Resposta em Frequência de um Amplificador TBJ Relatório 01 de ELT 311

Wérikson Frederiko de Oliveira Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Introdução:

Este relatório contém uma analise teórica de um circuito com transistor bipolar de junção (TBJ), seguidos de dados coletados a partir da simulação realizada pelo Software **Qucs**, tendo por objetivo verificar a faixa de frequência de amplificação de um transistor bipolar polarizado por divisor de tensão.

Materiais Utilizados:

Figura 1: Circuito trabalhado.

• Resistores: $40k\Omega$, $10k\Omega$, $4k\Omega$, $2,2k\Omega$, $2k\Omega$ e $1k\Omega$;

• Capacitores: 1μ , 10μ , 20μ , 1p, 4p, 6p, 8pe36p F;

• TBJ 2N222A;

• Fonte de Tensão CC: 20 V;

• Fonte de Tensão CA: 1m V;

• Multímetro.

Parte Teórica:

1) Calcular o ponto quiescente do circuito I_{C_Q} e V_{CE_Q} . Considerando $\beta=200$, temos:

Figura 2: Circuito CC.

Inicialmente aplicando a equação de teste e satisfeita a condição podemos resolver por aproximação.

$$\beta R_E > 10R_2 \to 200k >> 100k$$

$$E_{th} = V_B = V_{CC} \cdot \frac{R_2}{R_1 + R_2} = 4 V$$

$$V_E = V_B - V_{BE} = 3,3 V$$

$$I_E = \frac{V_E}{R_E} = \frac{E_{th} - 0.7}{2k} = 1,65 \; mA$$

$$R_{th} = R_1//R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} = 8 \; k \Omega$$

$$I_C \approx I_E = I_{C_Q} = 1,65 \, mA \tag{1}$$

$$I_B = \frac{I_C}{\beta} = 8,25 \ \mu A$$

$$V_C = V_{CC} - R_C I_C = 13,40 \text{ V}$$

$$V_{CE_O} = V_{CE} = V_C - V_E = 10, 10 V$$
 (2)

2) Calcular os parâmetros AC para o circuito. (Z_i , Z_o , A_V e A_{VS}).

Figura 3: Circuito teórico 2.

• Z_I

$$r_e = \frac{26m}{I_E} = 15,76 \,\Omega$$

$$Z_b = \frac{I_b \beta r_e}{I_b} = \beta r_e = 3,15 \, k\Omega$$

$$Z_i = R_{th} / / \beta r_e = 2,26 \ k\Omega \tag{3}$$

Z_O

$$Z_o = R_C / / R_L = 1,42 \, k\Omega$$
 (4)

A_V

$$A_v = \frac{V_o}{V_i} = -\frac{R_C//R_L}{r_e} \approx -90 \qquad (5)$$

• A_{Vs}

$$V_I = \frac{Z_I}{Z_I + R_S} V_S$$

$$A_{VS} = \frac{V_o}{V_S} = \frac{V_o}{V_I} \frac{V_I}{V_S} = \frac{Z_I}{Z_I + R_S} A_V = -62,44$$
(6)

3) Determinar a frequência de corte inferior e superior para o circuito utilizando os parâmetros da prática ($C_{be}=36~\mathrm{pF},~C_{bc}=4~\mathrm{pF},~C_{ce}=1~\mathrm{pF},~C_{w_i}=6~\mathrm{pF}$ e $C_{wo}=8~\mathrm{pf}$).

Para baixas frequências, temos:

• Para C_S :

$$f_{L_S} = \frac{1}{2\pi (R_S + Z_i)C_S} = 4,88 \ Hz$$
 (7)

• Para C_C :

$$f_{L_C} = \frac{1}{2\pi (R_C + R_L)C_C} = 25,67 \, Hz$$
 (8)

• Para C_E :

$$R_e = R_E \mid\mid \left(\frac{R_1||R_2||R_S}{\beta} + r_e\right) = 20 \; \Omega$$

$$f_{L_E} = \frac{1}{2\pi R_e C_E} = 397,89 \ Hz$$
 (9)

A frequência de corte inferior é dada pela maior frequência, ou seja, $f_{L_E} \approx 398~Hz.$

Para alta frequências, temos:

• Para f_{H_i} : $R_{Thi} = R_s//R_1//R_2//Z_i = 637,97~\Omega$ $C_i = C_{wi} + C_{be} + (1-A_V)C_{bc} = 406~pF$

$$f_{H_i} = \frac{1}{2\pi R_{Thi}C_i} = 614,46 \ kHz$$
 (10)

• Para f_{H_o} : $R_{Tho}=R_C//R_L=1,42~k\Omega$ $C_o=C_{wo}+C_{ce}+(1-1/A_V)C_{bc}=13.04~pF$

$$f_{H_o} = \frac{1}{2\pi R_{Tho}C_o} = 8.60 MHz$$
 (11)

A frequência de corte superior é dada pela menor frequência, ou seja, $f_{H_i} \approx 614,5~kHz.$

4) Traçar a curva de Bode e suas assíntotas para f X $A_v/A_{v_{med}}$ (dB).

Figura 4: Curva de Bode.

5) Marcar sobre a curva de resposta em frequência os pontos de frequência de corte inferior e superior.

Figura 5: Banda de Passagem.

- 6) Qual a largura da faixa de passagem do amplificador? A largura da banda é aproximadamente: $BW=614,5k-400\approx614,1\ kHz.$
- 7) O que se entende por Efeito Miller?

