Chapter 8 Lock Implementation

Jong-Hyeok Park akindo19@gmail.com

Introduction

- Details of implementing locking system
 - (Exclusive / Shared) Savepoint
 - Deadlock
 - (Persistent) Savepoint
 - Full-function locks

Concurrency Issues

- Need for parallelism within Lock manager
 - Fine granularity (trade-off : simplicity)
 - How to regulate concurrency with parallelism
- Preemptive Scheduling
 - Lock manager in higher-priority process will be blocked by the the semaphore until lower-priority process is re-dispatched.
- Virtual Memory
 - On page fault, other processes will be blocked by until page fault is serviced, and this lock manager request completes.
- Multiprocessors
 - Lock manager may consume 10% of the system pathlength and utilize semaphore 10% of time.
 - Now, 12% + 25% (latching + locking @ Payment Trx) [1]
 - Fine granularity is essential !!!