we say $\lim_{x \to p} f(x) = y$ for some $p \in X'$ and $y \in Y$, if for all $\epsilon > 0$, there is $\delta > 0$ such that $d_Y(f(x), y) < \epsilon$ whenever $d_X(x, p) < \delta$. We say f is continuous at p if for all $\epsilon > 0$, there is $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ whenever $d_X(x, p) < \delta$.
- A sequence $\{a_n\}$ in metric space (X,d) converges to $L \in X$ if for all $\epsilon > 0$, there is N > 0 such that $d(a_n, L) < \epsilon$ whenever n > N.
- A sequence $\{a_n\}$ in metric space (X,d) is called a Cauchy sequence if for all $\epsilon > 0$, there is N > 0 such that $d(a_n, a_m) < \epsilon$ whenever n, m > N.
- The space (X,d) is called *complete*, if every Cauchy sequence in the space converges to some limit in X.
- Let (X, d) be a metric space. A set $S \subset X$ is *dense* in X, if for every $x \in X$ and every $\epsilon > 0$, there is $s \in S$ such that $d(x, s) < \epsilon$. A set $E \subset X$ is called *nowhere dense* if $\forall x \in X$ and $\forall \epsilon > 0$, $N(x, \epsilon)$ is not contained in E.
- Let X be a vector space (over \mathbb{R} or \mathbb{C}). A norm in X is a real valued function on X, denoted as $\|\cdot\|$, satisfying the following properties: (1) $\|x\| \ge 0$ for all $x \in X$ and equality holds if and only if x = 0; (2) $\|x + y\| \le \|x\| + \|y\|$, for all $x, y \in X$; (3) for all scalar α and all $x \in X$, $\|\alpha x\| = |\alpha| \|x\|$.
- Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ defined on the same vector space X are called *equivalent* if there is a constant C such that $C\|x\|_1 \leq \|x\|_2 \leq C^{-1}\|x\|_1$ for all $x \in X$.
- A Banach space is a complete normed vector space.
- Proposition: Given $f: X \to Y$ where X, Y are metric spaces, f is continuous on X if and only if $f^{-1}(O)$ is open in X for all open set O in Y.
- Proposition: A subset of a complete metric space is complete if and only if it is closed.
- Proposition: Every compact metric space is complete.
- Theorem: Given metric space (X, d), there is a complete metric space (\bar{X}, \bar{d}) , called the *completion* of (X, d), satisfying: (1) $X \subset \bar{X}$ and $\bar{d}(x, y) = d(x, y)$, $\forall x, y \in X$; (2) for any other complete metric space (Y, d_Y) satisfying property (1), there holds $\bar{X} \subset Y$ and $d_Y(x, y) = \bar{d}(x, y)$, $\forall x, y \in \bar{X}$.
- Baire Category Theorem: Let (X, d) be a complete metric space. Then any countable family of open dense subset of X has a dense intersection.
- Osgood Theorem: Let (X, d) be a complete metric space. Let $\{f_n\}$ be a sequence of continuous functions on X and suppose that for each $x \in X$, $\{f_n(x)\}_n$ is a bounded set in \mathbb{R} . Then, there is a nonempty open set $V \subset X$ such that $\{f_n\}$ are uniformly bounded on V.
- Contraction Mapping Principle: Let (X,d) be a complete metric space and $f: X \to X$. Suppose there is some $\rho \in [0,1)$ such that $d(f(x),f(y)) \leq \rho d(x,y)$ for all $x,y \in X$, then f has a unique fixed point (i.e. a point $x_0 \in X$ such that $f(x_0) = x_0$.)
- Theorem: The completion \bar{X} of a normed vector space X under the metric $||x-y||_X$ has a natural vector space structure that makes \bar{X} a Banach space.