Por meio dos cálculos acima, podemos perceber que se trata de um amplificador inversor, ou seja, A_V é negativo. Com isto, para esse modelo de circuito, o Efeito Miller resume-se na capacitância intereletródica que modifica a capacitância efetiva entre os terminais de entrada e saída do dispositivo ativo variando em eficácia segundo a frequência, ou seja, a sensibilidade perante ao ganho do amplificador e a capacitância parasita entre os terminais. Esta condição contribui para a linearidade.

Parte Prática:

Figura 6: Circuito simulado completo

1) Preencher a Tabela 1.

Em seguida, aplicar ao circuito um sinal senoidal $V_S=1~{\rm mV}$ pico e $F=5~{\rm kHz}$ e preencher a tabela 2 e a Tabela 3.

OBS.: As tabelas se encontram no anexo.

2) Traçar a curva de Bode e suas assíntotas para f X $\frac{A_v}{A_r}$ dB.

Figura 7: Curva de Bode simulada.

 Marcar sobre a curva de resposta em frequência os pontos de frequência de corte inferior e superior.

Figura 8: Frequências de corte inferior e superior simuladas.

4) Verificar a redução de – 3 dB no ganho.

Conforme o gráfico da figura 7, podemos perceber que as frequências na qual ocorrem o valor aproximado de -3dB são próximas das frequências de corte encontradas na parte teórica. Esse valor corresponde a quando o sinal atinge 0,707 do valor máximo.

5) Qual a largura da faixa de passagem do amplificador experimentalmente?

A largura da faixa de passagem do amplificador experimentalmente é aproximadamente:

$$B = 5,7M - 500 \approx 5,69 MHz$$

6) Quais são as principais capacitâncias que limitam a resposta do amplificador em alta e baixa frequência?

Em baixa frequência as principais capacitâncias que limitam a resposta do amplificador são as capacitâncias externas $(C_C, C_S e C_E)$. E em altas frequência as principais capacitâncias que limitam a res-

REFERÊNCIAS REFERÊNCIAS

posta do amplificador são as capacitâncias internas $(C_{bc},C_{be}eC_{ce})$.

Conclusão

Portanto, através desta simulação foi observado a influencia da capacitância a medida em que a frequência é variada, para altos e baixos valores. Além disso, pôde ser observado os ganhos para o circuito utilizado e assim obter, ao final, as frequências de corte, consequentemente a faixa de passagem, entretanto, o valor da faixa experimental ficou fora de escala em relação a faixa teórica.

Referências

[1] R. L. Boylestad and L. Nashelsky, *Dispositivos eletrônicos e teoria de circuitos*, vol. 6. Prentice-Hall do Brasil, 1984.

REFERÊNCIAS REFERÊNCIAS

Anexo:

Tabela 2: Parâmetros do circuito amplificador (Alta frequência).

F (Hz)	$V_S(mV)$	$V_o(mV)$	A_{VS}	A_V/A_{med}	$A_V/A_{med}dB$
5 k	1	59,6	59,6	0,995	- 0,04100
10 k	1	59,7	59,7	0,999	- 0,00909
50 k	1	58,2	58,2	1,000	0,000911
100 k	1	54,3	54,3	1,000	0,00024
200 k	1	44,1	44,1	1,000	- 0,00363
300 k	1	35,2	35,2	0,999	- 0,0101
400 k	1	28,6	28,6	0,998	- 0,0195
500 k	1	23,8	23,8	0,996	- 0,0315
600 k	1	20,4	20,4	0,995	- 0,0457
650 k	1	19,0	19,0	0,994	- 0,0539
700 k	1	17,8	17,8	0,993	- 0,0628
750 k	1	16,7	16,7	0,992	- 0,0722
800 k	1	15,7	15,7	0,991	- 0,0822
850 k	1	14,8	14,8	0,989	- 0,0933
900 k	1	14,0	14,0	0,988	- 0,105
950 k	1	13,4	13,4	0,987	- 0,117
1 M	1	12,7	12,7	0,985	- 0,129
2 M	1	6,48	6,48	0,944	- 0,496
5 M	1	2,58	2,58	0,753	- 2,47
10 M	1	1,28	1,28	0,497	- 6,07
20 M	1	0,612	0,612	0,276	- 11,2

Tabela 3: Parâmetros do circuito amplificador (Baixa frequência).

F (Hz)	$V_S(mV)$	$V_o(mV)$	A_{VS}	A_V/A_{med}	$A_V/A_{med}dB$
1 k	1	55,7	55,7	0,895	- 0,96
800	1	53,8	53,8	0,849	- 1,42
700	1	52,3	52,3	0,815	- 1,78
600	1	50,2	50,2	0,770	- 2,26
500	1	47,2	47,2	0,709	- 2,99
450	1	45,2	45,2	0,670	- 3,49
400	1	42,8	42,8	0,624	- 4,10
350	1	40,0	40,0	0,575	- 4,81
300	1	36,4	36,4	0,513	- 5,80
250	1	32,4	32,4	0,449	- 6,96
200	1	27,2	27,2	0,370	- 8,65
150	1	21,2	21,2	0,284	- 10,9
100	1	14,5	14,5	0,191	- 14,4
80	1	11,5	11,5	0,151	- 16,4
70	1	10,0	10,0	0,131	- 17,7
50	1	6,85	6,85	0,0895	- 21,0
30	1	3,51	3,51	0,0458	- 26,8
10	1	0,594	0,594	0,00771	- 42,3